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Résumé en Français

Ce manuscrit de thèse est rédigé sous la forme d’une « thèse par articles », et est
rédigé en anglais. Il commence par un résumé en français du contenu du manuscrit,
qui est suivi d’une introduction et une présentation de l’état de l’art du domaine
(Chapitre I). Le manuscrit est rédigé en anglais à partir de l’introduction. Le
chapitre II propose une définition générale des problèmes résolus dans le manuscrit.
Les chapitres III à V sont basés sur des publications. Ils suivent la même structure :
une introduction motivant le problème traité dans le chapitre, une description des
contributions principales de la publication, une discussion étendant les résultats de
la publication, et enfin la publication. Le manuscrit se termine avec une conclusion
et une présentation des perspectives.

1 Modélisation et Inférence des Systèmes Biologiques

Biologie des systèmes. La biologie computationnelle, ou bio-informatique, est une
discipline à l’interface entre les sciences du vivant et l’informatique (Kitano, 2002a).
Durant les dernières décennies, de nouvelles techniques d’observation et de mesure
haut-débit des cellules ont induit un changement majeur de paradigme en biologie
et bio-informatique. La quantité de données collectées a permis l’émergence de la
biologie des systèmes, un domaine de la bio-informatique s’intéressant aux méca-
nismes biologiques d’un point de vue systémique (Kitano, 2002b). Un des enjeux
majeurs de la biologie des systèmes est l’intégration des données expérimentales, en
particulier « omiques », pour générer de nouvelles connaissances, notamment expli-
quer le comportement et prédire la réponse des systèmes biologiques. Les données
« omiques » sont un ensemble de données biologiques caractérisant et quantifiant
des molécules d’intérêt dans les cellules (e.g. génomique, métabolomique).

Systèmes biologiques complexes. Les systèmes biologiques sont traditionnellement
considérés comme des systèmes complexes composés de nombreux mécanismes
biologiques interconnectés les uns avec les autres. Ces mécanismes sont regroupés en
différentes échelles de processus, allant de la transcription des gènes d’une séquence
d’ADN aux interactions entre populations de bactéries. Chaque échelle est souvent
représentée indépendamment des autres avec sa propre dynamique et échelle de
temps (Walpole et al., 2013).

En particulier, le système de régulation et le métabolisme sont deux échelles
d’intérêt en biologie des systèmes. Le métabolisme transforme des nutriments
en composés, appelés métabolites, nécessaires à la production de biomasse et

iii



RÉSUMÉ EN FRANÇAIS Modélisation et Inférence des Systèmes Biologiques

d’énergie. Ces transformations d’ensembles de métabolites vers d’autres ensembles
de métabolites ont lieu sous l’activité de protéines, appelées enzymes, catalysant des
réactions bio-chimiques. La production des enzymes est elle-même contrôlée par une
cascade de régulation impliquant d’autres protéines, des métabolites et des facteurs
abiotiques. Nous savons depuis le début des années 1940, et les travaux de Jacques
Monod (Monod, 1942), que ces deux systèmes sont fortement interconnectés et
qu’ils doivent tout deux être pris en compte pour expliquer certaines dynamiques
des bactéries observées en laboratoire. En effet, certains métabolites produits par le
métabolisme peuvent également bloquer ou induire des signaux de régulations, qui
eux-mêmes peuvent bloquer ou induire l’expression de gènes, impactant l’activité
du métabolisme.

Une modélisation indépendante. Malgré ces intéractions entre les échelles métabo-
lique et de régulation, la plupart des méthodes de simulation du métabolisme et
du système de régulation ne considèrent que l’une des deux échelles.

À l’échelle métabolique, la dynamique est classiquement abstraite par des sys-
tèmes algébriques différentiels selon une sémantique de flux, nommée Flux Balance
Analysis (FBA) : les transformations de métabolites sont abstraites par le taux
d’activité des réactions selon des hypothèses d’état stable et d’optimisation de la
production de biomasse (Orth et al., 2010). En effet, il est couramment supposé
que les cellules ont évolué pour optimiser certaines fonctions biologiques, e.g. leur
croissance (Feist and Palsson, 2010). La FBA abstrait la dynamique du métabolisme
comme un problème d’optimisation linéaire.

À l’inverse, à l’échelle de la régulation, la dynamique du système est discrétisée :
un gène est soit actif, soit inactif, et son état est dépendant de la présence ou
absence de protéines et/ou métabolites (Kauffman, 1969; Thomas, 1973; Wang
et al., 2012). En pratique, la dynamique du réseau de régulation est modélisée par
un réseau booléen, associant à chaque gène une fonction booléenne définissant son
état. Ces fonctions booléennes, ou règles de régulation booléennes, sont fonction
de l’état (actif ou inactif) de sous-ensembles de composés (e.g. gènes, protéines,
métabolites) pouvant affecter l’expression des gènes. Selon ce formalisme, la mise à
jour d’un état de régulation (un vecteur booléen) se calcule en appliquant toutes
(synchrone), ou une partie (asynchrone), les règles de régulation du réseau booléen.

Il existe de nombreux formalismes et outils de simulation permettant de coupler
la dynamique basée-flux du métabolisme avec la dynamique discrète du système
de régulation (Moulin et al., 2021). Cependant, l’utilisation de ces formalismes de
simulation est limitée par la disponibilité des modèles métaboliques régulés. En effet,
il existe très peu de modèles métaboliques régulés disponibles dans la littérature.
La plupart des modèles existants ne suivent pas les formalismes standards et sont
inutilisables avec les outils de simulation actuels.
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Modèles métaboliques régulés. Bien qu’il existe des méthodes de reconstruction
de modèle métabolique (Thiele and Palsson, 2010) et d’inférence de règles de
régulation (Videla et al., 2017; Chevalier et al., 2020; Ostrowski et al., 2016;
Vaginay et al., 2021; Žiga Pušnik et al., 2022) à partir de données omiques, aucune
méthode ne permet d’inférer les règles de contrôle du système de régulation sur le
métabolisme et les règles de rétroaction de l’activité métabolique sur le système
de régulation. Actuellement, les règles de contrôle et de rétroaction doivent être
reconstruites manuellement. La reconstruction manuelle de ces règles a notamment
été faite pour des modèles des bactéries comme Escherichia coli (Covert and Palsson,
2002; Covert et al., 2004), Ralstonia solanacearum (Peyraud et al., 2018) et Bacillus
subtilis3 (Tournier et al., 2017). L’absence de méthode d’inférence automatique de
ces règles de régulation limite fortement le développement de nouveaux modèles de
métabolismes régulés.

Objectif de la thèse. Les travaux réalisés aux cours de cette thèse visent à résoudre
ce problème. Ce manuscrit présente de nouveaux formalismes, et outils, d’inférence
de règles de régulation booléennes contrôlant le métabolisme à partir de données
omiques et de connaissances biologiques a priori.

2 L’Inférence de Règles de Régulation dans la Littérature

Cette section résume l’état de l’art sur les formalismes de modélisation et d’inférence
de modèles métaboliques régulés présenté Chapitre I.

2.1 Formalisme de Simulation des Modèles de Métabolisme Régulé

Modélisation de la dynamique couplée. Un modèle métabolique régulé est composé
de deux éléments : un réseau métabolique, pour l’échelle du métabolisme ; et un
réseau booléen, pour l’échelle de régulation. Les règles de régulation du réseau
booléen peuvent être fonction de l’activité des réactions du métabolisme et la
disponibilité des métabolites environnementaux (règle de rétroaction). De même,
certaines réactions du métabolisme ont une règle de régulation dans le réseau
booléen (règle de contrôle). Une réaction inhibée par le système de régulation a
une activité nulle dans le métabolisme (i.e. aucune enzyme ne catalyse la réaction).

Le formalisme rFBA permet de modéliser la dynamique hybride des modèles
métaboliques régulés (Covert et al., 2001). Le principe de la rFBA est de diviser la
simulation du système en pas-de-temps, et d’alterner successivement : (1) une mise

3La rétroaction du métabolisme n’est pas prise en compte dans le modèle métabolique régulé
de Bacillus subtilis.
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à jour synchrone de l’état de régulation, et (2) résoudre les équations linéaires de
la FBA après avoir fixé toutes les réactions inhibées à zéro.

2.2 Construction de Modèle de Métabolisme Régulé

Pour construire un modèle métabolique régulé, il est nécessaire de construire
le réseau métabolique, et le réseau booléen, avec les règles de contrôle et de
rétroaction. Actuellement, aucune méthode de la littérature ne permet d’inférer
automatiquement les règles de régulation de contrôle et de rétroaction. Cependant,
il existe des protocoles et méthodes pour la reconstruction/inférence des réseaux
métaboliques et booléens.

Construction de réseaux métaboliques. Les réseaux métaboliques sont construits à
partir de données génomiques, métabolomiques et fluxomiques (Thiele and Palsson,
2010). En particulier, les équations FBA, modélisant la dynamique du métabolisme,
sont calibrées à partir de données cinétiques et fluxomiques. Dans ce manuscrit,
nous considérons les réseaux métaboliques des modèles étudiés comme des entrées
de nos méthodes.

Inférence de réseaux booléens. Pour les réseaux booléens, de nombreuses méthodes
ont été développées pour inférer des réseaux booléens à partir de série temporelle
de données d’expression (transcriptomiques ou protéomiques) et de connaissances
a priori. Ces connaissances prennent la forme d’ensemble d’interactions autorisées
entre les gènes, protéines et métabolites. La règle de régulation fn d’un composé
n est supportée par un ensembles d’interactions {m1 → n,m2 → n} si fn est
uniquement fonction de m1 et m2. Notons que ces interactions peuvent être signées.
Elles sont positives m→+ n si m permet l’activation de n, et négatives m→− n si
m inhibe n.

Les méthodes d’inférence de réseaux booléens formulent le problème d’inférence
comme un problème d’optimisation combinatoire (Videla et al., 2017; Ostrowski
et al., 2016; Chevalier et al., 2020; Vaginay et al., 2021) ou de programmation
mixte en nombre entier (Terfve et al., 2012). En particulier, les méthodes basées sur
l’optimisation combinatoire permettent d’énumérer l’ensemble des réseaux booléens
compatibles avec les données d’entrée, un critère important pour les biologistes.
Ces derniers ont besoin d’avoir une vue d’ensemble de l’espace des possibles afin de
planifier leurs protocoles expérimentaux.
Notons également qu’il existe des méthodes d’inférence stochastique (Trinh and
Kwon, 2021; Gao et al., 2020; Liu et al., 2021; Barman and Kwon, 2020), mais ces
méthodes ne prennent pas en entrée des interactions et ne peuvent pas énumérer
l’ensemble des solutions. Nous ne les considérons pas dans cette thèse.
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Limites. L’inconvénient de ces méthodes est qu’elles ne considèrent pas la dy-
namique et l’impact du métabolisme sur le système de régulation. Elles infèrent
des réseaux booléens en ne considérant que la dynamique discrète du réseau de
régulation. Elles ne permettent donc pas de capter les règles de contrôle et de
rétroaction.

3 Contributions : Inférence de Réseaux Booléens Contrôlant
des Réseaux Métaboliques

Cette section résume les chapitres II à V regroupant la formalisation du problème
d’inférence et les différentes méthodes de résolution développées pour le résoudre.

Définition générale. Pour inférer les règles de contrôle et de rétroaction, il est
nécessaire de prendre en compte la dynamique hybride des modèles métaboliques
régulés. Dans le Chapitre II, nous proposons une définition générale du
problème d’inférence de réseaux booléens contrôlant le métabolisme à partir de
données omiques. Cette définition prend la forme d’un problème d’optimisation
sous contraintes quantifiées.

Ici, nous considérons trois types de données omiques : transcriptomiques, ciné-
tiques et fluxomiques. Les données transcriptomiques sont des données mesurant
l’expression des gènes. Ce type de données est communément employé pour inférer
des réseaux booléens modélisant des réseaux de régulation. Les données cinétiques
et fluxomiques sont quant à elles des mesures de l’activité du métabolisme, respecti-
vement, les concentrations de métabolites environnementaux et une quantification
de l’activité des réactions. Les données cinétiques et fluxomiques sont employées
pour reconstruire et calibrer les équations FBA modélisant le métabolisme.

En considérant le formalisme rFBA pour modéliser la dynamique du métabolisme
régulé, nous formulons le problème d’inférence comme :

Entrées :
1: un réseau métabolique ;
2: des connaissances biologique a priori sous la forme d’un ensemble d’interactions

possibles entre les gènes, protéines, métabolites et réactions ;
3: des séries temporelles de données cinétiques, fluxomiques ou transcriptomiques.

Sorties : l’ensemble des réseaux booléens tels que :
1: le réseau booléen contrôlant le réseau métabolique d’entrée admet des simu-

lations rFBA minimales qui sont compatibles avec chaque série temporelle ;

2: le réseau booléen est supporté par les connaissances biologiques.
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Formellement, cette définition du problème d’inférence prend la forme d’un
problème d’optimisation hybride combinant des contraintes logiques et
des contraintes linéaires quantifiées. En pratique, nous avons dérivé trois
formulations du problème d’inférence : une relaxation booléenne (Chapitre III), et
deux formulations hybrides (Chapitres IV et V).

3.1 Relaxation Booléenne du Problème d’Inférence

Cette section résume le chapitre III dont le contenu est basé sur la papier Thuillier
et al. (2021).

Relaxation booléenne. Dans le Chapitre III, nous introduisons une relaxation
booléenne du problème d’inférence (Thuillier et al., 2021). Cette relaxation
est basée sur une sur-approximation booléenne des équations linéaires de la FBA
permettant de définir une abstraction booléenne du formalisme rFBA. En pratique,
la formulation relaxée du problème d’inférence est un problème de satisfiabilité
logique avec deux niveaux de quantificateurs (2-QBF).

Programmation par ensembles réponses. Pour résoudre ce problème 2-QBF, nous
avons utilisé la programmation par ensembles réponses (ASP) (Baral, 2003) et la
méthode de saturation (Eiter et al., 2009; Gebser et al., 2011). La méthode de
saturation permet de résoudre efficacement les problèmes 2-QBF en exploitant la
sémantique stable d’ASP et la sémantique des contraintes logiques disjonctives.
L’encodage ASP du problème d’inférence relaxé est décrit en Annexe B.2.

Application. L’application de notre méthode à deux modèles dérivés d’un modèle
du métabolisme central du carbone d’Escherichia coli4 (Covert et al., 2001) a donné
des résultats prometteurs, mais a également mis en évidence certaines limites. Bien
que la méthode ait permis d’inférer des réseaux booléens reproduisant exactement
les simulations rFBA utilisées pour générer les séries temporelles d’entrée, elle a
également conduit à l’inférence de réseaux faux-positifs. Il y a environ 50% de
réseaux faux-positifs d’inférés pour l’un des cas d’étude. Ces faux-positifs sont dus à
notre sur-approximation booléenne des équations de la FBA. Cette dernière génère
des états métaboliques booléens stationnaires qui n’ont pas de contrepartie dans
les équations FBA. Malgré cela, cette abstraction booléenne est à la base de toutes
les méthodes de résolution décrites dans ce manuscrit.

4Scripts disponibles sur GitHub : https://github.com/bioasp/boolean-caspo-flux.
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3.2 Formulation Hybride du Problème d’Inférence

Cette section résume le chapitre IV dont le contenu est associé au papier Thuillier
et al. (2022).

Formulation hybride. Pour ne pas inférer de réseaux booléens faux-positifs, il est
nécessaire d’intégrer la vérification des équations linéaires de la FBA directement
dans le processus d’inférence. La difficulté réside dans la nécessité de combiner la
dynamique discrète des réseaux booléens et la dynamique linéaire du métabolisme.
Dans le Chapitre IV, nous présentons un schéma de résolution hybride,
couplant la programmation logique et la programmation linéaire, pour résoudre la
formulation hybride du problème d’inférence sans passer par des sur-approximations
booléennes (Thuillier et al., 2022).

Schéma de résolution hybride. Ce schéma de résolution repose sur des méthodes de
propagation de contraintes et de généralisation de contre-exemples, communément
utilisées dans les solveurs satisfiabilité modulo théorie (SMT) (Barrett and Tinelli,
2018). En pratique, il permet d’intégrer la vérification des équations de la FBA et
le critère de maximisation de la croissance à ASP (Ostrowski and Schaub, 2012;
Banbara et al., 2017).

Ce schéma de résolution peut être résumé en trois grandes étapes. Tout d’abord,
on cherche une solution au problème d’inférence relaxé, et on extrait tous les
états métaboliques booléens stationnaires qui sont générés. Ensuite, on vérifie pour
chaque état s’il existe une solution de la FBA équivalente, et que la croissance
optimale prédite par la FBA colle avec les observations. Si oui, le réseau booléen
inféré est solution. Sinon, le réseau booléen est un contre-exemple. Le réseau est
rejeté et de nouvelles contraintes ASP sont générées. Ce processus itératif continue
jusqu’à ce que le problème soit prouvé non-satisfiable ou que toutes les solutions
aient été énumérées.

Généralisation de contre-exemple. Les contraintes ASP générées pour chaque contre-
exemple sont très importantes pour la résolution du problème et permettent le
passage à l’échelle de notre méthode. Ces contraintes permettent de généraliser les
contre-exemples, et ainsi éviter de générer des réseaux booléens candidats qui sont
sûr d’échouer la vérification linéaire. Ces contraintes sont générées en exploitant
une propriété monotone liant les ensembles de réactions inhibées et la croissance
optimale selon la FBA. Intuitivement, la propriété énonce que “inhiber une réaction
ne peut pas permettre d’augmenter la croissance”.

Implémentation et validation. Ce schéma de résolution a été implémenté dans un
outil dédié à l’inférence de réseaux booléens contrôlant des réseaux métaboliques :
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MERRIN (https://github.com/bioasp/merrin).
Pour valider MERRIN, nous avons développé un protocole de génération de

données omiques synthétiques, mais réaliste, à partir de simulations rFBA. Ce
protocole permet de générer des séries temporelles bruitées (ou non) de données
cinétiques, fluxomiques et transcriptomiques. Les séries temporelles générées peuvent
être composées de tout sous-ensemble de ces trois types de données omiques. À
l’aide de ce protocole, nous avons généré un benchmark de 240 instances avec
différentes combinaisons de type de données et différents niveaux de bruit (0% à
50%). Les instances sont générées à partir de cinq simulations rFBA d’un modèle
de métabolisme central du carbone d’Escherichia coli (Covert et al., 2001).

Sur ce benchmark, MERRIN permet d’inférer des réseaux booléens plus petit
que celui de référence, i.e. pour ces réseaux, toutes les règles de régulation ne
sont pas inférées. Malgré cela, ces réseaux minimaux permettent de reproduire
exactement les simulations rFBA utilisées pour générer le benchmark. MERRIN
permet donc d’inférer des modèles plus parcimonieux que ceux de la littérature,
tout en expliquant les mêmes comportements. De manière générale, nous avons
constaté que les réseaux inférés par MERRIN retrouvent exactement les simulations
rFBA d’entrée, ou à un point de temps prêt, dès lors que l’on utilise des données
cinétiques et transcriptomiques avec moins de 20% de bruit. Cela montre donc qu’il
est possible d’inférer des réseaux booléens de régulation, et notamment les règles
de contrôle et de rétroaction, à partir de données cinétiques et transcriptomiques.

3.3 Optimisation Combinatoire sous Contraintes Linéaires Quantifiées

Cette section résume le chapitre V dont le contenu est associé au papier Thuillier
et al. (2024).

Problèmes OPT+qLP. La formulation hybride du problème d’inférence, résolu par
MERRIN, est un exemple de problèmes d’optimisation combinatoire sous contraintes
linéaires quantifiées (OPT+qLP). Dans ces travaux, on se restreint à un seul niveau
de quantificateurs linéaires. Dans le Chapitre V, nous introduisons une méthode
générique de résolution des problèmes OPT+qLP basée sur une méthode de
raffinement d’abstraction guidé par les contre-exemples (Counter-Example Guided
Abstract Refinement – CEGAR) (Clarke et al., 2003).

Méthode CEGAR. La méthode CEGAR est une méthode générique permettant
de combiner facilement des solveurs, notamment des solveurs logiques et des
solveurs linéaires. Cette méthode a déjà été employée pour résoudre des problèmes
d’optimisation hybride (Janota et al., 2016; Brummayer and Biere, 2008; Barrett
and Tinelli, 2018), mais pas pour résoudre des problèmes OPT+qLP.
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La méthode CEGAR est assez similaire au principe de résolution et génération
de contraintes utilisé dans MERRIN. Une sur-approximation booléenne du problème
OPT+qLP est résolue avec un solveur SAT ou ASP. Si cette abstraction est non-
satisfiable, alors le problème OPT+qLP l’est aussi. Sinon, un modèle de l’abstraction
booléenne est trouvé. Ce modèle est une solution au problème OPT+qLP s’il satisfait
les contraintes linéaires quantifiées. Sinon, c’est un contre-exemple, et l’abstraction
est raffinée en ajoutant de nouvelles contraintes dérivées du contre-exemple. Ce
processus itératif continue jusqu’à ce que le problème OPT+qLP soit démontré
non-satisfiable ou que toutes les solutions aient été énumérées.

Généralisation de contre-exemple. La généralisation des contre-exemples, et donc
des nouvelles contraintes, repose sur une propriété monotone liant la structure des
problèmes d’optimisation linéaire à leur optimum. Intuitivement, cette propriété
énonce que “ajouter une nouvelle contrainte linéaire à un problème d’optimisation
linéaire ne peut pas augmenter (resp. diminuer) son maximum (resp. minimum)”. La
généralisation des contre-exemples raisonne donc sur les ensembles de contraintes
des problèmes d’optimisation linéaire. En pratique, pour chaque contre-exemple,
nous allons calculer les meilleurs ensembles de contraintes linéaires avant de générer
les contraintes, i.e. on cherche à maximiser (ou minimiser suivant la situation) la
taille des contre-exemples. Cela permet aux contraintes générées de filtrer plus
efficacement l’espace des solutions tout en conservant un coût de calcul raisonnable.

Implémentation et benchmark. Nous avons implémenté ce schéma de résolution dans
le solveur générique MerrinASP (https://github.com/kthuillier/merrinasp).
Il étend le solveur ASP clingo avec des contraintes linéaires ayant un niveau de
quantificateur.

Nous avons comparé les performances de MerrinASP avec clingo-lpx, un solveur
qui étend ASP avec des contraintes linéaires sans quantificateur. Comme aucun
benchmark de problèmes OPT+qLP existe, nous avons utilisé un benchmark
issu du problème d’inférence sur deux modèles métaboliques régulés, le modèle
de métabolisme central du carbone (Covert et al., 2001) et un modèle moyenne
échelle (Covert and Palsson, 2002)5. Un protocole d’élimination de quantificateurs
a été utilisé pour reformuler les instances fournies à clingo-lpx. Ce protocole repose
sur une formulation des problèmes d’optimisation linéaire à l’aide du théorème de
dualité forte. En pratique, nous avons constaté que MerrinASP est 10 fois plus
rapide à résoudre les problèmes OPT+qLP que clingo-lpx avec élimination de
quantificateurs.

De plus, résoudre le problème d’inférence hybride en l’encodant avec MerrinASP

5Notons que MERRIN ne passait pas à l’échelle, au niveau des temps de calcul, sur ce modèle
grande échelle.
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est plus performant que MERRIN. MERRIN n’a pas pu inférer de réseaux booléens
sur les instances issues du modèle grande échelle en 24h, tandis qu’il faut environ
2min avec l’encodage MerrinASP pour en trouver un premier (plus de 150 000
réseaux sont inférés en 24h). Ce gain de performance repose principalement sur
l’optimisation des contre-exemples avant la généralisation des contraintes, qui n’est
pas implémenté dans MERRIN.

4 Conclusion
Cette thèse introduit différentes méthodes d’inférence de réseaux booléens contrôlant
des réseaux métaboliques. Elle montre que le problème d’inférence peut être formulé
comme un problème d’optimisation hybride combinant contraintes logiques et
linéaires quantifiées. Considérer la dynamique linéaire du métabolisme pour inférer
les réseaux booléens permet d’inférer automatiquement des réseaux booléens avec
les règles de contrôle et de rétroaction. En particulier, nous montrons qu’il est
possible d’inférer ces règles à partir de données cinétiques et transcriptomiques.

Cette thèse a également été l’occasion de constater que les méthodes de la
littérature pour résoudre des problèmes d’optimisation hybride ne sont pas adaptées
aux problèmes de la biologie des systèmes. En particulier, en biologie de systèmes,
les problèmes sont des problèmes d’optimisation hautement combinatoires pour
lesquels il est nécessaire d’énumérer toutes les solutions ou d’échantillonner l’espace
des solutions. Pour palier à cela, nous avons dû développer de nouvelles méthodes
de résolutions dédiées et adaptées à ces caractéristiques.

4.1 Publications

Les travaux présentés dans cette thèse ont tous été présentés en conférence et
publiés :
— La relaxation du problème d’inférence et la méthode de résolution associée

(Chapitre III) ont été présentées lors de la conférence internationale Computa-
tional Methods in Systems Biology (CMSB) en 2021, et publiées dans les actes
de la conférence (Thuillier et al., 2021).

— La formulation basée-flux du problème d’inférence et la méthode de résolution
hybride MERRIN (Chapitre IV) ont été présentées lors de la conférence euro-
péenne European Conference on Computational Biology (ECCB) en 2022, et
publiées dans la revue Bioinformatics (Thuillier et al., 2022).

— La méthode de résolution des problèmes OPT+qLP a été présentée lors de la
conférence nord américaine de l’Association for the Advancement of Artificial
Intelligence (AAAI) en 2024, et publiée dans les actes de la conférence (Thuillier
et al., 2024).
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4.2 Ressources

Outils et benchmarks. Durant cette thèse, nous nous sommes assurés que tous nos
résultats étaient reproductibles. Ainsi, les contributions de la thèse sont toutes
associées à des outils et des dépôts en ligne :

— L’encodage ASP du problème d’inférence relaxé, les scripts et les données utilisés
dans le chapitre III sont disponibles au lien : https://github.com/bioasp/
boolean-caspo-flux.

— L’outil MERRIN dédié à l’inférence de réseaux booléens contrôlant le mé-
tabolisme (formulation hybride) (Chapitre IV) est disponible au lien https:
//github.com/bioasp/merrin. Les scripts et données pour reproduire le
benchmark et les résultats sont également disponibles : https://github.com
/bioasp/merrin-covert.

— Le solveur générique MerrinASP (Chapitre V) permettant de résoudre les
problèmes d’optimisation combinatoire sous contraintes linéaires quantifiées est
disponible au lien https://github.com/kthuillier/merrinasp. Les scripts
et données du benchmark sont également disponibles : https://zenodo.org/r
ecords/10361533.

Modèles métaboliques régulés. En plus des méthodes et outils présentés, cette thèse
a été l’occasion de réactualiser trois modèles métaboliques régulés de Escherichia
coli disponible dans la littérature (Covert et al., 2001; Covert and Palsson, 2002;
Covert et al., 2004). Ces modèles sont décrits en annexes (Annexe A), les fichiers sont
disponibles à https://github.com/kthuillier/regulated-metabolic-models.
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Introduction

This manuscript is written in a "thesis on publications" format. It starts with a quick
summary of the manuscript content written in French. Afterward, the manuscript is
written in English. This summary is followed by an introduction and a review of the
state of the art (Chapter I). Then, it presents a formal definition of the inference of
Boolean regulation controlling metabolic networks problem (Chapter II). Chapters III
to V are based on individual publications and address different formulations of the
inference problem. They follow the same structure: an introduction motivating the
chapter’s content, (ii) a detailed description of the publication’s main contributions,
(iii) a discussion extending the publication’s results with new benchmarks, (iv) the
publication. The manuscript ends with a conclusion discussing future perspectives.

Systems biology. Computational biology, or bioinformatics, is a discipline at the
interface of life sciences and computer science (Kitano, 2002a). During the last
decades, advances in high-throughput observation and measurement techniques have
led to a paradigm shift in biology and bioinformatics. The amount of data collected
has led to the emergence of systems biology, a field of bioinformatics focused on
understanding biological mechanisms from a systems perspective. Systems biology
considers biological processes as a whole rather than isolated parts. A major
challenge in systems biology is to integrate experimental data, especially the so-
called omics data, to generate new insights that explain cell behaviors and predict
their responses to environmental changes (Joyce and Palsson, 2006).

Complex biological systems. Traditionally, biological systems are considered com-
plex systems composed of many interconnected mechanisms that operate on different
timescales. These mechanisms range from gene transcription within DNA sequences
to interactions between populations of bacteria. Typically, each scale is represented
independently, with distinct dynamics formalism and timescales specific to that
scale (Walpole et al., 2013).

In particular, the regulatory system and metabolism are two scales of in-
terest in systems biology. Since the early 1940s, following the work of Jacques
Monod (Monod, 1942), it is known that these two systems are strongly intercon-
nected and that both scales should be considered to explain and predict bacterial
growth behaviors. Metabolism transforms nutrients into compounds, known as
metabolites, which are essential for the cell to produce biomass and energy. These
transformations occur through biochemical reactions catalyzed by special proteins,
called enzymes, whose production is itself controlled by a cascade of regulations
involving proteins, metabolites, and abiotic factors (e.g. temperature, pH). In
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addition, byproduct metabolites of the metabolism can inhibit or induce regulatory
signals, which can also inhibit or induce gene expression, and indirectly impact the
metabolic activity.

Metabolic and regulatory scales are modeled separately. Despite the feedback and
control interactions between the metabolic and regulatory scales, most simulation
and inferring formalisms consider the dynamics of these scales separately.

At the metabolic scale, dynamics are typically abstracted using differential
algebraic systems based on a flux semantic called flux balance analysis (FBA):
metabolite transformations are represented by reaction rates under steady-state
assumptions and biomass production optimization (Orth et al., 2010). The FBA
models the metabolism dynamics as a linear optimization problem, whose variables
are flux over reactions.

At the regulatory scale, system dynamics is discretized: a gene is either active
or inactive, and its state is dependent on the presence or absence of proteins and/or
metabolites (Kauffman, 1969; Wang et al., 2012). The cost of transcribing a protein
from gene expression is considered negligible, so it is generally deemed sufficient to
know that the protein is available without considering its concentration. Typically,
the dynamic of the regulatory system is represented by Boolean networks.

Over the years, many formalisms and simulation tools have been introduced
to integrate the flux-based dynamics of metabolism with the discrete dynamics of
the regulatory system. However, the uses of these formalisms are limited by the
availability of high-quality regulated metabolic models.

Regulated metabolic models. There exist methods for reconstructing metabolic
models from genomics, metabolomics, and fluxomics data (Thiele and Palsson,
2010); and for inferring regulatory rules from expression data (Videla et al., 2017;
Chevalier et al., 2020; Ostrowski et al., 2016; Vaginay et al., 2021; Žiga Pušnik
et al., 2022). The bottleneck is to infer the feedback and control interactions
between the metabolic and regulatory scales. Currently, these interactions must be
manually reconstructed and curated, as it was done for the bacterium Escherichia
coli (Covert and Palsson, 2002; Covert et al., 2004) or Bacillus subtilis (Tournier
et al., 2017). The absence of automated inference methods significantly hinders
the development of new regulated metabolic models, and thus, the use of hybrid
simulation formalisms to accurately predict cell behaviors.

In this manuscript. The work presented in this thesis aims to address this issue by
presenting new formalisms and solving methods to address the inference of Boolean
regulatory rules controlling the metabolism from omics data and prior biological
knowledge.
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In chapter I, we review the state-of-the-art formalisms to model the activity
of the metabolic and the regulatory layers, and to infer them ‘in solo’. We also
review the methods to address combinatorial optimization problems, and
their hybrid extensions with the Answer Set Programming (ASP).

In chapter II, we propose a general definition for the inference problem
of Boolean regulatory rules that control metabolic networks from omics data
and prior biological knowledge. This definition takes the form of a combinatorial
optimization problem under quantified constraints. From this general definition,
we derive three formulations of the inference problem that are solved in the next
three chapters: a relaxed formulation (Chapter III) and two hybrid formulations
(Chapters IV and V).

The chapter III is based on the paper Thuillier et al. (2021). Following
state-of-the-art Boolean networks inference methods, we relax the general definition
of the inference problem as a Boolean satisfiability problem, based on a
Boolean abstraction of the metabolism dynamics. We present an ASP-based
implementation to solve it, which we apply to a simplified model of core-carbon
metabolism of Escherichia coli.

The chapter IV is based on the paper Thuillier et al. (2022). In this chapter,
we present a hybrid inferring workflow, and its implementation MERRIN ,
to solve the inference problem. MERRIN integrates the flux-based dynamics of
the metabolism with the discrete dynamics of the regulatory layer to ensure that
inferred Boolean regulatory rules are compatible with the input omics data. We
validate it and test its robustness on a comprehensive benchmark that
we generate from a core-carbon metabolism model of Escherichia coli.

The chapter V is based on the paper Thuillier et al. (2024). The formulation
of the inference problem addressed in Chapter IV belongs to the class of com-
binatorial optimization problems under quantified linear constraints (OPT+qLP).
In this chapter, we present a novel generic solving framework to address
OPT+qLP problems, and its implementation MerrinASP . We benchmark
MerrinASP against state-of-the-art hybrid solvers on a benchmark of inference
problem instances.

The final chapter concludes the manuscript by summarizing the thesis con-
tributions and highlighting future perspectives. Along with the theoretical and
software contributions described in the manuscript, we cleaned and updated three
regulated metabolic networks of the literature. The descriptions of these networks
are available in Appendix A.
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1 Modeling Biological Systems

In this manuscript, we focus on two scales of biological processes: the metabolic
scale and the regulatory scale. Despite being interconnected, the metabolic and
regulatory scales are mostly modeled separately, without accounting for their
interactions.

In the next sections, we review the state-of-the-art formalisms for modeling the
activity of the metabolic scale (Section 1.1) and of the regulatory scale (Section 1.2).
In Section 1.3, we describe the formalisms that account for the combined activity
of both scales.

1.1 Modeling the Activity of the Metabolic Scale

The metabolic scale encompasses all the biochemical reactions involved in the
production of energy and biomass within the cell. Reactions are fast biological
processes occurring in the order of milliseconds to seconds. A reaction is a trans-
formation of one set of chemical components, called metabolites, into another. For
example, the reaction A + 2 B → 3 C represents the transformation of 1 molecule
of A and 2 molecules of B into 3 molecules of C. A reaction is said reversible if it
can transform back its products into their initial states; otherwise the reaction is
said irreversible. A stoichiometric coefficient is the number of molecules produced
or consumed by the reaction; in the previous reaction, the stoichiometric coefficient
of B is 2.

Cells are typically composed of thousands of reactions organized into pathways.
For instance, the most accurate metabolic models of Escherichia coli accounts for
1 877 reactions over 2 712 metabolites (Monk et al., 2017). The KEGG map of its
metabolic pathways (Kanehisa and Goto, 2000) is shown Fig. 1.

1.1.1 Metabolic Networks

The metabolism is usually represented by metabolic networks (Edwards and Palsson,
1999; Gu et al., 2019). A metabolic network abstracts the set of reactions using
graph representations, usually either as bipartite graphs (Bourqui et al., 2007;
Schaub and Thiele, 2009; Frioux et al., 2019) or hypergraphs (Cottret and Jourdan,
2010; Julien-Laferrière et al., 2016). Both representations are equivalent.

In this manuscript, we consider the bipartite graph definition introduced in Fri-
oux et al. (2019). The metabolic network is a bipartite graph composed of two sets
of nodes, representing metabolites and reactions, that are linked by a stoichiometric
matrix, i.e. the graph’s incidence matrix. The stoichiometric matrix details how,
and in which proportions, metabolites are transformed (produced/consumed) by

6
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� Figure 1 – KEGG map of metabolic pathways of the bacteria Escherichia coli K-12
MG1655 (June 26, 2024) (Kanehisa and Goto, 2000). Each color is associated with a
specific biological pathway. Nodes are metabolites, and edges are associations between
components, mostly related to reactions. Nodes and edges in light grey are components
and interactions recorded in the KEGG database that do not belong to this bacteria.

each reaction. Note that, for the sake of clarity, the figures presented in this
manuscript represent metabolic networks as weighted hypergraphs.

I Definition 1.1: Metabolic network (Frioux et al., 2019)

A metabolic network can be defined as a triple:

N = (M =Mext ∪Mint,R, S)

where M is a set of metabolites, and R is a set of reactions. The external
metabolitesMext are environmental metabolites, while the internal metabolite
Mint are intracellular metabolites available in the cell cytosol.
S is the |R| × |M| stoichiometric matrix of real coefficients. It associates for
each couple metabolite-reaction the stoichiometric coefficient of the metabolite
for the reaction, i.e., the relative quantities of the metabolite involved in the
reaction.

7
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� Figure 2 – Figure from Covert and Palsson (2002): Medium-scale metabolic network
of the central metabolism of Escherichia coli. The network accounts for 113 reactions
over 90 metabolites of which 77 are intracellular metabolites and 13 are environmental
metabolites. Black circles are intracellular metabolites, grey circles are environmental
metabolites, and white circles are intracellular metabolites taking part in the growth
reaction. Arrows are reactions, and their labels are the genes encoding the enzymes
catalyzing the reactions.

For the rest, we will call reactants (resp. products) of a reaction r ∈ R all the
metabolites m ∈M that are consumed (resp. produced) by the reaction, i.e. such
that Smr < 0 (resp. Smr > 0). The reactions importing environmental metabolites
in the cell are exchange reactions.

Example. A medium-scale metabolic network of the core metabolism of Escherichia
coli introduced in (Covert and Palsson, 2002) is shown in Fig. 2. This network
accounts for 113 reactions over 90 metabolites. Note that this network is quite
small compared to the most precise metabolic networks of Escherichia coli currently
available (1 877 reactions and 2 712 metabolites) (Monk et al., 2017).

8
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� Figure 3 – Example of toy metabolic network represented as a hypergraph. Each
node is a metabolite and each hyperedge is a reaction. All metabolites outside (resp.
inside) the dotted round square are external (resp. internal) metabolites. Weights
over reactions are stoichiometric coefficients. For example, the hyperedge R7 from
{A;NADH} to {E} models the reaction A + 3 · NADH→ E.

To simplify our examples, we introduce a toy metabolic network (Fig. 3).
This network is a simplification of a model of core-carbon metabolism introduced
in Covert et al. (2001). We use this toy metabolic network as a case study
in Thuillier et al. (2021). This metabolic network is composed of 9 metabolites and
9 reactions. The internal metabolites are Mint = {A, D, E, O2, ATP, NADH},
the environmental metabolites are Mext = {Carbon1, Carbon2, Oxygen}. The
set of reactions is R = {Tc1, Tc2, To2, Td, Te, Growth, Rres, R6, R7}. The three
exchange reactions are Tc1, Tc2, and To2. The stoichiometric coefficients are also
given in the figure. By default, they are set to 1, except for the reactions R6 and
R7.

The stoichiometric matrix S of dimension |R|×|M| is such that ∀ r ∈ R, ∀m ∈
M, smr ∈ R is the stoichiometric coefficient of the metabolite m for the reaction r.
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The stoichiometric matrix for this example is defined as:

S =




Tc1 Tc2 To2 Td Te Growth Rres R6 R7

Carbon1 −1 0 0 0 0 0 0 0 0
Carbon2 0 −1 0 0 0 0 0 0 0
Oxygen 0 0 −1 0 0 0 0 0 0

A 1 1 0 0 0 −1 0 −1 −1
D 0 0 0 −1 0 0 0 3 0
E 0 0 0 0 −1 0 0 0 3
O2 0 0 1 0 0 0 −1 0 0

ATP 0 0 0 0 0 −1 1 2 0
NADH 0 0 0 0 0 1 −1 0 −3




1.1.2 Flux Balance Analysis

There are many formalisms for modeling the activity of a metabolic network,
including systems of ordinary differential equations and constraints-based modeling.
A comprehensive review of these formalisms is available in Moulin et al. (2021).

The FBA is a constraint-based mathematical framework modeling the optimal
distribution of fluxes in a metabolic network (Varma and Palsson, 1994; Orth et al.,
2010). Each reaction r ∈ R is associated with a flux vr ∈ R that models the
reaction activity rate; usually measured in millimoles per gram dry weight per hour
(mmol.gDW-1.hr-1). The flux vr of a reaction r is bounded by a lower bound lr ∈ R
and an upper bound ur ∈ R. These two bounds ensure that the flux is biologically
relevant. In practice, the bounds of exchange reactions are dependent on substrate
concentrations (Varma and Palsson, 1994).

FBA assumptions. The FBA framework relies on two assumptions: (i) the steady-
state assumption, and (ii) the growth optimality assumption. The steady-state
assumption supposes that the concentrations of internal metabolites remain constant
over time, i.e. ∀m ∈Mint,

d[m]
dt

= 0. In other words, for each internal metabolite,
the production rate and consumption rate are balanced. Mathematically, it is
expressed as the following linear constraint:

S · v = 0

The growth optimality assumption supposes that biological systems have evolved to
maximize a given biological function. Typically, it is often considered that bacteria
aim at maximizing their growth rate or biomass production (Feist and Palsson,
2010). Let ‘growth’ ∈ R be a reaction modeling the biomass production. The FBA
assumes that the flux vgrowth is maximized, i.e. maximize vgrowth.

10
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Definition. Formally, the FBA is formulated as a linear optimization problem.

I Definition 1.2: Flux Balance Analysis (Orth et al., 2010)

Given a metabolic network N = (Mext∪Mint,R, S), and lr, ur ∈ R flux bounds
for each reaction r ∈ R, the Flux Balance Analysis (FBA) is defined as:

maximize vgrowth (I.1)
such that SMint,R · v = 0 (I.2)

and lr ≤ vr ≤ ur ∀ r ∈ R (I.3)
with vr ∈ R ∀ r ∈ R

where SMint,R is the submatrix of S whose rows correspond to internal metabol-
ites.

For the rest, a flux distribution v ∈ R|R| is a metabolic steady-state (MSS) if it
satisfies Eqs. I.2 and I.3. The set of all metabolic steady-states compatible with a
metabolic network N is denoted by MSS(N ).

Example. For instance, let us consider the metabolic network shown in Fig. 3. Each
MSS v ∈ R9 satisfies the following linear constraints. The steady-state constraints
(Eq. I.2) are:

d[A]

dt
= 0 ⇐⇒ 1× vTc1 + 1× vTc2 − 1× vGrowth − 1× vR6 − 1× vR7 = 0

d[D]

dt
= 0 ⇐⇒ 3× vR6 − 1× vTd = 0

d[E]

dt
= 0 ⇐⇒ 3× vR7 − 1× vTe = 0

d[O2]

dt
= 0 ⇐⇒ 1× vTo2 − 1× vRres = 0

d[ATP]

dt
= 0 ⇐⇒ 1× vRres + 2× vR6 − 1× vGrowth = 0

d[NADH]

dt
= 0 ⇐⇒ 1× vGrowth − 1× vRres − 3× vR7 = 0

Given the flux bounds: (lTc1, uTc1) = (lTc2, uTc2) = (0, 10.5), (lTd, uTd) = (lTe,
uTe) = (0, 12.0), (lR6, uR6) = (lR7, uR7) = (lRres, uRres) = (lGrowth, uGrowth) =

11
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(0, 9999) and (lTo2, uTo2) = (0, 15.0), the flux bounds constraints (Eq. I.3) are:

0 ≤ vTc1 ≤ 10.5 0 ≤ vTc2 ≤ 10.5 0 ≤ vTd ≤ 12.0 0 ≤ vTe ≤ 12.0

0 ≤ vTo2 ≤ 15.0 0 ≤ vR6 ≤ 9999.0 0 ≤ vR7 ≤ 9999.0 0 ≤ vRres ≤ 9999.0

0 ≤ vGrowth ≤ 9999.0

The optimal MSSs computed by the FBA are the MSSs that maximize the flux
vGrowth through the reaction ‘Growth’.

Dynamic Flux Balance Analysis. The dynamic FBA (dFBA) is an extension of FBA
allowing the simulation of a metabolic network over time (Mahadevan et al., 2002).
There are two formulations of dFBA: a dynamic optimization approach (DOA),
and a static optimization approach (SOA). For both formulations, the simulation is
divided into timesteps of fixed length. It is assumed that the metabolism activity
is constant during each timestep. The concentrations of environmental metabolites
are updated between each timestep to account for the production and consumption
of environmental metabolites during the previous timestep. For DOA, a linear
optimization problem that extends the FBA equations is solved. It introduced
new linear constraints to constrain metabolic flux changes between each timestep.
For SOA, the FBA equations are solved successively and independently for each
timestep, updating only the exchange reaction bounds between timesteps. An
example of dFBA (SOA) simulation of the metabolic network of Fig. 3 is shown in
Fig. 4.

Ressource Balance Analysis. The FBA framework is not the only way to model
the metabolism activity through flux distributions. One of them is the ressource
balance analysis (RBA) framework (Goelzer and Fromion, 2011) that incorporates
additional constraints related to the availability and allocation of cellular resources
(e.g. enzymes, proteins). The RBA framework assumes that biological systems
optimize the use of their resources: the system must be the most efficient possible
with a limited set of resources. To do that, RBA incorporates the cost of producing
and recycling cellular resources to compute flux distributions that minimize resource
consumption while maximizing growth. By minimizing resource consumption, RBA
models can reproduce complex behaviors associated with the regulatory system
(e.g. diauxic shift) (Tournier et al., 2017). The dRBA formalism is a dynamic
extension of RBA (Jeanne et al., 2018).

In this manuscript, we focus on FBA-based frameworks rather than RBA-
based frameworks. It necessitates fewer parameters to reconstruct FBA-compatible
metabolic networks than RBA-compatible ones. Therefore, almost all metabolic
networks available are FBA-compatible, and not RBA-compatible.

12
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� Figure 4 – Dynamic FBA (SOA) simulation of the toy metabolic network (Fig. 3)
made with FlexFlux, The thick red line is the biomass concentration, and the dotted lines
are the environmental metabolite concentrations. The simulation has been made with
a timestep duration τ = 0.01h and substrate concentrations initialized at 100mM for
Oxygen, at 20mM for Carbon1, and 0mM for Carbon2. The flux bounds are ∀ r ∈ {Tc1,
Tc2}, (lr, ur) = (0, 10.5), ∀ r ∈ {Td, Te}, (lr, ur) = (0, 12.0), ∀ r ∈ {R6, R7, Rres,
Growth}, (lr, ur) = (0, 9999) and (lTo2, uTo2) = (0, 15.0).

1.2 Modeling the Activity of the Regulatory Scale

The regulatory scale encompasses all the mechanisms, or ‘chemical rules’, that
control gene expression and cellular activities through the action of regulatory
proteins, also called transcription factors, and signaling pathways. Regulatory pro-
cesses can span a broader range of timescales than metabolic processes. Immediate
post-translational modifications, such as phosphorylation, occur within seconds,
while changes in gene expression can take minutes to hours.

For a gene to be expressed, it must be transcribed into messenger RNA (mRNA)
that may be translated into proteins. Among these proteins are regulatory pro-
teins, special proteins that influence gene expression, and enzymes, proteins that
catalyze reactions. Gene expression is influenced by interactions between chemical
components, including DNA-protein and protein-protein interactions.

For five decades now, methods have been developed to model, simulate, and
infer gene regulatory networks and their Boolean dynamics (de Jong, 2002; Bernot
et al., 2004; Chaves et al., 2010).

13
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1.2.1 Gene Regulatory Networks

The interactions between components of the regulatory scale are typically represen-
ted by gene regulatory networks (GRNs). A GRN is a static model that depicts the
various influences (activation and inhibition) that genes and regulatory proteins
exert on one another, especially the influence impacting gene expression. GRNs do
not capture the ways influences cooperate or compete to regulate gene expression.

Figure 5 shows the GRN that we generated from the description of Escherichia
coli core metabolism, whose metabolic network is shown in Fig. 2. It contains 235
interactions of which 60 are protein-protein or DNA-protein interactions.

Inference of interactions. Interactions are generally inferred from gene expres-
sion data using statistical methods, inferred from experimental observations of
proteins binding to gene promoters, extracted from the literature, or manually
curated (Badia-i Mompel et al., 2023). The quality of these interactions strongly
depends on the method used to infer them. Interactions statistically inferred or
deduced from experimental observation are not necessarily true. It is not because
a protein is seen binding to a gene promoter, or correlated to a gene expression,
that the protein has a causal influence on the gene expression. Therefore, apart
from manually curated interactions, the interactions included in GRNs should be
considered potential sources of influence on gene expression and must be carefully
selected.

Databases. There are many databases of interactions, such as RegulonDB (Salgado
et al., 2023), which is specialized for Escherichia coli, and CollecTRI (Müller-Dott
et al., 2023), a recently published database of known interactions in the regulatory
scale of humans and mice. Most interactions in these databases are not manually
curated. Additionally, no database currently integrates the interactions between
components of the metabolic and regulatory scales.

In this manuscript, we do not rely on the interactions available in these databases
to generate our search spaces and explain gene activities. Instead, we rely solely
on interactions already validated by experts or already used in models combining
the metabolic and regulatory scales.

1.2.2 Boolean Networks

Boolean networks (BN) are a well-established approach to model the dynamics
of the regulatory scale (Kauffman, 1969; Thomas, 1973; Wang et al., 2012). It
assumes that each gene and regulatory protein is either active (1) or inactive (0),
i.e. expressed or not. Given B = {0; 1} the Boolean domain, the regulatory state
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� Figure 5 – Gene regulatory network associated with the core metabolism of
Escherichia coli (Fig. 2), generated from the description provided in Covert and Palsson
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expressed, are shown. Blue nodes are genes that encode for enzymes and regulatory
proteins, green nodes are environmental metabolites, and orange nodes are reactions.
Green arrows are positive interactions (activation effect), and red arrows are negative
interactions (inhibition effect).
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a b ¬a a ∧ b a ∨ b
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

� Table 1 – Truth tables for the logical ‘not’ (‘¬’), the logical ‘and ’ (‘∧’), and the
logical ‘or ’ (‘∨’) operators. a, b ∈ B = {0; 1} are two Boolean-valued variables. The
true value is 1, and the false value is 0.

is a Boolean vector x ∈ Bn that associates a state (active or inactive) to n genes
and regulatory proteins.

Biologically, the state of a component is influenced by all the components
interacting with it. The activation or inhibition of a component depends on the
cooperation and the competition between the influences it receives from other
components. In practice, the activation condition is expressed by a Boolean logic
function built from the logical ‘not ’ (‘¬’), logical ‘and ’ (‘∧’), and logical ‘or ’ (‘∨’)
operators, and Boolean-valued variables. The truth tables for these three logical
operators are recalled in Table. 1. For example, the Boolean logic function (a∨b)∧c
over the three Boolean-valued variables a, b, c ∈ B = {0; 1} is true whenever c = 1,
and either a = 1 or b = 1.

Boolean networks. A Boolean network (BN) is a set of Boolean logic functions
that describe the activation states of each regulatory component. Formally, BNs
are commonly defined as follows.

I Definition 1.3: Boolean network

A Boolean network (BN) of dimension n is a function

f : Bn → Bn

For each i ∈ {1, · · · , n}, the i-th component fi : Bn → B is called the local
function of i.

Influence Graphs. Each local function fi : Bn → B of a BN f is based on a set of
influences between components. A component j has an influence on fi if and only
if it exists x ∈ Bn such that changing the j-th value of x change the output of fi.
The influence is positive (resp. negative) if increasing j-th value can increase (resp.
decrease) the output of fi.
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The set of all influences of a BN is summarized into an influence graph, also
called an interaction graph. An influence graph is a signed digraph such that positive
edges model positive influences, while negative edges model negative influences.
Influence graphs are commonly used to identify properties of BN dynamics, e.g.
ensuring the existence of steady-states from negative and positive loops in the
influence graph (Thomas, 1981). The influence graph of a BN modeling a regulatory
system is a gene regulatory network (GRN).

I Definition 1.4: Influence graph

Given a Boolean network f of dimension n, the influence graph of f is a signed
digraph

G(f) = (V,E)

with V = {1, · · · n} and E ⊆ V × {−, +} × V such that (j, s, i) ∈ E if and
only if there exists x ∈ Bn such that:

s · fi(x1, · · · , xj−1, 0, xj+1, · · · , xn) < s · fi(x1, · · · , xj−1, 1, xj+1, · · · , xn)

A BN f is locally monotone whenever for each influence (j, s, i) ∈ G(f), there is
no influence with the opposite sign, i.e. (j, −s, i) 6∈ G(f).

Example. An example of Boolean network f : B5 → B5 of dimension n = 5 is
provided in Fig. 6a. It is composed of 5 local functions:

fA(xA, xB, xC , xD, xE) = 1 fB(xA, xB, xC , xD, xE) = 1

fC(xA, xB, xC , xD, xE) = xE fD(xA, xB, xC , xD, xE) = (xA ∧ xB) ∨ ¬xC
fE(xA, xB, xC , xD, xE) = ¬xC

The local functions of A and B are constants (always true). The influence graph
of this Boolean network is shown in Fig. 6b. It is composed of 5 influences
({(A,+, D), (B,+, D), (C,−, D), (C,−, E), (E,+, C)}) over the nodes {A,B,C,D,
E}. For instance, the local function fD : B5 → B is a composition with a logical
‘and ’ (∧) and logical ‘or ’ (∨) operators of 3 influences: 2 positive influences from
A and B ((A,+, D) and (B,+, D)), and 1 negative influence from C (C,−, D).
Indeed, we have fD(0, 1, 1, 0, 0) < fD(1, 1, 1, 0, 0), fD(1, 0, 1, 0, 0) < fD(1, 1, 1, 0, 0),
and fD(0, 0, 0, 0, 0) > fD(0, 0, 1, 0, 0).
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� Figure 6 – Example of a Boolean network f : B5 → B5 of dimension n = 5 (a)
and of its influence graph (b). Green arrows are positive influence, modeling activation
effects, and red arrows are negative influence, modeling inhibition effects.

1.2.3 Semantics of Boolean Networks Dynamics

Given a Boolean network (BN) f : Bn → Bn of dimension n, a configuration of
the BN is a Boolean vector x ∈ Bn. For regulatory systems, the configuration is
called a regulatory state. Different semantics of BN update modes can be used to
determine how configurations, or regulatory states, evolved. The most commonly
used semantics are the synchronous update (Kauffman, 1969) and the asychronous
update (Thomas, 1973).

Synchronous update. With the synchronous update, all the components are updated
simultaneously to compute the next configuration x′ ∈ Bn, i.e. x′ = f(x). This se-
mantics is deterministic, there is only one transition possible from any configuration.
Consider the Boolean network f : B5 → B5 described in Fig. 6a with the configura-
tion {xA = 0, xB = 1, xC = 1, xD = 1, xE = 0}, the next configuration according to
the synchronous update semantic is x′ = {x′A = 1, x′B = 1, x′C = 0, x′D = 0, x′E = 0}.

Asynchronous update. The standard asynchronous update consists of updating
only one component i at a time. The next configuration x′ ∈ Bn is such that
∀ 0 ≤ j ≤ n, j 6= i, x′j = xj and x′i = fi(x). There are at most 2n configurations that
can be generated from any configuration. With the Boolean network f : B5 → B5

described in Fig. 6a of previous example, the configurations x1 = {x1A = 1, x1B =
1, x1C = 1, x1D = 1, x1E = 0} and x2 = {x2A = 0, x2B = 1, x2C = 1, x2D = 0, x2E = 0}
are two reachable configurations from {xA = 0, xB = 1, xC = 1, xD = 1, xE = 0}
according to an asynchronous update semantics.

In practice, the asynchronous semantics is often considered more biologically
relevant than the synchronous semantics. The synchronous semantics assumes
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� Figure 7 – Example of interconnection between the regulatory and metabolic scales
extracted from the regulatory network of Escherichia coli introduced in Covert et al.
(2004). The activity of the ‘Growth’ reaction and the availability of H2O2 in the cell
environment is needed to transcribe the genes rpoS and oxyR, respectively. The gene
gor should be expressed to produce the enzyme catalyzing the reaction of glutathione
oxydoreductase.

that all regulatory processes occur at the same speed, which is not how regulat-
ory processes work1. Despite that, most of the simulation frameworks based on
FBA that handle regulatory rules assume a synchronous update semantic (see
Section 1.3.2). Therefore, in this manuscript, we consider BNs with a synchronous
update semantic.

1.3 Coupling the Regulatory and Metabolic Scales

While mostly modeled and studied separately, the regulatory and metabolic scales
are in reality interconnected (Covert et al., 2001; Oyarzún et al., 2012; Zañudo
et al., 2017; Chaves et al., 2019; Carthew, 2021). The production of the enzymes
catalyzing the reactions is controlled by a cascade of regulatory mechanisms
involving regulatory proteins, metabolites, and abiotic factors (e.g. temperature,
pH). Additionally, some metabolic byproducts bind to regulatory proteins or
inhibit/activate gene expression, thereby indirectly influencing the set of reactions
occurring within the metabolism. Consequently, the metabolism has a feedback
effect on the regulatory system, which in turn controls the metabolic activity.

1While considered more accurate than synchronous semantics, asynchronous semantics do not
model all regulatory behaviors. More complex update semantics, such as the Most Permissive
semantics (Paulevé et al., 2020), are needed for that.
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Examples. Figure 7 show the cascade of 4 regulatory rules controling the reaction
of glutathione oxydoreductase in Escherichia coli ’s metabolism. The catalysis of
this reaction is indirectly dependent on the availability of H2O2 in the cellular
environment and of the cell growth (modeled by the flux vGrowth). This external
metabolite and this reaction impact the transcription of the genes oxyR and rpoS,
respectively, which enables the expression of the gene gor, whose transcription
produces the enzyme catalyzing for the glutathione oxydoreductase.

The interaction between the two scales can also be seen in the gene regulatory
network (GRN) of Escherichia coli ’s core metabolism in Fig. 5. Among the
interactions described in the GRN, there are 48 gene-reaction interactions and 109
metabolite-gene interactions.

1.3.1 Regulated Metabolic Networks

The multilayered structure of biological systems can be modeled using regulated
metabolic networks (Covert et al., 2001; Oyarzún et al., 2012; Marmiesse et al., 2015;
Chaves et al., 2019). A regulated metabolic network consists of two interdependent
networks: (i) the regulatory network, modeled by a Boolean network (BN); and
(ii) the metabolic network. The regulatory network can control the activity of the
metabolic network’s reactions by forcing inhibited reactions to have a zero flux
(control rules). It takes as input components of the metabolic network, including
reaction states (active or not) and environmental metabolite availabilities (feedback
rules). From the regulatory network point of view, a reaction is active if it has a non-
null metabolic flux, and a metabolite is available if it has a non-null concentration
in the cell medium.

There is no formal definition for regulated metabolic networks in the literature.
Thus, we introduce a formal definition in Thuillier et al. (2021) (Chapter III) that
we use throughout all our works.

I Definition 1.5: Regulated metabolic network (Thuillier et al., 2021)

A regulated metabolic network is a triplet (N , P , f) composed of:

— a metabolic network N = (M = Mext ∪ Mint, R, s) with k = |Mext|
external metabolites, and m = |R| reactions;

— a set of d genes and regulatory proteins P ;

— a BN f of dimension n = k + m + d where {1, · · · , n} =Mext ∪ R ∪ P
such that the interaction graph G(f) of f is a bipartite graph between P
andMext ∪R.
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� Figure 8 – Example of a toy regulated metabolic network introduced in Thuillier
et al. (2021). It is a simplified model of the model of core-carbon metabolism introduced
in Covert et al. (2001). Square nodes are regulatory proteins, and colored arrows are
influences between components: the green arrow is a positive influence, and the red
arrows are negative influences. The Boolean logical functions associated with the
regulatory network are on the right side of the figure. Only non-constant functions are
shown. The metabolic network (red square) is the same as in Fig. 3.

Toy example. An example of a toy regulated metabolic network is shown in
Fig. 8. This example extends the metabolic network shown in Fig. 3 with Boolean
regulatory rules. It is a simplified model of core-carbon metabolism, originally
proposed in Covert et al. (2001). At the metabolic level, there are m = 9 reactions
and k = 3 input metabolites.

At the regulatory level, there are d = 2 regulatory proteins: P = {RPcl, RPO2}.
Thus, the Boolean network f is of dimension n = k +m+ d = 14. It consists of
14 functions which map a Boolean vector x = {xCarbon1, xCarbon2, xOxygen, xRPcl,
xRPO2, xTc1, xTc2, xTo2, xTd, xTe, xGrowth, xRres, xR6, xR7} ∈ Bn to a Boolean value
in B. The local functions associated with regulatory proteins in P involve only
external metabolite variables. Among the 9 functions associated with reactions,
only two (Tc2, Rres) are non-constant: they involve the two regulatory proteins.
The 3 functions associated with environmental metabolites are considered constant.
The regulatory state of metabolites is dependent on their concentration in the
medium, ∀m ∈ {Carbon1,Carbon2,Oxygen}, fm(x) = [m] > 0.
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Metabolic layer Regulatory layer
Model # reactions Cycle? Dimension # controls # feedbacks

Toy 9 4 2 2
Core 20 X 11 7 4
Medium-scale 113 X 151 90 35

� Table 2 – Summary of the size and complexity of the three regulated metabolic
networks used in this manuscript: Toy (Thuillier et al., 2021), Core (Covert et al.,
2001), and Medium-scale (Covert and Palsson, 2002). ‘#controls’ and ‘#feedback’
denote the number of control and feedback regulatory rules, respectively.

RMNs used in this manuscript. The methods presented in this manuscript have
been validated and benchmarked using three regulated metabolic networks of
Escherichia coli of increasing complexity: (i) the regulated metabolic network
presented in Fig. 8, referred to as the toy model; (ii) the model of core-carbon
metabolism (Covert et al., 2001), referred to as the core model; and (iii) a medium-
scale model whose metabolic network is shown in Fig. 5 (Covert and Palsson, 2002),
referred to as the medium-scale model.

At the metabolic level, the difference in complexity relies on the size and
the structure of the metabolic networks. The toy model has 9 reactions and no
metabolic cycles, while the core and medium-scale models have 20 and 113 reactions,
respectively, with metabolic cycles.

At the regulatory level, the difference in complexity relies on the regulatory
network dimension, the number of control and feedback rules, and the regulatory
rules structures. The toy model has 4 regulatory rules, of which 2 are controls rules
and 2 are feedback rules. The core model has 11 regulatory rules, of which 7 are
control rules and 4 are feedback rules. For both the toy and core models, regulatory
rules are “simple”, i.e. they are influenced by only one component. In contrast, the
medium-scale model introduces “complex” regulatory rules, i.e. regulatory rules
that are compositions of several influences. It has 151 non-constant regulatory
rules, of which 90 are control rules and 35 are feedback rules. The complexity
difference of these three models is summarized in Table 2.

The toy model is described in chapter III, and the core and medium-scale
models are described in Appendix A.

1.3.2 Regulatory Flux Balance Analysis

To figure out how gene expression triggers specific phenotypes depending on
the environmental constraints (Buescher et al., 2012), several constraint-based
approaches have been developed to integrate the metabolic and regulatory scales
activities (Liu and Bockmayr, 2020; Moulin et al., 2021). These approaches are
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Approaches Without resource costs With resource costs

Static SR-FBA (Shlomi et al., 2007), -
PROM (Chandrasekaran and Price, 2010)

Iterative rFBA (Covert et al., 2001), idFBA (Min Lee et al., 2008)
iFBA (Covert et al., 2008)

Dynamics - r-deFBA (Liu and Bockmayr, 2020)

� Table 3 – Summary of the state-of-the-art constraint-based flux balance formalisms
(with and without considering resource costs) that handle regulations. This table is
adapted from table 1 of Liu and Bockmayr (2020).

summarized in Table 3. Except for iFBA, which employs ordinary differential
equations (ODE) to model the regulatory scale activity, and r-deFBA, which models
the metabolic fluxes with ODE equations, all other approaches integrate the FBA
with a Boolean network. These approaches mostly rely on synchronous update
semantics, except PROM which relies a probabilistic update semantics.

The most comprehensive formalisms are dynamic formalisms, which consider
both the cost of enzymes and regulation (de-rFBA). However, they are also the most
complex abstractions, requiring extensive parameter estimation and calibration.

rFBA. In this manuscript, we rely on the regulatory flux balance analysis (rFBA)
formalism (Covert et al., 2001), an extension of FBA that integrates dFBA (SOA)
with the synchronous dynamics of a Boolean network. To couple the different
timescales of the regulatory and metabolic systems, rFBA divides the simulation
into fixed-length timesteps. As metabolic processes are much faster than regulatory
processes (occurring in seconds versus minutes to hours), the metabolic state is
assumed stable and constant throughout each timestep. The state of the regulatory
network is updated once between each timestep. At the end of each timestep, the
concentrations of extracellular metabolites are updated based on the metabolic
fluxes of exchange reactions. The functions for updating these concentrations and
the biomass are the same as for dFBA (SOA) (Varma and Palsson, 1994).
We introduce a formal definition of rFBA in the paper Thuillier et al. (2021),
described in Chapter III.

With rFBA, each timestep is composed of (i) a metabolic state that associates
a flux value to each reaction; (ii) a substrate state that associates a concentration
to each external metabolite; and (iii) a regulatory state that associates a Boolean
state to each regulated or regulating component. In this manuscript, we denote
the global states of the regulated metabolic networks at each timestep as regulated
metabolic steady-states (RMSS).
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I Definition 1.6: Regulated metabolic steady-state (Thuillier et al., 2021)

A regulated metabolic steady-state (RMSS) is a triplet

(v, w, x) ∈ R|R| × R|Mext| × B|Mext|+|R|+|P|

where v ∈ R|R| is a metabolic steady-state (satisfying Eqs. I.2 and I.3) in
which reactions inhibited by the regulatory state x ∈ B|Mext|+|R|+|P| have a null
metabolic fluxes, i.e. ∀ r ∈ R, xr = 0 =⇒ vr = 0. The vector w ∈ R|Mext|

represents the concentrations of extracellular metabolites. It is used to compute
the flux bounds lr and ur of exchange reactions.

For the rest, we will denote by rMSS(N , w, x) the set of all metabolic steady-states
v ∈ MSS(N ) such that (v, w, x) is an RMSS.

Example. An rFBA simulation of the toy regulated metabolic network (Fig. 8) is
shown in Fig. 9a. The simulation models a diauxic shift, a sequential consumption
of two substrates when both are initially available. This mechanism was first
demonstrated in 1942 by Monod (1942), it is a well-known example of controls
exerted by regulations on the metabolism. The simulation is performed with Flex-
Flux (Marmiesse et al., 2015), using a timestep of 0.01h and initial concentrations of
100 mM Oxygen, 20 mM Carbon1, and 20 mM Carbon2. The simulation contains
70 timesteps.

More precisely, the simulation shows that until 0.5h only Carbon1 and Oxygen
are consumed to produce biomass. This corresponds to a first growth phase where
the system’s behavior is constant. The presence of Carbon1 activates the regulatory
protein RPcl inhibiting the reaction Tc2 according to the regulatory rules. At 0.5h,
Carbon1 is depleted, and the current Boolean state x ∈ B14 is such that xCarbon1 = 0,
xRPcl = 1, xTc2 = 0. At 0.51h, as shown in Fig. 9b, the Boolean state x is updated
to x′ so that the Boolean state of RPcl becomes x′RPcl = fRPcl(x) = xCarbon1 = 0.
The Boolean state of Tc2 remains unchanged because xRPcl = 1. No biomass is
produced at 0.51h. At 0.52h, the Boolean state x′ is updated to x′′: all the node
states remain unchanged except for x′′Tc2 = fTc2(x

′) = ¬x′RPcl = 1. The reaction
Tc2 is not inhibited anymore, and the biomass is produced due to the uptake of
Carbon2 and Oxygen (through Growth, Tc2, and Rres) until Carbon2 depletion at
0.59h. It is the second growth phase.
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(a) rFBA simulation made with FlexFlux, with a timestep duration τ = 0.01h and substrate
concentrations initialized at 100mM for Oxygen, and at 20mM for Carbon1 and Carbon2. The
flux bounds are ∀ r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀ r ∈ {Td, Te}, (lr, ur) = (0, 12.0),
∀ r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and (lTo2, uTo2) = (0, 15.0).

Time External metabolites Regulatory proteins Metabolic fluxes
wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vGrowth vRres

0.49h 2.95 20.0 82.95 0 1 10.5 0.0 10.5 10.5 10.5
0.50h 1.05 20.0 81.05 0 1 6.15 0.0 6.15 6.15 6.15
0.51h 0.0 20.0 79.90 0 0 0.0 0.0 0.0 0.0 0.0
0.52h 0.0 20.0 79.90 0 0 0.0 10.5 10.5 10.5 10.5
0.53h 0.0 17.76 77.65 0 0 0.0 10.5 10.5 10.5 10.5

(b) Focus on the substrate concentrations, regulatory protein states, and metabolic fluxes for
five timesteps at Carbon1 depletion. The metabolic fluxes over the reactions Td, Te, R6, and
R7 (not shown) are always equal to 0.

� Figure 9 – Dynamic rFBA simulation (a) of the regulated metabolic network of
Fig. 8. (b) highlights five timesteps from 0.49h to 0.53h, at the carbon source shift
(i.e. depletion of Carbon1). The simulation has been made with the tool FlexFlux.
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2 Inference of Regulated Metabolic Networks

Up to now, very few approaches exploited the metabolic scale to infer regulatory
information about the regulatory scale. In Tournier et al. (2017), resource bal-
ance analysis (RBA) (Goelzer and Fromion, 2011) is employed to manually infer
logical rules that control the activation of metabolic fluxes in response to diverse
extracellular media. However, this method assumes no feedback from metabolism
to regulation, which does not correspond to the biological functioning of cells in
most cases. Typically, these control and feedback rules are manually curated from
literature or experimental data, as seen for models of Escherichia coli (Covert
and Palsson, 2002; Covert et al., 2008) and a few other organisms like Ralstonia
solanacearum (Peyraud et al., 2018). Therefore, the lack of automated frameworks
for inferring Boolean rules interfacing the metabolism and regulatory system poses
a significant limitation to the development of regulated metabolic models, and the
use of accurate modeling formalisms.

Models are inferred separately. A regulated metabolic network is composed of two
main components: a metabolic network and a Boolean network representing a
regulatory network. Over the last decades, dedicated methods have been developed
to reconstruct metabolic networks, and infer Boolean networks from omics data.
Omics data provide comprehensive descriptions of cellular components and activity,
including molecular component abundances, protein-protein and protein-DNA
interactions, and functional-state of biological process (Joyce and Palsson, 2006).
An overview of the omics data types is provided in Fig. 10.

In the next section, we review the state-of-the-art methods used to reconstruct
metabolic networks from genomics, metabolomics, and fluxomics (Section 2.1) and
infer Boolean networks from transcriptomics, proteomics, and interaction data
(Section 2.2).

2.1 Inference of Metabolic Networks

The first genome-scale metabolic network (GMN) was reconstructed in 1999 for
Haemophilus influenzae (Edwards and Palsson, 1999) using genome annotation
methods, which map genes to enzymes that catalyze reactions. Since then, numerous
high-quality GMNs have been reconstructed. As of 2021, over 6 000 GMNs have
been recorded, with 75 species having high-quality, manually curated GMNs (King
et al., 2015; Passi et al., 2021).

Reconstruction protocol. In 2010, Thiele et al. introduced a comprehensive protocol
in 96 steps to reconstruct GMNs from genomic and experimental data, in particular
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� Figure 10 – Figure from Joyce and Palsson (2006): Overview of the omics data types
and the element they quantify. The figure shows the sequence of biological processes
and the type of omics data they are associated with. The DNA sequences (measured
by genomics data) encoding for genes are transcribed into mRNA (transcriptomics)
which may then be translated into proteins (proteomics), including enzymes. Enzymes
are then used to catalyze reactions (fluxomics) that transform sets of metabolites into
others (metabolomics). Protein-protein and protein-DNA interactions are associated
with the regulatory processes.
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� Figure 11 – Figure from Thiele and Palsson (2010): Overview of the 96 steps of
the procedure to iteratively reconstruct metabolic networks.

metabolomics and fluxomics data (Thiele and Palsson, 2010). This protocol has
been used to build some of the most highly curated GMNs, including GMNs of
Escherichia coli (Orth et al., 2011). The 96 steps of the reconstruction protocol
are shown in Fig. 11. They can be summarized into four main stages:

Stage 1: Draft reconstruction. A draft metabolic network is generated from
genomics and proteomics data. The bacteria genes are identified and compared
to databases of genes known to be involved in metabolic processes. For each of
these genes, the associated reactions are retrieved and added to the metabolic
network. This part of the reconstruction is the easiest to automate but is
also prone to errors, such as missing reactions or spurious gene annotations.

Stage 2: Refinement. In this phase, the confidence of each reaction in the draft
network is evaluated, and all low-confidence reactions are removed. The
exchange reactions and the ’growth’ reaction are defined during this step.

Stage 3: Conversion. The model is reduced to a stoichiometric matrix and a set
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of reaction rate bounds. At this stage, FBA can be applied to the metabolic
network.

Stage 4: Evaluation. The dynamic behavior of the metabolic network is com-
pared with experimental observations (e.g. metabolomic or fluxomic data).
Gap-filling approaches are used to infer missing reactions from the network
topology to ensure all reactions are reachable and that a steady-state flux
distribution compatible with the FBA exists. In particular, it is ensured that
the growth reaction reflected exactly the experimental data; ensuring the
system’s growth rate is neither too fast nor too slow.

Stages 2, 3, and 4 are iterated until the metabolic network achieves a high confidence
score. This refinement process is mostly manual and typically takes months to
years.

GMNs are an input of our methods. The problem of metabolic network inference is
not addressed in this manuscript. Today, more than 6 000 GMNs of microorganisms
and multicellular organisms, such as humans or plants, have been reconstruc-
ted (Passi et al., 2021). Given the availability of high-quality metabolic networks in
public databases, such as BiGG (King et al., 2015), we consider metabolic networks
to be inputs for our methods. We do not need to infer metabolic networks by
ourselves to build regulated metabolic networks.

2.2 Inference of Boolean Networks

Many methods have been developed to infer Boolean networks (BN) from experi-
mental observations and prior knowledge networks (PKN), sets of signed interactions
between genes, proteins, and metabolites. The methods developed so far only rely
on the information on the regulatory scale of the cell, mainly transcriptomics,
proteomics, and phosphoproteomics. They typically employ combinatorial (Saez-
Rodriguez et al., 2009; Ostrowski et al., 2016; Videla et al., 2017; Razzaq et al.,
2018; Chevalier et al., 2020; Vaginay et al., 2021) or continuous (Terfve et al.,
2012; Tsiantis et al., 2018) formulations to optimize the data-fitting and parsimony
hypotheses.

Methods. The main differences between these methods lie in their input data
and how they define the compatibility between the dynamics of a BN and the
input observations. Tools like CASPO (Videla et al., 2017) and CellNOptR (Terfve
et al., 2012) infer BNs from steady-state observations of gene expressions, and
define the compatibility as the observation being a fixpoint of the BN under
synchronous update semantics. Other methods, such as CaspoTS (Ostrowski et al.,
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2016), BoNesis (Chevalier et al., 2020), and ASKEed (Vaginay et al., 2021), infer
BNs compatible with multiple time series observations by defining compatibility
through a reachability condition: for each time series, there must exist a sequence of
configurations (for a chosen update semantics) that match the observations. Except
for CellNOptR, all these methods rely on Answer Set Programming (ASP) (Baral,
2003; Gebser et al., 2012), a logic programming framework for expressing symbolic
satisfiability problems2, to infer BNs that best fit the input observations and are
supported by the PKN. These ASP-based tools can enumerate all the solution
regulatory rules, providing a comprehensive view of the solution spaces, which is
essential for biologists who need insights into the space of feasible regulatory rules
to enhance their understanding of biological systems and plan their experiments.

Limits. The main drawback of methods like CaspoTS and BoNesis is that they
rely on a simplified assumption about the regulatory system dynamics: interactions
with the metabolism are totally neglected. For example, if we apply the inference
procedure of CaspoTS on simulated data generated from rFBA simulation of the
core-carbon metabolism (Covert et al., 2001), multiple equivalent BNs are inferred,
but only one accurately reproduces the expected behaviors.

Stochastic methods. Note that stochastic inference methods, based on genetic
algorithms (Trinh and Kwon, 2021; Gao et al., 2020; Liu et al., 2021) or deep
learning (Barman and Kwon, 2020), are also used to infer BNs. However, these
methods do not exploit prior knowledge of regulatory interactions to infer BNs. The
inferred BNs may not be limited to manually curated or high-confidence interactions.
Furthermore, these methods cannot characterize the set of valid regulatory rules,
as they are intrinsically unable to infer the complete set of solutions. For these
reasons, we will not consider stochastic inference methods in this work.

2.3 Inference of Boolean Networks Controlling Metabolic Networks

In the previous sections, we reviewed methods for reconstructing metabolic networks
and inferring BNs of regulatory systems. To reconstruct regulated metabolic
networks (RMN), the current bottleneck lies in the inferring of the metabolic
feedback and control regulatory rules. Given the absence of methods for inferring
these rules, we can only outline the problem’s definition based on the methods used
for reconstructing metabolic networks and inferring BNs.

Problem definition. The problem of inferring metabolic feedback and control rules
comes down to inferring BNs that control a metabolic network. This problem

2ASP is detailed in Section 3.1.
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would take as input: (i) a metabolic network; (ii) a PKN, that is a set of a priori
interactions between genes, proteins, and the metabolism; and (iii) multiple time
series of omics data. Since there are efficient protocols for reconstructing metabolic
networks and databases that contain them, they can be considered as inputs.

The objective of the inference problem would be to automatically infer BNs
controlling the input metabolic network such that:

1. the BNs are supported by the PKN;
2. the coupled dynamic of the BN and the metabolic network is compatible

with the input omics data.

The first constraint is common in BN inferring approaches, it ensures that inferred
BNs are biologically relevant. Unlike traditional BN inference approaches, this
inference problem would consider the coupled dynamics of BNs and metabolic
networks, with formalism such as the regulatory flux balance analysis (rFBA), to
ensure compatibility with the input omics data.

Type of omics data. To infer BNs that control metabolic networks, observations
of both the regulatory and metabolic scales are necessary. In this manuscript, we
utilize time series of kinetics, fluxomics, and transcriptomics data. Time series of
transcriptomics data provide information about the dynamics of the regulatory
system and are commonly used to infer Boolean regulatory rules. Time series
of kinetics and fluxomics data provide information about the dynamics of the
metabolism. In particular, kinetics and fluxomics are used to build and calibrate
metabolic networks by ensuring the compatibility of the observations with the
FBA (Thiele and Palsson, 2010). Consequently, the reconstructed input metabolic
network will be compatible with these data types. In practice, we consider that
the observed time series contain at least two observations per growth phases.

Example. An example of inference problem instance is shown in Fig. 12. The input
metabolic network, as described in Fig. 3, along with eight a priori interactions
are shown in Fig. 12a, and the time series data in Fig. 12b. Among the eight
a priori interactions, there are three positive interactions ((Carbon1, +, RPcl),
(Tc1, +, RPcl), and (RPcl, +, Tc1)), two negative interactions ((RPcl, -, Tc2) and
(Oxygen, -, RPO2)), and three unsigned interactions, i.e. interactions that can
either be positive or negative ((Carbon2, ?, RPcl), (Rres, ?, RPO2), and (RPO2,
?, Rres) where ? ∈ {−,+}). Two examples of Boolean networks that control the
input metabolic networks are presented in Fig. 12c, non-constant Boolean rules are
provided under the figures. Both Boolean networks are consistent with the input
interactions, although not all interactions are utilized (e.g. (Carbon2, ?, RPcl)),
and the associated RMNs admit rFBA simulations compatible with the input time
series data.
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tions of the activity of the regulatory and
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(c) Example of 2 solution BNs: they are supported by the prior interactions and fit with input
time series. The left regulated metabolic network (RMN) is shown in Fig. 8; the right RMN is
composed of another feasible set of regulatory rules explaining a diauxic shift (Fig. 9a).

� Figure 12 – Example of an instance of the Boolean network inference problem
from multiple time series of fluxomics, kinetics, and/or transcriptomics observations.
The inputs are composed of (a) a metabolic network N and a set of prior knowledge
interactions; (b) multiple time series fluxomics, kinetics, and/or transcriptomics ob-
servations. Green (resp. red) arrows are positive (resp. negative) interactions. Dark
arrows with question marks are unsigned interactions, i.e. either positive or negative.
Solutions to this inference problem are Boolean networks f supported by the prior
knowledge interactions for which there exist rFBA traces of the regulated metabolic
network (N ,P , f) compatible with each input observation (c).
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3 Solving Hybrid Satisfiability and Optimization Problems

In this manuscript, we formulate the inference of Boolean networks (BN) controlling
a metabolic network as a hybrid optimization problem that merges combinatorial
and quantified linear constraints. In practice, combinatorial problems are solved
with SAT solvers or ASP solvers. ASP has been widely used in systems biology to
address highly combinatorial problems. In particular, most of the BN inference
methods described in the previous section rely on ASP (Videla et al., 2017; Ostrowski
et al., 2016; Chevalier et al., 2020; Vaginay et al., 2021). Moreover, ASP and its
linear extensions have been applied to solve problems related to the metabolism
dynamics, where the FBA must be satisfied. Examples include metabolic network
gap-filling (Prigent et al., 2017; Frioux et al., 2019), or elementary flux modes
enumeration (Mahout et al., 2020).

In this section, we first present ASP (Section 3.1). Then, we present its
extensions used to address linear arithmetic constraints (Section 3.2).

3.1 Answer Set Programming (ASP)

ASP is a declarative logic framework that allows for solving combinatorial satis-
fiability and optimization problems (Baral, 2003; Gebser et al., 2012). The core
idea of ASP is to model a search problem in a logical format, i.e. as a set of
logical rules so that the models of the logic problem represent the solutions to the
original problem. Stable models of the logic programs are referred to as answer sets.
Modern ASP solvers, like clingo (Gebser et al., 2017), can solve and enumerate
the answer sets of NP problems with millions of variables. Although determining
whether a program has an answer set is the fundamental decision problem in ASP,
ASP solvers support various combinations of reasoning modes, among them, regular
and projective enumeration, intersection and union, multi-criterion optimization,
and subset minimal model enumeration (Gebser et al., 2011, 2013).

In this section, we introduce the basics of the ASP syntax (Section 3.1.1). Then,
we explain the stable model semantics used to solve ASP programs (Section 3.1.2).

3.1.1 ASP’s Syntax

Rule syntax. An ASP program is a set of logical rules of the form:

a0 :- a1, · · · , ai, not ai+1, · · · , not an.

where {a0, · · · , an} are atoms. In practice, the left-hand part of the rule (a0),
preceding ‘:-’, is called the head, and the right-hand part (a1, · · · , ai, not ai+1, · · · ,
not an) is called the ‘body ’. A rule can be intuitively understood as "if the body of
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the rule holds ({a1, · · · , ai} are true and {ai+1, · · · , an} are false), then the head of
the rule (a0) is true". In ASP, an atom can be true only if it appears in the head
of a rule whose body is satisfied.

Facts and integrity constraints. From this general definition of logical rules, we
distinguish two special types of rules: facts and integrity constraints. A fact is a
logical rule with an empty body:

a0 :- .

A fact models an input knowledge and asserts that its head (a0) is always true. An
integrity constraint is a logical rule whose head is empty, or a0 is ⊥ (false):

:- a1, · · · , ai, not ai+1, · · · , not an.
An integrity constraint ensures that any model satisfying the rule’s body is excluded,
filtering out models that do not meet certain conditions.

Grounding. In practice, ASP programs are rewritten using templates similar to
first-order logic predicates. Within rules, atoms are predicate symbols followed by
a sequence of terms (e.g. f(c), p(f(X), Y, 0)) and terms are constants (e.g. c, 0),
function symbols followed by terms (e.g. f(X)), or variables (e.g. X, Y ).

Before solving, the program atoms are instantiated on the universe of possibilities.
This instantiation phase is called the ‘grounding ’ of the ASP program, and can
generate an exponential number of variable-free logical rules.

Consider the two facts v(1). and v(2)., and the rule p(X, Y ) :- v(X), v(Y ), X! =
1. where X and Y are variables. This rule is grounded into four variable-free logical
rules, representing all combinations of values for X and Y according to the universe
of possibilities (v(1) and v(2)):

p(1, 1) :- v(1), v(1), 1 != 1. p(1, 2) :- v(1), v(2), 1 != 1.

p(2, 1) :- v(2), v(2), 2 != 1. p(2, 2) :- v(2), v(2), 2 != 1.

Modern grounders aim to reduce the number of logical rules generated during
grounding by not generating trivial rules (Kaufmann et al., 2016), that is, rules
for which the body could never be satisfied. In the previous example, the first two
grounded rules are not generated in practice, since their body cannot be satisfied
(1 != 1 is necessarily false).

3.1.2 Stable Model Semantics

Models of ASP programs are sets of grounded atoms, called answer sets. Answer sets
are stable models that adhere to the stable model semantics (Gelfond and Lifschitz,
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1988). This semantics assumes that all atoms are false by default. Consequently,
each atom that appears in the answer set is considered true, while all atoms not
included in the answer set are considered false.

The stable model semantics requires each atom in an answer set to be derived
from a fact or the head of a rule whose body is satisfied by the answer set, and the
answer set to be subset minimal. In other words, a stable model M for an ASP
program P is such that M is a subset minimal set of grounded atoms satisfying
the reduced ASP program PM , where PM is obtained by removing rules with
negated atoms not in M and removing the negated atoms from the remaining rules.
Determining if an ASP program has at least one answer set is NP-complete.

Example. Let us consider the following ASP program P :

a :- . (I.4)
b :- not c, a. (I.5)
c :- not d. (I.6)

Suppose that we want to check if M1 = {a, b} is an answer set of P . First, we
compute the reduced program P {a,b} by dropping the negated atoms (not c) in the
second rule (Eq. I.5) and removing the last rule (Eq. I.6):

a :- .
b :- a.

We can see that M1 is the only stable model of P {a,b}, therefore it is also a stable
model of P . In the same way, we can show that M2 = {a, b, c} is not a stable model
of P . The reduced program P {a,b,c} is only composed of the rule a :- .. Therefore,
the smallest answer set of P {a,b,c} is M ′ = {a} which is a subset of M2.
The ASP program P has two answer sets: {a, b} and {a, c}.

3.2 ASP Modulo Theory Extensions

Extensions of ASP have been proposed to extend ASP solvers with constraints from
other theories. One notable extension is clingo[LP] (Janhunen et al., 2017), which
extends the standard ASP solver clingo (Gebser et al., 2017) with quantifier-free
linear constraints over real-valued variables.

Clingo[LP]. This extended solver has been used to solve hybrid combinatorial
problems in systems biology, including problems that necessitate the FBA equations
to be satisfied (Frioux et al., 2019; Mahout et al., 2020). Clingo[LP] extends clingo
by incorporating constraint propagation to handle linear constraints alongside the
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logical rules of ASP. During the ASP-solving process, a linear optimization problem
is dynamically constructed based on the grounded atoms within the current answer
set. At different stages of the solving process, a dedicated linear solver (such as
CPLEX or LpSolve for clingo[LP]) is called to check the satisfiability of the linear
constraints. If the current set of linear constraints is found to be unsatisfiable,
a nogood (a constraint similar to an integrity constraint) is added to the ASP
program, rejecting the current (partial) answer set. When a (partial) answer set
is rejected, the ASP solver backtracks to a previously valid state. This process is
repeated until either the hybrid ASP program is proven unsatisfiable or an answer
set, whose associated linear problem in the linear propagator is satisfiable, is found.
To facilitate the integration of linear constraints in ASP programs, clingo[LP]
introduces an extended ASP syntax.

Recently, a novel extension named clingo-lpx has been introduced. This exten-
sion is available on GitHub3. Unlike clingo[LP], clingo-lpx relies on a dedicated
implementation of the simplex algorithm (Dutertre and De Moura, 2006) to ensure
the satisfiability of linear constraints. In practice, clingo-lpx outperforms clingo[LP]
regarding computation times. In Chapter V, we compare our hybrid ASP solving
framework against clingo-lpx.

3.2.1 Custom Theory Propagators with clingo

In practice, clingo provides a standard interface to integrate custom theory propag-
ators into its ASP solving process (Ostrowski and Schaub, 2012; Banbara et al.,
2017). Here, we briefly describe the main functions to implement such a theory
propagator using clingo Python API. A comprehensive guide for building custom
ASP-based systems is available in Kaminksi et al. (2023).

A theory propagator must implement four functions to be integrated in clingo:
initialize, propagate, undo, and check. These functions are invoked by clingo
at different stages of the solving process to communicate the current assignment of
atoms (partial answer sets) to the theory propagator. The ASP solving workflow
with theory propagator is described in Fig. 13.

initialize: This function is called once at the beginning of the solving process.
It is used to initialize the theory propagator and to declare atoms of interest,
referred to as watched atoms.

propagate: This function is called each time the ASP solver decides the state (true
or false) of a watched atom. It is used to track the state of the partial answer
set and to check its satisfiability with respect to the theory constraints. For
clingo[LP], linear constraints associated with theory atoms decided true are

3Available on git: https://github.com/potassco/clingo-lpx.
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� Figure 13 – Workflow of the ASP solving process with and without theory propaga-
tion. Solid-lined boxes and arrows represent the standard ASP-solving process. Dotted-
lined boxes and arrows, and colored arrows, represent the processes related to theory
propagation. The functions initialize, propagate, undo, and check are part of
the clingo API and are called during the solving process to manage theory propagation.
The complete solving process is as follows: first, the ASP program and the theory
language are grounded. Then, the theory propagator is initialized, and the solving of the
grounded ASP program begins. The theory propagator is invoked through the functions
propagate, undo, and check whenever the state of an atom related to the theory
propagator is updated. The theory constraints associated with the current answer set
are checked. If they are unsatisfiable, the solving process backtracks, and a nogood is
generated. Otherwise, the solving process continues, until either the grounded ASP
program is found unsatisfiable regarding the theory constraints or answer sets satisfying
the theory constraints are found.

added to the linear optimization problem. This linear problem is then solved
to check the satisfiability of the current set of linear constraints. If they are
not satisfiable, nogoods are generated and added to the ASP solver.

undo: This function is called each time that the ASP solver backtracks the state
of a watched atom. For clingo[LP], the linear constraints associated with the
backtracked theory atoms are removed from the linear optimization problem.

check: This function is only called when all atoms’ states have been decided, that
is when the ASP solver has found an answer set of the ASP program that
satisfies all the nogoods generated so far. Watched atoms can have been
decided between the last call to propagate and the call to check. Therefore,
it is necessary to ensure that the theory constraints are still satisfied, even if
all checks made in previous calls to the propagate function passed.

Depending on the application, it is not always necessary to define a theory
language extension for the ASP syntax. Such extensions are beneficial when
developing a generic ASP modulo theory solver, as they ensure the syntax of theory
constraints. However, they may be unnecessary when developing dedicated solving
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methods where users will not interact with the hybrid ASP program directly. For
instance, in Chapter IV, we introduce a dedicated implementation for solving the
inference problem based on a hybrid extension of ASP. We do not extend the
ASP syntax for it. Conversely, in Chapter V, we introduce a generic ASP modulo
quantifier linear arithmetic solver for which we propose a syntax extension of ASP,
based on the one introduced in clingo[LP].

3.2.2 Satisfiability Modulo Theory Solvers

In practice, hybrid satisfiability or optimization problems that merge logical
constraints and linear constraints are Satisfiability Modulo Theory (SMT) prob-
lems (Barrett and Tinelli, 2018). In particular, problems that merge logic and
linear constraints are satisfiability modulo linear real arithmetic (LRA) problems.
There exist different solvers for solving SMT problems, one of the most well-known
SMT solvers being z3 (De Moura and Bjørner, 2008). These SMT solvers extend
SAT solvers with theory-dependent constraints propagation methods. For the
LRA theory, the SMT solvers rely on a dedicated implementation of the simplex
algorithm to check the satisfiability of linear constraints (Dutertre and De Moura,
2006). Unlike the theory propagator used to extend ASP, SMT solvers with the
LRA theory generate new linear constraints (while ASP’s theory propagator gener-
ates new logic/integrity constraints) (Farzan and Kincaid, 2016; Reynolds et al.,
2017).

In this manuscript, we do not rely on SMT solvers to model and solve the
inference problem, but on hybrid ASP solvers. The choice of ASP is motivated
by its known performance for enumerating the solutions of highly combinatorial
problems, even compared to well-established SMT solvers like z3 (Gebser et al.,
2014). In addition, most SMT solvers do not handle optimization constraints and
quantifiers, which is necessary for solving our formulation of the Boolean network
inference problem.
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4 Thesis Contributions

In this manuscript, we tackle the problem of inferring Boolean regulatory rules con-
trolling metabolic networks from time series kinetics, fluxomics, and transcriptomics
observations.

Thesis organization. The manuscript is organized into seven chapters, including
the introduction, the state-of-the-art, and the conclusion. First, in Chapter II,
we formally define the problem of inferring Boolean regulatory rules controlling a
metabolic network from time series observations. We introduce a general definition
of this problem as a hybrid optimization problem, specifically a combinatorial
optimization problem with quantified linear constraints. From this general definition,
we derive three formulations, each corresponding to different levels of abstraction
of the rFBA dynamics. The three following chapters are each based on a published
paper, in which we introduce the problem abstraction as well as ASP-based solving
methods to address them.

In Chapter III and the associated paper Thuillier et al. (2021), we introduce a
Boolean abstraction of the rFBA dynamics. This abstraction allows us to relax the
inference problem as a pure Boolean combinatorial satisfiability problem with two
levels of quantifiers, known as 2-QBF problems. We solve it using an ASP-based
implementation that leverages the stable model semantics and disjunctive logic
extension of ASP4 to efficiently enumerate solutions. The Boolean abstraction
of rFBA introduced in this chapter is the foundation of all the solving methods
developed throughout this thesis.

In Chapter IV and the associated paper Thuillier et al. (2022), we formulate
and solve the inference problem as a hybrid optimization problem merging logical
constraints and linear constraints, specifically the FBA equations. We develop a
dedicated ASP-based solving method, integrating the FBA equations and growth
maximization within the ASP solving process, to address it. We highlight the
efficiency of our inferring method on the model of core-carbon metabolism (Covert
et al., 2001) for which we generate a benchmark of realistic in silico fluxomics,
kinetics, and transcriptomics time series.

In Chapter V and the associated paper Thuillier et al. (2024), we extend our
solving workflow to a broader class of hybrid problems, namely hybrid combinatorial
optimization problems under logic and quantified linear constraints (OPT+qLP).
The hybrid formulation of the inference problem is an example of OPT+qLP
problem. Here, we present a generic and efficient method to address OPT+qLP
problems, providing a versatile solution applicable beyond the specific context of
Boolean regulatory rules inference.

4Described in Chapter III.
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Appendices. The contributions of this manuscript are completed with additional
data and results. In Appendix A, we provide a detailed description of two regulated
metabolic networks of Escherichia coli : a model of core-carbon metabolism (Covert
et al., 2001) (used in Chapter III to V); and a medium-scale model (Covert and
Palsson, 2002) (used in Chapters IV and V). These networks were only described
in their introductory paper appendices and lacked standard file representations. A
significant portion of the thesis has been dedicated to formatting these networks
into standard file formats suitable for rFBA simulation tools, namely SBML (Hucka
et al., 2003) for metabolic networks and SBML-qual (Chaouiya et al., 2013) for
Boolean networks.

In Appendix B, we describe the ASP, and hybrid ASP, encodings of the relaxed
inference problem defined in Chapter III and the hybrid inference problems defined
in Chapters IV and V.

In Appendix C, we present a second case-study application of the relaxed
inference problem (Chapter III) applied to the model of core-carbon metabolism.
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II Formalization of the Inference of
Boolean Networks Controlling
Metabolic Networks From Time Series
Data

To sum up
In this chapter, we introduce a general definition of the inference of Boolean
networks controlling metabolic networks from time series data. In particu-
lar, we consider observations from both the regulatory and metabolic scales:
transcriptomics, and kinetics and fluxomics, respectively. From this general
definition, we derive three formulations of the inference problem based on
different levels of abstraction of the rFBA formalism.

In this chapter
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In next chapters 57

In this chapter, we introduce a novel definition of the inference problem from
time series observations of both regulatory and metabolic scales. Our formulation
of the problem takes as input (i) a metabolic network; (ii) a prior knowledge
network (PKN), i.e. a domain of putative influences; and (iii) a set of time series
observations, namely kinetics, fluxomics, and transcriptomics. By modeling the
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metabolism dynamics directly in the inference problem, we aim to infer Boolean
regulatory rules, including the feedback and control rules, controlling the meta-
bolism. The output of the problem is a set of Boolean networks (BN) that are
supported by the PKN and that best explain the input time series.

Outlines. First, we formalize the problem input: the PKN in Section 1.1 and time
series data in Section 1.2. Then, we define the compatibility between time series
data and a regulated metabolic network (RMN) in Section 2. Finally, we propose a
general definition of the inference problem as a combinatorial optimization problem
under quantified constraints in Section 3. In this last section, we introduce three
formulations of the inference problem. These formulations are explained in further
detail in the next chapters.

1 Input of the Inference Problem

1.1 Prior Knowledge Network

Influences. Let u and v be two components implied in the regulations. The
influence of u on v is denoted by the triplet (u, s, v) where s ∈ {+;−} is the sign
of the influence. The sign is s = ‘+’ if u is an activator of v, else it is s = ‘−’
with u an inhibitor of v. The set of all influences defining the domain of putative
influences of the inference problem is called a prior knowledge network.

I Definition 1.1: Prior Knowledge Network (PKN)

A prior knowledge network (PKN) is an influence graph G constraining the search
domain of regulatory networks.

For the rest, we assume that there is no influence on external metabolites, i.e.
∀ (u, s, v) ∈ G, v 6∈ Mext. Indeed, the state of an external metabolite m ∈Mext is
only dependent on its availability in the cell environment.

Search domain. To be biologically relevant, the inferred BNs should be supported
by the PKN, that is, regulatory rules should only rely on the input interactions
to explain gene expressions. A BN f is said to be supported by a PKN G if its
influence graph G(f) is a subgraph of G, i.e. G(f) ⊆ G.
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RRPM +
+
-

� Figure 14 – Example of a prior knowledge network (PKN) of dimension 3. It is
composed of 3 regulatory components: M , R, and RP ; and 3 influences: (M,+, RP ),
(R,−, RP ), and (RP,+, R). The green arrows are positive influences, and the red
arrow is a negative influence.

I Definition 1.2: Search domain for regulatory networks F(G)

Let G be a PKN of dimension n. The search space F(G) contains all Boolean
networks f of dimension n whose influence graph G(f) is a subgraph of the
PKN G, i.e. ∀ f ∈ F, G(f) ⊆ G.
The size of F(G) is doubly exponential in n.

Example. Let consider the PKN G = ({M,R,RP}, {(M,+, RP ), (R,−, RP ),
(RP,+, R)}) of dimension n = 3 described in Fig. 14. In this example, there
are three regulatory components (M , R, and RP a metabolite, a reaction, and a
regulatory protein, respectively) and three influences ((M,+, RP ), (R,−, RP ), and
(RP,+, R)). For each component i, the constant Boolean rules fi(x) = 1 (always
true) and fi(x) = 0 (always false) are compatible with any influence.

There is no influence toward M , the only rules compatible with G are the 2
constant rules: fM(x) = 1 and fM(x) = 0. The regulatory state of the reaction
R is positively influenced by the state of the regulatory protein RP ((RP,+, R)).
There are 3 regulatory rules compatible with this influence, the two constant rules
fR(x) = 1 and fR(x) = 0, and fR(x) = xRP . Finally, the regulatory state of
the regulatory protein RP is positively influenced by the availability of M in the
bacteria substrate ((M,+, RP )), and negatively by the activity of the reaction R
((R,−, RP )). There are 6 regulatory rules compatible with these two influences:
the two constant rules fRP (x) = 1 and fRP (x) = 0, and any Boolean rules that are a
combination of xM (positive influence ofM) and ¬xR (negative influence of R) with
the logical ‘and’ (∧) and logical ‘or’ (∨) operators (fRP (x) = xM , fRP (x) = ¬xR,
fRP (x) = xM ∨ ¬xR, and fRP (x) = xM ∧ ¬xR).

The search space F(G) contains all regulatory networks for which all regulatory
rules are compatible with G. There are therefore 2× 3× 6 = 36 regulatory rules
compatible with the 3 influences of the PKN G.
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1.2 Observations

In this work, we consider time series observations of kinetics, fluxomics, and/or
transcriptomics data.

Transcriptomics data. Transcriptomics data are qualitative observations of the regu-
latory scale. They are measures of the expression of gene activities, specifically, they
quantify the mRNA produced during gene transcriptions. From transcriptomics
data, information about the gene expressions, the regulatory proteins’ availabilities,
and reactions’ activity states (on/off) can be inferred.

In this manuscript, we assume that the expression data are qualitative observa-
tions of the reactions (R) states, and of the genes and regulatory proteins (P) states.
Moreover, we further assume that the availability states of external metabolites
(Mext) is also measured. Transcriptomics data can be, therefore, modeled as a
Boolean vector x̂ ∈ B|P|+|Mext|+|R|.

Kinetics and fluxomics. Kinetics and fluxomics are two quantitative observations of
the metabolic scale. Kinetics measures the concentrations of external metabolites
(Mext). Fluxomics quantifies the activity rates of reactions (R). Specifically, it
quantifies the reactions’ conversion rates, i.e. the amount of reactant metabolites
converted into product metabolites in a given amount of time. For the rest, we
denote by ŵ ∈ R|Mext| and v̂ ∈ R|R| the kinetics and fluxomics observations,
respectively.

Observation. An observation can be composed of any combination of transcriptom-
ics, kinetics, and fluxomics data. All unobserved elements are set to an undefined
value ‘⊥’. For instance, an observation composed of kinetics (ŵ) and transcriptom-
ics (x̂) does not have any information about reactions’ activities (v̂). The fluxomics
observations are set to undefined, i.e. v̂ = {⊥}|R|.

Let an observation be a triplet o = (v̂, ŵ, x̂) where v̂ are fluxomics data, ŵ
are kinetics data, and x̂ are transcriptomics data. Following this definition, an
observation can be seen as a partial regulated metabolic steady-state1 (RMSS).
Given an RMSS (v, w, x), fluxomics data v̂ provide information about the metabolic
state v; kinetics data ŵ provide information about the substrate state w; and
transcriptomics data x̂ provide information about the regulatory state x.

Let R⊥ (resp. B⊥) be the set of real (resp. Boolean) values or the undefined
value ‘⊥’. For the rest, we formally define an observation as a partial RMSS for
which unobserved components are set to the undefined value (‘⊥’).

1See Definition 1.6 in Chapter I
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Observed components Observation
Data types scale Modality R Mext P (v̂, ŵ, x̂)

Kinetics Metabolic Quantitative - X - - X -
Fluxomics Metabolic Quantitative X - - X - -
Transcriptomics Regulatory Qualitative X X X - - X

� Table 4 – Summary of the structure of observations for the considered data types:
kinetics, fluxomics, and transcriptomics. The modality is the nature of the observations:
quantitative for real-valued observations and qualitative for Boolean-valued observations.
For observed components, there is a checkmark (‘X’) if the set of elements is observed,
while there is a dash (‘−’) if it is not observed. For observations, a check mark (‘X’)
represents defined elements, while a dash (‘−’) represents undefined ones.

I Definition 1.3: Observation

An observation is a triplet o = (v̂, ŵ, x̂) ∈ R|R|⊥ × R|Mext|
⊥ × B|P|+|Mext|+|R|

⊥
representing a partial metabolic steady-state.

The information provided by each considered omics data is summarized in Table. 4.

Time series observation. Time series observations are a sequence of successive
observations of a biological system obtained during an experiment.

I Definition 1.4: Observed time series

An observed time series To = {o1, · · · , om} is a sequence of m ≥ 1 successive
observations.

2 Compatiblity of RMN Traces with Observations

In this section, we define the compatibility of an RMN (N ,P , f) with an observed
time series To = {(vto, wto, xto)}mt=0. We assume that the RMN dynamics is modeled
by successive RMSSs of the form (v, w, x) with v ∈ R|R| the metabolic state,
w ∈ R|Mext| the concentration of external metabolites, and x ∈ B|P|+|Mext|+|R| the
regulatory state.

Outlines. First, in Section 2.1, we define the compatibility between an observation
and a RMSS. Then, in Section 2.2, we define the compatibility of an RMSS with
the metabolic growth phenotype described by fluxomics observations. Finally, in
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Section 2.3, we propose a general definition for the compatibility of an RMN trace
with an observed time series. This definition is agnostic of the simulation framework
chosen to model the RMN dynamics.

2.1 Compatibility Between an Observation and an RMSS

Regulated metabolic state consistency. A regulated metabolic steady-state (RMSS)
(v, w, x) is said consistent if the regulatory states of reactions and external metabol-
ites are compatible with the metabolic and substrate states. For a reaction r ∈ R,
this implies that the regulatory state xr should not inhibit the reaction if it has a
non-null metabolic flux, i.e. if vr > 0 (Eq. II.1a). There is no constraint on xr if vr
is null. For an external metabolite m ∈Mext, it implies that the metabolic state
xm corresponds to the availability of m in the cell environment (Eq. II.1b).

Let β : R → B be a binarization function such that ∀ s ∈ R, β(s) = 1 if and
only if si 6= 0, else β(s)i = 0.

I Definition 2.1: Consistent RMSS

An RMSS (v, w, x) is said consistent if and only if its regulatory state x is
compatible with its metabolic state v and substrate state w, i.e. it satisfies
Eqs. II.1.

∀ r ∈ R, xr ≥ β(vr) (II.1a)
∀m ∈Mext, xm = β(wm) (II.1b)

Compatibility with observations. To ensure the compatibility between an observation
(v̂, ŵ, x̂) and an RMSS (v, w, x), it is essential to consider experimental errors. We
assume that all the low-confidence observations are removed and replaced by an
undefined value (‘⊥’).

For the RMSS to be compatible with the observation, the kinetics and transcrip-
tomics must match exactly with the substrate and regulatory state, respectively.
Indeed, we assume that regulatory rules influenced by external metabolites de-
pend solely on the presence of these metabolites rather than specific concentration
thresholds. Therefore, noise in the kinetics data will not affect the inference of
regulatory rules, assuming that the availability states of external metabolites are
valid. Moreover, we assumed that transcriptomics data contain only high-confidence
observations, therefore, the inferred Boolean networks should exactly reproduce
these observations.

Regarding fluxomics observations, we only consider the observed reaction activity
states to mitigate the impact of experimental noise. If a reaction is observed active
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(resp. inactive), then the reaction should have a non-zero flux (resp. a null flux) in
the metabolic state, i.e. ∀ r ∈ R, (v̂r > 0 =⇒ vr > 0) ∧ (v̂r = 0 =⇒ vr = 0). As
for kinetics, we assume that feedback rules depend solely on the activity states of
these reactions rather than specific thresholds on metabolic activity. Hence, this
definition ensures that the metabolic state is compatible with the observed metabolic
phenotype described by fluxomics data, reducing the impact of experimental error
in the observations.

I Definition 2.2: Data compatibility

An observation (v̂, ŵ, x̂) is data-compatible with a consistent RMSS (v, w, x) if
and only if (i) kinetics ŵ and expression data x̂ match exactly with the substrate
state w and regulatory state x, respectively (Eqs. II.2a and II.2b), and (ii) the
supports of the metabolic state and the fluxomics observations are the same
(Eq. II.2c).

∀m ∈Mext, ŵm 6= ⊥ =⇒ wm = ŵm (II.2a)
∀ p ∈ P ∪Mext ∪R, x̂p 6= ⊥ =⇒ xp = x̂p (II.2b)
∀ r ∈ R, v̂r 6= ⊥ =⇒ (vr > 0 ⇐⇒ v̂r > 0) (II.2c)

2.2 Compatibility with an Observed Growth Phenotype

Determining the regulatory states of inactivated reactions, i.e. reactions without
metabolic activity, is not straightforward. A reaction can be inactivated by an
inhibition from control rules or due to metabolic-related constraints. It is necessary
to retrieve the exact regulatory states of inactivated reactions to accurately infer
regulatory rules.

Phenotype compatibility. The exact regulatory states of inactivated reactions can
be deduced by ensuring that all metabolic phenotypes that are compatible with
the substrate state and the regulatory state are also compatible with the fluxomics
observations. This allows identifying which reactions are inactivated due to regu-
latory network inhibition, and so indicating the regulatory rules that need to be
inferred.

Given (v, w, x) a consistent RMSS, we denote by ‘phenotype(w, x)’ the set of
metabolic states compatible with the substrate state w and the regulatory state
x. The definition of ‘phenotype(w, x)’ depends on the formalisms chosen to model
the RMN dynamics. Formal definitions according to two RMN dynamics will be
provided in Section 3.
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I Definition 2.3: Phenotype compatibility

Let ‘growth’ be a reaction representing bacteria growth and (v, w, x) be an
RMSS. The substrate state w and regulatory state x are phenotype-compatible
with fluxomics observations v̂ if and only if all the metabolic states they allow
are compatible with the observed growth rate v̂growth (Eq. II.3).

∀ v′ ∈ phenotype(w, x), v′growth = v̂growth (II.3)

This general definition of phenotype compatibility can be extended to handle noise
in fluxomics and kinetics observations (see the definition in Section 3).

Example. For example, according to the rFBA dynamics and the growth max-
imization (Feist and Palsson, 2010), the metabolic phenotype corresponds to the
optimal growth allowed by the substrate and regulatory states. The RMSS (v, w, x)
is phenotype-compatible with the fluxomics data v̂ if the observed growth v̂growth is
equal to the maximum growth allowed by w and x, i.e. maxv′∈rMSS(w,x) v

′
growth =

v̂growth.

2.3 Compatibility Between Time Series Data and an RMN Traces

Let consider an RMN trace, i.e. a sequences of RMSSs, Ts = {(vi, wi, xi)}li=1 of
any dynamics, and an observed time series To = {(v̂i, ŵi, x̂i)}mi=1, with 0 ≤ m ≤ l.
Given g : [1;m] → [1; l] a bijective function mapping each observation to an
RMSS of Ts, To is compatible with Ts if each observation (v̂i, ŵi, x̂i) ∈ To can be
associated to an RMSS (vg(i), wg(i), xg(i)) ∈ Ts such that: (i) successive observations
are associated with successive RMSSs (Eq. II.4a), (ii) the observation and the
RMSS are compatible (Eq. II.4b), and (iii) the growth phenotype is consistent
with the fluxomic observations (Eq. II.4c).

I Definition 2.4: Compatibility with an RMN trace

An observed time series To = {(v̂i, ŵi, x̂i)}mi=1 is said compatible with distance
0 ≤ K with an RMN trace Ts = {(vj, wj, xj)}lj=1, with 1 ≤ m ≤ l, if and only
if it exists a bijective function g : [1;m]→ [1; l] mapping observations to RMSSs
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such that:

∀ 1 ≤ i < m,

0 < g(i+ 1)− g(i) ≤ K + 1 (II.4a)

∧ (vg(i), wg(i), xg(i)) and (v̂i, ŵi, x̂i) are data-compatible (II.4b)

∧ wg(i) and xg(i) is phenotype-compatible with v̂igrowth (II.4c)

For the rest, we will say that an RMN trace Ts = {(vj, wj, xj)}lj=1 is exactly
compatible with an observed time series To = {(v̂i, ŵi, x̂i)}mi=1 if To are compatible
with distance K = 0 with Ts. In other words, if To and Ts are of same length.

3 Inference Problem

Inference problem. Let G be a PKN, N = (Mext ∪Mint,R, s) be a metabolic
network, and P be a set of genes and regulatory proteins. Equations II.4 in
Section 2.3 characterize the compatibility between a sequence of RMSSs and an
observed time series. The problem of inferring BNs controlling a metabolic network
from time series data comes down to finding BNs f ∈ F(G), supported by the
PKN, that best fit the observed time series. The BNs that best fit observed time
series are the BNs such that the RMN (N ,P , f) admits the minimal length traces
compatible with each observed time series. Indeed, we assume that most of the
system states have been observed. Therefore, the inferred BNs’ traces, compatible
with the observed time series, should minimize the number of RMSSs not associated
with observations.

General definition of the inference problem. Let ‘dynamics(N ,P , f)’ be the set
of all traces, i.e. sequences of RMSSs, compatible with the RMN (N ,P , f) ac-
cording to the chosen dynamics, e.g. regulated flux balance analysis (rFBA). Let
‘phenotype(w, x)’ be the set of all metabolic states compatible with a substrate
state w and a regulatory state x for the chosen dynamics
Formally, the inference of BNs controlling the metabolism from time series data
is defined as the following combinatorial optimization problem under quantified
constraints:
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General form of the inference problem

Input:
1: a metabolic network N = (Mext ∪ Mint,R, s) with an objective reaction

‘growth’;
2: a set of regulatory proteins P ;
3: a set of observed time series {T1, ..., Tq}, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a maximum distance Kmax ∈ N between observations.

Output: argmin
f∈F(G)

q∑

k=1

lk

// The Boolean networks supported by the PKN that best fit the observed time series.

such that:

∀Tk∈{T1, ...,Tq}, ∃ {(vj, wj, xj)}lkj=1∈dynamics(N ,P, f), ∀ 1≤ i< |Tk|,
// For each observed time series Tk, it exists a trace {(vj , wj , xj)}lkj=1 of length lk
// of the RMN dynamics such that:

|Tk| ≤ lk ≤ |Tk|+Kmax (II.5a)
// At most Kmax RMSSs of the trace are not associated with observations.

∧ 0 < gk(i+ 1)− gk(i) (II.5b)
// The order of the observations is kept.

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (II.5c)
// The observation is data-compatible with its associated RMSS (Def. 2.2).

∧ ∀ v′ ∈ phenotype(wgk(i), xgk(i)), v′growth = v̂igrowth (II.5d)

// The substrate and regulatory states are phenotype-compatible with the

// fluxomics observations (Def. 2.3).

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.

For the rest, we will denote as the exact inference problem the problem of
inferring regulatory networks such that it exists, for each observed time series Tk,
a trace of the regulated metabolic network (N ,P , f) exactly compatible with Ts,
i.e. the inference problem where Kmax is fixed to 0. Note that, unlike the inference
problem, the exact inference problem is a satisfiability problem.
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Impact of compatibility constraints on the inferred regulatory rules. The data-
compatibility (Eq. II.5c) and phenotype-compatibility (Eq. II.5d) constraints are
essential to infer all the regulatory rules. Specifically, data-compatibility allows for
inferring ‘standard’ regulatory rules and feedback rules, and phenotype-compatibility
allows inferring control rules.

The former fixes the states of the regulatory proteins and genes, as well as the
external metabolite availability and reaction activity states. In other words, it fixes
both the input and output of the ‘standard’ regulatory and feedback rules.

The latter is necessary for the control rules. Recall that the data-compatibility
constraint does not fix the regulatory states of reactions, the regulatory states
of inactivated reactions are uncertain. A reaction can be inactivated because
of an inhibition by control rules, or due to metabolic-related constraints. The
phenotype-compatibility constraint resolves these uncertainties. It ensures that all
metabolic phenotypes, compatible with the set of reactions inhibited by control
rules, are compatible with the observations. This allows for identifying reactions
that should be inhibited, and so, for which control rules should be learned.

Outlines. In the next chapters, we solve the inference problem according to two
RMN dynamics: a Boolean abstraction of rFBA (see Chapter III), and rFBA (see
Chapters IV and V).

In the next sections, we briefly present three formulations of the inference
problem derived from these two dynamics.

3.1 Relaxed Boolean Definition

Definition of the inference problem described and solved in Chapter III.

Boolean abstraction of rFBA. We first propose a relaxation of the exact inference
problem as a Boolean satisfiability problem using a Boolean abstraction of the rFBA
dynamics. The Boolean rFBA dynamics relies on Boolean metabolic steady-states
(BMSS), a Boolean abstraction of the metabolic steady-states. It abstracts the
linear constraints of the FBA with logical constraints. A BMSS is represented by a
Boolean-valued vector v ∈ B|R|. For the rest, the set of all Boolean rFBA traces of
a regulated metabolic network (N ,P , f) is denoted by rFBAB(N ,P , f). BMSSs
and the Boolean rFBA dynamics are formally defined in Chapter III.

Phenotype-compatibility. Let ô : B→ N be a Boolean objective function quantifying
the growth phenotype. This Boolean objective function replaces the objective
reaction used in rFBA. Indeed, a BMSS does not have qualitative information on
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reactions, only the state (on/off) of a reaction is known, therefore we could not rely
on the metabolic flux on a growth reaction to characterize the bacteria growth.

Let (v̂, ŵ, x̂) be an observation, and (v, w, x) be a Boolean regulated metabolic
steady-states. Given MSSB(N ) the set of all BMSSs compatible with a metabolic
network N , the phenotype-compatibility consists in ensuring that all BMSSs
v′ ∈ MSSB allowed by the substrate state w and the regulatory state x have an
objective score lesser or equals than the objective score of the observation (Eq II.6).

∀ (v′, w′, x′) ∈ MSSB(N ), w 6= w′ ∨ x 6= x′ ∨ ô(v′) ≤ ô(v̂) (II.6)

This definition assumes that bacteria aim at maximizing their growth, and so, that
no BMSS should exhibit more growth than the observation.

Relaxation formulation of the inference problem. Based on Boolean rFBA and the
phenotype compatibility described by Eqs II.6, the Boolean relaxation of the
inference problem as a Boolean satisfiability problem is formally given below.
Elements in blue are the elements that changed from the general definition.

Boolean relaxation of the exact inference problem

Input:
1: a metabolic network N = (Mext ∪Mint,R, s);
2: a set of regulatory proteins P ;
3: a set of observed time series {T 1

o , · · · , T qo }, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a Boolean objective function ô : B|R| → N.

Output: All Boolean network f ∈ F(G)
such that:

∀ Tk ∈ {T1, · · · , Tq}, ∃ {(vj, wj, xj)}lkj=1 ∈ rFBAB(N ,P, f), ∀ 1 ≤ i < |Tk|,
lk = |Tk| (II.7a)
∧ 0 < gk(i+ 1)− gk(i) (II.7b)

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (II.7c)

∧ ∀ (v′, w′, x′) ∈MSSB(N ),

wg(i) 6= w′ ∨ xg(i) 6= x′ ∨ ô(v′) ≤ ô(v̂i) (II.7d)

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.
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Solving. The relaxed definition is a Boolean satisfiability problem with two levels
of quantifiers (2-QBF) of the form ‘∃ ∀ ’: it exists a Boolean network f ∈ F(G) that
admits a set of Boolean rFBA traces compatible with the observed time series,
such that all Boolean metabolic steady-states satisfied the fluxomics observations
(Eq. II.7d). To solve this formulation of the inference problem, we propose an
ASP-based implementation based on the so-called saturation technique (Eiter et al.,
2009; Gebser et al., 2011), an efficient solving strategy for 2-QBF problems.

3.2 Flux-based Definition

Definition of the inference problem described and solved in Chapter IV.

Based on rFBA. Then, we define the inference problem based on the rFBA dy-
namics. For the rest, we denote the set of all rFBA traces of a regulated metabolic
network (N ,P , f) by rFBA(N ,P , f). Recall that rMSS(N , w, x) is the set of
RMSSs of N compatible with the substrate state w ∈ R|Mext| and the regulatory
state x ∈ B|P|+|Mext|+|R|.

The phenotype compatibility is based on the FBA assumption that bacteria
aim at maximizing their growth (Feist and Palsson, 2010). Hence, the metabolic
phenotype is characterized by the optimal growth allowed by a substrate and a
regulatory state. An RMSS (v, w, x) is phenotype-compatible with an observation
(v̂, ŵ, x̂) if both the current growth (vGrowth) and its optimal growth match with
the observed growth. Given a noise rate 0 ≤ ε < 1, the phenotype compatibility is
formally defined as:

v̂growth

1 + ε
≤ vgrowth ∧ max

v′∈rMSS(N ,w,x)
v′growth ≤

v̂growth

1− ε (II.8)

where ‘growth’ is an objective reaction modeling bacteria growth. The noise rate
parameter ε allows taking into account the noise in the fluxomics data.

Flux-based formulation. The flux-based definition of the inference problem according
to the rFBA dynamics is given below. The problem is formulated as a hybrid
combinatorial optimization problem under logic and quantified linear constraints.
Elements in blue are the elements that changed from the general definition.
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Flux-based formulation of the inference problem

Input:
1: a metabolic network N = (Mext ∪ Mint,R, s) with an objective reaction

‘growth’;
2: a set of regulatory proteins P ;
3: a set of observed time series {T 1

o , · · · , T qo }, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a maximum distance Kmax ∈ N between observations;
6: a noise rate parameter ε ∈ [0, 1[.

Output: arg min
f∈F(G)

q∑

k=1

lk

such that:

∀ Tk ∈ {T1, · · · , Tq}, ∃ {(vj, wj, xj)}lkj=1 ∈ rFBA(N ,P, f), ∀ 1 ≤ i < |Tk|,
|Tk| ≤ lk ≤ |Tk|+Kmax (II.9a)
∧ 0 < gk(i+ 1)− gk(i) (II.9b)

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (II.9c)

∧
v̂igrowth

1 + ε
≤ vgk(i)growth ∧ max

v′∈rMSS(N ,wgk(i),xgk(i))
v′growth ≤

v̂igrowth

1− ε (II.9d)

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.

Solving. This flux-based definition of the inference problem is a hybrid problem
merging logical and linear constraints. The linear constraints are the FBA equa-
tions used to define RMSS (‘rMSS(N , w, x)’), and so, to define the rFBA traces
(‘rFBA(N ,P , f)’).

To solve this hybrid problem, we introduce MERRIN, a dedicated hybrid solving
framework that allows solving the logical constraints with the FBA constraints.
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3.3 Optimization Modulo Quantified Linear Arithmetic Definition

Definition of the inference problem, and the class of problems described and solved
in Chapter V.

Generalization as an OPT+qLP problem. Finally, we generalize the dedicated
solving method used to address the flux-based inference problem to a broader class
of hybrid problems: optimization modulo quantified linear arithmetic problems
(OPT+qLP). An OPT+qLP problem is a hybrid optimization problem that merges
logic and quantified linear constraints. We assume that quantifiers over the linear
constraints are either the universal quantifier (∀ ) or the existential quantifier (∃ ),
and that there is only one level of quantifier over linear constraints.

For the flux-based formulation, we define the phenotype compatibility as a
constraint over the maximum growth allowed by a substrate state w and a reg-
ulatory state x (Eq. II.8). In practice, ensuring the lower bound of the con-
straint ( v̂growth

1+ε
≤ vgrowth) does not change (Eq. II.10a). Ensuring the upper bound

(maxv′∈rMSS(w,x) v
′
growth ≤

v̂growth
1−ε ) is equivalent to ensuring that all RMSS compat-

ible with w and x exhibit a growth phenotype lesser or equal to the observed one
(Eq. II.10b). Therefore, equation II.8 can be converted into an equivalent set of
existentially and universally quantified linear constraints (Eqs. II.10).

v̂Growth

1 + ε
≤ vGrowth (II.10a)

∧ ∀ v ∈ rMSS(w, x), v′Growth ≤
v̂Growth

1− ε (II.10b)

OPT+qLP definition. The OPT+qLP definition of the inference problem according
to the rFBA dynamics is given below. Elements in blue are the elements that
changed from the general definition. It differs from the flux-based definition
(Section 3.2) on Eqs. II.11d and II.11e, where the phenotype compatibility is
reformulated with existentially and universally quantified linear constraints.
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OPT+qLP formulation of the inference problem

Input:
1: a metabolic network N = (Mext ∪ Mint,R, s) with an objective reaction

‘growth’;
2: a set of regulatory proteins P ;
3: a set of observed time series {T 1

o , · · · , T qo }, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a maximum distance Kmax ∈ N between observations;
6: a noise rate parameter ε ∈ [0, 1[.

Output: arg min
f∈F(G)

q∑

k=1

lk

such that:

∀ Tk ∈ {T1, · · · , Tq}, ∃ {(vj, wj, xj)}lkj=1 ∈ rFBA(N ,P, f), ∀ 1 ≤ i < |Tk|,
|Tk| ≤ lk ≤ |Tk|+Kmax (II.11a)
∧ 0 < gk(i+ 1)− gk(i) (II.11b)

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (II.11c)

∧
v̂igrowth

1 + ε
≤ vgk(i)growth (II.11d)

∧ ∀ v′ ∈ rMSS(N , wgk(i), xgk(i)), v′growth ≤
v̂igrowth

1− ε (II.11e)

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.

Solving. In chapter V, we introduce a novel generic solving framework to solve any
OPT+qLP problems. This framework is based on a generalization of the dedicated
solving framework developed to solve the flux-based formulation. It falls within
the so-called Counter-Example Guided Abstraction Refinement method (Clarke
et al., 2003), already used to solve 2-QBF and Satisfiability Modulo Theory prob-
lems (Janota et al., 2016; Brummayer and Biere, 2009; Lagniez et al., 2017).
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In next chapters

The next three chapters introduce the different contributions of the thesis. First,
chapter III presents the Boolean relaxation of the inference problem with the
saturation-based method used to solve it. Then, chapter IV presents the flux-
based formulation of the inference problem and the hybrid solving methods that we
developed to solve it. Finally, chapter V generalizes the solving framework presented
in chapter IV to a broader class of hybrid problems, namely OPT+qLP problems,
of which the flux-based formulation of the inference problem is an example.

Chapters structure. Each chapter is based on a published paper and follows the
same structure:

1. The reference of the associated paper and a summary of the chapter’s contri-
butions and results.

2. A preliminary section that situates and motivates the paper’s contributions
within the thesis subject. It presents the formulation of the inference problem
solved in the chapter, and how the formulation and proposed solving method
overcome the limitation of previous work.

3. A highlight of the paper’s main contributions regarding the inference problem.
This section goes beyond the paper’s contributions, we present the different
challenges that we face and the methods used to overcome them.

4. A discussion about current results and limitations regarding the inference
problem. This discussion goes beyond the paper’s discussion, we introduce
new results and discuss in further detail the current limitations.

5. The paper associated with the chapter.

57





III Boolean Abstraction of rFBA for the
Boolean Relaxation of the Exact
Inference Problem

In this chapter, we introduce a Boolean abstraction of the regulatory flux balance
analysis (rFBA) framework to relax the exact inference problem as a combinatorial
satisfiability problem with two levels of quantifiers. The content of this chapter
has been presented at the international conference on Computational Methods
in Systems Biology (CMSB) of 2021 with the associated paper published in the
conference proceedings (Thuillier et al., 2021).

To sum up
We introduce a first method to infer Boolean regulatory rules from time series
observations of the metabolic and regulatory scales. This method is based
on a Boolean abstraction of the rFBA framework, enabling the formulation
of the exact inference problem as a Boolean satisfiability problem with two
levels of quantifiers (2-QBF). The Boolean relaxation of this inference problem
has been tackled using Answer Set Programming (ASP) with the so-called
saturation method. However, due to the Boolean abstractions, the results are
highly dependent on the input Boolean objective function, which may lead to
the inference of false positive regulatory networks. This limitation necessitates
further refinement to improve the reliability of the inferred networks.
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In this chapter
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1 Problem Statement

As far as we know, there are no methods to infer Boolean networks (BN) controlling
the metabolism. Existing BNs inferring methods only account for the discrete
dynamics of the regulatory scale and rely on time series of transcriptomics or
phosphoproteomics data (Videla et al., 2017; Chevalier et al., 2020). They model
the inference problem as a combinatorial satisfiability, or optimization, problem.

Boolean relaxation. Following on from these methods, we propose a Boolean
relaxation of the inference problem as a pure Boolean satisfiability problem. This
Boolean relaxation is based on a Boolean abstraction of rFBA, based on a discrete
approximation of the metabolic fluxes, that is, of the FBA equations. A Boolean
abstraction of the metabolic steady-state is called a Boolean metabolic steady-state
(BMSS) and is represented by a Boolean-valued vector v ∈ B|R|, where R is a set
of reactions. BMSSs and the Boolean abstraction of rFBA are formally defined in
Section 3 of the paper.

For the rest, we will denote by MSSB(N ) the set of all BMSSs compatible
with a metabolic network N , and by rFBAB(N ,P , f) the set of all the traces of
a regulated metabolic network (RMN) (N ,P , f) compatible with our Boolean
abstraction of rFBA. The Boolean relaxation of the exact inference problem is
defined as:
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Boolean relaxation of the exact inference problem

Input:
1: a metabolic network N = (Mext ∪Mint,R, s);
2: a set of regulatory proteins P ;
3: a set of observed time series {T 1

o , · · · , T qo }, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a Boolean objective function ô : B|R| → N.

Output: All Boolean network f ∈ F(G)
such that:

∀ Tk ∈ {T1, · · · , Tq}, ∃ {(vj, wj, xj)}lkj=1 ∈ rFBAB(N ,P , f), ∀ 1 ≤ i < |Tk|,
lk = |Tk| (III.1a)
∧ 0 < gk(i+ 1)− gk(i) (III.1b)

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (III.1c)

∧ ∀ (v′, w′, x′) ∈ MSSB(N ),

wg(i) 6= w′ ∨ xg(i) 6= x′ ∨ ô(v′) ≤ ô(v̂i) (III.1d)

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.

Outlines. In this chapter, we briefly present the two main contributions of the
paper: the Boolean abstraction of metabolic steady-states (Section 2.1), which
forms the foundation of all the inference methods presented in this manuscript, and
the saturation method used to solve the Boolean relaxation of the exact inference
problem (Section 2.2). Finally, results from another case study are provided in
Section 3, along with a discussion on the limitations of the Boolean abstraction of
metabolic steady-states.

2 Contributions of the CMSB’s paper

2.1 Boolean abstraction of metabolic steady-state

Overview of the Boolean abstraction of metabolic steady-state defined in Section
3.1 of the paper.
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To model the exact inference problem as a pure Boolean satisfiability problem,
we must abstract the linear dynamics of the metabolism, and thus the rFBA
equations.

Exact Boolean abstraction. Ideally, we would like the Boolean abstraction of
metabolic steady-states to be exact, that is, the set of all BMSSs to be equal to the
set of metabolic steady-state supports. In other words, we seek an exact Boolean
abstraction of the linear systems modeled by the rFBA equations. While it is
theoretically possible to define exact Boolean abstractions of linear systems (Allart
et al., 2021), these abstractions require computing all the minimal generator vectors
of the linear systems. For metabolic networks, it comes down to computing all
elementary flux modes (EFMs) (Schuster and Hilgetag, 1994). Currently, there is
no efficient and scalable way to enumerate these vectors for genome-scale metabolic
networks (Ullah et al., 2019). Therefore, in practice, an exact Boolean abstraction
of metabolic steady-states is not feasible.

Challenge
Defining a Boolean over-approximation of metabolic steady-states. The ab-
straction should be usable in place of the metabolic steady-states in the rFBA
formalism.

Boolean metabolic steady-states. Only the activation states of reactions are needed
to infer regulatory rules. Given N = (Mext ∪Mint,R, s) a metabolic network, we
derive a logical characterization of the notion of steady-state, considering that a
reaction is either active or inactive.

Let v̄ ∈ R|R| be a Boolean-valued vector that models the activity state of each
reaction r ∈ R, with vr = 1 if and only if r is active. In the FBA equation, a
metabolic state v ∈ R|R| is at steady-state if the sum of input metabolic fluxes is
equal to the sum of output metabolic fluxes for each internal metabolite (Eq. III.2).

∀m ∈Mint,
∑

r∈R
smr<0

smr × vr =
∑

r∈R
smr>0

smr × vr (III.2)

In the same way, the Boolean vector v̄ is at steady-state if and only if each internal
metabolite that is produced (resp. consumed) by an active reaction is also consumed
(resp. produced) by another active reaction (Eq. III.3).

∀m ∈Mint,
∨

r∈R
smr<0

v̄r ⇐⇒
∨

r∈R
smr>0

v̄r (III.3)

Boolean vectors satisfying Eq. III.3 are Boolean metabolic steady-states (BMSS).
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R1 : A→ B

R2 : 2 ·B → A

(a) Reactions

A : vR1 = vR2

B : vR1 = 2× vR2

(b) Steady-state
equations

A : v̄R1 ⇐⇒ v̄R2

B : v̄R1 ⇐⇒ v̄R2

(c) Boolean steady-state
equations

� Figure 15 – Example of the steady-state and the Boolean steady-state equations for
two reactions R1 and R2. Figure (a) describes the two reactions. Figures (b) and (c)
are the steady-state and Boolean steady-state equations associated with R1 and R2,
respectively.

For the rest, we will denote by MSSB(N ) the set of all Boolean metabolic
steady-states of the metabolic network N .

Over-approximation. The BMSSs are an over-approximation of metabolic steady-
states (MSSs). For each regulated metabolic steady-state (v, w, x) of the RMN
(N ,P , f), the support of the metabolic state v, denoted by β(v), is a BMSS, i.e.
β(v) ∈ MSSB(N ). The corollary is not true, not all BMSSs can be associated with a
metabolic steady-state. Since the logical characterization of metabolic steady-states
neglects stoichiometry, BMSSs may have no real-valued counterpart. A BMSS v̄ is
said spurious if there is no metabolic steady-state v whose support β(v) is equal to
v̄.

Example. For instance, let us consider the two reactions R1 and R2 described in
Fig. 15(a): R1 : A→ B and R2 : 2 · B → A. Figure 15(b) gives the steady-state
equations associated with R1 and R2. They admit only one solution: vA = vB = 0.
Figure 15(c) gives the Boolean steady-state equations associated with R1 and R2.
They are BMSSs satisfying them: v̄R1 = v̄R2 = 0 and v̄R1 = v̄R2 = 1. The former
BMSS corresponds to the only MSS compatible with steady-state equations. The
latter is a spurious BMSS.

Solution – in short
We introduce a logical characterization of metabolic steady-states, which allows
for defining Boolean metabolic steady-states (BMSS). The set of all BMSSs
of a metabolic network is an over-approximation of the set of all metabolic
steady-states’ supports.

This Boolean abstraction of metabolic steady-states is the foundation of all the
inferring methods introduced in this manuscript. In Chapter IV, we introduce a
hybrid inferring method to address the flux-based inference problem. This method
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is based on the solving and refinement of an over-approximation of the inference
problem built on BMSS.

Boolean abstraction of rFBA. From the definition of Boolean metabolic steady-
states, we build a Boolean abstraction of rFBA. Due to the Boolean abstraction,
there is no quantitative information on reaction activities, meaning that the meta-
bolic flux passing through a growth reaction cannot be used to rank BMSS; the
growth reaction will simply be active or inactive. To address this issue, we intro-
duce a Boolean objective function ô : B|R| → N to rank BMSSs. Only the BMSS
maximizing the Boolean objective function will be selected by the Boolean rFBA
dynamics. In practice, the objective function is highly dependent on the metabolic
network and PKN structure, it is defined as an input to the relaxed inference
problem.

2.2 Saturation-based Solving Framework

Overview of the saturation-based method described in Section 4.2 of the paper.

2-QBF problem. The Boolean relaxation of the exact inference problem is a
satisfiability problem with two levels of Boolean quantifiers (2-QBF). It is of the
form ‘∃ ∀ ’: (∃ ) it exists a Boolean network f ∈ F(G) that admits a set of Boolean
rFBA traces compatible with the observed time series, such that (∀ ) all BMSSs
satisfied the maximal growth observations. The 2-QBF problems are known to be
Σ2

P-complete (Eiter and Gottlob, 1995).

Challenge
Identifying efficient encoding to address 2-QBF problems.

In Answer Set Programming (ASP), the saturation technique is an efficient way
to encode 2-QBF problems (Gebser et al., 2011). Saturation relies on the stable
model semantics of ASP and disjunctive logic program to explore the set of all
feasible solutions, and so ensure universally quantified constraints.

Disjunctive logic program. ASP allows for defining disjunctive logic program by
adding disjunctive declaration in the rule head1 (Lobo et al., 1992). If the rule body
holds, then at least one atom of the rule head should hold. In ASP, disjunctive
rules are of the following form:

a0; · · · ; am : −body

1ASP rules are of the form head :- body. (see Chapter I Section 3.1.1 for details).
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To solve disjunctive rules, ASP relies on subset-minimal semantics (Eiter et al.,
2009). Only the subset-minimal models of the disjunctive rules are kept. An answer
set containing a set of disjunctive variables S is considered a solution if and only if
there is no other solution answer sets where the set of disjunctive variables is a
subset of S. For instance, let’s consider the following example:

a :- .
b :- a.

a; b; c :- .

where a, b and c are atoms. There are two solution answer sets: {a, b} and {a, b, c}.
However, the atoms a, b and c are declared with a disjunctive rule. As the solution
{a, b, c} is not subset minimal (it contains {a, b}), it is discarded. The only subset
minimal solution of this disjunctive logic program is {a, b}.

Saturation. The saturation technique (Gebser et al., 2011) allows for encoding and
solving 2-QBF problems (‘∃ ∀ ’) with ASP. Let ∃ x∀ y, φ(x, y) be a 2-QBF problem
defined such that given x ∈ B all possible assignments of y ∈ Bn should satisfy a
condition φ. The set of universally quantified variables is defined with a disjunctive
rule:

y1; · · · ; yn :- x.

The saturation technique consists of saturating the set of disjunctive variables y
that satisfy a condition φ. If a subset of the disjunctive variables satisfies φ, then
all the disjunctive variables are added to the answer set, ∀ 1 ≤ i ≤ n there is:

yi :- φ.

Therefore, all valid assignments of the disjunctive variables satisfying φ will be
saturated. Since disjunctive logic programs follow the subset-minimal semantics,
the ASP solver tries to find unsaturated sets of disjunctive constraints, i.e. sets of
disjunctive constraints that do not satisfy φ. In this way, the ASP solver iterates
over all possible assignments of disjunctive variables. By prohibiting φ to be not
satisfied with an integrity constraint (: −not φ.), we ensure that the condition φ
holds for all possible assignment.

Solution – in short
Using a saturation-based encoding, we propose an ASP program to address
the Boolean relaxation of the exact inference problem. The saturation method
relies on the stable semantics of ASP and disjunctive programming for efficient
encoding and solving of 2-QBF problems.
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The ASP encoding of the relaxed inference problem and the ASP program,
based on the saturation encoding, used to address it are provided in Appendices B.1
and B.2, respectively.

3 Complementary Benchmarking and Discussion

This section extends the discussion of the paper. We present a second application
of the relaxed inference problem on a model of core-carbon metabolism.

3.1 Summary of CMSB’s Paper

In this chapter, we propose a relaxation of the exact inference problem as a pure
Boolean satisfiability problem with two levels of quantifiers (2-QBF). This Boolean
relaxation is based on an over-approximation of metabolic steady-states allowing
defining a Boolean abstraction of rFBA.

Based on the saturation technique, we introduce an ASP encoding for the relaxed
inference problem that we apply to two case-study regulated metabolic models:
a toy model (see the associated paper), and a model of core-carbon metabolism
(see Section 3.2). The results obtained from the two case studies are promising.
Despite being a relaxation of the inference problem, most of the inferred BNs have
been able to reproduce exactly the rFBA simulations used to generate the input
time series. However, it is worth noting that false positive BNs are inferred, i.e.
for which the Boolean rFBA traces are based on spurious BMSSs; and that results
are highly dependent on the input Boolean objective function.

Among the results introduced in this chapter, the Boolean abstraction of
metabolic steady-states lays the foundation for defining more precise and efficient
inferring methods. In particular, this abstraction is the basis of the hybrid inferring
framework introduced in the next chapter (Chapter IV).

3.2 Application on a Core-Carbon Metabolic Model.

The instance and results analysis are described in detail in Appendix C.

Core-carbon metabolic model. While not part of the publication, we apply the
relaxed inference problem on the model of core-carbon metabolism introduced
in (Covert et al., 2001). The case-study model (toy model), introduced in the paper,
is a simplified version of this model. Unlike the toy model, the model of core-carbon
metabolism (core model) contains metabolic cycles and feedback regulatory rules.
In particular, due to the Boolean abstraction of metabolic steady-states, metabolic
cycles are sources of spurious BMSS.
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Instance description. The observed time series have been generated from discretized
rFBA simulations made from five experimental conditions provided in the model
introductory paper. The prior knowledge network has been created from the
Boolean regulatory network influence graph by removing all influence signs and
directions.

Results. From this instance, 7 680 BNs were inferred, of which 2 are subset minimal.
Among the two subset-minimal networks, only one can exactly reproduce the rFBA
simulations used to generate the observed time series. The second one is a false
positive BN, for which the Boolean rFBA traces (exactly compatible with the
observed time series) contain spurious BMSS.

3.3 Limitation: Spurious Boolean Metabolic Steady-States

False positive Boolean networks. Addressing the inference problem using a Boolean
relaxation of rFBA has shown promising results. It is the first step toward the
solving of the inference of BN controlling the metabolism from time series data.
However, it is worth noting that false positive BNs are inferred, i.e. BNs that could
not reproduce the input rFBA time series. On the core model, half of the BNs
inferred were false positives.

Limitations of the BMSS abstraction. The inferring of false positive BNs is due to
the Boolean abstraction of metabolic steady-states. It abstracts the quantitative
metabolic fluxes on reactions by a qualitative state, active or inactive. This
abstraction has two main drawbacks: (i) there is no consideration of stoichiometry,
and (ii) we cannot rely on the maximization of metabolic fluxes to model the
growth phenotype.

Currently, the impact of spurious BMSSs on the inferred BNs can be mitigated
by the Boolean objective function, which makes the set of inferred BNs highly
dependent on the chosen objective function. The Boolean objective function should
be defined such that, for each observation and potential candidate BN, no optimal
BMSS is spurious. Therefore, finding a Boolean objective function is difficult,
and requires high expertise in the metabolic network and the influences between
regulatory components.

67



68 K. Thuillier et al.

Learning Boolean controls in regulated
metabolic networks: a case-study

Kerian Thuillier1, Caroline Baroukh2, Alexander Bockmayr3, Ludovic
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Abstract. Many techniques have been developed to infer Boolean reg-
ulations from a prior knowledge network and experimental data. Exist-
ing methods are able to reverse-engineer Boolean regulations for tran-
scriptional and signaling networks, but they fail to infer regulations that
control metabolic networks. This paper provides a formalisation of the
inference of regulations for metabolic networks as a satisfiability problem
with two levels of quantifiers, and introduces a method based on Answer
Set Programming to solve this problem on a small-scale example.

Keywords: Inference · Regulated metabolism · Satisfiability problem.

1 Introduction

During the last twenty years, both the amount and the type of available data have
allowed scientists to consider intracellular processes as a whole. Boolean networks
have been refined to include non-deterministic dynamics in order to model the
response of regulatory interactions [16,2,5]. Similarly, the study of metabolism at
steady state has led to various constraint-based approaches [19,17], which usually
assume that internal metabolites are in a quasi-steady-state (QSS). The classical
approach to analyze metabolic networks at steady state is flux balance analysis
(FBA) [19]. In this approach, a linear function, e.g. biomass production, is opti-
mized with respect to stoichiometric and thermodynamic constraints, resulting
in a linear programming problem (LP).

However, both the Boolean approach for regulation and the QSS approxima-
tion for metabolism are often developed “in solo”, without considering that cellu-
lar biology is multi-layered in the sense that the metabolic layer interacts through
feed-forward and feedback loops with the regulatory layer [4,27,21,9]. Indeed,
cellular metabolism transforms nutrients into biomass constituents. Metabolic
reactions are catalysed by enzymes, which themselves are controlled by a cas-
cade of regulations involving other proteins, metabolites and abiotic factors,
such as temperature and pH. A biological system thus has several layers of con-
trol, which mutually depend on each other. It cannot be simply viewed as a
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purely hierarchical system because there are regulatory feed-forward and feed-
back mechanisms to inform each layer on the state of the other ones. In concrete
terms, some compounds produced by the metabolic layer have the capability
to block or induce signaling regulation cascades, which themselves can block
or induce transcription of genes leading to changes in the control of the initial
metabolic process.

To figure out how gene expression triggers specific phenotypes depending
on the environmental constraints [3], several constraint-based approaches for
integrating metabolic and regulatory networks have been developed that com-
bine Boolean dynamics for the regulatory layer with quasi-steady-state approx-
imations of the metabolic layer (see [17] for an overview), one of them being
FlexFlux [18], which implements the rFBA framework [9]. A major limitation
when using such frameworks to analyse regulated metabolic models is that they
require a precise description of the regulatory and signaling layers in the form
of Boolean rules. A noticeable exception is [24], where RBA is used to deduce
regulations according to perturbations of the environment. However, to induce
regulations, the authors assume that no feedback from metabolism to regula-
tion occurs, which does not correspond to the functioning of most systems. In
practice, these rules are manually curated from the literature or experimental
data. This has been done for example in the case of E. coli [8,7] and a few other
organisms. But, the need for a manual curation of Boolean rules of regulated
metabolism is a strong limitation to the use of these frameworks.

Signaling and regulatory rules can be identified from transcriptomic or phos-
phoproteomics data by solving combinatorial or MILP problems in order to
optimize data-fitting and parsimony hypotheses [23,20,26,22,25].

In this direction, the caspoTS and the BoNesis approaches [22,20,26,6] were
developed for inferring Boolean rules to model the response of regulatory and
signaling networks from multiple time-series data. The goal of this paper is to lay
foundation for the extension of these approaches to the inference of regulatory
rules driving metabolism. This is done by discretizing both the rFBA framework
(especially the QSS approximation) and the metabolic data used as input of the
inference procedure.

This paper is structured as follows. Sect. 2 gives the background on the
dynamic rFBA framework for the simulation of coupled metabolic and regulatory
networks. In Sect. 3, we define a formal Boolean abstraction of dynamic rFBA
simulations. Then, in Sect. 4, we build on this Boolean abstraction to express
the inference of the logic of metabolic regulations as a satisfiability problem.
Finally, in Sect. 5, we apply the obtained inference framework on a case study
of simplified core carbon metabolism.

Notations The cardinality of a finite set X is denoted by |X|. Given a vector
x ∈ Dn and a set of indices I ⊆ {1, · · · , n}, xI denotes the vector of dimen-
sion |I| equal to (xi)i∈I . The Boolean domain is denoted by B = {0, 1}. Given
two Boolean vectors x, y ∈ Bn, we write x ⪯ y iff ∀i ∈ {1, · · · , n}, xi ≤ yi.
Finally, given a non-negative real vector s ∈ Rn

≥0, we denote by β(s) ∈ Bn its
binarization, i.e. ∀i ∈ {1, . . . , n}, β(s)i = 1, if si > 0, and β(s)i = 0, if si = 0.
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2 Background: regulated metabolic networks

2.1 Coupling metabolic and regulatory networks

A regulated metabolic network consists of two layers. The regulatory layer is
modeled by a Boolean network, which controls the metabolites and fluxes of
the metabolic layer, which is characterized by linear equations. Feedbacks are
provided by the components of the metabolic network, which are involved in the
Boolean functions associated with the regulatory layer.

Formally, a metabolic network is given by a set of biochemical reactions
linked together by the metabolites that they consume and produce.

Definition 1. A metabolic network is a tuple N = (Int,Ext,R, S) with a set of
internal metabolites Int, a set of external metabolites Ext, a set R of irreversible
reactions, and a stoichiometric matrix S ∈ R(|Int|+|Ext|)×|R|.

Given flux bounds lr, ur ∈ R, 0 ≤ lr ≤ ur, for each r ∈ R, a metabolic steady
state is a flux vector v ∈ R|R| with SInt,R ·v = 0 and lr ≤ vr ≤ ur, for all r ∈ R.
Here SInt,R denotes the submatrix of S whose rows correspond to the internal
metabolites.

For the sake of simplicity, we assume that all reactions are irreversible. Re-
versible reactions may be split into a forward and backward reaction if necessary.

Definition 2 (Input and output metabolites). For an external metabolite
m ∈ Ext, we denote by wm = wm(t) ∈ R≥0 the concentration of m at time t ≥ 0.

An external metabolite m ∈ Ext is called an input (resp. output) metabolite
if there exists a reaction r ∈ R with Smr < 0 (resp. Smr > 0). Here Smr denotes
the stoichiometric coefficient of metabolite m in reaction r. The set of all input
metabolites is denoted by Inp ⊆ Ext.

A regulatory network is a set of biological entities (e.g. genes, reactions,
metabolites) or even abiotic entities (e.g. temperature, pH) that are linked by
causal effects: the activity of some nodes can affect positively or negatively the
activity of other nodes. This activity can be represented by a Boolean network.

Definition 3. A Boolean network (BN) of dimension n is a function f : Bn →
Bn. For each i ∈ {1, . . . , n}, the i-th component fi : Bn → B is called the local
function of i.

The influence graph G(f) of f is a signed digraph (V,E) with V = {1, . . . , n}
and E ⊆ V ×{−,+}×V such that (i, s, j) ∈ E if and only if there exists x ∈ Bn

with xi = 0 such that s · fj(x) < s · fj(x1, · · · , xi−1, 1, xi+1, · · · , xn). In the
following we will slightly abuse notation by identifying G(f) with its edge set,
i.e. G(f) = E.

A BN f is locally monotone whenever for each influence (i, s, j) ∈ G(f),
there is no influence with opposite sign, i.e. (i,−s, j) /∈ G(f).

We assume here that the fluxes of a metabolic network can be controlled by
the activity of the input metabolites and additional regulatory proteins. More
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precisely, the activity of some reactions can be blocked (forced to have a zero flux)
whenever certain conditions on the activity of input metabolites and regulatory
proteins are met. Moreover, we assume that the activity of regulatory proteins is
mediated by the metabolic network only. The resulting model is then supposed to
run on two time scales: the metabolic network is a fast system, which, depending
on the activity of input metabolites and regulatory proteins will converge to a
steady state of the reactions fluxes; the regulatory network is a slow system,
which gets updated once the metabolic network is in steady state.

Definition 4 (Regulated metabolic network). A regulated metabolic net-
work is a triplet (N ,P, f) composed of:

– a metabolic network N = (Int,Ext,R, S) with k input metabolites Inp =
{e1, · · · , ek} ⊆ Ext and m reactions R = {r1, · · · , rm};

– a set of d regulatory proteins P = {p1, . . . , pd}
– a BN f of dimension n = |Inp|+ |R|+ |P| where {1, . . . , n} = Inp ∪R ∪ P

such that G(f) is a bipartite graph between P and Inp ∪R.

In this work, local functions for input metabolites in the BN f are never used
(although the local functions of reactions may depend on them). Therefore we
set arbitrarily fe = 0,∀e ∈ Inp.

The BN f models the regulation of the fluxes in the metabolic network N .
This regulation is always in one direction: either a flux vr is only restricted
by the flux bounds lr ≤ vr ≤ ur, whenever fr(x) = 1, or it is blocked, vr =
0, whenever fr(x) = 0. Following this convention, a reaction r ∈ R is never
regulated whenever fr(x) = 1. As we will define formally in the next section, the
regulations impact the steady states of the metabolic network.

An example of a regulated metabolic network is shown in Fig. 1. This example
is based on a highly simplified model of core carbon metabolism, originally pro-
posed in [9]. At the metabolic level (Fig. 1a), there are 9 metabolites and m = 9
reactions. The internal metabolites are Int = {A, D, E, O2, ATP, NADH}, the
external metabolites are Ext = {Carbon1, Carbon2, Oxygen}. All the k = 3
external metabolites are input metabolites, Ext = Inp. The set of irreversible
reactions is R = {Tc1, Tc2, To2, Td, Te, Growth, Rres, R6, R7}. The stoichio-
metric coefficients are also given in Fig. 1a. By default, they are set to 1, except
for the reactions R6 and R7.

The regulatory level (Fig. 1b) of the regulated metabolism introduces d = 2
regulatory proteins: P = {RPcl, RPO2}. Thus, the Boolean network f is of di-
mension n = k+m+d = 14. It consists of 14 functions (see Fig. 1b) which map a
Boolean vector x = (xCarbon1, xCarbon2, xOxygen, xRPcl, xRPO2, xTc1, xTc2, xTo2,
xTd, xTe, xGrowth, xRres, xR6, xR7) ∈ Bn to a Boolean value in B. The local func-
tions associated with regulatory proteins in P involve only external metabolite
variables. Among the 9 functions associated with reactions, only two (Tc2, Rres)
are non-constant: they involve the two regulatory proteins.

The influence graph of the network is shown in Fig. 1c. Only the shown
nodes (RPcl, RPO2, Tc2, Rres) have a non-constant local function or are used
in the local function of another node (Carbon1, Oxygen). The influence graph
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(a) Metabolic Network

(c) Influence graph G(f) of the regulatory
Boolean network f . Nodes without in-going
or out-going edges are not represented. Pos-
itive edges are drawn in green with a regular
tipping arrow, negative edges are drawn in
red with a bar arrow.

Regulatory proteins Input metabolites

Local function fRPO2(x) fRPcl(x) fCarbon1(x) fCarbon2(x) fOxygen(x)

Boolean rule ¬xOxygen xCarbon1 0 0 0

Reactions

Local function fTc1(x) fTc2(x) fTo2(x) fTd(x) fTe(x) fGrowth(x) fRres(x) fR6(x) fR7(x)

Boolean rule 1 ¬xRPcl 1 1 1 1 ¬xRPO2 1 1

(b) Boolean Network. All Boolean functions equal to 1 correspond to reactions
which are not regulated by the Boolean network.

Fig. 1: Example of regulated metabolic network. In the metabolic network
(a), each node represents a metabolite, and each hyperedge a reaction. For
instance, the hyperedge R7 linking {A; NADH} to {E} models the reaction A+
3 NADH → 3 E. Integer values over hyperedges are stoichiometric coefficients,
the default value is 1. (b) defines the Boolean network regulating the metabolic
network in (a), with x ∈ Bn and n = 14. (c) shows the influence (or regulatory)
graph of the Boolean network in (b), with square nodes denoting the regulatory
proteins.

shows the multi-layered regulations of the network: external input metabolites
(Carbon1, Oxygen) regulate regulatory proteins (RPcl, RPO2), which regulate
reactions (Tc2, Rres).

2.2 Dynamic rFBA

Flux Balance Analysis (FBA) [19] returns an optimal metabolic steady state,
according to a given linear objective function in the reaction fluxes. In the fol-
lowing, we assume that the objective function is to maximize the flux through
a reaction Growth. For regulated metabolic networks, the rFBA framework [9]
allows defining a discrete time series of optimal steady states, where regulatory
variables can force reaction fluxes to be zero and input metabolite concentrations
define upper bounds on uptake fluxes.
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Definition 5. Let (N ,P, f) be a regulated metabolic network with flux bounds
lr, ur ∈ R, 0 ≤ lr ≤ ur, for r ∈ R. A metabolic-regulatory steady state is a
triple (v, w, x) ∈ R|R| × R|Ext| × B|Inp|+|R|+|P| such that

– SInt,R · v = 0,
– for each reaction r ∈ R, lr · xr ≤ vr ≤ ur · xr,
– for each input metabolite m ∈ Inp and each reaction r ∈ R with Smr < 0,
vr ≤ uptake bound(wm), where uptake bound(wm) denotes the maximum
flux through uptake reaction r, given the input metabolite concentration wm.

Two successive metabolic-regulatory steady states (vk, wk, xk) at time tk,
and (vk+1, wk+1, xk+1) at time tk+1, are linked by the following relations:

1. The external metabolite concentrations wk+1 are obtained from the previous
concentrations wk by assuming the constant uptake/secretion fluxes vk for
the whole time period [tk, tk+1].

2. The Boolean state xk+1 is obtained by applying the regulatory function f
to the binarized input metabolites concentrations x′Inp = β(wk+1

Inp ) at time

tk+1, together with the binarized reaction fluxes x′R = β(vk) and the Boolean
values x′P = xkP of the regulatory proteins at time tk, i.e.,

xk+1 = f(x′)

3. (vk+1, wk+1, xk+1) is a metabolic-regulatory steady state maximizing the flux
through the Growth reaction, i.e., there is no metabolic-regulatory steady
state (v′, wk+1, xk+1) such that v′Growth > vk+1

Growth .

In this paper, we rely on the FlexFlux implementation of rFBA [18], which
assumes a fixed time step τ between successive metabolic-regulatory steady
states (tk+1 − tk = τ for any k). The Growth reaction is assumed to reflect
the growth of the cell. FlexFlux computes the evolution of the total biomass

of the cell as biomassk+1 = biomassk · evk
Growth ·τ (from a given initial biomass0).

The maximum uptake fluxes of input metabolites m ∈ Inp at step k are defined
as

uptake bound(wm) = wm/(biomassk · τ).
Finally, the update of the external metabolite concentrations is computed as

wk+1
m = wk

m − (Smrv
k
r /v

k
Growth) · (biomassk − biomassk+1),

where r ∈ R is the uptake/secretion reaction for the external metabolite m
(Smr < 0 or Smr > 0), which is assumed to be unique.

An example of a dynamic rFBA simulation using FlexFlux of the regulated
metabolic network of Fig. 1 is shown in Fig. 2. It uses a time step of 0.01h and is
initialized with 100 mM of Oxygen, 20 mM of Carbon1 and 20 mM of Carbon2.
The simulation shown in Fig. 2a is composed of 70 metabolic steady states. By
applying the binarization β, these 70 metabolic steady states correspond to 5
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(a) Simulation showing the evolution of the concentrations of the external metabolites
(Oxygen, Carbon1, Carbon2) and the production of biomass by the Growth reaction.

External metabolites Regulatory proteins Reaction flows

Time wbiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0.49 17.05 2.95 20.0 82.95 0 1 10.5 0.0 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.50 18.95 1.05 20.0 81.05 0 1 6.15 0.0 6.15 0.0 0.0 6.15 6.15 0.0 0.0
0.51 20.10 0.0 20.0 79.90 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.52 20.10 0.0 20.0 79.90 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.53 22.35 0.0 17.76 77.65 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0

(b) Focus on the times from 0.49h to 0.53h in the simulation, showing the switch from
Carbon1 to Carbon2 for biomass production.

Fig. 2: Dynamic rFBA simulation of the regulated metabolic network in Fig. 1.
The simulation is done with FlexFlux and is initialized with 100mM of Oxygen,
20 mM of Carbon1, and 20 mM Carbon2. The time step is set to 0.01h. The
flux bounds are ∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) =
(0, 12.0), ∀r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen,
(lr, ur) = (0, 15.0).

different binarized metabolic steady states, which are shown in Tab. 1. These
binarized metabolic steady states capture the main features of the simulation.

More precisely, the simulation shows that until 0.5h only Carbon1 and Oxy-
gen are consumed to produce biomass. This corresponds to a first time period
where the behavior of the system is monotone: the binarized metabolic steady
states are equal in this time range. The presence of Carbon1 activates the reg-
ulatory protein RPcl inhibiting the reaction Tc2 according to the regulatory
rules. At 0.5h, Carbon1 is depleted and the current Boolean state x ∈ B15 is
such that xCarbon1 = 0, xRPcl = 1, xTc2 = 0 (second qualitative behavior with
equal binarization of the metabolic steady states). At 0.51h, as shown in Fig. 2b,
the Boolean state x is updated to x′ so that the Boolean state of RPcl becomes
x′RPcl = fRPcl(x) = xCarbon1 = 0. The Boolean state of Tc2 remains unchanged
because xRPcl = 1. No biomass is produced at 0.51h. This corresponds to a
third qualitative behavior. At 0.52h, the Boolean state x′ is updated to x′′: all
the node states remain unchanged except for x′′Tc2 = fTc2(x

′) = ¬x′RPcl = 1.
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External metabolites Regulatory proteins Reactions

Time wBiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0.01 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
0.51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0.52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
0.59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 1: Binarization of the metabolic steady states of simulation in Fig. 2. It
contains the binarized values of the metabolic steady state computed by the
rFBA simulation. A timepoint t appears in the table if and only if the bina-
rization of the simulated steady state is different from the binarized metabolic
steady state of time t− 1.

This corresponds to a fourth qualitative behavior. The reaction Tc2 is not in-
hibited anymore, and biomass is produced due to the uptake of Carbon2 and
Oxygen (through Tc2, Growth and Rres) until Carbon2 depletion at t = 0.59h
(fifth qualitative behavior).

3 Boolean abstraction of dynamic rFBA

In the previous example, we illustrated how the simulation of a regulated metabolic
network may generate time-periods for which the qualitative behavior is simi-
lar, meaning that the variation of all the metabolic variables is monotone and
the Boolean values of the regulatory proteins are constant. In this section, we
introduce a discrete definition of steady states to capture the monotone behav-
iors observed in rFBA simulations. This allows introducing a discretized form of
rFBA, which will be used in the next section for the reverse-engineering frame-
work.

3.1 Boolean metabolic steady states

Given a metabolic network N = (Int,Ext,R, S), we derive a logical charac-
terization of the notion of steady state, considering that reactions are either
inactive or active, and metabolites either absent or present. This will result in a
set of Boolean metabolic steady states that form an over-approximation of the
continuous steady states.

We associate all reactions with propositional variables V = {vr}r∈R. For each
metabolite m ∈ Int⊎Ext, we introduce a variable zm

+ as a Boolean abstraction
of the production of m and a variable zm

− as a Boolean abstraction of the
consumption of m:

∀m ∈ Int ⊎ Ext, zm
+ def

=
∨

r∈R,
Smr>0

vr, zm
− def

=
∨

r∈R,
Smr<0

vr,

(where an empty disjunction is considered to be false).
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For each internal metabolite m, we introduce a variable ẑm which is equal
to 1 iff m is in a logical steady state:

∀m ∈ Int, ẑm
def
= (zm

+ ⇔ zm
−).

For the external metabolites, we introduce propositional variables Vext = {zm}m∈Ext

indicating whether or not m is present in the environment. The formula

N̂Ext
def
=

∧

m∈Ext

(zm
− ⇒ zm)

then states that an external metabolite can only be consumed if it is present in
the environment.

Definition 6 (Boolean metabolic steady state). A Boolean metabolic steady
state of a metabolic network N = (Int,Ext,R, S) is a Boolean vector ν̂ ∈
B|Ext|+|R| which is a satisfying assignment of the following logical steady state
formula:

N̂ def
= N̂Ext ∧

∧

m∈Int

ẑm

We denote by MSSB(N ) ⊆ B|Ext|+|R| the set of all the Boolean metabolic steady
states of the metabolic network N .

As an immediate consequence of this definition, we get the following property:

Property 1. For each metabolic-regulatory steady state (v, w, x) of the regulated
metabolic network (N ,P, f), the binarized value β(w, v) of the external metabo-
lite concentrations w and the reaction fluxes v is a Boolean metabolic steady
state, i.e., β(w, v) ∈ MSSB(N ).

Note that the converse is not true: since the logical characterization neglects
the stoichiometry, Boolean metabolic steady states may have no real-valued
counterpart.

Applied to the example, the internal metabolic constraints are the following:
zA

+ = vTc1 ∨ vTc2, zA
− = vR6 ∨ vR7 ∨ vGrowth

zD
+ = vR6, zD

− = vTd, zE
+ = vR7, zE

− = vTe
zO2

+ = vTo2, zO2
− = vRres

zATP
+ = vR6 ∨ vRres, zATP

− = vGrowth

zNADH
+ = vGrowth, zNADH

− = vR7 ∨ vRres

The logical steady state constraints equivalent to N̂ = 1 are obtained by
gathering contraints on internal and external metabolites:

vTc1 ∨ vTc2 = vR6 ∨ vR7 ∨ vGrowth

vR6 = vTd vR7 = vTe vTo2 = vRres

vR6 ∨ vRres = vGrowth vR7 ∨ vRres = vGrowth

vTc1 ⇒ zCarbon1 vTc2 ⇒ zCarbon2 vTo2 ⇒ zOxygen
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From these equations, we deduce that there are 38 Boolean metabolic steady
states for the example shown in Fig. 1. These Boolean metabolic steady states are
detailed in Appendix A. Among them, we recover the five binarized metabolic-
regulatory steady states (Table 1) appearing in the rFBA simulations of Fig.2.

3.2 Boolean dynamics

Using the logical characterization of metabolic steady states, we define a Boolean
counterpart of dynamic rFBA (Sect. 2.2). A Boolean state of the regulated
metabolic network (N ,P, f) assigns a Boolean value to external metabolites,
reactions, and regulatory proteins, which gives a Boolean vector of dimension
n = k + m + d. Such a Boolean state x ∈ Bn should match with a Boolean
metabolic steady state. Denoting by M = Ext ∪ R the external metabolites
and reactions, xM should verify the Boolean metabolic steady state constraints
described in the previous section (xM ∈ MSSB(N )). The general idea is then to
capture the possible successions of such Boolean states, subject to the regulations
through the regulatory proteins specified by the Boolean network f .

A key ingredient of dynamic rFBA is the objective function to maximize,
typically the fluxes of reactions producing biomass. However, at the Boolean
level, it is not possible to directly rank metabolic steady states according to their
biomass production, as this will be either absent or present. Thus, a specific
Boolean objective function has to be provided to score a Boolean metabolic
steady state. This takes the form of a function ô mapping Boolean metabolic
steady states to natural numbers: ô : Bk+m → N. The Boolean dynamics will
only select Boolean metabolic steady states maximizing this supplied objective.

When considering possible next states, it is crucial to account for those where
the input metabolites change their value. Hereafter, we consider any possible
change.

The Boolean dynamic rFBA is formalized by a function nextB(N ,P,f,ô) which
associates any Boolean state of the regulated metabolic network to a set of
admissible next states:

Definition 7 (Boolean dynamic rFBA: nextB(N ,P,f,ô) : Bn → 2B
n

). For

any Boolean states x, y ∈ Bn, y ∈ nextB(N ,P,f,ô)(x) if and only if for x′ =

(yInp, xR∪P) ∈ Bn,

1. the values of the regulatory proteins are computed synchronously from x′

according to f : yP = fP(x′),
2. y matches with a Boolean metabolic steady state: yM ∈ Z(x′), and
3. the matching Boolean metabolic steady state maximizes the supplied objective

function: ∀y′M ∈ Z(x′), ô(yM) ≥ ô(y′M).

Here Z(x′) = {z ∈ MSSB(N ) | zInp = x′Inp, zR ⪯ fR(x′)} is the set of Boolean
metabolic steady states that match with the value of external metabolites and with
the regulations from x′.
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Let us consider the regulated metabolic network from Fig. 1. It appears that
the steady states maximizing the growth maximize the input fluxes. Thus, we
set the Boolean objective function ô as the sum of input reactions:

ô(x) = xTc1 + xTc2 + xTo2 .

Consider the Boolean state from Table 1 at time 0, which we name x, and
the next Boolean state at time 0.51, which we name y, with the same input
metabolite values (xInp = yInp). Using the notation from the above definition, we
set x′ = x. Imagine the case where no reactions is regulated, i.e., the regulatory
BN is of the form f ′r(x) = 1 for every r ∈ R. Among the Boolean metabolic
steady states z matching the input values (zInp = x′Inp), the ones that maximize
ô always verify zTc2 = 1 (Boolean metabolic steady states 26, 29, 32, 38 in the
Table 3 in Appendix A), which does not match with y. Thus y would not be an
admissible next state.

Considering now the regulatory BN f of Fig. 1, we obtain fTc2(x
′) = ¬x′RPcl =

0 and for each other reaction r ∈ R \ {Tc2}, fr(x′) = 1. The set Z(x′) contains
4 matching optimal Boolean steady states (rows 25, 28, 31, 37 of Table A.3),
among them the one matching with y. Thus y ∈ nextB(N ,P,f,ô)(x).

Let x be now the Boolean state at time 0.01, and y the next Boolean
state at time 0.51, where the input metabolites have a different state (Carbon1
switched to 0). Let x′ be equal to x except for the input metabolites, which are
equal to yInp. We obtain that fRPO2,RPcl(x

′) = (¬x′Oxygen, x
′
Carbon1) = (0, 0) =

yRPO2,RPcl. Moreover, fTc2(x
′) = ¬x′RPcl = 0 and for each other reaction r ∈ R,

r ̸= Tc2, fr(x
′) = 1. In this case, there is only one Boolean metabolic steady

state z such that zInp = x′Inp and zR ⪯ fR(x′). It appears that it matches with

y, i.e., z = yM; thus y ∈ nextB(N ,P,f,ô)(x).

4 Inference of regulations from rFBA time series

Given sequences of metabolic-regulatory steady states obtained by dynamic
rFBA from a ground-truth regulated metabolic network under different con-
ditions, our objective is to infer all the regulatory Boolean networks that can
reproduce the observed behaviors. Besides the ground-truth model, the inference
may suggest alternative regulatory logics.

Definition 8 (Search domain for BNs). The search domain for BNs, de-
noted by F, is constrained by an influence graph G: any candidate f ∈ F should
satisfy G(f) ⊆ G, i.e. uses at most the influences allowed in G. Moreover, we
assume that f is locally monotone.

Typically, G contains the putative influences from and to regulatory proteins.
In our case study, G is obtained from the ground-truth regulatory model f◦ by
“forgetting” the sign of influences (for each (i, s, j) ∈ G(f◦), {(i,+, j), (i,−, j)} ⊆
G), and adding putative influences.

Our inference problem mixes both linear constraints for characterizing the
optimal steady states of the metabolic network with Boolean constraints for
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characterizing the value changes of regulatory proteins. To express the inference
problem, we rely on the Boolean abstraction of dynamic rFBA presented in the
previous section.

4.1 Approximation as a Boolean satisfiability problem

We propose a relaxation of the inference problem by the means of the Boolean
dynamic rFBA interpretation given in Sect. 3.

Inputs of the relaxed inference problem. The inputs of the problem are (i)
a metabolic network N and a set of regulatory proteins P, (ii) sequences of
metabolic-regulatory steady states, represented by sets of pairs (st, st+1), with
st = (vt, wt, xt) and st+1 = (vt+1, wt+1, xt+1) following the notation from Def. 5:
the observed changes of metabolic-regulatory steady states are given as T ⊆ S×S
with S = R|Inp|+|R| ×B|RPs|, (iii) a domain of putative regulatory BNs F of di-
mension n = |Inp|+ |R|+ |P|, (iv) a Boolean state objective score ô : Bn → N.

Relaxed inference problem The relaxed inference problem consists then in iden-
tifying the f ∈ F such that for each (s, s′) ∈ T ,

β(s′) ∈ nextB(N ,P,f,ô)(β(s)).

Formulation as a satisfiability problem. Relying on the Boolean dynamic rFBA
abstraction, the inference problem boils down to a satisfiability problem in propo-
sitional Boolean logic using two levels of quantifiers (2-QBF):

∃f ∈ F,∀(s, s′) ∈ T, ∃y ∈ MSSB(N ), yInp = x′Inp, yP = fP(x
′), yR ⪯ fR(x′),

∀z ∈ MSSB(N ), (zInp ̸= x′Inp ∨ zP ̸= fP(x
′) ∨ zR ̸⪯ fR(x′) ∨ ô(z) ≤ ô(y))

with x′ ∈ Bn defined as x′Inp = β(s′)Inp and x′R∪P = β(s)R∪P .

Note that without the Boolean optimization criteria ô (equivalently ô(z) = c),
the problem reduces to a SAT problem where the only constraints relate to the
local functions of the regulatory proteins:

∃f ∈ F,∃y ∈ MSSB(N ), yInp = x′Inp, yP = fP(x
′)

Indeed, yR ⪯ fR(x′) is always verified whenever fr(x) = 1 for each r ∈ R.
Since the Boolean dynamic rFBA gives an over-approximation of metabolic

steady states, and even assuming that the Boolean objective function ô matches
with the optimal metabolic steady states, our formulation leads to an approxi-
mation of admissible regulatory BN f : it may happen that a spurious Boolean
metabolic steady state (having no real counter part) has a strictly higher value
with ô than non-spurious ones.
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4.2 Implementation in Answer-Set Programming

Answer-Set Programming (ASP) [1,12] is a declarative framework allowing solv-
ing combinatorial satisfaction problems. It relies on the stable model seman-
tics [10]. The basic idea of ASP is to express a problem in a logical format so
that the (logic) models of its representation provide the solutions to the original
problem. Problems are expressed as logic programs (first order logic predicates
expressed with rules with the shape <head> :- <body> .). Stable models of the
logic programs are referred to as answer sets. Although determining whether a
program has an answer set is the fundamental decision problem in ASP, modern
ASP solvers like clingo [13] support various combinations of reasoning modes,
among them, regular and projective enumeration, intersection and union, multi-
criteria optimization and subset minimal and maximal model enumeration [15].

The stable model semantics of ASP combined with disjunctive programming
are the key ingredients that enable expressing two quantification levels Boolean
formulas (2-QBF problem), i.e. ∃x, ∀y, ϕ(x, y) where ϕ(x, y) is a quantifier-free
propositional formula (ΣP

2 -complete) [10]. The encoding of 2-QBF relies on the
so-called saturation technique [11,14]. Essentially, for fixed x and y, the encoding
ensures that a maximal (saturated) answer-set is returned if and only if ϕ(x, y).
Thus, whenever there exists y such that ϕ(x, y) does not hold (counter-example),
a smaller answer-set is returned. Following the subset-minimal stable semantics,
the 2-QBF problem is satisfiable if and only if only saturated answer-set are
subset-minimal.

5 Case study

As a proof of concept, we apply our inference framework to the simplified core
carbon metabolism described in Fig. 1. First, from this ground-truth model, we
generate sample dynamic rFBA simulations for different input conditions, re-
producing existing biological observations [9]. Next we take these simulations as
input for our method, together with an influence graph extending the one from
the ground truth model with additional putative regulations. Using our infer-
ence method, we then enumerate BNs that are compatible with both the simu-
lations and the influence graph. The results show that the ground truth model is
well recovered, together with some alternative BNs. In particular, a simpler BN
matching the data is identified, which uses fewer regulations. It turns out that
the missing regulation is not needed to reproduce the expected biological behav-
ior. Our implementation relying on the ASP solver clingo [13] together with the
case study is available at https://github.com/bioasp/boolean-caspo-flux.
They can be reproduced using the notebooks and docker image at https:

//doi.org/10.5281/zenodo.5060984.

Input simulations We designed six dynamic r-FBA simulations of the BN of
Fig. 1(b) to mimic the studies of the core carbon metabolism in [9]. They cor-
respond to different sets of initially available input metabolites and regulatory
proteins (Table 3a, and Fig. 4 in Appendix B). For instance, Experiment 1
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assumes that all input metabolites (Carbon1, Carbon2, Oxygen) are available.
Experiment 2 assumes that Carbon1 and Carbon2 are present at initialization
but not Oxygen.

For each case, we use FlexFlux with an initial biomass value of 0.1 and
a time step of 0.01 to simulate the system. Each of the 6 simulations involves
200 metabolic steady states. For initial external metabolite values (zCarbon1,
zCarbon2, zOxygen), the regulatory proteins are initialized such that xRPcl =
zCarbon1 and xRPO2 = ¬zOxygen (Table 3a). Each simulation S = {(v, w, x)0, ...,
(v, w, x)200} includes 201 continuous metabolic-regulatory steady states (1 for
the initialization and 200 for the simulation). The simulations are then binarized
with SB = {(vt, zt) = β((vt, wt)) | ∀vt ∈ S}, and consecutive identical Boolean
states are removed. Table 1 shows the binarized metabolic-regulatory steady
states from the simulation of the first experiment. From the 201 continuous
metabolic steady states, 5 Boolean metabolic-regulatory steady states remain,
corresponding to the time steps {0, 1, 51, 52, 59} (see Table 4 in Appendix B
for the resulting states in each simulation).

Candidate models The search domain F for the candidate BNs is delimited
by the influence graph G of Fig. 3b, which extends the influence graph from
the ground-truth model by additional putative regulations, and by relaxing the
sign constraints. Since the influence graph G(f) of the ground-truth BN f is
included in G, we have f ∈ F. In addition, F contains all the BNs such that
fi(x) = 1, for all i ∈ Inp∪R\{Tc1, Tc2, Rres}. Furthermore, fRPcl can depend
on Carbon1, Carbon2, Tc1, and Tc2, fRPO2 can depend on Oxygen, Rres, fTc1

and fTc2 can depend on RPcl, and fRres can depend on Rres. Overall, F contains∏
n∈node(G)M(δ−(n)) = 1 944 320 BNs, with δ−(n) the in-degree of n and M(i)

the number of monotone Boolean functions with i inputs (Dedekind number).

Input Metabolite Regulatory Protein

Experiment zCarbon1 zCarbon2 zOxygen xRPcl xRPO2

1 1 1 1 1 0
2 1 1 0 1 1
3 0 1 0 0 1
4 1 0 0 1 1
5 1 0 1 1 0
6 0 1 1 0 0

(a) Initial states of the six rFBA simulations used
to create the dataset for the case study.

(b) Influence graph G delimiting
the domain of putative regulatory
BNs F. Nodes without in-going
or out-going edges are not repre-
sented. Black regular tipping ar-
rows are unsigned edges, i.e. both
positive and negative edges.

Fig. 3: Input data for the case study. Table (a) summarizes the experimental
conditions used to generate the input simulations. Figure (b) shows the influence
graph delimiting the search domain for the inference problem.
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fRPO2(x) fRPcl(x) fTc1(x) fTc2(x) fRres(x) Subset minimal Ground truth

Model 1 ¬xOxygen xCarbon1 1 ¬xRPcl 1 ✓
Model 2 ¬xOxygen xCarbon1 1 ¬xRPcl ¬xRPO2 ✓
Model 3 ¬xOxygen xCarbon1 xRPcl ¬xRPcl 1

Model 4 ¬xOxygen xCarbon1 xRPcl ¬xRPcl ¬xRPO2

Table 2: Inferred models having subset minimal local functions. The
not shown local functions fCarbon1(x), fCarbon2(x), fOxygen(x), fTo2(x), fTd(x),
fTe(x), fGrowth(x), fR6(x), fR7(x) are set to 1.

Boolean objective function Our inference framework requires defining an ob-
jective function ô over the Boolean metabolic steady states. Given the set of
input metabolites Inp = {Carbon1, Carbon2, Oxygen}, the objective function
is defined as ô(x) =

∑
e∈Inp xe,∀x ∈ MSSB(N ). This is motivated by the ob-

servation that maximizing biomass production often corresponds to maximizing
the uptake of inputs according to the QSS constraints. Therefore, if an available
input metabolite is not used in the observed Boolean metabolic network, then
this must be explained by at least one regulation. This objective function allows
capturing more refined behaviors at the discrete level than a standard biomass
optimization function, which may be too rough when considering discretized
values.

Results Applying the constraints from above allows inferring 40 models. All
these models share 3 local functions whose value is not constantly 1 (fRPO2(x),
fRPcl(x), fTc2(x)). They also share 9 local functions equal to 1 (fCarbon1(x),
fCarbon2(x), fOxygen(x), fTo2(x), fTd(x), fTe(x), fGrowth(x), fR6(x), fR7(x)). Fi-
nally, 2 functions can be set both to 1 or different from 1 according to the model.
The 4 smallest inferred models are described in Table 2. They can be considered
as the smallest because each local function fi of these 4 models is contained in
the local function fi of the 36 other models. Note that the ground truth, i.e. the
model used to generate the input data, is correctly inferred (Model 2).

As we represent the local Boolean functions using their disjunctive normal
form (DNF), we can focus on the simplest models by looking at the subset-
minimal ones: a Boolean function fi is smaller than a Boolean function gi if
each of the clauses of fi is a subset of a clause of gi. In this case study, there is a
single subset-minimal model: the BN 1 of Table 2. The two functions fRres(x),
fTc1(x) are set to 1 due to the subset-minimal constraint. The inferred model is
thus fRPO2(x) = ¬xOxygen, fRPcl(x) = xCarbon1, fTc2(x) = ¬xRPcl and all the
others local functions are set to 1. Note that only fRres(x) differs between the
inferred subset-minimal model and the ground truth model.

In order to check whether this subset-minimal model could be considered as
an alternative to the ground truth one, we performed dynamic rFBA simulations
with the six experimental conditions described in Table 3a. We observe that the
resulting time series are strictly identical to the simulations of the ground truth
model used to generate the dataset. This suggests that the regulation on Rres is
not necessary to reproduce the observed behaviors. The proposed subset-minimal
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model allows inferring all the needed regulations and can be considered as the
simplest regulated metabolic model matching the experimental conditions of
Table 3a. Already in [9], the authors recognize that unlike others regulations,
Rres “regulation is not necessary for the solution”. Biologically, this regulation is
only present to ensure that unnecessary enzymes decay. However, since enzyme
amounts are not explicitly represented in the rFBA framework, the dataset does
not reflect this biologic behavior, making it impossible to infer properly the
regulation. Taking into account enzymatic resources using methods such as r-
deFBA [17], should allow solving this issue. However, the inference approach will
also have to be adapted to this kind of extended metabolic modeling.

6 Discussion

We proposed a formal framework to infer Boolean rules for the regulation of
a metabolic network. The formulation of dynamic rFBA as sequence of steady
states of the regulated metabolic network enables inferring the Boolean rules
from time series under multiple conditions. A proof of concept was performed
on the simulation of the diauxic shift in carbon metabolism on a small model.

Our method builds on a Boolean abstraction of the dynamic rFBA frame-
work. It enables a formulation of the inference problem as a pure Boolean satis-
fiability problem using two levels of quantifiers, which can be efficiently solved
using Answer Set Programming. One important parameter is the Boolean ob-
jective function, which aims at identifying Boolean metabolic steady states that
match the optimal real-valued ones. This function is currently specified manu-
ally, based on biological expertise. Future work may explore how to derive an
objective function automatically. An alternative direction is to solve directly
the inference problem by mixing linear programming and Boolean constraints.
Future work will investigate the scalability of solving these different inference
problems.

Several other perspectives are to be explored. First, all regulations were con-
sidered as synchronous, which may not be the case in vivo, where regulations
can have different time scales. This choice was actually imposed by the use of
the FlexFlux implementation. Nevertheless, our method can be easily adapted
to support fully-asynchronous and asynchronous updating modes, enabling po-
tential alternative solutions. Second, the production and degradation times of
regulatory proteins and enzymes were not taken into account. Moreover, the
regulations were considered to be binary. However, we know that metabolism
proceeds by finer regulations than the abstraction proposed here, as captured
for instance by regulatory dynamic enzyme-cost FBA [17].
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A Binarized metabolic steady state

External metabolites Reactions
zCarbon1 zCarbon2 zOxygen vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7 Experimentation

1 0 0 0 0 0 0 0 0 0 0 0 0 2, 3, 4
2 0 0 1 0 0 0 0 0 0 0 0 0 1, 5, 6
3 0 1 0 0 0 0 0 0 0 0 0 0 2, 3
4 0 1 0 0 1 0 1 1 1 0 1 1 2, 3
5 0 1 1 0 0 0 0 0 0 0 0 0 1, 6
6 0 1 1 0 1 1 0 0 1 1 0 0 1, 6
7 0 1 1 0 1 1 0 1 1 1 0 1
8 0 1 1 0 1 1 1 0 1 1 1 0
9 0 1 1 0 1 0 1 1 1 0 1 1
10 0 1 1 0 1 1 1 1 1 1 1 1
11 1 0 0 0 0 0 0 0 0 0 0 0 4
12 1 0 0 1 0 0 1 1 1 0 1 1 4
13 1 0 1 0 0 0 0 0 0 0 0 0 5
14 1 0 1 1 0 1 0 0 1 1 0 0 5
15 1 0 1 1 0 1 0 1 1 1 0 1
16 1 0 1 1 0 1 1 0 1 1 1 0
17 1 0 1 1 0 0 1 1 1 0 1 1
18 1 0 1 1 0 1 1 1 1 1 1 1
19 1 1 0 0 0 0 0 0 0 0 0 0 2
20 1 1 0 0 1 0 1 1 1 0 1 1
21 1 1 0 1 0 0 1 1 1 0 1 1 2
22 1 1 0 1 1 0 1 1 1 0 1 1
23 1 1 1 0 0 0 0 0 0 0 0 0 1
24 1 1 1 0 1 1 0 0 1 1 0 0
25 1 1 1 1 0 1 0 0 1 1 0 0 1
26 1 1 1 1 1 1 0 0 1 1 0 0
27 1 1 1 0 1 1 0 1 1 1 0 1
28 1 1 1 1 0 1 0 1 1 1 0 1
29 1 1 1 1 1 1 0 1 1 1 0 1
30 1 1 1 0 1 1 1 0 1 1 1 0
31 1 1 1 1 0 1 1 0 1 1 1 0
32 1 1 1 1 1 1 1 0 1 1 1 0
33 1 1 1 0 1 0 1 1 1 0 1 1
34 1 1 1 1 0 0 1 1 1 0 1 1
35 1 1 1 1 1 0 1 1 1 0 1 1
36 1 1 1 0 1 1 1 1 1 1 1 1
37 1 1 1 1 0 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: All the Boolean metabolic steady states admissible for the metabolic
network N show Fig. 1a. The external metabolite Biomass is not shown since
its value can be both 0 and 1 for each Boolean metabolic steady state. The
experimentation column indicates the numbers of the experiments where the
Boolean metabolic steady states occurs.
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B Experiments and simulations

(a) Simulation of experiment 1.

(b) Simulation of experiment 2.

(c) Simulation of experiment 3.
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(d) Simulation of experiment 4.

(e) Simulation of experiment 5.

(f) Simulation of experiment 6.

Fig. 4: Simulation made with FlexFlux of the regulated metabolic network in
Fig. 1 for each experiment (Table 3a). Time step is set to 0.01. Reaction domains
are ∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) = (0, 12.0),
∀r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen, (lr, ur) =
(0, 15.0).
The same simulation graphs are obtained using the local function fRres =
¬xRPO2 and fRres = 1.
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External metabolites Regulatory proteins Reactions

Experiment Time zBiomass zCarbon1 zCarbon2 zOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

1

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2

0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1
83 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
84 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1
97 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1
83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1
83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0
51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

6
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 4: All the different binarized metabolic steady states of each experiment.
They are the input data used to solve the inference problem.
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IV MERRIN: a Dedicated Hybrid Solving
Framework for the Flux-Based
Inference Problem

In this chapter, we introduce a novel workflow, and its implementation MERRIN,
to solve the flux-based formulation of the inference problem defined in Chapter II.
The content of this chapter has been presented at the European Conference on
Computational Biology (ECCB) of 2022 and the associated paper published in
Bioinformatics (Thuillier et al., 2022).

To sum up
This work on MERRIN is a first step toward an efficient framework to infer
metabolic regulatory rules from time series data. MERRIN’s framework relies
on monotone properties over optimal metabolic fluxes to efficiently explore the
space of all candidate Boolean networks. Our results on a model of core-carbon
metabolism are promising, and show that inferring is possible solely from
noisy kinetics and transcriptomics time series. However, MERRIN exhibits
scalability issues on larger instances. It is, therefore, necessary to further
optimize the inferring framework to handle medium-scale regulated metabolic
networks.
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1 Problem Statement

Relaxed formulation problem’s limitations. In Chapter III, we introduce a Boolean
relaxation of the inference problem. Addressing the inference problem by solving
this Boolean relaxation has shown two main drawbacks: (i) results are highly
dependent on the input Boolean objective function, and (ii) false positive Boolean
networks (BN) are inferred. The latter drawback can be overcome by enumerating
all solutions and then filtering them with rFBA simulations. However, this post-
processed filtering operation is intractable in practice when thousands of solutions
should be checked.

Those two drawbacks come from the definition of the Boolean metabolic steady-
states (BMSS) used to model the metabolism dynamics. This definition does not
allow quantifying metabolic activities and generates spurious BMSSs, i.e. BMSSs
for which no real-valued counterparts are satisfying the FBA equations. To refine
this definition, it is necessary to ensure that only non-spurious BMSSs are used
during the inferring process.

Flux-based inference problem. From this statement, we deduce that it is necessary
to find a novel inferring framework that handles the FBA equations directly during
the solving process. In this chapter, we consider the flux-based formulation of
the inference problem (described in Chapter II). Unlike the relaxed formulation,
the flux-based formulation relies on the rFBA to model the regulated metabolic
network (RMN) dynamics. Regulated metabolic steady-states (RMSS) are used
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in place of BMSSs to model the RMN states. The flux-based inference problem
formulation is recalled below.

Flux-based formulation of the inference problem

Input:
1: a metabolic network N = (Mext ∪ Mint,R, s) with an objective reaction

‘growth’;
2: a set of regulatory proteins P ;
3: a set of observed time series {T 1

o , · · · , T qo }, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a maximum distance Kmax ∈ N between observations;
6: a noise rate parameter ε ∈ [0, 1[.

Output: arg min
f∈F(G)

q∑

k=1

lk

such that:

∀ Tk ∈ {T1, · · · , Tq}, ∃ {(vj, wj, xj)}lkj=1 ∈ rFBA(N ,P , f), ∀ 1 ≤ i < |Tk|,
|Tk| ≤ lk ≤ |Tk|+Kmax (IV.1a)
∧ 0 < gk(i+ 1)− gk(i) (IV.1b)

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (IV.1c)

∧
v̂igrowth

1 + ε
≤ v

gk(i)
growth ∧ max

v′∈rMSS(N ,wgk(i),xgk(i))
v′growth ≤

v̂igrowth

1− ε (IV.1d)

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.

In practice, we only solve the inference problem for subset-minimal and locally
monotone BNs. The subset-minimal criterion is defined according to a partial
ordering of BNs on the disjunctive normal form (DNF) of the local functions.
However, the problem definition and the solving framework do not rely on these
assumptions and can enumerate all solution BNs.

Questions. Therefore, new questions arise: How to solve hybrid problems merging
logical and linear constraints? How to efficiently ensure the satisfiability of the
FBA equations during the solving process? How to benchmark an inferring method
and test its robustness?

We aim to answer these questions through the work presented in this chapter.
An overview of the main contributions of Thuillier et al. (2022) is provided in the
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next sections: the MERRIN’s framework in Sec. 2.1, and the time series generation
workflow in Sec. 2.2. Section 3 extends the paper’s discussion with new results on
the framework scalability.

2 Contributions of ECCB’s Paper

2.1 MERRIN: a Hybrid Inferring Framework

Overview of the inferring framework described in Section 2.3 of the paper.

Challenge. The flux-based inference problem is a hybrid optimization problem with
logic and linear constraints, and linear constraints over the optimal values of linear
systems. In other words, it is formulated as a Satisfiability Modulo Theory (SMT)
problem (Barrett and Tinelli, 2018). There exist different solvers that can solve
SMT problems, e.g. z3 (De Moura and Bjørner, 2008). However, it has been shown
that these solvers are not efficient in solving highly combinatorial problems (Gebser
et al., 2014). This result has been validated during our experiments: it took 10
times more time to solve the combinatorial part of the inference problems with z3
than with the ASP solver clingo (Gebser et al., 2017). Moreover, SMT solvers do
not always handle both optimization constraints and quantifiers, which is necessary
for us.

ASP-based approaches have been widely used in systems biology, and ASP
modulo theory solvers have already been applied to solve ASP modulo quantifier-
free linear arithmetics problems, e.g. for metabolic network completion (Frioux
et al., 2019) and elementary fluxes modes enumeration (Mahout et al., 2020).
However, these hybrid ASP solvers cannot be used to solve the inference problem
since they do not handle constraints over the optimal value of linear systems, i.e.
the constraints guaranteeing the phenotype compatibility between an RMSS and
an observation (Eq. IV.1d).

Challenge
Defining an ASP-based framework that extends ASP with the FBA equations
and linear constraints over the FBA optimal values. The approach should be
scalable and efficient.

Constraint propagation. We propose to rely on the constraint propagation prin-
ciple (Clarke et al., 2003; Janhunen et al., 2017) to define our framework. The
solving process is split among two solvers: a combinatorial solver, that will ensure
that the inferred BNs’ dynamics match the observations, and a linear solver used
to ensure that the generated BMSSs satisfy the FBA equations and the constraints
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over optimal growth. For each candidate BN satisfying the combinatorial part,
the linear part is checked. If it succeeds then the candidate is accepted. If it fails
then the candidate is a counter-example and is rejected. For each counter-example,
new constraints are added to the combinatorial part to prevent generating spurious
BMSSs.

Constraint generation. The new constraints are generated based on a monotone
property over optimal metabolic fluxes (equations 5 and 6 in the paper). In
short, the property allows for estimating the optimal growth given sets of inhibited
reactions, and therefore filtering all sets of inhibited reactions that will surely not
match the observations. Given a set of inhibited reactions, if the predicted optimum
growth is over (resp. under) the observed growth then all subsets (resp. supersets)
of inhibited reactions will also have optimal growth values over (resp. under) the
observation.

This property is essential for the framework’s scalability. For the complete
instance described in the paper, no results were found in about 2 hours without it
while all of them are enumerated under 30 seconds with it.

Solution – in short
We propose a hybrid solving framework relying on the constraint propagation
principle. The counter-examples are generalized using a monotone property
on the optimal metabolic fluxes that filter spurious BMSSs. The monotone
property is essential for the method’s scalability.

MERRIN. This hybrid framework has been implemented into the tool MERRIN 1.
MERRIN extends the ASP program used to solve the relaxed inference problem,
introduced in Chapter III, with the FBA equations. The combinatorial part of the
MERRIN framework is identical to the ASP program used for solving the relaxed
inference problem, except that it does not have saturation constraints. The FBA
equations and the phenotype compatibility are checked dynamically for each BMSS
inferred during the solving process. The ASP encoding of the combinatorial part
of the MERRIN framework is described in Appendix B.3.2.

2.2 Time Series Generation Workflow

Overview of the time series generation workflow described in Section 3.2 of the
paper.

1Available on GitHub: https://github.com/bioasp/merrin
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Challenge. The inferring methods defined, the question of how to validate it
arises. Ideally, the inferring framework should be validated on real experimental
observations. However, benchmarking with experimental data has some limits.
Even for model bacteria, such as Escherichia coli, regulatory rules are not well
known. It is therefore hard to build the input prior knowledge network. Even if
such data were easily available, the most up-to-date regulated metabolic models
of Escherichia coli account for more than one thousand regulatory rules (Covert
et al., 2004). It will therefore be hard to explain MERRIN ’s behaviors (why a
regulatory rule has been inferred or not) with models of such size. Another limit
is that dynamic experimental observations are often not publicly available, nor
provided with papers.

We choose to validate MERRIN on the model of core-carbon metabolism
introduced in Covert et al. (2001). It is a synthetic regulated metabolic network
that reproduces interesting growth behaviors, such as diauxic shifts or anaerobic
growth. Relying on a synthetic model has some advantages: the ground truth
regulatory network is known, and we can generate our own time series observations
while controlling data types and noise rates.

Challenge
Generating realistic time series observations that mimic in vitro kinetics,
fluxomics and/or transcriptomics observations.

Dynamic time series generation. Since we rely on a synthetic model to validate
MERRIN, we need to generate time series observations. These observations should
be as similar as possible to in vitro kinetics, fluxomics, and/or transcriptomics
observations. Generating realistic observations is necessary to ensure the ability of
MERRIN to learn regulatory rules from real experimental observations.

Alongside MERRIN ’s workflow, we introduce in the paper a time series gen-
eration protocol. This protocol has been developed through constant discussions
with biologists to ensure that the resulting time series are as realistic as possible.
It allows converting rFBA simulations into noisy fluxomics, kinetics, and/or tran-
scriptomics observations. The idea is to, first, simplify each rFBA simulation into
a few measured time points, approximately 2 observations by metabolic growth
phases. Then, the different observations are extracted from the RMSSs of the
simplified rFBA simulations: (i) for fluxomics observations, the metabolic fluxes
of the reactions are kept; (ii) for kinetics observations that’s the concentration of
environmental metabolites; and (iii) for transcriptomics observations that’s the
genes and regulatory proteins states, as well as the availability states and activity
states of external metabolites and reactions, respectively. The observations of
elements not covered by one of the selected data types are set to an undefined
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Data types Notation Definition from an RMSS (v, w, x)

Fluxomics v̂ v
Kinetics ŵ w
Transcriptomics x̂ xP ∪ β(w) ∪ β(v)

� Table 5 – Structure of the observations for each data type from a regulated
metabolic steady-state (v, w, x), with N = (Mext ∪Mint,R, s) a metabolic network,
and P a set of genes and regulatory proteins. β : Rn → Bn is a binarization function
such that ∀ s ∈ Rn, ∀ 1 ≤ i ≤ n, β(s)i = 1 if and only if si 6= 0, else β(s)i = 0.

value (‘⊥’), e.g. if fluxomics is not selected, then all metabolic flux of reactions
are set to ‘⊥’. Table 5 described for each data type how an observation (v̂, ŵ, x̂) is
built from an RMSS (v, w, x).

The time series generation protocol also introduces noise in the data by either
altering the quantitative observations by a random amount, removing observations,
or removing timesteps of the time series. The benchmark generation protocol is
described in further detail in Sec. 3.2.2 and Fig. 1b of the paper.

Solution – in short
We use a synthetic regulated metabolic model to validateMERRIN, which offers
control over the benchmarking process (including noise rate and observation
types) and provides a known ground truth BN. We propose a data generation
workflow to convert rFBA simulations into realistic kinetics, fluxomics, and
transcriptomics time series observations with different noise rates.

Benchmarking The validation of MERRIN has been made on a benchmark of 240
instances that combine different data types, namely kinetics, fluxomics, and/or
transcriptomics, with noise levels ranging from 0 to 50 percent. Following a
parsimonious approach, the benchmarking process focuses only on the subset-
minimal BNs inferred by MERRIN. Results over the benchmarks are described in
Sec. 3.3 and Sec. 3.4 of the paper.

Solution – in short
The quality of inferred BNs is measured according to two criteria: (i) their
similarity with the ground truth BN using accuracy and recall scores; (ii) their
ability to reproduce the rFBA simulations used to generate the benchmark.

On complete instances, MERRIN infers a smaller BN than the ground truth.
All the inferred regulatory rules are in the ground truth BN (accuracy = 1 ), but not

97



IV DEDICATED HYBRID INFERRING FRAMEWORK Complements 3

all regulatory rules are retrieved (recall = 0.64 ). The associated RMN reproduces
exactly the rFBA simulations, which shows that the missing rules are not necessary
to explain the input observations regarding the rFBA formalism. MERRIN infers
this BN when there are at least kinetics and transcriptomics observations with a
noise of up to 20 percent.

Moreover, when using only transcriptomics observations, MERRIN retrieves all
but one regulatory rule of this subset minimal solution. The inferred BN reproduces
exactly 4 of the 5 rFBA simulations and differs from the last simulation on only
one timestep (residual sum of square < 1 ).

3 Complementary Benchmarking and Discussion

This section extends the discussion of the paper. We introduce new results on
MERRIN’s scalability that were generated after the paper’s publication.

3.1 Summary of ECCB’s Paper

In this chapter, we have introduced a flux-based formulation of the inference
problem and a hybrid solving framework to solve it. This framework has been
implemented into the tool MERRIN. It relies on the ASP program used to solve the
relaxed inference problem of Chapter III. By extending the ASP solver clingo with
the FBA, we ensure that no spurious BMSSs are generated and that the optimal
growths, allowed by regulatory states, are compatible with the observed growth
phenotypes.

To validate MERRIN, we define a time series generation protocol that allows
generating realistic synthetic time series observations from rFBA simulations. Using
this time series generation protocol, we generate a benchmark of 240 instances
of noisy time series of kinetics, fluxomics, and/or transcriptomics data of a core-
carbon metabolism model. Our results suggest that it is possible to infer regulatory
rules, including feedback and control rules, from solely kinetics and transcriptomics
observations with up to 20% of noise.

3.2 MERRIN’s Performance on Small-Scale Instances.

Table 6 summarizes the number of inferred BNs and the computation times2 of
MERRIN on three RMNs: the toy model introduced in Chapter III, the model of
core-carbon metabolism (Covert et al., 2001) used in the paper, and a medium-scale
model of Escherichia coli core metabolism (Covert and Palsson, 2002). All results

2Fedora 34 with an 8-cores processor i7-1165G7@2.80 GHz and 16GB of RAM
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Search All networks Subset-minimal networks
Instance space size # Time (s) # Time (s)

Toy O(106) 4 1.5 1 1
Core O(1015) 48 30 1 7
Medium-scale Ω(10380) -* > 86 400* -* > 86 400*

* No Boolean networks inferred in 24 hours.

� Table 6 – Performances ofMERRIN on three regulated metabolic networks (described
in Chapter II). Times are given as an approximated order of magnitude in seconds. All
results are given for complete data (undegraded kinetics, fluxomics, and transcriptomics
time series observations).

discussed in this section are for complete time series observations, i.e. noise-free
time series with kinetics, fluxomics, and transcriptomics observations.

Exact resolution of the inference problem. The flux-based inference problem allows
for inferring BNs exactly compatible with the rFBA dynamics. On the toy model,
MERRIN infers 4 BNs, of which one is subset-minimal. For the core model,
MERRIN infers 48 BNs, of which one is subset-minimal. It takes less than
30 seconds to infer the 48 BNs, and about 7 seconds to only enumerate the
subset-minimal ones. The RMN associated with each inferred subset-minimal BN
reproduces exactly the rFBA simulations used to generate the input time series.

The flux-based definition, and the hybrid solving framework used to solve it,
allow, therefore, overcoming the drawbacks of the relaxed inference problem. No
false-positive solutions are inferred, and there is no need for a Boolean objective
function. For the latter, it is replaced by the ‘growth’ reaction commonly used in
FBA-based frameworks.

Performance. MERRIN performances lie in the constraint generation method used
to filter spurious candidate BNs. The constraint generation allows enumerating
all solutions of the flux-based inference problem in under 30 seconds, while no
solutions were inferred in 2 hours without it.

Limits of the rFBA formalism. On the core model, it must be noted that not all
the ground truth regulatory rules are recovered in the subset-minimal BN. The
subset-minimal BN misses 4 ground truth regulatory rules, while still being able to
reproduce exactly the input rFBA simulations. While we explain why they are not
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recovered in the paper, our conclusions highlight the limit of the rFBA formalism
to model the RMN dynamics.

Recall that the FBA relies on two heuristics: (i) that biomass is maximized and
(ii) that the metabolism is at a steady state. Therefore, the FBA implicitly handles
some regulatory rules, there is no need for Boolean regulatory rules to model them.
Since MERRIN relies on the rFBA for the inferring of metabolic regulatory rules,
it will not be able to learn regulatory rules that are directly handled by the FBA.

3.3 Limitation: Scalability of MERRIN on Larger Instances

While not being part of this publication, the scalability of MERRIN to larger
RMNs has been tested. In particular, this was a question raised by the reviewers
when the paper was submitted.

Medium-scale instance. We apply MERRIN to the medium-scale model of Es-
cherichia coli core metabolism introduced in Covert and Palsson (2002). This
medium-scale model has about 5 times more reactions and 15 times more regulatory
rules than the core model. A comprehensive description of the medium-scale model
is given in Appendix A.2. The instance of the inference problem was built following
the protocol defined in the paper from the three experimental conditions provided
in the aforementioned paper. The instance is composed of three noise-free times
series of kinetics, fluxomics, and transcriptomics observations. The prior knowledge
network models a search space compatible with about 10380 BNs.

Results. As described in Table 6, MERRIN was not able to infer any BNs under 24
hours. The threshold of 24h is an arbitrary choice and was defined as a reasonable
time limit to infer at least one BN. Regarding this result, there is a need to further
improve the solving process to allow inferring larger BNs controlling metabolic
networks.
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Abstract

Motivation: Many techniques have been developed to infer Boolean regulations from a prior knowledge
network and experimental data. Existing methods are able to reverse-engineer Boolean regulations for
transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks.
Results: We present a novel approach to infer Boolean rules for metabolic regulation from time series data
and a prior knowledge network. Our method is based on a combination of answer set programming and
linear programming. By solving both combinatorial and linear arithmetic constraints we generate candidate
Boolean regulations that can reproduce the given data when coupled to the metabolic network. We evaluate
our approach on a core regulated metabolic network and show how the quality of the predictions depends
on the available kinetic, fluxomics or transcriptomics time series data.
Availability: Software available at https://github.com/bioasp/merrin
Contact: anne.siegel@irisa.fr
Supplementary information: See supplementary PDF and https://doi.org/10.5281/zenodo.6670165

1 Introduction
The regulation of metabolic gene expression is essential for an organism
to respond appropriately to changes in its environment. For three decades
now, methods have been developed to model, simulate and infer gene
regulatory networks (de Jong, 2002; Bernot et al., 2004; Chaves et al.,
2010). Even with the advances of next generation -omics, such networks
remain largely incomplete and unable to accurately predict complex
responses of organisms submitted to changes in diverse environments.

The methods developed so far to infer Boolean dynamics of regulatory
and signaling networks only rely on information on the regulatory layer
of the cell, mainly transcriptomics, proteomics and phosphoproteomics
(Saez-Rodriguez et al., 2009; Videla et al., 2017; Razzaq et al., 2018;
Tsiantis et al., 2018; Chevalier et al., 2019). However, studying the
metabolic layer could help to better infer the regulatory rules. Catabolic
repression is a good illustration of how metabolism can highlight
regulations inside the cell. This happens when the cell first consumes
one substrate (e.g. hexose) until it is exhausted before starting to consume
other substrates present in the environment (Monod, 1942). Looking only

at the metabolites in the environment, we can infer that a regulation takes
place inside the cell, probably on transporters.

Up to now, very few approaches exploited the metabolic layer of
the organism to obtain regulatory information. In (Tournier et al., 2017),
Resource Balance Analysis (RBA) (Goelzer et al., 2015) is used to infer
logical rules governing the activation of metabolic fluxes in response to
diverse extracellular media. However, the authors assume that no feedback
from metabolism to regulation occurs, which does not correspond to the
biological functioning of the cell in most cases.

The fact that metabolic and regulatory layers are of different nature,
and thus formalized differently, makes the inference of regulations
challenging. The metabolic layer is usually modeled by a metabolic
network consisting of a weighted hypergraph with metabolites as nodes,
reactions as hyperarcs, and stoichiometry as weights. The (dynamic)
response of the metabolism to the environment is usually modeled by
Flux Balance Analysis (FBA) (Orth et al., 2010) resp. dynamic FBA
(dFBA) (Mahadevan et al., 2002). This approach assumes that the
metabolism of the cell is at quasi steady-state and that the cellular behavior
is optimal with respect to some objective (usually growth). FBA and
dFBA require solving linear programming problems; the output is the

© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 101
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prediction of metabolic fluxes and the concentrations of environmental
metabolites and biomass, which are all continuous quantitative data. On
the contrary, the dynamics of the regulatory layer is often modeled by
Boolean networks (BNs). Combining both layers to infer regulations of
the cell and taking into account feedbacks between them thus requires to
use a hybrid discrete-continuous modeling and inference framework, such
as Satisfiability Modulo Theories (SMT), which was used in Frioux et al.
(2019) to solve a metabolic network completion problem.

In this study, we present a hybrid discrete-continuous approach to
infer metabolic regulations, which combines linear programming for
metabolism with answer set programming for regulations. The input
consists of a metabolic network, a prior knowledge regulatory network
with potential regulations, and time series data. These can be metabolomics
data (kinetics of environmental metabolites/biomass and/or fluxomics)
and/or expression data from proteomics or transcriptomics. The output
is a set of Boolean regulatory networks that best explain the available
data. We tested our method on data generated from a dynamic regulatory
FBA (d-rFBA) model of a core regulated metabolic network (Covert et al.,
2001; Marmiesse et al., 2015), by simulating both the regulatory and the
metabolic layer in five environments. In order to assess its robustness, the
method was also evaluated with noisy and partial data, e.g. transcriptomics
and kinetics of environmental metabolites only.

2 Methods and implementation

2.1 d-rFBA: coupling metabolic and regulatory networks

2.1.1 Regulated metabolic networks (RMN), influence graph
A regulated metabolic network (RMN) consists of (i) a metabolic layer
characterized by linear constraints on metabolic fluxes and (ii) a regulatory
layer specified by a Boolean network (BN) which models the interplay
between metabolic fluxes, input metabolites, and regulatory proteins.

Formally, a RMN is a quadruple (N , Inp,P, f) composed of (i)
a metabolic network N = (Int,Ext,R, S) with a set of internal
metabolites Int, a set of external metabolites Ext, a set of irreversible
reactions R and a stoichiometric matrix S ∈ R(|Int|+|Ext|)×|R|. Each
reaction r ∈ R is associated with flux bounds lr, ur ∈ R, 0 ≤ lr ≤ ur ;
(ii) a set of input metabolites Inp ⊆ Ext; (iii) a set of regulatory
proteins P; (iv) a BN f : Bn → Bn,B = {0, 1}, of dimension
n = |Inp| + |R| + |P|. We call fi : Bn → B the local function of
component i.

The influence graph G(f) summarizes the regulatory dependencies. It
is a signed directed graph with node set Inp∪R∪P and a positive (resp.
negative) edge from j to i if there exists x ∈ Bn such that an increase
of xj leads to an increase (resp. decrease) of fi(x). We assume that f
is locally monotone, i.e., there exists at most one edge from j to i, but
our method does not rely on this assumption. In RMNs, the regulation of
reactions has to be mediated by regulatory proteins P . Therefore, there is
no edge from j to i in G(f) where both i, j ∈ Inp ∪ R. Edges between
regulatory proteins i, j ∈ P , however, are possible.

2.1.2 Regulatory-metabolic steady states (RMSSs)
Dynamic regulatory Flux Balance Analysis (d-rFBA) (Covert et al., 2001)
extends FBA to derive a discrete time series of steady states optimal for a
linear objective. In d-rFBA, a regulatory-metabolic steady state (RMSS)
of a RMN (N , Inp,P, f) is a triple (v, c, x) associating reaction fluxes
v at steady state, concentrations c of external metabolites, and the state x

of the Boolean network, which comprises the Boolean regulatory state of
reactions and regulatory proteins, and the binarization of the concentration
of input metabolites. The reaction fluxes v are constrained by both the
regulatory variables x, which can force reaction fluxes to be zero, and by
the concentration of external metabolites c, which set upper bounds on

uptake fluxes. Formally, a RMSS is a triple (v, c, x) ∈ R|R| ×R|Ext| ×
B|Inp|+|R|+|P| such that
(1.a)SInt,R · v = 0, (1.b) ∀r ∈ R, lr · xr ≤ vr ≤ ur · xr

(1.c) ∀m ∈ Inp, r ∈ R, Smr < 0⇒ vr ≤ uptake_bound(cm),
where SInt,R is the submatrix of S whose rows correspond to internal
metabolites anduptake_bound(cm) is the maximum flux through uptake
reaction r for input metabolite concentration cm (Varma and Palsson,
1994).

2.1.3 Dynamics of RMNs and admissible time series
The d-rFBA models are executed at two time scales: the metabolic network,
considered as a fast system, depending on the activity of input metabolites
and regulatory proteins, rapidly converges to a steady state; the regulatory
network, considered as a slow system, gets updated once the metabolic
network is in steady state. The overall dynamics is guided by the objective
of maximizing the flux through reaction Growth , assumed to reflect the
growth of the cell (Feist and Palsson, 2010).

Let β : Rn
≥0 → Bn be a binarization function such that ∀s ∈

Rn
≥0, ∀i ∈ {1, . . . , n}, β(s)i = 1 if and only if si > 0, else

β(s)i = 0. Given a RMSS (vk, ck, xk) at time tk , a successor RMSS
(vk+1, ck+1, xk+1) at time tk+1 is computed as follows:

1. The external metabolite concentrations ck+1 are computed from the
previous concentrations ck by considering constant uptake/secretion
fluxes vk for the whole time period [tk, tk+1].

2. The Boolean state xk+1 is computed by applying the regulatory
function f to the binarized input metabolites concentrations x′

Inp =

β(ck+1
Inp ) at time tk+1, together with the binarized reaction fluxes

x′
R = β(vk) and the Boolean values x′

P = xk
P of the regulatory

proteins at time tk , i.e., xk+1 = f(x′).
3. (vk+1, ck+1, xk+1) is a RMSS maximizing the flux through the

Growth reaction, i.e., there is no RMSS (v′, ck+1, xk+1) such that
v′Growth > vk+1

Growth .

Such simulations can be computed with the FlexFlux implementation of
d-rFBA (Marmiesse et al., 2015), which considers a fixed time step τ

between successive RMSS, see Thuillier et al. (2021) for details.
Let S be the set of all RMSSs of the RMN (N , Inp,P, f). For

input metabolite concentrations c0 ∈ R|Ext| and the regulatory state
x0 ∈ B|Inp|+|P|+|R|, we denote by maxGrowth rMSS(c0, x0) =

max{vGrowth | (v, c0, x0) ∈ S} the maximum growth flux
given c0 and x0. Given reaction fluxes v, v′ ∈ R|R|, external
metabolite concentrations c, c′ ∈ R|Ext|, and regulatory states x, x′ ∈
B|Inp|+|R|+|P|, d-rFBA enables a transition from (v, c, x) to (v′, c′, x′)
if and only if the following constraints are satisfied:
(2.a) c′ = update(c, v), (2.b) x′ = f(β(c′Inp), β(v), xP ),
(2.c) (v′, c′, x′) ∈ S, (2.d) v′Growth = maxGrowth rMSS(c′, x′),
where update(c, v) updates the external metabolite concentrations c

according to reaction fluxes, stoichiometry, and cell volume changes.
Eq.(2.c) encompasses Eqs.(1.a-c). As shown in Thuillier et al. (2021),
one can derive a necessary Boolean condition for these constraints (see
Suppl. Sect. 2), which we denote by Eq.(2.crelaxed).

2.2 The inference problem for regulatory rules

Next we address the compatibility between the d-rFBA dynamics of a
RMN and given time series data for reaction fluxes, regulatory protein
states and input metabolite concentrations.

Observed time series. An observation is a triple o = (vGrowth, c, xP ),
where (i) vGrowth ∈ R denotes a Growth flux, (ii) c ∈ R|Inp| the
input metabolite concentrations, (iii) xP ∈ (B ∪ {⊥})|P| represents
regulatory protein states, which can be either Boolean values or undefined
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(“⊥”). An observed time series is a sequence of observations TO =

(o0, · · · , om),m ≥ 0.

Compatibility between an observed time series and a RMN. A RMN
and an observed time series TO = (o0, · · · , om), with oi =

(vGrowthi
, ci, xPi

), 0 ≤ i ≤ m, are said to be compatible with
maximum distance K ∈ N and noise rate 0 ≤ ϵ < 1 if there exists a
d-rFBA simulation TS = (ŝ0, . . . , ŝl), l ≥ m, of the RMN, with RMSS
ŝj = (v̂j , ĉj , x̂j), 0 ≤ j ≤ l, and a function g : {0, . . . ,m} →
{0, . . . , l} associating each observation with a RMSS, such that the
following conditions are satisfied for 0 ≤ i ≤ m:
(3.a) 0 < g(i+ 1)− g(i) ≤ K, (3.b) x̂g(i)Inp

= β(ci),

(3.c) ∀p ∈ P, xip ̸= ⊥ =⇒ x̂g(i)p
= xip ,

(3.d)
vGrowthi

1 + ϵ
≤ max

Growth
rMSS(ci, x̂g(i)) ≤

vGrowthi

1− ϵ
.

Eq.(3.a) states that consecutive observations are separated by at most K
d-rFBA simulation steps. Eq.(3.b) ensures the complete match between
the discretized values of the d-rFBA simulation and the observed inputs.
Eq.(3.c) constrains the Boolean states of proteins in the d-rFBA simulation
to be equal to the observed ones, when available. Eq.(3.d) states that the
simulated growth is close (up to the allowed noise) to the observed growth.

Inference problem. Eqs.(2) in Sect. 2.1.3 characterize the admissible
sequences of RMSSs w.r.t. a given RMN and Eqs.(3) the compatibility
between a RMN and an observed time series. The problem of inferring
regulatory rules compatible with a set of observed time series is:

Problem statement tackled by MERRIN: Inferring regulatory rules
from observed time series
Input:
1: a set of observed time series {T 1, · · · , T q}, q ≥ 1;
2: a metabolic networkN = (Int,Ext,R, S);
3: a set of regulatory proteins P;
4: a prior knowledge network (PKN)Gwhose nodes belong to Inp∪P∪R

and such that there is no i
s−→ j ∈ G with i, j ∈ Inp ∪R;

5: a noise parameter ϵ ∈ [0, 1[;
6: a maximum distance K ∈ N between observations.

Output: All BNs f ∈ B|Inp|+|R|+|P| such that:

1: f is locally monotone;
2: G(f) ⊆ G;
3: for each T i the associated RMN (N , Inp,P, f) has a d-rFBA

simulation TS compatible with T i (satisfying Eqs.(3));
4: there is no BN f ′ ∈ F smaller than f considering the local functions

in disjunctive normal form (subset minimality ordering).

In practice, we focus on the smallest (subset-minimal) compatible BNs
by considering a partial ordering between BNs based on the disjunctive
normal form (DNF) of the local functions (Chevalier et al., 2019).
However, our approach can be used to enumerate all compatible BNs,
not only the subset-minimal ones.

2.3 Resolution using hybrid Answer Set Programming

The inference problem relies on hybrid optimization as it requires
exploring the combinatorial domain of putative regulatory BNs constrained
by the PKN, and checking both combinatorial constraints linking
consecutive states of regulatory proteins according to a given observed time
series (Eq.(2.b) and Eqs.(3.b-c)) and linear arithmetic constraints related
to the characterization of RMSSs and vGrowth optimization (Eqs.(1),
Eqs.(2.c-d), Eq.(3.d)). To solve this problem, we used SMT (Satisfiability

Algorithm 1 Hybrid Resolution: T = {T 1, · · · , T q},N , P,G, ϵ,K
1: Inp← {m |m ∈ Ext,∃r ∈ R, Smr > 0}
2: n← |Inp|+ |R|+ |P|
3: F← {f | f ∈ Bn → Bn, G(f) ⊆ G ∧ f is locally monotone}

[ASP solving]
4: select f̂ ∈ F verifying (2.a), (2.b) and (2.crelaxed)
5: RMN ← (N , Inp,P, f̂)
6: for all T i ∈ T do
7: select a family of RMSS {ŝi0, · · · , ŝili} of the RMN satisfying

constraints (3.a), (3.b) and (3.c)
8: end for

[Linear solving]
9: check with linear programming whether (2.c) and (3.d) hold
10: if (2.c) and (3.d) hold then
11: f̂ is a solution
12: else
13: for all oij and its associated RMSS ŝik do
14: oij = (viGrowthj

, cij , x
i
j) and ŝik = (v̂ik, ĉ

i
k, x̂

i
k)

15: if v̂iGrowthk
> (viGrowthj

)/(1− ϵ) then
16: add Eq.(4) with x = x̂i

k

exclude any RMSS associated with oij that do not verify Eq.(4).

17: else if v̂iGrowthk
< (viGrowthj

)/(1 + ϵ) then
18: add Eq.(5) with x = x̂i

k

exclude any RMSS associated with oij that do not verify Eq.(5)

19: end if
20: end for
21: return to step 4
22: end if

Modulo Theory) solving (Barrett and Tinelli, 2018; Janhunen et al.,
2017), by implementing a resolution framework relying on constraint
propagation: whenever a solution satisfying the combinatorial part is
found, the linear part is checked. If the linear check succeeds then the
solution is accepted. If it fails then the solution is rejected and new
constraints are added to the combinatorial part to avoid alternative solutions
which would for sure fail the linear check as well.

The inference from purely combinatorial constraints was formulated
using Answer Set Programming (ASP) (Baral, 2003; Gebser et al., 2012),
a logic programming framework for expressing symbolic satisfiability
problems. Modern solvers like Clingo (Gebser et al., 2017) support
various reasoning modes, including subset-minimal enumeration. The
linear arithmetic constraints were formulated in linear programming.

The constraint propagation exploits a monotonicity property of the
objective vGrowth of RMSSs: for fixed input metabolite concentrations,
inhibiting (resp. releasing an inhibition of) a reaction cannot increase (resp.
decrease) the maximum value of vGrowth . Thus, given input metabolite
concentrations c0 ∈ R|Inp| and an optimal RMSS (v, c0, x), we can
characterize optimal RMSS (v′, c0, x′) for which v′Growth ≤ vGrowth

(Eq.(4)) resp. v′Growth ≥ vGrowth (Eq.(5)) by requiring
(4) ∀r ∈ R, x′

r ≤ xr resp. (5) ∀r ∈ R, x′
r ≥ xr .

This allows performing constraint propagation during the combinatorial
resolution and further reducing the number of linear programming checks.

Algorithm and implementation. The hybrid resolution of the inference
problem is detailed in Algorithm 1. For the sake of simplicity, we
explain the global solving scheme on the full time series T , although the
software implementation extends this algorithm to incomplete time series.
In practice, Algorithm 1 is implemented by extending the Clingo solver,
using its Python API, with a linear constraint propagator, implemented
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with the python PuLP library, and the solver COIN (Forrest et al., 2022).
Each problem instance was executed on Fedora 34 with an 8 core processor
i7-1165G7@2.80GHz and 16GB of RAM.

3 Results

3.1 MERRIN workflow

The MEtabolic Regulation Rule Inference (MERRIN) software
implements the workflow in Fig. 1(a) to infer regulatory rules of a RMN
from possibly incomplete and noisy observed time series (Sect. 2.2 and
3.2) using Algorithm 1.

MERRIN takes as input (i) a metabolic network N =

(Int,Ext,R, S) in SBML format, (ii) a set of regulatory proteinsP (ii) a
set of observed time series T = {T 1, . . . , T q}with their type (complete,
kinetic-fluxomic, kinetic-transcriptomic, transcriptomic) in CSV format,
and (iii) a prior knowledge network (PKN) G in text format. To allow for
incomplete and noisy time series, two parameters can be set: (i) K ∈ N
the maximum number of intermediate unobserved RMSSs for each time
series; (ii) ϵ ∈ [0, 1[ the estimated noise rate. For the rest of the paper, we
will consider ϵ = 0.3 and K = 10.

The search space F consists of all Boolean networks (BNs) f of
dimension n = |Inp| + |R| + |P| whose influence graph G(f) is a
subgraph of the PKNG. The size ofF is doubly exponential inn. MERRIN
returns as output all subset-minimal locally monotone regulatory BNs
f ∈ F such that the associated RMN (N , Inp,P, f) is compatible with
the observed time series T = {T 1, . . . , T q}.

3.2 Application to a core regulated metabolic model

Problem instance. To validate our approach, we applied MERRIN to
synthetic data generated for a core regulated metabolic network originally
proposed in (Covert et al., 2001), which we refer to as the gold standard.
(i) The metabolic layer of the gold standard (see Fig. 2(a)), also serving
as input for MERRIN, contains 20 reactions and 8 external metabolites,
among them the 5 inputs Carbon1, Carbon2, Oxygen, Fext, Hext. (ii) The
regulatory layer of the gold standard involves the four regulatory proteins
RPcl, RPO2, RPb, RPh. (iii) In order to explore alternative regulatory rules
that could explain the observed time series data, we consider the PKN in
Fig. 2(b), which includes for each edge in the influence graph of the gold
standard all possible combinations of signs and directions. Moreover, two
edges from Carbon2 to RPcl, and four edges between RPcl and Tc1 were
added as possible alternative regulations to be explored. It follows that the
search space to be explored by MERRIN contains ≈ 1.8 × 1015 locally
monotone BNs, including the gold standard.

Degraded time series generation. We used the workflow in Fig. 1(b) to
generate a benchmark of 240 time series sets. First FlexFlux (Marmiesse
et al., 2015) was used to generate complete kinetic-fluxomic-
transcriptomic (KFT) d-rFBA simulation data for the five environmental
conditions of the core RMN (see Suppl. Sect. 3.1), each yielding 301
RMSS (initial biomass = 0.1g.L−1, steps = 300, intervals = 0.01h).
Then, for each complete KFT time series, we generated (i) a kinetic-
fluxomic (KF) time series by removing the values of the regulated proteins,
(ii) a kinetic-transcriptomic (KT) time series by discretizing all fluxes to
binary values (iii) a transcriptomic (T) time series by discretizing all fluxes
and metabolite concentrations to binary values. The resulting time series
were further compressed by removing redundant time points to emulate
biological experiments where only a few selected measurements are made.
Finally, for each of the five environmental conditions and each type of data
(KFT, KF, KT, T), we generated 60 random time series at different noise
rates (0%, 10%, 20%, 30%, 40% and 50%), by randomly deleting time
points and increasing or decreasing quantitative values. Altogether we
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Fig. S1. (a) Workflow of the MERRIN software for metabolic regulation rule inference.
(b) Degraded time series generation procedure: generation of 240 time series for the
RMN of (Covert et al., 2001), with different levels of incompleteness and noise.

obtained 240 sets of 5 incomplete and/or noisy time series, each including
6 to 18 time points after the compression step.

Inference scores. The quality of MERRIN predictions was evaluated on
two different levels. First, we measured the distance between the observed
time series, on which the inference was based, and the time series obtained
by simulating the inferred model. The distance between two RMSS time
series S = {s0, · · · , sm} and Ŝ = {ŝ0, · · · , ŝm} w.r.t. a set of
components A was computed as the residual sum of squares (RSS):
RSSA =

∑m
i=0

∑
a∈A(sia − ŝia)

2. We used RSSP to measure the
accuracy of the prediction of the time series for the four regulatory proteins
(RPcl, RPO2, RPh, RPb) and RSSExt to measure the accuracy of the
prediction of the time series of the eight external metabolites (Carbon1,
Carbon2, Oxygen, Hext, Fext, Dext, Eext, Biomass).

Second, we measured the ability of MERRIN to infer the expected
regulations using the recall and precision of the inferred BN. Given BNs
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Fig. S2. (a) Regulated metabolic network from (Covert et al., 2001). Lower part is the metabolic network. The nodes are metabolites and the black hyperedges are reactions. Upper part
is the regulatory network. The nodes are regulatory proteins. Edges represent the Boolean functions: green edges denote activation, red edges inhibition. Yellow highlighted edges are the
inferred regulation from the complete noise-free time series. (b) Set of permitted interactions use for the inference. Red edges, solid and dot, are inhibitions. Green edges, solid and dot, are
activations. The set of solid edges describes the influence graph of the regulatory network of (a). (c) FlexFlux simulations of the inferred RMN (yellow highlighted regulations in (a)) using
the experimental conditions of (Covert et al., 2001). These simulations are identical to the simulations of the reference RMN.

f and f̂ , the recall of G(f̂) w.r.t. G(f) is the fraction of edges of G(f)

in G(f̂), i.e., recall = |G(f) ∩ G(f̂)|/|G(f)|, where |G(f)| denotes
the number of edges. The precision of G(f̂) w.r.t. G(f) is the fraction of
edges of G(f̂) in G(f), i.e., precision = |G(f) ∩G(f̂)|/|G(f̂)|.

3.3 Performance of MERRIN on complete data

MERRIN was first applied to the complete noise-free kinetic-fluxomics-
transcriptomics (KFT) time series corresponding to the five different
environmental conditions. On this input, MERRIN inferred exactly one
smallest regulatory BN in 6.95s. The inferred regulatory rules are shown
with yellow highlighted edges in Fig. 2(a). The BN contains seven
regulatory rules (for RPO2, RPcl, RPh, RPb, Tc2, R2a and R8a) of the
gold standard, three of which regulate reaction activity. It has a precision
of 1, meaning that all seven regulatory rules are in the gold standard; and
a recall of 0.64, because four of the regulatory rules of the gold standard
have not been retrieved (rules for R5a, R5b, R7 and Rres). Both RSSs are
equal to 0: although the recall is not 1, the d-rFBA simulations of the five
experiments with the inferred regulatory BN (Fig. 2(c)) match exactly the
complete noise-free time series. The unrecovered regulatory rules of the
gold standard are not necessary to explain the observed time series.

This is consistent with the discussion in (Covert et al., 2001) that the
regulation of Rres is not necessary for the optimal solution. Biologically,
this regulation is only present to ensure that unnecessary respiratory
enzymes decay in an anaerobic environment. However, since enzyme
amounts are not explicitly represented in the d-rFBA framework, the time
series do not reflect this biological behavior, hampering the inference of
the regulation. Similarly, R5a and R5b were introduced in the RMN to
model that aerobic and anaerobic carbon synthesis is catalyzed by different
enzymes. However, these enzymes are not included in the model and both
reactions are strictly equivalent. It is therefore not surprising that MERRIN
cannot infer the regulation stating which of the two reactions should be
selected. Finally, the missing regulation of R7 in the inferred RMN is
explained by the fact that R7 cannot be activated in d-rFBA simulations
optimizing growth because its activation would consume carbon and
energy, leading to a decrease in biomass synthesis. Therefore, regulating
R7 is not necessary to explain its activity in the simulations.

3.4 Impact of data incompleteness and noise

Range of application of MERRIN. When considering higher degradation
rates (40% and 50%), 9 of the 60 test instances reached the time limit of
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600s (see Suppl. Sec. 3.2.1). The number of BNs also increased drastically
at 50% degradation, as well as the RSS scores, suggesting that the
degradation rate of 30% is the limit for the MERRIN approach. As shown
in Suppl. Sect. 3.2.2, we also tested the case of kinetic-fluxomics instances.
Such instances do not contain any information on the four regulatory
protein states, making it difficult to infer regulatory rules between proteins
and reactions. As expected, MERRIN is not able to correctly determine
the regulatory rules controlling them. This leads to time-consuming
enumeration of a very large number of BNs, all compatible with the
observed time series, but considering all the possible regulatory protein
states. Based on these results, we suggest to use MERRIN only on kinetics
and transcriptomics real data sets. According to the design of MERRIN,
proteomics data can be viewed as alternative to transcriptomics data if they
are available. Therefore, in the following, we focus only on the data types
KFT (kinetic-fluxomics-transcriptomics), KT (kinetics-transcriptomics)
and T (transcriptomics) with a degradation rate between 0 and 30%, which
represents 120 instances.

Number of models inferred by MERRIN. Fig. S3 shows the number of
subset-minimal models inferred by MERRIN in the given time limit for
the 120 tested instances . When a solution was reached in the time limit,
MERRIN inferred at most two subset-minimal models. In total, 134 BNs
were inferred from the 120 instances. Among these 134 BNs, there were
only 15 different BNs, see Fig. 2 in the Suppl. Sect. 3.2.2. For each of these
models, we computed the precision and recall (see Sect.3.2) with respect
to the gold standard (see Suppl. Sect. 3.2.3, Fig. 3). For 110 instances out

of 120, the precision is equal to 1, meaning that all the regulatory rules
inferred in these BNs are present in the gold standard. The maximum recall
is equal to 0.64, while the minimum recall is 0.55.

Performance. Among the 120 instances of our benchmark, only one has
reached the time limit (grey square in Fig. S3). For this instance, we
do not have any information whether or not there is a solution. In 3 out
of the 120 instances (Fig. S3), MERRIN reported that no BN satisfied
the constraints. This happens only at 30% noise rate. For the 116 other
instances, the average inference time was 25.975s.

Simulation scores. For each of the 134 BNs inferred, we compared the
associated d-rFBA time series of external metabolites and regulatory
proteins to the ones of the gold standard using the RSSExt score
(Fig. S3(a)) and the RSSP score (Fig. S3(b)). In Fig. S3, green
squares correspond to cases where MERRIN inferred a unique BN
whose associated RMN has exactly the same r-dFBA simulations as the
gold standard (RSSExt = 0 (Fig. S3(a)) and RSSP = 0 (Fig. S3(b))).
Interestingly, the same BN was inferred for each green square, and this BN
is the same as the one obtained on complete data (Fig. 2(a)) Yellow squares
of Fig. S3 stand for BNs reproducing the gold standard RMN simulations
with a very small error. These errors are due to missing regulatory rules. For
example, all the BNs with RSSExt < 1 and RSSP = 1 are BNs for which
the regulatory rule of reaction R2a has not been inferred. Red squares
correspond to the worst possible RSSExt (> 1 000), equivalent to cases
in which no regulatory rules were inferred. This happens twice among the
120 experiments.

Impact of degradation rate. A vertical bar of 10 green squares in Fig. S3
means that MERRIN inferred, for each of the 10 test instances, a unique
BN that perfectly matches the gold standard. This occurred only for KT and
KFT instances with no degradation in the input time series. RSSExt and
RSSP increased with the degradation rate, as one should expect. However,
most of the RSS scores are very small, emphasizing that the inferred BNs
can almost perfectly reproduce the gold standard when the degradation
rates is less than 30%.

Impact of the type of data. The results are identical for the complete
(KFT) and the kinetic-transcriptomics (KT) instances (except one KP at
30%, which reached the time limit of 600s). This could be expected since
MERRIN reasons over binarized fluxomics data, which once binarized are
identical to the qualitative information provided by transcriptomics data.
In addition, the inferred BNs from the KFT and KT time series reproduce
the gold standard with good precision most of the time, except in two cases
(red squares).

For transcriptomics (T) time series instances, our results show that no
inferred BN was able to perfectly reproduce the gold standard. However,
for each inferred BN both RSSExt and RSSP are small: RSSP ≤ 1

for all, except for two instances, and RSSExt < 1. This suggests that
without information on external metabolite concentrations, it is harder for
MERRIN to explain if the observed RMSS is due to some regulations or to
a specific combination of external metabolite concentrations. In this case,
regulatory rules, such as the rule controlling the reaction R2a, are missed.

4 Discussion and conclusion
We introduced MERRIN, a novel approach to infer rules for metabolic
regulation in changing environments. MERRIN is based on the d-rFBA
framework, which combines discrete simulations of Boolean networks,
modeling the activity of regulatory proteins, with the prediction of
metabolic response, based on linear programming.
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Advantages of using constraint propagators. A characteristic of the
inference problem is that the set of BNs verifying both combinatorial
and linear constraints is small compared to the set of BNs verifying
only the combinatorial constraints. To address this issue, our resolution
implements a Satisfiability Modulo Theory (SMT) approach with a
dedicated algorithm for combining Boolean satisfiability with linear
programming: we designed a constraint propagation strategy on top of
the Answer Set Programming solver Clingo by exploiting a monotonicity
property of the optimization objective in RMNs. This strategy reduced
substantially the number of candidate solutions to be validated, by
generalizing counterexamples satisfying the combinatorial constraints but
not the linear ones encountered during the search.

Possible strategies to infer all regulatory rules. MERRIN infers
regulations only when they improve the fitting between observations and
simulations, which depends on the underlying optimality principle (here
optimizing growth). Since the presence of some regulations from the
gold standard does not affect the fitting, it is not possible for MERRIN
to infer them. Inferring more regulations would require to introduce
enzyme amounts and their synthesis. Methods such as r-deFBA (Liu and
Bockmayr, 2020), should allow solving this issue.

Impact of the synchronous simulation assumption. The d-rFBA framework
as defined in (Covert et al., 2001; Marmiesse et al., 2015) uses
synchronous simulation of BNs (the state of all regulatory proteins is
updated simultaneously). While our implementation allows considering
asynchronous simulation, this results in a less constrained model. Indeed,
the fact that a regulatory protein has the same state in two consecutive
steady states could be explained either with the application of a regulatory
rule, or by the absence of an update. Therefore, considering asynchronous
updates would probably require considering further time constraints in
order to match the experimental observations.

Use of synthetic data to validate network inference. The validation of
methods related to the inference of regulatory rules can be misleading
since there is no reference multi-layer data set or reference RMN allowing
large-scale validations. As discussed in (Covert et al., 2001) and confirmed
in (Thuillier et al., 2021), even in the most complete (small-scale) gold
standard RMN introduced in (Covert et al., 2001), some regulatory rules
introduced according to literature-based knowledge have no impact on the
RMN simulation. To address this issue and to test our approach, we used a
benchmark strategy consisting in generating several types of data from the
simulations of a gold standard. This allowed testing the robustness of the
MERRIN approach in different scenarios of data types (combinations of
kinetics, fluxomics and transcriptomics data) and noise (up to 50% noise
introduced in the data). We argue that such a benchmark strategy could be
used in a similar way to test the robustness of any other dynamical network
inference method when only few reference data are available.

Impact of data types and quality. According to our results, the performance
of MERRIN on kinetic and transcriptomics data is similar to complete
data (kinetic, fluxomics and transcriptomics). This suggests that inferring
regulatory rules of metabolic networks actually would not require
fluxomics data, which are most probably the hardest data to obtain
experimentally. In this direction, a perspective to extend the MERRIN
approach would be to identify the best experimental designs to discriminate
the models associated with the PKN. In addition, MERRIN seems to be
sensitive to noise only for single fluxomics data. In all other cases, up to
30% noise in the data has few impact of the MERRIN performance.

Scalability. The computation times in this study are encouraging for
inferring regulations in larger networks. Handling linear constraints

reduces to FBA, which can be done efficiently on genome-scale networks.
However, this has to be done many times during combinatorial search.
Thus, for inferring large-scale regulated metabolic networks improved
constraint propagation techniques may become necessary to further prune
the combinatorial search space.
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Abstract

This is the supplementary file of: MERRIN: MEtabolic Regulation Rule INference from time series data.

1 Notations
|X|. The cardinality of a finite set X is denoted by |X|.

xI . Given a vector x ∈ Dn and a set of indices I ⊆ {1, · · · , n}, xI

denotes the vector of dimension |I| equal to (xi)i∈I .

B. The Boolean domain is denoted by B = {0, 1}.

β(s). Given a non-negative real vector s ∈ Rn
≥0, we denote by β(s) ∈

Bn its binarization, i.e. ∀i ∈ {1, . . . , n}, β(s)i = 1, if si > 0, and
β(s)i = 0, if si = 0.

2 Boolean over-approximation of RMSS
This section is a complement to Sect. 2.1.3 and details the Boolean
relaxation of the Eq.(2.c).

Boolean over-approximation of regulatory-metabolic steady state (B-
RMSS) of a RMN (N , Inp,P, f) can be defined as a triplet (v, c, x) ∈
B|R|×B|Ext|×B|Inp|+|P|+|R| (Thuillier et al., 2021) associating binary
reaction states v, external metabolite availabilities c, and a regulatory state
x. The binary reaction states v must satisfy a relaxed form of Eqs.(1):

(1.arelaxed) ∀m ∈ Int,
∨

r∈RSmr>0

vr ⇐⇒
∨

r∈R,Sr,m<0

vr

(1.brelaxed) ∀r ∈ R, xr = 0 =⇒ vr = 0

(1.crelaxed) ∀m ∈ Inp, ∀r ∈ R, Smr < 0 =⇒ vr ≤ cm

Let us denote by S the set of all the B-RMSS of the RMN
(N , Inp,P, f) (satisfying the relaxed equations Eqs.(1relaxed). Eq.(2.c)

can be relaxed by considering B-RMSS instead of RMSS, thus:

(2.crelaxed) (v′, c′, x′) ∈ S

It must be noted that the set of binarised RMSS is included in S, i.e.
∀(v, c, x) ∈ S, (β(v), β(c), x) ∈ S. The converse is not true.

3 Results

3.1 Experiment conditions of Covert et al. (2001)

This section is a complement to Sect. 3.2 and details the initial states of
the 5 experiment conditions described in Covert et al. (2001).

The 5 experiment conditions of Covert et al. (2001), used to generate
our experimental time series, are shown in Tab. S1. Each experiment is
based on a different set of initial input metabolite concentrations c and
the regulatory state x is initialized such that: (i) ∀r ∈ R, xr = 0, (ii)
∀i ∈ Inp, xi = β(ci), (iii) for each regulatory protein we apply the
associated regulatory rule: xRPcl = β(cCarbon1), xRPO2 = β(cOxygen),
xRPb = 0 and xRPh = β(cHext).

Input metabolite concentration (mmol.L-1) Regulatory protein state
Experiment cCarbon1 cCarbon2 cOxygen cFext cHext xRPcl xRPO2 xRPb xRPh

1 10 10 100 0 0 1 0 0 0
2 0 10 5 0 0 0 0 0 0
3 0 10 100 0 2 0 0 0 1
4 0 5 100 0 10 0 0 0 1
5 1 10 100 0.1 5 1 0 0 1

Table S1. Experiment conditions used to generate the 5 simulations of (Covert
et al., 2001).
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3.2 Inferring from non-complete noisy time series

This section is a complement to Sect. 3.4.

3.2.1 Comparing the d-rFBA simulations
RSS scores (RSSExt and RSSP ) of the regulatory inferred on the 240
instances.

For each regulatory BN inferred for the 240 instances, we compared
the associated d-rFBA time series of external metabolites and regulatory
proteins to the ones of the gold standard model using the RSSExt score
(Fig. S1(a)) and the RSSP score (Fig. S1(b)).
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Fig. S1. RSS depending on datatype and degradation level. Each vertical bar
corresponds to the results of MERRIN on the 10 instances associated with a considered
datatype (KF, KFT, KT, T) and degradation level (0%, 10%, 20%, 30%, 40%, 50%). The
different colors represents the score range ((a) RSSExt and (b) RSSP ) of the solution (see
legend).

Kinetic-fluxomics instances. Kinetic-fluxomics (KF) instances do not
contain any information on the four regulatory protein states. As expected,
MERRIN is not able to determine the regulatory protein states (Fig. S1(b))
from this datatype leading to the enumeration of a huge number of
compatible BNs. Here, we have restricted the number of solutions to
enumerate to 51, this limit was reached for each (KF) instance that admits
a solution to the inference problem. Thus, we do not recommend to use
MERRIN on KF instances.

Impact of the degradation rate. Our results show that MERRIN could
not infer any regulatory BNs on the datatype KFT, KF, and KT with a
degradation rate strictly greater than 30%. For T instance, the number
of inferred BNs increased significantly at 40% and 50% of degradation.
Moreover, at high degradation level, both RSSP and RSSExt decrease
drastically: a huge part of the BNs inferred for T instances have an RSSP
and an RSSExt greater than 100. Thus, we do not recommend to use
MERRIN on instances having a degradation level higher than 30%.

3.2.2 Inferred regulatory BNs
Enumerations of the 15 different regulatory BNs inferred from 120
instances.

In this section, we focus on the results obtained on 120 different
time-series instances: complete (KFT), kinetic-transcriptomics (KT), and
transcriptomics (T) instances with a noise ranging from 0% to 30%
(Sect. 3.4).

Let us consider the metabolic networkN , the set of inputs metabolites
Inp and the set of regulatory proteinsP given as input to MERRIN. There
are 15 different regulatory BNs that have been inferred on the 120 instances,
for each inferred regulatory BN f , the RMN (N , Inp,P, f) is shown in
Fig. S2 with their respective scores: precision, recall, RSSP , RSSExt.

Best result. The regulatory BN of Fig. S2(b) is the one inferred on the
complete (KFT) datatype with 0% of degradation. It allows exactly
reproducing the 5 d-rFBA simulations of Covert et al. (2001) used to
generate the input time series. This BN has been inferred on 58 of the 120
instances and only on the datatype KFT and KT.

Worst result. Among the 15 regulatory BN, the regulatory BN of Fig. S2(p)
has the worst RSSs scores: RSSP = 89 and RSSExt = 1194.07. These
scores are due to the absence of regulation controlling the reaction Tc2
which inhibits the consumption of Carbon2 if some Carbon1 is available.
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Fig. S2. (a) Regulatory BN of the gold standard model (Covert et al., 2001).
(b)-(p) Set of 15 regulatory BNs inferred from the 120 instances representing kinetic-fluxes-
transcriptomics (KFT), kinetic-transcriptomics (KT), and transcriptomics (T) observations
with a noise ranging from 0% to 30%.

3.2.3 Comparisons with the gold standard regulatory BN
Recall and precision scores of the inferred BNs.

Let us focus on the 120 instances (datatype KFT, KT, and T with
a degradation level between 0% and 30%). For each inferred BN, we
computed the recall and the precision according to the gold standard
regulatory BN. Fig. S3 represents the worst recall and the worst precision of
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each one of the 120 instances depending of the datatype and the degradation
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Fig. S3. Worst recall and precision depending of data type and degradation level. For each
instance of the considered datatype (KFT, KT, T) and degradation level (0%, 10%, 20%,
30%), only the worst recall and worst precision are considered. Each circle corresponds to
a set of instances of identical datatype and degradation levels having the same worst recall
and worst precision.

level. Our results show that, except for 8 instances, MERRIN inferred BNs
having a precision of 1 and a recall between 0.45 and 0.64, meaning that
at least 50% of the edge of the influence graph of the gold standard are
correctly retrieved.

The degradation level seems to have the greatest impact on the precision
score: all, except one, instances with a worst precision lower than 1 have
a degradation level of 30%. For the recall, it appears that it is the datatype
that has the bigger impact: T instances have a smaller recall than the other
KFT and KT instances. This last result can be easily explained by the
fact that T instances do not have any information on the input metabolite
concentrations, thus it is harder to define if an observed RMSS is due to a
specific concentration of input metabolites or to some regulatory states.
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V A Generic Solving Framework for
Optimization Modulo Quantified Linear
Arithmetic Problems

In this chapter, we introduce a generic solving framework for optimization problems
under logic and quantified linear constraints, and its implementation MerrinASP.
This framework is a generalization of the hybrid solving framework developed
for solving the flux-based inference problem in Chapter IV. The results of this
chapter have been presented at the Association for the Advancement of Artificial
Intelligence conference (AAAI) of 2024 and the associated paper published in
Proceedings of the 38th AAAI Conference on Artificial Intelligence (Thuillier et al.,
2024).

To sum up
The inference problem is an example of an optimization problem under lo-
gic and quantified linear constraints (OPT+qLP). This chapter introduces a
novel generic framework to solve OPT+qLP problems, and its implementation
MerrinASP. It generalizes the hybrid solving method used for the flux-based
inference problem of Chapter IV to solve a broader class of optimization prob-
lems. It relies on the so-called Counter-Example Guided Abstract Refinement
(CEGAR) methods and monotone properties over linear problem structures to
learn new constraints and filter spurious candidate solutions directly during
the solving process. Our implementation of this framework, MerrinASP, has
shown to be 10 times more efficient in solving the inference problem than
other ASP-based hybrid solvers. In particular, it is now possible to solve the
inference problem on medium-scale regulated metabolic networks.
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1 Problem Statement

OPT+qLP problems. In Chapter IV, we introduced a dedicated hybrid solving
framework for the flux-based formulation of the inference problem. This specific
formulation of the inference problem is part of a broader class of hybrid optimization
problems: optimization problems under logical constraints and quantified linear
constraints (OPT+qLP).

For the flux-based inference problem, the phenotype compatibility is expressed
as a constraint over the maximal growth allowed by a substrate state w and a
regulatory state x. Let rMSS(N , w, x) denote the set of metabolic states of the
metabolic network N that are compatible with w and x. Given the observed
growth v̂growth and a noise rate parameter 0 ≤ ε < 1, we recall the definition of the
phenotype compatibility for the flux-based inference in Eqs. V.1.

v̂growth

1 + ε
≤ vgrowth (V.1a) max

v′∈rMSS(w,x)
v′growth ≤

v̂growth

1− ε (V.1b)

These equations can be rewritten as equivalent formulas using universal quantifiers
instead of the maximization operator (Eqs. V.2). Indeed, if the maximal growth
satisfies the upper bound in equations V.1b, then all regulated metabolic steady-
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states (RMSSs) have growths that satisfy the upper bound (V.2b).

∃ v′ ∈ rMSS(w, x),
v̂Growth

1 + ε
≤ v′Growth (V.2a)

∀ v′ ∈ rMSS(w, x), v′Growth ≤
v̂Growth

1− ε (V.2b)

OPT+qLP abstraction. Based on this reformulation of phenotype compatibility,
we define a new formulation of the inference problem equivalent to the flux-based
formulation: the OPT+qLP formulation of the inference problem.

OPT+qLP formulation of the inference problem

Input:
1: a metabolic network N = (Mext ∪ Mint,R, s) with an objective reaction

‘growth’;
2: a set of regulatory proteins P ;
3: a set of observed time series {T 1

o , · · · , T qo }, q ≥ 1;
4: a prior knowledge network G of dimension n = |P|+ |Mext|+ |R|;
5: a maximum distance Kmax ∈ N between observations;
6: a noise rate parameter ε ∈ [0, 1[.

Output: arg min
f∈F(G)

q∑

k=1

lk

such that:

∀ Tk ∈ {T1, · · · , Tq}, ∃ {(vj, wj, xj)}lkj=1 ∈ rFBA(N ,P , f), ∀ 1 ≤ i < |Tk|,
|Tk| ≤ lk ≤ |Tk|+Kmax (V.3a)
∧ 0 < gk(i+ 1)− gk(i) (V.3b)

∧ (vgk(i), wgk(i), xgk(i)) and (v̂i, ŵi, x̂i) are data-compatible (V.3c)

∧
v̂igrowth

1 + ε
≤ v

gk(i)
growth (V.3d)

∧ ∀ v′ ∈ rMSS(N , wgk(i), xgk(i)), v′growth ≤
v̂igrowth

1− ε (V.3e)

where gk : [0, |Tk|] → [0, lk] is a bijective function mapping observations of the
observed time series Tk to RMSSs of the trace {(vj, wj, xj)}lkj=1.
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CEGAR-based solving framework. In this chapter, we introduce a generic hybrid solv-
ing framework to solve any OPT+qLP problems. This generic framework is based
on the Counter-Example Guided Abstract Refinement (CEGAR) framework (Clarke
et al., 2003),

The CEGAR framework relies on the same principles as MERRIN ’s framework
(Chapter IV). A Boolean over-approximation of the OPT+qLP problem is solved
with a SAT or ASP solver. If this Boolean abstraction is unsatisfiable, then
the OPT+qLP problem is unsatisfiable too. Otherwise, a model of the Boolean
abstraction is found. This model is a solution to the OPT+qLP problem if it
satisfies the quantified linear constraints. Otherwise, it is a counter-example, and
the abstraction is refined with additional constraints derived from the counter-
example. This iterative process continues until either the OPT+qLP problem is
proven to be unsatisfiable or all its models have been enumerated.

The counter-example generalization used in Chapter IV is based on a monotone
property on optimal metabolic fluxes for sets of inhibited reactions. In practice,
adding an inhibition on a reaction r can be seen as adding a new linear constraint
that fixes the metabolic flux of r to 0, i.e. adding the constraint vr = 0 to the
FBA. Consequently, we extend this property over optimal metabolic fluxes to a
monotone property over the optimum values of linear optimization problems for
sets of linear constraints (Property 4 in the paper).

Outlines. It’s crucial to emphasize that the CEGAR-based solving framework
presented in this chapter is not just a mere formalization of the solving method
introduced in Chapter IV. In addition to introducing a generic framework for
efficiently solving OPT+qLP problems, we introduce novel contributions. In the
next sections, we present two of these contributions: the generalization of core
conflicts (Section 2.1), and a linear quantifier elimination method (Section 2.2). By
encoding the OPT+qLP inference problem with MerrinASP, our implementation
of the CEGAR-based solving framework, we achieve scalability for medium-scale
instances on the inference problem (Section 3).

2 Contributions of AAAI’s paper

2.1 Core Conflicts Generalization

Overview of the core conflicts and constraints generations described in Section
Counter-Examples Generalization of the paper. Explanations are given regard-
ing the inference problem.
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For the rest, let f be a Boolean network (BN) and Rf be the set of reactions
participating in f , i.e. the set of reactions that are regulated or that influenced a
regulatory rule. Let Ri ⊆ Rf be a set of inhibited reactions at time i.

Challenge. In Chapter IV, we introduce a dedicated hybrid solving framework for
the flux-based inference problem, and its implementation MERRIN. This dedicated
framework uses counter-example generalization to prevent spurious candidate BNs
from being generated by the ASP solver. In particular, it generates new constraints
for each spurious Boolean metabolic steady-state (BMSS), i.e. not satisfying the
FBA or the phenotype-compatibility constraint, associated with the spurious BNs.

Given i the timestep of a spurious BMSS and its sets of inhibited reactions Ri,
the generated constraints prohibit either any subsets ofRi, if the optimum growth is
greater than the observation, or any supersets of Ri, if the optimum growth is lesser
than the observation. While this method enables MERRIN to scale on the model
of core-carbon metabolism, it does not filter spurious solutions sufficiently to scale
to larger models. Therefore, it is necessary to enhance the constraint generalization
method to reduce the number of spurious candidate solutions generated.

Challenge
Improving the constraint generalization method to better filter spurious can-
didate BNs.

Conflicts. There are two types of linear conflict: existential conflict and universal
conflict. According to the inference problem, the former corresponds to an observa-
tion for which there are no metabolic steady-states that satisfy the observed growth
or the FBA equations. It fails to satisfy Eq. V.3d of the OPT+qLP inference
problem. Existential conflicts are generalized by prohibiting subsets of inhibited
reactions from being selected. The latter is an observation for which the optimal
growth allowed by the regulatory state is greater than the observed growth. It fails
to satisfy Eq. V.3e. Universal conflicts are generalized by prohibiting supersets of
inhibited reactions from being selected.

Unsatisfiable cores. A set of inhibited reactions Ri has 2|Rf\Ri| supersets. The
smaller the set of inhibited reactions, the more supersets it has. Therefore, when we
generalize an existential conflict, we want to generate constraints from the smallest
set of inhibited reactions. Given Ri, an unsatisfiable core is a smallest subset of
Ri that still induces an existential conflict. Unsatisfiable cores are widely used
in modern Satisfiability Modulo Theory (SMT) solvers to generalize existential
conflicts (Cimatti et al., 2011; Khasidashvili et al., 2015; Zeljić et al., 2017). The
constraint generated by an unsatisfiable core is defined in Eq. 6 of the paper.
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There are no efficient methods to compute minimum unsatisfiable cores. A
naive, and widely spread, approach consists of iterating over each inhibited reaction.
If removing the reaction still leads to an existential conflict, then the reaction is
removed. Otherwise, the reaction is kept. At the end of the process, the remaining
reactions form an unsatisfiable core. This method does not guarantee to generate
the smallest unsatisfiable core. However, it allows computing an unsatisfiable core
by sequentially solving |Ri| linear optimization problems.

Optimal cores. Based on unsatisfiable cores, we introduce optimal cores to gen-
eralize universal conflicts. An optimal core of a set of inhibited reactions Ri is
the largest superset of Ri that still leads to universal conflict. The larger the
optimal core, the more it has subsets, and the more spurious candidate it filters.
By Property 4, if an optimal core leads to a universal conflict, all its subsets will
also lead to universal conflicts. The constraint generated by an optimal core is
defined in Eq. 7 of the paper.

Computing an optimal core from a set of inhibited reactions Ri is made by
sequentially solving |Rf | − |Ri| linear optimization problems. The idea is to iterate
over each reaction r ∈ Rf \ Ri that is not inhibited. If adding the reaction still
leads to a universal conflict, then the reaction is added Ri. At the end of the
process, Ri is an optimal core. As for unsatisfiable cores, this method does not
guarantee to generate the largest optimal core.

Solution – in short
Given a conflicting set of inhibited reactions Ri, the new constraints are
generated from core conflicts: unsatisfiable cores or optimal cores. Unsatisfiable
cores are minimal subsets of Ri, and optimal cores are maximal supersets
of Ri according to Rf . Core conflicts can be linearly computed from Ri by
sequentially solving at most |Rf | linear optimization problems. They increase
the number of spurious solutions filtered by the counter-example generalization.

In practice. Interestingly, while computing core conflicts needs to solve numerous
linear optimization problems, they still represent huge performance gains. In
practice, we notice fewer calls to linear solvers when using core conflicts than
without them. Indeed, preventing the generation of spurious solutions is more
efficient than solving hundreds of linear optimization problems.

Regarding the inference problem, core conflicts allow for scaling on medium-scale
regulated metabolic networks. For instance, no BNs were inferred in 24 hours on
instances of the medium-scale regulated metabolic network (RMN) without the use
of core conflicts, while it took less than 2 minutes to infer a first BN with them.
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2.2 Linear Quantifier Elimination

Description of the linear quantifier elimination used to generate quantifier-free
instances of the inference problem in Section Results of the paper.

Satisfiability Modulo Theory solvers. To figure out if our CEGAR-based solving
method is the best solving method for OPT+qLP problems, we need to compare
its performances against other hybrid solvers. Recall that the inference problem is
a Satisfiability Modulo Theory (SMT) problem that merges optimization, logical
constraints, and quantified linear constraints. Although there are SMT solvers,
like z3 (De Moura and Bjørner, 2008), that can theoretically handle optimization,
logical constraints, and quantified linear constraints, we found that they do not
support problems with both a Boolean objective function to optimize and universal
quantifiers. With z3, we get warning messages about optimization with quantified
constraints not being supported. They are several posts on GitHub1 and Stack-
Overflow2 about these issues. Moreover, SMT solvers are not as efficient in solving
highly combinatorial problems as ASP-based solvers (Gebser et al., 2014). We
confirm these last results on simplified instances of the inference problem, by only
keeping the logical constraints (i.e. we remove the optimization constraints and
quantified linear constraints): ASP was about 10 times faster than z3 to find a
first solution. SMT solvers are therefore not adapted to solve the inference problem
efficiently.

To the best of our knowledge, there are no ASP-based solvers that handle
quantified linear constraints. However, there exist ASP-based solvers that handle
quantifier-free linear constraints, such as clingo-lpx (Janhunen et al., 2017). Clingo-
lpx extends the ASP solver clingo (Gebser et al., 2017) with an incremental
implementation of the simplex algorithm (Dutertre and De Moura, 2006). To
compare our solving framework with clingo-lpx, we need to convert the inference
problem into an optimization problem under quantifier-free linear constraints
(OPT+LP).

Challenge
Defining a linear quantifier elimination method to convert the quantified linear
constraints into equivalent quantifier-free linear constraints.

Linear optimization problem. As described in Theorem 2 of the paper, ensur-
ing the satisfiability of universally quantified constraints comes down to ensuring

1https://github.com/Z3Prover/z3/issues/6941
2https://stackoverflow.com/questions/59363694/quantifiers-with-maxsmt-in-z3
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maximize cT · z
such that A · z ≤ b

with z ∈ Rp

(a) Primal formulation

minimize bT · y
such that AT · y = c

with y ∈ Rq+

(b) Dual formulation

� Figure 16 – Primal (a) and dual (b) formulations of the linear optimization problem
(A, b, c). If the primal formulation has p variables and q constraints, its dual formulation
has q variables and p constraints.

constraints over optimal values of linear optimization problems. Therefore, trans-
forming a linear optimization problem into an equivalent linear satisfiability problem
will allow the elimination of universal linear quantifiers.

For the rest, we model a linear optimization problem over p variables and q
constraints as a triplet (A, b, c)3 with (i) A the q × p matrix of linear constraint
coefficients, (ii) b ∈ Rq the constraints upper bounds, and (iii) c ∈ Rp the linear
coefficient of the objective function. Any linear optimization problem (A, b, c) has
a primal formulation and a dual formulation, described by Fig. 16a and Fig. 16b,
respectively. While the primal formulation has p variables and q constraints, the
dual formulation has q variables and p constraints. The dual formulation is built
such that each variable (resp. constraint) of the primal formulation becomes a
constraint (resp. variable) in the dual formulation.

Duality theorems. For linear optimization problems, both the weak and the strong
duality theorems hold. The weak duality theorem states that the objective
value of all feasible solutions of the primal formulation is lesser or equal to the
objective value of all feasible solutions of the dual formulation, i.e. ∀ z ∈ Rp,∀ y ∈
Rq+, (A · z ≤ b ∧ AT · y = c) =⇒ cT · z ≤ bT · y. In particular, if the primal
formulation is unbounded, then the dual formulation will be unsatisfiable. If
the primal formulation is not satisfiable, then the dual formulation can either be
unbounded or unsatisfiable. Moreover, the strong duality theorem states that if
the primal formulation has an optimal solution, then the dual formulation has an
optimal solution too and that both optimums are equal.

Linear quantifier elimination. If the primal formulation of (A, b, c) has an optimal
value, i.e. is satisfiable and bounded, its dual formulation has an optimal value
too. Let Λ ∈ R be an upper bound of the optimal value of the primal formulation.
From the duality theorem, ensuring that ∀ z ∈ Rp, (A · z ≤ b) =⇒ (cT · z ≤ Λ)

3This notation for linear optimization problems is equivalent to the one used in the paper.
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comes down to checking if a solution of the dual formulation has an objective value
lesser or equal to Λ, i.e. if ∃ y ∈ Rq+, (AT · y ≤ c) ∧ (bT · y ≤ Λ). Therefore, the
satisfiability of universally quantified linear constraints can be checked by solving
linear satisfiability problems rather than linear optimization problems.

Given x ∈ Bn Boolean-valued variables, let’s consider the universally quantified
linear constraint φ∀ defined such that (Eq. 1.c of the paper):

φ∀ = ∀ z ∈ Rp,
∧

e∈E
e(x, z) =⇒

∧

h∈H
h(x, z) (V.4)

where E and H denote sets of hybrid clauses of the form “e(x, z) =
∨
i xei

∨
j ¬xej ∨

fe(z) ≤ Λe” with fe denoting linear functions over reals of the form “
∑p

k=0 λei × zi”
with λei ∈ R. Let AE be the |E| × p matrix of linear coefficient (∀ e ∈ E,∀ i ∈
[0, n], AE(ei) = λei), bE ∈ R|E| the linear constraints upper bounds (∀ e ∈ E, bEe =
Λe), and ce ∈ Rp the linear coefficients of fe (∀ i ∈ [0, p], cei = λei).

If AE · z ≤ bE is satisfiable, then a quantifier-free formula φQF equivalent to
φ∀ 4 can be defined such that (Eq V.5):

φQF =
∧

h∈H
ATE · yh = ch ∧ yh ≥ 0 (V.5a)

∧ (
∨

i

xhi
∨

j

¬xhj ∨ bT · yh ≤ Λh) (V.5b)

∧
∧

e∈E
(¬(
∨

i

xei
∨

j

¬xej) ∨ yhe = 0) (V.5c)

where ∀h ∈ H, yh ∈ R|E|. The dual constraints are represented by Eq V.5a, and
the hybrid clauses h(x, z) by Eq V.5b. The dependencies between the Boolean-
valued variables and the universally quantified linear constraints are modeled by
Eq. V.5c. Given an hybrid clause e(x, z) ∈ E, if x ∈ Bn is a model of e(x, z)
(x |= e(x, z)) then the linear constraint fe(z) ≤ Λe does not need to be satisfied.
The linear constraint is not added to the primal formulation of the underlying
linear optimization problem solved to ensure the universally quantified constraints.
Therefore, there is no dual variable yhe associated with fe(z) ≤ Λe in the dual
formulation. Removing the dual variable yhe from the dual formulation is equivalent
to fixing it to 0.

In practice, we manually applied this quantifier elimination method. No auto-
mated process has been developed.

Example. Let’s consider the OPT+qLP problem ψ used as example in the pa-
per (described in Fig. 1). The problem is described in more detail in Section
Combinatorial Optimization Problems Modulo Quantified Linear Constraints.

4If AE · z ≤ bE is not satisfiable, φQF is an over-approximation of φ, i.e. φQF =⇒ φ.
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maximize z2

such that:
− z2 ≤ −1

z1 + z2 ≤ 1

− z1 + z2 ≤ 0

with z1, z2 ∈ R

(a) Primal formulation

minimize − a+ b

such that:
b− c = 0

− a+ b+ c = 1

with a, b, c ∈ R+

(b) Dual formulation

ψQF = (x1 ∨ x2 ∨ x3)
∧ (−a+ b ≤ 0.6) (V.6a)
∧ (b− c = 0) ∧ (−a+ b+ c = 1) (V.6b)
∧ (a = 0 ∨ x1) ∧ (b = 0 ∨ x2) ∧ (c = 0 ∨ x3) (V.6c)

with x ∈ B3, a, b, c ∈ R+

(c) Quantifier-free version of ψ

� Figure 17 – Application of the linear quantifier elimination method on the example
OPT+qLP problem ψ described in Figure 1 of the paper. (a), (b) are the primal and
dual formulations of the associated linear optimization problem, respectively. (c) is the
quantifier-free OPT+qLP problem obtained by applying quantifier elimination on ψ.

The underlying linear optimization problem consists in maximizing z2 under
the three linear constraints: −z2 ≤ −1, z1 + z2 ≤ 1 and −z1 + z2 with z1, z2 ∈ R
real-valued variables (Fig. 17a). Its dual formulation is shown in Fig. 17b, it has two
linear constraints (b− c = 0 and −a+ b+ c = 1) and three variables (a, b, c ∈ R+).

Based on Eqs. V.5, we can eliminate the universal linear quantifier and rewrite ψ
as ψQF (Fig 17c). The formula ψQF contains 6 linear constraints and no universally
quantified linear constraints. It has 3 Boolean-valued variables (x1, x2, x3) and 3
real-valued variables a, b, c. Equation V.6a models the universally quantified linear
constraints z2 ≤ 0.6 of ψ. The two linear constraints of the dual formulation are
described in Eq. V.6b. Finally, Eq. V.6c describes 3 hybrid clauses modeling the
impact of the Boolean-valued variables on the primal formulation constraints.

There are two assignments of the Boolean-valued variables that satisfy ψ:
{x2, x3} and {x1, x2, x3}. For both Boolean-valued variable assignments, the as-
signment a = 0, b = 0.5, c = 0.5 is a model of ψQF. They are the only two
Boolean-valued assignments satisfying ψQF. If x2 (resp. x3) is not in the assign-
ment, then the linear constraints b = 0 (resp. c = 0), b− c = 0, and −a+ b+ c = 1
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are not satisfiable. The formulas ψ and ψQF are equivalent.

Solution – in short
We propose a quantifier elimination method based on the strong duality
theorem. This quantifier elimination method can be applied to transform any
universally quantified linear constraints (Eq. V.4) into a quantifier-free set of
linear constraints (Eqs. V.5). If the set of all linear constraints in the left-hand
part of universally quantified linear constraint is satisfiable, then both formulas
are equivalent. Otherwise, the quantifier-free formula is an over-approximation
of the quantified formula.

Application to the OPT+qLP abstraction of the inference problem. The linear
quantifier elimination was manually applied to the OPT+qLP inference problem
to generate quantifier-free instances for our benchmarks. These quantifier-free
instances are equivalent to the quantified ones, as the underlying linear optimization
problems are always satisfiable. For all the RMNs considered in this manuscript,
the null metabolic flux is always a solution to the FBA equations5.

3 Complementary Benchmarking and Discussion

This section extends the paper’s discussion and discusses the remaining bottlenecks
regarding the solving of the inference problem.

3.1 Summary of AAAI’s Paper

In this chapter, we introduce a CEGAR-based solving framework for addressing
optimization problems under logical and quantified linear constraints (OPT+qLP).
The linear constraints are restricted to one level of linear quantifiers. This frame-
work relies on monotone properties over the optimal values of linear optimization
problems, and refinements of counter-examples using core conflicts (Section 2.1)
to generalize counter-examples. We implement this CEGAR-based framework
in MerrinASP6. It extends the ASP solver clingo with linear constraints with
one level of quantifier and extends the ASP syntax to model quantified linear
constraints. MerrinASP is the first ASP-based solver to natively handle quantified
linear constraints.

Along with the CEGAR-based solving framework, we introduce a quantifier
elimination method (Section 2.2). In the general case, converted quantifier-free
problems are not guaranteed to be equivalent to the original OPT+qLP problems.

5This assertion does not hold whenever a reaction is forced to have a non-zero metabolic flux.
6Available on GitHub: https://github.com/kthuillier/merrinasp
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Search All networks Subset minimal networks
Instance space size # Time (s) # Time (s)

Toy O(106) 4 1.5 1 1
Core O(1015) 48 7 1 7
Medium-scale Ω(10380) 168 861∗ 86 400∗ 168 861∗ 86 400∗

* Number of BNs inferred in 24 hours. Not all solutions are enumerated.

� Table 7 – Performances of the MerrinASP implementation of the OPT+qLP
inference problem on three regulated metabolic models (described in Chapter II). Times
are given as an approximated order of magnitude in seconds. All results are given for
complete data (undegraded kinetics, fluxomics, and transcriptomics observations).

However, for the specific OPT+qLP formulation of the inference problem, both
problems are equivalent. The quantifier elimination allows for generating quantifier-
free instances of the OPT+qLP inference problem that can be solved with clingo-lpx,
a state-of-the-art ASP modulo quantifier-free linear arithmetic solver.

Benchmark. We evaluate the performance of MerrinASP against clingo-lpx with
quantifier elimination. In practice, we found our implementation, MerrinASP, to
be 10 times more efficient in solving OPT+qLP problems than clingo-lpx with
quantifier elimination.

Moreover, to highlight the impact of optimal cores on the solving process
and mitigate implementation bias, we compare the performance of MerrinASP
on both the quantified and quantifier-free instances of the inference problem.
On average, solving the quantified instances is 20 times faster than solving the
quantifier-free instances. Moreover, on large-scale instances, quantified instances
necessitate 7 times fewer calls to linear solvers than quantifier-free instances. These
results highlight the advantages of utilizing optimal cores for counter-example
generalization in solving OPT+qLP problems, as opposed to relying solely on
quantifier elimination. These results are summarized in Table 2 in the paper.

3.2 Performance on OPT+qLP Inference Problem Instances

We have encoded the OPT+qLP inference problem with the extended ASP syntax
of MerrinASP. The MerrinASP encoding is available in Appendix B.3. Table 7
summarizes the number of inferred BNs and the computation times7 on the three
regulated metabolic networks considered in this manuscript. All results discussed
in this section are for complete time series observations, i.e. noise-free time series
with kinetics, fluxomics, and transcriptomics observations.

7Fedora 34 with an 8-cores processor i7-1165G7@2.80 GHz and 16GB of RAM
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Performance on small-scale instances. For the toy and the core-carbon models,
this new implementation reduces the computation time by a factor of 5 when
enumerating all BNs compared to the dedicated implementation (described in
Chapter IV). There is no difference in the computation time when only enumerating
subset-minimal BNs.

Scalability. For the medium-scale model, 168 861 BNs have been inferred in 24
hours while no model was inferred in 24 hours with the dedicated implementation.
In particular, it now took about 2 minutes to infer a first BN. The scalability and
efficiency of the CEGAR-based framework come from the use of core conflicts.
Core conflicts allow for an efficient generalization of counter-examples, and thus an
efficient filtering of spurious candidate solutions. In particular, core conflicts are a
key element in the scalability of our solving framework. Recall that the dedicated
solving framework introduced in Chapter IV does not rely on core conflicts.

3.3 Limits: Enumerating all the solutions

Enumeration of BNs. As described in Table 7, 168 861 BNs were inferred within
24 hours for the medium-scale model. Despite this substantial number of inferred
networks, it is important to note that not all possible BNs were enumerated. It is
therefore necessary to identify the limiting factors of our CEGAR-based solving
framework regarding the solving of the OPT+qLP inference problem.

Redundant operations. Our solving framework is based on the CEGAR framework
which is known to be efficient in proving the satisfiability of a problem but not in
enumerating solutions (Brummayer and Biere, 2009; Lagniez et al., 2017). The
linear checks are processed even for candidate solutions that are sure to satisfy
them.

Part of the complexity of the inference problem lies in finding the rFBA traces
compatible with the observed time series. In practice, many BNs can be compatible
with the same set of rFBA traces. With our CEGAR-based framework, linear
checks are made for each rFBA trace even if this trace has already been shown
valid for another candidate BN. In particular, all the 168 861 inferred BNs are
associated with the same set of rFBA traces.

It should therefore be needed to rework the encoding and solving workflow of the
OPT+qLP inference problem. For instance, one could imagine only enumerating
BNs associated with distinct rFBA traces and then computing all equivalent BNs
(BNs having the same rFBA traces). Since the rFBA traces would have already
been validated, no linear checks would be needed for the equivalent BN enumeration,
which should reduce computation costs.
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Abstract
Bioinformatics has always been a prolific domain for gener-
ating complex satisfiability and optimization problems. For
instance, the synthesis of multi-scale models of biological
networks has recently been associated with the resolution
of optimization problems mixing Boolean logic and univer-
sally quantified linear constraints (OPT+qLP), which can be
benchmarked on real-world models. In this paper, we in-
troduce a Counter-Example-Guided Abstraction Refinement
(CEGAR) to solve such problems efficiently. Our CEGAR
exploits monotone properties inherent to linear optimization
in order to generalize counter-examples of Boolean relax-
ations. We implemented our approach by extending Answer
Set Programming (ASP) solver CLINGO with a quantified lin-
ear constraints propagator. Our prototype enables exploiting
independence of sub-formulas to further exploit the general-
ization of counter-examples. We evaluate the impact of refine-
ment and partitioning on two sets of OPT+qLP problems in-
spired by system biology. Additionally, we conducted a com-
parison with the state-of-the-art ASP solver Clingo[lpx] that
handles non-quantified linear constraints, showing the advan-
tage of our CEGAR approach for solving large problems.

Introduction
Satisfiability (SAT) solving has proven to be highly suc-
cessful in addressing a wide range of real-world combina-
torial satisfiability problems across various fields. In the last
decades, many applications in bioinformatics have been for-
mulated as complex combinatorial satisfiability and opti-
mization problems according to biological knowledge and
data. For decision-aided tasks, life-scientists then take ad-
vantage of sampling the full space of solutions in order to
prioritize future experiments. Therefore, challenges reside
both in solving such complex combinatorial problems on
large-scale and real-world instances but also in enumerating
part, if not all, the set of solutions.

Traditionally, the problems addressed in life-sciences
were either linear programming and optimization (LP) prob-
lems (Orth, Thiele, and Palsson 2010; von Kamp and Klamt
2014) or Boolean optimization problems (Videla et al. 2017;
Chevalier et al. 2019). In this case, efficient approaches
based on Answer Set Programming (ASP), a logic program-
ming framework for symbolic satisfiability problems (Baral

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2003), have been developed. They take advantage of the
ability of modern ASP solvers, like Clingo (Gebser et al.
2017), to support various reasoning modes, Boolean opti-
mization, and model enumeration.

A recent evolution in life-sciences is the emergence of
hybrid optimization problems combining Boolean logic and
linear constraints (Frioux et al. 2019; Mahout, Carlson, and
Peres 2020). ASP solvers handling quantifier-free linear
constraints, like Clingo[lpx] (Janhunen et al. 2017), have
been developed to solve such hybrid optimization problems,
by extending ASP solver with a DPLL-adapted simplex al-
gorithm (Dutertre and De Moura 2006) used by modern
Satisfiability Modulo Theory (SMT) solvers. A new class
of complexity appeared recently with the problem of infer-
ring metabolic regulatory rules, which is formulated as a hy-
brid optimization problem with one level of quantified linear
constraints (Thuillier et al. 2022) and associated with real-
world benchmarks. The goal of this paper is to investigate
efficient solutions to solve this new class of hybrid optimiza-
tion problems, which we denote as OPT+qLP.

The state-of-the-art strategy to solve OPT+qLP problems
is to rely on quantifier elimination to get back to quantifier-
free hybrid optimization problems. There is an equivalence
between universally quantified linear constraints and con-
straints on the optimum of LP problems. Hence, based on
the strong duality theorem, universally quantified linear con-
straints can be converted into equi-satisfiable quantifier-free
linear constraints through a dual transformation. This al-
lows tackling OPT+qLP problems with standard hybrid ap-
proaches, as offered by Clingo[lpx] and SMT solvers.

An alternative lies in the Counter-Example-Guided Ab-
straction Refinement (CEGAR) method (Clarke et al.
2003). While sharing similarities with the DPLL algorithm
(Nieuwenhuis, Oliveras, and Tinelli 2006) used in modern
SMT solvers, the CEGAR approach enables to easily com-
pose solvers for different tasks, including for Boolean op-
timization and enumeration problems. The strength of the
CEGAR approach therefore lies in its generic and solver-
independent nature, which allows for taking advantage of
the structure of linear problems. It has been widely applied
for the solving of quantified Boolean formula (Janota et al.
2016), and SMT problems (Brummayer and Biere 2008;
Barrett and Tinelli 2018). However, CEGAR approaches
have not been applied so far to OPT+qLP problems.
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In this paper, we introduce a CEGAR-based algorithm to
solve and enumerate models to OPT+qLP problems. Our ap-
proach refines Boolean abstraction of the OPT+qLP problem
using monotone properties on LP problems structures and
linear constraints partitioning. We rely on the resolution of
a formula, a Boolean abstraction, that subsumes the mod-
els of the OPT+qLP problem. If this abstraction is unsatisfi-
able, then so is the OPT+qLP problem. Otherwise, a model
of the Boolean abstraction is found. This model is a solu-
tion to the OPT+qLP problem if it satisfies the quantified
linear constraints. Otherwise, it is a counter-example, and
the abstraction is refined with additional constraints derived
from the counter-example. This iterative process continues
until either the OPT+qLP problem is proven to be unsatisfi-
able or all its models have been enumerated. To implement
it, we developed a prototype based on ASP and evaluated
its performance on real-world benchmarks based on biolog-
ical models. Additionally, we conducted a comparison with
Clingo[lpx] and compared the performance regarding both
quantifier elimination and linear constraints partitioning.

Combinatorial optimization problems modulo
quantified linear constraints

We focus on combinatorial optimization problems whose
constraints merge propositional logic and quantified linear
arithmetics (OPT+qLP). The quantified linear constraints are
restricted to one level of quantifier. Solving OPT+qLP prob-
lems aims at finding variable assignments, or models, satis-
fying SAT+qLP constraints while minimizing a given objec-
tive function.

Let x ∈ Bn denotes Boolean variables and y ∈ Rm real-
valued variables. We consider SAT+qLP formulas of the fol-
lowing form:

∧

c∈C

c(x) (1a)

∧
∧

d∈D

d(x, y) (1b)

∧ ∀z ∈ Rp,
∧

e∈E

e(x, z) =⇒
∧

h∈H

h(x, z) (1c)

whereC denotes Boolean clauses of the form
∨

i xi
∨

j ¬xj ,
and D (resp. E, H) denotes hybrid clauses of the form
“
∨

i xi
∨

j ¬xj∨f(y) ≤ 0” (resp.
∨

i xi
∨

j ¬xj∨f(z) ≤ 0),
with f denoting linear functions over reals. Given a hybrid
clause c ∈ D,E,H , we will denote by fc its linear con-
straint fc(y) ≤ 0 (resp. fc(z) ≤ 0).

Universally quantified linear constraints are modeled by
Eq. 1c. The first part of the implication (

∧
e∈E e(x, z)) de-

fines the domain D(x) of the universal real-valued variables
z according to x. The domain D(x) is a subset of Rp, and
contains all z ∈ Rp such that (x, z) satisfy

∧
e∈E e(x, z).

Eq. 1c is therefore equivalent to ∀z ∈ D(x),
∧

h∈H h(x, z).
Let ϕ be a SAT+qLP formula of the form of Eq. 1. A vari-

able assignment (x, y) ∈ Bn × Rm is a model of ϕ if and
only if it satisfies ϕ, i.e. (x, y) |= ϕ. The formula ϕ is unsat-
isfiable, denoted by ̸|= ϕ, if there is no model ν satisfying ϕ.
Otherwise, ϕ is satisfiable.

The SAT+qLP satisfiability problem can be extended into
an OPT+qLP optimization problem by considering only the
models (x, y) of ϕ that minimize an objective function over
Boolean variables g : Bn → R:

minimize g(x) (2a)
such that: (x, y) |= ϕ (2b)

with x ∈ Bn, y ∈ Rm

For the rest, let (g, ϕ) be an instance of an OPT+qLP prob-
lem. A pair (x, y) ∈ Bn × Rm is a model of (g, ϕ), denoted
by (x, y) |= (g, ϕ), if and only if Eqs. 2a and 2b are verified.

Many applications can benefit from a comprehensive
characterization of the solution space of satisfiability and
optimization problems. Thus, in addition to searching for a
model of an OPT + qLP problem, we will also consider the
enumeration up to k different models of it.

Example. Let ψ be the SAT+qLP formula of Fig. 1a over
Boolean variables x1, x2, x3. It has no existentially quanti-
fied real-valued variables and 2 universally quantified real-
valued variables z1, z2. Using the notations of Eq. 1, ψ has 1
Boolean (C = {(x1∨x2∨x3)}) and 4 hybrid clauses (D =
∅, E = {(z2 ≥ 1∨¬x1), (z1+ z2 ≤ 1∨¬x2), (−z1+ z2 ≤
0 ∨ ¬x3)}, H = {(z2 ≤ 0.6)}). Fig. 1b gives a graphical
representation of the linear constraints.

For the rest, we will write a model ν as a set such that
a Boolean variable xi belongs to ν if and only if xi = ⊤.
Among the 8 models of ψ, only 2 satisfy it: ν1 = {x2, x3}
and ν2 = {x1, x2, x3}. For the former, the set of hybrid
clauses E is true if and only if at least z1 + z2 ≤ 1 and
−z1 + z2 ≤ 0 hold. As shown in Fig. 1b, all assignments
of (z1, z2) matching these two constraints satisfy z2 ≤ 0.6.
For the latter, it does not exist an assignment of (z1, z2) that
satisfies all hybrid clauses in E.

Let g : B3 → R be an objective function such that
g(x1, x2, x3) = |x1|+ |x2|+ |x3| with |xi| = 1 if xi = ⊤,
0 else. Let (g, ψ) be an OPT+qLP problem. Its only model is
{x2, x3} (g({x2, x3}) = 2 and g({x1, x2, x3}) = 3).

Contribution: a CEGAR for solving OPT+qLP
We present a CEGAR-based approach for addressing
OPT+qLP problems. Algorithm 1 summarizes the overall
procedure. First, we define a Boolean abstraction (g, ϕapprox)
of the OPT+qLP problem (g, ϕ), such that (g, ϕ) =⇒
(g, ϕapprox) (line 2, see details below). Next, we introduce
two necessary conditions (lines 3 and 4, see details below)
to ensure that there exists a model of (g, ϕ) given a model
of (g, ϕapprox). If at least one of the two conditions fails, then
ϕapprox is refined by generalizing the counter-examples that
fail them (line 8, see details below). Finally, we propose a
quantified linear constraints partitioning method to increase
the efficiency of refinement functions.

Proofs of the properties, lemmas, and theorems of this
section are provided in the technical appendix (Thuillier,
Siegel, and Paulevé 2023).

Boolean abstractions of OPT+qLP problems
Let c be a hybrid clause over Boolean variables x ∈ Bn and
real-valued variables y ∈ Rm of the form “

∨
i xi
∨

j ¬xj ∨
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ψ = (x1 ∨ x2 ∨ x3)

∧ ∀z ∈ R2,

(
(z2 ≥ 1 ∨ ¬x1)

∧ (z1 + z2 ≤ 1 ∨ ¬x2)
∧ (−z1 + z2 ≤ 0 ∨ ¬x3)

)
=⇒ z2 ≤ 0.6

(a) Example SAT+qLP problem ψ.

ψapprox = (x1 ∨ x2 ∨ x3)
∧ (α ∨ ¬x1) ∧ (β ∨ ¬x2) ∧ (γ ∨ ¬x3) ∧ δ

(c) Boolean abstraction ψapprox of ψ described in (a).

1

1

z2

z10

−z1 + z2 ≤ 0

z1 + z2 ≤ 1

z2 ≥ 1

z2 ≤ 0.6

(b) Visual representation of the quantified linear constraints. No
assignments of z1 and z2 can satisfy the three linear constraints
z2 ≥ 1, z1 + z2 ≤ 1 and −z1 + z2 ≤ 0.

∅

max z2 = 0.5

unsatisfiable

max z2 = ∞ max z2 = ∞

max z2 = ∞

max z2 = ∞

{ α; β; γ }

max z2 = ∞
{ β; γ }{ α; γ }{ α; β }

{ β } { γ }
max z2 = ∞

{ α }

(d) Hasse diagram of all the quantified linear constraints subsets of
the example OPT+qLP problem (Fig. 1a) with their optimums. Red
block is unsatisfiable. Blocks with dashed borders are the optimal
cores of the green block. Blue blocks are the subsets of {α;β}.

Figure 1: Example of SAT+qLP formula ψ (a) over three Boolean variables (x1, x2, x3) and two universally quantified real-
valued variables (z1, z2). Visual representations of the four linear constraints involved in ψ are shown in (b). In (c) and (d),
α, β, γ, δ are Boolean variables associated with the linear constraints z2 ≥ 1, z1 + z2 ≤ 1, −z1 + z2 ≤ 0 and z2 ≤ 0.6,
respectively. The Boolean abstraction ψapprox is defined in (c) following Eqs. 4. (d) shows the maximum value of z2 for each
subset of linear constraints.

Algorithm 1: CEGAR for solving OPT+qLP problem

Input: an OPT+qLP problem (g, ϕ) of the form Eq. 2
Output: a model (x, y) ∈ Bn × Rm s.t. (x, y) |= (g, ϕ)

1: ϕapprox ← a Boolean abstraction of ϕ of the form Eq. 4
2: while ∃(x, f̄) |= (g, ϕapprox) do
3: if ∃y |= CDx then
4: if ̸|= CEx or ∀h ∈ CHx , f∗h(CEx ) ≤ 0 then
5: return x, y
6: end if
7: end if
8: ϕapprox ← ϕ∃r (x) ∧ ϕ∀r (x) ∧ ϕapprox
9: end while

10: return UNSAT

fc(y) ≤ 0”. A Boolean abstraction c̄ of c is a Boolean clause
over the Boolean variables x ∈ Bn and f̄c ∈ B. The clause
c̄ is defined by Eq. 3.

∨

i

xi
∨

j

¬xj ∨ f̄c denoted by c̄(x, f̄c) (3)

Let ϕ be a SAT+qLP formula with C its set of Boolean
clauses and D, E, H its sets of hybrid clauses. Let d̄, ē and
h̄ denote Boolean abstractions of the hybrid clauses d ∈ D,
e ∈ E and h ∈ H , respectively. We define the Boolean

abstraction of ϕ as the following SAT formula:
∧

c∈C

c(x) (4a)

∧
∧

d∈D

d̄(x, f̄d) (4b)

∧
∧

e∈E

ē(x, f̄e) ∧
∧

h∈H

h̄(x, f̄h) (4c)

Theorem 1 (ϕ ⇒ ϕapprox). Let ϕ a SAT+qLP problem and
ϕapprox its Boolean abstraction. For any model (x, y) ∈ Bn×
Rm of ϕ, there exists f̄ ∈ B|D|+|E|+|H| such that (x, f̄) is a
model of ϕapprox.

From the above theorem, one can remark that the value
g(x) of the objective function on any model (x, y) of an
OPT+qLP problem (g, ϕ) is the same on the corresponding
model of ϕapprox. In Algorithm 1, the abstraction (g, ϕapprox)
of the OPT+qLP problem (g, ϕ) is computed line 1. In line 2,
the search for (g, ϕapprox) models can be performed us-
ing a pure Boolean optimization solver. By Theorem 1, if
(g, ϕapprox) is unsatisfiable, then so is (g, ϕ).

Example. Consider the OPT+qLP problem (g, ψ) from the
previous example. Let α, β, γ, δ be four Boolean variables
associated with the linear constraints z2 ≥ 1, z1 + z2 ≤ 1,
−z1 + z2 ≤ 0 and z2 ≤ 0.6, respectively. The set of
Boolean variables associated with linear constraints is f̄ =
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{α, β, γ, δ}. The Boolean abstraction of ψ is the SAT for-
mula ψapprox defined by Fig. 1c. Formula ψ has two models
ν1 = {x2, x3} and ν2 = {x1, x2, x3}. Using the conversion
procedure used to prove Theorem 1, ν̄1 = {x2, x3, β, γ, δ}
and ν̄2 = {x1, x2, x3, α, β, γ, δ} are two models of ψapprox.
The model ν1 is the only model of (g, ψ). It has the optimal
score g∗ = 2. The model ν̄1 associated with ν1 has the same
score.

Ensuring quantified linear constraints
Let C be a set of linear constraints of the form f(y) ≤ 0.
A variable assignment y ∈ Rm is a model of C, denoted
by y |= C, if and only if y |= ∧

f∈C f(y) ≤ 0. Given
f : Rm → R a linear function, y ∈ Rm is a model
of the linear optimization problem (f, C) if and only if
y |= C and it maximizes the objective function f , i.e.
∀y′ ∈ Rm, y′ |= C =⇒ f(y′) ≤ f(y). The optimum value
of (f, C) will be denoted by f∗(C) = maxy|=C f(y).

Let Ch be a set of hybrid clauses and x ∈ Bn a Boolean
variable assignment. For x to be a model of Ch, it must exist
y ∈ Rm such that each hybrid clause h ∈ Ch is satisfied
by either x or y. Let CCh

x be the set of linear constraints of
clauses for which x is not a model:

CCh
x = {fc(y) ≤ 0|c ∈ Ch, x ̸|= c} (5)

Hence, given c ∈ Ch and (x, f̄c) |= c̄(x, f̄c), if fc ∈ CCh
x

then f̄c = ⊤. Otherwise, x would be a model of c̄(x, f̄c).
Theorem 2. Let ϕ be a SAT+qLP formula and ϕapprox
its Boolean abstraction. Given x ∈ Bn and y ∈ Rm,
(x, y) |= ϕ if and only if the following three conditions
hold: (C1) ∃f̄ , (x, f̄) |= ϕapprox; (C2) y |= CDx ; (C3)
(̸|= CEx ) ∨ (

∧
h∈CH

x
f∗h(CEx ) ≤ 0).

Theorem 2 can be further extended for OPT+qLP prob-
lems. Let (g, ϕ) be an OPT+qLP problem and (g, ϕapprox)
its Boolean abstraction. Any variable assignment (x, y) ∈
Bn × Rm minimizing g and satisfying C1, C2 and C3 is a
model of (g, ϕ).
Corollary 2.1. Given x ∈ Bn and y ∈ Rm a real-valued
variables assignment, if (C1’) ∃f̄ , (x, f̄) |= (g, ϕapprox), C2
and C3 hold, then (x, y) |= (g, ϕ).

In Algorithm 1, the condition C1’ is ensured if a model
(x, f̄) of (g, ϕapprox) is found (line 2). Condition C2 is en-
sured in line 3 by finding a model y of the set of linear con-
straints CDx using a linear programming (LP) solver. C2 holds
only if y exists. Finally, condition C3 is ensured in line 4. If
CEx is satisfiable, a linear optimization problem (fh, CEx ) is
solved for each fh ∈ CHx . The linear optimization problems
are solved using LP solvers. Each optimum f∗h(CEx ) is then
compared to 0. If at least one optimum is strictly greater than
0, then C3 does not hold. If the three conditions C1’, C2 and
C3 hold, (x, y) |= (g, ϕ) is returned. Otherwise, (x, f̄) is a
counter-example.

Example. Consider the OPT+qLP problem (g, ψ) and its
Boolean abstraction ψapprox (Fig. 1c) from the previous ex-
ample. The variable assignment {x1, α, δ} is a model of
ψapprox that minimize g, with g({x1, α}) = 1. By Corol-
lary 2.1, {x1} is also a model of (g, ψ) if either ̸|= {z2 ≥

1} or if the linear optimization problem (fδ(z1, z2) =
z2, {z2 ≥ 1}) has an optimum less or equals to 0.6. From
Fig. 1b, we can see that {z2 ≥ 1} is satisfiable and that
f∗δ ({z2 ≥ 1}) is +∞. Therefore, C3 does not hold and
{x1, δ} is not a model of (g, ψ). The variable assignment
{x1, α, δ} is a counter-example.

Counter-examples generalization
Let ϕ be a SAT+qLP formula and ϕapprox its Boolean abstrac-
tion. Theorem 2 states that for any model ν̄ = (x, f̄) of
ϕapprox there is a corresponding model ν of ϕ if conditions
C2 and C3 hold. If either C2 or C3 is not satisfied, then ν̄ is
a counter-example. From ν̄, new Boolean logic constraints
ϕr(ν̄) can be deduced and used to refine ϕapprox. The new
Boolean abstraction of ϕ becomes ϕapprox ∧ ϕr(ν̄), such that
ϕ =⇒ ϕapprox ∧ ϕr(ν̄).
Existential counter-example. Suppose that (x, f̄) does
not satisfy C2. The set of linear constraints CDx is unsatis-
fiable, i.e. ̸|= CDx . Therefore, any supersets of linear con-
straints of CDx will be unsatisfiable too. An unsatisfiable
core (Cunsat) of a given set of linear constraints C is the
smallest subset of C for which ̸|= Cunsat. In other words,
for all C′ ⊂ Cunsat, there exists a vector y ∈ Rm that sat-
isfies C′. When C is satisfiable, Cunsat is an empty set. Unsat-
isfiable cores have been widely used in SMT solvers and
CEGAR-based approaches for generalizing sets of unsat-
isfiable constraints (Cimatti, Griggio, and Sebastiani 2011;
Khasidashvili, Korovin, and Tsarkov 2015).

Let Cunsat be an unsatisfiable core of CDx . The refinement
function ϕ∃r (x) is defined by Eq. 6.

ϕ∃r (x) =
∨

f∈Cunsat

¬f̄ (6)

Note that refinement function ϕ∃r (x) does not generate any
constraints if C2 holds (Cunsat = ∅).
Lemma 3. ϕ =⇒ ϕapprox ∧ ϕ∃r (x).
Universal counter-example. Suppose that (x, f̄) does not
satisfy C3. This implies that there is at least one hybrid
clause h ∈ H such that CEx is satisfiable and f∗h(CEx ) > 0.
Then, any model (x′, y′) such that CEx′ ⊆ CEx will be such
f∗h(CEx′) > 0, as stated by the following property:
Property 4. Given a linear objective function f and
two linear optimization problems (f , C1) and (f , C2),
C1 ⊆ C2 =⇒ f∗(C1) ≥ f∗(C2).

Similarly to unsatisfiable cores, we can introduce the no-
tion of optimal cores. Given a linear objective function f
and a set of linear constraints C, an optimal core is a biggest
superset Cfopt of C such that Cfopt is satisfiable and f∗(C) =

f∗(Cf
opt).

Let Cfopt be an optimal core of (f, CEx ). The refinement
function ϕ∀r (x) is defined by Eq. 7.

ϕ∀r (x) =
∧

h∈CH
x

f∗
h(CE

x )>0

¬f̄h ∨
∨

e∈E

fe ̸∈Cfh
opt

f̄e (7)
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Lemma 5. ϕ =⇒ ϕapprox ∧ ϕ∀r (x)
Constraints generated by the refinement functions ϕ∃r (x)

and ϕ∀r (x) do not involve the same sets of variables. There-
fore, ϕ∃r (x) ∧ ϕ∀r (x) ∧ ϕapprox still subsumes ϕ.

Theorem 6. Given (x, f̄) |= ϕapprox, ϕ =⇒ ϕ∃r (x) ∧
ϕ∀r (x) ∧ ϕapprox.

Corollary 6.1. (g, ϕ) =⇒ ϕ∃r (x) ∧ ϕ∀r (x) ∧ ϕapprox.

Corollary 6.2. ∀ν∗ |= (g, ϕ) =⇒ ∃ν′ |= ϕ∃r (x)∧ϕ∀r (x)∧
ϕapprox, g(ν

′) = g(ν∗).
Algorithm 1 refines the Boolean abstraction ϕapprox in

line 8. Corollaries 6.1 and 6.2 ensure that the refined
Boolean abstraction is still an overapproximation of (g, ϕ).
Therefore, Corollary 2.1 still holds for the next iteration.

Example. Consider ψapprox as defined in Fig. 1c and the
counter-example {x1, α, δ} find previously. This counter-
example satisfies C2 since there are no existentially quanti-
fied linear constraints in ψ. Hence, ϕ∃r ({x1}) does not gen-
erate any constraints. However, it fails to satisfy C3. A Hasse
diagram of all the subsets of the set of linear constraints of
ψ is shown in Fig. 1d. It can be seen that {α} has two op-
timal cores: {α, β} and {α, γ}. The set {α, β, γ} is not an
optimal core since it is not satisfiable. All linear optimiza-
tion problems whose linear constraints are either a subset of
{α, β} or of {α, γ} will also fail C3. Suppose that the opti-
mal core {α, β} has been selected by the refinement function
ϕ∀r ({x1}). It will generate the constraints ¬δ ∨ γ, and it will
prohibit selecting any model containing a subset of {α, β},
blue and green boxes in Fig. 1d.

Partitioning quantified linear constraints
Let (g, ϕ) be an OPT+qLP problems with (g, ϕapprox) its
Boolean abstraction. Linear constraints of ϕ can be parti-
tioned to exploit the sparsity of the underlying linear opti-
mization problems. Let P = {P1, ...,Pk} be a partition of
the linear constraints of ϕ such that (i) no two linear con-
straints share variables among different subsets; (ii) each
subset contains either existentially quantified linear con-
straints or universally quantified linear constraints.

Let (x, f̄) |= (g, ϕapprox). The set of linear constraints CDx
can be partitioned in PD

x according to the partition P . De-
ciding the satisfiability of CDx comes down to deciding the
satisfiability of each subset Pi ∈ PD

x . If at least one subset
is unsatisfiable, so is CDx . Otherwise, it exists a model yi for
each subset Pi ∈ PD

x and {yi}i |= CDx .
Lemma 7. ∃y ∈ Rm, CDx ⇐⇒ ∧

Pi∈PD
x
y |= Pi.

If (x, f̄) fails C2, one can exhibit a subset of sets of PD
x

that are unsatisfiable. Unsatisfiable cores can be computed
independently for each unsatisfiable set, which reduces the
computational cost of finding unsatisfiable cores. Let Cunsat
be the set of unsatisfiable cores associated with the unsatis-
fiable sets. The existential refinement function ϕ∃r (x) can be
reformulated as:

ϕ∃r (x) =
∧

Cunsat∈Cunsat

∨

f∈Cunsat

¬f̄ (8)

Benchmark Small-scale Large-scale

Instances SAT 29 32
Instances UNSAT 31 28

Boolean variables 6.5× 104 4× 109

Existential real variables 2× 103 8× 103

Universal real variables 2× 103 8× 103

Boolean constraints 2.7× 105 1.8× 106

Existential linear constraints 6× 103 25× 103

Universal linear constraints 6× 103 25× 103

Table 1: Benchmarks descriptions. Only the order of magni-
tude of the number of constraints and variables is given.

Similarly, all linear constraints fh ∈ CHx are partitioned
with the linear constraints of CEx that can impact their values.
Let P ′ ∈ P be the partitioned containing fh and P ′E

x the set
of all linear constraints of CEx in P ′.
Lemma 8. If CEx is satisfiable, then f∗h(CEx ) = f∗h(P ′E

x ).

If (x, f̄) fails C3, it is necessarily since there is not enough
constraints in P ′E

x . Since only linear constraints in P ′ have
an impact on f∗h , the computation of an optimal core P ′

opt
can be restricted to the set of linear constraints in P ′. The
universal refinement function ϕ∀r (x) can be reformulated as:

ϕ∀r (x) =
∧

h∈CH
x

f∗
h(P′E

x )>0

¬f̄h ∨
∨

e∈E
fe ̸∈P′

opt

f̄e (9)

It is important to note that Theorem 6 still holds with these
new definitions of ϕ∃r and ϕ∀r . They generate smaller refine-
ment constraints and allow reducing the computational cost
of finding unsatisfiable and optimal cores.

Experiments
We propose MERRINASP (https://github.com/kthuillier/
merrinasp), an ASP-based implementation of Algorithm 1. It
extends the Clingo solver, using its Python API, with a linear
constraint propagator, implemented with the Python PULP
library and the LP solver COIN (Lougee-Heimer 2003).
Model enumeration is made through the Clingo solver which
keeps track of all refinements during the enumeration pro-
cess. The partitioning is explicitly specified in the input
problem.

Benchmark
Problem description. Regulatory flux balance analysis
(rFBA) is a common model of dynamics of bacteria (Covert,
Schilling, and Palsson 2001). The rFBA framework con-
sists in sequentially solving maximum flow problems on
weighted hypergraphs. The hyperedge capacities are up-
dated at each step according to Boolean rules. Capacities
are either set to 0 or to their initial value. The metabolic
regulatory rules inference problem (Thuillier et al. 2022) is
an inverse problem. Given a weighted hypergraph and se-
quences of observed maximum flows, it consists in infer-
ring a set of Boolean rules controlling the hyperedge ca-
pacities matching the sequences of observations. For each
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(d) Benchmark Large-UNSAT

Solver

Enumeration

clingo[lpx]

merrinASP[P,Q]

merrinASP[P,¬Q]

merrinASP[¬P,Q]

merrinASP[¬P,¬Q]

Total number
of instances

1 model

100 models or

unsatisfiable

Figure 2: Runtime distribution of 4 configurations of our MERRINASP implementation of the CEGAR-based Algorithm 1 and
Clingo[lpx] on OPT+qLP problem instances. All variants were applied to a benchmark built from a small-scale real biological
model (Figs. (a) and (b), 60 instances) and a large-scale real biological model (Figs. (c) and (d), 60 instances). Small-scale and
large-scale benchmarks contain both satisfiable instances (panels (a) and (c)) and unsatisfiable instances (panels (b) and (d)).
The four configurations of MERRINASP include a partitioning option (P ) and the use of universally quantified linear constraints
(Q). Time is given in seconds in log10 scale. Dashed black horizontal lines represent the total number of instances

Benchmark Partitioned
(P )

Quantified
(Q)

Deciding SAT
Time (s)

Enumeration
Time (s)

LP solver
Time (s)

Number of LP
solvers calls

Number of
refinements

× × 18 761± 4 759 49 952± 18 515 3 812± 2 727 16 795± 2 364 2± 0
Small-SAT × ✓ 5 528± 1 498 2 116± 1 044 1 433± 223 9 944± 1 470 1± 0

✓ × 28± 6 40± 11 34± 7 937± 111 5± 1
✓ ✓ 9± 1 15± 3 15± 2 501± 41 6± 1

× × 5 143± 4 395 NA 1 112± 766 6 596± 3 723 1± 0
Small-UNSAT × ✓ 247± 38 NA 137± 17 2 039± 115 1± 0

✓ × 30± 10 NA 24± 10 669± 221 9± 4
✓ ✓ 10± 2 NA 7± 1 252± 54 9± 4

Large-SAT ✓ × 3 163± 1 538 13 922± 1 946 801± 236 17 957± 5 032 41± 16
✓ ✓ 183± 75 865± 112 121± 74 3548± 2184 21± 11

Large-UNSAT ✓ × 739± 454 NA 374± 248 7 480± 4 673 17± 8
✓ ✓ 135± 19 NA 41± 11 1155± 307 13± 3

Table 2: Comparative analysis of MERRINASP performance under different configurations. Results are presented as average
value ± standard deviation. Deciding SAT times denote the time needed to find a first model or to decide unsatisfiable. NA
indicates information not available. Bold values indicate the best value among all configurations for the current benchmark.

observation, it must find which capacities were set to 0 for
the maximum flow to match the observation. In this prob-
lem, Boolean clauses delimit admissible Boolean rules ac-
cording to biological knowledge. For each observation, ex-
istential constraints ensure the existence of a correspond-
ing flow, while universal constraints ensure that no flow is
strictly higher than the observed one. We refer the reader
to the above-mentioned paper for a formal definition of the
problem.

Benchmark description. We conducted experiments us-
ing MERRINASP on real-world benchmarks of metabolic

regulatory rules inference problems (Thuillier, Siegel, and
Paulevé 2023). Our benchmarks are composed of 120 in-
stances divided into 60 small-scale instances and 60 large-
scale instances. The small-scale benchmark is directly
sourced from (Thuillier et al. 2022), while the large-scale
benchmark is generated based on a large-scale regulated
metabolic network (Covert and Palsson 2002), following the
methodology outlined in the aforementioned paper. Bench-
marks are described in table 1. Instances of the large-scale
benchmarks have approximately 10 times more variables
and constraints than instances of the small-scale bench-
marks. Linear constraints can be partitioned into about 200

131



sets for small-scale instances and 140 sets for large-scale in-
stances.

Configuration. Each instance was executed on Haswell
Intel Xeon E5-2680 v3 CPU at 2.5GHz and 128GB of RAM
and 100 models were enumerated.

Results
We compared MERRINASP with Clingo[lpx], a state-of-the-
art ASP solver that handles quantifier-free linear constraints
(Janhunen et al. 2017) by extending Clingo with a DPLL-
adapted simplex algorithm (Dutertre and De Moura 2006).
Clingo[lpx] supports neither linear constraints partitioning
nor universal linear constraints. We further conducted a
comparative analysis of MERRINASP under four configu-
rations: with and without partioning of linear constraints
(denoted by P and ¬P ), using the CEGAR approach over
quantified linear constraints (denoted by Q) or using quan-
tifier elimination (¬Q). Note that Clingo[lpx] is equivalent
to the configuration [¬P,¬Q], and that MERRINASP[P,Q]
exploits all the properties described in previous sections.

Comparison with Clingo[lpx]. As shown in Fig. 2a
and 2b, on small-scale instances, MERRINASP and
Clingo[lpx] solve the instances in a similar order of magni-
tude (10s in average for Clingo[lpx] and 30s in average for
MERRINASP). On large-scale instances, MERRINASP out-
performs Clingo[lpx] by a factor of 10 (see Figs. 2c and 2d).

As shown in Fig. 2c, MERRINASP excels at finding the
first model in large-scale satisfiable instances, outperform-
ing Clingo[lpx] by a factor of 30. The difference in perfor-
mance between the two solvers heavily depends on the enu-
meration phase. The CEGAR method requires many checks
to ensure that a model of the Boolean abstraction is a model
of the original OPT+qLP problem, even after reaching equi-
satisfiability. Consequently, while MERRINASP is signif-
icantly faster than Clingo[lpx] in finding the first model
for satisfiable problems, both solvers exhibit similar perfor-
mance in enumerating the other 99 models.

Impact of partitioning (P ). Figs. 2a and 2b suggest that
linear constraints partitioning (P ) increase the performance
of MERRINASP by a factor of 1000 on satisfiable instances
and a factor of 20 on unsatisfiable instances. No instance
of the large-scale benchmark has finished in 48 hours for
the not-partitioned configurations. Table 2 shows that while
partitioning entails solving a larger number of linear opti-
mization problems, the total number of linear optimization
problems solved is reduced by a factor of 10 compared to
without partitioning. On the small-scale satisfiable (resp. un-
satisfiable) instances, MERRINASP[P,Q] solved in average
501 (resp. 252) linear optimization problems, against 9 944
(resp. 2 039) for MERRINASP[¬P,Q].

Impact of quantified linear constraints (Q). Our
counter-example generation for universally quantified lin-
ear constraints consistently outperforms quantifier elimina-
tion reformulations by a factor of 3 on the small-scale and
20 large-scale benchmarks. From Table 2, we can see that
twice fewer refinements are made when using quantified lin-
ear constraints (Q) compared to using quantifier elimination

(¬Q). For large-scale (resp. small-scale) instances, these re-
finements were generated using 7 (resp. 2) times fewer calls
to the linear solvers when using (Q) compared to (¬Q).

Discussion. These results highlight that both linear con-
straint partitioning (P ) and counter-example generation for
universally quantified linear constraints (Q) have significant
impacts on performance. Using both of them allows divid-
ing computation time by 2 000 compared to not using any
of them. They allow for generating more efficient refine-
ments (gain of 2) while reducing the number of linear solver
calls (gain of 7). This reduction is attributed to the parti-
tioning approach, which enables solving independent linear
optimization problems with a reduced number of constraints
and variables. Their small size leads to faster computation
of unsatisfiable and optimal cores for each counter-example,
and their independence allows for reducing the number of
verifications: a set that has passed the linear checks does not
have to be checked again.

MERRINASP is a prototype and does not use efficient ap-
proaches to instantiate and solve linear optimization prob-
lems. In contrast, Clingo[lpx] and SMT solvers, such as
z3 (De Moura and Bjørner 2008), use an incremental im-
plementation of the simplex algorithm to check linear con-
straints (Dutertre and De Moura 2006). Our approach is not
dependent on the method used to solve linear constraints.
This suggests that MERRINASP has the potential to further
enhance its performance by integrating these algorithms.

Conclusion and Future Work
In this paper, we presented a novel approach for solv-
ing combinatorial optimization problems with Boolean
logic and quantified linear constraints (OPT+qLP), based
on Counter-Example-Guided Abstraction Refinement (CE-
GAR). Our implementation, MERRINASP, was developed
using Answer Set Programming.

To evaluate the effectiveness of our approach, we in-
troduced a new benchmark of small-scale and large-scale
OPT+qLP problems inspired by systems biology. We com-
pared MERRINASP against a state-of-the-art ASP modulo
quantifier-free linear constraints solver, Clingo[lpx]. The re-
sults highlight that MERRINASP scales significantly better
than Clingo[lpx] on large-scale satisfiable instances, espe-
cially for the search of one model on satisfiable instances.
The enumeration of models and unsatisfiable instances re-
main competitive with Clingo[lpx] but suggest room of im-
provement to improve the CEGAR approach and reduce the
number of counter-example checks (Brummayer and Biere
2009; Lagniez et al. 2017).

Looking ahead, we plan to automate the linear constraint
partitioning process and explore the integration of our ap-
proach with the DPLL-based simplex algorithm used in
Clingo[lpx]. Moreover, the integration of quantified Lin-
ear Real Arithmetics theory (LRA) (Reynolds, King, and
Kuncak 2017) could provide complementary refinements
using linear constraints, while our approach refines by the
means of combinatorial constraints. These future advance-
ments hold the promise of further enhancing the efficiency
and applicability of CEGAR-based OPT+qLP solvers.
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Theorem 1 (ϕ ⇒ ϕapprox). Let ϕ a SAT+qLP problem and
ϕapprox its Boolean abstraction. For any model (x, y) ∈ Bn×
Rm of ϕ, there exists f̄ ∈ B|D|+|E|+|H| such that (x, f̄) is a
model of ϕapprox.

Proof. Let (x, y) |= ϕ and f̄ such that: ∀ch ∈ D ∪ E ∪
H, f̄ch = ⊤ ⇐⇒ x ̸|= ch. For (x, f̄) |= ϕapprox, (x, f̄)
should satisfy the Eqs. 4.

(4a) As Eq. 1a equals Eq. 4a and x |= ∧c∈C c(x), we have
(x, f̄) |= ∧c∈C c(x).

(4b) By definition of f̄ , f̄d = ⊤ for each clause d ∈ D not
satisfied by x. Thus, each clause d ∈ D is satisfied by
either x or f̄ . Therefore, (x, f̄) |= ∧d∈D d̄(x, f̄).

(4c) Using same reasoning as for (4b), there are (x, f̄) |=∧
e∈E ē(x, f̄) and (x, f̄) |= ∧

h∈H h̄(x, f̄). Therefore,
(x, f̄) |= ∧e∈E ē(x, f̄) ∧

∧
h∈H h̄(x, f̄).

Therefore (x, f̄) |= ϕapprox, and ϕ =⇒ ϕapprox.
Models of (g, ϕ) are subsets of models of ϕ and by def-

inition ̸|= (g, ϕ) if ̸|= ϕ. Hence, (g, ϕ) ⇐⇒ ϕ, i.e.,
(g, ϕ) =⇒ ϕapprox.

Let ν∗ = (x, y). Suppose that ν∗ |= (g, ϕ) with g(ν∗) its
optimal value. By previous statements, ∃f̄ , (x, f̄) |= ϕapprox.
As g : Bn → R, then g((x, f̄)) = g(x) = g((x, y)).

Corollary 1.1. (g, ϕ) =⇒ ϕapprox.

Proof. Models of (g, ϕ) are subsets of models of ϕ and by
definition ̸|= (g, ϕ) if ̸|= ϕ. Hence, (g, ϕ) ⇐⇒ ϕ. There-
fore by Theorem 1, (g, ϕ) =⇒ ϕapprox.

Lemma A. Given Ch a set of hybrid clauses
and x ∈ Bn a Boolean variables assignment,
y |= CCh

x ⇐⇒ (x, y) |= ∧ch∈Ch
ch(x, y).

Proof. (→) Let y ∈ Rm such that y |= CCh
x . By re-

ductio ad absurdum, suppose that ∃ch ∈ Ch, (x, y) ̸|=∧
ch∈Ch

ch(x, y). The hybrid constraint ch(x, y) is of the
form

∧
i xi
∧¬xj ∧ fch(y) ≤ 0. Thus, there are x ̸|=∧

i xi
∧¬xj and y ̸|= fch(y) ≤ 0. By definition of CCh

x ,
if x ̸|= ∧

i xi
∧¬xj then fch(y) ≤ 0 ∈ CCh

x . As y |=
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CCh
x , then y |= f(y) ≤ 0. Otherwise, x |= ∧

i xi
∧¬xj .

This contradicts the hypothesis that ∃ch ∈ Ch, (x, y) ̸|=∧
ch∈Ch

ch(x, y). Therefore, (x, y) |= ∧ch∈Ch
ch(x, y).

(←) Let (x, y) |= ∧
ch∈Ch

ch(x, y). Thus, ∀ch ∈ Ch ei-
ther x |= ∧

i xi
∧

j ¬xj or y |= fch(y) ≤ 0. Therefore, by
definition of CCh

x , y |= CCh
x .

Lemma B. Given Ch a set of hybrid clauses, ĉh a hybrid
clause and x ∈ Bn, ̸|= CCh

x ∨ f∗ĉh(CCh
x ) ≤ 0 if and only if

x |= ∀y ∈ Rm,
∧

ch∈Ch
ch(x, y) =⇒ ĉh(x, y).

Proof. (→) If ̸|= CCh
x , then ∀y ∈ Rm, (x, y) ̸|=∧

ch∈Ch
ch(x, y). Therefore, x |= ∀y ∈

Rm,
∧

ch∈Ch
ch(x, y) =⇒ ĉh(x, y). Otherwise,

∃y ∈ Rm, y |= CCh
x and f∗ĉh(CCh

x ) ≤ 0. Thus,
∃y ∈ Rm,

∧
ch∈Ch

ch(x, y). By reductio ad absurdum,
suppose that ∃y′ ∈ Rm, (x, y′) |= ∧

ch∈Ch
ch(x, y

′) and
f(y′) > 0. Thus, f∗ĉh(CCh

x ) < f(y′). However, by definition
of f∗ĉh(CCh

x ), ∀y ∈ Rm, y |= CCh
x =⇒ f(y) ≤ f∗ĉh .

It contradicts the hypothesis that f∗ĉh(CCh
x ) ≤ 0.

Therefore, ̸|= CCh
x ∨ f∗ĉh(CCh

x ) ≤ 0 implies that
x |= ∀y ∈ Rm,

∧
ch∈Ch

ch(x, y) =⇒ ĉh(x, y).
(←) Suppose that x |= ∀y ∈ Rm,

∧
ch∈Ch

ch(x, y) =⇒
ĉh(x, y). By reductio ad absurdum, suppose that
∃y ∈ Rm such that y |= CCh

x and f∗ĉh(CCh
x ) > 0.

Thus, ∃y ∈ Rm, (y |= CCh
x ) ∧ f(y) > 0. By definition of

x, ∀y′ ∈ Rm, (y |= CCh
x ) =⇒ f(y) ≤ 0. This contradicts

that ∃y ∈ Rm, (y |= CCh
x ) ∧ fĉh(y) > 0. Therefore,

x |= ∀y ∈ Rm,
∧

ch∈Ch
ch(x, y) =⇒ ĉh(x, y) implies that

̸|= CCh
x ∨ f∗ĉh(CCh

x ) ≤ 0.

Theorem 2. Let ϕ be a SAT+qLP formula and ϕapprox
its Boolean abstraction. Given x ∈ Bn and y ∈ Rm,
(x, y) |= ϕ if and only if the following three conditions
hold: (C1) ∃f̄ , (x, f̄) |= ϕapprox; (C2) y |= CDx ; (C3)
̸|= CEx ∨

∧
h∈CH

x
f∗h(CEx ) ≤ 0.

Proof. (→) Suppose that (x, y) |= ϕ. By Theorem 1,
ϕ =⇒ ϕapprox. Thus, C1 holds. As (x, y) |= ϕ,
then (x, y) |= ∧

d∈D d(x, y). Thus, Lemma A concludes
that C2 holds. As (x, y) |= ϕ, then x |= ∀z ∈
Rp,

∧
e∈E e(x, z) =⇒ ∧

h∈H h(x, z). Thus, ∀h ∈
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CHx , x |= ∀z ∈ Rp,
∧

e∈E e(x, z) =⇒ h(x, z). Lemma B
concludes that C3 holds. Therefore, (x, y) |= ϕ implies C1,
C2 and C3.
(←) Suppose that all three conditions hold. By C1,
∃f̄ , (x, f̄) |= ϕapprox. Thus, x |= ∧

c∈C c(x) (Eq. 1a). C2
and Lemma A concludes for Eq. 1b. C3 and Lemma B
conclude for Eq. 1c. Therefore, C1, C2 and C3 implies
(x, y) |= ϕ.

Corollary 2.1. Given x ∈ Bn and y ∈ Rm a real-valued
variables assignment, if (C1’) ∃f̄ , (x, f̄) |= (g, ϕapprox), C2
and C3 hold, then (x, y) |= (g, ϕ).

Proof. As (x, f̄) |= (g, ϕapprox), then (x, f̄) |= ϕapprox. Thus,
C1 holds. Moreover, ∀(x′, f̄ ′) |= ϕ, g(x) ≤ g(x′). By
Corollary 1.1, (g, ϕ) =⇒ ϕapprox. Therefore, C1, C2, C3
hold and x is minimal according to g. Therefore, C1’, C2
and C3 implies (x, y) |= (g, ϕ).

Lemma 3. ϕ =⇒ ϕapprox ∧ ϕ∃r (x).

Proof. Let f̄ ′ such that ∀ch ∈ D ∪ E ∪ H, f̄ ′ch = ⊤ ⇐⇒
x′ ̸|= ch. By Theorem 1, we have (x′, f̄ ′) |= ϕapprox. If (x, f̄)
satisfies C2 then ϕ∃r (x) does not generate new constraints.
Thus, ϕ∃r (x) ∧ ϕapprox = ϕapprox. Otherwise, C2 does not
hold for (x, f̄). Let Cunsat be an unsatisfiable core of CDx .
By reductio ad absurdum, suppose that ∃(x′, f̄ ′) ̸|= ϕ∃r (x).
Thus, ∀f ∈ Cunsat, f̄

′ = ⊤. By definition of f̄ ′ and CDx′ , it
means that Cunsat ⊆ CDx′ . Hence, (x′, f ′) |= ϕ∃r (x) ∧ ϕapprox.
Therefore, ϕ =⇒ ϕapprox ∧ ϕ∃r (x).
Property 4. Given a linear objective function f and
two linear optimization problems (f , C1) and (f , C2),
C1 ⊆ C2 =⇒ f∗(C1) ≥ f∗(C2).
Proof. By reductio ad absurdum, suppose that C1 ⊆ C2 and
f∗(C1) < C2. Let y = argmaxy|=C2

f(y). As C1 ⊆ C2, then
y |= C1. Since f(y) = f∗(C2) and y |= C1, its contradicts
f∗(C1) < C2. Therefore, C1 ⊆ C2 =⇒ f∗(C1) ≥ C2.

Lemma 5. ϕ =⇒ ϕapprox ∧ ϕ∀r (x)

Proof. Let f̄ ′ such that ∀ch ∈ D ∪ E ∪ H, f̄ ′ch = ⊤ ⇐⇒
x′ ̸|= ch. By Theorem 1, we have (x′, f̄ ′) |= ϕapprox. If
(x, f̄) satisfies C3 then ϕ∀r (x) does not generate new con-
straints. Thus, ϕ∀r (x)∧ϕapprox = ϕapprox. Otherwise, C3 does
not hold for (x, f̄). By reductio ad absurdum, suppose that
∃(x′, f̄ ′) ̸|= ϕ∀r (x). Let h ∈ H such that fh ∈ CHx and
f∗h(CEx ) > 0. Such h exists as C3 does not hold for x. By
definition of (x′, y′) |= ϕ and f̄ ′, there are either f̄ ′h = ⊥
or f̄ ′h = ⊤ ∧ f∗h(CEx′) ≤ 0. For the first case, f̄ ′h satisfies the
constraint of ϕ∃r (x) associated with h. For the second case,
suppose that f̄ ′h = ⊤ ∧ f∗h(CEx′) ≤ 0. Let Cfhopt be an optimal
core of (fh, CEx ). Thus, ∀e ∈ E, fe ̸∈ Cfhopt =⇒ f̄ ′e = ⊥
and f̄h = ⊤. By definition of f̄ ′ and CEx′ , it means that
CEx′ ⊆ Cfhopt. However, we have that f∗h(CEx′) < f∗h(CEx ). This
contradicts property 4. Hence, (x′, f ′) |= ϕ∀r(x) ∧ ϕapprox.
Therefore, ϕ =⇒ ϕapprox ∧ ϕ∀r (x).

Theorem 6. Given (x, f̄) |= ϕapprox, ϕ =⇒ ϕ∃r (x) ∧
ϕ∀r (x) ∧ ϕapprox.

Proof. By Lemma 3, we have ϕ =⇒ ϕ∃r (x) ∧ ϕapprox.
By Lemma 5, we have ϕ =⇒ ϕ∀r (x) ∧ ϕapprox. As the
constraints generated by ϕ∃r (x) and ϕ∀r (x) impact disjoint
sets of variables f̄ , then ϕ =⇒ ϕ∃r (x)∧ϕ∀r (x)∧ϕapprox.

Corollary 6.1. (g, ϕ) =⇒ ϕ∃r (x) ∧ ϕ∀r (x) ∧ ϕapprox.

Proof. By definition, ϕ ⇐⇒ (g, ϕ). Therefore by Theo-
rem 6, (g, ϕ) =⇒ ϕ∃r (x) ∧ ϕ∀r (x) ∧ ϕapprox.

Corollary 6.2. ∀ν∗ |= (g, ϕ) =⇒ ∃ν′ |= ϕ∃r (x)∧ϕ∀r (x)∧
ϕapprox, g(ν

′) = g(ν∗).

Proof. Suppose that (x′, y′) |= (g, ϕ) with g((x′, y′)) its op-
timal value. By definition, ∃f̄ ′, (x′, f̄ ′) |= ϕ∃r (x) ∧ ϕ∀r (x) ∧
ϕapprox. As g : Bn → R, then g((x′, f̄ ′)) = g(x′) =
g((x′, y′)).

Lemma 7. ∃y ∈ Rm, CDx ⇐⇒ ∧
Pi∈PD

x
y |= Pi.

Proof. (→) Suppose that ∃y ∈ Rm, CDx and it exists Pi ∈
PD
x unsatisfiable. We know that PD

x is a partition of CDx ,
hence Pi ⊆ CDx . If Pi is unsatisfiable, so is CDx . Therefore,
it could not exists Pi ∈ PD

x unsatisfiable if CDx is satisfiable.
(←) Suppose that ∀Pi ∈ PD

x , yi |= Pi. We know that PD
x

is a partition of CDx such that no variables are shared among
the constraints of different partitions. Hence y = yii |=∧

Pi∈PD
x
Pi, and

∧
Pi∈PD

x
y |= Pi. As y is a model of all

the subsets in the partition PD
x , y |= CDx .

Lemma 8. If CEx is satisfiable, then f∗h(CEx ) = f∗h(P ′E
x ).

Proof. By definition of P , we have that all the linear con-
straints that can have an impact on the variables involved
in fh are in P ′. Therefore, linear constraints in the other
subsets will not impact the variables involved in fh. These
constraints can only impact the satisfiability of the prob-
lem, however, we supposed that CEx is satisfiable. Hence,
the optimum of (fh, CEx ) depends only of the constraints in
P ′E
x .
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Conclusion

The objective of this thesis was to define, formalize, and implement new methods to
infer Boolean networks (BNs) controlling the metabolism, including the metabolic
feedback and control rules that are not inferred with state-of-the-art methods. The
works presented in this manuscript aim to address this objective. Our contributions
fall into three areas: bioinformatics, formal methods, and resources made available
to the community.

Contributions in Bioinformatics

When we started this thesis, we intuited that it would be necessary to integrate the
linear dynamics of the metabolism into the definition of the inference problem to
infer feedback and control rules. This led us to define inference problem consid-
ering the hybrid dynamics of regulated metabolic networks (Chapter II),
whereas state-of-the-art methods only consider the discrete dynamics of the reg-
ulatory network. In particular, we relied on the regulated flux balance analysis
(rFBA) framework to model the coupled dynamics of the regulatory and metabolic
networks.

From this definition, we derived three formulations of the inference prob-
lem, of which two are equivalent, and two dedicated methods to address them:

— The first method (Chapter III) uses an Answer Set Programming (ASP) en-
coding to solve a relaxed abstraction of the inference problem, formulated
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as a Boolean satisfiability problem with quantifiers. This relaxed abstraction is
based on a discrete over-approximation of the rFBA dynamics, that discretized
metabolic steady-states (the FBA equations).

— The second method (Chapter IV) addresses the hybrid formulation of the
inference problem. To solve it, we have developed a dedicated hybrid
solving workflow that integrates the FBA equations with ASP.

These methods have been validated and tested through case studies and bench-
marks using regulated metabolic networks of Escherichia coli. In particular, we
developed a time series generation protocol to generate synthetic time series of
omics data from rFBA simulations. Using this protocol, we generate a compre-
hensive benchmark to validate our inferring methods. The results for the second
method (MERRIN ’s workflow) demonstrate that the inferring of regulatory
rules, including metabolic feedback and control, is possible solely from
time series of kinetics and transcriptomics data. These two data types are
commonly used to study the behaviors of bacteria.

Contributions in Formal Methods

Retrospectively, we did not expect that the solving of the inference problems would
become a limiting factor. We initially assumed that the primary challenge would
be to formally define and validate the inference problem, not to solve it. Indeed,
modern SAT and Satisfiability Modulo Theory (SMT) solvers are widely used in
the industry to efficiently solve hybrid problems. The inability of these solvers to
efficiently solve our inference problem highlighted the fact that problems from
systems biology have specificities and solving requirements not encountered
in industry’s problems.

Specificities of problems from systems biology. In systems biology, problems are
characterized by complex combinatorial search spaces constrained by biological
knowledge, and optimization functions designed to accommodate experimental noise
in input data. Solving these problems often requires enumerating all the solutions,
or at least sampling the solution space, since it is impossible to discriminate between
optimal solutions. They are all equally supported by the biological knowledge
defining the search space. Therefore, it is necessary to enumerate solutions to
gain a comprehensive understanding of the solution space, deduce new knowledge,
identify bottlenecks in current knowledge, and plan new experimental protocols.
There is thus a need to define novel solving formalisms and tools adapted
to the specificities of systems biology problems.

To overcome this bottleneck and enable solving our hybrid definition of the
inference problem, we developed new formal methods to enumerate solutions
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of hybrid combinatorial optimization problems. In Chapter IV, we present
MERRIN ’s workflow for inferring Boolean regulatory rules controlling the
metabolism. In Chapter V, we take this further by presenting a generic solving
method that allows enumerating solutions of combinatorial optimization problems
with quantified linear constraints, a class of problems of which the hybrid inference
problem belongs.

Contributed Resources

Throughout this thesis, we have prioritized the reproducibility of our work
and results. To this end, along with the theoretical contributions presented in this
manuscript, we have made available all the regulated metabolic networks (RMNs),
our tools, and our implementations in public repositories.

Regulated metabolic network models. Finding suitable RMNs for benchmarking and
validating our methods has been quite challenging. There are only a few RMNs
available in the literature, and even fewer are associated with experimental
conditions and predictions of cell behaviors that can be used. When presenting the
work of this thesis, many were surprised to discover that such models exist and are
publicly available.

We only found three RMNs that could be used: a model of core-carbon meta-
bolism (Covert et al., 2001), a medium-scale model of Escherichia coli ’s core
metabolism (Covert and Palsson, 2002), and a large-scale model of Escherichia
coli (Covert et al., 2004). Except for the large-scale model, we use these RMNs to
validate and benchmark our methods.

A significant portion of this thesis has been dedicated to cleaning and updating
these three RMNs. Indeed, the Boolean regulatory rules of these models were
only described in ‘textual’ form, either in some supplementary materials
or in some Excel sheets, necessitating extensive preprocessing to be usable
with modern simulation tools, such as FlexFlux (Marmiesse et al., 2015). This
preprocessing includes:

1. standardizing notations for genes, proteins, and metabolites within rules of
the same model;

2. converting (and debugging) the regulatory rules from their textual description
to a standard syntax of Boolean functions;

3. validating the cleaned and updated networks according to the model dynamics
under various experimental conditions described in the model’s introductory
paper.
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This tedious task has been manually performed for the three RMNs. At the
end of the process, we produced standard files describing each RMN,
with the metabolic network in the format SBML (Hucka et al., 2003), and the
regulatory network in the format SBML-qual (Chaouiya et al., 2013). These files are
available at https://github.com/kthuillier/regulated-metabolic-models.
Comprehensive descriptions of the core-carbon metabolism and medium-scale
models, as well as our validation protocols, are provided in Appendix A.

Tools and datasets. These RMNs have been used to generate synthetic time
series data for validating and benchmarking the different methods presented
in this manuscript. The relaxed inference problem, introduced in chapter III, has
been validated on a toy RMN derived from the model of core-carbon metabolism
(https://github.com/bioasp/boolean-caspo-flux).

In chapter IV, we present MERRIN 8 a dedicated tool to infer Boolean regulatory
rules controlling metabolic networks from omics time series data. MERRIN has
been benchmarked on a synthetic dataset based on simulated time series
of different complexity and combinations of omics data. The benchmark
generation protocol and scripts required to solve it with MERRIN are available at
https://github.com/bioasp/merrin-covert.

In particular, we rely on this benchmark generation protocol to validate Mer-
rinASP9, a generic hybrid solver used to address OPT+qLP problems introduced in
chapter V. To our knowledge, no benchmarks for OPT+qLP problems were
previously available in the literature, even though other solvers can theoretically
address this class of problems. Therefore, we introduced our own datasets based
on instances of the inference problem to benchmark MerrinASP. They are
available at https://zenodo.org/records/10361533.
We expect that these datasets will find applications beyond the field of systems
biology, particularly in the operational research domain. Specifically, we hope they
will facilitate the development of novel solving methods adapted to the specificities
of problems from systems biology.

8MERRIN is available at https://github.com/bioasp/merrin.
9MerrinASP is available at https://github.com/kthuillier/merrinasp.

140

https://github.com/kthuillier/regulated-metabolic-models
https://github.com/bioasp/boolean-caspo-flux
https://github.com/bioasp/merrin-covert
https://zenodo.org/records/10361533
https://github.com/bioasp/merrin
https://github.com/kthuillier/merrinasp


Perspectives CONCLUSION AND PERSPECTIVES

Perspectives

Following the work presented in this manuscript, my future research projects would
aim to expand the scope and enhance the biological accuracy of our inference
methods. Specifically, three perspectives, ranging from short-term to long-term,
can be proposed to reach these objectives. These perspectives differ in the domain
they involve: (i) extending the inference methods’ scope (short-term); (ii) more
accurate modeling of regulated metabolic network (RMN) dynamics (medium to
long-term); and (iii) novel hybrid formal methods (long-term).

Maintenance and Updating of Regulated Metabolic Networks

In this manuscript, we define inferring methods that infer Boolean regulatory
rules supported by interactions. However, it is not always relevant to infer
all regulatory rules from scratch. Some Boolean regulatory rules are already
known and verified, and large-scale Boolean regulatory networks have even been
reconstructed and curated. It would be a mistake not to exploit these resources
and knowledge in our inference methods.

RMN update methods. Following on from MERRIN ’s inferring workflow, a short-
term perspective would be to develop methods for automatically updat-
ing Boolean regulatory networks. The development of such update methods
will accelerate the emergence of high-quality RMNs by enabling the maintenance
and updating of existing models with new datasets. In particular, it could allow
adapting Boolean networks reconstructed without metabolic feedbacks
and controls by only needing to infer these specific rules.

An update tool would take as input an RMN, a set of interactions, and new
omics data. Its objective would be to determine whether the RMN is compatible
with the omics data, and if not, to identify and correct a minimal set of regulatory
rules for the RMN to become compatible with the new data. Integrating already
known Boolean rules into the inferring process is already handled in some Boolean
network inferring tools, like BoNesis (Chevalier et al., 2020). In practice, it could
be easily integrated into our inference methods by profiting from our generic
MerrinASP ’s encoding of the inference problem.

Challenges. The primary challenge would concern the guarantees that should be
given to the updating process. Specifically, it must be decided whether the updated
model should remain fully compatible with all the data used in its reconstruction,
or be solely adapted to new data. In the former case, the number of observations
with which the model must remain compatible will increase with each update,
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making the updating process progressively more complex. This raises the issue of
defining optimal data representation and identifying the minimal set of observations
describing the model.

Application to reproducibility. In addition to facilitating the development of new
models of RMNs, such tools could be used for reproducibility purposes. During
this thesis, I reconstructed a large-scale regulatory network of Escherichia coli
based on the regulatory rules described in the appendices of Covert et al. (2004).
However, the reconstructed model does not fully reproduce all the results presented
in the aforementioned paper. In this context, update methods could be used to
adapt, or correct, the RMN to reproduce the paper’s results.

More Accurate Modeling of RMN Dynamics

Missing regulatory rules. In chapter IV, we demonstrated that our inference method,
MERRIN, infers Boolean networks that are smaller than the ground truth networks,
meaning that not all regulatory rules of the ground-truth model are needed
to explain the input observations. The non-inferred rules do not impact the
rFBA dynamics of RMNs. To infer these missing rules, additional information
such as enzyme concentrations would be necessary.

Threshold-based rules. Moreover, in this thesis, we have not accounted for the
impact of metabolite concentrations and reaction activity rates on the
regulatory system. We only consider the availability of environmental metabolites
and the state (active or inactive) of reactions, which does not accurately reflect
the biological functioning of cells. In reality, cells possess sensors that estimate the
abundance of metabolites (both environmental and intracellular). Consequently,
certain regulatory mechanisms are activated only when metabolite concentrations
reach specific thresholds. Formally, this requires defining Boolean rules with
threshold conditions on metabolite concentrations.

Advanced RMN Dynamics. A medium to long-term perspective would be
to reformulate the inference problem using RMN dynamics accounting
for enzyme production and degradation, as well as threshold-based
regulatory rules. For instance, the de-rFBA formalism (Liu and Bockmayr, 2020)
could be used.

Addressing the inference problem with such dynamics will introduce new chal-
lenges in both the solving methods and the types of data required for inference.
Solving this problem will likely necessitate developing new hybrid solving frame-
works, in particular, based on hybrid automaton inference methods. The de-rFBA

142



Perspectives CONCLUSION AND PERSPECTIVES

formalism models the RMN as a hybrid automaton. Regarding experimental data
types, it would be interesting to assess whether the trade-off between the quantity
and complexity of the data needed for the inference and the quality of the inferred
networks is cost-effective compared to what MERRIN infers from kinetic and
transcriptomic data.

Inference of Missing Interactions Using Machine Learning and Formal
Methods

A significant limitation of the inference methods presented in this manuscript is
the need for comprehensive prior knowledge of all interactions between genes,
proteins, metabolites, and reactions involved in regulation. Our methods can only
infer regulatory rules supported by the provided interactions. If interactions are
missing, our methods, MERRIN, may fail to infer any regulatory rules.

Use of interaction databases. In practice, it is possible to use interactions available
in gene regulatory network (GRN) databases. However, these databases have
limitations: they often lack the interactions between the metabolic and regulatory
scales, and many of the interactions they contain are statistically inferred and do
not have guarantees to be biologically relevant. Therefore, using interactions from
these databases necessitates carefully selecting the relevant interactions to use for
the inferring. This solution is not ideal as it requires manual curation of database
interactions and does not address the lack of interactions between the metabolic
and regulatory scales.

Coupling machine learning and formal methods. To address this issue, a long-term
perspective would be to infer the missing interactions directly during the
inference process using statistical or machine learning-based methods (Gao et al.,
2020; Liu et al., 2021; Barman and Kwon, 2020). The primary drawback of these
methods is their tendency to infer spurious gene interactions, that is, interactions
lacking biological relevance. They do not provide the guarantees and explainability
provided by formal methods, such as logic programming. For instance, our Boolean
network inference methods can explain why each regulatory rule has been inferred.
By prohibiting a rule to be learned, one can identify which logic rules, and thus
observations, are violated. Such explainability is most of the time not possible with
machine learning-based approaches.

Recent studies have explored the integration of logic programming and machine
learning methods to infer biologically relevant Boolean networks within the context
of drug development (Réda and Delahaye-Duriez, 2022). To achieve that, the
authors introduce an inferring workflow that first infers candidate Boolean networks
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with an ASP-based inferring method; and then filters them based on an ‘influence
maximization’ criterion commonly used in machine learning.

Similar methods could surely be developed to integrate the selection and inferring
of new relevant interactions into our inferring process. The integration of machine
learning and formal methods is a fast-growing field of research with the
potential to open up new opportunities for the inference of Boolean regulatory
networks.

Conclusion. The work conducted during this thesis focused on developing inference
methods for Boolean regulatory rules that control metabolic processes. These
methods are based on constraint programming formalisms and reasoning from
biological knowledge. These reasonings focus on the compatibility between biological
data and the assumed multi-scale dynamics of biological systems.

In the long term, the objective would be to achieve this inference using machine
learning-based approaches. Currently, the limited availability of RMNs in the
literature prevents the training of such models.

A first strategy to increase the training set would be to develop models in
collaboration with biologists that, through predictions, would facilitate the design
of experimental protocols. These new experiments will enable the acquisition of
new data which will be used for the development and enhancement of RMNs.

A second strategy would be to refine the modeling, simulation, and inference
formalisms of RMNs to gain a better understanding of the biological mechanisms
of metabolic regulation.

By integrating formal methods with machine learning, improving modeling
formalisms, and developing decision-aid protocols, the reconstruction of RMN
models can be simplified, leading to a better understanding of the regulatory rules
controlling cell behaviors.
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A Regulated Metabolic Networks

In this appendix, we describe two regulated metabolic networks of Escherichia coli
for which no standard encodings were available. Part of this thesis has consisted of
cleaning, updating, and understanding these networks. Our models are composed
of SBML (metabolic networks) files (Hucka et al., 2003) and SBML-qual (Boolean
regulatory networks) files (Chaouiya et al., 2013). They are compatible with the
rFBA simulation tool FlexFlux (Marmiesse et al., 2015). Files associated with each
network are available at https://github.com/kthuillier/regulated-metabo
lic-models.

In Section A.1, we describe the model of core-carbon metabolism introduced
in Covert et al. (2001) and used in Chapters III to V. In Section A.2, we describe
the medium-scale model of the core metabolism of Escherichia coli introduced
in (Covert and Palsson, 2002) and used in Chapters IV and V.

A.1 Core-carbon Metabolic Model

Comprehensive description of the Boolean network of the core-carbon metabolism
model that we reconstruct. The core-carbon metabolism model is introduced in Covert
et al. (2001).

A.1.1 Regulated metabolic network
Description. The model description, as provided in the paper, is shown in Tab. 8
(three first columns). At the metabolic level, it contains 20 reactions and 19
metabolites of which 8 are environmental metabolites. The reaction bounds are
defined in the paper. From this description, we generate a metabolic network in
SBML format. The metabolic network has been manually encoded into SBML,
using the open-source Python library LibSBML (Bornstein et al., 2008).
At the regulatory level, there are 4 regulatory proteins and 11 non-constant regu-
latory rules. This model does not consider genes, only regulatory proteins.

Boolean regulatory network. The Boolean network that we reconstructed from
the model description is described by the last column of Tab. 8. The rules are
functions of a consistent Boolean regulatory state (Def. 2.1 in Chapter II), i.e.
given a regulated metabolic steady-state (v, w, x) (Def. 1.6 in Chapter I), x is such
that:
— for each external metabolite m of concentration wm: (wm > 0) ⇐⇒ xm;

— for each reaction r with a flux value vr: (vr 6= 0) ⇐⇒ xr.

These Boolean rules have been manually encoded into SBML-qual.
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Reaction Name Regulation Boolean function

Metabolic reactions
−1 A− 1 ATP + B R1 fR1(x) = 1
−1 B + 2 ATP + 3 NADH + 1 C R2a IF NOT(RPb) fR2a(x) = xRPb

−1 C− 2 ATP− 3 NADH + 1 B R2b fR2b(x) = 1
−1 B + 1 F R3 fR3(x) = 1
−1 C + 1 G R4 fR4(x) = 1
−1 G + 0.8 C + 2 NADH R5a IF NOT (RPO2 ) fR5a(x) = ¬xRPO2

−1 G + 0.8 C + 2 NADH R5b IF RPO2 fR5b(x) = xRPO2

−1 C + 2 ATP + 3 D R6 fR6(x) = 1
−1 C− 4 NADH + 3 E R7 IF NOT (RPb) fR7(x) = ¬xRPb

−1 G− 1 ATP− 2 NADH + 1 H R8a IF NOT(RPh) fR8a(x) = ¬xRPh

−1 H + 1 ATP + 2 NADH + 1 G R8b fR8b(x) = 1
−1 NADH− 1 O2 + 1 ATP Rres IF NOT(RPO2 ) fRres(x) = ¬xRPO2

Transport processes
−1 Carbon1 + 1 A Tc1 fTc1(x) = 1
−1 Carbon2 + 1 A Tc2 IF NOT(RPc1 ) fTc2(x) = ¬xRPc1

−1 Dext + 1 Dext Td fTd(x) = 1
−1 E ext + 1 Eext Te fTe(x) = 1
−1 F ext + 1 F Tf fTf(x) = 1
−1 H ext + 1 H Th fTh(x) = 1
−1 Oxygen + 1 O2 To2 fTo2(x) = 1
Maintenance and growth
−1 C− 1 F− 1 H− 10 ATP + 1 Biomass Growth fGrowth(x) = 1
Regulatory proteins

RPO2 IF NOT(Oxygen) fRPO2(x) = ¬xOxygen

RPc1 IF Carbon1 fRPc1(x) = xCarbon1

RPh IF (vTh > 0) fRPh(x) = xTh

RPb IF (vR2b > 0) fRPb(x) = xR2b

� Table 8 – Comprehensive description of the Boolean regulatory rules of the core-
carbon metabolism introduced in Covert et al. (2001). The first three columns are
shown exactly as described in the aforementioned paper. The last column is our
reconstruction of the Boolean regulatory rules. vTh and vR2b are the metabolic flux
through the reactions Th and R2b, respectively. Boolean functions take as input a
Boolean regulatory state x consistent with a regulated metabolic steady-state (v, w, x)
(Def. 2.1 in Chapter II).
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A.1.2 Validation

We validate the reconstructed model using five experimental conditions provided
in Covert et al. (2001) and described in Tab. 9.

Experiment Concentration (mM) Regulatory protein state
Carbon1 Carbon2 Oxygen Fext Hext RPO2 RPc1 RPh RPb

1 10 10 100 0 0 0 1 0 0
2 0 10 5 0 0 0 0 0 0
3 0 10 100 0 2 0 0 1 0
4 0 5 0 0 10 1 0 1 0
5 1 10 100 0.1 5 1 0 1 0

� Table 9 – Descriptions of the five experimental conditions used to validate our
model of core-carbon metabolism.

For each experiment, we made an rFBA simulation of the model using Flex-
Flux Marmiesse et al. (2015) with a timestep of 0.01h, a duration of 3h, and an
initial biomass of 0.01g.L-1. A comparison between the rFBA simulations described
in Covert et al. (2001) and from our model simulation is shown in Fig. 18. It
can be seen that the overall behavior of our model fits with the expected rFBA
simulations.

(a) Experiment 1. Left: rFBA simulations from Covert et al. (2001); Right: rFBA simulation
made with FlexFlux of our model.

(b) Experiment 2. Left: rFBA simulations from Covert et al. (2001); Right: rFBA simulation
made with FlexFlux of our model.
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(c) Experiment 3. Left: rFBA simulations from Covert et al. (2001); Right: rFBA simulation
made with FlexFlux of our model.

(e) Experiment 4. Left: rFBA simulations from Covert et al. (2001); Right: rFBA simulation
made with FlexFlux of our model.

(f) Experiment 5. Left: rFBA simulations from Covert et al. (2001); Right: rFBA simulation
made with FlexFlux of our model.

� Figure 18 – Side-by-side comparisons of the rFBA simulations provided in Covert
et al. (2001) and from our model of the core-carbon metabolism model. For each
subfigure, the left graph is from the aforementioned paper, and the right graph is the
rFBA simulation made from our reconstructed model. The thick lines (left: black; right:
red) are the biomass. Other lines are metabolite concentrations.
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� Figure 19 – Excerpt of the appendix of Covert and Palsson (2002): First 20
reactions and regulatory rules described in the model of core metabolism.

A.2 Medium-Scale Regulated Metabolic Networks of Escherichia coli

Comprehensive description of the Boolean network of the core metabolism of Es-
cherichia coli that we reconstruct. The model of core metabolism of Escherichia
coli is introduced in Covert and Palsson (2002).

A.2.1 Regulated metabolic network

This model is only available in the appendix of Covert and Palsson (2002). An
excerpt of the 20 first reactions and regulatory rules of its description is shown in
Fig. 19.

At the metabolic level, this model contains 113 reactions over 90 metabolites of
which 13 are external metabolites. The metabolic network is shown in Fig. 2 and
described in Tab. 10 (last column). We manually encoded the metabolic network
into SBML, using the open-source Python library LibSBML (Bornstein et al., 2008).

At the regulatory level, there are 86 genes, 20 regulatory proteins, and 203
regulatory rules. A comprehensive description of the Boolean network, as described
in the paper, is shown in Tabs. 10 and 11. For the sake of clarity, Boolean rules
syntax is simplified: the state xN of a component N is simply denoted by ‘N’;
the flux through a reaction R is denoted by ‘[R > 0]’; and external metabolite
availability is denoted by the metabolite name, which ends in ‘xt_b’. These Boolean
rules have been manually encoded into SBML-qual.
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Name Boolean function Reaction

Metabolic reactions

ACEA aceA ICIT → GLX + SUCC
ACEB aceB ACCOA + GLX → COA + MAL
ACEE (aceEF ∧ lpdA) PYR + COA + NAD → NADH + CO2 +

ACCOA
ACKAR ackA ACTP + ADP ⇐⇒ ATP + AC
ACNAR acnA CIT ⇐⇒ ICIT
ACNBR acnB CIT ⇐⇒ ICIT
ACS acs ATP + AC + COA → AMP + PPI + ACCOA
ADHER adhE ACCOA + 2 NADH ⇐⇒ ETH + 2 NAD +

COA
ADK adk ATP + AMP ⇐⇒ 2 ADP
ATPAR atpA-I ATP ⇐⇒ ADP + PI + 4 HEXT
CYDA cydAB QH2 + 0.5 O2 → Q + 2 HEXT
CYOA cyoABCD QH2 + 0.5 O2 → Q + 2.5 HEXT
DLD1R dld NAD + LAC ⇐⇒ PYR + NADH
DLD2 dld LAC + Q → PYR + QH2
ENOR eno _2PG ⇐⇒ PEP
FBAR fba FDP ⇐⇒ T3P1 + T3P2
FBP fbp FDP → F6P + PI
FDNG fdnGHI FOR + Q → QH2 + CO2 + 2 HEXT
FDOH fdolHG FOR + Q → QH2 + CO2 + 2 HEXT
FRDA frdABCD FUM + FADH → SUCC + FAD
FUMAR fumA FUM ⇐⇒ MAL
FUMBR fumB FUM ⇐⇒ MAL
FUMCR fumC FUM ⇐⇒ MAL
GALER galE UDPGAL ⇐⇒ UDPG
GALKR galK GLAC + ATP ⇐⇒ GAL1P + ADP
GALM1R galM bDGLAC ⇐⇒ GLAC
GALM2R galM bDGLC ⇐⇒ GLC
GALTR galT GAL1P + UTP ⇐⇒ PPI + UDPGAL
GALUR galU G1P + UTP ⇐⇒ UDPG + PPI
GAPAR gapA T3P1 + PI + NAD ⇐⇒ NADH + _13PDG
GLK glk GLC + ATP → G6P + ADP
GLPA glpABC GL3P + Q → T3P2 + QH2
GLPD glpD GL3P + Q → T3P2 + QH2
GLPK glpK GL + ATP → GL3P + ADP
GLTA gltA ACCOA + OA → COA + CIT
GND gnd D6PGC + NADP → NADPH + CO2 + RL5P
GPMAR gpmA _3PG ⇐⇒ _2PG
GPMBR gpmB _3PG ⇐⇒ _2PG
GPSAR gpsA GL3P + NADP ⇐⇒ T3P2 + NADPH
ICDAR icdA ICIT + NADP ⇐⇒ CO2 + NADPH + AKG
LACZ lacZ LCTS → GLC + bDGLAC
MAEB maeB MAL + NADP → CO2 + NADPH + PYR
MDHR mdh MAL + NAD ⇐⇒ NADH + OA
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Name Boolean function Reaction

NDH ndh NADH + Q → NAD + QH2
NUOA nuoA-N NADH + Q → NAD + QH2 + 3.5 HEXT
PCKA pckA OA + ATP → PEP + CO2 + ADP
PFKA pfkA F6P + ATP → FDP + ADP
PFKB pfkB F6P + ATP → FDP + ADP
PFLA pflAB PYR + COA → ACCOA + FOR
PFLC pflCD PYR + COA → ACCOA + FOR
PGIR pgi G6P ⇐⇒ F6P
PGKR pgk _13PDG + ADP ⇐⇒ _3PG + ATP
PGL pgl D6PGL → D6PGC
PGMR pgm G1P ⇐⇒ G6P
PNTA1 pntAB NADPH + NAD → NADP + NADH
PNTA2 pntAB NADP + NADH + 2 HEXT → NADPH +

NAD
PPA ppa PPI → 2 PI
PPC ppc PEP + CO2 → OA + PI
PPSA ppsA PYR + ATP → PEP + AMP + PI
PTAR pta ACCOA + PI ⇐⇒ ACTP + COA
PYKA pykA PEP + ADP → PYR + ATP
PYKF pykF PEP + ADP → PYR + ATP
RBSK rbsK RIB + ATP → R5P + ADP
RPER rpe RL5P ⇐⇒ X5P
RPIAR rpiA RL5P ⇐⇒ R5P
RPIBR rpiB RL5P ⇐⇒ R5P
SDHA1 sdhABCD SUCC + FAD → FADH + FUM
SDHA2 sdhABCD FADH + Q ⇐⇒ FAD + QH2
SFCA sfcA MAL + NAD → CO2 + NADH + PYR
SUCA (sucAB ∧ lpdA) AKG + NAD + COA → CO2 + NADH +

SUCCOA
SUCCR sucCD SUCCOA + ADP + PI ⇐⇒ ATP + COA +

SUCC
TALAR talA T3P1 + S7P ⇐⇒ E4P + F6P
TALBR talB T3P1 + S7P ⇐⇒ E4P + F6P
TKTA1R tktA R5P + X5P ⇐⇒ T3P1 + S7P
TKTA2R tktA X5P + E4P ⇐⇒ F6P + T3P1
TKTB1R tktB R5P + X5P ⇐⇒ T3P1 + S7P
TKTB2R tktB X5P + E4P ⇐⇒ F6P + T3P1
TPIAR tpiA T3P1 ⇐⇒ T3P2
ZWFR zwf G6P + NADP ⇐⇒ D6PGL + NADPH
ACUPR 1 ACxt + HEXT ⇐⇒ AC
COZTXR 1 CO2xt ⇐⇒ CO2
ETHUPR 1 ETHxt + HEXT ⇐⇒ ETH
FORUPR focA FORxt ⇐⇒ FOR
GLCPTS (ptsGHI ∧ crr) GLCxt + PEP → G6P + PYR
GLCUP galP GLCxt + HEXT → GLC
GLUPR glpF GLxt ⇐⇒ GL
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Name Boolean function Reaction

LACUP ¬ (GLCxt_b ∨ LCTSxt_b ∨
RIBxt_b ∨ GLxt_b)

LACxt + HEXT → LAC

LACDN 1 LAC → LACxt + HEXT
LACYR lacY LCTSxt + HEXT ⇐⇒ LCTS
O2TXR 1 O2xt ⇐⇒ O2
PIUP2R pitAB PIxt + HEXT ⇐⇒ PI
PYRUPR 1 PYRxt + HEXT ⇐⇒ PYR
RIBUPR rbsABCD RIBxt + ATP → RIB + ADP + PI
DCTAR dctA SUCCxt + HEXT ⇐⇒ SUCC
DCUAR dcuA SUCCxt + HEXT ⇐⇒ SUCC
DCUBR dcuB SUCCxt + HEXT ⇐⇒ SUCC
DCUC dcuC SUCC → SUCCxt + HEXT
ATPM 1 ATP → ADP + PI

Transport processes

ACex 1 ACxt ⇐⇒ ACxt_b
CO2ex 1 CO2xt ⇐⇒ CO2xt_b
ETHex 1 ETHxt ⇐⇒ ETHxt_b
FORex 1 FORxt ⇐⇒ FORxt_b
GLCex 1 GLCxt ⇐⇒ GLCxt_b
GLex 1 GLxt ⇐⇒ GLxt_b
LACex 1 LACxt ⇐⇒ LACxt_b
LCTSex 1 LCTSxt ⇐⇒ LCTSxt_b
O2ex 1 O2xt ⇐⇒ O2xt_b
PIex 1 PIxt ⇐⇒ PIxt_b
PYRex 1 PYRxt ⇐⇒ PYRxt_b
RIBex 1 RIBxt ⇐⇒ RIBxt_b
SUCCex 1 SUCCxt ⇐⇒ SUCCxt_b

Maintenance and growth

Growth 1 Biomass + 13 ATP → 13 ADP + 13 PI
VGRO 1 41.25 ATP + 3.54 NAD + 18.22 NADPH + 0.2

G6P + 0.07 F6P + 0.89 R5P + 0.36 E4P + 0.12
T3P1 + 1.49 _3PG + 0.51 PEP + 2.83 PYR +
3.74 ACCOA + 1.78 OA + 1.07 AKG → 3.74
COA + 41.25 ADP + 41.25 PI + 3.54 NADH +
18.22 NADP + 1 Biomass

� Table 10 – Boolean control rules and reactions of Escherichia coli core metabol-
ism (Covert and Palsson, 2002). Element names are used in place of their states, e.g.
the state of the gene aceA is denoted by ‘aceA’ instead of xaceA, and activity of a
reaction ‘R’ is denoted by ‘[R > 0]’. Environmental metabolite names are in italics and
end in ‘xt_b’.
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Name Boolean function

Regulatory proteins

ArcA ¬ O2xt_b
Cra ¬ (SurplusFDP ∨ SurplusF6P)
Crp 1
DcuR DcuS
DcuS SUCCxt_b
FadR (GLCxt_b ∨ ¬ ACxt_b)
Fnr ¬ O2xt_b
GalR ¬ LCTSxt_b
GalS ¬ LCTSxt_b
GlpR ¬ GLxt_b
IclR FadR
Lacl ¬ LCTSxt_b
Mlc ¬ GLCxt_b
PdhR ¬ SurplusPYR
RpiR ¬ RIBxt_b
RbsR ¬ RIBxt_b
SurplusF6P ¬ ([FBP > 0] ∧ ¬ ([TKTA2R > 0] ∨ [TKTB2R > 0] ∨ [TALAR > 0] ∨

[TALBR > 0] ∨ [PGIR > 0]))
SurplusFDP ¬ ([FBP > 0] ∧ ¬ ([TKTA2R > 0] ∨ [TKTB2R > 0] ∨ [TALAR > 0] ∨

[TALBR > 0] ∨ [PGIR > 0]))
SurplusPYR ¬ (([MAEB > 0] ∨ [SFCA > 0]) ∧ ¬ ([GLCPTS > 0] ∨ [PYKF > 0] ∨

[PYKA > 0] ∨ [DLD1R > 0] ∨ [DLD2 > 0] ∨ [DCTAR > 0] ∨ [DCUAR > 0]
∨ [DCUBR > 0]))

Genes

aceA ¬ IclR
aceB ¬ (ArcA ∨ IclR)
aceEF ¬ PdhR
ackA 1
acnA (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨

SUCCxt_b ∨ ETHxt_b ∨ ACxt_b ∨ FORxt_b)
acnB (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨

SUCCxt_b ∨ ETHxt_b ∨ ACxt_b ∨ FORxt_b)
acs (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨

SUCCxt_b ∨ ETHxt_b) ∧ ¬ IclR)
adhE ¬ O2xt_b
adk 1
atpA-I 1
crr 1
cydAB (¬ Fnr ∨ ArcA)
cyoABCD ¬ (ArcA ∨ Fnr)
dctA (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b)

∧ ¬ ArcA ∧ ¬ DcuR)
dcuA 1
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Name Boolean function

dcuB (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b)
∧ Fnr ∧ DcuR)

dcuC (Fnr ∨ ArcA)
dld 1
eno 1
fba 1
fbp 1
fdnGHI Fnr
fdolHG 1
focA (ArcA ∨ Fnr)
frdABCD (Fnr ∨ DcuR)
fumA ¬ (ArcA ∨ Fnr)
fumB Fnr
fumC 1
galE (¬ GLCxt_b ∧ ¬ (GalR ∨ GalS))
galK (¬ GLCxt_b ∧ ¬ (GalR ∨ GalS))
galM (¬ GLCxt_b ∧ ¬ (GalR ∨ GalS))
galP (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨

SUCCxt_b ∨ ETHxt_b ∨ ACxt_b ∨ FORxt_b)
galT (¬ GLCxt_b ∧ ¬ (GalR ∨ GalS))
galU 1
gapA 1
glk 1
glpABC (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b) ∧ Fnr ∧ ¬ GlpR)
glpD (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b) ∧ ¬ (ArcA ∨ GlpR))
glpF (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b) ∧ ¬ GlpR)
glpK (¬ (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b) ∧ ¬ GlpR)
gltA 1
gnd 1
gpmA 1
gpmB 1
gpsA 1
icdA 1
lacY 1
lacZ (¬ GLCxt_b ∧ ¬ Lacl)
lpdA ¬ PdhR
maeB 1
mdh ¬ ArcA
ndh ¬ Fnr
nuoA-N 1
pckA 1
pfkA 1
pfkB 1
pflAB (ArcA ∨ Fnr)
pflCD (ArcA ∨ Fnr)
pgi 1
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Name Boolean function

pgk (GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨
SUCCxt_b ∨ ETHxt_b ∨ ACxt_b ∨ FORxt_b)

pgl 1
pgm 1
pitAB 1
pntAB 1
ppa 1
ppc 1
ppsA Cra
pta 1
ptsGHI (((GLCxt_b ∨ LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨

SUCCxt_b ∨ ETHxt_b ∨ ACxt_b ∨ FORxt_b) ∧ ¬ Mlc) ∨ ((GLCxt_b ∨
LCTSxt_b ∨ RIBxt_b ∨ GLxt_b ∨ LACxt_b ∨ PYRxt_b ∨ SUCCxt_b ∨
ETHxt_b ∨ ACxt_b ∨ FORxt_b) ∧ ¬ Cra))

pykA 1
pykF ¬ Cra
rbsABCD (¬ (GLCxt_b ∨ LCTSxt_b) ∧ ¬ RbsR)
rbsK (¬ (GLCxt_b ∨ LCTSxt_b) ∧ ¬ RbsR)
rpe 1
rpiA 1
rpiB ¬ RpiR
sdhABCD ¬ (ArcA ∨ Fnr)
sfcA 1
sucAB ¬ PdhR
sucCD 1
talA 1
talB 1
tktA 1
tktB 1
tpiA 1
zwf 1

� Table 11 – Boolean regulatory rules, including feedback rules, of Escherichia coli
core metabolism (Covert and Palsson, 2002). Element names are used in place of
their states, e.g. the state of the gene aceA is denoted by ‘aceA’ instead of xaceA, and
activity of a reaction ‘R’ is denoted by ‘[R > 0]’. Environmental metabolite names are
in italics and end in ‘xt_b’.
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A.2.2 Validation

We validate the reconstructed model using the experimental conditions provided
in Covert and Palsson (2002). The three experimental conditions provided in the
paper are described in the following table (Tab. 12)

Experiment Concentration (mM) Biomass Duration
Acetate Glucose Lactose Oxygen Phosphate (g.L-1) (h)

1 0.3 10.4 0 9999 9999 0.003 12
2 0 10.5 0 9999 9999 0.002 11
3 0 1.6 5.8 9999 9999 0.011 9

� Table 12 – Descriptions of the three experimental conditions used to validate our
model of Escherichia coli core metabolism.

For each experiment, we made an rFBA simulation of our model using Flex-
Flux (Marmiesse et al., 2015) with a timestep of 0.01h. Figures 20,21, and 22
compare for the three experiments the rFBA simulations described in the afore-
mentioned paper with the rFBA simulations made with our model. The overall
dynamics of our model and the one described in the paper are similar.

(a) Figures from Covert and Palsson (2002).

(b) rFBA simulation of our model made with FlexFlux.

� Figure 20 – Experiment 1: rFBA simulation of aerobic growth on acetate with
glucose reutilization of the medium-scale model. The graphs show, from left to right,
the kinetics of glucose, the kinetics of acetate, and the growth (biomass production).
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(a) Figures from Covert and Palsson (2002).

(b) rFBA simulation of our model made with FlexFlux.

� Figure 21 – Experiment 2: rFBA simulation of anaerobic growth on glucose of the
medium-scale model. The graphs show, from left to right, the kinetics of glucose, the
kinetics of ethanol, the growth (biomass production), the kinetics of formate, and the
kinetics of acetate.
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(a) Figures from Covert and Palsson (2002).

(b) rFBA simulation of our model made with FlexFlux.

� Figure 22 – Experiment 3: rFBA simulation of aerobic growth on glucose and
lactose of the medium-scale model. The graphs show, from left to right, the kinetics of
glucose, the kinetics of lactose, and the growth (biomass production).

A14



B ASP Programs for Addressing the Inference Problems APPENDICES

B ASP Programs for Addressing the Inference Problems

In this appendix, we present the ASP program used to solve the different formula-
tions of the inference problem. Section B.1 gives the ASP representation of the
inference problem inputs. Then in Section B.2 and Section B.3, we describe the
ASP programs used to solve the relaxed inference problem and hybrid inference
problem formulation, respectively.

B.1 Encoding of the Inference Problem Inputs

B.1.1 Metabolic network

Given a metabolic network N = (Mext), the metabolic network N is represented
such that each reaction r ∈ R is modeled by a set of facts of the form:

reactant(m,r,s) for each reactant metabolite m ∈M of r, that is, s = Smr < 0.

product(m,r,s) for each product metabolite m ∈M of r, that is, s = Smr > 0.

ext(m) encode external metabolites m ∈Mext.

obj(r) encode the growth reaction r ∈ R. There is exactly one growth reaction
in the ASP program.

bounds(r,lr,ur) encode the thermodynamics bounds lr, ur of each reaction r ∈
R.

rev(rf,rr) encode the reversible reactions r, that is, reactions with lr < 0 < ur.
In practice, the reversible reactions are split into two reactions: a forward
reaction (rf) and a reversible reaction (rr) in our ASP encoding. Their
bounds are such that: (lrf , urf ) = (0, ur) and (lrr, urr) = (0,−lr).

In practice, predicates ext/1, obj/1, bounds/3, and rev/2 are not used for the
relaxed inference problem.

Example. The objective reaction Growth and external metabolites of the toy model
metabolic network (Fig 3) is described by the following set of facts.

1 reac tant ("A" ,"Growth" ,"1") . r eac tant ("ATP" ,"Growth" ,"1") .
2 product (" Biomass " ,"Growth" ,"1") . product ("NADH" ,"Growth" ,"1") .
3
4 bounds ("Growth" ,"0" ,"9999") . obj ("Growth") .
5
6 ext ("Carbon1 ") . ext ("Carbon2 ") . ext ("Oxygen") .
7 ext (" Biomass ") . ext ("Dext ") . ext (" Eext ") .
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B.1.2 Prior Knowledge Network

The prior knowledge network G = (V,E) is defined using three predicates: node/1,
in/3 and maxC/2. It is modeled such that:

node/1 denotes nodes in V , that is, ∀n ∈ V there is a fact node(n).

in/3 denotes signed interactions between nodes, that is, ∀ (u, s, v) ∈ E there is a
fact in(u, v, s).

maxC/2 denotes the maximum number of clauses in disjunctive normal form that
can have a rule. As we are looking for monotone BNs, we can pre-compute
the maximum number of conjunctive clauses in rules. The fact maxC(v,c)
maps a node v ∈ V to its maximum number of conjunctive clauses c. In
practice, c is defined as d

(
n
n/2

)
e.

Example. The prior knowledge network of the toy model (Figure 3b in Thuillier
et al. (2021) - Chapter III) is defined by:

1 node ("RPcl ") . node ("RPO2") .
2 {node ("Carbon1 ") } . {node ("Carbon2 ") } . {node ("Oxygen") } .
3 {node (" Rres ") } . {node ("Tc2") } . {node ("Tc1") } .
4
5 in ("Carbon1 " ,"RPcl " ,( −1;1) ) . in ("RPcl " ,"Tc2" ,( −1;1) ) .
6 in ("RPcl " ,"Tc1" ,( −1;1) ) . in ("Carbon2 " ,"RPcl " ,( −1;1) ) .
7 in ("Oxygen" ,"RPO2" ,( −1;1) ) . in ("RPO2" ," Rres " ,( −1;1) ) .
8 in (" Rres " ,"RPO2" ,( −1;1) ) . in ("Tc2" ,"RPcl " ,( −1;1) ) .
9 in ("Tc1" ,"RPcl " ,( −1;1) ) .
10
11 maxC("Carbon1 " ,1) . maxC("Carbon2 " ,1) . maxC("Oxygen " ,1) .
12 maxC("RPcl " ,6) . maxC("RPO2" ,2) . maxC(" Rres " ,1) .
13 maxC("Tc2 " ,1) . maxC("Tc1 " ,1) .

B.1.3 Time series observations

The sequence of observations T is a set of pairs (st1, st2) where st1 and st2 are regu-
lated metabolic steady-states. Two predicates are used to encode these observations:
next/2 and obs/3. Facts of the form:

next(t1,t2) represent that time t1 and t2 are successive (but not necessarily
consecutive) timesteps.

obs(t,v,s) model that at timestep t, the component v is observed in state s, with
s = 1 is the v is active/available and s = −1 if v is inactive/unavailable.

obj(t,s) model that at timestep t, the observed growth is s.
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Example. Consider the two first timesteps (t1 = (1, 0) and t2 = (1, 1)) of experi-
ment 1 described in Thuillier et al. (2021) - Chapter III:

External metabolites Regulatory proteins Reactions
Time wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

(1, 0) 20 20 100 0 1 0 0 0 0 0 0 0 0 0
(1, 1) 20 20 100 0 1 10.5 0 10.5 0 0 10.5 10.5 0 0

Their ASP representation is:
1 obs ( ( 1 , 0 ) ,"Carbon1 " ,1) . obs ( ( 1 , 0 ) ,"Carbon2 " ,1) .
2 obs ( ( 1 , 0 ) ,"Growth" ,−1) . obs ( ( 1 , 0 ) ,"Oxygen " ,1) .
3 obs ( ( 1 , 0 ) ,"R6" ,−1) . obs ( ( 1 , 0 ) ,"R7" ,−1) . obs ( ( 1 , 0 ) ,"RPO2" ,−1) .
4 obs ( ( 1 , 0 ) ,"RPcl " ,1) . obs ( ( 1 , 0 ) ," Rres " ,−1) . obs ( ( 1 , 0 ) ,"Tc1" ,−1) .
5 obs ( ( 1 , 0 ) ,"Tc2" ,−1) . obs ( ( 1 , 0 ) ,"Td" ,−1) . obs ( ( 1 , 0 ) ,"Te" ,−1) .
6 obs ( ( 1 , 0 ) ,"To2" ,−1) .
7 obj ( ( 1 , 0 ) ,"0") .
8
9 obs ( ( 1 , 1 ) ,"Carbon1 " ,1) . obs ( ( 1 , 1 ) ,"Carbon2 " ,1) .
10 obs ( ( 1 , 1 ) ,"Growth " ,1) . obs ( ( 1 , 1 ) ,"Oxygen " ,1) .
11 obs ( ( 1 , 1 ) ,"R6" ,−1) . obs ( ( 1 , 1 ) ,"R7" ,−1) . obs ( ( 1 , 1 ) ,"RPO2" ,−1) .
12 obs ( ( 1 , 1 ) ,"RPcl " ,1) . obs ( ( 1 , 1 ) ," Rres " ,1) . obs ( ( 1 , 1 ) ,"Tc1 " ,1) .
13 obs ( ( 1 , 1 ) ,"Tc2" ,−1) . obs ( ( 1 , 1 ) ,"Td" ,−1) . obs ( ( 1 , 1 ) ,"Te" ,−1) .
14 obs ( ( 1 , 1 ) ,"To2" ,1) .
15 obj ( ( 1 , 1 ) , "10 . 5" ) .
16
17 next ( ( 1 , 0 ) , ( 1 , 1 ) ) .

Note that special reaction bounds can be provided to the program using:

bounds(t,r,lr,ur) models that at time t, the reaction r should have the bounds
lr, ur. Facts of this form are used to represent external metabolite availability
by adding special bounds to exchange reactions.

param(transport,exp,r,lr,ur) models that for all observations of the experi-
ment exp, the reaction r should use the bounds lr, ur instead of the metabolic
networks bounds.

In practice, the predicates obj/2, bounds/4, and param/5 are not used in the
encoding of the relaxed inference problem.

B.1.4 Boolean objective function

Used for the relaxed inference problem (Chapter III) only.

The Boolean objective function ô is encoded with the predicate score/3, that
associate a timestep to a score ô(x) where x is the Boolean metabolic steady-state.
Facts derived from this predicate have the form score(t,a,s) where t is a timestep,
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s = ô(x) is an integer, and a ∈ {o, v} is the score source: the observed metabolic
steady-state (a = o) or the inferred metabolic steady-states (a = v). Note that no
facts are initially used to define the score function.

Example. In Thuillier et al. (2021) - Chapter III, we consider the Boolean objective
function ô(x) = xTc1 + xTc2 + xTo2. In ASP, it is modeled by:

1 opt (T) :− T=("Tc1 " ;"Tc2 " ;"To2") .
2 score_z (T,N, 0 ) :− z (T,N,−1) . score_z (T,N, 1 ) :− z (T,N, 1 ) .
3 s co r e (T, o , S ) :− time (T) , S=#sum{V,N: opt (N) , score_z (T,N,V) } .
4 s co r e (T, v , S) :− time (T) , S=TC1+TC2+TO2, score_z (T, "Tc1" ,TC1) ,
5 score_z (T, "Tc2" ,TC2) , score_z (T, "To2" ,TO2) .

B.2 Relaxed Inference Problem

In this section, we present the ASP encoding used to address the relaxed inference
problem. It relies on the saturation methods. The ASP encoding is shown below.

1 { c l au s e (N, 1 . . C,L , S ) : in (L ,N, S ) , maxC(N,C) , node (N) } .
2
3 :− c l au s e (N,_,L , S ) , c l au s e (N,_,L,−S ) .
4 1 { constant (N, ( −1 ;1 ) ) } 1 :− node (N) , not c l au s e (N,_,_,_) .
5 constant (N) :− constant (N,_) .
6
7 s i z e (N,C,X) :− X = #count{L , S : c l au s e (N,C,L , S )} , c l au s e (N,C,_,_) .
8 :− c l au s e (N,C,_,_) , not c l au s e (N,C−1,_,_) , C > 1 .
9 :− s i z e (N,C1 ,X1) , s i z e (N,C2 ,X2) , X1 < X2 , C1 > C2 .
10 c l a u s e d i f f (N,C1 ,C2 ,L) :− c l au s e (N,C1 ,L ,_) , not c l au s e (N,C2 ,L ,_) ,
11 c l au s e (N,C2 ,_,_) , C1 != C2 .
12 mind i f f (N,C1 ,C2 ,L) :− c l a u s e d i f f (N,C1 ,C2 ,L) ,
13 L <= L ’ : c l a u s e d i f f (N,C1 ,C2 ,L ’ ) ,
14 c l au s e (N,C1 ,L ’ ,_) , C1!=C2 .
15 :− s i z e (N,C1 ,X) , s i z e (N,C2 ,X) , C1 > C2 ,
16 mind i f f (N,C1 ,C2 , L1 ) , m ind i f f (N,C2 ,C1 , L2 ) , L1 < L2 .
17 :− s i z e (N,C1 ,X1) , s i z e (N,C2 ,X2) , C1 != C2 , X1 <= X2 ,
18 c l au s e (N,C2 ,L , S ) : c l au s e (N,C1 ,L , S ) .

Encoding DNF formulas. Lines 1–18 define rules encoding logical formulas in
disjunctive normal form (DNF) as proposed in BoNesis (Chevalier et al., 2020). A
conjunctive clause of a DNF formula is defined using the predicate clause/4. The
set of admissible clauses according to the input prior knowledge network delimiting
the solution space is defined in Line 1. As we focus on inferring locally monotone
BNs, we want a node n to be of a single sign (n or ¬n) in local functions (Line
3). A node is set to a constant value, either 1 or −1, if its local function does not
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contain any clauses (Lines 4–5). Thus, each node n matches either with a constant
atom constant(n) or a set of clause atoms of the form clause(n, id, v, s),
where id is the clause id, v is another node and s ∈ {−1; 1} is the sign of v in the
clause id of local function of the node n.

With current BN representation, there exist many semantically identical Boolean
formulas, e.g. clause("A", 1, "B", 1) is semantically equivalent to clause("A",
2, "B", 1). Lines 7-18 allow removing these duplicates, thus reducing the solution
space. These lines define an order on clauses, based on 3 criterion:

1. if a clause cn is non-empty, then all the clauses {c1, ..., cn−1} must be non-
empty (Line 8);

2. if a clause ci contain ni elements and a clause cj contain nj elements, with
ni < nj, then i < j (Lines 9-16);

3. a clause ci of a local function fi could not strictly include another clause cj
(with i 6= j) of fi: ci 6⊆ cj (Lines 17-18).

Learning Boolean networks. Notice that at this point, we have a representation of
the search space F(G) of BNs delimiting by the prior knowledge network G.

19 update (T1 ,A) :− mode(T1 , reg ) , node (A) , not inp (A,_) .
20 mode(T1 , reg ) :− next (T1 ,_) .
21
22 constant (A,−1) :− inp (A,_) .
23 :− constant (A) , not inp (A,_) .
24
25 eva l (T,A,C,−1) :− update (T,A) , c l au s e (A,C,L ,V) , read (T,L,−V) .
26 eva l (T,A,C, 1 ) :− read (T,L ,V) : c l au s e (A,C,L ,V) ;
27 update (T,A) , c l au s e (A,C,_,_) .
28 eva l (T,A, 1 ) :− eva l (T,A,C, 1 ) , c l au s e (A,C,_,_) .
29 eva l (T,A,−1) :− eva l (T,A,C, −1) : c l au s e (A,C,_,_) ;
30 update (T,A) , c l au s e (A,C,_,_) .
31 eva l (T,A,V) :− update (T,A) , constant (A,V) .
32
33 x (T2 ,A,V) :− inp (A,_) , next (_,T2) , v (T2 ,A,V) .
34 x (T2 ,A,V) :− next (T1 ,T2) , not inp (A,_) , not update (T1 ,A) , v (T1 ,A,V) .
35 x (T2 ,A,V) :− next (T1 ,T2) , update (T1 ,A) , eva l (T1 ,A,V) .

Lines 20–32 define the Boolean network dynamics. Line 20 defines the update
mode of the BN as synchronous, i.e. all the local functions of the BN are applied at
each timestep. The predicate update/2 matches the set of local functions that must
be applied to each timestep. As we rely on a synchronous update, for each timestep
t and each node n which is not an input, the model has the atom update(t,n).
Notice that local functions associated with input metabolites are never applied.
Input metabolites are associated with constant functions, defined in Lines 23–24,
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as the input metabolites depend on external observations independent of the rest
of the system.

Lines 26-32 encode valid transitions between regulatory states. From a given
regulatory state x modeled with the predicate read/3, it applies one synchronous
update. Given f a BN, the new regulatory state is represented with the predicate
eval/3, namely eval(t,n,v) for a timestep t the node n has a Boolean value
fn(x) = v. As some node states could be fixed (force-activated or force-inhibited
depending on the input observations), it is necessary to only update the value of
free nodes. The values of non-updated nodes, as input metabolites, are copied from
the initial Boolean state x (Line 34-35). At time t the updated value v of a free
node n is copied into atoms of the form x(t,n,v) (Line 36).

Modeling Boolean rFBA dynamics. The initial Boolean states x, used to compute the
transitions from, are defined with read/3, namely read(t,n,v) with t a timestep,
n a node and v ∈ {−1; 1} an initial state. Consider two regulated Boolean metabolic
steady-states s and s′, s′ succeeds to s if and only if ∃ x = (s′Mext

, sR∪P) such that
s′ ∈ nextB(N ,P,f,ô)(x) (Chapter III).

38 read (T,A,V) :− next (T,_) , not inp (A,_) , v (T,A,V) .
39 read (T,A,V) :− next (T,T2) , inp (A,_) , v (T2 ,A,V) .

Lines 35–36 initialize the initial Boolean state x according to this definition. In
this case, if for each timestep the synchronous update of x leads to s′, then the
current Boolean network is admissible. It allows explaining the input observations
given the Boolean rFBA semantics.

Encoding Boolean metabolic steady-states. At this point, we have a representation
of the search space F(G) and can simulate synchronous Boolean networks. To
model the Boolean satisfiability problem, one must encode Boolean metabolic
steady-states into the ASP model.

41 inp (X,R) :− r eac tant (X,R) , not product (X,_) .
42 r ( r ,A,R) :− r eac tant (A,R) , product (A,_) . r (p ,A,R) :− product (A,R) ,
43 r eac tant (A,_) .
44 varm(A) :− r (_,A,_) . varm(A) :− r (_,_,A) . varm(A) :− inp (A,_) .
45 time (T1) :− next (T1 ,_) . time (T2) :− next (_,T2 ) .
46
47 1 { v (T,A, (1 ; −1) ) } 1 :− time (T) , varm(A) .
48 :− obs (T,A,V) , v (T,A,−V) .
49 :− time (T) , r (S ,A,_) , v (T,A, 1 ) , v (T,R, −1) : r (S ,A,R) .
50 :− time (T) , r (_,A,R) , v (T,R, 1 ) , v (T,A, −1) .
51 :− time (T) , inp (X,R) , v (T,X, −1) , v (T,R, 1 ) .
52
53 varx (A) :− node (A) , not varm(A) .
54 1{v (T,A, ( −1 ;1 ) )}1 :− varx (A) , time (T) .

B6



B ASP Programs for Addressing the Inference Problems APPENDICES

55 :− varx (A) , x (T,A,V) , v (T,A,−V) .
56 :− x (T,A, −1) , v (T,A, 1 ) , node (A) .

Boolean metabolic steady-states are encoded using the logical constraints Lines
41–51. This encoding relies on the predicate v/3, namely v(t,n,v) matching a
Boolean state v to a component (metabolite or reaction) n at a given timestep t
(Line 47). The observed components are fixed to their observed states (Line 48),
i.e. if at time t the reaction Tc1 is not activated then there is v(t,"Tc1",-1). The
values of all the non-observed components are set according to the definition of
Boolean metabolic steady-states:

1. Line 49: a metabolite is produced if it is consumed by at least one reaction;

2. Lines 50–51: a reaction is activated if all its reactants and products are
activated.

Actually, for each timestep t, the set of atoms v(t,n,v) must be a Boolean
metabolic steady-state.

Lines 53–56 restrict the set of Boolean metabolic steady-states to regulated
Boolean metabolic steady-states, that is, for a reaction r to be activated at a
timestep t, the node associated with r in the BN must be activated at t too.

Application of the Boolean objective function. It remains to universally quantified
logical constraints of the relaxed inference problem:

∀ z ∈ MSSB(N ), zInp 6= x′Inp ∨ zP 6= fP(x′) ∨ ô(z) ≤ ô(y) ∨ (∀ r ∈ R, zr 6≤ fr(x
′))

The observed regulated Boolean metabolic steady-states must be optimal according
to the Boolean objective function ô. In other words, for a given regulatory state x,
such that the observed state v is a regulated Boolean metabolic steady-state, there
is no timestep t where ô(v) is not optimal. To model this constraint, we seek to
solve the inverse problem: to find a regulated Boolean metabolic steady-state such
that ô(z) > ô(v) and to prohibit the existence of such a z.

58 z (T,A, 1 ) ; z (T,A,−1) :− time (T) , varm(A) .
59
60 no_rmss (T) :− inp (A,_) , v (T,A,V) , z (T,A,−V) .
61 no_rmss (T) :− time (T) , r (S ,A,_) , z (T,A, 1 ) , z (T,R, −1) : r (S ,A,R) .
62 no_rmss (T) :− time (T) , r (_,A,R) , z (T,R, 1 ) , z (T,A, −1) .
63 no_rmss (T) :− time (T) , inp (X,R) , z (T,X,−1) , z (T,R, 1 ) .
64
65 no_rmss (T):− varx (A) , x (T,A,V) , z (T,A,−V) .
66 no_rmss (T) :− x (T,A, −1) , z (T,A, 1 ) , node (A) .
67
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68 va l i d (T) :− time (T) , no_rmss (T) .
69 va l i d (T) :− time (T) , s c o r e (T, v ,V) , s co r e (T, o ,O) , V <= O.
70
71 z (T,A,−V) :− time (T) , varm(A) , z (T,A,V) , v a l i d (T) .
72 :− next (_, T) , time (T) , not va l i d (T) .

Lines 58–66 define regulated Boolean metabolic steady-states z as previously.
There are two main differences:

— The observed values are not considered. We want to see if there are regulated
Boolean metabolic steady-states that are better, according to the objective
function than the observed one.

— The predicate no_rmss/1 allows noting that a Boolean state is not a regulated
Boolean metabolic steady-state for a given timestep t: it either does not match
the input metabolites or is not a regulated Boolean metabolic steady-state.

As we are looking for a regulated Boolean metabolic steady-state z such that
ô(z) > ô(v) with v the observed regulated Boolean metabolic steady-state, we need
to define valid Boolean states:

— Line 68 defines as valid all the Boolean states that do not satisfy the definition
of regulated Boolean metabolic steady-states. This may seem counter-intuitive,
but such Boolean states are not candidates for z. Declaring them valid means
that you don’t have to worry about their score, they are simply ignored.

— Line 65 introduces the Boolean objective function ô encoded with the predicate
score/3. A regulated Boolean metabolic steady-state is valid if it has a score
less than or equal to the score of the observed state v.

All the non-valid regulated Boolean metabolic steady-state z are computed through
the saturation technique (Eiter et al., 2009; Gebser et al., 2011) (Chapter III
Section 2.2). The disjunctive variables z are defined in Line 58. The existence of
non-valid states is prohibited by Lines 71–72. In particular, Line 71 saturates the
set of all valid states to ensure that non-valid ones are computed and returned if
they exist. Line 72 ensures that no not-saturated state exists, i.e. that all states
are valid.

Display answer sets. Finally, Lines 74–75 allows displaying only the clause/4
predicates when showing answer sets.

74 #show .
75 #show c l au s e /4 .
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B.3 Hybrid Inference Problem

In this section, we present the MerrinASP (Thuillier et al., 2024) encoding used to
address the hybrid inference problem (Chapter V).

First, in Section B.3.1, we present the extended ASP syntax introduced by
MerrinASP to model quantified linear constraints. Then, in Section B.3.2, we
present the ASP program modeling the combinatorial over-approximation of the
hybrid inference problem. This is also the ASP program used in MERRIN. Finally,
in Section B.3.3, we present the quantified linear constraints modeled in MerrinASP
syntax.

B.3.1 MerrinASP Extended Syntax

MerrinASP extends the ASP syntax to model linear constraints with one level
of quantifier. In particular, it introduces five new "commands", known as theory
atoms :

1. &dom[id]{lb..ub} = v: define the range of the real-valued variable v ∈ R
such that lb ≤ v ≤ ub, with lb, ub ∈ R.

2. &sum[id]{k1 * v1; ...; kn * vn} � b: define a linear constraint of the
form

∑n
i=1 ki × vi � b, where ki ∈ R are coefficients, vi ∈ R are variables,

� ∈ {≤,≥,=} and b ∈ R is the constraint’s bound.

3. &maximize[id]{k1 * v1; ...; kn * vn}: define the objective function of
the linear optimization problem as the maximization of

∑n
i=1 ki × vi, where

ki ∈ R are coefficients and vi ∈ R are variables. This theory atom is used
only to compute the assignments of the real-valued variables for display after
an answer set is computed.

4. &minimize[id]{k1 * v1; ...; kn * vn}: similar to &maximize, but it
defines the objective function as the minimization of

∑n
i=1 ki × vi.

5. &assert[id]{k1 * v1; ...; kn * vn} � b: define a universal linear con-
straint of the form

∑n
i=1 ki × vi � b, where ki ∈ R are coefficients, vi ∈ R are

variables, � ∈ {≤,≥,=} and b ∈ R is the constraint’s bound. This constraint
is satisfied if and only if all real-valued assignments that satisfy all constraints
&dom[id] and &sum[id] satisfied

∑n
i=1 ki × vi � b.

For each theory atom, the argument id is optional, if not provided it is set to a
default value default. The id argument allows for partitioning the set of linear
constraints. When ensuring the satisfiability of a set of linear constraints, we only
ensure that the set of linear constraints in the same partition are satisfiable (i.e.
linear constraints with the same id value).
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Comparison with clingo[LP] extended syntax. The extended ASP syntax of Mer-
rinASP is quite similar to the one used for clingo[LP] (Janhunen et al., 2017) and
clingo-lpx 10. The main difference is that they do not have the &assert theory
atoms, since they do not support quantified linear constraints. Moreover, they
do allow for linear constraints partitioning, therefore their theory atoms do not
have the id arguments. All extended ASP programs compatible with clingo[LP]
or clingo-lpx are compatible with MerrinASP.

B.3.2 Combinatorial Over-Approximation

In this section, we present the ASP program used to address the combinatorial
part of the inference problem. It is used in MERRIN (Chapter IV), and in the
MerrinASP implementation of the hybrid inference problem (Chapter V).

Note that this ASP program is quite similar to the ASP program used to encode
the relaxed inference problem (Appendix B.2). The main difference is that the
hybrid inference problem does not need to infer Boolean networks (BNs) that are
exactly compatible with the time series data. Moreover, we introduce more criteria
to break the symmetry and reduce the number of semantically equivalent BNs that
can be inferred.

Non-exact trace compatibility. Unlike for the relaxed inference problem, a maximum
size difference between traces and time series Kmax should be provided as input.
This input is encoded as the fact: maxGap(Kmax).

1 % Number o f t imestep per experiment
2 nbObs(E, S) :− obs ( (E,_) ,_,_) , S=#count{ I : obs (T,_,_) , T=(E, I ) } .
3
4 % Time d e f i n i t i o n
5 time ( (E , 1 . . S ) ) :− obs ( (E,_) ,_,_) , nbObs(E, S ) .
6
7 % Added time
8 1 { gap (E , 0 . .K) } 1 :− obs ( (E,_) ,_,_) , maxGap(K) .
9 time ( (E, S+A) ) :− obs ( (E,_) ,_,_) , nbObs(E, S ) , gap (E,K) , A=0. .K.
10
11 % Simulat ion time must be s u c c e s s i v e
12 :− time ( (E, ID ) ) , ID > 1 , not time ( (E, ID−1)) .
13
14 % Succe s s i v e s imu la t i on time
15 maxTs(E, S+K) :− nbObs(E, S ) , gap (E,K) .
16
17 % Succe s s i v e time d e f i n i t i o n
18 succ ( (E,T1 ) , (E,T2) ) :− maxTs(E, ID ) , T1=(1 . . ( ID−1)) , T2=T1+1,
19 time ( (E,T1 ) ) , time ( (E,T2 ) ) .

10Available on https://github.com/potassco/clingo-lpx.
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20
21 % Mapping between obse rva t i on s and s imu la t i on t imes
22 1 { map(To , Ts ) : time (Ts ) , Ts=(E,_) } 1 :− obs (To ,_,_) , To=(E, ID ) .
23
24 % Order must be prese rved
25 :− map(To , Ts ) , map(To ’ , Ts ’ ) , To=(E, ID ) , To’=(E, ID ’ ) ,
26 next (To ,To ’ ) , Ts > Ts ’ .
27
28 % B i j e c t i v e mapping
29 :− map(To , Ts ) , map(To ’ , Ts ’ ) , To = To ’ , Ts != Ts ’ .
30 :− map(To , Ts ) , map(To ’ , Ts ) , To != To ’ .
31
32 % The f i r s t obse rvat i on i s the f i r s t s imu la t i on time
33 :− next (To ,_) , not next (_,To) , Ts=(E,_) , map(To , Ts ) , Ts !=(E , 1 ) .

Lines 1–33 encode sequences of timesteps that have at most Kmax steps that are
not associated with an observation. A trace is encoded by three predicates:

time(T) representing a timestep T ;

succ(T1,T2) representing the succession between two timesteps T1 and T2 of a
same trace;

gap(E,S) representing the length difference S between an input time series E and
its associated traces.

Lines 1–19 define the trace lengths, and Lines 21–30 define a bijective mapping
between observations and trace timesteps. In particular, Lines 25–26 ensure that
the bijective mapping (Lines 28–29) keeps the order of observations. The mapping
between an observation To and a trace timestep Ts is encoded by the predicate
map(To,Ts). Finally, Line 33 ensures that the first observation of each input time
series is mapped to the first timestep of the associated trace.

Prior Knowledge Network. The encoding of the prior knowledge network (PKN) is
the same as in Appendix B.2 (Lines 35–69).

35 % De f i n i t i o n
36 { c l au s e (N, 1 . . C,L , S ) : in (L ,N, S ) , maxC(N,C) , node (N) , node (L ) } .
37 { c l au s e (N, 1 . . C,L , S)} :− in (L ,N, S ) , maxC(N,C) , node (N) .
38
39 % Clauses have the sma l l e s t va l i d number p o s s i b l e
40 :− c l au s e (N,C,_,_) ; not c l au s e (N,C−1,_,_) ; C > 1 .
41
42 % Regulatory func t i on s are monotone
43 :− c l au s e (N,_,L , S ) , c l au s e (N,_,L,−S ) .
44
45 % No c l au s e i s a subset o f another one
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46 :− s i z e (N,C,X) , s i z e (N,C’ ,X’ ) , C != C’ , X <= X’ ,
47 c l au s e (N,C’ , L , S ) : c l au s e (N,C,L , S ) .
48
49 % Nodes that do not have func t i on s are constant
50 1 { constant (N, ( −1 ;1 ) )} 1 :− node (N) , not c l au s e (N,_,_,_) .
51 constant (N) :− constant (N,_) .
52
53 % Sort by length
54 s i z e (N,C,X) :− c l au s e (N,C,_,_) , X=#count{L , S : c l au s e (N,C,L , S ) } .
55 :− s i z e (N,C,X) , s i z e (N,C’ ,X’ ) , C < C’ , X > X’ .
56
57 % Sort by l e x i c o g r aph i c order
58 c l a u s e d i f f (N,C,C’ , L) :− c l au s e (N,C,L ,_) , not c l au s e (N,C’ , L ,_) ,
59 c l au s e (N,C’ ,_,_) .
60 mind i f f (N,C,C’ , L) :− c l a u s e d i f f (N,C,C’ , L) ,
61 L <= L ’ : c l a u s e d i f f (N,C,C’ , L ’ ) .
62 :− s i z e (N,C,X) , s i z e (N,C’ ,X) , C < C’ ,
63 mind i f f (N,C,C’ , L) , m ind i f f (N,C’ ,C,L ’ ) , L > L ’ .
64
65 % External metabo l i t e s are d i s ab l ed by de f au l t
66 constant (A,−1) :− ext (A) .
67
68 % Constant f unc t i on s are p roh ib i t ed
69 :− constant (A) , not ext (A) .
70
71 % Reve r s i b l e r e a c t i o n s have the same r egu l a t o ry r u l e s
72 node (Rr) :− rev (Rf , Rr ) , node (Rf ) .
73 node (Rf ) :− rev (Rf , Rr ) , node (Rr ) .
74 c l au s e (Rr ,C,L ,V) :− rev (Rf , Rr ) , c l au s e (Rf ,C,L ,V) .
75 c l au s e (Rf ,C,L ,V) :− rev (Rf , Rr ) , c l au s e (Rr ,C,L ,V) .

The only difference lies in the encoding of rules of reversible reactions. Indeed,
in these ASP programs, we encode reversible reactions as two distinct reactions:
a forward reaction and a reverse reaction. Lines 72–75 ensure that the forward
and reverse counter-part reactions of a reversible reaction have the same regulatory
rules.

Breaking symmetry. The DNF encoding of Boolean formulas introduced in Chevalier
et al. (2020), and used in the relaxed inference problem encoding, allows inferring
semantically equivalent BN, even with conjunctions ordering. For instance, if
clause(N,1,B,1) is a rule for node N and that there exists an edge (A,N, 1)
always true in the observation, then clause(N,1,A,1). clause(N,2,B,1). will
be a valid rule too. However, adding B does not provide any information to the
rule since it is always true in the observation. Therefore, one may prevent this
solution from being generated.

77 v a l i d_ l i t (T,N,C,A) :− c l au s e (N,C,A,V) , read (T,A,−V) ,
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78 read (T,A’ ,V’ ) : c l au s e (N,C,A’ ,V’ ) , A’ != A.
79 v a l i d_ l i t (T,N,C,A) :− read (T,A,_) , c l au s e (N,C,A,_) ,
80 A = A’ : c l au s e (N,C,A’ ,_) .
81 :− not v a l i d_ l i t (_,N,C,A) , c l au s e (N,C,A,_) .
82 va l id_c lause (T,N,C) :− c l au s e (N,C,_,_) , eva l (T,N,C, 1 ) ,
83 eva l (T,N,C’ , −1) : c l au s e (N,C’ ,_,_) , C != C’ .
84 va l id_c lause (T,N,C) :− eva l (T,N,C,_) , c l au s e (N,C,_,_) ,
85 C = C’ : c l au s e (N,C’ ,_,_) .
86 :− not va l id_c lause (_,N,C) , c l au s e (N,C,_,_) .
87 va l id_ru l e (N,C,A) :− va l i d_ l i t (T,N,C,A) , va l id_c lause (T,N,C) .
88 :− not va l id_ru l e (N,C,A) , c l au s e (N,C,A,_) .

First, Lines 77–81 ensure that each literal l in a clause affects the clause behavior,
that is, without l the behavior of the clause, regarding the traces, will change.
Then, Lines 82–86 ensure that each clause in the formula affects the formula output,
regarding the traces. Finally, Lines 87–88 ensure that each regulatory rule is only
composed of a minimal number of elements to explain the observations.

Boolean transitions. The synchronous dynamics of the Boolean network (BN) is
encoded in the same way as in Appendix B.2 (Lines 90–130).

90 % Synchronous
91 update (T,A) :− time (T) , node (A) , not ext (A) ,
92 not param(mutation ,E,A,_) , T=(E,_) .
93
94 % External metabo l i t e s are read as t h e i r s t a t e at T+1.
95 read (T,A,V) :− ext (A) , succ (T,T’ ) , v (T’ ,A,V) , in (A,_,_) .
96 read (T,A,V) :− ext (A) , succ (T,T’ ) , v (T’ ,A,V) , in (_,A,_) .
97
98 % Genes are read as t h e i r s t a t e at T+1.
99 read (T,A,V) :− succ (T,T’ ) , v (T’ ,A,V) , in (A,_,_) .
100 read (T,A,V) :− succ (T,T’ ) , v (T’ ,A,V) , in (_,A,_) .
101
102 % Clause eva lua t i on
103 eva l (T,A,C, 1) :− update (T,A) , c l au s e (A,C,_,_) ,
104 read (T,L ,V) : c l au s e (A,C,L ,V) .
105 eva l (T,A,C,−1) :− update (T,A) , c l au s e (A,C,L ,V) , read (T,L,−V) .
106
107 % Formula eva lua t i on
108 eva l (T,A, 1) :− update (T,A) , c l au s e (A,C,_,_) , eva l (T,A,C, 1 ) .
109 eva l (T,A,−1) :− update (T,A) , eva l (T,A,C, −1) : c l au s e (A,C,_,_) .
110 eva l (T,A,V) :− update (T,A) , constant (A,V) .
111
112 % Value f o r mutated node
113 x (T’ ,A,V) :− param(mutation ,E,A,V) , succ (_,T’ ) , T’=(E,_) .
114
115 % Value o f ex t e rna l metabo l i t e s
116 x (T’ ,A,V) :− ext (A) , not r (_,_,A) , succ (T,T’ ) , read (T,A,V) .
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117
118 % Value f o r not updated nodes
119 x (T’ ,A,V) :− succ (T,T’ ) , not update (T,A) , not ext (A) ,
120 not param(mutation ,E,A,_) , x (T,A,V) , T’=(E,_) .
121
122 x (T’ ,A,V) :− not ext (A) , succ (T,T’ ) , update (T,A) , eva l (T,A,V) .
123
124 % React ions that are not node are a c t i v e by d e f au l t
125 x (T’ ,A, 1 ) :− succ (_,T’ ) , not node (A) , r (_,_,A) ,
126 not param(mutation ,E,A,_) , T’=(E,_) .
127
128 % Elements that are not nodes are a c t i v e by d e f au l t
129 x (T’ ,A, 1 ) :− succ (_,T’ ) , not node (A) , in (_,A,_) ,
130 not param(mutation ,E,A,_) , T’=(E,_) .

Boolean metabolic steady-states. The encoding of Boolean metabolic steady-states
is the same as in Appendix B.2 (Lines 132–167). The only difference lies in Line 162
which defines the behavior of reversible reactions such that: a reversible reaction is
either not active, in the forward direction, or the reverse direction.

132 % In t e r na l s t r u c tu r e o f the metabol i c network
133 r ( r ,A,R) :− r eac tant (A,R,_) , not ext (A) .
134 r (p ,A,R) :− product (A,R,_) , not ext (A) .
135
136 % Al l the e lements o f the metabol i c network
137 varm(A) :− r (_,A,_) .
138 varm(R) :− r (_,_,R) .
139 varm(A) :− ext (A) .
140
141 % Al l the e lements o f the r egu l a t o ry network
142 varx (A) :− in (_,A,_) , not varm(A) .
143
144 % Binary s t a t e s a s s o c i a t ed with each element
145 1 { v (T,A, ( −1 ;1 ) ) } 1 :− time (T) , varm(A) .
146 1 { v (T,A, ( −1 ;1 ) ) } 1 :− time (T) , varx (A) .
147
148 % Observat ions are f i x ed
149 :− obs (To ,A,V) , map(To , Ts ) , v (Ts ,A,−V) .
150
151 % An ac t i v e i n t e r n a l metabo l i t e must produced/consumed
152 :− r (S ,A,_) , v (T,A, 1 ) , v (T,R, −1) : r (S ,A,R) .
153
154 % Al l products / r ea c t an t s o f an a c t i v e i n t e r n a l r e a c t i on are a c t i v e
155 :− r (_,A,R) , v (T,R, 1 ) , v (T,A, −1) .
156
157 % Import r e a c t i on has a l l i t s r e a c t an t s at T
158 :− ext (A) , r eac tant (A,R,_) , v (T,R, 1 ) , v (T,A, −1) .
159
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160 % Reve r s i b l e r e a c t i on can only be ac t i va t ed in one d i r e c t i o n
161 :− rev (Rf , Rr ) , Rf!=−1, Rr!=−1, v (T, Rf , 1 ) , v (T, Rr , 1 ) .
162
163 % State o f r e gu l a t o r depends on the r egu l a t o ry s t a t e
164 :− varx (A) , x (T,A,V) , v (T,A,−V) .
165
166 % Reaction can be i nh i b i t e d by the r egu l a t o ry s t a t e
167 :− r (_,_,R) , node (R) , x (T,R,−1) , v (T,R, 1 ) .

External metabolite dynamics. The traces can contain regulatory Boolean metabolic
steady-states that are not mapped to observations. Therefore, it is necessary to
model the dynamics of external metabolites.

169 % New ex t e rna l metabo l i t e s should be produced at T−1
170 :− succ (_,T) , succ (T,T’ ) , ext (A) , v (T,A, −1) , v (T’ ,A, 1 ) ,
171 v (T,R, −1) : product (A,R,_) .
172
173 % Removed ex t e rna l metabo l i t e s should be consumed at T−1
174 :− succ (T,T’ ) , ext (A) , v (T,A, 1 ) , v (T’ ,A, −1) ,
175 v (T,R, −1) : r eac tant (A,R,_) .

In Lines 170–171, we ensure that for an external metabolite to become available
at a time t, it should be produced at t− 1. In the same way, Lines 173–174 ensure
that if an external metabolite becomes unavailable at a time t then it should have
been consumed at t− 1.

Optimization. We aim at inferring only the BNs that best fit the input time
series, i.e. BNs that are associated with compatible traces of minimal length. The
optimization criterion is encoded in Line 178 by minimizing the sum of the length
differences between input time series and their associated traces.

177 % Object ive func t i on : f i nd the t r a c e s that bes t f i t the obs e rva t i on s
178 #minimize {S , E: gap (E, S ) } .

Display answer sets. Finally, Lines 180–181 allows displaying only the clause/4
predicates when showing answer sets.

180 #show .
181 #show c l au s e /4 .

B.3.3 Quantified Linear Constraints

In this section, we present the MerrinASP encoding of the quantified linear con-
straints of the hybrid inference problem. It relies on the extended ASP syntax
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described in Appendix B.3.1.
Recall that the hybrid inference problem, as formulated in Chapter V, has:

— existentially quantified linear constraints: the regulated Flux Balance Analysis
(rFBA) equations with a lower bound on the growth optimum.

— universally quantified linear constraints: the rFBA equations with an upper
bound on the growth optimum (i.e. all regulated metabolic steady-states should
satisfy the upper bound).

MERRIN. Note that in MERRIN (Chapter IV), the linear optimization problems
are directly built from the ASP atoms during the solving process. It does not rely
on the linear constraints encoding described in this section. However, MERRIN ’s
instantiation of linear constraints is based on the same reasoning as the encoding
of linear constraints. Atoms in the following rule bodies are captured during the
solving process to instantiate the quantified linear constraints.

Existental constraints. In the hybrid inference problem, the existentially quantified
linear constraints are the rFBA equations (Lines 1–20).

1 % Var iab l e s
2 &dom( check (Ts ) ){L . .U} = f (R) :− time (Ts ) , Ts=(E,_, ) ,
3 param( transport ,E,R,L ,U) .
4 &dom( check (Ts ) ){L . .U} = f (R) :− time (Ts ) , map(To , Ts ) ,
5 bound (To ,R,L ,U) .
6 &dom( check (Ts ) ){L . .U} = f (R) :− time (Ts ) , r (_,_,R) ,
7 bound (R,L ,U) .
8
9 % Steady−s t a t e
10 &sum( check (Ts ) ){ S ∗ f (R) : r eac tant (M,R, S ) ;
11 S ∗ f (R) : product (M,R, S)} = 0 :− time (Ts ) ,
12 not ext (M) ,
13 r (_,M,_) .
14
15 % Inh i b i t i o n due to miss ing input metabo l i t e in the sub s t r a t e
16 &sum( check (Ts ) ){ f (R)} = 0 :− time (Ts ) , ext (M) , r eac tant (M,R,_) ,
17 v (Ts ,M, −1) .
18
19 % Inh i b i t i o n due to r egu l a t o ry r u l e s
20 &sum( check (Ts ) ){ f (R)} = 0 :− time (Ts ) , r (_,_,R) , x (Ts ,R, −1) .
21
22 % Forced metabol ic f l u x f o r r e a c t i o n s o f i n t e r e s t
23 &sum( check (Ts ) ){ f (R)} = 0 :− time (Ts ) , in (R,_,_) , r (_,_,R) ,
24 v (Ts ,R, −1) .
25 &sum( check (Ts ) ){ f (R)} >= E :− time (Ts ) , in (R,_,_) , r (_,_,R) ,
26 v (Ts ,R, 1) , e p s i l o n (E) .
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27
28 &sum( check (Ts ) ){ f (Obj )} >= LB ∗ O :− time (Ts ) , map(To , Ts ) , obj (To ,O) ,
29 ob j e c t i v e (Obj ) , lb (LB) .

The activity bounds of reactions, and thus the domain of linear variables, are
defined in Lines 2–7: Lines 2–3 fix bounds according to experimental constraints,
Lines 4–5 fix bounds according to external metabolites availability, and Lines 6–7
fix bounds according to the metabolic networks bounds. The steady-state equations
are given in Lines 10–13, while the flux of inhibited reactions is fixed to zero in
Lines 16–20.

Lines 23–26 force the activity of observed reactions. It ensures that there
exists a metabolic steady-state compatible with the reactions considered actives
and inactives by the regulatory state. These constraints are necessary to handle
metabolic feedback to the regulatory network.

Finally, Lines 28–29 fix a lower bound on the optimum value. It ensures that
there exists a metabolic steady-state that has a growth phenotype compatible with
the observation.

Linear constraint partitioning. Note that the existentially quantified linear con-
straints are grouped by timesteps Ts with the partition arguments of the linear
theory atoms (check(Ts)). This allows MerrinASP to solve each set of linear
equations independently for each timestep.

Universally quantified linear constraints. The following equations are only applied to
timesteps mapped to observations. Indeed, these constraints are used to ensure that
the observed growth phenotypes match with the estimated ones. Like previously,
Lines 30–48 encode for the rFBA equations.

The universal quantifier is represented by Lines 51–52 through the use of
&assert. It ensures that all linear assignments compatible with the linear con-
straints defined by Lines 30–48 have a growth lesser or equal to the observed
growth value. This constraint captures the controls of the regulatory network on
the metabolic network.
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31 % Var iab l e s
32 &dom( reg (To) ){L . .U} = f (R) :− next (_,To) , obj (To ,_) ,
33 param( transport ,E,R,L ,U) , To=(E,_) .
34 &dom( reg (To) ){L . .U} = f (R) :− next (_,To) , obj (To ,_) , bound (To ,R,L ,U) .
35 &dom( reg (To) ){L . .U} = f (R) :− next (_,To) , obj (To ,_) , r (_,_,R) ,
36 bound (R,L ,U) .
37
38 % Steady−s t a t e
39 &sum( reg (To) ){ S ∗ f (R) : r eac tant (M,R, S ) ;
40 S ∗ f (R) : product (M,R, S)} = 0 :− next (_,To) ,
41 not ext (M) , r (_,M,_) .
42
43 % Inh i b i t i o n due to miss ing input metabo l i t e in the sub s t r a t e
44 &sum( reg (To) ){ f (R)} = 0 :− next (_,To) , map(To , Ts ) , ext (M) ,
45 r eac tant (M,R,_) , v (Ts ,M, −1) .
46
47 % Inh i b i t i o n due to r egu l a t o ry r u l e s
48 &sum( reg (To) ){ f (R)} = 0 :− next (_,To) , map(To , Ts ) , r (_,_,R) ,
49 x (Ts ,R, −1) .
50
51 % Ensure that the biomass optimum match the obse rvat i on
52 &a s s e r t ( reg (To) ){ f (Obj )} <= UB ∗ O :− next (_,To) , o b j e c t i v e (Obj ) ,
53 ub(UB) , obj (To ,O) .

Like for existentially quantified linear constraints, universally quantified linear
constraints are grouped by timesteps To with the partition arguments of the linear
theory atoms (reg(To)).
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C Relaxed Inference Problem: Application to a Core-Carbon
Metabolism Model

In this section, we apply the Boolean relaxation of the inference problem and its
saturation-based implementation presented in Chapter III on a small-scale model
of core-carbon metabolism (Covert et al., 2001). For the rest, this instance will
be denoted by Core model. The application extends the results of Thuillier et al.
(2021), where the relaxed inference problem has been applied to a toy model derived
from the core model.

In Section C.1, we describe the instance of the Boolean relaxation of the inference
problem for the core model. The results are presented in Section C.2.

C.1 Instance Description

Regulated metabolic network. The core model’s regulated metabolic network is
shown in Fig. 23. Its metabolic network (Fig. 23a) contains 8 external metabolites
(k = 5 inputs: Carbon1, Carbon2, Oxygen, Fext, Hext; 3 outputs: Biomass,
Dext, Eext) and m = 20 reactions. Its regulatory system contains d = 4 regulatory
proteins ({RPcl, RPO2, RPb, RPh}). It is modelled by a Boolean network (Fig. 23c)
of dimension n = k + d+m = 29. All the functions associated with reactions are
set to 1, except for the reactions Tc2, Rres, R2a, R2b, R5a, R5b, R7 and R8a
(Fig. 23b).

The core model contains a more complex structure than the toy example
presented in Thuillier et al. (2021). In particular, the core model’s metabolic
network contains reaction cycles (e.g. {R4, R5a} or {R2a, R2b}) whose dynamics
are not correctly modeled with our abstraction Boolean of r-dFBA. The non-
consideration of stoichiometry can lead to a self-activated cycle leading to spurious
Boolean metabolic steady-states.

Experiments. The input time series data were generated from the five experiments
studied in Covert et al. (2001). Each experiment is based on a different set
A ⊆ Inp = {Carbon1, Carbon2, Oxygen, Fext, Hext} of initially available input
metabolites. The initialization of each experiment is detailed in Tab. 24a. Note
that although experiments 3 and 4 appear to be identical, this is not the case. They
do have the same two sets of external metabolites available ({Carbon2, Oxygen,
Hext}), but their initial concentrations are different: for the experiment 3, they
are {Carbon2 = 10, Oxygen = 100, Hext = 2}; for the experiment 4, they are
{Carbon2 = 5, Oxygen = 100, Hext = 10}. Thus, both experiments lead to different
simulations.
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(a) Metabolic Network

Carbon1 RPcl Tc2

Oxygen RPO2
Rres

Hext RPh R8a

R2b RPb
R2a

R7

R5b
R5a

(b) Influence graph G(f) of the reg-
ulatory Boolean network f . Nodes
without in-going or out-going edges
are not represented. Positive edges
are drawn in green with a regular tip-
ping arrow, negative edges are drawn
in red with a bar arrow.

Regulatory proteins Input metabolites
Local function fRPO2(x) fRPcl(x) fRPb(x) fRPh(x) fCarbon1(x) fCarbon2(x) fOxygen(x) fFext(x) fHext(x)
Boolean rule ¬xOxygen xCarbon1 xR2b xHext 0 0 0 0 0

Reactions
Local function fTc1(x) fTc2(x) fTo2(x) fTd(x) fTe(x) fTf(x) fTh(x) fGrowth(x) fRres(x) fR1(x)
Boolean rule 1 ¬xRPcl 1 1 1 1 1 1 ¬xRPO2 1

Reactions
Local function fR2a(x) fR2b(x) fR3(x) fR4(x) fR5a(x) fR5b(x) fR6(x) fR7(x) fR8a(x) fR8b(x)
Boolean rule ¬xRPb 1 1 1 ¬xRPO2 xRPO2 1 ¬xRPb ¬xRPh 1

(c) Boolean Network. All Boolean functions equal to 1 are reactions that are not regulated by
the Boolean network.

� Figure 23 – Core-carbon metabolism model introduced in Covert et al. (2001). In
the metabolic network (a), each node represents a metabolite, and each hyperedge a
reaction. For instance, the hyperedge R7 linking {C; NADH} to {E} models the reaction
C + 4 NADH → 3 E. Integer values over hyperedges are stoichiometric coefficients,
the default value is 1. (b) shows the influence graph of the Boolean network in (c),
with square nodes denoting the regulatory proteins. (c) defines the Boolean network
controling the metabolic network in (a), with x ∈ B29.

Search domain. The search domain F for the inferred BNs is delimited by the
influence graph G of Fig. 24b. In particular, F contains all the BNs such that
∀ i ∈ Inp ∪R \ {Tc2, Rres, R2a, R2b, R5a, R5b, R7, R8a}, fi(x) = 1, and where
fRPcl can depend on Carbon1 and Tc2; fRPO2 can depend on Oxygen, Rres, R5a
and R5b; fRPh can depend on Hext and R8a; fRPb can depend on R7, R2a and
R2b; fTc2 can depend on RPcl; fRres, fR5a and fR5b can depend on RPO2; fR8a can
depend on RPh; and fR2a, fR2b and fR7 can depend on RPb. Overall, F contains
2.9× 1012 BNs.
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Input Metabolite Regulatory Protein
Experiment zCarbon1 zCarbon2 zOxygen zFext zHext xRPcl xRPO2 xRPb xRPh

1 1 1 1 0 0 1 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 1 1 0 1 0 0 0 1
4 0 1 1 0 1 0 0 0 1
5 1 1 1 1 1 1 0 0 1

(a) Initial states of the five rFBA simulations.

Carbon1 RPcl Tc2 Hext RPh R8a

Oxygen RPO2 Rres RPb
R2b

R2a
R7

R5b

R5a

(b) Influence graph G delimiting the domain of putative BNs F. Nodes without in-going or
out-going edges are not represented. Black regular tipping arrows are unsigned edges, i.e.
both positive and negative edges.

� Figure 24 – Input data for the core model. Tab. (a) summarizes the experimental
conditions used to generate the input simulations. Fig. (b) shows the influence graph
delimiting the search domain for the inference problem.

Simulations. For each one of the five experiments, a rFBA simulation has been
run using FlexFlux (Marmiesse et al., 2015). The rFBA simulations are shown
in Fig. 25. Each simulation has 200 metabolic steady-states. The regulatory
proteins were initialized according to the initial value of external metabolites, i.e.
xRPcl = zCarbon1, xRPO2 = ¬zOxygen, xRPb = 0 and xRPh = zHext where the external
metabolite values are given by (zCarbon1, zCarbon2, zOxygen, zFext, zHext) (Tab. 24a).
The simulations were then binarized as detailed in Chapter III (Tab. 13).

Boolean objective function. To solve the inference problem, one must supply a
Boolean objective function ô. Given the set of input metabolites Inp = {Carbon1,
Carbon2, Oxygen, Fext, Hext} and the set of output metabolites Out = {Biomass,
Dext, Eext}, the objective function was defined as:

∀x ∈ MSSB(N ), ô(x) =
∑

e∈Inp\{Oxygen}
xe +

∑

e∈Out

xe

This function was motivated by the fact that the maximization of biomass produc-
tion often corresponds to the maximization of inputs according to the steady-state
constraints. In our case, we could not use Oxygen in our score function, since it
could lead to spurious Boolean metabolic steady-states.
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� Figure 25 – Simulations of the core regulated metabolic model described in
Fig. 23 for each experiment (Fig. 24a). Simulations are made with FlexFLux with a
timestep set to 0.01h. Reaction domains are ∀ r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5),
∀ r ∈ {Td, Te}, (lr, ur) = (0, 12.0), ∀ r ∈ {Te, Tf}, (lr, ur) = (0, 5.0), ∀ r ∈ {R1,
R2a, R2b, R3, R4, R5a, R5b, R6, R7, R8a, R8b, Rres, Growth}, (lr, ur) = (0, 9999)
and (lTo2, uTo2) = (0, 15.0). (f) Influence graph of the regulatory network shown in
Fig. 23c. Nodes without in-going or out-going edges are not represented. Positive
edges are drawn in green with a regular tipping arrow, negative edges are drawn in red
with a bar arrow.
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External metabolites Regulatory proteins
Experiment Time zCarbon1 zCarbon2 zOxygen zFext zHext xRPcl xRPO2 xRPb xRPh

1

0 1 1 1 0 0 1 0 0 0
1 1 1 1 0 0 1 0 0 0
225 0 1 1 0 0 0 0 0 0
227 0 1 1 0 0 0 0 0 0
256 0 0 1 0 0 0 0 0 0

2

0 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
183 0 1 0 0 0 0 1 0 0
237 0 0 0 0 0 0 1 0 0

3

0 0 1 1 0 1 0 0 0 1
1 0 1 1 0 1 0 0 0 1
162 0 1 1 0 0 0 0 0 0
163 0 1 1 0 0 0 0 0 0
194 0 0 1 0 0 0 0 0 0

4

0 0 1 1 0 1 0 0 0 1
1 0 1 1 0 1 0 0 0 1
168 0 0 1 0 1 0 0 0 1
169 0 0 1 0 1 0 0 1 1
234 0 0 1 0 0 0 0 1 0
235 0 0 1 0 0 0 0 0 0

5

0 1 1 1 1 1 1 0 0 1
1 1 1 1 1 1 1 0 0 1
69 1 1 1 0 1 1 0 0 1
104 0 1 1 0 1 0 0 0 1
105 0 1 1 0 1 0 0 1 1
106 0 1 1 0 1 0 0 0 1
107 0 1 1 0 1 0 0 0 1
182 0 1 1 0 0 0 0 0 0
183 0 1 1 0 0 0 0 0 0
185 0 0 1 0 0 0 0 0 0

Reactions
Experiment Time vTc1 vTc2 vTo2 vTd vTe vTf vTh vGrowth vRres vR1 vR2a vR2b vR3 vR4 vR5a vR5b vR6 vR7 vR8a vR8b

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0
225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
227 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0
256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0
183 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0
237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1
162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
163 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0
194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1
168 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
169 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1
69 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1
104 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
105 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1
106 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1
107 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1
182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
183 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0
185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� Table 13 – The binarized metabolic steady-states of each experiment are used as
input data of the relaxed inference problem.
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fRPO2(x) fRPcl(x) fRPb(x) fRPh(x) fTc2(x) fR7(x) fR8a(x)
Model 1 ¬xOxygen xCarbon1 xR2b xHext ¬xRPcl ¬xRPb ¬xRPh

Model 2 ¬xOxygen xCarbon1 xR2b xHext ¬xRPcl ¬xRPb ¬xRPh

Model 3 ¬xOxygen xCarbon1 xR2b xHext ¬xRPcl ¬xRPb ¬xRPh

(a) Regulations common to the models.

fRres(x) fR2a(x) fR2b(x) fR5a(x) fR5b(x) Subset minimal Ground truth
Model 1 1 1 ¬xR2b 1 1 X
Model 2 1 ¬xR2b 1 1 1 X
Model 3 ¬xRres ¬xRPb 1 ¬xRPO2 xRPO2 X

(b) Regulations differing between models.

� Table 14 – Three inferred BNs for the instance of core model described in Fig. C.1.
Not shown local functions are set to 1.

Moreover, this objective function takes into account the output metabolites. As
shown in the input PKN, the reaction R7 can be regulated or used in a regulation.
This reaction leads to the production of Eext (an output metabolite): Eext is
produced if and only if R7 is activated. Thus, it seems to be a good assumption to
maximize the outputs for this case study.

C.2 Results

We apply our saturation-based implementation of the relaxed inference problem.
The goal was to retrieve the ground truth regulatory networks used for the simula-
tions from the discretized r-dFBA simulations.

For the core model, 7 680 BNs were inferred, of which 2 are subset minimal
(models 1 and 2 in Tab. 14) and one corresponds to the ground truth (model 3
in Tab. 14). These two subset minimal models are identical for all the regulatory
proteins: fRPO2(x) = ¬xOxygen, fRPcl(x) = xCarbon1, fRPb(x) = ¬xR2b, fRPh(x) =
xHext; and almost all reactions: fTc2(x) = ¬xRPcl, fRres(x) = f5a(x) = f5b(x) = 1,
fR7(x) = ¬xRPb, fR8a(x) = ¬xRPh. The only difference between these two models
is in the two reactions R2a and R2b. For model 1, there are fR2a(x) = 1 and
fR2b(x) = ¬xRPb. For model 2, there are fR2a(x) = ¬xRPb and fR2b(x) = 1.

The ground truth model does not correspond to any of the two subset minimal
models. These networks differ from the ground truth model by 5 regulations for
model 1 ({fRres(x), fR2a(x), fR2b(x), fR5a(x), fR5b(x)}) and by 3 regulations for
model 2 ({fRres(x), fR5a(x), fR5b(x)}). For the regulations fRres(x), fR5a(x) and
fR5b(x) no regulations were inferred, they are set to 1.
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� Figure 26 – Simulations of the inferred regulated metabolic network model 1
(Tab. 14) for each experiment (Tab. 24a). The simulations are made with FlexFlux
with identical parameters as for Fig. 25. (f) Influence graph of the inferred Boolean
network model 1 described in Fig. 14.

Validation. To check whether the regulated metabolic models inferred could be
considered alternatives to the ground truth model, we performed rFBA simulations.
In other words, we re-simulate the five experiments with each inferred subset-
minimal model. The simulation graphs of the inferred subset minimal model are
shown in Figures 26 and 27.

For model 1, we observed that the quantitative time-series simulations do not
match the input simulations. This model allows reproducing 4 of the 5 input

C7



APPENDICES Relaxed Inference Problem C

� Figure 27 – Simulations of the inferred regulated metabolic network model 2
(Tab. 14) for each experiment (Tab. 24a). The simulations are made with FlexFlux
with identical parameters as for Fig. 25.
(f) Influence graph of the inferred Boolean network model 2 described in Fig. 14.

simulations (simulation graphs of experiments 1, 2, 3, 5). However, it does not
reproduce the simulation of the experiment 4. A comparison between the input
simulation of experiment 4 and the simulation issued from model 1 is given in
Fig. 28. In Fig. 28b, simulation of model 1, we can see that the production of
Biomass is very jerky from time 1.68h, which is not the case in the input simulation
(Fig. 28a). The associated binarized metabolic steady-states are shown in Tab. 15.
The 5 binarized metabolic steady-states of the timesteps 168, 169, 170, 171, and 172
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(a) Ground truth simulation graph (b) Model 1 simulation graph

� Figure 28 – Simulation graphs of experiment 4 (Fig. 24)comparison between the
ground truth model and inferred subset minimal models. (Tab. 14). (a) is the simulation
graph of the ground truth regulated metabolic network (Fig. 23). The simulation graph
of the regulated metabolic network controlled by the inferred BN model 1 (Tab. 14) is
identical. (b) is the simulation graph of the regulated metabolic network controlled by
model 2 (Tab. 14).

are repeated until the end of the simulation. These qualitative behaviors induced
by model 1 from time 1.68h do not match with the qualitative behavior of the
ground truth model which is composed of only 1 binarized metabolic steady-state.
Moreover, during the metabolic steady-states associated with the timesteps 170
and 171 no Biomass is produced. Thus, the cell goes through a series of start-stop
phases that do not correspond to any real biological behavior. Note that model
2 can perfectly reproduce the 5 input simulations. Thus, one of the inferred
subset-minimal models could not match the observations. This result shows that
our Boolean abstraction of the inference problem is not perfect. It does not capture
all the subtleties of the linear dynamics of regulated metabolic systems.

For the subset minimal model 2, we observed that these quantitative time-series
simulations were strictly identical to the simulations of the toy example used to
generate the dataset. This suggests that the regulations on Rres, R5a, and R5b are
not necessary to explain the dataset. The inferred models contain all the needed
regulations and can be considered as the simplest regulated metabolic models
matching with the experimental conditions of Tab. 24a. Already in Covert et al.
(2001), the authors recognize that, unlike other regulations, Rres ‘regulation is
not necessary for the solution’ and that R5a and R5b regulations ‘are equivalent
stoichiometrically’ so ‘FBA alone would fail to predict which are active under
given condition’. These regulations are biologically present only to ensure that
unnecessary enzymes decay. However, since enzyme concentrations are not explicitly
represented in the rFBA framework, the dataset does not reflect this biological
behavior, making it impossible to infer these regulations properly.
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APPENDICES Relaxed Inference Problem C

External metabolites Regulatory proteins
Time zCarbon1 zCarbon2 zOxygen zFext zHext xRPcl xRPO2 xRPb xRPh

0 0 1 1 0 1 0 0 0 1
1 0 1 1 0 1 0 0 0 1
168 0 0 1 0 1 0 0 0 1
169 0 0 1 0 1 0 0 1 1
170 0 0 1 0 1 0 0 1 1
171 0 0 1 0 1 0 0 0 1
172 0 0 1 0 1 0 0 0 1
173 0 0 1 0 1 0 0 0 1
174 0 0 1 0 1 0 0 1 1
175 0 0 1 0 1 0 0 1 1
176 0 0 1 0 1 0 0 0 1
177 0 0 1 0 1 0 0 0 1

...
299 0 0 1 0 0 0 0 0 0

Reactions
Time vTc1 vTc2 vTo2 vTd vTe vTf vTh vGrowth vRres vR1 vR2a vR2b vR3 vR4 vR5a vR5b vR6 vR7 vR8a vR8b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1
168 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
169 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
172 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
173 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
174 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1
175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
177 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1

...
299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

� Table 15 – Binarized metabolic steady-states of experiment 4 from the simulation
of regulated metabolic network controlled by the inferred BN model 1 (Section 14).
The 5 same metabolic steady-states (168, 169, 170, 171, and 172) are repeated until
the end of the simulation.
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Résumé : Les systèmes biologiques sont des
systèmes multi-échelles  complexes composés
de  nombreux  mécanismes  biologiques  inter-
connectés. Parmi ces échelles, il y a le métabo-
lisme, qui transforme les nutriments en énergie
et  en biomasse,  et  le  système de régulation,
qui agit comme un contrôleur de l’activité méta-
bolique. Modéliser le couplage du métabolisme
et  de  la  régulation  est  difficile  et  nécessite
d'intégrer  les  formalismes  algébriques
différentiels  modélisant  le  métabolisme  avec
les  formalismes  discrets  modélisant  la
régulation. Bien qu'il existe des formalismes de
simulation  de  la  dynamique  hybride  de  ce
couplage,  il  n'existe  aucune  méthode  pour
synthétiser  les  contrôleurs  régulant  l'activité
métabolique, i.e. les règles de régulation. Cette
thèse présente trois formulations du problème
de  synthèse  comme  des  problèmes
d'optimisation  combinatoire  sous  contraintes,

logiques  et  hybrides  (logiques  et  linéaires),
quantifiées.  Chaque  formulation  fait  l'objet
d'une approche de résolution dédiée. La pre-
mière repose sur des méthodes de satisfiabili-
té,  tandis  que  les  deux  autres  utilisent  des
méthodes de résolution hybrides couplant des
contraintes logiques et  linéaires.  En particu-
lier, la thèse présente une méthode générique
pour  résoudre  les  problèmes  d'optimisation
combinatoire sous contraintes linéaires quan-
tifiées. Ces travaux ont conduit au développe-
ment de deux logiciels,  Merrin et  MerrinASP,
qui étendent le paradigme de programmation
par  ensembles  réponses  (ASP)  avec  des
contraintes linéaires quantifiées.  Cette thèse
met également à disposition des jeux de don-
nées  synthétiques  simulant  différents  types
de données omiques, ainsi  que le protocole
utilisé pour les générer.

Title: Hybrid Satisfiability Methods for the Inference of Boolean Regulations Controlling 
Metabolic Networks
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Abstract:  Biological  systems  are  complex
multi-scale  systems  composed  of  many  
interconnected biological  mechanisms.  These
scales  include  the  metabolism,  which  trans-
forms nutrients into energy and biomass, and
the regulatory system, which acts as a control-
ler of metabolic activity. Modeling the coupling
of  metabolism and regulation is  difficult  and  
requires  integrating  the  differential-algebraic
formalisms used to model the metabolism with
the  discrete  formalisms  used  to  model  the  
regulation. Although formalisms for simulating
the hybrid dynamics of this coupling exist, no
method allows for the synthesis of the control-
lers that regulate metabolic activity, that is, the
regulatory  rules.  This  thesis  presents  three  
formulations of the synthesis problem as com-

binatorial optimization problems under logical
and  hybrid  (logical  and  linear)  quantified
constraints. A dedicated solving method is gi-
ven for each formulation. The first formulation
is  solved  using  satisfiability  methods,  while
the other two rely on hybrid solving methods
that integrate logical and linear constraints. In
particular,  the thesis  presents a generic  fra-
mework for solving combinatorial optimization
problems under  quantified  linear  constraints.
These  formalizations  have  led  to  two  tools,
Merrin and  MerrinASP,  which  extend  the
answer set programming (ASP) paradigm with
quantified linear constraints.  This thesis also
provides  synthetic  datasets  that  simulate
different types of omics data, as well  as the
protocol used to generate them.
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