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ABSTRACT

Causality is a fundamental concept in science and philosophy, and with the increa-
sing complexity of data collection and structure, statistics plays a pivotal role in inferring
causes and effects. This thesis delves into advanced causal inference methods, with
a focus on policy learning, instrumental variables (IV), and difference-in-differences
(DiD) approaches.

The IV and DiD methods are critical tools widely used by researchers in fields like
epidemiology, medicine, biostatistics, econometrics, and quantitative social sciences.
However, these methods often face challenges due to restrictive assumptions, such as
the IV’s requirement to have no direct effect on the outcome other than through the
treatment, and the parallel trends assumption in DiD, which may be violated in the
presence of unmeasured confounding.

In that context, this thesis introduces an innovative instrumented DiD approach to
policy learning, which combines these two natural experiments to relax some of the
key assumptions of conventional IV and DiD methods. To the best of our knowledge,
the thesis presents the first comprehensive study of policy learning under the DiD
setting. The direct policy search approach is proposed to learn optimal policies, based
on the conditional average treatment effect estimators using instrumented DiD. Novel
identification results for optimal policies under unmeasured confounding are establi-
shed. Moreover, a range of estimators, including a Wald estimator, inverse probability
weighting estimators, and semiparametric efficient and multiply robust estimators,
are introduced. Theoretical guarantees for these multiply robust policy learning ap-
proaches are provided, including the cubic rate of convergence for parametric policies
and valid statistical inference with flexible machine learning algorithms for nuisance
parameter estimation. These methods are further extended to the panel data setup.

The majority of causal inference methods in the literature heavily depend on three
standard causal assumptions to identify causal effects and optimal policies. While there
has been progress in relaxing the consistency and unconfoundedness assumptions,
addressing the violations of the positivity assumption has seen limited advancements.

In that context, this thesis presents a novel policy learning framework that does not
rely on the positivity assumption, instead focusing on dynamic and stochastic policies
that are practical for real-world applications. Incremental propensity score policies,
which adjust propensity scores by individualized parameters, are proposed, requiring
only the consistency and unconfoundedness assumptions. This approach enhances
the concept of incremental intervention effects, adapting it to individualized treatment
policy contexts, and employs semiparametric theory to develop efficient influence
functions and debiased machine learning estimators. Methods to optimize policy by
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maximizing the value function under specific constraints are also introduced.
Additionally, the optimal individualized treatment regime (ITR) learned from a

source population may not generalize well to a target population due to covariate
shifts. A transfer learning framework is proposed for ITR estimation in heterogeneous
populations with right-censored survival data, which is common in clinical studies
and motivated by medical applications. This framework characterizes the efficient
influence function and proposes a doubly robust estimator for the targeted value
function, accommodating a broad class of survival distribution functionals. For a
pre-specified class of ITRs, a cubic rate of convergence for the estimated parameter
indexing the optimal ITR is established. The use of cross-fitting procedures ensures
the consistency and asymptotic normality of the proposed optimal value estimator,
even with flexible machine learning methods for nuisance parameter estimation.



Résumé en français

La causalité est un concept fondamental en science et en philosophie. Dans un
contexte où la collecte massive de données de grande complexité s’impose dans tous
les domaines, les statistiques jouent un rôle crucial dans l’inférence des causes et des
effets. Cette thèse explore des méthodes avancées d’inférence causale. Elle met l’accent
sur l’apprentissage de politiques d’action (“politiques” dans la suite), les variables
instrumentales (IV), et les approches de différences en différences (DiD).

Lesméthodes IV etDiD sont utilisées par les chercheurs en épidémiologie,médecine,
biostatistique, économétrie et sciences sociales quantitatives. Elles reposent sur des
hypothèses restrictives, telles que, d’une part, l’exigence que l’IV n’ait aucun effet direct
sur le résultat autre qu’à travers le traitement et, d’autre part, l’hypothèse de tendances
parallèles en DiD, qui peut être violée en présence de confusion non mesurée.

Dans ce contexte, cette thèse propose une approche innovante de DiD instrumentali-
sée pour l’apprentissage de politiques. Cette combinaison permet de relâcher certaines
des hypothèses clés des méthodes IV et DiD conventionnelles. Des résultats d’identifi-
cation novateurs pour les politiques optimales en présence de confusion non mesurée
sont établis, et une gamme d’estimateurs (de Wald ; par pondération inverse des pro-
babilités ; semi-paramétriques efficaces et multiplement robustes) sont introduits. Des
garanties théoriques multiplement robustes sont fournies, incluant le taux cubique de
convergence pour les politiques paramétriques et une inférence statistique valide avec
des algorithmes de machine learning (ML) flexibles pour l’estimation des paramètres
de nuisance. Ces méthodes sont en outre étendues à la configuration de données de
panel.

La majorité des méthodes d’inférence causale dans la littérature dépendent forte-
ment de trois hypothèses causales standard pour identifier les effets causaux et les
politiques optimales. Bien que des progrès aient été réalisés pour relâcher les hypo-
thèses de consistance et de non-confusion, les avancées pour traiter les violations de
l’hypothèse de positivité sont restées limitées.

Dans ce contexte, cette thèse présente un cadre novateur d’apprentissage des poli-
tiques qui ne repose pas sur l’hypothèse de positivité, se concentrant plutôt sur des
politiques dynamiques et stochastiques pratiques pour des applications réelles. Des
politiques de score de propension incrémentale, ajustant les scores de propension par
des paramètres individualisés, sont proposées. Leur analyse ne met en jeu que les
hypothèses de consistance et de non-confusion. Ce cadre améliore le concept d’effets
d’intervention incrémentale, l’adaptant aux contextes de politique de traitement in-
dividualisée, et utilise la théorie semi-paramétrique pour développer des fonctions
d’influence efficaces et des estimateurs ML dédiés. Des méthodes pour optimiser les
politiques en maximisant la fonction de valeur sous des contraintes spécifiques sont
également introduites.

De plus, le régime de traitement individualisé optimal (ITR) appris d’une popu-
lation source peut ne pas se généraliser bien à une population cible en raison des
décalages de covariables. Un cadre d’apprentissage par transfert est proposé pour
l’estimation de l’ITR dans des populations hétérogènes avec des données de survie



censurées à droite, que l’on rencontre fréquemment dans les études cliniques. Un
estimateur doublement robuste pour la fonction de valeur ciblée est proposé, qui ac-
commode une large classe de fonctionnelles de distributions de survie. Pour une classe
pré-spécifiée d’ITRs, un taux cubique de convergence pour le paramètre estimé in-
dexant l’ITR optimal est établi. L’utilisation de procédures de cross-fitting (ajustement
croisé) assure la consistance et la normalité asymptotique de l’estimateur de valeur
optimal proposé, y compris lorsque l’on a recours à des méthodes ML flexibles pour
estimer des paramètres de nuisance.
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CHAPTER 1

MODICUM OF CAUSAL INFERENCE AND
CONTRIBUTIONS

As human beings, we intuitively grasp fundamental concepts of causal inference.
We understand what a causal effect is, distinguish between association and causation,
and use this knowledge to make decisions in our daily lives. These concepts are so
ingrained that we often apply them unconsciously.

Aristotle stated in the Posterior Analytics, "We think we have knowledge of a thing
only when we have grasped its cause." Later philosophers, such as Hume and Mill,
also laid foundational work in the study of causality.

This thesis, however, is not rooted in philosophy but focuses on the formal mathe-
matical language and statistical tools used in scientific studies and data analysis. Causal
inference, in a formal sense, involves the assumptions, study designs, and estimation
strategies that enable researchers to draw causal conclusions from data [Pearl, 2009,
Imbens and Rubin, 2015].

The literature on causal inference suggests we distinguish between three types of
questions:
Associational: For example, "How many people take paracetamol when they have a

headache in France?"
Interventional (effects of causes): For instance, "If I have a headache, will taking

paracetamol help?"
Counterfactual (causes of effects): Such as, "My headache has gone away. Is it be-

cause I took paracetamol or because I got enough rest?"
Classical statistics and modern machine learning algorithms primarily address the

first type of question, focusing on associations and predictions. The recent advance-
ments in machine learning and artificial intelligence have elevated the sophistication
of associational inference.

However, association does not imply causation. To address the latter two questions,
randomized controlled trials (RCTs) are the gold standard in statistical causal inference.
Fisher’s seminal 1935 book, The Design of Experiments, underscored the importance of
randomization in experiments.
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Even when RCTs are not feasible for ethical or practical reasons, the quality of
observational studies is often evaluated based on how closely they approximate an RCT
[Hernan and Robins, 2020]. Given the proven capability of many observational studies
to infer causation and the increasing availability of big data (primarily observational),
the study of causal effects using observational data and statistical methods is invaluable
[Rosenbaum, 2002, Small, 2024].

In presenting our studies, we must address two key questions:
— What mathematical language or model should we use to study causality?
— Can we use observational studies to learn causal relationships? Specifically, what

causal parameters can we identify and interpret?
The dominant perspective on causal inference in statistics is grounded in counterfac-

tual states. This approach considers the potential outcomes that could manifest under
different treatment conditions. Causal effects are defined as comparisons between
these potential outcomes. For instance, the causal effect of a drug on systolic blood
pressure one month after starting the drug (versus no exposure) is the comparison
of systolic blood pressure measured under drug exposure with that measured with-
out drug exposure. The challenge lies in the fact that we cannot observe both states
simultaneously for the same individual [Gelman et al., 2021].

Another perspective on causal modeling involves a more fundamental structure:
a causal structure that includes a probability model with additional information. Re-
searchers refer to this as structure learning or causal discovery. To understand causal
structures from observational data, we must grasp how causal and statistical models
relate [Peters et al., 2017]. Reichenbach’s common cause principle states that if two
variables, X and Y , are statistically dependent, there exists a third variable, Z, that
causally influences both and renders X and Y independent when conditioned on Z.

The rest of this chapter describes the two major mathematical languages designed
to answer the causal questions.

1.1 Potential Outcomes

To introduce the fundamental concepts, we begin with the simplest setup where
we observe the data (X,A, Y ). Let A ∈ {0, 1} denote the treatment assignment, X the
pretreatment covariates, Y (0) and Y (1) the potential outcomes, and Y the observed
outcome. The fundamental problem of causal inference is that Y (1) and Y (0) can never
be observed at the same time, so the individual treatment effect Y (1)− Y (0) is never
known.

In many cases, the quantity of interest (causal estimand) is the average treatment
effect (ATE),

E[Y (1)− Y (0)],

and its variants, such as the average treatment effect on the treated, or the conditional
average treatment effect,

E[Y (1)− Y (0) | X].

4



1.2. Graphical Models

To identify the ATE, three standard causal assumptions are required.
Assumption 1.1.1 (consistency). It holds that Y = Y (A).
Assumption 1.1.2 (positivity). It holds almost surely that 0 < P (A | X) < 1.
Assumption 1.1.3 (unconfoundedness). For both a ∈ {0, 1}, A ⊥ Y (a) | X .

Assumption 1.1.1 is also known as the stable unit treatment value assumption, which
requires there should be no multiple versions of the treatment and no interference
between units. Assumption 1.1.2 says that each unit has a positive probability of
receiving either treatment level. Assumption 1.1.3 states that there are no unmeasured
confounders so that treatment assignment is as good as random conditional on the
covariates X .

Under Assumptions 1.1.1 - 1.1.3, the ATE is identified by three common methods:
Outcome regression

E[Y (1)− Y (0)] = E [µ(1, X)− µ(0, X)] ,

where µ(A,X) = E [Y | A,X] almost surely.
Inverse probability weighting

E[Y (1)− Y (0)] = E

[
AY

e(X) −
(1− A)Y
1− e(X)

]
,

where e(X) = P (A = 1 | X) almost surely.
Double robustness

E[Y (1)− Y (0)] = E

[
µ(1, X)− µ(0, X) + A

Y − µ(1, X)
e(X) − (1− A)Y − µ(0, X)

1− e(X)

]
.

The effectiveness of the outcome regression and inverse probability weighting
methods hinges on the correct specification of the outcome and propensity score
models respectively, while the doubly robust method combines both models and is still
consistent even if one of the two models is misspecified. The three methods represent
the main approaches to identifying causal estimands, and serves as the foundation of
the advanced methods for more complex data structures in the subsequent parts.

1.2 Graphical Models
The formal graphical model was initially developed to describe associative relation-

ship rather than causal relationship. However, humans naturally interpret causality
using graphs, where an arrow from X to Y signifies that X causes Y . Before delving
into causal interpretations, it is essential to briefly review how conditional dependence
is represented in a graph, specifically through a Bayesian network.

Moreover, even if we are not directly interested in causal learning or discovery tasks,
graphical models are still highly valuable for visually representing causal relationships
in a straightforward manner. Additionally, conditional independence relationships can
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be easily inferred from causal DAGs. With minimal assumptions, it is also possible to
link graphs and counterfactuals using single-world intervention graphs [Richardson
and Robins, 2013].

LetP denote a joint distribution over some set of randomvariablesX = (X1, . . . , Xp).
The essence of the Bayesian network representation lies in a directed acyclic graph
(DAG) G, where the nodes represent the random variables in X . This graph G can
be interpreted in two distinct but equivalent ways. Firstly, G serves as the framework
for factorizing the joint distribution. Secondly, it encapsulates a set of conditional
independence assumptions.

A Bayesian network is a pair (G, P ) such that P factorizes over G:

P (X1, . . . , Xp) =
p∏

i=1
P (Xi | PaG(Xi)),

where PaG(Xi) denote the parents of node Xi in graph G.
Next we consider the conditional independence assumptions. Let I(P ) denote the

set of conditional independence relationships of the form X ⊥ Y | Z in P , where X, Y
and Z can be multivariate. Let Il(G) denote the local independence relationships in G:
Il(G) = {X ⊥ non-descendants of X | PaG(X)}. Then P factorizes over G if and only
if Il(G) ⊆ I(P ) [Peters et al., 2017].

The equivalence can be understood through the concepts of an active path and an
active vertex on a path:
— X → Z → Y is called a chain. It is active if and only if Z is not included.
— X ← Z → Y is called a fork (common cause). It is active if and only if Z is not

included.
— X → Z ← Y is called a collider (common effect). It is active if and only if Z is

included.
Intuitively, a path is considered active if it transmits information or indicates

dependence. Two variables, X and Y , might be connected by numerous paths
within a graph G, where these paths can be all active, some active, or none ac-
tive. The variables X and Y are said to be d-separated by a set of variables Z if
every path that connects X and Y is blocked by at least one variable in Z. Define
I(G) = {X ⊥ Y | Z : X and Y is d-separated by Z}. Whenever P factorizes over G,
we have I(G) ⊆ I(P ). But note that the converse is not always true.

A causal Bayesian network aims to represent stable and autonomous physical mech-
anisms, enabling us to predict the effects of interventions that disrupt the natural course
of events. This approach is more informative than purely probabilistic models because
it incorporates causal knowledge, allowing us to answer more complex questions about
causality [Peters et al., 2017].

1.3 Policy Learning
In previous sections, we have concentrated on methods for estimating causal effects

in various statistical contexts. However, in many application areas, the primary goal of
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causal analysis is not just to estimate treatment effects, but to inform decision-making.
We aim to understand treatment effects so we can effectively prescribe treatments and
allocate limited resources.

The task of learning optimal treatment assignment policies is closely related to—but
distinct from—the task of estimating treatment heterogeneity. On the one hand, policy
learning might seem simpler: we only need to determine whether to assign individuals
to treatment or control groups, without requiring precise estimates of treatment effects.
On the other hand, policy learning involves additional considerations that are not
present when merely estimating treatment effects. Any policy we implement must be
straightforward enough to be practically deployable, avoid discrimination based on
protected characteristics, and not rely on manipulable features. We will discuss how to
learn treatment assignment policies by directly optimizing a relevant welfare criterion.

A treatment assignment policy d is a mapping

d : X → {0, 1},

such that individuals with covariates x get treated if and only if d(x) = 1. Let D denote
a pre-specified class of policies of interest, where each policy d ∈ D induces the value
function defined by

V (d) = E[Y (d)] = E[Y (1)d(X) + Y (0)(1− d(X))],

where Y (d) is the potential outcome under the policy d. The optimal policy can be
defined as

d = arg max
d∈D

V (d).

1.4 Contributions
Subsequently, this manuscript is divided into five parts. Part 2 combines two widely

used natural experiments, Instrumental Variables (IV) and Difference-in-Differences
(DiD), to learn optimal treatment assignment policies. Part 3 introduces incremental
propensity score policies to handle positivity violations. Part 4 explores combining
randomized trials and observational data to learn optimal treatment regimes that
generalize well to a target population. All additional results and proofs are provided
in Part 5 (Supplementary Material).

The contributions of each part, which are summarized below, have led to three
articles:
— A Semiparametric Instrumented Difference-in-Differences Approach to Policy

Learning, currently undergoing a major revision at Biometrika,
— Positivity-free Policy Learning with Observational Data, published in Proceedings

of The 27th International Conference on Artificial Intelligence and Statistics, PMLR
238:1918-1926, 2024, and selected as an oral presentation.

— Efficient and robust transfer learning of optimal individualized treatment regimes
with right-censored survival data, rejected and resubmitted to Journal of Machine
Learning Research.

7



MODICUM OF CAUSAL INFERENCE AND CONTRIBUTIONS

Part 2 The instrumental variable (IV) and difference-in-differences (DiD) methods
are both important tools widely used by empirical researchers in epidemiology,
medicine, biostatistics, econometrics and quantitative social sciences. However,
concerns often arise regarding the restrictive assumptions, for instance, requiring
that the IV cannot have a direct causal effect on the outcome other than through
the treatment, and the parallel trends assumption, which may be violated in the
presence of unmeasured confounding.
Policy learning is pivotal across various domains, with the objective of learning the
optimal treatment assignment policy. In this work, we combine the two natural
experiments and propose an instrumented DiD approach to policy learning,
relaxing some key assumptions of the conventional IV and DiD methods. To our
knowledge, this is the first work to systematically study policy learning under
the DiD setting.

— First, we propose the direct policy search approach to learn optimal poli-
cies, based on the conditional average treatment effect estimators using
instrumented DiD.

— Second, we establish novel identification results of optimal policies for the
instrumented DiD design subject to unmeasured confounding, without nec-
essarily identifying the value function. A Wald estimator, novel inverse
probability weighting (IPW) estimators, and a class of semiparametric effi-
cient and multiply robust estimators are proposed.

— Third, we prove theoretical guarantees for the proposed multiply robust
policy learning approaches. Specifically, n−1/3 rate of convergence is es-
tablished for the Euclidean parameter indexing parametric policies. And
valid statistical inference results are achieved even when relying on flexible
machine learning algorithms for nuisance parameters estimation.

— Fourth, we extend our proposed methods to the panel data setup.

Part 3 Most causal inference methods in the literature heavily rely on three standard
causal assumptions 1.1.1 - 1.1.3 to identify causal effects and optimal policies.
While there has been significant progress in relaxing the consistency and uncon-
foundedness assumptions, advancements addressing violations of the positivity
assumption remain limited.
This work introduces a novel policy learning framework that does not depend on
the positivity assumption, focusing instead on dynamic and stochastic policies
that are practical for many real-world applications. We propose incremental
propensity score policies that adjust propensity scores by an individualized
parameter, requiring only the consistency and unconfoundedness assumptions.
Our approach enhances the concept of incremental intervention effects, adapting
it to individualized treatment policy contexts. We employ semiparametric theory
to characterize the efficient influence function and propose debiased machine
learning estimators. Building on these efficient off-policy evaluation results, we
introduce methods to learn the optimal policy by maximizing the value function,
potentially under application-specific constraints.
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Part 4 The optimal individualized treatment regime (ITR) learned from a source
population, due to covariate shift, may not generalize well to the target population
that we aim to apply the ITR on. We propose a transfer learning framework,
where covariate information from the target population is available, for ITR
estimation with heterogeneous populations and right-censored survival data,
which is common in clinical studies and motivated by a medical application.
We characterize the efficient influence function (EIF) and propose a doubly
robust estimator of the targeted value function, which accommodates a broad
class of functionals of survival distributions. For a pre-specified class of ITRs, we
establish the cubic rate of convergence for the estimated parameter indexing the
optimal ITR. Based on the Neyman orthogonality of the EIF, we also propose a
cross-fitting procedure and show that the proposed optimal value estimator is
consistent and asymptotically normal with flexible machine learning methods
for nuisance parameter estimation.

1.5 Other Contributions
Beyond the aforementioned methodological contributions, some applied research

has also been conducted, resulting in the following studies:
Learning, Evaluating and Analysing An Individualized Treatment Rule This

project is driven by an application focused on early intervention in intensive care
units (ICU).
We present a statistical framework for the learning, evaluation, and analysis of
individualized decision rules, inspired by the application of early interventions
(e.g., lifesaving blood products) in the ICU, as demonstrated in our TraumaBase®
data analysis. Severe trauma remains a leading cause of mortality. When faced
with hemorrhage, the primary goal in managing ICU patients with severe trauma
is to swiftly and effectively control bleeding, thereby improving survival rates.
We propose a super learning method that recovers an optimal treatment assign-
ment rule from a set of possible options for each patient based on their individual
characteristics, even in the presence of missing covariate information. We discuss
the causal interpretation and underlying assumptions of our approach. To facili-
tate and inform medical practice for clinicians using flexible machine learning
algorithms, we evaluate the learned rule using a novel algorithm-agnostic vari-
able importance measure and introduce a new restricted score test for cases with
degenerate efficient influence functions.
The proposedmethods are validated through extensive simulations. Additionally,
we have developed an Rpackage, missSuperLearner, which implements the super
learning algorithm that handles missing data.

CRAN Task View: Causal Inference This review (https://cran.r-project.org/
view=CausalInference) aims to provide guidance on the R packages that are
relevant for causal inference tasks.
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TRADUCTION EN FRANÇAIS

En tant qu’êtres humains, nous comprenons intuitivement les concepts fondamen-
taux de l’inférence causale. Nous comprenons ce qu’est un effet causal, distinguons
entre association et causalité, et utilisons ces connaissances pour prendre des déci-
sions dans notre vie quotidienne. Ces concepts sont si ancrés que nous les appliquons
souvent de manière inconsciente.

Aristote a déclaré dans les Seconds Analytiques, "Nous pensons avoir connaissance
d’une chose seulement lorsque nous en avons saisi la cause." Des philosophes ultérieurs,
tels que Hume et Mill, ont également jeté les bases de l’étude de la causalité.

Cette thèse, cependant, n’est pas enracinée dans la philosophie mais se concentre
sur le langage mathématique formel et les outils statistiques utilisés dans les études
scientifiques et l’analyse de données. L’inférence causale, au sens formel, implique les
hypothèses, les conceptions d’études et les stratégies d’estimation qui permettent aux
chercheurs de tirer des conclusions causales à partir des données.

La littérature sur l’inférence causale suggère de distinguer trois types de questions :
Associatives : Par exemple, "Combien de personnes prennent du paracétamol lors-

qu’elles ont un mal de tête en France?"
Interventionnelles (effets des causes) : Par exemple, "Si j’ai un mal de tête, prendre

du paracétamol m’aidera-t-il ?"
Contrefactuelles (causes des effets) : Par exemple, "Monmal de tête a disparu. Est-ce

parce que j’ai pris du paracétamol ou parce que je me suis suffisamment reposé?"
Les statistiques classiques et les algorithmesmodernes d’apprentissage automatique

abordent principalement le premier type de question, se concentrant sur les associations
et les prédictions. Les récentes avancées en apprentissage automatique et en intelligence
artificielle ont élevé la sophistication de l’inférence associative.

Cependant, l’association n’implique pas la causalité. Pour aborder les deux dernières
questions, les essais contrôlés randomisés (ECR) sont la norme en matière d’inférence
causale statistique. Le livre séminal de Fisher de 1935, The Design of Experiments, a
souligné l’importance de la randomisation dans les expériences.

Même lorsque les ECR ne sont pas réalisables pour des raisons éthiques ou pra-
tiques, la qualité des études observationnelles est souvent évaluée en fonction de leur
proximité avec un ECR. Étant donné la capacité prouvée de nombreuses études ob-
servationnelles à inférer la causalité et la disponibilité croissante de jeux massifs de
données (principalement observationnelles), l’étude des effets causaux à l’aide de
données observationnelles et de méthodes statistiques est inestimable.

En présentant nos études, nous devons aborder deux questions clés :
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— Quel langage mathématique ou modèle devons-nous utiliser pour étudier la
causalité?

— Pouvons-nous utiliser des études observationnelles pour apprendre les relations
causales? Plus précisément, quels paramètres causaux pouvons-nous identifier
et interpréter?

La perspective dominante sur l’inférence causale en statistiques repose sur les
états contrefactuels. Cette approche considère les résultats potentiels qui pourraient se
manifester dans différentes conditions de traitement. Les effets causaux sont définis
comme des comparaisons entre ces résultats potentiels. Par exemple, l’effet causal d’un
médicament sur la pression artérielle systolique un mois après le début du traitement
(par rapport à aucune exposition) est la comparaison de la pression artérielle systo-
lique mesurée sous exposition au médicament avec celle mesurée sans exposition au
médicament. Le défi réside dans le fait que nous ne pouvons pas observer les deux
états simultanément pour un même individu.

Une autre perspective sur la modélisation causale implique une structure plus
fondamentale : une structure causale qui inclut un modèle probabiliste avec des in-
formations supplémentaires. Les chercheurs se réfèrent à cela comme apprentissage
de structure ou découverte causale. Pour comprendre les structures causales à partir
de données observationnelles, nous devons saisir comment les modèles causaux et
statistiques sont liés. Le principe de la cause commune de Reichenbach stipule que
si deux variables, X et Y , sont statistiquement dépendantes, il existe une troisième
variable, Z, qui influence causalement les deux et rend X et Y indépendants lorsqu’on
conditionne sur Z.

Contributions

Ce manuscrit est divisé en cinq parties. La Partie 2 combine deux expériences na-
turelles largement utilisées, les Variables Instrumentales (IV) et les Différences en
Différences (DiD), pour apprendre des politiques d’attribution de traitements opti-
males. La Partie 3 introduit des politiques de score de propension incrémentales pour
gérer les violations de positivité. La Partie 4 explore la combinaison d’essais randomisés
et de données observationnelles pour apprendre des régimes de traitement optimaux
qui se généralisent bien à une population cible. Tous les résultats supplémentaires et
les preuves sont fournis dans la Partie 5 (Matériel Supplémentaire).

Les contributions de chaque partie, résumées ci-dessous, ont conduit à trois articles :
— A Semiparametric Instrumented Difference-in-Differences Approach to Policy

Learning, actuellement en révision majeure chez Biometrika,
— Positivity-free Policy Learning with Observational Data, publié dans les Procee-

dings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR
238 :1918-1926, 2024, et sélectionné pour une présentation orale,

— Efficient and robust transfer learning of optimal individualized treatment regimes
with right-censored survival data, rejeté et resoumis au Journal of Machine Learning
Research.
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Partie 2 Les méthodes de variable instrumentale (IV) et de différences en différences
(DiD) sont toutes deux des outils importants largement utilisés par les chercheurs
empiriques en épidémiologie, médecine, biostatistique, économétrie et sciences
sociales quantitatives. Cependant, des préoccupations surgissent souvent concer-
nant les hypothèses restrictives, par exemple, celle requérant que l’IV ne puisse
avoir d’effet causal direct sur le résultat autre que par le biais du traitement, et
l’hypothèse de tendances parallèles peut être violée en présence de confusion
non mesurée.
L’apprentissage de politiques est essentiel dans divers domaines, avec l’objectif
d’apprendre la politique d’attribution de traitements optimale. Dans ce travail,
nous combinons les deux expériences naturelles et proposons une approche
instrumentée DiD pour l’apprentissage de politiques, en assouplissant certaines
hypothèses clés des méthodes IV et DiD conventionnelles. À notre connaissance,
c’est la première étude systématique de l’apprentissage de politiques dans le
cadre DiD.

— Nous proposons d’abord une approche de recherche directe de politiques
pour apprendre des politiques optimales, fondée sur les estimateurs de
l’effet moyen conditionnel du traitement utilisant DiD instrumenté.

— Ensuite, nous établissons des résultats d’identification novateurs des poli-
tiques optimales pour la conception instrumentée DiD sous confusion non
mesurée, sans nécessairement identifier la fonction de valeur. Un estimateur
de Wald, des estimateurs IPW (Inverse Probability Weighting) novateurs,
et une classe d’estimateurs semi-paramétriques efficaces et multiplement
robustes sont proposés.

— Troisièmement, nous prouvons des garanties théoriques pour les approches
d’apprentissage de politiques multiplement robustes proposées. Plus pré-
cisément, un taux de convergence de n−1/3 est établi pour le paramètre
euclidien indexant les politiques paramétriques. Des résultats d’inférence
statistique valides sont aussi obtenus, qui sont valables y compris lorsque
des algorithmes d’apprentissage automatique flexibles sont mis en œuvre
pour l’estimation des paramètres de nuisance.

— Enfin, nous étendons nos méthodes proposées à la configuration de données
de panel.

Partie 3 La plupart des méthodes d’inférence causale dans la littérature reposent
fortement sur trois hypothèses causales standard pour identifier les effets causaux
et les politiques optimales. Bien que des progrès significatifs aient été réalisés pour
assouplir les hypothèses de consistance et d’absence de confusion, les avancées
concernant les violations de l’hypothèse de positivité restent limitées.
Ce travail introduit un nouveau cadre d’apprentissage de politiques qui ne dé-
pend pas de l’hypothèse de positivité, en se concentrant plutôt sur des politiques
dynamiques et stochastiques qui sont pratiques pour de nombreuses applications
réelles. Nous proposons des politiques de score de propension incrémentales qui
ajustent les scores de propension par un paramètre individualisé, ne nécessitant
que les hypothèses de consistance et d’absence de confusion.
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Notre approche améliore le concept des effets d’intervention incrémentale, en
l’adaptant au contexte de politique de traitement individualisée. Nous utilisons
la théorie semi-paramétrique pour caractériser la fonction d’influence efficace
et proposons des estimateurs d’apprentissage automatique débiaisés. En nous
appuyant sur ces résultats efficaces d’évaluation hors politique, nous introduisons
des méthodes pour apprendre la politique optimale en maximisant la fonction
de valeur, potentiellement sous des contraintes spécifiques à l’application.

Partie 4 Le régime de traitement individualisé optimal (ITR) appris à partir d’une
population source peut, en raison du changement de la loi des covariables, ne pas
bien se généraliser à une population cible à laquelle nous visons à appliquer l’ITR.
Nous proposons un cadre d’apprentissage par transfert, où les informations de
covariables de la population cible sont disponibles, pour l’estimation de l’ITR
avec des populations hétérogènes et des données de survie censurées à droite, ce
qui est courant dans les études cliniques et motivé par notre application médicale.
Nous caractérisons la fonction d’influence efficace (EIF) et proposons un estima-
teur doublement robuste de la fonction de valeur ciblée, qui accueille une large
classe de fonctionnels de distributions de survie. Pour une classe présélectionnée
d’ITR, nous établissons un taux cubique de convergence pour le paramètre estimé
indexant l’ITR optimal. Basé sur l’orthogonalité de Neyman de l’EIF, nous propo-
sons également une procédure de cross-fitting (apprentissage croisé) et montrons
que l’estimateur de valeur optimale proposé est cohérent et asymptotiquement
normal quand bien même des méthodes d’apprentissage automatique flexibles
sont mises en œuvre pour estimer des paramètres de nuisance.
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Part II

A SEMIPARAMETRIC
INSTRUMENTED

DIFFERENCE-IN-DIFFERENCES
APPROACH TO POLICY LEARNING

15





Recently, there has been a surge in methodological development for the difference-
in-differences (DiD) approach to evaluate causal effects. Standard methods in the
literature rely on the parallel trends assumption to identify the average treatment effect
on the treated. However, the parallel trends assumptionmay be violated in the presence
of unmeasured confounding, and the average treatment effect on the treatedmay not be
useful in learning a treatment assignment policy for the entire population. In this article,
we propose a general instrumented DiD approach for learning the optimal treatment
policy. Specifically, we establish identification results using a binary instrumental
variable (IV) when the parallel trends assumption fails to hold. Additionally, we
construct a Wald estimator, novel inverse probability weighting (IPW) estimators, and
a class of semiparametric efficient and multiply robust estimators, with theoretical
guarantees on consistency and asymptotic normality, even when relying on flexible
machine learning algorithms for nuisance parameters estimation. Furthermore, we
extend the instrumented DiD to the panel data setting. We evaluate our methods in
extensive simulations and a real data application. 1

1. co-authored with Yifan Cui (Zhejiang University), currently undergoing a major revision at
Biometrika.
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CHAPTER 2

INSTRUMENTAL VARIABLE AND
DIFFERENCE-IN-DIFFERENCES

2.1 Introduction

Data-driven individualized decision making has received increasing interests in
many fields, such as precision medicine [Luedtke and van der Laan, 2016b, Tsiatis et al.,
2019], econometrics and quantitative social sciences [Imai and van Dyk, 2004, Athey
and Wager, 2021], computer science and operations research [Shi et al., 2022, Kallus
et al., 2022]. The common goal is to learn optimal treatment assignment policies (also
known as regimes, rules or plans) which map individual characteristics to treatment
assignments so as to optimize some functional of the counterfactual outcome distri-
butions, leveraging observational data where causal effects can be identified under
various strategies and assumptions.

Popular existing methods in the statistical and machine learning literature include
model-based approaches such as Q-learning [Watkins and Dayan, 1992, Murphy, 2003,
Linn et al., 2017], A-learning [Robins et al., 2000, Shi et al., 2018], and direct model-free
policy search approaches [Zhang et al., 2012a, Zhao et al., 2012]. Recent advances
of policy learning have also considered a variety of data structures, optimization
objectives, criteria or constraints, such as survival and longitudinal data [Goldberg and
Kosorok, 2012, Ertefaie and Strawderman, 2018, Zhao et al., 2023], networks [Viviano,
2019, Sherman et al., 2020], distributional robustness [Mo et al., 2021, Sahoo et al.,
2022], budget, fairness, or interpretability constraints [Luedtke and van der Laan,
2016a, Fang et al., 2022], among others [Luedtke and Chambaz, 2020, Hadad et al.,
2021, Nie et al., 2021, Hu et al., 2022, Jin et al., 2023].

With few exceptions, most methods in prior work rely on the pivotal assumption
that there is no unmeasured confounding. This is a key threat to credible causal
inference in observational studies, and may lead to suboptimal policies, because this
assumption is impossible to verify or test in practice. An ad hocwork-around commonly
adopted by practitioners is to collect and appropriately adjust for a large number
of covariates, which still lacks theoretical guarantee and seems likely to be error-
prone. To address this limitation, there has been recent progress made in several
directions. Kallus and Zhou [2018] propose to minimize the worst-case regret of a
policy under a marginal sensitivity model for the unmeasured confounding. Zhang
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et al. [2021] utilize a randomization test to rank by a partial order and select treatment
rules within a given finite collection. While partial identification results provide certain
improvement, the performance of such a learned policymay still be suboptimal. Qi et al.
[2023] build on the semiparametric proximal causal inference framework introduced
by Cui et al. [2023b] to establish point identification results on different policy classes
and accordingly propose several classification-based approaches; but this framework
requires the analyst to correctly classify the measured covariates into three types of
proxies, and it may be difficult to estimate the confounding bridge functions.

Instrumental variable methods are widely used to handle unmeasured confounding
in observational studies or randomized trials with non-compliance. The core require-
ments for a pretreatment variable to be a valid IV are: (i) it is associated with the
treatment; (ii) it is independent of all unmeasured confounders; (iii) it does not have a
direct causal effect on the outcome other than through the treatment. Along with the
seminal work of Imbens and Angrist [1994], Angrist et al. [1996], extensive develop-
ment has been made in using the IV to estimate the local average treatment effect [Tan,
2006, Ogburn et al., 2015], defined as the average treatment effect for the complier
subgroup who would always comply with their treatment assignments. Since the
complier subgroup is unknown and may have systematically different characteristics
from the population, the population (conditional) average treatment effect is arguably
the causal parameter of primary interest in most studies [Hernán and Robins, 2006,
Aronow and Carnegie, 2013], especially for policy learning. More recently, Pu and
Zhang [2021] consider a partial identification approach to optimal treatment rule esti-
mation; andWang and Tchetgen Tchetgen [2018] formally establish point identification
of the population average treatment effect under alternative no-interaction assump-
tions, upon which Cui and Tchetgen Tchetgen [2021] propose various IV methods for
estimating optimal treatment regimes. It is notable that all of these IV methods in the
literature only consider the setting with a single time point, with the only exception of
Xu et al. [2023], where the authors propose an IV approach to off-policy evaluation in
confounded Markov decision processes with infinite horizons.

There has always been interest in exploiting the longitudinal structure common
in datasets such as electronic health records and medical claims in epidemiology and
biomedicine [Robins et al., 2000], as well as cross-sectional or panel data in program
evaluations, economic censuses, and surveys [Athey and Imbens, 2017]. DiD methods
have been an important tool widely used by empirical researchers [Card and Krueger,
1994]. The key identification assumption of DiD is that the trend in outcome of the
control group over time is informative about what the trend would have been for
the treatment group in the absence of the treatment. Specifically, under the standard
(conditional) parallel trends assumption, which states that the (conditional) expected
trends in the potential outcomes of the two groups in the absence of the treatment
are identical, the average treatment effect on the treated can be identified [Abadie,
2005, Sant’Anna and Zhao, 2020]; we refer interested readers to Lechner et al. [2011]
and Roth et al. [2023] for detailed reviews. However, concerns often arise that the
parallel trends assumption may be violated due to unmeasured confounding. Athey
and Imbens [2006] develop a new changes-in-changes model that relates outcomes
to an individual’s group, time, and unobservable characteristics; and various recent
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extensions for DiD include partial identification [Ye et al., 2020], sensitivity analysis
[Keele et al., 2019] and negative control [Sofer et al., 2016], among others [Dukes et al.,
2022, Park and Tchetgen, 2023]. Moreover, DiDmethods focus on the identification and
estimation of the average treatment effect on the treated, which limits its application in
policy learning since the treated cannot represent the population. To the best of our
knowledge, this is the first work to systematically study policy learning under the DiD
setting.

In this article, we combine the two natural experiments and propose an instru-
mented DiD approach to policy learning when the parallel trends assumption fails to
hold in the presence of unmeasured confounding. Specifically, we adapt and extend the
recent progress in Ye et al. [2022] and Vo et al. [2022], relaxing some key assumptions
of the conventional IV and DiD methods. We allow for the violation of the parallel
trends assumption by leveraging an IV which has no direct effect on the the trend in
outcome, and does not modify the average treatment effect. Notably, this exogenous
variable is not necessarily a valid instrument for the conventional treatment-outcome
association, since we allow it to have a direct effect on the outcome not just through
the treatment at each time point.

The contributions of this article are summarized as follows. First, we propose the
direct policy search approach to learn optimal treatment assignment policies, based
on the conditional average treatment effect estimators using instrumented DiD. This
approach essentially allows us to learn the optimal policy that maximizes the esti-
mated value within a restricted policy class. Second, we establish novel identification
results of optimal policies for the instrumented DiD design subject to unmeasured
confounding. The new results give rise to new inverse probability weighting estima-
tors of optimal policies without necessarily identifying the value function for a given
policy. Another interesting progress is also made towards identifying optimal policies
without necessarily using the subjects’ realized treatment values. In summary, we
construct a Wald estimator and novel inverse probability weighting estimators. A class
of semiparametric efficient and multiply robust estimators is also proposed, which
is consistent provided that a subset of several posited models indexing the observed
data distribution is correctly specified. Third, we prove theoretical guarantees for the
proposed multiply robust policy learning approaches. Specifically, we consider both
parametric models and flexible data-adaptive machine learning algorithms with the
cross-fitting procedure to estimate the nuisance parameters, to draw valid inferences
under mild regularity conditions and certain rate of convergence conditions. In partic-
ular, we consider a restricted policy class indexed by an Euclidean parameter η and
establish the n−1/3 convergence rate of η̂, even though its resultant limiting distribution
is not standard. Fourth, we extend our proposed methods to the panel data setup. We
establish identification of the conditional average treatment effect under alternative
assumptions and provide the direct policy search approaches for panel data. The
theoretical results for panel data can be similarly derived.

The rest of this article is organized as follows. In Section 2.2, we introduce the
statistical framework of instrumental variable, DiD and policy learning. Section 2.3
develops our main methodology of learning the optimal policy using the instrumented
DiD. Semiparametric efficiency results and multiply robust estimators are presented in
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Section 3.1. Section 3.2 establishes the asymptotic properties of the proposed estimators.
Extensive simulations are reported in Section 4.1 to demonstrate the proposedmethods,
followed by a real data application in Section 4.2. Next, we consider the extension of
our methods to panel data in Section 5.1. The article concludes in Section 5.2 with a
discussion of some remarks and future work. All proofs and additional results are
provided in the Supplementary Material.

2.2 Statistical framework

We first introduce some notation. Let X denote the p-dimensional vector of co-
variates that belongs to a covariate space X ⊂ Rp, A ∈ A = {0, 1} denote the binary
treatment, Y ∈ R denote the outcome of interest, and T ∈ T = {0, 1} denote the
time period. Suppose that U = (U0, U1) is an unmeasured confounder of the effect
of A on Y , and Z ∈ {0, 1} is a binary instrumental variable; the observed data are
O = (X,A, Y, T, Z). We assume that the random samples (O1, . . . , On) collected at the
two time periods are independent and identically distributed (i.i.d.) observations of
O ∼ P0, and there is no overlap between individuals in these two time periods. This
setup is commonly known as the repeated cross-sectional data. Extension to panel
data setting is studied in Section 5.1.

We use the potential outcomes framework [Neyman, 1923, Rubin, 1974] to define
causal effects. Let At(z) denote the potential exposure at time t if the instrument were
set to level z, Yt(a) denote the potential outcome at time t if the exposure were set
to level a and the instrument would take the same value it actually had, and Yt(z, a)
denote the potential outcome at time t had the instrument and exposure been set to
z, a respectively.

Without loss of generality, we assume that larger values of Y are more desirable.
Our aim is to identify and estimate an policy d : X → A, that maximizes the expected
potential outcome in a counterfactual world had this policy been implemented on the
population. The optimal policy at time t is given by dopt,t(x) = I{τt(x) > 0}, where
τt(x) = E[Yt(1)− Yt(0) | X = x] is the conditional average treatment effect (CATE) at
time t.

Let Yt(d) = d(X)Yt(1) + (1 − d(X))Yt(0) denote the potential outcome under a
hypothetical intervention that assigns treatment according to policy d. The value
function of a policy d at time t is defined as Vt(d) = E[Yt(d)]. Let D be the class of
candidate policies of primary interest. The optimal policy can be obtained by directly
maximizing the value function:

dopt,t = arg max
d∈D

Vt(d) = arg max
d∈D

E[τt(X)d(X)]. (2.1)

Throughout this article, we assume that the stable treatment effect over time as-
sumption holds, which says that the CATE does not vary over time, and thus ensures
that the optimal policy remains the same between the two time periods. The subscript
t is omitted when it is clear from the context.
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Remark 2.2.1. Our proposed instrumented DiD methodology can also be readily for-
mulated in the weighted classification perspective. Pioneered by Zhang et al. [2012a],
this perspective has been widely used in the biostatistics and precision medicine litera-
ture, and enjoys certain robustness empirically. Specifically, the above maximization
problem (2.1) can be transformed into the following equivalent weighted classification
problem:

dopt(x) = arg max
d∈D

E[WI{A = d(X)}], (2.2)
whereW is regarded as a weight that is motivated by standard outcome regression,
inverse probability weighting and doubly robust methods. Many robust classification
methods and off-the-shelf implementations can be utilized.

2.3 Instrumented difference-in-differences
In this section, we introduce a general instrumented DiD framework for policy

learning under endogeneity, and provide novel identification results. Let π(t, z, x) =
Pr(T = t, Z = z | X = x), and for any random variable C ∈ {A, Y }, we define
µC(t, z, x) = E[C | T = t, Z = z,X = x], δC(x) = µC(1, 1, x)− µC(0, 1, x)− µC(1, 0, x) +
µC(0, 0, x). We make the following identification assumptions.
Assumption 2.3.1 (Consistency). A = AT (Z) and Y = YT (A).
Assumption 2.3.2 (Positivity). c1 < π(t, z, x) < 1− c1 for some 0 < c1 < 1/2.
Assumption 2.3.3 (Random sampling). T ⊥ {At(z), Yt(a) : t = 0, 1, z = 0, 1, a =
0, 1} |X,Z.
Assumption 2.3.4 (Stable treatment effect over time). E[Y0(1)−Y0(0) | X] = E[Y1(1)−
Y1(0) | X].

Assumption 2.3.1 is also known as the stable unit treatment value assumption,
which states that there is no interference between subjects and no multiple versions of
the instrument and treatment. Assumption 2.3.2 ensures the same support of X for
each (T, Z) level. Assumption 2.3.3 is commonly assumed for repeated cross-sectional
data [Abadie, 2005]. Assumption 2.3.4 requires that the CATE τ(x) does not vary over
time, and thus ensures that the optimal policy remains the same between the two time
periods.
Assumption 2.3.5 (Trend relevance). E[A1(1)− A0(1) | Z = 1, X] ̸= E[A1(0)− A0(0) |
Z = 0, X].
Assumption 2.3.6 (Independence & exclusion restriction). Z ⊥ {At(1), At(0), Yt(1)−
Yt(0), Y1(0)− Y0(0) : t = 0, 1} |X .
Assumption 2.3.7 (No unmeasured common effect modifier). Cov{At(1) −
At(0), Yt(1)− Yt(0) | X} = 0 for t = 0, 1.

Assumption 2.3.5 and 2.3.6 are parallel to the core assumptions in the standard
IV literature. Directed acyclic graphs illustrating the causal structure are provided in
Section A.1 of the Supplementary Material. Assumption 2.3.5 states that the IV affects
the trend in treatment. Assumption 2.3.6 requires that the IV is unconfounded, has
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no direct effect on the trend in outcome, and does not modify the treatment effect.
This exogenous variable is not necessarily a valid instrument for the conventional
treatment-outcome association, since we allow it to have a direct effect on the outcome
not just through the treatment at each time point. Assumption 2.3.7 essentially states
that there is no common effect modifier by an unmeasured confounder, of the additive
effect of treatment on the outcome, and the additive effect of the IV on treatment. It
has been studied in Cui and Tchetgen Tchetgen [2021], and relax certain no additive
interaction assumptions in Wang and Tchetgen Tchetgen [2018]. We refer interested
readers to Ye et al. [2022] for detailed discussion and concrete examples of an IV for
DiD. Now we present our first identification result under the above assumptions.

Theorem 2.3.8. Under Assumptions 2.3.1-2.3.7, the optimal policy is nonparametrically
identified by

arg max
d∈D

E

[
δY (X)
δA(X)d(X)

]
. (2.3)

Theorem 2.3.8 combines the Wald estimator for CATE and the direct policy search
approach in Equation (2.1). Similarly, the IPW estimator proposed by Ye et al. [2022]
can also be used to learn the optimal policy. Semiparametric efficient and multiply
robust estimators are presented in Section 3.1. Next we propose our novel identification
results, which also serves as basis for the estimators proposed in Section 3.1.

Theorem 2.3.9. Under Assumptions 2.3.1-2.3.7, the optimal policy is nonparametrically
identified by

arg max
d∈D

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

]
. (2.4)

Theorem 2.3.9 extends prior identification of CATE, and proposes a novel IPW
estimator of the optimal policy without necessarily identifying the value function.
Semiparametric efficiency results based on (2.4) are given in Section A.6 and A.7 of
the Supplementary Material.

Theorem 2.3.10. Under Assumptions 2.3.1-2.3.7, the optimal policy is nonparametrically
identified by

arg max
d∈D

E

[
(2T − 1)Y I{Z = d(X)}

π(T, Z,X)δA(X)

]
. (2.5)

Theorem 2.3.10 essentially proves that we can identify the optimal policy without
necessarily using the subjects’ realized treatment values, for instance when δA(X) is
known a priori, or when a separate sample with data on (A,X, T, Z) is available to
estimate δA(X). To conclude this section, we propose the following estimators for
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optimal policies:

d̂Wald = arg max
d∈D

1
n

n∑
i=1

δ̂Y (Xi)
δ̂A(Xi)

d(Xi),

d̂IPW1 = arg max
d∈D

1
n

n∑
i=1

(2Zi − 1)(2Ti − 1)(2Ai − 1)YiI{Ai = d(Xi)}
π̂(Ti, Zi, Xi)δ̂A(Xi)

,

d̂IPW2 = arg max
d∈D

1
n

n∑
i=1

(2Ti − 1)YiI{Zi = d(Xi)}
π̂(Ti, Zi, Xi)δ̂A(Xi)

,

where δ̂Y , δ̂A and π̂ are estimated by parametric models or machine learning algorithms.
Our simulation studies in Section 4.1 empirically shows comparable performance of
the IPW estimators (2.4) and (2.5).
Remark 2.3.11. Similarly, classification-based estimators based on Theorem 2.3.9 and
2.3.10 can be proposed:

arg max
d∈D

E[W̃1I{A = d(X)}], arg max
d∈D

E[W̃2I{Z = d(X)}], (2.6)

respectively, where the weights are given by

W̃1 = (2Z − 1)(2T − 1)(2A− 1)Y
π(T, Z,X)δA(X) , W̃2 = (2T − 1)Y

π(T, Z,X)δA(X) .

The Fisher consistency, excess risk bound and universal consistency of the estimated
policy can also be established [Zhao et al., 2012].
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CHAPTER 3

SEMIPARAMETRIC EFFICIENCY AND
INFERENCE

3.1 Semiparametric efficiency and multiply robust esti-
mators

In this section, we use semiparametric theory and propose multiply robust esti-
mators. The Wald and the IPW approaches require the corresponding models to be
correctly specified. Hence, methods that are robust against model misspecification
are highly desired, where consistency is guaranteed when a subset of several posited
models indexing the observed data distribution is correctly specified.

We consider the (uncentered) efficient influence function:

∆(O) = δY (X)
δA(X) + (2Z − 1)(2T − 1)

π(T, Z,X)δA(X)

{
Y − µY (T, Z,X)− δY (X)

δA(X) (A− µA(T, Z,X))
}
,

which has been proposed in Ye et al. [2022]. Therefore, the optimal policy is identified
by arg maxD E [∆(X)d(X)]. Moreover, in light of the optimization tasks formulated in
(2.6), we propose the following two choices of statistic:

W1 = (2A− 1)δY (X)
δA(X) +(2A− 1)(2Z − 1)(2T − 1)

π(T, Z,X)δA(X)

{
Y − µY (T, Z,X)− δY (X)

δA(X) (A− µA(T, Z,X))
}
,

and

W2 = (2Z − 1)δY (X)
δA(X) + 2T − 1

π(T, Z,X)δA(X)

{
Y − µY (T, Z,X)− δY (X)

δA(X) (A− µA(T, Z,X))
}
,

which also enjoy the multiply robustness property.
First, we consider positing parametric models. Let µA(t, z, x;α), µY (t, z, x; β) and

π(t, z, x; θ) denote the posited models. α̂, β̂ and θ̂ can be estimated by maximum
likelihood estimation. In Theorem 3.1.1, we show the multiple robustness in the sense
of maximizing the objective function (or minimizing the weighted classification error)
in the union model of the following models:
M1: models for π(t, z, x) and δA(x) are correct;
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M2: models for π(t, z, x) and δY (x)/δA(x) are correct;
M3: models for δY (x)/δA(x) and µC(0, 0, x), µC(1, 0, x), µC(0, 1, x) for C ∈ {A, Y } are
correct.
Theorem 3.1.1. Under Assumptions 2.3.1-2.3.7, the optimal policy is identified by

arg max
D

E [W1I{A = d(X)}] = arg max
D

E [W2I{Z = d(X)}] = arg max
D

E [∆(X)d(X)] ,
(3.1)

under the union modelM1 ∪M2 ∪M3.
We also consider using modern machine learning methods to estimate these nui-

sance parameters. In practice, we apply the cross-fitting technique [Schick, 1986, Zheng
and van der Laan, 2010, Chernozhukov et al., 2018], which is easy to implement. The
cross-fitting procedure goes as follows. We randomly split data into K folds; the
cross-fitted estimator is given by

M̂CF = 1
K

K∑
k=1

Pn,k{∆(O; µ̂A,−k, µ̂Y,−k, π̂−k)d(X)},

where Pn,k denote empirical averages only over the k-th fold, and µ̂A,−k, µ̂Y,−k and π̂−k

denote the nuisance estimators constructed excluding the k-th fold. Similar cross-fitted
estimators for E [W1I{A = d(X)}] and E [W2I{Z = d(X)}] can also be constructed in
the same way.

3.2 Asymptotic analysis of policy learning

In this section, we study theoretical guarantees for our proposed policy learning
approaches. While researchers have suggested applying machine learning algorithms
to estimate the optimal policies from large classes which cannot be described by a
finite dimensional parameter [Luedtke and van der Laan, 2016b, Künzel et al., 2019],
it is also important to consider certain classes of policies for better interpretability
and transparency, especially in clinical medicine and policy research [Zhang et al.,
2015, Athey and Wager, 2021]. Specifically, here we focus on a class of feasible policies
D =

{
I{η⊤X > 0} : η ∈ H

}
, where η indexes different policies and H is a compact

subset of Rp. That is, we analyze the following estimator:

η̂ = arg max
η∈H

M̂(η) = arg max
η∈H

1
n

n∑
i=1

∆̂(Oi)d(Xi; η),

where M̂(η) is estimated by posited parametric models, or the cross-fitted estimator.
Let η∗ = arg maxη∈HE[∆(X)d(X; η)] denote the Euclidean parameter that indexes the
optimal policy. We detail the main large sample property of our proposed estimator,
that η̂ converges to η∗ at n1/3 rate, and that M̂(η̂) is n1/2-consistent and asymptoti-
cally normal under weak conditions (mostly requiring standard regularity conditions
[White, 1982], or only that the nuisance parameters are estimated at faster than n1/4

rates).
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Remark 3.2.1. In order to obtain certain rates of convergence or regret bounds, it is
necessary to require some control over the complexity of the class D; see Athey and
Wager [2021, Section 2.2] for examples of the VC-dimension of classes of linear rules,
decision trees and monotone rules. Here we apply the empirical process techniques to
establish theoretical guarantees for linear rules, which also hold on any otherD indexed
by finite-dimensional parameters. Also note that all identification and semiparametric
efficiency results hold for any class of policies, and other optimization methods can be
readily utilized.

We assume the following regularity conditions.
Condition 1. (i) The supports of X and Y are bounded. (ii) The functions µY (t, z, x),
µA(t, z, x) and π(t, z, x) are smooth and bounded for all (t, z, x). (iii) The functionM(η) is
twice continuously differentiable in a neighborhood of η∗; (iv) For all δ > 0, we have that
Pr(|XTη∗| ≤ δ) ≤ c2δ, for some constant c2 > 0 such that c2δ ≤ 1.
Condition 2. (i)√n(α̂−α∗) = Op(1); (ii)√n(β̂−β∗) = Op(1); (iii)√n(θ̂−θ∗) = Op(1).
Theorem 3.2.2. Under Assumptions 2.3.1-2.3.7, if Conditions 1 and 2 hold, we have (i)
∥η̂ − η∗∥2 = Op(n−1/3); (ii) √n{M(η̂) −M(η∗)} = op(1); (iii) √n{M̂(η̂) −M(η∗)} →
N (0, σ2

1), where σ2
1 is given in the Supplementary Material.

Condition 1 (i), (ii) and (iii) are standard regularity conditions to establish uniform
convergence. Condition 1 (iv), also known as the margin condition, is often assumed in
the literature of classification [Tsybakov, 2004], reinforcement learning [Hu et al., 2022]
and treatment assignment policies [Luedtke and Chambaz, 2020], to guarantee fast
convergence rates. Condition 2 requires√n convergence rates of parameter estimates
of the posited models, which holds under mild conditions.

We assume the following conditions for the machine learning algorithms used to
construct cross-fitted estimators.
Condition 3. ∥µ̂A(t, z,X)− µA(t, z,X)∥L2 = op(n−1/4), ∥µ̂Y (t, z,X)− µY (t, z,X)∥L2 =
op(n−1/4) and ∥π̂(t, z,X)− π(t, z,X)∥L2 = op(n−1/4), for t, z = 0, 1.
Theorem 3.2.3. Under Assumptions 2.3.1-2.3.7, if Conditions 1 and 3 hold, we have (i)
∥η̂ − η∗∥2 = Op(n−1/3); (ii) √n{M(η̂) −M(η∗)} = op(1); (iii) √n{M̂(η̂) −M(η∗)} →
N (0, σ2

2), where σ2
2 is given in the Supplementary Material.

Condition 3 says the nuisance estimators must be consistent and converge at a fast
enough rate (essentially n1/4 in L2 norm). This is quite general and can be achieved
by many existing algorithms under nonparametric smoothness, sparsity, or other
structural constraints. According to Theorems 3.2.2 and 3.2.3 (ii), the regret of our
estimated regime vanishes as the sample size increases. Theorems 3.2.2 and 3.2.3 (iii)
imply that M̂(η̂) is a regular and asymptotic normal estimator ofM(η∗).
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CHAPTER 4

NUMERICAL EXPERIMENTS

4.1 Simulations

In this section, we conduct extensive simulations to evaluate the finite-sample
performance of the proposed estimators. Specifically, we compare them to the instru-
mental variable approach proposed by Cui and Tchetgen Tchetgen [2021], which is in
principle valid only for a single time point. Replication code is available at GitHub.

We first describe the complete data generation process as follows. Baseline covari-
ates X = (X1, X2)⊤ are generated from independent standard normal distributions.
The time period indicator T is generated from a Bernoulli distribution with probability
0.5. The unmeasured confounders U = (U0, U1)⊤ are generated from independent
bridge distributions with parameter 0.5 1. The instrumental variable Z is generated
from a Bernoulli distribution with probability 0.5. The potential treatments and out-
comes at time points t = 0, 1 are generated from the models:

Pr(A0 = 1 | Z,U,X) = expit(2− 7Z + 0.2U0 + 2X1),
P r(A1 = 1 | Z,U,X) = expit(−1.5 + 5Z − 0.15U1 + 1.5X2),

(Y0 | Z,U,X,A0) ∼ N (µ0, 1), (Y1 | Z,U,X,A1) ∼ N (µ1, 1),

where µ0 = 200 + 10(A0(1.5X1 + 2X2 − 0.5) + 0.5U0 + 2Z + 1.5X1 + 2X2), and µ1 =
240 + 10(A1(1.5X1 + 2X2 − 0.5) + 0.5U1 + 2Z + 2X1 + 1.5X2). Therefore, the optimal
policy is dopt(x) = I{3x1 +4x2−1 > 0}. LetA = TA1 +(1−T )A0, Y = TY1 +(1−T )Y0;
thus the observed cross-sectional data are (X,A, Y, T, Z).

A large test dataset of size N = 1× 106 is generated independently to evaluate the
performance of different estimators. The percentage of correct decisions (PCD) of an
estimated policy d̂(x) is computed by 1−N−1∑N

i=1 |d̂(Xi)− dopt(Xi)|.
We compare 7 estimators in our study: the two IPW estimators, the Wald estimator,

and the two multiply robust estimators, along with the below IV estimators proposed

1. The bridge density function is p(u) = 1/(2π cosh (u/2)). We use the bridge distribution because
by Wang and Louis [2003], the data generation process ensures that upon marginalizing over U , the
model for Pr(At = 1 | Z, X) remains a logistic regression.
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by Cui and Tchetgen Tchetgen [2021]:

dIV.t0 = arg max
d∈D

1
nt0

n∑
i=1

ZiAiYiI{Ai = d(Xi)}I{Ti = 0}
δ̂t0(Xi)π̂t0(Zi, Xi)

,

dIV.t1 = arg max
d∈D

1
nt1

n∑
i=1

ZiAiYiI{Ai = d(Xi)}I{Ti = 1}
δ̂t1(Xi)π̂t1(Zi, Xi)

,

where nt0 and nt1 are the sample sizes at time point 0, 1, respectively; δt0(x) =
µA(0, 1, x) − µA(0, 0, x), δt1(x) = µA(1, 1, x) − µA(1, 0, x), πt0(z, x) = Pr(Z = z | X =
x, T = 0), πt1(z, x) = Pr(Z = z | X = x, T = 1) are the nuisance parameters,
and δ̂t0, δ̂t1, π̂t0, π̂t1 can be estimated using parametric models or machine learning
algorithms. We utilize the genetic algorithm implemented in the R package rgenoud
[Mebane Jr and Sekhon, 2011] to solve the optimization tasks.

First, we posit parametric models for the nuisance parameters. The linear/logistic
regression models for µA(t, z, x;α), µY (t, z, x; β) and π(t, z, x; θ) are correctly specified.
The sample size is n = 5000.

We also consider flexible machine learning algorithms for nuisance parameter
estimation. Specifically, we apply the generalized random forests [Athey et al., 2019]
implemented in the R package grf with default tuning parameters. For the cross-fitting
procedure, we use K = 4 folds. The sample size is n = 104.

Parametric Machine Learning
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Figure 4.1 – The percentage of correct decisions (PCD) results of the estimated optimal policies, using
parametric models (left) or machine learning (right).

Figure 4.1 reports the main simulation results from 500 Monte Carlo replications.
In both scenarios, the two standard IV estimators fail to learn the optimal policy, due
to the direct effects of the treatment A on the outcomes Y0, Y1. The two IPW estimators
perform much better, but the variability can be large due to possibly extreme weights.
The Wald and multiply robust estimators generally lead to lower variability, and attain
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superior performance. Additional simulation results are reported in Section A.11 of the
Supplementary Material to illustrate how different sample sizes and the strength of the
IV affect the performance of the estimated policies. We observe that a stronger strength
of IV generally leads to lower variability and better accuracy, and also as sample size
increases, our proposed methods have better performance.

4.2 Data application
In this section, we illustrate the use of the instrumented DiD approach for policy

learningwith a analysis of the Australian Longitudinal Survey (ALS) data. Researchers
in labor economics have a longstanding interest in investigating the causal effect of
education on earnings in the labor market. Card [2001] suggests that the endogeneity
of education might partially explain the continuing interest “in this very difficult task
of uncovering the causal effect of education in labor market outcomes", and argues that
the effects of education are heterogeneous since the economic benefits are individual-
specific. Besides the well acknowledged benefits of personal growth and social good
from education, we aim to provide a personalized recommendation on whether an
individual should pursuit more education or not, in order to gain higher earnings.

TheAustralian Longitudinal Surveywas conducted annually since 1984. Specifically,
we include the 1984 and 1985 waves as cross sectional data in our analysis. The 1984
wave surveyed a sample of 3000 people aged 15− 24, and the 1985 wave consisted of
9000 interviews with people aged 16− 25. The surveys aim mainly at providing data
on the dynamics of the youth labour market, and include basic demographic variables,
labour market variables, background variables and topics related to the main labour
market theme. We follow the guidelines from Su et al. [2013], Cai et al. [2006] and Vella
[1994], who was among the first researchers extensively working with the ALS data.
Finally, our data include 2401 subjects from the 1984 wave, and 8997 subjects from the
1985 wave. We consider the following baseline covariates: whether a person is born in
Australia, marital status, union membership, government employment, age and work
experience. The treatment is the education level, and the outcome is the hourly wage.
We use an index of labor market attitudes as the instrumental variable [Su et al., 2013].
The details of our analysis are provided in Section A.12 of the Supplementary Material.

The nuisance parameters are estimated by posited linear/logistic regression models,
and we apply our proposed methods with the same configurations as Section 4.1. The
policy coefficient estimates of all covariates are reported in Table 4.1.

The coefficients should be interpreted cautiously. We also find that there exists
some discrepancies among the treatment recommendations by our proposed estimators.
The Wald and multiply robust estimators usually agree, but the variability of the IPW
estimators are a bit large. Due to the potentially different recommendations by different
estimated policies, one may conservatively suggest a recommendation by the majority
rule, and accordingly obtain an ensemble policy. It is also interesting to construct a
decision tree to further explore which covariates indicate which treatment level [Qi
et al., 2023].
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Policies intercept born_australia married uni_mem gov_emp age year_expe
IV.t0 0.4442 −0.4547 0.1311 −0.1179 −0.5181 0.0080 −0.5444
IV.t1 −0.2518 −0.3103 0.2445 −0.6157 −0.1406 0.2015 −0.5840
IPW1 −0.4203 −0.0847 0.5454 −0.3941 −0.5690 0.0299 0.1969
IPW2 −0.2503 −0.0529 0.6051 −0.4384 −0.5801 0.0207 0.1980
Wald 0.5032 0.3891 0.4738 0.5755 −0.1656 −0.0772 0.0793
MR1 −0.0513 0.1341 −0.6039 0.4127 0.5861 −0.0226 −0.3168
MR2 0.5480 −0.3937 −0.4072 0.4393 0.4167 −0.0302 −0.1064

Table 4.1 – Coefficients of estimated optimal policy (normalized with L2 norm 1). born_australia:
whether a person is born in Australia; married: marital status; uni_mem: union membership; gov_emp:
government employment; age: age; year_expe: work experience.
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CHAPTER 5

EXTENSION AND DISCUSSION

5.1 Extension to panel data

In this section, we consider extending the instrumented DiD approach to the panel
data setup where a random sample from the population is followed up over two
time points [Abadie, 2005]. The observed data are O = (X,Z,A0, Y0, A1, Y1). Let
δY,z(x) = E[Y1 − Y0 | X = x, Z = z], δA,z(x) = E[A1 − A0 | X = x, Z = z], and
πZ(x) = Pr(Z = 1 | X = x). We make the following identification assumptions.

Assumption 5.1.1. Suppose the following assumptions hold: (consistency) At = At(Z)
and Yt = Yt(At) for t = 0, 1; (positivity) c3 < πZ(x) < 1 − c3 for some 0 < c3 < 1/2;
(trend relevance) E[A1(1)− A0(1) | Z = 1, X] ̸= E[A1(0)− A0(0) | Z = 0, X]; (stable
treatment effect over time) E[Y0(1)− Y0(0) | X] = E[Y1(1)− Y1(0) | X]; (independence
& exclusion restriction) Z ⊥ {At(1), At(0), Yt(1) − Yt(0), Y1(0) − Y0(0) : t = 0, 1} | X ;
(no unmeasured common effect modifier) Cov{At(1)− At(0), Yt(1)− Yt(0) | X} = 0
for t = 0, 1.

Assumption 5.1.1 is the counterpart of Assumptions 2.3.1-2.3.7 for the
panel/longitudinal structure. Vo et al. [2022] use a structural meanmodel and consider
alternative assumptions to the no unmeasured common effect modifier assumption
above. In Section A.10 of the Supplementary Material, we also prove the identifi-
cation results under the following assumptions that replaces the no unmeasured
common effect modifier assumption: (sequential ignorability) Yt(a) ⊥ At | U,X,Z
for t, a = 0, 1, and there is no additive interaction of either (i) E[A1 − A0 | X,U,Z =
1]− E[A1 − A0 | X,U,Z = 0] = E[A1 − A0 | X,Z = 1]− E[A1 − A0 | X,Z = 0] or (ii)
E[Yt(1)− Yt(0) | U,X] = E[Yt(1)− Yt(0) | X] for t = 0, 1. The sequential ignorability is
intuitive, and commonly assumed in panel/longitudinal data analysis. We note that
the no additive interaction assumption implies the no unmeasured common effect
modifier assumption.

Theorem 5.1.2. Under Assumption 5.1.1, the CATE is nonparametrically identified by

τ(x) = E[Y1 − Y0 | X = x, Z = 1]− E[Y1 − Y0 | X = x, Z = 0]
E[A1 − A0 | X = x, Z = 1]− E[A1 − A0 | X = x, Z = 0] , (5.1)
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and the efficient influence function is

ϕpanel = δY,1(x)− δY,0(x)
δA,1(x)− δA,0(x) −

z − πZ(x)
πZ(x)(1− πZ(x))(δA,1(x)− δA,0(x))2 {(y1 − y0)(δA,1(x)− δA,0(x))

−(a1 − a0)(δY,1(x)− δY,0(x)) + δY,1(x)δA,0(x)− δY,0(x)δA,1(x)} − τ(x).

Theorem 5.1.3. Under Assumption 5.1.1, the optimal policy is nonparametrically identified by

arg max
D

E

[
δY,1(X)− δY,0(X)
δA,1(X)− δA,0(X)d(X)

]
= arg max

D
E [∆panel(X)d(X)] , (5.2)

where the uncentered efficient influence function ∆panel is

∆panel = δY,1(X)− δY,0(X)
δA,1(X)− δA,0(X) −

Z − πZ(X)
πZ(X)(1− πZ(X))(δA,1(X)− δA,0(X))2 {(Y1 − Y0)(δA,1(X)− δA,0(X))

−(A1 − A0)(δY,1(X)− δY,0(X)) + δY,1(X)δA,0(X)− δY,0(X)δA,1(X)} .

Estimators of optimal policies can be constructed by the empirical versions of
equations in Theorem 5.1.3, and the cross-fitting procedure can also be applied when
using the efficient influence function. Similarly, asymptotic analysis of policy learning
as Theorems 3.2.2 and 3.2.3 can be established for panel data.

5.2 Discussion
Similar approaches as the instrumented difference-in-differences design has long

been employed by econometricians [Duflo, 2001] and has also been formally considered
as fuzzy differences-in-differences by De Chaisemartin and d’Haultfoeuille [2018],
where the individuals can switch treatment in only one direction within each treatment
group. We refer interested readers to Ye et al. [2022] and its rejoinder for discussions
on the differences, and applications in biomedicine and epidemiology.

There are several interesting directions for future research and application. Our
approach is the first work to systematically study policy learning under the DiD setting.
It may be possible to consider alternative assumptions or structures in DiD design to
learn the optimal policy. Our instrumented DiD may also be generalized to multiple
time points, continuous time, or continuous IV.

Note that Assumption 2.3.7 can be replaced by the monotonicity assumption, i.e.
At(1) ≥ At(0) for t = 0, 1 with probability 1, which identifies the complier treatment
effects. Then we can also target complier optimal policies that would optimize the
potential outcome among compliers.
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Part III

POSITIVITY-FREE POLICY
LEARNINGWITH OBSERVATIONAL

DATA
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Policy learning utilizing observational data is pivotal across various domains, with
the objective of learning the optimal treatment assignment policy while adhering to
specific constraints such as fairness, budget, and simplicity. This study introduces
a novel positivity-free (stochastic) policy learning framework designed to address
the challenges posed by the impracticality of the positivity assumption in real-world
scenarios. This framework leverages incremental propensity score policies to adjust
propensity score values instead of assigning fixed values to treatments. We characterize
these incremental propensity score policies and establish identification conditions,
employing semiparametric efficiency theory to propose efficient estimators capable
of achieving rapid convergence rates, even when integrated with advanced machine
learning algorithms. This paper provides a thorough exploration of the theoretical
guarantees associated with policy learning and validates the proposed framework’s
finite-sample performance through comprehensive numerical experiments, ensuring
the identification of causal effects from observational data is both robust and reliable. 1

1. co-authored with Antoine Chambaz, Julie Josse and Shu Yang, published in Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics, PMLR 238:1918-1926, 2024, and selected as
an oral presentation.
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CHAPTER 6

INCREMENTAL PROPENSITY SCORE

6.1 Introduction

Over the past decade, methodologies for learning treatment assignment policies
have seen substantial advancements in fields like biostatistics [Luedtke and van der
Laan, 2016b, Tsiatis et al., 2019], computer science [Uehara et al., 2022, Yu et al., 2022],
and econometrics [Athey and Wager, 2021, Jia et al., 2023]. The core objective of data-
driven policy learning is to learn optimal policies that map individual characteristics
to treatment assignments to optimize some utility or outcome functions. This is crucial
for deriving robust and trustworthy policies in high-stakes decision-making settings,
requiring adherence to standard causal assumptions: consistency, unconfoundedness,
and positivity [van der Laan et al., 2011, Imbens and Rubin, 2015].

Various statistical and machine-learning methods have been developed to address
policy learning tasks. Popular approaches include model-based methods such as Q-
learning and A-learning [Murphy, 2003, Shi et al., 2018], and direct model-free policy
search methods such as decision trees and outcome weighted learning [Zhang et al.,
2012b, Cui et al., 2017], among others [Bibaut et al., 2021, Zhou et al., 2023b]. Another
prevailing line of work concerns heterogeneous treatment effects estimation [Wager
and Athey, 2018, Künzel et al., 2019, Nie and Wager, 2021, Kallus and Oprescu, 2023],
where the sign of the conditional average treatment effects equivalently determines
the optimal policy.

However, most methods depend heavily on the three standard causal assumptions
to identify causal effects and optimal policies. Recent progress has been made to relax
the consistency and unconfoundedness assumptions [Cortez et al., 2022, Kallus and
Zhou, 2018], but advancements addressing the violation of the positivity assumption
are scarce. Yang and Ding [2018b] and Branson et al. [2023] provide estimation and
asymptotic inference results for propensity score trimming with binary and continuous
treatments. Lawrence et al. [2017] consider counterfactual learning from deterministic
bandit logs under lack of sufficient exploration. Gui and Veitch [2023] use supervised
representation learning to estimate causal effects for text data with apparent overlap
violation. Zhang et al. [2023] consider a missing-at-random mechanism without a
positivity condition for generalizable and double robust inference for average treatment
effects under selection bias with decaying overlap. Jin et al. [2022] use pessimism and
generalized empirical Bernstein’s inequality to study offline policy learning without
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assuming any uniform overlap condition. Khan et al. [2023] provide partial identifi-
cation results for off-policy evaluation under non-parametric Lipschitz smoothness
assumptions on the conditional mean function, and thus avoid assuming either overlap
or a well-specified model. Liu et al. [2023] propose the overlap weighted average treat-
ment effect on the treated under lack of positivity. To our knowledge, our work is the
first to consider learning treatment assignment policies while avoiding the positivity
assumption.

This study introduces a novel positivity-free policy learning framework focusing on
dynamic and stochastic policies, which are practical. We propose incremental propensity
score policies that shift propensity scores by an individualized parameter, requiring
only the consistency and unconfoundedness causal assumptions. Our approach en-
hances the concept of incremental intervention effects, as proposed by Kennedy [2019],
adapting it to individual treatment policy contexts.

We also use semiparametric theory to characterize the efficient influence function
[Bickel et al., 1993, van der Laan and Robins, 2003], which serves as the foundation to
construct estimators with favorable properties, such as double/multiple robustness
and asymptotically negligible second-order bias (also called Neyman orthogonality in
double machine learning [Chernozhukov et al., 2018] or orthogonal statistical learning
[Foster and Syrgkanis, 2023]). Thus, our proposed estimators can attain fast parametric√
n convergence rates, even when nuisance parameters are estimated at slower rates

such as n1/4 via flexible machine learning algorithms.
Based on the above efficient off-policy evaluation results, we propose approaches

to learning the optimal policy by maximizing the value function, possibly under
application-specific constraints. Several examples are provided in Section 7.1, in-
cluding fairness and resource limit. While it remains an open problem to provide
finite sample or asymptotic regret bounds as Athey and Wager [2021] for stochastic
policy learning with constraints, which is out of the scope of this article, we establish
asymptotic guarantees for our proposed policy learning methods under alternative
(stronger) conditions.

The rest of this article is organized as follows. Section 6.2 introduces the basic
setup and notations and proposes the incremental propensity score policy. Our main
identification and semiparametric efficiency theory results for off-policy evaluation
are presented in Section 6.3. Section 7.1 formally introduces our positivy-free policy
learning framework, with several examples. Asymptotic analysis of guarantees for
policy evaluation and learning are given in Section 7.2. Finally, we illustrate our
methods via simulations and a data application in Section 7.3. The article concludes
in Section 7.4 with a discussion of some remarks and future work. All proofs and
additional results are provided in the Supplementary Material.

6.2 Statistical Framework
We first introduce the notations and setup. Let X denote the p-dimensional vector

of covariates that belongs to a covariate space X ⊂ Rp, A ∈ A = {0, 1} denote the
binary treatment, Y ∈ R denote the outcome of interest. Without loss of generality,
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we assume throughout that larger values of Y are more desirable. Our observed data
structure is O = (X,A, Y ). Suppose that our collected random sample (O1, . . . , On)
of size n are independent and identically distributed (i.i.d.) observations of O ∼ P ,
where P denote the true distribution of the observed data.

Now, we are in the position to introduce different types of policies or interventions
commonly used in the literature: (i) under static policies, the same treatments would be
applied indiscriminately, while dynamic policies depend on individual characteristics;
(ii) deterministic policies recommend one specific treatment and stochastic policies
output probabilities of prescribing each treatment level. This article focuses on dynamic
and stochastic policies, which are more practical in various settings and have received
substantial recent interest. Typical examples include point exposures [Dudík et al.,
2014], longitudinal studies [Tian, 2008, Murphy et al., 2001, van der Laan and Petersen,
2007], natural stochastic policies in reinforcement learning [Kallus and Uehara, 2020],
and particularly interventions that depend on the observational treatment process
[Muñoz and van Der Laan, 2012, Haneuse and Rotnitzky, 2013, Young et al., 2014];
but none of the existing intervention effects both avoids positivity conditions entirely
and is completely nonparametric.

We use the potential outcomes framework [Neyman, 1923, Rubin, 1974] to define
causal effects. Let Y (a) denote the potential outcome had the treatment a been assigned.
A policy d : X → {0, 1} is deterministic if it maps individual characteristics x to a
treatment assignment 0 or 1, and the output of a stochastic policy d : X → [0, 1] is the
probability of assigning treatment 1. Let D denote a pre-specified class of policies of
interest, where each policy d ∈ D induces the value function defined by

V (d) = E[Y (d)] = E[Y (1)d(X) + Y (0)(1− d(X))],

where Y (d) is the potential outcome under the policy d. In Remark 6.2.3, we briefly
review standard (deterministic) policy learning methods. In our framework, we focus
on dynamic and stochastic policies. Our goal is to directly search for the optimal
policy d∗ that maximizes the value function V (d), possibly under application-specific
constraints c(d) ≤ 0. See Section 7.1 for detailed examples.

6.2.1 Causal Assumptions

We make the following identification assumptions.
Assumption 6.2.1 (Consistency). Y = Y (A).
Assumption 6.2.2 (Unconfoundedness). A ⊥ Y (a) | X for a = 0, 1.

Assumption 6.2.1 is also known as the stable unit treatment value assumption,
which says there should be no multiple versions of the treatment and no interference
between units. Assumption 6.2.2 states that there are no unmeasured confounders so
that treatment assignment is as good as random conditional on the covariatesX . In this
article, we entirely avoid the positivity assumption which requires that each unit has a
positive probability of receiving both treatment levels, i.e., c < Pr(A = 1 | X) < 1− c
for some constant c > 0.
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Remark 6.2.3. Standard policy learning methods need all of Assumptions 6.2.1, 6.2.2
and the positivity assumption to identify the value function of deterministic policies
d : X → A by the outcome regression (OR), inverse probability weighting (IPW) and
augmented IPW (AIPW) formulas:

VOR(d) = E[E[Y | X,A = d(X)]], VIPW(d) = E

[
I{A = d(X)}Y

Pr(A = d(X) | X)

]
,

VAIPW(d) = E

[
E[Y | X,A = d(X)] + I{A = d(X)}(Y − E[Y | X,A = d(X)])

Pr(A = d(X) | X)

]
,

thus the optimal policies are given by d∗
OR = arg maxd∈D VOR(d), d∗

IPW =
arg maxd∈D VIPW(d), and d∗

AIPW = arg maxd∈D VAIPW(d), possibly under application-
specific constraints. When the positivity is violated, it is error-prone to rely on the
outcome regression model’s extrapolation, and the IPW and AIPW estimators would
fail due to division by zero.

6.2.2 Incremental Propensity Score Policies

Kennedy [2019] propose a new class of stochastic dynamic intervention, called
incremental propensity score interventions, and show that these interventions are non-
parametrically identifiedwithout requiring any positivity restrictions on the propensity
scores. Specifically, their proposed intervention replaces the observational propensity
score π with a shifted version based on multiplying the odds of receiving treatment,
δπ(x)/{δπ(x) + 1− π(x)}, where the increment parameter δ ∈ (0,∞) is user-specified
and dictates the extent to which the propensity scores fluctuate from their actual ob-
servational values. Some motivation and examples, efficiency theory, and estimators
for mean outcomes under these interventions are studied in detail by Kennedy [2019].

We propose a positivity-free (stochastic) policy learning framework based on the
incremental propensity score interventions. Specifically, we consider the stochastic
policy d : X → [0, 1] that assigns treatment 1 with probability

d(x) = δ(x)π(x)
δ(x)π(x) + 1− π(x) , (6.1)

where δ(x) enables individualized treatment assignment. We note that the choice
of d(x) in (6.1) is motivated by its interpretability and positivity-free. In particular,
whenever 0 < π(x) < 1, δ(x) = [d(x)/{1− d(x)}]/[π(x)/{1 − π(x)}] is simply an
odds ratio, indicating how the policy changes the odds of receiving treatment. When
positivity is violated, we have that d(x) = 0 if π(x) = 0, and d(x) = 1 if π(x) = 1.

6.3 Identification and Efficiency Theory

6.3.1 Identification

We first give formal identification results for the value function of incremental
propensity score policies, which require no conditions on the propensity scores.
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Proposition 6.3.1 (Identification formulas). Under Assumptions 6.2.1 and 6.2.2, the value
function V (d) can be nonparametrically identified by the outcome regression with incremental
propensity score (OR-IPS) formula:

VOR−IPS(d) = E

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
, (6.2)

where µa(X) = E[Y | X,A = a], a = 0, 1 are the outcome regression functions or the inverse
probability weighting of incremental propensity score (IPW-IPS) formula:

VIPW−IPS(d) = E

[
Y {δ(X)A+ 1− A}
δ(X)π(X) + 1− π(X)

]
. (6.3)

Proposition 6.3.1 shows that the value function can be identified by (i) a weighted
average of the outcome regression functions µ0, µ1, where the weight on µ1 is given
by the incremental propensity score d(x) and the weight on µ0 is 1− d(x); (ii) inverse
probability weighting where each treated is weighted by the (inverse of the) propensity
score plus some fractional contribution of its complement, i.e., π(x) + (1− π(x))/δ(x),
and untreated units are weighted by this same amount, except the entire weight is
further down-weighted by a factor of δ(x).

6.3.2 Efficient Off-policy Evaluation

Despite that simple plug-inOR-IPS and IPW-IPS estimators can be easily constructed
from (6.2) and (6.3), these estimators will only be √n-consistent when the outcome
regression or propensity score models are correctly specified. This is usually unrealistic
in practice. We use semiparametric efficiency theory to study the following statistical
functional of P from a nonparametric statistical modelM:

Ψ(P ) = V (d) = EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
,

and propose efficient estimators based on the efficient influence function.
Proposition 6.3.2 (Semiparametric Efficiency). The efficient influence function of Ψ(P ) is

ϕ(P )(O) = Aδ(X){Y − µ1(X)}+ (1− A){Y − µ0(X)}+ δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)
δ(X)π(X) + 1− π(X)

+ δ(X)τ(X){A− π(X)}
{δ(X)π(X) + 1− π(X)}2 −Ψ(P ),

(6.4)

where τ(x) = µ1(x)− µ0(x).
By Proposition 6.3.2, the one-step bias-corrected estimator is given by

Ψ̂OS = Ψ(P̂ ) + Pnϕ(P̂ )(O) = 1
n

n∑
i=1

ξ(P̂ )(Oi), (6.5)
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where we estimate P by P̂ , and let Pn denote the empirical distribution, and ξ(P )(O) =
ϕ(P )(O) + Ψ(P ) is the uncentered efficient influence function. This estimator can
converge at fast parametric √n rates and attain the efficiency bound, even when the
propensity score π(x) and outcome regression functions µ0, µ1 aremodeled flexibly and
estimated at rates slower than √n, as long as these nuisance functions are estimated
consistently at rates faster than n1/4. This allows much more flexible nonparametric
methods and modern machine learning algorithms to be employed.

However, characterizing asymptotic properties of the estimator (6.5) requires some
empirical process conditions that restrict the flexibility and complexity of the nuisance
estimators; otherwise, we will have overfitting bias and intractable asymptotic behav-
iors. See the asymptotic analysis in Section 7.2 and proofs thereof. To accommodate
the wide use of modern machine learning algorithms that usually fail to satisfy the
required empirical process conditions, we apply the cross-fitting procedure to obtain
asymptotically normal and efficient estimators [Zheng and van der Laan, 2010, Cher-
nozhukov et al., 2018]. Suppose we randomly split the data into K folds. Then the
cross-fitting estimator is

Ψ̂CF = 1
K

K∑
k=1

Ψ̂k = 1
K

K∑
k=1

Pn,kξ(Pn,−k)(O), (6.6)

where Pn,k and Pn,−k denote the empirical measures on data from the k-fold and
excluding the k-fold, respectively. That is, for k = 1, . . . , K, nuisance estimators are
constructed excluding the k-fold, and the value function Ψ̂k is evaluated on the k-th
fold; finally, the cross-fitting estimator is the average of the K value estimators from K
folds.
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POLICY LEARNING AND EXAMPLES

7.1 From Efficient Policy Evaluation to Learning
In this section, we first present our proposed methods for policy learning.
As discussed in Section 6.2, given a pre-specified policy classD (e.g., linear decision

rules), we propose estimating the optimal treatment assignment rule d̂ that solves
(i) d̂ = arg maxd∈D V̂ (d), where V̂ (d) is a value function estimator by OR-IPS (6.2),
IPW-IPS (6.3), one-step (6.5) or cross-fitting (6.6); or (ii) d̂ = arg maxd∈D V̂ (d) subject
to ĉ(d) ≤ c, when an application-specific constraint c(d) ≤ c is imposed, and ĉ(d) is a
constraint estimator which usually needs to be studied on a case-by-case basis.

We first review important examples of policy learning that fit into our framework.
Vanilla direct policy search. The first example is what most existing work on policy
learning has focused on, primarily for deterministic policies with a binary treatment.
When the policy class is unrestricted, the optimal treatment assignment rule depends
on the sign of the conditional average treatment effect for each individual unit, which
cannot be extended to stochastic policies. Our proposed optimal incremental propensity
score policies maximize the value function.
Fair policy learning. In many decision-making scenarios, such as hiring, recommen-
dation systems, and criminal justice, concerns have been raised regarding the fairness
of decisions from the learning process [Chzhen et al., 2020]. Let S ∈ S denote the
sensitive attribute. For randomized predictions f : X × S → ∆(A), popular fairness
criteria include demographic parity (DP) [Calders et al., 2009]:

E[f(X,S) | S = s] = E[f(X,S) | S = s′],∀s, s′ ∈ S, (7.1)

which says that f(X,S) is independent from S, or equal opportunity (EO) [Hardt
et al., 2016]:

E[f(X,S) | S = s, A = a] = E[f(X,S) | S = s′, A = a],∀s, s′ ∈ S, a ∈ A, (7.2)

which requires equal true positive and true negative rates. Following the same spirit,
we consider fair policy learning tasks as the constrained optimization problem:

max
d∈D

V (d), subject to f(d) ≤ b,
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where f(d) is either the DP or EO metrics, which can be estimated by

f̂DP(d) =
∑

s∈S

(∑n
i=1 d(Xi)I{Si = s}∑n

i=1 I{Si = s}
−
∑n

i=1 d(Xi)
n

)2
1/2

,

or

f̂EO(d) =
∑

s∈S

(∑n
i=1 d(Xi)I{Si = s, Ai = 1}∑n

i=1 I{Si = s, Ai = 1} −
∑n

i=1 d(Xi)I{Ai = 1}∑n
i=1 I{Ai = 1}

)2
1/2

,

and b is a pre-specified tuning parameter.
Resource-limited policy learning. In many real-world applications, the proportion
of individuals who can receive the treatment is a priori limited due to a budget or a
capacity constraint. So we consider the resource-limited policy learning tasks as the
constrained optimization problem:

max
d∈D

V (d), subject to E[d] ≤ b,

where b is the pre-specified budget or capacity.
Protect the vulnerable. Since the optimal policy is typically defined as the maximizer
of the expected potential outcome over the entire population, such a policy may be
suboptimal or even detrimental to certain disadvantaged subgroups. Fang et al. [2022]
propose the fairness-oriented optimal policy learning framework:

max
d∈D

V (d), subject to Qτ (Y (d)) ≥ b,

where Qτ (Y (d)) = inf{t : FY (d)(t) ≥ τ} is the τ -th quantile of Y (d), FY (d) de-
notes the cumulative distribution function of Y (d), and b is a pre-specified protec-
tion threshold. Note that the quantile function can be estimated by Q̂τ (Y (d)) =
arg minq n

−1∑n
i=1 ci(d)ρτ (Yi − q), where ρτ (u) = u(τ − I{u < 0}) is the quantile loss

function, and ci(d) = Aid(Xi) + (1− Ai)(1− d(Xi)).
Other examples in the literature include the counterfactual no-harm criterion by the

principal stratification method [Li et al., 2023], (weakly) NP-hard knapsack problem
[Luedtke and van der Laan, 2016a], and instrumental variable methods [Qiu et al.,
2021].

7.2 Asymptotic Analysis of Policy Evaluation and
Learning

In this section, we first characterize the asymptotic distributions of our proposed
one-step estimator (6.5) and the cross-fitted estimator (6.6) for off-policy evaluation.
Theorem 7.2.1. Assume the following conditions hold: (i) ∥π̂(x) − π(x)∥L2 = op(n−1/4),
∥µ̂a − µa∥L2 = op(n−1/4) for a = 0, 1; (ii) ϕ(P ) belongs to a Donsker class; (iii) |Y | and
|δ(X)| are bounded in probability. For the one-step estimator, we have that√n(Ψ̂OS−Ψ(P ))→
N (0, E[ϕ2]).

48



7.3. Experiments

Theorem 7.2.2. Assume the following conditions hold: (i) ∥π̂(x) − π(x)∥L2 = op(n−1/4),
∥µ̂a − µa∥L2 = op(n−1/4) for a = 0, 1; (ii) |Y | and |δ(X)| are bounded in probability. For the
cross-fitting estimator, we have that√n(Ψ̂CF −Ψ(P ))→ N (0, E[ϕ2]).

Condition (i) of Theorems 7.2.1 and 7.2.2 is commonly assumed such that the
second-order remainder term is op(1) [Kennedy, 2022]. Condition (ii) of Theorems 7.2.1
ensures the centered empirical process term is op(1). Condition (iii) of Theorems 7.2.1
and condition (ii) of Theorems 7.2.2 are mild regularity conditions. The asymptotic
variance of the one-step estimator can be consistently estimated by 1

n

∑n
i=1 ϕ

2(P̂ )(Oi),
and the asymptotic variance of the cross-fitting estimator can be consistently estimated
by 1

K

∑K
k=1 Pn,kϕ

2(P̂−k)(O).

Next, we prove asymptotic guarantees for the following generic off-policy learning
problem:

max
d∈D

V̂ (d), subject to ĉ(d) ≤ c,

where V̂ (d) is a value estimator of our proposed incremental propensity score policies,
ĉ(d) is an estimate of the constraint, and c is a pre-specified criterion.

Consider a parametric policy class D(H) indexed by η ∈ H , where H is a compact
set. Let η∗ denote the true Euclidean parameter indexing the optimal policy. To simplify
the notation, for d(x; η) ∈ D(H), we define V (η) = V (d(x; η)) and c(η) = c(d(x; η)).

Theorem 7.2.3. Assume the following conditions hold: (i) d(x; η) is a continuously differen-
tiable and convex function with respect to η; (ii) V̂ (η) and ĉ(η) converge to V (η) and c(η) at
rates√n. We have that (i) V (η̂)− V (η∗) = Op(n−1/2); (ii) V̂ (η̂)− V (η∗) = Op(n−1/2).

Theorem 7.2.4. Assume the following conditions hold: (i) D is a Glivenko–Cantelli class;
(ii) π̂(x) and µ̂a(x) are uniformly consistent estimators of π(x) and µa(x) for a = 0, 1; (iii)
∀d ∈ D, m ∈ (0, 1), it follows that md ∈ D. We have that (i) V (d̂) − V (d) = op(1); (ii)
V̂ (d̂)− V (d) = op(1).

Theorem 7.2.3 (i) establishes that the regret of the learned policy attains the conver-
gence rate of n−1/2, and (ii) shows that V̂ (η̂) is a√n-consistent estimator of the optimal
value function for parametric and convex policy classes under mild assumptions. The-
orem 7.2.4 (i) establishes that the regret of the learned policy vanishes, and (ii) shows
V̂ (η̂) is still a consistent estimator for GC classes.

7.3 Experiments

In this section, we conduct extensive experiments to evaluate the performance of
our proposed positivity-free policy learning methods by comparison with standard
policy learning methods. Replication code is available at GitHub.
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7.3.1 Simulation
We consider the fair policy learning task under the demographic parity constraint

and simulate

S ∼ Bernoulli(0.5), (X1, X2, X3) ∼ Uniform(0, 1),
A ∼ Bernoulli(expit(−1−X1 + 1.5X2 − 0.25X3 − 3.1S)),

Y (0) ∼ N{20(1 +X1 −X2 +X2
3 + exp (X2)), 202},

Y (1) ∼ N{20(1 +X1 −X2 +X2
3 + exp (X2)) + 25(3− 5X1 + 2X2 − 3X3 + S), 202},

where expit : x 7→ 1/(1 + exp (−x)). We let S denote the sensitive attribute and
X1, X2, X3 the common non-sensitive attributes. The treatment assignment mechanism
yields variable propensity scores that can degrade the performance of weighting-based
estimators in standard policy learning methods. For standard methods, we consider
the policy class of linear rules Dlinear = {d(s, x) = I{(1, s, x1, x2, x3)β > 0} : β ∈
R5, ∥β∥2 = 1}. For the incremental propensity score policies, we consider the class
DIPS = {d(s, x) = δ(s, x; β)π(s, x)/{δ(s, x; β)π(s, x) + 1 − π(s, x)} : β ∈ R5}, which is
indexed by δ(s, x; β) = exp {(1, s, x1, x2, x3)β}.

We estimate the outcome regression model µ(s, x) and the propensity score π(s, x)
using the generalized random forests [Athey et al., 2019] implemented in the R package
grf. The constrained optimization problems are solved by the derivative-free linear
approximations algorithm [Powell, 1994], implemented in the R package nloptr. The
sample size is n = 1000, and the demographic parity threshold is τ = 0.01.

We compare the true values of the estimated optimal policies using test data with
sample size N = 105. The true optimal value is approximated using the test data.
Simulation results of 100 Monte Carlo repetition are reported in Figure 7.1(a). When
some estimated propensity scores are exactly 0, the IPW and AIPW estimators would
fail, and NA is returned. Three standard methods IPW, OR, and AIPW have the worst
performance. The IPW-IPS estimator also has large variability, which is similarly
reported in Kennedy [2019]. The OR-IPS and efficient one-step estimators achieve the
best performance with the highest value.

Additional simulation results are given in Section B.7 of the SupplementaryMaterial.
Specifically, we illustrate that our proposed policy learning methods have compara-
ble performance when there is no positivity violation, and also illustrate the better
performance of our proposed methods when using parametric models.

7.3.2 Data application
We illustrate our proposed methods using semi-synthetic data from the Fairlearn

open source project [Weerts et al., 2023]. Additional information on our data analysis
is provided in Section B.8 of the Supplementary Material.

The Diabetes dataset represents ten years (1999-2008) of clinical care at 130 US
hospitals and integrated delivery networks [Strack et al., 2014], and contains hospital
records of patients diagnosed with diabetes who underwent laboratory tests and
medications and stayed up to 14 days. Our application aims to learn the optimal
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(b) Diabetes data application.

Figure 7.1 – Performance of optimal policies under three standard methods (IPW, OR, AIPW) and our
proposed three methods (IPW-IPS, OR-IPS, One-step). The blue line is the (approximate) true optimal
value.

policy for prescribing diabetic medication by maximizing the expected outcome under
the demographic parity constraint. The sensitive attribute is race, and a violation of
positivity exists in the data.

We include 7 baseline covariates: race, gender, age, time_in_hospital (number
of days between admission and discharge), num_lab_procedures (number of lab tests
performed during the encounter), num_medications (number of distinct generic names
administered during the encounter) and number_diagnoses (number of diagnoses).
Under positivity violation, we are unable to identify the value function, e.g. relying
on the outcome regression’s extrapolation to learn the counterfactual outcomes on
test data. Thus the potential outcomes are simulated as follows: Y (0) ∼ N{20(1 +
gender − age + time_in_hospital + num_lab_procedures + num_medications +
num_medications2 + exp (number_diagnoses)), 202}, and Y (1) ∼ N{20(1 +
gender − age + time_in_hospital + num_lab_procedures + num_medications +
num_medications2 + exp (number_diagnoses)) + 25(3− 5age + 2time_in_hospital−
3num_medications + race), 202}. The estimation setup and policy classes are the same
as previous simulations. We run 50 repetitions; each time we randomly select 500
patients as training data to learn the optimal policy and 2000 patients as test data to
evaluate the performance. Empirical results are reported in Figure 7.1(b). When the
positivity violation is severer, the IPW estimator has extremely large variability, and we
also observe that our proposed methods perform consistently better than the standard
methods.

7.4 Discussion

This article proposes a general positivity-free stochastic policy learning framework
using observational data, possibly subject to application-specific constraints. There are
several interesting directions for future research. It is relevant to extend our methods
to the more general case with multiple time points for treatment assignment, multiple
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treatment levels, or high-dimensional models [Wei et al., 2023], where positivity is
even more likely to be violated. The incremental propensity score approach can also
be extended to account for common issues such as covariate shift [Zhao et al., 2023,
Lei et al., 2023], censoring and dropout [Cui et al., 2023a], and truncation by death
[Chu et al., 2023].
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EFFICIENT AND ROBUST TRANSFER
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An individualized treatment regime (ITR) is a decision rule that assigns treatments
based on patients’ characteristics. The value function of an ITR is the expected out-
come in a counterfactual world had this ITR been implemented. Recently, there has
been increasing interest in combining heterogeneous data sources, such as leveraging
the complementary features of randomized controlled trial (RCT) data and a large
observational study (OS). Usually, a covariate shift exists between the source and
target population, rendering the source-optimal ITR unnecessarily optimal for the
target population. We present an efficient and robust transfer learning framework for
estimating the optimal ITR with right-censored survival data that generalizes well to
the target population. The value function accommodates a broad class of functionals
of survival distributions, including survival probabilities and restrictive mean survival
times (RMSTs). We propose a doubly robust estimator of the value function, and the
optimal ITR is learned by maximizing the value function within a pre-specified class of
ITRs. We establish the N−1/3 rate of convergence for the estimated parameter indexing
the optimal ITR, and show that the proposed optimal value estimator is consistent
and asymptotically normal even with flexible machine learning methods for nuisance
parameter estimation. We evaluate the empirical performance of the proposed method
by simulation studies and a real data application of sodium bicarbonate therapy for
patients with severe metabolic acidaemia in the intensive care unit (ICU), combining a
RCT and an observational study with heterogeneity. 1

1. co-authored with Julie Josse and Shu Yang, rejected and resubmitted to Journal of Machine Learning
Research.
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CHAPTER 8

INDIVIDUALIZED TREATMENT REGIMES
WITH SURVIVAL DATA

8.1 Introduction

Data-driven individualized decision making has recently received increasing inter-
est in many fields, such as precision medicine [Kosorok and Laber, 2019, Tsiatis et al.,
2019], mobile health [Trella et al., 2022], precision public health [Rasmussen et al.,
2020] and econometrics [Athey and Wager, 2021]. The goal of optimal ITR estimation
is to learn a decision rule that assigns the best treatment among possible options to each
patient based on their individual characteristics in order to optimize some functional
of the counterfactual outcome distribution in the population of interest, also known as
the value function. The optimal ITR is the one with the maximal value function, and
the value function of the optimal ITR is the optimal value function.

For completely observed data without censoring, one prevailing line of work in the
statistical and biomedical literature uses model-based methods to solve the optimal
ITR problem, such as Q-learning [Robins, 2004, Qian and Murphy, 2011, Laber et al.,
2014] and A-learning [Murphy, 2003, Schulte et al., 2014, Shi et al., 2018]. Alternatively,
direct model-free or policy search methods have been proposed recently, including the
classification perspective [Zhang et al., 2012a,b, Zhao et al., 2012, Rubin and van der
Laan, 2012] and interpretable tree or list-based ITRs [Laber and Zhao, 2015, Zhang
et al., 2015, 2018a], among others. In clinical studies, right-censored survival data
are frequently observed as primary outcomes. Recent extensions of optimal ITR with
survival data have been established in Goldberg and Kosorok [2012], Cui et al. [2017],
Jiang et al. [2017], Bai et al. [2017], Díaz et al. [2018], Zhou et al. [2023a].

Researchers have investigated using machine learning algorithms to estimate the
optimal ITR from large classes, which cannot be indexed by a finite-dimensional
parameter [Luedtke and van der Laan, 2016b,c]. One typical instance is that the optimal
ITR can be learned from the blip function, which is defined as the additive effect of
a blip in treatment on a counterfactual outcome, conditional on baseline covariates
[Robins, 2004]; and most existing regression or supervised learning methods can be
directly applied [Künzel et al., 2019]. However, the ITRs learned by machine learning
methods can be too complex to inform policy-making and clinical practice; to facilitate
the integration of data-driven ITRs into practice, it is crucial that estimated ITRs be
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interpretable and parsimonious [Zhang et al., 2015].

Recently, there has been increasing interest in combining heterogeneous data
sources, such as leveraging the complementary features of RCT data and a large
OS. For example, in biomedical studies and policy research, RCTs are deemed as the
gold standard for treatment effects evaluation. However, due to inclusion or exclusion
criteria, data availability, and study design, the enrolled participants in RCT who form
the source sample may have systematically different characteristics from the target
population. Therefore, findings from RCTs cannot be directly extended to the target
population of interest [Cole and Stuart, 2010, Dahabreh and Hernán, 2019]. See also
Colnet et al. [2020] and Degtiar and Rose [2021] for detailed reviews. Heterogeneity
in the populations is of great relevance, and a covariate shift usually exists where the
covariate distributions differ between the source and target populations; thus, the
optimal ITR for the source population is not necessarily optimal for the target popula-
tion. Zhao et al. [2019] uses data from a single trial study and proposes a two-stage
procedure to derive a robust and parsimonious rule for the target population; Mo et al.
[2021] proposes a distributionally robust framework that maximizes the worst-case
value function under a set of distributions that are “close" to the training distribu-
tion; Kallus [2021] tackles the lack of overlap for different actions in policy learning
based on retargeting; Wu and Yang [2022] and Chu et al. [2022] develop a calibration
weighting framework that tailors a targeted optimal ITR by leveraging the individual
covariate data or summary statistics from a target population; Sahoo et al. [2022] uses
distributionally robust optimization and sensitivity analysis tools to learn a decision
rule that minimizes the worst-case risk incurred under a family of test distributions.
However, these methods focus on continuous or binary outcomes and only consider a
single sample for worst-case riskminimization; the extension to right-censored survival
outcomes within the data integration context has not been studied.

In this paper, we propose a new transfer learning method of finding an optimal
ITR from a restricted ITR class under the super population framework where the
source sample is subject to selection bias and the target sample is representative of the
target population with a known sampling mechanism. Specifically, in our value search
method, the value function accommodates a broad class of functionals of survival
distributions, including survival probabilities and RMSTs. We characterize the efficient
influence function (EIF) of the value function and propose the augmented estimator,
which involves models for the survival outcome, propensity score, censoring and
sampling processes. The proposed estimator is doubly robust in the sense that it
is consistent if either the survival outcome model or the models of the propensity
score, censoring, and sampling are correctly specified and is locally efficient when
all models are correct. We also consider flexible data-adaptive machine learning
algorithms to estimate the nuisance parameters and use the cross-fitting procedure to
drawvalid inferences undermild regularity conditions and a certain rate of convergence
conditions. As we consider a restricted class of ITRs indexed by a Euclidean parameter
η, we also establish the N−1/3 convergence rate of η̂, even though its resultant limiting
distribution is not standard, and thus very challenging to characterize. Based on this
rate of convergence, we show that the proposed estimator for the target value function is
consistent and asymptotically normal, even with flexible machine learning methods for
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nuisance parameter estimation. Interestingly, when the covariate distributions of the
source and target populations are the same, i.e., no covariate shift, the semiparametric
efficiency bounds of our method and the standard doubly robust method [Bai et al.,
2017] are equal. Moreover, if the true optimal ITR belongs to the restricted class of
ITRs, the standard doubly robust method can still learn the optimal ITR despite the
covariate shift, but only our method provides valid statistical inference for the value
function.

The rest of our paper is organized as follows. In Section 8.2, we introduce the
statistical framework of causal survival analysis and transfer learning of optimal ITR.
Section 9.1 develops the main methodology of learning the value function and asso-
ciated optimal ITR. Section 9.2 establishes the asymptotic properties of the proposed
value estimator. Extensive simulations are reported in Section 10.1 to demonstrate
the empirical performance of the proposed method, followed by a real data applica-
tion given in Section 10.2. The article concludes in Section 10.3 with a discussion of
some remarks and future work. All proofs and additional results are provided in the
Supplementary Material.

8.2 Statistical Framework

8.2.1 Causal survival analysis

Let X denote the p-dimensional vector of covariates that belongs to a covariate
space X ⊂ Rp, A ∈ A = {0, 1} denote the binary treatment, and T ∈ R+ denote the
survival time to the event of interest. In the presence of right censoring, the outcome
T may not be observed. Let C ∈ R+ denote the censoring time and ∆ = I{T ≤ C}
where I{·} is the indicator function. Let U = min{T,C} be the observed outcome,
N(t) = I{U ≤ t,∆ = 1} the counting process, and Y (t) = I{U ≥ t} the at-risk process.

We use the potential outcomes framework [Neyman, 1923, Rubin, 1974], where
for a ∈ A = {0, 1}, T (a) is the survival time had the subject received treatment a. The
common goal in causal survival analysis is to identify and estimate the counterfactual
quantity E[y(T (a))] for some deterministic transformation function y(·). Such trans-
formations include y(T ) = min(T, L) for the RMST with some pre-specified maximal
time horizon L, and y(T ) = I{T ≥ t} for the survival probability at time t.

Under the standard assumptions (a) consistency: T = T (A), (b) positivity: Pr(A =
a |X) > 0 for every a ∈ A almost surely, (c) unconfoundedness: A ⊥⊥ {T (1), T (0)} |X ,
(d) conditionally independent censoring: C ⊥⊥ {T (1), T (0)} | {X,A}, we can nonpara-
metrically identify E[y(T (a))] by the outcome regression (OR) formula or the inverse
probability weighting (IPW) formula [Van der Laan and Robins, 2003].

8.2.2 ITR and value function

Without loss of generality, we assume that larger values of T are more desirable.
Typically we aim to identify and estimate an ITR d(x) : X → A, which is a mapping
from the covariate space X to the treatment space A = {0, 1}, that maximizes the
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expected outcome in a counterfactual world had this ITR been implemented. Suppose
D is the class of candidate ITRs of interest, then define the potential outcome T (d) under
any d ∈ D by T (d) = d(X)T (1)+(1−d(X))T (0), and the value function [Manski, 2004]
of d is defined by V (d) = E[y(T (d))]. Then by maximizing V (d) overD, the optimal ITR
is defined by dopt = arg maxd∈D V (d). See Qian and Murphy [2011] for more details.

To estimate the value function, we can use the OR or IPW formulas, and also a
doubly robust method [Bai et al., 2017]:

VDR(d) =E
[

I{A = d(X)}∆ y(U)
Pr(A = d(X) |X)SC(U |A,X)

+
(

1− I{A = d(X)}
Pr(A = d(X) |X)

)
E[y(T ) |A = d(X), X]

+ I{A = d(X)}
Pr(A = d(X) |X)

∫ ∞

0

dMC(u |A,X)
SC(u |A,X) E[y(T ) |T ≥ u,A,X]

]
,

(8.1)

where SC(t | a, x) = Pr(C > t |A = a,X = x) is the conditional survival function
for the censoring process, dMC(u |A = a,X) = dNC(u) − Y (u)dΛC(u |A = a,X) is
the martingale increment for the censoring process, NC(u) = I{U ≤ u,∆ = 0} and
ΛC(u |A = a,X) = − log(SC(u |A = a,X)). The first term in (8.1) is the IPW formula,
and the augmentation terms capture additional information from the subjects who do
not receive treatment d, and who receive treatment d but are censored.

In (clinical) practice, it is usually desirable to consider a class of ITRs indexed by a
Euclidean parameter η = (η1, . . . , ηp+1)T ∈ Rp+1 for feasibility and interpretability. Let
V (η) = V (dη). Throughout, we focus on such a class of linear ITRs:

Dη = {dη : dη(X) = I{ηT X̃ ≥ 0}, |ηp+1| = 1},

where X̃ = (1, XT )T , and for identifiability we assume there exists a continuous
covariate whose coefficient has absolute value one [Zhou et al., 2023a]; without loss
of generality, we assume |ηp+1| = 1. Therefore, the population parameter η∗ indexing
the optimal ITR is η∗ = arg maxη∈{η∈Rp+1:|ηp+1|=1} V (η), and the optimal value function
is V (η∗).

8.2.3 Transfer learning
The performance of such a learned ITR may suffer from a covariate shift in which

the population distributions differ [Sugiyama and Kawanabe, 2012]. Instead of mini-
mizing the worst-case risk, here we consider a super population framework. Suppose
that a source sample of size n and a target sample of sizem are sampled independently
from the target super population with different mechanisms. Let IS and IT denote the
indicator of sampling from source and target populations, respectively. A covariate
shift means that Pr(IS = 1 |X) ̸= Pr(IT = 1 |X). In the source sample, independent
and identically distributed (i.i.d.) data Os = {Xi, Ai, Ui,∆i, IS,i = 1, IT,i = 0}n

i=1 are
observed from n subjects; in the target sample, it is common that only the covariates in-
formation is available, so i.i.d. dataOt = {Xi, IS,i = 0, IT,i = 1}n+m

i=n+1 are observed from
m subjects. The sampling mechanism and data structure are illustrated in Figure 8.1.
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8.2. Statistical Framework

Figure 8.1 – Schematic of the data structure of the source and target samples within the target super
population framework.

Target super population

Finite population {T (1), T (0), X} Finite population {T (1), T (0), X}

Source sampling IS Target sampling IT

Complete source sample
{Ti(1), Ti(0), Xi, IS,i = 1, IT,i = 0}n

i=1

Complete target sample
{Ti(1), Ti(0), Xi, IS,i = 0, IT,i = 1}n+m

i=n+1

Treatment assignment A
Censoring C Only observe covariates X

Observed source sample
{Xi, Ai, Ui,∆i, IS,i = 1, IT,i = 0}n

i=1

Observed target sample
{Xi, IS,i = 0, IT,i = 1}n+m

i=n+1

In this framework, we assume that the source and target sampling mechanisms
are independent, which holds if two separate studies are conducted independently
by different research projects in different locations or in two separate time periods,
and the target population is sufficiently large. In the context of combining the RCT
and observational study, this framework corresponds to the non-nested study design
[Dahabreh et al., 2021].
Remark 8.2.1. In the framework illustrated in Figure 8.1, we also assume the existence
of the finite population of size N , which helps us clarify the sampling mechanism and
identification strategy. The two separate finite populations exemplify the independence
of the source and target sampling processes. We present the identification formulas in
Section 9.1; however, we do not require N to be fixed and known. Equivalently, it is
also possible to assume a pooled population consisting of a source population and a
target population, and similar identification formulas can be proposed based on the
density ratio of the two populations.
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CHAPTER 9

TRANSFER LEARNING

9.1 Methodology

9.1.1 Identification and semiparametric efficiency

To identify the causal effects from the observed data, we make the following as-
sumptions.
Assumption 9.1.1. (a) T = T (A) almost surely. (b) Pr(A = a |X, IS = 1) > 0 for every
a almost surely. (c)A ⊥⊥ {T (1), T (0)} | {X, IS = 1}. (d)C ⊥⊥ {T (1), T (0)} | {X,A, IS =
1}.

Assumption 9.1.1 includes the standard assumptions as we have introduced in
Section 8.2.1. Herewe only assume them in the source population. Assumption 9.1.1(a)
implies that the observed outcome is the potential outcome under the actual assigned
treatment. Assumption 9.1.1(b) states that each subject has a positive probability of
receiving both treatments. Assumption 9.1.1(c) requires that all confounding factors
are measured so that treatment assignment is as good as random conditionally on X .
Assumption 9.1.1(d) essentially states that the censoring process is non-informative
conditionally on X . Furthermore, we require additional assumptions for the source
and target populations.
Assumption 9.1.2 (Survival mean exchangeability). E[y(T (a)) |X, IS = 1] =
E[y(T (a)) |X] for every a ∈ A.
Assumption 9.1.3 (Positivity of Source Inclusion). 0 < Pr(IS = 1 |X) < 1 almost
surely.
Assumption 9.1.4 (Known target design). The target sample design weight e(x) =
π−1

T (x) = 1/Pr(IT = 1 |X = x) is known by design.
Assumption 9.1.2 is similar to the mean exchangeability over trial participation

[Dahabreh et al., 2019], and is weaker than the ignorablility assumption [Stuart et al.,
2011], i.e., IS ⊥⊥ {T (1), T (0)} |X . Assumption 9.1.3 states that each subject has a
positive probability to be included in the source sample, and implies adequate overlap
of covariate distributions between the source and target populations. Assumption 9.1.4
is commonly assumed in the survey sampling literature; thus the design-weighted
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target sample is representative of the target population. In an observational study with
simple random sampling, we have e(x) = N/m, where N is the target population size.

Under this framework, we have the following key identity that for any g(X)

E
[

IS

πS(X)g(X)
]

= E[IT e(X)g(X)] = E[g(X)], (9.1)

where πS(X) = Pr(IS = 1 |X) is the sampling score.
Proposition 9.1.5 (Identification formulas). Under Assumptions 9.1.1 - 9.1.4, the value
function V (d) can be identified by the outcome regression formula:

V (d) = E[IT e(X)E[y(T ) |A = d(X), X, IS = 1]], (9.2)

and the IPW formula:

V (d) = E
[

IS

πS(X)
I{A = d(X)}

πd(X)
∆ y(U)

SC(U |A,X)

]
, (9.3)

where πd(X) = d(X)πA(X) + (1− d(X))(1− πA(X)) with the propensity score πA(X) =
Pr(A = 1 |X, IS = 1), and SC(t | a, x) = Pr(C > t |A = a,X = x, IS = 1).

Based on the identification formulas (9.2) and (9.3), we can construct plug-in
estimators for V (d), using the sampling score πS(X) or design weights e(X) to account
for the sampling bias. By the identity (9.1), the design weights IT e(X) in the OR
formula (9.2) with the target sample can also be replaced by the inverse of sampling
score IS/πS(X) using the source sample. However, these estimators are biased if the
posited models are misspecified, and extreme weights from πS, πA and SC usually
lead to large variability. Therefore, we consider a more efficient and robust approach,
motivated by the efficient influence function for V (d).
Proposition 9.1.6. Under Assumptions 9.1.1 - 9.1.4, the efficient influence function of V (d) is

ϕd = IS

πS(X)
I{A = d(X)}

πd(X)
∆ y(U)

SC(U |A,X) − V (d)

+
(
IT e(X)− IS

πS(X)
I{A = d(X)}

πd(X)

)
µ(d(X), X)

+ IS

πS(X)
I{A = d(X)}

πd(X)

∫ ∞

0

dMC(u |A,X)
SC(u |A,X) Q(u,A,X).

(9.4)

where µ(a, x) = E[y(T ) |A = a,X = x, IS = 1] and Q(u, a, x) = E[y(T ) |T ≥ u,A =
a,X = x, IS = 1] 1.

The semiparametric EIF guides us in constructing efficient estimators combining the
source and target samples. Compared to (8.1), this EIF captures additional covariates
information from the target population via the outcome model and thus removes the
sampling bias. An efficient estimation procedure is proposed in the next section, and

1. Note that E[y(T ) |T ≥ u, A, X] = −
∫∞

u
y(s) dS(s |A, X)/S(u |A, X). For instance, when y(T ) =

I{T ≥ t}, we have E[y(T ) |T ≥ u, A, X] = S(t |A, X)/S(u |A, X) for u ≤ t.
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we show that it enjoys the double robustness property, i.e., it is consistent if either the
survival outcome models µ(a, x), Q(u, a, x) or the models of propensity score πA(x),
sampling score πS(x) and censoring process SC(t | a, x) are correct. Moreover, this EIF
is Neyman orthogonal in the sense discussed in Chernozhukov et al. [2018]. Therefore,
a cross-fitting procedure is also proposed, allowing flexible machine learning methods
for the nuisance parameters estimation, and

√
N rate of convergence can be achieved.

9.1.2 An efficient and robust estimation procedure
In this section, we focus on estimating the survival function Sd(t) = Pr(T (d) > t)

as the value function under ITR d. Following the asymptotic linear characterization of
survival estimands in Yang et al. [2021], our results are readily extended to a broad
class of functionals of survival distributions. For instance, the value function of the
RMST under ITR d is simply ∫ L

0 Sd(t)dt.
Based on the EIF (9.4), we propose an estimator for the survival function

Ŝd(t) = 1
N

N∑
i=1

{
IS,i

π̂S(Xi)
I{Ai = d(Xi)}

π̂d(Xi)
∆i Yi(t)

ŜC(t |Ai, Xi)

+
(
IT,i e(Xi)−

IS,i

π̂S(Xi)
I{Ai = d(Xi)}

π̂d(Xi)

)
Ŝ(t |A = d(Xi), Xi)

+ IS,i

π̂S(Xi)
I{Ai = d(Xi)}

π̂d(Xi)

∫ ∞

0

Ŝ(t |Ai, Xi)dM̂C(u |Ai, Xi)
Ŝ(u |Ai, Xi)ŜC(u |Ai, Xi)

}
,

(9.5)

where S(t | a, x) = Pr(T > t |A = a,X = x, IS = 1) is the treatment-specific condi-
tional survival function. We posit (semi)parametric models for the nuisance parame-
ters. Let πA(X; θ) be the posited propensity score model, for example, using logistic
regression logit{πA(X; θ)} = θTX̃, where logit(x) = log{x/(1 − x)}. We use the Cox
proportional hazard model Λ(t |A = a,X = x) = Λ0,a(t) exp(βT

a x) to estimate the
survival functions S(t | a, x) = exp{−Λ(t | a, x)} and the cumulative baseline hazard
function Λ0,a(t) =

∫ t
0 λ0,a(u)du can be estimated by the Breslow estimator [Breslow,

1972]. Similarly, we posit a Cox proportional hazard model for the censoring process
ΛC(t |A = a,X = x) = ΛC0,a(t) exp(αT

a x), and the cumulative baseline hazard func-
tion ΛC0,a(t) is estimated by the Breslow estimator. The sampling score estimation is
discussed in the next section.

Let Ŝ(t; η) = Ŝdη(t) be the estimated value function for the ITR class Dη, then the
optimal ITR is given by dη̂(x), where η̂ = arg maxη Ŝ(t; η).

9.1.3 Calibration weighting
To correct the bias due to the covariate shift between populations, most existing

methods directly model the sampling score [Cole and Stuart, 2010], i.e., inverse proba-
bility of samplingweighting (IPSW). However, the IPSWmethod requires the sampling
score model to be correctly specified, and it could also be numerically unstable. Al-
ternatively, we introduce the calibration weighting (CW) approach motivated by the
identity (9.1), which is similar to the entropy balancing method [Hainmueller, 2012].
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Let g(X) be a vector of functions of X to be calibrated, such as the moments,
interactions, and non-linear transformations of X . Each subject i in the source sample
is assigned a weight qi by solving the following optimization task:

min
q1,...,qn

n∑
i=1

qi log qi, (9.6)

subject to qi ≥ 0,
n∑

i=1
qi = 1,

n∑
i=1

qig(Xi) = g̃, (9.7)

where g̃ = ∑n+m
i=n+1 e(Xi)g(Xi)/

∑n+m
i=n+1 e(Xi) is a design-weighted estimate of E[g(X)].

The objective function (9.6) is the negative entropy of the calibration weights, which en-
sures that the empirical distribution of the weights is not too far away from the uniform,
such that it minimizes the variability due to heterogeneousweights. The final balancing
constraint in (9.7) calibrates the covariate distribution of the weighted source sample to
the target population in terms of g(X). By introducing the Lagrange multiplier λ, the
minimizer of the optimization task is qi = exp{λ̂T g(Xi)}/

∑n
i=1 exp{λ̂T g(Xi)}, where

λ̂ solves the estimating equation ∑n
i=1 exp{λT g(Xi)}{g(Xi) − g̃} = 0. Since we only

require specifying g(X), calibration weighting avoids explicitly modeling the sampling
score and evades extreme weights.

Moreover, suppose that the sampling score follows a loglinear model πS(X;λ) =
exp{λT X̃}, Lee et al. [2021, 2022] show that there is a direct correspondence between
the calibration weights and the estimated sampling score, i.e., qi = {NπS(Xi; λ̂)}−1 +
op(N−1). We also note that if the fraction n/N is small, the loglinear model is close to
the widely used logistic regression model; our simulation studies show the robustness
of calibration weights.
Remark 9.1.7. Other objective functions can also be used for calibration weights es-
timation. Chu et al. [2022] considers a generic convex distance function h(q) from
the Cressie and Read family of discrepancies [Cressie and Read, 1984]. Thus the
optimization task is minq1,...,qn

∑n
i=1 h(qi) under the constraints (9.7), and the correspon-

dence between the sampling score model πS and the objective function h has also been
established.

9.1.4 Cross-fitting

Utilizing the Neyman orthogonality of EIF (9.4), we consider flexible machine
learning methods for estimating the nuisance parameters, where we want to remain
agnostic onmodeling assumptions for the complex treatment assignment, survival, and
censoring processes. There is extensive recent literature on nonparametric methods for
heterogeneous treatment effect estimation with survival outcomes. Cui et al. [2020]
extends the generalized random forests [Athey et al., 2019] to estimate heterogeneous
treatment effects in a survival and observational setting. See Xu et al. [2022] for details
and practical considerations. A description of the proposed cross-fitting procedure
is given below [Schick, 1986, Chernozhukov et al., 2018]. Throughout, we use the
subscript CF to denote the cross-fitted version.
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Algorithm 1: Pseudo algorithm for the cross-fitting procedure
Step 1 Randomly split the datasets Os and Ot respectively into K-folds with equal

size such that Os = ∪K
k=1Os,k,Ot = ∪K

k=1Ot,k. For each k ∈ {1, . . . , K}, let
Oc

s,k = Os\Os,k,Oc
t,k = Os\Ot,k.

Step 2 For each k ∈ {1, . . . , K}, estimate the nuisance parameters only using data Oc
s,k

and Oc
t,k; then obtain an estimate of the value function V̂CF,k(η) using data Os,k.

Step 3 Aggregate the estimates from K folds: V̂CF (η) = 1
K

∑K
k=1 V̂CF,k(η).

Step 4 The estimated optimal ITR is indexed by η̂ = arg maxη V̂CF (η).

9.2 Asymptotic properties

In this section, we present the asymptotic properties of the proposed methods. To
establish the asymptotic properties, we require the following assumptions.

Assumption 9.2.1. (i) The value function V (η) is twice continuously differentiable in a
neighborhood of η∗. (ii) There exists some constant δ0 > 0 such that Pr(0 < |X̃Tη| <
δ) = O(δ), where the big-O term is uniform in 0 < δ < δ0.

Condition (i) is a standard regularity condition to establish uniform convergence.
Similar margin conditions as (ii), which state that Pr(0 < |γ(X)| < δ) = O(δα) 2,
are often assumed in the literature of classification [Tsybakov, 2004, Audibert and
Tsybakov, 2007], reinforcement learning [Farahmand, 2011, Hu et al., 2021] and optimal
treatment regimes [Luedtke and van der Laan, 2016b, Luedtke and Chambaz, 2020], to
guarantee a fast convergence rate. Note that α = 0 imposes no restriction, which allows
γ(X) = 0 almost surely, i.e., the challenging setting of exceptional laws where the
optimal ITR is not uniquely defined [Robins, 2004, Robins and Rotnitzky, 2014], while
the case α = 1 is of particular interest and would hold if γ(X) is absolutely continuous
with bounded density.

Theorem 9.2.2. Under Assumptions 9.1.1 - 9.2.1 and standard regularity conditions provided
in the Supplementary Material, if either the survival outcome model, or the models of the
propensity score, the sampling score and the censoring process are correct, we have that as
N → ∞, (i) Ŝ(t; η) → S(t; η) for any η and 0 < t ≤ L; (ii)

√
N
{
Ŝ(t; η)− S(t; η)

}
converges weakly to a mean zero Gaussian process for any η; (iii) N1/3 ∥η̂ − η∗∥2 = Op(1);
(iv)
√
N
{
Ŝ(t; η̂)− S(t; η∗)

}
→ N (0, σ2

t,1), where σt,1 is given in the SupplementaryMaterial.

Next, to characterize the asymptotic behavior of the estimator with the nonpara-
metric estimation of nuisance parameters, we assume the following consistency and
convergence rate conditions of the nonparametric plug-in nuisance estimators.

Assumption 9.2.3. Assume the following convergences in probability: supx∈X |π̂A(x)−

2. Let γ(X) = E[T |A = 1, X]−E[T |A = 0, X] denote the conditional average treatment effect, then
the optimal ITR in an unrestricted class is given by d(X) = I{γ(X) > 0}.
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πA(x)| → 0, supx∈X |π̂S(x)− πS(x)| → 0, and for a = 0, 1,

sup
x∈X ,u≤h

|ŜC(u | a, x)− SC(u | a, x)| → 0, sup
x∈X ,u≤h

∣∣∣∣∣∣ λ̂C(u | a, x)
ŜC(u | a, x)

− λC(u | a, x)
SC(u | a, x)

∣∣∣∣∣∣→ 0,

sup
x∈X
|µ̂(a, x)− µ(a, x)| → 0, sup

x∈X ,u≤h
|Q̂(u, a, x)−Q(u, a, x)| → 0;

and the following rates of convergence: E [supx∈X |π̂A(x)− πA(x)|] = op(n−1/4),
E [supx∈X |π̂S(x)− πS(x)|] = op(n−1/4), and for a = 0, 1,

sup
u≤h

E
[
sup
x∈X

∣∣∣ŜC(u | a, x)− SC(u | a, x)
∣∣∣] = op(n−1/4),

sup
u≤h

E

sup
x∈X

∣∣∣∣∣∣ λ̂C(u | a, x)
ŜC(u | a, x)

− λC(u | a, x)
SC(u | a, x)

∣∣∣∣∣∣
 = op(n−1/4),

E
[
sup
x∈X
|µ̂(a, x)− µ(a, x)|

]
= o(n−1/4), sup

u≤h
E
[
sup
x∈X
|Q̂(u, a, x)−Q(u, a, x)|

]
= o(n−1/4).

The rate conditions in Assumption 9.2.3 are generally assumed in the literature
[Kennedy, 2022]. This rate can be achieved by many existing methods under certain
structural assumptions on the nuisance parameters. Note that the nuisance parameters
do not necessarily need to be estimated at the same rates n−1/4 for our theorems to
hold; it would suffice that the product of rates of any combination of two nuisance
parameters is n−1/2.
Theorem 9.2.4. Under Assumptions 9.1.1 - 9.2.3, we have that as N → ∞, (i)
ŜCF (t; η) → S(t; η) for any η and 0 < t ≤ L; (ii)

√
N
{
ŜCF (t; η)− S(t; η)

}
converges

weakly to a mean zero Gaussian process for any η; (iii) N1/3∥η̂ − η∗∥2 = Op(1); (iv)√
N
{
ŜCF (t; η̂)− S(t; η∗)

}
→ N (0, σ2

t,2), where σt,2 is given in the Supplementary Mate-
rial.

Besides the survival functions, another common measure of particular interest
in survival analysis is the RMST. Let VRMST(η) = E[min(T (dη), L)]. We present two
corollaries.
Corollary 9.2.5. Under Assumptions 9.1.1 - 9.2.1 and standard regularity conditions pro-
vided in the Supplementary material, if either the survival outcome model or the models
of the propensity score, the censoring and sampling processes are correct, we have that
as N → ∞, (i) V̂RMST(η) → VRMST(η) for any η; (ii) N1/3∥η̂ − η∗∥2 = Op(1); (iii)√
N
{
V̂RMST(η̂)− VRMST(η∗)

}
→ N (0, σ2

3), where σ3 is given in the Supplementary Mate-
rial.
Corollary 9.2.6. Under Assumptions 9.1.1 - 9.2.3, we have that as N → ∞,
(i) V̂RMST,CF (η) → VRMST(η) for any η; (ii) N1/3∥η̂ − η∗∥2 = Op(1); (iii)√
N
{
V̂RMST,CF (η̂)− VRMST(η∗)

}
→ N (0, σ2

4), where σ4 is given in the Supplementary Mate-
rial..
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Finally, we show that when the covariate distributions of the source and target
populations are the same, the semiparametric efficiency bounds of V̂DR(η) and V̂CF (η)
are equal.
Theorem 9.2.7. Under Assumptions 9.1.1 - 9.2.3, when the covariate distributions of the source
and target populations are the same, both

√
N{V̂DR(η) − V (η)} and

√
N{V̂CF (η) − V (η)}

are asymptotically normal with mean zero and same variance.
Theorem 9.2.7 implies that when there is no covariate shift, our proposed estimator

does not lose efficiency in comparison to the original double robust estimator since
the augmentation term in EIF (9.4) from the target population, IT e(X)µ(d(X), X), is
asymptotically equal to this term evaluated on the source population in this case.

Moreover, when the covariate shift exists, we consider the optimal ITR dopt without
restriction on the ITR class.
Theorem 9.2.8. Under Assumptions 9.1.1 - 9.2.3, If dopt ∈ Dη, i.e., dopt = dη∗ , both the
maximizers of V̂DR(η) and V̂CF (η) converge to η∗. However, V̂DR(η) is a biased estimator of
V (η).

Theorem 9.2.8 implies if the true optimal ITR belongs to the restricted ITR class Dη,
standard methods, without accounting for the covariate shift, are still able to recover
the optimal ITR but fail to be consistent for the value function, due to the covariate
shift. And we can only rely on the proposed method to draw valid inferences.
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CHAPTER 10

NUMERICAL EXPERIMENTS AND
DISCUSSION

10.1 Simulation

In this section, we investigate the finite-sample properties of our method through
extensive numerical simulations 1.

Consider a target population of sample size N = 2 × 105. The covariates
(X1, X2, X3)T are generated from a multivariate normal distribution with mean 0, unit
variance with corr(X1, X3) = 0.2 and all other pairwise correlations equal to 0, and fur-
ther truncated below−4 and above 4 to satisfy regularity conditions. The target sample
is a random sample of sizem = 8000 from the target population. The sampling score
follows πS(X) = expit(−4.5− 0.5X1− 0.5X2− 0.4X3); thus the source sampling rate is
around 1.6%, and the source sample size around n = 3000. The treatment assignment
mechanism in the source sample follows πA(X) = expit(0.5 + 0.8X1 − 0.5X2).

The counterfactual survival times T (a) are generated according to the hazard func-
tions λ(t |A = 0, X) = exp(t) · exp(−2.5 − 1.5X1 −X2 − 0.7X3) and λ(t |A = 1, X) =
exp(t) · exp(−1−X1 − 0.9X2 −X3 − 2X2

2 +X1X3). The censoring time C is generated
according to the hazard functions λC(t |A = 0, X) = 0.04 exp(t) · exp(−1.6 + 0.8X1 −
1.1X2 − 0.7X3) and λC(t |A = 1, X) = 0.04 exp(t) · exp(−1.8− 0.8X1 − 1.7X2 − 1.4X3).
The resultant censoring rate is approximately 20%.

We consider the RMST with the maximal time horizon L = 4 as the value function.
To evaluate the performance of different estimators for optimal ITRs, we compute the
corresponding true value functions and percentages of correct decisions (PCD) for
the target population. Specifically, we generate a large sample with size Ñ = 1× 105

from the target population. The true value function of any ITR d(· ; η) is computed by
V (η) = Ñ−1∑Ñ

i=1 min{d(Xi ; η)Ti(1) + (1 − d(Xi ; η))Ti(0), L} and its associated PCD
is computed by 1− Ñ−1∑Ñ

i=1 |d(Xi ; η∗)− d(Xi ; η)|, where η∗ = arg maxη V (η).

We compare the following estimators for the RMST V̂ (η) =
∫ L

0 Ŝ(t; η)dt:

1. The R code to replicate all results is available at https://github.com/panzhaooo/
transfer-learning-survival-ITR.
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— Naive: ŜNaive(t; η) = 1
n

∑n
i=1

I{Ai=d(Xi)}
π̂d(Xi)

∆iYi(t)
ŜC(U | A,X) ; IPW formula (9.3)without using

the sampling score;
— IPSW: ŜIPSW(t; η) = 1

n

∑n
i=1

IS,i

π̂S(Xi)
I{Ai=d(Xi)}

π̂d(Xi)
∆iYi(t)

ŜC(U | A,X) ; IPW formula (9.3) where
the sampling score is estimated via logistic regression;

— CW-IPW: ŜCW-IPW(t; η) = ∑n
i=1 qi

I{Ai=d(Xi)}
π̂d(Xi)

∆iYi(t)
ŜC(U | A,X) IPW formula (9.3) where

the sampling score is estimated by calibration weighting;
— CW-OR: ŜCW-OR(t; η) = ∑n

i=1 qi Ŝ(t |A = d(Xi), Xi); OR formula (9.2) in combina-
tion with calibration weights by the identity (9.1);

— ORt: ŜORt(t; η) = 1
m

∑n+m
i=n+1 Ŝ(t |A = d(Xi), Xi); OR formula (9.2) evaluated on

the target sample;
— ACW: augmented estimator (9.5), where the sampling score is estimated by

calibration weighting.
Remark 10.1.1. Since the estimated value functions are non-convex and non-smooth,
multiple local optimal may exist in the optimization task, and many derivatives-based
algorithms do not work for this challenging setting. Here we utilize the genetic algo-
rithm implemented in the R package rgenoud [Mebane Jr and Sekhon, 2011], which
performswell in our numerical experiments. We refer toMitchell [1998] for algorithmic
details.

10.1.1 (Semi)parametric models

Wefirst consider the settingwhere the nuisance parameters are estimated by posited
(semi)parametric working models as introduced in Section 9.1.2. To assess the perfor-
mance of these estimators under model misspecification, we consider four scenarios:
(1) all models are correct, (2) only the survival outcome model is correct, (3) only the
survival outcome model is wrong, (4) all models are wrong. For the wrong sampling
model, the weights are estimated using calibration on eX1 . The wrong propensity score
model is fitted on eX3 . The wrong Cox models for survival and censoring times are
fitted on (eX1 , eX2 , eX3)T .

Figure 10.1 and Table 10.1 report the simulation results from 350 Monte Carlo
replications. Variance is estimated by a bootstrap procedure with B = 200 bootstrap
replicates. The proposed ACW estimator is unbiased in scenarios (1) - (3), and the
95% coverage probabilities approximately achieve the nominal level, which shows the
double robustness property.

10.1.2 Flexible machine learning methods

When utilizing flexible ML methods, we construct the cross-fitted ACW estimator
as introduced in Section 9.1.4. The data generation process is the same as above, except
that the censoring time C is generated according to the hazard functions λC(t |A =
0, X) = 0.2 exp(t) ·exp(−1.6+0.8X1−1.1X2−0.7X3) and λC(t |A = 1, X) = 0.2 exp(t) ·
exp(−1.8 − 0.8X1 − 1.7X2 − 1.4X3) which leads to an increased censoring rate of
approximately 33%, so there are enough observations to get an accurate estimate of
the censoring process. The propensity score is estimated by the generalized random
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Figure 10.1 – Boxplot of the estimated value, true value and PCD results of estimators under four model
specification scenarios. O: survival outcome, S: sampling score, A: propensity score, C: censoring; T:
True (correctly specified) model, W: Wrong (misspecified) model.
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Table 10.1 – Numerical results under four different model specification scenarios. Bias is the empirical
bias of point estimates; SD is the empirical standard deviation of point estimates; SE is the average
of bootstrap standard error estimates; CP is the empirical coverage probability of the 95% confidence
intervals.

Bias SD SE CP(%) Bias SD SE CP(%)
O:T / S:T, A:T, C:T O:T / S:W, A:W, C:W

Naive −0.8801 0.4595 0.2189 7.43 −0.3528 0.5024 0.4598 37.43
IPSW 0.0185 0.3685 0.2562 87.14 0.3377 0.7144 0.6958 98.29
CW-IPW 0.0378 0.3701 0.2498 88.29 0.3406 0.7144 0.6957 97.71
CW-OR 0.0047 0.0273 0.0286 96.29 −0.1312 0.0269 0.0279 0.57
ORt 0.0041 0.0258 0.0262 95.14 0.0035 0.0258 0.0262 95.71
ACW 0.0070 0.0380 0.0369 94.29 0.0055 0.0316 0.0334 95.43

O:W / S:T, A:T, C:T O:W / S:W, A:W, C:W
Naive −0.8801 0.4595 0.2207 6.86 −0.3528 0.5024 0.5018 38.57
IPSW 0.0185 0.3685 0.2486 87.71 0.3377 0.7144 0.7586 99.14
CW-IPW 0.0378 0.3701 0.2418 88.86 0.3406 0.7144 0.7570 98.57
CW-OR 0.0103 0.0370 0.0362 92.29 −0.2551 0.0366 0.0391 0.00
ORt 0.0094 0.0365 0.0355 94.00 0.0115 0.0328 0.0355 95.71
ACW −0.0010 0.0426 0.0419 93.14 0.2644 0.0422 0.0475 0.57
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forest. The conditional survival and censoring functions are estimated by the random
survival forest. The calibrationweighting uses calibration on the first- and second-order
moments of X .

First, we study the impact of sample sizes on the performance of the ML methods,
and simulation results are given in the Supplementary Material. With a small sample
size, the ACW estimator is largely biased, and the bias diminishes as the sample size
increases.

Next, we compare the performance of different estimators with target population
size N = 6× 105 and target sample sizem = 24000. Figure 10.2 shows the simulation
results from 200 Monte Carlo replications. The two IPW-based estimators are biased
and performpoorly due to the large variability ofweights. The twoOR-based estimators
have comparable performance as the ACW estimator in terms of PCD and true value
function but still suffer from the overfitting bias. Only the ACW estimator is consistent
and provides valid inferences.

Figure 10.2 – Boxplots of the estimated value, true value, and PCD of different estimators using flexible
ML methods.
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10.2 Real Data Analysis
In this section, to illustrate the proposed method, we study the sodium bicarbonate

therapy for patients with severe metabolic acidaemia in the intensive care unit by
leveraging the RCT data BICAR-ICU [Jaber et al., 2018] and the observational study
(OS) data from Jung et al. [2011]. Specifically, we consider the BICAR-ICU data as the
source sample and the observational study data as the target sample. The BICAR-ICU
is a multi-center, open-label, randomized controlled, phase 3 trial between May 5, 2015,
and May 7, 2017, which includes 387 adult patients admitted within 48 hours to the
ICU with severe acidaemia. The prospective, multiple-center observational study was
conducted over thirteen months in five ICUs, consisting of 193 consecutive patients
who presented with severe acidemia within the first 24 hours of their ICU admission.
Some heterogeneity exists between the two populations.

Both the RCT and OS datasets contain detailed measurements of ICU patients with
severe acidaemia. Motivated by the clinical practice and existing work in the medical
literature, we consider ITRs that depend on the following five variables: SEPSIS, AKIN,
SOFA, SEX, and AGE. A detailed description of the data preprocessing and variable
selection is given in the Supplementary Material. Table 10.2 summarizes the baseline
characteristics of the two datasets. The baseline covariates distribution of the patients
in the BICAR-ICU differs from the distribution in the observational study; specifically,
the BICAR-ICU patients have higher SOFA scores and the more frequent presence of
acute kidney injury and sepsis.
Table 10.2 – Summary of baseline characteristics of the BICAR-ICU trial sample and the OS sample.
Mean (standard deviation) for continuous and number (proportion) for the binary covariate.

SEPSIS AKIN SOFA SEX AGE
BICAR-ICU (n = 387) 236 (60.98%) 181 (46.77%) 10.12 (3.72) 237 (61.24%) 63.95 (14.41)
OS (m = 193) 99(51.30%) 75 (38.86%) 9.10 (4.54) 122 (63.21%) 62.73 (17.49)

We apply our proposed ACW estimator to learn the optimal ITR for the target
population. The calibration weights are estimated based on the means of continuous
covariates and the proportions of the binary covariates. The propensity score is esti-
mated using a logistic regression model, and the Cox proportional hazard model is
fitted for the survival outcome with all covariates. The censoring only occurred on the
28th day when the follow-up in ICU ends. We consider the class of linear ITRs that
depend on all five variables:
D = {I{η1+η2SEPSIS+η3AKIN+η4SOFA+η5SEX+η6AGE > 0} : η1, . . . , η6 ∈ R, |η6| = 1},
with the aim to maximize the RMST within 28 days in ICU stay. The estimated pa-
rameter indexing the optimal ITR is η̂ACW = (22.9,−36.1, 87.4,−9.8, 33.7, 1.0)T , which
leads to an estimated value function V̂ (η̂ACW) = 19.52 days, with confidence interval
[17.74, 21.30] given by 200 bootstraps. In contrast, we also use the standard double
robust method to estimate the optimal ITR for the RCT, indexed by η̂DR.RCT which
maximize the value function V̂DR(η) in (8.1) with y(T ) = min(T, 28). The estimated
value function is V̂ (η̂DR.RCT) = 15.37 days for the target population.
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10.3 Discussion
In this paper, we present an efficient and robust transfer learning framework for

estimating optimal ITR with right-censored survival data that generalizes well to the
target population. The proposed method can be improved or extended in several
directions for future work. Construction and estimation of optimal ITRs for multiple
decision points with censored survival data are challenging, taking into account the
timing of censoring, events and decision points [Jiang et al., 2017, Hager et al., 2018],
e.g., using a reinforcement learning method [Cho et al., 2020]. Furthermore, besides
the class of ITRs indexed by a Euclidean parameter, it may be possible to consider
other classes of ITRs, such as tree or list-based ITRs. The current work focus on value
functions in the form V (d) = E[y(T (d))] and can also be modified in case of optimizing
certain easy-to-interpret quantile criteria, which does not require specifying an outcome
regression model and is robust for heavy-tailed distributions [Zhou et al., 2023a]. And
relaxing the restrictive assumptions such as positivity [Yang and Ding, 2018a, Jin et al.,
2022] and unconfoundedness [Cui and Tchetgen Tchetgen, 2021, Qi et al., 2021] for
learning optimal ITRs is also a fruitful direction.
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CHAPTER A

APPENDIX TO PART II

A.1 Directed acyclic graphs

In this section, we present the directed acyclic graphs (DAGs) in Figures A.1 and
A.2 illustrating the causal structure of the proposed instrumented DiD. The IV Z is
associated with the trend in treatment A1 − A0, is independent of the unmeasured
confounders U0, U1, cannot have direct effect on the trend in outcome Y1− Y0, and does
not modofy the treatment effect. But in comparison to a standard IV, here Z is allowed
to have a direct effect on the outcomes Y0, Y1, as illustrated by the edges Z → Y0 and
Z → Y1 in Figure A.2.

Z A1 − A0 Y1 − Y0

X

U0, U1

Figure A.1 – DAG for instrumented DiD on the trend scale.

Z A0 Y0 A1 Y1

X

U0 U1

Figure A.2 – DAG for instrumented DiD over two time points.
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A.2 Proof of Theorem 2.3.8
In this section, we provide a proof of Theorem 2.3.8 for completeness. Similar proof

can be found at Ye et al. [2022].
We first note that

δY (X) = µY (1, 1, X)− µY (0, 1, X)− µY (1, 0, X) + µY (0, 0, X)
=

∑
z=0,1

(2z − 1)(E[Y | T = 1, Z = z,X]− E[Y | T = 0, Z = z,X])

=
∑

z=0,1
(2z − 1)(E[Y1(A1(z)) | T = 1, Z = z,X]− E[Y0(A0(z)) | T = 0, Z = z,X])

=
∑

z=0,1
(2z − 1)(E[Y1(A1(z)) | Z = z,X]− E[Y0(A0(z)) | Z = z,X])

=
∑

z=0,1
(2z − 1)E[Y1(A1(z))− Y0(A0(z)) | Z = z,X]

=
∑

z=0,1
(2z − 1)E[A1(z)Y1(1) + (1− A1(z))Y1(0)− A0(z)Y0(1)− (1− A0(z))Y0(0) | Z = z,X]

=
∑

z=0,1
(2z − 1)E[A1(z)(Y1(1)− Y1(0))− A0(z)(Y0(1)− Y0(0)) + Y1(0)− Y0(0) | Z = z,X]

=
∑

z=0,1
(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X]− E[A0(z)(Y0(1)− Y0(0)) | X] + E[Y1(0)− Y0(0) | X])

= E[(A1(1)− A1(0))(Y1(1)− Y1(0)) | X]− E[(A0(1)− A0(0))(Y0(1)− Y0(0)) | X]
= E[A1(1)− A1(0) | X]E[Y1(1)− Y1(0) | X]− E[A0(1)− A0(0) | X]E[Y0(1)− Y0(0) | X]
= E[A1(1)− A1(0)− A0(1) + A0(0) | X]τ(X).

Then note that

δA(X) = µA(1, 1, X)− µA(0, 1, X)− µA(1, 0, X) + µA(0, 0, X)
=

∑
z=0,1

(2z − 1)(E[A | T = 1, Z = z,X]− E[A | T = 0, Z = z,X])

=
∑

z=0,1
(2z − 1)(E[A1(z) | T = 1, Z = z,X]− E[A0(z) | T = 0, Z = z,X])

= E[A1(1)− A1(0)− A0(1) + A0(0) | X].

Hence we have that δY (X) = δA(X)τ(X). That is, the CATE τ(X) can be identified
by δY (X)/δA(X). It follows that the optimal policy is nonparametrically identified by

arg max
d∈D

E[τ(X)d(X)] = arg max
d∈D

E

[
δY (X)
δA(X)d(X)

]
,

which completes the proof.

A.3 Proof of Theorem 2.3.9
In this section, we prove our first novel identification results of the optimal policy.
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First we note that

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

]

= E

 ∑
a=0,1

(2Z − 1)(2T − 1)(2a− 1)YT (a)I{A = a}I{d(X) = a}
π(T, Z,X)δA(X)


= E

 ∑
a=0,1

(2Z − 1)(2T − 1)(2a− 1)E[YT (a) | X,U ]I{A = a}I{d(X) = a}
π(T, Z,X)δA(X)


= E

 ∑
a=0,1

(2Z − 1)(2T − 1)(2a− 1)E[YT (a) | X,U ]Pr(A = a | X,U, T, Z)I{d(X) = a}
π(T, Z,X)δA(X)


= E

[
Pr(A = 1 | X,U, T = 1, Z = 1)I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]

− E
[
Pr(A = 1 | X,U, T = 0, Z = 1)I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]

− E
[
Pr(A = 1 | X,U, T = 1, Z = 0)I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]

+ E

[
Pr(A = 1 | X,U, T = 0, Z = 0)I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]

− E
[
Pr(A = 0 | X,U, T = 1, Z = 1)I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]

+ E

[
Pr(A = 0 | X,U, T = 0, Z = 1)I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]

+ E

[
Pr(A = 0 | X,U, T = 1, Z = 0)I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]

− E
[
Pr(A = 0 | X,U, T = 0, Z = 0)I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]

= E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]

+ E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]

− E
[

[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 1}E[Y0(1) | X,U ]
δA(X)

]

− E
[

[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 0}E[Y0(0) | X,U ]
δA(X)

]
.

Since we have that for t = 0, 1,

I{d(X) = 1}E[Yt(1) | X,U ] + I{d(X) = 0}E[Yt(0) | X,U ]
= d(X)(E[Yt(1) | X,U ]− E[Yt(0) | X,U ]) + E[Yt(0) | X,U ]
= d(X)τ(X) + E[Yt(0) | X,U ],
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we continue by Assumption 2.3.7 that

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

]
= E[d(X)τ(X)] + E[ν(X,U)],

where the second term E[ν(X,U)] does not depend on the policy d. That is,

arg max
d∈D

E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

]
= arg max

d∈D
E[τ(X)d(X)],

which completes the proof.

A.4 Proof of Theorem 2.3.10
In this section, we prove our second novel identification results of the optimal

policy.
First we note that

E

[
(2T − 1)Y I{Z = d(X)}

π(T, Z,X)δA(X)

]

= E

 ∑
a=0,1

(2T − 1)I{Z = d(X)}YT (a)I{A = a}
π(T, Z,X)δA(X)


= E

 ∑
a=0,1

(2T − 1)I{Z = d(X)}E[YT (a) | X,U ]Pr(A = a | X,U, T, Z)
π(T, Z,X)δA(X)


= E

[
Pr(A = 1 | X,U, T = 1, Z = 1)I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]

− E
[
Pr(A = 1 | X,U, T = 0, Z = 1)I{d(X) = 1}E[Y0(1) | X,U ]

δA(X)

]

+ E

[
Pr(A = 1 | X,U, T = 1, Z = 0)I{d(X) = 0}E[Y1(1) | X,U ]

δA(X)

]

− E
[
Pr(A = 1 | X,U, T = 0, Z = 0)I{d(X) = 0}E[Y0(1) | X,U ]

δA(X)

]

+ E

[
Pr(A = 0 | X,U, T = 1, Z = 1)I{d(X) = 1}E[Y1(0) | X,U ]

δA(X)

]

− E
[
Pr(A = 0 | X,U, T = 0, Z = 1)I{d(X) = 1}E[Y0(0) | X,U ]

δA(X)

]

+ E

[
Pr(A = 0 | X,U, T = 1, Z = 0)I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]

− E
[
Pr(A = 0 | X,U, T = 0, Z = 0)I{d(X) = 0}E[Y0(0) | X,U ]

δA(X)

]

= E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 1}E[Y1(1) | X,U ]

δA(X)

]
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+ E

[
[Pr(A = 1 | X,U, T = 1, Z = 1)− Pr(A = 1 | X,U, T = 1, Z = 0)]I{d(X) = 0}E[Y1(0) | X,U ]

δA(X)

]

− E
[

[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 1}E[Y0(1) | X,U ]
δA(X)

]

− E
[

[Pr(A = 1 | X,U, T = 0, Z = 1)− Pr(A = 1 | X,U, T = 0, Z = 0)]I{d(X) = 0}E[Y0(0) | X,U ]
δA(X)

]

+ E

[
Pr(A = 1 | X,U, T = 1, Z = 0)E[Y1(1) | X,U ] + Pr(A = 0 | X,U, T = 1, Z = 1)E[Y1(0) | X,U ]

δA(X)

]

− E
[
Pr(A = 1 | X,U, T = 0, Z = 0)E[Y0(1) | X,U ] + Pr(A = 0 | X,U, T = 0, Z = 1)E[Y0(0) | X,U ]

δA(X)

]
.

Then by the same arguments as in Section A.3, we have that

E

[
(2T − 1)Y I{Z = d(X)}

π(T, Z,X)δA(X)

]
= E[d(X)τ(X)] + E[ν̃(X,U)],

where the second term does not depend on the policy d. That is,

arg max
d∈D

E

[
(2T − 1)Y I{Z = d(X)}

π(T, Z,X)δA(X)

]
= arg max

d∈D
E[τ(X)d(X)],

which completes the proof.

A.5 Proof of Theorem 3.1.1

In this section, we prove our identification results of the optimal policy using the
efficient influence functions.

First we note that

E[W1I{A = d(X)}]

= 1
2E[W1(2I{A = d(X)} − 1)] + 1

2E[W1]

= 1
2E[W1(2A− 1)(2d(X)− 1)] + 1

2E[W1]

= 1
2E[∆(O)(2d(X)− 1)] + 1

2E[W1]

= E[∆(O)d(X)] + 1
2E[W1 −∆(O)]

= E[τ(X)d(X)] + 1
2E[W1 −∆(O)],

where the last equality holds under the union modelM1 ∪M2 ∪M3. The proof of the
multiple robustness is omitted since it simply follows the same arguments of Theorem
1 in Ye et al. [2022].
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We also note that

E[W2I{Z = d(X)}]

= 1
2E[W2(2I{Z = d(X)} − 1)] + 1

2E[W2]

= 1
2E[W2(2Z − 1)(2d(X)− 1)] + 1

2E[W2]

= 1
2E[∆(O)(2d(X)− 1)] + 1

2E[W2]

= E[∆(O)d(X)] + 1
2E[W2 −∆(O)]

= E[τ(X)d(X)] + 1
2E[W2 −∆(O)],

where the last equality holds under the union modelM1 ∪M2 ∪M3.

A.6 A locally efficient and multiply robust estimator
In this section, we present the semiparametric efficiency results for our proposed

IPW formula:

Ψ(P ) = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

]
.

We first characterize the efficient influence function, and then propose the multiply
robust estimator.
Theorem A.6.1. The efficient influence function of Ψ(P ) is

ϕP = (2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}
π(T, Z,X)δA(X)

− (2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T, Z,X]
π(T, Z,X)δA(X) + γ(X)

− (2Z − 1)(2T − 1)(A− µA(T, Z,X))γ(X)
π(T, Z,X)δA(X) −Ψ(P ),

where γ(x) = ∑
t,z(2z−1)(2t−1)E[(2A−1)Y I{A = d(X)} | T = t, Z = z,X = x]/δA(x).

By Theorem A.6.1, we conclude that the optimal policy is nonparametrically identi-
fied by arg maxD ψP , where

ψP = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

−(2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T, Z,X]
π(T, Z,X)δA(X) + γ(X)

−(2Z − 1)(2T − 1)(A− µA(T, Z,X))γ(X)
π(T, Z,X)δA(X)

]
.
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In Theorem A.6.2, we show the multiple robustness of the above formula under
models:
M̃1: models for π(t, z, x) and δA(x) are correct;
M̃2: models for π(t, z, x) and γ(x) are correct;
M̃3: models for µA(t, z, x), γ(x) and ν(t, z, x) are correct, where ν(t, z, x) = E[(2A −
1)Y I{A = d(X)} | T = t, Z = z,X = x].
Theorem A.6.2. Under standard regularity conditions, we have that

Pnψ(P̂ ) = Pn

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π̂(T, Z,X)δ̂A(X)

−(2Z − 1)(2T − 1)Ê[(2A− 1)Y I{A = d(X)} | T, Z,X]
π̂(T, Z,X)δ̂A(X)

+ γ̂(X)

−(2Z − 1)(2T − 1)(A− µ̂A(T, Z,X))γ̂(X)
π̂(T, Z,X)δ̂A(X)

]

is a consistent and asymptotically normal estimator of Ψ(P ) under the union model M̃1 ∪
M̃2 ∪ M̃3. Furthermore, it is locally efficient under the intersection model M̃1 ∩ M̃2 ∩ M̃3.

Despite the fact that we characterize the efficient influence function and propose a
multiply robust estimator, note that it is not straightforward to posit models for γ(x)
and ν(t, z, x).

A.7 Proof of Theorem A.6.1 and Theorem A.6.2

We first prove Theorem A.6.1 by deriving the efficient influence function.
For a given distribution P in the nonparametric statistical modelM, we let p denote

the density ofP with respect to somedominatingmeasure ν. For all boundedh ∈ L2(P ),
define the parametric submodel pϵ = (1 + ϵh)p, which is valid for small enough ϵ and
has score h at ϵ = 0.

We study the following statistical functional

Ψ(P ) = EP

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

]
,

and would establish that Ψ(P ) is pathwise differentiable with respect toM at P with
efficient influence function ϕP if we have that for any P ∈M

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣∣
ϵ=0

=
∫
ϕP (o)h(o)dP (o).

We denote πϵ(t, z, x) = EPϵ [I{T = t, Z = z} | X = x], δA,ϵ(x) = µA,ϵ(1, 1, x) −
µA,ϵ(0, 1, x) − µA,ϵ(1, 0, x) + µA,ϵ(0, 0, x), µA,ϵ(t, z, x) = EPϵ [A | T = t, Z = z,X = x],
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S = ∂ log pϵ/∂ϵ, and compute

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

πϵ(T, Z,X)δA,ϵ(X)

] ∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EP

[
(1 + ϵS)(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

πϵ(T, Z,X)δA,ϵ(X)

] ∣∣∣∣∣
ϵ=0

= EP

[
S

(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}
π(T, Z,X)δA(X)

]

− EP

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π2(T, Z,X)δ2
A(X)

(
δA(X) ∂

∂ϵ
πϵ(T, Z,X)

∣∣∣∣∣
ϵ=0

+π(T, Z,X) ∂
∂ϵ
δA,ϵ(X)

∣∣∣∣∣
ϵ=0

)]
.

Then we need to compute

∂

∂ϵ
πϵ(t, z,X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ [I{T = t, Z = z} | X]

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ

π(t, z,X) + ϵEP [SI{T = t, Z = z} | X]
1 + ϵEP [S | X]

∣∣∣∣∣
ϵ=0

= EP [SI{T = t, Z = z} | X]− π(t, z,X)EP [S | X],

∂

∂ϵ
δA,ϵ(X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
{µA,ϵ(1, 1, X)− µA,ϵ(0, 1, X)− µA,ϵ(1, 0, X) + µA,ϵ(0, 0, X)}

∣∣∣∣∣
ϵ=0
,

and
∂

∂ϵ
µA,ϵ(t, z,X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ [A | T = t, Z = z,X]

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ

µA(t, z,X) + ϵEP [SA | T = t, Z = z,X]
1 + ϵEP [S | T = t, Z = z,X]

∣∣∣∣∣
ϵ=0

= EP [SA | T = t, Z = z,X]− µA(t, z,X)EP [S | T = t, Z = z,X]

= EP

[
S

(A− µA(t, z,X))I{T = t, Z = z}
π(t, z,X) | X

]
.

In summary, we obtain the efficient influence function

ϕP = (2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}
π(T, Z,X)δA(X)

− (2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T, Z,X]
π(T, Z,X)δA(X) + γ(X)

− (2Z − 1)(2T − 1)(A− µA(T, Z,X))γ(X)
π(T, Z,X)δA(X) −Ψ(P ),

which completes the proof of Theorem A.6.1.
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Next, we prove Theorem A.6.2 by verifying the multiple robustness property.
We first note the facts that µA(T, Z,X) = µA(0, 0, x) + Z(µA(0, 1, x)− µA(0, 0, x)) +

T (µA(1, 0, x)−µA(0, 0, x))+TZδA(X), ν(T, Z,X) = ν(0, 0, x)+Z(ν(0, 1, x)−ν(0, 0, x))+
T (ν(1, 0, x)− ν(0, 0, x)) + TZδA(X), E[(2Z − 1)(2T − 1)/π(T, Z,X) | T,X] = E[(2Z −
1)(2T − 1)/π(T, Z,X) | Z,X] = 0, and E[γ(X)] = Ψ(P ).

If M̃1 is correctly specified, we have that

E[ϕP (O)] = E

[
(2Z − 1)(2T − 1)(A− µA(T, Z,X))γ(X)

π(T, Z,X)δA(X)

]

= E

[
(2Z − 1)(2T − 1)γ(X)
π(T, Z,X)δA(X) (A− µA(T, Z,X))

]
= 0.

If M̃2 is correctly specified, we have that

E[ϕP (O)] = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

−(2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T, Z,X]
π(T, Z,X)δA(X)

−(2Z − 1)(2T − 1)(A− µA(T, Z,X))γ(X)
π(T, Z,X)δA(X)

]
= 0.

If M̃3 is correctly specified, we have that

E[ϕP (O)] = E

[
(2Z − 1)(2T − 1)(2A− 1)Y I{A = d(X)}

π(T, Z,X)δA(X)

−(2Z − 1)(2T − 1)E[(2A− 1)Y I{A = d(X)} | T, Z,X]
π(T, Z,X)δA(X)

]
= 0,

which completes the proof.

A.8 Proof of Theorem 3.2.2

We study the following maximization problem:

η̂ = arg max
η∈H

1
n

n∑
i=1

δY (Xi; β̂)
δA(Xi; α̂) + (2Zi − 1)(2Ti − 1)

π(Ti, Zi, Xi; θ̂)δA(Xi; α̂)

{
Yi − µY (Ti, Zi, Xi; β̂)

−δY (Xi; β̂)
δA(Xi; α̂)(Ai − µA(Ti, Zi, Xi; α̂))


 d(Xi; η),

where α̂, β̂ and θ̂ are estimated by posited parametric models. We let M̂(η) denote the
estimated objective function above, i.e. η̂ = arg maxη∈H M̂(η).
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Under standard regularity conditions, we have that
√
n(α̂− α∗) = 1√

n

n∑
i=1

ϕα,i + op(1),

√
n(β̂ − β∗) = 1√

n

n∑
i=1

ϕβ,i + op(1),

√
n(θ̂ − θ∗) = 1√

n

n∑
i=1

ϕθ,i + op(1),

where α∗, β∗ and θ∗ are the probability limits, ϕα, ϕβ and ϕθ are the influence functions.
Now we start our proof which has three main parts as follows.
PART 1. First we note that, by the multiple robustness property, the strong law of

large numbers and uniform consistency, M̂(η) = M(η) + op(1).
We denote
M∗

n(η) = 1
n

n∑
i=1

(
δY (Xi; β∗)
δA(Xi;α∗) + (2Zi − 1)(2Ti − 1)

π(Ti, Zi, Xi; θ∗)δA(Xi;α∗) {Yi − µY (Ti, Zi, Xi; β∗)

−δY (Xi; β∗)
δA(Xi;α∗)(Ai − µA(Ti, Zi, Xi;α∗))

})
d(Xi; η),

and apply the Taylor expansion on M̂(η) at (α∗, β∗, θ∗),
M̂(η) = M∗

n(η) +HT
α∗(α̂− α∗) +HT

β∗(β̂ − β∗) +HT
θ∗(θ̂ − θ∗) + op(n−1/2),

where Hα∗ = limn→∞ ∂M̂(η)/∂α|α=α∗ , Hβ∗ = limn→∞ ∂M̂(η)/∂β|β=β∗ , and Hθ∗ =
limn→∞ ∂M̂(η)/∂θ|θ=θ∗ .

Hence, we obtain that
√
n
{
M̂(η)−M(η)

}
= 1√

n

n∑
i=1

(
M∗

n(η)−M(η) +HT
α∗ϕα,i +HT

β∗ϕβ,i +HT
θ∗ϕθ,i

)
+ op(1).

(A.1)
PART 2. We prove that n1/3∥η̂ − η∗∥2 = Op(1).
First we note that, by Condition 1 (iii),M(η) is twice continuously differentiable

at a neighborhood of η∗. In PART 1, we show that M̂(η) = M(η) + op(1),∀η. Since η̂
maximizes M̂(η), we have that M̂(η̂) ≥ supη M̂(η); thus by the Argmax theorem, we
obtain that η̂ p→ η∗ as n→∞.

Then we apply Theorem 14.4 (Rate of convergence) of Kosorok [2008] to establish
the n−1/3 rate of convergence of η̂, and need to find the suitable rate that satisfies three
conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ∥η − η∗∥2 < δ, by
Condition 1 (iii), we apply the second-order Taylor expansion,

M(η)−M(η∗) = M ′(η∗)∥η − η∗∥2 + 1
2M

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2)

= 1
2S

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2),
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and as S ′′(η∗) < 0, there exists c0 = −1
2S

′′(η∗) > 0 such that S(t; η) − S(t; η∗) ≤
c0∥η − η∗∥2

2.
Condition 2 For all n large enough and sufficiently small δ, we consider the centered

process M̂ −M , and have that

E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)−
{
M̂(η∗)−M(η∗)

}∣∣∣]

= E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η) +M∗

n(η)−M(η)−
{
M̂(η∗)−M∗

n(η∗) +M∗
n(η∗)−M(η∗)

}∣∣∣]

≤ E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η)−

{
M̂(η∗)−M∗

n(η∗)
}∣∣∣]

+ E∗
[
√
n sup

∥η−η∗∥2<δ
|M∗

n(η)−M(η)− {M∗
n(η∗)−M(η∗)}|

]
= (I) + (II),

where E∗(·) denote the outer expectation, and we bound (I) and (II) respectively as
follows.

Condition 2.1 To bound (II), we note that

M∗
n(η)−M∗

n(η∗) = 1
n

n∑
i=1

∆∗(Oi)(d(Xi; η)− d(Xi; η∗))

= 1
n

n∑
i=1

∆∗(Oi)(I{XT
i η > 0} − I{XT

i η
∗ > 0}),

where

∆∗(o) = δY (x; β∗)
δA(x;α∗)+ (2z − 1)(2t− 1)

π(t, z, x; θ∗)δA(x;α∗)

{
y − µY (t, z, x; β∗)− δY (x; β∗)

δA(x;α∗)(a− µA(t, z, x;α∗))
}
.

We define a class of functions

F1
η (o) =

{
∆∗(o)(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

and let B1 = sup |∆∗(o)|. By Assumption 2.3.2 and Condition 1, we have that B1 <∞.
When ∥η − η∗∥2 < δ, by Condition 1 (i), there exists a constant 0 < k0 < ∞ such

that |xT(η − η∗)| < k0δ. Furthermore, we show that |d(x; η) − d(x; η∗)| = |I{xTη >
0} − I{xTη∗ > 0}| ≤ I{−k0δ ≤ xTη∗ ≤ k0δ}, by considering the three cases:
— when −k0δ ≤ xTη∗ ≤ k0δ, we have |d(x; η) − d(x; η∗)| ≤ 1 = I{−k0δ ≤ xTη∗ ≤

k0δ};
— when xTη∗ > k0δ > 0, we have xTη = xT(η−η∗)+xTη∗ > 0, so |d(x; η)−d(x; η∗)| =

0 = I{−k0δ ≤ xTη∗ ≤ k0δ};
— when xTη∗ < −k0δ < 0, we have xTη = xT(η − η∗) + xTη∗ < 0, so |d(x; η) −

d(x; η∗)| = 0 = I{−k0δ ≤ xTη∗ ≤ k0δ}.
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Thuswe define the envelope ofF1
η asF1 = B1I{−k0δ ≤ xTη∗ ≤ k0δ}. By Condition 1

(iv), there exists a constant 0 < k1 <∞ such that

∥F1∥P,2 ≤ B1

√
Pr(−k0δ ≤ xTη∗ ≤ k0δ) ≤ B1

√
2k0k1δ

1/2 <∞.

By Lemma 9.6 and Lemma 9.9 of Kosorok [2008], we have that F1
η , a class of

indicator functions, is a Vapnik-Cervonenkis (VC) class with bounded bracketing
entropy J∗

[](1,F1
η ) <∞.

Next, we note that

GnF1
η = n−1/2

n∑
i=1

{
F1

η (Oi)− E[F1
η (O)]

}
=
√
n (M∗

n(η)−M∗
n(η∗)− {M(η)−M(η∗)}) ,

and by Theorem 11.2 of Kosorok [2008], we obtain that there exists a constant 0 < c1 <
∞,

(II) = E∗
[

sup
∥η−η∗∥2<δ

|GnF1
η |
]
≤ c1J

∗
[](1,F1

η )∥F1∥P,2 ≤ c1J
∗
[](1,F1

η )B1

√
2k0k1δ

1/2 = c̃1δ
1/2,

hence we conclude that (II) ≤ c̃1δ
1/2, where c̃1 > 0 is a finite constant.

Condition 2.2 To bound (I), first we note that

M̂(η)−M∗
n(η)− {M̂(η∗)−M∗

n(η∗)} = M̂(η)− M̂(η∗)− {M∗
n(η)−M∗

n(η∗)}

= 1
n

n∑
i=1

(d(Xi; η)− d(Xi; η∗))(∆̂(Oi)−∆∗(Oi)),

and then apply the Taylor expansion at (α∗, β∗, θ∗)

M̂(η)−M∗
n(η)− {M̂(η∗)−M∗

n(η∗)}

= 1
n

n∑
i=1

(d(Xi; η)− d(Xi; η∗))


g∗

1(Oi)
(
∂δA(Xi;α∗)

∂α

)T

+ g∗
2(Oi)

(
∂µA(Ti, Zi, Xi;α∗)

∂α

)T
 (α̂− α∗)

+
g∗

3(Oi)
(
∂δY (Xi; β∗)

∂β

)T

+ g∗
4(Oi)

(
∂µY (Ti, Zi, Xi; β∗)

∂β

)T
 (β̂ − β∗)

+g∗
5(Oi)

(
∂π(Ti, Zi, Xi; θ∗)

∂θ

)T

(θ̂ − θ∗)

+ op(n−1/2),

(A.2)

where

g∗
1(o) = −δY (x; β∗)

δ2
A(x;α∗)−

(2z − 1)(2t− 1)(y − µY (t, z, x; β∗))
π(t, z, x; θ∗)δ2

A(x;α∗) +2(2z − 1)(2t− 1)δY (x; β∗)
π(t, z, x; θ∗)δ3

A(x;α∗) (a−µA(t, z, x;α∗)),

g∗
2(o) = (2z − 1)(2t− 1)δY (x; β∗)

π(t, z, x; θ∗)δ2
A(x;α∗) ,
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g∗
3(o) = 1

δ2
A(x;α∗) −

2(2z − 1)(2t− 1)
π(t, z, x; θ∗)δ2

A(x;α∗)(a− µA(t, z, x;α∗)),

g∗
4(o) = − (2z − 1)(2t− 1)

π(t, z, x; θ∗)δA(x;α∗) ,

g∗
5(o) = − (2z − 1)(2t− 1)

π2(t, z, x; θ∗)δA(x;α∗)

{
y − µY (t, z, x; β∗)− δY (x; β∗)

δA(x;α∗)(a− µA(t, z, x;α∗))
}
.

Similarly, we define the following classes of functions

F2
η (o) =


g∗

1(o)
(
∂δA(x;α∗)

∂α

)T

+ g∗
2(o)

(
∂µA(t, z, x;α∗)

∂α

)T
 (I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

 ,

F3
η (o) =


g∗

3(o)
(
∂δY (x; β∗)

∂β

)T

+ g∗
4(o)

(
∂µY (t, z, x; β∗)

∂β

)T
 (I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

 ,
F4

η (o) =

g∗
5(o)

(
∂π(t, z, x; θ∗)

∂θ

)T

(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

 ,
and let B2 = sup |g∗

1(o)∂δA(x;α∗)/∂α + g∗
2(o)∂µA(t, z, x;α∗)/∂α|,

B3 = sup |g∗
3(o)∂δY (x; β∗)/∂β + g∗

4(o)∂µY (t, z, x; β∗)/∂β|, and B4 =
sup |g∗

5(o)∂π(t, z, x; θ∗)/∂θ|, where B2, B3, B4 > 0 and the supremum is taken
over all the coordinates. By Assumption 2.3.2 and Condition 1, we have that
B2, B3, B4 <∞.

Using the same technique as in Condition 2.1, we define the envelop of F j
η as

Fj = BjI{−k0δ ≤ xTη∗ ≤ k0δ} for j = 2, 3, 4, and obtain that

∥Fj∥P,2 ≤ B̃jδ
1/2 <∞, j = 2, 3, 4,

where B̃2, B̃3, B̃4 are some finite constants, and that F j
η is a VC class with bounded

bracketing entropy J∗
[](1,F j

η) <∞, for j = 2, 3, 4. By Theorem 11.2 of Kosorok [2008],
we obtain that

E∗
[

sup
∥η−η∗∥2<δ

∥∥∥GNF j
η

∥∥∥
1

]
≤ cjJ

∗
[](1,F j

η)∥Fj∥P,2, j = 2, 3, 4,

where c2, c3, c4 > 0 are some finite constants.
Furthermore, by Theorem 2.14.5 of van der Vaart and Wellner [1996], we obtain

that{
E∗

[
sup

∥η−η∗∥2<δ

∥GnF j
η∥2

2

]}1/2

≤ lj

{
E∗

[
sup

∥η−η∗∥2<δ

∥GnF j
η∥1

]
+ ∥Fj∥P,2

}
≤ lj{cjJ

∗
[](1,F j

η) + 1}∥Fj∥P,2

≤ c̃jδ
1/2, j = 2, 3, 4,

where l2, l3, l4 and c̃2, c̃3, c̃4 are some finite constants.
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By Equation (A.2), we have that

(I) = E∗
[
n1/2 sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η)− {M̂(η∗)−M∗

n(η∗)}
∣∣∣]

≤ E∗
[

sup
∥η−η∗∥2<δ

{
|GnF2

η (α̂− α∗)|+ |GnF3
η (β̂ − β∗)|+ |GnF4

η (θ̂ − θ∗)|+ op(1)
}]

≤ n−1/2
{
E∗

[
sup

∥η−η∗∥2<δ
|GnF2

η · n1/2(α̂− α∗)|
]

+ E∗
[

sup
∥η−η∗∥2<δ

|GnF3
η · n1/2(β̂ − β∗)|

]

+E∗
[

sup
∥η−η∗∥2<δ

|GnF4
η · n1/2(θ̂ − θ∗)|

]}
,

and then by the Cauchy-Schwarz inequality, we obtain that

(I) ≤n−1/2
{
E[n∥α̂− α∗∥2

2]
}1/2

{
E∗

[
sup

∥η−η∗∥2<δ

∥GnF2
η∥2

2

]}1/2

+ n−1/2
{
E[n∥β̂ − β∗∥2

2]
}1/2

{
E∗

[
sup

∥η−η∗∥2<δ

∥GnF3
η∥2

2

]}1/2

+ n−1/2
{
E[n∥θ̂ − θ∗∥2

2]
}1/2

{
E∗

[
sup

∥η−η∗∥2<δ

∥GnF4
η∥2

2

]}1/2

.

By Condition 2, we have that Bα = {E[n∥α̂− α∗∥2
2]}

1/2
< ∞, Bβ ={

E[n∥β̂ − β∗∥2
2]
}1/2

<∞, Bθ =
{
E[n∥θ̂ − θ∗∥2

2]
}1/2

<∞, hence

(I) ≤ n−1/2(Bαc̃2 +Bβ c̃3 +Bθc̃4)δ1/2.

In summary, we conclude that as n→∞, the centered process satisfies

E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)− {M̂(η∗)−M(η∗)}
∣∣∣] ≤ (I) + (II) ≤ c̃1δ

1/2. (A.3)

Let ϕn(δ) = δ1/2 and b = 3
2 < 2, thus we have ϕn(δ)

δb = δ−1 is decreasing, and b does
not depend on n.

Condition 3 By the facts that η̂ p→ η∗ as n → ∞, and that M̂(η̂) ≥ supη M̂(η), we
choose rn = n1/3 such that r2

nϕn(r−1
n ) = n2/3ϕn(n−1/3) = n1/2.

In the end, the three conditions are satisfied with rn = n1/3; thus we conclude that
n1/3∥η̂ − η∗∥2 = Op(1), which completes the proof of (i) of Theorem 3.2.2.

PART 3. We characterize the asymptotic distribution of M̂(η̂). First we note that
√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)},

and then study the two terms in two steps.
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Step 3.1 To establish√n{M̂(η̂)−M̂(η∗)} = op(1), it suffices to show that√n{M(η̂)−
M(η∗)} = op(1) and √n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)}) = op(1).

First, as n1/3∥η̂ − η∗∥2 = Op(1), we apply the second-order Taylor expansion
√
n{M(η̂)−M(η∗)} =

√
n
{
M ′(η∗)∥η̂ − η∗∥2 + 1

2M
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
n
{1

2M
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
n
{1

2M
′′(η∗)Op(n−2/3) + op(n−2/3)

}
= op(1),

which proves (ii) of Theorem 3.2.2.
Next, we follow the result (A.3) obtained in PART 2. As n1/3∥η̂ − η∗∥2 = Op(1),

there exists δ̃ = c5n
−1/3, where c5 < ∞ is a finite constant, such that ∥η̂ − η∗∥2 ≤ δ̃.

Therefore we have
√
n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)})

≤ E∗

√n sup
∥η̂−η∗∥2<δ̃

∣∣∣M̂(η̂)−M(η̂)− {M̂(η∗)−M(η∗)}
∣∣∣


≤ c̃1δ̃
1/2 = c̃1

√
c5n

−1/6 = op(1),

which yields the result.
Step 3.2 To derive the asymptotic distribution of √n{M̂(η∗)−M(η∗)}, we follow

the result (A.1) obtained in PART 1 and have that
√
n
{
M̂(η∗)−M(η∗)

}
D→ N (0, σ2

1),

where σ2
1 = E[(M∗ −M +HT

α∗ϕα,i +HT
β∗ϕβ,i +HT

θ∗ϕθ,i)2].
Therefore we obtain in the end

√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)}

= op(1) +
√
n{M̂(η∗)−M(η∗)}

D→ N (0, σ2
1),

which completes the proof.

A.9 Proof of Theorem 3.2.3
We first review a useful lemma from Kennedy et al. [2020], which illustrates the

basic technique of cross-fitting.
Lemma A.9.1. Consider two independent samples O1 = (O1, . . . , On) and O2 =
(On+1, . . . , Oñ), let f̂(o) be a function estimated from O2 and Pn the empirical measure over
O1, then we have

(Pn − P)(f̂ − f) = OP

∥f̂ − f∥√
n
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Proof. First note that by conditioning on O2 we obtain

E
{
Pn(f̂ − f)

∣∣∣O2
}

= E(f̂ − f | O2) = P(f̂ − f)

and the conditional variance is

var{(Pn − P)(f̂ − f) | O2} = var{Pn(f̂ − f) | O2} = 1
n
var(f̂ − f | O2) ≤ ∥f̂ − f∥2/n

therefore by Chebyshev’s inequality we have

P

 |(Pn − P)(f̂ − f)|
∥f̂ − f∥2/n

≥ t

 = E

P
 |(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

∣∣∣∣∣O2


 ≤ 1

t2

thus for any ϵ > 0 we can pick t = 1/
√
ϵ so that the probability above is no more than ϵ,

which yields the result.

We randomly split data into K folds. For k = 1, . . . , K,

M̂(η) = 1
K

K∑
k=1

M̂k(η) = 1
K

K∑
k=1

Pn,k{∆(O; µ̂A,−k, µ̂Y,−k, π̂−k)d(X)},

where Pn,k denote empirical averages only over the k-th fold, and µ̂A,−k, µ̂Y,−k and π̂−k

denote the nuisance estimators constructed excluding the k-th fold.
Now we start our proof which has three main parts as follows.

PART1. Weprove that M̂(η)−Mn(η) = op(n−1/2), whereMn(η) = Pn{∆(O)d(X, η)}.
Essentially it suffices to prove that M̂k(η) − Mn,k(η) = op(n−1/2), where Mn,k(η) =
Pn,k{∆(O)d(X, η)}.

First we note the following decomposition

M̂k(η)−Mn,k(η)

= Pn,k d(η)

 δ̂Y,−k

δ̂A,−k

− δY

δA

+ (2Z − 1)(2T − 1)
( 1

π̂−k

− 1
π

)(
1

δ̂A,−k

− 1
δA

)Y − µ̂Y,−k −
δ̂Y,−k

δ̂A,−k

(A− µ̂A,−k)


+ 1
δA

(
1
π̂−k

− 1
π

)
G1 + 1

π

(
1

δ̂A,−k

− 1
δA

)
G1 + 1

πδA

G2

+ 1
δA

(
1
π̂−k

− 1
π

)(
Y − µY −

δY

δA

(A− µA)
)

+ 1
π

(
1

δ̂A,−k

− 1
δA

)(
Y − µY −

δY

δA

(A− µA)
)

+ 1
πδA

(
µY − µ̂Y,−k −

1
δA

(δ̂Y,−k − δY )(A− µA)− δY

(
1

δ̂A,−k

− 1
δA

)
(A− µA) + δY

δA

(µ̂A,−k − µA)
)]}

,

where we omit the arguments of the nuisance functions to simplify the notation, and
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denote

G1 = µY − µ̂Y,−k − (δ̂Y,−k − δY )
(

1
δ̂A,−k

− 1
δA

)
(A− µA)− 1

δA

(δ̂Y,−k − δY )(A− µA)

+ 1
δA

(δ̂Y,−k − δY )(µ̂A,−k − µA)− δY

(
1

δ̂A,−k

− 1
δA

)
(A− µA)

+ δY

(
1

δ̂A,−k

− 1
δA

)
(µ̂A,−k − µA) + δY

δA

(µ̂A,−k − µA),

G2 = δ̂Y,−k − δY

δA

(µ̂A,−k−µA)+δY

(
1

δ̂A,−k

− 1
δA

)
(µ̂A,−k−µA)−(δ̂Y,−k−δY )

(
1

δ̂A,−k

− 1
δA

)
(A−µA).

In summary, we have two types of terms from this decomposition: product terms
and mean zero terms (by multiple robustness). The product terms are op(n−1/2) by
Cauchy-Schwarz inequality and Condition 3 (rate of convergence). The mean zero
terms are op(n−1/2) by Lemma A.9.1.

PART 2. We prove that n1/3∥η̂ − η∗∥2 = Op(1).

First we note that, by Condition 1 (iii),M(η) is twice continuously differentiable
at a neighborhood of η∗. In PART 1, we show that M̂(η) = M(η) + op(1),∀η. Since η̂
maximizes M̂(η), we have that M̂(η̂) ≥ supη M̂(η); thus by the Argmax theorem, we
obtain that η̂ p→ η∗ as n→∞.

Then we apply Theorem 14.4 (Rate of convergence) of Kosorok [2008] to establish
the n−1/3 rate of convergence of η̂, and need to find the suitable rate that satisfies three
conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ∥η − η∗∥2 < δ, by
Condition 1 (iii), we apply the second-order Taylor expansion,

M(η)−M(η∗) = M ′(η∗)∥η − η∗∥2 + 1
2M

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2)

= 1
2S

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2),

and as S ′′(η∗) < 0, there exists c0 = −1
2S

′′(η∗) > 0 such that S(t; η) − S(t; η∗) ≤
c0∥η − η∗∥2

2.

Condition 2 For all n large enough and sufficiently small δ, we consider the centered

111



SUPPLEMENTARY MATERIAL

process M̂ −M , and have that

E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)−
{
M̂(η∗)−M(η∗)

}∣∣∣]

= E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η) +M∗

n(η)−M(η)−
{
M̂(η∗)−M∗

n(η∗) +M∗
n(η∗)−M(η∗)

}∣∣∣]

≤ E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M∗
n(η)−

{
M̂(η∗)−M∗

n(η∗)
}∣∣∣]

+ E∗
[
√
n sup

∥η−η∗∥2<δ
|M∗

n(η)−M(η)− {M∗
n(η∗)−M(η∗)}|

]
= (I) + (II),

where E∗(·) denote the outer expectation, and we bound (I) and (II) respectively as
follows.

It follows from the result in PART 1 that (I) = op(1).
To bound (II), we note that

M∗
n(η)−M∗

n(η∗) = 1
n

n∑
i=1

∆∗(Oi)(d(Xi; η)− d(Xi; η∗))

= 1
n

n∑
i=1

∆∗(Oi)(I{XT
i η > 0} − I{XT

i η
∗ > 0}),

where

∆∗(o) = δY (x)
δA(x) + (2z − 1)(2t− 1)

π(t, z, x)δA(x)

{
y − µY (t, z, x)− δY (x)

δA(x) (a− µA(t, z, x))
}
.

We define a class of functions

F5
η (o) =

{
∆∗(o)(I{xTη > 0} − I{xTη∗ > 0}) : ∥η − η∗∥2 < δ

}
,

and let B5 = sup |∆∗(o)|. By Assumption 2.3.2 and Condition 1, we have that B5 <∞.
Using the same technique as in Section Condition 2.1, we define the envelop of F5

η

as F5 = B5I{−k0δ ≤ xTη∗ ≤ k0δ}, and obtain that ∥F5∥P,2 ≤ B̃9δ
1/2 <∞, where B̃9 is

a finite constant, and that F5
η is a VC class with bounded entropy J∗

[](1,F5
η ) <∞. By

Theorem 11.2 of Kosorok [2008], we obtain that there exists a constant 0 < c6 <∞,

(II) = E∗
[

sup
∥η−η∗∥2<δ

|GnF5
η |
]
≤ c6J

∗
[](1,F5

η )∥F5∥P,2 ≤ c6J
∗
[](1,F5

η )B5

√
2k0k1δ

1/2 = c̃5δ
1/2.

In summary, we conclude that as n→∞, the centered process satisfies

E∗
[
√
n sup

∥η−η∗∥2<δ

∣∣∣M̂(η)−M(η)− {M̂(η∗)−M(η∗)}
∣∣∣] ≤ (I) + (II) ≤ c̃5δ

1/2. (A.4)
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Let ϕn(δ) = δ1/2 and b = 3
2 < 2, thus we have ϕn(δ)

δb = δ−1 is decreasing, and b does
not depend on n.

Condition 3 By the facts that η̂ p→ η∗ as n → ∞, and that M̂(η̂) ≥ supη M̂(η), we
choose rn = n1/3 such that r2

nϕn(r−1
n ) = n2/3ϕn(n−1/3) = n1/2.

In the end, the three conditions are satisfied with rn = n1/3; thus we conclude that
n1/3∥η̂ − η∗∥2 = Op(1), which completes the proof of (i) of Theorem 3.2.3.

PART 3. We characterize the asymptotic distribution of M̂(η̂). First we note that
√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)},

and then study the two terms in two steps.
Step 3.1 To establish√n{M̂(η̂)−M̂(η∗)} = op(1), it suffices to show that√n{M(η̂)−

M(η∗)} = op(1) and √n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)}) = op(1).
First, as n1/3∥η̂ − η∗∥2 = Op(1), we apply the second-order Taylor expansion
√
n{M(η̂)−M(η∗)} =

√
n
{
M ′(η∗)∥η̂ − η∗∥2 + 1

2M
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
n
{1

2M
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
n
{1

2M
′′(η∗)Op(n−2/3) + op(n−2/3)

}
= op(1),

which proves (ii) of Theorem 3.2.3.
Next, we follow the result (A.4) obtained in PART 2. As n1/3∥η̂ − η∗∥2 = Op(1),

there exists δ̃ = c7n
−1/3, where c7 < ∞ is a finite constant, such that ∥η̂ − η∗∥2 ≤ δ̃.

Therefore we have
√
n(M̂(η̂)− M̂(η∗)− {M(η̂)−M(η∗)})

≤ E∗

√n sup
∥η̂−η∗∥2<δ̃

∣∣∣M̂(η̂)−M(η̂)− {M̂(η∗)−M(η∗)}
∣∣∣


≤ c̃5δ̃
1/2 = c̃5

√
c7n

−1/6 = op(1),

which yields the result.
Step 3.2 To derive the asymptotic distribution of √n{M̂(η∗)−M(η∗)}, we follow

the result obtained in PART 1 and have that
√
n
{
M̂(η∗)−M(η∗)

}
D→ N (0, σ2

2),

where σ2
2 = E[(∆(Oi)d(Xi; η∗)−M(η∗))2].

Therefore we obtain in the end
√
n{M̂(η̂)−M(η∗)} =

√
n{M̂(η̂)− M̂(η∗)}+

√
n{M̂(η∗)−M(η∗)}

= op(1) +
√
n{M̂(η∗)−M(η∗)}

D→ N (0, σ2
2),

which completes the proof.

113



SUPPLEMENTARY MATERIAL

A.10 Proof of Theorem 5.1.2 and 5.1.3

We first prove the identification result.
First we note that

δY,1(X)− δY,0(X) = E[Y1 − Y0 | X,Z = 1]− E[Y1 − Y0 | X,Z = 0]
=

∑
z=0,1

(2z − 1)E[Y1 − Y0 | X,Z = z]

=
∑

z=0,1
(2z − 1)E[Y1(A1(z))− Y0(A0(z)) | X,Z = z]

=
∑

z=0,1
(2z − 1)E[A1(z)Y1(1) + (1− A1(z))Y1(0)− A0(z)Y0(1)− (1− A0(z))Y0(0) | Z = z,X]

=
∑

z=0,1
(2z − 1)E[A1(z)(Y1(1)− Y1(0))− A0(z)(Y0(1)− Y0(0)) + Y1(0)− Y0(0) | Z = z,X]

=
∑

z=0,1
(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,Z = z]

+ E[Y1(0)− Y0(0) | X,Z = z])
=

∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,Z = z]

=
∑

z=0,1
(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X]− E[A0(z)(Y0(1)− Y0(0)) | X]

= E[(A1(1)− A1(0))(Y1(1)− Y1(0)) | X]− E[(A0(1)− A0(0))(Y0(1)− Y0(0)) | X]
= E[A1(1)− A1(0) | X]τ(X)− E[A0(1)− A0(0) | X]τ(X)
= E[A1(1)− A1(0)− A0(1) + A0(0) | X]τ(X).

We also note that

δA,1(X)− δA,0(X) = E[A1 − A0 | X,Z = 1]− E[A1 − A0 | X,Z = 0]
=

∑
z=0,1

(2z − 1)E[A1 − A0 | X,Z = z]

=
∑

z=0,1
(2z − 1)E[A1(z)− A0(z) | X,Z = z]

= E[A1(1)− A1(0)− A0(1) + A0(0) | X].

Combining the above derivations, we obtain that δY,1(X) − δY,0(X) = (δA,1(X) −
δA,0(X))τ(X). That is, the CATE is identified by

τ(X) = δY,1(X)− δY,0(X)
δA,1(X)− δA,0(X) .

Alternatively, we consider the following assumptions: (sequential ignorability)
Yt(a) ⊥ At | U,X,Z for t, a = 0, 1, and there is no additive interaction of either (i)
E[A1−A0 | X,U,Z = 1]−E[A1−A0 | X,U,Z = 0] = E[A1−A0 | X,Z = 1]−E[A1−A0 |
X,Z = 0] or (ii) E[Yt(1)− Yt(0) | U,X] = E[Yt(1)− Yt(0) | X] for t = 0, 1.
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We can continue that

δY,1(X)− δY,0(X)
=

∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,Z = z])

= EU

∑
z=0,1

(2z − 1)(E[A1(z)(Y1(1)− Y1(0)) | X,U,Z = z]− E[A0(z)(Y0(1)− Y0(0)) | X,U,Z = z]

= EU

∑
z=0,1

(2z − 1)(E[A1(z) | X,U,Z = z]E[Y1(1)− Y1(0) | X,U,Z = z]

− E[A0(z) | X,U,Z = z]E[Y0(1)− Y0(0) | X,U,Z = z])
= EU [E[Yt(1)− Yt(0) | U,X](E[A1 − A0 | X,U,Z = 1]− E[A1 − A0 | X,U,Z = 0])].

Under Assumption (i), we have that

E[A1 − A0 | X,U,Z = 1]− E[A1 − A0 | X,U,Z = 0]
= E[A1 − A0 | X,Z = 1]− E[A1 − A0 | X,Z = 0]
= δA,1(X)− δA,0(X);

or under Assumption (ii), we have that

E[Yt(1)− Yt(0) | U,X] = E[Yt(1)− Yt(0) | X], t = 0, 1,

and also

EU [E[A1 − A0 | X,U,Z = 1]− E[A1 − A0 | X,U,Z = 0]] = δA,1(X)− δA,0(X).

Hence combining the above derivations, we obtain the same identification results.
Next, we derive the efficient influence function.
For a given distribution P in the nonparametric statistical modelM, we let p denote

the density ofP with respect to somedominatingmeasure ν. For all boundedh ∈ L2(P ),
define the parametric submodel pϵ = (1 + ϵh)p, which is valid for small enough ϵ and
has score h at ϵ = 0.

We study the following statistical functional

Ψ(P ) = EP

[
EP [Y1 − Y0 | X = x, Z = 1]− EP [Y1 − Y0 | X = x, Z = 0]
EP [A1 − A0 | X = x, Z = 1]− EP [A1 − A0 | X = x, Z = 0]

]
,

and would establish that Ψ(P ) is pathwise differentiable with respect toM at P with
efficient influence function ϕP if we have that for any P ∈M

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣∣
ϵ=0

=
∫
ϕP (o)h(o)dP (o).
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We denote δY,z,ϵ(x) = EPϵ [Y1 − Y0 | X = x, Z = z], δA,z,ϵ(x) = EPϵ [A1 − A0 | X =
x, Z = z], S = ∂ log pϵ/∂ϵ, and compute

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ

[
δY,1,ϵ(X)− δY,0,ϵ(X)
δA,1,ϵ(X)− δA,0,ϵ(X)

] ∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EP

[
(1 + ϵS) δY,1,ϵ(X)− δY,0,ϵ(X)

δA,1,ϵ(X)− δA,0,ϵ(X)

] ∣∣∣∣∣
ϵ=0

= EP

[
S
δY,1(X)− δY,0(X)
δA,1(X)− δA,0(X)

]

+ EP

[
1

δA,1(X)− δA,0(X)

(
∂

∂ϵ
δY,1,ϵ(X)

∣∣∣∣∣
ϵ=0
− ∂

∂ϵ
δY,0,ϵ(X)

∣∣∣∣∣
ϵ=0

)]

− EP

[
δY,1(X)− δY,0(X)
{δA,1(X)− δA,0(X)}2

(
∂

∂ϵ
δA,1,ϵ(X)

∣∣∣∣∣
ϵ=0
− ∂

∂ϵ
δA,0,ϵ(X)

∣∣∣∣∣
ϵ=0

)]
.

Then we need to compute

∂

∂ϵ
δY,z,ϵ(X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ [Y1 − Y0 | X,Z = z]

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ

δY,z(X) + ϵEP [S(Y1 − Y0) | X,Z = z]
1 + ϵEP [S | X,Z = z]

∣∣∣∣∣
ϵ=0

= EP [S(Y1 − Y0) | X,Z = z]− δY,z(X)EP [S | X,Z = z]

= EP

[
S

(Y1 − Y0 − δY,z(X))I{Z = z}
zπZ(X) + (1− z)(1− πZ(X)) | X

]
,

and
∂

∂ϵ
δA,z,ϵ(X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ [A1 − A0 | X,Z = z]

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ

δA,z(X) + ϵEP [S(A1 − A0) | X,Z = z]
1 + ϵEP [S | X,Z = z]

∣∣∣∣∣
ϵ=0

= EP [S(A1 − A0) | X,Z = z]− δA,z(X)EP [S | X,Z = z]

= EP

[
S

(A1 − A0 − δA,z(X))I{Z = z}
zπZ(X) + (1− z)(1− πZ(X)) | X

]
.

In summary, we obtain the efficient influence function

ϕP (O) = E[Y1 − Y0 | X,Z = 1]− E[Y1 − Y0 | X,Z = 0]
E[A1 − A0 | X,Z = 1]− E[A1 − A0 | X,Z = 0]

+ Z − πZ(X)
πZ(X)(1− πZ(X))(δA,1(X)− δA,0(X))2 {(Y1 − Y0)(δA,1(X)− δA,0(X))

−(A1 − A0)(δY,1(X)− δY,0(X)) + δY,1(X)δA,0(X)− δY,0(X)δA,1(X)} −Ψ(P ).

Finally, it follows to prove Theorem 5.1.3 by Equation (2.1).
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A.11 Additional simulations
In this section, we report additional simulation results to illustrate how different

sample sizes and the strength of the IV affect the performance of the estimated policies.

A.11.1 Sensitivity analysis
In this section, we study how the strength of the IV affects the performance of the

estimated policies. The data generation process is the same as Section 4.1, except that
the treatment assignment mechanism is given by

Pr(A0 = 1 | Z,U,X) = expit(1.5− 3Z + 0.2U0 + 2X1),
P r(A1 = 1 | Z,U,X) = expit(−1.5 + 2Z − 0.15U1 + 1.5X2),

for weak IV strength, and

Pr(A0 = 1 | Z,U,X) = expit(3− 7Z + 0.2U0 + 2X1),
P r(A1 = 1 | Z,U,X) = expit(−3 + 5Z − 0.15U1 + 1.5X2),

for strong IV strength, respectively. Simulation results are reported in Figures A.3 and
A.4.

A.11.2 Sample size
In this section, we study how different sample sizes affect the performance of the

estimated policies. The data generation process is the same as Section 4.1. The sample
sizes are n = 2500, 10000 when using parametric models, and n = 5000, 20000 when
using machine learning. Simulation results are reported in Figures A.5 and A.6.

A.12 Australian Longitudinal Survey
In this section, we provide supplementary information on our data analysis of the

Australian Longitudinal Survey. The data can be accessed by making a request to the
Australian Data Archive (Australian National University).

We follow Su et al. [2013], Cai et al. [2006] and use an index of labormarket attitudes
as the instrumental variable in our analysis. The survey includes seven questions about
work, social roles and school attitudes towardsworkingwomen. Individuals respond to
these questions with scores (1) strongly agree, (2) agree, (3) don’t know, (4) disagree,
and (5) strongly disagree. This survey design implies that a response with a higher
score indicates more positive attitude towards the education benefit of women and
also their active role in the labor market. Following Su et al. [2013], we use only six
out of the seven questions to construct our attitudes index, since questions 2 and 3 are
actually very similar, thus might be repetitive. We choose question 2 over question 3.
Summary statistics of our data from the 1984 and 1985 waves are reported in Table A.1
and A.2, respectively. Replication code is available at GitHub.
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Figure A.3 – The percentage of correct decisions (PCD) results of the estimated optimal policies using
parametric models, under weak (left) or strong (right) IV strength.
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Figure A.4 – The percentage of correct decisions (PCD) results of the estimated optimal policies using
machine learning, under weak (left) or strong (right) IV strength.
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Figure A.5 – The percentage of correct decisions (PCD) results of the estimated optimal policies, using
parametric models with sample size n = 2500 (left) or n = 10000 (right).

n = 5000 n = 20000

0.25

0.50

0.75

1.00

P
C

D

Estimators IV.t0 IV.t1 IPW1 IPW2 Wald MR1 MR2

Figure A.6 – The percentage of correct decisions (PCD) results of the estimated optimal policies, using
machine learning with sample size n = 5000 (left) or n = 20000 (right).
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Variable Source Mean SD Min Max
born_australia A12 0.82 0.38 0 1

married A9 0.07 0.25 0 1
uni_mem G10 0.34 0.48 0 1
gov_emp G9 0.21 0.41 0 1

age A4 20.07 2.45 14 26
year_expe F3-4, F7-10, F31-33, G21-23 0.94 1.40 0 11
attitude O1-7 17.94 3.48 6 28
year_edu E4, E7, E10, E14, E16, E23, E25 11.14 1.93 3 20
wage_hour G3-5, G7-8 4.83 2.01 0.57 21.43

Table A.1 – The 1984 wave summary statistics of variables born_australia: whether a person is
born in Australia; married: marital status; uni_mem: union membership; gov_emp: government
employment; age: age; year_expe: work experience; attitude: index of labor market attitudes;
year_edu: education levels; wage_hour: hourly wage. Source indicates which questions in the survey
provide the information.

Variable Source Mean SD Min Max
born_australia B3 0.84 0.36 0 1

married A7 0.15 0.36 0 1
uni_mem G11 0.38 0.49 0 1
gov_emp G10 0.22 0.42 0 1

age A4 20.22 2.87 15 26
year_expe F3-4, F7-10, F31-33, F23-25 1.82 2.13 0 16
attitude O1-7 18.75 3.49 6 30
year_edu E3, E5, E8, E12, E14, E21, E23 11.69 2.11 2 20
wage_hour G3-5, G7-8 7.48 2.94 0.375 75.00

Table A.2 – The 1985 wave summary statistics of variables born_australia: whether a person is
born in Australia; married: marital status; uni_mem: union membership; gov_emp: government
employment; age: age; year_expe: work experience; attitude: index of labor market attitudes;
year_edu: education levels; wage_hour: hourly wage. Source indicates which questions in the survey
provide the information.
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CHAPTER B

APPENDIX TO PART III

B.1 Proof of Proposition 6.3.1
The proof of our identification results is straightforward, following similar argu-

ments in Kennedy [2019]. First, we prove the OR-IPS formula:

V (d) = E[Y (d)]
= E[Y (1)d(X) + Y (0)(1− d(X))]
= E[E[Y (1)d(X) + Y (0)(1− d(X)) | X]]
= E[d(X)E[Y (1) | X] + (1− d(X))E[Y (0) | X]]
= E[d(X)E[Y | X,A = 1] + (1− d(X))E[Y | X,A = 0]]

= E

[
δ(X)π(X)

δ(X)π(X) + 1− π(X)µ1(X) + 1− π(X)
δ(X)π(X) + 1− π(X)µ0(X)

]

= E

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
.

Next, we prove the IPW-IPS formula:

E

[
Y {δ(X)A+ 1− A}
δ(X)π(X) + 1− π(X)

]

= E

[
Y Aδ(X)

δ(X)π(X) + 1− π(X) + Y (1− A)
δ(X)π(X) + 1− π(X)

]

= E

[
Y (1)Aδ(X)

δ(X)π(X) + 1− π(X) + Y (0)(1− A)
δ(X)π(X) + 1− π(X)

]

= E

[
E

[
Y (1)Aδ(X)

δ(X)π(X) + 1− π(X) + Y (0)(1− A)
δ(X)π(X) + 1− π(X) | X

]]

= E

[
E[Y (1)A | X]δ(X)

δ(X)π(X) + 1− π(X) + E[Y (0)(1− A) | X]
δ(X)π(X) + 1− π(X)

]

= E

[
Y (1) E[A | X]δ(X)

δ(X)π(X) + 1− π(X) + Y (0) E[(1− A) | X]
δ(X)π(X) + 1− π(X)

]
= E[E[Y (1)d(X) + Y (0)(1− d(X)) | X]]
= V (d).
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B.2 Proof of Proposition 6.3.2
We derive the efficient influence function for the following statistical functional:

Ψ(P ) = EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
.

For a given distribution P in the nonparametric statistical modelM, we let p denote
the density ofP with respect to somedominatingmeasure ν. For all boundedh ∈ L2(P ),
define the parametric submodel pϵ = (1 + ϵh)p, which is valid for small enough ϵ and
has score h at ϵ = 0. We would establish that Ψ(P ) is pathwise differentiable with
respect toM at P with efficient influence function ϕ(P ) if we have that for any P ∈M,

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣∣
ϵ=0

=
∫
ϕ(P )(o)h(o)dP (o).

We denote πϵ(x) = EPϵ [A | X = x], µa,ϵ(x) = EPϵ [Y | X = x,A = a], S = ∂ log pϵ/∂ϵ,
and can compute
∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EPϵ

[
δ(X)πϵ(X)µ1,ϵ(X) + {1− πϵ(X)}µ0,ϵ(X)

δ(X)πϵ(X) + 1− πϵ(X)

] ∣∣∣∣∣
ϵ=0

= ∂

∂ϵ
EP

[
(1 + ϵS)δ(X)πϵ(X)µ1,ϵ(X) + {1− πϵ(X)}µ0,ϵ(X)

δ(X)πϵ(X) + 1− πϵ(X)

] ∣∣∣∣∣
ϵ=0

= EP

[
S
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]

+ EP

[
1

δ(X)π(X) + 1− π(X)

(
π(X) ∂

∂ϵ
µ1,ϵ(X)

∣∣∣∣∣
ϵ=0

+ µ1(X) ∂
∂ϵ
πϵ(X)

∣∣∣∣∣
ϵ=0

)]

+ EP

[
1

δ(X)π(X) + 1− π(X)

(
{1− π(X)} ∂

∂ϵ
µ0,ϵ(X)

∣∣∣∣∣
ϵ=0
− µ0(X) ∂

∂ϵ
πϵ(X)

∣∣∣∣∣
ϵ=0

)]

− EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

{δ(X)π(X) + 1− π(X)}2

(
δ(X) ∂

∂ϵ
πϵ(X)

∣∣∣∣∣
ϵ=0
− ∂

∂ϵ
πϵ(X)

∣∣∣∣∣
ϵ=0

)]
.

Then we need to compute
∂

∂ϵ
πϵ(X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ

π(X) + ϵEP [SA | X]
1 + ϵEP [S | X]

∣∣∣∣∣
ϵ=0

= EP [SA | X]− π(X)EP [S | X]
= EP [S(A− π(X)) | X],

and for a = 0, 1,
∂

∂ϵ
µa,ϵ(X)

∣∣∣∣∣
ϵ=0

= ∂

∂ϵ

µa(X) + ϵEP [SY | X,A = a]
1 + ϵEP [S | X,A = a]

∣∣∣∣∣
ϵ=0

= EP [SY | X,A = a]− µa(X)EP [S | X,A = a]
= EP [S(Y − µa(X)) | X,A = a].
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Combining the above derivations, we obtain that

ϕ(P )(O) = Aδ(X){Y − µ1(X)}+ (1− A){Y − µ0(X)}+ δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)
δ(X)π(X) + 1− π(X)

+ δ(X)τ(X){A− π(X)}
{δ(X)π(X) + 1− π(X)}2 −Ψ(P ),

which yields the result.

B.3 Proof of Theorem 7.2.1

We first outline the inferential strategy from semiparametric theory. Consider a
statistical modelM for distributions P̃ , with P denoting the true distribution. Under
sufficient smoothness conditions, we have the following von Mises expansion for Ψ(P̃ ):

Ψ(P̃ ) = Ψ(P )−
∫
ϕ(P̃ )(o)dP (o) + Rem(P̃ , P ),

whereϕ(P ) is the influence function derived in Section B.2 such that ∫ ϕ(P )(o)dP (o) = 0,
and Rem(P̃ , P ) = O(∥P̃ − P∥2) is a second-order reminder term that we will analyze
later.

Let P̂ be an estimator of P , then we obtain the following one-step estimator of Ψ(P ):

Ψ̂ = Ψ(P̂ ) +
∫
ϕ(P̂ )(o)dPn(o),

where Pn is the empirical distribution.
Next, we characterize the asymptotic properties of Ψ̂. Note that

Ψ̂−Ψ(P ) =
{

Ψ(P̂ ) +
∫
ϕ(P̂ )(o)dPn(o)

}
−Ψ(P )

=
{
Ψ(P̂ )−Ψ(P )

}
+
∫
ϕ(P̂ )(o)dPn(o)

= −
∫
ϕ(P̂ )(o)dP (o) + Rem(P̂ , P ) +

∫
ϕ(P̂ )(o)dPn(o)

=
∫
ϕ(P̂ )(o)d {Pn(o)− P (o)}+ Rem(P̂ , P )

=
∫
ϕ(P )(o)dPn(o) +

∫ {
ϕ(P̂ )(o)− ϕ(P )(o)

}
d {Pn(o)− P (o)}+ Rem(P̂ , P ).

Therefore,√n
{
Ψ̂−Ψ(P )

}
is expressed as the following three terms:

√
n
{
Ψ̂−Ψ(P )

}
=
√
n
∫
ϕ(P )(o)dPn(o)

+
√
n
∫ {

ϕ(P̂ )(o)− ϕ(P )(o)
}
d {Pn(o)− P (o)}

+
√
nRem(P̂ , P ).
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By the central limit theorem,√n ∫ ϕ(P )(o)dPn(o) is asymptotically normal with the
asymptotic variance given by E[ϕ2(P )(O)].

We assume that ϕ(P ) belongs to a Donsker class, so we have that the centered
empirical process

√
n
∫ {

ϕ(P̂ )(o)− ϕ(P )(o)
}
d {Pn(o)− P (o)} = op(1).

Finally, we characterize the second-order remainder term:

Rem(P̂ , P ) = Ψ(P̂ )−Ψ(P ) + EP [ϕ(P̂ )(O)].

We have that

Ψ(P ) = EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
,

and

EP [ϕ(P̂ )(O)]

= EP

[
Aδ(X){Y − µ̂1(X)}+ (1− A){Y − µ̂0(X)}+ δ(X)π̂(X)µ̂1(X) + {1− π̂(X)}µ̂0(X)

δ(X)π̂(X) + 1− π̂(X)

+ δ(X)τ̂(X){A− π̂(X)}
{δ(X)π̂(X) + 1− π̂(X)}2

]
−Ψ(P̂ ).

Combining the derivations above, we have that∣∣∣Rem(P̂ , P )
∣∣∣ ≤ Ĉ1∥µ̂1(X)− µ1(X)∥L2 × ∥π̂(X)− π(X)∥L2

+ Ĉ2∥µ̂0(X)− µ0(X)∥L2 × ∥π̂(X)− π(X)∥L2

+ Ĉ3∥π̂(X)− π(X)∥2
L2 ,

where Ĉ1, Ĉ2 and Ĉ3 are Op(1). We assume that ∥π̂(x) − π(x)∥L2 = op(n−1/4), and
∥µ̂a − µa∥L2 = op(n−1/4) for a = 0, 1. Therefore, we have that √nRem(P̂ , P ) = op(1).
That is, we conclude that

√
n
{
Ψ̂−Ψ(P )

}
→ N (0, E[ϕ2(P )(O)]),

which completes the proof.

B.4 Proof of Theorem 7.2.2

Essentially, we need to prove that the centered empirical process is op(1), when we
avoid Donsker conditions by using the cross-fitting technique. We first review a useful
lemma from Kennedy et al. [2020].
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Lemma B.4.1. Consider two independent samples O1 = (O1, . . . , On) and O2 =
(On+1, . . . , ON) drawn from the distribution P. Let f̂(o) be a function estimated from O2,
and Pn the empirical measure over O1, then we have

(Pn − P)(f̂ − f) = OP

∥f̂ − f∥√
n

 .
Proof. First note that by conditioning on O2, we obtain that

E
{
Pn(f̂ − f)

∣∣∣O2
}

= E(f̂ − f | O2) = P(f̂ − f),

and the conditional variance is

var{(Pn − P)(f̂ − f) | O2} = var{Pn(f̂ − f) | O2} = 1
n
var(f̂ − f | O2) ≤ ∥f̂ − f∥2/n,

therefore by the Chebyshev’s inequality we have that

P

 |(Pn − P)(f̂ − f)|
∥f̂ − f∥2/n

≥ t

 = E

P
 |(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

∣∣∣∣∣O2


 ≤ 1

t2
,

thus for any ϵ > 0 we can pick t = 1/
√
ϵ so that the probability above is no more than ϵ,

which yields the result.

Next, we characterize the asymptotic properties of the cross-fitted estimator Ψ̂CF.
Following similar steps as Section B.3, we have that

√
n
{
Ψ̂CF −Ψ(P )

}
=
√
n
∫
ϕ(P )(o)dPn(o) + 1√

K

K∑
k=1

√
nk(Rk,1 +Rk,2),

where Rk,1 =
∫ {

ϕ(P̂−k)(o)− ϕ(P )(o)
}
d {Pn,k(o)− P (o)}, Rk,2 = Rem(P̂−k, P ).

We note that
Rk,1 =

∫ {
ϕ(P̂−k)(o)− ϕ(P )(o)

}
d {Pn,k(o)− P (o)}

=
∫ {

ξ(P̂−k)(o)− ξ(P )(o)
}
d {Pn,k(o)− P (o)} ,

where ξ(P )(o) = ϕ(P )(o) + Ψ(P ), and by Lemma B.4.1, we have that
√
nkRk,1 = Op

(
∥ξ(P̂−k)− ξ(P )∥L2

)
.

Note that
ξ(P̂−k)(O)− ξ(P )(O)

= Aδ(X){Y − µ1(X)}+ (1− A){Y − µ0(X)}
δ(X)π(X) + 1− π(X) − Aδ(X){Y − µ1(X)}+ (1− A){Y − µ0(X)}

δ(X)π(X) + 1− π(X)

+ δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)
δ(X)π(X) + 1− π(X) − δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

+ δ(X)τ(X){A− π(X)}
{δ(X)π(X) + 1− π(X)}2 −

δ(X)τ(X){A− π(X)}
{δ(X)π(X) + 1− π(X)}2 ,
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and we assume that |Y | and |δ(X)| are bounded in probability. By the triangle and
Cauchy-Schwarz inequalities, we have that

∥ξ(P̂−k)− ξ(P )∥L2 ≤ Ĉ1,−k∥µ̂0,−k(X)− µ0(X)∥L2 + Ĉ2,−k∥µ̂1,−k(X)− µ1(X)∥L2

+ Ĉ3,−k∥π̂−k(X)− π(X)∥L2

where Ĉ1,−k, Ĉ2,−k and Ĉ3,−k are Op(1). We assume that ∥π̂(x) − π(x)∥L2 = op(n−1/4),
and ∥µ̂a − µa∥L2 = op(n−1/4) for a = 0, 1. Therefore, we have that√nkRk,1 = op(1).

By the same arguments as Section B.3, we have that √nkRk,2 = op(1). That is, we
conclude that √

n
{
Ψ̂CF −Ψ(P )

}
→ N (0, E[ϕ2(P )(O)]),

which completes the proof.

B.5 Proof of Theorem 7.2.3
In this section, we consider a parametric policy class D(H) indexed by η ∈ H . That

is, the off-policy learning task is given by the following optimization problem:

η∗ = arg max
η∈H

V (η),

subject to c(η) ≤ 0,

and the estimated policy is given by

η̂ = arg max
η∈H

V̂ (η),

subject to ĉ(η) ≤ 0.

We first review a useful lemma from Shapiro [1991].
Lemma B.5.1. Let H be a compact subset of Rk. Let C(H) denote the set of continuous real-
valued functions on H , with L = C(H)× · · · × C(H) the r-dimensional Cartesian product.
Let f(η) = (f0, . . . , fr) ∈ L be a vector of convex functions. Consider the quantity η∗ defined
as the solution to the following convex optimization program:

η∗ = arg min
η∈H

f0(η),

subject to fj(η) ≤ 0, j = 1, . . . , r.

Assume that Slater’s condition holds, so that there is some η ∈ H for which the inequalities
are satisfied and non-affine inequalities are strictly satisfied, i.e. fj(η) < 0 if fj(η) is non-affine.
Now consider a sequence of approximating programs, for n = 1, 2, . . .:

η̂n = arg min
η∈H

f̂n,0(η),

subject to f̂n,j(η) ≤ 0, j = 1, . . . , r,
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with f̂n(η) =
(
f̂n,0, . . . , f̂n,r

)
∈ L. Assume that r(n)

(
f̂n − f

)
converges in distribution to a

random elementW ∈ L for some real-valued function f(η). Then

r(n)
(
f̂n,0(η)(η̂n)− f0(η∗)

)
→ L,

for a particular random variable L. It follows that f̂n,0(η)(η̂n)− f0(η∗) = Op(1/r(n)).
By Theorem 7.2.1 or 7.2.2, we have that

√
n
(
V̂ (η)− V (η)

)
= 1√

n

n∑
i=1

ϕV (Oi; η) + op(1),

and by condition (ii), we have that
√
n (ĉ(η)− c(η)) = 1√

n

n∑
i=1

ϕc(Oi; η) + op(1),

where ϕV and ϕc are the influence functions.
By condition (i) and Lemma B.5.1 with r(n) =

√
n, we obtain the conclusion (ii).

To prove conclusion (i), note that

V (η̂)− V (η∗) = V (η̂)− V̂ (η̂) + V̂ (η̂)− V (η∗),

where we have that V (η̂)− V̂ (η̂) = Op(n−1/2), and V̂ (η̂)− V (η∗) = Op(n−1/2). Hence,
we conclude that V (η̂)− V (η∗) = Op(n−1/2), which completes the proof.

B.6 Proof of Theorem 7.2.4
In this section, we follow similar techniques in Li et al. [2023] and consider the

off-policy learning task given by the following optimization problem:
d∗ = arg max

d∈D
V (d) = arg max

d∈D
E[ξ(P )(O)],

subject to c(d) = E[ϕc(P )(O)] ≤ 0,

where D is a Glivenko–Cantelli class, and the estimated optimal policy is given by

d̂ = arg max
d∈D

V̂ (d) = arg max
d∈D

1
n

n∑
i=1

ξ(P̂ )(Oi)

subject to ĉ(d) = 1
n

n∑
i=1

ϕc(P̂ )(Oi) ≤ 0.

By condition (iii) of Theorems 7.2.1 or condition (ii) of Theorems 7.2.2, we have
that both {ξ(O; d) : d ∈ D} and {ϕc(O; d) : d ∈ D} are GC classes.

To simplify the notation, let we denote Dc = {d ∈ D : c(d) ≤ 0}, and Dn,c =
{d ∈ D : ĉ(d) ≤ 0}. First we note that the estimation error can be expressed as

V (d∗)− V̂ (d̂) = V (1)
n + V (2)

n + V (3)
n ,
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where we define

V (1)
n = max

d∈Dc

E[ξ(P )(O)]−max
d∈Dc

Pnξ(P )(O),

V (2)
n = max

d∈Dc

Pnξ(P )(O)−max
d∈Dc

Pnξ(P̂ )(O),

V (3)
n = max

d∈Dc

Pnξ(P̂ )(O)− max
d∈Dn,c

Pnξ(P̂ )(O).

We analyze the three terms as follows. We have that

V (1)
n = max

d∈Dc

E[ξ(P )(O)]−max
d∈Dc

Pnξ(P )(O)

≤ max
d∈Dc

|E[ξ(P )(O)]− Pnξ(P )(O)|

= op(1),

and similarly we have that

V (2)
n = max

d∈Dc

Pnξ(P )(O)−max
d∈Dc

Pnξ(P̂ )(O)

≤ max
d∈Dc

∣∣∣Pn{ξ(P )(O)− ξ(P̂ )(O)}
∣∣∣

= op(1).

To analyze V (3)
n , note that for any d ∈ D, we have that

E[ϕc(P )(O)]− Pnϕc(P̂ )(O)
= {E[ϕc(P )(O)]− Pnϕc(P )(O)}+ {Pnϕc(P )(O)− Pnϕc(P̂ )(O)},

and E[ϕc(P )(O)]− Pnϕc(P )(O) converges to 0 uniformly as {ϕc(O; d) : d ∈ D} is a GC
class, and Pnϕc(P )(O)− Pnϕc(P̂ )(O) converges to 0 uniformly by condition (ii).

Hence, ∀ϵ > 0, ∃N1 ∈ N, such that for all n > N1, |E[ϕc(P )(O)]−Pnϕc(P̂ )(O)| < ϵ, by
which we obtain that, for all d ∈ Dc, i.e., E[ϕc(P )(O)] ≤ c, we have that Pnϕc(P̂ )(O) <
c+ ϵ. Therefore, we have that c

c+ϵ
d ∈ Dn,c.

As ξ(P̂ )(O) is uniformly bounded, there exists a constant L > 0 such that for any
d1, d2, we have that

|ξ(P̂ )(O; d1)− ξ(P̂ )(O; d2)| ≤ L sup
x∈X
|d1(x)− d2(x)|.

Thus, ∀ϵ > 0, ∃N1 ∈ N, such that for all n > N1,

V (3)
n = max

d∈Dc

Pnξ(P̂ )(O)− max
d∈Dn,c

Pnξ(P̂ )(O)

≤ max
d∈Dc

Pnξ(P̂ )(O)− max
d∈ c

c+ϵ
Dc

Pnξ(P̂ )(O)

≤ ϵ

c+ ϵ
L,
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and similarly, we can obtain that ∃N2 ∈ N, such that for all n > N2,

V (3)
n ≥ − ϵ

c+ ϵ
L,

which in combination implies that V (3)
n = op(1).

Next, we prove our result (ii) for the regret. Note that

V (d∗)− V (d̂) = {V (d∗)− V̂ (d∗)}+ {V̂ (d∗)− V̂ (d̂)}+ {V̂ (d̂)− V (d̂)}.

We analyze the three terms as follows. By the same argument for proving (i), we
have that

V (d∗)− V̂ (d∗) = E[ξ(P )(O; d∗)]− Pnξ(P̂ )(O; d∗) = op(1),
V̂ (d̂)− V (d̂) = Pnξ(P̂ )(O; d̂)− E[ξ(P )(O; d̂)] = op(1).

Also by a similar argument, we have that for any d ∈ D and ϵ > 0, ∃N2 ∈ N, for all
n > N2, c

c+ϵ
d ∈ Dn,c, and

V̂ (d∗)− V̂ (d̂) = V̂ (d∗)− V̂
(

c

c+ ϵ
d∗
)

+ V̂
(

c

c+ ϵ
d∗
)
− V̂ (d̂)

≤ ϵ

c+ ϵ
L,

and also that for any d ∈ D and ϵ > 0, ∃N3 ∈ N, for all n > N3, c
c+ϵ
d̂ ∈ Dn,c, and

V (d∗)− V (d̂) ≥ V
(

c

c+ ϵ
d̂
)
− V (d̂) ≥ −ϵ

c
L,

so we conclude that V (d∗)− V (d̂) = op(1), which completes the proof.

B.7 Additional simulations
In this section, we present additional simulation results.

B.7.1 Incremental propensity score policy learning with sufficent
overlap

We examine the performance of our proposed methods by comparison with stan-
dard policy learning methods, when sufficient overlap indeed holds. We consider the
following data generating process:

(X1, X2) ∼ Uniform(0, 1),
(X3, X4) ∼ N {( 0

0 ) , ( 1 0.3
0.3 1 )} ,

A ∼ Bernoulli(expit(0.3− 0.4X1 − 0.2X2 − 0.3X3 + 0.1X4)),
Y (0) ∼ N{20(1 +X1 −X2 +X2

3 + exp (X2)), 202},
Y (1) ∼ N{20(1 +X1 −X2 +X2

3 + exp (X2)) + 25(3− 5X1 + 2X2 − 3X3 +X4), 202}.
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We perform the vanilla direct policy search tasks without constraint. Hence, the
optimal policy is simply d∗(x) = I{3−5X1+2X2−3X3+X4 > 0}. For standardmethods,
we consider the policy class of linear rules Dlinear = {d(x) = I{(1, x1, x2, x3, x4)β > 0} :
β ∈ R5, ∥β∥2 = 1}. For the incremental propensity score policies, we consider the class
DIPS = {d(x) = δ(x; β)π(x)/{δ(x; β)π(x) + 1 − π(x)} : β ∈ R5}, which is indexed by
δ(x; β) = exp {(1, x1, x2, x3, x4)β}.

We estimate the outcome regression model µ(x) and the propensity score π(x)
using the generalized random forests [Athey et al., 2019] implemented in the R package
grf. The unconstrained optimization problems are solved by the genetic algorithm
[Sekhon and Mebane, 1998] implemented in the R package rgenoud. The sample size
is n = 2000. We compare the true values of the estimated optimal policies using test
data with sample size N = 105. The true optimal value is approximated using the test
data. Simulation results of 100 Monte Carlo repetition are reported in Figure B.1(a).
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(a) Sufficient overlap.
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(b) Parametric models.

Figure B.1 – Performance of optimal policies under three standard methods (IPW, OR, AIPW) and our
proposed three methods (IPW-IPS, OR-IPS, One-step). The blue line is the (approximate) true optimal
value.

Despite the fact that the true optimal rule is included in the standard policy class
of linear rules but not in our proposed class of incremental propensity score poli-
cies, we still observe comparable performance of both classes, which exemplifies the
effectiveness of our proposed methods.

B.7.2 Incremental propensity score policy learning with paramet-
ric models

We examine the performance of our proposed methods by comparison with stan-
dard policy learning methods, when using correctly specified parametric models.

The simulation setup is the same as in the main paper where the positivity as-
sumption is violated, except that the sample size n = 500 is smaller and the outcome
regression µ(s, x) and the propensity score π(s, x) models are estimated by correctly
specified parametric models. Simulation results of 100 Monte Carlo repetition are
reported in Figure B.1(b). The standard methods IPW, OR, and AIPW have the worst
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performance. The IPW-IPS estimator still has large variability, and the OR-IPS and
efficient one-step estimators achieve the best performance with the highest value.

B.8 Diabetes data analysis
In this section, we provide supplementary information on our Diabetes data analy-

sis.
The original dataset is available in the UCI Repository Diabetes 130-US hospitals

for years 1999-2008 [Strack et al., 2014]. The Fairlearn open source project [Weerts
et al., 2023] provides full dataset pre-processing script in python on GitHub. We follow
these pre-processing steps, and provide the R script.

The dataset contains 101766 patients, and a detailed description of the 25 variables
are available at the Fairlearn project. Originally, the categories of race include “African
American", “Asian", “Caucasian", “Hispanic", “Other", “Unknown", and the categories
of age include “30 years or younger", “30− 60 years", “Over 60 years". We dichotomize
them, so the resultant categories of race include “Caucasian" or “Non-Caucasian", and
the resultant categories of age include “30 years or younger" or “Over 30 years".

The missing data are completed by multivariate imputation by chained equations,
implemented in the R package mice.

131

https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://github.com/fairlearn/talks/blob/main/2021_scipy_tutorial/preprocess.py
https://fairlearn.org/v0.8/user_guide/datasets/diabetes_hospital_data.html




CHAPTER C

APPENDIX TO PART IV

C.1 Preliminaries

C.1.1 Counting processes for Cox model

We use the counting process theory of Andersen and Gill [1982] in our theoretical
framework to study the large sample properties of Cox model. We state the existing
results that are used in our proof.

Let X⊗l denote 1 for l = 0, X for l = 1, and XXT for l = 2. Define

U (l)
a (βa, t) = 1

na

n∑
i=1

I{Ai = a}X⊗l
i exp(βT

a Xi)Yi(t) and u(l)
a (βa, t) = E

[
X⊗l exp(βT

a X)Y (t)
]
,

where na = ∑n
i=1 I{Ai = a}, and define

Ea(βa, t) = U (1)
a (βa, t)

U
(0)
a (βa, t)

and ea(βa, t) = u(1)
a (βa, t)
u

(0)
a (βa, t)

.

The maximum partial likelihood estimator β̂a for the Cox proportional hazards
model solves the estimating equation

Sa,n(βa) = 1
na

n∑
i=1

I{Ai = a}
∫ Xi −

U
(1)
1 (βa, u)

U
(0)
1 (βa, u)

 dNi(u) = 0,

and the cumulative baseline hazard function Λ̂0,a is estimted by the Breslow estimator:

Λ̂0,a(t) =
∫ t

0

∑n
i=1 I{Ai = a}dNi(u)∑n

i=1 I{Ai = a} exp(β̂T
a Xi)Yi(u)

, a = 0, 1.

Under certain regularity conditions [Andersen and Gill, 1982, Conditions A – D],
β̂a and Λ̂0,a converge in probability to the limits β∗

a and Λ∗
0,a, respectively; and we have

√
na(β̂a − β∗

a) = Γ−1
a

1
√
na

n∑
i=1

I{Ai = a}Ha,i + op(1),
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where Γa = E[−∂Sa,n(β∗
a)/∂β∗T

a ] is the Fisher information matrix of β∗
a ,Ha,i =

∫
I{Ai =

a}{Xi − ea(β∗
a, u)}dMa,i(u) and dMa,i(u) = dNi(u) − exp(β∗T

a Xi)Yi(u)dΛ∗
0,a(u). More-

over, let S∗(t | a,X) = exp{−Λ∗
0,a(t) exp(β∗T

a X)}; it is shown that √na{Ŝ(t | a,Xi) −
S∗(t | a,Xi)} converges uniformly to a mean-zero Gaussian process for all Xi.

Specifically, we consider the following expansion that we use in our proof of Theo-
rem 9.2.2 and Corollary 9.2.5,

Ŝ(t | a,Xi)− S∗(t | a,Xi) =− S∗(t | a,Xi)Λ∗
0,a(t) exp(β∗T

a Xi)XT
i (β̂a − β∗

a)
− S∗(t | a,Xi) exp(β∗T

a Xi)(Λ̂0,a(t)− Λ∗
0,a(t)),

and furthermore

Λ̂0,a(t)− Λ∗
0,a(t) =

∫ t

0

{
n−1

a

∑n
i=1 I{Ai = a}dNi(u)
U

(0)
a (β̂a, u)

− n−1
a

∑n
i=1 I{Ai = a}dNi(u)
U

(0)
a (β∗

a, u)

}

+
∫ t

0

{
n−1

a

∑n
i=1 I{Ai = a}dNi(u)
U

(0)
a (β∗

a, u)
− dΛ∗

0,a(t)
}

= −

∫ t

0

U (1)
a (β∗

a, u){
U

(0)
a (β∗

a, u)
}2

{
n−1

a

n∑
i=1

I{Ai = a}dNi(u)
}

T (
β̂a − β∗

a

)

+
∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)
U

(0)
a (β∗

a, u)
+ op(1)

= −
{∫ t

0
ea(β∗

a, u)dΛ∗
0,a(u)

}T (
β̂a − β∗

a

)
+
∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)
U

(0)
a (β∗

a, u)
+ op(1).

Combining the above two equations, we obtain

Ŝ(t | a,Xi)− S∗(t | a,Xi)

=
[
−S∗(t | a,Xi)Λ∗

0,a(t) exp(β∗T
a Xi)XT

i −
{∫ t

0
ea(β∗

a, u)dΛ∗
0,a(u)

}T
] (
β̂a − β∗

a

)
+
∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)
U

(0)
a (β∗

a, u)
+ op(1).

C.1.2 Cross-fitting
To show the high-level idea of cross-fitting, we state the lemma from Kennedy et al.

[2020], which is useful in our proof of Theorem 9.2.4 and Corollary 9.2.6.
Lemma C.1.1. Consider two independent samples O1 = (O1, . . . , On) and O2 =
(On+1, . . . , Oñ), let f̂(o) be a function estimated from O2 and Pn the empirical measure over
O1, then we have

(Pn − P)(f̂ − f) = OP

∥f̂ − f∥√
n
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Proof. First note that by conditioning on O2 we obtain

E
{
Pn(f̂ − f)

∣∣∣O2
}

= E(f̂ − f | O2) = P(f̂ − f)

and the conditional variance is

var{(Pn − P)(f̂ − f) | O2} = var{Pn(f̂ − f) | O2} = 1
n
var(f̂ − f | O2) ≤ ∥f̂ − f∥2/n

therefore by Chebyshev’s inequality we have

P

 |(Pn − P)(f̂ − f)|
∥f̂ − f∥2/n

≥ t

 = E

P
 |(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

∣∣∣∣∣O2


 ≤ 1

t2

thus for any ϵ > 0 we can pick t = 1/
√
ϵ so that the probability above is no more than ϵ,

which yields the result.

C.2 Proof of Proposition 9.1.5
We first show the identification by the outcome regression formula.
V (d) = E[E[y(T (d)) |X]]
= E[d(X)E[y(T (1)) |X] + (1− d(X))E[y(T (0)) |X]]
= E[d(X)E[y(T (1)) |X, IS = 1] + (1− d(X))E[y(T (0)) |X, IS = 1]]
= E[d(X)E[y(T (1)) |A = 1, X, IS = 1]

+ (1− d(X))E[y(T (0)) |A = 0, X, IS = 1]]
= E[d(X)E[y(T ) |A = 1, X, IS = 1] + (1− d(X))E[y(T ) |A = 0, X, IS = 1]]
= E[E[y(T ) |A = d(X), X, IS = 1]]
= E[IT e(X)E[y(T ) |A = d(X), X, IS = 1]].

Similarly, we show the identification by the IPW formula.
V (d) = E[E[y(T ) |A = d(X), X, IS = 1]]

= E
[

IS

πS(X)E[y(T ) |A = d(X), X, IS = 1]
]

= E
[

IS

πS(X)
I{A = d(X)}

πd(X)
∆ y(U)

SC(U |A,X)

]
,

where the last equation follows from the standard IPTW-IPCW formula [Van der Laan
and Robins, 2003].

C.3 Proof of Proposition 9.1.6
While Lee et al. [2022] derived the efficient influence function for the treatment

specific survival function, here we derive the EIF for the value function V (d) =
E[IT e(X)µ(d(X), X)].
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First consider the full data Z = (X,A, T, IS, IT ), and we have the factorization as

p(Z) = {p(X)πS(X)p(A|X, IS = 1)p(T |A,X, IS = 1)}IS{p(X)}IT .

Since ISIT = 0, the score function is S(Z) = S(X,A, T, IS) + ITS(X). Let
Vϵ(d) = Eϵ[IT e(X)µϵ(d(X), X)] denote the parameter of interest evaluated under the
law pϵ(Z), where ϵ indexes a regular parametric submodel such that p0(Z) is the true
data generating law. To establish that V (d) is pathwise differentiable with EIF ϕF

d , we
need to show that

∂

∂ϵ
Vϵ(d)

∣∣∣∣∣
ϵ=0

= E[ϕF
d S(Z)].

First, we compute

∂

∂ϵ
Vϵ(d)

∣∣∣∣∣
ϵ=0

= E[IT e(X)µ(d(X), X)S(X)] + E
[
∂

∂ϵ
µϵ(d(X), X)

∣∣∣∣∣
ϵ=0

]
,

and further write the first term on the right hand side as

E[IT e(X)µ(d(X), X)S(X)] = E[(IT e(X)µ(d(X), X)− V (d))S(X)]
= E[(IT e(X)µ(d(X), X)− V (d))S(Z)],

and the second term as

E
[
∂

∂ϵ
µϵ(d(X), X)

∣∣∣∣∣
ϵ=0

]
= E [d(X)E[y(T )S(T |A,X, IS) |A = 1, X, IS = 1]

+(1− d(X))E[y(T )S(T |A,X, IS) |A = 0, X, IS = 1]]
= E [d(X)E[(y(T )− µ(1, X))S(T |A,X, IS) |A = 1, X, IS = 1]

+(1− d(X))E[(y(T )− µ(0, X))S(T |A,X, IS) |A = 0, X, IS = 1]]

= E
[
d(X)E

[
IS A

πS(X)πA(X)(y(T )− µ(1, X))S(T |A,X, IS)
∣∣∣∣∣X
]

+(1− d(X))E
[

IS (1− A)
πS(X)(1− πA(X))(y(T )− µ(0, X))S(T |A,X, IS)

∣∣∣∣∣X
]]

= E
[

IS

πS(X)

(
d(X) A

πA(X)(y(T )− µ(1, X))

+(1− d(X)) 1− A
1− πA(X)(y(T )− µ(0, X))

)
S(T |A,X, IS)

]

= E
[

IS

πS(X)
I{A = d(X)}

πd(X) (y(T )− µ(A,X))S(Z)
]
.

Therefore, the efficient influence function for the full data is

ϕF
d = IT e(X)µ(d(X), X) + IS

πS(X)
I{A = d(X)}

πd(X) (y(T )− µ(A,X))− V (d).
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Next, we consider the observed data O = (X,A,U,∆, IS, IT ) due to right censoring.
According to Tsiatis [2006, Section 10.4], the EIF based on the observed data is given by

ϕd = ∆ϕF
d

SC(U |A,X) +
∫ ∞

0

L(u,A,X)
SC(u |A,X)dMC(u |A,X),

where
L(u,A,X) = E[ϕF

d |T ≥ u,A,X]

= IT e(X)µ(d(X), X) + IS

πS(X)
I{A = d(X)}

πd(X) (Q(u,A,X)− µ(A,X))− V (d).

Since we have∫ ∞

0

dMC(u |A,X)
SC(u |A,X) =

∫ ∞

0

dNC(u)
SC(u |A,X) −

∫ U

0

dΛC(u |A,X)
exp{ΛC(u |A,X)}

= 1− ∆
SC(U |A,X) ,

(C.1)

we conclude that

ϕd = IS

πS(X)
I{A = d(X)}

πd(X)
∆ y(U)

SC(U |A,X) − V (d)

+
(
IT e(X)− IS

πS(X)
I{A = d(X)}

πd(X)

)
µ(d(X), X)

+ IS

πS(X)
I{A = d(X)}

πd(X)

∫ ∞

0

dMC(u |A,X)
SC(u |A,X) Q(u,A,X).

C.4 Proof of Theorem 9.2.2 and Corollary 9.2.5

C.4.1 Double robustness
We start with the proof of the double robustness property. We show that EIF-based

estimator is consistent when either the survival outcome model or the models for the
sampling score, the propensity score and the censoring process are correctly specified.
Under some regularity conditions, the nuisance estimators µ̂(a, x), Q̂(u, a, x), π̂S(x),
π̂A(x) and ŜC(t | a, x) converge in probability to µ∗(a, x), Q∗(u, a, x), π∗

S(x), π∗
A(x) and

S∗
C(t | a, x), respectively. It suffices to show that E[V ∗(d)] = V (d), where

V ∗(d) =IT e(X)µ∗(A = d(X), X)

+ IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

{
∆ y(U)

S∗
C(U |A,X) − µ

∗(A,X)

+
∫ ∞

0

dM∗
C(u |A,X)

S∗
C(u |A,X) Q∗(u,A,X)

}
=(I) + (II) + (III).

First, consider the case when the survival outcome model is correct, thus we have
(I) = E[IT e(X)µ∗(A = d(X), X)] = V (d)
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By Equation C.1, we obtain
(II) + (III)

= IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

{
y(T )− µ∗(A,X)−

∫ ∞

0

dM∗
C(u |A,X)

S∗
C(u |A,X) (y(T )−Q∗(u,A,X))

}
.

In this case, we have

E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X) (y(T )− µ∗(A,X))
]

= E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X) (y(T )− µ∗(A,X))
∣∣∣∣∣X

]]

= E
[
E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X) (y(T )− µ∗(A,X))
∣∣∣∣∣A,X, IS = 1

] ∣∣∣∣∣X
]]

= E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X) E[(y(T )− µ∗(A,X)) |A,X, IS = 1]
∣∣∣∣∣X

]]

= E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X) (E[y(T ) |A,X, IS = 1]− µ∗(A,X))
∣∣∣∣∣X

]]
= 0.

Also define dM̃C(u |A,X) = dÑC(u) − I{C ≥ u}dΛC(u |A,X) where ÑC(u) =
I{C ≤ u}, so we have

E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM∗
C(u |A,X)

S∗
C(u |A,X) (y(T )−Q∗(u,A,X))

]

= E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM̃C(u |A,X)
S∗

C(u |A,X) I{T ≥ u}(y(T )−Q∗(u,A,X))
]

= E

E
 IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM̃ (
Cu |A,X)

S∗
C(u |A,X) I{T ≥ u}(y(T )−Q∗(u,A,X))

∣∣∣∣∣X


= E
[
E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM̃C(u |A,X)
S∗

C(u |A,X) I{T ≥ u}

(y(T )−Q∗(u,A,X))
∣∣∣∣∣A,X,C, IS = 1

] ∣∣∣∣∣X
]]

= E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM̃C(u |A,X)
S∗

C(u |A,X) E [I{T ≥ u}

(y(T )−Q∗(u,A,X))
∣∣∣∣∣A,X,C, IS = 1

] ∣∣∣∣∣X
]]

= E
[
E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM̃C(u |A,X)
S∗

C(u |A,X) (E[I{T ≥ u}y(T ) |A,X, IS = 1]

−E[I{T ≥ u} |A,X, IS = 1]Q∗(u,A,X))
∣∣∣∣∣X

]]
= 0.

Next, consider the case when the models for the sampling score, the propensity
score and the censoring process are correctly specified. Rearranging the terms of V ∗(d),
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we obtain

V ∗(d) = IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)
∆ y(U)

S∗
C(U |A,X)

+
(
IT e(X)− IS

π∗
S(X)

)
µ∗(A = d(X), X)

+ IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)

∫ ∞

0

dM∗
C(u |A,X)

S∗
C(u |A,X) Q∗(u,A,X)

=(I) + (II) + (III).

In this case, we have

(I) = E
[

IS

π∗
S(X)

I{A = d(X)}
π∗

d(X)
∆ y(U)

S∗
C(U |A,X)

]
= V (d),

(II) = E
[(
IT e(X)− IS

π∗
S(X)

)
µ∗(A = d(X), X)

]

= E
[
E
[
IT e(X)− IS

π∗
S(X)

∣∣∣∣∣X
]
µ∗(A = d(X), X)

]
= 0,

and (III) is a stochastic integral with respect to the martingale M∗
C(u |A,X), thus

equals 0 as well, which completes the double robustness property.

C.4.2 Asymptotic properties
To establish the asymptotic results, we need some regularity conditions such

that the nuisance estimators µ(a, x; β̂a, Λ̂0,a), Q(u, a, x; β̂a, Λ̂0,a), πS(x; λ̂), πA(x; θ̂)
and SC(u | a, x; α̂a, Λ̂C0,a) converge in probability to µ(a, x; β∗

a,Λ∗
0,a), Q(u, a, x; β∗

a,Λ∗
0,a),

πS(x;λ∗), πA(x; θ∗) and
SC(t | a, x;α∗

a,Λ∗
C0,a), respectively.

Condition 4. We assume the following conditions hold:
(C1) X is bounded almost surely.
(C2) The equation E

[{
A− exp(θT X)

1+exp(θT X)

}
X
]

= 0 has a unique solution θ∗.
(C3) For a = 0, 1, the equation

E
[∫ L

0

(
Xi −

E[Yi(u) exp(βT
a X)X]

E[Yi(u) exp(βT
a X)]

)
× dNi(u)

]
= 0,

has a unique solution β∗
a , where L > u is a pre-specified time point such that Pr(Ui > L) > 0.

Moreover, let
Λ∗

0,a(u) = E
[∫ u

0

dNi(u)
E[Yi(u) exp(β∗T

a Xi)]

]
,

and assume Λ∗
0,a(L) <∞.

(C4) For a = 0, 1, the equation

E
[∫ L

0

(
Xi −

E[Yi(u) exp(αT
aX)X]

E[Yi(u) exp(αT
aX)]

)
× dNi(u)

]
= 0,
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has a unique solution α∗
a. Moreover, let

Λ∗
C0,a(u) = E

[∫ u

0

dNi(u)
E[Yi(u) exp(α∗T

a Xi)]

]
,

and assume Λ∗
C0,a(L) <∞.

(C5) The estimating equation for the sampling score model πS(X;λ) has a unique solution λ∗,
and achieves root-n rate of convergence.

Under Condition 4, we have the following asymptotic representations:
√
n(θ̂ − θ∗) = 1√

n

n∑
i=1

ϕθi + op(1),
√
n(λ̂− λ∗) = 1√

n

n∑
i=1

ϕλi + op(1),

√
n(β̂a − β∗

a) = 1√
n

n∑
i=1

ϕβai + op(1),
√
n(α̂a − α∗

a) = 1√
n

n∑
i=1

ϕαai + op(1), for a = 0, 1.

We focus on the estimation of survival functions by our proposed method:

Ŝ(t; η) = 1
N

N∑
i=1

IT,i e(Xi)Ŝ(t |A = dη(Xi), Xi)

+ IS,iI{Ai = dη(Xi)}
π̂S(Xi)π̂d(Xi)

{
∆i Yi(t)

ŜC(t |Ai, Xi)
− Ŝ(t |Ai, Xi)

+
∫ ∞

0

Ŝ(t |Ai, Xi)dM̂C(u |Ai, Xi)
Ŝ(u |Ai, Xi)ŜC(u |Ai, Xi)

},
and for the ease of notation, define

Ĵ(t, a, x) = ∆i Yi(t)
ŜC(t | a, x)

− Ŝ(t | a, x) +
∫ ∞

0

Ŝ(t | a, x)dM̂C(u | a, x)
Ŝ(u | a, x)ŜC(u | a, x)

,

J∗(t, a, x) = ∆i Yi(t)
S∗

C(t | a, x) − S
∗(t | a, x) +

∫ ∞

0

S∗(t | a, x)dM∗
C(u | a, x)

S∗(u | a, x)S∗
C(u | a, x) .

Our proof has three main parts as follows.
PART 1. By the double robustness property shown in Section C.4.1, we have, by

the strong law of large numbers and uniform consistency, that Ŝ(t; η) = S(t; η) + op(1),
which proves (i) of Theorem 9.2.2. Moreover, define

S∗
N(t; η) = 1

N

N∑
i=1

[
IT,i e(Xi)S∗(t |A = dη(Xi), Xi) + IS,iI{Ai = dη(Xi)}

π∗
S(Xi)π∗

d(Xi)
J∗(t, Ai, Xi)

]
,

and by applying the Taylor expansion and the counting processes result in Section C.1.1,
we obtain

Ŝ(t; η) =S∗
n(t; η) +HT

λ (λ̂− λ∗) +HT
θ (θ̂ − θ∗) +HT

β0(β̂0 − β∗
0) +HT

β1(β̂1 − β∗
1)

+HT
α0(α̂0 − α∗

0) +HT
α1(α̂1 − α∗

1) +RS + op(N−1/2),
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where
Hλ = lim

N→∞

1
N

N∑
i=1

∂Ŝ(t; η)
∂λ∗ , Hθ = lim

N→∞

1
N

N∑
i=1

∂Ŝ(t; η)
∂θ∗ ,

Hβa = lim
N→∞

1
N

N∑
i=1

{
IT,i e(Xi)(−1)a+1G(t, a,Xi) + IS,iI{Ai = a}

π∗
S(Xi)π∗

d(Xi)

(∫ ∞

0

G(t, a,Xi)dM∗
C(u | a,Xi)

S∗(u | a,Xi)S∗
C(u | a,Xi)

−G(t, a,Xi)−
∫ ∞

0

G(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗2(u | a,Xi)S∗
C(u | a,Xi)

)}
,

Hαa = lim
N→∞

1
N

N∑
i=1

IS,iI{Ai = a}
π∗

S(Xi)π∗
d(Xi)

{
−∆iYi(t)
S∗

C(t | a,Xi)
GC(t, a,Xi)

−
∫ ∞

0

GC(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗2
C (u | a,Xi)S∗(u | a,Xi)

+ G̃C(t, a,Xi)
}
,

RS = 1
N

N∑
i=1

∑
a=0,1

{
IT,i e(Xi)(−1)a+1H(t, a,Xi)

+ IS,iI{Ai = a}
π∗

S(Xi)π∗
d(Xi)

(∫ ∞

0

H(t, a,Xi)dM∗
C(u | a,Xi)

S∗
C(u | a,Xi)S∗(u | a,Xi)

−H(t, a,Xi)

−
∫ ∞

0

H(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗
C(u | a,Xi)S∗2(u | a,Xi)

− ∆iYi(t)
S∗

C(t|a,Xi)
HC(t, a,Xi)

−
∫ ∞

0

HC(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗2
C (u | a,Xi)S∗(u | a,Xi)

− H̃C(t, a,Xi)
)}

= 1
N

N∑
i=1

ϕRs,i,

with

G(t, a, x) = −S∗(t | a, x)Λ∗
0,a(t)xT + S∗(t | a, x) exp(β∗T

a x)
{∫ t

0
ea(β∗

a, u)dΛ∗
0,a(u)

}T

,

H(t, a, x) = −S∗(t | a, x) exp(β∗T
a x)

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)
U

(0)
a (β∗

a, u)
,

GC(t, a, x) = −S∗(t | a, x)Λ∗
0,a(t)xT + S∗(t | a, x) exp(β∗T

a x)
{∫ t

0
ea(β∗

a, u)dΛ∗
0,a(u)

}T

,

HC(t, a, x) = −S∗(t | a, x) exp(β∗T
a x)

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)
U

(0)
a (β∗

a, u)
,

G̃C(t, a, x) =
∫ Ui

0

S∗(t | a, x)dΛ∗
C(u | a, x)

S∗
C(u | a, x)S∗(u | a, x) x

T +
{∫ t

0

S∗(t | a, x)ea(β∗
a, u)dΛ∗

0,a(u)
S∗

C(u | a, x)S∗(u | a, x)

}T

,

H̃C(t, a, x) =
∫ t

0

S∗(t | a, x)n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

S∗
C(u | a, x)S∗(u | a, x)U (0)

a (β∗
a, u)

.

Thus, we have
√
N
{
Ŝ(t; η)− S(t; η)

}
= 1√

N

N∑
i=1

(ξ1,i(t; η) + ξ2,i(t; η)) + op(1), (C.2)

141



SUPPLEMENTARY MATERIAL

where
ξ1,i(t; η) = S∗

n(t; η)− S(t; η),

ξ2,i(t; η) = HT
λ ϕλ∗,i +HT

θ ϕθ∗,i +
∑

a=0,1
HT

βa
ϕβ∗

0 ,i +
∑

a=0,1
HT

αa
ϕα∗

a,i +HT
α1 + ϕRs,i,

and ξ1,i(t; η), ξ2,i(t; η) are independent mean-zero processes. Therefore, we obtain
that
√
N
{
Ŝ(t; η)− S(t; η)

}
converges weakly to a mean-zero Gaussian process, which

proves (ii) of Theorem 9.2.2.
PART 2. We show that N1/3∥η̂ − η∗∥2 = Op(1). Recall that

η̂ = arg max
η

Ŝ(t; η) and η∗ = arg max
η

S(t; η).

By Assumption 9.2.1 (i), S(t; η) is twice continuously differentiable at a neighbor-
hood of η∗; in Step 1, we show that Ŝ(t; η) = S(t; η)+op(1),∀η; since η̂maximizes Ŝ(t; η),
we have that Ŝ(t; η̂) ≥ supη Ŝ(t; η), thus by the Argmax theorem, we have η̂ p→ η∗ as
N →∞.

In order to establish the N−1/3 rate of convergence of η̂, we apply Theorem 14.4
(Rate of convergence) of Kosorok [2008], and need to find the suitable rate that satisfies
three conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ∥η − η∗∥2 < δ, by
Assumption 9.2.1 (i), we apply the second-order Taylor expansion,

S(t; η)− S(t; η∗) = S ′(η∗)∥η − η∗∥2 + 1
2S

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2)

= 1
2S

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2),

and as S ′′(η∗) < 0, there exists c0 = −1
2S

′′(η∗) > 0 such that S(t; η) − S(t; η∗) ≤
−c0∥η − η∗∥2

2.
Condition 2 For allN large enough and sufficiently small δ, we consider the centered

process Ŝ − S, and have that

E
[√

N sup
∥η−η∗∥2<δ

∣∣∣Ŝ(t; η)− S(t; η)−
{
Ŝ(t; η∗)− S(t; η∗)

}∣∣∣]

= E

√N sup
∥η−η∗∥2<δ

∣∣∣Ŝ(t; η)− S∗
n(t; η) + S∗

n(t; η)− S(t; η)

−
{
Ŝ(t; η∗)− S∗

n(t; η∗) + S∗
n(t; η∗)− S(t; η∗)

}∣∣∣


≤ E
[√

N sup
∥η−η∗∥2<δ

∣∣∣Ŝ(t; η)− S∗
n(t; η)−

{
Ŝ(t; η∗)− S∗

n(t; η∗)
}∣∣∣] (I)

+ E
[√

N sup
∥η−η∗∥2<δ

|S∗
n(t; η)− S(t; η)− {S∗

n(t; η∗)− S(t; η∗)}|
]
, (II)

142



and we bound (I) and (II) respectively as follows.
Condition 2.1 To bound (II), we need the useful facts that

I{A = dη(X)} − I{A = dη∗(X)} = (2A− 1)(dη(X)− dη∗(X)),

S∗(t | dη(Xi), Xi)− S∗(t | dη∗(Xi), Xi) = (S∗(t | 1, Xi)− S∗(t | 0, Xi))(dη(Xi)− dη∗(Xi)),
and obtain

S∗
n(t; η)− S∗

n(t; η∗) = 1
N

N∑
i=1

(dη(Xi)− dη∗(Xi))

×
{
IT,i e(Xi)(S∗(t | 1, Xi)− S∗(t | 0, Xi)) + (2Ai − 1)IS,i

π∗
S(Xi)π∗

d(Xi)
J∗(t, Ai, Xi)

}
.

Define a class of functions

F1
η =

{
(dη(x)− dη∗(x))

(
IT e(x)(S∗(t | 1, x)− S∗(t | 0, x)) + (2a− 1)IS

π∗
a(x)π∗

S(x)J
∗(t, a, x)

)
:

∥η − η∗∥2 < δ

}
,

and let M1 = sup
∣∣∣∣IT e(x)(S∗(t | 1, x)− S∗(t | 0, x)) + (2a−1)IS

π∗
a(x)π∗

S(x)J
∗(t, a, x)

∣∣∣∣. By Assump-
tion 9.1.1, 9.1.3 and Condition 4, we have thatM1 <∞.

When ∥η − η∗∥2 < δ, by Condition 4 (C1), there exists a constant 0 < k0 <∞ such
that |(1, xT )(η − η∗)| < k0δ; furthermore, we show that |dη(x)− dη∗(x)| = |I{(1, xT )η >
0} − I{(1, xT )η∗ > 0}| ≤ I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}, by considering the three cases:
— when −k0δ ≤ (1, xT )η∗ ≤ k0δ, we have |dη(x) − dη∗(x)| ≤ 1 = I{−k0δ ≤

(1, xT )η∗ ≤ k0δ};
— when (1, xT )η∗ > k0δ > 0, we have (1, xT )η = (1, xT )(η − η∗) + (1, xT )η∗ > 0, so
|dη(x)− dη∗(x)| = 0 = I{−k0δ ≤ (1, xT )η∗ ≤ k0δ};

— when (1, xT )η∗ < −k0δ < 0, we have (1, xT )η = (1, xT )(η − η∗) + (1, xT )η∗ < 0, so
|dη(x)− dη∗(x)| = 0 = I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}.

Thus we can define the envelope of F1
η as F1 = M1I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}. By

Assumption 9.2.1 (ii), there exists a constant 0 < k1 <∞ such that

∥F1∥P,2 ≤M1

√
Pr(−k0δ ≤ (1, xT )η∗ ≤ k0δ) ≤M1

√
2k0k1δ

1/2.

By Lemma 9.6 and Lemma 9.9 of Kosorok [2008], we have that F1
η , a class of

indicator functions, is a Vapnik-Cervonenkis (VC) class with bounded bracketing
entropy J∗

[](1,F1
η ) <∞.

Since we have the fact that

GNF1
η = N−1/2

N∑
i=1

{
F1

η − E[F1
η ]
}

=
√
N (S∗

n(t; η)− S∗
n(t; η∗)− {S(t; η)− S(t; η∗)}) ,
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By Theorem 11.2 of Kosorok [2008], we obtain that there exists a constant 0 < c1 <∞,

(II) = E
[

sup
∥η−η∗∥2<δ

|GNF1
η |
]
≤ c1J

∗
[](1,F1

η )∥F1∥P,2 ≤ c1J
∗
[](1,F1

η )M1

√
2k0k1δ

1/2 = c̃1δ
1/2,

so we conclude that (II) ≤ c̃1δ
1/2 where c̃1 > 0 is a finite constant.

Condition 2.2 To bound (I), first we have
Ŝ(t; η)− S∗

n(t; η)− {Ŝ(t; η∗)− S∗
n(t; η∗)} = Ŝ(t; η)− Ŝ(t; η∗)− {S∗

n(t; η)− S∗
n(t; η∗)}

= 1
N

N∑
i=1

(dη(Xi)− dη∗(Xi))
[
IT,i e(Xi){Ŝ(t|1, Xi)− Ŝ(t|0, Xi)− (S∗(t|1, Xi)− S∗(t|0, Xi))}

+ (2Ai − 1)IS,i

π̂Ai
(Xi)π̂S(Xi)

Ĵ(t, Ai, Xi)−
(2Ai − 1)IS,i

π∗
Ai

(Xi)π∗
S(Xi)

J∗(t, Ai, Xi)
]
,

and then apply the Taylor expansion and counting processes result in Section C.1.1,
Ŝ(t; η)− S∗

n(t; η)− {Ŝ(t; η∗)− S∗
n(t; η∗)}

= 1
N

N∑
i=1

(dη(Xi)− dη∗(Xi))×
{
Dλ(λ̂− λ∗) +Dθ(θ̂ − θ∗) +Dβ0(β̂0 − β∗

0)

+Dβ1(β̂1 − β∗
1) +Dα0(α̂0 − α∗

0) +Dα1(α̂1 − α∗
1) +RS,i

}
+ op(N−1/2),

(C.3)

where

Dλ = − (2Ai − 1)IS,i

π∗
Ai

(Xi)π∗2
S (Xi)

J∗(t, Ai, Xi)
(
∂π∗

S(Xi)
∂λ

)T

,

Dθ = − IS,i

π∗2
Ai

(Xi)π∗
S(Xi)

J∗(t, Ai, Xi)
(
∂π∗

A(Xi)
∂θ

)T

,

Dβa =IT,i e(Xi)(−1)a+1G(t, a,Xi) + (2Ai − 1)I{Ai = a}IS,i

π∗
Ai

(Xi)π∗
S(Xi)

(∫ ∞

0

G(t, a,Xi)dM∗
C(u | a,Xi)

S∗
C(u | a,Xi)S∗(u | a,Xi)

−G(t, a,Xi)−
∫ ∞

0

G(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗
C(u | a,Xi)S∗2(u | a,Xi)

)
,

Dαa =(2Ai − 1)I{Ai = a}IS,i

π∗
Ai

(Xi)π∗
S(Xi)

{
− ∆i Yi(t)
S∗

C(t | a,Xi)
GC(t, a,Xi)

−
∫ ∞

0

GC(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗2
C (u | a,Xi)S∗(u | a,Xi)

+ G̃C(t, a,Xi)
}
,

RS,i =
∑

a=0,1

[
IT,i e(Xi)(−1)a+1H(t, a,Xi) + (2Ai − 1)I{Ai = a}IS,i

π∗
Ai

(Xi)π∗
S(Xi)

(∫ ∞

0

H(t, a,Xi)dM∗
C(u | a,Xi)

S∗
C(u | a,Xi)S∗(u | a,Xi)

−H(t, a,Xi)−
∫ ∞

0

H(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗
C(u | a,Xi)S∗2(u | a,Xi)

− ∆i Yi(t)
S∗

C(t | a,Xi)
HC(t, a,Xi)−

∫ ∞

0

HC(u, a,Xi)S∗(t | a,Xi)dM∗
C(u | a,Xi)

S∗2
C (u | a,Xi)S∗(u | a,Xi)

− H̃C(t, a,Xi)
)]
.
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Similarly, we define the following classes of functions:

F2
η =

(dη(x)− dη∗(x)) (2a− 1)IS,i

π∗
a(x)π∗2

S (x)J
∗(t, a, x)

(
∂π∗

S(x)
∂λ

)T

: ∥η − η∗∥2 < δ

 ,

F3
η =

(dη(x)− dη∗(x)) −IS,i

π∗2
a (x)π∗

S(x)J
∗(t, a, x)

(
∂π∗

A(x)
∂θ

)T

: ∥η − η∗∥2 < δ

 ,

F4
η =

(dη(x)− dη∗(x))
IT e(x)(−1)a+1G(t, a, x) + (2a− 1)IS

π∗
a(x)π∗

S(x)

×
(∫ ∞

0

G(t, a, x)dM∗
C(u | a, x)

S∗
C(u | a, x)S∗(u | a, x) −G(t, a, x)

−
∫ ∞

0

G(u, a, x)S∗(t | a, x)dM∗
C(u | a, x)

S∗
C(u | a, x)S∗2(u | a, x)

) : ∥η − η∗∥2 < δ

,

F5
η =

(dη(x)− dη∗(x))
IT e(x)(−1)a+1G(t, a, x) + (2a− 1)IS

π∗
a(x)π∗

S(x)

×
(∫ ∞

0

G(t, a, x)dM∗
C(u | a, x)

S∗
C(u | a, x)S∗(u | a, x) −G(t, a, x)

−
∫ ∞

0

G(u, a, x)S∗(t | a, x)dM∗
C(u | a, x)

S∗
C(u | a, x)S∗2(u | a, x)

) : ∥η − η∗∥2 < δ

,

F6
η =

(dη(x)− dη∗(x))
 (2a− 1)IS

π∗
a(x)π∗

S(x)

{
− ∆Y (t)
S∗

C(t | a, x)GC(t, a, x)

−
∫ ∞

0

GC(u, a, x)S∗(t | a, x)dM∗
C(u | a, x)

S∗2
C (u | a, x)S∗(u | a, x) + G̃C(t, a, x)

} : ∥η − η∗∥2 < δ

,

F7
η =

(dη(x)− dη∗(x))
 (2a− 1)IS

π∗
a(x)π∗

S(x)

{
− ∆Y (t)
S∗

C(t | a, x)GC(t, a, x)

−
∫ ∞

0

GC(u, a, x)S∗(t | a, x)dM∗
C(u | a, x)

S∗2
C (u | a, x)S∗(u | a, x) + G̃C(t, a, x)

} : ∥η − η∗∥2 < δ

,

F8
η =

(dη(x)− dη∗(x))
 ∑

a=0,1

[
IT e(x)a+1H(t, a, x) + (2a− 1)IS

π∗
a(x)π∗

S(x)

×
(∫ ∞

0

H(t, a, x)dM∗
C(u | a, x)

S∗
C(u | a, x)S∗(u | a, x) −H(t, a, x)

−
∫ ∞

0

H(u, a, x)S∗(t | a, x)dM∗
C(u | a, x)

S∗
C(u | a, x)S∗2(u | a, x) − ∆Y (t)

S∗
C(t | a, x)HC(t, a, x)

−
∫ ∞

0

HC(u, a, x)S∗(t | a, x)dM∗
C(u | a, x)

S∗2
C (u | a, x)S∗(u | a, x) − H̃C(t, a, x)

)] : ∥η − η∗∥2 < δ

.
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Let

M2 = sup

∣∣∣∣∣∣(2a− 1)
π∗

a(x) J∗(t, a, x)
(
∂π∗

S(x)
∂λ

)T
∣∣∣∣∣∣ ,

whereM2 ∈ R+ and the supremum is taken over all the coordinates; andM3, . . . ,M8
are defined accordingly for F3

η , . . . ,F8
η . By Assumption 9.1.1, 9.1.3 and Condition 4,

we have thatM2, . . . ,M8 <∞.

Using the same technique as in Condition 2.1, we define the envelop of F j
η as

Fj = MjI{−k0δ ≤ (1, xT )η∗ ≤ k0δ} for j = 2, . . . , 8, and obtain that

∥Fj∥P,2 ≤ M̃jδ
1/2 <∞, j = 2, . . . , 8,

where M̃2, . . . , M̃8 are some finite constants, and that F j
η is a VC class with bounded

bracketing entropy J∗
[](1,F j

η) <∞, for j = 2, . . . , 8. By Theorem 11.2 of Kosorok [2008],
we obtain

E
[

sup
∥η−η∗∥2<δ

∣∣∣GNF j
η

∣∣∣] ≤ cjJ
∗
[](1,F j

η)∥Fj∥P,2, j = 2, . . . , 8,

where c2, . . . , c8 are some finite constants. That is, we have

E
[

sup
∥η−η∗∥2<δ

∣∣∣GNF8
η

∣∣∣] ≤ c̃8δ
1/2,

and furthermore by Theorem 2.14.5 of van der Vaart and Wellner [1996], we obtain

{
E
[

sup
∥η−η∗∥2<δ

∥GnF j
η∥2

2

]}1/2

≤ lj

{
E
[

sup
∥η−η∗∥2<δ

|GnF j
η |
]

+ ∥Fj∥P,2

}
≤ lj{cjJ

∗
[](1,F j

η) + 1}∥Fj∥P,2

≤ c̃jδ
1/2, j = 2, . . . , 7,

where l2, . . . , l7 and c̃2, . . . , c̃7 are some finite constants.
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By Equation (C.3), we have that

(I) = E
[
N1/2 sup

∥η−η∗∥2<δ

∣∣∣Ŝ(t; η)− S∗
N(t; η)− {Ŝ(t; η∗)− S∗

N(t; η∗)}
∣∣∣]

≤ E

 sup
∥η−η∗∥2<δ

{
|GnF2

η (λ̂− λ∗)|+ |GnF3
η (θ̂ − θ∗)|+ |GnF4

η (β̂0 − β∗
0)|+ |GnF5

η (β̂1 − β∗
1)|

+ |GnF6
η (α̂0 − α∗

0)|+ |GnF7
η (α̂1 − α∗

1)|+ |GnF8
η |
}

+ op(1)


≤ N−1/2

E
[

sup
∥η−η∗∥2<δ

|GnF2
η ·N1/2(λ̂− λ∗)|

]
+ E

[
sup

∥η−η∗∥2<δ

|GnF3
η ·N1/2(θ̂ − θ∗)|

]

+ E
[

sup
∥η−η∗∥2<δ

|GnF4
η ·N1/2(β̂0 − β∗

0)|
]

+ E
[

sup
∥η−η∗∥2<δ

|GnF5
η ·N1/2(β̂1 − β∗

1)|
]

+ E
[

sup
∥η−η∗∥2<δ

|GnF6
η ·N1/2(α̂0 − α∗

0)|
]

+ E
[

sup
∥η−η∗∥2<δ

|GnF7
η ·N1/2(α̂1 − α∗

1)|
]

+ E
[

sup
∥η−η∗∥2<δ

∣∣∣GNF8
η

∣∣∣]+ op(1),

and then by the Cauchy-Schwarz inequality, we obtain

(I) ≤N−1/2
{
E[N∥λ̂− λ∗∥2

2]
}1/2

{
E
[

sup
∥η−η∗∥2<δ

∥GNF2
η∥2

2

]}1/2

+N−1/2
{
E[N∥θ̂ − θ∗∥2

2]
}1/2

{
E
[

sup
∥η−η∗∥2<δ

∥GNF3
η∥2

2

]}1/2

+N−1/2
{
E[N∥β̂0 − β∗

0∥2
2]
}1/2

{
E
[

sup
∥η−η∗∥2<δ

∥GNF4
η∥2

2

]}1/2

+N−1/2
{
E[N∥β̂1 − β∗

1∥2
2]
}1/2

{
E
[

sup
∥η−η∗∥2<δ

∥GNF5
η∥2

2

]}1/2

+N−1/2
{
E[N∥α̂0 − α∗

0∥2
2]
}1/2

{
E
[

sup
∥η−η∗∥2<δ

∥GNF6
η∥2

2

]}1/2

+N−1/2
{
E[N∥α̂1 − α∗

1∥2
2]
}1/2

{
E
[

sup
∥η−η∗∥2<δ

∥GNF7
η∥2

2

]}1/2

+ E
[

sup
∥η−η∗∥2<δ

∣∣∣GNF8
η

∣∣∣] .

LetMλ =
{
E[N∥λ̂− λ∗∥2

2]
}1/2, andMθ,Mβ0 ,Mβ1 ,Mα0 ,Mα1 are defined accordingly.

By Condition 4, we have thatMλ,Mθ,Mβ0 ,Mβ1 ,Mα0 ,Mα1 <∞, and therefore

(I) ≤ N−1/2(Mλc̃2 +Mθc̃3 +Mβ0 c̃4 +Mβ1 c̃5 +Mα0 c̃6 +Mα1 c̃7)δ1/2 + c̃8δ
1/2.
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In summary, we obtain that, let N →∞, the centered process satisfies

E
[√

N sup
∥η−η∗∥2<δ

∣∣∣Ŝ(t; η)− S(t; η)− {Ŝ(t; η∗)− S(t; η∗)}
∣∣∣]

≤ (I) + (II) ≤ (c̃1 + c̃8)δ1/2.

(C.4)

Let ϕN(δ) = δ1/2 and α = 3
2 < 2, thus we have ϕn(δ)

δα = δ−1 is decreasing, and α does
not depend on N . That is, the second condition holds.

Condition 3 By the facts that η̂ p→ η∗ as N →∞, and that Ŝ(t; η̂) ≥ supη Ŝ(t; η), we
choose rN = N1/3 such that r2

NϕN(r−1
N ) = N2/3ϕN(N−1/3) = N1/2. The third condition

holds.
In the end, the three conditions are satisfied with rN = N1/3; thus we conclude that

N1/3∥η̂ − η∗∥2 = Op(1), which completes the proof of (iii) of Theorem 9.2.2.
PART 3. We characterize the asymptotic distribution of Ŝ(t; η̂). Since we have
√
N{Ŝ(t; η̂)− S(t; η∗)} =

√
N{Ŝ(t; η̂)− Ŝ(t; η∗)}+

√
N{Ŝ(t; η∗)− S(t; η∗)},

we study the two terms in two steps.
Step 3.1 To establish

√
N{Ŝ(t; η̂) − Ŝ(t; η∗)} = op(1), it suffices to show that√

N{S(t; η̂)−S(t; η∗)} = op(1) and
√
N(Ŝ(t; η̂)− Ŝ(t; η∗)−{S(t; η̂)−S(t; η∗)}) = op(1).

First, as N1/3∥η̂ − η∗∥2 = Op(1), we take the second-order Taylor expansion
√
N{S(t; η̂)− S(t; η∗)} =

√
N
{
S ′(η∗)∥η̂ − η∗∥2 + 1

2S
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
N
{1

2S
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
N
{1

2S
′′(η∗)Op(N−2/3) + op(N−2/3)

}
= op(1).

Next, we follow the result (C.4) obtained in PART 2. As N1/3∥η̂ − η∗∥2 = Op(1),
there exists δ̃ = c9N

−1/3, where c9 < ∞ is a finite constant, such that ∥η̂ − η∗∥2 ≤ δ̃.
Therefore we have

√
N(Ŝ(t; η̂)− Ŝ(t; η∗)− {S(t; η̂)− S(t; η∗)})

≤ E

√N sup
∥η̂−η∗∥2<δ̃

∣∣∣Ŝ(t; η̂)− S(t; η̂)− {Ŝ(t; η∗)− S(t; η∗)}
∣∣∣


≤ (c̃1 + c̃8)δ̃1/2 = (c̃1 + c̃8)
√
c9N

−1/6 = op(1),

which yields the result.
Step 3.2 To derive the asymptotic distribution of √n{Ŝ(t; η∗)− S(t; η∗)}, we follow

the result (C.2) obtained in PART 1 and have that
√
N
{
Ŝ(t; η∗)− S(t; η∗)

}
D→ N (0, σ2

t,1),
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where σ2
t,1 = E[(ξ1,i(t; η∗) + ξ2,i(t; η∗))2]. Therefore we obtain in the end

√
N{Ŝ(t; η̂)− S(t; η∗)} =

√
N{Ŝ(t; η̂)− Ŝ(t; η∗)}+

√
N{Ŝ(t; η∗)− S(t; η∗)}

= op(1) +
√
N{Ŝ(t; η∗)− S(t; η∗)}

D→ N (0, σ2
t,1),

which completes the proof.
For Corollary 9.2.5 where we consider RMST, the proof can follow the same steps

as before, and is thus omitted here.

C.5 Proof of Theorem 9.2.4 and Corollary 9.2.6
Our proof has three main parts below.
PART 1. Recall that the cross-fitting technique, at a high level as exemplified in

Lemma C.1.1, uses sample splitting to avoid bias due to over-fitting. For simplicity,
consider that the datasets Os and Ot are randomly split into 2 folds with equal size
respectively such that Os = Os,1 ∪ Os,2,Ot = Ot,1 ∪ Ot,2. The extension to K-folds
as described in Algorithm 1 is straightforward. Here the subscript CF is omitted to
simplify the notation. Define I1 = Os,1 ∪Ot,1, I2 = Os,2 ∪Ot,2, and N1 = |I1|, N2 = |I2|.
The cross-fitted estimator for the value function under the ITR dη is

V̂ (η) = N1

N
V̂ I1(η) + N2

N
V̂ I2(η),

where

V̂ I1(η) = 1
N1

∑
I1

IT,i e(Xi)µ̂(dη(Xi), Xi) + IS,i

π̂S(Xi)
I{Ai = dη(Xi)}

π̂d(Xi)

×
(

∆i y(Ui)
ŜC(Ui |Ai, Xi)

− µ̂(Ai, Xi) +
∫ ∞

0

dM̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

Q̂(u,Ai, Xi)
),

and the nuisance parameters are estimated from I2. V̂ I2(η) is defined accordingly.
In this step, we show that

V̂ (η)− VN(η) = op(N−1/2),

and essentially it suffices to prove that
V̂ I1(η)− V I1

N (η) = op(N−1/2),

where

VN(η) = 1
N

N∑
i=1

IT,i e(Xi)µ(dη(Xi), Xi) + IS,i

πS(Xi)
I{Ai = dη(Xi)}

πd(Xi)

×
(

∆i y(Ui)
SC(Ui |Ai, Xi)

− µ(Ai, Xi) +
∫ ∞

0

dMC(u |Ai, Xi)
SC(u |Ai, Xi)

Q(u,Ai, Xi)
),
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and V I1
N (η) is defined accordingly.

First, we have the following decomposition

V̂ I1(η)− V I1
N (η)

= 1
N1

∑
I1

IT,i e(Xi)(µ̂(dη(Xi), Xi)− µ(dη(Xi), Xi))

+ IS,i

(
1

πS(Xi)
− 1
π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

+ IS,iI{Ai = dη(Xi)}
πS(Xi)

(
1

πd(Xi)
− 1
π̂d(Xi)

)
K(Ai, Xi)

+ IS,i

πS(Xi)
I{Ai = dη(Xi)}

πd(Xi)
(K̂(Ai, Xi)−K(Ai, Xi))

+ IS,iI{Ai = dη(Xi)}
(

1
πS(Xi)

− 1
π̂S(Xi)

)(
1

πd(Xi)
− 1
π̂d(Xi)

)
K(Ai, Xi)

+ IS,iI{Ai = dη(Xi)}
πd(Xi)

(
1

πS(Xi)
− 1
π̂S(Xi)

)
(K̂(Ai, Xi)−K(Ai, Xi))

+ IS,iI{Ai = dη(Xi)}
πS(Xi)

(
1

πd(Xi)
− 1
π̂d(Xi)

)
(K̂(Ai, Xi)−K(Ai, Xi))

+ IS,iI{Ai = dη(Xi)}
(

1
πS(Xi)

− 1
π̂S(Xi)

)(
1

πd(Xi)
− 1
π̂d(Xi)

)
(K̂(Ai, Xi)−K(Ai, Xi))

,
(C.5)

where

K̂(Ai, Xi) = ∆i y(Ui)
ŜC(Ui |Ai, Xi)

− µ̂(Ai, Xi) +
∫ ∞

0

dM̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

Q̂(u,Ai, Xi),

K(Ai, Xi) = ∆i y(Ui)
SC(Ui |Ai, Xi)

− µ(Ai, Xi) +
∫ ∞

0

dMC(u |Ai, Xi)
SC(u |Ai, Xi)

Q(u,Ai, Xi).

In summary, the decomposition (C.5) consists of two types of terms: four mean-
zero terms and four product terms. For the mean-zero terms, we utilize the method
introduced in Section C.1.2; since

E[IT,i e(Xi)(µ̂(dη(Xi), Xi)− µ(dη(Xi), Xi))] = 0,

by applying Lemma C.1.1, we obtain
1
N1

∑
I1

IT,i e(Xi)(µ̂(dη(Xi), Xi)− µ(dη(Xi), Xi)) = op(N−1/2).

Similarly we have

E
[
IS,i

(
1

πS(Xi)
− 1
π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

]
= 0,
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so we obtain

E


 1
N1

∑
I1

IS,i

(
1

πS(Xi)
− 1
π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

2


= E

E

 1
N1

∑
I1

IS,i

(
1

πS(Xi)
− 1
π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

2 ∣∣∣∣∣∣I2




= E

var
 1
N1

∑
I1

IS,i

(
1

πS(Xi)
− 1
π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

∣∣∣∣∣∣I2


= 1
N1

E
[
var

[
IS,i

(
1

πS(Xi)
− 1
π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

∣∣∣∣∣I2

]]

≤ Op(1)
N1

= op( 1
N

).

We also have

E
[
IS,iI{Ai = dη(Xi)}

πS(Xi)

(
1

πd(Xi)
− 1
π̂d(Xi)

)
K(Ai, Xi)

]
= 0,

E
[

IS,i

πS(Xi)
I{Ai = dη(Xi)}

πd(Xi)
(K̂(Ai, Xi)−K(Ai, Xi))

]
= 0,

and using the same technique, we conclude that these two mean-zero terms are
op(N−1/2) as well.

The product terms can be handled simply by the Cauchy-Schwarz inequality and
the rate of convergence conditions in Assumption 9.2.3. Additionally we have the
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decomposition as follows

1
N1

∑
I1

(K̂(Ai, Xi)−K(Ai, Xi))

= 1
N1

∑
I1

− (µ̂(Ai, Xi)− µ(Ai, Xi)) + 1−∆i

SC(Ui |Ai, Xi)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

λC(u |Ai, Xi)
SC(u |Ai, Xi)

(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))du

+ (1−∆i)
(

1
ŜC(Ui |Ai, Xi)

− 1
SC(Ui |Ai, Xi)

)
Q(Ui |Ai, Xi)

+
(

1
ŜC(Ui |Ai, Xi)

− 1
SC(Ui |Ai, Xi)

)
∆i y(Ui)

−
∫ Ui

0

 λ̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

− λC(u |Ai, Xi)
SC(u |Ai, Xi)

Q(Ui |Ai, Xi)du

+ (1−∆i)
(

1
ŜC(Ui |Ai, Xi)

− 1
SC(Ui |Ai, Xi)

)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

 λ̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

− λC(u |Ai, Xi)
SC(u |Ai, Xi)

 (Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))du,

and similarlywe have threemean-zero termswhich are op(N−1/2) by the same technique
in Section C.1.2 and the facts that

E[µ̂(Ai, Xi)− µ(Ai, Xi)] = 0,

E
[

1−∆i

SC(Ui |Ai, Xi)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

λC(u |Ai, Xi)
SC(u |Ai, Xi)

(Q̂(u |Ai, Xi)−Q(u |Ai, Xi))du
]

= 0,

E
[
(1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1
SC(Ui |Ai, Xi)

)
Q(Ui |Ai, Xi)

+
(

1
ŜC(Ui |Ai, Xi)

− 1
SC(Ui |Ai, Xi)

)
∆i y(Ui)

−
∫ Ui

0

 λ̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

− λC(u |Ai, Xi)
SC(u |Ai, Xi)

Q(Ui |Ai, Xi)du
]

= 0,
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and we can bound the two product terms as well

1
N1

∑
I1

[
(1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1
SC(Ui |Ai, Xi)

)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

 λ̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

− λC(u |Ai, Xi)
SC(u |Ai, Xi)

 (Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))du


≤

 1
N1

∑
I1

(1−∆i)
(

1
ŜC(Ui |Ai, Xi)

− 1
SC(Ui |Ai, Xi)

)2
1/2

×

 1
N1

∑
I1

(1−∆i)(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))2

1/2

−
∫ Ui

0

 1
N1

∑
I1

 λ̂C(u |Ai, Xi)
ŜC(u |Ai, Xi)

− λC(u |Ai, Xi)
SC(u |Ai, Xi)

2


1/2

×

 1
N1

∑
I1

(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))2

1/2

du

= op(N−1/2),

which proves that 1
N1

∑
I1(K̂(Ai, Xi)−K(Ai, Xi)) = op(N−1/2).

Therefore, we conclude that the four product terms in (C.5) are op(N−1/2) as well,
which completes the proof of (i) in Theorem 9.2.4.

PART 2: We show that N1/3∥η̂ − η∗∥2 = Op(1).
By Assumption 9.2.1 (i), V (η) is twice continuously differentiable at a neighborhood

of η∗; in PART 1, we show that V̂ (η) = V (η) + op(1), ∀η; since η̂ maximizes V̂ (η), we
have that V̂ (η̂) ≥ supη V̂ (η), thus by the Argmax theorem, we have η̂ p→ η∗ as N →∞.

In order to establish the N−1/3 rate of convergence of η̂, we apply Theorem 14.4
(Rate of convergence) of Kosorok [2008], and need to find the suitable rate that satisfies
three conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ∥η − η∗∥2 < δ, by
Assumption 9.2.1 (i), we apply the second-order Taylor expansion,

V (η)− V (η∗) = V ′(η∗)∥η − η∗∥2 + 1
2V

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2)

= 1
2V

′′(η∗)∥η − η∗∥2
2 + o(∥η − η∗∥2

2),

and as V ′′(η∗) < 0, there exists c10 = −1
2V

′′(η∗) > 0 such that V (η)− V (η∗) ≤ −c10∥η −
η∗∥2

2.
Condition 2 For allN large enough and sufficiently small δ, we consider the centered
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process V̂ − V , and have that

E
[√

N sup
∥η−η∗∥2<δ

∣∣∣V̂ (η)− V (η)− {V̂ (η∗)− V (η∗)}
∣∣∣]

= E
[√

N sup
∥η−η∗∥2<δ

∣∣∣V̂ (η)− Vn(η) + Vn(η)− V (η)− {V̂ (η∗)− Vn(η∗) + Vn(η∗)− V (η∗)}
∣∣∣]

≤ E
[√

N sup
∥η−η∗∥2<δ

∣∣∣V̂ (η)− Vn(η)− {V̂ (η∗)− Vn(η∗)}
∣∣∣] (I)

+ E
[√

N sup
∥η−η∗∥2<δ

|Vn(η)− V (η)− {Vn(η∗)− V (η∗)}|
]

(II)

It follows from the result in PART 1 that (I) = op(1). To bound (II), we have
Vn(η)− Vn(η∗)

= 1
N

N∑
i=1

(dη(Xi)− dη∗(Xi))×
(
IT,i e(Xi)(µ(1, Xi)− µ(0, Xi)) + (2Ai − 1)IS,i

πAi
(Xi)πS(Xi)

K(Ai, Xi)
)
.

Define a class of functions

F9
η =

{
(dη(x)−dη∗(x))×

(
IT e(x)(µ(1, x)−µ(0, x))+ (2a− 1)IS

πa(x)πS(x)K(a, x)
)

: ∥η−η∗∥2 < δ

}
,

and let M9 = sup
∣∣∣IT e(x)(µ(1, x)− µ(0, x)) + (2a−1)IS

πa(x)πS(x)K(a, x)
∣∣∣. By Assumption 9.1.1,

9.1.3 and Condition 4, we have that M9 < ∞. Using the same technique as in Sec-
tion C.4.2 Condition 2.1, we define the envelop of F9

η as F9 = M9I{−k0δ ≤ (1, xT )η∗ ≤
k0δ}, and obtain that ∥F9∥P,2 ≤ M̃9δ

1/2 < ∞, where M̃9 is a finite constant, and that
F9

η is a VC class with bounded entropy J∗
[](1,F9

η ) <∞. By Theorem 11.2 of Kosorok
[2008], we obtain

E
[

sup
∥η−η∗∥2<δ

∣∣∣GNF9
η

∣∣∣] ≤ c̃9δ
1/2,

where c̃9 is a finite constant. Therefore, we obtain

(II) = E
[√

N sup
∥η−η∗∥2<δ

|VN(η)− V (η)− {VN(η∗)− V (η∗)}|
]

= E
[

sup
∥η−η∗∥2<δ

|GnF9
η |
]
≤ c̃9δ

1/2.

In summary, we obtain that the centered process satisfies

E
[√

N sup
∥η−η∗∥2<δ

∣∣∣Ŝ(t; η)− S(t; η)− {Ŝ(t; η∗)− S(t; η∗)}
∣∣∣]

≤ (I) + (II) ≤ c̃9δ
1/2.

(C.6)

Let ϕN(δ) = δ1/2 and α = 3
2 < 2, thus we have ϕn(δ)

δα = δ−1 is decreasing, and α does
not depend on N . That is, the second condition holds.
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Condition 3 By the facts that η̂ p→ η∗ as N →∞, and that Ŝ(t; η̂) ≥ supη Ŝ(t; η), we
choose rN = N1/3 such that r2

NϕN(r−1
N ) = N2/3ϕN(N−1/3) = N1/2. The third condition

holds.
In the end, the three conditions are satisfied with rN = N1/3; thus we conclude that

N1/3∥η̂ − η∗∥2 = Op(1), which completes the proof of (ii) in Theorem 9.2.4.
PART 3: We characterize the asymptotic distribution of V̂ (η̂). Since we have

√
N{V̂ (η̂)− V (η∗)} =

√
N{V̂ (η̂)− V̂ (η∗)}+

√
N{V̂ (η∗)− V (t; η∗)},

we study the two terms in two steps.
Step 3.1 To establish

√
N{V̂ (η̂)− V̂ (η∗)} = op(1), it suffices to show that

√
N{V (η̂)−

V (η∗)} = op(1) and
√
N(V̂ (η̂)− V̂ (η∗)− {V (η̂)− V (η∗)}) = op(1).

First, as N1/3∥η̂ − η∗∥2 = Op(1), we take the second-order Taylor expansion
√
N{V (η̂)− V (η∗)} =

√
N
{
V ′(η∗)∥η̂ − η∗∥2 + 1

2V
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
N
{1

2V
′′(η∗)∥η̂ − η∗∥2

2 + op(∥η̂ − η∗∥2
2)
}

=
√
N
{1

2V
′′(η∗)Op(N−2/3) + op(N−2/3)

}
= op(1).

Next, we follow the result (C.6) obtained in PART 2. As N1/3∥η̂ − η∗∥2 = Op(1),
there exists δ̃2 = c11N

−1/3, where c11 <∞ is a finite constant, such that ∥η̂ − η∗∥2 ≤ δ̃2.
Therefore we have

√
N(V̂ (η̂)− V̂ (η∗)− {V (η̂)− V (η∗)})

≤ E

√N sup
∥η̂−η∗∥2<δ̃2

∣∣∣V̂ (η̂)− V (η̂)− {V̂ (η∗)− V (η∗)}
∣∣∣


≤ c̃9δ̃
1/2 = c̃9

√
c11N

−1/6 = op(1),

which yields the result.
Step 3.2 To derive the asymptotic distribution of

√
N{V̂ (η∗) − V (η∗)}, we follow

the result obtained in PART 1 that V̂ (η∗) = VN(η∗) + op(N−1/2), and thus
√
N
{
V̂ (η∗)− V (η∗)

}
D→ N (0, σ2

2),

where σ2
2 = E[ϕ2

dη∗ ] is the semiparametric efficiency bound.
Therefore we obtain in the end

√
N{V̂ (η̂)− v(η∗)} =

√
N{V̂ (η̂)− V̂ (η∗)}+

√
N{V̂ (η∗)− V (η∗)}

= op(1) +
√
N{V̂ (η∗)− V (η∗)}

D→ N (0, σ2
2),

which completes the proof of Theorem 9.2.4 and Corollary 9.2.6.
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C.6 Proof of Theorem 9.2.7 and Theorem 9.2.8
When the source and target populations have the same distributions, both V̂DR(η)

and V̂CF (η) converge to V (η). The asymptotic variance of V̂DR(η) is

σ2
DR = E

 IS

P(IS = 1)

(
µ(d(X), X) + I{A = d(X)}

πd(X) K(A,X)− V (η)
)2


= E
[

IS

P(IS = 1)

(
µ2(d(X), X) + I{A = d(X)}

π2
d(X) K2(A,X)− V 2(η)

+2I{A = d(X)}
πd(X) K(A,X)µ(d(X), X)− 2µ(d(X), X)V (η)

−2I{A = d(X)}
πd(X) K(A,X)V (η)

)]
,

while the asymptotic variance of V̂CF (η) is

σ2
CF = E

(IT e(X)µ(d(X), X) + IS I{A = d(X)}
πS(X)πd(X) K(A,X)− V (η)

)2


= E
[(
IT e

2(X)µ2(d(X), X) + IS I{A = d(X)}
π2

S(X)π2
d(X) K2(A,X)− V 2(η)

−2IT e
2(X)µ(d(X), X)V (η)− 2IS I{A = d(X)}

πS(X)πd(X) K(A,X)V (η)
)]

,

where

K(A,X) = ∆ y(U)
SC(U |A,X) − µ(A,X) +

∫ ∞

0

dMC(u |A,X)
SC(u |A,X) Q(u,A,X).

Since we have that

E
[

IS

P(IS = 1)
2I{A = d(X)}

πd(X) K(A,X)µ(d(X), X)
]

= 0,

and for

B ∈
{
µ2(d(X), X), I{A = d(X)}

π2
d(X) K2(A,X), µ(d(X), X)V (η), I{A = d(X)}

π2
d(X) K(A,X)V (η)

}
,

we also have that

E
[

IS

P(IS = 1)B
]

= E[IT e(X)B] = E
[

IS

πS(X)B
]
,

we conclude that σ2
DR = σ2

CF .
By the law of iterated expectations, the value function Vd = E[y(T (d))] =

EX [E[y(T (d)) |X]]. When there is no restriction on the class of ITRs, the true opti-
mal ITR is

d∗∗(X) = arg max
d
Vd = arg max

d
EX [E[y(T (d)) |X]]

= I{E[y(T (1)) |X] > E[y(T (0)) |X]}.
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That is, the optimal ITR does not depend on the covariate distributions, but only
the bilp function which is the same in both the source and target populations by
Assumption 9.1.2. Thus both the maximizers of V̂DR(η) and V̂CF (η) converge to the
true population parameter η∗∗. However, V̂DR(η) is biased since the expectation EX is
taken with respect to the source population.

C.7 Additional simulations
Wefirst investigate the performance of the cross-fitted ACWestimator with different

sample sizes (N,m) = (5×104, 2000), (1×105, 4000), (2×105, 8000), (4×105, 16000), (6×
105, 24000), (8×105, 32000). Figure C.1 and Table C.1 report the results from 200 Monte
Carlo replications. The variance is computed using the EIF.

C.8 Details of real data analysis
There are around 0.5% and 1.6%missing values in the RCT andOS data, respectively.

We use the mice function in the R package mice [Van Buuren andGroothuis-Oudshoorn,
2011] to impute the missing values.

Motivated by the clinical practice and existing work in the medical literature, we
consider ITRs that depend on the following five variables:

— AGE, SEX and Sequential Organ Failure Assessment (SOFA) score: these three
baseline variables are well related to mortality in ICUs, so we consider them as
important risk factors.

— Acute Kidney Injury Network (AKIN) score: Jaber et al. [2018] observed that the
infusion of sodium bicarbonate improved survival outcomes and mortality rate
in critically ill patients with severe metabolic acidemia and acute kidney injury.
In the observational data, the AKIN score was not recorded, so we computed the
score using serum creatinine measurement [Závada et al., 2010].

— SEPSIS: we consider the presence of sepsis as a risk factor because it is the main
condition associated with severe acidemia at the arrival in ICU. The effect of
sodium bicarbonate infusion on patients with acidema and acute kidney injury
was also observed in septic patients [Zhang et al., 2018b].
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Figure C.1 – Boxplot of estimated value by ACW estimator with different sample sizes.

2.4

2.7

3.0

3.3

0.5 1 2 4 6 8
Target super population size

E
st

im
at

ed
 V

al
ue

 (
A

C
W

)

Table C.1 – Numeric results of the ACW estimator. Bias is the empirical bias of point estimates; SD is
the empirical standard deviation of point estimates; SE is the average of standard error estimates; CP is
the empirical coverage probability of the 95% Wald confidence intervals.

n;m(×103) ∼ 780; 2 ∼ 1560; 4 ∼ 3120; 8 ∼ 6240; 16 ∼ 9360; 24 ∼ 12480; 32
Bias 0.1041 0.0253 0.0134 0.0046 0.0031 0.0030
SD 0.1394 0.0985 0.0635 0.0419 0.0317 0.0267
SE 0.1611 0.0942 0.0627 0.0417 0.0330 0.0284
CP(%) 97.5 93.5 96.0 94.5 97.5 97.0
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