
HAL Id: tel-04813442
https://theses.hal.science/tel-04813442v1

Submitted on 2 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning based 3D Multi-person Human pose
estimation from Monocular Vision

Amal El Kaid

To cite this version:
Amal El Kaid. Deep Learning based 3D Multi-person Human pose estimation from Monocular Vision.
Artificial Intelligence [cs.AI]. Université Clermont Auvergne; Université Mohammed V (Rabat), 2023.
English. �NNT : 2023UCFA0146�. �tel-04813442�

https://theses.hal.science/tel-04813442v1
https://hal.archives-ouvertes.fr

Cotutelle PhD THESIS
CIFRE France - Maroc

To obtain the degree of Doctor delivered by

The University of Clermont Auvergne

Doctoral School of Engineering Sciences (EPSI)

And

The University Mohammed V in Rabat

Doctoral School in Information Technology and Engineering
Sciences (ST2I)

Defended by

Amal EL KAID

Deep Learning based 3D Multi-person Human
pose estimation from Monocular Vision

Defended on 22/12/2023, after the reviewers’ opinions, in front of the examination

jury:

Pr. Vincent Barra, University of Clermont Auvergne Director
Pr. Karim Baïna, University Mohammed V in Rabat Director
Dr. Denis Brazey, Pryntec Company Supervisor
Dr. Violaine Antoine, University of Clermont Auvergne President
Pr. Renaud Péteri, La Rochelle University Reviewer
Pr. Mounir Ghogho, International University of Rabat Reviewer
Pr. Rachid Oulad Haj Thami, University Mohammed V in Rabat Reviewer

Acknowledgement

I would like to express my deepest gratitude to all those who helped me in the

completion of this thesis.

First and foremost, I am deeply indebted to my thesis advisors, Professor Karim

Baïna and Professor Vincent Barra. Their exceptional expertise, unwavering com-

mitment, and continuous guidance have been the cornerstone of this work. Beyond

academic advice, their administrative support was crucial in making my journey

easier and more rewarding. Their encouragement and dedication have been invalu-

able.

My sincere appreciation also goes to my supervisor at Pryntec company, Dr. Denis

Brazey. His encouragement greatly contributed to my professional development

and the realization of this thesis. Additionally, I am thankful for the directions and

opportunity provided by Jérôme Brossais, the R&D team director.

I am grateful to my colleagues for their valuable insights, suggestions, and support

throughout this academic adventure. Their diverse perspectives, constructive feed-

back, and companionship greatly enriched my thesis and experience.

My gratitude extends to the LIMOS laboratory, as well as Pryntec company, for

their exemplary resources and facilities. The dedicated office space, in particular,

was essential in facilitating my research and writing.

I sincerely thank the reviewers for their time, effort, and insightful feedback. Their

constructive criticism was crucial in enriching the depth and quality of this thesis.

2

This research was made possible thanks to the generous funding of a CIFRE

France/Morocco scholarship (2018/1635), in collaboration with the TEB/Pryntec

company. This collaboration is part of a joint initiative between Clermont-Auvergne

University in France and Mohammed V University in Rabat, Morocco. I am deeply

grateful for the financial support provided by the ANRT (National Agency for

Research and Technology) and the CNRST (National Center for Scientific and

Technical Research), which significantly contributed to the advancement of knowl-

edge in our field.

I am also deeply grateful to the Mesocentre of Clermont Auvergne University for

providing access to their supercomputer facilities, an essential resource for my

research.

A heartfelt thank you goes to my family, especially my parents, Mohammed

and Khadija, and my sisters, Rajae and Salma, whose love, wisdom, and unwaver-

ing encouragement have been my pillars of strength and inspiration.

A special note of gratitude to my husband, Mohamed Alimoussa, for his unwaver-

ing support, particularly in creating figures for my publications and manuscript.

His presence in my life is a profound blessing.

Furthermore, I extend a heartfelt thank you to my friends Nabila, Narjisse, Chaima,

Afaf, and Kawtar for their unwavering support. I sincerely wish them success in

all their endeavors.

Lastly, I want to express my profound appreciation to my esteemed colleagues

in the lab: Caroline, Trang, José, Aurélien, Soufiane, Vsevolod, Achref, and Ala.

Their collaborative spirit, valuable insights, and camaraderie have significantly

enhanced my research journey.

3

Contents

Acknowledgement 2

Avant-propos 3

Abstract 11

Abstract 11

Résumé 12

Résumé 13

1 General Introduction 16

1.1 Context and Motivation . 17

1.2 Company’s Requirements . 19

1.3 Challenge and Work plan . 20

1.4 General Introduction . 21

1.5 Organisation of the Thesis . 22

1.6 List of publications . 23

4

I Literature Review 26

2 Deep learning Concepts 27
2.1 Introduction . 28

2.2 Overview of Deep learning . 30

2.3 Basic concepts and principles . 31

2.4 Deep learning algorithms . 34

2.4.1 Learning Methods . 40

2.4.2 Acceleration methods for neural network training 40

2.4.3 Deep Learning Model Implementation 42

2.5 Limitations . 44

2.6 Deep learning-based human pose estimation 45

2.7 Conclusion . 45

3 State of the art of human pose estimation 47
3.1 Introduction . 48

3.2 Applications based on human pose estimation 48

3.2.1 Animation & Gaming . 49

3.2.2 Training Robots . 50

3.2.3 Intelligent surveillance and security systems 51

3.2.4 Sports analysis . 52

3.2.5 Healthcare . 53

3.3 Human body modeling . 54

3.4 Categories of Posture Estimation Methods 55

3.4.1 Generative approaches 57

3.4.2 Discriminative approaches 58

3.4.3 Hybrid approaches: . 60

3.5 Human pose estimation by deep-learning 60

3.5.1 Overview of 2D human pose estimation approaches 61

3.5.2 Single-person pipeline 62

5

3.5.2.1 Direct Keypoint regression 62

3.5.2.2 Keypoint heatmaps estimation 63

3.5.3 Multiple person pose estimation 65

3.5.3.1 Top-down approaches 66

3.5.3.2 Bottom-up approaches 67

3.5.4 Comparative Analysis of Top-Down and Bottom-Up Ap-

proaches in Multi-Person 2D Pose Estimation 68

3.6 Overview of 3D human pose estimation approaches 69

3.6.1 Supervised learning . 72

3.6.1.1 Direct regression 73

3.6.1.1.1 Direct regression using only 3D Data . 73

3.6.1.1.2 Fully supervised learning for 3D pose

in the wild 74

3.6.1.2 3D poses from 2D joints 75

3.6.1.2.1 Exemplar-based approaches 75

3.6.1.2.2 Deep neural mapping 78

3.6.1.3 3D pose tracking in video 79

3.6.2 Weakly supervised learning 82

3.6.2.1 Generative Adversarial Networks (GAN) 82

3.6.2.2 Multi-view supervision 83

3.6.3 Self-Supervised/Unsupervised Learning 84

3.6.4 Comparative Analysis of Methods Based on Learning

Paradigms . 85

3.7 Overview of Databases and Evaluation Metrics for Human Pose

Estimation . 87

3.7.1 Common databases and evaluation metrics for 2D human

pose estimation . 87

3.7.2 Common databases and evaluation metrics for 3D human

pose estimation . 90

6

3.8 Conclusion . 94

II 3D Real-time Multi-person pose estimation : Software
system design and developement 95

4 3D root-relative person pose estimation 97
4.1 Introduction . 98

4.2 Human detection . 98

4.2.1 Existing Human detection methods 98

4.2.1.1 Two-stage object detectors 99

4.2.1.2 One-stage object detectors 101

4.2.1.3 Conclusion . 103

4.2.2 The human detection method adopted in our system 103

4.3 Multi-person tracking . 104

4.3.1 Existing tracking methods 105

4.3.2 The tracking method adopted in our system 106

4.4 2D human pose estimation . 107

4.4.1 Existing 2D pose estimation networks 108

4.4.2 The 2D pose estimation method adopted in our system . . 110

4.5 3D pose estimation from 2D joints 112

4.5.1 Existing 3D pose estimation methods 112

4.5.2 The 3D pose estimation method adopted in our system . . 116

4.6 Conclusion . 119

5 Proposed approach for 3D absolute pose estimation 120
5.1 Introduction . 121

5.2 Existing techniques . 123

5.3 Monocular Root depth estimation 126

5.3.1 RootNet network architecture 128

7

5.3.2 Camera-intrinsic parameters 129

5.4 Two-stage approach 3D absolute pose estimation 130

5.4.1 Approach structure . 130

5.4.2 Validation . 132

5.4.3 Conclusion . 134

5.5 One-Stage approach for 3D absolute pose estimation 134

5.5.1 Approach structure . 134

5.5.2 Validation . 136

5.5.3 Conclusion . 137

5.6 Hybrid approach for 3D absolute pose estimation 137

5.6.1 Conclusion . 138

5.7 Geometric method for absolute root keypoint 138

5.8 Conclusion . 146

6 Software system implementation pipeline and experimental results 147
6.1 Introduction . 148

6.2 Implementing the framework’s training and Inference 149

6.2.1 GAST-NetABS training 149

6.2.2 Pre-processing phase . 149

6.2.3 2D human pose estimation 150

6.2.4 3D human pose estimation 152

6.2.5 Determining the focal length of a camera 157

6.2.6 Pose Visualization . 159

6.2.7 Taxonomy of the Framework 161

6.2.8 Posture analysis and fall detection 164

6.3 Experiments results . 165

6.3.1 Performance of Sequence-wise on the MuPoTS-3D 165

6.3.2 Performance on the Human3.6m 167

6.3.3 End-to-End Real-time system responsiveness 169

8

6.3.4 Qualitative results . 170

6.4 Conclusion . 170

III Software delivery 174

7 Software system industrialization 175
7.1 Introduction . 176

7.2 Main challenges of the system 177

7.2.1 Challenge 1: Simultaneously launch the AI models with

other processes . 178

7.2.2 Challenge 2: Reuse existing material as much as possible . 180

7.2.3 Challenge 3: Error accumulation in a chain of algorithms . 182

7.3 System hardware and software 184

7.3.1 Hardware . 184

7.3.2 Software libraries . 189

7.3.2.1 Deep learning libraries for training 190

7.3.2.2 Deep learning libraries for inference 194

7.3.2.2.1 PyTorch to TensorRT conversion . . . 200

7.3.2.2.2 Integration with existing systems . . . 201

7.3.2.2.3 Pre-processing images phase 202

7.3.2.3 Deep learning visualization 203

7.4 Industrial Software system delivery 204

7.4.1 Software delivery . 204

7.4.2 DevOps delivery pipeline 205

7.4.3 MLOps delivery pipelines 208

7.5 Conclusion . 212

7.6 General Conclusion and Perspectives 214

List of figures 253

9

List of tables 255

Publications 256

10

Abstract

Human pose estimation (HPE) has gained significant attention in various scientific

and industrial domains, including security and surveillance systems. This thesis

focuses on advancing the field of human pose estimation, specifically in the context

of 3D pose estimation using deep learning techniques.

The first part of the thesis involves a comprehensive review of recent methods

for human pose estimation from monocular images and videos. The review encom-

passes both 2D and 3D scenarios, with a particular emphasis on deep learning-based

approaches. A systematic literature review methodology is employed, where rele-

vant publications are selected based on inclusion/exclusion/quality criteria. These

selected papers are analyzed and summarized using a tree-structured taxonomy,

grouping them based on pose space representation (2D/3D), number of individuals

to be estimated, and learning strategies employed. The review covers approximately

200 eligible papers, providing an overview of different approaches, highlighting

their limitations, and comparing their strengths, weaknesses, and computational

complexities. Additionally, popular datasets and evaluation metrics used in the

field are presented, and current limitations and unsolved problems are identified,

laying the groundwork for future research.

The need for accurate 3D poses in real-life applications, particularly in surveil-

lance systems, is emphasized. The challenges of preserving distance and capturing

interactions between people are highlighted, as these factors play a crucial role in

scenarios such as fall detection systems. The limitations of existing research in

11

maintaining distance and interactions are acknowledged, underscoring the signifi-

cance of further investigation in these areas, which serves as the main challenge

addressed in this work.

In the second part of the thesis, a novel framework named Root-GAST-Net

is proposed to address the challenge of recovering 3D absolute poses using a

monocular RGB camera. The framework integrates a human detector, a 2D pose

estimator, a 3D root-relative pose reconstructor, and a root depth estimator in a top-

down manner, enabling real-time processing. Modifications to the GAST-Net and

RootNet networks are made to achieve efficient 3D absolute pose estimation. The

proposed Root-GAST-Net system is evaluated on benchmark datasets, including

Human3.6M and MuPoTS-3D, demonstrating its effectiveness by outperforming

state-of-the-art methods on various metrics. Moreover, the system operates in real-

time at 15 frames per second on an Nvidia GeForce GTX 1080 GPU, showcasing

its practical applicability.

In the third part of this thesis, the proposed framework is developed into a real

system at Pryntec Company. The delivery of the software and development details

of the proposal are explained, providing insights into the practical implementation

and deployment of the Root-GAST-Net system. The collaboration with Pryntec

Company contributes to the real-world application of the research findings and

demonstrates the industry relevance of the proposed framework.

This thesis contributes to the progress of 3D human pose estimation by offering

a thorough analysis of current methods, proposing a new real-time framework with

improved performance, and demonstrating its application in a practical context.

The findings of this research provide opportunities for further investigation and

advancement in deep learning-based human pose estimation, tackling important

issues and creating a path for future research pursuits.

Keywords: 3D pose estimation from monocular camera; multi-person pose
estimation; absolute poses; camera-centric coordinates; deep-learning models.

12

Résumé

L’estimation de la posture humaine (HPE) a suscité une attention considérable

dans divers domaines scientifiques et industriels, notamment les systèmes de

sécurité et de surveillance. Cette thèse se concentre sur l’avancement du do-

maine de l’estimation de la posture humaine, plus précisément dans le contexte de

l’estimation de la posture en 3D à l’aide de techniques d’apprentissage profond.

La première partie de la thèse comprend une revue complète des méthodes

récentes d’estimation de la posture humaine à partir d’images et de vidéos monocu-

laires. La revue englobe à la fois les scénarios 2D et 3D, en mettant particulièrement

l’accent sur les approches basées sur l’apprentissage profond. Une méthodologie

de revue de la littérature systématique est utilisée, où les publications pertinentes

sont sélectionnées en fonction de critères d’inclusion/exclusion/qualité. Ces arti-

cles sélectionnés sont analysés et résumés à l’aide d’une taxonomie structurée en

arbre, les regroupant en fonction de la représentation de l’espace de pose (2D/3D),

du nombre d’individus à estimer et des stratégies d’apprentissage utilisées. La

revue couvre environ 200 articles admissibles, offrant un aperçu des différentes ap-

proches, mettant en évidence leurs limitations et comparant leurs forces, faiblesses

et complexités computationnelles. De plus, les ensembles de données populaires

et les mesures d’évaluation utilisées dans le domaine sont présentés, et les limites

actuelles et les problèmes non résolus sont identifiés, jetant les bases de recherches

futures.

La nécessité de poses 3D précises dans les applications réelles, en particulier

13

dans les systèmes de surveillance, est soulignée. Les défis liés à la préservation

de la distance et à la capture des interactions entre les personnes sont mis en

évidence, car ces facteurs jouent un rôle crucial dans des scénarios tels que les

systèmes de détection des chutes. Les limites des recherches existantes concernant

la préservation de la distance et des interactions sont reconnues, soulignant ainsi

l’importance de poursuivre les investigations dans ces domaines, qui constituent le

principal défi abordé dans ce travail.

Dans la deuxième partie de la thèse, un nouveau cadre appelé Root-GAST-Net

est proposé pour relever le défi de la récupération des poses absolues en 3D à

l’aide d’une caméra RGB monoculaire. Le cadre intègre un détecteur humain,

un estimateur de pose 2D, un reconstructeur de pose relative à la racine en 3D et

un estimateur de profondeur de la racine de manière descendante, permettant un

traitement en temps réel. Des modifications sont apportées aux réseaux GAST-Net

et RootNet pour obtenir une estimation efficace de la pose absolue en 3D. Le

système proposé, Root-GAST-Net, est évalué sur des ensembles de données de

référence, notamment Human3.6M et MuPoTS-3D, démontrant son efficacité en

surpassant les méthodes de pointe sur différentes mesures. De plus, le système

fonctionne en temps réel à 15 images par seconde sur une carte graphique Nvidia

GeForce GTX 1080, démontrant ainsi son applicabilité pratique.

Dans la troisième partie de cette thèse, le cadre proposé est développé en un

système réel chez Pryntec Company. La livraison du logiciel et les détails de

développement de la proposition sont expliqués, offrant un aperçu de la mise en

œuvre pratique et du déploiement du système Root-GAST-Net. La collabora-

tion avec Pryntec Company contribue à l’application concrète des résultats de la

recherche et démontre la pertinence industrielle du cadre proposé.

Cette thèse contribue à l’avancement de l’estimation de la posture humaine en

3D en offrant une analyse approfondie des méthodes actuelles, en proposant un

nouveau cadre en temps réel avec des performances améliorées et en démontrant

son application dans un contexte pratique. Les résultats de cette recherche ouvrent

14

des opportunités pour des investigations et des avancées supplémentaires dans

l’estimation de la posture humaine basée sur l’apprentissage profond, en abordant

des problématiques importantes et en ouvrant la voie à de futures recherches.

mots-clés : estimation de pose 3D à partir d’une caméra monoculaire;
estimation de pose multi-personnes; poses absolues; coordonnées centrées sur
la caméra; modèles d’apprentissage profond.

15

1
C H A P T E R

General Introduction

16

1.1 Context and Motivation

Recently, the use of cameras in various fields has greatly transformed our capability

to capture and process visual information, leading to the emergence of computer

vision as a multidisciplinary field that aims to analyze, interpret, and comprehend

images and videos, enabling machines to perceive the visual world around them.

Computer vision has a wide range of applications in several fields. In the

area of surveillance, cameras are used for intrusion detection, face recognition,

and monitoring of critical environments. In the automotive industry, computer

vision is vital for driver assistance systems, pedestrian detection, and autonomous

navigation. Additionally, industries such as robotics, medicine, manufacturing,

and virtual reality and augmented reality also benefit from the advancements in

computer vision.

However, analyzing and interpreting visual data is complex, and 2D vision alone is

insufficient in addressing certain problems such as occlusion, viewpoint variability,

and three-dimensional scene understanding. Deep learning has played a crucial

role in addressing these challenges and advancing the field of computer vision.

Deep learning, particularly deep neural networks, has revolutionized how computer

vision systems can learn and extract complex features from visual data. With vast

datasets, deep neural networks can learn patterns, allowing them to automatically

recognize and understand objects, people, and actions. This approach has achieved

remarkable performance on tasks such as object detection, facial recognition, and

semantic segmentation.

Thanks to deep learning, computer vision has made significant strides, solving

intricate problems that previously seemed insurmountable.

In many scenarios, accurate human pose estimation is of paramount importance.

Understanding and interpreting human body movements in a three-dimensional

environment holds great value for many applications. 2D human pose estimation

was one of the early research goals, representing the positions and movements of

17

people in a two-dimensional space. However, this approach has significant limi-

tations, particularly concerning occlusions and ambiguities that can occur when

multiple people overlap or adopt similar 2D poses.

However, in real-world applications, 2D estimation proved insufficient to solve

problems such as occlusions, where certain body parts can be hidden or partially

visible. Additionally, 2D poses can be deceptive, as different poses may appear

identical. This complicates activity recognition and limits systems’ ability to un-

derstand and interpret human movements accurately.

To overcome these limitations, research has shifted towards 3D human pose es-

timation. By incorporating the depth dimension, 3D pose estimation provides

more comprehensive and precise information about the position and movements

of the human body. It allows for accurate differentiation of similar poses in 2D,

facilitating the recognition and interpretation of human activities.

By developing advanced methods based on deep learning, researchers have been

able to achieve more accurate and robust 3D human pose estimations. Such estima-

tions are essential in numerous fields of application.

However, estimating 3D pose for multiple individuals in real-world scenarios re-

mains a major challenge. In many applications, such as surveillance and security

systems, knowing the distances between individuals is essential for analyzing and

recognizing their interactions. This is where absolute pose estimation comes into.

The goal of absolute pose estimation is to locate the root joint (the key central point

of the person) and estimate its distance from the camera.

Currently, estimating 3D pose for multiple individuals is a complex challenge.

Whenever possible, stereo vision is used to calibrate the cameras and determine the

precise position of each person from images taken from different viewpoints. How-

ever, the use of stereo vision is not always feasible, and it significantly increases

the overall costs of the procedures. Moreover, acquiring such data is impractical

in real-time systems requiring optimization of the amount of data to capture and

process. The other common option is to use RGB-D (Red Green Blue - Depth)

18

cameras. Similarly, these cameras are not usable in practice because they generally

rely on infrared light, which makes them sensitive to unregulated ambient light.

Therefore, they are mainly designed for indoor environments. This highlights the

gap between scientific literature and real-world requirements. Researchers need to

find efficient and practical solutions to estimate 3D pose for multiple individuals

respecting real-world constraints.Monocular images or videos may serve as an

alternative input for applications based on 3D human pose estimation, offering a

simpler hardware setup and reduced costs. Another challenge faced is the need for

real-time estimation. Real-time 3D human pose estimation is essential in applica-

tions that require fast and precise responses.

It is in this context that the motivation for this thesis arises. The thesis’s purpose is

to design and develop a deep learning-based method for real-time estimation of

multi-human absolute 3D pose from a monocular camera.

1.2 Company’s Requirements

TEB Group is a Burgundy-based company established by Louis Bidault in 1978

that specializes in producing and installing video protection solutions. The com-

pany has evolved with technical and technological advancements and has over 40

years of experience in the industry. TEB Group’s product offerings have expanded

to include computerized video recording solutions that cater to the retail, industrial,

logistics, and urban security sectors. TEB Group has established technical agencies

across France and distributes its solutions through its subsidiary companies and

partner network, which has a presence in Europe, the United States, and Brazil.

One of TEB Group’s companies is Pryntec, founded in May 2001.

Pryntec is a simplified joint stock company, founded in May 2001 and is a sub-

sidiary of TEB. It is responsible for researching and developing electronic and

computer systems for video surveillance. Pryntec consists of a team of about 15

employees with two teams, one focused on electronic solutions and the other on

19

software solutions. The company specializes in developing both hardware and

software products.

As part of the CIFRE France/Morocco thesis program, I had the opportunity to

conduct an applied thesis with a company that prioritizes security and surveil-

lance initiatives. The CIFRE program (Convention de formation industrielle par la

recherche (Industrial Training through Research Convention)) is a French initiative

that enables companies to sponsor PhD students to work on research projects that

benefit both the company and the student. The company’s focus areas include

monitoring isolated workers for potential accidents and controlling access through

door positions. To achieve more accurate posture analysis, the company aims to

analyze 3D poses instead of 2D poses, which can be unreliable. My thesis research

is centered around the estimation of 3D poses to help the company achieve its

objectives in this area.

1.3 Challenge and Work plan

In a thesis that integrates academic and corporate aspects, the main difficulty is

finding a balance between the scientific rigor required for a successful thesis and

the practical considerations and objectives of the company. This project was carried

out in a company that specializes in surveillance cameras and image processing

systems, which necessitated close collaboration and regular monthly meetings with

both academic and industrial supervisors. The goal was to ensure that decisions

were made and tasks were executed in a way that met both academic and corporate

objectives. The following sections outline the work plan in the form of work

packages:

– WP 0: Conducting a state-of-the-art review.

– WP 1: Acquisition and management of data.

– WP 2: Developing and implementing the network and training code.

20

– WP 3: Conducting experiments.

– WP 4: Comparing the results with existing literature.

– WP 5: Preparing and publishing the findings.

1.4 General Introduction

This thesis delves into the field of human pose estimation, a subject that has

garnered significant attention and research in recent years. The advancements in

this area have led to the emergence of various methods for accurately determining

human body postures, opening up new possibilities for image processing and video

analysis applications.

The primary objective of this thesis was to tackle the challenge of absolute

estimation of multi-person 3D poses using RGB monocular images. To achieve this,

we developed a comprehensive software pipeline that addresses both application-

specific and industrial requirements, ensuring its practicality and usability in

real-world scenarios.

Our approach begins by detecting all the individuals present in the image. Each

person is assigned a unique identifier and tracked throughout the sequence as long

as they are present. For each frame and for each person, we first predict the 2D

coordinates of all the joints and then utilize a grouping process to predict 3D

skeletons by leveraging temporal information. Our proposed approach relies on

absolute estimation of the postures, accurately determining the true position of

each person in the room relative to the camera. This necessitates training a network

to estimate the depth of one of the joint points.

Throughout this thesis, we have enhanced several components of the pipeline

to improve the precision of our estimates, which will be discussed in detail. Our

approach has demonstrated favorable results when compared to existing literature.

The primary contribution of this thesis is the development of a method for 3D

21

skeleton estimation that can be applied to various scenarios with limited prior

knowledge about the scene and the individuals within it. Notably, we have cre-

ated a system that does not rely on body markers or similar equipment, instead

utilizing only a sequence of RGB images from a standard camera as input. This

system has potential applications in domains such as surveillance and fall detection,

particularly in recognizing specific actions.

1.5 Organisation of the Thesis

The thesis is structured as shown in Figure 1.1. It consists of a general introduction

followed by three main parts: the literature review, the software system design and

development work, and software delivery.

The first chapter is a general introduction provides a brief overview of the

research study, its context, and motivation from both academic and industrial

perspectives. This chapter also outlines the structure of this thesis organization as

well as the list of publications.

The first part is divided into two main chapters:

Chapter 2: provides an overview of the fundamental principles and concepts of

deep learning.

Chapter 3: presents an up-to-date analysis of the latest methods and approaches

used in 3D human pose estimation.

The second part of this thesis focuses on the design and development of a

real-time multi-person 3D pose estimation software system. It is divided into three

chapters:

Chapter 4: concentrates on the conceptual design of the software framework for

real-time multi-person 3D pose estimation. It provides an in-depth discussion

of the models utilized at various stages of the process to predict 3D root-

relative person pose estimation.

22

Chapters 5: delves into the three proposed architectures for obtaining 3D absolute

pose estimation. Each architecture is presented and analyzed in detail,

highlighting their respective strengths and limitations.

Chapter 6: focuses on the implementation pipeline of the software system and

presents the experimental results that validate our approach, comparing it to

existing literature. The results demonstrate the effectiveness and accuracy of

our proposed method.

The last part of the thesis is dedicated to Software Delivery and consists of one

chapter:

Chapter 7: discusses the industrialization of the software system. It addresses the

practical aspects of deploying the system in real-world scenarios, considering

factors such as scalability, performance optimization, and integration with

existing software infrastructure.

This thesis covers the entire spectrum of studying and developing a real-time

multi-person 3D pose estimation software system, from conceptual design to

implementation and industrialization.

1.6 List of publications

– El Kaid, A., Baïna, K., Baina, J., Barra, V. Real-world case study of a deep

learning enhanced Elderly Person Fall Video-Detection System. International

Conference on Computer vision Theory and Apllications (VISAPP’23), 19 -

21 February, 2023, Lisbon, Portugal.

– El Kaid, A., Baïna, K., Baïna, J.. Improving Elderly person fall video-

detection algorithm: False positive reduction technique. International Confer-

ence on Complexity Analysis of Industrial Systems and Advanced Modeling

(CAISAM’19), 25- 27 April,2019, Benguerir, Morocco.

23

– El Kaid, A., Baïna, K., Baïna, J. Reduce false positive alerts for elderly

person fall video-detection algorithm by convolutional neural network model,

The Second International Conference on Intelligent Computing in Data

Sciences (ICDS’18), 03- 05 October, 2018, Fez, Morocco.

– El Kaid, A., Brazey, D., Barra, V., Baïna, K. (2022). Top-down system for

multi-person 3D absolute pose estimation from monocular videos. Sensors,

22(11), 4109.

– El Kaid, A. Baïna, K. (2023). A Systematic Review of Recent Deep Learning

Approaches for 3D Human Pose. Journal of Imaging, 9(12), 275.

24

1.6. LIST OF PUBLICATIONS 25

G
en

er
al

In
tr

od
uc

tio
n

Pa
rt

I
Li

te
ra

tu
re

R
ev

ie
w

C
ha

pt
er

2
D

ee
p

lea
rn

in
g

Co
nc

ep
ts

C
ha

pt
er

3
St

at
e

of
th

e
ar

t
of

hu
m

an
po

se
es

tim
at

io
n

Pa
rt

2
3D

R
ea

l-t
im

e
M

ul
ti-

pe
rs

on
po

se
es

tim
at

io
n:

So
ft

w
ar

e
sy

st
em

de
sig

n
an

d
de

ve
lo

pm
en

t

C
ha

pt
er

4
3D

ro
ot

-re
la

tiv
e

pe
rs

on
po

se
es

tim
at

io
n

C
ha

pt
er

5
Pr

op
os

ed
ap

pr
oa

ch
fo

r3
D

ab
so

lu
te

po
se

es
tim

at
io

n

C
ha

pt
er

6
So

ftw
ar

e
sy

st
em

im
pl

e
m

en
ta

tio
n

pi
pe

lin
e

an
d

ex
pe

rim
en

ta
lr

es
ul

ts

Pa
rt

3
So

ft
w

ar
e

D
el

iv
er

y

C
ha

pt
er

7
So

ftw
ar

e
sy

st
em

in
du

st
ria

liz
at

io
n

Figure 1.1: Thesis structure

Part I

Literature Review

26

2
C H A P T E R

Deep learning Concepts

27

2.1 Introduction

Artificial intelligence has become an important factor in the industrial revolution. It

aims to understand and reproduce the fundamental principles of human intelligence

and to improve human life through the use of technology. Currently, Deep Learning

Technology, which is very popular, plays a central role in the last achievements

and research of artificial intelligence.

Indeed, Deep learning (DL) has become a prevalent technology in our daily life,

often in ways we may not even be aware of. For example, Facebook uses deep

learning algorithms to automatically recognize and tag people in photos. Digital

assistants such as Siri, Cortana, and Alexa employ natural language processing

and speech recognition created by deep learning algorithms to understand and

respond to user requests. Skype also employs deep learning algorithms to offer

real-time translations for conversations with international contacts. Additionally,

email service providers utilize deep learning algorithms to recognize and eliminate

spam emails. The uses of deep learning are numerous and diverse.

Deep learning has also led to the development of complex and advanced practical

applications in various fields, as table 2.1 presents:

Additionally, deep learning has many other applications in various domains

that are not listed in the table . The potential for deep learning to transform the way

we process and analyze data has garnered significant interest from both academia

and industry.

This thesis also presents research work based on deep learning approaches in an

industrial setting. Before delving into the specifics of this work, it is essential

to first understand the concept of deep learning. Deep learning is a sub-field of

machine learning that involves the use of artificial neural networks with multiple

layers, or "deep" neural networks, to learn hierarchical representations of data.

These deep neural networks can adapt and improve their performance over time

by adjusting the weights and biases of the connections between the nodes in each

28

2.1. INTRODUCTION 29

Field DL can be used to ...

Self-driving cars enable self-driving cars to distinguish between red and green lights,

identify pedestrians and other objects on the side of the road, and even

measure the distance between two cars.

Personal assistants create chatbots and service bots that can interact with customers and pro-

vide intelligent answers to increasingly complex voice and text queries.

Security and surveillance enhance security measures, such as facial recognition systems, which are

already widely implemented in airports to facilitate seamless, paperless

checking.

Healthcare analyze medical images, predict patient outcomes, and identify potential

outbreaks of diseases.

Finance analyze market trends, identify fraudulent transactions, and make invest-

ment recommendations.

Marketing analyze customer data and make personalized recommendations for

products or services.

Education personalize learning experiences for students, adapting to their strengths

and weaknesses.

Law enforcement analyze video footage from security cameras to identify criminal activity

and assist in investigations.

Transportation optimize traffic flow and improve public transportation systems.

Agriculture analyze aerial images of crops to identify pests, diseases, and areas of

unhealthy growth.

Environmental monitoring analyze satellite images to identify changes in land use and detect envi-

ronmental disasters such as oil spills.

Manufacturing improve the efficiency of manufacturing processes by predicting equip-

ment failures and optimizing supply chain management.

Language generation generate text based on a given prompt or context, such as writing sum-

maries, providing information, or answering questions such as ChatGPT

or Bard.

Table 2.1: Applications of Deep Learning in various industries

layer.

Machine learning is a subset of artificial intelligence that focuses on "learning"

rather than computer programming. It is a broad field that deals with the study

and construction of algorithms that can learn from and make predictions on data.

Artificial neural networks are a type of machine learning algorithm inspired by the

structure and function of the human brain. These algorithms consist of intercon-

nected nodes, or "neurons," that can learn patterns and features in data by adjusting

the weights and biases of the connections between the nodes

Artificial intelligence (AI) is the field of computer science and engineering focused

on the creation of intelligent machines that work and act like humans. At its

core, AI involves the development of algorithms and systems that can analyze,

reason, and make decisions in a way that is similar to human cognition. The

ultimate goal of AI research is to create systems that are able to perform tasks that

would normally require human intelligence, such as learning, problem-solving, and

decision-making.

2.2 Overview of Deep learning

Neural networks are a type of machine learning algorithm, and deep learning is a

sub-field of machine learning that uses deep neural networks to learn hierarchical

representations of data.

Deep learning is a sub-field of machine learning that has gained significant attention

in recent years due to its successes in a wide range of applications, including image

and speech recognition, natural language processing, and autonomous vehicles.

The concept of artificial neural networks, which are at the heart of deep learning,

was first proposed in 1943 by Warren McCulloch and Walter Pitts. In the following

decades, training algorithms for neural networks were developed, including the

perceptron learning rule and the back-propagation algorithm. However, the field of

neural networks experienced a period of stagnation during the 1980s and 1990s

30

due to the limited computational power available at that time and the lack of large

databases for learning.

A breakthrough in the field came in 2006 when a paper by Geoffrey Hinton and

his team demonstrated the effectiveness of deep learning for image recognition.

This sparked a resurgence of interest in deep learning, and in the 2010s it became

a hot topic in the field of machine learning. Some of the key figures in the

development and advancement of deep learning include Hinton, Yann LeCun,

Andrew Ng, and Fei-Fei Li.

Deep learning has been successfully applied to a variety of tasks and has also

led to the development of complex and advanced practical applications in various

fields.

Additionally, deep learning has many other applications in various domains

that are not listed above. The potential for deep learning to transform the way we

process and analyze data has garnered significant interest from both academia and

industry.

2.3 Basic concepts and principles

Deep learning (DL), a subset of machine learning, leverages deep artificial neural

networks (ANNs), algorithms inspired by the structure and function of the human

brain. In this section, we delve into the core ideas of machine learning and ANNs,

presenting the fundamentals of DL, including the architecture and operation of

ANNs.

Machine learning, a component of AI, focuses on developing algorithms that en-

able machines to learn from data, detect patterns, and make predictions. These

algorithms can be categorized into supervised and unsupervised learning.

Supervised learning algorithms require labeled data for training, while unsuper-

vised learning algorithms can learn from unlabeled data. Machine learning is

a statistical technique that uses algorithms to train data-driven models and use

31

those models to make predictions and decisions. It requires carefully selected and

well-prepared data. Commonly used models include linear regression, decision

trees, random forest, support vector methods, and even shallow neural networks.

Deep learning is a machine learning technology that uses deep neural networks with

many layers to process data. These networks can learn directly from raw data and

independently extract hierarchical features for pattern recognition, classification,

segmentation, and content generation tasks. Deep learning uses different types of

neural networks, such as convolutional neural networks, recurrent neural networks,

generative adversarial networks, and more recently, transformers.

The main difference between deep learning and machine learning is the complexity

of the data and the processing power. Machine learning extracts features from data

through manual tasks such as feature engineering and builds models from them.

Deep learning, on the other hand, uses artificial neural networks with many hidden

layers to automatically extract features from data and uses deep neural networks

that can learn from large amounts of raw data, allowing them to identify more

complex relationships between features. Deep learning approaches allow comput-

ers to learn and recognize patterns automatically by simulating the structure and

operation of the neural networks in the human brain. These networks are composed

of neurons, layers, and weights. The neuron is a fundamental component that takes

in input and generates output. In a conventional neural network, each neuron is

linked to other neurons, and they are grouped into layers. These layers are divided

into three types: the input layer, the output layer, and the hidden layer. The input

layer takes in external data, such as image pixel values or text character encoding,

which is then used to process the input and extract useful features. The output

layer produces the results of the learning task, such as object categories in images

or sentiment classification of text. The hidden layer is responsible for processing

the input data and extracting and combining the relevant features. Each neuron

has one or more inputs, and each input weights to specify its level of influence on

the neuron’s output 2.1. All the inputs and their respective weights are multiplied

32

Figure 2.1: Typical Deep Neural Network architecture

together and then summed, before being used to compute the output through a

nonlinear activation function, such as a sigmoid or ReLU function. Nonlinear acti-

vation functions are required for neural networks to learn more complex patterns.

Training an artificial neural network involves learning it to accurately map input

data to the corresponding output so that the network gradually adjusts its weights

based on this feedback. Specifically, data is fed into the input layer and then

processed by several hidden layers to produce an output prediction. The prediction

is then compared to the correct response, and the difference is used to adjust the

weights of the network. The goal is to reduce the error as much as possible and

obtain a well-trained model. This process is facilitated by the back-propagation

algorithm, which leverages gradient descent of the loss function to compute the

discrepancy between the predicted and actual values for each weight. The gradient

33

represents the direction of the steepest increase in the loss function, so by moving

in the opposite direction, the weights can be updated to decrease the loss. The

learning rate determines the step size of the weight updates. The process is itera-

tively repeated until the network’s predictions are sufficiently accurate, resulting in

a successfully trained model.

Testing is crucial in controlling overfitting in machine learning. A separate

test set is used to assess the model’s ability to accurately generalize to new data,

as it contains examples that the model has never encountered during training. By

evaluating the model’s performance on the test set after each training iteration or

epoch, it is possible to determine if the model is overfitting or generalizing well

to unseen data. Improvement in the model’s performance on the test set indicates

good generalization, while degradation of the performance on the test set while

training continues to improve suggests overfitting, which requires appropriate steps

to address it.

2.4 Deep learning algorithms

The objective of the DL task is to extract useful information from input data and

convert it into meaningful output. This task is widely used in computer vision,

natural language processing, and speech recognition.

The field of computer vision encompasses a wide variety of tasks, including but

not limited to detection, classification, recognition, segmentation and regression.

- The detection task is to locate and mark the position of a particular object in an

image or video. It aims to find a specific class of objects in an image or video and

label their position and size. For example, a detection system might be able to

identify and label all the cars in a parking lot (see Figure 2.2).

- The classification task aims to classify input data into predefined categories. A

typical example is image classification. For example, if an image is required to be

classified as either "Donald," "Goofy," or "Tweety," the classification task would

34

classify this image into the respective category (see Figure 2.2).

- The recognition task is to identify a particular object or face from a set of objects

or faces. The recognition task is usually performed using a classifier. This means

using a trained model to classify objects in an image or video. The classifier

extracts features from the input image and compares them to known objects to

assign the most likely class. For example, a recognition system might be able to

identify a particular person from a crowd of people (see Figure 2.1).

- The segmentation is the task of dividing an image or video into numerous seg-

ments or regions for the purpose of identifying and isolating particular objects or

boundaries. It is comprised of semantic segmentation, which assigns each pixel to a

specific class or category, and instance segmentation, which differentiates between

separate instances of the same class. For instance, in a street view, a semantic

segmentation algorithm might label all pixels as belonging to roads, buildings,

cars, or pedestrians, while an instance segmentation algorithm would distinguish

between individual cars in that same scene (see Figure 2.2).

- The regression task, on the other hand, aims to estimate a continuous value or

numerical output from the input data. A typical example is the estimation of prices.

For example, given information about the year, mileage, body type, and color of a

certain used car, the estimation task estimates the price of that car (see Figure 2.3).

Furthermore, Deep learning is a machine learning technique that uses multi-layer

neural networks. Convolutional neural networks (CNN) and recurrent neural net-

works (RNN) are the two main types of deep learning algorithms.

Convolutional neural networks (CNN) (Figure 2.4) are primarily used for image

processing tasks. A CNN consists of a set of convolutional layers, pooling lay-

ers, and flattened layers to extract features in an image. The algorithm process

involves using compact filters on an image to conduct convolutional operations,

which generate feature maps. The filters slide over the image’s smaller regions

and apply convolution operations in these regions. This generates a feature map

35

36 CHAPTER 2. DEEP LEARNING CONCEPTS

Figure 2.2: Comparison between semantic segmentation, classification, object

detection and instance segmentation

Figure 2.3: Regression Analysis Using Artificial Neural Networks

Figure 2.4: Convolutional Neural Network Architecture for Classification

that corresponds to the image features extracted by that filter. Then the pooling

layer compresses and decreases the size of the feature map to reduce computational

complexity and passes it on to the next layer. Finally, the feature map is converted

into a flat vector to perform tasks such as class classification [1].

Recurrent Neural Networks (RNN) [2, 3] are a class of artificial neural networks

used to process time series data and sequential data. These data structures have

a specific arrangement where the previous output influences the next input, such

as in natural language processing. The key feature of RNNs is their capacity to

memorize past information and use it to make decisions about future data. As a

result, RNNs are used for various tasks, including sequence prediction, text and

audio signal processing, image sequence analysis, language translation, speech

recognition, and sentiment analysis.

RNNs [4] (see Figure 2.5) are usually composed of recursive cells that receive the

current input and the hidden state of the previous cell as input. The hidden state

represents the information stored in the cell and is used to inform decisions made

by the cell in the next step. Backpropagation techniques are commonly used in

combination with RNNs to train the network using training data. LSTM and GRU

37

Figure 2.5: Recurrent Neural Network Architecture [5]

are more advanced types of RNNs, capable of learning long-term dependencies,

addressing the gradient vanishing issue, and achieving excellent performance in

speech recognition and natural language processing tasks.

Long-short-term memory (LSTM) networks [4, 6] is an extension of recurrent

neural networks that allow to remember important information over a long period.

LSTM networks were designed to address a common problem with RNNs, namely

their tendency to forget important information about long sequences. The units of

an LSTM are used to build layers of recurrent neural networks, which are often

referred to as LSTM networks. LSTMs store information in gated cellular memory,

which decides whether to store or discard information based on its importance,

which is learned by the algorithm over time.

GRUs (Gated Recurrent Units) [7, 8] are the newer generation of recurrent neural

networks and are pretty similar to an LSTM. However, one of the main differences

38

between LSTMs and GRUs is that GRUs use two gates (reset gate and update gate)

to control the information that is stored and transmitted in the cell. Unlike LSTMs,

GRUs do not have an explicit forget gate, which means that they can potentially

have difficulty forgetting unnecessary information in certain situations. Another

important difference is that GRUs have fewer parameters than LSTMs, making

them computationally lighter and therefore faster to train. However, LSTMs tend

to be more powerful than GRUs for modeling complex data sequences, as they can

store information longer and more accurately due to their explicit forgetting gate.

LSTMs have also been more widely studied and used in deep learning research

than GRUs.

Similar to RNNs, Temporal Convolutional Networks (TCNs) [9] are another type

of neural network used for processing sequential input. TCNs are created utilizing

1D convolutional layers that work with the input data’s temporal dimension. TCNs

can parallelize computation across the entire sequence and learn long-term depen-

dencies using dilated convolutions, in contrast to typical RNNs, which process

sequences sequentially and have vanishing gradient problems.

Auto-encoder [10] is another type of artificial neural network that learns to repre-

sent the input data using a hidden layer that reduces the dimensionality of the input.

It consists of two main parts: the encoder and the decoder. The encoder takes

the input data and transforms it into a reduced dimensional representation, called

the latent code. The decoder then takes this latent code and transforms it into an

output that must match the original input data. The objective of the auto-encoder is

to minimize the reconstruction error between the decoder output and the original

input data. Unlike CNNs and RNNs, auto-encoders can be used to learn latent

representations of unstructured data, such as images or text, without requiring

additional annotations.

Auto-encoders are widely used in data compression, dimensionality reduction,

anomaly detection, and data generation applications. They are also used as a pre-

processing step to improve the performance of classification and object recognition

39

models.

2.4.1 Learning Methods

Machine learning involves a range of algorithms that can be used for training

purposes. One type is supervised learning, which requires labeled data for training.

Another type is semi-supervised learning, which can work with both labeled and

unlabeled data. Unsupervised learning algorithms, on the other hand, do not require

labeled data for training. Finally, reinforcement learning algorithms enable agents

to learn from trial and error through interactions with their environment. Table 2.2

provides detailed descriptions for each of the different types.

2.4.2 Acceleration methods for neural network training

Training the neural network often requires a lot of computing power. However, the

training can be accelerated by various techniques.

Although a single GPU can handle a large number of computing tasks, when

processing large models, multiple GPUs can provide more computing power and

can significantly shorten the training time. Indeed, when training a neural network,

large amounts of data need to be run through the network to optimize the weights,

so it is recommended to use multiple GPUs in parallel to be able to divide the data

between the GPUs and process them simultaneously. This results in faster data

processing and faster weight optimization.

Another method to speed up neural network training is overlap pooling. In pooling,

a matrix is divided into smaller parts to shrink and simplify the network. Overlap-

ping pooling extends this method by dividing the matrix into overlapping regions.

This introduces more information into the network as the individual areas overlap.

This can help improve the accuracy of the neural network.

The use of these methods has become standard in many deep learning programs,

allowing researchers and engineers to develop more complex and accurate neural

40

Learning Method Description

Supervised Learning Machine learning method that predicts new data output through the

training data that is known as input and output to predict new data output.

The labels of training data are known. The model is classified or returned

to the analysis of how these labels learn how these unsigned data are

classified. The following are some common methods in supervision

learning: Linear regression, Logic regression, Linear discrimination

analysis, and Decision-based (classification and regression tree).

Reinforcement Learning Machine learning method learns the best strategy by taking action in an

uncertain environment. In reinforcement learning, the model adjusts the

strategy based on the feedback signal to maximize the expected reward.

Q-Learning, SARSA, and Deep Reinforcement Learning are some com-

mon methods in reinforcement learning. They have applications in game

AI, robot control, self-driving cars, and more.

Semi-supervised Learn-

ing

Algorithm that performs supervised learning in situations where only

a portion of the input data is labeled. The algorithm uses both labeled

and unlabeled data to train the model. Semi-supervised learning has the

advantage of reducing the cost of data collection and labeling.

Unsupervised learning Algorithm that learns from input variables without being given an output

variable. A typical example is the clustering algorithm. A clustering

algorithm is an algorithm that categorizes input data into similar groups.

Table 2.2: Learning Methods

network models.

On the other hand, deep learning models often require large amounts of data to train

effectively, but obtaining sufficient and accurate labeled data can be a challenge.

Data augmentation is one of the techniques used to deal with this issue. It involves

generating additional training examples by performing various transformations on

the existing data, thereby increasing the diversity and size of the dataset. This can

help prevent over-fitting and improve the performance of the DL model, as well

41

as its ability to generalize to new, unseen examples, and to increase its robustness.

There are different ways to perform data augmentation, depending on the nature of

the data and the problem being addressed. This can involve:

– Geometric transformation: transformations such as rotating an image by a

certain angle, zooming, flipping it horizontally or vertically, scaling it up

or down, cropping out a portion of the image, and translating an image to

generate pictures of different perspectives and sizes.

– Adding Noise: adding random noise such as Gaussian noise, salt and pepper

noise, etc. to an image.

– Changing Color and Contrast: changing the color or contrast of an image.

– Color translation: adjusting the color including brightness, contrast, color,

saturation, etc. of the picture to produce different color styles.

2.4.3 Deep Learning Model Implementation

To implement a deep learning model, several steps need to be followed. First,

it is important to determine the problem that the model will address and gather

relevant data for training and testing. The data needs to be prepared by cleaning it

from noise and outliers, formatting it in a way that is appropriate for deep learning

algorithms, preprocessing it to obtain meaningful features, and dividing it into

training, validation, and test samples.

Next, the appropriate deep learning architecture must be built based on the type

of problem being addressed and the characteristics of the data. This step requires

selecting the model architecture, including the choice of the number of layers, layer

types, and activation functions, as well as the parameters of each layer. This may

require multiple experiments to determine the optimal model configuration.

Once the architecture is defined, the model needs to be trained using the training

data. This involves passing the data through the model during training with a

42

specific batch size, calculating losses and gradients, and then updating the model

weights according to the gradient using a specific optimization algorithm (e.g.,

stochastic gradient descent). Furthermore, it is essential to track the model’s

performance on validation data to prevent overfitting and adjust hyperparameters

as needed during the training process.

To avoid overfitting, it is common practice to apply regularization techniques

such as dropout. Dropout is another common method in the image processing

field that solves the problem of overfitting and optimizes the training of a Deep

Learning model. This method is considered a regularization technique [cite source].

The term "dropout" means the removal of certain neurons in the layers of a Deep

Learning model, randomly during training, as well as all the incoming and outgoing

connections of these neurons. The objective is to make the model less dependent

on certain neurons and therefore, better generalize with new data. It is important to

note that dropout is only active during the training of the model. During tests, all

neurons remain active.

Finally, after the model is trained and validated, it needs to be evaluated using the

test dataset. This evaluation provides an estimate of the model’s performance on

data that it has not used during training, to determine if the model can generalize

to new data or scenarios using various metrics, as well as visualizing the results.

If a model doesn’t perform well enough on the test data, it may be necessary to

fine-tune the model based on the evaluation results, incorporating new data or

optimizing existing parameters. In fact, fine-tuning involves adjusting the upper

layers or hyperparameters of a pre-trained model for a new dataset, while keeping

the lower layers frozen to retain the previously learned knowledge. This allows the

model to adapt to the new dataset while still benefitting from the pre-training. Fine-

tuning is a specific type of transfer learning, which involves taking a pre-trained

model and completing its training for a similar but more specific task. This can

potentially reduce the time, cost, and data requirements. Retraining can involve

changing hyperparameters, model architecture, or training on new data.

43

2.5 Limitations

Deep learning is a technology that shows great promise, having achieved significant

performance in many machine learning problems, such as image recognition and

natural language processing. However, caution and precautionary measures are

required due to several limitations and challenges.

One of the main limitations of deep learning is over-fitting, where a model over-

trains on training data and becomes less adaptable when presented with new data.

This can result in high training accuracy but low generalizability on new, unseen

data. To address this issue, techniques such as adjusting hyperparameters and

cross-validation might be applied.

Deep learning also heavily relies on large amounts of high-quality data for training,

which can be difficult and time-consuming to collect and create. Additionally, the

dataset may be biased. Transition learning and unsupervised learning can be used

to address this issue.

Another challenge is the need for significant computational resources. Large

models and data require high-performance hardware, such as fast graphics cards or

distributed processing systems.

Interpretability of deep learning results is also a challenge. While deep neural

networks can produce very good predictions, it is difficult to explain how they

arrived at these predictions. This is especially important in situations where

decisions are made based on critical data, such as medical diagnoses. Furthermore,

deep learning’s large computational requirements can make it difficult to deploy in

resource-constrained environments, such as mobile devices or embedded systems.

Therefore, the use of deep learning must be carefully considered within the scope

of its limitations and challenges in order to maximize its benefits and minimize

potential risks.

44

2.6 Deep learning-based human pose estimation

Building on the successes of deep learning in diverse domains, human pose estima-

tion using deep learning methods has gained significant attention. Researchers have

exploited the power of convolutional neural networks (CNNs), recurrent neural net-

works (RNNs), and other specialized architectures to overcome the challenges of

occlusion, scale variation, and complex articulations. These efforts have led to the

ability to accurately infer body postures and movements from visual data, sparking

innovation in sectors like sports science, surveillance, and augmented reality. We

will delve deeper into the relevant literature and explore these developments in

greater detail in the next chapter.

2.7 Conclusion

In this chapter, we have covered the successful applications of deep learning in

various domains such as healthcare, finance, and security. One reason for its success

is its ability to automatically learn relevant features from input data without manual

feature engineering. We have also discussed different architectures like CNNs,

RNNs, and auto-encoders that have been proposed for specific tasks. However,

deep learning requires computationally intensive training and large amounts of data.

We have also discussed how advancements in pre-trained models and hardware have

sped up the training process, employing techniques like model parallelism, data

parallelism, and distributed training. Also, some challenges have been identified

such as overfitting, the need for large amounts of labeled data, and the lack of

interpretability of results.

In the future, integrating deep learning with other technologies such as augmented

reality and virtual reality is a potential growth area. Another area of growth

is the development of more explainable deep learning models that can provide

insights into decision-making. In addition, there is growing interest in developing

45

more efficient deep learning algorithms that require fewer data and computational

resources. These advances can further expand the applications of deep learning in

various domains and make it more accessible to a wider range of users.

46

3
C H A P T E R

State of the art of human
pose estimation

47

3.1 Introduction

Pose estimation (PE) is a popular task in Computer Vision (CV) with numerous

applications in understanding human behavior and human-computer interaction.

The task involves predicting and tracking the positions of key points of a person

or object in 2D or 3D space from an image or sequences of images. It integrates

knowledge from machine learning, deep learning, mathematics, and physics. While

for objects, the key points could be corners or other significant features, for humans,

they represent joints such as wrists, ankles, and shoulders. The prediction of the

position of these objects is known as rigid pose estimation.

Pose estimation is a challenging task due to the high degree of variation in object

and human poses, lighting conditions, occlusions, and image noise. To overcome

these challenges, various approaches have been proposed, including traditional

computer vision techniques such as template matching and feature-based methods,

as well as deep learning-based methods such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs). In recent years, there has been

a growing interest in using 3D data for pose estimation, as it provides additional

information about the object or human pose and can improve the accuracy and

robustness of the estimation.

This chapter will provide an overview of the main categories of approaches and

basic architectures used in this area, presenting the different methods available for

this important process based on the taxonomy proposed in our survey paper.

3.2 Applications based on human pose estimation

Human pose estimation is a crucial problem in computer vision, and its impact can

be seen in many rapidly evolving technology domains and industrial applications.

These applications range from gaming and animation to medicine and healthcare,

48

from gesture control to autonomous driving and security and surveillance, etc.

Moreover, as computer vision technology continues to evolve, we can expect to

see even more innovative use cases for pose estimation in the future.

In this section, we will outline some real-world use cases of pose estimation

and explore the impact of this computer vision technology on many industries.

3.2.1 Animation & Gaming

Motion capture (MoCap) is the most important technology used by production

studios in the fields of animation, film, and video games to record authentic and

complex movements of people or objects, digitize them, and reproduce the actual

movement of a person or object in a virtual environment. However, motion capture

devices are generally expensive, complicated to implement, and challenging to use,

so their use is generally limited.

Recently, researchers have turned to the computer vision task of human pose

estimation to replace this technology and extract realistic information on postures

[11, 12]. The pose estimation technique is particularly useful for animation and

gaming. In animation, it can be used to create natural movements for animated

characters, while in gaming, it can be used to detect player behavior and affect

game characters accordingly. This can lead to innovative gaming experiences.

Furthermore, pose estimation is also used in virtual reality (VR) and augmented

reality (AR). VR refers to the creation of simulated environments, while AR

involves the integration of virtual elements in the real world. In these fields,

pose estimation technology can track the movement of users and translate it into

corresponding movements of virtual or augmented objects in the environment. For

example, Pokemon Go and ARkit use pose estimation to place virtual objects in

the real world, allowing for more interactive experiences where users can move

around freely and interact with objects in their immediate environment.

An example of this technology’s use is demonstrated in [13], where a system for

49

Figure 3.1: An example of Augmented reality use case [15]

real-time music tracking has been developed based on pose estimation techniques.

The system generates virtual musician behavior and motion. Additionally, [14]

presents a deep learning approach for estimating the upper-body pose of a user in a

virtual reality environment. The proposed approach uses a convolutional neural

network to predict key points on the user’s upper body, which are then used to

animate an avatar in real-time.

3.2.2 Training Robots

Robotics is a rapidly expanding and changing sector that is increasingly adopted

across diverse fields such as security, healthcare, logistics, and many other service-

related industries. Deep learning approaches, particularly reinforcement techniques,

are commonly used for robot programming. These approaches simulate environ-

ments to train robots and enable them to reach the level of precision required to

50

perform specific tasks successfully.

Traditionally, in industrial robotics, 2D vision systems have been used to enable

robots to perform a variety of tasks by performing time-consuming and demanding

calibrations. However, recently, pose estimation has allowed robots to learn and

train to perform identical actions and gestures in a faster, more responsive, and

more accurate manner, instead of being manually programmed to follow trajecto-

ries and predetermined paths with programming restrictions. While humans can

perform a wide range of movements in a variety of environments, robots work

within a limited range of tasks. By using pose estimation technology, robots can

learn a variety of human movements and evolve to perform more diverse tasks.

This learning process allows the robot to be more efficient and accurate in its tasks.

As an example, Vasileiadis et al. [16] proposed a method for robust human pose

tracking using a deep learning-based approach with a two-stage network to estimate

human poses in RGB images. Their proposed method can be used for various

service robot applications, including assistive robots, autonomous vehicles, and

surveillance systems, and has been reported to provide accurate results.

3.2.3 Intelligent surveillance and security systems

Intelligent surveillance and security systems have become increasingly popular

due to the rise in criminal activities and the need for public safety. In recent years,

human activity estimation has been integrated into surveillance systems to detect

unusual or suspicious behaviors [17].

Furthermore, pose estimation technology can also be utilized to detect whether

someone is walking down the street, which can help improve traffic safety and

prevent accidents. Real-time surveillance systems like W/sup 4/ [18] have been

developed to detect and track multiple people and monitor their activities in an

outdoor environment. This system employs shape analysis and tracking to locate

people and their parts and create models of people’s appearance so that they can

51

Figure 3.2: An example of autonomous driving application using pose estimation

[20]

be tracked through interactions such as occlusions. It can also recognize events

between people and objects, such as depositing an object, exchanging bags, or

removing an object.

Another important application of intelligent surveillance and security systems is in

detecting anomalous events. A student behavior recognition system was proposed

for the classroom environment by FC lin et al. [19], which uses skeleton pose

estimation and person detection to monitor student behavior in real-time.

In the field of autonomous driving, pose estimation can be used to detect and track

pedestrians, cyclists, and other objects in the environment. This information can

then be used to make decisions about how the vehicle should behave, such as

slowing down or stopping to avoid collisions [20].

3.2.4 Sports analysis

Human pose estimation is a versatile technology that has numerous applications in

sports analysis [21]. Coaches and athletes can utilize this technology to enhance

52

Figure 3.3: Examples in the sport analysis and fitness industry using pose estima-

tion [21].

their performance or compare the movements of different players to develop

effective game strategies. This technology can be used in various sports, including

but not limited to gymnastics, weight training, dance, and team sports such as

soccer.

Additionally, this technology also aids in tracking physical activities in fitness

programs and for personal training. Individuals can record their physical activities

and track their progress over time. They can also receive personalized cues and

advice based on their fitness level and goals. There are also applications that utilize

human pose estimation to analyze exercises and postures in general, providing cues

and graphical analysis to assist users in improving their technique, correcting their

posture, and preventing injury.

3.2.5 Healthcare

Pose estimation also has many applications in healthcare, such as biomechanical

analysis, fall detection, and rehabilitation. For example, as poor posture can lead

53

to a variety of health problems. There are several healthcare applications that

can be used to estimate human posture. These technologies can assist medical

professionals track patient posture, analyze movement, and develop personalized

treatment strategies to promote faster recovery and long-term health.

One application is the use of sensors to monitor posture during exercise or

physical therapy. Sensors such as inertial sensors or kinetic/kinematic sensors can

be placed on various parts of the body to measure movement and posture. This

information can then be used to improve the effectiveness of exercises or to develop

a customized treatment strategy.

Another application is the use of video technology to analyze posture. By

using special cameras that have a high frame rate and resolution, movements and

posture can be captured and analyzed in real time. For example, this technology

can be used to diagnose and treat back problems by allowing physicians to analyze

a patient’s posture during movement to identify the cause of the problem.

Another application of posture analysis technology is monitoring patients

during recovery from surgery or injury. By using sensors or cameras, doctors and

nurses can monitor the patient’s posture and ensure that they are moving properly

and not causing additional damage.

3.3 Human body modeling

Human Pose Estimation (HPE) technology relies on accurate human body models

that capture the complex and non-rigid nature of the human body. To build such

models, several specific characteristics such as the kinematic structure, surface

texture, and different parts or joints positions need to be taken into account. The

ideal body models for HPE don’t necessarily need to contain all the features of

the human body but should fulfill the specific requirements of the particular task

assigned. There are three major human model types (figure 3.4):

Skeleton-Based Models: are the most commonly used type of human body

54

model. They describe the structure of the human body by connecting its

parts with a skeleton in a tree structure, consisting of joints such as elbows,

wrists, ankles, knees, and shoulders. This model is used both in 2D and 3D

human pose estimation techniques because of its flexibility.

Contour-based Models: are widely used in earlier HPE methods. They depict

the shape of the human body using a collection of closed curves or edge

contours, typically extracted from images or video frames through edge

detection or segmentation methods. One advantage of this approach is that

it is computationally efficient and can yield a reasonable approximation of

the body’s shape even in low-quality images. However, it may not capture

fine-grained details of the body’s structure and may be sensitive to variations

in illumination and other contextual factors.

Volume-Based Models: are frequently utilized in medical imaging and virtual

reality simulations, as they represent the human body with geometric shapes

or meshes. This model provides a more comprehensive representation of

the body’s shape and structure, but it necessitates more computational re-

sources and can be computationally expensive. Some examples of widely

used volume-based models are Shape Completion and Animation of Peo-

ple (SCAPE), Skinned Multi-Person Linear model (SMPL), and a unified

deformation model.

The choice of human model should also be determined by the specific task

requirements.

3.4 Categories of Posture Estimation Methods

Over the years, researchers have been developing various methods to tackle the

challenging task of estimating human pose from images. One way to categorize

55

Figure 3.4: Commonly used human body models. (a) skeleton-based model; (b)

contour-based models; (c) volume-based models. [22]

these methods is to divide them into three broad categories: generative, discrimina-

tive, and hybrid approaches, which have been the focus of many studies. These

approaches aim to establish the underlying relationships between different body

parts to deduce a body skeleton composed of linked joints or body parts. The

major distinction between them is whether a method employs human body models.

Generative methods rely on the diverse representations of human body models to

generate possible poses that match the input data. Discriminative methods, on the

other hand, learn a mechanism to model directly the relations between the input

sources and human poses space based on training data. Hybrid methods combine

both generative and discriminative approaches to leverage their advantages and

overcome their limitations. The most of traditional methodologies based on image

descriptors are investigated and examined in many surveys [23–31].

56

3.4.1 Generative approaches

Figure 3.5: Generative Approach to Monocular 3D Human Pose Estimation [32].

The first category of approaches to modeling the human body is known as

model-based approaches, in which the body is modeled as a collection of parts.

Each part is indicated by a node that represents a joint, limb’s length and orientation,

as well as its vertices. One of the most popular model-based approaches is the

Pictorial Structure Model (PSM), which was introduced by Fischler and Elschlage

in the 1970s [33] and later used for pose estimation in various works [34, 35]

and [36]. The PS model is a graphical tree mode that decomposes the human

body into a set of parts with connections between pairs of parts, represented as

springs (figure 3.6). The location of each body part contains information such as

its position in the image, pixel orientation, and amount of foreshortening. The

goal is to predict the location of the body joints using the observation and a priori

body [34]. In most cases, the body prior has been a 2D Gaussian distribution that

models the relationships between body parts. The cost function is a combination

of an error term for joint location and a penalty for segment length deformations,

which did not match the limb size. In 2012, Sigal et al. [37] adopted pictorial

structures in 3D pose estimation.

57

However, these models have limitations as all parts of the person’s limbs must be

visible, which is not always the case in real-world scenarios with occlusions and

complex lighting conditions. This limits their accuracy and poses a risk of errors.

Part-based models usually model the parts before synthesizing the body pose, but

they do not account for the complete anatomy of the human body. Consequently,

fully occluded parts are typically not predicted accurately.

Figure 3.6: Pictorial structures model by Fischler and Elschlager. Objects (as, e.g.,

faces) are modeled as a set of parts that appear in some typical spatial relationship

with some flexibility concerning the relative locations [33].

3.4.2 Discriminative approaches

Another approach is the use of discriminative methods (figure 3.7), which involves

learning and modeling the correspondence between the extracted features and

the human pose based on training data. Testing is typically faster than generative

approaches because the model only requires a calculation or a limited search instead

of optimizing a high-dimensional parametric space. Discriminative methods can

be divided into two sub-categories based on their approach to modeling relations:

learning-based methods and exemplar-based methods.

Learning-based methods are based on mapping mechanisms that can be achieved in

58

Figure 3.7: Discriminative Approach to Monocular 3D Human Pose Estimation

[32].

different ways depending on the input provided. One way is to guide the algorithm

along the learning path by providing it with labeled examples, known as supervised

learning. Another way is to use a combination of a small amount of labeled data

and a large amount of unlabeled data during training, known as semi-supervised

learning. The third way, unsupervised learning, involves having only input data

with no examples of expected output. In human pose estimation, the mapping can

be a direct mapping from image features or a model that predicts 2D parts to 3D

poses.

Several learning algorithms have been adopted, such as Support Vector Machines

(SVMs) [38, 39], which train hyperplanes for discrimination between classes, and

Relevance Vector Machines (RVMs) [40, 41], which are Bayesian sparse kernel

techniques used in regression and classification. A discriminative bag-of-words

approach has also been proposed by Ning et al. [42] for recovering 3D human

pose by extracting the most representative features as vocabulary and statistically

labeling each training data according to the image and vocabulary evidence. Indeed,

this model only considers the occurrence of each word in the image, which results

59

in a histogram that represents the image. Deep learning frameworks are currently

widely used in human pose estimation research and applications as discriminative

approaches. We will discuss these approaches in the following section.

The exemplar-based approaches, which rely on a discrete set of specific poses with

their corresponding representations, are used to estimate the pose of an unknown

visual input image [43–47]. To handle this type of problem, fast and robust

classification techniques such as randomized trees and random forests are often

used [26].

3.4.3 Hybrid approaches:

Discriminative methods are generally faster than generative methods, but they

may not be as effective for poses that were not present in the training data. While

discriminative methods identify the parts of the human body to estimate the pose,

generative methods project the human model into 2D picture space and measure

the distance between them [42]. However, hybrid methods can be used to combine

the strengths of both approaches and overcome their limitations. These methods

typically use discriminative methods to obtain an initial pose estimation, and

then generative methods to refine the pose within a local area [48, 49]. A good

initialization is crucial for generative methods, which often rely on non-convex

objective functions. The 3D human model’s poses are adjusted through iterative

optimization during the generative phase by comparing them with the image

evidence acquired through the discriminative process [26].

3.5 Human pose estimation by deep-learning

Human pose estimation has been revolutionized by deep learning techniques,

which have led to significant progress and remarkable breakthroughs in the field.

There are various approaches to human pose estimation, which can be categorized

60

based on the number of people being detected, the representation plan (2D or

3D), and the overall strategy (top-down or bottom-up). In this overview, we will

categorize the approaches based on the representation plan, and for each category,

we will present the prevalent works for both single and multiple persons. This

will provide a comprehensive understanding of the state-of-the-art techniques used

in human pose estimation. Recent surveys have mainly focused on either 2D or

3D pose estimation, without a comprehensive perspective to explore the intrinsic

similarities and connections between the two. Therefore, a more comprehensive

survey covering the recent advances in pose estimation is of great need in this

community [22, 27, 50, 51].

3.5.1 Overview of 2D human pose estimation approaches

2D Human

pose estimation
Single

Person

Keypoint

position

regression

Keypoint

heatmap

estimation

Multiple

Person
Top-down

ap-

proachesBottom-

up

ap-

proaches

Figure 3.8: A taxonomy of 2D Human Pose Estimation approaches.

61

To provide a comprehensive overview of 2D human pose estimation, which

involves determining the (x, y) coordinates of each joint from an RGB image, we

will follow the taxonomy presented in Figure 3.8 and discuss the relevant literature

on this topic. The fundamentals of 2D human pose estimation will be introduced,

and we will present the prevalent works for both single and multiple persons.

3.5.2 Single-person pipeline

Single-person pose estimation methods assume that only one person is present

in the image, which makes it easier to extract and predict the posture of the

person [52–55]. This task is also used as an intermediate step for top-down

methods of multiple people estimation, as described in [56–59], which will be

discussed later.

The first neural network-based works on 2D pose estimation were presented in

2014, which showed the effectiveness of learning-rich features [52, 60, 61]. These

approaches can be categorized into two types based on the way they predict the

location of keypoints: direct keypoint regression [60, 62, 63] and keypoint heatmap

estimation [55, 61, 64–68].

3.5.2.1 Direct Keypoint regression

Keypoint regression methods are a widely used approach for human pose estimation.

These methods directly predict the coordinates of body keypoints, which are

typically represented as joints. Toshev and Szegedy [60] proposed a cascaded

deep neural network regressor named DeepPose to predict the coordinates of

the keypoints directly from the image. Following DeepPose, several works have

been proposed based on the direct regression framework. Carreira et al. [62]

proposed an iterative error feedback-based human pose estimation system that

uses multi-stage training and shared weights across iterations. The authors used

a self-correcting model by feeding back error predictions to progressively refine

62

the pose. Another approach was proposed by Zhao et al. [63], which adopts

a re-parameterized pose representation using bones instead of joints, and uses a

compositional loss function to encode the long-range interactions in the pose. The

method was proved to be either 2D or 3D compliant.

To improve the feature representation for regression-based methods, multi-task

learning has been widely used. Li et al. [69] proposed a cascaded transformer-

based model that can obtain the spatial relations from the joints for the keypoints

prediction with regression inference. Li et al. [70] also proposed a heterogeneous

multi-task framework that consists of two tasks: predicting joints coordinates from

full images by a regressor and detecting body parts from image patches using a

sliding window. Fan et al. [71] proposed a dual-source CNN for two tasks: joint

detection and joint localization, leading to improved results. Luvizon et al. [72]

learned a multi-task network to jointly handle 2D/3D pose estimation and action

recognition from videos.

3.5.2.2 Keypoint heatmaps estimation

Keypoint heatmaps estimation is a widely used technique for coordinate represen-

tation in computer vision. The technique generates a heatmap for each keypoint

to predict the probability of the joint occurring at each pixel. The confidence

level of the keypoint position is encoded in each pixel value of the heatmap, and

the highest activation of the heatmap predicts the location of the joint. Keypoint

heatmap estimation was introduced by Tompson et al. in 2014 [61] to address

the keypoint regression problem. They proposed to train a CNN and a graphical

model jointly, where the CNN model predicts the Gaussian response heatmaps

of keypoints, and the corresponding positions are determined by finding local

maxima in heatmaps. The heatmaps are processed by a graphical model to learn

the typical spatial relationships between joints. Subsequently, in [73], the authors

used a multi-resolution CNN architecture in parallel with the existing convolution

features to fuse the features at different scales to generate a coarse heatmap output,

63

which was refined using the convolution features in the pose refinement CNN. In

contrast, Lifshitz et al. [74] proposed a method that uses information from the

whole image, instead of just a sparse set of keypoint locations. They used a CNN

for keypoint consensus voting, where each part of the image voted on the position

of each keypoint, and then combined the keypoints votes and joint probabilities

to predict the optimal pose. Another approach proposed by Wei et al. [65] was

the Convolutional Pose Machines (CPM) based on the pose machine architectures

[75], which consists of a sequence of CNN that repeatedly produce 2D belief maps

for the location of each part. Bulat et al. [64] proposed a CNN cascade architecture

for learning part relationships and spatial context that guides the regression part of

the network to rely on contextual information to predict the location of occluded

parts.

Newell et al. [66] introduced a novel CNN architecture called the stacked

hourglass network, where features were processed repeatedly across all scales of

pooling and up-sampling to produce the final predictions. They used both global

context and local information to learn the predictions. Several approaches based on

the original stacked hourglass network [57,76] or modified versions [77–81] have

been proposed, using, for example, a multi-scale feature pyramid (PyraNet) [78]

on a Residual Module, a multi-stage refinement strategy [77] using the Deeply

Learned Compositional Model (DLCM), or identity mapping between the same

spatial extent feature maps and heatmaps across different stages [82].

The stacked hourglass network was also used as a generator to refine the pose,

where Chou et al. [79] used it in a Generative Adversarial Network (GAN) [83]

with self-adversarial training, and Cao et al. [81] improved it with a self-attention

mechanism to learn long-range dependencies of body parts. Generative models

have also been used to predict occluded parts of the body Chen et al. [55] designed

a novel structure-aware convolutional network with a multi-task generator and two

discriminators for assessing whether the body configuration is plausible based on

the heatmaps and discriminating the high confidence predictions from the low-

64

confidence. The architecture proposed in [84] was evaluated on 2D facial landmark

estimation and 3D human pose estimation datasets, using the 3D pose dataset for

validation, with a network architecture based on [85].

A new method called High-Resolution Net (HRNet) was proposed by [86],

which maintains high-resolution representation throughout the process by connect-

ing multi-resolution sub-networks in parallel. This leads to rich high-resolution

representations, achieved through repeated multi-scale fusions. On the other

hand, [87] proposed EfficientPose, which is based on EfficientNet backbone pre-

trained on ImageNet for feature extraction. EfficientPose generates low-level and

high-level features from low-resolution and high-resolution images, respectively,

which are concatenated to yield cross-resolution features. The desired keypoints

are then localized using an iterative detection process with the Mobile DenseNet

architecture. Both HRNet and EfficientPose are methods within the same area.

3.5.3 Multiple person pose estimation

Real-world applications of human pose estimation often require the estimation of

multiple people in a single image, which is a more complex task than estimating

the pose of a single person. The goal is to determine the pose for each individual

present in the image, without prior knowledge of the number of people or their

positions. This is made more challenging by occlusions and interactions between

individuals, which make it difficult to locate joints accurately.

Current methods for multiple person pose estimation can be divided into two

categories: top-down and bottom-up approaches. Top-down approaches first detect

and localize each person in the image using bounding boxes, then apply a single-

pose estimation algorithm to each box. In contrast, bottom-up approaches first

identify keypoints or body parts, and then group them together to estimate the

poses of each individual.

65

3.5.3.1 Top-down approaches

The initial step in top-down approaches involves object detection algorithms such as

Fast-RCNN [88], Faster-RCNN [89] or R-FCN [90] to locate all human instances

in an image or video. Subsequently, these methods estimate the keypoints of

each person potentially present within the bounding boxes. For example, [56]

proposed an approach that computes dense heatmaps and offsets using a dense

ResNet, followed by an aggregation procedure to obtain highly localized keypoint

predictions. Similarly, [58] proposed a method called simple baselines, which

utilizes ResNet [91] as the backbone in the keypoint detection part and applies

deconvolutional layers to generate the final heatmaps. Another example is [92] that

introduced a coarse-fine network (CFN) that uses a fully convolutional Inception

network, with supervisions at several levels, and three branches of detectors with

different numbers of deduction stacking modules to compute receptive fields at

various sizes. The feature maps generated by these coarse detectors are used in fine

detector’s training, providing accurate location.

In another work, [57] proposed the Regional Multi-Person Pose Estimation

(RMPE) architecture, which has three stages for multi-person pose estimation. First,

a symmetric spatial transformer network selects regions of interest in the image.

Then, a parametric Pose Non-Maximum-Suppression algorithm eliminates the

redundant detections, and finally, a data augmentation technique generates a large

sample of training proposals for two-stage pose estimation. This method generates

samples with the same distribution as the output of the human detector. Similarly,

[93] proposed the Cascaded Pyramid Network (CPN), which addresses problems

of invisible, occluded keypoints, and complex background. CPN comprises two

networks: the first one (GlobalNet) localizes simple keypoints but fails to recognize

occluded or invisible keypoints precisely, and the second one (RefineNet) tackles

these issues by integrating all levels of feature representations from GlobalNet with

an online hard keypoint mining loss.

66

In addition, [94] proposed a unified framework that can extract bounding boxes,

masks, and keypoints simultaneously. In human pose estimation, this approach

predicts K masks, one for each of K keypoint types.

3.5.3.2 Bottom-up approaches

In the literature, the first bottom-up approach was DeepCut [95], which aimed

to solve detection and pose estimation tasks together. The approach first deter-

mined the number of people in the image and then computed the joint locations

for each individual. The joint locations were pruned using non-maximum sup-

pression, grouped into individuals using integer linear programming (ILP), and

subsequently used to estimate body poses. An improved version of DeepCut, called

Deepercut [96], was proposed to alleviate the ILP approximation and improve

computational complexity. Deepercut used stronger body part detectors based

on ResNet [91], image-dependent pairwise scores, and an incremental optimiza-

tion approach that uses a branch-and-cut algorithm to incrementally solve several

instances of ILP.

The first real-time multi-person system was proposed in [97]. The approach

used keypoint heatmaps and part affinity fields (PAFs) to jointly determine the

location and orientation of limbs of people over the image. A greedy algorithm

was used to associate joints with a person, and a set of bipartite matching was used

to maintain high accuracy while achieving real-time performance, irrespective of

the number of people in the image. In [98], the same authors increased the network

depth, removed the body part confidence maps refinement, and refined the PAF,

which increased the speed by approximately 200% and accuracy by 7%.

Associative embedding was proposed in [76] to express output joint detection

and grouping using a single-stage deep network trained end-to-end. For each

detection, a vector embedding was introduced that serves as a “tag” to identify its

group assignment. All detections associated with the same tag belong to the same

group. The network was trained using a loss function that encouraged pairs of tags

67

to have similar values if the corresponding detections belong to the same group or

dissimilar values otherwise. This approach combines detection and grouping steps

and works with any network architecture that produces a pixel-wise prediction.

PersonLab [99] proposed a network model that detects individual keypoints

and predicts the relative displacements between each pair, which allows a greedy

decoding process to group keypoints into person pose instances. The authors also

proposed a recurrent scheme to improve the accuracy of long-range predictions.

PifPaf [100] used a Part Intensity Field (PIF) to localize body parts based on the

confidence score, precise location, and size of a joint, and a Part Association Field

(PAF) to associate body parts. A decoder was used to convert PIF and PAF fields

into the pose estimates containing 17 joints.

Finally, Scale-Aware High-Resolution Network (HigherHRNet) [101] was

introduced, based on the HRNet model [86]. HigherHRNet used deconvolution

modules to generate scale-aware high-resolution heatmaps using high-resolution

feature pyramids in the training stage and multi-resolution heatmap aggregation in

the inference stage. The feature pyramid was composed of HRNet output and up-

sampled higher-resolution outputs through a transposed convolution. The approach

aimed to deal with the scale variation problem to be able to localize keypoints

for both tall and small persons by adopting Pyramidal representation. Associative

embedding [76] was used in the grouping stage.

3.5.4 Comparative Analysis of Top-Down and Bottom-Up Ap-
proaches in Multi-Person 2D Pose Estimation

The recent methods follow state-of-the-art handling of multi-person 2D pose

estimation complexities, like occlusions, interactions between people, scales, and

varying poses. Table 3.1 briefly summarizes the backbone architectures and the

part association strategies of several popular models in these two categories, below,

for reference, along with the human detector type for top-down approaches and AP

68

on the MS-COCO test-dev dataset. This comparison really points out the progress

and effectiveness made by the different strategies in improving the accuracy of

pose estimation.

Category Approach Backbone Part Association/

Human Detector

AP (%)

Bottom-up

CMU-pose [97] VGGNet PAF 61.8

Openpose [98] CPM PAF 64.2

AE [76] Stacked Hourglass AE 65.5

PifPaf [100] ResNet-152 PIF + PAF 66.7

PersonLab [99] ResNet-152 AE 68.7

HigherHRNet [101] HRNet-W48 AE 70.5

Top-down

Mask-RCNN ResNet-50 FPN 63.1

G-RMI ResNet-101 Faster-RCNN 64.9

RMPE [57] Stacked Hourglass VGG based SSD-

512

61.8

RMPE++ [57] PyraNet Faster-RCNN 72.3

CPN ResNet-Inception FPN 72.1

HRNet [101] HRNet-W48 Faster RCNN 75.5

DarkPose [102] HRNet-W48 Faster RCNN 77.4

Table 3.1: Comparison of Bottom-up and Top-down Approaches on MS-COCO

test-dev

3.6 Overview of 3D human pose estimation approaches

In recent years, there has been significant progress in developing deep learning-

based approaches for 3D human pose estimation, which is a critical task in various

69

fields such as computer vision, robotics, and human-computer interaction to recog-

nize the actual posture in a scene because due to the ambiguity, this goal cannot be

achieved only with 2D poses only. 3D human pose estimation is the process of in-

ferring the 3D coordinates of human joints from 2D images or videos. This task has

many applications in fields such as robotics, virtual reality, and human-computer

interaction. 2D pose estimation methods has achieved high detection rates above

90% on all different human joints. There are two primary groups of techniques for

3D human pose estimation: direct methods and inverse kinematics-based meth-

ods. Direct methods obtain 3D poses from input data (such as images, videos, or

depth maps) without explicitly modeling the human body’s kinematic structure.

In contrast, inverse kinematics-based methods use a pre-defined skeletal model to

estimate 3D poses by optimizing a cost function that enforces kinematic constraints.

These methods typically employ 2D estimator networks at an intermediate stage.

This section focuses on methods based on deep neural networks for 3D pose esti-

mation. We will review and compare several state-of-the-art approaches, including

volumetric methods, multi-view methods, and hybrid methods that combine 2D and

3D information. However, we will discuss the methods used in the Multi-person

case and the challenges and limitations of these methods later in chapter 5.5. The

advancements in deep learning techniques for 3D human pose estimation have

shown promising results and open up new avenues for research in this area.

Fully supervised learning is a popular learning strategy in the field of deep

learning. However, creating a 3D annotated dataset is more challenging and time-

consuming than creating a 2D annotated dataset, and manual annotations are not

practical. Most existing 3D pose datasets are built from indoor environments using

motion capture systems, which require an elaborate setup with multiple sensors and

are not generalizable to natural settings. Therefore, fully supervised methods may

not be suitable for 3D pose estimation, particularly for industrial or application

cases. To address this, other learning strategies have been explored in the literature,

70

3.6. OVERVIEW OF 3D HUMAN POSE ESTIMATION APPROACHES 71

3D Human

pose estimation
Supervised

learning

Direct Re-

gression

3D pose

from 2D

joints

3D pose

tracking

in video

Weakly

supervised

Learning

Generative

Adver-

sarial

Networks

(GAN)

Multi-

view

super-

vision

Unsupervised

/ Self-

supervised

Learning

Figure 3.9: A taxonomy of 3D Human Pose Estimation approaches.

including semi-supervised learning, where a small amount of data is labeled by

3D poses, weakly supervised learning, where samples are labeled by 2D poses,

and completely unsupervised or self-supervised learning. These strategies are

illustrated in Figure 3.9. We adopt this organization scheme, presented in the same

figure, to showcase the primary techniques proposed in each category.

3.6.1 Supervised learning

As in the 2D case, the earliest approaches for 3D human pose estimation from

single images [103–108] were generally based on discriminative methods and

viewed the pose estimation as a regression or a classification problem. A mapping

function is learned from a space of image features, that are either extracted directly

as shape context [44, 104], segmentation [107], silhouette [109], HOG [110, 111],

SIFT [103], or computed as body part information [112] to the pose in 3D space.

This mapping must be well generalized to accurately estimate a 3D pose from

a test image that has never been seen before. The outstanding results of deep

learning methods in computer vision have made them a general trend to use deep

nets to automatically learn the key information in images. Some papers rely on

supervision learning to directly regress joint locations and predict the 3D pose from

2D monocular images without intermediate supervision [63,113–116]. In this case,

models must be trained using a 3D pose annotated images dataset. For example,

Human3.6M [106] and HumanEva-I [117] datasets contain images captured in

controlled environments using MOCAP systems. Thus, they prevent the models to

generalize well to images in different environments as in the wild. To address this

issue, some approaches use both 2D datasets in the wild and 3D MOCAP datasets

to guide and improve the training.

72

3.6.1.1 Direct regression

This kind of approach directly maps image features to a 3D pose, but it typically

lacks constraints. While this method has shown promise in 3D human pose

estimation, it may not be suitable for all applications.

3.6.1.1.1 Direct regression using only 3D Data The first attempt to predict

3D joint locations directly from single images using deep neural networks was

made by [113]. Their approach involved training the network on bounding box

images in a multi-task end-to-end learning framework, where pose regression and

body parts detection tasks were jointly trained. The first task estimated keypoint

locations, while the second task classified whether a local window contained the

specific keypoint or not. Similarly, [115] introduced an end-to-end regression

architecture that achieved structured prediction by incorporating a pre-trained auto-

encoder at the top of traditional CNN networks, rather than directly regressing joint

coordinates. With the auto-encoder, they were able to learn a high-dimensional

latent pose representation and account for joint dependencies. The same authors

proposed a method in [116] to learn a regression model for 3D pose mapping from

videos using CNNs.

To ensure the validity of the predicted poses, [114] embedded a kinematic

object model into a deep learning algorithm to regress joint angles of a skeleton.

They defined a continuous and differentiable kinematic function based on bone

lengths, bone connections, and a definition of joint rotations. This function was

integrated into a neural network as a special layer, called kinematic layer, to map

the motion parameters to joints.

Another approach to reduce data variance was proposed by [63], who used

bones representation instead of joints in a structure-aware regression approach.

They defined a compositional loss function that encoded long-range interactions

between these bones, based on the joint connection structure.

73

3.6.1.1.2 Fully supervised learning for 3D pose in the wild Despite the

success of 3D pose ConvNets regressors using 3D data, models cannot generalize

well to images in the wild, due to the difficulty to generate ground-truth 3D

body joint locations in an unconstrained environment. Variations in background,

viewpoint and lighting are hence limited. To address this issue, some researchers

have proposed end-to-end approaches trained with both paired 2D and 3D datasets,

since there is an abundance of 2D pose images annotated in the wild. For example,

some authors have proposed a single model that shared intermediate CNN features

between 2D and 3D joint locations, such as the algorithm proposed by Park et

al. [118], which learned the relationship between 2D pose and 3D pose using image

features and 2D pose estimation results as inputs. Other approaches include a fine-

tuning strategy to 2D data, such as the approach proposed by Pavlakos et al. [119],

which trained a CNN to predict 3D joint locations by regressing the per voxel

likelihood for each joint in this volume separately using the end-to-end learning

paradigm. They also designed a coarse-to-fine supervision learning scheme to deal

with the increased dimensionality of the volumetric representation and improve

initial estimates.

Similarly, Tome et al. [120] proposed a multi-stage CNN architecture that

can be trained end-to-end to jointly estimate 2D and 3D joint locations. They

added a pre-trained layer to the convolutional pose machine (CPM) [65] based

on a probabilistic 3D pose model to lift 2D landmark coordinates into 3D space

and propagate 3D information about the skeletal structure to the 2D convolutional

layers. [121] jointly predicted 2D and 3D poses in a coupled way. The method

used camera viewpoint with 2D joint locations to incorporate depth information

and to get global joint configuration information used in a 3D pose estimation

network.

2D and 3D data can be combined to learn a pose regressor, such as the compo-

sitional pose proposed in [63], or the end-to-end trainable multitask deep model

proposed in [72], jointly learning 2D and 3D poses as well as action recognition.

74

Intermediate volumetric representation is used for 3D poses (as in [119]) but with

a lower resolution, since coordinates were computed from volumetric heatmaps

using a soft-argmax operation instead of argmax. Li et al. [122] proposed another

regression approach that estimated 3D pose with a nearest neighbor form between

images and pose. They trained the network to learn a similarity score function

between feature embedding of the input image and the 3D pose.

3.6.1.2 3D poses from 2D joints

Inspired by the rapid development of 2D human pose estimation algorithms, many

works [63, 121, 123–131] have tried to utilize 2D pose estimation results for

3D human pose estimation to improve in-the-wild generalization performance.

The first step of these approaches estimates the 2D pose from monocular images,

while the second step lifts the 2D joint locations to 3D poses with a subsequent

optimization step. This can be done by either training a deep neural network to

learn a mapping between 2D and 3D poses [124] or by finding the best 3D pose that

represents the 2D observations using a complete dictionary of 3D poses learned

from large 3D pose databases using principal component analysis (PCA) [132] or

another dictionary learning method. Lee et al. [125] were the first to infer 3D joint

locations from their 2D projections using binary decision trees, in which each split

corresponds to two possible states of a joint relative to its parent. Taylor [133]

assumed that the ratios of limb lengths were known and estimated 3D pose from

this information.

3.6.1.2.1 Exemplar-based approaches Exemplar-based approaches are a type

of content-based image retrieval that use a reference image to search for similar

images.

Rogez and Schmid [134] approached pose estimation as a classification problem,

where each image is assigned to the class with the highest score. This ensures a

valid pose prediction, but it is limited to the existing classes, resulting in approxi-

75

mate poses. The higher the number of classes, the more precise the classification

becomes, but it also makes discrimination more challenging. To address this issue,

Rogez et al. [135] proposed the LCR-Net architecture, an end-to-end system for the

joint estimation of both 2D and 3D human poses in natural images that combines

classification and regression for improved results. The LCR-Net architecture has

three main stages, which share convolutional feature layers and are jointly trained.

The localization stage generates a set of pose proposals in the image using a fixed

set of anchor poses and bounding boxes obtained by using a Region Proposal

Network (RPN). The classification stage scores the different pose proposals and

predicts the closest anchor-pose for each bounding box of a set of K-poses obtained

from a MOCAP data-set, similar to [136]. Finally, the regressor stage refines the

coarse anchor-poses located in the region proposals in 2D and 3D for a precise

pose. The overall loss is defined as the sum of three losses: Localization loss,

Classification loss, and Regression loss. Du et al. [137] proposed a method that

combines images and calculated height-maps to detect 2D joint landmarks using

a dual-stream CNN. They formulated an objective function to estimate 3D pose

from the detected 2D pose. The method uses a dictionary of 3D poses, and the

objective function minimizes the loss over the coefficients of the dictionary and its

pose-conditioned joint velocity. In the state of the art, some authors have created a

comprehensive basis of 3D poses to simplify the estimation process. Such as Zhou

et al. [138] who have created a dictionary of 3D shapes from training set, and use

a convex relaxation approach to estimate the 3D pose from the basis shapes. The

method begins by selecting a set of basis shapes that represent the 3D shape, and

then solving a series of convex optimization problems to estimate the 3D shape. A

convex approach is then proposed to jointly estimate the coefficients of the sparse

representation to handle missing data and produce a sparse solution that is close to

the true underlying shape.

The same authors [139] predicted the uncertainty heatmaps of the 2D joints

location, then combined these maps with a sparse model of 3D human pose to

76

retrieve the 3D pose using an Expectation-Maximization algorithm. Chen and

Ramanan [140] adopted a large library of 2D keypoints and their 3D representations

to match the depth of the 2D poses estimated by the k-nearest neighbor algorithm.

Similarly, Gupta et al. [141] and Jiang et al. [75] used a large database of poses

to resolve ambiguities through nearest neighbor queries. The authors of [142]

built a sparse representation of 3D human pose in an over-complete dictionary

and then proposed a projected matching pursuit algorithm to estimate the sparse

model from only 2D projections. Simo-Serra et al. [132] proposed a stochastic

sampling method to propagate the noise from the image plane to the shape space,

and then imposed kinematic constraints to disambiguate among the set of feasible

3D shapes. In contrast to [132, 142, 143], the authors of [144, 145] addressed the

issue of 2D pose estimation errors. In [145], Simo-Serra et al. proposed a Bayesian

framework that integrated a generative kinematic model and discriminative 2D

part detectors based on HOGs to generate the set of 3D pose hypotheses. Yasin et

al. [144] combined two independent training sources using a dual-source approach.

During inference, they retrieved the nearest 3D poses using the estimated 2D pose.

The final 3D pose was then reconstructed by minimizing the projection error under

the constraint that the solution is close to the retrieved poses.

Another strategy is to integrate a generative 3D body shape model into the skinned

multi-person linear model [146] to reconstruct 3D pose and shape. For example,

Bogo et al. [147] proposed a method called SMPLify for estimating 3D human

pose and shape. First, DeepCut [95] is used to generate 2D body joint locations,

which are then fit to the predicted 2D joints using SMPL [146]. The fitting is driven

by an objective function that matches the projected 3D model joints and detected

2D joints as a sum of five error terms: a joint-based data term, three pose priors,

and a shape prior.

E(β ,θ) = EJ(β ,θ ;K,Jest)+λθ Eθ (θ)+λaEa(θ)+λspEsp(θ ;β)+λβ Eβ (β)

[147], where K are camera parameters and λθ ,λa,λspand λβ are scalar weights.

77

This function is minimized to directly optimize the pose and shape. Tripathi et

al. [148] outputs 3D SMPL body model parameters from 2D poses using the 3D

joints predicted by another network as pseudo ground-truth in training, since the

method is unsupervised by nature.

However, since these methods rely on optimization and data retrieval, they tend

to have high computational time and require normalized input. To avoid these

problems, some techniques have turned to the use of deep learning models, which

can learn the underlying pose structures from the data during 3D pose estimation

from the 2D pose.

3.6.1.2.2 Deep neural mapping Deep learning models have been used to

learn the mapping from 2D to 3D poses, which can be implemented using fully

connected, convolutional, or recurrent networks. Moreno-Noguer et al. [124]

used a two-step pipeline, first locating 2D human joints using Convolutional Pose

Machine [65], then inferring the 3D poses based on these observations using two

Euclidean distance matrix regressions. Martinez et al. [85] proposed a simple

multilayer perceptron, with various regularization techniques, which regresses 3D

joint locations from 2D keypoints predicted by stacked hourglass network [66].

Mehta et al. [149] used transfer learning to transfer knowledge learned for 2D

joints location to 3D pose estimation in a supervised manner. These methods are

typically more efficient than optimization-based approaches and do not require

normalized input data.

The VNect approach [150] employed a combination of a CNN, which was trained

on both 3D and 2D human pose datasets, and a kinematic skeleton fitting technique

to generate smooth, temporal 3D skeletal pose estimates in real-time.

To address the issue of different 3D poses corresponding to the same 2D location of

joints, some researchers have proposed using recurrent neural networks to model

temporal information, which is especially useful for video inputs. Additionally,

these approaches often incorporate prior knowledge of 3D human pose into the

78

deep learning models so that they can learn the 2D to 3D pose mapping.

3.6.1.3 3D pose tracking in video

Understanding human activity and/ or pose estimation requires rather a processing

on a video or a sequence of images. Most approaches have attempted to exploit

temporal information [116, 140, 151–153] whatever the methodology followed for

3D pose estimation. [116] followed direct regression approaches, [139, 140, 152]

used exemplar-based approaches and [150, 153] proposed deep neural mapping

approaches.

This subsection summarizes papers which explored variants of a temporal

search strategy.

[151] used tracking-by-detection to associate 2D poses detected in each frame

individually over short image sequences (tracklets) then used them to recover 3D

pose. [150] applied temporal filtering and smoothing across 2D and 3D poses from

previous frames to obtain a temporally stable and robust result. [152, 153] used a

sequence-to-sequence network to predict temporally consistent 3D poses.

Long Short Term Memory networks (LSTMs) [154] are widely used for pose

estimation from monocular videos since they are able to learn long-term dependen-

cies.

[155] presented a RNN approach which considers priors on body part based

structural connectivity of joints. Authors proposed a LSTM-based deep learning

architecture called propagating LSTM networks (p-LSTMs) to estimate depth in-

formation from 2D joints location obtained with a Stacked Hourglass Network [66].

Several LSTMs were connected in series in order to elaborate the 3D pose while

transferring the depth information, called pose depth cues. AnimePose [156] used

Scene-LSTM to estimate the temporal trajectory of the person and track the over-

lapping poses in the occluded frames. Authors predicted the missing poses in the

previous frames and plotted the trajectory of each keypoint, then estimated the

79

position of joints in the next frames. [157] proposed a spatial-temporal convolu-

tional long short-term memory model (ST-CLSTM) with two parts allowing to

capture the spatial features and temporal consistency among the frames. Weights

were updated using temporal consistency and spatial losses between the estimated

and the ground-truth depths, computed by a 3D convolutional neural network (3D

CNN). GANs were used as a temporal consistency loss to maintain the temporal

consistency among the estimated depth frames. Authors applied a 3D CNN as

a discriminator to output the temporal loss from the estimated and ground-truth

depth sequences, and ST-CLSTM acted as the generator.

Inspired by convolutional pose machine [65], [158] presented a Recurrent 3D

Pose Sequence Machine (RPSM) that integrates both convolutional and recurrent

neural networks to exploit spatial and temporal constraints from a sequence of

images. The network predicts the 3D poses for each frame, and then sequentially

refines them with multi-stage recurrent learning. RPSM is composed of three

consecutive modules: a 2D pose module extracting the image-dependent pose

representations, a feature adaptation module to transform the pose representation

from 2D to 3D domain, and a 3D pose recurrent module to predict the human joints

in 3D coordinates. At each stage, the 2D pose module takes as inputs each frame

and 2D feature maps produced in previous stages and progressively updates the 2D

pose representations.

Given a sequence of 2D joint locations, [152] proposed a sequence-to-sequence

learning model using LSTM units with Layer Normalization and Recurrent Dropout

to regularize the network. The encoder part of the network transforms the informa-

tion of a sequence of 2D poses into a fixed-size vector. This vector is then decoded

by the decoder side, built with residual connections to help learn the perturba-

tion and predict the 3D pose in each frame from the previous frames. Compared

to [158], this method doesn’t use multiple refinement stages which makes it simple

and efficient.

In PoseNet3D [148], temporal dynamics are modeled using dilated convolu-

80

tions allowing feedback at every time-step and avoids common pitfalls in using

LSTM/RNN.

Residual connections, as well as dilated temporal convolutions over 2D key-

points were also used in [159,160] used Temporal convolutional Network to lift

2D keypoints to 3D joints. The TCN [9] architecture is a 1D fully convolutional

plus causal dilated convolutions, where each hidden layer has the same length as

the input layer. The dilated convolution operation F on element s of the sequence

is defined as:

F(s) = (x∗d f)(s) =
k−1

∑
i=0

f (i).xs−d.i

where d is the dilation factor, k is the filter size, and s− d.i accounts for the

direction of the past. This architecture takes a sequence of any length and map it to

an output sequence of the same length as with an RNN.

[160] started with predicted 2D keypoints for unlabeled video, then estimated

3D poses and finally used a semi-supervised training method to back-project

3D data to the input 2D keypoints. Likewise, authors in [161] proposed graph

attention spatio-temporal convolutional network (GAST-Net), also composed of

dilated temporal model to tackle long-term pattern to process poses in multi-frame

estimation. The model also comprises graph attention blocks, including a local

spatial attention network to model the hierarchical and symmetrical structure of the

human skeleton, and a global spatial attention network to extract global semantic

information, enabling better encoding of the human body’s spatial characteristics.

Moreover, the graph convolutional networks is used in others related researches

[63, 162, 163]. As well as [164], the authors proposed a U-shaped spatial-temporal

conditional directed graph convolution network to leverage varying non-local

dependence for different poses by conditioning the graph topology on input poses

and representing the human skeleton as a directed graph with the joints as nodes

and bones as edges. They achieve the highest accuracy in the Human3.6m database

when compared to other monocular view picture searches. Otherwise, to reconstruct

81

3D poses from a sequence of predicted 2D poses, Li et al. [165] used the Vanilla

Transformer Encoder (VTE) to model long-range information, and the whole

sequence scale to ensure temporal smoothness.then, a Strided Transformer Encoder

(STE) is used to build one target posture representation.

3.6.2 Weakly supervised learning

Various weakly or self-supervised pose estimation methods have been proposed

due to the lack of 3D data. Unlike two stage approaches that use 2D joints as input,

weakly supervised techniques used paired 2D data plus unpaired 3D Data.

3.6.2.1 Generative Adversarial Networks (GAN)

If GANs [83] have successfully been applied for 2D pose estimation, several works

also used generative networks for 3D human pose estimation, especially in weakly

supervised learning.

AIGN (Adversarial Inverse Graphics network) is a weakly supervised neural

network proposed by [166], using GANs to learn from unpaired 2D/3D datasets and

including a 2D projection consistency term. Given an image x, a set of generators

Gi, i ∈ [[1 · · ·K]] maps x to a set of predictions Gi(x). A task-specific differentiable

renderer gives predictions P(Gi(x)) back to the original input space. Discriminator

networks Di, i ∈ [[1 · · ·K]] are then trained to discriminate between predictions

Gi(x) and a collection of ground-truth factors Mi, using as loss a combination of a

reconstruction loss and an adversarial loss:

min
G

max
D

∥P(G(x))−x∥2 +β

K

∑
i=1

logDi(Mi)+ log(1−Di(Gi(x)))

[131] introduced an adversarial re-projection network (RepNet), composed

of three networks: a pose and camera estimation network, a critic network and

a re-projection network. 2D observations are lifted to 3D poses by means of a

distribution mapping approach with a weakly supervised adversarial training. The

82

2D human pose observations, used as input, are passed through the first network

composed of a pose generator network, built by two consecutive residual blocks,

to regress the 3D pose and camera estimation network. The output is a vector of

camera parameters. The results of both branches are given to the re-projection

layer to learn matching 2D and 3D poses by minimizing the re-projection loss, the

gap between the initial 2D pose and 2D pose re-projection. The critic network,

based on fully connected networks and taking advantage of kinematic chain space

of [167] and Wasserstein loss function, develops a weakly supervised training

procedure.

Using GANs also allows to generate multiple diverse 3D human pose hy-

potheses from 2D detection of joints, as in [168]. The model produces a pose by

combining parts and every plausible pose can be generated since only anatomical

constraints must be respected. Authors argue that generating multiple plausible

poses is more reasonable, due to possible occlusions and uncertainty in depth

estimation.

3.6.2.2 Multi-view supervision

Multi-view 3D human pose estimation studies generally aim to obtain ground truth

annotations for the estimation of monocular 3D human pose. Weak supervision

transfer learning method has been explored in [169] using training data with mixed

2D and 3D labels. The authors introduced a 3D geometric constraint to regularize

the predicted 3D poses on images that only have 2D annotations. [170] proposed to

replace most of the annotations by the use of multiple views to train the system to

predict the same pose in all views. Also, [171] exploited different views to predict

3D keypoints of an object on unlabeled instances.

83

3.6.3 Self-Supervised/Unsupervised Learning

Unsupervised learning tries to output 3D skeletons by using only 2D poses in

training and avoiding using either paired or unpaired 3D data.

PoseNet3D [148] is an end-to end framework jointly finetuning two networks to

predict Skin Multi Person Linear Model (SMPL) parameters and 3D pose joints.

The use of a student/teacher paradigm allows to avoid using 3D data. The first

network (the teacher) is trained to output 3D skeletons, using only 2D poses for

training. It distills its knowledge to the student network that predicts 3D pose in

SMPL representation. Both networks are finally jointly finetuned in an end-to-end

manner using temporal, self-consistency and adversarial losses, improving the

accuracy of each individual network.

Self-supervised learning, generating its own labels from data, is also used for

3D pose estimation. [172] proposed a differentiable and modular self-supervised

learning framework based on conventional encoder-decoder architecture. Specifi-

cally, the encoder network produces a set of local 3D vectors from an input RGB

image, camera parameters and a foreground human appearance. Local limb vectors

are processed by leveraging the prior knowledge on human skeleton and poses,

which is in the form of a single part based 2D puppet model, through a series

of 3D transformations to obtain the camera projected 2D pose. The encoded

representations are used by the decoder to project onto 2D space and synthesize

foreground human image and 2D part segmentation. This approach remains limited

for multiple 3D pose estimation or partial occlusions. [173] presented EpipolarPose

which does not need any 3D ground-truth data. It uses 2D pose estimation and

epipolar geometry to obtain 3D poses which are subsequently processed to train a

3D pose estimator.

84

3.6.4 Comparative Analysis of Methods Based on Learning
Paradigms

After presenting the 3D human pose estimation methods according to their learning

paradigms, it is crucial to compare and contrast these approaches to identify

their main advantages, inherent challenges, and ideal scenarios. The subsequent

comparative analysis is presented in Table 3.2. This comparison wraps up our

discussion and serves as a guide for selecting the most suitable paradigm for

specific research questions or practical implementations in the field of 3D human

pose estimation.

85

86 CHAPTER 3. STATE OF THE ART OF HUMAN POSE ESTIMATION

Learning
Paradigm

Advantages Disadvantages Suitable Applications Examples in 3D
Human Pose Es-
timation

Supervised

Learning

High accuracy with

labeled data. Clear

performance metrics.

Requires extensive

labeled datasets.

Time-consuming

annotation.

Controlled environ-

ments. Specific pose

estimation tasks where

labeled data is available.

[63, 174–176]

Semi-

supervised

Learning

Utilizes both labeled

and unlabeled data.

Improves generaliza-

tion.

Still needs some la-

beled data. Complex

model tuning.

Scenarios with limited

labeled data. Enhanc-

ing model performance

with additional unla-

beled data.

[177–179]

Weakly-

supervised

Learning

Less precise data re-

quirements. Flexible

with available anno-

tations.

Potentially lower ac-

curacy. Difficult

to quantify perfor-

mance.

Scenarios lacking 3D

pose annotations. Use

of 2D joint locations for

3D pose estimation.

[131, 180–184]

Unsupervised

Learning

No need for labeled

data. Innovative

methods for knowl-

edge discovery.

May yield less accu-

rate results. Chal-

lenging to design ef-

fective models.

Exploration of unknown

poses. Learning from

purely observational

data.

[148, 185–188]

Self-

supervised

Learning

Generates its own

training data. Can

leverage temporal

consistency.

Dependent on data

quality and structure.

May introduce bias

in self-generated la-

bels.

Continuous or semi-

continuous monitoring

scenarios. Tasks where

temporal or structural

data consistency can be

exploited.

[172, 173, 189–

194]

Table 3.2: Advantages, Disadvantages, Suitable Applications, and Examples for

Each Learning Paradigm

3.7 Overview of Databases and Evaluation Metrics

for Human Pose Estimation

3.7.1 Common databases and evaluation metrics for 2D human
pose estimation

Table 3.3 provides a list of commonly used datasets for 2D human pose estimation,

while Table 3.4 details the specific evaluation metrics employed in these studies.

87

88 CHAPTER 3. STATE OF THE ART OF HUMAN POSE ESTIMATION

Database Year Characteristics Evaluation Metrics

MPII Hu-

man Pose

Dataset [195]

2014 Approximately 25,000 images

paperswithcode_mpii-human-pose;

Diverse human activities and poses; 2D

joint annotations for 16 body joints; Full

body

Percentage of Correct Keypoints (PCK);

Percentage of Correct Keypoints with a

given threshold (PCKh); Mean Average Pre-

cision (mAP); Percentage of Correct Parts

(PCP)

COCO (Com-

mon Objects

in Context)

Keypoints

Dataset [196]

2014 More than 200,000 images with diverse

scenes github_COCO-Human-Pose; 2D an-

notations for 17 keypoints; Full body

Percentage of Correct Keypoints (PCK);

Percentage of Correct Keypoints with a

given threshold (PCKh); Percentage of Cor-

rect Parts (PCP)

LSP (Leeds

Sports Pose)

Dataset

2010 Contains 2,000 images paperswithcode_lsp;

Sports-focused dataset; Pose annotations

for 14 keypoints; Full body

Percentage of Correct Keypoints (PCK);

Percentage of Correct Keypoints with a

given threshold (PCKh)

PoseTrack

Dataset [197]

2017 514 videos including 66,374 frames in to-

tal paperswithcode_PoseTrack; Large-scale

dataset with videos captured in real-world

scenarios; Annotations for 2D keypoints

and instance-level tracking; Full body

Percentage of Correct Keypoints (PCK);

Percentage of Correct Keypoints with a

given threshold (PCKh)

FLIC (Frames

Labeled In

Cinema)

Dataset [198]

2013 3,987 training images and 1,016 test im-

ages [199]; Images extracted from movies;

Annotations for 10 body joints; Upper body

Percentage of Correct Keypoints (PCK);

Percentage of Correct Keypoints with a

given threshold (PCKh); Percentage of Cor-

rect Parts (PCP)

Table 3.3: Common Databases for 2D Human Pose Estimation

https://paperswithcode.com/dataset/mpii-human-pose
https://github.com/robertklee/COCO-Human-Pose
https://paperswithcode.com/dataset/lsp
https://paperswithcode.com/dataset/posetrack

Evaluation Metric Characteristics

Percentage of Correct Keypoints

(PCK)

Measures the percentage of correctly predicted key-

points based on a specified threshold distance

Percentage of Correct Keypoints

with a given threshold (PCKh)

Similar to PCK, but allows for different threshold

distances for different body joints

Mean Average Precision (mAP) Computes the average precision across different

recall thresholds, often used for multi-person pose

estimation tasks

Percentage of Correct Parts (PCP) Measures the percentage of correctly predicted

parts (e.g., upper arm, lower leg) based on a speci-

fied threshold

Mean Per Joint Position Error

(MPJPE)

Computes the mean per joint position error be-

tween the estimated and ground truth 3D poses

Table 3.4: Characteristics of 2D Human Pose Estimation Evaluation Metrics

89

3.7.2 Common databases and evaluation metrics for 3D human
pose estimation

Table 3.5 provides a list of commonly used datasets for 3D human pose estimation,

while Table 3.6 details the specific evaluation metrics employed in these studies.

90

3.7. OVERVIEW OF DATABASES AND EVALUATION METRICS FOR HUMAN POSE ESTIMATION91

Dataset Description Evaluation
metrics

HumanEva-I [117]

2010

7 calibrated video sequences using multiple RGB

and gray-scale cameras,

synchronized with 3D body poses obtained using

marker-based motion capture system

The database contains 4 subjects performing a 6

common actions

3D error metric

Si
ng

le
Pe

rs
on

Human3.6M [200]

2013

The most popular and biggest data-set and bench-

mark for 3D human pose estimation

3.6 million indoor video frames and corresponding

poses of 11 professional actors captured by MoCap

system from 4 camera viewpoints

Subjects 9 and 11 are used for testing, as in prior

studies

MPJPE

Procrustes

aligned MPJPE

MRPE

MPI-INF-

3DHP [149]

2017

It consists of more than 1.3 million frame captured

with marker-less motion capture using 14 RGB cam-

eras, consisting of both constrained indoor and com-

plex outdoor scenes

It has 8 subjects performing 8 activity sets.

MPJPE

3D_PCK

AUCrel

MuCo-3DHP [201]

2018

Training data-set which merges randomly sampled

3D poses from single-person 3D human pose data-

set MPI-INF-3DHP to form realistic multi-person

scenes.

MPJPE

3D-PCK

AUCrel

3DPCKabs

M
ul

tip
le

Pe
rs

on

MuPoTS-3D [201]

2018

A data-set used for testing

real-world shot of a 3D human pose dataset contain-

ing 20 videos (8000 frames) captured in both indoor

and outdoor scenes, with challenging occlusions and

person-person interactions.

3D-PCK

AUCrel

3DPCKabs

Muco-Temp [202]

2020

A data-set generated in the same way as MuCo-

3DHP.

It consists of videos instead of frames

Usually used for temporal networks training.

3D-PCK

AUCrel

3DPCKabs

MPJPE

MRPE

Table 3.5: Common databases for 3D human pose estimation

Evaluation
metric

Name Description

3D error met-

ric

3D error met-

ric

which measures the average squared distance between the pre-

dicted pose coordinates and the actual ones.

Pe
rs

on
-c

en
tr

ic
(r

el
at

iv
e

3D
po

se
) MPJPE Mean per joint

position error

Mean Euclidean error averaged over all joints and all poses, cal-

culated after aligning the human root of the estimated and ground

truth 3D poses.

MPJPE =
1
T

1
N

T

∑
t=1

N

∑
i=1

∥∥∥∥(J(t)i − Jroot
(t))− (Ĵi

(t)
− Ĵ(t)root)

∥∥∥∥
2

The first protocol (P1) uses five subjects for training and two for

testing, while the second protocol (P2) uses six subjects for train-

ing and one for testing. The third protocol (P3) splits the dataset

in the same way as P1 but evaluates only sequences captured by

the frontal camera in trial 1 without sub-sampling the original

video. The error is averaged over 14 joints in P1 and P2 and a

subset of 14 joints in P3. All protocols use Procrustes analysis to

calculate the pose error.

3DPCK 3D Percent-

age of Correct

Keypoints

measures the percentage of correctly estimated keypoints within

a certain distance threshold.

In studies, an estimated joint is considered correct if it is within a

150 mm distance from the corresponding ground truth joint.

AUCrel Area under

3D-PCK

curve

This performance metric is calculated by plotting the PCK val-

ues against different distance thresholds and integrating the area

under the curve. A higher value of this metric indicates better

performance of the algorithm.

MRPE Mean Root

Position Error

The average error of the absolute root joint (the hip) localization.

MRPE =
1
T

T

∑
t=1

∥∥∥(Jroot
(t)− Ĵ(t)root)

∥∥∥
2

92

C
am

er
a-

ce
nt

ri
c

(a
bs

ol
ut

e
3D

po
se

) AProot
25 Average pre-

cision of the

root

permit to measure the 3D human root location prediction error,

which considers the prediction as correct when the Euclidean

distance between the estimated and the groundtruth coordinates

is smaller than 25cm.

3DPCKabs 3D Percent-

age of Correct

absolute Key-

points

3DPCK without root alignment to evaluate the absolute poses

In studies, the threshold distance used for an absolute joint to be

estimated as correct is 250 mm.

Table 3.6: Evaluation metrics.
Note that T denotes the total number of test samples and N denotes the number of joints. Ground-truth joint and the

predicted joint are indicated by J and Ĵ, respectively. i represents each joint from all joints and root represents the root-joint.

93

3.8 Conclusion

This chapter provides an overview of the different approaches and techniques

for human pose estimation from monocular images, categorized based on their

approach to 2D and 3D, single and multiple person scenarios, learning algorithms,

and body structure interpretation. The networks and architectures used in these

methods were also presented, along with the datasets and evaluation metrics used

in the field.

Recent years have seen significant attention to 3D pose estimation, with deep

learning enabling significant improvements in performance compared to 2D pose

estimation. These approaches leverage prior knowledge of 3D human poses such

as kinematic models to control the mapping between 2D and 3D poses, resulting in

better accuracy.

However, these methods are still not suitable for real-life applications due to vari-

ous challenges. Most of the works only estimate the pose of one person in specific

conditions, such as an indoor environment. Additionally, their accuracy decreases

for smaller or more distant persons, or for fast movements.

The problem of 3D multi-person pose estimation from monocular images, particu-

larly in real-time, remains an open area of research with numerous challenges yet

to be tackled.

94

Part II

3D Real-time Multi-person pose
estimation : Software system design

and developement

95

General introduction

Multi-person pose estimation involves determining the 3D poses of multiple indi-

viduals in an image or video. This is an important area of research in computer

vision because it has many practical applications and could impact a wide range

of fields. It serves to revolutionize the way humans interact with computers and

each other. Absolute pose is more useful in certain scenarios because it allows for

the objects or people to be located and tracked in a consistent coordinate system,

regardless of their initial positions or orientations. In contrast, relative pose is

more useful in certain applications because it allows for the objects or people to be

located and tracked relative to each other, which may be more relevant in certain

scenarios. Ultimately, which type of pose is more important depends on the specific

application and the needs of the user.

3D root-relative pose estimation and 3D absolute pose estimation are two methods

determining the orientation and position of an object or body in 3D space. The

main difference between the two is the reference frame used to determine the pose.

In 3D root-relative pose estimation, the pose of an object or body is determined

with respect to a reference frame or "root" position. This means that the pose is

defined relatively to the position and orientation of the reference frame, rather than

with respect to an external coordinate system.

On the other hand, 3D absolute pose estimation involves determining the pose of

an object or body with respect to an external coordinate system. This means that

the pose is defined in terms of the position and orientation of the object or body in

relation to the coordinate system, rather than with respect to a reference frame.

3D root-relative pose estimation is often used in situations where the movement

of an object or body is being tracked over time, such as in robotics or computer

vision. 3D absolute pose estimation is used in situations where the position and

orientation of an object or body need to be determined with respect to a fixed

coordinate system, such as in augmented reality or robotics.

96

4
C H A P T E R

3D root-relative person pose
estimation

97

4.1 Introduction

This chapter presents the design of the software system, a multi-stage framework

based on deep learning networks. The system consists of four stages: the human

detector, the 2D human pose estimator, the 3D root-relative pose estimator, and the

depth root estimator. The chapter provides a detailed overview of these components

and their functions within the system.

4.2 Human detection

Human detection is a specific type of object detection, which is a sub-field of

computer vision that focuses on identifying and locating objects in images or

videos. Object detection has a wide range of practical applications, including

autonomous and assisting driving, human-computer interaction, robotics, security

and surveillance. In this section, we discuss the main categories of existing human

detection methods to provide context for the selection of the detector used in our

work.

4.2.1 Existing Human detection methods

Human detection specifically refers to the task of the recognition and detection

of human behavior or characteristics through computer vision techniques. There

are several existing methods for detecting humans in images and video streams,

which can be broadly classified into two categories: video-based methods and

image-based methods.

Video-based human detection methods typically use motion detection techniques

to identify human behavior. These methods recognize humans by analyzing the

trajectories of moving objects in videos and can be used to detect various human

behaviors such as walking, running, cycling, etc. Image-based human detection

98

methods, on the other hand, typically use target detection techniques and analyze

the information to recognize humans in a single image.

Both methods can be further divided into feature-based methods and deep learning-

based methods. Feature-based methods rely on hand-crafted features extracted

manually such as edge, scale-invariant feature transforms (SIFT), and histogram of

oriented gradients to detect objects/humans in images. These methods are often

faster and more efficient, but they may be prone to errors and may not perform

as well on complex images. While deep learning-based methods use deep neural

networks (such as convolutional neural networks) or other machine learning models

to learn features directly from the data to recognize human silhouettes, faces, body

features in images. In videos, deep learning models can be used to analyze human

motion trajectories and detect various human behaviors. These deep learning-

based methods are widely used in various human detection scenarios, such as

video surveillance, face recognition, and autonomous driving, due to their high

accuracy and efficiency. However, these methods require large amounts of data

and computational resources for training.

In the following, we focus on existing deep learning techniques that use neural

network architectures to detect objects and then identify them into classes, including

the "person" class that we are interested in for the rest of our work. Object detection

generally is categorized into Proposal-based object detectors (two-stage) and one-

shot object detectors (one-stage).

4.2.1.1 Two-stage object detectors

Two-stage object detectors are a type of method that consists of two independent

stages: a region proposal stage and a classification stage.

In the region proposal stage, the algorithm generates a set of potential regions

where objects may be present. These regions are typically generated using either

sliding windows or selective search techniques. The sliding window detector in-

volves creating multiple windows at different locations to detect different objects,

99

while selective search involves grouping pixels into regions based on texture and

color and then merging the regions to form candidate ROIs.

The objects are classified in the proposed regions by a classifier algorithm during

the second phase. The most used classifier is convolutional neural network (CNN).

The major strength of these methods is their capacity to handle a wide variety

of shapes and locations in the region proposal stage, which may process objects

with various aspect ratios and spatial locations. These methods, however, might be

computationally demanding because they require the generation and classification

of numerous region proposals.

Some examples of two-stage object detectors include the R-CNN family of meth-

ods (e.g., R-CNN, Fast R-CNN, and Faster R-CNN), and the Cascade R-CNN

method. These methods are widely utilized in both academia and industry, since

they have been shown to be efficient for a range of object detecting applications.

R-CNN (Region-based Convolutional Neural Network) [203] is the original

method proposed in the R-CNN family. It generates region proposals using a

selective search technique, and then classifies the objects in those regions using a

convolutional neural network (CNN). Due to the computationally expensive nature

of the selective search method and the need to train the CNN independently for

each image, the main drawback of this approach is that it is relatively slow.

Fast R-CNN [88] enhances upon the original R-CNN approach by using a single

CNN to classify the objects in all the region proposals. Compared to the original

R-CNN method, this reduces the training time and computational cost. The region

proposal stage is, however, still moving very slowly.

Faster R-CNN [89] enhances the Fast R-CNN method (figure 4.1) even further by

using a region proposal network (RPN) to provide region proposals. The RPN is

trained together with the rest of the network, which accelerates and improves the

effectiveness of the entire process. The main drawback of this method is that it con-

sumes more memory and computational resources compared to the R-CNN family

100

Figure 4.1: Faster R-CNN architecture [204].

algorithms. Cascade R-CNN [205] is an advanced version of Faster R-CNN that

implements a cascaded network architecture to enhance object detection accuracy

and robustness. This approach involves training multiple stages of detectors built

sequentially, with each stage acting as a filter that refines the predictions of the

previous stage and focuses on difficult examples. The first stage is trained on the

initial dataset, and subsequent stages are trained on hard examples misclassified by

previous detectors. The cascaded structure of the model allows it to become more

discerning and better manage difficult detection cases.

4.2.1.2 One-stage object detectors

One-stage object detectors are a type of method that consists of a single stage

for object detection. In these methods, the algorithm directly predicts the object

classes and locations in the input image, without the need for a region proposal

stage. Some examples of one-stage object detectors include the YOLO (You Only

Look Once) and SSD (Single Shot Multibox Detector) methods. The one-stage

methods are known for their fast inference times, as they do not require the genera-

101

Figure 4.2: SSD architecture [204].

tion of multiple region proposals.

YOLO is known for being fast and accurate, while SSD is known for its ability to

handle a wide range of object sizes and aspect ratios. One key difference between

YOLO and SSD is the way they process the input image. YOLO divides the image

into a grid of cells and predicts bounding boxes and class probabilities for each

cell. SSD, on the other hand, uses a set of default boxes at different scales and

aspect ratios, and predicts the offsets to these boxes and class probabilities for each

default box. Another difference is the way they handle scale variations. YOLO

is more sensitive to scale changes and may not perform as well when the objects

in the image are significantly larger or smaller than the objects it was trained on.

SSD, on the other hand, is able to handle a wider range of scales due to its use of

default boxes at multiple scales.

One area of research for improving the accuracy of one-stage object detectors

is the use of multi-scale feature maps, such as those used in the FPN (Feature

Pyramid Network) [206] architecture. These feature maps can help to improve the

detection of small objects, which are often poorly detected by single detectors.

102

Another area of research is the use of loss functions, such as the Focal loss and

the RetinaNet [207], to address the issue of category imbalance during training.

Category imbalance occurs when the number of samples in each class is not bal-

anced, leading to poor performance in underrepresented classes. The Focal loss

and RetinaNet address this issue by down-weighting the loss for well-classified

examples and focusing on the difficult examples during training.

4.2.1.3 Conclusion

The choice between using a one-stage or two-stage object detection method will

depend on the specific requirements and resources available for the task. Two-

stage methods are generally more accurate, but also require more computational

resources and are slower. On the other hand, one-stage methods typically offer

faster real-time processing speed but may require a trade-off in terms of accuracy,

especially when it comes to detecting small objects or objects that are too close.

These methods are known for their fast inference times, as they do not require the

generation of multiple region proposals, but they may be less accurate and prone to

problems in certain situations.

4.2.2 The human detection method adopted in our system

In our work, we faced the challenge of deciding between using a one-stage or two-

stage object detection method. On one hand, we wanted to accelerate the execution

time, which led us to consider one-stage detectors. On the other hand, we wanted

to use the most accurate method, as the accuracy of the detection would impact

the subsequent results and estimations. Therefore, to address this challenge, we

experimented with both one-stage and two-stage methods and ultimately chose the

best model for our specific case. After reviewing the literature, we selected Faster

R-CNN and YOLO as the top performing options in each category. We noticed

103

Figure 4.3: YOLO-v3 architecture [209].

by testing these models in our images that the bounding box shapes detected by

Faster R-CNN varied significantly between frames. The estimated depth, which

will be discussed in the next chapter (Chapter 5.5), exhibits fluctuations even when

the person is standing still. In contrast, YOLO was able to provide more stable and

accurate detection, making it the better choice for our purposes.

We used the third version of YOLO (YOLO-v3) [208], which was released in 2018

and has improved upon the previous versions in terms of accuracy and speed. It

is a fast and accurate object detector that is widely used in various applications

such as self-driving cars, video surveillance, and face recognition. The YOLO-v3

architecture predicts bounding boxes using dimension clusters as anchor boxes.

The network predicts four coordinates for each bounding box (bbox): the 2D image

coordinates of the top-left pixel of the bbox, the width and height of the bbox, and

the confidence score. Darknet-53 was used for feature extraction

4.3 Multi-person tracking

Multi-person tracking is the task of tracking multiple people in a video sequence.

It is a challenging task due to occlusion, appearance change, motion blur, and

background clutter. However, it is an important task with a wide range of applica-

tions, such as video surveillance, human-computer interaction, and sports analysis.

104

There are a number of different approaches to multi-person tracking, including

track-by-detection, track-by-association, and social force models. The choice of

approach depends on the specific application and the available resources.

4.3.1 Existing tracking methods

Tracking people in images is a crucial aspect of video surveillance, as it allows for

the analysis of human behavior and the identification of potential threats. There

are very diverse approaches to tracking people in images, including traditional

methods such as Kalman filters, particle filters, Mean-Shift, and optical flow, as

well as more recent methods based on deep learning. These algorithms can be used

to track different parts of the body (head, face, legs, etc.) or the entire person, and

sometimes involve representing the person as a skeleton, contour, or other type

of representation. The state-of-the-art methods for tracking objects in images and

videos can be categorized into four classes:

- Particle filters are a type of probabilistic method that uses a set of samples to

estimate the state of an object over time. Examples include the Kalman filter [210]

used for predicting the position of an object in a continuous and reliable manner

over time, and the particle filter [211], which is used to track the position and move-

ment of an object by representing it as a set of discrete particles, each representing

a possible state of the object. Particle filters are particularly useful for dealing with

non-linearities and the non-Gaussian nature of noise.

- Correlation-filtering-based tracking are a type of filter that uses cross-correlation

to track an object in an image or video. Examples include the Kernelized Cor-

relation Filter (KCF) [212] which is based on the concept of correlation filters

to track the position and movement of an object in a video, the discriminative

scale space tracker (DSST) [213] uses a discriminative model to track an object,

which outperforms KCF filter in terms of accuracy and robustness, and the spatio-

temporal context (STC) [214] method that improves object tracking by taking into

105

account the relationship between the tracked object (the target) and its surroundings

(context) in a Bayesian framework. STC can be used in combination with other

tracking techniques, such as particle filters, to improve the accuracy of tracking

results.

- Optical flow techniques measure the pixel-level motion between two images

and can be used to track objects in a video as Lukas- Kanade algorithm in [215]

by the intensity changes of frames, and the Horn-Schunck method [216] based

on the minimization of an energy functional which is composed of two terms: a

smoothness term and a brightness constancy term.

- Deep learning-based methods have become increasingly popular in the field of

object tracking due to their ability to learn complex patterns and features in the data

and adapt to changing conditions. These include DaSiamRPN [217], DiMP [218],

MDNet [219], SiamFC [220], and SiamRPN++ [221].

4.3.2 The tracking method adopted in our system

In our situation, we already had multiple deep learning models integrated and

needed to run the system in real-time. Therefore, due to their high computing

needs and requirement for a large dataset of annotated images or videos, adopting

deep learning-based algorithms for tracking was not a viable option for us. Instead,

we had to consider alternative methods that were more effective and suitable for

our real-time constraints. As an alternative, we considered traditional methods such

as Optical flow techniques, Correlation-filtering based tracking, and Particle filters.

However, these methods may be limited in terms of their ability to track multiple

objects efficiently or accurately identify target objects in cluttered environments.

They can also be challenging to set up and tune correctly due to their sensitivity to

the motion and measurement models chosen, which may result in unsatisfactory

results in some cases.

The Hungarian optimization algorithm [222] offers an effective solution that could

106

accurately detect targets even when they are partially occluded or moving at varying

speeds, while also requiring minimal computational resources. The Hungarian

optimization algorithm is preferred for object tracking due to its robustness and

accuracy, and is capable of handling large-scale problems with a high degree of

complexity, making it suitable for complex scenarios such as multi-object tracking.

It is a method for solving the assignment problem, which involves finding the

optimal way to assign a set of tasks to a set of resources in order to minimize the

cost. In the context of people tracking, the Hungarian optimization algorithm is

sometimes used to assign tracked objects to detected objects in order to reduce

the number of tracking errors. It has the benefit of being comparatively fast and

efficient, which is advantageous for real-time applications. It can also deal with

scenarios when there is a mismatch between the number of tracked and detected

objects, which can be problematic for other approaches.

This method proved successful for us since it allowed us to execute the system in

real time without compromising on accuracy.

To ensure accurate tracking, every person is given a one-of-a-kind ID, which is

randomly generated and never replicated, that must be associated with the tracking

system which utilizes the Hungarian optimization algorithm for high accuracy in

real time and safeguards the system from being deceived by two or more people

with the same ID at the same time.

4.4 2D human pose estimation

The process of determining a person’s body’s location and orientation in an image

or video is known as a 2D posture estimation. This is a crucial enabler for many

applications, including activity analysis, action recognition, and human-computer

interaction. There are various approaches to 2D pose estimation, from traditional

methods based on hand-crafted features to more recent methods based on deep

learning, such as Mask R-CNN and OpenPose.

107

A major benefit of modern deep learning techniques is their capacity to automati-

cally learn feature representations from data. However, the quality of the features is

closely linked to the network architecture, thus the area of network design warrants

a thorough exploration. Consequently, network architecture design approaches

attempt to extract robust features by exploring a variety of network designs to

solve human pose estimation. In this section, we aim to provide a comprehensive

overview of these approaches while focusing on their network architectures.

4.4.1 Existing 2D pose estimation networks

In chapter 3, we reviewed various approaches used for human pose estimation,

including methods for single 2D human pose estimation, which can be catego-

rized into keypoint regression and heatmap estimation methods. In their survey

paper, Dang et al. [27] compared the techniques of direct keypoints regression

and heatmap estimation. According to their findings, each approach has its own

advantages and limitations, making it difficult to determine a definitive superior

method. Direct regression offers the advantage of being fast and trained in an end-

to-end manner. However, it can be challenging to learn the mapping accurately. On

the other hand, heatmap-based methods can handle complex scenarios effectively.

Although the use of high-resolution heatmaps can enhance precision, it requires a

significant amount of memory capacity. Despite this requirement, heatmap-based

strategies have gained increasing popularity in recent years.

To illustrate, in the LSP dataset [223], the DeepPose approach [60] employed

direct regression and achieved an average Percentage of Correct Parts (PCP) of

61%. However, this result was lower compared to heatmap-based methods, even

when cascaded regressors were used to refine predictions. Although the use of

cascaded regressors increased learning complexity, it also diminished the model’s

generalization capability.

In deep learning-based pose estimation, ResNet [91], Convolutional Pose Machine

108

(CPM) [65] and Stacked Hourglass Network [66] are commonly utilized as back-

bone models for predicting the XY locations of joints based on heatmaps. ResNet

is renowned for capturing comprehensive contextual information of each human

body joint through residual mapping and skip connections. DeeperCut [96], which

added intermediate supervision to ResNet-152, achieved a PCK score of 90.1%

on the LSP dataset, while part heatmap regression attained 90.7% accuracy. The

skip connections in the Stacked Hourglass Network enable precise estimation by

preserving spatial information and merging functionalities at different scales within

the same resolution layers.

Differently, CPM employs distinct pipelines operating independently at multiple

resolutions before combining their functionality within the network. This approach

also incorporates supervised intermediate heatmaps and a loss function to capture

both global and local information through network learning, enhancing its perfor-

mance

In the FLIC dataset [198], CPM network and Stacked Hourglass Network achieved

high precision for wrist and elbow estimation. Specifically, the CPM network

achieved 95.03% wrist estimation precision and 97.59% elbow estimation preci-

sion using the PCK@0.2 metric, while the Stacked Hourglass Network achieved

97.0% wrist estimation precision and 99.0 % elbow estimation precision.

By combining the Stacked Hourglass and Inception-Resnet architectures, Ning et

al. [68] achieved significant results. They estimated 96.9% of the keypoints on the

LSP dataset and 91.2% on the MPII dataset [195] using the PCKh evaluation metric.

Notably, the Stacked Hourglass model outperformed DeepCut and DeeperCut in

terms of PCK values.

On the MPII dataset, both DeeperCut and CPM achieved a PCK@0.5 score of

88.52% by incorporating intermediate supervision to the ResNet-152 model. Ad-

ditionally, the Stacked Hourglass Network achieved a PCK@0.5 score of 90.9%.

Furthermore, the integrated Stacked Hourglass and Inception-ResNet model [68]

reached a PCK@0.5 score of 91.2

109

The High-Resolution Network (HRNet) [101] has shown impressive performance

on both the MS-COCO and MPII datasets. Its ability to maintain high-resolution

representations of features across the network eliminates the need for feature

restoration in the output. On the MS-COCO dataset, HRNet achieved 77% using

the Average Precision (AP) metric and 82% using the Average Recall (AR) metric.

Moreover, the smaller version of HRNet, HRNet-w32, which offers improved effi-

ciency in terms of model size (# Params) and computation complexity (GFLOPs),

achieved a PCKh@0.5 score of 92.3% on the MPII dataset. Additionally, the

HRNet model is not limited to multi-person pose estimation datasets but is also

widely adopted in 3D human pose estimation methods as a 2D pose detector.

When it comes to multiple-person pose estimation, top-down approaches typically

offer higher precision and accuracy compared to bottom-up methods. These top-

down methods achieve superior results by applying a pose estimator individually to

each person in the scene. However, this approach can be less effective and slower

due to the need for separate processing for each individual. Additionally, top-down

methods may struggle to capture spatial dependencies that exist across different

people, requiring global inference to handle such scenarios.

On the other hand, bottom-up approaches demonstrate greater robustness in scenes

with numerous individuals in close proximity. These methods excel in scenarios

where multiple people are present, as they focus on detecting and associating body

parts without explicitly identifying each individual beforehand. By considering

the relationships between body parts and their spatial connections, bottom-up

approaches can effectively handle complex multi-person poses.

4.4.2 The 2D pose estimation method adopted in our system

The popular choice for researchers on 2D human pose estimation is High-Resolution

Network (HRNet) [86] due to its high accuracy, efficient training and inference,

and flexibility. It has been demonstrated to achieve state-of-the-art results and

110

strong performance on several benchmarks for this task.

The HRNet architecture 4.4 starts from a high-resolution subnetwork and gradually

adds lower resolution subnetworks, by decreasing the resolution to half and increas-

ing the width to double in separate branches that are connected in parallel, which

allows HRNet to maintain a high-resolution representation throughout the process.

The input image size is 256× 192 or 384× 288, which produces 17 heatmaps

(one per keypoint) of size 64×48 or 96×72, respectively. This multi-resolution

architecture of HRNet allows learning features at different scales during training.

This, along with its lightweight network architecture, also makes it suitable for

real-time applications. In addition to its performance, HRNet is also versatile, as it

can be used for both single-person and multi-person pose estimation. All of these

factors make HRNet an attractive choice for researchers in this field, including us.

The authors proposed two variations of HRNet: a small network containing 32

channels (HRNet-W32) and a large network with 48 channels (HRNet-W48).

Figure 4.4: HRNet architecture [86].

111

4.5 3D pose estimation from 2D joints

3D pose estimation from 2D joints refers to the process of determining the three-

dimensional position of a person’s joints in an image, using two-dimensional

joint locations as input. This can be achieved through various techniques, such as

binary decision trees [125], deep learning [63, 123, 124, 127–131], and dictionary

learning [121, 132]. Some approaches also involve a two-stage process, where the

first stage estimates the 2D pose from monocular images, and the second stage lifts

the 2D joint locations to 3D poses, followed by an optimization step [126, 133].

This section presents an overview of the current two-stage 3D pose estimation

techniques based on deep learning that estimate the 3D pose of a person from 2D

joints in an image.

4.5.1 Existing 3D pose estimation methods

Over the years, numerous approaches have been developed for estimating the 3D

pose of a human body as seen in chapter 3, which can be also classified based

on the input data they use. Specifically, two major types of methods have been

proposed in the literature: monocular image-based methods, outlined in Table 4.1,

and monocular video-based methods, outlined in Table 4.2.

In practice, it is generally observed that the two-stage approach of dividing 3D

human pose estimation into two stages, including 2D pose estimation as an invariant

feature and lifting to 3D poses, is more accurate and feasible than building an

end-to-end network for direct 3D joint regression. Many state-of-the-art methods

predict 3D poses from intermediate 2D coordinates obtained from monocular

images. These methods include the ones proposed by [63, 159, 160, 164, 226–233]

(source: [234]).

These methods use different techniques, such as concatenation of 2D pose esti-

mation results and image features [118], multi-stage lifting by an unimodal Gaus-

112

Method Description
Direct Regression [124,

150]

A deep learning approach that involves training a neural

network to directly regress 3D joint locations from 2D image

data. Typically requires a large amount of annotated data to

train the network effectively.

Two-stage Approach [120,

224]

A two-stage approach that first estimates 2D joint locations

and then lifts them to 3D using a 3D pose model. Often

involves a convolutional neural network (CNN) to predict

2D joint locations and then solving an optimization problem

to obtain the final 3D pose.

Pose-guided Joint Regres-

sion [57, 163, 225]

A deep learning approach that uses pose information to guide

the regression of 3D joint locations. Typically involves first

estimating the pose (e.g. body orientation) and then using

that information to help predict the joint locations.

Generative Models [81] A family of methods that involve learning a probabilistic

model of the 3D pose distribution given 2D image data.

Typically involves a generative adversarial network (GAN)

or variational autoencoder (VAE) to learn the model.

Table 4.1: Monocular Image-Based Methods

sian 3D pose model [120], 2D to 3D distance matrix regression [124], feedback

from 3D re-projection and use a discriminator to judge feasibility of the generated

3D pose [166], lifting 2D pose to 3D by a neural network [85], exploiting body part

images to predict depth [235], fusing 3D image cues with 2D joint heatmaps [123],

multi-source discriminator [128], ordinal depth as supervision [130], estimating

pixel-wise 3D surface correspondence [236], part-centric heatmap triplet [237],

predicting 3D poses from low-DOF to high-DOF [238], using different filters for

feature extraction [239], deep conditional variational autoencoder [224], generating

113

multiple corresponding feasible 3D pose solutions [240], jointly understanding

holistic scene and estimating 3D human pose [241], lifting by semantic graph

convolutional network [63] unsupervised lifting with a discriminator [242], and

learning a consistency measure between 2D observations and a proposed world

model by a neural network [243]. The methods aim to reduce lifting ambiguity and

generate realistic 3D pose solutions.

Keeping this in mind, we will now explore the use of video-based techniques

that make use of multiple frames to enhance the inference of 3D pose, overcome

ambiguities, and reduce errors caused by occlusion or other factors by leveraging

motion cues. These methods differ in their ability to leverage temporal and motion

information and the complexity of the models used to estimate poses.

114

4.5. 3D POSE ESTIMATION FROM 2D JOINTS 115

Method Description

Temporal Smoothing [202, 232] A post-processing technique that involves applying temporal

smoothing to the 2D joint locations over multiple frames to obtain

a more accurate 3D pose estimate using filters such as a Kalman

filter or a variant thereof.

3D Kinematic Model Fitting [150,

244, 245]

The approach involves an algorithm to match the 2D joint locations

in every frame of a video with a 3D kinematic model of the human

body. This usually requires optimizing the model to minimize the

difference between the predicted 3D joint locations and the actual

2D joint locations detected in the video frames.

Temporally Consistent Pose Estima-

tion [246, 247]

This technique entails estimating the motion and pose of the human

body in 3D across various frames of a video. The procedure

often involves constructing a continuous trajectory to represent

the motion and ensuring that the estimated poses are consistent

throughout the video.

Pose-guided Joint Regression [248] Similar to the method used in monocular images, this method

uses pose information to guide the regression of 3D joint loca-

tions. However, in the case of monocular videos, this may involve

estimating the temporal evolution of the pose and using that infor-

mation to help predict the joint locations.

Video-based Pose Refinement [245,

249]

The approach employs a pre-trained model for 3D pose estimation

on a single frame of video, followed by enhancing the estimations

across multiple frames by including temporal information. Com-

monly, the technique applies a fusion of optical flow and temporal

consistency restrictions to improve the precision of the pose esti-

mations.

Generative Models [250, 251] Similar to the method used in monocular images, this method

involves learning a probabilistic model of the 3D pose distribution

given the video data. However, in the case of monocular videos,

this may involve modeling the temporal evolution of the pose

distribution over time.

Table 4.2: Monocular Video-Based Methods

Figure 4.5: GAST-Net architecture [253].

4.5.2 The 3D pose estimation method adopted in our system

Recent research has shown that the two-stage approach is the most precise method

for 3D human pose estimation. This approach utilizes deep neural networks to

estimate 2D keypoints from an RGB image and subsequently map them to their

corresponding 3D coordinates. The accuracy of this approach has been shown to

exceed that of other methods, particularly those that use a deep neural network in

the second stage.

To analyze and interpret video input, most models rely on Temporal Convolu-

tional Networks (TCNs). These networks were initially introduced for action

segmentation by Lea et al. [252]. GAST-Net (graph attention spatio-temporal

network) [253] is an architecture that draws inspiration from VideoPose3D [160]

and aims to predict 3D poses from 2D keypoints.This network comprises dilated

temporal convolutional networks and a graph attention block. The TCNs can

handle long-term patterns and have an extended memory, while the graph attention

block includes two spatial attention networks: a local spatial attention network that

models the hierarchical and symmetrical structures of the human skeleton and a

global spatial attention network that extracts global semantic information in an

adaptive manner. This allows GAST-Net to better encode the spatial characteristics

of the human body.

116

GAST-Net was selected as the best option for 3D pose estimation from 2D

keypoints in our framework, as it strikes a balance between the number of frames

needed for processing and the precision of the estimation. In fact, the most accurate

methods for monocular videos from Human3.6m, (the largest database of 3D

human pose estimation) are temporal convolution [160] trained in semi-supervision

learning, Attention 3D Human Pose [247], which identifies significant frames and

tensor outputs from each layer using the attention mechanism, the RIE paper [159],

which improves the accuracy through relative information encoding that yields

positional and temporal-enhanced representations, and Anatomy3D [254], which

estimates the 3D skeleton by predicting bone orientation and length. These methods

reached the MPJPEs (defined in chapter 3) of 46.8 mm, 45.1, 44.3, and 44.1,

respectively. However, these methods require a large number of input frames

(243 frames). This is very costly in terms of memory and processing time, and it

increases the delay between the image display and the result, making it unsuitable

for real-time processing.

Furthermore, tracking multiple individuals over long periods of time is more

complex and prone to errors.

On the other hand, approaches that employ fewer frames have higher errors. For

example, models such as VIBE [255] and TP-Net [225] which rely on a limited

number of frames, 16 and 20 respectively, resulted in substantial errors with MPJPE

of 65.6 mm and 52.1 mm respectively Even the Trajectory space factorization

method [232] which used 50 frames scored an error of 46.6 mm. GAST-Net

achieved an MPJPE of 46.2 mm despite utilizing a limited number of frames (27

frames), making it a more practical solution for real-world contexts.

GAST-Net is a sophisticated machine learning algorithm that utilizes a combi-

nation of convolutional neural networks (CNNs) and graph attention layers (GATs)

to accurately detect and map human body parts such as arms, legs, and torso in

three-dimensional space using only two-dimensional images captured by cameras

or other sensors. This approach enables more accurate tracking compared to tradi-

117

118 CHAPTER 4. 3D ROOT-RELATIVE PERSON POSE ESTIMATION

Method Number of Frames MPJPE (mm)

MotionBERT [256] 243 37.5

MixSTE [257] 243 39.8

P-STMO [192] 243 42.1

Anatomy3D [254] 243 44.1

RIE Methodpaper [159] 243 44.3

Attention 3D Human Pose [247] 243 45.1

VideoPose3D [160] 243 46.8

Spatio-Temporal Network [228] 128 40.1

GAST-Net [253] 27 46.2

Trajectory space factorization [232] 50 46.6

TP-Net [225] 20 52.1

VIBE [255] 16 65.6

Table 4.3: Summary of methods and their accuracy in terms of MPJPE on Hu-

man3.6m and number of frames used.

tional methods that only rely on two-dimensional data points.

In conclusion, GAST-Net has allowed us to accurately estimate the 3D poses of

multiple individuals in real-world scenarios. It utilizes both temporal convolutional

networks (TCNs) and graph attention layers (GATs) to effectively identify and map

body parts onto 3D coordinates. Compared to state-of-the-art methods, GAST-Net

provides a good balance between the number of frames required to process and the

estimation precision, making it suitable for real-time applications.

4.6 Conclusion

In this chapter, we have thoroughly described the various steps involved in 3D

human pose estimation and the reasoning behind our choice of network models. To

carry out human detection, we utilized YOLO-v3; tracking was performed with the

help of the Hungarian optimization algorithm; and 2D human pose estimation was

performed using HRNet. These methods were combined with GAST-Net to obtain

3D pose estimation from 2D poses. However, it is essential to keep in mind that

this approach provides 3D root-relative human pose estimation, which may not be

as suitable for real-world applications as compared to absolute pose estimation. In

the upcoming chapters, we aim to address this limitation by making substantial

advancements and contributions in the field of 3D human pose estimation. Our

focus will be on developing methods to provide absolute pose estimation, which

will be more reliable and practical for a wider range of use cases.

119

5
C H A P T E R

Proposed approach for 3D ab-
solute pose estimation

120

5.1 Introduction

In the previous chapter, 3D root-relative human posture estimation approaches

were covered. The estimation relative to the root body joint, also known as person-

centered pose estimation, refers to the estimation that determines the distance

between the root point (the person’s pelvis) and other body points.

For single person 3D pose estimation, we only need to estimate the relative depth at

the root key point, which was discussed in the previous chapter 4.However, when

the scene includes multiple people, it becomes more important to also estimate the

absolute position of each person relative to the camera. This requires estimating

the depth of key points with respect to the camera, in addition to estimating the

relative 3D pose of each person’s body.

There are many commercially available devices that can provide depth information,

such as ToF sensors. Time-of-flight (ToF) sensors are a type of device that can be

used to measure the distance or depth of an object in 3D space. The Time-of-flight

technology is based on the measurement of optical distance. The way they operate

is by emitting a light pulse and timing how long it takes for the light to travel from

the sensor (light source) to the object and back. The object’s distance or depth can

be determined using the time it takes for light to travel over this distance.

DISTANCE_TO_OBJECT = SPEED_OF_LIGHT ×T IME_OF_FLIGHT

There are many sensors available commercially that are used in various applica-

tions. For example, Kinect sensors use structured light ToF technology and are

known for their high accuracy and reliability. They are commonly used in gaming

and robotics applications, but are generally most suitable for short-range depth

sensing in indoor environments, typically up to a range of around 2 meters. This is

because Kinect sensors rely on the detection of reflected light, and the accuracy

of the measurement can be affected by factors such as ambient light and surface

reflections.

LIDAR sensors, on the other hand, use laser ToF technology and are commonly

121

used in autonomous vehicles and other applications. They are especially useful in

outdoor environments or at longer ranges, as they are fast, accurate, and capable

of measuring long distances and in a wider range of lighting conditions. LIDAR

sensors are often preferred over other depth sensing technologies for these reasons.

They, meanwhile, consume a lot of energy power, making them unsuitable for

consumer products.

There are other technologies that can be used to provide depth information, such

as structured light sensors, and laser scanning. These technologies work by using

different techniques to measure the distance or depth of objects in 3D space, and

they may be more or less suitable for different applications depending on the

specific requirements and constraints. However, they are currently not as widely

used doe to their higher cost and lower accuracy.

Stereo cameras are a technology that is widely used for depth sensing, particularly

in the field of 3D human pose estimation. They consist of two or more cameras

that are positioned such that they each capture a different view of the same scene.

The images from the different cameras are then used to calculate the distance or

depth of objects in the scene. This is also known as triangulating the scene. There

are various methods proposed using this technology for measuring the distance

or depth of people in 3D spaces. The best choice for a particular application will

depend on the specific requirements and constraints of the application, as some

technologies may be more or less suitable for different purposes.

In our thesis, we have chosen to use monocular cameras for depth estimation due

to constraints in the application that will be explained in chapter 7. Monocular

cameras are a type of camera that uses a single lens to capture images and are

widely used in security surveillance and industrial security applications. However,

estimating depth using monocular cameras can be a challenging task because of

the limited information available from a single viewpoint. When a 2D image is

captured, it loses the depth and scale information that is present in the original

scene. In addition, the process of estimating depth from a 2D image is often

122

ambiguous and can be affected by a variety of factors, including the camera focal

length, camera pose, person size and posture, and so on. As a result, much of the

research in this area has focused on estimating the relative pose of each individual,

rather than the absolute depth of the scene.

However, absolute pose estimation is an important problem that warrants further

study because it is closely related to real-world scenes. It has been difficult to

measure this distance accurately because the distance between two objects in a

real-world scene is not necessarily constant. By determining these distances and

relationships between individuals, it may be possible to develop more complex

applications that help to better understand the interaction between people and

analyze their behaviors. For example, such applications could be used in security

surveillance to detect and track the movement of individuals in a crowded scene,

or to identify patterns of behavior that may indicate suspicious activity. In social

science research, depth sensing technology could be used to study group dynamics

and communication patterns in order to better understand how people interact with

one another. In conclusion, the ability to accurately estimate the absolute pose of

people in a scene can provide valuable insights and enable the development of a

wide range of applications.

In this chapter, we review current research on single-view, multi-person abso-

lute position and pose estimation tasks, and then propose a solution that is expected

to meet the initial requirements.

5.2 Existing techniques

There have been relatively few studies on estimating the 3D poses of multiple

people from a single RGB image. These methods can generally be divided into

two categories: top-down and bottom-up approaches.

Top-down 3D human pose estimation methods [119, 153, 258] are those that start

123

by detecting and cropping each person in a bounding box and then estimating

person-centric 3D full-body joints [150, 160, 259]. These methods have shown

promising performance, but they can be affected by inter-person occlusions and

close interactions because they process each person independently. Rogez et al.

introduced LCR-Net [135] and LCR-Net++ [153], which classified bounding

boxes into a set of K-poses and refine them using a regressor. The Localization-

Classification-Regression architecture consists of three components that share

convolutional feature layers and are jointly trained: a pose proposal generator,

a classifier, and a regressor. The proposal generator suggests candidate poses at

different locations in the image, the classifier scores the different pose proposals,

and the regressor refines pose proposals in both 2D and 3D. The final pose estima-

tion is obtained by integrating neighboring pose hypotheses. Benzine et al. [260]

proposed PandaNet, a single-shot anchor-based approach for 3D pose estimation.

It performs bounding box detection and 2D and 3D pose regression in a single

forward pass, without requiring any post-processing to regroup joints. To handle

overlapping people, PandaNet uses a Pose-Aware Anchor Selection strategy and op-

timizes weights for different people sizes and joints to improve training efficiency.

The proposed pipeline of Moon et al. [259] consists of human detection, absolute

3D human root localization, and root-relative 3D single-person pose estimation

modules. The RootNet model in is used for absolute 3D human root localization,

while the PoseNet [129] model is used for root-relative 3D single-person pose

estimation. The end-to-end HDNet (Human Depth Estimation Network) [261]

follows the same pipeline. It estimates the depth of a person in an image by using

a combination of a Feature Pyramid Network [206] for general feature extraction

and separated multi-scale feature extraction for pose and depth estimation, and a

Graph Neural Network to propagate and aggregate features for the target person’s

depth estimation. The estimated depth is represented as a bin index and can be

transformed into a continuous value using a soft-argmax operation. Similar to the

above methods for depth estimation, HMOR (Hierarchical Multi-person Ordinal

124

Relations) [262] employs an integrated top-down model to estimate human bound-

ing boxes, depths, and root-relative 3D poses simultaneously, with a coarse-to-fine

architecture that, instead of using image features as the above methods for depth

estimation, hierarchically estimates multi-person ordinal relations of depths and an-

gles which captures body-part and joint-levels semantics while maintaining global

consistency to improve the accuracy of depth estimation. The proposed frame-

work for 3D multi-person pose estimation in [263] combines graph convolutional

networks and temporal convolutional networks to estimate camera-centric poses

without requiring camera parameters. It includes GCNs that estimate frame-wise

3D poses and TCNs that enforce temporal and human dynamics constraints to

estimate person-centric with a joint-TCN and camera-centric 3D poses across

frames with a root-TCN.

In addition to the methods mentioned above, there are also bottom-up approaches,

such as [201, 264, 265] to 3D multi-person pose estimation. These approaches

first generate all body joint locations and depth maps and then associate body

parts to each person based on the root depth and the relative depth of the parts.

Mehta et al. [201] proposed a single forward pass approach that is independent of

the number of people in the scene. The method applies temporal and kinematic

constraints in three steps to predict occlusion-robust pose-maps (ORPM) and part

affinity fields [97]. This method produces multi-person 2D joint locations and 3D

pose maps in a single shot. MubyNet is another bottom-up multi-stage framework

proposed by Zanfir et al. [266], which first estimated the volumetric heatmaps to

determine the 3D keypoint locations and limbs using the confidence scores of all

possible connections, and then conducted skeleton grouping in order to assign

limbs to various people. Likewise, Fabbri et al. [264] proposed estimating volu-

metric heatmaps in an encoder-decoder manner. They first produced compressed

volumetric heatmaps, which are used as ground truth, and then decompressed them

at test time to re-obtain the original representation. Zhen et al. [267] estimated

2.5D representations of body parts and reconstructed 3D human pose in a single-

125

shot bottom-up framework. Wang et al. [268] also proposed distribution-aware

single-stage models to represent 3D poses with a 2.5D human center and 3D center-

relative joint offsets in a one-pass solution.

On the other hand, to exploit top-down and bottom-up pipelines strengths, some

works combine top-down and bottom-up approaches to address the challenges of

inter-person occlusion and close interactions. Such as TDBU_Net framework [178].

Its top-down network estimates human joints for all persons in an image patch,

making it robust to possible erroneous bounding boxes, while the bottom-up net-

work incorporates human-detection based normalized heatmaps to handle scale

variations. The estimated 3D poses from the top-down and bottom-up networks are

then fed into an integration network for the final 3D poses. In addition, the method

includes a two-person pose discriminator to enforce natural two-person interactions

and applies a semi-supervised approach to overcome the lack of 3D ground-truth

data. Similarly, in the approach proposed by [179], a top-down network is used to

estimate the 3D joints of all people in an image patch, while a bottom-up network

incorporates human detection-based normalized heatmaps to improve robustness

in handling scale variations. The 3D pose estimates from both networks are then

combined in an integration network to produce the final 3D poses.

5.3 Monocular Root depth estimation

Depth estimation is a computer vision task that involves estimating the depth of

objects in a scene using a single camera. It has been intensively researched in the

past decade and has seen significant progress using deep learning (DL) approaches.

Monocular depth estimation has a wide range of applications, including augmented

reality [269–271], target tracking [272, 273], 3D reconstruction [274] and medical

imaging [275], among others. There are several ways to acquire depth maps for

monocular depth estimation, including using specialized hardware devices such as

the Microsoft Kinect, or by estimating the depth using one or more RGB views.

126

In our research, we focus on monocular depth estimation using a single camera,

which is known as monocular depth estimation. Monocular depth estimation is the

process of estimating the distance or depth of objects in 3D space using a single

camera. There are several methods that can be used for this purpose, including

stereopsis [276], structure from motion, and depth from focus. These methods work

by analyzing the differences between views, the motion of the camera or objects,

or the focus of the camera to infer the depth of the objects in the scene. These

methods can be used individually or in combination, depending on the specific

requirements and constraints of the application.

Monocular root depth estimation involves inferring information about the distance

of the person’s central key point (such as the pelvis or lower back) from the

camera viewpoint using a single monocular images. While using monocular

images to capture depth information can potentially solve memory issues, it can

be computationally challenging to capture global scene features such as ground

variation or defocus data. This can affect the accuracy of the depth estimation. One

of the main challenges of using these monocular depth estimation methods is that

it can be difficult to capture enough features in the image to match when the scene

has less or no texture. This can make it difficult to accurately estimate the depth of

objects in the scene, particularly in situations where there are few or no distinctive

features in the image that can be used for matching. To overcome this challenge,

researchers have developed various techniques to improve the robustness and

accuracy of monocular depth estimation in such scenarios, such as using machine

learning or deep learning approaches to learn to recognize and match features in

the image [277].

We are particularly interested in the RootNet model, proposed by Moon et al. [259],

for the purpose of localizing the absolute 3D human root in images or videos. We

detail this model in the next subsection.

127

5.3.1 RootNet network architecture

RootNet [259] is a model that estimates the 3D coordinates of the human root

(the pelvis or lower back) in a camera-centered coordinate space from a cropped

image of a person. It does this by separately estimating the 2D image coordinates

(x,y) and the depth value (z) of the human root. The 2D image coordinates are

then back-projected to the camera-centered coordinate space using the estimated

depth value, resulting in the final output of the model. Estimating the depth

from a cropped image of a person is difficult because the input does not contain

information about the relative position of the camera and the person. To address

this issue, RootNet introduces a new distance measure called k defined in equation

5.1, which approximates the absolute depth from the camera to the object using

the ratio of the actual area of the human Areal (assumed to be constant at 2000mm

x 2000mm) and the imaged area of the human Aimg (calculated by extending the

bounding box of the human in the image to a fixed aspect ratio (height:width =

1:1)), given the camera’s intrinsic parameters (f x, f y), which are the focal lengths

divided by the per-pixel distance factors (pixel) of x- and y-axe. This distance

measure is derived from a pinhole camera projection model.

k =

√
f x× f y× Areal

Aimg
(5.1)

However, this value can be incorrect in some cases because it assumes that Aimg

is equal to Aimg when the distance between the person and the camera is k. To

address this issue, RootNet uses image features to correct the value of Aimg and

improve the accuracy of the distance estimate. The model outputs a correction

factor (γ) based on the image features, which is used to modify the value of Aimg .

The modified value of Aimg (Aγ

img) is then used to calculate the final depth value

(k), which represents the distance between the camera and the person.

RootNet is composed of three main components: a backbone network that extracts

global features from the input image using a ResNet architecture, a 2D image

128

coordinates estimation part that uses deconvolutional layers to upsample the feature

map and output a 2D heatmap of the root, and a depth estimation part that uses

global average pooling and a 1x1 convolution to output a scalar value (γ) that

represents a correction factor for the depth estimate. The 2D image coordinates

(xR,yR) are obtained by applying a soft-argmax function to the 2D heatmap, and the

final absolute depth value (ZR) is calculated by multiplying k (a value calculated

using the ratio of Areal to Aimg) with 1/γ . In practice, RootNet outputs γ ′ = 1/
√

γ

directly, and ZR is calculated by multiplying γ ′ and k.

Figure 5.1: Network architecture of the RootNet [259].

5.3.2 Camera-intrinsic parameters

Previously, we examined the original structure of RootNet, which provides us with

the depth of the root point (ZR, referred to as Zabs
root in the thesis) and the root-image

coordinates (xR and yR, referred to u and v in the thesis). In order to obtain the

camera-centric coordinates (Xabs
root and Y abs

root), we use projection with the camera

intrinsic parameters, such as the focal length and the center of the camera.

The focal length of a camera ((f x, f y)) is a measure of the ability of the lens to

focus light onto the image sensor, expressed in millimeters (mm). A longer focal

length corresponds to a more powerful zoom, while a shorter focal length allows a

wider field of view. The center of the camera ((cx,cy)) is the point in the image

129

where the camera’s optics are focused. It is usually located at the center of the

image sensor and is used as a reference point to calculate the position of objects

in the scene. In 3D pose estimation, the center of the camera is often used as the

origin of the coordinate system, with the X, Y and Z axes corresponding to the

horizontal, vertical and depth dimensions of the scene, respectively.

The projection in the majority of videos can be modeled as:
u

v

1

=
1
Z


f 0 cx

0 f cy

0 0 1




Xabs

Y abs

Zabs

 (5.2)

where u and v are the image coordinates, Xabs, Y abs and Zabs are the camera coor-

dinates.

f , cx, cy stands for the focal length and camera centers, respectively. The camera

centers are considered as image centers, which is applicable to most cameras.

Thus if the depth estimate of the root Zabs
root is known, we can determine the coordi-

nates Xabs
root and Y abs

root of the camera by:

Xabs
root =

Zabs
root
f (u− cx) Y abs

root =
Zabs

root
f (v− cy)

In the following sections, we present the four approaches developed in this

thesis for determining the absolute position of a root keypoint, as illustrated in

Figure 5.2.

5.4 Two-stage approach 3D absolute pose estimation

5.4.1 Approach structure

It can be difficult to accurately estimate the absolute depth of key points from a

video due to variations in person height and the mismatch in scale between the

depth point and the full body. To address this challenge, we rely on a commonly

130

5.4. TWO-STAGE APPROACH 3D ABSOLUTE POSE ESTIMATION 131

Figure 5.2: Summary Diagram of the Networks Used in the System.

used strategy that uses deep learning techniques to estimate the absolute depth

of key-points from a video stream. We referred to this strategy as a two-stage

approach, which consists of two stages: one for relative pose estimation and the

other for depth determination of one of the key points, the root key point, typically

the pelvis or lower back. The first stage of our approach builds upon the pipeline

developed in the previous chapter for 3D root-relative human pose estimation,

while the second stage involves adding an additional step to estimate the absolute

root depth. At the beginning, we use the RootNet model for this. By combining

the results of these two stages, we can compute and estimate the full absolute 3D

pose of the person in the scene.

As mentioned in the previous section, RootNet is a model that is used to estimate

the absolute depth of the root key point in a 3D pose estimation pipeline. It does

this by estimating the Z-coordinate of the root key point depth, which is the distance

between the point and the camera.

5.4.2 Validation

To validate the effectiveness of our method, we conducted experiments on MuPoTS-

3D benchmark dataset. Our method was compared to several state-of-the-art

approaches, including HMOR, HDNet, and TDBU. The results show that our

method outperformed all other approaches, We use the standard evaluation protocol,

following [259] such as 3D−PCKabs, with a significant improvement of 6.7% over

the second best method TDBU_Net [178] as shown in the table below 5.1.

It is important to note that the accuracy of the full absolute 3D pose depends

on the accuracy of the relative-root key points coordinates and the accuracy of the

absolute root coordinates in the 3D pose estimation pipeline. Thus, in addition

to the percentage of a correct 3D absolute keypoints metric, we also measure the

percentage of a correct 3D keypoint PCK and AUCrel to evaluate the root-relative

keypoints and AProot
25 to measure absolute root. These experimental results on the

132

Method Year 3D−PCKabs

3D MPPE PoseNet [259] 2019 31.5

HDNet [261] 2020 35.2

SMAP [267] 2020 38.7

HMOR [262] 2020 43.8

GnTCN [263] 2021 45.7

TDBU_Net [178] 2021 48.0

DAS [268] 2022 39.2

Root-GAST (Two-Stage ap-

proach) [278]

2022 54.7

Table 5.1: Camera-centric evaluations on the MuPoTS-3D dataset. The best is in

bold, the second best is underlined.

MuPoTS-3D dataset are shown in Table 5.2.

Method Year PCK AUCrel AProot
25

3D MPPE PoseNet [259] 2019 81.8 39.8 31.0

HDNet [261] 2020 83.7 - 39.4

SMAP [267] 2020 80.5 45.5 45.5

HMOR [262] 2020 82.0 43.5 -

GnTCN [263] 2021 87.5 48.9 45.2

TDBU_Net [178] 2021 89.6 50.6 46.3

DAS [268] 2022 82.7 - -

Root-GAST (Two-Stage ap-

proach) [278]

2022 63.8 30.6 58.4

Table 5.2: Person-centric and camera-centric evaluations on the MuPoTS-3D

dataset. The best is in bold, the second best is underlined.

133

As shown in the table, our method outperforms all the comparison methods

in terms of the average precision of the root, AProot
25 , which evaluates the absolute

coordinates of the root. However, our root-relative performances, as measured

by PCK and AUCrel , are not satisfactory and are worse than the best accuracy by

25.8% and 20%, respectively.

5.4.3 Conclusion

The first proposition is a two-stage approach for 3D absolute pose estimation,

which combines the Gast-Net to estimate root-relative key-points and RootNet to

estimate the absolute root. In 3D pose estimation, the root keypoint is typically

the pelvis or lower back, and the absolute depth of this key-point can be used to

determine the entire pose of the person in 3D space.

On the MuPoTS-3D dataset, the system adopting the two-stage method outper-

formed previous methods by more than 12.1 percentage points on AP25root , con-

tributing to a more than 6.7 percentage point improvement on 3D-PCKabs. How-

ever, we observed that the root-relative keypoints were less accurate by 25.8

percentage points on PCK, which sparked the idea to upgrade the GAST-Net.

5.5 One-Stage approach for 3D absolute pose estima-

tion

5.5.1 Approach structure

The previous section has shown that the two-stage approach for estimating abso-

lute coordinates results in improved performance compared to previous methods.

Specifically, it was found that this approach outperformed previous methods by

more than 12.1 percentage points on AProot
25 and contributed to more than 6.7 per-

centage points on 3D−PCKabs, when tested on the MuPoTS-3D dataset.

134

However, we also observed that the root-relative keypoints were less accurate,

with a decrease of 25.8 percentage points on PCK. This led to the idea of upgrad-

ing the GAST-Net model. The original GAST-Net was trained on single-person

databases [106], but in order to improve the root-relative keypoints, we decided

to retrain the model on both a single-person video database (MPII-3DHP [149])

and a multi-person video database (MuCo-Temp [202]) with the required process-

ing, following the method of [202], in order to produce direct absolute keypoint

coordinates. It is worth noting that in the following, we will name the upgraded

GAST-Net by GAST-NETABS, and refer to this approach by one-Stage approach.

In the literature, TCN-based approaches for 3D human pose estimation that were

evaluated on the MuPoTS-3D dataset were trained on the MPII-3DHP and/or

MuCo-3DHP databases. The MPII-3DHP database contains videos of a single per-

son recorded in a green-screen studio and captures the characteristics of movement

over time. The MuCo-3DHP database, on the other hand, is composed of MPII-

3DHP frames containing multiple poses copied into a single frame, and captures

the characteristics of multiple people in a single image, as well as the occlusion

between them. This provides a diverse training dataset which may improve the

model’s capacity to be used in real-world applications. However, it would be more

efficient to have a database containing videos of multiple people. This would help

the model to generalize better to real-world scenarios, where multiple people are

often present in a single image or video. for that, [202] proposed MuCo-Temp

dataset, a temporal extension of MuCo-3DHP. This extension was generated us-

ing the same method as MuCo-3DHP, but it is composed of videos instead of

individual frames. This makes it useful for training temporal networks, such as

GAST-NETABS, which can take advantage of this dataset to improve its accuracy.

135

5.5.2 Validation

We evaluate the performance of Gast-NetABS to determine if we have made im-

provements to the two-stage approach. The results are shown in Table 5.3.

Method PCK AProot
25 3D-

PCKabs

Root-GAST (Two-Stage

approach) [278]

63.8 58.4 54.7

Root-GAST (One-stage
approach) [278]

82.5 56.8 56.1

Table 5.3: Evaluating the Performance of Root-Relative keypoints, absolute root

and Absolute Keypoints on the MuPoTS-3D Database. The best is in bold.

This approach allowed us to improve the root-relative keypoints and better

handle the problem of multiple people in the scene. As a result, the relative

keypoint precision was enhanced from 63.8% with the basic GAST-Net to 82.5%

on PCK with the upgrad GAST-Net, contributing to an increase of 1.6 percentage

points in absolute points on 3D-PCKabs compared to the first methodology of

two-stage approach. This highlights the benefit of using a database containing

videos of multiple people, as well as the significance of normalizing the 2D pose

inputs by the camera’s intrinsic parameters before lifting the 2D poses to 3D. This

will be explained in further detail in chapter 6. Normalizing the 2D poses allows

for correcting for image distortion caused by the camera’s lens, variations in image

scale, and other factors that can affect the accuracy of the 3D pose estimates.

Additionally, by normalizing the 2D poses, it reduces the number of parameters

that need to be estimated, as it allows the 3D pose estimation process to make use

of prior knowledge of the camera’s field of view, image distortion, and other factors.

This eliminates the need to estimate these parameters separately, and instead the

3D pose estimation process can use the normalized values to accurately calculate

136

the 3D pose.

We observed that the AP25root , which measures the root depth estimation of GAST-

NETABS, is better than the state-of-the-art in Table 5.1 and 5.2, but still does not

perform as well as the first methodology of the two-stage approach. .

5.5.3 Conclusion

The second proposition is a one-stage approach for 3D absolute pose estimation,

which is based on a single model to estimate the absolute keypoints instead of com-

bining the GAST-Net to estimate root-relative keypoints and RootNet to estimate

the absolute root. For this, we upgraded the model GAST-Net to GAST-Net_ABS.

On the MuPoTS-3D dataset, the system using the one-stage method outperformed

previous methods by 8.1 percentage points on 3D-PCKabs, compared to the most

accurate state-of-the-art method TDBU_Net [178]. The AP25root was increased

by 10.6 percentage points, while PCK was less accurate by 7.1 percentage points

compared to TDBU_Net [178]. However, this performance was better than the

two-stage methodology, which was less accurate by 25.8 percentage points.

5.6 Hybrid approach for 3D absolute pose estimation

Since the one-stage approach with GAST-NetABS does not provide root depth

estimation that is more accurate than the two-stage approach but yields more

accurate root-relative keypoints, we decided to take advantage of both approaches.

We used the output of GAST-NetABS to compute the root-relative keypoints and

combined this with the RootNet network for root depth estimation to obtain the

final absolute keypoints.

137

Method PCK AProot
25 3D-

PCKabs

Root-GAST (Two-Stage

approach) [278]

63.8 58.4 54.7

Root-GAST (One-stage ap-

proach) [278]

82.5 56.8 56.1

Root-GAST (Hybrid ap-
proach) [278]

82.5 58.9 56.8

Table 5.4: Evaluating the Performance of Root-Relative keypoints, absolute root

and Absolute Keypoints on the MuPoTS-3D Database. The best is in bold.

5.6.1 Conclusion

In this way, we have achieved an improvement in accuracy, compared to the existing

literature approaches, of more than 8.8 percentage points on 3D-PCKabs on MuPots

dataset as shown in table 5.4.

5.7 Geometric method for absolute root keypoint

Indeed, it has become common practice to delegate tasks entirely to machines. We

rely on black boxes to perform mathematical calculations as they see fit, often

yielding more complex computations when simpler ones could achieve the same

outcome. Therefore, we propose a geometric solution that can be practically

applied to estimate absolute posture, instead of using a neural network such as

RootNet.

The method involves determining the intersection point between the ground

plane (P) and the line that connects the camera to the keypoint, which represents

the depth distance. In this context, the keypoint typically refers to a human joint

138

Figure 5.3: Geometric Method for Determining the Absolute Position of a Person’s

Keypoint

that is in contact with the ground, often the foot. To accomplish this, we make the

assumption that the camera is positioned at a height h relative to the ground and is

tilted at an angle α with respect to the horizontal plane. This angle corresponds

to the angle between the optical axis of the camera and the horizontal plane, as

illustrated in figure 5.3

Understanding the intrinsic projection matrix P is indeed crucial in mapping a

3D point onto a 2D image plane in computer vision and 3D reconstruction. This

matrix contains essential information about internal camera parameters, such as

139

focal length and pixel coordinates. The focal length, denoted by fx and fy for x and

y directions respectively, represents the distance between the optical center of the

camera and the image plane. It determines how much the camera lens converges

or diverges from the incoming light rays. By knowing these focal lengths, we can

calculate the intrinsic projection matrix P, which allows the transformation of the

coordinates of the 3D world into the coordinates of the 2D image.

The projection matrix P is defined as: P =


f x 0 cx

0 f y cy

0 0 1


Where cx and cy denote the principal point coordinates on the image plane.

Conversely, we can obtain the inverse of P, denoted as P−1, which allows us to

project points from the image plane back into three-dimensional space. The inverse

matrix is given by: P−1 =


1
f x 0 − cx

f x

0 1
f y − cy

f y

0 0 1


Estimating the depth of a point in three-dimensional space requires its projection

onto a two-dimensional image plane, represented as (u,v,w) pixel, where w rep-

resents a homogeneous coordinate. This projection is facilitated by a matrix that

maps a point from the 3D world to the 2D image plane. Conversely, given the pro-

jection of a point on the image plane, we can infer its position in three-dimensional

space using the inverse of this matrix.:


u

v

w

= P


x

y

z

 =⇒


x

y

z

= P−1


u

v

w


(x,y,z) represents a point in three-dimensional space, belonging to R3, enabling

accurate depth estimation and reconstruction.

Let’s consider that w = 1. We can then express the projection of a 3D point

(x,y,z) onto a 2D image plane using the inverse of the projection matrix, denoted

140

Figure 5.4: From Camera coordinates to Image plane

as P−1, as follows:
x

y

z

= P−1


u

v

1

=


1
f x 0 − cx

f x

0 1
f y − cy

f y

0 0 1




u

v

1

=


u−cx

f x
v−cy

f y

1


(u,v,1) represents the pixel coordinates of the point in the image, where w is

set to 1. By substituting these values into the equation, we obtain the transformed

coordinates in homogeneous form. The resulting expression represents a point on

the line in 3D space passing through the corresponding pixel (u,v) on the image

plane and converging at a common point M as in image 5.4.

Note that w is set to 1 to maintain the homogeneous representation of the

coordinates. Furthermore, let’s consider the vector
−−−→
(OM), which represents the

direction from the camera center O to the 3D point M. By substituting the trans-

141

formed homogeneous coordinates into the equation, we can express this vector as:

−−−→
(OM) =


u−cx

f x
v−cy

f y

z



Therefore, the line can be defined by: (D):


0

0

0

+ t ·
−−−→
(OM) = t ·


u−cx

f x
v−cy

f y

z

, where

t ∈ R.

This equation represents the parametric representation of a 3D line, where the

line passes through the camera center O and extends in the direction of the vector
−−−→
(OM). We seek the ’correct’ value of parameter t to find the point M on the ground.

M is located somewhere along this line defined by (u,v).

To determine the exact location of M on the ground, we need to know the

equation of the ground plane P. Once we have the equation of the ground plane, we

can find the intersection point between the line defined by (D) and the ground plane.

The ground is modeled by a 3D plane (P) with the equation (P) : ax+by+cz+d =

0 whose normal vector is −→n . Thus, to determine this equation, it is necessary to

express the normal −→n in the frame of the camera oxyz.

A coordinate system, oxyz, is associated with the camera, where the −→oz axis

represents the optical axis perpendicular to the image plane (Figure 5.5). The

objective is to determine the distance between a point M on the ground and the

camera. This point M corresponds to the pixel coordinates (u,v) in the image,

which represent a 2D keypoint in contact with the ground (typically the foot point)

(Figure 5.4). No other coordinate system is utilized in this process.

The vector −→n , which is orthogonal to the ground plane, can be obtained by

rotating the vector −→oz using a rotation Rx (refer to matrix Equation 5.3) by an angle

142

5.7. GEOMETRIC METHOD FOR ABSOLUTE ROOT KEYPOINT 143

Figure 5.5: Using Trigonometry to Determine Camera Angle and Measure Absolute

Distance

Figure 5.6: Representation of Rotation Angle to obtain the orthogonal vector

β = 90+α (see Figure 5.6).

Rx(β) =


1 0 0

0 cos(β) −sin(β)

0 sin(β) cos(β)

 (5.3)

We can obtain the rotated vector
−→
(n).

−→
(n) = Rx ·


0

0

1

=


0

−sin(β)

cos(β)


(P) : −sin(β) · y+ cos(β) · z+d = 0 To find the value of d in the equation of the

ground plane (P), we can choose a specific point M = (0,0,zM) on the ground

plane. Since M lies on the (oz) axis, the coordinates xM and yM are both zero.

cos(θ) = h
zM

=⇒ zM = h
cos(θ) (figure 5.5).

As M ∈ (P): d =−cos(β)
cos(θ) ·h =⇒ (P) : −sin(β) · y+ cos(β) · z+−cos(β)

cos(θ) ·h = 0

To find the intersection between (D) and (P), we need to substitute the coordinates

of the line into the equation of the ground plane and solve for the parameter t. We

found then:

t =
cos(β)
cos(θ)

· h · f y
f ycos(β)− sin(β)(v− cy)

And: 
x = t(u−cx)

f x

y = t(v−cy)
f y

z = t

To perform numerical calculations, we need the pixel coordinates (u,v), the height

h, and the angle α . With these values, we can calculate the parameter t and the

intersection point (X ,Y,Z) between the line (D) and the ground plane (P) in camera

coordinates using the equations provided.

144

In fact, utilizing our method to estimate absolute posture requires information

such as the camera’s height h from the ground and its angle alpha. However, the

lack of these data in existing databases poses a challenge when it comes to eval-

uating our method. To overcome this, we conducted tests using our own camera

and measured the depth distances using a laser rangefinder. Through these tests,

we observed that the geometric estimation provided by our method appeared to be

more accurate compared to the estimations obtained by RootNet.

By comparing the results of our geometric approach with the depth measurements

obtained from the laser rangefinder, we were able to assess the accuracy of our

method. This comparison allowed us to demonstrate that our geometric estimation

outperformed RootNet in terms of accuracy, providing a valuable alternative for

absolute posture estimation tasks, especially in the industrial use case where we

have control over and can fix the required parameters.

Furthermore, RootNet relies on estimating distances based on the sizes of bounding

boxes, which can vary significantly across images. Consequently, the estimated

poses may appear unstable, even if they are actually stable. This instability arises

due to the reliance on bounding box sizes as an indirect measure of distance. In

contrast, our geometric method directly calculates the depth distances using camera

parameters, resulting in more consistent and reliable results.

By bypassing the reliance on bounding box sizes and incorporating explicit geo-

metric calculations, our method overcomes the instability issue encountered with

RootNet. The direct estimation of distances using camera parameters leads to more

accurate and consistent pose estimations, providing a robust alternative for absolute

posture estimation tasks.

145

5.8 Conclusion

The one-stage approach in deep learning refers to a method where the model takes

in raw data, such as images or video, and produces a prediction in a single step.

To our knowledge, this term is commonly used for object detection, where it is

in contrast to two-stage approaches, which first identify regions of interest in the

data before making a prediction. However, in this thesis, we use the term "one-

stage approach" to differentiate between the approach that involves two models:

one model for root location and another model for root-relative keypoints, which

then combine to estimate the absolute coordinates. On the other hand, the one-

stage approach directly estimates the absolute keypoints without the need for the

root location. Finally, we refer to the third approach proposed as a hybridization

approach. This approach combines a one-stage model that estimates the absolute

keypoints, then we recompute the root-relative keypoints to be used with a root-

depth location model in two-stage approach manner.

The geometric method’s success and accuracy may vary depending on the context,

and further evaluation in different scenarios and datasets would be necessary to

validate its generalizability. However, our results show the potential of using

geometric solutions to boost absolute posture estimate accuracy.

In this chapter, we delved into the current state of research on single-view, multi-

person absolute position and pose estimation tasks. We proposed a solution that is

expected to meet the initial requirements and achieve better results in comparison

to existing methods. The next chapter presents the implementation details of this

framework and provides additional experimental results to support our proposed

solution.

146

6
C H A P T E R

Software system implementa-
tion pipeline and experimen-
tal results

147

6.1 Introduction

In this thesis, we are working on the software system design for 3D human pose

estimation. The pipeline of this technology encompasses multiple stages, each of

which presents its own challenges and possibilities. The three main components

of a software system design pipeline are: data collection, model training and

Inference.

The first step in designing a software system for 3D human pose estimation

is data collection. This includes collecting images from various sources such as

cameras or videos that capture both static poses and dynamic motions of people or

objects being tracked by the algorithm. It also includes capturing information about

body parts such as height measurements to help with more accurate tracking results

later on in the process. Additionally, any other relevant environmental factors

should be taken into account when collecting data so that they can be included

during feature extraction later on down the line if needed.

As the research presented in this thesis is focused on an industrial application,

the images used for inference are those captured by monocular cameras installed

at the customer’s site. To measure the effectiveness of our framework, we need a

database that is representative of real-world images; image sequences that contain

multiple people in the frame that move and can occlude each other, and that have

different backgrounds and not taken in a lab setting like Human3.6m or HumanEva.

For this reason, we decided to evaluate our pipeline on the MuPoTS-3D database.

In the following sections, we discuss the implementation of the framework’s

training and inference processes, and then present the experimental results.

148

6.2 Implementing the framework’s training and In-

ference

The aim of this thesis is to develop a software that can accurately produce a se-

quence of 3D camera-centric coordinates for each individual in a given scene. To

achieve this goal, the system will include components such as feature detection,

feature matching, pose estimation, and 3D coordinate generation. The software

developed will utilize deep learning networks.

6.2.1 GAST-NetABS training

The GAST-NetABS model was trained using the Adam optimizer with a learning

rate of 1 × 10−3 and a batch size of 32. The training was performed for 80 epochs

on the MPII-3DHP [149] and MuCo-Temp [202] datasets. The computations were

carried out on the supercomputer facilities at Mésocentre Clermont Auvergne

University, and the training process took one week to complete.

6.2.2 Pre-processing phase

Pre-processing is a step that is often performed before image processing. It refers

to a set of operations that are applied to an image or a set of images in order to

prepare them for further analysis. The main goal of pre-processing is to make the

image more suitable for the intended analysis. The common step in deep learning

pre-processing is subtracting the mean values for the red, green and blue channels

of the image, in order to center the data and reduce the variability in the data and

makes the model more robust. Then divided to the scale factor from the pixel

values of each channel to normalize the image data.

The HRNet model and the RootNet model, as well as many other deep learning

149

models, that process images require this step. This step is used to normalize the

image, so that the pixel values are in a specific range to standardize the data and

make it more suitable for the model. Keep in mind that these values are specific

to the dataset that the models were trained on, so it’s important to use the same

pre-processing values when processing new images to feed the model. Then scaling

factor is multiplied by the mean values.

The HRNet and RootNet models normalize the image data by using the mean

values for the red, green, and blue channels of the ImageNet data (mean=[0.485,

0.456, 0.406], std=[0.229, 0.224, 0.225]) before inputting it into the model.

Then the image data should be resized to the appropriate dimensions. The RootNet

model should be resized to 256x256, and the HRNet model should be resized to

288x384. This resizing will ensure that the image is the correct size to be processed

by the model.

6.2.3 2D human pose estimation

The pre-trained YOLO-v3 network is used to generate bounding boxes (bbox) for

people in monocular RGB videos in real-time. These bounding boxes are then

used as input to a pose estimation system, which generates 2D poses from the

bounding boxes using HRNet-w32. As explained in section 4.2.2, YOLO-v3 is able

to identify a wide range of objects and classify them into classes such as ’person’,

’vehicle’, ’animal’, ’road sign’, and other traffic elements. The set of classes that

YOLO-v3 is able to detect depends on how the network was trained.The input

resolution used is 608 × 608.

To track the objects presented in the current image, each object is assigned a unique

ID i. For the purpose of posture estimation, we only focus on the "person" category.

Since GAST-Net uses information from 27 sequential frames, it is important to track

the objects in order to save their 2D poses without confusion with other persons

found in the image. To accomplish this, a multiple object tracking algorithm is

150

used, which is based on two L2 distances. The first distance, calculated between

the centers of the bounding boxes, is used as a filter to quickly eliminate unlikely

matches between objects in consecutive frames. This improves the computational

efficiency of the algorithm. Careful consideration is given to the threshold value

for this distance, which in our case is 30% of the image width. The second filter,

which is calculated for those matches that pass the first filter, is based on the L2

distance between the bottoms of the rectangles. This provides a more robust match

between objects, even if the bounding box center has moved slightly.

To keep track of the objects’ previous and current IDs, a weight matrix is used.

The rows of the matrix represent the current IDs, and the columns represent the

previous IDs. This allows the algorithm to match objects in the current frame

with those in the previous frame. When the L2 distance between the centers of

the bounding boxes of two objects is calculated, if it is greater than the chosen

threshold, the corresponding cell in the weight matrix is set to infinity, indicating

that the objects are unlikely to be the same. If the L2 distance is less than the

threshold, it means that the match is not ruled out, so the second L2 distance value

between the bottoms of the rectangles is calculated and stored in the corresponding

cell of the matrix. This distance provides a more reliable match between objects,

even if the bounding box center has moved slightly. The lower the value in the

matrix, the higher the likelihood that the match is correct, and that value will be

used for the matching process.

Objects whose ID is not found in the previous frame are given a new ID, which

indicates that they are a new object that is being tracked. The figure 6.1 illustrates

an example.

The cropped image of the bounding box is transformed to specific size (288×
384) to be used as input for the 2D pose estimator. The affine transformation

applied preserves collinearity, parallelism and the ratio of distances between the

points as in [86], which makes the images more robust. Subsequently, HRNet-w32

is implemented on each frame to generate 17 heatmaps of a resolution 72× 96,

151

Figure 6.1: Tracking Result: The ID assigned to the person across the frames is 2.

each of which predicts 2D human joint locations P2D for each detected individual

in the MS-COCO format, since it was pre-trained on the COCO dataset [196].

6.2.4 3D human pose estimation

The 2D-poses P2Di for each unique person ID of the 27 successive frames were

then gathered in a Map and passed to GAST-Net, a 3D single-pose estimator. This

is to perform 2D-to-3D mapping and the recovery of the 3D root-relative pose

P3Dreli, where all generated joints are represented by their distances from the

pelvis keypoint. GAST-Net is subsequently applied, as many times as the number

of individuals in the frame.

At the same time, the images of the humans that have been cropped are resized to

256x256 in order to be processed by RootNet for depth root prediction, Zroot
abs , in

each frame. These predictions are also stored in a map for each unique ID. Once

we have obtained the root-relative keypoints of a frame after a delay of 13 frames,

we calculate the absolute coordinates of all the keypoints.

152

Figure 6.2: Comparison of keypoint formats. The first skeleton, marked with

numbers in green, represents the MS-COCO format. The second skeleton illustrates

the h36m format (in blue) and the MuPoTS-3D format (in red). The primary

difference between h36m and MuPoTS-3D is the number of keypoints. Notably, the

MS-COCO format includes additional keypoints for eyes and ears, distinguishing

it from the other two formats

As we explained, we have developed two versions of the GAST-Net model: the

original GAST-Net, which is pre-trained on the Human3.6m dataset [200] and

is designed to process 2D keypoints in the h36m format; and our modified ver-

sion, GAST-NetABS, which is trained on the multi-person video database MuCo-

Temp [202] and the single-person video database MPII-3DHP [149]. The GAST-

NetABS model requires keypoints in the MuPoTS-3D format. For both models, a

conversion of the keypoint format is necessary between stages.

In fact, in the software configuration, you can set the networks and keypoints

153

you wish to use, whether they be relative or absolute, the original GAST-Net or

the modified one, and whether you want to use RootNet or the raw output of

GAST-Net.

Before being used to estimate the 3D pose of a person, 2D keypoints must first be

converted to the required format at the chosen network and then flipped.

The left keypoints must be flipped to become right keypoints and the right keypoints

must be flipped to become left keypoints in the pre-processing stage, meaning

the left and right sides are approximately mirror images of each other. In order

to incorporate information about the 3D structure of the human body, GAST-

Net uses symmetry to infer the 3D pose from 2D images by considering the

correlations between different body parts and using a statistical model of body

shape and articulation that includes the symmetry constraint. To maintain the same

orientation for all keypoints, regardless of whether they are on the right or left side

of the image, the symmetry should be multiplied by -1. Additionally, flipping the

keypoints in this way preserves the relative position of each keypoint to the others,

making it easier to accurately estimate the 3D pose of a person. This allows for

more robust and accurate estimation of 3D poses.

Then, it is important to remember that before converting 2D poses to 3D poses,

the input tenor of keypoints should be normalized. In the case of the original

GAST-Net network, this involves transforming the x and y coordinates so that they

range from -1 to 1. This is done by dividing the x-coordinate by the width of the

image, multiplying the result by 2 and subtracting 1, and dividing the y-coordinate

by the height of the image and multiplying the result by 2, then subtracting the

height divided by the width. This ensures that the coordinate values are comparable

across different images, regardless of their widths or heights. Normalizing the 2D

keypoints is essential for accurate 3D pose estimation, as it ensures that the keypoint

data is consistent across different images. This is also a common preprocessing

step in image processing, which allows images to be scaled to the same size before

they are used in further steps.

154

For the GAST-NetABS, the network is trained to directly estimate the absolute

coordinates, and the normalization of the 2D keypoints is performed by multiplying

them with the inverse of the calibration matrix. The calibration matrix is a matrix

that contains the intrinsic parameters of the camera, such as the focal length and

principal point. These parameters can vary between cameras and can also change

over time for a single camera. The x and y coordinates of the keypoints are adjusted

by subtracting the values of the principal points in x and y and then dividing by

the respective focal lengths. However, for keypoints calculated by the symmetry

pre-processing, the subtraction value for x is (width_sample− principle_point_x)

instead of just the principal point, in order to preserve the relative position of

the keypoints. This normalization step corrects for any distortion caused by the

camera’s intrinsic parameters, ensuring that the coordinates are in a consistent and

accurate reference frame. This is important for accurate 3D pose estimation, as it

ensures that the keypoint information is comparable across different images.

In addition to the normalization techniques mentioned above, another normalization

step is applied to standardize the range of values for each keypoint in the dataset

when using GAST-NetABS. This is achieved by subtracting the mean value of the

keypoints from each keypoint in the dataset used and then dividing by the standard

deviation of the dataset used. This process helps to ensure that all keypoints have

similar ranges of values and are on the same scale.

The input to the model is a tensor that contains keypoints and their symmetry

from 27 frames of 17 joints in 2D, having a shape of [2, 27, 17, 2]. The model

is then run and its output is transformed into a tensor. The output tensor has a

shape of [2, 1, 17, 3] and contains normalized values, which means that they are

scaled to a specific range. In order to denormalize the tensor, we need to apply the

inverse of the normalization that was applied during the pre-processing step. This

typically involves for GAST-NetABS multiplying the elements of the first index by

the standard deviation (std) and adding the mean values of dataset’s annotations.

Then we are taking the exponential of the output keypoint that presents the root

155

to be transformed back from relative space to the absolute coordinates and then

recalculate the coordinates of rest of keypoints. For GAST-NetABS, this typically

involves multiplying the elements of the first index by the standard deviation (std)

of the dataset’s annotations and adding the mean values. Then, the output keypoints

are transformed back from relative space to absolute coordinates by taking the

exponential of the root and recalculating the coordinates of the remaining keypoints.

Additionally, normalizing the 2D pose inputs helps to reduce the computational

complexity of the 3D pose estimation process, as fewer parameters need to be

estimated. This is because the inputs are normalized to a specific range, which

simplifies the optimization process and reduces the number of variables that need

to be estimated.

The symmetry is used to the output tensor in the post-processing stage to further

refine the estimated 3D coordinates of the body joints. Finally, the mean of the 3D

output tensor is calculated. The mean is calculated by summing the elements of

the 0th dimension and dividing by the number of elements in that dimension. This

means that the mean is calculated between the keypoints and symmetry.

In the final pipeline, we employed a hybrid approach using the RootNet model,

which is applied after the HRNet model that estimates 2D keypoints. This means

that we calculate the absolute depth of the root keypoint before estimating the 3D

root-relative keypoints. This is because the GAST-Net model takes a sequence of

images as input, while the RootNet model processes each bounding box in each

image separately. As a result, there is a difference in timing between the results

from these two models. To overcome this issue, we store the depth values for

each bounding box (identified by an "id") in a list until we have the corresponding

root-relative keypoints to calculate the absolute pose. We followed a top-down

pipeline, where the RootNet model is applied to as many people as are present in

the image, and we save the root depth coordinates for each "id".

Once the Z-coordinate of the root key point depth has been estimated, the X and

Y coordinates of the root key point can be calculated with the camera-intrinsic

156

parameters, the image coordinates of the root, and the predicted absolute root depth

(as in equation 5.3.2). The camera-intrinsic parameters are the parameters of the

camera that describe its optical characteristics and perspective projection. These

parameters include the focal length (f x, f y) of the camera, which determines the

field of view and the degree of perspective distortion, and the center (cx,cy) of the

camera, which determines the perspective projection of the 3D world onto the 2D

image plane.

However, in our system we didn’t use the image-coordinates generated by RootNet,

we computed it from the 2D keypoints generated with HRNet. Since HRNet

was pre-trained on MS-COCO dataset, it generates the 2D keypoints in COCO

format that we transform to h36m format (the format of human3.6m skeleton). The

keypoints of index 0 (the index of spine keypoint) is used to calculate its absolute

coordinates.

Once the root key point coordinates (Xabs
root , Y abs

root , Zabs
root) have been estimated, these

coordinates can be used as offsets to calculate the full absolute 3D pose of the

person in the scene as in algorithm 1.

6.2.5 Determining the focal length of a camera

The focal length of a camera lens is a measure of the degree to which light is

concentrated or dispersed by the lens. It is the distance from the lens’s optical

center to the point where all light rays meet to form a sharp image. This distance is

typically expressed in millimeters (mm) and is an important factor in determining

the field of view when the lens is paired with a camera. Generally speaking, shorter

focal lengths produce wider fields of view [279].

The focal length of a camera lens can be determined in two ways: through the

intrinsic matrix of the camera, or by physically measuring the distance between

the lens and the image sensor in the camera. The intrinsic matrix is a mathematical

representation of the camera’s optical characteristics, and can be used to calculate

157

158CHAPTER 6. SOFTWARE SYSTEM IMPLEMENTATION PIPELINE AND EXPERIMENTAL RESULTS

Algorithm 1 Compute Absolute 3D Landmarks

p r o c e d u r e computeAbsolute3DLandmarks (landmarks3D , roo tCoord , fx ,

fy , cx , cy)

p t 3 d _ r := landmrks3D . a t (i n d e x _ r o o t) / / Root − r e l a t i v e 3D landmark

p t 3 d _ r . z := p t 3 d _ r . z + r o o t C o o r d . z

p t 3 d _ r . x := (r o o t C o o r d . x − cx) / fx * p t 3 d _ r . z

p t 3 d _ r . y := (r o o t C o o r d . y − cy) / fy * p t 3 d _ r . z

cam_coord := [] / / L i s t t o s t o r e a b s o l u t e k e y p o i n t s

f o r p := 0 t o nb_pts_3D − 1 do

p t3d := landmarks3D . a t (p) / / Root − r e l a t i v e k e y p o i n t s

i f p != i n d e x _ r o o t t h e n

p t3d . z := p t3d . z + p t 3 d _ r . z

p t3d . x := p t3d . x + p t 3 d _ r . x

p t3d . y := p t3d . y + p t 3 d _ r . y

e l s e

p t3d := p t 3 d _ r

cam_coord . push_back (p t3d) / / S t o r e a b s o l u t e k e y p o i n t s

end f o r

r e t u r n cam_coord

end p r o c e d u r e

the focal length. Alternatively, the physical distance between the camera lens and

the image sensor can be measured directly to calculate the focal length.

In our case, we determined the focal length of the camera through the intrinsic

matrix approach using OpenCV. This method uses a checkerboard pattern as a

calibration object which involves capturing several images of the checkerboard

pattern from different angles. The 2D coordinates of the checkerboard can be

easily located by using the function cv2.findChessboardCorners() in OpenCV.

Additionally, the corresponding 3D points of the checkerboard pattern are also

known. We then pass these 2D and 3D points to the cv2.calibrateCamera() function

in OpenCV, which calculates the intrinsic and extrinsic parameters of the camera,

including the focal length, represented as the matrix elements "fx" and "fy" in the

intrinsic matrix.

6.2.6 Pose Visualization

Human pose visualization is the process of representing the estimated 3D pose of a

person in a graphical format using a skeleton model, where a set of lines or bones

are used to connect the different joints of the body. For visualization and posture

analysis tasks, it is often necessary to use world coordinates for the skeleton, which

is more effective than visualizing it in camera coordinates. This is because world

coordinates provide a fixed and consistent reference frame that allows for better

understanding of the 3D structure of the body, as well as the movement of the body

over time. Additionally, it makes it easier to compare the posture or activity to

other objects in the scene and analyze the behavior. While when visualizing the

estimated 3D pose in camera coordinates, the pose can appear different depending

on the camera’s position and orientation, which can make it difficult to recognize

the posture or activity. Furthermore, the camera coordinates are affected by the

camera’s intrinsic and extrinsic parameters, making the visualization harder to

interpret. To conclude, using world coordinates makes it easier to accurately and

159

Figure 6.3: 3D Vector Transformation with Rotation about the X-Axis by Angle α .

consistently compare and evaluate the estimated 3D poses across different frames

and cameras. It also allows for better understanding of the spatial relationship

between the different body joints, facilitating the detection of errors in the estimated

3D poses.

To do that with our camera, we start by fixing the camera at a height h relative

to the ground and inclining it by an angle α with respect to the horizontal plane.

We then apply a rotation matrix along the x-axis to transform the points obtained

from the camera marker to the environment or workshop marker. The rotation

matrix is calculated using the measured camera rotation angle α in radian (see

Figure 6.3). Then we search for the minimal value of the world Zw coordinates

of all the keypoints, and then subtract that value from each of the keypoints. This

will effectively shift the human to the ground plane. The algorithm 2 describes the

160

Figure 6.4: Human detection + tracking + 2D pose estimation

function that converts camera coordinates to world coordinates.

6.2.7 Taxonomy of the Framework

Figure 6.5 presents the pipeline of the framework. It outlines the networks used in

each step, the inputs given to each network, and the outputs they produce. This

diagram gives an overview of the implementation section and summarizes the

various components and their interactions. An object detector (YOLO) is applied

to each image, and each bounding box is tracked through frames by assigning it an

ID. The result is an image with green rectangles overlaid on each object, along with

a small black rectangle containing information such as the ID of the tracking, the

class of the object ’Person’ in our scenario, the score of certainty, and the height

and width of the rectangle. Then, the 2D pose is estimated for each bounding box

in MS-COCO format, as shown in the figure 6.4. The 3D pose is then estimated and

oriented to the world coordinate system to be represented using OpenGL. However,

all people’s root keypoint is located at (0,0,0) and the rest of the keypoints are

represented relatively to that point. So that all poses are superimposed. This is the

role of absolute 3D poses that allow an accurate representation of the scene.

161

162CHAPTER 6. SOFTWARE SYSTEM IMPLEMENTATION PIPELINE AND EXPERIMENTAL RESULTS

Algorithm 2 Camera coordinates to world coordinates

p r o c e d u r e cam2world (landmarks3D_cam , landmarks3D_world , a n g l e _ r o t _ d e g r e e)

a l p h a := Conve r t (a n g l e _ r o t _ d e g r e e)

min_z := landmarks3D_wor ld . a t (0) . z

/ / R o t a t e p o i n t s u s i n g t h e x− a x i s r o t a t i o n m a t r i x

f o r p := 0 t o landmarks3D_cam . s i z e () − 1 do

landmarks3D_wor ld . a t (p) . x := landmarks3D_cam . a t (p) . x

landmarks3D_wor ld . a t (p) . y := (cos (a l p h a) * landmarks3D_cam . a t (p) . y)

− (s i n (a l p h a) * landmarks3D_cam . a t (p) . z)

landmarks3D_wor ld . a t (p) . z := (s i n (a l p h a) * landmarks3D_cam . a t (p) . y)

+ (cos (a l p h a) * landmarks3D_cam . a t (p) . z)

end f o r

/ / F ind t h e minimum z− c o o r d i n a t e

f o r p := 1 t o landmarks3D_wor ld . s i z e () − 1 do

i f min_z > landmarks3D_wor ld . a t (p) . z t h e n

min_z := landmarks3D_wor ld . a t (p) . z

end i f

end f o r

/ / S h i f t p o i n t s t o ground l e v e l

f o r p := 0 t o landmarks3D_wor ld . s i z e () − 1 do

landmarks3D_wor ld . a t (p) . z := landmarks3D_wor ld . a t (p) . z − min_z

end f o r

end p r o c e d u r e

6.2. IMPLEMENTING THE FRAMEWORK’S TRAINING AND INFERENCE163

Figure 6.5: The pipeline of the proposed framework (Root-GAST-Net)

6.2.8 Posture analysis and fall detection

In order to detect falls, we analyze the verticality of 3D poses of detected objects

by calculating the angle between the segment connecting the spine and hip and the

z-axis. This angle should be close to 180 degrees for the standing case and close

to 90 degrees for the lying state. Additionally, we also determine the height of a

person in the z-axis by taking the absolute value of the ratio between the distance

between the highest point (the head) and the lowest point (the feet) in the z-axis,

and the total height of the person. The total height of the person is calculated as

the square root of the sum of squares of the distance between the head and ankle in

all three axes.

The code then compares the absolute value of the sine of this angle to a thresh-

old sine of angle of verticality, and if the absolute result is greater than or equal to

the threshold, it considers the pose to be lying. Additionally, it compares the ratio

of the height of the person in the z-axis to a threshold, and checks if it is consistent

with a standing or lying person. If the pose is determined to be lying for a certain

number of consecutive frames, a fall is detected and the rectangle overlaid on the

bounding box becomes red, as shown in Figure 6.6. It is important to track the

person’s ID over time and monitor the continuity of these angles and heights, and

define a threshold to detect the occurrence of a fall. Additionally, monitoring the z

position of the head point, if it decreases significantly through frames, may indicate

a fall of the person.

Furthermore, we use other 3D keypoints such as the hip and knee joints to calculate

angles between different segments of the body to determine the pose of the person.

For example, the angle between the thigh segment and the hip-spine segment can

be used to determine if the person is sitting or standing. We also check angles

between the shin segment and the thigh segment to detect if the person is standing

or sitting on the ground. These angles can help to refine the fall detection process.

164

Figure 6.6: Fall detection

6.3 Experiments results

6.3.1 Performance of Sequence-wise on the MuPoTS-3D

In this subsection, we present an evaluation of the performance of sequence-wise

3D pose estimation using the 3D-PCKabs metric. We compare our results to those

of state-of-the-art methods and observe an improvement in estimation accuracy in

most of the sequences from the MuPoTS-3D dataset, as shown in Table 6.1.

The average precisions throughout the entire dataset were then examined using

various threshold settings ranging from 25 to 10 cm. AP measured the accuracy of

the root key point; we only evaluated the Root-GAST system’s performance using

the one-stage approach since two-stage approach and hybrid approach employed

RootNet to predict the root joint. They produced the same result as the original

paper. Table 6.2 displays the results. When compared to the state-of-the-art

approaches, our method significantly achieves greater AP across all levels of

thresholds. This indicates that our method is able to estimate more correct root

165

166CHAPTER 6. SOFTWARE SYSTEM IMPLEMENTATION PIPELINE AND EXPERIMENTAL RESULTS

Method S1 S2 S3 S4 S5 S6 S7

3D MPPE PoseNet

(*) [259]

59.5 45.3 51.4 46.2 53.0 27.4 23.7

HDNet [261] 21.4 22.7 58.3 27.5 37.3 12.2 49.2

SMAP (*) [267] 42.1 41.4 46.5 16.3 53.0 26.4 47.5

GnTCN (*) [263] 64.7 59.3 59.4 63.1 52.6 42.7 31.9

TDBU_Net [178] 69.2 57.1 49.3 68.9 55.1 36.1 49.4

Root-GAST with Hybrid

approach (*)

89.8 77.0 73.4 77.0 81.0 54.3 68.4

Method S8 S9 S10 S11 S12 S13 S14

3D MPPE PoseNet

(*) [259]

26.4 39.1 23.6 8.3 14.9 38.2 29.5

HDNet [261] 40.8 53.1 43.9 43.2 43.6 39.7 28.3

SMAP (*) [267] 18.7 36.7 73.5 46.0 22.7 24.3 38.9

GnTCN (*) [263] 35.2 53.0 28.3 37.6 26.7 46.3 44.5

TDBU_Net [178] 33.0 43.5 52.8 48.8 36.5 51.2 37.1

Root-GAST with Hybrid

approach (*)

60.5 71.3 65.4 33.5 26.1 67.3 46.9

Method S15 S16 S17 S18 S19 S20 Avg

3D MPPE PoseNet

(*) [259]

36.8 23.6 14.4 20.0 18.8 25.4 31.8

HDNet [261] 49.5 23.8 18.0 26.9 25.0 38.8 35.2

SMAP (*) [267] 47.5 34.2 35.0 20.0 38.7 64.8 38.7

GnTCN (*) [263] 50.2 47.9 39.4 23.5 61.0 56.1 46.3

TDBU_Net [178] 47.3 52.0 20.3 43.7 57.5 50.4 48.0

Root-GAST with Hybrid

approach (*)

66.9 35.7 40.1 38.5 26.0 35.3 56.8

Table 6.1: Sequence-wise 3D-PCKabs comparison with the state-of-the-art on the

MuPoTS-3D dataset. (*) The accuracies of methods are measured on matched

ground truths. The best is in bold, the second best is underlined.

keypoints even with a low distance threshold. These results demonstrate the

effectiveness of our proposed method in accurately predicting the root key point in

3D pose estimation.

Method AProot
25 AProot

20 AProot
15 AProot

10

3D MPPE PoseNet [259] 31.0 21.5 10.2 2.3

HDNet [261] 39.4 28.0 14.6 4.1

Root-GAST with one-stage

approach

56.8 47.1 36.8 22.4

Table 6.2: Average precision of the root keypoint evaluation by different distances

on the MuPoTS-3D dataset.

To compare with most of the existing methods that evaluate person-centric 3D

pose estimations on MuPoTS-3D using MPJPE, we report our results using the

same metric in Table 6.3. Our result was 101.9 mm, the result of [201] was 132

mm, the result of [280] was 120 mm, the result of [202] when adding the pose

refinement model was 103 mm. Our method also outperforms the existing methods

on this metric.

6.3.2 Performance on the Human3.6m

To validate the system, we chose the Human3.6M dataset, which contains only

single-person videos. We compared the results using the mean root position error

(MRPE) metric, which measures the accuracy of the root key point. For this

comparison, we only evaluated the Root-GAST system’s performance using the

one-stage approach. The two-stage approach and the hybrid approach employed

RootNet to predict the root joint, and produced the same result as the original paper.

The root localization results of our GAST-NetABS and the RootNet model are

shown in Table 6.4. Even though the evaluation was performed on the Human3.6M

167

168CHAPTER 6. SOFTWARE SYSTEM IMPLEMENTATION PIPELINE AND EXPERIMENTAL RESULTS

Method Year MPJPE
(mm)

Temporal smoothing [202] 2020 107

Temporal smoothing +

Pose refinement [202]

2020 103

Depth Prediction Network

[280]

2019 120

LCR-Net [135] 2017 146

Mehta et al. [201] 2018 132

GAST-NetABS 2022 101,9

Table 6.3: MPJPE of relative poses on MuPoTS-3D dataset. Best in bold, second

best underlined.

Method MRPE
(mm)

MRPEx

(mm)
MRPEy

(mm)
MRPEz

(mm)

3D MPPE PoseNet [259] 289.28 35.95 58.65 268.49

Root-GAST with GA 178 33 41.9 158

Table 6.4: MRPE results comparison with RootNet [259] on the Human3.6M

dataset. MRPEx, MRPEy, and MRPEz are the average MRPE errors in the x, y, and

z axes, respectively.

dataset, we employed the GA model that was retrained on MPII and the MuCo-

Temp dataset, while comparing it to the RootNet model that was trained on the

MuCo dataset to make a fair comparison. Our measurement error amounted to 158

mm, while that of [259] was 289.28 mm. We could expect greater improvement if

we train our model on the Human3.6m dataset, as it would take into account the

specific characteristics of the dataset.

6.3.3 End-to-End Real-time system responsiveness

The response time of a framework depends on the material configurations. The

Root-GAST pipeline is implemented in C++ and executed on a machine equipped

with Intel Core i5-9500 processor, 32GB of dedicated memory, and an Nvidia

GeForce GTX 1080 with 8GB of dedicated memory.

Table 6.5 presents a comparison of the response times of each network. The

processing time was measured on batches of monocular images from the Hu-

man3.6m dataset, each containing one person. Note that the processing time of

the tracking step is negligible. The frame rate of the entire pipeline with each

Model Min Response
Time (ms)

Max Re-
sponse Time
(ms)

Average Re-
sponse Time
(ms)

YOLO-v3 24 30 28

HRNet-w32 9 12 10

GAST-Net 27 33 29

GAST-NetABS 23 29 26

RootNet 4 8 5

Table 6.5: Response time per model.

approach is provided in Table 6.6. The proposed Root-GAST system achieved a

169

frame rate of 15 frames per second, which is suitable for real-time scenarios. This

demonstrates that the proposed pipeline not only achieves good performance in

terms of metrics but also runs at a speed that is suitable for real-time applications.

Therefore, improving the metrics does not negatively impact the real-time aspect

of the pipeline.

The proposed approach Average Frame Rate (fps)
Two-Stage approach 13

One-Stage approach 16

Hybrid approach 15

Table 6.6: Frame rate per approach.

6.3.4 Qualitative results

As the system follows a top-down approach, the final result depends on the accuracy

of all previous outputs. Incorrect detection can lead to inaccurate estimation of 2D

keypoints and depths, which in turn negatively impacts the absolute pose estimation.

Additionally, if there are multiple people within the same bounding box or body

parts that are partially outside the box’s bounds, the full-body joint calculation may

be incorrect, as illustrated in Figure 6.7. This confusion arises from erroneous 2D

point estimations, which have a cascading effect on the 3D-lifting process.

6.4 Conclusion

In conclusion, this chapter has presented the development and implementation of

software and the improvements made to it. The effectiveness of the software has

been evaluated through experimental results on both single person and multi-person

databases, using various evaluation metrics to assess its performance. Furthermore,

170

6.4. CONCLUSION 171

Figure 6.7: Erroneous 3D multi-person pose estimation. The first two images

represent two similar poses of different people because one is completely occluded.

In the right two images, one pose is incorrect because the body parts are partially

outside the boxes.

the real-time aspect of the software has been considered throughout the evaluation

process to ensure its practicality in real-world applications.

This chapter has provided a comprehensive understanding of the software’s capa-

bilities and potential for further advancement.

In this chapter, we have provided an in-depth analysis of the complete pipeline of

the proposed framework, starting from the selection of appropriate datasets and

determination of image focal lengths, to the final 3D pose result visualization and

pose analysis. The different phases and components of the software have been

thoroughly explained, providing a clear understanding of the entire process and

how the various components work together to achieve the desired results.

In summary, the key takeaways from this chapter include: the use of the Hungarian

optimization algorithm for people tracking, although it should be noted that it may

not always be the optimal choice for handling complex or dynamic scenes, and

the application of various treatments to the pre-processing and post-processing

stages. Of particular importance is the symmetry treatment, which was applied

to both phases and is detailed in this chapter. It is applied in both pre-processing

and post-processing for 3D human pose estimation to improve the accuracy of

the model. In pre-processing, symmetry can be used as a form of data augmen-

tation to generate additional training examples by mirroring existing ones. In

post-processing, symmetry can be used to refine the predictions of the model by

enforcing symmetry constraints on the joints. This can help to reduce errors and

improve the overall accuracy of the pose estimation.

In this chapter, we have also presented the experimental results on multiple datasets,

which demonstrate that our framework has a significant improvement in compari-

son with recent approaches in 3D absolute multi-pose estimation on Mupots-3D.

Furthermore, the system is efficient in terms of real-time performance, as each

frame containing one person takes around 60 milliseconds to process using the

Nvidia GeForce GTX 1080 graphics card. This performance can be further im-

proved by utilizing high-performance hardware and using FP16 precision.

172

In addition, we have demonstrated how absolute 3D pose estimation can be applied

in the field of 3D pose analysis. We have also presented our technique for detecting

falls, which is based on analyzing the verticality of 3D poses by calculating angles

and distances between keypoints and body parts. However, it’s worth noting that

it’s also possible to use machine learning algorithms for fall detection by training

them on a dataset of collected data or using these extracted features.

173

Part III

Software delivery

174

7
C H A P T E R

Software system industrializa-
tion

175

7.1 Introduction

Industrialization has led to significant improvements in productivity, efficiency, and

accuracy in many industries, including manufacturing, transportation, healthcare,

and finance. The use of neural networks and artificial intelligence represents a

huge qualitative leap in almost every industry. It is increasingly becoming the main

driver of new technologies, which has allowed it to dominate much of industrial

development as well as academic research. However, both academia and industry

face challenging obstacles in adapting Deep Learning (DL) to pervasive applica-

tions [281, 282].

In the field of AI research, data scientists are more focused on finding the most

accurate results possible by improving the performance of training and inference

using data and neural network approaches with little or no concern for computa-

tional costs. Typically, when we focus more on improving accuracy, the effort does

not necessarily translate into smaller network sizes and faster speeds. On the other

hand, during the industrialization phase, data scientists need models that go faster

even if they lose some accuracy. They are led to use specific hardware, and their

main priority becomes to accelerate and optimize these deep learning models. This

pushes them to use libraries adapted to the hardware used. In order to adjust the

models to the design requirements of resource-constrained applications and the

lack of dedicated hardware, they usually convert the DNNs, and sometimes they

fine-tune or even reform these models.

In a CIFRE thesis research, we had to find a better compromise between

performance and practicality in the development of a machine learning approach.

This led to the development of an approach that outperforms the literature in terms

of performance while adapting it to industrial constraints. It is important to develop

approaches that are able to achieve good performance in terms of accuracy, speed,

or some other metric, but that are also feasible to implement and deploy in real-

world applications. Finding this balance between performance and practicality

176

can be challenging, and it often requires a combination of careful design and

optimization of the model and the underlying hardware and software.

This optimization and adaptation of the models to the hardware available in the

target environment, such as a customer’s machine, is necessary to be able to run in

real-time or near-real-time on the target hardware.

Indeed, to convince customers to purchase a product, it is crucial to take the cost

and resource requirements into account. Offering software that can reuse existing

hardware resources, such as cameras that are already installed at a customer’s

site, can help to lower the cost of the solution and make it more appealing to the

customer. Because of this, we rely on RGB monocular cameras, the most prevalent

type in the surveillance area, to estimate 3D postures. By using this type of camera,

it may be possible to reuse existing hardware resources and avoid the need to

purchase additional equipment.

In the following sections of this chapter, we discuss the various choices and

motivations behind our approach, including the development challenges and eco-

nomic constraints that we faced. We also provide details on the materials used for

the hardware, software dependencies, and programming tools that were employed

in our work.

Industrial software often employs the principles of DevOps to improve software

quality and automate testing in order to detect errors early. We explore this phi-

losophy in more detail in the section 7.4.2. In the following section 7.4.3, we also

discuss the principles of MLOps, which aim to apply the best practices of DevOps

to a machine learning project.

7.2 Main challenges of the system

Artificial intelligence (AI) has the potential to transform a wide range of industries,

and many startups and companies have started to adopt AI technologies in recent

years. However, it is not uncommon for these organizations to face challenges that

177

prevent them from successfully implementing AI projects and bringing them into

production.

In the following, we discuss the specific economic viability challenges and

application constraints that were experienced in order to understand the difficulties

that the organization faced and how they were addressed.

7.2.1 Challenge 1: Simultaneously launch the AI models with
other processes

The company Pryntec offers and uses the video recorder Digipryn. The system

does not only process, but also does many other tasks in parallel as:

– Capturing and replaying video streams from multiple cameras;

– Storing the video streams in a database or file system;

– Analyzing the video streams in real-time to detect particular events or pat-

terns;

– Displaying the video streams on a user interface for viewing;

– Sending notifications or alerts when particular events are detected.

Figure 7.1 displays a diagram of the video stream’s "processing chain" from the

video recorder. In order to reduce the size of the video stream sent by the cameras

and speed up network transmission, it must be compressed into a video conversion

codec. We use the H264 or H265 codec. H264 is the most popular codec and

the most suitable for broadcast technology. While H265 is more optimized than

the first codec. It provides a Full-HD image quality that is more detailed, with

almost the same bitrate. The protocol used for the network is Real Time Streaming

Protocol (RTSP). RTSP is a network control protocol designed for controlling

streaming media servers. It allows a client to remotely control a streaming media

178

Figure 7.1: Processing chain of the compressed video stream

server, issuing VCR-style commands such as play and pause. RTSP can be used

to control the video stream from a remote location, allowing the user to view the

video feed from a camera on a device such as a phone or computer. RTSP is also

often used in security camera systems, allowing users to remotely view and control

the camera feeds.

The video recorder saves the received data in a compressed format on the hard

disk to maximize storage capacity for the streams. It also decompresses the images

179

for display to the operator or for processing by artificial intelligence algorithms.

The results generated by the image processing should be saved as well, and can be

visualized or used to perform an action or make a decision.

Furthermore, this global processing chain is executed for N parameterized video

streams, meaning that it is run as many times as the number of parallel cameras

that are used as input.

Additionally, there may be external systems that allow remote access through

another software or smartphone app, enabling users to view live video, replay

recordings, export videos in MKV format, and so on. This adds additional tasks to

the recorder, such as searching for an image on the disk, loading it, decompressing

it, and sending it to the phone, among others.

To summarize, the video recorder performs a variety of tasks, and one of the

main challenges is to run AI models concurrently with these other operations.

This can be difficult because running AI models can be resource-intensive and

may require a large amount of computational power and memory. To address this

challenge, it may be necessary to reduce the number of cameras being used, which

would in turn reduce the number of treatments carried out.

7.2.2 Challenge 2: Reuse existing material as much as possible

In section 5.3 of chapter 5.5, we have reviewed the various visual cues that can

contribute to the perception of depth in images. We have classified the inputs

of 3D pose estimation approaches into two main categories: multi-images and

single-image.

Multi-images based techniques that requiring two or more images to use as in-

put. In this case, several sources can be distinguished. Indeed, the depth

estimation can be acquired either from:

– Multi-view images: obtained from multiple fixed cameras capturing

the same scene from different angles, which are generally inspired by

180

the biological model and employing binocular cues. Approaches based

on these images generally rely on triangulation techniques.

– Monocular image sequences: multiple images taken obtained from

the same fixed camera at different times filming moving objects, and

employ motion-related cues.

Single-images-based techniques In the other hand, some approaches use only

indices of one image, usually from Depth cameras.

– camera RGB-D (Red Green Blue -Depth) is an optical technology,

which relies on infrared light to extract the depths of a scene. The best

known RGB-D cameras are the Time Of Flight (TOF) cameras or the

Kinect sensors, explained previously in chapter 5.5.

– Depth images: captured from cameras RGB-D (Red Green Blue -

Depth), an optical technology that relies on infrared light to extract the

depths of a scene.

– Monocular images: In this case it is not possible to apply the principle

of triangulation and there is then an infinity of 3D solutions for a given

image.

Accurate 3D pose estimation can be achieved by processing multiple RGB

images taken from different viewpoints, which contain sufficient 3D information

to solve the occlusion problem, or by using depth images (RGB-D), which provide

3D information about the distance between the object in the image and the camera.

However, obtaining multi-view observations can be expensive in real-life scenarios.

This increases the installation costs, as each surface now needs to be seen by at

least two cameras rather than just one. It also adds additional video streams to the

recorder, which increases the computational load for recording, decompressing,

processing, and other tasks. This may require more memory and may necessitate

switching to a more powerful machine to run the software system, significantly

181

increasing the overall cost of the process. The same is true for adding another

processing server.

Additionally, RGB-D cameras are not practical for use in real-world applications.

They often use infrared illumination and are sensitive to natural light, making them

suitable for use in indoor scenes only. Furthermore, if these cameras are not reused

for other purposes, it may be difficult to convince the customer to purchase, install,

and maintain additional specialized cameras for this specific use.

In conclusion, both options increase the cost of the AI solution for the customer

and make the product less competitive. Therefore, using monocular cameras is

the only viable option. One benefit of using monocular cameras is the ability to

reuse existing materials in future applications and utilize data from security camera

images to improve the study and analysis of a person’s activity. In the PTI ("Pro-

tection du travailleur isolé") application, designed to protect lone workers, we can

use the keyboard as an additional sensor to confirm periods of person’s inactivity

and ensure the safety of the worker. This can provide valuable information for

monitoring and safety purposes.

7.2.3 Challenge 3: Error accumulation in a chain of algorithms

Another major challenge that we faced was creating a pipeline that incorporates

multiple algorithms, as each algorithm can be imprecise or even fail, whereas in

the evaluations, only one brick is tested rather than the entire set. In the system,

we have observed that the human detector may sometimes miss or have difficulty

recognizing a person due to luminosity constraints, background complexity, or

confusing activities when processing real-world videos. Indeed, the databases

typically provide the coordinates of the people’s locations, even when they are

obscured, in order to preserve the tracking and ensure that the person is processed

in all frames. Researchers rely on these ground-truth coordinates of detection to

ensure that the performance of their pose estimation models is not affected by

182

incorrect person detection or by the choice of a detector, particularly when these

databases are used in the evaluation phase of pose estimation approaches.

In the same way, while evaluating a 3D posture estimator that uses 2D points as

input, we utilize annotated 2D points, which are perfect. Therefore, the published

precision measured for images in the databases will be better than the precision

of real-world images, since they were achieved under circumstances far from the

real-world.

Currently, all proposed models for object detection, particularly people detection,

and for 2D pose estimation are still in development and none of them are ideal. In

practice, the estimation of 3D poses is influenced by errors in the estimation of the

2D points it uses as input, which in turn can be impacted by mistakes in detection

and tracking.

This makes the models that analyze videos and process different 2D person’s

postures through successive frames to produce the 3D pose even more challenging.

If a person is detected again after being missing for one or more frames, the 3D

model will process the last estimated 2D postures, even if they are based on older

images and there is no continuity of poses, which can negatively impacts the result.

Furthermore, the fact that the models are trained using ground truth coordinates

makes matters worse, as they learn to predict the 3D posture based on features and

parameters that may not always be accurate, particularly when the input consists

of 2D poses from only a few images. While using more images could reduce the

impact of a person being missing in several images, it would also increase the

processing time and the number of images between the input image and its output.

As a result, data scientists need models that are faster, even if they lose some

accuracy, to maintain the notion of real-time, which is essential for applications

that rely on security and monitoring.

183

7.3 System hardware and software

In this section, we will discuss the hardware and software used in our system.

This includes the hardware platforms we considered for the training and inference

stages, as well as the learning and inference libraries and programming tools we

used. We will also discuss the trade-offs we faced when choosing these elements

and how we balanced the need for performance with other factors such as cost,

energy efficiency, and size.

7.3.1 Hardware

No matter the field, the performance of the algorithms is only one factor in any

industrial project’s success; the associated costs, including the hardware employed,

must also be taken into account. The purpose and constraints specific to each

system determine the capacity and resources needed, hence the choice of hardware.

A PC that runs fixed systems does not have the same components as the PCs used

for development and programming by the company, or in the servers in the data

center where the equipment is more powerful that enables the training of complex

models, or in the electronic cards used to operate directly the system embedded

on the devices with limited capacity. Therefore, it will be crucial to differentiate

between hardware used for inference and hardware used for training. While the

inference phase can be carried out on either a Central Processing Unit (CPU) or

a Graphics Processing Unit (GPU) depending on performance requirements, the

training phase is almost always carried out on GPUs. GPU provides large resources

to train and execute the deep learning and neural networks based models faster by

performing all operations simultaneously in parallel on a large number of cores

rather than sequentially for better computation. Additionally, as deep learning

models are frequently trained on big datasets, memory-intensive computations

are needed. The GPU is the optimum option for effectively processing this type

184

of data. But this does not mean that we can free ourselves from the use of CPU.

CPU remains a reliable processor for general purpose computing, while GPU is

more suitable for intensive computing. Especially since each CPU core is faster

and more powerful than a GPU core, but the GPU is more powerful to perform

specific tasks very quickly, especially those that can be processed in parallel. And

this is the case of neural networks. Operations such as the calculation of weights

and activation functions of each layer of the network or back propagation can be

performed in parallel.

Using hardware acceleration, such as GPUs, can significantly improve the per-

formance of deep learning inference. It is important to choose hardware that is

appropriate for the task at hand and is capable of running the model efficiently.

There are many different hardware options available for the inference stage

of a machine learning model, as mentioned. The choice between GPUs, desktop

x86 CPU, embedded platforms GPU (as Nvidia Jetson series), Intel CPU, other

embedded platforms depend on the specific requirements of the customer and the

application. The computing power varies on these different hardwares. Automated

registration of license plates (LAPI), as example of such inference which take place

in-device, couldn’t integrate the big graphics cards that heat or consume more

energy. LAPI is a vehicle equipped with a system that can read license plates dedi-

cated to homeland security. It uses a Box embedded the plate analysis algorithm

which required a battery for its power supply. thus, embedded development is often

driven by the need to deploy highly optimized systems. Overall, when choosing

hardware for the inference stage of a machine learning model, it is important to

consider:

- The computational requirements of the model: The hardware should have enough

processing power to run the model at the desired speed and with the desired accu-

racy.

- The energy efficiency of the hardware: If the device will be portable or battery-

185

powered, it is important to consider how much energy the hardware will consume.

- The cost of the hardware: It is important to consider the cost of the hardware in

relation to the intended use case.

- The size and weight of the hardware: If the device will be portable or embedded,

the size and weight of the hardware may be important considerations.

- The availability of the hardware: The hardware should be readily available and

easy to obtain

Table 7.1 compares some graphics processing unit in terms of power energy con-

sumed (watt) and the computing power (TFLOPs) in single and half precision, this

information is taken from techpowerup website. Teraflops (TFLOPs) is defined

as the number of floating point operations (FLOPS) that a device can perform

in a second. 500 TFLOPS represents 500 tera-FLOPS, or 500 thousand billion

operations per second. Floating point operations are arithmetic operations that

involve numbers with decimal points, such as addition, subtraction, multiplication,

and division. They are typically used to perform scientific and mathematical calcu-

lations, and are important for many applications, including deep learning and data

analytics.

Note that the TFLOPs performance of a GPU can depend on a number of

factors, including the specific architecture of the GPU, the clock speed of the GPU,

and the memory bandwidth available to the GPU. The values in the table above are

approximate and may vary depending on the specific configuration of the GPU.

In general, devices with higher TFLOPS ratings are able to perform more complex

calculations and can be more suitable for tasks that require high levels of computa-

tional power, such as deep learning and data analytics.

Another crucial feature of graphics cards that significantly impacts the size of

the training batch is the GPU memory. It enables the use of temporary memory

for storing local variables of kernel implementations as well as storing network

parameters, including weights and biases. For training, it was also necessary to

save intermediate variables, such as momentum, and intermediate calculations,

186

7.3. SYSTEM HARDWARE AND SOFTWARE 187

GPU Model Single

Precision

(FP32)

Half Preci-

sion (FP16)

Energy

power

NVIDIA GeForce RTX

3090

35.60

TFLOPS

35.60

TFLOPS

350 W

NVIDIA GeForce RTX

3090 Ti

40.00

TFLOPS

40.00

TFLOPS

450 W

NVIDIA GeForce RTX

3080 Ti

34.10

TFLOPS

34.10

TFLOPS

350 W

NVIDIA GeForce GTX

1650 SUPER

4.416

TFLOPS

8.832

TFLOPS

100 W

NVIDIA GeForce GTX

1660

5.027

TFLOPS

10.05

TFLOPS

120 W

NVIDIA GeForce GTX

1080 Ti

11.34

TFLOPS

177.20

GFLOPS

250 W

NVIDIA Tesla V100 7.80

TFLOPS

125.00

TFLOPS

300 W

NVIDIA Jetson Xavier 32.00

TFLOPS

64.00

TFLOPS

15 W

NVIDIA Jetson Nano 4.40

TFLOPS

8.80

TFLOPS

5 W

Table 7.1: Common GPU models and their approximate TFLOPs performance for

different types of floating point operations and the energy power

such as activation outputs, which are computed from the forward pass of each

layer and used to calculate gradients in the layer’s backward pass. For bigger AI

projects, it is frequently to use multiple GPUs to help with distributed training,

which enhances productivity and efficiency throughout the training phase.

The memory capacity and speed of an ML/AI system depends on the tasks being

performed. For example, running a deep learning project that relies heavily on

input and processing of enormous volumes of data may ultimately require a greater

memory load. Even though RAM (Random Access Memory) size does not affect

deep learning performance, it can prevent full execution of GPU code. We need

to have enough RAM to work comfortably with the GPU. In fact, having at least

as much RAM as GPU memory and an additional 25% for expansion is essential

for deep learning. Also, the quantity of analysis data that will need to be stored in

memory for processing and statistical work is another factor to take into account.

Due to the availability of PCs equipped with many GigaByte or even TeraByte

disks, data storage in the training phase is currently not a serious concern. The

main question often asked regarding this component is whether to utilize SSD or

HDD for AI applications. Before responding, let’s first explain both these types of

storage devices and the different technology behind them:

- Solid State Drives (SSD) which is newer and faster that can store data on fast ac-

cess memory chips, it uses flash memory which provides better performance

and reliability.

- Hard Drive Disks (HDD) accesses data by using mechanical platters and a mov-

ing head; relatively slower and more susceptible to damage.

There will be plenty of temporary storage of datasets, and it is going to be incredi-

bly convenient to have an SSD that will quickly migrate data as needed. They also

consume less power and generate less heat than HDDs, which can be beneficial in

some applications. However, it is worth noting that SSDs can be more expensive

than HDDs. Additionally, SSDs have a limited number of write cycles, so they may

188

not be the best choice for storing large datasets that will be frequently modified.

In those cases, it may be more cost-effective to use HDDs or some other type of

storage; data that won’t be moved frequently or will eventually land in a permanent

storage situation. Thus, AI software may need both of these. It will need SSD for

temporary storage of datasets that will allow rapid migration of data as needed and

accelerates the learning. However, for data that will not be moved frequently or

will eventually be stored permanently, HDD will work just fine and will be much

cheaper.

In our thesis work, we have benefited from the cloud-based high-performance

compute cluster performed at the supercomputer facilities at Mésocentre Clermont

Auvergne University for training DL models, we used NVIDIA v100 as GPU re-

sources and a RAM memory of 100G in partition "audace2018"). For development,

debugging and inference step, we used a Linux machine equipped with Intel Core

i5-9500, with a dedicated memory of 32GB, and the Nvidia GeForce GTX 1080,

with a dedicated memory of 8GB.

Subsequently, the choice of hardware imposes the use of specific libraries, as the

conversion of the models is necessary for inference. The next section covered the

software dependencies for training and inference.

7.3.2 Software libraries

The hardware used will guide the choice of learning and inference libraries and

programming languages that are available. Some libraries and programming

languages are optimized for use with specific types of hardware, such as GPUs or

CPUs from a particular manufacturer. For example, the Nvidia libraries cannot

be used on CPUs from other manufacturers, such as Intel. Similarly, libraries

that are optimized for use with Intel CPUs may not work with GPUs from other

manufacturers. It is important to carefully consider the hardware that will be used

for machine learning and choose libraries and programming languages that are

189

optimized for that hardware. This can help to ensure that the model is able to run

efficiently and achieve the desired performance.

On the other hand, there are several learning platforms among Keras, TensorFlow,

PyTorch and many others for training phase. Each framework has its own set

of capabilities and features, and the choice of framework can have a significant

impact on the development and training process. One factor to consider when

choosing a framework is the types of layers and operations that are supported.

Some frameworks may have a more limited set of available layers and operations,

which can limit the types of models that can be developed with that framework.

PyTorch is a popular choice for training deep learning models, and it offers

a wide range of features and capabilities. The modern networks are typically

developed on PyTorch. We will go into more detail about it in the following section.

For the inference phase, we frequently have to make conversions to the models

between the training and inference libraries to optimize the network and make it

much faster. Likewise, it is necessary that the libraries used are in compatible with

those used for training. For example, we use TensorRt on Nvidia platforms while

OpenVino on CPU platforms.

7.3.2.1 Deep learning libraries for training

As mentioned, GPUs must be used for DL model training because they require

intensive computational resources. Hence, we must use one of the various GPU

programming libraries. At this point, the decision is determined by the type of

GPU used; in fact, software and hardware are closely related. We therefore imple-

ment with CUDA(Compute Unified Device Architecture) [283], the programming

associated with the graphics cards used, Nvidia. The CUDA toolkit is a com-

plete set of tools that includes a C/C++ compiler, debugger and runtime libraries

to deploy the GPU based applications. CUDA designed specifically to give the

GPU instructions to perform a task. This technology, Initially launched in 2007,

allows for fully exploiting the image processing algorithms integrated into video

190

surveillance software constitute an important decision-making aid. power of the

GPU for parallel computing in a way optimized for better performance. In our

CIFRE thesis research, we had to find a better compromise between these two

different types. We developed a 3D human pose estimation approach that surpasses

state-of-the-art approaches by increasing the percentage of correct points in the

MuPoTs-3D database, which contains image sequences captured outside the labs

and therefore closer to the real-world image. While we optimized the hardware

required by using pre-trained architectures for processing steps that precede the 3D

pose estimation. With the CUDA Toolkit, you can develop, optimize, and deploy

your applications on GPU-accelerated embedded systems, desktop workstations,

enterprise data centers, cloud-based platforms and HPC supercomputers [283].

Keep in mind that NVIDIA graphics cards are the only ones that support the CUDA

language. Conversely, OpenCL, the other primary GPU programming framework,

is an open standard that is not exclusive to NVIDIA processors. It can be used

for CPUs, FPGAs, digital signal processors (DSP) and other types of processors.

FPGAs are tiny semiconductor devices with the capacity to be programmed to

perform incredibly specialized actions fast and effectively. OpenCL, an acronym

for Open Computing Language, was launched by Apple and the Khronos group to

provide a reference for heterogeneous computing, which allows parallel computing

on different devices. But CUDA has the advantage of being created by the same

company that creates the hardware on which it runs, which means it will obviously

better match the computational of the GPU and provide better access to features

and performance.

To build deep neural networks in the CUDA programming language, we need the

CuDNN package [284]. The NVIDIA CUDA Deep Neural Network (CuDNN) is

a GPU-accelerated primitive library for deep neural networks that provides very

accurate implementations of standard routines such as forward and backward prop-

agation, convolution, pooling, normalization, activation functions etc. in order to

speed up processing. This allows developers to focus on training neural networks

191

and developing software applications rather than spending time tuning low-level

GPU performance. It is also optimized for the GPU and can take full advantage of

Nvidia graphics cards.

The second choice to make before creating or training deep learning models is the

learning framework. Sometimes, it is the type of desired networks used that force

you to make a particular choice. However, generally speaking, PyTorch [285] has

grown in popularity and effectiveness for building Deep Learning (DL) models

since the Facebook AI Research (FAIR) team first released it in 2017. This open-

source optimized machine learning tensor library was created to boost deep neural

network implementation speed and flexibility. It is based on Python and Torch and

is mainly used for applications using GPUs and CPUs.

In both academia and industry, PyTorch is currently the most widely used

library for AI (Artificial Intelligence) researchers and practitioners over other deep

learning frameworks like TensorFlow and Keras since it is completely Pythonic

and uses dynamic computation graphs. It enables scientists, programmers, and

neural network debuggers to real-time testing and execution of certain portions of

code. Users can therefore check whether a part of the code works or not without

having to wait for the complete software program to be implemented.

The framework of PyTorch uses dynamic computational graphs to determine

the gradient values for the built-in neural networks. This type of graph is more

flexible since it let users develop and evaluate the graph sequentially. Additionally,

because the code is executed line-by-line, it is simpler to debug and locate errors

in the code. These computational graphs can use arbitrary Python control flow

instructions since they are generated from scratch after each iteration, which can

change the overall size and structure of the graph. The advantage is that you don’t

need to code every path before launching the training. You could execute what you

differentiate.

Like most frameworks, PyTorch is CUDA-enabled, which means that entry-level

GPUs can be used.

192

PyTorch 1.6 GPU version is used in our work as software dependencies. Thus,

learning of the models was programmed in Python language. An interpreted,

object-oriented, high-level programming language with dynamic semantics. The

Python interpreter and extensive standard library are available free of charge in

source or binary form for all major platforms, and can be freely distributed. Python

provides code that is clear and readable. While machine learning and artificial

intelligence are built on complicated algorithms and flexible workflows, Python’s

simplicity makes it possible for programmers to create dependable systems. Instead

of focussing on the technical details of the language, developers can devote all of

their attention on solving an ML problem. The chosen Python version is 3.7.

Since the last century, scientists have employed computers to automate the process-

ing of digital to automate the processing of digital images in many fields. How to

process a very big amount of data in the shortest amount of time with the minimum

number of processing resources has always been a major challenge for application

developers. To optimize time and memory, developers are currently employing

other programming techniques. One of these methods that enables the execution

of the same operation on several variables simultaneously is vectorization. It is

a programming technique that allows developers to perform operations on entire

arrays of data instead of individual elements, which can significantly improve the

performance and efficiency of their code. It is commonly used in image processing,

where developers may need to perform the same operation on a large number of

images or pixels. By vectorizing their code, developers can avoid the overhead of

looping through individual elements and can instead perform operations on the en-

tire array at once, which can significantly reduce the time and resources required to

process the data. Vectorization is often used in conjunction with other optimization

techniques, such as parallelization, to further improve the performance of image

processing and other data-intensive applications [286]. In Python, we use NumPy

for vectorization. It is a library used for scientific computing and provides tools for

working with arrays and matrices of numerical data, which allows operations to be

193

performed on entire arrays or matrices, rather than individual elements. This can

significantly speed up code, since vectorized operations are typically much faster

than equivalent loops in Python.

Another approach to optimizing the performance of your deep learning models is

to use distributed training. This involves training your model on multiple GPUs or

machines, which can significantly reduce the training time. This allows multiple

tasks to be performed at the same time. There are several tools and libraries avail-

able for distributed training, which can help you easily scale your training across

multiple GPUs or machines.

7.3.2.2 Deep learning libraries for inference

CUDA and cuDNN are also used for inference to enable faster calculations. The

GPU related libraries are CUDA 11.0.0 and CuDNN 8.0.0.

The design and deployment of an industrial embedded inference system using deep

learning models is a large procedure. After training a neural network, it is possible

to optimize these pre-trained computational networks for speed (both throughput

and latency) at runtime.

For this purpose, TensorRT is widely adopted by the industry. TensorRT is an

NVIDIA library essential for computer vision engineers to create AI applications

and better deploy complex models in production. TensorRT is built on CUDA,

NVIDIA’s parallel programming model. Thus, on NVIDIA graphics processing

units (GPUs), this library takes deep learning pre-trained model and ‘compile’ it

into an ‘engine’ that runs fast for quicker inference.It can provide inference on

numerous real-time services and embedded applications around 4–5 times faster.

Let’s review some of optimization’s strategies that are carried out by TensorRT to

boost the throughput of deep learning models and create an optimized engine.

– Precision optimization: TensorRT can optimize the precision of the model’s

parameters and activations to reduce memory usage and improve perfor-

194

mance.

– Layers fusion: TensorRT can merge multiple layers of a neural network

into a single layer, reducing the overall number of operations that need to be

executed and minimizing the overhead of moving data between layers.

– kernet auto-tuning: TensorRT automatically selects the best layers, algo-

rithms, and batch sizes based on the intended GPU platform to set kernel

parameters.

– Dynamic Tensor Memory: TensorRT improves memory reuse, especially

on embedded systems with limited memory by only allocating memory to

the tensor while it is in use. It minimizes the memory footprint and gets rid

of allocation overhead for quick and efficient execution.

– Multiple stream execution: Similar to CUDA, TensorRT enables you to

conduct inferences concurrently over various "streams."

By applying these techniques, TensorRT can significantly improve the performance

and efficiency of deep learning models, making them more suitable for deploy-

ment in real-time applications such as autonomous vehicles, video analytics, and

natural language processing. In the following, we go into more detail about these

techniques.

Precision optimization: Precision optimization in TensorRT refers to the process

of optimizing the precision of the model’s parameters and activations for better

performance.

In computer science, real numbers are numbers that can represent any value on the

number line, including fractions and decimals. They are different from integers,

which are whole numbers.

Real numbers are usually represented in computers using a binary floating-point

representation. This means that the number is stored as a series of binary digits

195

(bits), with a fixed number of bits reserved for the integer part of the number, a

fixed number of bits reserved for the fractional part of the number, and a single bit

reserved for the sign of the number (positive or negative). The actual value of the

number is determined by the combination of these bits, along with a pre-determined

base (usually 2) and exponent (which determines the position of the binary point).

FP32 means using 32 Bits to represent a floating point number. It is the more

commonly used single precision floating point. We call half precision floating

point, the numerical representation that uses 16 bits to represent a number (FP16)

and double precision floating point (FP64), which uses 64 bits. There are three

components in the representation: the sign bit, the exponent bit, and the mantissa

In FP32 for example, the number 0.5 in binary floating-point representation might

be stored as 010000000100000000000000000000, with the first bit representing the

sign (0 for positive), the next 8 bits representing the integer part (00000001, or 1 in

decimal), the next 23 bits representing the fractional part (00000000000000000000,

or 0 in decimal), and the exponent indicating that the binary point should be shifted

23 places to the right.

There are some limitations to the accuracy and range of real numbers that can

be represented in this way, but for most practical purposes, binary floating-point

representation is sufficient for working with real numbers in computers.

During the process of training of deep learning models, parameters and activations

values are represented in FP32 precision. Higher precision that allows for more

accurate representation of the values, but also requires more memory and can be

slower to compute. However, the lower precision (e.g. 16 bits or 8 bits) can reduce

memory usage and improve performance, but may sacrifice some accuracy.

TensorRT allows users to choose the precision of the model’s parameters and

activations based on the requirements of the application. For example, a model

used for image classification may be able to tolerate lower precision without

sacrificing too much accuracy, while a model used for speech recognition may

require higher precision to maintain accuracy.

196

TensorRT includes algorithms that can automatically optimize the precision of the

model based on the desired accuracy and performance. This can help users find the

optimal balance between accuracy and performance for their specific application.

Note that FP16 is supported by many modern hardware devices, including CPUs,

GPUs, and specialized hardware accelerators. However, not all devices support

FP16, and the level of support can vary.

For example, many modern GPUs support FP16, but they may not support all the

features and operations that are available for FP32 or FP64. Some GPUs may also

have different performance characteristics for FP16 operations compared to FP32

or FP64 operations.

In general, FP16 is useful for reducing the memory usage and computational

requirements of deep learning models, which can be beneficial for deploying

models on devices with limited resources. However, it is important to carefully

consider the trade-offs between precision and performance when using FP16, as it

may not be suitable for all applications.

Layers fusion: Another technique used by TensorRT for the optimization of

deep learning models is layers Fusion. It is used to merge several layers into one

more efficient kernel.

Merging layers can improve model performance by reducing the total number

of layers to be executed and by minimizing the overhead of moving data between

layers. There are two common types of merging layers: horizontal fusion and

vertical fusion (figure 7.5).

Horizontal fusion consists of merging several successive layers into a single

layer. For example, if a model includes a convolution layer followed by a pooling

layer, they can be merged into a single layer that combines the convolution and

pooling operations. This minimizes the overhead of moving data between layers.

The second way is the vertical fusion which merges multiple layers that process

the same input data into a single layer. For example, if a model has multiple

197

198 CHAPTER 7. SOFTWARE SYSTEM INDUSTRIALIZATION

Figure 7.5: Fusion network layers by TensorRT

convolution layers that all process the same input data, they can be merged into a

single layer that combines all convolution operations. This reduces memory usage.

Kernel auto-tuning Kernel autotuning is a feature of TensorRT that automat-

ically selects the optimal kernel parameters for convolution and data shift (data

expansion) operations. In a neural network, convolution and data shift layers are

common operations that are often used to extract features from input data. The

kernel parameters of these layers, such as the convolution filter and the shift step,

have a large influence on the performance of the model. Automatic kernel tuning

allows TensorRT to automatically select the optimal kernel parameters for each con-

volution and data shift layer based on the target computing architecture and model

workload. This can improve model performance by selecting kernel parameters

that are best suited to the characteristics of the target computational architecture.

To use automatic kernel tuning in TensorRT, simply specify the automatic kernel

tuning option during model configuration. TensorRT will automatically detect the

convolution and data shift layers and perform the automatic kernel tuning during

model optimization.

Dynamic Tensor Memory: Dynamic Tensor Memory is a feature of TensorRT

that allows for efficient management of memory usage when executing a deep

learning model.

In a neural network, each layer of the model requires a certain amount of memory

to store input and output data. During model execution, memory must be allocated

and released efficiently to avoid access conflicts and maximize memory utilization.

Dynamic Tensor Memory enables TensorRT to transparently manage the allocation

and release of memory during model execution. This can improve performance by

avoiding memory access conflicts and efficiently using available memory resources.

To use Dynamic Tensor Memory in TensorRT, simply specify the dynamic tensor

memory option when configuring the model. TensorRT will automatically manage

199

the allocation and release of memory during model execution.

Multiple stream execution is a technique used to optimize the performance

of deep learning models, particularly when the models are deployed on parallel

computing architectures such as GPUs.

In a deep learning model, a stream is a sequence of operations that are executed in

order on a set of data. When multiple streams are used, different sets of data can be

processed in parallel, allowing the model to fully utilize the available computing

resources and maximize performance.

TensorRT supports multiple stream execution by providing APIs that allow users

to configure the number of data streams to be processed in parallel and specify

how the data should be partitioned among the different streams. This enables

users to take full advantage of available computing resources and maximize model

performance.

It is important to note that multiple stream execution can increase code complexity

and memory usage, and is not always beneficial in terms of performance. To

make the most of this technique, it is important to understand the characteristics of

the application and the target computing architecture, and choose an appropriate

number of data streams to process in parallel.

7.3.2.2.1 PyTorch to TensorRT conversion

The specific steps and API calls required to convert a PyTorch model to Ten-

sorRT may vary depending on the model architecture and the requirements of the

task. The common way to convert a PyTorch model to TensorRT by first converting

the PyTorch model to ONNX format and then using TensorRT to import the ONNX

model and optimize it.

Note that ONNX [287] (Open Neural Network Exchange) is an open source format

for exchanging deep learning models between different frameworks and hardware

200

platforms. It defines a common set of operators and a standard data format for

representing deep learning models, allowing models trained in one framework to

be imported and used in another.

Using ONNX as an intermediate format can simplify the process of converting

a PyTorch model to TensorRT, as it allows the model to be represented in a

framework-agnostic format that can be easily imported by TensorRT. The function

of conversion to ONNX takes the PyTorch model and a set of input tensors as input

and produces an ONNX model file as output. Once the PyTorch model has been

converted to ONNX format, it can be imported into TensorRT and converted to

TensorRT engine object that represents the TensorRT version of the model.

We often have to perform model conversions between the training and inference

libraries and there may be instances where certain layers or calculations are not

supported. As stated earlier, all models used in this work were trained with PyTorch

which is primarily designed to be used with the Python programming language.

However, for inference, we implement with the C++ language. Therefore, to be

able to use the models whose conversion to TRT engine is not possible, we use the

LibTorch library.

LibTorch is built on top of the PyTorch C++ frontend API, and provides a set of

C++ classes and functions that expose the core functionality of PyTorch.

The version adopted by TensorRT is 1.7 and by LibTorch, we have to keep the

same version as the one used in training, which in our case is 1.6. The GPU related

libraries are CUDA 11.0.0 and CuDNN 8.0.0.

7.3.2.2.2 Integration with existing systems

Integrating AI projects into existing systems can be a complex and time-

consuming process. It is crucial to ensure that the AI system is compatible with

the existing system and does not disrupt or interfere with its normal operations.

201

To achieve this, we must ensure that the AI system has compatible hardware and

software requirements and use versions of libraries that have already been used

by the rest of the system. Careful planning and coordination are also essential to

ensure a smooth and successful integration process.

7.3.2.2.3 Pre-processing images phase

However, the images must first go through the pre-processing stage before the

deep learning models can begin processing them. It is an important step in the

deep learning pipeline to prepare the input data for inference in the same manner

as it was prepared for training. The main goal of preprocessing is to transform

the raw input data into a form that is suitable to be treated with the deep learning

model. This can involve a range of tasks, including data cleaning, normalization,

augmentation, and feature engineering, depending on the characteristics of the data

and the requirements of the task. One of the most important preprocessing used

before each model developed in our system is mean subtraction. This preprocessing

step involves subtracting the mean value of the input data from each channel. The

mean value subtracted from each channel are 0.485 for red, 0.456 for green, and

0.406 for blue channel. Then, dividing the input data by the standard deviation to

normalize the input data and remove any scaling issues that may be present. The

resulting value is divided by 0.229 for red, 0.224 for green, and 0.225 for blue

channel as standard deviation. This can be useful for improving the convergence

and generalization of the model. It is important to keep in mind that developing an

image processing pipeline for a product requires a lot of work and attention to detail.

It involves a range of tasks, including capturing frames from industrial cameras,

correcting lens distortion, rectifying images, and communicating the results. While

it may seem like these tasks can be accomplished with just a few calls to OpenCV

functions [288], this is often not the case. In fact, using low-level SDKs provided

by camera manufacturers, can require hundreds of lines of code just to capture a

202

frame and convert it to a cv::Mat format. It is important to carefully consider the

requirements and constraints of the product, and to choose the appropriate tools

and techniques to ensure the smooth and efficient operation of the image processing

pipeline. OpenCV framework is an Open Source Computer Vision (OpenCV) is a

popular library for computer vision and image processing tasks utilized in a variety

of applications and industries. It is written initially in C and upgrade then to C++

to take advantage of templates.

7.3.2.3 Deep learning visualization

Deep learning visualization is the process of using visual tools and techniques to

understand, evaluate, and interpret the outputs of deep learning models. Visualiza-

tion can be used to analyze the behavior of deep learning models, identify patterns

and trends in the data, and assess the model’s accuracy and reliability. There are

several tools that can be used to visualize deep learning models and results as

DeepVision, Neu.ro, Biases& Weights etc. However, in what follows, we will only

focus on the tools used in my thesis work; TensorBoard and Netron.

TensorBoard is a visualization tool provided by TensorFlow that widely used

in the machine learning community. It allows users to view and analyze various

aspects of their model, such as training and validation loss, accuracy, and gradient

flow. It is particularly useful for us to analyzing and debugging deep learning

models, as it provides a range of features for visualizing complex neural network

architectures and tracking the training process.

Netron is a tool for visualizing deep learning models, including their architecture,

weights, and activations. It supports a variety of model formats including PyTorch,

TensorFlow, and ONNX, and can be used to analyze and debug models. It helps us

especially to troubleshoot issues with model conversion, such as when converting

a PyTorch model to TensorRT.

Last But Not Least, OpenGL is the useful tool used in our work to display and

render the results of the 3D pose estimation in real time. Open Graphics Library

203

(OpenGL) is a cross-language, cross-platform application programming interface

(API) for rendering 2D and 3D vector graphics.

7.4 Industrial Software system delivery

7.4.1 Software delivery

Software delivery is the entire process of getting a software product to customers,

from conceptualization, through development, ending in the actual purchase, in-

stallation and deployment to the customer. The team prepared the software product

for release using software delivery models, also referred to as the software delivery

life-cycle, the software delivery pipeline, or the software delivery process. There

are many models that have been developed. Yet, no single one of them works in an

optimal way. Thus, many companies combine different software delivery models.

The goal of software delivery is to ensure that the software is delivered to users

in a timely, reliable, and high-quality manner. To achieve this, a variety of activities

may be required, such as:

Coding and development: Software delivery typically involves coding and de-

veloping the software using a range of tools and technologies, such as

programming languages, libraries, and frameworks.

Testing and debugging: Software delivery also involves testing the software to

ensure that it meets the required specifications and is free of defects. This

can involve a range of activities, such as unit testing, integration testing, and

system testing.

Packaging and deployment: Software delivery involves packaging the software

in a format that is suitable for distribution and deployment, such as an

installer or a container. It also involves deploying the software to the appro-

priate environment, such as a development server or a production server.

204

Maintenance and updates: Software delivery also involves maintaining and up-

dating the software over time to fix defects, add new features, or address

security vulnerabilities. This can involve a range of activities, such as patch

management, version control, and release management

To improve the efficiency and effectiveness of the software delivery process, we

benefit from DevOps practices. By implementing DevOps practices, industries

can reduce the time and effort required to release and deploy software updates and

new features, increase the reliability and quality of software releases, enable faster

feedback and iteration on software development projects, improve communication

and collaboration between development and operations teams, and automate and

streamline the software delivery process.

7.4.2 DevOps delivery pipeline

The term DevOps was introduced to represent a movement in computer engineer-

ing and technical practice aimed at unifying software development (dev) and IT

infrastructure administration/Operations (ops). Which fosters better collaboration

between development and operations teams to deliver value to users faster. Indeed,

DevOps-based techniques reduce the barriers between developers, who want to

innovate and deliver faster, and operations, who want to ensure the stability of

production systems and the quality of the changes they make to systems. This

has reduced the time between system changes and the deployment of updates and

changes to production, while maintaining software quality in terms of code and

delivery. Continuous delivery allows for incremental and continuous delivery of

frequent software releases by systematically automating the creation, testing, and

validation of software without having to rebuild and redeploy the entire application.

There are various tools and technologies that can be used in DevOps, which are cho-

sen based on the specific needs and constraints of the project. These tools include

version control systems such as Git, which help developers track and manage

205

changes to code over time; Continuous integration and delivery CI/CD tools like

Jenkins, Travis CI, and CircleCI, which automate the process of building, testing,

and deploying code; deployment tools like Ansible, Terraform, and Docker, which

automate the deployment and management of software applications; package man-
agement tools like npm, pip, and Maven, which help developers to manage and

distribute software packages and dependencies; monitoring tools like New Relic

and Splunk, which allow monitoring the performance, availability, and security of

their applications and infrastructure; and collaboration and communication tools
like Slack and Trello, allow developers to communicate and collaborate with other

team members and stakeholders. These tools can be used to track and manage

code changes, automate the build, test, and deployment process, manage software

packages and dependencies, deploy and manage software applications, monitor

the performance and availability of applications and infrastructure, and facilitate

communication and collaboration among team members and stakeholders.

In Pryntec, we use Gitlab which can be used to store, version, and share code, and

to collaborate with other developers. GitLab is a popular open-source tool in the

industry for managing software development projects and delivering software. It

is a web-based platform that combines version control, project management, and

continuous integration and delivery (CI/CD) tools into a single package.

There are several reasons why GitLab is the popular choice for software delivery in

the industry is that it is all-in-one approach, open-source nature, large community,

and ability to handle large and complex projects with features such as scalability,

performance, and security. It offers a range of tools and features commonly used

in software development, including version control, package management, project

management, and CI/CD, and can be customized and extended to meet specific

needs. In more details:

Version control which allows tracking changes to the codebase over time and

making it easier to understand how the code has evolved, and rolling back to

a previous version of the code if a problem is introduced. It also facilitates

206

collaboration between multiple developers by working on the same codebase

simultaneously and creating new branches to develop new features or fixing

bugs without affecting the main codebase.

Built-in continuous integration and delivery (CI/CD) functionality which allows

developers to automate the build process for software applications as compil-

ing and testing tasks. In our GitLab setup, we compile all programs every

night in order to quickly identify errors in code that was added during the day.

If a function doesn’t work or a test fails, we are alerted so that we can take

action to resolve the issue. This helps us ensure the quality and reliability of

our software by catching problems as early as possible in the development

process.

Project management features allows developers to create and assign tasks, set

deadlines, and track progress on projects. This helps to ensure that work is

organized, and that team members are aware of their responsibilities. GitLab

includes features such as code review and merge request approval workflows

that allow developers to review and discuss code changes before they are

merged into the main codebase. This helps to ensure that code changes are

of high quality and adhere to standards.

Package management functionality which allows developers to manage and dis-

tribute software packages and dependencies. It provides tools for installing,

updating, and uninstalling software packages and their dependencies, and for

managing the dependencies of a software project. It helps to ensure that they

have the right versions of packages, the right tools and libraries available to

support their work.

207

7.4.3 MLOps delivery pipelines

Traditional software is generally created to perform specific tasks or functions, and

it operates using predetermined rules or algorithms. This type of software does

not utilize machine learning techniques. When traditional software is compiled, it

produces an executable file.

On the other hand, machine learning software is designed to learn from data and

adapt to changing input. It uses algorithms and techniques that allow it to improve

its performance over time, based on the data it processes. As a result, machine

learning projects typically consist of the code source and input data, to produce

trained models and performance metrics as output rather than executable files.

Thus, in addition to versioning the code, it is also important to version the data

because it is a critical component of the machine learning model, and changes to

the data can have a significant impact on the performance of the model. Using Git

or other version control systems to version large data files can be challenging, as

they are typically designed to handle relatively small files. In order to version large

data files, it is often necessary to use specialized tools such as DVC (Data Version

Control) or Pachyderm, which are specifically designed to handle large data files

and provide version control and data lineage for machine learning projects. This

can help the developers to ensure that the data used in the machine learning model

is consistent and reliable, which is essential for achieving good model performance.

In addition, the process of developing and training machine learning models often

involves experimentation with different configurations, such as altering datasets,

changing batch size, using data augmentation, and adjusting the learning rate. It is

then important to have a way to track and manage machine learning experiments

in order to ensure that the final model is robust, accurate, and reproducible.

To manage these processes, Machine Learning Operations (MLOps) practices are

often employed. It is a practice that aims to improve the collaboration and automa-

tion of machine learning workflows. It combines principles and practices from the

208

fields of machine learning and DevOps, with the goal of making it easier to develop,

deploy, and maintain machine learning models in production environments.

The MLOps process can generally be divided into three broad phases: designing

the ML-powered application, ML experimentation and development, and ML oper-

ations [289] as illustrated in the figure 7.6.

During the design phase, data scientists define the requirements and goals for the

ML-powered application, and design the overall architecture and workflow. This

includes identifying the data sources and algorithms that will be used, as well as

the infrastructure and tools that will be needed to support the application.

During the ML experimentation and development phase, data scientists and other

team members develop and test the machine learning models and algorithms that

will be used in the application. This typically involves iterative experimentation

and testing, using techniques such as data augmentation, hyperparameter tuning,

and model selection.

Finally, during the ML operations phase, the machine learning models and algo-

rithms are deployed and integrated into the production environment. This involves

deploying the models to the appropriate infrastructure, and setting up processes for

monitoring, maintaining, and updating the models over time.

Overall, the goal of the MLOps process is to facilitate the development, deploy-

ment, and maintenance of machine learning models in production environments

in a way that is efficient and effective for data scientists and other team members.

This may involve balancing the need for high performance with the need for high

accuracy, in order to optimize the overall effectiveness of the ML-powered applica-

tion.

There are many tools that are commonly used together as part of an overall MLOps

process which could serve different purposes. In one hand, DVC and Pachyderm

are examples of tools that can be used to manage the data and code associated

with machine learning projects. They allow data scientists to track, version and

share their experiments, data files, metrics and models, to reproduce results and

209

Figure 7.6: MLOps process. [290].

automate the process of data processing and model training. Both integrate with

a range of machine learning libraries and frameworks. DVC is designed to be

used in conjunction with Git. While Pachyderm offers additional features such as

project management and more customization and collaboration options, as well as

integration with other tools and visualization and analysis capabilities.

In the other hand, Weights & Biases (W&B) and Neptune are examples of tools

that are used for tracking and managing machine learning experiments. They

provide features for tracking and organizing machine learning experiments, such

as experiment tagging and filtering, and the ability to see the results of previous

experiments. They provide tools for tuning and optimizing hyperparameters, such

as automated hyperparameter search and Bayesian optimization. They provide

interactive visualizations of performance metrics, such as training and validation

loss, accuracy, and precision. They both offer data versioning and integration with

various ML libraries. However, they have different strengths and focus areas. Nep-

tune offers additional features such as projects and commenting, and it provides

210

more options for customization, more features for collaboration and integration

with other tools, while W&B offers commenting and sharing, and focuses more on

visualization and interactive analysis as shown in table 7.2. Data scientists should

choose the tool that best fits their needs and workflow.

Feature W&B Neptune DVC Pachyderm

Data versioning Yes Yes Yes Yes

ML library integration Yes Yes Yes Yes

Project management No Yes No Yes

Commenting Yes Yes No Yes

Collaboration features Limited Many options Limited Many options

Customization Limited Many options Limited Many options

Visualization Strong focus Moderate

focus

No No

Interactive analysis Strong focus Moderate

focus

No No

Integration with other tools Limited Yes Limited Yes

Table 7.2: table comparing W&B, Neptune, DVC and Pachyderm

Overall, DVC and Pachyderm are primarily focused on data versioning and

integration with ML libraries, while W&B and Neptune offer more options for

collaboration, customization, and integration with other tools. W&B also has a

focus on visualization and interactive analysis. Data scientists should choose the

tool that best fits their needs and workflow.

211

Ultimately, the goal of MLOps is to enable data scientists and other team members

to focus on the core task of developing and improving machine learning models,

rather than being slowed down by the logistics of the development and deployment

process.

7.5 Conclusion

Industrialization refers to the process of using technology, machines, and special-

ized techniques to produce goods and services on a large scale, often in a factory

setting. In this CIFRE thesis, we added a functionality to the video surveillance

system PrynCore, developed by the company Pryntec. The system as well as my

part of the work are based on image processing and deep learning algorithms that

lead to a valuable help for decision-making or to automate tasks based on the

processed images.

The design of high-performance image processing, as in many other areas, begins

with identifying a problem and analyzing state-of-the-art solutions. Then, the

researcher/developer conceives and elaborates an idea to improve the resolution of

this problem, which is then developed in the form of application/product composed

of many algorithms and implemented in a programming language taking into con-

sideration the hardware which meets the application constraints and economics.

Finally, the developed solution is tested and evaluated, and if necessary, further

optimized and refined. This chapter focuses on the deployment and inference phase,

also mentioning information useful for the training phase that was not covered

in previous chapters. It discusses the challenges and considerations that need to

be taken into account when deploying machine learning models in production

environments and describes the various tools and techniques that can be used to

optimize the performance and reliability of the models. In addition, the chapter

covers the basics of model inference, including how to make predictions using

trained models and how to evaluate the accuracy of the models. We have seen how

212

deep learning visualization can be a powerful tool for understanding and improving

the performance of deep learning models.

We discussed several approaches we have taken to optimize the performance of

deep learning models, such as vectorization, parallel computing on GPUs, and

distributed training. As well as the support of the TensorRT library in inference.

Using these techniques, we were able to improve the speed and efficiency of the

models and allow them to handle larger and more complex data sets.

In addition, we discussed the importance of software delivery chain management

(DevOps) and machine learning monitoring tool (MLOps) in ensuring the quality

and reliability of machine learning models in production. In fact, both MLOps and

DevOps involve collaboration and automation, but they focus on different areas of

work. DevOps is focused on software development and operations more generally,

while MLOps is specifically focused on machine learning workflows. Both prac-

tices aim to improve the efficiency and reliability of the processes they support, and

to make it easier to develop, deploy and maintain software and machine learning

models in production environments.

It should also be noted that software delivery and DevOps are related, but they

are not the same thing. Software delivery refers to the process of publishing and

distributing software updates or new software products to users. It involves a

series of activities, including coding, testing, debugging, packaging and deploy-

ing the software, as well as managing and maintaining the software throughout

its life-cycle. DevOps, meanwhile, is a set of practices and culture that aims to

promote collaboration and communication between software development and IT

operations teams. It aims to automate and optimize the software delivery process,

with an emphasis on continuous integration, continuous delivery and continuous

deployment.

In practice, software delivery is a subset of DevOps, as it is one aspect of the larger

process of creating, testing and deploying software. However, DevOps also in-

volves other activities, such as infrastructure management, monitoring and security.

213

Overall, software delivery focuses on the process of releasing and distributing

software, while DevOps is a broader approach to software development and de-

livery that emphasizes collaboration, automation and continuous improvement.

Implementing DevOps practices can help organizations improve the effectiveness

and efficiency of their software delivery process.

In summary, effective and reliable implementation of machine learning models in

production requires careful attention to the technical and organizational aspects

of machine learning industrialization. Taking these aspects into account can help

to improve the performance of models, ensure their quality and reliability, and

facilitate their maintenance and evolution over time.

7.6 General Conclusion and Perspectives

This thesis navigates through the complex yet gratifying journey of human pose

estimation, a field that has seen rapid growth and development in recent years.

The focus has been on the absolute estimation of multi-person 3D poses from

monocular RGB images.

The thesis is divided into three main parts. The first part offers an in-depth re-

view of the literature, starting with an exploration of deep learning techniques

and progressing to a detailed examination of human pose estimation. The second

part delves into the system we developed, breaking down the architecture of each

component and the software implementation into three chapters. The final part

discusses the industrialization process, which involves the use of technology and

specialized techniques to produce goods and services on a large scale.

Our methodology begins with the detection of individuals in the image, each as-

signed a unique identifier and tracked throughout the sequence. For each frame and

individual, we first predict the 2D coordinates of all joints, followed by a grouping

process to predict 3D skeletons using temporal information. We have trained a

214

network to estimate the depth of one of the joint points, enabling us to accurately

determine the true position of each person in the room relative to the camera.

Our contribution is the development of a solution we named Root-GAST-Net,

which is designed to meet the initial requirements and outperform existing methods.

The system is the result of a series of improvements that have increased accuracy

by more than 8.8 percentage points on 3D-PCKabs on the MuPoTS-3D dataset.

Furthermore, the system can be used in real-time, as the execution time of each

frame containing one person is approximately 60 milliseconds using the Nvidia

GeForce GTX 1080. This time can be further reduced using high-performance

materials and FP16 precision.

As part of a CIFRE thesis, we have incorporated a new feature into the PrynCore

video surveillance system, developed by Pryntec. Both the system and our con-

tribution are rooted in image processing and deep learning algorithms, providing

valuable assistance for decision-making and task automation based on the pro-

cessed images.

Moving forward, our contribution is focused on advancing both relative and abso-

lute 3D pose estimation by reconstructing information from 2D joints. In future

works, we have a particular interest in enhancing the initial stage of the process. To

achieve this goal, we propose a novel method called YoloPose, which seamlessly

integrates two crucial tasks: human detection and 2D keypoints estimation. The

fundamental concept behind YoloPose is to utilize the anchor pose as a reference

for identifying the 2D poses within the images, rather than relying on traditional

bounding box rectangles used in YOLO. However, it is important to acknowledge

that the estimation of each joint may introduce a certain level of error.

215

216

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Communications of the ACM, 60(6):84–90,

2017.

[2] Larry R Medsker and LC Jain. Recurrent neural networks. Design and Applications,

5:64–67, 2001.

[3] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh

Valaee. Recent advances in recurrent neural networks. arXiv preprint

arXiv:1801.01078, 2017.

[4] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recur-

rent neural networks: Lstm cells and network architectures. Neural computation,

31(7):1235–1270, 2019.

[5] Saul Dobilas. Lstm recurrent neural networks — how to teach a network to remem-

ber the past, 2022.

[6] Abdelhadi Azzouni and Guy Pujolle. A long short-term memory recurrent neu-

ral network framework for network traffic matrix prediction. arXiv preprint

arXiv:1705.05690, 2017.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

217

[8] Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural

networks. In 2017 IEEE 60th international midwest symposium on circuits and

systems (MWSCAS), pages 1597–1600. IEEE, 2017.

[9] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.

Temporal convolutional networks for action segmentation and detection. In proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

156–165, 2017.

[10] Guijuan Zhang, Yang Liu, and Xiaoning Jin. A survey of autoencoder-based

recommender systems. Frontiers of Computer Science, 14:430–450, 2020.

[11] Jingyuan Liu, Hongbo Fu, and Chiew-Lan Tai. Posetween: Pose-driven tween

animation.

[12] Nora S Willett, Hijung Valentina Shin, Zeyu Jin, Wilmot Li, and Adam Finkelstein.

Pose2pose: pose selection and transfer for 2d character animation. In Proceedings

of the 25th International Conference on Intelligent User Interfaces, pages 88–99,

2020.

[13] Yuen-Jen Lin, Hsuan-Kai Kao, Yih-Chih Tseng, Ming Tsai, and Li Su. A human-

computer duet system for music performance. In Proceedings of the 28th ACM

International Conference on Multimedia, pages 772–780, 2020.

[14] Taravat Anvari, Kyoungju Park, and Ganghyun Kim. Upper body pose estimation

using deep learning for a virtual reality avatar. Applied Sciences, 13(4):2460, 2023.

[15] Gokcen Cimen, Christoph Maurhofer, Bob Sumner, and Martin Guay. Ar poser:

Automatically augmenting mobile pictures with digital avatars imitating poses. In

12th international conference on computer graphics, visualization, computer vision

and image processing, 2018.

[16] Manolis Vasileiadis, Sotiris Malassiotis, Dimitrios Giakoumis, Christos-Savvas

Bouganis, and Dimitrios Tzovaras. Robust human pose tracking for realistic ser-

vice robot applications. In Proceedings of the IEEE International Conference on

Computer Vision Workshops, pages 1363–1372, 2017.

218

[17] Kengo Ichihara, Masaru Takeuchi, and Jiro Katto. Accuracy evaluations of video

anomaly detection using human pose estimation. In 2020 IEEE International

Conference on Consumer Electronics (ICCE), pages 1–2. IEEE, 2020.

[18] Ismail Haritaoglu, David Harwood, and Larry S. Davis. W/sup 4: real-time surveil-

lance of people and their activities. IEEE Transactions on pattern analysis and

machine intelligence, 22(8):809–830, 2000.

[19] Feng-Cheng Lin, Huu-Huy Ngo, Chyi-Ren Dow, Ka-Hou Lam, and Hung Linh

Le. Student behavior recognition system for the classroom environment based on

skeleton pose estimation and person detection. Sensors, 21(16):5314, 2021.

[20] The Waymo Team. Utilizing key point and pose estimation for the

task of autonomous driving. Retrieved on February 22, 2022 from

https://blog.waymo.com/2022/02/utilizing-key-point-and-pose-estimation.html.

[21] Liubov Zatolokina. Human pose estimation technology capabilities and use cases

in 2023. Retrieved on Oct 21, 2022 from https://mobidev.biz/blog/human-pose-

estimation-technology-guide.

[22] Yucheng Chen, Yingli Tian, and Mingyi He. Monocular human pose estimation: A

survey of deep learning-based methods. Computer Vision and Image Understanding,

192:102897, 2020.

[23] Thomas B Moeslund and Erik Granum. A survey of computer vision-based human

motion capture. Computer vision and image understanding, 81(3):231–268, 2001.

[24] Nikolaos Sarafianos, Bogdan Boteanu, Bogdan Ionescu, and Ioannis A Kakadiaris.

3d human pose estimation: A review of the literature and analysis of covariates.

Computer Vision and Image Understanding, 152:1–20, 2016.

[25] Zhao Liu, Jianke Zhu, Jiajun Bu, and Chun Chen. A survey of human pose

estimation: the body parts parsing based methods. Journal of Visual Communication

and Image Representation, 32:10–19, 2015.

219

[26] Wenjuan Gong, Xuena Zhang, Jordi Gonzàlez, Andrews Sobral, Thierry Bouwmans,

Changhe Tu, and El-hadi Zahzah. Human pose estimation from monocular images:

A comprehensive survey. Sensors, 16(12):1966, 2016.

[27] Qi Dang, Jianqin Yin, Bin Wang, and Wenqing Zheng. Deep learning based 2d

human pose estimation: A survey. Tsinghua Science and Technology, 24(6):663–

676, 2019.

[28] Yi Li and Zhengxing Sun. Vision-based human pose estimation for pervasive

computing. In Proceedings of the 2009 workshop on Ambient media computing,

pages 49–56, 2009.

[29] Hong-Bo Zhang, Yi-Xiang Zhang, Bineng Zhong, Qing Lei, Lijie Yang, Ji-Xiang

Du, and Duan-Sheng Chen. A comprehensive survey of vision-based human action

recognition methods. Sensors, 19(5):1005, 2019.

[30] Xavier Perez-Sala, Sergio Escalera, Cecilio Angulo, and Jordi Gonzalez. A survey

on model based approaches for 2d and 3d visual human pose recovery. Sensors,

14(3):4189–4210, 2014.

[31] Ronald Poppe. Vision-based human motion analysis: An overview. Computer

vision and image understanding, 108(1-2):4–18, 2007.

[32] Mark Dilsizian. Hybrid discriminative-generative methods for human pose recon-

struction from monocular imagery. Rutgers The State University of New Jersey-New

Brunswick, 2016.

[33] Martin A Fischler and Robert A Elschlager. The representation and matching of

pictorial structures. IEEE Transactions on computers, 100(1):67–92, 1973.

[34] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures for object

recognition. International journal of computer vision, 61(1):55–79, 2005.

[35] Elisabeta Marinoiu, Dragos Papava, and Cristian Sminchisescu. Pictorial human

spaces: How well do humans perceive a 3d articulated pose? In Proceedings of the

IEEE International Conference on Computer Vision, pages 1289–1296, 2013.

220

[36] Vasileios Belagiannis, Sikandar Amin, Mykhaylo Andriluka, Bernt Schiele, Nassir

Navab, and Slobodan Ilic. 3d pictorial structures for multiple human pose estimation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1669–1676, 2014.

[37] Leonid Sigal, Michael Isard, Horst Haussecker, and Michael J Black. Loose-

limbed people: Estimating 3d human pose and motion using non-parametric belief

propagation. International journal of computer vision, 98(1):15–48, 2012.

[38] Ryuzo Okada and Stefano Soatto. Relevant feature selection for human pose esti-

mation and localization in cluttered images. In European Conference on Computer

Vision, pages 434–445. Springer, 2008.

[39] Weipeng Zhang, Jie Shen, Guangcan Liu, and Yong Yu. A latent clothing attribute

approach for human pose estimation. In Asian Conference on Computer Vision,

pages 146–161. Springer, 2014.

[40] S Sedai, Mohammed Bennamoun, and DQ Huynh. Evaluating shape and appear-

ance descriptors for 3d human pose estimation. In 2011 6th IEEE Conference on

Industrial Electronics and Applications, pages 293–298. IEEE, 2011.

[41] Suman Sedai, Mohammed Bennamoun, and Du Huynh. Context-based appearance

descriptor for 3d human pose estimation from monocular images. In 2009 Digital

Image Computing: Techniques and Applications, pages 484–491. IEEE, 2009.

[42] Huazhong Ning, Wei Xu, Yihong Gong, and Thomas Huang. Discriminative

learning of visual words for 3d human pose estimation. In 2008 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[43] Grégory Rogez, Jonathan Rihan, Srikumar Ramalingam, Carlos Orrite, and

Philip HS Torr. Randomized trees for human pose detection. In 2008 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[44] Ankur Agarwal and Bill Triggs. Recovering 3d human pose from monocular images.

IEEE transactions on pattern analysis and machine intelligence, 28(1):44–58, 2005.

221

[45] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with

parameter-sensitive hashing. In Computer Vision, IEEE International Conference

on, volume 3, pages 750–750. IEEE Computer Society, 2003.

[46] Dariu M Gavrila. A bayesian, exemplar-based approach to hierarchical shape match-

ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8):1408–

1421, 2007.

[47] Miodrag Dimitrijevic, Vincent Lepetit, and Pascal Fua. Human body pose de-

tection using bayesian spatio-temporal templates. Computer vision and image

understanding, 104(2-3):127–139, 2006.

[48] Mathieu Salzmann and Raquel Urtasun. Combining discriminative and generative

methods for 3d deformable surface and articulated pose reconstruction. In 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pages 647–654. IEEE, 2010.

[49] Leonid Sigal, Alexandru Balan, and Michael Black. Combined discriminative and

generative articulated pose and non-rigid shape estimation. Advances in neural

information processing systems, 20:1337–1344, 2007.

[50] Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Sijie Zhu, Ju Shen, Nasser

Kehtarnavaz, and Mubarak Shah. Deep learning-based human pose estimation: A

survey. ACM Computing Surveys, 2020.

[51] Wu Liu, Qian Bao, Yu Sun, and Tao Mei. Recent advances of monocular 2d and

3d human pose estimation: a deep learning perspective. ACM Computing Surveys,

55(4):1–41, 2022.

[52] Tomas Pfister, James Charles, and Andrew Zisserman. Flowing convnets for human

pose estimation in videos. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1913–1921, 2015.

[53] Martin Kiefel and Peter Vincent Gehler. Human pose estimation with fields of parts.

In European Conference on Computer Vision, pages 331–346. Springer, 2014.

222

[54] Lipeng Ke, Ming-Ching Chang, Honggang Qi, and Siwei Lyu. Multi-scale structure-

aware network for human pose estimation. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 713–728, 2018.

[55] Yu Chen, Chunhua Shen, Xiu-Shen Wei, Lingqiao Liu, and Jian Yang. Adversarial

posenet: A structure-aware convolutional network for human pose estimation. In

Proceedings of the IEEE International Conference on Computer Vision, pages

1212–1221, 2017.

[56] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev, Jonathan Tomp-

son, Chris Bregler, and Kevin Murphy. Towards accurate multi-person pose estima-

tion in the wild. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4903–4911, 2017.

[57] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. Rmpe: Regional multi-

person pose estimation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 2334–2343, 2017.

[58] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation

and tracking. In Proceedings of the European conference on computer vision

(ECCV), pages 466–481, 2018.

[59] Wenbo Li, Zhicheng Wang, Binyi Yin, Qixiang Peng, Yuming Du, Tianzi Xiao,

Gang Yu, Hongtao Lu, Yichen Wei, and Jian Sun. Rethinking on multi-stage

networks for human pose estimation. arXiv preprint arXiv:1901.00148, 2019.

[60] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via

deep neural networks. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1653–1660, 2014.

[61] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training

of a convolutional network and a graphical model for human pose estimation. In

Advances in neural information processing systems, pages 1799–1807, 2014.

223

[62] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik. Human

pose estimation with iterative error feedback. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4733–4742, 2016.

[63] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris N Metaxas. Semantic

graph convolutional networks for 3d human pose regression. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 3425–3435,

2019.

[64] Adrian Bulat and Georgios Tzimiropoulos. Human pose estimation via convolutional

part heatmap regression. In European Conference on Computer Vision, pages 717–

732. Springer, 2016.

[65] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional

pose machines. In Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 4724–4732, 2016.

[66] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for

human pose estimation. In European conference on computer vision, pages 483–

499. Springer, 2016.

[67] Norimichi Ukita and Yusuke Uematsu. Semi-and weakly-supervised human pose

estimation. Computer Vision and Image Understanding, 170:67–78, 2018.

[68] Guanghan Ning, Zhi Zhang, and Zhiquan He. Knowledge-guided deep fractal

neural networks for human pose estimation. IEEE Transactions on Multimedia,

20(5):1246–1259, 2017.

[69] Ke Li, Shijie Wang, Xiang Zhang, Yifan Xu, Weijian Xu, and Zhuowen Tu. Pose

recognition with cascade transformers. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1944–1953, 2021.

[70] Sijin Li, Zhi-Qiang Liu, and Antoni B Chan. Heterogeneous multi-task learning for

human pose estimation with deep convolutional neural network. In Proceedings of

the IEEE conference on computer vision and pattern recognition workshops, pages

482–489, 2014.

224

[71] Xiaochuan Fan, Kang Zheng, Yuewei Lin, and Song Wang. Combining local

appearance and holistic view: Dual-source deep neural networks for human pose

estimation. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1347–1355, 2015.

[72] Diogo C Luvizon, David Picard, and Hedi Tabia. 2d/3d pose estimation and action

recognition using multitask deep learning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5137–5146, 2018.

[73] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.

Efficient object localization using convolutional networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 648–656,

2015.

[74] Ita Lifshitz, Ethan Fetaya, and Shimon Ullman. Human pose estimation using deep

consensus voting. In European Conference on Computer Vision, pages 246–260.

Springer, 2016.

[75] Hao Jiang. 3d human pose reconstruction using millions of exemplars. In 2010 20th

International Conference on Pattern Recognition, pages 1674–1677. IEEE, 2010.

[76] Alejandro Newell, Zhiao Huang, and Jia Deng. Associative embedding: End-to-

end learning for joint detection and grouping. In Advances in neural information

processing systems, pages 2277–2287, 2017.

[77] Wei Tang, Pei Yu, and Ying Wu. Deeply learned compositional models for human

pose estimation. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 190–206, 2018.

[78] Wei Yang, Shuang Li, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Learning

feature pyramids for human pose estimation. In proceedings of the IEEE interna-

tional conference on computer vision, pages 1281–1290, 2017.

[79] Chia-Jung Chou, Jui-Ting Chien, and Hwann-Tzong Chen. Self adversarial training

for human pose estimation. In 2018 Asia-Pacific Signal and Information Processing

225

Association Annual Summit and Conference (APSIPA ASC), pages 17–30. IEEE,

2018.

[80] Jia Li, Wen Su, and Zengfu Wang. Simple pose: Rethinking and improving a bottom-

up approach for multi-person pose estimation. arXiv preprint arXiv:1911.10529,

2019.

[81] Z Cao, R Wang, X Wang, et al. Improving human pose estimation with self-attention

generative adversarial networks [c]. In 2019 IEEE International Conference on

Multimedia & Expo Workshops (ICMEW), pages 567–572, 2019.

[82] Jia Li, Wen Su, and Zengfu Wang. Simple pose: Rethinking and improving a

bottom-up approach for multi-person pose estimation. In Proceedings of the AAAI

conference on artificial intelligence, volume 34, pages 11354–11361, 2020.

[83] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[84] Yu Chen, Chunhua Shen, Hao Chen, Xiu-Shen Wei, Lingqiao Liu, and Jian Yang.

Adversarial learning of structure-aware fully convolutional networks for landmark

localization. IEEE transactions on pattern analysis and machine intelligence, 2019.

[85] Julieta Martinez, Rayat Hossain, Javier Romero, and James J Little. A simple

yet effective baseline for 3d human pose estimation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2640–2649, 2017.

[86] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representa-

tion learning for human pose estimation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5693–5703, 2019.

[87] Daniel Groos, Heri Ramampiaro, and Espen AF Ihlen. Efficientpose: Scalable

single-person pose estimation. Applied Intelligence, 51(4):2518–2533, 2021.

[88] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

226

[89] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[90] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-

based fully convolutional networks. In Advances in neural information processing

systems, pages 379–387, 2016.

[91] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[92] Shaoli Huang, Mingming Gong, and Dacheng Tao. A coarse-fine network for

keypoint localization. In Proceedings of the IEEE International Conference on

Computer Vision, pages 3028–3037, 2017.

[93] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian

Sun. Cascaded pyramid network for multi-person pose estimation. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 7103–7112,

2018.

[94] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision, pages

2961–2969, 2017.

[95] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo An-

driluka, Peter V Gehler, and Bernt Schiele. Deepcut: Joint subset partition and

labeling for multi person pose estimation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4929–4937, 2016.

[96] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and

Bernt Schiele. Deepercut: A deeper, stronger, and faster multi-person pose estima-

tion model. In European Conference on Computer Vision, pages 34–50. Springer,

2016.

227

[97] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d

pose estimation using part affinity fields. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7291–7299, 2017.

[98] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh. Openpose: Realtime multi-

person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern

Analysis amp; Machine Intelligence, 43(01):172–186, 2021.

[99] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan Tomp-

son, and Kevin Murphy. Personlab: Person pose estimation and instance segmenta-

tion with a bottom-up, part-based, geometric embedding model. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 269–286, 2018.

[100] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Pifpaf: Composite fields for

human pose estimation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 11977–11986, 2019.

[101] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao,

Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution

representation learning for visual recognition. IEEE transactions on pattern analysis

and machine intelligence, 2020.

[102] Feng Zhang, Xiatian Zhu, Hanbin Dai, Mao Ye, and Ce Zhu. Distribution-aware co-

ordinate representation for human pose estimation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 7093–7102, 2020.

[103] Liefeng Bo, Cristian Sminchisescu, Atul Kanaujia, and Dimitris Metaxas. Fast

algorithms for large scale conditional 3d prediction. In 2008 IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[104] Greg Mori and Jitendra Malik. Recovering 3d human body configurations using

shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(7):1052–1062, 2006.

[105] Cristian Sminchisescu, Atul Kanaujia, Zhiguo Li, and Dimitris Metaxas. Discrimi-

native density propagation for 3d human motion estimation. In 2005 IEEE Computer

228

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol-

ume 1, pages 390–397. IEEE, 2005.

[106] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.

6m: Large scale datasets and predictive methods for 3d human sensing in natural

environments. IEEE transactions on pattern analysis and machine intelligence,

36(7):1325–1339, 2013.

[107] Catalin Ionescu, Fuxin Li, and Cristian Sminchisescu. Latent structured models

for human pose estimation. In 2011 International Conference on Computer Vision,

pages 2220–2227. IEEE, 2011.

[108] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,

Richard Moore, Alex Kipman, and Andrew Blake. Real-time human pose recog-

nition in parts from single depth images. In CVPR 2011, pages 1297–1304. Ieee,

2011.

[109] Ankur Agarwal and Bill Triggs. 3d human pose from silhouettes by relevance

vector regression. In Proceedings of the 2004 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages

II–II. IEEE, 2004.

[110] Liefeng Bo and Cristian Sminchisescu. Twin gaussian processes for structured

prediction. International Journal of Computer Vision, 87(1-2):28, 2010.

[111] Ilya Kostrikov and Juergen Gall. Depth sweep regression forests for estimating 3d

human pose from images. In BMVC, volume 1, page 5, 2014.

[112] Catalin Ionescu, Joao Carreira, and Cristian Sminchisescu. Iterated second-order

label sensitive pooling for 3d human pose estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1661–1668, 2014.

[113] Sijin Li and Antoni B Chan. 3d human pose estimation from monocular images

with deep convolutional neural network. In Asian Conference on Computer Vision,

pages 332–347. Springer, 2014.

229

[114] Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, and Yichen Wei. Deep kinematic

pose regression. In European Conference on Computer Vision, pages 186–201.

Springer, 2016.

[115] Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann, Vincent Lepetit, and Pascal

Fua. Structured prediction of 3d human pose with deep neural networks. arXiv

preprint arXiv:1605.05180, 2016.

[116] Bugra Tekin, Artem Rozantsev, Vincent Lepetit, and Pascal Fua. Direct prediction

of 3d body poses from motion compensated sequences. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 991–1000, 2016.

[117] Leonid Sigal, Alexandru O Balan, and Michael J Black. Humaneva: Synchronized

video and motion capture dataset and baseline algorithm for evaluation of articulated

human motion. International journal of computer vision, 87(1-2):4, 2010.

[118] Sungheon Park, Jihye Hwang, and Nojun Kwak. 3d human pose estimation using

convolutional neural networks with 2d pose information. In European Conference

on Computer Vision, pages 156–169. Springer, 2016.

[119] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Daniilidis.

Coarse-to-fine volumetric prediction for single-image 3d human pose. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

7025–7034, 2017.

[120] Denis Tome, Chris Russell, and Lourdes Agapito. Lifting from the deep: Con-

volutional 3d pose estimation from a single image. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2500–2509, 2017.

[121] Mona Fathollahi Ghezelghieh, Rangachar Kasturi, and Sudeep Sarkar. Learning

camera viewpoint using cnn to improve 3d body pose estimation. In 2016 fourth

international conference on 3D vision (3DV), pages 685–693. IEEE, 2016.

[122] Sijin Li, Weichen Zhang, and Antoni B Chan. Maximum-margin structured learning

with deep networks for 3d human pose estimation. In Proceedings of the IEEE

international conference on computer vision, pages 2848–2856, 2015.

230

[123] Bugra Tekin, Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Learning

to fuse 2d and 3d image cues for monocular body pose estimation. In Proceedings

of the IEEE International Conference on Computer Vision, pages 3941–3950, 2017.

[124] Francesc Moreno-Noguer. 3d human pose estimation from a single image via

distance matrix regression. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2823–2832, 2017.

[125] Hsi-Jian Lee and Zen Chen. Determination of 3d human body postures from a

single view. Computer Vision, Graphics, and Image Processing, 30(2):148–168,

1985.

[126] Xiaowei Zhou, Menglong Zhu, Georgios Pavlakos, Spyridon Leonardos, Konstanti-

nos G Derpanis, and Kostas Daniilidis. Monocap: Monocular human motion capture

using a cnn coupled with a geometric prior. IEEE transactions on pattern analysis

and machine intelligence, 41(4):901–914, 2018.

[127] Jiajun Wu, Tianfan Xue, Joseph J Lim, Yuandong Tian, Joshua B Tenenbaum,

Antonio Torralba, and William T Freeman. Single image 3d interpreter network. In

European Conference on Computer Vision, pages 365–382. Springer, 2016.

[128] Wei Yang, Wanli Ouyang, Xiaolong Wang, Jimmy Ren, Hongsheng Li, and Xi-

aogang Wang. 3d human pose estimation in the wild by adversarial learning. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 5255–5264, 2018.

[129] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen Wei. Integral human

pose regression. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 529–545, 2018.

[130] Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis. Ordinal depth supervision

for 3d human pose estimation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7307–7316, 2018.

[131] Bastian Wandt and Bodo Rosenhahn. Repnet: Weakly supervised training of an

adversarial reprojection network for 3d human pose estimation. In Proceedings of

231

the IEEE Conference on Computer Vision and Pattern Recognition, pages 7782–

7791, 2019.

[132] Edgar Simo-Serra, Arnau Ramisa, Guillem Alenyà, Carme Torras, and Francesc

Moreno-Noguer. Single image 3d human pose estimation from noisy observations.

In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages

2673–2680. IEEE, 2012.

[133] Camillo J Taylor. Reconstruction of articulated objects from point correspon-

dences in a single uncalibrated image. Computer Vision and Image Understanding,

80(3):349–363, 2000.

[134] Grégory Rogez and Cordelia Schmid. Mocap-guided data augmentation for 3d pose

estimation in the wild. In Advances in neural information processing systems, pages

3108–3116, 2016.

[135] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. Lcr-net: Localization-

classification-regression for human pose. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3433–3441, 2017.

[136] Gerard Pons-Moll, David J Fleet, and Bodo Rosenhahn. Posebits for monocular

human pose estimation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2337–2344, 2014.

[137] Yu Du, Yongkang Wong, Yonghao Liu, Feilin Han, Yilin Gui, Zhen Wang, Mohan

Kankanhalli, and Weidong Geng. Marker-less 3d human motion capture with

monocular image sequence and height-maps. In European Conference on Computer

Vision, pages 20–36. Springer, 2016.

[138] Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, and Kostas Daniilidis. Sparse

representation for 3d shape estimation: A convex relaxation approach. IEEE

transactions on pattern analysis and machine intelligence, 39(8):1648–1661, 2016.

[139] Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, Konstantinos G Derpanis, and

Kostas Daniilidis. Sparseness meets deepness: 3d human pose estimation from

232

monocular video. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4966–4975, 2016.

[140] Ching-Hang Chen and Deva Ramanan. 3d human pose estimation= 2d pose estima-

tion+ matching. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7035–7043, 2017.

[141] Ankur Gupta, Julieta Martinez, James J Little, and Robert J Woodham. 3d pose

from motion for cross-view action recognition via non-linear circulant temporal

encoding. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2601–2608, 2014.

[142] Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Reconstructing 3d human

pose from 2d image landmarks. In European conference on computer vision, pages

573–586. Springer, 2012.

[143] Chunyu Wang, Yizhou Wang, Zhouchen Lin, Alan L Yuille, and Wen Gao. Robust

estimation of 3d human poses from a single image. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2361–2368, 2014.

[144] Hashim Yasin, Umar Iqbal, Bjorn Kruger, Andreas Weber, and Juergen Gall. A dual-

source approach for 3d pose estimation from a single image. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 4948–4956,

2016.

[145] Edgar Simo-Serra, Ariadna Quattoni, Carme Torras, and Francesc Moreno-Noguer.

A joint model for 2d and 3d pose estimation from a single image. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3634–

3641, 2013.

[146] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and

Michael J Black. Smpl: A skinned multi-person linear model. ACM transactions on

graphics (TOG), 34(6):1–16, 2015.

[147] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero,

and Michael J Black. Keep it smpl: Automatic estimation of 3d human pose and

233

shape from a single image. In European Conference on Computer Vision, pages

561–578. Springer, 2016.

[148] Shashank Tripathi, Siddhant Ranade, Ambrish Tyagi, and Amit Agrawal.

Posenet3d: Unsupervised 3d human shape and pose estimation. arXiv preprint

arXiv:2003.03473, 2020.

[149] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko,

Weipeng Xu, and Christian Theobalt. Monocular 3d human pose estimation in the

wild using improved cnn supervision. In 2017 International Conference on 3D

Vision (3DV), pages 506–516. IEEE, 2017.

[150] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Moham-

mad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt.

Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM Trans-

actions on Graphics (TOG), 36(4):1–14, 2017.

[151] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Monocular 3d pose estimation

and tracking by detection. In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 623–630. IEEE, 2010.

[152] Mir Rayat Imtiaz Hossain and James J Little. Exploiting temporal information for

3d pose estimation. arXiv preprint arXiv:1711.08585, 2017.

[153] Grégory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. Lcr-net++: Multi-

person 2d and 3d pose detection in natural images. IEEE transactions on pattern

analysis and machine intelligence, 2019.

[154] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[155] Kyoungoh Lee, Inwoong Lee, and Sanghoon Lee. Propagating lstm: 3d pose esti-

mation based on joint interdependency. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 119–135, 2018.

234

[156] Laxman Kumarapu and Prerana Mukherjee. Animepose: Multi-person 3d pose

estimation and animation. arXiv preprint arXiv:2002.02792, 2020.

[157] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao, Yu Liu, and Youliang

Yan. Exploiting temporal consistency for real-time video depth estimation. In

Proceedings of the IEEE International Conference on Computer Vision, pages

1725–1734, 2019.

[158] Mude Lin, Liang Lin, Xiaodan Liang, Keze Wang, and Hui Chen. Recurrent 3d

pose sequence machines. In CVPR, 2017.

[159] Wenkang Shan, Haopeng Lu, Shanshe Wang, Xinfeng Zhang, and Wen Gao. Im-

proving robustness and accuracy via relative information encoding in 3d human

pose estimation. In Proceedings of the 29th ACM International Conference on

Multimedia, pages 3446–3454, 2021.

[160] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3d

human pose estimation in video with temporal convolutions and semi-supervised

training. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7753–7762, 2019.

[161] Junfa Liu, Yisheng Guang, and Juan Rojas. Gast-net: Graph attention spatio-

temporal convolutional networks for 3d human pose estimation in video. arXiv

preprint arXiv:2003.14179, 2020.

[162] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, and

Nadia Magnenat Thalmann. Exploiting spatial-temporal relationships for 3d pose

estimation via graph convolutional networks. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 2272–2281, 2019.

[163] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee. Pose2mesh: Graph convo-

lutional network for 3d human pose and mesh recovery from a 2d human pose. In

European Conference on Computer Vision, pages 769–787. Springer, 2020.

235

[164] Wenbo Hu, Changgong Zhang, Fangneng Zhan, Lei Zhang, and Tien-Tsin Wong.

Conditional directed graph convolution for 3d human pose estimation. In Proceed-

ings of the 29th ACM International Conference on Multimedia, pages 602–611,

2021.

[165] Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao Wang, and Wenming

Yang. Exploiting temporal contexts with strided transformer for 3d human pose

estimation. IEEE Transactions on Multimedia, 2022.

[166] Hsiao-Yu Fish Tung, Adam W Harley, William Seto, and Katerina Fragkiadaki. Ad-

versarial inverse graphics networks: Learning 2d-to-3d lifting and image-to-image

translation from unpaired supervision. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 4364–4372. IEEE, 2017.

[167] Bastian Wandt, Hanno Ackermann, and Bodo Rosenhahn. A kinematic chain space

for monocular motion capture. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 0–0, 2018.

[168] Ehsan Jahangiri and Alan L Yuille. Generating multiple diverse hypotheses for

human 3d pose consistent with 2d joint detections. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, pages 805–814, 2017.

[169] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and Yichen Wei. Weakly-

supervised transfer for 3d human pose estimation in the wild. In IEEE International

Conference on Computer Vision, ICCV, volume 3, page 7, 2017.

[170] Helge Rhodin, Jörg Spörri, Isinsu Katircioglu, Victor Constantin, Frédéric Meyer,

Erich Müller, Mathieu Salzmann, and Pascal Fua. Learning monocular 3d human

pose estimation from multi-view images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8437–8446, 2018.

[171] Xingyi Zhou, Arjun Karpur, Chuang Gan, Linjie Luo, and Qixing Huang. Un-

supervised domain adaptation for 3d keypoint estimation via view consistency.

In Proceedings of the European Conference on Computer Vision (ECCV), pages

137–153, 2018.

236

[172] Jogendra Nath Kundu, Siddharth Seth, Varun Jampani, Mugalodi Rakesh,

R Venkatesh Babu, and Anirban Chakraborty. Self-supervised 3d human pose

estimation via part guided novel image synthesis. arXiv, pages arXiv–2004, 2020.

[173] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-supervised learning of

3d human pose using multi-view geometry. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1077–1086, 2019.

[174] Wen-Li Wei, Jen-Chun Lin, Tyng-Luh Liu, and Hong-Yuan Mark Liao. Capturing

humans in motion: Temporal-attentive 3d human pose and shape estimation from

monocular video. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 13211–13220, 2022.

[175] Jian Liu, Naveed Akhtar, and Ajmal Mian. Deep reconstruction of 3d human poses

from video. IEEE Transactions on Artificial Intelligence, 2022.

[176] Jeongjun Choi, Dongseok Shim, and H Jin Kim. Diffupose: Monocular 3d hu-

man pose estimation via denoising diffusion probabilistic model. arXiv preprint

arXiv:2212.02796, 2022.

[177] Rahul Mitra, Nitesh B Gundavarapu, Abhishek Sharma, and Arjun Jain. Multiview-

consistent semi-supervised learning for 3d human pose estimation. In Proceedings

of the ieee/cvf conference on computer vision and pattern recognition, pages 6907–

6916, 2020.

[178] Yu Cheng, Bo Wang, Bo Yang, and Robby T Tan. Monocular 3d multi-person

pose estimation by integrating top-down and bottom-up networks. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

7649–7659, 2021.

[179] Yu Cheng, Bo Wang, and Robby Tan. Dual networks based 3d multi-person pose

estimation from monocular video. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2022.

237

[180] Guillaume Rochette, Chris Russell, and Richard Bowden. Weakly-supervised 3d

pose estimation from a single image using multi-view consistency. arXiv preprint

arXiv:1909.06119, 2019.

[181] Umar Iqbal, Pavlo Molchanov, and Jan Kautz. Weakly-supervised 3d human pose

learning via multi-view images in the wild. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 5243–5252, 2020.

[182] Bastian Wandt, Marco Rudolph, Petrissa Zell, Helge Rhodin, and Bodo Rosen-

hahn. Canonpose: Self-supervised monocular 3d human pose estimation in the

wild. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 13294–13304, 2021.

[183] Peishan Cong, Yiteng Xu, Yiming Ren, Juze Zhang, Lan Xu, Jingya Wang, Jingyi

Yu, and Yuexin Ma. Weakly supervised 3d multi-person pose estimation for

large-scale scenes based on monocular camera and single lidar. arXiv preprint

arXiv:2211.16951, 2022.

[184] Cheng-Yen Yang, Jiajia Luo, Lu Xia, Yuyin Sun, Nan Qiao, Ke Zhang, Zhongyu

Jiang, Jenq-Neng Hwang, and Cheng-Hao Kuo. Camerapose: Weakly-supervised

monocular 3d human pose estimation by leveraging in-the-wild 2d annotations. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 2924–2933, 2023.

[185] Dylan Drover, Rohith MV, Ching-Hang Chen, Amit Agrawal, Ambrish Tyagi, and

Cong Phuoc Huynh. Can 3d pose be learned from 2d projections alone? In

Proceedings of the European Conference on Computer Vision (ECCV) Workshops,

pages 0–0, 2018.

[186] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dylan Drover, Stefan Sto-

janov, and James M Rehg. Unsupervised 3d pose estimation with geometric self-

supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 5714–5724, 2019.

238

[187] Zhenbo Yu, Bingbing Ni, Jingwei Xu, Junjie Wang, Chenglong Zhao, and Wenjun

Zhang. Towards alleviating the modeling ambiguity of unsupervised monocular 3d

human pose estimation. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 8651–8660, 2021.

[188] Bastian Wandt, James J Little, and Helge Rhodin. Elepose: Unsupervised 3d human

pose estimation by predicting camera elevation and learning normalizing flows on

2d poses. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 6635–6645, 2022.

[189] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-

supervised spatiotemporal learning via video clip order prediction. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10334–10343, 2019.

[190] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi. Self-supervised

learning of interpretable keypoints from unlabelled videos. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

8787–8797, 2020.

[191] Kehong Gong, Bingbing Li, Jianfeng Zhang, Tao Wang, Jing Huang, Michael Bi

Mi, Jiashi Feng, and Xinchao Wang. Posetriplet: co-evolving 3d human pose

estimation, imitation, and hallucination under self-supervision. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

11017–11027, 2022.

[192] Wenkang Shan, Zhenhua Liu, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen

Gao. P-stmo: Pre-trained spatial temporal many-to-one model for 3d human pose

estimation. In European Conference on Computer Vision, pages 461–478. Springer,

2022.

[193] Sina Honari, Victor Constantin, Helge Rhodin, Mathieu Salzmann, and Pascal

Fua. Temporal representation learning on monocular videos for 3d human pose

estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

239

[194] Jogendra Nath Kundu, Siddharth Seth, Pradyumna YM, Varun Jampani, Anir-

ban Chakraborty, and R Venkatesh Babu. Uncertainty-aware adaptation for self-

supervised 3d human pose estimation. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 20448–20459, 2022.

[195] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human

pose estimation: New benchmark and state of the art analysis. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2014.

[196] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In European conference on computer vision, pages 740–755. Springer,

2014.

[197] Umar Iqbal, Anton Milan, and Juergen Gall. Posetrack: Joint multi-person pose

estimation and tracking. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2011–2020, 2017.

[198] Benjamin Sapp and Ben Taskar. Modec: Multimodal decomposable models for

human pose estimation. In In Proc. CVPR, 2013.

[199] Umer Rafi, Bastian Leibe, Juergen Gall, and Ilya Kostrikov. An efficient convolu-

tional network for human pose estimation. In BMVC, volume 1, page 2, 2016.

[200] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Hu-

man3.6m: Large scale datasets and predictive methods for 3d human sensing in

natural environments. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 36(7):1325–1339, jul 2014.

[201] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath

Sridhar, Gerard Pons-Moll, and Christian Theobalt. Single-shot multi-person 3d

pose estimation from monocular rgb. In 2018 International Conference on 3D

Vision (3DV), pages 120–130. IEEE, 2018.

240

[202] Márton Véges and A Lőrincz. Temporal smoothing for 3d human pose estima-

tion and localization for occluded people. In International Conference on Neural

Information Processing, pages 557–568. Springer, 2020.

[203] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,

2014.

[204] Shekofa Ghoury, Cemil Sungur, and Akif Durdu. Real-time diseases detection

of grape and grape leaves using faster r-cnn and ssd mobilenet architectures. In

International conference on advanced technologies, computer engineering and

science (ICATCES 2019), pages 39–44, 2019.

[205] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality

object detection. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 6154–6162, 2018.

[206] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. Feature pyramid networks for object detection. pages 2117–2125,

2017.

[207] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal

loss for dense object detection. In Proceedings of the IEEE international conference

on computer vision, pages 2980–2988, 2017.

[208] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[209] Pu Li and Wangda Zhao. Image fire detection algorithms based on convolutional

neural networks. Case Studies in Thermal Engineering, 19:100625, 2020.

[210] Shiuh-Ku Weng, Chung-Ming Kuo, and Shu-Kang Tu. Video object tracking using

adaptive kalman filter. Journal of Visual Communication and Image Representation,

17(6):1190–1208, 2006.

241

[211] Yvo Boers and Johannes N Driessen. Particle filter based detection for tracking.

In Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148),

volume 6, pages 4393–4397. IEEE, 2001.

[212] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed

tracking with kernelized correlation filters. IEEE transactions on pattern analysis

and machine intelligence, 37(3):583–596, 2014.

[213] Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael Felsberg.

Discriminative scale space tracking. IEEE transactions on pattern analysis and

machine intelligence, 39(8):1561–1575, 2016.

[214] Kaihua Zhang, Lei Zhang, Qingshan Liu, David Zhang, and Ming-Hsuan Yang. Fast

visual tracking via dense spatio-temporal context learning. In European conference

on computer vision, pages 127–141. Springer, 2014.

[215] S. K. Singh and U Sharma. Simulink model for object tracking using optical flow.

International Journal of Science and Research (IJSR), 4(6):2323–2326, 2015.

[216] S Akshay. Single moving object detection and tracking using horn-schunck optical

flow method. International Journal of Applied Engineering Research, 10(11):30135–

30152, 2015.

[217] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-

aware siamese networks for visual object tracking. In Proceedings of the European

conference on computer vision (ECCV), pages 101–117, 2018.

[218] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning

discriminative model prediction for tracking. In Proceedings of the IEEE/CVF

international conference on computer vision, pages 6182–6191, 2019.

[219] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neural

networks for visual tracking. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4293–4302, 2016.

242

[220] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS

Torr. Fully-convolutional siamese networks for object tracking. In European

conference on computer vision, pages 850–865. Springer, 2016.

[221] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan.

Siamrpn++: Evolution of siamese visual tracking with very deep networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pages 4282–4291, 2019.

[222] František Galčík and Radoslav Gargalík. Real-time depth map based people count-

ing. pages 330–341, 2013.

[223] Sam Johnson and Mark Everingham. Clustered pose and nonlinear appearance

models for human pose estimation. In Proceedings of the British Machine Vision

Conference, 2010. doi:10.5244/C.24.12.

[224] Saurabh Sharma, Pavan Teja Varigonda, Prashast Bindal, Abhishek Sharma, and

Arjun Jain. Monocular 3d human pose estimation by generation and ordinal ranking.

In Proceedings of the IEEE/CVF international conference on computer vision, pages

2325–2334, 2019.

[225] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer Afaque, Abhishek

Sharma, and Arjun Jain. Learning 3d human pose from structure and motion. pages

668–683, 2018.

[226] Yu Cheng, Bo Yang, Bo Wang, Wending Yan, and Robby T Tan. Occlusion-aware

networks for 3d human pose estimation in video. In Proceedings of the IEEE

International Conference on Computer Vision, pages 723–732, 2019.

[227] Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Sergio A

Velastin, and Pablo Zegers. A unified deep framework for joint 3d pose estimation

and action recognition from a single rgb camera. Sensors, 20(7):1825, 2020.

[228] Yu Cheng, Bo Yang, Bo Wang, and Robby T Tan. 3d human pose estimation

using spatio-temporal networks with explicit occlusion training. arXiv preprint

arXiv:2004.11822, 2020.

243

[229] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis.

Learning to reconstruct 3d human pose and shape via model-fitting in the loop.

In Proceedings of the IEEE International Conference on Computer Vision, pages

2252–2261, 2019.

[230] Haiping Wu and Bin Xiao. 3d human pose estimation via explicit compositional

depth maps. In AAAI, pages 12378–12385, 2020.

[231] Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu, Zhili Chen, and Jiebo

Luo. Anatomy-aware 3d human pose estimation in videos. arXiv preprint

arXiv:2002.10322, 2020.

[232] Jiahao Lin and Gim Hee Lee. Trajectory space factorization for deep video-based

3d human pose estimation. arXiv preprint arXiv:1908.08289, 2019.

[233] Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao Wang, and Wenming

Yang. Exploiting temporal contexts with strided transformer for 3d human pose

estimation. arXiv preprint arXiv:2103.14304, 2021.

[234] PapersWithCode. 3D Human Pose Estimation on Human3.6M. https:

//paperswithcode.com/sota/3d-human-pose-estimation-on-human36m.

[Online; accessed 19-January-2022].

[235] Bruce Xiaohan Nie, Ping Wei, and Song-Chun Zhu. Monocular 3d human pose

estimation by predicting depth on joints. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 3467–3475. IEEE, 2017.

[236] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human

pose estimation in the wild. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7297–7306, 2018.

[237] Kun Zhou, Xiaoguang Han, Nianjuan Jiang, Kui Jia, and Jiangbo Lu. Hemlets pose:

Learning part-centric heatmap triplets for accurate 3d human pose estimation. In

Proceedings of the IEEE/CVF international conference on computer vision, pages

2344–2353, 2019.

244

https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m

[238] Jue Wang, Shaoli Huang, Xinchao Wang, and Dacheng Tao. Not all parts are created

equal: 3d pose estimation by modeling bi-directional dependencies of body parts. In

Proceedings of the IEEE/CVF international conference on computer vision, pages

7771–7780, 2019.

[239] Hai Ci, Chunyu Wang, Xiaoxuan Ma, and Yizhou Wang. Optimizing network struc-

ture for 3d human pose estimation. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 2262–2271, 2019.

[240] Zhi Li, Xuan Wang, Fei Wang, and Peilin Jiang. On boosting single-frame 3d

human pose estimation via monocular videos. In Proceedings of the IEEE/CVF

international conference on computer vision, pages 2192–2201, 2019.

[241] Xipeng Chen, Kwan-Yee Lin, Wentao Liu, Chen Qian, and Liang Lin. Weakly-

supervised discovery of geometry-aware representation for 3d human pose estima-

tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 10895–10904, 2019.

[242] Xipeng Chen, Kwan-Yee Lin, Wentao Liu, Chen Qian, and Liang Lin. Weakly-

supervised discovery of geometry-aware representation for 3d human pose estima-

tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 10895–10904, 2019.

[243] Dominic Jack, Frederic Maire, Sareh Shirazi, and Anders Eriksson. Ige-net: Inverse

graphics energy networks for human pose estimation and single-view reconstruction.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7075–7084, 2019.

[244] Matthew Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John

Collomosse. Total capture: 3d human pose estimation fusing video and inertial

sensors. In Proceedings of 28th British Machine Vision Conference, pages 1–13,

2017.

[245] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason Saragih. Simpoe:

Simulated character control for 3d human pose estimation. In Proceedings of the

245

IEEE/CVF conference on computer vision and pattern recognition, pages 7159–

7169, 2021.

[246] Mir Rayat Imtiaz Hossain and James J Little. Exploiting temporal information for

3d human pose estimation. pages 68–84, 2018.

[247] Ruixu Liu, Ju Shen, He Wang, Chen Chen, Sen-ching Cheung, and Vijayan Asari.

Attention mechanism exploits temporal contexts: Real-time 3d human pose recon-

struction. pages 5064–5073, 2020.

[248] Zhongwei Qiu, Qiansheng Yang, Jian Wang, Haocheng Feng, Junyu Han, Errui

Ding, Chang Xu, Dongmei Fu, and Jingdong Wang. Psvt: End-to-end multi-person

3d pose and shape estimation with progressive video transformers. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

21254–21263, 2023.

[249] Thiemo Alldieck, Marc Kassubeck, Bastian Wandt, Bodo Rosenhahn, and Marcus

Magnor. Optical flow-based 3d human motion estimation from monocular video. In

Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland,

September 12–15, 2017, Proceedings 39, pages 347–360. Springer, 2017.

[250] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and

Leonidas J Guibas. Humor: 3d human motion model for robust pose estimation. In

Proceedings of the IEEE/CVF international conference on computer vision, pages

11488–11499, 2021.

[251] Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja Fidler, and Florian

Shkurti. Physics-based human motion estimation and synthesis from videos. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

11532–11541, 2021.

[252] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional

networks: A unified approach to action segmentation. pages 47–54, 2016.

246

[253] Junfa Liu, Juan Rojas, Yihui Li, Zhijun Liang, Yisheng Guan, Ning Xi, and Haifei

Zhu. A graph attention spatio-temporal convolutional network for 3d human pose

estimation in video. pages 3374–3380, 2021.

[254] Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu, Zhili Chen, and Jiebo Luo.

Anatomy-aware 3d human pose estimation with bone-based pose decomposition.

IEEE Transactions on Circuits and Systems for Video Technology, 2021.

[255] Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. Vibe: Video infer-

ence for human body pose and shape estimation. pages 5253–5263, 2020.

[256] Wentao Zhu, Xiaoxuan Ma, Zhaoyang Liu, Libin Liu, Wayne Wu, and Yizhou

Wang. Motionbert: Unified pretraining for human motion analysis. arXiv preprint

arXiv:2210.06551, 2022.

[257] Jinlu Zhang, Zhigang Tu, Jianyu Yang, Yujin Chen, and Junsong Yuan. Mixste:

Seq2seq mixed spatio-temporal encoder for 3d human pose estimation in video. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-

tion, pages 13232–13242, 2022.

[258] Andrei Zanfir, Elisabeta Marinoiu, and Cristian Sminchisescu. Monocular 3d pose

and shape estimation of multiple people in natural scenes-the importance of multiple

scene constraints. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2148–2157, 2018.

[259] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. Camera distance-aware

top-down approach for 3d multi-person pose estimation from a single rgb image. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

10133–10142, 2019.

[260] Abdallah Benzine, Florian Chabot, Bertrand Luvison, Quoc Cuong Pham, and

Catherine Achard. Pandanet: Anchor-based single-shot multi-person 3d pose

estimation. pages 6856–6865, 2020.

247

[261] Jiahao Lin and Gim Hee Lee. Hdnet: Human depth estimation for multi-person

camera-space localization. In European Conference on Computer Vision, pages

633–648. Springer, 2020.

[262] Jiefeng Li, Can Wang, Wentao Liu, Chen Qian, and Cewu Lu. Hmor: Hierarchical

multi-person ordinal relations for monocular multi-person 3d pose estimation. arXiv

preprint arXiv:2008.00206, 2020.

[263] Yu Cheng, Bo Wang, Bo Yang, and Robby T Tan. Graph and temporal convolutional

networks for 3d multi-person pose estimation in monocular videos. 4(7):12, 2021.

[264] Matteo Fabbri, Fabio Lanzi, Simone Calderara, Stefano Alletto, and Rita Cucchiara.

Compressed volumetric heatmaps for multi-person 3d pose estimation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 7204–7213, 2020.

[265] Changgong Zhang, Fangneng Zhan, and Yuan Chang. Deep monocular 3d human

pose estimation via cascaded dimension-lifting. arXiv preprint arXiv:2104.03520,

2021.

[266] Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, and Cristian

Sminchisescu. Deep network for the integrated 3d sensing of multiple people in

natural images. In Advances in Neural Information Processing Systems, pages

8410–8419, 2018.

[267] Jianan Zhen, Qi Fang, Jiaming Sun, Wentao Liu, Wei Jiang, Hujun Bao, and Xiaowei

Zhou. Smap: Single-shot multi-person absolute 3d pose estimation. In European

Conference on Computer Vision, pages 550–566. Springer, 2020.

[268] Zitian Wang, Xuecheng Nie, Xiaochao Qu, Yunpeng Chen, and Si Liu. Distribution-

aware single-stage models for multi-person 3d pose estimation. arXiv preprint

arXiv:2203.07697, 2022.

[269] Yawen Lu, Sophia Kourian, Carl Salvaggio, Chenliang Xu, and Guoyu Lu. Single

image 3d vehicle pose estimation for augmented reality. In 2019 IEEE Global

248

Conference on Signal and Information Processing (GlobalSIP), pages 1–5. IEEE,

2019.

[270] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for

augmented reality: a hands-on survey. IEEE transactions on visualization and

computer graphics, 22(12):2633–2651, 2015.

[271] Megha Kalia, Nassir Navab, and Tim Salcudean. A real-time interactive augmented

reality depth estimation technique for surgical robotics. In 2019 International

Conference on Robotics and Automation (ICRA), pages 8291–8297. IEEE, 2019.

[272] Najib Metni, Tarek Hamel, and François Derkx. Visual tracking control of aerial

robotic systems with adaptive depth estimation. In Proceedings of the 44th IEEE

Conference on Decision and Control, pages 6078–6084. IEEE, 2005.

[273] Jaehyun Im, Jaehoon Jung, and Joonki Paik. Single camera-based depth estimation

and improved continuously adaptive mean shift algorithm for tracking occluded

objects. In Pacific Rim Conference on Multimedia, pages 246–252. Springer, 2015.

[274] Tristan Laidlow, Jan Czarnowski, and Stefan Leutenegger. Deepfusion: Real-time

dense 3d reconstruction for monocular slam using single-view depth and gradient

predictions. In 2019 International Conference on Robotics and Automation (ICRA),

pages 4068–4074. IEEE, 2019.

[275] Shahnewaz Ali and Ajay K Pandey. Arthronet: monocular depth estimation tech-

nique toward 3d segmented maps for knee arthroscopic. Intelligent Medicine, 2022.

[276] Ashutosh Saxena, Jamie Schulte, Andrew Y Ng, et al. Depth estimation using

monocular and stereo cues. In IJCAI, volume 7, pages 2197–2203, 2007.

[277] Yue Ming, Xuyang Meng, Chunxiao Fan, and Hui Yu. Deep learning for monocular

depth estimation: A review. Neurocomputing, 438:14–33, 2021.

[278] Amal El Kaid, Denis Brazey, Vincent Barra, and Karim Baïna. Top-down system

for multi-person 3d absolute pose estimation from monocular videos. Sensors,

22(11):4109, 2022.

249

[279] Laurent Breillat. La distance / longueur focale d’un objectif, 2022.

[280] Márton Véges and András Lőrincz. Absolute human pose estimation with depth

prediction network. pages 1–7, 2019.

[281] Chunlei Chen, Peng Zhang, Huixiang Zhang, Jiangyan Dai, Yugen Yi, Huihui

Zhang, and Yonghui Zhang. Deep learning on computational-resource-limited

platforms: a survey. Mobile Information Systems, 2020, 2020.

[282] Wilfried Haensch, Tayfun Gokmen, and Ruchir Puri. The next generation of deep

learning hardware: Analog computing. Proceedings of the IEEE, 107(1):108–122,

2018.

[283] NVIDIA DEVELOPER. Cuda toolkit, 2022.

[284] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,

Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning.

arXiv preprint arXiv:1410.0759, 2014.

[285] PyTorch Developers Team. Pytorch.

[286] New Zealand eScience Infrastructure. Vectorising.

[287] take cheeze. Onnx, 2022.

[288] OpenCV Developers Team. Opencv.

[289] Isabel Bär Alexander Kniesz Larysa Visengeriyeva, Anja Kammer and Michael

Plöd. Mlops principles, 2022.

[290] NVIDIA DEVELOPER. Deploying deep neural networks with nvidia tensorrt,

2022.

250

List of Figures

1.1 Thesis structure . 25

2.1 Typical Deep Neural Network architecture 33

2.2 Comparison between semantic segmentation, classification, object

detection and instance segmentation 36

2.3 Regression Analysis Using Artificial Neural Networks 36

2.4 Convolutional Neural Network Architecture for Classification . . 37

2.5 Recurrent Neural Network Architecture [5] 38

3.1 An example of Augmented reality use case [15] 50

3.2 An example of autonomous driving application using pose estima-

tion [20] . 52

3.3 Examples in the sport analysis and fitness industry using pose

estimation [21]. 53

3.4 Commonly used human body models. (a) skeleton-based model;

(b) contour-based models; (c) volume-based models. [22] 56

3.5 Generative Approach to Monocular 3D Human Pose Estimation [32]. 57

3.6 Pictorial structures model by Fischler and Elschlager. Objects (as,

e.g., faces) are modeled as a set of parts that appear in some typical

spatial relationship with some flexibility concerning the relative

locations [33]. 58

251

3.7 Discriminative Approach to Monocular 3D Human Pose Estima-

tion [32]. 59

3.8 A taxonomy of 2D Human Pose Estimation approaches. 61

3.9 A taxonomy of 3D Human Pose Estimation approaches. 71

4.1 Faster R-CNN architecture [204]. 101

4.2 SSD architecture [204]. 102

4.3 YOLO-v3 architecture [209]. 104

4.4 HRNet architecture [86]. 111

4.5 GAST-Net architecture [253]. 116

5.1 Network architecture of the RootNet [259]. 129

5.2 Summary Diagram of the Networks Used in the System. 131

5.3 Geometric Method for Determining the Absolute Position of a

Person’s Keypoint . 139

5.4 From Camera coordinates to Image plane 141

5.5 Using Trigonometry to Determine Camera Angle and Measure

Absolute Distance . 143

5.6 Representation of Rotation Angle to obtain the orthogonal vector . 143

6.1 Tracking Result: The ID assigned to the person across the frames

is 2. 152

6.2 Comparison of keypoint formats. The first skeleton, marked with

numbers in green, represents the MS-COCO format. The second

skeleton illustrates the h36m format (in blue) and the MuPoTS-

3D format (in red). The primary difference between h36m and

MuPoTS-3D is the number of keypoints. Notably, the MS-COCO

format includes additional keypoints for eyes and ears, distinguish-

ing it from the other two formats 153

252

6.3 3D Vector Transformation with Rotation about the X-Axis by

Angle α . 160

6.4 Human detection + tracking + 2D pose estimation 161

6.5 The pipeline of the proposed framework (Root-GAST-Net) 163

6.6 Fall detection . 165

6.7 Erroneous 3D multi-person pose estimation. The first two images

represent two similar poses of different people because one is

completely occluded. In the right two images, one pose is incorrect

because the body parts are partially outside the boxes. 171

7.1 Processing chain of the compressed video stream 179

7.2 Inception structure in GoogleNet 198

7.3 Horizontal Fusion . 198

7.4 Vertical Fusion . 198

7.5 Fusion network layers by TensorRT 198

7.6 MLOps process. [290]. 210

253

List of Tables

2.1 Applications of Deep Learning in various industries 29

2.2 Learning Methods . 41

3.1 Comparison of Bottom-up and Top-down Approaches on MS-

COCO test-dev . 69

3.2 Advantages, Disadvantages, Suitable Applications, and Examples

for Each Learning Paradigm . 86

3.3 Common Databases for 2D Human Pose Estimation 88

3.4 Characteristics of 2D Human Pose Estimation Evaluation Metrics 89

3.5 Common databases for 3D human pose estimation 91

3.6 Evaluation metrics. Note that T denotes the total number of test samples and N denotes

the number of joints. Ground-truth joint and the predicted joint are indicated by J and Ĵ, respectively.

i represents each joint from all joints and root represents the root-joint. 93

4.1 Monocular Image-Based Methods 113

4.2 Monocular Video-Based Methods 115

4.3 Summary of methods and their accuracy in terms of MPJPE on

Human3.6m and number of frames used. 118

5.1 Camera-centric evaluations on the MuPoTS-3D dataset. The best

is in bold, the second best is underlined. 133

254

5.2 Person-centric and camera-centric evaluations on the MuPoTS-3D

dataset. The best is in bold, the second best is underlined. 133

5.3 Evaluating the Performance of Root-Relative keypoints, absolute

root and Absolute Keypoints on the MuPoTS-3D Database. The

best is in bold. 136

5.4 Evaluating the Performance of Root-Relative keypoints, absolute

root and Absolute Keypoints on the MuPoTS-3D Database. The

best is in bold. 138

6.1 Sequence-wise 3D-PCKabs comparison with the state-of-the-art

on the MuPoTS-3D dataset. (*) The accuracies of methods are

measured on matched ground truths. The best is in bold, the second

best is underlined. 166

6.2 Average precision of the root keypoint evaluation by different

distances on the MuPoTS-3D dataset. 167

6.3 MPJPE of relative poses on MuPoTS-3D dataset. Best in bold,

second best underlined. 168

6.4 MRPE results comparison with RootNet [259] on the Human3.6M

dataset. MRPEx, MRPEy, and MRPEz are the average MRPE

errors in the x, y, and z axes, respectively. 168

6.5 Response time per model. 169

6.6 Frame rate per approach. 170

7.1 Common GPU models and their approximate TFLOPs perfor-

mance for different types of floating point operations and the en-

ergy power . 187

7.2 table comparing W&B, Neptune, DVC and Pachyderm 211

255

256

	Acknowledgement
	Avant-propos
	Abstract
	Abstract
	Résumé
	Résumé
	General Introduction
	Context and Motivation
	Company's Requirements
	Challenge and Work plan
	General Introduction
	Organisation of the Thesis
	List of publications

	I Literature Review
	Deep learning Concepts
	Introduction
	Overview of Deep learning
	Basic concepts and principles
	Deep learning algorithms
	Learning Methods
	Acceleration methods for neural network training
	Deep Learning Model Implementation

	Limitations
	Deep learning-based human pose estimation
	Conclusion

	State of the art of human pose estimation
	Introduction
	Applications based on human pose estimation
	Animation & Gaming
	Training Robots
	Intelligent surveillance and security systems
	Sports analysis
	Healthcare

	Human body modeling
	Categories of Posture Estimation Methods
	Generative approaches
	Discriminative approaches
	Hybrid approaches:

	Human pose estimation by deep-learning
	Overview of 2D human pose estimation approaches
	Single-person pipeline
	Direct Keypoint regression
	Keypoint heatmaps estimation

	Multiple person pose estimation
	Top-down approaches
	Bottom-up approaches

	Comparative Analysis of Top-Down and Bottom-Up Approaches in Multi-Person 2D Pose Estimation

	Overview of 3D human pose estimation approaches
	Supervised learning
	Direct regression
	Direct regression using only 3D Data
	 Fully supervised learning for 3D pose in the wild

	 3D poses from 2D joints
	Exemplar-based approaches
	Deep neural mapping

	3D pose tracking in video

	Weakly supervised learning
	Generative Adversarial Networks (GAN)
	 Multi-view supervision

	Self-Supervised/Unsupervised Learning
	Comparative Analysis of Methods Based on Learning Paradigms

	Overview of Databases and Evaluation Metrics for Human Pose Estimation
	Common databases and evaluation metrics for 2D human pose estimation
	Common databases and evaluation metrics for 3D human pose estimation

	Conclusion

	II 3D Real-time Multi-person pose estimation : Software system design and developement
	3D root-relative person pose estimation
	Introduction
	Human detection
	Existing Human detection methods
	Two-stage object detectors
	One-stage object detectors
	Conclusion

	The human detection method adopted in our system

	Multi-person tracking
	Existing tracking methods
	The tracking method adopted in our system

	2D human pose estimation
	Existing 2D pose estimation networks
	The 2D pose estimation method adopted in our system

	3D pose estimation from 2D joints
	Existing 3D pose estimation methods
	The 3D pose estimation method adopted in our system

	Conclusion

	Proposed approach for 3D absolute pose estimation
	Introduction
	Existing techniques
	Monocular Root depth estimation
	RootNet network architecture
	Camera-intrinsic parameters

	Two-stage approach 3D absolute pose estimation
	Approach structure
	Validation
	Conclusion

	One-Stage approach for 3D absolute pose estimation
	Approach structure
	Validation
	Conclusion

	Hybrid approach for 3D absolute pose estimation
	Conclusion

	Geometric method for absolute root keypoint
	Conclusion

	Software system implementation pipeline and experimental results
	Introduction
	Implementing the framework's training and Inference
	GAST-NetABS training
	Pre-processing phase
	2D human pose estimation
	3D human pose estimation
	Determining the focal length of a camera
	Pose Visualization
	Taxonomy of the Framework
	Posture analysis and fall detection

	Experiments results
	Performance of Sequence-wise on the MuPoTS-3D
	Performance on the Human3.6m
	End-to-End Real-time system responsiveness
	Qualitative results

	Conclusion

	III Software delivery
	Software system industrialization
	Introduction
	Main challenges of the system
	Challenge 1: Simultaneously launch the AI models with other processes
	Challenge 2: Reuse existing material as much as possible
	Challenge 3: Error accumulation in a chain of algorithms

	System hardware and software
	Hardware
	Software libraries
	Deep learning libraries for training
	Deep learning libraries for inference
	PyTorch to TensorRT conversion
	Integration with existing systems
	Pre-processing images phase

	Deep learning visualization

	 Industrial Software system delivery
	Software delivery
	DevOps delivery pipeline
	MLOps delivery pipelines

	Conclusion
	General Conclusion and Perspectives

	List of figures
	List of tables
	Publications

