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Résumé : Le noyau atomique, systéme quan-
tique de nucléons en interaction, constitue
un probleme difficle a résoudre exactement.
Pour contourner cette difficulté, des méthodes
de résolution approchées on été introduites,
comme la Projected Generator Coordinate Me-
thod (PGCM). La force de la PGCM est de
construire un espace de faible dimension, mo-
tivé par des considérations physiques, dans
lequel trouver un solution approchée est fa-
cile. Cependant, le colt numérique du calcul
d'un espace PGCM rend cette méthode mal
adaptée pour une étude statistique de sensi-
bilité des observables nucléaires vis-a-vis des
parametres du modele d'interaction, laquelle
nécessite un grand nombre de calculs PGCM.
Afin de rendre ce type d'études possibles, cette
these explore la notion d'émulateur PGCM.
Dans ce travail, une combinaison de PGCM
avec la méthode Eigenvector Continuation (EC)
est construite et étudiée. Cette combinaison
("émulateur PGCM-EC) tire parti des ressem-
blances formelles entre PGCM et EC, et sur-

tout de la possibilité de décomposer I'hamil-
tonien comme combinaison linéaire de termes
indépendants des parametres du modele d'in-
teraction. Cette derniére propriété permet de
concentrer la plus grande partie du cot numé-
rique sur le calcul de quantités indépendantes
des parameétres de l'interaction (les kernels élé-
mentaires), et ainsi rend possible I'émulation
massive de calculs PGCM, au prix d'avoir en
amont effectué le calcul tres lourd des kernels
élémentaires. Les limites de cet émulateur sont
aussi étudiées, en introduisant notamment la
notion de sur-entrainement, qui provient preé-
cisément du fait que la PGCM est une méthode
non-exacte de résolution du probléme a N-
corps nucléaire. Cette thése démontre au final
gu'il est possible d’émuler des millions de cal-
culs PGCM avec une erreur ne dépassant pas
3% sur la spectroscopie collective des noyaux,
et avec un faible coGt numérique représentant
une fraction de 1% du co(t des millions de cal-
culs PGCM.
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Abstract : An atomic nucleus is a quantum sys-
tem of interacting nucleons and constitutes a
problem difficult to solve exactly. For this rea-
son, a diversity of approximate resolution me-
thods has been designed, and Projected Ge-
nerator Coordinate Method (PGCM) is one of
them. The strong point of PGCM is to construct
a physically inspired small dimensional space,
in which an approximate solution of the nuclear
many-body problem is easily found. However
the numerical cost of PGCM space computa-
tion make this method inadapted for sensibility
analysis of nuclear observables with restect to
parametrisation of the interaction model, this
analysis requiring an huge number of PGCM
computations. In order to make this type of
study possible, this thesis explore the concept
of PGCM emulator. In this work, a combination
of PGCM with Eigenvector Continuation (EC) is
constructed and studied. This combination (the

PGCM-EC emulator) takes advantage of mathe-
matical similarities between PGCM and EC, and
above all of the decomposition of the hamil-
tonian as a linear combination of parameter-
independent terms. The latter property is used
to concentrate the heavier numerical costin the
computation of parameter-independent quan-
tities (the elementary kernels), and open the
feasability of massive PGCM emulations, the
price being having first-handedly computed
the costly elementary kernels. Limits of the
emulator are also explored, by introducing
the concept of over-training, which is exactly
a consequence of the aproximativeness of a
PGCM computation. Eventually this thesis de-
monstrates the possibility to emulate millions
of PGCM computations with an error on col-
lective spectroscopy less than 3%, and with a
low numerical cost fraction of 1% of the million
PGCM calculations cost.







Synthése

Le domaine de la structure nucléaire théorique s’occupe de modéliser les noyaux atomiques de facon a
pouvoir calculer leurs propriétés mesurables. Le cadre théorique général pour une telle étude est la mé-
canique quantique a plusieurs corps (approche dites de seconde quantification). Afin d’avoir une description
cohérente et prédictive des noyaux, 'approche dite ab-initio vise a décrire de fagon unifiée et systématique-
ment améliorable les noyaux atomiques. Dans cette approche, I'interaction repose actuellement sur un
modéle du type Théorie Effective des Champs Chirale (Chiral EFT) reposant sur la Chromodynamique
Quantique (QCD). Linteraction forte au sein des noyau régie par la QCD dont les degré de liberté fonda-
mentaux sont les quarks et les gluons est remplacée par une théorie effective (valable aux échelles d’énergies
de la physique nucléaire) avec comme degrés de liberté effectifs les nucléons et les pions. L'interaction entre
nucléons est ancrée dans la QCD par une expansion chirale de l'interaction, et les différents termes de
cette expansion sont ordonné via le Weinberg power counting. Cela rend possible une résolution ordre
par ordre de I’équation de Schrodinger, le but étant de résoudre cette équation avec la meilleure précision
possible et en controlant I'erreur sur la solution approchée. Lapproche ab-initio privilégie les méthode dite
de corrélation-expansion afin de résoudre I’équation de Schrodinger. Ces méthodes sont basées sur une
partition de ’hamiltonien en une partie non-perturbée et une partie résiduelle; a la partie non-perturbée
correspond une équation aux valeurs propres ’facile a résoudre’ donnant les états dit non-perturbés. En-
fin, la solution compléte est exprimée en terme d’un ’wave operator’ agissant sur I’état non-perturbé. Cet
opérateur pouvant étre traité non-perturbativement ou perturbativement. Dans cette thése on utilise la
Méthode de la Coordonnée Génératrice Projetée (PGCM) qui peut étre vue comme l'ordre non perturbé de
la PGCM-PT qui est une méthode de corrélation expansion basée sur un traitement perturbatif du wave
operator. Lapproche PGCM ab-initio 4 prouvé sa capacité a reproduire la spectroscopie collective (rotation
et vibration) de basse énergie, et bien qu’étant non convergée pour les énergies de liaison, ’addition des
perturbations via PGCM-PT restaure les corrélations manquantes sur les énergies de liaison. Parmis les di-
verses sources d’erreur provenant de I'approche ab-initio, celle qui nous occupe dans cette thése est 'erreur
provenant des paramétres de l'interaction, et les question motivant la thése sont les suivantes: Quelles
observables déterminent le plus les paramétres de l'interaction ? Et : comment propager les erreur du
fit jusqu'au observables ? Les outils standard pour répondre a ces questions proviennent des domaines
des analyses de sensibilité et des propagations d’erreurs. Cependant de telles techniques sont a I’heure
actuelle inutilisable dans le cadre de la PGCM, cela provient du cott numérique trop élevé d’un calcul
PGCM. Une idée pour contourner la difficulté est d’utiliser un émulateur, le but de cette thése est de con-
struire un tel émulateur et d’en étudier le performances et limites. D’un point de vue général, le but d’'un
émulateur est de reproduire un calcul cible appelé le simulateur (dans le contexte de cette thése le simu-
lateur est la PGCM). Lintérét de 'émulateur est de reproduire fidélement le simulateur tout en ayant un
cotlt numérique négligeable relativement au simulateur. Ainsi, ’analyse de sensibilité devient possible au
niveau de I’émulateur. Dans cette thése ’émulateur choisi repose sur la méthode "Eigenvector Continuation’
(EC), qui est précisément un moyen général d’émuler les propriétés spectrales (vecteurs propres et valeurs
propres) d’un hamiltonien ayant une dépendance paramétrique. Cette technique a prouvé son efficacité
dans une multitude de problémes de physique (nucléaire) comme par exemple les transitions de phase, et
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la diffusion. Dans cette thése je décrit 'algorithme permettant ’émulation de la PGCM avec la méthode
EC. DLalgorithme tire parti d’une hypothése sur la structure de linteraction, qui est supposée admettre
un décomposition en une somme d’opérateurs indépendant des paramétre multipliés par une fonction des
paramétres. Cette hypothése implique une grande réduction de complexité, dont la plus grande part est
transférée au calcul de quantitées indépendantes des parameétres (les kernels hors diagonaux généralisé).
Démulateur ainsi obtenu est testé sur un modéle simplifié (brisure de la seule symétrie de rotation, pas
de projection, interaction de Brink-Boecker, ...) et appliqué a un noyau de Neon 20. Ce modéle d’étude
démontre que I’émulateur PGCM-EC donne une reproduction satisfaisante des observables suivantes : én-
ergies absolues (0.1% d’erreur), énergies d’excitation (5 % d’erreur), et rayon chargé (0.2% d’erreur). Je décrit
en détail les limites de cet émulteur, notamment les sur (sous) entrainement provenant de la spécifité de
le ’émulateur (de nature variationelle). Ces notions sont étudiée avec soin et caractérisée géométrique-
ment par la définition d’une distance entre sous-espaces vectoriels, qui permet de quantifier la qualitée de
I’émulation de 'espace PGCM cible par I’espace d’entrainement. On met en évidence une corrélation entre
cette distance entre espaces et la performance de 'émulateur. Pour des études futures, il serait intéressant
de construire une version modifiée de ’émulateur ne souffrant pas du sur entrainement. Méme sans cette
version modifiée, ’emulateur actuel peut modulo des modifications mineures permettre des études de spec-
troscopie PGCM a grande échelle pour des interaction ab-initio et EDF tout en propageant les incertitudes
sur les paramétres d’interaction.
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Introduction

Nuclear theory is the field of physics devoted to the theoretical study of atomic nuclei and their measur-
able properties. As of today, such theoretical description is still an open challenge. The most promising route
for a unified theory at low energy relies on effective (field) theories (EFT) where N point-like neutrons and Z
point-like protons interact via models of two-nucleon interactions, three-nucleon interactions. .. rooted into
the underlying gauge theory of the strong force, i.e. quantum chromodynamics (QCD). In this context, the
complexity of ab initio calculations arises from

1. the systematic construction of inter-nucleon interaction models;
2. the presence of many-body interaction terms due to neglecting nucleons’ internal structure;
3. the non-perturbative character of inter-nucleon interactions;

4. the exponential growth of the A-body Hilbert space’s dimension making (quasi-)exact solutions of
A-body Schroedinger’s equation only available up to A =3 (16).

Despite this complexity, ab initio nuclear theory has made spectacular progress over the last 15 years to
address the above challenges. First, novel generations of inter-nucleon interactions rooted into QCD were
built within the frame of chiral effective field theory (x-EFT). Such nuclear interactions are typically made
more amenable to an efficient solving of the A-body Schrodinger equation via a similarity renormalisation
group (SRG) transformation [l]. Second, several so-called expansion techniques [2], i.e. self-Consistent
Greens’ functions (SCGF) theory [3, 4, 5, 6], coupled cluster theory (CC) [7, 8, 9, 10, 11, 12], many-body
perturbation theory (MBPT) [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], the in-medium similarity renormalization
group (IMSRG) [23, 24, 25, 26, 27, 28, 29, 30] have been designed and implemented to solve the A-body
problem at polynomial cost with system’s size. Because these methods operate via an expansion of the
exact solution to be truncated, many-body uncertainties can be assessed systematically by going through
successive truncation orders. While the zero-order term of most of the above methods corresponds to
a single Slater determinant or Bogoliubov state, an advanced perturbation theory based on a projected
generator coordinate method unperturbed state (PGCM-PT) [21, 31, 32] has been designed recently in order
to already capture strong static correlations via the unperturbed state while satisfying symmetries.

The projected generator coordinate method (PGCM) [33] is a versatile method to study low-lying col-
lective rotational and and vibrational excitations based on phenomenological energy density functionals
(EDFs) [34, 35, 36]". Recently, the PGCM has been shown to be well suited to study neutrino-less double
beta decay [42, 43]* and giant resonances [44, 45, 46]. The PGCM explicitly accounts for so-called strong
(i.e. static) correlations via the mixing of symmetry-breaking Slater determinants or Bogoliubov vacua along
with the subsequent restoration of the broken symmetries through the application of a (set of) projection
operator(s). In spite of constituting only the zero-order contribution to PGCM-PT [47], excitation energies

IThe PGCM is also employed as a low-cost alternative to shell-model diagonalization in valence-space calculations [37, 38, 39,
40, 41].
2These calculations combine PGCM and IMSRG approaches.
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16 Introduction

of low-lying collective states were shown to be already well converged at zero-order i.e. at the PGCM
level, due the fine-tuned cancellation of dynamical correlations is such energy differences [48]. As such, the
PGCM can be used to good approximation as a standalone method to investigate collective excitations in
nuclei [49, 44, 45, 46].

Ab initio calculations based on many-body expansion methods come with several uncertainty sources

1. Bases representation
(a) One-body, two-body and three-body basis truncations
2. Hamiltonian modelling

(a) Chiral EFT truncation order
(b) Truncated SRG transformation

(c) Low energy constants (LECs) determination
3. Many-body solution

(a) Nature of the, e.g. PGCM, unperturbed state
(b) Truncated, e.g. PGCM-PT, expansion

In present days, it is considered crucial to accompany theoretical predictions with uncertainty quantification.
Many efforts are currently being made to address the above uncertainty sources. In this context, the
present work focuses on a single source associated with the determination of the LECs parameterizing the
Hamiltonian (2(c)) via a fit on a set of experimental data. The goal is typically to either perform a sensitivity
analysis with respect to the LECs of many-body observables computed via the PGCM or to propagate the
statistical uncertainties associated with the fitted LECs to the same many-body observables.

Performing such a statistical analysis typically requires to run a very large number of PGCM simulations
associated with many realization of the parameter values, a cost that grows exponentially with model
complexity, i.e. the number of parameters entering the interaction. While a single PGCM calculation is
inexpensive compared to the PGCM-PT corrections computed on top to deliver a high-accuracy solution
to Schroedinger’s equation, it can still typically correspond to a costly simulation that cannot easily be
repeated a million times. To circumvent this difficulty, one can bypass the heavy simulations by designing
an accurate enough emulator at a small fraction of the simulator cost. The emulator is typically constructed
by training it over a small number of heavy simulations. Eventually, one can emulate thousands or millions
of simulations at a negligible cost.

In this context, the present thesis focuses on the construction of a PGCM emulator based on the so-
called eigenvector continuation (EC) method [50, 51]. The EC belongs to the larger class of reduced basis
methods (RBM) [52] and has already been applied successfully to many different nuclear structure and
reaction problems over the past few years [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. While the PGCM
formalism is ideally suited to applying EC to it, the very reason of its success, i.e. the use of a physically-
motivated low-dimensional subspace of the full Hilbert space, is rather in tension with EC. The goal of the
present work is thus to quantify the performances and limits of the PGCM-EC emulator as well as to further
understand the origins of these limits. Doing so, this thesis paves the way for future sensitivity analysis
of/uncertainty propagation to collective nuclear excitations within the PGCM and for a further extension to
emulate even more costly PGCM-PT simulations.

The manuscript is organized as follows. Chapter 1 lays down the PGCM formalism and the notations
in use, with an emphasis on the interaction parameter dependencies that need to be made explicit in view
of formulating the PGCM-EC in chapter 2. This chapter details the algorithm employed to implement
the PGCM-EC emulator and discusses the possible over-training of the emulator. In view of applying the
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PGCM-EC on the basis of Brink-Boeker interaction, complete formulas for the matrix elements and one-
body mean-fields of the Gogny effective interaction are provided in Chap. 3 and in associated appendices.
In Chap. 4, the specific numerical setting of the study is specified whereas the associated results are gathered
in Chap. 5 where the performance of the PGCM-EC emulator is characterized. In Chap. 6, the notion of
distance between two subspaces of the Hilbert space is introduced and numerically studied in order to
understand the observed lower bound on the error attained by the PGCM-EC emulator in Chap. 5. In
the next chapter, i.e. Chap. 7, this distance is used to characterized the fact that the PGCM-EC emulator
experiences three different regimes as a function of the number of training points: an under-training regime,
an optimal-training regime and an over-training regime. Conclusions of the present work are eventually
provided in Chap. 8.
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Chapter 1

Projected Generator Coordinate Method

Contents
11 Nuclear hamiltonian . . . . . . .. . .. ... 20
12 PGCMstate . . . . . . . e e e e e e e e e e e e e 21
1.3 Hill-Wheeler-Griffin equation . . . ... .. ... .. ..... ... . ... . ... 21
1.4 Constrained Hartree-Fock-Bogoliubov states . . . . . ... .. ... ........... 22
141  Bogoliubov state . . .. . .. .. ... e 22
1.4.2  Hartree-Fock-Bogoliubov equations . . . . .. ... ... .. ... ... ... ... . 22
1.5 Off-diagonal reduced Hamiltonian overlap . . . . . . ... ... ... ... ...... 23
151  Off-diagonal one-body density matrices . . .. . ... ... ... ... ... ... . 23
1.56.2  Off-diagonal Wick theorem . . . ... ... ... ... ... ... .. . .. 24
1.5.3  Off-diagonal one-body fields . . . . . . ... ... ... .. L o . 25
1.6 PGCMssubspace . . . . .. .. ... ittt ittt 25
1.7 Orthonormal basis and effective dimension . . . ... ... ... ............ 26
1.8 Solving the Hill-Wheeler-Griffin equation . . .. ... .. ... ............. 26

In this chapter, the projected generator coordinate method (PGCM) formalism is introduced. A PGCM
state represents the zero-order contribution to a perturbative series built on top of it coined as PGCM-
PT [47] that formally delivers exact solutions of the nuclear many-body problem. By truncating this series,
systematically improvable solutions of A-body Schrodinger’s equation can be obtained that are particularly
suited to access collective nuclear excitations. It happens that excitation energies of low-lying collective
states are already well converged at zero-order i.e. at the PGCM level, due to the fine-tuned cancellation of
dynamical correlations in such energy differences [48]. In this context, the thesis explores the possibility to
accurately emulate PGCM simulations that are quantitatively relevant to the description of rotational and
vibrational excitations [49, 44, 45, 46], leaving the possible emulation of PGCM-PT simulations to a future
investigation.
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11 Nuclear hamiltonian

Considering an arbitrary orthonormal basis {aa, a;} of the one-body Hilbert space H;', the nuclear Hami-
tonian reads as

H =T+ Vv +w?

_ 1 +
= W Ztaﬁaaaa
oF

1 At
7oapys

T t 1t t
EE Z Wapyserfalplydcets, (12)
7 apydeC

where T denotes the kinetic energy operator. Matrix elements 172 By (wj By <) of the two-nucleon (three-
nucleon) interaction are antisymmetric with respect to their first two (three) and last two (three) indices. In
Eq. (L.2), the dependence of the Hamiltonian (i.e. interactions) on the set of parameters

A= (AL A% A ) eRY (1.3)

has been made explicit given the key role this dependence plays in the present work. As a matter of fact,
the dependence on the interaction parameters is explicitly propagated to all algebraic formulas appearing
in the present manuscript.

The main objective of nuclear many-body theory is to access the eigenstates and eigenenergies of H*
HAWI (1)) = ES(A)WI (L)) (14)

where p denotes a principal quantum number while 0 = (JMIINZ) = (6 M) collects the set of symmetry
quantum numbers labelling the many-body states: | and M denote the total angular momentum and its
projection in the laboratory frame, respectively, while IT refers to the parity and N(Z) to the neutron
(proton) number. The M-independence of the eigenenergies Eg(/\) and the symmetry quantum numbers

labeling the states relate to the symmetry group of the Hamiltonian®

Gy = [R(6),0 € Dg), (L5)

of volume v, where denotes R(6) a unitary representation of the symmetry transformations on Fock space
F parameterized by the angle 6. The subscript ¢ introduced above labels the irreducible representations
(IRREPs) of Gy carrying dimension ds and spanned by a set of states distinguished by the quantum number
1<M<d;.

Iy practice, one works with the finite-dimensional subspace 7; of H; of dimension dim H; = pdim = n‘lﬁm such that the
resulting A-body Hilbert space has dimension
. dim pdim
dimHy =n) :( A ) (L1
Eventually, the truncated Fock space has dimension dim F = ™,
2The symmetry group Gy is independent of A.
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1.2 PGCM state

Given a set of non-orthogonal Bogoliubov states B;\Zq = {|®*(q));q € S} differing by the value of the (possibly
multidimensional) collective coordinate g € {ql,qz, e ,qnq} = S, the PGCM state is written as [33]

05 =) £7M @Bl @), (16)

qes

where f9%(q) are unknown mixing coefficients to be determined. In Eq. (1.6), the operator P]gm collects
the projection operators onto good symmetry quantum numbers, i.e. angular momentum and its third
projection, neutron and proton numbers as well as parity®

PSo= 2 . d6 DY, (0)R(0) (17)

where DX;IO(G) denotes the irreducible representations of Gy. The notation O effectively captures all the

rotation angles (Q2, ¢, ¢y, Pr) characterizing the symmetry transformations in Gp. See App. A for more

details regarding the symmetry group, the associated quantum numbers and the symmetry projector.
Introducing the rotated state as

[@4(4;6)) = R(O)IP*(9)) (L8)

which is itself a Bogoliubov state by virtue of Thouless theorem [64], the PGCM state eventually reads as
CHOE Zf ZDXJO (0)10*(g0)), (1L9)
where the integral over 0 has been appropriately discretized.

1.3 Hill-Wheeler-Griffin equation

The unknown coefficients f£°*(q) appearing in Eq. (1.9) are determined via the application of Ritz’ varia-

tional principle
5 (©JYHYOes)
SfiMaq) (©IMOgh)
that eventually leads to solving Hill-Wheeler-Griffin’s (HWG) equation (see App. B)

=0, (L10)

) _[@ @IE PRG0N (') - ESH @M @RI @) £ e =0 (L1
—

which also delivers the PGCM energy ES*. In order to solve the HWG equation, the projected norm and
Hamiltonian kernels

Ng = (@M (q)IPIPN(q)) (L12)
H;,; = (D (q)IH" Pyl (q")) (113)

3The present work is concerned with deformed Bogoliubov states remaining invariant under spatial rotation around a given
symmetry axis. Extending the formulation to the case where |CD’\(q)> does not display such a symmetry poses no formal difficulty
but requires a more general projection operator P7; see App. A for details.
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must be evaluated. Expanding the projection operator, these kernels read as

NG} = ZD (ONDN ()| (q50)) , (L14a)
- d2 .
Hij =25} DE(OX® qIH" 9 (g’0) (114b)
G 0

where the building blocks appear to be the off-diagonal norm overlap and the off-diagonal reduced Hamiltonian
overlap, respectively defined as

NYg,q';0) = (@} (q)l@*(q;0)) , (L15a)
(D) HMDA(q';0))

ht 0 . 15b

@450 = =03 oia;0) (1155)

14 Constrained Hartree-Fock-Bogoliubov states

141 Bogoliubov state

A Bogoliubov state [®*(g)) is defined as the vacuum
Br(q; 1)@ (g) =0 Yk, (L16)

of a set of quasi-particle operators {87(g; 1), B(g; A)} connected to the set of particle operators {a',a} via a
unitary Bogoliubov transformation [33]

( /fi(q,;j))) :W“w)( ;), (117)
with N N
WA(q) = (%Z; EAE‘;;) (118)

The unitary character of the Bogoliubov transformation implies that canonical anti-commutation rules valid
for particle operators extend to quasi-particle ones

(Bi(a: M), Bl (g: 1)) =0, (L19a)
{Br(q;A), Bi(a; M)} = 0, (L19b)
{Bi(a; 1), Bl (@ M)} = 64 (L19¢)

1.4.2 Hartree-Fock-Bogoliubov equations

Given a set of constraining operators Q, the states belonging to the set B%q = {|®*(q));q € S} are obtained
by solving 1, times constrained Hartree-Fock-Bogoliubov (HFB) equations

(q) A*(q))(U*(q))_ (U*(q))
) g\ Vi) = H D vag) (-20)

obtained by applying Ritz’ variational under constraints within the manifold of Bogoliubov states.
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In Eq. (1.20), the one-body HFB fields

IR (q)
W (g) = , 1.21a
e dp*A(q) (1212
IR (q)
A(q) = , 1.21b
0= Feriy (1:21b)
are obtained from the Routhian
R (g) = (@} (@)IH" = A4 (A=~ A) - A(9)(Q~q) |9 (9)) , (122)
where the diagonal one-body density matrices of the Bogoliubov state |®*(q)) are given by
or (@ (@lakagl 0 (g)
Pab = (@U@ ()
=V (qvH(q), (1.23a)
qq0 _ <®A(Q)|aﬁaa|®/‘(q)>
Kap = (DA
(@(q)|D(q))
= V(Ui (g). (1.23b)

In Eq. (1.22), the Lagrange multipliers A4 and A, are chosen to ensure that the average particle number and
the generator coordinate satisfy

(DY (@)AlD M g)) = A , (1.24a)
(@M g)Qld g)) =g , (1.24b)

while solving Eq. (1.20).

1.5 Off-diagonal reduced Hamiltonian overlap

Knowing that the states entering Bﬁq = {|®*(q));q € S} are Bogoliubov states, N*(g,4’;0) and h*(q,q’;0)
can be evaluated exactly, i.e. while the former can be computed as a Pfaffian [65] or via an integral
approach [66], the latter can be obtained via the off-diagonal Wick theorem [67, 68] as is now briefly
recalled.

1.5.1 Off-diagonal one-body density matrices

Given the two Bogoliubov states | (g)) and [®*(g’;6)), there are four one-body off-diagonal elementary
contractions generalizing the diagonal ones introduced in Eq. (1.23) according to

(@*(g)lafaa|P}q50)) (@ (g)laga, P (q'50))
A ’.0) = (@4 (q)|D*(q7;0)) (D (q)|DA(g7;0))
R9.q30) = (@} (q)lagalld(q50)) (D (g)lagal|®?(q':0))
(DA (q)|D*(q;0)) (DA (q)|P(q;0))
(1.25)
99’02 99’0
_ [ +Pap +Kap
- __qq'e/\* _O_qq’e/\* .

Kap ap
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The diagonal case is recovered from Eq. (1.25) for (¢;0) = (¢; 0) according to

qq0A qq0A
+p +K
RM(p,q;0) = [ e tfq%u]
Kap  Oap
E([VA*W)V”(q)]aﬁ V(@)U (9)]agp

[UM@VAT (@]ap [UM@UM (9)]ap)

(1.26)

The four off-diagonal one-body density matrices can eventually be expressed in terms of the diagonal ones
according to [67, 33, 68]

Pl = p1 L (UM @)2Mq,050)V M (9)]ag (127a)
kM0 = kM UM )2 (9,050 UM (@)]ag (1.27b)
ROV = IV [VA(9)2 (0,450 VAT (@)]ag (L27¢)
ol = o1~ [V (9)2 (g, 4500 UM (9)]ag (1.27d)

where the skew-symmetric Thouless matrix
2(q,9';60) = A*(q,4’;6)B" 1 (q,4;6), (1.28)

is expressed in terms of the two matrices making up the Bogoliubov transformation connecting the two sets
of quasi-particle operators associated with [®*(g)) and |®*(q;0))

AMaq,q’;0) = VI (@r(0)UMNg) + UM (@r(0)V ), (1.29a)

BY(q,9’;0) = UM (q)r(0)UNq) + VT (@)r(0)V (q), (1.29b)

where 7(0) is the matrix representation of the operator R(6) on the one-body Hilbert space H;.

1.5.2 Off-diagonal Wick theorem

Assuming that (®*(g)|®*(q;0)) = 0, the off-diagonal reduced Hamiltonian overlap can be expressed, by
virtue of the off-diagonal Wick theorem [67, 68], in terms of the off-diagonal one-body density matrices
introduced above according to

‘0L
Mq.q30) = Ztaﬁ Pha

99’0 qq 9A -qq cz 1 ‘04
3 Z apys Pra  Pop Z apys Kap  Kyo

aﬂyb aﬁyé
99'0A qq'01 qq01 1 99'01 .q4'0. 9’0
Z waﬁyaec Poa Pep Pry T3 Z a/syéec Psa  Kpy Kec
aﬂyéec apydeC

T (1.30)
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1.5.3 Off-diagonal one-body fields

Further introducing the two off-diagonal one-body fields generalizing their diagonal counterparts appearing
in Eq. (1.21)

qq9'0 _ qq "0
hay " =tay + ZZ apyoPop

q9'62 99’6
+ 6 Zwaﬁbyec p(jé

ﬁbeC
_qq'0A qq’'6A
T Zwaﬁéyeé Kps  Kec
BoeC
+oee, (1.31)

and

qq'6A aq ‘0
AO{V = 4Z lX)/ﬁbK

99’02 qq'6A
"1 Zwﬂwéec Pop  Kec
poeC

Foee, (1.32)

the off-diagonal reduced Hamiltonian overlap can finally be expressed as

oA ‘0 ‘01 ‘0
Ng,q30) = th" 9900 L AL O Ran O (L33)

1.6 PGCM subspace

To summarize, given the parameter A € R" and the (set of) hermitian operator(s) Q, the 7, non-orthogonal
Bogoliubov states

By ={10Ma) s q=1,...,mg}, (1.34)

are used to generate, via the restoration of symmetries after variation through the application of the projector
Pyo»> the new set associated with the irreducible representation & of the symmetry group

PB; ! = (PP (9)) 59 = 1,1} - (1.35)

The set PBg;\ constitutes the starting point of the PGCM calculation realized for the Hamiltonian H*.
Correspondingly, one introduces the PGCM subspace as*

E;* = Span({PB; ). (1.36)

For reasons that will become clear later on, considering the 7, different PGCM subspaces obtained following
the above protocole for parameter values belonging to so-called ¢raining set

L, = {)\1,/\2,---,/\nt} , (1.37)

_4In case the calculation is limited to the GCM, everything that follows can be applied at the prize of removing the projector
P]ﬁ[O’ i.e. going back to the set B,’}q. Correspondingly, the labels P, M, K and & must be removed from all the expressions below,

and dgs put to 1.
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the super set

pB;," = | ] PBIL. (1.38)

Ael

nt

spanning the training PGCM subspace
L L
E, " = Span{PB, "}, (1.39)

is introduced.

1.7 Orthonormal basis and effective dimension

The PGCM subspace qu/\ being spanned by a finite number of non-orthogonal projected Bogoliubov states,
it is useful to extract an orthonormal basis along with its (effective) dimension. To do so, the hermitian
matrix associated with the projected norm kernel N ;q’} is diagonalized according to

NIt yot=sityt, (1.40)
where the diagonal matrix $94 = diag(sf’\,---,sg‘;\) contains the n, eigenvalues of N 94 arranged in de-
scending order and where U%% is a 14 X 1, unitary matrix, whose columns are eigenvectors of N A,

The matrix N4 being positive semi-definite, the eigenvalues satisfy

GA GA _ A _ _ 06X
17 =80 = >5M>0 Spidg1 == Sy (1.41)

such that, due to potential linear redundancies between vectors in PBﬁq’\, eigenvalues are strictly zero beyond

a certain rank 794, Furthermore, quasi-linear redundancies typically generate very small eigenvalues that
need to be truncated below a chosen threshold €°* to allow numerically stable linear algebra operations.
This eventually leads to keeping 7°* < r%% eigenvalues to define the effective range of N°A.

Eventually, the set of states
UsA

CHOE ZFM

for i =1,...,79* form an orthonormal basis of the working approximation to qu/\ In the end, while r

ol®*(q) (1.42)

GA
constitutes the dimension of quA in exact arithmetics, the truncation according to €94 delivers

di

ndim = ot (1.43)

R . . N A
as the effective dimension of the working approximation to qu .

1.8 Solving the Hill-Wheeler-Griffin equation

In order to solve the HWG equation, the projected hamiltonian kernels are transformed to the eigenbasis
defined in Eq. (1.42) such that, for 1 <1i,j < 774,

H“ (:“"IHAl:"") (.44a)
Ua/\*Ua/\

= Z Z \/TZA] HS, (L44b)

g=1q'=
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thus forming the hermitian matrix to be dlagonahzedo i.e. for arbitrary 1 <i <7 751 the HWG equation

becomes
]7(7/\
) AP =BG (145)
j=1

The PGCM states solutions of Eq. (1.45) can thus be written as

%)= ZXMFW (146a)
GA

_Z ZX“\/% Pyol®*(q)) (L46b)
SZ

zf (4)Pirol®*(q)) (146c)

such that the unknown PGCM state coefficients are solved according to

1:6/\ 5A
fiMa) =) X (147)
i1 s74

5Note that in Eq. (1.44a), the hermitian matrix is M-independent because of symmetry restoration.
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The goal of the present work is to use the eigenvector continuation (EC) technique [51, 50, 69, 52] to
emulate (typically) millions of PGCM simulations at low computation cost. The objective is eventually to be
able to perform sensitivity analyses on the interaction parameters and propagate their uncertainties to many-
body observables. While absolute energies obtained from the PGCM are of interest in the EDF context,
ab initio PGCM calculations focus on excitation energies of collective states and on the electromagnetic
transitions linking them for reasons explained earlier on.

The present work concentrates on the ability of the EC to emulate a large number of PGCM simulations
based on an appropriately chosen training set. To do so, absolute energies and radii of low-lying vibrational
states in 2’Ne, along with associated excitation energies, computed from a simple Brink-Boecker effective
interaction (see Sec. 4.1) are employed to validate the PGCM-EC emulators, as explained in Chap. 4. In
order to be in position to perform such a study, the EC emulation of PGCM simulations, i.e. the formulation
of the so-called PGCM-EC approach, is first detailed in the present chapter.

2.1 Eigenvector continuation technique

2.11 Principle

Let us consider the nt = n;n, A-body solutions of Eq. (1.4)
Tngtnu = {|\110“(A1)>,|\P1“(A1)>,---,I‘I’,i_l()\l)%---,I‘I’o"()\n,»r“}l‘l’ni—l(%»} , (2.
obtained for n; different parameter values belonging to the training parameter set
L”r E{/\l,/\z,"',/\nt} ) (22)

and including in each case the 1, lowest eigenstates belonging to a given IRREP. The set T,/ is referred
to as the training vector set.

29
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The EC technique is based on the fact that an eigenvector |\I”f(/\)> of H* for an arbitrary parameter
value A is confined, to good approximation, to the low-dimensional subspace spanned by an appropriately
chosen training set T,7, [51, 50, 69], ie. |\P’f(A)> can be well approximated by a linear combination
of the solutions {|W7(A;));1 <i<mn;,0<a<n,—1} obtained for the snapshots (i.e. training parameters)
AL, Ay,

ny n,—1

RAHPVEDY Z oA () (2.3)

i=1 a=

where the coefficients gy [, areto be variationally optimized. This is achieved by solving the secular equation

corresponding to the diagonalization of H? in a low-dimensional non-orthogonal basis, ie. fori =1,---,n
anda=0,---,n,-1

ny 1,—1 ny n,—1
D) (U g = &% ) ) (W7 I (g (2.4)
j=1 b=0 j=1 b=0

where El‘f 4 delivers an approximation to the target eigenvalue E,‘f(/\). Equation (2.4) is formally similar to a
HWG equation based on the norm kernel (V7 (1;)|\V}7 (1;)) and the Hamiltonian kernel (\I’f(/\i)|H’\|‘I’bU(/\j)>
involving the training vectors. Through Eq. (2.4), EC acts as an emulator of the exact A-body Schrodinger
equation (1.4).

While solving a low-dimensional diagonalization problem (Eq. (2.4)) is extremely advantageous com-
pared to solving Eq. (1.4) for H*, the cost of computing the #7(n7 + 1)/2 Hamiltonian kernels can become
prohibitive whenever repeating the process for a very large number of A values, as is the case in the present
application. In this context, the EC technique offers an extraordinary leverage whenever the Hamiltonian
can be decomposed as a linear combination

= ka(/\)Hk , (25)
k=1

where the 7, operators H are A-independent and where {fi(1);k = 1,...,n,} denotes a set of functions

. . 1
of the original n, parameters.

Eq. (3.1)), provided the ranges (p1, 4;) of the two gaussian functions are kept fixed, for the Brink-Boecker
interaction (see Sec. 4.1) under the same hypothesis and for (most of the parameter dependence of) YEFT
Hamiltonians [53].

Assuming that Eq. (2.5) is satisfied, each Hamiltonian kernel entering Eq. (2.4) decomposes according to

Such an hypothesis is for example valid for the Gogny interaction (see

(B (ADIH 7 (A >—ka )Y (A E M (1)) (2.6)

such that Eq. (2.4) can be solved for an arbitrary number of A realisations at the price of computing only once
the n, x nr(nr +1)/2 Hamiltonian kernels <\I’10|I:Ik|\lfja) This is extremely advantageous as the number of
emulations becomes very large, i.e. >>1,.

For simplicity, the number of terms in Eq. (2.5) is assumed to be the same as the number of original parameters. If not, one
can anyway redefine a set of 11, pertinent parameters via the functions {f¢(1);k=1,..., np}.
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212 Opver training

An interesting point concerns the result delivered by the EC emulator when applied to a training parameter,

e.g. A1. Considering the trial coefficients gf]./;ltrial = 0j10pc, one obtains fori =1,---,n;and a=0,---,n,-1
ny ng,—1
5 A trial
Y Y O g = (0 A9 ()
i=1 b=0

= EJ (A W (AW (A1)
n; n,—1

SET)Y Y (WAl
=T =0
(2.7)

which satisfies Eq. (2.4), i.e. the trial vector [ (1;)) is indeed a solution’ of the emulator for the exact
energy & Ao EZ(A;). Eventually, the above proves that, as long as the training vectors are exact solutions
of Schrodinger’s equation, the emulator employed with the corresponding Hamiltonian sends back the
corresponding eigenvectors and eigenenergies.

In practice, however, EC is applied on the basis of approximate solutions of Schrodinger’s equation
delivered by a certain simulator one wishes to emulate. In this case, the above proof does not hold anymore
such that the eigenenergies delivered by the emulator are accompanied with an error, e¢ven when employed
for a training parameter. In particular, the emulated ground-state energy associated with a given training
value will be lower than the reference value originally delivered by the simulator. Indeed, the EC ansatz in
Eq. (2.3) can only variationally improve the approximate solution delivered by the simulator such that one
speaks about an intrinsic over training of the emulator in such a case.

It is thus mandatory to first quantify the intrinsic over training of the emulator given that one can expect
the associated error to be a lower bound of the error accessible when emulating solutions that are not in
T s> which is eventually the goal of the emulator.

2.2 Emulating the PGCM with EC

Eigenvector continuation is now specified to emulate PGCM calculations, i.e. the PGCM simulator is to be
approximated at low computational cost by the PGCM-EC emulator. In this context, the training vectors
are PGCM states (see Eq. (1.6)) corresponding to a given o = (6, M)

02" =) £ @P2Y (9)) (2.8)

qes
with a =0,---,n, —1, such that the training set is given by
o O'/\,' .
o, ={l00%) s i=1,,manda=0,,n,-1}, (2.9)

the number of training vectors thus being
np =nn, . (2.10)

2The proof works for any of the 7, training vectors associated with H A1 whereas the n7 —n, other solutions obtained from
the EC emulator carry no obvious meaning. Based on the Ritz variational principle, it is easy to prove that the ground-state
energy Eg (A1), if [¥g (A1)) is indeed in the training set, is the lowest eigenvalue delivered by the emulator. Contrarily, one cannot
anticipate to which solutions of the emulator the 7, — 1 other training vectors associated with H A correspond to. Eventually, the

process can be repeated for H*2,...,HM to recover the complete set of training vectors from the emulator.
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Given T,7, , the n, x ny(nt + 1)/2 Hamiltonian kernels (and nr(nt + 1)/2 norm kernels) needed to
apply EC are expanded in terms of elementary projected kernels

@710, )= Y N L7 @fy g K@ ()Pl (a)) (2.11a)

q€S q’€S

(©7"|H, |®”]>—ZZf"“ 7@ (@Y QPPN () (2.1b)

qeSs q’eS

where the commutation of the projection operator P]\(Z) with Hy and the identity P]\O/:I-I(-)PI\(ZO = Pg PA(ZIO = P‘7
have been used. Following Eq. (1.14), these elementary projected kernels can in turn be expanded in terms
of elementary generalized off-diagonal overlaps

G dz
NI = (@M (g)IRG IV (g 15 L DGeKe @i a;0), (2.122)
1y " = @M (q) Py i (g ZD (0)(@(q) ¥y | (q;0)) (212b)

Eventually, building the PGCM-EC emulator reduces to the computation of the set of elementary gen-
eralized off-diagonal norm and Hamiltonian overlaps
N"%(q,q'50) = (@Y (g0 (950)) (2.132)
(@ (q)H @Y (q';0))
(@Y (9% (q';0))

itk (g,q7;0) = (2.13b)

which are of identical nature to those already involved in actual PGCM calculations while extending them
in two ways. First, their generalized character relates to the fact that they are now also of off-diagonal
nature with respect to the parameter values A; and A;, i.e. the overlaps involving all HFB states originating
from the 7, different PGCM simulations performed during the training phase must be computed to build the
emulator’. Second, the elementary character of the reduced off-diagonal Hamiltonian overlaps ik (9,90)
relates to the fact that such overlaps must be computed for each of the 1, parameter-independent” operators

Hj rather than for the full Hamiltonian as is done in traditional PGCM calculations. In any case, the
overlaps defined in Eq. (2.13) can be straightforwardly computed from the technology already available from
the PGCM simulator. Elementary generalized hamiltonian kernels are illustrated in Fig. 2.1.

2.3 PGCM-EC emulator algorithm
Given a Hamiltonian model H* satisfying Eq. (2.5), one chooses
o a parameter mesh L, = {1y, A5,---, A},

* a generator coordinate mesh S = {ql,qz,m ,qnq} .

Based on these two meshes, constrained HFB equations are solved repeatedly to generate

|®%(q)) fori=1,---,n and g€, (2.14)

3Overla.ps that are diagonal with respect to parameter values are thus already available from the training phase, i.e. one only
needs to further compute the off-diagonal blocks of the super overlap matrices with respect to the parameter indices.

4The key points is that those kernels only depend on the training parameters via the bra and ket but nof on the parameter A
associated with the PGCM states one wishes to emulate.
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Ao
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(@ro(q)|PM (5 0))

(D (q)|Hy |2 (' 6))

(@0 (q)[®*2(q';0))

(DM (q)|Hi|@™ (q'; )

(®M(q)|Hi| P (¢'; 0))

(@A (q)| D (g5 0))

(DA (g) [P (g';0))

(DM (q)| Hi |92 (q'; 0))

(@1 (q)[ D2 ("5 0))

(D2 (q)| Hy| @ (¢'; 0))

(2 (q)|Hy |2 (¢';0))

(@ (q)|Hy |2 (¢56))

(@42 (q) | (q'; 60))

(@2(q)[ @ (q'56))

(®r2(q)| P2 (g5 0))

33

Figure 2.1: Schematic illustration of elementary generalized hamiltonian kernels, organised with respect to
parameter values A;, diagonal kernels needed for sole PGCM computations are highlighted in green, and
additional off-diagonal kernels also needed for the emulator are highlighted in purple. In this figure, n, = 3.

before computing the elementary projected kernels (in practice stored in a file)

GA;A

Ny = (@ (9Pl (9) (2.15)
CGA Ak U
Hy' " = (@Y (@) HiPR |9 (4') (2.15b)

fori,j=1,---,nand q,q" €S, as well as kzl,---,np.

2.3.1 Building blocks of the algorithm

The PGCM-EC algorithm have three basic building blocks, that are ultimately assembled differently, de-
pending on the computation to be done (either a PGCM computation, or a PGCM-EC emulation). There
are three types of building block.

TYPE 1 building block

a TYPE 1 building block takes as inputs an index 1 < a < n, a threshold value €% > 0.
First, the projected norm and Hamiltonian matrices

N9@ = N9Aeda (2.16a)

I:Id'ak = I:I&/\a/\ak , (216b)

are extracted from the precomputed elementary projected kernels data.
Second, the norm matrix is diagonalized according to

N&axda — AO’(XxO:{X , (217)
with A9% a diagonal matrix

A9® = diag (7%, 537,557 ) , (2.18a)
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0 <s(m << (2.18b)
and X% a N4 X 11 unitary matrix. Eigenvalues smaller than a chosen threshold €7
o] 5o
<€’ <sin, (2.19)

are discarded such that matrices A°® and X% are effectively replaced by’

A%“ Edlag( oar fgﬂ,--,sg:‘) i (2.20a)
X9 = X941 ny, 7% mg| (2.20b)
Next the matrix
Yo® = X9 (A7) : (2.21)
such that the orthonormal basis states of the approximation to E,‘Z\“ read as
"
oA,
277y =) V5P l0M (q)) (2:22)

i=1
for every ]
1<j<d™ =n,~ AR I
Third, the projected Hamiltonian matrices are transformed into new orthonormal basis according to
S = N v =
Ak = (&7 | yes ) = ((Y‘m) H"“kY““)H , (2.23)
ij

for every 1 <1i,j < 79%. The situation may be represented schematically’ as in Fig. 1

€()'0(

TYPE 1

HFB states H‘”\a> Z 1 Y“‘PUO@/\“(%))
Dra(g;))1<i ’

| (qz)>19£nq ng]'ak = (E |H |Ha)\ >

Figure 1. Schematic representation of a TYPE 1 building block.

TYPE 2 building block

A TYPE 2 building block takes as inputs TYPE 1 or TYPE 3 building block, and a parametrisation p. First
the total r x r Hamiltonian matrix is constructed

H' =) fi(wH* . (2.24)

where one has either’

5For a matrix A, Alp1: p2, 91: q2] denotes the submatrix obtained by extracting pp — p1 + 1 rows between p; and pj, and
q2 —q1 + 1 columns between g1 and g;.
6Flowchart in this chapter as well as geometrical figures in chapter 6 are constructed with the FigdTex macro package [70].

"The notation for H%# and H¥ does not specify the parameter(s) characterizing the bra and ket in order to remain generic
and valid for both TYPE 1 or TYPE 3 inputs.
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e H9* = FF9ek if constructed from TYPE 1, in which case r = 499,
H%* = IEI’(}k if constructed from TYPE 3, in which case r = d”.

The total Hamiltonian matrix H°¥ is then diagonalized according to

HOVFZoM = EF 70K, (2.25)
with E9* a diagonal matrix, and Z" the unitary matrix whose columns are eigenvectors of H ¥
B = g B2 ELY) 22649
. . St
ZH(z0) = (z°) z°F =1, . (2.26b)
The situation may be represented schematically as displayed in Fig. 2
K
TYPE 1 or TYPE 3 TYPE2 .
(Hdk) —»— HO' =Y " fi(p)H*
1<k<n HO1gzGou — EGrzGH

Figure 2. Schematic representation of a TYPE 2 building block.

The process can be exemplified for a PGCM simulation based on the Hamiltonian H"2, i.e. when ever
using a TYPE 1 building block as an input such that

H* = ook (2.27)
from Eq. (2.23) and such that the entire process can be schematically described as diplayed in Fig. 3
eda /\a
TYPE 1
EF/\B(X(S;‘;;S | H;f @y = Z Yaap60|q)/\ (g:) > LEEEQQ_ Zk 1fk( Haak
i))1<i<n, Hi(;'a _ (E alH |:U/\ ) foats zoad, Eaa/\azom\

Figure 3. Schematic representation of a PGCM simulation based on the Hamiltonian H"«.

TYPE 3 building block

A TYPE 3 building block takes as inputs a threshold € > 0, the integer 1, > 1 and a set of TYPE 2 bulldlng
blocks constructed from TYPE 1 building blocks for each parameter value of the training set L,, C L,®
The set of PGCM training vector is thus given by

TUL {l@ Y m=1,,m anda:O,mna—l}, (2.28)

8In PGCM-EC applications discussed in the present work, one construct the training set L;;, from a subset of L, the comple-
mentary part of the latter being used as a validation set against reference PGCM simulations.
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with
Fay

oq,, Gy g, 10 Aa,
©d 7y =)z E (2.29)
i=1

1

For each couple 1 < m,n < ny, the projected kernels N ;q/,\"’/\" and I:I;q/}'”/\”k from Eq. (2.15) are extracted

from precomputed elementary projected kernels data, in order to compute, for 0 < a,b < n,, the kernels
between the PGCM training vectors needed to apply EC

A A . R . .
<@;T am|®l(; an)z((zo’am/\am) (mem) NU/\m/\,, VL ZG“H’\an) , (2‘3031)
ab
A A P N S A A
g am | 7Tk o p\ __ oy am oay an ’:‘0 am | 17k ’:‘G ap
@7 ey = Y Z(zm ) Zoten @ k] (2.30b)
i=1 j=1
7o am 79 ay ng 1Ny +
B GayAa, Gayhy, («,6am\T ,Ga, 256 A Ak .
-y ¥ (2 e}z (v v (2.30¢)
i=1 j=1 gq=1¢q'=1
— ((ZO:lX,,,/\am )+ (Ydam)'l" I_"Id‘/\m/\nk Yd‘l)(n ZO:(X,,/\“") . (230d)
ab

Following the computation of these kernels, the associated super norm matrix

= 0 1~ Aay
Ny, =@ O, ™), (2.31)
is diagonalized, while keeping eigenvalues above the super threshold €?, to build the orthonormal basis,

with 1 <i<d” i
= 5 o m
21y=) Y000, (2.32)
ma

L” . .
of the approximation to the training PGCM subspace qu ‘. Eventually, the super elementary Hamiltonian
matrices are computed according to

Ak = (2P |ANEr), (2.33)

1] -
and stored within the HWG object of TYPE 3 type. This ends the construction of considered TYPE 3
building block.

The trained emulator thus obtained can then be used to emulate the PGCM simulation associated with
any new parameter ¢ by using the super elementary Hamiltonian matrices as inputs to the TYPE 2 building
block described above. The workflow elaborated in this section can be schematized for n; = 3 as displayed
in Fig. 4
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HFB states
|q)/\“1 (Qi)>1§ian

HFB states
(D42 (gi))1<i<n,

37

HFB states
|CD/\”3 (Qi)>15ian

efu ef2 €6a3
TYPE 1 TYPE 1 TYPE 1
|:0Aa1> |,:a/\a2> |:a/\H3>
i i i
SGak SGark S Gask

ij ij ij
A, A, A,
TYPE 2 TYPE 2 TYPE 2

HO:CY]/\HI ZO_'O(l /\al — E&(X]/\al Z(le]/\al

H(faz/\azzo_'az/\az — EO:az/\azzéaz/\az

H6a3/\a320~'a3/\a3 — EO_'O(3/\D(SZ(§CY3/\“3

€y

B ——

TYPE 2
Diagonalise HOH

Figure 4. Schematic representation of a PGCM-EC emulation for n; = 3.
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The current paradigm of ab initio nuclear theory constructs the nuclear Hamiltonian as a YEFT ex-
pansion of QCD. The number of terms entering this expansion grows quickly with the order in the YEFT
expansion and requires the introduction of numerous low-energy constants (LECs).

In order to assess the performance of the PGCM-EC emulator for the sensitivity analysis, it is interest-
ing to first perform a preliminary study with a simpler interaction that contains less parameters and only
two-body terms. To do so, non-relativistic phenomenological interactions used with success over the last
decades offer an interesting testing ground. They are usually declined into two families: zero- (Skyrme [71])
and finite-range (Gogny [72]). However, these phenomenological interactions require (for an accurate de-
scription of both radii and binding energies in all nuclei) the introduction of a density-dependent term
(effectively compensating in particular for the lack of three-body terms in the Hamiltonian) that disqualifies
their interpretation as true Hamiltonian. These pseudo-Hamiltonians have proven versatile for mean-field
calculations over the whole nuclear chart, but they cannot be safely used in multi-reference methods such
as the (P)GCM [73, 74, 75].

The above considerations motivated the use of the simple Brink-Boeker [76] two-body interaction in
the present study; see Chap. 4 for the definition of the model case presently employed to characterize the
performance of the PGCM-EC emulator. While the terms contained in the Brink-Boeker are a subset of
those appearing in the Gogny interaction, there is no density-dependent term such that the Brink-Boeker
does qualify as a true Hamiltonian and can thus be safely used in (P)GCM calculations.

For the sake of generality, and future investigations, all matrix elements of the Gogny interaction have
been re-derived and implemented in the PAN@CEA numerical solver. The corresponding derivations and the
associated set of final formulas are reported in the present chapter.

39
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. Hi W; B; H; M; to Wis
1 xo CKG
fm MeV MeV MeV MeV MeV.fm3(@c+1) MeV.fm>

1 0.7 1720.30 1300.0 -18013.53 1397.6
1390.6 1 1/3 130

2 1.2 103.639 -163.483 162.812  -223.933

Table 3.1: DIS parametrization of the Gogny effective interaction.

3.1 Gogny pseudo-potential

The Gogny pseudo-potential is an example of a density-dependent interaction giving rise to a pseudo-
Hamiltonian and then a pseudo-potential. The Gogny pseudo-potential is given by (see Ref. [77], Eq. (1.30))

2
N N A AT —p2/42
Vp1s(Rr) = Z[Wi +B;P,—H,P, —MiPSPt]e /i (3.1a)
i=1
2
4 (3.1b)
Ir|
P1-P2 .
= 3.1
(A (31c)
+to 1+ xoP:) p" (R)S(x) (3.1d)
— -
+iWL5(O'1 +O'2). k/Xé(l')k (316)
= V4 yConly yCOM2, YD, S0 (3.1f)
where
r=ri—ry, (3.2a)
= ;”, (3.2b)
L1
s = E(l + 0'1.0'2), (32C)
L1
Pt = E(l + TI.TQ), (32(:1)
X = —%(71 ~V,), (3.2¢)
—, —\f i <« <« .
K=-(k) =-5(Vi-Va) (3.20)

and W ,, By, Hy 2, My, 1,2, to, X0, @, and Wi are free parameters. Several parametrizations of
the Gogny interactions have been established and tested in the nuclear community. In particular, the DIS
parametrization ([78], chapter 2) of the Gogny interaction is reported in Tab. 3.1

The corresponding two-body matrix elements are given by

(Q:ra;2:B|VIL:y;2:0)

Z Jd3r1d3r2d3r3d3r4

V1V2V3Vy

Vaﬁyé[p]
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x(1:a;2:Blry,vi;1r,v2)
x(r1, V1512, vo|VIrs, v3;re, va)
x(r3, V3574, V4|3 :y;4:0) . (3.3)

Here [i,) is a yet unspecified basis of H;, and v = (spin, isospin). The density dependence of V is
characteristic of a pseudo-hamiltonian. The associated pseudo-Hamiltonian is

Heff[p] = Z Va/iyé[p] ala;aéaw (3'4')
afyod

with al, the creation operator creating a particle in the single-particle state ¢,. Note that the Gogny
pseudo-hamiltonian is ¥ and K independent.

3.2 Basis functions

In principle, the nuclear problem is independent of the choice of the basis of the one-body Hilbert space.
In practice, truncations imposed by numerical limitations suggest to use functions that are well-localized in
order to describe nuclei at a reasonable cost. Amongst localized bases, harmonic oscillator wave-functions
happen to be extremely useful given that matrix elements of the Gaussian terms entering the interaction
can be easily expressed analytically using such basis function as is shown below. In the present work, axial
harmonic harmonic oscillator wave functions ([78], chapter 2) are employed and read as

2 1
#}m n nz(r; br: bz) = lpin )n(r; Q; br)’jb](’lz)(z; bz) (3.5&)
il (€7 ()

=Xxn (1;b, n, (230, :
Xn (r )msbz(z ) (3.5b)
- eim(plpnnz(r’ zb,,b,) (3.5¢)

where m is the orbital angular momentum z-component, 1, and n are both non-negative integers, and
b,, b, are positive numbers with unit of length. By definition, r = y/x? + 2 and (x,v) = (rcos @, rsin@).
For me Z, ne N, one has

il ) = il y 27 (2 (1
b =N B 7 () ) (3.6a)
r r
W)\ -5 z
Yn, (23b2) = Niy (b2) € = Hy o= (3.6b)
z

where the normalisations are given by

ml o, N2 [ n!
Ny (br)=b—r m , (3.72)

1 1
Vb, \ 2% n ! i '

and where L%, H, are generalized Laguerre and Hermite polynomials respectively. As already mentionned,
these functions are eigenfunctions of the axially deformed harmonic oscillator

(3.7b)

n,(Dz) =

R d? 1
—+5Ma)§

1 1 1
TIM 22 zz)l/)ilz)(Z; b,) = hw,(n, + E)l,bilz)(z by, (3.8a)
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ﬁZ
A+ L M2 2o 3b,) = By (21 + ] + D2 (v, @3, (3.8b)

Where M, w, and w, are any positive numbers satisfying

Mo, oo 3.9a
b2
z
h

Mar =1 (3.9b)

Spin and isospin degrees of freedom can eventually be added by considering the tensor product basis

l;bm n nz(r;brr bz)® |i>s ®|i>t . (3.10)

3.21 Orthonormality relations

The basis functions satisfy

+00
J. dz Py (zb,) ab,ilf)(z;bz)zénzn; , (3.11a)
271 -
J rdrf AQ P n(r, @3br) Yol (1, @352) = Sy Sy (3.11b)

3.2.2 Talman coefficients

As shown in Refs. [79] and [80], products of basis functions can be expanded as finite sums of basis functions
times a Gaussian factor.

2/2b2 Z
gbnzl(z b )z,bnzz(z b,) = nzlnzz (,bnz z;b,) , (3.12)
\/_
(2)s b 7r2/2b2 .
Qbmlnl( )Qbmznz(r ®; - b \/— Z mlnlmznz l;bmz —-m; n (T ©; ) . (3'13)

Where coefficients T(!) and T?) (called Talman coefficients [81]) are real and detailed in appendix C.1.
Those coefficients properties ensure that sums in Egs. (3.12) and (3.13) are finite. In Eq. (3.12), index 7 runs
over

|ny1 —Hg| < hy <nyp + 1y with ny+ 1, + 1, even (3.14)

and in Eq. (3.13), index 7 runs over
1 ,
0<n<ny+ny+—= (|m1| + |m2| |m1 - m2|) =n1p . (315)

3.2.3 Moshinsky coefficients
From Ref. [80] it is shown that for i = 1,2

2 b? + b3
013600 (r23b) = ZMZ (b, b2)| 2 [”+’—2],“2‘f 1 L

= Py | = -rali~——m—| .
\/E b% b% bi7'+b§ P \/E \/E
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M2 are the Moshinsky coefficients. In our work we will only need a subset of the Moshinsky coefficients
which will be called reduced Moshinsky coefficients. By definition

Mo et = MOS8 (p,b) (3.17a)
2) red OO (0,
M iy = MO0 (Cm g p,) (3.17b)

Note that reduced Moshinsky coefficients are b, and b, independent. The formulas for computing those
coefficients are given in Appendix D.

3.3 Calculation of matrix elements

3.3.1 Central term

The central term (see Eq. (3.1a)) is given by

VE(ry,ry) =[W + BB~ HP, - MP, D] e~ (r=r2/u’ (3.18)
Where p = py, pp and P, (resp. P;) is the spin (resp. isospin) exchange operator defined by Eqs (3.2¢) (3.2d),
these are linear operators such that for any kets |x;),|y;) in spin space and any kets |x;), |y;) in isospin space

B |x5>®|ys> = |y5>®|xs> ’ (3.19a)
P lx) ®lye) = lyr) ®lxs) (3.19b)
The non-antisymmetrised matrix elements for the central part are by definition
Viss=(l:a;2: BIVEL:y52:6) (3.20)
The spin-isospin and spatial contribution are easily factored out
C st Cr C C
Vasyo = VasyoVapys = Vagyo Vasye Vapys (3-21)
where
Cst —
Vaﬁyé = W 6Sa5y65135(56tat76tﬁt(5
+B 6sa556555 Ot 1 5tﬂt,
-H 65 s 55155(\,6t tbétﬁ ty
_M 65a5565ﬁ5yétat66tﬂ )/l (3'22)
and
G _ @, . —(z1-2) /(D . 1, . q 9¢
a
Ve | dmdzpll @by ) e o zb)p 23, | (3.23a)
G _ 22 122 (2)%(=> —A-m) (2 (2) .
[24
Vﬁyb Jd 1d rZIPa G r)¢ﬁ (r2;b,) e Yy (rllbr)lzba (72 br) (3.23b)

The strategy for computing the last integrals is exposed in great details in [79]. In this reference it is shown
(Egs.(D.2) and (20)) that!

nzﬁ+nzé

Y T, (3.24)

z nzzlnzﬁ_nzél’z

G _¢ )
Vaﬁyé = 0(N3q + Nyp + Ny + 15 even)

U
V273b

ln Eq.(3.24) the summation step is 2 as indicated.
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and

nﬂb N,y

C -
Vaﬁzyg = Om atg, iy, +m‘)G i1 Z Z T2 n2 arMa;ity, i T(Z)Zé,mﬁ;né,mél(ma_myxnleZ) - (3.2))

01’12

In Eq. (3.25), I is given by Eq. (G.5), coefficient ngmnzy in Eq. (3.24) is defined in Eq. (G.6), and G, is
defined in Eq. (G.4).

3.3.2 Coulomb term
The Coulomb term is (Eq. (3.1b))

2
vel(r,r) = (3.26)
[ty -]
Coulomb matrix elements are readily factorised in a spatial part and spin-isospin part
Coul _ v,Coul, ,Coulg
Vaf)?)l/lb = Vapys Vaﬁybt , (3.27)
with Coul
Va/;);(;f = 05,5, 05,5,0(ta = tg = t, = t; = proton) , (3.28)
and )
Coul 3 3 * *
Ve = rn | PR B rpr) (3.29)
As shown in Ref. [80]
q nay L) nza+nzy nzﬁ+n26
Coul, proton
Vaﬁyé V7 Z Z
OnV On yzlnzafnz;/'rz nzv:|nzﬁ7nzé|!2
n, Y n 1)red 2)red
XT(l)Z;;nzé (1)7122@7 (Z)Zygnﬁ ménéT(z)m]lann mynyM;ZZrenvagnj,lfma ny,n,
><Icoul(ny 1y + Imy - mal: Ny + nzv) ’ (330)
with I (7, n,) given by Eq.(G.13).
3.3.3 Two-body center of mass correction
The center of mass correction reads as in Eq. (3.1c)
yoom_ _PLP2 3.31
m(Ay (3:31)
and the corresponding matrix element is
yCOM  _ 1 5
aBys = _m<A><aﬁ|P1'P2|7/ )
1 .
= _m<¢a¢ﬁ|p1-p2|lzby1;b6>5snsyésﬁsbétaty5tﬁta . (3'32)

It is shown in App. G.3 that

(@atplp1-p2ly ) = =1 (~Cy Cas = Cay Cis + C2, Cis) (3.33)
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where

-1 O(Wl/gﬁ—l) ) -
C;[), = 6’1:{1”25 5ma,m,;+l L[Jnﬁ + 6(1’71/3 < _1)bna,nﬁ+(*l)6(mﬂ20) + \/nﬁ + |m[3| + b(mﬁ > 0)6%”,@ y

(3.34)
C;ﬁ = 6”za”z56marmﬁlﬁ|: ng + 6(71’113 > 1)6rla,nﬁ+(—1)b(mﬂso) + \/”[)’ + |ﬂ’l‘3| + 6(mﬁ < 0)6”a’”/3:| ,
r
(3.35)

1
Cgﬁ = 6mamﬁ6nnnﬁ m[\/”zﬁ 5nza,nzﬁ—1 RV 15112,1,112,5-%—1] . (3.36)
z

3.3.4 Density term

Transforming p density matrix from cylindrical harmonic oscillator basis to spatial representation gives

<r1,51, t] |F§|7'2; $2, t2 >

= Z(ﬁxspt1|a><a|(5|ﬁ><ﬁ|1’2;52;t2>

p(ry,s1,t1512,52, 1)

ap

Zﬁbmananw ("1 )Qb:n,;nﬂnzﬂ (72)

ap

Xp(Mg, Mg, Ny, 1,115 Mp, Mg, Myp, S2,E2) (3.37)

Only the case with r{ = r, and t; = f, is to be considered, and one defines
p(r)= Zp(ns, t;r,s,t) . (3.38)
st

Antisymmetrised density pseudo-operator has been introduced in Eq. (3.1d) as
VP (r,r0) = t3 (14 x0P) (1= BP)d(ry = 12)p(r1) (3-39)

such that density matrix element factorise into a spin-isospin part and a spatial part.

Vagys =< aplVPlyo> (3.40)
= Vi Vo (3.41)
with
Vc?ﬂsa/é - (55a5y65/356 "'xoésaséésﬁsy)fstatyét,gt(5
- (xoésasy Osysy T 0s,s,0s45, ) Ot,t;Otyt, (3.42)
and
Vfﬁ’ya=JdSr«,b;ananm(r)v,b,’;ﬁnﬁnzﬁ(r) PC(r) Yoy, ()P, (1) (3.43)

The explicit density dependence of the interaction is precisely what is preventing in from being a true
Hamiltonian. This manifests at mean-field level by the presence of a rearrangement contribution as detailed

in App. G.4.2.
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3.3.5 Spin-orbit term

The spin-orbit term has been introduced in Eq. (3.1e) as
, —, —
iWrg(og+07). k' x6(r)k.

As shown in App. G.5, antisymmetrised spin-orbit matrix elements can be expressed as

—S0 iWLs _
Va/}yé = D [_ (I;(—/ﬂyé + I[Jiraéy)<5a5ﬁ|01 +0; |5y56>

- (I;Mb— + I/)Taéy)(sasﬁbf + 05 [5,,55)

+(I§[3’y6 + Igaéy)<5a5,g|013 + O-Sls)/so>:|<tatﬁ|T|t—yt5> ,

(3.44)

(3.45)

where I, I, I3, T are respectively defined by Egs. (G.52), (G.53) (G.54), (G.48), and 01+’2, 0125 013’2 are

defined in Eqgs. (E.4).
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This chapter defines the model chosen to test the (P)JGCM-EC emulator. This model uses
1. a simple effective interaction with four parameters to be varied,

2. a realistic GCM calculation of the doubly open-shell 2°Ne nucleus,

3. a brute force learning algorithm to choose optimal training parameters/GCM vectors.

Despite being relatively simple and limited to a single nucleus, it allows one to explore in details the
characteristics of the (P)JGCM-EC emulator. The actual results of the PGCM-EC study is discussed in the
following chapters.

4.1 Brink-Boeker potential

The Brink-Boeker two-body interaction [76] is a special case of Eq. (3.1) reading as

2
Al 22 P1-P2
Vip(R,1) = —m; PP e /M - TLE2 41
BB( r) ;[wz m; kg t]e m(A) ( a)
= VBBC+ VBB COM2 , (4lb)

where w5, m;, and p;, the set of denote free parameters. The nominal values of parameters [76]
collectively denoted as A are reported in Tab. 4.1.
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Hi wj m;

fm MeV MeV

1 1.4 -72.21 -68.39

2 0.7 -595.55 -206.05

Table 4.1: Nominal parametrization A of the Brink-Boeker two-body interaction [76].

E (MeV)
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0.0 0.2 0.4 06 08 1.0 1.2 14
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Figure 4.1: Two-dimensional Hartree-Fock potential energy surface in 2’Ne obtained in the (8, f3) plane
from the nominal Brink-Boeker interaction. The number of mesh points g; = (f,;, f3;) in the plane, is
n, =53.
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Figure 4.2: Eigenvalues of the norm matrix N*0 associated with the GCM subspace E,/}f; with n, = 53
corresponding to the nominal parameter set A.
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Figure 4.3: Nominal GCM eigenenergies as a function of the threshold e™.
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Figure 4.4: GCM spectrum in 2’Ne from the nominal Brink-Boeker interaction and the threshold value
A -6
€0 =107".

4.2 GCM setting

The present study relies on a realistic GCM calculation of the doubly open-shell nucleus >’Ne based on a
set of deformed Hartree-Fock states constrained to different values of the axial quadrupole (f;,) and axial
octupole (f3) moments. While the HF states break both rotational and parity symmetries, the effect of
the projection on good angular momentum and parity is left to a future study. Correspondingly, the GCM
spectrum purely relates to vibrational states. Calculations are performed with the Brink-Boeker two-body
interaction using a harmonic oscillator basis truncated to 11,4 = 8.

The corresponding two-dimensional HF potentiel energy surface (PES) obtained for the nominal Brink-
Boeker interaction is displayed in Fig. 4.1 as a function of g = (f,,3). The red dots on the PES are
associated with the n, = 53 HF states |D*(g;)), i = 1,...,53, constituting the baseline for the subsequent
GCM calculation.

Based on these 1, = 53 HF states, the GCM subspace Eg\g is considered. The eigenvalues {s;,i = 1,...1,4}
of the associated norm matrix N0 are displayed in decreasing order in Fig. 4.2. These eigenvalues span 6
orders of magnitude, from a few 10! down to about 107>,

Next, the 1 < n?\iom < n, largest eigenvalues are chosen according to the truncation s; > €' to build

the orthogonal basis {|\I’l./\0 ni=1,..., n‘j\iom} of (the approximation to) Eg\g and solve the Hill-Wheeler-Griffin

equation. The corresponding GCM eigenenergies are displayed in Fig. 4.3 as a function of €. The results
demonstrate that the calculation is well converged for €% < 107> and actually remains stable down to the
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Task Computational cost (s)
HF states 52884 = Syrp
GCM kernels 3913 = Sier

Table 4.2: Computing cost (in seconds) for the two main steps of a GCM calculation in ?°Ne with the
Brink-Boeker interaction. The cost of solving the HWG equation is negligible.

lowest eigenvalue. Picking e = 107%, the GCM excitation spectrum is displayed in Fig. 4.4. The first,
second and third excited states are seen to be located at about 3, 7 and 9 MeV, respectively.

Eventually, the computational cost of the GCM calculation is reported in Tab. 4.2. The cost separates
into (i) Surp associated with the computation of the n, = 53 seed HF states and (ii) Sy, associated with the
computation of the norm and Hamiltonian kernels among those HF states. In the present GCM setting, i.e.
in absence of symmetry projections, the cost is dominated by Sypg and amounts to about Sypg + Sier = 165.
Consequently, performing a very large number n of GCM simulations for different parameter sets amount
to a numerical cost of 1 X (Sgpp + Sker) that becomes quickly prohibitive. This motivates the present work
on emulating (P)GCM simulations.

4.3 Latin hypercube sampling

Having at hands the GCM calculation based on the nominal Brink-Boeker interaction, propagating un-
certainties associated with its parameter set relies on sampling the parameters value according to a given
probability distribution. Similarly, performing a sensitivity analysis requires to sample a set of pre-defined
parameters interval in the most faithful manner.

In this context, the latin hypercube sampling (LHS) is an alternative to a simple random sampling,
such that moments of a function over the sampled space are unbiased and display a substantially smaller
variance than that of the estimator based on simple random sampling [82, 83]. Assuming that the sampled
space is B=[0,1]? (d > 1 integer), and given an integer N > 1, a LHS of size N on B is obtained by

 randomly choosing 71, -+, 7; permutations of {1,---, N}, uniformly distributed over all n! permuta-
tions;

* picking, for each 1 <i <N, a point X; € [ [; <4<y [nk(li])_l, nkT(l)] according to a uniform distribution.

4.4 Cost function

In order to quantitavely evaluate a GCM-EC emulator characterized by the couple (L, ,7,), a cost function

is chosen based on a given observable A and a validating set V = (/\l-l, Ay, A )
For a validating parameter A; , one collects the n‘j\ivm values AkGCM(j), j= 1,...,n‘j\i.m, associated with the
ik i

i
GCM eigenstates and the ngim values AEC(i ,i=1,..., ngim, associated with the GCM-EC solutions. Then,
nt nt

the cost function for each index 1 <j < min(n‘}\i‘m, n%im) is given by
if nt

A7) — AT ()
AT ()

1 &

C(Aj) = ”

, (4.2)

Y k=1

and is nothing but the mean relative error of the emulator with respect to the simulator. Eventually, the cost
function can in fact combine the error over several GCM solutions and/or over several observables.
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4.5 PGCM-EC setting

4.5.1 Parameter space

In the Brink-Boeker interaction, the dependence of only 4 out 6 parameters, ie. (m, my, wo, wy), satisfy
Eq. (2.5), which is a necessary condition to apply EC to them'. Consequently, y;, y5 are kept fixed to their
nominal values whereas a four-dimensional parameter mesh in (mg, m;, wy, w1) containing N = 50 points
is generated using LHS within the box

B =[mg® =10,mp" +10] x [m)® = 10,m7° +10] x [wy® = 10,wy® + 10| x [w;* = 10,w;* + 10|, (4.3)

. . . A A A A
centered on the nominal parametrisation 1y = (moo,mlo,woo,wlo).

denoted

The obtained parameter mesh is

Lso = (A1, 2,0+, As50) (4.4)

with, for each 1 <1 <50,
Ai = (mh, m, whwh) . (4.5)

4.5.2 Set of HF states

For each 1 <1 <50, the ng = 53 HF states constrained
A .
By = (0% (q))q €8} (4.6)

are generated using the same generator coordinate mesh S = (ql,qz, “e ,qnq) over the (f,, f3) plane as the
one displayed in Fig. 4.1.

4.53 Set of kernels
One considers the set of operators

O = {H,, Hy, H, Hy, COM2,KIN, Ry, 1} (4.7)
where Ry, denotes the one-body radius operator and 1 is the identity operator. The other operators
relate to the decomposition of the Hamiltonian containing the Brink-Boeker interaction according to (with
A = (mg, my, wo, wy))

H* = moH, + myHy + woHs + wy Hy + COM2 + Kinetic |, (4.8)

where the latter two terms correspond to the two-body center-of-mass correction and the kinetic energy?,
respectively. For each operator A € O, the off-diagonal elementary kernels

(@Y (g)lAIDY(q) (4.9)

are computed and stored to a file.

IThe use of more involved methods dealing with non-multiplicative dependencies is postponed to a future study.
2The kinetic energy contains the one-body part of the center-of-mass correction.
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4.6 Brute-force learning

The notion of brute-force learning is inspired from the self-learning scheme detailed in Ref. [84] in which
the sole emulator is used to determine incrementally the optimal set of training parameters.
In the self-learning setup, any new potential training point A; is tested using the cost function

@I (HY ~E()) 19(A)
()= § , (4.10)
(WA (HY) 1O(A;)

where |©(;)) is the ground state obtained for parameter A; from the already available emulator based
on 1, training points whereas E(\;) = (©(A;)|H"|©(];)) is the associated energy. The parameter point
maximising this cost function is added to the training set and the procedure is repeated recursively. This
technique is efficient and reliable but, unfortunately, cannot be applied with our (P)\GCM-EC emulator.

Indeed, to evaluate Eq. (4.10), the expectation value of the (up to) four-body operator (H ’\i)Z must be
computed, which is not possible with the PANGCEA numerical solver in its present form. Since this self-
learning scheme is not practical for the time being, a more simplistic (but brutal) way to construct the
optimal training set is employed.

The brute-force character of the learning method presently employed relates to the fact that it relies on
a large enough set of PGCM results pre-computed for parameter values selected via LHS. In the present
case, the available parameter values corresponds to the set Lsy introduced in Eq. (4.4). The optimisation
method is rather flexible, i.e. given an emulator involving n, PGCM eigenstates, the optimisation focuses
on a chosen observable Apin

» Total energies (Aopiim = 0),
* Excitation energies (Aoptin[1 =1),
* Radii (Aoptim = 2)7

to be computed for the 7,y lowest eigenstates. For example, (Agptim, optim) = (0, 3) defines an optimisa-
tion performed on Ey, Ey and E; whereas for (Aqptims Moptim) = (1,2) the optimisation is made on E; —E
and E, — E. Eventually, the optimisation procedure works as follows

1 For 1 <i<j <50, all possible training sets L, = (/\i,/\j) are constructed and each emulator (L,,1,)

is tested on the complementary parameter set V, = {1,---,50} — L, according to the cost function

C(Aoptimr k) - 4.11

1;};%2;“" ( optim ) ( )

The training set L, = (1;, A;,) displaying the lowest cost function defines the optimal training set for
i’lt = 2

2 A parameter value is added to the optimal training set L, = (/\il’.“’/\int)’ i.e. for each i €
{1,---,50} - Lnt, an incremented training set is defined according to

Lyys1 = (i Ay, Ad) - (4.12)

Each emulator (L, .1,7,) is tested over the complementary set V,, ,; ={1,---,50} - L, 1 according
to the cost function

max  C(Agptim k) - (4.13)

1<k<n

optim
The training set L, = (A;,- ’/\int’/\inm) displaying the lowest cost function defines the optimal
ny +1 training parameters.

3 Step 2 is reiterated until the number of training points is considered large enough.
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So far, the EC method has been applied in conjunction with various many-body methods but it has
mainly remained restricted to emulating ground states. Preliminary works have been recently dedicated to
excited states but only within the frame of schematic models [59, 85]. Regarding realistic PGCM calcula-
tions, one is primarily interested in the collective spectroscopy of nuclei such that the accurate emulation
of excited states is indeed primordial. In Refs.[59, 85], as well as in an even more recent study dedicated to
the GCM applied to Lipkin-Meshkov-Glick toy model, the necessity to train the emulator on excited states
was shown to be key to accurately emulate the corresponding excited states.

In this context, the present chapter exposes the numerical results dedicated to the emulation of realistic
GCM calculations according to the model study introduced in Chap. 4. The training set is obtained via the
brute-force learning method exposed in Sec. 4.6 up to n; = 14 such that the 36 other available parameter
values define the validation set.

5.1 Training on excited states

Figure 5.1 displays the mean and dispersion of the error (%) over the validation set of the four lowest PGCM
energies E;’ (top panels) and the three associated excitation energies Eg\ ' —E(/)\ " (bottom panels) as a function
of ny. This is done by only training on the ground state at first (1, = 1), before adding the first excited
state (1, = 2) and the second excited state (1, = 3) to the training. The brute-force learning is performed
by optimising (Ea\i,E{\i).

For n, = 1,2 and 3, the mean error on the ground-state energy quickly converges towards [0.1,0.2]%
as n; increases. The dispersion decreases steadily to eventually reach +0.1%. For n, = 2 and 3, one
further observes that, while decreasing until n; = 5, the error in fact increases again slowly for n; > 5. For
n, =1, the error on Ei\i reaches 3% for n; = 14 whereas the error on both E;\i and E;\i stabilizes around
10%. Further including the first excited state in the training (n, > 1), the error on EI\ " drops to 0.1%, thus
reaching the same accuracy as for the ground-state energy. This observation repeats itself for E; " with
n, = 3 and seems to be systematic, i.e. using the n™ excited state to train the emulator reduces the mean
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Figure 5.1: Mean and dispersion of the error (%) over the validation set for the four lowest PGCM energies
(top panels) and the three associated excitation energies (bottom panels) as a function of n; for n, = 1,2

and 3. The brute-force learning is performed by optimising (E(/)\ i,E{\ i).
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Error (%) H 1,
Observable 1 2 3
Eq 0.2 01 01
E4 31 01 0.1
E, 13 1.8 0.2
Ej 14 88 1.8
E,—E 280 5.2 5.1
E, —Ey 610 90 5.7
E;—Ey 410 280 57

Table 5.1: Mean error on the four lowest PGCM energies and on the three associated excitation energies
delivered by the PGCM-EC emulator for 36 validation points. The results are extracted from Fig. 5.1 for
n;=14and n,=1,2,3.

error on the corresponding eigenenergy by more than one order of magnitude to typically reach a value
around 0.1% or 0.2%.

The above analysis is also valid for excitation energies, i.e. while the emulator is completely unable to
reproduce excitation energies for 1, = 1, including a given excited state in the training allows one to reach
a mean error of 5—6% (~ 170keV on an 3MeV excitation) on the corresponding excitation energy for
n; = 14.

These results demonstrate that excited states must be included in the training to be satisfactorily repro-
duced by the emulator. The corresponding mean errors obtained for 71; = 14 are reproduced in Tab. 5.1

5.2 Optimisation

As detailed in Sec. 4.6 the brute-force learning relies not only on choosing an appropriate value for 7, but
also on selecting an (a set of) observable A, to select the optimal training points. Typically, training can
be optimised towards total energies or excitation energies.

To investigate the impact of the optimisation method on the performance of the emulator, Fig. 5.2
displays the mean error on E(/)\ " (top panels), E{\ " (middle panels) and EI\ ' —Ea‘ " (bottom panels) as a function
of n; for three different optimisations, i.e. optimizing (i) E(/J\ " (left panels), (ii) (E(/)\ i,E{\ ' ) (middle panels) and
(iii) E{\ f— E(/)\ * (right panels). As the present example focuses on the ground state and the first excited state,
n, = 2 is used accordingly.

The optimisations on E(/)\i and (E(;\i,EI\i) deliver similar results and the smallest errors for Ea\i and Ei\i,

i.e. between 0.1% and 0.2% for 1, = 14. One however observes that the rising of the error on E(/)\i beyond
n; = 5 is even more pronounced when solely optimizing on it. The mean error on the first excitation energy
" enhances the mean error
on the individual energies by more than one order of magnitude, i.e. to 4%, while only lowering the mean

error on the excitation energy from 5 to 3%.

Ei\i —E(/]\i is equal to 5% in this case. Rather optimising the emulator on E{\i —Ea\

Eventually, optimizing the training on total energies is optimal to accurately emulate both total and
excitation energies. The mean errors extracted from Fig. 5.2 for n; = 14 are reported in Tab. 5.2.
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Figure 5.2: Mean and dispersion of the errors (%) over the validation set, on total energies E (top panels),

E{\ " (middle panels) and E{\ "—E;' (bottom panels) against 1;, for different optimisations, E(/)\ " (left panels),

max(Ea\i,EI\i) (middle panels) and Ei\i - Eé\i (right panels)

Error (%) H Optimisation

Observable || Eg E; E;-Ej

Eq 0.1 0.1 3.8

E, 02 0.1 4.4

E,-E, | 48 52 3.2

Table 5.2: Mean error on the two lowest PGCM energies and on the associated excitation energy delivered
by the PGCM-EC emulator for 36 validation points. The results are extracted from Fig. 5.2 for n; = 14 and

different optimisation options.
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Figure 5.3: Mean error (%) on the matter radius of the four lowest PGCM states as a function of #;. The

training is done for n, = 3 while optimizing (E(/)\ i,EI\ i)-

5.3 Matter radius

The GCM-EC emulator is not limited to emulate energies and can be used for any observable A for which
off-diagonal kernels

Aidj _
99" —
are available. As already mentioned in Sec. 4.5.3, such kernels are indeed readily available for the one-body
matter radius'. Thus, Fig. 5.3 displays the mean error on radii as a function of 1, for an emulator trained

A (@Y (q)lAlPY (), (5.)

with n, = 3 and optimised on (E(/)\i,EI\i). The mean errors obtained for the ground-state, the first and
the second excited states that are included in the training are comprised between 0.2% and 0.6% whereas
the error for the third excited state reaches about 2%. This demonstrates that the GCM-EC emulator
can satisfactorily reproduce radii, with a significant benefit from including the corresponding state in the
training.

5.4 Opver training

Even though the GCM-EC emulator provides a good enough reproduction of total energies, excitation
energies and radii for practical applications, it is interesting to deepen the analysis and understand why the
mean error quickly saturates around 0.1% for total energies and 1% for excitation energies.

As discussed in Sec. 2.1.2, the emulator applied for the training values is characterized by a null error
whenever the training vectors are exact solutions of Schrodinger’s equation. In practice, however, EC is
applied on the basis of approximate solutions of Schrodinger’s equation delivered by a certain simulator
one wishes to emulate. This is particularly true of (P)GCM states that are not good approximations to
the exact eigenstates of the Hamiltonian, even though energy differences are. Correspondingly, a (P)JGCM

IBecause of the lack of angular momentum projection in the present study, the same cannot be done here for electromagnetic
transitions. Such a study is postponed to a future work.
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Error (%) H 1,

Observable 1 2 3
E 8107 4.10 3.107°
E; 22 5107 2107
E, 4.5 1.9 1.107%

E; 7.4 2.4 0.1
E,—E, 75 11073 4.1074
E, - E, 58 27 11073
E;—E, 89%  31%  1.1%

Table 5.3: Same as Tab. 5.1 for the toy GCM based on the fixed nominal subspace Eg\g

(0)

subspace En(; Ai typically displays a very small effective dimension compared to the training subspace EEPL"’
when 7; becomes significantly greater than one. For a training value, the emulated state thus runs the risk
to be significantly better than the (P)JGCM state one wishes to emulate, thus inducing a non-zero error on
the energy. This is particularly clear for the ground-state energy whose emulated value runs the risk to be
below the reference one and can only moves away from it by further adding training vectors. Eventually,
such a systematic error can propagate to the parameter values that are not in the training set.

In order to investigate the quantitative role of this potential over training, the GCM-EC emulator is

temporarily applied to a toy formulation of the GCM based on the sole nominal GCM subspace Eg\g, ie.
whenever changing the parameter set, the GCM subspace remains fixed. In such a case, no over training is

possible given that the training space remains included into Eg\g all throughout. Figure 5.4 represents the
counterpart of Fig. 5.1 for this toy GCM. The mean errors are considerably lower than in Fig. 5.1 and do not
saturate at 0.1% for total energies and 1% for excitation energies; i.e. the mean error reaches few 107>%
for the former and few 1074% for the latter at 1, = 14.

The above analysis proves that it is possible to produce an extremely accurate emulator in the toy GCM
based on a fixed PGCM subspace. In order to quantify to which extend the lower bound observed whenever
relaxing such a simplification is indeed partly or totally due to an over training, Fig. 5.5 displays the mean
error on the GCM ground-state energy for three different parameter sets

1. The training set in the realistic GCM,
2. The validation set in the realistic GCM,
3. The training set in the toy GCM.

On the scale used in the figure, the error obtained for the training set in the toy GCM is essentially
zero. This demonstrates that whenever the training ground states are built over the full Hilbert space
of the problem at play, EC allows to emulate the ground state corresponding to other parameter sets
extremely accurately. Working with the realistic (P)\GCM, whose main feature is to efficiently operate within
a physically-optimized low-dimensional space, the emulator displays a systematic over training that grows
with ;. In the present application, the error of the emulated ground-state energy for training values, which
is zero by construction for n; = 1, decreases monotonically with 7;, which indeed signals the over training.
Eventually, the mean error over the training set reaches —0.3% for n;, = 14. Moving to the validation set,
the mean error is positive and large for n; = 1 but quickly decreases with n,. For n; > 5, the mean error
becomes negative and eventually reaches —0.1% for 1, = 14 as discussed earlier on. While it is clear from
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Figure 5.5: Mean error on the ground-state energy as a function of n; for both the training and validation
sets of the realistic GCM as well as for the training set of the toy GCM based on a fixed nominal GCM
subspace.

a variational viewpoint that the over training also impacts the validation set?, the associated value is not as
large as for the training set, eventually leading to a smaller error. While it is counter intuitive that the error
is larger for the training set than for the validation set, it is in fact due to a compensation of errors.
Indeed, the GCM-EC emulator does not only suffer from a (small) over training due to the training
subspace being larger than a single GCM subspace, it also suffers from an (eventually even smaller) under
training due to the fact that the GCM subspace associated with a given validation point is not fully spanned

by the training subspace. Both act in opposite direction thus leading to a compensation of (small) errors’.

5.5 Conclusions

Employing realistic GCM calculations based on a simple but realistic enough two-body interaction, the
GCM-EC emulator was shown to deliver an accurate reproduction of total energies (~ 0.1 —0.2% error),
excitation energies (~ 5— 6% error) and matter radii (~ 0.2 — 0.6% error) of the low-lying GCM states.
Importantly, achieving such results requires to include the excited states of interest in the training.

While sufficient in practice, the lower bound on the error was shown to result from two (compensating)
errors that are intimately related to the nature of the (P)GCM

1. an over training due to the growing dimension of the training space with #; that largely supersedes
the subspace characterizing a (P)GCM simulation,

2As opposed to Fig. 5.5, the absolute value of the error was plotted in previous figures, which explains why the over training
error makes the error rise beyond n; = 5 in Figs 5.1 and 5.2. The fact that the rise is more pronounced when optimizing on E(/)\i
alone rather than on both E(/)\ " and EI\ " in Fig. 5.2 is due to the fact that the over training is maximized when optimizing the sole
ground state.

3Because the GCM subspace associated with a training point is fully included into the training subspace, training points cannot
suffer from such an under training. Consequently, training points do not benefit from such a compensation effect as seen in Fig. 5.5.
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2. an under training induced by the imperfect spanning of a given (P)GCM subspace by the training
subspace.

While the over training was explicitly characterized and quantified, the notion of "imperfect spanning of a
given (P)GCM subspace by the training subspace” remains qualitative at this point. It is the goal of the next
chapter to characterize it more quantitatively by invoking a computable separation distance between any two
subspaces of the complete Hilbert space.
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The performance of the (P)GCM-EC emulator characterized in Chap. 5 is sufficient to perform large-
scale studies with small enough error on energies and radii of collective excited states. Yet, the over training
associated with a given training subspace and the difficulty to emulate arbitrary (P)GCM subspaces out of
that training subspace set lower bound to the achievable accuracy of the (P)GCM-EC emulator.

In the present chapter, the goal is to better characterize and quantify these two limitations that are
inherent to the (P)GCM, i.e. they relate to the fact that the (P)GCM diagonalizes the Hamiltonian in a very
small, physically optimized, subspace of H 4. In order to so, the goal is to be able to compute

1. the proximity of a parameter y € R" to the training set L,, ,

L
2. the proximity of a PGCM subspace Egp’l to the training subspace Esp ",

and to correlate the error of the emulator with such distances.

6.1 Metric
6.1.1 Definitions

Let E be a non-empty set. A meiric ([86], chapter 3) on E is a map d : E x E — R" satisfying, for all
x,v,Z € E,

d(x,y) = (v, %), (6.1a)

65
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dx,y)=0 &= x=y, (6.1b)
d(x,y)<d(x,z)+d(z,p) . (6.1¢)

When only a subset of these three properties are satisfied, weaker notions are invoked such that d is
coined as

o a semimetric if (6.1a) and (6.1b) are true, but (6.1c) is not.
o a pseudometric if (6.1a) and (6.1c) are true, but (6.1b) is replaced by the weaker condition
d(x,x)=0, (6.2)
for all x e E.
o a premetric if (6.1a) and (6.2) are true, but (6.1c) is not.

Given d a premetric on E and A a nonempty subset of E, the distance between an element x € E and
the subset is given by

d(Ax) = ;relf‘d(y, x). (6.3)

6.2 Parameters distance

To define the distance between a parameter y € R"» and the training set L, , R"7 is assumed to be endowed
with the standard vector space structure, the standard scalar product (.,.), the norm ||x|| = V(x, x) and the

metric
", 1/2

d(x,y) = lx—yll = [Z(xi —y]-)z] : (6:4)

i=1

Given this metric d on R"7, the distance between y and the set Ly, is introduced

6.2.1 Parameter distance

The distance between an arbitrary parameter y and the training set L, is thus given by
(Lo p) = d (L) = inf AL ), (6.52)
Given that L, is closed in E, the distance satisfy
d(Ly,p)=0 & pelL, (6.6a)

The computation of dj (Ln,; ;/t) is straightforward.

6.3 Subspaces distance

The question of the distance between two linear subspaces of a given vector space is not standard. In order
to set it for the problem of present interest, let us introduce, for 1 < p < dim F, the set Gr(p,]:') of the p-

dimensional linear subspaces of F'. This set, together with a canonical riemannian manifold structure [87]
and [88] chapter 16.11, is known to be a grassmannian manifold.

IRecall that £ denotes a finite-dimensional truncated Fock space.
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6.3.1 Identical dimensions

Let us first consider the case of two subspaces of identical dimensions, i.e. two PGCM subspaces E, :‘ " and

qul“ of identical (effective) dimensions pdim _ ngi;g = p such that they both belong to Gr (p,]:' )

opup T

Principal vectors and angles

In order to define the distance between both subspaces, one needs to first extract the associated principal

vectors and principal angles. Given the two orthonormal bases {|Eg”1 »q=1,...,p} and {|EZ”2>;q =1,...,p}

extracted according to the protocol detailed in Sec. 1.7, the principal vectors {|AZ”1 »q9=1,...,p} and
{|Ag” 2;q=1,...,p} belonging respectively to E;, q]x " and qu” ? are defined recursively via the algorithm

lL. Forg=1,...,p

(a) maximize (Agm |Ag”2),

(b) under the constraints that

ATIAT = = (AT AT ) =0,
(ATTIATY = = (ATIATD = 0,

<AZI"1|A3I"1> — <A2P‘2|Agl"2> =1,
2. go back to 1

Once the principal vectors have been determined, the p principal angles {9,‘; fira

tained via

,q=1,...,p} are ob-

cos 0" = [(Ag" 1A €10,1], (6.7a)
o<oge < 6.7b
<0, <3 (6.7b)

Figure 5 illustrates the situation for two subspaces of dimension 1. In this case, the normed basis vector
of each subspace already deliver the two principal vectors and the principal angle between them is trivially
given by the angle between both one-dimensional lines.
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dim _ ndim -1

Fig. 5 Schematic illustration of the principal vectors and angles for NG = Mo =

Figure 6 further illustrates the situation for two subspaces of dimension 2. In this case, the principal
vectors are in principle different from the initial basis vectors. In the schematic example the first two
principal vectors are identical and the first principal angle is 0. The second principal angle is nothing but
the angle formed by the two planes.

Fig. 6 Schematic illustration of the principal vectors and angles for ngi"f: = ngil’}; =2
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Geodesic distance

Having the principal angles between both subspaces at hands, their geodesic distance, known as the Grass-
mann distance, is given by”

0

o1 ROK2
o (Enl" Enl”) (6.10)

It is easy to check that d,, is a metric on Gr(p,ﬁ) that is intrinsic, i.e. which does not depend on any
embedding and that is independent of the dimension of the truncated Fock space F.

Principal angles computation

In practice, the principal vectors and angles are obtained by applying a singular value decomposition (SVD)
on the matrix built from the overlap between members of the orthonormal bases of EZ : " and Ef, q" ’ ie. for

l<qq <p

N:q]fl,"{z - <EZM1|EZ’M2> . (6.11)
The application of the SVD reads as
NOHIH2 — [JOHH2y G2 G2 T , (6.12)

where U%HiH2 (V9MF2) collects the left (right) eigenvectors and where the singular values delivers the
principal angles according to

YOk = diag(cos 07", cos 6;”1”2) . (6.13)

6.3.2 Different dimensions

The distance 0, is however undefined for subspaces of different dimensions. Fortunately, this problem could
be recently addressed [89], inspired by Schubert calculus, knowing that any valid distance between two
subspaces can only be a function of their principal angles [90]. It was thus possible to define an intrinsic
distance reducing to the Grassmann distance for equal dimensions.

Schubert varieties

Given the two PGCM subspaces quﬂl € Gr (p,f—) and qum € Gr(q,]:") and assuming without any loss of

generality that 1 < p < g < dimF, one introduces the two Schubert varieties in Gr(q,]:" ) and Gr (p,]:" ),
respectively, according to

Q. (Ex")={X €Grlq, F) | ExM" ¢ X} c Gr(g, F) , (6.14a)
Q_(Ex/*)={Y € Gr(p, ) | Y C E;°}  Gelp, F) (6.14b)
ie Q) (qum) is the set of g-dimensional linear subspaces of F containing quﬂl whereas ()_ (quﬂz) is the

set of p-dimensional linear subspaces of E, q’l .

2While the Grassmann distance is the geodesic distance, many alternative distances have been defined, e.g. the Asimov distance
Of oL\ _ poH1H2
Sa (En, ) )=, (6.8)

or the Chordal distance

p
Zm@(ej{ kzy (6.9)

q=1

S (Eny EF)

which are all functions of the principal angles.
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Distance
With the varieties at hand, the distance between the two subspaces of (possibly) different dimensions is
defined as [89]

S(En" Enl®) = 0, (Qu (Ex), Enl®) (6.15a)

q q
S (E,‘Iq’“, Q. (Ef{q"z)) ) (6.15b)

P

and is thus nothing but the Grassmann distance between E;, f ? and the nearest g-dimensional linear sub-
space containing E, qﬂ ! or, equivalently, the Grassmann distance between E, qﬂ ' and the nearest p-dimensional
subspace of E,C;qm.

The principal angles between both PGCM subspaces are obtained as before by applying the SVD to the

(now rectangular) matrix N?#1#2 such that the number of singular values is reduced to 7 = min (p,g). With
these at hand, the distance reads as®

5(En! Eql) = Y CHES RS (6.16)
=1

n

Eventually, 0 indeed agrees with 0, whenever p = q. However, the triangular inequality is not satisfied such

that § is not a metric but a premetric*.

dim _ dim
om = 1 and ng}l

indeed nothing but the distance between E, ;‘ " and the closest one-dimensional subspace of qu” %

Figure 7 illustrates the situation for n = 2 where one observes that the distance is

Fig. 7 Schematic illustration of the principal vectors and angles for ngi;}; =1 and ng‘;; =2

30ther existing distances between subspaces of equal dimensions, e.g. Asimov or Chordal distances, generalize similarly.
“Further generalizations are possible to make it a metric on the so-called doubly infinite Grassmannian Gr (oo, c0) [89].
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Figure 6.1: Eigenvalues of the norm matrix N* associated with the GCM subspace Eﬁ; with n, = 53
corresponding to the (arbitrary) parameter set A;.

6.3.3 Limit cases

For Ef,qm a p-dimensional subspace and Eflqm a gq-dimensional subspace, there are m = min(p, q) principal

angles comprised in the interval [O, %] Thus, from (6.16) the inequalities

osa@gﬂEﬂﬂs§¢E, (6.17)
are satisfied.

The lower bound in Eq. (6.17) is attained if and only if all principal angles are zero, i.e. whenever
E,Z’“ - E,ZHZ or E,f;lz C Eg;ll. The fact that the distance between two subspaces is zero as soon as one is
included into the other is a desired property in the present context as will become clear later on.

The upper bound in Eq. (6.17) is attained if and only if all principal angles equate 77/2, i.e. whenever

qu” "and E,, ;‘ ? are orthogonal to each other.

6.4 Numerical tests

The goal is now to validate the computation in both limit cases as well as to investigate the typical distances
one encounter in the context of a realistic GCM-EC study. To do so, a simple case is first employed before
moving to a situation that is typical of the real situation of present interest.

6.4.1 Inclusion and orthogonality

Let us consider the GCM subspace E;\l; with ng =53 corresponding to the (arbitrary) parameter set A;.

The eigenvalues {s;,i = 1,...n,} of the associated norm matrix N A1 are displayed in decreasing order in
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Figure 6.2: Distance in parameter space between A4q and the 49 other parameter sets A; against the
distance between Eggﬁ and 49 other GCM subspaces Eé\é

Fig. 6.1. The eigenvalues span about 7 orders of magnitude, the smallest being equal to 4.5 x 107 and the
largest to 1.6 x 10",
Next, the 1 < n‘/i\ilm < n4 largest eigenvalues are chosen according to the truncation s; > €1 to build the

. ,:/\1 . di . . . A . di A
orthogonal basis {|27"),1 = L,...,ny™} spanning the approximation to E,, . For a given value of n3™(e"1),

the subspace U, C Eﬁ; spanned by the 1 < g < n‘/i\ilm—l first vectors {|Elf\1),i =1,...,p} is introduced. Given
Up, one further defines

1. the subspace V, C EQ; spanned by the 1 < g < p first vectors {|E;\1>,] =1,...,q} such that V, C U,. In

this case, numerical calculations of subspace distances gives 5(UP, Vq) = 0 up to numerical accuracy.

2. The subspace W,, C E%; spanned by the 1 <m < n‘/i\im — p last vectors {|E;\l yi=p+l,..., n?\ilm} such

that W, is orthogonal to U,. In this case numerical calculations gives 6(Up,Wm) = Z4/min(p, m)
up to numerical accuracy.

. . . . . . ~Apy i
This numerical computations validates that the orthonormality of the basis vectors {|2;"),i = 1,..., ni‘lm(e’\l )}
is numerically satisfied along with the null distance between a given subspace and one included into it.

6.4.2 Distances between GCM subspaces

Let us now consider the 50 GCM subspaces E;l\;, i=1,...,50, each originating from 7, = 53 non-orthogonal
HF states and being associated with a specific parameter set A;. The diagonalization of the norm matrix
N*% and the truncation of its eigenvalues according to the thresholds €% delivers the orthogonal basis
{|E;\’ »i= 1,...,n‘j‘\iim} spanning (the approximation to) Eﬁ; In practice, the convergence pattern observed
in Chap. 4 for the nominal GCM spectrum is the same for all parameter set A; such that all 53 eigenvalues
can safely be kept, i.e. n‘j\il_m =ng= 53 fori=1,...,50.
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Figure 6.3: Same as in Fig. 6.2 for 147 and é\§7

In Fig. 6.2 (6.3), the distance between Eé\gﬁ (Eé‘f) and the 49 other GCM subspaces is plotted against the

corresponding distance in parameter space. Noticing that the maximum distance between two subspaces
of dimension 53 is wV53/2 =~ 11.43 whenever they are orthogonal, one observes that 6(E§\§6, 3\13) covers
a rather large range of values between about 3 and 10 such that certain subspaces are not far from being

A R . .
orthogonal to EZ3° whereas others have a strong overlap with it. In the second case, the span is reduced, i.e.

6(E;\§7,E§§) varies from about 3 to about 7. These two cases represent extreme situations in this respect

such that any arbitrarily chosen GCM subspace among the 50 presently under consideration would all lie
somewhat in between. It seems in particular that the minimal distance between any two GCM subspaces
among the 50 generated via the LHS in parameter space described in Chap. 4 is around 3.

Furthermore, one observes in Fig. 6.2 and 6.3 that the distance between subspaces and the distance in
parameter space are not strongly correlated, i.e. while the Pearson correlation coefficient (PCC) p is equal
to 0.79 in the first case, it is only equal to 0.05 in the second case. Overall, the distance in parameter space
does not constitute a safe indicator of the actual distance between subspaces such that it is not used any
further in the following.

6.4.3 Distance to training subspace

Let us now proceed to the incremental reunion of the first n; = 1,...40 among the 50 orthonormal bases
Ln . . . . . .
defined above to set up the training subspaces E,,* associated with the training parameter sets L, . Building

and diagonalizing the super norm matrix N L"r, before truncating its eigenvalues according to the super

dim

" with effective dimension nj™.
nt

L
threshold el , provides an orthonormal basis of (the approximation to) O

Figure 6.4 compares the eigenvalues of N Lio with those of NM already shown in Fig. 6.1. While the
latter span 7 orders of magnitude, the former now span 12 orders of magnitude, all the way down to 10711,
The fact that the eigenvalues of N Lu reach much smaller values results from the dramatic increase with 1,

L, . .
of the colinearity between the vectors gathered to span Enqt compared to the case n; = 1 studied above via

A
E;'.

q
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Figure 6.4: Eigenvalues of the norm matrices N4 (left) and N1 (right).

log &b

L
Figure 6.5: Distance 5(E2;,EHZ') against the super threshold e’ and the number 7, of training GCM

L
spaces gathered to form the training space En:’. All GCM subspaces are built out of 77; = 53 non-orthogonal
constrained HF states.
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Figure 6.6: Distance 6 (Eng’,E;}; ), i =41,...,50, against n;. Each of the 50 involved GCM subspace is built

out of 1, = 53 non-orthogonal constrained HF states and is such that n‘/i\i_m = ny. The super threshold is

taken to be el = 1078 for all n;. The maximum distance 77V/53/2 ~ 11.43 that would be reached if the
two subspaces were orthogonal is also shown.

- L
Taking n; = 40 as an example, Fig. 6.5 displays the distance b(Ei;,EnZt) between the GCM subspace

A . . . . . A,
E;, and the training subspace against 7; and the super threshold el Since by construction E;, is always

among the GCM subspaces used for the training, its distance to the training subspace is expected to be
zero. This is indeed true for all 7, except when the super threshold e’ becomes greater than 107°.

L, .
Indeed, in this case the orthonormal basis of Enqt becomes more and more drastically truncated such that

the inclusion of En; into it becomes in fact compromised. To avoid such an artifact and safely compute the
distance between a given GCM subspace and the training subspace, the present analysis indicates that the
super threshold must satisfy X < 107° as soon as n; > 4.

L P
Next, the distance between the training subspace E;3 and the 10 GCM subspaces Egg, i =41,...50,
is displayed in Fig. 6.7 as a function of n;. For n; = 1, the training subspace reduces to (the arbitrarily

chosen) subspace Eé\é such that the distance 6(Eé§,E;\’3) is equal to 6.5 on average with a dispersion of

5 L, :
1.3. Such a span is similar to the one visible in Fig. 6.3 for Eg‘g“. As n; grows, the distance 5(E53t,Eg\’3)

decreases rapidly and quasi exponentially for (essentially) all i = 41,...50. As such, the distance reduces
to 2.8 (0.4) on average for n; = 3 (n; = 15) with a dispersion of 0.3 (0.3). Eventually, the average distance
reaches 0.2 for n; = 40 with an asymmetric distribution associated with the dispersion 0.3. As a matter of
fact, two among the 10 randomly tested GCM subspaces retain anomalously large distances for n, = 40, e.g.

6(EI5“43°,E§§8) ~ 1, which indicates that these two subspaces are not fully emulated by the training subspace

SNotice that only 10 different distances are computed in the present case whereas Fig. 6.3 displays the distance between Egéﬂ
and 49 other subspaces.
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Figure 6.7: Same figure as Fig. 6.6, in logarithmic scale.

gathering 40 GCM subspaces.

One further observes that the distance between a given subspace and the training subspace drops

abruptly for certain values of n;. Taking Eg\gl as an arbitrary example, the distance to the training subspace

decreases gradually as a function of 1, except for 1, = 3,7 and 28 for which a sudden reduction is identified,
with additional smaller drops along the way. As visible in Fig. 6.8, such sudden drops correlate with the

addition of a subspace that is particularly close to Eg\él This is especially true of the first drop where the
distance to the training subspace closely reflects the distance to the added subspace. As the size of the
training space grows, adding a GCM subspace that is particularly close to the tested subspace does not
necessarily translate into a sudden drop of the distance to the training subspace given that the distance
to the latter is already very small. Still, whenever a drops occurs, it corresponds to the addition of a
particularly close subspace to the tested subspace.
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Chapter 7

Training regimes in PGCM-EC
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Results of the PGCM-EC emulator exposed in Chap. 5 are presently analyzed using the distance between
subspaces introduced in Chap. 6.

7.1 Error versus distance to training subspace

The first objective of the present chapter is to study the correlation between the error associated with a
given validation point A; and the distance

- A oln
dipace = (E53,E53f) 71

between the corresponding GCM subspace and the training subspace. To do so, the error on E(/)\ " (top

panels), EI\ " (middle panels) and EI\ T E(/)\ " (bottom panels) for each of the 36 validation points is plotted in
Fig. 7.1 against d,,c. for three sizes of the training space, i.e. n; =1 (left panels), n; = 2 (middle panels)
and n; = 14 (right panels). In each panel, the mean error over the 36 validation points is reported along
with the Pearson correlation coefficient p.

Overall, the mean error strongly decreases with 7, which is consistent with the data presented in Fig. 5.1.
The same is true about the mean distance and its dispersion, which is consistent with the analysis performed

in Sec. 6.4.3. For n; = 1, the error on E(/)\i and E{“' is strongly correlated with dp,c. € [3.5,9.3]. This is
also true, even though to a lesser extent, for the excitation energy. Looking more closely, one observes that
the larger the distance, the stronger the correlation. Since for n; = 2 all distances to the training subspace
are below 5, the error on the individual energies correlates already less significantly and not at all for their
difference. For n; = 14, all distances are below 3 and no trace of correlation persists.

The above result demonstrates that the strong under training at play for n; = 1 quickly weakens as the
size of the training subspace increases. Still, even for n, = 14 the distance between the GCM subspace
to the training subspace is different from zero for many validation points such that a slight undertraining
remains. This is consistent with the observation made in connection with Fig. 5.5. As seen from Fig. 6.7,
the number of training points 7; would need to be doubled to reduce all distances by another order of
magnitude and thus fully overcome the under training. However, the more 7n; grows, the more the over
training increases at the same time.
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Figure 7.1: mean relative errors (%) on E(/)\ " (top panels), EI\ " (middle panels) and Ei\i - Ea\ " (bottom panels)
for the 36 validation points against the subspace distance dgpace, for 1; = 1 (left panels), n; = 2 (middle
panels) and n; = 14 (right panels).
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7.2 'Training regimes

Figure 7.2 displays the mean error over the validation set on Ea\i (top panel), EI\ " (middle panel) and

A
El

distance decreases monotonically with n;. Second, three different regimes can be identified for the error on
individual energies

i —E(/)\ " (bottom panel) against the mean distance for 1 < n; < 14. First, the figure confirms that the mean

1. for 1 <n; <4, the mean error decreases steadily by two orders of magnitude,
2. for 5 < n; <6, the mean error is minimal around 0.1% with a mean distance around 2,
3. for 7 < n; < 14, the mean error grows again slowly, eventually reaching 0.2%.

These three phases can be identified with (1) an under training regime, (2) an optimal training regime and
(3) an over training regime, respectively.

For the excitation energy Ei\i - E(/)\ ’, the three phases do not appear and one only observes a slow, yet
steady, decrease of the error from 20% down to 6% for 1 < n; < 14. In particular, the effect of the over
training cancels out in the phase (1, > 7) where it dominates the error for individual energies. Under the
hypothesis that this remains true when further increasing 7, one may hope to bring the error on excitation
energies further down if necessary by pushing the training beyond n; = 14.

7.3 Conclusions

With the help of the computable distance between an arbitrary (P)GCM subspace and the training subspace,
it was possible to isolate three different regimes for the performance of the (P)GCM-EC emulator as a
function of ny, i.e. an under training when #; is too small for the training subspace to properly emulate the
(P)GCM subspace of interest, an optimal training regime for intermediate values and an over training phase
where the (P)JGCM subspace is (essentially) well emulated at the price of working with a training space that
completely supersedes it. The corresponding situation is schematically represented in Fig. 7.3.

The fact that the over training dominates when increasing #; prevents from diminishing the error on
individual energies below 0.1%. This is not a problem in practice given that such an error is largely
subleading compared to other sources of error in current ab initio calculations. The error reached with the
(P)GCM-EC emulator on low-lying excitation energies is of the order of 5%. While already satisfying, one
may want to further reduce it, e.g. when studying higher-lying states such as giant resonances [44, 45, 46].
Thankfully, excitation energies seem to be less prone to the over training thanks to its cancellation in energy
differences. Consequently, one may hope that pushing the training beyond what was presently done can
further reduce the error. This will have to be verified in a future study.



82

Chapter 7. Training regimes in PGCM-EC

10?
° over training optimal training under training o
Wo10? n=1
v 2
o~ 100 L
& i e
o - 21w 4 s | * 3

- L

1071 13 11‘ [ 1 . o

9 5

102 el

10?
— L]
Wo10? ne=1
] 2
° .
< 10° 4,
® o1, * s
E 191 * e 8 S e

10 13 11 ee .

5 5

102 1

10?2
iy s 4 2 .
| 8 . .
- 10t 14 12 10 _e PO 3 ne=1
Wy e e gq . 5
= 13 1
o 0
° 10
c
B 10-1

10~
IS

1072 | 1

10° 10t

mean dspace

Figure 7.2: Mean error on E(/)\ " (top panel), EI\ " (middle panel) and EI\ f— E(/)\ " (bottom panel) as a function of
the mean subspace distance for 1 <7, < 14. The means are taken over the 36 validation points Regimes of

under training, optimal training and over training are highlighted.
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Figure 7.3: Schematic illustration of the three training regimes. At first, the (P)GCM subspace corresponding
to a given simulation (purple) is imperfectly reproduced by a too small training space (green). In a second
phase, the emulation of the (P)GCM subspace constitutes an optimal compromise (blue). Eventually, the
(P)GCM subspace is well emulated at the price of a too large training space inducing a non-negligible over

training (red).
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Chapter 8

Conclusions

The projected generator coordinate method provides the zero-order contribution to the perturbative
expansion built on top of it [47]. While total energies require the further inclusion of correlations on top
of the PGCM, excitation energies of low-lying collective states are already well converged at the PGCM
level [49, 48]. In this context, the present thesis explored the possibility to accurately emulate PGCM
simulations via the eigenvector continuation method. The objective is eventually to emulate millions of
PGCM simulations at low computational cost to perform sensitivity analyses on the interaction parameters
and propagate their uncertainties to many-body observables.

The preliminary study performed in the present work was based on a simple Brink-Boeker two-body
interaction. While the Brink-Boeker contains a subset of the terms making up the effective Gogny interac-
tion, all matrix elements of the latter were re-derived and implemented in the PAN@CEA numerical solver.
The latter solver was further adapted to train the emulator and perform PGCM-EC emulations for a large
number of parameter sets generated via the latin hypercube sampling method.

Based on realistic GCM calculations of 2°Ne including both axial quadrupole and octupole deforma-
tions, the accuracy of the GCM-EC emulator was investigated for total energies, excitation energies and
matter radii of low-lying states. Because of the present lack of angular-momentum restoration, the emu-
lation of electromagnetic transitions was left to a future study. Varying 4 parameters of the Brink-Boeker
interaction, up to 14 training sets were generated using a brute-force learning method. Based on 36 valida-
tion sets, the GCM-EC was shown to deliver an accurate reproduction of absolute energies (~ 0.1 —0.2%
error), excitation energies (~ 5 — 6% error) and matter radii (~ 0.2 — 0.6% error) of the low-lying GCM
states. To achieve such performances, it was shown to be mandatory to train the emulator on the excited
states of interest.

While sufficient in practice, the lower bound reached on the error was shown to result from two (com-
pensating) errors that are intimately related to the nature of the (P)GCM

1. an over training due to the growing dimension of the training space that largely supersedes the
subspace characterizing a (P)GCM simulation,

2. an under training induced by the imperfect spanning of a given (P)GCM subspace by the training
subspace.

In order to quantify the imperfect spanning of a given (P)GCM subspace by the training subspace, the
distance between any two subspaces of the complete Hilbert space was introduced and implemented in
the numerical solver. Based on such a tool, three different regimes for the performance of the (P)GCM-
EC emulator were identified, i.e. an under training regime when the number of training points is too
small for the training subspace to properly emulate the (P)\GCM subspace of interest, an optimal training
regime obtained for an intermediate number of training points and an over training regime where the

85



86 Conclusions

103 b ) )
— n¢: 50
neg: 75

Trrrim

107

10!

el
LR RLLLL |

10°

emul./simul.
el
LR |

=
o
o
ool

10_3 bR | R | AR | UNLELIRLLY | UNLELRRLLY | LY |
10t 102 103 104 10° 10°
number of computations

Figure 8.1: Ratio in 2’Ne of the GCM-EC emulation time over the GCM simulation time is displayed in
Fig.8.1 as a function of the number of computations for three training set sizes n, = 50,75,100.

(P)GCM subspace is (essentially) well emulated at the price of working with a training space that completely
supersedes it.

While the over training prevents from diminishing the error of the emulator on total energies below
0.1%, it seems possible to bring the error on excitation energies below the 5% presently reached using 14
training points thanks to a cancellation of the over training in energy differences. This would be necessary
to study higher-lying states such as giant resonances.

Based on the present thesis, the next step will consists of

1. including angular-momentum restoration to extend the present work to the full PGCM and the emu-
lation of electromagnetic transitions,

2. pushing the study to larger numbers of training and validation points,

3. performing a similar study for YEFT interactions,

4. implementing statistical tools to perform sensitivity analysis and uncertainty propagation,

5. performing large-scale ab initio PGCM calculations accompanied with interaction uncertainties.

To anticipate the expected gain in large-scale applications, the ratio in *°Ne of the GCM-EC emulation
time over the GCM simulation time is displayed in Fig.8.1 as a function of the number of computations for
three training set sizes n; = 50,75,100. For a given training set size, the gain increases linearly with the
number of computations. Targeting one million computations, which is the order of magnitude necessary
to perform controlled statistical analysis [53], the GCM-EC emulator is about 100 to 1000 less expensive
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than the GCM simulator. This gain will be even much greater once the restoration of symmetries is taken
into account.
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Appendix A

Symmetry group

The existence of continuous symmetries in finite systems is linked to conservation laws, such as the particle
number conservation arising from U(1) global gauge symmetry and angular momentum conservation aris-
ing from SU(2) symmetry. The symmetry group of the nuclear Hamiltonian H leaving the system invariant
is defined as

Gy =SUQR)xIxU(l)y x U(l)y, (A)

and is associated with the conservation of total angular momentum, parity and neutron/proton numbers.
The group Gy is a compact Lie group, although non Abelian due to SU(2).

A.1 Unitary representation

Each subgroup is represented on Fock space F via the set of unitary rotation operators

RAQ) = e e Pl )y, (A.2a)
T1(¢,,) = e ¢xF, (A.2b)
Ry () =N, (A.2¢)
Ry(p) = e, (A.2d)

where Q) = (a, 8,7), ¢ and ¢, (¢,) denote Euler, parity and neutron- (proton-) gauge angles, respectively.
The one-body operators entering in Egs. (A.2) denote the generators of the group made out of the three
components of the total angular momentum 7= Jx+]y,J2), neutron- (proton-) number N (Z) operators as
well as the one-body operator

F= Z’faﬁCZCﬁ (AS)
ap

defined through its matrix elements
1 :
Jap = 5(1=100)00p, (A4)

where 77, denotes the parity of the corresponding one-body basis state.
The irreducible representations of the group are given by

(we| R(9)|\y,;t’> = DYip(0)8567 85

with 6 = (JTINZ) and
Diiap (0) = Dpgpg (Q)e™ (7002 100N o107, (A.6)
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and where the rotation operators have been gathered into

R(6) = RAO)T () Ry (b)RZ (),

with
0=(Q, ¢ Pu ¢p)

collecting all rotation angles.

A.2 Projection operators

The operator
_ pJ pIlIpN pZ
P = Py, P PP

collects the projection operators on good symmetry quantum numbers

P] = ZgKP]\I/IK

_ Z J+l JOdQ D} (Q)RHQ),

K6n2? [0,47]x[0,7]x[0,27]

1 i(1—
pHEE Z el(l 7'()4),,/21—[((1)71),

¢r=0,1
271

PN d¢n ei¢nNRN(4)n)f

1
27
0

271
1
Pr=— [ a9, @7 Ry ()
J
0

Appendix A. Symmetry group

(A.7)

(A.8)

(A.9)

(A.10a)

(A.10b)

(A.10¢)

(A.10d)



Appendix B

Hill-Wheeler-Griffin equation

In general, the first order variation of £ = <\<I(I|,7\L\I>]> as |W) +— |W) +|dW) satisfies

(WIWYAE = (dW|H|V) + (V| H|dV) - E[V](dV|W) + (P|dW)) . (B.1)

Given a sequence |¢; )1 <i<, in Fock space F, define V to be the linear subspace of F generated by |¢;)1<j<,
one has

Theorem B.0.1. £ is extremal at .

Wy=) alpiyeV (B.2)

i=1
on V if and only if for every 1 <i<n

n

Y ai(¢PilHIp) - EIVKild)))

=1

0. (B.3)

Proof. Using Eq. (B.1), £ is extremal at W on V if and only if, for arbitrary |h) € V
(hHIW)+(W[H|h) - € ((h¥) +(¥|h)) =0 . (B.4)

Combining Eq. (B.4) with the equation obtained by replacing |h) by i|h) in Eq. (B.4), one obtain that Eq. (B.4)
is equivalent to

(hH|W) - EChW) =0, (B.5)

for arbitrary |h) € V. Finally, the definition of V and Eq. (B.2) imply the equivalence of Eq. (B.5) with
Eq. (B.3). O
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Appendix C

Talman coefficients and integral relations

C.1 Talman coefficients

The product of two cartesian and polar harmonic oscillator functions may be expanded as (Ref. [79],

Egs. (C1) and (C7))

-2%/2b2
1) 1 e 7/ 1
Wi (b)) (2:b;) = Y T v b, ()
VbV 5
2 2
2y ) e’ /2b; )
ll)f‘fh)”l(r’ ©; br)ll)fnz)nz(r; P; br) =7 = ZT(Z)zﬁnlmznz lpinz)—ml Tl(r' b5 b?‘) : (CQ)
A
From Ref. [80], the Talman T coefficients can be expressed as
. Vnqlnyn!
(I)Zv”z =0(ny +ny+neven)d(|lng —ny|<n<n + nZ)(nl—n2+n),(n2—n1+n)|(n1+n2—n), , (C.3)
2 ) 2 ) 2 )
and
T, = (FD"M26(1X, = Xol < X < X +X5)
6sup
X N(X,Xl,Xz, m,my + l) N(Xl,Xz,X,ml,l) N(Xz,X,Xl,mz, my + l) B (C4)
l:éinf’2
were
Xl = 2711 +|m1| ) (C5)
X2 = 2n2+|m2| B (C6)
m = myp—myp , (C7)
X = 2n+|m|, (C.8)
1
X, = §(X+X1 -X,) (C.9)
X, = l(X +X,-X1) (C.10)
2
X, = l(X1 +X,-X) (Cc.1)
2
Sgp = min{X,—my, X, —my X} , (C.12)
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St = max{—X,—my,—Xy—my-X} , (C13)

and

O ()

N (Xa, Xp, Xe, g, ) = (Xu+Xb—XC—2me ), (Xa+xb—xf+2me ), : (C14)
1 : z :
C.11 Integral relations
Defining
oo
I(ny,ny;b,B) = dze_zz/(zbz)_zz/(wz)l,b,(qll)(z;b)gbf,lz)(z;B) , (C.15a)
J—o00
I, nymibB) = [ dzgl@b)pll @ b)pll (@ By
1,12, 10, )— Z’l’m (Z, )anz (Z,b)?,bn (Z;B)e 25, (C15b)
J
oo 271
2 2\_,2 2 2 2
I(ml,nljmz,nzjb,B)E 0 TdTJ; d(Pe r/(2b%)-r/(2B )lpi(ﬂl)nl(r;Q;b)wﬁnznz(r;(P}B) »
J
(C.15¢)

it is shown in Ref. [79] that
g \(1n2—11)/2
) _ (F) /”1!772! (_1)(n1_n2)/2 ny +np
I(n]; ny; b; B) - 6n1+n2 even ) s n1+22+1 g+, ("1+”z )' 1y y (C16a)
(5+7%) 2 7
n

+1
() T —n)r(E - n)r(E —n)
V2Br7/2 zényInyn!

2F1(—1’11,—Tl2;—£+1/l+1}1 —Z) R

I(ny,ny,n;b,B) = bn1+n2+n even

(C.16b)
(E)n2_nl
b -
I(my,ny;myng;b,B) = 0, PR T \/nl!(nl +|mq|)nyl(ny + |my )\ E(ny, ny, lmyl) , (Cl6¢)
(5+5)
with
1
(S = % ) (C.17a)
1. B?
z= 5(1+ﬁ) , (C.17b)

- 1 ny +ny +|m|\(n; +n, +|m|
=y, 1y, E—— T . C.17
(n] ny |m|) (nl +ry+ |m|)' ( 1y 1y ( C)



Appendix D

Moshinsky coefficients

From Ref. [80] it is shown that Moshinsky coefficients (3.16) are expressed as

1,2)

C(LZ)}ﬁlV ’

(
X

where

|
cwb _ | M

nv = n. n Nag Mgtz

2, "z,
! I
2B _ ny,+1,+1g nﬁ’(nﬁ+|mﬁ|)' -

c = (=1)" f 0,2 2, 42

my Mp Mty TXT X+ Xy

n,! (n’, + |m’4|)!nv! (ny, + |m,|)!
One define then reduced Moshinsky coefficients as

_ 0 ny+n,
Ml red(nlrn2) = Mnl 1y
(0,0) (0,11 +ny+|m,|)

My req(my)(ny,n7) = M(mp”l) (=my,n3)
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Appendix E

Spherical change of coordinates

Let (uy, 1y, 1,) be the coordinates of a vector in a cartesian frame. Let us introduce the change of coordi-

nates
ut = _T ux+zu ), (E.la)
u = T x—iuy) (E.Ib)
ud = u, (E.lc)

The scalar product is expressed in term of this new coordinate system as

AB=-A"B*—A*B +A’B® , (E.2)
the vector product is written as
(AxB) =i [4°BT-AB%] | (E.3a)
(AxB) =i[AB*-A’B] , (E.3b)
(Ax §) —i[A"B*—A"B7] . (E.3c)
And the Pauli matrices transforms as
+ 0 1 .
a——\/_(1 0) V2 E (E.4b)
1 0
3 _ —(ptt _p—
o —(0 _1)_(15 E7T) . (E.4c)
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Appendix F

Recurrence relations for basis functions

In this appendix, recurrence relations for a cylindrical harmonic oscillator basis are reviewed, proofs are
omitted, but can (with some work) be recovered by the reader.

F.1 Recurrence relations for Hermite and Laguerre polynomials

The Hermite polynomials obey recurrence relation

Theorem F.11. forallneN

() p
EHH = 21/1Hn_1 y
(ii)
d d
n—H, 1(x) = x——H,(x) —nH,(x) ,
dx dx
(tii)

2xH,(x) = Hyy1(x) + 2nH, 1 (x) .
with the convention H_{ = 0.
and for generalized Laguerre polynomials

Theorem F.12. forall « € C, and n e N

(i)

Lot + L =13,
(i1)

(n+1)L5. (x)=2n+a+1-x)Ly(x)—(n+a)L;_;(x) ,

(iii)

d 1

aLﬁ(X) = _L;)l(jl .
with the convention L%, = 0.

Moreover
Theorem F.13. forallneN
nLy (x) = —xL!_ (x) . (F.1)
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These three propositions can be used to show recurrence relations for a cylindrical harmonic oscillator
basis.

F.2 Axial part

Theorem F.2.1. for everyn >0

¢n+1 \/771bn 1 ’ (FQ)

Z (1
i (z5b,) =
z

Theorem F.2.2. for everyn >0

1 nooQ
P (zh,) = — l,bn \(z;b,)- 1z,bL_)l(z;bz) , (F.3)
Theorem F.2.3. for everyn >0
d
4 e - _\F(\r% (250 N+ 19l (z02) (E4)
Z
F.3 Perpendicular part
Definition F.3.1. for n > 1, defining
Xa'(rsby) = —xh_y(1;b,) (E5)
and
- F.6
=1 (F.6)
One has

Theorem F.3.1. forallm>0 and n>0

VI X5 by) = Ve m+1 x5 b,) =N x i (s by) (F.7)

Theorem F.3.2. for everym >0 and n >0

Vi X)) =Nn+m ) o) - Ve+ 1 0 ) (E.8)

Theorem F.3.3. for everym >0 and n >0

m

ﬁXZZ(W) = Nntm )+ Vot (n (F.9)
= Vo+m+1 )M )+ Va+1 x" ) . (F.10)

Theorem F.3.4. for everym >0 and n>0
d
2 gy A= Nk L =V
= Vn+mx™ —Vun+m+1 b

Theorem F.3.5. ForallmeZ and ne N

(- \/Em<0 [ it o(m=1) 2! | nr(eapnen + VIl +5(m < 0) P2 n] (F.11)

v* ¢Lf’n = [\/n +o(m<-1) z,bmH pa(<1ypore0 + i+ o(m=>0) 2| n] (F12)

A Ebir?)n =




Appendix G

Gogny matrix elements and fields

In this Appendix, details are given to complement expressions introduced in Chap. 3. Particular attention
is given to the derivation of HFB fields and their optimization.

G.1 Central term

Integrals
C 1 1 —z-z)u? (1 1
Vapys = fdzldzm& (z1;b2) ) (203b2) =7 gl 50,000 (250 (G1a)
C - - 2)s > 2)s, > (7 =7)%/u? 2) > 2) >
Vaiys = fdzrldzrzeué) (Fsbpy " (Foiby) e T R Eb)p Bk . (Gb)
Are explicited into
nzlg+nz(5
C z 1tz
Va[;}yé = 0(Nzq + Nyp + Ny + 1,5 even) 2:3b T(l)Zz‘anéFZzanzy ) (G.2)

z nzzlnzﬁ_nzélrz

and
G n/$,6 na,)/
C ] - _
Vapys = bmﬁmﬁ,mﬁmbﬁ T(Z)Zf,,ma;ny,myT(Z)Z;,m,s;na,mal(ma —my,ny, 1), (G3)
r ny=0n,=0
where
IMZ
G,=1+ = (G.4a)
bz
2
G =1+—, G.4b
r 02 (G.4b)
and

L + g = my Dimol oy + g, !
I - ’ ’ = E ni, Ny, |M, — y G5
(ma m)/ n n2) (Gr + 1)n1+n2+|ma—m7| ( 1,742 a myl) ( )
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104 Appendix G. Gogny matrix elements and fields

with 2 given by Eq. (C.17c). The coefficient F:ll,:a’nzy is expressed in terms of the Gauss hypergeometric
function. Refering to Ref. [91] §4 for the definition of ,F; and Refs. [79, 92] for the proof of Eq. (G.6).

r(é - nza)r(é - nzy)r(é - nz)

o = o(n,, +n,, +n, even
nm,nzy ( za Z)/ z ) Zé\/m
XZFI(_nzaI_nzy;_é'i'nz"'l;l_Z) ’ (G6)
where
Nyy+ My, +1,+ 1

f=—— T, (G.7a)

o1
z=1l+—==-(G,+1) . G.7b
2y =3 G+ D (G.7b)

Expressions for V1 have been shown to be very stable numerically [79], however calculation of V2 starts
breaking down around 20 oscillator shells with double precision. Going to larger bases would either require
using quadruple precision or re-express Eq. (G.3) using hypergeometric functions as for V1. This is left for
a later study.

Numerical implementation of central fields

Once central matrix elements are precomputed, and given off-diagonal one-body density matrices pqq’ef‘
and k979 (see Egs. (1.27), (1.31) and (1.32)), off-diagonal one-body fields

Caq'op _ 1 C Cp '\ qq'op
hay T2 Z Z Z Z(Vaﬁyé_vaﬁéy)péﬁ ]]] , (G.8a)

sﬁsétﬁ mﬁmé nﬁn(,— lel;nzé

A=Y Y| Y v ﬁ]]] (G:8b)

spsstg \mpms \ngns \nopnzs

can be computed. in Egs. (G.8a) and (G.8b) the parenthesis indicates the chosen summation order in the
numerical implementation (see Ref. [93]) to reduce computational complexity.

G.2 Coulomb term

Coulomb matrix elements are factorised in a spatial part and spin-isospin part

Coul Coul, { ,Coul,
Vapys = Vapys Vapys - (G.9)
ith

. VCouls, y 5.5 L L G0
aByd = 9susy9sps; (ta =tg=t, =ts = proton) , (G.10)

and 1

Coul, _ X .
Va;)l/lé = qgrotonfd3rld3r2¢a(r1)ll)ﬁ(1’2) m ¢y(rl)¢5(r2) . (Gll)
As shown in Ref. [80]
"ay fgs Nzq+1zy Nop+zs

VCoul, . qproton
vy = i ) )

ny =0n _Onzyzlnza_nzy|’2 nzvzlnzﬂ_nzé|l2
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v e v 1)red 2)red
XT(l)Zzﬁnzb (1)n22nzy (z)zﬁnﬁ mban 2 m};na mynyMglzl enZVM(ml),—ema nyn,
><Icoul( +hy+ |m al’ My + nzv) ’ (G'lz)
with 5
n o1 2n+n
(1) 1(b, X z
I ,N,) = 0;1)—|— dx , G.13
coul(” ”z) lp” ( )bz (bz) J:) (1 4 7/xz)rl+1 X ( )
and
b 2
yz(—r) -1 (G.14)
b,
Numerical implementation of Coulomb fields
Defining
fnynv _ qgroton l & 2(n’4+nv+ ma—m7|) (Gl5)
mamy 7_(1/4\/5 bz ’ .
and breaking Coulomb field in direct and exchange part
hzo;l qq9'0p h;o;/ll di qq'0pu _ h(c)(o;l ex qq'0p ) (G16)
one has
1di gq’'60 1)z
hcou i qq'0p _ Z T nZZ ", 7 mﬂanamyny Z o(ms +m,, =m, +m/3)
Mgty mgins
Zé Sg =S5 f dx Z pgg ”(proton,sb-,sﬁ)
SpSs Ny Mgl sghistty,
21y 1y +Hmy, —mg )+, +n,,
n 1’11, 1)red 2 X # zv v
fm m ¢nzﬂ+nzv( .1)M512,)AVTZVM|(m) —mgln,n n,+n +|m —m| (1)Zz/5”zo Z)nmﬁ”ﬁma”a
y Tl (] g x2)e a
(G17a)
coulexqq@y ZZ mb+m —ma+m‘3)
SgSs M
d
J dx Z Z Z llbnzy"'nzv 0 1 )nzansz( )Zz;nzy'/\/lgzzlr;zvxnzy-'—nzv
nﬁnb nzﬁnzb nzy”zv
2(n,+n,+|my—mg))
X\ D St T i, T, MG i :
= oo BB [my—msln, ﬂv(l +yx2)nﬂ+rzv+|ma—mb|+1
xpgg y(proton, $5,58) (G.18a)

couquey ZZ (ms+mg=mg +m, deZZ

S[gs() n’Zﬁmo nﬁnb nzﬁnm
} )nzﬂ (l)nzv (Lred _n,,+n
[ lpnz;Danv ) MzaMzg T nzy”zéanynzvx we

nzunzv
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2\ Myt g —myg| 2(n,+n,+|my—mgl)
% Z b_f S T(2)" T2 M(Z)red X o
L % Moo Mphp iy ty Mot <= m g —mg|n,n, (1 N _)/xz)ny+nv+|ma—mﬁ|+1
‘0
X K% H(proton,sy,s(g) (G.19a)

The intervertion between the integral and the sommation on # and 7, quantum numbers in the calcu-
lation of the fields is instrumental to exploit the separability of the interaction, significantly reducing the
numerical complexity.

G.3 Center of mass term

Using Eq. (E.2), the spatial part can be written

(Patpplp1-p2lPyps) = (Patpl—pips —pips +Pipal, Ps)

= —(Palpi ) XPplpy19s)
~(Yalpy |y XWplp3 ltbs)
+palpilpy Xwplp3lps) - (G:20)
Defining
-
Cap = WalVH ) = | dr 1)V Py(r) (G-21a)
Cap = (WalVTIpp) = | d°r PV () , (G.21b)
J
Cap = WalVlip) = | dr go(r)V2iy(r) (G-21¢)
using Thm. (I'.3.5), Eqs (G.21) are simplified into
Cip = OnanOmamyet = g+ 80mg =118, e + i+ Imgl+ 8(mg = 008, |
(G.22)
3 i (_1)5(Wﬁ§0) - )
Caﬁ = 5”za”zﬁbmmmﬂ_1W|: Tlﬁ + é(mﬁ > 1)5na’nﬁ+(_1)é(mﬁso) + \/Tlﬁ + |mﬁ| + 5(1’115 < O)é”a”ﬁ] ’
(G.23)

1
Cglg = 6mamﬁ6nanﬁ m[\/”zﬁénm,nzﬁ—l RV 16nw,nzl3+1] . (G.24)
z

Finally
(aplp1-p2ly sy = =1 (=Ci, Cps = Cay Chs + Cay Cps) - (G.25)
Numerical implementation of 2-body COM correction fields

In the numerical code, matrices C*, C~ and C3 are precomputed, and the fields are implemented according
to

2
com2 qq'0p h
h()()/ - 2m<A> 6taty
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8 [5sasy Z{ ~ CayTr(Cp1 ¥ (5,55, 56)) = o) Te (C 17 O (15,55, 56)) + €, Te (Cp™ (8, 5, 5p)) }
Sptp
+ (C+pqq,9”(ta,sa,sy)C_)

+ (C_pqq'eﬂ(ta, Sa» SY)C+) _ (C3pqq,9#(ta’ Sar Sy)c3 )ay ]

(G.26a)

ay ay

AcomZ qq 9,u h?
*y 2m(A)

X [(Cﬂc‘” eﬂ(ta,sa,sy) (C‘)T)

7’ 7 T
+ (C_K‘M 9”(ta,sa,sy)(C+)T) - (C3qu ey(ta,sa,sy)(c3) ) ]
ay

(G.26b)

ay ay
G.4 Density term

G.4.1 Density field

Introducing following intermediary quantity

p(?’ Z, QD)(Wl SarS , E Z Z i+ mg=mg) q)llbélabﬁ

Mmpnghyg Mehshzs

Z ﬁyapﬁb] , (G-27)

sﬁsbtﬂ

where parenthesis indicates chosen summation order, recalling 1,[) is defined with (3.5¢), and V ﬂ s is given
by (3.42). Then density field can be expressed as

hgyzétatyfrdrfdz lﬁalﬁy(J-dqo p%c(r,z, @) ﬁ(r,z,qo)(my—ma,sa,sy,ta)) . (G.28)

In practice, constructing an intermediate resulting from a sole integration on ¢ allows to significantly
reduce the computational cost of this calculation.

G.4.2 Rearrangment field
The rearrangment field initially expressed as
ov
DR _ aﬁyb
afyod
is transformed into
h,’ff—— 5.0, chﬁ aGp )Py (W) Vst s D (W), (NPs(PPsppya - (G30)
afyd

In order to compute the field, intermediary quantity

5(r,z,<p)(m,sa,s;,, = Z Z 1pa1p7,pwprz, )(m—ma-kmy,sa,s?,,ta) , (G.31)

Mg Mgy Mg My Ty Ty,

is precomputed, then rearrangment field becomes

h’% = 01,1, jrdrfdz gﬂwﬁﬂ(J‘d(p (aG pte(r, z,(p)) p(r,2,@)(my, —m,, 54,5, ta)| - (G.32)
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As before an intermediate resulting from a sole integration on ¢ significantly reduce computational cost.

Eventually, total density field is given by

hD[Oldl hD hDR

G.5 Spin-orbit term

By definition the spin-orbit term is

i — —
VO(r, 1) = ZWLS(VI - Vz)x 6 (r, —Tz)(vl - Vz)-((ﬁ +03) .

Defining
A = (Vl—VZ)Xé (rl—rz)(Vl—VZ) ,
o = o0)+t+o0p ,

one has, using the cylindrical coordinates described in App. E

vso iWLSA.a
- iWLS(—A+U_—A_a++A3U3) .
From Eq. (E.3)
At = i 93,60,V, - 16, V3
= 12012V 12 12Vizf -
_ .:(—_ —) (— —)_:
3 .:& =2, <4 o
A” = i VRV, - v12512V12 ’

with

Vi = V-V, ,
512 = 6(3)(1'1—1’2) .

The antisymmetrized spin-orbit matrix element can be expressed as

Vapys = Vagyo~Vapoy = WLs<a/3|A.o(|yé>—|5y>)

i
= ZWLS{<¢(XIP[)’|A|I)D)/11D5>'<S(1 tasﬁ tﬁlalsy ty56t6>

_<7uba l:b/S |A|lp6lzby>~<5a tasﬁ tﬂlo'lsétésy ty>}r

(G.33)

(G.34)

(G.37)

(G.38)
(G.39)

(G.40)

(GA1)
(GA42)

(G.A45)

where |a) = [1),) ®|[sqt,) has been used. The antisymmetry of (1, 1glA[), s) with respect to its last two

indices implies

iW .
Vs,gya LS (%%IN%%) {<5a5ﬁ|0|5 Sb>6t 5tﬁté + <5a5ﬁ|0|565y>btatbétﬁt7}

(G.46)
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Using the formulas (E.4) the terms (s, sg|o]s, ss) are given by

_ﬁ(éscﬁésy—ésﬁsé + 6sﬁ+6sé—6sasy )

<5a5[3|0'+|5657/> ’

<5a5/3 |O-+|57/55>

V2(85,-85,4055, + 05,-05,405,5, )

<5a5ﬂ|0~7|565y>

<5a5ﬁ|0_|57/56>

<5a5ﬁ|03|5y56> = (6sa+6sy+ - 650—557—) (555+6so+ + 6sﬁ—655—)
+ (6sﬁ+6so+ - 6sﬂ—6sa—) (55a+6sy+ + 55,1—657—)

3
<5a5ﬁ|a |5657/>
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As seen in Egs. (G.47), (G.47) and (G.47) the quantity (s,s4|ols) s5) is symmetric with respect to s,,,ss. Thus

one have

st(%’é = H/YTLS<lzba4’[)’|A|4’y1;b6>-<aﬁ|0'|7/5><fatﬁ|T|tyt5> ,

where, by definition
(tatplTlt, ts) = 5tat7,5tﬂt(5 + 5tat66tﬂty .

The last equation can be recast (using Eq.(E.2)) as

4
_<Izba lzbﬁ |A_|lzby¢5><sa5ﬁ|0+|5y56>

+<lpalzbﬁ|A3|¢y¢5><5a5ﬁ|03lsysb>}<ta tﬂlTlt;/ t6> .

. Wi
Vagys = : LS{—(%%|A+|¢yll)5><5a5ﬁ|0_lsysb)

The spatial factor (P, g |A|1,l)y1/)5) can be written in term of spatial integrals

a9 = [ r(9300 - 9iV0;) X (85Vy - 9, Vi)

= zfd%(w); X Vi, ) piihs + 2fd3r(V¢E X Vs ) Pathy, .

Defining
Tapys = [ ErVYLx V9305

One has

|

. (1), (1) (1) 2) (27 (2", (2)
zfdzv%bé) AT fdzrw(y o v v

. 1 1), (1), (1 2) (2 2, (2)
—zfdzv3¢;>¢g) 7 >J'dzrv+¢51> P22

I;ﬁyé

(G.47)

(G.48)

(G.49)

(G.50a)

(G.50b)

(G.51)

(G.52)
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Lo = [ V9 x V) s

. (1), () (1) (1) -2y (2, (2) (2)

1szV31,by Ya 4’/3 Py szrV Yo Py 4’/3 Py

. (1) (1) (1) - (2) ), (2) ,(2)

—1szv3¢a Py g Ps fdzrv Yy Yo Yy s (G.53)

Iss = st"(VlP;XVEDy)e'lPE%
. 1 (1), (1) (1) _r 2) (27 ,(2)
1fdz pu 9yl xjd2rV v Vol )l

. 1), 1)y (1 2y - (2)  (2) (2
—zfdz o ) ybf,)fdzrvw& vy )

(G.54)
By defining
Rapys = [ dz wﬁvl)l#,(gl)kb(yl)nbél) , (G.55)
Lagys = [ a2 o e (G.56)
Mo = | dz Vo vy vy vy (G.57)
Nips = Pd2rv+zpf)¢,(gz’¢f)¢f) , (G.58)
Ngys = szrV‘ybf)yb(ﬁz)t,b(yz)t,bff) , (G.59)
Niss = (42 Ve v e e (G.60)
one can write
Ligys = i(MaﬁyéN;gﬁé_MV“ﬁéNolﬁyé) , (G.6])
Logys = i(MyaﬂéNg_yéé_MaﬁyéN;ﬂgé) , (G.62)
Bo —iKaﬁyé(N;;Eé—N;;ﬁ) , (G.63)

where the underline indicates complex conjugation, more precisely, if a = (n1,, 1,4, 1,,) then @ = (—my, 1y, 154).
From the recurrence relations developed in App. F, one can express M, N*,N~ and N*~ in terms of K and

L
1,1 1), (1)
Mags = [ a2 v9l"u} 40

1 1) (1) ,(1
o [ 2 (Ve 1)} g )

1
= ( V”zaK(”za - linzﬁr”zyrnzé) —VHza t 1K(”za + linzﬁ’”zyrnzé)) ’

b,\V2
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(G.64)

Notﬁyé

(2) ,(2) ,(2) (2)
fdzrwa Vg Py Wy
(_1)6(m <-1)
= [\/na+6 1)L(ma+1,na+(—1)5(m“—0),mlg,nﬁ, My, 1y, Mg, 15)

b, V2

1y + g+ 0(my > 0)L(my + 1,ng,mg,ng,m,,n,,msns)| , (G.65)

2.2 .2 (2
fdzrv oo w9y gy

N;[};/é

(=1)°(ma=0) 8(11,<0
= ———|ng+0(my >1)L(my—1,n,4 +(-1) (ma<0), Mg, g, My, Ny, Mg, M)

b,\2

+\/na +|mg|+0(mg < 0)L(my — 1,14, mg, ng,m,, ny,ms,ns)| (G.66)

_ 2)g-(2) 1 (2)  (2)
Nigs = szrvwa Vg ¥y Y,
(_1)6(mﬁSO)

) b—\/i[ ng+8(mg > DN (1, ngmp—1,ng+(~1)%
r

+\/nﬁ +|mgl+0(mg < O)NT(mg, g, mg—1,ng,mg, n,,,ms, ns)| . (G.67)

<0
g ); my; n'}/; mé; né)

It remains to develop expressions for K and L, for K (using Egs. (C.15b) and (C.16b))

Kaﬁyé

1 1 1 1
fdz Pyl

000

I
N —
9
™1
=
E,\:/
—
&
N
N\’—‘

1 Z 1 T(E=ny0)I(E —nyp)l(E —n)
= m T(l);56(2|nm +7’lz/3 +7’l) i i
2Tt ” V277/2 \Nza!ngpln!
1 [(& —ny)l(E - ”zﬁ)r(é —1n)
= O(2|Myq + 1gp + Mgy + 1 E Tn ,
szlz\/E ( |”za nz[j nzy nzb) . ) (—nza!nzﬁ!”!

(G.68)

and (using Egs. (C.15c) and (C.16c))

Laﬁyé

(2) ,(2) ,(2) ,(2
fdzr PPyl

2
_r- 2 2
(z)gVT(Z)Ea' j d’re ¥ l/’;(4 )IPS/ )

bzn

b2 }A;mvrnv;br; br) . (G69)
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Thus one can write

S0 iWLS
Vagys = > [ (I+ﬁyb+1/3aby)<sasﬁ|a ls)55)

- (I;ﬁyé + Iﬁ_aé-y) (sasﬁ|o+|sys(5)
(Igzﬁyb + Igaéy)(sasﬁ|o~3|s),sb)](tatﬁ|T|t7,tb) (G.70)

Spin-orbit fields

For the computation of spin-orbit fields, introducing the intermediary quantities

n
Yﬁ(ma,my)(na,ny,nﬂ) = T(2)<”ma v ) (G.71a)
Yz(mﬁ,mé g, Mg, 1y ZT mﬁ ng) mb’né)I(—mé —mg,ny,;ms +mg,n,) (G.71b)
such that
Lagys = b2 Zé My +mg+m, +ms=0) YL(ma,my)(na,ny,nM) Yf(mﬁ,mé)(nﬂ,né, n,) . (G72)

My

Similarly introducing

XII{(nm,nZy, n,) = T,Zznzy (G.73a)
Xé(nzﬁ, Nys, Ny) = 6(2|nzﬁ + M5+ nz)) He- nz%(g . (G.73Db)
2g'M,s!n,!
with & = w + % Such that
Kepno= 12505 2 XKty ) K ) (G.74)
Introducing
Xpt (e Mgy tl;) = \/@Xf((nm = 1,15, nz) — gy + 1X11<(11m +1,15, nz) , (G.75a)
Xyp(nap,125,12) = Xg (5, 155,15) (G.75b)
such that .
Magys = 573 ;me,nzy,nz) X§y(rnzp, g, nz) (G.76)
Introducing

Yl\l]i(ma’ m)/)(nal ny, n#) = (—1)5(maso)

X [ Mg +0(my > 1)Y, (ma - 1,m7,)(na +(=1)00ma=0), ny,n#)

+ 1y +|mg |+ 8(mg, < O)Yﬁ(ma - 1,my)(na,ny,ny)] , (G.77a)
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Yfr(mlg,mé)(nﬂ,né,n#) = Yf(mlg,m(g)(nﬂ,né,n,,) , (G.77b)
such that
N =— ¥ s s=1) Yx Yg - ; G.78
apys = b3 (Mg +mg+my, +ms =1) Yn-(mg, my)(ng,ny,n,) Yg-(mg,ms)(ng,ns,n,) . (G.78)
r n}d

Introducing

Y1\11+(marmy)(na,ny,nﬂ) = (=1)9(ma==1)

X [\/na +0(my < -1)Y! (ma + l,my)(na + (—1)5("1020),11),,71#)

+ Vg +mg|+0(my > 0)Y] (mg +1,m,)(ng, ny,ny)] , (G.79a)
Yl\21+(mﬁ,m5)(nﬁ,n5,nﬂ) = Yf(mﬁ,mé)(nﬁ,né,nﬂ) , (G.79Db)

such that

1
+ _ o 1 2 )
Naﬁyé = —b?n\ﬁ ngﬂ o(mg+mg+m,+ms =—1) Yy.(mg, my,)(ng,n,,n,) Yo (Mg, mg)(ng,ns,n,) . (G.80)

Introducing

(Mg, my)(ng,ny,n,) = Yl\11+(ma,my)(na,ny,n,,) , (G.81a)

Yl
Y1\2]+*(mar my)(nat ”yr nﬂ) = lelr (mat my)(nai nyt ”;4) ’ (G'81b)

such that

_ 1
N;ﬁyb— = be Zé(ma +mpg+m, +ms=0) Yl\lﬁ_(ma,my)(na,n),,ny) Y§+_(mlg,m5)(nﬁ,n5,ny) . (G.82)
n

Introducing

Yﬁ]**(mal mﬁ)(”al ng, ny) = (_1)6(mﬁs0)(_1)6(ma§—1)

x(\/na +0(my <-1)/ng+06(mg =1)

x Y} (ma +1,mg— 1)(na +(=1)°(ma=0), ng+ (_1)5(%30)’%)

g + 0(mg < —1)\/14,3 + gl +5(mp < 0)

X YLl(ma +1,mp — 1)(na + (—1)‘5(m“20),nlg,n#)

+ 1y +|mg| + 8(my > 0) ng+06(mg>1)

X YLl(ma +1,mg— 1)(na,n/3 + (—1)5<mﬁ§0),nﬂ)

4t H 1]+ 8(1m = 0)[ng +1mgl + 6(mg < 0)

x Y[ (g +1,mg - 1)(na,nﬁ,nﬂ)) , (G.83a)
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Y1%+_(m7,, ms)(ny, ns,n,) = YLz(my, ms)(ny, ns,n,) (G.83b)

such that

A

_ 1 ! .
N;ﬁyé nbf Zb(ma +mg+my, +mg=0) Yl\lﬁ,(ma,mﬁ)(na,nﬁ,ny) l\zﬁ,(my,mé)(ny, ns,ny,) . (G.84)
n

Using above developped formulas, the calculation of spin-orbit fields involves to compute the following
intermediary quantities

Aq(m,sg,ss tg)(ng,my,) = Z Z Z o(mg —my =m)

mﬁmb nﬁno nZ‘Ban

XX]%(”Z/& Nz5s ”z)de Y]\Zl- (_mﬁl mé)(”ﬁr ns, 11]4) ’ (G85)

By(m,sg,s5,tp)(nz,m,) = Z Z Z o(mpg —mgs =m)

mﬁm‘s nﬁné nzﬁnm—

[XJ{/I(nzﬁr Mz5, ”z)deY1\11+ (ms, _mﬁ)(né’ ng, 1’1”)

_lew(nzb'lnzﬁfnz)pdbyl+(_mﬁ’m5)(nﬁlnéfny) ’ (G86)
Dy(m,sg,ss,tg)(nymy) = Z Z Z S(mg—mgs = m)
m,;m(g n/;no— nzﬁnm

[ = X (125, 126, 15)pap Y- (s, —mg)(ns, g, )

+X 3 (125, 112, 115)pap Y- (—mg, ms)(ng, ns,ny) | (G.87)

Fi(m,sg,ss,tp)(n5,1,) = Z Z Z o(mg —my =m)

mﬁl’VZ5 ﬂﬁi’l‘g l’lzﬁl’lm'

[X]%(nzﬁr Ma50 12)Pap Yy (—mg, my)(ng, ng, 1)

_X12<(nz[31 Nz5, nz)pdeI - (ms, _mﬂ)(nér ng, 7/1’4) ’ (G.88)

Al(m,sy,sé,ty)(nz,ny) = ZZ Z y + s =)

My, M5 1y, My Ty, Mg

XXK(nzy,nzé,nz)K75Y1+(m7,m(g)(ny,nb—,ny) , (G.89)

Bi(m,s,,s5,t,)(nymn,) = ZZ Z )+ g =m)

My, 15 Ny, s Ty, M55

xXM(nzy,nzé,nz)KyéYf,_(my,mé)(ny,né,nﬂ) , (G.90)
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Dy(m,sy,55,t)(nzm,) = ZZ Z )+ Mg =m)

M, s o, s T, M5
XXK(”Z;N M2, nz)Kyé YI&I— (m)/' mé)(”yr ns, nﬂ) ’ (G'gl)
where intermediate quantities X IZ<, Yl\zj,, XJIVI’ Yﬁﬁ, YI&I*’ YI}H* have been defined by respectively Egs. (G.73),

(G.77), (G.75), (G.79), (G.77), (G.83). Next spin and isospin indices are contracted into new intermediate
quantities

Ax(m, sq,8,,tq)(ngm,) = ZZ(sasﬁlaf +0y Isys5)tatpl| Tty ts)A1(m, 58,55, tp) (112, 1,) (G.92a)

spSs 1p
By(m, 84,5y, t0)(Nz, 1) = ZZ(%SHG{+U£|5y56><tatﬁ|T|tyt5>Bl(mlsﬁlsa‘xfﬁ)(”z,”,4) » (G.92b)
sgso 1g
Ca(m, sq,5y,ta) (11 ZZ<S“S/3|01 + 05 [s,ss)tatplTIt, ts)Ar (1,58, 55, tg)(11z,1my) (G.92¢)
Spse 1p
Dy(m, 54,5y, ta)(nz,n,) = ZZ<S“55|01 + 05 [s)ss)tatplTIt, ts)Dy1 (m, 55,55, tg)(nz,m,) ,  (G.92d)
gy 1p
Ey(m,s4,8y,ta)(nz,1,) = ZZ(sasﬁlaf + G§|5y56><tatﬁ|T|tyt6>A1(m, SgsSsr tp)(1z,1y) (G.92e)
Spss 1g
Fy(m,sq,8y,ta)(nz,m,) = ZZ<S“55|013 + 0'23|s7,55)(tatﬁ|T|tyt5)F1(m,sﬁ,sé,tﬁ)(nz, n,) (G.92f)
sgso 1g
Az(m,sa,sﬁ, (ny,n ZZ<5a5ﬁ|‘71 +0y sy ss)Xtatplty ts)A;(m, SyrSerty)(nz,ny) (G.92g)
5,5 1,
Bz(m,sa,slg, )z, my) EZZ(sasﬁlo{+az_lsys(;)(tatlgltyt(;ﬂ;‘l(m,sy,55,ty)(nz,n,,) , (G.92h)
t
CQ(m,sa,slg, (ny,n ZZ<SO¢SI3|OI +0;|5V55><tatﬁ|tyté>gl(m,SV,Sé,ty)(nz,nﬂ) , (G.92i)
Dz(m,sa,sﬁ, (ny,n ZZ<S“S/5|01 +U;|5y56><tatﬁ|tyté>D~l(m,SV,S(S, t)(ng,ny,) (G.92))
Ez(m,sa,sﬁ, (ny,n ZZ(sasﬁhyl +0; |s ss)tatplty tsyDy(m, Sy Serty)(ng,ny,) (G.92k)
)5 1,
Fy(m, SarSprta)(ng,ny) = ZZ(sasﬁlaf’ + G;|5y55><tatﬂ|tyt5>A1(m,S»}/, Sorty )1z, 1y) (G.921)
5,5 1
Spin-orbit fields can then be expressed as
hay = IS5, XZ[]&XM Moy 1)V (1 =1 ) 1y 1 1, ) A (1,5, (12,1, ) = 1, = 1 + 1)

Z IA m
_flle\/j(”zyfnzw”z)yzgﬁ(_ma: m)/)(”af Ny, ny)A2(m: SarSy, ta)(nzl n,u)é(m =My, — g + 1)
+f1X12<(nm, My nz)YZ%,(—ma, My, )(ng, 1y, 1,)Ba(m, s4,8y,t) (12, 1,)0(m = m,, —mgy +1)

+f1X1{/I(nzyt Nza nz)Yj\lj-(_mar m)/)(nal ny, nﬂ)c2(mr5ar5yl ta)(nz’ nﬂ)é(m =my =My = 1)
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_flX]{/I(nza’nzyrnz)yzgl—(mw—mw )(nyrnar )CZ(mr SarSy» ta)(nzr ) (m My, =My — 1)
+f1X12<(nzal nzyl nz)Y]sf-(_ma' my)(na’ nyr y)DZ(mr SasS v’ ta)(n ) (m my Mg = 1)
+f2X11<(nzylnzalnz)Y]%H*(_mwmy)(nar”yf” )EZ(mlSal lta

nz,n,)o(m=m, —mg)

I
_f2X11<(nzw Nzas nz)Yllﬁf(m;/: _ma)(n)u Mg, N )Ez(m:satsy; ta)(nz: ) (m =my = ma)

+f2X}<(nZy, Nyus nZ)Yﬁ,_(—ma, My, ) (g, 1y, 1) Fo (M, S, 8y, 10 ) (M2, 1,)0(m = my, —mg)| (G.93)

and

Aaﬁ = o tﬂZZ[fIXM Npq, Mg, 1 )YN( My, —mg)(ng, g, n )A (M, 54,58, ta) (15, 1,)0(m = my +mpg —1)

z}Am

_f1XM NzarMzp, nz)Y

N- )(ny,1,)6(m =mgy +mg—1)
+f1 nzainzﬁ’ )ngl ( mar_mﬁ)(na’nﬁlny)CZ(ml saisﬁ’ta)
)

(- ma,—mﬁ)(na,n/g,ny)lg’z(m,sa,sﬁ,ta

My, 1,)0(m =My +mpg +1)

( )
—leM nza,nzﬂ,nz)YN (- ma,—mﬁ)(na,nﬁ,n”)ljz(m, SarSprta)(tz, 1,)0(m =my +mpg+1)

+f2XK NzarNzp, ”Z)YN+(_ma1_mﬁ)(”w”[3’ ”y)EZ(mf SarSps ta)(”z: ny)é(m =My + mﬁ)

_f2X11<(nzou nzﬁ’ nz)YJEI* (_mar _mﬁ)(nw nﬁl ny)EZ(ml Sas 5[3) ta)(nz; n,u)é(m =my+ mﬁ) 4 (G'94)

eventually, pairing field is expressed as

Agp = %(Aaﬁ—Aﬁa) . (G.95)

With
fi=(27°V2 b2b3) (G.96a)
fo = (27 V2b, b4) . (G.96b)
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