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Sciences Chimiques: Molécules,
Matériaux, Instrumentation
et Biosystemes (2MIB)

chimiques des polymeéres semicristallins

perméation

Résumeé: Cette thése est consacrée a
I'étude des polyméres semicristallins par
simulation a I'échelle moléculaire. Elle
s’est déroulée dans le cadre d’une collab-
oration entre I'entreprise Materials Design
S.A.R.L., llnstitut de Chimie Physique
d'Orsay, et I'IlFP Energies nouvelles.
Notre objectif était de fournir une méthode
générale de construction d’échantillons
semicristallins et de I'implémenter dans
une suite logicielle puis d’utiliser cet outil
pour obtenir des propriétés structurales,
mécaniques et de perméabilité a de pe-
tites molécules de gaz.

Les polymeres semicristallins sont des
matériaux dans lesquels coexistent des
régions cristallines et des régions amor-
phes. On se situe ici a I'échelle de
l'alternance cristal-amorphe, sur des
dimensions de [l'ordre de quelques
dizaines de nanometres. Les études
expérimentales ne permettent pas de car-
actériser précisément le chemin suivi par
les chaines de polyméres dans ces deux
phases et a leur interface, il est donc ardu
de construire des échantillons pour la sim-

Titre: Relations entre la structure moléculaire et les propriétés mécanigues et physico-

Mots clés: simulation moléculaire; polymére semicristallin; propriétés mécaniques;

ulation a I'échelle moléculaire.

Dans la premiére partie de cette thése,
nous avons adapté une théorie issue de
la physique statistique des polyméres,
afin de construire différents échantillons
de polyéthylene semicristallin. Différents
paramétres utilisés lors de la construc-
tion permettent de controler le degré
de cristallinité et la proportion de sec-
tions de chaines amorphes pontant deux
zones cristallines.  Dans la seconde
partie, nous avons étudié les propriétés
mécaniques, dans le domaine élastique
et sous haute déformation de différents
échantillons de polyéthyléne. Nous
avons observé l'importance du degré de
cristallinité pour les propriétés élastiques,
auquel s’ajoute la proportion de section
de chaines pontantes liant deux phases
crystallines dans le cas de la haute
déformation. Enfin, nous avons réalisé
des calculs numériques de solubilité et
de diffusion de CH4 et CO2 dans le
polyéthyléne. Les résultats obtenus sur la
sorption sont en accord avec les résultats
expérimentaux.
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Abstract: This thesis is dedicated to the
study of semicrystalline polymers through
molecular-scale simulations. It was car-
ried out in collaboration between the com-
pany Materials Design S.A.R.L., the In-
stitut de Chimie Physique in Orsay, and
IFP Energies nouvelles. Our objective
was to provide a general method for build-
ing semicrystalline structures and to im-
plement it in software. Subsequently, we
used this tool to obtain structural, me-
chanical, and gas permeability properties.
Semicrystalline polymers are materials
in which crystalline regions coexist with
amorphous regions. We are operating at
the scale of the crystal-amorphous alter-
nation, on dimensions of the order of a few
tens of nanometers. Experimental stud-
ies do not precisely characterize the paths
followed by polymer chains in these two
phases and at their interface. Therefore,
building models for molecular-scale simu-
lation is challenging.

Title: Relationships between the molecular structure and the mechanical and physic-
ochemical properties of semicrystalline polymers

Keywords: molecular simulation; semicrystalline polymer; mechanical properties;

In the first part of this thesis, we adapted
a polymer statistical physics theory to con-
struct various samples of semi-crystalline
polyethylene. Different parameters used
during construction allow us to control the
degree of crystallinity and the proportion
of amorphous chain sections bridging two
crystalline regions.

In the second part, we investigated the
mechanical properties, both in the elas-
tic domain and under high deformation, of
different polyethylene samples. We ob-
served the importance of the degree of
crystallinity for elastic properties, coupled
with the proportion of bridging chain sec-
tions connecting two crystalline phases in
the case of high deformation.

Finally, we conducted numerical calcu-
lations of the solubility and diffusion of
methane and carbon dioxide in polyethy-
lene. The obtained results on sorption are
in agreement with experimental findings
and prior studies.
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[...] We may reflect at this point whether and when the right questions have been asked.
I maintain that some of the questions in the recent past have been fallacious and largely
contributed to the polarization of views. The fallacy, | feel, has been to believe that one sin-
gle set of neutron scattering data on one rather arbitrarily chosen piece of polyethylene can
decide the whole issue of how a polymer crystallizes and the nature of its structure. The
history of science has taught many lessons about the fallacious beliefs in a single decisive
experiment to settle controversial issues once and for all. If such a belief often foundered
with apparently clear-cut simple issues, how can one hope that it will yield results on a
piece of isotropically doped quench crystallized polyethylene as examined for low-angle
neutron scattering? Science advances not by resolving but by bypassing the inappropriate
questions! As regards the issue under discussion, this is far from decided even as far as
expectation of a single decision is appropriate. | believe we are only now at a stage that the
relevant variables have been identified allowing a meaningful attack on the central issues
to be planned.

So far | endeavoured to give an essentially non-committal account. Having minimised the
extent and magnitude of the conflicting issues at this point | reached a stage where what
is left as controversial remains open ended: it could go this way or that, let us wait and
see”. | feel that in the interest of scientific objectivity this was my duty to do. Yet | realize
that there is something intrinsically unsatisfactory in a totally non-committal attitude. Man
is not purely a reasoning apparatus, (if nothing else the present controversies show this)
but also has his convictions which guide him and which he is trying to impress on others.
This applies to science as well as to other spheres, and within science even to the other-
wise most objectively reasoned argumentation. Some of the most momentous advances
in science, just as the most futile controversies, were punctuated by strong personal com-
mitments, recall say Galileo and the Vatican, where the latter has shown more reason and
objectivity than normally credited by the popular image, or closer to our times and topic,
the events concerning the discovery of macromolecules. Arguments which lack this force
of personal conviction remain unappealing and will in fact fail to leave their mark. Having
done my duty of a comparatively impartial chronicler | feel that by now | have earned the
licence to express also my own views./[...]

Crystalline Polymers: an Introduction BY A. KELLER H., 1979, in Faraday Discussions
of the Chemical Society.

Comment on the quote: In 1979, the Faraday Discussions of the Chemical Society were
dedicated to addressing the challenge of polymer crystallization, both for pure and semicrys-
talline variants, along with the resulting morphologies. The introductory paper by Keller
aimed to ease the tensions resembling a Cold War between proponents of the switchboard
model and the adjacent folding reentry model. Keller showed that the conflicts were con-
siderably exaggerated, with different sides’ positions being caricatured by their opponents.

Additionally, Keller cautioned against premature conclusions in the study of these intricate
metastable materials. Polymers exhibit polydispersity and diverse branching degrees, their
potential thermodynamic path to crystallization are infinite. Researchers may be inclined to
prematurely declare "Eureka” based on isolated experiment outcomes. Yet, as previously
mentioned, the challenge lies in meticulously controlling the myriad parameters that define
a given polymer, as well as understanding the thermodynamic pathways to crystallization.

Concluding this study, it becomes evident that there is no singular solution to the morphol-
ogy question; rather, a spectrum of potential morphologies exists, ranging from the two
classical models : switchboard model and adjacent reentry model. The longstanding strug-
gle over morphology appears to have subsided, not due to a definitive victory, but rather
because the controversy itself is dissipating.
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Chapter 1

Introduction

The goal of the study is to investigate the relationship between the morphology of semicrys-
talline polymers at the molecular scale and their mechanical and transport properties through
simulation.

The study may be divided into different phases:

» The development of a method to construct semicrystalline structures at the molecular
scale, controlling certain aspects of the morphology.

» The computation of mechanical properties.

» The computation of solubility and diffusion coefficients.

1.1 Context of the academic and industrial partnership

The thesis project is conducted within the framework of a CIFRE scholarship. It is a col-
laboration between the Institut de Chimie-Physique in Orsay, IFP Energies nouvelles, and
Materials Design S.A.R.L./Inc. The thesis is under the supervision of Bernard Rousseau
(CNRS) as the thesis director, co-supervised by Véronique Lachet (IFPEN) as the thesis
co-director, and overseen by Marianna Yiannourakou at Materials Design.

The three partners were previously connected through the GIBBS code, a Monte Carlo
code developed by /CP and IFPEN, with Bernard Rousseau and Véronique Lachet being
responsible of the development. This code has been implemented and is commercially
available within the materials simulation software MedeA, developed by Materials Design.

The collaboration’s context arises from an interest in the fundamental science underlying
the complex relationships between semicrystalline polymer morphology and the mechani-
cal and transport properties, on the CNRS side. IFP Energies nouvelles has an interest in
applications for the oil and gas industry, while Materials Design aims to enhance its under-
standing of semicrystalline modeling with the goal of providing new research services and
modeling tools in the field of polymers.
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1.2 Industrial interest

Polymers can be shaped into various forms using a wide range of industrial processes
such as molding, thermoforming, and 3D printing, rendering them highly versatile. Many
industries employ them for their mechanical, permeation, dielectric, optical, thermal, and
chemical properties, among others.

IFP Energies nouvelles has had a long-standing interest in the polymer properties rele-
vant to flexible pipes in the oil and gas industries. Polymers like HDPE shield the metallic
components of the pipes from corrosion caused by the oil inside and seawater outside.
Investigating the permeation of these polymers to gases is crucial in this field.

Semicrystalline polymers find extensive use in various sectors, including automotive, aerospace,
pharmaceuticals, and the food industry, among others. Permeability and mechanical prop-
erties at different temperatures and pressures are sometimes challenging to replicate in a
laboratory setting but can be accessed through simulation.

This work may be useful for other applications, which fall outside the scope of this study. For
instance, modern televisions often utilize OLED technology, which incorporates semicrys-
talline polymers as semiconductors. While electronic properties were not the focus of this
work, the same model-building procedures could be applied to investigate electronic prop-
erties in organic semiconductors with the assistance of Density Functional Theory. New
solid-state batteries that involve polymers would also benefit from polymer model-building
capabilities. The fact that this study primarily focuses on transport and mechanical prop-
erties does not preclude the use of the same model-building procedures to compute other
properties with other computational methods.

1.3 Structure of the thesis dissertation

Chapter [2)is dedicated to the bibliography and begins with a discussion on semicrystalline
polymer morphology. It highlights the complex paths polymer chains follow in semicrys-
talline structures. Some regions present an alignment of the chains, while others exhibit
disorder. The transition between the crystalline and amorphous phases remains a subject
of debate, with unanswered questions about the proportion of perfect foldings of polymer
chains at the edges of crystalline regions. Another debated question is the fraction of
polymer sections bridging crystalline phases, finishing their path in the amorphous phase
or looping back into the crystalline phase they emerged from. The chapter reviews four
existing procedures for building molecular-scale semicrystalline structures for simulation,
comparing their advantages and disadvantages. Finally, it provides a brief overview of the
literature on mechanical and permeation properties.

The chapter [8]begins with an introduction to the basics of the simulation tools used, specif-
ically Molecular Dynamics and Monte Carlo. The most critical part of the chapter is dedi-
cated to an original method for building semicrystalline polymer models. This method relies
on a statistical physics theory [Adhikari and Muthukumar, 2019 that predicts the fractions
of amorphous chain sections types (tie chain, loop, or tail chain) and the probability dis-
tribution of their lengths. The inputs of this statistical theory are employed to control the
molecular-scale morphology. Technical details of the implementation are explained.

In the chapter [4] a characterization of the semicrystalline models obtained using our build-
ing method is presented. This includes simple characterizations such as density profiles



and degrees of crystallinity, as well as more complex ones, like the quantity of entangle-
ments. The chapter also covers computations of mechanical properties that are strongly
dependent on morphological characteristics.

The chapter 5] focuses on the computation of the solubility coefficient and diffusivity of CO,
and CH,. For sorption, a method involving Grand Canonical Monte Carlo with frozen poly-
mer chains and molecular dynamics for swelling and chain relaxation was iteratively used.
Computation of diffusion coefficients was carried out and compared with experimental data.
The final section investigates the coupling between sorption and mechanical properties,
particularly the plasticizing effect due to the sorbed CO, with T, computations.

Finally, in the chapter [6] the study’s strengths and limitations are discussed. Regarding
semicrystalline polymer model building, the chapter presents models of other polymers
and proposes simplifications or less idealized model building procedures. Concerning the
properties, possibilities to extend the scope of the computed mechanical properties are
discussed, as well as improvements in the precision of sorption computations and diffusion
coefficients.



Chapter 2

State of the art

A semicrystalline polymer material consists of polymer components arranged in a highly
ordered structure, where the polymer chains align with each other to form crystallites sep-
arated by an amorphous phase (see Figure [2.7). Polymers are made up of linearly bound
molecular units that repeat, connected by covalent bonds. In this material, a polymer chain
traverses both phases, moving through crystalline domains where it aligns with other poly-
mer sections, as well as amorphous domains where it follows a disordered path.

Several polymers exhibit a semicrystalline structure, including poly-aryletherketones, polyamides,
and polyolefins, among others. This study focuses on linear polyethylene, which has a
backbone composed of CH, groups. It is the simplest polymer and therefore the preferred
model for developing methods for molecular simulation and computational workflows to cal-
culate physicochemical properties. While the dissertation primarily focuses on semicrys-
talline polyethylene, the methods presented are intended to be general enough to be ap-

plied to other semicrystalline polymers. Examples of model constructions for other poly-
mers will be shown in the conclusion chapter.

In this chapter, we will offer a non-exhaustive review of the literature concerning what is
known about the morphology, modeling of semicrystalline polymers, as well as their me-
chanical and permeation properties.

Section[2.7] will present the morphology of semicrystalline polymers, starting from the large
scale and progressing to the small scale. Section will discuss different methods pro-
posed in the literature for building semicrystalline polymer models for molecular simulation.
Finally, sections [2.3]and [2.4] will provide a concise overview of experimental and simulation
literature results concerning the mechanical properties and theory of permeation properties
in semicrystalline structures.
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2.1 Semicrystalline morphology from the mesoscale to
the molecular scale

Using an optical microscope, it is possible to observe micrometer-scale structures known
as spherulites (see Figure[2.2). By examining the X-ray powder diffraction pattern (see Fig-
ure [2.3), it becomes apparent that the semicrystalline polymer material consists of both a
crystalline phase (see Figure[2.4) and an amorphous phase [Murthy and Minor, 1990]. The
diffraction pattern exhibits peaks corresponding to crystalline planes and an amorphous
halo, indicating the presence of both phases. This leads to the question of how the crys-
talline and amorphous phases are organized within the spherulites.
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Figure 2.1: “Multiscale” scheme of semicrystalline polymers. Left: a micron-sized
spherulite consisting of crystalline lamellae emanating from a nucleation center in all di-
rections. These lamellae are aligned polymers forming a crystalline region. Middle: a
single polymer chain is represented crossing two lamellae in grey, the chain sections in the
amorphous regions are of three types: loops in blue, the polymer is reentering the same
lamella, bridge or tie chains in green, the polymer is bonding two lamellae, and tails in pur-
ple, the polymer ends in the unordered phase. The red walk is called an adjacent reentry,
also called a perfect fold. This is the smallest possible loop. Right: a representation of two
crystalline paralleled polyethylene chains. The red rectangles show the successive magni-
fication from left to right.

2.1.1 Spherulite

When observing spherulites under microscopy between two perpendicular polarizers, dis-
tinct Maltese cross patterns become visible (see Figure [2.5). These patterns provide valu-
able insights into the organization of the crystalline phase within the spherulites [Lenz and
Stein, 1973]. Parallel linear polymer chains act as polarizers. When their direction aligns
with one of the crossed polarizers, minimal light is transmitted. However, as the chains
deviate from alignment with the polarizers, the transmission of light increases. This effect
gives rise to dark perpendicular cones, forming the characteristic Maltese cross, as well as
bright regions. The degree of transmission also depends on the wavelength, partly due to
the polymer’s absorption properties [Ehrenstein and Theriault, 2001].



Figure 2.2: Poly(ethylene propylene) spherulites observed with microscopy [Pethrick,

2007).
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Figure 2.3: Profile analysis of a diffractometer scan from polyethylene. The full line is
the observed data points, the broken curves are the profile of the separated components
(amorphous and crystalline phase). The numbers identifying the peaks are Miller indices
(Murthy and Minor, 1990].

When spherulites are rotated within their plane, the corresponding Maltese cross patterns
remain unchanged, indicating that the molecular arrangement is consistent regardless of
the polar angle. This reveals that the molecular axis of the polymer molecules in the crys-
talline domains of the spherulites is normal to the radius vector. X-ray diffraction studies
[Goderis et al., 1999] have shown that the crystalline structures are organized in lamellae,
approximately ~ 10 nm thick. These lamellae are crystalline domains originating from a nu-
cleation center and separated by an amorphous phase, constituting the spherulites (refer
to the left scheme in Figure [2.7).

2.1.2 Lamellar structure, long period and incomplete crystallization

The X-ray diffraction pattern provides valuable information for measuring the alternation
between the amorphous and crystalline phases, known as the long period Lp. Additionally,
calorimetric measurements estimate the thickness of the crystalline lamellae m



Figure 2.4: Orthorombic polyethylene crystalline cell, space group Pnma (a = 0.740 nm,

b= 0.493nm and c = 0.253nm). The density is 1.003 g/cm3 [Bunn, 1939].
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Figure 2.5: Typical appearance of banded spherulites of polyethylene in the polarizing

microscope [Lovinger, 2020].

let al., 1999] [Ryan et al., 1994]:

Lp =m+d, (2.1)

where d represents the thickness of the amorphous phase. The values of Lp and m depend
on the crystallization path, such as the cooling rate [Mutter et al., 1993]. The center of
Figure [2-7]illustrates the alternation between the amorphous and crystalline phases, with
the bold double arrow representing the long period Lp.

The thicknesses can be related to the densities as follows:
Lpp=mp. + dpa, (2.2)

where p is the total density of the semicrystalline structure, p. is the density of the crystalline



phase, and p,, is the density of the amorphous phase. This relation is an approximation; it
implies that the density abruptly changes between the crystalline phase and the amorphous
phase. In reality, a continuous transition exists.

Another important characterization parameter is the degree of crystallinity, which repre-
sents the mass or volumic ratio of the crystalline phase to the total semicrystalline material:

W,
¢ = 0o, 2.3
X VVtotaI ( )
V.
c = 9 2.4
¢ Viotal 24)

where . (¢.) is the massic (volumic) degree of crystallinity, W, (V.) is the mass (volume)
of the crystalline phase, and Wiua (Viotal) is the total weight (volume) of the semicrystalline
material.

Reciprocally, we also define the massic (or volumic) amorphous fraction.

Xa =1—Xe (25)

o =1— ¢ (2.6)

The two quantities, which will be useful in the following, are the crystallinity degree x., and
the amorphous fraction ¢,.

Incomplete crystallization occurs because in the molten state, polymers are randomly ori-
ented, leading to multiple chain entanglements. The growth of crystallites is faster than the
resolution of entanglements. Eventually, the density of entanglements in the amorphous
phase reaches a maximum, impeding further crystalline growth [Flory and Yoon, 1978].

2.1.3 Loss of order from the crystalline phase to the amorphous phase,
controversy about the path of a single chain and tilt angle

2.1.3.1 Experimental studies

In pure crystalline polyethylene, which can be obtained by rapidly cooling polyethylene in
a solution, it was quickly recognized that the chains located at the edges of the crystallite
primarily fold towards the adjacent stems. These folding patterns are referred to as adja-
cent reentries, and the folding model is known as the adjacent reentry folding model [Spells
and Sadler, 1984] (see Figure [2.6). The compact folding of the chains in pure crystalline
polyethylene was demonstrated by measuring the radius of gyration of deuterated chains,
which was significantly smaller compared to the chains in the molten state. This smaller
radius of gyration indicates the necessity for a compact folding of the chains within the crys-
talline structure, i.e adjacent reentries. More recent research has quantified the fraction of
adjacent reentry folds in various pure crystalline polymers, revealing that it typically ranges
from 91% to 95% [Ma et al., 2019).

In the semicrystalline structure, the folding models at the edges of the crystalline lamel-
lae have been a subject of prolonged and ongoing debate. In the 1970s, the trajectory of
a single deuterated polyethylene chain in the semicrystalline structure, obtained by rapidly
quenching from the melt, was investigated using neutron scattering (NS) techniques [Schel-
ten et al., 1976, |Schelten et al., 1977, |Sadler and Keller, 1977, |Stamm et al., 1979]. The



Figure 2.6: Scheme of an adjacent reentry folding model in a pure crystalline poly-
mer[Abdou, 2015].

Figure 2.7: Left: Scheme of a polymer chain in the melt with a radius of gyration R,. Right:
Polymer chain in the semicrystalline structure keeping the same radius of gyration, here
the crystalline chains are orthogonal with the interface [Stamm et al., 1979].

studies revealed that the radius of gyration of the polymer in the semicrystalline structure
is comparable in length to that in the molten state (see Figure [2.7). This finding suggests
that the overall extension of the polymer molecules is not significantly altered during the
crystallization process, leading to the formation of a relatively low proportion of adjacent
chain reentries (refer to the center of Figure[2.1]for the definition of adjacent reentry).

Since the 2000s, new techniques have been employed to characterize the morphology of
semicrystalline polymers, including atomic force microscopy (AFM) and solid-state nuclear
magnetic resonance (ssNMR). The use of isotope labeling in ssNMR allows for the study
of a small fraction of the polymer chains. AFM images of semicrystalline films of isotac-
tic poly(methyl methacrylate) [Kumaki et al., 2005] and polyethylene [Mullin and Hobbs,
2011, |Savage et al., 2015] have revealed a high proportion of adjacent reentries, in con-
trast to the findings from NS measurements on semicrystalline materials obtained from
the melt. Similarly, ssNMR studies on polypropylene solution-grown single crystals and
semicrystalline polypropylene obtained from the melt have also shown a high proportion of
adjacent reentries, along with the additional observation that the morphology is less depen-
dent on the kinetic path of crystallization and more influenced by the entanglements in the
initial amorphous material [Hong and Miyoshi, 2013, [Hong et al., 2016).

It is challenging to draw definitive conclusions about the correct morphology of the folding
pattern due to the paradoxical nature of experimental findings. This can be attributed to the
diversity of procedures used to prepare polymer samples and the nature of the polymers



under study. For example, AFM studies often require specific samples such as stretched
polymer films during the cooling process, which may lead to a higher proportion of observed
adjacent reentries. On the other hand, the measurements conducted by Stamm et al. in
the 1970s utilized deuterated chains. To prevent phase separation between deuterated and
non-deuterated chains, quenching is needed. This approach may have hindered strong
reorganization and favored a less compact folding model.

2.1.3.2 Theoretical treatment

In an effort to address the controversy, Flory, Yoon, and Dill published two articles in 1984
proposing a theoretical treatment. In their initial paper, they considered chains emanating
normally from the interface and wrote [Flory et al., 1984]:

The flux of chains emanating from 001 face of the crystal is large; it may reach
the maximum that spatial requirements of the chains will allow (if the conforma-
tion in the crystal and the crystal dictate). This flux must be diminished sub-
stantially as a necessary prerequisite for attainment of random disorder. The
mere requirement of isotropy of the distribution of bond directions necessitates
a reduction of the surface density of chains by a factor of one-half if the chains
in the crystal are normal to the interface and if the difference in densities of the
phases is ignored.

Based on these assumptions, Flory, Yoon, and Dill reached the conclusion that a minimum
of 70% of the chains emanating from the crystal exhibit an adjacent reentry behavior. In
a subsequent article published in the same year [Yoon and Flory, 1984], Yoon and Flory
demonstrated that the presence of a tilt angle (depicted in the central schematic of Figure
where the crystalline stems form an angle, known as the tilt angle, with the interface
normal) weakens the necessity for adjacent reentries in order to dissipate the flux of emerg-
ing chains. An easy way to undertand that, is that in a Pythagoras triangle, the adjacent
sides, are alway smaller than the hypothenuse. As the tilt angle increases, the same num-
ber of chains emerge at the interphase, but they do so over a larger surface area. In this
model, the polymer chains emerge from the (201) polyethylene crystalline plane:

The reduction of surface chain density in lamellar semicrystalline polymers due
to tilting of the interfacial plane from orthogonality to the chain sequences within
the crystal allows the incidence of adjacent folds to diminish markedly; it may
become negligible for a tilt angle > 25°.

In semicrystalline polyethylene, the tilt angles have been evaluated to be approximately
~ 35°on average [Keller, 1961, |Bassett et al., 1981, |Bassett et al., 1963a, Bassett et al.,
1963b), [Cowking et al., 1968, Voigt-Martin et al., 1980, |Voigt-Martin et al., 1989, reach-
ing up to 60° with high molecular weight polymers [Peterlin, 1980, [Frank, 1979, Hay and
Keller, 1967, Point et al., 1969, |/Alamo et al., 1992]. Building on the approach of Yoon
and Flory, Fritzsching et al. in a recent study further refined the understanding of how
the surface density of polymers emerging from the crystalline phase dissipates and avoids
density anomalies in the interphase, which is the region where the dissipation of order oc-
curs between the crystalline and amorphous phases [Fritzsching et al., 2017]. This study
also considered the fact that the center of the isotropic amorphous phase has a lower den-
sity (0.85gcm~3) compared to the 1.0 gcm—3 density of the crystalline phase, necessitating
even more density dissipation in the interphase. According to their findings, the avoidance



of density anomalies is attributed to the tilt angle, the presence of free chains with their
chain ends in the interphase, and a low proportion of adjacent reentries. With high molecu-
lar weight chains, there are fewer chain ends, allowing for the observation of large tilt angles
up to 60°.

Most theoretical models assume a regular and planar interface, but the presence of surface
roughness could potentially aid in dissipating chain surface density as well as volumetric
density. The rough patterns observed in AFM studies support this notion [Savage et al.,
2015).

In conclusion, it appears that there are various mechanisms in nature to accommodate the
dissipation of order, the necessary dissipation of chain surface density to achieve isotropic
polymer paths, and the gradual decrease in mass density toward the amorphous phase. In
1979, Volume 68 of the Faraday Discussions of the Chemical Society [Keller, 1979] was
largely dedicated to the controversy between the proponents of the switchboard models
with very few adjacent reentries and the opposing adjacent reentry folding models. The
issue was the subject of a heated debate among the founding figures of the field, such as
Keller, Flory, and Sadler. However, it seems that the controversy has dissipated over time.
There is no definitive answer; it appears that the preparation of the sample, the length of
the polymer chain, and the number of entanglements in the melt will tilt the balance toward
one model or the other.

The interphase between the crystalline and amorphous regions has been observed through
Raman spectroscopy, which requires the inclusion of three distinct phases in spectral de-
compositions [Mutter et al., 19983, |Strobl and Hagedorn, 1978]|, as well as through NMR,
with a separation of molecular degrees of freedom between the amorphous phase and the
interphase [Bergmann, 1978|. Experimental estimates suggest that the thickness of the
interphase ranges from approximately 0.8 nm to 3.4 nm.

2.1.4 Characterization of the amorphous chain sections: chain sec-
tion types and trapped entanglements

2.1.4.1 Type of chain sections in the amorphous phase

As discussed previously, there is an ongoing debate regarding the folding patterns at the
edge of the crystalline phase in the interphase, highlighting the variety of folding patterns
allowed by nature.

Moving into the amorphous phase, another important aspect used to characterize it is the
type of chains that either bound or do not bound the crystalline lamellae.

In the semicrystalline structure, the same chain travels through both the crystalline domains
and the amorphous phases, as depicted in the central scheme of Figure[2.7]

Taking the example of the chain shown in the central scheme of Figure we observe
that it starts its path in the bottom-left region of the scheme, within the bottom amorphous
phase, forming what is referred to as a free chain or a tail in this context. The chain
then enters the gray crystalline lamella, adopting a crystalline zig-zag conformation (for
polyethylene), represented by a bold segment. As mentioned earlier, the chain enters the
lamella at an angle relative to the normal of the crystalline edge. It then emerges from
the crystalline lamellae, depicted by green lines, forming what is known as a bridge or
a tie chain in the literature, connecting the two crystalline lamellae. Upon reentering the



top crystalline lamella, the chain again emerges from it, creating a loop within the same
lamella. This pattern is repeated twice. The final reentry, highlighted in red, represents an
adjacent reentry, which is the smallest possible loop where two adjacent crystalline stems
are bound together by the shortest chain section in the interphase. Another loop is then
formed in the top-right region of the top crystalline lamella. Finally, the chain crosses the
central amorphous phase once again, forming a last tie chain before concluding its path
in the bottom amorphous phase as a tail. It should be noted that other chain types are
possible but were not considered in this work. For instance, a chain can terminate within
the crystalline phase, creating a crystalline defect.

2.1.4.2 Entanglements

In addition to the descriptions of amorphous chain types, as explained earlier, the hinder-
ance of complete crystallization arises from the presence of entanglements, which require
more time to be resolved than the time needed for crystallization to occur. The entangle-
ments trapped in the amorphous phase are referred to as trapped entanglements. These
trapped entanglements can have different types depending on the involved chain sections.
Examples include loop-loop entanglements, tie-tie entanglements, tie-loop entanglements,
tail-tie entanglements, and so on.

Furthermore, the description can be further refined by introducing the notion of bridging en-
tanglements, which involve entanglements composed of chain types emerging from differ-
ent lamellae. For instance, loop-loop bridging entanglements connect two different lamellae
through an entanglement.

2.1.4.3 Stress transmitters and elastically active chains

The characterization of chain types and trapped entanglements is crucial for understanding
the mechanical properties of semicrystalline materials. Specifically, tie chains and loop-
loop bridging entanglements are believed to play a significant role as stress transmitters
when the semicrystalline structure is subjected to strain. This hypothesis was suggested
by Humbert et al. [Humbert et al., 2009, Humbert et al., 2010] and Huang and Brown
[Huang and Brown, 1991].

Similarly, in the context of transport properties, Memari, Lachet, and Rousseau [Memari
et al., 2015| proposed that elastically active chains, which consist of tightly bound bridging
entanglements and tie chains, impose additional constraints on the amorphous phase and
limit the solubility of penetrants.

2.2 Review of the literature of semicrystalline model build-
ing at the molecular scale

2.2.1 Direct nucleation from the melt with molecular dynamics

Molecular modeling techniques, such as molecular dynamics, have been utilized to sim-
ulate nucleation processes from the melt [Esselink et al., 1994, [Takeuchi, 1998| |Yi and



Figure 2.8: Example of a direct nucleation study of polyethylene from the melt

and Luo, 2010

Rutledge, 2009, |Yi and Rutledge, 2011} |Yi et al., 2013} [Zhang and Larson, 2018, [Koyama
et al., 2002, [Cavine et al., 2003| [Ko et al., 2004], [Jabbarzadeh and Tanner, 2009, [Kavassalis
land Sundararajan, 1993, |Liu and Muthukumar, 1998, [Hu, 2001}, Meyer and Muller-Plathe,|
2002, [Yamamoto, 2008, [Yamamoto, 2010]. These simulations provide valuable insights
into the molecular-scale mechanisms of nucleation and aid in understanding the chain fold-
ing patterns within the crystallites. However, direct observation of nucleation events using
molecular dynamics is challenging due to the rarity and anisotropic nature of homogeneous
nucleation, which requires the simultaneous creation of a surface normal to the chain di-

rection and the lateral stacking of parallel chains]Yi et al., 2013].

To overcome these challenges, simulations are often biased to accelerate the formation of
a nucleus large enough to survive and grow within a reasonable simulation time. Biases
can include the use of super-cooled short chains [Esselink et al., 1994 [Takeuchi, 1998| |Yi
land Rutledge, 2009, |Yi and Rutledge, 2011}, |Yi et al., 2013| Zhang and Larson, 2018],
pre-oriented chains [Koyama et al., 2002} [Lavine et al., 2003, [Ko et al., 2004, Jabbarzadeh|

and Tanner, 2009], or artificially stiffened chains [Kavassalis and Sundararajan, 1993| [Liu|
and Muthukumar, 1998]. Coarse-graining techniques [Hu, 2001}, |Meyer and Muller-Plathe,
2002, [Yamamoto, 2008, [Yamamoto, 2010, Jabbari-Farouji et al., 2017] have also been
employed to accelerate simulations.

However, it should be noted that due to the small size of the simulation boxes (approxi-
mately 100 A), the characteristic lamellar structure observed in experimental studies, char-
acterized by the regular alternation of crystalline and amorphous phases (as depicted in
the middle image of Figure 2.7), may not fully emerge in these simulations (Figure [2.8] ex-
amplifies the kind of structure resulting from direct nucleation). Consequently, the obtained
systems are often inadequate for property calculations.

As a result, simulation boxes are commonly constructed directly with a predetermined
semicrystalline structure, and various procedures proposed in the literature will be dis-
cussed in the following sections.

2.2.2 The Interphase Monte Carlo Method (Rutledge model)

Since 1998, the Rutledge group at MIT has proposed a method for modeling semicrystalline
structures known as the Interphase Monte Carlo Method [Balijepalli and Rutledge, 1998,
\Gautam et al., 2000, Balijepalli and Rutledge, 2000, [Rutledge, 2002, in 't Veld and Rutledge,




Figure 2.9: Scheme explaining the Rutledge model. The left scheme is the initial simulation
box, a pure crystal with randomly deleted chain sections in the center of the crystal to target
the amorphous density. The right scheme is the simulation box after Monte-Carlo steps of
connection, slicing bonds and displacement moves.

2003} (in't Veld et al., 2006] hereafter referred to as the Rutledge model.

This method begins with a cuboid-shaped pure crystal. In the central section of the cuboid,
which is intended to represent the amorphous phase, monomers or entire chain sections
are removed to achieve the desired density for the amorphous region. Subsequently, a
Monte Carlo procedure is employed within this central section, involving slicing chain bonds,
connecting chain ends, and employing classic displacement-type moves for the chains.
Meanwhile, the remaining atoms are kept frozen.

The Rutledge model incorporates two main constraints: the target density and the inter-
lamellar distance. To satisfy these constraints, the atoms at the lower and upper ends are
kept frozen (refer to Figure[2.9).

The Rutledge group has developed simulation models that incorporate both crystalline
stems orthogonal to the interface and stems with a tilt angle. Similar to the findings of
Flory (see Section [2.1.3), a lower proportion of adjacent reentries is observed when the
tilt angle is non-zero compared to when it is zero. The energetically optimal tilt angle cor-
responds to an interface aligned along the 201 crystalline plane, and the Rutledge Monte
Carlo procedure achieves a fraction of adjacent reentries ranging from 20-30% in this case.
Local stress analysis indicates that this tilt angle reduces interfacial energy

2006, |[Rutledge, 2002].

A distinctive characteristic of Rutledge models is the low number of tie chains. In Rutledge
systems, the majority of chain sections consist of loops [Kim et al., 2014| Yeh et al., 2015].
However, in real systems, where the gyration radius exceeds the long period L,, a higher
number of tie chains is expected.

The hindered complete crystallization is believed to be due to entanglements, as discussed
earlier. The topological reorganization facilitated by the Monte Carlo connections and dis-
connections resolves many entanglements, overcoming steric hindrance and leading to en-
ergetically favorable conformations. Consequently, the Rutledge model explores energeti-
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Figure 2.10: Scheme of the chains in the initial condition in the Pandiyan and Rousseau
connection method. The blue chains are then melted and a connection algorithm connects
chain when falling within a cut-off radius [Pandiyan and Rousseau, 2013].

cally favorable conformations of the amorphous phase, favoring the presence of adjacent
reentries.

2.2.3 The Monte Carlo random walk method (Nilsson’s model)

More recently, Nilsson et al. proposed an alternative approach for constructing semicrys-
talline polymer models|Nilsson et al., 2012, Moyassari et al., 2015].

This method utilizes a random walk technique between two crystallites, where upon reach-
ing a crystallite, the chain automatically connects to a crystalline stem. Chains emerge
from the lamellae and can either fold back adjacently or initiate a random walk, resulting in
the formation of loops or tie chains (refer to Figure [2.7]for definitions). The target density of
the amorphous phase is achieved by controlling the probability of direct adjacent reentry.

Both the Nilsson and Rutledge methods employ the amorphous phase density as a control-
ling parameter, coupled with either random walks or a Monte Carlo connection algorithm.

2.2.4 Pandiyan and Rousseau connection method

Pandiyan and Rousseau [Pandiyan and Rousseau, 2013] proposed a different approach,
starting with a pure crystalline sample and randomly cutting each chain in a central region.
This is followed by a relaxation process above the melting temperature to create an amor-
phous region, while keeping two crystalline areas frozen (refer to Figure 2.10). During a
subsequent relaxation step, two chain ends are connected, forming a chemical bond if they
fall within a specified cutoff distance. The acceptance or rejection of these connections is
determined by the input fractions of polymer section types.

This method enables the investigation of the role of each type of walk (tie chains, loops,
and tails) by controlling their relative fractions [Pandiyan and Rousseau, 2013].



2.2.5 Monasse and Queyroy method

Starting with information about the morphology instead of starting with the density as the
controlling parameter was also proposed by Monasse and Queyroy [Monasse et al., 2008,
Queyroy and Monasse, 2012).

In their work, they deliberately selected specific reference systems characterized by pre-
defined morphological attributes, including degrees of crystallinity and connection patterns
(encompassing tails, tie chains, and loops), alongside amorphous section lengths. These
systems were meticulously manually built.

Although this technique demands a considerable investment of time, it affords unparalleled
precision in regulating the proportions of different chain section types and the distribution
of their respective lengths.

2.2.6 Discussion on the different semicrystalline modeling methods:
advantages and disadvantages

Nilsson’s and Rutledge’s methods lack control over morphologies. Nilsson Monte Carlo
random walk model heavily relies on a high proportion of adjacent reentries to achieve
the experimental density of the amorphous phase, which is a contentious choice when
considering the experimental literature.

Rutledge model favors structures predominantly composed of loops and aims to create the
most energetically stable amorphous phases through topological reorganization.

In Pandiyan and Rousseau work [Pandiyan and Rousseau, 2013], attempts were made to
control the fraction of different chain section types, but the connection procedure was not
efficient enough, resulting in a high number of unconnected chains and unrealistic polydis-
persity in molecular weights.

Monasse and Queyroy construction method is tedious and requires prior knowledge of
all morphological traits, making it inconvenient for systematic studies of semicrystalline
samples. However, it offers the advantage, similar to Pandiyan and Rousseau method, of
providing control over the amorphous morphology.

When seeking a building method suitable for examining the relationship between morphol-
ogy and physico-chemical properties, three main criteria have been identified:

« The method should be automated or capable of generating multiple cells within a
limited timeframe.

+ Some degree of control over morphologies is necessary.

+ The method should possess inherent randomness to generate different models with
the same morphological characteristics as inputs.



2.3 Mechanical properties of semicrystalline polymers

To characterize strain in materials, the main criterion is their ability to resist a distorting
constraint and return to their original size and shape when the strain or force is removed.
When a material can regain its initial shape and size for a given strain, it is said to be within
its elastic domain. In this small strain regime, the strain-stress relationship is described by
Hooke’s law:

o= FEe (2.7)

where o and e represent the internal stress and strain, respectively. Hooke’s law applies to
directional normal stress. For shear stress, a similar relationship can be expressed as:

0 =Gr (2.8)

where 6 and 7 represent the equivalent quantities for shear stress and strain. Here, E
and G are the Young’s modulus and the shear modulus, respectively. Beyond the elastic
domain, when the strain is too high, the deformation is called plastic.

2.3.1 Experimental mechanical properties of polyethylene

The typical stress-strain behavior of a semicrystalline polymer is depicted in Figure
In Domain |, the material exhibits elastic behavior, meaning it can recover its original shape
and size. The stress-strain curve in this region follows the equation The slope of
the curve represents the Young’s modulus, denoted as E. The Young’s modulus can vary
depending on factors such as crystallinity, molecular weight, and processing conditions
[Jordan et al., 2021]. For example, low-density polyethylene (LDPE), which has a low
degree of crystallinity, typically has a Young’s modulus ranging from 50 to 400 MPa [ASTMD-
638-14, 2014]. On the other hand, high-density polyethylene (HDPE) exhibits a higher
Young’s modulus, ranging from 800 to 3000 MPa [Jordan et al., 2021].

Domain Il begins at the end of the elastic region after a yield value, denoted as oy, typ-
ically falling within the range of 10 to 40 MPa according to measures compiled by ASTM
International [ASTMD882-18, 2018], respectively for LDPE and HDPE. The yield value oc-
curs at 8.8 % for HDPE and 10.0 % for LDPE. In this domain, the material undergoes plastic
deformation, spherulitic structures are still present.

In Domain lll, the material experiences further deformation as molecules align in the di-
rection of strain, forming fibrils. Spherulites are destroyed, and the amorphous regions
undergo bond breakage, leading to the formation of cavities. Ultimately, failure occurs at
a rupture stress also called tensile strength denoted as o, typically ranging from 23.5 to
47.4 MPa from the same data provided by ASTM International [ASTMD882-18, 2018].

The shear modulus G is strongly influenced by temperature and shear rate. At a tempera-
ture of 20 °C, the shear modulus can range from 1 to 6 GPa [Nielsen, 1954].

2.3.2 Anisotropy of the elasticity at the microscopic scale

As discussed in Section at the scale of the long period, the structures of semicrys-
talline materials exhibit high anisotropy. Therefore, it is necessary to introduce generalized
Hooke’s laws that account for directional strain and stress tensors. The Voigt notation
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Figure 2.11: Stress and strain curve of a semicrystalline polymer. The stress is uniaxial
and the engineering strain e is defined as % where [y is the intial length of the sample
[Seignobos, 2009].

provides a compact representation of the elastic constants, which is convenient for cal-
culations. In this section, we will provide a brief introduction to the generalized Hooke’s
law.

In a material at equilibrium, the internal stress tensor, denoted as o,3, represents the
opposite of the applied force per unit area acting on a face of the material (see Figure
2.12).

1
Top = —— f© (2.9)
5B

with a force f* of direction a applied on the face which has as a normal 5. We can write
the generalized Hook law:
Oap = Ca[—}uyeul/ (2.10)

where elastic constants C,,,,, are a rank 4 tensor. The stress and strain tensors symmetry
(0ag = 08a aNd €43 = €3,) and the generalized Hooke’s laws imply that Co, = Capw =
Copvp = Cgavyu. These symmetries reduce the number of elements of stress and strain
tensors from 9 to 6 and the number of elastic constants from 81 to 36. Moreover, the
stress-strain relation can be derived from a strain energy (U) :

U 02U

= Caguw = (2.11)

O€apOe,,

Maxwell relations on thermodynamic potentials tell us that the order of differentiation does
not change the value of the derivative so : C .., = CLuag. That reduces again the number
of elastic constants for the stiffness tensor from 36 to 21. With those simplifications:
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Figure 2.12: Representation of the elementary volume in the {e1, e2, e3} frame where the
tensors elements are shown on their face. Figure extracted from [Clavier, 2018]
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The factor 2 appearing in equation is mandatory to keep the equation (2.70) true.
Reference [L.D. Landau & E.M. Lifshitz, 1970] is available to provide exhaustive details.
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(2.14)

In the case of an orthotropic material like crystalline polyethylene, the material has three

planes of symmetry and is characterized by 9 coefficients.



o1 ci1 ci2 ¢33 0 0 O €1
o2 cl2 ¢ c3 0 0 0 €2
o3| |cs c3 e33 0 0 O €3
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2.3.2.1 Elastic properties measured on the polyethylene pure crystalline phase

The crystalline phase, depicted in Figure exhibits distinct anisotropic characteristics.
The alignment of the crystal backbone predominantly follows the ¢ axis, driven by covalent
interactions, while the a and b axes experience strain resistance mainly through weaker
non-covalent interactions.

Empirical investigations have yielded elastic coefficients of 3.2GPa and 3.9 GPa (corre-
sponding to ¢;1 and cq9, respectively) along the a and b axes [Sakurada et al., 1964]. For
the chain axis along the ¢ direction, the coefficient ¢33 has been theoretically computed at
288 GPa in [Tashiro et al., 19784, | Tashiro et al., 1978b]. The most precise measurement, as
determined from X-ray analysis by Nakamae et al., establishes ¢33 = 235 GPa [Nakamae
et al., 1991].

2.3.2.2 Elastic coefficients measured on ultra-drawn polyethylene

A suitable model for capturing the anisotropic elastic properties of semicrystalline polymers
at the hundred of nanometers scale, the long period scale (as shown at the center of Figure
[2.1), is provided by ultra-drawn polyethylene films. These films are produced by stretching
the polymer melt in a single direction after it has been cooled from the molten state.

This process yields a structure different from the typical spherulite formation (as depicted
on the left side of Figure [2.7). In ultra-drawn films, the crystalline phases are all oriented in
a uniform direction, as demonstrated in Figure 2.13]

By measuring the elastic coefficients of ultra-drawn films, valuable insights can be gained
into the elastic coefficients of the local semicrystalline structure, which consists of parallel
crystalline lamellae separated by an amorphous phase. The elastic coefficient tensor is
presented in Table [2.1]

Table 2.1: Elastic coefficients of an ultra-drawn polymer film according to Choy et al. [Choy
and Leung, 1985] in GPa.

2.3.2.3 Elastic coefficients computed by molecular simulation on semicrystalline
structures

The main group who directly computed the elastic coefficient tensor from molecular simu-
lation with samples representing both the crystalline and amorphous phases like the one
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Figure 2.13: Scheme of an ultra-drawn polyethylene extracted from ,{ Wang et al., 201 7|]

2.5 % .\é\\'i\-
\'L.\ =*
= = S
S 2 oA
N4 ' [ 3
S B B
: e
1.5 e
.\\}~'\§ ...
1 e S
S Sttt SO
360 380 400 420 440

T(K)

Figure 2.14: Diagonal elastic coefficients of the non-crystalline part of the semicrystalline
models computed by in’t Veld et al. [in’t Veld et al., 2006](c11 : squares; cos: triangles, cs3:
diamonds).

on the right of Figure [2.9]is the Rutledge group [in't Veld et al., 2006].

It is not clear why in’t Veld et al. computed the stress tensors using only the stress on the
atoms in the non-crystalline phase. It is interesting to notice that the non-crystalline domain
is less rigid in the ¢ direction (see Figure 2.74).

2.3.3 Molecular simulation of the plastic deformation, beyond the elas-
tic domain

Queyroy and Monasse [Monasse et al., 2008, |Queyroy and Monasse, 2012], as well as the
Rutledge group [Olsson et al., 2018, |Ranganathan et al., 2020], have extensively inves-
tigated plastic deformation in semicrystalline polymers. Simulating plastic deformation is
crucial for studying the effects of different chain types, entanglements, and crystallinity on
the structural rigidity beyond the elastic regime.
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Figure 2.15: Non-diagonal elastic coefficients of the non-crystalline part of the semicrys-
talline models computed by in’t Veld et al.fin’t Veld et al., 2006](c,-: squares; c13: triangles,
co3.: diamonds)

However, it is important to note that direct comparisons between simulation results and ex-
perimental data are challenging due to the significant difference in strain rates. Molecular
modeling typically employs strain speeds at least two orders of magnitude faster than ex-
perimental conditions. Another issue is of course the size of the samples, the fact that the
entire spherulite is not simulated, as well as the connection between spherulites.

Monasse and Queyroy devised constructions that allow them to control certain aspects of
the morphology, such as the fraction of tie chains bridging two crystalline lamellae and
the distribution of their sizes. Their findings suggest that the fraction of tie chains and the
degree of crystallinity contribute to an increase in the yield stress.

In a recent study by the Rutledge group [Ranganathan et al., 2020], they were able to
adjust the parameters of the Interphase Monte Carlo method (introduced in section
to manipulate the quantity of entanglements. Although the Rutledge models have a debated
characteristic regarding the connection and disconnection moves in the Monte Carlo steps
that can resolve the trapped entanglements, they demonstrated that varying the number
of Monte Carlo steps in their method and adjusting the temperature, indirectly controls
the quantity of trapped entanglements as well as the fraction of different chain types (tie
chains, loops, and tails). As expected, the increase of tie chains and entanglements rigidify
the structures.

The yield mechanism varied with the topology of the structures. Structures with fewer
entanglements exhibited a higher probability of melting/recrystallization compared to struc-
tures with more entanglements, which deformed with the formation of cavitations.

2.4 Permeability

Permeation refers to the ability of a fluid to pass through a material. Let us consider a
membrane with a width [, an area A, and @ as the quantity of penetrant that crosses the
membrane during a time interval ¢. The flux of fluid passing through the membrane per unit
time and surface area is denoted by J.

J=-< (2.16)



The diffusion mechanisms are strongly influenced by the interactions between the polymer
and solute, as well as the state of the polymer (glassy or rubbery). The relative mobilities of
the penetrant and the polymer play a crucial role [Crank, 1979, |Rogers, 1985al Aminabhavi
et al., 1988|.

In the case of Fickian diffusion, the diffusion speed is slower than the relaxation speed of
the polymer. This condition typically holds above the glass-liquid transition temperature T,.
According to the first Fick’s law, there exists a proportional relationship between the flux of
penetrant and the concentration gradient in the membrane.

J =-DVC (2.17)

Here, C represents the local concentration of the dissolved gas in the polymer membrane,
and D is the diffusion coefficient. The gas concentration in the polymer is related to the
pressure P of the fluid phase.

Cc=S8P)pP (2.18)

In the high-pressure regime, the solubility coefficient S(P) depends on pressure. However,
at low pressure, the concentration follows Henry’s law, which states that the concentration
is proportional to the pressure, and S becomes a constant. To extend the validity of Henry’s
law, it is possible to use fugacity instead of pressure. At low pressure, gases behave like
ideal gases without interparticle interactions, while at higher pressures, interparticle interac-
tions such as Van der Waals or electrostatic forces introduce cohesiveness to the fluid. The
fugacity of a real gas is an effective pressure that accounts for the cohesiveness through
the chemical equilibrium constant of the gas, reflecting the tendency of gas molecules to
stick together. It is equivalent to the pressure of an ideal gas having the same temperature
and molar Gibbs free energy as the real gas. The fugacity f has the dimension of pressure,
and in the low-pressure regime, f = P. Rewriting Henry’s law using fugacity, we have:

C=S5f (2.19)
Combining the last two equations yields:
J=-DSVf (2.20)

This equation directly provides the flux of penetrants through a membrane based on the
pressure (or fugacity) difference on both sides of the membrane. The proportionality factor
is called the permeability Pe, defined as:

Pe=SxD (2.21)

In this document, the concentration is expressed in terms of mass, specifically the quantity
of dissolved gas in grams per 100 g of polymer (g/100g). Therefore, the solubility coefficient
is expressed in g/100g/MPa, and the diffusion coefficient D is expressed in cm?/s. The
permeability coefficient Pe is defined here assuming that S is constant, which only holds
in the low-pressure Henry domain. However, the definition remains the same when other
behaviors are observed.

2.4.1 Solubilities, sorption modes

In the most general case, the solubility coefficient S depends on temperature, pressure,
and concentration. Various classical sorption modes are presented in Table [2.2] [Huggins,
1941| [Flory, 1941} |Flory, 1942], and the corresponding sorption isotherm curves are shown

in Figure



Mode Henry’s law
Expr. Cc=SP Constant S independent of concentration, and
pressure.
Interac. Polymer-polymer Weak penetrant-penetrant and penetrant-polymer
interaction at low pressure.
Example | Sorption of 02, N2 and H2 in PDMS below 25 atm. [Merkel et al., 2000
Mode Langmuir
Expr C= fﬁé’[f CY is a “hole saturation” constant, and b is a “hole
affinity” constant.
Interac. Penetrant-polymer Penetrant molecules occupy sites or holes in the
polymer until all sites are occupied.
Example | Gas adsorption on solid surfaces described by the Langmuir model and
extended models such as solids with microvoids.
Mode Dual Mode
Expr. C=SP+ 5k Combination of Henry’s sorption mode and Lang-
muir for glassy polymers.
Interac. Polymer-polymer and One population of molecules dissolved in the poly-
penetrant-polymer mer following Henry’s law and a second popula-
tion of molecules adsorbed on specific sites under
Langmuir mode.
Example | Sorption of low-activity gases, Ar and N in glassy polymers [Bondar et al., 1996]
Mode Flory-Huggins
Expr. C = Kpexp(cC) x P The expression is given in the simplified ver-
sion derived by Suwandi and Stern [Suwandi and
Stern, 1973]. Kp is the solubility coefficient in
Henry’s domain, o is the constant related to the
penetrant-polymer interaction.
Interac. Penetrant-penetrant Stronger interactions between the penetrant
molecules.
Example | Sorption of condensable gases of relatively high activities in rubbery
polymers under high pressure [Flory and Rehner, 2004, [Flory, 2004].
Mode BET -
Expr. 'u((po/lp)fl) = ;ifé‘;; X p% + wvisthe ads.orbed volumetric quantity of the pen-
1 etrant; v,, is the monolayer adsorbed quantity;
YmeBET cper is the BET constant; p is the partial pres-
sure of the adsorbate, py is the equilibrium vapor
pressure.
Interac. Polymer-penetrant and The theory extends Langmuir model to multilayer
penetrant-penetrant adsorption [Brunauer et al., 1938].
Example | Sorption of water in higly hydrophilic polymers|Hernandez et al., 1992,

Hernandez and Gavara, 1994, Hernandez, 1994].

Table 2.2: Classical sorption modes, the table is strongly inspired by the equivalent table
in the dissertation thesis of T. Hu [Hu, 2021].
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Figure 2.16: Typical isotherm plots of sorbed concentration versus vapour pressure ex-
ctracted from Klopffer et al. [Klopffer and Flaconneche, 2001].

The dual-mode sorption model is commonly used to fit small molecule sorption in polymers,
particularly in glassy polymers [Rogers, 1985b, [Paul, 2016], as it implies the presence of
frozen micro-voids in the amorphous phase.

Our study focuses on the sorption of CH, and COs in polyethylene at ambient temperature,
spanning from atmospheric pressure to high pressures (40 MPa).

Although polyethylene is non-glassy at ambient temperature (7, ~ 195+10 K) [Boyer, 1973],
the dual-mode sorption model has been reported to effectively represent CH, sorption in
HDPE [Von Solms et al., 2004].

On the other hand, the Flory-Huggins model is a suitable candidate for describing CO»
sorption in rubbery polymers, particularly for highly active penetrants like CO, due to its in-
termolecular Coulombic interactions. However, the Flory-Huggins model has two significant
limitations. Firstly, it relies heavily on assumptions that undermine its ability to accurately
describe experimental data for polymer solutions. Specifically, the model inadequately rep-
resents the behavior of diluted solutions due to its assumption of a uniform distribution of
polymer segments. Secondly, to effectively describe the isotherms of polymer solutions with
high values of x. (typically x. > 0.8), the Flory-Huggins model requires multiple empirical
parameters, which limits its usefulness [Favre et al., 1993, Matteucci et al., 2006].

In contrast, modern equations of state, such as the Sanchez-Lacombe equation of state
(EOS) [Sanchez and Lacombe, 1976, |Sanchez and Lacombe, 1978], have been found to
be more suitable for modeling sorption properties in rubbery polymers.

In most semicrystalline polymers, including polyethylene, the crystalline lamellae are com-
pletely impermeable [Rogers et al., 1959]. Typically, solubility coefficient is expressed in
terms of solubility coefficient in the amorphous phase S,:

S = ¢S, (2.22)

Here, ¢, represents the amorphous fraction. This relationship has been verified for differ-



ent types of polyethylene when Henry’s law is valid and for temperatures above the glass
transition temperature [Michaels and Bixler, 1961b} |Michaels and Parker, 1959| |Vittoria,
1995].

2.4.2 Diffusivity in semicrystalline polymers
2.4.2.1 Which diffusivity?

Three different diffusion coefficients can be defined: the self-diffusion coefficient Dgg, the
Maxwell-Stefan diffusion coefficient DMS, and the Fick diffusion coefficient DF. The self-
diffusion coefficient is obtained from the Einstein relation:

N
msd(r) = < 3 [ri(t) — ri(0)P (2.23)
=1
1 . d
D= p tlggo d—msd(t) (2.24)

where d is the number of directed dimensions (6 in 3D, 4 in 2D), % the time derivative and
N is the number of sorbed species.

In the context of permeability and transport properties, the Fickian diffusion coefficient is
the one which interests us. What is calculable with molecular dynamics is the self-diffusion
coefficient.

In a gas-polymer system, chain mobility is significantly lower than the one of small molecules.
The diffusion of polyethylene chains is estimated to be 100 times smaller than that of the
sorbed species. By neglecting the average velocity of the chains, Maxwell-Stefan diffusion
is reduced to the self-diffusion coefficient [Memari et al., 2015].

Itis possible to relate Maxwell-Stefan diffusion to Fickian diffusion using the thermodynamic
factor:

DF = QDMS (2.25)
where: din(f/Ey)

with P, as the standard pressure and C' as the concentration in g/100g.

In the end, we have:
DF = Qpse" (2.27)

In the following we use D for the fickian diffusion coefficient.

2.4.2.2 Geometric effect

Diffusivity is not influenced by the degree of crystallinity in the same way the solubility is.
Instead, it depends on the concentration of dissolved gas in the amorphous fraction of the
semicrystalline polymer. The presence of gas in the polymer matrix can enhance the dy-
namics of the amorphous chains, acting as plasticizers and reducing the intermolecular



interactions among the amorphous polymer chains [Naito et al., 1996]. However, the diffu-
sivity of gas molecules is impeded by the impermeable crystalline domains. The diffusion
coefficient in a semicrystalline structure is proposed to be [Michaels and Parker, 1959]:
D,

D= ar (2.28)
Here, D, represents the diffusion coefficient in the pure amorphous polymer. The factor
accounts for the reduced mobility of the chains in the amorphous phase of the semicrys-
talline structure, as they are bound to the crystalline lamellae, compared to a pure amor-
phous material. The value of 5 is temperature-dependent. The factor 7 is a purely geomet-
ric term that considers the longer path gas molecules must travel through the amorphous
phase to cross the polymer membrane. In our study, we will explicitly model both the amor-
phous phase and the crystalline phase at the molecular scale. We will not require the 5
factor since the binding of amorphous chains to the crystalline phase will be directly mod-
eled in the structure. However, we will still need to account for the tortuosity factor 7:

D,
T

Here, D, represents the diffusion coefficient computed from the molecular-scale semicrys-
talline model.

D =

(2.29)

Michaels[Michaels and Bixler, 1961a] provides a power law for estimating the tortuosity
factor:

T=0¢" (2.30)
where ¢, is the volumic amorphous fraction and n is equal to 1.25 for linear polyethylene
without branching. He also provides experimental estimation relying on comparison with
natural rubber shown on Figure [2.17]

2.4.2.3 Competing effect of plasticizing and pressure

Several studies have examined the influence of pressure on gas transport properties in
polyethylene. Flaconnéche et al. [Flaconneche et al., 2001] conducted an investigation
and found that the permeability, diffusivity, and solubility coefficient of helium (He) and
methane (CH,) in polyethylene showed minimal variations within the pressure range of 4
to 10 MPa. Similarly, Lundberg [Lundberg, 1964] studied the diffusion of methane in linear
polyethylene at different temperatures and pressures. It was observed that at 104.04 °C,
the diffusivity remained relatively constant regardless of pressure. However, at 162.78 °C
and 188.31 °C, the diffusivity exhibited a decreasing trend with increasing pressure.

Naito et al. [Naito et al., 1996] analyzed the pressure effect on gas permeation through
semicrystalline polyethylene and polypropylene films. The study covered a pressure range
of 1 to 130 atm at 25 °C, which is above the glass transition temperature (7,). The results
showed that the permeability decreased with increasing pressure for gases with low solu-
bility (He, Ne, Hz, N3, O2, and Ar). However, for gases with higher solubility, such as CO,
which have a plasticizing effect, the solubility increased with pressure, i.e., the concentra-
tion. To capture these opposing effects, Naito et al. [Naito et al., 1996] proposed a diffusion
model given by the equation:

D = Dy exp (—Bnp + acC) (2.31)

Here, Dy represents the diffusion coefficient at p = 0 and C = 0, g, is a constant indicating
the decrease in diffusivity caused by hydrostatic pressure, and a¢ is a constant character-
izing the increase in diffusivity due to the plasticizing effect of dissolved penetrant in the
polymer.
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Chapter 3

Methods

3.1 Molecular simulation methods

3.1.1 Representing the molecular system in different thermodynamic
ensembles

3.1.1.1 Forcefields

Atomic force fields are essential components of molecular dynamics (MD) and Monte Carlo
(MC) simulations, providing a mathematical description of the interactions between atoms
in a molecular system. These force fields consist of different types of potentials that cap-
ture various aspects of atomic interactions. The potentials are separated into interactions
related to bonded atoms and interactions between non-bonded atoms. The following exam-
ples of potentials are not exhaustive and only use analytical functions, tabulated potentials
are used too. Different forcefields may include more or less potentials.

1. Bonded interactions:

« Bond potentials: Bond potentials model the stretching of chemical bonds be-
tween atoms. They are typically represented by harmonic potentials, such as the
harmonic potential V;, = %kzb(r — 19)? which describe the energy as a function of
bond length r.

« Angle potentials: Angle potentials account for the bending of atoms around
a central atom. They are described by mathematical functions that define the
energy as a function of the bond angles formed by three atoms §. Commonly
used angle potentials include harmonic potentials V, = %kg(ﬁ — 60)? or cosine-
based potentials.
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» Torsion potentials: Torsion potentials represent the rotation around dihedral
angles ¢ formed by four consecutive atoms. They describe the energy landscape
associated with the torsional motion of the atoms. Torsion potentials can be
represented by simple trigonometric functions, such as the cosine potential V;, =
kg (14 cos(ne¢ — ¢o)), or more complex multi-term potentials.

2. Non-bonded Interactions:

» Van der Waals Potentials: Van der Waals potentials encompass the attractive
forces between atoms arising from instantaneous induced dipole moments, as
well as the repulsion resulting from the Pauli exclusion principle. They are typi-

cally described by Lennard-Jones potentials Vigw = 4e [(%)12 - (%)6} or other
more sophisticated functions that incorporate higher order terms.

« Electrostatic Potentials: Electrostatic potentials capture the long-range Coulom-
bic interactions between charged atoms. In classical MD and MC simulations,
these interactions are often represented by Coulombic interaction between par-
tial charges Vejee = = % Additionally, point charge models or more advanced

4meq

schemes, such as polarizable force fields or Drude oscillators, can be employed
depending on the required description level.

Parameters: These different potentials collectively define the force field used in MD and
MC simulations. Force field parameters, such as equilibrium bond lengths rq, force con-
stants k;, bond angles 6,, force constants kg, torsion angles ¢y, force constants k4, and
van der Waals parameters ¢ and o, are typically derived from experimental data or quantum
mechanical calculations.

In the context of molecular simulations, the total potential energy of a system in a specific
configuration is obtained by summing the contributions from all the individual potentials.
There are two main approaches for altering the system’s configuration: the Monte Carlo
sampling method and molecular dynamics, both of which are described in detail below.

3.1.1.2 Periodic boundary conditions (PBC)

Periodic boundary conditions (PBC) are commonly employed in molecular simulations to
simulate systems with a finite number of particles in an effectively infinite environment. This
approach allows to study bulk properties of materials by simulating a representative unit cell
and assuming the system repeats periodically in all directions.

The main idea behind PBC is to create an artificial box around the simulation system. Any
particle leaving the box on one side immediately re-enters the box from the opposite side,
as if the system wraps around like a torus.

To illustrate this concept, let’s consider a three-dimensional simulation box. A particle at
position (z,y, z) with coordinates outside the box is transformed as follows:

T =x—ng - Ly

!
Yy =y—mny- Ly
Z=z—-n, L,



where L, L,, and L. are the dimensions of the simulation box, and n., n,, and n. are
integers representing the number of periodic images in each direction. These integers
determine how many times the particle has crossed the boundaries of the box.

As a result of these transformations, the particle is placed back into the box, and its position
is shifted by multiples of the box dimensions. This ensures that interactions and calculations
involving the particle are correctly accounted for within the simulation.

3.1.1.3 Cutoff and Ewald summation

In simulations involving coulombic and Lennard-Jones interactions, a cutoff radius is typi-
cally chosen, usually around 1 nm. Beyond this cutoff, the long-range coulombic potential
energy is computed using a technique called Ewald summation [Kolafa and Perram, 1992].
In Ewald summation, the long-range interaction between the charges of a central unit cell
and all the charges of the lattice is performed in the reciprocal space of the periodic lat-
tice. To improve computational efficiency, the summation may be performed over a mesh of
charge densities using the Particle-Particle Particle-Mesh (PPPM) method [Plimpton et al.,
1997]. For the Lennard-Jones interaction, beyond the cutoff, the potential is modified to
converge to zero in a finite distance and a correction is added to take into account the
interaction between the cutoff and the infinite.

3.1.1.4 Computation of thermodynamic quantities, sampling from ensembles

Molecular simulations allow for the sampling of microstates in a system consisting of N
particles. Statistical physics provides a framework for connecting the microscopic view to
macroscopic quantities. In molecular simulations, we obtain the microscopic configurations
of the system. The thermodynamic state of a system is defined by a finite set of parameters,
such as the number of particles N, temperature T, and pressure P. Other thermodynamic
quantities are typically derived from these parameters using thermodynamic identities.

The positions and momenta of the particles are represented as coordinates in a multidi-
mensional space known as the phase space. For a system with N particles, the phase
space has 6N dimensions. A(t) denotes the instantaneous value of a specific property,
while A(T") represents the value of that property at point I'. The macroscopic quantity,
denoted as Agps, is given by:

tobs—+00 Tops

Aops = (ATE))ime = Tim  —— /O " A dt (3.1)

Since numerical simulation is inherently discrete, we express the above equation as:

Tobs

Aabs = (AT(E)hims = = > A(T(7) 3.2)

This discrete approach is employed when integrating the particle motion over time using
Newton’s equations, as in molecular dynamics simulations with a time step . To ensure
equation (3.2) holds, the simulation must adequately sample the entire phase space, and



thermodynamic consistency must be achieved between simulations with different initial con-
figurations but the same macroscopic parameters.

When equilibrium is reached, Gibbs showed that instead of averaging over time, we can
average over the statistical ensemble. This leads to:

Aobs = <A>ens = <~A|Pens> = ZA(F)Pens(F) (3.3)

T

Here, pens(T") represents the probability of a given microstate T'. In equilibrium, pens be-
comes independent of time. A trajectory that visits all the microconfigurations where pens
is nonzero is called ergodic. It is important so that the system does not stay trapped in a
subspace of the phase space. For each statistical ensemble, it is possible to write the peps,
for example:

Canonical ensemble (NVT):

exp (— 747

PNVT = (3.4)
H(T
>_rexp (f kéT)>
where kg is the Boltzmann constant and # represents the Hamiltonian.
Isothermal-Isobaric ensemble (NPT):
H(I)+PV (D)
) - €Xp (_ kgT ) (3 5)
NPT = .
H(IT)+PV (I
S exp (_ (O+PV ))
Grand canonical (uVT):
H(D)—uN(T)
) exp (_ kBlff ) (3 6)
wvr = H(T)—uN(T :
o (T 20)

where p represents the chemical potential of the particle bath that is in contact with the
system, N is the number of particle.

It is not feasible to compute pens for each microstate. Another strategy is to use equation
(3.2). However, instead of following Newton’s laws of motion to visit microstates in a given
ensembile, it is possible, in principle, to design an ergodic trajectory (with physical or non-
physical moves) to sample microconfigurations representative of a system in an ensemble.
This is the approach followed in Monte Carlo simulations, which will be discussed in more
detail later.

3.1.2 Molecular dynamics

Molecular dynamics simulation is a computational technique used to study the behavior
and dynamics of molecules at the atomic level. It is a powerful tool for investigating the
physical and chemical properties of molecular systems and their interactions.

In a MD simulation, a set of equations of motion, typically derived from Newton’s laws, is
numerically solved to track the positions and velocities of individual atoms over time. By



simulating the motion and interactions of atoms, MD provides insights into the thermody-
namics, kinetics, and structural properties of molecules and materials.

The simulation begins with an initial configuration of atoms, which can be generated from
experimental data or constructed based on theoretical models. Each atom is assigned an
initial position and velocity. Then, using the equations of motion and interatomic potentials
(such as force fields), the positions and velocities of the atoms are updated at discrete time
steps, typically in femtosecond intervals.

During the simulation, the atoms move and interact with each other, driven by the forces de-
rived from the interatomic potentials. The simulation proceeds by integrating the equations
of motion over thousands or millions of time steps, representing the system’s evolution over
a desired time scale. Statistical analysis techniques can be applied to extract meaningful in-
formation from the trajectory, such as thermodynamic properties, structural characteristics,
and dynamic processes.

3.1.2.1 Integration

The goal is to solve the laws of motion for all the atom positions r;(t) = (z;(t), y:(t), z:(t))
considering the force vector F; acting on each particle with mass m;:

Fi _ d2ri(t) (37)

m; dtz

There are several methods available to numerically solve the given equations. One com-
monly used approach, implemented in the LAMMPS code [Thompson et al., 2022], is the
Velocity-Verlet algorithm.

The Newton equation can be separated into two equations:

dr;iﬁ) .
dvi(t) i (3.8)
dat  m;

with v; the velocity of the particle. We can express the positions and velocities at a later
time using a Taylor series expansion:

ri(t+ At) = ri(t) + vi(H) At + Fi(t) (At)?
2m (3.9)
vi(t + At) = vi(t) + Fril(t) At + 2;_ dP;lit(t) (At)?

(t)  Fi(t+At)—F;(t)
t At

. . . . dFi
?pproxmatmg the derivative of force as —;
ions:

, we can simplify the equa-



ri(t + At) = ri(t) + vi(t) At + Ei—n(lt?(At)Q

Fi(t) + Fi(t + At)

2m,;

(3.10)

Vi(t + At) = Vi(t) + At

Using these equations, we can compute the trajectories of all the atoms step by step. At
each step, the forces exerted on each atom are computed, and new positions and velocities
are obtained. Since all the forces are pairwise forces and sum to zero, the total energy is
conserved during the simulation, the system is evolving in the NVE ensemble.

3.1.2.2 Time step

The selection of an appropriate time step, denoted as At, plays a critical role in numerical
simulations. It is commonly chosen to be one or two orders of magnitude smaller than
the fastest characteristic time of vibration for a bond within the system. For instance, the
vibration time period of C-H or O-H bonds is approximately 100 fs. Consequently, the time
step At is typically set to be on the order of femtosecond.

3.1.2.3 Computation of thermodynamic quantities

The instantaneous temperature is computed from the velocities at each step for a system
with N atoms:

T(t) :ZM (3.11)

where Ny is equal to the number of degrees of freedom, Ny = 3N — 3. Similarly it is
possible to compute the instantaneous pressure:

P(t):% (;Zmivi2+:1))zri'Fi> (3.12)

The instantaneous pressure and temperature are averaged over time when equilibrium
is achieved to compute the macroscopic thermodynamic quantities. The formalism we
presented allows performing simulation in the NVE ensemble. The number of atoms is
constant, the volume too, and the energy is also constant if the numerical integration is
performed with a At small enough. In the real world, we are more interested in systems at
equilibrium with constant pressure or temperature such as the atmosphere or the ocean.
In the next sections, methods used to simulate our system in equilibrium with a thermostat
and/or a barostat, or in other words, in the canonical ensemble (NVT) and in the isothermal-
isobaric ensemble (NPT), are presented.

3.1.2.4 Nosé-Hoover thermostat

A method used to implement the NVT ensemble is the renormalization of the speeds of
all particles at each step so that equation (3.11) is equal to the thermostat temperature
[Berendsen et al., 1984]. Another possibility is to modify the equations of motion to include



a non-Newtonian term to maintain the total kinetic energy constant, it can be thought as a
friction coefficient or a coupling with a heat bath constituted of a fictious one dimensional
particule, it was proposed by Nosé and Hoover [Nose, 1984} Hoover, 1985, it is usually
described in the Hamiltonian formalism with the conjugate coordinates (r;, p;) where p; =
mv; coupled with the one dimensional fictious particle with conjugate coordinates (s, ps):

dri(dt) _ pi(t)

dt m; s>
dpi - 8U(r1,--- 7I'N)
dt - 8ri
ds  p. (3.13)
- Q

dps _ lz P1 —ngT

with ¢ = 3N + 1, @ the mass of the fictious particle and U(ry,--- ,rNn) is the potential
energies of the non-fictious particules.

It was shown that ergodicity was not guaranteed with this thermostat, meaning that the
system would not correctly sample the phase space. It was modified by Martyna et al.
[Martyna et al., 1992] to solve this problem. The new version is called the Nosé-Hoover
chain thermostat. M thermostats which are one dimensional fictious particles of mass Qy
are coupled to one another like a chain.

& aUv(rlv"' ,I‘N) &

m; or; Q '

— === k=1,--- M

dt Qk7 ) b)
d i
i Zp ~oksT| = gore

(3.14)
dek p€k 1 Plrya
= — kT
dt | Qr—1 b Qk+1p<k

[.2
deM _ Peas — kpT

dt _QM—l

The total canonical Hamiltonian which is conserved and satisfies the ergodicity condition
is:

=z
"o

M 2 M

) g’Q - NkpTG+ Y kpTG+UX)  (3.15)

i=1 i=1 =2

HNHC r pa<7pC =

The considered systems in this work are relaxed in the NPT ensemble. For the relaxations
needed for the high deformation, the NVT ensemble is used.



3.1.2.5 Isothermal-isobaric ensemble (NPT)

Shinoda [Shinoda et al., 2004] proposed a way to have simultaneously a thermostat and
a barostat combining Parinello-Rahman work [Parrinello and Rahman, 1981] and Martyna
chained thermostat [Martyna et al., 1992]. This isothermal-isobaric ensemble is often called
Nosé-Hoover too. The M degrees of freedom from the chain thermostat have to be taken
into account.

7 =hy'(o - PL)(h])""

dhy,
Tap = C Z GQMG#V#
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N

dm _ T 1 pi2 pC1
= = V(Pine = PI) —hrh" + <3N ; m) o
dh 1

u W h (3.16)

N

dp(l _ Z pi2 irj}j‘(ﬂ'Tﬂ') _ (3N + dQ)kBT _ P¢i P,
dt = mi w Q2
dp; _ 0U(r) 1 1 Dey

dr o W T™Pi — 37NTT(7T)P1 - apl

dri - Pi 1

E o m; + WTrrl

The ¢ constant is a coupling constant [Ray, 1983]. Only the equation of the first link of the
chain is written for the thermostat. W is the mass associated to the barostat, and the Q;
are the masses associated to each link of the thermostat chain. (3N + d?) is the number
of degrees of freedom of the system with d the dimensionality of the simulation domain.
Martyna et al. proposed some way to choose the masses W and Q; [Martyna et al., 1996].

3NkpT
Ql = 2B
wr
kT
Qi = f—% (3.17)
N +3)kpT
w8 +?;) B
3wp

where wr is the period associated to the thermostats, and wp the period of the barostat.
In the simulation codes like LAMMPS, it is usually asked to define those values with the
characteristic times.

—1
= W
™= (3.18)
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3.1.3 Monte Carlo
3.1.3.1 The detailed balance condition, a way to sample stationary distributions

The Monte Carlo method involves exploring the phase space in a random manner, taking
into consideration the probability of each microstate occurring. However, generating a set



of configurations that respects their probability of existence presents a challenge. Let us
denote this set of configurations as {I"}. In 1953, Metropolis, Rosenbluth and Rosenbluth,
and Teller [Metropolis et al., 1953] introduced an algorithm that generates this set of config-
urations by following a Markovian stochastic process. The probability of generating a new
configuration TV does not depend on all the previously explored configurations but only on
the current configuration I'. The configuration IV is randomly generated and then accepted
with a certain probability. If we denote P(T', nsiep) as the probability of being in configuration
I" at step nsiep, and W (I' — I") as the probability of transitioning from configuration I" to I,
we can express this relationship as follows:

P(T, nstep + 1) = P(T, nstep) Z P(T, ngtep)W (I — I7) Z P(I", nigtep) W (I" — T)
IV#£D INFAN

(3.19)
The equation states that the probability of being in microstate I' at step nsiep + 1 is equal to
the probability of being in microstate I' at step nsep, Minus the sum of probabilities of tran-
sitioning out of microstate I", and then adding the probability of transitioning to microstate
I’ from any other state I"V. This equation captures the balance between the probabilities of
staying in or leaving microstate I" during the transition from step nstep t0 nstep + 1.

In the steady state, the probability of being in state I" does not depend on the step (P(T", nstep+
1) = P(I", nstep))- Equation becomes:

> P(T,nsiep)W(F = T') = Y P(I', ngtep)W(I" = T) (3.20)
I4£T [T

A way to ensure that equation [3.20] holds is called detailed balance, we impose:
P(F, nstep)W(F — F,) = P(F/, nstep)W(F, — F) (321)

This condition on the probability of transitions satisfies that the distributions of configura-
tions is stationary.

3.1.3.2 The metropolis algorithm for an ergodic sampling

The detailed balance condition allows us to obtain stationary distributions when transi-
tioning from one microstate to another. However, in addition to detailed balance, another
important aspect is ergodicity, which ensures that microstates are sampled in accordance
with the chosen thermodynamic statistical ensemble. This is the aim of the Metropolis
algorithm:

« Start with an initial configuration, denoted as T".

+ Choose a configuration, I'” using a probability Py, (I" — I").

* This configuration is accepted with a probability P,..(I' — I"). This probability de-
pends of the statistical ensemble you chose (this is detailed later).
The probability of transitionning W(I' — I') is :

W(T = T") = Pyen (D = I") Paee (T = T) (3.22)
The detailed balance conditions is written:

P()Pyen (I = T")Ppee(T = T7) = P(I) Pyen(I" — T') Pyee(I" = 1) (3.23)



To satisfy the equation, Metropolis et al. proposed:

Poee(T = T') = min {1, }fg)gq"(g:rﬂ (3.24)
In standard Monte Carlo simulation, I is generated randomly, so:
Pyen(T' = T') = Pyen(I" = T) (3.25)
Then: ()
Poee(T = TV) = min [1, 2 ] (3.26)
In the case of the canonical ensemble:
P) _ o (B 40 27

where H(T') and H(T") are the potential energies of configurations T and I”, respec-
tively, kg is the Boltzmann constant, and T is the temperature. Compare this ratio to

a random number between 0 and 1. If % > 1, accept the proposed configuration

I as the new current configuration. If 2

P(T)
tween 0 and 1. Accept I'" if r < ’;((1;)), otherwise, keep the current configuration T.

Repeat the generation of new configurations until the relevant macroscopic quantities
are converging.

< 1, generate a random number, r, be-

To sample other ensembles the equation [3.27|is replaced using the corresponding proba-
bilities from other ensembles (refer to section(3.1.1.4).

3.1.3.3 Example of Monte Carlo moves

In this section, we will present examples of different Monte Carlo moves changing the
configuration T toward a configuration T’

« Translation: The move consists into choosing a molecule randomly and translate it
with a vector with its three components randomly generated between [—D.,a4, Dimax)

+ Rotation: For non mono-atomic molecule, three angles related to the three internal ro-
tational degrees of liberty are randomly picked in [—0,,,42, Oma.] 10 rotate the molecule.

* Insertion, deletion of a molecule randomly picked. This moves is used to sample the
grand canonical ensemble. The acceptance is given by the probability of the new
configuration in the grand canonical ensemble.

« Exchange: Two molecules are randomly picked and exchange.

3.1.3.4 Biased Monte Carlo simulation

The previously described simulation steps involve generating new configurations in a com-
pletely random manner, making them unbiased. However, in certain cases, especially when
studying large molecules, the acceptance probability of these steps can be significantly low.
For example, during the insertion step, unbiased insertion of molecules into micro-cavities



has a minimal chance of being accepted if the insertion position is chosen randomly. The
probability of selecting a position that lies within the polymer matrix is much higher. In gen-
eral, randomly choosing a favorable position within a dense system that would be accepted
is highly unlikely. As a result, achieving thermodynamic equilibrium within the available
simulation times becomes unattainable.

To overcome this limitation, it becomes necessary to introduce bias into the simulation
process. Instead of generating new configurations entirely at random, configurations are
selected from a set of potential configurations based on an energy criterion. This leads
to a distinction between the terms Pgen(I' — I'') and FPgen(I'" — T), requiring their explicit
calculation to determine the acceptance probability of the proposed move. One way to
illustrate this is through the use of a pre-insertion bias:

In the pre-insertion bias approach, rather than attempting to insert a full molecule into the
structure, trials are performed using a Lennard-Jones bead located at the same center of
mass. The Lennard-Jones bead is used to find a suitable position but it is not actually
inserted. The process involves the following steps:

1. k positions are drawn randomly within the simulation box.

2. For each of the k positions, the configuration energy is computed to calculate the
Rosenbluth factor:

k LJ(Ti
Wy = Tasah) = 3 exp (—W) (3.28)
=1

Here, I'y represents a configuration with N molecules, I" 1 is a configuration with
N+1 molecules, and H‘J(Fﬁ\,ﬂ) is the energy of the Lennard-Jones bead at position
iwithi e {1,...,k}.

3. Each configuration 7 out of the k configurations has a probability to be chosen:

exp (— Hgﬁ;”)

W('Nn = {T'N41})

P(I'y =T,y = (3.29)

4. The probability of generating I' y from I' v 1, which involves removing a molecule from
the box and placing it in a fictitious and infinite molecule tank (representing an ideal
gas), is given by:

1
Pgen(FNJrl —TI'y) = e (3.30)

The acceptance probability of the movement is then calculated as follows:

H(Tn+1) —H(TN) — M) W(TN = {Tn41})
kT HET (T y)
B kexp (*TTJr)
(3.31)
It should be noted that the Hamiltonian # without superscript is the Hamiltonian of the true
inserted molecule not the Hamiltonian of the Lennard-Jones bead.

Rotation-biased moves are usually added to the pre-insertion bias, in a similar fashion, with
k possible rotations picked instead of & positions.

Pace(Tny = T'yg1) = min [1,exp (—



3.2 Building semicrystalline model

3.2.1 Adhikari’s theory: a statistic of tie chain, loops, and tails

In this section, we briefly recall the Adhikari and Muthukumar theory [Adhikari and Muthuku-
mar, 2019] used to generate the amorphous phase of the semicrystalline structure. For a
detailed presentation of this work, please refer to the original paper.

The Adhikari and Muthukumar theory allows for the study of the statistics of ties and loops
for a reference chain of finite length, considering its connectivity to multiple lamellae. The
theory assumes that polymer chains in amorphous regions follow Gaussian statistics. Ties,
loops, and tails are obtained from a three-dimensional random walk between "absorbing”
walls.

The random walk of the reference polymer chain starts at a point in an amorphous region
and continues until it touches a lamellar surface, forming the first chain end, known as a tail.
Once the chain touches a lamellar surface, the formation of a rigid and vertical crystalline
stem is guaranteed. The chain then emerges out of the crystalline lamella and enters the
other amorphous region. The random walk continues, giving rise to loops or ties until the
reference chain ends in the amorphous region.

In this statistic, the probability of formation of one of the chain path (see figure in
a semi-crystalline of infinite layers of crystalline lamellae and amorphous regions that is
forming 4 stems, 2 tie chains (n:. = 2), one l0op (1.0, = 1) and 2 tails (n¢qis = 2) is:

N—4m/’ N—-3m/ N—2m/ N—m/
Z(N) = / d81 / d82 / ng / dS4
0 s1+m/’ So+m/’ sz+m/’

X gtail(sl)gtie(SQ — 51— m/)gloop(SS — 82 — m’)
X Gric(84 — 83 — m)grait (N — 54 —m’)  (3.32)

where m/ is the interlamella width in Kuhn length used as a unit of length and the g;4.;(s),
Jloop(8) @and g4 (s) are the probability of formation of a tail, a loop, and a tie chain, at s
Kuhn segments after emerging from the crystallite. Those g; (¢ = tail, loop, tie) are found
by modeling the random walk between two absorbing walls. In this formalism, when a freely
jointed chain hits a crystallite wall, it automatically forms a tie chain or a loop. It is more
convenient to write Z(N) as Z(N,) with N, = N — 4m’ the number of beads or the length
of the polymer in Kuhn length in the amorphous region. It has been shown by Muthukumar
in ref. [Muthukumar, 1996, Muthukumar, 2003] that the transformation of Z(N,) in Laplace
space can be written as:

Z(E) = (Gtait(E))* (G1ie(E))*(Gio0p(E)) (3.33)

where the g;(E) are the Laplace transformations of the g¢;(s). It is generalized for a walk of
nee tie chains, ny,., l0ops and 2 tails (a single linear, not branched, polymer has only two
tails) as: )

Z(E) = (Gtait(B))?(Grie ()™ (G1o0p (E)) "o (3.34)

It is obvious that nsiem = ntie + Nioop + 1, that the total number of chain sections in the
amorphous is  nyie + Nyoop + 2 = Ngtem + 1 @nd that N, = N — ngem/. Hence, njoop =
nstem — Ntie — 1. Noticing that Z (V) is also a function, by allowing the length of tails, loops,
and ties to vary, Adhikari and Muthukumar calculate the probability of forming a chain of
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Figure 3.1: A polymer of length N, forming 4 stems when crossing the crystalline lamella
(the hatched area), 2 tie chains between (s; +m’) — so and (s3+m’) — s4, a loop between
(s2 +m') and s3, and two tails at 0 and at N. The figure is an adaptation of Adhikari’s one
[Adhikari and Muthukumar, 2019].
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length N with a number of ties nye when ngem stems exist, associated with an arbitrary
number of lamellae and amorphous regions. This probability is given as:

Z(”tiea Nstem, N) = /v‘_l [(gtail(E))Q(gtie(E»nﬁe (gloop(E»nStem_nﬁe_l] ) (3-35)

where £~ is the inverse Laplace operator, and gie (E), jiail(E), and gioop(E) are the Laplace
transforms of gie (), gtail(s), @and gioop(s), respectively.

The final expression for the probability, including a typo correction from the Adhikari and
Muthukumar paper, is:

| sih(y/B)  sinh((d - 1)@))2

Z(ntieanstem7N) =Lt ( - -

B Esinh(d'\/£)  Esinh(d/£)

Tie Tistem — Thie — 1
sin B sin r— £
" (h(D)) ( h((@ ~1)y D)) . (3.36)
S sinh (dlq/%)

Here, D = 1/6 in our study, and d’ is the intercrystalline length expressed in Kuhn length
units.

The fraction of tie segments is obtained from the probability Z(nie, nstem, N). When the
number of formed stems is ngem, the number of ties can vary from zero to ngem — 1. Addi-
tionally, for a fixed number of stems, there are different ways of forming a given number of
ties. The average number of ties formed per molecule, 7y, is then given by:



Tistem — 1
Znﬁe:O WntientieZ(ntim Tistem, N)

Nstem — 1
Znnezo w"t\ez(nﬁea TNstem N)

: (3.37)

Nie =

where w,,, is the number of ways of forming nye ties when the total number of ties and
loops per molecule is ngem — 1, given by:

(nstem - 1)!
- . 3.38
“rae ntie!(nstem -1- ntie)! ( )
Finally, the fraction of ties fie is given by:
o Ntie
Jie = neom £ 1 (3.39)

Knowing the average number of tie chains per molecule, we obtain the average number
of loop chains per molecule as 7ioop = nstem — 1 — Tie- The number of tail segments per
molecule is ni = 2.

3.2.2 Adapting Adhikari’s theory to build semicrystalline samples

In this section, we present the application of Adhikari and Muthukumar theory to construct
semi-crystalline samples for molecular dynamics simumlation studies. The computation
of the fraction of ties using this theory requires a small amount of input data, including the
reference chain length IV, the amorphous thickness d, and the crystalline lamellar thickness
m. The last two quantities can be obtained using the degree of crystallinity .. In their work
[Adhikari and Muthukumar, 2019], equal densities of the crystalline and amorphous phases
were assumed. The length distribution of ties and loops in Kuhn segment length, as well
as the tie fractions, are obtained from the theory.

In our work, our aim is to build semicrystalline samples at the atomistic length scale and
provide a methodology that is applicable to different polymers. Therefore, our input param-
eters need to incorporate polymer-specific quantities for modeling. Additionally, we need
to consider the available computing resources, which impose limitations on system sizes.
Lastly, we would like to define one or more control parameters that can alter the fraction of
ties and loops in the amorphous regions for a given degree of semi-crystallinity.

3.2.2.1 Parameters of the theory

The mass crystallinity degree x. is a crucial parameter in our study. Together with the long
period L,, which represents the period of alternation between amorphous and crystalline
phases, we can obtain a length scale. We construct molecular simulation boxes that contain
two of these periods, resulting in a box initially containing two crystalline lamellae separated
by amorphous regions along the z direction. Full periodicity of the box is assumed in all
three directions. Each simulation box contains two polymer chains. The crystalline regions
are built using primitive cell information [Bunn, 1939], with an integer number of primitive
cells in the x and y directions. The number of unit cells in the 2 and y directions determines
the initial number of stems in the system. The total number of crystalline cells in the =



direction is computed based on the length of the crystalline regions m. For polyethylene
(PE), each unit cell in the xzy plane contains two crystalline stems.

Unlike the work of Adhikari and Muthukumar, we account for the difference between the
densities of the amorphous and crystalline phases, denoted as p, and p. respectively.
Here, p, represents the average density of the non-crystalline domain, taking into account
the interphase. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>