
HAL Id: tel-04811046
https://theses.hal.science/tel-04811046v1

Submitted on 29 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convolutional and dynamical spintronic neural networks
Erwan Plouet

To cite this version:
Erwan Plouet. Convolutional and dynamical spintronic neural networks. Disordered Systems and
Neural Networks [cond-mat.dis-nn]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASP120�.
�tel-04811046�

https://theses.hal.science/tel-04811046v1
https://hal.archives-ouvertes.fr


THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SP1
20

Convolutional and dynamicalspintronic neural networks
Réseaux de neurones convolutifs et dynamiques basés

sur des composants spintroniques

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 564, Physique en Île-de-France (PIF)Spécialité de doctorat : PhysiqueGraduate School : Physique. Référent : Faculté des sciences d’Orsay
Thèse préparée dans l’unité de recherche Laboratoire Albert Fert (Université Paris

Saclay, CNRS, Thales), sous la direction de Julie GROLLIER, directrice de recherche, leco-encadrement de Frank Alice MIZRAHI, ingénieur

Thèse soutenue à Paris-Saclay, le 07 novembre 2024, par

Erwan PLOUET

Composition du jury
Membres du jury avec voix délibérative
Damien QUERLIOZ PrésidentDirecteur de recherche CNRS, Université Paris-Saclay
Amalio FERNANDEZ PACHECO Rapporteur & ExaminateurProfesseur, Technische Universität Wien (Autriche)
Joseph FRIEDMANN Rapporteur & ExaminateurProfesseur associé, University of Texas at Dallas (Etats-Unis)
Jean Anne INCORVIA ExaminatriceProfesseur associé, University of Texas at Austin (Etats-Unis)



Titre : Réseaux de neurones convolutifs et dynamiques basés sur des composants spintroniques
Mots clés : Spintronique, IA, Réseaux deneurones convolutifs, Réseaux deneurones dynamiques
Résumé :Cette thèse aborde le développementde composants spintroniques pour le calculneuromorphique, une approche novatrice vi-sant à réduire la consommation énergétiquesignificative des applications d’intelligence ar-tificielle (IA). L’adoption généralisée de l’IA, ycompris des très grands modèles de langagetels que ChatGPT, a entraîné une augmentationdes besoins énergétiques, les centres de don-nées consommant environ 1 à 2 % de l’énergiemondiale, avec une projection de doublementd’ici 2030. Les architectures hardware tradition-nelles, qui séparent la mémoire et les unitésde traitement, ne sont pas adaptées aux tâchesd’IA, car les réseaux de neurones nécessitentun accès fréquent à de nombreux paramètresstockés en mémoire, entraînant une dissipa-tion excessive d’énergie. Le calcul neuromor-phique, inspiré par le cerveauhumain, fusionneles capacités demémoire et de traitement dansun même dispositif, réduisant potentiellementla consommation d’énergie. La spintronique,qui manipule le spin des électrons plutôt que lacharge, offre des composants capables de fonc-tionner à moindre puissance et de fournir dessolutions de traitement efficaces.Cette thèse est divisée en deux parties prin-cipales. La première partie se concentre sur laréalisation expérimentale d’un réseau de neu-rones convolutif hybride hardware-software(CNN) utilisant des composants spintroniques.Les synapses spintroniques, qui fonctionnentavec des signaux radiofréquences, permettentun multiplexage en fréquence pour réduire lebesoin de nombreuses connexions physiquesdans les réseaux de neurones. Ce travail de re-cherche explore divers designs de synapses ba-sées sur des spin diodes AMR, chacune avecdes spécificités différentes, et démontre l’inté-gration de ces synapses dans un CNNmatériel.Une réalisation importante a été l’implémen-tation d’une couche convolutive spintroniqueau sein d’un CNN qui, combinée à une coucheentièrement connectée en software, a réussi àclassifier des images du dataset FashionMNISTavec une précision de 88%, se rapprochant des

performances d’un réseau purement software.Les principaux résultats incluent le développe-ment et le contrôle précis des synapses spintro-niques, la fabrication de chaînes synaptiquespour la somme pondérée dans les réseaux deneurones, et la mise en œuvre expérimentaleréussie d’un CNNhybride avec des composantsspintroniques sur une tâche complexe.
La deuxième partie de la thèse explorel’utilisation des nano-oscillateurs spintroniques(STNOs) pour traiter des signaux dépendantsdu temps à travers leurs dynamiques transi-toires. Les STNOs présentent des comporte-ments non linéaires qui peuvent être exploitéspour des tâches complexes comme la classifi-cation de séries temporelles. Un réseau de ST-NOs simulés a été entraîné pour discriminerentre différents types de séries temporelles,démontrant des performances supérieures parrapport aux méthodes de calcul par réservoirstandards. Nous avons également proposé etévalué une architecture de réseau multicouchede STNOs pour des tâches plus complexes,telles que la classification de chiffres manus-crits présentés pixel par pixel. Cette architec-ture a atteint une précision moyenne de 89,83

%, similaire à un réseau de neurones récur-rents à temps continu (CTRNN) standard équi-valent, indiquant le potentiel de ces réseauxà s’adapter à diverses tâches dynamiques.De plus, des méthodes ont été établies pourfaire correspondre la dynamique des disposi-tifs avec les échelles de temps des entrées, cru-ciales pour optimiser les performances des ré-seaux de neurones dynamiques. Nous avonsdémontré qu’un réseau multicouche de STNOscouplés peut être efficacement entraîné viala rétropropagation de l’erreur dans le temps,soulignant l’efficacité et le passage à l’échellepossible du calcul neuromorphique spintro-nique.
Cette recherche a démontré que les ré-seaux spintroniques peuvent être utilisés pourmettre en œuvre des architectures spécifiqueset résoudre des tâches complexes.



Title : Convolutional and dynamical spintronic neural networks
Keywords : Spintronic, AI, Convolutional neural networks, Dynamical neural networks
Abstract :This thesis addresses the develop-ment of spintronic components for neuromor-phic computing, a novel approach aimed at re-ducing the significant energy consumption ofAI applications. The widespread adoption of AI,including very large scale langage models likeChatGPT, has led to increased energy demands,with data centers consuming about 1-2% of glo-bal power, and projected to double by 2030.Traditional hardware architectures, which se-parate memory and processing units, are notwell-suited for AI tasks, as neural networks re-quire frequent access to large in-memory pa-rameters, resulting in excessive energy dissipa-tion. Neuromorphic computing, inspired by thehuman brain, merges memory and processingcapabilities in the same device, potentially re-ducing energy use. Spintronics, which manipu-lates electron spin rather than charge, offerscomponents that can operate at lower powerand provide efficient processing solutions.The thesis is divided into two main parts.The first part focuses on the experimental im-plementation of a hybrid hardware-softwareconvolutional neural network (CNN) using spin-tronic components. Spintronic synapses, whichoperate with radio frequency signals, enablefrequency multiplexing to reduce the need fornumerous physical connections in neural net-works. This research work explores various de-signs of AMR spin diode-based synapses, eachwith different specificities, and demonstratesthe integration of these synapses into a hard-ware CNN. A significant achievement was theimplementation of a spintronic convolutionallayer within a CNN that, when combined witha software fully-connected layer, successfullyclassified images from the FashionMNIST data-set with an accuracy of 88%, closely matchingthe performance of the pure software equiva-lent network. Key findings include the deve-

lopment and precise control of spintronic sy-napses, the fabrication of synaptic chains forweighted summation in neural networks, andthe successful implementation of a hybrid CNNwith experimental spintronic components on acomplex task.The second part of the thesis exploresthe use of spintronic nano oscillators (STNOs)for processing time-dependent signals throughtheir transient dynamics. STNOs exhibit non-linear behaviors that can be utilized for com-plex tasks like time series classification. A net-work of simulated STNOs was trained to discri-minate between different types of time series,demonstrating superior performance compa-red to standard reservoir computing methods.We also proposed and evaluated a multilayernetwork architecture of STNOs for more com-plex tasks, such as classifying handwritten di-gits presented pixel-by-pixel. This architectureachieved an average accuracy of 89.83% similarto an equivalent standard continuous time re-current neural network (CTRNN), indicating thepotential of these networks to adapt to variousdynamic tasks. Additionally, guidelineswere es-tablished for matching device dynamics withinput timescales, crucial for optimizing perfor-mance in networks of dynamic neurons. Wedemonstrated that multilayer networks of cou-pled STNOs can be effectively trained via back-propagation through time, highlighting the ef-ficiency and scalability of spintronic neuromor-phic computing.This research demonstrated that spintronicnetworks can be used to implement specific ar-chitectures and solve complex tasks. This pavesthe way for the creation of compact, low-powerspintronic neural networks that could be an al-ternative to AI hardware, offering a sustainablesolution to the growing energy demands of AItechnologies.

3



4



Table des matières

Remerciement 9

Introduction 11

1 State of the art 13
1.1 Basic principles of neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Artificial neurons and synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Feed-forward fully-connected neural network . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.4 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 The different types of hardware neural networks . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Conventional hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 Field Programmable Gate Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Photonic Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4 Memristor Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.5 Spintronics Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Networks using dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.1 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Reservoir computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Neural network with trainable dynamics . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 A robust radio-frequency synapse based on the spin-diode effect in Permalloy 39
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Physics of AMR-based Spin Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Anisotropic magneto-resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 AMR Spin-Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 AMR Spin-Diode Synapse Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Spin diode sample design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.2 Lithography process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 Measurement Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.2 Field Gradient Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.1 Experimental spin-diode measurement, synaptic behavior . . . . . . . . . . . . . 48
2.7.2 Synapse with current lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.3 Double diode synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 A chain of spin-diodes 59

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Spintronic Multiply and Accumulate Operation . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 General Chain Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Verification of Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 From spatial distribution to frequency distribution . . . . . . . . . . . . . . . . . 61
3.4.3 Minimum frequency spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Impedance matching to 50 ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Obtaining Precise Weights in a Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.1 Building a reference diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2 Prediction of the chain geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Experimental demonstration of predefined weights . . . . . . . . . . . . . . . . . . . . . 70
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 RF convolutionnal network on FashionMNIST 75
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Task, model and training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Spintronic hardware convolutional layer . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Multi-input source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.2 Frequency and power calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Weight prediction for a Noise resilient Network . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.1 Noise aware training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.2 Evaluation of the experimental noise . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Position optimisation inside the field gradient . . . . . . . . . . . . . . . . . . . . . . . . 86
4.8 Summary of the experimental procedure for FashionMNIST . . . . . . . . . . . . . . . . 90
4.9 FashionMNIST results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Demonstration of a network of spintronic dynamical neurons 95
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Spintronic neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 ODE simulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Task : discriminate between sine and square . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Backpropagation through time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6



5.7.1 Backpropagation through time algorithm . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.2 Pytorch implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7.3 Gradient issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7.4 Testing different back-propagation scheme . . . . . . . . . . . . . . . . . . . . . 103

5.8 Different types of neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.9 Comparison between reservoir computing and BPTT trained network . . . . . . . . . . 109
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Multilayer network 115
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Role of the high-pass filter and amplification factor . . . . . . . . . . . . . . . . . 118
6.4 Task : Sequential DIGIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Optuna and hyperparameter optimisation framework . . . . . . . . . . . . . . . . . . . 122
6.7 Training results : Obtaining high-performance networks . . . . . . . . . . . . . . . . . . 123

6.7.1 Impact of the Number of Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.7.2 Preventing saturation of neurons during training . . . . . . . . . . . . . . . . . . 125
6.7.3 Hyperoptimisation with Optuna . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.8 Reducing the density of connection while maintaining high-accuracy . . . . . . . . . . . 130
6.9 How to adapt a spintronic network to the input timescale . . . . . . . . . . . . . . . . . 132

6.9.1 Ensuring non-saturated oscillators at all input timescales . . . . . . . . . . . . . 132
6.9.2 Impact of varying dynamics parameters of the network at fixed input timescale 133
6.9.3 Impact of the network parameters on input timescale adaptation . . . . . . . . . 135
6.9.4 Comparison with a standard recurrent network (CTRNN . . . . . . . . . . . . . . 141

6.10 Hardware perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Conclusion 145

List of publications and participations in conferences 149

Résumé en français 151
6.12 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7



8



Remerciements

Beaucoup de gens m’ont aidés et encouragé pendant cette thèse. J’aime-
rai remercier en tout premier lieu Estelle qui m’a soutenu indéfectiblement
tout au long de ces trois ans, tu mérites autant que moi cette thèse. Je re-
mercie également mes parents qui m’ont soutenu et écouté râler eux aussi
quand j’en avais marre. Bien sûr je n’aurais pas pu faire tout ce travail sans
mes encadrants Frank, Julie et Dedalo, qui m’ont accompagné tout au long de
cette expérience et m’ont permis de découvrir tant d’aspects de la science.
Un remerciement spécial à Dedalo qui a toujours été très patient et qui a
toujours trouvé du temps pour discuter de tous les problèmes expérimen-
taux malgré toutes ses sollicitations extèrieures. Enfin merci à tout le labora-
toire et sa bonne ambiance. Aux doctorants et post-docs de la team neuro
avec qui j’ai beaucoup discuté, Dongshu, Arnaud, Théophile, Mohammed, Oli-
vier, Katia qui devrait être membre honoraire en neuro, Naveen, Pankaj et les
autres. Un grandmerci aussi à tous ceux qui ont animé le groupe cantine, des
doctorants des annés précédentes, Diane, Diana, Pauline, Yanis, Aya, à ceux
qui sont maintenant au labo comme Sarah, William, Greeshmani, Malik, Nico-
las,Meghan et tous les autres avec qui ont s’est bien amusés tous les midis.
Merci à tous les autres que j’ai oublié de citer ici et qui m’ont accompagné
pendant cette thèse.

9



10



Introduction

Nowadays, artificial intelligence (AI) is a booming field. Its applications are
numerous : medical applications, autonomous driving, real-time prediction of
trends in the economy and obviously natural language processing. The most
famous representative of artificial intelligence models, the chatbot ChatGPT
[1], is now present in the everyday lives of millions of people. However the
increasing utilization of artificial intelligence raises a major concern about its
energy consumption. Data centers where AI models are hosted and executed
consume approximately 1 to 2% of the overall world power production and
are estimated to double by 2030 [2]. This energy consumption needs to be
addressed in order to fight climate change.

This energy consumption of data centers is mainly caused by the mis-
matchbetween traditional hardware architecture andAImodels’ requirements.
Traditional hardware is based on an architecture where memory and proces-
sing units are separated, however AI neural networks require access to bil-
lions of in-memory parameters for processing. This creates a huge flow of
data between memory and processor, responsible for most part of energy
dissipation. To mitigate this cause of energy dissipation, a new approach for
AI specialized hardware is developed : neuromorphic computing. Taking ins-
piration from the brain, the main idea is to implement these specialized hard-
ware with nano-devices capable of merging memory and processing capaci-
ties. One of the fields that provides such nano-components is the field of spin-
tronics, where instead of manipulating electrical charges, the spins of elec-
trons become the main elements that encode and transmit information. This
provides nano-components that can operate with lower power than standard
electronics. Chapter 1 will display the state of the art of spintronic neuromor-
phic computing and other concurrent technologies.

In this thesis I will present the work I conducted to implement neural net-
works of different types with spintronic components, taking advantage of dif-
ferent properties offered by these components. This work is split into two
parts, the experimental realization of a hybrid hardware-software convolu-
tional neural network (CNN), and the simulation of a multilayer network of
dynamical spintronic neurons.

Spintronic components can be addressed with radio frequency signals.
This frequency connectivity can solve the major issue of wiring in hardware
neural networks. Indeed, by implementing frequency multiplexing of signals
combined with frequency selective devices, the number of required spatial

11



connections can be greatly reduced. The resulting network presents better
compactness and simpler geometry. In the first part of the thesis, we demons-
trate the controlled implementation of such frequency multiplexing through
the realization of a spintronic convolutional layer. In chapter 2 the realisation
of different designs of AMR spin diode-effect based synapses is demonstra-
ted. These devices apply a tunable weight on radio-frequency inputs. They
are made of a simple metallic magnetic layer conferring them robustness
and relatively simple fabrication. In chapter 3 we demonstrate the concept of
multiply-and-accumulate operation with these synapses connected in chains.
We propose a mixed series and parallel configuration suited for future up-
scaling. We demonstrate precise control of the synaptic weights of a fabri-
cated chain of synapses. Finally, in chapter 4, we introduce the experimental
implementation of a convolutional neural network with a hardware spintronic
convolutional layer and a software fully-connected layer. This network is trai-
ned taking into account the noise from the experimental setup and matches
the expected accuracy on a clothing image classification task.

Theuse of the transient dynamics of physical devices canprovide an energy-
efficient way of processing time-varying signals. Spintronic nano oscillators
(STNO) present non-linear dynamics that can be harnessed for such tasks. In
the second part of this thesis I demonstrate that a network of simulated cou-
pled spintronic oscillators with trainable transient dynamics can be used to
classify different time series. In chapter 5 I demonstrate that a single-layer
network of such oscillators can be trained via backpropagation through time
to discriminate sine-square time series and show that its performance is su-
perior to an equivalent network trained with a reservoir computing approach.
In chapter 6 the architecture of amultilayer network of STNOs is proposed and
evaluated on a more complex task, discriminating handwritten digits injected
pixel by pixel. The impact of the matching between devices’ characteristic re-
laxation time and input timescale is analyzed and guidelines for any network
of dynamical neurons are proposed.

12



1 - State of the art

1.1 . Basic principles of neural networks

Standard logic-based algorithms struggle to solve cognitive tasks such as
data classification, data prediction, or generation. Artificial neural networks
have been developed to handle this specific kind of problems. An artificial
neural network receives inputs and aims to produce an output correspon-
ding to the task the network needs to solve. In the case of data classification,
it receives the input data and outputs a label, in the form of a numerical value,
to assign to this particular input.

Standard neural networks have been conceived by taking inspiration from
the brain structure, more specifically from the sensory cortices. These areas
consist of neurons connected through synapses, organized into successive
layers. The first layer of neurons receives electrical inputs from the sensory
organs of the body, neurons react non-linearly to these electrical signals and
transmit them to the following layer of neurons through synapses. This hie-
rarchical structure helps process complex sensory inputs and convert them
into adequate signals sent to motor neurons.

While artificial neural networks (ANN) take inspiration frombiological neu-
ral networks, there are somekey differences. Biological neural networks present
amuchmore complex structure and behavior than ANNs, with systematic dy-
namical behavior of neurons and synapses and complex connectivity. These
dynamics are based on chemical processes and electrical spikes. Neurons
and synapses can vary in type, and other cells are present in the brain and
can contribute to cognitive tasks. The training mechanism is also different.
In ANNs, the training is done to mathematically minimize an error function,
whereas in biology the training is a complex, and not fully understood,mecha-
nism. Finally, biological neural networks are very energy efficient, the human
brain consumes around 20W, and training Chat GPT 3 took 1.287GWh [1].

1.1.1 . Artificial neurons and synapses
Artificial neural networks are composed of nodes called neurons in ana-

logy with biology, these nodes are linked by connections called synapses. Si-
milarly to a biological synapse, an artificial synapse transmits a signal from the
output of a neuron to the input of another one, and a multiplicative weight is
applied to the value of the signal. This weighting operation amplifiesmeaning-
ful signals and discards information that is useless for the cognitive task. In

13



Σ fnl

I0

I1

I2

I3

w0

w1

w2

w3 x

R
e
LU

(x
)

0

a) b)

Figure 1.1 – a) A neuron performs a multiply and accumulate (MAC) operationon several inputs weighted by synapses before applying a non-linear activa-tion function. b) Example of activation function : the Rectified Linear Unit.

general, the synaptic weight in artificial neural networks can be either positive
or negative. An artificial neuron is a unit capable of summing several signals
coming from different synapses, an operation calledmultiply and accumulate
(MAC), and to apply a non-linear function to this sum, as illustrated in figure
1.1 a). The non-linear function is called the activation function. This node acts
as a filter on the inputs that will permit or block the flow of complex informa-
tion depending on the value of combined input signals. A common activation
function is the Rectified Linear Unit function or ReLU [3], this function gives
0 when the input x is below 0 and x when x is above 0, as shown in figure 1.1
b). In the case of a neuron receiving inputs Ij from n synapses with weights
wj , the output of the neuron is y = ReLU(

∑n
j=1wjIj) which gives y = 0

if ∑n
j=1wjIj ≤ 0 and y =

∑n
j=1wjIj otherwise. In the first case, the infor-

mation is not transmitted further in the network, and in the second case, this
output will be weighted once again and sent to the next neurons. Additionally,
a trainable bias b is generally present in the neuron’s weighted sum so that
the neuron receives :∑n

j=1wjIj + b).

1.1.2 . Feed-forward fully-connected neural network

The most common artificial neural network architecture, inspired from
the multilayer cortical structure, is called a feed-forward fully-connected neu-
ral network. Input signals are injected into the network by connecting them
to the first layer of neurons via synapses. Then, the outputs of each neuron
layer are propagated to the next layer of neurons as inputs via a new set of
synapses. This structure is represented in figure 1.2 a). The network operation
can also be viewed as a combination of successive mathematical transforma-
tions of the input, mixing the application of weight matrices representing the
synaptic connectivity and non-linearmultivariable functions corresponding to
the neurons’ activations. This multilayer architecture enables to discriminate
non-linearly separable data points. The network projects the input data non-

14



linearly to a higher dimensional space where they can be linearly separated.
The last layer of neurons will produce a final output that will be used for clas-
sification or data prediction. In the case of data prediction, the values of the
neurons’ outputs in the last layer directly correspond to the data being pre-
dicted. In the case of classification, the last layer needs to present as many
neurons as the number of classes in the task. The neuron with the strongest
output will define to which class an input signal does belong.

1.1.3 . Training

To solve a cognitive task correctly, the network needs to be trained on
this specific task. This training consists of adjusting the network parameters,
mainly the synaptic weights. To adjust these coefficients, we need to define a
metric that evaluates the performance of the network on a task. This quantity
is called the loss function and is designed to evaluate the difference between
the current output result of the network for an input and the desired one,
such as the number representing the class label for instance. This technique
is called supervised learning and requires a large amount of pre-labelled in-
puts. Different types of loss functions exist and can be chosen depending on
the nature of the task. For instance, the Mean Squared Error can be used
for the prediction of data points, and the Cross Entropy Loss for a multi-
class discrimination task. The most common and powerful training algorithm
is called the backpropagation of errors. Once the loss function is evaluated
for a given input, the derivatives of this error with respect to the synaptic
weights and biases are calculated to quantify the impact of each trainable
parameter on the error. To compute these derivatives the chain rule is ap-
plied successively through the layers of the network. For instance for a synap-
tic weight wi−1 from layer i − 1, the derivative can be computed as follows :
∂E

∂wi−1
= ∂E

∂wi

∂wi
∂wi−1

= ∂E
∂yi

∂yi
∂wi

∂wi
∂yi−1

∂yi−1

∂wi−1
, where yi is the output of a neuron fromlayer i. This procedure is illustrated in figure 1.2 b). Once all the gradients have

been computed, the trainable parameters are updated by subtracting a frac-
tion of the gradients from their current value. For a weightw, the new value is
w− lr× ∂E

∂w . This operation, called stochastic gradient descent [4] is designedto minimize the loss function. It requires that the hyperparameter lr, called
the learning rate, is small compared to the trainable parameters values. Mo-
reover it needs to be applied iteratively to find a minimum of the loss. The
reached minimum is not guaranteed to be a global minimum. Improved ver-
sions of stochastic gradient descent have been developed to aim for more
global minima, but they can still struggle if the landscape of the loss versus
the parameters presents abrupt variations.

In order to train a network correctly, a large number of different examples
15



Figure 1.2 – a) Forward pass of a feed-forward network, inputs are injected intothe first layer of neurons via synapses, and these neurons apply non lineartransformations and transmit their outputs to the next layer of neurons viaa new layer of synapses. b) Backward pass of a feed-forward network, theerror is computed and the derivative of the loss with respect to each trainableparameter is computed via the chain rule.Weights are updated by subtractinga part of this derivative to minimize the error function. Image extracted from[5].

of inputs and their labels must be provided in the training phase. To imple-
ment the training, the dataset is split into at least two parts : one part will
be used to train the network and another to test it. They are respectively cal-
led the training and testing sets. Generally, several inputs are processed in
parallel and their errors are averaged before performing backpropagation, a
method called batching. The training set is run through the network several
times, each run being called an epoch. The number of epochs can vary from 10
to a few hundred. After training, the test set is run through themodel to check
if it is able to classify previously unseen data and thus generalize beyond the
training examples.

1.1.4 . Convolutional neural network

Convolutional neural networks (CNNs) are artificial neural networks that
have been specifically designed for signal processing, particularly for image
recognition [6]. They are now the state of the art for various image-related
tasks such as image classification and adversarial image generation. These
networks have the ability to extract local features from input signals, enabling
them to isolate meaningful patterns in images. For instance, they can be trai-
ned to recognize objects while discarding the background on which the ob-
jects are displayed. CNNs are resilient to noise and spatial transformations
such as global image rotations and translations due to their local processing
of information.

16



Thesenetworks present a feed-forwardmultilayer structure similar to stan-
dard fully connected networks. However, for each synaptic layer, the weights
are designed to implement a convolution operation with multiple filters per-
formed on the input image. This specificity makes CNNs intrinsically sparse
in connections. Before the development of CNNs, convolutional filters were
already widely used to extract local features, andmany filters were conceived
to extract relevant features in signals. However, in the case of CNNs, filters
are made of trainable coefficients ; consequently, they can learn to extract
the most relevant features for a task without prior knowledge. The full convo-
lution operation is performed on an image by sliding the convolutional filter
over the input image and performing a MAC operation on the reduced area
covered by the filter, which produces an output image called a feature map.
This can be formulated mathematically as follows :

zh,g =

K∑
i=1

K∑
j=1

wi,jxh+i,g+j (1.1)
Where zh,g is the value of the feature map at coordinates h along the height
and g along the width, xh+i,g+j is the value of the input image at coordinates
h+ i along the height and g + j along the width, and K is the filter or kernel
size. This convolution operation is represented in figure 1.3. In general, a CNN
has several convolutional filters applied on the same input image ; these fil-
ters each produce a feature map, and this additional dimension is called the
channel dimension. The complete set of feature maps can thus be expressed
as :

zh,g,c =
K∑
i=1

K∑
j=1

wi,j,cxh+i,g+j,c (1.2)
WhereNc is the number of channels. Channels can, for instance, correspond
to the RGB channels of an image.

Finally, to transform an image into a classification output, the size of the
feature maps is reduced across the network, and the channel depth is increa-
sed. The size reduction is performed via an operation called max pooling ; the
image is divided into smaller squares, and in each square, only the highest
value is kept. This ensures the transmission of the most important informa-
tion and increases noise resilience. The final classification step is performed
with a standard fully connected layer on the flattened output of the last layer,
as represented in figure 1.4. The training and testing processes are similar to
those of standard feed-forward networks.

1.2 . The different types of hardware neural networks

17



wi,j

xh+i,g+j zh,g

Figure 1.3 – Convolutional layer composed of a 3x3 pixel kernel sliding overthe input image. A max pooling operation is performed on this output imagewith a kernel size of 2x2 pixels. Image from [7].

Figure 1.4 – Architecture of a convolutional neural network. The input image isprocessed by convolutional layers that extract increasingly refined local fea-tures, thus reducing its width and increasing its depth. The classification isperformedby a fully connected layer that processes all output features. Imageextracted from [8].

18



Artificial intelligence models are growing in size and complexity, with now
billions of synapses (175 billion for GPT-3 [9]). These networks are challenging
to implement even with conventional hardware and have significant energy
consumption. As mentioned before, training GPT-3 consumed 1.287 GWh. To
try to lower this energy consumption, new hardware is being developed to
solve the limitations inherent in standard hardware. In this section, we will
describe hardware designed for static inputs and that uses devices in their
steady states ; a second section will be devoted to networks using control-
lable transient dynamics for computation. Here, we will put a specific focus
on hardware implementing CNNs, as this is the type of network that has been
realized and will be presented in this thesis in chapters 2 to 4.

1.2.1 . Conventional hardware
Artificial intelligence has been theorized and developed since the 50’s [10]

[11] [12]. However, the field has experienced major growth over the last ten
years. This boom is partly due to the emergence of new hardware, including
the graphic processing unit and tensor processing unit (GPU, TPU), which faci-
litate the implementation of large networks and greatly reduce their training
time. The GPU and TPU try to address themain limitation common to all stan-
dard computing architectures : the Von Neumann bottleneck [13]. Due to the
separation between memory and processing units, data need to be transfer-
red back and forth from memory to processors. This huge data flow is the
main limitation in terms of energy consumption and speed for artificial intel-
ligence tasks. GPUs and TPUs have been designed to reduce the impact of this
bottleneck ; they are made of parallelized cells comprising memory elements
and cores for processing. This architecture minimizes the time and energy
consumption of data exchange and allows the processing of large amounts of
data in parallel. However, the memory and processing units remain separa-
ted, so the Von Neumann bottleneck remains an issue. This is visible in terms
of energy consumption : to train a neural network to solve a natural language
processing task on standard supercomputers consumes 1000 kWh, which is
equivalent to 6 years of the human brain’s energy consumption [14]. Other
approaches try to bring memory and processors closer or to have processing
units with integrated memory capacities. This approach, closer to the brain’s
nature, is called neuromorphic computing.

1.2.2 . Field Programmable Gate Array
Field Programmable Gate Arrays (FPGAs) are chips composed of tens of

thousands to a few million programmable logic blocks, integrated functions,
andmemory blocks [15][16]. These arrays of logic blocks can be freely connec-
ted to design customarchitectures and are used to implement neural network
accelerators. The main challenge of implementing neural networks on this
type of hardware is mapping the network structure to the hardware’s avai-

19



lable connectivity and computing power. FPGAs are especially interesting for
CNN implementation due to the specific sparse structure of these networks
[17][18]. Thanks to their high programmability, FPGAs can implement the spar-
sity and irregular parallelism of convolutions while usingmost of the available
logic blocks, unlike GPUs that are poorly suited to exploit sparsity. Additio-
nally, FPGA CNNs have part of their memory on chip, minimizing data trans-
fers and thus reducing energy consumption compared to GPUs. CNNs solving
the ImageNet [19] dataset have been implemented successfully [20][21], pro-
ving that this technology is compatible with large models and complex tasks.

Even if FPGAs start to compete with GPU implementations, they present
certain limitations. The embeddedmemory is limited, which implies thatmost
neural networks deployed on FPGAs are for now trained off-line, on GPUs and
TPUs, and not directly in the hardware. The throughput of operations is smal-
ler than that of the most advanced GPUs, reaching only 10 TFLOPs at maxi-
mum [22] compared to a few hundred [23]. Moreover, the implementation of
the network architecture in hardware is a complex task and requires careful
attention to ensuremaximal performance. Finally, FPGAs require off-chipme-
mory, which is another drawback that can slow down computation. This last li-
mitation, common to all standard complementarymetal-oxide-semiconductor
(CMOS) hardware, could be tackled by a more neuromorphic approach with
unconventional computing components that integrate memory.

1.2.3 . Photonic Neural Networks

Photonics is a promising field for neuromorphic computing. Computing
with light offers several characteristics of photons that could speed up and re-
duce energy consumption in neural networks [24][25]. Light has a large band-
width in wavelength that could help implement massive parallelism; the very
low intrinsic crosstalk between frequencies is also a key feature enabling this.
The parallelisation can be further increased by adding channels of different
light polarizations and orbital momenta. Additionally, light can be transmitted
with low losses through optical fibers and waveguides, and manipulating the
phase of beams rather than their intensity can help limit energy consumption.

Different implementations of neural networks have been achieved using
photonic technologies,more specifically by implementing the synaptic connec-
tivity andmultiply-and-accumulate operations. We can divide them into three
main categories : networks based onMach-Zender interferometers, networks
based on wavelength division multiplexing and composed of optical resona-
tors, and a more general type of networks using spatially spread optical sy-
napses of various types.

20



Figure 1.5 – AMach-Zender interferometermesh can implement amatrixmul-tiplication on the amplitude ofmultiple coherent light beams. The coefficientsof this matrix are implemented via phase shifters. Image from [26].

Mach-Zender Interferometer (MZI)-based neural networks [26] are desi-
gned to perform transformations on input vectors in the form of coherent
light beams, each injected into a different waveguide. Each input value is re-
presented by the light intensity of the associated beam. A mesh of MZI units
is designed to implement a matrix multiplication applied to this input vector
(see figure 1.5). The MZIs each have two tunable phase shifters and optical at-
tenuators ; they can be microfabricated and integrated. These phase shifters
control the interference output of the MZI. They do not directly correspond
to synaptic weight values ; however, they are the trainable parameters that
enable the implementation of the desired matrix multiplication. The weight
tuning is achieved by changing the phase shifts by adjusting their length or
refractive indices. This can be done mechanically, thermally by injecting car-
riers, or optoelectronically, either in a volatile or non-volatile manner. The
main constraint of this architecture is the use of time-coherent light sources
as inputs, which require precise and complex experimental conditions.

WavelengthDivisionMultiplexing (WDM)neural networks [27] have a struc-
ture closer to the classical architecture of a neural network, with the specificity
of using the light wavelength dimension as connectivity. Each value of the in-
put vector is represented by the light intensity of a light beam at a unique fre-
quency. These inputs are weighted via optical resonators, typically microring
resonators (MRRs) [28]. If the wavelength of an input signal matches the reso-
nance frequency of the microring, part of this input signal will be transferred
to the ring, thus diminishing the signal going through the input waveguide.
By tuning the matching between the ring resonance frequency and the input
frequency, the amount of transferred signal is controlled, which implements
a synaptic weight. In a network design, the input waveguide is common to se-
veral resonators ; its multiplexed output contains all the weighted signals to
perform aMAC operation. A drop waveguide is added to discard the resonant

21



Figure 1.6 – Implementation of a neuromorphic architecture with optical mi-croring resonators (MRR) as synapses. Beams with different wavelengths aresent to a set of MRR, each addressing only one input. Depending on the mat-ching between input and resonance wavelength, a variable part of the inputis transferred. A photodiode sums all transmitted weighted signals, and anelectronic-to-optical component such as a laser can implement a non-linearfunction, thus forming a neuron. This architecture implements a recurrentloop to process temporal signals. Image from [30].

light that enters the resonator. The weight tuning is achieved by changing the
length of the microring or its refractive index. This can be done mechanically,
thermally by injecting carriers, or optoelectronically, either in a volatile or non-
volatile manner. The described architecture is displayed in figure 1.6.

This network structure is compatible with CMOS components, integrable
on-chip and scalable, unlike optical networks usingmacro-sized lenses. A chal-
lenge is the micro-resonator size, typically 25× 25µm[24] and at best around
1 × 1µm [14]. An architecture of this type adapted for convolutional neural
networks has already been proposed for future implementation [29]. We will
see in th next sections that similar principles can be applied to spintronic net-
works, with a much smaller footprint

Similar networks can be implementedwith phase changematerials (PCM).
These materials can be switched optically or electrically between two states :
amorphous or crystalline. The two phases generally exhibit different optical
indices. This type of component has been used to implement optical memo-
ries with Ge2Sb2Te5 as PCM [31]. An optical signal can be sent through a wa-
veguide with such material on top, and the output will vary depending on the
state of the PCM material. A multi-level memory has also been realized with
several PCM islands that can be switched gradually ; this memory implements
a non-binary synaptic behavior [32]. A convolutional network has been reali-

22



Figure 1.7 – Implementation of an optical matrix multiplication with PCM ma-terial as synapses organized in a crossbar array geometry. Image from [33].

zed with similar technology in a crossbar geometry [33] as shown in figure
1.7. Each input value is encoded as the amplitude of a light beam of a specific
wavelength and injected through a line of the array. Along this line, PCM ele-
ments act as synapses and transmit part of the input light to a column depen-
ding on their phase state. The output of a column is a signal made of different
weighted inputs that will be summed via a photodetector. This computation
can be performed in parallel on multiple inputs if they are multiplexed in fre-
quency. This network achieved 95.1% accuracy on a handwritten digits recog-
nition task [34] with a high throughput of 2 tera MAC operations per second,
which is comparable with CMOS performance, and low energy consumption
of 17 fJ per MAC operation. This would lead, in the best case, to an efficiency
of 7.0 TOPS per W, compared to the 4 TOPS per W of a standard graphics card
[23].

Other photonic neural networks can be realized with spatial addressing of
synapses. The values of the inputs can be implemented through their phase,
amplitude, or both. The general principle is to shine an input vector as an op-
tical image on an array of spatially spread optical elements that act on the
phase or amplitude of the beams. The addressing of inputs by these synaptic
elements can be done by using cylindrical lenses to direct each input beam
onto a single column of the synapse array. The summation of the MAC ope-
ration is done with a similar lens [35]. Another technique is to use coherent
light and let it diffract on an input plane encoding the input value ; this diffrac-
tion generates secondary waves for each input value that travel to address all
the elements of an array made of optical synapses. This architecture can be
reproduced in chained layers and is called a deep diffractive neural network
[36].

The implementation of synaptic weights can be achieved with different
elements that act on the amplitude and phase. The three main elements are

23



Figure 1.8 – Implementation of an optical convolutional neural network. Theconvolution is performed by placing a phase mask in the Fourier plane of theinput image, thus applying the weights on the spatial Fourier transform ofthe image. This operation is equivalent to a convolution once another Fouriertransform is performed. Image from [37].

spatial light modulators (SLM), diffractive optical elements (DOE), and holo-
graphic planes. SLMs have the specificity of being active elements that can be
reconfigured, while DOEs are passive and cannot be modified after fabrica-
tion. An array of DOEs is also often called a phase mask. A holographic plane
has intermediate characteristics ; it’s a medium with a writable optical index.
By exposing the medium to a given wavelength, the optical index can be lo-
cally modified to store a synaptic weight. Some media are erasable and can
thus be reconfigured.

Optics can also be advantageous for CNNs, as Fourier transforms and
convolutions are closely related ; a spatial convolution becomes a multiplica-
tion in the spatial Fourier space. A CNN implementation has been demons-
trated with an array of DOEs [37], as displayed in figure 1.8. By placing this
synaptic array in the Fourier plane of a lens placed after the input image, this
synaptic array implements a multiplication of the Fourier transform of the
input image, thus performing a convolution of the real image. The Fourier
transform is inverted with a new lens to recover the convoluted image. This
approach is very elegant and exploits the properties of Fourier optics ; howe-
ver, it requires a setup length of four times the focal distance of the lenses
and is hard to scale or integrate.

As we have described in the preceding paragraphs, optics offers a wide
variety of architectures to implement neural networks. Optical devices have

24



numerous advantages, such as high parallelism and low energy consumption ;
however, they are generally hard to scale and integrate, with the notable ex-
ception of technologies using microring resonators. But even with MRR, the
element size can be a limiting factor. Finally, neurons generally need to be im-
plemented in CMOS, which can also limit the advantages brought by optics,
such as speed and low power consumption.

1.2.4 . Memristor Neural Networks
Another promising technology for neuromorphic computing is the mem-

ristor. A memristor is a component capable of storing information in its re-
sistance state. A memristor generally has several resistance levels and can
be switched from one to another by applying current pulses. There are two
main types of memristors : phase change memristors (PCM) [38], where the
resistance depends on the crystalline arrangement of the material—highly
conductive if the phase is crystalline and less when the phase is amorphous ;
and filament-basedmemristors [39], where a conductive filament can be crea-
ted or discarded in an insulator. Other types ofmemristors exist using various
physical effects such as ferroelectricity [40], spintronic effects [41], or chemi-
cal redox reactions for polymer memristors [42].

Memristors can be wired together in a crossbar geometry to implement
a matrix multiplication [43]. This is a key feature for implementing a synaptic
layer with memristors. This matrix multiplication is simply achieved through
Kirchoff’s and Ohm’s laws applied to a crossbar geometry where memristors
are placed at each intersection of vertical and horizontal lines (see figure 1.9).
The inputs are voltages applied to the horizontal metallic lines, and the out-
puts are the currents collected at the end of the vertical metallic lines. If each
of the N memristors on row i and column j has a resistance Ri,j , the outputcurrent on column j is :

Ij =

N∑
i=0

Vi

Ri,j
(1.3)

Consequently, the conductancesGi,j =
1

Ri,j
can implement synapticweights

and can be trained to solve amachine learning task. It is important to note that
twomemristors are required to implement the positive and negative possible
values of a weight. These arrays of memristors have been used to build mul-
tilayer neural networks combined with CMOS neurons [44] or more complex
memristor-based neurons [45].

Memristors present several advantages compared to standardCMOS com-
putation components and to other neuromorphic hardware. They are fully
CMOS compatible because they use simple physical quantities such as vol-

25



Figure 1.9 – a) Memristor crossbar array : memristors are placed at the inter-section of input lines and output lines. b) Electrical schematic of a memristorcrossbar array : inputs are presented as voltages, and the outputs are read ascurrents. Image from [46].

tage, resistance, and current. They can be scaled down to 2 nm for binary
operations [47]. Memristor neural networks have a low energy consumption
with only 1 pJ per writing operation [48] ; this is the most energy-consuming
operation of the network due to the neuromorphic architecture implemen-
ting in-memory computing.

Several challenges hinder the development ofmemristor neural networks.
The main one is the fact that crossbar array geometry is prone to the appea-
rance of sneak-paths [49]. The currents can travel through memristors, ge-
nerating unwanted loss and perturbation that impact results. To counter this
kind of issue, memristors are designed to have high resistances. However,
with output current being smaller, the signal-to-noise ratio is degraded. Ano-
ther challenge is to co-integrate efficient and compact neurons with these sy-
naptic crossbar arrays[14]. Additionally, device variability remains a challenge
to handle for large neural networks. Finally, thewiring ofmemristors and neu-
rons is realized via metallic connections. This leads to complex connection
patterns ; moving to 3D geometry with crossbar array stacking [50] can offer
some solutions but remains complex.

Impressive results have been recently obtained with memristor crossbar
array based neural networks. A network of 1.4 million 90nm memristor sy-
napses and 1600 neurons has been experimentally realized and was trained
on-chip to classify 100 handwritten digit images from the MNIST dataset [34]
with 92% accuracy [51]. Another example of powerful neural network achie-
vement is the full hardware implementation of a 5-layer CNN on a chip com-
posed of 8 arrays of 2048 memristors [52]. This network was able to solve the

26



MNIST task through ex-situ training followed by on-chip tuning, with more
than 96% accuracy. Latest memristor networks use multi-core architecture
and can reach large sizes, but are trained off-chip. An example is the 64-core
chip fabricated by Wan et al. [53] that is able to process inputs at a speed of
63.1 TOPS and with an energy efficiency of 9.76 TOPS per W. Simultaneously,
Ambrogio et al. realized a network with 45 million weights that was able to
process inputs with an energy efficiency of 12.4 TOPS per W [54]. An architec-
ture with 48 cores and 3 million parameters [55] achieved 99% accuracy on
the MNIST handwritten digits classification task [34] and 84.7% accuracy on
the CIFAR-10 [56] complex images classification task.

1.2.5 . Spintronics Neural Network

In the following sections of this thesis, spintronics for neuromorphic com-
puting will be the focus and primary technology developed. Spintronics is the
field describing the interplay between electronic and magnetic properties of
materials and devices. It combines some of the best properties of optics and
more standardCMOSormemristor devices.Magnetic properties canbemani-
pulated with multiplexed radio-frequency (RF) signals, allowing a high degree
of parallelism through frequency multiplexing, similar to optics. Additionally,
spintronic devices are compatible with CMOS technology, using similar mate-
rials and requiring standard voltage and current levels to be controlled. Mo-
reover, they can be fabricated at sizes down to 10nm [57], allowing for high
density and low energy consumption. The energy consumption is also intrin-
sically reduced compared to standard resistive devices ; indeed, manipulating
the spin of electrons doesn’t generate Joule’s heating directly, allowing for less
dissipation.

In this section, I will present various neuromorphic architectures develo-
ped for static inputs. The implementation of spintronic reservoir computing
and other time-dependent neural networks will be presented in section 1.3.2. I
will present several neuromorphic approaches based on spintronics and then
focus more in-depth on radio-frequency-based spintronic architectures for
neural networks developed in our team to introduce the key concepts for the
next chapters.

Spintronic synapses. The non-volatility of magnetisation in spintronics
can be harnessed to implement writable synapses of various types. The first
building block that can be used in this way is the magnetic tunnel junction
(MTJ) [58]. These devices are composed of a layer with pinned magnetisation
and a layer with a free magnetisation spaced by a thin layer of insulator. De-
pending on the relative orientation of the free and fixed magnetisations, the
electrons spin-polarised by the fixed layer will have more or less ability to
transmit to the free magnetisation layer ; the device will thus present high

27



or low resistance states. This constitutes the memory block of magnetore-
sistive random-access memory (MRAM). The resistance can be used as the
stored weight of a synapse. A crossbar array implementation of 64x64 MTJ
synapses was realised by Jung et al. [59] and was able to classify the MNIST
dataset [34] with 93.23% accuracy. Another implementation with over 20,000
MTJs was realised [60] with above 95% accuracy on the same task.

Due to the maturity of MRAM technology, these synapses can be fabrica-
ted in large arrays ; however, they have binary weights or, at best, multi-bit
weights [61]. Analog synapses can be fabricated with spintronic components
and effects. Magnetic domain walls can be used to realize synapses. Themost
straightforward implementation is to inject a domainwall into the freemagne-
tisation layer. This domain wall can be moved by applying a writing current
in order to move the wall. The resistance of the device can be tuned conti-
nuously by changing the fraction of magnetisation in the free layer parallel or
anti-parallel to the fixed layer magnetisation. Such devices have been fabri-
cated [62], [63][64], and networks implementing them have been simulated
with success [65], [66].

Similarly, skyrmions can be used to realize memristive synapses. By ac-
cumulating skyrmions [67][68] or modifying the radius of a single skyrmion
[69] [70] in magnetoresistive devices, the magnetisation—and thus the resis-
tance—can be continuously tuned. Skyrmions are promising as they are na-
nometric in size and are topologically protected.

Finally, heterostructures of antiferromagnetic and ferromagnetic mate-
rials can also be used as synapses. When current is injected into the antifer-
romagnetic layer, the Hall’s resistance of the heterostructure is modified [71].
This change of resistance is still present when the current is off, making this
effect non-volatile.

Spintronic neurons. Some spintronic effects present non-linearities that
can be harnessed to build neurons. One example is spintronic oscillator syn-
chronisation. Depending on the frequencies of external inputs, coupled spin-
tronic oscillators can present different synchronisation patterns. A network
with 4 spin-torque nano oscillators (STNO) achieved classification of spoken
vowels with high precision [72]. The input vowels were sent as input frequen-
cies leading to different synchronisation states of the 4 oscillators. A similar
approachwas usedwith spin Hall nano oscillators for 2D pattern classification
[73] [74]. Spintronics also facilitates the implementation of spiking neurons.
These neurons integrate an input with a leak term and fire when the integra-
ted value is above a given threshold. These so-called leaky-integrate-and-fire
(LIF) neurons can be implemented with domain wall MTJ. The domain wall is
shifted with input current pulses, and after enough pulses, the MTJ switches
to a low resistance state, allowing the neuron to fire [75] [76]. Spiking neu-

28



ral networks use different concepts and training principles than the standard
feed-forward or recurrent neural networks that I study in this thesis, nd I will
not address them in the following.

Radiofrequency-based spintronic networks. Next, we will focus on ra-
dio frequency-based spintronic architectures for neural networks, which is the
topic to which this work contributes. These networks are composed of radio-
frequency synapses and neurons. To implement a neuron, a device needs to
be able to receive multiple input signals, sum them, and output a non-linear
transformation of this summed input. This can be achieved by using a spin-
torque nano-oscillator (STNO) [77]. This type of component can emit an RF
signal when a DC current is injected into it. This RF signal requires a threshold
current to be generated and thus presents a non-linear relation versus DC
current. Such behavior can be achieved using MTJs [78][79]. By injecting a low
current into the fixed magnetisation layer, the electrons get spin-polarised,
they tunnel through the insulator and exert a torque on the magnetisation of
the free layer. If the current is strong enough, this torque will drive the ma-
gnetisation into precession, leading to the emission of RF power. MTJ-based
neurons have already been demonstrated [80] and are one of the key building
blocks of RF spintronic neural networks. A CNN with such spintronic neurons
was proposed by Raimondo et al. [81] and achieved 98.92% accuracy on the
MNIST dataset [34] and 91.89% accuracy on a more complex image dataset,
FashionMNIST [82]. However, this study was realised purely in simulation and
with mathematically defined synapses.

The second element to implement for a fully RF spintronics network is
the synapse. Spintronic RF synapses are based on a resonant effect, the spin-
diode response [83], whose physics will be developed in section 2. When an
RF signal is injected near the resonance frequency of a ferromagnetic mate-
rial, the magnetisation can be excited and driven into precession ; this is the
ferromagnetic resonance effect (FMR) [84]. When a magnetic material exhi-
bits a magnetoresistive effect, it can, under certain geometric conditions, be
excited by the FMR effect and lead to an AC electrical resistance oscillating
at the frequency of the input RF signal. The mixing between the AC current
and the AC component of the resistance in the material leads to a DC vol-
tage generated when the input frequency is near the resonance frequency
of the magnetic material [85]. The value of the voltage can be controlled by
fine-tuning the difference between these two frequencies. This effect can be
harnessed to create a synapse sensitive to an input at a given frequency that
stores a synaptic weight in its resonance frequency. Leroux et al. demons-
trated that chaining such synapses together permits the implementation of
a MAC operation on frequency-multiplexed inputs [86], each addressed by a

29



Figure 1.10 – a) Schematic of a 2-layer feed-forward neural network b) its spin-tronic implementation. Magnetic tunnel junctions are used as synapses whenreceiving RF inputs and neurons when receiving DC inputs. Image extractedfrom [80].

specific synapse.
With these two different building blocks, it is possible to build a spintronic

neural network. The input vector has the formof frequency-multiplexed RF in-
puts, and weights are applied by synapses with matching frequencies. These
synapses produce output voltages that can be converted to current and am-
plified before sending them to spintronic neurons. These neurons produce a
non-linear response, outputting RF signals. By carefully choosing the proper-
ties of the neurons, they can output frequencies that can be injected into a
next layer of synapses to create amulti-layer network. This kind of implemen-
tation has been realized in hardware [80] with a first layer of four synapses
leading to two intermediate neurons ; these neurons’ outputs are then pro-
cessed by two other synapses, leading to a final classification neuron. This
architecture is displayed in figure 1.10. The power consumption of the buil-
ding blocks of this network is estimated to be 10 fJ for a synaptic operation
and 100 fJ for a neuron activation [87][80].

Additionally, an architecture designed for convolutional networks has been
proposed by Leroux et al. [88] using similar components. This architecture is
highly parallel and exploits the redundancy of the kernel weights to enhance
the compactness of the network. It achieved 99.11% on the MNIST dataset in
simulations. In my thesis, I demonstrate in chapters 2 to 4 that single-layer
Permalloy devices can implement a convolution operation experimentally,
following the concepts displayed in this article. This thesis presents the first
experimental demonstration of the realization of a convolutional neural net-
work with spintronic synapses processing RF signals, and its application to a
complex and challenging task, here FashionMNIST [82].

30



1.3 . Networks using dynamics

In this thesis, I worked on using the dynamics of physical spintronic de-
vices to implement a neural network. I will first present in this section the ba-
sics of networks capable of processing time-dependent inputs, such as RNNs
and reservoir computing networks. I will then explain how the dynamics of a
network can be trained either to process static outputs or to process time-
series.

1.3.1 . RNN
Recurrent neural networks (RNNs) are a type of neural network designed

to perform classification or prediction of time-dependent data. Contrary to
thepreviously presented feed-forward, fully-connected, and convolutional net-
works, neurons in an RNN have recurrent connections ; in other terms, a neu-
ron’s output will be connected back to its input. As a consequence, the state
of a neuron depends directly or indirectly on its previous value, introducing
a time dimension. These types of connections were first introduced in 1982
in Hopfield’s networks [89] ; these networks will be discussed in more detail
in section 1.3.3. Following this work and the first explicit RNN designs [90][91],
a general base structure of recurrent networks emerged. This architecture,
consisting of hidden states with recurrent connections, is displayed in figure
1.11. Each neuron j of layer i has a hidden state that we will denote hni,j . Thisstate, for time step n, receiving an input xni,j , evolves as follows :

hi,j [n+ 1] = σ(W self
i,j,k hi,k[n] +W ext

i,j,kxi,k[n] + bi,j) (1.4)
There can be some variations of this equation ; the activation function σ

can also be applied to hi,j . In the case of a multilayer RNN, the input to a layer
of neurons, xni,j , is the outputs of the neurons of the previous layer i− 1. This
structure is displayed with a two layer RNN in figure 1.11, these two layers are
linked by a matrix W ext

1 so the input to the second layer is W ext
1,j,kh0,k[n] or

W ext
1,j,kσ(h0,k[n]) depending on the chosen implementation. The hidden states

of the neurons accumulate the input values they receive ; this property per-
mits them to keep amemory of previous inputs and thus to process non-trivial
time-dependent data. RNNs are trained using backpropagation through time
[92]. This technique, explained in detail in section 5.7, consists of unrolling the
time dimension to backpropagate the errors through all previous time steps.

A slightly different framework has been proposed to implement neural
networks capable of representing andmodeling physical systems : Continuous
Time RNNs (CTRNN) [93]. Time is no longer discretized in finite steps but is
continuous ; the hidden state equation can now be expressed as a differen-
tial equation :

31



h0

Wself

Wext

x

h1

Wself

Wext

1

1

0

0

output

h0
(n-1)

Wext

x(n-1)

Wext

Wself
1

1

0

Wself
0

output(n-1)

h1
(n-1)

h0
(n)

Wext

x(n)

Wext

Wself
1

1

0

Wself
0

output(n)

h1
(n)

h0
(n+1)

Wext

x(n+1)

Wext
1

0

output(n+1)

h1
(n+1)

time unfolding

Figure 1.11 – Representation of a 2-layer recurrent neural network in its fol-ded and unfolded form. Matrices Wext implement connections between in-puts and hidden states or between hidden states of different layers. Matrices
Wself implement recurrent connections of hidden states.

dhi,j(t)

dt
= −γhi,j(t) + σ(W self

i,j,k hi,k(t) +W ext
i,j,kxi,k(t) + bi,j) (1.5)

The term γ is a damping term that helps prevent the divergence of the
hidden state. We will discuss in more depth the link between CTRNN and the
dynamics of physical devices in section 1.3.3.

More refined structures have been designed to improve memory proper-
ties, such as gated recurrent unit (GRU) networks [94] or long short-term me-
mory (LSTM) networks [95]. These networks presentmore complex equations
with parameters designed to remember long-term and short-term correla-
tions of inputs. Current state-of-the-art models for processing natural lan-
guages, such as the chatbot chatGPT, are an evolution of LSTM networks.
These networks are called transformers [96] ; they canmap an input sequence
to a generated output sequence thanks to their encoder-decoder structure
that extracts themeaningful correlations in sequences to generate a newone.
They conserve some properties of LSTM, especially the attention, which de-
fines the capacity to focus on some specific parts of a sequence.

1.3.2 . Reservoir computing
Reservoir computing was designed as a subtype of RNN [97]. The speci-

fic feature is that the network consists of a non-trainable part, the reservoir
of neurons, and a trainable part, the output layer. As displayed in figure 1.12,
the reservoir consists of numerous randomly connected neurons, including

32



Figure 1.12 – Schematic of a reservoir computing network : inputs are sentto the reservoir via fixed connections, and inside the reservoir, random andrecurrent connections lead to a dynamical response of the reservoir’s neu-rons. A few nodes of the reservoir are chosen as output nodes, and trainableweights are applied to them to form a final output. These weights are optimi-zed with linear algebra methods. Image from [100].

recurrent connections. The inputs are injected into some of the reservoir neu-
rons ; the high and recurrent connectivity enables the reservoir to perform a
complex non-linear transformation on the input. This is equivalent to projec-
ting the input into a higher-dimensional space where it can be linearly classi-
fied. The final output layer consists of synapses connected to some neurons
from the reservoir ; they are used to perform a final trainable linear transfor-
mation on this space to obtain the desired classification. The training is done
by finding the best weights to match the outputs of the reservoir to the desi-
red output ; this can be done with linear methods such as the Moore-Penrose
pseudo-inverse [98] [99]. These one-step training methods require very low
computational power.

Due to the recurrent connections in the reservoir, this type of network
is suited to solve time-dependent tasks that require memory, where the in-
puts are sent sequentially into the reservoir. This approach is very interesting
for hardware implementations as the reservoir can be directly realized with
a physical system or media that present a non-linear response to an external
stimulus and a complex time-dependent response.

33



1.3.3 . Neural network with trainable dynamics
As presented in the previous section, it is possible to exploit the dynamics

of physical systems to solve cognitive tasks. However, due to the fact that only
the last linear layer is trained in reservoir computing, this framework cannot
be applied to solve complex state-of-the-art tasks. To try to overcome this li-
mitation while conserving the memory and non-linear properties offered by
reservoirs, a new concept has started to be developed : neural networks with
trainable dynamics. These networks take inspiration from continuous time
RNNs as they are expressed in terms of differential equations but generally
aim to be implemented with physical devices with tunable dynamics. Dyna-
mical networks can use the time dimension in two different ways : some net-
works use the timedimension as an additional depth, and others process time
series with their dynamics. This difference is mainly due to the type of input
to classify, either static ones or time series ; in both cases, the networks have
similar behavior.

The idea of using a time dimension to better classify static inputs was first
proposed by Hopfield [89] in 1982. The proposed architecture consists of bi-
nary neurons all connected together, thus implementing recurrent connec-
tions. The goal of this network is to classify patterns correctly. When feeding
an image, the neurons’ states are sequentially evaluated until the full network
reaches an equilibrium. The network is trained to reach different equilibrium
states for different types of input patterns. In this framework, the neurons
start from an initial state and evolve toward a final state suited for classifica-
tion. This time evolution of input information is equivalent to the information
propagation through a feed-forward network.

In 2019, Chen et al. proposed a general framework uniting the idea of evol-
ving an input through time to classify it and a continuous-time approach. This
model is called Neural Ordinary Differential Equation (NODE) [101]. In this ar-
chitecture, a set of hidden states−−→h(t) have a time evolution described by a dif-
ferential equation controlled by a generic feed-forward neural network. This
network takes −−→h(t) as input and has parameters denoted θi.

d
−−→
h(t)

dt
= f(

−−→
h(t), θi) (1.6)

The initial state of the hidden states vector −−→h(0) is the input value. This
vector −−→h(t) is evolved until an arbitrary time T , where the state −−→h(T ) is used
for classification. This continuous evolution is represented in figure 1.13. The
training of such a network can be done by backpropagation through time, un-
rolling the differential equation solver or by a method specific to differential
equations, the adjoint method [102]. Neural ODE proved to be very powerful,

34



Figure 1.13 – Comparison between the flow of information in a state-of-the-artnetwork (ResNet) and the Neural Ordinary Differential Equation framework.The layer depth of the residual network is a discrete equivalent of the timeevolution of the NODE network. [101]

with performance comparable to state-of-the-art networks and reduced me-
mory usage.

In the meantime, the idea of training coupled differential equations simi-
lar to NODE was also developed and adapted for time series classification. In
2020, Hasani et al. proposed a uniting framework suited to describe dynamic-
based physical recurrent neural networks ; they introduced the concept of li-
quid time-constant (LTC) neural network [103]. These networks are a specific
type of CTRNN that present naturally bounded dynamics, which is valid to des-
cribe physical systems. To implement this type of feature, the state of neuron
i, xi(t), evolves according to the following equation :

dxi(t)

dt
= −1

τ
xi(t) + f(

−−→
x(t),

−−→
I(t), θ, t)(Ai − xi(t)) (1.7)

where f(
−−→
x(t),

−−→
I(t), θ, t) is a strictly positive function, −−→I(t) is the input vec-

tor, θ is the vector of all weights of the neural network, −−→x(t) is the state vec-
tor of all neurons and Ai is a positive term defining the upper boundary ac-
cessible to xi(t). This specific structure, inspired by biological neurons, en-
sures that all neuron states xi(t) in the vector −−→x(t) have bounded values bet-ween 0 and Ai. Moreover, the relaxation time constant of each neuron is
τliquid = τ

1−τf(
−−→
x(t),

−−→
I(t),θ,t)

, which depends on the input strength and trainable
parameters θ. Thus, neurons can adapt their relaxation time to the input va-
riation timescale to some extent through training.

35



These developments of neural networks controlled by differential equa-
tions led to the idea of using the differential equations naturally implemen-
ted by physical systems to realize hardware neural networks. These networks
would compute directly through the time evolution of a physical system with
minimal energy consumption.

1.3.4 . Hardware

A wide variety of hardware systems using the transient dynamics of phy-
sical devices have been proposed. I will not be exhaustive in this section ; we
will concentrate on implementations that leverage the transient dynamics of
coupled physical devices. This field is under development and benefits from
contributions from optics, acoustics, and spintronics ; however, the paths and
frameworks used are very diverse, which makes comparison and regrouping
a complex task.

Before the implementation of physical networks with trainable dynamics,
numerous hardware implementations of RNNs were realized. Examples can
be found in optics [104], with FPGAs [105], or with resistive RAM blocks [106].
These architectures implement explicit recurrent loops with feedback loops
that connect the output of a layer to its input, adding a time-delay. Meanwhile,
physical reservoir computing has been developed to use the transient dyna-
mics of diverse systems to compute. Implementations have been realizedwith
different physical reservoirs ; examples include optics with opto-electronic re-
servoirs built out of a single non-linear element with a feedback loop [107]
or quantum systems with coupled quantum oscillators [108]. Here, we will do
a short focus point on spintronic reservoir computing. Most reservoir com-
puting approaches in spintronics are based on collective effects of complex
magnetic textures. This type of complexmedia can be realizedwith skyrmions
[109], spin ice [110], or spin waves [111]. Other approaches have been realized
with individual magnetic devices, such as coupled spintronic nano-oscillators
[112] [113] or ring nanowires with a moving domain wall [114].

While reservoir computing is efficient for simple tasks, more complex time
series require more tunable networks such as CTRNN, where the dynamics
can be trained. Several implementations of physical CTRNNprocessing acous-
tic waves have been tested in simulations. An example of an architecture was
proposed by Hughes et al. [115]. This network is designed to classify recorded
vowels ; these inputs are sent as acoustic waves through amediumwith locally
tunable wave propagation speed. Classification is performed on the values of
the wave at different points at the output of this trainable medium. The error
is then backpropagated through the wave propagation differential equation

36



to optimize locally the propagation speed. Another implementation of a simi-
lar task was proposed, this time using acoustic resonators [116]. The acoustic
signal of vowels is injected through a waveguide ; resonators are coupled to
this waveguide and to one of two output waveguides. The signal is then recor-
ded at the end of the input waveguide and of the output waveguides. Classifi-
cation is performed on these output signals. The couplings of the resonators
with the waveguides are the tunable parameters. Here, the time response
of the resonators implements a dynamic response and memory similar to
CTRNN. This network is also trained by backpropagation through time.

In spintronics and optics, simulations of dynamical networks that use the
time dimension as a depth of processing have already been performed. An
example of such a system was proposed by Rodrigues et al. [117]. In this ar-
ticle, a system of coupled STNOs is trained to classify the DIGIT dataset [118].
The STNOs’ output RF powers are the internal states encoding information,
and their initial states encode the input image. A set of control signals Ai,j(t)controls in time the coupling between STNOs. They are the trainable para-
meters and can be optimized through a dedicated method : optimal control
theory. This method is designed to control the dynamics of physical systems
with time-dependent signals and has already been demonstrated as efficient
for training the dynamics of an optoelectronic delay element [119].

This thesis will present developments that aim to process time series with
a network of coupled STNOs rather than static inputs. This study is the first
demonstration of a multilayer network of coupled oscillators trained through
backpropagation through time. This training approach leads to better perfor-
mance than reservoir computing and, coupled with the multilayer structure,
fits in the framework of standard RNNs, allowing for future developments and
scalability.

37



38



2 - A robust radio-frequency synapsebasedon
the spin-diode effect in Permalloy

2.1 . Summary

The goal of this chapter is to demonstrate the realization of robust and
easy-to-fabricate RF spintronic synapses. These synapses need to be capable
of processing frequency-multiplexed RF inputs. We thus require devices that
are selective in frequency and have a tunable response, ideally non-volatile.
We chose to exploit the anisotropic magnetoresistive effect (AMR) to create
such diodes. This effect converts RF power into a DC voltage whose ampli-
tude depends on the input frequency and the device’s resonance frequency.
The difference in frequency is the weight stored by the synapse ; to change it,
the resonance frequency of the device is tuned. This tuning is realized here
by changing the local external magnetic field. We proposed and investigated
three different synapse designs : one basedon a single diode, onewith a diode
plus a current line to apply a local Oersted field, and the last design composed
of two opposite diodes with a small shift in resonance frequency. This shift in
resonance frequency is implemented by inserting the devices in a spatially-
varying magnetic field, so that a small spatial shift between the two diodes
translates into a shift of the applied external magnetic field, and therefore, of
their frequencies. This last design presents advantages such as a sharp fre-
quency profile and precise control of the synaptic weight. It is thus the cho-
sen design for the following developments. This design, tested with NiFe5/Pt5
diodes of size 5x10 µm, implements a synapse capable of processing inputs
in the GHz range with a non-volatile weight that is written via lithography. To
fabricate these devices, we used UV lithography. A specific characterization
setupwas developed, integrating a source for RF inputs, a nanovoltmeter, and
a set of magnets creating a controlled gradient of magnetic field that allows
the magnetic field to be controlled by moving the devices in this field.

2.2 . Introduction

In this chapter, I will present how a thin film with anisotropic magnetore-
sistance can exhibit a spin-diode effect, and how this effect can be harnessed
to apply a tunable synaptic weight as a multiplicative factor over an RF input.
These diodes exhibit frequency selectivity on the input. I designed several sy-
napse diodes with different geometries and advantages. These synapses will
later be connected to implement a weighted sum.

39



2.3 . Physics of AMR-based Spin Diodes

2.3.1 . Anisotropic magneto-resistance
The anisotropic magnetoresistance corresponds to a dependence of the

resistance of the material on the relative orientation of the current density
and the magnetisation. This dependence can be expressed as : R = R0 +

∆Rcos(θ)2[120], where θ is the angle between the magnetisation and the cur-
rent density, R0 is the resistance when θ = 90◦, and ∆R is the amplitude of
resistance variation. This effect originates from an increase in the electron
scattering rate when the current flow is parallel to the magnetisation. This is
caused by a mixing, and thus a modification, of the "d" conduction orbitals by
the spin-orbit coupling in magnetic transition metals [121].

2.3.2 . AMR Spin-Diode
The spin-diode effect is a voltage rectification effect that occurs when a

magnetised material with a magnetoresistive effect is subjected to an RF si-
gnal at a frequency near its resonance frequency [85]. In our case, themagne-
toresistive effect is the AMR effect, and the rectification effect occurs through
the mixing of the RF current and RF-driven magnetoresistance. In the follo-
wing, I will re-demonstrate the origin of the rectified voltage from the AMR
effect, taking inspiration from the article [120].

Let’s consider a thin film of Permalloy in the yz plane that represents our
device. A fixed external magnetic field Hext is applied in the z direction, as
shown in figure 2.1, and is assumed to be strong enough to saturate the ma-
gnetisation along the z direction. The magnetisation M is defined as M⃗ =

mxe⃗x +my e⃗y +MS e⃗z , wheremx andmy are small variations of the magneti-
sation compared to the saturation magnetisation MS . The AC current in the
material generates an AC magnetic field hRF . Here, I assume that the z com-
ponent of this AC field can be neglected compared to the strong external field
Hext along this direction. When the RF current is injected near the resonance
frequency, the magnetisation is driven into precession around the magnetic
field at the injection frequency. The angle between the RF current and thema-
gnetisation is thus a fixed componentΦ0 plus an oscillating componentΦ1(t),assuming thatmx = 0 as the driving field is in the sample plane.

Applying Ohm’s law in our device, see equation 2.1, the voltage across the
device is proportional to the oscillating angleΦ1(t)multiplied by I cos(ωt+ϕ).
The mixing of those AC terms leads to the rectification of a DC voltage.

V = R× I (2.1)
V = (R0 +∆Rcos2(Φ0 +Φ1(t)))× Icos(ωt+ ϕ) (2.2)

As the angle of precessionΦ1 is quite small it is possible to develop the cosine
40



Figure 2.1 – Representation of the current flow and magnetisation is thesample, the angle between current and magnetisation as a fixed component
Φ0 and an oscillating one Φ1(t). The main driving term of the magnetisation is
hRFy.

squared :
V = (R0 +∆R(cos2(Φ0)− Φ1(t)sin(2Φ0)))× Icos(ωt+ ϕ) (2.3)

We can express the termΦ1 as a function of themagnetisation :Φ1 ≈ my

MS
.

The termmy can be expressed as a function of the external RF driving current.To establish this link, we start from the Landau-Lifshitz-Gilbert equation (2.4).
This equation describes the dynamics of the magnetisation M⃗ subjected to a
magnetic field ⃗Htotal. The term γ is the gyromagnetic ratio of the electron, and
α is called the damping factor. The first term, γM⃗ × ⃗Htotal, corresponds to theprecession of the magnetisation around the magnetic field, and the second
term,− αγ

MS
M⃗× dM⃗

dt , corresponds to themagnetisation relaxation towards the
external field.

dM⃗

dt
= −γM⃗ × ⃗Htotal −

αγ

MS
M⃗ × dM⃗

dt
(2.4)

We consider our Permalloy film as infinite in the yz plane, as our diode
designs have large dimensions, on the order of microns at the smallest. The
x direction is considered finite as the sample thickness is on the order of na-
nometers. To compute the total magnetic field, we need to take into account
the demagnetizing field, which has a contribution only along the x direction
due to the small thickness of the sample and is expressed as−(M⃗ · e⃗x)e⃗x. Twoother contributions need to be taken into account : the external fixed magne-
tic fieldHexte⃗z and the RF field hRFy e⃗y , induced by the injection of AC current.The total resulting field is displayed in equation (2.5).

⃗Htotal = Hexte⃗z − (M⃗ · e⃗x)e⃗x + hRFxe⃗x + hRFy e⃗y (2.5)
41



The LLG equation can be expressed in the form of a matrix equation :(
γ(Hext +MS) + iαω iαω

−iαω γHext + iαω

)(
mx

my

)
= γMS

(
hRFx

hRFy

)
(2.6)

This permits to link the magnetisation to the RF field through the suscep-
tibility tensor χ, displayed in equation 2.8.(

mx

my

)
= χ

(
hRFx

hRFy

)
(2.7)

χ =

(
γHext + iαω −iαω

iαω γ(Hext +MS) + iαω

)
γMS

γ2(Hext +MS + iαω)(Hext + iαω)− α2ω2

(2.8)
In the AMR voltage, the termmy can be replaced by χyyhRFy. Indeed, due tothe reduced thickness of the film in the x direction, the term hRFx can be ne-glected, and the value ofmx is negligible compared tomy.

We can introduce angular frequencies for resonance condition ωr, field
ωH and magnetisation ωM :

ωr = γ
√
Hext(Hext +MS)

ωH = γHext

ωM = γMS

(2.9)

Using these new quantities and neglecting αω compared to (ωH + ωM ) ,
χyy can be expressed in a simplified form visible in equation 2.10.

χyy =
ωM (ωH + ωM + iαω)(ω2

r − ω2 − iαω(2ωH + ωM ))

(ω2
r − ω2)2 + α2ω2(2ωH + ωM )2

χyy ≈ ωM (ωH + ωM )
(ωr − ω)(ωr + ω)− iαω(2ωH + ωM )

(ωr − ω)2(ωr + ω)2 + α2ω2(2ωH + ωM )2

introducing the variable ∆H = αω
(2ωH + ωM )

ωr + ω

χyy ≈ Ayy
(ωr − ω)∆H − i∆H2

(ωr − ω)2 +∆H2

(2.10)

We obtain χyy as the product of a term Ayy = ωM (ωH+ωM )
αω(2ωH+ωM ) which de-

creaseswith frequency of the R input and a second term (ωr−ω)∆H−i∆H2

(ωr−ω)2+∆H2 which
is a sum of a symmetric term and an antisymmetric one with respect to the
resonance frequency ωr. The symmetric term is a Lorentzian of the input fre-
quency centered on the resonance frequency with width ∆H which is out of

42



phasewith themagnetisation and the antisymmetric term is an antilorentzian
of the same parameters and which is in phase with the magnetisation.

We can then replace the term my in the voltage by χyyhRFy , considering
hRFy = hRF cos(ωt). Then, taking the time average of the voltage, we observe
that there is a remaining DC part ; see equation 2.11. This is the spin-diode vol-
tage. It is interesting to note that it conserves the symmetry of the term χyy ,with the antisymmetric term being weighted by the cosine of the phase diffe-
rence between the AC current and the magnetisation, and the symmetric one
by the sine of this phase. Moreover, the voltage is proportional to sin(2Φ0),where Φ0 is the mean angle between the external field and the magnetisa-
tion. Thus, in order to maximise the spin-diode voltage, this angle needs to
be an oddmultiple of 45◦. Finally, the AMR voltage is proportional to the input
RF current squared, as the RF field is proportional to the RF current ; thus, the
voltage is proportional to the input RF power.

V = (R0 +∆R(cos(Φ0)
2 −

χyyhRFy(t)

MS
sin(2Φ0)))× Icos(ωt+ ϕ)

VDC = −∆R
Ayy

2MS
(

(ωr − ω)∆H

(ωr − ω)2 +∆H2
cos(ϕ) +

∆H2

(ωr − ω)2 +∆H2
sin(ϕ))

× Isin(2Φ0)hRF (2.11)
With this theoretical analysis we see that we can use AMR to rectify an RF

signal. In the next section we will explore how to use this effect to construct a
synapse with tunable weight and frequency selectivity.

2.4 . AMR Spin-Diode Synapse Concept

A hardware synapse is a device capable of applying a stored weight va-
lue w on an input x, so that it outputs a signal proportional to the product
w×x. We can exploit the AMR spin-diode effect to build a spintronic synapse.
Previous implementations have been realized with magnetic tunnel junctions
[86] ; however, the AMR spin-diode samples can be produced easily in our la-
boratory, allowing us to test complex designs with multiple robust synapses.
As we can see in Figure 2.2 a), in the region around the frequency of reso-
nance, the antisymmetric part of the AMR voltage can be approximated as
linear with both the injected RF power and the difference between the reso-
nance frequency of the device and the frequency of injection of the external
input power. Indeed, when we consider ωr − ω to be small compared to the
width of the spin-diode antilorentzian∆H , the voltage simplifies to :

43



VDC ∝
ωr − ω

∆H
sin(2Φ0)PRF (2.12)

The symmetric part of the AMR voltage is small in our samples and can be
neglected ; it only contributes as a small offset voltage. The resulting voltage
can then be expressed as :

VDC ∝ (fr − f)× PRF (2.13)
Here, the RF power PRF is the input value to the synapse, the detuning in

frequency (fr − f) is the synaptic weight applied to the input, and the final
DC voltage is the output value of the synapse. In this device, the RF input fre-
quency is fixed ; the synapse will address this input only if f is close enough
to its resonance frequency. This frequency selectivity will enable frequency
multiplexing as developed in the next chapter and demonstrated in previous
works [83][86].

The weight is tuned by slightly changing the resonance frequency of the
device to change the value of (fr − f), as displayed in Figure 2.2 b), c), and
d), where the voltage is linear with power, and changing the magnetic field
adjusts the slope of this linear dependence. To store this weight in the device,
we need non-volatile writing of the resonance frequency of the device. It is
important to note that the synaptic weight can be positive or negative with
a single device, which is not the case for all hardware synapses ; memristor
synapses typically require two devices, one for positive weights and one for
negative weights.

2.5 . Fabrication

2.5.1 . Spin diode sample design
The base spin diode sample design is displayed in figure 2.3. It is made of

a stripe of magnetic material in our case Permalloy with gold connectors desi-
gned to inject current at a 45° angle with respect to the connector alignment
in the Permalloy. This angle will be also the angle between the magnetic field
and the current in the magnetic material. This permits to maximise the AMR
voltage through the angular dependency.

2.5.2 . Lithography process
I fabricated all the samples with the same procedure, where patterning

is done through optical UV lithography. The base film is a layer of 5 nm of
nickel-iron capped with 5 nm of platinum deposited on a high-resistance sili-
con wafer. Diode shapes are patterned with a positive resist (SPR 700) by UV

44



fres=1.4GHz

Hres=357 Oe

Figure 2.2 – a) Theoretical AMR spin-diode voltage versus input frequency un-der an external field of 357 Gauss while varying the input RF power from 0 to100mW. b) Theoretical AMR spin-diode voltage versus external magnetic fieldwith an input frequency of 1.4 GHz while varying the input RF power from 0to 100mW. c) Theoretical AMR spin-diode voltage versus input frequency witha fixed input power of 100 mW while varying the external magnetic field bet-ween 340 and 380 Gauss. d) Theoretical AMR spin-diode voltage versus powerwhile varying the external magnetic field at an input frequency of 1.4 GHz ; thisis the typical synaptic behavior. In the four plots, γ = 0.01,∆H = γ×0.1 GHz,
ωM = ωH = 2π × 1 GHz.

Figure 2.3 – a) Design of a Permalloy spin-diode with 5 microns width and 10microns length b) optical image taken after fabrication

45



Figure 2.4 – Fabrication steps of the typical Permalloy spin-diode that I reali-sed.

lithography. The resist is developed to protect only the metallic regions we
want to keep. The sample is then etched with an ion beam etching machine
to remove the magnetic NiFe layer outside the areas of the diodes that re-
main protected by the resist. These steps, displayed in figure 2.4 steps a) to
e), pattern the shape of the diodes ; we then need to pattern gold connectors
for current injection. This time, the resist is exposed such that after develop-
ment, all the sample is covered except for the region where the connectors
are supposed to be. A gold evaporation is then done to deposit gold in these
unprotected areas. The final step is to perform a liftoff of the remaining resist
with acetone to keep gold only on the connector areas.

2.6 . Experimental Setup

To investigate the spin-diode effect, we need to design a specific experi-
mental setup. The two main components of this setup are the RF source that
supplies RF power to the spin-diode sample, and the nanovoltmeter to mea-
sure the response of the sample.

2.6.1 . Measurement Technique
In order to measure the spin-diode voltage, we need to disentangle this

contribution from other contributions. First, we need to measure only the DC
46



voltage contribution and discard any AC contribution coming from the sample
or from the RF source. This separation ismadewith a bias tee ; this component
is mainly composed of two elements : a high inductance and a high capacitor
mounted in a T geometry. The capacitor branch is made to block the DC cur-
rent and transmit the AC signal ; the inductance branch is made to block the
AC signal and transmit the DC signal. The RF power is injected through the
AC branch into the AC+DC branch connected to the sample. Finally, the spin-
diode voltage is measured through the DC-only branch. In order to discard
any parasitic effect such as voltage offsets and drift, we measure the voltage
with RF power on and without any power, with the difference of these two
quantities being the spin-diode voltage. This is performed with a solid-state
switch that can either direct the output of the source to the sample or to ano-
ther channel. Additionally, an attenuator is placed before the sample. This
attenuator reduces the cavity effect that occurs in the cable between the bias
tee and the sample by attenuating multiple times the reflected amplitudes,
thus reducing the noise at the resonance frequencies of the cavity observed
in the spin-diode results.

2.6.2 . Field Gradient Implementation

Due to the uniformity and large size of our devices, our diodes do not have
an anisotropy in the plane, which means that they all have similar base reso-
nant frequencies. Therefore, in the following, the resonance frequency of the
diodes is only controlled by the magnetic field that we apply to each of them,
and not by the patterned geometry. In addition, since each diode represents
a different synaptic weight, we will need to apply a different local field to each
of them, in a very precise way. We have used permanent magnets to create
the local field that will tune each diode to its base resonant frequency.

To have a controlled variable magnetic field created with permanent ma-
gnets, two options are possible : we can either have a magnet mounted on
a motor and move it, or we can have fixed magnets and move the sample
to different portions of the field. As we want to be able to have, at the same
time, different magnetic field values in several devices on the same sample,
we have implemented the second solution. By building a field gradient in one
direction, two diodes can be placed on the same sample but spaced along
this direction to experience different fields. This field gradient is realised with
four identical magnets organized as shown in figure 2.5. At the center of the
assembly, these magnets create a total field which is very small in x and y
components and has a strong gradient along the z axis, as shown in figure
2.6. Consequently, our diodes need to be spaced along the z direction to be
submitted to different, well-controlled fields. This field gradient has been ca-
librated using a 3D teslameter. The holder of the magnets, being in plastic,

47



Sample

RF inputs
and voltage
measurement

Gradient field
magnets

y
x

z

magnetic field 
gradient

x

y

z
Motorised stage

(a) Front view (b) Side view

Figure 2.5 – a) Front view of the gradientmagnets. Themagnetic field ismainlyoriented along the z-axis and has a strong gradient along the z-axis whilebeing quite uniform in the y-direction.b) Side view of the sample placed bet-ween the four gradient magnets.

0.
0

0.
2

0.
4

0.
6

0.
8

y (mm)

-1.0
-0.6
-0.2
0.2
0.6

z 
(m

m
)

Hz

0.
0

0.
2

0.
4

0.
6

0.
8

y (mm)

-1.0
-0.6
-0.2
0.2
0.6

z 
(m

m
)

Hx

0.
0

0.
2

0.
4

0.
6

0.
8

y (mm)

-1.0
-0.6
-0.2
0.2
0.6

z 
(m

m
)

Hy

10

0

10

(m
T)

0.25

0.00

0.25
(m

T)

0.0

0.2

(m
T)

Figure 2.6 – Measurement of the magnetic field created by the 4 magnetsalong x, y, z with a 3D teslameter

experiences some deformation caused by the repulsion of the magnets ; this
deformation causes the appearance of a smallHy component nearly constant
in the space between the magnets. This contribution is cancelled with a fixed
magnet placed below the four magnets visible in figure 2.5. In this configu-
ration, we obtain a gradient of the magnetic field component Hz along z of140 Oe/mm; this strong gradient allows us to obtain different fields in closely
spaced devices.

2.7 . Experimental results

2.7.1 . Experimental spin-diode measurement, synaptic behavior
In this section, the measured spin-diode response of a device with 5 mi-

crons width and 10 microns length is displayed. The device is placed between
the four gradient field magnets such that the field is in the zy plane of the

48



(a) (b) (c)

Pt 5 nm
 

NiFe 5 nm

High R Si

Au

Au

NiFe/Pt

5 µ
m

10 µm

5 µm

H z H z

y

Φ0

Figure 2.7 – Spin diode stack (a) and geometry (b)(c).

magnetic thin film and aligned along z. The current flows in-plane with a±45◦
angle to themagnetic field, maximizing the AMR voltage. This geometry is dis-
played in figure 2.7.

The DC voltage is recorded as a function of the frequency for differentma-
gnetic field intensities. These different magnetic field intensities are achieved
by changing the position of the sample along the z-axis. These experimental
results are displayed in figure 2.8 a). We observe the rectified voltage VDC of
the spin-diode effect, with its recognizable antilorentzian contribution. The re-
sonance frequency can be estimated as the center of the antilorentzianwhere
the derivative of voltage versus frequency is maximum in absolute value. This
resonance frequency shifts with the field and can be plotted for both positive
and negative fields ; see figure 2.8 b). This dependence can be fitted using Kit-
tel’s law, equation 2.9, from which we can extract an effective magnetisation
mu0Ms of around 9.68 kOe.We also observe, as expected from the spin-diode
voltage in equation 2.11, that the amplitude of the rectified voltage decreases
when the resonance frequency of the magnetic material increases. This de-
crease is not exactly at the theoretical rate ; as we will see in more details in
chapter 3 section 3.5.2, this is due to the impedance mismatch created by the
wire bonding connecting the sample and the RF waveguides on the sample
holder.

In figure 2.9 a), the spin diode response as a function of the injection fre-
quency is displayed for a fixed field and varying the input power ; in plot b),
the response versus field is displayed for a fixed frequency and varying the
input power. In both cases, we see that the amplitude of the rectified voltage
increases with the input power. In figure c), the DC voltage is displayed as
a function of the input RF power for a fixed input frequency of 2.2 GHz and
for a fixed external field close to the resonance field. The DC voltage varies
linearly with the input RF power, and the slope of this dependence can be tu-

49



1 2 3
Frequency of injected RF (GHz)

200

0

200

400

600

800

M
ea

su
re

d 
DC

 v
ol

ta
ge

 (µ
V)

a)

H=-95 (Oe)
H=-60 (Oe)
H=-30 (Oe)

50 100
Magnetic field in Oersted

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y 
of

 re
so

na
nc

e 
GH

z

b)

-H
+H
Kittel's law

Figure 2.8 – a) Measurement of the frequency profile of the spin-diode vol-tage for different magnetic field intensities. b) Extracted frequency of reso-nance versus magnetic field for the Permalloy spin-diode with 5x10 micronsgeometry. The fitted Kittel’s law gives us an effective magnetisationmu0Ms of9.68kOe.

ned by changing the external magnetic field via the z position between ±15
Oe around the resonance field . This is the characteristic and expected synap-
tic behavior VDC ∝ (fr − f) × PRF . Some slight non-linearity arise for fields
close to the resonance field. This can be an effect of the lorentzian contribu-
tion that is more visible when the antilorentzian term is small, or a shift of the
resonance frequency as the input RF power increases. This second hypothesis
ismore likely, as this effect was observed preferentially in small devices where
the density of AC current is higher, increasing heating or other non-linearities
with power.

As the synaptic weight is fixed by the device’s resonance frequency, the
tuning of this synaptic weight is achieved by changing the position of the diode
along the z axis, hence modifying the strength of the magnetic field applied
to the device.

2.7.2 . Synapse with current lines
In the previous design, the synaptic weight is tuned by changing the diode

position in an external magnetic field. This method is compatible with the off-
chip determination of the weights before nanofabrication that we will employ
for convolutions. However, it doesn’t allow for a local control of the weights
of several diodes on the same chip for fine-tuning or on-chip training, as their
positions cannot be tuned individually after fabrication. In this section, we
evaluate a diode design allowing on-chip tuning of weights through the appli-
cation of local Oersted field.

In order to enable individual updates of weights after fabrication, an ad-
50



Figure 2.9 – a) Experimental AMR spin-diode voltage versus input frequencywhile varying the input RF power from 0 to 100mW. b) Experimental AMR spin-diode voltage versus the z position of the sample while varying the input RFpower from 0 to 100mW. c) Experimental AMR spin-diode voltage versus po-wer while varying the z position of the sample in a range of 0.2mm with aninput frequency of 2.2 GHz, this is the typical synaptic behavior.

51



Figure 2.10 – a) Design of a Permalloy spin-diode with 70 microns width and20 microns length. A current line is patterned on top to create an additionalOersted field in the magnetic layer to implement the synaptic weight. b) Op-tical image taken after fabrication.

ditional current line was patterned above the spin-diode device with an oxide
spacer between the two; this design is displayed in figure 2.11. The oxide spa-
cer is made by atomic layer deposition to obtain anHfO2 layer of 45 nm; the
gold current line is then patterned on top with another UV lithography step
similar to the gold connector patterning described earlier.

When a DC current is sent in the current line, an additional Oersted field
is created in the device, allowing for individual weight tuning. By shifting the
resonance frequency of the diode, this allows us to tune the voltage linearly ;
the output voltage can be re-expressed as VDC ∝ IDC × PRF , where the sy-naptic weight is IDC . The experimental demonstration of this weight tuning
is displayed in figure 2.11. In sub-figure a), the AMR voltage frequency profile
is displayed while varying the input power ; the voltage appears proportional
to the power. Sub-figure b) displays the voltage at a fixed input frequency of
2.56 GHz while varying the DC current in the stripline and the RF power. The
voltage is quite linear with the DC current intensity. Finally, the synaptic be-
havior is displayed in sub-figure c) ; the output voltage varies linearly with the
input RF power, and the slope of this dependence—corresponding to the sy-
naptic weight—can be controlled also linearly with the DC current applied in
the stripline.

I managed to obtain broad tuning of a single synaptic weight ; however,
several drawbacks arise due to the current lines. First, the current lines need
to be constantly powered to create the additional Oersted field corresponding
to the desired weight ; this leads to both volatility of the weights and energy
dissipation. Additionally, the current lines are shunting a part of the RF power

52



50 100 150 200
Power mW

30

20

10

0

10

20

30

Vo
lta

ge
 in

 
 V

c)

2.4 2.6 2.8
Injected frequency GHz

0

100

Vo
lta

ge
 in

 
 V

a)

25 0 25
DC Current (mA)

20

0

20

Vo
lta

ge
 in

 
 V

b)
40

30

20

10

0

10

20

30

40

DC
 C

ur
re

nt
 (m

A)

50

100

150

200

In
pu

t R
F 

po
we

r (
m

W
)

50

100

150

200

In
pu

t R
F 

po
we

r (
m

W
)

Figure 2.11 – a) Experimental AMR spin-diode voltage versus input frequencywhile varying the input RF power from 0 to 100 mW. b) Experimental AMRspin-diode voltage versus intensity in the current line while varying the inputRF power from 0 to 100 mW. c) Experimental AMR spin-diode voltage versuspower while varying the intensity in the current line in a range of ±40 mAwith an input frequency of 2.56 GHz ; this is the typical synaptic behavior. It isimportant to note that this diode has a different geometry of 70x20 microns,leading to a much smaller density of current and thus a smaller rectified vol-tage.

53



I1

R

I2

R

V=R(I1+I2)/2

(a) (b)

(c)

δz=+40μmδz=-40μm δz=0μm

δz=+40μm

50 microns

H z

y

Figure 2.12 – a) Electrical scheme of a synapse made of two Permalloy spin-diodeswith 5micronswidth and 10microns length connected in parallel ; eachsynapse can be considered as a current source. b) Design of synapses withdifferent δz. c) Optical image taken after fabrication.

sent to the diode through capacitive coupling across the oxide spacer ; this is
a big issue for scaling up. Indeed, when connecting several diodes in series,
each current line will pick up a part of the RF power flowing from diode to
diode, the final one receiving only a fraction of the input RF power and thus
its signal being very small compared to the first ones. Finally, the fabrication
provedquite challenging, as the current lines tended to have sticking issues on
the oxide, and the oxide was sometimes too thin on edges, leading to short-
circuits between the diode and its current line. All these drawbacks convinced
us to move to a third architecture based on the first one, where the weights
are implemented during the lithography, as detailed in the next section.

2.7.3 . Double diode synapse
The single device synapse design presents an important drawback : the

frequency profile of the DC voltage presents an important background out-
side of the resonance frequency region. This background is not an issue when
dealing with a single synapse. However, when we want to have several sy-
napses at different, closely spaced resonance frequencies, the overlap of se-
veral backgrounds will add some unwanted contributions. These additional
voltages are hard to take into account precisely. In order to discard these
backgrounds, I designed a new architecture of a synapse made of two diodes
in parallel with opposite signs ; see figure 2.12. When the two diodes are sub-
mitted to the same magnetic field, the AMR spin-diode currents cancel each
other. By introducing a difference of magnetic field between the two devices,
the total signal becomes non-zero around the resonance. This signal is equi-
valent to a differential measurement of the single device, creating a peak cen-

54



tered at the resonance frequency and reduced background outside the reso-
nance ; see figure 2.13, where the signal of two diodes is predicted based on
an interpolation of a single diode behaviour as a function of its z position. The
peak amplitude can be tuned by changing the field difference between the
two diodes, allowing for both positive and negative amplitudes. In this case,
the AMR voltage can be expressed as VDC ∝ δH ×PRF , where δH is the field
difference between the two diodes. In my setup, a field difference can be im-
plemented just by introducing a shift in the z position of the diodes due to
the gradient of the magnetic field in this direction, thus VDC ∝ δz×PRF . Thisalso presents another advantage : the δz term corresponding to the synap-
tic weight is a local quantity stored at the device level as a relative position,
contrary to the global field value in the single device design.

I demonstrated the concept of a double diode synapse by measuring the
response of synapses with the design represented in figure 2.12, with a δz of
+40µm, 0µm, and−40µm. The resulting curves are displayed in figure 2.14. In
sub-figures a), b), and c), the frequency responses are displayed while varying
the input RF power. We observe the desired properties : a single narrow peak
with no additional background. The amplitude of the peak is controlled by
the shift δz. Indeed, when δz = ±40µm, we get a positive or negative peak
of the same amplitude of 60 µV , and when δz = 0, the peak has a negligible
amplitude. In sub-figure d), the synaptic behavior is displayed : the output
voltage is linearwith power, and the slope of the dependence, i.e., the synaptic
weight value, is linear with the shift δz.

55



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
frequency of injected RF (GHz)

60

40

20

0

20

40

60
m

ea
su

re
d 

DC
 v

ol
ta

ge
 (µ

V) Z=-30 (µm)
Z=-10 (µm)
Z=10 (µm)
Z=30 (µm)

25 0 25
Z (µm)

50
0

50

V 
(µ

V)

Figure 2.13 – Frequency response of a synapsemade of two spin-diodes with aposition shift and opposite signs, based on an interpolation of the response ofa single device. The position shift is equivalent to a field shift ; with zero shift,the AMR signals cancel each other, and with a non-zero shift, we can obtain apositive or negative narrow peak that is tunable in amplitude. The amplitudeof the peak is linear with the shift.

0 20 40 60 80
Input RF power (mW)

0.06

0.04

0.02

0.00

0.02

0.04

0.06

V
ol

ta
ge

 V
D

C
 (m

V
)

Input frequency = 2.5GHzd)

z=40 m
z=0 m
z=-40 m

0.05

0.00

0.05

V
ol

ta
ge

 V
D

C
 (m

V
)

z = 0 mb)

1 2 3
Input RF frequency (GHz)

0.05

0.00

0.05

V
ol

ta
ge

 V
D

C
 (m

V
)

z = -40 mc)

0.05

0.00

0.05

V
ol

ta
ge

 V
D

C
 (m

V
)

z = 40 ma)

0

50

100

R
F 

po
w

er
 (m

W
)

0

50

100

R
F 

po
w

er
 (m

W
)

0

50

100

R
F 

po
w

er
 (m

W
)

Figure 2.14 – a) Frequency response of a double diode synapse with a shiftof +40 microns while varying the power from 0 to 100 mW. b) Frequency res-ponse of a double diode synapse with a shift of 0 microns while varying thepower from 0 to 100 mW. c) Frequency response of a double diode synapsewith a shift of -40 microns while varying the power from 0 to 100 mW. d) Sy-naptic behavior for these three different synaptic weight values.

56



2.8 . Conclusion

In this section, I demonstrated that the AMR spin-diode voltage can be
considered as a synaptic output, where the input is an RF input power and
the weight is the small frequency detuning between the input and the reso-
nance frequency of the spin-diode device. This synapse has the advantage
of being frequency selective. I built a spin-diode measurement setup with a
unidirectional in-plane field varying along the z axis. I designed and tested
three different types of synapses : one where the resonance frequency is tu-
ned by moving the device along the z axis to change the magnetic field ; one
where the magnetic field is tuned with a current line patterned on top of the
spin-diode device ; and finally, one where two spin-diode devices are in pa-
rallel with opposite signs and a small shift in position, thus in resonance fre-
quency, where the sign and amplitude of the position shift implement the
weight. This last design is the one chosen for combining several diodes, as
this differential geometry cancels unwanted background contributions out-
side of the resonance region while implementing a non-volatile weight in the
lithography. In this configuration, weights cannot be tuned after fabrication ;
however, the well-defined frequency response allows for precise control of
the synaptic output.

57



58



3 - A chain of spin-diodes

3.1 . Summary

The goal of this chapter is to fabricate chains of synapses suited for precise
multiply and accumulate operations. These chains need to feature synapses
that process inputs at different frequencies. The synapses in these chains
need to have a linear response when subjected to multiple inputs. Moreo-
ver, the weights implemented at each input frequency need to be precisely
controlled, taking into account the contribution of the addressed rectifying
synapse but also small contributions from synapses at neighboring frequen-
cies. In this chapter, I present the experimental verification of the linearity of
the previously fabricated synapses. To implement different base frequencies
in each synaptic diode, the synapses are organized into chains placed into
the previously demonstrated field gradient. Each diode is at a different posi-
tion along the field gradient axis, thus it is subjected to a more or less intense
field and has its own resonance frequency. Chains with amixed parallel-series
configuration for synapses were designed, allowing for impedance matching
at 50 Ohms. To obtain the desired weight in a chain, we designed andmeasu-
red a reference diode that is used as a model for all diodes in a chain. From
this individual diode model, given that all diodes are nominally identical, we
can model a full chain. This model is used to find the best spatial configura-
tion of diodes to obtain synapses with the correct resonance frequencies and
synaptic weights using numerical optimization methods. With this design, we
fabricated 3 chains with 4 synapses each. Synapses are spaced at distances
around 100 to 200 micrometers, corresponding to frequency shifts from 0 to
5 GHz, and have internal spatial shifts around±50 µm to implement weights.
The resulting weights after fabrication present a mean error of 5.2%

3.2 . Introduction

In the previous chapter, I demonstrated how a simple permalloy spin-
diode can be used as a synapse processing RF inputs and producing a DC
voltage output. In this chapter, I will demonstrate how we can chain these de-
vices in a controlled way to produce a weighted sum operation on frequency-
multiplexed inputs. First, I will explain the chain design and its constraints in
frequency and geometry, then I will present how to design the correct geo-
metry for a given frequency response. Finally, I will compare this response to
the experimental one.

59



P0
RF

Input

f0
RF

Spin diode

V=V0+V1+V2+V3

+

z position,
Magnetic field
Frequency

P1
RF

P2
RF

P3
RF

f1
RF

f2
RF

f3
RF

Spin diode Spin diode Spin diode

W0 W1 W2 W3

fres(H0) fres(H1) fres(H2) fres(H3)

Figure 3.1 – Representation of the spintronic MAC. Each of the four synapseswith different resonance frequencies in the chain will address only the inputwith a matching frequency, applying its stored weight on the RF power. Theresulting voltages from each synapse are naturally summed whenmeasuringthe voltage across the chain.

3.3 . Spintronic Multiply and Accumulate Operation

The input sent to a neuron in a network is theweighted sumof the outputs
of neurons in the previous layer ; the weighting is done via several synapses.
In the case of spintronic devices, weighting is performed by the frequency res-
ponse of each diode, and summing is achieved by connecting diodes in series
[83][86]. The weighted sum, also called multiply and accumulate operation,
with a chain of four spintronic devices is displayed in figure 3.1. The goal is to
apply weightsw0,w1,w2,w3 on inputs P0, P1, P2, P3 and sum these four terms
wiPi. Each input is encoded as an RF power at a different frequency fi ; theseinputs are then combined and sent to the chain. Our chain is made of four
diodes that will each apply the desired weight on one of the four inputs. The
selection of the input processed by a synapse is done by matching its reso-
nance frequency to the frequency of the input. If the resonance frequency of
a synapse matches the frequency of an input, the synapse will produce a DC
voltage VDC = Piwi. If the resonance frequency isn’t close to the frequency ofthe input, then the rectified voltage becomes negligible, especially in the case
of double diode synapses. Finally, the total voltage across a chain is, due to
Kirchhoff’s voltage law, the sum of all voltages produced by each diode ; thus,
Vchain =

∑
i Piwi.

This multiply and accumulate operation has been demonstrated experi-
mentally with two magnetic tunnel junctions [86]. In this section, we will pro-
pose designs to implement this operation in the most efficient and scalable
way with Permalloy synapses.

3.4 . General Chain Design

60



Chains capable of performing MAC operations require several properties.
They need to exhibit a linear response when subjected to multiple inputs in
order to perform summation. Each synapse in the chain needs to have its
own controlled resonance frequency, and ideally, these frequencies should
be as close as possible to maximize the density of devices in the accessible
frequency range. Finally, the total resistance load of the chains must be kept
at a reasonable value, ideally 50 Ohms, nomatter what the number of devices
is. We will develop these different points in the following subsections.

3.4.1 . Verification of Linearity

A first necessary test is to check that diodes don’t exhibit non-linear ef-
fects that would lead to a shift of their resonance frequency at high input
powers, thus modifying the frequency bandwidth they are supposed to pro-
cess in an undesired way. To test this property, I injected two frequencies, f1and f2, either separately or simultaneously while recording the voltage. When
sending the two tones simultaneously, the total measured voltage should be
equal to the numerical sum of the voltages recorded when sending both fre-
quencies individually in the absence of non-linear effects. This is indeed what
we observe in figure 3.2 ; the voltage map from sending both signals at the
same time a) is identical to the map created by numerically adding the two
frequencies’ voltages b). The difference between the two signals displayed in
c) doesn’t present any pattern, even when the two frequencies are close. The
differences are only due to noise, as visible in plot d).

3.4.2 . From spatial distribution to frequency distribution

As described in section 3.3, in order to perform a MAC operation on fre-
quency multiplexed inputs, we need to have a chain of devices with different
resonance frequencies. Here, we combine the field dependence of the reso-
nance frequency of our Permalloy diodes with the field gradient described in
section 2.6.2 to create chains of devices with varying resonance frequencies.
As illustrated in figure 3.3, we can define the resonance frequency of each
diode by placing it at a particular spatial location along the z axis, the axis that
has a strong gradient in field.

This approach allows us to convenientlymap spatial location to resonance
frequency, enabling us to directly define the resonance frequency of each de-
vice with very high resolution during lithography. Given a spatial resolution
of 2 µm for our UV lithography system, a field gradient of 13.87 µT /µm, and
a typical frequency dependence of 175 MHz/mT, using this approach, we can
define the resonance frequency of each diode with a typical resolution of 4.9
MHz.

61



a)
fre

qu
en

cy
 1

b)

frequency 2

c)

2 3 4
frequency 1 (GHz)

0.5

0.0

0.5

1.0

Vo
lta

ge
 (

V)
frequency 2 = 2.05 GHzd)

exp MAC
numerical MAC
difference in MACs

1

0

1

2

Vo
lta

ge
 (

V)

Figure 3.2 – a) Spin-diode voltage of a chain when sending two input frequen-cies simultaneously. b) Numerically summed spin-diode voltages of a chainwhen sending two input frequencies separately. c) Difference in spin-diodevoltage between the numerically summed voltages and those summed viachaining geometry. d) Spin-diode voltages when numerically summed andsummed via chaining geometry at a fixed second input frequency. The ab-sence of difference between the two voltages proves the linearity of our de-vices, which show no noticeable non-linear frequency mixing effect.

z=0.07mm
fr=1GHz

z=0.5mm
fr=2GHz

z=1mm
fr=3GHz

Gradient field
magnets

y
x

z

magnetic field 
gradient

a) b)

0 1 2

Diodes

Figure 3.3 – Each synapse of a chain needs to be placed at the right position inthe magnetic field to have the correct resonance frequency. a) Synapses arespread along the z axis of magnetic field gradient ranging from low to highfrequencies. b) Array of magnets creating the magnetic field gradient along z.

62



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
frequency of injected RF (GHz)

20

0

20

40

60

m
ea

su
re

d 
DC

 v
ol

ta
ge

 (µ
V) diode0

diode1
diode2
total signal

Figure 3.4 – Interpolated individual synapses signals in frequency and totalchain signal for 3 synapses. The resonance frequencies of synapses can be asclose as 0.5 GHz adding only small predictable overlap contributions.

3.4.3 . Minimum frequency spacing

When building a chain, we need to ensure that we exploit the available fre-
quency range optimally. Since the synapses don’t exhibit non-linear effects,
the main constraint in frequency spacing is the overlap in frequency of the
synaptic peaks. In figure 3.4, the individual responses of three synapses and
the total response for a chain of these three synapses are represented. We
can see that the total chain signal at 2.5 GHz is mainly caused by diode 0,
whose frequency of resonance is 2.5 GHz. However, neighboring diodes 1 and
2 also contribute by small amounts to the total chain signal at this frequency.
Ideally, this overlap could be taken into account during the final design phase
and would not be an issue ; however, this requires a very precise knowledge
of the frequency response of a synapse, which can be a challenge due to para-
sitic contributions to the frequency response of a chain caused, for example,
by the inductance of wire bonds. We minimize neighboring synapses’ contri-
butions by using the double diode synapse design, which presents a peaked
response in frequency with low or no background. Additionally, we maximize
the diode spacing within the available bandwidth. In our case, the custom
multi-channel RF source that will be presented in the next chapter covers the
bandwidth between 1.2 GHz and 3.3 GHz. As can be observed in figure 3.4, a
spacing of 0.5 GHz between diodes allows us to use multiple synapses and
reduces neighboring synapses’ contributions. This frequency spacing can be
converted to a position spacing of roughly 200µm.

3.4.4 . Impedance matching to 50 ohm

63



Different connection designs can be implemented to create a functioning
chain with our spintronic synapses. The standard geometry for a chain is the
one presented in section 3.3, where synapses are connected in series. In this
case, the voltages fromall diodes addup; however, the resistance of all diodes
also adds up. The total resistance then scaleswithN , the number of synapses.
This is an issue for RF power transmission ; indeed, an impedance mismatch
with the input powerwill cause a loss of transmitted power and a non-uniform
transmission of the power across the frequency profile, which complicates
the prediction of the chain response. We thus need to match the chain to
the 50 Ohm source impedance to maximize the output voltage of chains and
ensure the same power is transmitted to each synapse independently of its
resonance frequency. The best configuration would be to have a load of 50
Ohms no matter the number of diodes, without having to change the shape
or material of the diodes.

Another possible architecture emerges when connecting synapses in pa-
rallel. Indeed, we demonstrated in section 2.7.3 that synapses made of two
diodes in parallel will produce a voltage proportional to the individual res-
ponses of the diodes via spin-diode currents summation. This configuration
will lead to a resistance scaling in 1

N , which also results in low transmitted
power and a non-uniform frequency profile of this transmission.

To maintain 50 Ohms regardless of the number of diodes, we have de-
veloped a hybrid solution in which synapses are partitioned intoM blocks in
series of P synapses in parallel, thus obtaining a total resistance :

R = M × Rsynapse

P
(3.1)

In the case whereM = P =
√
N if N is equal to an integer squared then

the total resistance is R = Rsynapse which can be designed to be 50 Ohms.
The different possible designs are summarised in figure 3.5. In the paral-

lel configuration, all the diodes are connected both to the ground plane and
the central line, diodes on each side of the central line have opposite signs
and form the pairs needed for each synapse. In the series configuration a sy-
napse block is composed of two diodes in parallel and these synapse blocks
are then connected in series by linking the central line to the next ground
plane. Similarly the mixed parallel-series design presents blocks of parallel
diodes that are connected in series. Figure 3.6 displays an optical image of
the mixed configuration design after fabrication.

The aspect ratio to obtain 50 ohm synapses can be extracted from a diode
with a length of 20µm and a width of 80µm. The measured resistance is R =

12.5 Ohms. Thus, a diode with an aspect ratio 8 times larger will have a re-
sistance around 100 Ohms. I chose to have diodes with a length of 10µm and

64



Figure 3.5 – Different chaining configurations for N devices : a) chaining in pa-rallel, where the total resistance scales as 1
N ; b) chaining in series, where thetotal resistance scales as N ; c) alternate chaining, where the total resistancedoesn’t depend on the number of devices.

pair of diodesfull chain

50 microns
50 microns

Figure 3.6 – Optical image of chain with mixed configuration.

65



a width of 5µm. In this case, I obtained pairs with resistances varying from
45 to 65 Ohms. This discrepancy in resistance results from contact resistance
between the gold connectors and the Permalloy diodes and variations in the
actual width of the diodes after fabrication. Thewidth variation arises because
we are working at the resolution limit of the UV lithography equipment.

3.5 . Obtaining Precise Weights in a Chain

Achieving precise weight control in chains of spintronic synapses is a chal-
lenge. Several undesired experimental effects should be taken into account.
The first issue is that the voltage versus frequency profiles of the diodes in the
chain can vary from device to device for two reasons : transmitted power and
material discrepancies. The transmitted power varies when the contact resis-
tance is different for diodes in a chain. Additionally, diodes present some dis-
crepancy in shape due to lithography, which can lead to a slightly different re-
sonance frequency versus field profile. The total transmitted power in a chain
can also be affected by the wire bonding, which presents non-negligible in-
ductance.Moreover, themagnetic field exhibits some unwanted non-uniform
residual fields that can slightly perturb the response of the diodes.

As we will see in the next sections, to tackle these effects as effectively as
possible, we havemeasured three different diodes and averaged their signals
to create a reference diode model. The reference diode model is then em-
ployed to predict the chain geometries that will produce the desired weights
and to determine how the input power should be rescaled to account for the
intrinsic decrease in rectified voltage as a function of the diodes’ resonance
frequencies previously discussed in figure 2.8 a).

3.5.1 . Building a reference diode
To implement chains capable of performing MAC operations, it is essen-

tial to precisely understand how an individual diode with any resonance fre-
quency will respond to an input at any given frequency. Therefore, a robust
and accurate model for a single diode is required. I decided to base this mo-
del on an interpolation of experimental data rather than on the AMR spin-
diode voltage theory model in order to take into account all additional effects
affecting the experimental signal. The main effect that is included in the in-
terpolation and not in the theory is the variation of the transmitted power in
the chain with frequency. This variation is caused by the attenuation of the RF
switches, the attenuation from the sample holder RF waveguides, and from
the wire bonding, which presents high impedance, thus also impacting the
transmission of power with frequency.

66



Figure 3.7 – Voltage versus frequency of injected RF power of three identicalreference Permalloy spin-diodes of 5x10 microns displayed in c), for magneticfields of 70Oe a) and 210Oe b). The average of these three devices is displayedin red and will serve as the reference signal.

In order to obtain accurate and representative data of the spin-diode vol-
tage, I measured three different diodes and averaged their signals. The spin-
diode voltage is recorded by varying the input frequency from 1 to 5 GHz and
the external field from -250 Oe to +250 Oe; this scan is done by changing the
z position of the devices along the field gradient direction (z). The geometry
of the reference devices that I used is displayed in figure 3.7 c). Each device
is made of two spin diodes of 5x10 µm in parallel, with the same orientation
with respect to the field and hence the same voltage sign. I chose this parti-
cular configuration to have a nominal resistance of 50 Ohms which mitigates
discrepancies in the transferred power versus frequency that arise from im-
pedance mismatch. To obtain the signal of a single diode voltage from such
parallel pairs, we need to divide the measured voltage by 2. This is what we
plot in figure 3.7 a) and b) for three different diode devices and for different
fields. The averaged signal displayed in red is the one Iwill use as the reference
spin-diode voltage to interpolate versus input frequency and z position. The
dependence of the resonance frequency versus z position is also interpolated
via this averaged data.

3.5.2 . Prediction of the chain geometry
To obtain a chain that performs a desiredweighted sumonmultiplexed in-

puts, we need to ensure that the weights at each input frequency are control-
led and match the required values. To demonstrate this, I chose a chain of
four synapses addressing four inputs at frequencies 1.75, 2.25, 2.75, and 3.25
GHz. The first requirement for the chain design is that the four synapses that

67



it contains have their respective resonance frequencies also centered at 1.75,
2.25, 2.75, and 3.25 GHz. This is done by finding the corresponding z positions
for each synapse via the reference diode calibration presented above. From
these positions, we know the spacing along z between pairs of diodes.

Now that the synapses are placed along z and the frequency profile dis-
plays peaks at the input frequencies, we need to tune each of these peaks to
have an amplitude that matches the desired weight. The amplitude of each
peak is controlled by the shift in z position between the positive and negative
diodes of the synapse corresponding to the peak. To predict the z shift, a mo-
del representing a double diode synapse is made from the interpolation data
of the reference diode :

Vsynapse(f, z) = 0.5× (Vref (f, z −
δz

2
) + Vref (f, z +

δz

2
)) (3.2)

For simplicity of usage, we decide that a given weight should be encoded
by the exact samepeak amplitude of rectified voltage, whatever the frequency
at which the synapse operates. However, as displayed in figure 3.8 a), the am-
plitude of the rectified voltage peaks decreases strongly with frequency. This
implies that to keep a constant peak height, at high frequency, the δz para-
meter should be much larger than at low frequency. This leads to strong and
even unrealistic constraints in diode placement along axis z. If δz’s are too
big, diodes from different pairs can overlap in space, causing the design to
fail. To solve this issue, the injected power is rescaled depending on the in-
put frequency to maintain a constant amplitude of the voltage peak across
frequency for a constant δz of 70 µm. The power is rescaled linearly as the
decrease of the voltage amplitude can be fitted linearly ; see figure 3.8. The
injected power is expressed as :

P = P0 ×
−40× 3.1(GHz) + 150

−40× f(GHz) + 150
(3.3)

Once a set of target weights has been defined, the set of corresponding
δzi parameters is optimized iteratively. Indeed, we want to have the correct
weight for each input frequency. This means that we need to have the cor-
responding desired peak amplitude at each frequency. For this we want to
minimize the difference between the terms Vchain(fi, zi, δzi) and Vw=1 × wifor all frequencies fi.In order to exploit the full range of experimentally accessible voltages for
encoding the weights, I have set a constraint for the optimization procedure
that the maximum rectified voltage in each chain should be equal to Vrange =
25µV . This is fixed across all chains even if the largest weight is different in

68



1 2 3
Injected frequency (GHz)

20

0

20

40

60

80
Vo

lta
ge

 in
 

 V

a)

1 2 3
Resonance frequency (GHz)

20

40

60

80

100

Vo
lta

ge
 in

 
 V

b)linear fit

1.75

2.00

2.25

2.50

2.75

3.00

Re
so

na
nc

e 
fre

qu
en

cy
 (G

Hz
)

Figure 3.8 – a) Interpolated profile of a synaptic response versus the frequencyof RF input while varying the frequency of resonance ; the maximum voltageis recorded versus frequency of resonance in b). A linear fit is performed toapproximate the decrease in amplitude of the spin-diode voltage with fre-quency.

each. Therefore, Vw=1, the value of the output rectified voltage for a weight
equal to 1, is different in each chain.

During the optimization process, it is important to take into account the
overlap between neighbouring synapses in frequency. δzi is thus optimized to
minimize the difference between the total voltage at frequency fi, which canbe formulated as ( 1

N

∑
j Vsynapse(fi, zj) − Vw=1 × wi)

2. The factor 1
N comes

from the distribution of the total injected power between the N synapses.
This optimization step, which accounts for neighbouring contributions, is re-
peated 4 times as all δzi’s are updated at each step, modifying the overlaps.
The pseudo-code of the optimization procedure is displayed in algorithm 1.

Algorithm 1 Prediction of chain geometry
Require: w0, w1, w2, w3

for k ← 1 to 4 do
for i← 1 to N do

for j ← 1 to N do
Vij ← Vsynapse(fi, zj, δzj)× P (fi)

N

end for
Vneighbours ←

∑
j ̸=i Vij

δzi ← minimise((Vsynapse(fi, zi, δzi) + Vneighbours − Vw=1 ×wi)
2)

end for
end for

69



3.6 . Experimental demonstration of predefined weights

To test the validity of my chain model, I designed three chains, each with
different target weights displayed in table 3.1. These three chains have four
synapses each processing four inputs at frequencies 1.75, 2.25, 2.75, and 3.25
GHz. According to our interpolation of the response of a single diode versus
its position along the z axis, to obtain synapses with frequency peaks cente-
red on these four frequencies, we need to have a spacing of 175 µm, 216 µm,
and 245 µm between successive synapses. To obtain the desired weights, our
optimization procedure returns a list of four z shifts δz for each chain ; the
obtained values are summarised in table 3.1. I then fabricated the chains with
these predicted δz. After fabrication, I manually optimized the position of the
chains along the magnet’s z axis to obtain the correct frequency profile.

I have then measured the response of the total rectified voltage in each
fabricated chain as a function of frequency. Themaximummeasured value of
each chain Vchain did not exactly correspond to the target range Vrange = 25µVthat was set during the optimization. I attribute these differences to the wire
bonding length that is different in each chain, and different also from themea-
surements of the reference diode. Indeed, by rescaling the measurements by
1.75, 1, and 1.5, we can see in figure 3.10 that the experimental frequency pro-
files in blue show a very good matching with the ideal one in red. In order to
obtain the experimental weights from these measurements, I then use the
normalized values for Vchain, presented in the plots of 3.10, that I call V norm

chain .Each weight wi is obtained from the value of V norm
chain at frequency fi, at themaximum target weight in each chain wmax

i : wi = wmax
i × V norm

chain /25µV =

V norm
chain /Vmax. Experimental weights are also summarised in table 3.1, and al-

though close to their expected values, they still present differences.
There are several sources of discrepancy. The first one is a misposition of

the sample containing the chains. Changing the position can modify the field
applied to the chains ; theHz component presents a gradient that is quite uni-
form in the y position but can vary along x, the direction perpendicular to the
sample. A change in the strength of theHz gradient can affect the spacing infrequency of the fabricated diodes and thus modify the frequency profile. Si-
milarly, an angle in the sample plane can affect the applied field on the diodes.
Additional residual components of the field Hx and Hy , while small, present
some non-uniformity in space, and a small change of position of the sample
compared to reference diodes can translate into the change of these additio-
nal components, once again perturbing the frequency response.

Another cause is fabrication variability, which causes thewidth and contact
resistance to vary slightly between diodes. As a result, the currents flowing in
diodes of a synaptic pair can be different, leading to a different voltage ampli-
tude generated by the diodes. This variation in shape and contact resistance
is visible in the total resistance of the chains, which varies between 50.9 to

70



Figure 3.9 – Optical image of the three fabricated four synapses chains

53.2 Ohms. Fabrication can also, due to its imprecision, produce slightly in-
correct δz values ; however, this effect is, in proportion, much smaller than
width imprecision. Indeed, the width is around 5 to 20 times smaller than δz

and exhibits a similar lithography imprecision.
Finally, the wire bonding is another cause of imperfect frequency pro-

file. Wire bonds add inductance that breaks the perfect impedance matching.
Since the reference diode model has been created with bonded diodes, this
effect should be taken into account ; however, two bondings can have dif-
ferent inductance depending on the wire lengths and curvatures. This dis-
crepancy in bonding can distort the frequency profile of power transmission
and thus the spin-diode frequency profile.

Althoughnot perfect, the experimental profiles obtaineddemonstrate good
enough accuracy to attempt MAC operation, especially in the case of neural
networks that are designed to be intrinsically resilient to noise, as will be de-
monstrated in the next section.

71



Table 3.1 – Theoretical and experimental weights for 3 different chainsof four synapses
w0 w1 w2 w3chain 0 R=51.5 Ohmtheoretical weights -0.1322 -0.3949 -0.2745 0.3621experimental weights -0.2684 -0.4309 -0.2949 0.3289

∆w(in % of w=1) 13.62 3.60 2.04 3.32
δz(µm) -43 -75 -47 51chain 1 R=53.2 Ohmtheoretical weights -0.2338 0.2530 -0.2336 0.2327experimental weights -0.2527 0.2153 -0.141 0.1265

∆w(in % of w=1) 1.89 3.77 9.26 10.62
δz(µm) -62 64 -60 62chain 2 R=50.9 Ohmtheoretical weights -0.2177 -0.1121 0.2409 0.1869experimental weights -0.2835 -0.1432 0.2204 0.1573

∆w(in % of w=1) 6.58 3.11 2.05 2.96
δz(µm) -63 -11 82 54

1 2 3
frequency GHz

20

0

20

vo
lta

ge
 

V

a) chain 0

1 2 3
frequency GHz

20

0

20

vo
lta

ge
 

V

b) chain 1

1 2 3
frequency GHz

20

0

20

vo
lta

ge
 

V

c) chain 2

Figure 3.10 – Predicted profile from reference diode interpolation is shown inred and the rescaled experimental measured profile for fabricated samplesis shown in blue. a, b, and c correspond to three different sets of weights.Rescaling factors are 1.75, 1, and 1.5.

72



3.7 . Conclusion

In this chapter, we demonstrated that spintronic synapses made by shif-
ting two opposing diodes can be connected in a chain to implement a mul-
tiply and accumulate operation. These chains were designed with blocks of
synapses wired in parallel ; these blocks, connected in series, allow the total
resistance of the chain to remain close to 50 Ohms. This approach presents
two advantages : first, through impedancematching to the source and cables,
it maximizes the transferred RF power ; the other advantage is that the to-
tal resistance of the chain is identical to the resistance of the calibration de-
vice, ensuring a similar frequency response. A calibration device made of two
diodes adding up in parallel has been designed, and its spin diode voltage was
measuredwhile varying the z position and input frequency. This reference vol-
tage enables us to predict accurately the frequency response of a chain made
of several synapses and thus to infer the δz shifts that each synapse needs
to implement the correct weight. I tested this optimization procedure by fa-
bricating three chains with predicted δz ; the experimental profiles match the
ideal ones within a margin of 5.2% of the w = 1 references.

In the next chapter, we will explore the implementation of a hardware
convolutional layer with such chains of spintronic synapses.

73



74



4 - RF convolutionnal network on FashionM-
NIST

4.1 . Summary

The goal of this chapter is to demonstrate a hybrid hardware-software
convolutional neural network comprising a hardware, spintronic convolutio-
nal layer, and to test this network on a complex task : FashionMNIST [82].
The network is made up of a convolutional layer with three 2x2 kernels, ReLU
neurons, and a final fully connected layer. This network is first trained pu-
rely in software. This training includes a random noise applied at the output
of the convolutional layer to simulate experimental noise ; a procedure that
helps the network to become noise-resilient. Once the network is trained, the
optimal weights for the convolutional layer are extracted, and three chains
of four spintronic synapses are fabricated to implement the twelve weights
from the three kernels. The convolutional layer requires the input images to
be sent as RF inputs. Each image is decomposed into kernel-size blocks that
are converted to RF inputs and sent to the three chains to produce an out-
put pixel each. This sliding-kernel operation is performed sequentially until
the full input image has been completely screened. To generate the required
frequency-multiplexed RF inputs, we fabricated a custom multi-channel RF
source. This source is based on crystal oscillators that output an RF signal tu-
nable in frequency ; these oscillators are combined with amplifiers to control
the output power in each channel. This source requires precise calibration
to ensure that the delivered inputs are correct. The position of the sample
containing the spintronic chains is optimized and corrected through the eva-
luation procedure to compensate for its position drift. We obtained very sa-
tisfactory results ; on the first 100 images of the test dataset, the experimen-
tal accuracy reaches 88%, comparable to the software with noise accuracy of
88.4% and slightly lower than the software without noise accuracy of 90%.

4.2 . Introduction

In this chapter, I present a hybrid software-hardware convolutional net-
work. This network is designed to perform image classification on the Fa-
shionMNIST dataset [82]. Since our synaptic weights cannot be tuned after
fabrication, the network is first trained in pure software. To obtain a network
resilient to experimental noise, random Gaussian noise is injected after the
convolutional layer ; this approach is called noise-aware training. The weights
obtained in software are then used to predict the geometry of three spin-

75



Table 4.1 – Label to clothe type
Label Clothing type0 T-shirt/top1 Trouser2 Pullover3 Dress4 Coat5 Sandal6 Shirt7 Sneaker8 Bag9 Ankle boot

tronic chains that will optimally perform the convolution operation. After the
fabrication of these chains, the inference is performed using experimental
measurements.

In this chapter, I will introduce the task and the chosen network archi-
tecture to solve it, followed by a discussion on how the convolutional part of
this architecture can be implemented in hardware. I detail the realization of
a custom multi-channel RF source made with commercial elements and its
characterization. The noise-aware training procedure will be described and
compared to the measured experimental noise. Finally, I show that the expe-
rimental network can perform as well as a noisy software network, reaching
an accuracy of 88%.

4.3 . Network Architecture

4.3.1 . Task, model and training
Our goal is to solve an image recognition task with an hybrid hardware-

software network. The chosen task is to label images of ten types of clothing
from the FashionMNIST dataset [82] ; the different types of clothing and as-
sociated labels are displayed in table 4.1. These images are in gray scale and
have a format of 28×28 pixels. The training dataset consists of 60,000 images
and the testing dataset consists of 10,000 images.

The neural network chosen to solve this task consists of a convolutional
layer with three 2×2 filters, including padding. Padding in convolutions refers
to the addition of extra pixels, usually zeros, around the input image’s border
to control the spatial dimensions of the output feature map. The kernel is slid

76



C
on

vo
lu

ti
on

na
l l

ay
er

3 
ch

an
ne

ls
2x

2 
ke

rn
el

s 
st

ri
de

 2

M
ax

po
ol

in
g 

la
ye

r

R
eL

U
 

A
ct

iv
at

io
n 

fu
nc

tio
n

F
ul

ly
 c

on
ne

ct
ed

 la
ye

r

S
of

tM
ax

 f
un

ct
io

n

Figure 4.1 – Architecture of the hybrid hardware-software convolutional net-work : The network is made up of a hardware convolutional layer with three2x2 kernels and a stride of 1, a software ReLU neuron layer, and a softwarefully connected layer. The biases of the convolutional layer are also purelysoftware.

by a stride of 1 to produce each output pixel. Then, a max pooling layer is ap-
plied with a kernel size and stride of 2. This operation looks at the pixels on
which its kernel is applied and keeps only the highest value ; in our case, this
operation divides the image size by two. These outputs are fed to a layer of
ReLU neurons and then passed through a fully connected layer. Finally, a soft-
max function is applied to generate the probabilities of being in each of the
ten classes.

The network is trained purely in software for 10 epochs with a learning
rate of 0.01 and using the Cross Entropy Loss. The network achieves 87.63%
accuracy on the test dataset. Details about the training procedure, and the
introduction of noise in the software model to account for device imperfec-
tions are given in Section 4.6.1 : Noise aware training. Once the training is
finished in software, we implement in hardware the learned weights of the
first convolutional layer. These weights are the coefficients of the kernels of
the convolutional layer. This represents 3 times 2 × 2 coefficients, so a total
of 12 parameters to be implemented in hardware. All the operations perfor-
med after the convolutional layer are implemented in software. This hybrid
hardware-software architecture is represented in Figure 4.1.

4.3.2 . Spintronic hardware convolutional layer
The convolutional layer of the network is made up of three different filters

of size 2x2. This layer produces three output images, one for each filter, from
the input image ; each output image has the same size as the input image
since the stride of the kernel is one. Each output image can be expressed as
the result of Equation 4.1, where the input image is split into a collection of
overlapping regions of the size of the kernels, 2x2 pixels, k is the filter index,
and g and h are the pixel height andwidth indices. As can be seen, Equation 4.1
corresponds to a weighted sumwith weightwk

ij applied to all 2x2 pixel regionsof the input image. This means that the convolutional layer operation can be
77



implementedwith the four-synapse chains presented in the previous chapter.

V k
out,gh =

2∑
i=0

2∑
j=0

wk
ijPg+i,h+j (4.1)

The spintronic implementation of this convolution operation is displayed
in figure 4.3. Each 2x2 region is flattened into a 4 pixel vector. Each pixel of
this vector is converted to an RF signal, which frequency encodes the pixel lo-
cation. For instance the pixel in position (0,0) under the kernel is transformed
to an RF signal at frequency f0 = 1.75GHz in order to have the weight w0,0applied by the chain . This link between kernel weights and frequency address
is displayed in figure 4.2. The power of the RF signal encodes the pixel value.
The pixel values range from 0 to 255 ; a pixel value of 0 will be converted to an
input power of 0 mW, a pixel value of 255 will be converted to the maximum
power at the input frequency :

Pmax = 40mW × −40× 3.1(GHz) + 150

−40× finput(GHz) + 150
(4.2)

Similar to the one defined in Eq. 3.3 of the previous chapter, this scaling
is implemented to compensate for the difference in the response of the spin-
diodes at the four input frequencies. Since, as we have seen, diodes have a
lower voltage response at high frequencies, more power needs to be injec-
ted to obtain equivalent values. The empirical scaling is extracted from Figure
3.8. The four RF inputs at the four input frequencies are then combined with
a power combiner. This frequency-multiplexed signal is then sent to three
different chains of four synapses, each implementing a given convolutional
filter. These three chains apply different weights to the same four inputs. The
total voltages of these chains need to be converted back from voltage values
to pixel values to form the three output images. This is done first by rescaling
the measured voltage values in each chain by normalizing voltages corres-
ponding to a weight equal to 1 : Vmax =

Vrange

wmax
i

= 63.3, 98.8, 103.8, µV in order
to match the range of weights that they each encode (see section 3.6 for the
detailed procedure), then by multiplying this value by 255. Ideally, the three
chains need to be placed at the same z-position in the field gradient to ensure
the same list of resonance frequencies in the three chains. In practice, due to
space constraints on the sample design, chain 2 is not aligned with chains 0
and 1, as can be seen in the optical image in Figure 4.3.

To produce the full output images, the input image needs to be completely
scanned by the filters. Thus, after producing an output pixel with each filter,
the kernels are slid with a stride of 1 to process the next 2x2 portion of the
input image.

78



kernel 0 kernel 1 kernel 2a)

b) chain 0 chain 1 chain 2

chain 0 response chain 1 response chain 2 responsec)
z axis

Figure 4.2 – a) Obtained kernels after training, kernel 0 corresponds to a dia-gonal lines filter. Kernel 1 is close to a horizontal lines filter and kernel 2 to avertical lines filter. b) Geometry of the chains implementing such kernels, sy-napses are highlighted in colors matching the kernel weight they implement.c) Spin diode voltage response of each chain, expected one in red and expe-rimental one in blue. The colored vertical lines display the input frequencyaddress of each weights implemented in the chains.

79



w=δf 

Diode at f0 Diode at f1 Diode at f2

P0

P1

P2

P3

w

*

Input image

Chain 0

Chain 1

Chain 2

w=δf w=δf P0
P1

P2
P3

V=V0+V1+V2+V3

f0

f1

f2

f3

Diode at f3

w=δf 

filter 0
0
0 w0

2

w0
1 w0

3

w0
0

w=δf 

Diode at f0 Diode at f1 Diode at f2

w

*
w=δf w=δf P0

P1
P2
P3

V=V0+V1+V2+V3

Diode at f3

w=δf 

filter 1
1
0 w1

2

w1
1 w1

3

w0

+

w=δf 

Diode at f0 Diode at f1 Diode at f2

w

*
w=δf w=δf P0

P1
P2
P3

V=V0+V1+V2+V3

Diode at f3

w=δf 

filter 2
2
0 w2

2

w2
1 w2

3

w0

z position,
Magnetic field,
Frequency

Chain 2

Chain 1

Chain 0

Figure 4.3 – Hardware architecture of the hardware convolutional layer madeup of three chains, each one playing the role of a convolutional filter.

4.4 . Experimental setup

The experimental setup is composed of three principal parts : the pro-
duction of RF inputs, the voltage measurement setup, and the control of the
magnetic field applied to the sample.

The inputs are generated with a custom RF source that is described in
Section 4.5. This source delivers multiplexed inputs controlled in power and
frequency. Two RF switches are placed after this source. The first one allows
choosing where the RF input comes from :my custommultichannel RF source
or a standard high-precision mono-channel RF source. This last source is the
one with which I performed previous calibrations and measurements, as it
has well-controlled properties and very low noise in power and frequency.
The second switch can redirect the input signal to four different ports. Three of
these ports direct the signal to the three chains of the convolutional layer. The
fourth port directs the signal to a power spectrum analyzer ; this instrument
is used to calibrate the custom RF source in power and frequency.

The voltage measurement section is composed of a multi-channel nano-
voltmeter and a bias T. Whenmeasuring the voltage response of a spin-diode,
the AC component of the input RF needs to be discarded to only measure the
DC part. To do so, samples are connected to the inputs of the nanovoltmeter
via a bias T. The high-inductance branch is connected to the nanovoltmeter
to collect only DC components, and the high-capacitance branch is connec-
ted to the RF source to pass only AC input signals. The nanovoltmeter can be
connected to three samples at the same time and can switch between them.

Finally, the sample is mounted on a sample holder that can be moved
in the two horizontal directions, x and y, with controllable Thorlabs motors.

80



This allows precise placement of the sample between the array of 4 magnets
creating a field gradient. This array of 4 magnets can be moved vertically to
complete the full 3D placement of the sample in the magnetic field. Additio-
nally, this array ofmagnets can be rotated in a small range of±10◦ around the
vertical axis and can be fully rotated around the y-axis to compensate for any
misalignment of the sample with the field direction. All these components are
controlled directly with Python.

4.5 . Multi-input source

4.5.1 . Description
As described in the previous section, the convolutional hardware layer

operates on four RF inputswith different frequencies. However,multi-frequency
RF sources are very specialized and expensive equipment. Given that our ap-
plication does not have the stringent constraints on frequency and phase
stability associated with other RF applications, we decided to build a custom
multi-channel RF source using basic commercial elements offering lower per-
formance at a price range of less than 1k€, compared to high-end RF equip-
ment such as Arbitrary Waveform Generators, which can quickly approach
100k€ in price.

The source design and implementation are displayed in Figure 4.4. This
source is made of 4 individual blocks that can produce an input controlled in
frequency and power. Each block is made with the same structure : a voltage-
controlled oscillator from the Crystek company,model CRBV55BE, highlighted
in red in Figure 4.4 a), is connected to a low-noise RF amplifier, represented
in orange. This electronic oscillator outputs an RF signal whose frequency can
be tuned over a broad range, from 1.53 to 2.9 GHz, by changing a control vol-
tage from 0 to 20V. The emitted power can then be tuned in amplitude by
adjusting the voltage supplying the amplifier ; reducing the supply voltage lo-
wers the effective compression point and gain. If the amplifier receives no
voltage as input, it doesn’t let the RF signal pass, and by gradually increasing
the amplifier supply voltage, the amount of transmitted power increases. The
voltage supplied to the amplifier and the crystal oscillators is controlled via
computerized voltage sources.

The outputs of these four individual blocks, controlled in power and fre-
quency, are then combined via a power combiner. The resulting mixed signal
is then re-amplified as the power combiner presents a strong attenuation of
10 dB. We want to deliver the maximum power to the chains to maximize
the spin-diode voltage compared to the measurement noise. The limitation
to the input power that we can send at a given frequency is linked to the com-
pression point of the final amplifier. Above a given value of input power, the

81



VCO Amplifier

Po
w

er
 c

om
b
in

er

S
w

it
ch

Amplifier
VCO Amplifier

VCO Amplifier

VCO Amplifier

Power spectrum
analyser

Chain 0
Chain 1
Chain 2

P0,f0

P1,f1

P2,f2

P3,f3

S
w

it
ch

Single 
channel RF

source

a) b)

Figure 4.4 – The multi-channel source is made up of four basic units, eachcomprising a voltage-controlled oscillator that has a tunable GHz frequencyand an RF amplifier with a voltage-controlled gain. The powers from theseunits are combined and re-amplified before being distributed to the chainsor a power spectrum analyzer.

gain of the amplifier starts to decrease. This is an issue in the case of a multi-
frequency input as the compression point depends on the total input power
comprising all frequencies but also depends on the frequencies present in
the input. Thus, when sending several powers at different frequencies with a
total near the global compression point, the ratio between each power will be
modified. Consequently, to avoid this kind of non-linear mixing effect of po-
wers, we need to stay well under the lowest compression point for our four
input frequencies. The latter being 100mW, I chose amaximum power of 40.0
mW at 3.25 GHz and thus 20.0 mW, 13.3 mW, and 10.0 mW for the three other
frequencies. This is a good trade-off because, even when all inputs are at their
maximum value, the total injected power is 83.3 mW, which is below the com-
pression point. I added attenuators at the output of each RF channel in order
tomatch as well as possible thismaximumneeded power and the experimen-
tal maximum RF power delivered by the amplifiers. This attenuation is 0 dB
for a frequency of 3.25 GHz, 6 dB for 2.75 GHz, 10 dB for 2.25 GHz, and 13 dB
for 1.75 GHz.

4.5.2 . Frequency and power calibration

In order to have a well controlled and precise input in frequency and po-
wer from my multi channel source a calibration step is needed. We scanned
the output power and frequency of the four channels from the custom source
while varying the voltages controlling frequency of the crystal oscillator and
controlling the gain of the amplifier. The results of this calibration are dis-
played in figure 4.5 a) and b). In graph a) the dashed lines indicate the functio-
ning points of the four crystal oscillators. Oscillators 0, 1 and 2 are the same
model number : CRBV55BE and operate at 1.75, 2.25, 2.75GHz respectively,

82



0 5 10 15 20
Oscillator voltage (V)

1

2

3
Fr

eq
ue

nc
y 

(G
Hz

)

a

VCO 0
VCO 1
VCO 2
VCO 3

2 4 6
Amplifier voltage (V)

0

10

20

30

40

Ou
tp

ut
 p

ow
er

 (m
W

)

PmaxPmax
Pmax

Pmax

b

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (GHz)

4

5

Sw
itc

h 
at

te
nu

at
io

n 
(d

B)

c

Figure 4.5 – a) Frequency of output RF power versus tuning voltage for fourdifferent oscillators, the chosen functioning points are represented by the in-tersection of dashed lines. b) Output RF power versus amplifier voltage for thefour oscillators at their functioning points. The maximum power required ateach frequency is represented in dashed lines, attenuators have been addedafter amplifiers to use the broadest range of voltage possible. c) Attenuationversus frequency profile for the RF switches.

while a different model : CRBV55CW had to be used for oscillator number 3
to reach a higher frequency : 3.25GHz. The required tuning voltages to reach
the correct frequencies span between 2.5 to 17.5V.

Figure b) presents the curves of output power versus amplifier voltage for
all four channels after adding the necessary attenuators. The maximum nee-
dedoutput power for each input frequency,Pmax = 40,mW× −40×3.1,(GHz)+150

−40×finput,(GHz)+150 ,is represented for each oscillator with a dashed line. We observe that the out-
put power is quite linear with amplifier voltage in a range of 1.7 to 5V. There is
a threshold value to output RF power ; the corresponding voltage is 1.7V, and
this threshold is accompanied by a jump from0mWof output power to a non-
zero value between 1 to 5 mW. Additionally, above a voltage of 5V, the output
power doesn’t increase anymore. The attenuators that fix the maximum out-
put power to the desired values also reduce the height of the RF power jump,
as the low threshold voltage is reduced, allowing for a more accurate range
of output powers. Moreover, the range of voltages to use is larger, thus im-
proving the resolution in mW/V.

83



The output RF powers are measured after the RF switches with a power
spectrum analyzer. However, the single-channel source has been used to ca-
librate the spin diodes ; the considered power was the one delivered by the
source, thus before the RF switches. The solution to convert the powers mea-
sured after the switches is to take into account the attenuation profile by
frequency of the switches. To measure this attenuation, an RF signal with
known power is sent through the switch from a precise RF source ; the si-
gnal at the output of the switch is then measured with a power spectrum
analyzer. This measurement is repeated, covering the full input frequency
range of 1.75 to 3.25 GHz. This profile is displayed in Figure 4.5 c). From this
data, we can calculate the power before the switches from the values after :
Pbefore(dBm) = Pafter(dBm) × 10

A(f)(dB)
10 , with A being the attenuation from

the switches. The powers displayed in graph b) are these corrected powers
before the switches.

4.6 . Weight prediction for a Noise resilient Network

Our neural network cannot be trained in hardware directly since the sy-
naptic weights are written via lithography. Consequently, the network is first
trained purely in software to then extract the synaptic weights of the convo-
lutional layer and implement them on a sample. At this point of development,
we didn’t know exactly what the noise from the experimental setup would be,
as our custom RF source was not fully built, but we knew that we needed to
anticipate it. Thus, the software network is trained with noise-aware training.
This technique consists of adding random noise during the training to obtain
weights resilient to noise. After fabrication of the final sample, we characteri-
zed the noise on the RF inputs from our source and on the voltage output to
ensure that our noise choice was reasonable. These results are displayed in
the next section.

4.6.1 . Noise aware training

In order to build a network resilient to noise, we can use a technique cal-
led noise-aware training. This consists of injecting a given noise in the forward
pass of the training. A new randomvalue of noise is generated at each forward
pass. Training a network with this imposed constraint forces the network to
find weights resilient to the chosen noise type. In this study, we chose to add
Gaussian noise to the output of the convolutional layer ; this Gaussian noise
is proportional to this output, see Equation 4.3. The noise level is controlled
by the parameter nl. In this training procedure, I chose to set it to 0.5, corres-ponding to a noise level of 50% of the convolutional layer output.

84



100 0 100
Ideal software MAC

100

50

0

50

100

No
isy

 so
ftw

ar
e 

M
AC

a
0 100

Ideal software MAC

50

25

0

25

50

Id
ea

l-N
oi

sy
 M

AC
 d

iff
er

en
ce

b
50 0 50

Ideal-Noisy MAC difference
0

50

100

150

200

co
un

t

c

Figure 4.6 – a) Noisy versus perfect multiply and accumulate in the case of thechosen noise for noise-aware training, data is displayed for a single image anda single filter. b) MAC error : noisy minus perfect MAC. c) Distribution of theMAC error.

NoisyOutput = Output× (1 + nl ×N(0, 1)) (4.3)
This noise structure was designed before characterizing themulti-channel

RF source, assuming that the noise on the output of the convolutional layer is
mostly proportional to the input value and can thus be estimated as propor-
tional to the convolution output. As we will demonstrate in Section 4.9, the
noise is actually more of the addition of systematic biases in the weights and
a random Gaussian noise uncorrelated to the output value.

Figure 4.6 displays the noisy output of the convolutional layer for the cho-
sen noise level of 50%. Graph a) displays the noisy experimental output of the
multiply and accumulate operation versus its non-noisy version. In graphs b)
and c), the difference between these two quantities is displayed as a function
of the output and in the form of a histogram. We see, as expected, that the
noise presents an hourglass shape centered around 0. Most of the errors are
very small ; this especially comes from the background of the FashionMNIST
images. These background pixels have zero value and will lead to null output
with null noise.

The training results show that our noise aware training is efficient, the test
accuracy without noise is 87.63% and with 50% noise is 86.34%. The loss of ac-
curacy is only of 1.3% which is quite small. The final predicted weights and δz

parameters are the one summarised in the previous chapter in table 3.1.

85



4.6.2 . Evaluation of the experimental noise
When implementing a software network in hardware, we introduce expe-

rimental sources of noise. In order to build a network resilient to these noises,
we need to characterize the noise sources, starting with the noise on the in-
puts and the noise on themeasurement of the outputs of the hardware layer.
I measured the noise from the nanovoltmeter measuring the output voltages
and noise in frequency and power from themulti-channel source. Results are
displayed in Figure 4.7. In graph a), the level of noise is displayed for the in-
put power delivered by the multi-source at different frequencies and values
of power. The level of noise in power doesn’t exceed 0.5% for all frequencies
of interest and tends to scale down with the absolute value of delivered po-
wer. This level of noise is low and should not be an issue for sending correct
inputs to the hardware layer. In graph b), the noise levels on the frequency
of the RF inputs at different frequencies and power are displayed. This noise
level is even smaller, with amaximum value of 0.005%, and also tends to scale
down with the actual RF output power. This noise corresponds to an error of
around 100 kHz for inputs around 2 GHz, which is negligible.

Finally the measurement noise from the nanovoltmeter is displayed in
graph c). This noise doesn’t depend on the value of voltage measurement
and has a constant value that can be estimated to be around 20nV. The va-
lue of the maximum voltage peak for our three previously fabricated chains
was Vrange = 25µV , this result has been produced with a base RF power of
200mW, as we use here a base power of 40mW, thus the voltage peak value
can be approximated to 5µV . In this case the noise level is 0.4%, it’s equivalent
to the noise on the input. It could be reduced by averaging voltmeter measu-
rements, but the spin-diode measurement requires to switch on and off the
input, and this is time-consuming. In this study voltages are not averaged to
keep a high measurement speed.

These two sources of noise are quite small compared to the noise in the
noise aware training that was considered to be 50% of the output.

4.7 . Position optimisation inside the field gradient

As seen in theprevious chapter, the experimental frequency profiles present
some discrepancies with the expected ones. To implement the most correct
weights, we can fine-tune two parameters. The first one is the reference vol-
tage Vmax for each chain. Since the wire bonding differs in length and curva-ture for our chain compared to the reference devices, and the resistance of
the chain can also be slightly different due to lithography, the proportion of
transmitted power can vary, leading to a different strength of the spin-diode
signal. Rescaling Vmax for each chain can compensate for this issue of power

86



1.5 2.0 2.5 3.0
Frequency (GHz)

0.5

1.0

1.5

Po
we

r n
oi

se
 p

er
ce

nt
ag

e a)

1.5 2.0 2.5 3.0
Frequency (GHz)

0.002

0.004

Fr
eq

ue
nc

y 
no

ise
 p

er
ce

nt
ag

e
b) P=10.0(mW)

P=15.0(mW)
P=20.0(mW)

0 20 40 60 80 100
Measurement number

2.3

2.4

Vo
lta

ge
 (

V)

20nV

c)

2 3
Frequency (GHz)

4
6
8

P(
m

W
)

Figure 4.7 – a) Percentage of noise on the output power of the multi channelsource for different frequencies and power, the noise is determined as thestandard deviation for 100 points, inset represents the actual output power.b) Percentage of noise on the output frequency of the multi channel sourcefor different frequencies and power, the noise is determined as the standarddeviation for 100 points. c) Measurement error on the nanovoltmeter.

87



transfer. The second parameter that should be optimized is the position of
each chain inside the field gradient. We need to place the fabricated chains at
the exact positions to achieve the correct magnetic field on each diode. This
is complicated due to the fact that samples are glued manually with a preci-
sion that cannot be lower than 1 mm, while we need micrometric resolution
to obtain the correct profile, especially along the gradient axis z.

To find the best parameter z for each chain and the associated reference
voltage, I implemented an optimization procedure based on Optuna, a Baye-
sian optimization Python package that is described more in depth in Section
6.6. The optimization procedure is summarized in Algorithm 2. I designed
a metric M, visible in Equation 4.4, to minimize in order to best match the
weights extracted from the noise-aware training. This metric evaluates the
difference between the experimental voltage obtained by sending four inputs
Pi and the expected voltage coming from the theoretical weights applied to
these same inputs. This difference is calculated for 100 sets of four inputs,
extracted to be representative of the FashionMNIST dataset. Here, the back-
ground of images is excluded as they all present inputs equal to zero.

M =
1

100

√√√√ 99∑
j=0

(Vexp,j −
2∑

i=0

Vmax × wi × Pi,j)2 (4.4)
The experimental reference voltage Vmax is computed tominimize the op-

timization metric M. Optuna is run on 25 trials with different z positions for
each chain to try to find the optimal z to best minimize themetric M. After this
optimization step, I retrieve three values of optimal Vmax and three values ofoptimal z, one for each chain.

This calibration procedure is applied before performing inference on the
FashionMNIST images. However, the spin-diode signals tend to drift over time.
The causes of this drift are complicated to identify. One of them is the posi-
tion drift ; since the z position is different for each chain, we need to move
the sample holder along the z axis. Due to the RF cable rigidity and fixation
of the sample holder with plastic screws, moving the sample along the z axis
can also cause a drift along the z, y, and x positions. Another possible source
of drift can be the modification of the contact resistance over time due to oxi-
dation mechanisms and heating created by the RF injected power. To com-
pensate for these drifts, the optimization procedure is performed every ten
input images. It is important to note that performing a convolution with three
filters on an input image takes around one hour due to the necessity to wait
for the stabilization of the custom RF source.

In Figure 4.8 a), the optimization metric is displayed while sending input
images ; the optimization steps are represented by dashed lines. We see that

88



0 25 50 75 100
Image number

10

0

Z 
po

sit
io

n 
(

m
)

b

0 20 40 60 80 100
Image number

2.5

5.0

7.5

10.0

12.5
Op

tim
isa

tio
n 

m
et

ric

a

chain 0
chain 1
chain 2

0 25 50 75 100
Image number

7.5
10.0

V m
ax

 (
V)

c

Figure 4.8 – a) Optimization metric displayed for the three chains across theinference for 100 images. The optimization procedure on the sample z posi-tion and reference voltage is performed every 10 images ; values for these twoquantities are displayed in b) and c).

between optimization steps, the optimization metrics tend to drift to higher
values for all chains. When performing an optimization step, the optimization
metric is reduced. In Figure 4.8 b) and c), the optimal z positions and opti-
mal reference voltages for the first one hundred images are displayed. The z
positions vary by an amount of a few microns, up to 10, while the reference
voltages are quite stable through optimization.

Algorithm 2 Optimisation procedure for sample position
Require: w0, w1, w2, w3

for k ← 1 to 25 do
for g ← 1 to 3 do

zg ← ztrial

M ← 1
100

√∑99
j=0(Vexp,j −

∑2
i=0 Vmax,g × wi × Pi,j)2

Vmax,g ← minimise(M(Vmax,g))
end for

end for

89



4.8 . Summary of the experimental procedure for FashionM-
NIST

The full procedure to process images from the test dataset is the follo-
wing. The sample is aligned for the first time to ensure correct weights. Then
the first image is processed. The first 2x2 area of this image is converted to a
set of 4 inputs at the 4 working frequencies and sent to the sample. The vol-
tages from the three chains are recorded and converted to pixel values to fill
the three output feature maps. The kernels are then slid by 1 to cover a new
area of 2x2 pixels. These values give new inputs, and the voltage measure-
ments are performed once more to produce new output pixels. These steps
are repeated until the full input image has been covered. Once all three out-
put maps have been generated, they are fed to the rest of the network, and a
label is predicted for the input image. This full classification operation is then
repeated for the next image, and so on. Every ten images, a new alignment is
performed. This full procedure is displayed in Algorithm 3.
Algorithm 3 Classification of FashionMNIST images
for step← 0 to 100 do

Im← dataset(step)
if mod(step)=10 then optimise z positions
end if
for i← 0 to 28 do

for j ← 0 to 28 do
for k0 ← 0 to 1 do

for k1 ← 0 to 1 do
RFinputs(freq(k0+k1))← ToPower(Imi+k0,j+k1)

end for
end for
for channel← 0 to 2 do

PosZ ← OptimalZchannel

V oltagechannel ←Measurechannel
OutImi,j,channel ← ToPixel(V oltagechannel)

end for
end for

end for
Label← SoftNetwork(OutIm)

end for

90



4.9 . FashionMNIST results

I tested the hybrid hardware-software network on the first 100 images of
the FashionMNIST dataset. Figure 4.9 displays different comparisons between
the experimental results of the convolutional layer and the theoretical expec-
tations. In graph a), the experimental output of the convolutional layer for the
three filters is displayed versus the ideal software output. We notice that the
level of noise is very low compared to the noise level injected in the noise-
aware training. Our experimental noise is therefore likely not to perturb the
classification too much. In graph b), the difference between the experimen-
tal and theoretical output is represented versus the theoretical output. This
difference corresponds to the experimental error. It is important to note that
this error doesn’t correspond toGaussian noise centered around zero. The er-
ror corresponds more to systematic biases, mostly due to systematic errors
in weights values. We can confirm this by looking at the distribution of errors
for the backgrounds of images (pixel values = 0) and their cores.

In figures c), d), and e), the error distribution for the three different chains
is displayed. The error on the background of the image is in light color, and
the core of the image is in darker color. The background corresponds to all
inputs being equal to zero ; from the corresponding error distribution, we can
visualize only the nanovoltmeter noise. This error appears as Gaussian noise
centered on zero. The error from the core of the image presents a different
shape, especially for filters 0 and 2, where the errors are not centered on zero.
This highlights the role of weights, which in this case are slightly too positive,
thus shifting the error distributions to negative values. This systematic error
seems to be the main factor to reduce to avoid misclassification ; however, it
is caused by lithography imprecision and cannot be directly corrected.

Now that the experimental noise on the convolutions are well known we
can focus on the classification results. The experimental accuracy on the first
100 images is 88%, the software accuracy with the gaussian noise used for
noise-aware training, on these 100 first images is 88.4%, and without noise it
is 90%. The software accuracy with noise is calculated by passing each of the
one hundred input images 1000 times through the network with a different
random noise. We achieved performances similar to the noisy software with
the experimental network. Thus even if the noise in the noise-aware training
procedure was not exactly of the same nature and amplitude as the experi-
mental noise measured afterwards, this choice was close enough to reality
to transfer the network in hardware with success. The confusion matrices for
the noisy software model and for the experimental model are displayed in fi-
gure 4.10 a) and b). We see from this matrices that both networks tend to mix
and misclassify pullovers, shirts and coats. This is expected as these types of
clothes are very similar, adding only a small noise in the form of a Gaussian

91



10 0 10
software-experimental MAC difference

0

25

50

co
un

t

d
10 0 100

50

100

co
un

t

e
10 0 100

25

50

co
un

t

c

200 100 0 100
software MAC

200

100

0

100

ex
pe

rim
en

ta
l M

AC

a

filter 0
filter 1
filter 2

100 0 100
software MAC

10

0

10
so

ft/
ex

p 
M

AC
 d

iff
er

en
ce

b

Figure 4.9 – a) Experimental MAC versus softwareMAC for the three chains re-ceiving four frequency-multiplexed inputs, b) displays the difference betweenideal software MAC and experimental one, the discrepancy mainly comesfrom the experimental error on weight values. c) d) and e) display the dis-tribution of this error in light color for the background of images where inputis null, this probes the error due tomeasurement noise. The error in dark cor-responds to the clothes area and highlights the weights error.

92



T-
sh

irt
/to

p
Tr

ou
se

r
Pu

llo
ve

r
Dr

es
s

Co
at

Sa
nd

al
Sh

irt
Sn

ea
ke

r
Ba

g
An

kl
e 

bo
ot

Predicted label

T-shirt/top
Trouser

Pullover
Dress
Coat

Sandal
Shirt

Sneaker
Bag

Ankle boot

Tr
ue

 la
be

l

1.0
1.0

0.1 0.8 0.1
0.8

0.1 0.8 0.1
0.9 0.1

0.1 0.1 0.8
1.0

1.0
0.1 0.2 0.7a

Software confusion matrix

T-
sh

irt
/to

p
Tr

ou
se

r
Pu

llo
ve

r
Dr

es
s

Co
at

Sa
nd

al
Sh

irt
Sn

ea
ke

r
Ba

g
An

kl
e 

bo
ot

Predicted label

T-shirt/top
Trouser

Pullover
Dress
Coat

Sandal
Shirt

Sneaker
Bag

Ankle boot

Tr
ue

 la
be

l

0.9 0.1
1.0

0.1 0.6 0.1 0.2
1.0

0.8 0.2
1.0

1.0
0.90.1

0.1 0.9
0.3 0.7b

Experimental confusion matrix

c

Software

d

Experimental

e

Difference exp/soft

Figure 4.10 – Confusionmatrices on the 100 first images of FashionMNIST for a)the software with noise model b) the experimental model. Convolved imagefor a) the software with noise model b) the experimental model, c) displaysthe difference between the two images.

noise or systematic bias is sufficient to change the assigned labels of some
examples of these clothe types, hence the similar accuracy between noisy
software and experimental networks. Figure 4.10(a) and (b) show an example
image after convolution in (a) software and (b) hardware. The difference (c)
is close to zero, demonstrating the high quality of the hardware convolutions
with the RF Permalloy spin-diodes.

4.10 . Conclusion

In this chapter, I proposed a hybrid software-hardware architecture of a
convolutional network. The convolutional layer is implemented in hardware
with chains of spintronic synapses, with the remaining part of the network,
mainly ReLU neurons, max pooling, and a final fully connected layer, being

93



implemented in software. The network is trained in software, and the obtai-
ned weights are then used to predict the correct geometry of the chains of
spintronic synapses constituting the hardware part. The training is conduc-
ted in the framework of noise-aware training, meaning that I added random
noise during training to obtain a network resilient to perturbation.

To test the obtained network, I built a custommulti-channel RF source that
I calibrated and characterized. Our experimental noise appears smaller than
what was implemented in the noise-aware training, but it is also less similar
to a random distribution and more similar to a systematic bias. After testing
the network on the first 100 images of the FashionMNIST dataset, I reached
an accuracy of 88%, which is comparable to the accuracy of the noisy soft-
ware network : 88.4%. I had to implement a position optimization procedure
applied every ten images to limit the drift of the spin-diode signals. Howe-
ver, this drift could be further limited if the sample was not moved during the
inference phase. By fabricating all chains aligned along the z axis, I could per-
form all my voltage measurements without moving along the z axis. This is a
possible path of improvement to reduce the drift in the spin-diode voltage.
These results have been accepted at the IEDM 2024 conference and I am a
first author of the article that will be published in the proceedings.

94



5 - Demonstration of a network of spintronic
dynamical neurons

5.1 . Summary

In this chapter we demonstrate the possibility to use STNO’s natural dyna-
mics to process time varying inputs. We propose a network made of a single
layer of coupled STNOs. The devices receive inputs as DC currents and their
output is the emitted RF power. These injected DC currents are the parame-
ters on which are applied synaptic weights. The dynamics of the STNOs is si-
mulated through a simplified version of Slavin et al. auto-oscillatormodel [77].
The resulting network is trained through truncated backpropagation through
time to classify time series made of sine and square waves. This task requires
both non-linearity and memory. The performance of this trained network is
compared to the the performance of the same configuration treated as a re-
servoir computing system where only the output layer is trained and not the
parameters controlling the dynamics of the neurons. The fully trained net-
work presents higher accuracy for a same number of neuron, it can reach
100% accuracywith only two neuronswhile the reservoir computing approach
requires at least 16 neurons to reach the same result.

5.2 . Introduction

The studied network takes inspiration from the article describing liquid
time-constants [103] and standard RNNs.Wewanted to study the training and
inference of a network of dynamical neurons, specifically spintronic neurons
for possible future hardware implementations. This kind of neuron helps en-
rich the complexity of the network by adding a complex and tunable dynamics
while keeping a low number of devices.

A static neuron is defined as a non-linear function f applied to an input
I ; here, we will denote x as its output, thus x = f(I). A dynamical neuron
is defined by an internal variable x obeying an ordinary differential equation
(ODE) that depends on an external input I and generally also on the variable
x itself. This equation can be formulated by Equation 5.1.

dx

dt
= f(x, I) (5.1)

The steady-state value of a dynamical neuron submitted to a constant in-
put is equivalent to the activation function of a static neuron. However, the

95



dynamic evolution of the output value of a dynamical neuron can have two
interesting properties for neuromorphic computing. On one hand, the neu-
ron value depends on previous inputs, giving rise to a memory that can be of
crucial importance in time-dependent tasks. On the other hand, the time evo-
lution of the neuron through an ODE gives rise to a richer, more non-linear
behavior, which is capable of increasing the complexity of a network with a
low number of devices compared to static devices.

5.3 . Spintronic neuron model

According to Slavin et al. [77], a universal auto-oscillator with negative
damping can be modeled with a simple mathematical framework. Current-
driven spin torque oscillators (STOs) fall into this category. For these spintro-
nic devices, the auto-oscillatory behavior occurs when a current is injected
as input, and as this current gets spin-polarized, the magnetization is driven
into precession at the device resonance frequency. Themagnetization preces-
sion creates an oscillating resistance that, combined with the constant cur-
rent, leads to RF emission. In the following, we will focus on the dynamics
of the RF power emission. This power can be modeled with Equation 5.2. In
this equation, x is the normalized emitted RF power evolving through an ODE
dependent on I , the electric current flowing through the free layer of the de-
vice.ΓG is theGilbert damping, andQ is a non-linear damping term; these two
damping terms describe the natural relaxation of the oscillator. σ is a physical
coefficient that converts the current into a drive of the microwave power.

dx

dt
= −2(ΓG(1 +Qx))− σI(1− x))x (5.2)

This model can be simplified to keep only two main terms, the linear re-
laxation term and the drive applied by an input current. Moreover we can
group physical coefficients to simplify the expression, σ = 1GHz/mA and
ΓG = γ. The obtained simplified spintronic neuron model is presented in
Equation 5.3. Here I(t) is the input fed to the neuron including the σ coef-
ficient, and γ is the characteristic decay.

dx

dt
= −γx+ I(t)x(1− x) (5.3)

This non-linear ODE has several very interesting properties that makes it
the perfect candidate for a dynamical neuron. First the neuron output value
is naturally bounded between 0 and 1, indeed the input I(t) drives the neuron
but as the neuron value approaches one of the two boundaries 0 or 1 either
the term x or (1−x) goes to 0 canceling the drive and thus keeping x above 0

96



1 0 1 2 3 4
Input value in mA

0.0

0.2

0.4

0.6

0.8

1.0
ne

ur
on

 o
ut

pu
t

Figure 5.1 – Steady-state profile of a spintronic neuron with γ = 0.5GHz ver-sus input value in mA.

and below 1. The fact that x(t) is naturally bounded makes it a natural liquid
time-constant network. Second, the drive I(t) can either drive the neuron up
or down which is an interesting property compared to the base equation in
the first liquid-time article [103] where the decay γ is the only negative term
in the derivative and where the neuron cannot decay faster. Here the liquid
time constant −γ + I(t)(1− x) can vary between ]−∞,+∞[.

We obtain a steady state profile versus input that has a nice non-linear
shape and resemblance to the well-known ReLU function used for many neu-
rons, see figure 5.1. The decay γ defines the activation threshold, here γ =

0.5GHz.

5.4 . ODE simulation method

Simulating dynamical neurons requires solving ordinary differential equa-
tions. Severalmethods canbe employed to solve anordinary differential equa-
tion ; some of them can be analytically solved, but most of them, especially
those submitted to time-varying inputs, need numerical solvingmethods. The
simplest solving method that can be proposed is the Euler method, see Equa-
tion 5.4. This numerical method consists of computing the time derivative of
the dynamic variable x, and then updating the x value by summing its pre-
vious value and the derivative dx

dt multiplied by a small time step δt. This me-
thod presents several advantages : it’s very simple to use, implement, and
debug, and requires low computing power, leading to faster operation. The
main drawback is its low accuracy ; however, we don’t require rigorously exact
differential computing results as in physical device simulations.

97



0 10 20 30 40 50 60 70 80
time in ns

1.0

0.5

0.0

0.5

1.0

c)
input signal
label

0 2 4 6
time in ns

1.0

0.5

0.0

0.5

1.0

a)

sinus sequence

0 2 4 6
time in ns

b)

square sequence

Figure 5.2 – a) Base sequence of sine wave versus time. b) Base sequence ofsquare wave points versus time. c) Example of a sequence of 80 input pointsversus time in blue and the associated label sequence in orange

x(t+ δt) = x(t) + δt
dx

dt
(5.4)

5.5 . Task : discriminate between sine and square

In order to test the behavior and capacity to train a small network of dyna-
mical spintronic neurons, I chose a task that, while simple to solve, is designed
to probe the memory and non-linearity of recurrent networks. This task aims
to discriminate in a time series which points belong to a square wave and
which belong to a sinusoidal wave of the same frequency and amplitude. This
task is a benchmark for small networks and reservoir computing [113], [122]. If
a point comes from a square signal, it is associated with label 0, and if it comes
from a sinusoidal signal, it is associated with label 1. Here, I chose for the full
training set to be a single sequence of 80 bits of sine or square waves, with
each bit being made of 8 points. Each sequence of 8 points corresponds to a
period of the sine or square wave, see Figure 5.2 a) and b). In total we obtain
a set of 640 points to predict. The testing set is created in a similar way with a
different random seed.

98



As we can notice in figure 5.2 in the two signals sine and square there are
points +1 and −1 in position t = 2ns and t = 6ns, thus to assign the correct
label to these points the network must be able to discriminate between iden-
tical points based on the previous point values. In consequence this task is
a good test to evaluate if a network presents memory properties. Moreover
this task cannot be solved with 100% accuracy with a linear classifier, it’s then
a good test to evaluate the presence of sufficient non-linearity of a network.

5.6 . Network architecture

In this chapter, we consider a monolayer network for simplicity ; a multi-
layer network architecture will be proposed in the next chapter. To try to solve
this task with spintronic dynamical neurons, I chose to start with the simplest
possible architecture. The network is made of a layer of a small number of
spintronic neurons, between 1 to 48, all obeying Equation 5.5. Weights and
biases are non-dynamical quantities here ; they represent perfect static de-
vices that don’t interplay with the time-dependent nature of the input. This
choice has been made to simplify the study of small spintronic neuron net-
works, but we could also have dynamical behavior for synapses with physical
devices.

These neurons receive the external input signal I0(t) weighted by a ma-
trix Wext represented by the purple box in Figure 5.3 ; this signal is also am-
plified with a factor Sext. The outputs of the neuron layer are reinjected into
the neurons and weighted by a matrixWint, creating intra-layer couplings ofthe neurons. The diagonal terms of this matrix are set to 0 to remove auto-
coupling and thus prevent exponential decay or increase of the neurons. This
matrix is represented by the green box in Figure 5.3. Similarly to Sext, a factor
Sint is applied on the output of Wint to tune the strength of coupling. These
two parameters S are kept fixed during training. Neurons also receive biases
to ensure that they are above the activation threshold when an input is sent.
The output of the layer of neurons is then transformed into a one-dimensional
output by thematrixWout, represented by the pink box. This output is fed to abinary cross-entropy loss function after the application of a sigmoid function.
This operation transforms the one-dimensional output into a probability of
being a label 1 or 0. To help classification, a multiplicative factor equal to 1000

is applied to the output before the sigmoid ; this sharpens the sigmoid and
thus helps separate more clearly between 0 and 1 predicted labels.

99



Figure 5.3 – Architecture of a spintronic network : A layer of neurons receivesinputs weighted with a matrix Wext and has internal connections weightedwith Wint. The output of the neurons is transformed into the final outputthrough a final weight matrixWout.

dxi
dt

= −γxi + I(t)xi(1− xi)

with I(t) = Sext × (Wext)iI0(t) + Sint × (Wint)ijxj + bi + bfixed

Loss = BCE(Sigmoid(1000× (Wout)ixi + bout))

(5.5)

5.7 . Backpropagation through time

5.7.1 . Backpropagation through time algorithm
In order to train the dynamics of the network the error needs to take into

account the network response through time to a time-series. The algorithm
of back propagation through time [92] is made for such situation. This me-
thod consists in unfolding the network computation through time to compute
the gradient descent versus trainable parameters. Let’s illustrate this with a
simple example of dynamical networkwhere the state of the network is repre-
sented by x(t) obeying Equation 5.6, whereWint andWext are tunable weightsapplied respectively on the internal step at previous timestep x(t− 1) and on
an external input I(t).

100



dx(t)

dt
= (Wint − 1)× x(t) +Wext × I(t)

x(t) = x(t− 1) + ((Wint − 1)× x(t− 1) +Wext × I(t))δt

x(t) = (Wint × x(t− 1) +Wext × I(t))δt

(5.6)

We want to perform back propagation through time after two time-steps.
Tomodify the weight valuesWint andWext we need to compute the derivative
of the loss function L versus these coefficients. Indeed the gradient descent
general structure is to adjust a trainable parameter such asWext by subtrac-ting it the term lr × ∂L

∂Wext
, where lr is the learning rate. The derivative ∂L

∂Wextcan be developed with the chain rule as Equation 5.7. Similar decomposition
is performed forWint.

∂L

∂Wext
=

∂L

∂x(t = 2ns)

∂x(t = 2ns)

∂Wext
(5.7)

All backward paths from the final loss L, represented in pink in Figure 5.4
b), needs to be taken into account to compute ∂L

∂Wext
. Thesemultiple paths are

visible in x(t = 2ns), indeed it depends onWext both directly and through theprevious time step x(t = 1ns), see Equation 5.8 where the time dimension
is completely unfolded. We will split x(t = 2ns) in two terms to represent
the two dependency, the direct dependency will be noted xa(t = 2ns) =

Wext × I(t = 2ns)δt and the indirect one xb(t = 2ns) = Wint × x(t = 1ns)δt.
The derivative of the loss now becomes 5.9

x(t = 2ns) = (Wint × x(t = 1ns) +Wext × I(t = 2ns))δt

x(t = 2ns) = (Wint × (Wint × x(t = 0ns) +Wext × I(t = 1ns))δt+Wext × I(t = 2ns))δt

(5.8)
∂L

∂Wext
=

∂L

∂x(t = 2ns)
(
∂xa(t = 2ns)

∂Wext
+

∂xb(t = 2ns)

∂x(t = 1ns)

∂x(t = 1ns)

∂Wext
)

∂L

∂Wext
=

∂L

∂x(t = 2ns)
(I(t = 2ns)δt+Wint × I(t = 1ns))(δt)2)

(5.9)

The expression of x(t = Nns) can be computed in the same way obtai-
ning Equation 5.10, where the sum is accounting for all possible paths for the
backward pass.

∂L

∂Wext
=

∂L

∂x(t = Nns)

n∑
i=0

Wn−i−1
int × I(t = ins)× δt(n−i) (5.10)

101



Figure 5.4 – a) Folded representation of a recurrent network, this networkreceives a time series of inputs I(t) weighted by Wext, a recurrency loop isperformed through the weightsWint. b) Unfolded representation of the samenetwork, in pink the backward pass paths are represented.

5.7.2 . Pytorch implementation

PyTorch [123] is a Python package designed to implement a machine lear-
ning framework in Python. It provides tensorial operations written in C that
permit fast computation for neural network training. PyTorch also includes
standard functions and classes for machine learning, such as activation func-
tions and parameterized layers of weights. Finally, PyTorch is compatible with
graphic processing units (GPUs), enabling the implementation of parallel com-
putations of large arrays or tensors to further speed up neural network trai-
ning.

PyTorch has a framework named autograd that implements automatic
computation of the gradients of the loss with respect to trainable parame-
ters. All trainable parameters of a network are called leaf tensors and are the
values fromwhich all gradients will be calculated. During the forward pass, all
the operations performed on the leaf tensors and the resulting intermediate
values are stored in the ".gradfn" attribute of the final outputs. The compu-
tational graph describing how the input quantities are transformed into out-
puts is then recreated from these stored operations and intermediate values.
Running through this computational graph from outputs to leaf tensors and
applying the derivative chain rule permits the evaluation of the gradients of
the loss with respect to all leaf tensors.

5.7.3 . Gradient issues

102



Table 5.1 – Accuracy obtained on 20 initialisations for different gradientclipping strategies
fixed clipping rescaled gradient clipping

Accuracy 75.18± 6.31% 72.62± 2.74%

One of the issues with back propagation through time is the uncontrolled
growth of the gradient values when unfolding the time dimension. Indeed as
can be observed in equation 5.10 some terms in the gradients are multiplied
by themselves for each unfolding step, here ∑n

i=0W
n−i−1
int . These terms at a

high power when time steps are numerous leads to this so called "exploding
gradient" values [124][125]. This leads to first very high value of gradients that
leads to too big updates of the parameters, then if nothing is done the soft-
ware simulation can fail if values exceed the available digit range. To solve
this issue gradients in the network needs to have their gradients clipped. The
most standard method is to clip the norm of the gradients, meaning that if
the norm of the gradients exceed a certain threshold the gradients are resca-
led down to set the norm to the threshold value. However a simpler clipping
strategy worked slightly better in my case, if any components of the gradient
exceed the threshold it’s clipped to the threshold value. In the case of multi-
layer network, developed in the next chapter, the fixed clipping value gives an
accuracy of 75.18±6.31% and with a rescaling of the norm of the gradient the
network only reaches 72.62± 2.74%.

In conclusion gradients need to be clipped to a limit value to prevent di-
vergence of their values during the time unfolding of the backward pass.

5.7.4 . Testing different back-propagation scheme
The chosen optimizer in all the following sections is the ADAM optimizer

[126]. This algorithm implements a stochastic gradient descent taking into ac-
count first and second order momenta of the gradients.

IIn this section, each training method is applied to a spintronic network of
24 neurons with 20 different seeds of initialization, deactivating the recurrent
loop Wint for simplicity, with batch = 16. After ensuring correct values for γ,
Sext, and bfixed to activate all neurons and optimizing the learning rate, we test
differentmethodswith the same number of weight updates, here 90 updates.

The standard backpropagation through time scheme consists of presen-
ting the full input signal to the network and backpropagating only at the last

103



Figure 5.5 – Unfolded representation of the backpropagation through timestandard scheme. Here the loss is computed at each time step and summed,backpropagation is performed on the full signal.

timestep. In our case, we would sequentially present all the 640 input points
and record the error on the predicted label for each point. The final error is
the sum of all 640 computed errors. After calculating the total loss, we back-
propagate this loss on the network’s parameters, unfolding through the 640
previous points in time, as we can see in Figure 5.5. After running 90 epochs,
we obtain a mean accuracy of 87.85% on the test signal. However, some net-
works reach 100% accuracy, so it’s not an issue of network computing capa-
city, butmostly of failing training. This low value is due to an issue linked to the
exploding gradient problem. While we addressed the exploding gradient pro-
blem, high powers are still present in the gradients, often leading to chaotic
behavior of the gradient computation if many timesteps are computed. From
another point of view, this means that the loss function presents a landscape
with many local minima and is difficult to optimize via gradient descent. A
possible solution is to truncate the backpropagation after a fixed number of
timesteps to limit the higher power terms.

This scheme called truncated backpropagation through time is another
standard technique [127] where we define two number k1 and k2. The signal
is sent to the network sequentially and every k1 points the accumulated loss
on the last k2 points is backpropagated. Generally we chose k1 = k2. Here in
our case we chose k1 = k2 = 30, meaning that while sending the input signal,
every 30 input points we backpropagate the loss accumulated on these last
30 points, see Figure 5.6. After each backpropagation step the loss is set back
to 0. To prevent non uniformity coming fromperforming the backpropagation
always at the same points t = n× 30, an additional shift of 1 is added at each
epoch, thus performing backpropagation at t = n×30+iepoch. Here we testedthis method in the same configuration as before except for the learning rate
that is modified to a more adapted value and the number of epoch set to 3 to
keep a similar number of backpropagation performed, thus a similar number

104



Figure 5.6 – Unfolded representation of the truncated backpropagationthrough time standard scheme. Here the loss is computed at each time stepand summed over 30 time steps. Backpropagation is performed at the end ofeach 30 points window only on this last 30 time steps.

of weights updates. With this method we improved the accuracy to 98.15%.
In this truncated backpropagation a small issue is degrading the perfor-

mance of the training. When the backpropagation if performed at timestep
t = 30ns the network parameters are modified. However the internal state of
the network comes from the time evolution of the starting point x(t = 1ns)

with the previous parameters over 30 points. This starting point is different to
what it would be in the testing phase where the evolution is performed from
x(t = 1ns)with the final parameters. To have amore correct estimation of the
error on points 30 to 60 we would need to start from x(t = 1ns) evolved for
30 points with the newparameters. However recalculating the correct starting
points for each backpropagation section would require a lot of computation
and time in software as we need for each starting point x(t = N × 30ns) to
calculate the previousN × 30 previous points. It would be easier in hardware
as the point x(t = N × 30ns) could be produced by just injecting the N × 30

first inputs which takes only a small amount of time.
I then propose an improvement of the truncated BPTT described in figure

5.7. The goal is to minimize the error on the starting point of each 30 point se-
quence of TBPTT. To do this I start as in standard TBPTT from the starting point
x0(t = 1ns) where the subscript 0 correspond here to the state of the net-
work’s parameters, here 0 update through backward pass. This point is then
evolved over 30 points with the inputs from time 1ns to 30ns. Backpropaga-
tion of the total loss is then performed. The state of the network’s parameters
is now 1. The next window of 30 points covers inputs from t=2ns to t=31ns, it
thus needs to start from x1(t = 2ns) = x0(t = 1ns) + f1(x0(t = 1ns))δt built

105



Table 5.2 – Accuracy obtained on 20 initialisations for different back-propagation schemes
standard BPTT truncated BPTT smooth TBPTT

Accuracy 87.85%± 10.54 98.15%± 5.56 100%± 0

by evolving x0(t = 1ns) with the new network parameters. This starting point
now evolve through the 30 inputs from t=2ns to t=31ns and backpropagation
is performed. In the same way the next starting point will be generated from
evolving x1(t = 2ns) with the new obtained network ’s parameters state 2
x2(t = 3ns) = x1(t = 2ns) + f2(x1(t = 2ns))δt. Here we accumulate a small
error as x1(t = 2ns) ̸= x2(t = 2ns), however this error is smaller than if we
had accumulated it on a full window of 30 points as in the previously standard
TBPTT. The general rule to generate the new starting point of a sequence of
TBPTT from the previous starting point is Equation 5.11. This procedure by mi-
nimizing discontinuity in the starting points of the TBPTT windows permits to
reach an accuracy of 100% for all the 20 network initialisations. This method
is designed for time series where the labels or targets aren’t independent and
also form a coherent time series. This is mostly a software trick, in hardware
the previous implementation of BPTT where the starting point is physically
produced by the system is simpler to implement. It’s this final backpropaga-
tion scheme that I employed in the following section.

xn+1(t = start(ns)) = xn(t = start− 1(ns)) + fn+1(xn(t = start− 1(ns)))δt(5.11)
To summarize backpropagation through time can be quite challenging to

use. Due to the time recurrence gradients must be clipped to prevent diver-
gences. Moreover the backpropagation scheme needs to be adapted to the
nature of inputs and outputs. I thus proposed an ameliorated version of trun-
cated backpropagation through time where the starting point of each BPTT
window is calculated from the previous starting point to minimize accumula-
tion of error between parameters updates. This leads to better performances
where a network of 24 spintronic neurons can solve the sin square task in
100% of cases.

5.8 . Different types of neurons

To evaluate the computational power of the spintronic neuron network,
I compared it to networks composed of dynamical neurons with other diffe-

106



Figure 5.7 – Unfolded representation of the adapted truncated backpropaga-tion through time standard scheme. Here the loss is computed at each timestep and summed over 30 time steps. Backpropagation is performed at theend of each 30 points window only on this last 30 time steps. the notable dif-ference is that the starting point of the 30 points window is computed fromthe previous starting point after one time step.

107



rential equations. These ODEs are displayed in Equation 5.12. The first one is
the simplest damped dynamical neurons with a drive that doesn’t depend on
the neuron internal value x. The second one has a drive linear in x, the third
one is non-linear in x, this is comparable to the spintronic neuron in order
of x. Comparing these neurons provides insights of which terms in the drive
lead to good performances.

dx

dt
= −γx+ I(t) simplest drive with relaxation

dx

dt
= −γx+ I(t)x simplest liquid-time drive with relaxation

dx

dt
= −γx+ I(t)x2 simplest non-linear liquid-time drive with relaxation

dx

dt
= −γx+ I(t)x(1− x) spintronic neuron

(5.12)
As we can see in figure 5.8 a) the neurons of all types respond non-linearly

to a sinusoidal drive. When submitted to a constant drive we see that the non-
spintronic neurons present a diverging trajectory, however to keep a more
physical behavior neurons responses need to be clipped to a fixed range, I
chose it to be [0, 1] for simplicity. If a neuron is reaching a value outside this
range it has to be clipped. Its gradient should also be clipped to 0 if this neu-
ron stays in saturated states x = 0 or x = 1 as the main term in all gradients
dx(t=n)

dx(t=n−1) is now 0. Testing this procedure on unbounded ODEs such as pre-
sented in Equation 5.12, showed that networks with such neurons are not ef-
ficiently trainable, as displayed in Figure 5.8 c) the final loss is much lower for
spintronic neurons compared to the three other neuron types. This can be
explained by the fact that these neurons rapidly reach their clipping values.
At this point gradients of the loss are clipped to 0 leading to no update of the
coefficients connecting these neurons. On the contrary the spintronic neu-
ron equation is naturally bounded between [0, 1] as the input drive becomes
continuously 0 when the neuron approach limit values 0 or 1. This results in
gradients to be always correct as the neurons output values doesn’t require
clipping. The spintronic neuron equation is one of the simplest ODE that can
be built to produce an output naturally bounded between [0, 1], the fact that
the bounding arising from the ODE appears to be the main reason why this
network can be trained despite the constraints on x. The order in x terms
doesn’t seem to be a critical parameter, however an order at least 2 is requi-
red to present a naturally bounded dynamics.

It is important to note that the three non-spintronic networks could be
trained efficiently when removing the clipping constraint ; however, thiswould
not be coherent with a physical behavior. In conclusion, neurons with natu-

108



0 50 100
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ne

ur
on

 o
ut

pu
t

a)

I(t)
I(t)x
I(t)x²
I(t)x(1-x)

0 50 100
Time

0.5

0.6

0.7

0.8

0.9

1.0

Ne
ur

on
 o

ut
pu

t

b)

0 20 40
Epochs

20

30

40

50

60

70

Lo
ss

c)

Figure 5.8 – a) Neuron output for different types of neurons when submittedto a sinusoidal drive. b) Neuron output for different types of neurons whensubmitted to a constant drive. c) Loss during training on the sine square taskfor the four different types of neurons.

rally bounded dynamics are trainable, while forced clipping of unbounded dy-
namics prevents efficient training. Networksmade of physical neurons can be
trained despite their bounded behavior, as this behavior naturally arises from
the dynamics of the physical devices.

5.9 . Comparison between reservoir computing and BPTT trai-
ned network

In order to evaluate the efficiency of training our network of spintronic
neurons, we compare this approach to a reservoir computing scheme applied
to the same network. Training with our backpropagation scheme is more ef-
ficient, specifically for a low number of neurons in the network. In the case of
reservoir computing, the network is initialized with random values for the first
layer of weights going from the input signal to the neurons ; then, the full input
signal is fed to the network, and outputs are recorded. Finally, output weights
are computed via the pseudo-inverse operation. It is important to note that
this operation permits finding the best linear mapping between neurons’ out-
puts and the predicted label, so there is no sigmoid function applied on the
final output in the case of reservoir computing. In the case of a trained net-
work, the procedure is the same as in the previous section ; for both configu-
rations, different numbers of neurons in the network are tested. Results are
displayed in Figure 5.9. For both reservoir computing and the trained network,

109



two types of networks have been tested : one without intra-layer connections
soWint = 0 and one with intra-layer connections. Looking at the mean accu-
racy over different initializations, Figure 5.9 a), a clear trend appears : back-
propagation through time performs better than reservoir computing for the
samenumber of neurons.Moreover, adding intra-layer connections improves
performance in the case of reservoir computing ; this is expected as it adds
more non-linearity to the network. There is no notable difference in BPTT,
which is understandable as the simplest network with no intra-layer connec-
tion is already complex enough to solve the task most of the time.

A notable feature for both reservoir computing and trained network is
that with the same number of neurons there can be a high dispersion of final
accuracy, see figure 5.9 b). For instance with the reservoir of 48 neurons wi-
thout intra-layer connections nearly all networks initialisations have an accu-
racy above 99.5% but one of them as an accuracy of 53.75%. This dispersion is
more important for smaller networks and for reservoir computing. This points
a responsibility in the initialisation values of the weights, indeed the smaller
the network is the less diverse are the weight values in a network at initiali-
sation, and thus the network is likely to be less flexible to trained to a task.
In these cases BPTT is performing better as the first layer of weights is also
tuned and can compensate some of the bad initialisations, while reservoir
computing keeps this first layer in initialisation state. If we have a closer look
at the diversity of results the difference of performance is even greater bet-
ween reservoir computing and BPTT. In figure 5.9 b) the median accuracy is
represented in solid lines and the extend between maximum and minimum
accuracy for a same number of neurons in light colored area. We can thus ob-
serve that the two types of BPTT trained networks can reach 100% accuracy
with only two neurons and that the median accuracy reaches 100% for four
neurons. In the case of the reservoir computing, with intra-layer coupling we
need 16 neurons to reach 100% in best configuration, without intra-layer cou-
pling we need 24 neurons, and in both cases even with 48 neurons we cannot
reach a median of 100%.

Taking the example of a network of two neurons solving perfectly the sin
square task we can really understand how the dynamics of neurons augment
the computing power of a network. In Figure 5.10 b) the responses of two neu-
rons from such network are represented after application of the weights from
Wout. These two neuron outputs have quite close behavior when submitted to
an input signal. However when we look at the difference of these two signals
in Figure 5.10b) and c) we see that the neuron 2 in orange is superior to the
neuron 1 in blue when the input is sinusoidal, and inferior when the input is
a square wave. This is because the neuron 1 is in fact submitted to a strong

110



0 10 20 30 40 50
Number of neurons

50

60

70

80

90

100
M

ea
n 

ac
cu

ra
cy

 (%
) a)

RC uncoupled
RC coupled
TBPTT uncoupled
TBPTT coupled

0 10 20 30 40 50
Number of neurons

40

60

80

100

M
ed

ia
n 

ac
cu

ra
cy

 (%
) b)

Figure 5.9 – a) Mean accuracy versus number of neurons in the network. Fourtypes of networks are represented, two networks are trained with reservoircomputing, one with internal coupling of the neurons and the other without.The two other networks are trained with BPTT, similarly with internal couplingof the neurons and the other without b) Median accuracy in the same confi-gurations.

drive and then its output is scaled down by theWout matrix and the neuron 2
is submitted to a small drive and its output scaled up by theWout matrix. This
is an example of how the non-linearity of the dynamics of two spintronic neu-
rons can discriminate between different non-linearly separable inputs when
tuned with BPTT.

From this study we notice that training with backpropagation is more effi-
cient than reservoir computing, moreover it is possible to solve the sin square
task with down to two neurons with BPTT trained networks.

111



0 20 40 60 80 100
0.3

0.2

0.1

ne
ur

on
 a

ct
iv

at
io

n

b)

neuron 1
neuron 2

0 20 40 60 80 100
times in ns

0.00

0.05

c)

neuron 1-2

0 20 40 60 80 100
1

0

1

a)

label
input signal

Figure 5.10 – a) Sequence of 100 input points and their corresponding labelsb) Weighted response of the two neurons of the network by the weights ofthe final layerWout. c) Difference between the two neurons responses in blueand threshold for label discrimination in red.

112



5.10 . Conclusion

In this chapter, I demonstrated that a network of spintronic neurons can
solve a non-linear and temporal task requiring memory, to discriminate bet-
ween sine and square waves. This network is trained with an updated version
of truncated backpropagation through time that I designed to yield better per-
formance on time series prediction. Finally, training device drives with this
method is more efficient than considering the network as a reservoir. Espe-
cially with a small number of devices, using backpropagation, we can obtain
100% accuracy with only two neurons.

113



114



6 - Multilayer network

6.1 . Summary

The goal of this chapter is to demonstrate amultilayer architecture for ST-
NOs dynamical network on a complex task. The other objective is to investi-
gatewhat are the constraints to train such network, especially in terms ofmat-
ching between input timescale and device characteristic response time. The
proposed network architecture is based on the previously described single
layer network of coupled STNOs. However inputs to each layer need to be
centered to limit the saturation of the STNO’s outputs, to do so high-pass fil-
ters are applied on the outputs of each STNOs. The tackled task is sequen-
tial DIGIT : handwritten 8x8 digit images [118], are send pixel by pixel to the
network and the correct label must be predicted after seeing the full series.
After hyper-optimisation of the learning rate and relaxation time of devices
at fixed input timescale, the network can reach 89.83±2.91% classification ac-
curacy. This performance is equivalent to the 89.00±3.48% accuracy reached
by a standard CTRNN with same number of neurons and the tanh activation
function. We also derived two rules to ensure good training of this network.
First, the relaxation time of devices must be larger than the input timescale
to ensure enoughmemory in the system. Second, the drive duration product,
involving the network’s weights and the input timescale, must be close to one.
This second rule limits the saturation of the neurons by the upper or lower
bounds. It is important to note that parameters such as the learning rate or
the STNOs relaxation time can be varied in a five fold range around their op-
timal value without accuracy degradation. The network is capable to adapt
to a variable range of input dynamics. Another important results is that the
density of connections in the network can be lowered down to 50% without
accuracy degradation, which could be an advantage for future hardware im-
plementations.

6.2 . Introduction

In this chapter, we demonstrate the chaining of successive layers of spin-
tronic dynamical neurons. The output from a layer of spintronic neurons is
re-injected as input into the following layer of neurons. In this configuration,
as the signal is transmitted through multiple layers, it undergoes successive
non-linear and time-dependent transformations driven by the neurons’ ODE.
Coupling two similar ODEs gives rise to dynamics that cannot be achievedwith
a single equation. Thus, we expect that chaining neurons will increase com-

115



putational power compared to a single-layer network. To test this increase
in computational power, we choose a task which requires both non-linearity
and memory and which is harder than Sine-Square : recognizing handwritten
digits from the Sequential DIGIT dataset [118].

This is the first demonstration of a multilayer network using STNOs as
dynamical neurons. Moreover, the architecture of this network is compatible
with hardware implementation and considers the constraints of physical neu-
rons, such as their internal timescale and bounded dynamics.

I start by presenting the network architecture and the task. Then, I des-
cribe the training procedure and hyperparameter optimization, before pre-
senting the first training results. I then show the results of a more in-depth
investigation of critical parameters, such as the density of connections and
the correlations between the neurons’ characteristic relaxation times, the in-
put timescale, and the learning rate, to obtain maximal accuracy.

6.3 . Network Architecture

We propose an architecture based on the single-layer network presented
in the previous chapter with some adaptations to chain layers. The resulting
network is represented in Figure 6.1, where each neuron i in layer n+1 obeys
Equation 6.1. Neurons, represented by blue circles in the architecture, receive
several different driving terms summed as a single input I , and produce an
output labeled xn+1

i for neuron number i in layer number n+ 1. This output
is then processed by a high-pass filter represented by an orange rectangle in
Figure 6.1. The filter’s role will be discussed in the following section in more
detail, but its main purpose is to produce an output yn+1

i for the neuron xn+1
isuitable to be re-injected into another layer.

dxn+1
i

dt
= −γxn+1

i + I(t)xn+1
i (1− xn+1

i )

with I(t) = S × ((Wn
ext)ijy

n
j + (Wn+1

int )ijy
n+1
j + bn+1

i ) + bfixed

(6.1)

Let’s now have a look at the different terms in the input received by a neu-
ron. Layers are connected to each other by a weightmatrixWn

ext that unidirec-tionally couples neurons from layer n to layer n + 1. These forward connec-
tions are represented by purple boxes in the architecture figure. Thus the
neuron xn+1

i receives weighted filtered outputs from layer n represented by
the term (Wn

ext)ijy
n
j . Consequently, matrix Wn

ext has the size of the receivinglayer in rows and the size of the input layer in columns. Here, this corres-
ponds to a 32×32matrix. Within each layer, neurons are coupled by a weight

116



W
_o

u
t

1
0

x3
2

LAYER 1, 32 
neurons

…

W
_ext

3
2

x3
2

H
igh

 p
ass filter

W_int
32x32

B
iase

s 3
2

LAYER 2, 32 
neurons

LAYER 3, 32 
neurons

W
_ext

3
2

x1input

Output classes

S

…

W
_ext

3
2

x3
2

H
igh

 p
ass filter

W_int
32x32

B
iase

s 3
2

S

…
H

igh
 p

ass filter

W_int
32x32

B
iase

s 3
2

S

Figure 6.1 – Architecture of the network made of 3 layers of 32 dynamical neu-rons. Each layer receives inputs from itself via the green recurrent loopWint,and from the previous layer via the purple weight matrixWext. Outputs froma layer are filtered with a high-pass filter (orange box).

matrix Wn
int, represented by the green box and arrows. In consequence the

neuron xn+1
i receives weighted filtered outputs xn+1

j from layer n represen-
ted by the term (Wn

ext)ijy
n
j . Similarly this matrix has a size 32 × 32 since it

couples 32 oscillators to each other. Self-coupling is removed to prevent ex-
ponential increase or decay of an oscillator independent of the task input. In
consequence, we set all diagonal weights of the Wint matrices to zero, thus
having 32 × 32 − 32 = 32 × 31 tunable weights. The remaining terms in the
input are additional sets of 32 tunable biases bn+1

i and a fixed bias bfixed ap-plied on each layer n+1 of neurons. These biases are represented by the dark
yellow boxes in figure 6.1. These biases are equivalent to setting a threshold
in the activation of neurons. Finally, we apply a scaling factor S to the input
received by each neuron, this factor has a similar role to the high-pass filter
detailed in the following section. It’s important to note that I chose this factor
as an hyperparameter and it is fixed during training.

The first and last layers slightly differ from the general geometry as they
respectively receive the input from thedataset andproduce the output classes.
The input is a time-series with a single value at each time step. The first layer
receives the weighted single input value through W 1

ext, thus this matrix has
size 32×1. Similarly the output of the final to a layer of 10×32weights and 10
biases, going to the 10 output classes. A LogSoftMax function is then applied
to compute the logits without using additional neurons as non-linearity for

117



the ten final outputs.

6.3.1 . Role of the high-pass filter and amplification factor

What appears when chaining dynamical neurons is that the output from a
neuron is not of the same amplitude as the input it received. To illustrate this
issue, we chain 3 neurons. I inject a sinusoidal signal of normalized amplitude
1 and period of ten nanoseconds in the first neuron, which has a relaxation
frequency of γ = 0.15GHz , see Figure 6.2 a). The output of this neuron is then
fed to another similar neuron to simulate a second layer. Similarly the output
of this second neuron is sent to a third neuron to estimate the change in si-
gnal in layer 3. The behavior of each neuron is reported in Figure 6.2 c). A first
observation is that the first neuron has a an oscillation amplitude around 4
times smaller than the input signal. This is due to the term Ix(1− x) in Equa-
tion 5.3. Indeed the value of x(1 − x) is roughly 0.25 when the neuron has
a mean value 0.5, thus dividing the signal amplitude by approximately 4. In
the same way the amplitude of oscillation is once more decreased in the se-
cond neuron and thus quasi-nonexistent in the last neuron. This is an issue
since the time-varying nature of the input signal is quickly reduced by chai-
ning layers then discarding most of useful information.

We tackle the amplitude loss through layers by amplifying the output of
a neuron by scaling it with a coefficient that we call S. Let’s go back to our
previous example of three chained neurons and choose S = 4 to compen-
sate for the amplitude loss ; this study is represented in Figure 6.2 d). In this
configuration, the amplitude of oscillation of the second neuron is nowmuch
higher and quite similar to that of the first neuron. However, the third neuron
still shows a loss of amplitude. This time it is because the neuron starts to ap-
proach saturation x = 1 ; in this case, the drive multiplied by x(1− x) goes to
a value close to 0. The neuron has been pushed toward 1 because the mean
value of the neuron output has also been scaled by S = 4, adding a positive
offset drive. We thus want to discard the offset coming from the mean value
of the previous neuron.

The easiest solution to discard an offset from a time-varying signal is to
pass this signal through a high-pass filter. This solution can be implemented
in hardware with simple electronics, making it realistic to usewith physical de-
vices. This kind of filter is designed to let high frequencies pass while blocking
low ones. Applying the high-pass filter in simulation requires the addition of
another dynamical variable yni , which corresponds to the filtered output of
neuron xni . This filtered output evolves according to Equation 6.2. In this equa-tion, yni is the filtered output of neuron number i of layer n xni , and fcut is the

118



0 20 40
0.50

0.25

0.00

0.25

0.50

am
pl

itu
de

a)

input

0 20 40
0.25
0.50
0.75

am
pl

itu
de c) layer 1

layer 2
layer 3

0 20 40
0.25
0.50
0.75

am
pl

itu
de d)

0 20 40
time in nanosecond

0.50

0.25

0.00

0.25

0.50

am
pl

itu
de

b)
output
filtered output

0 20 40
time in nanosecond

0.25
0.50
0.75

am
pl

itu
de e)

Figure 6.2 – a) Amplitude versus time (nanoseconds) of a sinusoidal input si-gnal of period T = 10nsb) Response of a neuron with γ = 0.15GHz to the sinusoidal input signalversus time, with or without application of a high-pass filter c) Response ofthree chained neuron with γ = 0.15GHz to the sinusoidal input signal versustime d) Response of three chained neuron with γ = 0.15GHz to the sinu-soidal input signal versus time, with 3 times amplification between layers e)Response of three chained neuron with γ = 0.15GHz to the sinusoidal inputsignal versus time, with application of a high-pass filter and 3 times amplifica-tion between layers

119



cutoff frequency below which the filter doesn’t transmit the signal. Applying a
high-pass filter with fcut = 0.05, the output signal of a neuron shown in green
in Figure 6.2 b) is transformed into the signal in red, where the amplitude of
oscillation is conserved and the mean value is shifted to zero. Now, we can
amplify the filtered signal without amplifying an offset. In Figure 6.2 e), the
three neurons are chained while applying a high-pass filter on the output of
each previous layer and with a scaling factor between layers S = 4. We now
observe that the amplitude of oscillation is conserved through the layers, as
all neurons have the same range of values, and the time-varying information
of the signal is not lost anymore.

dyni
dt

= −2πfcut × yni +
dxni
dt

(6.2)
This filtering and amplifying minimizes the number of neurons that are in

saturated states, thus ensuring a maximal transfer of useful signal from layer
to layer.

This multilayer network presents the same global layer structure compa-
red to the monolayer network : a matrix Wext weighting the inputs, and a
matrixWint implementing a recurrent loop inside a layer. However, the chai-
ning of successive layers required some adaptation. The ideal configuration
to avoid the saturation of neurons is to send them inputs varying around zero.
However, due to their bounded dynamics, neuron outputs have an offset with
a value higher than the amplitude of oscillation. To discard this offset and be
able to amplify only the time-varying signal, I implemented a numerical high-
pass filter between successive layers. This solves the offset issue and is pos-
sible to implement in hardware. The other principal difference is due to the
chosen task ; instead of assigning a label to each time step, here we assign a
label to the entire time series of 64 time steps.

6.4 . Task : Sequential DIGIT

The task that I chose is a time-series classification task, sequential DIGIT
based on the eponymous DIGIT dataset [118]. The non sequential version of
DIGIT is a reference benchmark for small networks. This dataset is made of
1797 8x8 pixels gray scale images representing handwritten digits, see Figure
6.3 a). The task here is to predict the class in which each image belongs when
the image is presented sequentially to the network one pixel after one pixel
with a time step of 1 ns, see Figure 6.3 b). In this case the label prediction is
done only after the final time-step and not at each time step contrary to the
sine-square task.

120



a)

0 20 40 60
time in nanoseconds

0

10

pi
xe

l v
al

ue b)
labels=0,1,2

0 20 40 60
time in nanoseconds

0

10

pi
xe

l v
al

ue c)
3 example label=0

Figure 6.3 – a) Example of each of the ten classes b) Example of images 0, 1and 2 expressed sequentially in time c) Three examples of images in the class0

The sequential nature of this computation requires a lot of time in soft-
ware since the simulated neurons of the network evolves in time and need to
be computed for each input. Thus DIGIT was well suited as a small dataset, it
helped to keep reasonable the time to perform numerous epochs on several
networks in parallel. I split the dataset in two, a training and a testing part in
respective proportions 50% and 50%. An epoch is thus constituted of 898 la-
bels and 898× 64 = 57472 points in time .

This task is non-linearly separable as displayed in Figure 6.4, knowing the
mean value of the images is not enough to perform classification. This task
thus probes the time non-linearity of our system.

6.5 . Training procedure

The training procedure here is slightly different compared to the sine-
square task ; indeed, we do not want to predict a label for each time step in a
time series but to assign a label to the full time series corresponding to one
image. For each epoch, the full dataset is run through, with each image being
converted into a 64-point time series, see Figure 6.3. This sequence is fed to
the network, and after the last time step t = 64,ns, the negative log likelihood
loss is applied to the output of the network and the desired target label. The
network internal state is reset after each image as there is no time correla-
tion between images ; this could be done in hardware by letting the neurons
relax in the absence of input. The loss is backpropagated after each batch of
120 images run through the network ; this total loss is an average of the 120
individual losses.

121



T-
sh

irt
/to

p

Tr
ou

se
r

Pu
llo

ve
r

Dr
es

s

Co
at

Sa
nd

al

Sh
irt

Sn
ea

ke
r

Ba
g

An
kl

e 
bo

ot

3

4

5

6
M

ea
n 

im
ag

e 
va

lu
e

Figure 6.4 – Mean pixel value for all ten image classes, all classes appear nonlinearly separable

With this configuration, we do not truncate the backpropagation through
time as only 64 time steps are performed, but we still need to clip the gra-
dients to prevent exploding gradients. Now that the network is more com-
plex compared to the single-layer case, it is harder for the loss to find a stable
minimum; thus, to help the network parameters converge, the learning rate
decreases through the epochs as described in Equation 6.3, where nepoch is
the index of the epoch and lrdecay is the learning rate decay.

lr =
lr0

nepoch

lrdecay
+ 1

with lr0 = 0.02 and lrdecay = 5 (6.3)

6.6 . Optuna and hyperparameter optimisation framework

Optuna is a hyperparameter optimisation framework based on Bayesian
optimisation. The purpose of Optuna is to find the best set of hyperparame-
ters that minimize an objective function. In our case, the objective function
is the loss of our network. This objective function is treated as a black box
by Optuna, and a probabilistic model is fitted to reproduce the output of the
objective function. Specifically, the optimisation algorithm will start by eva-
luating the performance of some random combinations of hyperparameters.
Optuna then fits a model that maximizes the probability density of obtaining
the best hyperparameters. Thismodel is based on a sumof Gaussian distribu-
tions centered on the best hyperparameter sets. Using this fitted probabilistic
model, the algorithm calculates a new set of hyperparameters that shouldmi-
nimize the objective function. Once the true output of the objective function is
evaluated with these hyperparameters, the model is fitted once more, inclu-

122



ding this new configuration if it gives a good result. This process is repeated
iteratively until a user-defined number of trials have been tested. An early
stop method called pruning can also be activated to stop unpromising trials
before the end of the training of a network.

Optuna also provides hyperparameter analysis tools such as maps of the
best results versus hyperparameters, the importance of the different hyper-
parameters, and so on, enabling users to check that optimisation is successful
and that it explored meaningful regions.

6.7 . Training results : Obtaining high-performance networks

In this section, I will demonstrate that a network with spintronic neurons
can achieve high accuracy on the DIGIT task. We will focus on the optimal
number of layers and optimizing the network parameters while preventing
saturation of the neurons.

6.7.1 . Impact of the Number of Layers
In recurrent neural networks, contrary tomost feedforward architectures,

increasing the number of layers does not automatically increase the perfor-
mance of the network. RNNs generally performbest with 2 or 3 layers. Indeed,
for n layers, the nth derivative of the output depends on the input vector ; ge-
nerally, parameterizing up to the 2nd or 3rd derivative is sufficient to get any
desired output. I thus investigated how the number of layers in my spintronic
neural network impacts the performance.

For each number of layers, I chose to first do a hyperparameter optimiza-
tion step on three coefficients impacting the neurons’ dynamics while keeping
a fixed time between two inputs of 1 ns. The optimized coefficients are bfixed,
S, and γ, see Equation 6.1. The found coefficients are displayed in Table 6.1.We
notice that the amplification factor S does not vary much, but the two other
parameters γ and bfixed present a trend. Indeed, the damping γ increaseswith
the number of layers, and the fixed bias added to the input of each layer also
increases with the number of layers. These two parameters have opposite
effects, one being a positive damping and the other one a negative damping,
and they define the equilibriumpoint of the neuronswithout inputs and other
biases, see Equation 6.4, where the input to any neuron is set to zero. We no-
tice that except for the 1-layer case, the equilibrium value of the neurons is
around the middle of the allowed range [0, 1], which enables the neurons to
start in a state far from saturation and thus maximizes the number of active
neurons. In the case of a single layer, the observed bias is the bias applied to
the input andmainly serves to recenter the input value. Since the mean value
of the input is positive, the fixed bias needs to act as an additional negative

123



Table 6.1 – Optimal hyperparameters versus number of layers
number of layers 1 2 3 4

S 0.30 0.37 0.31 0.35
bfixed (GHz) -0.04 0.18 0.38 0.31
γ (GHz) 0.055 0.088 0.133 0.139
τrelax (ns) 18.2 11.4 7.52 7.19
xequilibrium 0 0.51 0.65 0.55

damping.
The optimal damping increases with the number of layers, meaning that

the optimal relaxation time of the neurons decreases with the number of
layers. This can be understood in terms of dynamics : the input varies quickly
in time and needs to be integrated non-linearly by the neurons to produce a
slowly varying output signal. When feeding the output of a layer to the next
one, the signal is integrated twice. As we need to keep the same output dy-
namics to classify correctly, each layer needs to have half of the preceding
integration time. This can be seen in Figure 6.5, where the responses of neu-
rons are represented for each layer in networks with 1 to 4 layers. The signal
is smoothed while progressing through the layers, and the fewer layers the
network has, the more each layer needs to integrate the signal. It seems that
the supplementary integration effect is only present up to three layers, with
the dynamics of the fourth layer being very similar to the third one. In terms
of memory, we can also consider that the memory is spread over the layers.
This is interesting in terms of hardware application, as we can use oscillators
with greater damping, which are easier to produce if we use multilayers.

dx

dt
= −γx+ bfixed × x(1− x)

xequilibrium = 1− γ

bfixed

(6.4)

In Figure 6.6, we display the accuracy for networks with one to four layers
versus the input timescale. As designed in the hyperparameters optimisation,
the median accuracy – represented in solid lines – is maximal around a time
between two inputs equal to one nanosecond for all number of layers. Loo-
king at the mean accuracy around the condition of optimisation, the optimal
number of layer is three. Indeed going up to three layers increase the median
accuracy around δt = 1ns but adding a fourth layer does not improve the ac-
curacy anymore, this is coherent with the admitted optimal number of layers

124



layer 1 layer 2 layer 3 layer 4

1 layer
network

2 layers
network

3 layers
network

4 layers
network

Figure 6.5 – Evolution of neurons from all layers for networks with differentnumbers of layers when submitted to different inputs. Neurons in the lastlayers present slower dynamics, which helps to discriminate inputs.

for RNNwhich is two to three. Herewe can observe that the two layer network
while having slightly less good performance around δt = 1ns, is a bit more
adaptable at higher time between two inputs. We will show in the section 6.9
that the three layer network can be optimised to present high-adaptability
and thus a flat high accuracy on a broad range of input timescales.

In Figure 6.6, the spread of accuracy for 10 different networks initialisation
is represented in light colored areas, each initialisation differs only by the ran-
dom seed used to generate the starting values of weights and biases of the
network. There is a great dispersion of performance for a same input times-
cale : some networks performs well with up to 80% accuracy while others fails
with accuracy below 30%. This training failure does not appear in many ini-
tialisations : in the case of the three-layer network, only 0.5% of initialisations
have an accuracies below 50%. Moreover, we can still reduce this proportion.
This issue is due to the saturation of some neurons during the training and
will be discussed in the following section.

6.7.2 . Preventing saturation of neurons during training
In order to optimise the network’s general behavior, we need to unders-

tand and try to tackle the issue mentioned previously : while some initialisa-
tions give great results, others with similar parameters fail to train efficiently.
This issue is due to some neurons being pushed toward saturation during
training, thus changing from an active classification behavior to a passive one.
In Figure 6.7, we can see the comparison between the training of a success-
ful network and a failing one. Looking at accuracies through training, we see

125



0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
time between two inputs in nanoseconds

30

40

50

60

70

pe
rc

en
ta

ge
 o

f a
cc

ur
ac

y

1 layer
2 layers
3 layers
4 layers

Figure 6.6 –Median accuracy is shown in solid lines, with the range of accuracyin light-colored shadows and the range between the 25th and 75th percentilesin darker-colored shadows for networks with 1, 2, 3, and 4 layers, versus thetime between two successive inputs. These accuracies are computed for 10different network initialisations at each input timescale.

that the successful network’s accuracy increases smoothly, while for the fai-
ling one, it starts to increase, and a sudden drop in accuracy arises around
epoch 24, see Figure 6.7 c) and d). In the meantime, the mean absolute value
of trainable parameters, represented in Figure 6.7 a) and b), converges for the
successful one and diverges for the failing one. This divergence causes satu-
ration of neurons, driving them too strongly up or down and pushing them
into saturated states of 1 or 0.

This is represented in Figure 6.8. Here, plots a), b), and c) show neuron
responses to different inputs for three neurons, one from each layer. These
neuron responses are taken before the drop in accuracy of a failing network,
at epoch 22. In plots d), e), and f), the responses of the same neurons are dis-
played but taken after the drop in accuracy. We can see that before failing, the
neurons of the two last layers show a rich behavior with various trajectories
for different inputs. However, after the drop, neurons reach saturation for all
inputs, thus losing memory of previous values, which prevents any classifica-
tion.

A solution to prevent saturation is to maintain lower weight and bias ab-
solute values, which can be done by clipping the weights and biases if they ex-
ceed a threshold value. This clipping is rescaled by the input timescale. Indeed,
fast-varying signals impose a given input for short times ; thus, they need high
weight values to drive the transient dynamics of the neurons. The impact of
the input timescale and its link to the weight values will be studied in more

126



0 10 20 30 40 50
0.1

0.2
m

ea
n 

ab
s v

al
ue

a) succesful training

bias
Wint
Wext

0 10 20 30 40 50
0.1

0.2

0.3

m
ea

n 
ab

s v
al

ue

b) failing training

bias
Wint
Wext

0 10 20 30 40 50
training epoch

25

50

75

ac
cu

ra
cy

 (%
)

c) succesful training
0 10 20 30 40 50

training epoch

25

50

ac
cu

ra
cy

 (%
)

d) failing training

Figure 6.7 – Evolution of the mean absolute value of the different trainableparameters versus the number of epochs for a successful training (a) and fai-ling training (b). Evolution of the test accuracy versus the number of epochsfor a successful training (c) and failing training (d).

detail in Section 6.9.
The impact of such clipping is represented in Figure 6.9. The red curve is

the accuracy of the three-layer network without clipping, and the blue curve
is the same network trained with weights clipped to 0.25

δt in absolute value and
biases clipped in the same way to 0.15

δt . We see that it solves the issue of large
discrepancies : all initialisations now train well. However, the maximal accu-
racy is reduced.Without clipping, 75% of the networkswere performing better
than 70% accuracy, and 50% better than 75% at δt = 1,ns, but now the accu-
racy is around 67% for all networks. In the meantime, the time adaptation is
more uniform; the accuracy is quite flat between δt = 0.75ns and δt = 2ns.
This can be understood as shorter timescales needing higher weight values to
drive neurons strongly for a short time ; the degradation comes from the im-
possibility of reaching such a strong drive. On the other hand, at longer times-
cales, excessively large weights are more prone to saturate neurons, which is
now prevented with the clipping, thus improving median accuracy.

6.7.3 . Hyperoptimisation with Optuna

In this section, we demonstrate that it is possible to obtain high accu-
racy and high input timescale adaptation with a more refined procedure of
hyper-optimisation. The hyper-optimisation is realized by adding six additio-
nal hyperparameters. The learning rate, the learning rate decay, the density
of intra-layer connections, and the density of inter-layer connections are now
hyperparameters. Additionally, the input I0(t) is rescaled as Sin × I0(t) + bin,withSin and bin being also hyperparameters. A first roundof training is perfor-

127



0.00

0.25

0.50

0.75

1.00
ne

ur
on

 a
ct

iv
at

io
n

layer 0 before failure

a)

layer 1 before failure

b)

layer 2 before failure

c)

0 25 50
time in nanosecond

0.00

0.25

0.50

0.75

1.00

ne
ur

on
 a

ct
iv

at
io

n

layer 0 after failure

d)

0 25 50
time in nanosecond

layer 1 after failure

e)

0 25 50
time in nanosecond

layer 2 after failure

f)

Figure 6.8 – Evolution of neuron responses versus time when submitted todifferent input examples. Neuron from layer 0 before failure of training in(a). Neuron from layer 1 before failure of training in (b). Neuron from layer 2before failure of training in (c). Neuron from layer 0 after failure of trainingin (d). Neuron from layer 1 after failure of training in (e). Neuron from layer 2after failure of training in (f).

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
time between two inputs in nanoseconds

20

40

60

80

pe
rc

en
ta

ge
 o

f a
cc

ur
ac

y

no weight clipping
with weight clipping

Figure 6.9 – Accuracy of networks versus time between two input points. Foreach input timescale, the accuracy is computed for 10 different initialisations.The median is displayed in solid lines, the range of accuracy in light-coloredshadows, and the range between the 25th and 75th percentiles in darker-colored shadows. These quantities are computed for a network with weightclipping in blue and without clipping in red.

128



0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
time between two inputs in nanoseconds

50

60

70

80

90
pe

rc
en

ta
ge

 o
f a

cc
ur

ac
y

after hyperoptimisation
before hyperoptimisation

Figure 6.10 – Accuracy of hyper-optimised networks versus time between twoinputs points. For each input timescale, the accuracy is computed for 36 dif-ferent initialisations. Themedian is displayed in solid lines, and the range bet-ween the 25th and 75th percentiles is shown in colored shadows.

med with 120 random hyperparameter configurations and no pruning. After
identifying the more promising region, a second round of training is perfor-
medwith optimisation activated and pruning to find the best hyperparameter
configuration.

After this hyper-optimisation step, the performance of the network is glo-
bally increased as displayed in Figure 6.10. We see that we now have a hi-
ghest performance of 93.89%, and the top ten best performances range from
93.06% to 93.89%. Looking at the median accuracy and above the 25th per-
centile, the accuracy is quite flat, meaning that our network is adapting to
the input timescale around its hyper-optimisation point. However, some net-
works are now failing in training again ; here, it’s only a small proportion, only
7.2% of the initialisations lead to less than 70% accuracy. To ensure full trai-
ning, we could perform a fine-tuning of the weight clipping that is no longer
valid ; indeed, some hyperparameters such as Sin or S have new values that
change the strength of the drives.

Hyperparameters have different levels of importance and aremore or less
constrained. The amplification factor between layers appears to be a stron-
gly constrained parameter. In Figure 6.11, I varied the amplification factors
individually—the input amplification Sin and interlayer amplification S—and
simultaneously, around their optimal value. The top accuracy above 85% is
achieved in a small window when varying the interlayer amplification S ; this
parameter can be varied only by a factor of 1 to 2 to obtain high accuracy and
thus must be tuned carefully. This amplification factor controls how much si-
gnal is transmitted from one layer to the next. If the input signal to a layer is
too weak, for instance with S = 0.0315, neurons will have a weak response
and stay around their equilibrium position x ≈ 0.5, as we can see in Figure

129



0 25 50
time (ns)

0.0

0.5

ne
ur

on
 a

ct
iv

at
io

n

b) S=0.0315
0 25 50

time (ns)

0.0

0.5

c) S=0.5
0 25 50

time (ns)

0.0

0.5

d) S=1.256

10 2 10 1 100 101 102

Amplification

25

50

75
Ac

cu
ra

cy
 (%

) a)
input ampli
interlayer ampli
global ampli

Figure 6.11 – a) Median accuracy of 10 different initialisations of networks whilevarying the different amplification factors : input and interlayer amplifications.b), c), and d) Responses of neurons from the last layer for different globalamplification factors.

6.11 a). Similarly, if the signal is too strong, neurons will be rapidly driven into
saturation states, either zero or one, as we can see with S = 1.256, see plot c).
These two situations lead to nearly inactive neurons that don’t have a rich tra-
jectory and thus cannot perform classification. We can identify three different
regimes : underdriven neurons, active neurons, and overdriven neurons.

The learning rate and the relaxation time impact will be studied more in
depth in Section 6.9 ; these two quantities are loosely constrained and can
vary by a factor of 1 to 10 while still giving optimal results. Biases need to com-
pensate for the damping and thus share the same constraints as the relaxa-
tion time.

6.8 . Reducing thedensity of connectionwhilemaintaininghigh-
accuracy

When performing the hyperoptimisation, the density of connections at
initialisation between oscillators didn’t appear as a critical parameter ; some
runs with low density were able to attain high accuracy. I thus tested how
sparse the network can be at initialisation while still showing high accuracy
after training. For this, I scanned the interlayer density of connections and in-
tralayer density of connections both individually and simultaneously. Results
are displayed in Figure 6.12. We can observe that when keeping the interlayer

130



0.0 0.2 0.4 0.6 0.8 1.0
density of connection

20

40

60

80

pe
rc

en
ta

ge
 o

f a
cc

ur
ac

y

intralayer connectivity
interlayer connectivity
global connectivity

Figure 6.12 – Evolution of the test accuracy when reducing the density ofconnectivity within a layer and between layers. Each point represents 10 dif-ferent random initialisations.

density of connections at 100%, the intralayer density of connections can be
drastically reduced down to 10%without loss of accuracy and to 0%with a loss
of 10% accuracy. Similarly, keeping the intralayer density and reducing the in-
terlayer density down to 20% doesn’t degrade the accuracy. Below 20%, the
accuracy decreases and ultimately hits 10%, corresponding to random classi-
fication when the interlayer density is set to 0%. This is expected as the input
signal is no longer flowing through the network. Varying both densities simul-
taneously leads to a maximum accuracy at 50% connectivity, and we can go
as low as 30% connectivity without significant loss of accuracy.

Another effect of the reduction of connectivity can be observed in Figure
6.12. It appears that reducing the connectivity also reduces the accuracy dis-
persion of the different initialisations. Here, for each density step, 10 random
initialisations are trained. When the global density is at 100%, the dispersion,
visible by the 75th to 25th percentile range represented in colored shadows,
is quite large. On the contrary, when the global density of connections is be-
low 60%, the dispersion is small and continues to decrease when decreasing
the connectivity. Diminishing the connectivity reduces the number of inputs
going to each neuron ; this also decreases the risk of saturating neurons du-
ring the training, which explains the smaller dispersion—fewer networks face
the issue of saturating neurons during training.

This reduction of connectivity is promising for hardware implementation
as it reduces the number of required synapses and connections. This pre-
training randompruning could also be combinedwith pruning of low-importance
connections during training.

131



6.9 . How to adapt a spintronic network to the input timescale

In this section, we aim to investigate how the spintronic network adapts
itself to different input timescales. The network’s hyperparameters have been
optimised to obtain the best accuracy for a time of one nanosecond between
two successive input points from an image.We then train networks with these
hyperparameters for a range of different times between two inputs. As we
train the dynamics of the network, it is able to adapt to a broad range of in-
put timescales, meaning that it is able to adapt to fast or slow varying input
signals.

6.9.1 . Ensuring non-saturated oscillators at all input timescales
In order to obtain a network able to process the widest range of input

timescales, we need to ensure that neurons aren’t saturated in their steady-
state. Previously, the input in the first layer was not centered on zero, and thus
the fixed bias of this layerwas there to both compensate for themean value of
the input and the damping. Similarly, the fixed biases for layers two and three
had to compensate for the damping. The values were found via optimisation ;
however, this approach fails when the input timescale is changed by orders
of magnitude. Indeed, an ill-compensated damping ormean value can lead to
a steady-state of the neurons near saturation points, suppressing the time-
oscillation from the input.

To avoid this issue, the input is now centered around zero by subtracting
itsmean value ; this could also be achieved via a high-pass filter. The fixed bias
of each layer is set to two times the damping. By choosing this value and in
the absence of input, the evolution equation of a neuron becomes Equation
6.5. Here, we see that xn+1

i = 0.5 is a stable equilibrium point. When a time-
varying input centered on zero is applied, it will drive the neuron to oscillate
around xn+1

i = 0.5, limiting the risk of saturation.

dxn+1
i

dt
= −γxn+1

i + 2γxn+1
i (1− xn+1

i )

dxn+1
i

dt
= 2γxn+1

i (0.5− xn+1
i )

(6.5)

All following developments are performed in this configuration, where
bin = bfixed = 2γ and the input is centered around zero. We can now observe
the impact of the main parameters on the training of the network.

6.9.2 . Impact of varying dynamics parameters of the network at

132



fixed input timescale
Two parameters are of particular importance for adaptation to the input

timescale : the learning rate and the relaxation time of the oscillators. The
learning rate, similarly to the amplification factor S, defines the strength of
the input drive. The relaxation time is linked to the memory of the neuron.

I scanned the learning rate around its optimal value of 0.0148 and the re-
sults are displayed in Figure 6.13. The learning rate can be varied by a factor of
1 to 10 while keepingmaximal accuracy. Moreover, we can look at the neurons’
behavior when the learning rate is smaller or bigger than the optimal value.
Neurons’ responses to several inputs are displayed in Figure 6.13.

When the learning rate is too small, lr = 10−4 for instance, neurons present
smoothed-out trajectories ; this is similar to the underdriving regimeobserved
when varying the amplification between layers. Neurons in this case react too
weakly and slowly to the fast-varying input because weights aren’t high en-
ough to drive the neurons strongly. This causes a strong time-averaging of
the input signal and thus degrades the ability of the network to discriminate
between inputs. Additionally, over-averaging is more prone to push neurons
to saturation as neuron trajectories present fewer oscillations, which is also a
cause of degradation of the accuracy. This saturation due to over-averaging
is visible in Figure 6.13.

When the learning rate is too high, lr = 10−1 for instance, neurons are
immediately saturated. This is the overdrive regime observed with an ampli-
fication factor that is too high between layers. In this case, the learning rate
is updating the weights to high values that push the neurons to saturation.
We can notice that while when the learning rate is small, lr = 10−4, 0% of the
weights are clipped, and when the learning rate is optimal, lr = 10−2, only
around 10% are clipped, when the learning rate is equal to lr = 10−1, 100% of
the weights are clipped, also preventing learning.

Finally, it is interesting to note that having a too-small learning rate seems
to lower the accuracy less drastically than a too-large learning rate value ;
over-averaging is less critical than overdriving.

I scanned the relaxation time around its optimal value of 14.12 ; results are
displayed in Figure 6.14. The relaxation time can be varied by a factor of 1 to 10
while keeping maximal accuracy. Moreover, we look at the neurons’ behavior
when the relaxation time is smaller or bigger than the optimal value. Neurons’
responses to several inputs are displayed in Figure 6.14.

When the relaxation time is greater than the optimal one, we notice a slow
decrease in accuracy. This decrease is due to the damping being slightly too
small, not pulling the neurons strongly enough toward x = 0.5. As a result,
the weights pull the neurons slightly too much, leading to a slightly overdri-

133



10 4 10 3 10 2 10 1

Learning rate

25

50

75

Ac
cu

ra
cy

 (%
)

a)

0 25 50
time (ns)

0.00

0.25

0.50

0.75

ne
ur

on
 a

ct
iv

at
io

n

b) lr=1.41x1e-4
0 25 50

time (ns)
0.00

0.25

0.50

0.75

c) lr=1.41x1e-2
0 25 50

time (ns)

0.0

0.2

0.4

d) lr=1.41x1e-1

Figure 6.13 – Test accuracy versus learning rate. For each value of the learningrate, 10 different network initialisations are trained and tested. The solid linedisplays the median accuracy, and the red shadowed area corresponds tothe limits of the 25th and 75th percentiles. Graphs a), b), and c) represent theresponse of a neuron from the last layer of the network submitted to differentinputs examples, represented by colors fromblue to orange. The three graphscorrespond to different learning rates.

134



ven system with oscillators sometimes reaching saturation and thus losing
memory of the previous input values. However, the training tends to keep
the weights small to balance this overdriving due to the small damping. In-
deed, when the relaxation time is optimal, at τ = 14.12, the mean value of
the interlayer weight is 0.20, and when the relaxation time is τ = 1412.00, the
mean value of the interlayer weight is 0.14. This balance is possible here be-
cause the learning rate is reasonably low, lr = 1.4 × 10−2 ; thus, even with a
hundred times longer relaxation time, the accuracy can stay quite high. We
can also notice that the low damping causes the neurons to over-average the
inputs in time, resulting in too smooth and simple trajectories that reduce the
classification power of the network.

When the relaxation time is smaller than the optimal one, we can notice a
sharp decrease in accuracy. In this case, the damping is too strong ; it pulls the
neurons too strongly toward the equilibrium point x = 0.5. This overdamping
regime resembles the underdriving regime, where neurons struggle to have
complex and rich trajectories. The weights are nearly all hitting their clipping
value for τ = 10−1 ; higher weights would be needed to compensate for the
strong damping and drive the neurons away from their equilibrium point. In
Section 6.9.3, we will also investigate the relation between the relaxation time
of the oscillators and the timescale of variation of the input.

In this section,weobserved the efficiency of trainingwhile varying the lear-
ning rate or the relaxation time of the oscillators. Both parameters present a
broad range of acceptable values, with a ratio of approximately 1 to 10 bet-
ween the minimal and maximal acceptable values. These scans have been
performed at a fixed input timescale ; however, we already noticed that os-
cillators need to have a driving term S ×W × I(t) that is comparable to the
damping γ. Indeed, if the damping is too strong compared to the drive, neu-
rons are underdriven, staying around their equilibrium point x = 0.5 ; if the
drive is too strong compared to the damping, neurons are overdriven and
hit saturation. Another effect that we observed is time over-averaging, which
happens when the drive or damping are smaller than their optimal values. In
this case, neurons react too slowly to the variation of the input. This will be
discussed more in depth when varying the input timescale in the next section
6.9.3.

6.9.3 . Impact of thenetworkparameters on input timescale adap-
tation

We observed the response of the network at a fixed input timescale ; ho-
wever, the speed of variation of the input also plays an important role in the
response of the neurons. In this section, we will vary the time between two
consecutive inputs and record the accuracy of networks trained with this in-
put timescale. In Figure 6.15 a), the final test accuracy is displayed, varying the

135



10 1 100 101 102 103

Relaxation time  (ns)

25

50

75

Ac
cu

ra
cy

 (%
) a)

0 25 50
Time (ns)

0.0

0.5

ne
ur

on
 a

ct
iv

at
io

n

b) =0.89(ns)

0 25 50
Time (ns)

0.0

0.5

c) =14.12(ns)

0 25 50
Time (ns)

0.0

0.5

d) =1412.0(ns)

Figure 6.14 – Test accuracy versus relaxation time of the spintronic neurons.For each value of relaxation time, 10 different network initialisations are trai-ned and tested. The solid line displays the median accuracy, and the red sha-dowed area corresponds to the limits of the 25th and 75th percentiles. Graphsa), b), and c) represent the response of a neuron from the last layer of thenetwork submitted to different inputs, represented by colors from blue toorange. The three graphs correspond to different relaxation times.

136



input timescale from ∆t = 10−2,ns to ∆t = 102,ns, where the network hy-
perparameters have been optimised for ∆t = 1ns. At each input timescale,
ten networks with different initialisations are trained. It is important to note
that the weights are clipped to a max value rescaled by the input timescale
wclip = ±wmax

∆t . A first interesting result is that our optimisation procedure
is working, the top accuracy is obtained for ∆t = 1 ; moreover, the input ti-
mescale presents an optimal window around this top accuracy with a range
of approximately 1 to 10, from∆t = 0.38ns to∆t = 2.51ns.

In Figures 6.15 b), c), and d), the response of a representative neuron from
the last layer of the network after training is presented, submitted to different
input examples. These three graphs differ in the input timescale with which
the network have been trained and tested. In graph c), the input timescale is
the optimal one ∆t = 1ns, and we observe that the neuron presents a rich
dynamics with different trajectories for different inputs, enabling good clas-
sification. In plot b), the input timescale is ∆t = 0.06ns, meaning that the
input is varying very fast compared to the relaxation time of the oscillators
τ = 14.12ns. In this case, the neuron has less complex trajectories ; they ap-
pear more smoothed out and similar for different inputs. This is coherent
with the lower accuracy compared to the previous case. There are two causes
for these smoothed-out trajectories : first, neurons, due to their long relaxa-
tion time scale, tend to average out the inputs ; however, as shown in Sec-
tion 6.4, the inputs cannot be correctly classified based only on their mean
values. The second cause is that weights are too small to drive the neuron
sufficiently when the input signal varies rapidly. These two causes will be un-
tangled more in depth in the following. In graph d), the neuron response is
displayed for an input timescale of ∆t = 39.81ns, around three times the
relaxation time of the neurons. In this case, we observe that the neuron res-
ponse is kept around x = 0.5with very small oscillations. From examining the
weights values, we notice that 100% of them are clipped to the clipping value,
meaning that the training pushed the weights to theirmaximal values without
managing to drive the neuron strongly enough. To understand the system be-
havior more clearly, we need to release part of the constraint on the weights ;
for this, I repeated the same input timescale scan but with a uniform clipping
wclip = ±wmax.

The results of this new input timescale scan are displayed in Figure 6.16.
The top accuracy is not modified as expected ; the accuracy for fast-varying
inputs is slightly lower. This can be understood as the weights are now hitting
the clipping that was previously higher. Let’s now focus on the region of large
input timescales. The accuracy is slightly lower andmore spread, which is due
to some neurons saturating now that the clipping is higher. In graph d), the
response of a neuron from a network trained with∆t = 39.81ns is displayed.

137



10 2 10 1 100 101 102

Time between two inputs t (ns)

25

50

75

Ac
cu

ra
cy

 (%
) a)

0 25 50
Time (ns)

0.00

0.25

0.50

0.75

Ne
ur

on
 a

ct
iv

at
io

n b) t=0.06(ns)

0 25 50
Time (ns)

0.00

0.25

0.50

0.75 c) t=1.0(ns)

0 25 50
Time (ns)

0.00

0.25

0.50

0.75 d) t=39.811(ns)

Figure 6.15 – Test accuracy versus input timescale ∆t, corresponding to thetime of application of a point from a time series. For each value of the inputtimescale, 10 different network initialisations are trained and tested. The solidline displays the median accuracy, and the red shadowed area correspondsto the limits of the 25th and 75th percentiles. Graphs a), b), and c) representthe response of a neuron from the last layer of the network submitted todifferent inputs, represented by colors from blue to orange. The three graphscorrespond to different input timescales.

138



10 2 10 1 100 101 102

Time between two inputs t (ns)

25

50

75

Ac
cu

ra
cy

 (%
) a) uniform clipping

rescaled clipping

0 25 50
Time (ns)

0.00

0.25

0.50

0.75

ne
ur

on
 a

ct
iv

at
io

n b) t=0.06(ns)

0 25 50
Time (ns)

0.00

0.25

0.50

0.75 c) t=1.0(ns)

0 25 50
Time (ns)

0.00

0.25

0.50

0.75 d) t=39.811(ns)

Figure 6.16 – Test accuracy versus input timescale ∆t, corresponding to thetime of application of an input point from a time series. For each value of theinput timescale, 10 different network initialisations are trained and tested. Thesolid line displays the median accuracy, and the shadowed area correspondsto the limits of the 25th and 75th percentiles. The accuracy is displayed in twocases : in red, the weights are clipped with a maximal value that depends onthe input timescale ; in yellow, the weights are clipped with a maximal valueindependent of the input timescale. Graphs a), b), and c) represent the res-ponse of a neuron from the last layer of the network submitted to differentinputs, represented by colors from blue to orange. The considered networksare those trained with a clipping uniform in input timescale. The three graphscorrespond to different input timescales.

Since the clipping is higher, higher weight values are applied on the input, al-
lowing the neuron to be driven out of equilibrium. However, the trajectories
appear to be very similar to each other and ill-suited to discriminate between
inputs. This effect can be explained by the absence of sufficient memory in
the system; here, the relaxation time of the neurons is three times smaller
than the time between two different inputs, meaning that nearly all previous
inputs are forgotten when sending a new one. The neuron is not integrating
the input but only reaching its steady state depending on the current inputs.

In order to test the validity of my interpretations of the neurons’ behavior
and the link with the final observed accuracy, I performed the same input
timescale scans but now varying the relaxation time and learning rate ; results
are displayed in Figure 6.17 a) and b).

If we look at the region of small input timescales, it appears that having
a smaller relaxation timescale can slightly improve the accuracy, as shown

139



10 2 10 1 100 101 102

Time between two inputs t (ns)

20

40

60

80

Ac
cu

ra
cy

 (%
)

a)

relax x10
relax x0.1
reference

10 2 10 1 100 101 102

Time between two inputs t (ns)

20

40

60

80

Ac
cu

ra
cy

 (%
)

b)

lr x0.1
lr x5
reference

Figure 6.17 – Test accuracy versus input timescale ∆t, corresponding to thetime of application of an input point from a time series. For each value of theinput timescale, 10 different network initialisations are trained and tested. Thesolid line displays the median accuracy, and the shadowed area correspondsto the limits of the 25th and 75th percentiles. Graph a) displays the test accu-racy for networks trained with the reference relaxation time τ = 14.12 ns, re-laxation times ten times smaller in blue, and ten times bigger in green. Graphb) displays the test accuracy for networks trained with the reference learningrate lr = 0.014, and learning rates ten times smaller in green and five timesbigger in blue.

in graph a). This is in agreement with the over-averaging interpretation. In
this case, a lower relaxation time reduces the time-averaging of the neurons.
However, the main parameter to improve accuracy at small input timescales
is to have a larger learning rate, as visible in graph b). This is coherent with
the issue of underdriving the neurons, as a higher learning rate gives larger
weights able to drive the neuron in its transient state.

Focusing now on the large input timescale region, we can notice from
graphs a) and b) that only increasing the relaxation time, and thus the me-
mory length of the system, can improve the accuracy in this region.

Now that my interpretations are validated, I propose a metric in Equation
6.6 to evaluate if a spintronic network is likely to perform efficiently with given
parameters τ , S, lr, and∆t. This equation states that the damping 1

τ must be
approximately equal to the driving term. The driving term is composed of the
amplification factor, the weights that depend themselves on the learning rate,
the input signal, and the ratio of its varying timescale∆t to the relaxation time
of the neurons. This last term represents the fact that if a drive is varying fast
compared to the relaxation time, it gets averaged by the neuron. Ideally, the
learning rate must be a fraction of the final weight value, between 1

10 and 1
100 .An additional condition is that the relaxation time is longer than the input

140



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Drive duration product metric

20

40

60

80

Ac
cu

ra
cy

 (%
)

Figure 6.18 – Test accuracy versus drive duration product metric for all net-works displayed in figure 6.17. Networks respecting the condition τ > ∆t aredisplayed in green, the other ones in yellow.
timescale in order to retain memory of the previous inputs.

1

τ
≈ SWlr ×

I(t)∆t

τ
1 ≈ SWlr × I(t)∆t

with τ > ∆t

(6.6)

I evaluate this metric on all the trained networks displayed in Figure 6.17.
Here, the input is equal to √32× 2 as each neuron receives the inputs from
2 times 32 other neurons with an output of amplitude 1. The weight value is
estimated by taking the mean absolute values of the weights. The results are
displayed in Figure 6.18. We observe that the successful networks are indeed
centered around a metric equal to 1. Networks not respecting the relaxation
time condition are displayed in yellow and fail to have a high accuracy.

6.9.4 . Comparison with a standard recurrent network (CTRNN
)
The system being well understood and optimised, I compare its perfor-

mance with a standard continuous time recurrent neural network (CTRNN)
with a similar structure. In this case, the neurons obey the equation 6.7. These
neurons have non-bounded internal values xni , i.e. these internal values aren’tclipped. Theneurons don’t present liquid time constants. A hyperbolic tangent
function is applied to the output of each neuron, which is a standard activa-
tion function procedure in RNNs. This function also limits the drives applied on
neurons and reduces the risks of fast divergences. The relaxation time τ = 1

γ isdesigned to recenter the neurons’ outputs and prevent divergences. This net-
work is evaluated with the same hyperparameters as the spintronic network,

141



including relaxation time and amplification. The only parameter that changes
is the learning rate, which is divided by 4. This change is made because, in the
spintronic case, the input is multiplied by x(1 − x) ≈ 0.5 × 0.5 = 0.25 ; thus,
the drive in the CTRNN requires four times smaller weights to be comparable.
The result of the input timescale scan is displayed in Figure 6.19. Themean ac-
curacy of the CTRNN is 89.00 ± 3.48%, similar to the spintronic network per-
formance of 89.83 ± 2.91%. The time-adaptation window is also very similar.
The slightly superior performance at large input timescales can be explained
because spintronic neurons are bounded, which is not directly the case in the
CTRNN. It’s also possible that the weights are slightly smaller in the CTRNN
case, thus shifting the optimal accuracy to higher input timescales. With our
simple task, the spintronic network doesn’t present time-adaptation benefits
from its liquid time constant compared to a CTRNN. However, I demonstra-
ted that a simulated network of connected spintronic neurons can perform
as well as a pure software recurrent network despite the strong constraint of
using bounded neurons. This is encouraging for building hardware networks
using transient device dynamics, as physical devices have naturally bounded
outputs.

dxn+1
i

dt
= −γxn+1

i + I(t)

with I(t) = S × ((Wn
ext)ijy

n
j + (Wn+1

int )ijy
n+1
j + bn+1

i ) + bfixed

ynj = tanh(xnj )

(6.7)

6.10 . Hardware perspectives

From this simulation study, we can extract some guidelines for the reali-
zation of a hardware network made of dynamical neurons. Assuming that the
timescale of the input is known, neurons should be chosen with a relaxation
time larger than this input timescale, ideally around 10 times larger. The net-
work must be trained using a learning rate that will lead to weights being of
the same order of magnitude as the neuron damping. Additionally, in order
to have active neurons, a constant bias needs to be sent to the neurons ; in
general, this bias needs to be bigger than the damping, about two times in
the spintronic case.

Between two series of inputs, such as two digits in our case, the network
must relax to its original state. For this, we can just remove all inputs and wait
a few times the relaxation time of the oscillators.

A multilayer network can have better performance, but it will also have
different dynamics. As seen in the previous section, the optimal relaxation
time is shorter in a multilayer network than in a monolayer network. If the

142



10 2 10 1 100 101 102

Time between two inputs t (ns)

20

40

60

80

Ac
cu

ra
cy

 (%
)

spintronic network
CTRNN

Figure 6.19 – Test accuracy versus input timescale ∆t, corresponding to thetime of application of an input point from a time series. For each value of theinput timescale, 10 different network initialisations are trained and tested. Thesolid line displays the median accuracy, and the shadowed area correspondsto the limits of the 25th and 75th percentiles. The accuracy is displayed in redfor spintronic networks and in green for continuous-time recurrent networks.

physical neurons have too short a relaxation time for a single-layer network, it
is then possible to use them in amultilayer network. However, chaining layers
requires implementing a high-pass filter to recenter the inputs to the layers
following the first one. This can be realized with a capacitor if the outputs of
the neurons are DC electrical signals.

A spintronic network using dynamical neurons would require synapses
that transform RF power into DC voltages, these DC voltages being then filte-
red through a capacitor acting as a high-pass filter. This synaptic behavior has
already been demonstrated inMTJ [83][86][80] and with simple Permalloy de-
vices in previous chapters. However, the dynamics of the synapses should not
mix with the dynamics of the neurons ; ideally, synapses should react much
faster than the neurons. Another possibility would be to also take into ac-
count the impact of the dynamics of synapses, which would require another
in-depth study. It is interesting to note that the possibility of reducing the den-
sity of connections would reduce the number of synapses and thus the de-
vices needed, facilitating the experimental realization of a compact hardware
network.

6.11 . Conclusion

In this chapter, I demonstrated that a multilayer spintronic network trai-
ned with backpropagation through time can solve a complex task : recogni-
zing handwritten digits. Moreover, I showed that adding layers improves the

143



performance. Several issues linked to the chaining of layers had to be conside-
red both for the simulation and for a future hardware implementation, such
as the filtering of output offsets with high-pass filters and the neurons’ satura-
tion. Through hyper-optimization, we can obtain a network with high perfor-
mance, achieving more than 90% accuracy over a wide range of input times-
cales, demonstrating the time adaptation of the network through training of
the neurons’ driving strength. The link between the dynamics of the input and
neurons’ relaxation has been studied, and I built a metric to estimate if a net-
work is likely to be successful ; this metric evaluates the matching between
weights and the speed of variation of the input. Moreover, I established that
the relaxation time of the neurons has to be smaller than the variation-time
between two inputs, around one-tenth to produce the best accuracy.

While the adaptation of the dynamics is well described and understood,
the prevention of neurons’ saturation could potentially be improved and re-
designed as a form of penalty in the loss for weights saturating neurons or by
implementing a BPTT with constraints on the neurons’ values, as in optimal
control theory [117].

These results have been compiled in an article, for which I am the first au-
thor, and the preprint is available on arXiv : https ://arxiv.org/abs/2408.02835

144



Conclusion

In this thesis, we developed spintronic radio-frequency neural networks
under two aspects : the experimental realization of a CNN and the simula-
tion of a network with dynamical neurons. To implement a spintronic convo-
lutional layer, I developed AMR spin diode synapses and demonstrated that
chains of such synapses can be fabricated with the correct weights. These
chains were then integrated into a hybrid hardware-software CNN, and this
network was able to reach the expected accuracy while taking the noise into
account during off-chip training. This opens the path for more complete spin-
tronic neural networks. Meanwhile, I designed the architecture of amultilayer
neural network made of coupled STNOs. The goal of this network was to train
and exploit the transient dynamics of these devices to classify time series. The
matching betweendevices’ characteristic relaxation time, input timescale, and
network parameters was investigated. Guidelines on these quantities were
then derived to define when a network of dynamic neurons can learn to solve
a time-dependent task. Below, we recapitulate inmore detail themost impor-
tant results obtained.

In chapter 2, we showed that AMR spin diodes canbeused as radio-frequency
synapses. We proposed and tested three different types of synapses. The first
one is made of a single spin-diode ; its weight is tuned by the external magne-
tic field, which is non-volatile in the case of permanent magnets but sensitive
to external perturbations. The second one is similar, but the weight is tuned
by applying a current in a stripline on top of the diode. This approach is vola-
tile, and the presence of a stripline creates capacitive leakage of the RF inputs,
which is an issue in a more complex system. Finally, we proposed and made
a design with two opposed spin diodes ; the synaptic weight can be control-
led by shifting the relative position of the two diodes. This differential mea-
surement configuration gives rise to a better-defined signal and is robust to
external perturbations.

In chapter 3, we realized chains of synapses to implement weighted sums
on frequency-multiplexed inputs. A mixed series-parallel configuration was
designed to ensure a fixed load of 50 ohms suited for upscaling. A model
of a chain response was built based on the calibration with high precision
of a single synapse. This model allowed us to predict the chain geometry to
implement desiredweights. Three chainswere fabricatedwith this procedure,
and the resulting weights were in good agreement with the theoretical ones,
with an error of 5.2% of the reference value of a weight equal to 1.

In chapter 4, we realize a hybrid hardware-software convolutional network
able to solve an image classification task using the FashionMNIST dataset.
The network is trained in pure software, including some random noise. The

145



weights obtained after training are fed into the optimization procedure descri-
bed in chapter 3, which finds the best geometry for three chains to implement
the convolutional layer. After fabrication, these chains are placed into the ex-
perimental setup, where an automatic alignment procedure is performed to
obtain the best matching between experimental and theoretical weights. This
network is able to reach an accuracy of 88% on the first one hundred images
of the test dataset, compared to the 88.4% obtained with the software inclu-
ding noise.

This first demonstration of the successful application of an experimental
spintronic neural network on a complex task opens the path formore intricate
networks. The new challenges to address include the efficient co-integration
of spintronic neurons and synapses, upscaling to tens or hundreds of sy-
napses, and the realization of networks with nanometric size devices. More
development and investigation into the limits of input power and frequency
width of synapses are required to achieve these goals. Such a network would
benefit from the low power consumption of spintronics and high compact-
ness thanks to the frequency connectivity.

In chapter 5, we demonstrate that a simulated network made of a single
layer of coupled STNOs can be trained via backpropagation through time. The
targeted task is the discrimination between sine and square waves, which re-
quires non-linearity and memory. We observed that a network with its dyna-
mics trained through backpropagation presents better performance than the
same network trained with reservoir computingmethods. We can reach 100%
accuracy with as few as 2 oscillators when trained through backpropagation,
compared to aminimumof 16 oscillators required in reservoir computing. Fur-
thermore, the type of neuron differential equation needed to learn in such
systems has been studied, and naturally bounded systems appear to learn
better than neurons subjected to artificial clipping. Physical models are thus
natural candidates to implement networks of coupled dynamical neurons.

In chapter 6, the architecture of the previous neural network is adapted
to build a multilayer network. This network is trained to classify handwritten
digit images from the DIGIT dataset sent pixel by pixel. The optimal number of
layers is assessed, and a three-layer network gives the best performance. This
network is hyper-optimized and reaches a good mean performance of 89.83
± 2.91% accuracy, compared to the 89.00± 3.48% of a standard CTRNN. The
impact of the parameters controlling the dynamics has been studied. The net-
work maintains high performance over a five-fold range around the optimal
input timescale for a given relaxation. We also extracted guidelines to match
the devices’ parameters and the input timescale to permit learning. The re-

146



laxation time of oscillators must be greater than the input timescale, and the
cumulative drive applied to a neuron should be close to one. These guidelines
could be useful for future hardware applications or even investigations of net-
works made of different dynamical neurons. Another observation of interest
for hardware applications is that the network can be sparsified down to 50%

without degrading the accuracy.
In these two chapters, we demonstrated that a network made of coupled

STNOs with trainable transient dynamics can solve complex tasks, such as
time series classification. Moreover, a multilayer architecture can be realized
in a hardware-friendly way. This network is flexible and can adapt to a wide
range of input timescales. Further investigations could be realized to unders-
tand more in-depth the impact of the number of layers, especially on per-
formance in more complex tasks, and on the characteristic dynamics in each
layer. Device variability should also be investigated, with a specific focus on
the impact of having variability in STNOs’ relaxation times, which could help
process series withmultiple patterns at different timescales. Finally, the hard-
ware realization of such a network could also be envisaged ; however, this re-
quires physical synapses that are able to reach their steady state much faster
than the neurons ; otherwise, their dynamical response needs to be taken into
account.

147



148



List of publications andparticipations in confe-
rences

COMMUNICATIONS
Oral Colloque Louis Néel, Sète 11.2023

Fully Parallel Spintronic Convolutions
Oral JEMS conference, Madrid 09.2023

Spin diode based Convolutional Layer with Frequency Connec-tivity
Oral MMM conference, Minneapolis 11.2022

Fully-Parallel Convolution with Chains of Spin-Diodes
PUBLICATIONS

Article submitted to Physical Review Applied 2024Training a multilayer dynamical spintronic network with stan-dard machine learning tools to perform time series classifica-tion
IEDM 2024 invited paper 2024

Convolutions with Radio-Frequency Spin-Diodes

149



150



Résumé en français

6.12 . Introduction

De nos jours, l’intelligence artificielle (IA) est un domaine en pleineexpansion. Ses applications sont nombreuses : applicationsmédicales,conduite autonome, prédiction en temps réel des tendances écono-miques, et bien sûr, traitement du langage naturel. Le représentant leplus célèbre des modèles d’intelligence artificielle, le chatbot ChatGPT[1], est désormais présent dans la vie quotidienne de millions de per-sonnes. Cependant, l’utilisation croissante de l’intelligence artificiellesoulève unepréoccupationmajeure concernant sa consommationd’éner-gie. Les centres de données où les modèles d’IA sont hébergés et exé-cutés consomment environ 1 à 2% de la production mondiale d’électri-cité et cette consommationdevrait doubler d’ici 2030 [2]. Cette consom-mation d’énergie doit être prise en compte afin de lutter contre le chan-gement climatique.
Cette consommation d’énergie des centres de données est princi-palement causée par le décalage entre l’architecture matérielle tradi-tionnelle et les exigences des modèles d’IA. Les matériels traditionnelssont basés sur une architecture où la mémoire et les unités de trai-tement sont séparées, cependant les réseaux neuronaux d’IA néces-sitent l’accès à des milliards de paramètres en mémoire pour le trai-tement. Cela crée d’énormes fluxs de données entre la mémoire et leprocesseur, responsable de la majeure partie de la dissipation d’éner-gie. Pour éliminer cette cause de dissipation énergétique, une nouvelleapproche pour le hardware spécialisé en IA est développée : le calculneuromorphique. S’inspirant du cerveau, l’idée principale est demettreen œuvre ces systèmes hardwares avec des dispositifs capables de fu-sionner les capacités de mémoire et de traitement. L’un des domainesqui fournit de tels composants est celui de la spintronique, où au lieudemanipuler des charges électriques, c’est le spin des électrons qui estl’élément principal pour coder et transmettre l’information. Ces com-posants sont capables de fonctionner avec une puissance inférieure àcelle de l’électronique standard.
Dans cette thèse, je présenterai le travail que j’ai réalisé pourmettreen œuvre des réseaux neuronaux de différents types avec des com-posants spintroniques, en tirant parti des différentes propriétés of-fertes par ces composants. Ce travail se divise en deux parties : la réa-

151



lisation expérimentale d’un réseau neuronal convolutif (CNN) hybridematériel-logiciel, et la simulation d’un réseaumulticouche de neuronesdynamiques spintroniques.
Les composants spintroniques peuvent être adressés par des si-gnaux radiofréquences. Cette connectivité en fréquence peut résoudrele problèmemajeur du câblage dans les réseaux neuronaux hardware.En effet, en mettant en œuvre un multiplexage en fréquence des si-gnaux combiné avec des dispositifs sélectifs en fréquence, le nombrede connexions spatiales requises peut être considérablement réduit.Le réseau résultant présente une meilleure compacité et une géomé-trie plus simple. Dans la première partie de la thèse, nous démontronsla mise en œuvre contrôlée de ce multiplexage en fréquence à tra-vers la réalisation d’une couche convolutive spintronique. Le chapitre2 présente la réalisation de différents designs de synapses basées surl’effet de diode à magnétorésistance anisotrope (AMR). Ces dispositifsappliquent un poids réglable sur les entrées radiofréquences. Ils sontconstitués d’une simple couche magnétique métallique leur conférantrobustesse et une fabrication relativement simple. Au chapitre 3, nousdémontrons le concept d’opération de multiplication et d’accumula-tion avec ces synapses connectées en chaînes. Nous proposons uneconfiguration mixte en série et en parallèle adaptée pour un futur pas-sage à l’échelle. Nous démontrons un contrôle précis des poids sy-naptiques d’une chaîne de synapses fabriquée. Enfin, au chapitre 4,nous introduisons la mise enœuvre expérimentale d’un réseau neuro-nal convolutif avec une couche convolutive matérielle spintronique etune couche entièrement connectée logicielle. Ce réseau est entraînéen tenant compte du bruit provenant de l’installation expérimentaleet correspond à la précision attendue sur une tâche de classificationd’images de vêtements.
L’utilisation de la dynamique transitoire des dispositifs physiquespeut offrir une manière économe en énergie de traiter les signaux va-riant dans le temps. Les nano-oscillateurs spintroniques (STNO) pré-sentent des dynamiques non linéaires qui peuvent être exploitées pourde telles tâches. Dans la deuxième partie de cette thèse, je démontrequ’un réseau d’oscillateurs spintroniques couplés simulés avec une dy-namique transitoire entraînable peut être utilisé pour classifier diffé-rentes séries temporelles. Au chapitre 5, je démontre qu’un réseau àune seule couche de ces oscillateurs peut être entraîné via la rétropro-pagation à travers le temps pour discriminer des séries temporellessinusoïdales et carrées et montre que ses performances sont supé-

152



rieures à un réseau équivalent entraîné avec une approche de calculpar réservoir. Au chapitre 6, l’architecture d’un réseau multicouche deSTNO est proposée et évaluée sur une tâche plus complexe, la discri-mination de chiffres manuscrits injectés pixel par pixel. L’impact de lacorrespondance entre le temps de relaxation caractéristique des dis-positifs et l’échelle de temps des entrées est analysé et des lignes di-rectrices pour la réalisation tout réseau de neurones dynamiques sontproposées.

Chapitre 2

L’objectif du chapitre 2 est de démontrer la possibilité de réaliserdes synapses spintroniques RF robustes et faciles à fabriquer. Ces sy-napses doivent être capables de traiter des entrées RF multiplexéesen fréquence. Nous avons donc besoin de dispositifs sélectifs en fré-quence et avec une réponse réglable, idéalement non-volatile. Nousavons choisi d’exploiter l’effet magnétorésistif anisotrope (AMR) pourréaliser de telles diodes. Cet effet convertit la puissance RF en une ten-sion continue dont l’amplitude dépend de la fréquence d’entrée et dela fréquence de résonance du dispositif. Cette différence de fréquencereprésente le poids stocké par la synapse, et pour le modifier, la fré-quence de résonance du dispositif est ajustée. Cet ajustement est réa-lisé ici en modifiant le champ magnétique externe. Nous avons pro-posé et étudié trois conceptions de synapses différentes : une baséesur une diode unique, une autre avec une diode plus une ligne de cou-rant pour appliquer un champ d’Oersted local, et une dernière concep-tion composée de deux diodes opposées avec un léger décalage de lafréquence de résonance. Ce décalage de la fréquence de résonanceest implémenté par un décalage spatial entre les deux diodes qui setraduit par un décalage du champmagnétique externe appliqué. Cettedernière conception présente des avantages tels qu’un profil de fré-quence net et un contrôle précis du poids synaptique. C’est donc ledesign choisi pour les développements suivants. Ce design, testé avecdes diodes NiFe5/Pt5 de taille 5x10 µm, met en œuvre une synapse ca-pable de traiter des entrées dans la gammedesGHz avec un poids non-volatile écrit en lithographie. Pour réaliser ces dispositifs, nous avonsutilisé la lithographie UV. Un dispositif de caractérisation spécifique aété développé, intégrant une source pour les entrées RF, un nanovolt-mètre et un ensemble d’aimants créant un gradient de champmagné-tique contrôlé, permettant de contrôler le champmagnétique appliquéen déplaçant les dispositifs dans ce champ.
153



Chapitre 3

L’objectif du chapitre 3 est de fabriquer des chaînes de synapsesadaptées à des opérations précises de multiplication et accumulation.Ces chaînes doivent comporter des synapses capables de traiter desentrées à différentes fréquences. Les synapses dans ces chaînes doiventavoir une réponse linéaire lorsqu’elles sont soumises à des entréesmultiples. De plus, les poids implémentés à chaque fréquence d’entréedoivent être contrôlés avec précision, en tenant compte de la contribu-tion de la synapse de redressement adressée, mais aussi des petitescontributions des synapses aux fréquences voisines. Dans ce chapitre,nous présentons la vérification expérimentale de la linéarité des sy-napses fabriquées précédemment. Pour mettre en œuvre une disper-sion de l’adresse de fréquence des synapses, celles-ci sont organiséesen chaînes placées dans le gradient de champ démontré précédem-ment. Chaque diode est positionnée différemment le long de l’axe dugradient de champ, elle est donc soumise à un champ plus ou moinsintense et possède sa propre fréquence de résonance. Des chaînesavec une configuration mixte parallèle-série pour les synapses ont étéconçues afin d’obtenir une adaptation d’impédance à 50 Ohms. Pourobtenir le poids désiré dans une chaîne, nous avons conçu et mesuréune diode de référence utilisée comme modèle pour les diodes dansune chaîne. À partir de ce modèle de diode individuelle, nous pouvonsmodéliser une chaîne complète. Ce modèle est utilisé pour trouver lameilleure configuration spatiale des diodes afin d’obtenir des synapsesavec les bonnes fréquences de résonance et les poids synaptiques cor-rects en utilisant des méthodes d’optimisation numérique. Avec ce de-sign, nous avons fabriqué 3 chaînes comportant chacune 4 synapses.Les synapses sont espacées de distances d’environ 100 à 200 micro-mètres, correspondant à des décalages de fréquence de 5 GHz, et ontdes décalages spatiaux internes d’environ ±50 µm pour implémenterles poids. Les poids obtenus après fabrication présentent une erreurmoyenne de 5,2 %.

Chapitre 4

L’objectif du chapitre 4 est de démontrer un réseau de neuronesconvolutionnel hybride matériel-logiciel avec une couche convolution-nelle spintronique, et de tester ce réseau sur une tâche complexe :
154



FashionMNIST[82]. Ce réseau est composé d’une couche convolution-nelle avec trois noyaux de 2x2, des neurones ReLU et une couche finaleentièrement connectée. Ce réseau est d’abord entraîné purement enlogiciel, cet entraînement inclut un bruit aléatoire appliqué sur la sortiede la couche convolutionnelle pour simuler le bruit expérimental, cetteprocédure aide le réseau à être résilient au bruit. Les poids optimauxtrouvés pour la couche convolutionnelle sont ensuite extraits et troischaînes de quatre synapses spintroniques sont fabriquées pour implé-menter les douze poids des trois noyaux. La couche convolutionnellenécessite donc que les images d’entrée soient envoyées sous formed’entrées RF. Chaque image est décomposée en blocs de la taille desnoyaux qui seront convertis en entrées RF et envoyés aux trois chaînespour produire chacun un pixel de sortie. Cette opération est effectuéede manière séquentielle jusqu’à ce que l’image d’entrée entière ait ététotalement analysée. Pour générer les entrées RF multiplexées en fré-quence requises, nous avons fabriqué une source RF multicanaux per-sonnalisée. Cette source est basée sur des oscillateurs à cristaux quiproduisent un signal RF ajustable en fréquence, ces oscillateurs sontcombinés avec des amplificateurs pour contrôler la puissance de sor-tie de chaque canal. Cette source a nécessité une calibration précisepour garantir que les entrées fournies sont correctes. La position del’échantillon contenant les chaînes spintroniques est optimisée et cor-rigée au cours de la procédure d’évaluation pour compenser la dérivede sa position. Nous avons obtenu des résultats très satisfaisants, surles 100 premières images du jeu de test, la précision expérimentale at-teint 88%, comparable à la précision du logiciel avec bruit de 88,4% etlégèrement inférieure à la précision du logiciel sans bruit de 90%.

Chapitre 5

Dans ce chapitre, nous démontrons la possibilité d’utiliser les dy-namiques naturelles des STNOs pour traiter des entrées variant dansle temps. Nous proposons un réseau constitué d’une seule couche deSTNOs couplés. Les dispositifs reçoivent des entrées sous forme decourants continus (DC) et leur sortie est la puissance RF émise. Cescourants continus injectés sont les paramètres sur lesquels sont ap-pliqués les poids synaptiques. La dynamique des STNOs est simuléeà l’aide d’une version simplifiée du modèle d’auto-oscillateur de Slavinet al.[77]. Le réseau ainsi obtenu est entraîné par rétropropagation dugradient tronquée à travers le temps pour classifier des séries tempo-relles composées d’ondes sinusoïdales et carrées. Cette tâche néces-
155



site à la fois de la non-linéarité et de la mémoire. Les performances dece réseau entraîné sont comparées à celles de la même configurationtraitée comme un système de calcul par réservoir, où seule la couchede sortie est optimisée et non les paramètres contrôlant la dynamiquedes neurones. Le réseau entraîné présente une précision plus élevéepour un même nombre de neurones : il peut atteindre une précisionde 100% avec seulement deux neurones, tandis que l’approche par cal-cul par réservoir nécessite aumoins 16 neurones pour obtenir lemêmerésultat.

Chapitre 6

L’objectif de ce chapitre est de démontrer une architecture multi-couche pour un réseau dynamique de STNOs sur une tâche complexe.L’autre objectif est d’examiner les contraintes liées à l’entraînement dece type de réseau, en particulier en termes de correspondance entrel’échelle de temps des entrées et le temps de réponse caractéristiquedes dispositifs. L’architecture de réseau proposée est basée sur le ré-seau à une seule couche de STNOs couplés décrit précédemment. Ce-pendant, les entrées de chaque couche doivent être centrées pour li-miter la saturation des sorties des STNOs. Pour ce faire, des filtrespasse-haut sont appliqués sur les sorties de chaque STNO. La tâcheabordée est basée sur le jeu de données DIGIT [118] : des images ma-nuscrites de chiffres 8x8 sont envoyées pixel par pixel au réseau, etl’étiquette correcte doit être prédite après avoir vu toute la série. Aprèsune hyper-optimisation du taux d’apprentissage et du temps de relaxa-tion des dispositifs à une échelle de temps d’entrée fixe, le réseau peutatteindre 89,83±2,91% de précision, à comparer aux 89,00±3,48% deprécision atteints par un CTRNN standard avec le même nombre deneurones et une activation tanh. Nous avons également dérivé deuxrègles pour assurer un bon entraînement de ce réseau : le temps derelaxation des dispositifs doit être supérieur à l’échelle de temps desentrées pour garantir une mémoire suffisante dans le système, et leproduit de la durée de l’entraînement, incluant les poids du réseau etl’échelle de temps des entrées, doit être proche de un. Cette deuxièmerègle limite la saturation des neurones, que ce soit par les bornes su-périeures ou inférieures. Il est à noter que des paramètres tels que letaux d’apprentissage ou le temps de relaxation des STNOs peuvent va-rier dans une plage de cinq fois autour de leur valeur optimale sansdégrader la précision. Le réseau est capable de s’adapter à une largegamme de dynamiques. Un autre résultat important est que la densité
156



des connexions dans le réseau peut être réduite à 50% sans perte deprécision, ce qui pourrait être un avantage pour les futurs développe-ments hardware.

157



158



Bibliographie
[1] Standford university artificial intelligence index report 2024 (2024).
[2] Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating global data center energy-useestimates. Science 367, 984–986 (2020).
[3] Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proceedings

of the 27th international conference on machine learning (ICML-10), 807–814 (2010).
[4] Bottou, L. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nîmes 91 (EC2,Nimes, France, 1991). URL http://leon.bottou.org/papers/bottou-91c.
[5] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436–444 (2015).
[6] LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural computation 1,541–551 (1989).
[7] Teo, Y. S. et al. Benchmarking quantum tomography completeness and fidelity with machine lear-ning. New Journal of Physics 23, 103021 (2021).
[8] Rangel, G., Cuevas-Tello, J. C., Nunez-Varela, J., Puente, C. & Silva Trujillo, A. A survey on convolutionalneural networks and their performance limitations in image recognition tasks. Journal of Sensors

2024, 1–29 (2024).
[9] Brown, T. B. Language models are few-shot learners. arXiv preprint ArXiv :2005.14165 (2020).
[10] Turing, A. M. Computing machinery and intelligence (Springer, 2009).
[11] McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. The bulletin

of mathematical biophysics 5, 115–133 (1943).
[12] Samuel, A. L. Some studies in machine learning using the game of checkers. IBM Journal of research

and development 3, 210–229 (1959).
[13] Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromor-

phic Computing and Engineering 2, 022501 (2022). URL https://dx.doi.org/10.1088/2634-4386/
ac4a83.

[14] Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nature
Reviews Physics 2, 499–510 (2020).

[15] Amd virtex™ ultrascale+™ vu19p fpgas (2024). https://www.amd.com/fr/products/
adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html [Accessed :(05/08/2024)].

[16] Soc adaptatif versal™ premium vp1902 (2024). https://www.amd.com/fr/products/
adaptive-socs-and-fpgas/versal/premium-series/vp1902.html#product-brief [Acces-sed : (05/08/2024)].

[17] Abdelouahab, K., Pelcat, M., Serot, J. & Berry, F. Accelerating cnn inference on fpgas : A survey. arXiv
preprint arXiv :1806.01683 (2018).

[18] Mittal, S. A survey of fpga-based accelerators for convolutional neural networks. Neural computing
and applications 32, 1109–1139 (2020).

[19] Deng, J. et al. Imagenet : A large-scale hierarchical image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, 248–255 (Ieee, 2009).

[20] Wu, D. et al. A high-performance cnn processor based on fpga for mobilenets. In 2019 29th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), 136–143 (IEEE, 2019).

[21] Qiu, J. et al. Going deeper with embedded fpga platform for convolutional neural network. In Procee-
dings of the 2016 ACM/SIGDA international symposium on field-programmable gate arrays, 26–35 (2016).

[22] Fpga et fgpa soc intel® stratix® 10 (2024). https://www.intel.fr/content/www/fr/fr/products/
details/fpga/stratix/10.html [Accessed : (05/08/2024)].

[23] Geforce rtx 4090 (2024). https://www.nvidia.com/fr-fr/geforce/graphics-cards/
40-series/rtx-4090/ [Accessed : (05/08/2024)].

[24] Wu, J. et al. Analog optical computing for artificial intelligence. Engineering 10, 133–145 (2022).
[25] Zhang, Q., Yu, H., Barbiero, M., Wang, B. & Gu, M. Artificial neural networks enabled by nanophoto-nics. Light : Science & Applications 8, 42 (2019).
[26] Zhang, T. et al. Efficient training and design of photonic neural network through neuroevolution.

Optics Express 27, 37150–37163 (2019).

159

http://leon.bottou.org/papers/bottou-91c
https://dx.doi.org/10.1088/2634-4386/ac4a83
https://dx.doi.org/10.1088/2634-4386/ac4a83
https://www.amd.com/fr/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html
https://www.amd.com/fr/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html
https://www.amd.com/fr/products/adaptive-socs-and-fpgas/versal/premium-series/vp1902.html##product-brief
https://www.amd.com/fr/products/adaptive-socs-and-fpgas/versal/premium-series/vp1902.html##product-brief
https://www.intel.fr/content/www/fr/fr/products/details/fpga/stratix/10.html
https://www.intel.fr/content/www/fr/fr/products/details/fpga/stratix/10.html
https://www.nvidia.com/fr-fr/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/fr-fr/geforce/graphics-cards/40-series/rtx-4090/


[27] Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Scientific
reports 7, 7430 (2017).

[28] Tait, A. N. et al. Microring weight banks. IEEE Journal of Selected Topics in Quantum Electronics 22,312–325 (2016).
[29] Mehrabian, A., Al-Kabani, Y., Sorger, V. J. & El-Ghazawi, T. Pcnna : A photonic convolutional neuralnetwork accelerator. In 2018 31st IEEE International System-on-Chip Conference (SOCC), 169–173 (IEEE,2018).
[30] Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight : an integrated networkfor scalable photonic spike processing. Journal of Lightwave Technology 32, 3427–3439 (2014).
[31] Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nature photonics 9, 725–732(2015).
[32] Cheng, Z., Ríos, C., Pernice, W. H., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Science

advances 3, e1700160 (2017).
[33] Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature

589, 52–58 (2021).
[34] Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal

Processing Magazine 29, 141–142 (2012).
[35] Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nature Photonics 4, 261–263(2010).
[36] Sun, Y., Dong, M., Yu, M., Liu, X. & Zhu, L. Review of diffractive deep neural networks. Journal of the

Optical Society of America B 40, 2951–2961 (2023).
[37] Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutionalneural networks with optimized diffractive optics for image classification. Scientific Reports 8 (2018).
[38] Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic programmable synapses basedon phase change materials for brain-inspired computing. Nano letters 12, 2179–2186 (2012).
[39] Jagannadham, K. Microscopic mechanisms of filament growth in memristor. Applied Physics A 127,229 (2021).
[40] Chanthbouala, A. et al. A ferroelectric memristor. Nature materials 11, 860–864 (2012).
[41] Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-inducedmagnetization motion. IEEE electron device letters 30, 294–297 (2009).
[42] Chen, Y. et al. Polymermemristor for information storage and neuromorphic applications. Materials

Horizons 1, 489–506 (2014).
[43] Sun, Z. et al. Solving matrix equations in one step with cross-point resistive arrays. Proceedings of

the National Academy of Sciences 116, 4123–4128 (2019).
[44] Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passivememristive crossbar circuits. Nature communications 9, 2331 (2018).
[45] Wang, Z. et al. Fullymemristive neural networks for pattern classificationwith unsupervised learning.

Nature Electronics 1, 137–145 (2018).
[46] Mehonic, A. et al. Memristors—from in-memory computing, deep learning acceleration, and spikingneural networks to the future of neuromorphic and bio-inspired computing. Advanced Intelligent

Systems 2, 2000085 (2020).
[47] Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nature

nanotechnology 14, 35–39 (2019).
[48] Jackson, B. L. et al. Nanoscale electronic synapses using phase change devices. ACM Journal on

Emerging Technologies in Computing Systems (JETC) 9, 1–20 (2013).
[49] Li, Y. & Ang, K.-W. Hardware implementation of neuromorphic computing using large-scale mem-ristor crossbar arrays. Advanced Intelligent Systems 3, 2000137 (2021).
[50] Fernando, B. R., Qi, Y., Yakopcic, C. & Taha, T. M. 3d memristor crossbar architecture for a multicoreneuromorphic system. In 2020 International Joint Conference on Neural Networks (IJCNN), 1–8 (IEEE,2020).
[51] Ishii, M. et al. On-chip trainable 1.4 m 6t2r pcm synaptic array with 1.6 k stochastic lif neurons forspiking rbm. In 2019 IEEE International Electron Devices Meeting (IEDM), 14–2 (IEEE, 2019).
[52] Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577,641–646 (2020).
[53] Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-changememoryfor deep neural network inference. Nature Electronics 6, 680–693 (2023).

160



[54] Ambrogio, S. et al. An analog-ai chip for energy-efficient speech recognition and transcription. Nature
620, 768–775 (2023).

[55] Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608,504–512 (2022).
[56] Krizhevsky, A., Hinton, G. et al. Learning multiple layers of features from tiny images (2009).
[57] Jinnai, B., Watanabe, K., Fukami, S. & Ohno, H. Scaling magnetic tunnel junction down to single-digitnanometers—challenges and prospects. Applied physics letters 116 (2020).
[58] Julliere, M. Tunneling between ferromagnetic films. Physics letters A 54, 225–226 (1975).
[59] Jung, S. et al. A crossbar array ofmagnetoresistivememory devices for in-memory computing. Nature

601, 211–216 (2022).
[60] Borders, W. A. et al. Measurement-driven neural-network training for integrated magnetic tunneljunction arrays. Physical Review Applied 21, 054028 (2024).
[61] Verma, G., Soni, S., Nisar, A. & Kaushik, B. K. Multi-bit mram based high performance neuromorphicaccelerator for image classification. Neuromorphic Computing and Engineering 4, 014008 (2024).
[62] Shibata, T. et al. Linear and symmetric conductance response of magnetic domain wall type spin-memristor for analog neuromorphic computing. Applied Physics Express 13, 043004 (2020).
[63] Liu, L. et al. Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spinneuromorphic hardware. Nature Communications 15, 4534 (2024).
[64] Lequeux, S. et al. A magnetic synapse : multilevel spin-torque memristor with perpendicular aniso-tropy. Scientific reports 6, 31510 (2016).
[65] Yue, K., Liu, Y., Lake, R. K. & Parker, A. C. A brain-plausible neuromorphic on-the-fly learning systemimplemented with magnetic domain wall analog memristors. Science advances 5, eaau8170 (2019).
[66] Bhowmik, D. et al. On-chip learning for domain wall synapse based fully connected neural network.

Journal of Magnetism and Magnetic Materials 489, 165434 (2019).
[67] Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nature Electronics

3, 148–155 (2020).
[68] Gomes, T. d. C. S. C. et al. Neuromorphic weighted sum with magnetic skyrmions. arXiv preprint

arXiv :2310.16909 (2023).
[69] Qiu, S., Zeng, J., Han, X. & Liu, J. On-chip skyrmion synapse regulated by oersted field. AIP Advances

14 (2024).
[70] Luo, S. et al. Voltage-controlled skyrmion memristor for energy-efficient synapse applications. IEEE

Electron Device Letters 40, 635–638 (2019).
[71] Fukami, S. &Ohno, H. Perspective : Spintronic synapse for artificial neural network. Journal of Applied

Physics 124 (2018).
[72] Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563,230–234 (2018).
[73] Zahedinejad, M. et al. Two-dimensional mutually synchronized spin hall nano-oscillator arrays forneuromorphic computing. Nature nanotechnology 15, 47–52 (2020).
[74] Zahedinejad, M. et al. Memristive control of mutual spin hall nano-oscillator synchronization forneuromorphic computing. Nature materials 21, 81–87 (2022).
[75] Incorvia, J. A. C. et al. Capturing biological behavior in nanomagnetic artificial neurons and synapsesfor energy-efficient neuromorphic computing. In Electrochemical Society Meeting Abstracts prime2020,31, 2040–2040 (The Electrochemical Society, Inc., 2020).
[76] Brigner, W. H. et al. Domain wall leaky integrate-and-fire neurons with shape-based configurableactivation functions. IEEE Transactions on Electron Devices 69, 2353–2359 (2022).
[77] Slavin, A. & Tiberkevich, V. Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current. IEEE Transactions on Magnetics 45, 1875–1918 (2009). URL http://ieeexplore.

ieee.org/document/4802339/.
[78] Deac, A. M. et al. Bias-driven high-power microwave emission from mgo-based tunnel magnetore-sistance devices. Nature Physics 4, 803–809 (2008).
[79] Tehrani, S. et al. Recent developments in magnetic tunnel junction mram. IEEE Transactions on

magnetics 36, 2752–2757 (2000).
[80] Ross, A. et al. Multilayer spintronic neural networks with radiofrequency connections. Nature Nano-

technology 18, 1273–1280 (2023).
[81] Raimondo, E. et al. Reliability of neural networks based on spintronic neurons. IEEE Magnetics Letters

12, 1–5 (2021).

161

http://ieeexplore.ieee.org/document/4802339/
http://ieeexplore.ieee.org/document/4802339/


[82] Xiao, H., Rasul, K. & Vollgraf, R. Fashion-mnist : a novel image dataset for benchmarking machinelearning algorithms (2017). cs.LG/1708.07747.
[83] Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses.

Phys. Rev. Appl. 15, 034067 (2021). URL https://link.aps.org/doi/10.1103/PhysRevApplied.15.
034067.

[84] Kittel, C. Ferromagnetic resonance. J. phys. radium 12, 291–302 (1951).
[85] Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342(2005). URL http://www.nature.com/articles/nature04207.
[86] Leroux, N. et al. Hardware realization of the multiply and accumulate operation on radio-frequencysignals with magnetic tunnel junctions (2021).
[87] Leroux, N. Artificial neural networks with radio-frequency spintronic nano-devices. Theses, UniversitéParis-Saclay (2022). URL https://theses.hal.science/tel-03741830.
[88] Leroux, N. et al. Convolutional neural networks with radio-frequency spintronic nano-devices. CoRR

abs/2111.04961 (2021). URL https://arxiv.org/abs/2111.04961. 2111.04961.
[89] Hopfield, J. J. Neural networks and physical systemswith emergent collective computational abilities.

Proceedings of the national academy of sciences 79, 2554–2558 (1982).
[90] Jordan, M. Serial order : a parallel distributed processing approach. technical report, june 1985-march 1986. Tech. Rep., California Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science (1986).
[91] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning internal representations by error propaga-tion, parallel distributed processing, explorations in the microstructure of cognition, ed. de rumel-hart and j. mcclelland. vol. 1. 1986. Biometrika 71, 6 (1986).
[92] Werbos, P. J. Backpropagation through time : what it does and how to do it. Proceedings of the IEEE

78, 1550–1560 (1990).
[93] Funahashi, K.-i. & Nakamura, Y. Approximation of dynamical systems by continuous time recurrentneural networks. Neural networks 6, 801–806 (1993).
[94] Cho, K. Learning phrase representations using rnn encoder–decoder for statistical machine trans-lation. arXiv preprint arXiv :1406.1078 (2014).
[95] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997).
[96] Vaswani, A. Attention is all you need. arXiv preprint arXiv :1706.03762 (2017).
[97] Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an er-ratumnote. Bonn, Germany : German national research center for information technology gmd technical

report 148, 13 (2001).
[98] Moore, E. H. On the reciprocal of the general algebraic matrix. Bulletin of the american mathematical

society 26, 294–295 (1920).
[99] Penrose, R. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philo-

sophical society, vol. 51, 406–413 (Cambridge University Press, 1955).
[100] Zhang, T. & Haider, M. R. A schmitt trigger based oscillatory neural network for reservoir computing.

Journal of electrical and electronic engineering (2020).
[101] Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations.

Advances in neural information processing systems 31 (2018).
[102] Pontryagin, L. S. Mathematical theory of optimal processes (Routledge, 2018).
[103] Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. Liquid time-constant networks 35, 7657–7666(2021).
[104] Bueno, J. et al. Reinforcement learning in a large scale photonic recurrent neural network. CoRR

abs/1711.05133 (2017). URL http://arxiv.org/abs/1711.05133. 1711.05133.
[105] Li, Z. et al. E-RNN : design optimization for efficient recurrent neural networks in fpgas. CoRR

abs/1812.07106 (2018). URL http://arxiv.org/abs/1812.07106. 1812.07106.
[106] Long, Y., Jung, E. M., Kung, J. & Mukhopadhyay, S. Reram crossbar based recurrent neural networkfor human activity detection 939–946 (2016).
[107] Larger, L. et al. Photonic information processing beyond turing : an optoelectronic implementationof reservoir computing. Optics express 20, 3241–3249 (2012).
[108] Dudas, J. et al. Quantum reservoir neural network implementation on coherently coupled quantumoscillators. arXiv preprint arXiv :2209.03221 (2022).
[109] Pinna, D., Bourianoff, G. & Everschor-Sitte, K. Reservoir computing with random skyrmion textures.

Physical Review Applied 14, 054020 (2020).

162

cs.LG/1708.07747
https://link.aps.org/doi/10.1103/PhysRevApplied.15.034067
https://link.aps.org/doi/10.1103/PhysRevApplied.15.034067
http://www.nature.com/articles/nature04207
https://theses.hal.science/tel-03741830
https://arxiv.org/abs/2111.04961
2111.04961
http://arxiv.org/abs/1711.05133
1711.05133
http://arxiv.org/abs/1812.07106
1812.07106


[110] Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex icevia spin-wave fingerprinting. Nature Nanotechnology 17, 460–469 (2022).
[111] Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film.

IEEE access 6, 4462–4469 (2018).
[112] Marković, D. et al. Reservoir computing with the frequency, phase, and amplitude of spin-torquenano-oscillators. Applied Physics Letters 114 (2019).
[113] Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
[114] Ababei, R. V. et al. Neuromorphic computation with a single magnetic domain wall. Scientific Reports

11, 15587 (2021).
[115] Hughes, T. W., Williamson, I. A. D., Minkov, M. & Fan, S. Wave physics as an analog recurrent neuralnetwork. Science Advances 5 (2019).
[116] Qu, Y., Zhou, M., Khoram, E., Yu, N. & Yu, Z. Resonance for analog recurrent neural network. ACS

Photonics 9, 1647–1654 (2022).
[117] Rodrigues, D. et al. Dynamical neural network based on spin transfer nano-oscillators. IEEE Transac-

tions on Nanotechnology PP, 1–6 (2023).
[118] Pedregosa, F. et al. Scikit-learn : Machine learning in Python. Journal of Machine Learning Research

12, 2825–2830 (2011).
[119] Furuhata, G., Niiyama, T. & Sunada, S. Physical deep learning based on optimal control of dynamicalsystems. CoRR abs/2012.08761 (2020). URL https://arxiv.org/abs/2012.08761. 2012.08761.
[120] Azevedo, A., Vilela-Leão, L. H., Rodríguez-Suárez, R. L., Lacerda Santos, A. F. & Rezende, S. M. Spinpumping and anisotropic magnetoresistance voltages in magnetic bilayers : Theory and expe-riment. Physical Review B 83, 144402 (2011). URL https://link.aps.org/doi/10.1103/PhysRevB.

83.144402.
[121] Zeng, F. et al. Intrinsic Mechanism for Anisotropic Magnetoresistance and Experimental Confir-mation in Co x Fe 1 x Single-Crystal Films. Physical Review Letters 125, 097201 (2020). URL https:

//link.aps.org/doi/10.1103/PhysRevLett.125.097201.
[122] Dudas, J. et al. Quantum reservoir computing implementation on coherently coupled quantum os-cillators. Npj Quantum Inf. 9 (2023).
[123] Paszke, A. et al. Pytorch : An imperative style, high-performance deep learning library. CoRR

abs/1912.01703 (2019). URL http://arxiv.org/abs/1912.01703. 1912.01703.
[124] Pascanu, R., Mikolov, T. & Bengio, Y. Understanding the exploding gradient problem. CoRR

abs/1211.5063 (2012). URL http://arxiv.org/abs/1211.5063. 1211.5063.
[125] Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is dif-ficult. IEEE Transactions on Neural Networks 5, 157–166 (1994).
[126] Kingma, D. P. Adam : A method for stochastic optimization. arXiv preprint arXiv :1412.6980 (2014).
[127] Sutskever, I. Training Recurrent Neural Networks. Ph.D. thesis, University of Toronto, Canada (2013).

163

https://arxiv.org/abs/2012.08761
2012.08761
https://link.aps.org/doi/10.1103/PhysRevB.83.144402
https://link.aps.org/doi/10.1103/PhysRevB.83.144402
https://link.aps.org/doi/10.1103/PhysRevLett.125.097201
https://link.aps.org/doi/10.1103/PhysRevLett.125.097201
http://arxiv.org/abs/1912.01703
1912.01703
http://arxiv.org/abs/1211.5063
1211.5063

	Remerciement
	Introduction
	State of the art
	Basic principles of neural networks
	Artificial neurons and synapses
	Feed-forward fully-connected neural network
	Training
	Convolutional neural network

	The different types of hardware neural networks
	Conventional hardware
	Field Programmable Gate Array
	Photonic Neural Networks
	Memristor Neural Networks
	Spintronics Neural Network

	Networks using dynamics
	RNN
	Reservoir computing
	Neural network with trainable dynamics
	Hardware


	A robust radio-frequency synapse based on the spin-diode effect in Permalloy
	Summary
	Introduction
	Physics of AMR-based Spin Diodes
	Anisotropic magneto-resistance
	AMR Spin-Diode

	AMR Spin-Diode Synapse Concept
	Fabrication
	Spin diode sample design
	Lithography process

	Experimental Setup
	Measurement Technique
	Field Gradient Implementation

	Experimental results
	Experimental spin-diode measurement, synaptic behavior
	Synapse with current lines
	Double diode synapse

	Conclusion

	A chain of spin-diodes
	Summary
	Introduction
	Spintronic Multiply and Accumulate Operation
	General Chain Design
	Verification of Linearity
	From spatial distribution to frequency distribution
	Minimum frequency spacing
	Impedance matching to 50 ohm

	Obtaining Precise Weights in a Chain
	Building a reference diode
	Prediction of the chain geometry

	Experimental demonstration of predefined weights
	Conclusion

	RF convolutionnal network on FashionMNIST
	Summary
	Introduction
	Network Architecture
	Task, model and training
	Spintronic hardware convolutional layer

	Experimental setup
	Multi-input source
	Description
	Frequency and power calibration

	Weight prediction for a Noise resilient Network
	Noise aware training
	Evaluation of the experimental noise

	Position optimisation inside the field gradient
	Summary of the experimental procedure for FashionMNIST
	FashionMNIST results
	Conclusion

	Demonstration of a network of spintronic dynamical neurons
	Summary
	Introduction
	Spintronic neuron model
	ODE simulation method
	Task: discriminate between sine and square
	Network architecture
	Backpropagation through time
	Backpropagation through time algorithm
	Pytorch implementation
	Gradient issues
	Testing different back-propagation scheme

	Different types of neurons
	Comparison between reservoir computing and BPTT trained network
	Conclusion

	Multilayer network
	Summary
	Introduction
	Network Architecture
	Role of the high-pass filter and amplification factor

	Task: Sequential DIGIT
	Training procedure
	Optuna and hyperparameter optimisation framework
	Training results: Obtaining high-performance networks
	Impact of the Number of Layers
	Preventing saturation of neurons during training
	Hyperoptimisation with Optuna

	Reducing the density of connection while maintaining high-accuracy
	How to adapt a spintronic network to the input timescale
	Ensuring non-saturated oscillators at all input timescales
	Impact of varying dynamics parameters of the network at fixed input timescale
	Impact of the network parameters on input timescale adaptation
	Comparison with a standard recurrent network (CTRNN

	Hardware perspectives
	Conclusion

	Conclusion
	List of publications and participations in conferences
	Résumé en français
	Introduction


