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Chapitre 0

Introduction (version française)

Les instituts nationaux de statistique tels que l’Insee en France, Statistique Ca-

nada ou encore Eurostat au niveau international ont pour but la mise à disposi-

tion d’informations fiables pour une aide à la décision, avec des bases solides et

destinée aux représentants élus, aux entreprises, aux syndicats, aux associations

ainsi qu’aux citoyens. Afin de mieux comprendre la démographie, la sociologie et

l’économie, les analystes et les chercheurs mettent en œuvre des méthodes sta-

tistiques pour analyser les données. Ces dernières peuvent être fournies par des

recensements, des enquêtes ou encore des sources administratives. Peu importe

l’origine de ces données, elles sont toutes susceptibles de présenter des données

manquantes.

La théorie des sondages rencontre de nouveaux champs d’application en rela-

tion avec les méthodes d’apprentissage ou Machine Learning, ainsi que les données

massives ou Big Data. Le sujet principal de cette thèse est le traitement des

données manquantes y compris par les méthodes d’apprentissage. Le traitement

de la non-réponse est d’un intérêt pratique très important étant donnée la baisse

constante du taux de réponse aux enquêtes depuis plusieurs décennies.

Dans le domaine des enquêtes, les données collectées sont utilisées pour esti-

mer des paramètres dits de population finie, pour décrire certains aspects de la

population étudiée (comme un total, un coefficient de corrélation ou encore une

fonction de distribution). Un certain nombre de procédures d’estimation peuvent
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Chapitre 0. Introduction (version française)

être mises en œuvre pour estimer ces paramètres d’intérêts. Certaines d’entre elles

recourent à de l’information auxiliaire, contenue dans un ensemble de variables

disponibles pour toutes les unités de l’échantillon interrogé et dont les totaux sur

la population sont disponibles grâce à d’autres sources telles que les recensements

ou les sources administratives. A condition d’être disponible pour toute la popula-

tion avant échantillonnage, l’information auxiliaire peut également être utilisée à

l’étape de l’élaboration du plan de sondage, dans le but d’obtenir des estimateurs

plus efficaces. Enfin, l’information auxiliaire peut également fournir des éléments

pour réduire des erreurs liées au problème de couverture et de non réponse.

En statistique d’enquête, on distingue la non réponse totale de la non réponse

partielle. La première a lieu lorsqu’aucune information n’est utilisable pour une

unité de l’échantillon alors que la seconde correspond au cas où seules quelques

variables d’intérêt sont renseignées. La non réponse peut affecter la qualité des

estimateurs quand répondants et non répondants présentent des caractéristiques

différentes au regard des variables d’intérêt. Les trois principaux effets de la non

réponse sont : (i) biais des estimateurs ponctuels, (ii) augmentation de la variance

de ces estimateurs (en raison de la diminution de la taille de l’échantillon par rap-

port à la taille initialement prévue), et biais des estimateurs de variance sur les

cas complets (Haziza, 2009). La non réponse totale est généralement traitée par

des procédures d’ajustement de poids (Groves et al., 2001, Särndal et Lundström,

2005). En revanche, la non réponse partielle est plutôt traitée par des méthodes

d’imputation(Brick et Kalton 1996). Ces deux approches (pondération et imputa-

tion) partagent le même objectif : réduire le biais de non réponse et, si possible,

limiter la variance de non réponse.

Dans un contexte de non réponse partielle et donc d’imputation, on distingue

l’imputation simple de l’imputation multiple. L’imputation simple consiste à rem-

placer une valeur manquante par une seule valeur artificielle. Un grand nombre de

méthodes d’imputation sont basées sur ce principe : notamment l’imputation par

la régression (dont l’imputation par le ratio et l’imputation par la moyenne consti-
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tuent des cas particuliers), l’imputation par les plus proches voisins, l’imputation

aléatoire par hot-deck et l’imputation historique (Haziza, 2009). Avec l’imputa-

tion simple, un seul tableau de données (tableau imputé) est produit. C’est sur ce

tableau que les chercheurs et chargés d’études pourront appliquer des procédures

classiques d’estimation sur données complètes pour calculer des estimateurs ponc-

tuels, sans recourir aux indicateurs de réponse. Bien que l’imputation multiple soit

utilisée dans un grand nombre d’applications, elle peut conduire à des conclusions

erronées en termes d’inférence (Kim et al., 2006).

En ce qui concerne les procédures d’ajustement des poids pour traiter le

problème de la non réponse totale, on distingue deux catégories ( Särndal, 2007,

et Haziza and Lesage, 2016). Dans la première, les poids de base sont multipliés

par l’inverse de la probabilité de réponse estimée. Dans la seconde catégorie de

méthodes, on ajuste les poids de base par une forme de calage dont la post-

stratification et l’estimateur par le ratio constituent des cas particuliers. Dans ce

travail de thèse, on utilise la première approche. De façon à se prémunir contre

une éventuelle mauvaise spécification du modèle de prédiction des probabilités de

réponse, il est courant de construire des classes de pondération (appelées groupes

homogènes de réponse). Au sein de chacune des classes d’unités de l’échantillon, on

affecte la même probabilité de réponse estimée (Little, 1986, Eltinge et Yansaneh,

1997, Haziza et Beaumont, 2007).

Ce travail de thèse est organisé de la façon suivante. Le chapitre 2 est consacré

aux éléments de base de théorie des sondages nécessaires à la compréhension des

chapitres suivants.

Dans le chapitre 3, nous nous plaçons dans un contexte de non réponse par-

tielle. Nous proposons une nouvelle méthode d’imputation préservant la corrélation

entre les variables d’intérêt. En effet, l’imputation marginale qui consiste à trai-

ter séparément chaque variable nécessitant de l’imputation, conduit généralement

à des estimateurs biaisés pour les paramètres mesurant les relations entre va-
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Chapitre 0. Introduction (version française)

riables. C’est le cas par exemple du coefficient de corrélation linéaire de Pearson.

De façon à résoudre ce problème, deux approches principales ont été explorées

dans la littérature. La première consiste à mettre en œuvre une procédure d’im-

putation marginale suivie d’une procédure de correction du biais à l’étape de

l’estimation. Cette approche a été étudiée notamment par Skinner et Rao (2002)

ainsi que Chauvet et Haziza (2012). Dans la seconde approche, les valeurs man-

quantes sont imputées conjointement, avec prise en compte des relations entre

les variables d’intérêt. Shao et Wang (2002) ont proposé une procédure d’im-

putation conjointe par régression aléatoire. Ils ont montré que cette procédure

conduit à des estimateurs asymptotiquement non biaisés pour les coefficients de

corrélation. On peut également se référer à Chauvet et Haziza (2012) pour une

version pleinement efficace (fully efficient) de la procédure de Shao et Wang. Dans

le chapitre 3 de ce travail de thèse, on propose une méthode d’imputation en deux

étapes. La première étape consiste à obtenir des valeurs imputées initiales par la

méthode de Shao et Wang. Ensuite les valeurs initiales sont modifiées de façon

à respecter des contraintes de calages. Les valeurs utilisées pour le calage corres-

pondent aux estimateurs MIVQUE des paramètres de modèle (Causeur, 2006).

Lorsque la distribution bivariée des variables à imputer est symétrique ou fai-

blement asymétrique, la procédure que nous proposons s’avère significativement

plus efficace que la procédure de Shao et Wang en termes d’erreur quadratique

moyenne. Les résultats par simulations confirment ces résultats. Ce travail a été

publié dans Journal of MultiVariate Analysis (Gelein et al., 2014).

Dans le chapitre 4, nous considérons le problème d’imputation de variables

d’intérêt qui présentent un grand nombre de valeurs nulles. Basées sur un modèle

de régression sur données comportant beaucoup de valeurs nulles, Haziza et al.

(2014) ont proposé des procédures d’imputation conduisant à des estimateurs dou-

blement robustes de la moyenne de la population finie. En effet, ils obtiennent un

estimateur imputé de la moyenne consistant si l’une ou l’autre des deux conditions

suivantes est respectée : soit la variable d’intérêt, soit le mécanisme de non réponse
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est correctement modélisé. Cependant, ces méthodes ne sont pas nécessairement

appropriées quand on souhaite estimer des paramètres plus complexes tels que la

fonction de répartition en population finie. Dans ce chapitre, nous proposons donc

deux procédures d’imputation qui préservent la fonction de répartition contraire-

ment aux méthodes présentées par Haziza et al. (2014). Les résultats d’une étude

par simulation illustrent les bonnes performances des méthodes que nous propo-

sons en termes de biais et d’erreur quadratique moyenne. Ce travail a été soumis

à une revue avec comité de relecture.

Au chapitre 5, nous considérons le problème de l’estimation des probabilités de

réponse dans un contexte de pondération pour correction de la non réponse totale.

Les probabilités de réponse peuvent être estimées par des méthodes paramétriques

ou non paramétriques. La classe des modèles paramétriques inclut la régression

logistique comme cas particulier. Les méthodes paramétriques présentent cepen-

dant plusieurs inconvénients : (i) elles ne sont pas robustes par rapport à une

mauvaise spécification de la forme du modèle, (ii) elles ne sont pas non plus

robustes à la non prise en compte d’éventuelles interactions entre prédicteurs

ou de termes quadratiques, (iii) elles peuvent conduire à des probabilités es-

timées très proches de zéro, conduisant à des estimateurs potentiellement instables

(Little et Vartivarian, 2005, et Beaumont 2005). En pratique, les méthodes non

paramétriques sont généralement préférées car, contrairement aux méthodes pa-

ramétriques, elles protègent des risques de mauvaise spécification du modèle de

non réponse. La classe des méthodes non paramétriques comprend la régression

par noyaux (Giommi, 1984, Da Silva et Opsomer, 2006), la régression par po-

lynômes locaux (Da Silva et Opsomer, 2009), la pondération de classes formées

sur la base d’une estimation préliminaire des probabilités de réponse (Little, 1986,

Eltinge et Yansaneh, 1997, Haziza et Beaumont, 2007), l’algorithme CHi square

Automatic Interaction Detection (CHAID de Kass, 1980), Classification and Re-

gression Trees (CART Breiman et al., 1984, Phipps et Toth, 2012), Conditional

inference trees (Ctree) pour des cibles simples ou multiples (Hothorn et al. 2006).
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Dans ce chapitre, nous faisons une vaste étude par simulation pour comparer

un grand nombre de méthodes d’estimation des probabilités de réponse par ap-

prentissage supervisé, dans un cadre de population finie. Dans ces simulations,

nous couvrons un large champ de méthodes paramétriques ou non, avec des règles

de décisions simples ou agrégées telles que Bagging, Random Forests (Breiman,

1996), Boosting (Freund et Shapire, 1996, Friedman et al. 2000) ; voir également

Hastie et al. (2009) pour une revue très complète des méthodes d’apprentissage.

Pour chaque méthode, ce sont les performances de l’estimateur par expansion et

de l’estimateurs de Hajek d’un total qui sont mesurées en termes de biais relatif

et d’efficacité relative.
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Chapter 1

Introduction (english version)

National statistical offices like Insee in France, Statistics Canada or Eurostat

at an international level, aim at providing solid foundations for good informed

decisions by elected representatives, firms, unions, non-profit organizations, as

well as individual citizens. In order to better understand demography, society

and economy, analysts and researchers implement statistic methods to analyse

data. The latter can be provided by censuses, surveys and administrative sources.

Regardless of the type of data, it is virtually certain one will face the problem of

missing values. Survey sampling theory meets new fields of research in association

with machine learning and big data handling. The main topic of this PhD work

is how to deal with missing values. This is an important practical topic given that

response rates in surveys have been steadily declining in the past decades.

In surveys, the collected data are typically used to estimate finite population

parameters, which are those describing some aspects of the finite population under

study (e.g., population totals and population means). A number of estimation

procedures can be used to estimate finite population parameters. Some procedures

make use of auxiliary information, which is a set of variables available for all the

sample units and whose population totals (e.g, census counts) is available from

an external source (e.g., census or administrative data). Provided it is available

for all the population units prior to sampling, auxiliary information can also be

used at the design stage to improve the efficiency of the sampling designs, leading
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to more efficient estimators. Finally, auxiliary information may be used to reduce

nonsampling errors such as nonresponse and coverage errors.

Surveys statisticians distinguish unit nonresponse from item nonresponse. The

former occurs when no usable information is available on a sample unit, whereas

the latter occurs when some variables (but not all) are recorded. Nonresponse may

affect the quality of the estimates when the respondents and the nonrespondents

exhibit different characteristics with respect to the survey variables. The main

effects of nonresponse consist in: (i) bias of point estimators, (ii) increase of the

variance of point estimators (due to the fact that the observed sample has a

smaller size than the one initially planned), and (iii) bias of the complete data

variance estimators (Haziza, 2009). Unit nonresponse is usually handled through

weight adjustment procedures (Groves et al. 2001, and Särndal and Lundström

2005), whereas item nonresponse is treated by some form of imputation (Brick

and Kalton 1996). These approaches (weight adjustment or imputation) share the

same goals: reduce the nonresponse bias and, possibly, control the nonresponse

variance.

In the context of imputation for item nonresponse, it is customary to dis-

tinguish single from multiple imputation (Rubin, 1987; Little and Rubin, 2002).

Single imputation consists of replacing a missing value with a single artificial

value. A number of imputation procedures are used in practice: Regression im-

putation (that includes ratio imputation and mean imputation as special cases),

nearest-neighbour imputation, random hot-deck imputation and historical impu-

tation, among others (Haziza, 2009). With single imputation, a single completed

data set (also called an imputed data set) is produced, making it possible for

secondary analysts to apply complete data estimation procedures for computing

point estimates. That is, the latter can be readily obtained using complete data es-

timation procedures without requiring the response indicators (or response flags).

Although multiple imputation is widely used in a number of fields for handling

8



missing data, it may lead to invalid inferences in finite population sampling; see

Kim et al. (2006).

Turning to weighting adjustment procedures for handling unit non-response,

two types of weighting procedures are commonly used (e.g., Särndal, 2007 and

Haziza and Lesage, 2016): in the first, the basic weights are multiplied by the in-

verse of the estimated response probabilities, whereas the second uses some form

of calibration, that includes post-stratification and raking as special cases, for ad-

justing the basic weights. In this PhD work, we focus on weight adjustment by

the inverse of the estimated response probabilities. To protect against a possible

model misspecification, it is customary to form weighting classes (also called re-

sponse homogeneous groups) so that within a class the sample units have similar

response probabilities (Little, 1986, Eltinge and Yansaneh, 1997 and Haziza and

Beaumont, 2007).

This PhD thesis is organised as follows. In Chapter 2, we describe the theo-

retical set-up used in the following chapters and define several concepts that will

prove useful in this thesis.

In chapter 3, we propose a new imputation method for preserving correlations

between survey variables. Marginal imputation, which consists of treating sep-

arately each variable requiring imputation, generally leads to biased estimators

of parameters (e.g., coefficients of correlation) measuring relationships between

variables. To overcome this problem, two main approaches have been studied in

the literature: the first consists of using a marginal imputation procedure followed

by a bias-adjustment procedure at the estimation stage. This approach was in-

vestigated by Skinner and Rao (2002) and Chauvet and Haziza (2012), among

others. In the second approach, the missing values are imputed using a joint

procedure, which accounts for the relationships between items. Shao and Wang

proposed a joint random regression imputation procedure and showed that it leads

to asymptotically unbiased estimators of coefficients of correlation; see also Chau-
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vet and Haziza (2012) for a fully efficient version of the Shao-Wang procedure.

Shao and Wang (2002) proposed a joint imputation procedure and showed that

it leads to asymptotically unbiased estimators of coefficients of correlation. In

this chapter, we propose a two-step imputation procedure: first, initial imputed

values are obtained using the Shao-Wang procedures. Then, the initial values are

modified so as to satisfy calibration constraints, which corresponds to MIVQUE

estimators of model parameters (Causeur, 2006). When the bivariate distribution

of the variables being imputed is symmetric or exhibits a low degree of asymme-

try, the proposed procedure is shown to be significantly more efficient than the

Shao-Wang procedure in terms of mean square error. Results from a simulation

study supports our findings. This work was published in Journal of Multivariate

Analysis (Gelein et al., 2014).

In chapter 4, we consider the problem of imputing survey variables exhibiting

a large number of zero-valued observations. Based on a zero-inflated regression

model, Haziza et al. (2014) proposed imputation procedures that leads to doubly

robust estimators of the population mean, in the sense that the imputed estima-

tor of the mean is consistent whether the variable of interest or the non-response

mechanism is adequately modeled. However, these methods are not necessarily

appropriate when estimating more complex parameters such as the population

distribution function. In this chapter, the interest lies in estimating a finite pop-

ulation distribution function. We propose two imputation procedures and show

that they preserve the distribution function, unlike the procedures considered in

Haziza et al. (2014). Results of a simulation study illustrate the good perfor-

mance of the proposed methods in terms of bias and mean square error. This

work has been submitted to a peer-reviewed journal.

In chapter 5, we consider the problem of estimating the response probabil-

ities in the context of weighting for unit nonresponse. The response probabili-

ties may be estimated using either parametric or nonparametric methods. The
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class of parametric models includes logistic regression as a special case. There

are several issues associated with the use of a parametric model: (i) they are

not robust to the misspecification of the form of the model ; (ii) they are not

robust to the non-inclusion of interactions or predictors that account for curva-

ture (e.g., quadratic terms), both of which may not have been detected during

model selection; (iii) they may yield very small estimated response probabilities,

resulting in very large nonresponse adjustment factors, ultimately leading to po-

tentially unstable estimates; e.g., Little and Vartivarian (2005) and Beaumont

(2005). In practice, nonparametric methods are usually preferred because, unlike

parametric methods, they protect against the misspecification of the nonresponse

model. The class of nonparametric methods include kernel regression (Giommi,

1984, Giommi 1987, Da Silva and Opsomer, 2006), local polynomial regression

(Da Silva and Opsomer, 2009), weighting classes formed on the basis of prelimi-

nary estimated response probabilities (Little, 1986, Eltinge and Yansaneh, 1997,

Haziza and Beaumont, 2007), the CHi square Automatic Interaction Detection

(CHAID) algorithm (Kass, 1980), Classification and regression trees (Breiman et

al., 1984, Phipps and Toth, 2012), Conditional inference trees (Ctree) for simple

and multiple targets trees (Hothorn et al. 2006). In this chapter, we conduct

an extensive simulation study to compare methods for estimating the response

probabilities in a finite population setting. In our study, we attempted to cover a

wide range of (parametric and nonparametric) ”simple” methods as well as aggre-

gation methods like Bagging, Random Forests (Breiman, 1996), Boosting (Freund

and Shapire, 1996 and Friedman et al. 2000); see also Hastie et al. (2009) for a

comprehensive overview of machine learning methods. For each method, we as-

sessed the performance of the propensity score estimator and the Hajek estimator

in terms of relative bias and relative efficiency.
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Chapter 2

Theoretical set up

This chapter provides a brief presentation of some concepts that will prove useful

in the subsequent chapters. This chapter is based on the following sources: Haziza

and Kuromi (2007), Kim (2014), Montaquila (2010), De Leeuw et al. (2008), Pfef-

ferman and Rao (2009), Thompson (2012), Ardilly (2006), Favre-Martinoz (2015)

and Tillé (2001). We start by quoting Mahalanobis (1965): ”Large scale sample

surveys, when conducted in the proper way with a satisfactory survey design,

can supply with great speed and at low cost information of sufficient accuracy of

practical and with the possibility of ascertainment of the margin of uncertainty

on an objective bias”. Thus, estimating characteristics of a population requires

”satisfactory survey design” and, before that, the definition of the population

itself.

2.1 Which population ?

In survey research and other applications, the main purpose is often to estimate

the parameters of a finite population rather than the parameters of a statistical

model.

2.1.1 Finite population

In order to construct reliable estimates, the finite population must be defined

precisely before the implementation of a well designed sampling procedure. The
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basic theory and methods of probability sampling from finite populations were

significantly developed during the first half of the twentieth century. For instance,

the seminal contribution of Neyman (1934) spells out the advantages of probability

sampling in comparison to purposive selection.

Definition 2.1. The units of the finite population U are said identifiable if they

can be referred to with a number or a label U = {1, ..., j, ..., N}.

An example of finite population is that for the British Columbia Smoking

Survey (BCSS), conducted in 2006 to gather information related to the smoking

history, mobility history and risk propensity of British Columbia residents. The

target population consisted of residents aged 18 and over, living in private occu-

pied dwellings at the time of the Canadian Community Health Survey (CCHS).

Some individuals were excluded from the scope of the survey, including those

living on Indian Reserves and on Crown Lands, institutional residents, full-time

members of the Canadian Armed Forces, as well as residents of remote regions.

Another example is Insee’s monthly business outlook survey in the building

industry, that records the opinion of entrepreneurs in the sector on recent activity

and on their future activity, so as to assess the current situation and forecast

activity both at national and European levels. The finite population with a firm as

statistical unit covers companies working on the construction of individual houses

and miscellaneous buildings, general building work, roofing, framing, fitting and

finishing work (and more precisely, the sectors defined by the following NAF Rev.

2 codes: 41.2, 43.2, 43.3, 43.9). Since 2008, the survey takes place every month.

2.1.2 Sources of errors

The concept of total survey error is important for studying the properties of an

estimation procedure. The total error of an estimate is the difference between an

estimate and the true value. It can be expressed as the sum of four components
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(Groves et al., 2004):
Total survey error = coverage errors + sampling errors

+ measurement errors + nonresponse errors

Coverage represents the percentage of the population of interest that is in-

cluded in the sampling frame. Undercoverage for instance, occurs when segments

of the population are missing from the sampling frame. As quoted by Lohr (2008),

both undercoverage and nonresponse lead to missing data. This may result in bi-

ased estimates if the missing units (either non-respondents or non-covered units)

exhibit different characteristics of interest than those which are in the sampling

frame and/or respond to the survey. Coverage errors may also be caused by er-

roneous inclusions in the frame (for instance, a firm erroneously included while

its activity has stopped). Lastly, overcoverage corresponds to the case where a

unit from the target population appears more than once in the sampling frame,

or where some unit which does not belong to the target population appears in the

sampling frame.

Measurement errors result from wrong responses to questions or incorrect

measurements. For example, in a survey on AIDS, persons with AIDS may say

they do not suffer from AIDS while they do, but fear that their illness would be

revealed.

Sampling error occurs because measures are taken on a sample instead of

the entire population.

As for nonresponse, we distinguish unit nonresponse that exists when no

usable information is available on a sample unit, from item nonresponse that

occurs when some variables (but not all) are recorded (see subsection 2.6).

2.1.3 Superpopulation model

Let y1, · · · , yq denote q survey variables and let yi = (yi1, yi2, ..., yiq)
⊤ be the

vector of survey variables associated with unit i ∈ U . The vector yi may be

treated as deterministic, or considered as the realization of a random variable Y

whose distribution is specified by some superpopulation model. This means that
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the finite population can be seen as coming from a theoretical infinite population.

Therefore, we distinguish between two sources of randomness. One of them comes

from the random selection of the sample, and is the only source of randomness

under the so-called design-based approach (see Section 2.3 for more details). But

if we appeal to some superpopulation model, another source of randomness is due

to the (random) generation of the values for the variables of interest.

Let xi = (xi1, xi2, ..., xip)
⊤ be the p-vector of auxiliary variables attached to

unit i ∈ U . In the superpopulation model approach, observed vectors (x⊤
i ,y

⊤
i )

⊤,

i ∈ U , are realizations of i.i.d. random vectors (X⊤
i ,Y

⊤
i )

⊤, where

Xi = (Xi1,Xi2, . . . ,Xip)
⊤ and Yi = (Yi1,Yi2, ...,Yiq)

⊤. (2.1.1)

Expectation and variance under the superpopulation model m are denoted as

Em(.) and Vm(.).

2.2 Finite population parameters

A parameter of interest θ, can be defined as an unknown number (or a vector)

that describes the finite population. Since it is unknown, we want to estimate

the so called finite population parameter θ = θ(yi, i ∈ U), which is a function of

y = (y1, ...,yi, ...,yN)
⊤. This function can be linear in the values of an variable

of interest y, such as for the total ty =
∑

i∈U yi or for the mean y = ty/N . If N is

unknown, estimating y is achieved by estimating separately the numerator ty and

the denominator N . In this PhD work, we also are interested in more complex

parameters such as the finite population coefficient of correlation between two

variables (see chapter 3) and the finite population distribution function of a survey

variable (see chapter 4).

The finite population coefficient of correlation between the variables y1 and y2

is defined as:
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R12 =
t11 − t10t01/N

(t20 − (t10)2/N)1/2(t02 − (t01)2/N)1/2
,

where tab =
∑

i∈U(y1i)
a(y2i)

b with (a, b) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}. For

example, t10 =
∑

i∈U y1i and t11 =
∑

i∈U y1iy2i.

The finite population distribution function of a survey variable y is defined as:

FN(t) =
1

N

∑
i∈U

1(yi ≤ t) (2.2.1)

where 1(·) is the usual indicator function.

Totals, coefficients of correlation and distribution functions are some param-

eters of interest we considered in Chapters 3 to 5, while handling missing values

with different methods and approaches.

2.3 Sampling design and inclusion probabilities

Probability sampling methods are widely used to select units which appear in the

sample. The randomness coming from the probability design reduces investigator

discretion in units’ selection. The variance of estimators may be estimated under

the sole randomization associated to the sampling design. If the sample selection

is not probabilistic, the variance may also be estimated but model assumptions

are required. The validity of the variance estimation depends on the validity of

the model assumptions.

2.3.1 Sampling design

Given a finite population U , a sampling design specifies for every possible sample

its probability of being drawn.

Definition 2.2. A sampling design without replacement p(.) is a probability dis-

tribution on all the non-empty subsets s ⊂ U , such that
∑

s⊂U p(s) = 1 and

p(s) ≥ 0.
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We note Ω the set of all the subsets s ⊂ U .

2.3.2 Inclusion probabilities

Let Ep(.), Vp(.) and Covp(.) denote respectively the expectation, variance and

covariance with respect to the sampling design p(.). Let δ= (δ1, . . . , δN)
⊤, be

the N -vector of selection indicators, such that δi = 1 if unit i ∈ S and δi = 0,

otherwise. In the design-based approach, the δi’s are random variables since they

depend on the random sample S. On the other hand, the δi’s are treated as fixed

in the model-based approach.

Definition 2.3. Each unit i ∈ U is selected according to a first-order inclusion

probability in the sample

πi = Ep(δi) = P (i ∈ S) =
∑
s∋i

p(s).

The joint inclusion probability of units i and k in S is:

πik = Ep(δiδk) = P (i, k ∈ S) =
∑
s∋i,k

p(s) for all i, k ∈ U .

By convention, we note πii = πi.

Definition 2.4. We define the variance-covariance matrix of inclusion indicators

δi as ∆ = (∆ik), with i = 1, ..., N and k = 1, ..., N , where

∆ik =

{
Covp(δi, δk) = Ep(δiδk)− Ep(δi)Ep(δk) = πik − πiπk if i ̸= k,
Vp(δi) = Ep(δ

2
i )− Ep(δi)

2 = πi(1− πi) if i = k.

2.3.3 Examples of sampling designs and related inclusion
probabilities

Commonly used probability sampling designs include simple random sampling,

systematic sampling, stratified sampling, cluster sampling, probability proportional-

to-size sampling and stratified multistage sampling. For all of them, each unit of

U has a known nonzero probability of being sampled. Next, we describe simple

random sampling without replacement and stratified random Sampling.
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Definition 2.5. Simple random sampling without replacement (SRSWOR) is de-

fined by

p(s) =

{ (
N
n

)−1
if card(s) = n,

0 otherwise.

For simple random sampling, the first-order inclusion probability πi is given

by

πi =
∑
s∋i

p(s) =
∑
s∋i

(
N

n

)−1

=

(
N − 1

n− 1

)(
N

n

)−1

=
n

N
, for all i ∈ U.

The joint inclusion probabilities are given by

πik =
∑
s∋i,k

p(s) =
∑
s∋i,k

(
N

n

)−1

=

(
N − 2

n− 2

)(
N

n

)−1

=
n(n− 1)

N(N − 1)
, for all i ̸= k ∈ U.

The variance-covariance matrix of δ = (δ1, ...δN)
⊤ is ∆ = (∆ik), with i = 1, ..., N

and k = 1, ..., N , where

∆ik =

{
Covp(δiδk) = πik − πiπk = − n

N(N−1)
(1− n

N
) if i ̸= k,

Vp(δi) = πi(1− πi) =
n
N
(1− n

N
) otherwise.

Simple random sampling without replacement is among the simplest proba-

bility sampling designs and serves as the basis of more complex sampling designs

such as stratified random sampling. According to Lohr (2008), a simple random

sample is a good choice for a design if little is known about the population being

studied, which is the case if the sampling frame is a mere list of addresses with

no additional information, for instance. However, if we can obtain additional

information (such as the gender for individuals), it can be used to stratify the

population to improve the efficiency of survey estimates.

Definition 2.6. In stratified simple random sampling, the finite population U is

partitioned into H strata Uh of size Nh such that U =
⋃H

h=1 Uh and Uh ∩ Ug = ∅

for h ̸= g. A SRSWOR of size nh is selected in each stratum h, h = 1, · · · , H. The

selection in a given stratum is independent of the selection in any other stratum.
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The inclusion probabilities are given by

πi =
nh

Nh

, i ∈ Uh.

The joint inclusion probabilities are given by

πik =

{
nh(nh−1)
Nh(Nh−1)

if i ∈ Uh, k ∈ Uh, i ̸= k,
nhng

NhNg
if i ∈ Uh, k ∈ Ug, h ̸= g.

The matrix ∆ = (∆ik), is given by

∆ik =


nh(Nh−nh)

N2
h

if i = k, i ∈ Uh,

−nh(Nh−nh)

N2
h(Nh−1)

if i ̸= k, i and k ∈ Uh,

0 if i ∈ Uh, k ∈ Ug and h ̸= g.

Stratified random sampling exhibits several advantages over simple random

sampling provided that auxiliary information is available: (i) it ensures that pop-

ulation subgroups of interest are represented in the sample; (ii) it allows choosing

the sample size for each stratum; (iii) it is more efficient than SRSWOR if the

strata are homogeneous with respect to the survey variables (e.g., Cochran 1977,

Särndal et al. 1992).

As an example of stratified sampling, some description elements of the whole

sale trade tendency survey conducted by Insee in France are provided below (table

2.3.1). The Consumer Price Index (CPI) is the instrument used to measure infla-

tion. It allows the estimation of the average variation between two given periods

in the prices of products consumed by households.
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2.3. Sampling design and inclusion probabilities

Table 2.3.1: The consumer price index: an example of stratified sampling

Statistical unit Retail outlet

Reference period Monthly

Sampling plan The sampling plan is stratified according to
three types of criteria:

Geographical criterion:
surveys are carried out in 99 conurbations of over
2,000 inhabitants situated throughout metropolitan France
and of any size and 10 conurbations in four Overseas
Departments (Guadeloupe, Martinique, Guyane, Réunion).

Type of product: a sample of just over 1,100 product
families, called ”varieties” is defined in order to take
account of the heterogeneity of products within items.
The variety is the basic level for tracking products and
calculation of the index. The list of varieties remains
confidential and the CPI is not disseminated at this level.

Type of retail outlet:
a sample of 30,000 retail outlets, stratified according to
the form of sale, has been created in order to represent
the diversity of products and purchasing methods used by
consumers, and to take account of the price variations,
which are differentiated according to the forms of sale.

By cross-referencing these different criteria,
just over 200,000 series (specific products in a given retail
outlet) can be monitored. To these figures can be added
approximately 190,000 ”pricing” - type series collected in
a centralised manner.

Other specifications The CPI covers all market goods and services
consumed throughout the country by resident and
non-resident (e.g. tourists) households. Its theoretical
scope is defined as the actual final monetary consumption
of households.
Following major extensions carried out primarily in services,
the CPI’s rate of coverage was 97% in 2016 (2015 base).
The main shortcomings concerning coverage still relate to
private hospital services and life insurance.

Source: Insee, France
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2.4 Properties of estimators in survey sampling

theory

Definition 2.7. Let θ̂ be an estimator of a parameter of interest θ. The design

expectation of θ̂ is defined as:

Ep(θ̂) =
∑
s∈Ω

p(s)θ̂s,

where θ̂s is the estimator θ̂ computed from the sample s.

Definition 2.8. The design bias of an estimator θ̂ is defined as:

Bp(θ̂) = Ep(θ̂)− θ.

An estimator θ̂ is design unbiased for θ if and only if

Ep(θ̂) = θ.

Definition 2.9. The design variance of an estimator θ̂ is defined as:

Vp(θ̂) = Ep

[
{θ̂ − Ep(θ̂)}2

]
.

Definition 2.10. The design mean square error (MSE) of an estimator θ̂ is

defined as:

MSEp(θ̂) = Ep

{
(θ̂ − θ)2

}
= Vp(θ̂) +Bp(θ̂)

2.

2.5 Weighted estimators in the absence of non-

response

In this section the properties of estimators are examined with respect to the

sampling design, whereby the y-values and the x-values are treated as fixed.

2.5.1 Weighting Survey Data

As mentioned by Biemer and Christ (2008), after the survey data have been

collected, they must be appropriately weighted before any analysis. The weighting
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2.5. Weighted estimators in the absence of nonresponse

process leads to the creation of a new variable wi for each sample unit. If the

weight is wi =
1
πi
, it can then be interpreted as the number of individuals in the

target population represented by unit i ∈ s. Ignoring the weights and treating

the data as if they were coming from a simple random sample, is equivalent to

setting equal weights. It usually results in biased estimates in the case of unequal

probability sampling and post-survey weight adjustments.

2.5.2 The Horvitz-Thompson estimator

Basic sampling weights are defined as the inverse of the inclusion probabilities

(Horvitz and Thompson, 1952); that is, wi =
1
πi
, for all i ∈ S.

Definition 2.11. The Horvitz-Thompson estimator of the total ty is given by:

t̂yπ =
∑
i∈S

wiyi.

This estimator is also called π-estimator or expansion estimator since the val-

ues yi are expanded by the inverse of the inclusion probabilities.

Remark 2.1. In the case of a stratified random sampling without replacement, the

Horvitz-Thompson estimator of the total ty is:

t̂yπ =
H∑

h=1

t̂yπh
,

where

t̂yπh
=

Nh

nh

∑
i∈Sh

yi.

Note that the Horvitz-Thompson estimator is generally not location-scale in-

variant since we have:

1

N

∑
i∈U

a+ byi
πi

̸= a+ b
1

N

∑
i∈U

yi
πi

.

As explained by Cassel and Wretman (1976), having a probability sampling

design with πi > 0 for all i ∈ U is a necessary and sufficient condition for the

existence of a design-unbiased estimator of the population total.
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Theorem 2.1. If πi > 0, for all i ∈ U , then t̂yπ is a design-unbiased estimator of

ty.

Remark 2.2. If at least one πi = 0 for i ∈ U , we are in a situation of undercoverage

and t̂yπ is biased under the sampling design. The bias equals:

Ep(t̂yπ)− ty =
∑

i∈U |πi=0

yi.

Definition 2.12. If the finite population size N is known, the Horvitz-Thompson

estimator of the mean ȳ in U is

ˆ̄yπ = t̂yπ/N.

The variance of the Horvitz-Thompson estimator of ty is given by the following

theorem:

Theorem 2.2. The variance of the Horvitz-Thompson estimator of ty is

Vp(t̂yπ) =
∑
i,k∈U

yiyk
πiπk

∆ik.

Furthermore, for a fixed-size sampling design, the variance can be written in the

so-called Sen-Yates-Grundy form

Vp(t̂yπ) = −1

2

∑
i,k∈U

(πik − πiπk)

(
yi
πi

− yk
πk

)2

.

Corollary 2.1. With simple random sampling without replacement, we have

Vp(t̂yπ) = N2 (1−
n
N
)

n
S2
y ,

where S2
y = (N − 1)2

∑
i∈U(yi − ȳ)2 is the dispersion of the population y-values.

With a fixed-size sampling design, the variance of t̂yπ equals zero if the inclusion

probabilities πi are proportional to the variable of interest yi. In practice, we do

not know the y-values prior to sampling. If an auxiliary variable x is closely

related with y, then a sampling design with πi ∝ xi can lead to very efficient
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2.5. Weighted estimators in the absence of nonresponse

sampling design. This is the rationale behind probability proportional to size (π-

ps) sampling designs.

A sampling design is said measurable if πi > 0, for all i ∈ U and πik > 0,

for all (i, k) ∈ U2 (Särndal et al. 1992). The measurable property allows the

calculations of valid variance estimates.

Theorem 2.3. For a measurable sampling design, an unbiased estimator of the

variance of t̂yπ is given by:

V̂HT (t̂yπ) =
∑
i∈S

y2i
π2
i

(1− πi) +
∑

i,k∈S,i̸=k

yiyk
πiπkπik

∆ik.

For fixed-sized designs, an alternative variance estimator is the Sen-Yates-Grundy

estimator:

V̂SY G(t̂yπ) = −1

2

∑
i,k∈S

(πik − πiπk)

πik

(
yi
πi

− yk
πk

)2.

Corollary 2.2. With a simple random sample without replacement, the Sen (1953)

and Yates-Grundy (1953) variance estimator reduces to

V̂SY G(t̂yπ) = N2 (1−
n
N
)

n
S2
yS
,

where S2
yS

= 1
n−1

∑
i∈S(yi − ȳS)

2 is the dispersion of the y-values in the sample

and ȳS = 1
n

∑
i∈S yi is the sample mean.

The Horvitz-Thompson estimator does not necessarily achieve small variance if

the πi’s are not proportional to yi. Thus, to improve the efficiency of the resulting

estimator, auxiliary information is often incorporated at the estimation stage: for

instance if the population total of an auxiliary variable is known from external

sources. That is why we consider the ratio estimator and its special case the Hajek

estimator (1971) in the following subsection.

2.5.3 Calibrated estimators

The Horvitz-Thompson estimator t̂yπ has the interesting property of being design-

unbiased for the total ty. However, the variance of t̂yπ may be large, in particular
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if the auxiliary variables used in the sampling design do not explain the y-variable

well. On the other hand, it is possible that at the estimation stage some set xk

of auxiliary variables is available, and that their totals tx =
∑

i∈U xi are known

from an external source such as census or administrative data. The purpose of

calibration (Deville and Särndal, 1992) is to adjust the estimators on this aux-

iliary information to produce more precise estimates than can be obtained from

the y data alone.

The Horvitz-Thompson estimator applied to the set of auxiliary variables xi,

namely

t̂xπ =
∑
i∈S

π−1
i xi,

is not necessarily equal to tx. The purpose of calibration is to modify the design

weights wi = 1/πi in order to produce calibrated weights wci, a) which are close

to the original weights wi, and b) which enable to match exactly the known to-

tals tx. The purpose of constraint a) is that the new weights remain close to the

design weights, so that the new estimator remains approximately unbiased. The

purpose of constraint b) to have coherence between estimations computed from S

and some known auxiliary totals. Also we may obtain a variance reduction if the

variable y is well explained by the auxiliary variables.

More precisely, Deville and Särndal (1992) propose to solve the optimization

problem

min
{wci}

∑
i∈s

wi

qi
G

(
wci

wi

)
such that

∑
i∈s

wcixi = tx, (2.5.1)

with G(·) some distance function, and qi some weight attributed to unit i in the

sample, see Deville and Särndal (1992). This leads to the calibrated estimator

t̂ycal =
∑
i∈S

wciyi.
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2.5. Weighted estimators in the absence of nonresponse

Under some conditions on the sampling design, the distance function, the variable

of interest and the calibration variables, Deville and Särndal (1992) prove that

the variance of the calibrated estimator is approximately given by

Vp

(
t̂ycal

)
≃ Vp

(
t̂Eπ

)
, (2.5.2)

where

Ei = yi −B⊤xi and B =

(∑
i∈U

xix
⊤
i

qi

)−1∑
i∈U

xiyi
qi

. (2.5.3)

It follows from (2.5.2) that the variance of the calibrated estimator may be sig-

nificantly reduced, as compared to that of the Horvitz-Thompson estimator, if

there exists a strong (linear) relationship between the auxiliary variables and the

variable of interest.

In the particular case when the Euclidean distance is used, we have

G(x) =
1

2
(x− 1)2.

In this case, the calibrated estimator t̂ycal is called the Generalized REGression

(GREG) estimator, and it simplifies as

t̂ygreg = t̂yπ + B̂⊤ (tx − t̂xπ

)
,

where

B̂ =

(∑
i∈S

wi
xix

⊤
i

qi

)−1∑
i∈S

wi
xiyi
qi

.

A particular important case occurs when one auxiliary variable only is used,

say xi = xi, and when qi = xi. In such case, the GREG estimator simplifies to

give the so-called ratio estimator

t̂yr = tx
t̂yπ
t̂xπ

.
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From (2.5.2), the variance of the ratio estimator can be approximated by

Vp(t̂yr) ≃
∑
i∈U

∑
k∈U

(πik − πiπk)
yi −Rxi

πi

yk −Rxk

πk

,

where R =
ty
tx
.

A possible variance estimator is given by

V̂HT (t̂yr) =
∑
i∈S

∑
k∈S

(πik − πiπk)

πik

(yi − R̂xi)

πi

(yk − R̂xk)

πk

,

where R̂ =
t̂yπ
t̂xπ

.

The ratio estimator is useful when there is strong positive correlation between xi

and yi (e.g., Särndal et al., 1992). On the contrary, if the correlation is negative,

the ratio estimator is actually worse than the Horvitz-Thompson estimator.

The Hajek estimator of ty is a special case of the ratio estimator, obtained

with xi = 1.

Definition 2.13. The Hajek estimator of the finite population total ty is

t̂yH = N

(∑
i∈S

1

πi

)−1∑
i∈S

yi
πi

.

Definition 2.14. The Hajek estimator of the finite population mean ȳ is

ˆ̄yH =

(∑
i∈S

1

πi

)−1∑
i∈S

yi
πi

2.6 Non-response

Design-based theory, as presented in the previous sections, is applicable when

the survey has complete response. As quoted by Rässler, Rubin and Schenker

(2009), survey data can be imperfect in various ways. For example, errors due

to noncoverage, problems with interviewers or missing values may affect data
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quality. In particular, surveys typically suffer from missing-data problems due to

nonresponse. Haziza and Kuromi (2007) listed the main effects of nonresponse:

(i) bias of point estimators; (ii) increase in the variance of point estimators and

(iii) bias of complete data variance estimators.

Little and Rubin (2002) distinguish four main groups of methods in incomplete

data analysis. They gather in the first group simple procedures such as complete-

case analysis, which discard the units with incomplete data and analyze only

the units with complete data. The second group of methods includes weighting

procedures which introduce a factor into the survey weight for each responding

unit equal to the inverse of the estimated probability of response for that unit.

The third group is composed of methods for handling item nonresponse such as

single and multiple imputation. Single imputation methods fill in values that are

missing and the completed data are then analyzed as if they were fully observed

data. Multiple imputation is designed for reflecting the added uncertainty due to

the fact that imputed values are usually not the real values. The last group of

methods includes direct analyses using model based procedures, in which models

are built for the observed data, with inferences based on likelihood or Bayesian

analyses.

We treat separately item response from unit response in the two following

subsections and give some corresponding methods to deal with missingness.

2.6.1 Item nonresponse

The following subsection is inspired from Haziza (2009) and Haziza and Kuromi

(2007). A so called nonresponse bias occurs if respondents and nonrespondents

are different in expectation with respect to the survey variables. Moreover, non-

response reduces the observed sample size in comparison with the sample size

initially planned. Thus, it induces an increase in the variance of estimators,

which is called the nonresponse variance. Imputation methods aim both at re-

ducing the nonresponse bias and controling the nonresponse variance as much as
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possible. Since imputation is essentially a modeling exercise, auxiliary variables

available for both respondents and nonrespondents are necessary. The quality of

the imputed estimates will thus depend on the availability and judicious use of

good auxiliary information at the imputation stage.

Let ri be the response indicator, such that ri = 1 if unit i responded to item

y, and ri = 0 otherwise. We note r = (r1, . . . , rN)
⊤ for the vector of the response

indicators. Let pi = P (ri = 1) denote the response probability to item y for unit

i. Assuming that the individuals respond independently of one another, we have

pik = P (ri = 1, rk = 1) = pipk, for all i, k ∈ S.

Definition 2.15. The unknown distribution of the response indicators, P (ri | S)

is called the nonresponse mechanism.

In the presence of nonresponse to item y, it is not possible to compute the

Horvitz Thompson estimator for ty since some y-values are missing. An imputa-

tion mechanism is used to replace the missing values. That is, an artificial value

y∗i is used to replace the missing yi.

Definition 2.16. An imputed estimator for ty based on observed and imputed

values is

t̂yI =
∑
i∈S

wiriyi +
∑
i∈S

wi(1− ri)y
∗
i . (2.6.1)

Remark 2.3. The imputed estimator (2.6.1) is the weighted mean of the observed

and the imputed values which depend on the imputation method used to replace

the missing data.

The imputation mechanism is motivated by an underlying imputation model,

which corresponds to a set of assumptions on the variable y subject to missingness.

An imputation model is a set of assumptions about the distribution of the variable

requiring imputation. Regression imputation is motivated by the following linear

regression model m.
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Definition 2.17. The so called regression imputation model is:

m : yi = x⊤β + ϵi (2.6.2)

with xi a vector of auxiliary variables, which is assumed to be known on the whole

sample including non-respondents and

Em(ϵi) = 0, Em(ϵiϵk) = 0 ifi ̸= k,Em(ϵ
2
i ) = σ2

where Em(.) denotes the expectation with respect to the model (2.6.2).

In deterministic regression imputation, a missing value yi is replaced by its

predicted value, ŷi obtained by fitting the imputation model (2.6.2) using the

respondents y-values only:

y∗i = ŷi = x⊤
i β̂r (2.6.3)

where

β̂r =

(∑
i∈S

wirixix
⊤
i

)−1(∑
i∈S

wirixiyi

)
which is the weighted least square estimator of β.

We now turn to random regression imputation. Let us denote Sr the set of

respondents for the variable of interest y. The imputed value used for a missing

yi is:

y∗i = ŷi + ϵ∗i (2.6.4)

where ŷi is provided by (2.6.3), and ϵ∗i is a residual randomly drawn from the

observed estimated residuals ek = yk − x⊤
k β̂r, with

P (ϵ∗i = ek) =
wk∑

l∈S wlrl
.

One drawback of deterministic regression imputation is the distortion of the

distribution of the variables of interest being imputed. This distortion grows along

with the nonresponse rate and the lack of adequacy of the model. By contrast,

random regression imputation tends to preserve the distribution of the variables
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of interest. However, it suffers from an additional component of variance coming

from the randomness of the imputation mechanism.

The properties of the imputed estimator can be studied by using the decom-

position of its total error:

t̂yI − ty = (t̂yπ − ty) + (t̂yI − t̂yπ) (2.6.5)

The first term (t̂yπ − ty) on the right-hand side of (2.6.5) is called the sampling

error of t̂yI whereas the second term (t̂yI − t̂yπ) is called the nonresponse error of

t̂yI .

Let Eq(.) and Vq(.) denote the expectation and variance under the non-response

mechanism, conditionally on the vector yU of population values and on the vector

δU of sample membership indicators.

Definition 2.18. The bias of the imputed estimator is defined as:

B(t̂yI ) = E(t̂yI − ty)

= EpEq(t̂yI − ty | S)

= Ep(t̂yπ − ty) + EpEq(t̂yI − t̂yπ | S)

= Ep(Bq)

where Bq = Eq(t̂yI − t̂yπ | S) denotes the conditional nonresponse bias.

We now turn to the general definitions of two types of missingness given by

Rubin (1996).

Definition 2.19. Assuming that the true probability of response associated with

unit i is related to a certain vector of variables xi:

i) if the vector xi contains fully observed variables only, then the data are said

to be Missing At Random (MAR) and the response mechanism is ignorable,

ii)if the vector xi includes variables that are subject to missingness, then the

data are Not Missing At Random (NMAR) and the response mechanism is not

ignorable.

36



2.6. Non-response

The imputed estimator is unbiased if Bq = 0. The nonresponse bias Bq will

be negligible if the vector of auxiliary variables is correctly specified and the

nonresponse mechanism is ignorable.

In the following chapter of this thesis, we assume that nonresponse mechanism

is ignorable.

Definition 2.20. Assuming that the imputed estimator t̂yI is conditionally unbi-

ased for t̂yπ , the variance of the imputed estimator is defined as:

V (t̂yI ) = E(t̂yI − ty)
2

= EpEq(t̂yI − t̂yπ | S)2 + EpEq(t̂yπ − ty)
2

+ 2EpEq

[
(t̂yI − t̂yπ)(t̂yπ − ty) | S

]
= Ep(t̂yπ − ty)

2 + EpEq(t̂yI − t̂yπ | S)2

= Vp(t̂yπ) + EpVq(t̂yI − t̂yπ | S)

where Vp(t̂yπ) represents the sampling variance and EpVq(t̂yI − t̂yπ | S) the nonre-

sponse variance.

The sampling variance depends on the sampling procedure, the selected sample

size and the population being sampled. The nonresponse variance tends to be

lower with a high response rate and a good predictive power of the imputation

model.

There are some risks in case of using imputation, as underlined by Haziza and

Kuromi (2007), for example. First, imputation leads to a complete data file but

inference will be valid only if the assumptions made on the response mechanism

and/or the imputation model are truly satisfied. Also, some imputation methods

distort the distribution of the imputed variables. For example, marginal impu-

tation treating each item separately distorts the relationships between variables

(see Chapters 3 and 4). Finally, in terms of variance estimation, treating the im-

puted values as if they were observed may lead to substantially negatively biased
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variance estimators, and more particularly if the nonresponse rate is appreciable.

2.6.2 Unit nonresponse

Weighting adjustment is often used to handle unit nonresponse in sample surveys.

Groves et al. (2002) and Särndal & Lundström (2005) provided comprehensive

overviews of nonresponse weighting adjustment (NWA) methods in survey sam-

pling.

Each element of the population is considered as having its own individual

probability of responding. The sampling weight of the respondent is increased

using the information observed in the sample. It allows respondents to properly

represent the original population. This procedure comes from the theory for two-

phase sampling, according to which the set of respondents is treated as a second

phase sample from the original sample: it leads to multiply the inverse of the

response probability by the sampling weight of each respondent. However, unlike

the sampling phase, the response phase is beyond the control of the statistician

since unit nonresponse occurs with unknown probabilities. The estimation theory

built around the idea that each unit i is equipped with a known individual inclu-

sion probability, πi, and an unknown individual response probability, pi is called

”quasi-randomization theory” (Oh and Scheuren, 1983).

In practice, two types of weighting procedures are commonly used (Haziza

and Lesage, 2016): in the first, the basic weights are multiplied by the inverse

of the estimated response probabilities, whereas the second uses some form of

calibration for adjusting the basic weights, which includes post-stratification and

ratio estimation as special cases. In this thesis, we focus on weighting adjustments

by the inverse of the estimated response probabilities.

In the presence of unit nonresponse, the survey variables are recorded for a

subset Sr of the original sample S. This subset is often referred to as the set

of respondents. Let ri be a response indicator such that ri = 1 if unit i is a

38



2.6. Non-response

respondent and ri = 0, otherwise. We assume that the true probability of re-

sponse associated with unit i is related to a certain vector of variables xi; that is,

pi = P (ri = 1 | S,vi). We assume that 0 < pi ≤ 1 and that the response indi-

cators are mutually independent. The latter assumption is generally not realistic

in the context of multistage sampling designs because sample units within the

same cluster (e.g., household) may not respond independently of one another; see

Skinner and D’Arrigo (2011) and Kim et al. (2016) for a discussion of estimation

procedures accounting for the possible intra-cluster correlation.

Little and Rubin (2002) distinguish three missing-data mechanisms: missing

completely at random (MCAR), missing at random (MAR), and not missing at

random (NMAR).

Definition 2.21. Missing Completely At Random (MCAR). Data are missing

completely at random if the missingness is unrelated to the (unknown) missing

values of that variable as well as unrelated to the values of other variables. We

have

P (ri = 1 | yi;xi) = P (ri = 1), ∀i ∈ S.

In the MCAR situation, the only impact of nonresponse is an increase in

estimators’ variance, since the sample size is reduced.

Definition 2.22. Missing At Random (MAR). Data are missing at random if the

missingness is possibly related to the observed data in the data set, but, condition-

ally on these data, is not related to any unknown value. We have

P (ri = 1 | yi;xi) = Pr(ri = 1 | xi), ∀i ∈ S.

where yi is the variable of interest, and xi a vector of auxiliary variables known

for each unit i ∈ S.

It means that the missing values are a random sample of all values within

classes defined by observed values (i.e., conditional on the observed data, the

missingness is completely at random).
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Definition 2.23. Not Missing At Random (NMAR). The missingness depends on

some unobserved (missing) values, even after conditioning on all observed values.

We have

P (ri = 1 | yi;xi) ̸= Pr(ri = 1 | xi) ∀i ∈ S

where yi is the variable of interest, and xi a vector of auxiliary variables known

for each unit i in S.

MCAR can be unrealistically restrictive and in practice, it is not possible to

determine whether or not the MAR assumption holds. However, the MAR as-

sumption can be made more plausible by conditioning on fully observed variables

that are related to both the probability of response and the survey variables; e.g.,

Little and Vartivarian (2005). Thus, in chapter 5, we assume that response mech-

anisms under study are MAR.

If the response probabilities pi were known, an unbiased estimator of ty would

be the double expansion estimator (Särndal et al., 1992):

t̂y,DE =
∑
i∈Sr

wi

pi
yi. (2.6.6)

In practice, the response probabilities pi are not known and need to be estimated.

To that end, a model for the response indicators ri, called a nonresponse model,

is assumed and the estimated probabilities p̂i are obtained using the postulated

model (e.g., Särndal and Swensson, 1987; Ekholm and Laaksonen, 1991). This

leads to the Propensity Score Adjusted (PSA) estimator:

t̂y,PSA =
∑
i∈Sr

wi

p̂i
yi, (2.6.7)

where p̂i is an estimate of pi. An alternative estimator of ty is the so-called Hajek

estimator:

t̂y,H =
N

N̂

∑
i∈Sr

wi

p̂i
yi, (2.6.8)
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where N̂ =
∑

i∈Sr

wi

p̂i
is an estimate of the population size N based on the respon-

dents.

The estimated response probabilities in (5.0.3) or (5.0.4) may be obtained

through parametric or nonparametric methods. In the context of parametric

estimation, we assume that

pi = f(xi,α), (2.6.9)

for some function f(zi, .), where α is a vector of unknown parameters. The

estimated response probabilities are given by

p̂i = f(xi, α̂),

where α̂ is a suitable estimator (e.g., maximum likelihood estimator) of α. The

class of parametric models (5.0.5) includes the popular linear logistic regression

model as a special case. It is given by

pi =
exp(x⊤

i α)

1 + exp(1 + x⊤
i α)

.

There are several issues associated with the use of a parametric model: (i) they

are not robust to the misspecification of the form of f(xi, .); (ii) they can fail to

account properly on local violations of the parametric assumption such as nonlin-

earities or interaction effects, both of which may not have been detected during

model selection; (iii) they may yield very small estimated response probabilities,

resulting in very large nonresponse adjustment factors p̂−1
i , ultimately leading to

potentially unstable estimates; e.g., Little and Vartivarian (2005) and Beaumont

(2005).

The estimated response probabilities are used to correct for nonresponse bias.

Consequently, the NWA estimators reduce nonresponse bias by incorporating the

estimated response probabilities in the estimators. Some authors as Little and

Vartivarian (2005) and Kim and Kim (2007) also argued that the estimators us-

ing the estimated response probability could be more efficient than the estimators
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using the true response probability.

In chapter 3 and 4, we propose methods to overcome specific problems induced

by item nonresponse : preserving correlation coefficient between two variables of

interest with MIVQUE based imputation (chapter 3) and preserving the distribu-

tion function in case of imputation for zero inflated data (chapter 4). In chapter

5, we compare different machine learning methods (parametric, non parametric

and including models agregation) to estimate response probabilities in case of unit

nonresponse, aiming at estimating finite population totals in the best way.
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Chapter 3

Preserving relationships between
variables with MIVQUE based
imputation

In this paper, we study the problem of preserving the relationships between items

requiring imputation. Marginal imputation, which consists of treating items sepa-

rately, tends to distort the relationships because this type of imputation procedure

does not account for the existing relationships between items. When the interest

lies in estimating a simple parameter such as a population mean or total, it is

generally possible to produce a simple imputation procedure such as determinis-

tic or random regression imputation. The latter leads to asymptotically unbiased

estimator of simple parameters provided that the assumed imputation model is

correctly specified. On the other hand, these types of imputation may lead to

severely biased estimators of parameters measuring relationships (e.g., a coeffi-

cient of correlation), if applied separately for each variable requiring imputation.

To overcome this problem, two main approaches have been studied in the lit-

erature: the first consists of using a marginal imputation procedure followed by

a bias-adjustment procedure at the estimation stage. This approach was investi-

gated by Skinner and Rao (2002) and Chauvet and Haziza (2012), among others.

In the second approach, the missing values are imputed using a joint procedure,
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which accounts for the relationships between items. Shao and Wang proposed a

joint random regression imputation procedure and showed that it leads to asymp-

totically unbiased estimators of coefficients of correlation; see also Chauvet and

Haziza (2012) for a fully efficient version of the Shao-Wang procedure.

The Shao-Wang procedure belongs to the class of random imputation pro-

cedures. Unlike deterministic imputation procedures, random procedures suffer

from an additional variability, called the imputation variance, leading to somehow

inefficient estimators. In this paper, we propose a modification of the Shao-Wang

procedure, that can be implemented in two steps. In the first step, initial imputed

values are obtained using the Shao-Wang procedure. In the second step, the initial

imputed values are iteratively modified so that appropriate calibration constraints

are satisfied. We propose to calibrate on Minimum In Variance Quadratic Un-

biased Estimators (MIVQUE), which are based on a geometrical interpretation

of the covariance structure of variables. The choice of calibrating on MIVQUEs

is first motivated by the unbiasedness condition which is expected to provide ro-

bustness of correlation estimation with respect to nonresponse and consequently

to help in preserving the relationship between variables. Moreover, as the theory

of MIVQUE is not based on a likelihood assumption but on algebraic considera-

tions on moment estimators, its application to nonresponse issues (see Causeur,

2006) in sample surveys is straightforward.

On the one hand, satisfying the calibration constraints ensures that the im-

putation variance is virtually eliminated. On the other hand, calibrating on the

MIVQUE leads to efficient estimators of parameters such as marginal first and

second moments as well as coefficients of correlation when the bivariate distribu-

tion of the study variables is symmetric or exhibits a low degree of asymmetry.

The idea of calibrated imputation has been investigated in the context of outliers

and robust estimation by Ren and Chambers (2002). The idea of finding imputed

values that satisfy constraints can also be found in Beaumont (2005), Favre et al.
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(2005), Rancourt and Liu (2001), Chauvet et al. (2011) and Chauvet and Haziza

(2012).

This paper is organised as follows. In Section 2, we describe the theoretical

set-up and present the joint imputation procedure of Shao and Wang (2002). In

Section 3, we describe the MIVQUE approach which is based on a geometrical

interpretation of the covariance structure. A weighted version of the MIVQUE,

which is useful in the context of survey sampling, is also introduced. A two steps

MIVQUE based imputation is proposed in Section 4 and its properties are dis-

cussed. In section 5, the results of a simulation study, comparing the Shao-Wang

procedure and the proposed procedure in terms of bias and relative efficiency, are

presented. We give some final remarks in Section 6.

3.1 Theoretical set-up

Let U be a finite population of size N . We are interested in estimating the finite

population coefficient of correlation between the variables y1 and y2 :

R12 =
t11 − t10t01/N

{t20 − (t10)2/N}1/2{t02 − (t01)2/N}1/2
,

where tkl =
∑

i∈U(y1i)
k(y2i)

l with (k, l) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}. For

example, t10 =
∑

i∈U y1i and t11 =
∑

i∈U y1iy2i.

We select a sample S of size n according to a sampling design p(.). Let

wi = 1/πi be the sampling weight attached to unit i, where πi = P (i ∈ S) denotes

its first-order inclusion probability in the sample.

A complete data estimator of R12 is the plug-in estimator

R̂12,π =
t̂11π − t̂10π t̂01π /N̂π

{t̂20π − (t̂10π )2/N̂π}1/2{t̂02π − (t̂01π )2/N̂π}1/2
,

49



Chapter 3. Preserving relationships between variables with MIVQUE based
imputation

where t̂klπ =
∑

i∈S wi(y1i)
k(y2i)

l and N̂π =
∑

i∈S wi denote the expansion type esti-

mators of tkl and N , respectively. Under some regularity conditions, the estimator

R̂12,π is asymptotically design-unbiased for R12 (e.g., Deville, 1999).

We now turn to the case where both y1 and y2 are subject to missingness.

Let r1i be a response indicator variable corresponding to y1. Let y∗1i denote the

imputed value used to replace the missing y1i, and let ỹ1i = y1i if r1i = 1 and

ỹ1i = y∗1i if r1i = 0. The quantities r2i, y
∗
2i and ỹ2i are similarly defined for y2i. An

imputed estimator of R12 based on observed and imputed values is defined as

R̂12,I =
t̂11I − t̂10I t̂01I /N̂π

{t̂20I − (t̂10I )2/N̂π}1/2{t̂02I − (t̂01I )2/N̂π}1/2
, (3.1.1)

where t̂klI =
∑

i∈S wi(ỹ1i)
k(ỹ2i)

l. Note that (3.1.1) can be readily computed by sec-

ondary analysts using complete data software as it does not require the response

indicators to be available in the imputed data file.

We consider the class of linear regression imputation procedures. We assume

that the following bivariate model holds:

y1i = β⊤
1 xi + ϵ1i,

y2i = β⊤
2 xi + ϵ2i, (3.1.2)

where xi is a vector of auxiliary variables attached to unit i available for all the

sample units (respondents and nonrespondents), β1 and β2 are vectors of unknown

parameters. The errors ϵ1i (respectively, ϵ2i) are independent random variables

with mean 0 and unknown variance σ11 (respectively, σ22). We assume that the

covariance matrix of (ϵ1i, ϵ2i)
⊤ is (

σ11 σ12

σ12 σ22

)
,

where σ12 ≡ Covm(ϵ1i, ϵ2i) and the subscript m denotes model (3.1.2).
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In this paper, the properties of point estimators are evaluated with respect

to the Imputation Model (IM) approach; e.g., Haziza (2009). In this approach,

inference is made with respect to the joint distribution induced by the imputation

model, the sampling design, and the nonresponse mechanism. We adopt the

following notation: let y = (y1, . . . ,yN) with yi = (y1i, y2i)
⊤; let δ= (δ1, . . . , δN)

⊤,

where δi = 1 if unit i ∈ S and δi = 0, otherwise; finally, let r = (r1, . . . , rN) with

ri = (r1i, r2i)
⊤.

We denote by Eq(.) ≡ E(. | y, δ) the expectation with respect to the non-

response model: except for the response indicators ri, all the other variables

involved in point and variance estimators are treated as fixed. We denote by

Em(.) ≡ E(. | δ, r) the expectation with respect to the imputation model : except

for the variables of interest y, all the other variables involved in point and vari-

ance estimators are treated as fixed. Finally, we denote by EI(.) ≡ E(. | y, δ, r)

the expectation with respect to the imputation mechanism in the case of random

imputation procedure: except for the imputed values y∗1i and y∗2i, all the other

variables involved in point and variance estimators are treated as fixed. Note that

the auxiliary variables x in (3.1.2) are always treated as fixed.

Under a random imputation procedure, the total error of R̂12,I can be expressed

as

R̂12,I −R12 = (R̂12,π −R12) + (Ř12,I − R̂12,π) + (R̂12,I − Ř12,I), (3.1.3)

where the first term on the right hand side of (3.1.3) denotes the sampling error,

the second and third terms denote the nonresponse error and imputation error,

respectively, and Ř12,I = EI

(
R̂12,I

)
.

Under random imputation, the conditional nonresponse bias of R̂12,I is defined

as

BmqI(R̂12,I) = EmEqEI(R̂12,I − R̂12,π) = EqEmEI(R̂12,I − R̂12,π),
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where the subscript q denotes the unknown nonresponse mechanism. The second

equality in the previous formula is justified when the sampling design is nonfor-

mative and the data are Missing At Random (Rubin, 1976), which we assume to

be the case in this paper. That is, model (3.1.2) holds for the respondents.

If each term tkl =
∑

i∈U(y1i)
k(y2i)

l is consistently estimated, then R̂12,I is a

consistent estimator of R12, provided some mild regularity conditions are satisfied;

see, for example Cardot et al. (2013). For the marginal first moments t01 and t10,

an appropriate deterministic or random marginal regression imputation procedure

may be used, whereas the marginal second moments t02 and t20 require a marginal

random imputation procedure (see Appendix A). The main difficulty lies in esti-

mating the cross product term t11 in an (asymptotically) unbiased fashion. Unlike

for the marginal first and second moments, marginal imputation procedures may

lead to a severely biased estimator of t11 because they do not account for the ex-

isting relationship between y1 and y2. To overcome this problem, Shao and Wang

(2002) proposed a joint regression imputation procedure, which is described next.

Missing y1i and y2i are imputed by y∗1i and y∗2i with

y∗1i = β̂
r⊤
1 xi + ϵ∗1i,

y∗2i = β̂
r⊤
2 xi + ϵ∗2i (3.1.4)

where

β̂
r

1 =

(∑
i∈S

wir1ixix
⊤
i

)−1∑
i∈S

wir1ixiy1i,

β̂
r

2 =

(∑
i∈S

wir2ixix
⊤
i

)−1∑
i∈S

wir2ixiy2i. (3.1.5)
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In addition, we define the estimators of σ11 , σ22 and σ12 by

σ̂r
11 =

1∑
i∈S wir1ir2i

∑
i∈S

wir1ir2ie
2
1i,

σ̂r
22 =

1∑
i∈S wir1ir2i

∑
i∈S

wir1ir2ie
2
2i,

σ̂r
12 =

1∑
i∈S wir1ir2i

∑
i∈S

wir1ir2ie1ie2i, (3.1.6)

respectively, where e1i = y1i − β̂
r⊤
1 xi and e2i = y2i − β̂

r⊤
2 xi .

The random residuals ϵ∗1i and ϵ∗2i are generated as follows:

(i) If y1i is missing but y2i is observed, we use

ϵ∗1i =
σ̂r
12

σ̂r
22

(y2i − β̂
r⊤
2 xi) + ϵ̃∗1i, (3.1.7)

where the ϵ̃∗1i are independent random variables with mean 0 and variance

σ̂r
11 − (σ̂r

12)
2/σ̂r

22.

(ii) If y1i is observed but y2i is missing, we use

ϵ∗2i =
σ̂r
12

σ̂r
11

(y1i − β̂
r⊤
1 xi) + ϵ̃∗2i, (3.1.8)

where the ϵ̃∗2i are independent random variables with mean 0 and variance

σ̂r
22 − (σ̂r

12)
2/σ̂r

11.

(iii) If y1i and y2i are both missing, the ϵ∗1i and ϵ∗2i are independently distributed

with mean 0 and covariance matrix :(
σ̂r
11 σ̂r

12

σ̂r
12 σ̂r

22

)
=
∑
i∈S

wir1ir2i

 e21i e1ie2i

e1ie2i e22i

 /
∑
i∈S

wir1ir2i.

Shao and Wang (2002) showed that R̂12,I based on the above joint imputation

procedures is asymptotically unbiased for R12, provided that the bivariate impu-

tation model (3.1.2) is correctly specified. This property holds whether or not
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the bivariate distribution of the variables y1 and y2 is symmetric. In other words,

the Shao-Wang procedure does not make any assumption about the distribution

of the error terms. In particular, it doesn’t require normally distributed errors

terms. Note that marginal random regression imputation is obtained from the

above imputation procedure by setting σ̂r
12 = 0 in (i)-(iii). One drawback of the

Shao-Wang procedure is that it introduces an additional amount of variability due

to the random selection of residuals. As a result, the imputed estimator R̂12,I is

potentially inefficient. Chauvet and Haziza (2012) proposed a balanced version of

the Shao-Wang procedure, which consists of selecting the residuals ϵ∗1i and ϵ∗2i at

random so that the imputation error, R̂12,I − Ř12,I , is (approximately) equal to

zero. That is, the residuals are selected at random so that the following balancing

constraints are satisfied:

t̂klI − ťklI = 0 (3.1.9)

for (k, l) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}, where ťklI = EI(t̂
kl
I ). Balanced impu-

tation can be implemented by adapting the Cube algorithm originally developed

by Deville and Tillé (2004) in the context of balanced sampling.

3.2 The MIVQUE approach

In the Gauss-Markov approach of estimation of expectation parameters, Best Lin-

ear Unbiased Estimators (BLUEs) are defined as the unbiased linear combinations

of observed values with minimum variance. Similarly, for variance parameters, the

class of Gauss-Markov estimators can be defined as the unbiased quadratic forms

of the observed values with minimum variance, also called Minimum Variance

Quadratic Unbiased Estimator (MIVQUE); see Rao, 1970, 1971a, 1971b for de-

tails.
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3.2.1 MIVQUE through the bivariate case with fully ob-
served covariates

We consider here an arbitrary bivariate case of nonresponse pattern on two vari-

ables of interest (here, y1 and y2) with auxiliary variables. For any combination

c of variables and j ∈ c, we denote by y
(c)
j the nc-vector of observed values for

the j-th variable on the sample Sc for which only the variables with indices in c

are observed. In the Gauss-Markov approach described by Causeur (2006), the

class of quadratic estimators of the variance parameters is defined as the set of

quadratic forms of y̆ = (y
(1)⊤
1 ,y

(2)⊤
2 ,y

(12)⊤
1 ,y

(12)⊤
2 )⊤. In what follows, x(c) and

w(c) denote respectively the nc× p matrix of the observed values of the covariates

in Sc and the nc × nc diagonal matrix, whose l-th diagonal element is wl for l in

Sc.

The first two moments of y̆ are therefore given in their partitioned form as

follows:

Em(y̆) = Xβ, Vm(y̆) = V,

where

X =


x(1) 0n1

0n2 x(2)

x(12) 0n12

0n12 x(12)

 , β =

(
β1

β2

)
and V =


σ11In1 0n1,n2 0n1,n12 0n1,n12

0n2,n1 σ22In2 0n2,n12 0n2,n12

0n12,n1 0n12,n2 σ11In12 σ12In12

0n12,n1 0n12,n2 σ12In12 σ22In12

 .

In the above expressions, Inc , 0nc and 0nc,nc′
denote respectively the nc × nc

identity matrix, the nc × p matrix consisting of zero entries and the nc × nc′

matrix consisting of zero entries.

A linear Gauss-Markov estimator θ̂ of any linear contrast θ = λ⊤β is defined

as follows: θ̂ = ℓ⊤y̆, where ℓ is chosen so that θ̂ is unbiased with minimum

variance in the class of linear unbiased estimators. This optimization issue leads

to the well-known general least-squares solution:

ℓ = V−1X(X⊤V−1X)−1λ,
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which depends on the variance parameters through V.

A weighted version of θ̂ can be obtained by replacing y̆ by W1/2y and X by

W1/2X in the above expressions, where the weighting matrix W is defined as

W =


w(1) 0n1,n2 0n1,n12 0n1,n12

0n2,n1 w(2) 0n2,n12 0n2,n12

0n12,n1 0n12,n2 w(12) 0n12,n12

0n12,n1 0n12,n2 0n12,n12 w(12)

 .

The corresponding Gauss-Markov estimator θ̂ is given by θ̂ = ℓ⊤wy̆, where ℓw =

W−1/2ℓ. The weighted version will be able to handle survey regression imputa-

tion for which the weights are defined as the inverse of the inclusion probabilities.

Note that the Shao-Wang procedure makes use of the survey weights when esti-

mating the variance and covariance parameters; see Section 2.

The vector of variance parameters σ = (σ11, σ22, σ12)
⊤ is now estimated using

similar Gauss-Markov techniques in a quadratic estimation framework. First, in

order to ensure the invariance of the estimation of any linear contrast θ = λ⊤σ

of the variance parameters with respect to translation on the mean parameters,

most authors (see Rao and Kleffe, 1988 for a detailed review) suggest to de-

fine quadratic estimators as quadratic forms θ̂ = y̆⊤
x Ay̆x of the linear projection

y̆x = (Iny − X(X⊤X)−1X⊤)y̆ of y̆ onto the linear subspace orthogonal to the

linear subspace spanned by X. Causeur (2006) showed that the MIVQUE estima-

tors belong to a complete subclass of the quadratic estimators which is described

by the linear combinations of all possible cross-products of the variables on the

subsamples defined by each missingness pattern.

After restriction to unbiased estimators, the general expression used for quadratic

unbiased estimators of variance parameters in the bivariate situation introduced

above is:

σ̂jj′ = σ̃jj′ + α
(jj′)
1 [σ̃

(12)
11 − σ̃11] + α

(jj′)
2 [σ̃

(12)
22 − σ̃22], (3.2.1)
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3.2. The MIVQUE approach

where σ̃jj′ is the empirical estimator of σjj′ computed on the largest sample for

which yj and yj′ are jointly observed, σ̃
(c)
jj′ is the empirical estimator of σjj′ com-

puted on Sc and α
(jj′)
l are unknown constants (Causeur 2006). Thus, the unbiased

estimators are additively corrected versions of the empirical estimator, which ad-

ditive correction is optimally adjusted so that the resulting estimator has the

minimum variance.

The MIVQUEs are obtained for each variance parameters, by replacing the

α
(jj′)
l in expression (3.2.1) of σ̂jj′ by the coefficients providing the estimator with

minimum variance. In the present situation of only two variables prone to missing

values, the optimal coefficients in the case of equal weights (wi = 1/n) are given

by (
α
(11)
1

α
(11)
2

)
= −

γ2
2.2

f1.2
1+f1.2

1− γ2
1.2γ

2
2.2

1
1+f1.2

1
1+f2.2

(
−γ2

1.2
1

1+f2.2

1

)
,(

α
(22)
1

α
(22)
2

)
= −

γ2
1.2

f2.2
1+f2.2

1− γ2
1.2γ

2
2.2

1
1+f1.2

1
1+f2.2

(
1

−γ2
2.2

1
1+f1.2

)
,(

α
(12)
1

α
(12)
2

)
= −2

1

1− γ2
1.2γ

2
2.2

1
1+f1.2

1
1+f2.2

(
γ1.2 − γ2.2γ

2
1.2

1
1+f2.2

γ2.2 − γ1.2γ
2
2.2

1
1+f1.2

)
,

where γ1.2 = σ12/σ11, γ2.2 = σ12/σ22, f1.2 = n12/n1 and f2.2 = n12/n2.

As shown in Causeur (2006), in the present missing data issue, no uniformly

optimal estimator can be obtained for the variance parameters. This explains

why the above locally MIVQUE depends itself on the variance parameters. In the

following, we introduce the iterated MIVQUE procedure, which takes advantage

of the explicit expressions of locally MIVQUE to define an estimating algorithm.

3.2.2 Iterated version of MIVQUE

Let Σ0 denote a known q×q positive definite symmetric matrix and MIVQUE(Σ,Σ0)

be the q × q symmetric matrix, whose element (i, j) is MIVQUE(σij,Σ0), the

local MIVQUE under the hypothesis Σ = Σ0. For instance, when Σ0 = Iq,
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Σ̂1 = Σ̃ = MIV QUE(Σ,Σ0) is the empirical variance-covariance estimator of Σ.

Therefore, this choice for Σ0 seems to be a natural starting point for estimating

Σ.

In order to reduce arbitrariness of this starting point, the preceding procedure

can be iterated, leading to a sequence (Σ̂d)d≥0 of estimators of Σ defined by the

recurrence relation:

Σ̂d = MIV QUE(Σ, Σ̂d−1), d ≥ 1.

Though MIVQUE and MLE are technically different estimators, Harville (1977)

bridged the gap between the two by showing that the MLE could be viewed as

an infinitely iterated version of MIVQUE. As a difference between the EM and

iterated MIVQUE approaches, it may be noted that the latter is a coordinate-free

approach which does not belong to the class of data augmentation algorithms

for which the imputation step can turn out to be sensitive. In a linear regression

framework and small-sample conditions, Causeur (2006) showed that once or twice

iterated MIVQUE can show marked improvements with respect to MLE.

3.3 MIVQUE based imputation

In practice, some form of calibration is used in virtually all the medium to large

scale surveys. Calibration consists of modifying the sampling (initial) weights so

that survey estimates of totals coincide with true, known population totals (also

called benchmarks) from external sources. The interested reader is referred to

Deville and Särndal (1992), Särndal (2007) and Kim and Park (2010), among

other for excellent discussions on calibration. In this section, we use the idea of

calibration to modify initial imputed values rather than initial weights so that

appropriate calibration constraints are satisfied.
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3.3. MIVQUE based imputation

We propose a calibrated version of the Shao-Wang procedure, which consists

of two distinct steps :

(1) Use the Shao-Wang imputation procedure (see Section 2) and obtain the

initial imputed values y∗1i and y∗2i.

(2) Determine final imputed values by modifying the initial values obtained in

Step (1) so that the following calibration constraints are satisfied:

t̂10I = N µ̂1

t̂01I = N µ̂2

t̂20I = N (µ̂1)
2 + (N − 1) σ̂11 (3.3.1)

t̂02I = N (µ̂2)
2 + (N − 1) σ̂22

t̂11I = N µ̂1 µ̂2 + (N − 1) σ̂12,

where µ̂1, µ̂2, σ̂11, σ̂22 and σ̂12 denote, respectively, iterated MIVQUE of

µ1, µ2, σ11, σ22 and σ12. Let F (.) be a monotonic and twice differentiable

function satisfying F (0) = 1 and F ′(0) > 0. The function F (.) is the so-called

calibration function; e.g., Deville and Särndal (1992). The final imputed

values ŷ1i and ŷ2i are defined as

ŷ1i = y∗1iF (λ1 + λ2y
∗
1i + λ3y

∗
2i)

ŷ2i = y∗2iF (λ4 + λ5y
∗
2i + λ3y

∗
1i), (3.3.2)

where the coefficients λ1, . . . , λ5 are determined so that the calibration con-

straints (3.3.1) are satisfied. From (3.3.2), the final imputed values are

expressed as the product of the initial value y∗ki, k = 1, 2, and an adjustment

factor. In the calibration literature, several choices of F (.) are available;

see e.g., Deville and Särndal (1992). For example, on may use the linear

method, which corresponds to the calibration function F (u) = 1 + u. How-

ever, the latter may produce negative imputed values. For this reason, we

prefer using the exponential function, F (u) = exp(u), which is frequently
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utilized in the context of weighting in surveys. Solving for the coefficients

λ1, . . . , λ5 may be done using the Newton-Raphson algorithm with initial

values λ1 = . . . = λ5 = 0.

The estimators µ̂1, µ̂2, σ̂11, σ̂22 and σ̂12 are all unbiased for their corresponding

parameter provided that model (3.1.2) holds. This is true even if the bivariate

distribution of the variables y1 and y2 is not symmetric. From the calibration

constraints (3.3.1), it follows that

BqmI(t̂
kl
I ) = 0 (3.3.3)

for (k, l) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}. Once again, the bias in (3.3.3) is

equal to zero regardless of the bivariate distribution of the variables y1 and y2.

Since the coefficient of correlation R12 can be expressed as a smooth function

of tkl for (k, l) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}, the imputed estimator R̂12,I is

asymptotically unbiased for R12 and this property holds whether or not the bi-

variate distribution is symmetric.

When the bivariate distribution of y1 and y2 is symmetric, we expect the

proposed imputation procedure to be significantly more efficient than the Shao-

Wang procedure. We now explain why this is the case. As mentioned in Section 2

, the total error of R̂12,I can be expressed as the sum of three terms: the sampling

error, the nonresponse error and the imputation error; see expression (3.1.3).

While the sampling error depends on the finite population U under study, the

sampling design used to select the sample S and the sample size n, it does not

depend on nonresponse and imputation. Therefore, nothing can be done at the

imputation stage about the sampling error and the latter is identical for both the

Shao and Wang procedure and the proposed procedure. On the other hand, the

nonresponse error depends on the response rate and the predictive power of the

imputation model (3.1.2). Finally, the imputation error, R̂12,I − Ř12,I , in (3.1.3)

vanishes under the proposed procedure, unlike the Shao-Wang procedure. The
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calibration constraints (3.3.1) ensure that, conditionally on the sample and the

set of respondents, the imputed estimator R̂12,I always takes the same value if

the imputation process is repeated. Therefore, the proposed procedure does not

suffer from the imputation variance, which makes it fully efficient, a term coined

by Kim and Fuller (2004). In contrast, R̂12,I exhibits some variability under the

Shao-Wang procedure, due to the random selection of residuals. Finally, note that

the MIVQUE estimators are designed to perform well in terms of mean square

error when the distribution of the variables is symmetric or near symmetric. In

this case, calibrating on the MIVQUE estimator leads to efficient estimators of tkl

for (k, l) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}. On the other hand, if the distribution

is not symmetric, the MIVQUE estimator may be unstable, which in turns, leads

to inefficient estimators of tkl. This is confirmed empirically in the next section.

3.4 Simulation study

We conducted a simulation study in order to assess the proposed method in terms

of relative bias and relative efficiency. We performed 5000 iterations of the follow-

ing process. First, a finite population was generated; we considered the case of a

census. Then, nonresponse in the population was generated and missing values

were imputed. Below, we describe one such iteration in further details.

We generated a finite population of size N = 1000 consisting of two study

variables, y1 and y2, and an auxiliary variable x. The x-values were first generated

according to a Gamma distribution. Given the x-values, N values of (y1, y2)
⊤ were

generated according to the following bivariate model:

y1i = β1xi + εi1,

y2i = β2xi + εi2,

where β1 = β2 = 1 and the error terms ε1i and ε2i were independently generated
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according to

ε1i = κ× χi + κ1 × νi,

ε2i = κ× χi + κ2 × ςi,

with χi, νi and ςi denoting error terms independently generated according to a

normal distribution with mean 0 and variance 1, and κ, κ1 and κ2 are parameters.

A large value of κ corresponds to a large value of the coefficient of correlation

between y1 and y2. The parameters κ1 and κ2 are used to control the skewness

and kurtosis of y1 and y2, respectively.

The p-values showed in Table 3.4.1 come from a multivariate normality test.

This test uses skewness measured by two different location estimates as described

in Kankainen et al. (2007). This test, implemented with the R package ICS,

is based on the regular mean vector and the location estimate based on third

moments.

We generated eight types of finite populations. The degree of asymmetry in

each population varied from none to high. Also, in each population, the variables

y1 and y2 were generated so that the finite population coefficient of correlation

R12 was either approximately equal to 0.5 or approximately equal to 0.8. This led

to eight different populations.

We were interested in estimating five finite population parameters: the popu-

lation mean of y1 and y2, given by Ȳ1 = t10/N and Ȳ2 = t01/N, respectively; the

variability of y1 and y2 in the population given by S2
1 = (N−1)−1 {t20 − (t10)2/N}

and S2
2 = (N − 1)−1 {t02 − (t01)2/N} , respectively and the finite population coef-

ficient of correlation between y1 and y2, R12. Table 3.4.1 shows the Monte Carlo

averages of several characteristics for each type of populations.

In order to focus on the nonresponse/imputation error, we considered the case

of a census, n = N = 1000. Let p1i and p2i be the response probabilities for unit
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Symmetric Low Medium Stronger
asymmetry asymmetry asymmetry

R12 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8
Population 1 2 3 4 5 6 7 8

Parameters
Ȳ1 8.0 8.0 8.0 8.0 2.0 2.0 2.0 2.0
Ȳ2 8.0 8.0 8.0 8.0 2.0 2.0 2.0 2.0
S2
1 2.6 2.6 92.1 92.1 10.2 10.3 19.3 19.3

S2
2 2.6 2.6 92.0 92.2 10.2 10.3 19.4 19.3

R12 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8
κ 0.0 0.9 0.0 5.3 0.0 1.7 0.0 2.4

κ1 = κ2 1.1 0.7 6.8 4.3 2.3 1.4 3.1 2.0
skewness(y1) 0.1 0.1 0.6 0.6 0.8 0.8 1.1 1.1
skewness(y2) 0.1 0.1 0.6 0.6 0.8 0.8 1.1 1.1
Multivariate normality tests (p-values) for (y1,y2) based on :
skewness 0.24 0.33 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.4.1: Average characteristics of the populations and multi-normality test
p-values for the generated populations

i to the study variables y1 and y2, respectively. We generated nonresponse to y1

and y2 according to

p1i =

{
1 + exp

(
−0.4055

X
xi

)}−1

(3.4.1)

and

p2i =

{
1 + exp

(
−0.4055

X
xi

)}−1

, (3.4.2)

where X = N−1
∑

i∈U xi denotes the population mean of the x-values. The coef-

ficients in (3.4.1) and (3.4.2) were chosen so that the average response rates for

the study variables y1 and y2 were approximately equal to 60%.

The response indicators r1i and r2i were then generated independently from

a Bernoulli distribution with parameter p1i and p2i, respectively, which led to a

set of respondents. Then, missing values to y1 and y2 were imputed according to

(i) the Shao-Wang (SW) procedure and (ii) the calibrated Shao-Wang procedure

(CSW).
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As a measure of bias of an estimator γ̂ of a finite population parameter γ, we

computed the Monte Carlo percent relative bias

RBMC(γ̂) =
1

K

K∑
k=1

(γ̂(k) − γ)

γ
× 100,

where γ̂(k) denotes the estimator estimator γ̂ in the k-th sample. As a measure of

relative efficiency, we computed

RE =
MSEMC(γ̂CSW )

MSEMC(γ̂SW )
× 100,

where γ̂SW and γ̂CSW denote the estimator γ̂ obtained under the SW and CSW

procedures, respectively, and

MSEMC(γ̂) =
1

K

K∑
k=1

(γ̂(k) − γ)2.

Tables 3.4.2 and 3.4.3 show the Monte Carlo percent relative bias of several im-

puted estimators for the populations. In terms of relative bias, both SW and

CSW performed well, as expected. Both procedures led to negligible bias in most

scenarios regardless of the nature of the distribution (symmetric or asymmetric).

We now turn the relative efficiency shown in Table 3.4.3. For scenarios 1-6

(which corresponds to the populations exhibiting no asymmetry, a low asymmetry

or a medium asymmetry) , the proposed CSW procedure was significantly more

efficient than the SW procedure with values of relative efficiency ranging from 60%

to 75%. When the population exhibited a large degree of asymmetry, the proposed

CSW procedure was more efficient than the SW procedure for scenario 7 (which

corresponds to a coefficient of correlation equal to 0.5) but was significantly less

efficient for scenario 8 (which corresponds to a coefficient of correlation equal to

0.8) with values of relative efficiency ranging from 90% to 250%.. These results

suggests that applying the proposed procedure in the case of highly asymmetric

distribution may lead to unstable estimators.
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3.5 Discussion

In this paper, we proposed a calibrated version of the Shao-Wang procedure. We

showed empirically that the proposed procedure leads to an asymptotically un-

biased estimator of a coefficient of correlation and is much more efficient than

the Shao-Wang procedure when the underlying distribution of the variables be-

ing imputed is symmetric or near symmetric. In this paper, we considered the

case of two variables requiring imputation. In practice, we may want to preserve

the relationship between more than two items. Shao and Wang (2002) extended

their method to handle this situation. Causeur (2006) derived MIVQUE in a

multivariate setting. Therefore, our procedure can be extended in a relatively

straightforward fashion to the case of more than two items requiring imputation.

Variance estimation in the presence of imputed values is an important problem

as naive variance estimators (which are those computed by treating the imputed

values as observed values) tend to underestimate the true variance of point esti-

mators, which is turns leads to confidence intervals that are too narrow. Because

of the complexity of the proposed procedure, methods relying on first-order Tay-

lor expansions are virtually infeasible. If the overall sampling fraction is small,

one may use the bootstrap procedure of Shao and Sitter (1996), which consists of

selecting repeated samples from the population and imputing the nonrespondents

in each bootstrap samples using the same procedure that was used in the origi-

nal sample. Bootstrap variance estimation in the case of nonnegligible sampling

fractions is currently under investigation.

67



Chapter 3. Preserving relationships between variables with MIVQUE based
imputation

Appendix A : Properties of imputed estimators

of first and second moments under marginal im-

putation

We assume that the following imputation model holds for the responding units:

y1i = x⊤
i β1 + ϵ1i. (3.5.1)

where xi is a vector of auxiliary variables attached to unit i available for all i ∈ S

and β1 is a vector of unknown parameters. We make the usual assumptions:

Em(ϵ1i) = 0, Em(ϵ1iϵ1j) = 0 for i ̸= j and Vm(ϵ1i) = σ11

where σ11 is an an unknown parameter and the subscript m denotes model (3.5.1).

A.1 Deterministic marginal imputation

In the case of deterministic marginal imputation, missing y1i is imputed by y∗1i =

x⊤
i β̂

r

1 where β̂
r

1 is obtained from (3.1.5). It follows that

Em(y
∗
1i) = x⊤

i β1 (3.5.2)

Vm(β̂1
r
) = σ11T̂

−1
r

(∑
i∈S

w2
i rixix

⊤
i

)
T̂−1

r , (3.5.3)

where T̂−1
r =

∑
i∈S wirixix

⊤
i .

A.1.1 Imputed estimator of the first moment

The imputed estimator for the marginal first moment t10 is

t̂10I =
∑
i∈S

wiriy1i +
∑
i∈S

wi(1− ri)y
∗
1i.

Using (3.5.2), the nonresponse error of t̂10I is given by

Em(t̂
10
I − t̂10π ) = −

∑
i∈S

wi(1− ri)Em(y1i − x⊤
i β̂

r
1) = 0.
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Consequently, marginal deterministic regression imputation leads to an unbiased

estimator of the marginal first moment, provided that model (3.5.1) holds.

A.1.2 Imputed estimator of the second moment

The imputed estimator of the marginal second moment t20 is given by

t̂20I =
∑
i∈S

wiriy
2
1i +

∑
i∈S

wi(1− ri)(y
∗
1i)

2

=
∑
i∈S

wiriy
2
1i +

∑
i∈S

wi(1− ri)(x
⊤
i β̂

r

1)
2.

It follows that

Em(t̂
20
I ) =

∑
i∈S

wiri
{
σ11 + (x⊤

i β1)
2
}
+
∑
i∈S

wi(1− ri)
{
Vm(x

⊤
i β̂

r

1) + (x⊤
i β1)

2
}

=
∑
i∈S

wi(x
⊤
i β1)

2 + σ11

∑
i∈S

wiri

+σ11

∑
i∈S

wi(1− ri)x
⊤
i T̂

−1
r

(∑
i∈S

w2
i rixix

⊤
i

)
T̂−1

r xi. (3.5.4)

Assuming that (i)max(wi) = O(N/n) and (ii)
∑

i∈swi/
∑

i∈swiri = Op(1), the

third term in the right hand side of (3.5.4) is of lower order of magnitude than

the two first terms. We have

Em(t̂
20
I ) =

∑
i∈S

wi(x
⊤
i β1)

2 + σ11

∑
i∈S

wiri +Op(N/nr),

where nr denotes the number of respondents to item y1.

Noting that t̂20π =
∑

i∈S wiy
2
1i and ignoring the higher order terms, we obtain

Em(t̂
20
I − t̂20π ) ≈ −σ11

∑
i∈S

wi(1− ri),

which is not negligible. This result shows that deterministic marginal regression

leads generally to asymptotically biased estimator of the marginal second moment

t20.
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A.2 Marginal random regression imputation

In the case of marginal random imputation, missing y1i is imputed by

y∗1i = x⊤
i β̂

r

1 + ϵ∗1i,

where the residuals ϵ∗1i are generated so that

EI(ϵ
∗
1i) = 0, (3.5.5)

VI(ϵ
∗
1i) = σ̂11 =

1∑
i∈S wiri

∑
i∈S

wiri(y1i − x⊤
i β̂

r

1), (3.5.6)

CovI(ϵ
∗
1i, ϵ

∗
1k) = 0 for i ̸= j. (3.5.7)

A.2.1 Imputed estimator for the first moment

The imputed estimator for the marginal first moment t10 is

t̂10I =
∑
i∈S

wiriy1i +
∑
i∈S

wi(1− ri)
(
x⊤
i β̂

r

1 + ϵ∗1i

)
.

Using (3.5.5), we obtain

EI(t̂
10
I ) =

∑
i∈S

wiriy1i +
∑
i∈S

wi(1− ri)x
⊤
i β̂

r

1.

Using (3.5.2) and noting that EI(t̂
10
π ) = t̂10π , we obtain

EmEI(t̂
10
I − t̂10π ) = Em

{∑
i∈S

wiriy1i +
∑
i∈S

wi(1− ri)x
⊤
i β̂

r

1 − t̂10π

}

= Em

{∑
i∈S

wi(1− ri)(x
⊤
i β̂

r

1 − y1i)

}
=

∑
i∈S

wi(1− ri)Em(x
⊤
i β̂

r

1 − y1i)

= 0

As a result, marginal random regression imputation preserves the marginal first

moment t10, provided that model (3.5.1) holds.
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3.5. Discussion

A.2.2 Imputed estimator for the second moment

The imputed estimator of the second moment t20 is

t̂20I =
∑
i∈S

wiriy
2
1i +

∑
i∈S

wi(1− ri)(x
⊤
i β̂

r

1 + ϵ∗1i)
2.

Now,

EI(t̂
20
I ) =

∑
i∈S

wiriy
2
1i +

∑
i∈S

wi(1− ri)
{
(x⊤

i β̂
r

1)
2 + EI(ϵ

∗2
1i ) + 2x⊤

i β̂
r

1EI(ϵ
∗
1i)
}

=
∑
i∈S

wiriy
2
1i +

∑
i∈S

wi(1− ri){(x⊤
i β̂

r

1)
2 + σ̂11},

On the other hand, we have

Em(σ̂11) = σ11 +
1∑

i∈S wiri

{∑
i∈S

wirix
⊤
i T̂

−1
r σ11

(∑
i∈S

w2
i rix

⊤
i

)
T̂−1

r xi

−2
∑
i∈S

w2
i rix

⊤
i T̂

−1
r xiσ11

}
= σ11 +Op(1/nr). (3.5.8)

Ignoring higher-order terms, we have:

EmEI(t̂
20
I ) ≈

∑
i∈S

wiri
{
(x⊤

i β1)
2 + σ11

}
+
∑
i∈S

wi(1− ri)
{
(x⊤

i β1)
2 + σ11

}
=
∑
i∈S

wi

{
(x⊤

i β1)
2 + σ11

}
= EmEI(t̂

20
π ),

which completes the proof. As a result, marginal random regression imputation

asymptotically preserves the marginal second moment t20, provided that model

(3.5.1) holds.
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Favre, A. C., Matei, A., and Tillé, Y. (2005). Calibrated random imputation for

qualitative data, Journal of statistical planning and inference, 128, 411–425.

Harville, D. A. (1977). Maximum likelihood approaches to variance component

estimation and to related problems, Journal of the American Statistical Asso-

ciation, 72, 320–338.

Haziza, D. (2009). Imputation and inference in the presence of missing data,

Handbook of Statistics, 29, 215–246.

Kankainen, A., Taskinen, S. and Oja, H. (2007). Tests of multinormality based

on location vectors and scatter matrices, Statistical Methods and Applications,

16, 357–379.

72



3.5. Discussion

Kim, J.K. and Fuller, W.A. (2004). Fractional hot-deck imputation. Biometrika,

91, 559–578.

Kim, J.K. and Park, M. (2010). Calibration Estimation in Survey Sampling.

International Statistical Review, 78, 21–39.

Liu, T.-P. and Rancourt, E. (2001). Constrained categorical imputation for non-

response in surveys, Working Paper HSMD-2001-012E, Methodology Branch,

Statistics Canada, Ottawa.

Rao, C. R. (1970). Estimation of heteroscedastic variances in linear models, Jour-

nal of the American Statistical Association, 65, 161–172.

Rao, C.R. (1971a). Estimation of variance covariance components - MINQUE

theory, Journal of Multivariate Analysis, 1, 257–275.

Rao, C. R. (1971b). Minimum variance quadratic unbiased estimation of variance

components, Journal of Multivariate Analysis, 1, 445–456.

Ren, R. and Chambers, R. L. (2002). Outlier robust imputation of survey data

via reverse calibration, Methodology Working Paper M03/19 , Southampton

Statistical Sciences Research Institute, University of Southampton, Southamp-

ton.

Rao, C.R. and Kleffe, J. (1988). Estimation of Variance Components and Applica-

tions. North-Holland Series in Statistics and Probability, Elsevier, Amsterdam.

Rubin, D. B. (1974). Characterizing the estimation of parameters in incomplete-

data problems, Journal of the American Statistical Association, 69, 467–474.

Rubin, D. B. (1976). Inference and Missing Data, Biometrika, 63, 581–590.

Särndal, C.-E. (2007). The calibration approach in survey theory and practice.

Survey Methodology, 33, 99–119.

73



Chapter 3. Preserving relationships between variables with MIVQUE based
imputation

Shao, J. and Sitter, R.R. (1996). Bootstrap for imputed survey data. Journal of

the American Statistical Association, 93, 819–831.

Shao, J., and Wang, H. (2002). Sample correlation coefficients based on survey

data under regression imputation, Journal of the American Statistical Associ-

ation, 97, 544–552.

Skinner, C. J., and Rao, J. N. K. (2002). Jackknife variance for multivariate

statistics under hot deck imputation from common donors, Journal of Statis-

tical Planning and Inference, 102, 149–167.

74



Chapter 4

Preserving the distribution
function in case of imputation for
zero inflated data

Imputation methods need to be adapted to the study variable which has to be

imputed. For instance, in business surveys, the variables of interest often contain

a large number of zeros. In the Capital Expenditure Survey conducted at statis-

tics Canada, approximately 70% of businesses reported a value of zero to Capital

Machinery and 50% reported a value of zero to Capital Construction (Haziza

et al., 2014). In case of some variable of interest containing a large amount of

zeroes, Haziza et al. (2014) proposed imputation methods based on a mixture re-

gression model. They proved that these methods led to doubly robust estimators

of the population mean, in the sense that the imputed estimator of the mean is

consistent whether the variable of interest or the non-response mechanism is ad-

equately modeled. However, these methods are not necessarily appropriate when

estimating more complex parameters such as the population distribution function.

In this work, we consider estimating the population distribution function in case

of imputation for zero inflated data. We use the IM approach, without explicit

assumptions on the non-response mechanism for the variable of interest. We pro-

pose a random imputation method which leads to a consistent estimator of the
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population distribution function. As recalled in Haziza et al. (2014), random

imputation methods usually suffer from an additional variability due to the im-

putation variance. Therefore, we also propose a balanced version of our method,

which enables to reduce the imputation variance. Roughly speaking, it consists

of randomly generating the imputed values while satisfying appropriate balancing

constraints, by using an adaptation of the Cube algorithm (Deville & Tillé (2004);

Chauvet, Deville & Haziza 2011).

The paper is organized as follows. In Section 4.1, we describe the theoretical set-

up and the notation used throughout the paper. In Section 4.2, we briefly recall

the two imputation procedures proposed by Haziza et al.(2014), and introduce our

two proposed imputation methods. In Section 4.3, we prove that the proposed

random imputation procedure yields a consistent estimator of the total and of the

population distribution function. The results of a simulation study comparing the

four procedures in terms of bias and relative efficiency are presented in Section

4.4.

4.1 Theoretical set-up

We are interested in some finite population U of size N , with some variable of

interest y taking the value yi for unit i ∈ U . We note yU = (y1, . . . , yN)
⊤ for

the vector of values for the variable y. We are interested in estimating the total

ty =
∑

i∈U yi, and the finite population distribution function

FN(t) =
1

N

∑
i∈U

1(yi ≤ t) (4.1.1)

where 1(·) is the indicator function.

A sample s of size n is selected according to a sampling design p(.), with πi

the first-order inclusion probability in the sample for unit i. We suppose that

πi > 0 for any unit i ∈ U , and we note di = π−1
i the design weight. We note
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4.1. Theoretical set-up

δU = (δ1, . . . , δN)
⊤ for the vector of sample membership indicators. In case of full

response, a complete data estimator of ty is the expansion estimator

t̂yπ =
∑
i∈s

diyi. (4.1.2)

This estimator is design-unbiased for ty, in the sense that Ep(t̂yπ) = ty with Ep

the expectation under the sampling design p(.), conditionally on yU . We also

note Vp the variance under the sampling design p(.). Concerning the population

distribution function FN , plugging into (4.1.1) the expansion estimators of the

involved totals yields the plug-in estimator

F̂N(t) =
1

N̂π

∑
i∈s

di1(yi ≤ t) with N̂π =
∑
i∈s

di. (4.1.3)

Under some mild assumptions on the variable of interest and the sampling design

(see Deville, 1999; Cardot, Chaouch, Goga et Labruère, 2010), F̂N(t) is approxi-

mately unbiased and mean-square consistent for FN(t).

We now turn to the case when the variable of interest y is subject to missingness.

Let ri be the response indicator, such that ri = 1 if unit i responded to item y,

and ri = 0 otherwise. We note r = (r1, . . . , rN)
⊤ for the vector of the response

indicators. We assume that each unit responds independently of one another. Let

Eq and Vq denote the expectation and variance under the non-response mechanism,

conditionally on the vector yU of population values and on the vector δU of sample

membership indicators. An imputation mechanism is used to replace the missing

values. That is, an artificial value y∗i is used to replace the missing yi. An imputed

estimator for ty based on observed and imputed values is

t̂yI =
∑
i∈s

diriyi +
∑
i∈s

di(1− ri)y
∗
i . (4.1.4)

Similarly, an imputed estimator of the distribution function based on observed

and imputed values is

F̂I(t) =
1

N̂π

{∑
i∈s

diri1(yi ≤ t) +
∑
i∈s

di(1− ri)1(y
∗
i ≤ t)

}
. (4.1.5)
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In comparison with the estimators obtained in (4.1.2) and (4.1.3) with complete

data, there are two additional random mechanisms involved in the estimators

given in (4.1.4) and (4.1.5). First, the non-response mechanism leads to observe

the values of y for a part of s only. Then, the imputation mechanism is used to

replace missing yi’s with artificial values.

The imputation mechanism is motivated by an underlying imputation model,

which corresponds to a set of assumptions on the variable y subject to missingness.

In the context of a zero-inflated variable of interest, we consider the mixture

regression model introduced in Haziza et al. (2014). Namely, we assume that

yi = ηi
{
z⊤i β + σ

√
viϵi
}
, (4.1.6)

where the ηi’s are independent Bernoulli random variables equal to 1 with prob-

ability ϕi, and equal to 0 otherwise; the ϵi’s are independent and identically dis-

tributed random variables of mean 0, variance 1 and with a common distribution

function Fϵ; the parameters β and σ are unknown, and vi is a known constant.

The vector zi is a vector of auxiliary variables, which is assumed to be known on

the whole sample including non-respondents. To sum up, according to the impu-

tation model (4.1.6) the variable yi follows a regression model with a probability

ϕi, and is equal to 0 otherwise. Let Em et Vm denote respectively the expectation

and variance under the imputation model.

In practice, the ϕi’s are unknown and need to be estimated. We assume that they

may be parametrically modeled as

ϕi = f(ui, γ) (4.1.7)

where f is a known function, ui is a vector of variables recorded for all sampled

units, and γ is an unknown parameter. An estimator of ϕi is given by

ϕ̂i = f(ui, γ̂r) (4.1.8)
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with γ̂r an estimator of the unknown coefficient γ computed on the responding

units. We assume that ηi and ϵi are independent, conditionally on the vectors zi

and ui. We will also assume that there exists some vector λ such that

v
1/2
i = λ⊤zi. (4.1.9)

In this paper, we use the Imputation Model (IM) approach where the inference

is made with respect to the imputation model, the sampling design, the response

mechanism and the imputation mechanism. This does not require an explicit

modeling of the non-response mechanism unlike the Non-response Model approach

(Haziza, 2009), but we assume that the data are missing at random, which means

that model (4.1.6) holds for both the respondents and the non-respondents. We

note EI and VI the expectation and variance under the imputation mechanism,

conditionally on the vectors yU , δU and rU .

4.2 Imputation methods

In this Section, we first briefly recall in Sections 4.2.1 and 4.2.2 the random impu-

tation methods proposed by Haziza et al. (2014) for zero-inflated data. We then

introduce the new methods that we propose in Sections 4.2.3 and 4.2.4.

4.2.1 Haziza-Nambeu-Chauvet random imputation

A first proposal of Haziza et al. (2014) is to use the imputation mechanism

y∗i = η∗i

{
z⊤i B̂

∗
r

}
, (4.2.1)

where the unknown regression parameter β is estimated by

B̂∗
r =

(∑
i∈s

ωiriϕ̂iv
−1
i ziz

⊤
i

)−1∑
i∈s

ωiriv
−1
i ziyi, (4.2.2)

where ωi denotes a so called imputation weight, and ϕ̂i is given in (4.1.8). The

η∗i ’s are independently generated, and η∗i is equal to 1 with the probability ϕ̂i, and

79



Chapter 4. Preserving the distribution function in case of imputation for zero
inflated data

is equal to 0 otherwise.

There are several possible choices for the imputation weights ωi. Using a model-

ing of the response mechanism for the variable yi, Haziza et al. (2014) propose

to choose the imputation weights so that t̂yI is a doubly robust estimator for ty.

This means that the imputed estimator is approximately unbiased for ty whether

the imputation model or the non-response model is adequately specified. Haziza

et al. (2014) also prove that the resulting imputed estimator is consistent for ty

under either approach.

The random imputation mechanism in (4.2.1) has two drawbacks. Firstly, it leads

to an additional imputation variance due to the η∗i ’s. To overcome this problem,

Haziza et al. (2014) proposed a balanced version of their imputation mechanism

that is presented in Section 4.2.2. Secondly, the imputation mechanism in (4.2.1)

does not lead to an approximately unbiased estimator of the distribution function,

as will be illustrated in the simulation study conducted in Section 4.4.

4.2.2 Haziza-Nambeu-Chauvet balanced random imputa-
tion

The balanced random imputation procedure of Haziza et al. (2014) consists of

replacing a missing value with

y∗i = η̃∗i

{
z⊤i B̂

∗
r

}
, (4.2.3)

where the η̃∗i ’s are not independently generated, but so that the imputation vari-

ance of t̂yI is approximately equal to zero. Indeed, the imputation variance of t̂yI

is eliminated if the following constraint is satisfied:

∑
i∈s

di(1− ri)(y
∗
i − ϕ̂iz

⊤
i B̂

∗
r) = 0, (4.2.4)
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which is equivalent to generate the η̃∗i ’s so that

∑
i∈s

di(1− ri)(η̃
∗
i − ϕ̂i)(z

⊤
i B̂

∗
r) = 0. (4.2.5)

Haziza et al. (2014) propose a procedure adapted from the Cube method (Deville

and Tillé, 2004; Chauvet and Tillé, 2006) which enables to generate the η̃∗i ’s so

that (4.2.5) is satisfied, at least approximately. As a result, the imputation vari-

ance is eliminated or at least significantly reduced.

The corresponding imputation procedure is called balanced random ϕ-regression

(BRRϕ) imputation by Haziza et al. (2014). They prove that under the BRRϕ

imputation, an appropriate choice for the imputation weights ωi leads to a doubly

robust estimator for ty. Also, their empirical results indicate that it performs

well in reducing the imputation variance. A drawback of the BRRϕ imputation

mechanism is that it does not preserve the distribution function of the imputed

variable, because it does not take into account the error terms ϵi in the imputation

model (4.1.6). This is empirically illustrated in section 4.4. In order to overcome

this problem, two new imputation procedures are proposed in Sections 4.2.3 and

4.2.4 below.

4.2.3 Proposed random imputation procedure

The random imputation procedure that we propose consists in mimicking as

closely as possible the imputation model (4.1.6), by replacing some missing yi

with the imputed value

y∗i = η∗i

{
z⊤i B̂

∗
r + σ̂

√
viϵ

∗
i

}
, (4.2.6)

where B̂∗
r is defined in equation (4.2.2), and η∗i is a Bernoulli random variable as

defined in (4.2.1). In the imputed value given in (4.2.6), σ̂ is an estimator of σ and

the ϵ∗i ’s are selected independently and with replacement in the set of observed
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estimated residuals

Gr = {ej ; rj = 1 and ηj = 1} where ej =
yj − z⊤j B̂

∗
r

σ̂
√
vj

, (4.2.7)

with Pr(ϵ∗i = ej) = ω̃j for any j ∈ s such that rj = 1 and ηj = 1, where

ω̃j =
ωj∑

k∈s ωjrkηk
. (4.2.8)

Under this imputation procedure, we have

EI(y
∗
i ) = ϕ̂i(z

⊤
i B̂

∗
r),

VI(y
∗
i ) = ϕ̂i(1− ϕ̂i)(z

⊤
i B̂

∗
r)

2 + (ϕ̂ivi)
∑
j∈s

ω̃jrjηj

(
yj − z⊤j B̂

∗
r√

vj

)2

. (4.2.9)

It easily follows from the first line in equation (4.2.9) that under this imputation

procedure, the imputed estimator t̂yI is approximately unbiased for ty. Further

theoretical properties of this imputation procedure are examined in Section 4.3.

We prove in Theorem 4.1 that this random imputation method leads to an imputed

estimator t̂yI which is mean-square consistent for the true total. Also, we prove

in Theorem 4.2 that this method leads to an imputed estimator F̂I(t) which is

L1-consistent for the population distribution function. However, this imputation

procedure leads to an additional variability for t̂yI due to the imputation variance.

Therefore, a balanced version of this imputation procedure is proposed in Section

4.2.4 below.

4.2.4 The proposed random balanced imputation proce-
dure

The balanced random imputation procedure consists in replacing a missing value

with

y∗i = η̃∗i

{
z⊤i B̂

∗
r + σ̂

√
viϵ̃

∗
i

}
, (4.2.10)

where B̂∗
r is as defined in (4.2.2), but where the η̃∗i ’s and the ϵ̃∗i ’s are not inde-

pendently generated, but so as to eliminate the imputation variance of t̂yI . The
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imputation variance is zero if equation (4.2.4) holds. A sufficient condition con-

sists in generating the residuals η̃∗i and ϵ̃∗i so that∑
i∈s

di(1− ri)(η̃
∗
i − ϕ̂i)(z

⊤
i B̂

∗
r) = 0, (4.2.11)∑

i∈s

di(1− ri)η̃
∗
i

√
viϵ̃

∗
i = 0. (4.2.12)

This is done in a two-step procedure: first, the η̃∗i ’s are generated by means of

Algorithm 1 in Haziza et al. (2014), so that (4.2.11) is approximately respected;

then, the ϵ̃∗i ’s are generated by using algorithm 1 described in Chauvet et al.

(2011), so that (4.2.12) is approximately respected. Like with the procedure

described in Section 4.2.3, it leads to an approximately unbiased estimation of

the total and of the distribution function, as empirically illustrated in Section

4.4. Also, this imputation procedure is fully efficient for the estimation of the

total, and the imputation variance is reduced for the estimation of the population

distribution function.

4.3 Properties of the proposed imputation meth-

ods

In this section, we prove that the proposed random imputation procedure leads

to a consistent estimator for the total and the distribution function. In order to

study the asymptotic properties of the sampling designs and the estimators in this

article, we use the asymptotic framework proposed by Isaki et Fuller (1982). We

suppose that population U belongs to a nested sequence {Uτ} of finite populations

with increasing sizes Nτ , and that the vector of values for the variable of interest

yUτ = (y1τ , . . . , yNτ )
⊤ belongs to a nested sequence {yUτ} with increasing sizes

Nτ . For simplicity, the index τ is omitted in what follows and all limits are

computed when τ → ∞.

Theorem 4.1. Let us suppose that the imputation model (4.1.6) holds and that

the following assumptions are satisfied:
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H1: There exists some constants C1 and C2 such that di ≤ C1Nn−1 and ω̃i ≤

C2n
−1 for any unit i ∈ U . Also, there exists some constant C3 such that

maxi ̸=j∈U |πij −πiπj| ≤ C3n
−1, with πij the probability that units i and j are

selected together in the sample.

H2: There exists a constant K1 such that for all i ∈ U , 0 < K1 < pi.

H3: There exists some constants K2, K3, K4 such that ∥zi∥ ≤ K2, ∥vi∥ ≤ K3 and

∥v−1
i ∥ ≤ K4 for all i ∈ U .

H4: We have E (∥γ̂r − γ∥2) = O(n−1), where γ is given in (4.1.7).

H5: There exists a constant K5 such that for any vector γ̃

|f(ui, γ̃)− f(ui,γ)| ≤ K5∥γ̃ − γ∥ for all i ∈ U.

H6: We have E
(
∥B̂∗

r − β∥2
)
= O(n−1).

Then under the random imputation mechanism proposed in Section 4.2.3, we have

E
{
N−1(t̂yI − ty)

}2
= O(n−1), (4.3.1)

so that the imputed estimator t̂yI is mean-square consistent for the true total.

Theorem 4.2. Let us suppose that the imputation model given by (4.1.6) holds

and that the assumptions (H1)-(H6) are satisfied. Let us also suppose that the dis-

tribution function Fϵ is absolutely continuous. Then under the random imputation

mechanism proposed in Section 4.2.3, we have for any t ∈ R

E|F̂I(t)− FN(t)| = o(1), (4.3.2)

so that the imputed estimator of the distribution function F̂I is L1-consistent for

the true population distribution function at any point t.
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4.4 Simulation study

In order to evaluate the performance of the imputation methods that we propose,

we implement a simulation study inspired by Haziza et al. (2014). We generate

twelve finite populations of size N = 10, 000 with a variable of interest y and

an auxiliary variable z. The values of z are generated according to a Gamma

distribution with shift parameter 2 and scale parameter 5. The values of y are

generated according to the following mixture model:

yi = ηi(a0 + a1zi + ϵi), (4.4.1)

where the ϵi’s are generated according to a centered Normal distribution with

variance σ2. We use a0 = 30 and a1 = 1.5. Also, we choose three different values

of σ2 so that the coefficient of determination R2 equals 0.4, 0.5 or 0.6 for the units

i such that ηi = 1.

The ηi’s are generated according to a Bernoulli distribution with parameter ϕi,

and

log

(
ϕi

1− ϕi

)
= b0 + b1zi, (4.4.2)

and with four possible values for the parameters b0 and b1, chosen so that the

proportion of non-null values is approximately equal to 0.60, 0.70, 0.80 or 0.90.

The four different proportion of non-null values, crossed with the three different

levels for the R2, lead to the twelve finite populations.

We are interested in estimating the total ty, and the distribution function FN(t)

with t = tα, the α-th quintile. In this simulation study, we consider the values α =

0.50, 0.75 and 0.95. In each population, we select R = 1, 000 without-replacement

simple random samples of size n = 500. In each sample, we generate a response

indicator ri for unit i according to a Bernoulli distribution with parameter pi such
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that

log

(
pi

1− pi

)
= c0 + c1zi. (4.4.3)

We use four possible values for the parameters c0 and c1, chosen so that the pro-

portion of respondents is approximately equal to 0.50, 0.60, 0.70 or 0.80.

In this simulation study, we compare four imputation methods to handle non-

response:

(i) RRϕ: random imputation proposed by Haziza et al. (2014), and presented

in Section 4.2.1;

(ii) BRRϕ: balanced random imputation proposed by Haziza et al. (2014), and

presented in Section 4.2.2;

(iii) MRRϕ : proposed random imputation method, presented in Section 4.2.3;

(iv) BMRRϕ : proposed balanced random imputation method, presented in

Section 4.2.4.

For each of the four methods, we use imputation weights ωi = 1, and the ϕi’s

and pi’s are estimated by means of logistic regression modeling. In each sample,

missing values are replaced by imputed values according to imputation methods

(i) to (iv), and the imputed estimators t̂yI and F̂I(tα) are computed.

As a measure of bias of an estimator θ̂I of a finite population parameter θ, we

compute the Monte Carlo percent relative bias

RBMC(θ̂I) =
100

R

R∑
k=1

(θ̂I(k) − θ)

θ
, (4.4.4)

where θ̂I(k) denotes the imputed estimator computed in the k-th sample. As a

measure of relative efficiency for each imputation method, using BMRRϕ as a
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RRϕ BRRϕ MRRϕ BMRRϕ

R2 ϕ RB % RE RB % RE RB % RE RB % RE
0.4 0.6 0.04 1.11 0.04 1.00 -0.01 1.17 0.04 1.00
0.4 0.7 -0.05 1.16 -0.05 1.00 -0.07 1.21 -0.04 1.00
0.4 0.8 -0.17 1.17 -0.13 1.00 -0.14 1.25 -0.13 1.00
0.4 0.9 -0.09 1.13 -0.14 1.00 -0.09 1.25 -0.15 1.00
0.5 0.6 0.17 1.20 0.04 1.00 0.14 1.23 0.04 1.00
0.5 0.7 0.03 1.25 -0.04 1.00 0.03 1.27 -0.04 1.00
0.5 0.8 -0.11 1.18 -0.12 1.00 -0.13 1.24 -0.13 1.00
0.5 0.9 -0.17 1.08 -0.13 1.00 -0.18 1.14 -0.13 1.00
0.6 0.6 0.04 1.21 0.03 1.00 0.02 1.24 0.03 1.00
0.6 0.7 -0.19 1.23 -0.03 1.00 -0.19 1.28 -0.03 1.00
0.6 0.8 -0.16 1.21 -0.12 1.00 -0.18 1.25 -0.12 1.00
0.6 0.9 -0.10 1.14 -0.13 1.00 -0.11 1.18 -0.12 1.00

Table 4.4.1: Relative bias (RB %) and Relative efficiency (RE) of four imputed
estimators of the total with an average response probability of 50%

benchmark, we computed

REMC(θ̂I) =
MSEMC(θ̂I)

MSEMC(θ̂BMRRϕ
)
,

with

MSEMC(θ̂I) =
1

R

R∑
k=1

(θ̂I(k) − θ)2 (4.4.5)

the Mean Square Error of θ̂I approximated by means of the R simulations.

We first consider the estimation of the total ty, for which the simulation results are

given in Tables 4.4.1 to 4.4.4. The four imputation methods lead to approximately

unbiased estimators of the total, as expected. Turning to the relative efficiency

(RE), we note that in all studied cases the balanced version of an imputation

method outperforms its unbalanced version. Also, the two balanced imputation

procedures BRRϕ and BMRRϕ exhibit the same efficiency.
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RRϕ BRRϕ MRRϕ BMRRϕ

R2 ϕ RB % RE RB % RE RB % RE RB % RE
0.4 0.6 0.04 1.18 -0.05 1.00 0.07 1.19 -0.06 1.00
0.4 0.7 -0.15 1.22 -0.10 0.99 -0.16 1.29 -0.11 1.00
0.4 0.8 -0.08 1.17 -0.12 1.00 -0.09 1.24 -0.12 1.00
0.4 0.9 -0.17 1.10 -0.16 1.00 -0.20 1.21 -0.16 1.00
0.5 0.6 0.03 1.18 -0.05 1.00 0.04 1.21 -0.05 1.00
0.5 0.7 -0.12 1.17 -0.09 0.99 -0.13 1.20 -0.10 1.00
0.5 0.8 -0.14 1.19 -0.11 1.00 -0.12 1.25 -0.11 1.00
0.5 0.9 -0.16 1.11 -0.15 1.00 -0.13 1.17 -0.15 1.00
0.6 0.6 0.09 1.20 -0.05 1.00 0.08 1.23 -0.06 1.00
0.6 0.7 -0.04 1.24 -0.09 0.99 -0.01 1.24 -0.10 1.00
0.6 0.8 -0.14 1.18 -0.11 1.00 -0.12 1.22 -0.10 1.00
0.6 0.9 -0.14 1.12 -0.14 1.00 -0.14 1.18 -0.14 1.00

Table 4.4.2: Relative bias (RB %) and Relative efficiency (RE) of four imputed
estimators of the total with an average response probability of 60%

RRϕ BRRϕ MRRϕ BMRRϕ

R2 ϕ RB % RE RB % RE RB % RE RB % RE
0.4 0.6 0.04 1.13 0.00 1.00 0.06 1.16 0.00 1.00
0.4 0.7 -0.10 1.18 -0.05 1.00 -0.09 1.20 -0.05 1.00
0.4 0.8 -0.13 1.15 -0.10 1.00 -0.13 1.22 -0.10 1.00
0.4 0.9 -0.09 1.09 -0.12 1.00 -0.10 1.14 -0.12 1.00
0.5 0.6 -0.09 1.17 0.00 1.00 -0.09 1.19 0.01 1.00
0.5 0.7 0.02 1.17 -0.04 1.00 0.04 1.18 -0.05 1.00
0.5 0.8 -0.10 1.16 -0.09 1.00 -0.13 1.21 -0.09 1.00
0.5 0.9 -0.14 1.11 -0.11 0.99 -0.17 1.16 -0.12 1.00
0.6 0.6 -0.03 1.16 0.01 1.00 -0.07 1.17 0.01 1.00
0.6 0.7 -0.06 1.14 -0.03 1.00 -0.04 1.14 -0.03 1.00
0.6 0.8 -0.10 1.22 -0.08 1.00 -0.08 1.24 -0.08 1.00
0.6 0.9 -0.14 1.10 -0.10 1.00 -0.14 1.13 -0.10 1.00

Table 4.4.3: Relative bias (RB %) and Relative efficiency (RE) of four imputed
estimators of the total with an average response probability of 70%
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RRϕ BRRϕ MRRϕ BMRRϕ

R2 ϕ RB % RE RB % RE RB % RE RB % RE
0.4 0.6 0.08 1.15 0.07 1.00 0.05 1.19 0.07 1.00
0.4 0.7 -0.03 1.14 0.00 1.00 0.00 1.19 0.00 1.00
0.4 0.8 -0.11 1.11 -0.08 1.00 -0.11 1.16 -0.08 1.00
0.4 0.9 -0.08 1.09 -0.09 1.00 -0.11 1.16 -0.09 1.00
0.5 0.6 0.06 1.08 0.06 1.00 0.07 1.09 0.07 1.00
0.5 0.7 0.06 1.14 0.01 1.00 0.10 1.16 0.01 1.00
0.5 0.8 -0.06 1.11 -0.08 1.00 -0.10 1.15 -0.08 1.00
0.5 0.9 -0.10 1.08 -0.09 1.00 -0.12 1.09 -0.08 1.00
0.6 0.6 -0.01 1.13 0.07 1.00 -0.04 1.15 0.06 1.00
0.6 0.7 -0.04 1.16 0.01 1.00 -0.01 1.18 0.01 1.00
0.6 0.8 -0.11 1.10 -0.07 1.00 -0.08 1.12 -0.08 1.00
0.6 0.9 -0.07 1.08 -0.08 1.00 -0.05 1.12 -0.08 1.00

Table 4.4.4: Relative bias (RB %) and Relative efficiency (RE) of four imputed
estimators of the total with an average response probability of 80%

We now consider the estimation of the population distribution function, for which

the simulation results are presented in Tables 4.4.5 to 4.4.12. In all the cases

considered, the two proposed imputation methods MRRϕ and BMRRϕ lead to

approximately unbiased estimators of the distribution function, with absolute

relative biases no greater than 2 % . On the contrary, the RRϕ and the BRRϕ

imputation methods lead to biased estimators. The absolute relative bias can

be as large as 16 % . We note that the bias can be particularly large when

the response probability is lower, which corresponds to imputing more missing

values using an imputation method which does not mimic the imputation model

adequately. Turning to the relative efficiency, we note that MRRϕ and BMRRϕ

always outperform RRϕ and BRRϕ, which is partly due to the bias under these

latter imputation methods. The gap may be very large in places, with a value

of RE as large as 8.65 for BRRϕ in comparison with BMRRϕ for α = 75%,

a response probability of 50% and R2 = 0.4,see Table 4.4.5. Comparing the

two proposed imputation methods, we note that BMRRϕ is equivalent or better

than MRRϕ in terms of efficiency, with values of RE ranging from 0.98 to 1.27.
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The gain in accuracy is particularly appreciable with lower response probabilities,

that is, when more imputed values are generated according to the imputation

mechanism.

4.5 Conclusion

In this paper, we considered imputation for zero-inflated data. We proposed two

imputation methods which enable to respect the nature of the data, and in partic-

ular which preserve the finite population distribution function. In particular, we

proposed a balanced imputation method which enables to preserve the distribu-

tion of the imputed variable while being fully efficient for the estimation of a total.

Our imputation methods rely upon the mixture regression imputation model pro-

posed by Haziza et al. (2014). As mentioned by these authors, the proposed

methods could be extended to more general mixture regression models, for exam-

ple to handle count data.

In practice, we may not be interested in the distribution function in itself, but

rather in complex parameters such as quantiles. Establishing the theoretical prop-

erties of estimators of such parameters under the proposed imputation procedures

is a challenging task. This is a topic for further research.
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Chapter 4. Preserving the distribution function in case of imputation for zero
inflated data
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4.5. Conclusion
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4.6 Appendix

Proof of equation (4.2.9)

We first prove that

∑
i∈s

ωiriηiei = 0. (4.6.1)

We have

∑
i∈s

ωiriηiv
−1
i zi(yi − z⊤i B̂r) = 0 ⇒

∑
i∈s

ωiriηiv
−1
i (λ⊤zi)(yi − z⊤i B̂r)

= 0, (4.6.2)

where λ is defined in (4.1.9). From (4.1.9), this leads to (4.6.1).

We now consider equation (4.2.9). From (4.6.1), we obtain successively

EI(y
∗
i |η∗i ) = η∗i z

⊤
i B̂

∗
r,

EI(y
∗
i ) = ϕ̂iz

⊤
i B̂

∗
r, (4.6.3)

which gives the first line in (4.2.9). Also, since

VI(y
∗
i |η∗i ) = σ̂2viη

∗
i

{∑
j∈s

ω̃jrjηje
2
j

}
, (4.6.4)

we obtain

VI(y
∗
i ) = VIEI(y

∗
i |η∗i ) + EIVI(y

∗
i |η∗i )

= VI

(
η∗i z

⊤
i B̂

∗
r

)
+ EI

(
σ̂2viη

∗
i

{∑
j∈s

ω̃jrjηje
2
j

})

= ϕ̂i(1− ϕ̂i)
(
z⊤i B̂

∗
r

)2
+ σ̂2ϕ̂ivi

∑
j∈s

ω̃jrjηje
2
j

= ϕ̂i(1− ϕ̂i)(z
⊤
i B̂

∗
r)

2 + ϕ̂ivi
∑
j∈s

ω̃jrjηj

(
yj − z⊤j B̂

∗
r√

vj

)2

.
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Proof of Theorem 4.1

We can write

N−1(t̂yI − ty) = N−1(t̂yπ − ty) +N−1(t̂yI − t̂yπ). (4.6.5)

It follows from Assumptions (H1), (H3) and from the model assumptions that

E
[{

N−1(t̂yπ − ty)
}2]

= O(n−1). (4.6.6)

Therefore, we focus on the second term in the right-hand side of (4.6.5) only, for

which we can write N−1(t̂yI − ty) = T1 + T2 + T3 + T4, with

T1 = N−1
∑
i∈s

di(1− ri)(y
∗
i − ϕ̂iz

⊤
i B̂

∗
r),

T2 = N−1
∑
i∈s

di(1− ri)ϕ̂iz
⊤
i (B̂

∗
r − β),

T3 = N−1
∑
i∈s

di(1− ri)(ϕ̂i − ϕi)z
⊤
i β,

T4 = N−1
∑
i∈s

di(1− ri)(ϕiz
⊤
i β − yi).

We proceed by showing that E{(Tk)
2} = O(n−1) for any k = 1, . . . , 4.

Study of the term T1

We have

EI(T1) = N−1
∑
i∈s

di(1− ri){EI(y
∗
i )− ϕ̂iz

⊤
i B̂

∗
r}

= N−1
∑
i∈s

di(1− ri){ϕ̂iz
⊤
i B̂

∗
r − ϕ̂iz

⊤
i B̂r} = 0, (4.6.7)

which leads to E(T1) = 0 and

E{(T1)
2} = V (T1) = EVI(T1). (4.6.8)
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Also, since the y∗i ’s are independent conditionally on yU , δU and rU , we obtain

VI(T1) = N−2
∑
i∈s

d2i (1− ri)VI(y
∗
i )

= N−2
∑
i∈s

d2i (1− ri)ϕ̂i(1− ϕ̂i)(z
⊤
i B̂

∗
r)

2 +

N−2
∑
i∈s

d2i (1− ri)ϕ̂ivi
∑
j∈s

ω̃jrjηj

(
yj − z⊤j B̂

∗
r√

vj

)2

,

(4.6.9)

where the second line in (4.6.9) follows from equation (4.2.9). We first consider

the first term in the right-hand side of (4.6.9), that we denote as T11. By using

the Cauchy-Schwarz inequality and Assumption (H3), we obtain

(z⊤i B̂
∗
r)

2 ≤ ∥zi∥2∥B̂∗
r∥2 ≤ 2(K2)

2(∥β∥2 + ∥B̂∗
r − β∥2), (4.6.10)

which leads to

T11 ≤ N−2(K2)
2∥β∥2

∑
i∈s

d2i +N−2(K2)
2∥B̂∗

r − β∥2
∑
i∈s

d2i

≤ (K2C1)
2

n
(∥β∥2 + ∥B̂∗

r − β∥2), (4.6.11)

where the second line in (4.6.11) follow from Assumption (H1). From Assumption

(H6), we obtain that

E(T11) = O(n−1). (4.6.12)

We now consider the second term in the right-hand side of (4.6.8), that we denote

as T12. By using Assumption (H3), we obtain successively(
yj − z⊤j B̂

∗
r√

vj

)2

≤

(
yj − z⊤j β√

vj

)2

+K4(K2)
2∥B̂∗

r − β∥2 (4.6.13)

and

T12 ≤ K3N
−2
∑
i∈s

d2i
∑
j∈s

ω̃jηjrj

(
yj − z⊤j β√

vj

)2

+

K3K4(K2)
2∥B̂∗

r − β∥2N−2
∑
i∈s

d2i . (4.6.14)
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Since the sampling design is non-informative and the non-response mechanism is

unconfounded, we can write E(T12) = EpEqEm(T12). From (4.6.14), we obtain

Em(T12) ≤ K3N
−2
∑
i∈s

d2i

{
σ2 +K4(K2)

2Em∥B̂∗
r − β∥2

}
≤ K3(C1)

2

n

{
σ2 +K4(K2)

2Em∥B̂∗
r − β∥2

}
(4.6.15)

, (4.6.16)

where the second line in (4.6.15) follows from Assumption (H1). By using As-

sumption (H6), this leads to

E(T12) = O(n−1). (4.6.17)

From (4.6.8), (4.6.12) and (4.6.17), we obtain E{(T1)
2} = O(n−1).

Study of the term T2

Using the Cauchy-Schwartz inequality we have

(T2)
2 ≤ ∥N−1

∑
i∈s

di(1− ri)ϕ̂izi∥2 × ∥B̂∗
r − β∥2. (4.6.18)

Also, from Assumptions (H1) and (H3), we have

∥N−1
∑
i∈s

di(1− ri)ϕ̂izi∥2 ≤ C1K2. (4.6.19)

Using (4.6.18) and (4.6.19), we obtain

E{(T2)
2} ≤ C1K2 × E∥B̂∗

r − β∥2, (4.6.20)

and from Assumption (H6), E{(T2)
2} = O(n−1).

Study of the term T3

We have T3 =
{
N−1

∑
i∈s di(1− ri)(ϕ̂i − ϕi)zi

}⊤
β, and by using the Cauchy-

Schwartz inequality we obtain

(T3)
2 ≤ ∥N−1

∑
i∈s

di(1− ri)(ϕ̂i − ϕi)zi∥2 × ∥β∥2. (4.6.21)

100



4.6. Appendix

Also, by using Assumptions (H1), (H3) and (H5), we have

∥N−1
∑
i∈s

di(1− ri)(ϕ̂i − ϕi)zi∥ ≤ N−1
∑
i∈s

di(1− ri)|ϕ̂i − ϕi| × ∥zi∥

≤ N−1K2

∑
i∈s

di(1− ri)|ϕ̂i − ϕi|

≤ N−1K2K5{
∑
i∈s

di(1− ri)} × ∥γ̂r − γ∥

≤ K2K5C1∥γ̂r − γ∥. (4.6.22)

By plugging (4.6.22) into (4.6.21), we have

(T3)
2 ≤ {K2K5C1∥β∥}2 × ∥γ̂r − γ∥, (4.6.23)

and from Assumption (H4) we obtain E{(T3)
2} = O(n−1).

Study of the term T4

We have

Em(T4) = N−1
∑
i∈s

di(1− ri)Em(ϕiz
⊤
i β − yi) = 0, (4.6.24)

which leads to E(T4) = 0 and

E{(T4)
2} = V (T4) = EVm(T4). (4.6.25)

Also, we have

Vm(T4) = N−2
∑
i∈s

d2i (1− ri)Vm(yi)

= N−2
∑
i∈s

d2i (1− ri){VmEm(yi|ηi) + EmVm(yi|ηi)}

= N−2
∑
i∈s

d2i (1− ri){ϕi(1− ϕi)(z
⊤
i β)

2 + ϕiσ
2vi}, (4.6.26)

and from Assumptions (H1) and (H3), we obtain

Vm(T4) ≤ N−2
∑
i∈s

d2i (1− ri){∥zi∥2∥β∥2 + σ2|vi|},

≤ N−2{
∑
i∈s

d2i }{(K2)
2∥β∥2 + σ2K3},

≤ (C1)
2

n
{(K2)

2∥β∥2 + σ2K3}. (4.6.27)
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From (4.6.25) and (4.6.27), we obtain E{(T4)
2} = O(n−1).

To conclude the proof, we note that

E
[
{N−1(t̂yI − ty)}2

]
= E

{
(T1 + T2 + T3 + T4)

2
}

≤ 4
[
E{(T1)

2}+ E{(T2)
2}+ E{(T3)

2}+ E{(T4)
2}
]
,

(4.6.28)

where E{(Tk)
2} = O(n−1) for any k = 1, . . . , 4. The proof is complete.

Proof of Theorem 4.2

We can write

F̂I(t)− FN(t) =
{
F̂N(t)− FN(t)

}
+
{
F̂I(t)− F̂N(t)

}
. (4.6.29)

It follows from Assumption (H1) that

E

[{
F̂N(t)− FN(t)

}2
]

= O(n−1). (4.6.30)

Therefore, we focus on the second term in the right-hand side of (4.6.29) only,

namely F̂I(t)− F̂N(t), which is the imputation error. In order to study this term,

we now describe a way of getting the imputed value y∗i in (4.2.6) from the true

value yi in (4.1.6) for a non-respondent in three steps.

Firstly, ϵi is replaced by a random residual ϵ̂i, selected with-replacement from the

set

Gr = {ϵj ; rj = 1 and ηj = 1} . (4.6.31)

Let j(i) denote the donor selected for unit i. This leads to the value:

ŷi = ηi
{
z⊤i β + σ

√
viϵ̂i
}

= ηi
{
z⊤i β + σ

√
viϵj(i)

}
. (4.6.32)
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Secondly, the unknown parameters β and σ are estimated, and the exact residual

ϵ̂i = ϵj(i) is replaced in (4.6.32) by the estimated residual ej(i) (see equation 4.2.7).

This leads to the value:

y∗∗i = ηi

{
z⊤i B̂

∗
r + σ̂

√
vieg(i)

}
= ηi

{
z⊤i B̂

∗
r + σ̂

√
viϵ

∗
i

}
. (4.6.33)

Finally, the unknown indicator ηi is replaced in (4.6.33) by η∗i . This leads to the

final imputed value in (4.2.6). Making use of this decomposition, the imputation

error can be written as

F̂I(t)− F̂N(t) = T5 + T6 + T7, (4.6.34)

with

T5 = N−1
∑
i∈s

di(1− ri) {1(y∗i ≤ t)− 1(y∗∗i ≤ t)} , (4.6.35)

T6 = N−1
∑
i∈s

di(1− ri) {1(y∗∗i ≤ t)− 1(ŷi ≤ t)} , (4.6.36)

T7 = N−1
∑
i∈s

di(1− ri) {1(ŷi ≤ t)− 1(yi ≤ t)} . (4.6.37)

The term T5 in (4.6.35) represents the error due to the replacement of the binary

indicator ηi by the generated indicator η∗i . The term T6 in (4.6.36) represents

the error due to the replacement of the binary β and σ by estimators, and by

the replacement of the true imputed residual by the estimated imputed residual.

Lastly, the term T7 in (4.6.37) represents the error due to the replacement of the

original residual ϵi by a residual randomly selected in the set of the respondent

residuals. We consider these three terms separately.

Error in predicting the zero/non-zero value

We first focus on T5, for which we prove that

E{(T5)
2} = O(n−1). (4.6.38)
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After some algebra, we can write

1(y∗i ≤ t)− 1(y∗∗i ≤ t) = (η∗i − ηi){1(ε∗i ≤ t̂i)− 1(t ≥ 0)} (4.6.39)

with t̂i =
t− z⊤i B̂

∗
r

σ̂
√
vi

.

This leads to (T5)
2 = T51 + T52, with

T51 = N−2
∑
i∈s

d2i (1− ri)(η
∗
i − ηi)

2{1(ε∗i ≤ t̂i)− 1(t ≥ 0)}2, (4.6.40)

T52 = N−2
∑
i ̸=j∈s

di(1− ri)dj(1− rj)(η
∗
i − ηi)(η

∗
j − ηj)×

{1(ε∗i ≤ t̂i)− 1(t ≥ 0)}{1(ε∗j ≤ t̂j)− 1(t ≥ 0)}. (4.6.41)

From Assumption (H1), we have

T51 ≤ N−2
∑

i∈s d
2
i ≤

(C1)2

n
. (4.6.42)

Also, since η∗i , η∗j , ε∗i and ε∗j are independent with respect to the imputation

mechanism, we have:

EI(T52) = N−2
∑
i ̸=j∈s

di(1− ri)dj(1− rj)(ϕ̂i − ηi)(ϕ̂j − ηj)×

{F̂εr(t̂i)− 1(t ≥ 0)}{F̂εr(t̂j)− 1(t ≥ 0)} (4.6.43)

where F̂εr(t) =
∑

j∈s ω̃jrjηj1(ej ≤ t). This leads to

Em{EI(T52)|εj, j ∈ s; ηg, g ∈ Sr} = N−2
∑
i ̸=j∈s

di(1− ri)dj(1− rj)(ϕ̂i − ϕi)(ϕ̂j − ϕj)×

{F̂εr(t̂i)− 1(t ≥ 0)}{F̂εr(t̂j)− 1(t ≥ 0)},

(4.6.44)

and

E(T52) ≤ E

{
N−2

∑
i ̸=j∈s

di(1− ri)dj(1− rj)|ϕ̂i − ϕi| × |ϕ̂j − ϕj|

}

≤ E

{
N−2K2

5 ∥ γ̂r − γ ∥2 (
∑
i∈s

di)
2

}
≤ (K5C1)

2E(∥ γ̂r − γ ∥2), (4.6.45)
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where the second line in (4.6.45) follows from Assumption (H5), and the last line

in (4.6.45) follows from Assumption (H1). From Assumption H4, we obtain

E(T52) = O(n−1). (4.6.46)

From (4.6.42) and (4.6.46), we obtain (4.6.38).

Error in estimating the regression parameters

We now focus on T6, for which we prove that

E(|T6|) = o(1). (4.6.47)

After some algebra, we can write

1(y∗∗i ≤ t)− 1(ŷi ≤ t) = ηi{1(ε∗i ≤ t̂i)− 1(ε̂i ≤ ti)}, (4.6.48)

where

ti =
t− z⊤i β

σ
√
vi

and t̂i =
t− z⊤i B̂

∗
r

σ̂
√
vi

.

This leads to

T6 = N−1
∑
i∈s

di(1− ri)ηi{1(ε∗i ≤ t̂i)− 1(ε̂i ≤ ti)} (4.6.49)

and

EI(|T6|) ≤ N−1
∑
i∈s

di(1− ri)ηi
∑
j∈s

ω̃jrjηj | 1(ej ≤ t̂i)− 1(εj ≤ ti) | .

(4.6.50)

We can rewrite

ej =
σ

σ̂
εj −

z⊤j (B̂
∗
r − β)

σ̂
√
vj

,

which leads to

ej ≤ t̂i ⇔ εj ≤ ti +

(
zj√
vj

− zi√
vi

)⊤
(B̂∗

r − β)

σ
≡ tij,
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and from (4.6.50) we obtain

EI(|T6|) ≤ N−1
∑
i∈s

di(1− ri)ηi
∑
j∈s

ω̃jrjηj | 1(εj ≤ tij)− 1(εj ≤ ti) |≡ T ′
6.

(4.6.51)

Let us take some constant ν > 0. Since the distribution function Fε is continuous,

there exists some τν such that

|t− u| ≤ τν ⇒ |Fε(t)− Fε(u)| ≤ ν (4.6.52)

We note

1A = 1

∥ B̂∗
r − β ∥≥ στν

4 supj

∥∥∥ zj√
vj

∥∥∥
 and 1B = 1

∥ B̂∗
r − β ∥< στν

4 supj

∥∥∥ zj√
vj

∥∥∥
 .

(4.6.53)

From assumption (H1), we obtain that T ′
6 ≤ C1, so that

T ′
61A ≤ C11A,

and

E(T ′
61A) ≤ C1P

(
∥ B̂∗

r − β ∥≥ στν
4 supj ∥

zj√
vj

∥

)
(4.6.54)

≤ C1

τν
σ

4supj

∥∥∥ zj√
vj

∥∥∥
−2

E ∥ B̂∗
r − β ∥2 (4.6.55)

where the second line in (4.6.54) follows from the Bienaymé -Chebyshev inequality.

Therefore, from Assumptions (H3) and (H6), we have

E{T ′
61A} = O(n−1). (4.6.56)
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Now, note that under 1B = 1, we have

|tij − ti| =

∣∣∣∣ 1σ ( zj√
vj

− zi√
vi
)⊤(B̂∗

r − β)

∣∣∣∣
≤ 1

σ

∥∥∥∥ zj√
vj

− zi√
vi

∥∥∥∥× ∥∥∥B̂∗
r − β

∥∥∥
≤ 2

σ
sup
j

∥∥∥∥ zj√
vj

∥∥∥∥× ∥∥∥B̂∗
r − β

∥∥∥
≤ τν

2
.

Therefore

| 1(εj ≤ tij)− 1(εj ≤ ti) | 1B ≤ 1
(
ti −

τν
2

≤ εj ≤ ti +
τν
2

)
. (4.6.57)

From equations (4.6.51) and (4.6.57), we have

T ′
61B = N−1

∑
i∈s

di(1− ri)ηi
∑
j∈s

ω̃jrjηj | 1(εj ≤ tij)− 1(εj ≤ ti) | 1B

≤ N−1
∑
i∈s

di(1− ri)ηi
∑
j∈s

ω̃jrjηj1(ti −
τν
2

≤ εj ≤ ti +
τν
2
)

and

Em(T
′
61B) ≤ N−1

∑
i∈s

di(1− ri)ϕi

{
Fε(ti +

τν
2
)− Fε(ti −

τν
2
)
}

≤ νN−1
∑
i∈s

di(1− ri)ϕi

≤ C1ν, (4.6.58)

where the second line in (4.6.58) follows from (4.6.52), and the last line in (4.6.58)

follows from Assumption (H1). Since ν is arbitrary small, we obtain

E{T ′
61B} = o(1). (4.6.59)

From equations (4.6.56) and (4.6.59), we obtain (4.6.47).
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Error in replacing the random residuals

Finally, we focus on T7 for which we prove that

E{(T7)
2} = O(n−1). (4.6.60)

After some algebra, we can write

1(ŷi ≤ t)− 1(yi ≤ t) = ηi{1(ε̂i ≤ ti)− 1(εi ≤ ti)} with ti =
t− z⊤i β

σ
√
vi

. (4.6.61)

This leads successively to

T7 = N−1
∑
i∈s

di(1− ri)ηi {1(ε̂i ≤ ti)− 1(εi ≤ ti)} ,

EI(T7) = N−1
∑
i∈s

di(1− ri)ηi
∑
j∈s

ω̃jrjηj {1(εj ≤ ti)− 1(εi ≤ ti)} ,

Em{EI(T7)|ηi, i ∈ s} = N−1
∑
i∈s

di(1− ri)ηi
∑
j∈s

ω̃jrjηj {Fε(ti)− 1(Fε(ti)} = 0,

EmEI(T7) = 0. (4.6.62)

This leads to E(T7) = 0 and

E{(T7)
2} = V (T7)

= EpEqEmVI(T7) + EpEqVmEI(T7). (4.6.63)

We have

VI(T7) = N−2
∑
i∈s

d2i (1− ri)ηi
∑
j∈s

ω̃jrjηj

{
1(εj ≤ ti)−

∑
k∈s

ωkrkηk1(εk ≤ ti)

}2

≤ N−2
∑
i∈s

d2i

≤ (C1)
2

n
, (4.6.64)

where the last line in (4.6.64) follows from Assumption (H1). Also, we obtain

from (4.6.62)

Vm{EI(T7)} = VmEm{EI(T7)|ηi, i ∈ s}+ EmVm{EI(T7)|ηi, i ∈ s}

= EmVm{EI(T7)|ηi, i ∈ s}. (4.6.65)
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From the rewriting

EI(T7) = N−1
∑
j∈s

ω̃jrjηj
∑
i∈s

di(1− ri)ηi1(εj ≤ ti)

− N−1
∑
i∈s

di(1− ri)ηi1(εi ≤ ti), (4.6.66)

we obtain

Vm{EI(T7)|ηi, i ∈ s} = N−2
∑
j∈s

ω2
j rjηjVm{

∑
i∈s

di(1− ri)ηi1(εj ≤ ti)|ηi, i ∈ s}

+ N−2
∑
i∈s

d2i (1− ri)ηiFε(ti){1− Fε(ti)}

= N−2(
∑
i∈s

di)
2
∑
j∈s

ω̃2
j rjηjVm

{∑
i∈s di(1− ri)ηi1(εj ≤ ti)∑

i∈s di
|ηi, i ∈ s

}
+ N−2

∑
i∈s

d2i (1− ri)ηiFε(ti){1− Fε(ti)}

≤ N−2(
∑
i∈s

di)
2
∑
j∈s

ω̃2
j +N−2

∑
i∈s

d2i

≤ (C1)
2{(C2)

2 + 1}
n

, (4.6.67)

where the last line in (4.6.67) follows from Assumption (H1). From (4.6.65) and

(4.6.67), we obtain

Vm{EI(T7)} = O(n−1). (4.6.68)

From (4.6.63) and (4.6.68), we obtain (4.6.60).

To conclude the proof, we note that

E|F̂I(t)− F̂N(t)| ≤ E|T5|+ E|T6|+ E|T7| (4.6.69)

≤
√
E{(T5)2}+ E|T6|+

√
E{(T7)2}, (4.6.70)

and from equations (4.6.38), (4.6.47) and (4.6.60) we obtain E|F̂I(t) − F̂N(t)| =

o(1). The proof is complete.
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Chapter 5

Propensity weighting
for survey nonresponse
through machine learning

The most common way to deal with unit nonresponse is through a weight adjust-

ment procedure. The rationale behind this type of procedures is to eliminate the

nonrespondents from the data file and to adjust the design (or basic) weights of

the respondents, with the goal of reducing the nonresponse bias. Key to achieving

a significant bias reduction is the availability of fully observed variables that are

related to both the probability of response to the survey and the survey variables;

e.g., Little and Vartivarian (2005) and Haziza and Beaumont (2017).

In practice, two types of weighting procedures are commonly used (Haziza and

Lesage, 2016): in the first, the basic weights are multiplied by the inverse of the

estimated response probabilities, whereas the second uses some form of calibra-

tion, that includes post-stratification and raking as special cases, for adjusting

the basic weights. In this chapter, we focus on weight adjustment by the inverse

of the estimated response probabilities.

Let U = {1, 2, ..., N} be a finite population of size N . In most surveys con-

ducted by statistical agencies, information is collected on a potentially large num-
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ber of survey variables and the aim is to estimate many population parameters.

This type of surveys is often referred to as multipurpose surveys. Let y be a

generic survey variable. We are interested in estimating the finite population to-

tal, ty =
∑

i∈U yi, of the y-values. We select a sample S, of size n, according to

a sampling design p(S) with first-order inclusion probabilities πi, i = 1, · · · , N.

In the absence of nonresponse, a design-unbiased estimator of ty is the following

expansion estimator:

t̂y,π =
∑
i∈s

wiyi, (5.0.1)

where wi = 1/πi denotes the basic weight attached to unit i.

In the presence of unit nonresponse, the survey variables are recorded for a

subset Sr of the original sample S. This subset is often referred to as the set

of respondents. Let ri be a response indicator such that ri = 1 if unit i is a

respondent and ri = 0, otherwise. We assume that the true probability of re-

sponse associated with unit i is related to a certain vector of variables xi; that is,

pi = P (ri = 1 | S,xi). We assume that 0 < pi ≤ 1 and that the response indi-

cators are mutually independent. The latter assumption is generally not realistic

in the context of multistage sampling designs because sample units within the

same cluster (e.g., household) may not respond independently of one another; see

Skinner and D’Arrigo (2011) and Kim et al. (2016) for a discussion of estimation

procedures accounting for the possible intra-cluster correlation. If the vector xi

contains fully observed variables only, then the data are said to be Missing At

Random (MAR). However, if the vector xi includes variables that are subject

to missingness, then the data are Not Missing At Random (NMAR); see Rubin

(1976). In practice, it is not possible to determine whether or not the MAR as-

sumption holds. However, the MAR assumption can be made more plausible by

conditioning on fully observed variables that are related to both the probability

of response and the survey variables; e.g., Little and Vartivarian (2005).
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If the response probabilities pi were known, an unbiased estimator of ty would

be the double expansion estimator (Särndal et al., 1992):

t̂y,DE =
∑
i∈Sr

wi

pi
yi. (5.0.2)

In practice, the response probabilities pi are not known and need to be estimated.

To that end, a model for the response indicators ri, called a nonresponse model, is

assumed and the estimated probabilities p̂i are obtained using the assumed model

(e.g., Särndal and Swensson, 1987; Ekholm and Laaksonen, 1991). This leads to

the Propensity Score Adjusted (PSA) estimator:

t̂y,PSA =
∑
i∈Sr

wi

p̂i
yi, (5.0.3)

where p̂i is an estimate of pi. An alternative estimator of ty is the so-called Hajek

estimator:

t̂y,HAJ =
N

N̂

∑
i∈Sr

wi

p̂i
yi, (5.0.4)

where N̂ =
∑

i∈Sr

wi

p̂i
is an estimate of the population size N based on the respon-

dents.

The estimated response probabilities in (5.0.3) or (5.0.4) may be obtained

through parametric or nonparametric methods. In the context of parametric

estimation, we assume that

pi = f(xi,α), (5.0.5)

for some function f(xi, .), where α is a vector of unknown parameters. The

estimated response probabilities are given by

p̂i = f(xi, α̂),

where α̂ is a suitable estimator (e.g., maximum likelihood estimator) of α. The

class of parametric models (5.0.5) includes the popular linear logistic regression
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model as a special case. It is given by

pi =
exp(x⊤

i α)

1 + exp(1 + x⊤
i α)

.

There are several issues associated with the use of a parametric model: (i) they

are not robust to the misspecification of the form of f(xi, .); (ii) they can fail to

account properly on local violations of the parametric assumption such as nonlin-

earities or interaction effects, both of which may not have been detected during

model selection; (iii) they may yield very small estimated response probabilities,

resulting in very large nonresponse adjustment factors p̂−1
i , ultimately leading to

potentially unstable estimates; e.g., Little and Vartivarian (2005) and Beaumont

(2005).

In practice, nonparametric methods are usually preferred essentially because,

unlike parametric methods, they protect against the misspecification of the non-

response model. The class of nonparametric methods include kernel regression

(Giommi, 1984 and Da Silva and Opsomer, 2006), local polynomial regression (Da

Silva and Opsomer, 2009), weighting classes formed on the basis of preliminary

estimated response probabilities (Little, 1986; Eltinge and Yansaneh, 1997 and

Haziza and Beaumont, 2007), the CHi square Automatic Interaction Detection

(CHAID) algorithm (Kass, 1980) and regression trees (Phipps and Toth, 2012).

In this chapter, we conduct an extensive simulation study to compare several

methods for estimating the response probabilities in a finite population setting.

For each method, we assess the performance of the propensity score estimator

(5.0.3) and the Hajek estimator (5.0.4) in terms of relative bias and relative ef-

ficiency. In our study, we attempted to cover a wide range of (parametric and

nonparametric) methods; see Hastie et al. (2009) for a comprehensive overview

of machine learning methods.
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5.1 Nonresponse modeling

Estimating the response probabilities is typically a supervised classification issue,

in which the response variable is the two-class categorical response indicator r.

However, whereas machine learning methods designed to address classification

issues usually focus on optimizing prediction performance, we will less ambitiously

restrict our attention to the estimation of the posterior class probabilities. For

that issue, in some of the statistical learning methods presented below in the

present section, it will be considered as a regression issue in which r = 0, 1 is

treated as a numeric variable.

5.1.1 Nonparametric Discriminant analysis

Linear logistic regression is often compared to two-class Linear Discriminant Anal-

ysis (LDA) since they can both be thought of as different estimations of the same

logit-linear regression model, either using maximum-likelihood for linear logistic

regression or moment estimation for LDA. LDA originally relies on the assump-

tion that the within-class distributions of the profile x of explanatory variable

is normal with equal variance matrices. Extending LDA to the case of differ-

ent within-class variance matrices leads to the Quadratic Discriminant Analysis

(QDA, see McLachlan 2005). More generally, if fr(.) stands for the density func-

tion of the distribution of x with class r, for r = 0, 1, then it is deduced from

Bayes’ rule that:

pi =
f1(xi)P (ri = 1)

f(xi)
,

where f(x) = (1 − P (ri = 1))f0(x) + P (ri = 1)f1(xi) is the density function of

the two-component mixture model with mixing coefficients 1 − P (ri = 1) and

P (ri = 1).

In a classification perspective, once the within-class distributions are esti-

mated, the predicted class is 1 if the corresponding estimation of pi exceeds a
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threshold which is chosen to guarantee a low misclassification rate or a good com-

promise between true positive and true negative rates. Nonparametric discrim-

inant analysis relies on a nonparametric estimation of group-specific probability

densities. Either a kernel method or the k-nearest-neighbor method can be used

to generate those nonparametric density estimates. Kernel density estimators

were first introduced in the scientific literature for univariate data in the 1950s

and 1960s (Rosenblatt 1956, Parzen 1962) and multivariate kernel density estima-

tion appeared in the 1990s (Simonoff 1996). We used a kernel density estimation

procedure with normal kernel function, which is the most widely used due to its

convenient mathematical properties.

Kr(xi) =
1

(2π)J/2dJ |Vr|1/2
exp(− 1

2d2
xi

⊤V −1
r xi)

where J is the number of explanatory variables, d is a fixed radius and Vk the

within-group covariance matrix of group r, for r = 0 or 1.

5.1.2 Classification and Regression Tree (CART)

Unlike scoring methods such as logistic regression or discriminant analysis that

provide a global decision rule in the range of data, decision trees are designed to

search for subgroups of data for which the prediction rule is locally adapted. The

CART decision tree (Breiman et al., 1984) achieves this partitioning of the data

using a binary recursive algorithm: each split of the learning sample is defined by

a binary rule, consisting either in thresholding a quantitative variable or forming

two sets of levels of a categorical variable. Decision trees have become very popular

in machine learning issues because they can handle both continuous and nominal

attributes as targets and predictors.

Once a criterion has been chosen to measure the so-called purity of a group

of data, the whole learning dataset, viewed as the root of the decision tree, is

optimally split into two children nodes (left and right), so that the sum of the

purity indices of the two subgroups is as large as possible. Each of the children
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node is in turn split following the same goal ... and so on until no further splits are

possible due to lack of data. The tree is grown to a maximal size and then pruned

back to the root with the method of cost-complexity pruning. Indeed, (Breiman et

al., 1984) show that pruning the largest optimal tree produces optimal subtrees of

smaller size. Simple or cross-validation assessment of the predictive performance

can be used to determine the right size for the decision tree. In order to be able to

estimate class probabilities, we choose hereafter to consider r = 0, 1 as a numeric

variable (which in fact sums up to the use of the Gini index as the impurity

measure associated with a unit misclassification cost matrix, see Nakache and

Confais, 2003).

Splitting criteria

For each node t which is not terminal, splitting t in two children nodes tleft

and tright is based on a binary classification rule involving one of the explanatory

variables. For each explanatory variable, say x, the binary rule depends on the

nature, categorical or numeric, of x. In the case x is nominal, the binary rule

just consists in dividing the node t by choosing a group of x levels for tleft and

the remaining x levels for tright. In the case x is numeric or ordinal, the binary

rule consists in a thresholding of x: if the value of x for a given item exceeds a

threshold s, then the item goes to tleft, otherwise it goes to tright. The best split

is obtained by an exhaustive screening of the variables, and for each variable, by

optimization of the binary decision rule. For example, if x is numeric, the optimal

choice of the threshold s is achieved by minimizing the sum of within-children

nodes sum-of-squared deviations to the mean:∑
xi<s

(ri − r̄tleft)
2 +

∑
xi≥s

(ri − r̄tright)
2

Finally, applying the sequence of recursive binary splitting rules to an item based

on its values of the explanatory variables assigns this item to one of the terminal

node, say t. The corresponding estimated probability that r = 1 is just the

proportion r̄t of respondents in t.
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Pruning

Consistently with the above splitting algorithm, if T stands for the set of

terminal nodes of a tree T , then the goodness-of-fit of T can be measured by sum-

of-squared differences between the observed and fitted values, namely C(T ) =∑
t∈T (ri − r̄t)

2. The largest possible tree obtained by applying the recursive

binary splitting rules until no further split is possible minimizes C(T ). This

largest tree may overfit the data, which can be detrimental to its prediction per-

formance. Therefore, it is recommended to prune the tree by minimizing the

following goodness-of-fit criterion, penalized by the so-called size |T | of the tree,

namely the number of its terminal nodes:

Cα(T ) =
∑
t∈T

(ri − r̄t)
2 + α|T |

where α > 0 is a penalty parameter.

For a given value of α, minimizing Cα(T ) results in a unique smallest subtree

Tα ⊆ T0. Consistently, progressively elevating α produces a sequence of subtrees

T0 ⊇ T1 ⊇ ... ⊇ TL = t0, where t0 is the complete set of items in the sample.

The penalty parameter α is usually obtained by minimization of a cross-validated

evaluation of the penalized goodness-of-fit criterion for all the subtrees in the

sequence or, as suggested in Breiman et al.. (1984) to get more stable results, by

taking the subtree which cost is one standard-error above the minimal cost.

Surrogate splits CART handles missing data among regressors with surrogate

splits. Breiman proposes to define a measure of similarity between the best split

of any node t and any other possible split of t built with a regressor taht is not

involved in the best split definition. Surrogate splits are computed by searching

for splits leading approximately to the same partition of the observations as the

original best split.

In section 5.2.1, we will see that this way of choosing the optimal tree by

pruning is not appropriate for our final purpose of estimating totals on variables

of interest that are subject to missingness.
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5.1.3 Conditional Inference Trees for simple and multitar-
get decision problems

Due to its exhaustive search algorithm for the optimal splitting rules, the above

recursive partitioning algorithm has several drawbacks among which overfitting

(if not pruned) and selection bias towards covariates with many possible splits.

Conditional Inference Trees (Ctree, Hothorn et al. 2006) are designed to overcome

those two drawbacks by improving the search of the best splitting rules using

conditional inference procedures and permutation tests (see Strasser and Weber,

1999).

According to Hothorn et al. (2006), conditional inference trees keep the same

flexibility as the original tree methods, since they can be applied to different

kinds of decision problems, ”including nominal, ordinal, numeric, censored as

well as multivariate response variables and arbitrary measurement scales of

the covariates”.

Let us assume that, based on a model for the conditional distribution of the

response indicator r given a J−vector of explanatory variables x = (x1, ..., xJ)
⊤,

test statistics can be derived for the significance of the relationship between the

response and each of the explanatory variable. As for the standard tree method

presented above, the Ctree algorithm to define the optimal splitting rule of a

non-terminal node can be divided in two steps:

1. Variable selection: significance of the relationship between the response and

each of the explanatory variables is tested, based on random permutations

of the response values to obtain a nonparametric estimate of the null dis-

tribution of the test statistics. A multiple testing procedure controlling the

Family-Wise Error Rate (FWER), such as the Bonferroni correction of the

p-values, is then implemented for testing the global null hypothesis H0 of

independence between any of the covariates xj and the response indicator r.

The algorithm is stopped if H0 cannot be rejected at a pre-specified FWER
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control level α. Otherwise the covariate xj∗ with the strongest association

to r is selected.

2. Optimal split: the best split point for xj∗ is also chosen using permutation

tests for the significance of the difference between the response rates in the

two children nodes.

In the above algorithm, the FWER control level α turns out to be the key

parameter to determine the size of the final tree.

Predictions

As with CART, in each cell t which is a terminal node, p̂i = r̄t.

Missing values in regressors

CTree, as well as CART, handles missing data among regressors which is not

the case with logistic regression. Surrogates splits are computed by searching for

splits leading approximately to the same partition of the observations as the orig-

inal best split.

5.1.4 Iterated Multivariate decision trees

Conditional inference trees, introduced in subsection 5.1.3, can also produce deci-

sions rules with several targets at once (see De’ath G 2002 and 2014). Thus, they

enable us to provide groups of items that can be homogeneous regarding a

Q−vector of target variables y = (y1, . . . , yQ)
′ and the response indicator

r. This could be related with the concept of doubly robustness (Bang and Robins

2005, Haziza and Rao 2006).

In the present item nonresponse context, where all the target variables y1, ..., yQ

are missing for an item with the target r = 0, we propose to implement iteratively

MultiVariate CTrees. This procedure can be viewed as an estimation method

of pi, i = 1...n based on successive steps of simultaneous y imputation.
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1. In the first step, the training sample of the multivariate Ctree is based on

the sample of respondents only Sr. The targets are y and the response

indicator r. The predictors are J covariates x1, ..., xJ . In case of missing

values among the covariates then surrogate rules can be used. Applying on

the nonrespondents sample Snr this first decision tree built on Sr, we get ŷ

for non respondents sample Snr.

2. In the second step, the training sample of multivariate Ctree contains all

items (respondents and nonrespondents) with observed values of y for re-

spondents and imputed values (from step one) for nonrespondents. We still

use the observed values of the response indicator (not those predicted in

step 1) to get new values ŷ for non respondents sample Snr.

3. Step 2 is repeated iteratively until ŷ is stabilized. In our simulation study

(section 5.3), few iterations have been necessary (less than ten). The final

output is the n-vector of estimated response probabilities p̂i’s, i = 1...n for

each sample item, provided at the last iteration of multivariate Ctree as the

response rate in the terminal node of each item.

This iterated method deals with different patterns of missingness: item nonre-

sponse with imputation of y, unit nonresponse with estimation of response prob-

ability and nonresponse among regressors with surrogates rules. It highlights the

fact that missingness can be seen as a multivariate problem.

5.1.5 Bagging and Random Forests

Bootstrap aggregating, also called Bagging ”is a method for generating multiple

versions of a predictor and using these to get an aggregated predictor. The aggre-
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gation averages over the versions when predicting a numerical outcome and does

a plurality vote when predicting a class.” (Breiman 1996).

This machine learning ensemble meta-algorithm is especially beneficial to the

notoriously unstable decision tree methods. It is a special case of the model

averaging approach, which aim is both to avoid overfitting and to improve the

reproducibility and accuracy of machine learning algorithms.

In a general regression problem, bagging averages predictions over a set of

bootstrap samples, thereby reducing the variance of a base estimator (e.g., a

decision tree). For each bootstrap sample Sb, b = 1, 2, ..., B, drawn in the whole

learning sample Sn, a model is fitted with a base estimator, giving prediction

f̂b(x). The bagging estimate of the response probability pi, i ∈ Sn is defined by

p̂i = f̂bag(xi) =
1

B

B∑
b=1

f̂b(xi)

Bagging takes advantage of the independence between base learners fitted

on different bootstrap samples to reduce the estimation variance while keeping

the bias unchanged. It performs best with strong and complex models (e.g., fully

developed decision trees), in contrast with boosting methods (see next subsection)

that usually work best with weak models (e.g., small decision trees).

Random Forest (Breiman, 2001) is an extension of Bagging applied to regres-

sion and classification tree methods, where the main difference with standard

Bagging is the randomized covariate selection. Indeed, to optimize each splitting

rule, the Random Forest method first randomly selects a subset of covariates,

and then apply the usual split selection procedure within the subset of selected

covariates. The former additional randomized feature selection is meant to lead

to more independent base learners leading to a more efficient variance reduction,

in comparison with Bagging. The Random Forest method usually has a worse

starting point (when b = 1) than Bagging but converges to lower test errors as B

increases (Zhou, 2012).
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Note that we have chosen to aggregate within a family of learning algorithm,

both in Bagging and Random Forest, and not in an overall perspective mixing

different families - unlike in stacking (Wolpert 1992, Breiman 1996, Nocairi et al.

2016).

5.1.6 Gradient Boosting and Stochastic Gradient Boost-
ing

Similarly as in the Bagging methods, Boosting aims at taking advantage of a

set of classification methods, named learners, to improve the overall classification

performance. The original learners are assumed to be just slightly better than

random guessing: for this reason, we talk about weak learners. The basic principle

of Boosting is to iteratively derive a performant classification rule by selecting a

weak learner at each iteration and combine it with the learner derived at the

preceding step in such a way that the items with largest prediction errors are

especially targeted by the current update of the boosted learner. Boosting was first

proposed in the computational learning theory literature (Shapire 1990, Freund

1995, Freund and Shapire 1997) and rapidly became popular since it can result

in dramatic improvements in performance.

Friedman et al. (2000) give a more statistical perspective to boosting by using

the principles of additive modeling and maximum likelihood. Hastie et al. (2009)

argued that decision trees are ideal base learners for applications of boosting. This

motivates our choice of boosting decision trees in our study.

One of the most famous family of boosting methods is Adapative Boosting

(AdaBoost, Freund and Shapire, 1996). Hereafter, we present a variant of Ad-

aboost, named Real Adaboost (Freund and Shapire 1996, Schapire and Singer

1999, Friedman et al. 2000), especially suited to the present purpose of estimat-

ing response probabilities rather than predicting the membership to the group of

respondents. Indeed, at each iteration b, b = 1, ...B, the Real AdaBoost algorithm

uses weighted class probability estimates p̂b(x) to build real-value contributions
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fb(x) to the final aggregated rule F (x), i.e. to update the additive model. In the

following, the base learners h
(b)
γ : x 7→ h

(b)
γ (x) = ±1 (+ 1 for respondents and -1

for non-respondents) are B decision trees with a number γ of terminal nodes.

Real AdaBoost

Input: Learning sample Sn,

Base learning algorithms h
(b)
γ

Number of iterations B,
Process:

1: Initialize the boosted estimator F (0)(x) = 0 and weights w
(0)
i = 1

n
, i ∈ Sn

2: For b = 1 to B do

a: Fit ĥ
(b)
γ with the target r̃i (where r̃i = 1 if ri = 1 and r̃i = −1 if r = 0)

on the weighted items in the training samples, using weights w
(b)
i ,

in order to obtain class probability estimates p̂b(xi)
c: Update

· w(b+1)
i = w

(b)
i exp{−r̃ifb(xi)}, i ∈ Sn, with fb(xi) = 0.5 log{ p̂b(xi)

1−p̂b(xi)
}

and renormalize so that
∑

i∈Sn
w

(b+1)
i = 1

· F̂ (b)(x) = F̂ (b+1)(x) + fb(x)
End for

Outputs:

· The classifier sign[F̂ (B)(x)] estimates the label
· The estimated probability
p̂(r̃ = 1|x) = p̂(r = 1|x) = 1

1+exp(−2F̂ (B)(x))

In our study, the more sophisticated Gradient Boosting and Stochas-

tic Gradient Boosting versions (Friedman 2002, Culp et al. 2006) of

Real AdaBoost are implemented.

Gradient Boosting is a mix of gradient descent optimization and boosting.

Both Boosting and Gradient Boosting fit an additive model in a forward stage-

wise manner. In each stage, they both introduce a weak learner to compensate the

shortcomings of previous weak learners. However, Gradient Boosting especially

focuses on the minimization of a loss function, here the exponential loss function

derived from the maximum-likelihood estimation of a logistic regression model,

by identifying those ”shortcomings” using gradients, instead of the AdaBoost
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weighting function: ”Both high-weight data and gradients tells us how to improve

the model”, (Li 2016). In addition, a regularization parameter is introduced to

control at each iteration the weight of the new learners in the current update of

the boosted classification method.

The Stochastic Gradient boosting algorithm is referred to as a hybrid bagging

and boosting algorithm (Friedman 2002), in the sense that it combines advantages

of the two procedures: at each iteration, the new learner is not fitted on the whole

learning sample but on a randomly drawn subsample.

5.1.7 The Suppport vector Machine

Support Vector Machines (SVM) are among the most famous machine learning

methods in the statistical learning theory presented in Vapnik (1998). In the

special case where the p-dimensional space of data points (xi1, . . . , xip), where xij

is the observation of the jth explanatory variable on the ith sampling item, is

fully separable into two subgroups, one with only respondents and one with only

non-respondents, using a linear combination of the explanatory variables, then

there exists two parallel hyperplanes separating the two subgoups, with maximal

distance between those two hyperplanes: this maximal distance is named an hard

margin. The maximal-margins hyperplanes contains data points that are called

the support vectors. In this special case of separable groups of respondents and

non-respondents, the linear SVM classifier consists of considering the position of a

data point with respect to the hyperplane that lies in the middle of the maximal-

margins hyperplanes to determine the class of an item.

In the general case where the space of data points (xi1, . . . , xip) is not fully

separable, whatever the hyperplane and the margin chosen to separate the two

subgroups, any linear classification rule defined as in the fully separable case by

the position with respect to a separating hyperplane will result in misclassified

data points. A so-called hinge loss function, very similar to the deviance loss

function minimized in the maximum-likelihood estimation of a logistic regression
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model, is introduced to measure the relevance of a linear classification rule in-

between the two maximal-margin hyperplanes. For a given soft margin, finding

the optimal hyperplane can be stated as minimizing the mean hinge loss over the

learning sample, which is convex optimization issue. The SVM solution finally

consists in choosing the best compromise between a low mean hinge loss over the

learning sample and a wide margin.

One of the reason why SVM has become so popular is that it can easily

be extended to non-linear classification rule, using the so-called ”kernel trick”

(Schölkopf and Smola 2002). Indeed, in the linear framework, both the mean

hinge loss function and the squared inverse of the margin size involve standard

scalar products xi.xi′ of data points i and i′. This standard scalar product can

be replaced by K(xi, xi′), where K is a symmetric positive definite kernel func-

tion (Hastie et al., 2009), that is intentionally introduced to define the similarity

of two observations, after a nonlinear transformation of the explanatory vari-

ables: to each choice of K corresponds a nonlinear transformation φ such that

K(xi, xi′) = φ(xi).φ(xi′). For example, the gaussian radial kernel, that is used in

the following because it is a ”general-purpose kernel used when there is no prior

knowledge about the data” (Karatzoglou et al. 2006), is defined as follows:

K(xi,xi′) = exp(−γ
J∑

j=1

(xij − xi′j)
2)

where γ is a positive constant.

It can be shown that the SVM classifier can be expressed as the sign of a score

function f̂(x) which is straightforward deduced from the hinge loss function. Since

we are more interested in estimating class probabilities than in predicting class

labels, we use Platt’s a posteriori probabilities (see Platt, 2000):

P̂ (r = 1|f̂(x)) = 1

1 + exp(Af̂(x) +B)

where A and B are estimated by minimizing the negative log-likelihood function.
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5.2 Modifications of ”raw” probabilities estima-

tions

5.2.1 Homogeneous Response Groups (HRG)

The different methods listed above produce ”raw” estimated probabilities. The

survey weights may be then adjusted inversely to those raw estimated response

probabilities. But in order to protect against model insufficiency, it is suggested

that homogeneous response groups be formed, i.e. that units with the same char-

acteristics and the same propensity to respond be grouped together (Eltinge and

Yansaneh, 1997, Haziza and Beaumont, 2007, Little, 1986). That is why we com-

puted, for each set of ”raw” estimated probabilities, a corresponding Homogeneous

Response Groups (HRG) version.

Defining HRG requires to partition the population into C groups. The design

weight of respondents in group c is adjusted by multiplying it by the inverse of

the observed response rate in class c, for c = 1 to C. Homogeneous groups are

formed by using a clustering algorithm (k-means) on ”raw” estimated probabili-

ties. Finally, the probability of a unit in class c is estimated by the response rate

observed in the same class.

Example of HRG’s usefulness with CART:

CART pruning consists in selecting a tree minimizing a cross-validated error (see

section 5.1.2). Therefore, the way the learning method is optimized is not espe-

cially designed to match our final aim which is to minimize the following expected

estimation error:

E(ty − t̂y)
2

Therefore, in the following simulation study, we propose to extract clusters of

homogeneous estimated response probabilities calculated using unpruned trees.

Let us take as example, the variable of interest Y1 and response mechanism

R0 described bellow in the simulation study section 5.3. With this example, we
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Figure 5.2.1: Performance of CART depending on the number of splits

measure a bias of 11% for the expansion estimation t̂yExp of ty in our simulation

study with a default pruned CART leading to 6 splits but no bias with an un-

pruned tree (see figure 5.2.1 below). Furthermore, the SSE of t̂yExp is much lower

with 40 splits than with 6 splits.

5.2.2 Truncation of estimated probabilities

In order to prevent from too small weights, a lower bound has to be determined

for the p̂i’s. In practice, the lower bound 0.02 is often used. However, some of our

simulations show that the choice of the lower bound may have a certain impact

depending on the machine learning method in use. For instance, in our simula-

tions, the global performance of Ctree is robust to variations of the truncation
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level, which is not the case with the Bagging version of Ctree (see appendix 5.6.3

for details).

5.3 Simulations study

5.3.1 Simulations set-up

We conduct an extensive simulation study to compare the different methods de-

scribed in Section 2 in terms of bias and efficiency. We perform K = 1000 it-

erations of the following process: first, a finite population of size N = 1500 is

generated from a given model. Then, from the realized population, we generate

nonresponse according to a specific nonresponse mechanism. Below, we describe

one iteration in further details.

We generate a finite population of size N = 1500 consisting of ten survey

variables, yj, j = 1, ..., 10 and five auxiliary variables x1-x5. First, the auxiliary

variables were generated as follows. The x1-values are generated from a standard

normal distribution. The x2-values are generated from a beta parameter with

shape parameter equal to 3 and scale parameter equal to 1. The x3-values are

generated from a gamma distribution with shape parameter equal to 3 and scale

parameter equal to 2. The x4-values are generated from a Bernoulli distribution

with probability equal to 0.7. Finally, the x5-values are generated from a multi-

nomial distribution with probabilities (0.4, 0.3, 0.3). We standardize x2 and x3 so

that their means equal zero and their variances equal one: without loss of gener-

ality, it allows us to have more readable coefficients in the definition of the models

M1 to M10 and of response mechanisms R0 to R6 provided bellow.

Given the values of x1 to x5, the values of y1-y10 were generated according to

the following models:

M1: yi1 = 2 + 2xi1 + xi2 + 3xi3 + ϵi1;

M2: yi2 = 2 + 2xi1 + xi2 + 3xi3 + ϵi2;

129



Chapter 5. Propensity weighting for survey nonresponse through machine
learning

M3: yi3 = 2 + 2xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + ϵi3;

M4: yi4 = 2 + 2xi1 + xi2 + 3xi3 + 2xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + ϵi4;

M5: yi5 = 2 + 2xi1 + xi2 + 3xi3xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + ϵi5;

M6: yi6 = 2 + 2xi1 + x2
i2 + 3xi3 + ϵi6;

M7: yi7 = 2 + 2x3
i1 + x2

i2 + 3xi3xi4 + 1.5 1(xi5=1) − 2 1(xi5=2) + ϵi7;

M8: yi8 = 1 + exp(2xi1 + xi2 + 3xi3) + ϵi8;

M9: yi9 = 1 + xi4exp(2xi1 + xi2 + 3xi3) + ϵi9;

M10: yi10 = 1 + 4cos(xi1) + ϵi10.

As a first step away from our simplest linear model M1, for y2 we only modify

the errors: they are generated from a mixture of a standard normal distribution

and a beta distribution with shape parameter equal to 3 and scale parameter

equal to 1. For the other variables y3, ...y10, the models are more complicated in

terms of relations between variables of interest and covariates but the errors ϵji

are generated from a standard normal distribution.

In order to focus on the nonresponse error, we consider the case of a census

that is, n = N = 1500. In each population, response indicators are generated

according to the following response mechanisms. The response mechanism R0 is

a logistic model and constitutes the reference model in our empirical study. The

other response mechanisms R1- R5 are expressed as the sum of p0 and different

terms that draw them away from the reference model. The response mechanism

R6 is built as a regression tree decision rule.

In each population, seven sets of response indicators rid are generated indepen-

dently from a Bernoulli distribution with parameter pid (i.e. response probabili-

ties), i = 1, · · · , N and d = 0, · · · , 6, which leads to seven sets of respondents.
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R0: pi0 = 1/[1 + exp{−0.4(6.5 + 2xi1 + 2xi2 + 2xi3 − xi4 + 1.5 1(xi5=1)

− 2 1(xi5=2) − xi3xi4)}];

R1: pi1 = 0.65pi0 + 0.007x2
i1;

R2: pi2 = 0.5pi0 + 0.02− 0.01x3
i2;

R3: Pi3 = 0.5pi0 + 0.1|xi1|;

R4: pi4 = 0.5pi0 + 0.01 + exp(xi2);

R5: pi5 = 0.5pi0 + 0.2 + 0.1{(sin(xi1) + cos(xi2)};

R6: pi6 = 1(xi1<0)(0.4 + 0.2xi4) +

1(xi1≥0)1(xi2<0.75)1(xi3<6){0.51(xi5=1) + 0.651(xi5=2) + 0.71(xi5=3)}

+ 0.81(xi1≥0)1(xi2<0.75)1(xi3≥6) + 0.91(xi1≥0)1(xi2≥0.75);

Figures presented in Appendix 5.6.1 show the distributions of the simulated

values of response probabilities pid, d = 0, · · · , 6. Note that the resulting response

rates are approximately 85% for R0, 56% for R1, 45% for R2, 51% for R3, 58%

for R4, 69% for R5 and 61% for R6. Figures presented in Appendix 5.6.2 illus-

trate the possibility of non linear links between the response probabilities and the

survey variables in our simulations: Hajek’s estimator is expected to outperform

the expansion estimator in such situations.

We use a truncation for p̂i with a 0.02 lower bound for all the methods (with

or without HRG). As a measure of bias of an estimator t̂y(m)
of the finite popu-

lation parameter ty, using machine learning method m for response probabilities

estimations, we compute the Monte Carlo percent relative bias

RBMC(t̂y(m)
) =

1

K

K∑
k=1

(t̂y(m,k)
− ty)

ty
× 100, (5.3.1)
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where t̂y(m,k)
denotes the estimator of ty in the k-th sample obtained with machine

learning method m. As a measure of relative efficiency, we compute

REMC(t̂y(m)
) =

MSEMC(t̂y(m)
)

MSEMC(t̂y(HRG Reglog)
)
, (5.3.2)

where t̂y(m)
and t̂y(HRG Reglog)

denote respectively the estimator of ty obtained with

method m and the estimator of ty obtained with Homogenous Response Group

applied to logistic regression estimated probabilities, and where

MSEMC(t̂y(m)
) =

1

K

K∑
k=1

(t̂y(m,k)
− ty)

2.

Using RBMC(t̂y(m)
) and REMC(t̂y(m)

) as measures of performance leads to a

huge amounts of indicators. Indeed, we have to cross 7 response mechanisms,

by 10 variables of interest, 30 methods (with and without HRG versions of 15

machine learning methods) and this for 2 types of estimators t̂yExp
and t̂yHaj

:

42000 performance indicators. We have to sum up all this information. In order

to get a global ranking of the 30 methods for t̂yExp
and t̂yHaj

, we build two kind of

global indicators: one to sum up the RBMC tables and one to sum up the REMC

tables of each machine learning method.

5.3.2 Relative Bias results

Global indicator of relative bias

For each machine learning method, we have a RBMC table containing 70 indi-

cators (10 rows for the 10 variables of interest and 7 columns for the 7 response

mechanisms) that can be summed up by one indicator : the Frobenius

norm of the RBMC table. The definition of the Frobenius norm of a matrix

T , with all its elements in R, is ∥T∥F =
√

Tr(T⊤T ). We want to identify the

methods with the lowest relative bias. Thus we look for the methods for which

the Frobenius norm of relative bias tables are the smallest. Once we get the global
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ranking of the methods based on this norm, we can go into more details for the

best methods.

Global ranking results

In terms of relative bias results summed up with ∥RBMC∥F (figure 5.3.1), the

best method is HRG logistic regression for both t̂yExp
and t̂yHaj

. However, among

the methods that could handle missing values in predictors, HRG unpruned CART

is good and performs better than unpruned CART (and much better than default

pruned CART and than HRG prunned CART). Bagging Ctree (which also could

handle missing values in predictors) performs also quite good but better for t̂yHaj

than for t̂yExp
. As shown in figure 5.3.1, the four best methods for t̂yExp

provide

lower bias than the four best for t̂yHaj
. We also can see that applying HRG reduces

bias for the very best methods (logistic regression and Unpruned CART) but it is

not the case for all the methods (see for instance Bagging Ctree and MultiVariate

CTrees). Note that in figure 5.3.1, the most extreme values have been removed

for a better readability: only the 25 best methods (among 30) are provided.
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a. RBMC: Focus on the three best methods for t̂yExp

a.1 HRG logistic regression (Table 5.3.1, Frobenious norm = 22.5)

Among the 70 scenarios, 30 show unbiased t̂yExp
(bias < 1%) and 9 sce-

narios exhibit bias above 4%. The best results occur with R0 (reference

response mechanism i.e. logit link) and R6 (decision tree response mecha-

nism). The worse results occur with R2 (reference response mechanism +

a quadratic term) and R4 (reference response mechanism + an exponential

term). The highest bias equals −7.7 with Y 7 (model with quadratic, cubic

and interaction terms) and R5 (reference response mechanism + sine and

cosine terms).

a.2 HRG Unpruned CART (Table 5.3.2, Frobenious norm = 26.36)

Among the 70 scenarios, 17 show unbiased t̂yExp
(bias < 1%) and 13 sce-

narios exhibit bias above 4%. The best results occur with R0 (reference

response mechanism i.e. logit link) and R6 (decision tree response mecha-

nism). The worse results occur with R2 (reference response mechanism + a

quadratic term) and R3 (reference response mechanism + an absolute value

term). The highest bias equal −8.49% with Y 10 and R2 (reference response

mechanism + a quadratic term) and −7.22% with Y 10 (model with a cosine

term) and R3 (reference response mechanism + an absolute value term).

a.3 Logistic (Table 5.3.3, Frobenious norm = 27.62)

Among the 70 scenarios, 27 show unbiased t̂yExp
(bias< 1%) and 14 scenarios

exhibit bias above 4%. The best results occur with R0 (reference response

mechanism i.e. logit link) and R6 (decision tree response mechanism). The

worse results occur with R2 (reference response mechanism + a quadratic

term) and R4 (reference response mechanism + an exponential term). The

highest relative bias equals 9.28% with Y 7 (model quadratic, cubic and

interaction terms) and R4 (reference response mechanism + an exponential

term).
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Table 5.3.1: Relative bias of t̂yExp with HRG after logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.82 3.65 5.30 3.35 4.60 2.49 - 0.33

Y2 0.60 2.68 3.85 2.44 3.33 1.84 - 0.23

Y3 - 0.12 0.19 0.69 0.78 0.70 0.35 - 0.04

Y4 0.35 2.40 3.77 2.77 3.39 1.88 - 0.24

Y5 0.11 2.91 5.28 3.62 4.67 2.35 - 0.80

Y6 0.07 1.71 3.41 0.84 4.33 - 1.46 2.27

Y7 0.85 2.79 5.91 - 0.22 6.99 - 7.68 - 2.32

Y8 1.19 - 1.29 - 1.51 0.63 - 3.06 2.55 - 0.26

Y9 0.72 - 0.86 - 1.80 - 0.23 - 2.57 1.95 - 0.92

Y10 0.15 0.03 0.64 - 4.70 1.21 - 0.99 0.16

Table 5.3.2: Relative bias of t̂yExp with HRG after unpruned CART

Variable R0 R1 R2 R3 R4 R5 R6

Y1 2.53 2.33 - 2.13 - 0.95 2.61 2.29 - 0.88

Y2 1.86 0.75 - 4 - 2.37 0.58 1.39 - 1.26

Y3 0.36 - 2.81 - 7.56 - 5.07 - 3.66 - 0.23 - 1.94

Y4 1.82 0.91 - 3.70 - 2.06 0.65 1.62 - 1.11

Y5 2.61 3.32 - 1.13 0.09 3.66 2.76 - 1.36

Y6 0.77 - 2.05 - 4.68 - 4.81 - 4.03 - 0.34 - 1.10

Y7 3.41 2.12 0.70 - 2.87 0.47 1.21 - 0.43

Y8 3.78 3.49 - 1.02 - 1.38 5.32 5.18 2.44

Y9 3.14 5.23 - 4.77 - 0.36 3.61 4.37 3.68

Y10 - 0.02 - 3.72 - 8.49 - 7.22 - 4.80 - 0.71 - 2.57

Table 5.3.3: Relative bias of t̂yExp with Logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.06 3.56 5.25 2.95 4.08 2.61 - 0.71

Y2 0.04 2.55 3.77 2.15 3.07 1.85 - 0.42

Y3 - 0.21 - 0.01 0.71 0.76 1.16 0.15 0.00

Y4 - 0.17 2.32 3.78 2.51 3.29 1.88 - 0.59

Y5 - 0.70 3.06 5.42 3.18 4.18 2.53 - 1.16

Y6 - 0.03 0.51 3.23 0.66 6.80 - 1.86 2.46

Y7 - 0.25 1.69 5.93 - 0.85 9.28 - 8.42 - 5.80

Y8 - 0.11 - 7.28 - 6.80 - 1.14 - 3.54 - 0.38 0.72

Y9 - 0.49 - 6.22 - 6.50 - 1.52 - 2.90 - 0.82 - 0.13

Y10 0.01 0.27 1.29 - 5.13 1.60 - 0.59 - 0.62
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b. RBMC: Focus on the three best methods for t̂yHaj

b.1 HRG logistic regression (Table 5.3.4, Frobenious norm = 22.5)

Among the 70 scenarios, 30 show unbiased t̂yExp
(bias < 1%) and 9 scenarios

exhibit bias above 4%. The best results occur with R0 (reference response

mechanism i.e. logit link) and R6 (decision tree response mechanism). The

worse results occur with R2 (reference response mechanism + a quadratic

term) and R4 (reference response mechanism + an exponential term). The

highest relative bias equals −7.68% with Y 7 (model with quadratic, cubic

and interaction terms) and R5 (reference response mechanism + sine and

cosine terms).

b.2 Logistic regression (Table 5.3.5, Frobenious norm = 27.36)

Among the 70 scenarios, 28 show unbiased t̂yExp
(bias< 1%) and 12 scenarios

exhibit bias above 4%. The best results occur with R0 (reference response

mechanism i.e. logit link). The worse results occur with R2 (reference

response mechanism + a quadratic term). The highest relative bias equals

8.81% with Y 7 (model with quadratic, cubic and interaction terms) and R4

(reference response mechanism + an exponential term).

b.3 Bagging Ctree (Table 5.3.6, Frobenious norm = 30.11)

Among the 70 scenarios, 23 show unbiased t̂yExp
(bias< 1%) and 21 scenarios

exhibit bias above 4%. The best results occur with R0 (reference response

mechanism i.e. logit link) and R6 (decision tree response mechanism). The

worse results occur with R2 (reference response mechanism + a quadratic

term). The highest relative bias equals −8.62% with Y 10 (model with a

cosine term) and R2 (reference response mechanism + a quadratic term).
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Table 5.3.4: Relative bias of t̂yHaj with HRG after logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.82 3.65 5.30 3.35 4.60 2.49 -0.33

Y2 0.60 2.68 3.85 2.44 3.33 1.84 -0.23

Y3 -0.12 0.19 0.69 0.78 0.70 0.35 -0.04

Y4 0.35 2.40 3.77 2.77 3.39 1.88 -0.24

Y5 0.11 2.91 5.28 3.62 4.67 2.35 -0.80

Y6 0.07 1.71 3.41 0.84 4.33 -1.46 2.27

Y7 0.85 2.79 5.91 -0.22 6.99 -7.68 -2.32

Y8 1.19 -1.29 -1.51 0.63 -3.06 2.55 -0.26

Y9 0.72 -0.86 -1.80 -0.23 -2.57 1.95 -0.92

Y10 0.15 0.03 0.64 -4.70 1.21 -0.99 0.16

Table 5.3.5: Relative bias of t̂yHaj with Logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 0.08 3.85 5.33 2.93 3.64 2.85 -0.98

Y2 0.06 2.84 3.85 2.14 2.63 2.09 -0.70

Y3 -0.20 0.27 0.78 0.74 0.73 0.39 -0.28

Y4 -0.15 2.61 3.86 2.50 2.85 2.11 -0.87

Y5 -0.68 3.35 5.50 3.16 3.74 2.77 -1.43

Y6 -0.02 0.78 3.30 0.65 6.34 -1.64 2.18

Y7 -0.23 1.98 6.00 -0.87 8.81 -8.22 -6.06

Y8 -0.09 -7.02 -6.75 -1.16 -3.96 -0.15 0.44

Y9 -0.47 -5.96 -6.44 -1.55 -3.33 -0.59 -0.40

Y10 0.03 0.55 1.36 -5.15 1.17 -0.36 -0.90

Table 5.3.6: Relative bias of t̂yHaj with Ctree Bagging

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.46 5.26 6.30 5.78 5.44 1.85 0.67

Y2 1.13 3.90 4.54 4.22 3.99 1.36 0.50

Y3 -0.05 0.73 0.81 0.89 0.97 0.59 -0.47

Y4 0.84 3.86 4.45 4.31 4.20 1.75 -0.13

Y5 0.16 5.16 6.39 6.20 5.81 2.03 -0.11

Y6 2.32 3.67 4.29 3.45 4.13 2.09 0.54

Y7 2.81 7.65 9.13 7.08 9.34 3.01 0.01

Y8 2.86 0.67 1.32 4.84 2.22 4.04 2.16

Y9 2.41 1.19 0.83 3.02 2.56 3.71 1.35

Y10 -0.88 -0.02 0.39 -3.02 0.38 0.03 -0.11
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5.3.3 Relative Efficiency results

Global indicator of relative efficiency

In the definition of relative efficiency REMC (equation 5.3.2), we explicitly use

the logistic regression combined with HRG as the reference method. It is not

the case in the definition of relative bias RBMC (equation 5.3.1). That is why

we propose a different global indicator of performance, normalized to 1 for the

logistic regression combined with HRG.

Let us denote REMC(e,m) the table computed for:

- e the estimator type of ty’s, e ∈ {t̂yExp, t̂yHaj},

- m the machine learning method used to estimate response probabilities.

Note that the model m can either be a machine learning used alone to esti-

mate probabilities or a machine learning method associated to the Homogeneous

Response Group creation (see section 5.2.1).

We compute the following normalized indicator (based on the Frobenius norm):

NREF(e,m) = ∥REMC(e,m)/REMC(e,HRG logistic regression)∥F/8.3666

where REMC(e,m)/REMC(e,HRG logistic regression) is a term by term division

of REMC(e,m) by REMC(e,HRG logistic regression). The denominator 8.3666 is

the Frobenius norm of a 10× 7 matrix filled with 1′s: it is the Frobenius norm of

the table REMC(e,HRG logistic regression)/REMC(e,HRG logistic regression).

Global ranking results

In the Bar plot (Figure 5.3.2) the most extreme values of NREF have been

removed for a better readability. The best methods are HRG logistic regression,

Logistic regression HRG Unpruned CART and Unpruned CART for both t̂yExp
and

t̂yHaj
. However among the methods that could handle missing values in predictors,

MultiVariate CTree with four iterations is not far, particularly for t̂yExp
.
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a. REMC: Focus on the three best methods for t̂yExp

HRG logistic regression is a common used method and appears to the best rank

among all the machine learning methods we used. That is why we used it as the

reference: data table 5.3.7 is used as denominator in REMC computation for all the

other methods. Consequently, it’s REMC table is filled with 1’s only which leads to

a Frobenius norm equal to 3.87 and a Normalized Frobenius norm equal to 1. Thus

we rather provide here the MSEMC table. In the following table, we darkened

the worse cases for each variable of interest (the maximal value in each row). It

shows for each variable of interest, on which response mechanism HRG logistic

regression performs the best (always R0 i.e. the reference response mechanism

with logit link)) and the worse (R2 i.e. the reference response mechanism + a

quadratic term for Y 1 to Y 5, R3 for Y 8 to Y 10 for instance).

Let us focus now on the two other best methods in terms of REMC .
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a.1 Logistic regression (Table 5.3.8, Normalized Frobenious norm =

1.2)

Among the 70 scenarios, Logistic regression outperforms HRG Logistic re-

gression in 36 scenarios (REMC < 1) ) and is much worse in 3 scenarios

with REMC > 2. The relative best outperformances of Logistic regression

occur with R1 (logit response mechanism with non normal residuals) and R2

(reference response mechanism + a quadratic term). The worse underper-

formances occur with Y 5 and R0 (reference response mechanism i.e. logit

link): REMC = 3.41 which means that the MSE of Logistic regression is

more than three times the one of HRG Logistic regression.

a.2 HRG Unpruned CART (Table 5.3.9, Normalized Frobenius norm

= 5.8)

Among the 70 scenarios, HRG Unpruned CART outperforms HRG Logistic

regression in 18 scenarios (REMC < 1) and is much worse in 25 scenarios

with a REMC higher than 2. Relative underperformances occur with R0 to

R6. The highest REMC equals 29.41 with Y 10 and R2 (reference response

mechanism + a quadratic term) and 20.69 with Y 3 and R2.
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Table 5.3.7: MSEMC for t̂yExp with HRG logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.40E+03 2.14E+04 3.86E+04 2.30E+04 3.07E+04 1.12E+04 8.99E+03

Y2 1.42E+03 2.17E+04 3.94E+04 2.30E+04 3.02E+04 1.19E+04 8.98E+03

Y3 6.51E+02 4.14E+03 8.10E+03 6.62E+03 5.71E+03 3.27E+03 2.27E+03

Y4 1.33E+03 2.66E+04 5.33E+04 3.50E+04 4.27E+04 1.67E+04 9.75E+03

Y5 1.10E+03 1.70E+04 4.00E+04 2.59E+04 3.12E+04 1.10E+04 8.06E+03

Y6 2.72E+03 2.01E+04 4.05E+04 1.80E+04 5.16E+04 1.29E+04 2.15E+04

Y7 3.30E+04 9.16E+04 1.48E+05 1.01E+05 1.57E+05 1.79E+05 5.90E+04

Y8 1.96E+17 3.08E+20 3.94E+20 4.38E+20 2.04E+20 3.42E+19 1.79E+20

Y9 1.68E+17 2.83E+20 3.60E+20 4.23E+20 2.00E+20 3.27E+19 1.75E+20

Y10 1.54E+03 5.79E+03 7.11E+03 6.51E+04 9.55E+03 5.22E+03 4.11E+03

Table 5.3.8: Relative efficiency for t̂yExp with logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.52 0.91 0.97 0.89 0.90 1.03 1.05

Y2 1.43 0.89 0.96 0.90 0.93 0.97 1.02

Y3 1.33 0.86 0.93 1.03 1.57 0.87 1.03

Y4 1.97 0.90 1.00 0.88 0.99 0.97 1.10

Y5 3.41 0.97 1.01 0.88 0.92 1.05 1.03

Y6 1.23 0.63 0.92 0.93 2.33 1.13 1.11

Y7 1.80 0.70 0.98 1.05 1.65 1.19 2.67

Y8 0.01 1.25 0.56 1.03 0.88 0.48 0.97

Y9 0.01 1.28 0.53 1.05 0.88 0.48 0.97

Y10 1.04 0.97 1.72 1.16 1.36 0.79 1.43

Table 5.3.9: Relative efficiency for t̂yExp with HRG after unpruned CART

Variable R0 R1 R2 R3 R4 R5 R6

Y1 7.02 1.05 0.70 0.95 0.90 1.51 2.27

Y2 7.23 0.85 1.30 1.35 0.72 1.31 2.73

Y3 3.30 8.12 20.69 12.52 8.86 3.17 10.67

Y4 10.16 0.89 1.25 1.16 0.65 1.36 3.16

Y5 9.40 1.70 0.65 0.88 1.15 1.92 2.57

Y6 3.09 1.74 1.80 3.98 1.27 1.60 1.25

Y7 2.20 1.52 1.00 1.06 0.89 0.66 2.11

Y8 0.08 0.09 0.57 1.84 1.89 1.97 0.63

Y9 0.05 0.02 0.53 1.88 1.72 2.04 0.63

Y10 1.56 8.78 29.41 2.37 8.00 1.87 7.87
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b. REMC: Focus on the three best methods for t̂yHaj

Here again, HRG logistic regression is used as the reference (denominator in

REMC computation). In the following table, we darkened the worse cases for

each variable of interest (the maximal value in each row). It shows that HRG

logistic regression performs the best with R0 (reference response mechanism) and

the worse with R2 (reference response mechanism + a quadratic term) for Y 1 to

Y 6, R3 for Y 8 to Y 10.

Let us focus now on the two other best methods in terms of REMC .

b.1 Logistic regression (Normalized Frobenius norm = 1.4)

Among the 70 scenarios, logistic regression outperforms HRG Logistic re-

gression in 31 scenarios (REMC < 1) and is much worse in 5 scenarios with

a REMC higher than 2. The relative best outperformances occur with R2

(reference response mechanism + a quadratic term) and the worse under-

performances with R0 (reference response mechanism). The highest REMC

equals 4.57 with Y 5 and R0 (reference response mechanism).

b.2 HRG Unpruned CART (Normalized Frobenius norm = 2.9)

Among the 70 scenarios, HRG Unpruned CART outperforms HRG Logistic

regression in 12 scenarios (REMC < 1) and is much worse in 42 scenarios

with a REMC higher than 2. The relative best outperformances occur with

Y 8 and Y 9 and worse underperformances occur with R0 (reference response

mechanism). The highest REMC equals 10.37 with Y 5 and R0 (reference

response mechanism).
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Table 5.3.10: MSEMC for t̂yHaj with HRG logistic regression

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.40E+03 2.15E+04 3.86E+04 2.30E+04 3.08E+04 1.12E+04 9.00E+03

Y2 1.42E+03 2.17E+04 3.95E+04 2.30E+04 3.03E+04 1.19E+04 8.98E+03

Y3 6.52E+02 4.15E+03 8.11E+03 6.62E+03 5.72E+03 3.27E+03 2.28E+03

Y4 1.33E+03 2.66E+04 5.33E+04 3.50E+04 4.27E+04 1.67E+04 9.76E+03

Y5 1.10E+03 1.70E+04 4.00E+04 2.59E+04 3.13E+04 1.11E+04 8.07E+03

Y6 2.73E+03 2.02E+04 4.05E+04 1.80E+04 5.16E+04 1.29E+04 2.15E+04

Y7 3.30E+04 9.17E+04 1.49E+05 1.01E+05 1.58E+05 1.80E+05 5.90E+04

Y8 1.97E+17 3.08E+20 3.95E+20 4.39E+20 2.04E+20 3.43E+19 1.79E+20

Y9 1.68E+17 2.83E+20 3.60E+20 4.24E+20 2.00E+20 3.27E+19 1.75E+20

Y10 1.54E+03 5.80E+03 7.11E+03 6.51E+04 9.56E+03 5.22E+03 4.12E+03

Table 5.3.11: Relative efficiency of t̂yHaj with logistic regression

A R0 R1 R2 R3 R4 R5 R6

Y1 2.30 1.01 0.99 0.90 0.81 1.16 1.14

Y2 2.47 1.02 0.98 0.91 0.80 1.14 1.13

Y3 1.33 0.88 0.95 0.99 1.07 0.92 1.09

Y4 3.57 1.04 1.02 0.88 0.83 1.14 1.27

Y5 4.57 1.08 1.03 0.89 0.83 1.18 1.14

Y6 1.12 0.64 0.94 0.91 2.00 1.00 0.99

Y7 1.89 0.74 0.99 1.07 1.51 1.16 2.81

Y8 0.03 1.27 0.56 1.03 0.88 0.49 0.97

Y9 0.03 1.30 0.53 1.05 0.87 0.49 0.97

Y10 1.30 1.14 1.83 1.17 1.01 0.82 1.90

Table 5.3.12: Relative efficiency of t̂yHaj with HRG after unpruned CART

Variable R0 R1 R2 R3 R4 R5 R6

Y1 7.14 2.82 1.97 2.28 2.66 2.13 2.41

Y2 7.38 2.83 1.90 2.27 2.67 2.04 2.46

Y3 3.24 2.69 2.03 2.03 2.21 2.27 3.74

Y4 10.37 3.48 2.19 2.35 2.75 2.13 3.01

Y5 9.53 4.42 2.40 2.59 3.26 2.65 2.35

Y6 3.12 1.64 1.77 1.56 0.59 1.49 1.15

Y7 2.21 2.46 2.72 1.27 1.37 0.72 2.19

Y8 0.08 0.10 0.67 2.09 2.10 1.97 0.71

Y9 0.05 0.03 0.63 2.12 1.89 2.04 0.70

Y10 1.53 1.43 1.61 0.17 0.91 1.12 1.86
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5.4 Discussion

In this chapter, we conducted a comprehensive simulation study, aiming at a global

ranking of different machine learning methods in totals ty estimation performance

through response probabilities estimation. In our simulation set-up with a cen-

sus context, the best method in terms of MSE is the logistic regression associated

with Homogeneous Response Groups creation. This is true both for the expansion

estimator and for the Hajek estimator. One drawback of this method is that it

does’nt handle missing data among regressors. Unpruned CART associated with

Homogeneous Response Groups creation appear among the methods with good

performance and that could handle missing values among regressors, particularly

with the expansion estimator. Note that those two first methods turn out to be

very robust against changes in lower bound truncation of estimated probabilities.

Bagging Ctree (which also could handle missing values among regressors) out-

performs Unpruned CART associated to Homogeneous Response Groups creation

with the Hajek estimator. However, it seems to require a higher level of truncation

than the usual 0.02 value.

In further researches, we would like to study deeper our proposed iterated

version of multivariate Ctree whose performances are quite good. For instance,

which variables of interest pattern makes the Iterated MultiVariate CTrees work

or fail ? Furthermore, this method could maybe prove useful in a context of

imputation. Another interesting field would be evaluating the performance of

the different machine learning methods with missing data among the regressors.

We could also enlarge the set of model aggregation with stacking for instance

(Wolpert 1992, Breiman 1996, Nocairi et al. 2016). And lastly, evaluating the

methods with different complex sampling designs could bring useful information.
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5.6 Appendix

5.6.1 Distributions of the generated response probabilities

Distributions on theK×N = 1000×1500 units for the seven response mechanisms
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5.6.2 Plots between response probabilities (p0 to p6)
and variables of interest (Y 1 to Y 10)
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Figure 5.6.1: Scatter plots of p0 and variables of interest
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Figure 5.6.2: Scatter plots of p1 and variables of interest
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Figure 5.6.3: Scatter plots of p2 and variables of interest
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Figure 5.6.4: Scatter plots of p3 and variables of interest
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Figure 5.6.5: Scatter plots of p4 and variables of interest
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Figure 5.6.6: Scatter plots of p5 and variables of interest
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Figure 5.6.7: Scatter plots of p6 and variables of interest
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5.6.3 Impact of estimated probabilities’ truncation

In order to avoid too small values for p̂i, the common practice is to implement

truncation with a lower bound t for p̂i’s. A usually implemented lower bound is

t = 0.02. We want to check how much the choice of a different value in t could

change the final performance in terms of MSE for t̂y built on different machine

learning methods. Let us denote TMSE(e,m,t) an MSE table computed for:

- e the estimator type of ty’s, e ∈ {t̂yExp, t̂yHaj},

- m the machine learning method used to estimate response probabilities,

- t the lower bound used for truncation.

Note that the model m can either be a machine learning used alone to esti-

mate probabilities or a machine learning method associated to the Homogeneous

Response Group creation (see section 5.2.1).

In our simulation study (see section 5.3), for each combination e×m×t, we have

70 indicators of MSE for t̂y (10 variables of interest × 7 response mechanisms) -

see for instance table 5.6.1. Thus we need a global indicator to sum up the overall

modification of the 70 MSE’s induced by a change in t. The Frobenius norm

∥TMSE(e,m,t)∥F =
√
Tr(TMSE⊤

(e,m,t)TMSE(e,m,t)) of the TMSE(e,m,t)’s could

provide this global measure of performance, and help evaluating the impact of a

change in t. Indeed, the lower the MSE’s are, the better the combination e×m×t

is. Thus, given e and m, the best value for t is the one that provides the lowest

∥TMSE(e,m,t)∥F .

However, for an easier analysis of the results, we rather compute the following

normalized indicator (still based on the computation of a Frobenius norm):

NF(e,m,t) = ∥TMSE(e,m,t)/TMSE(e,m,t=0.02)∥F/8.3666

where TMSE(e,m,t)/TMSE(e,m,t=0.02) is a term by term division of TMSE(e,m,t)

by TMSE(e,m,t=0.02). The reference value for t is 0.02. The denominator 8.3666 is

the Frobenius norm of a 10 × 7 matrix filled with 1′s: it is the NF value in case

of TMSE’s global stability when t=0.02 is replaced by an other value of t.
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For instance in table 5.6.2, we can examine in detail the 70 ratios of

TMSE(t̂yHaj , HRG after logistic regression, 0.06)/TMSE(t̂yHaj , HRG after logistic regression, 0.02)

In this example, a change in truncation bound from t=0.02 to 0.06 has very

little impacts (only 3 cases in bold font where the ratios are slightly different from

1). The corresponding indicator NF(t̂yHaj ,HRG after logistic regression, 0.06) is 1 (see table

5.6.4 ).

Table 5.6.2: Ratios of TMSE with truncation 0.06 / TMSE with truncation 0.02

TMSE(t̂yHaj , HRG after logistic regression, 0.06)/TMSE(t̂yHaj , HRG after logistic regression, 0.02)

Variable R0 R1 R2 R3 R4 R5 R6

Y1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y3 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Y4 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y5 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Y6 1.00 1.00 1.00 1.00 0.99 1.00 1.00
Y7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Y9 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Y10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Let us focus on two of the best methods in terms of MSE’s (see section 5.3.3).

NF indicators table 5.6.3 for t̂yExp and table 5.6.4 for t̂yHaj, show that HRG

after logistic regression is robust in terms of MSE: we can see that NF indicators

are always equal to 1, with m = HRG after logistic regression. HRG after

Unpruned CART is quite robust but exhibits better global performance in terms

of MSE with t = 0.06 both for t̂yExp and for t̂yHaj.
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Table 5.6.3: NF indicator for t̂yExp with different lower bounds truncation of p̂i

Lower Lower Lower Lower
bound bound bound bound

Method 0.06 0.08 0.10 0.14

Logistic regression 0.99 0.98 0.97 0.97

Logistic regression Bagging 1.00 1.00 1.00 1.00

Logistic Random Forest 1.00 1.00 1.00 1.00

Quadratic nonparametric
discriminant analysis 1.00 1.00 1.00 1.00

Default pruned CART 1.00 1.00 1.00 1.00

Unpruned CART 1.00 1.01 1.05 1.05

CART Bagging 1.00 1.00 1.00 1.00

CART Random Forest 1.00 1.00 1.00 1.00

CART Boosting 1.02 1.11 1.27 1.27

CART Gradient Boosting 1.00 1.00 1.00 1.00

Ctree 1.00 1.00 1.00 1.00

Ctree Bagging 0.80 0.78 0.76 0.76

Ctree Random Forest 0.93 0.92 0.91 0.91

MultiVariate CTrees 1.00 1.00 1.00 1.00

Radial Kernel SVM 1.00 1.00 1.00 1.00

HRG after Logistic regression 1.00 1.00 1.00 1.00

HRG after Logistic regression Bagging 1.00 1.00 1.00 1.00

HRG after Logistic Random forest 1.00 1.00 1.00 1.00

HRG after Quadratic nonparametric
HRG after discriminant analysis 1.04 1.09 1.16 1.16

HRG after Default pruned CART 1.00 1.00 1.00 1.00

HRG after Unpruned CART 0.94 0.96 1.00 1.00

HRG after CART Bagging 1.00 1.00 1.00 1.00

HRG after CART Random Forest 1.00 1.00 1.00 1.00

HRG after CART Boosting 1.02 1.11 1.27 1.27

HRG after CART Gradient Boosting 1.01 1.08 1.17 1.17

HRG after Ctree 1.00 1.00 1.00 1.00

HRG after Ctree Bagging 1.00 1.00 1.00 1.00

HRG after Ctree random Forest 1.00 1.00 1.00 1.00

HRG after MultiVariate CTrees 1.00 1.00 1.00 1.00

HRG after SVM 1.00 1.00 1.00 1.00
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Table 5.6.4: NF indicator for t̂yHaj with different lower bounds truncation of p̂i

Lower Lower Lower Lower
bound bound bound bound

Method 0.06 0.08 0.10 0.14

Logistic regression 0.98 0.97 0.96 0.97

Logistic regression Bagging 1.00 1.00 1.00 1.00

Logistic Random Forest 1.00 1.00 1.00 1.00

Quadratic nonparametric
discriminant analysis 1.00 1.00 1.00 1.00

Default pruned CART 1.00 1.00 1.00 1.00

Unpruned CART 1.00 1.01 1.03 1.01

CART Bagging 1.00 1.00 1.00 1.00

CART Random Forest 1.00 1.00 1.00 1.00

CART Boosting 1.00 1.00 1.00 1.00

CART Gradient Boosting 1.00 1.00 1.00 1.00

Ctree 1.00 1.00 1.00 1.00

Ctree Bagging 0.79 0.78 0.77 0.78

Ctree Random Forest 0.95 0.95 0.94 0.95

MultiVariate CTrees 1.00 1.00 1.01 1.00

Radial Kernel SVM 1.00 1.00 1.00 1.00

HRG after Logistic regression 1.00 1.00 1.00 1.00

HRG after Logistic regression Bagging 1.00 1.00 1.00 1.00

HRG after Logistic Random forest 1.00 1.00 1.00 1.00

HRG after Quadratic nonparametric
HRG after discriminant analysis 0.85 0.83 0.84 0.83

HRG after Default pruned CART 1.00 1.00 1.00 1.00

HRG after Unpruned CART 0.95 0.97 0.99 0.97

HRG after CART Bagging 1.00 1.00 1.00 1.00

HRG after CART Random Forest 1.00 1.00 1.00 1.00

HRG after CART Boosting 1.39 5.03 11.21 5.03

HRG after CART Gradient Boosting 0.74 0.69 0.67 0.69

HRG after Ctree 1.00 1.00 1.00 1.00

HRG after Ctree Bagging 1.00 1.00 1.00 1.00

HRG after Ctree random Forest 1.00 1.00 1.00 1.00

HRG after MultiVariate CTrees 1.00 1.00 1.00 1.00

HRG after SVM 1.00 1.00 1.01 1.00
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Conclusion and prospect

In chapter 3, we dealt with item nonresponse through imputation. In this chap-

ter, we proposed a modification of the Shao-Wang joint procedure, where initial

imputed values obtained using this method, are modified so as to satisfy calibra-

tion constraints, which corresponds to MIVQUE estimators of model parameters.

When the underlying distribution of the variables being imputed is symmetric

or exhibits a low degree of asymmetry, our proposed procedure is significantly

more efficient than the Shao-Wang procedure in terms of mean squared error. To

go further, we could investigate the preservation of relationships of more than

two items. Futhermore, in the presence of imputed values, variance estimators

computed by treating the imputed as observed values are prone to underestimate

the true variance of point estimators. That is why, considering the complexity

of our proposed procedure, we could develop variance estimation with bootstrap

techniques.

In chapter 4, we proposed imputation methods adapted to a study variable

containing a large number of zeros. Motivated by a mixture regression model, we

proposed two imputation procedures for such data and studied their properties

in terms of bias and efficiency. We showed that these procedures preserve the

distribution function if the imputation model is well specified. The results of

a simulation study illustrate the good performance of the proposed methods in

terms of bias and mean square error, as compared to alternative methods proposed
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by Haziza et al. (2014). A motivating sequel for this research subject could be

the construction of an imputation procedure preserving quantiles.

In chapter 5, we estimated response probabilities in the context of weighting

for unit nonresponse. We conducted a comprehensive simulation study, aiming at

a global ranking of different machine learning methods in totals estimation per-

formance through response probabilities estimation. The best method in terms

of mean squared error was the logistic regression associated with Homogeneous

Response Groups creation, both for the expansion estimator and for the Hajek

estimator. Unpruned CART associated with Homogeneous Response Groups cre-

ation appear among the methods with good performance and that could handle

missing values among regressors, particularly with the expansion estimator. Those

two methods turned out to be very robust against changes in lower bound trun-

cation of estimated probabilities. To go further, we could also enlarge the set of

machine learning to compare with stacking for instance.

The central topic of this PhD thesis was item and unit nonresponse handling in

survey sampling theory. In all this work, either with Imputation Model approach

or with Nonresponse Model approach, we had to rely on auxiliary information.

Indeed, this one has been used in imputation procedures to deal with item nonre-

sponse, aiming at the preservation of some finite population preservation: correla-

tion coefficient among two variables of interest to be imputed (chapter 3) and the

finite population distribution function in case of zero inflated variable of interest

(chapter 4). Auxiliary information also intervenes in unit nonresponse handling

through response probabilities estimation (chapter 5). However, in the previous

mentioned chapters, we did not deal with nonresponse in auxiliary variables. This

could be an interesting field for further researches - using MIVQUE (chapter 3),

CART or Conditional inference trees (chapter 5).
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