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Abstract xxiii

Crystalline and Anisotropic, Nonlinear or Nonlocal Curvature Flows

Abstract

This thesis is devoted to the study of geometric flows, with particular focus on the mean curvature flow.
It is divided in two thematic parts. The first part, Part I, contains Chapters 2, 3 and 4, and concerns
convergence results for the minimizing movements scheme, which is a variational procedure extending
Euler’s implicit scheme to evolutions having a gradient flow-like structure. We implement this scheme for
anisotropic or crystalline, nonlocal or inhomogeneous curvature flows, in linear and nonlinear instances,
and study its convergence towards weak solutions to the flows. In Chapter 4 we also pair this study
with a discrete-to-continuum limit. The second part, Part II, is devoted to the study of asymptotic
behaviour of volume-preserving curvature flows both in the discrete- and continuus-in-time instances.
The main technical tool employed is a new Łojasiewicz-Simon inequality suited to the study of these kind
of evolutions.

Keywords: Geometric Evolution Equations, Mean Curvature Flows, Crystalline Curvature Flows, Min-
imizing Movements

Flot de la Courbure Cristalline et Anisotrope, Non Linéaire ou Non Locale

Résumé

Cette thèse est consacrée à l’étude de flots géométriques, avec un accent particulier sur le flot de la cour-
bure moyenne. La thèse est divisée en deux parties thématiques. La première partie, Partie I, contient les
Chapitres 2, 3 et 4, et concerne des résultats de convergence pour le schéma des mouvements minimisants,
qui est une procédure variationnelle étendant le schéma implicite d’Euler aux évolutions ayant une struc-
ture de type flot gradient. Nous mettons en œuvre ce schéma pour des flots, linéaires ou non linéaires, de
la courbure anisotrope ou cristalline, non locale ou inhomogène, et nous étudions sa convergence vers des
solutions faibles. Au Chapitre 4, nous associons également cette étude à une limite discrète-continue. La
deuxième partie, Partie II, est consacrée à l’étude du comportement asymptotique des flots de la courbure
avec une contrainte de volume, à la fois en temps discret et en temps continu. Le principal outil technique
utilisé est une nouvelle inégalité de Łojasiewicz-Simon adaptée à l’étude de ce type d’évolutions.

Mots clés : Equations d’évolution géométrique, Flot de la Courbure Moyenne, Mouvements Minimisants

Centre De Recherche en Mathématiques de la Décision, Université Paris-Dauphine
Place du Maréchal De Lattre De Tassigny – 75016 Paris – France
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Résumé de la thése

Cette thèse est consacrée à l’étude de flots géométriques, et plus particulièrement au flots de la
courbure moyenne et certaines de ses variantes. Il est divisé en deux parties thématiques. La pre-
mière partie, Partie I, contient les Chapitres 2, 3 et 4, et concerne les résultats de convergence pour
le schéma des mouvements minimisants, qui est une procédure variationnelle étendant le schéma
d’Euler implicite aux évolutions avec une structure de type flot de gradient. Nous implémentons
ce schéma pour des flots, linéaires ou non linéaires, de la courbure anisotrope ou cristalline, non
locale ou non homogène, et étudions sa convergence vers des solutions faibles du flot de la courbure
moyenne.

En particulier, dans les Chapitres 2 et 3, nous étudions la convergence du schéma des mou-
vements minimisants dans les cas où, respectivement, les énergies de surface sont d’un type non
homogène (c’est-à-dire sans invariance par translations), ou le flot de la courbure moyenne est
modifié par une non-linéarité. Nous nous intéressons à la convergence de ces schémas en temps
discret vers des solutions faibles, de type viscosité dans les deux chapitres, et de type distri-
butionnel dans le Chapitre 2. Dans le Chapitre 4, en revanche, nous considérons une seconde
discrétisation du schéma de mouvement minimisant, qui s’avère être donc discrète en espace et en
temps. Le principal résultat de ce chapitre est une limite discrète-continue lorsque les paramètres
de discrétisation tendent vers zéro.

La seconde partie est consacrée à l’étude du comportement asymptotique de certains flots
géométriques préservant le volume, à la fois dans le cas discrèt et continu en temps. Le prin-
cipal outil technique utilisé est une inégalité de Łojasiewicz-Simon adaptée à l’étude de ce type
d’évolution. Dans les Chapitres 5 et 5, nous nous intéressons au comportement asymptotique des
discrétisations temporelles des flots de la courbure moyenne sous contrainte de volume, dans le
cas périodique et le cas où l’énergie de surface considérée est fractionnaire. Le dernier chapitre,
Chapitre 7, traite plutôt des flots continus en temps. Nous montrons ici des résultats d’existence en
temps long et un comportement asymptotique pour le flot de la courbure moyenne sous contrainte
de volume, ainsi que pour et le flot de diffusion de surface.
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Riassunto del contenuto della tesi

Questo lavoro di tesi è dedicato allo studio di flussi geometrici, con particolare attenzione data
al flusso per curvatura media. È diviso in due parti tematiche. La prima parte, Parte I, contiene i
Capitoli 2, 3 e 4, e riguarda risultati di convergenza per lo schema dei movimenti minimizzanti, che
è una procedura variazionale che estende lo schema implicito di Eulero a evoluzioni temporali con
una struttura simile ad un flusso gradiente. Implementiamo questo schema per flussi di curvatura
anisotropi o cristallini, non lineari, non locali o con curvatura non omogenea, e ne studiamo la
convergenza verso soluzioni deboli del flusso della curvatura media.

In particolare, nei Capitoli 2 e 3 studiamo la convergenza dello schema dei movimenti mini-
mizzanti nei casi in cui, rispettivamente, le energie superficiali siano di tipo non omogeneo (ovvero
senza invarianza per traslazioni), oppure il moto per curvatura media sia modificato con una
nonlinearità. Ci interessiamo alla convergenza di questi schemi discreti in tempo verso soluzioni
deboli, di tipo viscoso in entrambi i capitoli, e di tipo distribuzionale nel Capitolo 2. Nel Capitolo
4, invece, consideriamo una seconda discretizzazione dello schema dei movimenti minimizzanti,
che quindi risulta essere discreto in spazio e in tempo. Il risultato principale di questo capitolo è
un limite discreto-continuo quando i parametri di discretizzazione tendono a zero.

La seconda parte, Parte II, è dedicata allo studio del comportamento asintotico di alcuni flussi
geometrici con vincolo di volume, sia in istanze discrete che continue nel tempo. Lo strumento
tecnico principale impiegato è una disuguaglianza di Łojasiewicz-Simon adatta allo studio di questi
tipi di evoluzioni. Nei Capitoli 5 e 6 ci si interessa al comportamento asintotico di discretizzazioni in
tempo del flusso per curvature media con vincolo di volume, nel caso, rispettivamente, periodico
oppure in cui l’energia di superficie considerata è frazionaria. L’ultimo capitolo, il Capitolo 7,
tratta invece flussi continui nel tempo. In questo caso mostriamo risultati di esistenza per tempi
lunghi e comportamento asintotico per il flusso di curvatura medio con vincolo di volume e il flusso
di diffusione superficiale, nel caso particolare in cui il dato iniziale sia una piccola deformazione
normale di un insieme periodico strettamente stabile.

7



8 Riassunto del contenuto della tesi



Chapter 1
Introduction

The primary focus of this thesis is the study of geometric evolutions, particularly those arising
as gradient flows of surface energies. Our main emphasis will be on the mean curvature flow and
some of its variants: anisotropic or crystalline, nonlinear or nonlocal, fractional, with forcing and
mobility, and volume-preserving. Additionally, we will discuss the surface diffusion flow, albeit to
a lesser extent.

1.1 General Introduction

1.1.1 Perimeter and Mean Curvature
Many physical and biological phenomena can be represented as problems of minimizing inter-

facial energies subject to various constraints. The geometric energies in these contexts typically
depend on the surface area of interfaces or on higher-order geometric features like curvature. With
surface area or perimeter of a smooth set E ⊆ RN we mean the area of its boundary ∂E, that is,
the (N − 1)−Hausdorff measure of its boundary

P (E) = HN−1(∂E).

This latter definition, valid for smooth enough sets, can then be extended to a wider category of
sets thanks to the notion of distributional perimeter. Let us recall the distributional definition of
the perimeter, referring to [145] for an introduction on the topic. Given a measurable set E ⊆ RN ,
its (distributional) perimeter is defined as

P (E) = sup

{
−
ˆ
∂∗E

divφ dHN−1 : φ ∈ C∞
c (RN ;RN ), |φ| ≤ 1

}
, (1.1)

which is to say, it is the total variation of the distributional gradient of χE i.e. P (E) = |DχE |(RN ).
The mean curvature can be defined for smooth enough sets, say C2, starting from geometric

properties. Indeed, given a smooth set E we denote H1(E), . . . ,HN−1(E) its principal curvatures.
We then denote HE =

∑
i=1,...,N−1 Hi(E), and, with a slight abuse of notation, refer to HE as

the mean curvature of the set E. This notion can be generalized starting from the notion of
(distributional) perimeter, and considering its first variation. In our geometric setting, the first
variation of the perimeter is defined as follows. Given a set of finite perimeter E and a vector field
X : RN → RN of class C2, consider the flow Φ : RN × (0, 1) → RN associated to X, that is, the
solution to

∂

∂t
Φ = X(Φ), Φ(·, 0) = id.

Then, the first variation of the perimeter of E with respect to X is defined as

δP (E)[X] =
d
dt

|t=0P (Φ(·, t)(E)),

9



10 CHAPTER 1. Introduction

where Φ(·, t)(E) denotes the image of E through Φ(·, t). Analogously, one can define the notion
of second variation of the perimeter.

Now, it is possible to show (see e.g. [145]) that the first variation of P (E) can be represented

δP (E)[X] =

ˆ
∂∗E

divτX dHN−1,

where ∂∗E is the reduced boundary of E, and divτX = divX − (νE · X)νE , with νE being the
(measure-theoretic) outer unit normal to E. Therefore, one can define the (distributional) mean
curvature HE of a set of finite perimeter E as the function HE ∈ L1

loc(∂
∗E; dHN−1) (if it exists)

such that ˆ
∂∗E

divτX dHN−1 =

ˆ
∂∗E

X · νEHE dHN−1.

One can then prove that this definition extends to sets of finite perimeter the notion of mean
curvature valid for smooth sets.

1.1.2 The Mean Curvature Flow
This thesis is focused on evolutions of sets driven by their mean curvature, as defined in the

previous section. In particular, we will treat the mean curvature flow and some of its variants,
and in Chapter 7 the surface diffusion flow. The mean curvature flow is a geometric evolution of
hypersurfaces Et ⊆ RN indexed by a time parameter t ≥ 0, that are evolving according to the
following normal velocity. For every point x on the boundary of Et and every time t > 0, the
motion law is

V (x, t) = −HEt(x), (1.2)

where V denotes the component of the velocity relative to the outer normal vector of ∂Et, and
HE is the mean curvature of the set E.

This flow has applications in Mathematical Physics, where the mean curvature flow can describe
the evolution of interfaces between different phases of a material. For instance, in the context of
phase transitions, the mean curvature flow can model the dynamics of phase boundaries [40,
156]. The behaviour of biological membranes, such as cell walls, can be also modelled using
mean curvature flow, as these membranes tend to minimize their surface tension. Analogously, in
Material Sciences the (anisotropic or crystalline) mean curvature flow is used to model the process
of grain growth in polycrystalline materials [114, 40, 156]. Grain boundaries, which are interfaces
between different crystalline regions, tend to move in a way that reduces the overall surface energy,
following the mean curvature flow [157, 115, 16]. In Image Processing and Computer Vision, the
mean curvature flow is applied for image smoothing and denoising [11, 54]. By evolving the image
contours according to the mean curvature flow, noise can be reduced while preserving important
features of the image. More recently, interesting applications arose in the field of Data Analysis
and Artificial Intelligence [33, 34].

This evolution is also particularly interesting from a mathematical perspective, as it can be
formally seen as the gradient flow of the perimeter with respect to a suitable norm on the space of
forms. This implies, for instance, that the perimeters of the sets Et are non-increasing along the
flow, which can be easily checked from (1.2) and using the first variation formula for the perimeter
recalled above. Indeed

d
dt
P (E(t)) =

ˆ
∂E

V HE(t) dHN−1 = −
ˆ
∂E

H2
E(t) ≤ 0.

One the one hand, the mean curvature flow is one of the most studied geometric flows, mainly due
to the availability of a comparison principle holding for (1.2). In the present geometric setting,
with comparison principle we mean roughly the following statement. If two initial data satisfy
E0 ⊆ F0, then the flows defined by (1.2) starting from E0, F0 will satisfy the same inclusion as
long as they exist. For the evolution law (1.2), this property essentially follows from the remark
that if E ⊆ F and x ∈ ∂E ∩ ∂F , then HE(x) ≥ HF (x). This property becomes crucial in many
definitions of weak solutions, for instance allowing the use of the level-set method [162], which
can be tackled by considering viscosity solutions [58, 87, 173, 104] or distributional solutions [55]
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to (1.2), as discussed later on. Note that, while the above discussion on the comparison principle
largely holds for the anisotropic or crystalline mean curvature flow, it is no longer true if one
considers a volume-preserving version of law (1.2). This modification can be achieved for instance
by adding the forcing

´
∂Et

HEt dHN−1 in (1.2). In this case the comparison principle does not
hold anymore and the mathematical study of weak solutions to the flow becomes much harder.

On the other hand, the study of the evolution law (1.2) presents many mathematical difficulties,
mainly caused by the possible appearance of singularities of different kinds, even in a finite time-
span and even if the initial data is smooth. For example, we can see merging or collision of near
sets, pinch-offs or shrinking of connected components to points [112, 148, 149]. After the onset of
singularities, the classical or smooth formulation of the flow (1.2) ceases to hold and needs to be
replaced by a weaker one.

Classical or smooth solutions to (1.2) can be defined solving a parabolic PDE associated to
the evolution. The idea is that any initial datum E0 can be parametrized over a fixed reference
surface Σ by a height function u0 = u(·, 0). Then, imposing that the evolving surfaces Et are all
parametrized over Σ by functions u(·, t), one finds that u satisfies a parabolic Cauchy problem.
The principal part of the evolution operator is the Laplacian, so the flow enjoys nice smoothing
properties and a priori estimates, but only for a short time. This procedure ensures that, whenever
the initial datum is a smooth hypersurface, the flow (1.2) exists for a short time and it is composed
of smooth sets. Smooth solutions are well-defined as long as singularities do not develop, after
which one may invoke weak solutions instead. A nice reference for this classic subject is [147].

Concerning weak solutions to the mean curvature flow, we have by now many different notions
of weak solutions. Without intending to be exhaustive, we cite Brakke’s solutions [32], viscosity
solutions [87, 58, 173, 104], flat flows [8, 144, 155] and BV solutions [144, 155], and distributional
solutions [55, 52, 53]. Let us discuss some of these weak notions, as the first part of the thesis is
closely related to an approximation procedure used to prove existence for these solutions.

1.1.3 BV Solutions and the Minimizing Movements Scheme

Following [144], denoting RNT := RN × [0, T ), we say that a map χ : RNT → {0, 1} ∈
L∞((0, T );BV (RN )) is a BV solution to (1.2) if the following conditions hold: there exists
v : RNT → R ∈ L1((0, T );L1(|Dχ(·, t)|)) such that for every φ ∈ C∞

c (RNT ;RN ) and η ∈ C∞(RNT )
with η(·, T ) = 0, it holds

ˆ
RNT

divτφ |Dχ|+ vφ ·Dχ = 0

ˆ
RNT

χ∂tη +

ˆ
E0

η(0) = −
ˆ
RNT

vη|Dχ|.
(1.3)

The two equations above can be rewritten in a more transparent way denoting Et = {χ(·, t) = 1},
so that (1.3) becomes

ˆ T

0

ˆ
∂∗Et

divτφ dHN−1 = −
ˆ T

0

ˆ
∂∗Et

vφ · νEt dHN−1,

ˆ T

0

ˆ
Et

∂tη +

ˆ
E0

η(0) = −
ˆ T

0

ˆ
∂∗Et

vη.

It is then easy to see that the first equation in (1.3) is a weak formulation of v = −HE , while the
second one is “∂tχEt = v”.

A way of proving existence for equations (1.3) is provided by the notion of flat flows, which
in turn are defined starting from an iterative minimization procedure known as the minimizing
movements scheme, proposed in the present setting in [144]. We briefly recall this approximation
procedure, which is essentially a reformulation of Euler’s implicit scheme adapted to gradient flows
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[70, 108]. Let us consider a classical ODE
{
ẋ(t) = −∇F(x(t)), t ≥ 0

x(0) = x0
(1.4)

defined on the Euclidean space RN , which can be seen as a gradient flow for the energy F . A
classical approach to find solutions to (1.4) is Euler’s implicit scheme. Given a time discretization
parameter h > 0, we set xh0 = x0 and, for n ∈ N, we define

xhn+1 ∈ argmin
{
F(y) +

1

h
|xhn − y|2 : y ∈ RN

}
. (1.5)

The link between this problem and (1.4) is the Euler-Lagrange equation of (1.5)

xhn+1 − xhn
h

= −∇F(xhn+1),

holding for F ∈ C1, which is clearly a discretization ofthe evolution (1.4). If F is lower semicon-
tinuous and non-negative, the variational problem above admits a minimizer, which is unique if
F is convex. Under some hypothesis on F , it is then possible to prove that the discrete-in-time
scheme

xh(t) := xh[t/h]

converges as h→ 0 to a solution of the gradient flow (1.4).
One can then remark that the iterative problem (1.5) may be formulated in a very general

setting, for instance when F is not differentiable, or even in metric spaces [70, 108]. In this case,
this approach usually is referred to as the minimizing movements scheme.

In the context of geometric flows, it is sometimes possible to properly define a gradient flow with
respect to some carefully-chosen Riemannian structure on the space of hypersurfaces, but in the
case of the mean curvature flow this fails [152, 158]. It is nonetheless possible to formally interpret
the mean curvature flow as the gradient flow of the perimeter with respect to an L2−Riemaniann
structure. With this formal identification in mind, in the seminal papers [8, 144] the authors
defined the following minimizing movements scheme1. Given an initial bounded set of finite
perimeter E0 and a parameter h > 0, we set Eh0 = E0 and

Ehn+1 ∈ argmin

{
P (F ) +

1

h

ˆ
F△Ehn

dist∂Ehn : F is of finite perimeter

}
, (1.6)

where dist∂E denotes the distance to the boundary of E. Denoting sdE the signed distance function
to E (sdE = distE − distRN\E), for bounded sets Ehk the problem above is equivalent (adding the
finite constant

´
Ehn

sdEhn) to

Ehn+1 ∈
{
P (F ) +

1

h

ˆ
F

sdEhn : F is of finite perimeter
}
.

It is easy to see that the minimum problem above admits solutions (which may not be unique).
The discrete-in-time flow (usually called the discrete flow) is then defined as Eh(t) := Eh[t/h], where
[·] denotes the integer part of a real number. With some work, it is possible to prove that the
family {Eh(t)}t≥0 converges, up to subsequences, as h → 0 and in L1

loc, to a flow E(t) which is
usually called flat flow. In order to do so, one previously needs to prove some time-continuity of
the discrete flows. Once the flat flows have been defined, the task becomes to characterize the
limiting evolution as being a generalized solution to (1.2). This was indeed the main result of
[144], which showed that flat flows satisfy (1.3), and thus they are BV solutions to (1.2), under
some technical assumptions. One of the crucial point of [144] was indeed proving that the term

1To be precise, in [8] the authors were dealing with anisotropic and crystalline perimeters, whose definition will
be recalled below.
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sdEhn approximates a sort of L2−distance squared of ∂Eht to ∂Eht+h, so that the functional in (1.6)
truly resembles a minimizing movements scheme for an L2−metric structure.

This variational approach has the advantage of being extremely flexible, as it can be adapted
mutatitis mutandis to the anisotropic or crystalline case, in the presence of forcing, and even in
the nonlinear or nonlocal case. A more thorough discussion of these results will be given in the
following chapters, especially in those of Part I, while in Part II we will deal with a modification
of the scheme suited for volume-preserving evolutions.

1.1.4 Viscosity and Distributional Solution
Another commonly used notion of generalized solutions is provided by viscosity solutions (also

known as level-set solutions). The main idea behind this approach goes back to [162], and is known
as the level-set approach. The idea is quite simple yet very interesting, and crucially exploits the
comparison principle holding for the evolution (1.2). We embed an initial datum E0 as the (closed)
0−superlevel set of a bounded, uniformly continuous function u0 ∈ BUC(RN ). Then, we let each
superlevel set of u0 evolve by mean curvature and, taking advantage of the comparison principle,
we note that they describe the superlevel sets of a function u : RN × [0, T ) → R as long as all
the flows exist. One can then determine the evolution law of the function u knowing that each
superlevel sets evolves according to (1.2), and indeed finds that u solves the parabolic Cauchy
problem {

∂tu = |∇u|div
(

∇u
|∇u|

)

u(·, 0) = u0.
(1.7)

Even though (1.7) is parabolic, it is very degenerate. There is no diffusion effect in the normal
direction to its level set since, by definition, each level set of u moves independently from the
others. Moreover, the equation is singular at |∇u| = 0. This means that classical techniques and
results in the theory of parabolic equations cannot be expected to apply. Additionally, one cannot
expect in general to have global smooth solutions, even if the initial data are smooth. Briefly,
the resolution of (1.7) with classical methods poses issues. Two main strategies are employed to
solve (1.7): either elliptic regularization, in the spirit of [87, 126], or by a direct use of viscosity
solutions. We will now sketch the second approach, as it will be used in the thesis, following [58].

Let us consider a parabolic equation of the form

∂tu+ F (∇u,∇2u) = 0, (1.8)

where F = F (p,X) is degenerate elliptic

X ≥ Y =⇒ F (p,X) ≤ F (p, Y ), ∀p ̸= 0,

is geometric
F (λp, λX + σp⊗ p) = F (p,X) for all p ̸= 0, σ, λ ∈ R,

and satisfies some continuity and non-degeneracy conditions

F is continuous in RN \ {0} × SymN×N

−∞ < F∗(0, 0) = F ∗(0, 0) < +∞
F ∗(p,−I) ≤ c1(|p|), F∗(p,−I) ≥ −c2(|p|),

where F∗, F
∗ are, respectively, the lower and upper semicontinuous relaxation of F , c1, c2 ∈

C1([0,+∞)) with c1, c2 ≥ c > 0, and SymN×N denotes the set of symmetric matrices of size N .
One can prove that (1.7) falls into this framework, see for instance [58, 101] for details. A viscosity
subsolution to (1.8) is an upper semicontinuous function u such that, for every φ ∈ C2 and local
maximum point ẑ = (x̂, t̂) of u− φ, we have

∂tφ(ẑ) + F (∇φ(ẑ),∇2φ(ẑ)) ≤ 0, if |∇φ|(ẑ) ̸= 0

∂tφ(ẑ) ≤ 0, if |∇φ|(ẑ) = 0
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In turn, a viscosity supersolution to (1.8) is an lower semicontinuous function u such that, for
every φ ∈ C2 and local minimum point ẑ = (x̂, t̂) of u− φ, we have

∂tφ(ẑ) + F (∇φ(ẑ),∇2φ(ẑ)) ≥ 0, if |∇φ|(ẑ) ̸= 0

∂tφ(ẑ) ≥ 0, if |∇φ|(ẑ) = 0.

Finally, a continuous function u is a viscosity solution to (1.8) if it is both a super- and subsolution.
The powerful theory of viscosity solutions [18, 58, 101, 102] ensures that, under the hypotheses
above on F , there exists a unique viscosity solution to (1.8). Moreover, this notion extends to
the more general case F = F (t, x, r, p,X), as recalled in Chapter 2. The generalized solution to
(1.2), known as viscosity solution, is the flow E(t) defined by E(t) = {u(·, t) ≥ 0}, where u is the
unique viscosity solution to (1.7). It is possible to show, see for instance [56] where more general
results are shown, that flat flows are viscosity solutions. Some sections of Part I will be devoted
to showing similar results for modifications of the minimizing movements scheme.

Lastly, we would like to recall the notion of distributional solutions to (1.2). The key remark
here is that, if the function u appearing in (1.7) was a distance function, characterized by |∇u| = 1,
then (1.7) is nothing but the heat equation. This can not be ensured in general, but if the evolving
sets are smooth one can nonetheless make the following remark. Let Et evolve according to (1.2),
and let d(·, t) denote the signed distance function to Et. Since we consider the distance function,
the normal velocity of x ∈ {d(·, t) = s} for s > 0 is nothing but the normal velocity of its
projection y on ∂Et, and coincides with the derivative in time of the distance function. On the
other hand, by comparison, the curvature of {d(·, t) = s} at x is less or equal to the curvature of
Et = {d(·, t) = 0} at y, therefore one finds

∂td(x, t) = ∂td(y, t) = ∆d(y, t) ≥ ∆d(x, t),

where we used the identity HE = ∆sdE , holding for smooth enough sets. Reasoning in the same
way for negative level sets, one is led to study the evolution of distance functions d(x, t) that
satisfy {

∂td ≥ ∆d, in {d ≥ 0}
∂td ≤ ∆d, in {d ≤ 0}. (1.9)

Using the remark above as a starting point, in [173] the author shows that the viscosity solution
d to (1.9) characterizes also viscosity solutions, meaning that for every time t > 0, it holds
{d(·, t) ≥ 0} = {u(·, t) ≥ 0} where u is the unique viscosity solution to (1.7). This approach may
be extended to (smooth) anisotropic instances, where the evolution law considered is

V (x, t) = −ψ(νE(t)(x))H
ϕ
E(t)(x), for x ∈ ∂E(t), t > 0,

where ψ, ϕ are 1-homogeneous, ψ ∈ C1 is a mobility, and HϕE is the anisotropic ϕ-curvature
HϕE = div(∇ϕ(νE)). Here ϕ is assumed to be at least C2, so that the curvature is well-defined. In
this context, the system (1.9) becomes

{
∂td

ψ ≥ div(∇ϕ(∇dψ)), in {d ≥ 0}
∂td

ψ ≤ div(∇ϕ(∇dψ)), in {d ≤ 0} (1.10)

and dψ is ψ◦-signed distance function satisfying (1.10) in the viscosity sense, where ψ◦ denotes the
polar of ψ, defined as ψ◦(ξ) = sup{ξ ·v : ψ(v) = 1}. . Anyhow, this approach is no longer viable is
ϕ is less regular, as in the (purely) crystalline case, where the function ϕ is piecewise affine and the
associated Wulff shape is a convex polytope. The main idea of [55] (extended to more general cases
in [52, 53]) is that, while viscosity solutions to (1.10) can not be defined in the classical way if ϕ is
non smooth, the system (1.10) can still be used to characterize the crystalline evolutions. Morally,
one requires that (1.10) is satisfied just in the distributional sense. These generalized solutions
are referred to as distributional solutions to (1.2). For a more precise definition of distributional
solutions we refer to Chapter 4.
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We now discuss in a more detailed way the main topics of the chapters comprising the present
thesis, which arise from the publications [50, 67, 68, 69] and the preprints [49, 66]. Lastly, we will
discuss some of the current projects and some possible perspectives.

1.2 Part I: Convergence Results for the Minimizing Move-
ments Scheme

Part I of this thesis is devoted to showing the convergence of the minimizing movements scheme
towards mean curvature-type flows, and contains contributions made in collaboration with the co-
advisors Antonin Chambolle and Massimiliano Morini.

Chapters 2 and 3 are devoted to the study of the minimizing movements in two interesting
variants of (1.2), namely the nonhomogeneous case, and the nonlinear case.

In Chapter 2 we consider (suitably smooth) anisotropic surface energies. Let us recall the
definition of the anisotropic perimeter. An anisotropy is a function ϕ : RN × S1 → R which is
1−homogeneous in the second variable. The anisotropic perimeter Pϕ associated to ϕ is defined
for a set E ⊆ RN of finite perimeter as follows

Pϕ(E) :=

ˆ
∂∗E

ϕ(x, νE(x))HN−1(x). (1.11)

In general, we impose strong regularity on ϕ in both variables, apart from Chapter 4. Note that
if ϕ depends on the position, the functional Pϕ is not translation invariant. We call these sur-
face energies nonhomogeneous perimeters, and note that they arise naturally when one considers
evolution equations on manifolds [23]. Anisotropies with nontrivial dependency on the position
will be considered in Chapter 2, while in the rest of the thesis we will consider anisotropies ϕ, ψ
depending on νE only in (1.11). We implement the minimizing movements scheme in this setting,
where now (1.6) is substituted by

Ehn+1 ∈ argmin
{
Pϕ(F ) +

1

h

ˆ
F

sdψ
Ehn

+

ˆ
F

Fh(x, t) dx
}
,

where ϕ, ψ are two suitably smooth anisotropies, sdψE denotes the geodesic signed distance function
to E, and Fh(x, t) =

ffl t+h
t

f(x, s)ds, with f a (suitably smooth) forcing term. After proving some
time-continuity for the flows, letting h → 0 we recover flat flows as L1

loc−limit points of the
discrete flows Eh(t) = Eh[t/h]. The main result of Chapter 2 is that flat flows are BV and viscosity
solutions, as defined in the section above, for the following anisotropic version of (1.2)

V (x, t) = −ψ(νEt(x))
(
HϕEt(x) + f(x, t)

)
, (1.12)

where HϕE is the ϕ−curvature of E, i.e. the first variation of Pϕ. While the general outline of the
proof follows [56], nontrivial technical difficulties arise due to the lack of translation invariance in
the functionals considered, which was one of the main assumptions in [56].

In Chapter 3 we instead consider a nonlinear variant of the mean curvature flow for smooth
enough, translation invariant anisotropies ϕ, ψ, which now depend only on the normal vector to the
hypersurface. The evolution speed is a modification of (1.2) by a nonlinear function G satisfying
some structural assumptions, and takes the form

V (x, t) = ψ(νEt(x))G
(
−HϕEt(x) + f(t)

)
, (1.13)

where f is a bounded and continuous forcing term, andG is a continuous, monotone non-decreasing
function, with G(0) = 0. It is interesting to note that no asymptotic behaviour of G is required, so
choices like G(s) = (s)+ are admissible. Also in this case we prove that the minimizing movements
scheme converges toward viscosity solutions to the mean curvature flow. Note that in this case a
notion of BV solutions is not available, as nonlinearities are not easily included in (1.3).

In Chapter 4 we deal with a full (both space- and time-)discretization of a class of crystalline
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flows, showing the convergence of the scheme. The starting point is a level-set reformulation of
the scheme (1.6), originally due to Chambolle [45]. This scheme is defined as follows. Given an
initial bounded set E0 ⊆ Ω ⊂⊂ RN , we set uh0 = sdE0 and let for k ∈ N

uhk+1 = argmin
{
|Dv|(Ω) + 1

2h
∥sd{uhk≤0} − v∥2L2(Ω) : v ∈ BV (Ω) ∩ L2(Ω)

}
, (1.14)

where |Dv|(Ω) = TV (v; Ω) is the total variation of the function of bounded variation v [13]. One
can show that the closed (respectively, open) 0-sublevelset of uhk+1 are the maximal (resp. minimal)
solution to the problem (1.6) with {uhk ≤ 0} substituting Ehk . Furthermore, the problem (1.14)
admits a unique minimizer (which is also 1-Lipschitz) by the strict convexity of the functional. In
Chapter 4 we propose a discretization of (1.14) in order to study solutions to

V = −ϕ(νE(t))H
ϕ
E(t), (1.15)

for a class of (purely) crystalline anisotropies ϕ such that {ϕ ≤ 1} is a convex rational zonotope
(as explained below). The setting is as follows. Given ε > 0, we work on the discrete grid εZN
and consider discrete functions u : εZN → R, ui := u(i). The total variation appearing in (1.14)
is substituted by its discrete, crystalline version

TV εβ (u) = εN−1
∑

i,j∈εZN
β
(
i
ε −

j
ε

)
|ui − uj |,

where the function β : ZN → [0,+∞) has finite support and characterizes the surface tension
considered. Indeed, the anisotropic perimeter under study is the one associated to the (ratio-
nal, crystalline) anisotropy ϕ(ν) :=

∑
i∈ZN β(i)|ν · i|, whose Wulff shape is a convex polytope

called a zonotope. We modify the minimizing movements scheme (1.6) to define uh,εk+1 iteratively
minimizing

TV εβ (u) +
1

2h

∑

i∈εZN
|sdε(uh,εk )i − ui|2

(or, to be precise, solving the associated Euler-Lagrange equation), where sdε(uh,ε) is a discrete
version of the signed distance sdEs (properly defined in Chapter 4). This modification allows to
pass to the limit ε, h → 0 and recover distributional solutions to (1.15) as defined in [55]. The
main improvement of this result with respect to the previous literature is that we are able to prove
the convergence of our scheme towards weak solutions to the crystalline mean curvature flow in
any regime ε, h→ 0, whereas previously the condition h≫ ε had to be required, in order to avoid
artificial pinning of the limiting interfaces. This is then reflected in some numerical computations
we present, which show the consistency of our scheme. Furthermore, our results are the first
holding in every dimension N ≥ 2, whereas only the planar case could be addressed with the
previous techniques.

One of the main new insight is the definition of sdε, the redistancing operator, which builds
discrete distance functions from the interfaces. Indeed, the mere restriction to the grid the classical
signed distance function from the discrete sets would create a drift term in the scheme, which can
then be seen in the limiting evolution law [28, 29]. Instead, our definition allows us to avoid these
artifacts and to recover the correct limiting evolution law.

We conclude the chapter with an interesting observation that we made while working on the
project. We noticed that our new distance function can be used to provide an easy proof of
consistency of our discrete scheme in the isotropic case of (1.2). In this case we need to assume
the Courant-Friedrichs-Lewy condition h ≈ ε2 in order to ensure both the convergence of the
approximating operators and that the distance function creates an iterable error. Some more
remarks are presented in the last section of this introduction.
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1.3 Part 2: Long-Time Behaviour for Volume-Preserving
Flows

Part II of the thesis is more focused on questions concerning the long-time behaviour of some
volume-preserving flows. The chapters therein contain contributions made in collaboration with
Antonia Diana, Andrea Kubin and Anna Kubin.

In this part we modify the minimizing movements scheme (1.6) imposing a volume constraint,
in order to study the evolution of sets with fixed mass. This can be done in multiple ways [155,
130]. For instance, instead of minimizing iteratively (1.6) one can consider

Ehn+1 ∈ argmin
{
P (F ) +

1

h

ˆ
F

sdEhn : |F | = |E0|
}
,

or, in order to enforce the volume constraint in a “soft” way, consider the penalized problem

Ehn+1 ∈ argmin
{
P (F ) +

1

h

ˆ
F

sdEhn +
1√
h
||F | − |E0||

}
.

In the end, the two schemes are equivalent [130]. These schemes define some volume-preserving
discrete flows, whose long-time behaviour can be studied. One hopes that this study may provide
good information for the limiting behaviour of the flat flows, as proven rigorously in [133, 132] in
the two- and three-dimensional setting.

The general common idea of this part is the following. Formally viewing the mean curvature
flow as a gradient flow, if one starts the flow close enough to a strictly stable set2 for the perimeter,
it is reasonable to expect that the evolution flow will exist for all time and converge to the subjacent
stable set. In order to follow this idea, one needs some sort of stability estimate, that will plat the
role of a Łojasiewicz–Simon inequality in our setting. In this geometric setting, we mention the
quantitative Alexandrov inequality that has been proved for the first time in [135] with non-sharp
exponents, and then improved in [154] with sharp exponents but for almost-spherical sets. In [69]
(which forms Chapter 5) we devise a new proof of this result, which has proved to be flexible
enough to be adapted to different cases (periodic setting, fractional energies...). This stability
inequality essentially says the following (we refer to Chapter 5 for a more precise statement).
Assume that a smooth set F is sufficiently close in C1 to a strictly stable set E, with |F | = |E|.
Then F can be parametrize as a normal deformation3 of the set E, meaning that there exists
f : ∂E → R so that

∂F = {x+ f(x)νE(x) : x ∈ ∂E}.
Then our stability estimate says that, up to replacing F with a small translate (and correspond-
ingly, changing f), if f satisfies the additional bound |

´
∂E

fνE | ≲ ∥f∥2L2(∂E), then it holds:

∥f∥H1(∂E) ≤ C∥HF (x+ f(x)νE(x))−
 
∂E

HF (y + f(y)νE(y)) dHN−1(y)∥L2(∂E). (1.16)

This result can be seen either as a Łojasiewicz–Simon inequality, if we regard the mean curva-
ture flow as a gradient flow, or as a quantitative version of the Alexandrov theorem: under the
hypotheses above, if the curvature of F is constant then F coincides with (a translate of) E.

Our first contributions in this line of research, contained in Chapters 5 and 6, analyse the long-
time behaviour of the discrete volume-preserving flows in two cases. In the former, we consider
the classical perimeter (1.1) in a periodic setting. This is somehow interesting as the possible
limit point of the flows are not trivial as in the Euclidean setting (where they are only union of
equal balls). The geometric characterization of critical points (and also strictly stable sets) of
the perimeter in the periodic setting is still an open problem in every dimension. In this case,
we prove the dynamical stability of strictly stable periodic sets, and a more precise convergence
result in dimension N = 2. As mentioned before, one of the crucial parts of the proof is showing

2Morally, critical points for the perimeter having strictly positive second variation, but the precise definition is
more involved and is recalled in Part II.

3Sometimes, this parametrization is known as Fermi’s coordinates.
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(1.16) in our setting, where an explicit characterization of the stable sets is missing. Our proof
thus relies only on the strict minimality of the set E, and is thus promisingly general. Indeed, we
have been able to prove similar results also in the fractional case (Chapter 6) and in a nonlocal
case (discussed in the section 1.4).

The latter, Chapter 6, treats the case of the fractional perimeter but in the Euclidean setting.
Let us recall the notion of fractional perimeter. Given a measurable set E ⊆ RN and a parameter
s ∈ (0, 1), the s−fractional perimeter of E is defined as

P s(E) =

ˆ
E

ˆ
RN\E

1

|x− y|N+s
dx dy.

This perimeter, while nonlocal in nature, shares many important properties with the classical
perimeter (and is an example of the generalized perimeters considered in [56]). In this case it is
known that the only volume-constrained critical points for the fractional perimeter in the whole
Euclidean space is a single ball [89], as the nonlocal interactions penalize disconnected components.
In [68] we modify the minimizing movements scheme (1.6) as follows

Ehn+1 ∈ argmin
{
P s(F ) +

1

h

ˆ
F

sdEhn +
1

h
s

1+s
||F | − |E0||

}
,

and thus build a discrete flow which is (almost) volume-preserving. We are then able to character-
ize the asymptotic behaviour of the discrete flow from any initial, bounded set of finite perimeter,
and prove the exponential convergence of the discrete flows toward a single ball. Again, the proof
is essentially based on a fractional version of the stability estimate (1.16), which we establish for
the first time.

Our other contribution [67], contained in Chapter 7, treats similar questions but for smooth
flows in the periodic setting. We consider both the volume-preserving mean curvature flow and the
surface diffusion, and now work with classical solutions (as previously briefly introduced). Let us
recall the definitions of the surface diffusion flow, which is a geometric evolution of hypersurfaces
Et ⊆ RN evolving according to the following normal velocity

V (x, t) = ∆EtHEt(x), (1.17)

where ∆Et denotes the Laplace-Beltrami operator of the hypersurface Et. It is easy to see that
this is another instance of volume-preserving flow, which also decreases the perimeter. Moreover,
it can be seen (formally) as the H−1−gradient flow of the perimeter. In Chapter 7, we work again
in the periodic setting, and we address the question of global existence and long-time behaviour
of the aforementioned flows. Since in general singularities may appear in finite time (also in
dimension N = 2, contrary to the mean curvature flow), and both flows do not preserve convexity,
an interesting question is if there are instances for which global existence of the flows can be
ensured.

We thus consider initial data that are suitably close (in some norm) to a strictly stable set.
Again, we invoke the stability inequality (1.16), which we now need to pair with some Schauder
estimates for the smooth flows, in order to iterate the short-time existence result and prove global
existence of the flows. Lastly, we manage to prove convergence of the flows toward (a translate
of) the subjacent stable set.

1.4 Future perspectives

In this last section we would like to present some possible further developments of the subjects
treated in the thesis, and sketch some of the present research work under progress.

In the spirit of Part I, we are now addressing further questions regarding discrete-to-continuum
limits. In particular, inspired by some remarks sketched in Appendix 4.B, we are trying to
further investigate some discrete schemes comprising an (explicit) diffusion step, and a redistancing
operation. In the easier case of the Laplacian, as considered in Appendix 4.B, this scheme can be
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described as follows. Given an initial function u0 : εZN → R, define uε0 = u0 and iteratively set

uεk+1 = sdε(Kε
h ∗ uεk), (1.18)

whereKε
h is a kernel associated to the explicit Euler’s scheme for the discrete heat equation, namely

the kernel associated to 1 − h∆ε. Here, again, sdε denotes the discrete redistancing operator we
introduced in [49], whose construction is recalled in Chapter 4. In this case, one essentially makes
the choice h = Cε2 (Courant-Friedrichs-Lewy condition), in order to ensure that the discrete
Laplacian ∆ε converges to the continuum Laplacian ∆ as ε → 0. Reasoning as in [49], we are
able to pass to the limit ε → 0 and prove that the functions uε[t/h] are converging to distance
functions d(t) satisfying (1.9) in the distributional and viscosity sense, which is equivalent to say
that the sets Et = {d(t) ≤ 0} are moving according to (1.2). A natural related question is how
much we can expect to generalize these results. In particular, a natural idea is to consider now
general convolution kernels Kε

h, which are converging (in a suitable sense) towards the Laplacian
as ε, h→ 0. This is the subject of a current investigation.

Another interesting extension of Part I has been suggested by Matteo Novaga, and concerns
Chapter 3. Indeed, it is reasonable to expect that the methods developed in Chapter 3 extend to
the abstract setting of variational curvatures introduced in [56]. This is a current work in progress.

Concerning Part II, we are now investigating two different extensions of the results presented.
The first one is an adaptation of the work [133] to the periodic setting. In this work, the authors
manage to characterize the asymptotic behaviour of volume-preserving flat flows in the plane,
morally passing to the limit h → 0 the study conducted in [154] for discrete flows. A work
in progress with Vedansh Arya and Anna Kubin addresses exactly the same question in the
2−dimensional flat torus, where the main new technical difficulty is given by the non-uniqueness
of the limiting configuration.

Finally, with Anna Kubin we are working on some extensions of our work [67] to include
different smooth flows. In particular, we have some preliminary dynamical stability results for
the (modified) Mullins-Sekerka flow, and we are trying to extend this study to geometric flows
(formally) arising as H−sgradient flows of the perimeter, s ∈ (0, 1). Thanks to Poincaré-type
inequalities, the convergence proof should follow by the same strategy based on the stability
estimate (1.16), provided one has sufficiently strong a priori Schauder estimates on the linearized
evolution equations. This is the most technically demanding part, and it is a current work in
progress.
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1 Introduction

In this chapter we deal with the anisotropic, inhomogeneous mean curvature flow with forcing
and mobility. By inhomogeneous we mean that the flow is driven by surface tensions depending
on the position in addition to the orientation of the surface. The evolution of sets t 7→ Et ⊆ RN
considered is (formally) governed by the law

V (x, t) = ψ(x, νEt(x))
(
−HϕEt(x) + f(x, t)

)
, x ∈ ∂Et, t ∈ (0, T ), (2.1)

where V (x, t) is the (outer) normal velocity of the boundary ∂Et at x, ϕ(x, p) is a given anisotropy
representing the surface tension, Hϕ is the anisotropic mean curvature of ∂Et associated to ϕ,
ψ(x, p) is an anisotropy evaluated at the outer unit normal νEt(x) to ∂Et which represents a
velocity modifier (also called the mobility term), and f is the forcing term. We will be mainly
concerned with smooth anisotropies (and the regularity assumptions will be made precise later
on): in this case, the curvature Hϕ is the first variation of the anisotropic and inhomogeneous
perimeter associated to the anisotropy ϕ (in short, ϕ−perimeter) defined as

Pϕ(E) :=

ˆ
∂∗E

ϕ(x, νE(x)) dHN−1(x)

for any set E of finite perimeter (where ∂∗E denotes the reduced boundary of E) and, if E is
sufficiently smooth, it takes the form

HϕE(x) = div(∇pϕ(x, νE(x))),

where with ∇p we denote the gradient made with respect to the second variable. Note that
evolution (2.1) can be red as the motion of sets in RN , when the latter is endowed with the
Finsler metric induced by the anisotropy (see Remark 2.45). Equation (2.1) is relevant in Material
Sciences, Crystal Growth, Image Segmentation, Geometry Processing and other fields see e.g. [5,
76, 113, 172, 174].

The mathematical literature for inhomogeneous mean curvature flows is not as extensive as
in the homogeneous case, mainly due to the difficulties arising from the lack of translational
invariance. Indeed, assuming that the evolution is invariant under translations allows to simplify
many arguments used in the classical proofs of, for example, comparison results and estimates
on the speed of evolution. In the homogeneous case the well-posedness theory is nowadays well
established and quite satisfactory, both in the local and nonlocal case, and even in the much more
challenging crystalline case (that is, when the anisotropy ϕ is piecewise affine) see [6, 8, 23, 52,
54, 56, 58, 106, 139, 144, 155] to cite a few. Concerning the inhomogeneous mean curvature flow,
we cite [121, 123] where the short time existence of smooth solutions on manifolds is shown, and
[102, 126], where the viscosity level set approach (introduced for the homogeneous evolution in
[58, 87]) is extended, respectively, to the equation (2.1) and to the Riemannian setting.

In this chapter we implement the minimizing movement approach à la Almgren-Taylor-Wang
(in short, ATW scheme) [8] to prove existence via approximation of a level set solution to the
generalized anisotropic and inhomogeneous motion (2.1). To carry on this scheme (which has
only been sketched in [23], but lacks a formal proof) we gain insights from [56]. We also show
that, under the additional hypothesis of convergence of the energies (2.2) and low dimension
(2.11)(which are nowadays classical for this approach), the same approximate solutions provide in
the limit a suitable notion of “BV-solutions”, also termed distributional solutions, see [144, 155].

There are many more concepts of weak solution for the mean curvature flow. In particular,
we cite the diffuse-interface approximation provided by the Allen-Cahn equation [86, 125, 118,
140] and the threshold dynamic scheme [151, 83] (see also the relative entropy methods of [139]).
Other recent results concern the weak-strong uniqueness problem, which consists in proving that
weak solutions coincide with the smooth ones as long as the latter exist. After classical works
concerning viscosity solutions, a new definition of “BV-solution” (whose existence is proved via
the Allen-Cahn approximation scheme) allows the authors in [118, 140] to prove weak-strong
uniqueness for isotropic and anisotropic mean curvature flows. This result is based upon the so-
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called optimal dissipation inequality satisfied by their weak solution. In general, it is very difficult
to say if the ATW scheme could satisfy such a property, mainly because of the “degeneracy” of
the dissipation term in the incremental problem defined via the distance function. Even if all
these results concern the translationally invariant case, a study of some of these properties in the
inhomogeneous setting seems very interesting and challenging.

Other remarks on possible research directions are the following. To begin with, the new
arguments which are used to compensate the lack of translation invariance are based on the
locality of the anisotropic curvature Hϕ associated with a smooth anisotropy ϕ. This implies that
the proofs are not straightforwardly adaptable to the so-called “variational curvatures” considered
in [56], which are non-local in nature. On the other hand, since the crystalline curvatures are highly
nonlocal and degenerate operators (see e.g. [55, 52, 44]), they do not fall in the theory constructed
in the present chapter. In principle, it would be possible to follow the same perturbative study
conducted in [52] in order to prove at least existence for an inhomogeneous and crystalline mean
curvature flow. However, a satisfactory characterization of the limiting motion equation bearing
a comparison principle is lacking so far.

This work can be seen as a first step towards constructing a general theory of motions driven
by non-translationally invariant and possibly nonlocal curvatures, in the spirit of [56].

1.1 Main results
Now briefly recall the minimizing movements procedure in order to state the main results of

the chapter. Given an initial bounded set E0 and a parameter h > 0, we define the discrete flow
E

(h)
t := Th,t−hE

(h)
t−h for any t ≥ h and E(h)

t = E0 for t ∈ [0, h), where the functional Th,t is defined
for t ≥ 0 as follows: for any bounded set E we set Th,tE (or, sometimes, T−

h,tE) as the minimal
solution to the problem

min

{
Pϕ(F ) +

ˆ
F

(
sdψE(x)
h

−
 [ th ]h+h

[ th ]h

f(x, s) ds

)
dHN−1(x) : F is measurable

}
,

where sdψE(x) is the signed geodesic distance between x and E induced by the anisotropy ψ (see
(2.8) for the precise definition) and [s] = max{n ≤ s, n ∈ N ∪ {0}} denotes the integer part of a
non-negative real number s ∈ [0,+∞). We will then define T+

h,tE as the maximal solution to the

problem above. Any L1−limit point as h → 0 of the family {E(h)
t }t≥0 will be called a flat flow.

In the whole chapter we will assume that

ϕ ∈ E (see Definition 2.6) and ψ is an anisotropy as in Definition 2.5,

∀t ∈ [0,+∞) it holds f(·, t) ∈ C0(RN ), ∥f∥L∞(RN×[0,+∞)) <∞.
(H0)

With more effort one could weaken a little the hypothesis on f (see [57]). For the sake of simplicity
we will require the global-in-time boundedness. We prove existence and Hölder-in-time regularity
for flat flows.

Theorem 2.1 (Existence of flat flows). Let E0 be a bounded set of finite perimeter and ϕ, ψ, f

satisfy (H0). Fix T > 0. For any h > 0, let {E(h)
t }t∈[0,T ) be a discrete flow with initial datum E0.

Then, there exists a family of sets of finite perimeter {Et}t∈[0,T ) and a subsequence hk ↘ 0 such
that

E
(h)
t → Et in L1,

for a.e. t ∈ [0, T ). Such flow satisfies the following regularity property: there exists a constant c,
depending on T , such that for every 0 ≤ s ≤ t < T ,

|Es△Et| ≤ c|t− s|1/2,
Pϕ(Et) ≤ Pϕ(E0) + c.

Subsequently, we will show that flat flow s are distributional solutions, as defined in [144]. We
will require additional hypothesis: firstly, low dimension (2.11) (linked to the complete regularity
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of the ϕ−perimeter minimizer, see [144, 155]), moreover

∃ cψ > 0 s.t. |ψ(x, v)− ψ(y, v)| ≤ cψ|x− y|, ∀x, y ∈ RN , v ∈ SN−1, (H1)

f ∈ C0(RN × [0,∞)]). (H2)

Theorem 2.2 (Existence of distributional solutions). Assume (H0), (H1), (H2) and (2.11). For
any T > 0, if

lim
k→∞

ˆ T

0

Pϕ(E
(hk)
t ) =

ˆ T

0

Pϕ(Et), (2.2)

then {Et}t∈[0,T ] is a distributional solution (2.1) with initial datum E0 in the following sense:

(1) for a.e. t ∈ [0, T ) he set Et has weak ϕ−curvature HϕEt (see (2.15) for details) satisfying

ˆ T

0

ˆ
∂∗Et

|HϕEt |
2 <∞;

(2) there exist v : RN × (0, T ) → R with
´ T
0

´
∂∗Et

v2 dHN−1 dt < ∞ and v(·, t)
∣∣
∂Et

∈ L2(∂Et)

for a.e. t ∈ [0, T ), such that

−
ˆ T

0

ˆ
∂∗Et

vη dHN−1 dt =
ˆ T

0

ˆ
∂∗Et

(
HϕEt − f

)
η dHN−1 dt (2.3)

ˆ T

0

ˆ
Et

∂tη dx dt+
ˆ
E0

η(·, 0) dx = −
ˆ T

0

ˆ
∂∗Et

ψ(·, νEt)vη dHN−1 dt, (2.4)

for every η ∈ C1
c (RN × [0, T )).

The definitions 1), 2) extend to our case the definition of BV -solutions of [144] and the distri-
butional solutions of [155]. We recall that hypothesis (2.2) ensures that the evolving sets avoid
the so-called “fattening” phenomenon. It is known that this hypothesis is satisfied in the case of
evolution of convex or mean-convex sets, see e.g. [44, 71, 91], but in general is not known under
which general hypothesis it is valid. We also remark that the proof of the theorem above provides
a detailed proof of [44, Theorem 3.2], which had only been sketched. Moreover, we bypass the use
of a Bernstein-type result (which is usually employed) by a double blow-up technique.

In the second part of the chapter we will focus on the level set approach. Briefly, given an
initial compact set E0, we set u0 such that {u0 ≥ 0} = E0 and we look for a solution u in the
viscosity sense (in a sense made precise in Definition 2.35) to

{
∂tu+ ψ(x,−∇u) (div∇pϕ(x,∇u(x))− f(x, t)) = 0

u(·, t) = u0.
(2.5)

Classical remarks ensure that any level set {u ≥ s} is evolving following the mean curvature flow
(2.1). To prove existence for (2.5) we use an approximating procedure. For h > 0 and t ∈ (0,+∞)
we set iteratively u±h (·, t) = u0 for t ∈ [0, h) and for t ≥ h

u+h (x, t) := sup
{
s ∈ R : x ∈ T+

h,t−h{u+h (·, t− h) ≥ s}
}

u−h (x, t) := sup
{
s ∈ R : x ∈ T−

h,t−h{u−h (·, t− h) > s}
}
,

where the operator T±
h,t has been previously introduced. We remark that these are maps piecewise

constant in time, since T±
h,t = T±

h,[t/h]h, which are only upper and lower semicontinuous in space
respectively. Then, we will pass to the limit h→ 0 on the families {u±h }h to find functions u+, u−
which are viscosity sub - and supersolution respectively of equation (2.5). Passing to the limit
as h → 0 in our case is not straightforward. The main issue is that we do not have an uniform
estimate on the modulus of continuity of the functions uh (compare [56]) and thus we can not
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pass to the (locally) uniform limit of the sequence. (More precisely, our best estimate contained in
Lemma 2.40 decays too fast as h→ 0 to provide any useful information). Nonetheless, motivated
by [19, 18, 20] we can define the half-relaxed limits

u+(x, t) := sup
(xh,th)→(x,t)

lim sup
h→0

u+h (xh, th)

u−(x, t) := inf
(xh,th)→(x,t)

lim inf
h→0

u−h (xh, th),
(2.6)

and prove that the functions defined above are sub - and supersolutions, respectively, to (2.5).
The main difficulty in this regard is that we need to work with just semicontinuous functions in
space, as in the translationally invariant setting one can easily prove the uniform equicontinuity
of the approximating sequence. We prove the following.

Theorem 2.3. Assume (H0), (H1) and f ∈ C0(Rn × [0,+∞)). The function u+ (respectively
u−) defined in (2.6) is a viscosity subsolution (respectively a viscosity supersolution) of (2.5).

Thanks to the results of [58] we then prove that, under the additional hypothesis

∇x∇pϕ(·, p) and ∇2
pϕ(·, p) are Lipschitz, uniformly for p ∈ SN−1

∇2
pϕ

2(x, p) is uniformly elliptic in p, uniformly in x

ψ(·, p) Lipschitz continuous, uniformly in p
f(·, t) Lipschitz continuous, uniformly in t,

(H3)

the following uniqueness result holds.

Theorem 2.4. Assume (H0) and (H3). If u0 is a continuous function which is spatially constant
outside a compact set, equation (2.5) with initial condition u0 admits a unique continuous viscosity
solution u given by (2.6). In particular, u+ = u− = u is the unique continuous viscosity solution
to (2.5) and u±h → u as h→ 0, locally uniformly.

The previous result yields a proof of consistency between the level set approach and the min-
imizing movements one to study the evolution (2.1). We recall that it has been established for
the classical mean curvature flow in [45], in the anisotropic but homogeneous case in [85] and in
a very general nonlocal setting in [56].

2 Preliminaries

We start introducing some notations. We consider 0 ∈ N. We will use both Br(x) and
B(x, r) to denote the Euclidean ball in RN centered in x and of radius r; with BN−1

r (x) we
denote the Euclidean ball in RN−1 centered in x and of radius r; with SN−1 we denote the sphere
∂B1(0) ⊆ RN ; with SymN the symmetric real matrices of size N × N . In the following, we will
always speak about measurable sets and refer to a set as the union of all the points of density 1
of that set i.e. E = E(1). If not otherwise stated, we implicitly assume that the function spaces
considered are defined on RN , e.g L∞ = L∞(RN ); the space C0 denotes the space of continuous
functions. Moreover, we often drop the measure with respect to which we are integrating, if clear
from the context. For δ ∈ R we denote

Eδ = {x ∈ RN : sdE(x) ≤ δ},

and use the notation E−∞ := ∅, E+∞ := RN .

Definition 2.5. We define anisotropy (sometimes defined as an elliptic integrand) a function ψ
with the following properties: ψ(x, p) : RN ×RN \ {0} → [0,+∞) is a continuous function, which
is convex, positive, and positively 1-homogeneous in the second variable, such that

1

cψ
|p| ≤ ψ(x, p) ≤ cψ|p|
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for any point x ∈ RN and vector p ∈ RN .

We remark that, as standard, we define a real function f positively 1-homogeneous if for any
λ ≥ 0, it holds f(λx) = λf(x). In particular, the anisotropies that we will consider are not
symmetric. In the following, we will always denote the gradient of an anisotropy with respect to
the first (respectively second) variable as ∇xψ (respectively ∇pψ). We then recall the definition
of some well-known quantities (see [23]). Define the polar function of an anisotropy ψ, denoted
with ψ◦, as

ψ◦(·, ξ) := sup
p∈RN

{ξ · p : ψ(·, p) ≤ 1} . (2.7)

Using the definition it is easy to see that for all p, ξ ∈ RN it holds

ψ(·, p)ψ◦(·, ξ) ≥ p · ξ, −ψ(·,−p)ψ◦(·, ξ) ≤ p · ξ.

Furthermore, one can prove that (see [23]) for p ̸= 0

ψ◦(∇pψ) = 1, ψ(∇pψ
◦) = 1, (ψ◦)◦ = ψ.

We define for any x, y ∈ RN the geodesic distance induced by ψ, or ψ−distance in short, as

distψ(x, y) := inf

{ˆ 1

0

ψ◦(γ(t), γ̇(t)) dt : γ ∈W 1,1([0, 1];RN ), γ(0) = x, γ(1) = y

}
.

We remark that this function is not symmetric in general. We define the signed distance function
from a closed set E ⊆ RN as

sdψE(x) := inf
y∈E

distψ(y, x)− inf
y/∈E

distψ(x, y), (2.8)

so that sdψE ≥ 0 on Ec and sdψE ≤ 0 in E. We remark that the bounds stated in Definition 2.5
imply

1

cψ
dist ≤ distψ ≤ cψdist, (2.9)

where here and in the following we will denote with dist, sd the Euclidean distance and signed
distance function respectively. We define the ψ−balls as the balls associated to the ψ−distance,
that is

Bψρ (x) := {y ∈ RN : distψ(y, x) < ρ},
which in general are not convex nor symmetric.

Definition 2.6. We say that an anisotropy ϕ is a regular elliptic integrand, and write ϕ ∈ E , if
ϕ ∈ C2, 1(RN × RN \ {0}) there exists two constants λ ≥ 1, l ≥ 0 such that for every x, y, e ∈
RN , ν, ν′ ∈ SN−1 one has:

1

λ
≤ ϕ(x, ν) ≤ λ,

|ϕ(x, ν)− ϕ(y, ν)|+ |∇pϕ(x, ν)−∇pϕ(y, ν)| ≤ l|x− y|

|∇pϕ(x, ν)|+ ∥∇2
pϕ(x, ν)∥+

∥∇2
pϕ(x, ν)−∇2

pϕ(x, ν
′)∥

|ν − ν′| ≤ λ

e · ∇2
pϕ(x, ν)[e] ≥

|e− (e · ν)ν|2
λ

.

Given any set of finite perimeter E, one can define the ϕ−perimeter Pϕ as follows

Pϕ(E) :=

ˆ
∂∗E

ϕ(x, νE(x)) dHN−1(x),

where ∂∗E is the reduced boundary of E and νE is the measure-theoretic outer normal, see [145]
for further references on sets of finite perimeter. The ϕ−perimeter of a set of finite perimeter E
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in an open set A is defined as

Pϕ(E;A) :=

ˆ
∂∗E∩A

ϕ(x, νE(x)) dHN−1(x).

We remark that, by definition of regular elliptic integrand, for any set E of finite perimeter it
holds

1

λ
P (E) ≤ Pϕ(E) ≤ λP (E).

Some additional remarks on this definition can be found in [72]. We just recall the submodularity
property of the ϕ−perimeter, which can be proved for instance by using the formulae for the re-
duced boundary and measure-theoretic normal of union and intersection of sets of finite perimeter
(see [145]).

Proposition 2.7 (Submodularity property). For any two sets E,F ⊆ RN of finite perimeter,
one has

Pϕ(E ∪ F ) + Pϕ(E ∩ F ) ≤ Pϕ(E) + Pϕ(F ). (2.10)

Moreover, by homogeneity, (2.7) and recalling that for any set E of finite perimeter it holds
DχE = −νE dHN−1

∣∣
∂∗E

we have the following equivalent definitions

Pϕ(E) = sup

{ˆ
RN

−DχE · ξ : ξ ∈ C1
c (RN ;RN ), ϕ◦(·, ξ) ≤ 1

}

= sup

{ˆ
E

div ξ dHN−1 : ξ ∈ C1
c (RN ;RN ), ϕ◦(·, ξ) ≤ 1

}
.

Concerning the regularity property of the ϕ−perimeter minimizers, we refer to [7]. We just recall
the following results. Given two anisotropies ϕ, ψ ∈ E , we define the “distance” between them as

distE (ϕ, ψ) := sup{|ϕ(x, p)− ψ(x, p)|
+ |∇pϕ(x, p)− ψ(x, p)|+ |∇2

pϕ(x, p)−∇2
pψ(x, p)| : x ∈ RN , p ∈ SN−1},

where | · | denotes the Euclidian norm. Given ϕ ∈ E , we recall that E is a 0−minimizer for the
ϕ−perimeter if for any x ∈ RN , r > 0

Pϕ(E;Br(x)) ≤ Pϕ(F ;Br(x))

for every F ⊂ RN such that F△E ⊂⊂ Br. Then, some regularity properties of minimizers of
ϕ−perimeter can be found in the theorems of part II.7 and II.8 in [7], which are recalled below.

Theorem 2.8. Assume ϕ ∈ E . Then, for any 0-minimizer E of the ϕ−perimeter, the reduced
boundary ∂∗E of the set E is of class C1,1/2 and the singular set Σ := ∂E \ ∂∗E satisfies

HN−3(Σ) = 0.

Theorem 2.9. Let m > 0, α ∈ (0, 1). Then, there exists ε = ε(m,α) > 0 with the following
property: let ϕ = ϕ(p) ∈ E , ϕ ∈ C3,α(RN \ {0}) with

∥ϕ|SN−1∥C3,α ≤ m and distE (ϕ, | · |) ≤ ε.

Then, for any 0-minimizer E of the ϕ−perimeter, the reduced boundary ∂∗E of the set E is of
class C1,1/2 and the singular set Σ := ∂E \ ∂∗E satisfies

HN−7(Σ) = 0.

We sum up these hypotheses that yield the complete regularity of minimizers of parametric
elliptic integrands:

either ϕ ∈ E and N ≤ 3,

or N ≤ 7 and the hypotheses of Theorem 2.9 are satisfied.
(2.11)
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2.1 The first variation of the ϕ−perimeter
In this section we compute the first variation of the ϕ-perimeter and define some additional

operators associated to it.
Assume E is of class C2. Let X be a smooth and compactly supported vector field and assume

Ψ(x, t) =: Ψt(x) is the associated flow. To simplify the notation, we write

ν(x, t) = ∇xsdΨ(E,t)(x).

By classical formulae (see e.g. [38]) we can compute the following. For the sake of brevity, we
avoid writing the evaluation ϕ = ϕ(x, νE(x)), if not otherwise specified, and assume that all the
integrals are made with respect to the Hausdorff (N − 1)-dimensional measure HN−1.

d
dt

∣∣∣
t=0

Pϕ(Et) =
d
dt

∣∣∣
t=0

ˆ
∂E

ϕ(Ψt(x), ν(Ψt(x), t))JΨt

=

ˆ
∂E

∇xϕ ·X +∇pϕ · (−∇τ (X · ν) +Dν[X]) + ϕ divτX (2.12)

=

ˆ
∂E

∇xϕ ·X +∇pϕ · (−∇τ (X · ν) +Dν[X]) + divτ (ϕX)−∇ϕ ·X + (∇ϕ · ν)(X · ν)

=

ˆ
∂E

∇xϕ ·X +∇pϕ · (−∇τ (X · ν) +Dν[X])−∇xϕ ·X −Dν[∇pϕ] ·X

+ divτ (ϕX) + (∇ϕ · ν)(X · ν)

=

ˆ
∂E

−∇pϕ · ∇τ (X · ν) + (∇xϕ · ν)(X · ν) + (Dν[∇pϕ] · ν) (X · ν) + divτ (ϕX)

=

ˆ
∂E

divτ (∇pϕ(X · ν))−∇pϕ · ∇τ (X · ν) + (X · ν)(∇xϕ · ν)

=

ˆ
∂E

(divτ∇pϕ)(X · ν) +∇pϕ · ∇τ (X · ν)−∇pϕ · ∇τ (X · ν) + (∇xϕ · ν)(X · ν)

=

ˆ
∂E

(X · ν) (divτ∇pϕ+∇xϕ · ν) =
ˆ
∂E

(X · ν) div∇pϕ

where the last equality follows from the definition of divτ and the fact that ϕ is 1−homogeneous
with respect to the p variable, since

div∇pϕ = divτ∇pϕ+
∑

i

νi (∂xi∇pϕ) [ν]

= divτ∇pϕ+
∑

i

νi∇p(∂xiϕ) · ν + ν ·
(
∇2
pϕDν

)
[ν]

= divτ∇pϕ+∇xϕ · ν.

Therefore, we define the first variation of a C2−regular set E, induced by the vector field X, as

δPϕ(E)[X · ν] :=
ˆ
∂E

(X(x) · ν(x)) div∇pϕ(x, ν(x)) dHN−1(x) (2.13)

and the ϕ−curvature of the set E as

HϕE(x) := div∇pϕ(x, ν(x)). (2.14)

If we now consider equation (2.12), we develop the tangential gradient to find

∇pϕ · (−∇τ (X · ν) +Dν[X]) = ∇pϕ · (−∇τX[ν]−Dν[X] +Dν[X]) = 0.

This shows that for any set E of class C2 it holds

δPϕ(E)[X · ν] :=
ˆ
∂E

(∇xϕ ·X + ϕ divτX) dHN−1,
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where we dropped the evaluation of ϕ at (x, νE(x)). We remark that the expression on the right
hand side makes sense even if the set E is just of finite perimeter. Defining the ϕ−divergence
operator divϕ as

divϕX := ∇xϕ ·X + ϕ divτX,

we are led to define the distributional ϕ−curvature of a set E of finite perimeter as an operator
HϕE ∈ L1(∂E) (if it exists) such that the following representation formula holds

ˆ
∂E

divϕX dHN−1 =

ˆ
∂E

HϕE νE ·X dHN−1, ∀X ∈ C∞
c (RN ;RN ). (2.15)

The previous computations allow to say that the distributional ϕ−curvature can be expressed as
(2.14) if the set is of class C2. Finally, since ϕ is a regular elliptic integrand, one can prove the
following monotonicity result.

Lemma 2.10. Let E,F be two C2 sets of finite ϕ−perimeter with E ⊆ F , and assume that
x ∈ ∂F ∩ ∂E: then HϕF (x) ≤ HϕE(x).

Proof. Since the anisotropy is smooth, we can expand the curvature formula (2.14) as

Hϕ = tr
(
∇x∇pϕ(x, ν) +∇2

pϕ(x, ν)Dν
)

(2.16)

and compare HϕE with HϕF . We consider separately the two terms appearing in (2.16). The first
one depends on ν just by the value it has at the point x. Therefore, since νE(x) = νF (x) we have
the equality. The second one falls in the classical framework of smooth anisotropies that do not
depend on the space variable. Since DνF ≤ DνE (as matrices) one concludes the proof.

3 The minimizing movements approach

In this section we follow [155] (see also [8, 144]) to prove the existence for the mean curvature
flow via the minimizing movements approach. We recall that in the whole chapter we will assume
the hypothesis (H0).

3.1 The discrete scheme
In this subsection we will define the discrete scheme approximating the weak solution of the

mean curvature flow, and we shall study some of its properties.
We define the following iterative scheme. Given h > 0, f ∈ L∞(RN × [0,∞)) and t ≥ h, and

given a bounded set of finite perimeter F , we minimize the energy functional

FF
h,t(E) = Pϕ(E) +

1

h

ˆ
E

sdψF (x) dx−
ˆ
E

Fh(x, t) dx (2.17)

in the class of all measurable sets E ⊆ RN , and where we have set

Fh(x, t) :=

 t+h

t

f(x, s) ds.

Equivalently, we could define the energy functional as

FF
h,t(E) = Pϕ(E) +

1

h

ˆ
E△F

|sdψF | −
ˆ
E

Fh(x, t) dx,

which agrees with (2.17) up to a constant. Then, we denote

Th,tF = E ∈ argmin FF
h,t.
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We will refer to this minimizing procedure as the incremental problem. It is well-known (compare
(2.13) and [145, Proposition 17.8]) that a minimimum of (2.17) of class C2 satisfies the Euler-
Lagrange equation

ˆ
∂E

HϕEX · νE dHN−1 = −
ˆ
∂E

(
1

h
sdψF (x)− Fh(x, t)

)
X(x) · νE(x) dHN−1(x) (2.18)

for all X ∈ C∞
c (RN ;RN ). We can then define the discrete flow, which can be seen as a discrete-

in-time approximation of the mean curvature flow starting from the initial set E0. We define
iteratively the discrete flow by setting E(h)

t = E0 for t ∈ [0, h) and

E
(h)
t = Th,t−hE

(h)
t−h = Th,([ th ]−1)hE

(h)
t−h, t ∈ [h,+∞), (2.19)

where [·] denotes the integer part of a real number. This section is devoted to recall and prove
some estimates on the discrete flow. The first one is a well-known existence result.

Lemma 2.11. For any measurable function g : RN → R such that min{g, 0} ∈ L1
loc, the problem

min

{
P (E) +

ˆ
E

g : E is of finite perimeter
}

admits a solution.

Consider now F as a bounded set of finite perimeter. Then, the function g = sdψF /h − Fh is
coercive, thus min{g, 0} ∈ L1. Therefore, by the previous result and by classical arguments see
[56, Proposition 6.1] for a proof, one can prove the following result.

Lemma 2.12. For any given set F of finite perimeter, the problem (2.17) admits a solution E,
which satisfies the discrete dissipation inequality

Pϕ(E) +
1

h

ˆ
E△F

|sdψF | ≤ Pϕ(F ) +

ˆ
E\F

Fh(x, t) dx−
ˆ
F\E

Fh(x, t) dx.

Moreover, the problem (2.17) admits a minimal and a maximal solution.

We define T+
h,tF (respectively T−

h,tF ) as the maximal (respectively minimal) solution to (2.17)
having as initial datum F . In the following, whenever no confusion is possible, we shall write Th,t
instead of T−

h,t.
A comparison result holds. We will consider just bounded sets as datum for the problem

(2.17), but the same result holds in general for unbounded sets (see also Section 4.1 for the case of
unbounded sets with bounded boundary). The proof of this result is classical (see e.g. [56]) and
it is based on the submodularity of the perimeter (2.10). We will omit it.

Lemma 2.13 (Weak comparison principle). Assume that F1, F2 are bounded sets with F1⊂⊂F2

and consider g1, g2 ∈ L∞ with g1 ≥ g2. Then, for any two solutions Ei, i = 1, 2 of the problems

min

{
Pϕ(E) +

ˆ
E

sdψFi
h

+ gi : E is of finite perimeter

}
,

we have E1 ⊆ E2. If, instead, F1 ⊆ F2, then we have that the minimal (respectively maximal)
solution to (2.17) for i = 1 is contained in the minimal (respectively maximal) solution to (2.17)
for i = 2.

We now prove the volume-density estimates for minimizers of problem (2.17). This result is
based on the minimality properties of almost-minimizers for perimeters induced by regular elliptic
integrands (see [72, Remark 1.9] for further results). These estimates have the disadvantage that
the smallness condition on the radius depends on the parameter h. Subsequently, we will recall a
finer result in the spirit of [144], where we can drop this dependence by making some restrictions
on the balls considered.
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Lemma 2.14. Let g ∈ L∞ and assume E minimizes the functional

F (F ) = Pϕ(F ) +

ˆ
F

g

among all measurable subsets of RN . Then the density estimate

σρN ≤ |Bρ(x) ∩ E| ≤ (1− σ)ρN

σρN−1 ≤ Pϕ(E;Bρ(x)) ≤ (1− σ)ρN−1 (2.20)

holds for all x ∈ ∂∗E, 0 < ρ < (2λ∥g∥∞)−1 := ρ0, for a suitable σ = σ(N, cψ, λ).

Proof. By minimality,

Pϕ(E) ≤ Pϕ(F ) + ∥g∥∞|E△F | ∀F ⊆ RN ,

thus [72, Lemma 2.8] implies the thesis.

Remark 2.15. We remark that the previous result allows us to choose the minimal solution to
(2.17) to be an open set, and the maximal one to be a closed set. This follows from the fact that
the density estimates imply that the boundary of any minimizer has zero measure.

We now recall [52, Lemma 3.7], which is an anisotropic version of [144, Remark 1.4]. It provides
volume-density estimates for minimizers of (2.17) starting from E, uniform in ψ and h, holding
in the exterior of E. We remark that, even if in the reference the anisotropy ϕ considered did
not depend on x, all the arguments hold with minor modifications also in our case. We recall the
proof of this result, as similar techniques will be used later on.

Lemma 2.16. Let E be a bounded, closed set, h > 0 , and g ∈ L∞(RN ). Let E′ be a minimizer
of

Pϕ(F ) +

ˆ
F

sdψE
h

+ g.

Then, there exists σ > 0, depending on λ, and r0 ∈ (0, 1), depending only on N,λ,G := ∥g∥L∞(F ),
with the following property: if x̄ is such that |E′ ∩ Bs(x̄)| > 0 for all s > 0 and Br(x̄) ∩ E = ∅
with r ≤ r0, then

|E′ ∩Br(x̄)| ≥ σrN . (2.21)

Analogously, if x̄ is such that |Bs(x̄) \ E′| > 0 for all s > 0 and Br(x̄) ⊆ E with r ≤ r0, then

|Br(x̄) \ E′| ≥ σrN .

Proof. For all s ∈ (0, r), set E′(s) := E′ \Bs(x̄). Note that, for a.e. s we have

Pϕ(E
′(s)) = Pϕ(E

′)− Pϕ(E
′ ∩Bs(x̄)) +

ˆ
E′∩∂Bs(x̄)

(ϕ(x, ν(x)) + ϕ(x,−ν(x))) dHN−1(x),

where ν denotes the outer normal vector of the set E′ ∩ ∂Bs(x̄). Since E′ ∩ Bs(x̄) ⊂ Ec and
sdψE ≥ 0 in Ec, one has

´
E′∩Bs(x̄) sdψE ≥ 0, and therefore the minimality of E′ implies

Pϕ(E
′ ∩Bs(x̄)) +

ˆ
E′∩Bs(x̄)

g ≤
ˆ
E′∩∂Bs(x̄)

(ϕ(x, ν(x)) + ϕ(x,−ν(x))) dHN−1(x).

By the bound on the ϕ−perimeter and using the classical isoperimetric inequality (whose constant
is denoted CN ) we obtain

2λHN−1(E′ ∩ ∂Bs(x̄)) ≥
1

λ
P (E′ ∩Bs(x̄)) +

ˆ
E′∩Bs(x̄)

g

≥ 1

λ
CN |E′ ∩Bs(x̄)|

N−1
N − ∥g∥∞|E′ ∩Bs(x̄)| ≥

CN
2λ

|E′ ∩Bs(x̄)|
N−1
N ,
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provided |E′ ∩ Bs(x̄)|1/N ≤ CN/(2λ∥g∥∞), which is true if r0 is small enough. Since the rhs is
positive for every s, we conclude

d
ds

|E′ ∩Bs(x̄)|
1
N ≥ CN

4λ2N
for a.e. s ∈ (0, r). (2.22)

The thesis follows by integrating the above differential inequality. The other case is analogous.

Remark 2.17. Requiring that the anisotropy ψ is bounded uniformly from above and below
ensures that the results of the previous Lemmas 2.14 and 2.16 can be read in terms of the ψ−balls.
For example, for any r ≥ 0 and x ∈ RN , equation (2.21) could be read as |E′∩Bψr (x̄)| ≥ σc−Nψ rN ,

provided x̄ is such that |E′ ∩ Bψs (x̄)| > 0 for all s > 0 and Bψr (x̄) ∩ E = ∅, and holds for all
r ≤ r0/cψ. Here, σ is as in Lemma 2.16 and depends only on λ. Analogous statements holds for
Lemma 2.20.

We now provide some estimates on the evolution of balls under the discrete flow. We start by
a simple remark concerning the boundedness of the evolving sets.

Remark 2.18. A simple estimate on the energies implies that the minimizers of (2.17) are
bounded whenever F is bounded. Indeed, assume F ⊆ BR and consider Bρ(x) ∩ (E \ BR) ̸= ∅:
testing the minimality of E against F we easily deduce

R

2h
|Bρ(x) ∩ E| ≤

ˆ
E∩Bρ(x)

sdψF
h

≤ Pϕ(F ) + ∥Fh(·, t)∥∞|E△F | ≤ Pϕ(F ) + ∥f∥∞(|F |+ |E|).

Employing the density estimates of Lemma 2.16 and sending R → ∞, we get a contradiction, as
the isoperimetric inequality implies that |E| is bounded since FF

h,t(F ) <∞.

We now want to prove finer estimates on the speed of evolution of balls. These estimates are
classically a crucial step in order to prove existence of the flow. In the case under study, the main
difficulties come from the inhomogeneity of the functionals considered, as in the homogeneous case
convexity arguments easily yield the boundedness result, for example. We will use a “variational”
approach in the spirit of [56] (but see also [155, Lemma 3.8] for a different proof relying more on
the smoothness of the evolving set).

Lemma 2.19. For every R0 > 0 there exist h0(R0) > 0 and C(R0, ϕ, ψ, f) > 0 with the following
property: For all R ≥ R0, h ∈ (0, h0), t > 0 and x ∈ RN one has

Th,t(BR(x)) ⊃ BR−Ch(x). (2.23)

Proof. We divide the proof into three steps. In the following, the constants σ, r0 are those of
Lemma 2.16. We will assume x = 0 for simplicity. We fix R ≥ R0 and denote E := Th,tBR.
Step 1. We prove that, given a ∈ (0, σ), ε ∈ (0, 1), we can ensure |BR(1−ε) \ E| < aRN (1 − ε)N

for h small enough. Indeed, assume by contradiction |BR(1−ε) \ E| ≥ aRN (1 − ε)N . Testing the
minimality of E against BR, we obtain

ˆ
(BR(1−ε)\E)∪(E\BR)

|sdψBR |
h

≤ 1

h

ˆ
BR△E

|sdψBR | ≤ Pϕ(BR)−
ˆ
BR\E

Fh +

ˆ
E\BR

Fh,

and estimating |sdψBR | ≥ Rε/cψ on BR(1−ε) \ E, we get

Rε

hcψ
|BR(1−ε) \ E| ≤ Pϕ(BR) + ∥f∥∞

(
ωNR

N + |BR(1+ε) \BR|
)
+

ˆ
E\BR(1+ε)

(
Fh −

|sdψBR |
h

)
.

Taking h ≤ ε/(cψ∥f∥∞), the last term on the rhs is negative, thus

Rε

hcψ
|BR(1−ε) \ E| ≤ Pϕ(BR) + ∥f∥∞RN (ωN + 2N+1ε).
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We employ the hypothesis to obtain

a

hcψ
ε(1− ε)NRN+1 ≤ cψNωNR

N−1 + cRN ,

a contradiction for h ≤ ca ε (1−ε)N min{1, R2}, where c is a constant depending on N,ϕ, ψ, ∥f∥∞.
Step 2. Using Step 1, we prove that BR/2 ⊂ E for h small. Assume that R ≤ r0: by following
the second part of the proof of Lemma 2.16 we obtain equation (2.22), which reads

d
ds

|Bs \ E|1/N ≥ CN
4λ2N

= σ1/N for a.e s ∈ (0, R).

Applying the previous step with ε = 1/4, a = σ/3N , it holds |B3R/4 \ E| ≤ σRN/4N for all
h ≤ c(N,ϕ, ψ, f)R. Therefore, one deduces the existence of a positive extinction radius

R∗ =
3R

4
− |B3R/4 \ E|1/N

σ1/N
≥ R

2

such that |BR∗ \E| = 0, which proves the claim. Clearly, taking h ≤ cR0 the smallness assumption
on h is uniform for R ≥ R0.

If R ≥ r0 one simply uses a covering argument. For any x ∈ BR−r0 , applying the previous
result to the ball Br0(x) and using the comparison principle of Lemma 2.13, we conclude that
∀h ≤ c r0 it holds ⋃

x∈BR−r0

Br0/2(x)⊂⊂E.

Step 3. We conclude the proof. By the previous two steps and Remark 2.18, taking h small
enough, we see that

ρ := sup{r > 0 : |Br \ E| = 0} ∈ (R/2,+∞).

We can assume ρ ≤ R, otherwise the result of the lemma is trivial. Consider the vector field
∇pϕ

(
x, x|x|

)
∈ C1(RN ,RN ). Then, recalling (2.11), we get Pϕ(G) ≥ −

´
RN DχG · ∇pϕ(x, x/|x|)

for all G set of finite perimeter and

Pϕ((1 + ε)Bρ) =

ˆ
RN

Dχ(1+ε)Bρ ·
(
−∇pϕ

(
x,

x

|x|

))
.

Setting Wε = (1 + ε)Bρ \ E, by submodularity on (1 + ε)Bρ, E and exploiting the minimality of
E, we obtain

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·DχWε

=

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·
(
Dχ(1+ε)Bρ −Dχ(1+ε)Bρ∩E

)

≤ Pϕ((1 + ε)Bρ ∩ E)− Pϕ((1 + ε)Bρ)

≤ Pϕ(E)− Pϕ((1 + ε)Bρ ∪ E)

≤ 1

h

ˆ
W ε

sdψBR−
ˆ
Wε

Fh(x, t)dx.

We conclude, using the divergence theorem ,
ˆ
W ε

−div∇pϕ

(
x,

x

|x|

)
≤ 1

h

ˆ
W ε

sdψBR + ∥f∥∞|Wε|.

Dividing by |W ε| and sending ε→ 0 we obtain
 
∂Bρ∩E

−div∇pϕ

(
x,

x

|x|

)
dHN−1 ≤ 1

cψ

ρ−R

h
+ ∥f∥∞.
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Exploiting the regularity assumptions on ϕ, we remark that

|div∇pϕ| = |tr
(
∇x∇pϕ+∇2

pϕ∇(x/|x|)
)
| ≤ C

(
1 +

1

|x|

)
.

Thus, we obtain

−C
(
1 +

1

ρ

)
≤ ρ−R

h
,

which implies that ρ ∈ (0, ρ1) ∪ (ρ2, R) for ρ1,2 =
(
R− Ch∓

√
(R− Ch)2 − 4Ch

)
/2, as long

as h ≤ R2
0/(4C). Since the choice ρ ≤ ρ1 < R/2 is not admissible, we conclude the proof by

estimating

ρ2 = R− Ch+
R− Ch

2

(√
1− 4Ch

(R− Ch)2
− 1

)
≥ R− Ch− Ch

R− Ch
,

from which the thesis follows.

The proof of the previous result can be employed to prove an estimate from above of the
evolution speed of the flow, as the following result shows. Since the proof follows the same lines
and is easier in this case, we only sketch it.

Lemma 2.20. Fix T > 0 and R0 > 0. Then, there exist positive constants C = C(ϕ, ψ, f,R0)

and h0 = h0(R0) such that, for every R ≥ R0 and h ≤ h0, if E0 ⊆ BR, then E
(h)
t ⊆ BR+CT for

all t ∈ (0, T ).

Proof. Choose h small as in the previous result and set

ρ = inf{r > 0 : |E \Br| = 0} ∈ (R/2,+∞).

We can assume ρ ≥ R, otherwise the result is trivial. Defining Wε = E \ (1− ε)Bρ and reasoning
as before we obtain

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·DχW ε =

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·
(
Dχ(1−ε)Bρ∪E −Dχ(1−ε)Bρ

)

≥ −Pϕ((1− ε)Bρ ∪ E) + Pϕ((1− ε)Bρ)

≥ −Pϕ(E) + Pϕ((1− ε)Bρ ∩ E)

≥ 1

h

ˆ
W ε

sdψBR−
ˆ
Wε

Fh(x, t) dx.

As in the previous proof, we arrive at

ρ−R

h
≤ C

(
1 +

1

ρ

)
,

which implies that ρ ≤ ρ2 =
(
R+ Ch+

√
(R+ Ch)2 + 4Ch

)
/2 ≤ R+Ch, up to changing C.

3.2 Existence of flat flows
In the following, we will prove that the discrete flow (defined in (2.19)) defines a discrete-in-

time approximation of a weak solution to the mean curvature flow, which is usually known as a
“flat” flow (because the approximating surfaces ∂∗E(h)

t converge in the “flat” distance of Whitney
to the limit ∂∗Et, see [8]).

We start by proving uniform bounds on the distance between two consecutive sets of the
discrete flow and on the symmetric difference between them. We introduce the time-discrete
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normal velocity: for all t ≥ 0 and x ∈ RN , we set

vh(x, t) :=

{
1
h sdψ

E
(h)
t−h

(x) for t ∈ [h,+∞)

0 for t ∈ [0, h).

The following result provides a bound on the L∞−norm of the discrete velocity. Since the proof
is essentially the same of [144, Lemma 2.1], we will omit it. The only difference is that we use the
upper and lower bounds of (2.9) to work with Euclidean balls.

Lemma 2.21. There exists a positive constant c∞ depending only on N,ψ with the following
property. Let E0 be a bounded set of finite perimeter and let {E(h)

t }t∈(0,T ) be a discrete flow
starting from E0. Then,

sup
E

(h)
t △E(h)

t−h

|vh(·, t)| ≤ c∞h
−1/2

for all h sufficiently small.

The following result can be found in [155, Proposition 3.4] (see also [92, Lemma 2.2]): it
provides an estimate on the volume of the symmetric difference of two consecutive sets of the
discrete flow. The proof is analogous to the one in the reference.

Lemma 2.22. There exists a constant C such that for every t ≥ h the discrete flow E
(h)
t satisfies

for all h sufficiently small

|E(h)
t+h△E

(h)
t | ≤ C

(
lPϕ(E

(h)
t ) +

1

l

ˆ
E

(h)
t △E(h)

t+h

|sdψ
E

(h)
t

|
)

∀l ≤ c
√
h, (2.24)

where c is a positive constant depending on N,ψ.

We are now able to prove an uniform bound on the perimeter of the evolving sets. The proof
follows [92, Proposition 2.3].

Lemma 2.23. For any initial bounded set E0 of finite ϕ−perimeter and h small enough, the
discrete flow {E(h)

t } satisfies
Pϕ(E

(h)
t ) ≤ CT ∀t ∈ (0, T ),

for a suitable constant CT = CT (T,E0, f, ϕ, ψ).

Proof. By testing the minimality of E(h)
t against E(h)

t−h we obtain ∀t ∈ [h, T )

Pϕ(E
(h)
t ) +

1

h

ˆ
E

(h)
t △E(h)

t−h

|sdψ
E

(h)
t−h

| ≤ Pϕ(E
(h)
t−h) + ∥f∥∞|E(h)

t △E(h)
t−h|. (2.25)

Combining this estimate with (2.24) for l = 2Ch∥f∥∞ ≪
√
h, where C is the constant appearing

in equation (2.24), we obtain for h sufficiently small

Pϕ(E
(h)
t ) +

1

2h

ˆ
E

(h)
t △E(h)

t−h

|sdψ
E

(h)
t−h

| ≤
(
1 + 2C2h∥f∥2∞

)
Pϕ(E

(h)
t−h) (2.26)

Iterating the previous estimate, we find

Pϕ(E
(h)
t ) ≤ (1 + 2C2∥f∥∞h)[

t
h ]−1Pϕ(E

(h)
h ).

In order to estimate Pϕ(E
(h)
h ) we start by observing that Remark 2.18, for h = h(E0) small

enough, implies E(h)
h ⊆ B2r, where E0 ⊆ Br. Therefore, by (2.25) for t = h we obtain Pϕ(E

(h)
h ) ≤

Pϕ(E0) + c and we conclude Pϕ(E
(h)
t ) ≤ CT (Pϕ(E0) + 1).

We then present a sketch of the proof of the local Hölder continuity in time of the discrete
flow, uniformly in h, which can be deduced as in [92, Proposition 2.3]. We highlight the main
differences.
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Proposition 2.24. Let E0 be an initial bounded set of finite ϕ−perimeter and T > 0. Then, for
h small enough, for a discrete flow {E(h)

t } starting from E0 it holds

|E(h)
t △E(h)

s | ≤ CT |t− s|1/2 ∀h ≤ t ≤ s < T,

for a suitable constant CT = CT (T,E0, f, ϕ, ψ).

Proof. Following the previous proof, employing again (2.26) we find

Pϕ(E
(h)
2h ) +

1

2

ˆ
E

(h)
2h △E(h)

h

|vh(·, 2h)|+
1

2

ˆ
E

(h)
h △E(h)

0

|vh(·, h)|

≤ (1 + ch)Pϕ(E
(h)
h ) +

1

2

ˆ
E

(h)
h △E(h)

0

|vh(·, h)|

≤ (1 + ch)

(
Pϕ(E

(h)
h ) +

ˆ
E

(h)
h △E(h)

0

|vh|(·, h)
)

≤ (1 + ch)2Pϕ(E0).

Iterating, we conclude as before

[T/h]∑

k=1

ˆ
E

(h)
kh △E(h)

(k−1)h

|vh(·, kh)| ≤ CT (Pϕ(E0) + 1). (2.27)

Therefore, combining the previous results and applying (2.24) with l = h≪
√
h, we obtain

ˆ T

h

|E(h)
t △E(h)

t−h| ≤ c

[T/h]∑

k=1

(
hPϕ(E

(h)
kh ) +

ˆ
E

(h)
kh △E(h)

(k−1)h

|vh(·, kh)|
)

≤ CT (Pϕ(E0) + 1) . (2.28)

The proof then follows the one of [92, Proposition 2.3], from equation (2.5) onward.

We finally prove the main result of this section, the existence of flat flows.

Proof of Theorem 2.1. The proof is classical and we only sketch it. By the uniform equicontinuity
of the approximating sequence of Proposition 2.24 and compactness of sets of finite perimeter (by
Lemma 2.20 and 2.23) we can use the Ascoli-Arzelà theorem to prove that the sequence (E(hk)

t )k∈N
converges in L1 to sets Et for all times t ≥ 0 and that the family {Et}t≥0 satisfies the 1/2−Hölder
continuity property, locally uniformly in time. The other property is then easily deduced.

3.3 Existence of distributional solutions
From Theorem 2.1 we deduce the existence of a subsequence (hk)k≥0 such that

Dχ
E

(hk)
t

∗
⇀ DχEt ∀t ≥ 0. (2.29)

We will also assume (2.2), remarking that it implies

lim
k→∞

Pϕ(E
(hk)
t ) = Pϕ(Et) for a.e. t ∈ [0,+∞). (2.30)

Our aim is to derive (2.3) and (2.4) from the Euler-Lagrange equation (2.18) and passing to
the limit h→ 0. To achieve this, we will prove that the discrete velocity is a good approximation
(up to multiplicative factors) of the discrete evolution speed of the sets. Notice that (2.3) is a weak
formulation of (2.1), while (2.4) establishes the link between v and the velocity of the boundaries
of Et. Indeed, law (2.1) can be interpreted as looking for a family {Et}t≥0 of sets, whose normal
vector νEt and ϕ−curvature HϕEt are well-defined objects and a function v : [0,∞) × RN → R
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such that for every t ∈ [0,+∞) and x ∈ ∂Et
{
v(x, t) = −HϕEt(x) + f(x, t)

V (x, t) = ψ(x, νEt(x))v(x, t),

where V represents the normal velocity of evolution, obtained as the limit as h→ 0 (in a suitable
sense) of the ratio

χEt − χEt−h
h

.

In this whole section we will assume that hypothesis (2.11) holds. In particular, the sets
defining the discrete flow are smooth hypersurfaces in RN . Moreover, we require hypotheses (H1)
to hold.

We start by estimating in time the L2−norm of the discrete velocity. The proof is the same
as the one presented in [155, Lemma 3.6], up to using the density estimates on the ϕ−perimeter
of Lemma 2.14 and considering the ψ−balls instead of the Euclidean one.

Proposition 2.25. Let {E(h)
t }t≥0 be a discrete flow starting from an initial bounded set E0 of

finite ϕ−perimeter. Then, for any T > 0 and for h small enough, it holds
ˆ T

0

ˆ
∂E

(h)
t

v2h dHN−1 dt ≤ CT ,

for a suitable constant CT = CT (T,E0, ϕ, ψ, f).

Recalling now the Euler-Lagrange equation (2.18) and Lemma 2.23 we conclude

ˆ T

0

ˆ
∂E

(h)
t

(
Hϕ
E

(h)
t

)2

=

ˆ T

0

ˆ
∂E

(h)
t

(vh − Fh)
2 ≤ CT , (2.31)

We now prove an estimate on the error between the discrete velocity ψ(·, νEt)vh(·, t) and the
discrete time derivative of χh. The proof of this result is based on a double blow-up argument,
and the smoothness of sets (locally) minimizing the ϕ−perimeter is essential. We will split the
proof in various lemmas: the first one concerns the composition of blow-ups, and is a well-known
result to the experts. We present a simple proof since we could not find a reference.

Lemma 2.26 (Composition of blow-ups). Consider 0 < β < β′ < 1. Assume that (Ah)h∈[0,1] is
a family of measurable sets such that the following blow-ups converge as h→ 0

Ah − xh
hβ

→ A1 in L1
loc

h−(β′−β)A1 → A2 in L1
loc,

where xh ∈ ∂Ah for all h ∈ [0, 1]. Then, if the composition of the blow-ups h−β
′
(Ah − xh)

converges in L1
loc, the limit coincides with A2.

Proof. We can assume wlog xh = 0. Denote with A3 = L1
loc − limh→0 h

−β′
Ah. We fix a ball BM

and ε > 0. There exists h∗ such that ∀h ≤ h∗ it holds

|((h−β′
Ah)△A3) ∩BM | ≤ ε, |((h−β′+βA1)△A2) ∩BM | ≤ ε.

We fix h and wlog assume Mhβ
′−β ≤ 1. Taking h̃ < h suitably small (depending on h, ε), we can

ensure
|((h̃−βAh)△A1) ∩B1| ≤ εhN(β′−β).

Since h̃−βh−(β′−β) > h−β
′
, there exists h̄ < h such that h̄−β

′
= h̃−βh−(β′−β). We can then
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estimate

|(A3△A2) ∩BM | ≤ |(A3△h̄−β
′
Ah) ∩BM |+ |((h−β′+β)A1△(h̄−β

′
Ah)) ∩BM |

+ |((h−β′+βA1)△A2) ∩BM |
≤ 2ε+ h−N(β′−β)|(A1△(h̃−βAh)) ∩BMhβ′−β |
≤ 2ε+ h−N(β′−β)|(A1△(h̃−βAh)) ∩B1| ≤ 3ε.

We now compute some estimates on the normal vector on the boundary of the evolving sets,
following the proof of [155, Lemma 4.2] (see also [144, Proposition 2.2]). We fix c∞ as the constant
appearing in Lemma 2.21.

In the sequel, we will denote by ω(h) a modulus of continuity, that is a continuous increasing
function ω : [0, 1] → R with ω(0) = 0, which can possibly change from statement to statement
and line to line to absorb constants independent of h.

Lemma 2.27. Assume (H0) and (H1). For given constants 1/2 < β′ < α < 1 and T > 2, there
exists a modulus of continuity ω with the following property. Consider t ∈ [2h, T ] and xh ∈ ∂E

(h)
t

such that
|vh(t, y)| ≤ hα−1 ∀y ∈ Bc∞

√
h(xh) ∩ (E

(h)
t △E(h)

t−h). (2.32)

Then, there exists ν ∈ SN−1 such that

|ν
E

(h)
t

(·)− ν| ≤ ω(h) in Bhβ′ (xh) ∩ ∂E
(h)
t

|ν
E

(h)
t−h

(·)− ν| ≤ ω(h) in Bhβ′ (xh) ∩ ∂E
(h)
t−h. (2.33)

Proof. We fix 1
2 < β < β′ < α and 0 < R < h

1
2−β/cψ. Testing the minimality of E(h)

s , s = t, t−h,
we find

Pϕ(E
(h)
s , BRhβ (xh)) ≤ Pϕ(G,BRhβ (xh)) +

1

h

ˆ
G△E(h)

s

|sdψ
E

(h)
s−h

|+
ˆ
G△E(h)

s

|Fh|, (2.34)

for any set G of finite perimeter such that G△E(h)
s ⊂⊂BRhβ (xh). Using Lemma 2.21, the

1−Lipschitz regularity of sdψ and (2.32), we deduce |vh(s, y)| ≤ cψRh
β−1 + c∞h

−1/2 ≤ (1 +

c∞)h−1/2 for any y ∈ BRhβ (xh) ∩ (E
(h)
s △F ). Plugging this inequality in (2.34), we find

Pϕ(E
(h)
s , BRhβ (xh)) ≤ Pϕ(G,BRhβ (xh)) +

1 + c√
h

|F△E(h)
s |+ ∥f∥∞|G△E(h)

s |. (2.35)

We then introduce the blown-up sets for s = t, t− h, defined as

E(h),β
s := h−β

(
E(h)
s − xh

)
.

Rescaling equation (2.35), we easily find that E
(h),β
s is a (Λh, rh)−minimizer of the ϕ(xh +

hβ ·, ·)−perimeter, with Λh = (1 + c)hβ−1/2, rh = h1/2−β . Moreover, scaling the density esti-
mates (2.20) we have a uniform bound on the perimeters of the sets E(h),β

s in each ball BR. By
compactness, there exist two sets Eβ1 , E

β
2 such that

E
(h),β
t → Eβ1 , E

(h),β
t−h → Eβ2 in L1

loc.

Then, by scaling and (2.32) we find

|sdψ
E

(h),β
t−h

(·)| ≤ c∞h
α−β on Bh1/2−β (0) ∩ (E

(h),β
t △E(h),β

t−h ),

thus we easily conclude that Eβ := Eβ1 = Eβ2 . By Lemma 2.20 we can assume that xh → x0 as



3. The minimizing movements approach 41

h → 0, up to subsequences. Moreover, by closeness of Λh−minimizers under L1
loc−convergence

(see e.g. [72, Theorem 2.9]), one can see that Eβ is a 0-minimizer for the ϕ(x0, ·)−perimeter.
Thus, by complete regularity, it is a smooth C2 set. We can then employ the classic blow-up
theorem to deduce that, for a fixed β′ ∈ (β, α), the blow-up h−(β′−β)Eβ converges to a half-space
H = {x · ν ≤ 0} as h→ 0. Finally, the blow-ups

E(h),β′

s :=
E

(h)
s − xh
hβ′

admit a converging subsequence by compactness of sets of finite perimeter and by rescaling equa-
tion (2.35). Thus, the previous Lemma 2.26 implies

E(h),β′

s → H in L1
loc

as h → 0. To conclude, the ε−regularity Theorem for Λ−minimizers (see e.g. [72, Theorem 3.1])
ensures that E(h),β′

s are uniformly C1, 12 sets in B1(0) for s = t, t− h as h→ 0.

We recall here an approximation result proved in [144] (see also [155] for a more detailed proof).
We remark that the proof of this result is purely geometric and does not rely on the variational
problem satisfied by the sets E(h)

t , E
(h)
t−h.

Corollary 2.28 (Corollary 4.3 in [155]). Under the hypotheses of Lemma 2.27, fix 0 < β < α and
let Chβ be the open cylinder defined as

Chβ (xh, ν) :=

{
x ∈ RN : |(x− xh) · ν| <

hβ

2
,

∣∣∣∣(x− xh)− ((x− xh) · ν) ν
∣∣∣∣ <

hβ

2

}
.

Then, it holds
∣∣∣
ˆ
C
hβ/2

(xh,ν)

(χ
E

(h)
t

− χ
E

(h)
t−h

) dx−
ˆ
∂E

(h)
t ∩C

hβ/2
(xh,ν)

sd
E

(h)
t−h

dHN−1
∣∣∣

≤ ω(h)

ˆ
C
hβ/2

(xh,ν)

|χ
E

(h)
t

− χ
E

(h)
t−h

|.

Carefully inspecting the proof, one indeed proves that there exists a geometric constant C such
that for any y ∈ BN−1

hβ/2
(xh)

|sd
E

(h)
t−h

(y, f
(h)
t (y))

√
1 + |∇f (h)t (y)|2 −

(
f
(h)
t (y)− f

(h)
t−h(y)

)
| ≤ ω(h)|f (h)t (y)− f

(h)
t−h(y)|, (2.36)

where we set
∂E(h)

s ∩ C = {(y, f (h)s (y)) ∈ RN−1 × R, |y| ≤ hβ/2},
for s = t, t− h.

We briefly recall some classical results. Consider an anisotropy ψ, independent of the position.
It is well-known that, for any closed set G ⊆ RN , setting sdψG as the distance from G induced
by ψ◦, then the gradient of sdψG exists almost everywhere and satisfies the eikonal equation (for a
proof see for instance [44, Remark 2.2])

ψ(∇sdψG) = 1 (2.37)

almost everywhere. Moreover, in this particular case, in the definition of distψ we can consider
just straight lines as follows from a simple application of Jensen’s inequality: for any curve γ as
in the definition of distψ, we have

ˆ 1

0

ψ◦(γ̇(t)) dt ≥ ψ◦
(ˆ 1

0

γ̇

)
= ψ◦(y − x).



42 CHAPTER 2. Inhomogeneous Curvature Flows

Proposition 2.29 (Estimate on almost flat sets). Under the hypotheses of Lemma 2.27 and with
the same notation, fix β ∈ (0, α) and let Chβ be the open cylinder defined as

Chβ (xh, ν) :=

{
x ∈ RN : |(x− xh) · ν| <

hβ

2
,

∣∣∣∣(x− xh)− ((x− xh) · ν) ν
∣∣∣∣ <

hβ

2

}
.

Then, it holds
∣∣∣
ˆ
C
hβ/2

(xh,ν)

(χ
E

(h)
t

− χ
E

(h)
t−h

) dx−
ˆ
∂E

(h)
t ∩C

hβ/2
(xh,ν)

ψ(x, ν
E

(h)
t

) sdψ
E

(h)
t−h

dHN−1
∣∣∣

≤ ω(h)

ˆ
C
hβ/2

(xh,ν)

|χ
E

(h)
t

− χ
E

(h)
t−h

|.

Proof. We recall that the modulus of continuity ω may change from line to line to absorb constants
independent of h.

From the previous Lemma 2.27 we know that, for h suitably small, both ∂E(h)
t and ∂E(h)

t−h in
Chβ/2(xh, ν) can be written as graphs of functions of class C1, 12 . Up to a change of coordinates,
we can assume wlog that xh = 0, ν = eN . For simplicity, we set C = Chβ/2(0, eN ). We thus find

∂E(h)
s ∩ C = {(y, f (h)s (y)) ∈ RN−1 × R, |y| ≤ hβ/2}

for s = t, t− h, where f (h)s : BN−1
hβ/2

→ R are C1, 12 functions with

∥∇f (h)s ∥L∞(B
hβ/2

) ≤ ω(h).

We want to prove the following slightly stronger pointwise inequality: namely, that for any point
x = (y, f

(h)
t (y)) ∈ ∂E

(h)
t ∩ C, it holds

∣∣∣∣sd
ψ

E
(h)
t−h

(x)ψ(x, ν
E

(h)
t

(x))

√
1 + |∇f (h)t (y)| −

(
f
(h)
t (y)− f

(h)
t−h(y)

)∣∣∣∣ ≤ ω(h)|f (h)t (y)− f
(h)
t−h(y)|.

(2.38)
Integrating the previous inequality over C yields the thesis. Clearly, it is enough to prove (2.38)
at each point x such that |sdψ

E
(h)
t−h

(x)| > 0. We thus fix x = (y, f
(h)
t (y)) ∈ ∂E

(h)
t ∩ C and denote

by x′ := (y, f
(h)
t−h(y)). We remark that these points depend on h, but we drop the subscript to

ease notation. It can be assumed without loss of generality that x /∈ E
(h)
t−h, as the other case is

analogous.
Step 1 We now prove that, with the notation previously introduced, it holds

|sd′
E

(h)
t−h

(x)− sdψ
E

(h)
t−h

(x)| ≤ ω(h)|f (h)t (y)− f
(h)
t−h(y)|, (2.39)

where sd′ denotes the signed distance function induced by the anisotropy ψ(x′, ·). Let γ be a
smooth curve, with γ(0) = x, γ(1) ∈ ∂E

(h)
t−h to be used in the definition of the geodesic distance

sdψ
E

(h)
t−h

. Firstly, we remark that one could assume

γ([0, 1]) ⊆ B(x, 2c2ψ|f (h)t (y)− f
(h)
t−h(y)|) (2.40)

Indeed, if it were not the case, the lower bounds contained in (2.9) and (2.36) allow us to estimate
ˆ 1

0

ψ◦(γ, γ̇) dt ≥ 1

cψ

ˆ 1

0

|γ̇| dt ≥ 2cψ|f (h)t (y)− f
(h)
t−h(y)| ≥ 2cψ sd

E
(h)
t−h

(x) ≥ 2 sdψ
E

(h)
t−h

(x), (2.41)

a contradiction for h small. We can reason analogously for sd′
E

(h)
t−h

. In particular, we can consider
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just curves having length
´ 1

0
|γ̇| ≤ c|f (h)t (y)− f

(h)
t−h(y)|. Therefore, we obtain (by homogeneity)

sdψ
E

(h)
t−h

(x) ≤
ˆ 1

0

ψ◦(γ, γ̇) dt ≤
ˆ 1

0

ψ◦(x′, γ̇) dt+ sup
ν∈SN−1, t∈[0,1]

|ψ(γ(t), ν)− ψ(x′, ν)|
ˆ 1

0

|γ̇|

≤
ˆ 1

0

ψ◦(x′, γ̇)dt+ c ω(h)|f (h)t (y)− f
(h)
t−h(h)|,

and, taking the infγ , we obtain sdψ
E

(h)
t−h

(x) ≤ sd′
E

(h)
t−h

(x) + ω(h)|f (h)t (y) − f
(h)
t−h(y)|. The converse

inequality can be proved analogously, yielding (2.39).
Therefore, in what follows we will consider always the anisotropy frozen in x′, and use sd′

instead of sdψ. Finally, let p ∈ ∂E
(h)
t−h a minimizer for the definition of sd′

E
(h)
t−h

(x). In the following,

with ΠvHz, ΠHz we denote respectively the projection on the hyperplane H of z along the direction
v and the orthogonal projection of z on H.

Step 2. In this step we assume that E(h)
t−h∩C coincides with the halfspace H = p+{z ·ν ≤ 0}

intersected with the same cylinder and prove claim (2.38).
To this aim, we start noticing that by translation we may assume p = 0 and that sd′

H(z + ξ) =
sd′

H(z) for all z ∈ RN and for all ξ orthogonal to ν. Hence, in fact,

sd′
H(z) = sd′

H((z · ν)ν) = (z · ν)sd′
H(ν) . (2.42)

Therefore, sd′
H is differentiable everywhere, with ∇sd′

H = sd′
H(ν)ν. Recalling the eikonal equation

(2.37), it must hold sd′
H(ν) = 1/ψ(x′, ν) and in turn, from (2.42), and choosing z = x, we have

sd′
H(x)ψ(x

′, ν) = x · ν = sdH(x). (2.43)

We remark that sd′
H(x) = sd′

E
(h)
t−h

(x) by (2.32), thus we conclude (2.38) by combining (2.43) with

(2.36).
Step 3. We now conclude in the general case. With the notation introduced at the end of

Step 1, set ν = ν
E

(h)
t−h

(p), and consider the half-space H1 = p+ {z · ν ≤ 0} and w := x′ −ΠH1(x′)

as depicted in Figure 2.1. We shall prove that

|w| ≤ ω(h)|f (h)t (y)− f
(h)
t−h(y)|.

To see this, we start by remarking that (2.33) implies

|eN − eN (eN · ν
E

(h)
t−h

)| ≤ ω(h) in ∂E(h)
t−h ∩ C,

implying eN · ν
E

(h)
t−h

≥ 1−ω(h), and thus, for any versor v tangent to ∂E(h)
t−h∩C one has |v · eN | ≤

ω(h). Therefore, we have (x′ − p) · eN ≤ ω(h)|x′ − p| and also

x′ − p

|x′ − p| · ν =
x′ − p

|x′ − p| · (eN (ν · eN ) + ν − eN (ν · eN ))

≤ ω(h) + |ν − eN (ν · eN )| = ω(h) +
(
1− |ν · eN |2

)1/2

≤ 3
√
ω(h),

by choosing h small. Up to defining
√
ω as ω, using the previous estimate and the bounds

(2.40) we see that

|w| = |x′ − p|
(
x′ − p

|x′ − p| · ν
)

≤ ω(h)|x′ − p| ≤ ω(h)|f (h)t (y)− f
(h)
t−h(y)|. (2.44)

We now remark that sd′
E

(h)
t−h

(x) = sd′
H1(x) (by convexity of the anisotropy ψ(x′, ·)) and so, applying
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H

x

x′

E
(h)
t−h

E
(h)
t

p

ΠνHx

w

ΠeNH x

γ

ν

Figure 2.1: The situation in the proof of the lemma.

the previous step to H1 and using also (2.39), we get
∣∣∣∣sd

ψ

E
(h)
t−h

(x)ψ(x, ν
E

(h)
t

(x))

√
1 + |∇f (h)t (y)| − |x−ΠeNH x|

∣∣∣∣ ≤ ω(h)|x−ΠeNH x|.

We conclude (2.38) by estimating

∣∣|x−ΠeNH x| − |x− x′|
∣∣∣ ≤ |x′ −ΠeNH x| = |w|/|ν · eN | ≤ ω(h)

1− ω(h)
|f (h)t (y)− f

(h)
t−h(y)|,

where we used (2.44). We conclude the proof by a simple change of coordinates and using (2.38)
to find
∣∣∣∣
ˆ
∂E

(h)
t ∩C

ψ(x, ν
E

(h)
t

(x)) sdψ
E

(h)
t−h

(x) dHN−1 −
ˆ
B
hβ/2

f
(h)
t (y)− f

(h)
t−h(y) dy

∣∣∣∣

=

∣∣∣∣
ˆ
B
hβ/2

ψ((y, f
(h)
t (y)), ν

E
(h)
t

(y, f
(h)
t (y))) sdψ

E
(h)
t−h

(y, f
(h)
t (y))

√
1 + |∇f (h)t (y)|2 − (f

(h)
t (y)− f

(h)
t−h(y)) dy

∣∣∣∣

≤ ω(h)

ˆ
B
hβ/2

|f (h)t − f
(h)
t−h| dy.

Finally, we are able to prove that the error generated by approximating the discrete velocity
with vh goes to zero as h→ 0. We follow the lines of [144, Proposition 2.2].

Proposition 2.30 (Error estimate). Under the hypothesis of Lemma 2.27, the error in the discrete
curvature equation vanishes in the limit h→ 0, namely

lim
h→0

∣∣∣∣∣
1

h

ˆ T

0

(ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

)
dt−

ˆ T

0

ˆ
∂E

(h)
t

ψ(x, ν
E

(h)
t

)vhη dHN−1(x) dt

∣∣∣∣∣ = 0 (2.45)

for all η ∈ C1
c (RN × [0, T )).

Proof. We fix t ∈ [2h,∞) and α ∈ ( 12 ,
N+2
2N+2 ). For any point xh ∈ ∂E

(h)
t we define the open set

Axh defined as follows:

(i) if (2.32) holds, we set Axh = Chβ/2(xh, ν), with the notations of Corollary 2.29;

(ii) otherwise we set Axh = B(xh, c∞
√
h), where c∞ is the constant of Lemma 2.21.

By Lemma 2.21, the family {Axh : xh ∈ ∂E
(h)
t } is a covering of E(h)

t △E(h)
t−h. By a simple application

of Besicovitch’s theorem (see e.g. [145]), we find a finite collection of points I ⊆ ∂E
(h)
t such that

{Axh}xh∈I is a covering of E(h)
t △E(h)

t−h with the finite intersection property. We proceed to estimate
(2.45) on each Axh belonging to this family.
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Estimate in case (i) We use Proposition 2.29 to deduce
∣∣∣∣
ˆ
Axh

(χ
E

(h)
t

− χ
E

(h)
t−h

)η dx−
ˆ
∂E

(h)
t ∩Axh

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

η dHN−1

∣∣∣∣

≤ |η(xh, t)|
∣∣∣∣
ˆ
Axh

(χ
E

(h)
t

− χ
E

(h)
t−h

)−
ˆ
∂E

(h)
t ∩Axh

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

dHN−1

∣∣∣∣

+

∣∣∣∣
ˆ
Axh

(χ
E

(h)
t

− χ
E

(h)
t−h

)(η − η(xh, t))−
ˆ
∂E

(h)
t ∩Axh

(η − η(xh, t))ψ(x, νE(h)
t

) sdψ
E

(h)
t−h

dHN−1

∣∣∣∣

≤ C(ω(h)∥η∥∞ + hβ∥∇η∥∞)

ˆ
Axh

|χ
E

(h)
t

− χ
E

(h)
t−h

|dHN−1 + chβ∥∇η∥∞P (E(h)
t , Axh). (2.46)

Estimate in case (ii) By assumption ∃y ∈ Bc∞
√
h(xh) ∩ (E

(h)
t △E(h)

t−h) such that |vh(t, y)| > hα−1.
We can assume wlog y ∈ E

(h)
t . We then have B(y, hα/(2cψ)) ⊆ RN \E(h)

t−h and sdψ
E

(h)
t−h

> hα/(2c2ψ)

on B(y, hα/(2cψ)). Since hα << h1/2, we can use the density estimates of Lemma 2.14 to deduce

ch(N+1)α−1 ≤
ˆ
B(y,hα/(2cψ))∩(E

(h)
t △E(h)

t−h)

|vh| dx.

Analogously, recalling also Lemma 2.21, we deduce
ˆ
B(xh,c∞

√
h)∩∂E(h)

t

|ψ(x, ν
E

(h)
t−h

) sdψ
E

(h)
t−h

|dHN−1(x) ≤ ch
N
2 .

Combining the two previous equations and B(y, hα/(2cψ)) ⊆ B(y, c
√
h), we infer

ˆ
Axh

|χ
E

(h)
t

− χ
E

(h)
t−h

|+
ˆ
Axh∩∂E

(h)
t

|ψ(x, ν
E

(h)
t−h

) sdψ
E

(h)
t−h

|dHN−1

≤ ch
N
2 −(N+1)α+1

ˆ
Axh∩(E

(h)
t △E(h)

t−h)

|ψ(x, ν
E

(h)
t−h

)vh|. (2.47)

Summing over xh ∈ I both (2.46) and (2.47), and using the local finiteness of the covering, we get
∣∣∣∣
ˆ
(χ
E

(h)
t

− χ
E

(h)
t−h

)η dx−
ˆ
∂E

(h)
t

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

η dHN−1

∣∣∣∣

≤
∑

xh∈I

∣∣∣∣
ˆ
Axh

(χ
E

(h)
t

− χ
E

(h)
t−h

)η dx−
ˆ
∂E

(h)
t ∩Axh

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

η dHN−1

∣∣∣∣

≤ c
(
ω(h)∥η∥∞ + hβ∥∇η∥∞ + h

N
2 −(n+1)α+1∥η∥∞

)
·

·
(
P (E

(h)
t ) + |E(h)

t △E(h)
t−h|+

ˆ
E

(h)
t △E(h)

t−h

|vh|
)

where the last constant c depends on N,ψ. We then use Lemma 2.23, (2.27) and (2.28) to conclude

∣∣∣∣
ˆ T

2h

1

h

(ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

)
−
ˆ T

h

ˆ
∂E

(h)
t

ψ(x, ν
E

(h)
t

)vhη dHN−1

∣∣∣∣

≤ c
(
ω(h)∥η∥∞ + hβ∥∇η∥∞ + h

N
2 −(n+1)α+1∥η∥∞

)
,

where c = c(E0, f, T, ψ) and T is chosen such that spt η⊂⊂RN × [0, T ]. The conclusion follows
using the definition of α and taking the limit h→ 0.

The proof of Theorem 2.2 is now a consequence of the previous results. In particular, hypothesis
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(2.29) and (2.30) imply that the discrete flow converges to the flat flow in the sense of varifolds
and this allows to prove (2.3), while (2.4) is a consequence of Proposition 2.30. In order to prove
the convergence of the approximations in time of the forcing term, we need to require additionally
that (H2) holds.

Proof of Theorem 2.2. Firstly, combining [124, Theorem 4.4.2] with the bounds contained in (2.31)
and in Proposition 2.25, we conclude the existence of functions v,Hϕ, f̃ : RN × [0,∞) → R
satisfying ˆ T

0

ˆ
∂Et

|v|2 + |Hϕ|2 + |f̃ |2 dHN−1 dt ≤ CT

and the following properties

lim
k

ˆ T

0

ˆ
∂E

(hk)
t

vhkη dHN−1 dt =
ˆ T

0

ˆ
∂Et

ηv dHN−1 dt

lim
k

ˆ T

0

ˆ
∂E

(hk)
t

Fhk(x, t)η dHN−1 dt =
ˆ T

0

ˆ
∂Et

ηf̃ dHN−1 dt

lim
k

ˆ T

0

ˆ
∂E

(hk)
t

Hϕ
E

(hk)
t

η dHN−1 dt =
ˆ T

0

ˆ
∂Et

ηHϕ dHN−1 dt, (2.48)

for any η ∈ C0
c (RN × [0, T )). We now employ an approximation procedure to prove that Hϕ(·, t) is

the ϕ−mean curvature of Et for a.e. t ∈ [0,∞), following the lines of [144, 155]. Fixed t ∈ [0,+∞)
and ε > 0, set νε a continuous function such that

´
∂Et

(νEt −νε)2 dHN−1 < ε. Then, by (2.29) one
could prove that limk→∞

´
∂E

(hk)
t

(ν
E

(hk)
t

− νε)
2 dHN−1 < ε. Considering test functions in (2.48) of

the form η(x, t) = a(t)g(x), one has for a.e. t ∈ [0,+∞)

lim
k

ˆ
∂E

(hk)
t

Hϕ
E

(hk)
t

g dHN−1 =

ˆ
∂Et

Hϕg dHN−1.

Thus, for a.e. t ∈ [0,+∞) and for any X ∈ C0
c (RN ;RN ) it holds

lim
k

ˆ
∂E

(hk)
t

Hϕ
E

(hk)
t

ν
E

(hk)
t

·X dHN−1 =

ˆ
∂Et

HϕνEt ·X dHN−1

by approximating the normal vectors of E(hk)
t with νε. Furthermore, by the convergence (2.29)

and the hypothesis (2.30) we can use the Reshetnyak’s continuity theorem (see e.g. [13, Theorem
2.39]), ensuring ˆ

∂E
(hk)
t

L(x, ν
E

(hk)
t

) dHN−1 →
ˆ
Et

L(x, νEt) dHN−1

as k → ∞, for any L ∈ C0
c (RN × RN ). We choose L(x, ν) = divϕX for some X ∈ C1

c (RN ;RN ) to
obtain ˆ

∂Et

divϕX dHN−1 = lim
k

ˆ
∂E

(hk)
t

divϕX dHN−1

= lim
k

ˆ
∂E

(hk)
t

X · ν
E

(hk)
t

Hϕ
E

(hk)
t

dHN−1

=

ˆ
∂Et

X · νEtHϕ dHN−1,

which shows that Hϕ(·, t) is the ϕ−mean curvature of the set Et for a.e. t ∈ [0,+∞). Moreover, we
remark that Fhk(x, t) → f(x, t) for every (x, t), thus for any test function η ∈ C0

c (RN × [0,+∞))
and t ∈ [0,+∞) we have
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∣∣∣∣
ˆ
∂E

(h)
t

Fhk(x, t)η(x, t) dHN−1
x −

ˆ
∂E

fη dHN−1
x

∣∣∣∣ ≤
∣∣∣∣∣

ˆ
∂E

(h)
t

Fhkη −
ˆ
∂Et

Fhkη

∣∣∣∣∣+
ˆ
∂Et

|Fhk − f |η

≤ ∥f∥∞∥η∥∞
(
P (E

(h)
t )− P (Et)

)
+

ˆ
∂Et

|Fhk − f |η → 0

applying the dominated convergence theorem and recalling Lemma 2.20. Thus, f̃ = f . We then
prove (2.3) by passing to the limit in the Euler-Lagrange equation (2.18).

To prove (2.4) we employ Proposition 2.30: for every η ∈ C0
c (RN × [0, T )), by a change of

variables we have that
ˆ T

h

[ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

]
dt =

ˆ T

h

ˆ
E

(h)
t

(η(x, t)− η(x, t− h)) dx dt− h

ˆ
E0

η dx

where we have used that E(h)
t = E0 for t ∈ [0, h). Therefore, a simple convergence argument yields

lim
h→0

1

h

ˆ T

h

[ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

]
dt = −

ˆ T

h

∂tη(x, t)dx dt−
ˆ
E0

η.

Combining the previous estimate with Proposition 2.30 and passing to the limit, we obtain (2.4).

4 Viscosity solutions

In this section we will prove the existence of another weak notion of solution for the mean
curvature flow starting from a compact set. We will follow the so-called level set approach based
on the theory of viscosity solution. We recall that in the first part we work with the standing
assumptions of the chapter (H0). Additionally, we require (H1).

4.1 The discrete scheme for unbounded sets
In this short subsection we will define the discrete evolution scheme for unbounded sets having

compact boundary. The idea would be to define this evolution simply as the complement of
the evolution of the complementary set, but since the anisotropies we are considering are not
symmetric, we need additional care.

We recall that, given an anisotropy ϕ, we define ϕ̃(x, ν) := ϕ(x,−ν). This anisotropy has
all the properties of the original one, concerning regularity and bounds. We start remarking
the following simple fact. One can see that distψ(x, y) = distψ̃(y, x), since for any curve γ ∈
W 1,1([0, 1];RN ), γ(0) = x, γ(1) = y, a simple change of variable yields

ˆ 1

0

ψ◦(γ(t), γ̇(t)) dt =
ˆ 1

0

ψ◦
(
γ(1− t),− d

dt
(γ(1− t))

)
dt =

ˆ 1

0

(̃ψ◦)(η(t), η̇(t)) dt,

for η(t) = γ(1− t), once one sees that

(̃ψ◦)(·, ν) = sup
ψ(·,ξ)≤1

ξ · (−ν) = sup
ψ̃(·,−ξ)≤1

(−ξ) · ν = (ψ̃)◦(·, ν).

Therefore, by definition of signed distance we have

sdψE(x) = −sdψ̃Ec(x). (2.49)

For every compact set F and h > 0, t ≥ 0, we will denote by T̃±
h,tF the maximal and the minimal

solution to problem (2.17), according to Lemma 2.12 with Pϕ and sdψ, respectively, replaced by
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Pϕ̃ and sdψ̃. Finally, for every set E with compact boundary we define

T±
h,tE :=

(
T̃∓
h,tE

c
)c
. (2.50)

As in the case for compact sets, we set Th,tE := T−
h,tE. Given an open, unbounded set E0 having

compact boundary, we can then define the discrete flow {E(h)
t }t≥0 as follows: E

(h)
t := E0 for

t ∈ [0, h) and
E

(h)
t = Th,tE

(h)
t−h, ∀t ∈ [h,+∞).

One easily checks that analogous results to Lemmas 2.13, 2.20 and 2.19 hold also for this problem.
We state the corresponding results.

Lemma 2.31. Let F1 ⊆ F2 be open, unbounded sets with compact boundary and fix h > 0, t ≥ 0.
Then, Th,tF1 ⊆ Th,tF2.

Lemma 2.32. For any T > 0 there exists a constant CT (ϕ, ψ, f, T ) such that for every R > 0 the
following holds. If the initial open set E ⊃ BcR, then E

(h)
t ⊃ BcCTR for all t ∈ [0, T ].

Lemma 2.33. For every R0 > 0 there exist h0(R0) > 0 and C(R0, ϕ, ψ, f) > 0 with the following
property: For all R ≥ R0, h ∈ (0, h0), t > 0 and x ∈ RN one has

Th,t((BR(x))
c
) ⊆ (BR−Ch(x))

c
.

We now state a comparison principle between bounded and unbounded sets, following the line
of [56, Lemma 6.10].

Lemma 2.34. Let E1 be a compact set and let E2 be an open, unbounded set, with compact
boundary, and such that E1 ⊆ E2. Then, for every h ∈ (0, 1), t ≥ 0 it holds T±

h,tE1 ⊆ T±
h,tE2.

Proof. We fix h ∈ (0, 1), t ∈ [0, T ] for T > 0. Set R > 0 such that E1, E
c
2 ⊆ BR and note that by

Lemmas 2.13 and 2.20 (applied to Pϕ̃ instead of Pϕ) we get

(
T+
h,tE2

)c
⊆ T̃−

h,tE
c
2 ⊆ T−

h,tBR ⊆ BCTR, (2.51)

for some CT (ϕ, ψ, f, T ). Since T̃−
h,tE

c
2 is the minimal solution of

min

{
Pϕ̃(E) +

1

h

ˆ
E

sdψ̃Ec2 (x) dx−
ˆ
E

Fh(x, t)dx
}
,

considering the change of variables Ẽ = Ec and using (2.49), we easily conclude that T+
h,tE2 =(

T̃−
h,tE

c
2

)c
is the maximal solution of

min

{
Pϕ(Ẽ) +

1

h

ˆ
BCTR

sdψE2
− 1

h

ˆ
Ẽc

sdψE2
−
ˆ
Ẽc
Fh(x, t) dx

}
− 1

h

ˆ
BCTR

sdψE2
.

we then note that ˆ
BCTR

sdψE2
=

ˆ
Ẽ

sdψE2
χBCTR +

ˆ
Ẽc

sdψE2
,

for every Ẽ such that Ẽc ⊆ BCTR. By (2.51), we conclude that T+
h,tE2 is the maximal solution of

min

{
Pϕ(Ẽ) +

1

h

ˆ
Ẽ

sdψE2
χBCTR −

ˆ
Ẽc
Fh(x, t) dx : Ẽc ⊆ BCTR

}
. (2.52)

Analogously, one proves that T−
h,tE2 is the minimal solution of (2.52). Finally, we remark that

sdψEsχBCTR ≤ sdψE1
and that T±

h,tE1 ∪ T±
h,tE2, T

±
h,tE1 ∩ T±

h,tE2 are both admissible competitors for
(2.52), one argues exactly as in the proof of Lemma 2.13 to conclude T±

h,tE1 ⊆ T±
h,tE2.
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4.2 The level set approach

We recall that in this section we assume (H0), (H1). Consider a function u : RN×[0,+∞) → R
whose spatial superlevel sets {u(·, t) ≥ s} evolve according to the mean curvature equation

V (x, t) = −ψ(x, ν{u(·,t)≥s})
(
Hϕ{u(·,t)≥s}(x)− f(x, t)

)
for x ∈ ∂{u(·, t) ≥ s}.

The function u then satisfies (recalling that −∇u/|∇u| is the outer normal vector to the superlevel
set {u(·, t) ≥ u(x, t)}) the equation

∂tu = |∇u|V (x) = −ψ(x,−∇u)
(
Hϕ{u(·,t)≥u(x,t)}(x)− f(x, t)

)

= −ψ(x,−∇u) (div∇pϕ(x,−∇u)− f(x, t))

= −ψ(x,−∇u)
(∑

i

∂xi∂pϕ(x,−∇u)−∇2
pϕ(x,−∇u) : ∇2u− f(x, t)

)

: = −ψ(x,−∇u)
(
H(x,∇u,∇2u)− f(x, t)

)
,

where we defined the Hamiltonian H : RN × RN \ {0} × SymN → R as

H(x, p,X) :=
∑

i

∂xi∂piϕ(x,−p)−∇2
pϕ(x,−p) : X. (2.53)

We therefore focus on solving the parabolic Cauchy problem
{
∂tu+ ψ(x,−∇u)

(
H(x,∇u,∇2u)− f(x, t)

)
= 0

u(·, t) = u0.
(2.54)

The appropriate setting for this type of geometric evolution equations is the one of viscosity
solutions, in the framework of [102, 128] (see also [56]). We will focus on the evolution of sets
with compact boundary on compact time intervals of the form [0, T ]. We now define the notion
of admissible test function. In the following, with a small abuse of language, we will say that
a function u : Rn × [0, T ] → R is constant outside a compact set if there exists a compact set
K ⊂ RN such that u(·, t) is constant in RN \K for every t ∈ [0, T ] (with the constant possibly
depending on t).

Definition 2.35. Let ẑ = (x̂, t̂) ∈ RN × (0, T ) and let A ⊆ (0, T ) be any open interval containing
t̂. We will say that η ∈ C0(RN×Ā) is admissible at the point ẑ if it is of class C2 in a neighborhood
of ẑ, if it is constant out of a compact set, and, in case ∇η(ẑ) = 0, the following holds: for all
(x, t) ∈ RN ×A, and there exist b ∈ [0,+∞) and Ψ : [0,+∞) → [0,+∞) such that

|η(x, t)− η(ẑ)− ηt(ẑ)(t− t̂)| ≤ Ψ(|x− x̂|) + b|t− t̂|2,

where the function Ψ satisfies Ψ(r) = o(r2) as r → 0.

We then recall one of the equivalent definitions of viscosity solutions.

Definition 2.36. An upper semicontinuous function u : RN × [0, T ] → R (in short, u ∈ usc(RN ×
[0, T ])), constant outside a compact set, is a viscosity subsolution of the Cauchy problem (2.54)
if u(·, 0) ≤ u0 and for all z := (x, t) ∈ RN × (0, T ) and all C∞−test functions η such that η is
admissible at z and u − η has a maximum at z (in the domain of definition of η) the following
holds:

i) If ∇η(z) = 0, then it holds
ηt(z) ≤ 0 (2.55)

ii) If ∇η(z) ̸= 0, then

∂tη(z) + ψ(z,−∇η(z))
(
H(z,∇η(z),∇2η(z))− f(z, t)

)
≤ 0. (2.56)
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A lower semicontinuous function u : RN × [0, T ] → R (in short, u ∈ lsc(RN × [0, T ])), constant
outside a compact set, is a viscosity supersolution of the Cauchy problem (2.54) if u(·, 0) ≥ u0
and for all z := (x, t) ∈ RN × [0, T ] and all C∞−test functions η such that η is admissible at z
and u− η has a minimum at z (in the domain of definition of η) the following holds:

i) If ∇η(z) = 0, then ηt(z) ≥ 0;

ii) If ∇η ̸= 0 then

∂tη(z) + ψ(z,−∇η(z))
(
H(z,∇η(z),∇2η(z))− f(z, t)

)
≤ 0.

Finally, a function u is a viscosity solution for the Cauchy problem (2.54) if it is both a subsolution
and a supersolution of (2.54).

Remark 2.37. By classical arguments, one could assume that the maximum of u− η is strict in
the definition of subsolution above (an analogous remark holds for supersolutions).

Remark 2.38. We remark that, if −u is a subsolution to (2.54) with initial datum −u0, then u is
a supersolution for (2.54) for the initial datum u0 and where ϕ, ψ are replaced by ϕ̃, ψ̃ respectively,
as defined in Section 4.1.

We will first prove existence for viscosity solutions of (2.54) via an approximation-in-time
technique, and then prove uniqueness of solutions to (2.54) to link the approximate solution to
the mean curvature flow equation. We would like to proceed with the classical construction of
e.g. [45, 56, 85], but in our case the lack of continuity of the evolving functions forces us to be
particularly careful with the procedure.

We use the shorthand notation of lsc for lower semicontinuous and usc for upper semicontin-
uous. Given a bounded, usc function v which is constant outside a compact set, we define the
transformation

T+
h,tv(x) = sup

{
s : x ∈ T+

h,t{v ≥ s}
}
. (2.57)

Firstly, we see that T+
h,tv(x) ∈ R, as v is bounded. Moreover, it turns out that the function T+

h,tv
is usc, bounded and constant outside a compact set. Indeed, definition (2.57) is equivalent to

T+
h,tv(x) = inf

{
s : x /∈ T+

h,t{v ≥ s}
}
= inf
s∈R

(
s+ 1(T+

h,t{v≥s})
c(x)

)
,

where 1A(x) is the indicatrix function of a set A, being 0 on the set and +∞ outside. By definition,
1A is an usc function for any open set A. Thus, recalling Remark 2.15, in the equation above we
are taking the infimum of a family of usc functions, which is then a usc function. The other two
properties follows from the previous study of the discrete evolution. Analogously, given a bounded
lsc function g, we define

T−
h,tg(x) = sup

{
s : x ∈ T−

h,t{g > s}
}
= sup

s∈R

(
s− 1T−

h,t{g>s}

)
,

which is now a bounded lsc function (as sup of lsc functions), constant outside a compact set.
We are now ready to give the definition of the discrete-in-time approximations of sub - and

super solution to (2.54). Given an initial compact set E0, set u0 as a (uniformly) continuous
function, spatially constant outside a compact set, such that {u0 ≥ 0} = E0. We remark that
for every s ∈ R, the superlevel set {u0 ≥ s} is either compact or it is unbounded with compact
boundary. Then, for h > 0 we introduce the following family of maps as u±h (·, t) = u0 for t ∈ [0, h)
and

u±h (·, t) := T±
h,t−hu

±
h (·, t− h) for t ≥ h. (2.58)

We easily see that the maps above are functions (as implied by the comparison principle contained
in Lemmas 2.13, 2.31 and 2.34) piecewise constant in time (as T±

h,t = T±
h,[t/h]h). Moreover, by the

previous remarks, we have that u+h (·, t) is an usc function, while u−h (·, t) is a lsc function, for every
t ∈ [0,+∞). Some further properties of the approximating scheme are listed below.



4. Viscosity solutions 51

Lemma 2.39. For any h > 0, t ≥ 0 we have the following. It holds

u−h (·, t) ≤ u+h (·, t). (2.59)

Furthermore, given any λ ∈ R and t ≥ h it holds

{u+h (·, t) > λ} ⊆ T+
h,t−h{u+h (·, t− h) ≥ λ} ⊆ {u+h (·, t) ≥ λ} (2.60)

{u−h (·, t) > λ} ⊆ T−
h,t−h{u−h (·, t− h) > λ} ⊆ {u−h (·, t) ≥ λ}.

Proof. Fix x ∈ RN , t ∈ [0, h). For any given σ < u−h (x, h) we have that there exists a sequence
(sn) ↗ σ so that x ∈ T−

h,t−h{u0 > sn} ⊆ T+
h,t−h{u0 ≥ sn}. Thus, u+h (x, t) ≥ σ. We then conclude

by induction. Then, (2.60) follows easily by the definition (2.58).

We then prove that the half-relaxed limits (in the spirit of [19], see also the references therein)
of the families of functions u±h

u+(x, t) := sup
(xh,th)→(x,t)

lim sup
h→0

u+h (xh, th)

u−(x, t) := inf
(xh,th)→(x,t)

lim inf
h→0

u−h (xh, th),
(2.61)

are (respectively) sub - and supersolutions in the viscosity sense of (2.54), see Theorem 2.3 (note
that, by definition, u+ is usc, while u− is lsc). The proof of this result is the subject of the following
section and we recall that the hypothesis required are (H0), (H1) and f ∈ C0(RN × [0,∞)) only.
Once the existence of sub - and super-solutions to the equation is settled, we need to properly define
the notion of level-set solution to the mean curvature flow. To do so, we first prove uniqueness
for (2.54) via a comparison principle and under additional hypothesis. Then, we show that the
evolution of the zero superlevel set of the solution does not depend on the choice of the initial
function u0.

We start with a comparison result between u+, u− and u0 at the initial time: it will ensure
that the classical hypothesis for the comparison principle are satisfied. We first prove an estimate
for the speed of decay of the level sets of the evolving functions. While it will only be needed in
the following section, in the proof of the forthcoming Lemma 2.41 we will use similar techniques,
so we preferred to state it here.

Lemma 2.40. Let u+(x, t) be the function defined in (2.61), let σ ∈ R. Assume that, for a
suitable x0 and R > 0, it holds B(x0, R) ⊆ {u+(·, t0) ≥ σ} . Then, there exists C = C(R,ϕ, ψ, f)
such that B(x0, R−C(t−t0)) ⊆ {u+(·, t) ≥ σ} for every t ≤ t0+R/(2C). An analogous statement
holds for u− by considering its open sublevel sets.

Proof. We focus on the case {u+(·, t0) ≥ σ} bounded, the other case being analogous. By as-
sumption, for any R0 < R, if h is small enough, we have B(x0, R0) ⊆ {u+h (·, t0) ≥ σ}. Set
C = C(R0/2, ϕ, ψ, f) as the constant of Lemma 2.19. Let Rn be defined recursively following
law (2.23), that is Rn+1 = Rn − Ch, as long as Rn ≥ R0/2. By simple iteration we find that
Rn = R0−nCh, as long as Rn ≥ R0/2, which can be ensured enforcing hn ≤ R0/(2C). Therefore,
for any t ≥ t0 such that t − t0 ≤ R0/(2C), we set n = [(t − t0)/h] and send h → 0 to deduce
(recalling also Lemma 2.13)

{u+(·, t) ≥ σ} ⊃ B(x0, R0 − C(t− t0)).

Since the choice of R0 is arbitrary, we conclude.

We are now ready to prove a comparison result for the functions u± and a continuity estimate
at the initial time t = 0.

Lemma 2.41. For any (x, t) ∈ RN × [0,+∞) it holds

u−(x, t) ≤ u+(x, t).
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Moreover u−(·, 0) = u+(·, 0) = u0, so that there exists a modulus of continuity ω such that ∀x, y ∈
RN

u+(x, 0)− u−(y, 0) ≤ ω(|x− y|).
Proof. The proof of the first inequality essentially follows from (2.59) and the definition of u±. To
prove the equality at the initial time t = 0, we start by remarking that u+(·, 0) ≥ u0 as can be seen
taking sequences of the form (xh, 0) in (2.61). Then, consider ω as a continuous, strictly increasing
modulus of continuity for u0. We can also see that ∀ε > 0 {u0 ≤ u0(x) + ε} ⊇ B(x, ω−1(ε)) by
uniform continuity. Thus, reasoning iteratively as in Lemma 2.40 and using (2.60), we obtain that
there exists h0(ε) such that ∀h ≤ h0 it holds

{u+h (·, t) ≤ u+h (x, 0)+ε} ⊇
(
T+
h,t−h{u0 > u0(x) + ε}

)c
= T−

h,t−h{u0 ≤ u0(x)+ε} ⊇ B(x, ω−1(ε/2)),

as long as t ≤ (ω−1(ε) − ω−1(ε/2))/(2C) =: tε, and where we recalled that u±h (·, 0) = u0.
Now, fix σ > 0, x ∈ RN such that u(x, 0) > σ and a sequence (xhk , thk) → (x, 0) such that
limk u

+
hk
(xhk , thk) > σ. Then, for k large enough (xhk , thk) ∈ B(x, ω−1(ε/2)) × [0, tε) and so we

conclude
σ < lim

k
u+h (xhk , thk) ≤ u0(x, 0) + ε.

Letting ε→ 0 we conclude u(·, 0)+ ≤ u0. The proof for u− is essentially the same. The last claim
follows from the previous one, recalling that ω is a modulus of uniform continuity for u0.

In order to prove a comparison principle for (2.54), we will need to assume (H3). Under these
additional hypotheses, we are able to prove uniqueness for the parabolic Cauchy problem (2.54).
The proof of this result follows from [102, Theorem 4.2]: we will just show in detail that the
assumption of the aforementioned theorem hold in our case, following [23, Proposition 6.1] and
[102, pag. 463].

Proof of Theorem 2.4. The proof of this result essentially follows from [102, Theorem 4.2], com-
bined with the existence result of Theorem 2.3. Referring to the notation of [102], we firstly remark
that in our case Ω = RN , thus the parabolic boundary of U = Ω× [0, T ] is simply ∂pU = RN×{0}.
Therefore, the initial conditions (A1)− (A3) are all verified by Lemma 2.41. We then define the
continuous Hamiltonian F : [0, T ]× RN × (RN \ {0})×MN×N → R as follows

F (t, x, p,X) := ψ(x,−p)
(
−
∑

i

∂xi∂piϕ(x,−p) +∇2
pϕ(x,−p) : X + f(x, t)

)
, (2.62)

and focus on the conditions (F1), (F3)− (F5), (F6′), (F7), (F9), (F10) that F must satisfy. The
assumptions (F1), (F3)−(F5), (F9) are easily checked. (F6′) follows from the Lipschitz regularity
of ϕ and ψ, as ∀t ∈ [0, T ], x ∈ RN , |p| ≥ ρ, |q|+ |X| ≤ R one has

|F (t, x, p,X)− F (t, x, q,X)| ≤ cψ|p− q|
∣∣∣∣∣−
∑

i

∂xi∂piϕ(x,−p) +∇2
pϕ(x,−p) : X

∣∣∣∣∣

+ ψ(x,−q)
∣∣∣∣∣−
∑

i

(∂xi∂piϕ(x,−p)− ∂xi∂piϕ(x,−q)) +
(
∇2
pϕ(x,−p)−∇2

pϕ(x,−q)
)
: X

∣∣∣∣∣

≤ cR|p− q|
(
1 +

1

|p|

)
+ cR|p− q| ≤ cR,ρ|p− q|.

For (F7), we remark that the first term in the parenthesis in (2.62) is 0−homogeneous in p,
while the second one is (−1)−homogeneous in p but 1−homogeneous in X. Lastly, we sketch how
to prove (F10). Since it concerns the X-terms, we focus simply on

∇2
pϕ(x,−p) : X = tr

(
∇2
pϕ(x−, p)XT

)
.

Multiplying by ϕ(x,−p), we rewrite ϕ(x,−p)tr
(
∇2
pϕ(x−, p)XT

)
= tr(A(x,−p)XT ), where A =

B − (∇pϕ⊗∇pϕ) , with B being the uniformly elliptic operator 1
2∇2

pϕ
2. We can then factorize
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B = L̃L̃T , with L̃ being a nondegenerate, lower triangular matrix. Then, following the proof of
[23, Proposition 6.1] and [102, pg. 463], we obtain (F10).

Once uniqueness is settled, one can finally define the notion of level set solution to the mean
curvature flow as follows.

Definition 2.42. Let E0 be a compact initial set. Define a uniformly continuous, bounded
function u0 : RN → R such that {u0 ≥ 0} = E0. Then, let u : RN × [0,+∞) → R be the unique
continuous viscosity solution to (2.54) given by Theorem 2.4. Then, the family Et := {u+(·, t) ≥
0}t≥0 will be called the level set solution to the mean curvature flow.

This definition is well posed since the Hamiltonian defined in (2.53) satisfies the so-called
geometricity condition. Namely, one can easily check that for any λ ̸= 0, p ∈ RN \ 0, q ∈ RN and
any symmetric N ×N matrix X one has

H(x, λp, λX + p⊗ q + q ⊗ p) =
λ

|λ|H(x, p,X).

Thus, one can prove by classical arguments (see e.g. [56, Remark 3.9]) the following result.

Lemma 2.43. Let u0, ũ0 two initial data for (2.54) such that {u0 ≥ 0} = {ũ0 ≥ 0}. Then,
denoting by u, ũ the corresponding solutions to (2.54), one has

{u(·, t) ≥ 0} = {ũ(·, t) ≥ 0} for all t ∈ [0, T ],

and the same identity holds for the open superlevel sets.

4.3 Proof of Theorem 2.3

In this section we will prove that the limiting functions u± are respectively a viscosity sub-
and supersolutions to (2.54). We recall the standing assumptions (H0), (H1) and f ∈ C0(RN ×
[0,+∞)). We will be following the structure of the proof of [56, Theorem 6.16], but taking into
account the weaker definition of u+ holding in our case. We will be using the O, o notations with
respect to h→ 0 and focus on proving that u+ is a subsolution. The proof for u− is analogous.

Proof of Theorem 2.3. Consider u+ as defined in (2.6): we need to prove that it is a subsolution.
In the following, we will denote u := u+ and uh := u+h . Let η(x, t) be an admissible test function
in z̄ := (x̄, t̄)∈ RN × (0, T ) and assume that (x̄, t̄) is a strict maximum point for u − η. Assume
furthermore that u− η = 0 in such point. We need to show that either (2.55) or (2.56) holds at z̄.
Case 1. Let us first assume that ∇η(z̄) ̸= 0. By classical arguments, we can assume that z̄ is
a strict maximum point and that η is smooth. By the definition of u, there exists a sequence
z̃k := (x̃hk , t̃hk) → z̄ such that limk uhk(z̃k) = u(z̄). We remark that we can substitute the
functions uhk for t > 0 with their usc envelope in time, without changing the value of u. Indeed,
the usc envelope of uhk is the function at all discrete times lhk is given by

max{uhk(·, (l − 1)hk), uhk(·, lhk)}

and coincides with uhk elsewhere. Since now uhk is usc in time and space, by standard arguments
(compare e.g. [18, Lemma 6.1]), there exists a radius ρ > 0 such that all functions uhk −η achieve
a local maximum in Bρ(z̄) at points zk = (xk, tk). Then, passing to a further subsequence we can
ensure that zk → w ∈ Bρ(z̄), and we use the definition of u to obtain

(u− η)(w) ≥ lim sup
k

(uhk − η)(zk) ≥ lim sup
k

(uhk − η)(z̃k) = (u− η)(z̄).

Therefore, w = z̄ by maximality. Thus we can assume that each function uhk − η achieves a local
maximum in Bρ(z̄) at a point zhk =: (xk, tk) and that uhk(zhk) → u(z̄) as k → ∞. Finally, we
can assume also that ∇η(xk, tk) ̸= 0 for k large enough.
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Step 1. We start defining an appropriate set which is then used as a competitor for the minimality
of the level sets of the functions uh. From the previous computations, one has in particular that

uh(x, t) ≤ η(x, t) + ck (2.63)

where ck := uhk(xk, tk)− η(xk, tk), with equality if (x, t) = (xk, tk). Let σ > 0 and set

ησhk(x) := η(x, tk) + ck +
σ

2
|x− xk|2.

Then, for all x ∈ RN ,
uhk(x, tk) ≤ ησhk(x)

with equality if and only if x = xk. We set lk = uhk(xk, tk) = ησhk(xk). We fix ε > 0, to be chosen
later, and write Eε,k := {uhk(·, tk − hk) ≥ lk − ε}. We define1

Wε :=
(
T+
h,tk−hkEε,k

)
\
{
ησhk(·) > lk + ε

}
.

We immediately see that Wε → {xk} in the Kuratowski sense as ε→ 0 since by (2.60)

{uhk(·, tk) > lk − ε} \
{
ησhk(·) > lk + ε

}
⊆Wε ⊆ {uhk(·, tk) ≥ lk − ε} \

{
ησhk(·) > lk + ε

}
, (2.64)

see also (2.70) below. Then, we check that |Wε| > 0 for all ε small enough. By the continuity of
ησ and |∇η(z̄)| ̸= 0, for any ε there exist a radius rε such that Wε ⊇ B(xk, rε) ∩ T+

h,tk−hkEε,k.
Furthermore, for any ε > 0, using (2.60) again yields xk ∈ T+

hk,tk−hk{uhk(·, tk − hk) ≥ lk − ε},
and the latter set coincides with the closure of its points of density 1 by Lemma 2.14. Thus, xk
satisfies lower density estimates and so we conclude that |Wε| > 0. Now, assume Eε,k is bounded.
By minimality we have

Pϕ(T
+
h,tk−hkEε,k) +

1

hk

ˆ
T+
h,tk−hk

Eε,k

sdψEε,k(x)dx+

ˆ
Wε

Fhk(x, tk − hk) dx

≤ Pϕ

((
T+
h,tk−hkEε,k

)
∩ {ησhk > lk + ε}

)
+

1

hk

ˆ
(
T+
h,tk−hk

Eε,k

)
∩{ησhk>lk}

sdψEε,k . (2.65)

Adding to both sides the term Pϕ

(
{ησhk > lk + ε} ∪ T+

h,tk−hkEε,k

)
and using the submodularity

(2.10), we obtain

Pϕ({ησhk > lk + ε} ∪Wε)− Pϕ({ησhk > lk + ε}) + 1

hk

ˆ
Wε

sdψEε,k(x) dx

+

ˆ
Wε

Fhk(x, tk − hk) dx ≤ 0.

By (2.63), {uhk(·, tk − hk) ≥ lk − ε} ⊆ {η(·, tk − hk) ≥ lk − ck − ε}, therefore it holds

Pϕ({ησhk > lk + ε} ∪Wε)− Pϕ({ησhk > lk + ε}) + 1

hk

ˆ
Wε

sdψ{η(·,tk−hk)≥lk−ck−ε}(x) dx

+

ˆ
Wε

Fhk(x, tk − hk) dx ≤ 0. (2.66)

1We need to define the sets Wε in this way (compare the different definition in [56]) since firstly, we can not
rule out that the inclusions in (2.64) are strict, and secondly it is not clear if otherwise |Wε| > 0.
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If instead Eε,k is an unbounded set with compact boundary, we replace inequality (2.65) by

Pϕ(Th,tk−hkEε,k) +
1

hk

ˆ
(
T+
h,tk−hk

Eε,k

)
∩BR

sdψEε,k(x) dx+

ˆ
Wε

Fhk(x, tk − hk) dx

≤ Pϕ(
(
T+
h,tk−hkEε,k

)
∩ {ησhk > lk + ε}) + 1

hk

ˆ
(
T+
h,tk−hk

Eε,k

)
∩{ησhk>lk+ε}∩BR

sdψEε,k ,

for R > 0 sufficiently large, see (2.52). Then, one can argue as before to obtain (2.66).
Step 2. We estimate the first two terms in (2.66). The quantity Pϕ({ησhk > lk + ε} ∪Wε) −
Pϕ({ησhk > lk + ε}) can be estimated as done in Lemma 2.19. Indeed, we consider the vector field
v = ∇pϕ(x,∇ησhk) in (2.11) and we use the divergence theorem to get

Pϕ({ησhk > lk + ε} ∪Wε)− Pϕ({ησhk ≥ lk + ε}) ≥
ˆ
∂({ησhk>lk+ε}∪Wε)

v · ν −
ˆ
∂{ησhk>lk+ε}

v · ν

= |Wε|
 
Wε

div v,

(2.67)

where ν denotes the unit outer vector to the set we are integrating on. We then remark thatffl
Wε

div v → Hϕ{ησhk>lk}
(xk) and

ffl
Wε

Fhk(x, tk − hk) dx→ Fhk(xk, tk − hk) as ε→ 0 by continuity.

Step 3. We bound the distance term in (2.66) by showing that

1

hk
sdψ{η(·,tk−hk)=lk−ck−ε}(z) ≥

∂tη(z, tk)−O(hk)

ψ(y,−∇η(y, tk − hk)) +O(hk)
. (2.68)

For any z ∈Wε, we have
η(z, tk) + ck +

σ

2
|z − xk|2 ≤ lk + ε. (2.69)

Since, in turn, η(z, tk) + ck > lk − ε it follows that σ|z − xk|2 < 4ε and thus, for ε small enough,

Wε ⊆ Bc
√
ε(xk). (2.70)

By a Taylor expansion, for every z ∈Wε we have

η(z, tk − hk) = η(z, tk)− hk∂tη(z, tk) + h2k

ˆ 1

0

(1− s)∂2ttη(z, tk − shk) ds. (2.71)

Then, we consider y, ye ∈ {η(·, tk − hk)(y) = lk − ck − ε} being respectively, a point of minimal
ψ−distance and Euclidean distance from z.
Claim: We claim that it holds

|z − y| = O(hk). (2.72)

In order to prove this result, we start remarking that for k → ∞ and choosing ε ≪ hk, one has
sdψ{η(·,tk−hk)≥lk−ck−ε}(z) → 0 (as z → xk for ε → 0 and xk ∈ {η(·, tk) ≥ lk − ck}). In particular,
recalling the bounds (2.9) one has

|z − ye| ≤ c2ψ|z − y| ≤ c3ψ|sdψ{η(·,tk−hk)≥lk−ck−ε}(z)| → 0

as k → ∞. By (2.69) we deduce in particular η(z, tk) + ck < lk + ε, that is,

0 ≤ η(z, tk)− η(y, tk − hk) ≤ 2ε, (2.73)

and the same inequality substituting ye to y. Thus, one has

η(z, tk)− η(ye, tk − hk) = ∇η(y, tk − hk) · (z − ye)− hk∂tη(y, tk − hk) +O(|z − ye|2 + h2k)

which we combine with ∇η(y, tk − hk) · (z − ye) = ±|∇η(y, tk − hk)| |z − ye| (see [56] for details)
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and (2.73) to get
|z − ye| |∇η(y, tk − hk)| ≤ 2ε+O(hk) +O(|z − ye|2).

Recalling that |∇η(y, tk − hk)| ≥ c > 0 for hk small enough, we divide by |∇η(y, tk − hk)| to
conclude |z − ye| = O(hk) as ε≪ hk. Finally, employing again (2.9), we prove the claimed (2.72).

Then, we consider a geodesic curve for the definition of sdψ{η(·,tk−hk)≥lk−ck−ε}(z): if this dis-
tance is positive, we choose γ : [0, 1] → RN with γ(0) = z, γ(1) = y, with y as before, otherwise we
take γ such that γ(0) = y, γ(1) = z. In the following, we will assume sdψ{η(·,tk−hk)≥lk−ck−ε}(z) > 0,
the other case being analogous. Recalling (2.7), we have

η(z, tk − hk) = η(y, tk − hk) +

ˆ 1

0

∇η(γ, tk − hk) · γ̇ dt

≥ η(y, tk − hk)−
ˆ 1

0

ψ(γ,−∇η(γ, tk − hk))ψ
◦(γ, γ̇) dt

≥ η(y, tk − hk)− ψ(y,−∇η(y, tk − hk)) sdψ{η(·,tk−hk)=lk−ck−ε}(z)

−
ˆ 1

0

(ψ(γ,−∇η(γ, tk − hk))− ψ(y,−∇η(y, tk − hk)))ψ
◦(γ, γ̇) dt

≥ η(y, tk − hk)−
(
ψ(y,−∇η(y, tk − hk)) + c|z − y|

)
sdψ{η(·,tk−hk)=lk−ck−ε}(z),

where in the last line we reasoned as in (2.41) to obtain the bound supt |γ(t) − y| ≤ c|z − y|.
Recalling (2.72) one has

η(z, tk − hk) ≥ η(y, tk − hk)− ψ(y,−∇η(y, tk − hk)) sdψ{η(·,tk−hk)=lk−ck−ε}(z) + o(hk). (2.74)

Combining (2.71) with (2.74) and using (2.73), we deduce

sdψ{η(·,tk−hk)=lk−ck−ε}(z)ψ(y,−∇η(y, tk − hk)) + o(hk)

≥ −2ε+ hk∂tη(z, tk)− h2k

ˆ 1

0

(1− s)∂2ttη(z, tk − shk)ds.

Note that, in view of (2.69) and (2.9), |η(z, tk) − η(y, tk)| ≤ cε + chk = O(hk), provided ε ≪ hk
and small enough. We then conlude (2.68) by combining the previous inequality with (2.70),(2.72)
as

1

hk
sdψ{η(·,tk−hk)=lk−ck−ε}(z) ≥

∂tη(z, tk)− 2ε
hk

−O(hk)−Ohk(1)

ψ(y,−∇η(y, tk − hk))

=
∂tη(xk, tk) +O(

√
ε)− 2ε

hk
−O(hk)−Ohk(1)

ψ(xk,−∇η(xk, tk − hk)) +O(
√
ε) +O(hk)

.

Step 4. We conclude the proof by employing (2.66), (2.67) and (2.68), dividing by |Wε| and
sending ε→ 0 to obtain

∂tη(xk, tk)−Ohk(1)

ψ(xk,−∇η(xk, tk)) +O(hk)
+ Hϕ{ησhk≥η

σ
hk

(xk)}(xk)− Fhk(xk, tk − hk) ≤ 0.

Letting simultaneously σ → 0 and k → ∞, recalling the continuity properties of Hϕ, we deduce
(2.56). Indeed the sets {ησhk > ησhk(xk)} are converging in C2 to the set {η > η(x)}, xk → x and
thus

Hϕ{ησhk>η
σ
hk

(xk)}(xk) → Hϕ{η>η(x)}(x),

and we conclude the proof of this step.
Case 2. Now we consider the case ∇η(x̄, t̄) = 0 and we show that ∂tη(x̄, t̄) ≤ 0. The proof follows
the line of the one in [56], we just highlight the differences.
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Since ∇η(z̄) = 0, there exist b,Ψ as in Definition 2.36 such that

|η(x, t)− η(z̄)− ∂tη(z̄)(t− t̄)| ≤ Ψ(|x− x̄|) + b|t− t̄|2,

thus, we can define

η̃(x, t) = ∂tη(z̄)(t− t̄) + 2Ψ(|x− x̄|) + 2b|t− t̄|2

η̃k(x, t) = η̃(x, t) +
1

k(t̄− t)
.

We remark that u− η̃ achieves a strict maximum in z̄ and the local maxima of u− η̃k in RN × [0, t̄]
are in points (xk, tk) → z̄ as k → ∞, with tn ≤ t̄. From now on, the only difference from [56]
is in the case xk = x̄ for an (unrelabeled) subsequence. We assume xk = x̄ ∀k > 0 and define
τk = t̄− tk > 0 and the radii

rk := 2
√
Cτk,

where C is the constant of Lemma 2.40. Taking k large enough, by Lemma 2.40 the balls B(·, rk)
have an extinction time greater than 2(t̄− tk). We then have

B(x̄, rk) ⊆ {η̃k(·, tk) ≤ η̃k(x̄, tk) + 2Ψ(rk)}
⊆ {u(·, tk) ≤ u(x̄, tk) + 2Ψ(rk)},

by definition of η̃k and the maximality of u− η̃k at zk. Since the balls B(·, rk) are not vanishing,
we conclude

x̄ ∈ {u(·, t̄) ≤ u(x̄, tk) + 2Ψ(rk)}.
Finally, we use again the maximality of u− η at z̄ and the choice of rk to obtain

η(x̄, tk)− η(z̄)

tk − t̄
=
η(x̄, tk)− η(z̄)

−τk
≤ u(x̄, tk)− u(x̄, t̄)

−τk
≤ −2Ψ(rk)

−τk
.

Recalling that Ψ(r) = o(r2) as r → 0, we can pass to the limit k → ∞ and conclude ∂tη(z̄) ≤ 0.

We conclude with two remarks concerning some possible generalizations of the results pre-
sented.

Remark 2.44. The results presented in this chapter can be immediately extended to unbounded
initial open sets E0, whose boundary is compact. Indeed, defining the discrete flow as E(h)

t = E0

if t ∈ [0, h), otherwise by induction E
(h)
t = T−

h,tE
(h)
t−h, where the operator T−

h,n is the one defined
in (2.50), this evolution is uniquely characterized by the one of the complement. Thus, all the
results presented in this chapter can be extended to this particular unbounded case.

Remark 2.45. Following the lines of [23] (in the spirit of [8]) one can see that the results of
this chapter may be extended to prove existence of flat flows and level set solutions to the mean
curvature flow on RN endowed with the geometric structure induced by a Finsler metric ϕ◦. For
example, the perimeter functional in this setting is defined as follows. Given a set E of finite
perimeter, its (intrinsic) perimeter is

Pϕ◦(E) =

ˆ
∂∗E

ϕ(x, νE(x)) dHN−1
ϕ◦ (x),

where the Hausdorff measure HN−1
ϕ◦ is the one induced by the metric ϕ◦. In particular, one

can compute dHN−1
ϕ◦ (x) = ωN |Bϕ◦

(x)|−1 dHN−1(x) (see [23]), thus this approach is equiv-
alent to consider in our framework a slightly different (but still regular) anisotropy, namely
ϕ∗(x, ν) := ωN |Bϕ◦

(x)|−1ϕ(x, ν). In particular, this approach leads to considering the evolution
of hypersurfaces Et moving according to the evolution law

Vϕ◦(x, t) = −HEt(x) + f(x, t) x ∈ ∂Et, t ∈ (0, T )
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where now Vϕ◦ represents the speed of evolution along the anisotropic normal outer vector
nϕ◦(x) = ∇pϕ(x, νE(x)) and H is the “intrinsic” mean curvature, thus the first variation of the
perimeter Pϕ◦ . Recalling that nϕ◦(x) · νE(x) = ϕ(x, νE(x)), we see that the hypersurfaces are
evolving with a normal (in the Euclidean sense) velocity given by the law

V (x, t) = ϕ(x, νEt(x))
(
−Hϕ∗

Et
(x) + f(x, t)

)
.

After this transformation, we can apply the results previously proved.
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1 Introduction

In this chapter we study a nonlinear version of the anisotropic mean curvature flow (MCF
in short) with forcing and mobility. In particular, given a continuous non decreasing function
G : R → R, we consider the flow of sets t 7→ Et formally governed by the evolution law

V (x, t) = ψ(νEt(x))G
(
−κϕEt(x) + f(t)

)
, for all x ∈ ∂∗Et, t ≥ 0, (3.1)

where ψ, ϕ are two anisotropies (with ψ usually called the mobility), κϕEt denotes the ϕ-curvature
of the set of finite perimeter Et, νEt denotes the outer normal vector and f is a forcing term
constant in space. We are interested in showing that the mimizing movement approximation
scheme produces discrete-in-time solutions that converge to the unique viscosity solution to (3.1)
as the time-step parameter tends to 0.

The evolution law (3.1) is relevant from a numerical point of view, as suggested e.g. in [57,
Remark 3.5]. For example, a truncation of the evolution speed is usually encoded in algorithms
for the MCF, which would correspond to choosing G(s) = (−M) ∨ s ∧ M in (3.1). Another
interesting choice could be G(s) = −s−, which amounts to consider a purely shrinking evolution.
Moreover, evolution by powers of the mean curvature have been previously studied in the smooth
or convex setting [60, 169, 15] and have been used to prove isoperimetric inequalities [170], or
considered in the setting of image processing algorithms [11, 167]. In particular, in [11, Section
4.5] it is remarked that the evolution law (3.1) with G(s) = s

1
3 and ϕ = ψ = | · | is particularly

interesting as it is invariant under affine motions (isometries and rescalings). We refer also to [79]
for interesting links between a time-fractional Allen-Cahn equation and motion by powers of the
mean curvature.

In the present nonlinear setting, only two concept of solutions are currently available:
smooth solutions (starting from smooth sets, in general existing only in a finite time span) and
viscosity/level-set solutions, which are weak solutions of (3.1) defined globally in time and starting
from any initial compact set. On the other hand, it is not clear whether a notion of “BV-solutions”
in the spirit of [8, 144] (and studied in the previous chapter) can be properly defined.

Inspired by the techniques developed in [56], and the recent study [50] (contained in Chap-
ter 2), we show that the mimizing movement scheme à la Almgren-Taylor-Wang or Luckhaus-
Sturzenhecker [8, 144] provides existence by approximation of a level set solution to the nonlinear
MCF, under suitable smoothness assumptions on the quantities involved. This is an extension
and an improvement of the unpublished (and unfinished) preprint [46], and is essentially based
on techniques introduced in [56]. In [56], the authors prove the convergence of the minimizing
movements scheme to viscosity solutions to a very general class of curvature flows of the form
V = −κ, with κ being a "variational" curvature. We will also use some refinements of the tech-
niques of [56] that we developed in Chapter 2, where we focused on similar evolutions driven by
inhomogeneous curvatures (i.e. non translationally invariant). We want to point out that our
result is more general than those of [46], as the authors work in the isotropic setting without
mobility (ψ = ϕ = | · |), require further regularity on the function G and assume that

lim
s→±∞

G(s) = ±∞,

which simplifies many arguments. From a technical point of view, the main difficulties arise in
the case where G is bounded from above or below, as some tools heavily employed in the linear
setting are no longer available (see e.g. the commonly used reformulation (3.10)). Anyhow, by
an approximation approach we can recover all the necessary results, which we then pair with the
variational approach of [56] in order to prove our main result.

To conclude, it would be interesting to study the much more challenging case where ϕ is
non smooth, i.e. the so-called crystalline case. In this setting the availability of the viscosity
solutions of [104, 105] and the development of distribution solutions of [55, 53, 52] may suggest
the premarkibility of a future investigation in this direction.
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2 The minimizing movements scheme

2.1 Preliminaries
For the notations and some preliminary results, we refer to Section 2 in Chapter 2.
We focus on a nonlinear evolution by anisotropic mean curvature with mobility of a family of

sets {Et}t≥0 starting from a set E0 ⊆ RN which is either bounded or has bounded complement.
The evolution law is

V (x, t) = ψ(νEt(x))G
(
−κϕEt(x) + f(t)

)
x ∈ ∂∗Et, t ≥ 0, (3.2)

where νEt(x) is the outer normal vector to Et at x and ϕ, ψ are two anisotropies (as defined in
Definition 2.5 in Chapter 2) that are homogeneous in space, and under the following hypotheses
on the functions involved:

• G : R → R is a continuous, non-decreasing function, with G(0) = 0;

• f ∈ C0
b (R);

• ϕ ∈ C3 and it is strictly convex.

We then set
lim

s→−∞
G(s) = −a ∈ [−∞, 0], lim

s→+∞
G(s) = b ∈ [0,+∞].

Consider a function u : RN × [0,+∞) → R whose superlevel sets Es := {u(·, t) ≥ s} evolve
according to the nonlinear mean curvature equation (3.2). By classical computations (see e.g.
[101]), the function u satisfies the equation

∂tu = |∇u|V (x, t) = ψ(∇u)G
(
−∇2ϕ(∇u) : ∇2u+ f

)
=: −H(t,∇u,∇2u)

where we defined the Hamiltonian H : [0,+∞)× RN \ {0} × SN → R as

H(t, p,X) := −ψ (p)G(−κϕ(p,X) + f(t)), (3.3)

and κϕ(p,X) is defined as κϕ(p,X) = ∇2ϕ(p) : X. Therefore, one is led to solve the parabolic
Cauchy problem in bounded time intervals [0, T ], for T > 0, given by

{
∂tu+H(t,∇u,∇2u) = 0 on RN × [0, T ]

u(·, 0) = u0 on RN .
(3.4)

Existence and uniqueness to (3.4) can be proved in the framework of viscosity solutions as done in
[128]. Let us recall the notion of viscosity solution used in [128], starting by a family of auxiliary
functions.

Definition 3.1. The family F is composed of smooth functions ℓ ∈ C∞
c ([0,+∞)) satisfying

ℓ(0) = ℓ′(0) = ℓ′′(0) = 0, ℓ′′(r) > 0 in a neighborhood of 0, ℓ constant in (0,M)c for some M > 0
(depending on ℓ), and such that

lim
p→0

ℓ′(|p|)
|p| H(t, p,±I) = 0

holds uniformly in time.

Remark 3.2. We note that F ̸= ∅. Since for all t ∈ [0,+∞), p ∈ RN it holds

G(−c/|p| − ∥f∥∞) ≤ H(t, p, I) ≤ H(t, p,−I) ≤ G(c/|p|+ ∥f∥∞),

for a suitable positive constant c = c(ϕ), one can repeat the construction used in [128, page 229]
to show that F ̸= ∅.
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With a slight abuse of notation, in the following we will say that a function is spatially constant
outside a compact set even if the value of such constant is time-dependent.

Definition 3.3. Let ẑ = (x̂, t̂) ∈ RN × (0, T ) and let A ⊆ (0, T ) be any open interval containing t̂.
We will say that η ∈ C0(RN × Ā) is admissible at the point ẑ if it is of class C2 in a neighborhood
of ẑ, it is spatially constant outside a compact set, and, in case ∇η(ẑ) = 0, the following holds:
there exists ℓ ∈ F and ω ∈ C∞([0,∞)) with ω′(0) = 0, ω(r) > 0 for r ̸= 0 and such that

|η(x, t)− η(ẑ)− ηt(ẑ)(t− t̂)| ≤ ℓ(|x− x̂|) + ω(|t− t̂|),

for all (x, t) ∈ RN ×A.

The notion of viscosity solution used in [128] is the following one.

Definition 3.4. An upper semicontinuous function u : RN × [0, T ] → R, constant outside a
compact set, is a viscosity subsolution of the Cauchy problem (3.4) if u(·, 0) ≤ u0 and, for all
z := (x, t) ∈ RN × [0, T ] and all C∞-test functions η such that η is admissible at z and u− η has
a maximum at z, the following holds:

i) If ∇η(z) = 0, then
ηt(z) ≤ 0 (3.5)

ii) If ∇η(z) ̸= 0, then
∂tη(z) +H(∇η(z),∇2η(z)) ≤ 0. (3.6)

A lower semicontinuous function u : RN×[0, T ] → R, constant outside a compact set, is a viscosity
supersolution of the Cauchy problem (3.4) if −u is a viscosity supersolution to (3.4), with −u0
replacing u0. Finally, a function u is a viscosity solution for the Cauchy problem (3.4) if it is both
a subsolution and a supersolution of (3.4).

Remark 3.5. By classical arguments, one could assume that the maximum of u − η is strict in
the definition of subsolution above (an analogous remark holds for supersolutions).

We thus recall the existence and uniqueness result proved in [128].

Theorem 3.6. Given an initial datum u0 uniformly continuous and constant outside a compact
set, the Cauchy problem (3.4) admits a unique viscosity solution. Moreover, if u, v are, respectively,
a super- and subsolution to (3.4) satisfying u(·, 0) ≥ v(·, 0), then u(·, t) ≥ v(·, t) for every t ∈ [0, T ].

2.2 The minimizing movements scheme
In order to give the definition of the discrete scheme we consider in this chapter, we introduce

some notations. We set g as a selection of the set-valued inverse of G, that is g(x) ∈ G−1(x) for
every x ∈ (−a, b) and extend it setting g = −∞ for every x ≤ −a, g = +∞ for every x ≥ b. Here,
we extended G to [−∞,+∞] setting G(±∞) = limx→±∞G(x). We assume also that g(0) = 0.
Note that these definitions imply G ◦ g = id in [−a, b]. Moreover, g is strictly increasing. In the
following we will denote for k ∈ N, h > 0

f(kh) =

 (k+1)h

kh

f(s) ds.

Given a bounded set of finite perimeter E and h > 0, t ∈ (0,+∞) we define a functional on the
measurable sets as

FE
h,t(F ) = Pϕ(F ) +

ˆ
E△F

∣∣∣∣g
(

sdE
h

)∣∣∣∣− f([t/h]h)|F |, (3.7)

where [·] denotes the integer part.
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Lemma 3.7. Let E be a bounded set of finite perimeter and h > 0, t ∈ [0,+∞). Then, there exist
minimizers of FE

h,t and, denoting E′ one such minimizer, it has the following properties: it is a
bounded set of finite ϕ-perimeter such that (up to negligible sets)

E−ah ⊆ E′ ⊆ Ebh.

Moreover, there exist a maximal and a minimal minimizer (with respect to inclusion) of FE
h,t.

Proof. Note that FE
h,t(E) < +∞ and that

FE
h,t(F ) ≥ Pϕ(F ) +

ˆ
F

|g (sdE/h)|χEc − ∥f∥∞.

It is easy to see that the functional on the rhs admits a minimizer of finite energy by the coercivity
of g(sdE/h). Thus, by standard methods, one proves the existence of minimizers to FE

h,t. Since
it has finite energy, it is straightforward to check that sdE ∈ [−ah, bh] a.e. on E′△E. If b < +∞
this clearly implies that E′ is bounded; if b = +∞ a classic contradiction argument (essentially
recalled in Lemma 3.11 below) yields the same result. Finally, by classical arguments one shows
that, if E′

1, E
′
2 are minimizers of FE

h,t, then so are E′
1 ∩ E′

2, E
′
1 ∪ E′

2, implying the existence of a
minimal and a maximal solution (see e.g. [56, Proposition 6.1]).

For a given bounded set E and t ∈ (0,+∞), we thus denote

T−
h,tE = min argmin FE

h,t, T+
h,tE = max argmin FE

h,t, (3.8)

where the minimum and maximum above are made with respect to inclusion. We will often denote
Th,t := T−

h,t. We now prove some classical results following the lines of [144].

Lemma 3.8 (Weak comparison principle). Fix h > 0, t ∈ (0,+∞) and assume that F1, F2 are
bounded sets with F1 ⊂⊂ F2. Then, for any two minimizers Ei of FFi

h,t for i = 1, 2, we have
E1 ⊆ E2. If, instead, F1 ⊆ F2, then we have that the minimal (respectively maximal) minimizer
of FF1

h,t is contained in the minimal (respectively maximal) minimizer of FF2

h,t.

Proof. Firstly, we assume F1 ⊂⊂ F2, Testing the minimality of E1, E2 with their intersection and
union, respectively, we obtain

Pϕ(E1) +

ˆ
(E1\E2)\F1

g

(
sdF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdF1

h

)
≤ Pϕ(E1 ∩ E2) + f([t/h]h)|E1 \ E2|

Pϕ(E2) ≤ Pϕ(E1 ∪ E2) +

ˆ
(E1\E2)\F2

g

(
sdF2

h

)
+

ˆ
(E1\E2)∩F2

g

(
sdF2

h

)
− f([t/h]h)|E1 \ E2|.

Summing the two inequalities above and using the submodularity of the perimeter we get
ˆ
(E1\E2)\F1

g

(
sdF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdF1

h

)
≤
ˆ
(E1\E2)∩F2

g

(
sdF2

h

)
+

ˆ
(E1\E2)\F2

g

(
sdF2

h

)
.

(3.9)
Assume by contradiction that |E1 \ E2| > 0. Since sdF2

< sdF1
and by the strict monotonicity of

g, we estimate the rhs of (3.9) by
ˆ
(E1\E2)\F2

g

(
sdF2

h

)
+

ˆ
(E1\E2)∩F2

g

(
sdF2

h

)
<

ˆ
(E1\E2)\F2

g

(
sdF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdF1

h

)

and plug it in (3.9) to reach the desired contradiction. The other cases follow analogously, rea-
soning by approximation if F1 ⊆ F2.

Lemma 3.9. Let c ∈ R. Consider E a bounded set of finite perimeter and non-decreasing func-
tions g1, g2 : R → R such that g1 < g2 in R \ {0} and g1(0) = g2(0) = 0. Then, if Ei solves

min
F

{
Pϕ(F ) +

ˆ
E△F

|gi(sdE(x))| dx+ c|F |
}
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for i = 1, 2, we have that E2 ⊆ E1. If g1 ≤ g2 instead, an analogous statement holds for the
maximal and minimal solutions.

Proof. Denote gi = gi ◦sdE for i = 1, 2 and assume by contradiction that |E2 \E1| > 0. Reasoning
as in Lemma 3.8, one gets

ˆ
E1△E

|g1|+
ˆ
E2△E

|g2| ≤
ˆ
(E1∪E2)△E

|g1|+
ˆ
(E1∩E2)△E

|g2|.

Simplifying1 the above expression and recalling that gi ≥ 0 on Ec, gi ≤ 0 on E, we reach

0 ≤
ˆ
(E2\E1)\E

(g1 − g2) +

ˆ
(E2\E1)∩E

(g1 − g2) =

ˆ
E2\E1

(g1 − g2),

which implies the contradiction. The case g1 ≤ g2 follows by approximation.

In the linear case (g = id), minimizers of FE
h,t minimize also the functional

F 7→ Pϕ(F ) +

ˆ
F

sdE/h− f([t/h]h)|F |. (3.10)

In the present setting, since
´
E
g(sdE) may be infinite in the case a < +∞, we can not draw this

conclusion straightforwardly. We can nonetheless recover the minimal and the maximal solution
to (3.8) by means of a sequence of minimizers of a functional similar to (3.10).

Corollary 3.10. Let E be a bounded set of finite perimeter and t ∈ (0,+∞), h > 0. Then, there
exists a sequence of uniformly bounded sets (En)n∈N such that En ↗ T−

h,tE and for any n ∈ N,
En is a minimizer of

F 7→ Pϕ(F ) +

ˆ
F

g

(
sdE
h

)
∨ (−n)− f([t/h]h)|F | =: FE,n

h,t (F ). (3.11)

Analogously, there exists a sequence of uniformly bounded sets (En)n∈N such that En ↘ T+
h,tE in

L1 and for any n ∈ N, En is a solution to

min

{
Pϕ(F ) +

ˆ
BR\F

g

(
sdE
h

)
∧ n− f([t/h]h)|F | : F ⊆ BR

}
, (3.12)

where T±
h,tE ⊆ BR.

Proof. We prove the statement for T−
h,tE, the other case being analogous. Assume a < +∞

(otherwise the result follows by the boundedness of T−
h,tE). We set c = f([t/h]h), gn := g(sdE/h)∨

(−n), and E′ = T−
h,tE. Consider the sequence of sets (En)n∈N, each being the minimal minimizer

of FE,n
h,t . By the same arguments recalled above, note that that there exists a constant R > 0

such that En ⊆ BR for all n ∈ N. By Lemma 3.9, the sequence En is increasing as gn ≥ gn+1

and moreover E′ ⊇ En as g ≤ gn. Therefore, one has that En ↗ Ẽ :=
⋃
nEn ⊆ E′ and also

χEn△E′ = |χEn − χE′ | → χẼ△E′ a.e. as n → ∞. By lower semicontinuity of the perimeter and

1Noting that

E1△E = ((E1 \ E2) \ E) ∪ ((E1 ∩ E2) \ E) ∪ ((E \ E1) \ E2) ∪ ((E ∩ E2) \ E1)

(E1 ∪ E2)△E = (E2 \ E1 \ E) ∪ ((E1 ∩ E2) \ E) ∪ ((E1 \ E2) \ E) ∪ ((E \ E1) \ E2)

(E1 ∩ E2)△E = ((E2 ∩ E1) \ E) ∪ ((E \ E1) \ E2) ∪ ((E ∩ E1) \ E2) ∪ ((E ∩ E2) \ E1).
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Fatou’s lemma we get

FE
h,t(Ẽ) = Pϕ(Ẽ)− c|Ẽ|+

ˆ
Ẽ△E′

|g(sdE/h)| = Pϕ(Ẽ)− c|Ẽ|+
ˆ
RN

lim inf
n→∞

(|gn|χEn△E)

≤ lim inf
n→∞

(
Pϕ(En)− c|En|+

ˆ
En△E

|gn|
)
.

Since En minimizes FE,n
h,t we get

FE
h,t(Ẽ) ≤ lim inf

n

(
Pϕ(E

′) +

ˆ
E′△E

|gn| − c|E′|
)

≤ FE
h,t(E

′), (3.13)

where in the last inequality we used that |gn| ≤ |g|. Since E′ is the minimal minimizer of FE
h,t we

conclude Ẽ = E′. The functional (3.11) is obtained from (3.7) adding
´
E
gn(sdE/h). Finally, the

functional in (3.12) is obtained from functional (3.7) adding the (finite) term −
´
BR\E g(sdE/h)∧n

and restricting the family of competitors.

We define the discrete flow starting from the initial set E0 by setting E(h)
t = E0 for t ∈ [0, h)

and iteratively
E

(h)
t = Th,t−hE

(h)
t−h, t ∈ [h,+∞). (3.14)

We now provide an estimate on the evolution speed of balls. It is interesting to note that,
in the isotropic setting (ψ = ϕ = | · |) and under the hypothesis of strict monotonicity of G, an
explicit evolution law for the radii of evolving balls can be obtained. In our more general case we
need to employ the variational proofs of [56]. By Lemma 3.7, the relevant case is when b = +∞.

Lemma 3.11. Assume b = +∞. For every R > 0 and every t ∈ (0,+∞), h > 0 it holds

T±
h,tBR ⊆ BR+ h

cψ
G(∥f∥∞).

Proof. We fix h > 0 and set c := f([t/h]h) and E′ = T±
h,tBR. Let ε > 0 and set H ⊆ RN as an

half-space containing the ball centered at 0 of radius R+ h
cψ
G(c+ ε). By the minimality of E′ we

get
ˆ
E′△BR

|g(sdBR/h)| −
ˆ
(E′∩H)△BR

|g(sdBR/h)| ≤ Pϕ(E
′ ∩H)− Pϕ(E

′) + c|E′ \H|.

By a simple computation, since BR ⊂ H we find
ˆ
E′\H

g(sdBR/h) ≤ Pϕ(E
′ ∩H)− Pϕ(E

′) + c|E′ \H| ≤ c|E′ \H| (3.15)

where in the last inequality we used that cutting sets of finite perimeter by half-spaces decreases
Pϕ. Therefore, since sdBR ≥ hG(c + ε) on E′ \ H, one concludes |E′ \ H| = 0. Thus the result
follows sending ε→ 0.

We then provide an upper bound on the evolution speed of balls in the spirit of [56]. We
remark that the significant case is a = +∞ as otherwise Lemma 3.7 yields

T±
h,tBR ⊇ BR−ah.

Lemma 3.12. Let R0 > 0 and σ > 1 be fixed. Assume a = +∞. Then, there exist a positive
constant c such that, if h > 0 is small enough, for all R ≥ R0 and t ∈ (0,+∞) it holds

T±
h,tBR ⊇ BR+ h

cψ
G(−σ cR−∥f∥∞). (3.16)

Proof. We prove the result for E := Th,tBR. Take h small enough so that Th,tB 1
4R0

̸= ∅. By
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Lemma 3.11, translation invariance and taking h small, one can see that2 BR
4
⊆ E. We set

ρ̄ = sup{r ∈ [0, R] : |Br \ E| = 0} ∈
[
R

4
, R+

h

cψ
G(∥f∥∞)

]
. (3.17)

Assume wlog ρ̄ < R. Let x̄ ∈ ∂Bρ̄ be such that |B(x̄, ε) \E| > 0 for any ε > 0. Set ρ ∈ (0, ρ̄) and
τ = (1− ρ/ρ̄)x̄ such that ∂B(τ, ρ) ∩ ∂Bρ̄ = {x̄}. Setting Bε := ((1 + ε)τ, ρ), consider the sets

W ε := Bε \ E.

Notice that by construction, for ε small, W ε has positive measure and it converges to {x} as
ε→ 0. By (2.11) with v = ∇ϕ(x/|x|) and by submodularity, we obtain

ˆ
RN

∇ϕ
(
x

|x|

)
·DχW ε =

ˆ
RN

∇ϕ
(
x

|x|

)
·
(
DχBε −DχBε∩T±

h,tBR

)

≤ Pϕ(B
ε ∩ T±

h,tBR)− Pϕ(B
ε) ≤ Pϕ(T

±
h,tBR)− Pϕ(B

ε ∪ T±
h,tBR).

(3.18)

Since E minimizes (3.10) (as a = +∞), we use its minimality on the rhs of (3.18) and the
divergence theorem on the lhs of (3.18) to arrive at

−
ˆ
W ε

div∇ϕ
(
x

|x|

)
≤ f([t/h]h)|Wε|+

ˆ
W ε

g

(
sdBR
h

)
. (3.19)

By the regularity assumptions on ϕ we remark that it holds

|div∇ϕ(p)| = |tr(∇2ϕ(p))| ≤ c

|p| .

We plug the estimate above in (3.19), divide by |W ε| and send ε→ 0 to conclude

− c

ρ
− ∥f∥∞ ≤ lim sup

s→cψ(ρ̄−R)/h

g(s).

Applying G to both sides and letting ρ→ ρ̄, we conclude

ρ̄ ≥ R+
h

cψ
G

(
− c

ρ̄
− ∥f∥∞

)
≥ R+

h

cψ
G

(
−4c

R
− ∥f∥∞

)
, (3.20)

where in the last inequality we recalled that ρ̄ ≥ R/4. Using again the previous analysis with the
bound (3.20), we show (3.16) by taking h small enough.

2.3 The scheme for unbounded sets
We now define the discrete evolution scheme for unbounded sets having compact boundary.

For every compact set K and h > 0, t ≥ 0, we will denote by T̃±
h,tK the maximal and the minimal

minimizer of F̃K
h,t, which corresponds to (3.7) with g̃(s) := −g(−s) instead of g(s) and −f instead

of f . By changing variable F̃ := F c in (3.7), we see that (T̃−
h,tK)c is the maximal solution to

min

{
Pϕ(F̃ ) +

ˆ
F̃△Kc

|g (sdKc/h)|+ f([t/h]h)|F̃ c|
}
. (3.21)

2Indeed, by translation invariance and Lemma 3.11 it holds

Th,tBR
4
+B 3

4
R ⊆ Th,tBR ⊆ BR+ch.
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Therefore, for every unbounded set E with compact boundary we define3

T±
h,tE :=

(
T̃∓
h,tE

c
)c
. (3.22)

As in the case of compact sets, we set Th,tE := T−
h,tE. Given an unbounded set E0 having compact

boundary, we define the discrete flow {E(h)
t }t≥0 as follows: E(h)

t := E0 for t ∈ [0, h) and

E
(h)
t = Th,t−hE

(h)
t−h, ∀t ∈ [h,+∞).

Since g̃ has the same properties of g, one easily checks that analogous results to Lemmas 3.11, 3.8
and 3.12 hold also for (3.22).

Lemma 3.13. Let t, h > 0. The following statements hold.

• Let F1 ⊆ F2 be unbounded sets with compact boundary. Then, Th,tF1 ⊆ Th,tF2.

• There exists c > 0 such that for every R > 0, h > 0 it holds T±
h,tB

c
R ⊇ BcR+ch.

• Let R0 > 0 and σ > 1 be fixed. Then, if a = +∞ there exist c > 0 such that for h > 0 small
enough and for all R ≥ R0, it holds

T±
h,tB

c
R ⊆ Bc

R+ h
cψ
G(−σ cR−∥f∥∞)

. (3.23)

If instead a < +∞ it holds
T±
h,tB

c
R ⊆ BcR−ah. (3.24)

Furthermore, Corollary 3.10 implies straightforwardly the following approximation result.

Corollary 3.14. Set t, h > 0 and let E be an unbounded set of finite perimeter with bounded
complement. Then, there exists two sequences of sets (En)n∈N, (E

′
n)n∈N with uniformly bounded

complement with the following property. Each (En)
c is a minimizer of (3.21) with g ∨ (−n)

substituting g, and (E′
n)
c is a minimizer of (3.21) with g∧n substituting g. Moreover En ↗ T−

h,tE

and E′
n ↘ T+

h,tE.

We now deduce an equivalent version of (3.21), which will be used in the final proof, following
[56]. Let us consider E such that Ec ⊆ BR and assume a = +∞. Recall that T±

h,tE ⊇ BcR+ch for
some c > 0 by Lemma 3.13. Adding to the functional in (3.21) the term

´
BR+ch\(T−

h,tE)c
g(sdE/h)

and restricting the family of competitors, we note that T−
h,tE is the minimal solution to

min

{
Pϕ(F̃ ) +

ˆ
F̃∩BR+ch

g (sdE/h) + f([t/h]h)|F̃ c| : F̃ c ⊆ BR+ch

}
. (3.25)

The case a < +∞ needs to be treated by approximation using Corollary 3.14. Lastly, we state
a comparison principle between bounded and unbounded sets. Its proof follows the one of [56,
Lemma 6.10], up to employing Corollary 3.14.

Lemma 3.15. Let E1 be a compact set and let E2 be an open, unbounded set with compact
boundary, and such that E1 ⊆ E2. Then, for every h ∈ (0, 1), t ≥ 0 it holds T±

h,tE1 ⊆ T±
h,tE2.

3 Main result

We now describe the discrete-in-time approximation of the viscosity solution based on the
operators T±

h,t previously defined. In this section we essentially follow [56], as done in Chapter 2.

3To justify this, one can check that if a set E is moving according to (3.2), its complement moves according to

V (x, t) = −ψ(νEc (x))G(κEc (x) + f) in the direction νEc ,

from which the incremental problem follows.
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Given a continuous function v : RN → R which is constant outside a compact set, we define
the transformation

Th,tv(x) = sup {s ∈ R : x ∈ Th,t{v ≥ s}} , (3.26)

which defines a new function on RN × [0,+∞) by setting vh(x, t) = v(x) for t ∈ [0, h) and

vh(x, t) := (Th,t−hvh(·, t− h)) (x). (3.27)

By lemmas 3.8 and 3.13, one can see that the operator Th,t maps functions into functions. More-
over, the following holds.

Lemma 3.16. Given t, h > 0, the operator Th,t defined in (3.26) satisfies the following properties:

• Th,t is monotone, meaning that u0 ≤ v0 implies Th,tu0 ≤ Th,tv0;

• Th,t is translation invariant, as for any z ∈ RN , setting τzu0(x) := u0(x − z), it holds
Th,t(τzu0) = τz(Th,tu0);

• Th,t commutes with constants, meaning Th,t(u+ c) = (Th,tu) + c for every c ∈ R.

Proof. The first assertion follows from Lemma 3.8 and 3.13. The second one follows easily em-
ploying the definition (3.26), recalling the fact that the functional defined in (3.7) is invariant
under translations and that {τzu0 ≥ λ} = {u0 ≥ λ} + z for all λ ∈ R. The last result follows
analogously.

The previous properties satisfied by the operator, in turn, preserve the continuity in space
of the initial function. Indeed, assume u0 is uniformly continuous and let ω : R+ → R+ be an
increasing, continuous modulus of continuity for u0. Then, for any s > s′ we have

{u > s}+Bω−1(s−s′) ⊆ {u > s′},

thus, by translation invariance we deduce

Th,t{u > s}+Bω−1(s−s′) ⊆ Th,t{u > s′}.

This inclusion implies that the function Th,tu0 is uniformly continuous in space, with the same
modulus of continuity ω of u0. The following lemma provides an estimate on the continuity in
time of uh. Here, equality between sets must be understood up to negligible sets.

Lemma 3.17. Fix t, h > 0 and u0 a uniformly continuous function. For all λ ∈ R it holds

Th,t{uh(·, t) > λ} = {uh(·, t+ h) > λ}, T+
h,t{uh(·, t) ≥ λ} = {uh(·, t+ h) ≥ λ}.

Proof. Given ε > 0, by definition it is easy to see that

{Th,0u0 > λ+ ε} ⊆ T±
h,0{u0 > λ} ⊆ {Th,0u0 > λ− ε}.

Passing to the limit ε→ 0, we deduce

{uh(·, h) ≥ λ} ⊆ T±
h,0{u0 > λ} ⊆ {uh(·, h) ≥ λ}.

Finally, since uh(·, h) is a continuous function, the equalities {uh(·, h) > λ} = int{uh(·, h) ≥ λ}
and {uh(·, h) ≥ λ} = {uh(·, h) ≥ λ} holds and we prove the result for t = h. The other cases
follow by iteration.

With the previous results and reasoning exactly as in [56, Lemma 6.13], we can prove that the
functions uh are uniformly continuous in time.

Lemma 3.18. For any ε > 0, there exists τ > 0 and h0 = h0(ε) > 0 such that for all |t− t′| ≤ τ
and h ≤ h0 we have |uh(·, t)− uh(·, t′)| ≤ ε.
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Thus, the family {uh}h>0 is equicontinuous and uniformly bounded as implied by Lemma 3.11.
By the Ascoli-Arzelà theorem we can pass to the limit h → 0 (up to subsequences) to conclude
that uh → u uniformly in any compact in time subset of RN × [0,+∞), with u being a uniformly
continuous function. Moreover, the function u is bounded and constant outside a compact set.

Proposition 3.19. Let T > 0. Up to a subsequence, the family {uh}h>0 converges uniformly on
RN × [0, T ] to a uniformly continuous function u, which is bounded and constant out of a compact
set.

We can thus state the main result of the present chapter.

Theorem 3.20. The function u defined in Proposition 3.19 coincides with the unique continuous
viscosity solution of the Cauchy problem (3.4).

We finally recall the notion of a level-set solution to the evolution equation (3.2) (cp. e.g.
[101]).

Definition 3.21. Given an initial bounded set E0 (or unbounded set with bounded complement)
define an uniformly continuous function u0 : RN → R such that {u0 > 0} = E0. Then, setting
u as the solution to (3.4) with initial datum u0 given by Theorem 3.20, we define the level-set
solution to the nonlinear mean curvature evolution (3.2) of E0 as

Et := {u(·, t) > 0}.

Our result, Theorem 3.20 amounts thus in showing that the discrete flow converges to the
unique level set solution to equation (3.1).

3.1 Proof of the main result
We start by an estimate on the evolution speed. For every r > 0, using the notation of

Lemma 3.12, we set

κ̂(r) = min

{
−1,

1

cψ
G
(
− c
r
− ∥f∥∞

)}

and, given r0 > 0, we set r(t) as the unique solution to
{
ṙ(t) = κ̂(r(t))

r(0) = r0.
(3.28)

Note that, in general, the solution r(t) will exist in a finite time interval [0, T ∗(r0)], where T ∗(r0)
denotes the extinction time of the solution starting from r0 i.e. the first time t such that r(t) = 0.

Lemma 3.22. Let u be the function given by Proposition 3.19 and assume that there exists λ ∈ R
such that B(x0, r0) ⊆ {u(·, t0) > λ}. Then, if a = +∞, it holds

B(x0, r(t− t0)) ⊆ {u(·, t) > λ}

for every t ≤ T ∗(r0) + t0, where r(t) is the solution to (3.28) with extinction time T ∗(r0). If
instead a < +∞ it holds

B(x0, r0 − a(t− t0)) ⊆ {u(·, t) > λ}
for all t such that r0 − a(t − t0) ≥ 0. The same result holds for sublevels substituting superlevel
sets.

Proof. The result in the case a < +∞ follows directly by Lemma 3.7, so we assume a = +∞. We
consider wlog {u(·, t0) > λ} bounded, as the other case is analogous. For a fixed R0 < r0, taking
h(R0) small enough, we can ensure that B(x0, R0) ⊆ {uh(·, t0) > λ}. We then fix σ > 1 and define
recursively the radii Rn by

Rn+1 = Rn +
h

cψ
G

(
−σCϕ

Rn
− ∥f∥∞

)
.
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By Lemmas 3.8, 3.12 and 3.17, we see that B(x0, R[(t−t0)/h]+1) ⊆ {u(·, t) > λ} for every t ≥ t0
such that R[(t−t0)/h]+1 > 0. Let then rσ be the unique solution to the ODE

{
ṙσ(t) = κ̂(rσ(t)/σ)

rσ(0) = R0.
(3.29)

Employing the monotonicity of κ̂, if rσ(t) ≤ Rn, then

rσ((n+ 1)h) ≤ Rn +

ˆ (n−1)h

nh

Ĥ

(
rσ(s)

σ

)
ds ≤ Rn +

ˆ (n−1)h

nh

Ĥ

(
Rn
σ

)
ds

≤ Rn +

ˆ (n−1)h

nh

1

cψ
G

(
−σCϕ

Rn
− ∥f∥∞

)
ds = Rn+1.

Therefore, B(x0, rσ(h[(t− t0)/h] + h) ⊆ {uh(·, t) > λ} for t ≥ t0 as long as the radius is positive.
We conclude sending h→ 0, then R0 → r0 and σ → 1.

We are now in the position to prove our main result, reasoning as in [56] (and Chapter 2).

Proof of Theorem 3.20. Consider u as defined in (3.19): we show that u is a subsolution, as proving
that it is a supersolution is analogous. Let η(x, t) be an admissible test function in z̄ := (x̄, t̄) and
assume that (x̄, t̄) is a strict maximum point for u − η. Assume furthermore that u − η = 0 in
such point.

Case 1: We assume that ∇η(z̄) ̸= 0. Firstly, in the case a < +∞ we remark that if
∂tη/ψ(∇η(ẑ)) ≤ −a, then (3.6) is trivially satisfied, thus we can assume wlog that

∂tη(z̄)

ψ(∇η(ẑ)) > −a. (3.30)

By classical arguments (recalled in Chapter 2) we can assume that each function uhk−η assumes a
local supremum in Bρ(z̄) at a point zhk =: (xk, tk) and that uhk(zhk) → u(z̄) as k → ∞. Moreover,
we can assume that ∇η(zk) ̸= 0 for k large enough.
Step 1: We define a suitable competitor for the minimality of the level sets of uh. By the previous
remarks we have that

uh(x, t) ≤ η(x, t) + ck (3.31)

where ck := uhk(xk, tk)− η(xk, tk), with equality if (x, t) = (xk, tk). Let σ > 0 and set

ησhk(x) := η(x, tk) + ck +
σ

2
|x− xk|2.

Then, for all x ∈ RN ,
uhk(x, tk) ≤ ησhk(x)

with equality if and only if x = xk. We set lk = uhk(xk, tk) = ησhk(xk). We fix ε > 0, to be chosen
later, and define Ekε := {uhk(·, tk) > lk − ε} = Thk,tk−hk {uhk(·, tk − hk) > lk − ε}4 and

W k
ε := Ekε \

{
ησhk(·) > lk + ε

}
. (3.32)

Assume that Ekε is bounded and let us define Ekε,n as the sets constructed by Corollary 3.10 where
{uhk(·, tk − hk) > lk − ε} , Ekε substitute E, T−

h,tE respectively. We thus have that Ekε,n ↗ Ekε as
n→ ∞ and that each Ekε,n is the minimal minimizer of a problem in the form (3.10). We define

W k
ε,n := Ekε,n \

{
ησhk(·) > lk + ε,

}
. (3.33)

It is easy to see that, along any subsequence n(ε) → ∞ as ε → 0, it holds W k
ε,n(ε) → {x} as

ε → 0. Furthermore, we check that for every ε, k > 0 there exists n(ε, k) large enough such that
4The choice of working with the open superlevel sets is motivated by our need to employ (3.11)
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|W k
ε,n| > 0 for all n ≥ n(ε, k). Indeed, by the continuity of ησ and since |∇η(z̄)| ̸= 0 there exists

a positive radius r such that
(B(xk, r) ∩ Ekε ) ⊆W k

ε .

Since xk ∈ Ekε and it is an open set, it holds |W k
ε | > 0. Recalling that Ekε,n → Ekε in L1, we

conclude that |W k
ε,n| > 0 for all n = n(ε, k) large enough. Note also that, for every fixed k,

n(ε, k) → ∞ as ε→ 0.
By minimality of Ekε,n we have

Pϕ(E
k
ε,n) +

ˆ
Ekε,n

g
(
sd{uhk (·,tk−hk)>lk−ε}(x)/hk

)
∨ (−n) dx− f

([
t

hk

]
hk

)
|W k

ε,n|

≤ Pϕ
(
Ekε,n ∩ {ησhk > lk}

)
+

ˆ
Ekε,n∩{ησhk>lk}

g
(
sd{uhk (·,tk−hk)>lk−ε}(x)/hk

)
∨ (−n) dx. (3.34)

Adding to both sides Pϕ
(
{ησhk > lk} ∪ Ekε,n

)
and using the submodularity of the perimeter, we

obtain

Pϕ({ησhk > lk + ε} ∪W k
ε,n)− Pϕ({ησhk > lk + ε})− f

([
t

hk

]
hk

)
|W k

ε,n|

+

ˆ
Wk
ε,n

g
(
sd{uhk (·,tk−hk)>lk−ε}(x)/hk

)
∨ (−n) dx ≤ 0.

Equation (3.31) implies {uhk(·, tk − hk) > lk − ε} ⊆ {η(·, tk − hk) > lk − ck − ε}, therefore by
monotonicity we get

Pϕ({ησhk > lk + ε} ∪W k
ε,n)− Pϕ({ησhk > lk + ε})− f

([
t

hk

]
hk

)
|W k

ε,n|

+

ˆ
Wk
ε,n

g
(
sd{η(·,tk−hk)>lk−ck−ε}(x)/hk

)
∨ (−n) dx ≤ 0.

(3.35)

If instead Ekε is an unbounded set with compact boundary, we employ (3.25) instead of (3.34) to
obtain (3.35) in the computations above. See [56] and Chapter 2 for details.
Step 2: We now estimate the terms appearing in (3.35). We start with the first two perimeter
terms Pϕ({ησhk > lk + ε} ∪W k

ε,n)− Pϕ({ησhk > lk + ε}). Reasoning as in Lemma 3.12, we use the
divergence theorem and (2.11) with the vector field v := ∇ϕ(∇ησ/|∇ησ|) to obtain

Pϕ({ησhk > lk + ε} ∪W k
ε,n)− Pϕ({ησhk ≥ lk + ε})

≥
ˆ
∂({ησhk>lk+ε}∪W

k
ε,n)

v · ν −
ˆ
∂{ησhk>lk+ε}

v · ν =

ˆ
Wk
ε,n

div v, (3.36)

where ν denotes the unit outer vector to the set we are integrating on.
The last term in (3.35) can be treated as follows. For any z ∈Wε, we have

η(z, tk) + ck +
σ

2
|z − xk|2 ≤ lk + ε. (3.37)

Since, in turn, η(z, tk) + ck > lk − ε it follows that σ|z − xk|2 < 4ε and thus, for ε small enough,

W k
ε ⊆ Bc

√
ε(xk). (3.38)

Therefore, by Hausdorff convergence it holds that for every ε, k > 0 there exists n = n(ε, k) large
enough such that

W k
ε,n ⊆ B2c

√
ε(xk). (3.39)
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On the other hand, by a Taylor expansion, for every z ∈W k
ε,n we have

η(z, tk − hk) = η(z, tk)− hk∂tη(z, tk) + h2k

ˆ 1

0

(1− s)∂2ttη(z, tk − shk) ds. (3.40)

Then, we consider y ∈ {η(·, tk −hk)(y) = lk − ck − ε} being a point of minimal ψ-distance from z,
that is, ψ(z − y) = |sd{η(·,tk−hk)(y)>lk−ck−ε}(z)|. One can prove (see Chapter 2 for details) that

|z − y| = O(hk). (3.41)

Moreover, it holds (see [56, eq (6.26)] for details)

(z − y) · ∇η(y, tk − hk)

|∇η(y, tk − hk)|
= ±ψ

( ∇η(y, tk − hk)

|∇η(y, tk − hk)|

)
distψ{η(·,tk−hk)(y)=lk−ck−ε}(z),

with a “+” if z ∈ {η(·, tk − hk)(y) ≤ lk − ck − ε} and a “-” otherwise. We get

η(z, tk − hk) = η(y, tk − hk) + (z − y) · ∇η(y, tk − hk)

+

ˆ 1

0

(1− s)
(
∇2η(y + s(z − y), tk − hk)(z − y)

)
· (z − y) ds

= lk − ck − ε− sd{η(·,tk−hk)(y)=lk−ck−ε}(z)ψ(∇η(y, tk − hk))

+

ˆ 1

0

(1− s)
(
∇2η(y + s(z − y), tk − hk)(z − y)

)
· (z − y) ds. (3.42)

Note that, in view of (3.37) it holds |η(z, tk)− η(y, tk)| ≤ cε+ chk = O(hk), provided ε≪ hk and
small enough. Thus, using also (3.39),(3.41) we deduce

1

hk
sd{η(·,tk−hk)>lk−ck−ε}(z) ≥

∂tη(z, tk)− 2ε
hk

−O(hk)−Ohk(1)

ψ(∇η(y, tk − hk))

=
∂tη(xk, tk) +O(

√
ε)− 2ε

hk
−O(hk)−Ohk(1)

ψ(∇η(xk, tk − hk)) +O(
√
ε) +O(hk)

,

and we apply g to both sides to conclude

g
(
sd{η(·,tk−hk)>lk−ck−ε}(z)/hk

)
≥ g

(
∂tη(xk, tk)−Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
(3.43)

Step 4: We conclude the proof. Combining (3.35), (3.36) and (3.43), we arrive at

0 ≥
ˆ
Wk
ε,n

div v + |W k
ε,n|

(
−f
([

t

hk

]
hk

)
+ g

(
∂tη(xk, tk)−Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
∨ (−n)

)
. (3.44)

Choosing n = n(ε, k), we can divide by |W k
ε,n(ε,k)| > 0 and apply G to both sides to get

G

(
−
 
Wk
ε,n(ε,k)

div v + f

([
t

hk

]
hk

))
≥ G

(
g

(
∂tη(xk, tk)−Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
∨ (−n(ε, k))

)
.

Let us fix k > 0 and send ε → 0 (thus also n(ε, k) → 0). Thanks to the continuity of G and
recalling also that W k

ε,n(ε,k) → {x} as ε→ 0, we arrive at

G

(
−κϕ{ησhk≥ησhk (xk)}(xk) + f

([
t

hk

]
hk

))
≥ ∂tη(xk, tk)−Ohk(1)

ψ(∇η(xk, tk)) +O(hk)
,

which finally implies the thesis by letting simultaneously σ → 0 and k → +∞.
Case 2: We assume ∇η(x̄, t̄) = 0 and prove that ∂tη(x̄, t̄) ≤ 0. The proof follows the line of

the one in [56]. We focus on the case a = +∞, the other being simpler.
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Since ∇η(z̄) = 0, there exist ℓ ∈ F and ω ∈ C∞(R) with ω′(0) = 0 such that

|η(x, t)− η(z̄)− ∂tη(z̄)(t− t̄)| ≤ ℓ(|x− x̄|) + ω(|t− t̄|)

thus, we can define

η̃(x, t) = ∂tη(z̄)(t− t̄) + 2ℓ(|x− x̄|) + 2ω(|t− t̄|)

η̃k(x, t) = η̃(x, t) +
1

k(t̄− t)
.

We remark that u− η̃ achieves a strict maximum in z̄ and the local maxima of u− η̃k in RN × [0, t̄]
are in points (xk, tk) → z̄ as k → ∞, with tn ≤ t̄. From now on, the only difference from [56] is
in the case xk = x̄ for an (unrelabeled) subsequence. We thus assume xk = x̄ for all k > 0 and
define bk = t̄− tk > 0 and the radii

rk := ℓ−1(akbk),

where ak → 0 must be chosen such that the extinction time for the solution of (3.28) satisfies
T ∗(rk) ≥ t̄− tk, for k large enough. To show that such a choice for ak is premarkible, we set

β(t) = sup
0≤s≤t

Ĥ(ℓ−1(s))ℓ′(ℓ−1(s)), (3.45)

where κ̂ is as in (3.28). Note that by Definition 3.1 it holds β(t) ≤ Ĥ(t) for t small, β is non
decreasing in t and g(t) → 0 as t→ 0. We then have

T ∗(rk)

bk
≥ 1

bk

ˆ rk

rk/2

1

κ̂(s)
ds =

1

bk

ˆ ℓ−1(akbk)

ℓ−1(akbk/2)

1

κ̂(s)
ds

=
ak
2

 akbk

akbk/2

1

κ̂(ℓ−1(r))ℓ′(ℓ−1(r))
dr ≥ ak

2

1

β(bk)
= 2, (3.46)

where in the last equality we chose ak := 4β(bk) which tends to 0 as k → ∞.
By definition of η̃k it holds

B(x̄, rk) ⊆ {η̃k(·, tk) ≤ η̃k(x̄, tk) + 2ℓ(rk)}
⊆ {u(·, tk) ≤ u(x̄, tk) + 2ℓ(rk)},

by maximality of u− η̃k at zk and since u(zk) = η̃k(zk). Since the balls B(·, rk) are not vanishing,
by Lemma 3.22 we have

x̄ ∈ {u(·, t̄) ≤ u(x̄, tk) + 2ℓ(rk)}. (3.47)

Finally, using again the maximality of u− η at z̄, the choice of rk and (3.47), we obtain

η(z̄)− η(x̄, tk)

t̄− tk
=
η(z̄)− η(x̄, tk)

bk
≤ u(z̄)− u(x̄, tk)

bk
≤ 2ℓ(rk)

bk
= 2ak.

Passing to the limit k → ∞, we conclude that ∂tη(z̄) ≤ 0.
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1 Introduction

In this chapter we analyse a space- and time-discrete approximation of crystalline mean cur-
vature flows of the form

V (x, t) = −ϕ(νE(t)(x))H
ϕ
E(t)(x), x ∈ ∂E(t), t ≥ 0, (4.1)

for a class of crystalline norms ϕ. We recall that an anisotropy ϕ is said to be crystalline if and only
if {ϕ ≤ 1} is a polytope (or equivalently, ϕ is the support function of a polytope). Moreover, in this
chapter we restrict ourselves to the case where {ϕ ≤ 1} is a zonotope with rational generators [150,
26]. The evolution law (4.1) has been considered to describe some phenomena in materials science
and crystal growth; see e.g. [115, 175]. The main result of this chapter is a convergence result of
the discrete approximation to the continuous evolution, as the time and space steps go to zero,
even in the somewhat surprising case where the space-step is greater or equal to the time-step.

From the mathematical point of view, the lack of regularity of the differential operator involved
in the definition of the crystalline curvature (see [22, 23]) is the main reason why the well-posedness
of the crystalline mean curvature flow in every dimension has been a long-standing open problem.
After some partial results (see for instance [9, 16, 21, 41, 99, 100, 103]), important breakthroughs
have been obtained simultaneously in [104, 105, 107], where a suitable crystalline theory of viscosity
solutions was developed, and with a different approach in [55, 53, 52], where a new notion of
distributional solutions was proposed.

Let us focus on the definition of distributional solutions, referring to the nice review [106] for
further information on viscosity solutions to (4.1) (we just note that the two notions are equivalent
in the present setting [52, Remark 6.1]). The exact definition of distributional solutions will be
recalled in Definition 4.1, but when ϕ is smooth it can be motivated as follows: It is known (see
for instance [173] for the isotropic case) that E(t) evolves according to (4.1) if and only if the
signed distance function d(·, t) := sdϕ

◦

E(t) to ∂E(t) induced by the polar norm1 ϕ◦, satisfies

∂td ≥ div(∇ϕ(∇d)) in {d > 0}, (4.2)
∂td ≤ div(∇ϕ(∇d)) in {d < 0} (4.3)

in the viscosity sense. The idea of the new definition introduced in [55] is to reinterpret the
equations above in the distributional sense. In particular, note that replacing ∇ϕ(∇u) by a vector
field z ∈ L∞({d > 0};RN ) such that z(x) ∈ ∂ϕ(∇d) for a.e. x, where ∂ϕ denotes the subdifferential
of ϕ, the equations (4.2), (4.3) make sense even when ϕ is crystalline. The corresponding notion of
super- and sub-solutions bears a comparison principle, which yields uniqueness of the motion up to
fattening. Existence is obtained either by a variant of the minimizing movements scheme of [8, 144]
in the spirit of [45], which consists in building a discrete-in-time evolution obtained by a recursive
minimization procedure (see [55, 52]), or by approximation with smooth anisotropies [53]. We
observe that the convergence of such time discrete approaches to a motion characterized by (4.2)-
(4.3) in the viscosity sense was shown in [129], including in the 2D crystalline setting, while
convergence in a distributional sense was established in [41] in the convex case only. Briefly, given
a time-step h > 0 and an initial closed set E0 =: Eh,0, one defines Eh,k+1 = {uh,k+1 ≤ 0}, where
uh,k+1 is defined as the minimizer of a so-called “Rudin-Osher-Fatemi” [166] problem:

uh,k+1 ∈ argmin
{ˆ

RN
ϕ(Du) +

1

2h

ˆ
RN

|u− sdϕ
◦

Eh,k
|2
}
. (4.4)

In this chapter we combine this discretization in time with a simultaneous discretization in space
for the particular class of purely crystalline anisotropies ϕ of the following form

ϕ(v) =
∑

i∈E
β(i)|i · v|, (4.5)

where β(i) > 0 and E ⊆ ZN \ {0} is a finite set of generators such that Span E = RN .
1defined by ϕ◦(x) = supϕ(ν)≤1 ν · x and which satisfies ϕ(x) = supϕ◦(x)≤1 ν · x.
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We now specify the discrete setting we are interested in, referring the reader to [30] for a more
thorough introduction to related topics. We consider an ε-spaced square lattice εZN and discrete
functions u : εZN → R, and denote ui := u(i). We observe that we could also consider a general
finite-dimensional Bravais lattice, at the expense of more tedious notation. A natural discrete
version of total variation-like energies are those appearing in Ising systems, namely energies of the
form

TV εβ (v) := εN−1
∑

i,j∈εZN
β(i/ε− j/ε)|vi − vj |, (4.6)

where β is as in (4.5) and extended to 0 in ZN \ E . Under the hypotheses above on β, the
functionals TV εβ are shown to Γ-converge2 as ε→ 0 to the total variation functional

TVϕ(v) =

ˆ
RN

ϕ(Dv)

where ϕ is as in (4.5), see e.g. [51]. It is thus natural to define a minimizing movements scheme
based on TV εβ which is the discrete counterpart of the minimizing procedure (4.4), as follows:
given E0 ⊆ RN , we define E0

ε,h = {i ∈ εZN : (i + [0, ε)N ) ∩ E0 ̸= ∅} and for every k ∈ N we let
uk+1
ε,h be such that

uk+1
ε,h ∈ argmin

{
TV εβ (v) +

1

2h

∑

i∈εZN
|vi − (sdkε,h)i|2 : v : εZN → R

}
, (4.7)

where sdkε,h denotes a suitable signed ϕ◦-distance function to Ekε,h defined on εZN . (Actually, the
energy in (4.7) is infinite and we rather consider the Euler-Lagrange equation of the problem.)
Then, one sets Ek+1

ε,h := {uk+1
ε,h ≤ 0}.

The idea is to study the asymptotic behaviour of the discrete evolutions Ekε,h as both ε, h→ 0.
Notice that a similar analysis has been performed in [28] in the planar case, for ϕ = ∥ · ∥1 and
sdkε,h the continuous signed distance function from the discrete sets Ekε,h restricted to the lattice
εZN , see also [27, 29, 31, 146, 171] for further related results. With this choice, if ε≫ h it is easy
to see that the dissipation-like term in (4.7)

1

2h

∑

i∈εZN
|vi − (sdk+1

ε,h )i|2

forces the functions ukε,h to be constant as k varies, therefore producing pinning on the moving
interfaces. Moreover, when the two scales ε, h are going to zero at the same speed it is shown in
[28] that a direct implementation of the standard scheme with the choice above for the distance,
introduces a systematic error of order ε = h at each step, which accumulates and produces a
drift in the limiting evolution. As a result, low curvature shapes remain pinned, while sets with
higher curvature evolve with a law which is a nonlinear modification of the crystalline curvature
flow (4.1). Thus, the evolution law (4.1) can be approximated with the scheme of [28] only if
ε≪ h.

In the main result of this chapter, Theorem 4.24, we show that with a new appropriate definition
of the distance sdkε,h, we can recover in the limit ε, h → 0 the actual distributional solution to
(4.1) for every initial set E0 ⊆ RN , for every purely crystalline anisotropy ϕ of the form (4.5) with
rational coefficients, in any dimension and irrespective of relative size of the space- and time-steps.
In fact, the assumption of the rational character of β can be removed in the regime ε ≤ O(h).
This is the first general rigorous convergence result for a fully discrete scheme without restrictions
on the dimension, on the initial sets and in which the spatial mesh is allowed to be of the same
order or even coarser than the time step.

Let us further comment on the analysis carried out in [28] in the planar case (see also [30]
for many more references on the topic). One important change between these older results and

2Note that we do not need to assume that the lattice generated by {ek}k=1,...,m is ZN , which is necessary to
ensure the equi-coercivity of the discrete functionals.
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those presented in this chapter is that we consider distributional solutions to the crystalline mean
curvature flow (4.1), instead of relying on the characterization of the motion via ODEs, which
dates back to [9, 16]. The latter notion of solution is indeed suited only for planar evolutions, thus
the limitation N = 2 in the past works. With the ODE definition and for ϕ = ∥ · ∥1, the authors
of [28] precisely prove the following results. If ε ≪ h then the limiting motion is consistent with
(4.1), while if h ≪ ε pinning happens for any nonempty initial data. As already mentioned, in
the critical case ε = h, the limit planar motion is not driven by (4.1), but instead by a slightly
modified nonlinear crystalline mean curvature flow, and pinning may happen for some particular
(low curvature) initial data. This striking difference with our result may be (vaguely) justified by
the following remark. While in [28], the focus is on discrete sets, we rather evolve, in accordance
with the definition of distributional solutions, the signed distance functions to the boundaries. In
this way we can effectively achieve a sub-pixel precision in our approximation, as uε,h and the
signed distance function carry more information than the evolving level set {uε,h(t) ≤ 0}. Our
new definition of the interpolated signed distance is detailed in Section 4.

The consistency result in this chapter validates the numerical experiments which we carry on
in Section 6 to illustrate our results. These experiments are derived from previous experiments
in [47], which however were using a different redistancing operation for which no consistency was
proven. Numerical schemes based on the variational approach [8, 144] have been introduced for
crystal growth [10]. Since then, there have been many attempts to implement implicit schemes
based on this approach for isotropic and anisotropic curvature flows in various settings [45, 85, 161,
164, 84], all relying on the consistency of the spatial discretization with respect to the time-discrete
scheme (hence assuming ε≪ h).

Many other techniques have been considered to simulate crystalline flows after [176, 177],
see e.g. [110, 111, 80] for the evolution of planar curves and [160, 163] for higher-dimensional
algorithms.

Let us conclude this introduction with two comments. The first one concerns the hypothesis
that ϕ is purely crystalline. It seems quite technical, as it implies that the associated interaction
function β (in the sense of (4.5)) has finite range. While this is not necessary to carry our
the existence part for the discrete minimizing movements scheme, it is essential for building a
calibration which yields a bound on the speed of Wulff shapes, see Appendix 4.A.1. In practice,
being the Wulff shape W := {ϕ◦ ≤ 1} a finite Minkowski sum of (rational) segments (which is
called a zonotope), we can effectively handcraft a calibration along the directions identified by
these segments. It is a remarkable difference between this discrete setting and the continuous one,
where instead the vector field x/ϕ◦(x) in RN is the right calibration for any anisotropy ϕ.

The second one is on possible generalizations of the present analysis to more general evolution
laws than (4.1). The more general evolution law which is shown to admit a unique distributional
solution is

V (x, t) = ψ(νE(t)(x))
(
−HϕE(t)(x) + f(x, t)

)
, x ∈ ∂E(t), t ≥ 0, (4.8)

where ψ is a norm (usually referred to as the mobility), and f is a forcing term, see [55, 52] .
We expect most of the present analysis to be valid even if ψ ̸= ϕ, under suitable compatibility
assumptions on ψ (see [55, 52] for details), and it should not be difficult to consider a driving force
f as long as it is Lipschitz in space and globally bounded, see [52] again.

2 Distributional crystalline curvature flows

We recall the distributional formulation for the crystalline mean curvature motion of sets
evolving with normal velocity (4.1) introduced in [55] (see also [52]). For the notations concerning
anisotropies, we refer to Section 2 in Chapter 2. We recall that a sequence of closed sets (Ek)k≥1

in RN converges to a closed set E in the Kuratowski sense: if the following conditions are satisfied

(i) if xk ∈ Ek for each k, any limit point of {xk} belongs to E;

(ii) for all x ∈ E there exists a sequence {xk} such that xk ∈ Ek for each k and xk → x.

We will write in this case:
Ek

K−→ E .
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One can easily verify that Ek
K−→ E if and only if (for any norm ψ) distψ(·, Ek) → distψ(·, E)

locally uniformly in RN . Hence, by Ascoli-Arzelà Theorem we have that any sequence of closed sets
admits a converging subsequence in the Kuratowski sense (possibly to ∅, when distψ(·, Ek) → +∞).

Definition 4.1. Let E0 ⊆ RN be a closed set. Let E be a closed set in RN × [0,+∞) and for
each t ≥ 0 denote E(t) := {x ∈ RN : (x, t) ∈ E}. We say that E is a superflow for (4.1) with
initial datum E0 if

(a) E(0) ⊆ E0;

(b) E(s)
K−→ E(t) as s↗ t for all t > 0;

(c) If E(t) = ∅ for some t ≥ 0, then E(s) = ∅ for all s > t.

(d) Set T ∗ := inf{t > 0 : E(s) = ∅ for s ≥ t}, and

d(x, t) := distϕ
◦
(x,E(t)) for all (x, t) ∈ RN × (0, T ∗) \ E.

Then,
∂td ≥ divz (4.9)

holds in the distributional sense in RN × (0, T ∗) \ E for a suitable z ∈ L∞(RN × (0, T ∗))
such that z ∈ ∂ϕ(∇d) a.e., divz is a Radon measure in RN × (0, T ∗) \ E, and (divz)+ ∈
L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every δ ∈ (0, 1).

We say that A, open set in RN × [0,+∞), is a subflow for (4.1) with initial datum E0 if
RN × [0,+∞) \A is a superflow for (4.1) with initial datum RN \ int

(
E0

)
.

Finally, we say that E, closed set in RN × [0,+∞), is a weak flow for (4.1) with initial datum
E0 if it is a superflow and if int(E)3 is a subflow, both with initial datum E0.

In [55] the following crucial inclusion principle between sub- and superflows is proven.

Theorem 4.2. Let E be a superflow with initial datum E0 and F be a subflow with initial datum
F0 in the sense of Definition 4.1. Assume that distϕ

◦
(E0,RN \ F 0) =: ∆ > 0. Then,

distϕ
◦(
E(t),RN \ F (t)

)
≥ ∆ for all t ≥ 0

(with the convention that distϕ
◦
(G, ∅) = distϕ

◦
(∅, G) = +∞ for any G).

We also recall the corresponding notion of sub- and supersolution to the level set flow associated
with (4.1). In what follows UC(RN ) stands for the space of uniformly continuous functions on
RN .

Definition 4.3 (Level set subsolutions and supersolutions). Let u0 ∈ UC(RN ). A lower semicon-
tinuous function u : RN × [0,+∞) → R is called a level set superflow for (4.1), with initial datum
u0, if u(·, 0) ≥ u0 and if for a.e. λ ∈ R the closed sublevel set {u(·, t) ≤ λ} is a superflow for (4.1)
in the sense of Definition 4.1, with initial datum {u0 ≤ λ}.

An upper-semicontinuous function u : RN × [0,+∞) → R is called a level set subflow for (4.1),
with initial datum u0, if −u is level set superflow in the previous sense, with initial datum −u0.

Finally, a continuous function u : RN × [0,+∞) → R is called a level set flow for (4.1) if it is
both a level set sub- and superflow.

Using Theorem 4.2, it is not difficult to deduce the following parabolic comparison principle
between level set sub- and superflows, which yields in particular the uniqueness of level set flows
(in the sense of Definition 4.3), see [52].

Theorem 4.4. Let u0, v0 ∈ UC(RN ) and let u, v be respectively a level set subflow starting from
u0 and a level set superflow starting from v0. If u0 ≤ v0, then u ≤ v.

3Here we are taking the interior with respect to RN × [0,+∞)
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We finally recall that in [55] (see also [52]) the existence of level set flows is established by
implementing a level-by-level minimizing movements scheme. This in turn yields existence and
uniqueness (up to fattening) for weak flows. This is made precise in the following statement, see
[55, Corollary 4.6] and [52, Theorem 4.8].

Theorem 4.5. Let u0 ∈ UC(RN ). Then the following holds:
(i) There exists a unique level set flow u in the sense of Definition 4.3 starting u0.
(ii) For all λ ∈ R the sets {(x, t) : u(x, t) ≤ λ} and {(x, t) : u(x, t) < λ} are respectively the

maximal superflow and minimal sublow with initial datum {u0 ≤ λ}.
(iii) For all but countably many λ ∈ R, the fattening phenomenon does not occur; that is,

{(x, t) : u(x, t) < λ} = int
(
{(x, t) : u(x, t) ≤ λ}

)
,

cl
(
{(x, t) : u(x, t) < λ}

)
= {(x, t) : u(x, t) ≤ λ} ,

(4.10)

where interior and closure are relative to space-time.
For all such λ, {(x, t) : u(x, t) ≤ λ} is the unique weak flow in the sense of Definition 4.1,

starting from {u0 ≤ λ}.
The aim of this chapter is to show that the convergence to the continuum level set flow

holds true also when the Euler implicit time discretisation is combined with a suitable spatial
discretisation procedure.

3 The discrete “Rudin-Osher-Fatemi” problem

In this part, we describe our discrete setting, and then introduce and analyse the discrete
variant (4.7) of Problem (4.4).

3.1 Discrete functions spaces and operators

For ε > 0, we define the function spaces Xε = RεZN and Yε = RεZN×εZN . Given a function
u ∈ Xε and a discrete “vector field” z ∈ Yε, with a slight abuse of notation we will denote ui = u(i)
and zij = z(i, j), i, j ∈ εZN . The discrete gradient Dε : Xε → Yε is defined, for u ∈ Xε as

(Dεu)ij =
ui − uj

ε
.

We denote its adjoint operator by D∗
ε : Yε → Xε, namely the operator such that, for η ∈ Xε

compactly supported and for z ∈ Yε, is defined as
∑

i

(D∗
εz)iηi :=

∑

ij

zij(Dεη)ij =
∑

ij

zij(ηi − ηj),

where the indexes, here and throughout the chapter, range over εZN if not otherwise stated. In
particular, taking η = χ{i}, one finds that

(D∗
εz)i =

∑

j

zij − zji
ε

, (4.11)

which can be seen as a discrete divergence operator.

3.2 Discrete ROF problem
In this section we consider the discrete anisotropic ROF problem associated with the discrete

total variation functional. Without loss of generality, we consider ε = 1 in this section, and denote
X := X1, Y := Y1 and D := D1. Given a nonnegative β ∈ X, which will be called the interaction
function, satisfying ∑

i∈ZN
β(i) =: cβ < +∞, (4.12)
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we set αij = β(i− j) and, for any u ∈ X we define

TV (u) =
∑

i,j∈ZN
αij |ui − uj | =

∑

i,j

αij |(Du)i,j |. (4.13)

We also consider the discrete perimeter Pϕ defined for every E ⊆ ZN as

Pϕ(E) := TV (χE) =
∑

i,j∈ZN
αij |χEi − χEj |.

We also consider a suitable localization of the perimeter: namely, for any set A ⊆ RN we define

Pϕ(E;A) =
∑

i∈A∩ZN or j∈A∩ZN
αij |χEi − χEj |.

Note that the quantities above may well be infinite.
Then, given g ∈ X, we consider the following problem: find a pair (u, z) ∈ X × Y such that

{
D∗z + u = g

zij(ui − uj) = αij |ui − uj |, |zij | ≤ αij ∀i, j ∈ ZN .
(4.14)

Note that the equation above is the Euler-Lagrange equation of the ROF discrete functional

ROFg(v) = TV (v) +
1

2

∑

i∈ZN
(vi − gi)

2. (4.15)

However, (4.14) makes sense also for those g such that ROFg ≡ +∞.
We will also consider the following geometric minimization problem. Given g ∈ X, find

min
F⊆ZN

Pϕ(F ) +
∑

i∈ZN
χFi gi. (4.16)

In order to deal with unbounded sets, possibly with infinite perimeter, we will consider the
following notion of global minimality with respect to compactly supported perturbations.

Definition 4.6. A set E ⊆ ZN is a global minimizer for the problem (4.16) if for every R > 0

Pϕ(E;BR) +
∑

|i|<R

χEi gi ≤ Pϕ(F ;BR) +
∑

|i|<R

χFi gi (4.17)

for every F ⊆ ZN such that F△E ⊆ BR. Here BR = {x ∈ RN : |x| < R} is the open ball of
radius R centered in the origin.

Proposition 4.7. Let g, g ∈ X such that g′ − g ≥ δ > 0. Let E,E′ be two global minimizers of
problem (4.17), in the sense of Definition 4.6, corresponding to g, g′ respectively. Then, E′ ⊆ E.

Proof. Let us denote in the following χ := χEs , χ′ := χE
′
s . For a given R > 0 we define the

competitor sets F = (Es \ BR) ∪ ((E′
s ∪ Es) ∩ BR) and F ′ = (E′

s \ BR) ∪ ((E′
s ∩ Es) ∩ BR). By
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minimality of Es, E′
s in BR one has

∑

|i|<R or |j|<R

αij |χ′
i − χ′

j |+
∑

|i|<R

g′i(χ
′
i − χ′

i ∧ χi) ≤
∑

|i|<R
|j|<R

αij |χ′
i ∧ χi − χ′

j ∧ χj | (4.18)

+
∑

|i|<R
|j|≥R

(αij + αji)|χ′
i ∧ χi − χ′

j |

∑

|i|<R or |j|<R

αij |χi − χj |+
∑

|i|<R

gi(χi − χ′
i ∨ χi) ≤

∑

|i|<R
|j|<R

αij |χ′
i ∨ χi − χ′

j ∨ χj | (4.19)

+
∑

|i|<R
|j|≥R

(αij + αji)|χ′
i ∨ χi − χj |.

Using the inequality4 |a∧ b− c∧ d|+ |a∨ b− c∨ d| ≤ |a− c|+ |b− d| and summing together (4.18)
and (4.19) we obtain

∑

|i|<R
|j|≥R

(αij + αji)
(
|χi − χj |+ |χ′

i − χ′
j |
)
+ 2

∑

|i|<R

(g′i − gi)(χ
′
i − χi)

+

≤
∑

|i|<R
|j|≥R

(αij + αji)
(
|χ′
i ∧ χi − χ′

j |+ |χ′
i ∨ χi − χj |

)
.

(4.20)

We then remark that |χ′
i ∧ χi − χ′

j | ≤ |χ′
i ∧ χi − χ′

i| + |χ′
i − χ′

j | = (χ′
i − χi)

+ + |χ′
i − χ′

j | and
analogously |χ′

i ∨ χi − χj | ≤ (χ′
i − χi)

+ + |χi − χj |. Therefore, (4.20) entails
∑

|i|<R

(g′i − gi)(χ
′
i − χi)

+ ≤
∑

|i|<R

(χ′
i − χi)

+
∑

|j|≥R

(αij + αji). (4.21)

Fix now Rδ > 0 such that ∑

|k|≥Rδ

β(k) ≤ δ

4

and define VR :=
∑

|i|<R(χ
′
i−χi)+. Assuming R > Rδ, for every ℓ < R we use (4.21) and g+δ ≤ g′

to get

δVR ≤
∑

|i|<ℓ

(χ′
i − χi)

+
∑

|j|≥R

(αij + αji) + 2cβ
∑

ℓ≤|i|<R

(χ′
i − χi)

+

≤ 2
∑

|i|<ℓ

(χ′
i − χi)

+
∑

|k|≥R−ℓ

β(k) + 2cβ(VR − Vℓ).
(4.22)

Therefore, choosing ℓ = R−Rδ in (4.22) we obtain

δ

2
VR ≤ 2cβ(VR − VR−Rδ), (4.23)

which implies that for every k, ℓ ∈ N it holds

VkRδ ≤
(
1− δ

4cβ

)ℓ
V(k+ℓ)Rδ . (4.24)

4Indeed, if a ≥ b and c ≥ d, this is an equality, while if a > b and c < d, one deduces that b− d < a− d < a− c,
b−d < b−c < a−c so that there exists t ∈ (0, 1) with a−d = t(b−d)+(1− t)(a−c), b−c = (1− t)(b−d)+ t(a−c):
the conclusion follow by convexity of | · |.
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Letting ℓ → +∞, since V(k+ℓ)Rδ = O(ℓN ), we infer that VkRδ = 0 for every k ∈ N. In particular,
this implies that (χ′ − χ)+ = 0 i.e. χ′ ≤ χ.

We now prove the following theorem.

Theorem 4.8. Given g ∈ X there exists a unique function ug ∈ X and there exists a discrete
vector field z ∈ Y such that (ug, z) is a solution to (4.14). Moreover, the following comparison
principle holds: if g ≤ g′ then ug ≤ ug

′
. Finally, for any R > 0 and s ∈ R the sublevel set

Es := {i ∈ ZN : ugi ≤ s} is a global minimizer (in the sense of Definition 4.6) for (4.16) with g
replaced by g − s.

Proof. Step 1. (Existence) For every n ∈ N set gn := gχBn and note that gn ∈ ℓ2(ZN ). Therefore,
by standard methods and by strict convexity the functional (4.15), with g replaced by gn admits
a unique minimizer un and, as previously observed, the optimality condition is the existence of a
discrete field zn such that (un, zn) solves (4.14) (with gn in place of g). Note that, for any k ∈ ZN ,
by equation (4.14) it holds

|unk | ≤ |gnk |+ |(D∗z)k| ≤ |gk|+ cβ for every n ∈ N, (4.25)

where the last inequality follows from the definition (4.11) and from |zij | ≤ αij and |gn| ≤ |g|.
Now, it is clear that we can extract a subsequence nk and find (u, z) such that unki → ui and
znkij → zij as k → +∞. Clearly we have that |zij | ≤ αij and zij(ui − uj) = αij |ui − uj | and it is
immediate to check that (u, z) satisfies equation (4.14).
Step 2. (Minimality of the sublevelsets) Let R > 0, s ∈ R and let F ⊆ ZN such that Es△F ⊆⊆
BR.We first remark that αij |χEsi −χEsj | = −zij(χEsi −χEsj ), which follows easily from the definition
of Es and zij(ui − uj) = αij |ui − uj |.

We set IR := {(i, j) ∈ ZN × ZN : |i| < R or |j| < R} and compute

Pϕ(F ;BR)− Pϕ(Es;BR) =
∑

(i,j)∈IR

αij |χFi − χFj | −
∑

(i,j)∈IR

αij |χEsi − χEsj |

≥ −
∑

(i,j)∈IR

zij(χ
F
i − χFj ) +

∑

(i,j)∈IR

zij(χ
Es
i − χEsj )

=
∑

(i,j)∈IR

zij(χ
Es
i − χFi − (χEsj − χFj ))

=
∑

ij

zij(χ
Es
i − χFi − (χEsj − χFj )),

(4.26)

where in the last equality we used the fact that χEsi = χFi if |i| ≥ R. Noting that the function
χEs − χF is compactly supported, we may use it as a test function for (4.14). Therefore, from
(4.26) we deduce

Pϕ(F ;BR)− Pϕ(Es;BR) ≥
∑

ij

zij(χ
Es
i − χFi − (χEsj − χFj ))

=
∑

i

(χEsi − χFi )(gi − ui) ≥
∑

i∈Es\F

(gi − s)−
∑

i∈F\Es

(gi − s),

which shows the minimality of Es.
Step 3. (Comparison and uniqueness for (4.14)) Assume g ≤ g′ and let (u, z), (u′, z′) two

corresponding solutions for (4.14). Let s > s′ and recall that by Step 2 {u′ ≤ s′} and {u ≤ s}
are global minimizers for (4.16) according to Definition 4.6, with g replaced by g′ − s′ and g − s
respectively. Since g′−s′−(g−s) ≥ s−s′ > 0, from Proposition 4.7 we obtain {u′ ≤ s′} ⊆ {u ≤ s}.
By the arbitrariness of s, s′ we conclude that u ≤ u′.

Remark 4.9. We remark that, given g ∈ X it clearly holds that u−g = −ug.
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4 The minimizing movements scheme

In this section we provide a combined spatial and time discretisation of the flow (4.1) for a
particular class of norms ϕ and show the convergence of the scheme to the continuum flow. In
what follows, we consider {e1, . . . , em} ⊆ ZN a finite number of integer vectors spanning the whole
RN , and set E = {±ek}mk=1. We let β ∈ X be a non-negative function such that

β(−i) = β(i) and β(i) > 0 if and only if i ∈ E .

One can naturally associate an anisotropy ϕ with the function β setting

ϕ(v) =
∑

i∈E
β(i)|i · v| =

m∑

k=1

2β(ek)|v · ek|. (4.27)

Note that, in particular, it holds

#{k ∈ ZN : β(k) ̸= 0} < +∞. (4.28)

We recall that the ϕ-perimeter associated with (4.27)

Pϕ(E) =

ˆ
∂∗E

ϕ(νE) dHN−1

(defined for every E ⊆ RN of finite perimeter) is the Γ-limit (in a suitable sense) as ε→ 0 of the
following scaled discrete perimeters

P εϕ(E) := εN−1
∑

i,j∈εZN
αεij |χEi − χEj | = εN

∑

i,j∈εZN
αεi,j |(Dεχ

E)i,j |

defined for all E ⊆ εZN , see for instance [26]. Here we have set

αεij := β

(
i

ε
− j

ε

)
. (4.29)

4.1 The discrete scheme
In this section we describe our minimizing movements scheme, discretized in both time and

space. Given ϕ a norm on RN and a closed set E ̸∈ {∅,RN}, let us recall that we denote with
sdϕ

◦

E the signed ϕ◦−distance function from E, which is defined as

sdϕ
◦

E (x) := min
y∈E

ϕ◦(x− y)−min
y/∈E

ϕ◦(x− y).

We also set sdϕ
◦

∅ ≡ +∞ and sdϕ
◦

RN ≡ −∞. We denote

Cϕ = min
i∈ZN\{0}

ϕ◦(i) > 0 (4.30)

and define the ϕ-Wulff shape WR(x) of radius R > 0 and center x ∈ RN as WR(x) = {y ∈ RN :
ϕ◦(x− y) < R}.

Recalling (4.29), we rescale equation (4.14) on the lattice εZN in the following way. We recall
that Xε = RεZN and Yε = RεZN×εZN . Given g ∈ Xε the problem (4.14) now becomes to find
(u, z) ∈ Xε × Yε satisfying

{
hD∗

εz + u = g on εZN

zij(ui − uj) = αεij |ui − uj |, |zij | ≤ αεij ,
(4.31)

where D∗
εz is defined in (4.11).
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Given u ∈ Xε we define the operators dε,ϕ
◦

± , sdε,ϕ
◦

± , sdε,ϕ
◦
: Xε → Xε in the following way:

letting E = {i ∈ εZN : ui ≤ 0}, we first define

(dε,ϕ
◦

− (u))i = sup
j∈{u≥0}

{uj − ϕ◦(i− j)} ,

(sdε,ϕ
◦

− (u))i = inf
j∈{u≤0}

{
(dε,ϕ

◦

− (u))j + ϕ◦(i− j)
}
,

(dε,ϕ
◦

+ (u))i = inf
j∈{u≤0}

{uj + ϕ◦(i− j)} ,

(sdε,ϕ
◦

+ (u))i = sup
j∈{u≥0}

{
(dε,ϕ

◦

+ (u))j − ϕ◦(i− j)
}
,

(sdε,ϕ
◦
(u))i =

1

2
(sdε,ϕ

◦

+ (u))i +
1

2
(sdε,ϕ

◦

− (u))i.

(4.32)

Note that dε,ϕ
◦

+ (u) = −dε,ϕ
◦

− (−u) and sdε,ϕ
◦

+ (u) = −sdε,ϕ
◦

− (−u).
We will say that f ∈ Xε is (L, ϕ◦)-Lipschitz if for all i, j ∈ εZN it holds |fi− fj | ≤ Lϕ◦(i− j).

Remark 4.10. We assume in what follows that u is (1, ϕ◦)-Lipschitz. Then, concerning dε,ϕ
◦

− ,

sdε,ϕ
◦

− , we remark that

dε,ϕ
◦

− (u) = min {f ∈ Xε : f ≥ u in {u ≥ 0}, f is (1, ϕ◦)-Lipschitz} , (4.33)

and analogously

sdε,ϕ
◦

− (u) = max
{
f ∈ Xε : f ≤ dε,ϕ

◦

− (u) in {u ≤ 0}, f is (1, ϕ◦)-Lipschitz
}
. (4.34)

Correspondingly it holds

dε,ϕ
◦

+ (u) = max {f ∈ Xε : f ≤ u in {u ≤ 0}, f is (1, ϕ◦)-Lipschitz} ,
sdε,ϕ

◦

+ (u) = min
{
f ∈ Xε : f ≥ dε,ϕ

◦

+ (u) in {u ≥ 0}, f is (1, ϕ◦)-Lipschitz
}
,

(4.35)

In particular, the functions dε,ϕ
◦

± (u), sdε,ϕ
◦

± (u), sdε,ϕ
◦
(u) are also (1, ϕ◦)-Lipschitz. Let us show

(4.33) the other identities being analogous. To this aim, denote by d̂ the function defined by the
right-hand side of (4.33). Since dε,ϕ

◦

− (u) is the pointwise supremum of (1, ϕ◦)-Lipschitz functions,
we clearly have that dε,ϕ

◦

− (u) is itself (1, ϕ◦)-Lipschitz. Moreover, testing with j = i in the
definition of dε,ϕ

◦

− (u), we get dε,ϕ
◦

− (u) ≥ u in {u ≥ 0}. Thus, we infer d̂ ≤ dε,ϕ
◦

− (u). For the
opposite inequality, let f be any functions as in the minimisation problem on the right-hand side
of (4.33). Then for any i ∈ εZN and j ∈ {u ≥ 0} we have

fi ≥ fj − ϕ◦(i− j) ≥ uj − ϕ◦(i− j) .

By maximising with respect to j ∈ {u ≥ 0}, we get f ≥ dε,ϕ
◦

− (u) and in turn, by the arbitrariness
of f , d̂ ≥ dε,ϕ

◦

− (u), which concludes the proof of (4.33)
Since the functions dε,ϕ

◦

± (u), sdε,ϕ
◦

± (u), sdε,ϕ
◦
(u) are (1, ϕ◦)-Lipschitz, from (4.33) it follows that

dε,ϕ
◦

− (u) ≤ u in εZN , dε,ϕ
◦

− (u) = u in {u ≥ 0}, (4.36)

while (4.34) implies that

sdε,ϕ
◦

− (u) ≥ dε,ϕ
◦

− (u) in εZN , sdε,ϕ
◦

− (u) = dε,ϕ
◦

− (u) in {u ≤ 0}. (4.37)
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Reasoning in the same way, we see that

dε,ϕ
◦

+ (u) ≥ u in εZN , dε,ϕ
◦

+ (u) = u in {u ≤ 0},
sdε,ϕ

◦

+ (u) ≤ dε,ϕ
◦

+ (u) in εZN , sdε,ϕ
◦

+ (u) = dε,ϕ
◦

+ (u) in {u ≥ 0}.
(4.38)

In particular we conclude

sdε,ϕ
◦
(u) ≥ u in {u ≥ 0}, sdε,ϕ

◦
(u) ≤ u in {u ≤ 0}. (4.39)

We remark that, always for u a (1, ϕ◦)-Lipschitz function, {u ≤ 0} = {sdε,ϕ
◦

± (u) ≤ 0} and
{u ≥ 0} = {sdε,ϕ

◦

± (u) ≥ 0}. In particular, if the level set 0 of u is “fat”, then this is preserved
by these discrete “signed distance functions”. Further properties of these discrete signed distance
functions are presented in Lemma 4.14 below and in Remark 4.18

Moreover, it follows directly from the definition of dε,ϕ
◦

± (u), sdε,ϕ
◦

± (u) that the function sdε,ϕ
◦
(u)

is invariant under integer translations, meaning that for any i, τ ∈ εZN it follows
(
sdε,ϕ

◦
(u(·+ τ))

)
i
=
(
sdε,ϕ

◦
(u)
)
i+τ

. (4.40)

Given a set E ⊆ εZN , we will denote with Ê ⊆ RN the closed set defined by

Ê := E + [0, ε]N .

We now define the discrete evolution scheme. For ease of notation we assume ε = ε(h), with ε→ 0
as h→ 0 and we will specify the dependence on h only.

Let E0 ⊆ RN be a closed set. We define Eh,0 := {i ∈ εZN : (i + [0, ε)N ) ∩ E0 ̸= ∅}. We note
that

Êh,0 → E0, Eh,0 → E0 (4.41)

as h→ 0 in the Kuratowski sense, where with a slight abuse of notation we write Êh,0 to denote
the set Êh,0 = Eh,0 + [0, ε]N .

Given a closed set E0 ⊆ RN with E0 /∈ {∅,RN}, we consider uh,0 a (1, ϕ◦)-Lipschitz function
on εZN which is negative inside Eh,0 and positive outside. For instance, we set

uh,0 :=
1

2
Cϕε(1− χEh,0)−

1

2
CϕεχEh,0 ,

where Cϕ is defined in (4.30), so that uh,0 is (1, ϕ◦)-Lipschitz. Let us set (zh,0)ij = 0 for all
i, j ∈ εZN . Then, as long as Eh,k /∈ {∅,RN}, we can iteratively define uh,k+1, zh,k+1 for k ∈ N by
solving (4.31) with g = sdε,ϕ

◦
(uh,k); i.e.,

{
hD∗

εz
h,k+1 + uh,k+1 = sdε,ϕ

◦
(uh,k) on εZN

zh,k+1
ij (uh,k+1

i − uh,k+1
j ) = αεij |uh,k+1

i − uh,k+1
j |, |zh,k+1

ij | ≤ αεij .
(4.42)

We then set
Eh,k+1 = {i ∈ εZN : uh,k+1

i ≤ 0}.
If either Eh,k = ∅ or Eh,k = RN , we define Eh,k+1 = Eh,k. We denote by T ∗

h the first discrete time
hk such that Eh,k = ∅, if any; otherwise we let T ∗

h = +∞. Analogously, we set T ′∗
h first discrete

time hk such that Eh,k = RN , if any; otherwise we let T ′∗
h = +∞.
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For ease of notation we will set

Eh(t) := Eh,[t/h] ⊆ εZN

dh(t) := sdε,ϕ
◦
(uh,[t/h]) ∈ Xε

uh(t) := uh,[t/h] ∈ Xε

zh(t) := zh,[t/h] ∈ Yε

d̂h(·, t) := sdϕ
◦

Êh(t)
∈ Lip(RN ),

(4.43)

where again, with a slight abuse of notation, Êh(t) stands for Êh(t). Note that in the definition
of d̂h(·, t) we are possibly using the convention sdϕ

◦

∅ ≡ +∞ and sdϕ
◦

RN ≡ −∞. Note also that
zh(t) is well defined only for 0 ≤ t < min{T ∗

h , T
′∗
h }; however, if needed, we can set zh(t) = 0 for

t ≥ min{T ∗
h , T

′∗
h }.

Remark 4.11. If u is the solution to (4.31) with datum (L, ϕ◦)-Lipschitz datum g, by standard
arguments, based on the comparison principle and translation invariance, one can show that u
satisfies the same Lipschitz bound of g. Indeed, given j ∈ εZN , the function u(· − j) ± Lϕ◦(j)
solves (4.31) with datum g(· − j)± Lϕ◦(j). By comparison one concludes as g(· − j)− Lϕ◦(j) ≤
g(·) ≤ g(· − j) + Lϕ◦(j).

Lemma 4.12. Let uh, Eh, dh be defined as in (4.43). Then, dh is (1, ϕ◦)-Lipschitz and satisfies
for every t ≥ 0 {

uh(t) ≤ dh(t) in εZN \ Eh(t)
uh(t) ≥ dh(t) in Eh(t).

(4.44)

Proof. It follows from Remarks 4.10 and 4.11.

Lemma 4.13. Given a (1, ϕ◦)-Lipschitz function u ∈ Xε, one has that

sup
εZN\E

|sdε,ϕ
◦

± (u)− sdϕ
◦

Ê
| ≤ cϕε, (4.45)

for a suitable positive constant cϕ, where E = {i ∈ εZN : ui ≤ 0}. Moreover,

sdε,ϕ
◦

± (u) ≥ sdϕ
◦

Ê
− cϕε in εZN . (4.46)

Proof. In this proof we let cϕ denote a positive constant which depends on ϕ and that may change
from line to line and also within the same line.

We start introducing a slightly modified definition of the discrete signed distance sdε,ϕ
◦
(u).

Namely, setting

∂+ε E := {i ∈ εZN \ E : ∃j ∈ E with ∥i− j∥∞ = ε}
∂−ε E := {i ∈ E : ∃j ∈ εZN \ E with ∥i− j∥∞ = ε}

, (4.47)

we define

d̃i =

{
inf {uj + ϕ◦(i− j) : j ∈ ∂−ε E} , for i ∈ εZN \ E
sup {uj − ϕ◦(i− j) : j ∈ ∂+ε E} for i ∈ E

. (4.48)

We start by showing that

sdε,ϕ
◦

± (u) ≥ d̃ in E,

sdε,ϕ
◦

± (u) ≤ d̃ in εZN \ E.
(4.49)

Indeed, we note that for every i ∈ E we have

(sdε,ϕ
◦

− (u))i = (dε,ϕ
◦

− (u))i = sup
j∈{u≥0}

{uj − ϕ◦(i− j)} ≥ sup
j∈∂+

ε E

{uj − ϕ◦(i− j)} = d̃i.
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On the other hand, recalling that dε,ϕ
◦

− (u) ≤ u in E, for every i ∈ εZN \ E we see

(sdε,ϕ
◦

− (u))i = inf
j∈{u≤0}

{(dε,ϕ
◦

− (u))j + ϕ◦(i− j)} ≤ inf
j∈∂−

ε E
{uj + ϕ◦(i− j)} = d̃i.

Reasoning analogously we show the same inequalities between sdε,ϕ
◦

+ and d̃ and thus prove (4.49).
Next, we prove

sup
εZN

|d̃− sdϕ
◦

Ê
| ≤ cϕε. (4.50)

Recall that by definition (4.47), since u ≤ 0 in E and u > 0 in εZN \ E and since u is (1, ϕ◦)-
Lipschitz, it holds

|uj | ≤ cϕε for j ∈ ∂±ε E.

Then, for every i ∈ εZN \ E we have

d̃i = inf
j∈∂−

ε E
{uj + ϕ◦(i− j)} ≥ inf

j∈∂−
ε E

ϕ◦(i− j)− cϕε ≥ sdϕ
◦

Ê
(i)− cϕε. (4.51)

On the other hand, by definition of sdϕ
◦

Ê
there exists x ∈ ∂Ê such that sdϕ

◦

Ê
(i) = ϕ◦(i − x). Let

k ∈ εZN be the closest point from x in ∂−ε E. We have

sdϕ
◦

Ê
(i) = ϕ◦(i− x) ≥ ϕ◦(i− k)− cϕε

≥ ϕ◦(i− k) + uk − cϕε ≥ d̃i − cϕε.
(4.52)

Finally, equation (4.51) and (4.52) imply (4.50) outside E. The other case is analogous.
We now finally prove (4.45) outside E. From (4.49) and (4.50) it holds

dε,ϕ
◦

− (u) = sdε,ϕ
◦

− (u) ≥ d̃ ≥ sdϕ
◦

Ê
− cϕε in E.

In particular, sdϕ
◦

Ê
− cϕε is an admissible competitor in (4.34), thus sdε,ϕ

◦

− (u) ≥ sdϕ
◦

Ê
− cϕε in εZN .

On the other hand, in εZN \E it holds (4.49), thus we conclude (4.45) for sdε,ϕ
◦

− (u). Concerning
sdε,ϕ

◦

+ (u), we note that by Remark 4.10 and the equation above it holds

u ≥ sdε,ϕ
◦

− (u) ≥ sdϕ
◦

Ê
− cϕε in E.

The function sdϕ
◦

Ê
− cϕε is therefore admissible in (4.35), thus by maximality

dε,ϕ
◦

+ (u) ≥ sdϕ
◦

Ê
− cϕε.

Since sdε,ϕ
◦

+ (u) = dε,ϕ
◦

+ (u) in εZN \ E we conclude (4.45), taking also into account again (4.49)
and (4.50). Finally, (4.46) follows by combining (4.45), (4.49) and (4.50).

Lemma 4.14. Given u ∈ Xε and (1, ϕ◦)-Lipschitz, it holds

sdε,ϕ
◦
(−u) = −sdε,ϕ

◦
(u). (4.53)

Furthermore, if u1, u2 ∈ Xε are (1, ϕ◦)-Lipschitz and u1 ≤ u2 then

sdε,ϕ
◦
(u1) ≤ sdε,ϕ

◦
(u2). (4.54)

Finally, for any s > 0 and u ∈ Xε and (1, ϕ◦)-Lipschitz, it holds

sdε,ϕ
◦
(u− s) ≤ sdε,ϕ

◦
(u)− s. (4.55)
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Proof. For every i ∈ εZN it holds

(dε,ϕ
◦

− (−u))i = max
j∈{(−u)≥0}

{−uj − ϕ◦(i− j)} = − min
j∈{u≤0}

{uj + ϕ◦(i− j)} = −(dε,ϕ
◦

+ (u))i.

In turn,

(sdε,ϕ
◦

− (−u))i = min
j∈{(−u)≤0}

{
(dε,ϕ

◦

− (−u))j + ϕ◦(i− j)
}

= − max
j∈{u≥0}

{
(dε,ϕ

◦

+ (u))j − ϕ◦(i− j)
}
= −(sdε,ϕ

◦

+ (u))i.

Reasoning in the same way for dε,ϕ
◦

+ , sdε,ϕ
◦

+ we arrive at

sdε,ϕ
◦

± (−u) = −sdε,ϕ
◦

∓ (u) (4.56)

and thus sdε,ϕ
◦
(−u) = −sdε,ϕ

◦
(u). The monotonicity property (4.54) follows easily from Defini-

tion (4.32). The proofs of the other results also follow from Definition (4.32), we present only the
one concerning (4.55). Fix s > 0 and u ∈ Xε be a (1, ϕ◦)-Lipschitz function. By definition of
dε,ϕ

◦

− (u) we have

(dε,ϕ
◦

− (u))i = sup
j∈{u≥0}

{uj − ϕ◦(i− j)} ≥ s+ sup
j∈{u≥s}

{(uj − s)− ϕ◦(i− j)} = (dε,ϕ
◦

− (u− s))i + s.

Analogously

(sdε,ϕ
◦

− (u))i = inf
j∈{u≤0}

{
(dε,ϕ

◦

− (u))j + ϕ◦(i− j)
}

≥ s+ inf
j∈{u≤s}

{
(dε,ϕ

◦

− (u− s))j + ϕ◦(i− j)
}
= s+ (sdε,ϕ

◦

+ (u− s))i.

Since the proofs for dε,ϕ
◦

+ (u), sdε,ϕ
◦

+ (u) are analogous, we conclude.

Remark 4.15. (Evolution of the complement) Let Eh(t), uh(t) be as in (4.43). We note that, if
F0 ⊆ RN is a closed set such that Fh,0 = εZN \ Eh,0, then the discrete evolution starting from
F0 coincides with {uh(t) ≥ 0} for every t ≥ 0. Indeed, denoting vh the discrete evolution starting
from F0, it holds by definition vh,0 = −uh,0, thus recalling (4.53) we have

sdε,ϕ
◦
(vh,0) = −sdε,ϕ

◦
(uh,0)

and, by uniqueness for (4.31) it follows that vh(h) = −uh(h). Then we can iterate to conclude.

Remark 4.16 (Comparison principle). Let E0, F0 be closed sets in RN such that Eh,0 ⊆ Fh,0

(note that this condition is satisfied if E0 ⊆ F0). Let Eh(t), Fh(t) be the corresponding discrete
evolutions and let uh(t), vh(t) be the associated functions as in (4.43). Then, for every t ≥ 0
it holds Eh(t) ⊆ Fh(t). This follows easily by iteration from the monotonicity property (4.54)
and from the comparison principle for (4.31). One in fact could also consider the “open” discrete
evolution given by E̊h(t) := {uh(t) < 0} and F̊h(t) := {vh(t) < 0}. Then, by the same argument
one also have that E̊h(t) ⊆ F̊h(t).

Remark 4.17 (Avoidance principle). Let E0, F0 ⊆ RN be closed sets such that Eh,0 ∩ Fh,0 = ∅
(which is, for example, implied by dist(E0, F0) > cϕε for a suitable cϕ > 0). Let Eh, uh and
F̊h(t), vh be the closed and open discrete evolutions starting from E0, F0 respectively (where the
open discrete evolution has been defined in Remark 4.16). Then,

F̊h(t) ⊆ εZN \ Eh(t).

Indeed, Fh,0 ⊆ εZN \ Eh,0 implies that −uh,0 ≤ vh,0 and thus by (4.53) and (4.54)

−sdε,ϕ
◦
(uh,0) = sdε,ϕ

◦
(−uh,0) ≤ sdε,ϕ

◦
(vh,0).
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By the comparison principle for (4.31) and iterating one sees that −uh(t) ≤ vh(t) for all t ≥ 0,
which implies

F̊h(t) = {vh(t) < 0} ⊆ {uh(t) > 0} = εZN \ Eh(t).

Remark 4.18. We conclude this section by observing that we could have made different choices
of the distance function, without affecting the final convergence result. In definition (4.32) we
could have set

(d<(u))i = inf
j∈{u<0}

{uj + ϕ◦(i− j)} ,

(sd<(u))i = sup
j∈{u≥0}

{
(d<(u))j − ϕ◦(i− j)

}
,

(d≤(u))i = inf
j∈{u≤0}

{uj + ϕ◦(i− j)} ,

(sd≤(u))i = sup
j∈{u>0}

{
(d<(u))j − ϕ◦(i− j)

}
.

(4.57)

One can see that sd≤(u) mimics the signed distance function to the boundary of {u ≤ 0} while
sd<(u) mimics the signed distance function to the boundary of {u < 0}. Defining the algorithm
as in (4.42) but with sd<, sd≤ replacing sdε,ϕ

◦
, adapting our proof one can conclude the same

convergence result. Let us further comment on the relation between sdε,ϕ
◦
, sd≤, sd<. One can

prove that for any (1, ϕ◦)-Lipschitz function u ∈ Xε, then

sd≤(u) ≤ sdε,ϕ
◦

− (u) ≤ sdε,ϕ
◦

+ (u) ≤ sd<(u). (4.58)

Thus, between the many possible choices we could have performed in (4.32), it turns out that sd<

is the “maximal” one, while sd≤ is the “minimal”. Indeed, let us show that sdε,ϕ
◦

− (u) ≤ sdε,ϕ
◦

+ (u).
By definition (4.32) and (4.36), (4.38) for every i ∈ {u ≥ 0} it holds

(sdε,ϕ
◦

− (u))i = inf
j∈{u≤0}

{
(dε,ϕ

◦

− (u))j + ϕ◦(i− j)
}
= inf
j∈{u≤0}

{uj + ϕ◦(i− j)} = (sdε,ϕ
◦

+ (u))i.

Reasoning analogously, for every i ∈ {u ≤ 0} it holds

(sdε,ϕ
◦

+ (u))i = sup
j∈{u≥0}

{
(dε,ϕ

◦

+ (u))j − ϕ◦(i− j)
}
= sup
j∈{u≥0}

{uj − ϕ◦(i− j)} = (sdε,ϕ
◦

− (u))i.

Furthermore, for any two (1, ϕ◦)-Lipschitz functions u, u′ ∈ Xε, if u ≤ u′ − s for s > 0 then

sd<(u) ≤ sd≤(u′)− s.

In particular, this implies that for any (1, ϕ◦)-Lipschitz function u ∈ Xε and s′ > s then

sdε,ϕ
◦
(u− s) ≤ sdε,ϕ

◦
(u− s′) + s′ − s.

Fix u0 ∈ Xε is a (1, ϕ◦)-Lipschitz function. Using the properties above and standard arguments,
one can see that for all but countably many s ∈ R the discrete evolutions starting from {u0 ≤ s}
and corresponding to the three possible choices of distances in (4.58) coincide.

4.2 Discrete evolution of Wulff shapes
In this section we provide some control on the evolution speed of discrete Wulff shapes. The

first result estimates the solution to (4.31) for the distance to the Wulff shape.

Lemma 4.19. There exists a constant C = C(ϕ) > 0 with the following property. If u is the
solution to (4.31) with g = ϕ◦, then u ≤ ϕh, where ϕh ∈ Xε is defined as

ϕhi :=

{
ϕ◦(i) + Ch

ϕ◦(i) if ϕ◦(i) ≥ C(
√
h ∨ ε)

C(
√
h ∨ ε) + Ch√

h∨ε otherwise.
(4.59)
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The proof of Lemma 4.19, based on the construction of a calibration, is postponed to Ap-
pendix 4.A.1. We now prove a useful lemma used to estimate the redistancing step in our algorithm
for functions of the form of (4.59).

Lemma 4.20. Let R ≥ δ > 0 and set

u := (ϕ◦ −R) ∨ (δ/2−R).

Then, for ε, h small enough depending on δ it holds

sdε,ϕ
◦
(u) ≤ ϕ◦ −R+ ĉε in εZN , (4.60)

for a suitable positive constant ĉ, depending on ϕ. Furthermore, if we assume (4.118), it holds

sdε,ϕ
◦
(u) ≤ ϕ◦ −R in εZN . (4.61)

Proof. By (4.58), it is sufficient to prove the claim for sdε,ϕ
◦

+ . We start showing that dε,ϕ
◦

+ (u) = u,
noting that by (4.38) it suffices to prove dε,ϕ

◦

+ (u) ≤ u in {u ≥ 0} = {ϕ◦ ≥ R}. Assuming (4.118),
given i ∈ {u ≥ 0} we note that ϕ◦(i) ≥ R thus by Lemma 4.29 there exists j ∈ WR \ WR−2εℓ1

satisfying
ϕ◦(j) + ϕ◦(i− j) = ϕ◦(i).

Taking ε = ε(δ) we can ensure that R− 2εℓ1 ≥ δ/2, so that j ∈ (WR \Wδ/2)∩ εZN . By definition
(4.57) and the equation above we conclude that

dε,ϕ
◦

+ (u) ≤ uj + ϕ◦(i− j) = ϕ◦(j)−R+ ϕ◦(i− j) = ϕ◦(i)−R,

hence we have shown that dε,ϕ
◦

+ (u) = u. Finally, from the definition (4.32) and since dε,ϕ
◦

+ (u) =

u = ϕ◦ −R on {u ≥ 0}, we conclude by the triangular inequality that sdε,ϕ
◦

+ (u) ≤ ϕ◦ −R. All in
all, we have obtained (4.61).

If instead (4.118) does not hold, using the first part of Lemma 4.29 and reasoning as above,
one concludes that

sdε,ϕ
◦

+ (u) ≤ ϕ◦ −R+ ĉε,

for a positive constant ĉ, and then the conclusion follows.

Combining the two results above we can provide a bound on the evolution speed of Wulff
shapes in the algorithm (4.42).

Proposition 4.21. Assume either ε ≤ O(h) or that (4.118) holds. For every δ > 0 there exist
ε0, h0, c0 positive constants depending on δ with the following property. If R ≥ δ, ε ≤ ε0 and
h ≤ h0, then the discrete evolution of WR defined in (4.42), denoted Wh(t), satisfies

Wh(t) ⊇ (WR−c0(t+ε)) ∩ εZN ), (4.62)

as long as R− c0(t+ ε) ≥ δ/2.

Proof. Let W̊h(t) be the open discrete evolution (see Remark 4.16) starting from the closure of
WR, for some R > 0 and let vh(t) be the associated function as in (4.43). Using the definition of
vh,0, (4.37) and the first definition in (4.32), it is easy to see that

(sdε,ϕ
◦

− (vh,0))0 = (dε,ϕ
◦

− (vh,0))0 ≤ −R+ cϕε. (4.63)

On the other hand, consider i ∈ {vh,0 ≥ 0} and let x′ ∈ ∂WR be such that

ϕ◦(i− x′) = ϕ◦(i)− ϕ◦(x′) = ϕ◦(i)−R.

Since there exists j′ ∈ {vh,0 ≤ 0} such that ϕ◦(j′ − x′) ≤ cϕε, then by triangular inequality

ϕ◦(i− j′) ≤ ϕ◦(i)−R+ cϕε.
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Thus, using again definition (4.32), we get

(dε,ϕ
◦

+ (vh,0))i ≤ inf
j∈{vh,0≤0}

ϕ◦(i− j) ≤ ϕ◦(i)−R+ cϕε,

which implies
(sdε,ϕ

◦

+ (vh,0))0 ≤ sup
j∈{vh,0≥0}

(dh,0+ (vh,0))j − ϕ◦(j) ≤ −R+ cϕε. (4.64)

Therefore, since sdε,ϕ
◦
(vh,0) is a (1, ϕ◦)-Lipschitz function, from (4.63), (4.64) we get that

sdε,ϕ
◦
(vh,0) ≤ ϕ◦ −R+ cϕε in εZN .

By comparison and Lemma 4.19 we obtain

vh(h) ≤ ϕh −R+ cϕε, (4.65)

where ϕh ∈ Xε is defined in (4.59). Considering R ≥ δ and h = h(δ), ε = ε(δ) small enough, the
equation above implies that

vh(h) ≤ (ϕ◦ −R+ c0h+ cϕε) ∨
(
δ

2
−R

)
(4.66)

where c0 = 4C/δ, with C the same as in (4.59). Assume first (4.118). From Lemma 4.20, with R
replaced by R− c0h− cϕε, we get

sdε,ϕ
◦
(vh(h)) ≤ ϕ◦ −R+ c0h+ cϕε, (4.67)

therefore by comparison and Lemma 4.19 we get

vh(2h) ≤ ϕh −R+ c0h+ cϕε,

which, reasoning as above, implies for ε(δ), h(δ) small

vh(2h) ≤ (ϕ◦ −R+ 2c0h+ cϕε) ∨
(
δ

2
−R

)
.

Hence, we can iterate the argument to conclude that

vh(t) ≤ (ϕ◦ −R+ c0t+ cϕε) ∨
(
δ

2
−R

)
, (4.68)

as long as R − c0t − cϕε ≥ δ/2 and ε, h are sufficiently small. In particular, this implies (4.62)
(possibly changing the value of c0).

If instead (4.118) does not hold and ε ≤ O(h), we obtain (4.65), (4.66) in the same way. Then,
using the first part of Lemma 4.20 we get

sdε,ϕ
◦
(vh(h)) ≤ ϕ◦ −R+ c0h+ ĉε+ cϕε, (4.69)

then iterating we get

vh(kh) ≤ (ϕ◦ −R+ kc0h+ kĉε+ cϕε) ∨
(
δ

2
−R

)
,

hence, recalling that ε ≤ O(h) we conclude (4.68) and (4.62), as long as R− c0t− cϕε ≥ δ/2, with
ε, h sufficiently small and possibly changing the value of c0.

As a corollary of the previous result, we deduce an estimate of the evolution of the distance
function d̂h at distance from the evolving boundary, which we show next.
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Corollary 4.22. Let E0 ⊆ RN be a closed set and consider the discrete evolution defined in
(4.43). Assume either that ε ≤ O(h) or that (4.118) holds. Then, for every δ > 0 there exist
c0 = c0(δ) > 0, h0 = h0(δ) > 0 and ε0 = ε0(δ) such that the following holds. If d̂h(x, t) ≥ δ, then
for s ≥ t,

d̂h(x, s) ≥ d̂h(x, t)− c0(s− t+ ε+ h) (4.70)

provided 0 < h ≤ h0, 0 < ε < ε0 and as long as d̂h(x, t) − c0(s − t + ε + h) ≥ δ/2. Similarly, if
d̂h(x, t) ≤ −δ, then for s ≥ t,

d̂h(x, s) ≤ d̂h(x, t) + c0(s− t+ ε+ h) (4.71)

provided 0 < h ≤ h0 and as long as d̂h(x, t) + c0(s− t+ ε+ h) ≤ −δ/2.

Proof. As usual, in this proof we denote by cϕ a positive constant depending on ϕ whose value
may change from line to line and also within the same line.

Assume d̂h(x, t) ≥ δ. Without loss of generality we may assume t ∈ [0, T ∗
h ) so that d̂h(x, t) is

finite. Denote by xε ∈ εZN such that x ∈ xε + [0, ε)N . Note that there exists a constant cϕ > 0

such that, setting R := d̂h(x, t) − cϕε, one has (WR(xε))
h,0 ∩ Eh(t) = ∅ and R > δ/2 (if ε, h are

sufficiently small, depending on δ). By the avoidance principle stated in Remark 4.17, we deduce
that the open discrete evolution of WR(xε), which we denote by F (τ), lies outside Eh([ th ]h + τ)
for all τ ≥ 0. By Proposition 4.21 we deduce

F (τ) ⊇ WR−c0(τ+ε)(xε) ∩ εZN , (4.72)

provided that R− c0(τ + ε) ≥ δ/2. Note that in particular

(WR−c0(τ+h+ε)(xh) ∩ εZN ) ⊆ (εZN \ Eh(t+ τ)),

as long as R− c0(τ + h+ ε) ≥ δ/2. In turn, we get

d̂h(xε, t+ τ) ≥ R− c0(τ + h+ ε), (4.73)

provided R− c0(τ + h+ ε) ≥ δ/2 (for a possibly larger value of c0). Recalling the definition of R
and xε and possibly increasing the value of c0, we infer

d̂h(x, t+ τ) ≥ d̂h(x, t)− c0(τ + h+ ε) (4.74)

as long as d̂h(x, t)− c0(τ + h+ ε) ≥ δ. The case d̂h(x, t) ≤ −δ is analogous.

5 Convergence of the scheme

We now are ready to study the convergence of the scheme as ε → 0, h → 0. Recall that we
assumed that ε = ε(h) goes to 0 as h → 0. In this section we assume that either ε ≤ O(h) or
that (4.118) holds. Let Eh(·) be the discrete evolution defined in (4.43) and recall that Êh(·) =
Eh(·) + [0, ε]N . We introduce the closed space-time tubes

E
h
:= cl

(
{(x, t) ∈ RN × [0,+∞) : x ∈ Êh(t)}

)
(4.75)

where the closure is in space-time. Then, there exist A,E open and closed (respectively) subsets
of RN × [0,+∞), with A ⊆ E, and a subsequence hk → 0 such that

E
hk K−→ E and RN × [0,+∞) \ int

(
E
hk) K−→ RN × [0,+∞) \A,

where interior, and Kuratowski convergence are meant in space-time. Let E(t) and A(t) be the
t-time slice of E and A, respectively..

Note that if E(t) = ∅ for some t ≥ 0, then (4.70) implies E(s) = ∅ for all s ≥ t so that we can
define, as in Definition 4.1, the extinction time T ∗ of E. In the same fashion one can define the
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extinction time T ′∗ of RN × [0,+∞) \ A (notice that at least one between T ∗ and T ′∗ is +∞).
Possibly extracting a further (not relabelled) subsequence and arguing exactly as in [55, Proof of
Proposition 4.4] (and relying on the bounds (4.70) and (4.71)), one can in fact show the following
result.

Proposition 4.23. There exists a countable set N ⊆ (0,+∞) such that d̂hk(·, t)+ →
distϕ

◦
(·, E(t)) and d̂hk(·, t)− → distϕ

◦
(·,RN \ A(t)) locally uniformly for all t ∈ (0,+∞) \ N .

Moreover, E and RN × [0,+∞) \A satisfy the continuity properties (b) and (c) of Definition 4.1.
In addition, if T ∗ > 0, then {d̂hk} is locally uniformly bounded in RN×(0, T ∗)\E and analogously
{d̂hk} is locally uniformly bounded in RN × (0, T ′∗) ∩ A if T ′∗ > 0. Finally, E(0) = E0 and
A(0) = int(E0).

The main result of the chapter is the following one.

Theorem 4.24. The set E is a superflow in the sense of Definition 4.1 with initial datum E0,
while A is a subflow with initial datum E0.

The proof of this result follows the main lines of the proof of [55, Theorem 4.5 ]. One important
difference with respect to the local, continuous setting is that the variable zhk is defined on the
edges (i, j) between the vertices i ∈ εZN and it is therefore unclear how to pass to the limit in
this variable to obtain the limiting vector field z(x, t). In order to do so, we associate with the
discrete vector field zhij(t) ∈ Yε a vector field zh(·, t) in RN defined as follows:

zh(x, t) :=
1

ε

∑

j∈εZN
zhij(t)(i− j), (4.76)

where i ∈ εZN is such that x ∈ i + [0, ε)N . Recall that we can take zhij(t) and thus zh(·, t)
identically zero for t ≥ min{T ∗

h , T
′∗
h }. First, we show the following:

Lemma 4.25. The vector field zh satisfies

ϕ◦(zh) ≤ 1. (4.77)

Proof. Take v ̸= 0 in RN . Recalling that ϕ(v) =
∑
ℓ∈ZN β(ℓ)|v · ℓ|, one has for any x ∈ RN and

i ∈ εZN such that x ∈ i+ [0, ε)N

zh(x, t) · v =
1

ε

∑

j∈εZN
zhij(t)(i− j) · v =

∑

ℓ∈ZN
zhi,i+εℓ(t)ℓ · v ≤ ϕ(v), (4.78)

where we used that |zhi,i+εℓ(t)| ≤ β(ℓ).

Hence, being globally bounded, this vector field is weakly-∗ compact in L∞(RN × (0, T );RN )
for any T > 0. The following lemma establishes a relationship between the divergence of its limits
and the limits of the discrete divergences of zh.

Lemma 4.26. Assume that zhk ∗
⇀ z in L∞(RN × (0, T );RN ) along a subsequence hk → 0. Then,

for every φ ∈ C∞(RN × (0, T )) and η ∈ C∞
c (RN × (0, T )) it holds

lim
k→∞


εNk

ˆ ∑

i,j∈εkZN
zhkij (t)η(i, t)

φ(i, t)− φ(j, t)

εk
dt


 =

¨
η z · ∇φ dx dt.

Proof. Let φ ∈ C∞(RN ) and η ∈ C∞
c (RN ) and denote S(t) = supp(η(t)) and Qk := [0, εk)

N . We
have

εNk
∑

i,j∈εkZN
zhkij (t)η(i, t)

φ(i, t)− φ(j, t)

εk
= εNk

∑

i,j∈εkZN

zhkij (t)

εk
η(i, t)∇φ(xij) · (i− j), (4.79)
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where xij belongs to the segment between i and j. Furthermore we have
∣∣∣∣∣∣
εNk

∑

i,j∈εkZN
zhkij (t)η(i, t)

φ(i, t)− φ(j, t)

εk
−

∑

i,j∈εkZN

zhkij (t)

εk

ˆ
i+Qk

η∇φ · (i− j) dx

∣∣∣∣∣∣

≤
∑

i,j∈εkZN

αεkij
εk

|η(i, t)|
ˆ
i+Qk

|(∇φ(xij , t)−∇φ(x, t)) · (i− j)| dx+O(εNk ) (4.80)

≤ 2∥η∥∞
∑

i∈S(t)∩εkZN

∑

j∈εkZN

αεkij
εk

ˆ
i+Qk

|(∇φ(xij , t)−∇φ(x, t)) · (i− j)| dx+O(εNk )

≤ cεNk
∑

i∈S∩εkZN

∑

j∈εkZN

αεkij + αεkji
εk

|i− j|2 +O(εNk ) (4.81)

= cεN+1
k

∑

i∈ZN
εki∈S(t)

∑

j∈ZN
αij |i− j|2 +O(εNk )

≤ cεN+1
k

(∑

ℓ∈ZN
β(ℓ)|ℓ|2

)
(#S(t) ∩ εkZN ) +O(εNk )

≤ cεk
∑

ℓ∈ZN
β(ℓ)|ℓ|2 +O(εNk ) (4.82)

where in (4.80) we used the Lipschitz property of η and (4.28), while in (4.81) we used the Lipschitz
property of ∇φ and |xij − x| ≤ (1 +

√
N)|i − j| for i ̸= j and x ∈ i + Qk, and finally in (4.82)

we used that #(S(t) ∩ εZN ) = O(ε−Nk ), which holds locally uniformly in time. Moreover, note
that the the estimate provided above is uniform as t varies in compact subsets of (0, T ). Recalling
(4.28), we conclude integrating in time and sending k → ∞.

At this point, we may proceed with the proof of Theorem 4.24.

Proof of Theorem 4.24. As usual, in this proof we denote by cϕ a positive constant depending on
ϕ whose value may change from line to line and also within the same line.

We only show that E is a superflow, as the subflow property of A can be proven analogously.
Points (a), (b) and (c) of Definition 4.1 follow from Proposition 4.23. We are left with showing
(d). Without loss of generality we may assume T ∗ > 0 (which follows from Corollary 4.22 if the
initial set is not trivial). Note also that by Proposition 4.23 we have lim infk T

∗
hk

≥ T ∗.
Step 1: (Proof of (4.9)). For (x, t) ∈ RN × (0, T ∗) \ E we set d(x, t) := distϕ

◦
(·, E(t)). By

Lemma 4.13 and Proposition 4.23 we have

sup
εkZN∩K

|dhk(t)− d(·, t)| → 0 as k → ∞ for t ∈ (0, T ∗) \ N and for any compact K ⊆ RN \ E(t).

(4.83)
Moreover, dhk and d are locally uniformly bounded in RN × (0, T ∗) \ E. Set zhk(·, t) := 0 for
t > T ∗

hk
if T ∗

hk
< T ∗. Extracting a further subsequence, if needed, and recalling Lemma 4.25, we

may assume that zhk converges weakly-∗ in L∞(RN×(0, T ∗);RN ) to some vector-field z satisfying

ϕ◦(z) ≤ 1 (4.84)

almost everywhere. Recall that by (4.44) we have uhk(t) ≤ dhk(t) in εkZN \ Ehk(t); i.e., in the
region where dhk(t) is nonnegative. Combining with (4.42) (and recalling (4.43)) we infer that for
t < T ∗

hk
it holds

−D∗
εk
zhk(t+ hk) ≤

dhk(t+ hk)− dhk(t)

hk
in εkZN \ Ehk(t). (4.85)

Consider a nonnegative test function φ ∈ C∞
c ((RN × (0, T ∗)) \ E). If k is large enough, then the
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distance of the support of φ from E
hk is bounded away from zero. In particular, dhk is finite and

positive on suppφ. We deduce from (4.85) that

εNk

ˆ ∑

i∈εkZN
φ(i, t)

(
dhki (t+ hk)− dhki (t)

hk
+ (D∗

εk
zhk(t+ hk))i

)
dt

= −εNk
ˆ ∑

i∈εkZN

φ(i, t)− φ(i, t− hk)

hk
dhki (t) dt+ εNk

ˆ ∑

i,j∈εkZN

zhkij (t+ hk)− zhkji (t+ hk)

hk
φ(i, t) dt

= −εNk
ˆ ∑

i∈εkZN

φ(i, t)− φ(i, t− hk)

hk
dhki (t) dt+ εNk

ˆ ∑

i,j∈εkZN
zhkij (t+ hk)

φ(i, t)− φ(j, t)

hk
dt ≥ 0.

(4.86)

It is easy to check that the first integral in (4.86) converges to −
˜
d ∂tφdx dt as k → ∞ thanks to

(4.83) and since dhk , d are uniformly bounded. Recalling that zhk converges weakly-∗ in L∞(RN×
(0, T ∗)) to z, we use Lemma 4.26 to conclude that the second integral in (4.86) converges to˜
z · ∇φ dx dt. We thus conclude (4.9).

Step 2: (Convergence of uhk to d). Firstly, we establish an upper bound for −D∗
εk
zhk away from

Ehk . We start by noting that definition (4.32) implies

sdε,ϕ
◦
(u) ≤ 1

2

(
(dε,ϕ

◦

− (u))j + uℓ + ϕ◦(· − j) + ϕ◦(· − ℓ)
)

in εZN \ {u ≤ 0}, (4.87)

for every (1, ϕ◦)-Lipschitz function u ∈ Xε and j, ℓ ∈ {u ≤ 0}. Therefore, specifying the inequality
above for uhk(t), by the comparison principle and Lemma 4.19 we conclude

uhki (t+ hk) ≤
1

2

(
ϕhki−j + ϕhki−ℓ + (dε,ϕ

◦

− (uhk(t))j + uhkℓ (t)
)
, ∀i ∈ εkZN \ Ehk(t), (4.88)

where j, ℓ ∈ Ehk(t). If d̂hk(i, t) ≥ R > 0, recalling the definition of ϕh, we get

uhki (t+ hk) ≤
1

2

(
ϕ◦(i− j) + ϕ◦(i− ℓ) + (dε,ϕ

◦

− (uhk(t))j + uhkℓ (t)
)
+

Chk
R− cϕε

, (4.89)

for all i ∈ εkZN \Ehk(t). Infimizing in j, ℓ over Ehk(t) in (4.89) and using again (4.32) and (4.38),
we conclude

uhki (t+ hk) ≤ dhki (t) + hk
C

R− cϕεk
≤ dhki (t) + hk

C

R
. (4.90)

provided hk, εk are small enough depending on R, and for a possibly larger value of C. As a
consequence of (4.90), we obtain

−D∗
εk
zhk(t+ hk) ≤

C

R
in {d̂hk(·, t) ≥ R} ∩ εkZN . (4.91)

Using again Lemma 4.26 and the convergences of Ehk and dhk it follows that

divz ≤ C

R
in {(x, t) ∈ RN × (0, T ∗) : d(x, t) > R}

in the sense of distributions. Hence divz is a Radon measure in RN × (0, T ∗) \ E, and (divz)+ ∈
L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every δ > 0.

On the other hand, note that for every i ∈ εkZN it holds

dhk(t) ≥ dhki (t)− ϕ◦(· − i).
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Thus, by Lemma 4.19 and by comparison as before, we get

uhki (t+ hk) ≥ dhki (t)− ϕhk0 = dhki (t)− (C + 1)
√
hk.

Combining the above inequality with (4.90), we deduce for all t ∈ (0, T ∗) \ N and any δ > 0 that

sup
{d̂hk (·,t)≥δ}∩εkZN

|uhk(t+ hk)− dhk(t)| ≤
√
hk(C + 2),

provided that k is large enough. In particular, recalling also (4.83), we deduce that

sup
εkZN∩K

|uhk(t)− d(·, t)| → 0 as k → ∞ for t ∈ (0, T ∗) \ N and for any compact K ⊆ RN \ E(t),

(4.92)
also with the sequence {uhk} locally (in space and time) uniformly bounded.
Step 3: (The subdifferential inclusion). It remains to show that

z ∈ ∂ϕ(∇d) a.e. in RN × (0, T ∗) \ E. (4.93)

Recall that ξ ∈ ∂ϕ(η) if and only if ξ ∈ {v : ϕ◦(v) ≤ 1, v · η ≥ ϕ(η)}. Since one inequality has
been proved in (4.84), we show the other one. Consider a test function η ≥ 0, η ∈ C∞

c ((RN ×
(0, T ∗)) \ E). Let σ > 0 and set dσ ∈ C∞(RN × (0, T ∗)) as dσ = d ∗ ρσ, where ρσ are space-time
mollifiers. Obviously

∑

i,j∈εkZN
zhkij (t)η(i, t)(u

hk
i (t)− uhkj (t)) =

∑

i,j∈εkZN
zhkij (t)η(i, t))(dσ(i, t)− dσ(j, t))

+
∑

i,j∈εkZN
zhkij (t)η(i, t)

(
uhki (t)− dσ(i, t)− uhkj (t) + dσ(j, t)

)
.

(4.94)

In turn, Lemma 4.26 implies that

lim
k→∞

εNk

ˆ 
 ∑

i,j∈εkZN
zhkij (t)η(i, t)

dσ(i, t)− dσ(j, t)

εk


 dt =

¨
z · ∇dσ η dx dt. (4.95)

Let us thus show that

lim
σ→0

lim
k→∞

εNk

ˆ ∑

i,j∈εkZN

(
zhkij (t)η(i, t)

uhki (t)− dσ(i, t)− uhkj (t)− dσ(j, t)

εk

)
dt = 0, (4.96)

We set for every t ∈ (0, T ∗
h ) and σ > 0

mk,σ(t) := min
i∈supp(η)∩εkZN

(uhki (t)− dσ(i, t)),

Mk,σ(t) := max
i∈supp(η)∩εkZN

(uhki (t)− dσ(i, t)).

The convergence (4.92) implies that these quantities are uniformly bounded and

lim
σ→0

lim
k→+∞

mk,σ(t) = 0, lim
σ→0

lim
k→+∞

Mk,σ(t) = 0, (4.97)
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uniformly for all t /∈ N . For all times t ∈ (0, T ∗) \ N it holds

εNk
∑

i,j∈εkZN
zhkij (t)η(i, t)

uhki (t)− dσ(i, t)− uhkj (t) + dσ(j, t)

εk

= εNk
∑

i,j∈εkZN
zhkij (t)η(i, t)

(uhki (t)− dσ(i, t)−mk,σ(t))− (uhkj (t)− dσ(j, t)−mk,σ(t))

εk

= εNk
∑

i∈εkZN
(uhki (t)− dσ(i, t)−mk,σ(t))

∑

j∈εkZN

(
zhkij (t)− zhkji (t)

εk
η(i, t) + zhkji (t)

η(i, t)− η(j, t)

εk

)
.

(4.98)

For k large enough, since the support of η is at positive distance from E, by the bound (4.91) one
has D∗

εk
zhk(t) ≥ −c(δ) on the support for hk small enough. Thus it holds

εNk
∑

i∈εkZN
(uhki (t)− dσ(i, t)−mk,σ(t))η(i, t)

∑

j∈εkZN

zhkij (t)− zhkji (t)

εk

≥ −c(δ)εNk
∑

i∈εkZN
(uhki (t)− dσ(i, t)−mk,σ(t))η(i, t).

Recalling that #(supp(η) ∩ εkZN ) = O(h−Nk ) uniformly in time, by uniform convergence and
(4.92) we conclude that

lim
σ→0

lim inf
k→∞

εNk

ˆ ∑

i∈εkZN
(uhki (t)− dσ(i, t)−mε,k(t))η(i, t)

∑

j∈εkZN

zhkij (t)− zhkji (t)

εk
dt ≥ 0. (4.99)

The other term in (4.98) can be estimated using the Lipschitz constant of η:
∣∣∣∣∣∣

ˆ ∑

i,j∈εkZN
εNk (uhki (t)− dσ(i, t)−mε,k(t))z

hk
ji (t)

η(i, t)− η(j, t)

εk
dt

∣∣∣∣∣∣

≤ ∥∇η∥∞εNk
ˆ ∑

i,j∈εkZN
(uhki (t)− dσ(i, t)−mε,k(t))α

hk
ji

|i− j|
εk

dt→ 0

letting first k → +∞ and then σ → 0, thanks to (4.92) and (4.97). Note now that adding and
subtracting Mε,k(t) to (4.96) instead of mε,k(t) and reasoning as above, one proves that

lim
σ→0

lim sup
k→∞

εNk

ˆ 
 ∑

i∈εkZN
((uhki (t)− dσ(i, t)−Mε,k(t))η(i, t)

∑

j∈εkZN

zhkij (t)− zhkji (t)

εk


 dt ≤ 0,

lim
ε→0

lim
k→∞

εNk

ˆ ∣∣∣∣∣∣
∑

i,j∈εkZN
((uhki (t)− dσ(i, t)−Mε,k(t))z

hk
ji (t)

η(i, t)− η(j, t)

εk

∣∣∣∣∣∣
dt = 0.

(4.100)

Combining (4.98), (4.99) and (4.100), we conclude (4.96).
Integrating in time (4.94) and combining (4.95) and (4.96), since ∇dσ = ρσ ∗ ∇d → ∇d

pointwise a.e. and are uniformly bounded in L∞(RN × (0, T ∗);RN ), it holds

lim
k→∞

εNk

ˆ 
 ∑

i,j∈εkZN
η(i, t) zhkij (t)

uhki (t)− uhkj (t)

εk


 dt =

¨
z · ∇d η dx dt.

The convergence above can be paired with the lower semicontinuity of the Γ-convergence of the
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discrete total variations (which follows from an adaptation of classical arguments, see e.g. [51])
and z(h)ij (u

(h)
i − u

(h)
j ) = α

(h)
ij |u(h)i − u

(h)
j | to obtain

¨
ϕ(∇d)η ≤ lim inf

k→∞
εNk

ˆ 
 ∑

i,j∈εkZN
η(i, t)αhkij

|uhki (t)− uhkj (t)|
εk


 dt

= lim inf
k→∞

εNk

ˆ 
 ∑

i,j∈εkZN
η(i, t) zhkij (t)

uhki (t)− uhkj (t)

εk


 dt =

¨
z · ∇d η,

which shows that ϕ(∇d) = z · ∇d a.e. on the support of η, from which we deduce (4.93).

We conclude this section by observing that the discrete scheme converges to the unique weak
flow (in the sense of Definition 4.1) starting from E0 for “generic” initial data E0, i.e. whenever
fattening does not occur. More precisely, we have the following Corollary.

Corollary 4.27. Let u0 ∈ UC(RN ) and for every λ ∈ R let E
h

λ be the closed space-time tube of
the h-discrete evolution starting from {u0 ≤ λ}; i.e., as in (4.75) with E0 = {u0 ≤ λ}. Then,
there exists a countable set N such that for all λ ∈ RN \ N

E
h

λ
K−→ Eλ in RN × [0,+∞)

as h→ 0, where Eλ is the unique weak flow in the sense of Definition 4.1 starting from {u0 ≤ λ}.

Proof. It follows by combining Theorems 4.24 and 4.5.

6 Numerical experiments

Figure 4.1: An initial datum and evolutions for square, octagonal and “almost isotropic” anisotropies, at
two different times.

We show some numerical experiments to illustrate our results, in dimension 2. We follow the
implementation described in [47] (see also [48]), except that now the distance is properly computed
using using the inf/sup-convolution formulas (4.32). The (exact) numerical resolution of the
discrete ROF functional is computed using Hochbaum’s parametric maximum flow algorithm [119,
120], implemented upon the maxflow/mincut implementation of Boykov and Kolmogorov [25].
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Other implementations of the algorithm yielding approximate minimizers have been considered
for instance in [45, 161], of course they work in practice and allow to address more (an)isotropies
than those considered here, yet the joint convergence as ε = h→ 0 is not clear in these contexts.
For numerical speedup, the infimum and supremum of definition (4.32) are computed only in a
neighborhood of fixed size and not on the whole grid. Similarly, the ROF minimization is only
performed in a neighborhood of the boundary. We observe that Corollary 4.30 in Appendix 4.A.2
justifies this restriction in some particular case, notably the case ϕ = ∥·∥ℓ1 , ϕ◦ = ∥·∥ℓ∞ (where ℓ1 =
1 can be chosen in Lemma 4.29), which is particularly relevant. The code is available at https://
plmlab.math.cnrs.fr/chambolle/chapters/fig/discretecrystals/ (implemented in C/C++
and running on GNU/linux with gcc).
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Figure 4.2: Wulff shapes of initial radius R0 = 50 evolved at times t = 0, 200, 400, . . . , 1200 for four
different anisotropies (square, octagon, diamond and “almost isotropic”).

Figure 4.1 shows three examples of flows from the same starting set, composed of random
shapes. The anisotropies are square (nearest neighbours interactions), octagonal (next nearest
neighbours, weighted so that the corresponding Wulff shape is a regular octagon), and “almost
isotropic”, which is generated by the interactions in the directions (0,±1), (±1, 0), (±1,±2),
(±1,±3) weighted so that the Wulff shape is a polygon with 24 facets of equal lengths.
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Figure 4.3: Evolution of the radius for the square (left) and octogonal (right) anisotropies.

Then, we estimate the decay of the radius of an initial Wulff shape WR0
= {ϕ ≤ R0} along the

evolution, up to extinction. In our experiment, R0 = 50. It is well known that the solution is the
Wulff shape of radius R(t) =

√
R2

0 − 2(N − 1)t (where here N = 2). The evolutions are depicted
in Figure 4.2. We use the same anisotropies as in figure 4.1, with additionally a “diamond” Wulff
shape generated by the directions (0,±1), (±1,±2) and with sides of equal lengths. In all cases,
the weights have been calibrated so that the perimeters of the Wulff shapes are 6.28 ≈ 2π.

The plots in Figure 4.4 show that the decay of the radii is remarkably close to the theoretical
prediction, even if this is less precise when more directions of interactions are involved, near
extinction. This might be due in part to the fact that the computation of the distance through
truncated variants of (4.32) become less precise.

Finally, we perform the same experiment with varying ε and h. We observe that the results
look remarkably close even if, at low resolution, the error becomes huge when the size of the Wulff
shape is of the order of the discretization. Figure 4.5 shows the shapes. Observe that the shape
at time t = 49 is only computed for ε = 0.1 and h = 0.1 (the shape vanishes before for the two
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Figure 4.4: Evolution of the radius for the diamond (left) and “almost isotropic” (right) anisotropies.
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Figure 4.5: Evolution of an initial octagon with R0 = 10 at times 0, 7, 14, . . . . Left: ε = 1, h = 0.1, middle:
ε = 0.1, h = 0.1, right: ε = 0.1, h = 0.5.

other experiments). On the other hand, this computation took more than one hour, while the case
ε = 1 took less than a minute and the case ε = 0.1, h = 0.5 a bit less than an hour. Figure 4.6
shows the decay of the radii, which should be

√
R2

0 − 2t for R0 = 10 and t ∈ [0, 50].
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Figure 4.6: Evolution of the radius for an initial octagon with R0 = 10 until the vanishing time t = 50.
Left: ε = 1, h = 0.1, middle: ε = 0.1, h = 0.1, right: ε = 0.1, h = 0.5.

Appendix 4.A Proof of technical lemmas

4.A.1 Proof of Lemma 4.19
We build here a supersolution to Problem (4.31) when g = ϕ◦. Let us first recall some notation

and results concerning zonotopes (see e.g. [150]). Recall that E = {±ek}mk=1 ⊆ ZN where, without
loss of generality, the vectors e1, . . . , em span the whole RN . Given a non-negative interaction
function β ∈ X, we assume that β = 0 on ZN \ E and that β(−i) = β(i) for every i ∈ ZN . The
anisotropy ϕ associated to β, as defined in (4.5), is such that its 1-Wulff shape W1 ⊆ RN is a
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zonotope, which can be expressed as the Minkowski sum

W1 =
∑

e∈E
β(e)(−e, e) =

m∑

k=1

2β(ek)(−ek, ek).

Alternatively, one can define the zonotope W1 as the image of a cube under an affine map. Indeed,
it holds

W1 = V (Q(m)) (4.101)

where V = (2β(e1)e1, . . . , 2β(em)em) ∈ RN×m and Q(m) = (−1, 1)m. Since the set E is uniquely
defined up to sign changes, the matrix V is also uniquely detemined up to permutations of columns
or sign changes.

Note that by definition of zonotope any element x ∈ Wℓ for ℓ > 0 can be written as

x = ℓ

m∑

k=1

2β(ek)λkek,

for suitable coefficients |λk| ≤ 1. We note that (the closure of) a facet F (of non-zero dimension)
of the zonotope Wℓ can be described in the following form:

F = ℓ

r∑

j=1

2β(eσ(j))[−eσ(j), eσ(j)] + ℓ

m∑

j=r+1

2β(eσ(j))εσ(j)eσ(j), (4.102)

where σ is a permutation of {1, . . . ,m}, 1 ≤ r ≤ m and |εj | = 1. Moreover (see [150, page 206]
for details) the vectors eσ(1), . . . , eσ(r) uniquely identify

{e ∈ E : e ∥ F},

and r is uniquely defined as the number of vectors in the family E which are parallel to the facet
F . Analogously, any vertex v of the zonotope Wℓ is of the form

v = ℓ

m∑

j=1

2β(eσ(j))εσ(j)eσ(j), (4.103)

where εj ∈ {±1} for every j = 1, . . . ,m and σ is a permutation of {1, . . . ,m}. Note however that
not every point of this form is a vertex of the zonotope.

Lemma 4.28. There exists ℓ0 > 0 such that for every ε > 0 and every ℓ ≥ ℓ0, if i ∈ εZN belongs
to ∂Wεℓ, then for each k ∈ {1, . . . ,m} either one of the following holds:

i) neither i+ εek nor i− εek belong to ∂Wεℓ. In this case it holds either ϕ◦(i+ εek) > ϕ◦(i) >
ϕ◦(i− εek) or ϕ◦(i− εek) > ϕ◦(i) > ϕ◦(i+ εek);

ii) one between i± εek belongs to ∂Wεℓ. In this case ϕ◦(i± εek) ≥ ℓ and it holds

#((i+ εZek) ∩ ∂Wεℓ) ≥ 2[ℓ/ℓ0]. (4.104)

Proof. By scaling, it suffices to prove the result in the case ε = 1. We take ℓ0 such that

ℓ0 ≥ max
k=1,...,m

1

2β(ek)
(4.105)

and remark that ℓ0 ∈ (0,+∞). Note that the choice (4.105) implies for every j = 1, . . . ,m that

|(−2ℓβ(ej)ej , 2ℓβ(ej)ej)| = 4ℓβ(ej)|ej | ≥ 2
ℓ

ℓ0
|ej |.

We then fix i ∈ ∂Wℓ ∩ ZN and ek ∈ E . We have to distinguish two cases.
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Case 1. There exists a facet F ∋ i of Wℓ such that ek ∥ F . By (4.102) we then see that

i ∈ 2ℓβ(ek)[−ek, ek] + j,

where j ∈ F . This implies in particular that {n ∈ Z : i+ nek ∈ F} is an interval of Z containing
0. Furthermore, by the assumption (4.105), it contains at least [2ℓ|ek|/ℓ0] points and we conclude
(4.104). Since i and one between i± ek belong to ∂Wℓ, then ϕ◦(i± ek) ≥ ℓ by convexity.
Case 2. For every facet F ∋ i of Wℓ it holds ek ∦ F . Let us fix a facet F ∋ i and note that by
(4.102) and up to relabelling the indexes, it holds

i ∈ ℓ

r∑

j=1

2β(ej)[−ej , ej ] + ℓ

m∑

j=r+1

2β(ej)εjej ,

with k > r and |εj | = 1 for j = r + 1, . . . ,m. Recalling (4.101), we see that

i− εkek = ℓV (y − εk
ℓβ(ek)

ẽk),

where ẽ1, . . . ẽm denotes the canonical base of Rm and y ∈∑r
j=1[−ẽj , ẽj ]+

∑m
j=r+1 εj ẽj ⊆ ∂Q(m).

By the choice (4.105) and since k > r, one deduces that y − εk
ℓβ(ek)

ẽk ∈ Q(m), thus i− εkek ∈ Wℓ.
Since then ek ∦ F for any facet containing i, it must hold ϕ◦(i − εkek) < ℓ. By convexity one
easily concludes that ϕ◦(i+ εkek) > ℓ, which shows i).

We now define a calibration zij for every (i, j) ∈
(
{ϕ◦ > εℓ0} ∩ εZN

)
× εZN . Fix i ∈ εZN with

ϕ◦(i) > εℓ0. In the following we write i ∼ j if i−j
ε ∈ E . We start defining

zij =





0 if j ̸∼ i

−β(ek) if j = i± εek and ϕ◦(j) > ϕ◦(i)

β(ek) if j = i± εek and ϕ◦(j) < ϕ◦(i).

(4.106)

In particular, this definition covers case i) in Lemma 4.28. Assume then that there exists j ∼ i
with ϕ◦(j) = ϕ◦(i) and j−i

ε = ek ∈ E . Since i ∈ εZN and ek ∈ E fall in case ii) of Lemma 4.28,
there exists an interval [−n, n̄] ∩ Z for n, n̄ ∈ N such that

(i+ εZek) ∩ ∂Wϕ◦

ϕ◦(i) = i+ ([−n, n̄] ∩ Z)εek

and moreover
#([−n, n̄] ∩ Z) ≥ 2[ϕ◦(i)/(εℓ0)]. (4.107)

Thus, we define zij as a linear interpolation of the values assumed at the extremal points of
i+ [−n, n̄]εek as

zi+tεek,i+(t+1)εek := β(ek)

(
1− 2

t+ n+ 1

n+ n̄+ 1

)
∀t ∈ [−n− 1, n̄] ∩ Z,

zi+tεek,i+(t−1)εek := β(ek)

(
1− 2

−t+ n+ 1

n+ n̄+ 1

)
∀t ∈ [−n, n̄+ 1] ∩ Z.

(4.108)

By definition one easily sees that

|zij | ≤ αεij , zij(ϕ
◦(i)− ϕ◦(j)) = αεij |ϕ◦(i)− ϕ◦(j)|. (4.109)

We now show how to bound the divergence (D∗
εz)i. Assume that ϕ◦(i + εek) = ϕ◦(i) or that

ϕ◦(i− εek) = ϕ◦(i). Then by definition (4.108) and by (4.107) one deduces

zi,i+εek + zi,i−εek − zi+εek,i − zi−εek,i = − 4β(ek)

n+ n̄+ 1
≥ − 2β(ek)

[ϕ◦(i)/(εℓ0)]
≥ − Cε

ϕ◦(i)
, (4.110)
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and similarly if ϕ◦(i− εek) = ϕ◦(i). If instead ϕ◦(i± εek) ̸= ϕ◦(i) and ϕ◦(i± εek) ≥ εℓ0, one sees
that

zi,i+εek + zi,i−εek = 0 and zi+εek,i + zi−εek,i = 0 (4.111)

Combining (4.110) and (4.111) and recalling (4.28) we conclude that if ϕ◦(i) ≥ ℓ1ε then

h(D∗
εz)i ≥ − cϕh

ϕ◦(i)
(4.112)

for a suitable positive constant cϕ depending on ϕ.
We now illustrate a procedure that allows to extend the calibration above to εZN × εZN . We

set C > 1 a sufficiently big constant and define a function v ∈ Xε setting

v :=




ϕ◦ +

Ch

ϕ◦
on {ϕ◦ ≥ C(

√
h ∨ ε)} ∩ εZN

C(
√
h ∨ ε) + h√

h∨ε on {ϕ◦ < C(
√
h ∨ ε)} ∩ εZN

. (4.113)

A calibration w ∈ Yε can be defined setting for i, j ∈ εZN

wij :=

{
zij if ϕ◦(i) ≥ 2

√
C(

√
h ∨ ε)

−αεij if ϕ◦(i) < 2
√
C(

√
h ∨ ε) . (4.114)

Since x 7→ x + Chx−1 is strictly monotone in the region {x ≥
√
Ch}, we can employ (4.109) to

prove that, for every i, j ∈ εZN with ϕ◦(i) ≥ C(
√
h ∨ ε), it holds

wij(vi − vj) = αεij |vi − vj |, |wij | ≤ αεij . (4.115)

Moreover, taking C large enough ensures that whenever j ∼ i, then

ϕ◦(i) ≤ 2
√
C(

√
h ∨ ε) =⇒ ϕ◦(j) ≤ C(

√
h ∨ ε)

ϕ◦(i) ≥ 2
√
C(

√
h ∨ ε) =⇒ ϕ◦(j) ≥

√
C(

√
h ∨ ε)

. (4.116)

Thus, equation (4.115) can be directly checked in the case ϕ◦(i) ≤ 2
√
C(

√
h∨ε) using the definition

(4.114).
Note now that definition (4.114) implies D∗

εw = 0 in the region {ϕ◦ < 2
√
C(

√
h ∨ ε)} thus we

assume ϕ◦(i) ≥ 2
√
C(

√
h ∨ ε) and estimate (D∗

εw)i. If ϕ◦(i − εek) < 2
√
C(

√
h ∨ ε) by convexity

ϕ◦(i+ εek) > 2
√
C(

√
h ∨ ε), thus by definition (4.114) we get

zi,i+εek − zi+εek,i + zi,i−εek − zi−εek,i = −β(ek)− β(ek) + β(ek)− (−β(ek)) = 0.

The symmetric case is analogous. On the other hand, if every j ∼ i is in {ϕ◦ ≥ 2
√
C(

√
h ∨ ε)}

equation (4.112) holds. Therefore, we have shown

hD∗
εw ≥ −cϕh

ϕ◦
χ{ϕ◦≥

√
C(

√
h∨ε)}. (4.117)

By a direct computation, using (4.117) and assuming the C > cϕ, we see that the pair (v, w)
defined above satisfies

{
hD∗

εw + v ≥ ϕ◦

wij(vi − vj) = αεij |vi − vj |, |wij | ≤ αεij .

Recalling the comparison result in Theorem 4.8, we conclude that the solution u to (4.14) satisfies
u ≤ v in εZN .
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4.A.2 A remark on the inf/sup-convolution formulas (4.32)
In this section we show that in some particular cases, the inf, sup in the definition (4.32) can

be replaced by min,max and that this minimization/maximization procedure can be made in a
fixed neighborhood of the point considered. Yet, our proof also shows that this neighborhood
can become very large, depending on the weights of the interaction, and it seems that we cannot
expect in general cases that the min,max are actually reached.

We assume here that ϕ satisfies the following assumption. There exists ℓϕ > 0 such that for
every εk ∈ {0,±1} for k = 1, . . . ,m, there exists ℓ ≤ ℓϕ such that

ℓ

m∑

k=1

2β(ek)εkek ∈ ZN . (4.118)

Note that this condition is satisfied if and only if β(ek) ∈ Q for all k = 1, . . . ,m.

Lemma 4.29. There exists ℓ1 > 0 with the following property. For any i ∈ εZN with ϕ◦(i) ≥ εℓ1
there exists j ∈ εZN \ {0} with ϕ◦(j) < ϕ◦(i) and satisfying

ϕ◦(i) ≥ ϕ◦(j) + ϕ◦(i− j)− cϕε. (4.119)

If (4.118) holds, for any i ∈ εZN with ϕ◦(i) ≥ 2εℓ1 there exists j ∈ (Wεℓ1 \ {0}) ∩ εZN such that

ϕ◦(i) = ϕ◦(j) + ϕ◦(i− j). (4.120)

Moreover, for every R ∈ (2εℓ1, ϕ
◦(i)) there exists j ∈ WR \WR−2εℓ1 such that (4.120) holds.

Proof. By scaling we prove the result in the case ε = 1. Given i ∈ ZN \ {0}, inequality (4.119)
follows easily choosing ℓ1 ≥ 2, considering σi ∈ RN \ {0} for an appropriate σ ∈ (0, 1) and j ∈ ZN
so that σi ∈ (j + [0, 1]N ).

We now assume (4.118) and denote by ℓϕ the radius associated to ϕ. We then choose ℓ1 = ℓϕ.
Let us fix i ∈ ZN with ϕ◦(i) = ℓ ≥ 2ℓ1. By (4.102) there exist r > 0, εk, λk with |εk| = 1 and
|λk| < 1 such that

i = ℓ

(
r∑

k=1

2β(ek)εkek +

m∑

k=r+1

λk2β(ek)ek

)
.

Let us denote the point

v =

r∑

k=1

2β(ek)εkek ∈ ∂W1,

and define the function sign by sign(x) = x/|x| if x ̸= 0 and 0 otherwise. For any ℓ′ ≤ ℓϕ we
rewrite i as follows

i = ℓ′

(
v +

m∑

k=r+1

2β(ek)sign(λk)ek

)
+ (ℓ− ℓ′)

(
v +

m∑

k=r+1

2β(ek)

(
ℓ

ℓ− ℓ′
λk −

ℓ′

ℓ− ℓ′
sign(λk)

)
ek

)

=: ℓ′w + (ℓ− ℓ′)

(
v +

m∑

k=r+1

2β(ek)λ
′
kek

)
.

Notice that, since ℓ ≥ 2ℓ′ and |λk| ≤ 1 it holds |λ′k| ≤ 1, thus by formula (4.102) we get

v +

m∑

k=r+1

2β(ek)λ
′
kek ∈ ∂W1

and therefore ϕ◦(i − ℓ′w) = ℓ − ℓ′. We conclude noting that by the hypothesis (4.118) we can
choose ℓ′ ≤ ℓ1 so that ℓ′w ∈ ZN , which implies (4.120) since ϕ◦(ℓ′w) = ℓ′.

We now prove the last assertion. Since ϕ◦(i) ≥ 2ℓ1, by the previous result there exists j0 ∈
(Wℓ1 \ {0}) so that ϕ◦(i) = ϕ◦(j0)+ϕ

◦(i− j0). Now, if R− 2ℓ1 ≤ ϕ◦(j0) we conclude. If not, then
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ϕ◦(i− j0) ≥ 2ℓ1 by (4.120), and thus we can find k0 ∈ (Wℓ1 \ {0}) so that

ϕ◦(i− j0) = ϕ◦(k0) + ϕ◦(i− j0 − k0). (4.121)

Denoting j1 = j0 + k0, on one hand (4.121) implies

ϕ◦(i) = ϕ◦(j0) + ϕ◦(j1 − j0) + ϕ◦(i− j1) ≥ ϕ◦(j1) + ϕ◦(i− j1) (4.122)

thus equality holds instead. If ϕ◦(j1) ≥ R− 2ℓ1 we conclude, if not (4.122) yields ϕ◦(i− j1) ≥ 2ℓ1
and we can iterate. Recalling that ϕ◦ ≥ cϕ > 0 on εZN \ {0}, it is clear that after a finite number
of iterations the process stops, and one can check that the required properties are satisfied.

By the previous lemma it is easy to prove the following result.

Corollary 4.30. Let u ∈ X be a (1, ϕ)-Lipschitz function and ℓ1 as in Lemma 4.29. Then, for
all i ∈ εZN it holds

sup
j∈{u≥0}

{uj − ϕ◦(i− j)} = max
j∈{u≥0}

{uj − ϕ◦(i− j)} .

In addition, if i ∈ {u ≤ 0}, the maximum is reached in a point in ({u ≤ 0}+W2εℓ1) ∩ εZN .

Proof. It is enough to consider i ∈ {u < 0}∩εZN . Let us denote F = ({u ≤ 0}+W2εℓ1)∩{u > 0}.
Firstly, by a variant of the argument by iteration employed in the proof of Lemma 4.29, one can
prove that

sup
j∈{u≥0}

{uj − ϕ◦(i− j)} = sup
j∈F

{uj − ϕ◦(i− j)} . (4.123)

On the other hand, take a point j0 ∈ {u > 0}. If j ∈ F satisfies uj − ϕ◦(i− j) ≥ uj0 − ϕ◦(i− j0),
since u ≤ 2εℓ1 in F (as u is (1, ϕ◦)-Lipschitz) we obtain

2εℓ1 + ϕ◦(i− j0) ≥ ϕ◦(i− j),

which implies that the sup in (4.123) is indeed a max.

Appendix 4.B Extension to the isotropic case

In this appendix we show a modification of the algorithm proposed in this chapter tailored to
the isotropic case.

4.B.1 Definition of the Algorithm and Main Result.
Given u ∈ Xε, we consider the discrete Laplacian operator

(∆εu)i :=
1

ε2

N∑

n=1

(ui+εen − 2ui + ui−εen) =
1

ε2

N∑

n=1

(ui+εen + ui−εen)−
2N

ε2
ui.

We also consider the redistancing operator sdε,ϕ
◦

defined in (4.32), for the particular choice ϕ =

ϕ◦ = | · | In the following, we write sdε(u) := sdε,|·|(u), and for ease of notation we drop the
argument whenever clear from the context.
We modify the algorithm proposed in (4.43)in the following way. Given a set E0 ⊆ RN , we let
u0,ε = sd0,ε = d0,ε be a 1-Lipschitz function on εZN , such that sd0,ε

i ≤ 0 for any i ∈ E0 ∩ εZN ,
and it is positive elsewhere. Then, we define for all k:

uk+1,ε
i = dk,εi + h(∆εd

k,ε)i,

dk+1,ε = sdε(uk+1,ε).
(4.124)
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We set Eε(t) = {u[
t
h ],ε
i < 0}. Note that if we choose h ∈ (0, ε

2

2N ] and let θ = 2Nh
ε2 ≤ 1, (4.124)

becomes:

uk+1
i = (1− θ)dk,εi +

θ

2N

N∑

n=1

(
dk,εi+εen + dk,εi−εen

)
,

where (en)
N
n=1 is the canonical basis of RN (ZN ). In particular, this ensures that uk+1,ε

i is 1-
Lipschitz as a convex combination of 1-Lipschitz functions.

Moreover, from Lemma 4.44 we see that where uk+1,ε ≥ 0 (that is, where dk+1,ε ≥ 0), then

dk+1,ε
i − dk,εi

h
≥ 1

ε2
(∆εd

k,ε)i, (4.125)

while where uk+1,ε
i < 0 (i.e. dk+1,ε

i < 0), it holds

dk+1,ε
i − dk,εi

h
≤ 1

ε2
(∆εd

k,ε)i. (4.126)

It is thus reasonable to expect that this scheme approximates weak solutions to the (isotropic)
mean curvature flow as defined in Definition 4.1. Indeed, we can show the following.

Theorem 4.31. As ε→ 0, the function (dε(t)i), defined for t ≥ 0 and i ∈ εZN by dε(t)i = d
[t/h],ε
i ,

converge up to subsequences, for almost all time and locally uniformly in space to a function d(x, t)
such that d+ = max{d, 0} is the distance function to a supersolution to the (generalized) mean
curvature flow starting from E0, and d− is the distance function to a supersolution starting from
εZN \ E0. In particular, if the mean curvature flow E(t) starting from E0 is unique, then dε(t)
converges to the signed distance function to E(t), up to extinction.

Here, by generalized solution, we mean a solution in the viscosity sense [64], as defined in [87,
20, 19, 173] (see also Chapter 2), or, equivalently, in the distributional sense as in Definition 4.1.
We make this precise in the next section, before proving Theorem 4.31. Note that our results
requires h = ε2θ/2N.

The setting is essentially the same one presented in this chapter. We set for each t ≥ 0,
dε(t) = sd[t/h],ε and then let, for t > 0, Eε(t) = {i ∈ εZN : dε(t)i < 0}. Then we let Eε =
{(i, t) ∈ εZN × [0,+∞) : i ∈ Eε(t)} and Fε = {(i, t) ∈ εZN × [0,+∞) : i ̸∈ Eε(t)}. We
find a subsequence such that both Eεk → E and Fεk → εZN \ A in the Kuratowski sense in
RN × [0,+∞), where A is an open set and E a closed set. Observe that A ⊂ E. We let
T ∗ = inf{t > 0 : E ∩ (RN × (t,+∞)) = ∅ or εZN \ A ∩ (RN × (t,+∞)) = ∅} ∈ [0,+∞]. Note
that it may (in general will) happen that after some time, uk+1,ε defined by (4.124) becomes
positive (or negative) everywhere, in which case dk+1,ε will be +∞ (respectively, −∞) and the
corresponding sets Eε(t) (or εZN \ Eε(t)) will be empty: in the limit, this corresponds to times
which are past the extinction time T ∗ of E or εZN \A.

4.B.2 Estimate on Balls and Consequences
A crucial point for proving the convergence of the method is to control the behaviour of the

algorithm when dk,εi represents the distance to a ball of radius R > 0. For this, given θ ∈ (0, 1],
we let ui := |i| −R, i ∈ εZN ,

vi = (1− θ)ui +
θ

2N

N∑

n=1

(ui+εen + ui−εen)

and let d = sdε(v). Then, we show the following estimate.

Lemma 4.32. There exist C ≥ 1 such that if ε/R is small enough (depending only on the
dimension N), then it holds

di ≤ |i| −R+
C

R
ε2 = |i| −R+

2NC

θR
h.
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Here as before h, ε, θ must satisfy θ = 2Nh/ε2.

Proof. Without loss of generality we assume θ = 1. Also, since sdε− ≤ sdε+ (see Remark 4.18), we
can assume d = sdε+(v). We first observe that

vi = −R+
1

2N

N∑

n=1

|i+ εen|+ |i− εen|.

We remark that if |i| ≥ 2ε, e ∈ {en,−en : n = 1, . . . , N},

|i+ εe| = |i|+ ε
i · e
|i| +

ˆ 1

0

(1− t)
1

|i+ tεe|

(
I − (i+ tεe)⊗ (i+ tεe)

|i+ tεe|2
)
εe · εe dt

≤ |i|+ ε
i · e
|i| +

1

|i| − ε

ε2

2
(4.127)

so that

vi ≤ |i| −R+
1

|i| − ε

ε2

2
.

If we assume that ε ≤ min{1, R/2}, then for |i| ≤ R − ε, vi < 0. Hence, we may estimate, for i
with vi ≥ 0 (hence with |i| ≥ R− ε):

(dε+(v))i := inf
j:vj<0

vj + |j − i| ≤ inf
j:R2 +ε≤|j|≤R−ε

vj + |j − i| ≤ inf
j:R2 +ε≤|j|≤R−ε

|j| −R+
ε2

R
+ |j − i|,

assuming ε ≤ R/8 so that the set of j’s is not empty. Consider j with R
2 + ε ≤ |j| ≤ R− ε, close

to the segment [0, i]: if ȷ̃ is the projection of j onto [0, i], one has

|j|+ |j − i| =
√

|j − ȷ̃|2 + |ȷ̃|2 +
√
|ȷ̃− i|2 + |j − ȷ̃|2

≤ |ȷ̃|+ |j − ȷ̃|2
2|ȷ̃| + |ȷ̃− i|+ |j − ȷ̃|2

2|ȷ̃− i| = |i|+
(

1

2|ȷ̃| +
1

2|ȷ̃− i|

)
|j − ȷ̃|2

If ε/R is small enough (depending only on N), we can find j, ȷ̃ such that |j − ȷ̃|2 ≤ Nε2 and
R/2 ≤ |ȷ̃| ≤ 3R/4, so that |ȷ̃− i| ≥ R/4. We obtain for such a choice:

|j|+ |j − i| ≤ |i|+ 3N

R
ε2

This shows that where (dε+)i is non-negative, it is less than |i| − R + 3N+1
R ε2 as soon as ε/R is

small enough. As sdε+ is the smallest 1-Lipschitz function larger than dε+ where it is non-negative
(Remark 4.10), this achieves the proof.

We now continue the study of the properties of dε. We note that if for some k, dk,εi ≥ R > 0

at i ∈ εZN , then dk,εj ≥ R − |j − i| (as it is 1-Lipschitz) and iterations of Lemma 4.32 show that
for some C ≥ 1 depending only on the dimension, if ε is small enough,

dℓ,εi ≥ R− C

R
(ℓ− k)h

for ℓ ≥ k and as long as the right-hand side is larger than R/2 (that is, (ℓ− k)h ≤ R2/2C). This
may also be written:

dε(s)i ≥ dε(t)i − C/R(s− t+ h) (4.128)

for dε(t)i ≥ R > 0, 0 ≤ t ≤ s ≤ CR2 for some constant C depending only on the dimension. A
similar, symmetric statement holds if dε(t)i ≤ −R < 0. In particular, by our choice of E0, one
has T ∗ > 0.

The estimate (4.128) allows to reproduce the proof of [55, Proposition 4.4] and find that except
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for a countable set of times the function
∑

i∈εkZN
dεki (t)χi+[0,ε)N

converges locally uniformly to some function d(x, t) which is locally finite for t < T ∗ and such
that its positive and negative parts respectively satisfy:

d+(·, t) = dist(·, E(t)) and d−(·, t) = dist(·, εZN \A(t)), (4.129)

where E(t) = {x ∈ RN : (x, t) ∈ E} and A(t) = {x ∈ RN : (x, t) ∈ A}, for t < T ∗. Moreover, for
every x ∈ RN the functions dist(x,E(·)) and dist(x, εZN \A(·)) are left-continuous and right-lower-
semicontinuous. Equivalently, the maps E(·) and εZN \A(·) are left-continuous and right-upper-
semicontinuous with respect to the Kuratowski convergence. Finally, E(0) = E0 and A(0) = E̊0.
In addition, d(·, t) ≡ +∞ or −∞ for all t > T ∗.

From (4.129) one has in particular that εZN \ E ∩ (RN × (0, T ∗)) = {(x, t) ∈ RN × (0, T ∗) :
d(x, t) > 0} while A = {(x, t) ∈ RN × (0, T ∗) : d(x, t) < 0}, and

d+(x, t) = inf

{
lim inf
k→+∞

max{0, dεik(tk)} : εkZN × R+ ∋ (ik, tk)
k→∞−→ (x, t)

}

−d−(x, t) = sup

{
lim sup
k→+∞

min{0, dεik(tk)} : εkZN × R+ ∋ (ik, tk)
k→∞−→ (x, t)

}

are the classical relaxed half-limits (see for instance [19, 20]).

4.B.3 Consistency of the algorithm
As before, in this section we fix θ ∈ (0, 1] and the parameters ε, h are linked through h =

θε2/2N . We investigate the limit of the scheme as ε, h→ 0.
At this point there are two elementary directions to prove the convergence of the algorithm.

One can establish the consistency with the viscosity approach of [173], showing that d is a viscosity
super-solution to the heat equation in {d > 0} (and a subsolution in {d < 0}), or equivalently the
consistency with respect to the distributional Definition 4.1.

For the viscosity point of view, let us note that d+ is lower semicontinuous, as explained before.
Then, let us consider a smooth test function η(x, t) with η ≤ d, η(x̄, t̄) = d(x̄, t̄) > 0, and assume
without loss of generality that the contact point is unique [64]. Then, it is standard that for small
εk, there is ik → x̄, ik ∈ εkZN , and tk → t̄ such that for all t > 0 and i ∈ εkZN :

ηk(i, t) = η(i, t) + (dεk(tk)ik − η(ik, tk)) ≤ dεk(t)i, ηk(ik, tk) = dεk(tk)ik > 0.

We have:

ηk(ik, tk) = dεk(tk)ik ≥ (1− θ)dεkik (tk − hk) +
θ

2N

N∑

n=1

(
dεkik+εken(tk − hk) + dεkik−εken(tk − hk)

)

≥ (1− θ)ηk(ik, tk − hk) +
θ

2N

N∑

n=1

(ηk(ik + εken, tk − hk) + ηk(ik − εken, tk − hk)) ,

so that:
ηk(ik, tk)− ηk(ik, tk − hk)

hk
≥ (∆εkηk(·, tk − hk))ik .

Using that η is smooth and passing to the limit, we recover:

∂η

∂t
(x̄, t̄) ≥ ∆η(x̄, t̄),

showing that d+ is a viscosity supersolution to the heat equation in {d > 0}.
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On the other hand, the variational point of view is tackled as follows, considering rather a test
function η ∈ C∞

c ((εZN \ E) ∩ (RN × (0, T ∗));R+). The support Uη is at distance from E, hence
for εk small enough it is also at positive distance from Eεk so that dεk is bounded from below by
a positive number on Uη ∩ (εZN × [0,+∞)). Thanks to (4.125), it follows that

dεk(t)i − dεk(t− hk)i
hk

≥ (∆εkd
εk(t− hk))i

for (i, t) ∈ Uη, hence

ˆ T∗

0

εN
∑

i∈εZN

(
dεk(t)i − dεk(t− hk)i

hk
− (∆εkd

εk(t− hk))i

)
η(i, t) dt ≥ 0.

Rearranging the sums, this reads

ˆ T∗

0

εN
∑

i∈εZN

(
η(i, t)− η(i, t+ hk)

hk
− (∆εk(η(t+ hk, ·))i

)
dεk(t)i dt ≥ 0.

In the limit (since η is smooth, and dεk converges uniformly for almost every time), we obtain

ˆ T∗

0

ˆ
RN

(−∂tη −∆η)d dx dt ≥ 0

so that
∂d

∂t
≥ ∆d in D′({(x, t) ∈ RN × [0, T ∗) : d(x, t) > 0}), (4.130)

that is in the sense of distributions (or measures). In the same way, we have:

∂d

∂t
≤ ∆d in D′({(x, t) ∈ RN × [0, T ∗) : d(x, t) < 0}). (4.131)

Lastly, one still needs to prove that ∆d is bounded above in {d ≥ R} for any R > 0 (cf. Def-
inition 4.1, point (d)); observe however that together with (4.128), (4.130)–(4.131) imply that
∂d±/∂t and ∆d± are Radon measures where they are positive, and the proof in [55, Appendix]
then shows that (4.130)–(4.131) also hold in the viscosity sense.

To prove the L∞ bound, one observes that if for some t ∈ (h, T ∗) it holds dεi (t) = dk,εi ≥ R > 0
(k = [t/h]) for some i ∈ εZN , by definition of sdε± in (4.32) there is x ∈ R with x ≤ 0 and j ∈ εZN

such that x + |j − i| − ε2 ≤ dk,εi ≤ x + |j − i| (and in particular |j − i| ≥ R). Using (4.127), one
sees that

(∆εd
k,ε)i ≤

2N

ε2
(x+ |j − i| − dk,εi ) +

N

|i− j| − ε
≤ 2N +

2N

R
,

where the last inequality holds for ε ≤ R
2 . Hence considering now a smooth, non-negative test

function η with support in {d > R}, we can reproduce the previous arguments to show that in
the limit, ˆ T∗

0

ˆ
RN

∆η ddx dt ≤ 2N
R+ 1

R

ˆ T∗

0

ˆ
RN

η dx dt,

showing that (∆d)+ ∈ L∞({d > R}), as needed.



Part II

Stability of some Volume-Preserving
Curvature Flows





Chapter 5
Long Time Behaviour of the Discrete
Volume Preserving Mean Curvature Flow
in the Flat Torus

Contents

1 Introduction 114
1.1 Comments about the proof of Theorem 5.1 . . . . . . . . . . . . . . . . . 115

2 Preliminaries 116
3 A quantitative generalized Alexandrov Theorem 120
4 Uniform L1−estimate on the discrete flow 126

4.1 Discrete volume preserving mean-curvature flow . . . . . . . . . . . . . . 126
4.2 Uniform L1 estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3 Some remarks on the hypothesis of the L1−estimate . . . . . . . . . . . 132

5 Convergence of the flow 134
5.1 Convergence of the flow up to translations . . . . . . . . . . . . . . . . . 134
5.2 Exponential convergence of the whole flow . . . . . . . . . . . . . . . . . 137

6 Two-dimensional case 140

113



114 CHAPTER 5. Stability Discrete MCF

1 Introduction

In this chapter we consider the geometric evolution of sets called the volume preserving mean
curvature flow. This evolution is a modification of the classical mean curvature flow defined as a
flow of sets (Et)0≤t≤T in RN following the motion law

vt = HEt −HEt on ∂Et (5.1)

for all t ∈ [0, T ] , where HEt denotes the average of HEt over ∂Et. One can observe that the
volume of the evolving sets is indeed preserved during the evolution and that the perimeters of
the sets Et are non-increasing.

One of the main mathematical difficulties of the volume preserving mean curvature flow is
the non-local nature of the functional given by the constraint. Moreover, the generated flow
may present singularities of different kinds, even in a finite time-span and even if the initial data
is smooth. For example, we can see merging or collision of near sets, pinch-offs or shrinking
of connected components to points. There exist examples of singular solutions even in the two
dimensional case, see [148, 149]. After the onset of singularities, the classical or smooth formulation
of the flow (5.1) ceases to hold and needs to be replaced by a weaker one. Due to the lack
of a comparison principle, a natural approach is the minimizing movement approach proposed
independently by Almgren, Taylor and Wang in [8] and by Luckhaus and Sturzenhecker in [144]
for the unconstrained case and adapted to the volume-preserving setting in [155].

We briefly recall the scheme in the volume contrained setting. First of all we define a discrete-
in-time approximation of the flow that will be called the discrete (volume-preserving) flow. Given
any initial set E0 and a time-step h > 0 we define iteratively E0

h := E0 and for all n ≥ 0

En+1
h ∈ argmin

{
P (F ) +

1

h

ˆ
F△Enh

dist∂Enh (x) dx : F ⊂ TN , |F | = |E0|
}
,

where dist∂Enh is the distance function from the set ∂Enh . We can define for every t ≥ 0, the
approximate flow by Eh(t) := E

[t/h]
h . It can be proved (see [154, Proposition 2.2] ) that the

discrete flow is well defined. Any limit point of this flow as the time-step h converges to zero will
be called a flat flow. As for the classical mean curvature flow, this approach produces global-in-
time solutions as shown in [155]. The existence of such global solutions then allows to analyse the
equilibrium configurations reached in the long time asymptotics.

The long time behaviour of the volume preserving mean curvature flow has been previously
studied only in some particular cases, when the existence of global smooth solutions could be
ensured by choosing suitably regular initial sets. For example one can consider uniformly convex
and nearly spherical initial sets (see [82, 122]), or C∞−regular initial sets that are H3−close to
strictly stable critical sets in the three and four dimensional flat torus (see [159]). For more general
initial data, the long time behaviour in the context of flat flows of convex and star-shaped sets (see
[21, 136]) has been characterized only up to (possibly diverging in the case of [21]) translations.
In [154] the authors characterized the long-time limits of the discrete-in-time approximate flows
constructed by the Euler implicit scheme introduced in [8, 144] under the volume constraint in
arbitrary space dimension. They proved that the discrete flow starting from an arbitrary bounded
initial set converges exponentially fast to a finite union of disjoint balls with equal radii. The same
authors and collaborators were also able to send the discretization parameter h to 0 in [133], in
the case N = 2. Indeed, an explicit penalization is used in order to enforce the volume constraint.

In this chapter the long-time convergence analysis is developed in the flat torus TN for the
discrete flow. In such framework the class of possible long-time limits is much richer as it includes
not only union of balls with equal radii but also different type of critical sets for the perimeter.
The notion of strictly stable critical set is crucial to our result; for the precise definition we refer
to Section 2 of this chapter, but it can be summarized as a regular, critical set for the perimeter
(i.e. with a constant mean curvature boundary) with strictly positive (volume-constrained) second
variation. The main result of this chapter is the theorem below. It provides a complete charac-
terization of the long-time behaviour of the discrete mean curvature flow in the flat torus starting
near a strictly stable critical set. Moreover, an estimate on the convergence speed is provided.
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Theorem 5.1. Let E be a strictly stable critical set in the flat torus. Then there exist δ∗ =
δ∗(E) > 0 and h∗ = h∗(E) > 0 with the following property: if h < h∗ and E0 ⊂ TN is a set of
finite perimeter satisfying

|E0| = |E|, E0 ⊂ (E)δ∗ ,

then every discrete volume preserving mean curvature flow (Enh )n∈N starting from E0 converges to
a translate of E in Ck for every k ∈ N and the convergence is exponentially fast.

We would like to give some details to highlight the major differences between the results
presented in this chapter and the analysis carried out in [159]. In the aforementioned work, the
author studied the flat flow, albeit in low dimension (N ≤ 4). In the article, it was assumed the
initial set to be a C∞−deformation of a strictly stable critical set, close in the H3−sense to the
latter set. Under these assumptions, it was proved the exponential convergence of the flat flow to
a translated of the strictly stable critical set. We remark that our result addresses the long time
behaviour of the discrete flow but holds in much weaker hypotheses: we only assume the initial set
to be of finite perimeter and close in the Hausdorff sense to a strictly stable critical set. Moreover,
our result holds in every dimension and we are also able to provide the complete characterization
of the long-time behaviour starting from any initial set in dimension N = 2. In order to state the
precise result in the two-dimensional case we first introduce the following notation.

We will call lamella any connected set in T2 whose 1−periodic extension in R2 is a stripe
bounded by two parallel lines. Our final result in two dimension is the following theorem.

Theorem 5.2. Fix h, m > 0 and an initial set E0 ⊂ T2 with finite perimeter and such that
|E0| = m. Let (Enh )n∈N be a discrete flow starting from E0 and let P∞ be the limit of the non-
increasing sequence P (Enh ). Then either one of the following holds:

i) (Enh )n∈N converges to a disjoint union of l discs of equal radii and total area m, where
l = π−1(4m)−1P 2

∞ ∈ N;

ii) ((Enh )
c)n∈N converges to a disjoint union of l discs of equal radii and total area 1−m, where

l = π−1(4− 4m)−1P 2
∞ ∈ N;

iii) (Enh )n∈N converges to a disjoint union of l lamellae of total area m, with the same slope and
l ≤ P∞/2. Moreover, the equality l = P∞/2 ∈ N holds if and only if the limit is given by
vertical or horizontal lamellae.

In all cases the convergence is exponentially fast in Ck for every k ∈ N .

1.1 Comments about the proof of Theorem 5.1
The first step towards proving our main result Theorem 5.1 is Proposition 5.30. More precisely,

we prove the convergence up to translations of any discrete flow, starting Hausdorff-close to a
strictly stable critical set E, to the latter set. Such a convergence holds in the Ck−norm for every
k ∈ N. Since at this point we can not rule out that different subsequences of the discrete flow may
converge to different translates of E, the subsequent step consists in proving the convergence of
the whole flow to a unique translate of the set E (with exponential rate).

In order to prove Proposition 5.30, in a first step we show that every long-time limit of the
flow is a critical point of the perimeter. When the ambient space is RN , this implies that the
limit points can only be balls or finite union of balls with the same radii. However, in the periodic
setting, we may end up with different critical points of the perimeter. Indeed, already in the
three dimensional torus T3 we find a wealth of different critical points in addition to balls: for
example, lamellae, cylinders and gyroids (see Figure 5.1) . We then exploit the strict stability of
E (Proposition 5.27) to ensure that the flow remains L1-close up to translations to the set E. To
conclude, a regularity argument shows that the convergence in L1 of the flow to a regular stable
set implies the convergence in Ck for every k ∈ N, thus proving Proposition 5.30.

The proof of Proposition 5.27 is based on the following idea: from a stability result in [4], one
can estimate the L1−distance (up to translations) of a set F from a strictly stable critical set E
in terms of the differences of the perimeters, provided that the L1−distance between E and F
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Figure 5.1: The critical points in T3. Balls, cylinders, gyroids and 3−dimensional lamellae.

remains below a certain threshold. Moreover, a counterexample shows that the Hausdorff-closeness
assumption can not be weakened to L1−closeness, as we will discuss in details in Subsection 4.3.

In order to establish the uniqueness of the limit and, therefore, prove Theorem 5.1, Section 5.2 is
devoted to proving the convergence of the barycenters of the evolving sets. A crucial intermediate
result consists in generalizing the Alexandrov-type estimate [154, Theorem 1.3] (see also [138]) to
the flat torus. This result provides a stability inequality for C1−normal deformations of strictly
stable critical sets in the periodic setting. It could also be seen as an higher-order Łojasiewicz-
Simon inequality for the perimeter functional. We briefly give some definitions to present some
further details. Given a set E of class C1 and a function f : ∂E → R such that ∥f∥L∞(∂E) is
sufficiently small, the normal deformation Ef of the set E is defined as

∂Ef := {x+ f(x)νE(x) : x ∈ ∂E},

where νE is the normal outer vector of E. A normal deformation Ef is said to be of class Ck if E
is of class Ck and f ∈ Ck(∂E). The result proved in [154] is the following.

Theorem 5.3. There exist δ ∈ (0, 1/2) and C > 0 with the following property: for any f ∈
C1(∂B) ∩H2(∂B) such that ∥f∥C1(∂B) ≤ δ, |Ef | = ωN and bar(Ef ) = 0, we have

∥f∥H1(∂B) ≤ C∥HEf −HEf ∥L2(∂B).

We are able to show that in the periodic setting the above quantitative estimate holds with B
replaced by any strictly stable critical set. More precisely, we have the following:

Theorem 5.4. Let E ⊂ TN be a strictly stable critical set. There exist δ ∈ (0, 1/2) and C > 0
with the following property: for any f ∈ C1(∂E)∩H2(∂E) such that ∥f∥C1(∂E) ≤ δ and satisfying

∣∣∣∣
ˆ
∂E

f dHN−1

∣∣∣∣ ≤ δ∥f∥L2(∂E),

∣∣∣∣
ˆ
∂E

fνE dHN−1

∣∣∣∣ ≤ δ∥f∥L2(∂E), (5.2)

we have
∥f∥H1(∂E) ≤ C∥HEf −HEf ∥L2(∂E). (5.3)

We will prove in details in Section 3 that the conditions (5.2) have a geometric explanation.
Indeed, the first one ensures that |Ef | ≈ |E|, up to higher-order error terms, and the second one,
for some choices of E, is implied by imposing bar(Ef ) ≈ bar(E). We finally remark that the
estimate (5.3) is optimal for what concerns the power of the norms, see [154, Remark 1.5].

The last section of the chapter is devoted to the two-dimensional case. This particular choice
of the dimension is purely technical and it is motivated by the availability of a complete charac-
terization of the critical points of the perimeter in the two-dimensional flat torus. In this setting
we are able to prove the exponential convergence of the flow starting from any initial set to either
a finite union of balls or a finite union of lamellae or the complement of these configurations.

2 Preliminaries

Let TN := RN/ZN be the N−dimensional torus, that is the quotient space RN/ ∼ where ∼
is the equivalence relation given by x ∼ y if and only if x − y ∈ ZN . We can define the distance
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between two points x, y ∈ TN simply by

dist(x, y) = min
z∈ZN

|(x+ z)− y|.

The function spaces Ck(TN ) and W k,p(TN ), for k ∈ N and p ∈ [1,∞], are defined as the restriction
of Ck(RN ) and W k,p

loc (RN ), respectively, to the functions that are one-periodic. When we need
to be specific about functions on the torus, it is often convenient to give coordinates to TN via
the unit cube Q = [0, 1)N . With Br(x) we denote the ball in RN of center x and radius r, while
Br will be a short-hand notation for Br(0). Given x ∈ RN , we will write x = (x′, xN ) where
x′ ∈ RN−1 and xN ∈ R. Similarly, we denote by B′

r(x
′) ⊂ RN−1 the ball in RN−1 with radius

r > 0 and center x′ ∈ RN−1. Let F ⊂ TN we denote with distF (·) the distance from the set F and
with C1,1(∂F ) the set of functions continuously differentiable with derivative Lipschitz continuous
on ∂F . Moreover, we denote by c, C some constants, which could be changing from line to line
and always depend on the dimension N , and by ∂

∂t (or equivalently ∂t) the partial derivative with
respect to the variable t.

Let us recall the definition of functions of bounded variation in the periodic setting. We say
that a function u ∈ L1(TN ) is of bounded variation if its total variation is finite, that is

|Du| = sup

{ˆ
TN

u divφdx : φ ∈ C1(TN ;RN ), |φ| ≤ 1

}
< +∞.

We denote the space of such functions by BV (TN ). We say that a measurable set E ⊂ TN is
of finite perimeter in TN if its characteristic function χE ∈ BV (TN ). The perimeter P (E) of E
in TN is nothing but the total variation |DχE |(TN ). We refer to Maggi’s book [145] for a more
complete reference about sets of finite perimeter and their properties.

We introduce the following notation.

Definition 5.5. Let E be a set of class C1. Given a function f : ∂E → R such that ∥f∥L∞(∂E)

is sufficiently small, we set
∂Ef := {x+ f(x)νE(x) : x ∈ ∂E} (5.4)

and we call Ef the normal deformation of E induced by f .

With a slight abuse of notation, we give the following definition.

Definition 5.6. Let E be a set of class C1. Let X(∂E) denote a functional space that can either
be Lp(∂E), W k,p(∂E), Ck,α(∂E) for some k ∈ N, p ≥ 1 and α ∈ [0, 1]. For any F = Ef with
f ∈ X(∂E), we set

distX(F,E) = ∥f∥X(∂E).

We recall the classical definition of C1,α−convergence of sets.

Definition 5.7. Given α ∈ [0, 1], a sequence (En)n∈N of C1,α−regular sets is said to converge in
C1,α to a set E if:

• for any x ∈ ∂E, up to rotations and relabelling the coordinates, we can find a cylinder
C = B′ × (−1, 1), where B′ ⊂ RN−1 is the unit ball centred at the origin, and functions
f, fn ∈ C1,β(B′; (−1, 1)) such that for n large enough, it holds

(E − x) ∩ C = {(x′, xN ) ∈ B′ × (−1, 1) : xN ≤ f(x′)}
(En − x) ∩ C = {(x′, xN ) ∈ B′ × (−1, 1) : xN ≤ fn(x

′)};

• it holds
fn → f in C1,α(B′).

The following is a simple rephrasing of a classical result concerning the C1,α−convergence of
Λ−minimizers of the perimeter (see e.g. [4, Theorem 4.2]).
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Theorem 5.8. Let Λ > 0 and let E be a set of class C2. Then for every ε > 0, there exists
δ = δ(ε, E) > 0 with the following property: for every Λ−minimizer F such that |E△F | ≤ δ, then
F is of class C1,1/2 and

distC1,β (E,F ) ≤ ε for β ∈ (0, 1/2).

We now recall some preliminary results from [4] regarding the second variation of the perimeter
in the flat torus. Let E ⊂ TN be a set of class C2 and let νE be its outer normal. Throughout
the section, when no confusion is possible, we shall omit the subscript E and write ν instead of
νE . Given a vector X, its tangential part on ∂E is defined as Xτ = X − (X · ν)ν. In particular,
we will denote by Dτ the tangential gradient operator given by Dτφ = (Dφ)τ . We also recall
that the second fundamental form BE of ∂E is given by Dτν, its eigenvalues are called principal
curvatures and its trace is called mean curvature, and we denote it by HE .

LetX : TN → RN be a vector field of class C2. Consider the associated flow Φ : TN×(−1, 1) →
TN defined by ∂Φ

∂t = X(Φ), Φ(·, 0) = Id. We define the first and second variation of the perimeter
at E with respect to the flow Φ to be respectively the values

d
dt

∣∣∣
t=0

P (Et),
d2

dt2
∣∣∣
t=0

P (Et)

where Et = Φ(·, t)(E). It is a classical result of the theory of sets of finite perimeter (see [145])
that the the first variation of the perimeter has the following expression

d
dt

∣∣∣
t=0

P (Et) =

ˆ
∂∗E

HEνE ·X dHN−1,

where HE ∈ L2(∂∗E) is the (weak) scalar mean curvature of E. The following equation for the
second variation of the perimeter holds.

Theorem 5.9 (Theorem 3.1 in [4]). If E, X and ν are as above, we have

d2

dt2
∣∣∣
t=0

P (Et) =

ˆ
∂E

(
|Dτ (X · ν)|2 − |BE |2(X · ν)2

)
dHN−1 −

ˆ
∂E

HEdivτ (Xτ (X · ν)) dHN−1

+

ˆ
∂E

HE(divX)(X · ν)dHN−1.

Remark 5.10. We remark that the last two integral in the above expression vanish when E is
a critical set for the perimeter and if |Φ(·, t)(E)| = |E| for all t ∈ [0, 1]. Indeed, if E is a regular
critical set for the perimeter then its curvature is constant, therefore the second integral vanishes.
Moreover, if the flow Φ is volume-preserving then it can be shown (see equation (2.30) in [59])
that

0 =
d2|Et|
dt2

=

ˆ
∂E

(divX)(X · ν) dHN−1.

Hence, if Φ is a volume-preserving variation of a regular critical set E we have

d2

dt2
∣∣∣
t=0

P (Et) =

ˆ
∂E

(
|Dτ (X · ν)|2 − |BE |2(X · ν)2

)
dHN−1 =: δ2P (E)[X · νE ].

We remark that due to the translation invariance of the perimeter functional, the second
variation degenerates along flows of the form Φ(x, t) = x + tη, where η ∈ RN . In view of this it
is convenient to introduce the subspace T (∂E) of H̃1(∂E) :=

{
φ ∈ H1(∂E) :

´
∂E

φdHN−1 = 0
}

generated by the functions νi, i = 1, . . . , N . Its orthogonal subspace, in the L2−sense, will be
denoted by T⊥(∂E) and is given by

T⊥(∂E) =

{
φ ∈ H̃1(∂E) :

ˆ
∂E

φνi dHN−1 = 0, i = 1, . . . , N

}
.

Definition 5.11. We say that a regular critical set E is a strictly stable set if it has positive
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second variation of the perimeter, in the sense that

δ2P (E)[φ] > 0, ∀φ ∈ T⊥(∂E) \ {0}.

The following result ensures that the second variation of a strictly stable set E is coercive on
the subspace T⊥(∂E).

Lemma 5.12 (Lemma 3.6 in [4]). Assume that E is a strictly stable set, then

m0 := inf{δ2P (E)[φ] : φ ∈ T⊥(∂E), ∥φ∥H1(∂E) = 1} > 0

and
δ2P (E)[φ] ≥ m0∥φ∥2H1(∂E) ∀φ ∈ T⊥(∂E).

Moreover, from the Step 1 in the proof of [4, Theorem 3.9] we obtain also the following result.

Lemma 5.13. Assume that E is a strictly stable set, then

inf

{
δ2P (E)[φ] : φ ∈ H̃1, ∥φ∥H1(∂E) = 1,

∣∣∣∣
ˆ
∂E

φνE dHN−1

∣∣∣∣ ≤ δ

}
≥ m0

2
,

where the constant m0 is the one in Lemma 5.12.

In the proof of Theorem 5.1 we will also need the following key lemma.

Lemma 5.14 (Lemma 3.8 in [4]). Let E ⊂ TN be of class C3 and let p > N − 1. For every δ > 0
there exist C > 0 and η0 > 0 such that if F ⊂ TN satisfies ∂F = {x + ψ(x)νE(x) : x ∈ ∂E} for
some ψ ∈ C2(∂E) with ∥ψ∥W 2,p(∂E) ≤ η0, then there exist σ ∈ TN and φ ∈ W 2,p(∂E) with the
properties that

|σ| ≤ C∥ψ∥W 2,p(∂E), ∥φ∥W 2,p(∂E) ≤ C∥ψ∥W 2,p(∂E)

and
∂F + σ = {x+ φ(x)νE(x) : x ∈ ∂E},

∣∣∣∣
ˆ
∂E

φνE dHN−1

∣∣∣∣ ≤ δ∥φ∥L2(∂E).

We also recall the definition of inner and outer ball condition.

Definition 5.15. We say that a open set E ⊂ TN satisfies a uniform inner (respectively outer)
ball condition with radius r if there exists r > 0 such that for every x ∈ ∂E there exists a ball
Br(y) ⊂ E (resp. Br(y) ⊂ Ec) with x ∈ ∂Br(y).

Note that all sets E ⊂ TN of class C1,1 satisfy a uniform inner and outer ball condition (see
e.g. [65]). Arguing as in the proof of [4, Lemma 3.8], we can prove the following result.

Lemma 5.16. Let E ⊂ TN be of class C∞ and let m > 0. There exists η = η(m,E) > 0 such
that, for every k ∈ N, u ∈ Ck(∂E) with ∥u∥Ck(∂E) ≤ m, ∥u∥C0(∂E) ≤ η and for every σ ∈ TN
with |σ| ≤ η, then Eu + σ can be written as a normal deformation of E induced by a function
v : ∂E → ∂E such that

∥v∥C0(∂E) ≤ 2η, ∥v∥Ck(∂E) ≤ C(∥u∥Ck(∂E) + |σ|),

where C = C(E) > 0.

Proof. Being the set E smooth, it satisfy the uniform inner and outer ball condition, hence there
exists a positive radius r > 0 such that the signed distance sdE from the set E, defined by

sdE(x) =

{
dist∂E(x) if x ∈ Ec

−dist∂E(x) if x ∈ E,

is a function of class C∞ (from the regularity of ∂E) in the r-tubular neighborhood (∂E)r, that
is (∂E)r := {x : dist∂E(x) < r} (for further properties of the distance function see [109, section
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14.6]). Since, for some k ≥ 2, u has Ck-norm bounded by m, we also have ∥u∥C1,1(∂E) ≤ m. Then,
there exists a radius ρ = ρ(m,E) such that ∂Eu satisfies a uniform inner and outer ball condition
of radius ρ. We can assume without loss of generality that ρ < r.

We now let η ≤ ρ/2 to be chosen later, take any |σ| < η and set F = Eu + σ. Clearly, F still
satisfies a uniform inner and outer ball condition of radius ρ. Then, for every y ∈ ∂F there exists
x ∈ ∂Eu such that y = x+ σ, hence we have

dist∂E(y) ≤ |σ|+ dist∂E(x) < η + ∥u∥C0(∂E) ≤ 2η,

and in particular ∂F ⊂ (∂E)2η ⊂ (∂E)r. We now define the map Tu : ∂E → ∂E as

Tu(x) := πE(x+ u(x)νE(x) + σ) = y − sdE(y)∇sdE(y), (5.5)

where πE is the projection map on ∂E and y = x+u(x)νE(x)+σ ∈ ∂F . By choosing η smaller, by
interpolation, it holds ∥u∥C1(∂E)+ |σ| < 1

2 , which implies that the function x 7→ x+u(x)νE(x)+σ
is a diffeomorphism (since it is a small perturbation of the identity). Moreover, since E is of class
C∞ (and possibly for η smaller), πE

∣∣
∂F

: ∂F → ∂E is a diffeomorphism of class Ck, Ck-close to
the identity. Therefore, Tu ∈ Ck(∂E) and, by (5.5), we get

∥Tu − I∥Ck(∂E) ≤ C(∥u∥Ck(∂E) + |σ|). (5.6)

Moreover, using again (5.5) and the invertibility of the map x 7→ x+ u(x)νE(x) + σ, we obtain

∥T−1
u − I∥Ck(∂E) ≤ C(∥u∥Ck(∂E) + |σ|). (5.7)

Using the fact that Tu is a diffeomorphism and (5.5), we can find a function v : ∂E → R such that
F is the normal deformation of E induced by v, more precisely for every x ∈ ∂E it holds

x+ u(x)νE(x) + σ = Tu(x) + v(Tu(x))νE(Tu(x)).

Finally, using the above expression and the bounds in (5.6) and (5.7), we conclude that

∥v∥Ck(∂E) ≤ ∥T−1
u ∥Ck(∂E)(∥u∥Ck(∂E) + |σ|+ ∥Tu − I∥Ck(∂E)) ≤ C(∥u∥Ck(∂E) + |σ|),

for some constant C = C(E) > 0.

Let E,F ⊂ TN be measurable sets. We define

α(E,F ) := min
x∈TN

|E△(F + x)|.

In one of the main results of [4] the authors proved the following quantitative isoperimetric in-
equality in the periodic setting.

Theorem 5.17 (Corollary 1.2 in [4]). Let E ⊂ TN be a strictly stable set. Then, there exist
σ = σ(E), C = C(E) > 0 such that

Cα2(E,F ) ≤ P (F )− P (E)

for all F ⊂ TN with |F | = |E| and α(E,F ) < σ.

3 A quantitative generalized Alexandrov Theorem

In this section, we will prove that local minimizers of the perimeter in the flat torus satisfy a
quantitative Alexandrov-type estimate. We reproduce some arguments similar to the ones used
in the proof of Theorem 1.3 in [154]. In the follwoing, we denote by E ⊂ TN a strictly stable set.
Thanks to some classical results for sets of finite perimeter (see for example [145, Theorem 27.4]),
the previous hypothesis implies that E is of class C∞.
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First of all, we compute the (N − 1)−Jacobian of the map

Φ : ∂E → ∂Ef ⊂ RN , x 7→ x+ f(x)νE(x).

Given x ∈ ∂E, we choose an orthonormal basis

B′ := {v1(x), . . . , vN−1(x)}

of TxE such that in this basis the second fundamental form of E, BE(x) : TxE → TxE ⊂ RN , has
the following expression

BE(x) =




κ1(x)
. . .

κN−1(x)
0 . . . 0


 ,

where κ1(x), . . . , κN−1(x) are the principal curvatures of E in x. We then complete B′ to a basis
B of the whole RN with the normal vector vN (x) := νE(x). In the following, to simplify the
notation, we will drop the dependence on x. The tangential differential of Φ with respect to the
basis B is given by

DΦ = I + νE ⊗∇f + fDνE ,

where I is the immersion TxE ↪→ RN , ∇f is the tangential gradient of f and DνE is the tangential
differential of νE . Given the regularity of ∂E, we recall that DνE is equal to BE . Moreover, by
definition of B, we have that

(νE ⊗∇f)(vi, vj) = δN,i∇f · vj , i = 1, . . . , N, j = 1, . . . , N − 1.

Thanks to the previous observations we find the following expression

DΦ =




1 + κ1f
. . .

1 + κN−1f
∂v1f . . . ∂vN−1

f


 . (5.8)

By Binet formula, the Jacobian JΦ can be explicitly computed as

JΦ =



N−1∏

i=1

(1 + κif)
2 +

N−1∑

j=1

(∂vjf)
2
∏

i ̸=j

(1 + κif)
2




1/2

=

N−1∏

i=1

(1 + κif)


1 +

N−1∑

j=1

(∂vjf)
2

(1 + κjf)2




1/2

. (5.9)

To show the previous formula, we characterize the minors of DΦ. If we omit the N−th row of
DΦ, we obtain the minor

MN =



1 + κ1f

. . .
1 + κN−1f


 ,
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if we omit the i−th row of DΦ for 1 ≤ i ≤ N − 1, we obtain the minor

Mi =




1 + κ1f
. . .

1 + κi−1f
1 + κi+1f

. . .
1 + κN−1f

∂v1f . . . ∂vi−1
f ∂vi+1

f . . . ∂vN−1
f




.

We then deduce (5.9) by explicitly computing

det(MN )2 =

N−1∏

i=1

(1 + κif)
2, det(Mi)

2 = (∂vif)
2
∏

j ̸=i

(1 + κjf)
2.

Note that, if ∥f∥C1 is small enough, the map Φ is a diffeomorphism from ∂E to Φ(∂E) = ∂Ef ,
and thus the tangential differential DΦ : TxE → TΦ(x)Ef is a surjective map. In particular, this
allows us to calculate the normal vector νEf in Φ(x). We remark that a vector v orthogonal to
every column of (5.8) is a normal vector to the whole tangent space TΦ(x)Ef , therefore a possible
v is given by

v = −
N−1∑

i=1

∂vif

1 + κif
vi + νE ,

where the sign of the component along νE is taken positive so that the case f = 0 is consistent
with the orientation of νE . Since |v| ≥ 1, by normalizing v we obtain the normal vector

νEf =

(
νE −

N−1∑

i=1

∂vif

1 + κif
vi

)
1 +

N−1∑

j=1

(∂vjf)
2

(1 + κjf)2




−1/2

, (5.10)

moreover, we remark that

νE · νEf =


1 +

N−1∑

j=1

(∂vjf)
2

(1 + κjf)2




−1/2

. (5.11)

We can now compute explicitly the formula for the first variation of the perimeter.

Lemma 5.18. Setting Q :=

(
1 +

∑N−1
j=1

(∂vjf)
2

(1 + κjf)2

)1/2

, the following formulas hold true:

1. If f ∈ L∞(∂E) ∩H1(∂E) with ∥f∥L∞ sufficiently small, then

P (Ef ) =

ˆ
∂E

Q

N−1∏

i=1

(1 + κif)dHN−1.

2. If f ∈ L∞(∂E) ∩H1(∂E) with ∥f∥L∞ sufficiently small, then the first variation δP (Ef )[φ]
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exists for all φ ∈ C1(∂E) and is given by

δP (Ef )[φ] =

ˆ
∂E

φQ

N−1∑

i=1

κi
∏

j ̸=i

(1 + κjf) dHN−1

+

ˆ
∂E

1

Q

N−1∏

i=1

(1 + κif)



N−1∑

j=1

∂vjφ∂vjf

(1 + kjf)2
− φ

N−1∑

j=1

kj (∂vjf)
2

(1 + kjf)3


 dHN−1.

(5.12)

Proof. The first formula is a straightforward consequence of the area formula

P (Ef ) =

ˆ
∂Ef

dHN−1 =

ˆ
∂E

JΦ dHN−1

and of the expression of the Jacobian JΦ in (5.9). Now, (5.12) easily follows by taking the
derivatives

d

dε

∣∣∣
ε=0

P (Ef+εφ)

in the first formula.

Remark 5.19. We observe that, if ∥f∥L∞(∂E) is small enough and |Ef | = |E|, then there exists
a constant C > 0, only depending on E, such that

∣∣∣∣
ˆ
∂E

f(x)dHN−1(x)

∣∣∣∣ ≤ C

ˆ
∂E

f(x)2 dHN−1(x). (5.13)

Firstly, since ∂E is regular, for every ε > 0 sufficiently small there exists a tubular neighborhood N
of ∂E such that N is diffeomorphic to ∂E× (−ε, ε) via the diffeomeorphism Ψ(x, t) = x+ νE(x)t.
The Jacobian of Ψ is given by

JΨ(x, t) =

N−1∏

i=1

(1 + κi(x)t). (5.14)

Secondly, if ∥f∥L∞(∂E) is small enough, we remark that the condition |Ef | = |E| is equivalent to

0 = |Ef | − |E| =
ˆ
∂E

ˆ f(x)

0

JΨ(x, t)dt dHN−1(x).

Then, we can conclude that

0 =

ˆ
∂E

ˆ f(x)

0

JΨ(x, t) dt dHN−1(x)

=

ˆ
∂E

f(x) dHN−1(x) +

ˆ
∂E

ˆ f(x)

0

(JΨ(x, t)− 1) dt dHN−1(x)

=

ˆ
∂E

f(x) dHN−1(x) +

ˆ
∂E

ˆ f(x)

0

(HE(x) t+ o(t)) dt dHN−1(x),

that implies (5.13) for a constant depending only on N and the principal curvatures of E.

We are now able to prove the following stability result; it ensures that the second variation of
the perimeter remains strictly positive for small normal deformations of a strictly stable set E.

Lemma 5.20. Fix N ≥ 2. There exists δ = δ(E) > 0 small such that, if f ∈ L∞(∂E) ∩H1(∂E)
with ∥f∥L∞(∂E) ≤ δ,
∣∣∣∣
ˆ
∂E

f(x) dHN−1(x)

∣∣∣∣ ≤ δ∥f∥L2(∂E) and
∣∣∣∣
ˆ
∂E

f(x)νE(x)dHN−1(x)

∣∣∣∣ ≤ δ∥f∥L2(∂E), (5.15)
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then we have

δ2P (E)[f ] =

ˆ
∂E

(|∇f(x)|2 − |BE(x)|2f(x)2)dHN−1(x) ≥ m0

8
∥f∥2H1(∂E),

where m0 is the constant given by Lemma 5.12.

Proof. Set g = f− f̄ , where f̄ =
ffl
∂E

f dHN−1, then g has zero average and, by the first inequality
in (5.15), we have

f̄2 =
1

P (E)2

(ˆ
∂E

f dHN−1

)2

≤ Cδ2∥f∥2L2(∂E). (5.16)

If δ is sufficiently small, from (5.16) we obtain

∥g∥2L2(∂E) = ∥f − f̄∥2L2(∂E) = ∥f∥2L2(∂E) − f̄2P (E) ≥ ∥f∥2L2(∂E)

(
1− Cδ2

)
≥ 1

2
∥f∥2L2(∂E).

Using the previous inequality, (5.16) again and the second inequality in (5.15) we infer that the
function g satisfies

∣∣∣∣
ˆ
∂E

gνE dHN−1

∣∣∣∣ ≤
∣∣∣∣
ˆ
∂E

fνE dHN−1

∣∣∣∣+
∣∣∣∣
ˆ
∂E

f̄νE dHN−1

∣∣∣∣ ≤ Cδ∥g∥L2(∂E).

Then, we can apply Lemma 5.13 to obtain

δ2P (E)[g] ≥ m0

2
∥g∥2H1(∂E),

provided δ small enough. We conclude

δ2P (E)[f ] = δ2P (E)[g]− δ2P (E)[g] + δ2P (E)[f ]

= δ2P (E)[g]− 2f̄

ˆ
∂E

|BE(x)|2f(x)dHN−1(x) + f̄2
ˆ
∂E

|BE(x)|2 dHN−1(x)

≥ m0

2
∥g∥2H1(∂E) − C|f̄ |∥f∥L2(∂E) ≥

m0

2
(∥g∥2L2(∂E) + ∥∇g∥2L2(∂E))− Cδ∥f∥2L2(∂E)

≥ m0

4
(∥f∥2L2(∂E) + ∥∇f∥2L2(∂E))− Cδ∥f∥2L2(∂E) ≥

m0

8
∥f∥2H1(∂E),

up to taking δ smaller if needed, and where the constant C > 0 only depends on E.

Remark 5.21. Remark 5.19 ensures that the conclusion of the previous lemma also holds if we
replace the hypothesis |

´
∂E

f dHN−1| ≤ δ∥f∥L2(∂E) with ∥f∥L∞(∂E) small enough and |Ef | = |E|.

We are now able to prove the generalized version of the quantitative Alexandrov’s inequality
in the periodic setting, Theorem 5.4.

Proof of Theorem 5.4. First of all we notice that, if we take the constant C in (5.3) to be bigger
than

√
P (E)/2, then it is enough to consider only the case ∥HEf −HEf ∥L2(∂E) ≤ 1.

Set p = x + f(x)νE(x) and let φ ∈ C1(∂E), by the definition of scalar mean curvature HEf

and a change of coordinates we obtain

δP (Ef )[φ] =

ˆ
∂E

(HEf νEf )(p) · νE φJΦ dHN−1. (5.17)

Combining (5.17), (5.9) and (5.11) we obtain

δP (Ef )[φ] =

ˆ
∂E

HEfφJΦ


1 +

N−1∑

j=1

(∂vjf)
2

(1 + κjf)2




−1/2

dHN−1 =

ˆ
∂E

HEfφ

N−1∏

i=1

(1+κif) dHN−1.

In the following, with a slight abuse of notation, with the symbol O(g) we will mean any function
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h of the form h(x) = r(x)g(x), where |r(x)| ≤ C for all x ∈ ∂E and C is a constant depending
only on N and E.

By a simple Taylor expansion we have

δP (Ef )[φ] =

ˆ
∂E

HEfφ
(
1 +HEf +O(f2)

)
dHN−1. (5.18)

From (5.12) and again by Taylor expansion, we obtain

δP (Ef )[φ] =

ˆ
∂E


HE + f

N−1∑

i=1

κi
∑

s̸=i

κs +O(f2) +O(|∇f |2)


φ dHN−1

+

ˆ
∂E

(∇f + h) · ∇φdHN−1

=

ˆ
∂E

(
HE + fH2

E − |BE |2f +O(f2) +O(|∇f |2)
)
φdHN−1

+

ˆ
∂E

(∇f + h) · ∇φdHN−1 (5.19)

where ∇f,∇φ are respectively the tangent gradient of f, φ on ∂E and h is a vector field satisfying
|h| ≤ C(|f | + |∇f |2))|∇f |. Set R = O(f2) + O(|∇f |2), by comparing (5.18) and (5.19) we infer
thatˆ

∂E

(∇f · ∇φ− |BE |2fφ) dHN−1 =

ˆ
∂E

(HEf −HE) (1 +HEf +R)φdHN−1

−
ˆ
∂E

(h · ∇φ+ (O(f2) +O(|∇f |2))φ) dHN−1. (5.20)

Testing (5.20) with φ = 1, we get
ˆ
∂E

(HEf −HE) (1 +HEf +R) dHN−1 =

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1,

then, for δ sufficiently small, using Hölder inequality we obtain

∣∣HEf −HE

∣∣ =
∣∣∣∣−

 
∂E

(HEf −HE)(HEf +R) dHN−1 +

 
∂E

(O(|f |) +O(|∇f |2)) dHN−1

∣∣∣∣

≤
∣∣∣∣
 
∂E

(HEf −HEf )(HEf +R)dHN−1

∣∣∣∣+
∣∣∣∣
 
∂E

(HEf −HE)(HEf +R) dHN−1

∣∣∣∣

+

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1

≤ δ
|HE |+ Cδ

P (E)
∥HEf −HEf ∥L2 + δ (|HE |+ Cδ) |HEf −HE |

+

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1,

with C = C(N,E) since δ ≤ 1. For δ small enough, recalling that ∥HEf − HEf ∥L2 ≤ 1, the
previous inequality implies

1

2
|HEf −HE | ≤ Cδ∥HEf −HEf ∥L2 +

ˆ
∂E

(O(|f |) +O(|∇f |2)) dHN−1 ≤ Cδ. (5.21)

Using the bound ∥f∥C1 ≤ δ and the definition of h we easily see that

h · ∇f = δ O(|∇f |2).
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Testing (5.20) with φ = f , using Hölder’s inequality and by the previous remark, we get
ˆ
∂E

(|∇f |2 − |BE |2f2) dHN−1 =

ˆ
∂E

(
HEf −HE

)
(1 +HEf +R)f dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

=

ˆ
(HEf −HEf )(1 +HEf +R)f dHN−1 +

ˆ
(HEf −HE)(1 +HEf +R)f dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

≤C∥HEf −HEf ∥L2∥f∥L2 + |HEf −HE |
ˆ

(1 +HEf +R)f dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

=C∥HEf −HEf ∥L2∥f∥L2 + |HEf −HE |
ˆ

(f +O(f2) + fO(|∇f |2)) dHN−1

+ δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1. (5.22)

By (5.13), (5.21) and by Hölder inequality, we obtain

|HEf −HE |
ˆ
(f +O(f2) + fO(|∇f |2)) dHN−1 ≤ δ

ˆ
∂E

(O(f2) +O(|∇f |2)).

Finally, by the above inequality, (5.13) again and by combining (5.22) with (5.21) we deduce that,
for any η > 0, it holds
ˆ
∂E

(|∇f |2 − |BE |2f2) dHN−1 ≤ C∥HEf −HEf ∥L2∥f∥H1 + δ

ˆ
∂E

(O(f2) +O(|∇f |2)) dHN−1

≤ 1

η
C2∥HEf −HEf ∥2L2 + η∥f∥2H1 + Cδ∥f∥2H1 . (5.23)

The conclusion then follows combining (5.23) with Lemma 5.20 and taking δ and η sufficiently
small.

4 Uniform L1−estimate on the discrete flow

In this section we give the precise definition of the discrete volume preserving flow in the flat
torus and we study some of its properties.

4.1 Discrete volume preserving mean-curvature flow

Let E ̸= ∅ be a measurable subset of TN . In the following we will always assume that E
coincides with its Lebesgue representative. Fixed h > 0, m ∈ (0, 1), we consider the minimum
problem

min

{
P (F ) +

1

h

ˆ
F

sdE(x)dx : F ⊂ TN , |F | = m

}
, (5.24)

where sdE(x) := distE(x) − distTN\E(x) is the signed distance from the set E. Observe that the
minimum problem (5.24) is equivalent to the problem

min

{
P (F ) +

1

h

ˆ
F△E

dist∂E(x) dx : F ⊂ TN , |F | = m

}
.
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For every F ⊂ TN , we set

JEh (F ) := P (F ) +
1

h

ˆ
F△E

dist∂E(x) dx =: P (F ) +
1

h
D(F,E), (5.25)

with a little abuse of notation we will sometimes denote by JEh also the functional

F 7→ P (F ) +
1

h

ˆ
F

sdE(x) dx

and, when no ambiguity arises, we will write Jh instead of JEh .
By induction we can now define the discrete-in-time, volume preserving mean curvature flow

(Enh )n∈N and we will refer to it as the discrete flow. Let E0 ⊂ TN be a measurable set such that
|E0| = m. We set E0

h = E0 and iteratively define for n ≥ 1

Enh ∈ argmin
{
P (F ) +

1

h

ˆ
F

sdEn−1
h

(x)dx : F ⊂ TN , |F | = m

}
.

Remark 5.22. We start by remarking that the sequence of the perimeters along the discrete flow
is non-increasing. Indeed, from the minimality of Enh and considering En−1

h as a competitor we
obtain

P (Enh ) ≤ P (Enh ) +
1

h

ˆ
En−1
h △Enh

dist∂En−1
h

(x) dx ≤ P (En−1
h ).

From this simple remark we observe that, even if the starting set of the flow E0 is not of finite
perimeter, the perimeters of the sets Enh are uniformly bounded by a constant that only depends
on the dimension N , the fixed volume m and h. Given any set E0 of volume m, consider the cube
Qm of the same volume. From the minimality of E1

h and using Qm as a competitor we obtain

P (E1
h) ≤ P (Qm) +

1

h

ˆ
E0△Qm

dist∂E0
(x) dx− 1

h

ˆ
E0△Eh1

dist∂E0
(x)dx

≤ P (Qm) +
1

h

ˆ
TN

√
N = C(N,m, h),

where we estimated dist∂E0
≤ diam(TN ) =

√
N .

We recall some preliminary results that can be found in [154]. If not otherwise stated, their
original proofs can be easily adapted to the periodic case, the major difference being that in our
case we work in the flat torus, which is compact, thus simplifying some arguments. First of all,
we observe that that the problem (5.24) admits solutions via the standard method of the calculus
of variations.

The regularity properties of the discrete flow are investigated in the following proposition.
Some of the results are classical, others follow from [154, Proposition 2.3].

Proposition 5.23. Let h, m, M > 0 and let E ⊂ TN be a set with |E| = m and P (E) ≤ M .
Then, any solution F ⊂ TN to (5.24) satisfies the following regularity properties:

i) There exist c0 = c0(N) > 0 and a radius r0 = r0(m,h,N,M) > 0 such that for every
x ∈ ∂∗F and r ∈ (0, r0] we have

|Br(x) ∩ F | ≥ c0r
N and |Br(x) \ F | ≥ c0r

N .

In particular, F admits an open representative whose topological boundary coincides with the
closure of its reduced boundary, i.e. ∂F = ∂∗F .

ii) There exists Λ = Λ(m,h,N,M) > 0 such that F is a Λ-minimizer of the perimeter, that is

P (F ) ≤ P (F ′) + Λ|F△F ′|

for all measurable set F ′ ⊂ TN .
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iii) The following Euler-Lagrange equation holds: there exists λ ∈ R such that for all X ∈
C1
c (TN ,TN ) we have

ˆ
∂∗F

sdE
h
X · νF dHN−1 +

ˆ
∂∗F

divτX dHN−1 = λ

ˆ
∂∗F

X · νF dHN−1. (5.26)

iv) There exists a closed set Σ, whose Hausdorff dimension is less than or equal to N − 8, such
that ∂∗F = ∂F \ Σ is an (N − 1)-submanifold of class C2,α for all α ∈ (0, 1) with

|HF (x)| ≤ Λ, for all x ∈ ∂F \ Σ.

v) There exists k0 = k0(m,h,N,M) ∈ N and s0 = s0(m,h,N,M) > 0 such that F is made up
of at most k0 connected components having mutual Hausdorff distance at least s0.

The following result characterizes the stationary sets of the discrete scheme. The last assertion
of the proposition is a technical result that will be employed in the proof of Lemma 5.25.

Proposition 5.24. Every stationary set E for the discrete flow is a critical set of the perimeter.
Viceversa, if E is a regular critical set of the perimeter, then there exists h∗ = h∗(E) > 0 such
that, for every h < h∗, the volume preserving discrete flow starting from E is unique and given
by Enh = E. Moreover, if E is a strictly stable set then it is also the unique volume-constrained
minimizer of the functional

J̃h(F ) := P (F ) +
1

h

ˆ
F

distE(x)dx.

Proof. The first statement is an immediate consequence of (5.26). Since E is a stationary point
for the discrete flow, it satisfies

ˆ
∂∗E

divτX dHN−1 = λ

ˆ
∂∗E

X · νE dHN−1

for all X ∈ C1
c (TN ,TN ), i.e. E is a critical point for the perimeter.

The second part follows using the same argument of the proof of [154, Proposition 3.2]. Indeed,
recall that the second variation has the following expression

∂2Jh(E)[φ] =

ˆ
∂E

|∇φ|2 +
(
1

h
− |BE |2

)
φ2 dHN−1,

which is positive if h is small enough. Then we procede as in the proof of [154, Proposition 3.2].
Analogously, we prove that E is the unique volume-constrained minimizer of J̃h. Firstly,

observe that, by Theorem 5.17, E is a strict local L1-minimizer of the perimeter and it is a global
minimizer of the second term in J̃h. Therefore, there exists ε > 0 such that

J̃h(E) < J̃h(F )

for all measurable set F such that |F | = |E| and |E△F | ≤ ε, i.e. E is an isolated local minimizer
for J̃h in L1 with the volume constraint, with minimality neighbourhood uniform with respect
to h. Now, given any sequence (hn)n∈N going to zero, let Fn be a volume constrained minimizer
of Jhn ; we then easily deduce that |E△Fn| → 0 as n → ∞, and therefore, for n large enough,
|E△Fn| ≤ ε. The strict minimality of E therefore implies Fn = E.

4.2 Uniform L1 estimate

In this subsection we prove a uniform L1−estimate on the discrete flow starting from an
initial set E0 sufficiently “close” to a strictly stable set of the perimeter. We will devote the next
subsection to a discussion upon the hypotheses of the estimate. Before we recall the definition of
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Hausdorff distance and some of its properties, for a complete reference see e.g. [14, Section 4.4],
[153, Section 10.1].

Given a set C ⊂ TN , we denote by (C)δ the δ fattened of C, that is the set

{x ∈ TN : distC(x) ≤ δ}.

Let C1, C2 ⊂ TN be closed sets, we define the Hausdorff distance between C1 and C2 as

dH(C1, C2) := inf {ρ > 0 : C1 ⊂ (C2)ρ, C2 ⊂ (C1)ρ} .

Given Cn, C closed sets in TN , we say that (Cn)n∈N converges to C in the Hausdorff distance
and we write Cn

H→ C, if dH(Cn, C) → 0 as n → ∞. We recall that the space of closed subsets
of a compact set equipped with the Hausdorff metric is compact (see e.g [14, Theorem 4.4.15] or
[153, Proposition 10.1]) and also that the convergence in the Hausdorff distance is equivalent to
the uniform convergence of the respective distance functions, i.e.

Cn
H→ C ⇐⇒ distCn → distC uniformly.

In the following, given two open smooth sets E1, E2, we will denote by dH(E1, E2) the Hausdorff
distance between their closures.

Lemma 5.25. Let E ⊂ TN be a strictly stable set and let ε > 0. Then, there exist δ = δ(ε, E) > 0
and h∗ = h∗(E) > 0 such that, for every h < h∗ and for every set E0 satisfying

|E0| = |E|, dH(E0, E) ≤ δ,

we have
|E△F | ≤ ε,

where F is a solution of (5.24) with E0 replacing E.

Proof. Let h∗ = h∗(E) be the constant given by Proposition 5.24 so that, for every h < h∗, E is
the unique volume-constrained global minimizer of the functional

J̃h(G) := P (G) +
1

h

ˆ
G

distE(x) dx. (5.27)

Fix h < h∗ and let (En)n∈N be a sequence of sets satisfying

|En| = |E|, En
H→ E. (5.28)

Consider Fn a solution of (5.24) with En replacing E. We claim that

Fn
L1

→ E.

If we prove the claim, the conclusion easily follows.
First, Remark 5.22 ensures that (Fn)n∈N is a sequence of sets with uniformly bounded perime-

ters, with the bound depending only on N,m, h. Therefore, there exist F a set of finite perimeter
such that |F | = m and a (unrelabelled) subsequence of (Fn)n∈N such that

Fn
L1

→ F.

Now, let K be a compact subset of TN such that, up to a subsequence, we have

Ecn
H→ K.

From the second property in (5.28) we easily deduce that (E)c ⊂ K, and therefore Kc ⊂ E. In
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particular, this inclusion implies that
ˆ
Kc

distK(x)dx =

ˆ
E

distK(x) dx ≥
ˆ
G

distK(x) dx

for every G ⊂ TN . Setting

J̄h(G) := P (G) +
1

h

ˆ
G

(distE(x)− distK(x)) dx,

from the previous remark and from the fact that E is the unique minimizer of (5.27), we have

J̄h(G) = J̃h(G)−
1

h

ˆ
G

distK(x) dx

> J̃h(E)− 1

h

ˆ
G

distK(x) dx

≥ J̃h(E)− 1

h

ˆ
E

distK(x) dx = J̄h(E),

for any measurable set G ⊂ TN with |G| = |E|. Finally, we obtain

J̄h(F ) = P (F ) +
1

h

ˆ
F

(distE(x)− distK(x)) dx

≤ lim inf
n→∞

P (Fn) +
1

h

ˆ
F

(distE(x)− distK(x)) dx

= lim inf
n→∞

(
P (Fn) +

1

h

ˆ
Fn

(
distEn(x)− distEcn(x)

)
dx
)

≤ lim inf
n→∞

(
P (E) +

1

h

ˆ
E

(
distEn(x)− distEcn(x)

)
dx
)

= P (E)− 1

h

ˆ
E

distK(x)dx = J̄h(E)

where we exploited the lower-semicontinuity of the perimeter and the minimality of Fn. Since
E is the unique volume-constrained minimizer of J̄h, the set F must coincide with E and this
concludes the proof.

Remark 5.26. We remark that under the hypotheses of Lemma 5.25 we could have just assumed
the one-sided inclusion

E0 ⊂ (E)δ∗

instead of
dH(E0, E) ≤ δ

for a suitable δ∗ ≤ δ. Indeed, let δn → 0 and En ⊂ (E)δn such that |En| = |E|. We prove that
En converges to E in the sense of Kuratowski (and thus with respect to Hausdorff). Let (xn)n∈N
be a sequence such that xn ∈ En and xn → y. For every n ∈ N, there exists yn ∈ E such that
|xn − yn| ≤ δn. Therefore, for any ε > 0 there exists n0 such that, for n ≥ n0, we have

|yn − y| ≤ |yn − xn|+ |xn − y| ≤ δn + ε,

that is yn → y. Since (yn)n∈N ⊂ E, we have y ∈ E.
Fix now y ∈ E. Assume by contradiction that there exists δ > 0 such that distEn(y) > δ, i.e.

it doesn’t exist a sequence of elements in En converging to y. From this (and up to subsequences)
it follows

En ⊂ (E)δn \Bδ(y) ∀n ∈ N.
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Thus we have

m = lim
n→∞

|En| ≤ lim
n→∞

|(E)δn \Bδ(y)|

≤ lim
n→∞

|(E)δn \ (Bδ(y) ∩ E) |

= lim
n→∞

|(E)δn | − |Bδ(y) ∩ E| = m− |Bδ(y) ∩ E|

which is a contradiction.

We are now able to prove the main estimate that will be used in the proof of Proposition 5.30.

Proposition 5.27 (Uniform L1−estimate). Let E ⊂ TN be a strictly stable set. Then, for every
ε > 0 there exist δ∗ = δ∗(ε, E) > 0 and h∗ = h∗(E) > 0 with the following property: for every
h < h∗, if E0 is a measurable set such that

|E0| = |E|, E0 ⊂ (E)δ∗ ,

then the discrete flow (Enh )n∈N starting from E0 satisfies

α(E,Enh ) ≤ ε

for every n ∈ N .

Proof. Fix h < h∗, where h∗ = h∗(E) is the constant given by Lemma 5.25 and let σ = σ(E),
C = C(E) be the constants of Theorem 5.17. Moreover, let δ := δ(σ,E) be the constant given by
Lemma 5.25 with σ replacing ε. Set δ∗ ≤ δ to be chosen later and consider E0 such that

|E0| = |E|, E0 ⊂ (E)δ∗ .

Recall that, from Remark 5.26 and from the hypothesis E0 ⊂ (E)δ∗ , without loss of generality, we
can assume dH(E0, E) ≤ δ∗. Moreover, by the regularity of E, we can also suppose α(E0, E) ≤
C̃δ∗, for a suitable constant C̃ > 0 that only depends on E. From Lemma 5.25 we have that

|E1
h△E| ≤ σ. (5.29)

Let x0 be such that α(E0, E) = |E0△(E + x0)|. By choosing E + x0 as a competitor for the
minimality of E1

h and estimating dist∂E0 ≤ diam(TN ) =
√
N , we find

P (E1
h)− P (E) ≤ 1

h

ˆ
E0△(E+x0)

dist∂E0
(x) dx ≤

√
N

h
α(E0, E) ≤

√
N

h
C̃δ∗.

By (5.29), we can apply Theorem 5.17 and the previous estimate to obtain

α(E1
h, E) ≤ 1√

C

√
P (E1

h)− P (E) ≤ 1√
C

√√
N

h
α(E,E0) ≤

1√
C

√√
N

h
C̃δ∗ ≤ min{σ, δ, ε},

where we have chosen δ∗ such that δ∗ ≤ Ch (min{σ, δ, ε})2 /(C̃
√
N). Since E1

h is a Λ−minimizer
and E is regular, up to taking δ∗ smaller, the classical regularity theory for Λ−minimizers (see
Theorem 5.8) implies

dH(∂E1
h, ∂E + x1) ≤ δ,

where x1 is such that α(E1
h, E) = |E1

h△(E + x1)|.
Now we iterate the procedure: by induction, suppose that

α(En−1
h , E) ≤ min{σ, δ, ε}, dH(∂En−1

h , ∂E + xn−1) ≤ δ (5.30)

where xn−1 is such that |En−1
h △(E+xn−1)| = α(En−1

h , E). Observe that the second inequality in
(5.30) implies that dH(E

n−1

h , E+xn−1) ≤ δ, therefore En−1
h and E+xn−1 satisfy the hypotheses
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of Lemma 5.25 and thus
|Enh△(E + xn−1)| ≤ σ.

Observe that by definition α(Enh , E + xn−1) = α(Enh , E). Now, by Theorem 5.17 and the mono-
tonicity of the perimeters along the discrete flow we obtain

α(Enh , E) ≤ 1√
C

√
P (Enh )− P (E)

≤ 1√
C

√
P (E1

h)− P (E)

≤ 1√
C

√√
N

h
C̃δ∗ ≤ min{σ, δ, ε}.

Again, thanks to the choice of δ∗, the hypotheses of Theorem 5.8 are satisfied and thus

dH(∂Enh , ∂E + xn) ≤ δ,

where xn is such that α(Enh , E) = |Enh△(E + xn)|. This concludes the proof.

4.3 Some remarks on the hypothesis of the L1−estimate
In this subsection we show that Proposition 5.27 does not hold if we weaken the hypothesis of

closeness in the Hausdorff distance between the starting set E0 and the strictly stable set E. In
particular, we prove that the sole hypothesis of closeness in L1 and in perimeter is not enough.
We remark that a modification of this example yields the same result in RN .

Fix h > 0 and G ⊂ TN . Recall that, for any set F ⊂ TN such that |F | = |G|, we have set

JGh (F ) := P (F ) +
1

h

ˆ
F△G

dist∂G(x) dx. (5.31)

Proposition 5.28. There exist m > 0 and a sequence (En)n∈N ⊂ TN with the following properties:
|En| = m for every n ∈ N, P (En) is uniformly bounded and, letting Fn be any volume-constrained
minimizer of (5.31) with En instead of G, we have

En
L1

→ E, P (En) → P (E) but Fn
L1

→ F,

where E is a lamella and F is such that |E△F | > 0.

Proof. Let m > 0 such that the ball of volume m has perimeter strictly less than the one of the
lamella of the same volume; we remark that for every smaller volume m′ ≤ m the same property
holds. Let E be a lamella of measure m, recall that E is a strictly stable set of the perimeter in
TN . From the assumption on m it follows that E is only a local minimizer of the perimeter and
not a global one.
Step 1. Firstly, we construct a sequence (En)n∈N such that En → E in L1 and ∂En → TN in the
Hausdorff distance. We define En by adding to E some balls contained in TN \ E and of overall
small volume, and by subtracting to E balls contained in E with the same overall volume.

Recall that TN = [0, 1]N/ZN . In the following, with a little abuse of notation, we will identify
TN and [0, 1)N . We define

In : =
{
k = (k1, . . . , kN ) ∈ ZN : 0 ≤ ki ≤ 2n − 1 ∀i = 1, . . . N

}
,

Pn : =

{
Qn,k :=

[
0,

1

2n

)N
+

k

2n
: k ∈ In

}
,

for every n ∈ N. Up to choosing m smaller, we can assume that m = 1/2s for some s ∈ N.
Moreover, we can suppose, up to translations, that E = [0, 1)N−1 × (0, 1/2s), thus for n ≥ s we
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have

E = Int


 ⋃

k∈In, 0≤kN≤2n−s−1

Qn,k


 ,

where Int(·) denotes the interior of a set in TN . For every n ≥ s and k ∈ In, we consider the balls
Bn,k ⊂ Qn,k centered in the center of the cube Qn,k and of radius rn,k chosen in such a way that

∣∣∣∣∣∣
⋃

k∈In, 0≤kN≤2n−s−1

Bn,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

k∈In, 2n−s≤kN≤2n−1

Bn,k

∣∣∣∣∣∣
. (5.32)

Moreover, we can also take the radii rn,k sufficiently small so that

lim
n→∞

∣∣∣∣∣∣
⋃

k∈In

Bn,k

∣∣∣∣∣∣
= 0, lim

n→∞
P


 ⋃

k∈In

Bn,k


 = 0. (5.33)

Set now

An :=
⋃

k∈In, 0≤kN≤2n−s−1

Bn,k ⊂ Int


 ⋃

k∈In, 0≤kN≤2n−s−1

Qn,k


 = E,

Cn :=
⋃

k∈In, 2n−s≤kN≤2n−1

Bn,k ⊂
⋃

k∈In, 2n−s≤kN≤2n−1

Qn,k ⊂ TN \ E.

Define En = (E ∪ Cn) \ An and observe that, by (5.32), we have |En| = |E|. Now, by (5.33), we
also obtain

En
L1

→ E and P (En) → P (E).

Observe that, from the definition of An and Cn, we have that

(∂An)√N/2n ∪ (∂Cn)√N/2n = TN

and therefore the set ∂En = ∂E ∪ ∂Cn ∪ ∂An converges in the Hausdorff metric to the whole TN
as n→ +∞. Therefore we have constructed a sequence (En)n∈N that satisfies

En
L1

→ E, P (En) → P (E), ∂En
H→ TN . (5.34)

Step 2. Let En be the sets previously defined. We consider the space X = {F ⊂ TN :
F is measurable} endowed with the L1−distance, i.e. distL1(F,G) = |F△G| for every F,G ∈ X.
We extend our functional in the following way

J̃Eh (F ) :=

{
JEh (F ) if P (F ) <∞, |F | = m,

+∞ otherwise

and we set Jn := J̃Enh . We then prove the Γ−convergence of the functionals Jn to the perimeter
functional in X, that is

Γ(X)− lim
n→∞

Jn = P. (5.35)

We can clearly restrict ourselves to consider sets of finite perimeter and volume m, otherwise
the result is trivial. For any given set F of measure m and finite perimeter we choose the sequence
constantly equal to F as a recovery sequence for F . Indeed, by (5.34) we have

Jn(F ) = P (F ) +
1

h

ˆ
F△En

dist∂En → P (F ).
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We now prove the lim inf inequality. Given a sequence Fn → F in L1, by lower semicontinuity

P (F ) ≤ lim inf
n→∞

P (Fn) ≤ lim inf
n→∞

(
P (Fn) +

1

h

ˆ
Fn△En

dist∂En

)

and thus (5.35) is proved. Therefore, thanks to the equi-coercivity of the functionals Jn, any
sequence of volume-constrained global minimizers of Jn converges in L1, up to a subsequence, to
a volume-constrained global minimizer of the perimeter in the torus. Let (Fn)n∈N be a sequence
of global minimizers of the functional Jn and let F be such that Fn → F in L1. We know that
F is a global minimizer of the perimeter and that by the choice of m the lamella is not a global
minimizer. Therefore it must hold |E△F | > 0.

5 Convergence of the flow

In this section, we will prove the main result of the chapter concerning the convergence of the
discrete flow that mainly relies on Proposition 5.27.

5.1 Convergence of the flow up to translations
We start by recalling [154, Lemma 3.6]: it will be used in the proof of the following proposition.

Lemma 5.29. Let (Enh )n∈N be a volume preserving discrete flow starting from E0 and let Eknh
be a subsequence such that Eknh + τn → F in L1(TN ) for some set F and a suitable sequence
(τn)n∈N ⊂ TN . Then dist∂Ekn−1

h
(·+ τn) → dist∂F uniformly.

In the following proposition we characterize the long-time behaviour up to translations of the
discrete mean curvature flow in the flat torus starting near a regular strictly stable set.

Proposition 5.30. Let E ⊂ TN be a strictly stable set. Then there exist δ∗ = δ∗(E) > 0 and
h∗ = h∗(E) > 0 with the following property: if h < h∗ and E0 ⊂ TN is a set of finite perimeter
satisfying

|E0| = |E|, E0 ⊂ (E)δ∗ ,

then, for every discrete flow (Enh )n∈N starting from E0, there exists a sequence of translations
τn ∈ TN such that

Enh + τn → E in Ck, ∀k ∈ N.

Proof. Let ε > 0 be sufficiently small and let δ∗ = δ∗(ε, E), h∗ = h∗(E) be the constants given
by Proposition 5.27. Fix E0 an initial set satisfying |E| = |E0| and E0 ⊂ (E)δ∗ . It is enough to
show that any (unrelabelled) subsequence of the discrete flow starting from E0 admits a further
subsequence converging in Ck and up to translations to E. We divide the proof into three steps.
Step 1. (Existence and regularity of a limit point) From Proposition 5.23 we remark that, for
n ≥ 1, the sets Enh are uniform Λ−minimizers with uniformly bounded, non-increasing perimeters.
Therefore, by the compactness of (uniform) Λ−minimizers, we can conclude that there exists a
subsequence (Eknh )n∈N and a Λ−minimizer E∞

h such that

Eknh
L1

→ E∞
h , P (Eknh ) → P (E∞

h ), sdEkn−1
h

→ sdE∞
h

uniformly.

Let G be a set of finite perimeter such that |G| = m. By the minimality of Eknh we have

P (Eknh ) +
1

h

ˆ
Eknh

sdEkn−1
h

(x) dx ≤ P (G) +
1

h

ˆ
G

sdEkn−1
h

(x) dx

and, taking the limit as n→ ∞, we obtain

P (E∞
h ) +

1

h

ˆ
E∞
h

sdE∞
h
(x)dx ≤ P (G) +

1

h

ˆ
G

sdE∞
h
(x) dx.
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We have thus proved that E∞
h is a fixed point for the discrete flow and thus, by Proposition 5.24,

it is a critical point for the perimeter.
Let τ∞ ∈ argminx|(E∞

h +x)△E|. By Proposition 5.27 we have α(E,Eknh ) ≤ ε for every n ∈ N.
Now, up to taking ε smaller, Theorem 5.8 and the smoothness of E, yields both the C1,β-closeness
between E∞

h +τ∞ and E, and the C1,β regularity of E∞
h +τ∞ (and thus of E∞

h ), for every β ∈ (0, 1).
From Proposition 5.23 (iv) it follows that E∞

h is of class C2,β , therefore we conclude that E∞
h has

constant classical mean curvature and thus it is of class C∞. To conclude, the smoothness of E∞
h

allow us to use Theorem 5.8 to improve the convergence of the subsequence to

Eknh → E∞
h in C1,β (5.36)

and to ensure that the sets Eknh are of class C1,β for n large enough.
Step 2. (Convergence in C2,β of the flow and C2,β−closeness to E) In this step we we will prove
that E∞

h is C2,β−close to E and that the convergence of Eknh to E∞
h is in C2,β . Without loss

of generality, we assume that α(E,E∞
h ) = |E△E∞

h | so that the translation introduced by the
previous step does not appear.

First of all we remark that, owing to the compactness of ∂E∞
h , it suffices to show that the

result holds locally. By a compactness argument and the definition of convergence of sets in
C1,β (Definition 5.7), up to rotations and relabelling the coordinates, we can find a cylinder
C = B′ × (−L,L), where B′ ⊂ RN−1 is a ball centred at the origin, and functions f∞, fn ∈
C1,β(B′; (−L,L)) describing locally ∂E∞

h ∩ C and ∂Eknh ∩ C respectively. We remark that the
convergence (5.36) now reads as

fkn → f∞ in C1,β(B′). (5.37)

We now prove that the curvatures HEknh
of the sequence Eknh are converging in C0,β to the

curvature of E∞
h in the following sense

HEknh
(·, fkn(·)) → HE∞

h
(·, f∞(·)) in C0,β(B′). (5.38)

We will follow an argument used in Step 3 of the proof of [4, Theorem 4.3].
Since we described ∂Eknh ∩C as a graph, the following formula for the curvature of ∂Eknh holds

div

(
∇fkn(·)√

1 + |∇fkn(·)|2

)
= HEknh

(·, fkn(·)) on B′ (5.39)

and an analogous formula holds for ∂E∞
h . From (5.39) and the Euler-Lagrange equation (5.26),

by integrating on B′, we then obtain

λknHN−1(B′)− 1

h

ˆ
B′
sdEkn−1

h
(x′, fkn(x

′)) dHN−1(x′) (5.40)

=

ˆ
B′
HEknh

(x′, fkn(x
′)) dHN−1(x′)

=

ˆ
B′

div

(
∇fkn(x′)√

1 + |∇fkn(x′)|2

)
dHN−1(x′)

=

ˆ
∂B′

∇fkn(y)√
1 + |∇fkn(y)|2

· y dHN−2(y),

where we set y = x′/|x′| and integrated by parts in the last line. We can then exploit the
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convergence (5.37) and the formula (5.39) for the curvature of E∞
h to prove

ˆ
∂B′

∇fkn(y)√
1 + |∇fkn(y)|2

· y dHN−2(y) →
ˆ
∂B′

∇f∞(y)√
1 + |∇f∞|2(y)

· y dHN−2(y)

=

ˆ
B′

div

(
∇f∞(x′)√

1 + |∇f∞(x′)|2

)
dHN−1(x′)

= HE∞
h
HN−1(B′).

Now, Lemma 5.29 ensures that sdEkn−1
h

→ sdE∞
h

uniformly and we can use the convergence (5.37)
to obtain

sdEkn−1
h

((·, fkn(·))) → sdE∞
h
((·, f∞(·))) = 0 uniformly on B′,

since ∂E∞
h ∩ C = {(x′, f∞(x′)) : x′ ∈ B′)} by definition. Therefore we find
ˆ
B′
sdEkn−1

h
((x′, fkn(x

′)))dHN−1(x′) →
ˆ
B′
sdE∞

h
((x′, f∞(x′))) dHN−1(x′) = 0.

We then conclude that (5.40) converges to HE∞
h
HN−1(B′) and thus it must hold

λkn → HE∞
h
.

From (5.26), the previous result and the fact that the signed distance functions are all equi-
lipschitz, we conclude that for any β ∈ (0, 1), the sequence (HEknh

(·, fkn(·))) is bounded in C0,β(B′)

and thus it converges uniformly to HE∞
h
(·, f∞(·)). This proves the convergence (5.38).

We remark that the previous result also hold if we describe the sets of the flow Eknh as normal
deformations of E∞

h , that is there exist functions φkn : ∂E∞
h → R such that Eknh = (E∞

h )φkn . In
this case the convergence (5.36) reads as

φkn → 0 in C1,β(∂E∞
h ),

and this and Lemma 5.29 ensure that

sdEkn−1
h

(·+ φkn(·)νE∞
h
(·)) → sdE∞

h
(·) = 0 uniformly on ∂E∞

h .

Now, the convergence of the curvatures reads as

HEknh
(·+ φkn(·)νE∞

h
(·)) → HE∞

h
(·) in C0,β(∂E∞

h ).

We can then apply directly [4, Lemma 7.2] to obtain that the subsequence Eknh is converging to
E∞
h in C2,β .

To prove the C2,β−closeness of the limit point we argue by contradiction. Assume that a
sequence of limit points (E∞,l

h )l∈N is converging in C1,β to E but there exists σ > 0 such that

distC2,β (E,E∞,l
h ) > σ

for every l large enough. Again, we describe locally ∂E∞,l
h and ∂E as graphs of suitable functions

f∞,l, f : B′ → (−L,L) and we can repeat the same argument previously employed to prove that

HE∞,l
h

((·, f∞,l(·))) → HE((·, f(·))) in C0,β(B′).

This time the argument is simpler, since the limit points are stationary sets for the perimeter and
thus their Euler-Lagrange equation is

HE∞,l
h

= λE∞,l
h

∈ R on ∂E∞,l
h .
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Again, Lemma 7.2 in [4] yields the desired contradiction.
Step 3. (Uniqueness up to translations and Ck convergence) By the previous step we can find a
suitable function φ∞ ∈ C2,β(∂E) such that E∞

h = Eφ∞ . Up to introducing a further translation
given by Lemma 5.14, the hypotheses of Theorem 5.4 are satisfied and thus

∥φ∞∥H1(∂E) ≤ C∥HE∞
h

−HE∞
h
∥L2(∂E) = 0,

since the set E∞
h is a stationary set for the perimeter. Therefore E∞

h is a translated of the set E.
A standard bootstrap method based on the elliptic regularity theory combined with the Euler-

Lagrange equation (5.26) yields the convergence in Ck for every k ∈ N.

5.2 Exponential convergence of the whole flow
In this subsection we will prove that the translations introduced in Proposition 5.30 decay to

zero exponentially fast. In order to prove this result we will estimate the decay of the dissipations
via a dissipation-dissipation inequality, which in turn relies on the quantitative Alexandrov type
estimate established in Theorem 5.4. We start by recalling some preliminary results from [154].

Lemma 5.31. Let η > 0 and let E ⊂ TN be a strictly stable set. There exists δ > 0 with the
following property: if f1, f2 ∈ C1(∂E) with ∥fi∥C1(∂E) ≤ δ and |Efi | = |E| for i = 1, 2 we have

C1(1− η)∥f1 − f2∥2L2 ≤D(Ef1 , Ef2) ≤ C1(1 + η)∥f1 − f2∥2L2 (5.41)

1− η

2

ˆ
∂Ef1

sd2
Ef2

dHN−1 ≤D(Ef1 , Ef2) ≤
1 + η

2

ˆ
∂Ef1

sd2
Ef2

dHN−1 (5.42)

|bar(Ef1)− bar(Ef2)|2 ≤C2∥f1 − f2∥2L2 ≤ C2

C1(1− η)
D(Ef1 , Ef2) (5.43)

for suitable constants C1, C2 > 0.

The following lemma proves the crucial dissipation-dissipation inequality (5.45) (see [154,
Lemma 3.9]). This result will play a central role in the proof of Theorem 5.1. Its proof is
based on the Alexandrov-type estimate contained in Theorem 5.4.

Lemma 5.32. Let h > 0 and let E ⊂ TN be a strictly stable set. There exist constants C, δ > 0
with the following property: for any pair of normal deformations Ef1 , Ef2 with fi ∈ C2(∂E),
∥fi∥C1(∂E) ≤ δ, and such that |Ef2 | = |E|, |

´
∂E

νEf2 dHN−1| ≤ δ∥f2∥L2(∂E) and

HEf2
+

sdEf1
h

= λ on ∂Ef2 (5.44)

for some λ ∈ R, we have
D(E,Ef2) ≤ CD(Ef2 , Ef1). (5.45)

Proof. By Theorem 5.4, for δ sufficiently small, we get

∥f2∥2L2(∂E) ≤ C∥HEf2
−HEf2

∥2L2(∂E) ≤ C∥HEf2
− λ∥2L2(∂E)

≤ 2C∥HEf2
− λ∥2L2(∂Ef2 )

=
2C

h2

ˆ
∂Ef2

sd2
Ef1

dHN−1,

where the third inequality follows by bounding the Jacobian of the change of variables by 2 (see
(5.9)). By combining the previous inequalities with (5.41) and (5.42), we obtain the thesis.

We are now able to prove the main result of the chapter, Theorem 5.1.
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Proof of Theorem 5.1. Let h∗ > 0, δ∗ > 0 and (τn)n∈N be given by Proposition 5.30. Fix h < h∗

and set En := Enh . We split the proof in three steps.
Step 1. (Exponential convergence of dissipations) Testing the minimality of En with En−1 we
obtain

P (En) +
1

h
D(En, En−1) ≤ P (En−1).

Recalling that P (En) → P (E) and summing the previous inequality from n+ 1 to +∞ we get

+∞∑

k=n+1

1

h
D(Ek, Ek−1) ≤ P (En)− P (E). (5.46)

We will now construct a suitable competitor to estimate the dissipation at the step n− 1 with
the difference of perimeters. Since, by Proposition 5.30, we have

En + τn → E in Ck ∀k ∈ N, (5.47)

the translated sets of the flow, for n large enough, can be written as normal deformations of the
set E, that is there exists gn : ∂E → R such that

En + τn = Egn ,

where Egn was defined in (5.4). The convergence (5.47) then reads as gn → 0 in Ck as n → ∞.
Let σn be the translations introduced by Lemma 5.14 with En + τn instead of F . From the
convergence in Ck of En + τn to E, we deduce that σn → 0 as n→ ∞. Therefore, setting

Fn := En + τn + σn,

we have that Fn → E in Ck and Fn = Efn with fn : ∂E → R satisfying
∣∣∣∣
ˆ
∂E

fnνE dHN−1

∣∣∣∣ ≤ δ∥fn∥L2(∂E) and ∥fn∥W 2,p(∂E) ≤ C∥gn∥W 2,p(∂E)

for p > N − 1. Consider now the competitor

En := E − τn−1 − σn−1.

From the minimality of En we easily deduce

P (En)+
1

h
D(En, En−1) ≤ P (En)+

1

h
D(En, En−1) = P (E)+

1

h
D(E,En−1 + τn−1 +σn−1) (5.48)

where we used the translational invariance of the dissipations. From Lemma 5.29 we obtain that
the sequence En−2 + τn−1 + σn−1 converges in Ck to the same limit of En−1 + τn−1 + σn−1, that
is to E. In particular, for n large enough we can write En−2 + τn−1 + σn−1 = Eψ for a suitable
function ψ : ∂E → R (depending on n) and with ∥ψ∥C1(∂E) small. From Lemma 5.32 we can then
estimate the right hand side of (5.48) with

D(E,En−1 + τn−1 + σn−1) =D(E,Fn−1) = D(E,Efn−1
) ≤ CD(Efn−1

, Eψ)

=CD(En−1 + τn−1 + σn−1, En−2 + τn−1 + σn−1)

=CD(En−1, En−2).

From the previous inequality and (5.48) we obtain

P (En)− P (E) = P (En)− P (En) ≤
C

h
D(En−1, En−2). (5.49)
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Now, (5.46) and (5.49) yield

∞∑

k=n−1

1

h
D(Ek, Ek−1) =

∞∑

k=n+1

1

h
D(Ek, Ek−1) +

1

h
D(En, En−1) +

1

h
D(En−1, En−2)

≤C + 1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤C + 1

h
(D(En−1, En−2) +D(En, En−1)) .

We then apply Lemma 5.33 below (with l = 2) to conclude

D(En, En−1) ≤
(
1− 1

C + 1

)n/2
(P (E0)− P (E)) . (5.50)

Step 2. (Exponential convergence of barycenters) Set

b =

(
1− 1

C + 1

) 1
4

∈ (0, 1). (5.51)

From (5.47) and Lemma 5.29 both the sequences (En + τn)n∈N and (En−1 + τn)n∈N converge in
Ck to E. Therefore, for n large enough, there exist some functions f1,n, f2,n ∈ Ck(∂E) such that

En + τn = Ef1,n , En−1 + τn = Ef2,n

and ∥fi,n∥Ck(∂E) → 0 as n → ∞ for i = 1, 2. From (5.43) and (5.50) we can estimate for n
sufficiently large

|bar(En)− bar(En−1)| = |bar(En + τn)− bar(En−1 + τn)|
= |bar(Ef1,n)− bar(Ef2,n)|

≤ C
√
D(Ef1,n , Ef2,n) =

√
D(En, En−1)

≤ C (P (E0)− P (E))
1/2

bn.

In turn, the above estimate implies that (bar(En))n∈N satisfies the Cauchy condition, thus the
whole sequence admits a limit ξ̄ ∈ TN . Moreover, the convergence is exponentially fast in the
sense that

|bar(Ef1,n)− ξ̄| ≤
∞∑

k=n+1

|bar(Ef1,n)− bar(Ef2,n)| ≤ C (P (E0)− P (E))
1/2 bn

1− b

for n large enough. Recalling (5.47) we thus conclude that there exists a suitable translation
ξ ∈ TN such that for every k ∈ N

En → E − ξ in Ck as n→ ∞.

Step 3. (Exponential convergence of the sets) By the previous step we can write, for n large,
the boundaries of the evolving sets as radial graphs of the limit set E − ξ. Precisely, for n large
enough there exist functions fn such that

En + ξ = Efn and ∥fn∥Ck(∂E) → 0 as n→ ∞. (5.52)

From (5.41) and for n large enough we have ∥fn − fn−1∥L2(∂E) ≤ 2
√

D(En, En−1) and thus,
recalling (5.50) and arguing as in Step 2, we get

∥fn∥L2(∂E) ≤
∞∑

k=n+1

∥fn − fn−1∥L2(∂E) ≤ (P (E0)− P (E))
1/2 bn

1− b
(5.53)
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where b is as in (5.51). The above estimate yields the exponential decay of the L2−norms of the
radial graphs. We recall the well-known Gagliardo-Nieremberg inequality: for every j ∈ N there
exists C > 0 such that, if g is smooth enough on the boundary of a smooth set E, then

∥Dkg∥L2(∂E) ≤ C∥D2kg∥1/2L2(∂E)∥g∥
1/2
L2(∂E) (5.54)

whereDk stands for the collection of all the k−th order derivatives of g, see e.g. [17, Theorem 3.70].
Now, by (5.52) for every k there exists nk such that supn≥nk ∥D2kfn∥L2(∂E) ≤ 1, therefore we
may apply (5.54) to fn to deduce from (5.53) that also ∥Dkfn∥L2(∂E) decays exponentially fast
for all k ∈ N. The Sobolev immersion Theorem then yields the exponential decay in Ck for every
k thus completing the proof of the result.

Lemma 5.33. Let (an)n∈N be a sequence of non-negative numbers. Assume furthermore that
there exist c > 1, l ∈ N such that

∑∞
n=k an ≤ c

∑k+l−1
j=k aj for every k ∈ N. Then

ak ≤
(
1 +

1

c

) k
l

S

for every k ∈ N, where S =
∑∞
n=1 an.

The proof of the previous lemma can be found in [154, Lemma 3.11].

6 Two-dimensional case

In this section, we completely characterize the long-time behaviour of the discrete flow in
dimension two. This particular choice for the dimension is purely technical and can be justified
as follows. In the two-dimensional flat torus we have a complete characterization of the critical
points of the perimeter: they consist in unions of disjoint discs (having the same area) or in unions
of disjoint lamellae (possibly having different areas), or their complements. It turns out that these
sets are all strictly stable. This allows us to conclude that either the connected components of
any limit point of the discrete flow or the ones of their complements are strictly stable sets. We
remark that in higher dimension this could not be true anymore.

Fix h, m > 0 and let (Enh )n∈N be a flow with initial set E0 ⊂ T2 such that |E0| = m. We
recall that, by Proposition 5.23, there exists s0 > 0 such that the distance between the connected
components of the set Enh is at least s0. Moreover, the proposition also provides a bound from
below on the diameter of the connected components. Set

P∞ := lim
n
P (Enh )

as the limit of the monotone sequence of the perimeters along the discrete flow. Let F be any
possible limit point of the sequence (Ehn)n∈N. We observe that if F is a union of discs then its
number of connected components must be π−1P 2

∞/(4m) and therefore the form of the limit point
is uniquely determinated up to translations. Analogously, if F is the complement of a union of
discs, F c is made of π−1P 2

∞/(4−4m) connected components and thus it is uniquely determinated
up to translations of its complement. In the case when F is a union of lamellae the number of
connected components is, in general, less than or equal to P∞/2, and we have no information on
the area of the single components.

Since we will consider h as a fixed parameter, from now on we will denote by En the set Enh .

Remark 5.34 (Remarks on the uniform C1,α−closeness to limit points). We remark that for
every ε > 0 there exists n0 = n0(ε) ∈ N such that for every n ≥ n0 it holds

|En△
ln⋃

i=1

Fi,n| ≤ ε or |Ecn△
Ln⋃

i=1

Fi,n| ≤ ε, (5.55)
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Figure 5.2: The lamella L in light blue, the line a dashed in red.

where, in the first case,
⋃ln
i=1 Fi,n is a union of disjoint lamellae or a union of disjoint discs, with

Fi,n having the same mass of the i−th connected component of En; ln is either less than or
equal to P∞/2 if Fi,n, i = 1, . . . , ln, are lamellae or ln = π−1P 2

∞/(4m) if they are discs; in the
second case,

⋃Ln
i=1 Fi,n is a union of disjoint discs, with Fi,n having the same mass of the i−th

connected component of Ecn and Ln = π−1P 2
∞/(4 − 4m). This can be easily proved recalling

that any subsequence of the flow admits a further subsequence converging in L1 to a set of the
aforementioned form.

Moreover, the classical regularity theory of Λ−minimizers implies that the previous result can
be improved. Consider, for the sake of simplicity, that En satisfies the first inequality in (5.55)(the
other case is analogous). Then one can prove that for every ε > 0 there exists n0 = n0(ε) such
that for every n ≥ n0 it holds

En =

ln⋃

i=1

(Fi,n)fi,n where fi,n ∈ C1,α(∂Fi,n), ∥fi,n∥C1,α(∂Fi,n) ≤ ε. (5.56)

Remark 5.35. In this remark, we identify T2 with the unit square [0, 1)2. We prove that for a
fixed M > 0 there exists a finite number of slopes such that, for any lamella L having one of those
slopes, we have P (L) ≤M .

Fix a lamella L. Let a ⊂ T2 be one of the two components of the boundary of L, and suppose
that (0, 0) ∈ a. Since a is a closed curve in T2, by periodicity, the line in R2 passing through the
origin and with the same slope of a must also pass through a point of the form (p, q) ∈ N×N with
p, q coprime or equal to (0, 1) or (1, 0). We then remark that the length in T2 of a is equal to the one
of the segment between the origin and (p, q), that is length(a) = |(p, q)|. Since P (L) = 2 length(a),
in order to have P (L) ≤ M , the point (p, q) must be contained in the disc of radius M/2. Our
claim follows since in the disc of radius M/2 there is a finite number of points belonging to N×N.

In the following lemma we characterize the geometric form of any limit point of the discrete
flow.

Lemma 5.36 (Uniqueness of the form of the limit). Fix h, m > 0 and an initial set E0 ⊂ T2

with mass m. Let (En)n∈N be a discrete flow starting from E0. Then either one of the following
holds:

i) the limit points of the flow are disjoint unions of l discs of total area m, where l =
π−1(4m)−1P 2

∞ belongs to N,

ii) the limit points of the flow are the complement of disjoint unions of l discs of total area
1−m, where l = π−1(4− 4m)−1P 2

∞ belongs to N.

iii) the limit points of the flow are disjoint unions of l lamellae of total area m, with the same
slope and l ≤ P∞/2. Moreover, the equality l = P∞/2 ∈ N holds if and only if the limit is
given by vertical or horizontal lamellae.

Proof. We first employ a compactness argument and then use Lemma 5.29 to conclude. We start
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by fixing some notation. We denote by

EB :=

lB⋃

i=1

Bi (5.57)

any disjoint union of lB = 4−1πm−1P 2
∞ discs each having radius 2m/P∞; we denote by

EBc :=

(
lBc⋃

i=1

Bi

)c
(5.58)

the complement of any disjoint union of lBc = 4−1π(1−m)−1P 2
∞ discs, each of radius 2(1−m)/P∞;

we denote by

EL :=

lL⋃

i=1

Li (5.59)

any disjoint union of lL ≤ P∞/2 lamellae having the same slope ( and possibly having different
masses). We remark that, for every fixed P∞ and m, the following holds

i := inf{ dH(EB ,EL) ∧ dH(EBc ,EL) ∧ dH(EBc ,EB) : EL,EB ,EBc as above} > 0, (5.60)

This is clear if we compare the families EB ,EBc and a union of lamellae having the same slope.
Since, by Remark 5.35, there is a finite number of possible slopes for the lamellae, we conclude
(5.60). From Remark 5.34 the discrete flow is eventually C1−close to a limit point of the form
EL,EB or EBc . Assume now by contradiction that the flow does not converge to a fixed config-
uration. Then, without loss of generality, we can assume that for every 0 < ε < i/3 there exist
infinitely many indexes such that

dH(En−1,EB) ≤ ε and dH(En,EL) ≤ ε.

Therefore we get

dH(EB ,EL) ≤ dH(EB , En−1) + dH(EL, En) + dH(En, En−1) ≤ 2ε+ dH(En, En−1).

To reach the contradiction (compare (5.60)), it is enough to show that for every ε > 0 there exists
n0 = n0(ε) such that for every n ≥ n0 it holds

dH(En−1, En) ≤ ε. (5.61)

Assume by contradiction the existence of a subsequence nk along which the flow satisfies

dH(Enk−1, Enk) > ε.

Up to a further subsequence, Enk → F , with F being a set of the form EB ,EL or EBc . But then
Lemma 5.29 implies sdEnk−1

→ sdF uniformly, which is clearly a contradiction.
Finally, we observe that in case iii) the number of connected component is given by P∞

2|(p,q)| ,
where we used the same notation of Remark 5.35. Thus, l = P∞/2 if and only if (p, q) is equal to
(0, 1) or to (1, 0) that means that the lamella is either vertical or horizontal.

Thanks to the previous lemma we can then conclude the proof of Theorem 5.2, the main result
of this section. While the proofs of assertions i) and ii) of Theorem 5.2 are similar to the one of
[154, Theorem 3.4], the third one is slightly different, the main issue being that we can not fix
the mass of the connected components of the limiting configuration. We will prove nonetheless
the exponential convergence of the dissipations that, in turn, yields the convergence of the mass
of the connected components of the flow. We start by a simple remark.

Remark 5.37 (C1,α-closeness to lamellae). Let ε > 0. Consider two lamellae L1, L2 having the
same slope, possibly having different area and two C1,α−deformations E1, E2, respectively, of L1
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and L2. Suppose also that
distC1,α(Ei, Li) ≤ ε, i = 1, 2.

Then the closeness in L∞ of E1 and E2 implies that E2 and L1 are close in C1,α. Indeed, we first
remark that

distC1,α(L2, L1) = distL∞(L2, L1)

since the components of the boundaries of L1 and L2 differ only by a translation. Moreover, the
hypothesis distL∞(E1, E2) ≤ ε implies distL∞(L2, L1) ≤ 2ε. Now, let f2 be a suitable function such
that E2 = (L2)f2 , then ∥f2∥C1,α(∂L2) ≤ ε and there exists a constant |c| ≤ distL∞(L1, L2) ≤ 2ε
such that E2 = (L1)f2+c. Therefore we obtain

distC1,α(E2, L1) = ∥f2 + c∥C1,α(∂L1) ≤ ∥f2∥C1,α(∂L2) + |c| ≤ ε+ 2ε = 3ε.

Proof of Theorem 5.2. By Lemma 5.36, we can assume that all the limit points of the flow are
sets either of the form EB , EBc or EL (see (5.57), (5.58), (5.59)). To conclude we need to prove
that the whole sequence converges in Ck and exponentially fast to a unique configuration.

In the case when the limit points are of the form EB , the proof follows the same spirit of [154,
Theorem 3.4], but it is easier since we work in a compact space. The case when the limit points
are of the form EBc is at all analogous: we simply remark that, if F is a minimizer of 5.25, then its
complement is a minimizer of the same problem with Ec instead of E and with 1−m instead of
m. By studying the evolution of the complement of the discrete flow, we can conclude as before.

Now, suppose that the limit points are of the form EL. We begin by observing that any
subsequence of the flow admits a further subsequence converging in L1 to a union of disjoint
lamellae. Firstly, we prove the exponential decay of the dissipations. Testing the minimality of
En with En−1 we obtain

P (En) +
1

h
D(En, En−1) ≤ P (En−1).

Summing for s ≥ n+ 1 we have

+∞∑

s=n+1

1

h
D(Es, Es−1) ≤ P (En)− P∞. (5.62)

With the notation previously introduced, for every ε we can choose n large enough such that (5.56)
holds. Let Fi,n be the sets given by (5.56): by Lemma 5.36, we know that Fi,n, i = 1, . . . , ln, are
eventually lamellae and ln = l ≥ P∞/2.

We will now construct a suitable competitor to estimate the dissipation at the step n− 1 with
the difference of the perimeters. For n large enough consider the competitor

Ln =

l⋃

i=1

Fi,n−1.

We remark that, by definition and for n large enough, this competitor has perimeter P (Ln) = P∞.
By Proposition 5.23, there exists s0 = s0(m,h,N,E0) > 0 such that the connected components
Ei,n of En satisfy

dist (Ei,n, Ej,n) ≥ s0

for every i ̸= j, moreover Remark 5.34 ensures that

dist (Fi,n−1, Fj,n−1) ≥
s0
2
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holds for n large enough and i ̸= j. Thus, we can localize the dissipations

D(En, En−1) =

l∑

i=1

D(Ei,n, Ei,n−1), (5.63)

D(Ln, En−1) =

l∑

i=1

D(Fi,n−1, Ei,n−1).

Testing the minimality of En with Ln and using the previous equality we have

P (En) +
1

h
D(En, En−1) ≤ P (Ln) +

1

h

l∑

i=1

D(Fi,n−1, Ei,n−1). (5.64)

Recalling Remark 5.37 and equations (5.56) and (5.61), we then obtain that the connected compo-
nents of both En−1 and En−2 are small normal C1,α−deformations of the connected components
of Ln−1. Thus we can assume that both Ei,n−1 and Ei,n−2 can be described as normal deforma-
tion of Fi,n−1 for i = 1, . . . , k. Let fi,n−1 and fi,n−2 be the functions (having small C1,α−norms)
that describe respectively these deformations. Now, recalling Lemma 5.32, we can estimate

D(Fi,n−1, Ei,n−1) =D(Fi,n−1, (Fi,n−1)fi,n−1
) ≤ CD((Fi,n−1)fi,n−1

, (Fi,n−1)fi,n−2
)

=CD(Ei,n−1, Ei,n−2).

Thus, from equations (5.63) and (5.64) we get

P (En)− P∞ = P (En)− P (Ln) ≤
C

h

l∑

i=1

D(Ei,n−1, Ei,n−2) =
C

h
D(En−1, En−2)

and then (5.62) clearly yields

∞∑

s=n−1

1

h
D(Es, Es−1) =

∞∑

s=n+1

1

h
D(Es, Es−1) +

1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤ P (En)− P∞ +
1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤ C + 1

h
D(En−1, En−2) +

1

h
D(En, En−1)

≤
(
C + 1

h
D(En−1, En−2) +

1

h
D(En, En−1)

)
.

We can then conclude using the same arguments of [154, Theorem 3.4].
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1 Introduction

In this chapter we consider the geometric evolution of sets called the volume preserving frac-
tional mean curvature flow. It is the fractional counterpart of the classical volume preserving mean
curvature flow, which is defined as the flow of sets (Et)0≤t≤T in RN following the motion law

vt = H̄Et −HEt on ∂Et

for all t ∈ [0, T ] , where H̄Et denotes the average of HEt over ∂Et. In the fractional setting, the
velocity of the flow is related to the fractional mean curvature, a geometric quantity introduced
by Caffarelli, Roquejoffre and Savin in [36] and defined as the first variation of the fractional
perimeter functional. The latter functional is defined on a measurable set E ⊂ RN as

P s(E) =

ˆ
E

ˆ
Ec

1

|x− y|N+s
dx dy.

One can then compute the fractional curvature of a smooth enough set E as in [36], and find the
expression

Hs
E(x) =

ˆ
RN

χE(y)− χEc(y)

|x− y|N+s
dy, x ∈ ∂E.

In both the previous formulae, the integrals are intended in the principal value sense. In analogy
with the classical case, the evolution law for the volume preserving fractional mean curvature flow
is given by

vt = H̄s
Et −Hs

Et on ∂Et, (6.1)

with the notations previously introduced.
Up to now, a satisfactory study of this type of evolution is still missing. While the evolution

without the volume constraint is well-understood (see e.g. [56, 127]), the lack of a comparison
principle in our case makes the study much harder. Moreover, the generated flow may present
singularities of different kinds, as happens for the classical mean curvature flow: see [62] for
some explicit examples of pinch-like singularities. In [131] short-time existence is proved for the
smooth flow (6.1), while existence of the smooth flow starting from convex sets (under suitable
assumptions) is provided in [61]. I this chapter we focus on a discrete-in-time approximation of
the flow, obtained via the minimizing movements scheme in the spirit of [8, 144]. First of all we
define the discrete flow. Given any initial set E0, with |E0| = m, and a time-step h > 0 we define
E

(h)
0 := E0 and, iteratively, for n ≥ 0 we set

E
(h)
n+1 ∈ argmin

{
P s(F ) +

1

h

ˆ
F

sd
E

(h)
n

(x)dx+
1

h
s

1+s
||F | −m| : F ⊂ RN measurable

}
,

where sd
E

(h)
n

is the signed distance function from the set E(h)
n . This variational problem is the

fractional counterpart of the one studied in [155]. We define for every t ≥ 0, the discrete flow by
E(h)(t) := E

(h)
[t/h], and we will prove that such a flow is well-defined. Any L1

loc-limit point of this
flow as the time-step h converges to zero will be called a flat flow. For the classical mean curvature
flow, under the hypothesis of convergence of the perimeters, this approach produces global-in-time
distributional solutions of the evolution law (6.1), as shown in [155]. In the fractional case, we
fall short of this result, since we lack some regularity results needed to characterize the evolution
law of a flat flow. Moreover, from a technical point of view, proving the uniform boundness of the
discrete flow in the fractional setting is nontrivial.

In the recent years, the study of the long time behaviour of the volume preserving mean
curvature flow has attracted more and more attention. In the local case, after some classical
studies [82, 122], in a recent paper [154] the authors proved the asymptotic behaviour of the
classical discrete flow by showing its convergence to unions of equal balls. Then, they improved
their results in [133], proving uniform estimates with respects to the time parameter h in dimension
N = 2, thus obtaining the same result for the flat flow. In the fractional setting some recent results
have been proved. For example, in [61] the authors prove that the smooth flow starting from a
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convex set converges to a ball, up to translations possibly depending on time and under the
hypothesis of equiboundedness for the fractional curvatures along the flow.

In this chapter the long-time convergence analysis for the discrete flow is developed in the
fractional setting. The main result of the chapter is Theorem 6.1. It provides a complete char-
acterization of the long-time behaviour of the discrete fractional mean curvature flow starting
from any bounded set of finite fractional perimeter, providing also an estimate on the convergence
speed. We will assume that the dimension N is such that any Λ−minimizer of the fractional
perimeter is a smooth set. Namely, we will assume that either:

• N = 2;

• N ≤ 7 and s ∈ (s0, 1), where s0 is the constant of Proposition 6.13, item ii).

This is a technical hypothesis that could be dropped if, for example, we knew that the evolving
sets were smooth. In particular, it is essential to characterize the possible long-time limit points
for the discrete flow. In the local case such characterization has been proved in [73].

Theorem 6.1. Let m, M > 0 and let E0 be an initial bounded set with P s(E0) ≤ M , |E0| = m.
Then, for h = h(s,M,m) > 0 small enough the following holds: for any discrete flow E

(h)
n starting

from E0, there exists ξ ∈ RN such that

E(h)
n − ξ → B(m) as n→ ∞ in Ck

for all k ∈ N, where B(m) denotes the ball centered at the origin with volume equal to m. Moreover,
the convergence is exponentially fast, meaning that there exist functions fn ∈ C∞(B(m)) such that
E

(h)
n − ξ = B

(m)
fn

and ∥fn∥Ck(∂B(m)) ≤ cke
−ckn, for some constants ck depending on k, m and M .

We stress the difference between this result and the one holding in the classic setting, where the
limit points of the discrete flow are in general unions of disjointed balls having the same radius and
not necessarily only a single ball. This is a peculiar feature of the nonlocal perimeter considered,
that penalizes non-connected components.

A crucial intermediate result consists in generalizing the Alexandrov-type estimate [154, The-
orem 1.3] and Theorem 5.4 in Chapter 5 (see also [138]) to the fractional setting. This result
provides a stability inequality for normal deformations of balls which can be seen as a sharp
Łojasiewicz-Simon inequality.

Theorem 6.2. There exist δ = δ(N) > 0 with the following property: for any f ∈ C2(∂B) such
that ∥f∥C1(∂B) ≤ δ, |Bf | = ωN and bar(Bf ) =

´
Bf
x dx = 0, and for any s ∈ (0, 1), there exists

C = C(N, s) > 0 such that

∥f∥
H

1+s
2 (∂B)

≤ C∥Hs
Bf

− H̄s
Bf

∥L2(∂B),

where we have set H̄s
Bf

:=
ffl
∂B

Hs
Bf

(x+ f(x)x) dHN−1(x). Furthermore, there exists s∗ > 1 such
that for every s ∈ (s∗, 1) it holds

(1− s)∥f∥2
H

1+s
2 (∂B)

≤ C(1− s)2∥Hs
Bf

− H̄s
Bf

∥2L2(∂B), (6.2)

for a dimensional constant C.

The proof of the previous theorem follows closely the proof of the quantitative Alexandrov
type estimate contained in Chapter 5. In particular, the approach is based on some Taylor
approximations of the factor H̄s

Bf
−Hs

Bf
(x) combined with the coercivity of the second variation

of the fractional perimeter, proved in [88]. The additional regularity assumption f ∈ C2 is technical
and needed to properly define Hs

Bf
.

2 Preliminaries

We work in the Euclidian space RN , with N ≥ 2. We denote with | · | the standard Lebesgue
measure in RN , M(RN ) is the family of measurable set of RN . We denote with Ec the complement
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of a set E ⊂ RN . We denote by HN−1 the Hausdorff measure, and sometimes we denote dHN−1
x :=

dHN−1(x). If E is a set with C1 boundary the outer normal to E at a point x in ∂E is denoted
by ν = νE(x). We denote the ball of radius r and center x both as B(x, r) and Br(x), and we set
B = B(0, 1). Also, with B(m) we denote the ball centered at zero and having volume |B(m)| = m.
Let f be a real valued function, with O(f) we will denote the family of all function g such that
|g| ≤ C|f |. Finally, we denote by C(∗, · · · , ∗) a constant that depends on ∗, · · · , ∗; such a constant
may change from line to line.

Let s ∈ (0, 1) we define the s-fractional perimeter as the following function

P s : M(RN ) → [0,+∞], P s(E) :=

ˆ
E

ˆ
Ec

1

|x− y|N+s
dx dy =

1

2
[χE ]

2

H
s
2
.

More in general, for every E,F ∈ M(RN ) we set

Ls(E,F ) :=
ˆ
E

ˆ
F

1

|x− y|N+s
dx dy

and, for any bounded set Ω, we define the fractional perimeter of E relative to Ω as

P s(E; Ω) := Ls(E ∩ Ω, Ec ∩ Ω) + Ls(E ∩ Ω, Ec \ Ω) + Ls(E \ Ω, Ec ∩ Ω).

Let E ∈ M(RN ) be a set of class C2. Given a vector field X ∈ C1
c (RN ;RN ), let

Φ : R× RN → RN , Φ(t, x) = x+ tX(x).

We recall that the first variation of the s-fractional perimeter of E in the direction of X is given
by

∂P s(E)[X] :=
d
dt

∣∣∣
t=0

P s(Φ(t, E)) =

ˆ
∂E

Hs
E(x)X(x) · νE(x)dHN−1

x ,

where Hs
E(x) is the s-fractional mean curvature of E evaluated at x ∈ ∂E, that is

Hs
E(x) :=

ˆ
RN

χE(y)− χEc(y)

|x− y|N+s
dy,

where the integral has to be intended in the principal value sense. Applying the divergence
theorem in the above formula, with div(− 1

s
ξ

|ξ|N+s ) = 1
|ξ|N+s , the fractional curvature can be

written as
Hs
E(p) =

1

s

ˆ
∂E

(x− p) · νE(x)
|x− p|N+s

dHN−1(x) ∀ p ∈ ∂E.

We recall some useful results concerning sets of finite fractional perimeter. The proofs of the
following results can be found, respectively, in [36, Proposition 3.1], [78, Theorem 7.1] and [77,
Lemma 2.5].

Proposition 6.3 (Lower semi-continuity). Let {En}n∈N ⊂ M(RN ) such that χEn → χE in L1
loc,

as n→ +∞, for some E ∈ M(RN ). Then, for all s ∈ (0, 1), we have

P s(E) ≤ lim inf
n→+∞

P s(En).

Theorem 6.4 (Compactness). If R > 0 and {En}n∈N ⊂ M(RN ), with

En ⊂ B(0, R) ∀n ∈ N and sup
n∈N

P s(En) < +∞,

then, up to a subsequence, En → E in L1(RN ), where E ⊂ B(0, R) and P s(E) < +∞.

Theorem 6.5. (Relative isoperimetric inequality) Let Ω ⊂ RN be an open bounded set with
Lipschitz continuous boundary and let E ∈ M(RN ). Then there exists a constant C = C(s,N,Ω) >
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0 such that

P s(E,Ω) ≥ Ls(E ∩ Ω, Ec ∩ Ω) ≥ Cmin
{
|E ∩ Ω|N−s

N , |E \ Ω|N−s
N

}
.

We recall the following convergence theorems. The first one concerns the convergence of the
fractional perimeter to the classical one and its proof can be found in [37, Theorem 1].

Theorem 6.6. Let E be a bounded set of class C1,α for α ∈ (0, 1). Then,

lim
s→1−

(1− s)P s(E) = ωN−1P (E).

The second one relates to the convergence of the fractional curvatures. It was proved in a more
general setting in [1, 37, 43].

Theorem 6.7. Let E be a bounded set of class C2. Then,

lim
s→1−

(1− s)Hs
E = ωN−1HE

uniformly on ∂E.

Finally, we recall the pointwise convergence of the fractional Gagliardo seminorms to the
Sobolev one. The classical proof is contained in [24, Corollary 2], see also [116, Proposition 3.7]
for the same result in a more general setting. Here and in the following with ∇ we denote the
tangential gradient on a hypersurface.

Theorem 6.8. Assume f ∈ Hs(∂B). Then

lim
s→1−

(1− s)[f ]2
H

1+s
2 (∂B)

= C∥∇f∥2L2(∂B),

where C > 0 is a constant that depends only on N .

3 A fractional quantitative Alexandrov type estimate

In this section, we are going to prove the quantitative Alexandrov inequality Theorem 6.2 in
the nonlocal setting of the fractional perimeter. From now on we set

[f ]21+s
2

:= [f ]2
H

1+s
2 (∂B)

=

ˆ
∂B

ˆ
∂B

|f(x)− f(y)|2
|x− y|N+s

dHN−1
x dHN−1

y .

We start by recalling representation formulas for the s-fractional perimeter and its first variation
on smooth sets. As usual, given a vector field X ∈ C1

c (RN ;RN ), we define the first variation of
the fractional perimeter of a C2 set E with respect to X as

∂P s(E)[X] :=
d
dt

∣∣∣
t=0

P s(Φ(t, E)),

where Φ : RN × (−1, 1) → RN is the flow defined by Φ(x, t) := x+ tX. Analogously, we define the
second variation of the fractional perimeter of a C2 set E with respect to X as

∂2P s(E)[X] :=
d2

dt2
∣∣∣
t=0

P s(Φ(t, E)).

For a normal deformation Bf of B induced by a function f ∈ C1(∂B), and for every function
ψ ∈ C1(∂B), with a slight abuse of notation, we set

∂P s(Bf )[ψ] := ∂P s(Bf )[X] =
d
dt

∣∣∣
t=0

P s(Bf+tψ),
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where the field X is defined by

X(x) = ψ

(
x

|x|

)
x

|x| , x ∈ RN \ {0}.

Lemma 6.9. The following equalities hold true:

1. If f ∈ C2(∂B) with ∥f∥∞ sufficiently small, then

P s(Bf ) =
P s(B)

P (B)

ˆ
∂B

(1 + f)N−s dHN−1+

+
1

2

ˆ
∂B

ˆ
∂B

ˆ 1+f(x)

1+f(y)

ˆ 1+f(x)

1+f(y)

F|x−y|(r, ρ) dr dρ dHN−1
x dHN−1

y ,

(6.3)

where, for every θ, r, ρ ∈ (0,+∞), we have set

Fθ(r, ρ) :=
rN−1ρN−1

((r − ρ)2 + rρθ2)
N+s

2

.

2. If f ∈ C2(∂B) with ∥f∥∞ sufficiently small, then, for every ψ ∈ C1(∂B), we have

∂P s(Bf )[ψ] = (N − s)
P s(B)

P (B)

ˆ
∂B

(1 + f)N−s−1ψ dHN−1

+

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)

(
ψ(x)F|x−y|(1 + f(x), 1 + ρ)− ψ(y)F|x−y|(1 + f(y), 1 + ρ)

)
.

(6.4)

Proof. By explicit computations one can obtain equation (6.3), see for example the calculations
in the proof of [88, Theorem 2.1]. To prove (6.4), we take the derivative

d
dt

∣∣∣
t=0

P s(Bf+tψ)

in formula (6.3) and, recalling that

d
dt

[ˆ β(t)

α(t)

ˆ β(t)

α(t)

f(r, ρ) dρ dr

]
=

ˆ β(t)

α(t)

(f(β(t), ρ)β′(t)− f(α(t), ρ)α′(t)) dρ

+

ˆ β(t)

α(t)

(f(r, β(t))β′(t)− f(r, α(t))α′(t)) dr

for every function α, β : R → R of class C1 and f ∈ L1
loc(R× R), we conclude

∂P s(Bf )[ψ] =

ˆ
∂B

ˆ
∂B

ˆ 1+f(x)

1+f(y)

(
ψ(x)F|x−y|(1 + f(x), ρ)− ψ(y)F|x−y|(1 + f(y), ρ)

)
dρ

+ (N − s)
P s(B)

P (B)

ˆ
∂B

(1 + f)N−s−1ψ dHN−1.

A simple change of coordinates then yields the thesis.

Lemma 6.10. If f ∈ C2(∂B) with ∥f∥C1(∂B) ≤ δ sufficiently small, then we have

∂P s(Bf )[1] = (N − s)
P s(B)

P (B)

ˆ
∂B

(
1 + (N − s− 1)f +O(f2))

)
dHN−1 +O([f ]21+s

2

), (6.5)
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∂P s(Bf )[f ] =(N − s)
P s(B)

P (B)

ˆ
∂B

(
1 + (N − s− 1)f +O(f2))

)
f dHN−1

+

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
+O([f ]21+s

2

)∥f∥C1 .

(6.6)

Proof. Let ψ ∈ C1(∂B), we remark that, by expanding the first term in (6.4), we obtain

∂P s(Bf )[ψ] =(N − s)
P s(B)

P (B)

ˆ
∂B

(1 + (N − s− 1)f +O(f2))ψ dHN−1

+

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)

(
ψ(x)F|x−y|(1 + f(x), 1 + ρ)− ψ(y)F|x−y|(1 + f(y), 1 + ρ)

)
dρ.

By symmetry, using a change of variables in the formula above, we get

∂P s(Bf )[ψ] =(N − s)
P s(B)

P (B)

ˆ
∂B

(1 + (N − s− 1)f +O(f2))ψ dHN−1

+ 2

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)

ψ(x)F|x−y|(1 + f(x), 1 + ρ)dρ dHN−1
x dHN−1

y .

(6.7)

We remark that, fixed x, y ∈ ∂B and x ̸= y, if ∥f∥C1 ≤ δ is sufficiently small, and if ρ varies
between the values f(y) and f(x), then we have |f(x)− ρ| ≤ ∥∇f∥∞|x− y| ≤ δ|x− y|. From this
observation we can expand the denominator of F|x−y|(1 + f(x), 1 + ρ) and get

|(f(x)− ρ)2 + (1 + f(x))(1 + ρ)|x− y|2|−N+s
2

=
1

|x− y|N+s
((f(x)− ρ)2/|x− y|2 + f(x) + ρ+ f(x)ρ+ 1)−

N+s
2

=
1

|x− y|N+s
(1 +O(∥f∥C1)) .

(6.8)

Plugging formula (6.8) into the second addend of (6.7) and by symmetry again, we obtain

2

ˆ
∂B

ˆ
∂B

ˆ f(x)

f(y)

ψ(x)F|x−y|(1 + f(x), 1 + ρ) dρ dHN−1
x dHN−1

y

= 2

ˆ
∂B×∂B

ψ(x)

N

(1 + f(x))N−1

|x− y|N+s

(
(1 + f(x))N − (1 + f(y))N

)
(1 +O(∥f∥C1)) dHN−1

x dHN−1
y

=

ˆ (
ψ(x)(1 + f(x))N−1 − ψ(y)(1 + f(y))N−1

) (
(1 + f(x))N − (1 + f(y))N

)

N |x− y|N+s
(1 +O(∥f∥C1)).

Now, if ψ = 1 by a simple Taylor expansion we conclude

2

ˆ
∂B×∂B

ˆ f(x)

f(y)

F|x−y|(1+f(x), 1+ρ) = (N−1)

ˆ
∂B×∂B

(f(x)− f(y))2

|x− y|N+s
(1+O(∥f∥C1)) = O([f ]21+s

2

),

while the choice ψ = f yields

2

ˆ
∂B×∂B

ˆ f(x)

f(y)

f(x)F|x−y|(1 + f(x), 1 + ρ) =

ˆ
∂B×∂B

(f(x)− f(y))2

|x− y|N+s
(1 +O(∥f∥C1)).

In order to prove Theorem 6.2, we need the following lemma, which states the coercivity of
the second variation of the fractional perimeter of a ball with respect to normal deformations. Its
proof is contained in [88, Theorem 8.1]. We start by defining

λs1 := s(N − s)
P s(B)

P (B)
. (6.9)
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Lemma 6.11. There exists δ > 0 small such that, if f ∈ C2(∂B) with ∥f∥C1(∂B) ≤ δ, |Bf | = ωN
and bar(Bf ) = 0, then we have

∂2P s(B)[f ] =

ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1

x dHN−1
y − λs1

ˆ
∂B

|f |2 dHN−1

≥ 1

4

(
[f ]21+s

2

+ λs1∥f∥2L2(∂B)

)
.

We are now in position to prove Theorem 6.2.

Proof of Theorem 6.2. Without loss of generality, we assume that ∥Hs
Bf

− H̄s
Bf

∥L2 ≤ 1. Let
Φ : ∂B → ∂Bf ⊂ RN be the map defined by Φ(x) = (1+ f(x))x, by direct computations one can
prove that

JΦ(x) = (1 + f(x))N−1(1 + (1 + f(x))−2|∇f(x)|1/2.
For every ψ ∈ C1(∂B), let

X : RN → RN , X(x) :=
x

|x|ψ
(
x

|x|

)
.

Employing the area formula we get

∂P s(Bf )[ψ] =

ˆ
∂Bf

Hs
Bf
νBf ·X dHN−1

=

ˆ
∂B

Hs
Bf

(p)νBf (p) · xψ(x)JΦ(x)dHN−1
x

=

ˆ
∂B

Hs
Bf

(p)ψ(x) (1 + f(x))N−1 dHN−1
x ,

where we have set p = (1+ f(x))x (for more details see [154, Section 1] and Chapter 5). Now, by
a simple Taylor expansion we obtain

∂P s(Bf )[ψ] =

ˆ
∂B

Hs
Bf

(p)ψ(x) (1 + (N − 1)f(x) +O(f2)) dHN−1
x . (6.10)

We recall that
Hs
B(x) = (N − s)

P s(B)

P (B)
for all x ∈ ∂B.

If ψ = 1, by combining formulas (6.10) and (6.5), we infer
ˆ
∂B

(Hs
Bf

(p)−Hs
B)(1 + (N − 1)f(x) +O(f2)) dHN−1

x =

ˆ
∂B

O(f) dHN−1 +O([f ]21+s
2

) (6.11)

and if ψ = f , by combining equations (6.10) and (6.6), we get
ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1

x dHN−1
y − s(N − s)

P s(B)

P (B)

ˆ
∂B

f2 dHN−1

=

ˆ
∂B

(
Hs
Bf

(p)−Hs
B

)
(1 + (N − 1)f(x) +O(f2))f(x) dHN−1

x

+O([f ]21+s
2

)∥f∥C1 .

(6.12)

Using the same arguments of the proof of Theorem 5.4 in Chapter 5 (see also [154, Theorem 1.3])
we can conclude.

For the interested reader we present a sketch of the proof. By (6.11), for δ sufficiently small,
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using Hölder’s inequality we obtain

∣∣∣H̄s
Bf

−Hs
B

∣∣∣ ≤
∣∣∣∣−

 
∂B

(Hs
Bf

−Hs
B)((N − 1)f +O(f2)) dHN−1

∣∣∣∣

+

ˆ
∂B

O(|f |)dHN−1 +O([f ]21+s
2

)

≤
∣∣∣∣
 
∂B

(Hs
Bf

− H̄s
Bf

)((N − 1)f +O(f2)) dHN−1

∣∣∣∣

+

∣∣∣∣
 
∂B

(H̄s
Bf

−Hs
B)((N − 1)f +O(f2)) dHN−1

∣∣∣∣

+

ˆ
∂B

O(|f |)dHN−1 +O([f ]21+s
2

)

≤ δ
N − 1 + Cδ

P (B)1/2
∥Hs

Bf
− H̄s

Bf
∥L2 + δ (N − 1 + Cδ) |H̄s

Bf
−Hs

B |

+

ˆ
∂B

O(|f |) dHN−1 +O([f ]21+s
2

),

with C = C(N). For δ small enough, recalling that ∥HBf − H̄Bf ∥L2 ≤ 1, the previous inequality
implies

1

2
|H̄s

Bf
−Hs

B | ≤ Cδ∥Hs
Bf

− H̄s
Bf

∥L2 +

ˆ
∂B

O(|f |)dHN−1 +O([f ]21+s
2

) ≤ Cδ. (6.13)

By (6.12), using again Hölder’s inequality and by the previous remark, we get
ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1

x dHN−1
y − s(N − s)

P s(B)

P (B)

ˆ
∂B

f2 dHN−1

=

ˆ
∂B

(
Hs
Bf

(p)−Hs
B

)
(1 + (N − 1)f +O(f2))f dHN−1

+O([f ]21+s
2

)∥f∥C1

=

ˆ
∂B

(Hs
Bf

(p)− H̄s
Bf

)(1 + (N − 1)f +O(f2))f dHN−1

+

ˆ
∂B

(H̄s
Bf

−Hs
B)(1 + (N − 1)f +O(f2))f dHN−1

+O([f ]21+s
2

)∥f∥C1

≤ C∥Hs
Bf

− H̄s
Bf

∥L2∥f∥L2 + |H̄s
Bf

−Hs
B |

ˆ
∂B

(1 + (N − 1)f +O(f2))f dHN−1

+O([f ]21+s
2

)∥f∥C1 . (6.14)

Since |Bf | = ωN , we have

∣∣∣
ˆ
∂B

f dHN−1
∣∣∣ =

ˆ
∂B

O(f2) dHN−1. (6.15)

By (6.15) and (6.13), we obtain

|H̄s
Bf

−Hs
B |

ˆ
∂B

(f +O(f2)) dHN−1 ≤ δ

ˆ
∂B

O(f2).

Finally, by the above inequality, (6.15) again and by combining (6.14) with (6.13) we deduce that,



154 CHAPTER 6. Stability Fractional Discrete MCF

for any η > 0, it holds
ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1

x dHN−1
y − s(N − s)

P s(B)

P (B)

ˆ
∂B

f2 dHN−1

≤ C∥Hs
Bf

− H̄s
Bf

∥L2∥f∥L2 + Cδ(∥f∥2L2 + [f ]21+s
2

) (6.16)

≤ 1

η
C2∥Hs

Bf
− H̄s

Bf
∥2L2 + η∥f∥2L2 + Cδ(∥f∥2L2 + [f ]21+s

2

). (6.17)

The conclusion then follows combining (6.17) with Lemma 6.11 and taking δ and η sufficiently
small.

Remark 6.12. By slightly changing the last step in the previous proof we can prove the quan-
titative Alexandrov result in the classical case [154, Theorem 1.1]. First, we remark that (6.16)
reads

(1− s)

(ˆ
∂B

ˆ
∂B

(f(x)− f(y))2

|x− y|N+s
dHN−1

x dHN−1
y − s(N − s)

P s(B)

P (B)

ˆ
∂B

f2 dHN−1

)

≤ C
∥∥∥(1− s)

(
Hs
Bf

− H̄s
Bf

)∥∥∥
L2
∥f∥L2 + Cδ(1− s)(∥f∥2L2 + [f ]21+s

2

),

from which we obtain

1− s

4

(
λs1∥f∥2L2 + [f ]21+s

2

)
≤C

2

η

∥∥∥(1− s)
(
Hs
Bf

− H̄s
Bf

)∥∥∥
2

L2
+ η∥f∥2L2

+ Cδ(1− s)(∥f∥2L2 + [f ]21+s
2

).

(6.18)

By recalling the definition of λs1 (see (6.9)), and by Theorem 6.6 we obtain

lim
s→1

(1− s)λs1 = (N − 1)ωN−1.

Finally, using Theorems 6.7, 6.8, we can take the limit as s→ 1− in the inequality 6.18 and get

1

4

(
(N − 1)ωN−1∥f∥2L2 + C∥∇f∥2L2

)
≤ C2

η

∥∥∥ωN−1

(
HBf − H̄Bf

) ∥∥∥
2

L2
+ η∥f∥2L2 + Cδ∥∇f∥2L2 ,

where C = C(N) and we also used that, by uniform convergence, (1 − s)H̄s
Bf

→ ωN−1H̄Bf . We
then conclude by taking η and δ sufficiently small. Finally, the hypothesis f ∈ C2(∂B) can be
weakened to f ∈ C1(∂B) ∩H2(∂B) by approximation.

4 Asymptotic Behaviour

We start this section by introducing the incremental minimum problem which defines the
discrete-in-time approximation of the volume preserving fractional mean curvature flow.

Let E ̸= ∅ be a bounded, measurable subset of RN . In the following we will always assume
that E coincides with its Lebesgue representative. Fixed h > 0, m > 0, we consider the minimum
problem

min

{
P s(F ) +

1

h

ˆ
F

sdE(x) dx+
1

h
s
s+1

||F | −m| : F ⊂ RN
}
, (6.19)

where sdE(x) := distE(x) − distEc(x) is the signed distance from the set E. Observe that the
minimum problem (6.19) is equivalent to the problem

min

{
P s(F ) +

1

h

ˆ
F△E

dist∂E(x) dx+
1

h
s
s+1

||F | −m| : F ⊂ RN
}
.
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We set Fh(·, E) as the functional

Fh(F, E) = P s(F ) +
1

h

ˆ
F

sdE(x) dx+
1

h
s
s+1

||F | −m|.

Let E, F be measurable sets, we define

D(E, F ) :=

ˆ
E∆F

dist∂E(x) dx.

The following proposition recalls some properties of minimizers of problem (6.19).

Proposition 6.13. Let M > 0, h > 0, s ∈ (0, 1) and m > 0. Let E ⊂ RN be a bounded, measurable
set such that P s(E) ≤ M and |E| ≤ M . Then, there exists a minimizer F of (6.19). Moreover,
it is bounded and satisfies the following properties:

i) There exists Λ = Λ(h,N, s) > 0 such that F is a Λ-minimizer of the fractional perimeter,
namely

P s(F ) ≤ P s(F ′) + Λ|F△F ′|
for all measurable set F ′ ⊂ RN such that diam(F△F ′) ≤ 1.

ii) The boundary ∂F is of class C2,α for any α ∈ (0, s) outside of a closed set Σ of Hausdorff
dimension at most N − 3. Moreover, there exists s0 ∈ (0, 1) such that, if s ∈ (s0, 1), then
∂F is of class C1,α for any α ∈ (0, 1) outside a closed set Σ of Hausdorff dimension at most
N − 8.

iii) There exist c0 = c0(N, s) > 0 and a radius r0 = r0(h,N, s) > 0 such that for every x ∈ ∂F \Σ
and r ∈ (0, r0] we have

|Br(x) ∩ F | ≥ c0r
N and |Br(x) \ F | ≥ c0r

N .

iv) The following Euler-Lagrange equation holds: for all X ∈ C1
c (RN ,RN ) we have

ˆ
∂F

sdE
h
X · νF dHN−1 +

ˆ
∂F

Hs
FX · νF dHN−1 = λ

ˆ
∂F

X · νF dHN−1, (6.20)

where λ =
ffl
(Hs

F + 1
h sdE) and, if |F | ≠ m, it also holds λ = sgn(m− |F |)h− s

1+s .

v) There exist k0 = k0(h,N, s,M,m) ∈ N and d0 = d0(h,N, s,M,m) > 0 such that F is made
up of at most k0 connected components having diameter larger than d0.

Proof. For the existence of minimizers of (6.19) see for example [42, Theorem 1.1]. The
Λ−minimality property is easily deduced, for instance we can choose Λ = 2(h−1 + h−

s
1+s ). Con-

cerning property ii), it follows from [39, 168] and [37, Theorem 5]. The density esimates can be
found in [36, Theorem 4.1]. Item iv) can be proved as in the local case (see [155, Lemma 3.7]). The
bound on the number of connected components and on the diameter of the components follows
from a covering argument as in [154, Proposition 2.3].

By induction we can now define the discrete-in-time, volume preserving fractional mean cur-
vature flow.

Definition 6.14. Fixed h > 0 and m > 0, let E0 ⊂ RN be a measurable set such that |E0| = m.
Let E(h)

1 be a solution of the problem (6.19) with E0 instead of E. Assume that E(h)
k is defined for

1 ≤ k ≤ n− 1, let E(h)
n be a solution of (6.19) with E replaced by E(h)

n−1. The sequence {E(h)
n }n∈N

will be called a discrete flow.

We recall the density estimate holding for one-sided minimizers of the fractional perimeter,
which can be found in [36, Theorem 4.1] .
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Proposition 6.15. There exists a constant C = C(N, s) > 0 with the following property: given
E ⊂ RN , R, µ > 0 and x0 ∈ ∂E such that

P s(E) ≤ P s(E \Br(x0)) + µ|E ∩Br(x0)| ∀0 < r < R,

then
CrN ≤ |E ∩Br(x0)| ∀0 < r < min{R,µ−1/s}.

We employ the density estimates above to bound the distance function between two consecutive
sets of the discrete flow. The proof follows the line of [155, Proposition 3.2] where it is proved in
the of local case, see also [144].

Proposition 6.16. There exists a constant γ = γ(N, s) > 0 with the following property. Let
F ⊂ RN be a bounded set of finite fractional perimeter and let E be a minimizer of Fh(·, F ), then

sup
E△F

dist∂F ≤ γh1/1+s.

Proof. Let γ = max{3, 2s+1/sP s(B)1/sC−1/s}, where C = C(N, s) is the constant given by the
Proposition 6.15. Let c > γ and x0 ∈ E△F . Suppose by contradiction that dist∂F (x0) > ch1/1+s.
Since the other case is analogous, we assume x0 ∈ E \ F . We then have

sdF (x0) > ch1/1+s (6.21)

and thus any ball Br(x0) of radius r ≤ ch1/1+s/2 is contained in F c. By the minimality of E, we
have Fh(E,F ) ≤ Fh(E \Br(x0), F ), therefore

P s(E) ≤ P s(E \Br(x0))−
1

h

ˆ
E∩Br(x0)

sdF dx+
1

hs/1+s
|E ∩Br(x0)|.

We use (6.21) and r ≤ ch1/1+s/2 to infer that

− 1

h

ˆ
E∩Br(x0)

sdF dx < − c

2hs/1+s
|E ∩Br(x0)|.

Then we have
P s(E) ≤ P s(E \Br(x0))−

1

hs/1+s

( c
2
− 1
)
|E ∩Br(x0)|. (6.22)

By assumption c > 3 and we can apply Proposition 6.15 with µ = 0 and obtain

CrN ≤ |E ∩Br(x0)| ∀0 < r <
c

2
h1/1+s. (6.23)

On the other hand, from (6.22) we deduce, for every 0 < r < ch1/1+s/2, that

1

hs/1+s

( c
2
− 1
)
|E ∩Br(x0)| ≤ P s(E \Br(x0))− P s(E) ≤ P s(Bcr) = P s(B)rN−s (6.24)

(where the last inequality follows from the subadditivity of the perimeter on E andBcr). Combining
(6.23) and (6.24), we get that

CrN ≤ |E ∩Br(x0)| ≤ P s(B)
( c
2
− 1
)−1

hs/1+srN−s ≤ 2P s(B)hs/1+srN−s

for all 0 < r < ch1/1+s/2, which gives the desired contradiction to the choice of c as soon as
r → ch1/1+s/2.

As a corollary of the previous result we obtain the following density estimates, their proof is
an adaptation of the one of [155, Corollary 3.3].

Corollary 6.17. Let E ⊂ RN be a bounded set of finite fractional perimeter and let F be a
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minimizer of Fh(·, E). Then for every r ∈ (0, γh1/1+s) and for every x0 ∈ ∂∗F, it holds

min{|Br(x0) \ F |, |F ∩Br(x0)|} ≥ crN (6.25)

crN−s ≤ P s(F,Br(x0)) ≤ CrN−s, (6.26)

where γ is the constant given by Proposition 6.16 and the constants c, C only depend on N and s.

Proof. Since F is a minimizer of Fh(·, E), for any x0 ∈ ∂F , it holds that Fh(F,E) ≤ Fh(F ∪
Br(x0), E), which implies

P s(F ) ≤ P s(F ∪Br(x0)) +
1

h

ˆ
Br(x0)\F

sdE dx+
1

hs/1+s
|Br(x0) \ F |

≤ P s(F ∪Br(x0)) +
C

hs/1+s
|Br(x0) \ F |,

where we bounded sdE ≤ γh1/1+s by Proposition 6.16. Analogously, one can show that

P s(F ) ≤ P s(F \Br(x0)) +
C

hs/1+s
|F ∩Br(x0)| (6.27)

= Ls(F \Br(x0), F c \Br(x0)) + Ls(F \Br(x0), Br(x0)) +
C

hs/1+s
|F ∩Br(x0)|

Therefore, by Proposition 6.15, we deduce

min {|F ∩Br(x0)|, |Br(x0) \ F |} ≥ crN ∀0 < r < γh1/1+s.

The first inequality in (6.26) is now an immediate consequence of the relative isoperimetric in-
equality. To prove the second inequality, by (6.27) we get

P s(F,Br(x0)) = Ls(F ∩Br(x0), F c) + Ls(F \Br(x0), F c ∩Br(x0))
= P s(F )− Ls(F \Br(x0), F c \Br(x0))

≤ Ls(F \Br(x0), Br(x0)) +
C

hs/1+s
|Br(x0) \ F |

≤ P s(Br(x0)) +
Cγs

rs
ωNr

N ≤ C(N, s)rN−s,

where we used that r ≤ γh1/1+s.

Remark 6.18. From the monotonicity of the energy P s(·) + h−
s

1+s || · | −m| along the discrete
flow starting from E0 with |E0| = m, P s(E0) ≤ M , one can observe that |E(h)

n | ∈ (m/2, 3m/2)
for all n ∈ N and for h = h(m,M) small,.

We now characterize the stationary sets E for the discrete flow. We say that E is a stationary
set for the discrete flow if it is a fixed set for the functional (6.19), that is,

E = E(h)
n ∀n ∈ N.

In the following, we will always assume that either:

• N = 2;

• N ≤ 7 and s ∈ (s0, 1), where s0 is the constant of Proposition 6.13, item ii).

This hypothesis is essential for the proof of the following result.

Proposition 6.19. Every stationary set E for the discrete flow is a critical set of the s−perimeter,
that is, a single ball.
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Proof. It is an immediate consequence of the Euler-Lagrange equation (6.20). Since E is a sta-
tionary point for the discrete flow, it satisfies

ˆ
∂E

Hs
E dHN−1 = λ

ˆ
∂E

X · νE dHN−1

for all X ∈ C1
c (RN ,RN ), i.e. E is a critical point for the s−perimeter. By [35, Theorem 1.1] and

[63, Theorem 1.1], we conclude that E is a single ball having constant fractional mean curvature
Hs
E = λ.

Before proving the convergence of the flow up to translations, we recall [154, Lemma 3.5] that
will be used in the proof of the next proposition. The proof in the fractional setting is analogous
and will be omitted.

Lemma 6.20. Let {E(h)
n }n∈N be a discrete flow starting from E0 and let E(h)

kn
be a subsequence

such that E(h)
kn

+ τn → F in L1 for some set F and a suitable sequence {τn}n∈N ⊂ RN . Then
dist

∂E
(h)
kn−1

(·+ τn) → dist∂F uniformly.

The following result proves the convergence of the discrete flow to a union of disjointed balls,
all having the same radius. The proof follows closely the one of [154, Proposition 3.6]. Moreover,
we prove that the flow eventually has fixed volume. A this point, we can not rule out that the flow
is converging to different balls (each at infinite distance from the others) and that the translations
introduced are different along different subsequences.

Proposition 6.21. Let m, M > 0 and E0 be an initial bounded set with P s(E0) ≤M , |E0| = m.
Then there exists h∗ = h∗(s,M,m) > 0 such that, for any h < h∗ and for any discrete flow E

(h)
n

starting from E0, the following hold:

i) for n sufficiently large |E(h)
n | = m;

ii) there exists
P s∞ = lim

n→∞
P s(E(h)

n );

iii) E
(h)
n is made of K = (P s∞/ω

s
N )

N
s (ωN/m)

N
s −1 distinct connected components E

(h)
n,i , and

E
(h)
n,i − bar(E(h)

n,i ) converges in Ck, for every k ∈ N, to the ball centered at the origin and
having mass m/K.

Proof. Let {E(h)
kn

}n∈N be any given subsequence of {E(h)
n }n∈N. By Proposition 6.13, each set

E
(h)
kn

is made up of ln ≤ k0 connected components having diameter uniformly bounded by d0.
Therefore, there exist ln balls {Bd0(ξin)}, each containing a different component of E(h)

kn
and such

that E(h)
kn

⊂ ∪lni=1Bd0(ξ
i
n). Up to subsequences, we can assume that ln = l̃, and for all 1 ≤ i < j ≤ l̃

the following limits exist
lim sup
n→∞

|ξin − ξjn| =: di,j ∈ [0,+∞].

Now we define the following equivalence classes: we say that i ≡ j if and only if di,j < +∞.
Denote by l ≤ l̃ the number of such equivalence classes, let j(i) be a representative for each
class i ∈ {1, . . . , l}, and set σin := ξj(i) for i = 1, . . . , l. We have constructed a subsequence E(h)

kn

satisfying E(h)
kn

⊂ ∪li=1BR(σ
i
n), where R = d0 + max{di,j : di,j < +∞} + 1, and for all i ̸≡ j it

holds |σin − σjn| → +∞ as n→ +∞.
Now, fix 1 ≤ i ≤ l, and set

F in := E
(h)
kn

− σin, F̃ in := (E
(h)
kn

− σin) ∩BR, mi
n := |F̃ in|.

Up to a subsequence, we have mi
n → mi > 0. Moreover, by Lemma 6.20 and by the compactness

of sets of equi-bounded fractional perimeters, there exist F̃ i ⋐ BR such that, up to a subsequence,

F̃ in → F̃ i in L1, sd
E

(h)
kn−1

(·+ σin) → sdF̃ i(·) locally uniformly. (6.28)
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Let G̃i be any bounded set with |G̃i| = mi
n and let G̃in :=

(
min
mi

) 1
N

G̃i. We set now Gin :=

(F in \ F̃ in) ∪ G̃in so that, for n sufficiently large, |F in| = |Gin|. By the minimality of E(h)
kn

we have

P s(F in) +
1

h

ˆ
F in

sd
E

(h)
kn−1

(x+ σin)dx ≤ P s(Gin) +
1

h

ˆ
Gin

sd
E

(h)
kn−1

(x+ σin) dx.

For n sufficiently large, we obtain

P s(F̃ in) +

ˆ
F̃ in

ˆ
F in\F̃ in

1

|x− y|N+s
dx dy +

1

h

ˆ
F̃ in

sd
E

(h)
kn−1

(x+ σin) dx

≤ P s(G̃in) +

ˆ
G̃in

ˆ
F in\F̃ in

1

|x− y|N+s
dx dy +

1

h

ˆ
G̃in

sd
E

(h)
kn−1

(x+ σin) dx.

Passing to the limit as n → ∞, using (6.28) and the uniform boundedness of F̃ in and G̃in, we
deduce that

P s(F̃ i) +
1

h

ˆ
F̃ i

sdF̃ i(x)dx ≤ P s(Gi) +
1

h

ˆ
Gi

sdF̃ i(x)dx.

This minimality property extends by density to all competitorsGi with finite perimeter and volume
mi, so that we deduce that F̃ i is a fixed point for the discrete scheme with prescribed volume mi,
and, whence by Proposition 6.19, it is a ball. Moreover, since F̃ i are uniform Λ−minimizer by
Proposition 6.13, we also deduce that F̃ in converge to F̃ i in C1,α for every α ∈ (0, 1). In particular,
for n large enough, F̃ in has only one connected component.

We have shown that, for n large enough, E(h)
kn

is made up by a fixed number K of connected
components E(h),i

kn
, i = 1, . . . ,K and E(h),i

kn
−bar(E(h),i

kn
) → BRi where |BRi | = mi. Now, we show

that all the radii Ri are equal to R. To this aim, we consider the Euler-Lagrange equation (6.20)

1

h
sd
E

(h)
kn−1

+Hs

E
(h)
kn

= λn on ∂E(h)
kn
.

By Proposition 6.16, we deduce that

|λn| ≤ h−1∥sd
E

(h)
kn−1

∥
L∞(∂E

(h)
kn

)
+ ∥Hs

E
(h)
kn

∥
L∞(∂E

(h)
kn

)
≤ c+ ∥Hs

E
(h)
kn

∥
L∞(∂E

(h)
kn

)
.

To bound the right hand side, we use the Λ−minimality of E(h)
kn

to obtain

∥Hs

E
(h)
kn

∥
L∞(∂E

(h)
kn

)
≤ Λ.

Therefore, by passing to a further subsequence, we can assume λn → λ ∈ R. Arguing as before,
we can localize the Euler-Lagrange equation to each single F in and obtain

1

h
sd
E

(h)
kn−1

(x+ σin) +Hs
F in

(x) = λn x ∈ ∂F in.

We can pass to the limit as n → ∞ thanks to Lemma 6.20 and the continuity property of the
fractional mean curvature (see e.g. [63, Lemma 2.1]). Thus, taking into account that F̃ i is a fixed
set for (6.19), we deduce that

Hs
F̃ i

= λ on ∂F̃ i.

In particular, this shows that Ri = cλ−s, for a suitable constant c depending only on s and N .
In order to prove that, eventually, |E(h)

n | = m, we proceed as follows. Set |BRi | = c1λ
−sN and

P s(BRi) = c2λ
−s(N−s), for suitable constants c1, c2 depending on N, s. From Remark 6.18, we

take h = h(s,M) small enough such that

|E(h)
kn

| ∈
[
m

2
,
3m

2

]
, P s(E

(h)
kn

) ≤ P s(E0) ≤M
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and, for n large enough, this implies

K∑

i=1

mi
n ∈

[
m

2
,
3m

2

]
,

K∑

i=1

P s(F̃ in) ≤M.

Passing to the limit as n→ ∞ we obtain

Kc1λ
−sN ∈

[
m

2
,
3m

2

]
, Kc2λ

−s(N−s) ≤M,

which implies

λs
2 ≤ 2c1M

mc2
. (6.29)

If we suppose that |E(h)
kn

| ≠ m for infinitely many indexes, then λ = sgn(m−|E(h)
kn

|)h− s
1+s which is

a contradiction to (6.29) if h is sufficiently small. We have thus proved item i). Since, for n large
enough, |E(h)

n | = m, the sequence {P s(E(h)
n )}n∈N is eventually non-increasing, from which item

ii) follows. Knowing the exact values of the volume and s−perimeter of any limit point, we are
able to compute K and obtain the convergence in L1 of the whole sequence. Moreover, arguing
as in [42] we conclude the convergence in Ck for every k ∈ N via a bootstrap method.

We then recall some results of [154].

Lemma 6.22. Let η > 0. There exists δ > 0 with the following property: if f1, f2 ∈ C1(∂B) with
∥fi∥C1(∂B) ≤ δ and |Bfi | = |B| for i = 1, 2 we have

C1(1− η)∥f1 − f2∥2L2(B) ≤D(Bf1 , Bf2) ≤ C1(1 + η)∥f1 − f2∥2L2(B) (6.30)

1− η

2

ˆ
∂Bf−1

sd2
Bf2

dHN−1 ≤D(Bf1 , Bf2) ≤
1 + η

2

ˆ
∂Bf−1

sd2
Bf2

dHN−1 (6.31)

|bar(Bf1)− bar(Bf2)|2 ≤C2∥f1 − f2∥2L2(B) ≤
C2

C1(1− η)
D(Bf1 , Bf2)

for suitable constants C1, C2 > 0.

The following crucial lemma is based on the Alexandrov-type estimate contained in Theorem
6.2. Its proof is the same of the one presented in Chapter 5.

Lemma 6.23. Let h > 0. There exist constants C(h,m, s), δ > 0 with the following property:
given two normal deformations B(m)

f1
, B

(m)
f2

of B(m) with fi ∈ C2(∂B(m)), ∥fi∥C1(∂B(m)) ≤ δ, and

such that |B(m)
f2

| = m, bar(B(m)
f2

) = 0 and

Hs

B
(m)
f2

+
sd
B

(m)
f1

h
= λ on ∂B

(m)
f2

(6.32)

for some λ ∈ R, we have
D(B(m), B

(m)
f2

) ≤ CD(B
(m)
f2

, B
(m)
f1

).

Proof. By Theorem 6.2, for δ sufficiently small, we get by using (6.32)

∥f2∥2L2(∂B(m)) ≤ C∥Hs

B
(m)
f2

−H
s

B
(m)
f2

∥2L2(∂B(m)) ≤ C∥Hs

B
(m)
f2

− λ∥2L2(∂B(m))

≤ C∥Hs

B
(m)
f2

− λ∥2
L2(∂B

(m)
f2

)
=
C

h2

ˆ
∂B

(m)
f2

sd2

B
(m)
f1

dHN−1,

where the third inequality follows by bounding the Jacobian of the change of variables by 1 (up
to taking δ sufficiently small). By combining the previous inequalities with (6.30) and (6.31), we
obtain the thesis.
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We now prove Theorem 6.1. We will follow closely the proofs of [154, Theorem 3.3] and
Theorem 5.4 in Chapter 5. The main difference is that we use the fractional perimeter framework
previously studied instead of the classical one. We present a sketch of the proof.

Proof. We start by sketching the proof of the exponential decay of the dissipations following Step 1
in [154, Theorem 3.3].

From Proposition 6.21 we know that any limit point of the discrete flow is given by the union
of K disjoint balls, all having volume m/K. We then use two competitors to obtain a discrete
Gronwall-type inequality. Firstly, testing the minimality of E(h)

k with E
(h)
k−1 and summing from

n+ 1 to infinity, we obtain
∑

k≥n+1

D(E
(h)
k , E

(h)
k−1) ≤ P s(E(h)

n )− P s∞ = P s(E(h)
n )−KP s(B(m/K)).

On the other hand, recalling Proposition 6.21, the sets (E
(h)
n )i − bar((E(h)

n )i) =: (E
(h)
n )i − ξin

are eventually C1,α−deformations of B(m/K), having volume |(E(h)
n )i| = mi

n. We consider the
admissible competitor for E(h)

n given by

Bn =

K⋃

i=1

(
B(min−1) + ξin−1

)
.

Testing the minimality of E(h)
n against Bn, one can obtain, by employing Lemma 6.23, that

P s(E(h)
n )− P s(Bn) ≤ CD(E

(h)
n−1, E

(h)
n−2).

Recalling that, if a measurable set F has L disjointed connected components F i, i = 1, . . . , L,
then

P s(F ) =

L∑

i=1

P s(F i)− 2
∑

i<j

ˆ
F i

ˆ
F j

1

|x− y|N+s
dx dy,

by concavity, we estimate

P s(Bn) ≤
K∑

i=1

P s(B(min−1)) ≤ KP s(B(m/K)).

Thus, combining the previous two estimates, we obtain the discrete Gronwall-type estimate
∑

k≥n+1

D(E
(h)
k , E

(h)
k−1) ≤ CD(E

(h)
n−1, E

(h)
n−2).

Finally, employing [154, Lemma 3.10] we conclude the exponential convergence of the dissipations

D(E(h)
n , E

(h)
n−1) ≤

(
1− 1

C + 1

)n
2

(P s(E0)−KP s(B(m/K))).

From now on, one can follow directly the proof of [154, Theorem 3.3] employing Lemma 6.22 to
conclude that the discrete flow E

(h)
n is eventually contained in a compact set and converges in

Ck to a union of K disjoint balls. Now, from Proposition 6.19 we deduce that the limit point is
indeed a single ball, having volume equal to m, thus reaching the conclusion of the proof.
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Introduction

In this chapter we establish global in time existence and convergence towards equilibrium of
two physically relevant volume-preserving geometric motions, namely the volume-preserving mean
curvature flow and the surface diffusion flow.

On the one hand, the first one is the volume-preserving counterpart of the well-known mean
curvature flow, and it is defined as a smooth evolution of sets Et governed by the law

Vt = −HEt + H̄Et on ∂Et, (7.1)

where Vt and HEt are the outer normal velocity and the mean curvature of ∂Et, respectively, while
H̄Et =

ffl
∂Et

HEt .
On the other hand, the surface diffusion flow is a smooth flow of sets Et evolving according to

the law
Vt = ∆EtHEt on ∂Et, (7.2)

where ∆Et denotes the Laplace-Beltrami operator on ∂Et. Similar to the mean curvature flow,
the surface diffusion flow has important applications in material science, especially in physical
systems with multiple phases. It has been proposed in the physical literature by Mullins [157] to
model surface dynamics for phase interfaces when the evolution is governed by mass diffusion in
the interface.

The volume preserving mean curvature flow can be seen as a simplified, second-order version
of the surface diffusion flow as both flows share several common properties. Indeed, from the
evolution laws (7.1) and (7.2) it follows that the volume of the evolving sets is preserved along the
two flows, as can be easily seen from the following computation

d
dt

|Et| =
ˆ
∂Et

Vt dHN−1 = 0,

the perimeter is decreasing, since the evolution (7.1) satisfies

d
dt
P (Et) =

ˆ
∂Et

VtHEt dHN−1 =

ˆ
∂Et

(
HEt − H̄Et

)2 dHN−1 ≤ 0,

and an integration by parts shows for (7.2) that

d
dt
P (Et) =

ˆ
∂Et

VtHEt dHN−1 = −
ˆ
∂Et

|∇HEt |2 dHN−1 ≤ 0.

Moreover, these two evolutions can be regarded (at least formally) as gradient flows of the perime-
ter according to suitable metrics. In particular, the mean curvature flow can be considered as (a
volume preserving modification of) the L2-gradient flow of the perimeter, while the surface diffu-
sion can be interpreted as its H−1-gradient flow.

In both cases, singularities may appear in a finite time even for initial smooth sets (see [149]),
therefore in general only short-time existence results are available, see for instance [82, 122] for
the mean curvature flow and [81] for the surface diffusion flow (see also [97] for the case of triple
junction clusters). Because of the (formal) gradient flow structure of the two flows, it is reasonable
to expect that if the initial set is sufficiently close to a stable point (or a local minimizer) E of
the perimeter, then the flow exists for all times and asymptotically converges to E. We refer to
this property as dynamical stability. The notion of strict stability can be summarized as follows:
stable sets are sets whose boundary has constant mean curvature and positive definite second
variation of the perimeter (i.e., they are “stable” for the perimeter functional). In this chapter (as
in Chapter 5), we will focus on the flat torus TN , which is particularly interesting due to the variety
of possible limit points of the flows, namely periodic constant mean curvature hypersurfaces. In
the Euclidean space only unions of balls have constant mean curvature, whereas the flat torus
admits a much broader range of such surfaces. However, a full characterization of constant mean
curvature hypersurfaces in TN is not available in any dimension. In dimension N = 2, the only
sets with constant mean curvature are (unions of) discs and stripes (also called lamellae), or their
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complement. On the other hand, for N ≥ 3 there exist many nontrivial examples, as cylinders
and triply periodic surfaces known as gyroids.

The aforementioned approach of studying the dynamical stability of stable sets has been used
in many instances in the literature. Concerning the surface diffusion, this method was employed in
[3, 93, 94], where the authors considered the surface diffusion (also with an extra elastic term) and
the Mullins-Sekerka flows in the 2, 3-dimensional flat torus (see also the survey [74]) and proved
the dynamical stability of stable sets. It should be noted that the flows considered in these works
include nonlocal terms, but their results also apply to the evolution driven solely by the perimeter
energy. In the Euclidan setting, other results for the surface diffusion deal with the stability of
balls [81, 141, 178], infinite cylinders [142], two-dimensional triple junctions [98], as well double
bubbles [2, 96] (see also [141] for similar results in different settings).
Regarding the volume preserving mean curvature flow, recent progresses have been made in proving
the dynamical stability of strictly stable sets in the 3-dimensional flat torus [159], while older
results mainly concern convex sets, balls, or the 2-dimensional setting. The dynamical stability
of balls has been proven in the Euclidean setting under various hypoteses on the dimension or on
the initial set in [82, 95, 122, 143]. We refer also to [165], where global existence and convergence
results for a large class of geometric evolution laws have been considered, relying on the concept
of Lp-maximal regularity for quasilinear parabolic equations.

In the present chapter we show in any dimensions the dynamical stability of strictly stable
sets in the flat torus both for the surface diffusion flow and the volume preserving mean curvature
flow. By assuming the initial set to be close in the C1,1-topology to a strictly stable set, we obtain
global existence and asymptotic convergence of both the flows to (a translated of) the underlying
stable set. This is quite surprising for the surface diffusion flow, which is a fourth-order flow. Our
main result of the chapter is the following.

Theorem 7.1. Let E ⊂ TN be a strictly stable set and let E0 = Eu0 ⊂ TN be the normal
deformation of E induced by u0 ∈ C1,1(∂E) with |E0| = |E|. There exists δ = δ(E) > 0 such that
if ∥u0∥C1,1(∂E) ≤ δ, then

(i) the volume-preserving mean curvature flow Et starting from E0 (defined in (7.3)) exists
smooth for all times t ≥ 0, and Et → E + τ as t → ∞, for some τ ∈ TN , in Ck for every
k ∈ N exponentially fast;

(ii) the surface diffusion flow Et starting from E0 (defined in (7.10)) exists smooth for all times
t ≥ 0, and Et → E + τ as t → ∞, for some τ ∈ TN , in Ck for every k ∈ N exponentially
fast.

Where with exponentially fast we mean that the sets Et can be written as normal deformations of
E + τ induced by functions u(·, t) ∈ C∞(∂E + τ) such that

∥u(·, t)∥Ck(∂E+τ) ≤ Cke
−Ckt for t > 0.

The main technical novelty of our argument is the use a quantitative Alexandrov-type inequal-
ity, Theorem 5.4 in Chapter 5, that is applied for the first time to a continuous-in-time setting.
This technique allows us to treat in a unified fashion both the geometric flows considered. How-
ever, it seems to be quite general, in the sense that it can be adapted to other gradient flows of
the perimeter functional. For instance, we are confident that the Mullins-Sekerka flow or, more in
general, fractional gradient flows of the perimeter could be treated analogously, provided one has
sufficient control on the Schauder estimates for the linearized system governing the evolutions.
Moreover, since this stability inequality can be seen as a Łojasiewicz-Simon inequality with sharp
exponents, one is able to derive the optimal decay of the dissipation along the flow, immediately
yielding the exponential convergence in any norm of the flow to the subjacent strictly stable set.
In particular, our line of proof works in any dimension without the need of deriving energy esti-
mates for the high derivatives of the curvature, which was one the main bottleneck of the previous
methods developed in [3, 93, 94]. Lastly, the Schauder-type estimates we provide following the
lines of [117] seems to be new in this setting.

We now outline the strategy of the proof, which is based on the gradient flow structure of the
evolution. Firstly, applying the Alexandrov-type inequality Theorem 5.4 in Chapter 5, combined
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with the quantitative isoperimetric inequality of [4], we are able to to bound the velocity in
terms of the displacement. By iterating this procedure for the whole time of existence and using
higher order estimates, we can extend the flow for all times. In order to do so, we need to show
that the short-time existence and regularity results depend only on the bounds of the initial
datum. This is not a priori clear from previous existence results [81, 82]. More precisely, we
rely on Schauder estimates on the linearized problem solved by the flows, which is a quasilinear
perturbation of the heat equation for the mean curvature flow and a quasilinear perturbation of
the biharmonic heat equation for the surface diffusion flow. While Schauder-type estimates for
general quasilinear parabolic PDEs of the second order are well known (see for instance [90]), we
couldn’t find a precise reference for the fourth-order equation. Although an approach by scaling
(in the spirit of [137]) could be feasible by working in local coordinates, we preferred to rely on the
estimates provided in [117], where time-weighted Hölder norms are employed. After establishing
the global existence of both flows, we obtain the exponential convergence up to translations via a
Gronwall-type inequality. This is where it comes into play the optimality of the exponent in the
aforementioned Alexandrov theorem, which yields the exponential rate of convergence. Finally,
we prove the convergence of these translations by exploiting the decay of geometric quantities
along the flow, as in [3].

1 Preliminary results

For the notations used in this Chapter, and some preliminary results, we refer to Section 2 in
Chapter 5.

1.1 Short-time existence for the mean curvature flow

Given T > 0 and E0 ⊂ TN an open smooth set, the volume-preserving mean curvature flow in
[0, T ) starting from E0 is the family of sets (Et)0≤t<T whose outer normal velocity is given by

Vt(x) = −HEt(x) + H̄Et , x ∈ ∂Et, t ∈ (0, T ). (7.3)

We remark that this equation should be intended as follows: there exist a smooth open set
E ⊂ TN and a 1-parameter family of smooth diffeomorphism Φt : ∂E → TN given by Φt(x) =
x+ u(x, t)νE(x), such that Φ0(∂E) = ∂E0, Φt(∂E) = ∂Et, and

∂tu(x, t)ν(x) · νEt(Φt(x)) = −HEt(Φt(x)) + H̄Et , x ∈ ∂E, t ∈ (0, T ).

Assuming that the flow starting from E0 exists, following classical computations (see for in-
stance [147]) one can deduce that the evolution equation satisfied by u is

∂tu = ∆Eu+ ⟨A(x, u,∇u),∇2u⟩+ J(x, u,∇u) + HE ,

where ∆E is the Laplace-Beltrami operator on ∂E, A is a smooth tensor such that A(·, 0, 0) = 0,
and J is a smooth function.

In order to prove the stability of such flow, we need the following short-time existence result.

Theorem 7.2. Let ε > 0, let β ∈ (0, 1) and let E ⊂ TN be a smooth open set. There exists
δ = δ(ε, E, β) > 0 with the following property: if E0 is the normal deformation of E induced by
u0 ∈ C1,1(∂E), ∥u0∥C1,1(∂E) ≤ δ, and |E0| = |E|, then there exists T > 0, which only depends
on E, β and the bound on ∥u0∥C1,1(∂E), such that the volume preserving mean curvature flow Et
starting from E0 exists in [0, T ), the sets Et are normal deformation of E induced by u(·, t) ∈
C∞(∂E) for all t ∈ (0, T ), and

sup
t∈(0,T )

∥u(·, t)∥C1,β(∂E) ≤ ε. (7.4)

Moreover, for every k ∈ N, there exist two constants ck = ck(N) > 0 and Ck = Ck(E) > 0 such
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that
sup

t∈(0,T )

tck∥∇k+2u(·, t)∥C0(∂E) ≤ Ck(∥u0∥C1,1(∂E) + 1). (7.5)

We remark that the proof of this result is classical and can be derived from the Schauder
estimates for quasi-linear parabolic equations, as u solves a lower-order, nonlinear perturbation
of the heat equation. In the following section we will provide a brief outline of the proof for an
analogous short-time existence result for the surface diffusion flow (see Theorem 7.12). Similar
and simplified arguments would prove the previous result for the mean curvature flow, which is a
second order flow.

For the sake of completeness, we provide here an alternative proof of Theorem 7.2 which follows
from some results found in the literature. Even if these results are shown in the ambient space
RN , the same arguments can be repeated in the flat torus. The first part of the Theorem is the
short-time existence result of [82].

Theorem 7.3 ([82, Main Theorem]). Let E ⊂ TN be a smooth open set and β ∈ (0, 1). There
exists δ = δ(E, β) > 0 with the following property: if E0 is the normal deformation of E induced
by u0 ∈ C1,1(∂E), ∥u0∥C1,1(∂E) ≤ δ, and |E0| = |E|, then there exists T > 0, only depending on E,
β and the bound on ∥u0∥C1,1(∂E), such that the volume-preserving mean curvature flow Et starting
from E0 exists in [0, T ), and the sets Et are normal deformations induced by u(·, t) ∈ C∞(∂E)
for all t ∈ (0, T ). Furthermore, the mapping (t, E0) 7→ Et is a local smooth semiflow on C1,β(E).

We remark that the local smooth semiflow property in particular implies that ∥u(·)∥C1,β de-
pends continuously on ∥u0∥C1,β (see for instance [12, pag. 66]). In particular, for every ε > 0
there exists δ(E, ε, β) > 0 and T (E, ε, β) > 0 such that if ∥u0∥C1,β ≤ δ then

∥u(·, t)∥C1,β ≤ ε for every t ∈ (0, T ). (7.6)

In order to obtain the higher-order regularity inequalities, we apply some curvature estimates
obtained recently in [134].

Theorem 7.4 ([134, Theorem 1.1]). Assume that E0 ⊂ RN is an open bounded set satisfying a
uniform inner and outer ball condition with radius r. Then, there exists a time T = T (r,N) > 0
such that the volume preserving mean curvature flow Et starting from E0 exists in [0, T ) and it
satisfies a uniform inner and outer ball condition of radius r/2. Moreover, it is smooth in (0, T )
and satisfies for every k ∈ N

sup
t∈(0,T )

(
tk∥HEt∥2Hk(∂Et)

)
≤ Ck, (7.7)

where Ck depends on k, |E0|, r.

Before proving the short time existence result, we remark a classical result concerning the
uniform ball condition.

Remark 7.5. Let E be a smooth set satisfying a uniform ball condition of radius rE . Then every
small C1,1-normal deformations of E satisfy a uniform ball condition of radius r ≈ rE . Indeed,
it is easy to see that if Ef is the normal deformation of E induced by f ∈ C1,1(∂E), then the
Hausdorff distance between E and Ef is bounded by ∥f∥C0(∂E). Furthermore, since ∇sdEf = νEf
and νEf can be written as

νEf =

(
νE −

N−1∑

i=1

∇f · vi
1 + κif

vi

)(
1 +

N−1∑

i=1

(∇f · vi)2
(1 + κif)2

)−1/2

, (7.8)

where the family {vi}i=1,...,N−1 denotes an orthonormal frame of the tangent space on ∂E (see
Chapter 5), by differentiating (7.8) one can see that

∥sdEf − sdE∥C1,1(∂E) ≤ CE∥f∥C1,1(∂E),
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which then implies that Ef → E in C1,1 if ∥f∥C1,1 → 0. Therefore, by [65, Theorem 2.6] and
[65, Remark 2.7] one infers that the radius r of the uniform ball condition of the set Ef depends
continuously on ∥f∥C1,1 when it is small enough. In particular, for every ε > 0 there exists
δ(rE , ε) > 0 such that, if ∥f∥C1,1 ≤ δ then

|rE − r| ≤ ε. (7.9)

Proof of Theorem 7.2. By Theorem 7.3 there exist a time T ′ > 0 and a family of evolving functions
u(·, t), which are smooth in (0, T ′) and satisfy the inequality (7.4). The second bound follows from
classic elliptic regularity arguments that we now sketch.
Fix t ∈ (0, T ′), from the bound on supt∈(0,T ′) ∥u∥C1,β(∂E) and (up to rotations) for any given point
x = (x′, xN ) ∈ ∂E we can parametrize in a cylinder C = B′

r(x) × (−L,L) both ∂E and ∂Et as
graphs of smooth functions g, gt. From Theorem 7.4 there exists a time T ′′ (depending on E, δ
by Remark(7.5)) such that the evolving sets Et satisfy a uniform inner and outer ball condition
of radius r/2 for any t ∈ (0, T ′′). Let us set T = min{T ′, T ′′}. From estimate (7.7) we get that

HEt = div

(
∇gt√

1 + |∇gt|2

)
=

1√
1 + |∇gt|

(
I − ∇gt ⊗∇gt

1 + |∇gt|2
)

: ∇2gt

is bounded in L2(B′
r(x

′)) by a constant which depends on |E0|, T, r. Then, by uniform geometric
Calderon-Zygmund inequality (see [75, Section 3] or [4, Lemma 7.2]) we deduce that, for some
ρ < r, in the ball B′

ρ(x
′) the function gt is bounded in H2(B′

ρ(x
′)) by a constant, depending only

on the L2-bound on HEt , the norm of the coefficients of the elliptic operator, which are in turn
bounded by ∥u0∥C1,1 thanks to the previous step. Iterating this procedure, we bound the higher
norms Hk(B′

ρ(x
′)) of gt, for every k ∈ N. Then, we conclude by means of Sobolev embeddings

and by a covering argument.

1.2 Short-time existence for the surface diffusion flow
We now consider the evolution called surface diffusion flow, defined by

Vt(x) = ∆EtHEt(x), x ∈ ∂Et, t ∈ (0, T ). (7.10)

As for the mean curvature flow, the equation above means that there exist a smooth open set
E ⊂ TN and a 1-parameter family of smooth diffeomorphism Φt : E → TN such that Φt(x) =
x+ u(x, t)νE(x), Φt(∂E) = ∂Et and

∂tu(x, t)νE(x) · νEt(Φt(x)) = ∆EtHEt(Φt(x)).

Assuming that the diffeomorphisms above exist, arguing as in [147, pag. 21], one can deduce that
the evolution equation satisfied by u is

∂tu =−∆2
Etu− 1

νE · νEt
∆Et(νE · νEt)∆Etu+

1

νE · νEt
∆EtP (x, u,∇u)

= −∆2
Etu+ J̃(x, u,∇u,∇2u,∇3u),

(7.11)

where P is a smooth function (assuming that u and ∇u are small), the function J̃ can be written
as

J̃(x, u,∇u,∇2u,∇3u) = ⟨B̃1,∇2u⟩+ ⟨B̃2,∇2u⊗∇2u⟩+ ⟨B̃3,∇3u⟩+ b̃4

and B̃1, B̃2, B̃3 and b̃4 are tensor-valued, respectively scalar-valued functions depending on
(x, u,∇u) and smooth if their arguments are small enough. Here, with a little abuse of nota-
tion, ∇ denotes the covariant derivative on ∂E.

On the other hand, linearizing the Laplace-Beltrami operator yields the evolution equation
(compare with [94, Section 3.1])

∂tu = −∆2
Eu+ ⟨A(x, u,∇u),∇4u⟩+ J(x, u,∇u,∇2u,∇3u), (7.12)



1. Preliminary results 169

where A is a smooth 4th-order tensor, vanishing when both h and ∇h vanish, and J is given by

J =⟨B1,∇3u⊗∇2u⟩+ ⟨B2,∇3u⟩+ ⟨B3,∇2u⊗∇2u⊗∇2u⟩
+ ⟨B4,∇2u⊗∇2u⟩+ ⟨B5,∇2u⟩+ b6,

(7.13)

where Bi, i = 1, . . . 5 and b6 are smooth tensor-valued, respectively scalar-valued functions de-
pending on (x, u,∇u).

In this subsection we want to prove a short-time existence result for the surface diffusion
flow, in particular we will obtain a priori estimates that will be used to prove the stability of the
flow. We will follow the classical approach of linearization and fixed point to solve the nonlinear
evolution problem, and then employ Shauder-type estimates to show higher order regularity of
the flow. We will follow closely what has been done in [94], combining it with the results of [117].

To start we recall some classical results concerning the Cauchy problem for the biharmonic
heat equation on a smooth Riemannian manifold Σ with metric g, which is the solution to the
following problem {

∂tu = −∆2
Σu+ f(x, t) on Σ× [0,∞)

u(·, 0) = u0 on Σ,
(7.14)

once the functions f, u0 are assigned.

Theorem 7.6 (p. 251, [90, Theorem 2]). Given (Σ, g) a smooth Riemannian manifold, there exists
a unique biharmonic heat kernel with respect to g denoted as bg ∈ C∞(Σ×Σ× (0,∞)

)
. Moreover

let T > 0, for any integers k, p, q ≥ 0 and for any (x, y, t) ∈ Σ× Σ× (0, T ) we have

|∂kt∇p
x∇q

ybg(x, y, t)|g ≤ Ct−
n+4k+p+q

4 exp{−δ
(
t−

1
4 dg(x, y)

) 4
3 }, (7.15)

where | · |g =
√
g(·, ·), ∇x and ∇y are covariant derivatives with respect to g, and the constants

C, δ > 0 depend on T , g and p+ q + 4k.

Given the biharmonic heat kernel bg ∈ C∞(Σ×Σ×(0,∞)
)

on (Σ, g) and a function u0 ∈ C0(Σ),
we define for (x, t) ∈ Σ× (0,∞)

Su0(x, t) =

ˆ
Σ

bg(x, y, t)u0(y)dVg(y) (7.16)

where Vg is the Riemannian volume form. Hence, as usual, Su0 is the solution to the homogeneous
Cauchy problem {

∂tv +∆2
Σv = 0 on Σ× (0,+∞)

v(·, 0) = u0(·) on Σ.
(7.17)

Moreover, since the biharmonic heat kernel is smooth for every t > 0, we get Su0 ∈ C∞(Σ ×
(0,+∞)

)
. We now collect some results, which are shown in [117], about the solution of (7.14).

The following Schauder-type estimates on the solution of the homogeneous problem (7.17) can
then be proved, see [117, Theorem 3.8]. In particular, we modify slightly the formulation of the
result, to fit our purposes. One can inspect the proof of [117, Theorem 3.8] (see pag. 7487,7489
in particular) to check the result.

Theorem 7.7. Suppose u0 ∈ C1,1(Σ) and fix T > 0. Then there exists C1(Σ, T ) > 0 such that

sup
t∈(0,T )

∥|Su0|g∥C1,1(Σ) ≤ C1∥u0∥C1,1(Σ), (7.18)

Furthermore, for any l, k ∈ N, we have

sup
t∈(0,T )

tl+
k
4

∥∥∥∥
∣∣∣ (∂t)l∇k+2

g Su0(t)
∣∣∣
g

∥∥∥∥
C0(Σ)

≤ Cl,k∥u0∥C1,1(Σ), (7.19)

for some constants Cl,k > 0 depending on l, k, Σ and T .
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In order to study the evolution problem (7.12) we introduce the following two Banach spaces.
Fix 0 < T <∞ and 0 < β < 1. We define

YT :=
{
u ∈ C0

(
Σ× (0, T )

)
: ∥u∥YT <∞

}
, (7.20)

where

∥u∥YT := sup
t∈(0,T )

(
t
1
2 ∥u(·, t)∥C0(Σ) + t

1
2+

β
4 [u(·, t)]Cβ(Σ)

)

+ sup
(x,t)∈Σ×(0,T )

sup
0<h<T−t

t
1
2+

β
4
|u(x, t+ h)− u(x, t)|

|h| β4

(7.21)

and [·]Cβ is the usual Hölder seminorm. Similarly, we introduce the space

XT :=
{
u ∈ C0(Σ× (0, T )) : u(·, t) ∈ C4(Σ), ∥u∥XT <∞

}
, (7.22)

where

∥u∥XT := sup
t∈(0,T )

( 4∑

k=0

t−
1
2+

k
4 ∥∇ku(·, t)∥C0(Σ) + t

1
2+

β
4 [∇4u(·, t)]Cβ(Σ)

+ t
1
2 ∥∂tu(·, t)∥C0(Σ) + t

1
2+

β
4 [∂tu(·, t)]Cβ(Σ)

)

+ sup
(x,t)∈Σ×(0,T )

sup
0<h<T−t

t
1
2+

β
4
|∇4u(x, t+ h)−∇4u(x, t)|g

|h| β4

+ sup
(x,t)∈Σ×(0,T )

sup
0<h<T−t

t
1
2+

β
4
|∂tu(x, t+ h)− ∂tu(x, t)|

|h| β4
.

(7.23)

Proposition 7.8. The spaces (YT , ∥ · ∥YT ) and (XT , ∥ · ∥XT ) are Banach spaces.

The proof of the completeness of the spaces YT and XT is standard, indeed one can prove
directly that all Cauchy sequence converge to a function in the space and the candidate limit is
obtained using a diagonal argument.

Remark 7.9. Since the norm
∑4
k=0 ∥∇ku∥C0 is equivalent to the norm ∥u∥C0 + ∥∇4u∥C0 for

C4(Σ), we have that the norm ∥ · ∥XT defined in (7.23) is equivalent to the following norm

∥u∥′

XT :=∥u∥XT +

3∑

k=0

sup
(x,t)∈Σ×(0,T )

sup
0<h<T−t

t−
1
2+

k
4+

β
4
|∇ku(x, t+ h)−∇ku(x, t)|g

|h| β4
.

Now we study the nonhomogeneous initial value problem
{
∂tu+∆2

Σu = f on Σ× (0, T )

u(·, 0) = 0 on Σ,
(7.24)

where f is a function on Σ× (0, T ). Given the biharmonic heat kernel bg ∈ C∞(Σ× Σ× (0, T )
)

on (Σ, g), the solution (if it exists) to the nonhomogeneous problem (7.24) should be given by
Duhamel’s principle

V f(x, t) :=

ˆ t

0

ˆ
Σ

bg(x, y, t− s)f(y, s)dVg(y)ds, (7.25)

and, for every λ > 0, V f ∈ C∞(Σ× (λ2 , λ)).
We then recall the following fundamental Schauder-type estimates proved in [117] on solutions

of (7.24) (see [117, Remark 3.12] for the final comments on the constant C).

Theorem 7.10 ([117, Theorem 3.10]). Fix 0 < T <∞, if f ∈ YT , then V f ∈ XT and there exists
a constant C > 0 depending on Σ, T such that

∥V f∥XT ≤ C∥f∥YT . (7.26)
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Moreover, equation (∂t + ∆2
Σ)V f = f holds in the classical sense on Σ × (0, T ) and thus V f ∈

C∞(Σ× (0, T )).

We now turn our attention to the evolution equation (7.12), and use the results above for the
particular choice Σ = ∂E with the Riemaniann metric induced by the Euclidean one. We consider
the map

f [u](x) := ⟨A(x, u,∇u),∇4u⟩+ J(x, u,∇u,∇2u,∇3u), (7.27)

where A, J are the operators defined in (7.12). We now provide the fundamentals estimates on
f [u], which represents the nonlinear error generated linearizing (7.12).

Lemma 7.11. For any ε, m > 0 there exist T, δ > 0 depending on E, ε with the following
properties. For every u0 ∈ C1,1(Σ) and ψ ∈ XT satisfying ∥ψ∥XT ≤ m it holds

f [ψ + Su0] ∈ YT . (7.28)

Moreover, if ∥u0∥C1,1(Σ) ≤ δ it holds

∥f [Su0]∥YT ≤ ε(∥u0∥C1,1(Σ) + 1). (7.29)

Finally, ψ1, ψ2 ∈ XT satisfying ∥ψi∥XT ≤ m, it holds

∥f [ψ1 + Su0]− f [ψ2 + Su0]∥YT ≤ ε∥ψ1 − ψ2∥XT . (7.30)

Proof. Let T < 1 to be chosen later and fic ε,m > 0. We prove only equation (7.29), giving a
sketch of the proof for (7.30) and (7.28) as they are analogous; we also drop the dependence on
the set E in the norms. For clarity of exposition, we prove the results for the simplified error term

f̃ [u](x, t) := ⟨A(x, u(x, t),∇u(x, t)),∇4u(x, t)⟩+ ⟨B,∇3u(x, t)⊗∇2u(x, t)⟩, (7.31)

where B is a (constant) tensor of the same dimension of ∇3u ⊗ ∇2u with ∥B∥ < 1. The
general case is explained in the appendix, but follows by analogous computations. We will also
write A(x, t) and assume implicitly the dependence on u,∇u.

Firstly, we prove (7.29). In what follows we use the short-hand notation u = Su0. From the
definition of f̃ [·] we have

∥f̃ [u]∥C0 ≤ ∥A∥C0∥∇4u∥C0 + ∥∇3u∥C0∥∇2u∥C0 ,

[f̃ [u]]Cβ ≤ ∥∇4u∥C0 sup
τ∈TN

(
|τ |−β |A(x+ τ, t)−A(x, t)|

)
+ ∥A∥C0 [∇4u]Cβ

+ [∇3u]Cβ∥∇2u∥C0 + ∥∇3u∥C0 [∇2u]Cβ .

(7.32)

Then, we multiply by t
1
2 the first equation in (7.32) to get

t
1
2 ∥f̃ [u]∥C0 ≤ ∥A∥C0t

1
2 ∥∇4u∥C0 + t

1
4 t

1
4 ∥∇3u∥C0∥∇2u∥C0 .

By (7.19), with the choice of l = 0, k = 0, 1, 2, we have that all the terms t
1
2 ∥∇4u∥C0 , t

1
4 ∥∇3u∥C0

and ∥∇2u∥C0 are bounded by ∥u∥C1,1 (times a constant that depends on E which we can suppose
equal to one for simplicity). We now fix δ > 0 sufficiently small, depending on ε and E, so that
∥A∥C0 is bounded by ε, which can be done since A is a smooth tensor and A(·, 0, 0) = 0. Finally,
taking T small enough, depending on ε and E, we conclude

sup
t∈(0,T )

t
1
2 ∥f̃ [u]∥C0 ≤ ε∥u0∥C1,1 .

Therefore, taking into account the full expression for the error term f [u] given by (7.27), one can
show that

sup
t∈(0,T )

t
1
2 ∥f [u]∥C0 ≤ Cε (∥u0∥C1,1 + 1) ,



172 CHAPTER 7. Stability Continuus Flows

where the last constant comes from the term b6.
Concerning the Hölder seminorm in space, we first remark that

sup
τ∈TN

|A(x+ τ, t)−A(x, t)|
|τ |β ≤ [A(·, u,∇u)]Cβ + ∥∂2A∥C0 [u]Cβ + ∥∂3A∥C0 [∇u]Cβ ,

where ∂2A and ∂3A denote the derivative of A(x, y, z) with respect to the second and third
components. Therefore, employing again the bounds in (7.18) and (7.19) we can bound

t
1
2 ∥∇4u∥C0 sup

τ

|A(x+ τ, t)−A(x, t)|
|τ |β ≤ ε∥u0∥C1,1 , (7.33)

where we took δ > 0 sufficiently small, depending on ε and E, such that

[A(·, u,∇u)]Cβ + ∥∂2A∥C0 [u]Cβ + ∥∂3A∥C0 [∇u]Cβ ≤ ε,

which is possible since A is smooth and A(·, 0, 0) = 0. Thus, multiplying by t
1
2+

β
4 the second

equation in (7.32) we obtain

t
1
2+

β
4 [f̃ [u]]Cβ ≤ t

β
4 ε∥u0∥C1,1 + ∥A∥C0t

1
2+

β
4 [∇4u]Cβ

+ t
1
4 t

1
4+

β
4 ∥∇3u∥Cβ∥∇2u∥C0 + t

1
4 t

1
4 ∥∇3u∥C0t

β
4 ∥∇2u∥Cβ .

(7.34)

Then, all the terms in (7.34) with the norms of u can be bounded employing (7.18) and (7.19), thus
we can make the right-hand side above as small as needed taking T, δ small enough. Analogous
calculations show a similar inequality for the complete error term f [u].

Finally, we show how to bound the Hölder seminorm in time appearing in ∥f̃ [u]∥YT . We fix
t ∈ (0, T ), h ∈ (0, T − t). To ease notation, we omit to write the evaluation at x in the following.
We have by the very definition of f̃ [u](t) that

|f̃ [u](t+ h)− f̃ [u](t)|
≤ |⟨A(u(t+ h),∇u(t+ h)),∇4u(t+ h)⟩ − ⟨A(u(t),∇u(t)),∇4u(t)⟩|
+ |⟨B,

(
∇3u(t+ h)⊗∇2u(t+ h)

)
⟩ − ⟨B,

(
∇3u(t)⊗∇2u(t)

)
⟩|.

Now by the triangular inequality we obtain

|⟨A(u(t+ h),∇u(t+ h)),∇4u(t+ h)⟩ − ⟨A(u(t),∇u(t)),∇4u(t)⟩|
≤ ∥A∥C0 |∇4u(t+ h)−∇4u(t)|+ ∥∂3A∥C0 |∇u(t+ h)−∇u(t)|∥∇4u(t)∥C0

+ ∥∂2A∥C0 |u(t+ h)− u(t)|∥∇4u∥C0 ,

(7.35)

and analogously

|⟨B,
(
∇3u(t+ h)⊗∇2u(t+ h)

)
⟩ − ⟨B,

(
∇3u(x, t)⊗∇2u(x, t)

)
⟩|

≤ |∇3u(t+ h)−∇3u(t)|∥∇2u∥C0 + ∥∇3u∥C0 |∇2u(t+ h)−∇2u(t)|.
(7.36)

Therefore from formulas (7.35) and (7.36), we obtain

|f̃ [u](t+ h)− f̃ [u](t)|
≤ (∥∂2A∥C0 |u(t+ h)− u(t)|+ ∥∂3A∥C0 |∇u(t+ h)−∇u(t)|) ∥∇4u(t)∥C0

+ ∥A∥C0 |∇4u(t+ h)−∇4u(t)|+ |∇3u(t+ h)−∇3u(t)|∥∇2u∥C0

+ ∥∇3u∥C0 |∇2u(t+ h)−∇2u(t)|.

Applying again (7.18), (7.19), and using the smallness of ∥A∥C0 , we conclude (7.29) by taking
T, δ small enough.

Following the computations above one can easily prove that if u0 ∈ C1,1(Σ) and ∥ψ∥XT ≤ m,
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it holds
f [ψ + Su0] ∈ YT .

The only difference is that, in addition to (7.18), (7.19) one can directly exploit the definition
of ∥ · ∥XT to obtain the required bounds. Also the proof for (7.30) is essentially the same, only
much more tedious to write. We show the computations only for the term supt∈(0,T ) t

1/2∥ · ∥C0

appearing in the norm of YT and for the simplified error term (7.31). For ui := ψi + Su0 we can
write

|f̃ [u1]− f̃ [u2]|
=
∣∣⟨A(x, u1,∇u1),∇4u1⟩ − ⟨A(x, u2,∇u2),∇4u2⟩+ ⟨B, (∇3u1 ⊗∇2u1 −∇3u2 ⊗∇2u2)⟩

∣∣
≤ ∥∇4u1∥C0 (∥∂1A∥C0 |ψ1 − ψ2|+ ∥∂2A∥C0 |∇ψ1 −∇ψ2|) + ∥A∥C0 |∇2ψ1 −∇2ψ2|
+ ∥∇3u1∥C0 |∇2ψ1 −∇2ψ2|+ ∥∇2u2∥C0 |∇3ψ1 −∇3ψ2|.

Multiplying the inequality above by t
1
2 we have

t
1
2 |f̃ [u1]− f̃ [u2]|
≤
(
∥∇4u1∥C0

(
t∥∂1A∥C0 + t

3
4 ∥∂2A∥C0

)
+ t

1
2

(
∥A∥C0 + ∥∇3u1∥C0

)

+ t
1
4 ∥∇2u2∥C0

)
∥ψ1 − ψ2∥XT

≤ t
1
4

(
t
1
2 ∥∇4u1∥C0∥A∥C1 + ∥A∥C0 + t

1
4 ∥∇3u1∥C0 + |∇2u2∥C0

)
∥ψ1 − ψ2∥XT .

Again, by definition of ∥ · ∥XT and by (7.18),(7.19) we conclude taking T, δ small enough.

We are now able to prove a short-time existence result for the surface diffusion evolution.
Thanks to the previous lemmas, we provide also higher order regularity estimates depending on
the C1,1−bound on the initial datum only. The proof follows closely the corresponding one in
[117, 94].

Theorem 7.12. Let ε > 0 and let E ⊂ TN be a smooth open set. There exist δ = δ(ε, E),
T = T (ε, E) > 0 with the following property: if E0 is the normal deformation of E induced by
u0 ∈ C1,1(∂E), ∥u0∥C1,1(∂E) ≤ δ, and |E0| = |E|, then the surface diffusion flow Et starting from
E0 exists in [0, T ), the sets Et are normal deformations of E induced by u(·, t) ∈ C∞(∂E) for all
t ∈ (0, T ), and

sup
t∈(0,T )

∥u∥C2(∂E) ≤ ε. (7.37)

Moreover, for every k ∈ N \ {0}, there exist constants Ck = Ck(ε, E) > 0 such that

sup
t∈[T2 ,T )

∥∇k+2u∥C0(∂E) ≤ Ck(∥u0∥C1,1(∂E) + 1). (7.38)

Proof. In this proof we denote by C > 0 a constant that depends on N and E and may change
from line to line. Fix ε > 0.
Step 1: We show existence for (7.12) via a fixed point argument. Let T < 1, δ < 1 to be chosen
later, and let u1 ∈ C∞((0, T );C∞(∂E)) be the solution of




∂tu1 = −∆2

Eu1 on ∂E × [0, T ),

u1(·, 0) = u0 on ∂E,

where u0 ∈ C1,1(∂E) is such that ∥u0∥C1,1(∂E) ≤ δ. The solution exists and it is given by (7.16),
that is u1 = 0 + Su0 =: ψ1 + Su0. Moreover (7.37) and (7.38) are satisfied by u1 thanks to
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Theorem 7.7, for δ small enough depending on ε. Let now u2 be the solution of



∂tu2 = −∆2

Eu2 + f [u1] on ∂E × [0, T ),

u2(·, 0) = u0 on ∂E,

where f [u] is defined as in (7.27). By (7.16) and (7.25), the unique solution is given by u2 =
V f [u1] + Su0 = V f [Su0] + Su0 =: ψ2 + Su0. Moreover, by Theorem 7.10 and (7.29) we have the
estimate

∥ψ2∥XT ≤ C∥f [Su0]∥YT ≤ Cε(∥u0∥C1,1(∂E) + 1) ≤ m,

for m sufficiently large. We are then led to define an iterative scheme. We set u1, u2 as above and
for n ≥ 3 we let un be the solution to




∂tun = −∆2

Eun + f [un−1] on ∂E × [0, T ),

un(·, 0) = u0 on ∂E,
(7.39)

and we split it as un = Su0 + V f [un−1] =: ψn + Su0. We will show that the sequence ψn is
converging in XT . To do so, assume that ψj ∈ XT for j = 1, . . . , n− 1 with

∥ψj∥XT ≤ m.

Then, by Theorem 7.10 and Lemma 7.11 we get ψn ∈ XT and

∥ψn∥XT = ∥V f [un−1]∥XT ≤ C∥f [un−1]∥YT = C∥f [ψn−1 + Su0]∥YT

≤ C

n−1∑

j=2

∥f [ψj + Su0]− f [ψj−1 + Su0]∥YT + C∥f [Su0]∥YT

≤ C
( n−1∑

j=1

εj
)
(∥u0∥C1,1(∂E) + 1)

≤ Cε
(
1 +

+∞∑

j=1

εj
)
(∥u0∥C1,1(∂E) + 1)

≤ Cε(∥u0∥C1,1(∂E) + 1) ≤ m. (7.40)

Moreover, Lemma 7.11 implies that, for δ(ε, E), T (ε, E) small enough, it holds for all n ≥ 3

∥ψn+1 − ψn∥XT ≤ ε∥ψn − ψn−1∥XT ,

therefore ψn is a Cauchy sequence and admits a limit point ψ satisfying

∥ψ∥XT ≤ Cε(∥u0∥C1,1(∂E) + 1). (7.41)

We thus showed the existence of a fixed point u = ψ + Su0 for the problem (7.39). Finally, by
(7.18) and (7.41) it holds

∥u∥C2(∂E) = ∥ψ + Su0∥C2(∂E) ≤ ∥ψ∥XT + ∥Su0∥C2(∂E) ≤ Cε(∥u0∥C1,1(∂E) + 1). (7.42)

Step 2: By (7.42) we get straightforwardly that (7.38) holds for k = 0, 1, 2. In order to prove
(7.38) for k ≥ 3, we consider x ∈ ∂E and we work under local coordinate, B′

r
∼= U ⊂ ∂E such that

the metric (gij)i,j=1,...,N−1 of ∂E satisfies 1
2δij ≤ gijE ≤ 2δij . Note in particular that the operator

−∆2
E is uniformly elliptic in U . In the following we identify B′

r and U ⊂ ∂E. We also set gt as
the metric on ∂Et (see [147, pag. 20] for details). Observe that u restricted to B′

r × [T2 , T ) is of
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class C∞ by the previous step. Recalling that u = ψ + Su0, we have that the function ψ satisfies

∂tψ = −∆2
gtψ + (∂t +∆2

gt)(Su0) + f ′ =: −∆2
gtψ + f̃ . (7.43)

Taking ∇g in (7.43) shows that the function ∇gψ satisfies the equation

∂t∇gψ = −∆2
gt∇gψ − (∇gg

ij
t )g

kl
t (ψ)ijkl − gijt (∇gg

kl
t )(ψ)ijkl +∇g f̃

=: −∆2
gt∇gψ + F,

(7.44)

where the error term F contains the derivative of ψ up to order four. To estimate
∥F∥Cβ/4([T2 ,T ];Cβ(B′

r))
we first observe that, by (7.19), it follows

∥∇g

(
(∂t +∆2

gt)(Su0)
)
∥Cβ/4([T2 ,T );Cβ(B′

1))
≤ Cε(∥u0∥C1,1(∂E) + 1).

Secondly, we remark that the other terms of F can be bounded analogously, recalling that they
contain derivatives of ψ up to order four and using (7.41), to show that

∥F∥Cβ/4([T2 ,T );Cβ(B′
r))

≤ Cε(∥u0∥C1,1(∂E) + 1). (7.45)

Note now that ∂t + ∆2
gt is a uniformly parabolic operator, since the coefficients of ∆2

gt are close
to the ones of ∆2

E depending on ∥u(·, t)∥C1,1(∂E) as gijEu − gijE = B(x, u,∇u) and B is a smooth
function with B(x, 0, 0) = 0, see again [147, pag. 20]. Since ∇gψ solves (7.44), by the standard
interior Schauder estimates and the bound (7.45), there exists C > 0, which depends on T and
thus on ε and E, such that

∥∇gψ∥C1,β/4([T2 ,T );C4,β(B′
r/2

)) ≤ C
(
∥F∥Cβ/4([T4 ,T );Cβ(B′

r))
+ ∥∇gψ∥C0(B′

r×[T4 ,T ))

)

≤ Cε(∥u0∥C1,1(∂E) + 1),

where we noted that ∥ψ∥C1((B′
r×[T4 ,T ))) ≤ ∥ψ∥XT and employed again (7.41). Finally, we conclude

sup
t∈[T2 ,T )

∥∇5u∥C0(∂E) ≤ C(∥u0∥C1,1(∂E) + 1).

By induction, one can prove (7.38) for every k ∈ N.

2 Stability

2.1 Stability of the volume preserving mean curvature flow
In this subsection, we study the evolution by mean curvature (7.3) of normal deformations

of a strictly stable set. Suppose that E is a strictly stable set and that E0 = Eu0 is a smooth
normal deformation of E. By Theorem 7.2, the volume preserving mean curvature flow starting
from E0 exists in a short time interval, and the evolving sets Et can be parametrized as normal
deformations of the set E induced by functions u(·, t) satisfying

{
ut(x, t)νEt(p) · νE(x) = −

(
HEt(p)− H̄Et

)
x ∈ ∂E,

u(·, 0) = u0

where p = x+ u(x, t)νE(x) and H̄Et =
ffl
∂Et

HEt . The scalar product above can be written as

νEt(p) · νE(x) =


1 +

N−1∑

j=1

(∂τju(x, t))
2

(1 + κj(x)u(x, t))2




−1/2

,
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where κj(x) and τj(x) are, respectively, the principal curvatures and the principal directions of
E at x. In particular, we remark that νEt(p) · νE(x) = 1 + O(∥u(·, t)∥H1). We can then prove
the first part of the main result, that is Theorem 7.1, concerning the long time behaviour of the
volume preserving mean curvature flow.

Proof of (i) Theorem 7.1. Let ε, δ(ε) ∈ (0, 1) to be chosen later. In the following, if not otherwise
stated, the constants depends on N,E and may change from line to line. Fix for instance β = 1/2
and suppose that δ is smaller than the constant given by Theorem 7.2. We also use the short-hand
notation πf := (πE |Ef )−1.
Step 1. We start by proving that P (Et)− P (E) ≤ Ce−ct as long as the flow exists.

Let u0 ∈ C1,1(∂E) with ∥u0∥C1,1 ≤ δ < 1. By Theorem 7.2 there exist a time T > 0,
which depends on E and the bound on ∥u0∥C1,1 < 1, and a smooth flow Et starting from E0 for
t ∈ [0, T ). Moreover, Et = Eu(·,t) and u(·, t) satisfies (7.4) and (7.5). Without loss of generality
we can assume T <∞. We also note that the value of T does not change taking ε, δ smaller.

We recall the following well-known identities, holding along the smooth flow:

d
dt

|Et| = 0,
d
dt
P (Et) = −∥HEt − H̄Et∥2L2(∂Et)

. (7.46)

Let δ∗ be the constant given by Theorem 5.4 in Chapter 5, p > N − 1 and η = η(δ∗, p) given
by Lemma 5.14 in Chapter 5. By estimates (7.4), (7.5) and by interpolation we have that
∥u(·, t)∥W 2,p(∂E) ≤ η for every t ∈ [T/2, T ), up to taking ε smaller and therefore δ smaller.
Thus for any t ∈ [T/2, T ) we can apply Lemma 5.14 of Chapter 5 to find σt ∈ TN and a function
ũ(·, t) such that Et + σt = Eũ(·,t) and

|σt| ≤ C∥u(·, t)∥W 2,p(∂E), ∥ũ(·, t)∥W 2,p(∂E) ≤ C∥u(·, t)∥W 2,p(∂E),∣∣∣∣
ˆ
∂Et

ũ(·, t)νEt
∣∣∣∣ ≤ δ∗∥ũ(·, t)∥L2(∂E).

Furthermore, Lemma 5.16 (taking δ smaller if needed) implies that ∥ũ(·, t)∥C1(∂E) ≤ δ∗. We then
apply Theorem 5.4 of Chapter 5 to the set Et + σt to obtain

∥ũ(·, t)∥H1(∂E) ≤ C∥HEt+σt − λ∥L2(∂E) (7.47)

for any λ ∈ R, where we recall HEt+σt(x) = HEt(x + ũ(x)νE(x)). From the previous equation,
first by the change of variable y = x+ ũ(x, t)νE(x) (estimating the Jacobian with the bounds on
ũ and Lemma 5.16), and then by translation invariance, we arrive at

∥ũ(·, t)∥H1(∂E) ≤ C∥HEt+σt − λ∥L2(∂Et+σt) = C∥HEt − λ∥L2(∂Et). (7.48)

We now claim that

P (Et + σt)− P (E) = P (Eũ(·,t))− P (E) ≤ C∥ũ(·, t)∥2H1(∂E), (7.49)

which is a classical result but we provide a proof for the sake of completeness.
Let us define, for every x ∈ ∂E, the function

Q(x) :=

(
1 +

N−1∑

j=1

(∂τj ũ(x, t))
2

(1 + κj(x)ũ(x, t))2

) 1
2

where τ1(x), . . . , τN−1(x) and κ1(x), . . . , κN−1(x) are, respectively, the principal directions and
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curvatures of ∂E at x. Then, we have

P (Et + σt) = P (Eũ(·,t)) =

ˆ
∂E

Q(x)

N−1∏

i=1

(1 + κi(x)ũ(t, x)) dHN−1(x)

= P (E) +

ˆ
∂E

(
HE ũ(·, t) +O(ũ(·, t)2) +O(|Dũ(·, t)|2)

)
dHN−1

≤ P (E) + HE

ˆ
∂E

ũ(·, t) dHN−1 + C

ˆ
∂E

(
ũ(·, t)2 + |Dũ(·, t)|2

)
dHN−1

≤ P (E) + C∥ũ(·, t)∥2H1(∂E),

where we have used that HE =
∑N−1
i=1 κi and the inequality

∣∣∣∣
ˆ
∂E

ũ(·, t) dHN−1

∣∣∣∣ ≤ C

ˆ
∂E

ũ(·, t)2 dHN−1,

which follows from the fact that |Et| = |E0|. Hence, we prove the claim in (7.49).
We now define the Lyapunov functional E (t) = P (Et) − P (E), which is non increasing by

(7.46). Moreover, by translation invariance, from (7.48), (7.49) and for any λ ∈ R we have

P (Et)− P (E) = P (Et + σt)− P (E) ≤ C∥HEt − λ∥2L2(∂Et)
. (7.50)

Since for any t ∈ (0, T ) equation (7.50) for the particular choice of λ = H̄Et implies

E ′(t) = −∥HEt − H̄Et∥2L2(∂Et)
≤ −CE (t),

by Gronwall’s inequality we conclude (recalling E (0) ≥ E (T/2))

E (t) ≤ E (0)e−C(t−T/2), ∀t ∈ [T/2, T ). (7.51)

Step 2. We now show that the flow exists for every t ≥ 0 and it converges exponentially fast to
E up to translations.

Up to taking δ smaller, we can use the quantitative isoperimetric inequality in Theorem 5.17
in Chapter 5 to find the existence of translations τt such that

C|E△(Et + τt)|2 ≤ P (Et)− P (E) ≤ P (E0)− P (E).

Furthermore, since all the evolving sets {Et}t∈[T/2,T ) satisfy a uniform inner and outer ball con-
dition by Remark 7.5, by classical convergence results (see e.g. [65, Theorem 3.2]) we have that
Et+τt is C1−close to E. In particular, there exist smooth (by the implicit map theorem) functions
v(·, t) : ∂E → R such that Et + τt = Ev(·,t) and

|τt| ≤ max
x∈∂Et+σt

dist∂Et(x) ≤ ∥u(·, t)∥C0(∂E) + ∥v(·, t)∥C0(∂E) ≤ 2ε,

up to taking δ smaller. Therefore, recalling (7.51), we have

∥v(·, t)∥2L1(∂E) ≤ C(P (E0)− P (E))e−C(t−T/2). (7.52)

By Lemma 5.16, we also have ∥v(·, t)∥Ck(∂E) ≤ C(∥u(·, t)∥Ck(∂E)+ |τt|) for every k ≥ 2. For every
t ∈ [T/2, T ), by combining the previous estimate with (7.5), (7.52) and interpolation inequalities,
for any l ∈ N there exist k(l) ∈ N, θ(l) ∈ (0, 1) and C = C(E, l) > 0 such that

∥∇lv(·, t)∥C0 ≤ C∥v(·, t)∥θL1∥v(·, t)∥1−θCk
≤ CT− k

4 (1−θ)(P (E0)− P (E))
θ
2 e−C(t−T/2). (7.53)

Choosing E (0) = P (E0) − P (E) small (hence choosing δ small) we can then apply again
Theorem 7.2 with the new initial set Ev(·,T/2) = ET/2 + τT/2 to get existence of the translated
flow up to the time 3T/2. We remark that, by uniqueness, the flow above is well defined since
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it coincides in [T/2, T ) with the flow Et translated by τt and estimate (7.51) now holds for all
t ∈ [T/2, 3T/2). Since now the bound (7.53) is uniform along the flow, choosing at every step the
times t = nT/2, we can iterate the procedure above to prove that the flow exists for all times
t ∈ [0,∞). Moreover, for every t ∈ (0,∞) there exists a translation τt such that Et + τt = Ev(·,t)
with v satisfying (7.53). In particular, we have that v → 0 exponentially in Ck for any k, as
t → ∞ and thus Et + τt → E in Ck for every k. This also implies (reasoning as in (7.48)) that
∥HEt − H̄Et∥L2(∂E) → 0 exponentially fast.
Step 3. We conclude by showing the convergence of the whole flow to a translate of E.

Let us prove the convergence of the translations {τt}t≥0. By compactness we can find a
sequence tn → ∞ such that τtn → τ . Defining

D(F,G) :=

ˆ
F△G

dist∂G(x) dx, (7.54)

following the computations of [3, pag. 21] we see

∣∣∣∣
d
dt

D(Et, E − τ)

∣∣∣∣ =
∣∣∣∣∣

d
dt

ˆ
Et△(E−τ)

dist∂Eτt(x) dx

∣∣∣∣∣

=

∣∣∣∣
ˆ
Et

div(sdE−τ (x)Vt(x)νEt(x)) dx
∣∣∣∣

=

∣∣∣∣−
ˆ
∂Et

sdE−τ (x)(HEt(x)− H̄Et(x)) dHN−1(x)

∣∣∣∣

≤ P (E0)∥HEt − H̄Et∥L2(∂E)

(
sup
x∈∂Et

dist∂E−τ (x)

)

≤ Ce−Ct
(

sup
x∈TN

dist∂E−τ (x)

)
≤ Ce−Ct,

(7.55)

where we recall that Vt is the velocity of the flow in the normal direction (see (7.3)). Clearly,
condition (7.55) implies that D(Et, E − τ) admits a limit as t → +∞. By the previous step and
since τtn → τ , we deduce that

D(Et, E − τ) → 0 as t→ +∞.

Assume now that σ ∈ TN is the limit of τsn along a subsequence sn → ∞ as n → +∞. By the
previous step, Esn → E − σ, therefore

0 = lim
n→+∞

D(Esn , E − τ) = D(E − σ,E − τ),

which implies σ = τ by definition (7.54). This concludes the proof as the exponential convergence
follows from Step 2.

2.2 Stability of the surface diffusion flow
We now focus on surface diffusion flow (7.10). As in the previous subsection, we consider E

a strictly stable set and E0 = Eu0
a smooth normal deformation of E. By Theorem 7.12, the

surface diffusion flow starting from E0 exists smooth in an interval [0, T ), moreover the evolving
sets Et can be written as normal deformations of E induced by functions u(·, t) satisfying

{
ut(x, t)νEt(p) · νE(x) = ∆EtHEt(p) ∀x ∈ ∂E,

u(x, 0) = u0(x)

where p = x+ u(x, t)νE(x).
Now, we aim to show the stability result (ii) of Theorem 7.1 for the surface diffusion flow. Due

to the similarity of the arguments needed with those employed to prove item (i) of Theorem 7.1,
we will only highlight the main differences between the two.
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Proof of (ii) Theorem 7.1. Firstly, Theorem 7.12 ensures the existence of a smooth flow Et for
t ∈ (0, T ) of normal deformations of E induced by functions u(·, t) ∈ C∞(∂E) and satisfying
(7.37) and (7.38). We recall the following identities, holding along the flow Et as long as it exists
smooth,

d
dt

|Et| = 0,
d
dt
P (Et) =

ˆ
∂E

HEt(x)∆EtHEt(x) dx = −∥∇HEt∥2L2(∂Et)
≤ 0. (7.56)

Denoting by CEt the constant in the Poincaré inequality, we get

∥HEt − H̄Et∥L2(∂Et) ≤ CEt∥∇HEt∥L2(∂Et).

Combining the previous inequality with (7.56), we obtain

d
dt
P (Et) ≤ −CEt∥HEt − H̄Et∥2L2(∂Et)

.

Since ∥u(·, t)∥C1,1(∂E) ≤ c for every t ∈ (0, T ), the Poincaré constants CEt are uniformly bounded
in the same time interval and the bound depends on E, ∥u∥C1,1(∂E) (see e.g. the results in [75]).
Thus, we obtain the estimate d

dtP (Et) ≤ −C∥HEt − H̄Et∥2L2(∂Et)
uniformly in (0, T ). We then

conclude by following the same arguments of part (i).
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Crystalline and Anisotropic, Nonlinear or Nonlocal Curvature Flows

Abstract

This thesis is devoted to the study of geometric flows, with particular focus on the mean curvature flow.
It is divided in two thematic parts. The first part, Part I, contains Chapters 2, 3 and 4, and concerns
convergence results for the minimizing movements scheme, which is a variational procedure extending
Euler’s implicit scheme to evolutions having a gradient flow-like structure. We implement this scheme for
anisotropic or crystalline, nonlocal or inhomogeneous curvature flows, in linear and nonlinear instances,
and study its convergence towards weak solutions to the flows. In Chapter 4 we also pair this study
with a discrete-to-continuum limit. The second part, Part II, is devoted to the study of asymptotic
behaviour of volume-preserving curvature flows both in the discrete- and continuus-in-time instances.
The main technical tool employed is a new Łojasiewicz-Simon inequality suited to the study of these kind
of evolutions.

Keywords: Geometric Evolution Equations, Mean Curvature Flows, Crystalline Curvature Flows, Min-
imizing Movements

Flot de la Courbure Cristalline et Anisotrope, Non Linéaire ou Non Locale

Résumé

Cette thèse est consacrée à l’étude de flots géométriques, avec un accent particulier sur le flot de la cour-
bure moyenne. La thèse est divisée en deux parties thématiques. La première partie, Partie I, contient les
Chapitres 2, 3 et 4, et concerne des résultats de convergence pour le schéma des mouvements minimisants,
qui est une procédure variationnelle étendant le schéma implicite d’Euler aux évolutions ayant une struc-
ture de type flot gradient. Nous mettons en œuvre ce schéma pour des flots, linéaires ou non linéaires, de
la courbure anisotrope ou cristalline, non locale ou inhomogène, et nous étudions sa convergence vers des
solutions faibles. Au Chapitre 4, nous associons également cette étude à une limite discrète-continue. La
deuxième partie, Partie II, est consacrée à l’étude du comportement asymptotique des flots de la courbure
avec une contrainte de volume, à la fois en temps discret et en temps continu. Le principal outil technique
utilisé est une nouvelle inégalité de Łojasiewicz-Simon adaptée à l’étude de ce type d’évolutions.

Mots clés : Equations d’évolution géométrique, Flot de la Courbure Moyenne, Mouvements Minimisants
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RÉSUMÉ

Cette thèse est consacrée à l'étude de flots géométriques, avec un accent particulier sur le flot de la courbure moyenne.
La thèse est divisée en deux parties thématiques. La première partie, Partie I, contient les Chapitres 2, 3 et 4, et concerne
des résultats de convergence pour le schéma desmouvements minimisants, qui est une procédure variationnelle étendant
le schéma implicite d'Euler aux évolutions ayant une structure de type flot gradient. Nous mettons en œuvre ce schéma
pour des flots, linéaires ou non linéaires, de la courbure anisotrope ou cristalline, non locale ou inhomogène, et nous
étudions sa convergence vers des solutions faibles. Au Chapitre 4, nous associons également cette étude à une limite
discrète-continue. La deuxième partie, Partie II, est consacrée à l'étude du comportement asymptotique des flots de la
courbure avec une contrainte de volume, à la fois en temps discret et en temps continu. Le principal outil technique utilisé
est une nouvelle inégalité de Łojasiewicz-Simon adaptée à l'étude de ce type d'évolutions.

ABSTRACT

This thesis is devoted to the study of geometric flows, with particular focus on the mean curvature flow. It is divided in two
thematic parts. The first part, Part I, contains Chapters 2,3 and 4, and concerns convergence results for the minimizing
movements scheme, which is a variational procedure extending Euler's implicit scheme to evolutions having a gradient
flow-like structure. We implement this scheme for anisotropic or crystalline, nonlocal or inhomogeneous curvature flows,
in linear and nonlinear instances, and study its convergence towards weak solutions to the flows. In Chapter 4 we also pair
this study with a discrete-to-continuum limit. The second part, Part II, is devoted to the study of asymptotic behaviour of
volume-preserving curvature flows both in the discrete- and continuus-in-time instances. Themain technical tool employed
is a new Łojasiewicz-Simon inequality suited to the study of these kind of evolutions.
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