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Abstract. The work of this thesis is dedicated to the simulation and numerical analysis of urban flood
problems. While urban flooding caused by exceptional rainfall is particularly devastating in terms of
economic and human damage, numerical modeling can be used to predict, anticipate and control such
events. From the numerical perspective, the major challenge comes from a large contrast between a
typical size of the simulation domain (10-100km) and the size of the relevant structural features (such as
buildings or walls), which have to be represented at metric or infra-metric scales. This thesis addresses
the multi-scale character of the urban flows by means of Domain Decomposition (DD) and Multi-scale
(Ms) numerical methods.

The first part of the thesis focuses on linear diffusion problems posed in domains containing numerous
polygonal perforations representing realistic structures in urban areas. We propose a low-dimensional
coarse approximation space based on a coarse polygonal partitioning of the domain. The main theoretical
contribution of this part is an error estimate regarding the H1-projection over the coarse space; this error
estimate is independent of the global regularity of the solution, which is expected to be low due to
multiple corner singularities. Additionally, this part numerically explores the combination of the coarse
space with overlapping Schwarz domain decomposition methods. This combination leads to an efficient
two-level iterative linear solver and preconditioner for a Krylov method.

The second part of the thesis extends our methodology to nonlinear urban flow models. That is, we
design DD and Ms methods to numerically solve the Diffusive Wave equation, which is obtained from
Shallow Water systems by neglecting inertia terms. We show that the two-level preconditioner previously
designed for linear diffusion problems performs well on the linearized Diffusive Wave model which arises
at each iteration of Newton’s method. Furthermore, we present nonlinear preconditioning techniques,
including one and two-level RASPEN, which significantly reduce iteration counts when compared to
Newton’s method. We also propose the use of the Trefftz space for the coarse approximation of the
numerical solution. Numerical experiments are conducted, with the main example being the numerical
solution of the Diffusive Wave equation on a large urban area of Nice, France.

In the last part of the thesis, for nonlinear elliptic PDEs, we investigate a multi-scale method that
combines tools from the classical Multi-scale Finite Element Method and Machine Learning. Our ap-
proach is based on the approximate substructured formulation in which the traces of the unknown function
belong to a coarse finite element space. The substructured problem is solved by Newton’s method, using
local Dirichlet-to-Neumann (DtN) operators at each iteration. In order to reduce the computational cost
associated with the evaluation of DtN operators, the latter are replaced by approximate models built
on the basis of artificial neural networks. Numerical experiments on nonlinear p-Laplace and degenerate
diffusion problems in 1D and 2D show promising results. With only a few training points per dimension
of the DtN operator’s domain, the approximate model achieves an accuracy of a few percent.

Keywords: Multi-scale methods, domain decomposition, nonlinear preconditioning, urban floods.



Résumé. Les travaux de cette thèse sont consacrés à la simulation et à l’analyse numérique des problèmes
d’inondations urbaines. Les inondations urbaines provoquées par des précipitations exceptionnelles sont
particulièrement dévastatrices en termes de dégâts économiques et humains. La modélisation numérique
peut être utilisée pour prédire, anticiper et contrôler de tels événements. Du point de vue numérique,
le défi majeur réside dans le grand contraste entre la taille typique du domaine de simulation (10-100
km) et la taille caractéristique des éléments structurels pertinents (tels que les bâtiments ou les murets),
qui doivent être représentés à des échelles métriques ou inframétriques. Cette thèse aborde le caractère
multi-échelle des inondations urbaines en mobilisant la décomposition de domaine (DD) et les méthodes
numériques multi-échelles (Ms).

La première partie de la thèse se concentre sur un problème de diffusion linéaire posé dans des
domaines contenant un grand nombre de perforations polygonales représentant des structures réalistes
dans les zones urbaines. Nous proposons un espace d’approximation grossier de faible dimension basé sur
un partitionnement polygonal grossier du domaine. La principale contribution théorique de cette section
est une estimation de l’erreur concernant la projection H1 de la solution sur l’espace grossier. L’analyse
d’erreur est indépendante de la régularité globale de la solution, ce qui est un atout majeur compte tenu
des singularités géométriques du domaine. En combinant la méthode de Schwarz avec recouvrement et la
correction de l’espace grossier à la base de la méthode multi-échelle proposée, on parvient à un solveur
itératif et un préconditionneur efficaces, dont les performances sont étudiées numériquement.

La deuxième partie de la thèse étend notre méthodologie numérique aux modèles d’écoulement
non linéaires. En particulier, nous nous intéressons à l’équation de l’onde diffusive, obtenue à par-
tir des équations de Barré de Saint-Venant en négligeant les termes d’inertie. Nous montrons que le
préconditionneur à deux niveaux que nous avons conçu pour les problèmes de diffusion linéaire se prête
également au problème de l’onde diffusive linéarisé qu’on obtient à chaque itération de la méthode de New-
ton. En outre, nous présentons des techniques de préconditionnement non linéaires, y compris la méthode
RASPEN à un et deux niveaux, ce qui permet de réduire considérablement le nombre d’itérations par
rapport à la méthode de Newton traditionnelle. Les exemples numériques illustrant les performances des
méthodes proposées comprennent un cas test basé sur des données topographiques de la ville de Nice.

Dans la dernière partie, pour les EDP elliptiques non linéaires, nous étudions une méthode multi-
échelle qui combine des outils de la méthode d’éléments finis multi-échelles classique avec ceux de l’appren-
tissage automatique. Notre approche repose sur la formulation sous-structurée approchée dans laquelle
les traces de la fonction inconnue sont recherchées dans un espace d’éléments finis grossier. Le problème
sous-structuré est résolu par la méthode de Newton, faisant appel à chaque itération à des opérateurs
Dirichlet-to-Neumann (DtN) locaux. Dans le but de réduire le coût de calcul associé à l’évaluation des
opérateurs DtN, ces derniers sont remplacés par des modèles approchés construits sur la base des réseaux
de neurones artificiels. Les expériences numériques concernant les problèmes non linéaires de p-Laplace
et de diffusion dégénérée en 1D et 2D aboutissent à des résultats prometteurs. Avec seulement quelques
points d’entrâınement par dimension du domaine des opérateurs DtN, le modèle approché atteint une
précision de quelques pour cent.

Mots-clés : Méthodes multi-échelles décomposition de domaine, préconditionnement non linéaires, crues
urbaines.
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Chapter 1

Introduction

In this thesis, we focus on the solution of linear and nonlinear partial differential
equations (PDEs) posed on complex domains, which generally contain numerous
polygonal perforations within them. The main real-world application we are con-
cerned with involves the modeling of urban floods. Numerical modeling of overland
flows plays an increasingly important role in predicting, anticipating, and control-
ling floods. Anticipating these flood events can aid in the positioning of protective
systems including dams, dikes, or rainwater drainage networks. One of the chal-
lenges of this numerical modeling of urban floods is that small structural features
(buildings, walls, etc.) may significantly affect the water flow [2, 110, 111].

Modern terrain survey techniques including photogrammetry and Laser Imaging,
Detection, and Ranging (LIDAR) allow for the acquisition of high-resolution topo-
graphic data for urban areas. The data set used in this thesis has been provided by
Métropole Nice Côte d’Azur (MNCA) and enables an infra-metric description of the
urban geometries [4]. From the hydraulic perspective, these structural features can
be assumed to be essentially impervious, and therefore represented as perforations
(holes) in the model domain. We work within the assumption that the “buildings
as holes” representation of the structures is relevant in many flood scenarios [42,
95]. However, we recognize that this approach is somewhat limited as it does not
account for some flood processes such as flow entering the building. We remark,
however, that the methods described in this thesis are not limited to perforated
domains; for example, these techniques can be applied to buildings represented as
low-permeability regions [95]. An example of the domains on which we work are
given in Figure 1.1 for various data frames representing areas of Nice, France.

Depending on the geometrical complexity of the computational domain, the nu-
merical solution of these models may become increasingly challenging to compute, as
the typical model domain resulting from the realistic description of the urban envi-
ronment will contain numerous perforations that are represented on different scales.
Taking into account these structures can result in extremely small computational
elements. Thus, in order to address the scale contrast, we wish to employ numeri-
cal strategies such as Multi-scale (Ms) and Domain Decomposition (DD) methods.
Both Ms and DD methods presented in this work consider two levels of space dis-
cretization, referred to as the “fine” and “coarse” levels. This dual partitioning
aims to achieve computational efficiency compared to classical fine-scale solution
methods. Additionally, many of the proposed methods allow for parallel implemen-
tation to further improve efficiency. The first level of discretization, associated with
a fine-scale triangular grid, is assumed to resolve all important small-scale features,
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12 Chapter 1. Introduction

Figure 1.1: Example of computational domain divided in N = 8 × 8 nonoverlapping
subdomains.

but is likely to have many elements of highly variable size. The second (coarse)
level of discretization is based on a coarse grid (or subdomain partitioning) having
a characteristic element size much larger than that of the fine-scale partitioning.
Both Ms and DD methods generally construct a coarse space associated with the
coarse level of discretization. This coarse space plays the crucial role in both DD
and Ms approaches. The hope is that by incorporating some fine-scale information,
the coarse space can be constructed such that it approximates the fine-scale solution
well.

With this, we introduce notations which will be used throughout the thesis. Let
D be an open simply connected polygonal domain in R2. We denote by (ΩS,k)k a
finite family of perforations in D such that each ΩS,k is an open connected polygonal
subdomain of D. The perforations are mutually disjoint, that is ΩS,k ∩ ΩS,l = ∅ for
any k ̸= l. We denote ΩS =

⋃
k ΩS,k and Ω = D \ ΩS, assuming that the family

(ΩS,k)k is such that Ω is connected. Note that the latter assumption implies that
ΩS,k are simply connected.

For illustration purposes, an example of the linear Poisson equation on such a
perforated domain is given by

−∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω ∩ ∂ΩS,

u = g on ∂Ω \ ∂ΩS,

(1.1)

where n is the outward normal to the boundary, g denotes Dirichlet boundary data,
and f ∈ L2(Ω).

1.1 Methodology

Domain decomposition methods are used throughout this thesis to efficiently solve
model problems such as (1.1). For large linear systems, such as the systems focused
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on in this thesis, one can generally use direct or iterative solvers. Direct solvers,
while robust, have a large memory cost which can cause issues when the linear
system becomes too large. On the other hand, while iterative methods are often
more computationally efficient for large-scale problems and may require less memory,
they may converge slowly or even fail to converge for poorly conditioned systems.
For ill-conditioned problems, preconditioning can improve the convergence behavior
of an iterative solver by improving the conditioning of a system. Here, we focus on
domain decomposition (DD) preconditioners. The main idea behind DD methods is
to break down a large problem domain into smaller subdomains, solve the problem
on each subdomain independently, and glue the local solutions together to obtain a
global solution. Typically, they solve the global problem iteratively, while the local
solves are computed via a direct method. We remark as well that since the local
problems are independent of each other, these methods naturally allow for parallel
implementation.

Dual Partitionings are used throughout the thesis in the form of a “coarse”
and “fine” level of discretization. We now detail the generation of both levels of
discretization.

For the construction of the coarse level of discretization, consider a finite nonover-
lapping polygonal partitioning of D into N subdomains, denoted by (Dj)j=1,...,N .

The induced nonoverlapping partitioning of Ω is denoted by (Ωj)j=1,...,N such that

Ωj = Dj ∩Ω. We refer to (Ωj)j=1,...,N as the coarse mesh over Ω. The fine triangula-

tion is generated to be conforming with respect to the coarse mesh (Ωj)j=1,...,N . The

fine-scale Delaunay triangulation is generated using Triangle [97], a meshing tool
which can mesh around given perforations. The coarse and fine levels of discretiza-
tion for a perforated domain are shown in thick and thin blue lines, respectively in
Figures 1.2 and 1.3. We observe that due to this coarse cell conforming mesh gener-
ation process, the fine-scale triangulation may vary slightly as we vary the number
of subdomains. The stronger geometrical constraints due to a larger number of sub-
domains generally results in a higher number of fine-scale elements; for example, the
left and right of Figure 1.2, representing the same flow domain, contain 6 718 and
11 228 triangles, respectively. Later, when performing numerical experiments, the
consistency of the fine-scale triangulation across different numbers of coarse cells
is enforced by generating a fine mesh that is conforming to the highest number of
subdomains considered. For example, a fine mesh conforming to an 8×8 coarse grid
will also conform to 2 × 2 and 4 × 4 coarse meshes. Figure 1.3 shows a matching
background triangulation for different coarse meshes. We remark that a METIS
partitioning [69] is a possible technique for the generation of coarse partitionings as
well, but is not explored in this thesis.

The Diffusive Wave (DW) Equation is commonly used to model overland flows
[91, 3]. While this thesis begins in Chapter 2 with a linear model problem for the
design of a novel coarse space, this coarse space is then used for the DW equation
in Chapter 3. The main real-world application of this work involves the efficient
numerical solution of the DW model on an area of Nice, France in which there are
many urban structures. We can think of the DW equation as a simplification of the
2D Shallow Water (SW) equations under zero-inertia assumptions; for this reason,
the DWE equation is sometimes referred to as the Zero Inertia (ZI) equations [49].
For methodological purposes, we believe that the understanding of the multi-scale
aspects of a simpler DW model has to be achieved before addressing the full system
of SW equations.
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Figure 1.2: Coarse (thick blue lines) and fine (thin blue lines) discretizations for N = 2×2
(left) and N = 8× 8 (right) subdomains for a given model domain.

Figure 1.3: Coarse (thick blue lines) and fine (thin blue lines) discretization for N =
2 × 2 (left) and N = 8 × 8 (right) subdomains for a given model domain, with identical
background fine-scale triangulations.
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We now derive the DW equation from the 2D SW equations. Let u(x, y) denote
the total water surface elevation, zb(x, y) denote the underlying bathymetry, and
h(x, y) = u(x, y)− zb(x, y) denote water depth. We consider the SW equations [104]
with a zero source term in the mass conservation equation; in practice, a source term
in the right-hand side of (1.2) would denote rainfall intensity. The SW equations
are given by

∂tu+ ∂xqx + ∂yqy = 0, (1.2)

∂tqx + ∂y

(qxqy
h

)
+ ∂x

(
q2x
h

+
1

2
gh2
)

= gh(S0x − Sfx), (1.3)

∂tqy + ∂x

(qxqy
h

)
+ ∂y

(
q2y
h

+
1

2
gh2
)

= gh(S0y − Sfy), (1.4)

where qx = hvx and qy = hvy represent unit discharges and vx, vy denote the depth
averaged x and y components of velocity. Additionally, S0x = −∂xzb and S0y =
−∂yzb denote the respective slopes of the bathymetry zb(x, y). The friction slopes
in both directions, denoted by Sfx and Sfy, are given by

Sfx =
vx
√
v2x + v2y
c2fh

β
and Sfy =

vy
√
v2x + v2y
c2fh

β
. (1.5)

for some friction coefficient cf . The choice of β in (1.5) can vary; common choices
include β = 4

3
for Manning friction and β = 1 for Chèzy friction [3], where the

friction coefficients are chosen accordingly. Both choices are used to model friction
in open channel flow, but for simplicity, we choose β = 1 corresponding to Chèzy
friction throughout this thesis.

The Zero-Inertia model neglects the acceleration terms in the SW model; that is,
the time derivatives of momentum components ∂tqx, ∂tqy as well as the acceleration

terms ∂x
( qxqy

h

)
, ∂y

( qxqy
h

)
, ∂x

(
q2x
h

)
, and ∂y

(
q2y
h

)
in (1.2) – (1.4) are set to zero.

With this, (1.3) and (1.4) are modified such that the new system becomes

∂tu+ ∂xqx + ∂yqy = 0

∂xh = S0x − Sfx, (1.6)

∂yh = S0y − Sfy. (1.7)

From the definition of S0x and S0y combined with the fact that h = u − zb, (1.6)
and (1.7) result in

−∂xu = Sfx and − ∂yu = Sfy. (1.8)

Combining (1.5) with (1.8) and setting β = 1, we obtain

−∂xu =
vx
√
v2x + v2y
c2fh

and − ∂yu =
vy
√
v2x + v2y
c2fh

. (1.9)

The latter implies that

||∇u|| =
v2x + v2y
c2fh
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and √
v2x + v2y = cfh

1/2||∇u||1/2. (1.10)

Substituting (1.10) into (1.9), we formally obtain

vx = −cfh
1/2∂xu

||∇u||1/2
and vy = −cfh

1/2∂yu

||∇u||1/2
.

Thus, recalling that qx = hvx and qy = hvy, the original 2D SW system can be
simplified to the scalar equation

∂tu− ∂x

(
cfh

3/2∂xu

||∇u||1/2

)
+ ∂y

(
cfh

3/2∂yu

||∇u||1/2

)
= 0,

or equivalently,

∂tu− div

(
cf

hα

||∇u||1−γ
∇u
)

= 0, (1.11)

where γ = 1
2
and α = 3

2
.

Using similar notations from (1.1), the DW model on a perforated domain is
given by

∂tu− div
(
cfh

α||∇u||γ−1∇u
)

= 0 in Ω× (0, T ],

u = g on (∂Ω \ ∂ΩS)× (0, T ],

hα||∇u||γ−1 ∂u

∂n
= 0 on (∂Ω ∩ ∂ΩS)× (0, T ],

(1.12)

for a fixed time interval (0, T ], where (1.12) must be combined with some initial
condition on u.

We remark that the choice of α = 5
3
in (1.12) would correspond to Manning

friction. In fact, the authors of [101] concluded that (1.12) with variable ranges of
1 ≤ α ≤ 2 and 0 < γ < 1 performs quite well, and one is not necessarily limited to
specific choices of α and γ.

1.2 Summary and Contributions

The remainder of this thesis is structured as follows.

Chapter 2: Domain Decomposition and Coarse Approximations for Dif-
fusion Models on Perforated Domains is based on the article [13], published in
Applied Numerical Mathematics. It also includes portions taken from the conference
proceedings papers [14, 12]. For the linear diffusion model problem (1.1), we pro-
pose a low-dimensional coarse approximation space in the spirit of Multi-scale Finite
Element Methods (MsFEM). This coarse space can be used either as a coarse ap-
proximation or as a component of a two-level domain decomposition (DD) method.
The coarse space is spanned by locally discrete harmonic basis functions. Along the
subdomain boundaries, the basis functions are piecewise polynomial. The main the-
oretical contribution of this chapter is an error estimate regarding the H1-projection
over the coarse space; this error estimate is independent of the global regularity of
the solution, which is expected to be low due to multiple corner singularities. For a
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specific edge refinement procedure, the error analysis establishes superconvergence
of the method even if the true solution has a low general regularity. This chapter
also numerically explores the combination of the coarse space with overlapping DD
methods. Generally, overlapping Schwarz methods can be employed either as a sta-
tionary fixed-point iteration or as a preconditioner for iterative Krylov methods such
as Conjugate Gradient (CG) or Generalized Minimal RESidual (GMRES) methods
[102]. The coarse space leads to an efficient two-level iterative linear solver which
reaches the fine-scale finite element error in few iterations. Additionally, it bodes
well as a domain decomposition preconditioner for Krylov methods; as expected,
we find that the preconditioned Krylov method results in accelerated convergence
when compared to the stationary iteration/fixed point method.

Chapter 3: Nonlinear Preconditioning Techniques for Urban Flood Mod-
els on Perforated Domains is based on the preprint [15], submitted to Comput-
ers and Mathematics with Applications. It focuses on the nonlinear Diffusive Wave
equation (1.12) while also including numerical examples for a stationary porous
medium equation on a perforated domain. For the DW model, we obtain topog-
raphy data zb from the 1 meter Digital Elevation Model available from [64]. This
chapter tackles the dual challenge of multi-scale phenomena and nonlinearity in the
model problem; addressing these points simultaneously increases the complexity and
originality of our approach. We propose the linear Trefftz coarse space from [13] as
a component of a two-level Restricted Additive Schwarz preconditioner for a lin-
earized Newton system, which arises from the linearization of a nonlinear equation.
Additionally, we use this coarse space as a component for multiple nonlinear precon-
ditioning methods, including a Two-level RASPEN method. We provide a detailed
complexity analysis of the proposed methods, discussing the benefits and downsides
of each method. For these nonlinear methods applied to a time-dependent problem,
we implement an adaptive local time-stepping method, which allows us to avoid a
global time step reduction. Additionally, we propose the use of the Trefftz space
for the approximation of the latter flood model. The main idea roughly consists
in replacing the finite element space in the finite element discretization with the
(conforming) coarse space. This coarse method is a very promising alternative, al-
lowing us to use a small fraction of the fine-scale degrees of freedom to approximate
the solution. This article also serves as a numerical application of nonlinear pre-
conditioning methods applied to nonlinear problems, containing multiple numerical
examples including the numerical solution of (1.12) on a large perforated domain
representing a given area of Nice, France.

Chapter 4: Scientific Machine Learning for Nonlinear Elliptic PDEs with
Rough Coefficients is based on the forthcoming article [16], submitted to the 2023
CEMRACS proceedings. It focuses on problems such as a porous medium equation
and p-Laplace equation posed on heterogeneous domains. We employ a strategy
which combines tools from Multi-scale Finite Element Methods (MsFEM) and Ma-
chine Learning. Our approach relies on a nonlinear approximate substructuring
method which can be formulated based on local nonlinear Dirichlet-to-Neumann
(DtN) operators. When solving the nonlinear substructured problem numerically
by means of a fixed point method such as Newton’s method, the DtN maps need to
be computed repeatedly. To lower the computational cost caused by this repetitive
evaluation of the DtN maps, we replace the latter by neural network-based surro-
gate models. The neural networks are trained to replicate the action of the local
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nonlinear DtN maps on some coarse subset of the trace space. Once the training
is completed, the surrogate DtN operators will be used within the nonlinear sub-
structuring method. For training, we incorporate gradient information into the loss
function; that is, we generate training data which contains both the local DtN maps
and their (Fréchet) derivatives. Numerical experiments are performed in 1D and 2D
and involve p−Laplace and degenerate diffusion equations. With just a few training
points by dimension, the substitution model has an accuracy of a few percent when
compared to the numerical solution.

The thesis concludes with a summary and suggestions for future work.
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Methods and Coarse
Approximations for Diffusion
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This chapter is mainly based on the published paper [13] in Applied Numerical Math-
ematics. Additionally, preliminary studies were published in the proceedings papers
[12, 14] of the 27th International Conference on Domain Decomposition Methods
and the 10th International Conference on Finite Volumes for Complex Applications,
respectively.

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Classical Schwarz Methods . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Existing Families of Coarse Spaces . . . . . . . . . . . . . . . . . . 30

2.1.4 Numerical Methods for Multiscale Problems . . . . . . . . . . . . . 32

2.1.5 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Continuous Trefftz Approximation . . . . . . . . . . . . . . . . . 34

2.2.1 Coarse Mesh and Space Decomposition . . . . . . . . . . . . . . . 34

2.2.2 Continuous Trefftz Space . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Discrete Trefftz Space and Two-level Schwarz Method . . . . . 39

2.3.1 Discrete Trefftz Approximation . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Discrete Two-level Schwarz Method . . . . . . . . . . . . . . . . . 40

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Trefftz Coarse Approximation on L-Shaped Domain . . . . . . . . 41

2.4.2 Iterative DD and Preconditioned Krylov methods on L-Shaped Do-
main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.3 Iterative DD and Preconditioned Krylov Methods on Small Urban
Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.4 Weak Scalability Tests for Preconditioned Krylov Method on Man-
ufactured Perforations . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.5 Scalability Tests for Preconditioned Krylov Method on Larger Ur-
ban Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

21



22
Chapter 2. Robust Domain Decomposition Methods and Coarse
Approximations for Diffusion Models on Perforated Domains

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



2.1. Introduction 23

2.1 Introduction

In this chapter, we consider a linear diffusion model posed in a perforated domain.
Recalling the notations from Chapter 1, letD be an open simply connected polygonal
domain in R2. We denote by (ΩS,k)k a finite family of perforations in D and denote

ΩS =
⋃

k ΩS,k and Ω = D \ ΩS, assuming that the family (ΩS,k)k is such that Ω is
connected.

With this, an example stationary boundary value problem of interest is given by
−∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω ∩ ∂ΩS,

u = 0 on ∂Ω \ ∂ΩS,

(2.1)

where n is the outward normal to the boundary and f ∈ L2(Ω).
Let us denote by (·, ·)L2(Ω) the standard L2 scalar product, that is,

(u, v)L2(Ω) =

∫
Ω

uv dx.

Setting
H1

∂Ω\∂ΩS
(Ω) = {u ∈ H1(Ω) |u|∂Ω\∂ΩS

= 0}, (2.2)

the weak solution of (2.1) satisfies the following variation formulation: Find u ∈
H1

∂Ω\∂ΩS
(Ω) such that

(∇u,∇v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H1
∂Ω\∂ΩS

(Ω). (2.3)

As mentioned, in the context of urban flood modeling, u represents the flow
potential (pressure head) and (ΩS,k)k can be thought of as a family of impervious
structures such as buildings, walls, or other similar structures. Although the linear
model (2.1) is overly simplified to be directly used for urban flood assessment, the
more general nonlinear elliptic or parabolic models are common in free surface flow
simulations.

2.1.1 Finite Element Methods

As a discretization scheme, we choose finite element methods on a fine triangular
mesh. This triangular mesh will be later referred to as the “fine-scale” discretization.
In particular, we consider a conforming finite element method that solves the weak
form of a model problem by replacing a function space with some finite-dimensional
subspace.

Let us consider a triangulation T of Ω. We denote by Vh the space of functions
that are continuous and triangle-wise polynomial on each triangle of T , where h
denotes the maximal element diameter, and by Vh,0 the space Vh ∩ H1

∂Ω\∂ΩS
(Ω).

The finite element method for the variational problem (2.3) consists in finding uh ∈
Vh,0(Ω) such that

a(uh, vh) = (f, vh) ∀ vh ∈ Vh,0(Ω). (2.4)
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Let us denote by (ηs)
NΩ
s=1 the set of the standard finite element basis functions associ-

ated to degrees of freedom in Ω. The associated fine-scale finite element discretiza-
tion results in the linear system

Au = f , (2.5)

where A is a NΩ × NΩ matrix and NΩ denotes the number of internal degrees of
freedom in Ω. With this, the (i, j) entry of A is given by

Aij = a(ηj, ηi) =

∫
Ω

∇ηj · ∇ηi dx,

and f is the vector from RNΩ with components fj =

∫
Ω

fηj dx. With this, uh =∑
k∈NΩ

ukηk is the finite element approximation, where uk is the kth entry of u.

2.1.2 Classical Schwarz Methods

Domain decomposition (DD) methods are divide-and-conquer methods used to aid
in the numerical solution of PDEs by partitioning the domain into multiple smaller
subdomains, on which corresponding subproblems are solved. Depending on the
DD method used, these subproblems can be solved independently, allowing us to
harness the power of parallel computing. We focus here on overlapping domain
decomposition, where each subdomain shares a portion if its interior with another.
We remark, however, that an entire family of nonoverlapping domain decomposition
methods exists [71, 108, 48]. In this chapter, we focus on a family of DD methods
known as Schwarz methods.

The original Schwarz method was introduced in 1870 [96], not as a numerical
method but as a tool to prove the Dirichlet principle. To recall, the Dirichlet prin-
ciple states that if a function u is a solution to{

−∆u = 0 in Ω,

u = g on ∂Ω,
(2.6)

on a bounded domain Ω, then u is the infimum of

∫
Ω

|∇v|2 dx over all sufficiently

regular functions v satisfying v = g on ∂Ω. The original domain considered by
Schwarz, shown in Figure 2.1, was composed of the union of an overlapping disk
and rectangle.

Continuous Form

Thus, Schwarz proposed an iterative method which is widely referred to as the
alternating Schwarz method. It consists in solving the problem in each subdomain
sequentially, using the computed solution on the adjacent subdomain. Given an
initial guess u02 and the decomposition Ω = Ω1∪Ω2 for two overlapping subdomains
Ω1 and Ω2, the iterative method to solve (2.6) is given by the following: for iteration
index n = 0, 1, . . . ,

−∆un+1
1 = 0 in Ω1,

un+1
1 = g on ∂Ω1 ∩ ∂Ω,
un+1
1 = un2 on ∂Ω1 ∩ Ω2,

−∆un+1
2 = 0 in Ω2,

un+1
2 = g on ∂Ω2 ∩ ∂Ω,
un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

(2.7)
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Ω1 Ω2

Figure 2.1: A visual of the domain Ω = Ω1 ∪ Ω2, where Ω1 corresponds to a disk and Ω2

corresponds to a rectangle. The first domain decomposition method was introduced by
Schwarz on this domain.

Schwarz proved the convergence of the algorithm (2.7) using the maximum principle.
Additionally, Schwarz deduced that if the sequence (2.7) converges, then u∞1 and
u∞2 take the same values in the region of overlap Ω1 ∩ Ω2. With this, u∞1 and u∞2
converge to the solution u of the Laplace equation on Ω1 and Ω2, respectively; we
refer the reader to Chapter 1 of [40] and [52] for details.

One may note that in the iteration (2.7), the solution un+1
1 must be computed

before un+1
2 , creating an iteration that is not parallel. An extension to the iteration

was proposed over a century later by Lions [76]; this extension allows for parallel
implementation of the iteration. The parallel Schwarz method, while appearing
extremely similar to (2.7), involves a change to the transmission condition on the
equation of the second subdomain. The parallel iteration is given by the following:for
n = 0, 1, . . . ,

−∆un+1
1 = 0 in Ω1,

un+1
1 = g on ∂Ω1 ∩ ∂Ω,
un+1
1 = un2 on ∂Ω1 ∩ Ω2,

−∆un+1
2 = 0 in Ω2,

un+1
2 = g on ∂Ω2 ∩ ∂Ω,
un+1
2 = un1 on ∂Ω2 ∩ Ω1.

(2.8)

We remark that for the parallel iteration, one requires an initialization of u01 and u
0
2.

With this, each iteration of (2.8) can be solved concurrently in Ω1 and Ω2.
We can think of the alternating and parallel Schwarz iterations as being analogous

to the block Gauss-Seidel and block Jacobi iterations, respectively. As is true for the
algebraic Gauss-Seidel and Jacobi methods, the alternating Schwarz methods will
generally converge in fewer iterations that the parallel Schwarz iteration. However,
the possibility for parallel computing must be considered.

We remark that the iterative methods (2.7) and (2.8) can be extended naturally
to greater than two subdomains. Additionally, while the iterations (2.7) and (2.8)
are written for the Laplace equation, they can be applied to a general linear PDE,
given that the local Dirichlet problems are well posed. Consider the decomposition
(Ωj)

N
j=1 into multiple overlapping subdomains Ωj. The parallel Schwarz iteration for

a general problem Lu = f , where L is a linear operator, is given by the following:
for n = 0, 1, . . . ,

Lun+1
j = f in Ωj,

un+1
j = g on ∂Ωj ∩ ∂Ω,
un+1
j = uni on ∂Ωj ∩ Ωi,
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for j = 1, . . . , N , where i ̸= j such that ∂Ωi ∩ Ωj is non-empty.
Together, the alternating and parallel Schwarz methods are often referred to

as classical Schwarz methods. It is important to note that these classical Schwarz
methods require overlapping subdomains for convergence. The natural question
that arises is what one should take for the overlap between subdomains. Generally,
increasing the overlap will decrease overall iteration count. However, this is at the
cost of larger subproblems. Therefore, some sort of “sweet spot” must be chosen in
terms of overlap size.

We remark that the family of optimized Schwarz methods [51] allow for sub-
domains that only share a common boundary without additional overlap. These
optimized Schwarz methods impose Robin transmission conditions on the subdo-
main boundaries in order to increase the efficiency of the Schwarz algorithms and
increase the convergence speed [86]. We refer the reader to [52] for a summary of
Schwarz methods over time, and to [100, 40] for an introduction to DD methods.

Algebraic Form

We now introduce the algebraic form of the parallel Schwarz iteration. For this,
consider the linear system Au = f that arises from the finite element discretization
of the linear PDE, where A is assumed to be symmetric positive definite.

Let Nj denote the number of degrees of freedom in Ωj. Consider the following
matrices:

• Restriction matrices Rj which restrict from the degrees of freedom in Ω to the
degrees of freedom in subdomain Ωj. These matrices are boolean matrices of
size Nj ×NΩ, where (Rj)i,k = 1 if the ith degree of freedom in the partitioning
of Ωj is the kth degree of freedom in the partitioning of Ω; otherwise, the
matrices are full of zeros.

• Partition of unity matrices Dj, Nj ×Nj diagonal matrices satisfying

N∑
j=1

RT
j DjRj = I, (2.9)

where I is the identity matrix of size NΩ. Specifically, we define the partition
of unity matrices such that (Dj)i,i = 1

ni
, where nij denotes the number of

subdomains in which the ith degree of freedom in the partitioning of Ωj is
contained. Otherwise, the matrices are full of zeros.

Additive Schwarz Method: The Additive Schwarz method (ASM), analogous to
the parallel Schwarz method (2.8), was introduced in [43] and is given by

un+1 = un +M−1
AS (f − Aun), (2.10)

where the matrix M−1
AS is given by

M−1
AS =

N∑
j=1

RT
j (RjAR

T
j )

−1Rj. (2.11)

We note that (2.10) is analogous to the continuous parallel Schwarz method. How-
ever, the iterative method (2.10) will not converge in the region of overlap, as the
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solution on each subdomain in the overlap will be added multiple times, creating
multiple contributions to the overlap.

Restricted Additive Schwarz Method: The issue with convergence in the overlap
can be solved by the Restricted Additive Schwarz (RAS) method, given by

un+1 = un +M−1
RAS (f − Aun),

where the matrix

M−1
RAS =

N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj, (2.12)

contains partition of unity matrices which deal with multiple contributions in the
overlapping region. The RAS method, introduced in [27], was discovered via the
accidental modification of the additive Schwarz method. The RAS method converges
in the overlapping region and forms a convergent fixed point iterative method.

So far, we have only discussed Schwarz methods as iterative methods. However,
the Schwarz preconditions such as M−1

RAS perform well as preconditioners for Krylov
methods, which are typically faster than the fixed point iterations. However, one
can accelerate these fixed point iterations by a Krylov method, using the Schwarz
matrices as preconditioners. We introduce the left-preconditioned linear system
given by

M−1
ASAu =M−1

ASf , (2.13)

or
M−1

RASAu =M−1
RASf . (2.14)

We note that the preconditioner M−1
AS is symmetric as long as A is symmetric.

Therefore, for the preconditioned system (2.13), one can use the Conjugate Gradient
(CG) method as their Krylov solver of choice, given that the matrix A is symmetric
positive definite. For the RAS preconditioned system (2.14), the preconditioner is
non-symmetric, and one can use GMRES as a solver instead of CG. Generally, (2.14)
will produce slightly less iterations when compared to (2.13), although (2.14) loses
the symmetric property.

Multiplicative Schwarz Method The Multiplicate Schwarz (MS) Method, analo-
gous to the alternating Schwarz method (2.7), is given by

un+1 = un +M−1
MS (f − Aun),

where the matrix M−1
AS is given by

M−1
MS = [I − ΠN

j=1(I −RT
j (RjAR

T
j )

−1Rj)A)]A
−1. (2.15)

We remark that as this method is multiplicative, it is generally non-parallel in
nature. However, as mentioned, the MS iterative method will generally converge in
fewer iterations when compared to the RAS iterative method. As we are primarily
concerned with possible parallel implementation, the MS iteration/preconditioner is
not a focus of this thesis.

Two-level Schwarz Methods

The above methods presented, which we will refer to as one-level methods, tend to
have a common problem that arises when the number of subdomains N grows very
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(a) N = 4 subdomains

(b) N = 8 subdomains

Figure 2.2: Homogeneous domain for N = 4 (top) and N = 8 (right) subdomains, where
each subdomain is a unit square.

large. We note that in the iterations from Section 2.1.2, the subdomains are limited
to communicating with adjacent subdomains. Therefore, as N grows large, a lack of
global communication results in a lack of scalability of the DD algorithms. In terms
of scalability, there are generally two forms presented: weak and strong scalability.
We note that as we consider domains containing multiple perforations within them,
we also wish to achieve robustness with respect to the domain’s geometry.

Weak scalability refers to how the runtime (or iteration count) varies with the
number of subdomains as the problem size and the number of subdomains are in-
creased proportionally; that is, N and the problem size NΩ are increased while
ensuring the subdomain size Nj is consistent. A method exhibits weak scalability if
increasing both the problem size and the number of subdomains by a certain factor
results in roughly constant solution time. For example, if a problem with 100 un-
knowns on 10 subdomains takes 10 seconds to run, a problem with 500 unknowns
on 50 subdomains should take the same 10 seconds to run if the method is weakly
scalable.

Strong scalability refers to how the solution time varies with the number of
subdomains for a fixed total problem size. That is, the problem size NΩ is kept
consistent while N is increased. A method exhibits strong scalability if increasing
the number of subdomains decreases the solution time proportionally for a fixed
problem size. For example, if a problem with 100 unknowns on 10 subdomains
takes 10 seconds to run, the same problem on 50 subdomains should take 2 seconds
to run if the method is strongly scalable. However, we remark that perfect strong
scalability is difficult to achieve in practice, as eventually, the subproblems become
extremely small as the number of subdomains increases to infinity. See [29] for
details on this topic, where the authors explore the scalabilities of classical one-level
Schwarz methods.

We provide a visual regarding lack of weak scalability for the one-level RAS
method in Figure 2.3. Weak scalability tests are done for the Laplace equation on
N subdomains in one dimension, where each domain is a unit square (see Figure
2.2).

To combat this lack of scalability in the previously mentioned one-level Schwarz
methods, we introduce the idea of two-level Schwarz methods which contain a coarse
space to allow for global communication across all subdomains. We remark that
coarse spaces can not only provide scalable DD methods, but also further accelerate
the DD methods. Moreover, an optimal coarse space can lead to a DD method
which converges in one iteration [53]. With some coarse matrix RH of size NV ×NΩ

which will be defined/discussed later and M−1
H given by

M−1
H = RT

H(RHAR
T
H)

−1RH ,
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Figure 2.3: Krylov iteration count for the one-level RAS preconditioner used to solve the
Laplace equation, for various numbers of subdomains.

the two-level preconditioned system is given by

M−1
RAS,2Au =M−1

RAS,2f , (2.16)

or
M−1

AS,2Au =M−1
AS,2f , (2.17)

where the two-level discrete RAS preconditioner is given additively by

M−1
RAS,2 = RT

H(RHAR
T
H)

−1RH +
N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj,

and the two-level discrete Additive Schwarz preconditioner is given additively by

M−1
AS,2 = RT

H(RHAR
T
H)

−1RH +
N∑
j=1

RT
j (RjAR

T
j )

−1Rj.

We expect the use of a well-constructed preconditioner to provide acceleration in
terms of Krylov iteration count.

Additionally, the two-level iterative RAS method is given by

un+ 1
2 = un +M−1

RAS(f − Aun),

un+1 = un+ 1
2 +M−1

H (f − Aun+ 1
2 ),

which is equivalent to

un+1 = un + (M−1
H +M−1

RAS(I − AM−1
H ))(f − Aun). (2.18)

We will rather use this “hybrid” iterative method (2.18) as the iterative version of
the additive method will not converge. However, we remark that if a Krylov method
is used, then the additive preconditioners (2.16) and (2.17) will converge as well.
Generally, using preconditioned Krylov methods produces faster convergence than
the iterative solver, both in terms of computation time and iterations.
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2.1.3 Existing Families of Coarse Spaces

Our model problem can be thought of as the extreme limit case of the elliptic model
containing highly contrasting coefficients with zero conductivity on the perforations.
Two-level domain decomposition methods have been extensively studied for such
heterogeneous problems. In the following subsections, we present families well-
known classical coarse spaces.

MsFEM and Energy Minimizing Coarse Spaces

Multiscale Finite Element Methods (MsFEM) [60, 45] are a class of numerical tech-
niques originally designed to tackle problems characterized by significant variations
across multiple scales. MsFEM methods aim to efficiently capture the solution of
problems involving multiscale phenomena, by incorporating information from dif-
ferent scales into the finite element framework. Unlike traditional finite element
methods, which typically require fine meshes to resolve small-scale features, Ms-
FEM methods seek to represent these features using coarse meshes, reducing the
complexity of the problem while still preserving accuracy. In MsFEM methods, a
Galerkin approximation of the variational formulation of a model PDE is computed
on a lower dimensional, problem-dependent space. The basis functions of this lower-
dimensional space are numerically computed; generally, these basis functions are the
solution to the localized version of the original PDE with some boundary conditions
imposed. Later in this chapter, we provide a coarse approximation space which,
like MsFEM, is also composed of numerically computed harmonic basis functions.
As we work on perforated domains, the basis functions will be computed based on
specific coarse degrees of freedom that are based on the urban geometries in the
model domain.

MsFEM methods can also be used as a coarse space for domain decomposition
methods. Robust coarse spaces have been constructed using the ideas from Ms-
FEM in [1, 55]. The authors of [94] discuss varied coefficient problems in the case
where the coarse grid is not properly aligned with the heterogeneities. The com-
bination of spectral and MsFEM methods can be found in [54], where the authors
enrich the MsFEM coarse space with eigenfunctions along the edges. Additionally,
the family of GDSW (Generalized Dryja, Smith, Widlund) methods [38] employ
energy-minimizing coarse spaces and can be used to solve heterogeneous problems
on less regular domains. These spaces involve a combination of edge and nodal ba-
sis functions. To deal with coefficient jumps in highly heterogeneous problems, an
adaptive GDSW coarse space was introduced in [56].

Spectral Coarse Spaces

Spectral methods such as those given in [50, 87, 41, 98] obtain a robust coarse space
via the local solutions of spectral problems in each subdomain. The authors of
[87] proposed a coarse space for overlapping Schwarz methods whose construction
is based on an eigenvalue problem for the Dirichlet-to-Neumann (DtN) operator on
each subdomain. The Generalized Eigenproblems in the Overlaps (GenEO) coarse
space [98] involves the solution of generalized eigenvalue problems in (originally) the
overlapping zone of the partitioning. Like in the DtN coarse space, a number of low
frequency eigenfunctions are selected; these local functions are converted into global
coarse basis functions by being combined with partition of unity functions.
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We proceed to the algebraic definition of a spectral space, similar to the GenEO
space, which will be used in this chapter as a numerical comparison. The construc-
tion of this space involves the solution of a generalized eigenvalue problem in each
subdomain and will be referred to as the GenEO-like coarse space.

Let Āj denote the local “Neumann” matrix on Ω̄j; i.e., the stiffness matrix for the
local Neumann problem. With this, we introduce the discrete eigenvalue problem
given by

Ājp
j
k = λjk(DjAjDj)p

j
k, (2.19)

where Aj = RjAR
T
j . The eigenvalue problem solves for the eigenpairs (λjk,p

j
k). For

the construction of the algebraic coarse space, we take k = 1, . . . ,mj eigenvectors
corresponding to the mj lowest eigenvalues of (2.19). The GenEO-like coarse matrix
RT

H is defined such that its columns are given by

RT
j Djp

j
k (2.20)

for j = 1, . . . , N and k = 1, ...,mj, where there are
∑N

j=1mj total columns in RT
H .

Nicolaides Coarse Space

The Nicolaides coarse space [89] is a traditional coarse space made of piecewise con-
stant functions per subdomain. We now present the algebraic form of the Nicolaides
space, as it will be used in this chapter as a numerical comparison to the proposed
coarse space. Given algebraic restriction, extension, and partition of unity matrices,
the Nicolaides coarse matrix RH is defined such that each column of RT

H is given by

(RT
H)j := RT

j DjRj1, (2.21)

for j = 1, . . . , N , where 1 is a (N × 1) vector of ones.

We remark that the Nicolaides space can be thought of as a particular case of
the GenEO-like coarse space. Specifically, if mj = 1 and the subdomains Ωj are
connected, the lowest eigenvalue is zero such that the corresponding eigenvector is a
constant. As this is also true for the DtN coarse space, the Nicolaides and spectral
coarse spaces are identical in this case.

For scalability, the Nicolaides coarse space requires that the subdomains be con-
nected. Otherwise, the Nicolaides space may not form a sufficient coarse space in the
sense that it will not achieve weak/strong scalability as a component of a two-level
DD method. With our realistic perforated domains and a coarse partitioning such
as the ones shown in Figure 1.2, disconnected subdomains occur often with long,
thin heterogeneities that can completely cut through a subdomain. Therefore, to
obtain robustness and scalability, the Nicolaides coarse space with this geometric
subdomain partitioning will be insufficient for our case; this is shown via numer-
ical examples in Section 2.4.4. To combat this, we introduce a slightly modified
Nicolaides coarse space that we expect to be scalable regardless of the initial coarse
partitioning of the subdomains. Here, we begin with an initial regular rectangular
partitioning, identify the disconnected regions of each subdomain from node and tri-
angle connectivity, and treat each disconnected component as a separate subdomain
to obtain our new subdomain partitioning. Then, a traditional Nicolaides coarse
space is generated on this new partitioning.

In other words, let wj denote the number of disconnected components in Ωj and
let Ωj,w, w = 1, . . . , wj denote the corresponding nonoverlapping component. Then
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Figure 2.4: Possible partitioning of the domain without (left) and with (right) additional
partitioning by disconnected component, with each subdomain/component depicted by a
color block.

our new nonoverlapping partioning contains w =
∑N

j=1wj total subdomains and is
given by

(Ω̂j)j∈{1,...,w} =
(
(Ωj,w)w∈{1,...,wj}

)
j∈{1,...,N},

and an associated overlapping partioning can be generated. Once this new partition-
ing is generated, the Nicolaides coarse space is generated normally, containing one
piecewise constant function per “enriched” (new) subdomain. The resulting coarse
space on this new partitioning will contain w total columns and will be referred to
as the Enriched Nicolaides coarse space. This special partitioning in visualized in
the right of Figure 2.4.

2.1.4 Numerical Methods for Multiscale Problems

Aside from the earlier mentioned domain decomposition and MsFEM, there exists
extensive literature on problems involving highly oscillatory coefficients or multiscale
geometrical features. This includes the Localized Orthogonal Decomposition (LOD)
method [82], which decomposes the solution space into a low-dimensional space with
good approximation properties and a high-dimensional “remainder” space. The low-
dimensional space is approximated by locally supported basis functions which can
be computed in parallel. Additionally, we note the existence of multiscale partition
of unity methods such as the Generalized Finite Element Method (GFEM) [7] and
the Multiscale Spectral Generalized Finite Element Method (Ms-GFEM) [8, 81]. In
[8, 81], the optimal approximation spaces are constructed locally by solving gener-
alized eigenvalue problems over a set of overlapping subdomains. Partition of unity
functions are used to glue the local contributions into a globally conforming coarse
approximation space. We note that these methods vary from the approach presented
later in this chapter as we consider nonoverlapping coarse cells and do not rely on
eigenproblems.

The method we choose to consider here is closer to the previously discussed
MsFEM, as well as the Multiscale Hybrid-Mixed Method (MHM) [5] or polytopal
methods such as Virtual Element Methods (VEM) [20]. In comparison to the clas-
sical MsFEM, our method leads to a larger coarse space; the size of the proposed
coarse matrix is discussed in Section 2.4. Compared to VEM, the major difference
is that we numerically compute the approximation of the locally harmonic basis. By
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doing so, we manage to incorporate singular functions (corresponding to the corners
of the domain) into the coarse space. We are also able to deal with very general
polygonal cells (not star-shaped, not simply connected, etc.), which differs from
VEM. Additionally, we willingly avoid using a method of fundamental solutions of
any kind, because of our long-term motivation in problems more complex than the
linear model problem. The MHM method combines ideas from the Mixed Finite El-
ement Method (MFEM) and MsFEM. Compared to MHM, where Neumann traces
are approximated by piecewise polynomials, our method is formulated in terms of
approximate Dirichlet traces. We remark as well the existence of Generalized Mul-
tiscale Finite Element Methods (GMsFEM) [44], which were created to generalize
MsFEM methods by constructing coarse trial spaces via a spectral decomposition
of snapshot spaces.

Specifically on perforated domains with small and numerous perforations, the
authors of [74] introduced an MsFEM method for diffusion problems with Dirichlet
boundary conditions imposed on the perforation and domain boundaries, with an
error estimate provided. In [36, 21], this method was extended to advection-diffusion
problems, with [21] imposing both Dirichlet and Neumann boundary conditions on
the perforation boundaries. In [74, 21, 36], Crouzeix-Raviart type boundary condi-
tions were imposed on the local problems to provide robustness with respect to the
position of the perforations. As well, the addition of bubble functions is included.
The authors of [22] also provides an MsFEM method for perforated domains, pro-
viding numerical results and analysis for problems posed on domains with numerous
small, regular perforations. In [22], Neumann boundary conditions are posed on the
perforation boundaries, with the assumption that the coarse grid does not intersect
with the perforations along the edges for analysis purposes (although this assumption
is not necessary numerically). Aside from classical MsFEM methods, the authors of
[58] introduced a Heterogeneous Multiscale method (HMM) [106] method to solve
elliptic homogenization problems in perforated domains, with periodic perforations
required for analysis purposes. Additionally, the authors of [33, 34, 99] proposed a
GMsFEM method for perforated domains for small, regular perforations.

2.1.5 Chapter Outline

The remainder of this chapter is laid out as follows. In Section 2.2, we introduce
the continuous Trefftz coarse space and discuss its approximation properties. The
Galerkin method based on the coarse space is introduced and we provide an error
estimate for the Trefftz space as a coarse approximation. In Section 2.3, we introduce
the Trefftz coarse space in its discrete matrix form. With this, we provide the
matrix forms of the coarse approximation and domain decomposition methods. The
two-level domain decomposition methods are presented as both an iterative solver
and a preconditioner for Krylov methods. In Section 2.4, we provide numerical
results for the Trefftz space used as a coarse approximation, in an iterative Schwarz
method, and as a preconditioner for Krylov methods. We provide numerical results
for three different types of model domains; the first domain is a simplified domain
with one perforation at the corner, the second type is used for scalability tests and
is a combination of multiple unit squares, and the third type of model domain is
a realistic urban domain with numerous perforations of various shape. Section 2.5
concludes with a summary.
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2.2 Continuous Trefftz Approximation

In this section, we introduce a splitting of the weak formulation (2.3) into the lo-
cally harmonic component of the solution and the component of the solution which
vanishes on the coarse skeleton Γ. With this, we propose the continuous finite-
dimensional coarse space that can be used to efficiently approximate the locally
harmonic component of the solution. We then perform the error analysis of the
coarse Galerkin approximation; in this regard, the main results are Proposition 2.6
and Theorem 2.8. This error estimate establishes that the “coarse” solution accu-
rately approximates the locally harmonic component of the solution, and therefore
the solution itself.

2.2.1 Coarse Mesh and Space Decomposition

We begin with a coarse discretization of Ω which involves a family of polygonal cells
(Ωj)j=1,...,N , the so-called coarse skeleton Γ, and the set of coarse grid nodes that
will be referred to by V .

The construction is as follows. Consider a finite nonoverlapping polygonal parti-
tioning of D denoted by (Dj)j=1,...,N and an induced nonoverlapping partitioning of

Ω denoted by (Ωj)j=1,...,N such that Ωj = Dj ∩ Ω. We will refer to (Ωj)j=1,...,N

as the coarse mesh over Ω. Additionally, we denote by Γ its skeleton, that is
Γ =

⋃
j=1,...,N ∂Ωj \ ∂ΩS.

We define H1
∆(Ω) as a subspace of H1(Ω) composed of piece-wise harmonic

functions, weakly satisfying the homogeneous Neumann boundary conditions on
∂Ω ∩ ∂ΩS such that

H1
∆(Ω) = {u ∈ H1(Ω) | (∇u|Ωj

,∇v)L2(Ωj) = 0 for all v ∈ H1
∂Ω\∂ΩS

(Ωj)}. (2.22)

In other words, H1
∆(Ω) can be defined as u ∈ H1(Ω) such that for all subdomains

Ωj, the equations  −∆u|Ωj
= 0 in Ωj,

∂u

∂n
= 0 on ∂Ωj ∩ ∂ΩS,

(2.23)

are satisfied in a weak sense. We further define the space H1
Γ(Ω) as the subspace of

functions vanishing on the coarse skeleton Γ such that

H1
Γ(Ω) = {u ∈ H1(Ω) | u|Γ = 0}. (2.24)

By definition, H1
∆(Ω) is orthogonal to H

1
Γ(Ω). Since H1

Γ(Ω) is a closed subspace of
H1(Ω), we deduce that H1(Ω) = H1

∆(Ω) ⊕ H1
Γ(Ω) (see e.g. [93]). In other words,

a given function v ∈ H1(Ω) admits a unique decomposition into v∆ + vb, where
v∆ ∈ H1

∆(Ω), vb ∈ H1
Γ(Ω) and (∇v∆,∇vb)L2(Ω) = 0. Although for simplicity we will

call v∆ the “locally harmonic” or “piece-wise” harmonic component of v, we wish
to stress that the space H1

∆(Ω) also contains information about the normal traces of
v∆ over ∂ΩS. The function vb will be referred to as the local or “bubble” component
of v.

Using the orthogonal decomposition of H1(Ω) introduced above, we can express
(2.3) as the following: Find u = u∆ + ub with u∆ ∈ H1

∆(Ω) ∩ H1
∂Ω\∂ΩS

(Ω) and
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Figure 2.5: Coarse grid cell Ωj , nonoverlapping skeleton Γ (blue lines), and coarse grid
nodes xs = (xs, ys) ∈ V (red dots). Coarse grid nodes are located at Γ ∩ ∂ΩS .

ub ∈ H1
Γ(Ω) satisfying

(∇u∆,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
∆(Ω) ∩H1

∂Ω\∂ΩS
(Ω), (2.25)

(∇ub,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
Γ(Ω). (2.26)

We remark that the formulation (2.25)-(2.26) uncouples the local and the piece-
wise harmonic components of u, moreover that the “bubble” component of the
solution ub can be computed from (2.26) locally (and in parallel) on each Ωj, while
the problem (2.25) remains globally coupled over the computational domain Ω.

2.2.2 Continuous Trefftz Space

We now proceed with the goal to approximate the locally harmonic component u∆
of the solution. For this, we introduce the Trefftz coarse space, a finite-dimensional
subspace of H1

∆(Ω) that is spanned by functions that are piece-wise polynomial on
the skeleton Γ.

Let (ek)k=1,...,Ne
denote a nonoverlapping partitioning of Γ such that each “coarse

edge” ek is an open planar segment, and we denote H = maxk=1,...,Ne |ek|. The set of
coarse grid nodes is given by V =

⋃
k=1,...,Ne

∂ek. Figure 2.5 illustrates the location

of the nodal degrees of freedom that typically result from clipping (Dj)j with ΩS. It
is important to note that a straight segment of Γ may be subdivided into multiple
edges. As we will show in Section 2.4, this subdivision can be intentional (see Figure
2.6) to achieve convergence of the coarse approximation.

We define

V Γ
H,p = { v ∈ C0(Γ) | v|ek ∈ Pp(ek) for all k = 1, . . . , Ne},

where Pp(ek) denotes the set of polynomials of order (at most p) over an edge e. We
also define

VH,p = { v ∈ H1
∆(Ω) | v|Γ ∈ V Γ

H,p}.

Let (gα)α=1,...,NH,p
be some basis of V Γ

H,p, where NH,p is the dimension of V Γ
H,p. In

practice, (gα)α=1,...,NH,p
is set up by combining the set of the nodal piece-wise linear

“hat” functions with the set of the higher order edge-based basis functions.
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The function ϕα ∈ VH,p associated to gα is computed by weakly imposing
∆ϕα = 0 in Ωj,

∂ϕα

∂n
= 0 on ∂Ωj ∩ ∂ΩS,

ϕα = gα on ∂Ωj \ ∂ΩS,

(2.27)

against the tests functions in Vh,p.
The Galerkin method to approximate u∆ ∈ H1

∆(Ω) based on the coarse space
reads as follows: find u∆,H ∈ VH,p ∩H1

∂Ω\∂ΩS
(Ω) such that

(∇u∆,H ,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ VH,p ∩H1
∂Ω\∂ΩS

(Ω). (2.28)

2.2.3 Error Analysis

We now provide an error estimate for the convergence of the Trefftz approximation
space. We begin with a few preliminary results that will be necessary in the proof.

Lemma 2.1 (Polynomial interpolation over an edge). Let ek be a coarse edge. We
denote by Ip

k the Lagrange interpolator of order p defined with respect to some set of
interpolation points containing the endpoints of ek. Then, there exists c0 = c0(p) > 0
such that for every v of sufficient regularity, we have

∥v − Ip
kv∥L2(ek) + |ek||v − Ip

kv|H1(ek) ≤ c0|ek|p+1|v|Hp+1(ek).

This directly implies the following L2 and H1 estimates:

∥v − Ip
kv∥L2(ek) ≤ c0H

p+1|v|Hp+1(ek) and ∥v − Ip
kv∥H1(ek) ≤ c1H

p|v|Hp+1(ek),

where c1 = c0 (1 +H2)
1/2

can be bounded e.g. as c1 ≤ c0 (1 + diam(Ω)2)
1/2

.

Proof. See Proposition 1.5 and 1.12 of [46]. See also Lemma 4.2 and Remark 4 of
[11] for estimates with explicit dependency on p and higher dimension.

Lemma 2.2 (Gagliardo-Nirenberg interpolation inequality). Let Ω be Lipschitz do-
main in Rd and ∥ · ∥s,q denote the Slobodeskii-Sobolev norm in W s,q(Ω), s ≥ 0, q ≥ 1
(see the reference below). Let s, s1, s2 ≥ 0, 1 ≤ q, q1, q2 ≤ ∞ and θ ∈ (0, 1) be such
that

s = θs1 + (1− θ)s2,
1

r
=

θ

q1
+

1− θ

q2
.

Then, there exists cGN = cGN(s1, q1, s2, q2) > 0 such that

∥u∥s,q ≤ cGN∥u∥θs1,q1∥u∥
1−θ
s2,q2

,

for all u ∈ W s1,q1(Ω) ∩W s2,q2(Ω) as long as the following condition fails: s2 is an
integer ≥ 1, q2 = 1 and s2 − s1 ≤ 1− 1/q1.

Proof. See Theorem 1 of [19] for details.

Corollary 2.3 (Interpolation in Hs). Let ∥ · ∥s, s ≥ 0 denote the Hs(Ω) = W s,2(Ω)
norm, where Ω satisfies the assumptions of Lemma 2.2. Let 0 ≤ θ ≤ 1 and s =
θs1 + (1− θ)s2. There exists cGN = cGN(s1, s2) > 0 such that

∥u∥s ≤ cGN∥u∥θs1∥u∥
1−θ
s2

,

for all u ∈ Hmax(s1,s2)(Ω).
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Proof. The result follows from Lemma 2.2, setting q1 = q2 = 2 and using standard
Sobolov embedding theory.

Lemma 2.4. Let 1/2 < s ≤ 1 and let g ∈ Hs(∂Ωj \ ∂ΩS) satisfy g|∂(Ωj∩Γ) = 0.
Then, the function g̃ : ∂Dj → R defined by

g̃(x) =

 g(x) x ∈ ∂(Ωj ∩ Γ),

0 x ∈ ∂Dj \ ∂(Ωj ∩ Γ),

belongs to Hs(∂Dj).

Proof. The proof is quite basic, for the full proof we refer e.g. to Lemma 5 of
[18].

Lemma 2.5. Let g ∈ H1
0 (Γj), then there exists ϕ ∈ H1(Ωj) satisfying ϕ|Γj

= g such
that

|ϕ|H1(Ωj) ≤ cGNCj∥g∥1/2L2(Γj)
∥g∥1/2H1(Γj)

,

where Cj depends only on Dj.

Proof. In view of Lemma 2.4, we can extend g on ∂Dj by zero so that the extension

g̃ is in H1(∂Dj). Then, there exists ϕ̃ ∈ H1(Ωj) such that ϕ̃ = g̃ on ∂Dj and

|ϕ̃|H1(Dj) ≤ Cj∥g̃∥H1/2(∂Dj).

Using Sobolev interpolation, we have

|ϕ̃|H1(Dj) ≤ cGNCj∥g̃∥1/2L2(∂Dj)
∥g̃∥1/2H1(∂Dj)

,

= cGNCj∥g∥1/2L2(Γj)
∥g∥1/2H1(Γj)

.

The result follows by setting ϕ = ϕ̃|Ωj
.

With preliminary lemmas established, we present the following proposition, which
is a novel contribution of this article.

Proposition 2.6 (Interpolation error estimate). Let (γl)l=1,...,Nγ
be a finite nonover-

lapping partitioning of Γ and v the element of H1
∆(Ω) such that the traces of v be-

long to Hp+1(γl) for all l and some p = 1, 2, . . .. Assume in addition that the set of
coarse edges (ek)k is a subdivision of (γl)l. Then, there exists ϕ ∈ H1(Ω) such that
ϕ|Γ ∈ V Γ

H,p and satisfying

|v − ϕ|H1(Ω) ≤ CHp+ 1
2

(
Nγ∑
l=1

|v|2Hp+1(γl)

)1/2

. (2.29)

Proof. Since v ∈ H1(γl), it follows that v ∈ C0(γl). However, being in H1/2(Γ), v
can not have discontinuities. Therefore v ∈ H1(Γ) and thus is continuous on Γ.

Let Ip
Γ be an interpolation operator from C0(Γ) to V Γ

H,p such that Ip
Γv|ek = Ip

kv
for all k, where Ip

k is defined in Lemma 2.1. Let EΓ = v|Γ−Ip
Γ(v|Γ). Since EΓ(x) = 0



38
Chapter 2. Robust Domain Decomposition Methods and Coarse
Approximations for Diffusion Models on Perforated Domains

for every x ∈ V , it follows from Lemma 2.5 that there exists ψj ∈ H1(Ωj) satisfying
ψj|Γ = EΓ such that

|ψj|H1(Ωj) ≤ cGNCj∥EΓ∥1/2L2(Γj)
∥EΓ∥1/2H1(Γj)

.

Let ϕ ∈ H1(Ω) be defined as ϕ|Ωj
= v|Ωj

− ψj|Ωj
for all Ωj. We have

|v − ϕ|H1(Ωj) ≤ cGNCj∥EΓ∥1/2L2(Γj)
∥EΓ∥1/2H1(Γj)

,

≤ cGNCj

(∑
l

||EΓ,j||2L2(γl∩Γj)

)1/4(∑
l

∥EΓ,j∥2H1(γl∩Γj)

)1/4

.

Since (ek)k is a subdivision of (γl)l, we deduce from Lemma 2.1

|v − ϕ|H1(Ωj) ≤ cGNc0c1Cj H
p+1/2

(∑
l

|u|2Hp+1(γl∩Γj)

)1/2

. (2.30)

By summing (2.30) over all Ωj, we obtain (2.29) with C =
√
2cGNc0c1maxj Cj.

Proposition 2.7 (Best approximation). The solution of (2.28) satisfies

|u∆ − u∆,H |H1(Ω) ≤ |u∆ − ϕ|H1(Ω),

for any ϕ ∈ H1(Ω) such that ϕ|Γ ∈ V Γ
H,p.

Proof. We first remark that, because u∆,H is the projection of u∆ on VH,p, it satisfies

|u∆ − u∆,H |H1(Ω) ≤ |u∆ − vH |H1(Ω), (2.31)

for any vH ∈ VH,p. Given some ϕ ∈ H1(Ω) such that ϕ|Γ ∈ V Γ
H,p, we set vH ∈ V Γ

H,p

be such that vH |Γ = ϕ|Γ. Since u∆ − vH ∈ H1
∆(Ω), we have that

|u∆ − vH |H1(Ω) ≤ |u∆ − ϕ|H1(Ω), (2.32)

that is to say that u∆ − vH is the minimizer of ψ 7→ |ψ|H1(Ω) over the set {ψ ∈
H1(Ωj) |ψ = u∆−vH on Γi}. The result follows by combining (2.31) and (2.32).

From the propositions 2.7 and 2.6, we deduce the following error estimate re-
garding the locally harmonic part of the solution.

Theorem 2.8. Let u be a solution of (2.3) and u∆ its H1 projection on H1
∆(Ω).

Let u∆,H satisfy (2.28). Then, under the assumptions of Proposition 2.6 with u∆
instead of v,

|u∆ − u∆,H |H1(Ω) ≤ CHp+ 1
2

(
Nγ∑
l=1

|u|2Hp+1(γl)

)1/2

.

Remark 2.9. Theorem 2.8 expresses the approximation properties of VH,p inH
1
∆(Ω),

or the approximation of u∆ by u∆,H . In addition, the estimate of the theorem
holds for u− (u∆,H + ub), where ub satisfies (2.26). However, we remark that u∆,H

also provides a low-order approximation of u. Indeed, in view of the orthogonality
between H1

∆(Ω) and H
1
Γ(Ω), we have

|u− u∆,H |2H1(Ω) = |u∆ − u∆,H |2H1(Ω) + |ub|2H1(Ω).



2.3. Discrete Trefftz Space and Two-level Schwarz Method 39

While the first term in the right-hand side can be estimated based on Theorem 2.8,
the H1 norm of ub can be controlled using (2.26) and local Poincaré inequalities.
More precisely, we have

|ub|H1(Ωj) ≤ CP,jdiam(Ωj)∥f∥L2(Ωj),

where CP,j denote the Poincaré constants associated to Ωj.

Remark 2.10. The broken Hk+1 norm in the right-hand side of (2.29) involves
only the traces of the solution along the sections of the coarse skeleton. Therefore,
this estimate is valid for u having low general regularity that is due, for example,
to corner singularities. As a matter of fact, the estimate (2.29) provides an a priori
criterion for the adaptation of the coarse mesh: one has to ensure that the edge
norm in the right-hand side is small. For a sufficiently regular right-hand side f ,
this can be achieved by moving the coarse edges away from the “bad” perforation
corners.

We further note that Theorem 2.8 is especially valuable for a so-called space
or edge refinement, which is a procedure that involves splitting the edges of an
otherwise fixed coarse grid. In that case, one observes superconvergence of the error
with a rate of p+ 1

2
.

2.3 Discrete Trefftz Space and Two-level Schwarz Method

We begin with the algebraic formulation and implementation of the problem. Let us
consider a triangulation T of Ω which is assumed to be conforming with respect to
the polygonal partitioning (Ωj)j=1,...,N . We denote by NΩ the set of the triangulation

nodes. In order to account for Dirichlet boundary condition imposed on ∂Ω \ ∂ΩS,
we introduce a set of internal nodes

NΩ = { xs ∈ NΩ| xs /∈ ∂Ω \ ∂ΩS}.
The total number of nodes in NΩ is denoted by NΩ.

We denote by Vh the space of functions that are continuous and triangle-wise
polynomial on each triangle of T , where h denotes the maximal element diameter,
and by Vh,0 the space Vh∩H1

∂Ω\∂ΩS
(Ω). The finite element method for the variational

problem (2.3) consists in finding uh ∈ Vh,0(Ω) such that

(∇uh,∇vh)L2(Ω) = (f, vh)L2(Ω) ∀ vh ∈ Vh,0(Ω). (2.33)

Let us denote by (ηs)s∈NΩ
the set of the standard finite element basis functions

associated to the nodal degrees of freedom. The associated “fine-scale” finite element
discretization results in the linear system

Au = f , (2.34)

where A is a NΩ ×NΩ matrix with elements

Aij = a(ηsj , ηsi) =

∫
Ω

∇ηsj · ∇ηsi dx,

and f is the vector from RNΩ with components fj =
∫
Ω
fηsj dx.

Because the triangular mesh resolves the fine-scale structure of the domain, the
system may be quite large and the size of the triangular elements may vary by
several orders of magnitude. As a result, the matrix A is expected to be poorly
conditioned.
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2.3.1 Discrete Trefftz Approximation

In most practical situations, the coarse basis functions defined by (2.27) can not be
computed analytically. Therefore, we consider the finite element approximation of
VH,p. The basis of the discrete Trefftz space is obtained through the finite element
approximation of (2.27). The finite element discretization of (2.27) results in the
system of the form

Ãjϕ
j
s = bj

s,

where Ãj is the local stiffness matrix and bj
s accounts for the Dirichlet boundary

data in (2.27). Let Rj denote the boolean restriction matrices corresponding to the
nodes of Ωj, and let ϕs be a global vector which, when restricted to a subdomain
Ωj, returns ϕ

j
s. That is,

ϕs =
∑
j∈Ns

R
T

j Djϕ
j
s,

for s = 1, . . . , NV , where Dj are partition of unity matrices corresponding to Ωj

and Ns = { j | xs is contained in Ωj }. Discretely, the coarse transition matrix RH

is such that the kth row of RH is given by ϕT
k for k = 1, . . . , NV .

The finite element counterpart of (2.28) and therefore the discrete coarse ap-
proximation from Section 2.2.2 can be expressed algebraically as

u∆,H =M−1
H f , (2.35)

where
M−1

H = RT
H(RHAR

T
H)

−1RH .

2.3.2 Discrete Two-level Schwarz Method

Now, we will show how the coarse approximation introduced in the previous section
can be combined with the RAS method to construct a simple yet efficient iterative
linear solver for the fine-scale finite element method.

Let
(
Ω′

j

)
j=1,...,N

denote the overlapping partitioning of Ω such that Ωj ⊂ Ω′
j.

We denote by Rj the boolean restriction matrices corresponding to the degrees
of freedom of the overlapping subdomains Ω′

j. Here, the boolean matrices Rj are of
size (Nj × NΩ), where Nj denotes the number of degrees of freedom in Ω′

j and NΩ

denotes the number of degrees of freedom in Ω.
Given this framework, recall the following iterative procedure. Generally, we

take the coarse approximation as the initial iterate u0 = u∆,H . This allows us to
begin with the accuracy of the coarse approximation and continue to iterate to finite
element precision. With this, the iteration is given by

un+ 1
2 = un +M−1

RAS(f − Aun),

un+1 = un+ 1
2 +M−1

H (f − Aun+ 1
2 ),

(2.36)

where

M−1
RAS =

N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj,
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and Dj denote the partition-of-unity matrices satisfying

IN =
N∑
j=1

(Rj)
TDj(Rj).

Additionally, we introduce the preconditioned system

M−1
RAS,2Au =M−1

RAS,2f , (2.37)

where the two-level discrete RAS preconditioner is given additively by

M−1
RAS,2 = RT

H(RHAR
T
H)

−1RH +
N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj.

We expect the use of a well-constructed preconditioner to provide acceleration in
terms of Krylov iteration count. Generally, using preconditioned Krylov methods
produces faster convergence than the iterative solver, both in terms of computation
time and iterations.

We note that iteration (2.36) can be written as

un+1 = un + (M−1
H +M−1

RAS(I − AM−1
H ))(f − Aun), (2.38)

a hybrid method. As mentioned in the introduction, we implement this hybrid
iterative method as an additive iterative method will not converge. However, we
choose to use the additive two-level RAS preconditioner (2.37) for Krylov methods
as it is commonly used in domain decomposition literature and has an increased
capacity for parallel computing. With this, we remark that we could use a hybrid
method as a Krylov accelerator and that the Schwarz preconditioners presented here
are not exhaustive.

In the context of domain decomposition, our coarse approximation is referred
to as a “coarse space” for the Schwarz methods. However, we remark that the
construction of the matrix form of the coarse approximation and coarse space are
identical, with the difference being solely in application.

2.4 Numerical Results

In this section, we illustrate the performance of the discrete Trefftz space in three
different scenarios involving either a standalone Galerkin approximation (2.28), an
iterative approach (2.36), or a preconditioner approach (2.37).

2.4.1 Trefftz Coarse Approximation on L-Shaped Domain

To properly display the approximation properties, it is helpful to have an exact
solution to the equation. However, the generation of this exact solution is difficult
with multiple singularities. To combat this issue, we can use a model domain with
one singularity/corner in the domain; an example of this would be an L-shaped
domain with a reentering corner (Figure 2.6). The domain is defined by D =
(−1, 1)2, ΩS = (0, 1)2 and Ω = D \ ΩS. We consider the problem (2.1) with zero
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Figure 2.6: Coarse and fine discretizations of the L-shaped domain with 0 (left) and 1
(right) additional degree(s) of edge refinement.

right-hand side and a non-homogeneous Dirichlet boundary condition on ∂Ω \ ∂ΩS

provided by the singular exact solution u(r, θ) = r
2
3 cos(2

3
(θ − π/2)).

In order to assess the convergence of the discrete Trefftz method, we consider
two strategies regarding the refinement of the coarse partitioning. The procedure
involving the reduction of the diameter of the coarse cells will be referred to as mesh
refinement. The sequence of such meshes will be constructed as follows: first the
background domain D is partitioned into N = (2k + 1)2, k ∈ N, squares, then the
nonoverlapping coarse cells Ωj are generated by excluding ΩS. The choice of N
being a square of an odd number ensures the consistency of the mesh sequence in
terms of the shape of the elements. The second considered refinement strategy will
be referred to as edge refinement procedure, which involves subdividing the edges of
an original “3× 3 grid”. This edge refinement approach is illustrated by Figure 2.6
and is inspired by the Multiscale Hybrid-Mixed method [5]. We remark that with
both refinement procedures, it is ensured that none of the coarse grids will have a
degree of freedom located at the corner (0, 0). As a result, the corner singularity will
be captured by the basis functions associated with the L-shaped domain. We also
note that in order to improve the precision of the fine-scale finite element method,
the size of the triangles is graded in the vicinity of the corner (0, 0).

Figure 2.7 reports, for both mesh and edge refinement strategies, the relative
error in H1 semi-norm and L2 norm as functions of maximal coarse edge length
H. The black dashed line represents the typical fine-scale finite element error;
here, we use P2 finite elements. The relative error and the experimental order
of convergence for edge refinement procedure are equally reported in Table 2.1. In
accordance with the error estimate (2.29), for the edge refinement procedure, we
observe superconvergence in the energy norm with rates of approximately 3/2 and
5/2 for p = 1 and p = 2, respectively. In the L2 norm, the observed convergence rates
are approximately 3 and 7/2 for p = 1 and p = 2, respectively. In contrast to the
edge refinement convergence, the convergence resulting from the mesh refinement
seems to be controlled by the low global regularity of the solution. We observe the
convergence rates typical for finite element methods on quasi-uniform meshes, that
is, close to 2/3 and 4/3 in H1 and L2 norms, respectively.
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H1 semi-norm L2 norm

Ref. lvl. p = 1 eoc p = 2 eoc p = 1 eoc p = 2 eoc

0 -1.098 - -1.812 - -1.881 - -2.864 -

1 -1.601 1.669 -2.665 2.833 -2.762 2.925 -4.026 3.858

2 -2.132 1.765 -3.35 2.274 -3.677 3.042 -4.993 3.215

3 -2.626 1.641 -4.043 2.305 -4.514 2.781 -6.014 3.389

Table 2.1: Relative error and the experimental order of convergence for the Trefftz ap-
proximation with p = 1, 2 and using the edge refinement. Ref. level refers to the degree
of additional edge refinement. Eoc refers to error (rate) of convergence.

Figure 2.7: Coarse approximation error for L-shaped domain with edge (blue) and mesh
(red) refinement in L2 norm (left) and the energy norm (right). The black dashed line de-
notes the finite element error. For the edge refinement procedure, we observe convergence
rates of approximately 3/2 and 5/2 for p = 1 and p = 2, respectively. In the L2 norm, the
observed convergence rates are approximately 3 and 7/2 for p = 1 and p = 2, respectively.
For the mesh refinement procedure, we observe convergence rates of approximately 2/3
and 4/3 in the H1 and L2 norms, respectively.
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2.4.2 Iterative DD and Preconditioned Krylov methods on L-Shaped
Domain

We report on Figure 2.8 the convergence history of the iterative methods for the
L-shaped domain. More precisely, we report two different error metrics, referred
to as algebraic error and full error. For a given iterate, algebraic error is defined
as a distance (based on L2 or H1 norms) between a given iterate and the solution
of the algebraic system (2.34), while full error reflects the distance to the exact
solution of (2.1). Figure 2.8 reports the convergence histories for linear systems
resulting from an increasingly accurate background finite element discretization.
The overlap is set to 1

20
Hj, where Hj = max(xmax,j − xmin,j, ymax,j − ymin,j) and

xmin,j, ymin,j, xmax,j, ymax,j denote the minimal and maximal x and y coordinates
that are contained in Ωj. We consider Trefftz spaces of order p = 1 and p = 2.

Because the width of the overlap is maintained constant, we observe on Figure
2.8 that the convergence the iterative methods is not sensitive to the accuracy of the
background finite element method until the precision of the latter is reached. The
convergence of preconditioned GMRES method is exponential, while the conver-
gence curve of the algebraic error of the two-level fixed point method (2.36) exhibits
two distinct slopes, with fast convergence at the initial stage. We note that the
performance of both the stationary iteration and the preconditioned GMRES algo-
rithm is improved by the higher order Trefftz space. We note that the initial slope
of the stationary iteration method is approaching the slope of the preconditioned
GMRES as the Trefftz order increases. In general, the results obtained in terms
of the full error (right column of Figure 2.8) seem to point toward the following
conclusion: the stationary iteration method appears to be an acceptable alternative
to the preconditioned GMRES if very high accuracy is not required.

We further study the impact of edge refinement on the performance of the itera-
tive methods. We report on Figure 2.9 the convergence of algebraic error in H1 and
L2 norms for edge refinement up to degree three. This is reported for both the itera-
tive and preconditioner approaches. We observe that reducing H not only improves
the initial coarse approximation (the first iteration point), but also accelerates the
convergence of the iterative methods. The most notable is the impact on the initial
slope of the two-level iterative RAS method. Here, again, the initial slope of the
stationary iteration method comes close to that of the preconditioned GMRES as
we increase the order of edge refinement.

2.4.3 Iterative DD and Preconditioned Krylov Methods on Small Urban
Domain

We examine the performance of the two-level stationary iteration and preconditioned
GMRES method over a domain based on realistic urban geometries for which the
data sets were kindly provided by Métropole Nice Côte d’Azur. We focus here on
a relatively small spatial frame shown in Figure 2.10). The data frame is 160× 160
meters and contains two kinds of structural features representing buildings (and
assimilated small elevated structures) and walls in urban data. The number of
perforations associated to buildings and walls is 63 and 77, respectively. This “small”
model domain would take a minimum of 23 000 degrees of freedom to triangulate
without imposing maximum triangle area or constraining the mesh to match the
coarse partitioning. While the fine-scale mesh will change depending on N , the
number of degrees of freedom in the mesh will be close to this number. Due to the
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Figure 2.8: Convergence in L2 of the two-level iterative (RAS) and preconditioned GMRES
(RAS-GMRES) methods for the L-shaped domain on 5 × 5 subdomains with overlap of
1
20Hj and using first (top row) and second (bottom row) order Trefftz approximation.
The dashed horizontal lines show the error of the fine-scale finite element method. Left to
right: algebraic error, full error. Results for finite elements of order 1 and 2 are shown in
blue and red, respectively.

Figure 2.9: Convergence in H1 (left) and L2 (right) norms of the two-level iterative (blue)
and preconditioned GMRES (red) methods for the L-shaped domain on 3× 3 subdomains
with overlap of 1

20Hj . Algebraic errors are shown for the first order Trefftz space with
various degrees of edge refinement.
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Figure 2.10: Finite element solution with f = 1 on a smaller urban model domain.

geometric complexity of the computational domain, the mesh includes a number of
very small triangles; the minimal triangle area is given as 5.83× 10−13. We consider
the model problem (2.1) with f = 1, which we discretize with continuous piece-wise
affine finite elements; the finite element solution is reported in Figure 2.10.

We report on Figures 2.11 and 2.12 the convergence history of the stationary
iterative method for different sizes of overlap. This figure shows results for both
algebraic and full errors for various fine-scale discretization sizes h. The performance
of the preconditioned GMRES is reported on Figures 2.13 and 2.14. In lieu of a true
solution (which would exhibit multiple singularities), we provide a fine grid numerical
solution to which the iterates are compared. The grid for the reference solution is
generated via multiple levels of edge bisection (“red refinement”). We note that in
contrast to the previous numerical experiment, we do not perform any mesh grading
near the reentering corners of the domain; as a result, the finite element error is high.

We expose on Figure 2.11 the convergence history of the two-level stationary it-
eration method with overlap 1

20
Hj. We observe that the convergence of the algebraic

error is robust with respect to h and that the fine-scale finite element method (black
lines) can be reached in a few steps. Further iterations do not improve the overall
precision of the approximate solution even though the algebraic error may decrease.
A stopping criterion which prevents excess iterations is warranted; such a posterioiri
estimates are discussed for example in [6, 67]. As expected, the performance of the
stationary iteration method considerably deteriorates (see Figure 2.12) in the case
of minimal geometric overlap.

Figures 2.13 and 2.14 report the performance of the two-level preconditioned
GMRES method for overlaps of 1

20
Hj and minimal geometric overlap, respectively.

Compared to the stationary iterative method, a major improvement is achieved
for the case of minimal geometric overlap. However, due to the low accuracy of
the background finite element discretization, both the iterative and preconditioned
GMRES methods perform comparably for the overlap of 1

20
Hj.

2.4.4 Weak Scalability Tests for Preconditioned Krylov Method onMan-
ufactured Perforations

We proceed with weak scalability tests for the two-level RAS method with the
Nicolaides and spectral coarse spaces (given by (2.21) and (2.20)) compared to
the Trefftz space. To keep each subdomain uniform for weak scalability tests, we
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Figure 2.11: Convergence of the two-level iterative method for the urban data set on 8×8
subdomains with overlap 1

20Hj . The black horizontal lines show the error of the fine-scale
finite element method. Left to right: algebraic error, full error.

Figure 2.12: Convergence of the two-level iterative method for the urban data set on 8×8
subdomains with minimal geometric overlap. The black horizontal lines show the error of
the fine-scale finite element method. Left to right: algebraic error, full error.

Figure 2.13: Convergence of the two-level preconditioned Krylov method for the urban
data set on 8×8 subdomains with overlap 1

20Hj . The black horizontal lines show the error
of the fine-scale finite element method. Left to right: algebraic error, full error.
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Figure 2.14: Convergence of the two-level preconditioned Krylov method for the urban
data set on 8× 8 subdomains with minimal geometric overlap. The black horizontal lines
show the error of the fine-scale finite element method. Left to right: algebraic error, full
error.

Figure 2.15: Visualization of manufactured T0 heterogeneity for N = 4 subdomains.

proceed with simple, manufactured perforated domains before moving to realistic,
urban domains. This section serves to display the weak scalability of the Trefftz
space and directly compare its scalability to that of other popular coarse spaces.
Here, we begin with a strip of N unit square subdomains in one direction. Here,
the subdomain size remains constant and as N increases the total problem size
increases as well. We then include one long perforation that cuts through all but
the two “end” (leftmost and rightmost) subdomains; see for example Figure 2.15.
This type of perforation and model domain is referred to as a T0 heterogeneity. For
this experiment, the overlap is again set to 1

20
Hj. We note that in these examples, we

solve the model Poisson problem but only pose Dirichlet boundary conditions on the
along the leftmost and rightmost edges of Ω. Convergence results are shown in Table
2.2, recording preconditioned GMRES iterations and dimension for the two-level
RAS preconditioner with both the Nicolaides and Trefftz coarse spaces; dimension
refers to the number of columns in the coarse matrix RT

H . For the Nicolaides space,
we include results for both the “traditional” and “enriched” Nicolaides spaces, where
traditional Nicolaides refers to Nicolaides without any further partitioning of the
subdomains. With this, for a T0 heterogeneity, the enriched Nicolaides space will
have a dimension which is about double that of the traditional Nicolaides space.

We see from Table 2.2 that in the case of a T0 heterogeneity, the traditional
Nicolaides coarse space is unable to provide scalability with respect to iteration
count; that is, the number of iterations increases significantly as N increases. We
also remark that the while enriched Nicolaides is significantly better than traditional



2.4. Numerical Results 49

N Trad. Nic Enr. Nic Trefftz

it. dim it. dim it. dim

4 15 4 15 6 12 16

8 40 8 38 14 12 32

16 70 16 53 30 11 64

32 115 32 59 62 11 128

64 194 64 59 126 10 256

Table 2.2: Preconditioned GMRES iterations (it.) and dimension (dim.) for the traditional
Nicolaides, Enriched Nicolaides, and Trefftz-like coarse space. Each subdomain contains
around 270 mesh points.

Nicolaides, the Trefftz space provides additional acceleration in terms of iteration
count when compared to enriched Nicolaides.

Furthermore, we provide results for the spectral GenEO-like coarse space for
various values of eigenvalues taken in Figure 2.16. We see from Figure 2.16 that
taking mj = 2 eigenvalues results in robustness. We can think of the mj = 2
case as equivalent to enriched Nicolaides, as this will take all eigenvalues clustered
around 0. We also see that taking mj = 4 eigenvalues, such that two eigenvalues
are taken per connected component, results in an additional acceleration. However,
the acceleration does not exceed the acceleration obtained from the Trefftz coarse
space.

For reference, plots of the subdomain and its corresponding eigenvalues for the
GenEO-like coarse space are shown in Figure 2.17. We can see clearly from the
clustered eigenvalues that at least two eigenvalues (or one eigenvalue per connected
component) is needed for robustness. The clustering of eigenvalues also matches
with the numerical results which suggest we need two eigenvalues per connected
component for an additional acceleration. Taking more than two eigenvalues per
connected component does not appear to have any additional effect on the Krylov
acceleration.

2.4.5 Scalability Tests for Preconditioned Krylov Method on Larger Ur-
ban Domains

As a final numerical experiment, we follow the experiment from the previous subsec-
tion and report the performance of the two-level preconditioned GMRES method on
a larger data set shown on Figure 2.18. This larger data set contains 306 buildings
and 477 walls of varying sizes, the dimensions of the domain are 640× 640 meters.
The “large” model domain (with walls) would take a minimum of 91 945 degrees
of freedom to triangulate without imposing maximum triangle area or constraining
the mesh to match the coarse partitioning. The minimal triangle area is observed
to be 5.83× 10−13.

We note that depending on the partitioning of the domain, the perforations
resulting from this data set (especially the wall data) can span across multiple
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(a) mj = 1 (b) mj = 2 (c) mj = 3

(d) mj = 4 (e) mj = 5 (f) mj = 10

Figure 2.16: GMRES iterations for the GenEO-like coarse space for various numbers of
eigenvalues mj . Each subdomain contains around 270 mesh points.

Figure 2.17: Subdomains (left) and their corresponding eigenvalues (right) for the GenEO-
like coarse space.
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(a) Without walls (b) With walls

Figure 2.18: Approximate finite element solution over an urban perforated domain divided
in N = 8× 8 nonoverlapping subdomains.

coarse cells, which is a challenging situation for traditional coarse spaces. To further
explore this observation, we will provide numerical results for data sets that do and
do not include walls as perforations. Figure 2.18 reports the finite element solution
obtained for a data set excluding and including walls. We can see from Figure 2.18
that the inclusion of walls noticeably affects the numerical solution.

For the sake of comparison, we provide numerical results for the Nicolaides coarse
space with the additional connected partitioning enforced (“enriched” Nicolaides)
in addition to the Trefftz space. Figure 2.19 reports convergence histories of the
preconditioned GMRES method using the Nicolaides and Trefftz coarse spaces for
the data set shown in the right of Figure 2.18. Table 2.3 summarizes the numerical
performance for data sets shown in Figure 2.18 including or excluding walls. In
particular, for both preconditioners, it reports the dimensions of the coarse spaces,
as well as the number of GMRES iterations required to achieve a relative L2 error
of 10−8. We refer to relative dimension as the would-be dimension of the coarse
space in the case of a domain without perforations with ΩS = ∅; that is, the relative
dimensions are computed as dim(RH)

(
√
N+1)2

for the Trefftz space and as dim(RH)
N

for the

Nicolaides space.
As we provide numerical results for various numbers of subdomains N and the

computational domain Ω remains fixed independently of N , the results of this ex-
periment should be interpreted in terms of a strong scalability. However, we wish
to stress that the fine-scale triangulation is conforming to the nonoverlapping parti-
tioning (Ωj)

N
j=1. Consequentially, the system (2.34) changes from one coarse parti-

tioning to another. Nevertheless we ensure that the dimension of the system (2.34)
is roughly constant throughout the experiment for a given N .

As an additional test to ensure robustness with respect to the data frame, we
present Krylov scalability tests on a different data frame with and without walls.
The new frame is shown in Figure 2.20 and is also of size 640 × 640 meters. This
larger data set contains 552 buildings and 662 walls of varying sizes, and would
take a minimum of 143 178 degrees of freedom to triangulate without imposing
maximum triangle area or constraining the mesh to match the coarse partitioning.

Table 2.4 summarizes the numerical performance for data sets shown in Figure
2.20 including or excluding walls. In Table 2.4, we use the two-level ASM precon-
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Table 2.3: GMRES iterations, dimension, and relative dimension for the Trefftz and Nico-
laides coarse spaces. Results are shown for minimal geometric overlap and 1

20Hj , and the
computational domain is given in Figure 2.18. As the dimension of the Nicolaides space
will change with respect to the overlap, its dimension is given as the average dimension
over the two overlap values.

Nicolaides Trefftz

it. dim. (rel) it. dim. (rel)

N min. 1
20Hj min 1

20Hj

4 no walls 107 40 18 (1.1) 31 16 144 (5.8)

walls 194 54 39 (2.4) 35 18 283 (11.3)

8 no walls 110 65 74 (1.2) 35 18 328 (4.0)

walls 213 96 150 (2.3) 40 21 658 (8.1)

16 no walls 103 62 300 (1.2) 37 18 797 (2.8)

walls 156 100 504 (2.0) 43 22 1499 (5.2)

32 no walls 94 53 1157 (1.1) 38 18 1997 (1.8)

walls 142 92 1614 (1.6) 41 21 3319 (3.0)

(a) Minimal geometric overlap (b) Overlap 1
20Hj

Figure 2.19: Convergence curves for the Trefftz (solid lines) and Nicolaides (dashed lines)
coarse spaces for the larger data set shown by Figure 2.18 involving both buildings and
walls and two overlap sizes. Colors correspond to the number of subdomains as follows:
N = 16 (blue), N = 64 (orange), N = 256 (green), N = 1024 (red).
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(a) Without walls (b) With walls

Figure 2.20: Approximate solution over an urban perforated domain divided in N = 8× 8
nonoverlapping subdomains.

ditioner (2.13), which allows us to have a symmetric preconditioner for which we
can compute the condition number. Then, for the symmetric ASM preconditioner,
we record preconditioned Conjugate Gradient iterations and record the condition
number κ(M−1

ASM,2A) in Table 2.4 as well. Figure 2.21 reports convergence histories
of the preconditioned CG method using the Nicolaides and Trefftz coarse spaces for
the data set shown in the right of Figure 2.20.

The performance of the Trefftz coarse space appears to be very robust with re-
spect to both N and the complexity of the computational domain. While the Nico-
laides space is also fairly robust with respect to N (as expected), the Trefftz space
provides an additional acceleration in terms of iteration count. The improvement
with respect to the alternative Nicolaides approach is quite striking, particularly in
the case of the minimal geometric overlap. As expected, increased overlap in the
first level of the Schwarz preconditioner provides additional acceleration in terms of
iteration count. However, for the Trefftz space, the results with minimal geometric
overlap appear to already be quite reasonable.

We observe form Tables 2.3 and 2.4 that the dimension of the Trefftz space is
generally larger than Nicolaides, but we note that the contrast between the dimen-
sions of two spaces reduces as N grows. In general, the dimension of the Trefftz
coarse space appears reasonable given the geometrical complexity of the compu-
tational domain. We also note that the Trefftz space outperforms the Nicolaides
space significantly for the domains including walls. The Trefftz space is robust with
respect to data complexity, performing similarly with and without the addition of
walls in the domain.

2.5 Conclusions

We presented a theoretical and numerical study of the Trefftz coarse space for the
Poisson problem posed in domains that include a large number perforations, such as
those encountered in the field of urban hydraulics. The main theoretical contribu-
tion concerns the error estimate regarding the H1-projection over the coarse space.
The error analysis does not rely on global regularity of the solution and is performed
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Table 2.4: CG iterations, condition number, dimension, and relative dimension for the
Trefftz-like and Nicolaides coarse spaces. Results are shown for minimal geometric overlap
and 1

20Hj , and the computational domain is given in Figure 2.20. As the dimension of
the Nicolaides space will change with respect to the overlap, its dimension is given as the
average dimension over the two overlap values.

Nicolaides Trefftz

it. cond. dim. (rel) it. cond. dim. (rel)

N min. 1
20Hj min. 1

20Hj min 1
20Hj min. 1

20Hj

16 no walls 149 51 581 82 21 (1.3) 52 28 59 11 170 (6.8)

walls 348 70 6826 133 96 (6.0) 56 22 136 7 400 (16.0)

64 no walls 164 78 567 119 85 (1.3) 50 28 50 12 433 (5.3)

walls 359 132 5902 297 256 (4.0) 56 26 57 9 880 (10.9)

256 no walls 136 81 273 89 312 (1.2) 56 27 54 10 1010 (3.5)

walls 317 159 4575 12 719 (2.8) 59 30 60 13 1912 (6.6)

1024 no walls 120 83 341 149 1204 (1.2) 56 28 76 13 2500 (2.3)

walls 362 174 3895 1310 2044 (2.0) 61 28 97 13 4253 (3.9)

(a) Minimal geometric overlap (b) Overlap 1
20L

Figure 2.21: Convergence curves for the Trefftz (solid lines) and Nicolaides (dashed lines)
coarse spaces for the larger data set shown by Figure 2.20 involving both buildings and
walls and two overlap sizes. Colors correspond to the number of subdomains as follows:
N = 16 (blue), N = 64 (orange), N = 256 (green), N = 1024 (red).
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under some very minimal assumptions regarding the geometry of the domain. In
accordance to the presented error analysis, for a specific edge refinement procedure,
the coarse approximation achieves superconvergence. This superconvergence is ob-
served in the numerical experiment involving the L-shaped domain. Combined with
RAS, the Trefftz space leads to an efficient and robust iterative solver or precondi-
tioner for linear systems resulting from fine-scale finite element discretizations. The
performance of the two-level RAS method is demonstrated through numerical ex-
periments involving realistic urban geometries. We observe that, for finite element
discretizations with moderate accuracy, the two-level RAS method reaches the pre-
cision of the fine-scale discretization in a few iterations. Used in combination with
domain decomposition methods as a preconditioner for Krylov methods, the coarse
space provides significant acceleration in terms of Krylov iteration counts when com-
pared to a more standard Nicolaides coarse space. This improvement comes at the
price of a somewhat larger coarse problem with a larger dimension.
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This chapter is mainly based on the article submitted to Computers and Math-
ematics with Applications. The corresponding submitted preprint is available on
arXiv [15].

3.1 Introduction

In this chapter, we apply domain decomposition and multi-scale approaches to solve
stationary and time-dependent partial differential equations. The main focus of the
chapter is the Diffusive Wave model [3],

∂tu− div
(
cfh(u, zb(x))

α||∇u||γ−1∇u
)
= 0,

57
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where zb(x) represents bathymetry/topography, u is total water level, h(u, zb(x)) =
max(u − zb(x, 0) is the depth of the water with respect to bathymetry, cf denotes
friction, γ ≤ 1, and 1 ≤ α ≤ 2. As mentioned in the introduction, we choose α = 3

2

and γ = 1
2
. The Diffusive Wave Equation (DWE) is doubly nonlinear in the sense

that there are nonlinearities both in the (u−zb) term and in the gradient term. With
this model problem, we wish to model overland flows in urban areas, particularly
the area of Nice, France. As in Chapter 2, the structural features such as buildings
and walls in the model domain can be assumed to be essentially impervious, and
therefore represented as perforations (holes) in the model domain.

With this, we recall the notations form Chapter 1. Let D be an open simply
connected polygonal domain in R2. We denote by (ΩS,k)k a finite family of perfora-

tions in D and denote ΩS =
⋃

k ΩS,k and Ω = D \ΩS. With this, the model problem
of focus is given by the following: for a fixed time interval (0, T ],

∂tu− div (k(x, u,∇u)∇u) = 0 in Ω× (0, T ],

u = g on (∂Ω \ ∂ΩS)× (0, T ],

k(x, u,∇u)∂u
∂n

= 0 on (∂Ω ∩ ∂ΩS)× (0, T ],

(3.1)

where k(x, u,∇u) = h(u, zb(x))
α||∇u||γ−1, n is the outward normal to the boundary

and f ∈ L2(Ω). The problem (3.1) must be combined with some initial condition
on u. We remark that (3.1) becomes degenerate, as k(x, u,∇u) → 0 as h → 0 and
k(x, u,∇u) → ∞ as ∇u→ 0.

In the context of urban flood modeling, (ΩS,k)k can be thought of as a family of
impervious structures such as buildings, fences, or other similar structures. However,
problems posed on perforated domains also arise in multiple real-world scenarios,
such as fluid/groundwater flow in porous media, atmospheric models, battery mod-
els, and drug delivery systems. After some discretization to be detailed later, this
nonlinear equation can be written as

F (u) = 0,

where the numerical solution u approximates the exact solution u.
Our goal is to numerically solve the model problem on these perforated domains

by using domain decomposition techniques. The latter use a divide and conquer
approach to partition the domain into multiple smaller subdomains. Therefore, one
has two “levels” of space discretization; the first level is based on a coarse polygonal
partitioning of Ω, while the second one is associated with the fine-scale triangulation
and is designed to resolve the small-scale details of the model domain. Domain
decomposition (DD) approaches to solve nonlinear PDEs can generally split into
two categories: Newton-Krylov Schwarz (NKS) and Schwarz Newton-Krylov (SNK)
methods.

3.1.1 Newton-Krylov Schwarz Methods

In NKS methods [24], the nonlinear problem F (u) is first linearized, typically by
Newton’s method or an inexact Newton method, which solve a linear system at each
iteration. For exact Newton’s method, one needs the the residual F (u) as well as
the Jacobian ∇F (u). The exact Newton’s method is described in Algorithm 3.1.1.
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Algorithm 3.1.1 Newton’s method to solve F (u) = 0

Require: u0, residual function F , Jacobian ∇F
for outer iteration k = 0, . . . , to convergence do

Compute Newton update δ = [∇F (u)]−1F (u)
Compute uk+1 = uk − δ;

end for

Often when implementing Newton’s method, a backtracking line search is imple-
mented to control the step size of Newton’s method. This often aids in convergence
for certain problems, as the line search prevents “overshooting” in the Newton step
direction. Newton’s method with backtracking line search is given in Procedure 1.

Procedure 1 Newton’s Method with backtracking line search to solve F (u) = 0

for outer iteration k = 0, . . . , to convergence do
d = 1
Compute Newton update δ = [∇F (u)]−1F (u)
while ||F (u− dδ)|| > (1− d

4)||F (u)|| do
d = d

2
end while
Compute uk+1 = un − d δ;

end for

We remark that each iteration of Newton’s method requires the solution of a
linear system. It is well-known that for large linear systems, a direct linear solve
can become quite expensive and time-consuming. Therefore, we can solve the linear
systems via iterative methods, which are often more computationally efficient for
large-scale problems and may require less memory. As mentioned in the introduc-
tion, preconditioning can improve the convergence behavior of an iterative solver by
improving the conditioning of a system. Here, we apply typical linear DD methods
to the linear system in Algorithm 3.1.1 ; i.e., use standard domain decomposition
preconditioners from Chapter 2 coupled to a Krylov method on the linear system to
be solved at each Newton iteration. Therefore, in the case of NKS methods applied
to a nonlinear problem F (u) = 0, the system remains unchanged, and we use DD
methods to make the linear solve more efficient.

3.1.2 Schwarz Newton-Krylov Methods

Stiff nonlinearities arise in many nonlinear problems, including problems such as
heterogeneous problems with high-contrast coefficients. These stiff nonlinearities
can cause a plateau in the norm of the Newton residual before/if the quadratic region
of convergence is reached. In these cases in a global Newton’s method, one may be
forced to take very small time steps, or damp the Newton iteration to an extremely
small damping factor. To combat this, more recently, SNKmethods were introduced;
these methods do not begin with a linearization and are commonly referred to as
nonlinear preconditioning methods. In SNK methods, the nonlinear system itself is
changed, unlike in NKS methods. The nonlinear preconditioners involve the solution
of local nonlinear problems and can therefore localize stiff nonlinearities.

Specifically, given a nonlinear system F (u) = 0, these SNK preconditioning
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methods solve a new nonlinear system F(u) via Newton’s or inexact Newton’s
method, where if F(u) = 0, then F (u) = 0 (i.e., the new nonlinear system shares
solutions with the original nonlinear system). This system F(u) = 0 is referred
to as the nonlinearly preconditioned system. The latter is generated by applying
Newton’s or inexact Newton’s method to a fixed point equation. The goal is for the
nonlinearly preconditioned system to be solved faster than the original one; that is,
to more quickly advance to the region of quadratic convergence for Newton’s method
and reduce the number of exact or inexact Newton iterations.

In the Additive Schwarz Preconditioned Inexact Newton (ASPIN) [25], the au-
thors introduce a method where the nonlinearly preconditioned system F(u) = 0
consists of more balanced/uniform nonlinearities. ASPIN involves the solution of
local nonlinear problems, using similar restriction and extension operators that are
used in the linear case. Then, a global linear problem is solved via inexact Newton.
In theory, for difficult problems with intense nonlinearities, this technique can accel-
erate convergence when compared to a typical Newton or inexact Newton method.
Additionally, it can aid in the occurrence of stagnation in Newton’s method and de-
sensitize Newton to the initial guess. We remark as well the existence of the MSPIN
method [78], where generally, the partitioning of degrees of freedom is based on
field type (field-splitting) instead of the typical subdomain partitioning. A main
difference between the methods is that MSPIN can be thought of as analogous to
the Multiplicative Schwarz (MS) method for linear systems, a generally non-parallel
method, while ASPIN is analogous to the Additive Schwarz method (ASM). With
this, one can also think of ASPIN and MSPIN as varying from each other similarly
to Jacobi and Gauss-Seidel methods. In MSPIN and ASPIN, inexact Newton solves
are computed for the nonlinearly preconditioned system.

The authors of [39] extended the ASPIN method to form Restricted Additive
Schwarz Preconditioned Exact Newton (RASPEN), which can be thought of as
analogous to the linear RAS method. Similarly to the linear case, RASPEN does
not sum contributions in the overlap, using partition of unity operators to form a
fixed point iteration to which Newton’s method can be applied. The authors of [39]
showed that by design, the nonlinearly preconditioned system FRASPEN(u) = 0 can
be solved via exact Newton, as an equation can be derived for the exact Jacobian
matrix ∇FRASPEN(u).

The authors of [30] introduced SRASPEN, which is obtained similarly by ap-
plying Newton’s method to the fixed point equation resulting from the nonlinear
SRAS (Substructured Restricted Additive Schwarz) method. Unlike the aforemen-
tioned methods, the SRASPEN method works on nonoverlapping subdomains; these
nonoverlapping domain decomposition methods are often referred to as substruc-
turing methods. Within the same spirit, the authors of [31] introduced DNPEN, a
nonlinear preconditioning method which applies Newton’s method to the Dirichlet-
Neumann (DN) method, which is a substructuring method based on matching fluxes
along subdomain interfaces. Additionally, the authors of [79] propose an adaptive
nonlinear preconditioning technique which “turns off” the nonlinear preconditioning
for outer Newtons where it is not necessary.

The aforementioned techniques can be considered as being left preconditioning
methods, as they are solving a new tangential system F(u) = 0 by exact or inexact
Newton. We also remark that there are a family of right nonlinear preconditioning
techniques; these methods change the unknowns of the original system. We can give
as an example the following works [73, 88, 71, 72], where the authors introduced non-
linear preconditioners analogous to the Finite Element Tearing and Interconnecting
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(FETI), Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP), and
Balancing Domain Decomposition by Constraints (BDDC) methods. Additionally,
the authors of [77] introduced the Nonlinear Elimination Preconditioned Inexact
Newton (NEPIN), where “problem” components of the residual are implicitly elim-
inated and a resulting modified Newton direction is computed.

As is the case for linear DD methods, two-level methods (methods which include a
coarse correction/level), are often needed for scalability in nonlinear preconditioning
methods. Particularly, the number of GMRES iterations for the global tangential
solve will not be scalable without a coarse correction. The coarse component allows
for global communication across all subdomains. In the original article introducing
RASPEN [39], the authors proposed a Full Approximation Scheme (FAS) to apply
the coarse level. For MSPIN, a multiplicative coarse correction counterpart was
introduced. In [63], the author proposes a linear coarse level for ASPIN and in
[57], the authors provide numerical evidence of scalability of two-level variants of
ASPIN and RASPEN. In particular, they propose multiple approaches of adding
the coarse space correction (both additively and multiplicatively) based on Galerkin
projections, and a numerical comparison of the methods is reported for different
types of coarse spaces.

3.1.3 Chapter Outline

The remainder of this chapter is laid out as follows. Section 3.2 provides a detailed
description of the finite-element/ finite-volume hybrid discretization used for the
Diffusive Wave Equation. Section 3.3 briefly recalls the coarse space from [13] and
Chapter 2, which will be used in the two-level methods described in the chapter.
Section 3.4 summarizes domain decomposition methods for linear problems, pre-
senting the well-known linear Additive Schwarz and Restricted Additive Schwarz
methods. Section 3.5 describes the proposed methods in detail and discusses the
cost/complexity of each proposed algorithm. Section 3.6 provides numerical results,
with experiments based on a porous medium equation posed on both an L-shaped
domain and a large urban domain, followed by the Diffusive Wave equation posed
on a large urban domain. Section 3.7 introduces the use of the Trefftz space for the
coarse approximation of the numerical solutions of the nonlinear model problems.
This section includes numerical experiments including a similar Diffusive Wave ex-
periment from Section 3.6. Section 3.8 concludes with a summary.

3.2 Discretization of Diffusive Wave equation

We now proceed with a discretization of the Diffusive Wave model (3.1). Let Tf > 0
be the final flow simulation time and let 0 = t0 < t1 < . . . < tNT

= Tf be a family
of real numbers such that ∆tn = tn+1 − tn.

We consider the following semi-implicit time discretization of (3.1): for un+1 =
u|tn+1 ,

un+1 − un

∆tn
− div

(
cfκ(u

n+1,∇un)∇un+1
)

= 0 in Ω,

un+1 = g on ∂Ω \ ∂ΩS,

cfκ(u
n+1,∇un)∂u

n+1

∂n
= 0 on ∂Ω ∩ ∂ΩS,

(3.2)
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where u0 is a provided initial condition.
Let T denote the triangulation of Ω which is conforming with respect to the

partitioning (Ωj)
N
j=1. We introduce the finite element space defined by

Vh = {v | v ∈ C0(Ω), s.t. v|q ∈ P1, for all q ∈ T }.

Recalling the definition of the space H1
∂Ω\∂ΩS

(Ω) defined in (3.7), let Vh,0 = Vh ∩
H1

∂Ω\∂ΩS
(Ω) and let gh ∈ Vh be some approximation of the boundary data g. The

finite element discretization of (3.2) reads as: Find un+1
h ∈ Vh satisfying u

n+1
h |∂Ω\ΩS

=
gh such that

1

∆tn

∫
Ω

(un+1
h −unh) vh dx+

∫
Ω

cfκ(u
n+1
h ,∇unh)∇un+1

h ·∇vh dx = 0 for all vh ∈ Vh,0.

(3.3)
Let (xi)

NΩ
i=1 denote the set of triangulation points; the set of point indices {1, 2, ..., NΩ}

is denoted by N . We denote the nodal “hat” basis functions (ηℓ)NΩ
ℓ=1. Furthermore,

we define un+1
i and un+1

ℓ as the nodal values of the discrete solution at nodes xi and
xℓ at tn+1, respectively. Additionally, we set NT = {i ∈ N | xi ∈ T} for any triangle
T ∈ T (T assumed to be open) and denote Ti as the subset of triangles connected
to the node i such that Ti = {T ∈ T | xi ∈ T}. Furthermore, we denote by Ni the
set of nodes adjacent to node i such that Ni =

⋃
T∈Ti NT . Finally, let ND denote

the set of Dirichlet nodes such that ND = {i ∈ N | xi ∈ ∂Ω \ ΩS}.
In order to enhance the stability of the numerical scheme, we modify the finite

element scheme by means of discretization techniques from finite volume methods.
In particular, we introduce mass lumping in the accumulation and upwinding in
the diffusion term. This discretization technique is generally referred to as a Finite
Volume- Finite Element (FV-FE) discretization [35], or it is often referred to as a
Control Volume Finite Element method [28, 37].

Diffusion term: Since
∑

ℓ∈NT
∇ηℓ = 0 on each triangle T , we observe for the

diffusive term that for i ∈ N ,∫
Ω

cfκ(u
n+1
h ,∇unh)∇un+1

h · ∇ηi dx =
∑
T∈Ti

∑
ℓ∈NT

cfu
n+1
ℓ

∫
T

κ(un+1
h ,∇unh)∇ηℓ · ∇ηi dx,

=
∑
ℓ∈Ni

cf (u
n+1
ℓ − un+1

i )
∑
T∈T

∫
T

κ(un+1
h ,∇unh)∇ηℓ · ∇ηi dx,

=
∑
ℓ∈Ni

cf (u
n+1
ℓ − un+1

i )
∑

T∈Ti∩Tℓ

∫
T

κ(un+1
h ,∇unh)∇ηℓ · ∇ηi dx,

In order to deal with the degeneracy of κ(u, ξ) = h(u, zb)
α∥ξ∥γ−1 for h(u, zb) = 0,

we introduce upwinding in our discretization. Denoting

τniℓ,T = −cf
∣∣∣∇unh|T ∣∣∣1−γ

∫
T

∇ηℓ · ∇ηi dx and τniℓ =
∑

T∈Ti∩Tℓ

τniℓ,T ,

we introduce upstream water depth defined by

hn+1
iℓ =

 h(un+1
i , zb(xi)) if τniℓ(u

n+1
i − un+1

ℓ ) ≥ 0,

h(un+1
ℓ , zb(xℓ)) otherwise.
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Then, we approximate∫
Ω

cfκ(u
n+1
h ,∇unh)∇un+1

h ·∇ηi dx ≈
∑
ℓ∈Ni

τniℓ
(
hn+1
iℓ

)α
(un+1

i −un+1
ℓ ) for all i ∈ N\ND.

Accumulation term: Let Miℓ denote the (i, ℓ) entry of a classical finite element

matrix, that is Miℓ =

∫
Ω

ηiηℓ dx. Then, denoting mi =

NΩ∑
ℓ=1

Miℓ, we approximate

1

∆tn

∫
Ω

(un+1
h − unh) · ηi dx ≈ mi

∆tn

(
un+1
i − uni

)
for all i ∈ N \ ND.

The resulting combined FV-FE scheme writes as
mi

∆tn

(
un+1
i − uni

)
+
∑
ℓ∈Ni

τniℓ
(
hn+1
iℓ

)α
(un+1

i − un+1
ℓ ) = 0 for i ∈ N \ ND,

un+1
i = gh(xi), for i ∈ ND.

(3.4)

In matrix-vector notations for a given vector u = (ui)i∈N\ND
, the scheme can be

summarized as follows: for time step n = 0, 1, . . . , solve

F (un+1) = 0,

where the ith component of F (un+1) is given by

F (un+1)i =
mi

∆tn

(
un+1
i − uni

)
+
∑
ℓ∈Ni

τniℓ
(
hn+1
iℓ

)α
(un+1

i − un+1
ℓ ) for i ∈ N \ ND,

(3.5)

and un+1
i = gh(xi) for i ∈ ND.

Additionally, the Jacobian matrix can be assembled such that the (i, i) and (i, ℓ)
entries are given by

∇F (un+1)ii =
{

mi

∆tn
+
∑

ℓ∈Ni

[
τniℓα

(
hn+1
iℓ

)α−1
Hn+1

iℓ + τniℓ
(
hn+1
iℓ

)α]
for i ∈ N \ ND,

∇F (un+1)iℓ =
{
τniℓα

(
hn+1
iℓ

)α−1
(1−Hn+1

iℓ )− τniℓ
(
hn+1
iℓ

)α
for i ∈ N \ ND,

where

Hn+1
iℓ =

 1 if τniℓ(u
n+1
i − un+1

j ) ≥ 0,

0 otherwise.

3.3 Multiscale Coarse space

We now briefly describe the coarse space that will be used for all introduced two-level
algorithms; we refer the reader to Chapter 2 for a detailed description. The coarse
space is of the multiscale type, composed of piecewise harmonic basis functions with
respect to a polygonal partitioning of the domain. The latter are computed via the
numerical solutions of linear Laplace problems.
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Figure 3.1: Coarse cell Ωj , nonoverlapping skeleton Γ (blue lines), and coarse grid nodes
xs ∈ V (red dots). Coarse grid nodes are located at Γ ∩ ∂ΩS .

Consider a nonoverlapping partitioning of Ω denoted by (Ωj)j=1,...,N . We denote

by Γ its skeleton, that is Γ =
⋃

j=1,...,N ∂Ωj \∂ΩS. Let (ek)k=1,...,Ne
denote a nonover-

lapping partitioning of the Γ such that each “coarse edge” ek is an open planar
segment. The set of coarse grid nodes is given by V =

⋃
k=1,...,Ne

∂ek. Figure 3.1
illustrates the location of the coarse grid nodes that typically result from clipping
(Dj)j with ΩS.

Let H1
∆(Ω) be a subspace of H1(Ω) composed of piece-wise harmonic functions,

weakly satisfying the homogeneous Neumann boundary conditions on ∂Ω ∩ ∂ΩS,
that is

H1
∆(Ω) = {u ∈ H1(Ω) | (∇u|Ωj

,∇v)L2(Ωj) = 0 for all v ∈ H1
∂Ω\∂ΩS

(Ωj)}, (3.6)

where
H1

∂Ω\∂ΩS
(Ω) = {u ∈ H1(Ω) |u|∂Ω\∂ΩS

= 0}. (3.7)

In other words, u ∈ H1
∆(Ω) if and only if u ∈ H1(Ω) and for all subdomains Ωj,

the equations  −∆u|Ωj
= 0 in Ωj,

∂u

∂n
= 0 on ∂Ωj ∩ ∂ΩS,

(3.8)

are satisfied in a weak sense.
With this, we define

V Γ
H = { v ∈ C0(Γ) | v|ek ∈ P1(ek) for all k = 1, . . . , Ne},

where P1(ek) denotes the set of piecewise linear polynomials over an edge e, and we
also define

VH = { v ∈ H1
∆(Ω) | v|Γ ∈ V Γ

H}. (3.9)

Let (gs)s=1,...,NV be the nodal basis of V Γ
H , where NV denotes the total number

of coarse grid nodes. In this chapter, (gs)s=1,...,NV is composed of nodal piecewise
linear “hat” functions; however, we recall from Chapter 2 that we can also combine
the set of the nodal piece-wise linear “hat” functions with the set of higher order
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edge-based basis functions. The function ϕs ∈ VH associated to gs is computed by
weakly imposing on each Ωj

∆ϕs = 0 in Ωj,

∂ϕs

∂n
= 0 on ∂Ωj ∩ ∂ΩS,

ϕs = gs on ∂Ωj \ ∂ΩS.

(3.10)

We refer to the space VH as the Trefftz space. The basis of the discrete version of the
Trefftz space is obtained through the piecewise linear finite element approximation
of (3.10) which results in the system of the form

Ãjϕ
j
s = bjs,

where Ãj is the local stiffness matrix and bjs accounts for the Dirichlet boundary
data in (3.10).

Let Rj denote the boolean restriction matrices which restrict from the degrees of
freedom in the discretization of Ω to the degrees of freedom in the nonoverlapping
subdomain Ωj, and let Dj denote partition of unity matrices corresponding to the

discretization of Ωj such that
∑N

j=1R
T
j DjRj = I. Furthermore, let ϕs be a global

vector which, when restricted to a subdomain Ωj, returns ϕ
j
s. That is,

ϕs =
∑
j∈Ns

R
T

j Djϕ
j
s,

for s = 1, . . . , NV , where Ns = { j | xs is contained in Ωj }. The global vectors ϕs

are the basis vectors associated to the coarse grid nodes xs ∈ V . The discrete Trefftz
space is then defined as the span of the basis vectors ϕs, s = 1, . . . , NV . With this,
the coarse transition matrix RH is such that the kth row of RH is given by ϕT

k for
k = 1, . . . , NV .

3.4 Linear Multi-domain Solution Methods

In this section, we summarize linear DD methods, particularly overlapping Schwarz
methods, that will be extended in the next section to nonlinear PDEs. We refer
the reader to Chapter 2 for a detailed description. Consider some discretized linear
system of the form

Au = f .

Let
(
Ω′

j

)
j=1,...,N

denote the overlapping partitioning of Ω such that Ωj ⊂ Ω′
j. In

practice, each Ω′
j is constructed by propagating Ωj by a few layers of triangles. With

this, let Rj denote the boolean restriction matrices which restrict from the degrees
of freedom in the discretization of Ω to the degrees of freedom in the overlapping
subdomain Ω′

j, and let Dj denote partition of unity matrices corresponding to the

discretization of Ω′
j such that

∑N
j=1R

T
j DjRj = I.

With this, the iterative RAS method computes the approximation to the solution
uk+1 from uk by

uk+1 = uk +M−1
RAS,1(f − Auk), (3.11)
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where

M−1
RAS,1 =

N∑
j=1

RT
j Dj[RjAR

T
j ]

−1Rj.

Additionally, we can accelerate this fixed-point method (3.11) by solving the
preconditioned system

M−1
RAS,1Au =M−1

RAS,1f , (3.12)

with a Krylov type method such as GMRES.
Generally, the number of iterations in (3.11) and (3.12) grows with the number of

subdomains in one direction. For example, this increase is linear for the stationary
iteration (3.11). To combat this, a coarse level is needed to aid in global communi-
cation between all subdomains. Consider the coarse matrix RH defined in Section
3.3; with this, the two-level preconditioned Krylov method method is given by

M−1
RAS,2Au =M−1

RAS,2f , (3.13)

where

M−1
RAS,2 = RT

H(RHAR
T
H)

−1RH +
N∑
j=1

RT
j Dj[RjAR

T
j ]

−1Rj. (3.14)

3.5 Nonlinear Multi-domain Solution Methods

We present results for various methods to solve the nonlinear system F (u) = 0,
where F (u) arises from some discretization of a nonlinear PDE. For the Diffusive
Wave model, the residual function F (u) = 0 is given in (3.5).

Preconditioning the linearized Newton system When a linear system is very
large, a direct solve is often too expensive and not recommended. Therefore, it is
common to solve the linear system in Algorithm 3.1.1 via a preconditioned Krylov
solver. We proposed in [13] and recalled in Section 3.3 a coarse space for the two-
level RAS preconditioner applied to the Poisson equation on perforated domains. It
turns out that the same coarse space can be successfully employed within the two-
level RAS preconditoner (3.14) for the linear system in Newton’s method (Algorithm
3.1.1). The numerical evidences regarding the efficiency of such a two-level solver
are presented in Section 3.6.

Let Jk = ∇F (uk) denote the Jacobian matrix and Fk = F (uk) the residual at a
given iterate. The Newton’s method update denoted by δk satisfies the system

Jkδk = Fk.

The preconditioned system to solve for δk is as follows:

M−1
RAS,2Jkδk =M−1

RAS,2Fk,

where MRAS,2 is defined as in (3.14) with system matrix A replaced by Jk,

M−1
RAS,2 =

N∑
j=1

RT
j Dj(RjJkR

T
j )

−1Rj +RT
H(RHJkR

T
H)

−1RH . (3.15)
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Nonlinear Restrictive Additive Schwarz Iteration Recall for linear systemsAu =
f , the Restricted Additive Schwarz (RAS) method can be used as an iterative method
or as a preconditioner for Krylov methods. Likewise, for the nonlinear problem, we
introduce a nonlinear RAS (NRAS) fixed point iteration. Multiple methods which
are to be introduced will require this nonlinear RAS iteration.

Definition 3.1 (An NRAS iteration). Let Rj be the boolean restriction matrices
corresponding to the degrees of freedom of Ω′

j. Let the “subdomain update” function
Gj, such that, for all u, Gj(u) is the solution of the local nonlinear system

RjF (R
T
j Gj(u) + (I −RT

j Rj)u) = 0. (3.16)

An NRAS iteration is computed by first solving each (3.16) then glue local contri-
butions:

NRAS(u) =
∑
j

RT
j DjGj(u). (3.17)

We can use this method as a fixed point iteration, computing iteratively the solution
uk starting from an initial guess u0:

uk+1 = NRAS(uk). (3.18)

Note that the subdomain updates Gj(u) correspond to solving the local problem
on Ω′

j with Dirichlet boundary conditions. These problems (3.16) are solved via
Newton’s method; as the subproblems are small, each Newton linear system is solved
using a direct solver.

Remark 3.2 (NRAS is RAS when applied to a linear problem). We comment here
on the connection between the nonlinear RAS fixed point iteration (3.18) and the
linear RAS fixed point iteration (3.11). Consider the local solutions computed from
(3.16). For linear problems such that F (u) = Au− f , we have

RjF (R
T
j Gj(u) + (I −RT

j Rj)u) = 0 (3.19)

Rj(A(R
T
j Gj(u) + (I −RT

j Rj)u)− f) = 0

RjAR
T
j Gj(u) = RjAR

T
j Rju+Rj(f − Au)

Gj(u) = Rju+ (RjAR
T
j )

−1Rj(f − Au)

such that the fixed point iteration (3.18) would be equivalent to

uk+1 =
N∑
j=1

RT
j Dj

(
Rju

k + (RjAR
T
j )

−1Rj(f − Auk)
)

(3.20)

= uk +
N∑
j=1

RT
j Dj(RjAR

T
j )

−1Rj(f − Auk)

= uk +M−1
RAS,1(f − Auk),

where we have used the partition of unity property I =
∑N

j=1R
T
j DjRj. Therefore,

the NRAS fixed point iteration (3.18) reduces to the linear RAS fixed point iteration
(3.11).
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One-level RASPEN Recall that in the linear case, we can accelerate the fixed
point RAS iteration by Krylov methods. Analogously, in the nonlinear case, we can
accelerate the NRAS fixed point iteration (3.18) by applying Newton’s method to
the fixed point equation

F(u) := u− NRAS(u) = 0

resulting in the One-level RASPEN method [39] detailed in Algorithm 3.5.1. It was
shown in [39] that the Jacobian of F(u) can be computed directly.

Algorithm 3.5.1 One-level RASPEN to solve F (u) = 0

Require: u0, residual function F , Jacobian ∇F
for outer iteration k = 0, . . . , to convergence do

Compute NRAS update ûk = NRAS(uk);
Set F(uk) = uk − ûk

Solve uk+1 = uk − [∇F(uk)]−1F(uk).
end for
In other words, solve F(u) = 0 via Newton’s method.

Remark 3.3 (Connection to ASPIN). The ASPIN method is based on the nonlinear
Additive Schwarz iteration, while the RASPEN method is based on the nonlinear
Restricted Additive Schwarz iteration. As in the linear case, the “restricted” variant
contains the addition of partition of unity matrices. Therefore, the nonlinearly
preconditioned system for ASPIN is given by

F(uk) = uk −
∑
j

RT
j Gj(u

k),

where Gj(u) is computed as in (3.16).

Remark 3.4 (Exact computation of the Jacobian). Unlike in the case of ASPIN,
for RASPEN the Jacobian is computed exactly. We describe here the computation
of the Jacobian ∇F(uk) for Algorithm 3.5.1. From (3.17), we have

F(uk) = uk − NRAS(uk) = uk −
∑
j

RT
j DjGj(u

k).

Then the Jacobian is given by

∇F(uk) = ∇

(
uk −

∑
j

RT
j DjGj(u

k)

)
= I −

∑
j

RT
j Dj∇Gj(u

k). (3.21)

To evaluate this, we must compute ∇Gj(u
k) by the gradient of (3.16):

∇Gj(u
k) = Rj − [Rj∇F (vk

j )R
T
j ]

−1Rj∇F (vk
j ) (3.22)

where we have set vk
j = RT

j Gj(u
k) + (I −RT

j Rj)u
k for convenience. Thus, we have

∇F(uk) = I −
∑
j

RT
j Dj∇Gj(u

k),

= I −
∑
j

RT
j Dj(Rj − [Rj∇F (vk

j )R
T
j ]

−1Rj∇F (vk
j )),

=
∑
j

RT
j Dj[Rj∇F (vk

j )R
T
j ]

−1Rj∇F (vk
j ), (3.23)
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where we have used the partition of unity property I =
∑

j R
T
j DjRj. We note

that the matrix [Rj∇F (vk
j )R

T
j ]

−1 can be dense and does not need to be directly

assembled. Therefore, we set up∇F(uk) as a linear operator, allowing us to compute
the matrix-vector product ∇F(uk)xk for any vector xk without explicitly computing
the matrix ∇F(uk).

Two-level RASPEN It is well-known that one-level domain decomposition meth-
ods are not scalable with respect to the number of subdomains. Specifically, the
GMRES method used at each outer iteration of Algorithm 3.5.1 is not scalable
without a coarse level. Therefore, we implement a Two-level RASPEN variant.

We choose a Two-level RASPEN correction provided in Algorithm 11 of [68],
which allows the coarse correction to be done algebraically. The coarse correction is
chosen to be computed after the local nonlinear solves. The authors of [57] provide
numerical experiments on multiple different choices of two-level methods, including
adding the coarse correction before, after, and before and after the nonlinear RAS
iteration. The Two-level RASPEN method we have chosen is given by Algorithm
3.5.2. This method solves the nonlinearly preconditoned system

F(u) = u− NRAS(u) +RT
HcH(NRAS(u)), (3.24)

where the function cH(v) for a given v is defined as the solution to the “coarse”
nonlinear equation

RHF (v −RT
HcH(v)) = 0. (3.25)

Algorithm 3.5.2 Two-level RASPEN to solve F (u) = 0

Require: u0, residual function F , Jacobian ∇F
for outer iteration k = 0, . . . , to convergence do

Compute NRAS update ûk = NRAS(uk);
Solve coarse problem RHF (ûk −RT

HcH(ûk)) = 0 for cH(ûk) via Newton’s method;
Set F(uk) = uk − ûk +RT

HcH(ûk);
Solve uk+1 = uk − [∇F(uk)]−1F(uk).

end for
In other words, solve F(u) = 0 via Newton’s method.

Two-step method Next, we consider a Two-step method proposed in [26] under
the name NKS-RAS; see also [17]. This method alternates between an NRAS iter-
ation and a global Newton step at each outer iteration. This method leads to fast
convergence (typically quadratic convergence is expected), but unlike Algorithms
3.5.1 and 3.5.2, can not be framed as a nonlinear preconditioning method. The
Two-step method is given in Algorithm 3.5.3. The main feature of the Two-step
method is the ease of its implementation. Compared to the standard Newton’s
method, it simply requires an additional NRAS step; moreover, compared to the
One and Two-level RASPEN methods, the Two-step method does not involve any
dense linear systems, and therefore, in principle, may be implemented based on a
direct linear solver. Here, the linearized system of Algorithm 3.5.3 is solved using
the same preconditioned GMRES method as in Algorithm 3.1.1.
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Algorithm 3.5.3 Two-step method to solve F (u) = 0

Require: u0, residual function F , Jacobian ∇F
for outer iteration k = 0, . . . , to convergence do

Compute NRAS update ûk =NRAS(uk);
Compute Newton update uk+1 = ûk − [∇F (ûk)]−1F (ûk);

end for

Anderson Acceleration of Coarse Two-step Method The Two-step method
given in Algorithm 3.5.3 involved a global fine-scale linear solve at each outer iter-
ation. We now propose to replace this step with a “coarse” linear solve, using the
Trefftz coarse space described in Section 3.3. For this, we can employ a method
similar to the Two-step method (3.5.3) but with a “coarse” Newton step at each
iteration, in a method similar to our previous works on linear models. We refer to
this as the Coarse Two-Step method, which allows us to use the coarse Trefftz space
in the iteration and cheapen the cost of the global Newton update. This Coarse
Two-step method is a fixed point iteration which involves a coarse Newton update,
which we denote by

Fc(u) = u−RT
HδH , where δH = [RH∇F (u)RT

H ]
−1RHF (u). (3.26)

With this, the fixed point coarse Two-step method is given as follows: for iteration
k = 0, 1, . . . , to convergence, compute

ûk = NRAS(uk), (3.27)

uk+1 = Fc(û
k).

The convergence of the fixed point method (3.27) to the numerical solution is gener-
ally quite slow when compared to the original Two-step method given by Algorithm
3.5.3, as a full update is not done at each iteration. To combat this, we introduce
Anderson Acceleration [105] as a way to accelerate the fixed point method (3.27),
resulting in Algorithm 3.5.4. The general Anderson acceleration method is given in
Procedure 2. Given some uk+1 = P (uk), we solve F(u) = P (u) − u = 0 via An-
derson acceleration. While the parameter mk in Algorithm 2 can vary, we generally
choose mk = 10 in our numerical experiments and do not explore this parameter
further. For convenience, we will refer to the Anderson Acceleration of the Coarse
Two-step method (Algorithm 3.5.4) as the “Anderson method” for the duration of
the chapter. We note that Anderson’s method generally fails to accelerate quadrat-
ically convergent fixed point iterations; this is proven with an error estimate in
[47].

Algorithm 3.5.4 Anderson Acceleration Applied to Coarse Two-step method to solve
F (u) = 0

Require: u0, residual function F , Jacobian ∇F
Denote Fc(u) := u−RT

H [RH∇F (u)RT
H ]−1RHF (u);

Solve V (u) := Fc(NRAS(u)) = 0 by Anderson acceleration, (Procedure 2).
The solution to V (u) = 0 is the solution to F (u) = 0.
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Procedure 2 Anderson Acceleration to solve some general function of the form V (u) =
P (u)− u = 0

Require: u0 and m ≥ 1
Set u1 = P (u0);
for outer iteration k = 1, 2, . . . , to convergence do

Set mk = min{m, k};
Set fk = (Vk−mk

, ...,Vk), where Vi = P (ui)− ui;
Determine αk = (αk

0 , . . . , α
k
mk

)T that solves

min
αk=(αk

0 ,...,α
k
mk

)T
||fkαk||2 such that

mk∑
i=0

αk
i = 1;

Update uk+1 using Anderson mixing: uk+1 =
∑mk

i=0 α
k
i P (uk−mk+i);

end for

3.5.1 Complexities/Costs of Fine-scale Methods

We now provide an overview of the complexity of each method. Recall that all
proposed methods besides Newton’s method involve an NRAS update. Computing
the NRAS update (3.17) requires solving a family of local nonlinear systems associ-
ated with the subdomains. The local nonlinear systems are computed by Newton’s
method, with a linear system solved at each iteration. We denote by Nit,loc the
required number of local Newton iterations averaged over all subdomains. Due to
the small size of the subdomains, the linearized system at each Newton iteration is
computed via a direct sparse linear solve. This number might vary according to the
method used, and we use an upper index to distinguish different case scenarios. We
denote by C(LUloc) a typical cost of the local LU decompositions on each subdo-
main, assumed to be approximately the same for every subdomain. Additionally,
we denote by C(local assembly) the cost of assembling the local residual and Jaco-
bian vectors, which will be done for all subdomains at each local iteration. The
complexity of the NRAS iteration at each outer iteration can be expressed by:

C(NRAS) = N ·Nit,loc (C(LUloc) + C(local assembly)) , (3.28)

where N is the number of subdomains. Here, (3.28) assumes that the local com-
putations are not done in parallel. With a parallel implementation, instead of the
NRAS cost being summed over all subdomains, the cost would be dominated by the
subdomain associated to the maximum number of local linear solves.

With the exception of Anderson’s method, all methods involve a global linear
system which is solved via GMRES at each iteration. The complexity of the GMRES
method for the Two-step and Newton methods at each outer iteration is given by
the following:

N · C(LUloc) + C(LUcoarse) + C(assembly) +NGM · C(GMRES), (3.29)

where N ·C(LUloc) +C(LUcoarse) denotes the cost of assembling the preconditioner
at each outer iteration, C(assembly) denotes the cost of assembling the global resid-
ual and Jacobian vectors/matrices F (u),∇F (u), and C(GMRES) denotes the cost
of each GMRES iteration, which generally involves a sparse matrix-vector multi-
plication. We denote by NGM the average number of GMRES iterations per outer
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iteration. That is, NGM denotes the average number of GMRES iterations until
convergence of the preconditioned linear systems occurring at each outer iteration,
which will depend on the chosen solution strategy. We use the upper index to N i

GM

to illustrate that this number can be different and decrease with the addition of an
accelerator like a coarse space.

We note that in the RASPEN variants, the LU decompositions and assemblies
for the nonlinearly preconditioned system can be reused from the earlier NRAS
iteration, reducing the cost of the GMRES method compared to (3.29). That is, the
complexity of the GMRES method for the One and Two-level RASPEN methods at
each outer iteration is given by the following:

NGM · C(GMRES),

where this cost is equal to (3.29) for the Newton and Two-step methods. We denote
by C(coarse) the cost of the sparse linear solve used for the coarse nonlinear problem
in the Two-level RASPEN algorithm. Therefore, Nc · C(coarse) denotes the total
cost of the coarse nonlinear problems per outer iteration, where Nc denotes the
average number of coarse linear solves per outer iteration.

With this, the costs for each method are summarized to be

• Newton: N · C(LUloc) + C(LUcoarse) + C(assembly) +NGM · C(GMRES);

• Two-Step: C(NRAS) + N · C(LUloc) + C(LUcoarse) + C(assembly) + NGM ·
C(GMRES);

• One-level RASPEN: C(NRAS) +NGM · C(GMRES);

• Two-level RASPEN: C(NRAS) +NGM · C(GMRES) +Nc · C(coarse);

• Anderson: C(NRAS) + C(assembly) + C(coarse).

Furthermore, we quantify the following costs as follows:

• C(LUloc) = O(N
3/2
loc ), where Nloc ≈ NΩ

N
denotes the number of degrees of free-

dom in a subdomain and is assumed to be roughly consistent over all subdo-
mains;

• C(LUcoarse) = O(N
3/2
V );

• C(local assembly) = O(Nloc);

• C(assembly) = O(NΩ);

• C(GMRES) = O(NΩ) for each sparse matrix-vector product;

• C(coarse) = O(N
3/2
V );

where the LU decomposition of some sparsem×m matrix is supposed to be O(m3/2)
[59].

We denote the total number of outer iterations by Nk; this number may vary
according to the method used, and we can use an upper index to distinguish between
methods. Finally, the total cost over all outer iterations is given by:
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C(Newton) = N0
k

(
N ×O(N3/2

loc )+ (N0
GM + 1) ×O(NΩ)+ O(N

3/2
V )

)
;

C(Two-Step) = N1
k

(
N(N1

it,loc + 1)×O(N3/2
loc )+(N1

GM +Nit,loc + 1)×O(NΩ)+ O(N
3/2
V )

)
;

C(1-RASPEN)= N2
k

(
N ·N2

it,loc ×O(N3/2
loc )+ (N2

GM +Nit,loc) ×O(NΩ)
)
;

C(2-RASPEN)= N3
k

(
N ·N3

it,loc ×O(N3/2
loc )+ (N3

GM +Nit,loc) ×O(NΩ)+Nc×O(N3/2
V )

)
;

C(Anderson) = N4
k

(
N ×N4

it,loc ×O(N3/2
loc )+ O(NΩ)+ O(N

3/2
V )

)
;

where the O(NΩ) term arises as the dominant term in the least-squares problem
of Anderson’s method and C(assembly) is included in Anderson’s method as well.
Additionally, we have simplified the cost of the local assembly as N ·Nit,loc ·O(Nloc) ≈
Nit,locO(NΩ) from the definition of Nloc.

We remark that for a time-dependent problem such as (3.1), there will be an
additional NT term multiplied into the cost of each method, where NT denotes the
number of time steps. In this case, N i

k would denote the average number of outer
iterations per time step. As shown, we can estimate the complexity of individual
components of the methods such as the cost of assembly, the cost of a sparse linear
solve, and the cost of a matrix-vector product. Additionally, we report the iteration
counts such as N i

k, N
i
GM, N

i
it,loc, and Nc in Section 3.6.

For the Two-step, Newton, and Two-level RASPENmethods, the GMRES method
occurring at each outer iteration will be preconditioned with some two-level DD
preconditioner. Therefore, we anticipate that N0

GM , N
1
GM , and N3

GM will be approx-
imately equal, with N2

GM for the One-level RASPEN method growing as we increase
N . We also anticipate that N i

it,loc will be consistent between all methods which
involve an NRAS solve (each method besides Newton). Therefore, the cost of the
Two-step and Two-level RASPEN methods can be directly compared by comparing
the the outer iterations Nk, where NV << NΩ such that the cost of a coarse lin-
ear solve will be significantly lower than a fine linear solve. For reference, we will
still record the number of coarse linear iterations Nc for the Two-level RASPEN to
ensure it is not dominating the cost.

For Newton’s method, it is clear that the cost of each iteration is lower than the
Two-step and RASPEN methods, as there is no NRAS solve involved. However,
the main goal of the proposed methods is to substantially reduce the number of
outer iterations to make up for the increased complexity within each outer iteration.
That is, we expect Nk to be reduced for the other methods, allowing for a potential
gain in performance. With regard to Anderson’s method, it appears to have quite
a low cost at each iteration, with one NRAS solve at each iteration and the cost of
the least-squares problem dominated by one O(NΩ) term. However, we do expect
a higher value of outer iterations for this method N4

k when compared to the Two-
step and RASPEN variants. We note that while it is difficult to directly compare an
outer iteration of Anderson to the other methods, it is still an interesting alternative
that is worth exploring in this thesis.

With this, our main concern in terms of complexity lies in the termN i
kN

i
GMO(NΩ),

representing the total number of “inner” GMRES iterations. However, when appli-
cable, we also wish to record the term N i

kN
i
it,loc, representing the total number of

sparse local linear solves on a given subdomain. In Section 3.6, we record the number
of outer iterations N i

k, the average number of GMRES iterations per outer iteration
N i

GM, the cumulative number of GMRES iterations N i
kN

i
GM, as well as the average

and cumulative (over all outer iterations) local linear solves per subdomain, namely
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N i
it,loc and N

i
kN

i
it,loc.

3.6 Numerical Results

We now provide numerical experiments for the proposed algorithms (Algorithms 1-
5) for multiple test cases. These numerical tests will proceed in order of increasing
difficulty; they include a stationary porous medium equation on an L-shaped domain,
the similar equation on a small realistic urban domain, and the Diffusive Wave model
on a large realistic urban domain. For all numerical experiments, the overlap is set
to 1

20
Hj, where Hj = max(xmax,j − xmin,j, ymax,j − ymin,j) and xmin,j, ymin,j, xmax,j,

ymax,j denote the minimal and maximal x and y coordinates that are contained in
Ωj. We do not explore the effect of overlap further.

3.6.1 Porous Medium Equation on L-shaped Domain

As a first numerical example, referred to as Example 1, we use an L-shaped domain
with a reentering corner. The domain is defined by D = (−1, 1)2, ΩS = (0, 1)2 and
Ω = D \ΩS such that the model domain has a singularity/corner in the upper right
quadrant of the domain. With this model domain, we consider a porous medium
equation given by

u(x, y) + div(∇(u(x, y)4)) = 0 in Ω,

u(x, y) = 1 on y = 1,

u(x, y) = 0 on x = 1,

∂u(x, y)4

∂n
= 0 on ΓN ,

(3.30)

where ΓN = {(x, y) ∈ ∂Ω |x ̸= 1 and y ̸= 1} denotes the Neumann boundary.
Consider a piecewise affine finite element discretization, and let u denote a vector of
interior node values of size NΩ. We denote the nodal “hat” basis functions (ηℓ)NΩ

ℓ=1.
We define the lumped finite-element mass matrix M and finite element stiffness
matrix A such that

Mii =

NΩ∑
ℓ=1

∫
Ω

ηiηℓ dx, and Aiℓ =

∫
Ω

∇ηi · ∇ηℓ dx.

With this, the matrix-vector notation of (3.30) becomes

F (u) =Mu+ Amax(u, 0)4. (3.31)

The finite element solution of this equation is shown in Figure 3.2.
We provide numerical results for this example for Newton’s method given by

Algorithm 3.1.1, the Two-step method from Algorithm 3.5.3, the One-level RASPEN
method from Algorithm 3.5.1, the Two-level RASPENmethod from Algorithm 3.5.2,
and the Anderson acceleration method from Algorithm 3.5.4. For the Two-step and
Newton methods, at each outer iteration, the linear system is solved using GMRES
method combined with the linear two-level RAS preconditioner (3.15). We show
results for coarse partitionings N = 9× 9, 5× 5, and 3× 3; The choice of N being a



3.6. Numerical Results 75

Figure 3.2: Finite element solution of (3.30) for Example 1 on the chosen L-shaped domain.

Figure 3.3: Example 1, convergence curves. Top: N = 3 (left), N = 5 (right). Bottom:
N = 9.

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 88 38.1 3353 N/A N/A

Anderson 31 N/A N/A 4.35 134.85

2-step 22 35.0 770 3.96 87.12

1-level RASPEN 15 85.3 1280 3.7 55.5

2-level RASPEN 6 19.2(+5.3) 115(+32) 3.94 23.64

Table 3.1: Example 1, N = 9, initial guess u0 = 0.05. Values in brackets represent Nc for
the NGM column and Nk ·Nc for the Nk ·NGM column.
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Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 81 33.4 2705 N/A N/A

Anderson 32 N/A N/A 4.64 149.0

2-step 16 34.0 544 4.86 77.8

1-level RASPEN 11 53.9 593 5.08 55.9

2-level RASPEN 6 19.2(+4.5) 115(+27) 4.48 26.9

Table 3.2: Example 1, N = 5, initial guess u0 = 0.05. Values in brackets represent Nc for
the NGM column and Nk ·Nc for the Nk ·NGM column.

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 79 33.7 2662 N/A N/A

Anderson 25 N/A N/A 4.36 109.0

2-step 13 38.9 506 6.06 78.8

1-level RASPEN 9 35.4 319 6.96 62.6

2-level RASPEN 6 20.5(+3.8) 123(+23) 5.5 33.0

Table 3.3: Example 1, N = 3, initial guess u0 = 0.05. Values in brackets represent Nc for
the NGM column and Nk ·Nc for the Nk ·NGM column.

square of an odd number ensures the consistency of the mesh sequence in terms of
the shape of the elements.

Convergence curves for this example are shown in Figure 3.3. Additionally,
results for this example are summarized in Tables 3.1, 3.2, and 3.3. These tables
report the total number of outer iterations Nk and, whenever appropriate, also
report the average number of GMRES iterations NGM, the total number of GMRES
iterations Nk ·NGM, the average number of local linear solves on a given subdomain
per outer iteration Nit,loc, and the cumulative number of local linear solves on a
given subdomain Nk ·Nit,loc.

In terms of outer iterations, from Figure 3.3, we see that Newton’s method
results in a very large plateau before the region of quadratic convergence is reached.
This difference is stark when compared to the other methods. Additionally, for all
number of subdomains N , Two-level RASPEN outperforms the other methods in
terms of outer iteration count, with the One-level RASPEN, Two-step, Anderson,
and Newton methods following in order. Additionally, we notice that while Anderson
does not initially plateau like Newton’s method, we do not obtain the eventual steep
slope of convergence which the other methods achieve.

We see from Tables 3.1, 3.2, and 3.3 that the Two-level RASPEN method is scal-
able in terms of both outer iterations and GMRES iterations, in the sense that these
values remain approximately the same for all N . In terms of GMRES iterations,
we observe that the One-level RASPEN method loses scalability as the number of
subdomains increases, more so than the other methods which all involve a coarse
component of some type; particularly, as N is doubled in one direction, the GMRES
iterations increase and Nk ·NGM about doubles as well. We also observe that New-
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ton’s method and the Two-step method, which both solve a linearized system with
the linear two-level RAS preconditioner (with the Trefftz space as the coarse space),
result in similar values of NGM for all N . However, as the number of Two-step outer
iterations is lower than the number of Newton outer iterations, the total number of
GMRES iterations Nk · NGM is significantly lower for the Two-step method. The
Two-level RASPEN method results in both the smallest value of Nk and the smallest
value of NGM; therefore, it clearly results in the lowest number of cumulative GM-
RES iterations Nk ·NGM. While the Two-level RASPEN has the additional Nk ·Nc

coarse linear solves, these coarse solves are generally less expensive than the global
GMRES iterations, and the number of coarse linear solves is not exceedingly large.

In terms of local linear solves per subdomain, we do see a slight dependence of
Nit,loc on the number of subdomains N for all methods, likely due to the fact that
the size of the local problems NΩ

N
gets larger as N is decreased. However, between

methods for a givenN , the values ofNit,loc appear consistent as expected. Depending
on the method, as Nk is increased, clearly Nk ·Nit,loc will increase accordingly.

3.6.2 Porous Medium Equation on Large Urban Domain

As a second example, referred to as Example 2, we provide numerical results for a
Porous Medium equation on a large urban domain of size 160×160 meters such that
D = (−80, 80)2 and ΩS is given by the union of realistic perforations. The buildings
are removed from the computational domain, leading to 72 total perforations. The
geometry of the buildings have been provided by Métropole Nice Côte d’Azur. After
discretization, this model domain contains 35220 triangles and 21317 mesh points.
As mentioned, the overlap is set to 1

20
Hj.

For this example, we ensure that the fine-scale triangulation is identical as the
number of subdomains N changes by generating a finer background mesh to be used
for various N ; specifically, we can a fine-scale triangulation conforming to the coarse
partitioning N = 16 × 16 subdomains, then use this background triangulation for
N = 2× 2, 4× 4, and 8× 8 subdomains.

With this, we consider a porous medium equation given by

u(x, y) + c div(∇(u(x, y)m)) = 0 in Ω,

u(x, y) = c on x = −80,

u(x, y) = 0 on x = 80,

∂u(x, y)m

∂n
= 0 on ΓN ,

(3.32)

where ΓN = {(x, y) ∈ ∂Ω |x ̸= −80 and y ̸= 80} denotes the Neumann boundary;
with this, the boundary of each perforation (∂Ω ∩ ∂ΩS) is included in ΓN . Here,
we take m = 3 and c = 15 in (3.32). With a similar finite element discretization to
Example 1, the matrix-vector notation of (3.32) becomes

F (u) =Mu+ cAmax(u, 0)m,

with the finite element solution for this example shown in Figure 3.4.
For this example, we provide numerical results for Newton’s method from Al-

gorithm 3.1.1, the Two-step method from Algorithm 3.5.3, the Two-level RASPEN
method from Algorithm 3.5.2, and the Anderson acceleration method from Algo-
rithm 3.5.4. As we have established that One-level RASPEN is not a robust method
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Figure 3.4: Finite element solution of (3.32) for Example 2 on the chosen urban model
domain.

for large N , we do not provide results for One-level RASPEN in this example. As
in the previous example, for the Two-step and Newton methods, at each outer iter-
ation, the linear system is solved using GMRES method combined with the linear
two-level RAS preconditioner (3.15).

The results for this example are summarized in Tables 3.4, 3.5, 3.6, and 3.7
for initial guesses of u0 = 1 and u0 = 0 and for subdomain partitioning of N =
16× 16, 8× 8, 4× 4, and 2× 2, respectively. While the coarse partitionings vary, the
background fine-scale triangulation is consistent throughout the numerical experi-
ment. The total number of coarse nodes are given by NV =784, 332, 149, and 56 for
N = 16×16, 8×8, 4×4, and 2×2, respectively. These tables report the total number
of outer iterations Nk and, whenever appropriate, also report the average number
of GMRES iterations NGM, the total number of GMRES iterations Nk · NGM, the
average number of local linear solves on a given subdomain per outer iteration Nit,loc,
and the cumulative number of local linear solves on a given subdomain Nk ·Nit,loc.

Corresponding convergence curves for both initial guesses are provided in Figure
3.5. In terms of outer iterations, even more than the previous example, Newton’s
method has a large plateau in convergence before reaching the region of quadratic
convergence. For all number of subdomains N , Two-level RASPEN outperforms the
other methods in terms of outer iteration count, with the Two-step, Anderson, and
Newton’s methods following in increasing order. We particularly see that the outer
iterations of the Two-level RASPEN method are extremely robust with respect to
N , more so than the other accelerated methods. Additionally, from Tables 3.4,
3.5, 3.6, and 3.7, we see that there is a slight increase in Nk for the Two-step and
Anderson methods as N is increased, but the increase in Nk is not proportional to
the increase in N . The number of outer iterations Nk stays extremely consistent
for the Newton and Two-level RASPEN methods as N is varied. In terms of initial
guess, we observe that Newton’s method is much more sensitive to the initial guess
than the other methods in terms of outer iteration count. In fact, we see that this
change in initial guess can result in a 50% increase in iteration count for Newton’s
method. Other than the outer iterations for Newton’s method, there is no significant
dependence on the initial guess.

From Tables 3.4, 3.5, 3.6, and 3.7, we see that NGM for the Two-level RASPEN
method is significantly smaller than that of the Two-step and Newton methods.
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Figure 3.5: Example 2, convergence curves. Solid lines correspond to an initial guess of
u0 = 1, dotted lines correspond to an initial guess of u0 = 0. Top: N = 2 × 2 (left),
N = 4× 4 (right). Bottom: N = 8× 8 (left), N = 16× 16 (right).

Additionally, as the number of outer iterations Nk is the lowest for the Two-level
RASPEN method, the total number of GMRES iterations Nk ·NGM is the lowest for
the Two-level RASPEN method. As in the previous example, the Two-step method
and Newton’s method result in around the same number of GMRES iterations per
outer iteration NGM, with this value slightly increasing as N is increased; however,
this increase is not proportional to the increase in N . As the Two-step method
results in fewer outer iterations Nk than Newton’s method, the total number of
GMRES iterations Nk · NGM is significantly lower for the Two-step method. This
can result in between 10 and 20 times more total GMRES iterations for Newton’s
method.

In terms of local linear solves per subdomain, our conclusions are similar to those
of Example 1. Between methods, the values of Nit,loc appear fairly consistent, but
depending on Nk, Nk ·Nit,loc will increase accordingly.

Overall, our conclusions from Example 2 are similar to that of Example 1, with
Newton’s method particularly struggling in terms of outer iterations and having an
additional dependency on the initial guess. However, in terms of solving the lin-
earized system, it appears that the Trefftz coarse space is successful as a component
of the linear two-level RAS preconditioner for this nonlinear problem.

3.6.3 Diffusive Wave Model on Large Realistic Urban Domain

In the final numerical experiment, referred to as Example 3, we consider the Diffusive
Wave model (3.1) used to model a hypothetical flood in a densely urbanized area
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u0 = 1

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 227 45.0 10215 N/A N/A

Anderson 37 N/A N/A 4.1 152

2-step 25 41.1 1028 4.14 104

2-RASPEN 9 22.3(+7.4) 201(+67) 3.13 28

u0 = 0

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 346 46.0 15916 N/A N/A

Anderson 52 N/A N/A 5.07 264

2-step 30 41.6 1248 2.83 85

2-RASPEN 8 19.2(+9.6) 154(+77) 2.11 17

Table 3.4: Example 2, N = 16 × 16 subdomains, results for initial guesses u0 = 1 and
u0 = 0. Values in brackets represent Nc for the NGM column and Nk ·Nc for the Nk ·NGM

column.

u0 = 1

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 227 35.2 7990 N/A N/A

Anderson 35 N/A N/A 5.03 176

2-step 20 38.4 768 5.42 108

2-RASPEN 7 27.1(+8.0) 190(+56) 5.25 37

u0 = 0

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 346 34.0 11764 N/A N/A

Anderson 35 N/A N/A 5.06 177

2-step 20 38.1 762 4.5 90

2-RASPEN 6 19.5(+8.5) 117(+51) 3.85 23

Table 3.5: Example 2, N = 8×8 subdomains, results for initial guesses u0 = 1 and u0 = 0.
Values in brackets represent Nc for the NGM column and Nk ·Nc for the Nk ·NGM column.
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u0 = 1

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 227 26.2 5947 N/A N/A

Anderson 22 N/A N/A 7.66 169

2-step 11 30.1 331 9.19 101

2-RASPEN 7 20.4(+5.9) 143(+41) 7.87 55

u0 = 0

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 346 25.4 8788 N/A N/A

Anderson 22 N/A N/A 7.96 175

2-step 11 31.9 351 9.66 106

2-RASPEN 7 15.3(+6.3) 107(+44) 6.07 43

Table 3.6: Example 2, N = 4×4 subdomains, results for initial guesses u0 = 1 and u0 = 0.
Values in brackets represent Nc for the NGM column and Nk ·Nc for the Nk ·NGM column.

u0 = 1

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 227 21.0 4767 N/A N/A

Anderson 17 N/A N/A 10.0 170

2-step 8 25.6 205 16.19 130

2-RASPEN 6 15.3(+4.3) 92(+26) 13.33 80

u0 = 0

Method Nk NGM Nk ·NGM Nit,loc Nk ·Nit,loc

Newton 346 18.3 6332 N/A N/A

Anderson 17 N/A N/A 13.93 237

2-step 8 25.6 205 24.53 196

2-RASPEN 6 13.2(+4.3) 79(+26) 26.21 157

Table 3.7: Example 2, N = 2×2 subdomains, results for initial guesses u0 = 1 and u0 = 0.
Values in brackets represent Nc for the NGM column and Nk ·Nc for the Nk ·NGM column.
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Figure 3.6: Boundary condition (thick blue and red lines) and corresponding model domain
for Example 3. Red corresponds to u = 21.5 meters, blue corresponds to u = zb. This
results in around a 2-meter elevation for the portion of the boundary representing the
Paillon river.

of the city of Nice, France. The model domain is depicted in Figure 3.8 and has
dimension 850 × 1500 meters. In this test case scenario, the flood is produced by
an overflow of Paillon river in the north-west part of the domain. Once again,
the buildings are removed from the computational domain, leading to numerous
perforations (447 in total). The bathymetry zb uses the 1m Digital Elevation Model
available from [64]. The parameters of the Diffusive Wave model are chosen formula
as α = 1.5 and γ = 0.5, based on Chézy’s formula, with friction coefficient cf = 30
which corresponding to a rough terrain [107]. We set Dirichlet boundary conditions,
with water flow of about 2 meters coming from the Paillon river region and u = zb
elsewhere; this boundary condition is shown in Figure 3.6. The initial condition is
taken as equal to zb and the final simulation time is set to Tf = 1500 seconds, which
corresponds to a steady state solution.

Similarly to Example 2, we ensure that the fine-scale triangulation is identical
as the number of subdomains N changes by generating a finer background mesh
to be used for various N . We generate a fine-scale triangulation for N = 8 × 16
subdomains, then use this background triangulation for N = 1 × 2, 2 × 4, 4 × 8
and 8 × 16 subdomain partitionings. Figure 3.7 shows the matching background
triangulation for N = 2× 4 and 8× 16 subdomains, respectively.

Consider the NRAS iteration (3.17), which contains the solution of local nonlin-
ear subproblems via Newton’s method. In practice, for time-dependent problems,
we come across the issue that some local subproblems will not converge for a given
time increment ∆tn = tn+1 − tn in the residual function (3.5). We have found for
our numerical examples that often, it is a small portion of subproblems that will not
converge, generally due to stagnation in convergence. Therefore, it may be inefficient
to reduce the global time increment for all subproblems and the entire iteration. We
implement a local time step reduction strategy which makes it possible to reduce
the time increment locally, then use this solution as an initial guess for the original
system. Therefore, the original local system is still solved on each subdomain. This
process is described in Algorithm 3. In this numerical experiment, except for New-
ton’s method, the discussed local adaptive time-stepping method of Algorithm 3 is
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Procedure 3 Local subproblem with local time-stepping

Require: ∆t,uk, initial guess G0
j , subdomain index j

Let Gj(u
k;G0

j ; ∆t) denote the solution to the local subproblem (3.16) with initial guess

G0
j and time step ∆t used in the residual.

∆tworked = ∆t
1: Solve local subproblem with some ∆tworked ≤ ∆t for Gw

j = Gj(u
k;G0

j ; ∆tworked) :
return G∗

j = Gw
j if ∆tworked = ∆t

Initialize ∆ttry = ∆tworked

if ∆tworked < ∆t then
Until convergence:
2: Use Gw

j as initial guess for original ∆t, try to solve for G∗
j = Gj(u

k;Gw
j ; ∆t)

if Step 2 fails: Initial guess was insufficient to solve original system then
Form better initial guess: Increase ∆ttry =

∆t+∆ttry
2 and proceed to step 3

else Return G∗
j

end if
3: Obtain new initial guess: Reset and solve for Gw

j = Gj(u
k;Gw

j ; ∆ttry)
if Step 3 fails: Solve didn’t converge for ∆ttry then

Reduce ∆ttry =
∆tworked+∆ttry

2 and return to step 3
else Solve converged for ∆ttry and new initial guess Gw

j obtained
Set ∆tworked = ∆ttry and return to step 2

end if
end if

implemented with a global time increment of ∆t = 10 seconds for each time step
for all methods. We find that with this local adaptive time stepping, a global time
increment reduction is not necessary for convergence.

For Newton’s method, we begin with an initial time increment of ∆t0 = 10
seconds. If the system at a given time step can not be solved, the global time
increment will be reduced by a factor of

√
2 until the reduced system is able to be

solved. Then, once the reduced system is solved, we increase the time increment
by a factor of

√
2 for the next time step, with a maximum time increment of 10

seconds. This means that ∆tn+1 = min(
√
2∆tn, 10). As mentioned, the final time

for this experiment is Tf = 1500.
Figure 3.8 reports the simulation results for time t = 10, 250, 750, and 1500

seconds. In particular, in color, we report the water depth h = u − zb(x) over the
“flooded region” where h ≥ 1cm. The ground surface elevation zb(x) is reported in
black and white.

The spatial discretization results in 81444 mesh points and 131581 triangles in
the model domain. As mentioned, the fine-scale triangulation will be conforming to
the polygonal coarse partitioning. Although we record results for various numbers of
subdomainsN , the fine-scale mesh will be kept consistent throughout the experiment
and is conforming to a N = 8× 16 coarse mesh; therefore, it will be conforming to
N = 1×2, N = 2×4, N = 4×8 meshes as well. The coarse and fine partitionings are
shown in Figure 3.7 for multiple coarse partitionings. By the end of the simulation,
38216 points and 60846 triangles are “flooded” such that h ≥ 1cm. The total number
of coarse nodes are given by NV =795, 357, 126, and 34 for N = 8× 16, 4× 8, 2× 4,
and 1× 2 subdomains, respectively. The overlap is once again set to 1

20
Hj.

Recall that at every time step, the nonlinear system (3.5) has to be solved. For
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Figure 3.7: Coarse (thick blue lines) and fine (thin blue lines) discretizations for N = 2×4
(left) and N = 8 × 16 (right) subdomains for model domain representing the Nice port
and Paillon river.

this example, in addition to Newton’s method given by Algorithm 3.1.1, we provide
numerical results for the One-level RASPEN method from Algorithm 3.5.1, the Two-
level RASPEN method from Algorithm 3.5.2, the Two-step method from Algorithm
3.5.3, and the Anderson acceleration method from Algorithm 3.5.4.

Figure 3.9 displays the cumulative number of (successful) outer iterations over the
simulation time, obtained for each of the methods for various numbers of subdomains
N .

In addition, we record various values in Tables 3.8, 3.9, 3.10 and 3.11. For this
time-dependent example, these values report the total number of time steps NT , the
total number of outer iterations over time NT ·Nk, and, whenever appropriate, also
report the cumulative number of GMRES iterations over time NT · Nk · NGM and
the total number of local linear solves on a given subdomain over all time steps and
outer iterations NT · Nk · Nit,loc. For the Two-step and Newton methods, at each
outer iteration, the linear system is solved using GMRES method combined with
the linear two-level RAS preconditioner (3.15).

Additionally, we report the number of GMRES iterations per outer iteration
NGM for each time step in Figure 3.10. As mentioned, the overall (cumulative)
number of GMRES iterations is reported in Tables 3.8, 3.9, 3.10, and 3.11 for N =
8× 16, 4× 8, 2× 4, 1× 2, respectively.

From Figure 3.9, we see that the RASPEN variants (both one and two-level) as
well as the Two-step method produce the smallest number of total outer iterations,
and are very similar to one another in this regard. Additionally, we see that the
Anderson acceleration changes the most as we increase N , with the outer iterations
generally increasing. As expected, Newton’s method results in a higher number of
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Figure 3.8: Numerical solution of Example 3 at various time steps, where the numerical
solution is presented by h = u−zb(x). Top: t = 10 (left) seconds, t = 250 (right) seconds.
Bottom: t = 750 (left) seconds, final t = 1500 (right) seconds. “Flooded” region (where
h ≥ 1cm) are shown in color, with underlying bathymetry zb shown in the background in
black and white.
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Figure 3.9: Example 3, cumulative outer iterations over time. Top: N = 1 × 2 (left),
N = 2× 4 (right). Bottom: N = 4× 8 (left), N = 8× 16 (right).

Figure 3.10: Example 3, average number of GMRES iterations per outer iteration NGM

at each time step. Top: N = 1 × 2 (left), N = 2 × 4 (right). Bottom: N = 4 × 8 (left),
N = 8× 16 (right).
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Method NT NT ·Nk (NT ·Nk ·NGM) NT ·Nk ·Nit,loc

Newton 155 1797 44146 N/A

Anderson 150 2524 N/A 6849

2-step 150 687 20029 1557

1-level RASPEN 150 686 100453 1574

2-level RASPEN 150 730 12117(+2907) 2017

Table 3.8: Example 3, N = 8×16 subdomains. The value in brackets represents Nt ·Nk ·Nc.

Method NT NT ·Nk (NT ·Nk ·NGM) NT ·Nk ·Nit,loc

Newton 160 1807 33432 N/A

Anderson 150 1902 N/A 6967

2-step 150 638 13164 1827

1-level RASPEN 150 624 33117 1824

2-level RASPEN 150 650 8065(+2031) 2334

Table 3.9: Example 3, N = 4×8 subdomains. The value in brackets represents Nt ·Nk ·Nc.

Method NT NT ·Nk (NT ·Nk ·NGM) NT ·Nk ·Nit,loc

Newton 151 1776 26753 N/A

Anderson 150 1657 N/A 8538

2-step 150 592 9483 2412

1-level RASPEN 150 571 9040 2478

2-level RASPEN 150 595 6328(+1755) 3066

Table 3.10: Example 3, N = 2×4 subdomains. The value in brackets represents Nt ·Nk ·Nc.

Method NT NT ·Nk (NT ·Nk ·NGM) NT ·Nk ·Nit,loc

Newton 155 1791 21608 N/A

Anderson 150 1225 N/A 7132

2-step 150 597 7794 3831

1-level RASPEN 150 477 3827 3377

2-level RASPEN 150 515 3983(+1114) 3698

Table 3.11: Example 3, N = 1×2 subdomains. The value in brackets represents Nt ·Nk ·Nc.
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outer iterations when compared to the RASPEN and Two-step methods.
We see from Figure 3.10 that as expected, as the number of subdomains is

increased, the One-level RASPEN method is no longer scalable in terms of GMRES
iterations; in fact, as N grows, the average GMRES iterations NGM are significantly
larger than the other methods such that they are out of the scope of the vertical axis
in the figure (green dots in Figure 3.10). Additionally, as the number of subdomains
grow, the Two-level RASPEN method clearly becomes the method with the lowest
value NGM per outer iteration over time. As in the previous examples, for Newton’s
method preconditioned with the two-level linear RAS preconditioner (blue dots in
Figure 3.10) and the Two-step method preconditioned with the two-level linear
RAS preconditioner (orange dots in Figure 3.10), the number of GMRES iterations
are not increasing proportionally with N . However, we do see a slight increase as
the number of subdomains is increased. We additionally remark that over time,
the average number of GMRES iterations per outer iteration NGM in Figure 3.10
increases for each method besides the Two-level RASPEN method; this is generally
most likely due to an increased proportion of the model domain being “flooded”.
That is, the problem becomes increasingly difficult over time. However, this also
suggests that the performance of the coarse correction is improved when applied
“nonlinearly”, as is done in the Two-level RASPEN method.

From Table 3.8, 3.9, 3.10, and 3.11, we see the results from Figures 3.9 and
3.10 summarized. Particularly, Newton’s method results in much larger numbers
of outer iterations when compared to the nonlinearly preconditioned variants (with
the exception of the Anderson acceleration as N grows large). Additionally, the
total number of GMRES iterations NT ·Nk ·NGM in the One-level RASPEN method
grows significantly as N is increased, more than doubling as N is doubled in one
direction. It appears that particularly as the number of subdomains grows, Two-
level RASPEN is the most efficient, producing the lowest number of total GMRES
iterations with a relatively small number of coarse linear solves. We note again that
the coarse linear solves are computationally less expensive than a global fine-scale
linear solve. However, we do remark that we do not see the same type of acceleration
in terms of outer iterations for Two-level RASPEN like we obtained in the other
two numerical examples. Overall, particularly if one is choosing a high value of N ,
it appears that the Two-level RASPEN method outperforms the others.

We have mentioned that from Figure 3.9, the outer iterations of the Anderson
method appear to have noticeably more dependence on N than the outer iterations
of the other methods. To view this phenomenon, we provide the average outer
iterations per time step Nk for Anderson’s method in Figure 3.11. We see from
Figure 3.11 that the outer iterations do increase noticeably with N . But in fact,
the number of outer iterations stays reasonably stable as time increases, and the
pattern of outer iterations seems to match that of average GMRES iterations of
two-level RASPEN in Figure 3.10. This dependence on N suggests that the coarse
space could be improved for this model problem.

3.7 Trefftz Galerkin method

Consider the coarse space provided in Section 3.3. We have shown in Chapter 2
that such a coarse space is capable of providing an accurate approximation of the
linear diffusion problems. Furthermore, when combined with overlapping Schwarz
methods, we have shown in Section 3.6 that this Trefftz space provides an efficient
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Figure 3.11: Example 3, Anderson outer iterations per time step. Colors correspond to
various coarse partitionings.

two-level preconditioner for linear and nonlinear problems. In particular, the nu-
merical experiment reported in Section 3.6.3 shows an excellent performance of the
Trefftz-based two-level RASPEN method in the application to the Diffusive Wave
equation.

In this section, we discuss the use of the Trefftz space for the approximation of the
latter flood model. This method is described and corresponding numerical examples
are provided. The main idea is quite simple, and, roughly speaking, consists in
writing the Galerkin approximation of (3.2) based on the (conforming) coarse space
VH . In other words, the P1 finite element space in (3.3) is going to be replaced
by the coarse space VH . In addition, we project the topographical data zb on the
coarse space and perform mass lumping. This allows us to interpret the resulting
discretization as a Finite Volume scheme with a local mass conservation property.

Consider the FV- FE discretization of the Diffusive Wave equation introduced
in Section 3.2. For the sake of simplicity, let us assume zero Neumann boundary
conditions on ∂Ω \ ∂ΩS. Let Φ(u) denote the divergence term in the residual F (u),
that is

Φ(u)i =
∑
ℓ∈Ni

τniℓ
(
hn+1
iℓ

)α
(un+1

i − un+1
ℓ ) for i ∈ N .

Then, we can express (3.5) as

F (u)i =
mi

∆tn

(
un+1
i − uni

)
+ Φ(u)i,

while the fine-scale discrete system (with new boundary condition) is expressed as

1

∆tn
M
(
un+1 − un

)
+ Φ(un+1) = 0, (3.33)

where M is the lumped version of the mass matrixM . To obtain the coarse system,
we substitute uk = RT

Hu
k
H , k = n, n+ 1, into (3.33) and multiply the latter by RH ,

yielding
1

∆tn
RHMRT

H

(
un+1
H − un

H

)
+RHΦ(R

T
Hu

n+1
H ) = 0.

Denoting by MH the lumped version of RHMRT
H , that is(

MH

)
iℓ
=


∑

ℓ

(
RHMRT

H

)
iℓ
, i = ℓ,

0, i ̸= ℓ,
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we obtain the following coarse system

FH(u
n+1
H ) :=

1

∆tn
MH

(
un+1
H − un

H

)
+RHΦ(R

T
Hu

n+1
H ) = 0, (3.34)

for each time step tn+1. We refer to the numerical solution of (3.34) via Newton’s
method as the coarse Trefftz method, where un+1

H is the coarse solution at tn+1. We
wish to stress that unlike the algorithms mentioned in Section 3.5, this method is a
coarse approximation to the fine-scale solution.

The following proposition summarizes some properties of the numerical scheme
(3.34). In particular, it is shown to be locally mass conservative and capable of
preserving certain stationary solutions.

Proposition 3.7.1. The discretization (3.34) satisfies the following properties:

(a) Local Mass Conservation: The scheme is locally mass conservative, in the
sense that it can be expressed as

mH,i

∆tn

(
un+1
H,i − unH,i

)
+
∑
ℓ

τnH,iℓ

(
un+1
H,i − un+1

H,ℓ

)
= 0 for all i ∈ NV

for some τnH,iℓ, with τ
n
H,iℓ = τnH,ℓi.

(b) Preservation of Lakes at Rest: If u0
H is a constant vector, then un

H = u0
H

satisfies (3.34) for all n; in particular Φ(RT
Hu

n
H) = 0.

(c) Preservation of Dry Conditions: Assume that zb ∈ VH , and let zb,H be
such that (zb,H)s = zb(xs) for s = 1, . . . , NV . Then, if u0

H = zb,H, it follows
that un

H = zb,H satisfies (3.34) for all n; in particular, Φ(RT
Hu

n
H) = 0.

Before proceeding with a proof of Proposition 3.7.1, let us introduce some nota-
tions and technical results. For any m× k matrix A, let RS(A) denote the diagonal
“row sum” matrix of the same size defined by

RS(A)iℓ =


∑
ℓ

Aiℓ, i = ℓ,

0, i ̸= ℓ.

Let 1k denote a unit vector in Rk. We have the following equivalence,

RS(A) = 0 ⇔ A1k = 0 ⇔ (Au)i =
∑
ℓ

Aiℓ(ui−ul) for all u ∈ Rm. (3.35)

We further observe that

RS(A) = 0 ⇒ RS(BA) = 0, (3.36)

for any r ×m matrix B. Now, alternatively, let C be a k × r matrix satisfying the
“partition of unity property” C1r = 1k, then

RS(A) = 0 ⇒ RS(AC) = 0. (3.37)

Proof of Proposition 3.7.1: In view of (3.35), to prove the statement (a) it suffices
to show that for any un+1

H , there exists a symmetric matrix TH(u
n+1
H ) satisfying

RS
(
TH(u

n+1
H )

)
= 0 and such that RHΦ(R

T
Hu

n+1
H ) = TH(u

n+1
H )un+1

H .
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Let us denote by T (un+1) the matrix with off-diagonal entries given by

T (un+1)iℓ = T (un+1)ℓi = −τniℓ
(
hn+1
iℓ

)α
for i ̸= ℓ,

and corresponding diagonal entries given by

T (un+1)ii =
∑
ℓ∈Ni

τniℓ
(
hn+1
iℓ

)α
.

We have that Φ(un+1) = T (un+1)un+1 and we note that RS(T (un+1)) = 0. Fur-
thermore, we can write

RHΦ(R
T
Hu

n+1
H ) = TH(u

n+1
H )un+1

H

with TH(u
n+1
H ) = RHT (R

T
Hu

n+1
H )RT

H . Clearly, TH(uH) is symmetric for all uH . Since
RT

H1NV = 1NΩ
, it follows from (3.37) and (3.36) that RS(TH(uH)) = 0, which, in

view of (3.35), completes the proof of (a).
In view of (3.37), we have RS(T (RT

Hu
n+1
H )RT

H) = 0. Then, the statement(b) of
the proposition follows from Φ(RT

Hu
n+1
H ) = T (RT

Hu
n+1
H )RT

Hu
n+1
H . The statement (c)

follows from T (RT
Hzb,H) = 0. □

3.7.1 Numerical experiment: Stationary convergence study

To evaluate the precision of the Trefftz Galerkin method, we perform a numerical
convergence study for a stationary version of the Diffusive Wave equation posed over
a medium size urban domain. The geometries considered in this test case, shown on
Figure 3.12, are based on the realistic structural topography data of the city of Nice.
The domain is a square with a length of 360 meters such that D = (−180, 180)2 and
ΩS is given by the union of realistic perforations representing buildings and walls.
More specifically, we are solving the following nonlinear elliptic problem

ϵu(x, y) + div(u(x, y)α∇u) = 0 in Ω,

u(x, y) = 1 on x = −180,

u(x, y) = 0 on x = 180,

u(x, y)α
∂u(x, y)

∂n
= 0 on ΓN ,

(3.38)

where ΓN = {(x, y) ∈ ∂Ω |x ̸= −180 and y ̸= 180} denotes the Neumann boundary
such that each perforation (∂Ω ∩ ΩS) is included in ΓN .

For both cases (“walls” and “no walls”), Figure 3.12 reports the numerical so-
lution obtained by the fine-scale discretization, and the solution values above zero
are reported in color. Because the diffusion operator in (3.38) degenerates at u = 0,
and given the choice of the boundary conditions, the support of the solution does
not extend over the whole domain.

To assess convergence rates of the coarse discretization, we perform the com-
putations using the sequence of meshes with N = 82, 162, 322, 642, 1282 and 2562

regularly spaced coarse cells. The error is evaluated by comparing the solution re-
sulting from the coarse discretization to the one obtained by the fine-scale method.
Figure 3.13 exhibits the relative error in L2 and H1 norms for both sub-cases. For
this nonlinear stationary case, the overall performance of the coarse discretization is
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Figure 3.12: Approximate solution for the cases “walls” (left) and “no walls” (right).

Figure 3.13: Log-log plot of relative L2 and H1 error for cases with and without walls as
the function of the characteristic coarse cell size H =

√
N .

quite satisfactory, as it manages to provide a reasonable approximation of the solu-
tion using only a fraction of fine degrees of freedom. In particular, we observe from
Table 3.12 that the relative L2 error of order 10−2 can be achieved with N = 162

and N = 322 coarse cells for cases without and with walls, respectively. This is
equivalent to using 2.7% (without walls) and 4% (with walls) of the fine degrees of
freedom.

3.7.2 Numerical experiment: Large Urban Flood Model

We consider once again the large urban test case presented in Section 3.6.3 with
slightly different boundary conditions. As before, the constant water level is im-
posed at the portion of the boundary located at the north-west of the domain,
modeling the overflow of Paillon river. The south (bottom) boundary is subject to
the Dirichlet boundary condition u = zb, while on the remainder of the boundary
a zero Neumann condition is imposed. We compare the approximate solution ob-
tained by the coarse method presented above and the fine-scale solution based on
the scheme introduced in Section 3.2. We consider the coarse discretization based on
the regular partitioning of the domain into N = 16×32, 32×64 and 64×128 coarse
cells. We note that the use of the coarse method allows for a significant reduction of
the number of degrees of freedom, ranging in between factor 20 for the finest coarse
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Case “no walls” Case “walls”
√
N NΩ NV err L2 eoc err H1 eoc NΩ NV err L2 eoc err H1 eoc

8 17790 234 0.0136 - 0.1718 - 4606 434 0.0245 0.0000 0.2308 0.0000

16 21682 581 0.0085 0.6704 0.1427 0.2678 42459 1027 0.0179 0.4538 0.1895 0.2841

32 33438 1609 0.0054 0.6722 0.1161 0.2973 62027 2490 0.0103 0.7950 0.1548 0.2920

64 60247 4903 0.0028 0.9597 0.0802 0.5337 104935 6639 0.0046 1.1590 0.1117 0.4713

128 180400 16896 0.0013 1.0583 0.0558 0.5125 243088 20313 0.0025 0.8411 0.0833 0.4127

256 636711 61601 0.0006 1.1211 0.0372 0.5835 733728 67989 0.0013 0.9678 0.0590 0.4985

Table 3.12: Relative L2 and H1 error and experimental order of convergence of the coarse
Trefftz method for sub-cases with and without walls.

N NV NT NΩ

16× 32 1813 258 390 148 403

32× 64 4293 314 979 179 240

64× 128 11070 452 504 254 075

Table 3.13: Number of coarse cells N = Nx×Ny, number of coarse grid nodes NV , number
of triangulation elements NT , and number of triangulation points NΩ.

mesh, and factor 80 for the coarsest one. The fine-scale triangulation is generated
independently for every coarse partitioning. We report in Table 3.13 the resulting
number of triangulation elements and points, as well as the number of coarse grid
nodes.

The reference fine-scale model relies on the finite element interpolation of the
1m topographical data, which we will refer to as zh. For the coarse Trefftz method,
we perform the projection of the fine-scale topography on the coarse space. More
precisely, let zh =

∑
i∈N ziη(xi) and z = (zi, . . . , zN )T , for any symmetric positive

definite NΩ × NΩ matrix A, we denote by ∥∥A the norm induced by A, that is

∥u∥A =
(
uTAu

)1/2
. We set

zH = argmin
ζ∈RNV

∥RT
Hζ − z∥A.

In other words, zH =
(
RHART

H

)−1
RHz. The projected fine-scale topography used

in the coarse discretization is given by RT
HzH . The numerical results presented

below use the regularized H1 projection, that is A = A + 0.01M , where A denotes
the standard finite element stiffness matrix. Alternatively, the L2 projection can
be used. We have observed that methods based on both L2 and regularized H1

projections result in similar accuracy. However, for reasons that are not yet clear,
the performance of Newton’s method is significantly superior for the regularized H1

projection.
The simulation covers the total period of Tf = 900s with the target time step of

4s. To solve the nonlinear system (3.34), we use Newton’s method which is stopped
once the l∞ norm residual gets below 10−5. If the iteration count exceeds 40, the
time step is reduced as detailed in Section 3.6.
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Figure 3.14: Left: Average water level error over time. Right: Cumulative number of
Newton’s iterations.

Figure 3.15 reports the reference water elevation resulting from the fine-scale
model over the “flooded domain”; the flooded domain is defined as where the water
depth exceeds 10cm. The flooded domain resulting from the coarse model is depicted
in green. The figure shows the results for the moderately refined coarse grid with
N = 32× 64 coarse cells. We note that the flood extension is fairly well represented
by the coarse model. The coarse flood extend is typically a couple of coarse cells
further compared to the reference solution.

For all three meshes, the left sub-figure of Figure 3.14 shows the average L1

error in water surface elevation over the flooded domain. To calculate this L1 error,
for a given mesh and for all i ∈ N , we denote by ufi (t) the continuous piece-wise
linear interpolation in time of the nodal values of the reference fine-scale solution.
Similarly, for any i ∈ N , we denote by uci(t) the interpolation in time of the values(
RT

Hu
n
H

)
i
. Then, for a given t > 0 and a positive threshold ϵ the sets of coarse and

fine flooded nodes is defined by Nf,ϵ(t) = {i ∈ N |ufi (t)− zi > ϵ} and Nc,ϵ(t) = {i ∈
N |uci(t) − zci > ϵ} with zci =

(
RT

HzH
)
i
. Then, we define the average L1 error over

the flooded domain as

err(t) =
∑

i∈Nf,ϵ(t)∪Nc,ϵ(t)

mi|ufi (t)− ums
i (t)|

/ ∑
i∈Nf,ϵ(t)∪Nc,ϵ(t)

mi.

The left sub-figure of Figure 3.14 shows the error err(t) over the simulation period for
the coarse meshes with N = 16× 32, 32× 64, and 64× 128 coarse cells. We observe
that the error remains relatively steady over the simulation period and decreases
with the refinement of the coarse mesh. Using the finest coarse partitioning, the
error is about 5cm in average, which is largely sufficient for practical considerations.

The right sub-figure of Figure 3.14 reports the performance of Newton’s method
in terms of cumulative Newton iterations over the time interval; performance of
the fine-scale method is reported for the sake of comparison. Only successfully
time steps are reported. For all three meshes, the results are consistent, with a
slight increase in the number of iterations as the mesh is refined. Compared to the
fine-scale method, performance of Newton’s method in the coarse discretization is
significantly improved with the average number of successful Newton iterations per
time step of 7, 7.5 and 9 for N = 16× 32, 32× 64, and 64× 128 respectively.
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Figure 3.15: Reference water elevation over the flooded domain (in color) and flood extent
resulting from the coarse Trefftz method (in green), for N = 32 × 64 and t = 10, 50, 300
and 600 s. The underlying topography zb is shown in black and white.
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3.8 Summary and Future Work

This chapter has provided multiple efficient nonlinear domain decomposition meth-
ods to solve nonlinear equations on complex, perforated domains. Specifically, we
have focused on a Diffusive Wave model on a domain with numerous perforations;
these perforations represent buildings and walls/fences in urban areas. The coarse
space form [13], designed for linear problems on perforated domains, proves to form
efficient two-level methods for our difficult model problem.

From our numerical experiments, we draw the following conclusions. In terms of
the number of GMRES iterations, as expected, the One-level RASPEN method is
not a robust method as the number of subdomains N grows large. For the linearized
systems resulting at each iteration of the Two-step and Newton methods, the Trefftz
space performs well as a component of the two-level RAS preconditioner and results
in a reasonable number of inner GMRES iterations per outer iteration. However,
these iterations slightly increase as N is increased. This effect could be mitigated
by updating the basis functions in the Trefftz space as the linearized system is
updated. The Two-level RASPEN method further reduces the total number of
GMRES iterations compared to the Two-step method, particularly as N grows.
However, in terms of total GMRES iterations Nk · NGM, due to the large number
of Nk for Newton’s method, Newton’s method results overall in a much larger total
number of GMRES iterations.

In terms of total outer iterations, Newton’s method is much more sensitive to
the initial guess than the other proposed methods in our experiment, with itera-
tion counts varying by up to 50%. Additionally, Newton’s method generally results
in extremely large iteration counts when compared to the Two-step and RASPEN
variants. The addition of an NRAS solve in the Two-step method greatly acceler-
ates convergence in terms of outer iterations when compared to Newton’s method.
Specifically, for the stationary examples, the Two-level RASPEN method provides
a significant acceleration in terms of outer iterations when compared to the other
proposed methods. We do not see the same effect in the time-dependent example,
likely due to the time stepping process and choice of the time increment. The An-
derson acceleration of a coarse Two-step method is also an interesting alternative to
Newton’s method, reducing the total iteration count, particularly for the stationary
examples. However, for the time-dependent example, we do see a dependence on N
in terms of outer iterations for this method. Each iteration of Anderson’s method
involves a small least-squares problem and is cheaper than a Newton iteration. How-
ever, it does not appear to accelerate convergence when compared to methods such
as the Two-level RASPEN method.

In terms of implementation, both Newton’s method and the Two-step method
involve a sparse linear system at each iteration which, in principle, could be solved
via a direct solve (provided the system is not too large). Additionally, the Two-
step method is quite straightforward to implement when compared to the Two-level
RASPEN method, with the only addition from Newton’s method being a nonlinear
RAS computation at each iteration. The Two-level RASPEN method involves a
nonlinear RAS computation, a coarse nonlinear problem, and a global linear system
which generally should be solved via a Krylov method. However, once implemented,
the Two-level RASPEN method forms an extremely robust and efficient algorithm.
Additionally, Anderson acceleration benefits from readily available built-in functions
provided by multiple popular programming languages.

Additionally, the use of the Trefftz space for the coarse approximation of the
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numerical solution allows us to use a small fraction of the fine-scale degrees of
freedom to approximate the solution. For this method, we project the topographical
data zb onto the coarse space VH and perform mass lumping of the “coarse” mass
matrix. Finally, we have found that local time step reduction is an efficient method
to eliminate the need for a global time step reduction for all subdomains. Future
work involves improved load-balancing of the complexity of the subdomains and
parallel implementation to provide detailed runtimes.
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4.1 Introduction

In this Chapter, we focus on heterogeneous model problems of the form au+ div (Kϵ(x)Fϵ(u,∇u)) = 0 in Ω,

u = uD on ∂Ω,
(4.1)
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where a is a positive real coefficient and Kϵ(x), representing the heterogeneity of
the problem, is assumed to satisfy Kϵ(x) ≥ kmin > 0 for all x ∈ Ω. Here, Ω may be
either an open connected polygonal domain in R2 or a real interval. In this work, we
focus on model problems of the form For the “flux functions” Fϵ(u,∇u), we consider
either the model

Fϵ(u,∇u) = −∇up, p > 1,

leading to a porous medium problem, or the p−Laplace model

Fϵ(u,∇u) = −|∇u|p∇u, p > 0.

The well-posedness of the problem (4.1) is known (see e.g. [103] and [75]).

4.1.1 MsFEM for Linear Problems

We proceed with a description of MsFEM for linear heterogeneous problems before
moving to the focus of the chapter, nonlinear problems. It is known that standard
numerical methods such as Finite Element Methods often have difficulty approxi-
mating multiscale behavior due to the computational cost of resolving all relevant
scales. Therefore, multiscale numerical methods have emerged as attractive options
for dealing with such problems characterized by significant variations across mul-
tiple scales; here, we consider specifically MsFEM [61]. By representing fine-scale
features using computationally efficient coarse-scale models, MsFEM can lead to a
reduction in both computational time and resources. While we focus on a nonlin-
ear substructured formulation to be described later, we briefly describe the classical
MsFEM here as a linear comparison.

With this, consider a linear heterogeneous problem of the form

−div(Kϵ∇u) = f, (4.2)

where Kϵ is a heterogeneous coefficient matrix. This results in a variational formu-
lation as follows: find u ∈ H1

0 (Ω) such that∫
Ω

∇v ·Kϵ∇u dx =

∫
Ω

fv dx. (4.3)

We remark as well that there are many variants of the MsFEM, but we present the
original formulation from [61]. The original space is defined as follows. Consider
some (coarse) mesh TH ; here, we take the coarse mesh to be the nonoverlapping

rectangular partitioning of Ω denoted by (Ωj)
N
j=1. We will refer to (Ωj)

N
j=1 as the

coarse mesh over Ω.
Here, we denote VH as the space of piecewise affine functions on the coarse mesh.

With this, let (si)
NH
i=1 denote the vertices of the coarse mesh, where NH is the number

of coarse nodes, and let (gi)
NH
i=1 be the associated nodal basis for VH made of “hat”

functions, satisfying

gi(sj) =

{
1, i = j,

0, i ̸= j,

for all 1 ≤ i, j ≤ NH . Then, the multiscale basis functions ϕi are given as follows:
for all 1 ≤ i ≤ NH ,  −div (Kϵ∇ϕi) = 0 in Ωj,

ϕi = gi on ∂Ωj,
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Figure 4.1: Heterogeneous domain Kϵ(x) with N = 5 × 5 coarse cells. Nonoverlapping
skeleton Γ is denoted by thick dark blue lines.

for all Ωj. The multiscale space is given by

Vms = span{ϕi | 1 ≤ i ≤ NH},

where Vms ⊂ H1
0 (Ω). The Galerkin projection is as follows: Find uH ∈ Vms such

that ∫
Ω

∇vH ·Kϵ∇uH dx =

∫
Ω

f vH dx for all vH ∈ Vms.

4.1.2 Nonlinear Substructured and Approximate Substructured Prob-
lem

As MsFEM strategies do not naturally extend to nonlinear problems [32, 44], we
focus on the computation of local Dirichlet-to-Neumann (DtN) operators. Specifi-
cally, with coarse and fine partitionings of the domain, we can compute local DtN
operators on each subdomain. These local DtN operators provide a relationship
between Dirichlet and Neumann boundary data; these local operators lead to a non-
linear substructuring method such that the fine-scale discrete nonlinear problem can
be written in terms of the local DtN maps.

Consider a finite nonoverlapping rectangular partitioning of Ω denoted by (Ωj)
N
j=1.

We denote by Γ the coarse skeleton, that is Γ =
⋃N

j=1 ∂Ωj. With this, each edge of
the skeleton Γ is denoted by Γij = ∂Ωj ∩ ∂Ωi, while the set of coarse grid nodes is

defined by (sα)
NΓ
α=1 =

⋃N
i,j=1 ∂Γij. The set of coarse grid nodes can be considered as

the set of corners/vertices of the subdomains. An example of the coarse partitioning
and corresponding coarse grid nodes is shown in Figure 4.1.

The Dirichlet-to-Neumann (DtN) map provides a mathematical relationship be-
tween Dirichlet and Neumann boundary data, allowing us to compute one set of
boundary data from the other, which can be very useful in solving boundary value
problems. Given a nonoverlapping partitioning of domain, these DtN maps can be
defined and computed locally on each subdomain. Let us consider a local Dirichlet
problem  auj + div (Kϵ(x)Fϵ(uj,∇uj)) = 0 in Ωj,

uj = gj on ∂Ωj.
(4.4)
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For a given gj we formally denote by DtNj(gj) the Neumann traces of uj on ∂Ωj,
that is

DtNj(gj) = Kϵ(x)Fϵ(uj,∇uj)|∂Ωj
· nj on ∂Ωj,

where nj denotes the unit outward normal on ∂Ωj.
Our main idea with the nonlinear substructuring method is to replace the original

problem (4.1) by the one which only involves the unknown Dirichlet data g defined
over Γ. This new unknown function is determined by imposing a matching flux
condition along the edges of the skeleton Γ.

For a regular enough function g defined on Γ, we formally introduce the local
jump operator, returning the mismatch in fluxes on a given coarse edge

JKij : g 7→ DtNj(g|∂Ωj
)|Γij

+DtNi(g|∂Ωi
)|Γij

.

and the global jump operator JK is given by JgK|Γij
= JgKij. Enforcing zero flux jump

at every coarse edge Γij leads to a global substructured problem that can be written
in a weak form as follows: find g satisfying g|∂Ω = uD such that for all regular
enough w vanishing on ∂Ω it holds that∫

Γ

JgKw dγ(x) = 0. (4.5)

Let us assume for the moment that we are in the possession of a procedure allowing
to compute evaluate the DtN operators. Then, the problem (4.5) can be discretized
by taking the test and trial function from a finite dimensional space. In particular,
we consider the space VH(Γ) made of the continuous functions on Γ that are affine
on every coarse edge of Γ, that is

VH(Γ) = {v ∈ C0(Γ) s.t. v|Γij
∈ P1(Γij) for all Γij}. (4.6)

Let VH,0(Γ) = {v ∈ VH(Γ) s.t. v|∂Ω = 0} and let uD,H ∈ VH(Γ) denote some
approximation of uD, obtained for example by interpolation. To form the approxi-
mate substructured problem in VH(Γ), one then replaces the problem (4.5) by the
following: find gH satisfying gH |∂Ω = uH,D and∫

Γ

JgHKwH dγ(x) = 0 for all wH ∈ VH,0(Γ). (4.7)

4.1.3 Scientific Machine Learning

With the renewed interest in Machine Learning (ML) within the scientific computing
community, numerous techniques have been proposed to apply ML techniques to the
solution of PDEs. In [80], the authors employ DeepONet neural networks to learn
nonlinear operators. Additionally, the authors of [9] introduce an approach that
combines Finite Element interpolation techniques with Neural Networks (NN) to
solve a wide range of direct and inverse problems.

Additionally, there exists a large class of NNs which are referred to as Physics-
Informed Neural Networks (PINNs) [92]. PINNs are a class of neural networks that
integrate physical laws, typically represented by PDEs, directly into the training
process by minimizing a functional which represents the residual of the PDE and
its initial and boundary conditions. This ensures that the NN’s predictions take
into consideration both the physical laws and the traditional data-driven loss com-
ponents. Many pieces of work have been published on PINNs, including [83, 23, 84].
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However, problems with complex domains have led to other methodologies based on
DD methods and PINNs, including Extended PINNs [65], Conservative PINNs [66],
Variational PINNs [70] and Finite Basis Physics-Informed Neural Networks [85].
Additionally, [62] proposed Differential Machine Learning (DML), originally with
a financial application. In DML, supervised learning is “extended” such that ML
models are trained not only with values/inputs but also on corresponding deriva-
tives.

In this chapter, we aim to use machine learning techniques to learn the previously
discussed nonlinear DtN maps. The neural network is trained to replicate the action
of the local nonlinear DtN maps on some coarse subset of the trace space. Once the
training is completed, the surrogate DtN operators will be used to solve a nonlinear
substructuring method via Newton’s method. For training the nonlinear maps, we
use an approach similar to DML; that is, we incorporate gradient information into
the loss function. Additionally, we impose a monotonicity property into the loss
function which is based on the known monotonicity of the DtN maps.

4.1.4 Chapter Outline

The remainder of this chapter is laid out as follows. In Section 4.2, we introduce the
finite element discretization, discrete substructured formulation, and discrete DtN
maps. We also provide a description of the machine learning process which is used
to determine the learned DtN operators and assemble the learned substructured
formulation. Section 4.3 contains numerical experiments, showing both the accu-
racy of the learned DtN maps and the resulting learned approximate substructured
formulation. Section 4.4 concludes with a summary.

4.2 Discrete Finite Element Substructuring and DtN Maps

4.2.1 Finite Element Discretization

Let Th denote the triangulation of Ω which is conforming with respect to partitioning

(Ωj)
N
j=1. Let {sk}

NΩ
k=1 be the set of vertices (or points) of Th. We introduce the finite

element space defined by

Vh = {v | v ∈ C0(Ω), s.t. v|t ∈ P1, for all t ∈ Th},

and we denote the corresponding nodal “hat” basis functions (ηk)
NΩ
k=1 for each point

sk. Let Vh,0 = Vh ∩H1
0 , and let uh,D ∈ Vh be some approximation of the boundary

data uD. The Galerkin finite element formulation is as follows:

Find uh ∈ Vh satisfying uh|Ω = uh,D such that∫
Ω

auhvh − (Kϵ(x)Fϵ(uh,∇uh)) · ∇vh dx = 0 for all vh ∈ Vh,0.
(4.8)

Now, consider the following linear reconstruction operator πh acting from RNΩ to
Vh, such that

πh(v)(x) =

NΩ∑
k=1

vkηk(x).
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We note that πh is bijective, with (π−1(vh))
k
= vh(sk) for any triangulation point

sk.
We denote by F the “Neumann residual” function corresponding to (4.8); more

precisely, F acts from RNΩ to itself and has its lth component defined by

(F (u))l =

∫
Ω

πh(u) η
l −Kϵ(x)Fϵ(πh(u),∇πh(u)) · ∇ηl dx, (4.9)

for l = 1, . . . , NΩ.
Before moving forward, let us introduce some notation related to the decompo-

sition of the mesh and finite element degrees of freedom induced by the partitioning
(Ωj)

N
j=1 of Ω. Let I = {1, . . . , NΩ} denote the index set of the triangulation points.

For any arbitrary ω ∈ Ω we introduce a subset of indices

Iω =
{
i1ω, . . . i

Nω
ω

}
⊂ I

such that i ∈ Iω if and only if the point si belongs to ω. We note that the number
of elements in Iω is denoted by Nω.

The standard Nω by NΩ boolean restriction matrix Rω “from Ω to ω” is defined
by

(Rω)kl =

 1 if l = ikω,

0 else,

for any k = 1, . . . , Nω and l = 1, . . . , NΩ. Further, for any A,B ⊂ Ω, we denote

RA
B = RA(RB)

T .

If A ⊂ B, the matrix RA
B can be interpreted as a restriction matrix “from B to A”.

Conversely, if B ⊂ A, the same RA
B may be interpreted as an extension matrix “from

B to A”. Let us mention a couple of useful properties of this restriction/extension
linear operator. First, we note that for any C such that A,B ⊂ C ⊂ Ω we have

RA
CR

C
B = RA

B = RA
A∩BR

A∩B
B .

With this, the discrete problem (4.8) can be expressed as follows:

Find u ∈ RNΩ such that R∂Ωu = R∂Ωπ
−1
h (uh,D) and satisfying RΩF (u) = 0.

(4.10)
We note that the integral in (4.8) can be split into a sum of integrals over Ωj,

meaning that the finite element residual can be assembled by gluing together the
local contributions. We detail below this local assembly procedure because of its
use in the substructured formulation.

For a subdomain Ωj, let {ηlj}
NΩj

l=1 denote the set of local finite element basis

functions such that ηlj(x) = η
il
Ωj (x)|Ωj

for all l = 1, . . . , NΩj
. The local function

reconstruction operator πh,j is defined by πhj
(vj)(x) =

NΩj∑
l=1

vlηlj(x). Similar to (4.9)

we define the local residual functions Fj. That is for any uj ∈ RNΩj and l =
1, . . . , NΩj

, we set

(Fj(uj))
l =

∫
Ωj

πh,j(u) η
l
j −Kϵ(x)Fϵ(πh,j(uj),∇πh,j(uj)) · ∇ηlj dx. (4.11)
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with ηlj = η
il
Ωj . For any u ∈ RNΩ , the global residual F (u) is obtained from the local

components by the following expression

F (u) =
N∑
j=1

RT
Ωj
Fj(RΩj

u). (4.12)

.

4.2.2 Discrete DtN maps

In this section, we introduce the finite element version of the Dirichlet-to-Neumann
operator, associated with our model PDE and a subdomain Ωj. This discrete oper-
ator, denoted by DtNh,j, is defined as the nonlinear mapping from the set of degrees

of freedom RN∂Ωj associated with the boundary of Ωj to itself. We also provide the
formula for the (Fréchet) derivative of DtNh,j. The construction of DtNh,j relies on
the definition (4.11) of the local “Neumann” residual Fj.

Let us split the set of indices IΩj
into two nonoverlapping subsets IΩj

and I∂Ωj

associated with internal degrees of freedom located in Ωj and boundary degrees of

freedom on ∂Ωj. This gives the representation of the vector uj ∈ RNΩj associated

to the subdomain Ωj in the form uj = R
Ωj

Ωj
uΩj

+ R
Ωj

∂Ωj
u∂Ωj

with some uΩj
∈ RNΩj

and u∂Ωj
∈ RN∂Ωj . In turn, we express the local Neumann residual as following

Fj(uj) = R
Ωj

Ωj
FΩj

(uΩj
, u∂Ωj

) +R
Ωj

∂Ωj
F∂Ωj

(uΩj
, u∂Ωj

) (4.13)

where
FΩj

(uΩj
, u∂Ωj

) = R
Ωj

Ωj
Fj

(
R

Ωj

Ωj
uΩj

+R
Ωj

∂Ωj
u∂Ωj

)
and

F∂Ωj
(uΩj

, u∂Ωj
) = R

∂Ωj

Ωj
Fj

(
R

Ωj

Ωj
uΩj

+R
Ωj

∂Ωj
u∂Ωj

)
.

The discrete counterpart of the local Dirichlet problem (4.4) can be expressed as:

Find uΩj
such that FΩj

(uΩj
, g∂Ωj

) = 0 (4.14)

for a given g∂Ωj
∈ RN∂Ωj . Assuming that (4.14) admits a unique solution for any

g∂Ωj
, we define the solution operator GΩj

from RN∂Ωj to RNΩj such that

FΩj

(
GΩj

(g∂Ωj
), g∂Ωj

)
= 0 (4.15)

for all g∂Ωj
. With that, the discrete DtN operator is defined by

DtNh,j(g∂Ωj
) = F∂Ωj

(
GΩj

(g∂Ωj
), g∂Ωj

)
. (4.16)

Under the assumptions of Implicit Function Theorem (see e.g. Proposition 5.2.4.
of [90]) the Fréchet derivative of DtNh,j can be expressed as

DtN′
h,j(u∂Ωj

) = ∂Ωj
F∂Ωj

(GΩj
(u∂Ωj

), u∂Ωj
)G′

Ωj
(u∂Ωj

) + ∂∂Ωj
F∂Ωj

(GΩj
(u∂Ωj

), u∂Ωj
).

(4.17)
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Recalling that uΩj
= GΩj

(u∂Ωj
), we have

DtN′
h,j(u∂Ωj

) = ∂Ωj
F∂Ωj

(uΩj
, u∂Ωj

)G′
Ωj
(u∂Ωj

) + ∂∂Ωj
F∂Ωj

(uΩj
, u∂Ωj

), (4.18)

where, thanks to the identity

FΩj
(GΩj

(u∂Ωj
), u∂Ωj

) = 0, (4.19)

we have

G′
Ωj
(u∂Ωj

) = −
(
∂Ωj

FΩj
(uΩj

, u∂Ωj
)
)−1

∂∂Ωj

(
FΩj

(uΩj
, u∂Ωj

)
)
. (4.20)

Plugging (4.20) into (4.17) results in

DtN′
h,j(u∂Ωj

) = −∂Ωj
F∂Ωj

(uΩj
, u∂Ωj

)
(
∂Ωj

FΩj
(uΩj

, u∂Ωj
)
)−1

∂∂Ωj
FΩj

(uΩj
, u∂Ωj

)

(4.21)

+ ∂∂Ωj
F∂Ωj

(uΩj
, u∂Ωj

),

We remark that computing uΩj
requires solving the local nonlinear problem (4.14)

with u∂Ωj
as data. This is typically done by some fixed point method. Once the

approximate value of uΩj
is obtained, computing DtN′

h,j(u∂Ωj
) requires solving the

linear system with right-hand side given by FΩj
(uΩj

, u∂Ωj
). If uΩj

is obtained by
exact Newton’s method, the former can be done at marginal computational cost.

4.2.3 Discrete Substructured Problems

With DtNh,j introduced above, let us provide the substructured formulation of the
discrete problem (4.10). Let g ∈ RNΓ be a vector representing the unknown solution

values at the skeleton Γ. Denoting g∂Ωj
= R

∂Ωj

Γ g and uΩj
= GΩj

(
g∂Ωj

)
, we express

the unknown discrete solution as

u = RT
Γg +

N∑
j=1

RT
Ωj
uΩj

. (4.22)

Observing that RΩj
u = R

Ωj

∂Ωj
g∂Ωj

+R
Ωj

Ωj
uΩj

, in view of (4.13), we deduce that

Fj

(
RΩj

u
)
= R

Ωj

Ωj
FΩj

(uΩj
, g∂Ωj

) +R
Ωj

∂Ωj
F∂Ωj

(uΩj
, g∂Ωj

). (4.23)

The first term in the right-hand side of (4.23) is zero by definition of uΩj
, which

yields

F (u) =
N∑
j=1

RT
∂Ωj

DtNh,j

(
g∂Ωj

)
=

N∑
j=1

RT
∂Ωj

DtNh,j

(
R

∂Ωj

Γ g
)
,

in view of (4.12) and (4.16). Let us denote

FΓ(g) =
N∑
j=1

RΓ
∂Ωj

DtNh,j

(
R

∂Ωj

Γ g
)
. (4.24)
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Substituting F (u) = RT
ΓFΓ(g) in (4.10) leads to the equation RΩR

T
ΓFΓ(g) = 0. Since

the latter is trivially satisfied for all degrees of freedom not lying on Γ, the system
has to be reduced to Γ ∩ Ω, leading to

0 = RΓ∩Ω
Ω RΩR

T
ΓFΓ(g) = RΓ∩Ω

Γ FΓ(g).

We have obtained the following substructured problem: find g ∈ RNΓ such that
R∂Ω

Γ g = R∂Ωπ
−1
h (uh,D) and

RΓ∩Ω
Ω FΓ(g) = 0. (4.25)

4.2.4 Discrete Approximate Substructured Problems and Coarse DtN
Maps

We now proceed to the discrete version of the approximate substructured problem
(4.7). Similar to the definitions introduced in Section 4.2.1, for any ω ⊂ Γ, we
denote by Nω the number of coarse nodes belonging to ω, and by Rω

Γ the restriction
matrix from RNΓ to RNω . As before, the transpose of Rω

Γ is denoted by RΓ
ω .

Let (ϕα)NΓ
α=1 be a nodal basis of VH(Γ) made of “hat” functions associated to the

set coarse grid nodes {sα}NΓ
α=1 (see Figure 4.1 for visual). More precisely, the basis

function ϕα ∈ VH(Γ) is assumed to satisfy

ϕα(si) =

{
1, α = i,

0, α ̸= i,

for all coarse grid nodes si. Given this nodal basis in VH(Γ) we define the function

reconstruction operator πH from RNΓ to VH(Γ) by πH(v)(x) =

NΓ∑
α=1

vαϕα(x). We

further denote by ϕH the NΓ by NΓ matrix whose columns contain the values of
the basis functions ϕα at the skeletal degrees of freedom; more specifically, the lth
component of a column index α of ϕH is given by

(ϕH)
l,α = ϕα(silΓ).

for α = 1, . . . ,NΓ and each i = 1, . . . , NΓ such that ilΓ ∈ IΓ.
The local version of ϕH is defined by

ϕHj = R
∂Ωj

Γ ϕHRΓ
∂Ωj

, (4.26)

where ϕHj is composed of the N∂Ωj
local basis vectors of size N∂Ωj

corresponding
to the local coarse grid nodes on ∂Ωj. We note that ϕHj satisfies

R
∂Ωj

Γ ϕH = ϕHjR
∂Ωj

Γ . (4.27)

In order to derive the coarse approximation of the problem (4.25), we first express
the latter in the following variational form:

Find g such that R∂Ω
Γ g = R∂Ωπ

−1
h (uh,D) and satisfying

vT FΓ(g) = 0 for all v ∈ Im
(
RΓ

Γ∩Ω
)
.

(4.28)



108
Chapter 4. Scientific Machine Learning for Nonlinear Elliptic PDEs

with Rough Coefficients

The Galerkin approximation of (4.28) using the coarse space VH(Γ) is obtained by
setting g ≈ ϕHgH with some appropriate boundary conditions and taking the test
elements v in Im

(
RΓ

Γ∩Ω
)
∩ Im (ϕH) = Im (ϕH) ∩ Im

(
RΓ

Γ∩Ω
)
. The latter amount to

setting v = ϕHRΓ
Γ∩ΩvH with vH ∈ RNΓ∩Ω . This leads to the system

RΓ∩Ω
Γ ϕT

HFΓ (ϕHgH) = 0.

In view of (4.24) and (4.27), we have

N∑
j=1

ϕT
HR

Γ
∂Ωj

DtNh,j

(
R

∂Ωj

Γ ϕT
HgH

)
=

N∑
j=1

RΓ
∂Ωj

ϕT
HjDtNh,j

(
ϕHjR

∂Ωj

Γ gH

)
.

With this, the definition of the coarse DtN operator acting from RN∂Ωj to itself given
by

DtNH,j = ϕT
Hj ◦DtNh,j ◦ ϕHj, (4.29)

such that we denote

FH(gH) =
N∑
j=1

RΓ
∂Ωj

DtNH,j

(
R

∂Ωj

Γ gH

)
. (4.30)

Let uH,D ∈ VH(Γ) be some approximation of uD, the coarse Galerkin approximation
of (4.10), or equivalently, the finite element approximation of (4.7) reads as follows:

Find gH ∈ RNΓ such that R∂Ω
Γ gH = R∂Ω

Γ π−1
H (uH,D) and RΓ∩Ω

Γ FH(gH) = 0.

(4.31)
We remark that even though it is considered a coarse approximation, the com-

putation of the discrete DtNj relies on fine-scale information and fine-scale input.
That is, it still takes in as input a vector of size NΓ which lives on the fine degrees
of freedom along the skeleton Γ. This computation can still become quite expen-
sive and the cost is not to be negated, as DtNj must be computed at each Newton
iteration used to solve the discrete substructured problem.

4.2.5 Learning Dirichlet-to-Neumann Maps

In Section 4.2, we discussed the computation of the DtN map and how by nature,
the substructured problem results in the DtN map being computed at each New-
ton iteration. As this computation can get very expensive, we explore a Scientific
Machine Learning (SciML) application to our problem. Specifically, we introduce

learned local DtN operators which we denote as D̃tNH,j. Once the model is gener-
ated, we can call the model at each Newton iteration without the need for a separate
computation on each subdomain. We remark that if the heterogeneities are periodic
in each subdomain, we can use the same NN model.

Let D̃tNH,j denote some approximation of DtNH,j which we will refer to as a
surrogate model; this surrogate model will be introduced in more details below. By

replacing the original operator DtNH,j by D̃tNH,j in (4.30), we define

FH,learn(gH) =
N∑
j=1

RΓ
∂Ωj

D̃tNH,j(R
∂Ωj

Γ gH).
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Figure 4.2: Representation of the learning workflow for the operator. Each neural network
is depicted as a graph and will be responsible for learning each component of the D̃tNH,j

operator. The first column of neurons (from left to right ) is the input layer, taking inputs

(u1, u2, · · · , us) , and the last column is the output layer with output fNHj
≈ D̃tNH,j . The

intermediate columns represent the hidden layers.

and we obtain the problem:

Find g̃H ∈ RNΓ such that R∂Ω
Γ g̃H = R∂Ω

Γ π−1
H (uH,D) and RΓ∩Ω

Γ FH,learn(g̃H) = 0.

(4.32)

We will construct the surrogate mapping D̃tNH,j by learning the individual com-
ponents of the original map. To learn this operator, we use a fully-connected feed-
forward NN. These networks are built as a sequence of layers including an input
layer, hidden layers, and an output layer. Each layer performs an affine transfor-
mation followed by a nonlinear activation function σ : R 7→ R. For each component

D̃tN
l

H,j, where l = 1, . . . ,N∂Ωj
, we approximate it using a neural network expressed

as a linear combination of functions:

D̃tN
l

H,j(θ;u) = φk
θ ◦ . . . ◦ φ1

θ(u),

where φk
θ(u) = σ(Wk(θ)u + bk(θ)). The weights matrix Wk and biases bk are

determined through training. We illustrate this concept with Figure 4.2.
The solution to the DtN operator is approximated by the following optimiza-

tion process. Let U = {us}ns
s=1 be a set of sampling vectors sampled in the range

(umin, umax), where ns denotes the total number of sampling vectors. For each
j = 1, . . . , N and l = 1, . . .N∂Ωj

, find θ∗ = argmin
θ

L(θ, U), with

Ll
j(θ, U) = c0Ll

j,0(θ, U) + c1Ll
j,1(θ, U) + cmonLl

j,mon(θ) (4.33)

where c0, c1 and cmon are positive weights, Ll
j,0(θ, U), Ll

j,1(θ, U) and Ll
j,mon(θ) are

defined by (4.34), (4.35) and (4.36) below.
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For the loss function (4.33), we have error in sampled values given by

Ll
j,0(θ, U) =

1

ns

∑
s

(
D̃tN

l

H,j (θ;u
s)−DtNl

H,j (u
s)
)2

, (4.34)

and error with respective derivatives given by

Ll
j,1(θ, U) =

1

ns

N∂Ωj∑
k=1

∑
s

(
∂uk

D̃tN
l

H,j (θ;u
s)− ∂uk

DtNl
H,j (u

s)
)2
. (4.35)

In addition ,we introduce the monotonicity loss terms defined either by

Ll
j,mon(θ) =

∫
(umin,umax)

N∂Ωj

((
∂ul

D̃tN
l

H,j (θ;u)
)−)2

+
∑
k ̸=l

((
∂uk

D̃tN
l

H,j (θ;u)
)+)2

du,

(4.36)
or by

Lj,mon(θ) =

∫
(umin,umax)

N∂Ωj

((
∂ul

D̃tN
l

H,j (θ;u)
)−)2

du, (4.37)

where (x)+ = max(x, 0), (x)− = min(x, 0) for any real x, and where the integrals
are taken over the training domain, which is an N∂Ωj

-dimensional cube. We note

that Ll
j,mon(θ) does not require any data sampling. The purpose of this terms in the

loss function is to enforce certain monotonicity properties that are expected from the
original DtNH,j maps. In particular, for the one-dimensional problem, we expect the
Jacobian of DtNH,j to have positive diagonal elements and non-positive off-diagonal
ones. We note that this property is closely related to the discrete maximum principle
and is classical for Finite Volume methods. The loss term defined in (4.36) aims to
penalize the wrong Jacobian signs. For problems in 2D, the off-diagonal elements
of DtN′

H,j do not have specific sign in general. Therefore, for such problems, we will
be using (4.37) instead of (4.36). The monotonicity constrained based on (4.36) or
(4.36) allows us to improve the robustness of Newton’s method for (4.32), which
otherwise would be likely to fail.

For training, we generate DtNH,j(u
s) and DtN′

H,j(u
s) values for each sampling

vector (us)ns
s=1. In terms of choosing sampling points to be used in training, we use a

uniform sampling procedure. Given a sampling range (umin, umax), we sample each
vector component with m entries equally spaced between umin and umax. Occasion-
ally, these m sampling points can also include additional points, particularly in the
“center” of existing training points. This naturally leads to ns = mN∂Ωj training
vectors for the NN model, where (us) ∈ RN∂Ωj .

4.3 Numerical experiments

4.3.1 1D degenerate elliptic problem

We first consider the following nonlinear equation

au−
(
Kϵ(x)

(
u4
)′)′

= 0 (4.38)
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Figure 4.3: Partitioning of the model domain and the plot of Kϵ(x).

posed in the domain (0, 1) with some non-negative Dirichlet boundary conditions.
The diffusion coefficient is given by

Kϵ(x) = 10−2 +
1

2

(
1 + sin

(
10πx+

π

4

))
,

and a = 20. Equation (4.38) can be interpreted as a stationary variant of the
porous medium equation [103]. It can be shown that u takes values in the interval
[0,max(u(0), u(1)]. We note that, since the diffusion term in (4.38) degenerates
at u = 0, the solutions of (4.38) may vanish over some portion of the domain.
The domain (0, 1) is partitioned into five subdomains of equal size. We refer to
Figure 4.3 for the illustration of the partitioning and the coefficient Kϵ. Because the
partitioning of the domain is matching the periodicity of Kϵ(x), the DtN operators
coincide for all the subdomains. As the analytical expression of the subdomain’s DtN
operator is not available, the latter will be replaced by the approximate one denoted
by DtNh,j and computed by a finite element method using 200 grid points. To be
more specific, we use a P1 finite element method with mass lumping. We note that in
the one-dimensional case, the mapping DtNh,j, acting from R2 to itself coincides with

the coarse operator DtNH,j For the surrogate model D̃tNH,j, we use a fully connected
neural network with two hidden layers of 64 neurons each. The activation function
used in all the numerical experiment is given by σ(u) = max(u, 0)2. The model is
trained over the domain [0, umax]

2 with umax = 4. Training points are sampled over
a regular grid in [0, umax]

2 consisting of ns = 22, 32, 42 and 52 points.
The loss function involves both values and derivatives of DtNH,j at the sampling

points with c0 = 1 and c1 = 0.1, as well as the monotonicity component (4.36) with
cmon = 4. The integral in (4.36) is approximated numerically based on integrand
values over a regular 40× 40 grid.

Let us begin with a qualitative analysis of the surrogate D̃tNH,j model. Recall
that, in 1D, DtNH,j (coinciding with DtNh,j) maps R2 to itself, which can be inter-
preted as mapping left and right Dirichlet data to a pair of left and right fluxes. We
report on Figure 4.4 the left flux and its surrogates as a function of the input Dirich-
let values. The surface z = DtNH,j((uleft, uright))

1 shown as solid is the same for all

sub-figures. Colored wireframe surfaces show z = D̃tNH,j((uleft, uright))
1 for various

number of sampling points (4, 5 and 9 for the first, second and third rows respec-
tively), and different values of coefficients cα in (4.33) (same for each column). The
results obtained using DtN values alone (c1 = 0 = cmon = 0) are shown in the first
column, those obtained using both values and derivatives (cmon = 0) are reported in
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the middle column. Finally, the right column shows the outputs of the model using
the additional monotonicity loss term (4.36). For the sake of clearer visualization,
the parameter a is set to 1. Unsurprisingly, fitting not only the values, but also the
tangential planes has a drastic benefit on the quality of the surrogate model; we see
this by comparing the left and middle columns of Figure 4.4. Models with c1 > 0
manage to capture the shape of the response surface reasonably well for very few
training points. We also observe that adding the monotonicity loss function does
not seem to pollute the interpolation quality; we see this by comparing the middle
and right columns of Figure 4.4.

We report on Figure 4.5 the interpolation error of DtNH,j in relative L2((0, umax)
2)

norm as the function of the number of sampling points. The error is evaluated over
a regular 20 × 20 grid in [0, umax]

2. Here, in addition to the points sampled over
regular ns × ns grid, we include additional points taken at the centers of the sam-
pling grid cells. The decrease of error deteriorates after approximately 25 sampling
points. This saturation effect (around error value of 10−3.5) is even more clear in
the second test case (see Figure 4.9 below). The failure in achieving higher accuracy
could likely be attributed to our current training algorithm, combined with the fact
that the structure of the surrogate model is fixed through the whole experiment.

We further evaluate the performance of the surrogate models for the solution
of the substructured problem (4.32), with u(1) = 0, and u(0) taking values in
{1, 2, 3, 4}. Once the coarse solution gH and g̃H are computed by approximately
solving (4.31) and (4.32), respectively, we reconstruct the solution inside the sub-
domains by solving local problems on Ωj with boundary condition given either by
gH |∂Ωj

or g̃H |∂Ωj
. Figure 4.6 reports the reconstructed solution, using both the orig-

inal and the surrogate DtN models, for different boundary conditions and varying
number of sampling points. Starting from ns = 32, the surrogate model produced
the solutions which are visually appear to be accurate. The relative L2(0, 1) error
as the function of the number of sampling points is reported by Figure 4.5.

The numerical solution of (4.31) and (4.32) is obtained by Newton’s method.
In Figure 4.7, we report typical convergence history for Newton’s method for the
original (4.31) and the surrogate model (4.32) with u(0) = umax and ns = 42. Here,
the use of the surrogate model leads to convergence of Newton’s method with slightly

fewer iterations. Most importantly, the inference time of D̃tN is much lower than
the time required to evaluate DtN.

4.3.2 1D p−Laplace problem

Next, we consider the following equation

au−
(
Kϵ(x)|u′|2u′

)′
= 0. (4.39)

In this example, all of the numerical parameters are set up as in the previous test
case with the exception of the coefficient a = 5. Again, we compare the solution
obtained using either the original or the surrogate substructured problem ((4.31) or
(4.32)). Solution comparison for different boundary conditions and varying sampling
point size is reported on Figure 4.8. Starting from ns = 32, the solution obtained
using the surrogate model appears to be reasonably accurate. Figure 4.9 exhibits
convergence of the relative interpolation and solution errors in the L2((0, umax)

2) and
L2(0, 1) norms,respectively. As before, we observe the saturation of the interpolation
error as the function of ns; this phenomenon is even more pronounced than in the
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Figure 4.4: Qualitative comparison of the surfaces z = DtNH,j((uleft, uright))
1 (solid) and

z = D̃tNH,j((uleft, uright))
1 (wireframe). Left column (blue): only DtN values included.

Middle column (green): DtN and DtN derivatives included. Right column (purple): DtN
values, derivatives, and monotonicity assertion included. Top to bottom: ns = 22 training
points, ns = 22 + 1 training points, ns = 32 training points.
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Figure 4.5: Left: Interpolation relative L2 error. Right: Solution relative L2 error.

previous test case. Typical convergence of Newton’s method is shown by Figure
4.10 for u(0) = 4 and ns = 42. Although Newton’s method requires twice as many
iterations for the surrogate model compared to the original one, the former leads to
a much faster algorithm due to a much lower inference time.

4.3.3 2D degenerate elliptic problem

We consider a two-dimensional version of (4.38) given by

u− div
(
Kϵ(x, y)∇u4

)
= 0 in Ω = (0, 1)2, (4.40)

combined with the Dirichlet boundary conditions

u(x, y) = max(umax(x+ y − 1), 0) on ∂Ω.

where umax = 1.2. That is, u(x, y) = 0 on the lower and left boundaries and
u(x, y) = umax(x+ y − 1) on right and top ones. We set

Kϵ(x, y) = 10−2 +
1

2

(
1 + sin

(
10x+

π

2

)
sin
(
5y +

π

2

))
,

and we consider a regular partitioning of Ω into 5 × 5 subdomains (see Figure
4.11 for illustration). Here again, since the partitioning of the domain matches the
periodicity of the coefficient Kϵ, one only needs to build a single surrogate DtN
model. More precisely, for every component of DtNl

H,j, we train a specific model

D̃tN
l

H,j using a fully connected neural network with 2 hidden layers of 20 neurons

each and the activation function σ(u) = max(u, 0)2.
The reference DtNH,j operator is computed using mass lumped P1 finite element

method on a fine grid with approximately 660 triangles and 340 nodal degrees of
freedom by subdomain. We report on Figure 4.11 the solution using this reference
DtN map. The training data is sampled on a regular grid over [0, umax]

4. The loss
function uses both values and derivatives of DtNl

H,j at the sampling points with

c0 = 1 and c1 = 0.1. The monotonicity of D̃tN
l

H,j is enhanced by adding the loss
term (4.37) with cmon = 10. The integral in (4.37) is approximated by a Monte
Carlo method, using 200 random points sampled in [0, umax]

4 at every optimization
step.
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Figure 4.6: Solution profiles of (4.38) for various left boundary conditions using DtNH,j

(solid) and D̃tNH,j (dashed) operators for ns = 4, 9, 16 and 25.

Figure 4.7: Convergence of Newton’s method using DtNH,j (black) and D̃tNH,j (red)
operators to solve (4.38).
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Figure 4.8: Solution profiles of (4.38) for various left boundary conditions using DtNH,j

(solid) and D̃tNH,j (dashed) operators for ns = 4, 9, 16 and 25.

Figure 4.9: Left: Interpolation relative L2 error. Right: Solution relative L2 error.
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Figure 4.10: Convergence of Newton’s method using DtN (black) and D̃tN (red) operators
to solve (4.39).

Figure 4.11: Left: Diffusion coefficient Kϵ(x). Right: Solution of model problem (4.40)
using the original DtNH,j operator.
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ns 24 34 44 54

Rel. error 33% 8% 4% 3%

Table 4.1: Relative L2(Ω) error between surrogate model and true models.

Figure 4.12: Solution of model problem (4.40) using learned D̃tN map for various numbers
of sampling points, including ns = 24 (top left), ns = 34 (top right), ns = 44 (bottom
left), and ns = 54 (bottom right).

The solution obtained using the surrogate models trained with ns = 24, 34, 44 and
54 are reported on Figure 4.12, together with solution profiles along the line x = y
shown on Figure 4.13 and relative L2(Ω) errors shown in Table 4.1. We observe that
the error decreases as the number of sampling points grows, with the relative L2(Ω)
being below 10% starting from ns = 34.

Let us recall that the evaluation of the residual function (4.30) based on the
original coarse DtNH,j operator requires the solution of the family of local nonlinear
finite element systems, which is computationally demanding. In contrast, the infer-

ence time of D̃tNH,j is very low, allowing for fast computation of the solution to the
surrogate system (4.32). Although the surrogate solution g̃H may not be sufficiently
accurate, it can serve to initialize the nonlinear solver for the original coarse problem
(4.31). This idea is illustrated by Figure 4.14. Figure 4.14 reports convergence of
the relative L2(Ω) error between a very accurate solution to (4.31) and the current

Newton’s method iterate obtained using either using D̃tNH,j or DtNH,j with differ-
ent initialization. The black curve shows convergence of Newton’s method for the
original problem (4.31), starting from zero initial guess, and is the same for all three
sub-figures. Similarly, the red curves depict convergence of Newton’s method for
the surrogate problem (4.32) for various number ns = 24, 34 and 44, again starting
for zero initial guess. The stagnation of the red curve is results the approximation
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Figure 4.13: Original (blue) and surrogate (red) reconstructed solutions along the line
y = x for ns = 24 (top left), ns = 34 (top right), ns = 44 (bottom left) and ns = 54

(bottom right).
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Figure 4.14: L2 error between the reference solution and the current iterate of Newton’s
method for (4.32) using zero initial guess (red), and (4.31) with either initial guess set
to zero (black) or provided by the approximate solution of (4.32). Top: ns = 24 (left),
ns = 34 (right). Bottom: ns = 44.

error associated to D̃tNH,j. Finally, the blue curve shows convergence of Newton’s
method for (4.31) starting from the surrogate solution. For the original coarse prob-
lem, convergence up to the tolerance of 10−5 is obtained within 17 iterations. In
contrast, the Newton’s method initialized by the surrogate solution requires up to 4
times fewer iterations in order to achieve the similar accuracy. In particular, there
are only 7, 5 or 4 iterations needed for ns = 24, 34 and 44, respectively. Note that
even when using a very crude ns = 2 surrogate model, a significant reduction of
Newton’s step is achieved.

4.4 Conclusions

We have presented the framework that combines the Multi-scale Finite Element
(MsFEM) method with techniques from Machine Learning, providing an extension
of the former to the case of nonlinear PDEs with highly oscillatory coefficients. Our
approach relies on learning Dirichlet-to-Neumann (DtN) maps acting between some
low-dimensional (coarse) spaces. The surrogate DtN operators are further com-
bined within a global substructured formulation solved by Newton’s method. The
optimization process involves fitting values and derivatives of the true coarse DtN,
where incorporating derivative information into the loss function plays a pivotal role
in accuracy of the learned operator. In addition, we weakly enforce some monotonic-
ity properties of the original model, which improves the performance of Newton’s
method.
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Numerical experiments, performed in 1D and 2D and involving challenging p−Laplace
and degenerate diffusion equations, have shown promising results. With just a few
training points by dimension, the substitution model can approach the solution
with an accuracy of a few percent. A further improvement in the accuracy can be
achieved by using the “learned” solution as an initial guess for Newton’s method
applied to the original (not learned) substructured formulation, allowing us to en-
ter directly into the region of quadratic convergence and obtain a more accurate
“learned” solution. Although our numerical experiment has been so far limited to
the case periodically distributed coefficients, the extension to the non-periodic case
is trivial and will be carried in future. Future work also involves incorporating
techniques from Principal Component Analysis (PCA) to reduce complexity associ-
ated to the derivatives of the DtN maps. Additionally, the inclusion of higher-order
derivatives could increase model accuracy. Higher-order optimizers like BFGS, which
incorporates curvature/Hessian information into the loss function, may improve the
convergence of the loss function.





Chapter 5

Perspectives

This thesis has explored efficient numerical methods to solve linear and nonlinear
PDEs on heterogeneous domains, particularly domains containing a very large num-
ber of perforations. In our main application concerning urban flood modeling, these
perforations represent buildings and walls/fences in urban areas, while the flood is
assumed to be governed by the nonlinear parabolic Diffusive Wave equation. The
main ingredient used throughout this thesis is the Trefftz coarse space adapted to the
geometrical complexity of urban domain, which we introduce in Chapter 2. This
coarse space shares many common features with MsFEM and can be used either
as a component of a two-level Domain Decomposition method, within a Galerkin
method, or in combination with Machine learning techniques. Below, we highlight
potential research avenues arising from the current contribution. The discussion is
organized following the structure of the manuscript.

Chapter 2 introduces the Trefftz coarse space adapted to urban geometries in the
context of a simple linear elliptic equation. The main theoretical contribution con-
cerns the error estimate regarding the H1-projection over the coarse space. The
error analysis does not rely on global regularity of the solution and is performed
under some very minimal assumptions regarding the geometry of the domain. How-
ever, the right-hand side of the error estimate involves the norm of the (unknown)
solution along the coarse edges. This could potentially be improved by modifying
the error estimate so that the right-hand side is independent of the solution, and
instead dependent on the the source term and boundary data. Additionally, we have
observed a higher order of convergence in the L2 norm compared to the H1 norm;
future work could involve the extension of the error analysis to the L2 norm based
on Aubin-Nitsche trick.

Combined with the Restricted Additive Schwarz (RAS) method, the Trefftz space
leads to an efficient and robust iterative solver or preconditioner for linear systems
resulting from fine-scale finite element discretizations. This improvement comes
at the price of a somewhat larger coarse problem compared to some traditional
coarse spaces. The dimension of the coarse space can be reduced by considering
zero-order polynomials on the coarse edges that do not intersect any other coarse
edge. Compared to the case of coarse functions that are piece-wise affine along the
skeleton, this approach can eventually reduce the size of the coarse by at most factor
2.

Finally, we have assumed so far that the urban structures are impervious and thus
can be removed from the computational domain. A more realistic representation of
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the urban data may involve associating it with some low but positive permeability
allowing for some water flow. We expect our methods and analysis to readily extend
to such configurations.

Chapter 3 provided multiple efficient nonlinear domain decomposition methods to
solve nonlinear equations on complex, perforated domains. Specifically, we have
focused on a Diffusive Wave model on a domain with numerous perforations. The
Trefftz coarse space introduced in Chapter 2 for linear problems on perforated do-
mains proves to be well-suited as a component of efficient two-level methods for this
challenging nonlinear flow model. Particularly, the two-level RASPEN method with
the Trefftz space performs extremely well. The performance of the alternative meth-
ods are evaluated in terms of the number of nonlinear and linear iterations and the
computational complexity is detailed for all considered methods. However, our cur-
rent implementation does not allow any definitive conclusions to be drawn regarding
the rapidity of calculation of the methods under consideration. The main bottleneck
is the subdomain loop, which in Python becomes very inefficient as the number of
subdomains N increases. This problem can be alleviated either by compiling the
code or by performing the calculations in parallel.

For the linearized systems resulting at each iteration of the Two-step and New-
ton methods, the Trefftz space performs well as a component of the two-level RAS
preconditioner and yields a reasonable number of inner GMRES iterations per outer
iteration. It results in a fair robustness in terms of GMRES iterations as N is in-
creased, with these iterations generally slightly increasing with N . We believe that
the latter effect could be mitigated by updating the coarse basis functions according
to the changes in the diffusion coefficient. For example, the basis functions could
be updated over time to account for the solution dependent coefficient k(u,∇u) in
the Diffusive Wave model. We have also proposed a coarse Galerkin method which
provides a coarse approximation to the solution of the nonlinear PDE. Future work
may involve convergence analysis of this nonlinear method. A parallel implementa-
tion would address the cost of the fine-scale assembly in the coarse Galerkin method
and is already in progress. Alternatively, the computational cost associated to the
fine-scale assembly can be mitigated using hyper-reduction techniques like (Discrete)
Empirical Interpolation Method [10], [32], [109].

Chapter 4 explored the combination of machine learning with the efficient numeri-
cal solutions of nonlinear PDEs. We have presented the framework that combines
the Multi-scale Finite Element (MsFEM) method with techniques from Machine
Learning, providing an extension of the former to the case of nonlinear PDEs with
highly oscillatory coefficients. Our approach relies on learning Dirichlet-to-Neumann
(DtN) maps acting between some low-dimensional (coarse) spaces. Our work into
scientific machine learning is introductory, and further exploration is needed to fully
understand this topic.

Although numerical experiments have so far been limited to the case of peri-
odically distributed coefficients, the extension to the non-periodic case such as the
urban domains discussed in the earlier chapters should be carried out in the future.
The main challenge regarding the non-periodic case is that one would need to train
as many surrogate models as the number of subdomains. On the other hand, dealing
with perforated domains requires higher-dimensional approximate DtN operators,
as the number of coarse degrees of freedom by subdomain is not fixed, requiring
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larger training sets and surrogate models. However, to some extent, this is merely
technical as both the generation of the training data and the training itself are
embarrassingly parallel.

Future work also involves incorporating techniques from Principal Component
Analysis (PCA) to reduce the complexity associated to the derivatives of the DtN
operators. Additionally, the inclusion of higher-order derivatives of the DtN operator
could increase model accuracy. The complexity of the resulting loss function can be
controlled by only considering higher derivatives of the dominant diagonal part of the
operator. Additionally, future work would involve an implementation which allows
for higher-order optimizers like BFGS.We remark finally that as an alternative to
our proposed method, the DtN operators could be generated with PINNS and this
would be an interesting avenue for future work.
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