
HAL Id: tel-04812231
https://theses.hal.science/tel-04812231v1

Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-FedLS : A Scheduler of Federated Learning
Applications in a Multi-Cloud Environment

Rafaela Correia Brum

To cite this version:
Rafaela Correia Brum. Multi-FedLS : A Scheduler of Federated Learning Applications in a Multi-Cloud
Environment. Artificial Intelligence [cs.AI]. Sorbonne Université; Universidade Federal Fluminense
(Brésil), 2023. English. �NNT : 2023SORUS539�. �tel-04812231�

https://theses.hal.science/tel-04812231v1
https://hal.archives-ouvertes.fr

Universidade Federal Fluminense

Instituto de Computação

Sorbonne Université

École doctorale Informatique,Télécommunications et

Électronique (Paris)

Laboratoire d’informatique de Paris 6 (LIP6)

RAFAELA CORREIA BRUM

Multi-FedLS: A Scheduler of Federated Learning
Applications in a Multi-Cloud Environment

NITERÓI

2023

Universidade Federal Fluminense
Sorbonné Université

RAFAELA CORREIA BRUM

Multi-FedLS: A Scheduler of Federated Learning
Applications in a Multi-Cloud Environment

Thesis presented in joint supervision (co-
tutelle) between Universidade Federal Flu-
minense and Sorbonne Université. The-
sis presented to the Computing Gradu-
ate Program of the Universidade Federal
Fluminense and the École doctorale In-
formatique,Télécommunications et Électron-
ique Sorbonne Université in partial fulfilment
of the requirements for the degree of Doctor
of Science and the diplôme national de doc-
torat. Topic Area: Computer Science

Advisor:

LÚCIA MARIA DE ASSUMPÇÃO DRUMMOND (UFF)

Co-advisor:

PIERRE SENS (Sorbonne Université)

NITERÓI

2023

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

B893m Brum, Rafaela Correia
 Multi-FedLS: A Scheduler of Federated Learning Applications
in a Multi-Cloud Environment / Rafaela Correia Brum. - 2023.
 116 f.: il.

 Orientador: Lúcia Maria de Assumpção Drummond.
 Coorientador: Pierre Sens; Maria Clicia Stelling De Castro.
 Tese (doutorado)-Universidade Federal Fluminense, Instituto
de Computação, Niterói, 2023.

 1. Escalonamento de tarefas. 2. Computação em nuvem. 3.
Ambiente com múltiplas nuvens. 4. Aprendizado Federado. 5.
Produção intelectual. I. Drummond, Lúcia Maria de
Assumpção, orientadora. II. Sens, Pierre, coorientador. III.
De Castro, Maria Clicia Stelling, coorientadora. IV.
Universidade Federal Fluminense. Instituto de Computação.V.
Título.

 CDD - XXX

RAFAELA CORREIA BRUM

Multi-FedLS: A Scheduler of Federated Learning Applications in a Multi-Cloud

Environment

Approved on November 29th, 2023 by:

Dr. Lúcia M. A. Drummond, D.Sc. / IC / Universidade Federal Fluminense

(President)

Dr. Pierre Sens, Ph.D. / LIP6 / Sorbonne Université (Co-advisor)

Dr. Luciana Arantes, Ph.D. / LIP6 / Sorbonne Université

Dr. Maria Clicia Stelling de Castro , D.Sc. / IME / Universidade do Estado

do Rio de Janeiro

Dr. Guillaume Pierre, Ph.D. / IRISA / Université de Rennes (reviewer)

Dr. Christophe Cérin, Ph.D. / LIPN / Université de Paris Nord (reviewer)

Dr. Maria Cristina Silva Boeres, Ph.D. / IC / Universidade Federal

Fluminense

Dr. Aline Marins Paes Carvalho, D.Sc. / IC / Universidade Federal

Fluminense

Niterói

2023

RAFAELA CORREIA BRUM

Multi-FedLS: A Scheduler of Federated Learning Applications in a Multi-Cloud

Environment

Approved on November 29th, 2023 by:

Dr. Lúcia M. A. Drummond, D.Sc. / IC / Universidade Federal Fluminense

(President)

Dr. Pierre Sens, Ph.D. / LIP6 / Sorbonne Université (Co-advisor)

Dr. Luciana Arantes, Ph.D. / LIP6 / Sorbonne Université

Dr. Maria Clicia Stelling de Castro , D.Sc. / IME / Universidade do Estado

do Rio de Janeiro

Dr. Guillaume Pierre, Ph.D. / IRISA / Université de Rennes (reviewer)

Dr. Christophe Cérin, Ph.D. / LIPN / Université de Paris Nord (reviewer)

Dr. Maria Cristina Silva Boeres, Ph.D. / IC / Universidade Federal

Fluminense

Dr. Aline Marins Paes Carvalho, D.Sc. / IC / Universidade Federal

Fluminense

Niterói

2023

/ / U

B Ph D

Agradecimentos

Gostaria de agradecer primeiramente a Deus, por toda força me dada para continuar nessa

dif́�cil empreitada. Também agradeço a Nossa Senhora, por todos os momentos que eu

senti sua proteção e intercessão.

Às professoras Lúcia Drummond, Maria Clicia Stelling e Luciana Arantes, por suas

orientações, apoio e carinho. Grata por trabalhar com pessoas tão competentes que bus-

cam sempre o crescimento dos seus alunos.

Au professeur Pierre Sens, pour toute son orientation au cours de ces dernières années.

Reconnaissante d’être arrivée jusqu’ici en travaillant avec un professeur aussi dévoué.

Aos meus pais, Antonino e Mônica Brum, por me permitirem seguir meus sonhos até

agora. Às minhas irmãs, Renata e Roberta, por todo o apoio dado. E aos meus sobrinhos,

Lucas, Maria Alice e Pedro, por serem tão puros e trazerem uma alegria renovadora nesses

anos árduos de trabalho.

À Irina Aibara, por todo apoio me dado no meu ano de doutorado sandú�che. Aos

meus colegas de doutorado, Luan Teylo, Fernando Chagas, Eder Medeiros, Leonardo

Vasconcelos e Mônica da Silva, pelas conversas, ajudas e risadas feitas nos corredores da

UFF, e pelo WhatsApp.

Aos meus amigos Jéssyca Torres, Vinicius Mattos, Talita Alburquerque, Maria Car-

olina Fernandes, Giovanna de Andrade e Caroline Passos pelas orações feitas durante

esses anos e pelas noites de conversas e jogos nos �nais de semana da pandemia. Aos

meus amigos Matheus Carneiro, Matheus Borges e Gabriel Franco pelas noites e tardes

de distração que se fortaleceram na pandemia.

Ao meu noivo, Raul de Queiroz, que foi um dos primeiros a acreditar nos meus sonhos.

Ao CNPq pela bolsa concedida nos quatro anos de doutorado. À CAPES pela bolsa

de doutorado-sandú�che, concedida por meio do seu Programa Institucional de Interna-

cionalização (CAPES/PrInt). Ao CNPq e AWS pelo projeto BioCloud, que disponibilizou

verbas para a utilização de recursos de nuvem.

Resumo

Aprendizado Federado (AF) é uma nova área de Aprendizado de Máquina (AM) dis-
tribú�do, onde o aprendizado garante a privacidade de dados. Cada cliente tem acesso
somente ao seu conjunto de dados local e privativo. Essa abordagem é atrativa em vários
dom�́nios do conhecimento porque permite que diferentes instituições colaborem entre si
sem compartilhar seus dados con�denciais. Além disso, como a quantidade de dados
necessários para o treinamento tem crescido muito nos últimos anos, a maioria das in-
stituições não pode pagar por data centers f́�sicos para armazenar e manipular todos os
seus dados. Uma opção viável é utilizar serviços de armazenamento na nuvem oferecidos
por provedores com diferentes garantias de privacidade e disponibilidade dos dados. O
usuário é o responsável pela escolha das regiões onde armazena seus dados e pelo controle
de acesso a eles.

Adicionalmente, os provedores de nuvem oferecem vários serviços para executar uma
aplicação. Eles oferecem aos usuários a possibilidade de criar Máquinas Virtuais (MV)
com diferentes con�gurações, onde os usuários têm o total controle sobre elas. Este tipo
de serviço é denominado Infraestrutura-como-um-Serviço (Infrastructure-as-a-Service -
IaaS). Sendo assim, o ambiente de nuvem é proṕ�cio para a colaboração de diferentes
instituições na criação de um modelo de Aprendizado de Máquina através do Aprendizado
Federado, principalmente considerando diversas nuvens.

Nesta tese, nós propomos o Multi-FedLS, uma estrutura robusta criada para executar
aplicações de AF em um ambiente multi-cloud. O framework considera a localização atual
dos conjuntos de dados de cada cliente, o atraso de comunicação e o custo de utilização
nas nuvens, focando na redução de custo e tempo de execução. Além disso, Multi-FedLS
utiliza, sempre que posś�vel, instâncias mais baratas visando a redução de custo, mas que
pode ser revogada a qualquer momento pelo provedor de nuvem. Assim, para garantir
a execução completa das aplicações de AF, o framework utiliza técnicas de tolerância a
falhas, como checkpoints e migração do trabalho para retomar o treinamento em outra
MV a partir de uma revogação. O Multi-FedLS é composto por quatro módulos: Pre-
Scheduling, Initial Maping, Fault Tolerance e Dynamic Scheduler. Os resultados obtidos
mostram que é viável executar aplicações em ambientes multi-cloud com MVs de baixo
custo, usando formulação matemática, técnicas de tolerância a falhas e heuŕ�stica simples
para escolha de novas MVs. O framework obteve uma redução de custo de 56.92% com-
parado ao tempo de execução da aplicação sem o framework, com um aumento no tempo
de execução de somente 5.44% em provedores de nuvem comerciais.

Palavras-chave: Aprendizado Federado, Escalonamento de tarefas, Ambiente com múlti-
plas nuvens.

Abstract

Federated Learning (FL) is a new area of distributed Machine Learning (ML) where
learning ensures data privacy. Each client has access only to its own local and private
dataset. This approach is attractive in various domains of knowledge because it allows
di�erent institutions to collaborate without sharing their con�dential data. Besides, as
the amount of data required for training has grown signi�cantly in recent years, most
institutions cannot a�ord physical data centers to store and manipulate all their data. A
viable option is to utilize cloud storage services o�ered by providers with di�erent data
privacy and availability guarantees. The user is responsible for choosing the regions where
their data is stored and controlling access to it.

Additionally, cloud providers o�er various services to execute an application. They
provide users with the ability to create Virtual Machines (VMs) with di�erent con�g-
urations, where users have full control over them. This type of service is known as
Infrastructure-as-a-Service (IaaS). Thus, a cloud environment is conducive to the collab-
oration of di�erent institutions in creating a Machine Learning model through Federated
Learning, mainly when considering multi-cloud environments.

In this thesis, we propose Multi-FedLS, a robust framework designed to execute FL
applications in a multi-cloud environment. The framework considers the current location
of each client’s datasets, communication delay, and cost of utilization in the clouds, fo-
cusing on cost and runtime reduction. Moreover, Multi-FedLS utilizes cheaper instances
whenever possible to reduce costs, even though they may be revoked at any time by
the cloud provider. Thus, to ensure the successful execution of FL applications, the
framework employs fault-tolerance techniques such as checkpoints and work migration to
resume training on another VM after a revocation. Multi-FedLS comprises four modules:
Pre-Scheduling, Initial Mapping, Fault Tolerance, and Dynamic Scheduler. The obtained
results demonstrate the feasibility of executing applications in multi-cloud environments
using low-cost VMs, employing mathematical formulation, fault-tolerance techniques, and
simple heuristics for selecting new VMs. The framework achieved a cost reduction of
56.92% compared to application runtime without using it, with only a 5.44% increase in
runtime on commercial cloud providers.

Keywords: Federated Learning, Task Scheduling, Multi-Cloud environment.

Resumé

Titre: Multi-FedLS : Un Ordonnanceur d’Applications d’Apprentissage Fédéré dans un
Environnement Multi-Cloud

L’apprentissage fédéré (AF) est un nouveau domaine de l’apprentissage machine distribué
où l’apprentissage garantit la confidentialité des données. Chaque client a accès unique-
ment à son propre ensemble de données local et privé. Cette approche est attrayante
dans divers domaines du savoir car elle permet à différentes institutions de collaborer
sans partager leurs données confidentielles. En plus, comme la quantité de données req-
uises pour la formation a considérablement augmenté ces dernières années, la plupart des
institutions ne peuvent pas se permettre des centres de données physiques pour stocker
et manipuler l’ensemble de leurs données. Une option viable consiste à utiliser des ser-
vices de stockage en nuage proposés par des fournisseurs offrant différentes garanties de
confidentialité et de disponibilité des données. L’utilisateur est responsable du choix des
régions où ses données sont stockées et du contrôle de leur accès.

De plus, les fournisseurs de services en nuage offrent divers services pour exécuter une
application. Ils permettent aux utilisateurs de créer des machines virtuelles (MV) avec
différentes configurations, où les utilisateurs ont un contrôle total sur celles-ci. Ce type
de service est appelé Infrastructure en tant que Service (IaaS). Ainsi, un environnement
cloud est propice à la collaboration de différentes institutions dans la création d’un modèle
d’apprentissage machine grâce à l’apprentissage fédéré, en particulier lorsqu’on envisage
des environnements multi-cloud.

Dans cette thèse, nous proposons Multi-FedLS, un framework robuste conçu pour
exécuter des applications AF dans un environnement multi-cloud. Le framework prend
en compte l’emplacement actuel des ensembles de données de chaque client, le délai de
communication et le coût d’utilisation dans les nuages, en se concentrant sur la réduction
des coûts et du temps d’exécution. De plus, Multi-FedLS utilise des instances moins chères
chaque fois que possible pour réduire les coûts, même si elles peuvent être révoquées à tout
moment par le fournisseur de services en nuage. Ainsi, pour assurer l’exécution réussie
des applications AF, le cadre utilise des techniques de tolérance aux pannes telles que les
points de contrôle et la migration des tâches pour reprendre la formation sur une autre
MV après une révocation. Multi-FedLS comprend quatre modules: Pre-Scheduling, Initial
Mapping, Fault Tolerance et Dynamic Scheduler. Les résultats obtenus démontrent la
faisabilité de l’exécution d’applications dans des environnements multi-cloud en utilisant
des MV peu coûteuses, en utilisant une formulation mathématique, des techniques de
tolérance aux pannes et des heuristiques simples pour la sélection de nouvelles MV. Le
framework a obtenu une réduction des coûts de 56,92% par rapport au temps d’exécution
de l’application sans son utilisation, avec seulement une augmentation de 5,44% du temps
d’exécution sur les fournisseurs de services en nuage commerciaux.

Mots-clés: Apprentissage Fédéré, Ordonnancement des tâches, Environnement Multi-
Cloud

List of Figures

2.1 Simple DNN with four input features and two output classes. The blue

layer represents the input layer, the red ones are the hidden layers, and the

yellow one is the output layer. 8

2.2 Architecture of a Distributed ML scenario using Data Partition and 4 workers. 10

2.3 Architecture of (a) Distributed Machine Learning and (b) Federated Learn-

ing. Figures from [125]. 11

2.4 Steps of a communication round in Federated Learning. 12

2.5 Example architecture of (a) Model-Centric FL and (b) Data-Centric FL. . 13

2.6 Type of clients in (a) Cross-Device FL and (b) Cross-Silo FL. 13

2.7 Architecture of Flower. Figure from [8]. 18

2.8 Multi-cloud environment using a private cloud and 2 public cloud providers. 23

2.9 Example of a scenario with 3 companies using the Amazon Web Services

(AWS) or the Google Cloud Provider (GCP) to store their private dataset. 24

4.1 Use-case TIL analysis work�ow. CNN is trained to identify TIL-positive/-

negative patches annotated by a pathologist (top). The CNN model is

then used to classify input WSI on a patch basis. The result is a TIL map

presenting TIL-rich regions (red) in the input tissue. Source: [12]. 33

5.1 Steps of one round of a Federated Learning Application. 46

5.2 Two providers with regions, each one with a set of virtual machines. 46

5.3 Architecture of Multi-FedLS. 47

7.1 Relation between number of clients and Gurobi’s execution time. 66

7.2 Server checkpoint overhead. 74

List of Tables

2.1 Available tools for Federated Learning applications 14

3.1 Recent work on Cross-Silo Federated Learning research area 31

3.2 Recent work on scheduling Distributed Machine Learning (DML) jobs . . . 31

4.1 Test Accuracy, Execution time, and Financial Cost for the centralized train-

ing on an on-demand g4dn.2xlarge instance 36

4.2 Highest test accuracy found with two clients 37

4.3 Highest test accuracy found with three clients 37

4.4 Highest test accuracy found with four clients 38

4.5 Final test accuracy found with all scenarios 39

4.6 Comparison among centralized approach and di�erent number of commu-

nication rounds with 4 clients in Federated Learning 40

4.7 Execution time and costs using spot and on-demand instances 41

4.8 Cloud region, VM and cost for both client and server and network transfer

costs in each cloud provider used . 43

4.9 Average times and costs of 4 scenarios: S1- all FL application on AWS, S2-

all FL application on GCP, S3 - 3 clients and 3 data sets on GCP, 1 client

and 1 data set on AWS, S4- 4 clients and 3 data sets on GCP and one data

set on AWS. 43

5.1 Notation and variables of application and environment models. 47

6.1 Notation and variables used in our framework. 52

7.1 Instance types selected in AWS and GCP 62

7.2 Instance types selected in CloudLab . 62

List of Tables viii

7.3 Execution times of one client with �ve local epochs, run in di�erent in-

stances of AWS and GCP and dataset stored in Amazon S3 in N. Virginia

region (us-east-1) . 63

7.4 Execution times of one client with �ve local epochs, run in di�erent in-

stances of AWS and GCP and dataset stored in GCP Cloud Storage in

Iowa region (us-central1) . 63

7.5 Time of one client with �ve local epochs, dataset stored in Utah region of

Cloud A . 64

7.6 Communication times between each pair of regions in AWS and GCP. The

training phase exchanges a total of 2GB in messages and the test phase

exchanges a little more than 1GB in total 65

7.7 Communication times between each pair of regions in Cloud A and Cloud

B. The training phase exchanges a total of 2GB in messages and the test

phase exchanges a little more than 1GB in total 65

7.8 Theoretical results of a single FL round and 50 clients 68

7.9 VMs setup for optimal and random scheduling schemes for all scenarios

with 4 clients . 69

7.10 Theoretical results with single FL round 70

7.11 Real Cloud execution with 10 FL rounds 71

7.12 Validating CloudLab with Initial Mapping module using the TIL application 73

7.13 Execution time of Multi-FedLS with on-demand VMs in AWS, GCP and

CloudLab with di�erent GPUs. 73

7.14 Failure simulation using TIL application changing to another VM in Cloud-

Lab . 76

7.15 Failure simulation using TIL application changing to the same VM in

CloudLab . 77

7.16 Failure simulation executing Shakespeare application and changing to the

same VM in CloudLab . 78

7.17 Failure simulation using FEMNIST application and changing to the same

VM in CloudLab . 78

List of Tables ix

7.18 Proof of concept executing our real-world application with 2 clients in a

multi-cloud environment . 80

Acronyms and Abreviations

AWS : Amazon Web Services

CNN : Convolutional Neural Network

DNN : Deep Neural Network

FL : Federated Learning

GCP : Google Cloud Provider

GPU : Graphic Processing Unit

ML : Machine Learning

RNN : Recurrent Neural Network

S3 : Simple Storage Service

TIL : Tumor-In�ltrating Lymphocyte

TPU : Tensor Processing Unit

VM : Virtual Machine

Contents

1 Introduction 1

1.1 Objective . 3

1.2 Contributions . 4

1.3 Thesis Outline . 5

2 Background 7

2.1 Machine Learning . 7

2.1.1 Deep Learning . 8

2.2 Distributed Machine Learning . 9

2.3 Federated Learning . 11

2.3.1 Federated Learning Classi�cation 12

2.4 Available Tools for Federated Learning . 14

2.4.1 TensorFlow Federated . 14

2.4.2 PySyft/PyGrid . 15

2.4.3 FL PyTorch . 16

2.4.4 Federated AI Technology Enabler (FATE) 16

2.4.5 Flower . 17

2.5 Cloud Computing . 18

2.5.1 VM allocation . 21

2.5.2 Storage Services . 21

2.5.3 Multi-Cloud Environment . 23

Contents xii

3 Related work 25

3.1 Cross-Silo Federated Learning . 26

3.2 Scheduling Distributed Machine Learning Jobs 26

3.3 Distributed Machine Learning and Federated Learning on Clouds 28

3.4 Resource management in clouds . 30

3.5 Summary . 30

4 Case Study: Federated Learning in a biomedical application 32

4.1 Tumor-In�ltrating Lymphocytes Classi�cation 32

4.2 Tumor-In�ltrating Lymphocytes Classi�cation with Federated Learning . . 34

4.3 Experimental Results . 35

4.3.1 Varying the number of clients using Inception-ResNet V2 Model . . 36

4.3.2 Varying number of communication rounds using VGG16 Model . . 39

4.3.3 Federated Learning on On-demand and Spot Instances 41

4.4 Execution in a Multi-Cloud Environment 42

4.4.1 Execution times and Financial Costs 43

5 Proposed Models and Framework Architecture 45

5.1 FL Application and Multi-cloud Environment Models 45

5.2 Multi-FedLS architecture . 47

6 Multi-FedLS modules 49

6.1 Pre-Scheduling module . 49

6.2 Initial Mapping module . 51

6.3 Fault Tolerance module . 54

6.4 Dynamic Scheduler module . 56

7 Experimental Results 59

Contents xiii

7.1 Applications . 59

7.2 Experimental setup . 60

7.3 Pre-Scheduling slowdowns . 63

7.4 Initial Mapping experiments . 66

7.4.1 Analysis of the Scalability of the Proposed Mathematical Formulation 66

7.4.2 Theoretical Analysis of the Initial Mapping module against User

Random Selection . 67

7.4.3 Analysis of the Initial Mapping module in a Multi-cloud Platform . 68

7.4.4 Discussion about the multi-cloud environment and results 71

7.4.5 Validation of CloudLab environment 72

7.5 Fault Tolerance experiments . 74

7.6 Dynamic Scheduler experiments . 75

7.6.1 TIL application . 75

7.6.2 Benchmarks . 77

7.7 Proof of concept . 79

8 Conclusion and Future Work 81

8.1 Contributions . 81

8.2 Limits of Multi-FedLS . 82

8.3 Future Work . 82

Bibliography 84

Appendix A -- Complementary studies 98

Appendix B -- Published Papers 99

Chapter 1

Introduction

The rise of data protection laws (e.g., GDPR1 in Europe and LGPD2 in Brazil) led

researchers to concern about sharing sensitive data, especially in the �eld of distributed

Machine Learning (ML). The traditional distributed ML usually exchange data among

clients to balance their execution times [125].

McMahan et al. [92] proposed the term Federated Learning in 2017 as a learning tech-

nique that allows users to collectively bene�t from shared models trained from distributed

data without centrally storing them.

This way, Federated Learning (FL) is a recent type of distributed ML in which the

participating clients do not share their private data [125]. The client federation solves

the learning task coordinated by a central server without sharing the data. Instead, each

client computes and communicates only the model weights to update the current global

model kept by the server.

The server-clients architecture of FL, also called Model-Centric Federated Learn-

ing [145], is classi�ed into Cross-Device or Cross-Silo Federated Learning, depending on

the connected client’s type. If the clients are low-powered devices, like mobile phones [92]

or edge devices [97], it is a Cross-Device Federated Learning. If the clients are compa-

nies or institutions (e.g., hospitals [102]) with similar datasets willing to create a central

model, it is a Cross-Silo Federated Learning. In this second type of FL, the central server

can assume that all clients are available during the whole process, and there are usually

fewer clients than in Cross-Device FL (less than 10 [84]).

Moreover, the digital data created by an institution and used to train ML algorithms

1https://gdpr-info.eu/
2http://www.planalto.gov.br/ccivil 03/ ato2015-2018/2018/lei/L13709compilado.htm

1 Introduction 2

increases rapidly [136]. Most institutions cannot upgrade their data centers due to high

�nancial costs. One viable option is the use of cloud storage services, in which the user

only pays for the amount of stored data [81, 88]. Many cloud providers o�er these storage

services with di�erent privacy guarantees and data availability. For instance, in the Google

Cloud provider, the user can store the data in a multi-region con�guration. The data is

available in di�erent regions of the same country, and the user de�nes who can access it.

In this scenario, each participating institution of the FL environment can choose the

best storage option among the di�erent cloud providers. According to Li et al. [83],

the response time to access a �le in one cloud provider can be twice the time to access

it in another provider. Besides, they show that the maximum throughput of one cloud

provider can vary up to 57%, and in another cloud provider varies less than 2%. Moreover,

inside the same cloud provider, diverse storage options have di�erent response times and

throughput, as presented by Teylo et al. in [130]. Each institution chooses the best cloud

provider and storage service based on its needs. However, FL clients might have their

data in di�erent cloud providers and, to preserve privacy, it is prohibitive to transfer all

data to a single cloud provider. Thus, in this case the FL application needs to execute

in a multi-cloud environment. Since the basis of FL algorithms is the message exchange

between the server and clients, communication time and costs within a cloud provider or

several cloud providers can have a meaningful impact on application performance.

Besides the cloud storage services, cloud providers o�er Virtual Machines (VMs)

with di�erent accelerators in a service generically called Infrastructure-as-a-Service (IaaS).

These accelerators can reduce the execution time of Deep Neural Networks (DNNs), which

are a ML algorithm type consisting of many layers, represented by weights’ matrices. It is

necessary to execute several matrix multiplications to obtain the DNN’s answer. As the

DNN training consists of passing all training samples multiple times through the model,

huge computational power to train them is usually required. Matrix multiplication is an

example of a single instruction multiple data (SIMD) processing [48]. Nowadays, there are

two accelerators specialized in these instructions: the Graphics Processing Units (GPUs)3

and Google’s Tensor Processing Units (TPUs)4. Amazon Web Services (AWS) o�ers

GPUs attached to pre-de�ned VMs types, and the available GPU architectures vary from

Kepler to Ampere [121]. Google Cloud Platform (GCP) allows the user to attach GPUs

or TPUs to a pre-de�ned or custom VM type [60, 57].

3https://blogs.nvidia.com/blog/2009/12/16/whats-the-di�erence-between-a-cpu-and-a-gpu/
4https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-�rst-

tensor-processing-unit-tpu

1.1 Objective 3

It is also important to consider the costs of public clouds. Usually, there are two main

markets to deploy VMs with di�erent availability guarantees and costs: the on-demand

and the preemptible (spot) market. The on-demand market allocates VMs for a �xed cost

per time unit, ensuring their availability during the whole execution. On the other hand,

the preemptible (spot) market o�ers a high discount, but the provider can terminate the

VM at any time.

In a multi-cloud environment, a FL framework must identify the cloud provider as-

signed to each client. It must also de�ne the instance and the region assigned to each of

them. In addition, it may be necessary to specify the minimum required network band-

width. Consequently, the task of determining which platform to use for each client is

complex, and a wrong choice can involve a considerable additional cost [79, 100]. Fur-

thermore, the transfer rate between cloud providers and between di�erent regions inside

the same cloud provider can increase the time of the whole FL execution.

As previously pointed out, the main concern in FL is data privacy. Data leakage

episodes occurred in 2017 despite cloud providers guaranteeing privacy5,6. These events

involved Amazon Web Services, a telecommunication US company7, and the US Govern-

ment8. Therefore, the problem of e�cient resource allocation and security management

is critical to the success of FL in clouds. Also, activities such as the con�guration of

the environment, monitoring the execution, and choosing a new instance, if the current

selection is unavailable, should be taken into account.

1.1 Objective

The main objective of this thesis is to explore the multi-cloud environment to execute

Federated Learning e�ciently while preserving data privacy and allowing the collaboration

of di�erent institutions in the creation of new knowledge. It also focuses on possible

savings in time and costs of the necessary infrastructure to execute FL applications. We

proposeMulti-FedLS to achieve these objectives through a robust, adaptative, and �exible

framework. Its robustness guarantees the complete execution of the applications aiming

at reducing time and costs. Its adaptativeness provides application execution in di�erent

environments, whether it is simulation environments, single clouds, new cloud providers,

or new regions. Finally, its �exibility allows the easily inclusion of new modules.

5https://aws.amazon.com/compliance/data-privacy-faq/
6https://cloud.google.com/security
7https://www.upguard.com/breaches/verizon-cloud-leak
8https://www.upguard.com/breaches/spy-games-booz-allen-hamilton-pentagon

1.2 Contributions 4

In this thesis, we concentrate on the problem of scheduling Cross-Silo FL applica-

tions in a multi-cloud scenario considering the clients’ data location to preserve privacy.

Our proposal, Multi-FedLS, is a framework to manage multi-cloud resources reducing the

execution time and �nancial costs of these applications. This framework comprises four

modules, and each of them issues on one or more of the desired characteristics. They are

the Pre-Scheduling, Initial Mapping, Fault Tolerance, and Dynamic Scheduler modules.

Our framework receives as input information concerning the FL application (e.g. number

of clients, location of each client dataset, number of communication rounds, etc) and the

environment (e.g., number of CPUs and GPUs in each VM, the price of each VM in each

region, limits of VMs per region, etc). The �rst module, Pre-Scheduling, is responsible

for collecting speci�c information about the selected environment and the FL application

when there is no previous knowledge about them, such as the communication delays and

expected execution time of the FL tasks. This module focuses on the adaptative and �ex-

ible features of our framework, as it automatically collects new environmental data when

there is the addition of new VMs, regions, or even cloud providers without recollecting the

ones that already have information. Then, the Initial Mapping receives these computed

values and provides, through a mathematical formulation, a scheduling map of the server

and clients, aiming at minimizing �nancial costs and execution times. As this module uses

a mathematical formulation to provide the best scheduling map, it concentrates on the

robustness of our framework focusing on �nishing the application execution in cheap VMs

and within a given deadline and budget. Finally, Multi-FedLS deploys the selected VMs,

starts the FL application, and monitors it. The Fault Tolerance module is responsible

for including checkpoint strategies in the FL application, on both server and client sides,

concentrating again on the robustness of our framework. In case of an unexpected error

or a VM failure, that module triggers the Dynamic Scheduler Module to select a new VM

and resume the tasks of the FL application. Our last module emphasizes the robustness

and adaptation of our framework to eventual revocations during the application execu-

tion. We should also emphasize that experiments with Multi-FedLS were conducted with

both applications from benchmarks and a real-world application, showing how �exible our

framework can be.

1.2 Contributions

The main contributions of this work are the following:

I The proposal of the Multi-FedLS framework that explores preemptible (spot) VMs to

1.3 Thesis Outline 5

minimize the monetary cost of the execution in a multi-cloud scenario while ensuring

the complete execution of the application;

II The design of the Pre-Scheduling module that collects unknown information about

the FL application and environment making the framework adaptative to new envi-

ronments;

III The design of the Initial Mapping module that de�nes the mathematical formulation

used in the initial scheduling map choosing the optimal VM allocation considering

both monetary costs and execution time;

IV The design of the Fault Tolerance module that includes checkpoint techniques on both

server and client sides ensuring the complete execution even in case of revocations;

V The design of the Dynamic Scheduler module that chooses a new VM in case of

eventual revocations;

VI Empirical evaluations of the proposed framework in both emulated and real multi-

cloud environments; and

VII The proposal and evaluation of an FL approach to a use-case application in clouds.

This work was conducted in collaboration with the LIP6 laboratory from Sorbonne

Université (SU) as part of the ReMatCH project9. That collaboration started in 2020

and yielded a total of three conference papers [14, 16, 17], a journal paper submitted to

JPDC [15], a one-year stay in the LIP6 laboratory as part of a double PhD degree by

Federal Fluminense University and SU, and several events participation. Moreover, in

2021 we start a project called BioCloud, in partnership with CNPq and AWS10. From

this project, we transformed a centralized Tumor-In�ltrating Lymphocytes (TIL)

application that predicts a patient’s survival rate to use an FL approach, published

in [12, 13]. This application uses patient image data, which can be sensitive being a

good candidate to bene�t from Federated Learning.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces some back-

ground concepts about Federated Learning and Cloud Computing. Chapter 3 presents

9More information about the project can be found in http://cloud.ic.uff.br/index.php/pt/

capes-print/
10More information about the project can be found in http://cloud.ic.uff.br/index.php/

project-cnpq-aws/

1.3 Thesis Outline 6

the related work and compares our proposal’s contributions with existing ones. Chapter

4 describes the tumor-in�ltrating lymphocytes application and our Federated Learning

approach to solve it. Chapter 5 presents the models for a FL application and the en-

vironment considered in the Multi-FedLS proposal along with the framework’s general

architecture while Chapter 6 describes each module of Multi-FedLS in details. Chapter

7 describes and discusses the experiments regarding our framework. Finally, Chapter 8

concludes the thesis and introduce some future directions.

Chapter 2

Background

This chapter introduces background concepts used in the current work. Section 2.1 ex-

plains some basic concepts of Machine Learning and Deep Learning research �elds. Section

2.2 presents concepts of Distributed Machine Learning, and Section 2.3 introduces Feder-

ated Learning concepts. Section 2.4 describes some FL tools. Finally, Section 2.5 explains

Cloud Computing concepts, including multi-cloud environments.

2.1 Machine Learning

Machine Learning (ML) is a �eld in the Arti�cial Intelligence area that learns to perform

a task without being explicitly programmed [94]. Each experience collected from the

real world is called a sample or example. In this work, we focus on supervised learning

classi�cation algorithms, which expect as input a training dataset and outputs an esti-

mator of the class for a new example. Each example is modelled as a set of features,

which describes its main aspects. A training dataset S is a set of N classi�ed objects

{(x1, y1), ..., (xN , yN)}, chosen from a domain X with an arbitrary, �xed, and unknown

distribution D. These classi�cation values are given by some unknown function y = f(x).

The xi objects are typically vectors of the form (xi1, xi2, ..., xim), whose values can be

discrete or real. Each value xij denotes the value of the j-th feature Xj of the object

xi. For classi�cation purposes, yi values typically belong to a discrete set of L labels, i.e.

yi 2 {l1, l2, ..., lL}; for regression purposes, yi values belong to the (sub)set of real values.

Here, we focus on classi�cation problems.

2.1 Machine Learning 8

2.1.1 Deep Learning

Deep Neural Networks (DNNs) are the most common algorithms in Deep Learning [49],

which can handle datasets with hundreds or even thousands of features. DNNs consist of

many connected layers with many neurons in each layer. Each neuron consists of a linear

combination of activation functions and receives the results of the previous layer multiplied

by weights, which are arbitrary �oat-pointing values, as input. The goal of DNNs is to �nd

near-optimal weights to understand the concepts behind the dataset extracting patterns

from it to classify each sample into one of the de�ned categories. Figure 2.1 illustrates a

DNN mapping four input features (X1, X2, X3, X4) to two output classes (y1, y2) with

three hidden layers and three neurons in each hidden layer.

\

\

;

;

;

;

Figure 2.1: Simple DNN with four input features and two output classes. The blue layer
represents the input layer, the red ones are the hidden layers, and the yellow one is the
output layer.

The blue layer in Figure 2.1 represents the input layer, and it maps each input feature

to a single value used as input to the next layer. Then, the red layers represent the three

hidden layers of this DNN. Each hidden layer receives the values from the previous layer,

computes a linear combination of weights and the input values in each neuron, and sends

the results to the next layer. These layers usually receive the results of all neurons of

the previous layer and send the computed value to all neurons of the next layer. For this

reason, they are also called fully-connected layers. Finally, the yellow layer represents the

output layer, which receives the values from the last hidden layer and usually presents the

probability of the current sample belonging to each output class.

Usually, DNNs have several fully-connected layers with several neurons in each one.

Also, Goodfellow et al. [49] explain di�erent types of DNNs focused on distinct input data

types. Two of them are:

2.2 Distributed Machine Learning 9

• Convolutional Neural Networks (CNNs) are mostly used with image inputs. Instead

of mapping each pixel of an image to a single neuron in the input layer, CNNs use

convolution layers before the fully-connected layers to process the image and reduce

the input layer size.

• Recurrent Neural Networks (RNNs), a type of DNN focused on sequential data

inputs. One word in a text can have a di�erent meaning depending on its context.

For example, the word ‘give’ in “I give you a present”means the action of delivering

something, and “I give up” means to surrender. With that in mind, researchers

connect the last hidden layers of an RNN to the �rst ones. This recurrent connection

saves the result of one sample and in�uences the results of the following samples.

Our framework supports these two and any other type of DNNs. In each learning

step, called epoch, the DNN computes the class probabilities of all training samples. To

calculate them, the DNN executes sequential matrix multiplications. These multiplica-

tions are called the feedforward step as the information goes from the input to the output

layer [49]. After �nishing this step, the DNN calculates an error function, and the error

propagates through the DNN from the output layer to the input one. This process is called

the backpropagation step, in which the model computes new weights to each connection

of the DNN. Both the feedforward and the backpropagation steps are executed at least

one time each in a single epoch, and, usually, a DNN needs several steps to reach good

metrics in the evaluation. Therefore, training a single DNN requires a huge amount of

computational power. One option to achieve the performance is using accelerators, such

as Graphics Processing Units (GPUs). GPUs focus on a single instruction execution on

multiple data, which matches the description of matrix multiplications.

Nowadays, the DNN’s complexity and available training data increase continuously.

These factors lead to e�cient and parallel training of the models. Distributed Machine

Learning, also named Distributed Deep Learning, rises to tackle these needs [7].

2.2 Distributed Machine Learning

Researchers in the Distributed Machine Learning area present three di�erent forms to

parallelize the execution of a single ML algorithm, frequently a DNN, on multiple devices.

These forms are: (i) data parallelism, which replicates the model in all devices and splits

the dataset among them; (ii) model parallelism, which replicates the dataset in all devices

and splits the model among them; and (iii) pipelining, which divides the steps among

2.2 Distributed Machine Learning 10

devices to overlap communications with computations. Data parallelism is the most used

form as it is simpler to implement than the other two. Figure 2.2 shows an example of

data parallelism architecture of Distributed Machine Learning, with one parameter server

and four workers.

:RUNHU :RUNHU :RUNHU

3DUDPHWHU
6HUYHU

:RUNHU

Figure 2.2: Architecture of a Distributed ML scenario using Data Partition and 4 workers.

We can observe from Figure 2.2 that the parameter server is responsible for managing

the whole Distributed Machine Learning process, from the division of the dataset among

the clients to the aggregation of the weights after each training epoch. Each worker

receives the model and the partial dataset from the parameter server and starts the

training. The parameter server is responsible for the load balancing among the workers,

so they have similar execution times and do not waste time waiting for the synchronization.

The premise of Distributed Machine Learning is the execution of a single dataset and

model on multiple devices. Thus, the parameter server needs to access all datasets to

distribute them among the workers. Moreover, the parameter server also considers the

class distribution of the whole dataset when distributing it to the workers, i.e. if the total

dataset has more samples of one class than the other, the parameter server will respect

this proportion in all partial datasets.

Figure 2.3 presents the di�erences between a traditional distributed Machine Learning

system and a Federated Learning one, the focus of this thesis.

A traditional distributed ML architecture (Figure 2.3a) usually has a central dataset

that is distributed among workers by the parameter server (PS), using a Data Manager

(Data Partitioning). After that, the PS sends the model to the workers to start the

training (Model Partitioning). One worker can communicate with another if it �nishes

the training epochs faster to balance their load. On the other hand, a FL architecture

(Figure 2.3b) does not have a centralized dataset, and the clients cannot communicate

among them.

2.3 Federated Learning 11

(a) Distributed ML (b) Federated Learning

Figure 2.3: Architecture of (a) Distributed Machine Learning and (b) Federated Learning.
Figures from [125].

2.3 Federated Learning

In the past few years, we observed an increasing concern around personal data which led to

data protection laws in many countries. Nowadays, institutions need special permission to

store and share users’ data with others. For example, a medical research institution needs

the patients’ consent to use their data in future research. This concern leads to a scenario

where collecting di�erent datasets and storing them in a unique place is not viable. Each

institution owns a dataset with di�erent sizes and classes distribution. Federated Learning

(FL) [92] emerged as a category of Distributed Machine Learning in which a central server

does not have access to any data and only aggregates the weights received from di�erent

clients. Also, each institution can have a unique class distribution, which the central

server needs to consider to create a global model.

McMahan et al. [92] present the concept of FL as a framework with two main parties:

the clients and a central server. Each participating client trains the model with its local

dataset. After that, it sends the model updates to the server. The central server coor-

dinates the learning of all clients by only aggregating their model updates. The data is

only accessed by the owner, preserving thus privacy.

The authors of this paper use Google Keyboard, the GBoard, as a use-case of Fed-

erated Learning, and the clients are Android phones1. As mobiles can discharge and

disconnect at any time, the FL algorithm created by McMahan et al. [92] samples a frac-

tion of all connected clients to participate in the learning in each communication round.

One round is composed of four steps, represented in Figure 2.4:

1. the central server chooses a fraction of the participant clients and sends the current

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

2.3 Federated Learning 12

model weights to them;

2. each client trains for several epochs on the local dataset and sends the updates to

the server;

3. the central server receives and aggregates all updates, and sends the �nal weights

back to the clients;

4. each client updates their weights and tests the model with a testing dataset , sending

back to the server the metrics to be aggregated and start the next communication

round.

6HUYHU

&OLHQW &OLHQW

XSGDWHG
ZHLJKWV

XSGDWHG
ZHLJKWV

XSGDWHG
ZHLJKWV

6HUYHU

&OLHQW &OLHQW &OLHQW

DJJUHJDWHG
ZHLJKWV

DJJUHJDWHG
ZHLJKWV

DJJUHJDWHG
ZHLJKWV

6HUYHU

&OLHQW &OLHQW &OLHQW

PHWULFV PHWULFV PHWULFV

6HUYHU

&OLHQW &OLHQW &OLHQW

6WHS

6WHS 6WHS

PRGHO
ZHLJKWV

PRGHO
ZHLJKWV

PRGHO
ZHLJKWV

6WHS

&OLHQW

Figure 2.4: Steps of a communication round in Federated Learning.

2.3.1 Federated Learning Classification

There are two possible architectures for Federated Learning in the literature: Model-

Centric Federated Learning [145] and Data-Centric Federated Learning [69]. The Model-

Centric FL is the �rst architecture presented to the area, with a central model to coordi-

nate the learning process among all clients. On the other hand, in the Data-Centric FL,

2.3 Federated Learning 13

the enterprise owns the data and stores it with private access, and third parties ask for

training or inference on that data without seeing it. In this type of FL, the enterprise that

stores the dataset is called Data Owner, and each third party is a Data Scientist. Fig-

ure 2.5 shows the di�erence between the Model-Centric and the Data-Centric Federated

Learning.

6HUYHU

&OLHQW &OLHQWN &OLHQWQ

(a) Model-Centric FL

'DWD 6FLHQWLVW

'DWD
2ZQHU

'DWD 6FLHQWLVW

(b) Data-Centric FL

Figure 2.5: Example architecture of (a) Model-Centric FL and (b) Data-Centric FL.

Most research in FL focuses on Model-Centric architecture, which admits classi�cation

into Cross-Device or Cross-Silo FL. This classi�cation is relative to the connected client

type, as shown in Figure 2.6. If the clients are low-powered devices, like mobile phones [92]

or edge devices [103], we name it a Cross-Device Federated Learning (Figure 2.6a). There

are some challenges concerning the power consumption and the connection in this type

of FL. On the other hand, if the clients are companies (e.g., hospitals [102]) with similar

datasets willing to create a central model, it is a Cross-Silo Federated Learning (Figure

2.6b).

6HUYHU

&OLHQWQ &OLHQWN &OLHQWQ&OLHQW&OLHQW

(a) Cross-Device FL

6HUYHU

&OLHQW &OLHQWN &OLHQWQ

(b) Cross-Silo FL

Figure 2.6: Type of clients in (a) Cross-Device FL and (b) Cross-Silo FL.

Another classi�cation considers the distributed dataset features and the samples. If

all clients have the same feature space but di�erent samples, it is a Horizontal Federated

Learning [145]. In this scenario, all clients use the same features as input to the model.

The collaboration among clients is straightforward, with a centralized server to aggregate

2.4 Available Tools for Federated Learning 14

the training weights. For example, two banks can collaborate to create a centralized

fraud detector model on credit card transactions. Both have the same feature space, with

possible features being the current income, savings, occupation, credit card limit, the

average purchase price.

On the other hand, if the clients do not have the same feature space but have the

same samples, they can collaborate to create a more sophisticated model. For example,

a �tness application can collaborate with a hospital to create a model to understand the

relationship between exercise and health. This type of FL is called Vertical Federated

Learning [145]. The training is more challenging as the parties need to send and receive

intermediate training results to insert them in its local train.

In this work, we focus on Cross-Silo and Horizontal Federated Learning applications.

2.4 Available Tools for Federated Learning

There are several tools for executing Federated Learning applications in the literature.

Table 2.1 presents an overview of them. This table describes the designed environment

(Environment), the supported FL type (FL type), and the ML frameworks (ML frame-

work) supported by each tool.

Table 2.1: Available tools for Federated Learning applications

Name Environment FL type ML framework

TensorFlow Federated [74] Simulation Model-centric TensorFlow
PySyft/PyGrid [105] Simulation/Real Data-centric PyTorch
FL PyTorch [19] Simulation Model-centric PyTorch

FATE [37] Simulation/Real Model-centric Custom
Flower [8] Simulation/Real Model-centric Any

We will discuss each of them in the following sections.

2.4.1 TensorFlow Federated

TensorFlow Federated (TFF) [74] is Google’s library for executing Federated Learning ap-

plications in a simulation environment based on the well-known TensorFlow (TF) API [1].

TFF gives the user two API layers: Federated Learning (TFF-FL) API, for executing ba-

sic FL algorithms such as FedAvg, and Federated Core (TFF-FC) API, for implementing

new FL algorithms.

2.4 Available Tools for Federated Learning 15

TFF-FL API presents wrapper functions on TF Models to handle the communication

in the TFF environment [45]. It also implements a class that wraps the dataset distribution

among clients in the simulation environment. This class contains two datasets for FL

environments: a distributed version of the MNIST dataset for image recognition [26] and

a distribution version of a text dataset where each client has lines of a single character in

a Shakespeare’s play [46].

On the other hand, TFF-FC API is a programming environment to implement new

Federated Learning algorithms [44]. TFF-FC is designed to implement the distributed

functions from a global perspective instead of the client’s or server’s perspective. Thus,

this API includes pre-de�ned distributed functions, such as federated sum and feder-

ated reduce, to be used by the server.

The authors of TFF claim that it can simulate the FL environment in several machines

with multiple GPUs2. However, we could not �nd any explanation on how to set up this

multi-machine simulation in its tutorials3, and we were not able to execute this multi-

machine simulation on our own.

2.4.2 PySyft/PyGrid

PySyft and PyGrid are two parts of the available tool focused on Data-Centric Federated

Learning [105], in which the users compute from data they cannot see. In this type of FL,

the actors are Data Scientists, which do not have any data, and the Data Owner, which

holds all data and receives the computational requests from the Scientists.

PySyft is the library API of this tool that de�nes which type of data Scientists can

reference in the Data Owner dataset and the FL algorithm used in the collaboration.

PyGrid is the environment platform that stores the Data Owner dataset using containers.

Until June 2021, PySyft4 and PyGrid5 were separate projects. Now, the researchers

integrated the PyGrid project under the PySyft one. They are currently working on

creating tutorials to explain the creation of the data storage using PyGrid and connecting

to it using PySyft.

2https://www.tensor�ow.org/federated/tutorials/simulations with accelerators
3https://www.tensor�ow.org/federated/tutorials/simulations
4https://github.com/OpenMined/PySyft
5https://github.com/OpenMined/PyGrid

2.4 Available Tools for Federated Learning 16

2.4.3 FL_PyTorch

Burlachenko et al. propose FL PyTorch, a FL simulation tool built from the PyTorch

API [101]. The authors propose a simulator to help the researchers develop new FL

aggregation techniques. The authors focus on four objectives to their tool: simplicity,

extensibility, hardware utilization, and easy debugging.

The authors implemented FL PyTorch with a generalized FL algorithm to help re-

searchers build new FL algorithms. They divided FL PyTorch into modules mapped

to di�erent PyTorch data types and functions, which gives researchers a simple way to

modify this tool. Moreover, FL PyTorch exploit the clients’ independent execution to

parallelize them by assigning each client to one single CPU thread. FL PyTorch maps

each CPU thread to a di�erent GPU connection if available, so each client sends the work

to the GPU independently.

Finally, FL PyTorch presents a Graphic User Interface (GUI) so FL practitioners can

straightforwardly execute their simulations and visualize the measured metrics in each

communication round in graphics. This GUI also monitors the whole FL simulation to

help researchers debug their novel FL algorithms. Although the simple way to execute

FL applications in FL PyTorch, this tool is focused on simulation and cannot run in a

real-world scenario.

2.4.4 Federated AI Technology Enabler (FATE)

Federated AI Technology Enabler (FATE) [37] provides a secure framework to support

the whole FL environment. It presents six separated submodules to handle di�erent

aspects of the environment: FederatedML, Federated Network, FATE Serving, FATEFlow,

FATEBoard, and KubeFATE.

FATE does not support any known ML API as it provides its API through the Feder-

atedML submodule [42]. This submodule presents FL algorithms and data de�nitions to

be used among clients and the server. Federated Network [41] is the FATE submodule to

implement the communication tunnels among all participants in FL. It o�ers a metadata

manager and a proxy to implement the message exchange infrastructure.

FATE Serving [38] is the submodule focused on post-training inference. After the FL

model �nishes training, FATE Serving handles the income of new data and uses trained

models to present its classi�cation. FATEFlow [40] manages the whole FL pipeline, from

2.4 Available Tools for Federated Learning 17

data processing to serving inference. A Direct Acyclic Graphic (DAG) represents this

pipeline using a declarative human-readable language. Each node of this DAG can be a

general FL process, like FL training, or one of the other submodules, like FATE Serving.

The last two submodules of FATE are FATEBoard [39] and KubeFATE [43]. FATE-

Board is a visualization tool to help models exploration and understanding. It communi-

cates with FATEFlow to get the FL job pipeline and present it to the user visualize. It

also monitors the execution and reports the model metrics and charts to compare di�erent

FL models. Finally, KubeFATE [43] manages the FL workload using Docker containers

and the container orchestrator Kubernetes and deploys the application in a real scenario.

It uses public container images of each FATE submodule and can deploy FATE in a

single-machine or a multi-party scenario. Although following the instructions, we could

not make FATE work in any supported scenario.

2.4.5 Flower

Most tools presented in Table 2.1 focus on FL simulation with homogeneous clients.

Flower is a FL framework proposed by Beutel et al. [8] that focuses on the FL exe-

cution with heterogeneous clients on simulation and real-world scenarios. The authors

developed Flower aiming at �ve objectives, with Flower being: ML framework-agnostic,

client-agnostic, expandable, accessible, and scalable.

Flower allows a FL practitioner to use any ML framework underneath it (TensorFlow,

PyTorch, or a custom one) and execute the FL application in several client environments,

with di�erent operating systems or hardware settings. Besides, Flower is open-sourced,

allowing researchers to expand its code to implement new FL algorithms and architectures.

Beutel et al. also created Flower in a modular way, as showed in Figure 2.7, which helps the

accessibility of this tool. With Flower, a �nal user needs only to implement a few functions

to transform a regular ML application into a federated one. Finally, the authors reached

clients’ scalability using the gRPC protocol [67], a high-performance implementation of

the Remote Procedure Call (RPC) protocol that supports the communication among

several tasks with minimum overhead, as presented by Beutel et al. with 1000 clients in

Flower [8].

Figure 2.7 presents the modular design of Flower showing which functions are already

implemented by Flower in white (Framework Code) and which the user needs to implement

to create a FL application in blue (User Code).

2.5 Cloud Computing 18

Figure 2.7: Architecture of Flower. Figure from [8].

Flower implements some FL algorithms on the server, like FedAvg [92], FedProx [85],

and Q-FedAvg [86]. So, a �nal user can use any of these to translate his/her ML applica-

tion to a federated scenario. However, if researchers want to develop a new FL algorithm,

they can create a new Strategy for Flower with their proposal.

On the client side, Beutel et al. used the Python programming language to implement

the client module. So, a FL practitioner using Python needs only to implement the

training and evaluation functions of the clients through a ML API (TensorFlow, PyTorch,

or a custom one) to execute his/her application in a federated scenario. If the practitioner

uses another programming language, he/she needs to create the client module using the

existing communication module as gRPC supports di�erent programming languages (e.g.,

C++, Go, Java, PHP, and others).

We consider Flower as our FL tool due to its simple architecture to execute FL in real

and heterogeneous environments.

2.5 Cloud Computing

Cloud Computing is a computational paradigm that provides resources and services over

the Internet with low cost, high availability, and in a fast, �exible, and scalable way [25].

Over the years, many authors de�ned Cloud Computing:

• According to Armbrust et al. [4] and Dikaiakos et al. [28], Cloud Computing repre-

sents a two-part paradigm: the applications o�ered as services through the Internet

to a �nal user and the hardware and software located in physical data centers man-

aged by a provider;

• Foster et al. [47] de�ne Cloud Computing as a highly distributed computational

2.5 Cloud Computing 19

paradigm in which multiple resources are o�ered on-demand to external users by

virtualization through the internet.

We can misunderstand Cloud Computing with a computational grid, especially with

the �rst de�nition [134]. However, the main di�erence is the on-demand o�ering pre-

sented in the second de�nition. It means that the user will have as many resources as

he/she wants and only pays for the resources used (pay-as-you-go scheme) [76]. More-

over, the United States National Institute of Standards and Technology (NIST) presented

�ve essential characteristics to de�ne Cloud Computing [9], and this is the mainly used

de�nition of Cloud Computing. These characteristics are:

• On-demand self-service: users request the resources when needed to each cloud

provider and without human interaction;

• Broad network access: users can access their allocated resources through a variety

of platforms, such as mobile phones and computers;

• Resource pooling: providers pool their resources to allocate multiple consumers

requests. Users do not know the exact location of allocated resources but can have

control of a higher level of it when choosing the region in which they are;

• Rapid elasticity: Allocated resources can upscale or downscale automatically and

quickly. It translates as a sense of in�nite resource capability to the �nal user; and

• Measured service: Cloud systems automatically control their resources using metrics

accordingly to the type of service provided. These metrics help report the resource

usage to the cloud provider and the user.

One of the technologies behind the success of clouds is virtualization. It is the process

of sharing computational resources (such as CPU, storage, and network) isolated from the

physical hardware. This virtualization process reduces the ine�ciency in the allocation

and distribution of resources [70]. Moreover, there are several technical and economic

advantages in using clouds over other distributed platforms, such as grids and clusters, as

they combine the virtualization and scalability in a service model viable for both client

and provider [76]. Some advantages of cloud computing are availability, monetary cost

savings, reliability, and service integration [70]. According to Hashem et al. [70], in the

cloud, the cost savings are related to automation and data processing and to the whole

process of acquiring and maintaining the infrastructure and managing it.

2.5 Cloud Computing 20

Regarding the implementation of a cloud, there are four possible types of cloud envi-

ronments [93]:

• Private cloud: a single organization manages this cloud environment and uses its

data centers to provide resources through the Internet only to its employees and

partners;

• Community cloud: one or more organizations in a community that shares some

common interest (e.g., economic issues or mission) provide this environment accessed

only by a part of consumers from these organizations;

• Public cloud: a large company or organization o�ers computational resources to the

general public in this cloud environment. There are several examples of public cloud

providers, Amazon Web Services [108], Google Cloud Provider [51] or Microsoft

Azure [5]; and

• Hybrid cloud: this environment combines the above cloud environments (private,

community, and public). An organization can use a private cloud to execute its

everyday tasks but allocates additional resources from a public cloud when necessary

to handle any workload peaks.

In this thesis, we focus on public clouds. These cloud providers o�er services with

di�erent levels of abstraction, which falls into three categories [70, 9]:

• Software as a Service (SaaS) is the level where applications are o�ered to the �nal

user through the Internet. The user uses any web browser to access these appli-

cations free of charge or charged for their use. Some examples are O�ce 365 [99],

Gmail [139], and Google Docs [140].

• Platform as a Service (PaaS) o�ers a development environment to implement, test

and deploy user applications. This service deploys di�erent resources to help the �nal

user monitor and manage the development of user-made applications. AWS Elastic

Beanstalk [116], Google App Engine [54], CloudFoundry [24], and Heroku [71] are

examples of PaaS.

• Infrastructure as a Service (IaaS) consists of virtual hardware acquisition. The

user can acquire from storage or processing capacity to full virtual machines in the

IaaS model, and he/she has total control of software con�guration and installation.

AWS Elastic Compute Cloud (EC2) [111], AWS Simple Storage Service (S3) [107],

2.5 Cloud Computing 21

Google Compute Engine (GCE) [58], and Google Cloud Storage (GCS) [52] are some

examples of IaaS.

In this work, the FL participating institutions store their data in one of the most used

cloud providers: Amazon Web Services [108] or Google Cloud Provider [51], due to scope

restrictions.

2.5.1 VM allocation

Cloud providers o�er di�erent markets to deploy their VMs. These markets have di�er-

ent prices, availabilities and guarantees. The main markets are the on-demand and the

preemptible/spot ones. The on-demand market guarantees the VM availability from the

request moment up to the user termination. However, it is usually more expensive. On

the other hand, cloud providers make their spare capacity available with a huge discount

so users with fault-tolerant applications can execute them paying less for the VMs6,7.

These discounts can be up to 90% the on-demand price. However, the spare capacity of

a provider is �exible and the VMs can be revoked by the cloud provider at any time.

2.5.2 Storage Services

Cloud providers have several storage services available to rent. Until June 2023, AWS

o�ers a total of 12 storage services divided into eight categories [120]: (i) object storage

with Amazon Simple Storage Service (S3) [107]; (ii) �le storage through Amazon Elastic

File System (EFS) [112] and Amazon FSx [113]; (iii) block storage with Amazon Elastic

Block Store (EBS) [110]; (iv) high-speed cache with Amazon File Cache [122] (v) data mi-

gration using AWS DataSync [109] and AWS Snow Family [114]; (vi) hybrid cloud storage

and edge computing with AWS Storage Gateway [118] and AWS Snow Family [114]; (vii)

managed �le transfer through AWS Transfer Family [119]; and (viii) disaster recovery and

backup using AWS Elastic Disaster Recovery [117] and AWS Backup [115].

GCP o�ers ten di�erent storage services divided into eight categories [56]: (i) object

storage with Cloud storage [52]; (ii) block storage through Persistent Disk [62] and Local

SSD [61]; (iii) archival storage using Cloud Storage [52]; (iv) �le storage with Filestore [59];

(iv) data transfer through Data Transfer Services [63] and Transfer Appliance [64]; (v)

backup and disaster recovery with Google Cloud Backup and DR [65]; (vi) mobile appli-

6https://repost.aws/knowledge-center/ec2-spot-instance-insu�cient-capacity
7https://cloud.google.com/compute/docs/instances/preemptible

2.5 Cloud Computing 22

cation services using Cloud Storage for Firebase [27]; (vii) collaboration, communication,

and �le storage through Google Workspace [50]; and (viii) building artifacts with Artifact

Registry [55].

Each storage service focuses on di�erent needs in a company work�ow. In this work,

the FL clients need to store datasets that contain any �le type (e.g., text or image �les).

Besides, we assume that companies access the datasets frequently. So, we assume the

companies use the object storage service from each provider.

Amazon S3 and Cloud Storage are the object storage services from AWS and GCP,

respectively. They similarly represent the objects, using a two-level organization [107, 52].

At the superior level, they use buckets, structures similar to folders having a unique global

name. These buckets help organize the data of di�erent users, identifying and billing them

accordingly. S3 restricts each bucket to a single region, and each account can associate up

to 100 buckets. In Cloud Storage, the user can con�gure the bucket availability to a single

cloud region, in two close regions (dual-region), or several regions spread in a larger area

(multi-region). There is no limit in GCP associated with the number of buckets in a single

account, but there are limitations regarding the bucket’s name and creation rate [53].

Objects are the lower level of these two storage services. They contain the user stored

data represented by a name and unique key used to access the object8,9. Both services

have an upper limit to a single object size of 5TB [107, 53] and allow the user to create,

change and read objects from a bucket using a single operation. However, if the user

wants to rename or move the object to another place, it takes at least two, downloading

the object to a local system and uploading it with the new name or in the new location.

Both cloud providers allow the user to choose the privacy level for each object. By

default, AWS makes all objects stored in S3 private, allowing only access from the resource

owner and account administrator10. If the user wants to let others see their data, he/she

needs to grant access to each object explicitly. On the other hand, GCP does not assume

any privacy level but requests the user to set the requested level of external access when

uploading new �les to Cloud Storage11.

8https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingObjects.html
9https://cloud.google.com/storage/docs/naming-objects

10https://aws.amazon.com/s3/security/?pg=ln&sec=be#Access management and security
11https://cloud.google.com/storage/docs/access-control

2.5 Cloud Computing 23

2.5.3 Multi-Cloud Environment

The use of multiple clouds by a single application de�nes a multi-cloud environment [131,

34, 72]. These clouds can be private or public, and they can communicate with each other

or not, as presented in Figure 2.8.

$SSOLFDWLRQ 3ULYDWH
&ORXG

&ORXG
3URYLGHU

&ORXG
3URYLGHU

Figure 2.8: Multi-cloud environment using a private cloud and 2 public cloud providers.

There are di�erent de�nitions of multi-cloud environments regarding the use of each

independent cloud. Hong et al. [72] de�ne that, in a multi-cloud environment, each task

uses one cloud within the user application work�ow. For istance, the user could use one

of the Google Cloud Provider storage services and execute their application using the

services of Amazon Web Services. On the other hand, Elkhatib [34] has a more general

de�nition of a multi-cloud environment where the application uses a cloud manager that

abstracts the speci�cs of each cloud, and the application does not need to know which

cloud is used.

This second de�nition is more similar to a cloud federation. However, Toosi et

al. [131] di�er multi-cloud environments from a cloud federation, considering how much

one provider is aware of the other providers. In a cloud federation, the cloud providers

communicate among them to ful�ll the application’s needs. In a multi-cloud environment

de�ned by Elkhatib [34], each provider does not know the others, and the application is

responsible for managing the use of di�erent cloud providers.

Federated Learning applications consist of independent institutions (or companies)

collaborating to reach a globally unique model. We also assume that each company stores

its private dataset in a single cloud provider, such as Amazon Web Services (AWS) [108]

or Google Cloud Provider (GCP) [51]. Thus, one possible real collaboration scenario is

described in Figure 2.9, in which there are 3 institutions (Inst. 1, Inst. 2, and Inst. 3)

with their private datasets (DInst1, DInst2, DInst3) stored in di�erent cloud providers.

We can map each company to a single client task in the whole FL application and, thus,

our application �ts the most restrictive de�nition of a multi-cloud environment by Hong

2.5 Cloud Computing 24

$:6

',QVW

*&3

',QVW',QVW

Figure 2.9: Example of a scenario with 3 companies using the Amazon Web Services
(AWS) or the Google Cloud Provider (GCP) to store their private dataset.

et al. [72]. This multi-cloud environment presents challenges for executing FL regarding

communication time and costs and FL server bottlenecks. The basis of Federated Learning

applications is message exchange. Depending on which storage services each company

chooses, we can have several options to allocate the related FL client. Besides, the location

of the FL server is a concern when executing FL in multi-cloud as all clients need to send

their updates to one single machine.

Chapter 3

Related work

There are two main scheduling perspectives related to Federated Learning (FL): one con-

siders Cross-Device FL while the other deals with Cross-Silo FL. In the related literature,

most papers treat Cross-Device FL. The main challenge of the Cross-Device FL archi-

tecture is handling low-powered devices that can disconnect at any time due to unstable

network connections. Thus, most recent papers focus on either the proposal of new algo-

rithms for server aggregation [85, 75, 142, 22] or the scheduling of clients to be sampled

in a Cross-Device FL application [144, 141, 104, 20, 87].

Our work focuses on Cross-Silo FL architectures, where the clients are institutions

with more computational power and stable network connection than Cross-Device clients.

We assume that clients will always be available and all of them participate in each commu-

nication round. The scheduling problem of Cross-Silo FL applications consists of �nding

the optimal placement of each participating client, aiming at minimizing the execution and

�nancial costs. Section 3.1 presents current work focused on Cross-Silo FL applications.

The scheduling of Cross-Silo FL applications can be related to scheduling distributed

Machine Learning (ML) applications as there is the assumption that workers are always

available. Thus, Section 3.2 presents recent work on scheduling distributed ML applica-

tions. Section 3.3 introduces papers that consider distributed ML and FL executed on

cloud environments.

Another important topic in the literature is resource management in single- and multi-

clouds. Section 3.4 presents papers that executes di�erent applications in the clouds.

3.1 Cross-Silo Federated Learning 26

3.1 Cross-Silo Federated Learning

Few papers focus on Cross-Silo Federated Learning to the best of our knowledge.

Rajendran et al. [102] present a FL approach to predict the disease risk related to

tobacco and radon. They use health care electronic record data as input and implement

their approach using two di�erent ML models, a neural network (NN) and a logistic

regression (LR). They asynchronously trained both models, in which one institution trains

the model at a time. The authors show the results in a simulated environment and a real-

world scenario.

Huang et al. [73] propose a method for Federated Learning focusing on training per-

sonalized models in each participating client. Instead of one unique global model, the FL

server keeps a single model for each client and aggregates the weights of those participants

whose models’ weights are similar. The authors prove that their method improves the

mean accuracy of all clients when there is no equal class distribution among all clients.

Huang et al. [73] conducted their experiments in a single machine and used four benchmark

datasets.

Li et al. [84] present an experimental study investigating the impact of di�erent class

distribution among clients in three di�erent FL algorithms. In this study, they propose

several data partitioning strategies. The authors created a benchmark dataset and con-

cluded that there is no FL algorithm better in all scenarios.

3.2 Scheduling Distributed Machine Learning Jobs

The majority of works focus on determining the optimal number of parameter servers

and workers per job when scheduling multiple ML jobs in limited resources [148, 6, 149].

They assume that all workers will have the same amount of data and allocate them

as close as possible. These two assumptions are the main di�erence from our work,

where each client stores their heterogeneous private datasets in di�erent cloud regions or

even cloud providers. However, some recent papers consider stragglers [95], the network

performance [89], or locality awareness [147] being closer to ours.

Amiri et al. [95] consider transient stragglers among workers during the distributed

ML training. Transient stragglers are workers with sporadic slowness due to temporary

network disconnection, as an example. To handle them, the authors divide the central

dataset into n small chunks assuming that each worker will compute over a number of them

3.2 Scheduling Distributed Machine Learning Jobs 27

sequentially. Then, the parameter server sends each piece to multiple workers and waits

for k results from di�erent chunks, k � n. The authors present the proposed system model

and theoretical analysis for the minimum average completion time. Finally, they explain

two scheduling schemes for chunks assignment to the workers, and their experimental

results present better completion time than other algorithms in the literature. One aspect

of this work is the data exchange between the tasks, prohibitive in a Federated Learning

scenario. Thus, the whole FL execution needs to consider stragglers’ execution time.

Liu et al. [89] focus on the impact of Optical Circuit Switches (OCSes) on multiple

distributed ML training jobs execution in a data center or cluster. OCSes are energy-

saving and high-performance switches that use light properties to make light passively

�ow in the desired direction. Hence, each port of an OCS switch only supports the

communication to another port in a single way. If the application needs to send any

message in another direction to another port, the OCS switch needs time to recon�gure

itself. Thus, Liu et al. proposed two scheduling policies that consider the recon�guration

time. The Heaviest-Load-First (HLF) policy to schedule tasks within the same distributed

ML job, and Shortest Weighted Remaining Time First (SWRT) to schedule di�erent

training interleaving their computation and communication phases. Besides handling

possible network contention, the authors assume that all workers will have the same

dataset size, class distribution and computational power, which is not always valid in a

Federated Learning scenario due to privacy concerns.

Yu et al. [147] formulate an optimization model to allocate tasks from di�erent dis-

tributed ML jobs into a set of physical machines regarding resource and locality-aware

constraints, named the o�ine Distributed Machine Learning Resource Scheduling prob-

lem (DMLRS). DMLRS needs to know when each ML training job arrives and determines

the best allocation scheme to all workers and parameter servers to each ML training job

minimizing the communication time between them. They assume that the parameter

server and the workers can co-locate in the same physical machine. They also consider

that communication happens after training a few samples instead only at the end of

a whole epoch. Besides, the authors propose an online scheduling algorithm based on

a reformulation of DMLRS to a primal-dual and online problem. Despite presenting a

locality-aware scheduling problem, this work has assumptions that cannot be valid in a

Federated Learning scenario. First, they assume a central dataset, which is impossible in

FL. Second, Yu et al. assume that the communication between workers and parameter

server happens more frequently than in a FL scenario, where clients and the server com-

municate only after a few training epochs. Finally, the co-location of clients and servers

3.3 Distributed Machine Learning and Federated Learning on Clouds 28

in Federated Learning can help malicious clients discover other clients’ information using

reverse engineering on the weights updates [132]. Thus, it is safer to allocate tasks to

di�erent resources in FL.

3.3 Distributed Machine Learning and Federated Learning on
Clouds

Regarding the papers handling distributed Machine Learning on Clouds, most of them

use cloud services as a tool to evaluate their scheduling proposal [95, 147] or to verify

the central dataset integrity [151]. We found few research papers that consider aspects

of Cloud Computing to propose their solution [150, 31, 30, 137]. However, the authors

assume the equal division of the central dataset among workers, and they usually use a

single region to allocate all cloud resources. These facts reinforce that distributed ML

do not concern about data privacy and heterogeneity, which are the essence of Federated

Learning.

Zhang et al. [150] consider Spot (or preemptible) cloud instances to train distributed

ML tasks. Cloud providers o�er their spare capacity as preemptible instances with a huge

discount, but they can revoke them at any time. As there is no guarantee that all workers

from a distributed ML job will be available throughout the execution, Zhang et al.study

the convergence of classical algorithms to distributed ML training when the number of

workers varies. They present a formula to obtain the optimal number of workers to deploy

so that the algorithm does not diverge. They also validate their results using Amazon

EC2 [111] Spot instances.

Duong and Quang [31, 30] present a system to execute distributed ML jobs into on-

demand instances of a cloud provider called FC2. They implement a simple web interface

so that ML practitioners add their ML model characteristics and available budget, and

FC2 calculates the total number of workers to deploy into di�erent instance types from

a pool of available ones. The authors also implement two heuristics to recommend the

instances, one considering the execution time per instance and the other the instances’

bandwidth. Doung and Quang execute all results using Amazon EC2 [111] instances.

Wagenländer et al. [137] propose Spotnik to deal with instance revocations due to

preemptible cloud instances in distributed ML training. They assume a decentralized

training approach in which the workers communicate with each other in a pre-de�ned

ring pattern to aggregate their results. Thus, in the communication phase, if a worker

3.3 Distributed Machine Learning and Federated Learning on Clouds 29

wi cannot reach its neighbor wj, it assumes a revocation occurred, ignores the changes in

the current iteration, removes wj from the known topology, and propagates this change.

Spotnik also adapts its training method accordingly to the current number of workers.

If the number of workers is low, Spotnik uses synchronous strategies to calculate the

aggregated results and, if the number of workers is high, Spotnik uses asynchronous ones.

To the best of our knowledge, few works tackle the problem of federated learning on

clouds in the related literature.

Liu et al. [90] present a hierarchical FL architecture with mobile devices as clients.

Their principle idea is the addition of an edge layer of servers. These edge servers aggregate

the results of a fraction of the clients and send their aggregation to a central cloud server.

Then, this central server aggregates the results of all edge servers and, consequently, all

clients. The authors present the algorithm to this architecture and its convergence analysis

in the paper. However, they only show simulation results to prove their convergence

analysis.

Fang et al. [36] propose an architecture for Federated Learning in the cloud focusing on

privacy. Their architecture consists of a central server on the cloud with clients that uses

ElGamal encryption [33] to encrypt all messages. They present how the server and clients

exchange their encryption keys and how the framework works. The authors compare their

solution theoretically with other privacy-concerning deep learning methods. Besides, they

simulate the FL environment in a local machine and present the accuracy, execution times,

and messages size of each one.

The only found work that runs a FL approach in a cloud environment is the work

of Rajendran et al. [102]. They presented the results of both implemented models in a

scenario with two clients in a simulated environment and on the Microsoft Azure Cloud

Databricks [29], an open-source tool for data engineering and collaborative data science,

to exchange the ML model between two institutions.

In this work, we focus on synchronous FL training on VMs in the cloud and how

we can schedule each actor (the server and clients) to minimize the total execution costs

respecting the location of each client’s dataset.

3.4 Resource management in clouds 30

3.4 Resource management in clouds

There are several works approaching resource management on clouds (using single or

multi-clouds) [124, 135, 35, 23, 146, 152, 128, 77, 11]. Some propose using Spot (pre-

emptible) VMs to reduce costs and handle possible revocations [124, 135, 35, 152, 128].

However, most of them focus on Bag-of-Tasks applications, and others consider commu-

nication between tasks in their solution [124, 152].

Before November 2017, AWS used a per hour spot cost that �uctuates with the supply

and demand of each VM type. Nowadays, AWS charges per second with much more stabler

costs1. Despite the assumption of possible communications in the applications, Shastri

and Irwin [124] proposed an cloud index price that aggregated all current Spot VMs prices

to try to reduce the execution costs. They created a migration policy that was triggered

whenever the current Spot VMs costs surpasses signi�cantly this cloud index price.

Zhou et al. [152] proposed FarSpot, a framework to execute long-running HPC appli-

cations in AWS Spot market reducing application costs while guaranteeing the executing

within a user-de�ned deadline. They proposed an ensemble spot price predictor, using

Random Forest [10] and LightGBM [78] with dynamic weights to understand the be-

haviour of the new spot market price in AWS. They also de�ned a cost-aware deadline to

distribute over the tasks and created an migration strategy that changes the Spot VMs

reducing the task execution cost within the deadline. They evaluated FarSpot using the

NPB benchmark2 reducing the monetary cost by 32% compared to the state-of-the-art

algorithms. However, they use only VMs without GPUs.

Besides the communication among tasks, these works uses only a single cloud and do

not assume any synchronization barrier.

3.5 Summary

As presented in this chapter, most work on Federated Learning in the literature tackles

the clients’ unstable network from the Cross-Device architecture. In this scenario, the

server needs to sample a fraction of clients in each communication round, as there are

usually hundreds or thousands of devices connected. We focus on Cross-Silo FL, which

assumes fewer clients and a better network connection in the present work. The clients

1https://aws.amazon.com/pt/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
2https://www.nas.nasa.gov/software/npb.html

3.5 Summary 31

are dedicated machines or clusters, and the server usually samples all to participate in

each round as they are available throughout the entire execution. Moreover, we intend to

create a generic Cross-Silo FL scheduler and, thus, we cannot take advantage of algorithms

that focus on CNNs or RNNs.

Thus, Table 3.1 shows all previously described works regarding Federated Learning

compared to ours. We describe the ML algorithm that each work implements (ML model),

and whether the authors evaluated their proposal using simulation or real-world schemes

(Environment). For the papers proposing scheduling solutions, we also present the mini-

mization objective and the criteria used in their solution. If the authors do not mention

which ML model they focus on, we use the N/S value.

Table 3.1: Recent work on Cross-Silo Federated Learning research area

Paper ML model Environment
Minimization
Objective

Criteria

Huang et al. [73] DNNs Simulation - -
Li et al. [84] CNNs Simulation - -

Rajendran et al. [102] NN and LR Single-cloud - -

Our work DNNs Multi-cloud
Execution time

and costs
Clients’ dataset locality,

communication and training time

Regarding the works on scheduling distributed Machine Learning (DML) jobs, they

focus on three aspects that our scheduler could consider: non-persistent stragglers [95],

network performance [89], and locality of the dataset and tasks [147]. Table 3.2 compares

these works presenting their main characteristics. We show the minimization objective

of each paper, how the authors solved their optimization problem (Solution), in which

environment they tested the solution, and if the authors considered an online or o�ine

problem. An online optimization problem is when new tasks can arrive during the exe-

cution, and, in the o�ine approach, all tasks’ information is already available before the

scheduling.

Table 3.2: Recent work on scheduling Distributed Machine Learning (DML) jobs

Paper
Minimization
Objective

Solution Environment Problem

Amiri et al. [95]
Total delay in

a single DML job
Two exact task

scheduling schemes
AWS (Amazon EC2) O�ine

Liu et al. [89]

Total weighted
job computation
time of multiple

DML jobs

Two heuristics
(one focus on intra-job

and another on
inter-job scheduling)

Physical cluster Online

Yu et al. [147]
Maximize fairness

of multiple
DML jobs

Approximation
algorithm based

on randomized rounding
Physical cluster Online

Chapter 4

Case Study: Federated Learning in a
biomedical application

In this chapter, we present our adaptation of a Bioinformatics application to a Federated

Learning scenario. The purpose of this chapter and this application is to understand the

FL execution in clouds and to validate our framework. Thus, the tumor-in�ltrating lym-

phocyte classi�cation problem is described in Section 4.1. Then, Section 4.2 presents the

adaptation for the Federated Learning scenario. Section 4.3 discusses the results compar-

ing the centralized and the FL approach. Finally, Section 4.4 discusses the execution of

this application in a real multi-cloud scenario.

4.1 Tumor-Infiltrating Lymphocytes Classification

The use-case application analyzes high-resolution scanned tissue images to detect and

classify spatial structures in the human tissue. It quanti�es Tumor-In�ltrating Lympho-

cytes (TILs) that are a type of white blood cells in the immune system. Recent studies

have shown that strong correlations exist between TILs density and spatial distribution

with the overall patient survival in several cancer types [3]. Consequently, a quantita-

tive analysis of tissue TILs is an important tool to describe tumor micro-environment

and to understand the cancer-immune system in order to predict treatment response and

prognosis.

The Whole Slide Tissue Images (WSIs) of scanned tissue may have in the order of

up to 100K�100K pixels, making it costly, error-prone, and challenging for an expert

(typically a pathologist) to extract quantitative information from hundreds to thousands

of WSIs as used in research studies and clinical settings. The automated analysis of WSIs

4.1 Tumor-In�ltrating Lymphocytes Classi�cation 33

captured by high-resolution tissue scanners is a rapidly growing area in image analysis and

may enable extracting quantitative TIL characterization. These aspects have motivated

the development of a deep learning application [106] built using Convolutional Neural

Networks (CNNs) to classify and analyze TIL patterns on tissue images stained with

hematoxylin and eosin (H&E). The application pipeline enables TIL classi�cation and

quanti�cation with a posteriori identi�cation spatial patterns.

Figure 4.1: Use-case TIL analysis work�ow. CNN is trained to identify TIL-positive/-
negative patches annotated by a pathologist (top). The CNN model is then used to
classify input WSI on a patch basis. The result is a TIL map presenting TIL-rich regions
(red) in the input tissue. Source: [12].

The pipeline of the motivating TIL analysis application is presented in Figure 4.1.

The CNN model training is showed in the top part of the �gure. The process starts by

extracting patches (50�50 square micron patches) from the input WSIs, which are then

reviewed and classi�ed by an expert pathologist as TIL-positive/-negative, and those

patches are then used to train the CNN model. Further (bottom part), the trained

model is applied to new unseen input WSIs to compute the desired TIL maps for a large

number of WSIs in the production phase. After the TIL maps are computed (not shown

in the image) di�erent TIL characterizations may be carried out to perform the actual

correlations with information of interest (e.g., treatment expected response and survival).

The model developed in the original application [106] was performed using a small-

scale crowd-sourcing with several pathologists volunteering their time to create the train-

ing data and reviewing the generated TIL maps. This process was limited to a small

group of experts and only publicly available WSIs were used because of the privacy is-

sues involved in sharing those data across a larger group of experts, for instance, from

di�erent institutions. The use of Federated Learning improves this process by enabling

4.2 Tumor-In�ltrating Lymphocytes Classi�cation with Federated Learning 34

(i) an increase in the number of pathologists that could collaborate with annotation by

restricting individuals to partitions of the data with a systematic data access control and

(ii) the use of private datasets from multiple institutions to train the model without the

need of sharing the data.

The centralized version of TIL classi�cation implements di�erent Convolutional Neural

Network models, as described in [80]. In this thesis, we implement the two best models:

the Inception-ResNet V2 CNN [127] and the VGG16 one [126]. The former model has

an input layer of size 240�240�3 and the latter has an input layer of size 224� 224� 3.

After the input layers, both models has several convolutional and fully connected layers,

ending with a output layer that determines if the TIL is positive or negative.

The centralized algorithm also splits the training dataset into two parts, using a user-

de�ned percentage. The �rst part is used to train the model parameters and the second

part validates the model and updates the hyper-parameters. Both training and validation

steps are executed for each epoch. After �nishing all epochs, the algorithm runs the

model with the testing dataset to calculate the �nal model accuracy and other relevant

ML metrics.

4.2 Tumor-Infiltrating Lymphocytes Classification with Feder-
ated Learning

In the proposed Federated Learning approach for TIL classi�cation, we focus only on the

CNN training step (third step of training phase in Figure 4.1). We assume that the patches

were already extracted from the WSIs and classi�ed by an expert. Also, we partition the

centralized training and test datasets among all clients and assume that each client has

access to two exclusive datasets, one used for training and the other for testing.

We use Flower to implement the FL approach as it has a simple design. Flower has

a small limitation: the FL server needs to know the number of clients before starting its

computation and waits for the availability of all of them before starting the communication

rounds. If a client goes o�ine in the middle of any communication round, the server waits

for the same or another client to be online to continue the execution. As we considered a

Cross-Silo FL, the server has to sample all clients in each communication round. The FL

client implements the same CNN model as the centralized version, either the Inception-

ResNet V2 [127] or the VGG16 [126]. It also splits the training dataset into two parts,

named training and validation datasets.

4.3 Experimental Results 35

Each communication round is composed of training and test phases. In the training

phase, each client trains and validates the local model for some epochs and sends the

updated weights to the server. In the test phase, each client receives the aggregated

weights, updates its model, and tests it against the testing dataset.

Note that the current implementation of Flower does not support stopping the FL

training before a user-given number of rounds, which does not allow the execution of the

early stopping feature of machine learning training, in which the model stops the training

when the test accuracy starts to diverge even though the training accuracy continues to

converge [49]. Thus, we did not use that feature in the centralized training as well.

4.3 Experimental Results

We present the results comparing the centralized application to Federated Learning Sce-

narios. We executed all tests in AWS, using the g4dn.2xlarge instance type. This instance

is an interesting choice in those tests because it belongs to the accelerated computing

family, as it has an Nvidia T4 Tensor Core with 16GB of memory, has a moderate price,

its on-demand price is less than one dollar, and it is also available in the spot market.

Regarding the centralized approach, we selected 3793 patches as the training dataset

and 2090 patches as the test dataset. They were obtained from the TCGA repository [96].

Both datasets are unbalanced, with 10% of TIL-positive samples in the training dataset

and 20% of positive samples in the test dataset. We selected 10% of the training dataset

to be the validation one. We used the best hyperparameters from the original experi-

ments [80].

The Federated Learning approach divides the datasets among all clients homoge-

neously and each client has the same proportion of TIL-positive and TIL-negative samples

in all datasets. Moreover, all clients select randomly 10% of their training dataset to be

their validation one. We executed the clients in di�erent g4dn.2xlarge instances and the

server in a t2.xlarge one. We chose a cheaper instance for the server as it does not require

a GPU. It only receives the weights from all clients and aggregates them. We deployed

each task into a di�erent VM to avoid unintended data access from other clients and

reinforce the privacy issues.

We �rst present the results using the Inception-ResNet V2 (Section 4.3.1) as the CNN

model and then we show the results using the VGG16 (Section 4.3.2). Finally, we present

the results comparing the execution of the FL approach on on-demand and Spot VMs of

4.3 Experimental Results 36

AWS (Section 4.3.3).

4.3.1 Varying the number of clients using Inception-ResNet V2 Model

The used metrics to evaluate our model in these tests are the loss and test accuracy, which

are the standard metrics the server in Flower computes. The loss represents the distance

between the predicted label and the correct one. The accuracy measures how many correct

predictions are made by the model. Note that both training and test datasets have each

a di�erent accuracy, the validation accuracy for the former and the test accuracy for the

latter.

We executed the centralized version of our algorithm for 25 and 50 training epochs.

Table 4.1 shows the highest test accuracies found among 5 executions, the training exe-

cution times (hour:min:sec) and the total costs on an on-demand g4dn.2xlarge instance.

Table 4.1: Test Accuracy, Execution time, and Financial Cost for the centralized training
on an on-demand g4dn.2xlarge instance

epochs Acc. Time Cost
25 79% 1:44:15 $1.29
50 32% 3:19:49 $2.48

In these two executions, the validation accuracy has increased until the last epoch,

which con�gures the over�tting problem [49], where the model can only predict the train-

ing dataset and loses the capacity to generalize and predict unseen samples. This problem

is avoided with the early stopping feature, which we did not implement to compare fairly

with the Flower implementation, which does not have this feature.

Next, we present the results of the Federated Learning strategy in three di�erent

scenarios, with two, three, and four clients. In all of them, we attribute the centralized

dataset equally divided to all clients. We executed the Federated Learning for �ve rounds

with ten training epochs each in all scenarios, so each client executes for 50 epochs in

total. We present the highest test accuracy found in our tests.

Table 4.2 shows the highest accuracy execution and the corresponding loss for the two

clients scenario. Each client has 1896 training samples and 1045 test samples. The loss

and test accuracy are presented for each communication round (Comm. round). Note

that the server aggregates the loss and accuracy of all clients.

In this table, we can observe a decrease in the accuracy in the last communication

4.3 Experimental Results 37

Table 4.2: Highest test accuracy found with two clients

Comm.
round

Client 1 Client 2 Server
Loss Acc. Loss Acc. Loss Acc.

1 0.3273 90.33% 0.2991 92.25% 0.3132 91.29%
2 0.2758 90.33% 0.2447 92.25% 0.2603 91.29%
3 0.3238 94.74% 0.3218 93.30% 0.3228 94.02%
4 0.4282 93.78% 0.4301 94.64% 0.4291 94.21%
5 0.5598 79.81% 0.5805 75.41% 0.5702 77.61%

Final 0.5598 79.81% 0.5805 75.41% 0.5702 77.61%

round. Our dataset is unbalanced as 90% of the samples are TIL-negative against only

10% of TIL-positive ones. As the clients choose randomly the samples of the training and

the validation datasets, some TIL-positive patterns may be excluded from the training

portion. We can avoid this problem by increasing the training datasets, using some image

augmentation techniques, like scaling, cropping, rotation, and others [143].

Table 4.3 shows the highest test accuracy found in the execution of the three clients

scenario. Each client has 1264 training samples and 696 test samples and we present the

metrics found in each round.

Table 4.3: Highest test accuracy found with three clients

Comm.
round

Client 1 Client 2 Client 3 Server
Loss Acc. Loss Acc. Loss Acc. Loss Acc.

1 0.3233 89.80% 0.2719 92.10% 0.2739 91.98% 0.2897 91.29%
2 0.3493 89.80% 0.2775 92.10% 0.2808 91.98% 0.3025 91.29%
3 0.3800 89.80% 0.2942 92.10% 0.3005 91.98% 0.3249 91.29%
4 0.3280 89.80% 0.2646 92.10% 0.2715 91.98% 0.2880 91.29%
5 0.3040 93.82% 0.2867 95.11% 0.2903 95.13% 0.2937 94.69%

Final 0.3040 93.82% 0.2867 95.11% 0.2903 95.13% 0.2937 94.69%

In this case, we observe better �nal loss and accuracy than in the two clients scenario

(Table 4.2). It may happen due to the way the centralized dataset was divided among

the clients. Thus, the local datasets in this scenario can be more representative of the

centralized dataset than the local datasets of the two clients scenario. In Table 4.3,

we observe that the accuracy does not change in the �rst four rounds. However, the

aggregated loss increases in the �rst three rounds and then decreases in the next one. The

fact shows that the model is still learning from the training dataset and is not diverging

from the test dataset.

4.3 Experimental Results 38

Finally, Table 4.4 presents the highest test accuracy of the federated learning approach

with four clients, where each client has 948 training samples and 522 test samples.

Table 4.4: Highest test accuracy found with four clients

Comm.
round

Client 1 Client 2 Client 3 Client 4
Loss Acc. Loss Acc. Loss Acc. Loss Acc.

1 0.3609 90.42% 0.3619 90.25% 0.3328 92.72% 0.3430 91.78%
2 0.3250 90.42% 0.3241 90.25% 0.2907 92.72% 0.3009 91.78%
3 0.2990 90.42% 0.2962 90.25% 0.2523 92.72% 0.2649 91.78%
4 0.3033 90.42% 0.2986 90.25% 0.2458 92.72% 0.2611 91.78%
5 0.2755 91.57% 0.2487 92.93% 0.2363 93.30% 0.2444 93.50%

Final 0.2755 91.57% 0.2487 92.93% 0.2363 93.30% 0.2444 93.50%

Comm.
round

Server
Loss Acc.

1 0.3497 91.29%
2 0.3102 91.29%
3 0.2781 91.29%
4 0.2772 91.29%
5 0.2512 92.82%

Final 0.2512 92.82%

We can see that the accuracy in this scenario does not change until the last commu-

nication round, which is the same behaviour that occurred in the three clients’ scenario

(Table 4.3). However, in the four clients scenario (Table 4.4), the aggregated loss is smaller

than in the previous case, although clients 1 and 2 have increased their local losses in the

fourth round. This occurs due to the collaboration among clients of a federated strategy,

which is one of the advantages of using federated learning. The collaboration leads to an

indirect in�uence of all clients’ data in each client’s model.

When compared to centralized training, all federated learning scenarios yielded better

accuracy. The 50 epochs’ centralized training obtained a �nal accuracy of 32% (Table

4.1). While the federated learning approach with 5 communication rounds of 10 epochs

each, 50 epochs in total, presented a �nal accuracy of 77.61% with 2 clients (Table 4.2),

95.13% with 3 clients (Table 4.3) and 92.82% with 4 clients (Table 4.4). In FL, the server

aggregates the weights of all clients at each communication round. Thus, the training

samples from all clients in�uence the local model of each other client. This fact avoids

the over�tting problem found in the centralized training approach, once samples from one

client may only in�uence the models of other clients without participating in a global

training as in the centralized approach.

4.3 Experimental Results 39

To sum up the previous results, Table 4.5 presents the �nal test accuracy and loss

found in each client and the server in all three scenarios.

Table 4.5: Final test accuracy found with all scenarios

Scenario
Client 1 Client 2 Client 3 Client 4

Loss Acc. Loss Acc. Loss Acc. Loss Acc.
2 clients 0.5598 79.81% 0.5805 75.41% - - - -
3 clients 0.3040 93.82% 0.2867 95.11% 0.2903 95.13% - -
4 clients 0.2755 91.57% 0.2487 92.93% 0.2363 93.30% 0.2444 93.50%

Scenario
Server

Loss Acc.
2 clients 0.5702 77.61%
3 clients 0.2937 94.69%
4 clients 0.2512 92.82%

Concerning the execution times, the federated learning implementations reduced them

signi�cantly when compared to the centralized approach. While the two clients scenario

took 2 hours and 34 minutes (2:33:41), the three clients one executed in 1 hour and 42

minutes (1:42:00), and the four clients scenario lasted only 1 hour and 14 minutes (1:13:39).

Compared to the centralized training with 50 epochs (Table 4.1), the two clients scenario

reduced the execution time by 23% and the four client one by 63%.

4.3.2 Varying number of communication rounds using VGG16 Model

Now, we use the VGG16 model to compare the centralized approach executing 50 train-

ing epochs with 4 di�erent scenarios of Federated Learning. All scenarios have 4 clients,

as it was the best con�guration in the previous experiments, but we varied the number

of communication rounds within 50 training epochs in total. The �rst scenario has 25

communication rounds with 2 local training epochs each (25 comm. rounds). The sec-

ond one has 10 communication rounds with �ve local epochs each (10 comm. rounds)

while the third one has �ve communication rounds with 10 local epochs each (5 comm.

rounds). Finally, the last scenario has only two communication rounds with 25 local train-

ing epochs each (2 comm. rounds). We also added more ML metrics in our FL approach

to understand it better.

Table 4.6 compares the results of the centralized approach and all scenarios. The

columns show the model accuracy, precision, speci�city, and total execution time and

4.3 Experimental Results 40

cost. The model accuracy is the percentage of well-predicted test samples, regardless of

their true class. The precision is the percentage of true positives in all samples predicted

as positive. The speci�city shows the opposite, how many true negative samples were

correctly predicted within all samples predicted as negative. The total time considers the

moment from the request of the �rst VM up to the moment the last VM is terminated.

Finally, the total cost includes the cost regarding all clients and the server for each FL

scenario.

Table 4.6: Comparison among centralized approach and di�erent number of communica-
tion rounds with 4 clients in Federated Learning

Scenario Accuracy Precision Speci�city Total exec. Exec.
(%) (%) (%) time costs

Centralized 79.50 50.50 81.00 3:24:36 $2.55
25 comm. rounds 91.29 - 91.29 2:31:13 $7.92
10 comm. rounds 91.41 87.51 91.44 1:32:38 $4.80
5 comm. rounds 91.20 49.31 91.63 1:09:13 $3.53
2 comm. rounds 91.29 - 91.29 0:50:56 $2.59

We can observe that the accuracy of all Federated Learning scenarios is better than

the centralized one. As our dataset is unbalanced, when the FL approaches predict all

samples as negative, they classify correctly most of the samples. For the second and

third FL scenarios, we observe that the model yields a better precision and speci�city

than the centralized approach, which explains the better accuracy. We can observe that

in the �rst and the last scenario the model did not predict any samples as positive. In

the scenario with 25 communication rounds, each client trains for only two epochs per

round, and, thus, the local models do not learn much from the data before communicating.

So, at each communication round, the global model update does not result in signi�cant

improvements in the model. Consequently, in this �rst FL experiment, we obtained the

worst results.

When we compare the centralized approach with the best Federated Learning scenario

(10 communication rounds with 5 training epochs each), we observe a decrease in the

execution time by 55% with a corresponding cost increasing by 46%. Moreover, all metrics

presented better results. Note that, although we used four GPU instances in FL, instead

of only one, as in the centralized case, the costs increased only 46%. This happened

because each client had a reduced dataset and spent much less time to �nish. On the

other hand, we did not reach a linear speedup due to the communication overhead.

4.3 Experimental Results 41

4.3.3 Federated Learning on On-demand and Spot Instances

In this test, we compared the execution of all federated learning scenarios using on-

demand and spot instances. Here, we used the Inception-ResNet v2 model to compare

the scenarios with di�erent number of clients. So, we executed the FL approach in three

di�erent scenarios: with two, three, and four clients. We executed the FL application for

�ve rounds with ten training epochs each.

Regarding the execution time, in the two clients scenario, the on-demand execution

was almost 2 hours and 34 minutes (2:33:41), while the spot execution was only 2 hours

and 10 minutes (2:10:09). In the three clients scenario, the on-demand instances exe-

cuted for 1 hour and 42 minutes (1:42:00) and the spot ones executed for 1 hour and 38

minutes (1:38:24). For the four clients scenario, both executions were around 1 hour and

14 minutes, with the on-demand one �nishing faster (1:13:39) than the spot execution

(1:14:43).

We can observe that the di�erence in the execution times between both markets varies

according to the scenario. This di�erence is around 24 minutes in the two clients scenario

and is around 3 minutes in the three clients scenario. The basis of the Federated Learning

paradigm is messages exchange between clients and the server. If the server is in a physical

cluster far from a single client, their communication can delay the whole training process.

Table 4.7 shows the costs for each client, for the server and the total execution cost

(Total).

Table 4.7: Execution time and costs using spot and on-demand instances

Scenario
On-demand Spot

Exec.
time

Costs Exec.
time

Costs
Client Server Total Client Server Total

2 client 2:33:41 $1.89 $0.47 $4.26 2:10:09 $0.59 $0.15 $1.32
3 client 1:42:00 $1.25 $0.31 $4.06 1:38:24 $0.36 $0.09 $1.17
4 client 1:13:39 $0.89 $0.22 $3.79 1:14:43 $0.27 $0.07 $1.15

The use of Spot VMs can decrease signi�cantly the total execution cost. This re-

duction is 68.96% for the two clients scenario, 71.10% for the three clients scenario, and

69.66% for the four clients scenario. The reduction is the main advantage of using spot

instances. However, in our tests, the VMs were often revoked by the cloud provider, and

the g4dn.2xlarge was di�cult to allocate as most of the time there was no spot capacity

4.4 Execution in a Multi-Cloud Environment 42

available. This happens when all available VMs of this type are allocated to other users,

and there is no spare capacity for spot instances.

4.4 Execution in a Multi-Cloud Environment

The experiments in the previous section were conducted to understand the behaviour of

our use-case application when using Federated Learning. From these experiments, we

observed that the best con�guration is using 4 clients with 10 communication rounds and

5 epochs in each round. From now on, we assume this con�guration for all tests using

this application.

In this section, we analyze the execution of our application in a multi-cloud scenario,

where each client stores their dataset in di�erent cloud providers to understand the impact

of di�erent providers in the execution time and costs in our use-case application. To this

matter, we executed both server and clients into di�erent VMs of AWS and GCP.

Regarding the application execution parameters, we executed the FL application with

4 clients and 10 communication rounds using 5 training local epochs in each. We added

log messages into the FL framework to get the time the server and clients send and receive

each message. From these log messages, we computed the FL synchronization time and

the computation time of each client. The FL synchronization time is the sum of three

times per round: (1) the initial sync time, (2) the aggregation sync time, and (3) the test

sync time. The initial sync time is the time between the server sending the �rst message

with the current weights and the last client receiving it. The aggregation sync time is the

time between the �rst client sending the updated weights back to the server and the last

client receiving the �nal weights, which includes the server aggregation in step 3 (Section

2.3). The test sync time is the time between the �rst client sending the evaluation metrics

and the server presenting the global metrics. The computation time of each client is the

sum of the training and the testing steps in each client, including the time to access the

dataset. We show here only the longest computation time.

Concerning the cloud environments, we selected the main region of each cloud provider

to store the datasets and deploy the VMs. We chose North Virginia for AWS (us-east-1

region) and Iowa for GCP (us-central1 region). We executed each client in a VM with

8 vCPUs, 32GB of memory, and an Nvidia T4 Tensor Core GPU. We used Amazon

S3 to store the datasets in AWS and Cloud Storage to store them in GCP. We chose

the Premium Network Tier of GCP to use the high-speed internal network as much as

4.4 Execution in a Multi-Cloud Environment 43

possible. The cloud region, type of VMs (client and server), VM price (client and server),

and network costs are summarized in Table 4.8 for the two cloud providers.

Table 4.8: Cloud region, VM and cost for both client and server and network transfer
costs in each cloud provider used

Region
Client Server Network

Costs
($ per GB)

VM
Cost

($ per hour)
VM

Cost
($ per hour)

AWS
N. Virginia
(us-east-1)

g4dn.2xlarge 0.752 t2.xlarge 0.1856 0.090

GCP
Iowa

(us-central1)
n1-standard-8 0.730 e2-standard-4 0.13402 0.120

4.4.1 Execution times and Financial Costs

Table 4.9 presents the averages of three executions in di�erent scenarios, where the costs

are presented in $, and the time in hours, minutes and seconds. Our initial tests aimed

at evaluating the execution times and �nancial costs when the complete FL application

was executed on a unique cloud provider. As can be seen in S2, GCP presented better

results than the AWS ones (seen in S1). Even if more expensive than the standard one,

the choice of the Premium network showed to be a good option when compared with the

AWS results. The second set of tests evaluated two cases: (i) the server, three clients,

and their corresponding data sets on GCP, and one client and the corresponding data set

on AWS, case S3; and (ii) all clients and the server on GCP, but one data set allocated

on AWS, case S4. This last test showed that the allocation of the client in the same cloud

provider of the dataset is the best option, in this case, even considering that GCP has

presented better results than AWS in the other cases.

Table 4.9: Average times and costs of 4 scenarios: S1- all FL application on AWS, S2- all
FL application on GCP, S3 - 3 clients and 3 data sets on GCP, 1 client and 1 data set on
AWS, S4- 4 clients and 3 data sets on GCP and one data set on AWS.

Scenarios
Total Total Sync. Message exchange Computing VM
time cost $ time cost $ time cost $

S1 (AWS) 1:28:32 10.51 0:34:47 5.80 1:17:55 4.71

S2 (GCP) 0:36:54 9.61 0:04:35 7.73 0:29:44 1.88

S3 (3 GCP,1 AWS) 1:25:22 12.04 0:56:58 7.57 1:15:42 4.47

S4 (4 GCP,1 DS AWS) 1:48:21 13.25 1:18:26 7.73 1:45:20 5.52

Finally, we considered two scenarios where two datasets and two clients were allocated

to each cloud provider. In the �rst case, the server was allocated on AWS, and in the

second case on GCP. We observed similar execution times in the two cases, despite the

4.4 Execution in a Multi-Cloud Environment 44

use of the Premium Tier of GCP, with a 12% increase in the total costs using the server

in GCP as the Premium Tier of GCP are more expensive than AWS’ network.

From the experiments in this chapter, we can observe that the misplacement of the

server or the clients can lead to higher execution times, higher costs, or both. Thus, in

this thesis, a framework to optimally select the VMs in which all tasks (server and clients)

execute while preserving the whole and correct execution of the Federated Learning even

in the presence of revocations is proposed.

Chapter 5

Proposed Models and Framework Archi-
tecture

In this chapter, we present the system and application models considered in this thesis and

the general implementation architecture adopted by Multi-FedLS. Thus, the chapter is

divided into two sections. Section 5.1 describes all variables regarding the FL application

and the Multi-cloud environment, while Section 5.2 describes the overall architecture

details of Multi-FedLS.

5.1 FL Application and Multi-cloud Environment Models

As described in Chapter 2, FL applications are distributed algorithms, composed of a set

of clients and a server with communication barriers along the execution. Let C be the set

of clients and s be the server of an FL application.

In this thesis, an FL application executes a set of rounds, each one divided into �ve

steps. In the �rst step, the server sends a message containing the model weights, named

s msgtrain, to all participating clients. After receiving the weights, in Step 2, each client,

ci 2 C, trains the neural network for a �xed number of epochs on the local training dataset

and sends the updates back to the server, through the message c msgtrain. Then, in Step

3, the server receives all updates, aggregates them, and sends the �nal weights to the

clients (s msgaggreg message). Next, in Step 4, each client updates their weights, tests the

model with the test dataset, and sends its evaluation metrics (for example, accuracy and

precision) to the server in the message c msgtest. Finally, in Step 5, the server aggregates

the evaluation metrics of all clients to present the global metrics. Figure 5.1 illustrates

those execution steps in a single round.

5.1 FL Application and Multi-cloud Environment Models 46

6HUYHU V

&OLHQW F

VBPVJWUDLQ

&OLHQW FVBPVJWUDLQ

&OLHQW F

VBPVJWUDLQ

6HUYHU V

FBPVJWUDLQ

FBPVJWUDLQ

FBPVJWUDLQ

&OLHQW F

&OLHQW F

&OLHQW F

VBPVJDJJUHJ

VBPVJDJJUHJ

VBPVJDJJUHJ

FBPVJWHVW

6HUYHU VFBPVJWHVW

FBPVJWHVW

6H6HUY6HUY6H6H6HUYHUYHUYHUYHUHUHHUHUHUHHU VVVVV

VBPVJVBPVJVBPVJVBPVJVBPVBPVJPVJ QWUDLQWUDLQWUDLQUDLQUDLQUDLUDLQ

VBPVJVBPVVBPVJVBVBPVJVBPVJPVBPVJPVJWUDLQWUDLQUDLQWUDUDLQQQQQ

VBPVJVBPVJVBPVJVVBPVJVBPVJBPBPVJVBPVJJWUDLQWUDLQWUDLQWUWUDLQWUDLQDLQWUDLQDLQ

6WHS

&OLH&OLH&OLH&OLH&OLH&OLHHHHQWQWQWQWQWQWQWWW FFFFFFFF

&OLH&OLH&OLH&OLH&OLH&OLH&OLH&OLHQWQWQWQQWQQWQ FFFFFFFF

&OLH&OLH&OLH&OLH&OL&OLH&OLH& HQWQWQWQQWQWQW FFFFFFF

FBPVJFBPVJFBPVJPVJPVJFBPVJFBPVJ UDWWUDLQWUDLQWUDLQWUDLQW DL

FBPVJFBPVJFBPVJFBPVJFBPVJFBPVJBPFBPVJFBPVJWUDLQWUDLQWUWUWUDLQWUDLQWUDLQDLQWU

BPVJFBPVJFBPVJFBPVFBFBPVJFBPVJPVJVJWUDLQWUDLQWUDLQWUDLQUDLQUDLQWUDLUDLQ

6WHS

6HUY6HUY6HUY6HUY6HUYHU6HU6HUUYHUHUHUHUHUU VVVVV

VBPVJVBPVJVBPVJVBPVJVBPVJPVBPVJPV JJJJJJJDJJUHJDJJUHJDJJJUHJJUHJUHDJJUHJDJJUHJJUHJJ

VBPVJVVBPVJVBPVJVBPVJBPBPVBPVJBPVJVJ JJJJJDJJUHJDJJUHJDJJUHJDJJUHJDJJUHJDJJUHJJUDJ HJ

VBPVJVBPVJVBPVJVBPVJVBPVVBPVBPVJPVPVJ JJJJJDJJUHDJJUHJDJJUHJDJJUHJDJJUHJDJJDJJUHJUHJJUH

6WHS

&OLH&OLH&OLH&OLH&OLH&OLHHHHQWQWQWQWQWQWQWWW FFFFFFFF

&OLH&OLH&OLH&OLH&OLH&OL&OLH&OLHHQWQWQQQQWQWQW FFFFFFF

&OLH&OLH&OLH&OLH&OLH&OLH&OLH&O QWQWQWQQQWQWQW FFFFFFFF

FBPVJFBPVJFFBPVJFBPVJPVJFBPVJFBPVJFBPVJ WWWWHVWWHVWWHWHWHVWHVWVWWHVW

FBPVJFBPVJFBPVJFBPVJFBPVFBPVFBPVJFBPVJ WWWWHVWWHVWHVWWHVWHVWHVWHVWWHV

FBPVJFBPVJFBPVJFBPVJFBPVJFBPVJBPFBPVJFBPVJ WWWWWWHVWWHVWWHWHWHWHVWWHVVWVW

6WHS

6HUY6HUY6HUY6HUY6HUY6HUY6HUYHUYHUHUHHHUHUHUHU VVVVVV

6WHS

Figure 5.1: Steps of one round of a Federated Learning Application.

Regarding the environment, commercial clouds usually have their physical infrastruc-

tures spread in di�erent regions, which are independent and isolated geographic. There

are currently 31 regions among the globe in AWS [123] and 37 regions in GCP [66].

Each region o�ers computational resources packaged as Virtual Machines (VMs). Each

VM has a number of virtual cores, named virtual CPUs (vCPUs), and may have one or

more Graphics Processing Units (GPUs) connected to it. Thus, let P be a set of available

cloud providers. A provider pj 2 P has, associated with it, a set of regions Rj and a

�xed monetary cost cost transferj (in $ per GB) to send any message from any of its

regions to any other VM, inside or outside the provider, as observed experimentally. A

provider pj, usually, o�ers a limited number of GPUs (N GPUj) and vCPUs (N CPUj)

and each region rjk 2 Rj has its regional limits of available GPUs (N L GPUjk) and

vCPUs (N L CPUjk).

Each region rjk 2 Rj has a set of available instance types, Vjk, that can be deployed

within the region, where each vmjkl 2 Vjk contains a number of vCPUs, cpujkl and a

number of GPUs, gpujkl, with a �xed hiring cost (in $ per second) costjkl. Figure 5.2

presents an example of two providers pi with two regions (rij and rim), and pp with one

region (rpq) and each region with a di�erent set of VMs.

3URYLGHU SL

YPLMN

YPLMO

5HJLRQ ULM

YPLPQ

5HJLRQ ULP

3URYLGHU SS

YPSTU

YPSTW

5HJLRQ UST

YPSTV

Figure 5.2: Two providers with regions, each one with a set of virtual machines.

Table 5.1 summarizes all variables of both models.

5.2 Multi-FedLS architecture 47

Table 5.1: Notation and variables of application and environment models.

Name Description
C Set of clients in the FL application
P Set of available cloud providers
pj A cloud provider
Rj Set of regions available in provider pj
rjk A region of provider pj
Vjk Set of instance types available in region rjk

vmjkl A instance type of region rjk
N GPUj Number of available GPUs in the provider pj
N CPUj Number of available vCPUs in the provider pj

cost tj Cost (in $ per GB) of sending a message from provider pj
N L GPUjk Number of available GPUs in region rjk
N L CPUjk Number of available vCPUs in region rjk

cpujkl Number of vCPUs in the instance type vmjkl

gpujkl Number of GPUs in the instance type vmjkl

costjkl Cost (in $ per second) of instance type vmjkl

ci A client of the FL application
size(s msgtrain) Size of training message sent by the server to a client

size(s msgaggreg) Size of test message sent by the server to a client
size(c msgtrain) Size of training message sent by a client to the server
size(c msgtest) Size of test message sent by a client to the server

5.2 Multi-FedLS architecture

Our framework takes advantage of the communication rounds of an FL application. From

the experiments in Chapter 4, we observed that every round, except the �rst one, has

similar execution times. Thus, we assume that all rounds have similar execution times

reducing our scheduling problem and managing the resources for the whole FL application

to scheduling and managing resources for a single FL round.

Figure 5.3 shows the proposed architecture for the Multi-FedLS framework. It consists

of four main modules: Pre-Scheduling, Initial Mapping, Fault Tolerance with monitoring,

and Dynamic Scheduler.

-RE DQG
LQVWDQFHV LQIR

0XOWL)HG/6

([SHFWHG
PHWULFV"

3UH 6FKHGXOLQJ

1R

&ORXG

&ORXG

<HV ,QLWLDO 0DSSLQJ

)DXOW 7ROHUDQFH '\QDPLF
6FKHGXOHU

6FKHGXOLQJ
PDS

&ORXGQ

Figure 5.3: Architecture of Multi-FedLS.

The Multi-FedLS framework requires information from the FL application, the avail-

5.2 Multi-FedLS architecture 48

able VMs, and cloud providers to de�ne the best mapping of clients and the server to

VMs in the multi-cloud environment. It receives as input the number of clients, commu-

nication rounds, training epochs, location of each client’s dataset, and the VM prices in

each region of each cloud provider. Multi-FedLS expects these pieces of information inside

two JSON �les, one for the FL application information and the other for the environment

information. Then, the Pre-Scheduling module uses dummy applications to obtain the

communication delay between cloud regions and the execution time of clients in di�erent

VMs, if needed.

Receiving as input (i) the datasets locations, and (ii) the data provided by the Pre-

Scheduling module, the Initial Mapping module generates an allocation map of the clients

and server for a multi-cloud environment, aiming at minimizing both the total execution

time and �nancial costs of the FL application using a mathematical formulation.

In order to reduce costs, Multi-FedLS uses preemptible VMs, that can be revoked at

any time by the cloud provider. Consequently, our Fault Tolerance module adds check-

point procedures to both the server and client sides. It also monitors the execution to

trigger the Dynamic Scheduler module in case of an eventual revocation. Finally, the

Dynamic Scheduler uses the same metrics as the Initial Mapping to choose the new VM

to restart the a�ected server or client.

We implement Multi-FedLS using a master-worker architecture standard. The master

is responsible for executing most modules of Multi-FedLS, such as the Pre-Scheduling,

Initial Mapping and Dynamic Scheduler. On the other hand, the workers operate as

asynchronous daemon applications running in the background on each deployed VM,

executing the Fault Tolerance module and monitoring the VMs and tasks to communicate

all status changes to the master. Workers are also an interface between the master and

the deployed VMs. For example, when the master needs to con�gure a storage service in

one speci�c VM, it sends a command to the corresponding worker, which executes all the

con�guration procedures.

The next chapter describes each of our four modules in details, while Chapter 7

describes the experimental results for each module and the whole framework.

Chapter 6

Multi-FedLS modules

This chapter describes the details of the Multi-FedLS modules. Section 6.1 presents the

Pre-Scheduling module, and Section 6.2 presents the mathematical formulation used by

our Initial Mapping module. The Fault Tolerance module is described in Section 6.3 while

the algorithms to choose the new VM in our Dynamic Scheduler are described in Section

6.4.

6.1 Pre-Scheduling module

The Pre-Scheduling module executes several tests to obtain two slowdown metrics. Used

as an input for the Initial Mapping, the metrics are; (1) the communication slowdown

sl commjklm between every pair of regions rjk and rlm and (2) the execution slowdown

sl instjkl in each VM vmjkl in our environment.

Let the execution slowdown sl instjkl be the ratio between the execution time of a

dummy application in one of the virtual machines and the execution time in a chosen

baseline virtual machine. Let sl commjklm, the communication slowdown of the pair of

regions rjk and rlm, be the ratio between the communication time of FL messages between

these regions and the communication time in a baseline pair of regions.

To compute the communication slowdown, this module executes a dummy application

with one server and a single client to measure the message exchange time between them.

That application uses a �oating point vector with the size of the VGG16 CNN model [126],

which has more than 130 million weights, to represent the FL model. The training message

time is the time taken by the server to send the vector and receive it back, while the test

message time is the time taken by the server to send the vector and receive a dictionary

6.1 Pre-Scheduling module 50

with eight dummy keys and values, representing the possible machine learning metrics.

Regarding the execution slowdown, the Pre-Scheduling module executes a dummy

application that simulates the execution of one client in the �rst two rounds of our use-

case FL application in every VM of the environment. GPU instances are usually expen-

sive, with several GPU architectures and machine con�gurations in cloud environments.

Running all epochs of our FL application in all of them to calculate the average round

execution time is costly. Malta et al. [91] propose a simple equation to calculate the total

execution time of a centralized Deep Learning training using only the �rst two epochs.

They observed that all training epochs have similar execution times, except for the �rst

one. We observed a similar e�ect in our experiments from Chapter 4, the average round

execution time (sum of training and test execution time) had a standard deviation varying

from 2.89% up to 13.43%. We considered this range an acceptable error margin in the

expected times to reduce our Pre-Scheduling costs.

To send any computation to an NVIDIA GPU, we need to use the CUDA toolkit [98]

to manage the communication with the accelerator. Any ML API (e.g., TensorFlow,

PyTorch, or a custom one) needs to locate, connect to and con�gure the GPU through the

CUDA library to send the data and instructions to execute in the GPU. This con�guration

time can signi�cantly impact the �rst round execution time depending on the size of the

DNN model. Thus, we need the �rst two training and evaluation rounds of our application

to compute the relative slowdown.

Once the two metrics (all communication slowdowns and all execution slowdowns)

have been computed, we do not need to re-execute the dummy application in every Multi-

FedLS execution, but only when there is a change in the regions or the VMs in the

environment.

The baseline values for the current FL job are also computed by the Pre-Scheduling

module. These values are (1) the execution time of each client in the baseline VM and (2)

the message exchange time of the job model in the baseline pair of regions. The execution

time of a client ci is divided into the training execution time train bli and test execution

time test bli. The message exchange time is also divided into training and test, where

train comm bl and test comm bl are the time spent sending messages during the training

and the test respectively. We empirically collect these baseline values for the current FL

job.

6.2 Initial Mapping module 51

6.2 Initial Mapping module

The Initial Mapping module starts by calculating the expected communication and com-

putation times of the current FL job in all regions and VMs. The expected communication

time between regions rjk and rlm is given by Equation 6.1, with train comm bl, the com-

munication time of the training messages, and test comm bl, the communication time of

the test messages in the baseline pair of regions of the current FL job.

t commjklm = (train comm bl + test comm bl)� sl commjklm (6.1)

The expected execution time of a round of a client ci executing on a provider pj, region

rjk and VM vmjkl is the sum of training and test steps of client ci executed on the base-

line virtual machine (train bli and test bli respectively) multiplied by the corresponding

slowdown (sl instjkl), as shown in Equation 6.2.

t execijkl = (train bli + test bli)� sl instjkl (6.2)

The complexity of scheduling tasks in distributed computing resources is proven to

be NP-complete [133], which makes it challenging even in simple scenarios. Furthermore,

the features of multi-clouds add to the di�culty. As a result, we have modeled our

scheduling problem as a Mixed-Integer Linear Programming problem with two objectives:

to minimize the total execution time (makespan) and the monetary cost. Additionally,

the scheduling solution should comply with two constraints: the deadline (T) and the

budget (B), as speci�ed by the user. As we assume that the FL application executes

through nrounds with similar execution times, we obtain the maximum budget (Bround) and

deadline (Tround) for an individual round by dividing B and T by nrounds. Consequently,

the scheduling problem can be formulated for a single round. Table 6.1 summarizes the

variables de�ned in this chapter.

The proposed objective function (Equation 6.3) is a weighted function that minimizes

the monetary cost, total costs, and the makespan, tm, of a single FL round, where �,

ranging from zero to one, is the weight given by the user for the objectives. Usually, once

those objectives are con�icting, they cannot reach the optimal values simultaneously. For

instance, for � values close to 1, the formulation prioritizes low costs solutions rather than

small makespans. On the other hand, when � = 0.5, both objectives receive the same

importance.

min�� total costs+ (1� �)� tm (6.3)

6.2 Initial Mapping module 52

Table 6.1: Notation and variables used in our framework.

Name Description
Bround Budget to a single FL round
Tround Deadline to a single FL round
Tmax Time of a single FL round

total costs Total �nancial costs of a single FL round
tm Total execution time (makespan) of a FL round

t execijkl Computational time (training and test) of client c in vmjkl

t commjklm Communication time (training and test) between regions rjk and rlm
t aggregjkl Aggregation time of server in vmjkl

vm costs Total �nancial cost of all VMs in a single FL round
comm costs Total �nancial cost of message exchange within a FL round

xijkl Binary variable which indicates if client ci executes on vmjkl or not
yjkl Binary variable which indicates if the server executes on vmjkl or not
� Weight given by the user for the objectives (ranging from 0 to 1)

Tmax Maximum possible makespan regarding all clients and possible VMs
costmax Maximum total cost considering Tmax, all possible locations and VMs

Let the binary variables xijkl indicate whether a client ci will execute on VM vmjkl

of region rjk of provider pj (xijkl = 1), or not (xijkl = 0), and let yjkl be the analogous

representation for the server s. The variable total costs includes the VMs’ execution costs

(vm costs), computed as Equation 6.4, and the message transfer costs (comm costs),

described in Equation 6.5, where commjm, presented in Equation 6.6, is the cost to

exchange the FL messages between provider pj and pm (j can be equal to m). Therefore,

total costs is calculated as in Equation 6.7.

vm costs =
X

ci2C

X

pj2P

X

rjk2Rj

X

vmjkl2Vjk

(xijkl � costjkl � tm) +
X

pj2P

X

rjk2Rj

X

vmjkl2Vjk

(yjkl

� costjkl � tm) (6.4)

comm costs =
X

ci2C

X

pj2P

X

rjk2Rj

X

vmjkl2Vjk

X

pm2P

X

rmn2Rm

X

vmmno2Vmn

(xijkl � ymno � commjm)

(6.5)

commjm = (size(s msgtrain) + size(s msgaggreg))� cost tm + (size(c msgtrain)

+ size(c msgtest))� cost tj (6.6)

total costs = vm costs+ comm costs (6.7)

6.2 Initial Mapping module 53

The monetary cost and the makespan in Equation 6.3 can have di�erent minimum

and maximum values. Thus, we need to normalize both objectives to have the same range

of 0-1. To this end, we use Tmax as the maximum possible makespan of a single FL round

for the current application in the current sets of providers, regions, and VMs as well as

costmax as the maximum cost in a single FL round, computed as Equation 6.8. We obtain

costmax by the sum of two products: (i) the multiplication of the cost of hiring the most

expensive VM by Tmax and by the number of tasks; and (ii) the multiplication of the most

expensive communication costs between providers (commjm) by the number of clients.

costmax = max
pj2P,rjk2Rj ,vmjkl2Vjk

(costjkl)�Tmax� (|C|+1)+ max
pj ,pm2P

(commjm)� |C| (6.8)

Our mathematical formulation must respect a set of constraints (6.9 to 6.17). Con-

straints 6.9 and 6.10 ensure that our budget and deadline for an FL round are not violated.

Constraints 6.11 and 6.12 guarantee that each task executes on a single VM vmjkl 2 Vjk

in region rjk 2 Rj of provider pj 2 P .

total costs � Bround (6.9)

tm � Tround (6.10)

X

pj2P

X

rjk2Rj

X

vmjkl2Vjk

xijkl = 1, 8ci 2 C (6.11)

X

pj2P

X

rjk2Rj

X

vmjkl2Vjk

yjkl = 1 (6.12)

Constraints 6.13 to 6.16 guarantee that the solution will not exceed the maximum

number of GPUs and vCPUs of each provider. Constraints 6.13 ensure that the total

number of available GPUs does not exceed the global limit, while constraints 6.14 limit

the total number of available vCPUs in each provider. Constraint 6.15 has the same

meaning as 6.13, but here the GPU limit is by region. Constraint 6.16 is the vCPUs limit

constraints per region, similar to Constraint 6.14.

X

ci2C

X

rjk2Rj

X

vmjkl2Vjk

xijkl � gpujkl +
X

rjk2Rj

X

vmjkl2Vjk

(yjkl � gpujkl) � N GPUj, 8pj 2 P

(6.13)

6.3 Fault Tolerance module 54

X

ci2C

X

rjk2Rj

X

vmjkl2Vjk

xijkl � cpujkl +
X

rjk2Rj

X

vmjkl2Vjk

(yjkl � cpujkl) � N CPUj, 8pj 2 P

(6.14)

X

ci2C

X

vmjkl2Vjk

xijkl � gpujkl +
X

vmjkl2Vjk

yjkl � gpujkl � N L GPUjl, 8pj 2 P, 8rjk 2 Rj

(6.15)

X

ci2C

X

vmjkl2Vjk

xijkl � cpujkl +
X

vmjkl2Vjk

yjkl � cpujkl � N L CPUjl, 8pj 2 P, 8rjk 2 Rj

(6.16)

Constraint 6.17 ensures that tm, the makespan of the FL round, will be at least equal

to the total execution time of each client, which in turn is equal to the sum of the com-

putational time t execijkl of the client in question, the communication time t commjklm

between this client’s region and the server’s one, and the aggregation time t aggregmno of

the server. The domain of the decision variables xijkl and yjkl are determined in constraints

6.18 and 6.19.

xijkl � ymno � (t execijkl + t commjkmn + t aggregmno) � tm, 8ci 2 C,

8pj, pm 2 P, 8rjk 2 Rj, 8vmjkl 2 Vjk, 8rmn 2 Rm, 8vmmno 2 Vmn (6.17)

xijkl 2 {0, 1}, 8ci 2 C, 8pj 2 P, 8rjk 2 Rj, 8vmjkl 2 Vjk (6.18)

yjkl 2 {0, 1}, 8pj 2 P, 8rjk 2 Rj, 8vmjkl 2 Vjk (6.19)

6.3 Fault Tolerance module

As previously explained, Multi-FedLS takes advantage of Spot (or preemptible) VMs to

reduce costs. The main drawback of these VMs is the revocation possibility at any time.

AWS usually sends a two-minute noti�cation to the selected VM to notify about its

revocation while Google Cloud, after only 30 seconds, terminates the VM. Thus, the

application must handle possible VM revocations and internal errors during the execution,

which lead to faulty FL tasks. Note that the failure of a client has a di�erent impact in

the FL execution than the failure of the server.

During the FL execution, the Fault Tolerance module monitors all tasks and handles

6.3 Fault Tolerance module 55

eventual VMs revocations and runtime errors. When it detects any problem, it triggers

the Dynamic Scheduler module (described in the next section) to select a new VM for the

faulty task which was running in the revoked VM, informing if the task is the server or

a client. After receiving from the Dynamic Scheduler the chosen VM to restart the task,

the Fault Tolerance module launches it and continues to monitor all tasks within the FL

application. When all tasks �nish, the module stops monitoring the tasks and starts the

VMs termination process.

Flower supports client failures during a FL round by making the server aggregate

only the results received by the non-faulty clients. However, to start a new round, the

FL server waits for a de�ned minimum number of available clients, which can be smaller

than the total number of clients. In Cross-Silo FL, there are usually few clients and not

considering one of them every round can compromise the learning outcomes. Thus, the

FL server always waits for all clients to start the next round. Note that there is no need

to manually restart the model at the clients because in the beginning of each round, the

server sends the current weights to all clients (Section 5.1).

While Flower handles a client’s error smoothly, it does not tolerate the failure of the

server. Furthermore, when it happens, all clients stop their execution after receiving an

error. Multi-FedLS handles possible server faults, using fault-tolerant techniques on both

server and client sides.

Although Flower does not have an automatic way to save the model updates on the

server side, it allows users to modify the server code to implement checkpointing during

the server’s aggregation phase1. Our framework takes advantage of this feature by asking

the server to checkpoint every X rounds. Whenever a new checkpoint is stored on the

server’s VM local disk, it is transferred to another location asynchronously, which can be

either a storage service or an extra VM.

On the client side, the aggregated weights received from the server in each round

are stored in the VM’s local disk, without sending it to another location. The clients’

checkpoint is only used when the server’s checkpoint is older than the clients’ one. Thus,

to restart the server, it is necessary to verify if the server or the clients has the latest

checkpoint. If it is the server checkpoint, the saved weights are sent to the new VM

before restarting the server task and the FL server just reads the weights. If it is the

client one, the FL server restarts in the new VM and waits for any client to send its

weights before starting the �rst round.

1https://�ower.dev/docs/saving-progress.html

6.4 Dynamic Scheduler module 56

6.4 Dynamic Scheduler module

We denoted the faulty task as the task that was running in the revoked VM instance. The

Dynamic Scheduler module adapts the objective function of the mathematical formulation

of the Initial Mapping module and uses its value in a greedy heuristic to choose the new

VM for the faulty task. It also takes advantage of the metrics computed by previous

modules. Depending on the type of the faulty task, the Dynamic Scheduler computes

di�erently the expected makespan and expected monetary costs, using a new instance to

execute the faulty task. Algorithm 1 computes the new makespan using t as the faulty

task (which can be s for the server or client ci) and vmjkl as the instance to be allocated

to task t.

Algorithm 1 Makespan Re-calculation

Input: t, vmjkl

max makespan �1
if t = s then{Faulty task is the server}
for ci 2 C do
current vmmno current mapci
total time t execimno + t commmnjk + t aggregjkl
if total time > max makespan then
max makespan total time

end if
end for

else {Faulty task is client ct}
current server vmmno current maps
max makespan t exectjkl + t commjkmn + t aggregmno

for ci 2 C\{ct} do
current vmpqr current mapci
total time t execipqr + t commpqmn + t aggregmno

if total time > max makespan then
max makespan total time

end if
end for

end if
return max makespan

The FL round makespan is de�ned by the client which takes longer to send its weights

to the server. The delay is related to a longer training time and/or communication time.

Thus, the makespan is obtained by computing the higher time a client needs to train

and communicate with the server along with the server’s aggregation time. If the faulty

task is the server, then vmjkl is the new server instance and the loop executes through

all clients ci 2 C to compute the total expected execution time of each client and store

6.4 Dynamic Scheduler module 57

the highest one as the new makespan. If the faulty task is a client, the current server

instance is available in variable current server vmmno and the makespan of the faulty

task is computed by using vmjkl as the client’s instance. Then, the loop executes through

all clients ci 2 C, excluding the current task to check if any of the current clients have a

higher makespan.

Algorithm 2 shows how to calculate the new cost, which receives the same inputs as

the previous algorithm, i.e., the faulty task t and the new instance vmjkl, and also the

makespan in ms.

Algorithm 2 Financial Cost Re-calculation

Input: t, vmjkl,makespan
total cost 0.0
if t = s then{Faulty task is the server}
total cost total cost+ costjkl �ms
for ci 2 C do
current vmmno current mapci
total cost total cost+ costmno �ms+ commjm {commjm as Equation 6.6}

end for
else {Faulty task is client ct}
current server vmmno current maps
total cost total cost+ costjkl �ms+ commmj {commmi as Equation 6.6}
for ci 2 C\{ct} do
current vmpqr current mapci
total cost total cost+ costpqr �ms+ commmp {commmp as Equation 6.6}

end for
end if
return total cost

The total cost in a single FL round comprises the execution cost of each task and the

message exchange costs of all clients to the server. Thus, in Algorithm 2 the execution

cost of the server is �rstly computed and then the execution and message exchange costs

of all clients are also computed. The execution cost of an instance is the multiplication of

the makespan and the instance cost while the message exchange cost is computed using

commjm (Equation 6.6), the cost to exchange the FL messages between the server’s and

the client’s providers. Equally to the previous algorithm, when the faulty task t is the

server, the server provider pj is obtained from the input instance vmjkl. Otherwise, if

the faulty task is a client, the server’s provider pm is obtained from the current server

instance.

Algorithm 3 implements a greedy heuristic for choosing a new instance for a server or

a client after a revocation, receiving as input t, the faulty task, It, the current set of all

6.4 Dynamic Scheduler module 58

possible instances for task t and old vmjkl, the current revoked VM instance. Note that

if the faulty task is the server then t = s and It = Is, the set of possible server instances,

and if the task is client ci, then t = ci and It = Ici , the set of possible instances for client

ci. Moreover, in the �rst execution of the Dynamic Scheduler, It is the sum of all Vjk sets

for all regions rjk 2 Rj for all providers pj 2 P .

Algorithm 3 Instance Selection

Input: t, It, old vmjkl

remove vm from set(It, old vmjkl)
min value 1
for each vmmno 2 It do
makespan computes new makespan(t, vmmno) {Algorithm 1}
cost compute expected cost(makespan, t, vmmno) {Algorithm 2}
value �� (cost/costmax) + (1� �)� (makespan/Tmax)
if value < min value then
new instance vmmno

min value value
end if

end for
return new instance

The �rst step in Algorithm 3 is to remove the revoked VM from the set of possible

VMs. From previous experiments, we observed that once the instance type is revoked in

a region in AWS, it cannot be reallocated in the same region immediately [18]. Thus,

we assume this behavior to all cloud providers and remove the old vmjkl from It. Note

that we replicate the search space of our framework to each task (server and clients), so a

choice in a client does not in�uence the choice in the other. This is done as they can have

di�erent dataset sizes leading to di�erent expected execution times which can correspond

to di�erent selections in both Initial Mapping and Dynamic Scheduler modules. After

removing the revoked VM, our algorithm starts the loop iterating on all VMs from It to

select the VM to restart task t. The makespan and cost are computed with Algorithms

1 and 2, respectively, using vmmno as the instance for task t. After that, the sum of the

makespan and cost is done by using the same weight as the objective function of the Initial

Mapping module (Equation 6.3), � for the normalized cost and 1� � for the normalized

makespan.

Chapter 7

Experimental Results

This chapter shows our experiments to validate each module in the framework: the Pre-

Scheduling, the Initial Mapping, the Fault Tolerance, and the Dynamic Scheduler. First,

we describe the applications used in Section 7.1 and the environment in Section 7.2. We

present the values obtained by our Pre-Scheduling module in Section 7.3. We executed our

experiments in AWS and GCP, mainly the ones validating our Initial Mapping module,

and in CloudLab the other ones. Thus, Section 7.4 presents and analyses our experiments

to validate the Initial Mapping module, mainly on AWS and GCP. Then, from Section

7.5 on, we execute our experiments on CloudLab, due to scalability issues. Section 7.5

describes the ones focusing on the Fault Tolerance module, and Section 7.6 presents the

ones focusing on the Dynamic Scheduler. Finally, Section 7.7 presents a Proof of Concept

that our Multi-FedLS framework works on a real multi-cloud environment.

7.1 Applications

Most of our experiments use our real-world use-case application, described in Chapter 4.

We also selected two FL benchmarks from LEAF [21], a hub of benchmarks for di�erent

FL settings, mostly focused on Cross-Device FL (thousands of clients with fewer samples).

We selected two datasets, the Shakespeare and the FEMNIST ones, and we adapted them

to a Cross-Silo FL setting (fewer clients with more samples).

The Shakespeare dataset is based on the book The Complete Works of William Shake-

speare, with each character of each play being a di�erent client. We selected clients with

more than 18000 samples combining the training and test datasets, which left us with 8

clients. Their training datasets vary from 16488 to 26282 samples and their test datasets

vary from 1833 to 2921 samples. This dataset is used to predict the next character in

7.2 Experimental setup 60

the sentence, and we implemented the reference model in LEAF [21], which uses an em-

bedding of dimension 8 and a Long Short Term Memory (LSTM) network of two layers

containing 256 units each. This LSTM network is a recurrent neural network that saves

information from the previous sample to be used by the current sample. We selected the

Shakespeare application as the clients have bigger datasets with a small model to train.

The FEMNIST dataset creates a federated scenario to the extended MNIST dataset,

containing both handwritten letters and digits of size 28�28. In this FEMNIST dataset,

each client has the handwritten characters of a single user. We selected users with more

than 440 samples in total, which left us with 5 clients. After that, we replicated each

client’s datasets to double their number of samples. Thus, the training datasets of these

�ve clients vary from 796 to 1050 samples and their test datasets vary from 90 to 118

samples. To predict the character in an image in the FEMNIST dataset, we create a more

robust CNN than the reference one in LEAF [21] using 2 convolutional layers followed

by 10 fully connected layers with 4096 neurons each. We selected this application as

the clients have smaller datasets with a more robust model to train compared to the

Shakespeare application. Both applications allow us to understand the behaviour of our

Multi-FedLS with a wide range of di�erent characteristics (small vs. big dataset; simple

vs. complex model).

All three applications used FedAvg as the server aggregation method.

7.2 Experimental setup

For our experiments, we considered Amazon Web Services (AWS) and Google Cloud

Provider (GCP) as cloud providers with two regions at each of them: N. Virginia (us-east-

1) and Oregon (us-west-2) regions in AWS; and Iowa (us-central1) and Oregon (us-west1)

regions in GCP. All regions are inside the United States of America (USA).

Initially, we planned to have a testbed composed of several VMs with Nvidia GPUs

in both AWS and in GCP, varying from the Kepler GPU architecture to the Ampere one.

However, CUDA version 10.0, used by the use-case application, is not compatible with

either of these two architectures. Consequently, we had to discard such GPU architectures

from our testbed. Furthermore, experiments showed that a VM with the Volta GPU in

AWS had constantly higher execution times than with the Turing one, which led us to

also discard the former from our testbed, due to its unexpected behaviour. Finally, in

other experiments, we observed that it was not possible to allocate, in either of the two

7.2 Experimental setup 61

regions, some types of GPU architectures in GCP. Thus, such GPUs were not taken into

account either.

Hence, considering all the above constraints, for each region in AWS, we selected two

instance types with GPU, Maxwell and Turing, and one instance without GPU. For GCP,

we chose instances from the general-purpose N1 family with the same number of vCPUs

as the AWS counterparts. Each instance had one GPU, Pascal, Turing, or Volta, attached

to it. Additionally, we also selected an instance without GPU. Note that in GCP, some

GPU architectures are not available in all regions, thus, the number of instance types

varies for each region.

Table 7.1 summarizes the VM instance selection in both providers, giving also the

amount of memory and cost per hour (obtained in May 2022) of each instance, and IDs

that allow us to identify each one. Message transfer cost in AWS is $0.09 per GB in the

�rst 10 TB/month and in GCP is $0.12 per GB in the �rst 1 TB/month. For storing

clients’ datasets in AWS and GCP, we respectively chose the Amazon Simple Storage

Service (S3) [107] in the N. Virginia region (us-east-1) and the Cloud Storage [52] in the

Iowa region (us-central1).

Both AWS nor GCP do not increase our GPU’s quotas, maintaining only 4 simultane-

ous GPUs. To achieve scalability, we changed the environment to execute our experiments

in CloudLab [32], a platform that allows users to simulate cloud environments. It behaves

similarly to a cloud platform, with pre-de�ned instances types in clusters in at least three

di�erent US states1. However, CloudLab does not use virtualization as a real provider,

it uses a bare metal approach to isolate the instances requested by a user from others.

Moreover, CloudLab does not limit the number of vCPUs and GPUs per region allocated

by users. On the other hand, they use a reservation system, in which users must specify

which instances they want to use, and they will be available during all the scheduled

reservation. CloudLab has 5 di�erent clusters, with 2 of them in the same U.S. state.

We simulate two di�erent clouds splitting these 5 clusters in Cloud A and Cloud B. Each

cluster simulates a di�erent region inside the respective cloud.

Table 7.2 summarizes the instance selection in this environment. The VMs that have

GPUs are vm326 with a P100 (12 GB of memory) and vm338 with a Tesla V100S (32

GB of memory). As CloudLab does not charge for its instances, we computed the on-

demand price for each VM based on Google Cloud Provider’s policy. We used the values

of December 2022 of the computer-optimized instances of GCP to Cloud A, $0.03398 per

1https://www.cloudlab.us/hardware.php

7.2 Experimental setup 62

Table 7.1: Instance types selected in AWS and GCP

Prov. Region VM vCPUS
RAM
(GB)

GPU
GPU
mem.
(GB)

Costs per hour ($)
ID

On-demand Spot

AWS

N. Virginia
(us-east-1)

g4dn.2xlarge 8 32
Tesla T4

Tensor Core
16 0.752 0.318 vm111

g3.4xlarge 16 122 Tesla M60 8 1.140 0.638 vm112

t2.xlarge 4 16 - - 0.186 0.140 vm113

Oregon
(us-west-2)

g4dn.2xlarge 8 32
Tesla T4

Tensor Core
16 0.752 vm121

g3.4xlarge 16 122 Tesla M60 8 1.140 vm122

t2.xlarge 4 16 - - 0.186 vm123

GCP

Iowa
(us-central1)

n1-standard-8

with Turing GPU
8 30

Tesla T4
Tensor Core

16 0.730 0.196 vm211

n1-standard-16

with Pascal GPU
16 60 Testa P4 8 1.360 vm212

n1-standard-8

with Volta GPU
8 30

V100
Tensor Core

16 2.860 0.857 vm213

e2-standard-4 4 16 - - 0.134 0.040 vm214

Oregon
(us-west1)

n1-standard-8

with Turing GPU
8 30

Tesla T4
Tensor Core

16 0.730 vm221

n1-standard-8

with Volta GPU
8 30

V100
Tensor Core

16 2.860 0.857 vm222

e2-standard-4 4 16 - - 0.134 0.040 vm223

vCPU and $0.00455 per GB of RAM per hour, and general-purpose instances to Cloud B,

$0.031611 per vCPU and $0.004237 per GB of RAM per hour. GPU’s architectures have

di�erent prices per hour per GPU being $1.46 for P100, and $2.48 for V100. To compute

the spot price, we assume a 70% discount on the on-demand one.

Table 7.2: Instance types selected in CloudLab

Cloud Cluster/Region VM vCPUS
RAM
(GB)

Costs per hour ($)
ID

On-demand Spot

Cloud A

Utah

c6525-100g 48 128 2.213 0.664 vm311

c6525-25g 32 128 1.670 0.501 vm312

d6515 64 128 2.757 0.827 vm313

m510 16 64 0.835 0.250 vm314

xl170 20 64 0.971 0.291 vm315

Wisconsin

c220g1 32 128 1.670 0.501 vm321

c220g2 40 160 2.087 0.626 vm322

c220g5 40 192 2.233 0.670 vm323

c240g1 32 128 1.670 0.501 vm324

c240g2 40 160 2.087 0.626 vm325

c240g5 40 192 4.693 1.408 vm326

Clemson

c6320 56 256 3.068 0.920 vm331

c6420 64 384 3.922 1.177 vm332

c8220 40 256 2.524 0.757 vm333

c8220x 40 256 2.524 0.757 vm334

dss7500 24 128 1.398 0.419 vm335

r650 144 256 6.058 1.817 vm336

r6525 128 256 5.514 1.654 vm337

r7525 128 512 11.159 3.348 vm338

Cloud B
APT

c6220 32 64 1.283 0.385 vm411

r320 12 16 0.574 0.172 vm412

Massachusetts
rs440 64 192 2.837 0.851 vm421

rs630 40 256 2.349 0.705 vm422

7.3 Pre-Scheduling slowdowns 63

7.3 Pre-Scheduling slowdowns

We computed the computational slowdown for all instances in Table 7.1 with two scenar-

ios, when the clients datasets were stored in AWS and when they were stored in GCP.

The slowdown of a vmjkl is computed by dividing the sum of the second round execution

(training and test) times in this instance by the sum of the second round execution in

vm111, our baseline instance. Table 7.3 shows the average values of each step (training

and test) of the �rst (1º r.) and second (2º r.) round, and the computed slowdown (Sl)

when the datasets are in AWS. We executed the client in each instance type three times

and observed an average standard deviation of 10.96%.

Table 7.3: Execution times of one client with �ve local epochs, run in di�erent instances
of AWS and GCP and dataset stored in Amazon S3 in N. Virginia region (us-east-1)

Prov. Region VM ID
Training time Test time

Sl
1º r. 2º r. 1º r. 2º r.

AWS

N. Virginia
(us-east-1)

vm111 04:17 06:53 03:13 03:03 1.00
vm112 08:14 31:23 16:29 19:09 5.09

Oregon
(us-west-2)

vm121 04:34 06:34 02:40 03:14 0.99
vm122 07:34 27:47 14:48 16:19 4.44

GCP

Iowa
(us-central1)

vm211 03:24 07:09 03:01 03:04 1.03
vm212 04:27 07:53 03:41 04:47 1.28
vm213 02:59 07:20 03:20 02:56 1.04

Oregon
(us-west1)

vm221 03:51 07:24 02:40 03:11 1.07
vm222 03:11 07:23 03:12 03:31 1.10

Table 7.4 presents the average values of each step (training and test) of the �rst (1º

r.) and second (2º r.) round, and the computed slowdown (Sl) when the datasets are in

GCP. We executed the client in each instance type three times and observed an average

standard deviation of 11.93%.

Table 7.4: Execution times of one client with �ve local epochs, run in di�erent instances
of AWS and GCP and dataset stored in GCP Cloud Storage in Iowa region (us-central1)

Prov. Region VM ID
Training time Test time

Sl
1º r. 2º r. 1º r. 2º r.

AWS

N. Virginia
(us-east-1)

vm111 04:21 03:04 00:54 00:49 1.00
vm112 06:09 04:45 01:06 01:09 1.52

Oregon
(us-west-2)

vm121 05:20 04:01 01:15 01:15 1.36
vm122 07:27 05:48 01:42 01:40 1.92

GCP

Iowa
(us-central1)

vm211 03:05 02:44 00:48 00:32 0.84
vm212 03:39 02:57 00:41 00:30 0.89
vm213 01:36 01:11 00:36 00:26 0.42

Oregon
(us-west1)

vm221 04:05 02:56 00:58 00:53 0.99
vm222 02:41 02:41 01:08 00:49 0.90

Finally, the aggregation task of the server was executed in all virtual machines of AWS

7.3 Pre-Scheduling slowdowns 64

and GCP, taking around 0.3 seconds in AWS and 0.2 seconds in GCP.

Now the values for the CloudLab instances. We computed the computational slow-

down for all instances in Table 7.2 using vm321 as the baseline VM. We executed one

client of the TIL use-case application, with 38 training samples and 21 test samples. We

assume the datasets stored in Cloud A. Table 7.5 shows the obtained slowdowns. Note

that all VMs have di�erent execution times, varying the slowdown from 0.04 and 2.33.

Table 7.5: Time of one client with �ve local epochs, dataset stored in Utah region of
Cloud A

Cloud Region VM ID
Training time Test time

Sl
1º r. 2º r. 1º r. 2º r.

Cloud A

Utah

vm311 119.86 117.84 1.31 1.20 1.03
vm312 123.12 120.93 1.61 1.47 1.06
vm313 124.62 122.60 1.19 1.08 1.07
vm314 163.16 158.95 4.71 4.62 1.42
vm315 113.22 110.32 2.95 2.86 0.98

Wisconsin

vm321 119.89 112.83 2.30 2.22 1.00
vm322 139.04 131.74 1.93 1.96 1.16
vm323 133.41 130.83 2.75 2.73 1.16
vm324 119.05 110.45 2.23 2.12 0.97
vm325 137.21 131.63 2.14 1.87 1.16
vm326 16.37 4.53 1.44 0.62 0.04

Clemson

vm331 121.92 112.75 1.85 1.77 0.99
vm332 102.73 96.46 1.16 0.95 0.85
vm333 184.59 172.01 4.65 4.59 1.53
vm334 184.28 177.15 4.83 4.54 1.58
vm335 128.46 122.39 2.79 2.67 1.09
vm336 84.90 81.72 0.95 0.83 0.72
vm337 144.03 136.23 0.97 0.91 1.19
vm338 71.67 60.14 5.39 5.24 0.57

Cloud B
APT

vm411 147.79 141.62 4.22 4.26 1.27
vm412 263.89 256.73 11.18 11.13 2.33

Massachusetts
vm421 94.23 92.42 1.26 1.20 0.81
vm422 112.44 103.59 1.91 1.75 0.92

Regarding the communication slowdowns, Table 7.6 shows the average times in sec-

onds in all possible pairs of regions between AWS and GCP (Table 7.1) and the computed

slowdown (Sl). Most standard deviations were below 15%, with only three above. The

training communication time is the time taken by the server to send the message s msgtrain

with the dummy model (message size of 1GB) and receive back the same model, c msgtrain,

(message size of 1GB). The test communication time is the time taken by the server to

send the message s msgaggreg with the model (message size of 1GB) and receive back 10

�oat points, message c msgtest, representing the possible ML metrics that clients compute

(translated to 1.8KB).

We also computed the communication slowdowns between the pair of regions in Cloud

A and Cloud B in Table 7.7 using the pair of regions APT (Cloud B) and APT (Cloud

B) as the baseline. The training phase exchanges a total of 2GB in messages and the test

7.3 Pre-Scheduling slowdowns 65

Table 7.6: Communication times between each pair of regions in AWS and GCP. The
training phase exchanges a total of 2GB in messages and the test phase exchanges a little
more than 1GB in total

Pair of regions
Comm. times (s)

Sl
Training Test

us-east-1 (AWS) & us-east-1 (AWS) 6.68 3.59 1.00
us-east-1 (AWS) & us-west-2 (AWS) 39.67 20.30 5.84
us-east-1 (AWS) & us-central1 (GCP) 22.83 12.07 3.40
us-east-1 (AWS) & us-west1 (GCP) 33.02 16.10 4.78
us-west-2 (AWS) & us-west-2 (AWS) 6.56 3.41 0.97
us-west-2 (AWS) & us-central1 (GCP) 33.25 14.53 4.65
us-west-2 (AWS) & us-west1 (GCP) 20.42 10.83 3.04

us-central1 (GCP) & us-central1 (GCP) 2.30 1.21 0.34
us-central1 (GCP) & us-west1 (GCP) 7.35 3.86 1.09
us-west1 (GCP) & us-west1 (GCP) 4.09 2.30 0.62

phase exchanges a little more than 1GB in total. Note that the communication times

vary a lot inside CloudLab, with the slowdown ranging from 0.37 to 24.73. As CloudLab

is an emulator and not a real cloud provider, it does not use any level of virtualization

to isolate the users’ VMs. They allocate di�erent physical machines to each user, which

makes the network usage in CloudLab vary a lot depends on the region we execute.

Table 7.7: Communication times between each pair of regions in Cloud A and Cloud B.
The training phase exchanges a total of 2GB in messages and the test phase exchanges a
little more than 1GB in total

Pair of regions
Comm. times (s)

Sl
Training Test

APT (Cloud B) & APT (Cloud B) 5.61 3.05 1.00
APT (Cloud B) & Clemson (Cloud A) 12.05 5.94 2.08
APT (Cloud B) & Mass (Cloud B) 106.90 54.51 18.64
APT (Cloud B) & Utah (Cloud A) 4.84 2.58 0.86
APT (Cloud B) & Wis (Cloud A) 16.19 7.64 2.75

Clemson (Cloud A) & Clemson (Cloud A) 5.36 2.91 0.95
Clemson (Cloud A) & Mass (Cloud B) 75.63 32.31 12.46
Clemson (Cloud A) & Utah (Cloud A) 11.39 5.34 1.93
Clemson (Cloud A) & Wis (Cloud A) 6.65 3.53 1.18
Mass (Cloud B) & Mass (Cloud B) 5.23 2.81 0.93
Mass (Cloud B) & Utah (Cloud A) 86.08 35.95 14.09
Mass (Cloud B) & Wis (Cloud A) 138.31 75.85 24.73
Utah (Cloud A) & Utah (Cloud A) 2.07 1.15 0.37
Utah (Cloud A) & Wis (Cloud A) 21.81 10.57 3.74
Wis (Cloud A) & Wis (Cloud A) 5.77 3.08 1.02

We validate these slowdowns when executing the Initial Mapping module in both

AWS and GCP (Section 7.4.3) and CloudLab (Section 7.4.5).

7.4 Initial Mapping experiments 66

7.4 Initial Mapping experiments

In these experiments, we use only VMs in the on-demand market and does not use any

Fault Tolerance mechanism. We �rst show a scalability analysis of our mathematical

formulation in Section 7.4.1. Then, we present theoretical scheduling results in Section

7.4.2 and practical results with 4 clients executing in a multi-cloud Platform in Section

7.4.3. We discuss these initial results in Section 7.4.4 and present CloudLab validation

experiments in Section 7.4.5.

7.4.1 Analysis of the Scalability of the Proposed Mathematical Formulation

We used Gurobi Optimizer [68], a state-of-the-art solver for mathematical programming

models, for solving the proposed formulation in our Initial Mapping module with an

Academic License executing in a local machine with a Intel Core i5 CPU and 8GB of RAM.

In order to analyze its scalability, the number of clients varied from 2 to 50. Furthermore,

aiming at increasing the search space, for each VM of Table 7.1, we have created �ve

synthetic VMs multiplying the execution time and the VM cost by di�erent constants

from 0.7 to 1.5. Thus, we have a total of 78 VMs, 54 with GPUs and 24 without any

GPUs.

For the sake of making the problem solution feasible, we set the GPUs and vCPUs

limits of all regions and all providers to the in�nite constant of Python’s math library.

We also considered a deadline and a budget of 10,000 seconds and $30000 per FL round

respectively. Figure 7.1 presents the relation between the number of clients and Gurobi’s

execution time.

1XPEHU RI &OLHQWV

([
HF
XW
LR
Q
WLP
H
V

Figure 7.1: Relation between number of clients and Gurobi’s execution time.

7.4 Initial Mapping experiments 67

We observe in Figure 7.1 that our mathematical formulation can obtain the optimal

solution, in a realistic time, with a large search space and a considerable number of clients.

7.4.2 Theoretical Analysis of the Initial Mapping module against User Ran-
dom Selection

We theoretically analyze the optimal setup results obtained with our model, comparing

them with user random selection approaches. In order to obtain a solution that o�ers a

balance between the execution time and �nancial cost, we set � = 0.5.

Let’s consider 50 homogeneous clients with 948 training samples and 522 test samples.

As all clients datasets have the same size, we considered the same execution time as the

baseline execution time for all the 50 clients. Therefore, for those clients that access

their dataset in AWS (resp., GCP), the baseline training time (train bli) is 412.94 (resp.,

183.53) seconds, and the baseline test time (test bli) is 182.77 (resp., 49.47) seconds.

Regarding communication, messages of the server as well as the training message of clients

have 0.54GB of size and the test message from clients has 1.81KB of size. The total value

for the communication baseline time (train comm bl + test comm bl) is 27.26 seconds.

We consider two data placement scenarios: GCP(50) where all datasets are stored

in GCP Cloud Storage and GCP(25)-AWS(25) where datasets of 25 clients are stored in

GCP Cloud Storage and the other 25 in AWS S3. For each scenario, the respective optimal

setup results of our model are compared to a given user selection approach, also described

in the following. Note that all values are computed from the slowdowns presented in the

previous sections.

- GCP(50) scenario: Our model proposes an optimal setup where the 50 clients and

the server should be in the Iowa region of GCP (us-central1 region), with all clients

in di�erent n1-standard-8 VMs with a Volta GPU in each (vm213) and the server in a

e2-standard-4 VM (vm214). The vm213 is the most expensive VM in GCP but has the

smallest execution time. On the other hand, we considered a user-oriented approach where

all clients and the server are placed in the Oregon region of GCP (us-west1 region), using

the same VM types, assigning vm222 to clients and vm223 to the server. Compared to this

approach, the optimal one reduces in 53.70% the execution time and in 25.92% the costs.

- GCP(25)-AWS(25) scenario: Instead of placing the clients near the datasets in

each cloud provider, our mathematical model proposes to place all the 50 clients and the

server in the Oregon region of AWS (us-west-2): each client in di�erent g4dn.2xlarge VM

7.4 Initial Mapping experiments 68

(vm121), which is the fastest VM in all regions of AWS, and the server in a t2.xlarge VM

(vm123). On the other hand, we consider a user-oriented approach where all clients are

placed near the datasets in the fastest VMs of the chosen region and the server in one of

the cheapest VMs. Thus, for such a con�guration, we used the g4dn.2xlarge VM in the

N. Virginia region (vm111) for the 25 clients with dataset in AWS, the n1-standard-8 VM

with a Volta GPU in the Iowa region (vm213) for the ones with dataset in GCP, and the

e-standard-4 VM in the Iowa region (vm214) to the server. In this case, the FL round in

the optimal setup reduces in 10.47% the execution time and 48.34% of the costs.

Table 7.8 summarizes these two scenarios. It shows the location of the datasets (Sce-

nario), the optimal setup, the execution time and costs computed by the mathematical

formulation, along with the user-oriented approaches described above, and the di�erence

between the latter and the optimal setup. This di�erence is computed by vr�vo
vr

, where

vr is the random approach value and vo is the optimal one. Note that in all setups pre-

sented by our framework or user-oriented, each task (server and each client) executes in

a di�erent VM to prevent malicious clients from accessing the others’ dataset.

Table 7.8: Theoretical results of a single FL round and 50 clients

Scenario
Optimal selection (model) User random selection Di�erence (%)

Setup
Exec.
time

Costs
($)

Setup
Exec.
time

Costs
($)

Exec.
time

Costs

GCP(50)
clients in vm213

server in vm214

0:01:45 13.84
clients in vm222

server in vm223

0:03:47 18.69 53.70 25.92

GCP(25)-AWS(25)
clients in vm121

server in vm123

0:10:16 13.72
half clients in vm111

and half in vm213,
server in vm214

0:11:29 26.56 10.47 48.34

7.4.3 Analysis of the Initial Mapping module in a Multi-cloud Platform

For each of the current experiments, we have had to respect the maximum number of

global and per region vCPUs and GPUs that a user can allocate in each cloud provider.

In GCP, vCPUs (both global and per region one) and GPUs are respectively limited to

40 and 4. In AWS, the limit of the N. Virginia (us-east-1) region vCPUs is 52 and of

the Oregon region (us-west-2) is 36. On the other hand, there is no restriction for the

number of global vCPU and the GPU limit is included in the vCPU one. Thus, we have

kept the in�nity constant for these limits in AWS. We use the same input data (baseline

execution and communication time) as the previous experiment for all clients c 2 C.

We have reproduced the best FL scenario presented in Chapter 4 which consists of four

clients with equally divided datasets, that execute 10 FL rounds with 5 local epochs each.

7.4 Initial Mapping experiments 69

Each client has 948 training samples and 522 test samples, with 10% of TIL-positive

in each dataset. We have then considered three possible dataset placement scenarios:

AWS(4), GCP(4) and AWS(2)-GCP(2). In AWS(4), all datasets are stored in AWS,

while in GCP(4) they are placed in GCP. In the last scenario, AWS(2)-GCP(2), half of

the datasets are stored in AWS, while the other half is stored in GCP.

Our model uses only three di�erent VMs to place the clients in each of the above three

scenarios. For the sake of evaluation comparison, for each scenario, we also created two

user random selection assignments. In the case of AWS(4) (resp., GCP(4)) scenarios, the

�rst assignment allocates clients and the server in the cheapest VMs (with GPU, in case

of clients) within the same cloud region in AWS (resp., GCP) where is located the dataset

of the corresponding client, while the second assignment has a similar allocation but on

the other cloud provider, i.e., GCP (resp., AWS). For the GCP(2)-AWS(2) scenario, the

two user selection assignments consider that clients are allocated in the cheapest VMs

with GPU in the same region of their datasets but the server changes position, being in

AWS in the �rst setup and in GCP in the second. All the scheduling assignments are

described in Table 7.9, and the con�guration of each VM can be found in Table 7.1.

Table 7.9: VMs setup for optimal and random scheduling schemes for all scenarios with
4 clients

Scenarios Optimal selection (model) 1st user random selection 2nd user random selection

AWS(4)
c1 in vm121, c2 in vm121,
c3 in vm121, c4 in vm121,
s in vm123

c1 in vm111, c2 in vm111,
c3 in vm111, c4 in vm111,
s in vm113

c1 in vm211, c2 in vm211,
c3 in vm211, c4 in vm211,
s in vm214

GCP(4)
c1 in vm213, c2 in vm213,
c3 in vm213, c4 in vm213,
s in vm214

c1 in vm211, c2 in vm211,
c3 in vm211, c4 in vm211,
s in vm214

c1 in vm111, c2 in vm111,
c3 in vm111, c4 in vm111,
s in vm113

AWS(2)-GCP(2)
c1 in vm121, c2 in vm121,
c3 in vm121, c4 in vm111,
s in vm123

c1 in vm111, c2 in vm111,
c3 in vm211, c4 in vm211,
s in vm113

c1 in vm111, c2 in vm111,
c3 in vm211, c4 in vm211,
s in vm214

We �rst present the execution time and the cost for a single round of FL to all setups in

Table 7.10. The optimal values come from the mathematical formulation and the random

scheduling setups are computed using the slowdowns from the previous subsections. We

also show how much the optimal setup gains in terms of percentage from the random

scheduling schemes, computed by vr�vo
vr

, where vr is the user random selection approach

value and vo is the optimal one. Note that a negative percentage value means that the

optimal value is bigger than the random one.

We can observe from Table 7.10 that our mathematical model presents better results

7.4 Initial Mapping experiments 70

Table 7.10: Theoretical results with single FL round

Scenarios
Optimal selection (model) User random selection Di�erence (%)
Exec. time Costs ($) # Exec. time Costs ($) Exec. time Costs

AWS(4) 0:10:16 1.13
1st 0:10:23 1.13 1.09 0.53
2nd 0:10:23 1.30 1.05 13.44

GCP(4) 0:01:47 1.12
1st 0:03:25 0.95 47.69 -18.05
2nd 0:04:21 0.81 58.81 -37.88

AWS(2)-GCP(2) 0:10:16 1.13
1st 0:10:23 1.16 1.09 2.64
2nd 0:11:29 1.33 10.47 15.51

in all scenarios with an average execution time reduction of 20.03% compared to the ran-

domly selected scenarios and an average di�erence in monetary costs of -3.97%. This

negative di�erence comes from scenario GCP(4), where the optimal setup is more expen-

sive than both random scenarios (by 18.05% and 37.88%), but with a higher reduction in

the execution time (47.69% and 58.81%).

The above comparisons show that placing the clients (and server) as close as possible to

the dataset does not always provide the best execution time. For example, in the scenario

AWS(4), where all datasets are in the N. Virginia region of AWS and our mathematical

formulation places clients and the server in the Oregon region of AWS, the single FL round

has presented a small reduction in both execution time and total costs when compared to

the �rst user selection approach, where all allocated VMs are in the N. Virginia region.

We should point out that an FL application usually executes for several rounds, which

increases the absolute di�erence in time and costs between the optimal setup and the

random ones.

Results from scenario AWS(2)-GCP(2) show that the misplacement of the server can

increase both execution time and costs. Although the execution time of all clients is the

same in both random setups, the communication time between the slowest client and the

server varies. The clients whose datasets are in AWS take longer to execute than the other

two, and communication time inside the same AWS region is much lower than between

both providers. Moreover, the transfer costs change according to the server placement.

If it is on AWS, the cost is less ($0.09 per GB) than when it is in GCP ($0.12 per GB).

Therefore, the di�erence in execution time and costs between the two random setups for

this scenario can be explained.

Finally, we did a real deployment and executed all setups in both cloud providers

(AWS and GCP) with 10 FL epochs. Table 7.11 summarizes the obtained results, showing

that the optimal solution allows an average execution time reduction of 21.07%, with an

7.4 Initial Mapping experiments 71

average cost increase of only 4.30%.

Table 7.11: Real Cloud execution with 10 FL rounds

Scenarios
Optimal selection (model) User random selection Di�erence (%)
Exec. time Costs ($) # Exec. time Costs ($) Exec. time Costs

AWS(4) 1:31:18 10.66
1st 1:35:14 10.87 4.12 1.92
2nd 1:55:03 13.59 20.64 21.56

GCP(4) 0:22:00 11.98
1st 0:36:54 9.61 40.38 -24.61
2nd 0:51:22 8.53 57.18 -40.34

AWS(2)-GCP(2) 1:36:09 10.92
1st 1:37:37 11.25 1.51 2.93
2nd 1:38:42 12.51 2.59 12.71

We can observe in the table that the computed di�erences between the optimal values

and the random ones are close to the theoretical results (Table 7.10) but not equal.

Besides, the real cloud di�erences in the second random setup of scenario AWS(4) are far

from the theoretical ones. In [82], Leitner et al. have extensively evaluated the performance

of di�erent cloud platforms, showing that the performance of IO-bound applications in

AWS varies a lot even in the same VM. Hence, since our application transfers data from

memory to the GPU at least two times per round, the variation of IO performance has

a negative impact on execution times, which explains the di�erence not modelled found

between Table 7.10 and Table 7.11.

7.4.4 Discussion about the multi-cloud environment and results

Firstly, concerning the AWS-GCP environment of our experiments, all AWS EC2 in-

stances were almost always available for deployment, although, they frequently presented

performance variation. Particularly, the Volta GPU instance had poor unexpected perfor-

mance, which led us to remove it from the environment. On the contrary, GCP instances

presented a stable performance. We also observed that the time taken to access datasets

allocated in AWS S3 (Table 7.3) was higher than the time to access the corresponding

datasets in the GCP Cloud Storage (Table 7.4). Such behavior is coherent with other ones

from the related literature. Leitner et al. [82] show extensive experiments regarding the

performance and predictability of di�erent VM instance types in many cloud providers.

The authors concluded that, in general, AWS has worse performance and is more unpre-

dictable than GCP.

We also observe that the � parameter of our model has a low impact. The results

with � equal to 0.5, 0, or 1 produced the same execution times and costs, for most of

7.4 Initial Mapping experiments 72

the experiments. It can be explained by the di�erence in cost and execution time of VM

with GPU. For example, AWS charges a little more in VMs with older GPUs, which takes

more to execute. Thus, whenever the objective is to minimize only the costs, only the

execution time or both equally, most experiments yielded the same optimal setup.

Our theoretical analysis shows that the execution time given by the proposed model

is reduced by up to 58.81% when compared to random scenarios with four FL clients in

the cloud whose datasets are stored in GCP (scenario GCP(4)). Considering 50 clients,

with half of them storing their dataset in AWS and the other half in GCP (scenario

AWS(25)-GCP(25)), the monetary costs and execution time are reduced by up to 48.34%

and 10.47% respectively.

In the experiments conducted in the AWS-GCP platform, scenario GCP(4) yielded a

reduction of 40.38% on the execution time when placing clients in the same region of the

dataset in the most expensive VM type with a monetary cost increase of 24.61%.

When comparing, for a single FL application round, the theoretical execution times

and the ones obtained in the AWS-GCP platform, we observe a di�erence of 11.14% in

scenario AWS(4), -22.96% in scenario GCP(4), and 6.42% in scenario AWS(2)-GCP(2).

Although in scenario GCP(4), such a di�erence in percentage is higher than the other two,

the absolute value is smaller: only 25 seconds of di�erence compared to 1 minute and 10

seconds in AWS(4) and 40 seconds in AWS(2)-GCP(2). Moreover, Ward and Barker [138]

have shown in 2014 that the same VM type could vary its performance by up to 29%. The

authors associated this variation with the oversold physical machine underneath the VMs

and other multi-tenanted phenomena. In our experiments, we observe that the variation

among the same VM type is smaller nowadays, but still present (up to 15%).

7.4.5 Validation of CloudLab environment

From now on, we execute our experiments with CloudLab to achieve scalability. Here, we

validate the CloudLab environment using the same con�guration as above to compare the

results. The baseline execution time (training and test phases) for each client is 2765.4

seconds and the communication baseline is 8.66 seconds. We assume the transfer costs

inside both clouds are the same as Google Cloud Provider, $0.012 per sent GB.

Table 7.12 shows the model output for the FL runtime and costs along with the

values for the real execution. We emphasize that the values shown are the average of

three executions.

7.4 Initial Mapping experiments 73

Table 7.12: Validating CloudLab with Initial Mapping module using the TIL application

Setup
Model output Real Execution

Runtime Costs Runtime Costs
c1 in vm326, c2 in vm326,
c3 in vm326, c4 in vm326,
s in vm321

0:22:38 $15.44 0:24:47 $16.18

We observed that the model has a similar execution time and cost compared to the

real one for the TIL use-case application. The di�erence is 8.69% in the execution time

and 4.53% in costs, validating this new test environment with the same setup used in [16].

However, we also noticed that our framework took longer to start the FL execution

in all VMs compared to real cloud providers. We compared the time to execute the TIL

application in CloudLab, in AWS, and in GCP, using the results presented in [16]. The

FL execution time in AWS corresponds to 91.45% of the total Multi-FedLS execution time

when there is no revocation. In CloudLab it is only 31.67%, which can be explained by

the bare-metal approach, which increases the VM preparation time (2:34 in AWS versus

39:43 in CloudLab). The same behavior is found when compared to GCP. There is a

huge di�erence in the preparation time (13:35 in GCP versus 39:43 in CloudLab). In

GCP, the FL execution time corresponds to 53.30% of the Multi-FedLS execution time.

Besides, one disadvantage of CloudLab is that once the instance is terminated, the data

modi�ed in it gets lost, and we need to download the results before terminating the VMs,

which adds more than 20 minutes in the Multi-FedLS execution. In AWS and GCP, we

stored the produced data in an extra volume that was not deleted with the VM and

we download them separately. Table 7.13 present the summary of these times, with the

optimal execution in each environment.

Table 7.13: Execution time of Multi-FedLS with on-demand VMs in AWS, GCP and
CloudLab with di�erent GPUs.

Execution
VMs
prep.

FL exec.
time

Download
results

Termin.
process

Multi-FedLS
total time

AWS (T4) 0:02:34 1:31:18 - 0:05:59 1:39:50

GCP (V100) 0:13:35 0:22:00 - 0:05:42 0:41:17

CloudLab (P100) 0:39:43 0:29:28 0:22:10 0:01:42 1:33:03

7.5 Fault Tolerance experiments 74

7.5 Fault Tolerance experiments

The next experiment analyses the impact of the Fault Tolerance module on the FL exe-

cution time and the total framework time using only the TIL use-case application since

it has the model with the highest number of weights and the most costly checkpoint (504

MB). We increase the number of rounds to re�ect on the execution time and make the use

of the Fault Tolerance and Dynamic Scheduler modules more reasonable. We have two

di�erent types of checkpoints: one on the server every X rounds and the client checkpoint

every round. We test them separately. Figure 7.2 shows the average of the Multi-FedLS

and the FL execution time of three executions varying the X within 10, 20, 30, and 40

rounds.

&KHFNSRLQW LQWHUYDO

(
[H
FX
WLR
Q
WLP
H

:LWKRXW
FKHFNSRLQW

URXQGV URXQGV URXQGV URXQGV

0XOWL)HG/6 H[HFXWLRQ WLPH)/ H[HFXWLRQ WLPH

Figure 7.2: Server checkpoint overhead.

We can observe that the frequency of checkpointing impacts similarly both execution

times. The overhead compared to the FL execution without checkpoint varies from 6.29%

(30 rounds) to 7.55% (10 rounds). This overhead is mostly in�uenced by the saving time

to the local disk, as the checkpoints transmission to another location overlap the server’s

waiting for clients’ messages.

Clients do not send their checkpoints to an external location, so we compute the

clients’ checkpoint overhead saving the weights in the disk after every evaluation step.

The average execution time from three runs was 3:03:44 to the Multi-FedLS time and

2:06:20 when putting only the FL execution time, which corresponds to a 2.17% overhead

compared to no checkpoint execution.

7.6 Dynamic Scheduler experiments 75

7.6 Dynamic Scheduler experiments

We execute this test considering all three applications to observe the behaviour of the

whole Multi-FedLS. We �rst show the results for the real-world application and then the

results for the benchmark applications.

7.6.1 TIL application

To validate the Dynamic Scheduler module, we simulated the VM revocation using a

Poisson distribution [2] with a revocation rate � = 1/kr, where kr is the average time

between failures in seconds. We observed patterns in the revocation frequency in instances

with GPU in AWS [18] which gave us two di�erent values to our experimental kr, 2 hours

and 4 hours. Thus, there are two revocation rates: (i) kr = 7200 and � = 1/7200, and

(ii) kr = 14400 and � = 1/14400.

The revocation of a client and the server impact di�erently in the whole FL execution.

Thus, we created three simulation scenarios to explore this di�erence. The �rst scenario

(Server and clients on Spot VMs) uses Spot (preemptible) VMs for all tasks. The second

scenario (Server on an On-demand VM and clients on Spot VMs) uses an On-demand

VM to the server, which increases the costs compared to the �rst scenario, but increases

the reliability of the server task. The last scenario (Server on a Spot VM and clients on

on-demand VMs) is the opposite, we have clients using On-demand VMs and only the

server in a Spot VM.

Before presenting the execution times and costs, we compared the average �nal metrics

of the executions without revocation (Section 7.5) and executions with revocation, from

this section. The biggest di�erence was the precision metricm that yielded a 2.22% lower

average when there were revocations compared to when there were not revocations.

Table 7.14 shows the results for three executions. It presents the simulation scenario

(Scenario), the termination rate in question, the average number of revocations (Avg

revoc.), the average execution time (Avg exec. time), and the average total costs

(Avg total costs). As a comparison, if all tasks execute on On-demand VMs without

checkpoints, the execution time is 2:59:39 and the total costs are $50.51.

Our dynamic scheduler always chooses the same instances when there was a revoca-

tion. Clients start on a VM vm326 and restart on a VM vm338. The server starts on a

VM vm321 and restarts in a VM vm412. There was no more than one VM revocation per

7.6 Dynamic Scheduler experiments 76

Table 7.14: Failure simulation using TIL application changing to another VM in CloudLab

Scenario
Termination
rate (kr)

Avg #
revoc.

Avg exec.
time

Avg total
costs ($)

Server and clients on on-demand VMs - - 2:59:39 $50.51

Server and clients on spot VMs
7200 3.67 10:01:46 81.12
14400 0.00 3:04:37 15.64

Server on an on-demand VM
and clients on spot VMs

7200 1.00 6:31:44 55.60
14400 0.00 3:05:39 19.27

Server on a spot VM
and clients on on-demand VMs

7200 0.00 3:00:44 48.11
14400 0.00 3:04:16 49.13

task in each execution. In the �rst scenario, where all tasks execute in Spot VMs, two of

the three executions had four revocations (3 clients and the server) and the last one had

three revocations (2 clients and the server), having an average revocation number of 3.67.

In the second scenario, where the server executes in an On-demand VM and the clients

are in Spot VMs, one of the executions had two revocations, another one revocation and

the last one did not have any revocation, resulting in one average revocation.

We can observe that Spot VMs are not an advantage in CloudLab, as no two VMs

execute the clients at similar times. The VM vm338 has a slowdown of 0.57 while the VM

vm326 has a slowdown of 0.04 (Table 7.5). Moreover, the time to prepare the VMs also

impacts the execution time, and, eventually, the total costs with Spot VMs surpass the

costs when using only On-demand VMs.

Real commercial cloud providers usually have VMs with similar or even equivalent

con�gurations in di�erent cloud regions. For example, AWS provides g4dn.2xlarge in-

stances (that have Turing GPUs) in 23 of its regions2 and GCP provides Turing GPUs in

seven of its regions3. These equivalent machines tend to have similar execution times (with

a slight di�erence), as observed in the slowdowns in Tables 7.3 and 7.4. On CloudLab,

each instance type has completely di�erent hardware con�gurations, but it is allowed to

use the same instance type immediately after a revocation. Now, our dynamic scheduler

does not remove the VM that was revoked from the available instance types (�rst line of

Algorithm 3) and it allows to choose the same instance type in every revocation.

Table 7.15 shows the results from three executions restarting in the same instance

type, where columns have the same meaning as Table 7.14.

2https://aws.amazon.com/ec2/pricing/on-demand/, accessed in June 2023
3https://cloud.google.com/compute/docs/gpus/gpu-regions-zones, acessed May 2023

7.6 Dynamic Scheduler experiments 77

Table 7.15: Failure simulation using TIL application changing to the same VM in Cloud-
Lab

Scenario
Termination
rate (kr)

Avg #
revoc.

Avg exec.
time

Avg total
costs ($)

Server and clients on on-demand VMs - - 2:59:39 $50.51

Server and clients on spot VMs
7200 1.33 4:14:16 22.55
14400 0.00 3:04:35 5.64

Server on an on-demand VM
and clients on spot VMs

7200 0.33 3:14:38 20.16
14400 0.00 3:01:49 18.99

Server on a spot VM
and clients on on-demand VMs

7200 0.33 5:33:27 95.73
14400 0.00 3:12:57 49.28

In the �rst scenario with the termination rate of 1/(2 hours) (1/7200), one execution

had two clients’ revocations, another just one client revocation and the third one just the

server revocation, totaling an average of 1.33 revocations. In the second (resp., third)

scenario with the same termination rate, just one execution revoked one client (resp., the

server once), having 0.33 as the average revocation number.

From these results, we can observe that the revocation of a client impacts less the

execution time than the server’s revocation (3:14:38 vs. 5:33:27). Moreover, the execution

of clients in On-demand VMs increases drastically the costs, e.g., $49.28 when executing

the server on a Spot VM and the clients on On-demand ones vs. $18.99 the opposite

(clients on Spot VMs and server on an On-demand one), which makes the clients’ execution

in On-demand VMs not worthy. Regarding the server execution in an On-demand VM

vs. all tasks in Spot VMs, we can see that when there is no revocation, the costs increase

by 21.30% ($18.99 vs. $15.64), while when there are revocations, the costs decrease by

10.58% ($20.16 vs. $22.55).

7.6.2 Benchmarks

For the Shakespeare application, we executed 20 rounds with 20 epochs per round, and

the FEMNIST application executed 100 rounds with 100 epochs per round, following the

LEAF con�guration [21].

When executing both benchmarks, we observed that their execution times were smaller

than the TIL application. Because of that, there was no revocation with the �rst termi-

nation rate. Thus, we created a third revocation rate, kr being 1 hour, i.e., (iii) kr = 3600

and � = 1/3600.

7.6 Dynamic Scheduler experiments 78

Their execution only in On-demand VMs yields the following results. The Shakespeare

application executes for almost 1 hour and 54 minutes (1:53:54) having a total cost of

$53.31, while the FEMNIST application executes for 1 hour and 56 minutes (1:56:37)

with a total cost of $35.68. The Shakespeare application costs more because it has 8

clients and the FEMNIST one has only 5 clients, despite using the same VMs for server

and clients.

Table 7.16 presents the results of executing the Shakespeare application in CloudLab

with the three di�erent scenarios (all tasks in Spot VMs; server on On-demand VM and

clients on Spot VMs; and server on Spot VM and clients on On-demand VMs) with the

two termination rates: 1/(1 hour) and 1/(2 hours). Table 7.17 shows the same results

for the FEMNIST application. Note that both tables present the average values for 3

executions.

Table 7.16: Failure simulation executing Shakespeare application and changing to the
same VM in CloudLab

Scenario
Termination
rate (kr)

Avg #
revoc.

Avg exec.
time

Avg total
costs ($)

Server and clients on on-demand VMs - - 1:53:54 $53.31

Server and clients on spot VMs
3600 1.33 2:17:12 20.02
7200 0.00 1:58:31 17.03

Server on an on-demand VM
and clients on spot VMs

3600 2.67 2:32:12 23.46
7200 0.00 1:57:56 17.27

Server on a spot VM
and clients on on-demand VMs

3600 0.33 2:00:47 57.06
7200 0.00 1:54:06 53.29

Table 7.17: Failure simulation using FEMNIST application and changing to the same VM
in CloudLab

Scenario
Termination
rate (kr)

Avg #
revoc.

Avg exec.
time

Avg total
costs ($)

Server and clients on on-demand VMs - - 1:56:37 $35.68

Server and clients on spot VMs
3600 2.00 2:34:33 14.63
7200 0.00 1:52:21 10.21

Server on an on-demand VM
and clients on spot VMs

3600 1.67 2:38:05 16.10
7200 0.00 1:56:02 11.35

Server on a spot VM
and clients on on-demand VMs

3600 0.67 2:14:55 42.15
7200 0.00 1:51:07 33.10

The three executions of the �rst scenario with the �rst termination rate in the Shake-

7.7 Proof of concept 79

speare application revoked only clients, with 2 of them revoking only one and the last

one revoking 2 clients, resulting in an average of 1.33 revocations. In FEMNIST, two

executions revoked a client and the server (2 tasks in total each) and the last one revoked

2 clients, resulting in the average of 2 revocations.

Similarly to the TIL application, we can observe that the use of spot instances with

these benchmarks is an advantage, especially to the clients tasks. The use of a Spot

VM to the server and On-demand VMs to the client yields a small cost reduction in

the Shakespeare application compared to executing everything on On-demand VMs as

this application has 8 clients ($53.29 vs. $53.31). Moreover, when there is at least one

revocation in the server, the costs surpass using only On-demand VMs ($57.06). In the

FEMNIST application, the reduction is bigger when there is no revocation ($33.10 vs.

$35.68), but it still surpasses the purely On-demand VMs when there is any revocation

($42.15). Regarding the server execution in an On-demand VM vs. all tasks in Spot VMs,

we can see that there were only increases in the costs on both Shakespeare and FEMNIST

applications, with or without revocations. In the Shakespeare application, the increase

is only by 1.39% when there is no revocation ($17.27 vs. $17.03) and by 17.16% when

there are revocations ($23.46 vs. $20.02). In the FEMNIST application, both increases

are similar, 11.12% when there is no revocation ($11.15 vs. $10.21) and 10.10% when

there are revocations ($16.10 and $ 14.63).

7.7 Proof of concept

In this �nal experiment, we demonstrate a proof of concept that our entire framework

executes in a real multi-cloud scenario. Due to a project termination, we needed to

change our AWS account and thus, our regional vCPU and GPU limits decreased. Due to

these restricting GPU and vCPU limitations, we execute our real-world application with

only 2 clients, one client storing its datasets in AWS and the other one in GCP, for 30

communication rounds. Moreover, we only have 3 regions from Table 7.1 to execute in

total: region us-east-1 (N. Virginia) in AWS and regions us-central1 (Iowa) and us-west1

(Oregon) in GCP and some instances in GCP could not be instantiated. Thus, this test

has the following instances available to be chosen: vm111, vm112, vm113, vm211, vm213,

vm214, vm222, and vm223 (Table 7.1).

Our Initial Mapping module computes the optimal setup as all tasks executing in

AWS, with the server in the VM vm113 and the clients in vm111 VMs. The average values

7.7 Proof of concept 80

of three executions in only On-demand VMs yield a runtime of 1:57:56 and a cost of

$3.21. Table 7.18 shows the execution with the termination rate of 2 hours (kr = 7200 and

� = 1/7200) storing the checkpoints in N. Virginia region of Amazon S3 (AWS) or in Iowa

region of Cloud Storage (GCP). We present the average number of revocations, execution

time and total costs of three executions. We also present the percentage compared to the

on-demand execution.

Table 7.18: Proof of concept executing our real-world application with 2 clients in a
multi-cloud environment

Ckpt
storage

Avg #
revocations

Avg exec.
time

Avg total
cost

Di�erence to on-demand
execution (%)

Execution time Total cost
AWS 1.33 2:06:51 $1.41 7.55 -55.96
GCP 2.00 2:19:03 $1.49 17.89 -53.74

When we stored the server checkpoints in AWS, our simulator terminated the server

in all three executions and only 1 client in the �rst execution, which led to the 1.33 average

revocation number. When the checkpoints were sent to GCP, there were 2 revocations

in all executions, being one from the server and the other from the client. After a client

revocation, our framework always chose the VM vm211 to restart the a�ected client and

after a server revocation, the framework always chose to restart the server in a vm214 VM.

We can observe from Table 7.18 that our framework is robust as it reduces the costs

by 54.85% on average while increasing the execution time by only 12.72% on average.

Moreover, using Amazon S3 instead of Cloud Storage seems to be a better choice, but

more tests are necessary.

Chapter 8

Conclusion and Future Work

This chapter describes the main results and contributions of this thesis. Section 8.1 high-

lights the main contributions, while Section 8.3 gives some directions for future research.

8.1 Contributions

Federated Learning is a research �eld of distributed Machine Learning that tackles the

prohibition to share data among di�erent institutions due to data privacy. When the data

produced by each institution increases rapidly, they can rely on cloud storage services to

reduce their upcoming cost, as there is no building and maintenance costs when using these

services compared to on-site storage clusters. As most FL applications use DNNs with

lots of matrix multiplications, the use of GPUs to train each local model is necessary and

cloud providers o�ers di�erent GPUs architectures to execute in an on-demand request.

Multi-FedLS is a robust, adaptive, and �exible framework that focuses on executing FL

applications in a multi-cloud environment with each client dataset stored in di�erent cloud

providers, reducing execution time and costs. It also takes advantage of preemptible VMs,

which have a signi�cant discount compared to on-demand ones, but can be revoked at any

time. Thus, this framework is robust as it guarantees the correct and whole execution of

the FL application through its Initial Mapping, Fault Tolerance, and Dynamic Scheduler

modules. It is adaptive as the Pre-Scheduling module collects data from new parameters

in the environment without repeating the metrics for the old parameters already collected.

Based on our experiments, it is possible to use the Pre-Scheduling or the Initial Mapping

modules without triggering the Fault Tolerance or the Dynamic Scheduler ones, which

makes Multi-FedLS �exible. Moreover, we implement our framework in a modular way,

so each module connects easily to the whole framework execution.

8.2 Limits of Multi-FedLS 82

We evaluated our modules using both a real multi-cloud environment and a simulated

environment due to scalability issues. Our Initial Mapping module presented a reduction

of 40.38% in the execution time with a monetary cost increase of 24.61% when compared

to user random VM selections. The Fault Tolerance module yields a small overhead of only

7.55% due to the asynchronous sending of the checkpoints to another location. Concerning

the Dynamic Scheduler, we could observe that the impact of a server revocation is bigger

than a client one, up to more than 2 hours of di�erence in the execution time. When

executing the whole framework in a real multi-cloud environment, we obtained a 54.85%

reduction in costs while increasing the execution time by only 12.72% compared to the

execution with On-demand VMs only.

8.2 Limits of Multi-FedLS

As Flower needs to execute through a known number of rounds, we known before the

execution the total expected execution time and we could calculate the remaining rounds

easily returning from a revocation. However, usually FL practitioners do not know the

best number of rounds, they need to execute several di�erent con�gurations to compare

the �nal ML metrics. Thus, in this scenario, the FL practitioners would execute Multi-

FedLS several times, each time with a di�erent con�guration and they need to take into

consideration the total budget and total time to execute these con�gurations to separate

them among the several executions.

8.3 Future Work

In this section, we propose some promising future directions derived from the contributions

of this thesis.

• Evaluation of di�erent ML models in our framework: We presented our tests with

three di�erent applications. However, all of them were DNNs with several matrix

multiplications needing GPUs to execute in a reasonable amount of time. There

are other ML models that can be trained in an FL approach, for example, Linear

Regression [102]. Thus, conducting experiments with other ML models is important

to con�rm the robustness of our framework.

• Execution of multiple FL applications at once: As shown throughout this thesis,

Multi-FedLS supports the execution of a single FL application per execution. How-

8.3 Future Work 83

ever, when a new FL approach is designed for an application, there is no formula to

compute the best values for communication rounds and epochs per round. With the

current version of our framework, researchers need to execute it multiple times to

change the concerned application. One future direction could be the addition of one

or more modules to execute multiple FL applications concurrently. They can start

all together in the beginning or transform our o�ine scheduling problem into an

online problem allowing the insertion of new FL applications during the framework

execution. Thus, our framework needs to divide the current limits from all providers

to all executing applications and guarantee their complete execution.

• Active transfer to another VM: Currently, our framework only changes the VM

assigned to a task after an error or a revocation in a reactive way. One improvement

would be to actively change the VM to any task due to performance degradation.

For example, our framework could monitor message exchanges in each FL round

and change a VM when a recurrent network delay is observed.

Bibliography

[1] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.;

Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfel-

low, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser,

L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Mur-

ray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,

I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.;

Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng,

X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-

ware available from tensor�ow.org.

[2] Ahrens, J. H.; Dieter, U. Computer methods for sampling from gamma, beta,

poisson and bionomial distributions. Computing 12, 3 (1974), 223–246.

[3] Angell, H.; Galon, J. From the immune contexture to the Immunoscore: the

role of prognostic and predictive immune markers in cancer. Current Opinion in Im-

munology 25, 2 (2013), 261 – 267. Lymphocyte development / Tumour immunology

/ Cancer immunology: Clinical translation.

[4] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R.; Konwin-

ski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I., et al. A view of

cloud computing. Communications of the ACM 53, 4 (2010), 50–58.

[5] Azure, M. Cloud Computing Services. https://azure.microsoft.com/en-us/,

2021. Accessed 19 December 2021.

[6] Bao, Y.; Peng, Y.; Wu, C.; Li, Z. Online job scheduling in distributed ma-

chine learning clusters. In IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications (2018), pp. 495–503.

[7] Ben-Nun, T.; Hoefler, T. Demystifying Parallel and Distributed Deep Learn-

ing: An In-Depth Concurrency Analysis. ACM Comput. Surv. 52, 4 (8 2019).

BIBLIOGRAPHY 85

[8] Beutel, D. J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; Lane, N.

Flower: A friendly federated learning research framework. ArXiv abs/2007.14390

(2020).

[9] Bohn, R. B.; Messina, J.; Liu, F.; Tong, J.; Mao, J. Nist cloud computing

reference architecture. In 2011 IEEE World Congress on Services (2011), pp. 594–

596.

[10] Breiman, L. Random forests. Machine Learning 45, 1 (Oct 2001), 5–32.

[11] Brotcorne, L.; Ezpeleta, J.; Galé, C. A biobjective model for resource

provisioning in multi-cloud environments with capacity constraints. Operational

Research 23, 2 (May 2023), 31.

[12] Brum, R.; Drummond, L.; Castro, M. C.; Teodoro, G. Towards optimizing

computational costs of federated learning in clouds. In 2021 International Sym-

posium on Computer Architecture and High Performance Computing Workshops

(SBAC-PADW) (2021), pp. 35–40.

[13] Brum, R.; Teodoro, G.; Drummond, L.; Arantes, L.; Castro, M.; Sens,

P. Evaluating federated learning scenarios in a tumor classi�cation application. In

Anais da VII Escola Regional de Alto Desempenho do Rio de Janeiro (Porto Alegre,

RS, Brasil, 2021), SBC, pp. 6–10.

[14] Brum, R. C.; Arantes, L.; Castro, M. C.; Sens, P.; Drummond, L. M. A.

Evaluating Execution Times and Costs of a Federated Learning Application on dif-

ferent Cloud Providers. In COMPAS 2022 - Conférence francophone d’informatique

en Parallélisme, Architecture et Système (Amiens, France, July 2022).

[15] Brum, R. C.; de Castro, M. C. S.; Arantes, L.; de A. Drummond, L. M.;

Sens, P. Multi-fedls: a framework for cross-silo federated learning applications on

multi-cloud environments, 2023.

[16] Brum, R. C.; Sens, P.; Arantes, L.; Castro, M. C.; de A. Drummond,

L. M. Optimizing execution time and costs of cross-silo federated learning applica-

tions with datasets on di�erent cloud providers. In 2022 IEEE 34th International

Symposium on Computer Architecture and High Performance Computing (SBAC-

PAD) (2022), pp. 253–262.

[17] Brum, R. C.; Sens, P.; Arantes, L.; Castro, M. C.; Drummond, L. M.

d. A. Towards a federated learning framework on a multi-cloud environment. In

BIBLIOGRAPHY 86

2022 International Symposium on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW) (2022), pp. 39–44.

[18] Brum, R. C.; Sousa, W. P.; Melo, A. C. M. A.; Bentes, C.; de Castro,

M. C. S.; Drummond, L. M. d. A. A fault tolerant and deadline constrained

sequence alignment application on cloud-based spot gpu instances. In Euro-Par

2021: Parallel Processing (Cham, 2021), L. Sousa, N. Roma, and P. Tomás, Eds.,

Springer International Publishing, pp. 317–333.

[19] Burlachenko, K.; Horváth, S.; Richtárik, P. FL PyTorch: Optimization

Research Simulator for Federated Learning. In Proceedings of the 2nd ACM Inter-

national Workshop on Distributed Machine Learning (New York, NY, USA, 2021),

DistributedML ’21, Association for Computing Machinery, p. 1–7.

[20] Buyukates, B.; Ulukus, S. Timely communication in federated learning. In

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Work-

shops (INFOCOM WKSHPS) (2021), pp. 1–6.

[21] Caldas, S.; Duddu, S. M. K.; Wu, P.; Li, T.; Kone�cný, J.; McMahan,

H. B.; Smith, V.; Talwalkar, A. Leaf: A benchmark for federated settings,

2019.

[22] Chen, Y.; Sun, X.; Jin, Y. Communication-e�cient federated deep learning with

layerwise asynchronous model update and temporally weighted aggregation. IEEE

Transactions on Neural Networks and Learning Systems 31, 10 (2020), 4229–4238.

[23] Chhabra, A.; Huang, K.-C.; Bacanin, N.; Rashid, T. A. Optimizing bag-

of-tasks scheduling on cloud data centers using hybrid swarm-intelligence meta-

heuristic. The Journal of Supercomputing 78, 7 (May 2022), 9121–9183.

[24] Cloud Foundry, I. Cloud Foundry - Open Source Cloud Native Application

Delivery. https://www.cloudfoundry.org/, 2022. Accessed 10 January 2022.

[25] Deldari, A.; Salehan, A. A survey on preemptible iaas cloud instances: chal-

lenges, issues, opportunities, and advantages. Iran Journal of Computer Science 4,

3 (Sep 2021), 1–24.

[26] Deng, L. The mnist database of handwritten digit images for machine learning

research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

BIBLIOGRAPHY 87

[27] Developers, G. Cloud Storage for Firebase. https://firebase.google.com/

products/storage/, 2022. Accessed 11 January 2022.

[28] Dikaiakos, M. D.; Katsaros, D.; Mehra, P.; Pallis, G.; Vakali, A. Cloud

computing: Distributed internet computing for it and scienti�c research. IEEE

Internet Computing 13, 5 (2009), 10–13.

[29] Docs, M. What is Azure Databricks? https://docs.microsoft.com/en-us/

azure/databricks/scenarios/what-is-azure-databricks, 2022. Accessed 16

January 2022.

[30] Duong, T. N. B. FC2: cloud-based cluster provisioning for distributed machine

learning. Cluster Computing 22, 4 (Dec 2019), 1299–1315.

[31] Duong, T. N. B.; Sang, N. Q. Distributed Machine Learning on IAAS Clouds.

In 2018 5th IEEE International Conference on Cloud Computing and Intelligence

Systems (CCIS) (2018), pp. 58–62.

[32] Duplyakin, D., et al. The design and operation of CloudLab. In Proceedings of

the USENIX Annual Technical Conference (ATC) (jul 2019), pp. 1–14.

[33] ElGamal, T. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory 31, 4 (1985), 469–472.

[34] Elkhatib, Y. Mapping Cross-Cloud Systems: Challenges and Opportunities. In

8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16) (Denver,

CO, June 2016), USENIX Association.

[35] Fabra, J.; Ezpeleta, J.; Álvarez, P. Reducing the price of resource provision-

ing using ec2 spot instances with prediction models. Future Generation Computer

Systems 96 (2019), 348–367.

[36] Fang, C.; Guo, Y.; Wang, N.; Ju, A. Highly e�cient federated learning with

strong privacy preservation in cloud computing. Computers & Security 96 (2020),

101889.

[37] FedAI. FATE. https://fate.readthedocs.io/en/latest/, 2019. Accessed 27

December 2021.

[38] FedAI. FATE Serving - FATE. https://fate.fedai.org/fate-serving/, 2019.

Accessed 27 December 2021.

BIBLIOGRAPHY 88

[39] FedAI. FATEBoard - FATE. https://fate.fedai.org/fateboard/, 2019. Ac-

cessed 28 December 2021.

[40] FedAI. FATEFlow - FATE. https://fate.fedai.org/fateflow/, 2019. Accessed

27 December 2021.

[41] FedAI. Federated Network - FATE. https://fate.fedai.org/

federated-network/, 2019. Accessed 27 December 2021.

[42] FedAI. FederatedML - FATE. https://fate.fedai.org/federatedml/, 2019.

Accessed 27 December 2021.

[43] FedAI. KubeFATE - FATE. https://fate.fedai.org/kubefate/, 2019. Ac-

cessed 28 December 2021.

[44] Federated, T. Federated Core. https://www.tensorflow.org/federated/

federated_core, 2021. Accessed 22 December 2021.

[45] Federated, T. Federated Learning. https://www.tensorflow.org/federated/

federated_learning, 2021. Accessed 22 December 2021.

[46] Federated, T. Federated Learning for Text Generation. https:

//www.tensorflow.org/federated/tutorials/federated_learning_for_

text_generation, 2021. Accessed 22 December 2021.

[47] Foster, I.; Zhao, Y.; Raicu, I.; Lu, S. Cloud computing and grid computing

360-degree compared. In 2008 Grid Computing Environments Workshop (2008),

pp. 1–10.

[48] Furht, B., Ed. SIMD (Single Instruction Multiple Data Processing). Springer US,

Boston, MA, 2008, pp. 817–819.

[49] Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[50] Google. Google Workspace Essentials. https://workspace.google.com/

essentials/, 2022. Accessed 11 January 2022.

[51] Google Cloud, P. Cloud Computing Services. https://cloud.google.com/,

2021. Accessed 19 December 2021.

[52] Google Cloud, P. Cloud Storage. https://cloud.google.com/storage, 2021.

Accessed 19 December 2021.

BIBLIOGRAPHY 89

[53] Google Cloud, P. Quotas & limits - Cloud Storage. https://cloud.google.

com/storage/quotas, 2021. Accessed 19 December 2021.

[54] Google Cloud, P. App Engine Application Platform. https://cloud.google.

com/appengine/, 2022. Accessed 10 January 2022.

[55] Google Cloud, P. Artifact Registry. https://cloud.google.com/

artifact-registry, 2022. Accessed 11 January 2022.

[56] Google Cloud, P. Cloud Computing Services. https://cloud.google.com/

products/storage, 2022. Accessed 11 January 2022.

[57] Google Cloud, P. Cloud Tensor Processing Units (TPUs). https://cloud.

google.com/tpu/docs/tpus, 2022. Accessed 19 January 2022.

[58] Google Cloud, P. Compute Engine. https://cloud.google.com/compute,

2022. Accessed 10 January 2022.

[59] Google Cloud, P. Felistore. https://cloud.google.com/filestore, 2022.

Accessed 11 January 2022.

[60] Google Cloud, P. GPUs on Compute Engine. https://cloud.google.com/

compute/docs/gpus, 2022. Accessed 19 January 2022.

[61] Google Cloud, P. Local SSD. https://cloud.google.com/local-ssd, 2022.

Accessed 11 January 2022.

[62] Google Cloud, P. Persistent Disk. https://cloud.google.com/

persistent-disk, 2022. Accessed 11 January 2022.

[63] Google Cloud, P. Storage Transfer Service. https://cloud.google.com/

storage-transfer-service, 2022. Accessed 11 January 2022.

[64] Google Cloud, P. Transfer Appliance. https://cloud.google.com/

transfer-appliance/docs/4.0, 2022. Accessed 11 January 2022.

[65] Google Cloud, P. Backup and DR Service. https://cloud.google.com/

backup-disaster-recovery, 2023. Accessed 10 June 2023.

[66] Google Cloud, P. Geography and regions - Documentation. https://cloud.

google.com/about/locations, 2023. Accessed 10 June 2023.

[67] gRPC Authors. gRPC. https://grpc.io/, 2022. Accessed 04 January 2022.

BIBLIOGRAPHY 90

[68] Gurobi. Gurobi optimizer, 2022.

[69] Hall, A. J.; Jay, M.; Cebere, T.; Cebere, B.; van der Veen, K. L.;

Muraru, G.; Xu, T.; Cason, P.; Abramson, W.; Benaissa, A.; Shah,

C.; Aboudib, A.; Ryffel, T.; Prakash, K.; Titcombe, T.; Khare, V. K.;

Shang, M.; Junior, I.; Gupta, A.; Paumier, J.; Kang, N.; Manannikov,

V.; Trask, A. Syft 0.5: A platform for universally deployable structured trans-

parency. arXiv preprint arXiv:2104.12385 (2021).

[70] Hashem, I. A. T.; Yaqoob, I.; Anuar, N. B.; Mokhtar, S.; Gani, A.;

Ullah Khan, S. The rise of “big data” on cloud computing: Review and open

research issues. Information Systems 47 (2015), 98–115.

[71] Heroku. Cloud Application Platform. https://www.heroku.com/, 2022. Accessed

10 January 2022.

[72] Hong, J.; Dreibholz, T.; Schenkel, J. A.; Hu, J. A. An overview of multi-

cloud computing. In Web, Arti�cial Intelligence and Network Applications (Cham,

2019), L. Barolli, M. Takizawa, F. Xhafa, and T. Enokido, Eds., Springer Interna-

tional Publishing, pp. 1055–1068.

[73] Huang, Y.; Chu, L.; Zhou, Z.; Wang, L.; Liu, J.; Pei, J.; Zhang, Y.

Personalized Cross-Silo Federated Learning on Non-IID Data. Proceedings of the

AAAI Conference on Arti�cial Intelligence 35, 9 (May 2021), 7865–7873.

[74] Ingerman, A.; Ostrowski, K. TensorFlow Blog: Introduc-

ing TensorFlow Federated. https://blog.tensorflow.org/2019/03/

introducing-tensorflow-federated.html, 2019. Accessed 16 August 2021.

[75] Ji, S.; Pan, S.; Long, G.; Li, X.; Jiang, J.; Huang, Z. Learning private

neural language modeling with attentive aggregation. In 2019 International Joint

Conference on Neural Networks (IJCNN) (2019), pp. 1–8.

[76] Juve, G.; Deelman, E.; Vahi, K.; Mehta, G.; Berriman, B.; Berman,

B. P.; Maechling, P. Scienti�c work�ow applications on Amazon EC2. In 2009

5th IEEE International Conference on E-Science Workshops (2009), pp. 59–66.

[77] Karaja, M.; Chaabani, A.; Azzouz, A.; Ben Said, L. E�cient bi-level multi

objective approach for budget-constrained dynamic bag-of-tasks scheduling problem

in heterogeneous multi-cloud environment. Applied Intelligence 53, 8 (Apr 2023),

9009–9037.

BIBLIOGRAPHY 91

[78] Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu,

T.-Y. Lightgbm: A highly e�cient gradient boosting decision tree. In Advances in

Neural Information Processing Systems (2017), I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran

Associates, Inc.

[79] Kotas, C.; Naughton, T.; Imam, N. A comparison of amazon web services and

microsoft azure cloud platforms for high performance computing. In 2018 IEEE

International Conference on Consumer Electronics (ICCE) (2018), pp. 1–4.

[80] Le, H.; Gupta, R.; Hou, L.; Abousamra, S.; Fassler, D.; Torre-Healy,

L.; Moffitt, R. A.; Kurc, T.; Samaras, D.; Batiste, R.; Zhao, T.; Rao,

A.; Van Dyke, A. L.; Sharma, A.; Bremer, E.; Almeida, J. S.; Saltz,

J. Utilizing automated breast cancer detection to identify spatial distributions of

tumor-in�ltrating lymphocytes in invasive breast cancer. The American Journal of

Pathology 190, 7 (Jul 2020), 1491–1504.

[81] Leavitt, N. Storage challenge: Where will all that big data go? Computer 46, 09

(2013), 22–25.

[82] Leitner, P.; Cito, J. Patterns in the chaos—a study of performance variation

and predictability in public iaas clouds. ACM Trans. Internet Technol. 16, 3 (apr

2016).

[83] Li, A.; Yang, X.; Kandula, S.; Zhang, M. CloudCmp: Comparing Public

Cloud Providers. In Proceedings of the 10th ACM SIGCOMM Conference on Inter-

net Measurement (New York, NY, USA, 2010), IMC ’10, Association for Computing

Machinery, p. 1–14.

[84] Li, Q.; Diao, Y.; Chen, Q.; He, B. Federated learning on non-iid data silos:

An experimental study. ArXiv abs/2102.02079 (2021).

[85] Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V.

Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127

(2018).

[86] Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair resource allocation in feder-

ated learning, 2020.

BIBLIOGRAPHY 92

[87] Lima Pilla, L. Optimal task assignment for heterogeneous federated learning

devices. In 2021 IEEE International Parallel and Distributed Processing Symposium

(IPDPS) (2021), pp. 661–670.

[88] Liu, H. Big data drives cloud adoption in enterprise. IEEE Internet Computing

17, 4 (2013), 68–71.

[89] Liu, L.; Yu, H.; Sun, G.; Zhou, H.; Li, Z.; Luo, S. Online job scheduling for

distributed machine learning in optical circuit switch networks. Knowledge-Based

Systems 201-202 (2020), 106002.

[90] Liu, L.; Zhang, J.; Song, S.; Letaief, K. B. Client-edge-cloud hierarchical fed-

erated learning. In 2020-2020 IEEE International Conference on Communications

(2020).

[91] Malta, E. M.; Avila, S.; Borin, E. Exploring the Cost-Bene�t of AWS

EC2 GPU Instances for Deep Learning Applications. In Proceedings of the 12th

IEEE/ACM International Conference on Utility and Cloud Computing (New York,

NY, USA, 2019), UCC’19, Association for Computing Machinery, p. 21–29.

[92] McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B. A.

Communication-E�cient Learning of Deep Networks from Decentralized Data. In

Proceedings of the 20th International Conference on Arti�cial Intelligence and

Statistics (Fort Lauderdale, FL, USA, 4 2017), A. Singh and J. Zhu, Eds., vol. 54

of Proceedings of Machine Learning Research, PMLR, pp. 1273–1282.

[93] Mell, P.; Grance, T., et al. The nist de�nition of cloud computing.

[94] Mitchell, T. M., et al. Machine learning. McGraw-Hill, Inc., New York, NY,

USA, 1997.

[95] Mohammadi Amiri, M.; Gündüz, D. Computation scheduling for distributed

machine learning with straggling workers. IEEE Transactions on Signal Processing

67, 24 (2019), 6270–6284.

[96] National Human Genome Research Institute. The Cancer Genome Atlas.

https://cancergenome.nih.gov/, June 2017.

[97] Nguyen, V.-D.; Sharma, S. K.; Vu, T. X.; Chatzinotas, S.; Ottersten,

B. E�cient federated learning algorithm for resource allocation in wireless iot

networks. IEEE Internet of Things Journal 8, 5 (2021), 3394–3409.

BIBLIOGRAPHY 93

[98] NVIDIA; Vingelmann, P.; Fitzek, F. H. Cuda, release: 10.2.89, 2020.

[99] Office, M. O�ce 375. https://www.office.com/, 2022. Accessed 10 January

2022.

[100] Ostermann, S.; Iosup, A.; Yigitbasi, N.; Prodan, R.; Fahringer, T.;

Epema, D. A performance analysis of ec2 cloud computing services for scienti�c

computing. In Cloud Computing (Berlin, Heidelberg, 2010), D. R. Avresky, M. Diaz,

A. Bode, B. Ciciani, and E. Dekel, Eds., Springer Berlin Heidelberg, pp. 115–131.

[101] Paszke, A., et al. Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems (2019).

[102] Rajendran, S.; Obeid, J. S.; Binol, H.; D‘Agostino, R.; Foley, K.;

Zhang, W.; Austin, P.; Brakefield, J.; Gurcan, M. N.; Topaloglu,

U. Cloud-Based Federated Learning Implementation Across Medical Centers. JCO

Clinical Cancer Informatics, 5 (2021), 1–11. PMID: 33411624.

[103] Ren, J.; Ni, W.; Nie, G.; Tian, H. Research on resource allocation for e�cient

federated learning, 2021.

[104] Ren, J.; Sun, J.; Tian, H.; Ni, W.; Nie, G.; Wang, Y. Joint resource

allocation for e�cient federated learning in internet of things supported by edge

computing. In 2021 IEEE International Conference on Communications Workshops

(ICC Workshops) (2021), pp. 1–6.

[105] Ryffel, T., et al. A generic framework for privacy preserving deep learning.

ArXiv abs/1811.04017 (2018).

[106] Saltz, J.; Gupta, R.; Hou, L.; Kurc, T.; Singh, P.; Nguyen, V.; Sama-

ras, D.; Shroyer, K. R.; Zhao, T.; Batiste, R., et al. Spatial Organization

And Molecular Correlation Of Tumor-In�ltrating Lymphocytes Using Deep Learn-

ing On Pathology Images. Cell reports 23, 1 (2018), 181.

[107] Services, A. W. Amazon S3. https://aws.amazon.com/s3/, 2021. Accessed 19

December 2021.

[108] Services, A. W. Cloud Services. https://aws.amazon.com/, 2021. Accessed 19

December 2021.

[109] Services, A. W. Amazon DataSync. https://aws.amazon.com/datasync/,

2022. Accessed 11 January 2022.

BIBLIOGRAPHY 94

[110] Services, A. W. Amazon EBS. https://aws.amazon.com/ebs, 2022. Accessed

11 January 2022.

[111] Services, A. W. Amazon EC2. https://aws.amazon.com/ec2/, 2022. Accessed

10 January 2022.

[112] Services, A. W. Amazon EFS. https://aws.amazon.com/efs/, 2022. Accessed

11 January 2022.

[113] Services, A. W. Amazon FSx. https://aws.amazon.com/fsx/, 2022. Accessed

11 January 2022.

[114] Services, A. W. Amazon Snow Family. https://aws.amazon.com/snow/, 2022.

Accessed 11 January 2022.

[115] Services, A. W. AWS Backup. https://aws.amazon.com/backup/, 2022. Ac-

cessed 11 January 2022.

[116] Services, A. W. AWS Elastic Beanstalk - Deploy Web Applications. https:

//aws.amazon.com/elasticbeanstalk/, 2022. Accessed 10 January 2022.

[117] Services, A. W. AWS Elastic Disaster Recovery. https://aws.amazon.com/

disaster-recovery/, 2022. Accessed 11 January 2022.

[118] Services, A. W. AWS Storage Gateway. https://aws.amazon.com/

storagegateway/, 2022. Accessed 11 January 2022.

[119] Services, A. W. AWS Transfer Family. https://aws.amazon.com/

aws-transfer-family/, 2022. Accessed 11 January 2022.

[120] Services, A. W. Cloud Storage on AWS. https://aws.amazon.com/products/

storage/, 2022. Accessed 11 January 2022.

[121] Services, A. W. Recommended GPU Instances. https://docs.aws.amazon.

com/dlami/latest/devguide/gpu.html, 2022. Accessed 19 January 2022.

[122] Services, A. W. Amazon File Cache. https://aws.amazon.com/filecache/,

2023. Accessed 10 June 2022.

[123] Services, A. W. Region and Zones - Amazon Elastic Compute Cloud. https://

aws.amazon.com/about-aws/global-infrastructure/, 2023. Accessed 10 June

2023.

BIBLIOGRAPHY 95

[124] Shastri, S.; Irwin, D. Cloud index tracking: Enabling predictable costs in cloud

spot markets. In Proceedings of the ACM Symposium on Cloud Computing (New

York, NY, USA, 2018), SoCC ’18, Association for Computing Machinery, p. 451–463.

[125] Shen, S.; Zhu, T.; Wu, D.; Wang, W.; Zhou, W. From distributed machine

learning to federated learning: In the view of data privacy and security. Concurrency

and Computation: Practice and Experience n/a, n/a (2020).

[126] Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale

image recognition. In 3rd Int. Conf. on Learning Representations, ICLR 2015

(2015).

[127] Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. A. Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning. In Pro-

ceedings of the Thirty-First AAAI Conference on Arti�cial Intelligence (2017),

AAAI’17, AAAI Press, p. 4278–4284.

[128] Teylo, L.; Arantes, L.; Sens, P.; Drummond, L. M. d. A. Scheduling bag-

of-tasks in clouds using spot and burstable virtual machines. IEEE Transactions on

Cloud Computing 11, 1 (2023), 984–996.

[129] Teylo, L.; Brum, R.; Arantes, L.; Sens, P.; Drummond, L. Avaliação dos

serviços de armazenamento da amazon web services para gravação e recuperação de

checkpoints. In Anais do XXI Workshop de Testes e Tolerância a Falhas (Porto

Alegre, RS, Brasil, 2020), SBC, pp. 29–40.

[130] Teylo, L.; Brum, R. C.; Arantes, L.; Sens, P.; Drummond, L. M. d. A.

Developing Checkpointing and Recovery Procedures with the Storage Services of

Amazon Web Services. In 49th International Conference on Parallel Processing -

ICPP: Workshops (New York, NY, USA, 2020), ICPP Workshops ’20, Association

for Computing Machinery.

[131] Toosi, A. N.; Calheiros, R. N.; Buyya, R. Interconnected cloud computing

environments: Challenges, taxonomy, and survey. ACM Comput. Surv. 47, 1 (may

2014).

[132] Truong, N.; Sun, K.; Wang, S.; Guitton, F.; Guo, Y. Privacy preservation

in federated learning: An insightful survey from the gdpr perspective. Computers

& Security 110 (2021), 102402.

BIBLIOGRAPHY 96

[133] Ullman, J. D. Np-complete scheduling problems. Journal of Computer and Sys-

tem sciences 10, 3 (1975), 384–393.

[134] Vaquero, L. M.; Rodero-Merino, L.; Caceres, J.; Lindner, M. A Break

in the Clouds: Towards a Cloud De�nition. SIGCOMM Comput. Commun. Rev.

39, 1 (12 2009), 50–55.

[135] Varshney, P.; Simmhan, Y. Autobot: Resilient and cost-e�ective scheduling of

a bag of tasks on spot vms. IEEE Transactions on Parallel and Distributed Systems

30, 7 (2019), 1512–1527.

[136] Villars, R. L.; Olofson, C. W.; Eastwood, M. Big data: What it is and

why you should care. White paper, IDC 14 (2011), 1–14.

[137] Wagenländer, M.; Mai, L.; Li, G.; Pietzuch, P. Spotnik: Designing Dis-

tributed Machine Learning for Transient Cloud Resources. In 12th USENIX Work-

shop on Hot Topics in Cloud Computing (HotCloud 20) (July 2020), USENIX As-

sociation.

[138] Ward, J. S.; Barker, A. Observing the clouds: a survey and taxonomy of cloud

monitoring. Journal of Cloud Computing 3, 1 (Dec 2014), 24.

[139] Workspace, G. Gmail: Free, Private & Secure Email. https://www.google.

com/intl/en_us/gmail/about/, 2022. Accessed 10 January 2022.

[140] Workspace, G. Google Docs: Free Online Document Editor. https://www.

google.com/intl/en/docs/about/, 2022. Accessed 10 January 2022.

[141] Xia, W.; Quek, T. Q. S.; Guo, K.; Wen, W.; Yang, H. H.; Zhu, H. Multi-

armed bandit-based client scheduling for federated learning. IEEE Transactions on

Wireless Communications 19, 11 (2020), 7108–7123.

[142] Xu, J.; Du, W.; Jin, Y.; He, W.; Cheng, R. Ternary compression for

communication-e�cient federated learning. IEEE Transactions on Neural Networks

and Learning Systems (2020), 1–15.

[143] Xu, M.; Yoon, S.; Fuentes, A.; Park, D. S. A comprehensive survey of image

augmentation techniques for deep learning. Pattern Recognition 137 (2023), 109347.

[144] Yang, H. H.; Liu, Z.; Quek, T. Q. S.; Poor, H. V. Scheduling policies for

federated learning in wireless networks. IEEE Transactions on Communications 68,

1 (2020), 317–333.

BIBLIOGRAPHY 97

[145] Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept

and Applications. ACM Trans. Intell. Syst. Technol. 10, 2 (Jan. 2019).

[146] Yin, L.; Zhou, J.; Sun, J. A stochastic algorithm for scheduling bag-of-tasks

applications on hybrid clouds under task duration variations. Journal of Systems

and Software 184 (2022), 111123.

[147] Yu, M.; Liu, J.; Wu, C.; Ji, B.; Bentley, E. Toward e�cient online scheduling

for distributed machine learning systems. IEEE Transactions on Network Science

and Engineering (2021), 1–1.

[148] Zhang, H.; Stafman, L.; Or, A.; Freedman, M. J. Slaq: Quality-driven

scheduling for distributed machine learning. In Proceedings of the 2017 Sympo-

sium on Cloud Computing (New York, NY, USA, 2017), SoCC ’17, Association for

Computing Machinery, p. 390–404.

[149] Zhang, Q.; Zhou, R.; Wu, C.; Jiao, L.; Li, Z. Online scheduling of het-

erogeneous distributed machine learning jobs. In Proceedings of the Twenty-First

International Symposium on Theory, Algorithmic Foundations, and Protocol Design

for Mobile Networks and Mobile Computing (New York, NY, USA, 2020), Mobihoc

’20, Association for Computing Machinery, p. 111–120.

[150] Zhang, X.; Wang, J.; Joshi, G.; Joe-Wong, C. Machine learning on volatile

instances. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-

cations (2020), pp. 139–148.

[151] Zhao, X.-P.; Jiang, R. Distributed machine learning oriented data integrity

veri�cation scheme in cloud computing environment. IEEE Access 8 (2020), 26372–

26384.

[152] Zhou, A. C.; Lao, J.; Ke, Z.; Wang, Y.; Mao, R. Farspot: Optimizing

monetary cost for hpc applications in the cloud spot market. IEEE Transactions

on Parallel and Distributed Systems 33, 11 (2022), 2955–2967.

98

APPENDIX A -- Complementary studies

During this PhD, there were complementary studies that served as motivation or inspira-

tion to this thesis.

In [130] and [129], we analyse the checkpointing recording and dump time of three

di�erent storage services from AWS, namely the Amazon Elastic Block Storage (EBS),

the Amazon Simple Storage Service (S3) and the Amazon Elastic File System (EFS).

Our results showed that the EBS has the fastest dump time to store a checkpoint, but it

does not allow concurrent access. Comparing the concurrent access in EFS and S3, we

observed that S3 handles better concurrent access than EFS. Regarding costs, EFS is the

most expensive of all three although it presents faster times when a single task is using it.

Thus, we concluded that the best cost-bene�t storage service for a concurrent application

is S3, but these results motivated the present thesis as the best storage service depends

on the access pattern to it.

In [18], we proposed a framework to execute a Sequence Alignment application in

clouds, using both Spot and on-demand VMs in AWS only. This application has an

application-level checkpoint and executes in a single VM with GPU. This simple frame-

work used a slowdown concept that represented the slowdown the application had when

executing in VM a compared to VM b. This slowdown was an inspiration to our execu-

tion and communication slowdowns described in Chapter 6 (Section 6.1. Moreover, this

framework selected the application VM using greedy heuristics in both initial scheduling

and when occurred a revocation, the latter being the inspiration to our Dynamic Sched-

uler algorithms (Section 6.4). Finally, we conducted several experiments with 5 di�erent

VMs of AWS and observed revocation patterns in two instance types, which led us to

create three revocation rates in this study, 1/(2hours), 1/(4hours) and 1/(6hours), used

in the experiments in this thesis (7.6). This study was also a motivation to schedule

FL applications in a multi-cloud environment as we observed that di�erent GPUs in the

same cloud have di�erent execution times, which makes the exclusive use of Spot VMs in

a single-cloud prohibitive.

99

APPENDIX B -- Published Papers

• Teylo, L.; Brum, R.; Arantes, L.; Sens, P.; Drummond, L. Developing Checkpointing

and Recovery Procedures with the Storage Services of Amazon Web Services. 16th

International Workshop on Scheduling and Resource Management for Parallel and

Distributed Systems, ICPP, 2020.

• Brum, R.; Bernardini, F.; Alves, M.; Drummond, L. Using Machine Learning Tech-

niques to Classify the Interference of HPC Applications in Virtual Machines with

Uncertain Data. XXI Simpósio em Sistemas Computacionais de Alto Desempenho,

WSCAD, 2020.

• Teylo, L.; Brum, R.; Arantes, L.; Sens, P.; Drummond, L. Avaliação dos Serviços de

Armazenamento da Amazon Web Services para Gravação e Recuperação de Check-

points. XXI Workshop de Testes e Tolerância a Falhas, WTF, 2020.

• Brum, R.; Sousa, W.; Melo, A.; Bentes, C.; de Castro, M.; Drummond, L. A

Fault Tolerant and Deadline Constrained Sequence Alignment Application on Cloud-

Based Spot GPU Instances. 27th International European Conference on Parallel and

Distributed Computing, EuroPar, 2021.

• Brum R.; Drummond L.; Castro M.; Teodoro G. Towards Optimizing Computa-

tional Costs of Federated Learning in Clouds. 1st Workshop on Cloud Computing,

SBAC-PAD, 2021.

• Brum, R.; Teodoro, G.; Drummond, L.; Arantes, L.; Castro, M.; Sens, P. Evaluating

Federated Learning Scenarios in a Tumor Classi�cation Application. VII Escola

Regional de Alto Desempenho do Rio de Janeiro, ERAD-RJ, 2021.

• Brum, R.; Arantes, L.; Castro, M.; Sens, P.; Drummond, L. Evaluating Execution

Times and Costs of a Federated Learning Application on di�erent Cloud Providers.

Conférence francophone d’informatique en Parallélisme, Architecture et Système,

COMPAS, 2022.

Appendix B -- Published Papers 100

• Brum, R.; Sens, P.; Arantes, L.; Castro, M.; Drummond, L. Towards a Feder-

ated Learning Framework on a Multi-Cloud Environment. 2nd Workshop on Cloud

Computing, SBAC-PAD, 2022.

• Brum, R.; Sens, P.; Arantes, L.; Castro, M.; Drummond, L. Optimizing Execution

Time and Costs of Cross-Silo Federated Learning Applications with Datasets on

di�erent Cloud Providers. 34th International Symposium on Computer Architecture

and High-Performance Computing, SBAC-PAD, 2022.

• Brum, R.; Castro, M.; Arantes, L.; Drummond, L; Sens, P. Multi-FedLS: a Frame-

work for Cross-Silo Federated Learning Applications on Multi-Cloud Environments.

Journal of Parallel and Distributed Computing, JPDC (in review).

• Vasconcelos, A.; Brum, R.; Paes, A.; Drummond, L. Detecção de Depressão nas M�́-

dias Sociais usando Transformers com Aprendizado Federado. VIII Escola Regional

de Alto Desempenho do Rio de Janeiro, ERAD-RJ, 2023.

• Brum, R.; Teylo, L.; Arantes, L.; Sens, P. Ensuring Application Continuity with

Fault Tolerance Techniques (book chapter). High Performance Computing in Clouds,

Springer, 2023.

• Sousa, W.; Soares, F.;Brum, R.; Figueiredo, M.; Melo, A; Castro, M.; Bentes, C.

Biological Sequence Comparison on Cloud-Based GPU Environment (book chapter)

High Performance Computing in Clouds, Springer, Cham, 2023

• Vasconcelos, A.; Drummond, L; Brum, R.; Paes, A.. Exploring Federated Learning

to Trace Depression in Social Media with Language Models The 2023 Chicken-egg

HPC/DL Workshop, SBAC-PAD, 2023.

	Inicio_SU
	Resume
	Final_SU

