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Abstract

Résumé en Français

MODÉLISATION DE TURBULENCE OPTIQUE UNIDIMENSIONNELLE

L’étude de l’optique non-linéaire est d’importance pratique car cela désigne des sys-
tèmes tels que les fibres optiques et des cristaux liquides mais aussi d’importance théorique
car la lumière non-linéaire possède des propriétés très similaires à l’hydrodynamique. Les
systèmes optiques non-linéaires sont modélisés par une équation non-intégrable qui con-
tient une physique riche. Dans cette thèse, nous explorons deux aspects de cette équation.
Nous analysons d’abord la propagation de structures localisées dans ce système et nous
concluons que ce dernier tend vers un état final qui agit comme un attracteur. Nous
l’identifions à un état lié, une structure localisée qui oscille en amplitude et en largeur et
qui se propage au milieu d’ondes faiblement non-linéaires. Cet état-lié est caractérisé avec
différents outils dont le spectre non-linéaire. Ce spectre non-linéaire a été élaboré pour le
système intégrable correspondant à notre système non-intégrable, et apparaît comme un
outil pertinent pour caracteriser notre système.

Nous étudions aussi les cascades turbulentes de ce système non-intégrable avec l’aide
d’un modèle réduit. Ce modèle permet une étude théorique en simplifiant les interactions
entre modes qui sont responsables des cascades turbulentes. Avec ce modèle, nous pou-
vons déterminer les spectres de Kolmogorov-Zakharov des invariants qui cascadent. Pour
l’un de ces invariants, l’action d’onde, la prédiction de Kolmogorov-Zakarhov s’avère être
non réalisable à cause de flux divergents. Un modèle non-local permet d’obtenir un nou-
veau spectre. Ces prédictions théoriques sont confrontées à des simulations numériques.
Les spectres obtenus numériquement confirment globalement ces prédictions théoriques.
Lors de ces simulations, nous avons observé des solitons incohérents, qui sont des struc-
tures pouvant se propager dans des systèmes optiques non-intégrables avec la particularité
d’avoir une enveloppe globale constante malgré des changements à échelle plus petite. Ces
structures ont été observées en coexistence avec des cascades turbulentes.

Mots clefs: 1D-NLSE, optique non-linéaire, turbulence, solitons
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Abstract in English
MODELING ONE-DIMENSIONAL OPTICAL TURBULENCE

Studying non-linear optics systems is of practical importance because it applies to
systems such as optical fibers and liquid crystals but also of theoretical importance because
non-linear light exhibit properties very similar to hydrodynamics. Non-linear optics are
modeled by an non-integrable equation which contains a rich physics. In this thesis,
we explore two aspects of this equation. We first analyse the propagation of localized
structures in this system and we conclude that the system tends to a final state which
acts as a statistical attractor. We identify this attractor as a bound-state, a localized
structure which oscillates in amplitude and in width and which propagates among weakly
non-linear waves.

We also study the turbulent cascades of this system with the help of an reduced model
of the wave kinetics. This reduced model allows us to derive the Kolmogorov-Zakharov
spectra of cascading quantities. The Kolmogorov-Zakharov spectrum for the wave-action
is found to be non-local and replaced by a no-local prediction. These theoretical predic-
tions are then compared to numerical simulations and show an overall good accordance
with numerics, particularly for the non-local spectrum of wave-action. Such numeri-
cal simulations show the existence of Incoherent Solitons, which are localized structures
propagating with an envelope approximately constant but with propagation of smaller
structures inside it. Incoherent Solitons have been found in coexistence with cascade, but
for different directions in the Fourier space.

Key words: 1D-NLSE, non-linear optics, turbulence, solitons
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Abbreviations

• 1D-, 2D-, 3D- : one dimensional, two dimensional, three dimensional

• (1D-)NLSE : (one dimensional) Non-Linear Schrödinger Equation

• (1D-)SHE : (one dimensional) Schrödinger-Helmholtz Equation

• CT : Canonical Transform

• DAM : Differential Approximation Model

• DC : Direct Cascade

• DST : Direct Scattering Transform

• IS : Incoherent Soliton

• IST : Inverse Scattering Transform

• KE : Kinetic Equation

• KZ : Kolmogorov-Zakharov

• PDE : Partial Differential Equation

• PSD : Power Spectral Density

• (q)ST : (quasi-)Soliton Turbulence

• RJ : Rayleigh-Jeans

• SLAM : Semi-Local Approximation Model

• SWL : Short-Wave Limit

• WT : Wave Turbulence

• ZT : Zakharov Transform
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General Introduction

Using a term like nonlinear science is like referring to the bulk of zoology as the study of
non-el ephant animals.

Stanisław Ulam,
Co-author of one of the very first numerical simulations

It is well known that the number of physical systems that can be perfectly described
by linear physics is quite small. Assuming that the response of a system is proportional
to its perturbation may allow simple computations, but very often lets aside important
characteristics of a real system. Non-linear equations are almost always required to repre-
sent concrete systems, such as the oscillation of a pendulum, hydrodynamics or non-linear
optics. In this thesis, we will focus on the last example, realized, for instance, in optical
fibers or liquid crystals.

Even among the non-linear equations, some of them are easier to grasp, as they con-
serve an infinity of quantities during time evolution. These are said integrable and have
the property to have particular solutions propagating with constant speed and profile,
the solitons. In contrast to the linear and non-linear equations, the non-integrable non-
linear equations are more difficult to deal with but reflect richer and more realistic physics.

Optical solitons have been considered as a way to propagate information through
optical fibers. Indeed, as they keep their shape during the propagation, they can represent
bits and we could use trains of solitons to send binary messages. However, the integrable
equation for which we can define solitons is only a model to describe real systems. Concrete
systems are found to be more complex, with higher-order terms or dissipation which can
make the integrable case a poor model. In these real and non-integrable systems, the
solitons undergo changes of amplitudes and profile which can cause loss of information. It
is thus crucial to understand how solitons propagate and collide in non-integrable systems.

Another aspect of non-integrable systems is cascade, allowed with the interaction
of waves whose mixing can propagate quantities, such as energy, through scales. Such
cascades can occur when the system is weakly non-linear. Their study improves our
understanding of non-linear optics system but also of hydrodynamics, as fluid flows and
non-linear light share common properties.
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General Introduction

Wave turbulence can be defined as the statistically study of ensembles of interacting
non-linear random waves. This framework allows the study of non-equilibrium systems.
We can define two different regimes, strong wave turbulence, with the solitons and lo-
calized structures, and weak wave turbulence, which studies the cascades of invariants
through scales, due to the interaction of weakly non-linear waves. Real physical system
appear to be characterized by both regimes of wave turbulence. for similar time and
length scales. These two aspects are entangled and can not be considered separately. It is
thus necessary to describe properly both phenomena to have a realistic model of concrete
experiments with non-integrable equations. More practically, a better understanding of
the interactions between coherent structures and waves is necessary to limit the creation
of waves, and thus, the loss of information during the sharing of information via solitons.
Consequently, the complete study of non-integrable equations is of interest for both fun-
damental and applied physics.

During this thesis, we will analyse the properties of a non-integrable equation which
models non-linear optics : the one-dimensional Schrödinger-Helmholtz equation. This
equation models systems such as optical fiber and liquid crystals, taking into account
non-local effects. In chapter 1 we will present this equation and its properties. We will
also introduce the corresponding integrable equation and discuss the solutions of these
two equations.

Then, we will present a complete study of the propagation of different coherent struc-
tures into this non-integrable equation, with the comparison of numerical simulations.
The latter will suggest the existence of a universal attractor. This attractor has been ob-
served in the literature for other non-integrable systems, and we will confirm its existence
with different types of initial conditions. With the help of different diagnostics, it will
be characterized as a pulsating localized structure, oscillating in amplitude and width.
These results are reported in chapter 2.

Finally, in the chapter 3 we will detail the approximation model that we have used to
study theoretically the cascades in the one-dimensional Schrödinger-Helmholtz equation,
and to derive the associated spectra. These predictions will then be confronted with nu-
merical simulations. These simulations will be carefully analysed and will give important
information about the cascades in this non-integrable system.
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CHAPTER 1

Theoretical introduction

1.1 Equations studied

1.1.1 1D Non-Linear Schrödinger Equation (NLSE)

State of the art

We first introduce the one dimensional non-linear Schrödinger equation (1D-NLSE)
for a function u(x, t), defined in R × [0, +∞[→ C,

i
∂

∂t
u + 1

2
∂2

∂x2 u + u|u|2 = 0. (1.1)

This equation is a particular case of the 1D Schrödinger equation

i
∂

∂t
u + 1

2
∂2

∂x2 u + V [u, x, t]u = 0, (1.2)

where V ∈ R is referred to as the potential. If V is a function of u, the equation is said
non-linear because of the term V u which is not only proportional to u. Such equations
are called NLS-type equations and are defined by their potential V .

The NLSE (not only the one-dimensional version) is widely used in different physics
fields to model non-linear systems such as the propagation of light in optical fibers with
the recent development of optical solitons for communication [1], [2]. The 1D-NLSE also
describes the Bose-Einstein Condensation of dilute gases [3] [4], non-linear optics [5] [6] and
gravity waves in deep water [7]. In the next pages, more examples of applications of NLSE-
derived equations will be provided. The 1D-NLSE appears in so many physical contexts
because it is a universal equation that can be derived under very general conditions. This
importance of the 1D-NLSE can be explained by the following observation. It is the
leading order equation for the complex envelope of a quasi-monochromatic wave-train
propagating inside a dispersive, non-linear medium in the paraxial approximation [8].
Due to the universal aspect of the NLSE, understanding its properties and its solutions
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Chapter 1. Theoretical introduction

helps us understanding non-linear physics generally, and shed light on the phenomenology
exhibited by a wide variety of non-linear systems. This variety of systems corresponds to
a variety of potentials V .

The Direct and Inverse Scattering Transform

The 1D-NLSE (1.1) has been found to be integrable by Zakharov and Shabat in 1970
[9], using the Direct and Inverse Scattering Transforms (DST and IST). By integrability,
we refer to the property of an equation of having an infinite number of quantities conserved
through time. The DST and IST are mathematical tools developed by Gardner et al. in
1967 [10] to solve another non-linear equation, the Korteweg-de Vries (KdV) equation

∂

∂t
u + ∂3

∂x3 + 6u
∂

∂x
u = 0. (1.3)

The method DST/IST is often referred to as the non-linear Fourier Transform (FT) [11]
because both methods are very similar. To solve a Partial Differential Equation (PDE),
linear (e.g. diffusion equation) or non-linear, one can compute the spatial Fourier Trans-
form of the function at a given time ti, make it evolve in time by taking the FT of the
equation until a further time tf and take the inverse FT to get back to the real space.
Similarly, the DST computes a non-linear spectrum for the function u at a given time
ti, this spectrum is evolved in time up to tf and then, the IST transforms this spectrum
back into the function in the real space. This analogy is illustrated in Figure 1.1.

In both cases, the temporal evolution of the spectrum has a weaker computational
cost than the numerical resolution of the differential equation. For a linear PDE, the FT
spectrum evolution is trivial, and for non-linear PDE, the evolution is straightforward if
one takes a particular caution (see the numerics section 2.3). With the DST/IST, the
evolution of the spectrum is always trivial, even for non-linear PDEs. Finally, these meth-
ods can compute u(x, tf ) directly from u(x, ti) without the necessity of calculating the
function for the intermediate times.

Figure 1.1: Analogy between the FT (a) and the DST/IST (b) methods to solve
differential equations - DST/IST methods are often referred to as the non-linear FT
due to the parallel between the two solving methods.

More precisely, the main idea of the DST/IST is to write the studied equation as the
compatibility condition ∂x∂tϕ = ∂t∂xϕ for a 2 × 1 vector ϕ. This vector ϕ solves the
Zakharov-Shabat (ZS) system (1.4) specific to the 1D-NLSE [12] [13].
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1.1. Equations studied

∂xϕ =
(

−iζ u
−u∗ iζ

)
ϕ (1.4a)

∂tϕ =
(

−iζ2 + i
2 |u|2 ζu + i

2∂xu
−ζu∗ + i

2∂xu∗ iζ2 − i
2 |u|2

)
ϕ. (1.4b)

In the general theory of the DST/IST, the matrix operators in the ZS system (1.4) de-
pend on the studied non-linear PDE. We denote as u a function solution of the 1D-NLSE
and which appears here as a potential. The function u is taken at a given ti but as a
function of x. We also introduce the complex parameter ζ ∈ C [12]. This situation is
similar to quantum physics when a wave function (here ϕ) encounters a potential (here u).

The complex parameter ξ can be computed by formulating the first equation (1.4a)
as an eigenvalue problem [13] [12],

Lϕ = i

(∂x 0
0 −∂x

)
−
(

0 u
u∗ 0

)ϕ = ζϕ. (1.5)

This operator L is called the Lax operator of the 1D-NLSE [13], and we can find an
anti-symmetric operator B such that

d
dt

L =
[
B, L

]
. (1.6)

This operator is found to be

B =
(

i∂2
x + i

2 |u|2 −iu∂x − i
2∂xu

−iu∗∂x − i
2∂xu∗ −i∂2

x − i
2 |u|2

)
. (1.7)

The operators L and B define the Lax pair of the 1D-NLSE. In the Lax theory [14], the
existence of this Lax pair proves the integrability of the 1D-NLSE. More generally, a non-
linear equation is integrable if and only if it has a Lax pair, which defines the conserved
quantities. In the literature [15], the Lax pair of the 1D-NLSE sometimes refers to the
matrix operators of the ZS system (1.4) but the latter are just another writing of the op-
erators L and B. Besides, this is only a terminology point and the core of the DST/IST
method, detailed in the coming pages, does not depend on this choice.

With equation (1.5), we can compute the complex parameter ζ as the eigenvalues of
the matrix L. This matrix is fully known as the function u is the analyzed function. More
precisely, L depends on t as its dependence on u(x, t). If the space is discretized into Nc
points, then the matrix L is 2Nc ×2Nc and thus has 2Nc complex eigenvalues. We denote
them {ζp}p∈J1,2NcK. These eigenvalues have an important physical meaning which will be
made explicit in the coming pages.

Each eigenvalue ζp defines an eigenvector ϕp via Lϕp = ζpϕp. As they are not of a
main interest in our work, the determination of these eigenvectors will not be detailed
here but can be found in [9] [16]. The study of these eigenvectors defines a constant Cp,
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Chapter 1. Theoretical introduction

the norming constant, for each eigenvalue, as well as a continuous function r(ξ), ξ ∈ R,
the reflection coefficient.

Combined with the eigenvalues ζp, the norming constant Cp and the continuous func-
tion r(ξ) define the non-linear spectrum of the function, also called scattering data :

non-linear spectrum =


ζp, Cp for p ∈ J1, 2NcK → discrete spectrum

r(ξ), ξ ∈ R → continuous spectrum.
(1.8)

As in the case of the Fourier spectrum, the non-linear spectrum embeds all the infor-
mation of the function. The discrete spectrum represents the localized structures of the
system, the solitons, introduced in the next subsection, while the continuous spectrum
gives access to the waves. The discrete spectrum will be more detailed section 2.2. This
non-linear spectrum is the outcome of the DST step. We would like to highlight that
the DST computes the non-linear spectrum for u(x, ti) at a fixed time ti and thus, the
non-linear spectrum only gives information on the components of u at this given time,
without any link with the previous times.

Once the non-linear spectrum has been computed for a time ti, the core of the
DST/IST method relies on the trivial time evolution for ζp, Cp and r(ξ). Indeed, the
eigenvalues ζp of the Lax operator L are constant in time. This property, called isospec-
trality, is a characteristic of the integrability of an equation, as a consequence of the Lax
theory [14]. The evolutions of Cp and r(ξ) are given by the second equation of the ZS
system (1.4b) [9] [17]:

ζp = const. ∀p , Cp(tf ) = Cp(ti)e2iζ2
p(tf −ti) , r(ξ, tf ) = r(ξ, ti)e2iξ2(tf −ti). (1.9)

Then, the IST step maps this non-linear spectrum back to the function in the real
space at the same time. This requires solving integral Gelfand-Levitan-Marchenko equa-
tions [9] [18], which is a complicated task. Mostly often, the IST step is performed
numerically or in simple or asymptotic cases. An effective alternative is the Darboux
transform [18] [19], used when the waves are absent from the system (r(ξ) = 0) and which
builds the function u(x, ti) recursively and from a known custom spectrum.

In all this thesis, each time the DST procedure or the DST spectrum are mentioned,
they refer to the DST framework devised for the 1D-NLSE from the Lax operator (1.5).

Solitonic solutions

The 1D-NLSE has two types of solutions : linear waves and asymptotically localized
structures. The nature of these localized structures depends on the sign of the non-
linearity. If the non-linear term has the same sign as the linear part, the 1D-NLSE is said
to be the focusing 1D-NLSE and admits bright solitons, in the other case, the defocusing
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1.1. Equations studied

1D-NLSE admits dark solitons. Both types of solution are particular examples of a gen-
eral class of non-linear PDEs solutions, solitons.

Solitons are solitary waves exhibited as solutions of non-linear equations such as 1D-
NLSE or KdV equation. More precisely, a soliton propagates with a constant profile in
space, keeping the same form without dissipation nor alteration. Its speed of propagation
is also constant. For bright solitons, these unique characteristics are allowed by a balance
between the focusing non-linearity of the system, which tends to concentrate the energy
in one point, and the dispersion, which causes a localized structure, as a wave-packet, to
lose its coherence. As we will see later, the constant amplitude and velocity are directly
linked with the isospectrality property of the discrete DST spectrum.

Solitons were first experimentally reported by John Scott Russell in 1843 with the ob-
servation of a solitary unperturbed wave created by a boat drawn by horses in a canal [20].
In 1955, the FPUT numerics showed energy cycles in a non-linear chain of oscillators, con-
trary to the expected equipartition of energy. This was explained by Zabusky and Kruskal
in 1965 with their introduction of solitary-waves pulses which they eventually named soli-
tons [21]. Up to now, the solitons have been discovered for many non-linear PDEs, like
1D-NLSE [9], 1D-KdV equation [10], sine-Gordon equation [22] and Boussinesq equa-
tion [23].

Solitons collide elastically no matter their characteristics, meaning that the collision
changes neither the solitons’ amplitudes nor their speeds. The solitons’ positions and
phases may be shifted but their profiles are unchanged. This observation can be general-
ized : all solitons of an integrable non-linear PDEs collide elastically.

The explicit formula of solitons depends on the corresponding non-linear equation.
For the focusing 1D-NLSE, the bright solitons are given by

uNLSE
sol (x, t) = A sech [A(x − s − vt)] eiv(x−s)e−i(v2−A2)t/2eiϕ, (1.10)

with the amplitude A, the velocity v, the initial position s and the phase ϕ. For the
1D-NLSE bright solitons, the parameters are independent but this is not a general obser-
vation for all solitons. For instance, KdV solitons are characterized by a relation between
the amplitude and the velocity : the bigger the soliton, the faster.

Figure 1.2(a) presents this profile (1.10) for A = 20, v = 4, s = 0, ϕ = 0 and t = 0.
With the amplitude A being a multiplying factor inside the sech function, the higher
the soliton, the wider. The bright solitons are characterized by the localization of the
function into a peak, while dark solitons represent localized dips in a continuous back-
ground [24]. This qualitative difference explains the adjective focusing and defocusing.
From now on, the terms 1D-NLSE and 1D-NLSE solitons will refer respectively to the
focusing 1D-NLSE, and bright solitons. As such, we will omit the adjectives focusing and
bright.

The main result of the DST applied to the 1D-NLSE is the explicit link between
the characteristics of the solitons and the positions of the eigenvalues in the complex
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Chapter 1. Theoretical introduction

plane [17]. Each soliton of amplitude A and velocity v is identified by an unique eigen-
value ζ = ζRe + iζIm = −v/2+ iA/2, as illustrated Figure 1.2(b). This identification can
be seen as a definition of a soliton for an integrable system. The isospectrality property
constrains the eigenvalues ζp to be constant in time, which also imposes the constancy of
A and v. This directly corresponds to the collisions between solitons being elastic.

Coherent structures balancing dispersion with self-focusing non-linearity can also exist
for non-integrable equations (see for instance 1.22), we will call such structures solitary
waves. However, for non-integrable equations, we can not find a Lax pair and we can
not apply a DST and, thus, these coherent structures can not be defined as eigenvalues
of a discrete DST spectrum. Given that, nothing prevents the amplitudes and speeds of
solitary waves from changing in time, leading to inelastic collisions. For the rest of this
thesis, a soliton is a coherent structure with constant amplitude and speed, undergoing
elastic collisions, solution of an integrable non-linear PDE and represented by a single
eigenvalue in the corresponding DST spectrum. On the contrary, solitary waves are also
coherent structures with steady amplitude and speed during free propagation, but under-
going inelastic collisions. These solitary waves are solutions of non-integrable non-linear
PDE.

3
4
π π 5

4
π

x

0

5

10

15

20

(a)

|uNLSE
sol (x, 0)|

−4 −2 0 2

ζRe

0

2

4

6

8

10

ζ
Im

(b)

Figure 1.2: Pure soliton profile and discrete DST spectrum - (a) Plot of the
function (1.10) with A = 20, v = 4, s = 0 and ϕ = 0. (b) Corresponding discrete DST
spectrum. The soliton is represented by an unique eigenvalue ζ which position is given
by its characteristics, ζ = −v/2 + i20/2 = −2 + 10i.

From a terminology point of view, this what differentiates the solitons (elastic colli-
sions) from solitary waves (inelastic collisions). This property is a direct consequence of
the integrability of the equation as it comes from the isospectrality property of the Lax
operator spectrum {ζp}p.

8



1.1. Equations studied

To summarize, the 1D-NLSE is integrable because one we associate a Lax pair with
it. The spectrum of the Lax operator defines moving localized structures, the solitons.
The integrability of 1D-NLSE ensures that these solitons collide elastically, keeping their
amplitudes and velocities constant.

Hamiltonian formalism and conserved quantities

The 1D-NLSE (1.1) can be derived from a Hamiltonian formalism

i
∂

∂t
u = δ

δu∗ H. (1.11)

For 1D-NLSE, one can easily verify that the Hamiltonian HNLSE is

HNLSE =
∫

domain

1
2

∣∣∣∣∣∂u

∂x

∣∣∣∣∣
2

dx −
∫

domain

1
2 |u|4dx, (1.12)

which can be divided in two Hamiltonians, HNLSE
2 =

∫ 1
2

∣∣∣∂u
∂x

∣∣∣2dx and HNLSE
4 = −

∫ 1
2 |u|4dx.

The Hamiltonians can be written as functions of ûk(t) the Fourier components of
u(x, t), given in 1D by

ûk(t) ≡ û(k, t) = 1
L

∫
domain

u(x, t)e−ikxdx ⇔ u(x, t) =
∞∑

k=−∞
ûkeikx. (1.13)

Notice that we denote the wave-vector k ∈ R and k ∈ R+ its norm. The x-integration
is performed over the 1D domain of length L in which the system is defined. In numerics,
this often corresponds to a discretized box with different boundary conditions. This
discretization also truncates the k-sum to a maximum and gives discrete values for k.
With this decomposition into Fourier coefficients, we obtain

HNLSE =
∞∑

k=−∞

1
2k2|ûk|2

︸ ︷︷ ︸
HNLSE

2,k

−1
2

∞∑
k1−4=−∞

ûk1ûk2û∗
k3û∗

k4 δk1,k2
k3,k4︸ ︷︷ ︸

HNLSE
4,k

,
(1.14)

where δk1,k2
k3,k4

= δ(k1 + k2 − k3 − k4) is the Kronecker delta, equal to 1 if the argument is
equal to 0 and 0 otherwise.

The Hamiltonian HNLSE
2,k is a quadratic Hamiltonian, representing the linear waves

propagating without any interaction. Setting it equal with the standard form ∑
k ωk|ûk|2,

we obtain the following linear dispersion relation

ωk = 1
2k2. (1.15)

This dispersion relation is not linear in k and thus shows that 1D-NLSE is a dispersive
system : waves defined by two different wave-vectors k1 ̸= k2 will propagate with different
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Chapter 1. Theoretical introduction

phase velocities vp,k1 ̸= vp,k2 .

HNLSE
4,k represents an interaction Hamiltonian which represents non-linear interactions

between four modes. More precisely, it describes 2 ↔ 2-type interactions, between two
in-coming modes, with Fourier coefficients ûk1,2 , and two out-going modes, with Fourier
coefficients û∗

k3,4 . These modes must satisfy the condition k1 + k2 = k3 + k4 for the
interaction to happen, due to the Kronecker delta in the expression of the Hamiltonian.
Such waves are said in wave-number resonance. Figure 1.3 illustrates, in 2D for visibility,
such a process. This interaction is characterized by a coefficient T k1,k2

k3,k4
, depending on the

four modes, called interaction coefficient. This coefficient represents the strength of the
considered interaction. With the latter, the interacting Hamiltonian can be written as

H4,k = 1
2

∞∑
k1−4=−∞

T k1,k2
k3,k4

ûk1ûk2û∗
k3û∗

k4 δk1,k2
k3,k4

. (1.16)

For the 1D-NLSE, the interaction coefficient for 2 ↔ 2 interactions is found to be

T k1,k2
k3,k4

= −1.. (1.17)

Note that the factor 1
2 has been let out of the sum in the expression of HNLSE

4,k to take
into account the symmetry factor. The property of all Hamiltonian to be real quantities
implies relations for T

T k1,k2
k3,k4

= T k2,k1
k3,k4

= T k1,k2
k4,k3

=
(

T k3,k4
k1,k2

)∗

. (1.18)

The underscript i in Hi represents the order of the interaction by counting the number
of interacting modes. In particular, for H2, 1 ↔ 1 "interactions" just represent the free
propagation of linear waves.

Figure 1.3: 2D visualization of a 2 ↔ 2-type interaction

The 1D-NLSE is a conservative system which conserves exactly the total energy HNLSE

as long as forcing or dissipating terms are not added. Another quantity is conserved, the
wave-action, denoted N

N ≡
∫

domain
|u|2dx = L

2π

∞∑
k=−∞

|ûk|2. (1.19)
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The equality between the two integrals is ensured by the Parseval theorem. Wave-
action N can be interpreted as the number of particles when the 1D-NLSE describes a
dilute Bose gas or the total light intensity in an optical system without any loss. Exact
conservations of H and N are not limited to the 1D-NLSE, they are also valid in more
dimensions and for NLS-type equations for which the potential V only depends on |u|2.
Finally, we can note than an equation which conserves N can only have even-order in-
teraction Hamiltonians with M ↔ M -type interactions, with M an integer. For such
interactions, the number of in-coming waves is equal to the number of out-coming waves,
ensuring the conservation of the total number of waves, ie the wave-action N .

The 1D-NLSE also conserves exactly the total momentum

P = −i
∫

domain

(
u∗∂xu − u∂xu∗

)
dx, (1.20)

which has the property not to be sign definite. Contrary to the wave-action which is a
positive quantity by definition, the sign of P is not fixed.

We can note that the 1D-NLSE is only integrable in 1D. The 2D- and 3D- NLSE are
non-integrable and, consequently, do not exhibit soliton solutions. Moreover, the integra-
bility of the NLSE in 1D is an important characteristic as it implies that 1D-NLSE can
not exhibit a turbulent behaviour. To observe a turbulent evolution, we need to consider
the NLSE in more dimensions [25] or to break the integrability by adding terms, as we
describe next in section 1.1.2. Alternate means of breaking integrability have been stud-
ied, such as pumping or damping in optical fibers [5]. Such pumped and damped systems
do not conserve H or N , unless the damping exactly matches the forcing.

1.1.2 1D Schrödinger-Helmholtz Equation (SHE)
The equation we will focus on in this work is an NLS-type equation for a particular

potential V , the one-dimensional Schrödinger-Helmholtz equation (1D-SHE),

i
∂

∂t
u + 1

2
∂2

∂x2 u − V [u]u = 0 (1.21a)

β
∂2

∂x2 V − V = |u|2, (1.21b)

with u(x, t) a R× [0, +∞[→ C function and β a real and positive physical constant. The
potential V is defined by a differential equation 1.21(b). The 1D-SHE arises in non-linear
optics where sub-leading corrections to the 1D-NLSE need to be taken into account in
order to accurately describe the dynamics. In particular, the 1D-SHE describes optical
medium responds to the propagation of a light beam of intensity |u|2 by modifying its
refractive index (denoted here as V ). This modification involves both local and non-
local mechanisms. The local mechanism is the Kerr effect, represented by the term −V
in the Left-Hand-Side (LHS) of 1.21(b). If we consider only this local Kerr effect, we
would recover the 1D-NLSE. The non-local mechanism can be thermo-optic with the
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heating of the medium by the input beam which spreads through the crystals by diffu-
sion [26] [27] [28]. The non-local mechanism can also be, in elasto-optic medium such as
the liquid crystals, due to long-range elastic forces which spread the reorientation of the
molecules with the input beam [29] [30]. In both cases, the Schrödinger Equation 1.21(a)
for the variable u is coupled to a Helmholtz equation 1.21(b) for V . This motivates the
name Schrödinger-Helmholtz equation for the system. This coupling also means that the
value of the function u at a position x0 depends on its values at the other positions x ̸= x0.

We can combine both equations of the system (1.21) to have a single equation for
u(x, t).

i
∂

∂t
u + 1

2
∂2

∂x2 u + u
(

1 − β
∂2

∂x2

)−1
|u|2 = 0. (1.22)

Taking β = 0, we recover the integrable 1D-NLSE but it has been shown that the 1D-SHE
is not integrable for β > 0 [5]. Thus, the parameter β controls how much non-integrable
the system is. This non-integrability implies that the 1D-SHE can not be associated to a
Lax pair and, thus, does not admit solitons solutions as defined above.

Solitary wave solution

Despite its non-integrability and the absence of solitons as eigenvalues of a discrete DST
spectrum, the 1D-SHE also has a solitary wave solution, in the sense of a localized struc-
ture propagating in straight line keeping the same profile but which does not collide
elastically. The solitary wave solution uSHE

sol w of equation (1.22) has been found by [31],

uSHE
sol w(x, t) = 3

2
1√
2β

sech
[ 1
2
√

β
(x − vt)

]2
e−i( v2

2 − 1
2β

)teivx. (1.23)

The main differences with the soliton solution of the 1D-NLSE is firstly the exponent
2 of the sech-function. This changes the width of the localized structure. Secondly, the
amplitude is now fixed by the non-integrability parameter β : the amplitude is not a
free variable in the SHE. However, the solitary wave speed is still is independent from its
amplitude. The final difference is the different coefficients multiplying the sech, inside the
sech and in the exponential phase.

In Figure 1.4 we compare the profiles of a 1D-NLSE soliton and a 1D-SHE solitary
wave. uSHE

solw. is plotted for β = 10−2 and the amplitude A of uNLSE
sol is chosen for both

structures to have the same maximum 10.607. Both structures also have the same velocity
v = −1. The NLSE soliton is found to be slightly more narrow, due to the difference of
exponent for the sech-function. In (b) we also compute the DST spectrum of this solitary
wave. Here we use the DST procedure corresponding to the integrable 1D-NLSE and
that applying it to the non-integrable 1D-SHE does not presume any coherent results.
However, the solitary wave is still characterized by only one eigenvalue, like the 1D-NLSE
soliton, with the same real part as the 1D-NLSE eigenvalue 0.5 = −v/2. The difference
lies in the imaginary part, with A/ζIm = 2 for the 1D-NLSE soliton and 1.535 for the
1D-SHE solitary wave. This difference can be explained by the non-integrability of the
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Figure 1.4: SHE solitary wave profile and DST spectrum - (a) We compare 1D-
SHE solitary waves (β = 10−2) and 1D-NLSE soliton adjusted to have the same maximum.
The 1D-SHE solitary wave appears to be slightly wider, corresponding to a bigger wave-
action. (b) For each function plotted, we compute the discrete DST spectrum. They are
both represented by a unique eigenvalue, with the expected value for ζIm = A/2 for the
1D-NLSE soliton, as opposed to A/1.535 for the 1D-SHE solitary wave.

1D-SHE, while the DST is supposed to be applied on the integrable 1D-NLSE. The grey
region is a threshold which will be explained in section 2.2.

Hamiltonian formalism and conserved quantities

As for the 1D-NLSE, the 1D-SHE can be described with the Hamiltonian formalism
(1.11) with the following Hamiltonian, written with the Fourier components,

HSHE =
∞∑

k=−∞

1
2k2|ûk|2 + 1

2

∞∑
k1−4=−∞

SHET k1,k2
k3,k4 ûk1ûk2û∗

k3û∗
k4δk1,k2

k3,k4 , (1.24)

with the 4-modes interaction coefficient defined as a function of the scattering modes [25]

SHET k1,k2
k3,k4

= −1
4

(
A1234+A2134+A1243+A2143

)
, A1234 = 1

β(k1 − k4)(k3 − k2) + 1 . (1.25)

The 1D-NLSE and 1D-SHE have the same linear dispersion relation ωk = k2/2, which
was expected because both equations share the same linear part. Similarly, the interac-
tion coefficient represents interactions between four modes, this time with a coefficient
depending on the wave-numbers. The 1D-SHE also conserves exactly the Hamiltonian H
and the wave-action N . It will be useful to write the 1D-SHE (1.22) in terms of Fourier
coefficients,

i
∂ûk

∂t
= ωkûk +

∑
k1−3

SHET k1,k2
k3,k û1û2û

∗
3 δk1,k2

k3,k . (1.26)
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Chapter 1. Theoretical introduction

The 1D-SHE also conserves the impulsion P as defined in (1.20).

1.1.3 Other limits of the 1D-SHE
As said before, taking β = 0 in the 1D-SHE system (1.21), we obtain the 1D-NLSE.

However, the 1D-SHE has other limits. The non-linear term of the 1D-SHE contains two
terms, the constant 1 and the second spatial derivative β ∂2

∂x2 . The global equation thus
has two limits, corresponding to either of these terms dominating. In Fourier space, the
non-linear operator becomes (1 + βk2)−1 for which we can define a particular wave-vector
k∗ = 1/

√
β to have (1 + k2/k∗2)−1. With this, the two limits correspond to k2 ≪ k∗2, the

Long Wave limit (LW limit) and k2 ≫ k∗2, the Short Wave limit (SW limit).

As we want to characterize turbulence in 1D-SHE systems, one needs to consider the
next order term in the Taylor expansion of the non-linear term (1 − β ∂2

∂x2 )−1 in the LW
limit β ∂2

∂x2 ≪ 1 (equivalent to k ≪ k∗) :(
1 − β

∂2

∂x2

)−1

∼
(

1 + β
∂2

∂x2

)
+ O

(
β

∂2

∂x2

)
. (1.27)

With this expansion, the 1D-SHE becomes

i
∂

∂t
u + 1

2
∂2

∂x2 u + u

(
1 + β

∂2

∂x2

)
|u|2 = 0. (1.28)

This equation will be referred to as the one dimensional Long-Wave Equation (1D-LWE)
and has also been found to be not integrable [5]. The expansion (1.27) needs to be done
up to the second term because stopping at the first term we end up with the 1D-NLSE.

In the Short-Wave limit (k2 ≫ k∗2), the dominant term in the non-linearity is β ∂2

∂x2 .
This time, we can stop the Taylor expansion at the first order(

1 − β
∂2

∂x2

)−1

∼ −
(

β
∂2

∂x2

)−1

+ O(1). (1.29)

This condition may be satisfied only for a certain range of k, this point will be discussed
with the numerical results section 3.5. The equation obtained with this expansion in the
Short-Wave limit is known as the one dimensional Schrödinger-Newton Equation (1D-
SNE) :

i
∂

∂t
u + 1

2
∂2

∂x2 u − u

(
β

∂2

∂x2

)−1

|u|2 = 0 (1.30)

We stopped the Taylor expansion (1.29) at the first order because the obtained 1D-
SNE is non-integrable and can, thus, exhibit turbulent behaviour. It has been also studied
by Laurie et al. [5].

Both 1D-LWE and 1D-SWE corresponds to limit case of the 1D-SHE and thus model
the same systems, as non-linear optics, in their respective limits. Both are also are also
conservative systems which conserve the wave-action N and the Hamiltonian H
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1.2. Wave Turbulence

H =
∞∑

k=−∞

1
2k2|ûk|2 + 1

2

∞∑
k1−4=0

T k1,k2
k3,k4

ûk1ûk2û∗
k3û∗

k4 δk1,k2
k3,k4

. (1.31)

They both represent 2 ↔ 2-type interactions, yet with different interaction coefficients

LWET k1,k2
k3,k4

= −1 + β

2
(
k1k4 + k2k3 + k1k3 + k2k4 − 2k1k2 − 2k3k4

)
(1.32)

and

SNET k1,k2
k3,k4

= 1
2β

( 1
k1k4

+ 1
k2k3

+ 1
k1k3

+ 1
k2k4

− 2
k1k2

− 2
k3k4

)
(1.33)

We can note that the interaction coefficient for the LWE has two contributions coming
from the non-linear terms of (1.28).

1.2 Wave Turbulence
Wave Turbulence (WT) is the study of non-linear, random, and non-equilibrium in-

teracting waves. WT can be described as the statistical mechanics of non-linear waves. It
is applied to a large variety of non-linear systems : water waves with both gravity and cap-
illary waves [32], [33], internal waves [34], Kelvin waves in superfluid Helium [35], Alfvén
waves in hot plasma [36], non-linear optics [37], vibrating plates [38]. These systems are
often open, with forcing (like the wind forcing the surface water waves) and dissipation
(viscous dissipation, dissipation in optial fibers, ...). Such external interactions move the
system away from potential equilibrium states and classical thermodynamics can not be
applied anymore. It is more relevant to define and work with the flux of cascading quan-
tities.

1.2.1 Hydrodynamic Turbulence
In 1926, [39], L. F. Richardson imagined the idea of the energy cascading through

scales with a succession of hydrodynamic vortices, each vortex creating a smaller one.
According to Richardson, the big vortices are created by external forcing at the largest
scale in the system, and this scheme will continue until the vortices are so small that they
are dissipated by viscosity.

Big whirls have little whirls
that feed on their velocity,
And little whirls have lesser whirls
and so on to viscosity

Lewis Fry Richardson, 1922

In this example, the energy is transferred from large length-scales to small length-
scales, but we can also consider the same cascade in the Fourier space, towards large
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wave-numbers. In Fourier space, denoting the forcing scale as kf and the dissipation scale
as kν , the cascade occurs for scales k such that kf ≪ k ≪ kν , called the inertial range.
This cascade, as imagined by Richardson, is local in the sense that a very big vortex will
create a vortex slightly smaller than itself. In a local cascade, a vortex interacts with
vortices with similar sizes, contrary to a non-local cascade for which there can be inter-
actions between vortices of very different sizes.

In 1941, Kolmogorov and Obukhov, [40] [41], introduced the hypothesis of similarity :
in the inertial range, the turbulence properties do not depend on the details of the forcing
nor the dissipation. Particularly, the energy spectrum does not depend on the viscosity ν.
With this assumption, a dimensional analysis lead to an expression of the one dimensional
energy spectrum for isotropic 3D hydrodynamic turbulence

E(1D)(k) = Cε
2
3 k− 5

3 (1.34)
with ε the energy flux and C a dimensionless constant. Denoting u the velocity field of the
fluid, the one dimensional energy spectrum E(1D)(k) is defined as the kinetic energy den-
sity ⟨u2/2⟩ =

∫
k E(1D)(k)dk. The spectrum (1.34) is known as the Kolmogorov-Obukhov

spectrum. Even though this spectrum is quite easy to obtain, it has been validated by
different numerics and experiments. C has been experimentally found to be C ≃ 1.6.
The deviations from the Kolmogorov-Obukhov spectrum are small for the spectrum itself
but are non-negligible for higher-order moments. These deviations are responsible for
the intermittency phenomenon. The intermittency is the property of some systems to
contain waves of very-large amplitude, with a probability higher than expected with the
Kolmogorov-Obukhov model.

2D hydrodynamic turbulence has also been studied the same way, and it exhibits a
dual-cascade behaviour. Indeed, 2D hydrodynamic systems conserve two distinct quan-
tities, the kinetic energy and the enstrophy, which is the total vorticity squared Ω =∫

k k2E(1D)(k)dk. Fjørtoft showed in 1953 [42] that these two quantities have to cascade
in opposite directions in k-space. This argument is detailed section 1.3.4. He found that
energy is transferred to small scales (inverse energy cascade) and enstrophy to large scales
(direct enstrophy cascade). Kraichnan found in 1967 [43] that each cascade can be de-
scribed by a Kolmogorov-Obukhov-like spectrum, if we write enstrophy flux by η the ,
Kraichnan found

E(1D)(k) = C ′ε
2
3 k− 5

3 for the inverse energy cascade, (1.35a)
E(1D)(k) = C ′′η

2
3 k−3 for the direct enstrophy cascade. (1.35b)

with the apostrophes to underline that these constants are different from the one obtained
in 3D. These spectra have been obtained experimentally and numerically [44]. DNS have
even showed the dual cascade behaviour , [45] [46], by forcing in the middle of the k
range. DNS and experiments found C ′ ≃ 6 [45] and C ′′ ≃ 1.6.

2D hydrodynamic systems conserve two invariants (energy and enstrophy) and are
characterized by a dual cascade. This result can be generalized, M conserved quantities
will be transferred with M cascades happening in the same time.
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1.2. Wave Turbulence

1.2.2 Wave Turbulence
In hydrodynamic turbulence, the mechanism of energy transfer is the creation of new

vortices. The Wave Turbulence (WT) is characterized by the interaction of waves, which
is here responsible for the cascade of quantities. The different waves are defined by their
wave-vectors ki and they interact if the ki ∈ R are in resonance.

Resonances

A set of modes {ki}i∈J1,NK is said to be resonant if it satisfies the following equalities

k1 ± k2 ± ... ± kN = 0 wave − vector resonance, (1.36a)
ωk1 ± ωk2 ± ... ± ωkN

= 0 frequency resonance. (1.36b)

In this case, this set {ki}i∈J1,NK defines an N -mode interaction. ωk is the linear dis-
persion relation, which depends on the studied equation. Particularly, the condition
for wave-vector resonance (1.36a) will always the same while the condition for frequency
resonance (1.36b) may differ between two equations having different non-linear terms. To-
gether, conditions (1.36a) and (1.36b) define a surface in the joint (ki, ωki

) space, known
as the resonant manifold.

Resonances are at the center of turbulence because it is resonances between modes
that allow the propagation of conserved quantities through scales, and thus, cascades.
The relative signs define the in-coming and the out-going modes of the interaction. For
instance, at N = 4, one can have three non-trivial sorts of interactions; 1 ↔ 3, 3 ↔ 1 and
2 ↔ 2. The nature of the interactions happening in a system is given by the non-linear
term in the equation of motion.

The k-equation (1.36a) encodes the conservation of linear energy and the ω−equation
(1.36b) encodes the conservation of momentum. The particular even N = 2M case con-
serves the number of particles during a N -modes interaction : M modes are created from
M modes, so there is no loss nor gain. If the system only contains such 2M -modes inter-
actions, then it conserves total wave-action N = (L/2π)d∑

k aka∗
k in d dimensions.

To each resonance is associated an interaction coefficient which represents the strength
of the interaction. This interaction coefficient depends on the equation and on the reso-
nance studied, and is determined by writing the equation in the Hamiltonian formalism.
For a resonance to be physically possible, the resonant conditions (1.36) need to be sat-
isfied and the interaction coefficient needs to be non-zero. An important result is that
integrable equations do not have any resonant manifold, ie the resonant conditions (1.36)
can not be satisfied for any N . As these interactions of waves ares responsible for the
cascade of quantities, it implies that integrable equations can not exhibit turbulent be-
haviour. For instance, the 1D-NLSE is integrable and thus can not be analyzed in the
WT framework, on the contrary to the 2D- and 3D-NLSE which are not integrable.
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Chapter 1. Theoretical introduction

Weak Wave Turbulence

The WT framework and predictions can be divided into two limits depending on
the relative strength of the non-linearity. Quantitatively, we compare the quadratic and
interaction Hamiltonians H2 and H4 with the ratio

χ = |H4|
H2

. (1.37)

The regime χ ≪ 1 is called weak WT (for weakly non-linear), contrary to the strong WT
χ ≫ 1. In the strong limit, the system is dominated by coherent structures such as solitons
or solitary waves, which are strongly non-linear objects the non-linearity. Inversely, in the
weak limit we can observe cascades of conserved quantities such as energy KZ spectra.
In this thesis, we will study these two limits : the chapter 2 focuses on the strong WT
with the propagation of coherent structures in the 1D-SHE while the chapter 3 studies
the cascades in the 1D-SHE in the weak WT framework.

1.3 Kinetic Equation and solutions

1.3.1 Derivation of the Kinetic Equation
In this section, we will just outline the important steps of the derivation of the Kinetic

Equation (KE) as this equation is the core of our work. For a full and detailed derivation
of the KE, see [3] [37]. The goal is to derive the KE for the 1D-SHE, which is the evolution
equation for the wave-action spectrum (or wave-action density) defined, in 1D, as

nk(t) = L

2π
⟨|ûk(t)|2⟩i.r.. (1.38)

where ⟨ . ⟩i.r., represents the average over independent realisations. If we assume ergod-
icity for the system, then this ensemble average can be replaced by a temporal average
over a single realisation. If we assume the isotropy of the system, the wave-action spec-
trum nk becomes a function of the norm k, nk(k). Assuming this isotropy, the symmetric
wave-action spectrum can be computed in 1D as nk(k) = nk + n−k.

We start from a non-linear equation, the 1D-SHE for our study of one dimensional
optical turbulence, and we write it in Fourier space. Next, we assume that the non-linear
terms are weak compared to the linear one to separate linear and non-linear time-scales.
This step corresponds to consider the weak WT regime. Then, we perform a weak non-
linearity expansion of the Fourier variable. We use this expansion to write the one-mode
generating function. The following step is a particular average, the Random Phases
and Amplitudes (RPA) average. It consists of assuming that the complex amplitudes
of Fourier variables (more precisely their components in the weak non-linear expansion)
are characterized by independent and random amplitudes and phases, the phases being
uniformously distributed on the unit circle.

At this point, the generating function is defined, for an intermediate time T between
the linear and non-linear time scales, with the Fourier coefficients ûk of the initial function
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u. The sum over these Fourier coefficient will be turned into the integral over the Fourier
transforms after the large-box limit. Then, the limit of weak non-linearity is applied, to
finally obtain the evolution equation for the wave-action spectrum nk for the 1D-SHE in

∂nk

∂t
= 24π

∫ ∣∣∣SHET k1,k2
k3,k

∣∣∣2 [ 1
nk

+ 1
n3

− 1
n2

− 1
n1

]
n1n2n3nk δ1,2

3,k δ(ω1,2
3,k) dk1 dk2 dk3.

(1.39)

with the interaction coefficient SHET defined in (1.25). This Kinetic Equation relies on
2 ↔ 2 interactions. The wave-action densities nki

are denoted ni. The delta-functions
δ1,2

3,k and δ(ω1,2
3,k) stand respectively for δ(k1 + k2 − k3 − k) and δ(ω1 + ω2 − ω3 − ωk).

The 1D-SHE, and its versions in 2D or 3D, are all characterized by the dispersion
relation ωk = k2/2, which is a particular case of ωk = Ckα with α > 1. However, we can
show graphically that the four-mode resonance conditions can not satisfied in 1D. The
four-mode interaction that we want to study is

ωk1 + ωk2 = ωk3 + ωk4

k1 + k2 = k3 + k4.

This graphical demonstration is illustrated Figure 1.5. First, we plot ωk = k2/2 and
we identify k1 and k3 on the k−axis. Then, we plot twice again the k2/2 parabola but
starting from the points (k1, k2

1/2) (plotted in blue) and (k3, k2
3/2) (plotted in red). The

variables k2 and k4 can be defined, respectively, from k1 and k4. Thus, a point on the
blue curve has the coordinates (k1 + k2, (k2

1 + k2
2)/2) and a point in the red curve is

(k3 + k4, (k2
3 + k2

4)/2). With this construction, the four-mode interaction conditions are
verified for each intersection of the blue and red curves. One can check on the figure
that such a point is possible only for k1 = k4 and k2 = k3 which corresponds to a triv-
ial interaction without any energy transfer between wave modes. Excluding this trivial
set of modes, one can conclude that four-mode resonant interaction are absent in a 1D
system with a dispersion relation ωk = Ck2. This result holds for dispersion relation
ωk = Ckα, α > 1, due to the convexity of the parabola.

1.3.2 Canonical Transform
If a system does not allow four-mode interactions, the expansion of H needs to be

taken to the next order. As said before, there is no odd-order term in a Hamiltonian
for a system which conserves the total wave-action N . Thus, the next term is at the
6th-order. In this case, we need to apply a Canonical Transform (CT) to remove the
non-resonant leading non-linear order (here the fourth) and obtain a new resonant order
(here the sixth). This mathematical procedure is detailled by Zakharov et al. in [47] and
already used in KW [35], [48], water waves [49] and particularly in optical turbulence [5].

Hence, we will apply a CT to the 1D-SHE to remove the non-resonant four-modes
interactions. Namely, we perform a change of variables ûk(t) → âk(t) with a Taylor
expansion as a quasi-linear transformation
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Figure 1.5: Graphical point to show that non-trivial four-modes interactions
are impossible for dispersion relation ωk = k2/2

ûk(t) = âk(t, τ)
∣∣∣∣∣
τ=0

+ τ
∂âk(t, τ)

∂τ

∣∣∣∣∣
τ=0

+ τ 2

2
∂2âk(t, τ)

∂τ 2

∣∣∣∣∣
τ=0

+ O(τ 2). (1.40)

The new variable âk(t, τ) depends on both physical time t and an "auxiliary" time
τ . It corresponds to a new Hamiltonian, labelled auxiliary Haux, which defines its time
evolution of ak with ∂ak/∂τ = −iδHaux/δa∗

k. This auxiliary Hamiltonian only contains
interacting terms, ie

Haux = 1
2
∑

k1−k4

T̃ k1,k2
k3,k4

â1â2â
∗
3â

∗
4 δk1,k2

k3,k4
+ 1

3
∑

k1−k4

W̃ k1,k2,k3
k4,k5,k6

â1â2â3â
∗
4â

∗
5â

∗
6 δk1,k2,k3

k4,k5,k6
, (1.41)

and its coefficient T̃ k1,k2
k3,k4

and W̃ k1,k2,k3
k4,k5,k6

will be defined in order to cancel the non-
resonant four-waves interactions in the 1D-SHE (see [5] for details). This cancellation
creates a new non-linear term of the sixth order from the now-removed fourth order, as
illustrated Figure 1.6, with the six-modes interaction coefficient

W k1,k2,k3
k4,k5,k6

= 1
24

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

6∑
p,q,r=4

p ̸=q ̸=r ̸=p

 1
ωi,j

r,i+j−r

− 1
ωp+q−j,j

p.q

 SHET i,k
r,i+k−r

SHET q+p−j,j
q,p . (1.42)

where ωa,b
c,d stands for ωka + ωkb

− ωkc − ωkd
. We have also used the simplified for T , as

T a,b
c,d = T ka,kb

kc,kd
. The explicit expression of W k1,k2,k3

k4,k5,k6
will be given section 3.2, where we

study the cascades in this 1D-SHE system.
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Figure 1.6: 2D illustration of the canonical transform - In this example, two four-
mode interactions are combined, with the exchange of a virtual mode k7, to create a
six-mode interaction.

1.3.3 Kinetic Equation
With this CT, we finally have the KE for 1D-SHE, as a system with 3 ↔ 3-type

interactions,

∂nk

∂t
= 24π

∫ ∣∣∣W 1,2,3
4,5,k

∣∣∣2 [ 1
nk

+ 1
n5

+ 1
n4

− 1
n1

− 1
n2

− 1
n3

]
× n1n2n3n4n5nk δ1,2,3

4,5,k δ(ω1,2,3
4,5,k) dk1 dk2 dk3 dk4 dk5,

(1.43)

where, for convenience, we denote W k1,k2,k3
k4,k5,k as W 1,2,3

4,5,k . In the same way as for the four-
mode KE, the delta-functions δ1,2,3

4,5,k and δ(ω1,2,3
4,5,k) stand respectively for δ(k1 + k2 + k3 −

k4 − k5 − k) and δ(ω1 + ω2 + ω3 − ω4 − ω5 − ωk).

Conserved quantities

Now that we have the full expression of the KE, we can have a look at its conserved
quantities and see if the invariants of 1D-SHE found in section 1.1.2 are still conserved.
To this end, we define an arbitrary quantity Ψ, with its k-space density ρk, such that

Ψ =
∫

k
ρknkdk. (1.44)

For the quantity Ψ to be conserved, we can show that it implies a relation over its density
ρk by computing Ψ̇ =

∫
k ρkṅkdk. With the symmetries of interaction coefficient W , we

get the condition

Ψ conserved ⇔ ρk + ρk5 + ρk4 − ρk1 − ρk2 − ρk3 = 0 on the resonant manifold (1.45)

To check if the wave-action N and the total energy H are still conserved by the KE, we
need to check whether their densities ρk verify the latter condition.
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For the wave-action, we saw that it could be written as N = (2π/L)
∫

k |ûk|2dk. Thus,
the k-space density is equal to ρk = 1. It trivially verifies the condition (1.45) and the
wave-action is indeed exactly conserved by the KE.

For the total energy H, we find that only the quadratic energy H2 = ∑
k k2/2|ûk|2

can be expressed like Ψ with a density ρk = k2/2 = ωk which verifies condition (1.45) on
the resonant manifold. That means that the KE only conserves the linear equation H2
and not the total energy H2 + H4. This can be understood with the assumption of weak
non-linearity used to derive the KE. In weak WT, we assume H ≃ H2 and we denote this
approximate value as E in this context,

E =
∫

k
ωknkdk. (1.46)

This energy E defines the energy density E
(1D)
k = ωknk.

1.3.4 Steady states : Rayleigh-Jeans and Kolmogorov-Zakharov
spectra

The integral on the Right Hand Side (RHS) of the equation (1.43) is called the col-
lision integral. A wave-action spectrum nk which makes this collision integral null is a
stationary solution of the KE. There are two main types of stationary spectra, the ther-
modynamic equilibrium and the Kolmogorov-Zakharov (KZ) spectrum.

In a steady state, all the energy injected in the system is dissipated, which implies
that the energy dissipation rate is equal to the energy injection rate. The same reasoning
works for the wave-action.

Rayleigh-Jeans spectrum

The thermodynamic equilibrium is a state in which all modes have defined energy or
wave-action without any net exchange between them. Thus, there are no fluxes of energy
nor wave-action. The corresponding wave-action spectrum is called the Rayleigh-Jeans
(RJ) spectrum,

nRJ
k = 1

ωk + µ
(1.47)

with µ being the equivalent of the chemical potential and ωk = k2/2 for the equations we
study. This spectrum corresponds to the equipartition of an invariant with the k-space
density ωk + µ.

Such a spectrum is physically unmeaningful in a system unbounded in k-space be-
cause it implies an infinite total energy, as the integral of nRJ

k diverges at k → ∞. This
problem is called the "Ultraviolet Catastrophe", in reference to the similar divergence of
the classical spectrum proposed to explain the black body radiation. This problem can
be solved by a cut-off at large k [50] [51]. However, RJ spectrum can be considered for
a finite zone of the k-space, removing the problem of the divergence at k → ∞. It can
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occur near a dissipative scale when the dissipation is not large enough to compensate the
forcing and waves accumulation. With this bottleneck effect, the energy tends to locally
thermalize, which creates a spectrum close to the RJ spectrum.

Kolmogorov-Zakharov spectrum

In 1965 [52], Zakharov found mathematically a new type of statistically steady but
non-equilibrium states, the Kolmogorov-Zakharov (KZ) spectra, defined by a conserved
quantity of the system cascading through scales with a constant flux. It is precisely these
fluxes which put the system out of equilibrium. KZ spectra are named after the spec-
trum found by Kolmogorov in 1941 [40] for hydrodynamics, regarded the strong parallel
between these two spectra.

A system with N sign-definite invariants will have N KZ spectra. The 1D-SHE con-
serves the total energy, the wave-action and the impulsion. However, the latter is not of
a constant sign while energy and wave-action are always positive. Hence, only quadratic
energy and wave-action do cascade on KZ spectra.

When one invariant is transferred through scales on a KZ spectrum, the other invari-
ants do not cascade, their fluxes are null. For instance, in a system with a dual cascade
of energy and wave-action, like the 1D-SHE, the Fjørtoft argument (detailled in next
section 1.3.4 predicts that energy will cascade from the forcing scale to be dissipated at
large k, while the wave-action will be dissipated at low k. This will be realised by a KZ
spectrum when such a KZ spectrum is physically viable (see section 1.4.4 regarding the
locality of the KZ spectrum). In between the forcing and the high k-dissipation scales,
in the so-called direct cascade inertial range where energy is cascading, the steady-state
spectrum will be the KZ spectrum for the energy cascade. The flux of wave-action will
be null on this spectrum. Conversely, in the lower k- inverse cascade inertial cascade, the
spectrum will be the KZ wave-action cascade spectrum, on which the energy flux is null.
KZ spectra can be observed in systems forced at a given scale and dissipating at another
scale, exactly like in the Kolmogorov theory.

Let us define important quantities which characterize a KZ spectrum. For a dual
cascade of energy and wave-action (for instance), we define Pk = P (k) and Qk = Q(k)
respectively as the energy and the wave-action fluxes. In the isotropy assumption, these
fluxes depend on the norm k and not the vector k. These fluxes follow the conservation
laws with the energy and wave-action spectra

∂t

(
ωknk(k)

)
+ ∂kPk = 0 (1.48a)

∂tnk(k) + ∂kQk = 0, (1.48b)

for which we have used the expression of the energy density E
(1D)
k = ωknk defined in

(1.46). Particularly, relations (1.48a) and (1.48b) imply that, for the cascade of a given

23
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conserved quantity, the corresponding flux is independent from k.

If a system is forced in the middle of the available modes, the dissipation can occur
either at big k or at small k. For a system which is defined by two conserved quantities,
like the 1D-NLSE or the 1D-SHE with energy and wave-action, one needs to find where
each quantity is dissipated. The Fjørtoft argument answers this.

The Fjørtoft argument

The original Fjørtoft argument [42] is an ad absurdum argument which gives the direction
of cascade for each quantity. We will present it for a dual cascade for simplicity but the
Fjørtoft argument is not limited to two invariants cascading, see [53] for example of triple
cascade.

When the system has reached a steady state, all the energy put in the system is dis-
sipated, thus,

∫
Pkdk = 0. Equivalently,

∫
Qkdk = 0. We assume that the system is

forced in some modes around a particular one kf in the middle of the k-range. Energy
and wave-action enter the system at kf , at rates Pf and Qf respectively. Let us assume
that both quantities can be dissipated in two different parts of the spectrum, there exists
dissipation in small scales at k− ≪ kf and at large scales at k+ ≫ kf . The dissipation
rates are respectively P−, Q− and P+, Q+, with Pf = P− + P+ and Qf = Q− + Q+.
With these assumptions, there are two different ranges in k-space for the energy and wave
action to be spread from the forcing scale to (at least one) dissipation scale. In these
ranges, called inertial ranges, we also assume, like Kolmogorov, that neither forcing nor
dissipation occur. If the system is weakly non-linear (to allow KZ cascades), fluxes verify
Pk ≃ ωkQk ≃ Qkk2/2.

If wave-action was dissipated at k+, at a rate comparable to the injection rate Qf

because the system is in steady state, that would correspond to an energy dissipation
rate equal to 1/2k2

+Qf . However, the energy injection rate was 1/2k2
fQ{ which is smaller

than the dissipation rate due to the condition kf ≪ k+. This is absurd, implying that the
assumption of the wave-action being dissipated at k+ is not possible and, thus, can only
be dissipated at k− after an inverse cascade. With the same reasoning, we can show that
the energy can only be dissipated at k+. This represents a direct energy cascade. This
dual cascade behaviour is illustrated Figure 1.7.

1.4 KZ spectra
To characterize a KZ spectrum, we need to find the expression wave-action spectra

as function of k. More precisely, these spectra are assumed to be self-similar, so we work
with power-laws ansatz nk = Ckx, with a constant C and where the exponent x needs
to be determined. Finally, we make the assumption of isotropy, so that the system only
depends on the amplitude k. We present here two methods to obtain the KZ prediction
: from the KE itself and from dimensional analysis.
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1.4. KZ spectra

Figure 1.7: Illustration of the dual cascade - If the forcing occurs in the middle of
the k-space, then a dual cascade will develop, with an inverse wave-action cascade and a
direct energy cascade.

1.4.1 KZ spectra by Zakharov Transform
The Zakharov Transform (ZT) is a mathematical method to obtain the KZ prediction

for a given KE, in our case the six-modes KE (3.10). This method relies on the interaction
coefficient being scale invariant. Mathematically, that means that

W (λk1, λk2, λk3, λk4, λk5, λk) = λγW (k1, k2, k3, k4, k5, k), ∀λ ∈ R. (1.49)

If such a γ ∈ R exists, it is called an homogeneity coefficient. The ZT method also requires
the scale invariance of the linear dispersion relation ωk

ω(λk) = λαω(k) (1.50)

with α the homogeneity coefficient. For the dispersion relation ωk = k2/2 we have α = 2.
We will take a power-law ansatz for the spectrum nk = Ckx with C a constant and x the
exponent to find.

We will separate the KE into six integrals and perform different changes of variables
in five of them. We will show the computations for we change of variable and generalize
its result. In one sixth of the collision integral, we will perform the following change of
variable ki → k̃i

k1 = kk̃1

k̃3
, k2 = kk̃2

k̃3
, k3 = k2

k̃3
, k4 = kk̃4

k̃3
, k5 = kk̃5

k̃3
. (1.51)

with the Jacobian J = −
(

k
k̃2

)6
.

The computations are detailed in [3] and we here only give the result, as one example
of ZT will be detailed section 3.4.
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∂nk

∂t
= C54π

∫
|W 1,2,3

4,5,k |2 δ1,2,3
4,5,k δ

(
ω1,2,3

4,5,k

)
k1

xk2
xk3

xk4
xk5

xkx

×
[
1 +

(
k5

k

)y

+
(

k4

k

)y

−
(

k1

k

)y

−
(

k2

k

)y

−
(

k3

k

)y]

×
[
k−x + k5

−x + k4
−x − k1

−x − k2
−x − k3

−x

]
dk1dk2dk3dk4dk5

(1.52)

with y = −5x − 3 − 2γ. We note than taking y = 0 or y = −2 cancels the correspond-
ing square bracket. For y = 0 it is trivial and for y = 2 it comes by using δ(ω1,2,3

4,5,k) that
ensures the frequency resonance. Hence, these values of y cancel the collision integral.
They give two values of x, the exponent of the wave-action spectrum, corresponding to
the inverse wave-action cascade and to the direct energy cascade.

Consequently, with the assumption of the interaction coefficient being self-similar, we
can compute the exponents of the direct and inverse cascades with the Zakharov Trans-
form from the KE.

1.4.2 KZ spectrum by dimensional analysis

For a dimensional derivation of the spectrum of energy density E
(1D)
k , we need to

write down the dimensions of the parameters. First, we obviously have [k] = [l]−1. The
dimension of the total energy of the system E is equal by definition to that of its kinetic
energy Ec = 1

2mv2. For an incompressible fluid, the density ρ = m
V

is constant. This
suggests a change of units to have ρ = 1 without any unit, m and V having the same
dimension [l]3. With this, the dimension of E is

[E] = [l]5
[t]2 (1.53)

The density of energy in d dimensions dE
dVd

defines the energy spectrum E
(1D)
k via

dE
dVd

=
∫

dkE
(1D)
k . For the dimensions, this gives

[E]
[l]d =

[
E1D

k

]
[l]−1 ⇒

[
E

(1D)
k

]
= [l]6−d

[t]2 . (1.54)

As the energy spectrum E
(1D)
k and the energy flux ε verify the energy conservation

∂
∂t

E
(1D)
k + ∂

∂k
ε, we have the dimension of ε :

[ε] = [l]5−d

[t]3 . (1.55)

Up to now, the considered dimensions do not depend on the studied system. The
particularity of a system will be set in its dispersion relation and in the nature of the
resonant modes.
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1.4. KZ spectra

Let us consider a dispersion relation

ωk = λkα (1.56)
with λ, α real constants which characterize the system. This anzatz may seem too spe-

cific but it describes many systems, systems whose dynamics is qualitatively controlled by
one dimensional parameter. We can list the capillary waves driven by the surface tension
γ (ωk =

√
γ/ρk 3

2 ), the water gravity waves controlled by the gravitational acceleration
g (ωk = √

gk 1
2 ), the Kelvin waves in superfluids driven by the quantum of circulation κ

(ωk = κk2 linearized), ...

λ can play the role of the important dimensional parameter and its dimension is given
by

[λ] = [l]α
[t]1 . (1.57)

The system is also characterized by the resonant modes and particularly by the order
of resonances N , ie the number of waves involved in the resonance. We assume that N
connects the energy flux ε and the total energy E,

ε ∼ d
dt

(
∂

∂t

)
E ∼ EN−1. (1.58)

In the energy cascade (and its direction does not matter), the energy flux ε is expected
not to depend on k. Then, the k- dependence must come from an explicit k term. Finally,
the spectrum must depend on λ which represent the particularity of the system.

We can now express the KZ energy spectrum E
(1D)
k as powers of k and λ,

E
(1D)
k = ε

1
N−1 kxλy, (1.59)

and obtain the powers y and x with the dimensional analysis and the equations (1.57)
and (1.58). We obtain

x = d − 6 + 2α + 5 − d − 3α

N − 1 y = 2 − 3
N − 1 . (1.60)

Spectrum (1.60) implies that we can predict an energy KZ spectrum for a system from
no more than the numbers of dimensions d, the order of interaction N and the character-
istics λ, α of the dispersion relation.

The same reasoning goes for the wave-action cascade (or the other quantity cascading,
no matter its direction), the only change being the dimension of the (wave-action) flux η

[η] = [ε]
[ω] = [l]5−d

[t]2 . (1.61)

The dimensional analysis gives

E
(1D)
k = η

1
N−1 kXλY , (1.62)
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X = d − 6 + 5 − d + 3α(N − 2)
N − 1 Y = 2 − 2

N − 1 . (1.63)

It is important to notice that spectrum (1.62) is the energy spectrum corresponding to
the cascade of the conserved quantity which is not the energy. It will be more convenient
to write the energy spectrum (1.62) as the energy of the actually cascading quantity.
For instance, we remind that quadratic energy and wave-action spectra E

(1D)
k and nk are

linked by E
(1D)
k = ωknk.

Another dimensional analysis can be performed once we have the expression of the
fluxes P (k) and Q(k). We remember, for instance, the definition of the wave-action
KZ spectrum which makes the wave-action flux independent of k. With the explicit
formula for P (k) depending on the wave-action spectrum nk, a dimensional analysis with
a count of the powers of k allows us to find the wave-action exponent x which cancels the
k−dependence. This this exponent x would correspond to the wave-action KZ spectrum.
This method will be used and detailed in section 3.4.

1.4.3 Applications of weak Wave Turbulence

Weak WT can be applied to a wide variety of dispersive non-linear systems.

Gravity-capillary waves

Gravity-capillary waves are the waves evolving at the free surface of a fluid. They are
defined by the dispersion relation ω2

k =
(
gk + γ

ρ
k3
)

tanh (kh) with g the gravitational field
strength, ρ the density of the fluid, γ its surface tension and h its depth. This dispersion
relation gets simplified in two limits, in the capillary limit ωk =

√
γ/ρ k

3
2 , and in the

gravity waves limit with ωk =
√

gk. In these two limits, the waves are dispersive and the
system is non-linear given the hydrodynamics.

For capillary waves, if we use notations of the dimensional derivation section 1.4.2,
we have d = 2, N = 3, α = 3

2 and λ =
√

γ/ρ. These values give the Zakharov-Filonenko
spectrum for the direct energy cascade [54], [55]

E
(1D)
k = C0 ε

1
2 (γ/ρ)− 1

4 k
7
4 . (1.64)

This spectrum can also be derived from the 3-modes KE [56]. It has been verified numer-
ically [57] and experimentally [33].

The KE of water waves has been written first by Hasselman in 1967 [58] and implies
4-modes resonances. A KZ spectrum, the Zakharov-Filonenko [54] has been derived from
this KE. This spectrum has been observed experimentally first in 1972 [59] and numerically
[32] . We can notice than the dimensionally-derived energy spectrum (∼ ω−5 by Philips
in 1958 [60] differs from the Zakharov-Filonenko spectrum in ω−4).
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1.4. KZ spectra

Internal waves

Internal waves are a crucial mechanism for the mixing of seas and the transport of
heat. First energy spectrum for internal waves has been proposed by Garrett and Munk in
1975, [61] [34], with the hypothesis of horizontal isotropy. This spectrum links the vertical
and the horizontal wave-vectors and can be written as a function of the frequency and one
of these wave-vectors. WT formalism has been applied to internal ocean waves to obtain
a KE with 3-modes interactions, [62] [63]. Such 3-modes interactions have been observed
in stratified media by Davis et al. [64]. It appeared that the short-wave Garrett-Munk
spectrum corresponds to the KZ spectrum derived from the KE with KZ transform [63].

Kelvin waves

WT can also be applied to Kelvin waves propagating in superfluids like Helium. In
superfluids, the waves responsible for the cascades are supported by vortex filaments.
Such waves are called Kelvin waves and their interaction via six-mode resonances. Their
spectrum has been obtained via dimensional analysis and verified numerically by Kozik
and Svistunov [65] [66]. While it has also been observed by Boffetta et al. [35], the
Kozik-Svistunov spectrum appeared to be non-local and thus, unphysical [48]. Superfluid
turbulence is governed by the Biot-Savart equation.

1.4.4 Locality of KZ spectra
KZ predictions assume the locality of the interactions. This implies resonances be-

tween wave-vectors close to each other. This supports the idea of cascade; the excited
wave-vectors will transfer energy to neighbouring wave-vectors and so on, on a continuous
process. Such interactions are called local. This is to be compared to the hydrodynam-
ical vortices of Richardson which create slightly smaller vortices. By contrast, non-local
interactions involve wave-vectors well separated in the Fourier space.

Mathematically, locality corresponds to the convergence of the KE in both k → 0 and
k → ∞ limits [3]. If there is a divergence in one of these limits for a KZ spectrum, it implies
that this spectrum can not occur in real systems. KZ spectra can be derived for many
weak WT systems but this does not mean that these spectra are physical. For instance,
the Kozik-Svistunov spectrum derived for Kelvin waves, spectrum Ek ∼ κ

7
5 ϵ

1
5 k− 7

5 [65]
(with κ the quantum of circulation) was found to be non physical as the KE diverges in
the IR limit [48]. This problem can be solved with a log correction [25].
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CHAPTER 2

Propagation of coherent structures into the SHE

2.1 Introduction

Now that we have defined the concepts of solitons and integrable (or not) equations,
we can introduce some concepts which will be at the core of our work for this chapter.

The Modulation Instability (MI) is the evolution, of a slightly-perturbed conden-
sate, under a non-linear equation which tends to create localized structures from this
uniform initial state. The MI is a linear instability corresponding to the growth rate
of certain modes being positive. The created localized structures grow until saturation,
when the non-linear physics becomes more important than the linear. This particular
behaviour is proposed to explain the appearance of extreme events. For instance, the
special case of Benjamin-Feir instability [67] [68] for gravity water waves was found out
as an explanation for the rogue waves [69]. Experimental evidences of MI were also found
in non-linear optical systems [70].

The concept of Soliton Gas (SG) was proposed by Zakharov in 1971 [71] with the
idea of an ensemble of solitons (for a given non-linear equation) weakly interacting. This
corresponds to a rarefied gas, with a small density of solitons, mostly non-overlapping.
This definition has been generalized more recently to dense gases with overlapping and
strongly interacting solitons [13]. Links have been found between solitons gas and hydro-
dynamics, making the soliton gas an interesting object of study. An N -Soliton Gas can be
constructed with the DST/IST method and more precisely with the dressing method [7],
the characteristics of the solitons are defined by the values chosen for the discrete spec-
trum. A recent achievement of the soliton gas model is the is a possible explanation of
the MI final state with a SG made of 128 solitons [72].

A soliton gas in an integrable systems, like the 1D-NLSE, evolves with elastic colli-
sions imposed by the integrability of the equation. The solitons’ positions and phases
can change but their number, amplitudes and speeds are constant. Richer dynamics are
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obtained for non-integrable equations. As we mentioned when discussing solitary waves
in the 1D-SHE, non-integrable systems can exhibit localized structures created by the
balance between dispersion and focusing non-linearity and which propagate without al-
teration of their profile. However, collisions between such structures are non-elastic and,
thus, the system does not conserve the number of structures through its evolution. This
evolution of many localized structures in non-integrable systems exhibit an interesting
final state. It has been observed by Zakharov et al. [73] that this final state is a unique
large localized structure propagating on top of a weak gaussian field of random linear
waves. Their first numerical evidence has been obtained for different potentials in the
focusing 1D-NLSE, making the equation non-integrable. Since then, this particular final
state has been observed in non-linear optics experiments and numerics [74] [5].

Let us make a terminology point. The term solitons is restricted to solutions of inte-
grable non-linear equations which propagate with a constant shape and collide elastically.
The numerous studies of non-integrable systems showed the existence of propagating local-
ized structures in such systems, but we can not name them solitons. Besides, it is the very
fact that these structures do not collide elastically which provides the final structure. For
the following of this work, they will be referred to as quasi-solitons, to illustrate their ob-
vious similarity with the pure solitons. Then, the study of localized structures interacting
in a non-integrable equation will be denoted as quasi-soliton turbulence (qST) in our work.

Thermodynamic and statistical arguments were proposed to describe this final orga-
nization into a super quasi-soliton [75] [76]. This final super quasi-soliton acts like a
statistical attractor for the system by minimizing locally the energy with the weak waves
ensuring the conservation of the total energy. This gaussian field is necessary to increase
the entropy of the initial field, as the transformation of all the waves into a localized
structure corresponds to a decrease of the disorder.

The qST has been extensively studied for different potentials V (|u|) for focusing 1D-
NLS-type equations

• V (|u|) = |u| in [77] [73],

• V (|u|) = (1 − a|u|2)/(1 − b|u|2), a, b ∈ R in [73]

• V (|u|) = (1 + β∂2/∂x2)|u|2 and (β∂2/∂x2)−1 in [5].

In this chapter, we study the potential, derived from non-linear optics,

V (|u|, β) =
(

1 − β
∂2

∂x2

)−1

|u|2 (2.1)

which defines the SHE (1.22). As said earlier, this equation is non-integrable for β > 0
and, thus, can exhibit quasi-Soliton Turbulence (qST) features. This qST evolution will
be examined with different types of initial conditions and characterized with two diagnos-
tics, the DST and spatio-temporal spectra. These diagnostics are detailed section 2.2.
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Firstly, we observe the proper qST behaviour by setting initial energy in only a few
Fourier modes and letting the system evolve without forcing nor dissipation. Under some
conditions, its evolution leads to a final localized structure which will be characterized.
This qST behaviour is allowed by the interactions between localized structures which are
not elastic, due to the non-integrability of the SHE. This evolution is reported in section
2.3. Given that, we next study these collisions by initializing the system as two 1D-SHE
solitary waves (section 2.4) and then 1D-NLSE solitons (section 2.5). This allows us to
examine the collisions between the localized structures of the SHE and to draw some
conclusions about their final state.

Finally, in section 2.6, we analyse precisely the localized structure that appears during
the evolution of the initial flat top spectrum. This is done by launching a single 1D-NLSE
soliton into the conservative 1D-SHE system and following its characteristics with the
diagnostics specified above. This simulation is performed at different non-integrability
factor β to conclude over the importance of the non-integrability in the reported obser-
vations.

2.2 Numerical strategy and diagnostics

2.2.1 Integration of the 1D-SHE
The 1D-SHE

i
∂

∂t
u + 1

2
∂2

∂x2 u + u
(

1 − β
∂2

∂x2

)−1
|u|2 = 0 (2.2)

will be integrated numerically over a a periodical box of length L = 2π divided in
Nx = 4096 points (sometimes, Nx = 2048 where stated) corresponding to x-discretization
∆x = L/Nx = 1.5 × 10−3 (or ∆x = 3 × 10−3 for Nx = 2048). Such values of L and Nx

also determine ∆k = 2π/L = 1 and kmax = ∆kNx/2 = 2048 (1024 for Nx = 2048).

To deal with the non-linearity, we chose a pseudo-spectral method [78] [79] for the
integration scheme. This scheme integrates the equation in Fourier space with a partic-
ular caution for the non-linear term. In order to avoid the expensive convolutions, the
multiplications in the non-linear term are done back in the physical space. An three-
halves anti-aliasing procedure [80] is applied to prevent the apparition of un-physical
modes with the multiplications in real space. We implemented a fourth-order exponential
time-differencing Runge-Kutta method [81] with a time step denoted ∆t. ∆t is chosen
sufficiently small so that the fastest resolvable wave packet does not cross more than
one grid point between two timesteps. This is equivalent to the Courant-Friedrichs-Lewy
(CFL) condition

∆t <
∆x

maxkvg

(2.3)

with vg = dωk/dk the group velocity. This condition ensures that the fastest group veloc-
ity in the system is well-resolved. With the dispersion relation ωk = k2/2, the upper limit
of ∆t is ∆x/kmax = 2Lx/N2

x = 7.49 × 10−7 (3 × 10−6 for Nx = 2048). Then, to satisfy the
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CFL-like condition we choose ∆t = 5×10−7 for Nx = 4096 (∆t = 1×10−6 for Nx = 2048).

Another way to verify that the ∆t used is appropriate is the conservation of the total
energy H and the wave-action N . If we do not add forcing nor dissipation terms to
equation (2.2), this system is conservative. With the choice of ∆t explained previously,
the values of H and N are found to remain constant for both choices of Nx = 4096 or
Nx = 2048. For instance, for Nx = 4096, their relative changes are smaller than 10−11%.

2.2.2 Diagnostics

DST spectrum

As defined section 1.1.1, the DST spectrum contains notably a solitonic part made
of a discrete set of eigenvalues and corresponding norming constants. These eigenvalues
are computed from the matrix (1.5) and we use the Fourier collocation method to find
them [82], [83], [13], [84]. This method is based on the Fourier expression of matrix (1.5)
and, thus, decomposes the studied function u(ti, x) at a given time ti into Nc Fourier
spatial modes. Eigenvalues ζp are computed from a 2Nc matrix. The collocation method
is pertinent for periodical systems and, thus, is adapted for the system we study. The
used number of Fourier modes Nc is determined from a balance between the precision and
the computation time. We used Nc = 513 modes, after a convergence study to make sure
that this number of modes gives accurate results for 1D-NLSE solitons.

The result of the collocation method is a set of 2Nc complex eigenvalues ζp = ζRe
p +iζIm

p

which are complex conjugate pairs. With this symmetry, we can consider only the eigen-
values with positive imaginary parts. For a soliton of the NLSE, its amplitude Ap and
speed vp are encrypted in the eigenvalue ζp with Ap = 2ζIm

p and vp = −2ζRe
p . These

relations are illustrated schematically on an example spectrum Figure 2.1(a).

An important fact about the Fourier collocation is that it only computes the eigenval-
ues of the DST spectrum : it does not give access to either the norming constants nor to
the continuous spectrum. Consequently, the Fourier collocation method can only access
the number of solitons, their amplitudes, and their speeds. Solitons’ phase and positions
can not be determined with this method. The same goes for the wave components of the
systems, encoded in the continuous spectrum. With the Fourier collocation we do not
have the entirety of the DST spectrum so we can not reconstruct the function with IST.
In our studies, DST is only used as a tool to characterize the soliton part of the system.
Given that we can not access the rest of the spectrum, the term DST spectrum will always
refer to the discrete DST spectrum in the following.

In the example of a DST output Figure 2.1(a), some eigenvalues are included in a
grey area near to the real axis. This area defines a theoretical and numerical threshold
: eigenvalues below this threshold can not be trusted as physical solitons. First, as we
study a periodic system, we can not consider solitons whose width is comparable with
the length of the box. If we denote d the mid-height size of the soliton and L = 2π the
length of the box, we chose to eliminate solitons characterized by d > 1

4L to make sure
that the solitons we consider are really contained in the box. With the characteristics of
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a soliton, this maximal value for the width can be translated into a minimal value for the
amplitude and, thus, for the imaginary part, namely ζIm > Twidth.

A threshold also can be determined from numerical considerations. The Fourier col-
location method is known to create spurious eigenvalues with small imaginary part from
the continuous spectrum due to the decomposition in Fourier modes [13] [83]. To identify
these artificially created eigenvalues, we change the length of the function and look for
the eigenvalues which change. For a function defined for x ∈ [−L/2, L/2], we create two
expanded functions with arrays of zero to create functions defined for x ∈ [−3/4L, 3/4L]
and for x ∈ [−L, L] [13] [83]. We define a spectrum-based threshold Tspectrum above
which all eigenvalues are the same for the spectra of the two functions, up to relative
differences of 2.5%. The width-related threshold Twidth only depends on the length L
of the box and can be used for every kind of initial conditions. For L = 2π, we have
Twidth = 1.1. Inversely, Tspectrum is computed for each initial condition type. We always
find Tspectrum ≃ 1.1, meaning both thresholds are relevant. We would like to emphasize
that, below Twidth = 1.1, the three DST spectra are qualitatively similar and only differs
by small quantitative discrepancies.

There are other methods to compute the discrete DST spectrum, the main one being
the Boffetta and Obsorne transfer algorithm which computes the whole scattering matrix
and finds the spectrum as the zeros of the Jost function a(ζ) [85], [86]. This method is
more complex than the Fourier collocation, however it is complete and provides the total
DST spectrum with both discrete and continuous parts. We can also cite the Ablowitz-
Ladik method [87] [88]. We use the Fourier collocation for its simplicity to implement
and its speed.

It is important to notice than the equations of the DST presented section 1.1.1 were
found to be applied to the pure 1D-NLSE only, which is different from the 1D-SHE that
we study. So, from a strict theoretical point of view, we can not apply the presented DST
to the 1D-SHE. However, there are some points which suggest its use to characterize our
system. First, the 1D-SHE has been found non-integrable and, thus, it is not possible to
find a Lax pair such as the one found for NLSE. Consequently, there is no DST theory
made explicitly for the 1D-SHE. Secondly, the 1D-SHE can be seen as a non-integrable
version of 1D-NLSE with the parameter β controlling this deviation from integrability.
For a sufficiently small β, the system can be considered as close to integrability and thus,
we can expect consistent results from the DST analysis.

Even with these quantitative changes, we have carefully checked that the DST spec-
trum is in accordance with the function profile in the real space, as well as with the
(k − ω) plots (see below). The main difference between the DST spectra for the 1D-SHE
and the 1D-NLSE is the isospectrality property which is not ensured for SHE, while it
was for NLSE. The eigenvalues composing the DST spectrum of a function evolving with
the 1D-SHE can move in the complex plane. This behaviour, consequence of the non-
integrability of the 1D-SHE, will be interpreted as localized structures with time-evolving
characteristics. However, it is important to notice that the computation of the DST spec-
trum requires the function u(x, ti) for a single time ti. Thus, the DST algorithm does
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Chapter 2. Propagation of coherent structures into the SHE

not know the equation which governs the temporal evolution of u. If a pure sech-profile
soliton, solution of the NLSE, appears during a non-integrable evolution, then the DST
spectrum will contain only the corresponding eigenvalue. The problem of non-integrable
equations is that pure sech-profile solitons will never appear because they are not solu-
tions of the equation. Consequently, their non-zero vicinity will alter the DST spectrum. .

Finally, it is interesting to apply the DST to non-integrable systems because inte-
grable systems are often approximations and neglect higher-order effects. For instance,
dissipation, losses or Raman scattering, like in optical fibers, are not taken into account
by integrable models. If we restrain our scope to integrable systems, we can not analyse
data collected from real experiments, because a lot of experiments can not be described
by integrable models. In the literature, we have examples of DST being applied to reals
systems such as soliton gas in water tank [89], solitonic laser pulses in optical fiber [90] [91]
or the modelling of a laser system [11].

(k − ω) spectrum

We can compare the results given by the DST with the Fourier analysis of the system
with the basis function ei(ωt−kx). More precisely, we compute the spatio-temporal Fourier
spectrum over a time window and represent this density |û(k, ω)|2 on a (k, ω) plot. The
structures expected in the system, solitons and waves, have a specific signature with this
Fourier analysis. Thus, we can use these (k − ω) plots to identify the main components
in our function and obtain their characteristics.

Linear waves are represented by the linear dispersion relation ωk. For the SHE, we
expect a parabola ωk = k2/2 (white dashed line in Figure 2.1(b)). As the system is not
linear, this parabola is altered by non-linear effects. A non-linear Bogoliubov correction
shifts the parabola towards negative ω by a factor related to the squared amplitude of
the function. Its precise expression is given as ∑k,k1 T k,k

k1,k1
|ûk1|2 but will not be used in

this thesis. As linear waves are represented by the parabola, slightly non-linear waves are
localized closely around this parabola, making the dispersion relation wider (blue width
in Figure 2.1(b).

Solitons signatures in (k − ω) plots are straight lines with positions and slopes related
to the solitons speeds and amplitudes. Each soliton gives a unique line and Fourier theory
gives the position of this line center (k∗ = v, ω∗ = v2−A2

2 ), denoting v and A the soliton
speed and amplitude. These values are obtained directly from the expression of the soli-
ton (1.10) as ω∗ is identified in the time-dependent phase term. Also, the slope of the
straight is equal to the speed of the corresponding soliton, as illustrated Figure 2.1(b).
1D-SHE solitary waves are also represented by straight lines, for which the link between
the slope of the line and the velocity of the structure stands. That means that with
the (k − ω) spectrum we can deduce the number of solitons, as well as their speeds and
amplitudes. We use this method to double-check the results given by the DST in all our
simulations. Note that this method does not allow us to recover their phases and positions.

The parameters of the time window used to compute the spatio-temporal spectrum
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Figure 2.1: Diagnostics used to characterize the numerical simulations - (a)
Example of a DST spectrum. Each eigenvalue (red dot) represents a soliton and its
position in the complex plane defines the soliton amplitude (twice the imaginary part in
the NLSE) and speed (minus twice the real part in the NLSE). The grey part box denotes
the threshold, below which the eigenvalues are unphysical (soliton wider than the box or
numerical artefacts). (b) Example of a (k − ω) plot which contains signatures of linear
waves (white dashed parabola), weakly non-linear waves (blue width of the parabola) and
a soliton (orange straight line). The amplitude and speed of the soliton can be deduced
from the characteristics of this line.

are crucial to identify the spectral signatures. These are the total time T of this windows
and the output time interval dto between two times slices (note that it is not necessarily
equal to the dt of the numerical integration). T and dto determine important quantities
of the (k − ω) plot, the maximum frequency resolved ωmax = 2π/(2dto) and the fre-
quency precision ∆ω = 2π/T . The factor 1/2 in ωmax is added to take into account the
Nyquist-Shannon sampling theorem. According to this theorem, to resolve a signal up to
a frequency f we need to sample it with a frequency fs which satisfies fs > 2f . That
implies that, sampling every dto, the biggest frequency resolved is 1/(2dto), which gives
ωmax = 2π/(2dto). This value of ωmax gives kmax =

√
2ωmax with the dispersion relation.

Therefore, for a sufficient precision we want a long time window with data output very
frequently. However, that can create very big arrays and slow down the computation, a
compromise needs to be found. Finally, we recall that ∆k = 1 is fixed by the choice of
L = 2π.

Contrary to the DST, the (k − ω) spectra do not provide information for a given time
but over a time window. Computing (k − ω) plots for subsequent windows creates a
movie which allows to visualize the time evolution of solitons. It has been observed in [5]
that solitons created via Modulational Instability (MI) are found to peel off from the
dispersion relation at a ks where the associated straight line is tangential to the parabola.
That means that the speed of the created soliton is equal to the group speed of the wave,
dωk

dk

∣∣∣
ks

= v.
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Chapter 2. Propagation of coherent structures into the SHE

2.3 Quasi-Soliton Turbulence

2.3.1 Initial Conditions
To study the quasi-Soliton Turbulence, we create an initial flat-top Fourier spectrum,

as in [5],

ûk =
{

Amp eiφk if k ∈ Jki − dki, ki + dkiK
0 else (2.4)

where ki and dki stand respectively for the middle of the initially excited modes and dki

the half-width of the top-hat spectrum. Amp stands for the amplitude, equal for all the
modes and φk ∈ U([−π, π[) are the phases, by definition random. Notice that this spec-
trum is statistically symmetric in k ↔ −k as the only difference between positive and
negative k is the random phases. With a flat-top Fourier spectrum, the function in real
space is initially a set of random waves of amplitude Amp and wave-vectors distributed
around ki.

To these initial conditions are attributed initial wave-action N and energies H2, H4
and H = H2 + H4. For our box of length L = 2π with ∆k = 1, N is given by

N = L
∑

k
|ûk|2 = 4LkiAmp2. (2.5)

For the initial conditions (2.4), N does not depend on the mean position ki of these modes
in the Fourier space. Conversely, the energy terms do depend on which modes are excited.
For instance, the initial quadratic energy H2 is given by

H2 = 1
2

∑
k∈excited modes

k2Amp2. (2.6)

By changing ki while keeping dki constant it is thus possible to change the total energy
H while keeping the same wave-action N . This is an important property as H and N
will be constant in time, as conserved quantities of the 1D-SHE.

2.3.2 Numerical Results
We report Figure 2.2 the evolution of the 1D-SHE system for the initial conditions

(2.4) with Amp ≃ 2.8, ki = 7.5 and dki = 1.5. These values correspond the excited modes
6 ≤ k ≤ 9, a total wave-action N = 400 and the total energy H = −1192.5. The box is
here divided in 4096 grid points.

In the left panels, we plot the spatio-temporal dynamics of the system, first for small
times 0 ≤ t ≤ 26 and then for very large times 989 ≤ t ≤ 1000. On its t−axis, four time
intervals (a) to (d) of length T = π are highlighted in white. The system is studied at
these time intervals with the diagnostics, snapshot and DST spectrum (middle panels)
and (k − ω) spectrum (right panels). More precisely, for the time intervals (a) and (b),
the snapshots and DST spectra are computed for only specified time while for (c) and
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2.3. Quasi-Soliton Turbulence

(d) they are showed for two different times of the interval to show the short-time evolution.

Figure 2.2: Evolution of the 1D-SHE system for flat-top initial conditions - The
system is studied at different times with the DST and (k − ω) spectra. The comparisons
of these spectra with the (x − t) plot shows the creation of one large isolated propagating
structure, characterized by oscillating amplitude and width.

The initial function in the real-space, directly computed from the initial flat-top spec-
trum, and its DST spectrum are plotted in (a). The function is a superposition of random
waves, as seen in the |u| snapshot, however, the DST spectrum, computed for this initial
condition, identifies quite a large number of solitons in the system corresponding to the
eigenvalues above the threshold represented by the gray area. We stress that no solitons
have been embedded in the initial conditions but some have been detected, as eigenval-

39



Chapter 2. Propagation of coherent structures into the SHE

ues of the DST defined for the 1D-NLSE. In the complex plane which contains the DST
spectrum, the eigenvalues "swarm" during time evolution, and do not keep a constant
position. As the position of the eigenvalues are directly related to their corresponding
solitons, this indicates that the solitons characteristics drastically change in time, which
is contradictory with the definition of solitons in integrable systems. Given the abrupt
changes of the DST spectrum and the absence of solitons traces in the (x − t) plot (a),
we assume that, in early times, there are no exact solitons in the system. However, in the
(x − t) dynamics we observe localized structures propagating and interacting, which may
correspond to the eigenvalues obtained in the DST spectrum. It is important to notice
than the eigenvalues stay grouped together and that no one grows alone in stage (a).

The system rapidly organizes itself in clearer and larger localized structures. As we
clearly see in (b) for the time t = 6.292, the function has now four different recogniz-
able structures in the x-space, with one remarkably larger than the three others. This
situation is also seen on the DST spectrum, as four eigenvalues can be identified with
the largest imaginary parts (this latter being proportional to the soliton amplitude in
the DST framework for the 1D-NLSE). Besides, one eigenvalue is isolated in the complex
plane with an imaginary part almost twice bigger than the other eigenvalues, correspond-
ing to the biggest structure on the snapshot. These structures are solitons according to
the DST and they are indeed visible on the (x − t) plot, particularly during the time
interval (b) where we can see two isolated structures propagating on top of a smaller
one and waves. We highlight once again that, as the 1D-SHE is non-integrable, proper
solitons can not be found in this system. Hence, localized structures will be referred to as
quasi-solitons to, nonetheless, underline their localized propagation. We can notice that
these quasi-solitons do not propagate in straight lines, as solitons normally do. Hence,
with the presented system, we study indeed the quasi-Soliton Turbulence as defined in
introduction 2.1.

The (k − ω) plot 2.2(b) confirms the presence of linear waves with the parabola
which can very modelled with a very good accuracy by the expected dispersion rela-
tion ωk = k2/2 (model not plotted for clarity). We can also observe straight lines in the
ω < 0 region, as the spectral signature of the quasi-solitons. These lines are quite blurry
because theirs slopes are supposed to be equal to quasi-soliton speeds, but these speeds
are not constant. The minimum of the parabola contains a lot of energy which comes
from the interaction between the linear waves and the quasi-solitons created. A movie
of successive (k − ω) spectra would show these straight lines going down in the (k, ω)
plane, which corresponds to quasi-solitons growing. As observed in [5], the straight lines
are peeling off from the dispersion relation.

Now that some quasi-solitons are clearly distinguishable from the wave background,
they will collide numerous times in the periodic box. As said before, such collisions are
not elastic because the 1D-SHE is not integrable. Consequently, colliding quasi-solitons
can undergo changes of amplitudes and/or speeds. More importantly, the number of
quasi-solitons is not fixed, some can disappear. The number of DST eigenvalues found
by the collocation method is fixed but we mean that the number of eigenvalues above the
threshold diminishes. Between the time intervals (b) and (c), the number of quasi-solitons
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2.3. Quasi-Soliton Turbulence

decreases because of these non-elastic collisions. Moreover, the amplitude of the biggest
quasi-soliton keeps increasing as seen on the (x − t) plot between (b) and (c). Comparing
the snapshots of |u| for close times in (c), we realise that the quasi-soliton amplitude
changes in time. For the two times showed, the amplitude drops. We can also observe
a change of its width, the quasi-soliton being wider while smaller. The actual evolution
is an oscillation of the quasi-soliton between these two states, between tall-and-thin and
small-and-wide. The analysis of the DST spectrum confirms this oscillation. We highlight
in particular two eigenvalues with the two biggest imaginary parts, ζ1 = ζRe

1 + iζIm
1 and

ζ2 = ζRe
2 + iζIm

2 , such that ζIm
1 > ζIm

2 . Their evolutions between the two times are given
by the dots with the progressive colors (only shown for these two eigenvalues). The cor-
responding trajectories in the complex plane are highlighted by gray lines. For simplicity
we only plot a half of the periodical behaviour. For the rest of the thesis, comparing the
eigenvalues, such as in "biggest eigenvalues" explicitly refers to comparing their imaginary
parts.

With this detailed evolution, we understand that the two different states of the quasi-
soliton are characterized by two qualitatively different DST spectra. When the quasi-
soliton is tall and thin, ζ1 and ζ2 are the most separated, ζIm

1 is at its maximum while ζIm
2

is at its minimum, and conversely when the quasi-soliton is small and wide. The precise
time evolutions of ζIm

1,2 is plotted Figure 2.5(a) and will be analysed in the coming para-
graphs. As we will show, ζIm

1 and ζIm
2 oscillate in phase opposition, as do ζRe

1 and ζRe
2 .

Similarly to the DST spectrum, the (k − ω) spectrum also changes qualitatively be-
tween (b) and (c). The parabola for linear waves is still present but the quasi-solitonic
trace is now a set of three parallel lines centered around a main one near ω = 400. This
main line is surrounded by two weaker lines with the same slope, with a considerable drop
of energy between the main and the secondary lines. The considered slope is measured
and appears to be indeed equal to the mean speed of the quasi-soliton during the time
interval, such as it is expected for soliton in the 1D-NLSE. Lines with the same slope are
also visible decorating the linear dispersion relation, standing for the non-linear interac-
tions between the linear waves and the quasi-soliton. We recall that such interactions are
made possible by the non-integrability of the 1D-SHE . There is one such decoration for
each resolved k. Noting that ∆k = 1 in our simulation, we suggest this could be a finite-
size effect. We predict that in an infinitely resolved system, this effect would manifest as
a non-linear broadening of the linear dispersion relation.

In the (c) region of the (x − t) plot, we still find some low-amplitude structures prop-
agating. During the time evolution between (c) and (d), these small structures have
disappeared through non-elastic collisions with the big oscillating quasi-soliton. Notice
that the time interval between (c) and (d) is considerably larger than between (b) and
(c). In (d), the oscillating quasi-soliton propagates alone on top of the small wave back-
ground, with a larger (mean) amplitude than in (c). This can be seen in the comparison
of snapshots for close times. This average increase appears in the DST spectrum as an
average increase of the imaginary parts ζIm

1,2. The time evolution of the latter is qualita-
tively the same as in (c), but with oscillations around a larger mean value. Indeed, the
quasi-soliton still has two extreme states, tall-and-thin with two main eigenvalues spread
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Chapter 2. Propagation of coherent structures into the SHE

in their imaginary parts and shorter and wider with the two eigenvalues closer. Note that
the oscillations of these eigenvalues happen far above the threshold, suggesting that this
indeed represents a physical behaviour. Another important result from the comparison of
DST spectra of (c) and (d) is the the growth of the two biggest eigenvalues which have
risen in the complex plane, while all the other eigenvalues have significantly reduced.
Now, the other eigenvalues lie down in the threshold region, meaning that they are not
physically recognisable within the box.

The same observation can be made for the (k−ω) spectrum of (d), the region ω < 0 is
still dominated by a main line and two surrounding parallels ones but one can also notice
tertiary lines, still with the same slope, particularly visible near the parabola. Moreover,
two straight lines of energy depletion cut these parallel lines in the extension of the disper-
sion relation. As yet, we have no explanation for this phenomenon. Finally, comparing the
four (k−ω) spectra, one can remark that the parabola corresponding to weakly nonlinear
waves goes to higher and higher k as the system evolves. This corresponds to large-k
waves appearing in the system, as a consequence of inverse cascade. This excitation of
large-k waves can be verified by comparing the snapshots of |u|.

2.3.3 Study of the final state
It appears from the study of the evolution of the system that the final state of an

ensemble of quasi-solitons in the 1D-SHE is a single oscillating quasi-soliton, character-
ized by oscillating eigenvalues in the DST spectrum and parallel lines in (k−ω) spectrum.

To verify that the parallel lines are indeed the signature of the final quasi-soliton, we
can separate these structures from the linear waves background by filtering the (k − ω)
spectrum for the steady state in the time interval (d) of the Figure 2.2. Isolating the
parabola and then performing a double inverse FT, we should recover the wave field in
the real space. Similarly, taking only the parallel lines, lying below the dispersion re-
lation, is expected to give the dominant coherent structure. Here, coherent means that
the structure keeps its coherence by staying localized during the propagation. Due to
the non-linear correction to the linear dispersion relation, the filtering will not be done
around ω = 0 but around ω = −40. Finally, the filterings will be done by taking only a
non-inclined rectangle in the (k − ω) plot, ie only ω− < ω < ω+ for all k. The results of
these filterings are presented Figure 2.3.

If we isolate the part of the spectrum corresponding to ω ⩽ −40, the double inverse
FT gives the (x − t) of a function we call ucoh(x, t), the coherent part of u, and which
contains the quasi-soliton, proving that the three parallel lines in the (k − ω) spectrum
are indeed its spectral signature. Indeed, the obtained function is made of a localized
structure oscillating in width and in amplitude, signifying that these characteristics are
encoded in the parallel lines. Moreover, its trajectory is exactly the same as the quasi-
soliton of the full function.

We also verify explicitly that the main and secondary lines in the (k − ω) spectrum,
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Figure 2.3: Decomposition study of the (k − ω) plot in the final state- (a) Inverse
FT of the ω ⩽ −40 part. The system only contains the oscillating structure with dispersed
very small waves. (b) Inverse FT of the ω > −40 part. Only waves are present in the
system, with almost nothing in the coherent structure’s trajectory. (c) Comparison of
the different parts of the function in the real space at t = 995.8252. Far away from the
structure, the system is modelled by the linear sum of the wave and the localized parts.
(d) DST comparison of the full function and its parts. The two eigenvalues of the bound
state are also found for the localized part, while slightly modified. Notice that the wave
part does not contain any eigenvalue.

each isolated separately, recreate the same trajectory with differences of amplitudes. This
confirms that the secondary lines in the (k − ω) plot are not associated with a soliton or
quasi-soliton with another trajectory. We can notice that isolating only the main line re-
duces the frequency and the amplitude of the quasi-soliton’s oscillation. The quasi-soliton
part of the function corresponds to a time-averaged wave-action of 245.089. This shows
that 61.3 % of the total wave-action N = 400 is concentrated inside the final structure.

The snapshot of ucoh at tc = 995.8252 shows clearly the coherent structure, with some
other local maxima. We assume that these smaller maxima would disappear with a better
isolation of the lines in the (k − ω) spectrum. Besides, even with these bumps, we see
that |u| tends to a null constant value asymptotically around the structure. This obser-
vation confirms the idea that the coherent structure is not simply a breather for which
the function is constant away from the structure [84]. The DST spectrum of this same
time finds only two eigenvalues above the threshold and these eigenvalues are close, in
the complex plane, to the ones characterizing the quasi-soliton. We only present here
a snapshot of the DST spectrum but we have verified that it has the same qualitative
bound state-like evolution as the full function. To summarize, we have found that the
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Chapter 2. Propagation of coherent structures into the SHE

real-space part of the function corresponding to the parallel lines in the (k − ω) spectrum
is the manifestation of the oscillating evolution of ζ1 and ζ2 in the DST spectrum.

In Figure 2.3(b), we present the result of the filtered inverse FT done by isolating
the spectrum for ω > −40, which gives uwv, the wave-part of u. uwv corresponds to a
system filled with waves almost in the whole box except on the trajectory of the struc-
ture, clearly visible with waves of lower amplitude. The mean amplitude of these waves
is 4.4088, averaged on the whole (x − t) plot. The wave-action computed for uwv(x, t),
averaged in time over the interval (d), is ≃ 154.911, which represents 38.7% of the total
wave-action of the system N = 400. On the subplot (c), which plots |uwv(x, tc)|, we
can see that at the position of the structure the waves have a particular behaviour with
constant amplitude and a frequency lower than anywhere else. On the subplot (d) we see
that the DST spectrum computed for the wave part, again at the time tc, does not show
any eigenvalue above the threshold and, thus, no physically meaningful eigenvalues. This
result was expected for uwv which only contains the wave component of u.

On the comparison (c) of |u(x, tc)| with its wave and coherent parts |uwv(x, tc)| and
|ucoh(x, tc)|, we see that the full field |u(x, tc)| is relatively well modelled by the linear
sum of |uwv(x, tc)| and |ucoh(x, tc)| in the full box apart from at the structure position.
At the position of the quasi-soliton, all the local maxima of the wave part are not visible
on the total function. These two observations indicate the non-linear interaction of the
localized structure with the linear waves. With the same idea, we can see on the DST
spectrum that two eigenvalues slightly above the threshold are not captured by a part of
u, contrary to the eigenvalues of the bound-state. This may suggest that these eigenvalues
can represent the result of a non-linear interaction between coherent and wave parts but
this requires further studies. Finally, as seen in the snapshot for tc, u and ucoh have very
close maxima during the evolution. Quantitatively, their time-averaged maxima are re-
spectively equal to 48.865 and 48.197, while it is 12.150 for the wave part. This supports
the determination of the quasi-soliton amplitude A as the maximum of the whole function.

To make sure that the second eigenvalue is indeed a characteristic of the oscillating
structure and not an artefact, we truncate the function around this structure by putting
the function to zero everywhere else. If the second eigenvalue corresponds to the structure,
we expect the DST spectrum to barely change. In Figure 2.4, we compare, at tc the DST
spectrum for the function defined the whole box and the truncated function. It appears
that the two eigenvalues which makes the bound state in the spectrum of the full function
are also found in the spectrum of the truncated function. That implies that the second
eigenvalue is indeed directly linked with the structure. For simplicity, we only show this
result for one extreme case of the bound state, but the other one with ζIm

2 minimum has
also been checked and the observation stands. We can also observe in Figure 2.4 that
the spectrum of the truncated function does not contain other eigenvalues than the two
of the bound state.

To study more precisely this final coherent structure, we plot Figure 2.5(a) the time
series of the imaginary parts ζIm

1,2 and the maximum of the function maxx(|u(x, t)|) for a
short time window in the interval (d). This maximum is taken as the amplitude of the
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Figure 2.4: DST spectrum of the function truncated around the structure - (a)
Snapshot of the truncated function. (b) DST spectrum and comparison with the spectrum
of the full function. The two eigenvalues creating the bound state are also found for the
truncated function.

main quasi-soliton. The comparison suggests indeed that the imaginary parts oscillate
with the same frequency as the maximum of |u|. More precisely, maxx(|u(x, t|) and ζIm

1 (t)
seem to evolve in-phase and the two imaginary parts in phase opposition. The correla-
tion of the evolutions of ζIm

1,2 is confirmed by the study of the cross-correlation functions
ρ[max|u(x)|, ζIm

1 ] and ρ[ζIm
1 , ζIm

2 ], presented Figure 2.5(b). The cross correlation function
is given by

ρ[f, g](τ) =
∫

(f(t + τ) − µf )
(
g∗(t) − µ∗

g

)
dt

σfσg

, (2.7)

where µ and σ represent respectively the mean value and standard deviation obtained
empirically for the function f(t) and g(t). The positive for ρ[max|u(x)|, ζIm

1 ] and negative
peaks for ρ[ζIm

1 , ζIm
2 ] for τ = 0 indicate clearly the in phase evolutions of the bound-state

amplitude max|u(x)| and the biggest imaginary part ζIm
1 as well as the phase-opposition

evolutions for ζIm
1 and ζIm

2 . The same comparison has been done for ζRe
1 and ζRe

2 and
shows the same result, the real parts of the biggest eigenvalues evolve in phase opposition.

Now that the correlation between the amplitude of the quasi-soliton, denoted A(t)
and the biggest imaginary part ζIm

1 (t) is ensured, we can have a look at the proportion-
ality coefficient. recall that for the integrable 1D-NLSE, the ratio A/ ζIm

1 is constant and
equal to 2, with the two quantities being constant. For the 1D-SHE , we now have time-
dependant quantities. Denoting ⟨.⟩t the time averaging, we can compute ⟨A(t)/ζIm

1 (t)⟩t

for the two time intervals where the coherent structure has been spotted, (c) and (d). For
(c) we obtain ≃ 1.30 and ≃ 1.25 for (d). To summarize, the biggest imaginary part in
the DST spectrum is correlated with the amplitude of the structure, with a ratio close to
the value expected in the linear case. We interpret this similarity as a sign that DST is
still a precise tool to study a non-integrable system, even if it is not perfectly accurate.
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Figure 2.5: Time evolution of the DST spectrum biggest eigenvalues ζIm
1,2 for time

interval (d) in Figure 2.2 - (a) Times series of ζIm
1,2 compared with the maximum of |u|.

The imaginary parts oscillate around two well-separated values with the same frequency
and in phase opposition. ζIm

1 (t) evolves in phase with the maximum of the function. (b)
Cross-correlation functions between the time-series. maxx(|u|) and ζIm

1 are found in phase
while ζIm

2 and ζIm
2 are in phase opposition. (c) PSD of the times series |ζ̂Im

1,2(ω)|2. Both
spectra have maxima for the same frequencies, which proves that the times series have
correlated evolutions. (d) Superimposition of the PSD |ζ̂Im

1 (ω)|2 on the (k − ω) spectrum,
placing the ω = 0 peak on top of the main straight line. The secondary peaks of the PSD
correspond to the parallel lines of the (k − ω) spectrum.

The decrease of this ratio between the time intervals (c) and (d) (highly separated in time
scale) can be interpreted with the growth of the coherent structure. Indeed, the increase
of its amplitude implies a consolidation of this structure, driving the system further away
from integrability. Thus, the DST spectrum is expected to be less precise. It is important
to notice that the relation A/ζIm = 2 in the integrable case stands when the soliton is
described by only one eigenvalue (as the definition of solitons) while in our case, there is
always another eigenvalue (ζ2) which could inhibit the proportionality between A and ζIm

1 .
It is indeed observed that the ratio A/ζIm

1 oscillates in time, being maximum when ζIm
2

is minimum and inversely. The relation between the structure velocity and the real part
ζRe

1 shows an even better accordance : denoting v(t) the speed of the coherent structure,
we obtain ⟨v(t)/ζRe

1 (t)⟩t ≃ −2.19 in (c) and ≃ −2.12 in (d), to be compared with the
constant value -2 in the integrable case.

The correlation between the imaginary parts can also be observed by comparing their
corresponding Power Spectral Densities (PSDs) |ζ̂Im

1,2(ω)|2. Both spectra have the same
peaks, a primary one at ω = 0, corresponding to the mean value of each time series,
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2.3. Quasi-Soliton Turbulence

and secondary and tertiary ones, respectively at ω = ±415.814 and ω = ±645.711. The
difference in amplitudes for the ω = 0 peak captures the factor 2 between the mean values
of the time series. The same secondary peaks are the peaks of lowest |ω| and thus cor-
respond to the lowest frequency in the t-evolution. Both spectra having their secondary
peaks located at the same ω confirms that ζIm

1,2 oscillate with the same frequency denoted
Ω = 415.814. The PSD of maxx(|u(x, t|), not shown for visibility, displays the same pri-
mary and smaller peaks. All the PSDs are symmetric functions of ω because the related
time series are real.

To this point, it is now clear that the coherent structure created by the evolution of
the system with 1D-SHE is associated with the oscillations of the main eigenvalues ζ1 and
ζ2 in the DST spectrum and parallel lines in the (k − ω) spectrum. We propose to name
this coherent structure a bound-state to illustrate the correlated and oscillating evolutions
of ζ1 and ζ2. More precisely, a bound-state denotes a coherent structure, oscillating in
amplitude and in width, characterized by two DST eigenvalues oscillating in phase oppo-
sition and with a spectral signature of parallel lines. Remark that no conditions are set
on its speed nor trajectory.

We recall that, for a 1D-NLSE soliton characterized by A and v, the center (k∗, ω∗)
of its straight line in the (k − ω) spectrum is given by (k∗ = v, ω∗ = (v2 − A2)/2). As
the 1D-SHE is galilean invariant, we expect the relation k∗ = v to stand. This was ver-
ified in the time interval (d) as k∗ was located between k = 0 and −1 for a mean speed
⟨v⟩t = −0.21 (below the resolution ∆k = 1 of our simulation). A very important result
can be obtained by superimposing the PSD |ζ̂Im

1,2(ω)|2 on top of the (k − ω) spectrum
of the corresponding time window, as it is done Figure 2.5(d). |ζ̂Im

1,2(ω)|2 is placed in
such a way that the primary peak at ω = 0 is aligned with the main line of the (k − ω)
plot, whose center is found at (k∗ = −0.21, ω∗ = −730) by searching for the maximum
at k ≃ ⟨v⟩t. We observe a good correspondence between the secondary peaks of |ζ̂Im

1,2(ω)|2
and the secondary lines of the (k − ω), for both time intervals (c) and (d), ie when the
final quasi-soliton has been formed. As the secondary peaks in the PSD are the direct
sign of the oscillations of the amplitude and the imaginary parts, we conclude that the
secondary lines in the (k − ω) spectrum represent the same phenomenon. This result is
of great importance as it also shows that the two diagnostics that we use are consistent
together.

Finally, we can try to interpret the ω-position of the main line, ω∗ = −730, by com-
paring it to the frequency of 1D-SHE solitary waves or 1D-NLSE solitons. In the time
interval (d), the bound-state has averaged amplitude Ā ≃ 48.9 and velocity v̄ ≃ −0.21.
As the secondary lines of the (k − ω) spectrum have been identified as linked with the
amplitude oscillations, we will only take the mean values into account to try to recover
the position of the main line. If we consider a 1D-NLSE soliton, we would expect a fre-
quency ωsol(Ā, v̄) = −(v̄2 − Ā2)/2 ≃ −1194 given its expression (1.10), quite different
from the observed value of -730. Similarly, with a 1D-SHE solitary wave (1.23), we expect
a frequency ωsol.w.(v̄) = (1/β − v̄2) ≃= −100, even less consistent with the numerical
value. We can also remember that the 1D-SHE solitary wave has an amplitude fixed by
the non-linearity parameter β, which is 10.6 for the value β = 10−2, also far from the
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Chapter 2. Propagation of coherent structures into the SHE

mean amplitude observed ≃ 48.9.

Discussion

We have made different tests to make sure that the parallel lines observed in the
(k − ω) plot are actually the spectral signature of the bound-state. Similarly, we have
checked that the two evolving eigenvalues found in the DST spectrum correspond to the
bound-state.

The nature of the bound-state is a delicate question. The second eigenvalue identified
by the DST, clearly above the threshold, can hardly be considered as a second indepen-
dent soliton, as shown by the different tests realized. If this smaller soliton existed, we
would suppose that it would always be hidden inside the main one. Indeed, as ζRe

1 ̸= ζRe
2 ,

these solitons would have have different speeds and the smaller soliton would propagate
inside the bigger one. According to this assumption, the oscillating quasi-soliton would
be the non-linear sum of the two eigenvalues. However, as the 1D-SHE is non-integrable,
solitons are not stable and particularly the 1D-NLSE solitons, which are only stable in the
1D-NLSE, as we will show section 3.1. We prefer to see this solitonic bound state as an
non-integrable version of the one described by Zakharov and Shabat [9] for the 1D-NLSE
. They describe this bound state as made of two eigenvalues (constant for the 1D-NLSE )
with the same real part and two different imaginary parts ζIm

1 and ζIm
2 < ζIm

1 . According
to them, the structure resulting from these eigenvalues will oscillate in amplitude at the
frequency ω = 4

(
ζIm

1
2 − ζIm

2
2) (the difference between the factor 4 in their article and 2 in

our work corresponds to the difference of coefficient for the studied equations). Contrary
to the 1D-NLSE , in our case the imaginary parts are not constant but we can compute
ω = 2

(
⟨ζIm

1 ⟩t
2 − ⟨ζIm

2 ⟩t
2) ≃ 2250, a factor 5 higher that the value found at Ω ≃ 416. We

will see in section 3.1 that this model gives more consistent results for a simpler system.

The observed bound-state can be found similar to Kuznetsov-Ma breathers which are
also time-periodic solutions of the focusing 1D-NLSE [84]. However, as mentioned before,
these breathers are characterized by constant values far away from the central peak. As
we have shown, isolating the bound-state and putting to zero its wave background does
not change nor its characteristics nor spectral signatures. Besides, the DST spectrum of a
Kuznetsov-Ma breather contains a branchcut, which is a continuous vertical line of eigen-
values at ζRe = 0, plus a singe eigenvalue. This DST spectrum is qualitatively different
from the one we have observed for the bound-state. Finally, Kuznetsov-Ma breathers,
and breathers in general, are observed in the integrable 1D-NLSE so we can not expect
to observe them in the non-integrable SHE. The bound-state may perhaps be seen as an
non-integrable version of breathers but this question is left open.

We have noticed that the DST framework of the integrable 1D-NLSE, even when
applied to a non-integrable system, gives predictions which are qualitatively in great ac-
cordance with the spatio-temporal and Fourier dynamics. The oscillations of the two
eigenvalues capture the evolution of the quasi-soliton : we prefer to see the DST spec-
trum of the bound state as a signature of this final state rather than as an exact definition
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2.3. Quasi-Soliton Turbulence

of the system (as it is in integrable case). The ability of the DST to describe qualitatively
well the 1D-SHE system may be considered as a first numerical result.

2.3.4 Condition of existence for the bound-state

k ∈ [2, 5]

No coherent structure

1 dominant eigenvalue

2 dominant eigenvalues

k ∈ [6, 9]

0.5 1.0 1.5 2.0 2.5 3.0

N
Lk2

i (1+βk2
i )
∼
∣∣∣H4

H2

∣∣∣

k ∈ [10, 13]

Figure 2.6: Quasi-Soliton Turbulence phase diagram - For different initial flat-top
spectra , we identify the simulations which lead to a bound-state for different non-linearity
ratios. We observe that if the system is too linear, the bound-state does not appear.

In the previous section, we identified a bound-state for a single simulation, starting
from a flat-top spectrum with Amp = 3, ki = 7.5 and dki = 1.5, see (2.4). To see if
there were any conditions for its existence, we ran sets of qST simulations like detailed
before but with varying the initial conditions. Specifically, we prepare the system with
an initial flat-top spectrum of random waves and we scan the amplitude Amp of this ini-
tial spectrum. We repeat this scan of Amp by placing the spectrum at larger and larger
lengthscales by increasing ki. We keep dki = 1.5 the same in these experiments. We evolve
the system for a very long time (up to t = 6000) in order to observe whether dominant
coherent structure emerges and what its DST characteristics are. To be able to reach
such a large time, we reduced the resolution to Nx = 1024 and increase the time-step up
to ∆t = 5 × 10−6, to reduce the computation time. We ensure that these simulations are
correctly resolved by checking that the wave-action spectrum does not reach the biggest
wave-number resolved. However, we still repeated certain runs at higher resolution and
find exactly the same qualitative behaviour. Finally, notice that simulating the system
up to t = 6000 allows us to confirm that the bound-state, when it exists, is indeed the
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Chapter 2. Propagation of coherent structures into the SHE

final state of the system.

The Figure 2.6 summarizes the results of this study. It is a phase diagram for which
we plot a proxy for the initial non-linearity ratio of the system as abscissa, and the wave-
numbers which contain the initial spectrum as ordinates. Each simulation is represented
by a marker which depends on its the final state : a red cross if no coherent structure
is observed, an orange circle if a coherent structure is observed with only one dominant
eigenvalue found in the DST spectrum and an orange-and-green square if a coherent struc-
ture is observed with two dominant eigenvalues. The cases when one dominant structure
is obtained correspond to a bound-state and we hypothesise that the wave-action N is
not always large enough to exhibit a second eigenvalue ζ2. This is notably the case for
the orange circles. The orange-and-green squares correspond exactly to the bound-states
as characterized in the previous section.

A result can be easily drawn for this phase diagram : when the system is too linear,
no coherent structures, and consequently no bound-state are observed. This observation
was expected given the properties of solitons. Solitons correspond to a balance between
non-linearity and dispersion and changing the amplitude of the spectrum does not affect
the dispersion. Hence, below a certain threshold, the system is too linear for the non-
linearities to match the dispersion and the solitonic structures, such as the bound-state,
can not develop. Moreover, this threshold seems to be independent from the position of
the initial spectrum in the k-space : if the non-linearity ratio is below 0.9, the system will
not develop any coherent structures, no matter the excited modes.

Conversely, a bound-state is always observed when the system is very non-linear.
The simulation whose results are presented in section 2.3.2 corresponds to an abscissa
|H4/H2| ≃ 4.6 for initially excited modes k ∈ [6, 9]. From Figure 2.6 we see that we still
obtain a bound-state if we reduce the non-linearity ratio down to 1.35, which corresponds
to divide by four the wave-action in the system.

For k ∈ [2, 5] and k ∈ [6, 9], we observe a transitional state between the absence of
any solitonic structures and the existence of a clear bound-state. That corresponds to a
solitonic structures characterized by only one dominant eigenvalue in the DST spectrum.
We assume that the system tries to create a bound-state but that its amplitude is not
large enough to make a second eigenvalue grow above the other eigenvalues. More pre-
cisely, ζIm

2 is not clearly distinguishable from the other imaginary parts. We observe that
the range of non-linearity ratios corresponding to this transitional state diminishes when
we initially excite larger and larger modes. This observation needs further investigation.

This study of the conditions of existence for the bound-state brings interesting results
and confirms the link between the small non-linearity ratio and the absence of bound-state
and any coherent structures. Further study are required to complete this phase diagram
but we hypothesise that new points in this diagram will not endanger the conclusions we
have just drawn.
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2.4. Two 1D-SHE solitary waves collisions

Summary of the section

• We have found that the function, initialised as random waves organizes into
an unique coherent structure, named bound-state,

• this bound-state has oscillating amplitude and width,

• its DST spectrum finds two eigenvalues with large imaginary parts oscillating
in phase opposition,

• parallel lines represent its (k − ω) spectrum signature.

• It appears that the bound-state can not exist if the system is too linear.

2.4 Two 1D-SHE solitary waves collisions
To have a better understanding of the quasi-Soliton Turbulence behaviour detailed

above, we will now study the collisions between two localized structures that we see prop-
agating during the ST evolution. To be precise, we study two 1D-SHE solitary waves
collisions to illustrate clearly the conditions under which coherent solitonic structures can
merge. Indeed, the creation of the final structure as a bound-state is possible because the
1D-SHE is non integrable and, thus, the occurring collisions are not elastic. Such non-
elastic collisions will be studied by preparing the system initially as two 1D-SHE solitary
waves (1.23) with speeds of opposite signs and initially located in s1 = L/4 = π/2 and
s2 = 3L/4 = 3π/2. The solitary waves are set as distant as each other to minimize the
overlapping of the exponentially decaying tails of the structures. The non-integrability pa-
rameter is kept at β = 10−2 which sets the 1D-SHE solitary waves amplitude as A ≃ 10.6.
The system studied is the same box of length L = 2π with periodic boundary conditions
and discretized with N = 2048 points. This number of points ensures the conservation of
N = 60 and H = −1193 over time with a reasonable time of computation. The periodic
boundary conditions force the two solitary waves to recirculate through the box and col-
lide numerous times. This simulates the behaviour of a rarefied gas of interacting solitary
waves in an infinite system.

2.4.1 Study of simulations with different initial phase differences

Same final state

We present the results of simulations obtained for two initial 1D-SHE solitary waves
with opposite initial speeds ±0.5 and different initial phases. The range of initial phase
differences ] − π, π] is explored with eight values, equally distributed ∆ϕi = ∆ϕ(t = 0) =
mπ/4, m ∈ J−3, 4K. The Figure 2.7 compares the spatio-temporal dynamics for these
values.

All these different dynamics share two interesting features. The first one is the exis-
tence, for large times, of a unique coherent structure, with oscillating width and amplitude,
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Figure 2.7: Spatio-temporal dynamics of colliding 1D-SHE solitary waves for
different initial phase differences - The final state is the same for all initial phase
difference : a coherent structure propagating on top of linear waves. The initial phase
difference ∆ϕi plays a role in the evolution, by determining the time at which the two
solitary waves merge.

propagating on top of a wave field background, and the second one is the impact of the
phase difference, dealt with later. The coherent structures oscillates both in amplitude
and in width, it is more convenient to observe this for zoomed (x − t) dynamics, see
Figure 2.10(a) for instance. Moreover, it appears to be stable in time, as it is observed
for large times, until t = 200 for ∆ϕi = 0 and π. This coherent structure also stands
to these times for the other simulations but we only show early times to highlight the
process which leads to such a final state. The trajectory of this coherent structure starts
to wander at some time. We hypothesise that this is due to the structure itself exchanging
momentum with the waves in the system. This final state is qualitatively the same for all
of these simulations, with only the trajectory of the final structure seeming quite random.

This final coherent structure is characterized by the DST and (k − ω) spectra diag-
nostics. The DST spectrum shows two main eigenvalues above the threshold, ζIm

1,2, for
all the simulations. We observe oscillating and in phase oppositions evolutions for ζIm

1 (t)
and ζIm

2 (t). These oscillations also have the same frequency that maxx|u(x, t)|, the latter
being in phase with ζIm

1 (t). These observations are the same as the ones made for the
bound-state of the quasi-Soliton Turbulence. This suggests that the final state of the
solitary waves collisions also is a bound-state.

In Figure 2.8, we compare, for the ∆ϕi = 3π/4 simulation, the (k − ω) spectra
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2.4. Two 1D-SHE solitary waves collisions

computed for this same system but for different time windows, 0 ⩽ t ⩽ 7 for 2.8(a) and
25 ⩽ t ⩽ 32 for 2.8(b). The initial stage of the evolution (up to t = 7) contains only
two solitary waves in the (x − t) plot. These two coherent structures can be clearly seen
on the (k − ω) plot, as the two crossing straight lines. We can even distinguish the two
sub-lines with different but similar slopes, which correspond to the speeds of the solitary
waves before and after the first collision. The absence of the parabola shows that the
system does not contain linear waves in early times. This observation is in accordance
with the (x − t) plot.
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|û(k, ω)|2

ω

Figure 2.8: (k − ω) spectra computed for the initial state (a) (0 ⩽ t ⩽ 7) and for
the final state (b) (25 ⩽ t ⩽ 32) of the ∆ϕ = 3π/4 simulation. - Early times are
characterized by two crossing lines in the (k − ω) plot while parallel lines stand for the
late times. This big quantitative difference illustrates the difference in the (x − t) plot.

The (k − ω) spectrum of the final stage is qualitatively different. It shows three par-
allel lines with a slope corresponding to the speed of the final structure. These lines form
the spectral signature observed for the bound-state in the quasi-Soliton Turbulence. The
PSD |ζ̂Im

1 (ω)|2 (not shown here) also superimpose on top of the (k − ω) spectrum, with
the same accordance than for the final state of the qST. Finally, the parabola shows the
presence of linear waves in the system.

Given the strong similarities between the results of the diagnostics for this final coher-
ent structure and the bound-state observed in the quasi-Soliton Turbulence, we conclude
that the final coherent structure of the solitary waves collisions also is a bound-state. We
can also notice that all the final bound-states (for the different simulations) have very
close mean amplitude, that we could link with the same wave-action and energy for all
the simulations.
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Short-times evolution

The different initial conditions of the Figure 2.7 display the same final state but
with different behaviours for short times. These different behaviours will be described
and analyzed in the coming section.
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Figure 2.9: DST spectrum of the ∆ϕi = 3π/4 collision - (a) Spatio-temporal dy-
namics. After some collisions, the amplitude of the smaller solitary wave progressively
decreases. (b) Evolution of the DST spectrum. ζIm

1,2(t) illustrate the non-elastic collisions
and is in accordance with the (x − t) dynamics.

The few first collisions are almost elastic as they change the solitons velocities but
only slightly alter their amplitudes (the ∆ϕi = 0 simulation is an exception and we will
come back to it later). For instance, Figure 2.9 details the early times dynamics of the
∆ϕi = 3π/4 simulation. We observe that the first collision at t ≃ 2.5 is quasi-elastic in
the sense that the solitary waves speeds and amplitudes barely change. This is seen on
the DST evolution as ζIm

1,2 slightly change, showing the (small) change of solitary waves
amplitudes due to the first collision, with one increasing and the other decreasing. More
precisely, before the first collision, the two solitary waves have the same amplitude 10.606
while after this collision, their amplitudes are 10.980 and 10.225. The values of ζIm

1 = 7.010
and ζIm

2 = 6.812, corresponding to the ratios A/ζIm = 1.566 and 1.501, indicate clearly
that the DST spectrum tracks correctly the evolution of the amplitudes. For the rest of
this chapter we will admit this as a result, and only compare the qualitative evolutions of
amplitudes and imaginary parts. Finally, we can observe the large bumps of ζIm at the
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2.4. Two 1D-SHE solitary waves collisions

collisions. This underlines the non-elasticity of the collisions, because elastic collisions
occurring in the NLSE are characterized by a constant DST spectrum, even at collisions.

The subsequent collisions have the same impact on the solitons : at each collision, the
overall tendency is for ζIm

1 to increase while ζIm
2 decreases, with some exceptions visible

on Figure 2.9 (see the collision at t ≃ 14). This evolution can be followed with the
DST. For the same figure, after the second collision at t ≃ 7, ζIm

1,2 oscillate even during
the propagation, which we interpret as solitary waves with oscillating amplitude, as sug-
gested with snapshots of |u(x, t)| and the (x − t) dynamics. However, looking at ζ3, the
eigenvalue with the third biggest imaginary part, we observe its imaginary part ζIm

3 grow
from 0 to slightly above the threshold. More importantly, it also oscillates and in phase
opposition with ζIm

1 and thus in phase opposition with maxx|u|. This indicates that ζ1 and
ζ3 form a bound-state, corresponding to the larger coherent structure in the system and
totally independent from the smaller one. Between the second collision at t ≃ 7.5 and the
sixth one at t ≃ 12.5, the mean values of ζIm

1,3 increase, corresponding to the growth of the
bound-state. We hypothesise that the smaller structure also becomes a bound-state but
the study of ζIm

4 does not show any conclusive result as the latter stays very small. Then,
we assume that this smaller structure is not large enough to really display bound-state
characteristics after the collision and, as this structures fades with time, it will never do
so. This observation can be linked to the transitional state of the phase diagram for the
qST study Figure 2.6.

With this evolution, at a certain time, the second eigenvalue of the bound-state ζ3
starts to have an imaginary part larger than the eigenvalue of the second coherent struc-
ture ζ2. Thus, the second eigenvalue of the bound-state becomes ζ2, in the sense of the
eigenvalue with the second largest imaginary part. For instance, after t = 20, it is ζIm

1
and ζIm

2 which oscillate in phase opposition and thus, form the bound-state. The further
evolution is the reinforcement of this bound-state, as seen in the Figure 2.7(e)(ii). It
is important to understand that we order the eigenvalues according to the size of their
imaginary parts, so that the nature of ζ2 changes during the evolution : it represents a soli-
tary wave for very early times and is the second eigenvalue of a bound-state for late times.

To summarize, the second collision at t ≃ 7.5 not only changes the amplitudes of the
solitary waves but also creates two bound-states, one of which is too small to display a
second eigenvalue. Notice that the oscillations of ζIm

2 after the second collision can also
suggest that ζIm

4 , not displayed here for simplicity, lays inside the threshold and, thus,
does not represent a physically realisable structure inside the domain. We suggest that the
amplitude of the smaller coherent structure is not large enough to create a bound-state.
From now on, we will assume that he oscillating structures created by the collisions are
indeed bound-states. Hence, the initial structures remain 1D-SHE solitary waves until
the first collision which creates bound-states (apart from the ∆ϕi = π simulation, which
will be discussed later).

It is interesting to notice that between collisions, the mean values of ζIm
i do not change;

it is indeed the collisions that affect the mean amplitudes, not the propagation itself.
Moreover, some waves of non-marginal amplitude are created, showing that the initial
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solitary waves have lost some of their coherence through the non-integrable evolution and
the non-elastic collisions.

For certain simulations like ∆ϕi = ±π/4 or ±π/2, these quasi-elastic collisions end
suddenly with one strongly non-elastic collision which drastically changes the system (see
the detailed (x − t) dynamics for ∆ϕi = π/4, Figure 2.10(a)). First, linear waves are
created during this collision at t ≃ 8 which quickly fill up the box : the coherent struc-
tures do not contain all the wave-action anymore. With the conservation of this latter,
the solitary waves must shrink to release some wave action. More precisely, both initial
solitary waves merge into the single coherent structure propagating on top of the linear
waves. This structure has oscillating amplitude and width, and a speed which seems to
evolve quite randomly. We also assume that it is a bound-state.

Although all the simulations detailed above share the same final state, we just saw
that the evolution leading towards it depends on the simulation. As the only difference
between these simulations is the initial phase difference, we will now study the role of the
phase difference and see if it can explain the difference observed in early times.

Impact of the phase difference

The initial phase difference appears to play an important role as the single bound-
state is created very early for the ∆ϕi = 0 simulation (here at the very first collision)
and very late for the ∆ϕi = π one. More particularly, for the ∆ϕi = π simulation, the
collisions do not affect the solitary waves until t ≃ 65, which keep their amplitudes and
speeds, exactly as if the collisions were symmetric. The absolute value of the initial con-
dition is symmetric with respect to the {x ↔ 2π − x, v ↔ −v} change and the system
stays symmetric until the creation of the coherent structure.

This observation seems to indicate that collision between bound-states with a phase-
difference of 0[2π] would create a single bound-state from the two colliding, while two
bound-states colliding with a phase difference of π undergo an elastic collision. To study
this link between the phase difference and the nature of a collision, we need to be able
to track the the phase difference during all the simulation, not knowing only its initial
value. The phase difference is measured with the following procedure. We localize the
coherent structures (1D-SHE solitary waves or bound-state) with the two biggest local
maxima of the function, denoted um,1(t) and um,2(t), and we compute the phase difference
∆ϕ(t) = arg[um,1(t)] − arg[um,2(t)]. This method does not requires a large computation
time but needs to localize properly the coherent structures in the x-axis. Near the colli-
sions this is not always possible, so we decided to let blank ∆ϕ for the times when the
structures are not distinguishable.

In Figure 2.10(b), we present the time evolution of ∆ϕ(t) for the beginning of the
∆ϕi = π/4 simulation. The first observation is the phase difference being constant and
equal to π/4 before the first collision at t ≃ 2.5. During this period, the initial 1D-SHE
solitary waves have not collided at all and, thus, are still solutions of the 1D-SHE, with
the same initial amplitude A = 10.606, as verified experimentally. However, after the
first collision, ∆ϕ evolves linearly with t. This evolution coincides with the breaking of
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Figure 2.10: Evolution of ∆ϕ(t) and ζIm
1,2 for early times of the ∆ϕi = π/4 simula-

tion - The phase is observed to evolve linearly when the coherent structures have different
amplitudes (as testified by the DST). The non-linear collision leading to a merging event
occurs with a phase difference very close to 0[2π].

symmetry between the solitary waves as their mean amplitudes before the second collision
are A1 = 11.685 and A2 = 9.480. After the second collision at t ≃ 4.5, the asymmetry is
less pronounced as the mean amplitudes are now A1 = 11.188 and A2 = 10.002 and ∆ϕ(t)
is still a linear function but with a smaller slope. We present here only two examples of
this link between asymmetry in amplitude and phase difference evolution, but this link
has been observed for all the individual collisions for which we have tracked the phase
difference. In the next section 2.5, we will propose a model to explain it. Notice that the
value of ∆ϕ after the merging event has not the expected signification because the system
now displays a bound-state which is a unique structure : the phase difference between
the latter and the second biggest local maxima of the function, found in the background
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Chapter 2. Propagation of coherent structures into the SHE

waves, does not have any sense. For this simulation, the second collision creates a new
eigenvalue in the sense that ζIm

3 grows from zero to above the threshold while oscillating
in phase opposition with ζIm

1 . However, we can not identify another eigenvalue, which
would be ζ4, and thus we assume that the other coherent structure is too small to exhibit
the bound-state characteristics. Finally, we also notice that before the non-elastic colli-
sion at t ≃ 8, ζ2 represents an independent coherent structure while, after, it is part of a
bound-state.

Another important observation can be made about the evolution of the phase differ-
ence. When the bound states collide at t ≃ 8, and merge into the bound-state, we found
∆ϕ = 6.044 ≃ 0[2π]. This supports the initial observations about the ∆ϕi = 0 simulation
: coherent structures colliding in phase which merge into a bound-state.

We also study ∆ϕ(t) for the ∆ϕi = π simulation and we observed that the ∆ϕ stays
very close to π until the collisions start to be non-elastic. This study is illustrated Figure
2.11 with the constancy of ζIm

1,2 attesting the absence of non-elastic collisions before t ≃ 57.
After the first non-elastic collision, the evolutions of ζIm

1,2 are very similar to what we ob-
served for the ∆ϕi = 3π/4 simulation Figure 2.9 This result also supports the initial
observation about the ∆ϕi = π simulation : solitary waves colliding in phase opposition
which undergo an elastic collision.

Phase condition for coherent structures to merge

Now, we can propose an explanation to the difference of short-times behaviours be-
tween the different simulations showed. We have noticed that for two coherent structures
propagating with different (mean) amplitudes, their phase difference was a linear func-
tion of t. We now assume that a collision occurring when the phase difference is equal
to, or very close to, 0[2π] will merge the colliding structures into a single bound-state.
Then, we can suggest that the solitary waves propagate and collide (hence with differ-
ent phase difference each time) until they collide in phase and then merge. During this
process, the solitary waves are transformed into bound-states due to non-elastic collisions.

We also assume that a collision with a random phase difference between 0 and 2π is
non-elastic and affect the amplitudes of the solitary waves but further study are required
to have a more precise idea. For instance, given the study of few other collisions, we can
suggest that the closer to 0[2π] the phase difference is, the more non-elastic the collision is.

We can also propose a reasoning to explain why the ∆ϕi = π simulation takes so
long to create a unique bound-state. According to our reasoning, with an initial phase
difference of π, all the collisions are elastic and then the solitary waves amplitudes do
not change, which implies that the phase difference is still constant equal to π. For this
cycle to end, something, other that collisions which are elastic, must slightly affect the
solitary waves amplitudes. We assume that the finite discretization of the box breaks
the x-symmetry of the system at some point, which causes an asymmetry between the
solitary waves and eventually creates non-elastic collisions.
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Figure 2.11: Evolution of ∆ϕ(t) and ζIm
1,2 for the merging event of the ∆ϕi = π

simulation - The phase is constant to π from t = 0 and so are the amplitudes of the
solitary waves, attested by ζIm

1,2 equal to their initial value. The drift of ∆ϕ away from π
coincide with the first non-elastic collisions.

We do not have yet a definite explanation for this link but a parallel may perhaps
be drawn with the conditions for constructive interference. In linear optics, two coher-
ent waves with the same wavelength will interfere in a constructive way if they are in
phase and in a destructive way if they are in phase opposition. Given the results of
our simulations, we propose that two structures collide inelastically if they are in phase
and elastically if they are in phase opposition. The parallel can be easily drawn for the
"in-phase" collisions because the inelastic collision leading to a unique structure can be
seen as a constructive interference. The "phase opposition" collisions are harder to link
with destructive interference because the solitons are not modified by the collisions, which
would better correspond to an absence of interference.
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Chapter 2. Propagation of coherent structures into the SHE

There are some limits to our phase difference study. For instance, we highlight the
role of the phase difference for, and only for, collisions between structures with the same
amplitude and opposite speeds. We recall that keeping β fixed constrains the amplitude
of the solitary waves. Symmetrical collisions can occur in a quasi-Soliton Turbulence
evolution but they are rare compared to collisions between structures of different sizes.
Thus, we can say that the phase difference plays a role in the nature of the collisions
but its importance has to be compared to the role of the difference of amplitudes and of
velocities. More simulations are required to really validate our assumption

Summary of the section

• Two 1D-SHE solitary waves launched into a periodic box will undergo inelastic
collisions until they merge into a unique coherent structure,

• this coherent structure is found to be a bound-state, with its DST and (k−ω)
plots signature.

• Solitary waves are transformed into bound-states by undergoing non-elastic
collisions.

• The phase difference at a collision controls the nature of this latter, ∆ϕ = 0
implies a merging into a bound-state while collisions are elastic for ∆ϕ = π.

2.5 Two 1D-NLSE solitons collisions

We have seen that two 1D-SHE solitary waves in a periodic system will end up in
a final bound-state quasi-soliton, with an important role played by the phase difference.
To test the universality of this final state, we now initialize the system as two 1D-NLSE
solitons (1.10) to see if the system ends up in the same final state. These solitons are
defined by (A1, v1 > 0, s1 = π/2, ϕ1) and (A2, v2 < 0, s2 = 3π/2, ϕ2) which will be precised
for each simulation. The positions s1 = π/2 and s2 = 3π/2 were chosen to maximise the
distance between solitons and legitimate the approximation of the double-solitons solu-
tion by the linear summation of two solitons. The combination of having ∆s maximal
and solitons tall and thin minimizes the overlapping of the exponential tails. For a single
soliton, the amplitude of the tail at s ± x = π/4 is less than 10−11 for the amplitudes
A ≳ 10 we used. All the presented simulations were done with β = 10−2. The system is
kept as a box of length L = 2π with periodic boundary conditions and discretized in 2048
points. No forcing nor dissipation are added, thus the system is still conservative which
means that total energy H and the wave-action N are exactly conserved, respectively to
-332 and 80.

The Figure 2.12 presents a set of collisions for A1 = A2 = A = 15 and v1 = −v2 =
0.5 and different initial phase differences. The phase differences tested are the same as
previously, ∆ϕi = pπ/4, p ∈ J−3, 4K.
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Figure 2.12: Spatio-temporal dynamics of colliding 1D-NLSE solitons for differ-
ent initial phase differences - The colliding initial solitons finally end up in a coherent
structure propagating on top of linear waves, exactly like the 1D-SHE solitary waves. The
phase difference ∆ϕi appears to also play the same role, as the collisions

2.5.1 Similar final state than solitary waves collisions
Firstly, we can observe that all the dynamics presented share the same final state

(for the simulation ∆ϕi = π it has not been reached for the time interval displayed), a
coherent structure oscillating in width and amplitude, propagating through a box filled up
with weakly non-linear waves. Qualitatively, it is the same final state as the bound state
observed for both quasi-Soliton Turbulence and colliding solitary waves simulations. The
evolution leading to this unique structure strongly recalls the systems studied previously
: a series of non-elastic collisions between two oscillating structures leading to the near
disappearance of one of the initial structures. We do not name the localized structures
solitons (apart from t = 0 when they really are 1D-NLSE solitons) because these latter
are not present in a non-integrable system like the 1D-SHE. The sech-profile 1D-NLSE
soliton is not even a solitary wave, it relaxes and emits waves immediately. This phe-
nomenon will be studied more in details in the next section.

As in the previous section, the final structure does not seem to have a constant speed.
We still assume that its sudden changes of speeds are due to exchange of momentum with
the waves in the system. Moreover, the initial {x → 2π − x, v ↔ −v, ∆ϕi ↔ −∆ϕi}
symmetry is broken when the final structure propagates. We again conjecture it is due
to the high amplitudes creating differences, at the numerical precision used, between the
two simulations. Such differences lead to the simulations being compared (∆ϕi vs −∆ϕi)
showing different trajectories.
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Chapter 2. Propagation of coherent structures into the SHE

The final structure obtained is characterized with the DST and the double Fourier
Transform. The two spectra identify this final state as a bound-state. The (k − ω) plot
finds parallel lines and the DST spectrum contains two oscillating eigenvalues with large
imaginary parts. The correlation between these features and the final oscillating structure
is verified with the tests detailed for the qST, ie truncation of the function and filtering
the (k − ω) plot. Obtaining the same final state for now three different types of initial
conditions (flat-top spectrum, 1D-SHE solitary waves and 1D-NLSE solitons) suggests
the universality of this bound state. To test this universality, we have produced different
tableau like Figure 2.12 varying the common amplitude A and the speeds ±v. The
results we will describe have been observed for many more cases, including initial solitons
with different norms of speed.

2.5.2 Role of the phase difference
The phase difference appears to play the same role as in 1D-SHE solitary waves col-

lisions. We track the phase difference for the simulations and some results obtained with
the study of solitary waves collisions still stand. For instance, two solitons initialized
in phase opposition stay in phase opposition until they undergo inelastic collisions and
finally merge. We also notice the linear evolution of ∆ϕ between propagating structures.
In Figure 2.13, we plot ∆ϕ(t) for the times before the final merging for a system ini-
tialized as two solitons with amplitudes A = 14, speeds vi = ±3 and a phase difference
∆ϕi = 3π/5.

The evolution of the phase difference can also be examined theoretically by mod-
elling the structures as oscillating solitons, in resonance with the initial solitons. With
the exact formula of the 1D-NLSE soliton (1.10), the phase of a soliton evolves as
ϕ(t) = (v2 − A2)t/2, the constant phase being taken null. For a 1D-NLSE soliton, its
amplitude and speed A and v are constant, which makes the phase ϕ(t) a linear func-
tion of time. Then, for two solitons, the phase difference ∆ϕ evolves also linearly as
∆ϕ(t) = [(v2

1 − A2
1) − (v2

2 − A2
2)] × t/2. To the first order, the colliding structures can be

seen as solitons characterized by their mean amplitude and their constant speed. Thus,
if the two structures have the same mean amplitude and speed (modulo the sign of their
speed), we expect the phase difference not to change in time, more precisely, to keep its
initial value. This model appears to describe quite well the simulation with the initial
structure in phase opposition. In the general case, when amplitudes and velocities are
different, the phase difference evolves linearly in time with a rate which depends on the
characteristics of the structures. This conclusion has been observed numerically for all
the simulations for which we analyzed the phase difference evolution.

Before analysing precisely this evolution, we need to remind that the method used
to detect numerically the structures is very sensitive to the changes of amplitude. More
precisely, this method does not work properly when the smallest structure becomes tem-
porarily the biggest one during an oscillation. That is why the phase difference ∆ϕ is
not plotted for every time step in Figure 2.13, as we only show the times for which the
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Figure 2.13: Evolution of ∆ϕ(t) and ζIm
1,2 for a colliding 1D-NLSE solitons simu-

lation - During the studied time window, the structures undergo a quasi-elastic collision
at t ≃ 42 followed by a merging event at t ≃ 43.5. Between these interactions, the struc-
tures propagate in straight line with oscillating amplitudes and ∆ϕ(t) evolves linearly,
with the expected change of slope due to the change of structures amplitudes. With the
linear model, the phase difference is very close to 0 modulo 2π when the structures collide,
consistent with the merging happening. Near the merging event, the DST spectrum has
the same evolution than it had for 1D-SHE solitary waves merging.

recognition of the structures was good. The phase is computed between 0 and 2π but is
presented here without this modulo restriction to highlight its linear evolutions.

When the structures propagate between collisions, the phase difference is linear func-
tion of t as expected. The quasi-elastic collision at t ≃ 42 in Figure 2.13 slightly changes
the characteristics of the structures, particularly by reducing the amplitude of the struc-
ture with positive speed. Thus, we expect the ratio ∆ϕ/t to change at the collision.
Indeed, these ratio does change, being measured to, in absolute values, 7.49 before and
14.74 after (slopes of the linear models in plain and dashed blue lines). Assuming that
the changes in the speed can be neglected and that only the changes of amplitude counts
for |∆ϕ/t| ∼ |A2

1 − A2
2|, this increase of the slope was expected as the collisions (slightly)

increases the amplitude of one of the coherent structure and decreases the other one.
However, if we model these structures by solitons having their speed and their mean am-
plitudes, we obtain the ratios 11.08 and 17.78. These theoretical ratios overestimate the
ones found numerically but they have the same increasing evolution. Thus, the theoretical
model seems qualitatively accurate but lacks the quantitative precision.

63



Chapter 2. Propagation of coherent structures into the SHE

Another important result of this phase difference evolution is the phase difference found
at the merging event near 43.5. For this collision, the structures cease to be distinguish-
able at t = 43.4135 At this time, we can not measure the phase difference exactly but the
linear model finds |∆ϕ(t = 43.4135)| = −18.93 ≡ −0.08[2π]. This value is very close to 0.
This result supports our hypothesis that, in the non-integrable 1D-SHE system, a neces-
sary condition for two coherent waves to merge is that their phase difference must be zero.

Modelling the interacting structures as solitons with their mean amplitudes and veloc-
ities may seem quite naive but is able to predict qualitatively the evolution of the phase
difference. In next section we will detail more results obtained with this model.

2.5.3 Differences
Even if colliding 1D-SHE solitary waves and 1D-NLSE solitons lead to a single bound-

state as the final state with non-elastic collisions of localized structures, there are some
differences between these two initial conditions. First, we can notice that the initial soli-
tons emit linear waves than can be seen on the (x − t) plot, contrary to 1D-SHE solitary
waves which create substantial waves only at the non-elastic collisions. Moreover, with
the DST and (k − ω) spectra, we can show that the interaction structures are always
bound-states. Contrary to 1D-SHE solitary waves staying solitary waves until the first
substantially non-elastic collision, the 1D-NLSE solitons immediately turn into bound-
states and then propagate and interact as bound-states until they merge into a final one.
The final bound-state is larger than the colliding ones so it is easier to characterize as
such, but we can still observe the properties of these latter. As we will see in the next
section, these two phenomena (emission of waves and transformation into bound-states)
are intrasically linked.

Summary of the section

• Initial 1D-NLSE solitons collide ineslatically to create a single bound-state,
exactly like the 1D-SHE solitary waves.

• Again, the merging of coherent structures seems only possible for ∆ϕ = 0.

• The main difference with 1D-SHE solitary waves collisions is the immediate
transformation of 1D-NLSE into bound-states.

2.6 Study of the bound-state

2.6.1 Relaxation of the 1D-NLSE soliton into a bound-state
Given the results of our previous studies, we now hypothesise that a bound-state

propagating on top of linear waves is the universal final state for all initial conditions for
the 1D-SHE. We quickly recall what we define as a bound-state : a coherent structure,
oscillating in amplitude and in width, characterized by two DST eigenvalues oscillating
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in phase opposition and parallel lines in the (k − ω) spectrum. To study this particular
structure, we will study the evolution of an initial single 1D-NLSE soliton in the 1D-SHE
system, still characterized by the non-integrability parameter β = 10−2. The 1D-NLSE
soliton is defined by A = 20, v = 4, s = 0, ϕ = 0, which set H = 388 and N = 40,
quantities again conserved by the dynamics. The box is discretized with 4096 points.

Identification of the bound-state

In Figure 2.14(a) we plot the (x − t) evolution the soliton. On this spatio-temporal
dynamics, the times t = 0, 0.056, 0.432, 0.504 are indicated with grey lines and the cor-
responding profile snapshots are compared Figure 2.14(b). The amplitude A of the
structure falls from its initial value 20 to 8.52, reached at t = 0.056. Then, the amplitude
oscillates periodically around Ā ≃ 10.5. Its oscillating width is also clearly visible on the
snapshots profiles in Figure 2.14(b) and this oscillation is correlated with the amplitude
evolution. We only plot here snapshots at four different times but detailed evolution of
the structure amplitude A and width ℓ1/2 (defined as the full-width at half-amplitude)
are displayed for β = 10−2 in Figure 2.18.

The bound-state nature of the oscillating structure for t > 0.056 is verified by analysing
the DST spectrum, particularly the time series of ζIm

1,2 (displayed Figure 2.15(a),(b), and
the (k − ω) spectrum Figure 2.15(c), with the exact overlap of the secondary peaks
of the PSD |ζ̂1(ω)|2 with the parallel lines of the (k − ω) dynamics (we can even notice
observe the good overlap for the tiny tertiary peaks). The oscillating structure is indeed
a bound-state. The frequency of A and ζIm

1,2 was measured at Ω = 45.0.

We can also notice the creation of small waves, visible on the (x − t) dynamics, on the
snapshots profiles and on the (k − ω) spectrum. These waves propagate in the whole box
and go through the quasi-soliton, disrupting the evolution of its maximum. Waves are
emitted for very small times, suggesting that they are due to the relaxation of the initial
soliton, and from x ≡ 0[2π]. Finally, we also observe that the bound-state propagates in
straight line, with a constant speed. This is the case up to the biggest time reached in
simulations t = 1000.

Analysis of the bound-state

Now that that we have established that the relaxation of an 1D-NLSE soliton leads
to a bound-state, we can study it more in detail.

First, the DST spectra displayed in Figure 2.14(c) show that when ζIm
2 is minimal,

it is null. We can even observe that ζIm
2 does not exactly oscillate as a sine function,

but alternates between being constant equal to 0 and having a sine evolution during a
half-period (this behaviour is clear in the Figure 2.15(a)). We can suppose that this is
due to the amplitude of the bound-state being not large enough.
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Chapter 2. Propagation of coherent structures into the SHE

Figure 2.14: Propagation of a 1D-NLSE soliton in the 1D-SHE - The 1D-SHE is
characterized by β = 10−2 (a) (x − t) plot : the soliton amplitude drops down and starts
to oscillate around approximately the half of its initial value. This amplitude oscillations
comes with an oscillation of its width, both oscillations being with the same frequency.
This is the sign of a bound-state (b) Snapshots of |u(x, t)| for different times t highlighted
on the (x−t) plot. Amplitude and width oscillations are clearly visible. (c) DST spectrum
for these times. The phase opposition oscillations of ζIm

1,2 confirm the bound-state nature
of the structure.

Secondly, an interesting specificity of this bound-state can be seen with the DST spec-
tra displayed Figure 2.14(c) : the equality, for each time when ζIm

2 is above the threshold,
ζRe

1 = ζRe
2 . We recall that for the bound-states observed with the previous initial condi-

tions (flat top spectrum and colliding structures), ζRe
2 was evolving in time, even displaying

oscillations in phase opposition with ζRe
1 in the flat-top simulations. For the bound-state
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created by an initial 1D-NLSE soliton, the two eigenvalues ζ1 and ζ2 have the same real
part. We recall that the real part is directly proportional to the speed of the soliton in
the integrable DST framework. Given this, the terminology bound-state is even more
appropriated in this case because the two solitons expected in the integrable case would
have the same speed at same time and thus would constantly overlap. Moreover, that
correspond to what Zakharov and Shabat call a bound-state in their pioneering article [9].
In this article, the authors define what a bound-state is for the 1D-NLSE : two eigenvalues
with the same real part and different imaginary parts η1 and η2 < η1. They prove that
these two eigenvalues would create a coherent structure oscillating in amplitude with the
frequency 2(η2

1 −η2
2) = 2(ζIm

1
2 −ζIm2), taking into account our factor 1/2 for the laplacian.

As we study the 1D-SHE, which is not integrable, ζIm
1 and ζIm

2 are functions of time
but we can compute 2(⟨ζIm

1 ⟩2
t − ⟨ζIm

2 ⟩2
t ) ≃ 94.3. This value needs to be compared to the

frequency of the evolution of maxx|u(x, t)| and ζIm
1,2, Ω ≃ 45. These values are obviously

not equal but the factor ≃ 2 indicates that a more subtle link may exist.

Figure 2.15: Diagnostic analysis of the bound-state - (a) Time series of ζIm
1,2 com-

pared to the amplitude. These evolutions are characteristic of a bound-state. (b) PSD
|ζ̂Im

1,2(ω)|2. ζIm
1,2(t) oscillate with the same frequency Ω = 45. (c) (k, ω) spectrum. The

parallel lines are the signature of the the bound-state and the PSD of ζ1 perfectly super-
imposes on it.

In the last section, we modelled the colliding bound-states by solitons characterized
by their mean amplitude Ā and mean velocity v̄ and this simple model predicted qual-
itatively well the evolution of the phase difference after a non-elastic collision. We will
now use this model to interpret the (k − ω) spectrum obtained with this bound-state,
displayed Figure 2.15(c). This (k − ω) spectrum can be understood in a self-consistent
way if we model the quasi-soliton by a pure soliton with a constant speed v = 4 but an
oscillating amplitude A(t). To compute the position (k∗, ω∗

sol) of the straight line for this
solitonic model, we consider its averaged amplitude Ā. The center is thus computed at
(k∗ = v = 4, ω∗

sol(Ā) = v2−Ā2

2 ≃ −47.1) which is find in good accordance with the mea-
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Chapter 2. Propagation of coherent structures into the SHE

sured position (k∗ = 4, ω∗
b.−s. − 45). We can conclude, firstly, that a soliton representing

the average bound-state would have the same main line in the (k − ω) spectrum and
secondly, that the frequency ω∗

b.−s. of the bound-state is well approximated by the same
frequency computed for a soliton characterized by Ā, meaning ω∗

sol(Ā).

Thus, the main line in the (k − ω) spectrum is assumed to be the leading-order effect
of the bound-state with its averaged amplitude. However, this single consideration of
the main line does not take into account the oscillating amplitude of the solitonic model.
To do so, let us write the pure soliton profile uNLSE

sol (1.10) in the moving frame x − vt,
ignoring the sech-term and constant phase terms

uNLSE
sol (x, t) ∼ Ae−iω∗

solt. (2.8)

The phase of the soliton rotates in the complex plane with the frequency ω∗
sol = v2−A2

2
which is equal to ω∗

b.s. at the lowest order (ie for A = Ā) according to the previous result.
For an oscillating amplitude, as we have found that A oscillates with the same frequency
Ω as the eigenvalues ζ1,2, we modulate A which becomes A = Ā + 2∆A cos(Ωt) with ∆A
the strength of the modulation. The main point of this computation it to realize that
the frequency of the amplitude oscillations, Ω = 45.0 is very close to the frequency of the
phase evolution ω∗

sol(Ā) = 47.1 for a soliton defined by Ā. We assume that they are equal,
ω∗

sol = Ω. With the Euler formula, we now have

uNLSE
sol (x, t) ∼ Āe−iΩt + ∆A + ∆Ae−i2Ωt (2.9)

As we have Ā > ∆A, this function has a main component oscillating at Ω and two
sidebands at 0 and 2Ω, as observed experimentally. Consequently, this model of a pure
soliton with an amplitude oscillating with the same frequency as the soliton phase itself
succeeds to explain the three solitonic traces in the (k − ω) spectrum.

To complete the study, we can have a look at the two states of the bound-state, dis-
played Figure 2.16 compared to soliton models with the same maximum. We observe
that when the bound-state is tall-and-thin (a), with only ζ1 above the threshold, the func-
tion is modelled accurately by the soliton model, which is consistent with the unicity of
ζ1. We also computed that this state of the bound-state maximizes the non-linearity ratio
|H4|/H2 of the function, which is again consistent with the function showing a profile close
to a soliton. On the contrary, when the second eigenvalue is also above the threshold and
ζIm

2 maximum, the profile |u| does not correspond to a solitonic model. As expected, this
state minimizes the non-linearity ratio.

We only present here the detailed results of the diagnostics for the initial soliton char-
acterized by A = 20 and v = 4 but this studied has been performed for other (A, v)
at β = 10−2. Note that the speed of the soliton does not affect at all the behaviour of
the initial soliton. For all the tested velocities, the quasi-soliton keeps the initial speed
during the relaxation and the shape of the bound-state stays unchanged. Such a result
was expected, given the galilean invariance of the 1D-SHE. The results are quantitatively
the same for solitons amplitudes between 15 and 30 but further studies (such as the phase
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Figure 2.16: NLSE soliton model of the bound-state - For the times specified,
we compare the bound-state with an 1D-NLSE soliton with the same amplitude. At
t = 0.432, the function shows a great concordance with the sech model, which is consistent
with the DST spectrum at this time being very close to one pure soliton. At t = 0.504, the
function is considerably wider than the sech profile. This observation is also supported
by the DST spectrum, found with two eigenvalues instead of an unique one.

diagram for the qST in section 2.3.4) are required to have a more precise understanding.

Discussion

We would like now to summarize our results, discuss some explanations and link them
with systems studied in the literature.

We have found that a pure soliton solution of the 1D-NLSE, launched into the 1D-SHE
immediately relaxes, emits waves and ends up in a bound-state, which exhibits the same
properties than the bound-states obtained with other initial conditions. This bound-state
is robust and is the final state of the system. The instantaneous relaxation of the initial
pure soliton was expected as it is not a stationary solution of the 1D-SHE. The emitted
waves are not damped and, thus, propagate freely in the system and can interact with
the bound-state. This interaction is possible because the system is not integrable, in the
1D-NLSE, solitons and waves do not interact. These waves-quasi-soliton interactions can
particularly be seen on the (k − ω) spectrum with the upper secondary soliton being
tangential to the parabola. In this region, the upper secondary line is more intense than
the lower one. We assume that this is due to the waves-quasi-soliton interaction because
at this point, the waves and the quasi-soliton have the same group speed, making the in-
teraction resonant. We make the hypothesis that these interaction are responsible for the
modulation of the amplitude. For now, we do not have a clear mathematical explanation
for this link. This is left to future work. Similarly, we do not know yet the mechanism
which turns the 1D-NLSE soliton into a bound-state.
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Chapter 2. Propagation of coherent structures into the SHE

Given that all the different tested initial conditions converge towards this bound-state,
we assume that it really represents a statistical attractor for the 1D-SHE.

It is not the first time that DST is applied to a non-integrable system. In [89], the
authors study the propagation and interaction of an ensemble of soliton with random am-
plitudes and speeds (called a soliton gas) numerically and experimentally in a 1D water
tank with the help of DST analysis. The propagation of waves in this tank is governed by
the 1D-NLSE to the lowest order but the experiment takes into account next-order terms.
A soliton gas is created and is let to evolve in both a simulation with 1D-NLSE and an
experiment. As 1D-NLSE is integrable, the DST spectrum does not change in time. On
the contrary, the DST analysis of the experimental data show that the eigenvalues drift
in the complex plane. More precisely, the imaginary parts decrease, corresponding to
solitons getting smaller. As in our study, the DST is found to be qualitatively accurate
to characterize the non-integrable system.

In [90], the DST is also used to characterize a laser beam propagating through an
optical fiber. Once again, studying experimental data implies to take into account the
losses of the fiber and the gain of the laser. Such effects break down the integrability of
the 1D-NLSE model. Under some conditions, if the gain value is sufficiently small, the
laser profile shrinks periodically with an increase of the amplitude. This phenomenon is
observed in the DST spectrum with the eigenvalues oscillating in both real and imag-
inary parts (corresponding to solitons speeds and amplitudes) with the same period as
the laser profile. Such results are extremely close to the ones we reported earlier, and
have also been reported by [91], for solitonic propagation in mode-locked fiber laser and
in [11] for a given non-integrable model of a laser system. Finally, this bound-state is
also observed (and named so) in [83]. The initial state is prepared by adding a pumping
term to the 1D-NLSE which creates quasi-solitons, which is possible because the presence
of the pumping breaks the integrability of the 1D-NLSE. When the pumping is turned
down, the system comes back to integrability and the spatio-temporal dynamics shows
several bound-states.

In order to make the DST analysis more rigorous, a possibility is to develop a pertur-
bation theory. As non-integrable equation can be seen as a perturbation to an integrable
equation, one can apply a perturbation theory to the Lax pair of the integrable equation
and derive equations for the evolution of the DST spectrum. Such a theory is developed
in [92] for different non-linear equations such as 1D-NLSE. More precisely, the integrable
non-linear equations are modified by various ways (higher order dispersion term, dissipa-
tion terms,...) and the perturbation theory predicts the evolution of the DST spectrum.
An interesting case for the 1D-NLSE taken out of integrability by dissipative terms is the
decrease of real and imaginary parts of eigenvalues, corresponding to slowed and shrinking
solitons.

Finally, "oscillating solitons" have already been reported. In [93], the authors study
the relaxation of an initial amplified sech-profile solitons in the 1D-NLSE. The amplitude
of this soliton is found to oscillate around an average value bigger than its initial one.
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These oscillations are characterized by an exponentially decreasing amplitude. Thus, the
final state is an oscillating structure on top small wave fluctuations. A variational ap-
proach developed in this article found this final state to be a minimizer of energy in a
microcanonical ensemble. More precisely, the authors precise than having an initial am-
plification factor γ below 0.5 or above 1.5 changes the number of eigenvalues found with
the DST. For γ > 1.5, the DST spectrum is made of two eigenvalues with the same real
part but with well-separated imaginary parts. Since the equation studied here is pure
1D-NLSE, this DST spectrum is constant in time and the second eigenvalue survives.

To the best of our knowledge, our work is new on its approach, as we study a non-
integrable system with both DST and spatio-temporal spectra. Comparing these two
methods has the advantage of verifying the results given by the DST with another method
and to characterize the system in different ways. For instance, the bound-state, as final
state of the relaxation of the initial pure soliton, is characterized by the parallel lines in
(k − ω) plot and with the two oscillating eigenvalues in the DST spectrum. The exact
overlap of the PSD |ζ̂Im

1 (ω)|2 with the parallel lines of the (k − ω) spectrum is a strong
result which indicates that both diagnosis are consistent which other.

2.6.2 Comparison for different β for early times
We highlight again the fact that, given the expression of the 1D-SHE, the equation is

integrable for β = 0 as it becomes the 1D-NLSE and the non-integrability measurement
increases with β. We will compare simulations done for values of β between 0 and 1 to
find a tendency. We expect the differences between the initial pure soliton and the final
bound-state to fade for β → 0.

Comparison of the dynamics

In Figure 2.17, we compare the spatio-temporal dynamics for different values of β
and for early times 0 ⩽ t ⩽ 1. As expected, the larger β is, the stronger the effects of
non-integrability are. At β = 0, the pure soliton propagates without any modification,
in accordance with the equation being integrable. For β = 10−4, the impacts of the non-
integrability are not easily visible, the solitons oscillations and the created waves have a
very small amplitude. Such effects are so important for β = 5 × 10−2 that the trace of
the initial soliton is barely visible, it has almost entirely collapsed. The initial radiation
of waves is very clear and their maximum speed appears to be independant from β. For
β = 1, the soliton seems to have disappeared at t = 1, fully converted into waves which
are bigger than for β = 10−2. The early quasi-disappearance of the initial soliton can
be confirmed by the DST analysis of the function and its spatio-temporal spectrum. For
β = 1, at t = 0.129, the system is organized as waves propagating on top of a small and
large bump which is likely to be the remnant of the initial soliton. However, the DST
spectrum contains no eigenvalues above the threshold.

It is clear with the comparison of the (x− t) plots, that the frequency and the strength
of the amplitude oscillation depends on β. Figure 2.18(a) plots the time evolution of
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Figure 2.17: Spatio-temporal dynamics of an NLSE-soliton launched in the 1D-
SHE for different non-integrability parameter β - For β = 0, the soliton propagates
without alteration as the equation. For β > 0, the higher β is, the more the initial soliton
relaxes. This relaxation comes with larger waves. For β = 1 the initial soliton seems to
have been completely disintegrated into weakly non-linear waves.

maxx(|u(x, t)|), which is assumed to be the amplitude A(t) of the bound-state, for differ-
ent values of β. Decreasing β (ie going back to integrability) has two effects, the averaged
amplitude Ā increases and the amplitude of its oscillations diminishes. As these initial
relaxation of amplitude and its oscillations are the effects of non-integrability, their atten-
uation is consistent, as the system gets closer to integrability. β = 0 features a constant
amplitude, as expected for the propagation of an 1D-NLSE soliton in the 1D-NLSE.

Re-appearance of the initial solitonic structure

The initial solitonic structure will re-appear for larger times. As we see on the
large-time (x − t) plot Figure 2.19, solitonic structures are visible very temporarily near
t = 6.28. Corresponding snapshot profiles are plotted Figure 2.20 with their DST spec-
trum. For t = 6.053, the function does not show any solitonic component neither on the
snapshot profile, neither on the DST. Three eigenvalues are at the threshold level but none
of them has an imaginary part as large as we obtained for the bound-state. At this time,
the function is just linear waves modulated by the initial soliton remnant by without soli-
ton or quasi-soliton behaviour. Then, progressively, interferences start to occur between
overlapping waves and a localized structure grows close to x − π = π, corresponding to
x ≡ 0[2π]. This position, which is unique in the periodic system, correspond to where the
initial waves are created. The growth of the localized structure ends at t = 6.267, when
the DST spectrum is made of a single eigenvalue with a maximum imaginary part. At this
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Figure 2.18: Time evolution for different β of three quantities: (a) the quasi-
soliton amplitude, (b) the deviation of 1D-SHE interaction Hamiltonian from
the 1D-SHE one, (c) the ratio of characteristics integrable and non-integrable
lengths. - These three quantities have similar evolutions. For β = 0, they are all
constant in time and equal at their value for the NLSE. For β > 0, they oscillate in time
around a mean value which drifts away from the β = 0 value. This drift represents the
non-integrability effect which get more important with β.

time, the linear waves have been grouped into one main peak, modeled with a very good
agreement by a sech function, and side secondary lobes. After this maximum, a second
eigenvalue rises from zero while the main one goes down in the complex plane, both with
the same real part. This evolution strongly reminds us the bound-state behaviour. Once
they have the same imaginary part, their real parts change symmetrically around −2.
This spectrum is illustrated Figure 2.20 and the corresponding two solitonic structures
are visible on the snapshot and on the (x − t) plot. These two eigenvalues will slowly
go down and disappear. This is consistent with the (x − t) plot, where this structure
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Figure 2.19: Spatio-temporal dynamics of the system around the solitonic re-
appearance - At t = 6, the system is mostly made of waves modulated by the trace of
the initial soliton. As the system evolve, the soliton trace grows until all the wave-action
in the system is concentrated in a localized structure with a central main peak and side
lobes. This structure quickly breaks into two smaller ones propagating with opposite
speeds which slowly disintegrate into waves.
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Figure 2.20: Evolution of the function profile (a) and DST spectrum (b) during
the re-localization of the function - The "condensation" occurs for modulated waves
defined by a spectrum with few eigenvalues barely at the threshold, and it creates a
localized structure with a main sech-profiled peak and side smaller lobes. This state
is characterized by an unique eigenvalue. This structure quickly breaks into two contra-
propagating sech-profiles also seen on the DST spectrum. Finally, the function will radiate
waves again and disintegrates again into a wave state without any DST eigenvalue.

74



2.6. Study of the bound-state

radiates waves. At t = 6.42, the system is back into only waves, observation supported by
the DST spectrum with no eigenvalues above the threshold. We can consider that, from
t = 2π, the relaxation of the localized structure just appeared is similar to the relaxation
of the initial 1D-NLSE soliton.

We can explain this re-appearance of the localization of the initial condition with
the waves created initially. Assuming that the initial pure soliton fully disintegrates into
waves, it creates waves of waves-vectors p × ∆k, with p ∈ Z and ∆k = 1, the Fourier
space discretisation in our simulations. With the dispersion relation ωk = k2/2, their
group velocity is given by vp

g = dωkp

dkp = kp = p. Thus, after a time T the wave with
wave-vector labelled p has propagated through a distance dp = vp

g × T = pT . For the
particular case T = 2π, we find that the p− wave travels a distance p2π, which is found
to be pL, with L = 2π the length of the periodical box in which we study the 1D-SHE.
That implies that after a time 2π, all the waves are back to the position where they
were emitted, ie x ≡ 0[2π]. Consequently, the function at T = 2π is expected to exhibit
a localized structure with non-linear interactions between the waves. Due to non-linear
interactions between waves and the initial soliton, the initial solitonic profile can not be
exactly recovered. This quasi-recurrence of the initial state can be qualitatively linked
with the FPUT problem observations [94].

Discussion

To summarize the comparison of evolution with different values of β, we found that
the consequences of the non-integrability increase with the degree of non-integrability.
For β sufficiently large, these effects are so important that the soliton is disintegrated into
linear waves during the initial collapse. The interpretation of the disappearance of the
soliton for large β is quite sensitive because increasing β has three different impacts on
the system.

First, we recall the expressions of the quadratic and interaction Hamiltonians HSHE
2

and HSHE
4 for the 1D-SHE

HSHE
2 =

∫ ∣∣∣∣∣∂u

∂x

∣∣∣∣∣
2

dx, HSHE
4 = −

∫ 1
2

[(
1 − β

∂2

∂x2

)− 1
2

|u|2
]2

dx. (2.10)

With these expressions, it is clear that HSHE
2 does not depend on β, while HSHE

4 does.
More precisely, for a given function u(x), the non-linear energy is a decreasing function
of β. Reasoning with the initial solitonic state given by (A = 20, v = 4, s = π, ϕ = 0),
which is the same for all β, it means that the initial total energy decreases with β and the
non-linear ratio χini = |HSHE

4 (t = 0)|/HSHE
2 (t = 0) decreases with β. Note that the total

energy of this conservative system is determined by its initial value, on the contrary, χ
is left free to evolve. The total energy and initial non-linearity ratio are plotted Figure
2.21. Their evolutions with β are the ones expected from the discussion above. From this
figure we can roughly determine three regimes,
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Figure 2.21: Evolution of the total energy H and initial non-linearity ratio
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4 |/Hini
2 with β - We can define two extreme regimes, when β is small, the

system is initially strongly non-linear, which allows the soliton to stay localized into a
bound-state. On the contrary, when β is large, the system is initially linear, the initial
soliton breaks into waves.

• β ≃ 10−4 − 10−3, the total energy is negative and large and the initial non-linearity
ratio is large, χini ≃ 1.7 − 1.5. This regime corresponds to the initial soliton only
slightly being modified by the non-integrability,

• β − 10−2, the total energy is nearly null and the initial non-linearity ratio is close to
1. This regime corresponds to the initial soliton being considerably altered by the
non-integrability and becoming an observable bound-state,

• β ≃ 10−1−, the total energy is positive and large and the initial non-linearity ratio
is small, χini ≃ 0.4−0.1. This regime corresponds to the initial soliton disappearing
after the first collapse.

The initial ratio of non-linearity plays an important role because it characterizes the
initial pure soliton and solitons need a non-linearity ratio large enough to exist, as the
non-linearity must compensate the dispersion. If the linearity is too large, we can as-
sume that the soliton can not be stable, nor the bound-state, because the dispersion is
not balanced by the focusing non-linearity. That might explain the collapse of the entire
soliton into waves when the initial non-linearity is big, ie when β is large. This result
is consistent with the phase diagram drawn for the quasi-Soliton Turbulence simulations
Figure 2.6 where we also observe that the bound-state does not appear in systems which
are too linear.

Secondly, the larger β is, the more non-integrable the equation is. Theoretically, the
initial soliton is only stable for the integrable equation (β = 0), but we can see on (x − t)
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plots (Figure 2.17) that the function stays localized for a small non-integrability per-
turbation (β ≃ 10−2 − 10−4) while this localization is lost when the non-integrability
perturbation is sufficient large (β ≃ 10−1 − 1). To quantify the non-integrability of the
1D-SHE, we define ϵ = 1 − HSHE

4 /HNLSE
4 with HNLSE

4 the non-linear Hamiltonian of the
1D-NLSE, independant from β. The expression of ϵ is chosen to be 0 at β = 0, ie when
the 1D-SHE is actually the NLSE. Consequently, ϵ evaluates the deviation of the 1D-SHE
from the 1D-NLSE in a global way as it is defined with the Hamiltonians. Note that
this value may vary in time, the conservativeness of the system imposes a total energy
constant, but the non-linear component can fluctuate. The evolution of ϵ for different β is
plotted Figure 2.18(b). For β = 0, ϵ is constantly zero, as expected. When β increases,
ϵ starts oscillating around a positive mean value, illustrating the deviation from integra-
bility. These oscillations are already seen for very low values of β like 10−4, but they are
still weak and around a small value, the system is still close to integrability. When β
increases, this mean value increases, which represents the system getting more and more
non-integrable. We can note that ϵ oscillates as the same frequency as maxx(|u(x, t)|).

To study locally the non-integrability, we compare the characteristic length of non-
linearity

√
β with the characteristic length of the integrable evolution ℓ 1

2
taken as the

mid-amplitude full width of the quasi-soliton found in the evolution. The time series
of quantity

√
β/ℓ 1

2
are plotted Figure 2.18(c) for different values of β. For β = 0

(1D-NLSE) this quantity is constant equal to 0, but for β > 0 this ratio evolves like
ϵ, oscillations for a positive mean value. The development of these oscillations when β
increases indicates the local non-integrability of the system. As the initial condition is
the solution of the integrable equation, it is not surprising to see that it is more unstable
when the non-integrability increases. From the consideration of ϵ and

√
B/ℓ 1

2
, we see that

the value of β = 10−2 chosen for all the simulations presented in this chapter corresponds
to a small non-integrability perturbation to the 1D-NLSE, justifying again the use of the
DST devised for the 1D-NLSE.

Finally, as the non-integrability of the 1D-SHE changes, its solitonic solution also
changes. With the expression of this solution with β (1.23), we see that the amplitude
evolves as 3/2 1/

√
2β and the mid-amplitude full-width is 4 arcosh(

√
2)

√
β ≃ 3.52

√
β.

When β increases, this amplitude decreases and the width increases. For instance, this
amplitude is 10.601 for β = 10−2 and only 1.01 for β = 1 and the widths are respectively
0.35 and 3.52. Hence, when β increases, the solitonic solution of the 1D-SHE is smaller
and wider. If we assume that the initial pure soliton relaxes to tend to the solution of
the 1D-SHE, that might explain why this relaxation is more pronounced for strong non-
integrability. For β = 1, the solitonic solution has a half-amplitude width of 3.52 bigger
than the half of the box length. Thus, it interacts with itself at some point, which might
accelerate its disintegration process.
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Summary of the chapter

• An 1D-NLSE soliton initialized in the 1D-SHE relaxes until a bound-state
and emits waves,

• this bound-state appears gradually when the equations gets more non-
integrable.

• We assume that the bound-state is an attractor of the system

2.7 Conclusion
In this chapter, we have carefully studied the evolution of different initial conditions

in the 1D-SHE : a flat-top spectrum, two colliding 1D-SHE solitary waves, two colliding
NLSE solitons and a single 1D-NLSE soliton. We conclude that a bound-state (a localized
structure with oscillating width and amplitude propagating on top of weakly non-linear
waves) acts as a statistical attractor in the 1D-SHE. We have shown that this bound-state
requires a certain level of non-linearity to exist in the system.

We characterized the bound-state by a DST spectrum which displays two dominant
eigenvalues, whose the imaginary parts oscillate in phase opposition. Its (k−ω) spectrum
show parallel lines whose slopes correspond to the mean velocity of the bound-state. The
bound-states that we have observed in our system are always accompanied by weakly
non-linear waves. These are present as a parabola in the (k − ω) spectrum. We highlight
that both DST and (k − ω) spectra are consistent with each other, as it has been found
that the frequency of oscillation of the DST eigenvalues corresponds to the secondary
lines in the (k − ω).

This final state is reached by series of non-elastic collisions between oscillating struc-
tures. These non-elastic collisions are allowed by the non-integrability of the 1D-SHE. A
phase difference study has been done and leads to the conclusion that the phase difference
must be zero for colliding localized structures to merge into a single one. Conversely, two
structures colliding in phase opposition undergo an elastic collision.

Finally, we can notice that the DST, originally devised for the integrable 1D-NLSE
and here applied to the non-integrable 1D-SHE, gives results qualitatively consistent with
the (x−t) dynamics and (k−ω) spectrum. The DST spectrum of the bound-state evolves
in coherence with the function in the physical space and it correctly tracks the structures
during the non-elastic collisions. This observation is an interesting step in applying the
DST to non-integrable systems.
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CHAPTER 3

Cascades in the 1D-SHE

3.1 Introduction
In this chapter, we will now focus on the wave turbulence properties of the 1D-SHE.

We recall that the limits of this equation, Short-Wave and Long-Wave, correspond respec-
tively to the 1D Schrödinger Newton Equation (1.30) and the 1D Long-Wave Equation
(1.28). These equations have been studied in [5]. A key set of results derived in this paper
were the KZ cascade spectra of the limits of the 1D-SHE. As it is the case wit KZ spectra,
these have a power-law for the wave-action spectrum nk = Ckx, with C a constant. After
a CT to remove the non-resonant four-mode interactions, the KZ spectra were found to
be characterized by the scaling exponents xLWE

FE = −1, xLWE
FN = −3/4 for the 1D-LWE

and xSNE
FE = 7/5, xSNE

FN = 9/5 for the 1D-SNE. We recall that xFE and xFN represent
respectively the energy cascade and wave-action cascade KZ spectra. The energy cascade
KZ spectrum for the 1D-LWE had to be corrected logarithmically to prevent a divergence
of the collision integral while both KZ predictions were found to be invalid for such a
divergence. These theoretical predictions were compared to numerical simulations and
the predictions for the 1D-SNE were observed in numerics, even though they are invalid.
For the 1D-LWE, the comparisons were not conclusive. These simulations showed other
interesting behaviours, such as the progressive organization of the system as a unique
coherent structure in the 1D-LWE and existence of incoherent structures in 1D-SNE.

For completeness, we mention that turbulence has been studied in the 2D- and 3D-
SNE in [25] and for 2D-SHE in [95]. Notice that in these dimensions the four-mode
interactions are resonant and there is no need for the CT.

The work presented in this chapter deals with the wave turbulence in the 1D-SHE,
ie the complete equation without taking any limit. More precisely, we will consider the
1D-SHE in the SW limit but without assuming the validity of a Taylor expansion of the
non-linearity in this limit, with the purpose of having a more precise approach.
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To this end, we will follow the method detailed in [95] and derive a reduced model from
the 1D-SHE. For reasons that will become clear, we term this new model the Semi-Local
Approximation Model (SLAM) fo the 1D-SHE. The SLAM is required as the interaction
coefficient of 1D-SHE turns out not to be scale-invariant.

In order for the approximation model to be easier to apply, we will slightly change the
expression of the 1D-SHE, which we recall here,

i
∂

∂t
u + 1

2
∂2

∂x2 u + u
(

1 − β
∂2

∂x2

)−1
|u|2 = 0. (3.1)

We will change the non-integrability parameter, from β to Λ = 1/β > 0. Which this
change and a rescaling of the function u as u → uβ− 1

2 . The 1D-SHE becomes

i
∂

∂t
u + 1

2
∂2

∂x2 u + u
(

Λ − ∂2

∂x2

)−1
|u|2 = 0. (3.2)

We highlight the fact that the rescaling of u does not have any impact on its turbulent
properties as we will be mainly interested in the exponent of the wave-action spectrum.
The important change is the expression of the four-mode interaction coefficient (1.25)
which is now

SHET k1,k2
k3,k4

= −1
4

(
A1234 + A2134 + A1243 + A2143

)
, A1234 = 1

(k1 − k4)(k3 − k2) + Λ . (3.3)

The SWL was previously defined as k2 ≫ k∗2 with k∗ = 1/
√

β. With the introduction of
Λ, the SWL is still k2 ≫ k∗2, but now with k∗ =

√
Λ. We remind the notation used in

this thesis, a vector is denoted with bold variable, for instance k, while its amplitude is
denoted without this bold font, for instance k = |k|.

Finally, studying the whole equation appears to be crucial because the KE for the
1D-SNE diverges, and so does the interaction coefficient [95] [25]. Indeed, taking Λ = 0 in
the interaction coefficient for the 1D-SHE (3.3), we get a coefficient which is divergent for
k1 = k4. A way to overcome this problem is to study the complete equation 1D-SHE (for
which the interaction coefficient is not divergent) and, then, to take the limit Λ → 0. The
reasoning was illustrated for four-mode interaction coefficient but holds for the six-mode
coefficient after carrying out the CT.

This chapter is organized as follows. Section 3.2 presents the approximation model and
section 3.3 details its application until the final result. In the section 3.4 we derive the KZ
predictions from the result of the SLAM. The sections 3.5 and 3.6 present respectively the
numerical scheme to study the turbulence of 1D-SHE and the results of these numerics.

3.2 Canonical Transform and approximation models

3.2.1 Canonical Transform
As presented in section 1.3.2, for the 1D-SHE, we need to apply a particular CT to

remove the four-mode interactions and transfer the interactions to the sixth order, keeping
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3.2. Canonical Transform and approximation models

the canonicity of the equations of motion. The new Hamiltonian has thus the six-mode
interaction term :

H =
∑

k
ωk|bk|2 + 1

3
∑
1−6

W 1,2,3
4,5,6 b1b2b3b

∗
4b

∗
5b

∗
6 δ1,2,3

4,5,6, (3.4)

describing 3 ↔ 3 interactions. For convenience, we denote W k1,k2,k3
k4,k5,k as W 1,2,3

4,5,k . Similarly,
the wave-action densities nki

are denoted ni and the Kronecker delta δ1,2,3
4,5,k stands for

δ(k1 + k2 + k3 − k4 − k5 − k). The new interaction coefficient W 1,2,3
4,5,k is given by the CT,

W 1,2,3
4,5,6 = 1

24

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

6∑
p,q,r=4

p ̸=q ̸=r ̸=p

 1
ωi,j

r,i+j−r

− 1
ωp+q−j,j

p.q

 SHET i,k
r,i+k−r

SHET q+p−j,j
q,p , (3.5)

and we recall that SHET is the 2 ↔ 2 interaction coefficient for the 1D-SHE, given in
(3.3) with Λ as a parameter. The explicit computation of this new coefficient gives

W k1,k2,k3
k4,k5,k6

= 1
48

3∑
i,j,m=1
i̸=j ̸=k ̸=i

6∑
p,q,r=4

p ̸=q ̸=r ̸=p

W i,j,m
p,q,r , with (3.6a)

W i,j,m
p,q,r =

(
1

(kj − kq)(km − kq)
+ 1

(ki − kp)(ki − kr)

)(
1

(kj − kq)2 + Λ + 1
(km − kq)2 + Λ

)

×
(

1
(ki − kp)2 + Λ + 1

(ki − kr)2 + Λ

)
.

(3.6b)

The full expression of W k1,k2,k3
k4,k5,k is the first term Wk1,k2,k3

k4,k5,k (3.7) plus all the eight swaps
among {k1, k2, k3} and among {k4, k5, k}.

Wk1,k2,k3
k4,k5,k =

(
1

(k2 − k5)(k3 − k5)
+ 1

(k1 − k4)(k1 − k)

)(
1

(k2 − k5)2 + Λ + 1
(k3 − k5)2 + Λ

)

×
(

1
(k1 − k4)2 + Λ + 1

(k1 − k)2 + Λ

)
.

(3.7)

This W coefficient is a priori divergent for pairs ki = kp. However, on the resonant
manifold, we can check that W = 0 in the limit Λ → ∞ (up to the 1

Λ2 term). Indeed, this
limit corresponds to the NLSE which is integrable and, thus, does not have any resonances
at any order. In 1D, the resonance conditions can be geometrically satisfied for sextexts,
which implies that the six-mode coefficients W must be 0 to prevent the existence of
resonant sextets.
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Chapter 3. Cascades in the 1D-SHE

3.2.2 The need for an approximation model
Now that we have the interaction coefficient for the full 1D-SHE, we have the complete
collision integral of the KE (3.10). However, the expression of W 1,2,3

4,5,k prevents the direct
application of the ZT to obtain the KZ prediction. Indeed, for both the ZT and the
dimensional derivation, we need the interaction coefficient scale to be invariant, ie it has
to be characterized by a homogeneity coefficient γ ∈ R such as

W λk1,λk2,λk3
λk4,λk5,λk6

= λγW k1,k2,k3
k4,k5,k6

. (3.8)

For the 1D-NLSE, 1D-LWE and 1D-SNE, the respective four-mode interaction coeffi-
cients are scale invariant [5] and, thus, so are the six-mode coefficients. Due to the Λ term,
this coefficient is not scale invariant for the 1D-SHE. Consequently, we can not predict a
KZ spectrum from the exact KE of the SHE. That is why we will apply an approximation
model to simplify this system and derive KZ predictions.

3.2.3 Approximation Models
In the Differential Approximation Model (DAM), one assumes that all the interacting
wave-vectors are very close to each other. This is known as the assumption of superlocality.
This greatly simplifies the KE and Dyachenko et al. [96] showed that the KE turns into
an Ordinary Differential Equation, which is much easier to integrate. This simplification
conserves the structure of the equation and particularly the conserved quantities, linear
energy and wave-action, and the solutions, KZ or RJ. For systems, like the 1D-SHE,
exhibiting a dual cascade behaviour, the DAM will link the wave-action spectrum nk(t)
with a non-linear operator R(nk(t)) [25]

∂nk

∂t
= R(nk), (3.9)

The expression of R depends on the system studied.

The DAM has been applied to the 2D and 3D NLSE [96], to Boltzmann gas [97] and
to Kelvin Waves [35]. The DAM allows one to easily obtain the KZ spectra and to check
their convergence and the signs of the corresponding fluxes. The DAM is very useful as
it reduces the KE to an ODE, but the underlying assumption of superlocality is strong
and may be too restricting for certain systems.

The Semi-Local Approximation Model (SLAM) assumes a less restrictive condition :
the dynamics are dominated by interactions for which pairs of wave-vectors are very close
to each other. This new assumption increases the number of systems it can be applied
to. However, the final result obtained by SLAM is not as concise at the DAM as it still
contains, at least, one integral. Concretely, the SLAM gives an expression for Q(k) the
wave-action flux from which we can derive the KZ spectra of the system. For instance, the
SLAM has been applied to the 1D-SHE in 2D and 3D by Skipp et al. [95] which provided
the derivation of KZ predictions.
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3.3. The Semi-Local Approximation Model

The physical difference between DAM and SLAM is the locality of the interactions.
By assuming that all the interacting wave-vectors are almost equal, DAM represents lo-
cal interactions. This model is even called the super-local model because of this precise
hypothesis.

The SLAM is more appropriate than the DAM for the 1D-SHE, but in the Short Wave
Limit Λ ≪ k2 only. Indeed, in this limit, some terms of the six-mode interaction coefficient
(3.6) are sharply peaked as kr → kq if Λ ≪ (kr −kq)2. Having dominant terms in W does
not require all the wave-vectors equal together, implying that the DAM is not adapted.
This motivates us to apply the SLAM instead of the DAM. In the SLAM, the pairings
which maximize the interaction coefficient link each vector of the triplet {k1, k2, k3} with
one of {k4, k5, k6}. That means an in-coming mode and an out-going mode in the reso-
nant picture, see Figure 3.1. To conclude, the SLAM is adapted to our system with the
resonances of the six-mode interaction and is less restrictive than the DAM. Hence, we
will study the turbulent behaviour with the help of the SLAM.

Figure 3.1: Illustration of the approximation models for a six-mode interaction,
DAM (a) and SLAM (b) - The DAM assumes that all the wave-vectors are close while
the SLAM only regroup them in pairs. In our work, we used the SLAM.

Summary of the section

• The complete 1D-SHE will be studied in the SWL with the SLAM.

• In the SLAM, we assume that the interacting wave-vectors are grouped in
pairs.

3.3 The Semi-Local Approximation Model

With the 1D-SHE now characterized by six-mode interactions, the weak Wave-
Turbulence theory shows that it verifies the generic Kinetic Equation (KE) for six-mode
interactions [51] given by

83



Chapter 3. Cascades in the 1D-SHE

∂nk

∂t
= 24π

∫ ∣∣∣W 1,2,3
4,5,k

∣∣∣2 [ 1
nk

+ 1
n5

+ 1
n4

− 1
n1

− 1
n2

− 1
n3

]
× n1n2n3n4n5nk δ1,2,3

4,5,k δ(ω1,2,3
4,5,k) dk1 dk2 dk3 dk4 dk5.

(3.10)

The Kronecker delta δ(ω1,2,3
4,5,k) stands for δ(ω1+ω2+ω3−ω4−ω5−ωk) and δ1,2,3

4,5,k for δk1,k2,k3
k4,k5,k .

The goal of the SLAM is to obtain an expression for the wave-action flux Q (depending
for now on the wave-vector k) under the assumption of semi-locality. To this end, we
introduce a test-function φk = φ(k) and consider the integral∫

φk
∂nk

∂t
dk. (3.11)

3.3.1 Symmetries and choice of pairing
The KE (3.10) is symmetrical for swaps of indexes inside {k1, k2, k3} or between k4 and
k5. With the k−integration, k becomes a dummy variable like the ki. The integral (3.11)
is now symmetrical with respect to indexes swaps between modes in {k1, k2, k3}, between
modes in {k4, k5, k} and with respect to the change k1, k2, k3 ↔ k4, k5, k. Thus, the
integral (3.11) can be written

∫
φk

∂nk

∂t
dk = 4π

∫ ∣∣∣W 1,2,3
4,5,k

∣∣∣2 [ 1
nk

+ 1
n5

+ 1
n4

− 1
n1

− 1
n2

− 1
n3

]
n1n2n3n4n5nk

× [φk + φ5 + φ4 − φ3 − φ2 − φ1] δ1,2,3
4,5,k δ(ω1,2,3

4,5,k) dk1 dk2 dk3 dk4 dk5dk.

(3.12)

Applying the SLAM means grouping the six wave-vectors in three pairs, each pair
containing an incoming vector and an output vector. With the symmetries of equation
(3.12) and six-mode interaction coefficient(3.6), we can study one particular pairing and
assume that the other ones will give the same result by symmetry. Six pairings are
possible, resulting in a multiplicative factor of 6. We will consider the pairing

k1 ≈ k4, k2 ≈ k5, k3 ≈ k. (3.13)
We will denote p = k1 − k4 and q = k2 − k5, with p ≪ k1, k4, q ≪ k2, k5. The goal of

the SLAM is to reduce the number of variables of integration.

3.3.2 Approximations for the resonance conditions
Before starting the whole computation of the integral, we will see how the SLAM

assumption and the pairing (3.13) simplify the resonance conditions encrypted in the
Kronecker delta δ1,2,3

4,5,k and δ
(
ω1,2,3

4,5,k

)
.

First, we have k1 +k2 +k3 −k4 −k5 −k = p+q+(k3 −k). Given that, the Kronecker
delta δ1,2,3

4,5,k imposes k3 − k = −p − q on the resonant manifold. This result does not
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3.3. The Semi-Local Approximation Model

assume any expansion in powers of p nor q.

Then, let us consider the δ
(
ω1,2,3

4,5,k

)
with the k−condition respected. Given the dis-

persion relation ωk = k2/2, we have ω1,2,3
4,5,k = [(k1 − k4)(k1 + k4) + (k2 − k5)(k2 + k5) +

(k3 − k)(k3 + k)]/2. We apply the resonance condition k3 − k = −p − q and we obtain,
to the lowest order in p and q, ω1,2,3

4,5,k = p(k1 − k) + q(k2 − k). Thus, in the first order
of p and q, δ(ω1,2,3

4,5,k) = δ(p(k1 − k) + q(k2 − k)) under the SLAM assumptions and with
the k-condition verified. If we want to write q = −p k1−k

k2−k) , we need to keep in mind that
δ(p(k1 − k) + q(k2 − k)) = 1

|k2−k|δ(q + pk1−k
k2−k)

The six initial integration variables k1, k2, k3, k4, k5, k were changed into k1, p, k2, q, k3, k
and, with the k− and ω− Kronecker delta’s, we can reduce equation 3.12 to an integration
over four variables k1, k2, k and p.

3.3.3 Approximation for W

As we said before, we work with the pairing k1 ≈ k4, k2 ≈ k5, k3 ≈ k in the SWL
Λ ≪ k2. Among the nine terms of W 1,2,3

4,5,k , six are resonant for a given pairing, while the
others can be neglected. For instance, the component W1,2,3

4,5,k (3.14) is resonant because
each of the three terms in bracket contain at least one resonant term (highlighted in
yellow) while the component W1,2,3

5,4,k (3.15) has no resonant term for the chosen pairing
and will be neglected for this choice of pairings and in the SWL Λ ≪ k2.

W1,2,3
4,5,k =

( 1
(k2 − k5) (k3 − k5)

+ 1
(k1 − k4) (k1 − k)

)( 1
(k2 − k5)2 + Λ + 1

(k3 − k5)2 + Λ

)

×
( 1

(k1 − k4)2 + Λ + 1
(k1 − k)2 + Λ

)
(3.14)

W1,2,3
5,4,k =

( 1
(k2 − k4)(k3 − k4) + 1

(k1 − k5)(k1 − k)

)( 1
(k2 − k4)2 + Λ + 1

(k3 − k4)2 + Λ

)
×
( 1

(k1 − k5)2 + Λ + 1
(k1 − k)2 + Λ

)
,

(3.15)

From now we forget the non-resonant terms and only consider the resonant ones. We
can make these latter terms explicit by writing them component as function of p and q,
keeping k1, k2 and k. For W1,2,3

4,5,k = Wk1,k2,k3
k4,k5,k , it gives, on the resonant manifold,
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Wk1,k2,k3
k4,k5,k = Wk1,k2,k3

k1−p,k2−q,k =
( 1

q(k − k2 − p) + 1
p(k1 − k)

)( 1
q2 + Λ + 1

(k − k2 − p)2 + Λ

)
×
( 1

p2 + Λ + 1
(k1 − k)2 + Λ

)
.

(3.16)

We recall again that for the SLAM we place ourselvs in the SWL, ie Λ ≪ k2. Thus,
still assuming the pairing above, we have p2, q2, Λ ≪ (ki −kj)2, with ki and kj not paired.
We can simplify W1,2,3

4,5,k, keeping only the resonant terms in the last two brackets

Wk1,k2,k3
k1−p,k2−q,k ≃

(
1

q(k − k2 − p) + 1
p(k1 − k)

)
1

q2 + Λ
1

p2 + Λ . (3.17)

We develop the first bracket to the first order in p
|k−k2| ≪ 1 to have

Wk1,k2,k3
k1−p,k2−q,k ≃

(
1

q(k − k2)
+ p

q
1

(k − k2)2 + 1
p(k1 − k)

)
1

q2 + Λ
1

p2 + Λ . (3.18)

Another component of W 1,2,3
4,5,k is proportional to 1

q2+Λ
1

p2+Λ , namely W2,1,3
5,4,k, to which

we can apply the same procedure

W2,1,3
5,4,k = Wk2,k1,k3

k5,k4,k =
( 1

(k1 − k4)(k3 − k4) + 1
(k2 − k5)(k2 − k)

)( 1
(k1 − k4)2 + Λ + 1

(k3 − k4)2 + Λ

)
×
( 1

(k2 − k5)2 + Λ + 1
(k2 − k)2 + Λ

)
Wk2,k1,k3

k2−q,k1−p,k ≃
( 1

p(k − k1 − q) + 1
q(k2 − k)

) 1
p2 + Λ

1
q2 + Λ

(3.19)

Wk2,k1,k3
k2−q,k1−p,k ≃

(
1

p(k − k1)
+ q

p
1

(k − k1)2 + 1
q(k2 − k)

)
1

p2 + Λ
1

q2 + Λ (3.20)

We understand that these two components are linked because they are both resonant to
the same couples k1 ≈ k4 and k2 ≈ k4. Taking both components W1,2,3

4,5,k and W2,1,3
5,4,k

together, the lowest order terms cancel and we have

W1,2,3
4,5,k + W2,1,3

5,4,k ≃
(

p
q

1
(k − k2)2 + q

p
1

(k − k1)2

)
1

p2 + Λ
1

q2 + Λ (3.21)

Finally, we use the relation between p and q found with the ω− Kronecker delta :
q
p = −k−k1

k−k2
.
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W1,2,3
4,5,k + W2,1,3

5,4,k ≃
(

− k − k2

k − k1

1
(k − k2)2 − k − k1

k − k2

1
(k − k1)2

)
1

p2 + Λ
1

p2(k−k1
k−k2

)2 + Λ

W1,2,3
4,5,k + W2,1,3

5,4,k ≃ −2
(

1
k − k2

1
k − k1

)
1

p2 + Λ
1

p2(k−k1
k−k2

)2 + Λ
(3.22)

The same reasoning goes for the four other resonant components W , the latter can be
paired based on the two resonant wave-vector couples they represent. The consideration
of the six resonant components gives the expression for the full six-mode interaction
coefficient W 1,2,3

4,5,k keeping only the resonant components, denoted Wr :

Wr(k1, k2, k, p, q) ≃
(

p
q

1
(k − k2)2 + q

p
1

(k − k1)2

)
1

p2 + Λ
1

q2 + Λ

−
(

1
(k1 − k2)2 + q

p + q
1

(k − k1)2 + p
q

1
(k1 − k2)2

)
1

q2 + Λ
1

(p + q)2 + Λ

−
(

1
(k1 − k2)2 + p

p + q
1

(k − k2)2 + q
p

1
(k1 − k2)2

)
1

(p + q)2 + Λ
1

p2 + Λ
(3.23)

We recall here that this is the resonant expression for W under the assumption of only
one pairing.

Wr(k1, k2, k, p) ≃ − 2
(

1
k − k2

1
k − k1

)
1

p2 + Λ
1

p2(k−k1
k−k2

)2 + Λ

− 2
(

1
k1 − k2

1
k1 − k

)
1

p2(k1−k2
k−k2

)2 + Λ
1

p2(k−k1
k−k2

)2 + Λ

− 2
(

1
k2 − k1

1
k2 − k

)
1

p2(k1−k2
k−k2

)2 + Λ
1

p2 + Λ

(3.24)

3.3.4 Computation
Now that we have dealt with all the terms in the integral

∫
φk ṅk dk, we can start its

computation, starting from equation (3.12).

∫
φk

∂nk

∂t
dk = 4π

∫
|W 1,2,3

4,5,k |2 δ
(
(k1 − k4) + (k2 − k5) + (k3 − k)

)
2δ
(
(k1 − k4)(k1 + k4) + (k2 − k5)(k2 + k5) + (k3 − k)(k3 + k)

)
n1n2n3n4n5nk

×
[

1
n1

+ 1
n2

+ 1
n3

− 1
n4

− 1
n5

− 1
nk

][
φ1 + φ2 + φ3 − φ4 − φ5 − φk

]
dk1dk2dk3dk4dk5dk

(3.25)
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Now, we change the integration variables from k1−5, k to k1−3, p, q, k with p ≪ k1, k4
and q ≪ k2, k5.

∫
φk

∂nk

∂t
dk = 4π

∫
|W k1,k2,k3

k1−p,k2−q,k|2 δ
(

p + q + (k3 − k)
)

2δ
(

p(2k1 − p) + q(2k2 − q) + (k3 − k)(k3 + k)
)

× n1n2n3nk1−pnk2−qnk

×
[

1
n1

+ 1
n2

+ 1
n3

− 1
nk1−p

− 1
nk2−q

− 1
nk

]

×
[
φ1 + φ2 + φ3 − φk1−p − φk2−q − φk

]
dk1dk2dk3dpdqdk

(3.26)

We perform Taylor expansions in p and in q for the 1
ni

and the φi terms. For concise-
ness, the derivations ∂./∂ki will be denoted ∂ki

∫
φk

∂nk

∂t
dk = 4π

∫
|W k1,k2,k3

k1−p,k2−q,k|2 δ
(
p + q + (k3 − k)

)
2δ
(

p(2k1 − p) + q(2k2 − q) + (k3 − k)(k3 + k)
)

× n1n2n3nk1−pnk2−qnk

×
[
p∂k1

1
n1

+ q∂k2

1
n2

+
( 1

n3
− 1

nk

)][
p∂k1φ1 + q∂k2φ2 +

(
φ3 − φk

)]
dk1dk2dk3dpdqdk

(3.27)

We remove the k3 integration by using the k Kronecker delta which sets k3 = k−p−q.

∫
φk

∂nk

∂t
dk = 4π

∫
|W k1,k2,k−p−q

k1−p,k2−q,k |2 2δ
(
p(2k1 − p) + q(2k2 + q) + (−p − q)(2k − p − q)

)
× n1n2nk−p−qnk1−pnk2−qnk

[
p∂k1

1
n1

+ q∂k2

1
n2

+
( 1

nk−p−q
− 1

nk

)]

×
[
p∂k1φ1 + q∂k2φk2 +

(
φk−p−q − φk

)]
dk1dk2dk3dpdqdk

(3.28)

We perform a new Taylor expansion in |p + q| ≪ k and we expand the ω Kronecker
delta up to the p1, q1 terms.

∫
φk

∂nk

∂t
dk = 4π

∫
|W k1,k2,k−p−q

k1−p,k2−q,k |2 δ
(

p(k1 − k) + q(k2 − k)
)

× n1n2nk−p−qnk1−pnk2−qnk

×
[
p∂k1

1
n1

+ q∂k2

1
n2

+ (−p − q)∂k
1

nk

]

×
[
p∂k1φ1 + q∂k2φ2 + (−p − q)∂kφk

]
dk1 dk2 dp dq dk

(3.29)
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∫
φk

∂nk

∂t
dk = 4π

∫
|W k1,k2,k−p−q

k1−p,k2−q,k |2 δ
(

p(k1 − k) + q(k2 − k)
)

× n1n2nk−p−qnk1−pnk2−qnk

×
[
p
(

∂k1

1
n1

− ∂k
1

nk

)
+ q

(
∂k2

1
n2

− ∂k
1

nk

)]

×
[
p
(

∂k1φ1 − ∂kφk

)
+ q

(
∂k2φ2 − ∂kφk

)]
dk1 dk2 dp dq dk

(3.30)

We now remove the q−integration by using the ω Kronecker function with δ(p(k1 −
k)p + q(k2 − k)) = |k2 − k|−1δ(pk1−k

k2−k + q). At this point, the interaction coefficient is
Wr(k1, k2, k, p), written in (3.24).

∫
φk

∂nk

∂t
dk = 4π

∫
|Wr(k1, k2, k, p)|2 1

|k2 − k|
× n1n2nk−p k2−k1

k2−k
nk1−pnk2−p k−k1

k2−k
nk

× p
[(

∂k1

1
n1

− ∂k
1

nk

)
+ k − k1

k2 − k

(
∂k2

1
n2

− ∂k
1

nk

)]

× p
[(

∂k1φ1 − ∂kφk

)
+ k − k1

k2 − k

(
∂k2φ2 − ∂kφk

)]
dk1 dk2 dp dk

(3.31)

To to stay at the lower order in p, the Taylor expansions of nki−∝p are done to the
first order, in p0.

∫
φk

∂nk

∂t
dk = 4π

∫
|Wr(k1, k2, k, p)|2 1

|k2 − k|
× n2

1n
2
2n

2
k

× p2
[(

∂k1

1
n1

− ∂k
1

nk

)
+ k − k1

k2 − k

(
∂k2

1
n2

− ∂k
1

nk

)]

×
[(

∂k1φ1 − ∂kφk

)
+ k − k1

k2 − k

(
∂k2φ2 − ∂kφk

)]
dk1 dk2 dp dk

(3.32)

Now we can integrate this with respect to p, and define the function f = f(k1, k2, k)
such as

∫ ∞

−∞
|Wr(k1, k2, k, p)|2p2 dp = 1

Λ 5
2
f(k1, k2, k). (3.33)

Since the integrand |W |2p2 is a positive function, its integral, and thus f , is also a positive
function, as Λ is positive by assumption. Its full expression is given in Appendix B. We
then multiply the obtained expression by six in order to take into account the other
pairings that the one used for the computation.
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∫
φk

∂nk

∂t
dk = 24π

1
Λ 5

2

∫∫∫
f(k1, k2, k) 1

|k2 − k|
n2

1n
2
2n

2
k

[(
∂k1

1
n1

− ∂k
1
nk

)
+ k − k1

k2 − k

(
∂k2

1
n2

− ∂k
1

nk

)]

×
[(

∂k1φ1 − ∂kφk

)
+ k − k1

k2 − k

(
∂k2φ2 − ∂kφk

)]
dk1 dk2 dk

(3.34)

The next computations do not represent any physical concept nor approximation, so
we detail them in Appendix A and we only present the last steps. We obtain

∂nk

∂t
= 24π

1
Λ 5

2
∂k

∫
V k1,k2

k

[
n2

2n
2
k 2 k − k2

−k1 + k2
∂k1n1 + n2

1n
2
2 ∂knk

]
dk1dk2. (3.35)

V k1,k2
k is a function which can be interpreted as an interaction coefficient. Its expression

is given in Appendix B but we recall here some important properties

V k1,k2
k = V k2,k1

k , V k1,k
k2

= (k − k1)2

(k2 − k1)2 V k1,k2
k , ∀k1, k2, k ∈ R, V k1,k2

k > 0, (3.36)

and particularly, V is scale-invariant. We now recall that the action flux Q(k satisfies
the continuity equation for the wave-action 3.37(a), which, by comparison to 3.35, gives
the final expression for Q(k) 3.37(b). Together, the continuity equation 3.37(a) and the
expression for the wave-action flux 3.37(b) constitute the SLAM.

∂nk

∂t
= −∂Q

∂k
(3.37a)

Q(k) = − 24π

Λ5/2

∫ V 1,2
k

k2 − k1

[
(k − k2)n2

kn2
2
∂n1

∂k1
+ (k1 − k)n2

kn2
1
∂n2

∂k2
+ (k2 − k1)n2

1n
2
2
∂nk

∂k

]
dk1dk2

(3.37b)

The SLAM considerably reduced the complexity of the collision integral as Q is now only
an integral over two variables, while the original collision integral of the six-mode KE was
an integral over five variables.

We can notice here that nk and Q depend on the wave-number k and not on its norm
k. If we assume that the system is isotropic, the wave-action spectrum n should be inde-
pendent of sgn(k) and only depend on its norm, namely nk = nk(k). With the continuity
equation (3.37), that would imply that we can define a symmetric flux Qs(k) = sgn(k)Q(k)
such that ∂nk/∂t = −∂Qs/∂k.
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3.3. The Semi-Local Approximation Model

3.3.5 Verifications
We first verify that the integrand of Q(k) does not diverge for k1 = k2 or k1,2 = k.

This is ensured by the square-bracket term which cancels the divergences of the coefficient
V .

Verification of the Rayleigh-Jeans spectrum

We now check than the Rayleigh-Jeans spectrum defined in section 1.3.4 nRJ
k =

T/(µ + ωk) = T/(µ + 1
2k2), is actually a solution of the SLAM (3.37). In the limit

T, µ → ∞ with the ratio T/µ finite, we obtain the equipartition of particles only with
nRJ

k ∝ k0, denoted xTN = 0. The other limit µ = 0 corresponds to the equipartition of
energy only. The spectrum obtained is nRJ

k ∝ k−2, denoted xTE = −2. These two spectra
must be stationary states of the system.

Straightforward computations show that both nk = Ck0 and Ck2 cancel exactly the
square bracket in the integral of the flux and thus, are indeed stationary states of the
system. RJ spectrum being a stationary state was expected and thus, stands as a first
verification of our final expression of Qk.

Conservation of the energy E

As said when we introduced the weak WT framework, the total wave-action N =∫
nkdk and the energy E =

∫
ωknkdk are exactly conserved by the original KE. Thus, we

need to verify that they are indeed conserved quantities in the SLAM. Indeed, the SLAM
is supposed to keep the structure of the equation, and consequently must conserve the
invariants of the original KE.

The final equation of the SLAM (3.37) is a continuity equation for nk so the conser-
vation of N is ensured. For E, we need to check its conservation by computing explicitly
∂E/∂t,

∂E

∂t
=
∫ +∞

−∞
ωk

∂nk

∂t
dk = −

∫
ωk

∂Q

∂k
dk. (3.38)

Integrating by parts, we obtain

∂E

∂t
= −

[
ωkQ

]+∞

−∞
+
∫

kQ dk. (3.39)

The square bracket is taken to be null as we assume that the wave-action flux tends
to 0 for very large wave-numbers. The integral can be written with the expression of Q
(3.37) found with the SLAM

∂E

∂t
= 24π

Λ5/2

∫ kV 1,2
k

k2 − k1

[
(k − k2)n2

kn2
2
∂n1

∂k1
+ (k1 − k)n2

kn2
1
∂n2

∂k2
+ (k2 − k1)n2

1n
2
2
∂nk

∂k

]
dk1dk2dk.

(3.40)
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Chapter 3. Cascades in the 1D-SHE

As k is now an integration variable along with k1 and k2, we can use the symmetries
k ↔ k1 and k ↔ k2 to compute the integral. We split this integral in three equal parts,
leaving the first one unchanged and performing the swap of variables k ↔ k1 and k ↔ k2
in the second and third respectively. The arguments of coefficient V will be modified but
we can go back to V 1,2

k with the property of the coefficient V

V p3,p2
p1 =

(p3 − p2

p2 − p1

)2
V p1,p2

p3 (3.41)

and with the symmetry of V with respect to its two upper indices, we can write

∂E

∂t
= 24π

3Λ5/2

∫ {
k

k2 − k1
+ k1(k − k2)

(k2 − k1)2 + k2(k − k1)
(k2 − k1)2

}
V 1,2

k

×
[
(k − k2)n2

kn2
2
∂n1

∂k1
+ (k1 − k)n2

kn2
1
∂n2

∂k2
+ (k2 − k1)n2

1n
2
2
∂nk

∂k

]
dk1dk2dk.

The factorization of the braces term shows that is null, implying that ∂E/∂t = 0.
Consequently, we have verified that the 1D-SLAM conserves exactly the linear energy, as
expected.

Summary of the section

• By applying the SLAM to our system, we obtain an expression of the wave-
action flux and its continuity equation with the wave-action spectrum.

• The results of the SLAM are verified : the Rayleigh-Jeans spectrum solution
and the conservation of the energy E are satisfied.

3.4 KZ predictions
Before deriving the KZ spectra nk ∝ kx for wave-action and energy cascades, let us

summarize their properties with the wave-action and energy fluxes Qs(k, x) and Ps(k, x)

wave − action cascade, xFN such as Qs(k, xFN) ∝ k0, Ps(k, xFN) = 0 (3.42a)
energy cascade, xFE such as Ps(k, xFE) ∝ k0, Qs(k, xFE) = 0 (3.42b)

These equalities just signify that for the cascade of a quantity, the flux of this quantity is
a constant while the flux of the other quantity is null.

3.4.1 KZ predictions via dimensional analysis
Thanks to the SLAM, we now have an expression for the wave-action flux Q(k)

Q(k) = − 24π

Λ5/2

∫ V 1,2
k

k2 − k1

[
(k − k2)n2

kn2
2
∂n1

∂k1
+ (k1 − k)n2

kn2
1
∂n2

∂k2
+ (k2 − k1)n2

1n
2
2
∂nk

∂k

]
dk1dk2

(3.43)
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3.4. KZ predictions

With this expression of Q(k) and power-law spectra nk = Ckx, we can regroup all the
k-dependances to identify the power x which makes it k-independant. Such a power
would make the wave-action flux scale-independent, it would thus correspond to the
wave-action cascade xFN. To this end, we set the change of variable k1 → s1 = k1/k
and k2 → s2 = k2/k which creates non-dimensional variables s1,2. Similarly as the k-
variables, their norms will be denoted s1,2. This method corresponds to applying Zakharov
Transform (ZT).

The coefficient V 1,2
k = V k1,k2

k is scale-invariant, contrary to the initial six-mode coeffi-
cient W , and we have

V 1,2
k = V s1k,s2k

k = 1
k5 V s1,s2

1 . (3.44)

After computations, the change of variables (k1, k2) → (s1, s2) gives

Q(k) = −k5x−4sgn(k)24πC5x

Λ5/2

∫
V s1,s2

1
s2 − s1

[
(1 − s2)s2x

2 sx−1
1 sgn(s1) + (s1 − 1)s2x

1 sx−1
2 sgn(s2) + (s2 − s1)s2x

1 s2x
2
]

ds1ds2,

(3.45)
which allows us to write the symmetric flux Qs(k) = sign(k)Q(k) the following way

Qs = k5x−4I(x) , with (3.46a)

I(x) = −24πC5x

Λ5/2

∫
V s1,s2

1
s2 − s1

[
(1 − s2)s2x

2 sx−1
1 sgn(s1) + (s1 − 1)s2x

1 sx−1
2 sgn(s2) + (s2 − s1)s2x

1 s2x
2

]
ds1ds2

(3.46b)

as the product of a power of the modulus k and a dimensionless double integral I(x)
which only depends on the exponent x. With the definition of the wave-action spectrum
xFN making Qs k-independent, we obtain the dimensional prediction for the wave-action
spectrum xFN = 4/5. For this prediction to really correspond to a KZ spectrum, xFN = 4/5
has to cancel the symmetric energy flux Ps and the integral I(xFN = 4/5) must be finite
for this spectrum to be local. The symmetric energy flux Ps = Ps(k) can be derived from
Qs with their respective definitions. From (1.48) and ωk = k2/2 independent of t, we can
write

ωk
∂Qs

∂k
= ∂Ps

∂k
which gives Ps(k) = k2Qs/2 −

∫ k

0
k′Qs(k′) dk′ (3.47)

After an integration by parts, we get

Ps = k5x−2(5x − 4)
10x − 4 I(x) (3.48)

with the same function I(x) as for Qs. We can check that Ps(xFN = 4/5) = 0 provided
again that I(xFN = 4/5) is finite, which could show that no energy is cascading during
the wave-action cascade. To answer this question, we need to characterize the integral
I(x) and determine its interval of convergence. The detailed computations are presented
in Appendix D and we only present here the result :
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Chapter 3. Cascades in the 1D-SHE

I(x) convergent ⇔ 0 ≤ x <
3
4 or x = −2. (3.49)

We recall here that x = 0 and −2 are special powers corresponding to the RJ spectrum.
The wave-action KZ spectrum xFN = 4/5 is not included in the convergence interval,
Qs(xFN) and Ps(xFN) are not finite and, thus, the wave-action spectrum is not local. This
means that the cascade of wave-action is done by non-local interactions occurring when
both variables s1, s2 go to ∞ (see Appendix D). This problem requires a non-local analysis
which will be performed later.

The other KZ spectrum expected in the 1D-SHE system is the energy spectrum xFE,
which makes the energy flux Ps(k, xFE) independent from k and cancels the wave-action
flux Qs(k, xFE). Given the expression (3.48) of Ps, xFE = 2/5 makes the energy flux
proportional to k0 and thus gives the KZ prediction for the energy cascade. However, this
corresponds to Ps(xFE) = −2I(2/5)/0, which is divergent unless I(2/5) = 0. The precise
computation of I(2/5) with the help of Zakharov Transforms, detailed in Appendix C,
shows indeed that it is equal to 0. The value of the energy flux for the energy KZ spec-
trum is thus finite and its precise value can be computed thanks to the L’Hôpital’s rule
which gives Ps(xFE) = −I ′(2/5)/5 but the computation of I ′(2/5) is really difficult, even
for Mathematica. The computation of the signs of the fluxes will be done in the next
section.

With this result of I(2/5) = 0, we directly have Qs(k, xFE) = 0, the wave-action flux
is null during the cascade of energy. Consequently, xFE = 2/5 verifies all the conditions
to be a KZ spectrum of the SLAM, the energy flux is independent from k and finite and
the wave-action flux is null. Furthermore, the convergence study of I(x) showed that the
KZ prediction for energy cascade xFE = 2/5 is local.

We can notice that these predictions are significantly different from the ones obtained
for the short-wave equation in [5] ; xSWE

FN = 9/5 for the inverse wave-action cascade, com-
pared to xFN = 4/5 here, and xSWE

FE = 7/5 for the direct energy cascade, compared to
xFE = 2/5 obtained here. For both cascades, we obtain an exponent smaller by one.

3.4.2 Conclusion and signs of fluxes
The Figure 3.2 plots the symmetric energy and waves-action fluxes Ps and Qs as

functions of x. On the x-axis, we present the exponents x corresponding to the RJ spec-
tra and KZ predictions. The fluxes are plotted with the help of two rules. First, the
RJ spectra are characterized by null fluxes, so Ps and Qs are 0 for xTN and xTE. The
KZ spectra spectra are defined by the flux of one quantity and the absence of flux for
the other one. For instance, for the wave-action spectrum at x = xFN, corresponding to
cascading wave-action, we should have Qs ̸= 0 and Ps = 0. Conversely, at x = xFE, we
should have Qs = 0 and Ps ̸= 0. Secondly, we expect some asymptotic behaviours for the
fluxes for x → ±∞. For x → −∞, the spectrum is concentrated in low wave-numbers. It
is natural to assume that both fluxes are positive to spread the invariants to large wave-
numbers. On the contrary, for x → +∞, we expect Ps, Qs < 0 because the spectrum is
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3.4. KZ predictions

highly increasing for large k. With these two rules and the continuity of Ps and Qs, we
can draw qualitatively Ps(x) and Qs(x) in Figure 3.2.

Figure 3.2: Energy and wave-action fluxes Ps and Qs against the power-law
exponent x - We conclude from this graph that the Ps(x = xFE) > 0 and Qs(x = xFN) <
0, ie the energy cascade is direct and the wave-action cascade is inverse. However, strictly,
we can not draw the fluxes outside of their convergence interval highlighted in green in
the color bar below the graph. The red parts denotes the interval on which the fluxes
diverge.

Plotting PS and Qs for all the exponents x assumes that the fluxes are defined for all
these values, ie that the integral I(x) convergences for all x. We have showed that it is
not the case. Then, we need to plot the fluxes only for the values of x for which it is
defined. This is done Figure 3.3.

Figure 3.3: Energy and wave-action fluxes Ps and Qs against the power-law
exponent x on their convergence interval - Qs is null only for x = 0 and xFE = 2/5
and we know that it goes to −∞ for the largest x possible, so Q′(x = 2/5) < 0, from
which we conclude P (x = 2/5) > 0.

With the plot of Qs(x), we can find the sign of Ps(xFE = 2/5). Indeed, we know
that in the interval 0 ≤ x < 3/4, Qs is only null for x = xFE = 2/5. From this we can
conclude that Q′(x = 2/5) < 0, which directly gives I ′(2/5) < 0. Finally, the L’Hôpital’s
rule gave us Ps(xFE) = −I ′(2/5)/5, which finally imply Ps(xFE) > 0, as represented in
Figure 3.3. A positive energy flux at the energy cascade KZ spectrum indicates that
the energy cascade is direct, towards large k, which is in accordance with the Fjørtoft
argument section 1.3.4. We can then assume that the wave-action KZ cascade would be
inverse if it was local, which is consistent with Qs(x = xFN) < 0 observed in Figure 3.2,
but outside the convergence interval.
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To this point, with the expression of Qs given by the SLAM, we found an energy KZ
spectrum prediction xFE = 2/5, which was found to correspond to a direct cascade with
the study of Ps(x). Additionally , this spectrum is physically viable because the corre-
sponding energy flux is finite. On the contrary, the wave-action KZ spectrum prediction
xFN = 4/5 turns out to be unphysical because its wave-action flux is not finite. As said
previously, we will deal with this issue by analysing the system in the s1, s2 ≫ 1 limit,
where the integral I(x) is divergent for the KZ wave-action cascade prediction xFN = 4/5
(see Appendix D).

3.4.3 Non-local analysis
Let us get back to the expression of the wave-action flux Qs(k) with dimensional

variables k1,2 in the limit k1, k2 ≫ k, which corresponds to the UV limit where the
integral I is divergent for xFN = 4/5. Namely, we re-write Qs(k) with the expression
(3.37b) of Q in this limit. We get

Qs(k) = −24π
sgn k
Λ 5

2

∫∫
k≪k1,2

V k1,k2
k

[
2n2

2n
2
k

−k2

−k1 + k2

∂n1

∂k1
+ n2

k1n2
k2

∂nk

∂k

]
dk1dk2. (3.50)

Notice that we have used the k1 ↔ k2 symmetry to regroup the first two terms in
(3.37b). The interaction coefficient V k1,k2

k can be expanded in this k1, k2 ≫ k limit. To
the first order we have

V k1,k2
k = V k1,k2

0 + O
(k1

k
,
k2

k

)
. (3.51)

(notice in Appendix B that k always appears compared to k1,2). This new coefficient
V k1,k2

0 has important properties, due to the third wave-vector considered null,

V k1,k2
0 > 0, V −k1,k2

0 = V k1,−k2
0 and V k1,k2

0 = V −k1,−k2
0 . (3.52)

We can show (see appendix E) that these properties make the integral of the first term of
the RHS of (3.50) null. We are left with only the integral of the second term, proportional
to sign(k)∂nk

∂k = ∂nk
∂k

, ie

Qs(k) = −D∂knk, with D = 24π

Λ 5
2

∫
k≪k1,2

V k1,k2
0 n2

1n
2
2 dk1dk2. (3.53)

With the definition of the symmetric wave-action flux ∂nk/∂t = −∂Qs/∂k, we obtain
a diffusion equation

∂nk

∂t
= −∂Qs

∂k
= D

∂2nk

∂k2 (3.54)

for which the coefficient D can play the role of a diffusion coefficient because its positive
sign is ensured by the property V k1,k2

0 > 0. This diffusion equation can be solved, for a
symmetric wave-action spectrum nk = nk(k), for the inverse wave-action cascade as

nk = −Qs

D
k = |Qs|

D
k, (3.55)
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where we have used that Qs = const. < 0 for the inverse cascade (obtained with the
reasoning of Figure 3.2). This wave-action spectrum is characterized by the exponent
x = 1, obtained by a non-local study of the UV divergence of the integral I(x) when
both integrated variables tend to infinity. As the integral was divergent and the spec-
trum non-local for x > 3/4, it is consistent to obtain x = 1 from our non-local study.
Finally it is also consistent to have the integral in the coefficient D dominated by the UV
behaviour, k1,2 ≫ k. We want to highlight that this spectrum has been derived with a
non-local analysis and, thus, is a non-local spectrum. That means that the interactions
between wave-vectors are not constrained to neighbouring wave-vectors, but can represent
interactions between wave-vectors considerably different.

Summary of the section

• With the obtained expression of the wave-action flux, we derive the predictions
for the KZ cascade spectra. Their exponent are xFE = 2/5 for the direct
energy cascade spectrum and xFN = 4/5 for the inverse wave-action cascade
spectrum.

• The locality analysis shows that the KZ energy cascade spectrum is local while
the KZ wave-action cascade spectrum is not.

• Then, we do a non-local analysis for the wave-action cascade, which predicts
a non-local spectrum, with the exponent 1.

3.5 Numerical set-up

KZ spectra may be observed in forced and dissipative systems when the dissipation
exactly matches the forcing. To take into account this, we add new terms to the solved
1D-SHE written with Λ :

i
∂

∂t
u+ 1

2
∂2

∂x2 u+
(

Λ− ∂2

∂x2

)−1

|u|2+α
(

− ∇2
)αpow

u + ν
(

− ∇2
)νpow

u︸ ︷︷ ︸
Du

=
∑

k
fkηk(t)︸ ︷︷ ︸

F

(3.56)

with D = α(−∇2)αpow + ν(−∇2)νpow the dissipation operator and F the forcing term.

The equation (3.56) is solved with a pseudo-spectral code for a 1D system with length
L = 2π with periodical conditions. The number of grid points is still N = 212 = 4096
with dx = 1.5 × 10−3. To accelerate the simulations, we allow ourselves to increase the
time step dt to 10−6 which resolves up to kmax ≃ 1500 with the CFL-like condition(2.3).
This is acceptable because higher modes will be dissipated.
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3.5.1 Dissipation
We choose particular signs for the dissipation Laplacian constants : αpow < 0 and

νpow > 0. With this convention, the α-term represents the dissipation at low k (hypo-
viscosity) and the ν-term the dissipation at large k (hyperviscosity). The strength of
these dissipation can be tuned by the coefficients α and ν, to ensure a sufficiently large
inertial range. We also implemented a dissipation for the zero mode to make sure that
this component is null. The dissipation at low k prevents the formation of flat condensate
in the system.

3.5.2 Forcing
We use a stochastic forcing around a forcing mode kf . For k ∈ Jkf − dkf , kf + dkfK,

we set a forcing with a fixed norm and random phases, random both in space and in time.
This corresponds to

fk =
{

const. for k ∈ Jkf − dkf , kf + dkfK
0 else (3.57a)

ηk(t) = exp iϕk, ϕk(t) ∈ N (0, 1) (3.57b)

in equation (3.56). Both the dissipation and the forcing are set to make the simulations
symmetrical in k ↔ −k and thus, the system will be considered isotropic in average. The
time average is required to average over the random phases which are different between
positive and negative k.

The choice of kf selects the cascade we want to observe. For instance, to study the
Direct Cascade (DC) we set the forcing at low k, near to the hypoviscosity domain. Doing
that, we allow a large direct inertial range in order to observe the cascade, in accordance
with the Fjørtoft argument. Inversely, to study the Inverse Cascade (IC), we set the
forcing at large k. However, as we will see later, choosing kf too large creates localized
structures which stop the cascade.

With forcing and dissipation, the system is not conservative anymore, so the total
energy H (asymptotically equal to the quadratic energy E in weak WT) and wave-action
N can now evolve. We expect these quantities to end up converging to a constant, with
fluctuations, as the system converges towards a statistical steady state. The goal is to
compare this steady state with the theoretical predictions given by the SLAM and the
non-local theory.

nk ∝ k
2
5 for energy cascade according to the SLAM (3.58a)

nk ∝ k1 for wave − action cascade according to the non − local analysis (3.58b)

We again highlight that nk ∝ k2/5 corresponds to a local KZ spectrum while nk ∝ k1

corresponds to a non-local spectrum.
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3.6. Results of simulations

3.5.3 Short-Wave Limit and weak Wave Turbulence : choice of
parameters

We need to choose Λ in order to have k2 ≫ k∗2 inside the inertial range for both
Direct and Inverse Cascades. This is the condition to be in the Short-Wave Limit (SWL),
and this hypothesis has been used to derived the theoretical predictions. To this end, we
would like to take k∗ as small as possible, corresponding to small Λ = k∗2. Unfortunately,
we saw with preliminary simulations that having a very small value for Λ slowed down the
cascades until they froze entirely : the cascades do not evolve at all if Λ is too small, all
other parameters fixed. These two effects make the choice of Λ crucial to observe cascades
in the SWL. For the simulations of Direct and Inverse Cascades, we have chosen Λ = 1,
which gives k∗ = 1. With this value, the SWL condition k2 ≫ k∗2 is valid for k ≳ 10.

Summary of the section

• We will perform simulations of the forced and dissipating 1D-SHE, in order
to study cascade of invariants.

• These simulations will be realized with the parameter k∗ = 1 to have the SWL
condition respected in the inertial range.

3.6 Results of simulations

3.6.1 Direct Cascade
To study the Direct Cascade (DC), the forcing is set close to the hypo-viscosity at

low k with kf = 16 and a thin forcing width dkf = 2. The forcing amplitude is chosen to
be fk = 100 and is applied to an initially null function. The dissipation coefficients are
αpow = −4, α = 2×106, νpow = 2, ν = 1×10−46. The Figure 3.4 presents the time series
of total energy H (assumed to be the quadratic energy E) and wave-action N which show
a statistically steady state for t > 150, characterized by large oscillations around mean
values ⟨H⟩s = 2.26 × 1010 and ⟨N ⟩s = 4.96 × 105. This steady state is characterized by a
dissipation of almost of all the wave-action injected, with the injection rate Qf = 8 × 104

being very close to the dissipation rate Q− +Q+ = 7.856×104. Consequently, we consider
the steady state established for t > 150 and we perform the steady state averages for these
times.

Before plotting the wave-action spectrum, we remind that we consider the symmetric
wave-action spectrum, computed as nk(k) = nk + n−k, given that the forcing not does
favour positive or negative k. The wave-action spectrum nk averaged in the steady state
for the DC is presented Figure 3.5. The wave-action spectrum which we plot is the sym-
metric spectrum We need to remark that no clear slope can be observed in the inertial
range, only a general tendency, even if, for almost a decade, the spectrum has a steep
and defined slope. This general tendency is globally well modeled by the KZ prediction
nk ∝ k2/5, which is an argument in favor of the the KZ prediction. However, the KZ
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Figure 3.4: Evolution of total energy H and wave-action N for the Direct Cas-
cade - The steady state is characterized by statistically steady total quantities.

prediction also appears to fit the observed spectrum outside the inertial range, for the
entire k-range k− ≃ 3 ≲ k ≲ kf = 16. This can be more easily observed in the Figure
3.8. This observation has two drawbacks. First, assuming that the part k < 16 of the
spectrum corresponds to cascade of energy implies an inverse cascade of energy, which
is contradictory with the Fjørtoft argument. Besides, in this k−range, the short-wave
condition is less respected than in the inertial range.

100 101 102 103

k

100

101

102

103

n
k

∝ k2/5

Figure 3.5: Wave-action spectrum averaged in the steady state for the Direct
Cascade - The KZ prediction nk ∝ k2/5 is in accordance with the mean slope of the
spectrum in the full k-range, but it does not model the inertial range very well.
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3.6. Results of simulations

This wave-action spectrum is compared to the flux Ps of quadratic energy E. We no-
tice that Ps is averaged to zero in the inertial range for k up to ≃ 200 and oscillates around
a value assumed to be zero for k ≳ 200. During these oscillations, the flux is positive
and negative with a comparable number of iterations. For a direct KZ energy cascade, we
expect the energy flux to be positive and constant over the inertial range. That implies
that the system does not exhibit an energy cascade. However, zooming around the forcing
scale kf = 16, we observe a small bump of Ps (see the inset of Figure 3.5) which could
be interpreted as a positive flux of energy but very locally around the forcing scale, as
it only stands for k = 16 and 17. With this very narrow region, conclusions are hard to
draw but this could correspond to the expected positive and constant value of Ps. The
energy flux averaged to zero could be explained by the energy being mainly dominated
by the interaction Hamiltonian.
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Figure 3.6: Energy flux Ps averaged for the Direct Cascade steady state - The
flux is not constant in the inertial range, contrarily as expected for an energy spectrum.

The (x−t) plot of the reached steady state is given Figure 3.7(a), with tf = 176 a time
when the steady state is already established. First, notice the difference of amplitudes of
|u| between this DC steady state and the previous dynamics of conservative systems. This
difference of two orders of magnitude is explained by the forcing applied to the system.
The whole box is filled up with localized structures, which we call filaments, with differ-
ent speeds. Each filament propagates in almost straight lines. The whole system is filled
up by filaments with negative speed while a few have positive speed. These groups of
filaments will be denoted Incoherent Solitons (IS), as a reference to recent works [98] [99].
Inside this envelope, some filaments propagate with velocities different from the mean
velocity of the envelope, while staying bound together. The solitonic behaviour is mostly
visible on the negative-speed structure which keeps a constant speed and the same enve-
lope size. This division of the main structure (incoherent solitons) in independant smaller
sub-structures (filaments) is the main difference with a proper soliton, as defined in (1.10).
Indeed, the incoherent solitons are called incoherent because their profile in the x-space
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is not exactly constant in time. The mean speed of these filaments is v− ≃ −475. On
top of these filaments, few filaments propagate with positive speeds which mean value is
v+ ≃ 115. The steady state of DC thus shows a clear asymmetry with more filaments
with negative speeds.
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Figure 3.7: (x − t) dynamics (a) and (k − ω) spectrum (b) of the DC simulation of
the steady state - Filaments propagate in the box with a majority with negative speed.
A few filaments propagate with a positive speed and can form an Incoherent Soliton. This
asymmetry is observed in the (k − ω) spectrum which only contains a narrow parabola.

This asymmetry is also clearly visible on the (k − ω) plot Figure 3.7(b) where the
energy is organized as an asymmetric parabola which stands for the linear dispersion
ωk = k2/2 of linear waves. Filtering around k = 0, we find that the k > 0 branch of
the parabola stands for only 10% of the total mean wave-action during the time inter-
val. Notice than the parabola is considerably shifted away from the ω = 0 axis towards
negative values. This large shift is due to the large amplitude of the field. Finally, no-
tice that no straight lines are present in the (k − ω) spectrum, which indicates that nor
solitons nor any coherent structures propagate in the system. Indeed, assuming that the
maximum of |u| is actually a soliton, the corresponding straight line would be found at
ω∗ = (v−

2 − A2
max)/2 ≃ −6.7 × 105. The output period dto = 2 × 10−6 have been cho-

sen to resolve the frequencies up to ωmax = ±1.5 × 106 and no straight lines have been
observed, suggesting the absence of solitons in the system. This absence is important
because solitons are incompatible with the weak Wave Turbulence. Finally, we can re-
mark that the energy is very concentrated around the parabola, which indicates that the
system is weakly non-linear.

The observed asymmetry in k ↔ −k was not expected because the forcing is applied
with the same amplitude for positive and negative k and the only difference is the forc-
ing phase which is random and thus, can be different for positive and negative k. Such
asymmetry has already been observed for the short-wave limit of the 1D-SHE [5] and we
suggest it can be associated with an instability of the 1D-SHE breaking the symmetry.
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3.6. Results of simulations

We assume this asymmetry will be cancelled by considering different realisations of the
same simulation.

As described in [99], the existence of IS is not compatible with a KZ wave-action spec-
trum because it prevents the cascade in the k-space. As there is only one IS in positive
k, we study the asymmetry of the system by plotting in Figure 3.8 the wave-action
spectrum nk for positive and negative k separately. It appears that the spectrum for
positive k decreases in large k for smaller values than the spectrum for negative k. Pre-
cisely, nk(k > 0) starts to diminish at k ≃ 120, which is close to the velocity (and so the
wave-number) of the IS observed in the (x − t) dynamics (v+ ≃ −115). Consequently,
we could suggest that the IS prevents the wave-action from cascading towards k > 120,
which may explain the asymmetry of the system. Nonetheless, we can not explain the
creation of the IS. Notice that the k < 0 spectrum displays a clear power-law, whose
exponent is measured to be 4/5.

Given that nothing in the forcing scheme selects a special direction between k > 0 and
k < 0, we will continue to compare our theoretical predictions to the symmetric spectrum
nk+n−k. However, we need to keep in mind the actual asymmetry observed in the system.
The results of the Inverse Cascade simulation will show that we can still consider nk+n−k.
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Figure 3.8: Wave-action spectrum for positive and negative k for the DC steady
state - We observe the asymmetry in the spectra, which may be explained by the IS in
k > 0 stopping the cascade.

The Figure 3.9 presents the Probability Density Function of the mean real-space
intensity I = |u|2, averaged in the time interval displayed in Figure 3.7(a). This PDF
is fitted by a straight line, characteristic of a gaussian field. This model is very accurate
up to I/⟨I⟩ ≃ 8. Very high amplitude events are more present in the system than in a
gaussian field. This latter deviation from the gaussian statistics shows the intermittency
of the studied field. Such tails have been observed developing from a Gaussian initial
state in 1D-NLSE [100].
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Figure 3.9: PDF of the averaged intensity I/⟨I⟩ averaged in the DC steady state
- For low amplitudes, the gaussian models fits well the data while we observe more large-
amplitude events than expected for a gaussian field.

3.6.2 Inverse Cascade
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Figure 3.10: Evolution of the total energy H for the inverse cascade -The steady
state is characterized by statistically steady total energy and wave-action.

Next, we study the Inverse Cascade (IC) by forcing at large k, leaving space for the
inverse wave-action cascade to develop towards low k, with kf = 100, dk = 2 and a
forcing amplitude fk = 120. The dissipation coefficients are αpow = −4, α = 2 × 107,
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3.6. Results of simulations

νpow = 2, ν = 1 × 10−36. The Figure 3.10 presents the time evolution of H and N . Af-
ter a transitional state, both quantities exhibit oscillatory behaviours. These oscillations
show a statistically steady state with an averaged energy ⟨H⟩s = 3.07 × 1010, with the
average taken from t = 50 to the end of the simulation. We suppose the system to be in a
statistically steady state for t > 50 and all steady-state averages will be done in this time
range. This steady state is characterized by quite large amplitude of oscillations for H.
This steady state is also described by the dissipation rate of wave-action in both low and
large k, respectively Q− and Q+ which is theoretically equal to the wave-action injection
rate Qf . In this IC simulation, the forcing parameters give Qf = 11.52 × 104 and this
wave-action injected is almost dissipated because Q− + Q+ = 9.84 × 104. That indicates
that almost all the wave-action injected is dissipated.

The wave-action spectrum nk averaged in this steady state is presented as the blue
curve in Figure 3.11. The wave-action is injected at kf = 100 and cascades in both
directions in k-space. For inverse cascade, the inertial range is in between the low-k dis-
sipation and the forcing scale, ie k− ≃ 4 ≲ k ≲ kf ≃ 100. Between dissipations, we
can observe that the wave-action spectrum can be modeled with an overall good accu-
racy with a power-law nk = k1. This exponent is the one predicted by the non-local
theory. We recall that the exponent 1 was found in the Short-Wave Limit k2/k∗2 ≫ 1,
with k∗ = 1. In the lowest limit of the inertial range (k ≃ 5), this ratio equal 25, which
may be delicate to be considered larger than 1, but which represents the minimum value
of this ratio in the inertial range. For instance, at k = 90, near the high-k end of the
inertial range, this ratio is 8.1 × 103, which satisfies much better the SWL condition.
Near the hypo-viscosity dissipation, so where the SWL is the less respected, the spec-
trum accumulates until the dissipation is large enough to dissipate it. As for the DC,
the expected power-law model nk ∝ k is of good accuracy even for k > kf , which is out
of the inertial range for the inverse cascade. More precisely, the k−range for this model
to fit the spectrum better is the whole range k− < k < k+. Finally, we can notice that
the KZ prediction nk ∝ k4/5 is not observed, which is consistent as it was shown non-local.

We compare this spectrum with the wave-action flux Qs in lin-log scale in Figure 3.12.
We recall that the spectrum nk ∝ k was derived with the non-local analysis under the
assumption that the flux Qs is independent from k and negative. This constancy requires
a time-average in the steady state. In the inertial range, Qs is constant at Qs ≃ −10−5,
which validates the assumption made for the non-local analysis. In the weak WT theory,
this negative and constant wave-action flux would correspond to an inverse wave-action
cascade, according to the Fjørtoft argument.

To be precise, in the inertial range, the flux is not exactly constant near kf , but ex-
hibits some oscillations. We verified that these oscillations were indeed numerical artefacts
by reducing the window for the time average and observing that these oscillations were
present for smaller k. Even with this slightly oscillating behavior in the inertial range,
the clear discontinuity of the k-averaged flux at kf shows the independence of Qs from k
in the inertial range.

To characterize the reached steady state, in Figure 3.13(a) we plot the spatio-
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Figure 3.11: Wave action spectrum averaged in the steady state for two Inverse
Cascade simulations - The blue curve represents the spectrum for the forcing kf =
100, dk = 2 (light blue rectangle) and the green curve the spectrum for the forcing kf =
812, dk = 150 (light green rectangle). Each spectrum is modelled by a power-law function.
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Figure 3.12: Wave-action flux Qs averaged for the Inverse Cascade steady state
- The flux is constant in the inertial range, confirming the hypothesis made for the non-
local analysis.

temporal dynamics of the system starting at tf = 191.8. The box is crossed by many
filaments organized in a narrow and well-definite IS with a negative speed v− ≃ −250
and a wider one, less easy to delimit, with a positive speed v+ ≃ 500. Note that the
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rest of the space is filled by the similar filament but less concentrated and not organized
into a bigger structure. This dynamics also exhibits an asymmetry as the majority of the
filaments have a positive speed.
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Figure 3.13: (x − t) dynamics (a) and (k − ω) spectrum (b) of the IC simulation
steady state - In this steady state, the IS’s are more recognizable than they were for
the DC but one, the one with a negative speed, is still easier to identify. In the (k − ω)
spectrum, the parabola is wide, showing a quite important non-linearity.

The (k − ω) spectrum |û(k, ω)|2 of this (x − t) plot is presented Figure 3.13(b). The
first observation is the clear asymmetry with respect to k = 0. The spectrum shows more
energy for positive k, which was expected from the bigger number of filaments with a
positive speed in the (x − t) plot. The spectrum organizes around a parabola widened
by "hairy" structures. These hairy structures decorate the parabola differently from the
decorations observed for the interaction between a bound-state and linear waves. The
width of the parabola represents the non-linearity of the waves in the system, the more
non-linear the waves, the wider the dispersion relation. In this Inverse Cascade simula-
tion, the important width of the parabola indicates a non-linearity ratio which can not be
considered negligible to 1. Contrary to the quasi-Soliton Turbulence case (see section2.3),
these non-linearities stacked around the linear waves do not peel off from this parabola
to become real solitons. Finally, we can notice that for k < 0, the branch of the parabola
with less energy, the decorations are more important for small k and below the parabola,
exactly like for the parabola in the DC simulation.
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The asymmetry with respect to k = 0 is here not a problem for the study of the
cascade. Indeed, the clear IS observed with a negative speed v− ≃ −250 is characterized
by the wave-vector k ≃ −250 and, thus, does not lie in the inertial range k ≲ kf = 100.
Consequently, this IS does not prevent the inverse cascade to occur. We have verified
this, by comparing nk, nk(k > 0) and nk(k < 0). We observe that in the inertial range,
the spectra are very close for k > 0 and k < 0. Once again, we do not know why an IS
has grown in the system. We still assume it might be linked with an instability of the
1D-SHE. Repeating this simulation and averaging over the random phases of the forcing
might shed light on this observation. Particularly, it would be interesting to see if the IS
still develop for the same sign of k.

We also characterize the steady state by the Probability Density Function (PDF) of
the intensity I = |u|2 in the physical space, see Figure 3.14. This PDF is averaged in
time during the time window of the (x − t) plot 3.13(a). We compare the obtained plot
to the PDF expected for a Gaussian field. We can notice a slight lack of mean-intensity
events (I ≳ 3.5⟨I⟩) in the system compared to the Gaussian field, as well as a quite bigger
number of large events (I > 8⟨I⟩), as in the DC steady state.
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Figure 3.14: PDF of the wave intensity for the IC - The system contains more
large-amplitude events than expected for the gaussian field.

We found that the IC was very sensitive to the characteristics of the forcing. For
instance, in Figure 3.11 we present another spectrum, obtained with another forcing,
kf = 812, dk = 150 and fk = 5 while keeping the same dissipation coefficients. The spec-
trum displays a power-law behaviour of exponent 12/5, which is different from the KZ
and non-local predictions. The (x − t) dynamics of the steady state is presented Figure
3.15(a) from tf = 375.2 where we can clearly see two IS propagating. Contrary to the
dynamics previously detailed, here, the IS are easily distinguishable from the rest of the
function, see a profile Figure 3.16(a). They have the same modulus of speed, showing
here the symmetry k ↔ −k of the system, of 582 and -555. These speeds are found very
close to the group velocity vg = ∂ωk/∂k ≃ 573 computed for the scale where the wave-
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action spectrum is maximum (see the green curve in Figure 3.11). The symmetry of the
system can also be seen in the (k − ω) spectrum Figure 3.15(b) where both branches of
the parabola are decorated in the same types of hairy structures. Moreover, the slopes of
the decorating straight lines starting from the k = 0 are measured at ≃ 602 and ≃ −588,
close to the speed of the IS. We can thus suggest that these decorations represent the
filaments inside the IS.

In Figure 3.16(b), we present the DST spectrum of the function at t = tf +0.002. The
eigenvalues are organized as two branches around ζRe ≃ ±250, positions which correspond
to speeds near 500. This is assuming that the ratio between velocity and real part is still
close to -2, which has been observed in the study of solitons in the 1D-SHE with β = 10−2

(we recall the value of β = 1 used in these simulations). These speeds are quite close to the
speeds of the IS, so we can suggest that the branches of eigenvalues are the DST signatures
of the IS. However, we need to specify that the ratio between the amplitude of the soliton
and the imaginary part of the corresponding eigenvalue is found at ≃ 1.3 is lower than the
value of 2 given for the 1D-NLSE and even lower than the value ≃ 1.5 found in the previous
chapter. Here, with β = 1, the non-integrability parameter is bigger, which can explain
the worse correspondence of the DST. Each individual eigenvalue slightly moves in time
but the global branch structure stands. This is very similar to the filaments in (x − t)
dynamics having changing speeds while the IS has a constant speed. All these results
indicate that DST might still be a consistent tool to study the forced and dissipating
systems, in the same was as it as been shown interesting to study real systems [90].
However, we need to specify that, compared to the last section, we had to multiply by
four the number of points used in the DST algorithm to have a spectrum independent
of this number of points, showing that this system is more complex to study than the
collisions of solitary waves with β = 10−2.
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Figure 3.15: (x − t) dynamics (a) and (k − ω) spectrum (b) of an IC simulation
steady state displaying large IS - The IS are clearly identified on the (x−t) dynamics
as well as the straight decorations of the parabola for small k.
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Figure 3.16: Function profile (a) and associated DST spectrum (b) - The two IS are
recognizable on the profile of |u| and may be associated with the branches of eigenvalues
with the consistent mean real parts.
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Figure 3.17: PDF of the averaged wave intensity in the IC steady state display-
ing IS - The number of large-amplitude events is considerably larger than for a gaussian
field, due to the IS while we observe a lack of small-to-intermediate amplitude events
compared to a gaussian field.

3.6.3 Impact of the non-integrability over the Incoherent Soli-
tons

To study how the properties of the IS evolve with the non-integrability of the equation,
we set a set of simulations for the forced and dissipating 1D-SHE defined with β to really
identify the role of the non-integrability. We recall the 1D-SHE with β, to which we add
the same dissipative Du and forcing F terms as for the DC and IC simulations.
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i
∂

∂t
u + 1

2
∂2

∂x2 u + u
(

1 − β
∂2

∂x2

)−1
|u|2 + Du = F. (3.59)

The parameters of the set of parameters are, kf = 512, dk = 2 and fk = 20 for the forcing
and αpow = −4, α = 2 × 106, νpow = 8, ν = 5 × 10−51 for the dissipation.

In Figure 3.18, we compare the spatio temporal dynamics of the steady state reached
for different β. The system has been re-centered around x = 0, thanks to periodic bound-
aries, for simplicity. The first observation is the same qualitative behaviour for the four
systems. For all values of β, the systems contains two incoherent solitons with speeds
v± ≃ ±512, corresponding to the forcing scale. This observation has been made for all
the values of β tested and not showed here. In all the cases, the two IS seem to collide
elastically but the short scale of times studied may prevents the observation of inelastic
collisions. In previous observation of IS [98], the ISs created by Modulational Instabil-
ity (MI) from a constant field were found to collide ineslatically to finally create a main IS.

The main different between these dynamics is the width of these IS. When β increases,
the IS are wider and contain more filaments. For instance, for β = 0.05, the IS are very
narrow and contain only a few filaments with very close speeds. With the physical mean-
ing of β, this observation can be interpreted as the IS being more developed in a strongly
non-integrable system.

The steady states are also characterized by their spectral dynamics with the (k − ω)
plots presented Figure 3.19. All these spectra are organized around parabola, repre-
senting for the linear waves, and none of them have obvious straight lines, testifying the
absence of solitons or solitary waves. For the four β presented, the parabola is wide,
representing the non-linearity of the system. However, the nature of this width depends
on β. For β = 0.05, the closest system to integrability, the (k − ω) spectrum consists of
two vertically displaced parabolae decorated by straight lines of slope ± ≃ 512 running
between them. The slopes of these decorating lines corresponding to physical velocities,
these lines may correspond to the filaments inside the ISs which have these velocities. We
can denote that these lines are present from k ≳ 0 to k ≃ 900. Although some of these
straight lines can be seen for β = 0.2, the decorations of the parabola are more complex
for large β, see for example the curved lines for β = 2 which decorate the parabola. These
structures represent the complexity of the wide ISs but the exact signification is still to be
found. We can also observe a clear asymmetry for β = 0.2 in the parabola itself, the value
at k = 0 being different for the positive and negative k parabola. The spatio-temporal
spectrum is qualitatively different for β = 10 as the energy is still concentrated around
the forcing mode kf = 512 and has not cascaded towards k ≃ 0. This observation is
consistent with the slowing-down of the dynamics for small Λ (linked with β as Λ = 1/β)
reported in section 3.5.3.
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Figure 3.18: Comparison of steady state (x − t) dynamics for different β - We
observe that for all β the ISs created have the same speeds, corresponding here to the
forcing scale. However, the widths of the ISs depend on β : the larger β, the wider the
ISs.

We support this observation by plotting the time-averaged k- spectrum ⟨ |ûk(t)|2 ⟩t

for the four values of β Figure 3.20. The averages have been computed over the time
window of the (x−t) plots Figure 3.18. The four spectra are centered around the forcing
scale and are qualitatively similar. They are supported by a finite range of k, larger for
smaller β. Picozzi et al [98] have observed this for the final big IS they found. Precisely,
the spectrum they present in their article is symmetric around k = 0 as the IS has a null
speed. We can precise that this is not possible in our case because the friction dissipation
forces the spectrum to be 0 at k = 0. The spectra supported by larger range of k appear
to correspond to more narrow IS in the real space. Naively, this can be interpreted by
the by the relation ∆x∆k ∼ 1, characteristic of the Fourier Transform.
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Figure 3.19: Comparison of steady states (k − ω) spectra for different β - We
observe that for very small β the parabola is decorated with straight lines of slope equal
to the speed of the ISs. For β = 2, these decorations are not more sophisticated. For
β = 10 the energy is still concentrated around kf .
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Figure 3.20: Comparison of time-averaged k-spectrum for different β - The four
spectra are centered around the forcing scales ±kf and have qualitatively the same shape.
Note that when β increases, the energy does not cascade effectively in the k-space.
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Summary of the section

• The Direct energy Cascade and Inverse wave-action Cascade predictions are
tested against the numerical results.

• In Inverse Cascade, the non-local prediction is of good accordance with the
obtained while or the Direct Cascade there is also an accordance, but less
obvious. In both cases, the predictions show an overall good correspondence
for the whole k-range.

• The inverse cascade simulations sometimes display Incoherent Solitons, an
envelope propagating like a soliton but with smaller structures propagating
inside it.

• For the Direct Cascade simulation, an Incoherent Soliton lies in the inertial
range for k > 0, which creates an asymmetry for the spectrum.

3.7 Conclusion
In this chapter, we studied the turbulent behaviour of the one-dimensional Schrödinger-

Helmholtz Equation in the Short-Wave Limit. We developed a reduced model of the
wave kinetics, the Semi-Local Approximation Model, by assuming that the interacting
wave-vectors are closely paired in Fourier space. Considering the complete Schrödinger-
Helmholtz equation is necessary because the Short-Wave Equation leads to a divergent
Kinetic Equation. With the SLAM, we were able to derive an expression for the wave-
action flux, which allows us to derive Kolmogorov-Zakharov spectra for the cascades of
energy and wave-action. The energy cascade was found to be local while the wave-action
cascade is not. We derived a non-local analysis an obtained a non-local spectrum.

Then, these theoretical predictions were tested against numerical simulations of forced
and dissipative systems. The numerics spectrum for the Direct Cascade does not exhibit
clearly the expected power-law but for the Inverse Cascade, the non-local prediction mod-
els with a good accordance the numerics results. In both cascades we can observe a global
correspond over the full k-range. Finally, Incoherent Solitons have been found under
particular conditions. These structures, already mentioned in the literature, were charac-
terized for our system. We can notice that for the Direct Cascade, the Incoherent Soliton
spectra signature appears inside the inertial range, which creates an asymmetry for the
wave-action spectrum.
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Existence of an attractor for the 1D-SHE

We have established the existence of a statistical attractor of the 1D-SHE. We have
prepared the system with different types of initial conditions (flat-top spectrum, two lo-
calized structures or a single 1D-NLSE soliton) and all these systems were observed to
convergence towards a single structure oscillating in amplitude and in width, propagating
among a sea of weakly non-linear waves. This coherent final state can not exist if the
system is too linear.

This final state, which we call a bound-state, has been precisely characterized with the
DST spectrum (with the DST framework introduced for the 1D-NLSE) displaying two
dominant eigenvalues. These two eigenvalues have correlated evolutions : their imaginary
parts oscillate with the same frequency, and in phase opposition. This evolution is also
correlated with the evolution of the maximum of the function, which we suppose to be the
amplitude of the bound-state. We also computed the (k−ω) spectrum of this bound-state
and we conclude that the bound-state is represented by three parallel lines, with the same
slope. This slope corresponds to the speed of the bound-state.

That these two spectral signatures are consistent with each other, and they capture
the frequency characteristics of the bound-state. This bound-state was found to depend
on the non-integrability parameter, as they do not appear in systems too far away from
integrability. Finally, this study has shown that the DST is a reliable tool for the 1D-SHE
as it qualitatively follows the dynamics well. The work we have presented in this thesis
opens a wide variety of perspectives. We will finish this manuscript by detailing some of
them.

Finally, we have also found a criterion to distinguish between elastic and non-elastic
collisions of localized structures in the 1D-SHE. We suggest that two structures which
collide while they are in phase opposition will undergo an elastic collision which does not
alter their amplitudes nor their speeds. In order for a collision to be non-elastic and merge
the colliding structure into a single one (a bound-state), these in-coming structures must
be in phase at the collision.
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Turbulent cascades in the forced and dissipating 1D-SHE

As the 1D-SHE is not integrable, it can exhibit weak wave turbulence properties
that we studied first theoretically and then numerically. The cascading quantities are the
positive invariants : the wave-action and the quadratic energy. We studied the equation
with its complete form, and in the Short-Wave Limit, because the 1D-SNE, which is the
naively Taylor expanded 1D-SHE, causes the Kinetic Equation to diverge. In this limit,
given the expression of the interaction coefficient, the dynamics of wave interactions is
dominated by situations when the interacting wave-vectors can be paired with almost-
identical values. Using this observation, we reduced the 1D-SHE to a reduced model, the
Semi-Local Approximation Model which takes into account this observation.

An important result obtained from this model is an expression of the wave-action
flux, which makes possible the derivation of the exponents of the Kolmogorov-Zakharov
spectra. It turned out that the KZ spectrum of cascading wave-action is non-local and
we developed a non-local analysis to obtain a new spectrum. The physically realisable
spectra are characterized by exponents xFE = 2/5 for the local cascade of energy and
xFN = 1 for the non-local wave-action cascade. The local energy cascade is direct, as
expected with the Fjørtoft argument.

These theoretical predictions were then tested against numerical simulations. Forcing
and dissipation were added to the 1D-SHE to allow cascade to occur. For both Direct
and Inverse Cascades, the theoretical spectra correspond relatively well to the spectra ob-
tained in the inertial range, particularly for the non-local prediction in the inverse cascade
which is found close to the numerics. We still noticed that the theoretical predictions are
of good accuracy for the whole k-range. Finally, some structures, coherent for large scales
and incoherent for small scales, have been observed in simulations. These structures are
called Incoherent Solitons and developed in coexistence with cascades. Particularly, in
the Direct Cascade Simulation, an Incoherent Soliton stops the cascade towards large
positive wave-numbers. We have studied the properties of these structures alone but the
simulations displaying both cascades and Incoherent Solitons are an example of a system
in which the two aspect of turbulence, strong and week, arise and deserve attention in
future works.

Perspectives

The work presented in this thesis contains results which bring interesting perspec-
tives. We will conclude this manuscript by detailing some of them.

In our study of the propagation of localized structures in the 1D-SHE, we used the
DST framework devised for the the integrable 1D-NLSE without modifying it. This DST
gave interesting results as it was found to be relevant to study our system. To improve
again the precision of this diagnosis, we can consider, in future work, perturbating this
DST to take into account the non-integrability of the 1D-SHE, as it is done in [92] for
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other non-integrable equations. That would allow us to adapt the DST tool to our given
system and may enable more precise results to be obtained. However, we know that the
non-integrable nature itself of the 1D-SHE ensures that we will not be able to find a DST
devised exactly for the 1D-SHE. We can also consider the use of DST to analyze real data
obtained in non-linear optics experiments.

During our work, we identified a bound-state with given initial conditions. We drew
a phase-diagram with the different parameters of the initial flat-top simulation but this
phase diagram can be completed by new studies for different types of initial conditions.
A preliminary result was obtained in the evolutions of an NLSE soliton in 1D-SHE with
different β : the bound-state does not appear if the non-integrability parameter is too
large, with N fixed. Finally, the phase diagram displayed a transitional state for which
the DST spectrum of the bound-state only contains one eigenvalue, and this transitional
state was found to depend on the position of the initial spectrum. We only reported
this observation and further studies around the transition could enlighten the critical be-
haviour.

As reported in the manuscript, the cascades observed in the numerics did not display
an universal power-law and, thus, we have not clearly observed the predictions derived
from the Semi-Local Approximation Model. The latter are still a good model of the spec-
trum for the entire k-range, showing that they are still particular for this system. We
only report here the lack of correspondence in the inertial range but we do not have an
explanation yet for this observation. Particularly, we do not know why the predictions
for an inertial range are also observed outside of this inertial range.

We have discovered that Incoherent Solitons can be created during the Inverse Cascade
simulations. Further considerations and more simulations will be necessary to improve our
understanding the conditions required for these particular structures to grow. In order to
do so, we propose to study quantitatively the link between the non-integrability parame-
ter β and the width of the IS. In our work, we have started this study but further work
can explore more in detail this aspect of the 1D-SHE Particularly, it could be interesting
to derive a Vlasov equation, as done in [98], to model with accuracy their profile in k-space.

Finally, the cascades, expected in a weakly non-linear system, are observed with In-
coherent Solitons, which testify that the non-linearity is not so small. This observation
requires to develop a more complete theory of optical Wave Turbulence, to take into ac-
count both weakly and strongly non-linear waves coexisting in the same systems. For the
Direct Cascade, we observed a cascade in the inertial range for negative wave-vectors and
an Incoherent Soliton for the inertial range for positive wave-vectors. This dual system
requires more attention to understand why the system is so different on each direction
while the forcing is statistically equal in both directions. Repeating this simulation and
keeping all the parameters constant can allow us to average over the random phases of
the forcing and to see whether the Incoherent Soliton will still be observed.
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APPENDIX A

Details of SLAM computations

We present here the details of the computations leading to the final expression (3.35) of
the SLAM integral. We start with equation (3.34)
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and we group together the integrands proportional to ∂kφk
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Then, we perform a change of variable k1 ↔ k in the first term and k2 ↔ k in the
second term in order to write all the integrands proportional to ∂kφk
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Then, we isolate all the ∂2
1

n2
terms
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In every integral for which the integral is proportional to ∂2
1

n2
, we change the integra-

tion variables k1 ↔ k2.
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We highlight properties of V which will be important later
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We now integrate by parts to have integrands from both LHS and RHS proportional
to φk
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And with φk being a random test function, we have

ṅk = 24π
1

Λ 5
2
∂k

∫
dk1dk2

[
n2

2n
2
k Uk1,k2

k ∂1n1 + n2
1n

2
2 V k1,k2

k ∂knk

]
. (A.12)

With the property Uk1,k2
k = 2 k−k2

−k1+k2
V k1,k2

k , ∂nk/∂t becomes

∂nk

∂t
= 24π

1
Λ 5

2
∂k

∫
V k1,k2

k

[
n2

2n
2
k 2 k − k2

−k1 + k2
∂k1n1 + n2

1n
2
2 ∂knk

]
dk1dk2. (A.13)

120



APPENDIX B

Expressions for the SLAM
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V (k1, k2, k) = −π
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2 (k − k1)3(k + k1 − 2k2)3(k − k2)3(k1 − k2)(k − 2k1 + k2)3(−2k + k1 + k2)3

×

[
− (k − k1)3(k + k1 − 2k2)3

(
4k4 − 18k3k1 + 25k2k2

1 − 18kk3
1 + 4k4

1 + 2(k + k1)(k2 + kk1 + k2
1)k2

− (5k2 + 8kk1 + 5k2
1)k2

2 + 6(k + k1)k3
2 − 3k4

2

)
|k − k1|+

(k − k2)3(k + k2 − 2k1)3
(

4k4 − 18k3k2 + 25k2k2
2 − 18kk3

2 + 4k4
2 + 2(k + k2)(k2 + kk2 + k2

2)k2

− (5k1 + 8kk2 + 5k2
2)k2

1 + 6(k + k2)k3
1 − 3k4

1

)
|k − k2|+

(k1 − k2)3(−2k + k1 + k2)3
(

3k4 − 4k4
1 + 18k3

1k2 − 25k2
1k2

2 + 18k1k3
2 − 4k4

2 − 6k3(k1 + k2)

− 2k(k1 + k2)(k2
1 + k1k2 + k2

2) + k2(5k2
1 + 8k1k2 + 5k2

2.

)
|k1 − k2|

]
(B.2)
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APPENDIX C

Computation of I(xFE = 2/5)

To compute I(xFE = 2/5), we apply Zakharov Transforms to the integral I(x), written
again below for convenience.

I(x) = −24πC5x

Λ5/2

∫
V s1,s2

1
s2 − s1

[
(1 − s2)s2x

2 sx−1
1 sgn(s1) + (s1 − 1)s2x

1 sx−1
2 sgn(s2) + (s2 − s1)s2x

1 s2x
2

]
ds1 ds2.

(C.1)
The integrand of I(x) has three terms. We will apply two Zakharov Transforms to the

first and second terms. To the first term, we apply the change of variables s1 = 1
s̃1

and
s2 = s̃2

s̃1
and for the second s1 = s̃1

s̃2
and s2 = 1

s̃2
. We will detail the computations for the

first term and deduce the results for the second term.

With the first ZT s1 = 1
s̃1

and s2 = s̃2
s̃1

, ds1ds2 becomes |J |ds̃1ds̃2 with J = −
(

1
s̃1

)3

the Jacobian of the change of variables. With s̃1 ∈ R, |J | = 1
|s̃1|3 .

With the change of variables, V s1,s2
1 = V (s1, s2, 1) becomes V

(
1
s̃1

, s̃2
s̃1

, 1
)

and with
the property V (λp, λq, λk) = 1

|λ|5 V (p, q, k), it finally becomes |s̃1|5V (1, s̃2, s̃1). We use

another property of V , V (p3, p2, p1) =
(

p3−p2
p2−p1

)2
V (p1, p2, p3), to write V

(
1
s̃1

, s̃2
s̃1

, 1
)

=

|s̃1|5V
(

1, s̃2, s̃1

)
=
(

1−s̃2
s̃1−s̃2

)2
|s̃1|5V (s̃1, s̃2, 1).

I(x) = −24πC5x

Λ5/2

∫
V s1,s2

1
s2 − s1

sgn(s1)(1 − s2)s2x
2 sx−1

1︸ ︷︷ ︸
I1(x)

+sgn(s2)(s1 − 1)s2x
1 sx−1

2 + (s2 − s1)s2x
1 s2x

2

 ds1ds2.

(C.2)
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Chapter C. Computation of I(xFE = 2/5)

I1(x) = −24πC5x

Λ5/2

∫
s̃1|s̃1|2

( 1 − s̃2

s̃1 − s̃2

)2 V s̃1,s̃2
1

s̃2 − 1

sgn(s̃1)
(

1 − s̃2

s̃1

)(
s̃2

s̃1

)2x

s̃1−x
1

ds̃1ds̃2 (C.3)

I1(x) = −24πC5x

Λ5/2

∫
s̃1s̃

−5x+2
1

( 1 − s̃2

s̃1 − s̃2

)2 V s̃1,s̃2
1

s̃2 − 1

(s̃1 − s̃2

)
s̃2x

2 s̃2x
1

ds̃1ds̃2 (C.4)

I1(x) = −24πC5x

Λ5/2

∫
V s̃1,s̃2

1 s̃2x
1 s̃2x

2

s̃−5x+2
1 s̃1

s̃2 − 1
s̃1 − s̃2

ds̃1ds̃2 (C.5)

The second term I2(x) can be obtained the same way by applying the second ZT
(s1 = s̃1

s̃2
and s2 = 1

s̃2
) and is given by

I2(x) = −24πC5x

Λ5/2

∫
V s̃1,s̃2

1 s̃2x
1 s̃2x

2

s̃−5x+2
2 s̃2

1 − s̃1

s̃1 − s̃2

 ds̃1ds̃2 (C.6)

The third term I3(x) is left unchanged and we can now write the sum of these three
terms

I(x) = −24πC5x

Λ5/2

∫
V s̃1,s̃2

1 s̃2x
1 s̃2x

2

 s̃−5x+2
1 s̃1

1 − s̃2

s̃2 − s̃1
+ s̃−5x+2

2 s̃2
1 − s̃1

s̃1 − s̃2
+ 1︸ ︷︷ ︸

S(x)

ds̃1ds̃2.

(C.7)
The function S(x) is found to be 0 for x = 2/5,

S
(

x = 2
5

)
= s̃1

1 − s̃2

s̃2 − s̃1
+ s̃2

1 − s̃1

s̃1 − s̃2
+ 1

= (s̃1 − s̃2)−1
(

− s̃1(1 − s̃2) + s̃2(1 − s̃1) + s̃1 − s̃2
)

= 0,

(C.8)
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APPENDIX D

Convergence of I(x)

To study the integrability of I(x), we need to take into account two cases as it is a double
integral. Indeed, the limits of one variable s1,2 going to 0 or +∞, the other one being
fixed, and the limits of both variables tending simultaneously to 0 or ∞ are independant
and will be tackled separately. We can notice that for the first case we can limit our
computations to s1 → 0, ∞ with s2 fixed thanks to the s1 ↔ s2 symmetry of I(x).

For convenience, we recall the one-dimensional expression of I(x) with KZ ansatz for
the wave-action spectrum

I(x) = −24πC5x

Λ5/2

∫
V s1,s2

1
s2 − s1

[
sgn(s1)(1 − s2)s2x

2 sx−1
1 + sgn(s2)(s1 − 1)s2x

1 sx−1
2 + (s2 − s1)s2x

1 s2x
2

]
ds1ds2.

(D.1)
Before considering the limits, we recall that the integral I(x) is integrable for x = −2

and 0, as it has been checked explicitly as corresponding to the RJ spectrum. These
particular values of x are not mentioned while considering the limits but must not be
forgotten.

D.1 Limit s1 ≪ s2, 1

The integrand of I(x) can be split in two expressions, V
s1,s2

1
s2−s1

(independent of x) and
∆n :=

[
sgn(s1)(1 − s2)s2x

2 sx−1
1 + sgn(s2)(s1 − 1)s2x

1 sx−1
2 + (s2 − s1)s2x

1 s2x
2

]
, which asymp-

totics can be obtained independently.

With Mathematica, we get the asymptote of V s1,s2
1 by expanding it in the s1 ≪ s2, 1

limit in the leading order : V s1,s2
1 ∝ s0

1 and similarly for 1/(s2 − s1) ∝ s0
1. Thus, we

obviously have
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V s1,s2
1

s2 − s1
∝︸︷︷︸

s1≪s2,1

s0
1 (D.2)

In the same limit, ∆n can be simplified

∆n =
[
sgn(s1)(1 − s2)s2x

2 sx−1
1 + (−sgn(s2) sx−1

2 + s2s
2x
2 ) s2x

1

]
. (D.3)

For s1 ≪ s2, 1, the dominating term is the one with the smaller power of s1, so the
s2x

1 -term for x < −1 and the sx−1
1 -term for x > −1, both terms being equivalent for

x = −1. Given that V s1,s2
1 /(s2 − s1) has a constant asymptote, we can conclude with the

Riemann criteria that, in the s1 ≪ s2, 1 limit, I(x) is integrable for x > 0, this condition
being the union of the Riemann conditions for both dominating terms.

D.2 Limit s1 ≫ s2, 1
For the opposite limit s1 → ∞ with s2 fixed, we use the same method and get the
asymptotes V s1,s2

1 ∝ −s−5
1 sgn(s1) and 1/(s2 − s1) ∝ −s−1

1 . Thus, the product behaves like
s−4

1 sgn(s1). The factor ∆n now has the expression,

∆n =
[
sgn(s1)(1 − s2)s2x

2 sx−1
1 + sgn(s1)(sgn(s2)sx−1

2 − s2x
2 ) s2x+1

1

]
(D.4)

where we have used s1 = sgn(s1)s1. In this expression, the dominant terms are the
sx−1

1 -term for x < −2 and the s2x+1
1 -term for x > −2. Taking the asymptotes of the dif-

ferent terms in the integrand, we obtain with the Riemann criteria that, in the s1 ≫ s2, 1
limit, I(x) is convergent for x < 2.

To this point, we have derived that the integral I(x) is convergent in the interval
0 < x < 1 for the limits of only one variable. We now consider the double limits, ie when
both s1 and s2 go simultaneously to 0 and ∞.

D.3 Limit s1, s2 ≪ 1
To study this double limit, we change the variables, from cartesian s1, s2 to polar coordi-
nates r, θ,

s1 = r cos θ, s2 = r sin θ. (D.5)

With this change of variables, the Jacobian J = r of the transformation adds a power of
r. The simultaneous limits s1, s2 ≪ 1 correspond now to r ≪ 1. The term V s1,s2

1 /(s2 −s1)
can be rewritten in terms of r, θ and studied with Mathematica in this limit to obtain its
asymptote

V r cos θ,r sin θ
1

r(sin θ − cos θ) ∝ r1 (D.6)
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D.4. Limit s1, s2 ≫ 1

The ∆n term can also be written for r, θ

∆n = {(1 − r sin θ) cos θ | cos θ|x−2| sin θ|2x + (1 − r cos θ) sin θ | sin θ|x−2| cos θ|2x}r3x−1

+ (sin θ − cos θ)| cos θ sin θ|2xr4x+1

(D.7)

for which we have used sgn(cos θ) = cos θ| cos θ|−1. In the limit r ≪ 1, we can simplify
∆n to get

∆n = {cos θ | cos θ|x−2| sin θ|2x+sin θ | sin θ|x−2| cos θ|2x}r3x−1+(sin θ−cos θ) | cos θ sin θ|2xr4x+1 ,
(D.8)

for which the dominant term is the r4x+1-term for x < −2 and the r3x−1 for x > −2.
Taking into account the two terms in the integral and the J = r jacobian, the integral is
convergent, in the s1, s2 ≪ 1 limit, if x > −2/3.

D.4 Limit s1, s2 ≫ 1
This limit corresponds to r ≫ 1 and to the following asymptote

V r cos θ,r sin θ
1

r(sin θ − cos θ) ∝ r−6 (D.9)

Similarly, ∆n writes

∆n = {sin θ cos θ | cos θ|x−2| sin θ|2x − cos θ sin θ | sin θ|x−2| cos θ|2x}r3x

+ (sin θ − cos θ)| cos θ sin θ|2xr4x+1.

(D.10)

with r3x-term dominant for x < −1 and r4x+1-term for x > −1. Putting all these
asymptotes with the r jacobian, we obtain that I(x) is convergent for x < 3/4 in the
s1, s2 ≫ 1 limit.

Grouping the results for the four limits indicates that the integral I(x) is only conver-
gent for 0 ⩽ x < 3/4 or x = −2 .
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APPENDIX E

Non-local analysis

We start from equation (3.50) in the limit k1 ≫ k and k2 ≫ k which implies V k1,k2
k =

V k1,k2
0

Qs(k) = −24π
sgn k
Λ 5

2

∫
k≪k1,2

V k1,k2
0

[
2n2

k2n2
k

−k2

−k1 + k2

∂n1

∂k1
+ n2

k1n2
k2

∂nk

∂k

]
dk1dk2. (E.1)

We can take n2
k and ∂knk out of the integral(s)

Qs(k) = −24π
sgn k
Λ 5

2
2n2

k

∫
V k1,k2

0 n2
k2

−k2

−k1 + k2

∂n1

∂k1
dk1dk2

− 4π
1

Λ 5
2

∂nk

∂k

∫
V k1,k2

0 n2
k1n2

k2dk1dk2,

(E.2)

for shortness we omit the index k ≪ k1,2 but the presented integrals are indeed com-
puted in this limit. We now denote B = 2

∫
dk1dk2 V k1,k2

0 n2
k2

k2
−k1+k2

∂k1n1, the integral in
the first term in the RHS. Notice that this integral does not depend on k. This integral
for k1, k2 ∈ R2 will be split in four integrals for the four quadrants of the (k1, k2) plane :

1
2B =

∫
V k1,k2

0 n2
2

k2

−k1 + k2
∂k1n1dk1dk2

1
2B =

∫
k1>0
k2>0

V k1,k2
0 n2

2
k2

−k1 + k2
∂k1n1dk1dk2 +

∫
k1<0
k2>0

V k1,k2
0 n2

2
k2

−k1 + k2
∂k1n1dk1dk2

+
∫

k1>0
k2<0

V k1,k2
0 n2

2
k2

−k1 + k2
∂k1n1dk1dk2 +

∫
k1<0
k2<0

V k1,k2
0 n2

2
k2

−k1 + k2
∂k1n1dk1dk2

(E.3)

We then perform change of variables, respectively k1 → −k1 in the second integral,
k2 → −k2 in the third and both in the fourth, to have all the integrals defined on the
positive quadrant (k1 > 0, k2 > 0)

128



1
2B =

∫
k1>0
k2>0

V k1,k2
0 n2

2
k2

−k1 + k2
∂k1n1dk1dk2 −

∫
k1>0
k2>0

V −k1,k2
0 n2

2
k2

+k1 + k2
∂k1n1dk1dk2

−
∫

k1>0
k2>0

V k1,−k2
0 n2

2
k2

−k1 − k2
∂k1n1dk1dk2 +

∫
k1>0
k2>0

V −k1,−k2
0 n2

2
k2

+k1 − k2
∂k1n1dk1dk2

(E.4)

1
2B =

∫∫
k1>0
k2>0

n2
2 ∂k1n1

[
k2

−k1 + k2

(
V k1,k2

0 − V −k1,−k2
0

)
+ k2

k1 + k2

(
V k1,−k2

0 − V −k1,k2
0

)]
dk1dk2

(E.5)

With the properties of V k1,k2
0 , we obtain B = 0.

The equation (E.2) thus becomes

Qs(k) = −24π
1

Λ 5
2

∂nk

∂k

∫
k≪k1,2

V k1,k2
0 n2

k1n2
k2dk1dk2. (E.6)
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