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INTRODUCTION

Quantum information

Quantum information theory was developed between the 1980s and 1990s, with sig-
nificant contributions from Richard Feynman on simulations of quantum mechanics
problems with quantum computers [Feynman, 1982], and also from Peter Shor and
Lov Grover with the development of quantum algorithms [Grover, 1996; Shor, 1994].
The fundamental unit of quantum information is the qubit (quantum bit). Classical
bits are binary digits equal to 0 or 1 whereas qubits can exist in two states simultane-
ously (0 and 1) using a principle called quantum superposition. The qubit state can
be written as α

∣∣0〉+β
∣∣1〉 with α and β the amplitudes of

∣∣0〉 and
∣∣1〉 (|α|2 + |β|2 = 1).

Another property of quantum mechanics is quantum entanglement. When two
particles (A and B) become entangled, the state of particle A cannot be described
independently of the state of particle B. One possible entangled state is:

∣∣Ψ〉
AB

= 1√
2

(
∣∣0〉

A

∣∣0〉
B

+
∣∣1〉

A

∣∣1〉
B

). (1)

The above expression implies that if the particle A is measured in the state
∣∣0〉, B

is also in
∣∣0〉 and if A is measured in the state

∣∣1〉, B is also in
∣∣1〉. More generally,

the measurement of A instantly determines the state of B regardless of the distance
between the two particles. The first experimental demonstration of this phenomenon
was done in [Freedman and Clauser, 1972] with entangled photon pairs. However,
Clauser and Freedman’s measurement method had a loophole: the polarizers in their
detection setup were adjusted before the emission of the photon pairs. Alain Aspect’s
team closed this loophole by changing randomly the direction of polarizers during the
experiment [Aspect et al., 1982]. Fifteen years later, the group of Anton Zeilinger
used entanglement to perform quantum teleportation between photons [Bouwmeester
et al., 1997]. Entanglement plays a key role in quantum information science, including
for quantum computing, quantum communication and sensing.

1



INTRODUCTION

Quantum networks

Nowadays, optical fibers are used by telecommunication companies to transmit
data over long distances. They enable high-speed and high-capacity communication,
supporting the growing demand for broadband internet and multimedia services. The
signals propagating inside optical fibers inevitably experience attenuation (typically
0.2 dB/km), leading to a decrease in the information rate received by the users. For
example, we consider Alice and Bob separated by a fiber with a length L = 1000 km.
If Alice sends data with a rate of 1 Gbit/s, Bob would receive 1 bit per 300 years.
As a result, telecommunication companies are using repeaters to address this issue.
Indeed, repeaters act as signal amplifiers in order to compensate for optical losses.
However, this solution only works for classical communication. The amplification of
one message encoded in classical bits is an operation that consists in creating many
identical copies of the message. The no-cloning theorem [Wootters and Zurek, 1982]
prevents this operation on quantum bits due to the fundamental principles of quantum
mechanics.

The key idea to exchange quantum information is to establish entanglement be-
tween two nodes. One basic approach would be to create an entangled photon pair,
send one photon from the pair to Alice and the other to Bob. Nevertheless, propa-
gation losses in optical fibers reduce the creation of entanglement between the two
ending nodes of the communication line. One solution is to divide this communication
line into multiple segments and implement entangled photon pair sources (EPPS) in
each segment. Photons are going to propagate on shorter distances (one segment’s
length instead of the whole line) and are thus less attenuated. In this case, entan-
glement has to be established between segments in order to be distributed between
Alice and Bob.

Architectures of quantum networks relying on this method were proposed in [Briegel
et al., 1998; Cirac et al., 1997]. One of them is presented in figure 0.1. An elementary
segment can be composed of two EPPS, one Bell-state measurement platform (BSM)
and two quantum memories (QMs) at the two ends of the segment (see figure 0.1(a)).
We suppose that each EPPS creates two entangled photons described by the Bell
state

∣∣Φ+〉
AB

= 1√
2(
∣∣0〉

A

∣∣0〉
B

+
∣∣1〉

A

∣∣1〉
B

), the indices {A, B} pointing the first or
second photon of this entangled state. The global state of the two entangled pairs
before the BSM is:

∣∣Ψ〉 = 1
2(
∣∣0〉

A

∣∣0〉
B

+
∣∣1〉

A

∣∣1〉
B

) ⊗ (
∣∣0〉

C

∣∣0〉
D

+
∣∣1〉

C

∣∣1〉
D

) (2)

with ⊗ the Kronecker product, and the indices {C, D} pointing the photons of the
second pair. Photons A and D are stored in quantum memories while photons B
and C are sent to the BSM. The Bell-state measurement consists in projecting the
states of photons B and C on one of the four maximally entangled Bell states. In this

2



BSM

QMQM QM QM

QM QM

Step 2

Segment 2Segment 1

Alice

Alice

Bob

Bob

EPPS

QM

A B

BSM

EPPS

QM QMQMStep 1

a)

b)

C D

Figure 0.1: Quantum network architecture. a) An elementary
segment is composed of two entangled photon pair sources (EPPS), one
Bell-state measurement platform (BSM) and two quantum memories
(QMs). One photon of each entangled pair is stored in a QM while
the other is sent to the BSM. The Bell-state measurement heralds
the entanglement of the two QMs located at the segment ends (Step
1). b) We consider a communication line composed of two segments
for simplification. Assuming that one segment succeeds step 1 before
the other, the entanglement is stored in the quantum memories until
both achieve it. When it is the case, a BSM is performed between the
adjacent QMs of the two segments to distribute entanglement between
Alice and Bob (Step 2). The purpose of quantum memories in this
architecture is thus to synchronize segments with each other.
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example, we assume the BSM is projecting on
∣∣Φ+〉

BC
= 1√

2(
∣∣0〉

B

∣∣0〉
C

+
∣∣1〉

B

∣∣1〉
C

).
The resulting state after projection of

∣∣Ψ〉 on
∣∣Φ+〉

BC
is:

∣∣Ψ〉 = 1√
2

(
∣∣0〉

A

∣∣0〉
D

+
∣∣1〉

A

∣∣1〉
D

). (3)

As the photons A and D were stored in the quantum memories, the expression (3)
shows the entanglement of two QMs heralded by the BSM (Step 1 in figure 0.1(a)).
The second step is to distribute entanglement between segments. However, there is
a low probability that all segments succeed step 1 at the same time as the EPPS are
probabilistic sources in practice. The purpose of quantum memories in this architec-
ture is to synchronize segments with each other. Figure 0.1(b) illustrates the example
of a communication line composed of two segments for simplification. Assuming that
one of them succeeds the first step before the other, entanglement is stored in the
quantum memories until both achieve it. When it is the case, a BSM is performed
between the adjacent QMs of the two segments to distribute entanglement between
Alice and Bob (Step 2). Step 1 and step 2 are called entanglement swapping oper-
ations. The required time to establish entanglement between the ends of the line is
polynomial in the number of elementary segments with quantum memories instead
of exponential without them.

Quantum memories can be used in different contexts than quantum repeaters: for
instance, they can be implemented as a memory layer in a cryptographic protocol.
However, experimental demonstrations combining these synchronization devices with
cryptographic protocols are lacking due to the very demanding constraints in terms
of memory efficiency and fidelity to operate in a secure regime. The goal of my work
is to perform such a demonstration.

Context

After my master thesis done at the Cavendish Laboratory on semiconductor quan-
tum dots, I decided to change platforms and move to cold atoms. I joined Julien
Laurat’s group at Laboratoire Kastler-Brossel in October 2020 with the aim of acquir-
ing experimental and theoretical knowledge about cold-atomic quantum memories.
When I arrived in the group, a highly efficient memory was recently demonstrated
and an important goal was now to use it as a memory layer in a cryptographic pro-
tocol. At that time, Thomas Nieddu was a post-doctoral fellow and Felix Hoffet was
a PhD student. They taught me how to run the experiment on a daily basis. The
implementation of the cryptographic protocol was just starting but modifications on
the experimental setup had to be done to improve its performances. These critical im-
provements were time-consuming to implement (one full year) but they were needed
to meet the requirements of the protocol. In this project, we collaborated closely with
Mathieu Bozzio, who developed the security analysis of the quantum money during
his PhD in Eleni Diamanti’s group. We are currently writing a paper together about
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the implementation of this cryptographic protocol using our cold-atom-based quan-
tum memory. In parallel, another project was to spatially multiplex the memory with
Hermite-Gaussian modes of light in order to store many qubits at the same time. Ex-
perimental demonstration of multiplexing could not be done due to time constraints.
However, we performed numerical simulations to evaluate the multimode capacity of
our storage platform and found the optimal parameters to maximize this capacity.

In addition to my doctoral research, I was teaching during two years at Sorbonne
Université to third-year bachelor students. My mission includes tutorials in electro-
magnetism (electric and magnetic dipoles, dipole radiation) and practical works in
optics and electronics (Michelson interferometer, laser diodes, electronic filters). I
had the opportunity to write tutorial and exam subjects for some teaching modules.

Outline

Chapter 1
The first chapter gives an overview of the main storage platforms with the key param-
eters to benchmark their performances. The storage-and-retrieval process is studied
in the case of EIT-based quantum memories with an analysis of their decoherence
sources. The trapping and cooling methods employed to obtain our cold-atomic en-
semble are discussed at the end of the chapter.

Chapter 2
The second chapter introduces the implementation of our quantum memory based
on cold atoms. The magneto-optical trap is presented with the cooling lasers and
the new coils generating large magnetic-field gradients. The locking methods of the
signal and control lasers are detailed. The optimization procedures for the memory
efficiency and lifetime are specified, with a new system compensating for the residual
magnetic field. Additional apparatus (glass chamber, dispensers and detection setup)
are discussed at the end of the chapter.

Chapter 3
The third chapter focuses on the use of quantum memories in crytographic protocols.
The quantum money protocol is explained with its security analysis in the presence
of noise and storage losses. The experimental setup is presented with specific de-
tails on the generation of random polarization states and the optimization of their
fidelity. This chapter reports the first demonstration of the unforgeable quantum
money including an intermediate quantum memory layer, taking advantage of our
high-efficiency and low-noise storage platform.

Chapter 4
The fourth chapter is about the study of spatial multiplexing. Two multiplexing
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methods are considered: a combination of spatially-superposed Hermite-Gaussian
beams and a 2D array of Gaussian beams addressing different micro-ensembles of the
cloud. The multimode capacity of our quantum memory is simulated for these two
techniques and the optimal parameters to maximize it are provided.
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Quantum memories are devices capable of storing and retrieving quantum informa-
tion. The figures of merit to evaluate their performances are listed with an overview
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1.1. Quantum memories

of the main storage platforms used in the community and their specific advantages.
We then focus on the understanding of the mechanisms involved in the storage-and-
retrieval process for EIT-based quantum memories. The efficiency and the decoher-
ence of this process are part of the analysis. This chapter concludes with a detailed
description of the cooling and trapping methods that enable the preparation of our
cold atomic ensemble.

1.1 Quantum memories

In our study, we only consider optical quantum memories, i.e. physical systems
storing and retrieving quantum information carried by light. The performances of
quantum memories can be evaluated by several key parameters: the memory effi-
ciency, lifetime, fidelity and multimode capacity. These figures of merit enable the
comparison between memories based on different platforms.

1.1.1 Key parameters of quantum memories

The following parameters are the main figure of merits to evaluate the performances
of quantum memories.

Memory efficiency
An input light pulse is sent to the quantum memory with an energy Ein. This pulse
is stored inside the memory and retrieved after a defined storage time. The output
pulse leaves the memory with an energy Eout. The storage-and-retrieval efficiency is
defined as1:

η = Eout
Ein

. (1.1)

In the context of quantum networks, entanglement is stored in quantum memories
and retrieved later to synchronize repeater segments between each others [Kimble,
2008]. The entanglement rate between the two ends of a communication line highly
depends on η as the memory efficiency affects the rate of entanglement swapping
operations. The impact of η on the scalability of quantum networks is thoroughly
discussed in [Sangouard et al., 2011]. Moreover, achieving a high memory efficiency
enables a range of cryptographic protocols to operate in the secure regime as losses
introduced by the memory can be exploited by malicious parties. This last point is
deeply detailed in Chapter 3.

Conditional fidelity
The fidelity evaluates the overlap between the input and detected output states. In
mathematical terms, if the input state

∣∣Ψin
〉

and output state
∣∣Ψout

〉
are pure states,

the fidelity can be easily calculated with the expression F = |
〈
Ψin

∣∣Ψout
〉
|2. In the

1This efficiency can also be divided in two steps: the storage efficiency ηs and the retrieval
efficiency ηr, which leads to an overall efficiency η = ηsηr.
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Chapter 1. Theoretical description of quantum memories and cold atoms

general case of mixed states, the input pulse is described by a density matrix ρ̂in and
the output pulse by a density matrix ρ̂out. The fidelity is thus defined as:

F = Tr
(√√

ρ̂inρ̂out
√

ρ̂in

)2
. (1.2)

The square roots of these matrices exist as they are positive semidefinite matrices.
The fidelity is equal to 1 if the output state is the same as the input one and equal to
0 if the two states are orthogonal. This figure of merit can also separate the classical
memories from the quantum memories. Indeed, if the input state contains N photons,
[Massar and Popescu, 1995] demonstrated that the classical limit is (N + 1)/(N + 2),
leading to 2/3 in the case of a single photon.

Memory lifetime
The memory efficiency decreases with storage time due to decoherence mechanisms
(the decoherence sources in our experiment are specified in 1.2.4). The lifetime τ of a
quantum memory can be defined as the storage time for which the memory efficiency
drops at 1/e ≈ 37% of its initial value. In a quantum network, the lifetime of quantum
memories should at least be equal to the propagation time of light along the entire
communication line. Therefore, τ should be at least on the order of ten milliseconds to
perform quantum communication between nodes separated by a thousand kilometers.

Multimode capacity
As for classical communication, multiplexing is useful for the field of quantum com-
munication. A critical challenge is to go beyond single-mode quantum memories.
The aim is to store many modes at the same time. It could be used to improve the
achievable rates for creating entanglement between light and quantum memories in a
quantum network, as it is equivalent to running the protocol described in figure 0.1
for each mode in parallel. Several multiplexing methods can be explored depending
on the degree of freedoms available for a specific storage platform, such as multiplex-
ing in time, frequency, and space. The multimode capacity characterises the number
of modes that a memory can store-and-retrieve with a high efficiency (η > 50 % for
instance). Numerical simulations of this multimode capacity for our cold-atom based
quantum memory are presented in Chapter 4 of this manuscript.

These are the most important figures of merits to benchmark the performances of
quantum memories. Other additional parameters may be taken into account includ-
ing the ability to retrieve information on-demand as it is required in order to syn-
chronize elementary links in a quantum network. Another important parameter is the
memory bandwidth which determines the smallest pulse duration that the memory
can store.
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1.1.2 Presentation of the main memory platforms

The quantum memory field is quite diversified in terms of memory platforms. The
following paragraphs introduce the main storage media with their associated proto-
cols, and an assessment of their performance based on the criteria outlined in the
previous section.

Cold atomic ensembles
Cold atomic ensembles are atomic gases that have been cooled to temperatures typi-
cally on the order of microkelvins. They are manipulated in vacuum chambers (pres-
sure around 10−10 Torr) and prepared using laser cooling in magneto-optical traps.
The cold atomic ensembles considered in this study are composed of alkali atoms
(mostly cesium and rubidium). The protocols mainly employed for quantum mem-
ories based on cold atoms are the EIT and DLCZ schemes. Memories using DLCZ
scheme are called "emissive" as they are used to generate single photons on-demand
with a good retrieval efficiency whereas EIT based quantum memories are called "ab-
sorptive" as they are used to store-and-retrieve externally generated quantum states.

Electromagnetically induced transparency (EIT) is a phenomenon first observed
in [Boller et al., 1991]. A light pulse (named the signal) can propagate through an
atomic ensemble without being absorbed thanks to a bright additional laser (called
the control beam) that opens a transparency window in the medium. The signal in-
side the ensemble is slow down (slow light) and cannot be considered only as photonic
state but a dark state polariton [Fleischhauer and Lukin, 2000] which is a superpo-
sition between a photonic state and a collective atomic state. By turning off and on
the control beam, one can store and retrieve the signal pulse (see section 1.2.3). This
dynamical-EIT was implemented for the first time in [Liu et al., 2001].

The main benefit of EIT cold-atom based quantum memories are their storage-
and-retrieval efficiencies which are the highest achieved among all the memory plat-
forms: it could reach about 90% [Cao et al., 2020; Wang et al., 2019] as demonstrated
in our group. The lifetime of such a memory can be optimized with an optical lattice
to avoid motional dephasing, clock transitions to be insensitive to residual magnetic
field and the application of a magic-valued magnetic field to reduce the differential
light shift induced by the lattice (see section 1.2.4). 16 s lifetime was reached [Dudin
et al., 2013] for bright pulses after application of these three improvements. Moreover,
the intrinsic fidelity of these memories can attain 99.5% [Vernaz-Gris et al., 2018].
The EIT scheme is compatible with spatial multiplexing (see Chapter 4) as [Jiang
et al., 2019] demonstrated by addressing 210 different memory cells. Temporal multi-
plexing is not compatible with EIT scheme due to the control field that cannot store
an excitation without reading the previous one. Variations of this scheme relying on
large B-field gradients enable to use the temporal degree of freedom.
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The DLCZ scheme was proposed by Duan, Lukin, Cirac and Zoller in [Duan et al.,
2001]. It consists in sending a write pulse to the ensemble to create an excitation
(not driven by any additional bright beam as for the EIT protocol). The excitation
is heralded as it releases a photon which is detected. After a controllable time, the
read pulse is sent to the atomic medium and converts this excitation into a single
photon leaving the ensemble in a direction given by the phase matching conditions
of this four-wave mixing process. DLCZ was implemented in our experiment [Cao
et al., 2020] as a single photon source, in the low excitation regime to suppress the
two-photon component.

In terms of performances, cold-atom groups working with DLCZ scheme achieved
spatial multiplexing such as [Pu et al., 2017] who addressed up to 225 accessible mem-
ory cells. 100 ms lifetime has been reported in [Wang et al., 2021] by implementing
an optical lattice and clock transitions. The only efficiency which can be evaluated
for these emissive memories is the retrieval one, which can attain 50 % in free space
[Laurat et al., 2006] and 84 % in a cavity system [Simon et al., 2007] (albeit inside
the cavity mode).

Warm atomic vapors
Warm atomic vapors are atomic ensembles at room temperature contained in glass
cells. Unlike cold atomic ensembles, they do not require vacuum systems or laser
cooling apparatus but only a resistance wire coiled around the cell to heat up the
gas above its melting point (28.5◦C for cesium and 39◦C for rubidium). The room-
temperature memories presented are only composed of alkali atoms. The protocols
mainly employed for warm atomic vapors are Raman-EIT and Raman-DLCZ schemes.

The Raman-EIT scheme can be described as an EIT far-detuned from resonance
in order to avoid the Doppler broadening. Therefore, the power of the control beam
must be much higher than in the resonant case leading to an important noise added
by the control light. Moreover, the two fields must be colinear in order to have a
decent lifetime as the motional dephasing increases with the temperature of atoms
(see section 1.2.4). However the benefit of these warm atomic memories is their high
bandwidth which enables to store pulses with temporal length under the nanosecond.
The first implementation of this Raman scheme was done in [Reim et al., 2010] with
300 ps pulses. The memory efficiency achieved for these system is up to 67% using
a cavity [Ma et al., 2022] with a microsecond lifetime. Some demonstrations pushed
the fidelity to 97% [England et al., 2012].

The Raman-DLCZ scheme is similar to DLCZ scheme with electromagnetic fields
far-detuned from resonance in order to avoid the Doppler broadening. The write
and read pulses must also be colinear to suppress the motional dephasing. Therefore
multiple filtering cavities need to be implemented to filter out the read pulse from
the single photons. Retrieval efficiencies up to 70 % have been reported with a 0.89
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ms lifetime [Dideriksen et al., 2021].

Rare-earth doped crystals
Rare-earth doped crystals are materials that have been doped with rare-earth ions,
i.e. elements from the lanthanide series of the periodic table. Rare-earth doped crys-
tals were at the center of interest because of their 4f–4f intra-shell transitions that are
isolated from the crystalline environment due to screening effect [Macfarlane, 2002].
Most groups work with these crystals at cryogenic temperatures to improve their
coherence time. The protocol mainly employed for rare-earth ions is AFC.

The AFC (atomic frequency comb) scheme was first proposed in [Afzelius et al.,
2009] and experimentally implemented in [Afzelius et al., 2010]. This method takes
advantage of an inhomogeneous broadening absorption profile to create a spectral
comb with periodic and highly absorptive peaks. Indeed, the atoms in the ground
state are optically pumped to an auxiliary state to obtain absorption peaks spaced by
a frequency ∆. When the frequency comb is set, the input light pulse drives the atoms
to an excited state. The excitation will dephase due to the multiple frequencies of
the comb and rephase after a pre-programmed delay 2π/∆ resulting in a photon-echo
emission. As a result, memories using AFC with two levels do not have the ability to
retrieve information on-demand which limits their applications: they cannot be used
as synchronization devices in quantum networks. A three-level system is required in
order to achieve on-demand retrieval. In this case, an additional control beam is sent
to the crystal to drive the atoms from the excited state to a long-lived spin state.

The maximum efficiency reached for rare-earth doped crystals using two-level
AFC is 62% in a cavity [Duranti et al., 2023] with 95% fidelity. This is the highest
memory efficiency in the quantum regime among all solid state devices. Then, storage
in the spin state (on-demand memory) is less efficient: 12% in [Jobez et al., 2014].
20 ms lifetime was demonstrated [Ortu et al., 2022] in the quantum regime (with
single photons) using decoupling sequences to suppress decoherence of the spin wave.
The main advantage of these AFC-based memories is their multimode capacity as
they are compatible with frequency, temporal and spatial multiplexing. Temporal
multiplexing was implemented with 62 modes in [Lago-Rivera et al., 2021] and 100
modes for [Jobez et al., 2016] with pre-programmed delay but also on-demand with 50
modes. Temporal and frequency multiplexing combined were achieved in [Seri et al.,
2019] with 15 spectral modes and 9 temporal modes (135 modes in total).

1.2 EIT-based quantum memories

In this section, we focus on quantum memories based on atomic ensembles using
EIT. We consider atoms in a gaz which are not interacting. Optical quantum memo-
ries rely on the information transfer between photons and atoms. In order to optimize
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the efficiency of this transfer, we need to understand the physical mechanisms involved
in the memory process.

1.2.1 Classical description of light-matter interaction

The first element to consider in order to achieve a high storage efficiency is the
absorptive properties of the medium. This absorption process can be simply described
in the classical regime, providing an introduction to the concept of optical depth.

Susceptibility of an atomic medium

We take the simplified picture of an atom composed of one single electron and
a nucleus. The electron motion is modeled as a damped harmonic oscillator with a
oscillation frequency ω0 and a damping coefficient Γ. The electron motion is modified
by the presence of an external electric field E⃗ = E⃗0e−iωt according to the following
equation:

d2r⃗

dt2 + Γdr⃗

dt
+ ω2

0 r⃗ = qE⃗0
m

e−iωt (1.3)

with r⃗ the electron position around the nucleus, q its charge and m is mass. This
equation can be solved in the steady state regime leading to the expression:

r⃗0 = qE⃗0
m

1
ω2

0 − ω2 − iΓω
. (1.4)

As the dipolar moment of the electron is equal to d⃗0 = qr⃗0 = ϵ0αE⃗0 with ϵ0

the electric permittivity of vacuum, we can deduce the atom polarizability α. The
polarizability α is a microscopic quantity whereas the susceptibility χ is a macroscopic
quantity. As a reminder, we consider atoms in a gaz which are not interacting between
each others (the density of atoms N is low). In this particular case, the relation
between χ and α can be simplified to χ = Nα :

χ = N q2

mϵ0

1
ω2

0 − ω2 − iΓω
. (1.5)

Optical depth of an atomic medium

We consider light as a plane wave propagating along the z-axis. Its electric field is
described by: E⃗(z, t) = E⃗0e−iωt+inkz with k the wavevector, n the complex refractive
index of the medium. The refractive index is determined by the susceptibility χ:
n = (1 + χ)1/2 with χ = Re(χ) + i Im(χ). As the atomic density is low, we can
consider Re(χ) ≪ 1 and Im(χ) ≪ 1, and expand the refractive index at the first
order:

n ≈ 1 + 1
2 Re(χ) + i

2 Im(χ). (1.6)
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Figure 1.1: Transmission of a light beam through an atomic
cloud. a) A light beam (the signal) propagates along the z-axis
through an atomic medium. Iin represents the intensity before in-
teracting with the atoms (z < 0) and Iout after propagation in an
atomic medium (z > L). b) The transmission factor (T = Iout/Iin)
is calculated for a range of detunings around the resonance. This
curve corresponds to an optical depth on resonance equal to 350 for
Γ = 2π · 4.575 GHz (Cesium D1 line).

The imaginary part of the susceptibility can be calculated thanks to equation (1.5).
We can make the approximation ω2

0 − ω2 ≈ 2ω0(ω0 − ω) as we assume the frequency
of light is close to the atomic resonance. It leads to the following result:

Im(χ) = N q2

mϵ0

Γω

4ω2
0(ω0 − ω)2 + Γ2ω2 . (1.7)

The intensity of the plane wave inside the atomic cloud can be expressed as
I(z) = |E⃗(z, t) · e⃗z|2 = I0e− Im(χ)kz. As it is shown in figure 1.1(a), Iin represents the
intensity before interacting with the atoms (z < 0) and Iout after propagation in an
atomic medium (z > L). The transmission factor T is thus equal to:

T (δ) = Iout(δ)
Iin(δ) = exp(− Im(χ)kL) (1.8)

= exp(− d0

1 + 4( δ
Γ)2 ) (1.9)

with d0 the optical depth at resonance of the medium and δ = ω0 − ω the detuning of
the light frequency from the resonance. The optical depth (OD) is a key parameter
for quantum memories as high values of OD enable high storage efficiencies. The OD
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Figure 1.2: EIT in a three-level system with a lambda con-
figuration.

∣∣g〉 is the ground state,
∣∣s〉 is a long-lived spin state, and∣∣e〉 the excited state . The transition frequencies are noted ωsg, ωeg

and ωes. The Rabi frequencies associated to the signal and control
fields are respectively Ωs and Ωc. The signal field is detuned from the
transition

∣∣g〉 →
∣∣e〉 by ∆s and the control field is detuned from the

transition
∣∣s〉 →

∣∣e〉 by ∆c. The two-photon detuning δ is equal to the
difference ∆s − ∆c.

reflects the absorption capacity of the cloud. d0 can be determined by measuring
the transmission factor thanks to the equation (1.9). Figure 1.1(b) represents the
transmission for a range of detunings around the resonance. This curve corresponds
to an optical depth on resonance equal to 350 for Γ = 2π · 4.575 GHz (Cesium D1
line [Steck, 1998]).

1.2.2 EIT for three-level systems in the semi-classical regime

The storage process does not only rely on the signal absorption as atoms would be
transferred from the ground state to a short-lived excited level. An additional field
(called the control) is required to drive the transition to a third level: a long-lived spin
state. This additional classical light modifies the dispersion and transmission proper-
ties of the atomic ensemble at the signal wavelength. This section is a comprehensive
study of these properties in the semi-classical regime.

Lindblad master equation

We consider a three-level system in a lambda configuration (see figure 1.2) involving
one ground state

∣∣g〉, a long-lived spin state
∣∣s〉, and an excited state

∣∣e〉. The
transition frequencies are noted ωsg, ωeg and ωes. The signal field is modelled by
E⃗s = E⃗0s cos(ωst) and the control field by E⃗c = E⃗0c cos(ωct). Their respective Rabi
frequencies are Ωs = d⃗ge · E⃗0s/ℏ and Ωc = d⃗se · E⃗0c/ℏ (d⃗ge and d⃗se being the electric
dipole moment of the two transitions). The signal field is detuned from the transition∣∣g〉 →

∣∣e〉 by ∆s = ωs − ωeg and the control field is detuned from the transition
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∣∣s〉 →
∣∣e〉 by ∆c = ωc − ωes. The two-photon detuning δ indicated in figure 1.2 is

equal to the difference ∆s − ∆c.

The semi-classical approach consists in the quantization of the atomic levels with
classical light (the electromagnetic fields are not quantized). Therefore the Hamilto-
nian of our system Ĥ can be decomposed in two different terms: Ĥat representing
the atomic internal levels and Ĥint the interaction between the atomic levels and the
electromagnetic fields (Ĥs

int is for the signal field and Ĥc
int is for the control field).

They can be expressed as:

Ĥ = Ĥat + Ĥs
int + Ĥc

int (1.10)

Ĥat = ℏωeg

∣∣e〉〈e∣∣+ ℏωsg

∣∣s〉〈s∣∣ (1.11)

Ĥs
int = −ℏΩs cos(ωst)(

∣∣e〉〈g∣∣+ ∣∣g〉〈e∣∣) (1.12)

Ĥc
int = −ℏΩc cos(ωct)(

∣∣e〉〈s∣∣+ ∣∣s〉〈e∣∣). (1.13)

ρ̂ is the density matrix of our system. Its evolution is given by the Lindblad
master equation:

dρ̂

dt
= i

ℏ
[ρ̂, Ĥ] + L̂(ρ̂) (1.14)

with the Lindbladian

L̂(ρ̂) =
∑

j

γj(σ̂j ρ̂σ̂†
j − 1

2{σ̂†
j σ̂j ρ̂}) (1.15)

where γj are the decay rates of the transition considered and σ̂j is the corresponding
Linblad operators. The square brackets are the commutator [a, b] = ab − ba and
the curly ones are the anti-commutator {a, b} = ab + ba. The Lindbladian operator
represents the relaxation term coming from the spontaneous emission. There are
three decay paths in our lambda scheme: two from the excited state (

∣∣e〉 →
∣∣g〉

and
∣∣e〉 →

∣∣s〉) with a global decay rate γe and one from the long lived spin state
(
∣∣s〉 →

∣∣g〉) at a rate γs. The Linblad operators corresponding to these decay channels
are σ̂ge =

∣∣g〉〈e∣∣, σ̂se =
∣∣s〉〈e∣∣ and σ̂gs =

∣∣g〉〈s∣∣.
Expansion to first order perturbation series

In order to solve the master equation, we are going to expand it in perturbation
series at the first order on the parameter ϵ = Ωs/Ωc. Indeed, the amplitude of
the signal field is very small compared to the control field in practice (the signal is
typically at the photon level whereas the control power is on the order of milliwatts).
The density matrix is noted ρ̂ = ρ̂(0) + ρ̂(1) where ρ̂(0) does not depend on ϵ (zero-th
order term) and ρ̂(1) scales linearly with ϵ (first order term). Initially, all the atoms
are in the ground state

∣∣g〉 (ρ(0)
gg = 1, ρ

(0)
ee = ρ

(0)
ss = 0) and all the coherence terms
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Chapter 1. Theoretical description of quantum memories and cold atoms

(non-diagonal elements of the density matrix) are equal to zero. To the first order,
equation (1.14) can be written:

dρ̂(1)

dt
= i

ℏ
[ρ̂(1), Ĥat + Ĥc

int] + i

ℏ
[ρ̂(0), Ĥs

int] + L̂(ρ̂(1)) (1.16)

The Hamiltonians Ĥat and Ĥc
int are zero-th order terms whereas Ĥs

int is a first
order term. The aim would be to determine the density matrix elements required to
calculate the susceptibility of the medium seen by the signal field. The only element
we need is ρ

(1)
eg as the susceptibility is proportional to this non-diagonal term according

to the relation (1.24). After extracting ρ
(1)
eg from equation (1.16), we obtain:

dρ
(1)
eg

dt
= −(iωeg + γge)ρ(1)

eg + iΩc cos(ωct)ρ(1)
sg + iΩs cos(ωst)ρ(0)

gg (1.17)

with γge = γe/2 the relaxation rate of the coherence between the states
∣∣g〉 and

∣∣e〉.
In order to solve equation (1.17), ρ

(1)
sg has to be calculated. After projecting equation

(1.16), we obtain:

dρ
(1)
sg

dt
= −(iωsg + γgs)ρ(1)

sg + iΩc cos(ωct)ρ(1)
eg (1.18)

with γgs = γs/2 the relaxation rate of the coherence between the states
∣∣g〉 and

∣∣s〉.
The next step consists in writing the density matrix elements in the rotating frame
of the electromagnetic fields in order to simplify the calculations. The density matrix
elements in the new rotating frame are:

ρ̃eg = ρegeiωst , ρ̃sg = ρsgei(ωs−ωc)t. (1.19)

After writing the two differential equations (1.17) and (1.18) in the new frame, terms
oscillating at the frequency 2ωc and 2ωs appear. The rotating wave approximation
(RWA) consists in neglecting these high frequency terms as they will average to zero
on the timescale considered. In other words, the variation of the density matrix
elements is assumed be slow compared to the electromagnetic field oscillation. This
approximation leads to:

dρ̃
(1)
eg

dt
= (i∆s − γge)ρ̃(1)

eg + i

2Ωcρ̃
(1)
sg + i

2Ωsρ(0)
gg (1.20)

dρ̃
(1)
sg

dt
= (iδ − γgs)ρ̃(1)

sg + i

2Ωcρ̃
(1)
eg . (1.21)

In steady-state, equations (1.20) and (1.21) give access to the expressions of ρ̃
(1)
sg

and more importantly ρ̃
(1)
eg :

ρ̃(1)
sg = ΩcΩs

4(iγgs + δ)(iγge + ∆s) − Ω2
c

ρ(0)
gg (1.22)

ρ̃(1)
eg = − 2Ωs(iγgs + δ)

4(iγgs + δ)(iγge + ∆s) − Ω2
c

ρ(0)
gg . (1.23)
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Figure 1.3: Imaginary and real parts of the normalized sus-
ceptibility as a function of the signal detuning with a resonant
control field for different Rabi frequencies. The imaginary part
of the susceptibility represents the absorption properties of the atomic
medium whereas the real part is showing its dispersion. The relaxation
rate of the coherence between the ground and spin states was chosen
to be γgs = 10−3Γ. The Rabi frequency of the resonant control field
is different for each column: Ωc = 4Γ for a) and d), Ωc = Γ/2 for b)
and e) and Ωc = Γ/10 for c) and f). We note Γ the linewidth of the
Cesium D1 line (Γ = 4.575 MHz).

Susceptibility in a three-level system

We can deduce from the result (1.23) the linear susceptibility at the signal wavelength:

χ(∆s, ∆c) = 2N deg

ϵ0E0s
ρ̃(1)

eg (1.24)

χ(∆s, ∆c) = −d0γge

ksL

(iγgs + δ)
(iγgs + ∆s − ∆c)(iγge + ∆s) − Ω2

c/4 (1.25)

with the optical depth on resonance d0 = ksLN d2
eg

ϵ0ℏγge
, L the length of the atomic

medium, N its constant density and ks the wavevector of the signal field. The
transmission of the signal through the atomic medium can be written as T (∆s, ∆c) =
e−ksL Im(χ(∆s,∆c)) but also with the normalized susceptibility χ(∆s, ∆c):

T (∆s, ∆c) = e−d0 Im(χ(∆s,∆c)) , χ(∆s, ∆c) = γge(iγgs + δ)
Ω2

c/4 − (iγgs + ∆s − ∆c)(iγge + ∆s) .

(1.26)
Imaginary and real parts of the normalized susceptibility at the signal wavelength

are presented in figure 1.3 as a function of the signal detuning ∆s with a resonant
control field for different Rabi frequencies. The imaginary part of the susceptibility
represents the absorption properties of the atomic medium whereas the real part is
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Chapter 1. Theoretical description of quantum memories and cold atoms

giving its dispersion (evolution of the refractive index with the signal frequency).

This figure shows two different regimes: the Autler-Townes and EIT regimes. The
Autler-Townes regime is defined by the condition Ωc > Γ and is illustrated by the
first column (Ωc = 4Γ). The absorption profile in figure 1.3(a) is composed of two
Lorentzian functions with a width equal to Γ/2 spaced by the Rabi frequency Ωc.
If the control field was not applied, we would see one peak with a linewidth equal
to Γ. For Ωc = Γ/2, we expect the absorption at ∆s = 0 to increase as the two
Lorentzian profiles are spaced by a gap equivalent to their width. However it is not
the case as the result from figure 1.3(b) demonstrates. Indeed, the absorption at zero
detuning remains zero. It can be explained by a destructive interference between
two excitation paths (

∣∣g〉 →
∣∣e〉 and

∣∣s〉 →
∣∣e〉) preventing the atoms to populate∣∣e〉. The atoms are in a "dark state" as they are not scattering incoming light. This

phenomenon is called electromagnetically induced transparency (EIT). An extreme
case is presented in figure 1.3(c) where Ωc = Γ/10. A narrow transparency window
persists but absorption appears at ∆s = 0 due to the decoherence rate γgs = 10−3Γ
between

∣∣g〉 and
∣∣s〉. The dispersion of the medium is also modified by the control field

as figures 1.3(d),(e),(f) demonstrate, leading to slow light at the signal wavelength
inside the atomic ensemble.

Slow light

The signal field has a group velocity defined as vg = dωs/dks. Its wave vector inside
the medium is ks = nωs/c with n = 1 + 1

2 Re(χ). The group velocity can thus be
expressed as:

vg = c

1 + ωs
2

d Re(χ)
dωs

(1.27)

assuming that near resonance Re(χ) ≪ ωs
d Re(χ)

dωs
, which is valid for an atomic medium

with high dispersion and low density. As a result the group velocity around ∆s =
0 depends on the derivative of the real susceptibility. As it is visible in figures
1.3(d),(e),(f), the slope at zero detuning decreases with the Rabi frequency of the
control field Ωc. More specifically, by expanding the real part of the susceptibility
around zero detuning, the relation (1.27) can be approximated to:

vg ≈ Ω2
cL

d0Γ . (1.28)

The group velocity is thus proportional to Ω2
c , i.e. the intensity of the control

light. Small values of Ωc enables to slow down the signal [Hau et al., 1999]. The
signal propagating inside the EIT window is thus named "slow light". Therefore,
light can be stopped when the limit Ωc = 0 is reached as we will describe more
vigorously in the following section.
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𝑔

𝑠

Figure 1.4: Collective excitation. One atom of the cloud is driven
from the ground state

∣∣g〉 to the long-lived spin state
∣∣s〉. As the

excitation is spread out across the entire ensemble, the position of the
excited atom is in a superposition of all possibilities.

1.2.3 Efficient storage-and-retrieval process in atomic ensembles

This section presents the storage-and-retrieval process based on dynamical EIT.
The optimization parameters to increase the memory efficiency are specified.

Collective excitation

Mapping the signal pulse in a collective excitation of the cloud is required to perform
an efficient transfer into and out of the quantum memory. The principle of the
collective excitation is illustrated in figure 1.4. If the pulse only contains one photon,
one atom in the cloud is going to be driven from the ground state

∣∣g〉 to the long-lived
spin state

∣∣s〉. As the excitation is spread out across the entire ensemble, the position
of the excited atom is in a superposition of all possibilities. Each atom actively
contributes to the absorption process, preserving the phase of the incoming field in
the coherence between

∣∣s〉 and
∣∣g〉. The collective state called a "spin wave" can thus

be noted as: ∣∣Ψ〉 = 1√
N

N∑
j=1

eiφj
∣∣g1, ..., gi−1, sj , gi+1, ..., gN ⟩ (1.29)

with N the number of atoms and φj the phase acquired by the j-th atom. This phase
is determined by the interference pattern between the signal and the control fields
which is printed on the atomic ensemble. In practice, the amplitude in front of each
term of the sum is not the same and depends on the signal pulse spatial profile and
the density distribution of the cloud.

Storage-and-retrieval process

We consider a three-level system as the one in figure 1.2. The signal field is resonant
with the transition

∣∣g〉 →
∣∣e〉 and the control field is resonant with the transition∣∣s〉 →

∣∣e〉. In the previous sections, the signal field was defined as a classical field.
From now on, this one is quantized and described by the operator:

Ês(z, t) =
∑

k

âk(t)eikz (1.30)
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Chapter 1. Theoretical description of quantum memories and cold atoms

with âk the annihilation operator of the k wavevector. A collective excitation of the
atomic medium from a state

∣∣a〉 to a state
∣∣b〉 is represented by the operator:

σ̂ba(z, t) = 1
Nz

Nz∑
j=1

∣∣bj
〉〈

aj

∣∣e−iωbat (1.31)

with Nz the number of atoms contained in a small volume centered on the position z.
The evolution of these atomic operators is given by the Heisenberg-Langevin equa-
tions. In the previous section, we took the Schrodinger picture with a time-dependent
density matrix ρ̂(t). In this section, we are taking the Heisenberg picture with time-
dependent operators σ̂(t). The Heisenberg-Langevin equations can be solved with
the same method than the Lindblad master equation using perturbation series which
leads to similar mathematical relations: (1.20) and (1.21) can be used by replacing the
density matrix ρ̂ by the operator σ̂. The electromagnetic fields being quantized, Ωs

is also replaced by Ω0Ês introducing the vacuum Rabi frequency Ω0 = 2deg

√
ωeg

2ℏϵ0V ,
with V the atom-light interaction volume defined by the overlap between the signal
and the atomic ensemble. After implementing these modifications, we obtain the
result2 on resonance (∆s = ∆c = 0):

∂σ̂ge

∂t
= −γgeσ̂ge + i

2Ωc(t)σ̂gs + i

2Ω0Ês (1.32)
∂σ̂gs

∂t
= −γgsσ̂gs + i

2Ωc(t)σ̂ge. (1.33)

The Rabi frequency of the control Ωc(t) is time-dependent. As
∣∣s〉 is considered

as a long-lived state, γgs can be neglected in equation (1.33):

σ̂ge = −2i

Ωc(t)
∂σ̂gs

∂t
. (1.34)

This new expression can be injected into (1.32):

− 4
Ωc(t)

(
∂

∂t
+ γge

)
·
( 1

Ωc(t)
∂σ̂gs

∂t

)
= σ̂gs + Ω0Ês

Ωc(t)
. (1.35)

We assume a slow change of the control Rabi frequency Ωc(t) in the adiabatic limit
[Harris and Yamamoto, 1998; Lukin and Imamoglu, 2000]. The characteristic time
of this change is noted Tc. One can define a dimensionless variable t′ = t/Tc and
expand equation (1.35) on the parameter 1/Tc. The lowest order of this perturbative
expansion is:

σ̂gs = −Ω0Ês

Ωc
. (1.36)

The paraxial approximation states that |∂2Ês
∂z2 | ≪ |k ∂Ês

∂z |, and can be applied if we

2Equations (1.32) and (1.33) contain a factor 1/2 which is not the case of the paper [Fleischhauer
and Lukin, 2000]. Indeed, this factor appears when the rotating wave approximation is applied.
Theoreticians often discard it.
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Figure 1.5: Storage-and-retrieval process. Before time t0, the
signal pulse has not interacted with the atomic medium. At time
t0, the control intensity is turned on to open an EIT window and
let the signal enter into the cloud. The signal pulse is thus spatially
compressed into the atomic medium by factor 1/ng. When the pulse
is entirely contained into the cloud, Ωc is adiabatically decreased to
zero (time t1). The signal is mapped in a collective excitation of the
atomic ensemble. After a controllable storage time, Ωc is adiabatically
increased to its original value (time t2) which triggers the retrieval
process. The pulse reappears inside the cloud and leaves it at time t3.

consider Ês(z, t) as a slowly varying function of z. The evolution of the signal field
is given by the propagation equation [Fleischhauer and Lukin, 2000]:(

∂

∂t
+ c

∂

∂z

)
· Ês(z, t) = i

Ω0
2 Nσ̂ge(z, t), (1.37)

N being the total number of atoms. By combining (1.34), (1.36) and (1.37), we
obtain the formula which governs the quantized electromagnetic field evolution in the
adiabatic limit:

(
∂

∂t
+ c

∂

∂z

)
· Ês(z, t) = − Ω0N

Ωc(t)
∂

∂t

Ês(z, t)
Ωc(t)

. (1.38)

A solution to this equation is known as the dark state polariton, described by the
quantum operator Ψ̂:

Ψ̂(z, t) = cos θ(t)Ês(z, t) − sin θ(t)
√

Nσ̂gs(z, t) (1.39)

with
cos θ(t) = Ωc(t)√

Ωc(t)2 + Ω2
0N

, sin θ(t) = Ω0
√

N√
Ωc(t)2 + Ω2

0N
. (1.40)

This dark state polariton Ψ̂ is a superposition between a photonic state represented
by Ês and a collective spin-wave excitation represented by σ̂gs.

The evolution over time of Ωc(t) can be chosen in order to efficiently store-and-
retrieve the signal field as it is presented in figure 1.5. Before t0, the signal pulse
has not interacted with the atomic medium. At the time t0, the control intensity is
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Chapter 1. Theoretical description of quantum memories and cold atoms

turned on to open an EIT window and let the signal enter into the cloud. When the
signal is inside the cloud, we can’t consider it anymore just as a photonic state. The
equation (1.39) demonstrates that it is a dark state polariton, i.e. a superposition
between a photonic state and a collective spin-wave excitation. Ψ̂(z, t) is governed
by the equation of motion:(

∂

∂t
+ c cos 2θ(t) ∂

∂z

)
· Ψ̂(z, t) = 0 (1.41)

As a result, this dark state polariton has a group velocity vg = c/ng with ng =
1/ cos 2θ(t). The signal pulse is thus spatially compressed in the atomic medium
by factor 1/ng. Ωc is adiabatically decreased to zero when the pulse is entirely
contained into the cloud (time t1). This requirement is crucial to achieve a high
memory efficiency as the fraction of light located outside the cloud at t1 is not going
to be stored. The group velocity vg = 0 indicates that the pulse in the medium is
stopped. Ψ̂(z, t) = −

√
Nσ̂gs(z, t) only exhibits the collective spin-wave excitation

without any photonic component: the photonic state has been fully mapped on the
atomic degrees of freedom. After a controllable storage time, Ωc is adiabatically
increased to its original value (time t2) which triggers the retrieval process. The
signal pulse reappears inside the atomic ensemble as the term Ês(z, t) in the state
Ψ̂(z, t). At the time t3, the pulse leaves the cloud and returns to its original shape.

Optimization of the memory efficiency

As discussed earlier, one of the main key element for quantum memories is the
storage-and-retrieval efficiency. Therefore, this subsection is about the theoretical
considerations to optimize the memory efficiency. The practical implementation of
this optimization is described on the second chapter.

In the real experiment, we are not working with a three-level system but with
a much more complex atomic structure. The states involved are called hyperfine
levels and result from from the interaction between the magnetic moments associated
to the nuclear and electronic spins. These hyperfine states are composed of many
sublevels named Zeeman levels. A representation of this atomic structure is given
in figure 1.6 for D1 Cesium line as used in this work. The ground state is

∣∣g〉 =∣∣6S1/2, F = 3
〉
, the long-lived spin state is

∣∣s〉 =
∣∣6S1/2, F = 4

〉
and the excited

state is
∣∣e〉 =

∣∣6P1/2, F ′ = 4
〉
. As previously, the signal field is resonant with the

transition
∣∣g〉 →

∣∣e〉 and the control field is resonant with the transition
∣∣s〉 →

∣∣e〉.
An hyperfine level F is composed of 2F + 1 Zeeman sublevels annotated by the
number mF = {−F, −F + 1, .., F − 1, F}. One important parameter to consider is
the choice of polarizations for the signal and control beams. We define the z-axis
as the quantization axis. The first configuration is presented in figure 1.6(a): the
polarization of the signal is σ+

z and the control is σ−
z . The selection rules require that

the signal drives transitions
∣∣F, mF

〉
→
∣∣F ′, mF ′ = mF + 1

〉
and the control drives
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Figure 1.6: Configurations for the polarizations of the signal
and control beams. The signal field is resonant with the transition∣∣F = 3

〉
→
∣∣F ′ = 4

〉
and the control field is resonant with the transi-

tion
∣∣F = 4

〉
→
∣∣F ′ = 4

〉
. a) The polarization of the signal is σ+

z and
the control is σ−

z . The sublevel mF ′ = 4 is not driven by the control
light leading to the absorption of the signal. b) The polarization of
the signal is σ+

z and the control is also σ+
z . In this specific configu-

ration, each Zeeman level from the excited state is addressed by both
signal and control fields leading to an optimal EIT transmission. c)
Both fields are πz polarized. In this case, we could not observe EIT
as the transition

∣∣F = 4, mF = 0
〉

→
∣∣F ′ = 4, mF ′ = 0

〉
is forbidden.

d) The last configuration is πz polarization for the signal and σ−
z for

the control which leads to an optimal transparency window. However,
this configuration is impossible to implement for two beams which are
propagating in the same direction.
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∣∣F, mF

〉
→
∣∣F ′, mF ′ = mF − 1

〉
. In order to observe EIT, each Zeeman level from

the excited state (
∣∣6P1/2, F ′ = 4

〉
) should be addressed by both signal and control

fields. However, the sublevel mF ′ = 4 is not driven by the control light leading to
the absorption of the signal. As the atomic medium has a high optical depth, this
absorption drastically decreases the EIT transmission. The second configuration is in
figure 1.6(b): the polarization of the signal is σ+

z and the control is also σ+
z . In this

specific case, each Zeeman level from the excited state is addressed by both signal
and control fields leading to an optimal EIT transmission. In this example, we took
σ+

z but it also works if the two fields are σ−
z polarized. If both fields are πz polarized

(figure 1.6(c)), we could not observe EIT as the transition
∣∣F = 4, mF = 0

〉
→
∣∣F ′ =

4, mF ′ = 0
〉

is forbidden. The last configuration (figure 1.6(d)) is πz polarization
for the signal and circular polarization for the control which leads to an optimal
transparency window. However, this configuration is impossible to implement for two
beams which are propagating in the same direction. As a result, signal and control
beams having the same circular polarization is the best option for our experiment.

The second consideration for memory optimization is about the value of Ωc during
the EIT phase (between t0 and t1 in figure 1.5). Two constraints have to be satisfied.
The first one is ∆νEIT > 1/∆tpulse : the width of the signal pulse in the frequency
domain has to be smaller than the width of the EIT window. In order to deduce from
this constraint a condition on Ωc, we have to expand the normalized susceptibility
(1.26) around the resonance (∆s/Ωc ≪ 1) with ∆c = 0 and γgs = 0. The result
at first order is χ(∆s) ≈ γge∆s

(Ωc/2)2 (1 + i
γge∆s

(Ωc/2)2 ). The EIT transmission is equal to
T (∆s) = e−d0 Im(χ(∆s)) and can thus be approximated by T (∆s) ≈ e−∆2

s/∆ν2
EIT with

∆νEIT = (Ωc/2)2

γge
√

d0
. As a result, the first constraint ∆νEIT > 1/∆tpulse results in:

Ω2
c >

2Γ
√

d0
∆tpulse

(1.42)

with Γ = 2γge the decay rate of the excited state. If this condition is not satisfied, a
fraction of the pulse will be absorbed in the excited state which lowers the transfer
efficiency from

∣∣g〉 to
∣∣s〉. The second constraint is that the wavepacket should fit in

the cloud, i.e. lpulse < L with L the cloud length and lpulse = c/ng · ∆tpulse the pulse
length inside the medium. Otherwise, the early part of the pulse will leak outside
of the cloud and the late part is going to be absorbed. We can express this second
requirement in terms of the Rabi frequency Ωc

3:

Ω2
c <

Γd0
∆tpulse

. (1.43)

Therefore, there is a trade-off to make on the value of Ωc to fulfill these two require-
ments. The size of the interval defined by the two inequalities (1.42) and (1.43) is
proportional to

√
d0 which demonstrates the importance of the optical depth in order

3This limit has been calculated with the assumption that the pulse length before compression is
much higher than the length of the atomic medium.
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1.2. EIT-based quantum memories

to maximize the memory efficiency. One can note that Ωc and ∆tpulse play a sym-
metric role in the optimization process. Indeed, one method would be to adjust Ωc

with a fixed ∆tpulse and the other is to optimize ∆tpulse with a fixed Ωc. In practice,
we can use these two methods to find the optimal values of both parameters.

In the previous sections, we didn’t take into account sources of decoherence. Indeed,
when the signal is stored, the collective excitation of the ensemble is sensitive to its
magnetic environment and also to atoms motion. This topic is thoroughly discussed
in the next part of this chapter.

1.2.4 Decoherence in the memory process

The memory efficiency decreases with storage time due to decoherence mechanisms.
They modify the initial collective excitation leading to a decrease in the retrieval
efficiency. A general way to describe the collective spin-wave in the presence of
decoherence sources is:

∣∣Ψ(t)
〉

= 1√
N

N∑
j=1

e−i∆ωsg(r⃗j ,v⃗j)t∣∣g1, ..., gi−1, sj , gi+1, ..., gN ⟩ (1.44)

with ∆ωsg(r⃗j , v⃗j) the frequency shift of the spin wave seen by the j-th atom which
can depend on its position or velocity according to the source of decoherence we are
considering.

Residual magnetic field

During the storage process, the magnetic field of our magneto-optical trap is turned
off but a residual B-field can be persistent due to long-lived Eddy currents. In this
subsection, we are going to study the impact of this residual magnetic field on the
evolution of the memory efficiency over time.

The energy levels of the atoms are shifted in the presence of a magnetic field. This
phenomenon is called the Zeeman effect. The shift linearly depends on the sublevel
mF and can be written ∆E = mF µBgF Bz with µB the Bohr magneton, gF the Landé
g-factor of the hyperfine level F and Bz the external magnetic field along the z-axis.
If we consider the frequency of the transition

∣∣g, mg
〉

→
∣∣s, ms

〉
at the position r⃗j of

the j-th atom, this one is going to shift as ∆ωsg(r⃗j , mg, ms) = (ms +mg)µBgBz(r⃗j)/ℏ
assuming that the Landé g-factor of the ground state is −g and the spin state is the
opposite g. Then, each single excitation

∣∣sj(t)
〉

from equation (1.44) is going to be
modified over time as:

∣∣sj(t)
〉

=
∑

mg ,ms

n(mg)d(mg, ms)e−i∆ωsg(r⃗j ,mg ,ms)t∣∣s, ms
〉

(1.45)
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Figure 1.7: Retrieval efficiency as a function of the stor-
age time for different values of residual magnetic field gradi-
ent. These results were calculated for a population equally distributed
among the Zeeman levels and a length of the atomic medium equal to
L = 2.5 cm.

with n(mg) the probability to have an atom in the Zeeman level mg at t = 0 and
d(mg, ms) the strengths of the transitions used for the storage-and-retrieval process.
The polarization of the signal and control beams are chosen to be the same circular
polarization which leads to mg = ms. The external magnetic field can be noted as
B(z) = B0 + B1z. The constant contribution is easy to cancel experimentally but
the inhomogeneous one remains. For this reason, we take B0 = 0 to study the effect
of the gradient on the memory lifetime. The j-th atom r⃗j can be identified by its
position z, and the sum 1

N

∑N
j=1 of (1.44) can be replaced by an integral

∫ L
z=0 N (z)

with N (z) the density of atoms. The retrieval efficiency η(t) = |
〈
Ψ(t = 0)

∣∣Ψ(t)
〉
|2

can thus be expressed as:

η(t) =

∣∣∣∣∣∣
F∑

mg=−F

n(mg)d(mg)
∫

z
N (z)e−iαmg ztdz

∣∣∣∣∣∣
2

. (1.46)

with αmg = 2mgµBgB1/ℏ. We choose a Gaussian profile for density of atoms along

the z-axis: N (z) = 2
L

√
π

e
− z2

(L/2)2 . The integral is therefore the Fourier transform of a
Gaussian function in space which leads to a Gaussian function in time:

η(t) =

∣∣∣∣∣∣
F∑

mg=−F

n(mg)d(mg)e−t2/τ2
mg

∣∣∣∣∣∣
2

(1.47)

with τmg = 2ℏ/(mgµBgB1L). We assume that the Zeeman levels are equally pop-
ulated ,i.e. n(mg) = 1/(2F + 1). As before, we consider that the ground state is∣∣g〉 =

∣∣6S1/2, F = 3
〉
, the long-lived spin state is

∣∣s〉 =
∣∣6S1/2, F = 4

〉
and the excited

state is
∣∣e〉 =

∣∣6P1/2, F ′ = 4
〉
. The transition strengths d(mg) are given by [Steck,
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Figure 1.8: Wavevectors of the signal and control beams
in EIT configuration. The signal wavevector k⃗s and the control
wavevector k⃗c lie in the xz plane and are separated by an angle θ.

1998] in the configuration described in figure 1.6(b). The retrieval efficiency as a
function of the storage time is represented in figure 1.7 for different values of resid-
ual magnetic field gradient. These results were calculated for a length of the atomic
medium equal to L = 2.5 cm. The lifetime τ of a quantum memory can be defined as
the time for which the memory efficiency dropped at 1/e ≈ 37% of its initial value.
The lifetimes corresponding to each residual magnetic field gradient are: τ = 3 µs
for B1 = 50 mG/cm, τ = 8 µs for B1 = 20 mG/cm, τ = 16 µs for B1 = 10 mG/cm,
τ = 32 µs for B1 = 5 mG/cm. τ scales as the inverse of the residual B-field gradient.
One can note that the curves are not converging to η = 0 which can be explained by
the atoms populating the Zeeman level mg = 0. They are totally insensitive to the
magnetic field as they are driven from mg = 0 to ms = 0.

Motional dephasing

During the storage time, atoms are moving due to their temperature. In this subsec-
tion, we will assess the impact of this motion on the memory lifetime. We consider
the configuration presented in figure 1.8. The signal wavevector k⃗s and the control
wavevector k⃗c lie in the xz plane and are separated by an angle θ. As a result, the
wavector of the spin wave is ∆k⃗ = k⃗s − k⃗c. The j-th atom has an initial position r⃗j

with a constant velocity v⃗j . Indeed, at these short timescales (less than a millisecond)
we can neglect the impact of gravity on the velocity of atoms. The collective state
can thus be written as:

∣∣Ψ(t)
〉

= 1√
N

N∑
j=1

e−i∆k⃗·(r⃗j+v⃗jt)∣∣g1, ..., gi−1, sj , gi+1, ..., gN ⟩. (1.48)

The retrieval efficiency η(t) = |
〈
Ψ(t = 0)

∣∣Ψ(t)
〉
|2 can be expressed as:

η(t) =

∣∣∣∣∣∣ 1
N

N∑
j=1

e−i∆k⃗·v⃗jt

∣∣∣∣∣∣
2

. (1.49)

The sum 1
N

∑N
j=1 can be replaced by an integral

∫
v f(v) with the Maxwell-Boltzmann

distribution f(v). The velocities which are participating to the spin-wave dephasing
are the ones oriented in the xz plane as the wavevectors lie in this plane. The final
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Figure 1.9: Retrieval efficiency as a function of the storage
time for different values of gas temperature. The angle between
the signal and control beams was set to θ = 1◦. T = 20 µK corresponds
to the temperature of an atomic cloud after sub-Doppler cooling, T =
100 µK is approximately the Doppler temperature limit.

result is:

η(t) =
∣∣∣∣∫

v
f(v)e−i∆k⃗·v⃗tdv

∣∣∣∣2 (1.50)

≈ e−t2/τ2 (1.51)

with the lifetime τ = 1/(|∆k⃗|σv) and the standard deviation of the Boltzmann distri-
bution σv =

√
kBT/m. The expression (1.51) is obtained by calculating the Fourier

transform of the Maxwell-Boltzmann distribution f(v). The frequencies of the signal
and control fields are really close (9.2 GHz difference), so we can consider they have
the same wavelength λ. For small θ, the wavevector of the spin wave has a norm
equal to |∆k⃗| = 2π sin θ/λ. The lifetime associated to the motional dephasing can
thus be noted:

τ = λ

2π sin θ

√
m

kBT
. (1.52)

The retrieval efficiency is represented in figure 1.9 as a function of the storage
time for different values of temperature. The angle between the two beams was set
to θ = 1◦. T = 20 µK corresponds to the temperature of an atomic cloud after
sub-Doppler cooling (such as polarization gradient cooling) and leads to a lifetime
τ = 230 µs. The Doppler temperature limit, being approximately T = 100 µK, gives
a lifetime τ = 100 µs. Finally, atomic memories at T = 300 µK reach a lifetime
τ = 60 µs and the ones at T = 1 mK correspond to τ = 33 µs. This is the reason why
groups working with hot vapors [Dideriksen et al., 2021; Namazi et al., 2017a; Reim
et al., 2011] need to set the signal and control fields colinear (θ = 0) as the motional

30
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dephasing increases drastically with the temperature of atoms. In this case, multiple
Fabry-Perot cavities (FPC) in cascade are required to filter out the control, which
significantly reduces the transmission of the detection setup.

Differential light shift

One solution to reduce motional dephasing is the implementation of a tightly con-
fining optical lattice [Zhao et al., 2009]. However, it also creates another source of
decoherence induced by the inhomogeneous intensity profile of the lattice: the differ-
ential light shift. Indeed, the principle of a dipole trap is to use off-resonant light and
high intensity lasers to create a potential well thanks to light shift. The light shift
of an atomic state

∣∣F, mF

〉
which is coupled to many excited states

∣∣F ′, mF ′
〉

can be
written:

∆EF,mF
(r) = |E(r)|2

∑
F ′,mF ′

∣∣∣〈F, mF

∣∣ d⃗ |F ′, mF ′
〉∣∣∣2

4ℏ∆F ′,mF ′
(1.53)

with E the amplitude of the light electric field and ∆F ′,mF ′ = ω − (ωF ′,mF ′ − ωF,mF
)

the detuning of the light frequency ω from the transition
∣∣F, mF

〉
→
∣∣F ′, mF ′

〉
. As the

light intensity is not constant over space, it creates a position-dependent light shift.
The frequency of the spin wave will then experience a light shift ∆ωsg(r, mg, ms) =
(∆Es,ms(r)−∆Eg,mg (r))/ℏ. Therefore the calculation of the retrieval efficiency can be
derived with the same method than the one used for the residual magnetic field as the
shift of the spin wave depends on the same parameters for both problems (r, mg, ms).
One can note the requirement to optically pump all the atoms in a particular Zeeman
level mg to limit the impact of this differential light shift on the memory lifetime. A
complete study of this decoherence source is presented in [Jenkins et al., 2012] for
more details.

1.3 Cooling and trapping mechanisms

The previous sections were about the explanation of the memory process. Our
quantum memory is based on cold atoms. This section presents a theoretical descrip-
tion of the cooling and trapping mechanisms used in our experiment, going from the
Doppler cooling to the principle of a magneto-optical trap and finishing by the study
of polarization gradient cooling.

1.3.1 Doppler cooling

Doppler cooling was first proposed by [Hänsch and Schawlow, 1975] and exper-
imentally implemented in [Chu et al., 1985] with sodium atoms. Laser beams are
red-detuned from an atomic transition in order to be resonant with atoms moving
toward the beams due to Doppler effect. These atoms are going to absorb and sponta-
neously re-emit photons in all directions. They are cooled down as light reduces their
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Chapter 1. Theoretical description of quantum memories and cold atoms

kinetic energy by momentum transfer (radiation pressure). In this section we will
calculate the limit temperature of this cooling method, called Doppler temperature.

The study of the cooling process is done in one dimension. We consider a two-level
atom moving along the z direction with a velocity v⃗ and the light electric field E⃗.
After applying the rotating wave approximation, the hamiltonian in the interaction
picture is:

Ĥ = −ℏ∆v

2 (
∣∣e〉〈e∣∣− ∣∣g〉〈g∣∣) − ℏΩ

2 (
∣∣e〉〈g∣∣+ ∣∣g〉〈e∣∣) (1.54)

with the Rabi frequency Ω = d⃗ge · E⃗/ℏ. The detuning ∆v = ∆0 − k⃗ · v⃗ is composed
of two terms: the first is the detuning of the light frequency from the resonance of
an atom at rest ∆0 = ω − ωeg and the second term is due to the Doppler shift. After
injecting this hamiltonian into the Lindblad master equation (1.14) and projecting
on the right states, we obtain:

dρee

dt
= Ω Im(ρeg) − Γρee (1.55)

dρeg

dt
= (i∆v − γge)ρeg + i

2Ω(ρgg − ρee) (1.56)

We know ρee and ρgg are linked with the relation ρee + ρgg = 1. In the steady
state regime (derivative equal to zero) the expression of ρee is:

ρee = 1
2

s

s + 1 (1.57)

with the saturation parameter
s = s0

1 + 4∆2
v

Γ2

(1.58)

and s0 = 2Ω2

Γ2 . The radiation pressure applied by the light on the atoms is F⃗ = ℏk⃗Γρee.
ℏk⃗ is the momentum transfer of one photon, Γ is the decay rate of the excited state
and ρee is the probability for an atom to be excited. Using (1.57), we can specify the
expression of this force:

F⃗ = ℏk⃗Γ
2

s

s + 1 . (1.59)

If we consider two light beams with the same frequency ω propagating in opposite
directions (k⃗ = ±ω

c e⃗z), the radiation pressure applied to the atom is:

F⃗ = ℏkΓ
2 s0

 1
1 + s0 + 4 (∆0−kv)2

Γ2

− 1
1 + s0 + 4 (∆0+kv)2

Γ2

 e⃗z. (1.60)

This force is represented in figure 1.10 as a function of the atom velocity in one
dimension. The parameters chosen for this graph are: a saturation parameter on
resonance s0 = 1, a detuning ∆0 = −Γ/2 with Γ = 2π · 5.234 MHz which corresponds
to the linewidth of the Cesium D2 line. The dotted lines are the forces of each beam
individually, the upper one being the light with the wavevector k⃗ = ω

c e⃗z and the
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Figure 1.10: Molasse force in function of the atom velocity
in one dimension. The parameters chosen for this graph are: a
saturation parameter on resonance s0 = 1, a detuning ∆0 = −Γ/2
with Γ = 2π · 5.234 MHz which corresponds to the linewidth of the
Cesium D2 line. The dotted lines are the forces applied by each beam
individually, the upper one being the light with the wavevector k⃗ =
ω
c e⃗z and the lower one is for k⃗ = − ω

c e⃗z. The dashed line shows the
linear behaviour of the force for small velocities (|v| ≪ Γ/k).

lower one is for k⃗ = −ω
c e⃗z. Atoms with a velocity |v| < ∆0

k are participating to the
cooling process. If their velocity is negative on the z-axis, the force applied is directed
along +e⃗z and the atoms will be slow down. On the opposite side, if their velocity is
positive on the z-axis, the force applied is oriented along −e⃗z and their velocity will
also decrease. As a result, the radiation pressure created by the two beams acts as
a damping force for the atoms. The dashed line shows the linear behaviour of the
force for small velocities (|v| ≪ Γ/k). This linear dependency can be specified by
expanding equation (1.60):

F⃗ ≈ −βv⃗ with β = − 8ℏk2∆0s0
Γ(1 + s0 + 4∆2

0/Γ2)2 . (1.61)

The cooling rate is defined by the power of the force Pc = F⃗ · v⃗. The heating
rate is associated to the minimum change in atom kinetic energy due to momentum
transfer with light and is written Ph = ℏ2k2

2m Rsc with the scattering rate Rsc = Γρee.
In steady state, these two rates are equal to each others and lead to a kinetic energy
Ec = −ℏ

4(∆0 + Γ2

4∆0
) with a minimum at ∆0 = −Γ

2 . As Ec = kBT
2 for one dimensional

gaz, the minimal temperature achievable called the Doppler temperature is TD = ℏΓ
2kB

which is equal to 125µK for Cesium atoms on the D2 line.

1.3.2 Magneto-optical traps

A magneto-optical trap (MOT) operates by combining laser cooling (presented on
previous section) and magnetic-field gradients to slow down and confine atoms within
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Figure 1.11: Principle of a magneto-optical trap. We consider
a ground state

∣∣mF = 0
〉

and three excited states
∣∣mF ′ = −1

〉
,
∣∣mF ′ =

0
〉

and
∣∣mF ′ = 1

〉
. If the atom is in the center z = 0, both beams are

not resonant with any atomic transitions as they are detuned by ∆0
from the excited states. For z = −zlim, the σ+ polarized beam is
resonant with the transition

∣∣mF = 0
〉

→
∣∣mF ′ = 1

〉
. For z = zlim,

the σ− polarized beam is resonant with the transition
∣∣mF = 0

〉
→∣∣mF ′ = −1

〉
.

a small region of space. The principle of the MOT is represented in figure 1.11. We
consider a linear magnetic field B⃗(z) = Bze⃗z oriented along the z axis with a gradient
B. This magnetic field is shifting linearly the energy of Zeeman levels due to Zeeman
effect according to the formula ∆E = mF µBgF Bz with µB the Bohr magneton and
gF the Landé g-factor of the hyperfine level F . Therefore, the sublevel mF = 1
experiences a shift which is the opposite of mF = −1. In order to simplify this
qualitative description, we will take the example of an atom at rest, a ground state∣∣mF = 0

〉
and three excited states

∣∣mF ′ = −1
〉
,
∣∣mF ′ = 0

〉
and

∣∣mF ′ = 1
〉
. If the

atom is in the center z = 0, both beams are not resonant with any atomic transitions
as they are detuned by ∆0 from the excited states. For z = −zlim, the σ+ polarized
beam is resonant with the transition

∣∣mF = 0
〉

→
∣∣mF ′ = 1

〉
. As a result, the

radiation pressure force is oriented from z = −zlim to the center z = 0. For z = zlim,
the σ− polarized beam is resonant with the transition

∣∣mF = 0
〉

→
∣∣mF ′ = −1

〉
and applies a force on the atom oriented toward the center. The combination of the
cooling beams and magnetic gradient confines the atoms in space and thus acts as
a trap. This idea was first proposed by Jean Dalibard in 1985 and experimentally
implemented in [Raab et al., 1987].

After this qualitative description, we will evaluate quantitatively this force for
atoms with a non-zero velocity and the same energy levels than previous section.
The expression of this force is similar than the one described in the equation (1.60)
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Figure 1.12: Trajectories of atoms in a magneto-optical trap
for different initial conditions. The radius of the cooling beams is
set at 1 cm, the detuning to ∆0 = −3Γ and the magnetic field gradient
to 35 G/cm. Atoms are initially placed at z = −2 cm with velocities
in the range of [0, 40] m/s and also at z = 2 cm with velocities in the
range of [0, −40] m/s. a) represents the trajectories for a saturation
parameter s0 = 0.5 and b) for s0 = 5. A 2D map of the force applied
by the cooling beams on the atomic gas is shown on the background.

with the Zeeman shift included in the detuning between light and atoms:

F⃗ = ℏkΓ
2 s0

 1
1 + s0 + 4 (∆0−kv−µBgBz/ℏ)2

Γ2

− 1
1 + s0 + 4 (∆0+kv+µBgBz/ℏ)2

Γ2

 e⃗z (1.62)

g being the Landé g-factor of the excited states as the ground state
∣∣mF = 0

〉
is

insensitive to magnetic field. In the regime of small displacement (|z| ≪ ℏΓ/(µBgB))
and small velocities (|v| ≪ Γ/k), the force can be approximated to a linear function
of both parameters:

F⃗ ≈ −βv⃗ − κz⃗ with κ = µBgB

ℏk
β. (1.63)

One can note that the product gB needs to be positive in order to have an
attractive force and not a repulsive one. However, one can achieve an attractive force
with a negative product gB if the configuration of the cooling beams is changed: the
σ+ polarized beam has to be oriented along −e⃗z and the σ− polarized beam along
+e⃗z.

The trajectories of atoms in phase space are presented in figure 1.12 for different
initial conditions. The radius of the cooling beams is set at 1 cm, the detuning to
∆0 = −3Γ and the magnetic field gradient to 35 G/cm which corresponds to our

35



Chapter 1. Theoretical description of quantum memories and cold atoms

experimental case at the end of our compression phase (see section 2.1.3). Atoms
are initially placed at z = −2 cm with velocities in the range of [0, 40] m/s and also
at z = 2 cm with velocities in the range of [0, −40] m/s. Figure 1.12(a) represents
the trajectories for a saturation parameter s0 = 0.5 and figure 1.12(b) for s0 = 5.
A 2D map of the force applied by the cooling beams on the atomic gas is shown on
the background. An atom is trapped if its trajectory is converging to the center of
phase space (z = 0, v = 0). The velocity capture is defined as the maximum initial
velocity for which atoms are trapped. The velocity capture achieved for s0 = 0.5 is
vc = 20 m/s and the one for s0 = 5 is vc = 31 m/s. Moreover the number of damped
oscillations around the center is higher for s0 = 0.5 than for s0 = 5 meaning that the
converging time to the center decreases with s0. These two observations underlines
the importance of having a high saturation parameter (s0 ≫ 1) in order to trap atoms
with a wide velocity range and cool them down efficiently.

1.3.3 Polarization gradient cooling

The temperature achieved in a magneto-optical trap is limited by the Doppler tem-
perature. However, sub-Doppler cooling has been achieved experimentally [Lett et
al., 1988] in 1988. One year later, [Dalibard and Cohen-Tannoudji, 1989] explained
the mechanism of this cooling process called polarization gradient cooling (PGC). It
involves two beams going in opposite directions without the presence of a magnetic
field. Two configurations are possible for the polarizations of these beams: the linear
configuration H/V or the circular one σ+/σ−. In our experiment, polarization gra-
dient cooling is implemented in the circular configuration as we are using the same
beams than the ones set in the magneto-optical trap.

The superposition of two counter-propagating waves, one σ+ polarized and the
other σ− polarized, is a standing wave with a linear polarization which is rotating
in space. As a result, the energy levels of atoms are not modulated in space: the
polarization of the standing wave remains linear over all its extent which results
in a constant light shift in space. This is the reason why Sisyphus cooling is not
possible for the configuration σ+/σ− whereas it is effective in the configuration H/V .
The mechanism that enables to cool down the gas at a sub-Doppler temperature in
the circular configuration is the unbalanced radiation pressure from the two counter-
propagating waves. Indeed, if we consider an atom with a velocity v = zt, this one will
see the linear polarization of the standing wave rotating with an angle φ = kv = kzt.
[Dalibard and Cohen-Tannoudji, 1989] demonstrated that the difference of population
between the extreme Zeeman levels of the ground state ∆N = Nmg=F − Nmg=−F is
proportional to kv∆0

Ω2 with a positive proportionality constant. Assuming that the
detuning ∆0 < 0, an atom moving in the direction +e⃗z (v > 0) has more probability
to populate mg = −F than mg = F . The probability for an atom in mg = −F to
absorb a photon from the σ− beam is higher than the one to absorb a photon from
the σ+ beam due to the imbalance in the Clebsh-Gordan coefficients. This imbalance
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Figure 1.13: Polarization gradient cooling in the σ+/σ− con-
figuration. The force is represented in function of the atom velocity
for a ground state F = 4 and an excited state F ′ = 5. The satu-
ration parameter chosen is s0 = 7 and the detuning is ∆0 = −3Γ.
The signature of the polarization gradient cooling is in the interval
[−0.1, 0.1]Γ/k shown on the inset of the figure. The dotted line is the
slope of Doppler cooling without polarization gradient cooling.

is the cause of the unbalanced radiation pressure from the two counter-propagating
waves which results in a damping force oriented toward the opposite direction of the
atom velocity. The principle is the same for an atom moving in the direction −e⃗z

(v < 0): it will populate mg = F and has more chance to absorb σ+ polarized photons
which results in a force oriented in the direction +e⃗z.

The calculation of this force is complex, especially when we are dealing with high
F number for the ground state. Nevertheless it can be simulated numerically thanks
to the package PyLCP presented in [Eckel et al., 2022]. The force is computed for a
ground state F = 4 and an excited state F ′ = 5 with cooling beams in the σ+/σ− con-
figuration. The saturation parameter chosen is s0 = 7 and the detuning is ∆0 = −3Γ
corresponding to our experimental values. The result is represented in figure 1.13.
The signature of the polarization gradient cooling is in the interval [−0.1, 0.1]Γ/k

shown on the inset of the figure. The dotted line is the slope of Doppler cooling with-
out the sub-Doppler mechanism. The value of the slope with polarization gradient
cooling is higher by multiple orders of magnitude than the one only due to Doppler
cooling. The damping factor β is thus enhanced in the presence of this sub-Doppler
cooling. The final temperature calculated by [Dalibard and Cohen-Tannoudji, 1989]
is proportional to ℏΩ2

kB |∆0| which explains why we decrease the intensity of our cooling
beams and increase the absolute value of their detuning during the PGC phase of
our cooling cycle (see section 2.1.3). Experimentally, we measured a temperature
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TP GC = 20 µK [Hoffet, 2022] below the Doppler limit TD = 125 µK for cesium atoms.

1.4 Conclusion

This chapter first provided an overview of the different physical platforms currently
investigated for quantum memories and a focus on EIT-cold-atom-based memories.
Then, the analysis of the EIT protocol underlined the slowdown effect on light il-
lustrated with the dark polariton picture and how this process can be employed to
efficiently transfer a photonic state to a collective excitation of the cloud. The deco-
herence of this excitation was evaluated in presence of residual magnetic fields and
dephasing induced by the motion of atoms. Finally, the trapping and cooling meth-
ods employed in our experiment were explained, first with the radiation pressure of
light beams on the atomic gas and how counter-propagating waves can cool it down
up to the Doppler temperature. This damping force can also depend on the atom
position by adding magnetic field gradients, leading to a trap. Sub-Doppler temper-
atures can be reached when the magnetic field is switched off, due to the unbalanced
radiation pressure of the counter-propagating beams induced by atomic motion. The
implementation of these trapping and cooling methods is presented in Chapter 2.
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This chapter presents the experimental setup of our cold-atom based quantum
memory. The magneto-optical trap implementation is described with the different
cooling beams and the main coils generating magnetic-field gradients. The lasers
involved in the memory process are also described with their locking setup. More-
over, we examine the critical parameters to enhance the memory efficiency of our
storage platform such as the optical depth and the EIT transmission. Finally, a new

39



Chapter 2. Experimental implementation of a cold-atom based quantum memory

Cooling
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𝑧

𝑥

𝑦

Figure 2.1: Cooling beam configuration around the glass vac-
uum chamber. Two inch beams are pointing at the center of the vac-
uum chamber along the three dimensions of space and retro-reflected
to cool down atoms.

compensation system to cancel the residual magnetic field is presented leading to an
improvement of the memory lifetime.

This experiment started almost ten years ago and several former members of
the group contributed to its improvement years after years. Interesting details are
available in their respective PhD thesis [Veissier, 2013], [Giner, 2013], [Nicolas, 2014],
[Vernaz-Gris, 2018], [Hoffet, 2022].

2.1 Magneto-optical trap

A magneto-optical trap (MOT) operates by combining laser cooling and magnetic-
field gradients to slow down and confine atoms within a small region of space (see
section 1.3.2). First, we describe the atomic transitions used for laser cooling. Sec-
ondly, we characterize magnetic-field gradients created by the two pairs of rectangular
coils that are employed to generate a quasi 2D-MOT. Finally, the sequence of the ex-
periment is presented.

2.1.1 Cooling beams

The light used for the cooling process is produced by a Ti:sapphire laser (MSquared,
SolsTiS). Two inch beams coming from this laser are pointing at the center of the
vacuum chamber along the three dimensions of space (see figure 2.1). One mirror is
positioned in front of each beam to produce a counterpropagating wave required to
cool down atoms moving in the opposite direction. The light is circularly polarized
thanks to quarter waveplates. The total optical power of the trapping beams is
around 350 mW. Their frequency is given by the atomic transitions of the Cesium D2
line (see figure 2.2). The trapping light is red detuned from the cycling transition∣∣6S1/2, F = 4

〉
→

∣∣6P3/2, F ′ = 5
〉

by 17 MHz corresponding to about three times
the linewidth of the transition. Due to off-resonant scattering from

∣∣6P3/2, F ′ = 4
〉
,

a part of the atoms decays in the level
∣∣6S1/2, F = 3

〉
and are not anymore in the
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Figure 2.2: Cooling beams addressing different transitions
of the Cesium D2 line. The trapping laser is red detuned from
the cycling transition

∣∣6S1/2, F = 4
〉

→
∣∣6P3/2, F ′ = 5

〉
by 17 MHz to

compensate for the Doppler shift of atoms moving toward the incoming
light. The repump beam is resonant with the transition

∣∣6S1/2, F =
3
〉

→
∣∣6P3/2, F ′ = 4

〉
and enables the atoms which are in the level∣∣6S1/2, F = 3

〉
to get back into the cooling process.
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cooling cycle. In order to overcome this issue, we use a repump beam resonant with
the transition

∣∣6S1/2, F = 3
〉

→
∣∣6P3/2, F ′ = 4

〉
to transfer the atoms back to the level∣∣6S1/2, F = 4

〉
. The repump laser is sent in the same directions than the trapping

laser and has a total optical power of 4 mW.

2.1.2 MOT coils: characterization and implementation

Coils in an anti-Helmholtz configuration are the second ingredient to implement a
magneto-optical trap. A pair of coils in this specific configuration generates a mag-
netic field gradient along each dimension of space. The value of this gradient defines
the boundaries of the trap in each direction (see section 1.3.2). In our experiment, we
are using two pairs of rectangular coils as it allows to achieve high gradients along two
dimensions (called the transverse axes of the atomic cloud) and a low one on the last
dimension (longitudinal axis of the cloud). As a result, we obtain a quasi 2D-MOT,
leading to a very elongated cold-atomic ensemble. The purpose of having an elongated
ensemble is to reach a higher optical depth [Lin et al., 2008] along the longitudinal
axis (z-axis in figure 2.1), i.e. along the direction of the signal propagation.

During the course of my doctoral research, we observed short-circuits in the main
coils used for the MOT. Therefore, we had to replace the coils for safety reasons. We
took advantage of this change to enhance their performances. The first improvement
was to increase the number of wire turns from 90 to 110 turns. Higher number of turns
enables us to reach larger magnetic field gradients keeping the same value of current
injected into the coils. The second was on optimizing the wire radius. A large wire
radius is required for high current, especially in our experiment as the current reaches
18 A during the cooling phase (see section 2.1.3). However, the volume available for
the wires on the coil holder is limited. Taking into account these two constraints, we
chose a wire radius of 0.8 mm (compared to 0.7 mm for the previous coils). Each coil
was made by stacking 10 layers of 11 turns (10 × 11). Thermal paste (RSpro) was
spread between the layers for enhanced thermal dissipation, and also epoxy (Loctite
3430) to stick the layers tightly together (see figure 2.3(a)).

After winding the coils, we characterized them by measuring their resistance and
their inductance. We used a multimeter to determine the value of the resistance R for
each coil. In order to measure the inductance, we built a RL circuit, using a resistance
r with a well known value, and a function generator which produced a sinusoidal
waveform. By looking to the dephasing φ between the voltage around the resistance
Vr and the voltage given by the function generator Vin, we can calculate the inductance
with the following expression: L = (r+R)·| tan(φ)|

2πf , f being the frequency of the input
sinusoidal signal. After scanning this frequency, we found the one corresponding to
the dephasing φ = π/4 and determined the value of the inductance for the four coils.
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a) b)

Figure 2.3: Rectangular coils used for the magneto-optical
trap. a) One rectangular coil composed of a hundred and ten turns of
wire. The wires are glued between each other with epoxy and thermal
paste is applied on each layer of wire to enable a good heat exchange
inside the coil. The rectangular coil has a width of 12 cm and a
length of 28 cm. b) Two pairs of rectangular coils in an anti-Helmholtz
configuration used for the magneto-optical trap. The horizontal pair
of coils is spaced by 12 cm and the vertical one is spaced by 16 cm.

Position Bottom Top Left Right
L 3.9 mH 4.2 mH 4.1 mH 4.1 mH
R 0.8 Ω 0.8 Ω 0.8 Ω 0.8 Ω

Table 2.1: Measurements of the resistance R and the inductance L
for each coil.

The table 2.1 shows the values of the resistance R and the inductance L for each
coil. The position given in this table is the one corresponding to the configuration
given by figure 2.3(b).

After characterizing them separately, the coils were assembled together as shown
in figure 2.3(b). The horizontal pair is spaced by 12 cm while the vertical one is spaced
by 16 cm. Then, we measured the magnetic field gradient created by the two pairs of
coils in an anti-Helmholtz configuration (i.e. the configuration of the magneto-optical
trap) along two different axis (see figure 2.4). Only one of the transverse axes has
been measured (x axis) because the other (y axis) has the same value of gradient
due to our configuration [Giner, 2013]. For this purpose, a magnetic field sensor was
placed at the center of the magnetic cage and was attached to a translation stage to
scan the two axis. Figure 2.4 shows a magnetic field gradient of 5.8 G/cm along the
transverse direction of the magneto-optical trap and a gradient of 0.4 G/cm along the
longitudinal direction, for a current I = 3A circulating inside each pair of coils. If
the two pairs of coils have the same spacing, the gradient along the z axis should be
equal to zero, and no trapping could be possible in this direction. In our case, the
spacing between the two pairs is not the same, and for this particular reason, a small
gradient appears along the z axis.
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Figure 2.4: Magnetic field gradient created by the two pairs
of rectangular coils in an anti-Helmholtz configuration.
a) Magnetic field measured in the transverse direction of the magneto-
optical trap. A linear fit shows a magnetic field gradient of 5.8 G/cm
for a current I = 3 A circulating inside each pair of coils. b) Magnetic
field measured in the longitudinal direction of the magneto-optical
trap. A linear fit shows a magnetic field gradient of 0.4 G/cm for a
current I = 3 A circulating inside each pair of coils.

2.1.3 Sequence of the experiment

The experiment is working on an optimized cycle of 120 ms described in figure
2.5. First, a loading phase of 108 ms begins, in which all the parameters are set in a
continuous mode. The magnetic field gradient in the transverse axis is at 6 G/cm and
the longitudinal one is around 0.4 G/cm. The total trapping power is around 350 mW
with an intensity of 17 mW/cm2. The trapping beam is red detuned from the cycling
transition by 17 MHz. The total repump power is around 4 mW with an intensity
of 0.2 mW/cm2. Then, a compression phase is initiated and lasts 8 ms. During this
phase, the magnetic field gradient is increased gradually from 6 to 35 G/cm. The
purpose of this step is to enhance the density of atoms along the longitudinal direction
[Petrich et al., 1994]. It leads to better optical depth1 and then enables us to increase
the memory efficiency. When the compression stage is finished, the magnetic field
is turned off and we perform polarization gradient cooling (PGC) on our atomic
cloud during 2 ms (see section 1.3.3). To do so, we ramp down the trapping and
repump power to zero with an exponential decay. The trapping detuning is also
decreasing exponentially from −17 to −107 MHz. The aim of this PGC phase is
to cool down atoms to about T = 20 µK. At the end of this phase, the cold-atom
memory has optimal properties for the storage process. The "Memory" stage lasts
2 ms (in practice, we are only using 1 ms of this time interval for our experiment to
keep a high optical depth). In this sequence, we don’t use a depump laser to transfer
our atoms from

∣∣6S1/2, F = 4
〉

to
∣∣6S1/2, F = 3

〉
. Indeed, as the extinction time for

1In our case, the size of the cloud in the longitudinal direction is limited by the waist of our
trapping beams. As a result, the length of the ensemble remains the same after compression and its
density increases leading to a better optical depth.
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Figure 2.5: Temporal sequence of the experiment. First, a
loading phase of 108 ms begins, in which all the parameters are set in
a continuous mode to prepare the MOT. Then, a compression phase is
initiated and lasts 8 ms. During this phase, the magnetic field gradi-
ent is increased gradually from 6 to 35 G/cm. When the compression
stage is finished, the magnetic field is turned off and we perform po-
larization gradient cooling (PGC) on our atomic cloud during 2 ms
by ramping down the trapping power, the trapping detuning and the
repump power, following an exponential decay. Then, the cold-atom
memory has optimal properties for the storage process. The "Memory"
stage lasts 2 ms.

the trapping power is 1 ms longer than the one for the repump power, all the atoms
already transferred to

∣∣6S1/2, F = 3
〉

at the end of the PGC stage.

The figure 2.6 shows the fluorescence of cesium atoms inside the elongated magneto-
optical trap. This fluorescence is the spontaneous emission of atoms scattering pho-
tons during the cooling cycle. The atomic cloud is around 2.5 centimeters long with
a transverse size which is on the order of a millimeter.

2.2 Lasers for the memory process

The storage-and-retrieval process requires the use of two different lasers. The first
one is called the signal and represents the light which is going to be stored in the
memory. The second one is called the control and is responsible of the EIT window
opening. The control acts as a light switch when the signal pulse is inside the cloud:
by turning it off, the signal photons are converted into a collective excitation of the
cold atoms, and by turning it on, this excitation is converted back into the original
signal photons (see section 1.2.3). The signal and the control beams are generated
by semiconductor laser diodes (Toptica Photonics, DL100).
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Figure 2.6: Fluorescence of cesium atoms inside the elon-
gated magneto-optical trap. The fluorescence of cesium atoms is
represented by the bright area at the center of the vacuum chamber.

2.2.1 Cesium D1 line compared to cesium D2 line

The choice of transitions for the lasers used in the memory process is significant
if we want to achieve an optimal storage-and-retrieval efficiency. Previously in the
group, EIT was implemented on the D2 line of Cesium (the excited state used was∣∣e〉 =

∣∣6P3/2, F ′ = 4
〉
). Nevertheless, the hyperfine structure of this D2 line was a

limitation in order to access efficiencies above 70% [Vernaz-Gris et al., 2018].

A quantitative analysis has been done in our group to compare the efficiency of D1
and D2 lines [Vernaz-Gris et al., 2018]. The results are presented in figure 2.7(b). The
D2 line shows a limitation of the maximum memory efficiency (65% corresponding
for an OD equal to 200) compared to the D1 line. Indeed, the memory efficiency
scales as e−2γgsTd [Hsiao et al., 2018], with Td the group delay and γgs the ground
state decoherence rate. This decoherence rate is increased by off-resonant coupling
to the adjacent excited states. The adjacent excited states are

∣∣6P3/2, F ′ = 3
〉

and∣∣6P3/2, F ′ = 5
〉

for D2 line (see figure 2.2) and
∣∣6P1/2, F ′ = 3

〉
for D1 line (see figure

2.7(a)). The off-resonant coupling is larger for the D2 line than the D1 line as the
hyperfine splittings in the excited states are four times smaller leading to γD2

gs > γD1
gs .

Therefore, the memory process becomes less efficient for the D2 line than for D1.
Moreover, the efficiency decreases for high values of OD as the off-resonant coupling
is enhanced. This effect is negligible in the case of the D1 line. To conclude, the D1
line enables a better memory efficiency than the D2 line with no limitations in the
regime of high optical depth. Experimental demonstrations of quantum memories on
the D1 transitions showed storage-and-retrieval efficiency up to 90% [Cao et al., 2020;
Wang et al., 2019].

2.2.2 Implementation of the signal lock

The signal frequency must be locked on the transition
∣∣6S1/2, F = 3

〉
→
∣∣6P1/2, F ′ =

4
〉

as presented in figure 2.7(a). Previously on the experiment, the signal frequency
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Figure 2.7: Advantage of the D1 line compared to the D2 line
for the memory process. a) Lasers used for the memory process
addressing different transitions of the Cesium D1 line. The signal
beam is resonant with the transition

∣∣6S1/2, F = 3
〉

→
∣∣6P1/2, F ′ = 4

〉
and the control beam is resonant with the transition

∣∣6S1/2, F = 4
〉

→∣∣6P1/2, F ′ = 4
〉
. b) Memory efficiency as a function of the optical

depth (OD) for the Cesium D1 and D2 lines. This simulation was done
for an intrinsic ground state decoherence γ0 = 10−3Γ and a residual
magnetic field gradient B0 = 8 mG/cm−1, a cloud length L = 2.5 cm.
The temporal duration of the signal pulse is τ = 500 ns and the pulse
delay is fixed to Td = 2τ .

was locked thanks to an error signal obtained by modulating the current of the laser
diode. However this method was not optimal for the storage process as the signal
sent to the memory is frequency modulated, even after being locked. As a result, we
implemented a locking setup with an external modulation done by an AOM (acouto-
optic modulator) to achieve a fixed frequency for the light sent to the memory [Zhang
et al., 2009].

Before explaining the locking setup, an introduction to saturated absorption spec-
troscopy is required. We consider a probe beam with a weak intensity propagating in
a vapor cell. If we monitor the transmission of the probe after the vapor cell, absorp-
tion will occur at the atomic resonances. However, the linewidth of the absorption
profile is larger than the natural linewidth of the atomic levels due to Doppler broad-
ening. If the frequency difference between two resonances is smaller than the Doppler
broadening profile, they can not be distinguished. To fix this issue, we are using a
high intensity pump beam going in the opposite direction of the probe. The two
beams are overlapping in the vapor cell. Three cases need to be examined to under-
stand the principle of the saturated absorption spectroscopy: atoms moving in the
direction of the pump beam, atoms moving in the direction of the probe beam and
atoms with no velocity along the propagation axis of light. For the first case and the
second case, the probe is absorbed as the pump is not resonant with the same atoms
than the probe due to their opposite Doppler shift. Only atoms with no velocity will
be resonant with the two beams. As these atoms are saturated by the pump, they
are transparent to the probe leading to narrow transmission peaks centered at atomic
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Figure 2.8: Locking setup of the signal. The laser is modulated
in frequency thanks to an acousto-optic modulator (AOM). Then, the
light enters in the saturated absorption setup: ten percent of it is
reflected by the thick glass (one reflection at each interface) and ninety
percent is transmitted. The transmitted beam is overlapping one of
the reflection inside the vapor cell to perform saturated absorption
spectroscopy. The other reflection is used to subtract the Doppler
profile from the saturated absorption profile. The signal detected on
the photodiodes is demodulated to create the error signal used to lock
the laser.

resonances. Therefore, this spectroscopy overcomes the issue of Doppler broadening
by only addressing atoms with a very low speed range.

The locking setup is presented in figure 2.8. First, we separate the light going to the
memory from the one going to the locking part. Then the light is transmitted through
the PBS1 (polarization beam-splitter) to go through an AOM. The AOM is frequency
modulated with a signal S = S0 cos (Ωmt + φm). We select the −1 diffraction order of
the AOM two times (the second time being after reflecting on the mirror). The light
frequency thus changes from ω to ω − 2ωm cos (Ωmt + φm), with ωm the amplitude of
the modulation which is proportional to S0. After being frequency modulated, the
laser is reflected by the PBS1 and enters into the saturated absorption setup. Ten
percent of the light is reflected by the thick glass (one reflection at each interface) and
ninety percent is transmitted. In order to make the link with the description of the
saturated absorption given above, the reflected beams are the probes (purple beams)
and the transmitted beam is the pump. Only one probe will overlap with the pump
in the vapor cell. The other is used to subtract the Doppler profile from the saturated
absorption profile after detection on the photodiodes (blue waveform on figure 2.9).

Nevertheless, we need an error signal to lock the laser. The error signal is the
derivative of the saturated absorption signal along the frequency axis. This derivative
could be calculated by demodulating the signal received by the photodiodes after
subtraction Ssub. Indeed, supposing that the amplitude of the modulation is small
compared to the optical frequency ω, we can use a Taylor expansion at the first order
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Figure 2.9: Error signal for the locking of the signal laser.
The blue waveform represents the saturated absorption spectroscopy
with Doppler subtraction. The left peak is the transition

∣∣6S1/2, F =
3
〉

→
∣∣6P1/2, F ′ = 3

〉
and the right one is the transition

∣∣6S1/2, F =
3
〉

→
∣∣6P1/2, F ′ = 4

〉
. The error signal corresponding to these two

peaks is represented by the red waveform.

to express Ssub:

Ssub(ω − 2ωm cos (Ωmt + φm)) ≈ Ssub(ω) − dSsub
dω

· 2ωm cos (Ωmt + φm) (2.1)

The first term at the frequency ω is independent of time because of the average
done by the photodiodes, as their bandwidths (on the order of MHz) are smaller
than the optical frequency (335 THz). This continuous component is suppressed by
a high-pass filter. In order to demodulate Ssub, we need to multiply it to a demodu-
lation signal Sdem = S 0

dem cos (Ωdemt + φdem). The calculations lead to the following
expression:

Sdem · Ssub = −ωmS 0
dem

dSsub
dω

[cos (Ωm + Ωdem)t + (φm + φdem)

+ cos (Ωm − Ωdem)t + (φm − φdem)]
(2.2)

The demodulation frequency and phase are set to be the same than the modulation
(Ωm = Ωdem and φm = φdem). The product of the two signals go through a low-pass
filter to get rid of the oscillating term at 2Ωm. The final expression of the resulting
signal after demodulation is:

Sdem · Ssub = −ωmS 0
dem

dSsub
dω

(2.3)

The most important factor in this expression is dSsub/dω, i.e. the derivative of the
saturated absorption signal along the frequency axis. Therefore, after demodulation
we obtain an error signal that could be used to lock our laser. The device employed for
the demodulation and filters is a Lock-In Amplifier (SR830). The experimental error
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Figure 2.10: Beatnote between signal and control lasers for
phase locking. The figure shows a central peak at zero detuning and
servo bumps at ±400 kHz. The width of the central peak is limited
by the resolution bandwidth of the spectrum analyser (3 kHz) and its
amplitude is 30 dBm above the servo-bump amplitude.

signal achieved is shown on figure 2.9. The blue waveform represents the saturated
absorption spectroscopy with Doppler subtraction. The left peak is the transition∣∣6S1/2, F = 3

〉
→

∣∣6P1/2, F ′ = 3
〉

and the right one is the transition
∣∣6S1/2, F =

3
〉

→
∣∣6P1/2, F ′ = 4

〉
. The error signal of these two peaks is represented by the red

waveform. The right peak corresponds to the transition on which we are going to
lock the signal laser (

∣∣6S1/2, F = 3
〉

→
∣∣6P1/2, F ′ = 4

〉
) .

2.2.3 Phase lock between the control and the signal

The control laser is phase-locked with the signal laser in order to maintain a good
coherence between the two beams during the storage process. To perform this phase
locking, the two lasers are combined in a single-mode fiber which is linked to an
ultra-fast photodiode (Thorlabs, DX20AF) with a bandwidth equal to 20 GHz. The
two beams interfere in the fiber leading to a continuous component (the sum of the
intensities of both lasers) and an oscillating component (called the beatnote) at the
frequency ωsignal − ωcontrol. The photodiode was chosen to have a bandwidth higher
than 9.19 GHz which corresponds to the frequency difference between the signal and
control transitions (see figure 2.7(a)). The output of the photodiode goes through
an amplification stage of 30 dB and is sent to a device (Vescent, D2-135) locking the
frequency and phase of the beatnote to a reference microwave signal set at 9.19 GHz.
After being phase locked, the beatnote between the signal and the control lasers is
shown on figure 2.10. This beatnote was measured with a spectrum analyser (R&S,
FSL18) which is able to detect frequencies up to 18 GHz. The resolution bandwidth
used to visualize the beatnote is equals to 3 kHz. The figure shows a central peak
at zero detuning and servo bumps2 at ±400 kHz. The width of the central peak is

2These servo bumps occur when the phase delay of the feedback signal exceeds π, resulting in a
transition from negative to positive feedback.
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limited by the resolution bandwidth of the spectrum analyser and its amplitude is 30
dBm above the servo-bump amplitude.

After locking the signal and control lasers, we can begin the experimental procedure
to optimize the memory efficiency (section 2.3) and the memory lifetime (section 2.4).

2.3 Optimizing the memory efficiency

In the context of quantum networks, the entanglement rate between the two ends of
a communication line highly depends on the memory efficiency η as it affects the rate
of entanglement swapping operations [Sangouard et al., 2011]. Moreover, achieving
a high memory efficiency enables a range of cryptographic protocols to operate in
the secure regime as losses introduced by the memory can be exploited by malicious
parties (see Chapter 3). The focus of this section is on the experimental parameters
that can be optimized to increase the storage-and-retrieval efficiency.

2.3.1 OD measurement

The optical depth is the first crucial parameter to optimize in order to increase the
memory efficiency. A previous section about the comparison of the D1 and D2 lines
shows the relation between the optical depth and the memory efficiency (see figure
2.7(b)). On the D1 line, the efficiency increases with the OD whereas on the D2
line, the efficiency decreases for an OD higher than 200 due to off-resonant coupling
to the other excited states. Furthermore, the product between the bandwidth of the
quantum memory and the temporal delay induced by EIT only depends on the optical
depth. Therefore, an OD optimization is required to enhance the performance of our
cold-atom memory.

Figure 2.11 shows the setup used to measure the optical depth of our atomic cloud.
The light beam is separated in two paths thanks to the BS (beam-splitter). One
of the paths leads to the reference photodiode (PDref) to monitor the optical power
before absorption by the cesium atoms. The beam probing the cloud is focused inside
the chamber thanks to a convex lens (L1). The aim of using L1 is to reduce the signal
waist at the center of the MOT in order to achieve a better optical depth. Before
L1, the signal waist is about w0 = 1 mm. The atomic density in the transverse plane
can be simplified to a Gaussian profile given by n ∝ e−2r2/(σ2

t ) with σt ≈ 500 µm
(we can call σt the atomic waist). As a result, the signal waist before L1 is twice
the atomic waist. If w0 is reduced, the beam could entirely fit in the center of the
cloud transverse plane where the atomic density is higher. The focal length of L1 is
f ′ = 50 cm and leads to w0 = 126 µm which is four times less than σt. An additional
photodiode PDout is placed after the chamber to measure transmission through the
atomic ensemble.

51



Chapter 2. Experimental implementation of a cold-atom based quantum memory

Atoms

PDref

PDout

Multimode
�iber

PM �iber

L1 L2

BS

Figure 2.11: OD measurement setup. The light beam is sepa-
rated in two paths thanks to the BS (beam-splitter). One of the paths
leads to the reference photodiode (PDref) to monitor the optical power
before absorption by the cesium atoms. The other beam is focused in-
side the cloud thanks to a convex lens L1 with a focal lenth f ′ = 50 cm.
An additional photodiode PDout is placed after the chamber to mea-
sure the fraction of light absorbed by the atoms.

Another constraint to be satisfied to measure properly the OD is to be below the
saturation intensity of the signal transition Isat. For the D1 line, Isat is on the order of
1 mW/cm2 [Steck, 1998]. The typical power used for our OD measurements is about
P = 10 nW. The corresponding intensity for a Gaussian beam is I = 2P/πw2

0 =
0.04 mW/cm2 which confirms that we are in the non-saturated regime (I ≪ Isat).

The OD measurement is done by measuring the transmission of the signal going
through the cloud for different signal detunings around the atomic resonance. The
detunings are applied by an AOM on the signal. Measurements for detunings be-
low than the linewidth of the transition are not accurate because the medium is so
absorptive that the transmitted light has a power on the order of the photodiode
dark counts. This is the reason why we are measuring the transmission for a wide
range of frequencies around the atomic resonance (range of 100 MHz). The result is
presented on figure 2.12. The red points represent the experimental data and the
blue curve represents the theoretical model. This measurement has been done in the
pulsed regime: the length of the signal pulse is 30 µs with a square waveform. The
formula explained in the first chapter (see section 1.2.1) and used for the model is
the following:

T (d, ∆) = exp( −d

1 + 4(∆
Γ )2

) (2.4)

with d the OD, ∆ the signal detuning from the resonance and Γ the linewidth of the
transition. A fit between the experimental data and the model gives the value for the
OD of 520 ± 10. One can see a gap between the data and the model for detunings
below −30 MHz and above 30 MHz. Indeed, the atomic cloud produces a lensing
effect that depends on light frequency due to the dispersion of the medium and thus
modifies the coupling of the signal inside the multimode fiber leading to PDout. The
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Figure 2.12: OD measurement. The OD measurement is done by
measuring the transmission of the signal going through the cloud for a
wide range of signal detunings around the atomic resonance. The red
points represent the experimental data and the blue curve represents
the theoretical model with a fitting OD of 520±10. This measurement
was done 2 ms after the magnetic field extinction.

fiber was chosen to be multimode in order to minimize this effect as its core is larger
than a single-mode fiber.

High optical depth was achieved by optimizing the orientation of the trapping
beams to increase the overlap between the cloud and the signal beam. Other param-
eters of the experiment enter into account in the optimization such as the trapping
beam detuning, the power of the repump beam, the exponential decays of the cooling
beams during the PGC phase (see figure 2.5). This measurement was done 2 ms after
the magnetic field extinction. In our experiment, the memory is used between 2 ms
and 3 ms after the extinction. The OD decreases by 10% typically during this interval
of 1 ms due to the initial velocity of the atoms and also gravity as the trap is turned
off. The OD decay time is a good witness to calculate the temperature of the cold
atoms [Hoffet, 2022]. After a PGC phase, the typical temperature of our cloud is
around 20 µK.

2.3.2 EIT measurement

After optimizing the optical depth seen by the probe, the next step is to measure
EIT. The EIT configuration is presented on figure 2.13. The control beam is the
additional laser responsible for the opening of the EIT window. The control and
the signal are not set to be colinear as it would directly couple the control to the
detectors. The angle between the two beams is equal to 1◦. We kept a small angle
to limit the motional dephasing (see section 1.2.4). However, some groups working
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Figure 2.13: EIT configuration. The control is the additional laser
responsible for the opening of the EIT window. The angle between the
two beams is equal to 1◦. The peak transmission of the EIT window
is determined by the overlap between the two beams and the atomic
cloud.

with hot vapors [Dideriksen et al., 2021; Namazi et al., 2017a; Reim et al., 2011]
have to set them colinear as the motional dephasing increases drastically with the
temperature of atoms. In this case, multiple Fabry-Perot cavities (FPC) in cascade
are required to filter out the control, which significantly reduces the transmission of
the detection setup. In our experiment, only one FPC is sufficient due to the angle
between the beams.

The EIT window is shown on figure 2.14. The transmission of the signal beam
through the cloud is measured as a function of the signal detuning. The red points
represent the experimental data and the blue curve represents the theoretical model.
The signal pulse duration chosen for this measurement is 30 µs. The control beam
was turned on before the arrival of the signal pulse on the atoms and turned off
after the exit of this pulse from the atomic medium. The peak transmission at zero
detuning T0 of the EIT window can be optimized by playing on the overlap between
the two beams and the atomic cloud. Indeed, any atom on the signal path which
is not interacting with the control beam is going to absorb the signal photons and
decrease the transmission. The width of the EIT window ∆νEIT depends on the Rabi
frequency Ωc of the control field and the optical depth d. The formula explained in
the first chapter (see section 1.2.2) and used for the model is the following:

T (Ωc, ∆) = T0e−dIm(χ) , χ(Ωc, ∆) = γge(∆ + iγgs)
Ω2

c/4 + γgeγgs − i∆(γge + γgs) − ∆2 (2.5)

with χ the susceptibility of the atomic medium, ∆ the signal detuning from the
resonance, γge and γgs the relaxation rate of the coherence between the levels {g, e}
and {g, s} (γge = Γ/2). A fit between the experimental data and the model gives the
value for Rabi frequency of the control field equal to Ωc = 2π · (19.1 ± 0.1) MHz. This
value is obtained for an optical depth of 450, a control power of 3 mW and a control
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Figure 2.14: EIT measurement. The transmission of the sig-
nal through the cloud is measured as a function of the signal de-
tuning while the control is turned on. The red points represent
the experimental data and the blue curve represents the theoretical
model with a fitting Rabi frequency for the control field equal to
Ωc = 2π · (19.1 ± 0.1)MHz. This value is obtained for an optical
depth of 450 ± 10.

waist of 1 mm. The polarisation of the signal and the control are optimized to be
the same circular polarisation to maximize the transmission of the EIT windows (see
section 1.2.3).

2.3.3 Memory optimization

The previous optimizations were required before going to this final stage. They
enabled to find the optimal orientation and power for the cooling beams to maximize
the optical depth, the optimal alignment and polarization for the control beam to
maximize the signal transmission through the cloud. All these parameters are not
going to be modified during this last optimization which consists in choosing the
signal temporal width, the control intensity, and the cut-off time of the control pulse
triggering the storage process.

The signal power is not the same than the one used for the OD and EIT measure-
ments: the average photon number per pulse is set to a few photons (less than ten).
The setup employed for this measurement is a bit different than the one described
on figure 2.11 due to a few changes: the photodiode PDref is removed, the multi-
mode fiber is replaced by a single-mode fiber and the output photodiode PDout is
replaced by an APD (AQRH 14-FC, Excelitas) and a Fabry-Perot cavity (FPE001A,
Quantaser) to filter out the control noise.
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Figure 2.15: Memory measurement. The reference pulse is the
signal before interacting with atoms. The slow-light pulse corresponds
to the signal after being propagated through the cloud with an EIT
window opened along all its propagation. The memory pulse rep-
resents the signal after the storage-and-retrieval process. The effi-
ciency obtained for the slow light is ηsl = (87 ± 2)% and the one
for the memory is ηmem = (81 ± 2)%. The slow-light delay is
equal to τdelay = 480 ns and the FWHM of the reference pulse is
∆tpulse = 230 ns (τdelay ≈ 2∆tpulse).

The EIT window has a Gaussian waveform in the frequency domain and also in
the time domain (the Fourier transform of a Gaussian function is also a gausian
function). Therefore, the temporal waveform chosen for the signal pulse is Gaussian
in order to perfectly fit inside the transparency window. The FWHM (full width half
maximum) of the signal pulse before interacting with atoms is about ∆tpulse = 230 ns
(see the reference pulse on figure 2.15). The slow-light pulse corresponds to the signal
after being propagated through the cloud with an EIT window opened along all its
propagation. The control beam was turned on before the arrival of the signal pulse
on the atoms and turned off after the exit of this pulse from the atomic medium. The
slow-light has a delay τdelay = 480 ns compared to the reference light because of the
high group refractive index ng of the medium in the EIT configuration. The memory
pulse represents the signal after the storage-and-retrieval process. The control beam
was turned on before the arrival of the signal pulse on the atoms and turned off when
the pulse is entirely compressed into the cloud (the compression factor is equal to
ng). After a defined storage time, the control beam is turned on again to retrieve the
initial signal pulse. For this example the storage time is about 1.3µs.

Two constraints have to be satisfied in order to optimize the memory efficiency.
The first one is ∆νEIT > 1/∆tpulse : the width of the signal in the frequency domain
has to be smaller than the width of the EIT window. If this condition is not satisfied,
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a fraction of the pulse will be absorbed in the excited state which lowers the transfer
efficiency from

∣∣g〉 to
∣∣s〉. The second one is: the spatial length of the signal pulse

inside the cloud (lpulse = c/ng · ∆tpulse) must be smaller than the spatial length of
the cloud Lcloud. If this condition is not satisfied, a fraction of the pulse will leave
the atomic medium and the storage efficiency is going to drop due to this leakage.
This condition can be reformulated as τdelay > ∆tpulse: the slow-light delay has to be
larger than the temporal width of the signal pulse. As a result, the control intensity
should be high enough to complete the first constraint (∆νEIT increases with the
control intensity). However the delay τdelay is decreasing with the control intensity.
Therefore, there is a trade-off on the control intensity to satisfy both conditions.
Experimentally, the control power is fixed to have τdelay ≈ 2∆tpulse as it is represented
on figure 2.15 (τdelay = 480 ns and ∆tpulse = 230 ns). The last optimization parameter
is the cut-off time tcut defined as the time when the control pulse is turned off to map
the signal pulse into a collective excitation of the cloud. If tcut is too small, the
end of the signal pulse is absorbed in the excited state (and lost due to spontaneous
emission) and if tcut is too long, the first part of the pulse is going to leak outside
of the cloud. Then, a compromise on tcut has to be made to optimize the memory
efficiency.

One can note on figure 2.15 the efficiency obtained for the slow light ηsl = (87±2)%
and for the memory ηmem = (81 ± 2)%. In general, ηsl ≥ ηmem as the slow-light
efficiency is included in the storage-and-retrieval efficiency.

2.4 Optimizing the memory lifetime

The memory efficiency is not the only important parameter to optimize. The
lifetime τ of a quantum memory can be defined as the storage time for which the
memory efficiency dropped at 1/e ≈ 37% of its initial value. In a quantum network,
the lifetime of the quantum memories should at least be equal to the propagation time
of light along the entire communication line. Therefore, τ should be on the order of
ten milliseconds to perform quantum communication between nodes separated by a
thousand kilometers. The long-term goal would be to build a memory with such a
lifetime and near unity efficiency.

This section shows the experimental setup and methods used to optimize our mem-
ory lifetime. During the memory phase, the B-field is turned off but a residual B-field
is persistent due to long-lived Eddy currents, in addition to the earth’s magnetic field.
This residual magnetic field is a decoherence mechanism which is limiting τ in our
experiment (see section 1.2.4). The solution is to generate an additional magnetic
field opposite to the first one in order to cancel it. The additional field is created by
three pairs of compensation coils3 located around the vacuum chamber.

3These compensation coils are different from the ones dedicated to the generation of the magneto-
optical trap.
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Figure 2.16: Magnetic-field extinction using an electronic
switch. The current circulating in the MOT coils is measured over
time via the output voltage of a current clamp. A custom electronic
switch stops this current by dissipating the electrical power thanks to
a resistor connected in parallel to the coils (blue curve). The perfor-
mance of the switch is enhanced by implementing a TVS diode (orange
curve). This diode cuts off the current to zero within 450 µs (see the
inset).

2.4.1 Fast electronic switch for the extinction of the MOT coils

The first step in order to avoid any residual magnetic field during the storage is to
completely stop the current in the MOT coils. For this purpose, a custom electronic
switch dissipates the electrical power thanks to a resistor connected in parallel to the
coils. We measured the current evolution over time in figure 2.16 with a current clamp.
The voltage at the output of the clamp is proportional to the current circulating inside
the coils. The fall time4 is proportional the ratio between the inductance of the coils
and resistance value, and is equal to 260 µs in our experiment. We enhanced the
performance of the switch by implementing a TVS diode5 (BZW-50). This diode
cuts off the current to zero within 450 µs (see the inset in figure 2.16).

2.4.2 Current drivers for the compensation coils

A fast extinction of the MOT coils is necessary but not sufficient to cancel the resid-
ual magnetic field during the memory process because of long-lived Eddy currents.
As a result, we need to actively compensate this residual B-field by injecting current
in the compensation coils. During my PhD, we implemented new current drivers
for the compensation coils in order to improve the accuracy and the control of the

4The fall time is the time taken by a pulse to decrease its amplitude from usually 90 % to 10 %
of its peak value.

5TVS diode: transient-voltage-suppression diode
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Figure 2.17: Current drivers for the compensation coils in
a bipolar configuration. A PID controller changes the voltage ap-
plied to the MOSFET’s gate to match the voltage around Rsense with
the targeted voltage. The electronic circuit of the PID controller is
shown in the Appendix A. Two MOSFETs are employed to enable
positive and negative values and the power supply is floated instead of
grounded.

magnetic field cancellation. The electronic circuit of the current drivers is presented
on figure 2.17 and was inspired by the following PhD thesis [Vendeiro, 2021].

The operation principle of this electronic circuit is the following: a PID controller
senses the current by measuring the voltage around Rsense and calculates the difference
between this value and the target value. The PID controller thus changes the voltage
applied to the MOSFET’s gate to match the voltage around Rsense with the targeted
voltage. Two MOSFETs are employed to enable a bipolar drive of the current (for
positive and negative values). The power supply is floating instead of grounded.
Indeed in the grounded configuration (V1− = V2+ = GND), the maximum voltage
applied by the PID controller on the MOSFET’s gate is smaller than the one provided
by the power supply which leads to a limitation on the current going through the coils.
This issue can be overcome with a floating power supply as shown on figure 2.17. The
electronic circuit of the PID controller is shown on the Appendix A and was designed
in collaboration with the electrical workshop of our laboratory.

Three current drivers are used for the three pairs of compensation coils located
along the axes X, Y , Z (the axes are the ones represented on figure 2.13). The pairs
of coils are in a Helmholtz configuration. In our implementation Rsense = 1 Ω, the
inductance and the resistance of the six compensation coils (two per axis) are shown
on the table 2.2:
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Figure 2.18: Microwave spectroscopy mechanism. The mi-
crowave frequency is scanned around the resonance to excite the atoms
in the level

∣∣6S1/2, F = 4
〉

with three different transitions: mF →
mF ′ = {mF −1, mF , mF +1} corresponding to the three polarizations
σ−, π, σ+. After reaching F = 4, the atoms are going to absorb the op-
tical probe locked on the transition

∣∣6S1/2, F = 3
〉

→
∣∣6P3/2, F ′ = 5

〉
.

This absorption is monitored to perform spectroscopy.

Position X1 X2 Y1 Y2 Z1 Z2

L 1.6 mH 1.6 mH 2.0 mH 2.4 mH 2.1 mH 2.2 mH
R 1.5 Ω 1.5 Ω 2.1 Ω 2.2 Ω 2.2 Ω 2.2 Ω

Table 2.2: Measurements of the resistance R and the inductance L
for the six compensation coils.

The measurements of the coil inductance were done with the same method than
the ones for the MOT coils described on the section 2.1.2.

2.4.3 Microwave spectroscopy

The first task to complete in order to compensate the residual magnetic field is
to measure it. The sensing method employed is called microwave spectroscopy. The
principle is described in figure 2.18. The atoms are initially in the level

∣∣6S1/2, F = 3
〉
.

A microwave signal is generated (SMB100A, R&S) with a 30 dBm amplitude and is
sent on the atomic cloud thanks to an antenna. This microwave is addressing the
transition

∣∣6S1/2, F = 3
〉

→
∣∣6S1/2, F = 4

〉
. Its frequency is scanned with a MHz

range around the resonance. The Zeeman levels mF are split due to the residual
magnetic field (Zeeman effect). During the scan, the microwave is going to excite the
atoms to the state

∣∣6S1/2, F = 4
〉

with three different types of transitions (selections
rules): mF → mF ′ = mF for the polarization π, mF → mF ′ = mF − 1 for the
polarization σ− and mF → mF ′ = mF + 1 for the polarization σ+. After reaching
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Figure 2.19: Microwave spectroscopy measurements. The
graphs represent the optical depth on the probe transition as a func-
tion of the microwave detuning. a) Microwave spectroscopy without
cancellation of the residual magnetic field. The peaks at the detun-
ings δ = {−280, −140, 0, 140, 280} kHz correspond to the transitions
mF → mF ′ = mF for mF = {−2, −1, 0, 1, 2}. The peaks at the
detunings δ = {−350, −210, −70, 70, 210, 350} kHz correspond to the
transitions mF → mF ′ = mF + 1 and also mF + 1 → mF ′ = mF

for mF = {−3, −2, −1, 0, 1, 2}. b) Microwave spectroscopy with can-
cellation of the residual magnetic field. The width of this peak is the
average inhomogeneous broadening of the transitions mF → mF ′ =
{mF − 1, mF , mF + 1} on all the mF values. Its FWHM is equal to
35 kHz and corresponds to a residual magnetic field gradient on the
order of 10 mG/cm.

F = 4, the atoms are going to absorb the photons from the optical probe locked
on the transition

∣∣6S1/2, F = 3
〉

→
∣∣6P3/2, F ′ = 5

〉
. The probe frequency is fixed

unlike the microwave signal. We are monitoring the absorption of the probe beam
in order to perform the spectroscopy presented on figure 2.19. The graphs represent
the optical depth on the probe transition as a function of the microwave detuning.
These measurements are done in the pulsed regime: the microwave pulse is first sent
with a temporal length equal to 150 µs followed by a 30 µs probe pulse.

The multiple peaks on figure 2.19(a) represent the transitions mF → mF ′ = {mF −
1, mF , mF + 1} for different values of mF . The peaks at detunings δ = {−280, −140,

0, 140, 280} kHz correspond to the transitions mF → mF ′ = mF for mF = {−2, −1, 0,

1, 2}6. The peaks at detunings δ = {−350, −210, −70, 70, 210, 350} kHz correspond
to the transitions mF → mF ′ = mF + 1 and also mF + 1 → mF ′ = mF for mF =
{−3, −2, −1, 0, 1, 2}. In a general way, if we consider ∆B the Zeeman splitting between
adjacent Zeeman levels, δ = 2k∆B counts for the π transitions (k is an integer), and
δ = (2k + 1)∆B counts for the {σ+, σ−} transitions. Therefore we can deduce from
this measurement the residual magnetic field without cancellation: ∆B = µBgF Bres =
70 kHz, with µB the Bohr magneton and gF the Landé g-factor of the hyperfine
level F . Its leads to Bres = 200 mG. This value represents the homogeneous part

6The peaks corresponding to the transitions mF → mF ′ = mF for mF = {−3, 3} are beyond the
scanning range at ±420 kHz
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Figure 2.20: Current applied for the dynamic cancellation of
the residual B-field. The cancellation is done between t = 0 ms
and t = 1 ms when the storage-and-retrieval process occurs. The time
t = 0 ms corresponds to 2 ms after the extinction of the MOT coils.
a) Current applied for magnetic field cancellation by the pairs of coils
oriented along the z-axis (longitudinal direction of the cloud) and y-
axis. b) Current applied for magnetic field cancellation by the pair of
coils oriented along the x-axis (gravity direction).

of the residual B-field (constant over space). The compensation coils in Helmholtz
configuration can cancel this homogeneous contribution as it shown on figure 2.19(b).
All the peaks unite into one after cancellation. However this peak has a width larger
than the natural linewidth of the transition

∣∣6S1/2, F = 3
〉

→
∣∣6S1/2, F = 4

〉
due

to the inhomogeneous part of the residual B-field7. The contribution from this part
is quite important for our atomic cloud due to its elongated shape (2.5 cm long).
The width of this peak is the average inhomogeneous broadening of the transitions
mF → mF ′ = {mF −1, mF , mF +1} on all the mF values. Its FWHM (full width half
maximum) after compensation is equal to 35 kHz8. Assuming that the population is
equally distributed in all the mF levels, it corresponds to a residual magnetic field
gradient on the order of 10 mG/cm.

Six months before I joined the group, my co-workers noticed that the residual
magnetic field was not constant over time (this issue was not present in our previous
implementation before 2020). For example, if this one is cancelled at a fixed time
t0 in the sequence, it is not the case anymore at t0 + 100 µs: the width of the peak
measured by the microwave spectroscopy increases from 35 to 100 kHz. To mitigate
this issue, the current in the compensation coils has to vary over time to compensate
for this time-dependent B-field. The current injected into the three pairs of coils is
displayed on figure 2.20. The axis refers to the orientation of the pair of coils used: z

corresponds to the pair along the longitudinal axis of the cloud and x is the one along

7The residual B-field can be written as B⃗res = B⃗0 + B⃗1z with z the position of the particle
considered along the elongated axis of the cloud. B⃗0 is the homogeneous component and B⃗1 is the
inhomogeneous part of this residual field.

8One solution to decrease the width of the peak would be to generate magnetic-field gradients to
cancel the inhomogeneous part of the residual field.
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Figure 2.21: Dynamical cancellation of the magnetic field.
The 3D plot represents the optical depth on the probe transition as
a function of the microwave detuning and time (the origin of time
corresponds to 2 ms after the extinction of the MOT coils).The average
FWHM of the peaks over the 1 ms interval is equal to 36 kHz.

the gravity direction. As a reminder, the direction of the magnetic field created in the
Helmoltz configuration at the center of the chamber is the same than the orientation
of the pair (the pair along x-axis creates a B-field also oriented on the x-axis). The
time t = 0 ms corresponds to 2 ms after the extinction of the MOT coils at the end
of the compression phase (see figure 2.5). The cancellation is done between t = 0 ms
and t = 1 ms when the storage-and-retrieval process occurs. As said earlier, the two
contributions of this residual field are: the earth’s magnetic field (DC component)
which is mainly oriented in the gravity direction as the high values of current on the
x-axis indicate, but also the magnetic field induced by the extinction of the main
coils (AC component). The latter is the reason why we need to implement dynamical
cancellation. The figure 2.20 shows that this AC component is mainly oriented on
the transverse direction of the cloud (x and y axis) as the compensation current is
almost constant t = 0 ms and t = 1 ms on the longitudinal direction (z-axis).

The microwave spectroscopy has been used in order to obtain the values for these
current ramps. The results of the dynamical cancellation is presented on figure 2.21.
This 3D plot represents the microwave spectroscopy at different times within the
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Figure 2.22: Improvement of the memory lifetime. The dots
represent the experimental data and the solid lines are the fit curves
corresponding to the function Ae−t2/τ2 . The lifetime achieved by the
new compensation system τ = (15.7 ± 0.1) µs is five times better than
the old one τ = (2.9 ± 0.1) µs.

sequence by steps of 0.1 ms (the origin of time corresponds to 2 ms after the extinction
of the MOT coils). The average FWHM of the peaks over the 1 ms interval is equal
to 36 kHz. The hardest point for the compensation is the beginning of the sequence
as the black curves indicates (FWHM=50 kHz). Indeed, it is the closest time from
the extinction which could explain why the inhomogeneous broadening is the highest
compared to the other times.

2.4.4 Memory lifetime improvement

We now turn to evaluate the impact of this cancellation on the lifetime of the mem-
ory. The first chapter underlines other decoherence mechanisms such as the motional
dephasing. However, the decoherence source which is currently limiting the memory
lifetime in our experiment is the residual B-field. Therefore, any improvement on the
compensation of the residual field enhances the lifetime.

Before 2020, the system was compensated with DC currents as the residual field
was not evolving with time at 2 ms after the extinction of the MOT coils. A 15 µs life-
time was achieved with this system [Vernaz-Gris, 2018]. However, as said earlier, an
AC component appeared since 2020, leading to the dynamical cancellation presented
in the previous section. The first current drivers used to cancel this time-dependent
residual magnetic field were made of old electronic circuits from the group. The life-
time obtained with these old current drivers is evaluated in figure 2.22 and compared
to the one achieved with the new current drivers presented in section 2.4.2. The dots
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represent the experimental data and the solid lines are the fit curves corresponding
to the function Ae−t2/τ2 . The lifetime achieved by the new compensation system
τ = (15.7 ± 0.1) µs is five times better than the old one τ = (2.9 ± 0.1) µs. The main
difference between the old and the new system that could explain this improvement
are the current drivers: they are more accurate compared to the previous ones thanks
to their PID controllers. Moreover, the usability of the compensation system has been
upgraded. In fact, the input signal of the old current drivers was produced by a func-
tion generator. Each point of the ramp had to be edited one after the other. Once
the ramp was implemented in the device, modifications on some particular points
were time consuming as the access was limited. Instead of this function generator,
we implemented a DAQ (USB-6363, National Instruments) controlled by a Python
script. The current ramps are represented by arrays inside the script, which can be
easily modified as we have an instant access on each point of the ramps.

On the first chapter (see section 1.2.4), we derived an expression that links the
evolution of the memory efficiency over time with the residual magnetic field gradient:

η(t) = A

∣∣∣∣∣∣
F∑

mg=−F

n(mg)d(mg)e−t2/τ2
mg

∣∣∣∣∣∣
2

(2.6)

with A the initial efficiency, n(mg) the probability to have an atom in the Zeeman
level mg at t = 0 and d(mg) the strengths of the transitions used for the storage-and-
retrieval process. τmg is the lifetime for an atom populating the ground state mg and
is defined as 1/τmg = mgµBgF

dB
dz L/(2ℏ). We can deduce the residual magnetic field

gradient dB
dz by fitting this theoretical model with the experimental data. Assuming

that all the mg levels are initially equally distributed, it leads to dB
dz = 11 mG/cm.

This value is in good agreement with the one calculated from the width of the mi-
crowave spectroscopy profile.

This lifetime value is not a strict limitation of our cold atoms platform as it can be
increased by multiple means. One can overcome the decoherence mechanism due to
the residual B-field by applying a Zeeman pumping into a specific mF level combined
with magnetically insensitive clock transition [Bao et al., 2012; Xu et al., 2013].
Moreover, implementing a tightly confining optical lattice reduces motional dephasing
[Zhao et al., 2009] but also creates differential light shift which results in lifetime on
the order of the millisecond. This differential light shift can be cancelled with a
“magic” magnetic field increasing the lifetime to the 100 ms range [Jenkins et al.,
2012].

2.5 Additional details on the experimental setup

This section presents the additional details on the setup playing a key role in our
experiment.
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a) b)

Figure 2.23: Glass chamber and dispensers. a) The vacuum
chamber is made of glass to reduce Eddy currents. An anti-reflection
coating is on the inside and outside surface of the chamber optimized
for the two wavelengths: 852 nm and 1064 nm. b) The dispensers are
located at the bottom of the glass chamber. We placed three alkali
metal dispensers for Cesium (each one is highlighted with red borders
and is connected to two electrodes).

2.5.1 Vacuum system

The first element we need to build a cold atom experiment is the vacuum system
in order to remove all the molecules contained in the air (mostly N2 and O2) to only
keep the cesium atoms inside the chamber. Reaching low-pressure is one requirement
to implement a MOT: if the pressure is too high (> 10−8 Torr), atoms are going to
be ejected from the trap faster than they can be loaded. Furthermore, it prevents
collisions between the cesium atoms which is one limiting factor of the coherence
time for hot vapor [Horsley et al., 2013]. Most of the cold atom experiments are
using metallic chambers which is a drawback in the case of our quantum memory.
Indeed, when the MOT coils are turned off, Eddy currents could propagate on the
chamber and reduce our memory lifetime. Therefore, our vacuum chamber is made
of glass to avoid this effect (see figure 2.23(a)). An anti-reflection coating is on the
inside and outside surface of the chamber optimized for the two wavelengths: 852 nm
which is the wavelength of the cooling beams and 1064 nm in the prospect of a dipole
trap in the future. The D1 line (894 nm) is not the optimal wavelength for the coating
but its transmission remains fairly good (97%).

The source of cesium atoms is located at the bottom of the vacuum chamber (see
figure 2.23(b)). This source called dispenser or getter is a metal wire which is con-
nected to electrodes. These electrodes are coupled to a power supply injecting current
through the metal wire. Then, the dispenser heats up due to the current flow and
releases a cesium gas. The atom flux dispensed inside the chamber is increasing with
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Figure 2.24: Filtering setup. The light coming from the memory
is decomposed in two paths with orthogonal polarizations: one cavity
is implemented for each polarizations to filter out the control light with
a 45 dB rejection. Convex lenses are used to focus the light inside the
cavity etalons with a focal length f ′ = 25 cm.

the current injected in the electrodes. During my doctoral research, we had to change
the dispensers as they were five years old and we had evidence that they were running
empty. It was necessary to "break the vacuum" as the chamber needed to be opened
to have access to the getters. Nitrogen was circulating inside the chamber during
this phase to avoid water and dust from sticking on its inner walls. We placed three
alkali metal dispensers for Cesium (SAES) at the positions given by figure 2.23(b).
One getter is above the other to optimize the atom flux feeding the MOT (this is
the one currently used in the experiment). After setting the dispensers, the system
is closed and a turbo pump (Pfeiffer Vacuum HiCube 80 Eco) decreases the pressure
to 5 · 10−7 Torr. When the pressure reaches this point, the procedure to activate the
getters begins:

• Note of the initial pressure (≈ 5 · 10−7 Torr on the turbo pump).

• Increment the dispenser current by 0.2 A and allow time for the pressure to
return to its initial level.

• Perform the second step until the pressure ceases to decrease, indicating a con-
sistent release of atoms from the dispensers.

The current value reached after this final step is around 5 A for the three dispensers.
However, after activation, we turned off two out of three getters and decreased the
current to 3.8 A for the one currently used in the experiment. Finally, the ion pump
(Starcell Vacion Plus 40 L/s) is turned on to reduce the pressure to 10−10 Torr.
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2.5.2 Detection setup

The last part of our experimental implementation is the detection setup which
enables the measurement of the signal pulses with and without storage. The first
elements of this setup are the filtering cavities (FPE001A, Quantaser) used to filter
out the control beam. These Fabry-Perot cavities have a FSL (free spectral range)
about 16 GHz and a 60 MHz bandwidth. The peak transmission is around 70 % with a
45 dB rejection at the control frequency, i.e. at 9.2 GHz around the central frequency.
The central frequency can be modified via temperature controllers with an accuracy
on the order of 1 mK (2 MHz resolution). The filtering setup is presented on figure
2.24. The light coming from the memory is decomposed in two paths with orthogonal
polarizations: one cavity is implemented for each polarization. Convex lenses are
used to focus the light inside the cavity etalons with a focal length f ′ = 25 cm. The
stability over time of the cavities transmission has been improved with a plexiglas
box which surrounds them by suppressing the disturbances caused by air flows. The
light coming out of the filtering cavities is coupled into fibers linked to single photon
counters (AQRH 14-FC, Excelitas). These avalanche photodiodes have typically a
50 % detection efficiency at 852 nm and a 50 Hz dark count rate.

2.6 Conclusion

This chapter showed the extent of our experimental implementation for the atom
cooling and the memory process. On the cooling side, changing the main coils en-
abled to reach higher B-field gradient due to the increase of wire turns compared
to the previous version. On the memory side, improvements have been done on the
signal lock to avoid any frequency modulation on the light sent to the experiment.
We analysed the key ingredients to optimize the memory efficiency of our storage
platform. Indeed, choosing the D1 Cesium line, reaching a high optical depth and
an EIT peak transmission around unity are crucial elements to build a highly effi-
cient quantum memory. The accuracy and the control of our compensation system
were improved, leading to a memory lifetime up to 15 µs (we returned to the value
achieved in the group before the issue of the time-dependent residual magnetic field).
Our cold-atomic ensemble has the required properties to be implemented as a memory
layer in a quantum cryptographic protocol.
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Quantum memories play a key role in long-distance quantum communications as
they are employed to synchronize elementary links between each others [Kimble,
2008]. This synchronization device can be used for other purposes such as in linear
optical quantum computation in order to increase the success rate of non-deterministic
operations [Heshami et al., 2016] but also in quantum cryptographic protocols. In-
deed, few experimental implementations of cryptographic protocols combined with
quantum memories were reported [Namazi et al., 2017b]. However, none of them in-
clude the possibility that malicious parties having access to the memory could exploit
losses and noise added by the storage platform to hide their cheating attempts. There-
fore, the protocol is considerably more challenging to perform in the secure regime
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Figure 3.1: Quantum memory implemented as an intermedi-
ate layer in a quantum cryptographic protocol. In the context
of quantum networks, optical memories are required to exchange quan-
tum information on demand. However, their use also imposes further
challenges for ensuring secure communications, in terms of losses and
noise added by the storage platform.

when this possibility is taken into account as the constraints are very demanding in
terms of memory efficiency and fidelity.

One fundamental property of quantum mechanics is the no-cloning theorem [Woot-
ters and Zurek, 1982]: one cannot create a identical copy of an unknown quantum
state. Building upon this idea, Wiesner designed the quantum money protocol in
[Wiesner, 1983], demonstrating that by encoding a secret key into qubits defined in
conjugate bases, we can safeguard it against forgery. These qubits are stored in a
quantum memory used as an intermediate layer in the cryptographic protocol (see
figure 3.1). Experimental implementations of the quantum money protocol without
this memory layer were published [Bozzio et al., 2018; Guan et al., 2018]. However
the complete version of the protocol has not yet been reported due to the lack of high-
efficiency and low-noise storage devices [Bozzio et al., 2019]. A few quantum money
use-cases are not relying on quantum storage [Schiansky et al., 2023], but their ap-
proach involves deploying a trusted network whose spacetime coordinates are strictly
monitored [Kent and Pitalúa-García, 2020]. This option is challenging to implement,
as it requires either stringent clock synchronization between remote agents or trusting
a Global Positioning System (GPS), potentially vulnerable to spoofing-type attacks
[Tippenhauer et al., 2011]. In this work, we take advantage of our efficient cold-atom-
based quantum memory [Cao et al., 2020] to reach the secure regime of the quantum
money protocol for its first demonstration involving a storage device.

3.1 Quantum money

The purpose of this section is to explain the quantum money protocol and provide
the security analysis of the protocol in the presence of noise and storage losses. The
security analysis was developed by Mathieu Bozzio [Bozzio, 2019] who is co-author of
the paper we are writing about the implementation of the quantum money protocol
with our cold-atom based quantum memory.
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3.1.1 The protocol

We consider a three-party quantum money scheme involving a bank, a client and a
vendor. The protocol consists of four steps described in figure 3.2(a). First, the bank
encodes a random secret classical key onto a sequence of two-level quantum states
(qubits). The secret key dictates each qubit’s encoding basis, along with its chosen
eigenstate. In our case, the qubits are mapped onto the polarization of weak coherent
states and the encoding bases are either

{
H, V

}
or
{
σ+, σ−}. Secondly, the states are

stored in the quantum memory, materializing the quantum credit card held by the
client. In a third step, the client retrieves the coherent states from the memory and
forwards them to a vendor, who measures each qubit in a random polarization basis.
In the final verification step, the vendor communicates the measurement basis and
the results to the bank, who checks for consistency with the original secret key and
determines the error rate ε (fraction of errors in the communication). The verification
is only done on qubits measured in the right basis, i.e. when the measurement basis
is the same than the encoding one. The other qubits are not taken into account in
the analysis.

The untrusted party in this scheme is the client1 who may attempt to duplicate
the sequence of qubits in order to perform two transactions at the same time (double-
spending attempt). This operation cannot be performed without introducing errors
in the process due to the no-cloning theorem. Therefore, we need to set a security
threshold to prevent attacks from malicious clients.

3.1.2 Security analysis

In an ideal experiment, measuring a non-zero error rate upon verification would
immediately signal an unauthorized double-spending attempt to the honest parties.
In the presence of photonic noise and storage losses however, even honest parties
will introduce a non-zero error rate. This implies that some fraction of experimental
imperfection should be tolerated for a practical protocol to succeed. On the other
hand, a malicious party having access to perfect quantum channels may exploit this
fault tolerance to hide their double-spending attempts. This calls for a rigorous secu-
rity analysis, identifying a combination of noise, losses and mean photon number for
which no malicious party is able to successfully cheat. We provide such an analysis by
searching for the optimal quantum cloning strategy that minimizes the introduction
of noise upon verification, given a fixed mean photon number and storage losses. This
derivation is based on [Bozzio et al., 2019].

3.1.3 Modelling for weak coherent state implementation

In the protocol described above, the information is encoded on the polarizations of
weak coherent states. Coherent states are expressed in the basis of Fock states as:

1We consider that the bank and the vendor are trusted.
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Figure 3.2: The quantum money protocol. a) The bank encodes
a random secret key into a sequence of polarization qubits. The en-
coding base is either

{
H, V

}
or
{

σ+, σ−}. These qubits are stored in
a quantum memory that is accessible to the client. Then, the client
retrieves the quantum states from the memory and forwards them to
the vendor, who measures each qubit in a random polarization basis.
In the final step, the vendor communicates the results to the bank with
the measurement basis associated. The bank compares these results
with the part of the secret key encoded in the vendor’s measurement
basis. Finally, the error rate of the communication could be estab-
lished and compared to a security threshold. b) Security threshold
as a function of the mean photon number µ for different memory ef-
ficiencies η. The communication is considered as secure if the error
rate is below the threshold. c) Security threshold as a function of the
memory efficiency for µ = 1. The hatched area represents the insecure
regime while the blue one is the secure area. The blue data point is
the experimental data achieved after implementation of the protocol
including the memory layer.
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|α⟩ =
∞∑

n=0
e− |α|2

2
αn

√
n!

|n⟩ =
∞∑

n=0
Cα (n) |n⟩ (3.1)

with |n⟩ the Fock states. The mean photon number is µ = |α|2. One can map the
polarization qubits {|H⟩ , |σ+⟩ , |V ⟩ , |σ−⟩} employed in our experiment onto coherent
states:

|αH⟩ =
∣∣∣eiθα

〉
⊗ |0⟩, |ασ+⟩ =

∣∣∣∣eiθ α√
2

〉
⊗
∣∣∣∣ei(θ+π/2) α√

2

〉
|αV ⟩ = |0⟩ ⊗

∣∣∣eiθα
〉
, |ασ−⟩ =

∣∣∣∣eiθ α√
2

〉
⊗
∣∣∣∣ei(θ+3π/2) α√

2

〉 (3.2)

with θ a global phase. In the following part, we note |α0⟩ = |αH⟩, |α1⟩ = |ασ+⟩,
|α2⟩ = |αV ⟩ and |α3⟩ = |ασ−⟩.

We assume that the phase θ from equation (3.2) is uniformly randomized over
[0, 2π]2. Under this assumption, the integration of |eiθα⟩ over θ reduces the coherent
states to a mixture of photon number states [Lo and Preskill, 2005]:

1
2π

∫ 2π

0
|√µeiθ⟩ ⟨√µeiθ| dθ = e−µ

∞∑
n=0

µn

n! |n⟩ ⟨n| . (3.3)

When the mixture contains 0 photon, no information can be accessed by the adversary.
When it contains 1 photon, the security proof is employed. When it contains 2 or more
photons, the adversary cheats without introducing errors as each photon represents
one copy of the information encoded.

The phase-randomized states can be decomposed in the basis {|0⟩ , |H⟩ , |V ⟩ , |m0⟩ , |m1⟩ ,

|m2⟩ , |m3⟩}, with |0⟩ the vacuum component, |H⟩ and |V ⟩ the polarization states
associated to the single photon component (n = 1), and |mi⟩ representing multi-
photon states (n ⩾ 2) [Bozzio, 2019]. In our study, we consider the polarizations
|H⟩ , |σ+⟩ , |V ⟩ and |σ−⟩. |σ+⟩ and |σ−⟩ are not part of the basis as they are super-
positions of |H⟩ and |V ⟩. The density matrices of the phase-randomized states are
thus expressed as:

ρ0 = Pµ(0) |0⟩⟨0| + Pµ(1) |H⟩⟨H| + Pµ(⩾ 2) |m0⟩⟨m0|

ρ1 = Pµ(0) |0⟩⟨0| + Pµ(1) |σ+⟩⟨σ+| + Pµ(⩾ 2) |m1⟩⟨m1|

ρ2 = Pµ(0) |0⟩⟨0| + Pµ(1) |V ⟩⟨V | + Pµ(⩾ 2) |m2⟩⟨m2|

ρ3 = Pµ(0) |0⟩⟨0| + Pµ(1) |σ−⟩⟨σ−| + Pµ(⩾ 2) |m3⟩⟨m3|

(3.4)

where Pµ(n) are equal to:

Pµ(0) = e−µ, Pµ(1) = µe−µ, Pµ(⩾ 2) = 1 − (1 + µ)e−µ. (3.5)

2In the experiment, the global phase θ of the coherent states is not fixed and is changing quite
importantly due to phase noise added by acousto-optic modulators. Therefore, we made the approx-
imation that the states are phase randomized.
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3.1.4 Threshold calculation

After modelling the states accessible to the adversary, the purpose of this section
is to analyze the possible attacks performed by this malicious party to duplicate the
information encoded. The attack from the dishonest client is represented by the map
Λ generating two versions of the initial quantum state created by the bank. This
initial state is described by the density matrice:

ρini = 1
4

3∑
k=0

ρk. (3.6)

with ρk expressed in (3.4). Each density matrice has equal probability of occurrence
as the polarizations encoded are random in the protocol.
The error rate measured by the vendor on the first version of the initial state is:

ε1 = Tr
3∑

k=0

(1
2 |β⊥

k ⟩ ⟨β⊥
k | ⊗ 1

)
Λ
(1

4ρk

)
(3.7)

and for the second version:

ε2 = Tr
3∑

k=0

(
1 ⊗ 1

2 |β⊥
k ⟩ ⟨β⊥

k |
)

Λ
(1

4ρk

)
(3.8)

with |β0⟩ = |H⟩, |β1⟩ = |σ+⟩, |β2⟩ = |V ⟩, |β3⟩ = |σ−⟩, and |β⊥
k ⟩ the orthogonal

state (for instance |β⊥
0 ⟩ = |V ⟩). Measurements on the first version are written on

the left side of the Kronecker product ⊗ while the ones regarding the second version
are on the right side of ⊗. The prefactor 1/2 denotes that the vendor is choosing
randomly the measurement basis. In order to have more compact expressions of the
error rates ε1 and ε2 , we introduce the Choi-Jamiolkowski operator J(Λ)3 associated
to the map Λ. The new expressions of (3.7) and (3.8) are ε1 = Tr (E1(µ)J(Λ)) and
ε2 = Tr (E2(µ)J(Λ)), with E1(µ) and E2(µ) defined as:

E1(µ) =1
4

3∑
k=0

1
2 |β⊥

k ⟩ ⟨β⊥
k | ⊗ 1 ⊗ ρk

E2(µ) =1
4

3∑
k=0

1 ⊗ 1
2 |β⊥

k ⟩ ⟨β⊥
k | ⊗ ρk

(3.9)

where ρk is the complex conjugate of ρk. Similarly, the losses measured by the vendor
on both copies are equal to Tr (L1(µ)J(Λ)) and Tr (L2(µ)J(Λ)), with L1(µ) and L2(µ)

3If we consider an entangled state |Φ+⟩ ⟨Φ+| = 1
d

∑d

i,j=1 |i⟩ ⟨j| ⊗ |i⟩ ⟨j|, the Choi-Jamiolkowski
operator J(Λ) associated to the map Λ is defined as: J(Λ) = 1

d

∑d

i,j=1 Λ(|i⟩ ⟨j|) ⊗ |i⟩ ⟨j|.
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defined as:

L1(µ) = 1
4

3∑
k=0

|0⟩ ⟨0| ⊗ 1 ⊗ ρk

L2(µ) = 1
4

3∑
k=0

1 ⊗ |0⟩ ⟨0| ⊗ ρk.

(3.10)

The next step is to find the optimal map Λ minimizing the error rates measured on
both copies given fixed losses l = e−ηµ, where η is the storage-and-retrieval efficiency
of the quantum memory. The detection losses cannot be exploited by malicious agents
as the vendor (trusted) is the only party who can access the measurement setup. The
losses accessible by the untrusted client are coming from the storage platform which
explains why storage losses are taken into account in the analysis. We formulate the
client’s attack in terms of semidefinite programming [Molina et al., 2013; Watrous,
2011]:

min Tr (E1(µ)J(Λ))

s.t. Tr (J(Λ)) = 1

Tr (E1(µ)J(Λ)) ⩾ Tr (E2(µ)J(Λ))

Tr (L1(µ)J(Λ)) ⩽ l

Tr (L2(µ)J(Λ)) ⩽ l

J(Λ) ⩾ 0

(3.11)

Semidefinite programming solves this optimization problem by testing all possible
attacks from the client, represented by the map Λ, to access the one minimizing the
error rate ε1 = Tr (E1(µ)J(Λ)) given several constraints:

• The trace of the map Λ is equal to the identity.

• The error rate ε1 on the first version must be larger than or equal to ε2 (error
rate on the second version).

• The losses on both copies should be inferior or equal to the expected losses l.

• The map Λ has to be completely positive.

The minimal noise created by the dishonest client on both copies is the security
threshold and is represented on figure 3.2(b) as a function of the average photon
number µ, for different memory efficiencies η. As expected, if the quantum memory
has an efficiency lower than 50 %, the adversary introduces no errors on the cloning
process. In this case, the map Λ models a 50/50 beam splitter separating the two
copies. The optimal attack is not as simple to understand for the other memory
efficiencies. Figure 3.2(c) displays the security threshold as a function of the memory
efficiency for µ = 1. This figure underlines the need of having a high-efficiency and
low-noise storage platform to reach the secure regime. The blue data point is the
experimental data we achieved after implementation of the protocol including the
memory layer.
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3.2 Implementation of the quantum money protocol in-
cluding a quantum memory

After providing the security analysis of the quantum money protocol, we present
its implementation using our cold atomic ensemble as a quantum memory layer. An
overview of the experimental setup is given, followed by more detailed descriptions
about specific components that were crucial for the demonstration of the protocol.
The timing of the experiment is shown at the end of the section.

3.2.1 Overview of the experimental setup

The experimental setup is illustrated on figure 3.3. The bank is sending weak
coherent states at the single photon level and the information is encoded on the po-
larization of light using a Pockels cell. More specifically, a quantum random number
generator is employed in order to create random bits. For this specific protocol, four
different bits need to be generated : {00, 01, 10, 11}. These bits are then converted
to voltages by a digital-to-analog converter (DAC), amplified and sent to the Pockels
cell to encode a sequence of random polarization states onto the signal (the possible
states being

{
H, σ+, V, σ−}). As each polarization corresponds to a different volt-

age, the voltage gap between two consecutive polarizations changes in the sequence
and impacts the fidelity of the qubits encoded. We managed to overcome this issue
(see section 3.2.3) and found an optimal temporal sequence for the Pockels cell that
enabled to achieve a conditional fidelity of 99.5% for the qubits encoded (without
storage).

One requirement to efficiently store a pulse of light into the cloud is that signal and
control field should have the same circular polarization (see section 1.6). Neverthe-
less, the signal could not fulfill this requirement because its polarization is changing
randomly in the protocol. In order to overcome that issue, we built a Mach-Zehnder
interferometer around the chamber defined by the two beam-displacers on figure 3.3.
When the signal enters into the first beam displacer, the original path is decomposed
into two different paths, one with the projection on the H polarization and one on V .
Then, the V component is converted into H thanks to a half waveplate which is only
addressing one path, and finally, both paths are transformed into the same circular
polarization thanks to a quarter waveplate. Therefore, the signal propagating in the
atom chamber is circularly polarized regardless of the polarization encoded by the
Pockels cell. After the atom chamber, the paths are recombined by another beam
displacer (BD2) to recreate the original polarization. The visibility and stability of
the Mach-Zehnder interferometer are discussed in section 3.2.4.

The photonic state encoded on the signal is stored in the cold atomic ensemble
using dynamical EIT (see section 1.2.3). The optical depth is around 400 in order to
have a large storage efficiency. The power of the control beam is set to 2 mW with a
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Figure 3.3: Experimental setup. A quantum random number
generator (QRNG) creates a secret key composed of random bits. The
bits are converted to voltages by a digital-to-analog converter (DAC),
amplified and sent to the Pockels cell to encode random polarizations
on weak coherent states. Afterwards, the random qubits are stored
in the cold-atom based quantum memory. However, light should be
circularly polarized to be efficiently stored into the atomic cloud. For
this purpose, a beam displacer (BD1) maps the qubit polarizations
into two paths (the first corresponds to the projection on the polariza-
tion H and the second to V ). A combination of waveplates (λ/2, λ/4)
transforms both projections into the same circular polarization. An
additional beam controls the storage-and-retrieval process. After the
atom chamber, the paths are recombined by another beam displacer
(BD2) to recreate the original polarizations encoded by the Pockels
cell. Then the qubits are measured in

{
H, V

}
or
{

σ+, σ−} basis
thanks to waveplates and a polarizing beam splitter (PBS). Fabry-
Perot cavities (FPC) are used to filter out the control beam. The
signal is measured with avalanche photodiodes (APD) and data is col-
lected by a field programmable gate array (FPGA). The measurement
results are compared to the secret key thanks to a classical channel.
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010110

Photons

“0”

“1”

Beamsplitter

Figure 3.4: Principle of the quantum random number gen-
erator from ID Quantique. Photons are sent onto a 50/50 beam-
splitter. If they are transmitted, they will be associated to the binary
number "1" and if they are reflected, to the number "0". After some
repetitions of this experience, a random sequence of "0" and "1" is gen-
erated.

waist of 1 mm. The signal pulse has a gaussian temporal profile with a FWHM (full
width half maximum) of 230 ns to match the shape and the width of the transparency
window during the storage process. After a controllable storage time, the client reads
the memory and hands the qubits to the vendor who measures them in a specific
polarization basis (

{
H, V

}
or
{
σ+, σ−}). An half waveplate, a quarter waveplate and

a polarizing beam splitter are required to perform the projection. The vendor has to
adjust these waveplates to accurately match the detection basis with one encoding
basis in order to maximize the overall fidelity with respect to the input state.

Details about specific parts of this experimental setup are given in the following
subsections such as the generation of random polarization states, the optimization of
their fidelity and also the stability of the Mach-Zehnder interferometer over time.

3.2.2 Generation of random polarization states

The generation of random numbers is required to create random polarization states
of light. There are two kinds of random number generators: pseudo-random num-
ber generators (PRNGs) and true random number generators (TRNGs). A pseudo-
random number generator is a computer program creating sequences of numbers that
appear to be random but are actually generated using a deterministic process. Unlike
true random number generators, which rely on unpredictable physical phenomena,
PRNGs start with an initial value called a seed and use mathematical operations to
produce a sequence of numbers. This sequence is thus predictable if one knows the
seed and the algorithm used. For this particular reason, it is safer to use true random
number generators to realise cryptographic protocols.

Quantum random number generators (QRNGs) are considered as TRNGs because
of the intrinsic randomness of quantum mechanics. Our implementation of the quan-
tum money protocol involves one QRNG made by the company ID Quantique which
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functions with the following principle (see figure 3.4). Photons are sent onto a 50/50
beamsplitter. If they are transmitted, they will be associated to the binary num-
ber "1" and if they are reflected, to the number "0". After some repetitions of this
experience, a random sequence of "0" and "1" is generated. The photons sent are
weak coherent pulses with a very low average photon number, typically around 0.1
[Stefanov et al., 2000]. The card we used for the quantum money protocol is the
Quantis–PCI–4 and is able to generate a random bit stream of 16 Mbits/s.

The next step is to convert the random numbers generated by the QRNG into
random polarizations of light. A Pockels cell can perform this operation. Indeed,
a Pockels cell is composed of a birefringent crystal: the refractive index is not the
same on every axis of the crystal. We consider nx the refractive index on one of
the transverse axis and ny on the other. An electric field is created in the material
by electrodes located on the top and the bottom of the crystal. This electric field
modifies nx and ny, but more importantly the difference nx − ny. The polarization
of light going through this medium is thus modified. By varying the voltage applied
on the crystal, the Pockels cell could act as a half or a quarter waveplate, changing
the polarization from H to V , σ+ or σ−. As a result, the random numbers generated
by the QRNG can be first converted into random voltages by a DAC (USB-6363,
National Instruments). Afterwards, these voltages are amplified and sent to the
Pockels Cell (LM0202, LINOS) to encode random polarizations of light (see figure
3.5). The amplifier (PZD350A, Trek) was specifically chosen for this experiment as
it can produce high voltages up to 700 Volts in a short timescale: the settling time
corresponding to 1 % error is on the order of 30 µs. The typical voltages required
for our Pockels Cell to create the four polarizations we need are: 0 Volt for H, 150
Volts for σ+, 300 Volts for V and 450 Volts for σ−. This process is synchronised with
our cold atom experiment thanks to an external trigger sent on the DAC. A python
program controls all the operations regarding the QRNG and the DAC to deliver on
time the random voltages to the Pockel Cell. After generating random polarization
states of light, we must optimize their fidelity in order to minimize the error rate of
the communication.

3.2.3 Encoding a sequence of high-fidelity qubits

In the experiment, the Pockels voltage has to change within a short timescale to
encode the whole sequence of random qubits in 1 ms4. The encoding rate is limited
by the settling time of the Pockels amplifier which is on the order of 30 µs. However,
the time required for the amplifier to stabilize is longer for the transition H → σ−

corresponding to a voltage gap of 450 Volts than the transition V → σ− corresponding
to a voltage gap of 150 Volts.

4time window dedicated to the cryptographic protocol in the MOT cycle (see the section 3.9).
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Figure 3.5: Setup for the generation of random polarization
states. I: input, O: output, DI: digital input, AO: analog output.
Four different bits are generated by the QRNG : 00, 01, 10 and 11.
These random bits are then converted to voltages by a digital-to-analog
converter (DAC). Afterwards, the voltages are amplified and sent to
the Pockels Cell to encode random polarizations of light. The amplifier
(PZD350A, Trek) was specifically chosen for this experiment as it can
produce high voltages up to 700 Volts in a short timescale: the settling
time corresponding to 1 % error is on the order of 30 µs. This process
is synchronised with our cold atom experiment thanks to an external
trigger sent on the DAC.

In order to characterize this phenomenon, we measured the error rate of σ− po-
larization depending on the previous polarization encoded in the sequence. We con-
sidered all the possible transitions: σ− → σ−, V → σ−, σ+ → σ− and H → σ−.
The time duration between two consecutive voltages is set to 25 µs. The results are
presented on the following table5:

Transitions σ− → σ− V → σ− σ+ → σ− H → σ−

Error rate (0.45 ± 0.04)% (0.67 ± 0.05)% (1.1 ± 0.07)% (2.1 ± 0.09)%
Voltage gap 0 V 150 V 300 V 450 V

Table 3.1: Error rate of σ− polarization depending on the previous
polarization encoded in the sequence (without intermediate level).

One can notice that the error rate increases with the voltage gap on table 3.1. The
fidelity of the polarization encoded thus strongly depends on the type of transition
considered. The secret key generated by the QRNG contains all types of transitions
as the sequence is totally random. As a result, the mean error rate would be an
average of the four data points shown on the table 3.1, corresponding to 1.08%. This
value is too high to perform the cryptographic protocol in the secure regime as the
encoding is not the only contribution to the final error rate of the communication:
other noise sources will be added during the storage-and-retrieval process (see section
3.4). Therefore, an optimization method leading to smaller error rates is required.

5The value of σ− voltage was adjusted by sending a continuous voltage to the Pockels cell. This
explains why the lowest error rate is obtained for the transition σ− → σ− corresponding to a voltage
gap of 0 volt.
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Figure 3.6: Optimal sequence for the Pockels voltages. The
voltages are shown after amplification (blue curve) and the triggers
for light pulses are sent 3 µs before the end of each voltage pulse (red
curve). As the fidelity of the polarization encoded strongly depends
on the type of transitions in the sequence, a 10 µs intermediate level
is inserted between each 25 µs random voltage. a) represents the tran-
sition H → σ− with an intermediate voltage of 250 Volts. b) is the
entire sequence of 1 ms composed of 28 random polarizations.

As the fidelity of the polarization encoded strongly depends on the type of transi-
tions in the sequence, we decided to insert an intermediate level (called I) between
each random voltage (see figure 3.6(a)). This intermediate voltage has a length of
10 µs and a voltage equal to 250 Volts which is approximately the middle value be-
tween the highest voltage (polarization σ−) and the the lowest voltage (polarization
H). By inserting this intermediate level, the above table 3.1 is reduced to one possible
transition being I → σ− and the value of σ− voltage can be adjusted to minimize the
error rate for this specific transition. Thus, the error rate is not anymore an average
of the results for all different transitions but only the one transition for which the
system is optimized. The result obtained after implementation of this method is an
error rate equal to (0.35 ± 0.06) %, i.e. a conditional fidelity of (99.5 ± 0.1) %.

3.2.4 Stability of the Mach-Zehnder interferometer over time

After encoding the sequence of qubits, they are sent to the atoms in order to
be stored. One requirement to efficiently store a light pulse into the cloud is that
signal and control fiels should have the same circular polarization (see section 1.6).
Nevertheless, the signal could not fulfill this requirement because its polarization
is changing randomly in the protocol. In order to overcome that issue, we built a
Mach-Zehnder interferometer around the chamber (see figure 3.7) defined by the two
beam-displacers (BD1 and BD2). This technique is called dual-rail encoding [Choi
et al., 2008; Vernaz-Gris et al., 2018].

If the polarization encoded by the Pockels cell is linear (H or V ), light is propagating
along one arm of the interferometer. However, if the polarization is circular (σ+ or
σ−), light is going through both paths and the visibility of the interference has to be
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Figure 3.7: Mach-Zehnder interferometer for dual-rail encod-
ing. The signal should be circularly polarized to be efficiently stored
into the atomic cloud. For this purpose, a beam displacer (BD1) maps
the qubit polarizations into two paths (the first corresponds to the pro-
jection on the polarization H and the second to V ). A combination of
waveplates (λ/2, λ/4) transforms both projections into the same cir-
cular polarization. After the atom chamber, the paths are recombined
by another beam displacer (BD2) to recreate the original polarizations
encoded by the Pockels cell.

maximized to achieve a low error rate6. The key element to optimize in this case is
the recombination into the second beam displacer. The degrees of freedom we can
play with are related to the optics located after the chamber: the position of the
second lens (which has to be symmetrical to the first one), the rotation of the quarter
and half waveplates, and the alignment of the second beam displacer. At the end of
the optimization, the typical visibility obtained is above 99 % (error rate ε < 0.5 %).

The stability of the interferometer is also essential in this protocol if one wants
to achieve a low error rate for long acquisitions. We placed curtains all around the
setup in order to prevent any air flow from perturbing the experiment as it would
induce a phase difference between the two paths which would lead to a decrease of
the visibility (an increase of the error rate). Figure 3.8 represents the interferometer
stability over time. The error rate of the σ− polarization is measured in the CW
regime without storage. The detectors employed to perform this characterization are
two powermeters from Thorlabs (S120C) that are taking values every 100 milliseconds.
Each data point on figure 3.8 is an average value of the error rate over 30 seconds.
One can notice two intervals of time where evolution of the error rate is different.
The first one is [0,20] minutes, the second is [20,50] minutes (50 minutes corresponds
to the end of the acquisition). During the first interval, the error rate remains fairly
static with an average value equal to 0.4% and fluctuations of 0.1%. During the
second interval, the error rate evolves linearly as a function of time with a slope of
0.6% per 10 minutes (value extracted from a linear fit). The fluctuations are also four
times larger compared to the previous interval with a mean of 0.4%.

6The visibility V and the error rate ε are linked with the following relation: V = 1−2ε. Moreover
the fidelity F can be calculated from the visibility thanks to the relation: F = (1 + 3V )/4.
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Figure 3.8: Interferometer stability over time. Evolution the
error rate as a function of time when σ− polarization is sent in the
CW regime without storage. Each data point is an average value of
the error rate over 30 seconds and its fluctuation is represented by
error bars.

The evolution given by figure 3.8 is relevant to determine the duration of the
acquisitions when we execute the quantum money protocol. This duration has to be
under 20 minutes and a realignment of the interferometer is required every 20 minutes.
If we did implement an active locking of the phase difference between the two paths
we could achieve a longer stability but we did not due to time constraints. Moreover,
the main coils were turned on during the dataset shown in figure 3.8 to be in the
same conditions than the real experiment. These coils generate heat in the middle of
the interferometer and thus create air flows between hot and cold air. These flows are
responsible for the disalignment of the interferometer as they introduce fluctuations
on the phase difference between the two paths.

3.2.5 Timing of the experiment

The temporal sequence of the experiment is presented in figure 3.9. The loading,
compression and PGC phases are related to atom cooling and are optimized to achieve
a cold atomic ensemble with a large optical depth (OD = 400) and temperature of
20 µK. After this cooling stage, the cold-atom memory has the required properties
to perform the cryptographic protocol. The random polarizations are stored and
retrieved in and out of the memory using dynamical EIT. The control beam is turned
on before the arrival of the signal pulse on the atoms and turned off when the pulse
is entirely compressed into the cloud. After a storage time of 1 µs, the control beam
is turned on again to retrieve the initial signal pulse. The FWHM of the signal pulse
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Figure 3.9: Temporal sequence of the experiment. First, a
loading phase of 108 ms begins, in which all the parameters are set in
a continuous mode to prepare the MOT. Then, a compression phase is
initiated and lasts 8 ms. During this phase, the magnetic field gradi-
ent is increased gradually from 6 to 35 G/cm. When the compression
stage is finished, the magnetic field is turned off and we perform po-
larization gradient cooling (PGC) on our atomic cloud during 2 ms
by ramping down the trapping power, the trapping detuning and the
repump power, following an exponential decay. Then, the cold-atom
memory has the required properties to perform the cryptographic pro-
tocol. The random polarizations are stored-and-retrieved in and out
of the memory using dynamical EIT thanks to a control beam. The
storage time is about 1 µs, the FWHM of the signal pulse was set
to 230 ns and the control intensity to 0.2 mW/cm2. The storage-and-
retrieval process is repeated 28 times during this last phase of the
experiment cycle.

is set to 230 ns and the control intensity to 0.2 mW/cm2. The storage-and-retrieval
process is repeated 28 times during this last phase of the experiment cycle.

3.3 Data analysis and results

The data analysis consists in comparing the data collected by the vendor to a part
of the secret key generated by the bank. Indeed, the verification is only done on
qubits measured in the right basis, i.e. when the measurement basis is the same
than the encoding one. The other qubits are not taken into account in the analysis.
A success is reported when the output polarization is the same than the input one,
and an error is reported in the other case. If the vendor detects double clicks (one
click on both detectors at the same time), the bank counts it both as an error and
success. Finally, the error rate is the ratio Nerror/(Nsuccess + Nerror) with Nsuccess the
number of successes and Nerror the number of errors. We performed the experiment
for four values of average photon numbers: µ ∈ {0.5, 1, 1.5, 2} in the two measurement
basis

{
H/V, σ+/σ−}. The secret key generated is different for each measurement and
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Figure 3.10: Comparison between the security threshold and
experimental data. The error rates are measured for four different
values of µ with storage (blue data points) and without storage (grey
data points). They are obtained by calculating the mean value be-
tween the results of the two measurement basis {H/V, σ+/σ−}. The
error bars on experimental data are estimated by taking into account
the statistical uncertainty of photon counts. The light-red area is the
security threshold which distinguishes the secure regime from the in-
secure regime (hatched area). The threshold is determined from the
mean efficiency achieved over the four photon numbers η = (77 ± 2)%.

is composed of 28 random polarizations repeated 4000 times. The time duration
between two consecutive polarizations in the sequence is set to 35 µs.

Figure 3.10 is a comparison between the security threshold and the experimental
data. The data points represent the error rates of the communication for each µ

which are obtained by calculating the mean value of the two measurement basis{
H/V, σ+/σ−}. In fact, the probability to measure the data in each basis is the same

in the quantum money protocol. The blue dots are the error rates for the complete
protocol including the memory and the grey ones are the error rates without the
memory (a photonic experiment). The error bars on experimental data are estimated
by taking into account the statistical uncertainty of photon counts. The hatched
area represents the "insecure" regime and the light-red area is the threshold which
distinguishes the secure regime from the insecure regime. If the error rate is above the
threshold, the communication is not secured. The threshold is determined from the
mean efficiency achieved over the four photon numbers η = (77 ± 2)%. The following
table provides details about the blue and grey data points represented on figure 3.10.
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µ 0.51 ± 0.02 0.99 ± 0.04 1.50 ± 0.06 2.02 ± 0.07
εph (0.36 ± 0.08)% (0.36 ± 0.06)% (0.25 ± 0.04)% (0.29 ± 0.04)%

εmem (1.84 ± 0.15)% (0.78 ± 0.07)% (0.69 ± 0.06)% (0.87 ± 0.05)%

Table 3.2: Error rates measured for four different values of µ with
storage (εmem) and without storage (εph).

The error rates εph measured in the photonic experiment (without storage) cor-
respond to conditional fidelities F ≥ 99.5 %. These are the best results among the
implementations of the quantum money protocol in its photonic version [Bozzio et al.,
2018; Guan et al., 2018]. It could be explained by the optimization of the sequence
sent to the Pockels cell in the encoding stage (see section 3.2.3) and the accurate
adjustment of the phase difference between the two arms of the Mach-Zehnder inter-
ferometer in order to enhance its visibility (see section 3.2.4).

The error rates εmem measured in the experiment including the memory are spec-
ified in table 3.2. Contrary to the purely photonic case, the error rate at µ = 0.5 is
higher than results obtained for other photon numbers due to the signal-to-noise ratio
(SNR). Indeed, a new noise source is added when we store the qubits: the control
beam. This laser is not coupled to the detectors as there is a 1◦ angle between the
control and the signal paths. Nevertheless, the hot vapor which is surrounding the
cold atoms is absorbing the control photons and emitting them spontaneously in all
directions. As a result, a part of this emission is oriented on the probe path and
creates false clicks on the single-photon counters. This additional noise explains the
difference between the error rates εmem and εph. This topic is thoroughly discussed
in section 3.4.

The experimental data µ = 0.5 is under the threshold by 8 standard deviations,
µ = 1 is under by 18 standard deviations and µ = 1.5 is under by 11 standard
deviations. Therefore we achieved the secure regime for the quantum money protocol
involving a quantum memory and we can safely perform the protocol for these three
different values of µ. The data point µ = 2 is in the limit between the secure and
insecure regimes. The protocol becomes more demanding for high photon numbers
as a dishonest client can exploit the multi-photon components of the coherent state
to minimize the error rate of the two copies.

The stored data shown in figure 3.10 corresponds to a storage time δt = 1 µs.
The memory efficiency decays with storage time due to the residual magnetic field
(see section 1.2.4). This decay leads to two consequences : the secure area becomes
smaller as the threshold decreases with storage losses and the error rate increases as
the SNR drops (the retrieved signal is weaker and the noise added by the control field
remains the same). Therefore, the experimental data located in the secure area for
a storage time δt = 1 µs will no longer be secure past a limit value δtlim. Given our
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15 µs memory lifetime, the storage time limit for which the data point µ = 1 remains
below the security threshold is δtlim = 6 µs.

The next step is the analysis of the noise sources in our experiment, more specifically
the noise induced by the control beam.

3.4 Study of the control noise

In this section, we will try to give an explanation about the physical phenomena
which are responsible for errors in our cryptographic protocol. First we can distin-
guish two sources of noise: the first one coming from the optical setup without the
memory and the second one from the storage-and-retrieval process. Figure 3.10 con-
tains quantitative information about the relative weight of these two contributions.
Indeed the grey dots are the errors introduced by the optical setup. They are mainly
explained by the intrinsic impurity of the polarization qubits created by the Pockels
cell and also the visibility of the interferometer. These two elements have been stud-
ied in the sections 3.2.3 and 3.2.4. The blue dots are the errors of the qubits stored
in the memory. The difference between these two error rates (εmem − εph) represents
the noise added by the storage-and-retrieval process. In the following part, we will
focus on this last noise.

3.4.1 Analysis of the physical mechanisms causing the control noise

As mentioned in the previous chapters, an additional laser (called the control beam)
is used to store-and-retrieve the polarization states from the quantum memory. As
a 1◦ angle separates the control and the signal paths, this beam is not coupled to
the two detectors. Indeed, when all cesium atoms are removed from the vacuum
chamber, the control photons are not detected by the single-photon counters (see
orange curve in figure 3.11). The dispenser is the source of cesium atoms inside the
vacuum chamber. The control noise observed when the dispenser is turned on (purple
curve in figure 3.11) corresponds to fluorescence emitted by the hot cesium vapor as
the magneto-optical trap was switched off during this acquisition. Starting from this
experimental observation, we will analyze the physical mechanisms at play explaining
the control noise.

At the end of the cooling stage, the cold atoms are transferred in the ground state∣∣g〉 that is not addressed by the control beam. Therefore, the cold atomic medium is
transparent for this additional field. Nevertheless, there are not only cold atoms in
the chamber, but also a hot vapor released by the dispensers. A fraction of cesium
atoms composing this vapor is populating the long-lived spin state

∣∣s〉 addressed by
the control laser. The hot medium thus absorbs photons from the control field and
spontaneously emits them in all directions. A fraction of this light is emitted in the
signal path and is responsible for false clicks on the detectors.
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Figure 3.11: Control noise with and without cesium atoms in
the vacuum chamber. The control pulse is delimited by the vertical
dashed lines. The dispenser is the source of cesium atoms inside the
vacuum chamber. Before taking this measurement, the dispenser was
turned off during one complete day to remove all the atoms from the
chamber. The control noise observed when the dispenser is turned on
corresponds to fluorescence emitted by the hot cesium vapor as the
magneto-optical trap was switched off during this acquisition.

The energy levels with their decay channels are presented on figure 3.12. We
consider atoms in this hot vapor which are initially in the state

∣∣s〉 (atoms in the
state

∣∣g〉 are not addressed by the control laser). After turning on the control beam,
atoms are excited from

∣∣s〉 to
∣∣e〉. Then, they could spontaneously decay in

∣∣g〉 or∣∣s〉 with a decay rate Γeg or Γes. Stimulated emission is also possible from
∣∣e〉 to

∣∣s〉.
After a few cycles, all the atoms are optically pumped into

∣∣g〉 as the ground state is
not addressed by the control beam, leaving empty

∣∣s〉 and
∣∣e〉. Nevertheless, another

mechanism enters into account: some atoms are leaving the beam and are replaced
by other ones that are in the same energy level or in a different one. Γgs and Γsg are
the transit rates representing this population exchange. Therefore, the system will
reach a steady state where the populations in

∣∣s〉 and
∣∣e〉 are not equal to zero. In

other words, control photons are going to be absorbed and re-emitted by the cesium
atoms as long as the beam is turned on.

After this qualitative description, equations are required to complete the under-
standing of the population dynamics. We assume that Γgs = Γsg = Γt/2 with Γt

being the transit time. In practice, the coherence are relaxing faster than the popula-
tion which means that the non-diagonal term of the density matrix can be considered
in the steady-state regime. As a result, the Bloch equations can be written in terms
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Figure 3.12: Three-level system in the presence of a control
field. Ωc is the Rabi frequency associated to the control field. Γeg

and Γes are the spontaneous decay rate from
∣∣e〉 to

∣∣g〉 and
∣∣s〉. Γgs

and Γsg are the transit relaxation rates which represents the popula-
tion exchange between the levels

∣∣g〉 and
∣∣s〉 due to atoms entering or

leaving the control beam.

of rate equations as:

dNg

dt
= ΓegNe − Γt

2 (Ng − Ns) (3.12)
dNe

dt
= −ΓNe + Besuν(Ns − Ne) (3.13)

dNs

dt
= ΓesNe − Besuν(Ns − Ne) + Γt

2 (Ng − Ns) (3.14)

where Γ = Γeg + Γes is the total decay rate of the excited state and Besuν represents
the absorption and stimulated emission rates with Bes the Einstein coefficient and
uν the spectral energy density. One can show that Besuν = Ω2

c/2 Γ/2
(Γ/2)2+(δ−kv)2 with

δ the detuning of the control frequency from the atomic transition s → g and v the
velocity of the atoms [Raimond and Perrin, 2020]. The expression of the transit time
Γt can be derived by comparing the average velocity v of the atoms (determined by
the temperature T of the gas) to the diameter of the control beam (evaluated by
its waist w0). It leads to Γt = 1

w0
√

2 log(2)

√
8kbT
πm , with kb the Boltzmann constant

[Urvoy et al., 2013]. We solved this system of equations with Mathematica to get an
analytical expression of Ng, Ne and Ns as a function of the time.

Figure 3.13 represents the dynamics of populations in a three-level system in the
presence of a control field without transit effect. The Rabi frequency of the control
beam is different for the two subplots: Ωc = 2π ·1 MHz in a) and Ωc = 2π ·15 MHz in
b). The decay rate of the excited state is Γ = 2π · 4.575 MHz. Atoms are considered
at rest for this example. The first case illustrates the regime Ωc ≪ Γ where the
population of the excited state remains low and the second one is the regime Ωc ≫ Γ
where Ne ≈ Ns. The evolution of Ne and Ns at very short timescale (t < 20 ns)
on figure 3.13(b) is determined by the stimulated emission. Moreover, the pumping
time is decreasing with the Rabi frequency: 90 % of the population is transferred to
the ground state in 3.5 µs for figure 3.13(a) compared to 350 ns for figure 3.13(b).
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Figure 3.13: Population dynamics in a three-level system in
the presence of a control field without transit effect. The
Rabi frequency of the control beam is different for the two subplots:
Ωc = 2π · 1 MHz in a) and Ωc = 2π · 15 MHz in b). The decay rate of
the excited state is Γ = 2π · 4.575 MHz. Atoms are considered at rest
for this example. The first case represents the regime Ωc ≪ Γ where
the population of the excited state remains low and the second one is
the regime Ωc ≫ Γ where Ne ≈ Ns. The pumping time is decreasing
with the Rabi frequency: 90 % of the population is transferred to the
ground state in 3.5 µs for a) compared to 350 ns for b).

However for large Ωc, the pumping time is limited by the decay rate Γ of the excited
state.

As mentioned earlier, the control beam is not coupled to the detectors. Light from
stimulated emission is thus not detected and only the spontaneous emission is re-
sponsible for false clicks in our cryptographic protocol. The fluorescence rate emitted
by the gas is equal to ΓNe. Therefore, the evolution of the excited-state population
over time determines the fluorescence temporal profile observed experimentally in
figure 3.11. As we are considering a hot vapor, Doppler broadening has to be taken
into account in the process. Therefore, the populations need to be averaged over
all possible atom velocities weighted by the Maxwell-Boltzmann distribution. Figure
3.14 presents the evolution of the excited-state population over time for different gas
temperature. Ne is normalized on both figures to study its dynamics. The subplot a)
does not include the transit effect whereas b) does. The Rabi frequency of the control
beam for both figures is Ωc = 2π · 15 MHz. On figure 3.14(a), one can notice that the
pumping time is increasing with the temperature of atoms. Indeed, the absorption
rate depends on the velocity: fast atoms will absorb control photons with a lower rate
than slow atoms as the formula of Bes given above shows. When the finite size of the
beam is taken into account, Ne is not converging to zero (see figure 3.14(b)). The
waist of the control beam is set to 0.7 mm corresponding to the experimental value.
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Figure 3.14: Evolution of the excited-state population over
time for different gas temperature. Ne is normalized on both
figures to study its dynamics. a) does not include the transit effect
whereas b) does. The Rabi frequency of the control beam for both
figures is Ωc = 2π ·15 MHz. On figure b), the time to reach the steady-
state regime is determined by 1/Γt which is inversely proportional to
the square root of the gas temperature. The waist of the control beam
is set to 0.7 mm.

The time to reach the steady-state regime is determined by 1/Γt which is inversely
proportional to the square root of the gas temperature. This feature is illustrated on
the second subplot: the steady-state value is reached earlier for T = 300 K than for
T = 50 K and T = 10 K.

In order to compare the fluorescence profile measured in figure 3.11 with the evo-
lution of the excited state population described by our model, some experimental
elements have to be considered.

3.4.2 Simulation of the control noise in experimental conditions

The control noise is filtered by a Fabry-Perot cavity (FPE001A, Quantaser). This
Fabry-Perot cavity (FPC) has a free-spectral range about 16 GHz and a 60 MHz
bandwidth (45 dB rejection at the control frequency). Fluorescence resulting from the
decay

∣∣e〉 →
∣∣s〉 is at the control frequency and is thus filtered by the FPC. However,

scattered photons produced by the decay
∣∣e〉 →

∣∣g〉 are at the signal frequency. These
photons are experiencing strong Doppler broadening as they are emitted by the hot
vapor. The FPC attenuates fluorescence from fast atoms compared to slow ones due
to their Doppler shift. Therefore, the spectral filtering of the cavity has to be taken
into account as it determines the velocity range of atoms participating to the noise
detected by the single-photon counters.
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Figure 3.15: Simulation of the control noise profile. The con-
trol noise is simulated in the time range defined by the vertical dashed
line, i.e. when the control beam is turned on. This simulation takes
into account the impact of spectral and spatial filtering on the fluores-
cence emitted by the hot vapor. The vapor is assumed to be at room
temperature. Experimental data of the control noise is represented in
the background.

Moreover, the control noise is also spatially filtered as the signal is coupled to a
single-mode fiber before going to the detection setup. This single-mode fiber collects
photons emitted in spatial mode of the signal. As a result, atoms interacting with the
control field must be located on the signal path to contribute to the noise detected
during the cryptographic protocol. In this case, the transit rate perceived after spatial
filtering is not the same than the one before, due to the projection on the signal’s
spatial mode (the waist of the signal beam is w0 = 126 µm).

The temporal profile of the fluorescence emitted by the cesium gas after spatial
and spectral filtering is illustrated in figure 3.15. The control noise is simulated in
the time range defined by the vertical dashed line, i.e. when the control beam is
turned on. The vapor is assumed to be at room temperature. Experimental data of
the control noise is represented in the background. The fluorescence decay calculated
from the model seems to be in good agreement with the measurement data. The
temporal profile of the control noise predicted by our model is thus consistent with
experimental observations.
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3.5 Conclusion

This chapter reports the first experimental implementation of the quantum money
protocol including a memory layer. The experimental setup was outlined, empha-
sizing the fine-tuning of the voltage sequence sent to the Pockels cell, resulting in
a 99.5 % conditional fidelity for the encoded qubits. The visibility obtained for the
Mach-Zehnder interferometer exceeds 99 %, and its stability over time was evaluated,
showing a stable visibility over a period of 20 minutes. The secure regime of the
protocol was achieved for three different photon numbers µ = 0.5, 1 and 1.5. Based
on our 15 µs memory lifetime, the storage time limit for which the data point µ = 1
remains below the security threshold is δtlim = 6 µs. Finally, an analysis of the control
noise was conducted in order to understand the physical mechanisms responsible for
errors in our cryptographic protocol.

An improvement of the experiment would be to store the whole sequence of ran-
dom polarizations at once. This could be possible by spatially multiplexing our
quantum memory. This topic is studied in the next chapter.
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As for classical communication, multiplexing is useful for the field of quantum com-
munication. A critical challenge is to go beyond single-mode quantum memories and
to store many modes at the same time. It could be used to improve the achievable
rates for creating entanglement between light and quantum memories in a quantum
network, as it is equivalent to running the protocol for each mode in parallel [Collins
et al., 2007]. Several multiplexing methods can be explored depending on the degrees
of freedom available for a specific storage platform, such as multiplexing in time [Jobez
et al., 2016; Lago-Rivera et al., 2021], frequency [Seri et al., 2019], and space [Nicolas
et al., 2014; Pu et al., 2017]. Temporal multiplexing is not compatible with the EIT
scheme due to the control field which cannot store an excitation without reading the
previous one. However, the EIT scheme is compatible with spatial multiplexing, as
[Jiang et al., 2019] demonstrated by addressing 210 different memory cells spatially
separated with acousto-optic deflectors (AODs). Another method would be to store
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multiple transverse modes of light, which are orthogonal between each others and su-
perposed in one beam. This is possible using spatially superposed Hermite-Gaussian
modes (HG) created for instance by devices based on multi-plane light conversion
(MPLC). The multimode capacity characterises the number of modes that a memory
can store and retrieve with a high efficiency (η > 50 % for instance). The goal of this
chapter is to numerical simulate the multimode capacity of our quantum memory
with theses two methods.

4.1 Multiplexing with spatially-superposed Hermite-Gaussian
modes

Space division multiplexing (SDM) was first employed in classical communications
by simultaneously transmitting multiple spatial modes through multimode or multi-
core fibers [Richardson et al., 2013]. This technique could be used in the context of
quantum networks and the storage of spatial modes in quantum memories is thus a
relevant topic to investigate. This section presents the case of spatially-superposed
Hermite-Gaussian modes interfaced with a cold-atom based quantum memory.

4.1.1 Hermite-Gaussian modes

Hermite-Gaussian modes are a set of solutions to the paraxial wave equation in op-
tics that describe the transverse spatial modes of an optical resonator. These modes
are named after Charles Hermite and Carl Friedrich Gauss. They constitute an or-
thogonal basis which could be used for multiplexing.

The electric field distribution of a Hermite-Gaussian mode are described as a prod-
uct of Hermite polynomials and Gaussian functions. The transverse spatial profiles
of these modes have a rectangular symmetry, which is characterized by the number
of nodes and antinodes in the horizontal and vertical directions. The mode indices,
often denoted as m and n, specify the number of peaks (antinodes) along the x and
y axes, respectively. The amplitude of the electric field can be written as:

Emn(x, y, z) = um(x, z)un(y, z)e−ikz (4.1)

where uj (j = {m, n}) is equal to:

uj(x, z) =
( √

2/π

2jj!w0

) 1
2 ( q0

q(z)

) 1
2
(−q(z)∗

q(z)

) j
2

Hj

(√
2x

w(z)

)
e

−i kx2
2q(z) (4.2)

with the waist of the fundamental Gaussian mode w(z) = w0
√

1 + (z/zR)2 and the
complex beam parameter q(z) = z + izR, zR = πw2

0/λ being the Rayleigh range.
Hj is the j-th order Hermite polynomial and is defined as (physicist form1):

1Two versions of Hermite polynomials exist. For instance, H1(x) = 2x in the physicist form
whereas H1(x) = x in the probabilistic form. In this work, we are using the physicist form.
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Figure 4.1: Transverse intensity profiles of the first Hermite-
Gaussian modes in the xOy plane. The HGmn modes exhibit a
rectangular symmetry with m+1 maxima in the direction x and n+1
maxima in the direction y which gives a total of (m+1)(n+1) intensity
peaks.

Hj(x) = (−1)jex2 dj

dxj
e−x2

. (4.3)

The transverse intensity profiles of the first Hermite-Gaussian modes are repre-
sented on figure 4.1 at z = 0. The modes HGm0 exhibit m+1 maxima in the direction
x as it is shown on the profiles of HG00 (one maximum), HG10 (two maxima) and
HG20 (three maxima). The modes HG0n exhibit n + 1 maxima in the direction y as
it is shown on the profiles of HG00 (one maximum) and HG01 (two maxima). The
modes HGmn thus have m + 1 maxima in the direction x and n + 1 maxima in the
direction y which gives a total of (m + 1)(n + 1) peaks as illustrated on the profiles
of HG11 (four peaks) and HG21 (six peaks).

The longitudinal intensity profiles of Hermite-Gaussian modes are represented on
figure 4.2 in the xOz plane. The index n of HGmn modes is not given because it does
not have an impact on the longitudinal profiles in the xOz plane. Their waists (red
curves) define the evolution of the transverse beam size over the z-axis. The waist
wm(z)2 of HGmn modes in xOz plane can be expressed as [Carter, 1980]:

wm(z) =
√

m + 1
2 · w(z) (4.4)

2The waist wm(z) is defined as the 1/e2 half-width of the transverse intensity profile at z position.
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Figure 4.2: Longitudinal intensity profiles of Hermite-
Gaussian modes in the xOz plane. The index n of HGmn modes is
not given here because it does not have an impact on the longitudinal
profiles in the x0z plane. Their waists (red curves) define the evolution
of the transverse beam size over the z-axis and scales as

√
m + 1/2 in

this specific plane.

with w(z) the waist of the fundamental Gaussian beam HG00. In the yOz plane,
HGmn modes thus have a waist wn(z). Their radial divergence are given by a linear
combination of the two waists wm(z) and wn(z).

4.1.2 Generation of spatially-superposed HG modes using MPLC

Hermite-Gaussian modes can be generated from a Gaussian mode by reflecting
on a phase mask controlled by a spatial light modulator (SLM). However if one
wants to map spatially separated Gaussian modes into a combination of HG modes
and inversely, the solution is more complex. One method is called multi-plane light
conversion (MPLC). This technique was first developed in [Morizur et al., 2010] by the
founders of the company Cailabs. The principle is to use a multipass cavity composed
of reflective phase plates positioned in front of a mirror. Each input beam is reflected
multiple times on the phase plates but at different position as they were initially
separated. Therefore, they acquire different phase profiles during their propagation
in the cavity: one Gaussian beam is transformed into a particular HG mode after the
last reflection. The phase masks are designed with a very high resolution (millions
of pixels) to perform this operation. The separation between the beams is decreasing
after each reflection leading to HG modes perfectly superposed at the output of the
cavity.

97



Chapter 4. Towards the implementation of spatial multiplexing

MUX

DEMUX

N
Si
n
gl
e
-m
o
d
e
�i
b
er
s

N
Sin

gle
-m
o
d
e
�ib
ers

Atoms

𝑓 2𝑓 𝑓

𝐿1 𝐿2

Figure 4.3: Simplified setup of a spatially multiplexed quan-
tum memory using MPLC devices from Cailabs. Several funda-
mental Gaussian beams are propagating in single mode fibers and are
transformed into a combination of multiple Hermite-Gaussian modes
at the output of the multiplexer (MUX). This combination is stored
in the atomic ensemble and retrieved on demand. The demultiplexer
(DEMUX) performs the reverse operation, i.e. converting the HG
modes into separated fundamental Gaussian modes. Each output fiber
of the DEMUX device corresponds to a specific HG profile stored in
the memory. In practice, a 4f optical system composed of two lenses
(L1 and L2 with the same focal length f) images the plane located at
the output of the multiplexer on the input of the demultiplexer.

Figure 4.3 shows a simplified setup of how one can employ Cailabs devices [Bade
et al., 2018] based on MPLC to multiplex our quantum memory. Several fundamental
Gaussian beams are propagating in single mode fibers which are coupled to the mul-
tipass cavity inside the multiplexer device (MUX). At the MUX output, one beam
containing the combination of multiple Hermite-Gaussian modes (as many as the
number of input fibers) is sent to the cold atomic ensemble. After the storage-and-
retrieval process, superposed HG modes are separated and converted into Gaussian
beams coupled in optical fibers. One output fiber corresponds to one mode. This
operation is done by using the MPLC device in the opposite direction, which acts as
a demultiplexer (DEMUX). In practice, a 4f optical system composed of two lenses
(L1 and L2 with the same focal length f) images the plane located at the output of
the multiplexer on the input of the demultiplexer. The lens L1 focuses HG modes on
the atomic cloud in order to maximize the overlap between light and atoms, in other
words to increase the optical depth seen by the modes. The importance of this last
point on the multimode capacity of the memory is addressed in the next section.

A typical measure of cross-talks between modes without atoms is presented on
figure 4.4(b) for a MUX+DEMUX system with 15 channels. For each input mode
HGi,j, we measured the power Pi,j in this mode at the output of the demultiplexer
and the leakage in the other channels Pi′,j′ . Cross-talks between modes in decibels are
defined as 10 log(Pi,j/Pi′,j′). The average cross-talk is −21.03 dB. Figure 4.4(a) shows
the coupling efficiency of each channel, defined as the ratio between the power before
and after the MUX+DEMUX devices for a specific mode. The average coupling
efficiency is −10.25 dB.
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HG=13 outputHG=31 outputHG=22 outputHG=04 outputHG=40 outputHG=03 outputHG=12 outputHG=21 outputHG=30 outputHG=02 outputHG=11 outputHG=20 outputHG=01 outputHG=10 outputHG=00 output(dB)

-20,46-19,02-29,62-21,54-23,06-37,34-28,58-22,44-19,16-28,80-28,65-22,99-36,59-39,09HG=00 input

-33,52-21,26-17,97-35,94-19,82-27,95-19,04-19,51-16,17-24,23-37,21-20,23-21,42-37,51HG=10 input

-26,14-27,10-29,57-18,38-37,39-23,33-21,67-22,39-24,27-22,18-37,30-30,58-22,94-37,61HG=01 input

-26,16-17,46-13,22-36,05-18,95-37,31-21,69-14,36-13,92-28,77-23,62-21,54-21,24-22,62HG=20 input

-17,82-17,22-29,36-35,82-37,18-37,08-28,33-17,72-24,06-28,54-25,06-36,33-38,83-37,40HG=11 input

-26,08-27,04-13,13-16,53-37,33-13,16-17,48-22,32-30,40-23,54-30,52-21,45-38,97-37,54HG=02 input

-26,70-13,10-15,54-25,25-11,36-21,69-35,51-22,95-38,70-29,16-22,00-25,74-23,50-26,03HG=30 input

-17,75-15,13-14,70-24,41-25,93-23,05-34,68-30,19-37,87-19,58-20,05-24,90-38,76-37,33HG=21 input

-15,85-35,21-15,47-20,15-37,88-37,78-32,73-22,30-24,81-24,09-39,07-37,03-20,47-38,10HG=12 input

-13,81-21,44-15,07-11,87-37,48-35,04-34,79-30,55-17,57-23,69-38,67-19,65-25,93-25,56HG=03 input

-33,60-27,09-13,18-36,02-28,03-34,94-34,69-15,31-28,74-28,59-18,06-36,52-18,23-25,46HG=40 input

-33,64-34,75-18,09-26,24-12,98-28,56-32,27-37,31-24,35-37,33-21,47-21,55-25,87-37,63HG=04 input

-26,47-19,30-36,36-26,54-23,67-35,29-22,72-24,60-22,51-28,93-23,28-36,87-23,27-22,93HG=22 input

-18,23-29,78-36,24-37,60-23,54-28,74-19,81-15,97-38,35-21,54-23,15-36,74-39,24-37,81HG=31 input

-27,38-15,26-19,94-37,67-15,62-17,82-34,98-24,54-24,60-21,61-23,22-25,46-23,21-37,88HG=13 input

Coupling efficiency(dB)

-9.32HG=00 input

-7.89HG=10 input

-10.39HG=01 input

-8.35HG=20 input

-9.63HG=11 input

-8.78HG=02 input

-9.65HG=30 input

-12.22HG=21 input

-11.98HG=12 input

-9.64HG=03 input

-9.54HG=40 input

-10.90HG=04 input

-17.36HG=22 input

-12.21HG=31 input

-13.38HG=13 input

a) b)

Figure 4.4: Coupling efficiencies and cross-talks between
channels for a MUX+DEMUX system with 15 channels with-
out atoms. Figure a) shows the coupling efficiency of each channel,
being defined as the ratio between the power before and after the
MUX+DEMUX devices for a specific mode. The average coupling ef-
ficiency is −10.25 dB. Cross-talks between modes are represented on
figure b). The average cross-talk is −21.03 dB.

4.1.3 Multimode capacity of EIT-based quantum memory with HG
modes

In the context of quantum memories, the Fresnel number is defined as F = σ2/(λL)
and characterises the ability for a memory to efficiently store multiple modes depend-
ing on its geometry (σ being its transverse size and L its length, see figure 4.5). First
the Fresnel number is inversely proportional to L. Indeed, as the modes are diverging,
a long ensemble will induce leakage on the edges leading to a decrease in memory
efficiency. Moreover F is proportional to σ: a large transverse section enables to store
a large amount of high-order modes as their divergence increases as the square root
of the mode order. The multimode capacity of a memory thus scales with the Fres-
nel number. This section gives a theoretical description of the storage-and-retrieval
process for superposed HG modes and assesses the multimode capacity of the mem-
ory for different experimental parameters to find the optimal configuration for our
cold-atom experiment. The theory is based on two papers from Anders Sørensen’s
group [Grodecka-Grad et al., 2012; Zeuthen et al., 2011]. Their work was about spa-
tial multiplexing with Bessel beams and I applied it to other multiplexing techniques
(with Hermite-Gaussian beams in this section and a 2D array of Gaussian beams in
section 4.2).

Theory

This study is done in the Heisenberg picture (time-dependant operators) with quan-
tized electromagnetic field for the signal and classical light for the control. The
mathematical formalism is similar than the one used in the section 1.2.3, except the
fact that we are considering a combination of transverse modes instead of multiple
wavevectors. The signal field can thus be written as:

99



Chapter 4. Towards the implementation of spatial multiplexing

𝜎 𝑤

L

𝑤(z)
0

Figure 4.5: Configuration for the multiplexing calculations.
The atomic density (blue area) is chosen constant over a distance
L on the z-axis and Gaussian on the transverse plane: n(x, y) =
n0e−2(x2+y2)/σ2 with σ the "atomic waist". The fundamental HG00
mode is represented, w(z) being its waist at a position z and w0 at
z = 0. The overlap between the beam and the atomic ensemble is only
determined by σ, w0 and L.

Ês =
∑
mn

Emnâmn (4.5)

where âmn is the annihilation operator of a specific HGmn mode and Emn its am-
plitude. The atomic density is chosen constant over z-axis and Gaussian on the
transverse plane: n(x, y) = n0e−2(x2+y2)/σ2 with σ the "atomic waist". The funda-
mental HG00 mode is represented with the atomic ensemble on figure 4.5. L is the
length of the ensemble, w(z) is the waist at a position z of HG00 and w0 at z = 0.
As HG modes are orthogonal, one might think that their spin-waves are also or-
thogonal while they are stored in the memory. However, their orthogonality is not
preserved due to the atomic density profile which induces cross-talks between stored
modes. The cross-talk between different orders (m, n) and (m′, n′) is modeled by the
coupling term Bmn,m′n′ :

Bmn,m′n′ = 1
n0L

∫
x,y,z

Emn(x, y, z)E∗
m′n′(x, y, z)n(x, y)dxdydz (4.6)

with Emn the amplitude of HGmn given by (4.1) and Em′n′ the amplitude of HGm′n′ .
The overlap between HGmn and the atomic ensemble is determined by Bmn,mn (m =
m′ and n = n′). The expression (4.6) is averaged over the z-axis in order to take into
account the mode divergence over the cloud length.

The equations (1.32), (1.34) and (1.37) of the first chapter can be used again
with a slight modification (the vacuum Rabi frequency Ω0 has to be transformed
into Ω0

∑
m′n′

Bmn,m′n′ to include couplings between different modes) to describe the
storage-and-retrieval process of superposed HG beams:

∂σ̂mn
ge

∂t
= −γgeσ̂mn

ge + i

2Ωcσ̂
mn
gs + i

2Ω0
∑
m′n′

Bmn,m′n′ âm′n′ (4.7)

∂σ̂mn
gs

∂t
= i

2Ωcσ̂
mn
ge (4.8)(

∂

∂t
+ c

∂

∂z

)
· âmn = i

Ω0
2 N

∑
m′n′

Bmn,m′n′ σ̂m′n′
ge (4.9)
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4.1. Multiplexing with spatially-superposed Hermite-Gaussian modes

with Ωc the control Rabi frequency, γge = Γ/2 the relaxation rate of the coherences
between the excited and the ground state. σ̂mn are the atomic operators for a specific
HGmn.

In a first step, a few changes on the variables are going to be operated. We take
a comoving frame t′ = t − z/c and new dimensionless variables in order to simplify
these equations: z̃ = z/L, t̃ = Γt′ and Ω̃ = Ω/Γ. The definition of the operators
σ̂ and â are modified by a constant: σ̂mn → σ̂mn

√
L/

√
N and âmn → âmn/

√
Γ.

Moreover, the excited state is considered as adiabatically eliminated (∂σ̂mn
ge /∂t ≈ 0).

To ease the transition to numerical simulations, we introduce the operator vectors
a⃗ = (âmn), σ⃗ = (σ̂mn) which group all the modes together and the coupling matrix
B = (Bmn,m′n′). It leads to:

σ⃗ge(z̃, t̃) = iΩ̃cσ⃗gs(z̃, t̃) + i
√

d0Ba⃗(z̃, t̃) (4.10)
∂

∂t̃
σ⃗gs(z̃, t̃) = i

2Ω̃cσ⃗ge(z̃, t̃) (4.11)
∂

∂z̃
a⃗(z̃, t̃) = i

2
√

d0Bσ⃗ge(z̃, t̃) (4.12)

where d0 = Ω2
0NL
cΓ is the peak optical depth. One can note that

√
d0 appears as a pref-

actor of the coupling matrix in the above equations. If we look at the diagonal terms
of

√
d0B, they define the square root of the optical depth perceived by each mode.

High-order modes have a low overlap with the cloud due to their larger divergence
and will result into low OD. This divergence thus limits the multimode capacity of
the quantum memory [Grodecka-Grad et al., 2012].

The expression of σ⃗ge in (4.10) can be injected into (4.11) and (4.12). Then, we
define the Laplace transform in the space coordinate z̃ as L (f)(u) =

∫+∞
z̃=0 f(z̃)e−iuz̃dz̃

where the momentum u is a real number. This Laplace transform is applied to the
above equations:

∂

∂t̃
σ⃗gs(u, t̃) = −1

2Ω̃2
c σ⃗gs(u, t̃) − 1

2Ω̃c

√
d0Ba⃗(u, t̃) (4.13)

iua⃗(u, t̃) − a⃗(z̃ = 0, t̃) = −1
2Ω̃c

√
d0Bσ⃗gs(u, t̃) − 1

2d0B
2a⃗(u, t̃) (4.14)

using the property of the Laplace transform about derivatives, L ( df
dz )(u) = iuL (f)(u)−

f(0+). First, we consider the storage part (t̃ < 0) where a⃗(z̃ = 0, t̃ < 0) = a⃗in(t̃) is
the initial pulse before interacting with the atoms. These two differential equations
can be written as: 

∂

∂t̃
σ⃗gs(u, t̃) = N(u)σ⃗gs(u, t̃) + Q(u)⃗ain(t̃) (4.15)

a⃗(u, t̃) = Q(u)σ⃗gs(u, t̃) + T−1(u)⃗ain(t̃) (4.16)
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with the matrices T(u) = iu + 1
2d0B

2, Q(u) = −1
2 Ω̃c

√
d0T

−1(u)B and N(u) = −1
2 Ω̃2

c +
1
4 Ω̃2

cd0BT
−1(u)B. The solution to this first order differential equation (4.15) is found

by applying a well-known method called variation of constants. At the end of the
storage time (t̃ = 0), the spin-wave operator is equal to:

σ⃗gs(u, 0) =
∫ 0

−∞
M⊺[−t̃, u]⃗ain(t̃)dt̃ (4.17)

where we introduce the transfer matrix M[t̃, u] = Q(u)eN(u)t̃. The retrieval process
happens at t̃ > 0. Equations (4.15) and (4.16) can be expressed without the input
field a⃗in as a⃗(z̃ = 0, t̃ > 0) = 0. It leads to a⃗(u, t̃ > 0) = M[t̃, u]σ⃗gs(u, 0). The
output pulse a⃗out(t̃) = a⃗(z̃ = 1, t̃ > 0) is calculated via the inverse Laplace transform
a⃗out(t̃) = L −1(⃗a(u, t̃ > 0))(z̃ = 1) :

a⃗out(t̃) = 1
2πi

∫ +∞

−∞
M[t̃, u]eiuσ⃗gs(u, 0)du. (4.18)

The storage-and-retrieval efficiency is defined as:

η =
∫+∞

0 a⃗†
out(t̃)⃗aout(t̃)dt̃∫ 0

−∞ a⃗†
in(t̃)⃗ain(t̃)dt̃

. (4.19)

The intensity of the input pulse is normalized to 1. The final expression of η is thus
given by injecting (4.18) and (4.17) into (4.19):

η = 1
4π2

∫ +∞

0
dt̃1

∫ +∞

−∞
du1

∫ +∞

−∞
du0

∫ 0

−∞
dt̃2

∫ 0

−∞
dt̃0 a⃗†

in(t̃2)M∗[−t̃2, u1]M†
u[t̃1, u1]

×Mu[t̃1, u0]M⊺[−t̃0, u0 ]⃗ain(t̃0) (4.20)

with Mu[t̃, u] = M[t̃, u]eiu. The next task is to compute numerically this expression in
order to access to the memory efficiency for a set of different experimental parameters.

Numerical method to compute the storage-and-retrieval efficiency

The first matrix required to calculate all the others is the coupling matrix B whose
elements are defined in (4.6). In these numerical simulations, the integrals are dis-
cretized into sums with steps and bounds of integration. These steps need to be
small enough and bounds of integration high enough to approximate the infinite
integrals. There are no theoretical rules to determine if these two criteria are re-
spected. However, a good method to ensure their validity is to decrease the steps (or
increase the bounds) and see how the results are modified: they shoud remain the
same. Considering N Hermite-Gaussian modes, the dimension of the matrix B is N2.
Thanks to the coupling matrix, we can compute the matrices T(u) = iu + 1

2d0B
2,

Q(u) = −1
2 Ω̃c

√
d0T

−1(u)B and N(u) = −1
2 Ω̃2

c + 1
4 Ω̃2

cd0BT
−1(u)B. These matrices

depend on the momentum u. They lead to the transfer matrix M[t̃, u] = Q(u)eN(u)t̃

which is a function of time t̃ and momentum u. In the simulations, we create a new
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4.1. Multiplexing with spatially-superposed Hermite-Gaussian modes

transfer matrix M containing the elements of M[t̃, u] evaluated for a range of time
and momentum. For each mode, time is indexed on the columns of M and momentum
on the rows. The time interval is defined as [0, t̃lim] with steps ∆t̃ and the momentum
interval as [−ulim, ulim] with steps ∆u. The dimension of M thus is Nlt̃ ×Nlu with lt̃
and lu the lengths of time and momentum intervals. As seen on the previous section,
Mu is the matrix M including the factor eiu. The memory efficiency expressed in
(4.20) can be simply written as:

η = ∆t̃2∆u2

4π2 a⃗†
in(M∗ × M†

u × Mu × M⊺)⃗ain (4.21)

with a⃗in the vector representing the input temporal waveform of all the HG modes
(the vector dimension is Nlt̃). The integrals displayed in (4.20) are accounted for in
the matrix products by the discretized sums over u and t̃. One can think that the
prefactor must be ∆t̃3∆u2 instead of ∆t̃2∆u2 due to the five integrals. However, we
chose a normalized input pulse intensity

∫ 0
−∞ a⃗†

in(t̃)⃗ain(t̃)dt̃ = 1 which includes the
step ∆t̃ after discretization. Therefore, the correct prefactor is ∆t̃2∆u2.

Numerical simulations

The aim is to determine the memory efficiency using (4.21) for N Hermite-Gaussian
modes to characterise the multimode capacity of our quantum memory. One issue I
had to deal with was the required time to calculate the coupling matrix B. Indeed,
this triple integral of the HG profiles is costly in calculation time as the discretized
steps need to be small enough to accurately represent all the peaks of high-order HG
modes: a simulation for N = 10 modes lasts two days on a 50-core computer. The
evaluation of the efficiency for 100 modes is not possible with this strategy, especially
if one wants multiple versions of it for different parameters.

As a result, we only considered the diagonal modes HGkk knowing that their di-
vergence is higher than all the HGmn modes with indices m ≤ k and n ≤ k (see
expression (4.4)). For example, supposing that the efficiency of the mode HG11 is
80%, the memory can store and retrieve four modes (HG00, HG01, HG10 and HG11)
with an efficiency at least equals to 80% because the optical depth perceived by HG11

is lower than the others due to its divergence and waist.

This method enables to simulate the multimode capacity of our memory for a set
of different peak optical depths d0 on 100 modes as shown on figure 4.6. The data
points correspond to the efficiency of the diagonal modes HGkk (k ∈ [0, 9]) which is
equivalent to the minimal efficiency among the (k + 1)2 modes HGmn with indices
m ≤ k and n ≤ k. The waist of the fundamental Gaussian beam is set to w0 = 90 µm,
the atomic waist to σ = 600 µm, the length of the atomic ensemble to L = 2 cm and
the Rabi frequency of the control beam to Ωc = 2Γ. The temporal shape of the signal
pulse (included in a⃗in) is chosen to be Gaussian to fit the shape of the EIT window. Its
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Figure 4.6: Multimode capacity for a set of different peak
optical depths d0. The data points correspond to the efficiency
of the diagonal modes HGkk (k ∈ [0, 9]) which is equivalent to the
minimal efficiency among the (k+1)2 modes HGmn with indices m ≤ k
and n ≤ k. The waist of the fundamental Gaussian beam is set to
w0 = 90 µm, the atomic waist to σ = 600 µm, the length of the atomic
ensemble to L = 2 cm and the Rabi frequency of the control beam
to Ωc = 2Γ. The temporal shape of the signal pulse is chosen to
be Gaussian and its FWHM is optimized to maximize the memory
efficiency for this specific control Rabi frequency and for each peak
optical depth. The black dashed line represents the 50 % threshold.

FWHM is optimized to maximize the memory efficiency for this specific control Rabi
frequency and for each peak optical depth (see the section 1.2.3 for more details).
For instance, the optimal width given by the simulation for Ωc = 2Γ and d0 = 500
is ∆tpulse = 500 ns which is consistent with the optimal values found experimentally
in the laboratory for this set of parameters. The black dashed line represents the
50 % threshold. One can define the multimode capacity C as the number of modes
for which η > 50 %. On figure 2.7(b) in Chapter 2 (Cesium D1 line), the memory
efficiency increases quite importantly with the optical depth for d0 ∈ [0, 100] and this
fact is underlined by figure 4.6 with the evolution between d0 = 50 and 100. The
capacity goes from C = 52 modes for d0 = 50 to C = 74 modes for d0 = 100. It
is improved to C = 83 for d0 = 150, to C = 91 for d0 = 300 and to C = 101 for
d0 = 500.

An interesting point to investigate is the optimization on the value of the signal
waist w0 as the size of the fundamental mode determines the size of every HG beam
and their divergence. One can clearly see from figure 4.5 that the optimal w0 to
maximize the overlap between the signal and the atomic ensemble only depends on
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Figure 4.7: Multimode capacity for a set of different signal
waists w0. The data points correspond to the efficiency of the diagonal
modes HGkk (k ∈ [0, 9] for the main figure and k ∈ [0, 32] for the inset)
which is equivalent to the minimal efficiency among the (k+1)2 modes
HGmn with indices m ≤ k and n ≤ k. The black dashed line is the
50 % threshold. The optical depth is set to d0 = 500, the atomic waist
to σ = 600 µm, the length of the atomic ensemble to L = 2 cm, the
Rabi frequency of the control beam to Ωc = 2Γ and the signal FWHM
to ∆tpulse = 500 ns. The inset exhibits a capacity C = 625 modes over
the 50 % threshold for w0 = 50 µm.

the atomic waist σ and the length of the cloud L. In our simulation, σ and L are
fixed and match the values of the characteristic transverse and longitudinal sizes of our
experimental MOT: σ = 600 µm and L = 2 cm resulting in a Fresnel number F = 18.
The multimode capacity has been computed for a set of different signal waists w0 on
figure 4.7. The optical depth is set to d0 = 500, the Rabi frequency of the control
beam to Ωc = 2Γ and the signal FWHM to ∆tpulse = 500 ns. First, the capacity is
plotted for the current beam waist on the experiment w0 = 125 µm corresponding
to C = 34 modes above η = 50 %. The waist is reduced to 90 µm, which increases
the capacity to C = 105. Indeed, high-order HG beams are more focused inside the
cloud in this case and achieve a better overlap with the atomic ensemble. Then, the
best result is reached at w0 = 50 µm, with 100 modes stored-and-retrieved with an
efficiency above η100 = 84 % (η100 being the efficiency of the 100-th mode). However if
we continues to decrease the waist, the divergence is becoming too important leading
to leakage over the length of the cloud. This is exactly the phenomenon observed on
figure 4.7, going from η100 = 84 % for w0 = 50 µm to η100 = 71 % for 20 µm and to
η100 = 17 % for 10 µm. As a result, there is a trade-off on the value of w0: it needs to
be small enough to fit in the center of the Gaussian atomic density but not too small
as it results in higher divergence. One can note that the efficiency of the fundamental
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mode remained the same among this set of waist values. The real difference is made
on the high-order modes.

The comparison shows that w0 = 50 µm is the optimal waist among the set of values
studied, given the geometry of the cloud chosen. Indeed, it led to the greatest capacity
for 100 modes stored-and-retrieved with an efficiency at least equals to η100 = 84 %.
I wanted to go a step further and compute the efficiency for higher number of modes.
Therefore, a simulation was done for {HGkk, k ∈ [0, 32]} which is equivalent to 1089
modes (see the inset of figure 4.7). The inset exhibits C = 625 modes over the 50 %
threshold. The difference between the results obtained for w0 = 125 µm (C = 34)
and the one for w0 = 50 µm (C = 625) underlines the importance of the parameter
w0 on the multimode capacity of the quantum memory.

Another important topic to discuss is the cross-talks between modes. HG modes
constitute an orthogonal basis, but their orthogonality is not preserved while they are
stored in the memory due to the atomic density profile. The cross-talk between two
orders (m, n) and (m′, n′) is the fractional power coupling from the mode (m, n) into
the mode (m′, n′). The mathematical definition is given by B2

mn,m′n′ , i.e. the square
of the coupling term defined in (4.6). The highest cross-talk for these simulations
is on the order of 10−4 % and the mean value is 10−5 %. These low cross-talks are
explained by the atomic density n(x, y) that has small variations compared to the
transverse structure of HG modes.

4.2 Multiplexing with a 2D array of micro-ensembles

In this section, we study another multiplexing technique based on Gaussian beams
that are separated in space and addressing different areas of the atomic cloud (see
figure 4.9). This approach has been first implemented in Kuzmich’s group with an
one-dimension array of micro-ensembles [Lan et al., 2009] and widely employed in
Duan’s group in two dimensions with the DLCZ scheme [Pu et al., 2017] and the EIT
scheme [Jiang et al., 2019], albeit with low memory efficiency.

4.2.1 Generating a 2D array of light beams using AODs

One important task realised by Duan’s group was to create a two-dimension array of
Gaussian modes as presented on figure 4.9. All the Gaussian beams are not generated
at the same time: one beam is displaced at specific positions on the transverse section
of the cloud in the x and y directions thanks to two acousto-optic deflectors (AODs).
The principle of AODs is the following: an acoustic wave propagates into a crystal
and creates a grating that diffracts incident light. The diffracted orders k have a
frequency ω + kΩ where ω is the frequency of the incident light and Ω the one of the
acoustic wave. In the case of their experiment, only the first order is used and its
angle θ can be modified by changing Ω (the relation between these two parameters is
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AODy

AODx

MUX DEMUX

Figure 4.8: Simplified setup of a spatially multiplexed quan-
tum memory using two-dimensional AODs. The signal beam is
displaced at specific positions on the transverse section of the cloud in
the x and y directions thanks to two acousto-optic deflectors (AODs).
More specifically, the angle of the first diffraction order is controlled by
the frequencies of the acoustic waves propagating inside the crystals of
both AODs, and is mapped onto a micro-ensemble of the atomic cloud
thanks to a lens. The control beam is also addressing individually the
same micro-ensemble than the signal beam, thanks to two other AODs
(not represented on the figure for clarity). Therefore, the read-out of
the multiple spin-waves can be done separately and at different time.

θ ≈ λΩ/v with v the speed of the sound wave in the crystal). One employs two AODs
(one aligned on the x-axis and the other on the y-axis) and a lens, whose focal point
is placed at the AODs position, to create a 2D array of parallel beams generated at
different time as it is shown on figure 4.8. The frequency shift introduced by the two
AODs is usually compensated by a double-pass acousto-optic modulator positioned
before on the signal path. The control beam is also addressing individually the same
areas of the cloud than the signal beam, thanks to two other AODs. Therefore, the
read-out of the multiple spin-waves can be done separately and at different time.
This feature is crucial as, after demultiplexing, all the paths are recombined into one
and thus, the time difference between the output signal pulses coming from different
micro-ensembles enables to distinguish them.

This multiplexing technique based on AODs is not only used in the field of quantum
communication but also in quantum simulation [Bernien et al., 2017] and quantum
computing [Debnath et al., 2016]. The next step is to evaluate the multimode capacity
of our cold-atom based quantum memory with this method.

4.2.2 Multimode capacity of EIT-based quantum memory using sep-
arated memory cells

As a reminder, we define the multimode capacity C as the number of modes a
quantum memory stores and retrieves with an efficiency above 50 %. The goal of
this section is to find the optimal parameters which maximize C while maintaining
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Figure 4.9: Configuration for the 2D array of micro-
ensembles. The signal beams have a waist w(z) (w0 at z = 0) and
are spaced by a length a in the x and y direction. The spacing value
determines cross-talks between the spin-waves of neighboring micro-
ensembles. The left figure represents the propagation of the Gaussian
beams along the cloud and the one on the right is a view of the cloud
transversal section. The beams are annotated by two indices defin-
ing the 2D array (m, n) (on this example m, n ∈ {−1, 0, 1}). As in
the previous section, the atomic density has a Gaussian profile on the
transverse axis x, y and is constant on the longitudinal axis z on a
length L.

reasonable cross-talks between modes. The geometrical configuration of this problem
is presented on figure 4.9. The signal beams have a waist w(z) (w0 at z = 0) and
are spaced by a length a in the x and y direction. The spacing value determines
cross-talks between the spin-waves of neighboring micro-ensembles. The left figure
represents the propagation of the Gaussian beams along the cloud and the one on
the right is a view of the cloud transversal section. The beams are annotated by two
indices defining the 2D array (m, n) (on this example m, n ∈ {−1, 0, 1}). The atomic
density has a Gaussian profile with an atomic waist σ on the transverse axis x, y and
is constant on the longitudinal axis z on a length L.

The mathematical formalism is exactly the same than the one used to describe
multiplexing with Hermite-Gaussian modes (see section 4.1.3). The only difference is
the input signal which is a 2D array of Gaussian beams instead of a combination of
HG functions. The modes composing the array can be written as:

Emn(x, y, z) = um(x, z)un(y, z)e−ikz (4.22)

where uj (j = {m, n}) is equal to

uj(x, z) =
( 1

q(z)

) 1
2

e
−i

k(x−ja)2
2q(z) (4.23)

with the complex beam parameter q(z) = z + izR, zR = πw2
0/λ being the Rayleigh

range. As before, the calculation of the coupling matrix B is quite long due to the
triple integral over space (see relation (4.6)). Therefore, we need to define an efficient
way to calculate it. If one looks at figure 4.9, the overlap between the mode (0, 1) and
the cloud is the same than for the mode (−1, 0),(0, −1) and (1, 0) as the atomic density
is Gaussian on the transverse section. If we extend this reasoning, the calculation of

108



4.2. Multiplexing with a 2D array of micro-ensembles

-3 -2 -1 0 1 2 3
m

3

2

1

0

-1

-2

-3

n

0.017 0.039 0.092 0.13 0.092 0.039 0.017

0.039 0.17 0.44 0.57 0.44 0.17 0.039

0.092 0.44 0.81 0.87 0.81 0.44 0.092

0.13 0.57 0.87 0.89 0.87 0.57 0.13

0.092 0.44 0.81 0.87 0.81 0.44 0.092

0.039 0.17 0.44 0.57 0.44 0.17 0.039

0.017 0.039 0.092 0.13 0.092 0.039 0.017

a)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

m

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

n

0.056 0.098 0.15 0.22 0.28 0.33 0.35 0.33 0.28 0.22 0.15 0.098 0.056

0.098 0.17 0.28 0.38 0.47 0.53 0.56 0.53 0.47 0.38 0.28 0.17 0.098

0.15 0.28 0.42 0.55 0.65 0.71 0.74 0.71 0.65 0.55 0.42 0.28 0.15

0.22 0.38 0.55 0.7 0.78 0.82 0.84 0.82 0.78 0.7 0.55 0.38 0.22

0.28 0.47 0.65 0.78 0.85 0.87 0.88 0.87 0.85 0.78 0.65 0.47 0.28

0.33 0.53 0.71 0.82 0.87 0.89 0.89 0.89 0.87 0.82 0.71 0.53 0.33

0.35 0.56 0.74 0.84 0.88 0.89 0.89 0.89 0.88 0.84 0.74 0.56 0.35

0.33 0.53 0.71 0.82 0.87 0.89 0.89 0.89 0.87 0.82 0.71 0.53 0.33

0.28 0.47 0.65 0.78 0.85 0.87 0.88 0.87 0.85 0.78 0.65 0.47 0.28

0.22 0.38 0.55 0.7 0.78 0.82 0.84 0.82 0.78 0.7 0.55 0.38 0.22

0.15 0.28 0.42 0.55 0.65 0.71 0.74 0.71 0.65 0.55 0.42 0.28 0.15

0.098 0.17 0.28 0.38 0.47 0.53 0.56 0.53 0.47 0.38 0.28 0.17 0.098

0.056 0.098 0.15 0.22 0.28 0.33 0.35 0.33 0.28 0.22 0.15 0.098 0.056

b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

Figure 4.10: Multimode capacity of EIT-based quantum
memory using separated memory cells in the case of a com-
pressed MOT. This figure shows the storage-and-retrieval efficiency
for a 2D array of micro-ensembles. The atomic waist is equal to
σ = 600 µm for a peak optical depth d0 = 500. The length of the
ensemble is set to L = 2 cm, the Rabi frequency of the control beam to
Ωc = 2Γ and the signal FWHM to ∆tpulse = 500 ns. The waist of each
Gaussian beam is equal to w0 = 50 µm for figure a) and w0 = 20 µm
for figure b). The spacing between modes is a = 2.5 w0 in the two
directions (x and y) for a) and b). The multimode capacity, defined as
the number of modes a quantum memory stores and retrieves with an
efficiency above 50 %, corresponds to C = 13 for a) and C = 89 for b).

the matrix B can be reduced to three modes instead of nine in the case illustrated
on the figure (for example (0, 0),(0, 1) and (1, 1)). The coupling matrix enables the
computation of the transfer matrix M defined in the section 4.1.3. The memory
efficiency is then determined using (4.21).

The simulations were performed in multiple configurations. The first case corre-
sponds to a compressed MOT, i.e. a trap with a compression phase as described in
2.1.3. This phase enables to achieve a higher peak optical depth d0 at the price of
reducing the transverse size σ of the cloud. In this case, σ = 600 µm and d0 = 500
(the previous simulations using HG modes were performed in this configuration).
The length of the ensemble is L = 2 cm. The choice of the waist w0 at z = 0 and
the spacing a between the modes are crucial to achieve a high multimode capacity
C while maintaining reasonable cross-talks between modes. Two configurations were
tested: w0 = 50 µm with a = 125 µm and w0 = 20 µm with a = 50 µm. The results
corresponding to these sets of parameters are presented on figure 4.10. The Rabi
frequency of the control beam is set to Ωc = 2Γ and the signal temporal length to
∆tpulse = 500 ns (FWHM). This figure shows the storage-and-retrieval efficiency for
a 2D array of micro-ensembles. The efficiency is maximal at the center of the cloud
(89 %) and decreases when the micro-ensemble moves away from the center. The tem-
poral shape of the signal pulse is chosen to be Gaussian to fit the shape of the EIT
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Figure 4.11: Multimode capacity of EIT-based quantum
memory using separated memory cells in the case of an un-
compressed MOT. This figure shows the storage-and-retrieval effi-
ciency for a 2D array of micro-ensembles. The atomic waist is equal
to σ = 1.2 mm for a peak optical depth d0 = 300. The length of the
ensemble is set to L = 2 cm, the Rabi frequency of the control beam to
Ωc = 2Γ and the signal FWHM to ∆tpulse = 350 ns. The waist of each
Gaussian beam is equal to w0 = 50 µm for figure a) and w0 = 20 µm
for figure b). The spacing between modes is a = 2.5 w0 in the two
directions (x and y) for a) and b). The multimode capacity, defined
as the number of modes a quantum memory stores and retrieves with
an efficiency above 50 %, corresponds to C = 37 for a) and C = 241
for b).

window. Its width is optimized to maximize the memory efficiency given the values of
control Rabi frequency and peak optical depth (see the section 1.2.3 for more details).
As a result, the signal’s temporal length is adapted to the beams crossing the center
area of the cloud transverse section: the optical depths seen by these beams are close
to the peak value d0. The ones located at the borders thus experience two downsides:
a low OD and high leakage of the signal pulse. These two factors are responsible
for the evolution of the memory efficiency over the transverse plane. The multimode
capacity, defined as the number of modes a quantum memory stores and retrieves
with an efficiency above 50 %, is equal to C = 13 for the configuration w0 = 50 µm
with a = 125 µm and C = 89 for w0 = 20 µm with a = 50 µm.

The second case corresponds to an uncompressed MOT, i.e. a trap without a
compression phase. The transverse size σ of the cloud is higher compared to the
previous case at the price of reducing the peak optical depth d0. We thus consider
σ = 1.2 mm and d0 = 300 for this uncompressed trap. The results are presented
on figure 4.11. As mentioned earlier, the efficiency is maximal at the center of the
cloud and decreases when the micro-ensemble moves away from the center. The peak
efficiency (85 %) is lower compared to the compressed MOT as d0 went from 500
to 300. However, the multimode capacity increased quite importantly: C = 37 for
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Figure 4.12: Cross-talks between neighbouring cells for dif-
ferent spacing values. This figure presents cross-talks of the micro-
ensemble (m = 0, n = 0) with its neighbouring cells. The waist of
each Gaussian beam is w0 = 20 µm and the spacing value is a = 2w0
for figure a), a = 2.5w0 for figure b) and a = 3w0 for figure c). The
atomic waist is set to σ = 1.2 mm. Cross-talks with the four closest
micro-ensembles (m′, n′) = (0, 1),(1, 0),(0, −1) and (−1, 0) are equal
to 2 % for a = 2w0, 0.2 % for a = 2.5w0 and 0.01 % for a = 3w0.

the configuration w0 = 50 µm with a = 125 µm and C = 241 for w0 = 20 µm with
a = 50 µm. It is almost three times more than the previous results for both waist
values.

One can increase the capacity C by reducing the spacing but at the price of in-
creasing cross-talks. The cross-talk between two modes (m, n) and (m′, n′) is the
fractional power coupling from the mode (m, n) into the mode (m′, n′). The mathe-
matical definition is given by B2

mn,m′n′ , i.e. the square of the coupling term defined in
(4.6). Figure 4.12 presents cross-talks of the micro-ensemble (m = 0, n = 0) with its
neighbouring cells. The waist of each Gaussian beam is w0 = 20 µm and the spacing
value is a = 2w0 for figure a), a = 2.5w0 for figure b) and a = 3w0 for figure c). The
atomic waist is set to σ = 1.2 mm. Cross-talks with the four closest micro-ensembles
(m′, n′) = (0, 1),(1, 0),(0, −1) and (−1, 0) are equal to 2 % for a = 2w0, 0.2 % for
a = 2.5w0 and 0.01 % for a = 3w0. The optimal spacing value thus depends on the
performances required by the experiment we are performing. For instance, in the
context of the quantum money protocol, the best option would be to set the spacing
at a = 3w0 as the aim is to minimize cross-talks in order to reduce the error rate of
the communication. The configuration a = 2.5w0 is a good compromise to achieve a
high multimode capacity and reasonable cross-talks.

The simulations were performed with a constant control Rabi frequency over space.
In the real experiment using AODs, the control beam has a Gaussian profile with
a small waist to independently address each micro-ensemble. If the control field
overlaps a neighbouring memory cell, it creates additional cross-talks between the
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different channels. However, only the tail of the control beam leaks on the closest
modes leading to negligible EIT window and thus induces low cross-talks.

4.3 Conclusion

These simulated multimode capacities are promising for the future experiment.
Multiplexing with superposed HG modes leads to a better capacity than the one with
separated memory cells (C = 625 for Hermite-Gaussian modes with w0 = 50 µm
compared to C = 241 for the 2D array of micro-ensembles with w0 = 20 µm and
a = 2.5w0 in the case of an uncompressed trap). This point could be explained by the
geometry of our cloud which has a small transverse size and thus is more adapted to
the storage of superposed beams than separated ones. Cross-talks are also higher for
the 2D array of micro-ensembles (0.2 % between closest cells with a = 2.5w0) than HG
modes (maximum value: 10−4 %). However, MPLC devices create Hermite-Gaussian
beams with non-negligible cross-talks (0.8 % in average, see section 4.1.2) and current
Cailabs multiplexers are limited to 50 modes. Other experimental considerations
may have to be taken into account in our model. Indeed, we also supposed the waist
w0 is centered compared to the atomic ensemble. Any experimental displacement
between the focus of the beam and the center of the cloud leads to a weaker overlap
and would result in a reduced capacity. The algorithm employed to produce the
simulations can evaluate the impact of these imperfections on the final result. It
will remain a useful tool for the team to establish a comparison with experimental
data and try to understand which parameters are relevant to optimize the multimode
capacity of our cold-atom based quantum memory.
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CONCLUSION

Summary

This thesis reports the first demonstration of the unforgeable quantum money in-
cluding an intermediate quantum memory layer. The cryptographic protocol was
challenging to perform as a high-efficiency and low-noise storage platform is required
to complete a secure transaction. The constraints are also very demanding on the
fidelity of the qubits encoded. After optimizing the generation of random qubits and
the properties of our cold-atom-based quantum memory, we reached the secure regime
of the protocol.

We provided an overview of memory platforms in Chapter 1, with a specific focus
on EIT-based quantum memories. The EIT scheme was illustrated with the dark
state polariton picture demonstrating the adiabatic transfer from a photonic state
to a collective excitation of the cloud. The decoherence of this excitation was as-
sessed in the presence of residual magnetic fields and dephasing induced by atomic
motion. After a reminder on magneto-optical traps, we explained how to achieve
sub-Doppler temperatures thanks to polarization gradient cooling. In Chapter 2, we
described the implementation of the cold-atomic ensemble in our setup with the new
coils generating large magnetic field gradients. The memory efficiency was optimized
by maximizing the optical depth of the medium and the EIT transmission at res-
onance. The lifetime measurement emphasized the good performances of the new
current drivers cancelling the residual magnetic field. After optimizing the memory
efficiency and lifetime, the cold-atomic ensemble had the required properties to be
implemented as a memory layer in a quantum cryptographic protocol. Chapter 3
introduced the quantum money protocol and its security analysis. We succeeded to
encode high-fidelity qubits thanks to the optimization of the sequence sent to the
Pockels cell. One challenge was to maintain a good visibility for the Mach-Zehnder
interferometer during the seven hours of data taking. We finally achieved the secure
regime of the protocol by combining together all these efforts. The sources of noise in
our experiment were identified and carefully analyzed. In Chapter 4, we performed
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numerical simulations for two spatial multiplexing techniques. The simulated multi-
mode capacities are promising for both methods. Multiplexing with superposed HG
modes leads to a better capacity and lower cross-talks than the one with separated
memory cells. However, MPLC devices create Hermite-Gaussian beams with non-
negligible cross-talks and current commercial multiplexers are providing typically up
to 50 modes.

Perspectives

Below, we outline two main directions we aim to explore further in the next years.

Implementation of spatial multiplexing
As described in Chapter 4, a critical challenge is to go beyond single-mode quantum
memories and to store many modes at the same time. Several methods can be ex-
plored depending on the degree of freedoms available for a specific storage platform,
such as multiplexing in time, frequency, and space. Spatial multiplexing is the best
option for EIT-based memories. In the context of the quantum money protocol, an
improvement of the experiment would be to store the whole sequence of random po-
larizations at once. Our group owns two Cailabs devices (one used as a multiplexer
and the other employed to demultiplex) with 15 channels corresponding to 15 different
Hermite-Gaussian modes. These MUX and DEMUX devices have been characterised
but the interfacing with the cold-atom quantum memory has not yet been done due
to time constraints. The aim would be to measure the efficiency achieved for these
HG modes and the cross-talks between them. Spatial multiplexing using separated
memory cells is another approach that is also considered in the future experiments
as two-dimensional AODs can generate several hundred modes and the multimode
capacity simulated in this case is promising.

Quantum repeater link demonstration
Our experiment is part of an European project called the Quantum Internet Alliance
(QIA). The ultimate goal of this project is to create long distance quantum communi-
cations between different countries in Europe. One milestone is to implement a 50 km
repeater link including two quantum memories, two entangled photon pair sources
and one Bell-state measurement platform. The purpose of this implementation is to
establish entanglement between the two QMs. One quantum memory will be located
in our research laboratory and the other is provided by the start-up Welinq, a spin-off
from our group hosted at Sorbonne Université. Both QMs are going to be based on
a cold rubidium cloud. In a quantum network, the lifetime of QMs should at least
be equal to the propagation time of light along the entire communication line. The
memory lifetime required to perform a 50 km communication is thus in the range of
200 µs. In order to reach this targeted value, the decoherence induced by the residual
magnetic field has to be suppressed. This can be done by applying Zeeman pumping
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into a specific mF level combined with magnetically insensitive clock transition. The
pumping process is more effective for Rubidium atoms than Cesium as the ground
state only contains three Zeeman levels (F = 1) instead of seven in the case of Ce-
sium. The entangled photon pairs will be generated by type II SPDC sources that
are under development in our team. One photon from the pair is going to be sent
in free-space to the QMs at the wavelength compatible for storage (795 nm, Rubid-
ium D1 line) and the other at telecom wavelength will be coupled to a 25 km fiber
leading to the BSM platform. An important step is to interface the source with our
cold-atom-based quantum memory.
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Appendix A. Appendix

APPENDIX A
APPENDIX

Figure A.1: Electronic circuit of the PID controllers used for the
current drivers compensating the residual magnetic field. This circuit
was designed in collaboration with the electronic workshop of our lab-
oratory.
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Sujet : Mémoire quantique optique efficace à base d’atomes
froids servant de plateforme de stockage dans un protocole de

cryptographie

Résumé : Une étape importante pour le développement des réseaux quantiques est de com-
biner les protocoles de cryptographie avec les mémoires quantiques afin d’établir des communi-
cations sécurisées où les informations peuvent être stockées et récupérées sur demande. Un cas
d’utilisation possible de ces réseaux est d’effectuer des transactions authentifiées synchronisées
par l’utilisation de mémoires. Cependant, les pertes et le bruit ajoutés par les dispositifs de
stockage peuvent être exploités par des agents malveillants pour dissimuler leurs tentatives de
fraude. Les contraintes pour opérer dans un régime sécurisé sont donc très exigeantes en termes
d’efficacité et de fidélité de la mémoire. Cette thèse se concentre sur l’implémentation d’un en-
semble d’atomes froids, utilisé en tant que mémoire quantique basée sur l’EIT, dans un protocole
de cryptographie. Les ingrédients clés pour optimiser l’efficacité de stockage ainsi que la méthode
employée pour atténuer les sources de décohérence sont détaillés. Ce travail représente la pre-
mière démonstration du protocole cryptographique nommé "quatum money" incluant une étape
intermédiaire de stockage, tirant parti de notre mémoire quantique hautement efficace et à faible
bruit. L’étape suivante consisterait à multiplexer spatialement le nuage atomique afin de stocker
toute la séquence de qubits aléatoires en une seule fois. Dans ce contexte, la capacité multimode
de notre mémoire a été simulée numériquement en utilisant deux techniques différentes de mul-
tiplexage spatial.

Mots clés : Atomes froids, Mémoires quantiques, Réseaux quantiques, Protocoles de cryp-
tographie quantique, Monnaie quantique, Multiplexage spatial

Subject: Cold-atomic ensemble implemented as an efficient
optical quantum memory layer in a cryptographic protocol

Abstract: Combining cryptographic protocols with quantum memories is an important step
for quantum network development in order to establish secure communications where information
can be stored and retrieved on demand. One possible use case of these networks is to perform
authenticated transactions synchronized by the use of memories. However, the losses and noise
added by storage devices can be exploited by dishonest agents to hide their cheating attempts.
The constraints to operate in a secure regime are thus very demanding in terms of memory effi-
ciency and fidelity. This thesis focuses on the implementation of a cold-atomic ensemble used as
an EIT-based quantum memory in a cryptographic protocol. The key ingredients to optimize the
storage-and-retrieval efficiency and the method employed to mitigate the decoherence sources are
detailed. This work reports the first demonstration of the unforgeable quantum money including
an intermediate quantum memory layer, taking advantage of our highly-efficient and low-noise
storage platform. The next step would be to spatially multiplex the atomic cloud in order to
store the whole sequence of random qubits at once. In this scenario, the multimode capacity of
our memory has been numerically simulated using two different spatial multiplexing techniques.

Keywords: Cold atoms, Quantum memories, Quantum networks, Quantum cryptographic
protocols, Quantum money, Spatial multiplexing
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