
HAL Id: tel-04816769
https://theses.hal.science/tel-04816769v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical planet formation on exascale architectures
Timothée David–Cléris

To cite this version:
Timothée David–Cléris. Numerical planet formation on exascale architectures. Instrumentation and
Methods for Astrophysic [astro-ph.IM]. Ecole normale supérieure de lyon - ENS LYON, 2024. English.
�NNT : 2024ENSL0053�. �tel-04816769�

https://theses.hal.science/tel-04816769v1
https://hal.archives-ouvertes.fr

N◦ d’ordre NNT :

THÈSE

en vue de l’obtention du grade de Docteur, délivré par

l’ÉCOLE NORMALE SUPERIEURE DE LYON

École Doctorale 52
École doctorale de Physique et astrophysique

Spécialité de doctorat : Physique – Astrophysique

Soutenue publiquement le 24 septembre 2024, par :
Timothée David--Cléris

Numerical planet formation on exascale
architectures

–
Formation planétaire numérique sur architecture

exascale

Devant le jury composé de :

LESUR Geoffroy, Directeur de recherche, IPAG/Université Grenoble Alpes Rapporteur
GRANDGIRARD Virginie, Directrice de Recherche, CEA, IRFM Rapporteuse
TREMBLIN Pascal, Chercheur CEA HDR, CEA Saclay Examinateur
BENOIT Anne, Mâıtre de conférences-HDR, LIP, ENS de Lyon Examinatrice
TERRASSE Isabelle, Personnalité scientifique, Airbus Examinatrice
LAIBE Guillaume, Professeur des universités, CRAL ENS de Lyon Directeur de thèse

Résumé
Les phénomènes astrophysiques se caractérisent par une interaction complexe

entre des processus multi-physiques, multi-échelles, hors d’équilibre et non linéaires.
Récemment, la puissance de calcul des supercalculateurs a augmenté jusqu’à attein-
dre la performance Exascale, à savoir un quintillion d’opérations par seconde. En
principe, cette puissance de calcul permet de résoudre des questions cruciales sur
la formation des planètes, grâce à des simulations d’une précision sans précédent.
Pour y parvenir, il est nécessaire de développer un code basé sur des algorithmes
capables de tirer parti de cette nouvelle puissance de calcul.

L’objectif de cette thèse est de développer Shamrock, le premier code Exas-
cale astrophysique qui utilise des méthodes multiples (particules ou grilles adap-
tatives). Le cœur de ce travail est l’adaptation et l’optimisation d’une nouvelle
procédure de construction et de traversée d’arbre pour trouver des voisins distribués
aléatoirement, qui est entièrement parallélisée sur des architectures utilisant des
cartes graphiques, ainsi qu’une nouvelle approche de la décomposition de domaine
pour abstraire l’équilibrage de la charge et la communication. La version actuelle
de l’integrateur SPH de Shamrock atteint une efficacité parallèle supérieure à 90%
sur les supercalculateurs et fournit des facteurs d’accélération de plusieurs milliers
par rapport aux simulations standard de pointe, ouvrant la voie à la résolution de
nouveaux problèmes astrophysiques.

i

ii

Abstract
Astrophysics phenomenon feature a complex interplay between processes that

are multi-physics, multiscale, out of equilibrium, and non-linear. Recently, the com-
puting power of supercomputers increased up to Exascale performance, namely a
quintillion operations per seconds. In principle, this computing power makes it pos-
sible to resolve crucial questions about planet formation, thanks to simulations of
unprecedented accuracy. To achieve this, it is necessary to develop code based on
algorithms capable of taking advantage of this new computing power.

The aim of this thesis is to develop Shamrock, the first astrophysical Exascale
code that employs multi-methods (particles or adaptive grids). The core of this work
is the adaptation and optimisation of a novel tree building and traversal procedure
for finding randomly distributed neighbours, which is fully parallelised on architec-
tures using graphics cards, as well as a novel approach to domain decomposition to
abstract load balancing and communication. The current version of the Shamrock
SPH solver achieves parallel efficiency that exceeds 90% on supercomputers and de-
livers acceleration factors of several thousand compared to standard state-of-the-art
simulations, paving the way towards tackling novel astrophysical problems.

iii

iv

Remerciements

v

vi

Contents

Notations & Preamble 1

1 A shorthand on numerical planet formation 9
1 Context . 9

1.1 Understanding planet formation 9
1.2 On the origins of discs . 12
1.3 Why is planet formation a complex problem ? 13

2 Basic physics of a protoplanetary disc. 14
2.1 Scale-lengths and fluid approximation 14
2.2 Minimal disc model . 15
2.3 Dust evolution . 19

3 State of the art (Processes) . 22
3.1 Accretion and angular momentum transport 23
3.2 Dust evolution . 27
3.3 Magnetohydrodynamics in discs 31
3.4 Planets . 34

4 State of the art (instabilities) . 40
4.1 Hydrodynamical instabilities 40
4.2 Dust-Gas instabilities . 42
4.3 Magnetohydrodynamical instabilities 44
4.4 Rossby Wave Instability . 44
4.5 Self-gravity . 45
4.6 Dust-Gravitational instability 47

5 Conclusion . 47
References . 48

2 Numerical Computation of astrophysical flows 59
1 Introduction . 59

1.1 Euler’s equation . 59
1.2 Rankine-Hugoniot conditions 60

2 Finite elements (Zeus & Fargo) . 61
2.1 Functional form of the equations 61
2.2 Operator splitting . 61
2.3 Staggered mesh . 62
2.4 Artificial viscosity . 63
2.5 Substep 1 (Pressure gradient) 64
2.6 Substep 2 (Artificial viscosity) 64
2.7 Substep 3 (Compressional heating) 65

vii

CONTENTS

2.8 Transport step . 65
2.9 Courant-Friedrichs-Lewy condition 68
2.10 Performance . 68

3 Finite volume (Godunov) . 69
3.1 Formulation of hydro equations 69
3.2 Riemann problem . 69
3.3 Cell averaging . 70
3.4 High order space reconstruction 72
3.5 TVD slopes . 75
3.6 Courant-Friedrichs-Lewy condition 77
3.7 Summary of the scheme . 77
3.8 Extension to mesh refinement 78
3.9 Discussion . 79

4 Meshless (Smoothed particle hydrodynamics) 80
4.1 Simulated equations . 80
4.2 SPH density interpolation . 80
4.3 Field interpolation in SPH . 82
4.4 Equation of motion . 83
4.5 Conserved quantities . 84
4.6 Artificial viscosity . 86
4.7 Shock detection . 87
4.8 Adaptive smoothing length . 88
4.9 Time stepping . 88
4.10 SPH dispersion relation . 90

5 Summary . 93
References . 94

3 Challenges of modern computing hardware 97
1 Introduction . 97
2 Brief history of HPC supercomputing 98

2.1 Monolythic supercomputers (1900-80) 98
2.2 Distributed supercomputer (1975-Now) 99

3 Recent evolution of computing hardware 100
4 A deep dive in a GPU . 102

4.1 Topology of a computer . 102
5 GPU execution model . 104

5.1 SIMD on CPU . 104
5.2 SPMD (Single Program Multiple Data) 104
5.3 SIMT parallelism . 105
5.4 Streaming multi-processor . 106
5.5 The GPU & Block scheduling 107

6 GPU performance . 109
6.1 Rooflines . 109

viii

CONTENTS

6.2 GPU memory perfomance . 110
6.3 GPUs and branches . 115
6.4 SIMD on GPU . 115
6.5 Execution latency . 115
6.6 GPU internal Load balancing 116
6.7 Streams . 117
6.8 Optimization guidelines for GPUs 117

7 Expressing parallelism on GPU . 118
7.1 Basic parallelism . 118
7.2 Race conditions . 119
7.3 Single kernel synchronization 120

8 Coding on GPU . 121
8.1 History . 122
8.2 SYCL . 124

9 Coding with SYCL . 127
9.1 Memory model . 127
9.2 Execution model . 128
9.3 SYCL datatypes . 130

10 Multi-GPU architectures . 131
10.1 Hardware . 131
10.2 Usage . 132

11 Summary . 133
References . 135

4 Shamrock 139
1 Introduction . 141
2 The Shamrock framework . 142

2.1 Modular computational fluid dynamics 142
2.2 Multi-GPUs architectures: choice of languages and standards . 143
2.3 Elements of software design 144

3 Domain decomposition & MPI . 145
3.1 Simulation box . 145
3.2 Patch decomposition . 145
3.3 Data Structure . 146
3.4 Scheduler step . 148
3.5 Load balancing strategies . 152
3.6 Patch interactions . 152
3.7 Serialisation . 154
3.8 Sparse MPI communications 155

4 The Shamrock tree . 157
4.1 Morton codes . 157
4.2 Prefixes . 159
4.3 Bounding boxes . 160

ix

CONTENTS

4.4 Longest common prefix length 160
4.5 Finding common prefixes . 161
4.6 Getting coordinates sizes of bounding boxes 161
4.7 Binary radix tree . 161
4.8 Karras algorithm . 162
4.9 Removal of duplicated codes 163
4.10 Reduction . 165
4.11 Tree building . 165
4.12 Tree traversal . 169
4.13 Direct neighbour cache . 169
4.14 Two-stages neighbour cache 172

5 Summary . 172
References . 173

5 Shamrock SPH solver 175
1 Smoothed Particle Hydrodynamics in Shamrock 175

1.1 Equations of motion . 175
1.2 SPH interaction criterion . 177
1.3 Adaptive smoothing length . 179
1.4 Time stepping . 181

2 Physical tests . 185
2.1 Generalities . 185
2.2 Advection . 185
2.3 Sod tube . 185
2.4 Sedov-Taylor blast . 189
2.5 Kelvin-Helmholtz instability 190
2.6 Conformance with Phantom 191
2.7 Summary . 194

3 Performance . 195
3.1 Characteristics of the benchmarks 195
3.2 Performance of tree building 196
3.3 Performance of neighbour cache building 198
3.4 Performance of time stepping 198
3.5 Summary . 203

4 Software design . 203
4.1 Development . 203
4.2 Testing . 203
4.3 Environment scripts . 204
4.4 Runscripts . 204
4.5 Units . 206

5 Conclusion . 206
Appendices . 207
6 AABB extension/intersection permutation 207

x

CONTENTS

References . 208

6 Conclusion 211
1 A first astrophysical application . 211
2 Perspectives . 213

2.1 Multi-physics . 213
2.2 Multi-methods . 214
2.3 Data analysis . 215
2.4 Optimization of latencies . 216

3 Conclusion . 218
References . 219

A Polydisperse Magnetised SI 221
1 Context . 221
2 Non-ideal MHD with polydisperse dust in shearing box 222

2.1 Basic equations . 222
2.2 Background magnetic field . 223
2.3 Polydisperse non-ideal MHD in shearing box 224
2.4 Steady state solutions . 225
2.5 Plasma parameter . 226

3 Reducing the problem to standard PSI 226
3.1 Solenoidal condition . 226
3.2 Lorentz force . 226
3.3 Induction equation . 227

4 Numerical method . 228
5 Results . 228
6 Discussion and future prospects . 231
References . 233

B Precision of 2-fluid SPH methods 235
1 The Dustywave problem . 235
2 SPH dustywave . 236

2.1 Equation of motions . 236
2.2 Linear perturbation . 237
2.3 Continuous limit . 238
2.4 Analytic spatial resolution criterion 240
2.5 Optimal reconstruction . 241
2.6 Test in simulations . 241

3 Conclusion . 241
Appendices . 241
4 Linear expansion of the SPH equations 243

4.1 Mass conservation . 243
4.2 Pressure term . 244
4.3 Drag term . 245

xi

CONTENTS

4.4 Discrete sph equations . 246
5 Discrete dispersion relation . 247
References . 248

C Full-Monofluid formalism 249
1 Monofluid formalism . 249
2 SPH identities . 254
3 Derivation from conservation equations 255

3.1 Conservation of dust mass . 255
3.2 Conservation of dust momentum 256

4 Summary . 259
References . 261

D Shearing Box 263
1 Shearing box . 263
2 SPH implementation . 265
3 Axisymmetric shearing box . 268
4 Sheared coordinates . 269

4.1 General coordinate transform 270
4.2 The continuity equation . 271
4.3 Momentum equation . 271
4.4 Shearing metric tensor . 272
4.5 Cartesian shear metric . 273
4.6 Differential operators . 274
4.7 Euler’s equation in the sheared coordinate system 274

5 Summary . 274
References . 276

E Fast Multipole Method 277
1 Fast Multipole Method . 277

1.1 Solved equations . 277
1.2 Basic multipole expansion . 278
1.3 Fast Multiple Method . 279

2 Moment translation & recombination 281
3 Implementation . 285

3.1 Symmetric tensors . 285
3.2 Computing moments (Upward step) 286
3.3 Computing force (Downward step) 287

4 Results . 289
4.1 Precision . 289
4.2 Performance . 290

5 Extension to multiple GPUs . 291
6 Summary . 291
References . 292

xii

Notations
References
When available the bibliography style features three different links associated with
three different colors: links to the journal/editor website or to a numerical version
of the paper are in red, links to the ADS website are in blue and links to the arXiv
website are in green.

Results

The important passages of the thesis are highlighted in grey boxes.

Name

If the result is named (e.g. equations of · · ·) it will be displayed like so instead.

Warning

! Important caveats or warning of the thesis will be highlighted like this.

Definitions

Definition ▶ style of definition

Definition are always named like so

Theorems

Theorem ▶ style of theorems

Theorems are always named like so

1

CONTENTS

Acronyms

SPH Smoothed Particle Hydrodynamics
AMR Adaptive Mesh Refinement
GPU Graphics Processing Unit
MHD Magneto-Hydro-Dynamics
CFL Courant-Friedrichs-Lewy condition
SI Streaming-instability
PSI Polydisperse Streaming-instability

2

Preamble

(a) (b) (c)

Figure 1: Images of discs presenting substructures. (a) Image of HL Tau observed
using the ALMA radio interferometer (Credit: ALMA,NRAO/ESO/NAOJ) (age
∼ 2 Myr) (b) Disc arbound AB Aurigae observed in infrared polarized light (Credit:
VLT/SPHERE) (c) HD135344B observed in infrared polarized light (Credit: VLT/-
SPHERE)

Since the initial discovery of exoplanets by Mayor & Queloz in 1995, thousands
of them have been discovered. Since planets are the cradle of life, the understanding
of the origines of life then requires the understanding of why, where and how planets
forms. In particular, planets are thought to be formed in young discs of gas and
dust orbiting around young stars. This assertion is supported by the presence of
substructures (example shown in Fig. 1) which in most case are consequences of the
presence of planets as confirmed by kinematic signature, direct observations and
meteoritic constraints (see example in Fig. 2). In particular, when observed, most
discs do present a variety of sub-structures. These sub-structures are ubiquitous as
they are observed in most discs, even in young ones. This, in turns, hint that most
discs may likely host planets. In particular, the presence of planets in young discs
suggest that their formation must be though in connexion with the formation of the
star, its discs and larger scales in general.

However, processes leading to planet formation are multi-scales, multi-physics
and out-of-equilibrium, making the analytical treatment of such processes unfeasible
in its entirety. We therefore need numerical simulations, although they are limited
in the scales and effects they can handle by the computing power available.

Understanding how to increase computational power using existing and already
available hardware is therefore key to unlock the capacity of permorming simulations
of planet formation with unprecedented resolution and predictive capacities. In a
computer the CPU (central processing unit) can be thought as the brain of the com-
puter. It can perform all kind of standard computations. Because of its versatility,
we normally relies on a CPU to perform computations. On the other hand, most
modern computer also have a GPU (graphics processing unit), which is a dedicated

3

CONTENTS

(a) (b) (c)

Figure 2: Examples of evidences of planet’s presence in discs (see Chapt. 1 for more
details). (a) Direct observation of a planet: observation of Pds 70b observed in
infrared polarized light (Credit: VLT/SPHERE) (b) Velocity kinks: Observation
of Doppler shift in 12CO line measuring deviation to Kepler’s orbits indicating the
presence of a perturbating gravitational potential (Credit : Pinte et al., 2022) (c)
Meteoritic constraints: In our solar system, a strong dichotomy is observed in the
isotopic compositions of meteorites, suggesting that the disc of our system was
physically separated after 2 or 3 million years.

piece of hardware to perform graphical operations or massively parallel operations
in general. A typical compute dedicated GPU will outperform a similar class of
CPU by a factor ten in both bandwidth and computing power while consuming the
same amount of energy. Due to this efficiency, computers with GPUs were natu-
rally linked together using a network whose bandwidth is large enough to not be a
bottleneck. Such network was scaled to thousands of computers (called computing
node in this instance), such structure is called a heterogeneous supercomputer, as
it makes use of both CPUs and GPUs. It is however important to note that while
GPUs jobs are to perform computations CPUs are here used mostly to schedule op-
erations on GPUs and communications between them. As an example, the largest
supercompter today (Frontier) is built sing an heterogeneous architecture and has
a staggering performance of 1.2 exaflops. This means that it is able to perform 1.2
quintillion floating point operations per seconds. This comes at a cost of 22.106W
which is about a 50th of a nuclear power plant throughput. However, while this is a
large power consumption, it is about 4.5 times more efficient than the largest CPU
only supercomputer.

Nowadays, more and more heterogeneous supercomputer are being built due
to the pressure toward higher power efficiency, higher computing density and the
growth of AI applications. This result in old CPU only supercomputer being slowly
replaced by heterogeneous ones. This is typically the case of the most powerful su-
percomputer in France, Adastra, which replaced its CPU only predecessor, the su-
percomputer Oxygen. As supercomputer migrate towards GPU based architectures,
new astrophysics codes need to be developed to utilize those modern supercomput-
ers. Their development, is therefore fulfilling the need for more computing power

4

CONTENTS

to resolve a larger amount of scales and effects, as well as the need to transition to
follow supercomputers evolutions.

(a) Intel Saphire rapids CPU die shot,
15 CPU Cores are contained in the cyan
area (credit : TechPowerUp)

(b) Nvidia A100 GPU die shot, 6912
GPU ‘Cores’ are contained in the green
area (credit : Locuza)

Figure 3: Exemples of CPU and GPU die shot, relative scale is correct.

However, migrating astrophysical codes from CPU to GPU codes is hard. The
reason is due to the differences between CPUs and GPUs. A modern CPU posses
a few large CPU cores which can execute independent tasks simultaneously. Those
CPU cores are fairly large (see Fig. 3) because they carry additional transistors to
digest the program complexity. This makes their use easier as they are more ver-
satile, however those additional transistors do increase the power consumption in
return. GPUs instead integrate many (thousands) of GPU cores which are way
smaller. They do not carry those additional transistors to digest the same level of
complexity, making them highly specialized, small and power efficient. They are
also slower than their CPU counterpart, but their sheer number makes the GPU
about 10 time faster than the CPU. Also, GPUs do not use the same programming
paradigm as CPUs, they rely on a SPMD (Single Program Multiple Data) program-
ming paradigm. Additionally, they require to be given even work to be efficient,
meaning that one must submit enough work in parallel to leverage their computing
power, and they are more sensible to data access pattern than CPUs. This render
most CPUs not portable to GPU architectures, requiring the development of new
codes.

In recent years many codes were ported to GPU architectures, to name a few Ide-
fix, Parthenon and codes derived from the AMRex framework. However, all of them
are grid based codes. However, many astrophysical systems posses complex geome-
tries for which grid based methods can be overly diffusive. An alternative to mesh
based methods is to use a particle based meshless method named Smoothed Particle

5

CONTENTS

Hydrodynamics (SPH) to simulate compressible hydrodynamics. Additionally, nu-
merical results should be method agnostic, meaning that they must be reproducible
with multiple methods. The SPH method was used successfully for many decades
in the astrophysics community, in particular, in the context of discs through the
SPH code Phantom. However, Phantom is limited by its lack of GPU support and
scalability on multiple computing node. The core of the Phantom code consists in
3 principal algorithms. Firstly, the neighbour search algorithm in Phantom is base
on a KD-tree which can not be ported to GPUs as there is no fast parallel building
algorithm for such tree, and updating it would be too costly to update it in the event
of load balancing or domain decomposition operations. Secondly, Phantom uses a
single loop approach to evolve the particle size and the fields. However, the particle
size needs to be updated then communicated before evolving the fields, rendering
the single loop approach impossible for a code that is scalable on multiple nodes.
Lastly, Phantom uses a dynamic cache for neighbours, which is not applicable on
GPUs. Overall, Phantom can not be ported on multi-GPU architectures. This led
to the decision of developing a new multi methods code during this PhD, with a
particular focus on its SPH scheme as particle are numerically the most challenging
aspect of a multi-GPU code.

It is this context that we present the following manuscript, which will be divided
in the following manner. We will first introduce the astrophysical context through a
review of planet formation in astrophysics through the scope of numerical methods,
simulation, and codes. In particular, we will draw specific attention to challenges
related to the simulation of phenomenon of importance in the context of planet
formation. As we aim at developing a multi-method code, we need to detail the
principal scheme used in astrophysics to be able to identify a possible abstraction
that allows the implementation of multiple schemes (particle or grid based) in a single
code. This will be done in this second chapter, which will then cover the three main
numerical methods used in astrophysics in order, namely, the finite element scheme
at the basis of the Zeus code, a typical finite-difference code use in thre community
of astrophysical. The finite volume scheme at the basis of the Ramses code, one
of the most used code in astrophysics which is based on the Godunov’s methods.
Lastly, this chapter will cover the details of the SPH scheme. Before starting to
implement a code, it is crucial to gain a good understanding of the underlying
hardware that we want to target. This will be the goal of the third chapter, dedicated
modern computing hardware and especially GPUs. In particular, we will cover
in greater details the differences between GPUs and CPUs to understand how to
adapt algorithm to newer architectures, as well as possible challenges associated
to GPUs. Having introduced the astrophysical context, the numerical schemes as
well as modern computing hardware, we will then present in the fourth chapter our
novel approach in the Shamrock framework. This framework consist of a novel patch
based domain decomposition, where each of the patches are updated on the GPUs.
The patch update is performed by a novel on the fly built tree, built using fully
parallelized tree building procedure, as alternatives of updating the tree would be

6

CONTENTS

too slow in the event of decomposition or load balancing operations. In addition to
this tree algorithm, we introduce novel approaches to handle communications and
abstract the load balancing from the code. Additionally, the framework abstracts
the notion of particle or grid cell, allowing for the implementation of the methods
previously described. A last chapter before the conclusion of the manuscript will
finally detail the SPH solver implementation in Shamrock, as well as numerical tests
to validate and benchmark it. In addition to those chapter, we will present in the
appendices preliminary work that are direct extensions of the work presented in
detail in the manuscript, and which will be further developed in the following years.
A first one will detail the extension of the streaming instability to a continuum of
dust specie in the presence of magnetic fields, showing the possibility of streaming
instability under the presence of a magnetic field in the polydisperse case. The next
two appendices will be dedicated to studying the precision, and extending the dust
models in SPH. In order to study local phenomenon such as streaming instability,
an appendix will be dedicated to the implementation of shearing box in SPH in
Shamrock. In the last appendix, we will present the preliminary work performed to
implement the Fast Multipole Method (FMM) in Shamrock to solve self-gravitating
fluid equations.

7

CONTENTS

8

Chapter 1
A shorthand on numerical planet

formation
Contents

1 Context . 9
2 Basic physics of a protoplanetary disc. 14
3 State of the art (Processes) 22
4 State of the art (instabilities) 40
5 Conclusion . 47
References . 48

1. Context

1.1. Understanding planet formation
The question of the origins of life begins with understanding the formation of planets,
including our own. In particular, it is essential to understand how and where planets
form with which properties. A planet, roughly, is an object with a true mass below
the limiting mass for thermonuclear fusion of deuterium that orbits stars other than
our sun (the semantics are still under debate by the International Astronomical
Union). On top of the known planets in our system, more than 5000 exoplanets
(source : https://exoplanet.eu) have been discovered since the initial discovery
of exoplanets by Mayor & Queloz (1995), who discovered the first exoplanet orbiting
a star, 51 Pegasi b. Statistics obtained by the Kepler space telescope, the James
Webb Space Telescope (JWST), suggest that the majority of stars possess multiple
exoplanets within their systems (e.g. Currie et al. 2023; Lissauer et al. 2023). Those
will be completed in a few years by the Extremely Large Telescope (ELT).

One striking observation is that exoplanets come in a very high diversity, in
mass and size, with small planets (similar to Mercury for example) and hot Jupiters
(several times the mass of Jupiter for example). There is diversity in localization,
from hot-Jupiters orbiting so close to the host star that they perform a full revolu-
tion in few hours to others that perform a full revolution in thousands of years to
planets within the so-called habitable zone of the host star (zone where water can
be liquid on the surface under enough atmospheric pressure). The composition of
the planets is also diverse, with giant planets made of mostly hydrogen and helium

9

https://exoplanet.eu

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

and rocky planets made of mostly iron, oxygen, silicon, and magnesium. The at-
mosphere of such planets can also be made of different molecules (oxygen, nitrogen,
methane, and carbon dioxide to name a few). In order to understand the likelihood
of the emergence of life, it is imperative to comprehend the fundamental principles
underlying such diversity.

The first effort toward understanding planet formation started with studies made
by Galilée, Descartes, and Swedenborg who studied the formation of our own system,
trying to explain how such structures can be formed. Influenced by observations of
spiral ”nebulas”, which later turned out to be galaxies, Moulton and Chamberlin
in 1904 formulated the planetesimal hypothesis, thinking that spirals were hosting
planet formation. This hypothesis was later interrogated by Von Weisäcker’s 1944
model, which introduced the notion of turbulence into these nebulas through col-
liding counterrotating vortices, in order to explain solar system formation. Lastly,
an historical contribution is Whipple’s 1948 model, which postulated that the Sun
formed from a collapsing cloud of ”smoke” and that the planets resulted from sec-
ondary clouds captured by the main one.

The breakthrough that led to more quantitative studies of planet formation was
the observational work of Mendoza V. (1966), who analyzed the spectrum of T
Tauri stars. T Tauri stars are young variable class stars that exhibit variation
in luminosity. Their names derive from the typical star T Tauri located in the
Taurus constellation. T Tauri stars exhibit excess infrared emission in comparison
to our sun. They interpret the existence of this excess by stating that ‘The short-
wavelength photometry refers to a small core and long-wavelength photometry to
a large envelope’ (Mendoza V., 1966). This was formalized in Mendoza V. (1968)
by stating that ‘If the infrared luminosity is many times the visual luminosity, then
a thick circumstellar dust cloud absorbs the visual radiation and reradiates in the
infrared the energy produced by the parent stars.’ In other words, T Tauri stars
are likely to have a dusty disc surrounding the central object, which is commonly
referred to as a circumstellar disc.

Since the 1970s telescopes in visible and infrared light, such as the Spitzer, Hub-
ble Space Telescope, VLT/SPHERE and the ALMA radio interferometer have pro-
vided many observations of circumstellar discs in multiple wavelengths that are more
spatially resolved. This revealed unexpected complex substructures such as rings,
gaps and horseshoes (Andrews et al., 2018; Huang et al., 2018a,b; Kurtovic et al.,
2018; Birnstiel et al., 2018; Dullemond et al., 2018; Zhang et al., 2018b; Guzmán
et al., 2018; Isella et al., 2018; Pérez et al., 2018). Some examples of such discs are
shown in Fig. 1.1.

Since a few years, modern studies suggest that planets can coexist with circum-
stellar discs. Firstly, we have direct observations of planets in discs (e.g. Currie et al.
2023) starting with the first such observation, PDS 70 b shown in Fig. 1.2. Secondly,
discs exhibiting substructure are thought to be likely to host planets (e.g. Bae et al.
2023). Thirdly, newer disc kinematic observations are now able to observe the kine-
matic signature of the presence of planets in discs (e.g. Pinte et al. 2024, 2023).

10

1. CONTEXT

(a) (b)

Figure 1.1: (a) Image of HL Tau (Credit: ALMA (NRAO/ESO/NAOJ)) (age ∼
2 Myr). (b) AB Aurigae, observed by the VLT with the instrument SPHERE en
in infrared polarized light (age : ∼ 1 Myr) (Boccaletti et al., 2020). Substructures
such as rings and spirals are observed.

Figure 1.2: Image of Pds 70b, observed by the VLT with the SPHERE instrument
in infrared, age : 5.4± 1.0Myr (Müller et al., 2018)

Lastly, meteoritic analysis of the solar system shows that solids were physically sep-
arated around 3 Myr after the solar system formed, which suggests that there was
an early substructure in the young solar system disc, thought to be the result of
Jupiter (e.g. Kruijer et al. 2017). Estimating the age of a young stellar system with
models of stellar evolution provides ∼ 1− 10Myr for the age of planet-hosting discs.
This is early compared to the > 100Myr predicted by the former cold isolated neb-
ula scenario. That would be suggested by the viscous diffusion in a stellar nebula
(e.g. Hartmann et al. 1998). Those clues imply that planet formation is likely to
start very early in disc life, if not before, and be due to short timescale phenomena.

! As a planet may form and evolve in a circumstellar disc, we shall refer to such
discs as protoplanetary discs as well.

11

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

1.2. On the origins of discs

Figure 1.3: Succession of processes leading to the formation of a star and its disc
from a protostellar nebula to the formation of planets (Source: Pineda et al. (2023))

Early planet formation implies a connection with the formation of the disc, which
in turn also implies a connection with the formation of the star. Therefore, it is not
considered that disc and planet formation are in isolation. Observations, simulations,
and analytical models support the idea that the formation of stars and discs is
part of the same process (e.g. Pineda et al. 2023). Under processes that are still
debated (e.g. shocks, compressible turbulence), some regions, of molecular clouds are
sufficiently dense and cold such that they exhibit a thermal pressure support weaker
than the influence of their own gravity. This causes the cloud to collapse under its
own gravitational force. During the protostellar collapse, angular momentum and
pressure (thermodynamic as well as magnetic) are opposing this gravitational pull.
Angular momentum is conserved during the collapse, implying that rotational speed
increases until it opposes further collapse of the gas. As a result, the protostellar
collapse results in the formation of a single or multiple protostars surrounded by a
circumstellar disc that is supported by its own rotation, which was inherited from

12

1. CONTEXT

Figure 1.4: Numerical simulation of a multiscale collapse of a molecular cloud leading
to star formation (Source: Zhang et al. (2018a))

the protostellar collapse. An example of a simulation of a protostellar cloud leading
to star formation is shown in Fig. 1.4 and the complete process is schematically
represented in Fig. 1.3.

1.3. Why is planet formation a complex problem ?
Planet and star formations are the byproducts of the balance between gravity and
processes that oppose it. These can be either

• Inertial effects, either in the form of angular momentum, where the rotation
counteracts the gravitational pull, or in the form of microscopic inertia of the
gas atoms, which results in gas pressure at a macroscopic scale.

13

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

• Magnetic effects, such as magnetic pressure for ionized gas flows, or radiative
effects as a consequence of the radiation of the central star, which heats its
environment, thereby elevating its temperature and, consequently, its pressure.

• Dust effects, whereby solid aggregates that have been formed through local
contacts favored by surface tension, can be destroyed before being significantly
agglomerated together and assembled in a single larger body by gravity. This
is the so-called fragmentation barrier, wherein meter-in-size grains are unlikely
to grow to larger sizes through collisions and are more likely to fragment in
impacts. This is also the case with the meter drift barrier, where meter-sized
dust solids are likely to drift and ultimately be destroyed by falling into the
star. We will discuss this effect in the next section.

Aside from opposing gravity, these effects also alter the medium’s properties or its
composition (amount of charges, opacities, chemical composition). Furthermore,
the majority of the effects involved in planet formation are non-linear and out-of-
equilibrium, as we will discuss in this chapter.

The chain of events leading to planet formation begins with the protostellar
collapse, which corresponds at the start to the typical scale of the parsec (1 pc ≃
3 · 1016 m), which is roughly the typical distance between two stars in our galactic
neighborhood. This can range down to the formation of potentially small planets
having a typical scale of a few thousand kilometers (mercury mean radius≃ 2·106 m).
Gravity concentrates matter. This implies that resolving all scales relevant to planet
formation corresponds to resolving 10 orders of magnitude in size.

In conclusion, understanding the conditions and outcomes of planet formation
requires comprehending such balance and side effects, necessitating an understand-
ing of all those effects, both individually and collectively, across all involved scales.
The conditions and results of planet formation are, therefore, inherently multiscale,
non-linear, and multi-effect out-equilibrium physics. In addition to resolving all ef-
fects, the formation of planets is fundamentally an out-of-equilibrium phenomenon,
necessitating the study of all processes across all relevant time scales.

2. Basic physics of a protoplanetary disc.
In order to better understand the physical processes involved in planet formation,
we first present a minimal model of a disc, in the spirit of the early model of planet
formation pioneered e.g. by Safronov (1969). This model will serve as a basis for
describing the state of the art of disc physics.

2.1. Scale-lengths and fluid approximation
Fig. 1.5 shows the different length scales involved in a protoplanetary disc. A typical
protoplanetary disc is composed of gas and dust, which are radially distributed

14

2. BASIC PHYSICS OF A PROTOPLANETARY DISC.

1013m
macroscopic

109m
numericmesoscopic

105m

lsep,d

102m

·
· ·
··

· ·
·

λg

microscopic
10−6m

ρ = 1g.cm−3

10−10m

·

Figure 1.5: An illustration of the different scale lengths involved in protoplanetary
discs. Gas molecules are represented by black dots and dust by brown circles. We
additionally represent both the numerical and global scale of the problem. In a
protoplanetary disc, from microscopical to astronomical, a large span of scale length
is involved. Both the micro and mesoscopic scales are sufficiently separated from
the numerical scale to allow the use of a fluid approximation for both gas and dust.

around one or several stars. The typical inner radius is of the order of 0.1 au ≃
1.5 · 1010 m and the outer radius is of the order of 100 au ≃ 1.5 · 1013 m. The gas
consists primarily of hydrogen and helium in molecular form. Dust grains are porous
and fractal aggregates essentially made of silicates originating from the interstellar
medium. They range in size from nanometer-sized grains up to meter sized grains.
The typical pressure and temperature conditions within the disc result in a typical
mean free path for the gas to be of the order of 10− 100 m at 1 au. In the context
of planet formation, processes of interest take place above 106 − 107 m ≃ 6 · 10−6 −
6 · 10−5 au. It is therefore convenient to model the gas as a fluid. Dust grains are
typically separated by a few hundred kilometers. As the dynamics of dust grains
are largely restricted by the gas, without including dust-dust collisions, and their
mean separation being below the scale of interest, they are also approximated to be
a fluid. It should be noted that this matter is currently subject to active debate
(e.g. Lynch et al. 2024).

2.2. Minimal disc model
We begin by considering a disc made entirely of gas (without magnetic fields), in
an external inertial frame, centered on a single star. We use cylindrical coordi-
nates (r, ϕ, z) where the midplane of the disc is aligned in the coordinates r, ϕ, see
Fig. 1.6. In this simple model, in a first approach, the following physical conditions
are assumed

15

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

ϕ

r0
Ω(r)

z

r0
H

Figure 1.6: An illustration of a simple protoplanetary disc, depicted face-on on
the left and edge-on on the right, complemented with typical disc parameters. Ω
denotes the angular frequency of close to Keplerian orbits, at a radius r, and H is
the pressure scale height.

Minimal disc model assumptions

• the disc is isolated and orbits a single star of mass M∗.

• the mass of the disc is negligible compared to the mass of the star Mdisc ≃
0.01M∗ corresponding to typical discs in a nebula.

• the disc is circular and axisymmetric (all fields are independent of ϕ).

• the disc is thin, meaning that its vertical extension H, which will be
properly defined, is negligible compared to the distance to the star
H(r)≪ r. This does correspond to a cold disc.

• the vertical and radial structures are decoupled.

2.2.1. Rotation profile

The gas can be described by an Euler equation, in which only the external gravita-
tional force of the central object is considered

∂tρ +∇ · (ρv) = 0, (1.1)

∂tv + v · ∇v = −1
ρ
∇P + fG, (1.2)

where fG = −GM∗r/||r||3 is the gravitational force of the central object, ρ the gas
density, P the gas pressure, and v its velocity.

Neglecting the vertical direction, accounting for the axisymmetry and seeking

16

2. BASIC PHYSICS OF A PROTOPLANETARY DISC.

steady-state solutions one obtains

(v · ∇v)r = −1
ρ

(∇P)r −GM∗
1
r2 , (1.3)

(v · ∇v)ϕ = 0, (1.4)

which results in

vϕ =
√

GM∗

r
+ r

ρ

∂P

∂r
, (1.5)

where the angular frequency is defined according to Ω ≡ vϕ/r. The second term of
Eq. 1.5 is corrective (see justification below). The disc is therefore here supported
radially in majority by its rotation. The proximity of the inner, denser, region of the
disc to the star results in a higher temperature, which leads to a higher sound speed
and subsequent elevated pressure. Therefore, the radial component of the pressure
gradient is generally negative. This implies, from Eq. 1.5 that the gas is orbiting
at an orbital velocity lower than the Keplerian velocity vK =

√
GM∗/r, which is

referred to as a sub-Keplerian rotation.
It must be noted that having a rotational profile on circular orbits with an

angular rotation of ΩK(r) ≃
√

GM∗/r3 results in an angular momentum density of
l[ΩK](r) = r2ΩK =

√
GM∗r. Angular momentum increases with radius, implying

that some angular momentum must be lost in order for an orbit to shrink in radius.
The same holds for sub-keplerian rotation, as pressure only is a small correction of
order c2

s/v2
K since the disc is thin, as we will show.

2.2.2. Vertical density profile

The disc is assumed to be thin (H(r)≪ r), which implies that we can approximate
the vertical component of the gravitational force from the central star at first order
to be

fG,z = −GM∗

r3 z +O(z2) = −Ω2
Kz +O(z2), (1.6)

where M∗ is the central star mass, ΩK =
√

GM∗/r3 the corresponding Keplerian
angular velocity at a distance r. This yields the following equation for the vertical
hydrostatic equilibrium

0 = −1
ρ

∂zP − Ω2
Kz. (1.7)

In this minimal model, since the gas is optically thin and the resulting cooling
timescale is short compared to the orbital timescale, it is possible to assume the
equation of state is locally and vertically isothermal (P = cs(r)2ρ), where the sound

17

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

speed depends on the distance to the host star (e.g. D’Alessio et al. 1998; Miotello
et al. 2023). Under this assumption Eq. 1.7 becomes

∂zρ = − Ω2
K

cs(r)2 ρz, (1.8)

which admits for solution the following Gaussian vertical density profile

ρ(r, z) = ρ0(r) exp
(
− Ω2

K
cs(r)2

z2

2

)
. (1.9)

Using the scale height H = cs/ΩK and the surface density profile Σ(r, θ) =
∫

dz ρ(r, θ, z)
we can rewrite Eq. 1.9 as

ρ(r, z) = Σ
H
√

2π
exp

(
−(z/H)2/2

)
. (1.10)

In conclusion, the disc is supported both vertically by pressure and radially by
rotation. A summary of the corresponding parameters can be found in Fig. 1.6.

2.2.3. Supersonic orbital motion

The minimal disc model is vertically stratified, and its velocity is only azimuthal.
This implies that the orbital flow is divergence-free. However, assuming a thin disc
approximation is equivalent to assuming that the gas flow within the disc is highly
supersonic as

H

r
= cs

vϕ

= 1
M
≪ 1,

where in a standard protoplanetary disc (M∗ = 1M⊙, T = 300K) at r = 1au.

cs = 1.03km s−1 ≪ vK = 29.8km s−1 ⇒ H

r
≃ 0.03≪ 1.

Therefore, the orbital motion is a supersonic divergence-free flow. This implies that
the mean flow is incompressible, but that strong perturbations (e.g. planets or other
effects) will lead to the presence of shocks.

2.2.4. Power laws

The disc’s surface density and its sound speed are usually parametrized by power
laws. For the density we use

Σ(r) = Σ0 (r/r0)−p , (1.11)

where Σ0 is the surface density at r0. For the sound speed profile, we use

cs(r) = c0(r/r0)−q, (1.12)

18

2. BASIC PHYSICS OF A PROTOPLANETARY DISC.

where c0 is the sound speed at radius r0. This choice of sound speed profile yields a
scale height

H(r) =
 c0√

GM/r3
0

 (r/r0)
3
2 −q , (1.13)

where for q < 1/2 the disc is flared (H(r)/r is increasing a function of r), as
represented on Fig. 1.6. In summary for a simple, gas-only, thin, axisymmetric
disc we have in first approximation as density and rotation profile:

ρ(r, z) = Σ0

H
√

2π
exp

(
−(z/H)2/2

)
(r/r0)−p , (1.14)

H(r) =
(

c0/
√

GM/r3
0

)
(r/r0)

3
2 −q , (1.15)

Ω = 1
r

√
r

ρ

∂P

∂r
+ GM∗

r
. (1.16)

A more complete version can be found (e.g. in Nelson et al. 2013) without the verti-
cal/radial decoupling (azimuthal speed depends on height) and a better treatment of
the thermodynamic. Rotation and thermodynamic support are derived consistently
to ensure consistency of the vorticity equation.

2.3. Dust evolution

2.3.1. Two fluid model

Let us now understand the basics of dust evolution on this simple disc. Dust grains in
protoplanetary discs are porous fractal aggregates made mostly of silicates. Grains
are modeled by spheres of mean radius s for small grains (s ≲ 10cm) and with a
density of ρ ∼ 1g ·cm−3 when compacted (Love et al., 1994). In a typical protoplane-
tary disc, the relative density of dust relative to the gas is taken to be a conservative
value of the order of the percent (e.g. Testi et al. 2014). Furthermore, the mean free
path of the gas is of the order of 100m, and the dust particles are smaller than a
centimeter, which implies that the interactions between the dust and gas particles
are collisional. This regime is known as Epstein-regime (Epstein, 1924), in which
the drag is solely collisional. The dust is approximated to be a pressureless fluid
following an Euler equation which is coupled to the gas through a drag force, which
takes the form of an average force fdrag. Assuming that the dust is made of spherical
compact grains, it can be written (as in Bae et al. 2023) as

fdrag = −4
3πa2ρgvth∆v, (1.17)

where the drag force fdrag depends on the cross-section of the dust grain πa2, the
density of the gas ρg, ∆v = vd − vg the differential velocity between the gas fluid

19

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

and the dust particle, and vth is the thermal velocity of the gas molecules. Drag
implies a transfer of momentum between gas and dust. Momentum conservation
therefore requires a so-called back reaction of the dust onto the gas, which takes the
form of a force −fdrag. In summary, the equations for a mixture of dust and gas here
can be written as follows:

∂ρg

∂t
+ (vg · ∇) ρg = −ρg (∇ · vg) , (1.18)

∂ρd

∂t
+ (vd · ∇) ρd = −ρd (∇ · vd) , (1.19)

∂vg

∂t
+ (vg · ∇) vg = −∇P

ρg
− fdrag + fG, (1.20)

∂vd

∂t
+ (vd · ∇) vd = fdrag + fG, (1.21)

!

In such a model, approximating the dust grains by a fluid neglects the multi-
valuedness of the velocity at a given position. When the dust is taken to be
pressureless, it then equates to neglecting the width of the velocity dispersion
of the dust particles modeled by the fluid. Special care should ideally be taken,
for example in a protoplanetary disc where crossing orbits of dust particles
does correspond under such a framework to a dust pressure without requiring
the presence of dust-dust collisions (Lynch et al., 2024).

2.3.2. Stopping time and Stokes number

The typical drag time, which measures the intensity of the drag force, is also called
the stopping time ts. It is the characteristic time on which the velocity of a single
grain is damped to the velocity of the gas. Formally, the stopping time is defined as

ts = m|∆v|
|fdrag|

=
Epstein

ρs

ρg

a

vth
. (1.22)

This stopping time can be compared to the global timescale of the studied problem,
which is the orbital timescale. This dimensionless number is in an astrophysical
context called the Stokes number and is defined as

St = ΩKts. (1.23)

By definition, a Stokes number lower than one represents dust grains being well
coupled to gas, and a Stokes number larger than one does correspond to grains
mostly decoupled from gas. In typical discs, sub-millimeter grains are expected to
have St ≲ 1, whereas pebbles and larger bodies are expected to have St ≳ 1.

20

2. BASIC PHYSICS OF A PROTOPLANETARY DISC.

2.3.3. Terminal velocity approximation

Grains with St ≪ 1, corresponding to small grains, are heavily coupled to the gas.
Their stopping time being very small compared to the global timescale implies that
their velocity can be taken to always be the terminal velocity. This is called the
terminal velocity approximation, where the differential velocity can be rewritten as

∆v = vd − vg = ts
∇Pg

ρg
, (1.24)

where ∆v = vd − vg is the differential velocity, and subscript g denotes quantities
related to the gas, and subscripts d to the dust. It is important to note that Eq. 1.24
implies that dust is diffusing towards local maxima of pressure in the terminal ve-
locity approximation.

2.3.4. Dust drift

The gas, in absence of dust, is sub-Keplerian, however the dust does not have any
similar pressure support. On the other hand, pressureless dust would orbit at Ke-
plerian speed in absence of gas. Drag between gas and dust therefore results in
a transfer of angular momentum from the dust to the gas, making the dust drift
towards the center of the disc and pushing the gas outwards (Whipple, 1972; Adachi
et al., 1976; Weidenschilling, 1977; Nakagawa et al., 1986). Formally, such drift
speed can be computed with a perturbative approach in c2

s/v2
Kand is (as written in

Bae et al. 2023)

vd,r = −ηvK

St + St−1 , (1.25)

where η quantifies the sub-keplerian correction to the velocity profile

η = −
(

cs

vK

)2 d ln P

d ln r
. (1.26)

Additional terms should be considered if the gas has a radial motion (e.g. viscous
diffusion, see below). The drift speed has a maxima for St ≃ 1, which corresponds,
historically metre-sized grains (nebulae structure were purely speculative) that drift
onto the stars in about 1000 years. Under those conditions, meter-sized dust grains
will always be lost because of drift, hence the designation of the meter barrier as
given by Weidenschilling (1977). Nowadays, nebulae structures are constrained by
observations and St ∼ 1 correspond to mm-sized grains.

2.3.5. Dust settling

Apart from the radial drift previously mentioned, drag in protoplanetary discs also
creates vertical motion in the dust. As shown in Sec. 2.2, the vertical density profile
is Gaussian, P = c2

sρ ∝ e−(z/
√

2H)2 , as is the pressure since the equation of state

21

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

is locally isothermal. In the terminal velocity approximation, this results in dust
settling and concentrating toward z = 0. This phenomenon is known as dust settling,
as the dust is moving towards the disc midplane. This is also true outside the
terminal velocity approximation, where instead dust grains will experience weakly
damped oscillations toward the midplane. Without an additional source of dust
diffusivity, such as turbulence, grains would concentrate to an infinitely thin layer
and be likely be prone to a gravitational instability (e.g. Goldreich & Ward 1973).

3. State of the art (Processes)

Figure 1.7: Illustration of the principal effects leading to substructure formation,
adapted from Bae et al. (2023). This figure shows the different physical processes
involved in a disc as well as a visual representation and localization of the cor-
responding phenomenon. This shows the different scales involved as well as the
corresponding substructures possible.

Real discs are more complex than our simple model and include many additional
processes. In the next two sections, we present a short overview of the mechanisms so
far thought to be important for planet formation, most of which have been recently
reviewed in Bae et al. (2023); Lesur et al. (2023a); Paardekooper et al. (2023).
We aim at identifying the key processes that have to be integrated in a numerical
simulation of planet formation, in relation to the numerical locks and challenges
associated. We first present an overview of phenomena present in protoplanetary

22

3. STATE OF THE ART (PROCESSES)

Figure 1.8: Representation of the radial and vertical localization of principal pro-
cesses involved in protoplanetary disc evolution (Source: Lesur et al. (2023a)). This
figure shows the different physical processes and instabilities occurring in the disc’s
regions, involving different physical processes.

discs, along with their corresponding localization and associated physical processes,
as shown in Fig. 1.7.

3.1. Accretion and angular momentum transport

3.1.1. Observations

In protoplanetary observations, accretion rates on the central stars are measured to
be of the order of ∼ 10−10 − 10−7M⊙ · yr−1 (e.g. Venuti et al. 2014; Hartmann et al.
2016; Manara et al. 2016). Beside disc mass being accreted on the central stars,
mass can also be expelled from the system altogether in the form of winds. When
ejected or accreted, material carry angular momentum with it. This implies that in
order to understand the evolution of disc radius, mass, and density profiles, we need
to understand how angular momentum and mass are transported in discs.

3.1.2. Turbulent transport

In order to explain accretion rates and angular momentum transport, Shakura &
Sunyaev (1973) have in the context of black holes proposed to add an effective Navier
Stokes shear viscosity ν = αScsH to Eq. 1.1- 1.2. Turbulence is considered to be the
source of this pseudo-viscosity when averaged on larger scales. This simple model
of turbulence with one parameter is still widely used in the disc community, despite
more refined models such as the k-epsilon one (Launder & Spalding, 1974) being

23

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

often considered in other communities. Indeed, the alpha-model remains generally
sufficient to interpret both observations and numerical simulations, and is easy to use
in analytical models. Viscosity creates accretion on the central object, therefore, by
conservation of angular momentum, transports outward, implying a disc expanding
in radius. Current observational constraints suggest that, if they are effectively
viscous, discs have a low viscosity of αS < 103 − 104 (Flaherty et al., 2015; Teague
et al., 2016; Flaherty et al., 2017, 2018). However, accurate modeling of turbulence
requires a more complex model or resolving turbulence directly.

3.1.3. Winds

Outflows (material becoming gravitationally unbound) are an alternative mecha-
nism, initially proposed by Blandford & Payne (1982) to explain the accretion rates
of young stars since they carry, in the form of winds or jets, material and angular
momentum out of the disc. Outflows can have different origins (e.g. Lesur et al.
2023a). The first type of outflows are thermal outflows, where radiative sources
(radiation from the star, or local currents, for example) may result in heating of
the disc surface above the liberation temperature of the disc, resulting in thermally
unbound material. In addition to thermal outflows, ejection of material can also
originate from magnetohydrodynamical processes (see Sec. 3.3), where ionized ma-
terial will follow the magnetic field lines that are twisted as they are advected by
the orbital motion. If the diffusion of the field lines is weak enough, the resulting
magnetic pressure leads to material on the surface of the disc becoming unbound
gravitationally.

3.1.4. Summary

Mechanisms leading to an effective pseudo viscosity, such as instabilities, redistribute
angular momentum in the disc. Redistribution of angular momentum triggered by a
dissipative effect leads to mass flow and accretion onto the central star, while the disc
expands to conserve the total angular momentum. On the contrary, outflows carry
angular momentum outside the system, which results in a net decrease in the total
momentum, leading to the disc shrinking in radius. Overall, angular momentum can
be either redistributed in the disc with mechanisms leading to an effective pseudo-
viscosity, such as instabilities, or extracted from the disc by outflows that will carry
it outside the system. This balance sets the evolution of the surface density profile
of the disc as well as the accretion rate onto the star.

3.1.5. Numerical challenges

A disc combined the challenges of celestial mechanics related to the advection around
the central object, and local hydrodynamical processes.

24

3. STATE OF THE ART (PROCESSES)

Orbital parameters The orbital aspects of a disc flow are related to the fundamen-
tal principles of mechanics, which are best formalized in a Lagrangian formalism.
Additionally, a strong emphasis is drawn toward the conservation of angular mo-
mentum and energy when studying celestial mechanics (or more generally, orbital
elements). In Lagrangian numerical methods such as Smoothed Particle Hydrody-
namics (SPH), it is possible to conserve angular momentum to machine precision,
making them suitable for such simulations. Additionally, the use of a symplectic
integrator in particle-based methods allows for better conservation of energy (exact
up to O(∆t2) for the leapfrog, when ∆t is constant). This ensures the stability
of the system, which is not necessarily the case with a non-conservative scheme of
higher orders. Lastly, the scheme, being Lagrangian in nature, results in accuracy
of advection and conservation properties that are exact, provided with an exact
time integrator, unlike grid-schemes. On the other hand, the behavior of grid-based
method depends on the scheme used. For example, finite volume Godunov-type
schemes can be very diffusive for flows that do not align with the grid axis. This can
be mitigated using a cylindrical geometry such that the flow is almost aligned with
the grid. However, if the disc presents a more complex dynamical structure, such
as a warp (when the position of the disc midplane is not constant in z), this would
again cause a loss of precision. Alternatively, it is possible to reformulate the numer-
ical scheme to improve the conservation of angular momentum while accelerating
the computation of orbital advection. An example of such a case is the FARGO
algorithm (also called fast orbital advection), initially introduced in Masset (2000),
where the advection on the mean velocity profile is subtracted from the numerical
scheme and calculated independently, resulting in better accuracy and a reduction
in the number of timesteps required to integrate a given system in general.

Hydrodynamics For the local hydrodynamical processes, discs are stratified, both
radially and vertically, with large density contrasts (e.g. Gaussian vertical density
profile, shocks, planet embryos). Discs being supersonic also implies that strong
perturbations will create local structure due to strong compression along the orbits.
Numerical methods for discs must capture relevant physical effects in both regions
of large densities (formation of planet embryos) and low densities (atmospheres) and
resolve compressible hydrodynamics. Additionally, hydrodynamical shocks resulting
from the dynamics must be also resolved either using Riemann-Solvers based meth-
ods (see Chapter 3) or methods artificial viscosity (see Chapter 2). With regard
to the αS viscosity in discs, two strategies can be adopted to simulate transport
originating from small scales in a protoplanetary disc. The first one is to implement
an effective viscosity that mimics the prescription of Shakura & Sunyaev (1973).
Even though the resolution must be sufficient for the physical viscosity to dom-
inate over the effective numerical viscosity that results from truncation errors in
the numerical scheme (e.g. Meheut et al. 2015). A more physical alternative to the
αS prescription consists in simulating the transport of physical quantities at small
scales directly. However, such task requires an even larger resolution. Additionally,

25

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

simultaneously resolving regions of large and low density is challenging, such as a
vertical slab of the disc with outflows that have as a basis a thin, irradiated layer
of the disc atmosphere. They often correspond to low-density regions, which can
be resolved by meshless methods (see Sec. 3.4). Additionally, in the traditional for-
mulations of SPH, the resolution follows the density, resulting in lower resolution
in the outflows compared to grid-based methods. Alternative formulations, such
as the use of unequal mass particles, also imply difficulties related to the numer-
ical stability of the underlying lattice of particles. Finally, methods such as SPH
tend, because of inherent stochasticity of particle-based methods, to result in high
numerical viscosities compared to their grid-based counterparts. To date, hydro-
dynamical solvers rely on explicit schemes. Consequently, the computational cost
scales with the fourth power of the resolution due to the three spatial dimensions and
the Courant-Friedrichs-Lewy (CFL) condition. The memory cost of the algebra of
high-order implicit schemes, associated with their additional algorithmic complexity,
has prevented them from being used in the community so far.

High resolution constraints In order to achieve suitable results for angular mo-
mentum transport, high resolution is required. However, disc simulations can be
expensive computationally, as, for example, resolving a disc orbit can necessitate
thousands of timesteps, and this for hundreds of orbits for some processes. Adding
additional physics, such as magnetohydrodynamics (MHD), can further increase
constraints on the timesteping Courant-Friedrichs-Lewy (CFL) condition, further
increasing the computational cost. This highlights the need for methods that adapt
to the density gradient or the density itself to resolve regions of interest without
incurring the cost of regions that would not be as relevant for the study. Exam-
ples include Adaptive Mesh Refinement, which dynamically refines the grid used to
simulate the problem in regions of strong gradients, or Smoothed Particle Hydrody-
namics, where the resolution follows the mass, thus having a resolution that adapts
itself to the disc density. Another option is also to rescale the grid, such as using a
spherical grid where the radial coordinate is logarithmic (as in Lesur et al. 2023b,
for example).

In order to further improve the speed or comparatively reduce the numerical
cost. Strategies involving individual or hierarchical timestepping have been used.
They are schemes where particles or cells in the simulation are updated with respect
to their individual timestepping criteria (or per bin, in hierarchical timestepping).
This allows the updating of cells or particles only when necessary. This results in a
net decrease in the amount of computation to perform per orbit, as in disc simula-
tion, the timestepping criterion can vary by multiple orders of magnitude between
the innermost and outermost orbits of the disc. Such methods have been imple-
mented in both particle and grid-based methods, with the example of hierarchical
timestepping in SPH, detailed in Price et al. (2018), or the Adaptive Mesh Refine-
ment Godunov method with adaptive timestepping described in Teyssier (2002).
This method, in SPH comes to the cost of breaking the rigorous conservation of

26

3. STATE OF THE ART (PROCESSES)

momentum. Another possibility is to leverage schemes that lift some constraints
on time-stepping Courant-Friedrichs-Lewy (CFL) conditions, such as the FARGO
algorithm Masset (2000). The key challenge of these approaches is the conservation
of orbital quantities.

Boundary conditions Lastly, boundary conditions in disc problems are not given
by simple mathematical conditions a priori, but are rather related to complex phys-
ical processes developing there. For example, the inner part of the disc is connected
to the magnetosphere of the star and potentially the star itself. On the outer part,
the boundary condition is the circumstellar envelope, the interstellar medium itself,
or an infall of material on the disc. In the vertical direction, the boundary condi-
tions are the disc atmosphere, which can include winds or an external medium if the
disc is embedded in an envelope of infalling material. The surface is also sometimes
treated to be free. It should be noted that in the external layers, the molecular den-
sity is sometimes too low for the fluid approximation to be valid anymore. Those
boundary conditions have to be correctly captured by the chosen numerical method,
and limitations associated to the choice of boundaries should be properly identified
and discussed. In that regard, grid-based methods allow for most kinds of bound-
aries, except moving boundaries, which require a change in the geometry of the
problem or free boundary conditions, as grid methods are only able to represent
finite volumes. In particle-based methods such as SPH, moving boundaries and free
boundaries are possible. However, fixed complex boundaries are more complex to
implement compared to their grid counterparts (see, for example, the use of ghost
particles to approximate a Dirichlet boundary condition in Price et al. (2018)).

Summary In summary, it is now generally admitted that for problems that involve
smooth flows that can be aligned with grid geometry, grid-based methods can be
suitable as they provide more flexibility with regard to the boundary condition,
numerical viscosity, and grid refinement. However, for problems involving complex
geometries or mechanical evolutions, SPH may be more appropriate.

3.2. Dust evolution

3.2.1. Coagulation & fragmentation

Dust grains observed in protoplanetary discs correspond to complex aggregates
of nanometer-sized grains that can be fluffy or compacted, as shown in Fig. 1.9.
Most grains are made of multiple spherical monomers. Such aggregates grow by
sticking together due to electrostatic forces (Blum, 2018). During dust-dust colli-
sions many outcomes are possible. Dust grains can stick (s < 10µm), or bounce
(10µm < s < 100µm). When more kinetic energy is involved, the outcome of col-
lisions can be more complex, with mass transfer between the grains or, in extreme
cases, fragmentation of the grains upon collisions (Blum & Wurm, 2008). Exam-

27

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

Figure 1.9: Example pictures of interplanetary dust particles. The white line in each
panel corresponds to 1 µm size. Source: (Zubko, 2012, Fig. 2.1)

ples of possible outcomes for collisions of two different dust grains are shown in
Fig. 1.10. Formally, the description of coagulation and fragmentation follows the

Figure 1.10: Example of possible outcomes of dust-dust collisions for silicate
monomer particles having a radius of 0.75µm. Taken from (Blum, 2018, Fig. 1)

28

3. STATE OF THE ART (PROCESSES)

Smoluchowski equation (Smoluchowski, 1918). It is an integro-differential equation
that generalizes mass conservation for a continuous distribution in the size of ag-
gregates. The averaged microphysics of the collision is encoded in a collision kernel
that depends in particular on the averaged relative velocities between the colliding
objects, describing the dust-to-dust collisions shown in Fig. 1.10.

3.2.2. Interplay with dynamics

Dust growth directly affects the dust size distribution, which in turn impacts the
dynamics of the dust and subsequent instabilities. It also determines the formation
of grains of intermediate sizes (St ∼ 1), for which the decoupling with the gas is
the most effective. This implies more effective concentration and a more intense
back-reaction. Dynamics determines the outcome of growth in two ways: directly,
by setting the relative velocities between the particles, or indirectly, by enhancing
collision rates by concentrating particles at certain locations of the disc. The inter-
play between coagulation and fragmentation leads to the formation of regions with
strong back-reaction gradients. As a response, gas is pushed outwards differentially,
and the associated compression can possibly lead to the formation of a self-induced
pressure maximum that, in return, will further trap and concentrate solids (Gonzalez
et al., 2017).

3.2.3. Numerical challenges

Dust dynamics Simulating a dust-gas mixture can be done using multiple ap-
proaches. A first one is to model dust as Lagrangian particles of finite masses. In
this dust as particles approach, the dust grains are modeled using particles that are
coupled with the gas through drag forces. In SPH, typically, this approach is done
using two sets of SPH particles, where one represents the gas (see Sec. 4) and the
other the dust. A key difference for the dust is that no artificial viscosity is used,
allowing particle interpenetration. This approach can be seen as a sub-sampling of
a collisionless Boltzmann equation with particular initial conditions rather than a
fluid. In particular, multivalued velocity distribution can be modeled by Lagrangian
particles (see details in Price et al. 2018). A similar kind of approach can also be used
on grid-based methods using tracer particles, which can deposit and take momen-
tum from the grid cells according to the drag force. An issue with the Lagrangian
dust-as-particle approach is that since the singlevaluedness of the velocity is not
guaranteed, it is a priori required to sample the velocity space in addition to the
position space. This corresponds to so-called Particles-In-Cell (PIC) methods more
than hydrodynamics. However, such a modeling is more costly as it requires simu-
lations of six-dimensional spaces rather than three-dimensional ones. However, for
small grains (St < 1), the strong coupling of the dust to the gas results in short
stopping times that must be resolved by the simulation. This results in the inte-
gration of small dust sizes dominating the CFL, slowing, in turn, the simulation.
This led to the development of so-called one-fluid methods, as introduced in Laibe

29

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

& Price (2014). In a one-fluid or monofluid approach, the dust, as well as the gas, is
modeled directly as a fluid. Instead of simulating the two fluids having two velocities
(vg, vd) and two densities (ρg, ρd), one density ρ, one velocity v, and two internal
quantities (ϵ, ∆v) are used, keeping the same number of degrees of freedom. The
dusty mixture is modeled directly as a single fluid. The transformation is as follows:
For density, we use the total density of the two fluids, ρ = ρg + ρd, and the velocity
is taken to be the barycentric velocity, v = (ρgvg + ρdvd)/ρ. The two additional
internal variables are the fraction of dust ϵ = ρd/ρ and the differential velocity
∆v = vd−vg. In this formalism, the terminal velocity approximation can naturally
be taken as the ∆v, which is constrained by the terminal velocity approximation.
The monofluid formalism can then be used in the terminal velocity approximation.
This allows the removal of the CFL constraints associated with the small stopping
time of dust grains, as this is accounted for by the terminal velocity approximation,
but in turn leads to stringent conditions for large grains. The monofluid approach
with terminal velocity approximation has been used in SPH (e.g. Price et al. 2018).
Recently, extensions to grid methods have also been made in the AMR code Ram-
ses (Lebreuilly et al., 2020). However, the use of monofluid methods in the terminal
velocity approximation does not allow the use of large grains (St ≃ 1). This mo-
tivated the work of extending current monofluid formalism to include large dust
grains that do not follow the terminal velocity approximation that will be presented
Appendix C (our novel formulation conserves the dust total momentum in absence
of drag). This is of special interest in SPH methods, since SPH dust particles do
not reorganize as dust is pressureless. However, deriving a full-monofluid approach
is challenging in SPH as current attempts do not conserve the momentum of dust
grains (without drag) and can yield wrong results. In AMR, implementing dust-gas
mixtures requires the development of dusty Riemann solvers, which can be equally
challenging. Additionally, to monofluid methods, two-fluid methods were used to
simulate dust grain dynamics in grid-codes such as FARGO3D (Beńıtez-Llambay
et al., 2019). In general, accuracy of methods for dusty mixture are still widely de-
bated (e.g. Commerçon et al. (2023)). Lastly, efforts have been made toward having
a consistent framework for the dust pressure in dust-as-fluid approaches, as dust
must have a non-null pressure in reality (orbit crossing).

Dust evolution In addition to the dust dynamics, it is necessary to be able to
simulate dust growth and fragmentation accurately. The population of large grains
is related to the formation of planet embryos, while small grains set the thermody-
namical, chemical, and electrical properties of the disc. It is therefore important to
simulate them simultaneously. However, simulating dust growth in hydrodynamical
simulation is challenging for multiple reasons. Firstly, a proper model of coagula-
tion as well a fragmentation must be used to properly model dust evolution. Crude
approaches have been used (Stepinski & Valageas, 1997; Laibe et al., 2008). How-
ever, they are not able to capture simultaneously small and large grains, and are not
guaranteed to be the correct limit of the Smoluchowski equation. Secondly, when

30

3. STATE OF THE ART (PROCESSES)

using a model resolving the Smoluchowski equation by sampling pairwise collisions,
such as Brauer et al. (2008), one is required to have many dust sizes (Nspecies > 100)
simulated in a given simulation of a protoplanetary to resolve coagulation processes
to avoid numerical diffusion. However, as mentioned, each dust size is a fluid that we
have to simulate. Resolving coagulation processes would then requires running the
equivalent, computationally, of hundreds of simulations at the same time. Solving
for the coagulation equation also involves linear algebra algorithms whose com-
plexity does not scale linearly with the number of dust species. To alleviate such
limitations, a possible solution is to exploit higher order schemes to achieve similar
resolution for the growth processes while reducing the number of species required in
the simulation. This was done in Lombart & Laibe (2021) using a Galerkin scheme
capable of resolving dust growth while using ten times fewer dust species. How-
ever, such a scheme has yet to be coupled with existing codes to be able to perform
simulations of protoplanetary discs, including dust growth. One of the associated
challenges is that, in practice, computational time spent to solve coagulation and
fragmentation should remain of the same order of magnitude as the computational
time for a hydrodynamical timestep. This implies the need for strategies of implicit
integration or sub-cycling when the CFL condition associated with dust coagulation
and fragmentation is much shorter than the hydrodynamical one.

Summary In summary, dust can be modeled in simulations either as Lagrangian
particles, in which case they correspond more to a collisionless Boltzmann equation,
or as a fluid using two-fluid or one-fluid methods. For simulations using Lagrangian
particles, the proper resolution of the model would require a very large number of
dust particles to sample the velocity distribution. Using one or two fluid methods
for dust gas mixtures allows resolution of the dust to a proper fluid, eliminating the
need for velocity space sampling; however, dust pressure is not yet included in such
models. Additionally, using a one-fluid method allows for the use of the terminal
velocity approximation to simulate small dust grains without the CFL limitation
that would be associated with them in other methods. In that same objective, ef-
forts are made toward having a complete one-fluid formalism without the terminal
velocity approximation. Lastly, realistic dust size distribution is continuous. Theo-
retical results have demonstrated that accounting for the polydisperse nature of dust
grains results in changes to the dynamics of dust regarding instabilities. No cur-
rent methods to date are able to simulate all effects related to polydisperse dust-gas
mixtures.

3.3. Magnetohydrodynamics in discs

3.3.1. Are disc magnetic ?

The gas in the disc can be ionized due to the central star radiation, or on the outer
part of the protoplanetary discs by non-thermal sources such as X-rays in the inter-

31

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

stellar medium (Glassgold et al., 2017). Even if no direct evidence of the existence
of a magnetic field in discs was found, its presence is suggested by the outflows.
Indeed, in observed discs, outflows and jets can be observed with speeds of a few
km s−1, which are unlikely to be the result of hydrodynamics alone. Magnetohydro-
dynamical processes, however, can produce such outflows without heating the gas
(Lesur et al., 2023a), which does suggest the magnetization of discs.

3.3.2. Magnetohydrodynamics

In ionized fluids, the movement of charges within the fluid results in an induced mag-
netic field in Maxwell’s equations. Additionally, the resulting field exerts feedback
on the flow, through the Lorentz force applied to the plasma. This two ways cou-
pling of the magnetic field and the flow is called Magneto-Hydro-Dynamics (MHD).
As summarized by Lesur et al. (2023a), differential dynamics between the charges
species leads to the Ohm law, where the electric field in the local rest frame of the
gas (E′) depends on the current density (J) through a tensorial electrical conduc-
tivity. This is due to the magnetic field deflecting mobile charges in the plasma
resulting in a current that is not parallel to the electric field (Wardle & Ng, 1999).
In protoplanetary discs, the ionized material mass is negligible compared to the gas
density, and the electric field in the local rest frame is the sum of contributions of
three terms (Balbus & Terquem, 2001; Bai, 2014)

E′ = ηOhmJ + ηHall J× B̂ + ηADB̂× (J× B̂), (1.27)

where ηOhm is the Ohmic diffusivity, ηHall the Hall diffusivity, and ηAD the am-
bipolar diffusivity. Therefore, the induction equation is (Mouschovias et al., 2009;
Tsukamoto et al., 2023)

∂B
∂t

= ∇× (v×B)−∇× {ηOhm∇×B

+ηHall (∇×B)× B
B

+ ηAD
B
B
×
[
(∇×B)× B

B

]}
, (1.28)

where the magnetic field follows the solenoidal condition

∇ ·B = 0. (1.29)

Lastly, the equation for the flow of the gas is, in MHD,

∂tv + (v · ∇)v =− ∇P

ρ
+ fext + 1

4πρ
(∇×B)×B. (1.30)

Those equations are the non-ideal MHD equations. An approximate version can
be used by neglecting the additional conductivities (ηOhm,Hall,AD) in Eq. 1.28. This
approximation is the ideal-MHD. With the identity

1
2∇(B ·B) = (B · ∇)B + B× (∇×B), (1.31)

32

3. STATE OF THE ART (PROCESSES)

it is possible to rewrite the Lorentz force in Eq. 1.30 as

fM = 1
4πρ

(B · ∇)B− 1
8πρ
∇(B2), (1.32)

where the term − 1
8πρ
∇(B2) is the magnetic pressure. The relative influence of ther-

modynamics and magnetic pressure is characterized by a non-dimensional number
called β-plasma parameter, defined as

β = 8πP/B2, (1.33)

where a typical value in a protoplanetary disc in a typical T-tauri disc is of the
order of β ∼ 104 (Lesur, 2021a). All the non-ideal effects are important at different
steps of the formation and evolution of the disc (e.g. Tsukamoto et al. 2023; Lesur
et al. 2023a; Cui & Bai 2022), requiring, ideally, the treatment of the complete
non-ideal MHD. In particular the non-ideal MHD effects on a protoplanetary disc is
a current active research topic as they affect magnetically driven turbulence (MRI
turbulence, see Sec. 4) and can create axisymmetric long-lived features in non-ideal
regions (Lesur et al., 2023a).

3.3.3. Numerical challenges

The first universal challenge associated with MHD is that the scheme must enforce
the solenoidal condition (Eq. 1.29), which, when not satisfied, results in magnetic
monopoles yielding unphysical results. A naive approach consists of using poten-
tials, such as the vector potential or Clebsch quantities, but the problem translates
into maintaining a similar accuracy on the gauge constain (see, e.g. Price 2010).
Simulating MHD is then commonly done using two approaches. The first one is
the so-called divergence cleaning method, where an additional field coupled to the
magnetic field is introduced with the role of diluting the residual of numerical errors
by propagating them before dissipating them. This is the 8-wave scheme described
in Powell et al. (1999). However, since magnetic monopoles are dissipated by the
scheme, the magnetic field is not strictly divergence-free. Another approach is to
use so-called contrained transport schemes, where the balance of magnetic flux is
enforced to machine precision. This method is particularly suited when volumes are
explicit in the simulation (e.g. finite volume methods). In the procedure, detailed
in Evans & Hawley (1988), the magnetic field is represented as face-averaged quan-
tities that are evolved using constrained transport. It relies on the Stokes theorem
to evolve the magnetic field using the countour integral of the electric field on the
edges of the cell. This ensures that the divergence of the resulting magnetic field is
null to machine precision. However, errors due to floating point precision can still
accumulate resulting in monopoles. This can be avoided by instead using constraint
transport on the vector potential on the edges of the cell (Lesur et al., 2023b).
Additional difficulties are associated with non-ideal MHD effects. A specific diffi-
culty consists of simulating the Hall effect in non-ideal MHD. In this case, multiple

33

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

wave modes are possible, most of which do not cause issues with numerical codes.
Only one of those waves, called the whistler wave, is dispersive but non-diffusive,
propagating with speed.

cwhistler = ω

k
= ηHk

2 +

√√√√(ηHk

2

)2

+ v2
A, (1.34)

where vA = B/
√

ρ is the Alfvén speed (Zier et al., 2024; Marchand et al., 2018).
Here, the speed of the soundwave increases with the value of k, thus, it is not
bounded, and the smaller the perturbation, the larger the speed, and without dis-
sipation. This behavior is non-physical as it can be shown that it is a result of
neglecting electron inertia and assuming charge neutrality. Without those approxi-
mations the speed of the whistler wave is actually bound by the electron cyclotron
frequency, as detailed in Zier et al. (2024). In order to treat them, it is possible to
use an approximate dissipative Riemann solver, as detailed in Lesur et al. (2014). It
is also possible to add explicit diffusion, making whistler waves dissipative as well,
which results in damping on the whistler waves to stabilize the numerical scheme.
In Smoothed Particle Hydrodynamics methods, implementations of non-ideal MHD
are used (e.g. Price et al. 2018, and Price 2012 in ideal-MHD), however the stability
of the scheme with regard to whistler waves is not discussed (Wurster et al., 2016).
To our knowledge no discussion of the precision of whistler wave modes, aside of
test at lower frequencies, is present in the SPH literature.

3.4. Planets
Planets are expected to form at some point. Their gravitational interaction with the
disc induces a transfer of angular momentum between the disc and the planet, which
modifies the orbit of the planet, and modifies the morphology of the disc while af-
fecting its dynamics (e.g. Lin & Papaloizou 1979). In general, planets are modeled as
point masses whose regularised gravitational force is applied to the disc. Momentum
is exchanged between the disc and the planet, which in return can modify its orbital
parameters while keeping total momentum conserved. This results in a potential
migration of the planet, implying the difficulty for planet formation to happen in
situ. Migration of planets can be classified into multiple categories depending on
the mechanism that locally dominates the exchange of angular momentum. For this
description, we follow the classification given in Paardekooper et al. (2023); McNally
et al. (2019) shown in Fig. 1.11.

3.4.1. Type I migration

For small planets, the planet-disc interaction can result in so called viscous type-I
migration. It was the first studied regime of migration in Goldreich & Tremaine
(1979, 1980), where it is assumed that the planet creates linear perturbations in the
disc density that is asymmetric, which in turn creates a torque on the planet that

34

3. STATE OF THE ART (PROCESSES)

Figure 1.11: Map of the different regimes of planet migration present in discs.
Source: (McNally et al., 2019, Fig.1). We omit the drag regimes, as they only
apply to small objects that can be considered to be large dust grains.

can be estimated. Additionally, in the frame of the planet, corotating horshoe orbits
exists (see Fig. 1.12) and are asymmetric due to the disc density and temperature
profile being not uniform. Those pertubations also creat a torque on the planet
Ward (1991). This regime corresponds to a planet creating only linear pertubations
in the disc density, the migration is classified as type-1.

Early results on this type of migration include work done by Korycansky &
Pollack (1993) who used a model reduced to a static single-dimensional model per
azymuthal Fourrier component to carry a numerical estimate of the resulting torque
or Tanaka et al. (2002) which provided three dimensional estimates by using her-
mites polynomial vertically instead to account for the vertical structure. When the
viscosity is lowered the reservoir of angular momentum close to the planet is not
replenished sufficiently fast by the viscosity leading to saturation of the torque ap-
plied to the planet. In general, aside from large viscosities, the corotation torque
is given by the non-linear horseshoe drag, as shown by Paardekooper & Papaloizou
(2009); Casoli & Masset (2009) using analytical models.

3.4.2. Type II migration

When the planet-to-star mass ratio increases, the torque applied to the disc becomes
non-linear and forms a planetary gap (i.e. an annulus of much lower gas density)
centered on the orbit of the planet. This regime corresponds to type II migration

35

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

Figure 1.12: Figure from Paardekooper et al. (2023), showing the differential flow
of gas close to the planet.

(Paardekooper et al., 2023). In type II migration the low density gap on the planet’s
orbit implies that the mechanisms of type I migration are ineffective as they only
involve material close to the planet (Ward, 1997; Lin & Papaloizou, 1986). Instead,
material crosses the gap on horseshoe orbits, as shown by hydrodynamical simula-
tions such as the study from Duffell et al. (2014); Dürmann & Kley (2015, 2017).
This can result in efficient angular momentum transfer between the planet and the
disc resulting in migration even though the mechanism is significantly different from
type I migration (Kanagawa et al., 2018)

3.4.3. Planet in dusty discs

Observations of discs provided by ALMA show substructures in the millimeter-sized
dust grain distribution. Dust evolution in a disc hosting a planet essentially results
from a competition between the tidal torque exerted by the planet and the drag
torque, the latter being indirectly affected by the presence of the planet as it modifies
the local gas density (Dipierro et al., 2018). Dipierro et al. (2016), whose results are
partially shown in Fig. 1.13, demonstrated that, small planets may carve a gap in the
dust but not in the gas as long as St ≳ 1. A larger planet may open a gap in the gas.

36

3. STATE OF THE ART (PROCESSES)

Figure 1.13: Figure adapted from Dipierro et al. (2016) showing the influence of
a planet on dust and gas for a small (top panels) and a large (bottom panels),
respectively of 0.1MJ and 1MJ . The right panels shows the gas column density for
a planet of 0.1MJ and 1MJ respectively on top and bottom. The left panels shows
the column dust column density for the same simulations.

The related structures are sharper in the dust due to the combined effect of drift at
pressure maxima, resonances, and stability at corotation. In particular, dust species
can be separated into different regions by the presence of a small planet, which
can create two distinct populations of dust grains, in agreement with the scenario
proposed by Kruijer et al. 2017.

3.4.4. Circumplanetary disc

The last interesting object in planet-disc interaction is the circumplanetary disc.
Planets, when put in a protoplanetary disc, gather material within their Hill radius
(i.e. the radius into which the gravity of the planet dominates over the gravity of the
star) into a smaller disc orbiting the planet instead (example shown in Fig. 1.14).
It is from this disc that the planete accrete material (Machida et al., 2008). Addi-
tionally, drift and accretion of solids, especially of pebble size, are expected to be
of critical importance to form solid cores in an efficient manner (e.g. Johansen &
Lambrechts 2017). Therefore, properly resolving the circumplanetary discs is neces-

37

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

Figure 1.14: Figure adapted from Beńıtez-Llambay et al. (2023) to showcase the
shape of circumplanetary discs.

sary to measure the realistic accretion rate on the planet. Similarly to the hosting
protoplanetary disc, the disc is supported by local rotation, and the gas has to re-
move angular momentum in order to be accreted on the planet. However, due to the
scale, density, and proximity of the planet, the conditions are different compared to
protoplanetary discs. Firstly, radiative transfer must be accounted for as cooling is
not efficient enough at this time scale, requiring the need to account for the opac-
ity of the gas-dust mixture instead of using locally isothermal models (e.g. Szulágyi
2017; Schulik et al. 2020). Secondly, as the circumplanetary disc is embedded in the
protoplanetary discs, it is subject to infalls of material from the protoplanetary disc
onto the circumplanetary (e.g. Machida et al. 2008; Tanigawa et al. 2012). Lastly,
the proximity of the actively accreting planet results in a potential coupling of the
planet’s atmosphere with the inner regions of the circumplanetary discs, with the
planet itself being the inner boundary of the disc. So far, the dynamics and evo-
lution of the circumplanetary disc remain poorly constrained. In particular, the
transport of angular momentum that results in the accretion of dust and gas is key
to understanding the formation and evolution of the planet through core accretion.
However, the proximity to the planet and the corresponding complex boundary con-

38

3. STATE OF THE ART (PROCESSES)

ditions associated with the planet’s atmosphere, as well as resolving the physics of
such discs, including inflows, and the presence of eventual satelites, are challenging.

3.4.5. Numerical challenges of planet-disc interactions

Simulating planet-disc interactions poses a few numerical challenges.

Planet modeling Two options are possible to simulate the presence of a planet
in a simulation. A first approach consists in simulating a disc hosting a planet,
involves using a rotating potential to model the star and the planet (e.g. de Val-
Borro et al. 2006). However, this does not allow the gas to exert a torque on the
planet. Therefore, angular momentum is not globally conserved, making it not a
suitable method to simulate planet migration mechanisms. A possible alternative
is to use a so-called sink particle, which is a point-mass gravitating body modeled
by a particle that is evolved according to the gravitational force of the star and the
disc, and then applies its gravitational force to the disc as well. Additionally, it is
also possible to model the star using another sink particle, allowing conservation of
momentum in all gravitational interactions (e.g. Bate & Bonnell 1997). In addition
to the gravitational interaction, sink particles can, as their names suggest, account
for the accretion of nearby material. Various criteria can be used to parametrize
the accretion of a sink. In SPH, for example, a typical criterion is to check that the
gas particle to be accreted is bound within a fraction of the hill radius of the sink
particle (Price et al., 2018). This condition would typically correspond to particles
being contained in the circumplanetary disc. Sink particles can also carry other
quantities, such as angular momentum, magnetic flux, etc. However, when modeling
a planet in the context of a circumplanetary disc, no work to date has accounted
for radiative emissions from the sink onto the gas and dust. The accuracy and the
dependence of a simulation to the use of sinks is still widely debated, both in the
fields of planet and star formation (e.g. Hennebelle et al. 2020).

Large timescales, small lenghtscales Another challenge of planet-disc interaction
is the timescale to be simulated. As shown in Paardekooper et al. (2023), a simu-
lation with moderate resolution requires at least hundreds of orbits to resolve the
timescale of planet migration, each of which takes about thousands of seconds with
current computational capacities, making up for long numerical simulations. To
alleviate this problem, multiple options are available. They include adaptive or hi-
erarchical timestepping, relaxing the CFL constraints, or porting on modern, faster
computing architectures. Additionally, resolving the small scales around a planet
can be limiting for numerical codes that do not allow refinement when treating
circumplanetary disc simulations, for example.

Miscellaneous As explained in Paardekooper et al. (2023), in order to correctly
resolve planet-disc interactions, conservation of vortensity and entropy is important.

39

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

This would make methods such as SPH suitable, as they can naturally conserve
those quantities on any closed contour defined by a set of particles. However, most
SPH simulations result in high numerical viscosity, requiring high resolutions to
achieve realistic αS. Additionally, the planet can creat low density regions and
hydrodynamical shocks close to its orbits, requiring proper treatment of shocks to
ensure the quality of the solution, which tends to favor schemes based on Riemann
solvers (e.g. de Val-Borro et al. 2006). In practice, multiple methods can be used, as
each comes with several advantages, highlighting the need to perform simulations
with multiple different methods to avoid method bias. Lastly, observations hint
toward low viscosities in discs, as mentioned in Sec. 3.1. This implies a higher
dependency on initial conditions, hence the need for special care in its treatment.
And the presence of winds in realistic discs needs to be resolved as well (see Wafflard-
Fernandez & Lesur 2023), requiring MHD simulations.

Circumplanetary discs Resolving the accretion rate of a planet requires resolving
the circumplanetary disc as well. However, due to its tiny radius compared to the
hosting circumstellar disc, this is challenging for multiple reasons. Firstly, material
is continuously falling from the circumstellar disc onto the circumplanetary disc.
This requires resolving the complete disc in order to have realistic infalls. Secondly,
because of its scale, it is necessary to perform local simulations or global simulations
with extreme resolution. The first studies were performed, for example, using a
locally refined grid close to the planet (D’Angelo et al., 2003; Machida et al., 2008), or
through local approximations (Ormel et al., 2015), or non-uniform geometry (Schulik
et al., 2020). Lastly the proximity of the planet makes the radiative transfer effects
critical, requiring studies to resolve them properly to measure a realistic accretion
rate (see Szulágyi 2017).

4. State of the art (instabilities)
Most of the effects discussed above lead, in combination with the orbital motion of
the disc, to the development of instabilities at small scales that are key processes
for planet formation. In this section, we review some of the most relevant ones
and discuss associated numerical challenges. Effects on protoplanetary discs can be
classified by their relative position to the disc midplane (z = 0) and their distance to
the host star. We provide the expected location of key instabilities in protoplanetary
discs in Fig. 1.8.

4.1. Hydrodynamical instabilities
As mentioned in Sec. 2.2, in a realistic disc, the rotational speed profile depends on
the distance to the central star but also varies vertically. This vertical gradient of
rotational velocity exists in a protoplanetary disc if the disc is not globally isother-
mal, results in the amplification of vertical motion disturbances called Vertical Shear

40

4. STATE OF THE ART (INSTABILITIES)

Figure 1.15: An example of a simulation of the Vertical Shear Instability, adapted
from Nelson et al. (2013). In this example, we observe the fully grown, non-linear
state of the instability in corrugation modes.

Instability (VSI) (Arlt & Urpin, 2004; Nelson et al., 2013). This instability may oc-
cur within the disc layer (z/r ≲ 4) and for 10 au ≲ r ≲ 100 au since it is suppressed
in the inner disc due to inefficient cooling, which stabilizes the instability. When
grown to a fully non-linear state, vertical shear instability should lead to the pres-
ence of nearly axisymmetric corrugation modes (an example is shown in Fig. 1.15)
that should be observable using the ALMA telescope (Barraza-Alfaro et al., 2021).
As we will see later, dust-gas instabilities are heavily dependent on the dust con-
centration which can be strongly affected by the presence of VSI in the disc which
can lift grains into the disc atmosphere (z/r > 4) and concentrate them radially
into rings like structures (Flock et al., 2020). Thus, VSI can significantly affect
the condition of planet formation justifying interest toward such studies. On the
other end, VSI can be suppressed by dust-settling (Lin, 2019), the presence of dust
growth (Fukuhara et al., 2021), and strong magnetic fields (Latter & Papaloizou,
2018; Cui & Lin, 2021). This shows the need for global simulation with coupling
of multiple physical effects to properly model VSI in protoplanetary discs. Addi-
tionally, VSI can trigger secondary Kelvin-Helmotz like instabilities between the
corrugated flows leading typically to Rossby-Wave-Instability for example (Richard
et al., 2016), which require sufficient resolution as well as long timescale integration
of the simulation (hundreds of orbits) to be observed.

Aside from VSI hydrodynamical instabilities in discs, other instabilities are stud-
ied, but their impact on planet formation is yet to be fully assessed. They include
the Convective Over-Stability (COS) (z/r ≲ 4, 0.5 au ≲ r ≲ 100 au) (Klahr & Hub-

41

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

bard, 2014; Lyra, 2014) and Zombie-Vortex Instability (ZVI) (z/r ≲ 4 , 0.5 au ≲ r ≲
100 au) (Barranco & Marcus, 2005) which can participate toward creating turbulence
in the disc thus have influence on the angular momentum transport. Additionally,
the COS can create vortices, which can be an efficient dust trapping mechanism
(Raettig et al., 2015; Lyra et al., 2018). However, aside from dust trapping vortices,
little was studied about the interaction of dust and COS in the context of planet for-
mation, as pointed out by Lesur et al. (2023a). As for ZVI little is known about its
consequences on global protoplanetary discs and interactions with other processes
as it requires high resolution simulation to be resolved properly (Lesur & Latter,
2016).

4.2. Dust-Gas instabilities

Figure 1.16: An example simulation of the Streaming Instability adapted from Jo-
hansen & Youdin (2007). In this example, we observe the development of the SI in
a local unstratified shearing box at multiple timesteps.

Planet formation as per Safronov (1969) requires objects above 0.1 − 100km so
that they are gravitationally bound and become planetesimal. However, dust growth
is limited by the meter drift barrier as mentioned in Sec. 2.3 and the fragmentation

42

4. STATE OF THE ART (INSTABILITIES)

barrier as in Sec. 3.2. In order to form planets, dust must be concentrated with-
out growth or gravity. One of the compelling mechanisms to do so is the so-called
Streaming Instability (SI) (Youdin & Goodman, 2005), which tends to concentrate
dust effectively into clumps (example of simulation of the SI Fig. 1.16), which could
in turn lead to pebbles leading to the formation of planetesimals. SI has recently
been interpreted as a particular type of resonant drag instability (Squire & Hop-
kins, 2018b,a), where the concentration of dust in local density maxima by radial
epicyclic motion is in phase with gas recirculation due to epicycles in the vertical
direction(e.g. Magnan et al. 2024). However, such instability is expected to develop
at scales that are fractions of order ∼ (H/r)2 of the disc scale height (near hun-
dredths of a disc scale height). This makes the SI challenging to capture in a global
simulation. Growth of SI during its linear phase was first studied Youdin & Good-
man (2005). However, exploring its non-linear phase required the need for numerical
methods such as dust as particles methods. The first pioneering simulations were
carried out by Youdin & Johansen (2007), where the method was validated on the
linear phase of the SI (Johansen & Youdin, 2007). The method was rendered possi-
ble by the use of the local shearing box method, which is a local corotating Cartesian
box where the local shear is linearized, hence its name. Shearing boxes are key to
carrying out local, small-scale simulations in shearing flows such as a disc. Most SI
simulations were done using the code Pencil (Youdin & Johansen, 2007; Johansen
& Youdin, 2007) or Athena (Li & Youdin, 2021; Carrera et al., 2021) using the
shearing box approximation with dust as Lagrangian particles. Alternatively, SI
has also been studied using multifluid methods in FARGO3D (Krapp et al., 2019)
using the FARGO algorithm to integrate precisely the contribution of the shear. To
date, no simulation of streaming instability with SPH has been published. The key
challenge consists of correctly capturing the linear growth of the instability with-
out being dominated by the truncature errors associated with the method. Recent
work on streaming instability includes its extension to pressure maxima, where the
existence of the linear phase of the instability has been shown by Auffinger & Laibe
(2018); Xu & Bai (2022). The instability has also been extended in the presence of a
magnetic field in Lin & Hsu (2022), where hybrid unstable modes can be observed.
Recent work is also aimed at extending it to multiple species of dust (multiple sizes
of grains) (Krapp et al., 2019; Beńıtez-Llambay et al., 2019), where the instability
tends to be less efficient than its single-specie counterpart. The SI has also been
shown to be strongly quenched by gas viscosity and dust diffusion (Umurhan et al.,
2020; Chen & Lin, 2020). Additionally, we know that pebbles formed from stream-
ing instability can lead to planet formation (Johansen et al., 2015; Simon et al.,
2016; Lambrechts et al., 2019). However, extensions of the Streaming Instability
toward poly-disperse dust distribution (continuum in dust sizes) suggest that SI
might be ineffective for small dust concentrations (ϵ = ρd/ρg < 1) (Paardekooper
et al., 2020, 2021; McNally et al., 2021). To solve this tension, simulations of a
combined model of dust growth with dusty hydrodynamics (for example, using the
Lombart & Laibe (2021) scheme in a hydrodynamics code) are required to verify if

43

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

the combination of both effects can restore the SI or if the coupling between MHD
and dusty hydrodynamics leads to combined instabilities, as in Lin & Hsu (2022),
but in the poly-disperse case. The SI is also heavily dependent on the dust to gas
ratio (ϵ = ρd/ρg), so the effects of instabilities such as VSI on the global scale can
heavily influence the efficiency and outcomes of SI requiring the need for global SI
simulations to study the outcomes of VSI and SI combined. However, such simula-
tions require integration on long timescales as well as very high resolutions and thus
require a lot of computing power.

4.3. Magnetohydrodynamical instabilities
As detailed in Sec. 3.1 angular momentum transfer is related to the presence of tur-
bulence, which results in pseudo-viscosity in the Shakura & Sunyaev (1973) model.
One of the main sources of turbulence in protoplanetary discs is considered to be
the Magneto-Rotational Instability (MRI) (Balbus & Hawley, 1991; Hawley & Bal-
bus, 1991), which in its non-linear regime results in MRI-induced turbulence if the
magnetic field is weak enough. It is present in the inner and outer parts of the disc
(Lesur, 2021b) because of weak mag field β ≥ 1 and high enough ionization. Early
simulations of MRI were made possible by the use of the local shearing box, as for
the Streaming Instability, and constrained transport for the magnetohydrodynamics
in the code Zeus, whose hydrodynamics scheme will be presented in more detail in
Chapter 2-Sec. 2. In numerical simulation, MRI-induced turbulence results in in-
duced αS = 0.01− 1 depending on the strength of the instability in the quasi-ideal
MHD regime. However, as mentioned in Sec. 3.1, observations suggest a lower level
of turbulence, implying that it must be mitigated by other phenomena. Addition-
ally, when studied in the non-ideal regime, non-ideal effects may become significant,
and reduce the efficiency of the turbulence generated. (Bai, 2015; Li et al., 2018).
In protoplanetary discs, this corresponds to larger radii. However, non-ideal effects
are more sensible to density profiles and disc parameters, which need to be studied
further.

When studied coupled with radiative transfer, Flock et al. (2019) found that
the strength of the induced turbulence is highly dependent on the temperature and
pressure profiles. In an optically thick regime, MRI increases temperature, which
in turn increases scale height, which enhances turbulence and results in convection
(Hirose et al., 2014; Scepi et al., 2018). Finally, MHD magnetic reconnection events
result in heating (Ross & Latter, 2018), which in the context of MRI requires high
resolution studied to be measured numerically.

4.4. Rossby Wave Instability
Another important instability of interest in protoplanetary discs is the Rossby Wave
Instability (RWI) (e.g. Lovelace et al. (1999); Li et al. (2000)). It can be created by
local minima in the vortensity radial profile, which are creating velocity shear, creat-

44

4. STATE OF THE ART (INSTABILITIES)

ing in turn Kelvin-Helmholtz type waves (Bae et al., 2023) resulting in the presence
of vortices. It is a special instability as it is often the result of coupling with other
effects such as, at the edge of MRI dead zones (coupling Ideal-MHD, hydrodynam-
ics) (Varnière & Tagger, 2006), planet gaps (de Val-Borro et al., 2007), the edges of
gas inflow on the disc (Bae et al., 2015), or between flows created by VSI (Richard
et al., 2016). In its non-linear phase, RWI-induced vortices merge together into a
larger one, which can be stable for thousands of orbits. Such vortices are studied as
they offer a potential way to concentrate dust particles inside. However, simulating
RWI is complex as it requires high resolution to achieve a sufficiently low numerical
viscosity for long integration times of the RWI. Additionally, as RWI often results
in non-axisymmetric features, simulations need to resolve the disc in the azimuthal
direction to not artificially truncate the first Fourier azymuthal mode. This may re-
sult in stable axisymmetric features in a partial simulation being unstable in a global
simulation (Cui & Bai, 2022). In general, the outcome of RWI is strongly related to
the dimensionality of the system. In two dimensions, large structures are stabilized,
whereas vortex stretching in 3D may disrupt them. Large dust concentrations may
also destroy vortices. These points are still strongly debated.

4.5. Self-gravity

4.5.1. Self-gravitating discs

When the mass of the disc is not negligible anymore compared to the mass of the
star, the gravity of the disc becomes important and should be accounted for. Such
discs are referred as self-gravitating discs. However, considering the mass of the disc
alone or not, is not sufficient to determine if the gravity of the disc is expected to
have a strong effect. In the case of a cloud of gas subjected to its own gravity, it
is possible to know whether a perturbation in its medium will collapse onto itself
by comparing the balance between the pressure of the gas and the gravitational
pull created by the perturbation. This is called the Jeans instability (Jeans, 1902).
However, in a rotating medium this is not the correct criterion, as additional support
can be provided by rotation that stabilizes large perturbations. Instead, the pendant
of the Jeans criterion in an isothermal disc is the Toomre parameter Q ≡ csΩ/(πGΣ)
(Toomre, 1964), where density perturbation will grow unstable due to gravity when
Q ≲ 1. In those discs, this results in spirals that are analogous to the ones observed
in spiral galaxies since they share a common origin.

According to reviews on the subject of gravitational instability (GI) in protoplan-
etary discs (e.g. Bae et al. 2023; Kratter & Lodato 2016), the effect of self-gravity
in discs can be summarized as follows: Firstly, as reflected by the expression of
the Toomre parameter, the disc needs to be massive and cold to be unstable. Sec-
ondly, when a disc is gravitationally unstable and is forming spirals that tend to
be non-axisymmetric. This results in efficient angular momentum transport, which
dissipates some energy as well. This results in an heating of the disc, reducing the
efficiency of GI. Therefore, depending on the cooling rate the disc can also remain

45

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

gravitationally unstable, leading to the formation of giant planets Gammie (2001);
Rice et al. (2003); Cossins et al. (2009) or bound clumps of matter Rafikov (2005);
Cossins et al. (2010); Zhu et al. (2012). However, if the cooling rate is sufficiently low
GI-induced spirals will only be transient as the system will not cool quickly enough
to sustain the instability Cossins et al. (2009); Béthune et al. (2021). In general a
strong interplay between gravity, dynamics and thermal effects is shown. This means
that realistic cooling is required to model GI accurately, hence the need for coupling
realistic radiative transfer with self-gravitating hydrodynamical simulations.

4.5.2. Numerical challenges

Simulating self-gravitating discs poses a few challenges. Firstly, the gravitational
potential satisfies a Poisson equation, which must be solved to determine the local
gravitational force. However, the Poisson equation is an elliptic equation, which
implies that one has to model long-range interactions in a numerical simulation
(e.g. every element of the simulation technically interacts gravitationally with every
element). In practice, multiple methods are used to resolve self-gravity. On grid-
based methods, the first one is the conjugated gradient method, in which the Poisson
equation is converted into a system of linear equations to be solved and iterated
toward a solution for that linear system, which in this case corresponds to the
gravitational potential. The conjugate gradient method is used e.g. in RAMSES
(Teyssier, 2002) or Idefix (Lesur et al., 2023b). Since it iterates toward a solution
for the Poisson equation, having a good preconditioner can significantly reduce the
number of steps necessary for the solution to converge. Since the solver for gravity
is called at each timestep, we refer to the iteration of the Poisson solver scheme
nested within the hydro timestepping scheme as subcyles. One drawback of iterative
methods is that the number of subcyles is not guaranteed. An extension of such
a method is the use of multigrid methods for self-gravity solvers. It was recently
implemented in the community code Athena++ (Tomida & Stone, 2023). It relies
on solving the Poisson equation on a degraded grid to increase convergence speed,
reusing that solution as the starting point for the finer grid, and doing so using
many levels of nested grids. It can be viewed abusively as a nested solver with
a smarter preconditioner informed by the coarser level. This, in principle, leads
to faster convergence on complex problems and is close to the implementation of
AMR codes being implemented with nested grid structures such as RAMSES and
Athena++. Another approach that does not rely on the use of a grid consists is
the Fast Multipole Method (FMM), typically used in meshless hydrodynamical and
N-body codes such as Gadget-4 (Springel et al., 2021) and Phantom (Price et al.,
2018). FMM offers the advantage of providing the upper bound of the error for a
given parametrization of the algorithm independently of the object being simulated,
and it does not use subcyles. Therefore, the computational cost is known in advance
and is nearly constant. It relies on the analytical solution of the Poisson equation
as a sum of Green functions when the sources are point masses and performing a

46

5. CONCLUSION

linear expansion to group particles together in cells. This last method is detailed
together with its implementation in Shamrock, in Appendix E.

4.6. Dust-Gravitational instability
Ultimately, as mentioned, dust must become gravitationally unstable to ultimately
form planets. An important result of early-70s planet formation studies was the
so-called Golreich-Ward mechanism (Goldreich & Ward, 1973) where dust can col-
lapse into planetesimals. They have been revisited recently in e.g. Longarini et al.
(2023a,b) discussing the possibility of dust collapse induced by gravitational insta-
bilities. Solar system observations tend to support that planetesimals and planetary
cores form by gravitational collapse (Morbidelli et al., 2009; Nesvorný et al., 2010,
2019; McKinnon et al., 2020). This suggests that Gravitational Instabilities (GI)
are likely to be present during the planet formation process. Even if gas is expected
to be mostly stable with respect to gravitation instabilities in protoplanetary discs,
it may be important in the early phases of GI as it has a heavy influence on SI,
which, if efficient, can facilitate the gravitation instability (Li & Youdin, 2021).
Overall, state-of-the-art studies on dust gravitational instabilities consist mainly of
two-dimensional simulations. More long-term instabilities, called secular gravita-
tional instabilities, are also discussed in the literature. However, they have not been
probed in global simulations yet.

5. Conclusion
To conclude, resolving modern questions of planet formation requires to understand
the interplay between different physical processes such as magnetohydrodynamics,
dust, and self-gravity that interplay together both at local and global scalse. It is
mandatory to be able to resolve complex geometries such as protostellar collapse
down to the disc or circumplanetary discs embedded in protoplanetary discs, the
geometry, the properties, the boundaries and the environment of the system evolving
as the young stellar system forms. In order to resolve statistics, many studies varying
the initial conditions, to confront models with observational statistics are required.
Moreover, although some numerical methods are more favorable to study specific
processes, it is important to demonstrate that the results obtained do not depend on
the solver used. Overall, developing a comprehensive framework for planet formation
requires an unprecedented numerical computational power and efficiency.

It is in this context that we first aim to build a powerful, versatile and robust
hydrodynamic framework that can easily be extended to include MHD and self-
gravity, as well as the dust physics. The first step of this ambitious project is the
work that is presented in this manuscript.

47

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

References
Adachi I., Hayashi C., Nakazawa K., 1976, The Gas Drag Effect on the Elliptic Motion of

a Solid Body in the Primordial Solar Nebula, Progress of Theoretical Physics, 1756-1771
Andrews S. M., et al., 2018, The Disk Substructures at High Angular Resolution Project

(DSHARP). I. Motivation, Sample, Calibration, and Overview, ApJ, 869, L41
Arlt R., Urpin V., 2004, Simulations of vertical shear instability in accretion discs, A&A,

426, 755-765
Auffinger J., Laibe G., 2018, Linear growth of streaming instability in pressure bumps,

MNRAS, 473, 796-805
Bae J., Hartmann L., Zhu Z., 2015, Are Protoplanetary Disks Born with Vortices? Rossby

Wave Instability Driven by Protostellar Infall, ApJ, 805, 15
Bae J., Isella A., Zhu Z., Martin R., Okuzumi S., Suriano S., in Protostars and Planets

VII, booktitle, edited by Inutsuka, S. and Aikawa, Y. and Muto, T. and Tomida, K.
and Tamura, M., p. 423 (arXiv:2210.13314), doi:10.48550/arXiv.2210.13314

Bai X.-N., 2014, Hall-effect-Controlled Gas Dynamics in Protoplanetary Disks. I. Wind
Solutions at the Inner Disk, ApJ, 791, 137

Bai X.-N., 2015, Hall Effect Controlled Gas Dynamics in Protoplanetary Disks. II. Full
3D Simulations toward the Outer Disk, ApJ, 798, 84

Balbus S. A., Hawley J. F., 1991, A Powerful Local Shear Instability in Weakly Magnetized
Disks. I. Linear Analysis, ApJ, 376, 214

Balbus S. A., Terquem C., 2001, Linear Analysis of the Hall Effect in Protostellar Disks,
ApJ, 552, 235-247

Barranco J. A., Marcus P. S., 2005, Three-dimensional Vortices in Stratified Protoplane-
tary Disks, ApJ, 623, 1157-1170

Barraza-Alfaro M., Flock M., Marino S., Pérez S., 2021, Observability of the vertical shear
instability in protoplanetary disk CO kinematics, A&A, 653, A113

Bate M. R., Bonnell I. A., 1997, Accretion during binary star formation - II. Gaseous
accretion and disc formation, MNRAS, 285, 33-48

Beńıtez-Llambay P., Krapp L., Pessah M. E., 2019, Asymptotically Stable Numerical
Method for Multispecies Momentum Transfer: Gas and Multifluid Dust Test Suite and
Implementation in FARGO3D, ApJS, 241, 25

Beńıtez-Llambay P., Krapp L., Ramos X. S., Kratter K. M., 2023, RAM: Rapid Advection
Algorithm on Arbitrary Meshes, ApJ, 952, 106

Béthune W., Latter H., Kley W., 2021, Spiral structures in gravito-turbulent gaseous
disks, A&A, 650, A49

Birnstiel T., et al., 2018, The Disk Substructures at High Angular Resolution Project
(DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust
Model, ApJ, 869, L45

Blandford R. D., Payne D. G., 1982, Hydromagnetic flows from accretion disks and the
production of radio jets., MNRAS, 199, 883-903

48

http://dx.doi.org/10.1143/PTP.56.1756
http://arxiv.org/abs/https://academic.oup.com/ptp/article-pdf/56/6/1756/5174571/56-6-1756.pdf
http://dx.doi.org/10.3847/2041-8213/aaf741
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..41A
http://arxiv.org/abs/1812.04040
http://dx.doi.org/10.1051/0004-6361:20035896
https://ui.adsabs.harvard.edu/abs/2004A&A...426..755A
http://dx.doi.org/10.1093/mnras/stx2395
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473..796A
http://arxiv.org/abs/1709.08660
http://dx.doi.org/10.1088/0004-637X/805/1/15
https://ui.adsabs.harvard.edu/abs/2015ApJ...805...15B
http://arxiv.org/abs/1503.02694
http://arxiv.org/abs/2210.13314
http://dx.doi.org/10.48550/arXiv.2210.13314
http://dx.doi.org/10.1088/0004-637X/791/2/137
https://ui.adsabs.harvard.edu/abs/2014ApJ...791..137B
http://arxiv.org/abs/1402.7102
http://dx.doi.org/10.1088/0004-637X/798/2/84
https://ui.adsabs.harvard.edu/abs/2015ApJ...798...84B
http://arxiv.org/abs/1409.2511
http://dx.doi.org/10.1086/170270
https://ui.adsabs.harvard.edu/abs/1991ApJ...376..214B
http://dx.doi.org/10.1086/320452
https://ui.adsabs.harvard.edu/abs/2001ApJ...552..235B
http://arxiv.org/abs/astro-ph/0010229
http://dx.doi.org/10.1086/428639
https://ui.adsabs.harvard.edu/abs/2005ApJ...623.1157B
http://arxiv.org/abs/astro-ph/0501267
http://dx.doi.org/10.1051/0004-6361/202140535
https://ui.adsabs.harvard.edu/abs/2021A&A...653A.113B
http://arxiv.org/abs/2106.01159
http://dx.doi.org/10.1093/mnras/285.1.33
https://ui.adsabs.harvard.edu/abs/1997MNRAS.285...33B
http://dx.doi.org/10.3847/1538-4365/ab0a0e
https://ui.adsabs.harvard.edu/abs/2019ApJS..241...25B
http://arxiv.org/abs/1811.07925
http://dx.doi.org/10.3847/1538-4357/acd698
https://ui.adsabs.harvard.edu/abs/2023ApJ...952..106B
http://arxiv.org/abs/2305.05362
http://dx.doi.org/10.1051/0004-6361/202040094
https://ui.adsabs.harvard.edu/abs/2021A&A...650A..49B
http://arxiv.org/abs/2102.00775
http://dx.doi.org/10.3847/2041-8213/aaf743
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..45B
http://arxiv.org/abs/1812.04043
http://dx.doi.org/10.1093/mnras/199.4.883
https://ui.adsabs.harvard.edu/abs/1982MNRAS.199..883B

5. CONCLUSION

Blum J., 2018, Dust evolution in protoplanetary discs and the formation of planetesimals:
What have we learned from laboratory experiments?, Space Science Reviews, 52

Blum J., Wurm G., 2008, The growth mechanisms of macroscopic bodies in protoplanetary
disks., ARA&A, 46, 21-56

Boccaletti A., et al., 2020, Possible evidence of ongoing planet formation in AB Aurigae.
A showcase of the SPHERE/ALMA synergy, A&A, 637, L5

Brauer F., Dullemond C. P., Henning T., 2008, Coagulation, fragmentation and radial
motion of solid particles in protoplanetary disks, A&A, 480, 859-877

Carrera D., Simon J. B., Li R., Kretke K. A., Klahr H., 2021, Protoplanetary Disk Rings
as Sites for Planetesimal Formation, AJ, 161, 96

Casoli J., Masset F. S., 2009, On the Horseshoe Drag of a Low-Mass Planet. I. Migration
in Isothermal Disks, ApJ, 703, 845-856

Chen K., Lin M.-K., 2020, How Efficient Is the Streaming Instability in Viscous Proto-
planetary Disks?, ApJ, 891, 132

Commerçon B., Lebreuilly U., Price D. J., Lovascio F., Laibe G., Hennebelle P., 2023,
Dynamics of dust grains in turbulent molecular clouds. Conditions for decoupling and
limits of different numerical implementations, A&A, 671, A128

Cossins P., Lodato G., Clarke C. J., 2009, Characterizing the gravitational instability in
cooling accretion discs, MNRAS, 393, 1157-1173

Cossins P., Lodato G., Clarke C., 2010, The effects of opacity on gravitational stability in
protoplanetary discs, MNRAS, 401, 2587-2598

Cui C., Bai X.-N., 2022, Turbulence in outer protoplanetary discs: MRI or VSI?, MNRAS,
516, 4660-4668

Cui C., Lin M.-K., 2021, On the vertical shear instability in magnetized protoplanetary
discs, MNRAS, 505, 2983-2998

Currie T., Biller B., Lagrange A., Marois C., Guyon O., Nielsen E. L., Bonnefoy M.,
De Rosa R. J., in Protostars and Planets VII, booktitle, edited by Inutsuka, S. and
Aikawa, Y. and Muto, T. and Tomida, K. and Tamura, M., p. 799 (arXiv:2205.05696),
doi:10.48550/arXiv.2205.05696

D’Alessio P., Cantö J., Calvet N., Lizano S., 1998, Accretion Disks around Young Objects.
I. The Detailed Vertical Structure, ApJ, 500, 411-427

D’Angelo G., Kley W., Henning T., 2003, Orbital Migration and Mass Accretion of
Protoplanets in Three-dimensional Global Computations with Nested Grids, ApJ, 586,
540-561

Dipierro G., Laibe G., Price D. J., Lodato G., 2016, Two mechanisms for dust gap opening
in protoplanetary discs, MNRAS, 459, L1-L5

Dipierro G., Laibe G., Alexander R., Hutchison M., 2018, Gas and multispecies dust
dynamics in viscous protoplanetary discs: the importance of the dust back-reaction,
MNRAS, 479, 4187-4206

Duffell P. C., Haiman Z., MacFadyen A. I., D’Orazio D. J., Farris B. D., 2014, The
Migration of Gap-opening Planets is Not Locked to Viscous Disk Evolution, ApJ, 792,

49

http://dx.doi.org/10.1146/annurev.astro.46.060407.145152
https://ui.adsabs.harvard.edu/abs/2008ARA&A..46...21B
http://dx.doi.org/10.1051/0004-6361/202038008
https://ui.adsabs.harvard.edu/abs/2020A&A...637L...5B
http://arxiv.org/abs/2005.09064
http://dx.doi.org/10.1051/0004-6361:20077759
https://ui.adsabs.harvard.edu/abs/2008A&A...480..859B
http://arxiv.org/abs/0711.2192
http://dx.doi.org/10.3847/1538-3881/abd4d9
https://ui.adsabs.harvard.edu/abs/2021AJ....161...96C
http://arxiv.org/abs/2008.01727
http://dx.doi.org/10.1088/0004-637X/703/1/845
https://ui.adsabs.harvard.edu/abs/2009ApJ...703..845C
http://arxiv.org/abs/0907.4677
http://dx.doi.org/10.3847/1538-4357/ab76ca
https://ui.adsabs.harvard.edu/abs/2020ApJ...891..132C
http://arxiv.org/abs/2002.07188
http://dx.doi.org/10.1051/0004-6361/202245141
https://ui.adsabs.harvard.edu/abs/2023A&A...671A.128C
http://arxiv.org/abs/2301.04946
http://dx.doi.org/10.1111/j.1365-2966.2008.14275.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.393.1157C
http://arxiv.org/abs/0811.3629
http://dx.doi.org/10.1111/j.1365-2966.2009.15835.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.2587C
http://arxiv.org/abs/0910.0850
http://dx.doi.org/10.1093/mnras/stac2580
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.4660C
http://arxiv.org/abs/2209.02897
http://dx.doi.org/10.1093/mnras/stab1511
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.2983C
http://arxiv.org/abs/2105.11151
http://arxiv.org/abs/2205.05696
http://dx.doi.org/10.48550/arXiv.2205.05696
http://dx.doi.org/10.1086/305702
https://ui.adsabs.harvard.edu/abs/1998ApJ...500..411D
http://arxiv.org/abs/astro-ph/9806060
http://dx.doi.org/10.1086/367555
https://ui.adsabs.harvard.edu/abs/2003ApJ...586..540D
http://arxiv.org/abs/astro-ph/0308055
http://dx.doi.org/10.1093/mnrasl/slw032
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459L...1D
http://arxiv.org/abs/1602.07457
http://dx.doi.org/10.1093/mnras/sty1701
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.4187D
http://arxiv.org/abs/1806.10148
http://dx.doi.org/10.1088/2041-8205/792/1/L10
https://ui.adsabs.harvard.edu/abs/2014ApJ...792L..10D

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

L10
Dullemond C. P., et al., 2018, The Disk Substructures at High Angular Resolution Project

(DSHARP). VI. Dust Trapping in Thin-ringed Protoplanetary Disks, ApJ, 869, L46
Dürmann C., Kley W., 2015, Migration of massive planets in accreting disks, A&A, 574,

A52
Dürmann C., Kley W., 2017, The accretion of migrating giant planets, A&A, 598, A80
Epstein P. S., 1924, On the Resistance Experienced by Spheres in their Motion through

Gases, Physical Review, 23, 710-733
Evans C. R., Hawley J. F., 1988, Simulation of Magnetohydrodynamic Flows: A Con-

strained Transport Model, ApJ, 332, 659
Flaherty K. M., Hughes A. M., Rosenfeld K. A., Andrews S. M., Chiang E., Simon J. B.,

Kerzner S., Wilner D. J., 2015, Weak Turbulence in the HD 163296 Protoplanetary
Disk Revealed by ALMA CO Observations, ApJ, 813, 99

Flaherty K. M., et al., 2017, A Three-dimensional View of Turbulence: Constraints on
Turbulent Motions in the HD 163296 Protoplanetary Disk Using DCO+, ApJ, 843, 150

Flaherty K. M., Hughes A. M., Teague R., Simon J. B., Andrews S. M., Wilner D. J.,
2018, Turbulence in the TW Hya Disk, ApJ, 856, 117

Flock M., Turner N. J., Mulders G. D., Hasegawa Y., Nelson R. P., Bitsch B., 2019,
Planet formation and migration near the silicate sublimation front in protoplanetary
disks, A&A, 630, A147

Flock M., Turner N. J., Nelson R. P., Lyra W., Manger N., Klahr H., 2020, Gas and Dust
Dynamics in Starlight-heated Protoplanetary Disks, ApJ, 897, 155

Fukuhara Y., Okuzumi S., Ono T., 2021, Effects of Dust Evolution on the Vertical Shear
Instability in the Outer Regions of Protoplanetary Disks, ApJ, 914, 132

Gammie C. F., 2001, Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous
Disks, ApJ, 553, 174-183

Glassgold A. E., Lizano S., Galli D., 2017, Deep-down ionization of protoplanetary discs,
MNRAS, 472, 2447-2453

Goldreich P., Tremaine S., 1979, The excitation of density waves at the Lindblad and
corotation resonances by an external potential., ApJ, 233, 857-871

Goldreich P., Tremaine S., 1980, Disk-satellite interactions., ApJ, 241, 425-441
Goldreich P., Ward W. R., 1973, The Formation of Planetesimals, ApJ, 183, 1051-1062
Gonzalez J. F., Laibe G., Maddison S. T., 2017, Self-induced dust traps: overcoming

planet formation barriers, MNRAS, 467, 1984-1996
Guzmán V. V., et al., 2018, The Disk Substructures at High Angular Resolution Program

(DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk, ApJ, 869, L48
Hartmann L., Calvet N., Gullbring E., D’Alessio P., 1998, Accretion and the Evolution

of T Tauri Disks, ApJ, 495, 385-400
Hartmann L., Herczeg G., Calvet N., 2016, Accretion onto Pre-Main-Sequence Stars,

ARA&A, 54, 135-180

50

http://arxiv.org/abs/1405.3711
http://dx.doi.org/10.3847/2041-8213/aaf742
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..46D
http://arxiv.org/abs/1812.04044
http://dx.doi.org/10.1051/0004-6361/201424837
https://ui.adsabs.harvard.edu/abs/2015A&A...574A..52D
http://arxiv.org/abs/1411.3190
http://dx.doi.org/10.1051/0004-6361/201629074
https://ui.adsabs.harvard.edu/abs/2017A&A...598A..80D
http://arxiv.org/abs/1611.01070
http://dx.doi.org/10.1103/PhysRev.23.710
https://ui.adsabs.harvard.edu/abs/1924PhRv...23..710E
http://dx.doi.org/10.1086/166684
https://ui.adsabs.harvard.edu/abs/1988ApJ...332..659E
http://dx.doi.org/10.1088/0004-637X/813/2/99
https://ui.adsabs.harvard.edu/abs/2015ApJ...813...99F
http://arxiv.org/abs/1510.01375
http://dx.doi.org/10.3847/1538-4357/aa79f9
https://ui.adsabs.harvard.edu/abs/2017ApJ...843..150F
http://arxiv.org/abs/1706.04504
http://dx.doi.org/10.3847/1538-4357/aab615
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..117F
http://arxiv.org/abs/1803.03842
http://dx.doi.org/10.1051/0004-6361/201935806
https://ui.adsabs.harvard.edu/abs/2019A&A...630A.147F
http://arxiv.org/abs/1910.03901
http://dx.doi.org/10.3847/1538-4357/ab9641
https://ui.adsabs.harvard.edu/abs/2020ApJ...897..155F
http://arxiv.org/abs/2005.11974
http://dx.doi.org/10.3847/1538-4357/abfe5c
https://ui.adsabs.harvard.edu/abs/2021ApJ...914..132F
http://arxiv.org/abs/2105.02403
http://dx.doi.org/10.1086/320631
https://ui.adsabs.harvard.edu/abs/2001ApJ...553..174G
http://arxiv.org/abs/astro-ph/0101501
http://dx.doi.org/10.1093/mnras/stx2145
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.2447G
http://dx.doi.org/10.1086/157448
https://ui.adsabs.harvard.edu/abs/1979ApJ...233..857G
http://dx.doi.org/10.1086/158356
https://ui.adsabs.harvard.edu/abs/1980ApJ...241..425G
http://dx.doi.org/10.1086/152291
https://ui.adsabs.harvard.edu/abs/1973ApJ...183.1051G
http://dx.doi.org/10.1093/mnras/stx016
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.1984G
http://arxiv.org/abs/1701.01115
http://dx.doi.org/10.3847/2041-8213/aaedae
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..48G
http://arxiv.org/abs/1812.04046
http://dx.doi.org/10.1086/305277
https://ui.adsabs.harvard.edu/abs/1998ApJ...495..385H
http://dx.doi.org/10.1146/annurev-astro-081915-023347
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..135H

5. CONCLUSION

Hawley J. F., Balbus S. A., 1991, A Powerful Local Shear Instability in Weakly Magnetized
Disks. II. Nonlinear Evolution, ApJ, 376, 223

Hennebelle P., Commerçon B., Lee Y.-N., Charnoz S., 2020, What determines the forma-
tion and characteristics of protoplanetary discs?, A&A, 635, A67

Hirose S., Blaes O., Krolik J. H., Coleman M. S. B., Sano T., 2014, Convection Causes
Enhanced Magnetic Turbulence in Accretion Disks in Outburst, ApJ, 787, 1

Huang J., et al., 2018a, The Disk Substructures at High Angular Resolution Project
(DSHARP). II. Characteristics of Annular Substructures, ApJ, 869, L42

Huang J., et al., 2018b, The Disk Substructures at High Angular Resolution Project
(DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM
Lup, and WaOph 6 Disks, ApJ, 869, L43

Isella A., et al., 2018, The Disk Substructures at High Angular Resolution Project
(DSHARP). IX. A High-definition Study of the HD 163296 Planet-forming Disk, ApJ,
869, L49

Jeans J. H., 1902, The Stability of a Spherical Nebula, Philosophical Transactions of the
Royal Society of London Series A, 199, 1-53

Johansen A., Lambrechts M., 2017, Forming Planets via Pebble Accretion, Annual Review
of Earth and Planetary Sciences, 45, 359-387

Johansen A., Youdin A., 2007, Protoplanetary Disk Turbulence Driven by the Streaming
Instability: Nonlinear Saturation and Particle Concentration, ApJ, 662, 627-641

Johansen A., Mac Low M.-M., Lacerda P., Bizzarro M., in IAU General Assembly, book-
title, p. 2229132

Kanagawa K. D., Tanaka H., Szuszkiewicz E., 2018, Radial Migration of Gap-opening
Planets in Protoplanetary Disks. I. The Case of a Single Planet, ApJ, 861, 140

Klahr H., Hubbard A., 2014, Convective Overstability in Radially Stratified Accretion
Disks under Thermal Relaxation, ApJ, 788, 21

Korycansky D. G., Pollack J. B., 1993, Numerical Calculations of the Linear Response of
a Gaseous Disk to a Protoplanet, Icarus, 102, 150-165

Krapp L., Beńıtez-Llambay P., Gressel O., Pessah M. E., 2019, Streaming Instability for
Particle-size Distributions, ApJ, 878, L30

Kratter K., Lodato G., 2016, Gravitational Instabilities in Circumstellar Disks, ARA&A,
54, 271-311

Kruijer T. S., Burkhardt C., Budde G., Kleine T., 2017, Age of Jupiter inferred from
the distinct genetics and formation times of meteorites, Proceedings of the National
Academy of Science, 114, 6712-6716

Kurtovic N. T., et al., 2018, The Disk Substructures at High Angular Resolution Project
(DSHARP). IV. Characterizing Substructures and Interactions in Disks around Multiple
Star Systems, ApJ, 869, L44

Laibe G., Price D. J., 2014, Dusty gas with one fluid, MNRAS, 440, 2136-2146
Laibe G., Gonzalez J. F., Fouchet L., Maddison S. T., 2008, SPH simulations of grain

growth in protoplanetary disks, A&A, 487, 265-270

51

http://dx.doi.org/10.1086/170271
https://ui.adsabs.harvard.edu/abs/1991ApJ...376..223H
http://dx.doi.org/10.1051/0004-6361/201936714
https://ui.adsabs.harvard.edu/abs/2020A&A...635A..67H
http://arxiv.org/abs/2001.00197
http://dx.doi.org/10.1088/0004-637X/787/1/1
https://ui.adsabs.harvard.edu/abs/2014ApJ...787....1H
http://arxiv.org/abs/1403.3096
http://dx.doi.org/10.3847/2041-8213/aaf740
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..42H
http://arxiv.org/abs/1812.04041
http://dx.doi.org/10.3847/2041-8213/aaf7a0
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..43H
http://arxiv.org/abs/1812.04193
http://dx.doi.org/10.3847/2041-8213/aaf747
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..49I
http://arxiv.org/abs/1812.04047
http://dx.doi.org/10.1098/rsta.1902.0012
http://dx.doi.org/10.1098/rsta.1902.0012
https://ui.adsabs.harvard.edu/abs/1902RSPTA.199....1J
http://dx.doi.org/10.1146/annurev-earth-063016-020226
http://dx.doi.org/10.1146/annurev-earth-063016-020226
https://ui.adsabs.harvard.edu/abs/2017AREPS..45..359J
http://dx.doi.org/10.1086/516730
https://ui.adsabs.harvard.edu/abs/2007ApJ...662..627J
http://arxiv.org/abs/astro-ph/0702626
http://dx.doi.org/10.3847/1538-4357/aac8d9
https://ui.adsabs.harvard.edu/abs/2018ApJ...861..140K
http://arxiv.org/abs/1805.11101
http://dx.doi.org/10.1088/0004-637X/788/1/21
https://ui.adsabs.harvard.edu/abs/2014ApJ...788...21K
http://arxiv.org/abs/1403.6721
http://dx.doi.org/10.1006/icar.1993.1039
https://ui.adsabs.harvard.edu/abs/1993Icar..102..150K
http://dx.doi.org/10.3847/2041-8213/ab2596
https://ui.adsabs.harvard.edu/abs/2019ApJ...878L..30K
http://arxiv.org/abs/1905.13139
http://dx.doi.org/10.1146/annurev-astro-081915-023307
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..271K
http://arxiv.org/abs/1603.01280
http://dx.doi.org/10.1073/pnas.1704461114
http://dx.doi.org/10.1073/pnas.1704461114
https://ui.adsabs.harvard.edu/abs/2017PNAS..114.6712K
http://dx.doi.org/10.3847/2041-8213/aaf746
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..44K
http://arxiv.org/abs/1812.04536
http://dx.doi.org/10.1093/mnras/stu355
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440.2136L
http://arxiv.org/abs/1402.5248
http://dx.doi.org/10.1051/0004-6361:200809522
https://ui.adsabs.harvard.edu/abs/2008A&A...487..265L
http://arxiv.org/abs/0806.1427

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

Lambrechts M., Morbidelli A., Jacobson S. A., Johansen A., Bitsch B., Izidoro A., Ray-
mond S. N., 2019, Formation of planetary systems by pebble accretion and migration.
How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode,
A&A, 627, A83

Latter H. N., Papaloizou J., 2018, Vortices and the saturation of the vertical shear insta-
bility in protoplanetary discs, MNRAS, 474, 3110-3124

Launder B., Spalding D., 1974, The numerical computation of turbulent flows, Computer
Methods in Applied Mechanics and Engineering, 269-289

Lebreuilly U., Commerçon B., Laibe G., 2020, Protostellar collapse: the conditions to
form dust-rich protoplanetary disks, A&A, 641, A112

Lesur G., 2021a, Magnetohydrodynamics of protoplanetary discs, Journal of Plasma
Physics, 87, 205870101

Lesur G. R. J., 2021b, Systematic description of wind-driven protoplanetary discs, A&A,
650, A35

Lesur G. R. J., Latter H., 2016, On the survival of zombie vortices in protoplanetary discs,
MNRAS, 462, 4549-4554

Lesur G., Kunz M. W., Fromang S., 2014, Thanatology in protoplanetary discs. The
combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones, A&A, 566,
A56

Lesur G., et al.,in Protostars and Planets VII, booktitle, edited by Inutsuka, S. and
Aikawa, Y. and Muto, T. and Tomida, K. and Tamura, M., p. 465

Lesur G. R. J., Baghdadi S., Wafflard-Fernandez G., Mauxion J., Robert C. M. T., Van
den Bossche M., 2023b, IDEFIX: A versatile performance-portable Godunov code for
astrophysical flows, A&A, 677, A9

Li R., Youdin A. N., 2021, Thresholds for Particle Clumping by the Streaming Instability,
ApJ, 919, 107

Li H., Finn J. M., Lovelace R. V. E., Colgate S. A., 2000, Rossby Wave Instability of
Thin Accretion Disks. II. Detailed Linear Theory, ApJ, 533, 1023-1034

Li R., Youdin A. N., Simon J. B., 2018, On the Numerical Robustness of the Streaming
Instability: Particle Concentration and Gas Dynamics in Protoplanetary Disks, ApJ,
862, 14

Lin M.-K., 2019, Dust settling against hydrodynamic turbulence in protoplanetary discs,
MNRAS, 485, 5221-5234

Lin M.-K., Hsu C.-Y., 2022, Streaming Instabilities in Accreting and Magnetized Laminar
Protoplanetary Disks, ApJ, 926, 14

Lin D. N. C., Papaloizou J., 1979, Tidal torques on accretion discs in binary systems with
extreme mass ratios., MNRAS, 186, 799-812

Lin D. N. C., Papaloizou J., 1986, On the Tidal Interaction between Protoplanets and the
Protoplanetary Disk. III. Orbital Migration of Protoplanets, ApJ, 309, 846

Lissauer J. J., Batalha N. M., Borucki W. J., in Protostars and Planets VII, booktitle,
edited by Inutsuka, S. and Aikawa, Y. and Muto, T. and Tomida, K. and Tamura, M.,

52

http://dx.doi.org/10.1051/0004-6361/201834229
https://ui.adsabs.harvard.edu/abs/2019A&A...627A..83L
http://arxiv.org/abs/1902.08694
http://dx.doi.org/10.1093/mnras/stx3031
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.3110L
http://arxiv.org/abs/1711.07436
http://dx.doi.org/https://doi.org/10.1016/0045-7825(74)90029-2
http://dx.doi.org/https://doi.org/10.1016/0045-7825(74)90029-2
http://dx.doi.org/10.1051/0004-6361/202038174
https://ui.adsabs.harvard.edu/abs/2020A&A...641A.112L
http://arxiv.org/abs/2007.06050
http://dx.doi.org/10.1017/S0022377820001002
http://dx.doi.org/10.1017/S0022377820001002
https://ui.adsabs.harvard.edu/abs/2021JPlPh..87a2001P
http://arxiv.org/abs/2007.15967
http://dx.doi.org/10.1051/0004-6361/202040109
https://ui.adsabs.harvard.edu/abs/2021A&A...650A..35L
http://arxiv.org/abs/2101.10349
http://dx.doi.org/10.1093/mnras/stw2172
https://ui.adsabs.harvard.edu/abs/2016MNRAS.462.4549L
http://arxiv.org/abs/1606.03012
http://dx.doi.org/10.1051/0004-6361/201423660
https://ui.adsabs.harvard.edu/abs/2014A&A...566A..56L
http://arxiv.org/abs/1402.4133
http://dx.doi.org/10.1051/0004-6361/202346005
https://ui.adsabs.harvard.edu/abs/2023A&A...677A...9L
http://arxiv.org/abs/2304.13746
http://dx.doi.org/10.3847/1538-4357/ac0e9f
https://ui.adsabs.harvard.edu/abs/2021ApJ...919..107L
http://arxiv.org/abs/2105.06042
http://dx.doi.org/10.1086/308693
https://ui.adsabs.harvard.edu/abs/2000ApJ...533.1023L
http://arxiv.org/abs/astro-ph/9907279
http://dx.doi.org/10.3847/1538-4357/aaca99
https://ui.adsabs.harvard.edu/abs/2018ApJ...862...14L
http://arxiv.org/abs/1803.03638
http://dx.doi.org/10.1093/mnras/stz701
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.5221L
http://arxiv.org/abs/1903.03620
http://dx.doi.org/10.3847/1538-4357/ac3bb9
https://ui.adsabs.harvard.edu/abs/2022ApJ...926...14L
http://arxiv.org/abs/2111.10381
http://dx.doi.org/10.1093/mnras/186.4.799
https://ui.adsabs.harvard.edu/abs/1979MNRAS.186..799L
http://dx.doi.org/10.1086/164653
https://ui.adsabs.harvard.edu/abs/1986ApJ...309..846L

5. CONCLUSION

p. 839 (arXiv:2311.04981), doi:10.48550/arXiv.2311.04981
Lombart M., Laibe G., 2021, Grain growth for astrophysics with discontinuous Galerkin

schemes, MNRAS, 501, 4298-4316
Longarini C., Lodato G., Bertin G., Armitage P. J., 2023a, The role of the drag force in

the gravitational stability of dusty planet forming disc - I. Analytical theory, MNRAS,
519, 2017-2029

Longarini C., Armitage P. J., Lodato G., Price D. J., Ceppi S., 2023b, The role of the
drag force in the gravitational stability of dusty planet-forming disc - II. Numerical
simulations, MNRAS, 522, 6217-6235

Love S. G., Joswiak D. J., Brownlee D. E., 1994, Densities of Stratospheric Micromete-
orites, Icarus, 111, 227-236

Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, Rossby Wave Instability of
Keplerian Accretion Disks, ApJ, 513, 805-810

Lynch E. M., Lovell J. B., Sefilian A. A., 2024, Why dust pressure matters in debris discs,
MNRAS, 529, L147-L151

Lyra W., 2014, Convective Overstability in Accretion Disks: Three-dimensional Linear
Analysis and Nonlinear Saturation, ApJ, 789, 77

Lyra W., Raettig N., Klahr H., 2018, Pebble-trapping Backreaction Does Not Destroy
Vortices, Research Notes of the American Astronomical Society, 2, 195

Machida M. N., Kokubo E., Inutsuka S.-i., Matsumoto T., 2008, Angular Momentum
Accretion onto a Gas Giant Planet, ApJ, 685, 1220-1236

Magnan N., Heinemann T., Latter H. N., 2024, A physical picture for the acoustic resonant
drag instability, MNRAS, 529, 688-701

Manara C. F., et al., 2016, Evidence for a correlation between mass accretion rates onto
young stars and the mass of their protoplanetary disks, A&A, 591, L3

Marchand P., Commerçon B., Chabrier G., 2018, Impact of the Hall effect in star forma-
tion and the issue of angular momentum conservation, A&A, 619, A37

Masset F., 2000, FARGO: A fast eulerian transport algorithm for differentially rotating
disks, A&AS, 141, 165-173

Mayor M., Queloz D., 1995, A Jupiter-mass companion to a solar-type star, Nature, 378,
355-359

McKinnon W. B., et al., 2020, The solar nebula origin of (486958) Arrokoth, a primordial
contact binary in the Kuiper Belt, Science, 367, aay6620

McNally C. P., Nelson R. P., Paardekooper S.-J., Beńıtez-Llambay P., 2019, Migrating
super-Earths in low-viscosity discs: unveiling the roles of feedback, vortices, and laminar
accretion flows, MNRAS, 484, 728-748

McNally C. P., Lovascio F., Paardekooper S.-J., 2021, Polydisperse streaming instability
- III. Dust evolution encourages fast instability, MNRAS, 502, 1469-1486

Meheut H., Fromang S., Lesur G., Joos M., Longaretti P.-Y., 2015, Angular momentum
transport and large eddy simulations in magnetorotational turbulence: the small Pm
limit, A&A, 579, A117

53

http://arxiv.org/abs/2311.04981
http://dx.doi.org/10.48550/arXiv.2311.04981
http://dx.doi.org/10.1093/mnras/staa3682
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.4298L
http://arxiv.org/abs/2011.12298
http://dx.doi.org/10.1093/mnras/stac3653
https://ui.adsabs.harvard.edu/abs/2023MNRAS.519.2017L
http://arxiv.org/abs/2212.04986
http://dx.doi.org/10.1093/mnras/stad1400
https://ui.adsabs.harvard.edu/abs/2023MNRAS.522.6217L
http://arxiv.org/abs/2305.03659
http://dx.doi.org/10.1006/icar.1994.1142
https://ui.adsabs.harvard.edu/abs/1994Icar..111..227L
http://dx.doi.org/10.1086/306900
https://ui.adsabs.harvard.edu/abs/1999ApJ...513..805L
http://arxiv.org/abs/astro-ph/9809321
http://dx.doi.org/10.1093/mnrasl/slae011
https://ui.adsabs.harvard.edu/abs/2024MNRAS.529L.147L
http://arxiv.org/abs/2401.14891
http://dx.doi.org/10.1088/0004-637X/789/1/77
https://ui.adsabs.harvard.edu/abs/2014ApJ...789...77L
http://arxiv.org/abs/1405.3437
http://dx.doi.org/10.3847/2515-5172/aaeac9
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..195L
http://arxiv.org/abs/1810.07941
http://dx.doi.org/10.1086/590421
https://ui.adsabs.harvard.edu/abs/2008ApJ...685.1220M
http://arxiv.org/abs/0801.3305
http://dx.doi.org/10.1093/mnras/stae052
https://ui.adsabs.harvard.edu/abs/2024MNRAS.529..688M
http://arxiv.org/abs/2401.03783
http://dx.doi.org/10.1051/0004-6361/201628549
https://ui.adsabs.harvard.edu/abs/2016A&A...591L...3M
http://arxiv.org/abs/1605.03050
http://dx.doi.org/10.1051/0004-6361/201832907
https://ui.adsabs.harvard.edu/abs/2018A&A...619A..37M
http://arxiv.org/abs/1808.08731
http://dx.doi.org/10.1051/aas:2000116
https://ui.adsabs.harvard.edu/abs/2000A&AS..141..165M
http://arxiv.org/abs/astro-ph/9910390
http://dx.doi.org/10.1038/378355a0
https://ui.adsabs.harvard.edu/abs/1995Natur.378..355M
http://dx.doi.org/10.1126/science.aay6620
https://ui.adsabs.harvard.edu/abs/2020Sci...367.6620M
http://arxiv.org/abs/2003.05576
http://dx.doi.org/10.1093/mnras/stz023
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484..728M
http://arxiv.org/abs/1811.12841
http://dx.doi.org/10.1093/mnras/stab112
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.1469M
http://arxiv.org/abs/2101.04761
http://dx.doi.org/10.1051/0004-6361/201525688
https://ui.adsabs.harvard.edu/abs/2015A&A...579A.117M
http://arxiv.org/abs/1505.05661

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

Mendoza V. E. E., 1966, Infrared Photometry of T Tauri Stars and Related Objects, ApJ,
143, 1010

Mendoza V. E. E., 1968, Infrared Excesses in T Tauri Stars and Related Objects, ApJ,
151, 977

Miotello A., Kamp I., Birnstiel T., Cleeves L. C., Kataoka A., in Protostars and Planets
VII, booktitle, edited by Inutsuka, S. and Aikawa, Y. and Muto, T. and Tomida, K.
and Tamura, M., p. 501 (arXiv:2203.09818), doi:10.48550/arXiv.2203.09818

Morbidelli A., Bottke W. F., Nesvorný D., Levison H. F., 2009, Asteroids were born big,
Icarus, 204, 558-573

Mouschovias T. C., Kunz M. W., Christie D. A., 2009, Formation of interstellar clouds:
Parker instability with phase transitions, MNRAS, 397, 14-23

Müller A., et al., 2018, Orbital and atmospheric characterization of the planet within the
gap of the PDS 70 transition disk, A&A, 617, L2

Nakagawa Y., Sekiya M., Hayashi C., 1986, Settling and growth of dust particles in a
laminar phase of a low-mass solar nebula, Icarus, 67, 375-390

Nelson R. P., Gressel O., Umurhan O. M., 2013, Linear and non-linear evolution of the
vertical shear instability in accretion discs, MNRAS, 435, 2610-2632

Nesvorný D., Youdin A. N., Richardson D. C., 2010, Formation of Kuiper Belt Binaries
by Gravitational Collapse, AJ, 140, 785-793

Nesvorný D., Li R., Youdin A. N., Simon J. B., Grundy W. M., 2019, Trans-Neptunian
binaries as evidence for planetesimal formation by the streaming instability, Nature
Astronomy, 3, 808-812

Ormel C. W., Shi J.-M., Kuiper R., 2015, Hydrodynamics of embedded planets’ first
atmospheres - II. A rapid recycling of atmospheric gas, MNRAS, 447, 3512-3525

Paardekooper S. J., Papaloizou J. C. B., 2009, On the width and shape of the corotation
region for low-mass planets, MNRAS, 394, 2297-2309

Paardekooper S.-J., McNally C. P., Lovascio F., 2020, Polydisperse streaming instability
- I. Tightly coupled particles and the terminal velocity approximation, MNRAS, 499,
4223-4238

Paardekooper S.-J., McNally C. P., Lovascio F., 2021, Polydisperse streaming instability
- II. Methods for solving the linear stability problem, MNRAS, 502, 1579-1595

Paardekooper S., Dong R., Duffell P., Fung J., Masset F. S., Ogilvie G., Tanaka
H., in Protostars and Planets VII, booktitle, edited by Inutsuka, S. and Aikawa,
Y. and Muto, T. and Tomida, K. and Tamura, M., p. 685 (arXiv:2203.09595),
doi:10.48550/arXiv.2203.09595

Pérez L. M., et al., 2018, The Disk Substructures at High Angular Resolution Project
(DSHARP). X. Multiple Rings, a Misaligned Inner Disk, and a Bright Arc in the Disk
around the T Tauri star HD 143006, ApJ, 869, L50

Pineda J. E., et al.,in Protostars and Planets VII, booktitle, edited by Inutsuka, S. and
Aikawa, Y. and Muto, T. and Tomida, K. and Tamura, M., p. 233 (arXiv:2205.03935),
doi:10.48550/arXiv.2205.03935

54

http://dx.doi.org/10.1086/148584
https://ui.adsabs.harvard.edu/abs/1966ApJ...143.1010M
http://dx.doi.org/10.1086/149497
https://ui.adsabs.harvard.edu/abs/1968ApJ...151..977M
http://arxiv.org/abs/2203.09818
http://dx.doi.org/10.48550/arXiv.2203.09818
http://dx.doi.org/10.1016/j.icarus.2009.07.011
https://ui.adsabs.harvard.edu/abs/2009Icar..204..558M
http://arxiv.org/abs/0907.2512
http://dx.doi.org/10.1111/j.1365-2966.2009.14472.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.397...14M
http://arxiv.org/abs/0901.0914
http://dx.doi.org/10.1051/0004-6361/201833584
https://ui.adsabs.harvard.edu/abs/2018A&A...617L...2M
http://arxiv.org/abs/1806.11567
http://dx.doi.org/10.1016/0019-1035(86)90121-1
https://ui.adsabs.harvard.edu/abs/1986Icar...67..375N
http://dx.doi.org/10.1093/mnras/stt1475
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2610N
http://arxiv.org/abs/1209.2753
http://dx.doi.org/10.1088/0004-6256/140/3/785
https://ui.adsabs.harvard.edu/abs/2010AJ....140..785N
http://arxiv.org/abs/1007.1465
http://dx.doi.org/10.1038/s41550-019-0806-z
http://dx.doi.org/10.1038/s41550-019-0806-z
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..808N
http://arxiv.org/abs/1906.11344
http://dx.doi.org/10.1093/mnras/stu2704
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.3512O
http://arxiv.org/abs/1410.4659
http://dx.doi.org/10.1111/j.1365-2966.2009.14512.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.2297P
http://arxiv.org/abs/0901.2263
http://dx.doi.org/10.1093/mnras/staa3162
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.4223P
http://arxiv.org/abs/2010.01145
http://dx.doi.org/10.1093/mnras/stab111
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.1579P
http://arxiv.org/abs/2101.04763
http://arxiv.org/abs/2203.09595
http://dx.doi.org/10.48550/arXiv.2203.09595
http://dx.doi.org/10.3847/2041-8213/aaf745
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..50P
http://arxiv.org/abs/1812.04049
http://arxiv.org/abs/2205.03935
http://dx.doi.org/10.48550/arXiv.2205.03935

5. CONCLUSION

Pinte C., Teague R., Flaherty K., Hall C., Facchini S., Casassus S., in Protostars and
Planets VII, booktitle, edited by Inutsuka, S. and Aikawa, Y. and Muto, T. and Tomida,
K. and Tamura, M., p. 645 (arXiv:2203.09528), doi:10.48550/arXiv.2203.09528

Pinte C., Benisty M., Facchini S., Fukagawa M., Teague R., in AAS/Division for Extreme
Solar Systems Abstracts, booktitle, p. 400.01

Powell K. G., Roe P. L., Linde T. J., Gombosi T. I., De Zeeuw D. L., 1999, A Solution-
Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, Journal of Computational
Physics, 154, 284-309

Price D. J., 2010, Smoothed Particle Magnetohydrodynamics - IV. Using the vector po-
tential, MNRAS, 401, 1475-1499

Price D. J., 2012, Smoothed particle hydrodynamics and magnetohydrodynamics, Journal
of Computational Physics, 231, 759-794

Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-
drodynamics Code for Astrophysics, PASA, 35, e031

Raettig N., Klahr H., Lyra W., 2015, Particle Trapping and Streaming Instability in
Vortices in Protoplanetary Disks, ApJ, 804, 35

Rafikov R. R., 2005, Can Giant Planets Form by Direct Gravitational Instability?, ApJ,
621, L69-L72

Rice W. K. M., Armitage P. J., Bate M. R., Bonnell I. A., 2003, The effect of cooling on
the global stability of self-gravitating protoplanetary discs, MNRAS, 339, 1025-1030

Richard S., Nelson R. P., Umurhan O. M., 2016, Vortex formation in protoplanetary discs
induced by the vertical shear instability, MNRAS, 456, 3571-3584

Ross J., Latter H. N., 2018, Dissipative structures in magnetorotational turbulence, MN-
RAS, 477, 3329-3342

Safronov V. S., , booktitle, https://api.semanticscholar.org/CorpusID:140184681

Scepi N., Lesur G., Dubus G., Flock M., 2018, Turbulent and wind-driven accretion in
dwarf novae threaded by a large-scale magnetic field, A&A, 620, A49

Schulik M., Johansen A., Bitsch B., Lega E., Lambrechts M., 2020, On the structure and
mass delivery towards circumplanetary discs, A&A, 642, A187

Shakura N. I., Sunyaev R. A., 1973, Black holes in binary systems. Observational appear-
ance., A&A, 24, 337-355

Simon J. B., Armitage P. J., Li R., Youdin A. N., 2016, The Mass and Size Distribution
of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity, ApJ,
822, 55

Smoluchowski M. v., 1918, Versuch einer mathematischen Theorie der Koagulationsk-
inetik kolloider Lösungen, Zeitschrift für physikalische Chemie, 129–168

Springel V., Pakmor R., Zier O., Reinecke M., 2021, Simulating cosmic structure forma-
tion with the GADGET-4 code, MNRAS, 506, 2871-2949

Squire J., Hopkins P. F., 2018a, Resonant drag instabilities in protoplanetary discs: the
streaming instability and new, faster growing instabilities, MNRAS, 477, 5011-5040

55

http://arxiv.org/abs/2203.09528
http://dx.doi.org/10.48550/arXiv.2203.09528
http://dx.doi.org/10.1006/jcph.1999.6299
http://dx.doi.org/10.1006/jcph.1999.6299
https://ui.adsabs.harvard.edu/abs/1999JCoPh.154..284P
http://dx.doi.org/10.1111/j.1365-2966.2009.15763.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.1475P
http://arxiv.org/abs/0909.2469
http://dx.doi.org/10.1016/j.jcp.2010.12.011
http://dx.doi.org/10.1016/j.jcp.2010.12.011
https://ui.adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://arxiv.org/abs/1012.1885
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930
http://dx.doi.org/10.1088/0004-637X/804/1/35
https://ui.adsabs.harvard.edu/abs/2015ApJ...804...35R
http://arxiv.org/abs/1501.05364
http://dx.doi.org/10.1086/428899
https://ui.adsabs.harvard.edu/abs/2005ApJ...621L..69R
http://arxiv.org/abs/astro-ph/0406469
http://dx.doi.org/10.1046/j.1365-8711.2003.06253.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.339.1025R
http://arxiv.org/abs/astro-ph/0211088
http://dx.doi.org/10.1093/mnras/stv2898
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.3571R
http://arxiv.org/abs/1601.01921
http://dx.doi.org/10.1093/mnras/sty791
http://dx.doi.org/10.1093/mnras/sty791
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.3329R
http://arxiv.org/abs/1803.08757
https://api.semanticscholar.org/CorpusID:140184681
http://dx.doi.org/10.1051/0004-6361/201833921
https://ui.adsabs.harvard.edu/abs/2018A&A...620A..49S
http://arxiv.org/abs/1809.09131
http://dx.doi.org/10.1051/0004-6361/202037556
https://ui.adsabs.harvard.edu/abs/2020A&A...642A.187S
http://arxiv.org/abs/2003.13398
https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S
http://dx.doi.org/10.3847/0004-637X/822/1/55
https://ui.adsabs.harvard.edu/abs/2016ApJ...822...55S
http://arxiv.org/abs/1512.00009
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://arxiv.org/abs/2010.03567
http://dx.doi.org/10.1093/mnras/sty854
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.5011S
http://arxiv.org/abs/1711.03975

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

Squire J., Hopkins P. F., 2018b, Resonant Drag Instability of Grains Streaming in Fluids,
ApJ, 856, L15

Stepinski T. F., Valageas P., 1997, Global evolution of solid matter in turbulent proto-
planetary disks. II. Development of icy planetesimals., A&A, 319, 1007-1019

Szulágyi J., 2017, Effects of the Planetary Temperature on the Circumplanetary Disk and
on the Gap, ApJ, 842, 103

Tanaka H., Takeuchi T., Ward W. R., 2002, Three-Dimensional Interaction between a
Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet
Migration, ApJ, 565, 1257-1274

Tanigawa T., Ohtsuki K., Machida M. N., 2012, Distribution of Accreting Gas and Angular
Momentum onto Circumplanetary Disks, ApJ, 747, 47

Teague R., et al., 2016, Measuring turbulence in TW Hydrae with ALMA: methods and
limitations, A&A, 592, A49

Testi L., et al.,in Protostars and Planets VI, booktitle, edited by Beuther, Henrik and
Klessen, Ralf S. and Dullemond, Cornelis P. and Henning, Thomas, pp 339–361
(arXiv:1402.1354), doi:10.2458/azu˙uapress˙9780816531240-ch015

Teyssier R., 2002, Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES, A&A, 385, 337-364

Tomida K., Stone J. M., 2023, The Athena++ Adaptive Mesh Refinement Framework:
Multigrid Solvers for Self-gravity, ApJS, 266, 7

Toomre A., 1964, On the gravitational stability of a disk of stars., ApJ, 139, 1217-1238
Tsukamoto Y., et al.,in Astronomical Society of the Pacific Conference Series, booktitle,

edited by Inutsuka, S. and Aikawa, Y. and Muto, T. and Tomida, K. and Tamura, M.,
p. 317

Umurhan O. M., Estrada P. R., Cuzzi J. N., 2020, Streaming Instability in Turbulent
Protoplanetary Disks, ApJ, 895, 4

Varnière P., Tagger M., 2006, Reviving Dead Zones in accretion disks by Rossby vortices
at their boundaries, A&A, 446, L13-L16

Venuti L., et al., 2014, Mapping accretion and its variability in the young open cluster
NGC 2264: a study based on u-band photometry, A&A, 570, A82

Wafflard-Fernandez G., Lesur G., 2023, Planet-disk-wind interaction: The magnetized
fate of protoplanets, A&A, 677, A70

Ward W. R., in Lunar and Planetary Science Conference, booktitle, p. 1463
Ward W. R., 1997, Protoplanet Migration by Nebula Tides, Icarus, 126, 261-281
Wardle M., Ng C., 1999, The conductivity of dense molecular gas, MNRAS, 303, 239-246
Weidenschilling S. J., 1977, Aerodynamics of solid bodies in the solar nebula., MNRAS,

180, 57-70
Whipple F. L., in From Plasma to Planet, booktitle, edited by Elvius, Aina, p. 211
Wurster J., Price D. J., Bate M. R., 2016, Can non-ideal magnetohydrodynamics solve

the magnetic braking catastrophe?, MNRAS, 457, 1037-1061

56

http://dx.doi.org/10.3847/2041-8213/aab54d
https://ui.adsabs.harvard.edu/abs/2018ApJ...856L..15S
http://arxiv.org/abs/1706.05020
https://ui.adsabs.harvard.edu/abs/1997A&A...319.1007S
http://dx.doi.org/10.3847/1538-4357/aa7515
https://ui.adsabs.harvard.edu/abs/2017ApJ...842..103S
http://arxiv.org/abs/1705.08444
http://dx.doi.org/10.1086/324713
https://ui.adsabs.harvard.edu/abs/2002ApJ...565.1257T
http://dx.doi.org/10.1088/0004-637X/747/1/47
https://ui.adsabs.harvard.edu/abs/2012ApJ...747...47T
http://arxiv.org/abs/1112.3706
http://dx.doi.org/10.1051/0004-6361/201628550
https://ui.adsabs.harvard.edu/abs/2016A&A...592A..49T
http://arxiv.org/abs/1606.00005
http://arxiv.org/abs/1402.1354
http://dx.doi.org/10.2458/azu_uapress_9780816531240-ch015
http://dx.doi.org/10.1051/0004-6361:20011817
https://ui.adsabs.harvard.edu/abs/2002A&A...385..337T
http://arxiv.org/abs/astro-ph/0111367
http://dx.doi.org/10.3847/1538-4365/acc2c0
https://ui.adsabs.harvard.edu/abs/2023ApJS..266....7T
http://arxiv.org/abs/2302.13903
http://dx.doi.org/10.1086/147861
https://ui.adsabs.harvard.edu/abs/1964ApJ...139.1217T
http://dx.doi.org/10.3847/1538-4357/ab899d
https://ui.adsabs.harvard.edu/abs/2020ApJ...895....4U
http://arxiv.org/abs/1906.05371
http://dx.doi.org/10.1051/0004-6361:200500226
https://ui.adsabs.harvard.edu/abs/2006A&A...446L..13V
http://arxiv.org/abs/astro-ph/0511684
http://dx.doi.org/10.1051/0004-6361/201423776
https://ui.adsabs.harvard.edu/abs/2014A&A...570A..82V
http://arxiv.org/abs/1408.0432
http://dx.doi.org/10.1051/0004-6361/202245305
https://ui.adsabs.harvard.edu/abs/2023A&A...677A..70W
http://arxiv.org/abs/2305.11784
http://dx.doi.org/10.1006/icar.1996.5647
https://ui.adsabs.harvard.edu/abs/1997Icar..126..261W
http://dx.doi.org/10.1046/j.1365-8711.1999.02211.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.303..239W
http://arxiv.org/abs/astro-ph/9810468
http://dx.doi.org/10.1093/mnras/180.2.57
https://ui.adsabs.harvard.edu/abs/1977MNRAS.180...57W
http://dx.doi.org/10.1093/mnras/stw013
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.1037W
http://arxiv.org/abs/1512.01597

5. CONCLUSION

Xu Z., Bai X.-N., 2022, Turbulent Dust-trapping Rings as Efficient Sites for Planetesimal
Formation, ApJ, 937, L4

Youdin A. N., Goodman J., 2005, Streaming Instabilities in Protoplanetary Disks, ApJ,
620, 459-469

Youdin A., Johansen A., 2007, Protoplanetary Disk Turbulence Driven by the Streaming
Instability: Linear Evolution and Numerical Methods, ApJ, 662, 613-626

Zhang S., Hartmann L., Zamora-Avilés M., Kuznetsova A., 2018a, On estimating angular
momenta of infalling protostellar cores from observations, MNRAS, 480, 5495-5503

Zhang S., et al., 2018b, The Disk Substructures at High Angular Resolution Project
(DSHARP). VII. The Planet-Disk Interactions Interpretation, ApJ, 869, L47

Zhu Z., Hartmann L., Nelson R. P., Gammie C. F., 2012, Challenges in Forming Planets by
Gravitational Instability: Disk Irradiation and Clump Migration, Accretion, and Tidal
Destruction, ApJ, 746, 110

Zier O., Mayer A. C., Springel V., 2024, Non-ideal magnetohydrodynamics on a moving
mesh II: Hall effect, MNRAS, 527, 8355-8368

Zubko E., 2012, Light scattering by irregularly shaped particles with sizes comparable to
the wavelength. pp 39–74, doi:10.1007/978-3-642-15531-4˙2

de Val-Borro M., et al., 2006, A comparative study of disc-planet interaction, MNRAS,
370, 529-558

de Val-Borro M., Artymowicz P., D’Angelo G., Peplinski A., 2007, Vortex generation in
protoplanetary disks with an embedded giant planet, A&A, 471, 1043-1055

57

http://dx.doi.org/10.3847/2041-8213/ac8dff
https://ui.adsabs.harvard.edu/abs/2022ApJ...937L...4X
http://arxiv.org/abs/2207.08858
http://dx.doi.org/10.1086/426895
https://ui.adsabs.harvard.edu/abs/2005ApJ...620..459Y
http://arxiv.org/abs/astro-ph/0409263
http://dx.doi.org/10.1086/516729
https://ui.adsabs.harvard.edu/abs/2007ApJ...662..613Y
http://arxiv.org/abs/astro-ph/0702625
http://dx.doi.org/10.1093/mnras/sty2244
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.5495Z
http://arxiv.org/abs/1808.04802
http://dx.doi.org/10.3847/2041-8213/aaf744
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L..47Z
http://arxiv.org/abs/1812.04045
http://dx.doi.org/10.1088/0004-637X/746/1/110
https://ui.adsabs.harvard.edu/abs/2012ApJ...746..110Z
http://arxiv.org/abs/1111.6943
http://dx.doi.org/10.1093/mnras/stad3769
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.8355Z
http://arxiv.org/abs/2309.15907
http://dx.doi.org/10.1007/978-3-642-15531-4_2
http://dx.doi.org/10.1111/j.1365-2966.2006.10488.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.370..529D
http://arxiv.org/abs/astro-ph/0605237
http://dx.doi.org/10.1051/0004-6361:20077169
https://ui.adsabs.harvard.edu/abs/2007A&A...471.1043D
http://arxiv.org/abs/0706.3200

CHAPTER 1. A SHORTHAND ON NUMERICAL PLANET FORMATION

58

Chapter 2
Numerical Computation of

astrophysical flows
Contents

1 Introduction . 59
2 Finite elements (Zeus & Fargo) 61
3 Finite volume (Godunov) 69
4 Meshless (Smoothed particle hydrodynamics) 80
5 Summary . 93
References . 94

1. Introduction
In this chapter, we introduce the main hydrodynamic schemes relevant for astro-
physics that we have implemented in Shamrock. For simplicity, we restrain our-
selves to pure hydrodynamics and neglect dust, magnetic, and radiative effects here.

1.1. Euler’s equation
Overall, the basis of most hydrodynamics problems we aim to study derives from a
form of the Euler equation with potential addition of other terms or fields.

The Euler equation can be written in the following form

(∂t + v ·∇)ρ = −∇ · v, (2.1)

(∂t + v ·∇)v = −1
ρ

∇P + f , (2.2)

(∂t + v ·∇)u = −P

ρ
∇ · v, (2.3)

where ρ is the density of the fluid, v its velocity, u its specific internal energy,
and f denotes other external forces. The fluid pressure P is defined through an
astrophysical equation of state, which closes the system of equations. For example,
when using an adiabatic equation of state, P = (γ − 1)ρu, or P = c2

sρ when the
equation of state is isothermal. This form of the Euler equation is referred to as the

59

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

convective form. The latter can also be transformed into a so-called conservative
form.

∂tρ + ∇ · (ρv) = 0 (2.4)
∂t (ρv) + ∇ · (ρvv + P I) = ρf (2.5)

∂tE + ∇ · [(E + P)v] = ρv · f (2.6)
where E = ρu + 1

2ρv2 is the total energy density of the fluid.

1.2. Rankine-Hugoniot conditions
Euler’s equations consist of a set of partial differential equations that describe the
evolution of inviscid smooth flows in the form of solutions that are differentiable in
both space and time. However, the dynamics resulting from the Euler equation result
in non-linearities whose derivatives can sharpen until they become discontinuities.
Such flows are referred to as shocks. For example, wave steepening can occur for
nonlinear acoustic waves. In order to solve problems with such discontinuities, we
can use the so-called Rankine-Hugoniot equations. They are obtained by using the
conservative form of the Euler equation. Consider, for example, mass conservation
in one dimension, this equation can be written under the form

∂tρ + ∂x (ρvx) = 0.

Let us integrate spatially a stationary shock located at position χ over a width ϵ∫ χ+ϵ

χ−ϵ
(∂tρ)dx +

∫ χ+ϵ

χ−ϵ
∂x (ρvx) dx = 0.

The use of the Leibniz theorem on the left integral gives

∂t

∫ χ+ϵ

χ
ρdx + ∂t

∫ χ

χ−ϵ
ρdx + [ρvx]χ+ϵ

χ−ϵ = 0.

Taking the limit ϵ → 0 provides the Rankine-Hugoniot condition for a stationary
shock on the mass equation

(ρvx)left = (ρvx)right, (2.7)
which expresses the continuity of the mass flux.

As detailed in Toro (2013), this is the case in general, where the Rankine-
Hugoniot conditions for stationary shocks consist of the equality of the flux on both
sides (the flux must be continuous across the shock). From the Euler equations, in
one dimension, one obtains the three conditions.

∆ (ρvx) = 0, (2.8)
∆ (ρvxvx + P) = 0, (2.9)
∆ [(E + P)vx] = 0, (2.10)

where ∆ denotes the difference between the left and right values of the shock. Those
conditions are used to solve the case of discontinuities in the Euler equation (see
Sec. 3.2).

60

2. FINITE ELEMENTS (ZEUS & FARGO)

2. Finite elements (Zeus & Fargo)
The first scheme that we discuss is the Stone & Norman (1992a) scheme. Since
it corresponds to the actual scheme implemented in the eponym community code,
we will commonly refer to this scheme as the Zeus scheme in the manuscript. We
have chosen this scheme for multiple reasons. Firstly, it is a simple scheme, allowing
to test the behavior of the grid in Shamrock and track potential bottlenecks be-
cause of the inherent speed of the scheme associated with the underlying numerical
framework. Fixing those issues can improve the performance of the other schemes
in Shamrock. Secondly, the Zeus solver is the solver on the basis of the FARGO,
which is very useful to perform both discs and shearing box simulations because
of its fast advection algorithm. The Zeus solver has recently been ported to the
GPU (Beńıtez-Llambay & Masset, 2016), allowing potential comparisons with its
performance. Lastly, the Zeus scheme conserves internal energy rather than total
energy, which can facilitate the numerical integration of instabilities relying on the
thermodynamics of the fluid (e.g. Rayleigh-Taylor, Kelvin Helmholtz).

2.1. Functional form of the equations
The Zeus scheme solves the basic Euler equation in the following form:

∂tρ + ∇ · (ρv) = 0, (2.11)

(∂t + v ·∇) v = −1
ρ

∇P + f , (2.12)

(∂t + v ·∇)
(

U

ρ

)
= −P

ρ
∇ · v, (2.13)

where instead of manipulating the specific internal energy, the internal energy U is
used. This choice has the advantage in this scheme that it avoids the need for a
floating point division, which is the most expensive basic floating point operation.
We will come back to this point later.

2.2. Operator splitting
It is an operator splitting scheme where source terms are integrated using the For-
ward Time-Centered Space method (FTCS), but transport is done using conservative
upwinding. The different steps can be highlighted as follows:

∂tρ + ∇ · (ρv) = 0, (2.14)

(∂t + v ·∇) v = −1
ρ

∇p + f , (2.15)

(∂t + v ·∇)
(

U

ρ

)
= −p

ρ
∇ · v. (2.16)

61

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

As we will explain, the scheme can be summarized as a succession of four operators
to perform a full timestep ∆t:

• Substep 1 : Add pressure and external forces to the velocity with timestep ∆t.

• Substep 2 : Add artificial viscosity terms to the velocity and internal energy
with timestep ∆t.

• Substep 3 : Implicit update with timestep ∆t of the internal energy with
respect to the term −p

ρ
∇ · v if possible, or a predictor corrector method oth-

erwise.

• Transport step : Using the variables in conservative form, perform advection
with timestep ∆t.

2.3. Staggered mesh

x

y

z

ρ(i,j,k)
E(i,j,k)

ρ(i−1,j,k)
E(i−1,j,k) vx

(i− 1
2 ,j,k)

vy

(i,j− 1
2 ,k)

vz
(i,j,k− 1

2)

Figure 2.1: Staggered mesh setup: the black dot represents values that belong to
the cell (i, j, k).

The Zeus scheme uses a staggered mesh to represent the discretization points. In
it, the scalar quantities are represented on cell centers, whereas vector quantities such
as velocity are represented on cell faces, the corresponding quantities are represented
in Fig. 2.1. The state vector of a cell here is

U(i,j,k) = (ρ(i,j,k), vx
(i− 1

2 ,j,k), vy

(i,j− 1
2 ,k), vz

(i,j,k− 1
2), E(i,j,k))

as we store quantities per cell even if they are technically on the faces. This means
that, provided that we interpolate cell-centered quantities to the cell faces, the

62

2. FINITE ELEMENTS (ZEUS & FARGO)

fluxes can simply be computed using their analytic expressions, without any need
for reconstruction.

Unlike Godunov-type methods (see Sec. 3), using a staggered mesh removes the
need for a Riemann solver, reducing the numerical cost of the scheme significantly.
However, the lack of Riemann solvers means that an alternative method has to be
used in order for the numerical scheme to handle hydrodynamic shocks.

Boundary conditions can be handled in such a scheme by setting the values of
cells in a so-called ghost zone accordingly to create a boundary condition. For a
periodic domain, the cells on one edge of the simulation will be mirrored on the
other side of the periodic boundary.

2.4. Artificial viscosity
In computation fluid dynamics, two main methods are used to resolve shock proper-
ties in a numerical scheme. The first one is the Riemann solver (see Sec. 3), which,
as stated, is not in use in this scheme. The other option is the so-called artificial
viscosity originally introduced by the unpublished reports Richtmyer (1948a,b) and
whose results were included in the landmark paper Von Neumann & Richtmyer
(1950). The solution is to introduce a non-physical additional viscosity to automat-
ically take care of the shocks in the scheme by the additional dissipation, which will
‘smear’ the shock (Richtmyer, 1948a). The other insight is that it is possible to pro-
vide such additional dissipation while maintaining the Rankine-Hugoniot conditions
and having the correct entropy increase due to the shock.

In the Zeus scheme, the artificial viscosity is taken as being either by default
the quadratic form from Von Neumann & Richtmyer (1950) where the additional
viscosity is proportional to the velocity gradient squared per axis. Additionally, as
detailed by Stone & Norman (1992a), in cases of strong shocks, it can be suitable
to introduce another artificial viscosity in the linear form. Overall, accounting for
the artificial viscosity terms the solved equations can be written as

∂tρ + ∇ · (ρv) = 0 (2.17)

(∂t + v ·∇) v = −1
ρ

∇ · P̃ + f (2.18)

(∂t + v ·∇)
(

U

ρ

)
= −Tr

(
P̃ T

ρ
·∇v

)
(2.19)

P̃µν = P (ρ, U)δµν + χ1ρcsδµν(∂µvµ)+ + χ2ρδµν((∂µvµ)+)2 (2.20)

where (·)+ is the positive part, ρcsδµν(∂µvµ) is the linear artificial viscosity, and
ρδµν(∂µvµ)2 is the quadratic one. It can be noted that such a form is not a proper
tensor because of the velocity derivative squared, not even accounting for the nu-
merical scheme; the underlying equations are not invariant under the coordinate
transform. This issue, however, can be addressed by replacing the artificial viscosity
with a tensor (Stone & Norman, 1992a, Appendix b) inspired by the physical form

63

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

in Mihalas Mihalas (Mihalas & Mihalas, 1984, § 25). Such an extension does not
impact the underlying scheme, so it can easily be added at a later stage. In our case
the Zeus scheme is being used to explore the feasibility grid scheme in Shamrock,
but it is not yet a priority to implement it as of now.

In the following section, we detail the different steps of the Zeus scheme, as it
is hard to find them in a closed form in the literature. We omit the linear artificial
viscosity term as it is just a modification of the applied formula for the artificial
viscosity and thus can be simply added to the formulas presented here.

2.5. Substep 1 (Pressure gradient)
In substep 1, the goal is to add the contribution of the pressure gradient and of the
external forces. As per Stone & Norman (1992a),

vx,s1
(i− 1

2 ,j,k) − vx,n

(i− 1
2 ,j,k)

∆t
= − P(i,j,k) − P(i−1,j,k)

∆x(ρn
(i,j,k) + ρn

(i−1,j,k))/2 + fx
(i− 1

2 ,j,k), (2.21)

vy,s1
(i,j− 1

2 ,k) − vy,n

(i,j− 1
2 ,k)

∆t
= − P(i,j,k) − P(i,j−1,k)

∆y(ρn
(i,j,k) + ρn

(i,j−1,k))/2 + f y

(i,j− 1
2 ,k), (2.22)

vz,s1
(i,j,k− 1

2) − vz,n

(i,j,k− 1
2)

∆t
= − P(i,j,k) − P(i,j,k−1)

∆z(ρn
(i,j,k) + ρn

(i,j,k−1))/2 + f z
(i,j,k− 1

2), (2.23)

where superscript s1 refers to the result of the substep, and superscript n refers
to the initial state at the beginning of the timestep. The pressure P is computed
just before computing its gradient according to the equation of state, where for the
adiabatic case we use P(i,j,k) = (γ − 1)En

(i,j,k).

2.6. Substep 2 (Artificial viscosity)
Terms related to artificial viscosity are then computed using

qx
(i,j,k) = C2ρ

n
(i,j,k)((v

x,n

(i+ 1
2 ,j,k) − vx,n

(i− 1
2 ,j,k))

+)2, (2.24)

qy
(i,j,k) = C2ρ

n
(i,j,k)((v

y,n

(i,j+ 1
2 ,k) − vy,n

(i,j− 1
2 ,k))

+)2, (2.25)

qz
(i,j,k) = C2ρ

n
(i,j,k)((v

z,n

(i,j,k+ 1
2) − vz,n

(i,j,k− 1
2))

+)2, (2.26)

where C2 is a constant corresponding qualitatively to the smearing length that will
be applied to the shock. In practice, we use C2 ≃ 3, as in Stone & Norman (1992a).
The contribution due to the stress associated to the artificial viscosity is then dif-

64

2. FINITE ELEMENTS (ZEUS & FARGO)

ferentiated and added to the velocity and energy fields.

vx,s2
(i− 1

2 ,j,k) − vx,s1
(i− 1

2 ,j,k)

∆t
= −

qx
(i,j,k) − qx

(i−1,j,k)

∆x(ρn
(i,j,k) + ρn

(i−1,j,k))/2 , (2.27)

vy,s2
(i,j− 1

2 ,k) − vy,s1
(i,j− 1

2 ,k)

∆t
= −

qy
(i,j,k) − qy

(i,j−1,k)

∆y(ρn
(i,j,k) + ρn

(i,j−1,k))/2 , (2.28)

vz,s2
(i,j,k− 1

2) − vz,s1
(i,j,k− 1

2)

∆t
= −

qz
(i,j,k) − qz

(i,j,k−1)

∆z(ρn
(i,j,k) + ρn

(i,j,k−1))/2 , (2.29)

Es2
(i,j,k) − En

(i,j,k)

∆t
= −qx

(i,j,k)

vx,n

(i+ 1
2 ,j,k) − vx,n

(i− 1
2 ,j,k)

∆x

− qy
(i,j,k)

vy,n

(i,j+ 1
2 ,k) − vy,n

(i,j− 1
2 ,k)

∆x

− qz

(i,j,k)

vz,n

(i,j,k+ 1
2) − vz,n

(i,j,k− 1
2)

∆x

 . (2.30)

As mentioned above, the linear artificial viscosity can be added by modifying the
expressions Eq. 2.24-2.26 to include it.

2.7. Substep 3 (Compressional heating)
In order to complete the source step with the compressional heating term in Stone &
Norman (1992a), an implicit update is performed using the time-centered pressure.

Es3
(i,j,k) − Es2

(i,j,k)

∆t
= −P n+1 + P n

2 ∇ · v. (2.31)

When using an adiabatic equation of state, it can be rewritten as

Es3
(i,j,k) =

[
1− (∆t/2)(γ − 1)(∇ · vn)(i,j,k)

1 + (∆t/2)(γ − 1)(∇ · vn)(i,j,k)

]
Es2

(i,j,k) (2.32)

In Zeus, this step was chosen to be implicit in order to improve energy conservation.
Alternatively, when the equation of state is not adiabatic, a predictor corrector
scheme is used (e.g. Stone & Norman 1992a).

2.8. Transport step
We choose to implement the transport step as it is performed in the code FARGO3D
since only cell-centered quantities are transported, making the transport consistent
for all fields. Secondly, in order to implement the FARGO fast advection algorithm,
the control volume has to be the same for all variables (Beńıtez-Llambay & Masset,
2016, Section 3.4.1). The transport step being the same for all fields additionally
means that it is possible to write only one routine for it and reuse it for all fields in
the scheme, which is convenient.

65

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

The initial issue lies in the fact that velocities are face-centered quantities and
densities are cell-centered, but we need conservative variables for the transport step.
In order to define momentum, one would need to either interpolate densities to the
faces or interpolate the velocities to the cell center. In the strategy adopted in the
FARGO code, neither option is used. Instead, we define two cell-centered moments
per direction, e.g.

Π+x,n
(i,j,k) = ρn

(i,j,k)v
x,s2
(i+1/2,j,k), (2.33)

Π−x,n
(i,j,k) = ρn

(i,j,k)v
x,s2
(i−1/2,j,k), (2.34)

doing so yields six momentas that are cell-centered and that can be advected. At the
end of the step, velocities are reconstructed from the advected cell-centered moments
as follows:

vx,n+1
(i− 1

2 ,j,k) =
Π+x,n+1

(i−1,j,k) + Π−x,n+1
(i,j,k)

ρn+1
(i−1,j,k) + ρn+1

(i,j,k)
, (2.35)

and similarly for each axis.
The list of variables to advect during the transport step can be conveniently

written as an 8-dimensional vector:

Q(i,j,k) ≡ {ρ, Π+x, Π−x, Π+y, Π−y, Π+z, Π−z, E}(i,j,k), (2.36)

The transport step can be summarized under the following equations:

∂t

∫∫∫
v

QdV +
∫∫

∂V
Qv · dS = 0, (2.37)

which, translated to our staggered grid, becomes:

Qn+1
(i,j,k) −Qn

(i,j,k)

∆t
=
[
Fx−

(i−1/2,j,k) + Fy−
(i,j−1/2,k) + F z−

(i,j,k−1/2) (2.38)

−Fx+
(i+1/2,j,k) −F

y+
(i,j+1/2,k) −F

z+
(i,j,k+1/2)

]
/V, (2.39)

where we have chosen, as in Beńıtez-Llambay & Masset (2016), the convention that
the flux is always oriented in the same direction as the axis. However, unlike in
the FARGO3D code, where directions are done as three successive one-dimensional
problems, we have chosen to perform the three directions simultaneously to treat
them uniformly, as it is better suited to how the code is designed, and to make the
treatment of the three directions consistent.

Unlike in Godunov-type methods using staggered meshes, it is possible to write
the flux as

Fx+
(i+1/2,j,k) = vx

(i+1/2,j,k)Q
∗,x
(i+1/2,j,k)S(i+1/2,j,k), (2.40)

66

2. FINITE ELEMENTS (ZEUS & FARGO)

where Q∗ is the upwinded quantites from cell centers and by half a step in time,
corresponding, for example, at the face i + 1/2 (in 1D) to the value being at the
position x∗ = xi+1/2− vx

i+1/2∆t/2. In Stone & Norman (1992a); Beńıtez-Llambay &
Masset (2016) multiple options are available: donner-cell (1st order), slope limiter
(1st or 2nd order), and Piecewise Parabolic Advection (3rd order). In our case we
only studied donnor cell and slope limiter, as PPA is more complex to implement
and comes at a significant performance cost.

For a slope limiter case, they can be written as being

Q∗x
(i+1/2,j,k) ≡

Q(i,j,k) + ax
(i,j,k)

(
∆x− vx

(i+1/2,j,k)∆t
)

/2 if vx
(i+1/2,j,k) ⩾ 0

Q(i+1,j,k) − ax
(i+1,j,k)

(
∆x + vx

(i+1/2,j,k)∆t
)

/2 if vx
(i+1/2,j,k) < 0

,

(2.41)

and similarly on the other axis, where a is the limited slope related to Q. In this
case, the donnor cell method corresponds to a = 0.

To estimate the limited slope a on each face, first we compute the slope on each
face

∆Q(i+1/2,j,k) =
(
Q(i+1,j,k) −Q(i,j,k)

)
∆x, (2.42)

∆Q(i,j+1/2,k) =
(
Q(i,j+1,k) −Q(i,j,k)

)
∆y, (2.43)

∆Q(i,j,k+1/2) =
(
Q(i,j,k+1) −Q(i,j,k)

)
∆z. (2.44)

Using those slopes, it is possible to write the limited slope as being

ax
(i,j,k) ≡ Φ

(
∆Q(i+1/2,j,k), ∆Q(i−1/2,j,k)

)
, (2.45)

ay
(i,j,k) ≡ Φ

(
∆Q(i,j+1/2,k), ∆Q(i,j−1/2,k)

)
, (2.46)

az
(i,j,k) ≡ Φ

(
∆Q(i,j,k+1/2), ∆Q(i,j,k−1/2)

)
, (2.47)

where Φ is the slope limiter function times one of the two slopes, for example, when
using the Van Leer slope limiter

Φ(∆Q−, ∆Q+) =

0, if ∆Q− ∆Q+ < 0

2 ∆Q− ∆Q+

∆Q− + ∆Q+
, otherwise

. (2.48)

Stone & Norman (1992a) mentions the possibility of using so-called consistent
transport to reduce the diffusivity of the transport step, in which case the trans-
ported quantities are instead the ones divided by the density. Lastly, as mentioned
in Beńıtez-Llambay & Masset (2016) the transport scheme as presented conserves
momentum.

67

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

2.9. Courant-Friedrichs-Lewy condition
The stability criterion, also called Courant-Friedrichs-Lewy (CFL), for this scheme
to not develop grid-scale oscillations and be stable over the course of the simulation
is, as detailed by Stone & Norman (1992a),

∆t ≤ min(∆x)/(|v|+ cs), (2.49)

where ∆t is the timestep duration, ∆x the grid cell size, v the fluid velocity vector,
and cs the sound speed. This condition expresses that information must not travel
more than a grid cell per timestep, see Richtmyer & Dill (1959) for the rigorous
derivation.

2.10. Performance
On most architectures, floating-point division is one of the most costly instructions.
The main advantage of the Zeus scheme is revealed when we count them. Assuming
that division by constants can be precomputed such that we multiply by the inverse
instead, this leaves 3 divisions per cell in substep 1, which can be reused in substep
2. In substep 3, only one division per cell is applied. In the transport step, there
is one division per expected quantity in the Van Leer slope plus one per cell to
reconstruct the velocities at the end of the step. This amounts to a total of 11
divisions per cell, which is very low. For comparaison in a HLL Riemann solver, there
are roughly, per direction, 2 square roots for the soundspeeds, 3 for the conservative
to primitive conversion, and 2 in the HLL flux itself. This results in 15 divisions plus
6 square roots only for the Riemann solver. This shows why the Zeus is appealing
computationally. We note, however, that this may not necessarily be true on modern
hardware, which would be memory-bound instead of compute-bound since the Zeus
scheme involves more memory-bound than a Godunov-type solver.

68

3. FINITE VOLUME (GODUNOV)

3. Finite volume (Godunov)

3.1. Formulation of hydro equations
An alternative approach to solve the hydrodynamics equation in astrophysics is to
use Godunov-type schemes. They have many advantages compared to traditional
finite element schemes since they are, by construction, conservative. In order to
present Godunov’s type schemes (schemes built using the Godunov method), it is
necessary to initially introduce several concepts. We follow hereafter the approach
of Toro (2013).

The starting point of the Godunov method is to rewrite the basic conservative
form of the Euler equations (Eq. 2.4- Eq. 2.6) as a hyperbolic conservation law

∂tU + ∇ · F(U) = 0, (2.50)

where U = (ρ, ρv, E) denotes the state vector made of the conservative variables,
and F = (ρv, ρvv + P I, (E + P)v) the flux function. This form contrasts with
the quasi-linear form of the Euler equation that involves the physical or primitive
variables, for which W = (ρ, v, P) is the primitive variable state vector. For instance,
in a single dimension the primitive form of the Euler equation is:

∂tW + A(W)∂xW = 0, A(W) =

vx ρ 0
0 vx 1/ρ
0 ρc2

s vx

 , (2.51)

where cs is the sound speed as determined by the equation of state. The matrix A can
be diagonalized using 3 eigenvalues and eigenvectors corresponding to the eigenvalues
(vx − cs, vx, vx + cs). Since the eigenvalues are real numbers, the equation is said
to be hyperbolic. Additionally, its eigenvalues have the dimension of a velocity,
meaning that an eigenvector will move at the speed corresponding to its eigenvalue.
Those velocities are commonly referred to as characteristic speeds. In this particular
instance, the three eigenvalues correspond to the so-called three-wave solutions. For
more complex hyperbolic conservation laws involving a larger number of variables,
they will result in a greater number of degrees of freedom and, consequently, more
distinctive characteristic speeds. In MHD problems, typically, the number of waves
is 7.

3.2. Riemann problem
In the case of the Zeus scheme presented in Sec. 2, artificial viscosities smear shocks,
which results in the absence of discontinuities. This implies that the problem is
smooth, allowing the use of a large class of finite elements methods. However, in
the case of the Godunov method, the opposite approach is taken. The method
relies exclusively on the treatment of those discontinuities. Such discontinuities
correspond to an initial value problem, which is known as the Riemann problem.

69

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

The Riemann problem consists of solving the hyperbolic conservation law (Eq. 2.50)
for a discontinuity expressed as the following initial condition:

U(x, 0) =
U

L, x < 0
UR, x > 0

. (2.52)

In practice, the Riemann problem is frequently solved in an approximate manner
by employing a Riemann solver, whose objective is to provide or approximate the
solution state U(x, t) at time t from that initial condition.

Furthermore, a possible generalization of the Riemann problem is one where the
values of the derivatives up to an order of U on both sides of the discontinuity and
possibly a source term are included. Such a problem is commonly referred to as the
generalized Riemann problem (see Toro 2013, Chapter 19).

3.3. Cell averaging
In a finite element method, one seeks to discretize a problem into a set of values at
given positions, where the values would ideally match the analytical solution at the
given locations of the discretization points. In a finite volume method, space is also
discretized as a finite set of cells. However, the so-called cell values represent instead
an average of the values of a given field within the cell, instead of their value at a
given location. Formally, for a cell corresponding to the subspace Ωi whose volume
is Vi the cell value Ut

i at time t is defined as

Ut
i = 1

Vi

∫∫∫
Ωi

U(r, t)dV, (2.53)

where U(r, t) is the field that is discretized.

x

U(r)

xixi−1 xi+1

Ui

Ui−1

Ui+1

Figure 2.2: Illustration of the cell averaging procedure: the red curve is the real
field, and the black horizontal line represents the averaged values on each cell.

Godunov’s method’s key insight is that such a discretized field is actually made
of cells whose value within the cell is constant, resulting in discontinuities at the in-
terfaces with other cells. Formally, the state of the discretized field in one dimension

70

3. FINITE VOLUME (GODUNOV)

at a given timestep is

Ũ(x, t) =
∑

i

Π[xi−1/2,xi+1/2] (x)Ut
i. (2.54)

where Π is the Step function. Similar logic can be applied to three dimensions. In
such a situation, there is a Riemann problem to be solved, at each interface between
two cells. By assuming that over a duration ∆t information from one interface cannot
reach any other interfaces, every Riemann problem is independent. Therefore, for
a cell i, solving the two Riemann problems RP (Ut

i−1,Ut
i) and RP (Ut

i,Ut
i+1) allows

computing the state of the field Ũ(x, t+∆t) whose initial condition is the discretized
field Ũ(x, t) Eq. 2.54. Lastly, by applying the averaging procedure to the obtained
field in each cell, one can compute the new cell values

Ut+∆t
i = 1

V

∫∫∫
Vi

Ũ(x, t + ∆t)dV. (2.55)

In practice, Godunov-type schemes can be described as cell updating based on
the sum of incoming fluxes for all given fields. Formally,

Ut+∆t
i = Ut

i −
∆t

Vi

 ∑
cells j

Fi→j

 , (2.56)

where Fi→j is the flux between a cell i and a cell j (rigorously also over a dura-
tion ∆t), which is not null only if they share a common face, and Fi→j must be
antisymmetric in order for the total quantity to be conserved. Aside from the time
integration, the challenge of such method lies in computing this flux. In order for
the fluxes in Eq. 2.55 to be equal to the result of the averaging procedure Eq. 2.56,
one should select fluxes corresponding to each face such that they reproduce the av-
eraging of the solutions of the Riemann problem. We therefore seek a flux function
that corresponds to the averaged outcome of the Riemann problem. Specifically, we
want a flux function that depends on the cell values on both sides of the Riemann
problem

Fi→j = RS(Ut
i,Ut

j), (2.57)

where RS is called a Riemann solver.
Mathematically, the Godunov method can be thought of as follows: we begin

by integrating in time and space over a cell for a length of time ∆t the hyperbolic
conservation law. The initial conditions are the discontinuous approximation of the
field shown in Eq. 2.54:

Integrated law :
∫∫∫

Vi

dV
∫ t+∆t

t
dt [∂tU + ∇ · F(U)] = 0, (2.58)

Initial condition : U(r, t) =
∑

i

Π(r ∈ Vi)Ut
i. (2.59)

71

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

We can integrate the time derivative part with respect to time and space and use
the Gauss theorem for the flux term. Hence,

Ut+∆t
i − Ut

i

∆t
+ 1

Vi

∮
∂Vi

dS
1

∆t

∫ t+∆t

t
dtn · F(U) = 0, (2.60)

where the surface integral can be divided into a sum over the faces

Ut+∆t
i − Ut

i

∆t
+ 1

Vi

 ∑
j,common face

∫
Vi∩Vj

dS
1

∆t

∫ t+∆t

t
dtn · F(U)

 = 0. (2.61)

It is possible to express the Godunov scheme stated above by defining the fluxes in
Eq. 2.56 as being

Fi→j =
∫

Vi∩Vj

dS
1

∆t

∫ t+∆t

t
dtn · F(U), (2.62)

where we observe that the seeked flux function comes from a procedure of averaging,
both in time and space. It is the actual quantity estimated by a Riemann solver. In
practice, this means that the choice of scheme is solely based on the time integration
and the choice of a Riemann solver. Such a numerical method is commonly referred
to as a first-order Godunov method, as it was published in Godunov (1959). It is a
first order scheme in both space and time. However, even if the resulting scheme is
stable, it is very diffusive (Toro, 2013).

3.4. High order space reconstruction
This issue of over-diffusivity remained unsolved for a long time. It was van Leer
(1979) that showed that it could be fixed by instead using a so-called high-order
Godunov scheme, where the higher order refers to both space and time integration.
The key insight was the realization that inside a cell, a piecewise linear reconstruction
could be used to reconstruct a slope within the cell instead of a constant value to
improve accuracy when interpolating the value to the faces. Instead of a plateau,
each cell now has a slope that is reconstructed from neighboring cells. Therefore,
the initial condition at the beginning of the time step is

U(r, t) =
∑

i

Π(r ∈ Vi)
(
Ut

i + (r− ri) · (∇U)t
i

)
. (2.63)

Eq. 2.63 implies that on both edges of the cells, we have generalized Riemann prob-
lems instead of standard ones, rendering the direct utilization of the Riemann solver
previously introduced incorrect as they only solve for the standard Riemann prob-
lem. To address this limitation, an alternative approach is to employ the MUSCL-
Hancock method, wherein a predictor corrector scheme is used to estimate the inte-
gral Eq. 2.62 by calling twice the Riemann solver to correct the standard Riemann
problem solution into its generalized case. It is important to note that, a Riemann

72

3. FINITE VOLUME (GODUNOV)

solver capable of exactly solving the Riemann problem Eq. 2.62 can be done in one
dimension, down to floating point precision. However, when using a predictor cor-
rector scheme, even with an exact Riemann solver, the estimation of Eq. 2.62 will
always be approximate unless one directly solves the generalized Riemann problem.

However, the MUSCL-Hancock approach has the drawback of requiring two calls
to the Riemann solver, which is already expensive. This resulted in the development
of alternative methods to assess the outcomes of the slopes. For example, we will
present the MUSCL-midpoint method (Toro, 2013, Sect. 14.4.2) that is used in the
Godunov scheme of the code RAMSES (Teyssier, 2002). Firstly, the reconstruction
is performed on the primitive variables instead of the conservative ones. As noted by
Van Leer (2006), it is advisable to employ primitive variables during interpolation
as it ensures that E > ρv2/2 thereby preventing any negative pressures. Formally,
in one dimension, in a cell i at time t with the primitive variables Wt

i and their
numerically estimated gradient ∂xWt

i, at the interface i + 1/2, the left and right
values are:

Wt+∆t/2
i→i+1/2 = Wi +

(
∂W
∂t

)t

i

∆t

2 +
(

∂W
∂x

)t

i

∆x

2 , (2.64)

Wt+∆t/2
i+1→i+1/2 = Wi+1 +

(
∂W
∂t

)t

i+1

∆t

2 −
(

∂W
∂x

)t

i+1

∆x

2 , (2.65)

in which, using the quasi-linear form of the Euler equation on the primitive variables

x
xixi−1 xi+1

Wi

Wi−1

Wi+1

Interpolation

x
xixi−1 xi+1

Wt+∆t/2
i→i+ 1

2

Wt+∆t/2
i→i− 1

2

Wt+∆t/2
i−1→i− 1

2

Wt+∆t/2
i−1→i− 3

2

Wt+∆t/2
i+1→i+ 3

2

Wt+∆t/2
i+1→i+ 1

2

Figure 2.3: Illustration of the interpolation of values onto faces by utilizing the
reconstructed slopes of cells. On the left, the cells and their respective values are
depicted, along with the slope that corresponds to the estimated gradient. On the
right, we demonstrate the process of first moving the slope by half a timestep and
then interpolating the values using the slope to the faces. The complete procedure
corresponds to Eq. 2.66 and Eq. 2.67. Here, the quantities corresponding to time t
are in black, and the ones at time t + ∆t/2 are in blue.

73

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

Eq. 2.51, one can rewrite those under the convenient form:

Wt+∆t/2
i→i+1/2 = Wi +

(
I
∆x

2 −A
∆t

2

)(
∂W
∂x

)t

i

(2.66)

Wt+∆t/2
i+1→i+1/2 = Wi+1 +

(
−I

∆x

2 −A
∆t

2

)(
∂W
∂x

)t

i+1
(2.67)

Finally, the flux is estimated using the first-order Godunov method, but with the
corrected values on the faces.

Fi→i+1 = RS(Wt+∆t/2
i→i+1/2,W

t+∆t/2
i+1→i+1/2), (2.68)

x
xixi−1 xi+1

Wt+∆t/2
i→i+ 1

2

Wt+∆t/2
i→i− 1

2

Wt+∆t/2
i−1→i− 1

2

Wt+∆t/2
i−1→i− 3

2

Wt+∆t/2
i+1→i+ 3

2

Wt+∆t/2
i+1→i+ 1

2

Figure 2.4: Representation of the corresponding Riemann problem that is solved in
the MUSCL-midpoint method. Here, the figure corresponds to the situation at the
end of the interpolation in Fig. 2.3, where the Riemann problems solved in practice
are in red. From this figure, we see that the problem is a generalized Riemann
problem at each interface, which is here approximated by a standard one. It should
be noted that the discontinuity located in the middle of the cell is not accounted for
and does not correspond to a Riemann problem that the model accounts for.

In practice, this procedure leads to a second-order scheme in both space and
time. We did not find a proof that such an approximation of the generalized Rie-
mann problem here by a standard one still yields the correct result. We believe that
the explanation should rely on the following argument: the Cauchy-Kowalewski
theorem allows for the expansion of the generalized Riemann into a standard Rie-
mann problem and a perturbation of a higher order. When utilized in conjunction
with the interpolated values in space and time, this correction is of a higher order
than the solver’s order, thereby allowing us to disregard the distinction between the
generalized and the standard Riemann problem in this instance.

74

3. FINITE VOLUME (GODUNOV)

3.5. TVD slopes
In practice, the scheme will be of second-order when studying smooth flows, but it
may also lead to additional spurious oscillations in the presence of discontinuities.
The reason for this is the implementation of the slope reconstruction procedure.
When we reconstruct the slopes, it is possible to create new maxima, as shown in
Fig. 2.5. The property of not creating new extrema that would have led to spurious

x
xixi−1 xi+1

Wi

Wi−1
Wi+1

new extremum

Figure 2.5: Example of a slope reconstruction leading to the creation of a new
extremum.

oscillations is when the scheme is said to be TVD (Total Variation Diminishing).
TVD schemes were initially developed in van Leer (1974) and the concept of the
Total Variation Diminishing Scheme was introduced by Harten with its theorem
stating that ‘a Total Variation Diminishing (TVD) scheme is monotonicity preserv-
ing’ (Harten, 1983). It is also possible to design schemes that are TVD graphically
from the graph of Sweby (1984). To formalize this concept, we base our work on
the work of Zou (2021).

Firstly, for a cell i and its neighbors i − 1 and i + 1, we can define the three
differences:

∆− = Wi −Wi−1, (2.69)
∆+ = Wi+1 −Wi, (2.70)
∆t = ∆− + ∆+ (2.71)

(2.72)

and the related ratios are defined as

sr = ∆t

2∆x
, (2.73)

f = ∆−

∆t

, (2.74)

r = ∆−

∆+
, (2.75)

75

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

where we assume that cells have a constant size ∆x. In order for the reconstructed
slopes to be TVD, we compute the new slope s of the cell such that

s = ϕ(f)sr = ϕ

(
f = ∆−

∆t

)
∆t

2dx
,

where ϕ(f) is called a slope-limiting function. As presented in Zou (2021), being
TVD corresponds to having the following properties on the slope limiting function
ϕ(f)

TVD rules

• If Wi is a local extremum, −∞ < f < 0 and 1 < f < +∞ the slope
must be null to avoid creating new extrema, i.e.

ϕ(f) = 0, f ∈ (−∞, 0] ∪ [1, +∞)

• When Wi is in between Wi+1 and Wi−1, 0 ≤ f ≤ 1, the slope must not
create new extremas(as on Fig. 2.5). This condition on the new limited
slope corresponds to ϕ(f) ≤ 4f and ϕ(f) ≤ 4(1 − f) on the interval
[0, 1].

However, this condition while restoring the TVD property is not sufficient to en-
sure that the provided reconstruction results in a high-order Godunov scheme. For
instance, a valid TVD slope limiting function is ϕ(f) = 0. However, this does cor-
respond to the absence of reconstruction, which is the first-order Godunov scheme.
The TVD condition on slope limiters can be extended to a so-called high-order TVD
limiter, which ensures that the resulting scheme is also high-order. This condition,
graphically explained in Zou (2021), is that the reconstructed slope must lie in be-
tween the smallest of the following four slopes: current cell center to the edge of
the neighbor cell, current cell center to the centers of the neighbor cell, on both
neighbors. Formally, this corresponds, using the slope ratios to

High-order TVD rules

If min2(a, b, c, d) gives the interval bound by the two smallest values of the
four values a, b, c, d.

• If Wi is a local extremum, −∞ < f < 0 and 1 < f < +∞ the slope
must be null to avoid creating new extrema, i.e.

ϕ(f) = 0, f ∈ (−∞, 0] ∪ [1, +∞)

• ϕ(f) ∈ min2({2f, 4f, 2(1− f), 4(1− f)}), f ∈ (0, 1),

where 2f, 4f, 2(1− f), 4(1− f) are the aforementioned four slopes.

76

3. FINITE VOLUME (GODUNOV)

Graphically, the TVD rules can be summarized as shown in Fig. 2.6.

f

ϕ(f)

4f

2f

4(1− f)

2(1− f)

0 1/21

1

Figure 2.6: Illustration of the TVD regions: The light gray region is the TVD region,
and the gray region is the high-order TVD region. The black curve depicted in this
graph represents the Van Leer slope limiter.

In summary, using a slope limiter, the primitive value interpolation is now made
as follows: (

∂W
∂x

)t

i

= ϕ

(
f = ∆−

∆t

)
∆t

2dx
(2.76)

which, when developed, result in the same expression as used in Zeus for the Van
Leer slope limiter (Eq. 2.48).

3.6. Courant-Friedrichs-Lewy condition
The CFL condition for the Godunov scheme is analogous to that of the Zeus scheme,

∆t ≤ min(∆x)/(|v|+ cs), (2.77)

where ∆t is the timestep duration, ∆x the grid cell size, v the fluid velocity vector,
and cs the sound speed. From the characteristic speed presented Sec. 3.1 we note
that this corresponds to the condition that the largest characteristic speed must not
propagate by more than a cell every timesteps.

3.7. Summary of the scheme
In summary, a second-order in space and time TVD Godunov scheme can be achieved
using the steps described in this section. The steps are summarized in Alg. 1. As

77

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

Algorithm 1: Simplified pseudocode of a Godunov using MUSCL midpoint
interpolation

Data: Ut
i the cell averaged values at time t,

Result: Ut+∆t
i the cell averaged values at time t + ∆t.

1 foreach cells i do
// Conservative to primitive

2 Wt
i ← constoprim(Ut

i);
3 Compute slope limited gradients

(
∂W
∂x

)t

i
;

4 foreach faces i→ j do
5 interpolate quantity to the face at half timestep on both sides

Wt+∆t/2
i→j ,Wt+∆t/2

j→i ;
6 Fi→j ← RS(Wt+∆t/2

i→j ,Wt+∆t/2
j→i);

7 foreach cells i do
8 Un+1

i = Un
i − ∆t

Vi

[∑
faces i→j Fi→j

]
;

mentioned in the case of Zeus, Godunov schemes involve more operations, especially
floating-point divisions, making them computationally expensive compared to sim-
pler ones. However, such limitations as discussed are not as significant on modern
architectures, since they are memory-bound rather than compute-bound. Godunov-
type schemes also offer significant modularity, as the interpolation and Riemann
solver are two distinct and relatively independent components of the scheme.

3.8. Extension to mesh refinement

Refinement

Derefinement

Figure 2.7: Example of a dynamic refinement procedure. In this case, an initially
uniform grid is refined. As a result of the refinement, the number of neighbors per
cell is subject to variation.

As mentioned in the introduction, we want to refine simulated problems around
regions of interest. To do so, we use primitive blocks called AMR blocks, which
correspond to a regular grid made of only a few cells forming a cube. Such blocks
can be dynamically refined into smaller blocks under a criterion that can be specified
by the user. This results in the following possible configurations shown in Fig. 2.7.

78

3. FINITE VOLUME (GODUNOV)

Here we still have a list of cells and faces. The difference compared to the regular
grid case is that now the number of faces per cell can vary. The Godunov scheme can
here be easily adapted in its basic form to such a change, as it is already described
per cell and face. The possible changes then include the criteria to control grid
refinement, interpolation, and slope limiting. A typical example of such a method
of using an AMR grid in conjunction with a Godunov scheme is the numerical code
RAMSES (Teyssier, 2002).

3.9. Discussion
Godunov-type schemes offer some significant advantages to simulate compressible
astrophysical flows. Firstly, they naturally provide good accuracy when resolving
shocks by design. Secondly, being written as a sum of fluxes over neighbors, they can
naturally be rewritten as operations on a graph of cells, where a link between two
cells corresponds to a common face. In such representation, fluxes are represented
on the edges of the graph. This approach can naturally be transposed to massively
parallel algorithms, thanks to the abstraction provided by this representation. Ad-
ditionally, such representation makes the Godunov scheme similar algorithmically to
the SPH scheme, allowing for the factorization of many common algorithms for both
schemes. Thirdly, Godunov-type schemes have been found to be robust when ex-
tended to Adaptive Mesh Refinement methods. Lastly, higher-order methods such
as discontinuous Galerkin schemes and ADER rely on different Riemann solvers,
slope limiters, and basis functions. However, the structure of those schemes is very
similar. This means that implementing a Godunov-type scheme is a good first step
when aiming for the implementation of higher-order methods, as they share many
algorithms in their implementations.

Godunov-type schemes are therefore suitable for many applications. However,
they also have some significant drawbacks. Firstly, as mentioned in Sec. 2.10, the Go-
dunov scheme is in general more expensive computationally than the Zeus scheme,
while both schemes result in second-order accuracy in both space and time. Sec-
ondly, the CFL as for the Zeus scheme depends on the local velocity of the cell,
meaning that for advection-dominated systems such as protoplanetary discs, the
scheme will be limited by the velocity within the cells. This is not the case for
Lagrangian methods, where the CFL depends instead on the accelerations or the
local sound speed, reducing the CFL constraints in protoplanetary discs. This issue
can, however, be mitigated by the use of the FARGO advection algorithm to relax
some CFL constraints. Thirdly, it may not be appropriated for flows with complex
geometry that evolve dynamically.

In general, we view the Godunov scheme as a mandatory scheme to implement
in Shamrock for its versatility, modularity, expendability to higher-order methods,
and AMR capabilities, as well as aligning with the state-of-the-art in the commu-
nity.

79

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

4. Meshless (Smoothed particle hydrodynamics)

4.1. Simulated equations
Another approach widely employed in astrophysics is Smoothed Particle Hydrody-
namics (SPH), initially introduced by Lucy (1977); Gingold & Monaghan (1977). In
SPH, instead of relying on grid cells to simulate the flow, we instead use interpolation
point that move with velocities that approximate the one of the fluid. This results in
particles moving with the flow, and is therefore a Lagrangian method. Lagrangian
methods are used for their capacity to handle complex geometries, adapt resolution
to follow the mass, address free boundary conditions, and offer an alternative ap-
proach to grid-based methods for validating nonlinear solutions. In a Lagrangian
form, the Euler equation Eq. 2.1 - Eq. 2.3 can be rewritten in a pseudo-Lagrangian
form.

dρ

dt
= −∇ · v, (2.78)

dv
dt

= −1
ρ

∇P + f , (2.79)

du

dt
= −P

ρ
∇ · v, (2.80)

where d
dt

= ∂t + v · ∇ is called a convective derivative, ρ, v, P , and u denote
the density, the velocity, the pressure, and the specific internal energy of the fluid,
respectively.

4.2. SPH density interpolation
The SPH method is based on the assumption that the density estimates for each
particle (a) are obtained using density interpolation.

Definition ▶ SPH density estimate

The density estimate ρa of an SPH particle a is

ρa =
∑

b

mbWab(ha), (2.81)

Wab(ha) = W (ra − rb, ha), (2.82)

where mb is the mass of the particle b, ha its smoothing length, Wab(ha) the
SPH kernel.

This definition expresses that the density of a SPH particle is a weighted sum of
the masses of its neighbors. The interpolation kernel W is a bell-shaped function
that weakly converges towards a delta Dirac distribution when the smoothing length
h goes to zero. It must satisfy multiple properties.

80

4. MESHLESS (SMOOTHED PARTICLE HYDRODYNAMICS)

1. W must have a norm of unity :∫∫∫
W (r, h)dV = 1, ∀h > 0, (2.83)

2. W is spherically symmetric:
W (r, h) ≡ W (|r|, h), (2.84)

3. W is positive and monotonically decreasing from its center,

4. (∇rW)(0, h) = 0 to avoid instabilities when two particles are too close.
For convenience, the SPH kernel W is defined through a SPH kernel generator
function f such that, in three dimensions:

Wab(ha) = W (ra − rb, ha) = W (|ra − rb|, ha) = Cnorm

h3
a

f

(
|ra − rb|

ha

)
, (2.85)

In practice, the kernel generator f and consequently the kernel W are taken to have
compact support. Although Gaussian kernels are excellent for SPH, they would
be too costly for large simulations, motivating the choice of a compactly supported
function to ensure computational efficiency (see Morris (1996); Price (2012); Dehnen
& Aly (2012) for details). When taken to be with compact support, we define the
kernel generator radius Rkern,f , which is the radius of the compact support of f .
A function f having a kernel generator radius of Rkern,f implies that the compact
support radius of W (·, h) is Rkern,fh.

Modern SPH codes tend to mostly use the Schoenberg (1946) B-Spline (Price,
2012) functions defined as being

fMn(q, h) = 1
2π

∫ ∞

−∞
[sinc(kh/2)]n cos(kq)dk, (2.86)

where sinc(x) = sin(x)/x is the sinus cardinal function. They correspond to a gate
function convoluted with itself n times, hence ensuring compact support in real
space.

The two main SPH kernel generators stand out as being the most used in practice.
The first one is the cubic spline.

fM4(q) =

1
4(2− q)3 − (1− q)3, 0 ≤ q ≤ 1
1
4(2− q)3, 1 ≤ q ≤ 2
0, otherwise

(2.87)

which has a kernel generator radius Rkern,M4 = 2 and a 3d norm Cnorm,M4,3d = 1/π
and the quintic spline

fM6(q) =

(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 ≤ q ≤ 1
(3− q)5 − 6(2− q)5, 1 ≤ q ≤ 2
(3− q)5, 2 ≤ q ≤ 3
0, otherwise

(2.88)

81

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

which has a kernel generator radius Rkern,M6 = 3 and a 3d norm Cnorm,M6,3d =
1/120π. The M4 is convenient since it can provide a correct result while having a
small, compact support and computational cost, while the M6 is more precise but
also more costly both in size and computation. Some examples of typical kernels
are shown in Fig. 2.8.

−3 −2 −1 0 1 2 3
q

0.0

0.2

0.4

0.6

0.8

f
(q

)

M4

M5

M6

WC2

WC4

WC6

Figure 2.8: Example of some of the most used SPH kernels generators.

4.3. Field interpolation in SPH
In SPH, as stated, we only have discrete particles, which are defined only by their
positions, smoothing lengths, and masses. The weight when performing the SPH
interpolation is the particle mass. This means that in order to interpolate a field,
one must use the masses as weight and divide by the density estimate to keep the
equation homogeneous. In practice

⟨A⟩a =
∑

b

mb
Ab

ρb

Wab(ha) (2.89)

≃ctn

∫
ρ(r′)dV

A(r′)
ρ(r′) W (r− r′, h(r)), (2.90)

which, in the continuous limit, would be equivalent to a weighted integral of the
masses. We will discuss this limit later.

As detailed in Price (2012), the derivatives can be estimated as such by deriving
the SPH kernels:

⟨∇A⟩a =
∑

b

mb
Ab

ρb

∇aWab(ha). (2.91)

82

4. MESHLESS (SMOOTHED PARTICLE HYDRODYNAMICS)

However, many possible forms of the derivatives are possible, which yield the same
continuous limit but have very different properties. For example, the symmetric
form is:

⟨∇A⟩a =
∑

b

mb
Ab − Aa

ρb

∇aWab(ha) (2.92)

and the antisymmetric form:

⟨∇A⟩a =
∑

b

mbρa

(
Aa

ρ2
a

+ Ab

ρ2
b

)
∇aWab(ha). (2.93)

Both yield the same continuous limit, but one is symmetric under permutation of
particles and the other is antisymmetric. The form of the derivative can change the
properties of the equations of motion.

4.4. Equation of motion
Equations of motion for the SPH particles can be derived from a Lagrangian (e.g. Monaghan
& Price 2001; Price 2012)

L =
∑

b

mb

[1
2v2

b − ub(ρb, sb)
]

, (2.94)

giving a parallel to its continuous counterpart (Seliger & Whitham, 1968)

L =
∫

ρ0

1
2

(
∂xi

∂t

)2

− u

 dα. (2.95)

From a variational principle, one obtains
dxa

dt
= va, (2.96)

dva

dt
= −

∑
b

mb

(
Pa

ρ2
aΩa

∇aWab(ha) + Pb

ρ2
bΩb

∇aWab(hb)
)

. (2.97)

Ωa = 1− ∂ha

∂ρa

∑
b

mb
∂Wab(ha)

∂ha

, (2.98)

The variational method guarantees that Eq. 2.96 – 2.97 preserve total linear mo-
mentum, angular momentum, and energy conservation up to machine precision.
The term Ωa arises from the fact that ha is chosen in practice to be a function of
the density, and as such, depends on the positions of the particles (Monaghan, 2002;
Springel & Hernquist, 2002).

For the internal energy equation, Eq. 2.81 provides an estimate of the local ex-
pansion rate of an elementary volume of the fluid dV

d
dt

dV = (∇ · v) dV, (2.99)

83

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

without defining volumes explicitly. Indeed, taking the derivative of Eq. 2.81 with
respect to time yields

d
dt

(
ma

ρa

)
= − 1

ρa

dρa

dt

(
ma

ρa

)
. (2.100)

The evolution of internal energy Eq. 2.80 is subsequently calculated according to

dua

dt
= Pa

ρ2
a

dρa

dt
= Pa

ρ2
aΩa

∑
b

mbvab · ∇aWab(ha), (2.101)

where vab ≡ va − vb, and the pressure Pa is related to the density ρa and other
variables through the equation of state.

4.5. Conserved quantities

4.5.1. Momentum

The total momentum in SPH can be written as being

P =
∑

a

mava. (2.102)

Deriving Eq. 2.102 with respect to time and using the balance of forces Eq. 2.97, one
obtains

d
dt

P =
∑

a

ma
d
dt

va

= −
∑

a

∑
b

mamb

(
Pa

ρ2
aΩa

∇aWab(ha) + Pb

ρ2
bΩb

∇aWab(hb)
)

︸ ︷︷ ︸
antisymetric

= 0.

Since the time derivative of the velocity is the sum of an antisymmetric SPH op-
erator, this results in the conservation of the total momentum. This would not
be the case if a symmetric form of the operator was chosen instead, as mentioned
with Eq. 2.93. Additionally, when derived from a Lagrangian, which is translation-
invariant, the form must be antisymmetric as the momentum is conserved due to
Noether’s theorem.

4.5.2. Total energy

The total energy in SPH can be written as being

E =
∑

a

ma

(1
2va · va + ua

)
. (2.103)

84

4. MESHLESS (SMOOTHED PARTICLE HYDRODYNAMICS)

Its time derivative is

d
dt

E =
∑

a

ma

(
va ·

dva

dt
+ dua

dt

)

= −
∑

a

∑
b

mamb

(
Pava

ρ2
aΩa

· ∇aWab(ha) + Pbva

ρ2
bΩb

· ∇aWab(hb)
)

+
∑

a

ma
Pa

ρ2
aΩa

∑
b

mb(va − vb) · ∇aWab(ha)

= −
∑

a

∑
b

mamb

(
Pavb

ρ2
aΩa

· ∇aWab(ha) + Pbva

ρ2
bΩb

· ∇aWab(hb)
)

︸ ︷︷ ︸
antisymetric

= 0.

This means that the time derivative of the total energy is always null. However,
due to the leapfrog integration, variations of the total energy can be measured in
simulations by an order of O(∆2) since the time integrator is symplectic. Formally,
the scheme conserves exactly the energy corresponding to an effective Hamiltonian
whose difference with the simulated one is of order O(∆t2).

4.5.3. Angular momentum

Another important conserved quantity in the context of protoplanetary discs is the
conservation of angular momentum. In SPH it can be written as being

L =
∑

a

mara × va. (2.104)

Its time derivative is

d
dt

L =
∑

a

ma

(
ra ×

d
dt

va

)

= −
∑

a

∑
b

mamb

(
Pa

ρ2
aΩa

ra ×∇aWab(ha) + Pb

ρ2
bΩb

ra ×∇aWab(hb)
)

= −
∑

a

∑
b

mamb

(
Pa

ρ2
aΩa

ra ×∇aWab(ha)− Pa

ρ2
aΩa

rb ×∇aWab(ha)
)

= −
∑

a

∑
b

mamb

 Pa

ρ2
aΩa

(ra − rb)×∇aWab(ha)︸ ︷︷ ︸
=0

= 0.

The angular momentum is always conserved as the force is always antisymmetric
and along the axis between the two particles, resulting in the sum of the angular
momentum derivative being null.

85

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

In summary, as SPH derives from a Lagrangian, it also conserves the correspond-
ing Noether’s invariants. When extending this basic version of SPH, special care
is required to ensure that no invariants are broken. In general, in Shamrock or
Phantom, the conservation of those quantities is checked at all timesteps to be
within the floating point errors (around 10−15 − 10−17) for the momentum, angular
momentum, and d

dt
E. However, since the time integrator is a symplectic one, the

value of the total energy E is not conserved exactly. In a Leapfrog scheme, it is
constant at order O(∆t2). This deviation from the initial value can be mitigated by
lowering the CFL criterion for SPH.

4.6. Artificial viscosity
Similarly to the approach used in the Zeus scheme, in SPH, since we represented
smoothed fields through kernel interpolation, this means that we do not have a
means to represent the Riemann problem in traditional SPH. This was the starting
point for the development of Godunov SPH methods (Inutsuka, 2002) to reintro-
duce the Riemann problem and associated Riemann solvers into SPH. However, to
date, the results are either on par or worse than traditional SPH (Price et al., 2018).
In traditional SPH, however, to address this issue, a Von Neumann shock viscosity
with linear and quadratic terms (Von Neumann & Richtmyer, 1950; Landshoff, 1955;
Margolin & Lloyd-Ronning, 2022) is employed for velocities to circumvent this limi-
tation. In the SPH solver, we use the shock-capturing terms from Price & Federrath
(2010); Lodato & Price (2010) modified from the original formation of Monaghan
(1997a). The extended equation of motion becomes

dva

dt
=
∑

b

mb

(
Pa + qa

ab

ρ2
aΩa

∇aWab(ha) + Pb + qb
ab

ρ2
bΩb

∇aWab(hb)
)

, (2.105)

where

qa
ab =

−
1
2ρavsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise,
, (2.106)

vsig,a = αAV
a cs,a + β|vab · r̂ab| , αAV

a ∈ [0, 1]. (2.107)

To properly capture energy discontinuities, a shock conductivity (also known as
artificial conductivity) is employed for the internal energy (e.g. Noh 1987; Margolin
& Lloyd-Ronning 2022). Eq. 2.101 extends to (e.g. Chow & Monaghan 1997; Price
2012, 2008)

dua

dt
= Pa + qa

ab

ρ2
aΩa

∑
b

mbvab · ∇aWab(ha) + Λcond, (2.108)

86

4. MESHLESS (SMOOTHED PARTICLE HYDRODYNAMICS)

where

Λcond =
∑

b

mbβuvu
sig(ua − ub)

1
2

[
Fab(ha)
Ωaρa

+ Fab(hb)
Ωbρb

]
, (2.109)

vu
sig =

√√√√ |Pa − Pb|
(ρa + ρb)/2 , (2.110)

using Fab(ha) = r̂ab · ∇aWab(ha). We use the symbol βu to represent the shock
conductivity parameter instead of the conventional αu. This change clarifies that
αu is related to the quadratic part of the artificial viscosity β|vab · r̂ab|, rather than
the linear part αAV

a cs,a (Von Neumann & Richtmyer, 1950; Noh, 1987; Margolin &
Lloyd-Ronning, 2022). Writing Eq. 2.105&2.108 with a shock viscosity expressed
as a modified pressure ensures consistent application of the corresponding terms in
both the velocity and energy equations.

We note that the chosen form for the linear plus quadratic artificial viscosity
is similar to the one used in Zeus, which is not a tensor; this can lead to issues
potentially in shear flow (private communication with E. Lynch). This motivates a
potential study on the feasibility of reusing the tensorial artificial viscosity of Zeus
(Stone & Norman, 1992b) in SPH.

4.7. Shock detection
To provide shock detection in order to enable shock viscosity only in regions of
interest, we use the method from Cullen & Dehnen (2010) that was implemented
in Phantom (Price et al., 2018), which is an improved version of the Morris &
Monaghan (1997) switch (see Price 2008, 2012). The value of the shock viscosity
parameter αa is evolved using

dαa

dt
= −(αa − αloc,a)

τa

. (2.111)

The targeted value of the shock viscosity parameter αloc,a is defined using

αloc,a ≡ min
(

10Aa
h2

a

c2
s,a

, αmax

)
, (2.112)

where

Aa ≡ ξa max
[
− d

dt
(∇ · va) , 0

]
, (2.113)

is the shock indicator, and ξa is the corrective factor (Balsara, 1995)

ξ ≡ |∇ · v|2

|∇ · v|2 + |∇ × v|2
. (2.114)

87

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

The rising time τa ≡ ha/(cs,aσd) is parameterized by the decay parameter σd = 0.1,
a typical value for practical cases. In practice, αa(t) is set directly to αloc,a if αloc,a >
αa(t). Similarly to the approach used in Phantom (Cullen & Dehnen, 2010), we
use SPH derivatives that are exact to the linear order to compute

d
dt

(∇ · va) =
∑

i

∂ai
a

∂xi
a

−
∑
i,j

∂vi
a

∂xj
a

∂vj
a

∂xi
a

, (2.115)

where for a given field ϕ, this accurate SPH derivative is

Rij
a

∂ϕk
a

∂xj
a

=
∑

b

mb

(
ϕk

b − ϕk
a

) ∂Wab (ha)
∂xi

, (2.116)

where,

Rij
a =

∑
b

mb

(
xi

b − xi
a

) ∂Wab (ha)
∂xj

≈ δij. (2.117)

Inverting Rij
a and applying it to Eq. 2.116 provides the desired derivative.

4.8. Adaptive smoothing length
In astrophysics, a typical choice consists of choosing ha in a way that the resolution
follows the density

ρ(h) = m

(
hfact

h

)3

, (2.118)

where hfact is a tabulated dimensionless constant that depends on the kernel (e.g. hfact =
1.2 for the M4 cubic kernel). This specific form also implies that the averaged num-
ber of neighbors within the compact support of a given SPH particle is roughly
constant throughout the simulation. Eq. 2.118 must itself be consistent with the
definition of density Eq.5.2, since h depends on ρ and vice versa. Achieving this re-
quires density and smoothing length to be calculated simultaneously by minimizing
the function.

δρ = ρa − ρ(ha). (2.119)
This approach allows an accurate use of ρ(ha) in the algorithms rather than cal-
culating the SPH sum. In practice, the iterative procedure is conducted with a
Newton-Raphson algorithm. This will be covered in more detail in the SPH imple-
mentation in Shamrock.

4.9. Time stepping

4.9.1. Leapfrog integration

By construction, standard SPH is conservative and achieves second-order accuracy
in space in smooth flows. To ensure consistency, time integration is performed using

88

4. MESHLESS (SMOOTHED PARTICLE HYDRODYNAMICS)

symplectic second-order leapfrog integrator (in the same form as used in Price et al.
(2018)), or ‘Kick-drift-kick’ (e.g. Verlet 1967; Hairer et al. 2003):

vn+ 1
2 = vn + 1

2∆tan, (2.120)

rn+1 = rn + ∆tvn+ 1
2 , (2.121)

v∗ = vn+ 1
2 + 1

2∆tan, (2.122)

an+1 = a
(
rn+1, v∗

)
, (2.123)

vn+1 = v∗ + 1
2∆t

[
an+1 − an

]
, (2.124)

where rn, vn and an denote positions, velocities and acceleration at the n−th time
step ∆t. In the scheme presented in Price et al. 2018, a combined iteration is used
to calculate the acceleration an+1 and update the smoothing length at the same
time. After the derivative update a corrector step is applied to the velocity, and its
results is used as a reference to check that the resulting solution is reversible over
time. The correction applied at the end of the leapfrog scheme is as follows

∆vi = 1
2∆t

[
an+1

i − an
i

]
. (2.125)

We use the result of Eq. 2.125 to verify that the maximum correction does not exceed
a fraction ϵv of the mean square correction

max
i

|∆vi|/
√√√√ 1

N

∑
j

|∆vj|2|

 < εv. (2.126)

If any particles fail to meet this criterion, we recalculate the acceleration and apply
the correction step again with v∗ ← vn+1 instead.

Alternative options for the time integrations include Runge-Kutta type schemes,
which are not symplectic, thus not ensuring conservation of energy, and individual
time-stepping schemes, which will not be discussed here.

4.9.2. Choice of the timestep

One of the drawbacks of the previous methods is that they feature a CFL dependent
on the local fluid velocity. This can be avoided in a lagrangian fluid since the method
is invariant under the Galilean transform. The CFL does not depend on the local
velocity but rather on the local signal velocity and local acceleration. The value of
the explicit time step is governed by the Courant-Friedrich-Levy stability condition
(Courant et al., 1928). Following Price et al. (2018) from Lattanzio et al. (1986);
Monaghan (1997b),

∆t ≡ min(Ccour
ha

vdt
sig,a

, Cforce

√
ha

|aa|
). (2.127)

89

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

The first term allows for the correct capture of the propagation of the hydrodynamic
characteristic waves in the fluid at a given resolution. Similarly, the second term
ensures correct treatment of the action of external forces on the fluid. The safety
coefficients are set to the following values: Ccour = 0.3 and Cforce = 0.25.

4.10. SPH dispersion relation
To understand basic properties of SPH,we study the dispersion relation of SPH using
a simple SPH model. We present here the case of a soundwave response of a simpler
SPH model for the gas (details are presented in an novel extended version for dusty
mixture in App.B). To study the dispersion relation of SPH models, let us use the
simpler model:

d
dt

xa = va (2.128)

ρa =
∑

b

mbWab(ha) (2.129)

d
dt

va = −Pa (2.130)

where the pressure force is in the following form:

Pa ≡c2
s

∑
b

mb

(
1
ρa

+ 1
ρb

)
∂Wab

∂x
(2.131)

We then perturb linearly Eq. 2.128–2.129 using the following expressions:

aa = aa,0 + δaa (2.132)
ai = ai,0 + δai (2.133)

δaa = ãgei(kxa,0−ωt) (2.134)
δai = ãdei(kxi,0−ωt) (2.135)

for a = (ρ, x, v) We note that under the following notation the velocity perturbation
is related by a factor −iω to the perturbation on the particule position, ṽg/d =
−iωx̃g/d.

We introduce the SPH continuous limit as taking the number of particles to
infinity, such that they form a continuous distribution. This yields the following
dictionary to convert SPH sums into integrals, shown in Tabl. 2.1. The limit of
SPH to the continuum equations is performed by first taking the continuous limit,
followed by replacing the SPH kernels by Dirac functions. Without providing details,
we figured out during this Ph.D. thesis that the procedure to take the continuous
limit in SPH deserved further study, as it may lead to inconsistencies. This results
in the pressure operator being at first order and using the continuous limit of SPH

P = ei(kxa,0−ωt)c2
sk

2x̃g

[
2Ŵ − Ŵ 2

]
, (2.136)

90

4. MESHLESS (SMOOTHED PARTICLE HYDRODYNAMICS)

discrete continuous
1(W)

SPH = 1
ρ

∑
a maW (xa − bb, h) 1

0(W)
SPH = 1

ρ

∑
a ma

dW
dx

(xa − bb, h) 0∑
a maf(xa) ρ

∫
f(x)dx

Table 2.1: Dictionary of the continuous limit of SPH.

0 1 2 3 4 5 6
k

0.0

0.2

0.4

0.6

0.8

1.0

f̂
(k

)

M4

M5

M6

WC2

WC4

WC6

Figure 2.9: Fourier transform of the SPH kernel generators shown in Fig. 2.8.

91

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

where Ŵ is the Fourier transform of the SPH kernel.
Performing the same perturbation on the equation of motion yields

0 =− iωρ̃ + ikρŴ ṽ, (2.137)

0 =− iωṽ + ikc2
s

ρ

(
2− Ŵ

)
ρ̃, (2.138)

which gives the following dispersion relation for the SPH soundwave:

0 = ω2 − c2
sk

2
[
2Ŵ − Ŵ 2

]
, (2.139)

which corresponds to the standard soundwave dispersion relation for a modified
wave vector k̃2 = k2

[
2Ŵ − Ŵ 2

]
. This means that the closer Ŵ is to unity, the

more precise the scheme with regard to the soundwave. In that regard, Wendland
kernels are, here, the best choice. However, as mentioned, they are significantly
more expensive computationally. Here, M6 offers one of the best tradeoffs between
precision and computational cost. The dispersion relation of the SPH soundwave is
shown in Fig. 2.10.

0 2 4 6 8 10
k2

0

2

4

6

8

10

ω
2

Theory

SPH (M4)

Figure 2.10: SPH soundwave dispersion relation with the M4 kernel, h = 1, and
cs = 1.

As shown in Fig. 2.10, the SPH scheme can resolve soundwaves up to the wave
vector of k ≃ 2. However, the radius of the compact support M4 of the SPH kernel
is 2. This means that a soundwave whose frequency is greater than the particle
interseparation cannot be resolved as expected. For lower frequencies, soundwaves
are resolved with an accuracy related to the second derivative of Ŵ , as the first
derivative at k = 0 is null.

92

5. SUMMARY

5. Summary
In summary, we have presented three numerical methods that are widely used in the
astrophysics community. We have opted to implement those three methods within
Shamrock. For the Zeus scheme, the choice was motivated by the scheme’s simplic-
ity and performance. Additionally, it is a good candidate for prototyping grid-based
solvers while profiling the performances of the framework. Godunov-based schemes
provide a good treatment of hydrodynamical shocks, since the method is specifically
tailored for such problems. Furthermore, they are widely used and benchmarked,
with several developments and extensions, rendering them ubiquitous within hy-
drodynamical frameworks. Lastly, SPH-based schemes, provide the possibility of
resolving complex dynamical geometries, as they provide good conservation proper-
ties for advection effects. In order to implement those three methods in a numerical
framework, we need to support particles, grid methods, and potentially AMR and
staggered mesh. This highlights the need for abstractions that would be compatible
with the three methods (e.g. domain decomposition, load balancing, communica-
tions, etc.). In Shamrock, we regularly seek such abstractions to reduce code
duplication between the methods.

93

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

References
Balsara D. S., 1995, von Neumann stability analysis of smooth particle hydrodynamics–

suggestions for optimal algorithms, Journal of Computational Physics, 121, 357-372
Beńıtez-Llambay P., Masset F. S., 2016, FARGO3D: A New GPU-oriented MHD Code,

ApJS, 223, 11
Chow E., Monaghan J. J., 1997, Ultrarelativistic SPH, Journal of Computational Physics,

134, 296-305
Courant R., Friedrichs K., Lewy H., 1928, Über die partiellen Differenzengleichungen der

mathematischen Physik, Mathematische Annalen, 100, 32-74
Cullen L., Dehnen W., 2010, Inviscid smoothed particle hydrodynamics, MNRAS, 408,

669-683
Dehnen W., Aly H., 2012, Improving convergence in smoothed particle hydrodynamics

simulations without pairing instability, MNRAS, 425, 1068-1082
Gingold R. A., Monaghan J. J., 1977, Smoothed particle hydrodynamics: theory and

application to non-spherical stars., MNRAS, 181, 375-389
Godunov S. K., 1959, A difference scheme for numerical solution of discontinuous solution

of hydrodynamic equations, Math. Sbornik, 271–306
Hairer E., Lubich C., Wanner G., 2003, Geometric numerical integration illustrated by

the Störmer-Verlet method, Acta Numerica, 12, 399-450
Harten A., 1983, High Resolution Schemes for Hyperbolic Conservation Laws, Journal of

Computational Physics, 49, 357-393
Inutsuka S.-I., 2002, Reformulation of Smoothed Particle Hydrodynamics with Riemann

Solver, Journal of Computational Physics, 179, 238-267
Landshoff R., 1955, Technical report, A numerical method for treating fluid flow in the

presence of shocks. Los Alamos National Lab.(LANL), Los Alamos, NM (United States)
Lattanzio J., Monaghan J., Pongracic H., Schwarz M., 1986, Controlling penetration,

SIAM Journal on Scientific and Statistical Computing, 591–598
Lodato G., Price D. J., 2010, On the diffusive propagation of warps in thin accretion

discs, MNRAS, 405, 1212-1226
Lucy L. B., 1977, A numerical approach to the testing of the fission hypothesis., AJ, 82,

1013-1024
Margolin L. G., Lloyd-Ronning N. M., 2022, Artificial Viscosity – Then and Now, arXiv

e-prints, ADS link, arXiv:2202.11084
Mihalas D., Mihalas B. W., 1984, Foundations of radiation hydrodynamics
Monaghan J. J., 1997a, SPH and Riemann Solvers, Journal of Computational Physics,

136, 298-307
Monaghan J. J., 1997b, SPH and Riemann Solvers, Journal of Computational Physics,

136, 298-307
Monaghan J. J., 2002, SPH compressible turbulence, MNRAS, 335, 843-852

94

http://dx.doi.org/10.1016/S0021-9991(95)90221-X
https://ui.adsabs.harvard.edu/abs/1995JCoPh.121..357B
http://dx.doi.org/10.3847/0067-0049/223/1/11
https://ui.adsabs.harvard.edu/abs/2016ApJS..223...11B
http://arxiv.org/abs/1602.02359
http://dx.doi.org/10.1006/jcph.1997.5708
https://ui.adsabs.harvard.edu/abs/1997JCoPh.134..296C
http://dx.doi.org/10.1007/BF01448839
https://ui.adsabs.harvard.edu/abs/1928MatAn.100...32C
http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408..669C
http://arxiv.org/abs/1006.1524
http://dx.doi.org/10.1111/j.1365-2966.2012.21439.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1068D
http://arxiv.org/abs/1204.2471
http://dx.doi.org/10.1093/mnras/181.3.375
https://ui.adsabs.harvard.edu/abs/1977MNRAS.181..375G
http://dx.doi.org/10.1017/S0962492902000144
https://ui.adsabs.harvard.edu/abs/2003AcNum..12..399H
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.1016/0021-9991(83)90136-5
https://ui.adsabs.harvard.edu/abs/1983JCoPh..49..357H
http://dx.doi.org/10.1006/jcph.2002.7053
https://ui.adsabs.harvard.edu/abs/2002JCoPh.179..238I
http://arxiv.org/abs/astro-ph/0206401
http://dx.doi.org/10.1111/j.1365-2966.2010.16526.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.405.1212L
http://arxiv.org/abs/1002.2973
http://dx.doi.org/10.1086/112164
https://ui.adsabs.harvard.edu/abs/1977AJ.....82.1013L
http://dx.doi.org/10.48550/arXiv.2202.11084
http://dx.doi.org/10.48550/arXiv.2202.11084
https://ui.adsabs.harvard.edu/abs/2022arXiv220211084M
http://arxiv.org/abs/2202.11084
http://dx.doi.org/10.1006/jcph.1997.5732
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136..298M
http://dx.doi.org/10.1006/jcph.1997.5732
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136..298M
http://dx.doi.org/10.1046/j.1365-8711.2002.05678.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.335..843M
http://arxiv.org/abs/astro-ph/0204118

5. SUMMARY

Monaghan J. J., Price D. J., 2001, Variational principles for relativistic smoothed particle
hydrodynamics, MNRAS, 328, 381-392

Morris J. P., 1996, PhD thesis, -
Morris J. P., Monaghan J. J., 1997, A Switch to Reduce SPH Viscosity, Journal of Com-

putational Physics, 136, 41-50
Noh W. F., 1987, Errors for calculations of strong shocks using an artificial viscosity and

an artificial heat flux, Journal of Computational Physics, 78–120
Price D. J., 2008, Modelling discontinuities and Kelvin Helmholtz instabilities in SPH,

Journal of Computational Physics, 227, 10040-10057
Price D. J., 2012, Smoothed particle hydrodynamics and magnetohydrodynamics, Journal

of Computational Physics, 231, 759-794
Price D. J., Federrath C., 2010, A comparison between grid and particle methods on the

statistics of driven, supersonic, isothermal turbulence, MNRAS, 406, 1659-1674
Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-

drodynamics Code for Astrophysics, PASA, 35, e031
Richtmyer R., 1948a, Proposed numerical method for calculation of shocks, Report LA-

671, 1–18
Richtmyer R., 1948b, Proposed numerical method for calculation of shocks II, Report

LA-657, 1–33
Richtmyer R. D., Dill E., 1959, Difference methods for initial-value problems, Physics

Today, 50–50
Schoenberg I. J., 1946, Contributions to the problem of approximation of equidistant data

by analytic functions. Part A. On the problem of smoothing or graduation. A first class
of analytic approximation formulae, Quarterly of Applied Mathematics, 45-99

Seliger R. L., Whitham G. B., 1968, Variational principles in continuum mechanics, Pro-
ceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
1–25

Springel V., Hernquist L., 2002, Cosmological smoothed particle hydrodynamics simula-
tions: the entropy equation, MNRAS, 333, 649-664

Stone J. M., Norman M. L., 1992a, ZEUS-2D: A Radiation Magnetohydrodynamics Code
for Astrophysical Flows in Two Space Dimensions. I. The Hydrodynamic Algorithms
and Tests, ApJS, 80, 753

Stone J. M., Norman M. L., 1992b, ZEUS-2D: A Radiation Magnetohydrodynamics Code
for Astrophysical Flows in Two Space Dimensions. II. The Magnetohydrodynamic Al-
gorithms and Tests, ApJS, 80, 791

Sweby P. K., 1984, High Resolution Schemes Using Flux Limiters for Hyperbolic Conser-
vation Laws, SIAM Journal on Numerical Analysis, 21, 995-1011

Teyssier R., 2002, Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES, A&A, 385, 337-364

Toro E. F., 2013, Riemann solvers and numerical methods for fluid dynamics: a practical
introduction, Springer Science & Business Media

95

http://dx.doi.org/10.1046/j.1365-8711.2001.04742.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.328..381M
http://dx.doi.org/10.1006/jcph.1997.5690
http://dx.doi.org/10.1006/jcph.1997.5690
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136...41M
http://dx.doi.org/10.1016/j.jcp.2008.08.011
https://ui.adsabs.harvard.edu/abs/2008JCoPh.22710040P
http://arxiv.org/abs/0709.2772
http://dx.doi.org/10.1016/j.jcp.2010.12.011
http://dx.doi.org/10.1016/j.jcp.2010.12.011
https://ui.adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://arxiv.org/abs/1012.1885
http://dx.doi.org/10.1111/j.1365-2966.2010.16810.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.406.1659P
http://arxiv.org/abs/1004.1446
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930
https://api.semanticscholar.org/CorpusID:125923957
http://dx.doi.org/10.1046/j.1365-8711.2002.05445.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.333..649S
http://arxiv.org/abs/astro-ph/0111016
http://dx.doi.org/10.1086/191680
https://ui.adsabs.harvard.edu/abs/1992ApJS...80..753S
http://dx.doi.org/10.1086/191681
https://ui.adsabs.harvard.edu/abs/1992ApJS...80..791S
http://dx.doi.org/10.1137/0721062
https://ui.adsabs.harvard.edu/abs/1984SJNA...21..995S
http://dx.doi.org/10.1051/0004-6361:20011817
https://ui.adsabs.harvard.edu/abs/2002A&A...385..337T
http://arxiv.org/abs/astro-ph/0111367

CHAPTER 2. NUMERICAL COMPUTATION OF ASTROPHYSICAL FLOWS

Van Leer B., in 16th aiaa computational fluid dynamics conference, booktitle, p. 3559
Verlet L., 1967, Computer “Experiments” on Classical Fluids. I. Thermodynamical Prop-

erties of Lennard-Jones Molecules, Physical Review, 159, 98-103
Von Neumann J., Richtmyer R. D., 1950, A Method for the Numerical Calculation of

Hydrodynamic Shocks, Journal of Applied Physics, 21, 232-237
Zou L., 2021, Understand Slope Limiter – Graphically, arXiv e-prints, ADS link,

arXiv:2102.04435
van Leer B., 1974, Towards the Ultimate Conservation Difference Scheme. II. Monotonic-

ity and Conservation Combined in a Second-Order Scheme, Journal of Computational
Physics, 14, 361-370

van Leer B., 1979, Towards the Ultimate Conservative Difference Scheme. V. A Second-
Order Sequel to Godunov’s Method, Journal of Computational Physics, 32, 101-136

96

http://dx.doi.org/10.1103/PhysRev.159.98
https://ui.adsabs.harvard.edu/abs/1967PhRv..159...98V
http://dx.doi.org/10.1063/1.1699639
https://ui.adsabs.harvard.edu/abs/1950JAP....21..232V
http://dx.doi.org/10.48550/arXiv.2102.04435
https://ui.adsabs.harvard.edu/abs/2021arXiv210204435Z
http://arxiv.org/abs/2102.04435
http://dx.doi.org/10.1016/0021-9991(74)90019-9
http://dx.doi.org/10.1016/0021-9991(74)90019-9
https://ui.adsabs.harvard.edu/abs/1974JCoPh..14..361V
http://dx.doi.org/10.1016/0021-9991(79)90145-1
https://ui.adsabs.harvard.edu/abs/1979JCoPh..32..101V

Chapter 3
Challenges of modern computing

hardware
Contents

1 Introduction . 97
2 Brief history of HPC supercomputing 98
3 Recent evolution of computing hardware 100
4 A deep dive in a GPU . 102
5 GPU execution model . 104
6 GPU performance . 109
7 Expressing parallelism on GPU 118
8 Coding on GPU . 121
9 Coding with SYCL . 127
10 Multi-GPU architectures 131
11 Summary . 133
References . 135

1. Introduction
In this chapter, we will see that modern computing heterogeneous architectures are
complex, with many overlapping execution and memory models, as well as featuring
complex communication topologies. Following this evolution, numerical codes have
to become increasingly complex in order to be able to exploit their full potential.
Hence, extensive planning is required to prevent making decisions that would be
detrimental to the development of a code. Under that perspective, we will first
dive into the inner workings of heterogeneous CPU-GPU architectures to better
understand the choices that have been made in this Ph.D. Thesis. In general, we
value better knowledge of the underlying hardware in order to produce software that
is well tuned for it. To the best of our knowledge, such a review, so far, does not
exist in the astrophysical community.

In this chapter, we will start by understanding the principles of how standard
homogeneous computing architectures work and the history behind them to better
understand the move toward heterogeneous architectures and their design. We will

97

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

follow with a deep dive into the inner workings of GPUs to understand their perfor-
mance and how to optimize for them. Lastly, we will detail how to express code on
a GPU and discuss how to adapt to modern multi-GPU architectures.

2. Brief history of HPC supercomputing

2.1. Monolythic supercomputers (1900-80)
The first Turing complete computer designed was ENIAC, which, with its design,
laid the foundation of modern computing in many ways. Under the influence of Von
Neumann, the computer was transformed into the eponym architecture (Von Neu-
mann, 1993, originally written in 1945). In a Von Neumann architecture, a program
is formed by a series of processing instructions that form a computer program. For-
mally, the computer is divided into four components:

• Multiple ALUs (arithmetic logic unit), which perform basic operations.

• The CU (control unit) is decoding the instructions composing the program to
schedule operations in the ALUs.

• The inputs and outputs of the computer.

• The memory stores both the program that is executed, as well as the data
that the computer is working on (note that it does not need to be in the same
memory).

For example, data is often stored in volatile memory, whereas the program is stored
in persistent memory. To date, most computers are still built using a Von Neumann
architecture, even if its implementation is more complex. ENIAC was built using
vacuum tubes, which were prone to frequent failure. Notably, a common failure cause
was when insects burned on the tubes, creating a thermal stress that shattered the
tube. This yields the common use of the term ‘bug’ to refer to an issue in computing.

Later, with the introduction of transistors at Bell Labs in 1947 by John Bardeen,
Walter Brattain, and William Shockley, started a transistor revolution mostly in
1960, which quickly replaced vacuum tubes thanks to their greater reliability, smaller
size, and lower power consumption.

Using micrometer-sized transistors, Intel created the 4004 microprocessor. It
integrates an ALU and the control unit on a single, small chip, making it a central
processing unit (CPU). The Intel 4004 is the first CPU to be commercialized. CPUs
of this era featured only a small instruction set (46 on the Intel 4004 compared to
more than 1000 on modern x86_64 CPUs with all extensions http://ref.x86asm.
net/geek64.html).

In order to perform complex calculations, more complex computers were required.
An example is the CDC 1604 mainframe computer (mainframe refers to a computer
in a single, sometimes big cabinet) built in 1960, which was the first commercially

98

http://ref.x86asm.net/geek64.html
http://ref.x86asm.net/geek64.html

2. BRIEF HISTORY OF HPC SUPERCOMPUTING

successful mainframe computer. Only a year later, IBM introduced the 7030 Stretch.
This mainframe computer, aside from its 2048 kilobytes and 1.2 ·106 instructions per
second, was the precursor of many technologies still used on modern CPUs to this
day. The first innovation in the 7030 was instruction pipelining (also called out-of-
order execution in modern CPUs), where instructions to be executed are queued in
a pipeline, enabling independent instructions to be executed simultaneously. This
concept is referred to as instruction-level parallelism. For example, moving data can
be performed at the same time as an arithmetic operation if the targeted registers
are different. Registers are the memory space internal to the CPU directly connected
to ALUs. For example, when performing an addition, the ALU will read from two
registers, add the numbers, and return the sum in another register. Additionally,
the IBM 7030 Stretch featured CPU caches to keep frequently used data closer to
the CPU than it would be in the RAM (random access memory), and was the first
computer to implement a prefetcher that would try to load data that would be
used preemptively. A typical pattern would be to load the next value after the one
currently being loaded, such that in the case of a contiguous read, the data would
already be available.

The last computer of this era is the Cray CDC 6600 from 1964, which achieved
2·106 instructions per second with 982 kilobytes of memory. It is the first superscalar
computer. A superscalar computer refers to a computer having multiple ALUs,
where the multiple ALUs are fed using instruction-level parallelism. A superscalar
computer is capable of issuing, for example, multiple additions at the same time,
even if only a succession of addition instructions were written in the assembly of the
program.

So far, all the computers presented are monolithic in the sense that they are a
single computer, regardless of its size.

2.2. Distributed supercomputer (1975-Now)
However, such a model does have limits. As expansion progresses, the components
become increasingly distant from each other. The distance induces a significant
communication latency between the components, limiting the possible performance
of a monolithic system. The solution to this problem is to split the supercomputer
into several smaller computers connected together using a network. This is called
distributed computing and is the basis of modern supercomputers.

The first so-called supercomputer was the S-1 Supercomputer (1975-1988), which
initially had 16 nodes (Smotherman, 2023), where a node refers to a single computer
connected via a network to the other nodes. The project also independently invented
two-bit branch prediction. Taking a branch refers to the moment when a program
performs a conditional jump, typically an if or while statement in modern program-
ming languages. If successfully predicted, a computer can still pipeline executions
ahead of taking the branch to speed up computation. This is called speculative ex-
ecution. Interestingly, branch prediction was considered in the development of the

99

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

IBM 7030 Stretch but was discarded in the final product because it was detrimental
to performance in its implementation.

However, coding for such an architecture was inconvenient because every super-
computer used different communication protocols and implementations. This led
to the creation of the Message Passing Interface in 1992 at MPIworkshop (Walker,
1992). In an MPI program, a single instance of the program is running on each CPU,
and each program is assigned an integer rank on the supercomputer. All programs
are the same, only the rank of each program differs. Additionally, MPI also fea-
tures collective operations such as reductions, broadcasts, and gatherings across the
ranks. The convenience of writing a program once using this standard and running
it on any architecture implementing the standard led to wide adoption and is still
used today in the scientific community.

The last major change to CPUs that appeared in supercomputers was the cre-
ation of multicore CPUs with the IBM POWER4 launched in 2004. In this model,
a CPU is made of multiple cores, each capable of running independent tasks. Typi-
cally used in conjunction with MPI, a typical usecase was to run an instance of the
MPI program per core instead of per node sequentially. In practice, this means that
the distributed supercomputer is made of two levels of parallelism, the first being
the node network, and additionally, the possibility to parallelize within the node,
having multiple CPU cores per node.

3. Recent evolution of computing hardware
CPUs are designed to be able to execute any task. They are not really specialized in a
specific type of calculation. It was realized that having dedicated hardware targeting
specific types of computation can be both more efficient and powerful than always
relying only on CPUs. A first example of such an idea is gravity Pipe featuring
some dedicated accelerators dedicated to speeding up N-Body gravity calculations
(e.g. Makino & Taiji 1998).

Additionally, GPUs (graphical processing units) initially designed for having
large memory bandwidth and exploiting a large number of floating point ALUs in
parallel are starting to be used in supercomputers for their greater energy efficiency
(Qasaimeh et al., 2019), greater memory bandwidth, and floating point performance
while keeping some versatility. In general, the larger the cluster, the more complex
its cooling and networking. Using GPUs, in particular, allows for a great increase in
the computing density of a node. For example, the Summit supercomputer (which
achieved 200PFlops) is made of 2 CPUs with 6 GPUs in each node. An Epyc 7742
64-core CPU from 2019 produces 3.8 TFlops (Dell, 2019) while consuming 225W,
whereas a single Tesla V100 from 2017 produces 14 TFlops with only 300W (Tech-
PowerUp, 2024) while having 6 of them per node. This results in better compute
density and efficiency. This trend can be seen in Fig. 3.1 where top500 best CPU
based supercomputers are stagnating in performance while GPU based supercom-
puters are rapidly increasing in performance.

100

3. RECENT EVOLUTION OF COMPUTING HARDWARE

2017 2018 2019 2020 2021 2022 2023 2024
date

101

102

103
P

F
lo

p
s

#1 GPU

#2 GPU

#3 GPU

#1 CPU

#2 CPU

#3 CPU

Figure 3.1: Relative evolution of the best GPU and CPU in the top 500. Data from
(Top500, 2024)

Figure 3.2: Relative evolution of the best GPU and CPU in the top 500 The next
platform (2023).

Additionally, the push towards better efficiency is also pressured by climate
change and the increase in electricity prices. In general, this means that, in ad-
dition to new supercomputers being built with GPUs, pressure is made to use CPUs
less. This can be seen in Fig. 3.2, where the number of total CPU cores in the
Top500 is decreasing.

This implies that we must adapt current code or develop new ones to target
GPUs and newer computing hardware.

101

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

4. A deep dive in a GPU

4.1. Topology of a computer

PCIe

CPU

GPU

Memory bus

RAM

Memory bus

V-RAM

GPU die

Network card

PCIe

Figure 3.3: Simplified illustration of the internal layout of a computer.

4.1.1. CPU & RAM

To better understand how a GPU is designed and functions in practice, we will first
examine the internal design of a standard computer. A particular focus will be made
on the analysis of the bandwidth, as it is a primary constraint in simulating hydro-
dynamics (a memory-bound scenario). As seen in Fig. 3.3, a standard computer is
made of a Central Processing Unit (CPU) connected to its Random Access Memory
(RAM). This is where most of the data used by the CPU is stored. The CPU is
designed to be able to execute complex workflows involving multiple simultaneous
processes, each of which can be complex on its own. Because of the number of
processes running on the CPU, latency is a primary concern in its design. In short,
a CPU is designed to execute a large number of simultaneous, complex tasks with
minimal latency, using potentially complex CPU instructions. The connection with
RAM is done using memory channels, where a channel can be thought to be a data
bus. The bandwidth between the RAM and the CPU is therefore the product of the
number of channels times the bandwidth of each individual one. For reference with
RAM, a single channel of DDR5-4800 should be around 30GB/s (see Schlachter &
Drake (2019)), where most consumer CPUs have two channels and up to twelve for
the latest and largest AMD CPU currently available (AMD EPYC 9754).

4.1.2. PCIe

To the CPU are attached expansion cards, such as a network card for a GPU,
using Peripheral Component Interconnect Express (PCIe) or equivalent proprietary
solutions. PCIe connections are made of multiple lanes, where the total bandwidth

102

4. A DEEP DIVE IN A GPU

is the product of the number of lanes and the lane bandwidth. Most GPUs are
connected using 16 lanes to maximize the available bandwidth.

4.1.3. GPU

In some computers (most desktop computers but not all laptops), a GPU is also
connected through PCIe to the CPU. Such GPUs are called discrete GPUs, as
opposed to integrated GPUs when the GPU is contained within the CPU die. While
GPUs were initially designed to only execute graphical operations, they are currently
capable of doing so-called GPGPU (where the GP stands for general purpose), where
a GPU will execute a lot of simple tasks. Contrary to CPUs, the focus on GPUs is
to be capable to process a lot of similar tasks. This means that a GPU can execute
tasks from only a few applications at the same time. A given application will execute
thousands of tasks simultaneously on the GPU. In short, GPUs are made to process
a lot of simple, similar tasks in parallel. Latency is not an immediate concern. The
GPU to VRAM bandwidth is about 768.0 GB/s for a NVIDIA RTX A5000 and
up to 3.36 TB/s for a NVIDIA H100 SXM5 96 GB. This shows that, importantly,
the memory bandwidth of a consumer-grade GPU is already higher than that of
a top-of-the-line CPU, whereas a supercomputer-class GPU will have an order of
magnitude higher memory bandwidth than a supercomputer-class CPU. However,
PCIe bandwidth is of the order of 63.015GB/s when using 16 lanes, which is an
order of magnitude slower than the bandwidth of the GPU. This implies that data
transfers between the CPU and the GPU have to be avoided if possible.

4.1.4. Network card

Typical computers also have, a network card capable of a bandwidth of about 1Gbps
(109 bits per seconds).

4.1.5. Bandwidth

In summary, in modern computers, if a given application is bottlenecked by the
memory bandwidth, which is the case in most hydrodynamics applications, it is best
to migrate all of the data to the GPU without needing to retrieve it. In other words,
using the GPU to accelerate only a small step of an application is not efficient most
of the time because of the GPU-to-CPU transfer speed. We note, however, that such
requirements could change as some GPU vendors are replacing architectures with a
CPU and multiple GPUs with so-called APUs (for example, the AMD Mi300 APU),
which combine both a CPU and GPUs on the same die. However, the programming
model and behavior of such an architecture are largely unchanged except for the
CPU-to-GPU bandwidth, which is non-relevant as the CPU and the GPU share
the same memory architecture in such a design. Another experimental approach
is to perform computation internally on the memory die; this, in principle, could
result in reducing the pressure on memory bandwidth as less data transfer would be

103

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

performed. An example of such an architecture is called Samsung-PIM (processing
in memory). However, such an architecture is not yet available for testing.

5. GPU execution model
We will now present the execution model of a typical GPU. Assuming that we have
a given program executing on the said GPU, we will explore how such a program
is made, and how the GPU processes it. Here, the GPU is often referred to as the
device and the CPU as the host as it is scheduling work for the GPU.

5.1. SIMD on CPU
On CPUs, a commonly used model to speed up computation is to use SIMD (Single
Instruction Multiple Data). SIMD consists of loading specific, larger registers with
data, which can be thought of as vectors of multiple values. An SIMD instruction is
a single instruction working on all of those values at the same time. The most basic
example of such an instruction is the addition of two 4-dimensional vectors. On
the CPU die, they are implemented in the ALU as specific circuits able to perform
vectorized operations. In this model, a single instruction is working on multiple data
points at the same time, hence the name SIMD. Here, SIMD can be though as a
single operation performed on multiple slots at the same time.

5.2. SPMD (Single Program Multiple Data)
On a GPU, the model is almost an extrapolation of the SIMD paradigm. It is called
SPMD (Single Program Multiple Data), where instead of single instructions, a small
program is run for each slot that would have been SIMD on the CPU. In reality,
the model is more complex, as the number of slots can vary and the exact method
is not straightforwardly an extension of SIMD.

Contrary to CPUs, GPUs are not equipped with the capability of executing a
program by themselves. Instead, they execute work that is scheduled by the host on
the device, hence the common use of the term accelerator for GPUs or other types
of cards that can perform tasks scheduled by the host faster than the host would.
On GPUs, the main difference lies in the scheduling model used internally.

Definition ▶ GPU compute kernel.

A task executed on a GPU is called a kernel, where multiple simultaneous
instances (or threads) of the kernel program will be executed in parallel by
the GPU.

This scheduling approach is a model called SPMD (Single Program Multiple
Data) Cook (2012), where single programs mean that only a single set of instructions

104

5. GPU EXECUTION MODEL

(the program or kernel in GPU terminology) will be performed, whereas multiple
data means that the same set of instructions will be executed several times with
different inputs. The main difference with traditional execution is that in SPMD,
all instances of the program work collectively on the same global device memory (on
the GPU, the VRAM), as shown in Fig. 3.4. Additionally, there is no synchroniza-
tion across processes in standard SPMD, although we will see how a GPU deviates
slightly from this paradigm. In summary, the basic execution of a GPU-accelerated

Device global memory

Instance 1 Instance 2 Instance NInstance 3

Figure 3.4: Illustration of a SPMD execution model.

program will be a succession of tasks being executed on the host, followed by the
enqueuing of a kernel on the GPU, which will potentially dispatch millions of in-
stances of the same compute kernel. Once the GPU work is complete, execution will
resume on the host as represented on Fig. 3.5.

Enqueue

Host task

Enqueue

Host task Host taskWait GPU Wait GPU
Time

GPU task

Kernel thread 0

Kernel thread 1

Kernel thread N

GPU task

Kernel thread 0

Kernel thread 1

Kernel thread N

Figure 3.5: Basic workflow of a GPU program.

5.3. SIMT parallelism
Unlike CPUs which execute each thread independently, modern GPUs instead ex-
ecute groups of coherent threads, where the size of the group times the number of
groups gives the total number of threads. Within a group, since all compute kernel
threads are executing the same program, GPUs make them coherent. This means
that every thread within a group will execute the same instruction of the compute
kernel at the same time. They are synchronous. This means that a single instruction
will be issued at the same time to all the threads within a group. In other words, this
execution is called Single Instruction Multiple Threads, SIMT parallelism. Contrary
to SIMD, which corresponds to single instructions working on a collection of data,

105

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

SIMT instructions are single instructions that control multiple threads at the same
time. Coherent groups are also grouped together to form a block of threads. On
NVIDIA GPUs, the coherent thread group has, in general, 32 threads, whereas the
block is made of up to 16 groups of coherent threads. Groups of coherent threads
are not coherent together within the thread block, but each thread is within its
own coherent group. Nevertheless, threads within the thread block can perform
collective operations like exchanges, mutexes, and barriers across all threads of the
block. In that sense, GPUs deviate from the standard SPMD model, since threads
within a block can be synchronized and can exchange data. However, there are
no trivial synchronizations across thread blocks (see Sec. 7.3). This means that a
proper representation of a GPU is a SPMD model on the thread blocks and a SIMT
model within the coherent groups in a block. No standard naming for the SIMT
group and thread block is used in practice. In CUDA, they are referred to as Warps
and Blocks, whereas in OpenCL and SYCL they are referred to as wavefronts and
workgroups.

5.4. Streaming multi-processor

SM

L1 Cache / Shared memory (192kB)

L0 Instruction cache

Scheduler (32 threads / clock)

Register file (64kB)

Int32 units fp32 units

fp64 units matrix units

Figure 3.6: Simplified representation of a A100 Nvida GPU Streaming multiproces-
sor adapted from the information provided in Choquette et al. (2021)

On GPUs, the thread block is executed by a special type of processor called a
streaming multiprocessor (SM for short). As explained above, threads are executed
in coherent groups, or warps, in CUDA. When the SM is presented with a block of
threads, for every instruction in the compute kernel, each warp will run the given in-
struction using SIMT parallelism. For example, if the next instruction is an addition,
the first warp of the block will execute the addition, using SIMT parallelism. This
will be followed by the next warp in the block, until all warps have performed the
given instructions. After this step, the sequence repeats with the next instruction
from the kernel until its completion. This strategy of execution of warps is called

106

5. GPU EXECUTION MODEL

round-robin. Other strategies are possible. However, this goes beyond the scope of
the current discussion. Additional details can be found in e.g. Lakshminarayana &
Kim (2010).

In order to execute those instructions, multiple compute units are available on
the SM. Typically, on a NVIDIA A100, there are 16 single-precision integer units,
16 single-precision floating-point units, 8 double-precision floating-point units, and
1 generalized matrix unit called the tensor core in CUDA. It is important to note
that there are almost always fewer floating-point double-precision units than single-
precision ones. This means that the peak throughput of double precision will be
lower than that of single precision. On consumer GPUs, the ratio is worse, with up
to a 64:1 ratio between single and double precision performance.

Similarly to what happens on the CPU, when an instruction is issued, it can
either move data to or from a register file or compute with the data in the register
file. For example in order to add two numbers, the two numbers are first moved
to the register file, in two specific registers, then an addition instruction is called
which will write the result in another register from which the result can be stored.
However the register file on NVIDIA A100 GPUs has a capacity of 64kB available
for the execution of the blocks. Each thread uses a defined at compile time number
of registers (counted in number of 32-bits integers, 4 Byte). This means that if
threads use too many registers the SM will have to use fewer threads per warp for
the register usage of the block to fit in the register file of the SM. This is a situation
where the occupancy of the SM is limited by the register usage.

As mentioned above, threads within a block can perform operations together.
This is done using the shared SM memory, which by definition is shared across all
threads of the block and used to exchange data between them. Like with register
files, using too much shared memory will result in lowered occupancy.

5.5. The GPU & Block scheduling
The GPU itself is made of multiple SMs connected to the GPU RAM, where the
data that the GPU is collectively working on is stored. Its use is accelerated by the
presence of a global memory cache (L2 cache on NVIDIA GPUs), which can read
from and write to the global memory, similarly to the global memory accessible to
all SMs of the GPU (see Choquette et al. (2021) for more detail about the L2 cache
architecture). The GPU global memory in general is either a graphics-DDR type
memory or HBM (high bandwidth memory) memory, where the latter type provides
the best bandwidth, hence its use in compute-focused GPUs. As of 2024, three
types of HBM memory are in use: HBM2, HBM2e, and HBM3, which do not differ
in terms of functionality except for the bandwidth that they provide. On compute-
dedicated recent GPUs, VRAM bandwidth can range from 1.5TB/s (NVIDIA A100
SXM4-40GB) up to 3.5TB/S (NVIDIA H100 SXM5 96 GB). We will explore the
memory bandwidth behavior of GPUs further in Sec. 6.2.

When a kernel is executed by the GPU, the thread blocks are dispatched to the

107

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

GPU
SM

L1 Cache / Shared memory

L0 Instruction cache

Scheduler

Register file

Int32 units fp32 units

fp64 units matrix units

SM

L1 Cache / Shared memory

L0 Instruction cache

Scheduler

Register file

Int32 units fp32 units

fp64 units matrix units

SM

L1 Cache / Shared memory

L0 Instruction cache

Scheduler

Register file

Int32 units fp32 units

fp64 units matrix units

V-RAM

L2 Cache

Figure 3.7: Simplified representation of a A100 Nvida GPU adapted from the infor-
mation provided in Choquette et al. (2021)

SM of the GPU. However, if there are more thread blocks than available SMs, know-
ing that each block is mapped to a SM means that the GPU must schedule blocks
in a specific order. For specific algorithms leveraging block-block synchronizations,
it is important to understand the behavior of scheduling and, or manipulate it. We
will discuss the fact that it is possible on the GPU for one thread block to wait for
another one. However, if a given block is waiting for another block that will never
start before the current ones are completed, the program cannot progress and will
hang. This condition is called a deadlock.

Definition ▶ Deadlock

Situation where a thread is waiting for the completion of an operation that
cannot happen. Typically, when one thread waits for another one to finish
and the other thread is also waiting on the first one.

When writing algorithms that involve block-to-block synchronization, it is there-
fore important to be aware of the guarantee offered by the execution model of the
GPU in order to guarantee the correctness and termination of the program.

108

6. GPU PERFORMANCE

Definition ▶ Forward progress guarantee

A compute kernel with a forward guarantee refers to the property that the
kernel must progress on its execution until completion. In other words, the
kernel must be complete because it has a finite number of operations to per-
form. If the compute kernel has a forward progress guarantee, a deadlock is
not possible.

As detailed in Sorensen et al. (2018) in OpenCL, no block execution ordering
is guaranteed, as a conforming implementation can have an unfair scheduler where
threads are executed sequentially in an order that is not guaranteed by the standard.
This means that if the compute kernel features a thread block that is trivially waiting
for another one, there are no forward progress guarantees. Neither is the case in
CUDA, where, as stated in the programming guide (NVIDIA, 2024a) ‘each block
of threads can be scheduled on any of the available multiprocessors within a GPU,
in any order, concurrently or sequentially, so that a compiled CUDA program can
execute on any number of multiprocessors’. Therefore, no assumptions about the
order are possible when executing on NVIDIA GPUs.

In practice, it is easy to test if for example the scheduling model executes thread
blocks in order with a kernel where a block waits for the previous block to complete.
Such kernel will work only if the scheduler schedules thread blocks in order. If that
is not the case, using atomic operations (see Sec. 7.3), it is possible to compute an
indexing for the blocks that guarantees the ordering of the blocks instead of the
provided one. An example would be to use an atomic counter on each block whose
result is taken to be the block index.

6. GPU performance

6.1. Rooflines
We have discussed the execution model of a GPU. Now, supposing we have a com-
pute kernel that can run on the GPU, we need to be able to optimize it. A possibility
to evaluate the performance of a compute kernel is the number of threads processed
per second, which is a useful metric to report the performance of a kernel. How-
ever, this metric lacks a comparison with the theoretical performance that one could
achieve under ideal conditions. This is why, when optimizing for GPUs, we mea-
sure instead the achieved bandwidth and integer/floating point throughput of the
kernel. Firstly, GPU vendors report the performance numbers of their GPUs for
most primitive types. For example, an Nvidia A100 GPU is capable of producing
19.49 TFLOPS (tera floating point operation per seconds) in fp32 (32-bits floating-
point numbers). This means that if our compute kernel achieves peak performance,
19.49·1012 32-bit floating-point operations should be issued per second. It is therefore
a quantitative metric that can be compared against the achieved fp32 throughput.

109

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

Some compute kernels can also be limited in performance by the achieved memory
bandwidth (memory bound). By comparing the theoretical peak bandwidth, we can
see if it achieved peak memory performance or not. For example, an NVIDIA A100
GPU has a bandwidth of 1.56 TB/s, and a fp64 throughput of 9.746 TFLOPS. This
means that in an ideal scenario, to achieve peak arithmetic throughput and peak
memory bandwidth, we perform 6.24 flop (floating point operations) per transferred
byte of data. This number on modern GPUs is very large for hydrodynamics, where
one would need to perform almost 50 operations per double precision floating point
transferred, or, for example, to calculate the evolution of velocity fields, 150 op-
erations would be required to achieve peak throughput. Except for discontinuous
Galerkin-type methods, which can have a larger arithmetic intensity per bytes, most
hydrodynamic workflows will be memory-bound. This trend is continuing to worsen
with AI workflows pressuring GPUs toward higher computing throughput while not
requiring similar bandwidth upgrades.

A useful tool to represent the performance of a kernel is to plot the bandwidth
against the flops per byte achieved. This is called a roofline (see Fig. 3.8).

Figure 3.8: Exemple of a roofline produced by Nvidia tools. Source : NVIDIA
(2024b)

In practice, achieving peak computing throughput only involves local optimiza-
tion of the kernel program (see Sec. 6.4) and memory access pattern optimizations.
The latter is non-trivial and requires an understanding of the memory architecture
of the GPU.

6.2. GPU memory perfomance
To better understand the behavior of GPU memory, we rely on the material in Jones
(2022) from which we summarize the memory behavior and reproduce the results.

110

6. GPU PERFORMANCE

6.2.1. DRAM cell

bitline

wordline

Figure 3.9: DRAM cell

Data in memory is made of bits, which can take the value of one or zero. In
order to store a bit in memory in RAM, a so-called DRAM cell is used (Fig. 3.9). It
contains a capacitor, which stores electrically the actual value of the bit. In order
to either read from or write to memory, a voltage is sent to the wordline. When
reading, by enabling current through the transistor the bitline will switch to 1 if
the capacitor is holding charges or stay at 0 otherwise. When writing, switching
the wordline to ON will store the value of the bitline in the capacitor. Either way,
reading from a DRAM cell is therefore destructive as one has to take charges from
the capacitor to check if it held charges in the first place. This means that in order
read data from memory, we have to take the value from the cell and store it back
after usage.

6.2.2. DRAM banks

DRAM cells are organized into banks, where a bank is a matrix of DRAM cells.
When one wants to read from memory at a given address, it will point to a line
and a column of the bank. First, the row decoder will switch the corresponding
row’s wordline on, which will pull all the data from the line (or page) into the sense
amplifiers, also called the row buffer. Row buffers have the role of amplifying the
signal recovered from the DRAM cells. When doing so, the data in the line of the
bank is destroyed. At the end of the read, the data will have to be written back in
the line of the bank. For reference, Jones (2022) gives the values for HBM memory
of 16 cycles to load a line into the sense amplifiers, 16 cycles to write back data, and
16 cycles to read column data in the sense amplifiers.

In summary, when performing a single-bit read, the corresponding line is pulled
into the sense amplifiers, then the value is sent from the sense amplifiers to the GPU,
and lastly, the line is written back into the bank.

In practice, the GPU never reads values individually, as it would be inefficient.
Instead, multiple values are pulled at once from the sense amplifier and into the

111

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

Figure 3.10: DRAM bank

GPU L2 cache. This read type is called a burst read, where the burst refers to the
contiguous bits that are pulled from the sense amplifier into the cache. The burst
read has the same latency as a standard column read.

6.2.3. Read latency

Due to the way memory functions, accessing addresses that are close together results
in better performance compared to accessing addresses that are far apart.

In Jones (2022), the result of a benchmark to understand memory bandwidth per-
formance as a function of the address spacing is sown (the figure is shown Fig. 3.11).
However, the details of the benchmark and the explanation of the specific ratios
were not provided. This motivated the following benchmark, done in collabora-
tion with F.Lovascio (currently working at ARM). The benchmark described using
pseudo code in Alg. 2 was coded in SYCL to try to have a benchmark that is as
similar as possible across the device that it was run on. The benchmark consists of
reading a double precision floating point number from indexes that are separated by
s indexes. We then write the value in a result buffer to avoid the compiler optimiz-

112

6. GPU PERFORMANCE

Figure 3.11: Memory bandwidth benchmark showing the memory bandwidth func-
tion of the spacing of addresses being read from.(Adapted from Jones (2022))

Algorithm 2: Memory read spacing benchmark
Data: an The input dataset (double precision floating point), bn The

output dataset (double precision floating point), s read spacing.
1 for i in parallel do

// index that we read from
2 iread← i ∗ (s + 1)%N ;
3 bi ← airead;

ing away the memory read. The benchmark was run with compiler optimizations
(-O3 -march=native) and compiled with the maximum compute capability avail-
able on a given GPU (sm_86 for a Nvidia RTXA5000). On the CPU we used the
OpenMP backend of the AdaptiveCPP compiler, and on the GPU, we used the
CUDA backend of the Intel LLVM compiler. For more details about SYCL compi-
lation, please refer to Sec. 8.2. Fig. 3.12 presents the results of the said benchmark.
We observe that the initial slope and the two plateaus shown on the NVIDIA bench-
mark are reproduced.

We interpret the first slope as being the region where consecutive reads are
contained in the same burst. Initially, when there is no spacing between reads,
the optimal bandwidth is achieved. In that case, a burst of 64 bytes in HBM,
corresponding to 8 double-precision floating points, is stored in the L2 cache of the
GPU. When we read every even index, only four values remain in the burst. Hence,
the bandwidth is halved compared to the peak one. In general, when still in the

113

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

8 16 32 64 128 256 512 1024 2048 4096 8192

stride size (byte)

101

102

103

B
an

d
w

id
th

(G
B

.s
-1

)
1 thread

2 threads

4 threads

8 threads

16 threads RTXA5000

Figure 3.12: Our memory bandwidth benchmark showing the memory bandwidth
function of the spacing of addresses being read from to reproduce the results from
Fig. 3.11.

same burst, the bandwidth corresponds to the amount of burst that is used divided
by the burst size. When we reach a single value used by burst, this leads to the
bandwidth being a factor 8 lower compared to the optimal one. A burst read is
required for every value. Increasing the spacing further has no additional effect,
since one burst is issued per read. Therefore, increasing the spacing has no impact.
This is true until reads are spaced by a page size (the size of a memory bank line,
not to be confused with a cache line size).

To understand the ratio when the spacing equals or exceeds the memory bank
page size, we need to go back to the HBM latencies. When we read multiple values
that are on the same page but not in the same burst from memory, we always pay
for the line read into the sense amplifiers (16 cycles) and the burst read (16 cycles)
for a total of 32 cycles. When the two consecutive reads are from different pages, in
order to read two continuous values, we must change the page loaded in the sense
apmlifier, adding an additional 16 HBM cycles. This adds up to a total of 48 cycles
for this read. In summary, this means that we have an additional one-third reduction
in bandwidth when reads exceed the page size on HBM, explaining the last plateau
on the Nvidia benchmark.

On a CPU, however, we observe that on multicore execution, the bandwidth is
very consistent for any value of the stride size. This behavior was observed on all
large server CPUs we tested from any vendor (AMD Epyc CPU (64 cores), Intel
Xeon (48 cores), and ARM Neoverse (72 cores)).

In summary, on the GPU, only contiguous reads are able to achieve peak band-
width, and the layout of the memory has a very large effect on the achieved band-

114

6. GPU PERFORMANCE

width, up to a factor of 12 on HBM memory. This means that on a GPU, changing
the ordering of the data can have a larger effect than any other optimizations for
any memory-bound workflow. However, similar effects are not observed on modern
multicore CPUs.

6.3. GPUs and branches
Another important aspect of GPU execution is the handling of branches. Condi-
tional statements, such as jumps, change the control flow of the executed program.
However, this seems incompatible with SIMT parallelism, as all threads must ex-
ecute the same instruction. A typical example is an if-else statement where half
of the SIMT threads execute the if branch, and the other half the else branch. In
this case, in SIMT parallelism, all threads will execute both branches, but half of
the threads will be disabled during the if branch and the others ones during the else
branch. This means that both branches are executed sequentially in this case, which
can strongly impact performance. However, compilers perform many optimizations
to suppress such cases as much as possible, and if the kernel is memory-bound, the
additional latency created by the branching will be lower than the memory access
latency, and has thus not impact the performance significantly. Performing memory
operations within a branch hinders many possible compiler optimizations and has a
larger impact.

6.4. SIMD on GPU
The literature on the usage of SIMD on CPUs is extensive, as SIMD has been proven
to be a path toward improved performance. On GPUs, the literature on their per-
formance is very sparse. On NVIDIA and AMD GPUs, the assembly emitted when
compiling most programs. They exhibit vectorized instructions. NVIDIA typically
has only 4-element wide instructions for single precision vectors in its assembly
NVIDIA (2024c).

6.5. Execution latency
When the host is launching a kernel on the device, the driver and the API of the
device have a submission overhead and latency. For example, in Zhang et al. (2019),
it can be seen that the latency and overhead of a kernel submission are of the order
of 10µs. This means that for small kernels that only run in a few µs, these latencies
cannot be neglected. Therefore, small kernels may under-fill the GPU as well as
expose latency, which will result in slow execution even if the kernel is achieving
peak bandwidth or compute. Hence, on GPUs, it is preferable to submit large
tasks, which will hide such overhead.

Additionally, on recent GPU APIs, it is possible to perform asynchronous exe-
cution, meaning that one can queue multiple kernels that will be executed in the

115

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

background, and that we will wait for to recover results. Utilizing async CUDA, one
can hide the submission latency by enqueuing a large number of kernels.

This effect is becoming more and more important as GPUs get faster and codes
get more optimized. For example, as outlined in Páll et al. (2020) Gromacs typically
perform a timestep per 1 ms, meaning that in their case, submission latency can be
significant and is a major concern.

6.6. GPU internal Load balancing

Time

Task 0

Task 1

Task 2

Task 3

Task 4

GPU is ~ idleGPU is busy

Kernel start Kernel end

Task 5

Task 6

SM 1

SM 2

SM 3

SM 4

SM 5

Figure 3.13: Illustration of the execution of a kernel featuring a non-optimal load
balancing.

On multi-node supercomputers, load balancing is a primary concern, as poor
load balancing can reduce the performance of an application by multiple orders of
magnitude, hence the heavy emphasis on it. However, on GPU, even if less taught,
the same issue exists. On the GPU, when a kernel starts, the GPU scheduler will
start to dispatch the block of threads, which can be thought of as tasks, to the SMs,
but the kernel is considered finished only when the last task ends. This means that
having a strong imbalance in the task duration will result in the GPU being largely
idle while waiting for the last task to finish.

This issue was specifically pointed to by Merrill & Garland (2016b), in which he
addresses the issue in the context of sparse matrix vector multiplication.

116

6. GPU PERFORMANCE

6.7. Streams
On the GPU, as we have seen, kernels have to launch many tasks in order to fill
all the SMs of the GPU. For example, on an NVIDIA A100, 108 SMs are available.
In order to fill a SM, at least 32 SIMT threads per SM are required. This means
that the bare minimum to fully utilize the compute-units of a GPU is 3456 threads.
However, in practice, the threshold tends to lie between 104 and 106 tasks. This
means that by default, small kernel dispatch (less than thousands of threads) would
not be able to fully leverage the computing power of a GPU. Additionally, some
workflows require copying data to the GPU, running the kernel, and performing the
copy back, which would leave the GPU idle during the transfer back to the CPU.

In order to circumvent that limitations the concept of streams was introduced in
CUDA 7, and latter was adopted and used in other programming models. A stream
can be thought of as a queue, where a kernel is enqueued for execution on the device
in this stream. For example, this allows the submission of two independent kernels in
two different streams. Ideally, the GPU will run them at the same time in different
SMs. This means that for small kernels, in order to fill the GPU, it is possible to
queue other kernels alongside the small one. This allows us to fill the GPU with
kernels that would be too small individually. Streams also have the potential to be
used to hide latency by enqueuing several kernels and retrieving results only later
when the latency has already been paid. Also, a more common use of streams is
to provide compute communication overlap, where a kernel is computing while the
GPU also performs a transfer on another stream.

However, using many streams can also increase individual submission latency
because the API and GPU driver will have more complex tasks to schedule.

6.8. Optimization guidelines for GPUs
With a mental model of the way GPUs works and what set its performance, it is now
possible to express basic optimization guidelines when coding on GPU architectures.
Firstly, in a memory-bound scenario, improving the data layout is a primary focus, as
we have seen that changes in the layout can result in a factor 12 speedup on HBM
memory. Secondly, we have seen that the streaming multiprocessor has multiple
limitations, two of which are the register file size and the shared memory size,
and that by exceeding them, the SM is forced to reduce the number of concurrent
threads running simultaneously. Therefore, a primary concern in a compute-bound
scenario is to target maximum occupancy by reducing register usage and shared
memory usage. Additionally, because of the way SIMT works, branching can lead
to large performance variations. Additionally, a bad branch pattern may invalidate
the branch predictor memory prediction and speculative execution, leading to an
additional performance penalty. Lastly, in a latency-bound scenario, it is best to
simplify tasks asked of the API, for example, by using kernel fusion patterns (cuda
graphs on NVIDIA hardware) or to queue in multiple streams to hide latency with
compute.

117

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

!
Note that in a memory-bound case, the latency of memory calls can hide the
penalty caused by the presence of branching in the kernel if the memory oper-
ation is the same in all SIMT threads.

7. Expressing parallelism on GPU

7.1. Basic parallelism
We can now start to explore how a given problem can be coded on a GPU.

One task Big tasks Small tasks

Sync

Sync

- Low latency

- Low parallelism

- Mid. latency

- Mid. parallelism

- High latency

- High parallelism

Figure 3.14: Representation of different options to express a succession of operations.
Tasks surrounded by the same color are executed together in parallel.

As discussed, parallism on GPUs is expressed through compute kernels. The
main difference with CPUs is that only compute kernels can be run on the GPU,
and thousands of operations must be run in parallel to fully exploit its potential.
This means that one must be careful in the way a given problem is decomposed on
the GPU. On a CPU, it is possible to just execute only a single big task, which by
definition has no parallelism but exhibits very low latency. This approach can be
referred to as the one-task approach as represented on Fig. 3.14. This is typically why
really low-latency applications do not parallelize on a GPU or CPU, but rather use a
single task with SIMD vectorization (more details in Sec. 5.1). One such example is
the WHFAST N-Body dynamics solver (Rein & Tamayo, 2015; Javaheri et al., 2023),
whose focus is to maximize the number of timesteps performed with a few objects.
In such a case, parallelism is inefficient and adds more latency than any speedup to
the algorithm, which makes the one-task approach better in this case. Using a single

118

7. EXPRESSING PARALLELISM ON GPU

thread for WHFAST512, they achieve a staggering number of 2.4 · 106 iterations per
second on an Intel Xeon Skylake CPU. The next level of parallelism would be to
decompose a problem into a set of tasks that are interdependent. Typically, if one
wants to perform a sum of complex functions, it is possible to compute each value
in parallel, where each evaluation of the function is a task, and have another task
that will perform the sum of the values. The latter task is dependent on all tasks
that evaluate each function. Here, the complete procedure can be thought of as a
task graph.

It is important to note that during the execution of a task, the GPU memory is
not coherent across tasks (see Sec. 7.2), meaning that a given task cannot access in a
controlled way the result of another one (except for atomic operations, see Sec. 7.2).
The GPU memory is therefore coherent only when the tasks are finished, meaning
that a synchronization point must be added after the function evaluations before
summing the results. Such an approach adds a first level of parallelism, the trade
off being, as mentioned above, that the latency of the routine is increased because
of the additional synchronization. In some cases, this first level of parallelism is not
enough to use the full GPU, in which case additional decomposition into smaller
tasks is required. Having many small tasks will maximize parallelism at the cost of
latency.

7.2. Race conditions
On a GPU, thousands of tasks are running simultaneously while working on the same
data. As such, one may want to have multiple tasks that edit the same memory,
for example, to perform reduction operations. However, tasks on the GPU run in
parallel with an order that is not guaranteed. This means that two given tasks can
edit the same memory in an undefined order. This leads to a situation called a
race condition which here would be undefined behavior, where the targeted memory
location is likely to get corrupted by the simultaneous writes.

Definition ▶ Race condition

A situation with two processes or threads, where the outcome depends on the
order of execution.

Definition ▶ Undefined behavior

A situation where the outcome of a section of a program is undefined. There-
fore, the outcome cannot be predicted.

However, as on the CPU, on the GPU, so-called atomic operations are available,
which allows us to solve that issue.

119

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

Definition ▶ Atomic operation

An atomic operation is one that cannot leave the system in a partial state
(hence the name atomic).

When using atomic operations, basically, the memory space is locked for the
duration of the write. Hence, no corruption can happen, and the operation can
be completed. However, the order in which the two threads are written is still
undefined. This solves the corruption issue, but not the undefined behavior.

In order to resolve the issue of the undefined behavior, algorithms that are imple-
mented should be analyzed carefully. For example, having many threads each incre-
menting a counter by one will not be an undefined behavior when all the threads are
complete, and the count will always be the thread count. Thus, this is not undefined
behavior after completion (however, it is during the execution).

!
This operation can still be undefined behavior in the case of an integer overflow,
which itself is undefined behavior in the C++standard. In general, one must be
careful that undefined behavior in an application does not make the complete
application undefined, which would likely crash if one were not able to reason
about the state of the program.

7.3. Single kernel synchronization
In a context where a task is dependent on another one, instead of adding a syn-
chronization point, one can use an atomic to pass messages across tasks. To better
understand the capabilities of such an approach, we can take an example.

Typically, when performing a reduction (situation close to Fig. 3.15), we can
think of four elements. A first pair of tasks will perform the addition of two elements,
thus returning an array with two elements. After the first task, we must synchronize
the result by waiting for the kernel to end. Lastly, we spawn a new task to sum the
two remaining elements, giving us the sum of the array. Using atomic operations, we
can perform a lock-free synchronization of the result. Firstly, the two tasks perform
the additions as previously, but instead of performing synchronization, one of the
tasks will receive through an atomic operation the partial sum and perform the last
sum. As previously discussed, we synchronized some information. However, we did
not issue any additional kernels. Instead, we perform synchronization during the
execution of a kernel.

In general, using atomics to pass information across tasks in a kernel is a way to
avoid having to enqueue multiple kernels. This means that it is possible to reduce
latency using such an approach. However, it means that the tasks, because of the
synchronization through atomics, are now unbalanced.

120

8. CODING ON GPU

Small tasks

Sync

Sync

- Low latency- High latency

- High parallelism

Small tasks

- High parallelism

- Bad load balancing- Good load balancing

Normal

Atomic

Figure 3.15: Representation of different options to express a succession of operations.

!
When using atomic operations, the latency of executing such instructions is
not fixed and can vary from call to call depending on where the data is located
Schweizer et al. (2020). Hence specific care has to be taken when we want to
involve atomic operations otherwise the kernel can be unbalanced, reducing the
achieved performance.

This is the main reason why, except in a very specific case, atomics should be
issued per thread block rather than by individual threads. Having unbalanced thread
blocks can be compensated by using streams, and having unbalanced threads within
the block would be more detrimental. One such example where the trade-off is
worth taking when implementing the prefix sum algorithm as per Merrill & Garland
(2016a), which allows in that specific case to achieve the best performance.

8. Coding on GPU
As stated above, on GPUs, small programs called kernels are launched. However,
because GPUs use a combined SPMD and SIMT model, this yields specific needs in
the language used to program the specific compute kernels associated.

121

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

8.1. History
Initially, GPUs were just designed to be able to render 3-dimensional graphics using
polygons efficiently. This was done using dedicated APIs like OpenGL and DirectX
with fixed pipelines where GPU vendors were implementing drivers directly. Hence,
doing so-called general-purpose programming on a GPU was possible only by using
hacks to force specific operations to be performed. Latter OpenGL (in version 2.0
in 2004 with GLSL) and DirectX (with C graphical also named Cg) introduced
so-called shaders. Where the shader is used to program the shading of pixels or
modify the geometry, it is coded using a C-like DSL (domain-specific language). In
this model, the source of the shared is not in the same translation unit as the host
application. This is a multiple source GPU program.

Definition ▶ Multiple source GPU program

A program where the source for the host CPU and the GPU are not written
in the same language or the same file. In such a model, the host and device
programs are assembled at compiled or runtime.

They were followed by an effort to make general purpose programming on GPUs
possible to ease the development of complex rendering pipelines. Early effort in-
cludes McCool et al. (2002), where the shared program was modified to include
more complex features, and Buck et al. (2004) with BrookGPU and Tarditi et al.
(2006) with LibSh. In both cases, the program is composed of one language that
includes both the GPU kernels and the host code. They are the first attempts at a
single source-programming model for GPUs.

Definition ▶ Single source GPU program

A program where the source for the host CPU and the GPU are written in
the same language or the same file. Or more strictly where both the host and
the device code is within the same translation unit.

Even if those programming models have evolved a lot in the past 20 years,
OpenGL and DirectX shader models still work in a similar way today. However
they still target rendering pipelines more than general-purpose computing. Later,
NVIDIA introduced CUDA in 2007, a single-source GPGPU language based on C.
The same year AMD/ATI released Close To Metal which did not gain much
traction and short-lived since AMD switched fully to OpenCL a few years later.

OpenCL, developed originally by Apple, was introduced in 2009, and backends
were developed by most vendors, including NVIDIA. CUDA became popular due to
the ease of using a single-source programming model, even if it meant being locked to
using NVIDIA GPUs. On the other hand, OpenCL provides versatility as it works
on any hardware, including CPU, FPGA, DSP, ... Following the emergence of those
programming models, a modified version of OpenMP, called OpenACC Wienke

122

8. CODING ON GPU

et al. (2012) was proposed to ease porting codes on GPUs. As of now, only a few
hydrodynamics codes were ported to OpenACC (for example, Gadget-3 Ragagnin
et al. (2020)). This is due to the current support for OpenACC that is quite sparse
and has full support only on the NVIDIA stack, where CUDA is already there.
This explains the low adoption rate of OpenACC, even though it can ease porting a
legacy CPU codebase to GPUs. To ease porting from NVIDIA to AMD GPUs, AMD
released HIP in the ROCm software stack, which, being really close to CUDA, allows
porting code easily from CUDA to HIP, which is not used in the community directly
as other options aiming at portability are more appealing (e.g. SYCL or Kokkos
for exemple). Since version 4.0 of OpenMP, released in 2013, they now support
offloading to GPUs in their target extension. Some implementations are starting to
become available, with LLVM actively making progress toward natively supporting
OpenMP targets. As implementations of this extension are only becoming available,
not much feedback is available on its suitability to port legacy codebases. The
current status of GPU programming is that many programming models are available
to be able to offload code to the GPU. However, not every model supports every
GPU vendor, leading to compromises.

To address that issue, multiple programming models were introduced with the
common goal of being libraries or compilers written on top of multiple backends
targeting existing programming models while keeping the same syntax and code.
They are referred to as portable frameworks. OpenCL is one of them as it is the
only standard that supports all vendors. However, OpenCL is not a single-source
model and is much more complex than, for example, CUDA , hence the low adoption
of OpenCL in astrophysics.

As of now, for a codebase aiming at achieving peak performance while being
portable across vendors and being single source, there are two main solutions to this
portability problem. The first is the Kokkos library introduced by Edwards & Sun-
derland (2012), which, though macros C++template metaprogramming achieves
this goal while making a codebase using Kokkos capable of being compiled directly
by a vendor compiler. Examples of its use in astrophysics are detailed in e.g. Lesur
et al. (2023); Grete et al. (2022). The other one is the SYCL standard, which is a
standard held by Khronos, which already holds OpenGL and OpenCL among many
other well-adopted standards in the industry. The main idea of SYCL is that a
compiler will split the device from the host code and then pass the two sections
independently to the backend and frontend compilers (which can be different). This
allows, for example, transpilling SYCL into PTX (the assembly behind CUDA)
and then compiled using the nvidia ptx compiler into GPU-offloaded applications.
Contrary to Kokkos, SYCL is a programming standard, which means that the spec-
ification is free to be implemented by anyone. Allowing for SYCL conformant code
to be compiled using any implementations (ideally, since in practice small differ-
ences can exist between implementations). Additionally, being a standard means
that conformance tests are written for it. We see SYCL as a promising standard be-
ing adopted in industry in general (see talks about SYCL at the C++conferences).

123

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

Figure 3.16: Main SYCL implementations with their offloading backends. (Source
IOWCL 2024 talk : SYCL union report)

Additionally, Intel is recently working on upstreaming their SYCL compiler to the
upstream LLVM clang compiler (see LLVM discourse). Lastly, it is important to
mention that Kokkos and SYCL share many members in their design committees,
and recently Kokkos released a SYCL backend. In our case, we went with SYCL
to develop Shamrock in order to be able to potentially reach a larger pool of users
and industry experts on GPU programming.

8.2. SYCL
SYCL was initially announced by the Khronos group in March 2014, with its first
version publicly released being SYCL 1.2 in 2015 at the IOWCL conference. Ini-
tially, SYCL was designed as a successor or high-level single-source programming
model on top of OpenCL. And it was mandating the implementation of OpenCL in
the standard, which was a serious limitation of the standard. Alpay & Heuveline
(2020) latter showed that it was possible to implement SYCL over CUDA and Hip
with the hipSYCL SYCL implementation (now renamed to AdaptiveCPP). This
allowed targeting many vendors using multiple backends, whether it was through
CUDA , Hip or OpenCL. Codeplay also implemented a CUDA and HIP backend
in Intel LLVM around the same timeframe. This led to the standard not mandat-
ing OpenCL in subsequent releases and instead being a standard for heterogeneous
computing over any backend.

Currently, two SYCL implementations are mainly used (shown in Fig. 3.16).
The first one is Intel DPC++, which is a forked and modified version of LLVM
that includes SYCL support. It is available in two flavors, either through the

124

https://www.iwocl.org/wp-content/uploads/iwocl-2024-sycl-sou.pdf
https://discourse.llvm.org/t/rfc-add-full-support-for-the-sycl-programming-model/74080

8. CODING ON GPU

Figure 3.17: SYCL ecosystem with the other SYCL implementations. (Source
Khronos website https://www.khronos.org/sycl/)

Intel OneAPI framework or directly using the Intel LLVM on GitHub. This im-
plementation is the first to achieve conformance with the SYCL 2020 standard
and can be compiled to multiple backends: CUDA for NVIDIA, Rocm for AMD,
Level Zero for Intel GPUs, and OpenCL for Intel CPUs and GPUs (even if Intel
OpenCL can be used on AMD CPUs). Additionally, they also target CPUs di-
rectly using a thread pool implementation (see Intel/llvm Github PR 13176). Intel
is planning on upstreaming the SYCL compiler part of DPC++ into LLVM (see
LLVM discourse). The second implementation is AdaptiveCPP, developed mainly
at Heidelberg University. Instead of modifying LLVM, they instead developed a
compiler driver or plugin to add SYCL support (Alpay & Heuveline, 2020) to exist-
ing LLVM installations. Currently, they can target all major vendors using CUDA,
Rocm, OpenCL, and Level Zero. But they do also support an OpenMP backend
and NVC++, the NVIDIA compiler from the HPC SDK, as a plugin. Also, this
implementation stands out with its single-pass SYCL compiler, which first compiles
the SYCL code with the device code only being lower to LLVM-IR, then during
runtime the IR is compiled using just in-time compiling to the kernel code. This
means that a single binary can, in theory, be run on any vendor without having to
be recompiled for new backends. Lastly, many other SYCL implementations are in
development, targeting various hardware, most of which are fairly new and won’t be
in use in this manuscript, although Shamrock may target them in the future for
FPGA (Field Programmable Gate Arrays) offloading or to enable other backends
for example.

In order to discuss the performance of SYCL implementations, a few examples
can be mentioned. Earlier, using SYCL 1.2.1 was compared to Kokkos on a Lat-
tice QCD mini-app Joó et al. (2019). This yields similar performance on NVIDIA

125

https://www.khronos.org/sycl/
https://github.com/intel/llvm/pull/13176
https://discourse.llvm.org/t/rfc-add-full-support-for-the-sycl-programming-model/74080

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

hardware between Kokkos and the Intel LLVM CUDA backend. This result aligns
with the findings of the BabelStream project, (Deakin & McIntosh-Smith, 2020),
aiming at benchmarking common kernels on multiple programming models. Over-
all, except for some outliers, using SYCL or a native implementation gives similar
performance. Deakin & McIntosh-Smith (2020) also found that SYCL gives mostly
a better performance than OpenCL and slightly lower than native CUDA .

However, those projects always test the results on specific benchmarks and not
on a complete codebase. Recently, Gromacs did deprecate the OpenCL backend
because it required too much effort to be maintained and introduced a SYCL backend
to target Intel and AMD GPUs in addition to their heavily optimized native CUDA
backend (Gromacs using SYCL on AMD GPUs). This makes Gromacs a good case
to compare the performance of SYCL and CUDA. This was done by Apanasevich
et al. (2023), which showed similar performance on Gromacs standard benchmarks
using SYCL compared to their native CUDA implementation. They also recently
performed comparison using AdaptiveCPP’s HIP backend recently in Alekseenko
et al. (2024), showing similar result on AMD hardware.

In our case, we are aiming towards future proofing and therefore lean toward
versatility rather than vendor lock-in. Hence, this eliminates CUDA as an option.
Additionally, it is important to note that in 2021 when Shamrock was started, no
codes using Kokkos were yet released in astrophysics, Kokkos did not feature a stable
backend for Intel GPUs, and multiple SYCL implementations were already working
on all major vendors. Additionally, Intel did invest most of their compiler effort in
SYCL . Thus, in 2021, we chose to use SYCL as a programming model. Maybe the
result could have been different today since both Kokkos and SYCL share similar
advantages and inconveniences. In the end, we will probably stick with SYCL to
benefit from the efforts made in Gromacs and industry in general. Additionally,
being a compiler extension, SYCL can provide potentially more optimizations in
the future using MLIR, even if those would be available anyway through the Kokkos
SYCL backend.

126

https://enccs.se/news/2021/09/gromacs-adopts-hipsycl-for-amd-gpu-support/

9. CODING WITH SYCL

9. Coding with SYCL
In SYCL, the kernel is run on a device (which can be a GPU, a CPU, a FPGA,
or any compute device). The kernel is queued on the device by the host, which
is the machine hosting the compute device. The kernel is scheduled and run by a
backend using an event queue, where a given action queued in the queue is linked
to a corresponding event.

In SYCL, the GPU or CPU that we execute compute kernel on is called compute
device, and the host refers to the CPU hosting the compute device. Note that the
compute and host device can be the same CPU.

9.1. Memory model
Two ways of managing memory are available in SYCL. The first one, which was only
introduced in SYCL 2020 to ease porting from CUDA or Hip is Unified Shared
Memory (USM). In a USM model, the user manages pointers pointing to memory
that can be on the device and then only accessible on the device. It can also be
memory only available on the host, called host memory, or shared memory available
on both the host and the device (like CUDA or Hip shared memory, for example,
using Xnack for page migration in AMD).

USM allocations
include <sycl/sycl.hpp>

int main() {
// Create a default queue
sycl::queue q {};

// Allocate on the host
int* data_host = sycl::malloc_host<int>(1024, q);

// Allocate on the device
int* data_device = sycl::malloc_device<int>(1024, q);

// Allocate on a both using shared memory
int* data_share = sycl::malloc_shared<int>(1024, q);

//free the usm pointer
sycl::free(data_host, q);
sycl::free(data_device, q);
sycl::free(data_share, q);

return 0;
}

In a USM application, memory is explicitly managed by the user. The other
option to manage memory in SYCL is buffers, where memory is handled implicitly.

127

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

A buffer is a memory space that gets accessed when used with an accessor (see
latter). The buffer data can be on the host or the device and is migrated implicitly.

Buffer allocations
include <sycl/sycl.hpp>

int main() {
// Create a default queue
sycl::queue q {};

// Create a buffer with wanted size
sycl::buffer<int> buf{1024};

// The buffer destructor automatically free memory
return 0;

}

The buffer accessor model is much simpler to use for a new application, but it can
hinder flexibility since memory cannot be handled explicitly by the standard, and
there is no interoperability in the SYCL 2020 standard, although it is planned for the
next version of the standard. However, most implementations provide extensions for
USM-buffer interoperability. In Shamrock, we have opted for the buffer-accessor
model, as USM was only introduced later to the standard and was fairly new when
the project was started. Additionally, the buffer accessor model provides simpler
and bug-free memory management since it is automatically handled by the SYCL
implementation. We do, however, plan to switch to the USM codebase, allowing
for more flexibility in the management of memory and easing interoperability with
vendor libraries such as NVIDA CUDA ccl libraries, fft libraries, blas libraries, etc.

9.2. Execution model
In SYCL, tasks, also called command groups, are queued in a SYCL queue. For
example, if we have some input data and want to double it on the GPU, one could
bind the host data to a buffer and then perform the doubling task on the GPU.

Exemple of a task with a buffer

include <sycl/sycl.hpp>

int main() {
std::vector<int> vec = // input data

// Create a default queue
sycl::queue q;

// Using a scope force the buffer destructor
// to write back data in the vector

128

9. CODING WITH SYCL

{
// Vector data is now handled by the buffer
sycl::buffer<int> buf { vec.data(), sycl::range<1> { vec.size() } };

// submit a command group to the queue
q.submit([&](sycl::handler& cgh) {

// Request read write access to the buffer
sycl::accessor acc { buf, cgh, sycl::read_write};

// The command group perform a parralel for
cgh.parallel_for(vec.size() , [=](sycl::id<1> idx) {

// Double the value
acc[idx] = acc[idx]*2;

}); // End of the kernel
}); // End of the command group

}

return 0;
}

Here we bind the data to the buffer. Then within the task that we submit to
the command group, we ask for read-write access to the data. This will inform
the SYCL queue that data has to be moved to the GPU, which is all implicit. At
the end of the buffer lifetime the data will also be implicitely copied back in the
std::vector.

Now to discuss the advanced capabilities of SYCL queues, let us consider the
following example:

Task graph exemple

sycl::buffer<int> buf1 = ...; // Input data
sycl::buffer<int> buf2 = ...; // Input data
sycl::buffer<int> buf3 {buf2.size()}; // Output data

sycl::queue q {}; // default queue

//double values in buf1
q.submit([&](sycl::handler& cgh) {

// Request read write access to buf1
sycl::accessor acc { buf1, cgh, sycl::read_write};
cgh.parallel_for(buf1.size() , [=](sycl::id<1> idx) {

acc[idx] = acc[idx]*2;
});

});

//double values in buf2
q.submit([&](sycl::handler& cgh) {

// Request read write access to buf2
sycl::accessor acc { buf2, cgh, sycl::read_write};

129

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

cgh.parallel_for(buf2.size() , [=](sycl::id<1> idx) {
acc[idx] = acc[idx]*2;

});
});

assert(buf1.size() == buf2.size());

//buf3 = buf1 + buf2
q.submit([&](sycl::handler& cgh) {

// Request read access to buf1 & buf2
sycl::accessor acc1 { buf1, cgh, sycl::read_only};
sycl::accessor acc2 { buf2, cgh, sycl::read_only};
// Request write only access to buf3
sycl::accessor acc3 { buf3, cgh, sycl::write_only, sycl::no_init};
cgh.parallel_for(buf3.size() , [=](sycl::id<1> idx) {

acc3[idx] = acc1[idx] + acc2[idx];
});

});

Here the following sequence of tasks is implicitly expressing through accessors a
task graph, represented on Fig. 3.18. This type of graph is called DAG, for Direct

Figure 3.18: Exemple of task graph as represented in SYCL .

Acyclic Graph, as cycles cannot be represented and they must represent actions
going forward in time.

9.3. SYCL datatypes
In SYCL , some vector datatypes are provided. They allow expressing multidimen-
sional objects using native SYCL types. For example, one can:

130

10. MULTI-GPU ARCHITECTURES

Figure 3.19: Internal block diagram of a HPE Cray EX235a node used in the Lumi,
Frontier and Adastra supercomputer (Source: Lumi supercomputer documentation
(2024))

Exemple of usage of SYCL vectors

sycl::vec<float,3> vec1 {0,1,2};
sycl::vec<float,3> vec2 {0,1,2};
sycl::vec<float,3> vec3 {0,1,2};

float result = sycl::dot(vec1 - vec2, vec3);

In this example, SYCL code is compiled in most cases using vectorized opera-
tions to perform the operations on SYCL vectors. This allows for the writing of
complex operations without the need to write SIMD expressions manually. Addi-
tionally, mathematical functions such as cos, sin, exp are also mapped to work on
vectors.

10. Multi-GPU architectures

10.1. Hardware
On multiple GPU nodes, the layout is different from a standard computer. On a
standard consumer desktop computer, each GPU is connected to the CPU using a
PCIe port, but they do not have GPU-to-GPU direct connections. On GPU compute
nodes, however, additional GPU-to-GPU connections are provided in conjunction

131

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

with a faster-than-PCIe connection to the CPU, to avoid running into PCIe bot-
tlenecks. See, for example, the Infinity Fabric links on a HPE Cray EX235a node
shown in Fig. 3.19. Additionally, contrary to common computers, network connec-
tions are directly on the GPU to avoid the additional latency of going through the
CPU for direct GPU-to-GPU communications. Additionally, to further optimize
GPU-to-CPU latency, the CPU is decomposed into blocks of cores called NUMA
nodes. The GPU-to-CPU links are directly connected from a GPU to a NUMA
node, and in order to reduce the latency, it is best to control and exchange data
between those cores and the GPU connected to the NUMA node. Fig. 3.19 shows
the node topology of the CPU-to-CPU connections on a node of the LUMI-G super-
computer. Typically, in applications that are sensible on latency (e.g. Gromacs), the
GPU-to-core bindings can strongly impact the performance, so taking special care
to ensure that the correct block cores are connected to the correct GPU is necessary.

10.2. Usage
In practice, in order to leverage the specific topology of such a node, many ap-
proaches are possible. However, for convenience purposes, almost all multi-GPU
codes, including Shamrock, use one MPI rank per logical GPU (as, for example,
for MI250x GPUs, on the node two GPUs available per physical die). AMD calls
those logical GPUs GCD for graphics compute die. Doing so, the code is written
from the point of view of the GPU, as every instance of the code that is run will
correspond to a GPU or GCD. Direct GPU-to-GPU communications are done using
MPI GPU-aware communications, which are standard MPI calls made on memory
that is owned by the GPU.

Exemple of using MPI GPU-aware with SYCL

include <mpi.h>
include <sycl/sycl.hpp>

int main() {

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

// Create a default queue
sycl::queue q{};

// Allocate on the device
int *data_device = sycl::malloc_device<int>(1024, q);

if (rank == 0) {
// Fill datadevice

}

132

11. SUMMARY

if (rank == 0) {
// Send data from rank 0 using GPU aware MPI
MPI_Send(data_device, 1024, MPI_INT, 1, 0, MPI_COMM_WORLD);

}
if (rank == 1) {

// Receive data on rank 1 using GPU aware MPI
MPI_Recv(data_device, 1024, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
}

// free the usm pointer
sycl::free(data_device, q);

return 0;
}

As shown, it is possible to perform GPU-aware MPI calls using memory managed
by SYCL, as malloc_device will return a USM pointer that is owned by CUDA
or Hip or the backend in general. This means that in SYCL, when using USM
MPI-aware, communications can be used normally with GPU pointers instead of
host pointers as usual. However, this is not the case with SYCL buffers, as the
underlying memory pointer is not exposed.

Lastly, to conclude on the multi-node case, another possibility of using MPI is
through so-called stream-aware MPI, which is GPU-aware MPI that is performed
instead on GPU streams Zhou et al. (2022), which provides an opportunity of re-
ducing or hindering latencies of communications further by not having to wait for
other streams to finish their operations to enqueue the call.

11. Summary
We aim to develop a numerical framework that is efficient on modern computing
architectures, and versatile to target all CPU and GPU hardware vendors. As de-
tailed, we have chosen the use of SYCL standard to ensure portability across all
architectures as well as performance portability, since the majority of SYCL back-
ends currently achieve close to native performance for major GPU vendors. Aside
from portability, we have seen that to develop a GPU-offloading-capable framework,
it is imperative to modify the majority of algorithms and associated programming
paradigms to align with GPU architectures and their distinct performance require-
ments. In general, porting an algorithm to GPU hardware requires extensive work.
However, most GPU algorithms achieve good performance on the CPU. Therefore,
we have chosen to adopt a GPU-centric approach in the development of the frame-
work, as the CPU performance should follow. In summary, on GPUs, we need to
be careful with the data ordering as it strongly impacts performance. We also need
to maximize parallelism whenever possible while keeping latencies as low as possi-
ble. GPU load balancing should be regularly monitored, as it can strongly impact

133

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

the resulting performance. Lastly, to minimize performance interference between
the CPU and the GPU and minimize data transfers, we try to offload almost all
algorithms to the GPU and use the CPU only for task scheduling.

134

11. SUMMARY

References
Alekseenko A., Páll S., Lindahl E., 2024, GROMACS on AMD GPU-Based HPC Plat-

forms: Using SYCL for Performance and Portability, arXiv preprint arXiv:2405.01420
Alpay A., Heuveline V., in Proceedings of the International Workshop on OpenCL, book-

title, pp 1–1
Apanasevich L., Kale Y., Sharma H., Sokovic A. M., 2023, A Comparison of the Perfor-

mance of the Molecular Dynamics Simulation Package GROMACS Implemented in the
SYCL and CUDA Programming Models

Buck I., Foley T., Horn D., Sugerman J., Fatahalian K., Houston M., Hanrahan P., 2004,
Brook for GPUs: stream computing on graphics hardware, ACM transactions on graphics
(TOG), 777–786

Choquette J., Gandhi W., Giroux O., Stam N., Krashinsky R., 2021, Nvidia a100 tensor
core gpu: Performance and innovation, IEEE Micro, 29–35

Cook S., 2012, CUDA programming: a developer’s guide to parallel computing with GPUs,
Newnes

Deakin T., McIntosh-Smith S., in Proceedings of the International Workshop on OpenCL,
booktitle, pp 1–11

Dell 2019, Dell website
Edwards H. C., Sunderland D., in Proceedings of the 2012 International Workshop

on Programming Models and Applications for Multicores and Manycores, booktitle,
PMAM ’12. Association for Computing Machinery, New York, NY, USA, pp 1–10,
doi:10.1145/2141702.2141703, https://doi.org/10.1145/2141702.2141703

Grete P., et al., 2022, Parthenon – a performance portable block-structured adaptive mesh
refinement framework, arXiv e-prints, ADS link, arXiv:2202.12309

Javaheri P., Rein H., Tamayo D., 2023, WHFast512: A symplectic N-body integrator for
planetary systems optimized with AVX512 instructions, The Open Journal of Astro-
physics, 6, 29

Jones S., 2022, How CUDA Programming Works, Talk given at GTC Digital Spring,
https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41101/

Joó B., Kurth T., Clark M. A., Kim J., Trott C. R., Ibanez D., Sunderland D., Deslippe
J., in 2019 IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC), booktitle, pp 14–25

Lakshminarayana N. B., Kim H., in Workshop on Language, Compiler, and Architecture
Support for GPGPU, booktitle,

Lesur G. R. J., Baghdadi S., Wafflard-Fernandez G., Mauxion J., Robert C. M. T., Van
den Bossche M., 2023, IDEFIX: A versatile performance-portable Godunov code for
astrophysical flows, A&A, 677, A9

Lumi supercomputer documentation 2024, Lumi supercomputer documentation
Makino J., Taiji M., 1998, Scientific simulations with special-purpose computers–the

GRAPE systems

135

https://dl.dell.com/manuals/common/poweredge_perf_amdepyc7002series.pdf
http://dx.doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/2141702.2141703
http://dx.doi.org/10.48550/arXiv.2202.12309
https://ui.adsabs.harvard.edu/abs/2022arXiv220212309G
http://arxiv.org/abs/2202.12309
http://dx.doi.org/10.21105/astro.2307.05683
http://dx.doi.org/10.21105/astro.2307.05683
https://ui.adsabs.harvard.edu/abs/2023OJAp....6E..29J
http://arxiv.org/abs/2307.05683
https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41101/
http://dx.doi.org/10.1051/0004-6361/202346005
https://ui.adsabs.harvard.edu/abs/2023A&A...677A...9L
http://arxiv.org/abs/2304.13746

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

McCool M. D., Qin Z., Popa T., in SIGGRAPH/EUROGRAPHICS Conference On Graph-
ics Hardware, booktitle, https://api.semanticscholar.org/CorpusID:15788889

Merrill D., Garland M., 2016a, Single-pass parallel prefix scan with decoupled look-back,
NVIDIA, Tech. Rep. NVR-2016-002

Merrill D., Garland M., in SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, booktitle, pp 678–689,
doi:10.1109/SC.2016.57

NVIDIA 2024a, CUDA C programming guide
NVIDIA 2024b, Nsight documentation
NVIDIA 2024c, PTX ISA specifications about vectors, vectors in ptx, https://docs.

nvidia.com/cuda/parallel-thread-execution/index.html#vectors

Páll S., Zhmurov A., Bauer P., Abraham M., Lundborg M., Gray A., Hess B., Lindahl E.,
2020, Heterogeneous parallelization and acceleration of molecular dynamics simulations
in GROMACS, J. Chem. Phys., 153, 134110

Qasaimeh M., Denolf K., Lo J., Vissers K., Zambreno J., Jones P. H., in 2019 IEEE
International Conference on Embedded Software and Systems (ICESS), booktitle, pp 1–
8, doi:10.1109/ICESS.2019.8782524

Ragagnin A., Dolag K., Wagner M., Gheller C., Roffler C., Goz D., Hubber D., Arth A.,
2020, Gadget3 on GPUs with OpenACC, arXiv e-prints, ADS link, arXiv:2003.10850

Rein H., Tamayo D., 2015, WHFAST: a fast and unbiased implementation of a symplectic
Wisdom-Holman integrator for long-term gravitational simulations, MNRAS, 452, 376-
388

Schlachter S., Drake B., 2019, Introducing Micron® DDR5 SDRAM: More Than a Gen-
erational Update, XP055844818, May, 6

Schweizer H., Besta M., Hoefler T., 2020, Evaluating the Cost of Atomic Operations on
Modern Architectures, arXiv e-prints, ADS link, arXiv:2010.09852

Smotherman M., 2023, S-1 Supercomputer (1975-1988), Website
Sorensen T., Evrard H., Donaldson A. F., in International Conference on Concurrency

Theory, booktitle, https://api.semanticscholar.org/CorpusID:51995301

Tarditi D., Puri S., Oglesby J., in Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, booktitle,
ASPLOS XII. Association for Computing Machinery, New York, NY, USA, pp 325–
335, doi:10.1145/1168857.1168898, https://doi.org/10.1145/1168857.1168898

TechPowerUp 2024, NVIDIA Tesla V100 PCIe 16 GB Specs, GPU Database
The next platform 2023, How AI is going to change supercomputer rankings even more
Top500 2024, Top500 ranking, Top500
Von Neumann J., 1993, First Draft of a Report on the EDVAC, IEEE Annals of the

History of Computing, 27–75
Walker D. W., 1992, Standards for message-passing in a distributed memory environment
Wienke S., Springer P., Terboven C., an Mey D., in Euro-Par 2012 Parallel Processing:

136

https://api.semanticscholar.org/CorpusID:15788889
https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back
http://dx.doi.org/10.1109/SC.2016.57
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#vectors
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#vectors
http://dx.doi.org/10.1063/5.0018516
https://ui.adsabs.harvard.edu/abs/2020JChPh.153m4110P
http://arxiv.org/abs/2006.09167
http://dx.doi.org/10.1109/ICESS.2019.8782524
http://dx.doi.org/10.48550/arXiv.2003.10850
https://ui.adsabs.harvard.edu/abs/2020arXiv200310850R
http://arxiv.org/abs/2003.10850
http://dx.doi.org/10.1093/mnras/stv1257
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452..376R
http://arxiv.org/abs/1506.01084
http://arxiv.org/abs/1506.01084
https://media-www.micron.com/-/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?rev=398a43abcc174e65be5f7587ee7761f8
http://dx.doi.org/10.48550/arXiv.2010.09852
https://ui.adsabs.harvard.edu/abs/2020arXiv201009852S
http://arxiv.org/abs/2010.09852
https://people.computing.clemson.edu/~mark/s1.html
https://api.semanticscholar.org/CorpusID:51995301
http://dx.doi.org/10.1145/1168857.1168898
https://doi.org/10.1145/1168857.1168898
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-16-gb.c2957
https://www.top500.org/

11. SUMMARY

18th International Conference, Euro-Par 2012, Rhodes Island, Greece, August 27-31,
2012. Proceedings 18, booktitle, pp 859–870

Zhang L., Wahib M., Matsuoka S., 2019, Understanding the overheads of launching CUDA
kernels, ICPP19, 5–8

Zhou H., Raffenetti K., Guo Y., Thakur R., in Proceedings of the 29th European MPI
Users’ Group Meeting, booktitle, pp 1–10

137

CHAPTER 3. CHALLENGES OF MODERN COMPUTING HARDWARE

138

Chapter 4
Shamrock

Contents
1 Introduction . 141
2 The Shamrock framework 142
3 Domain decomposition & MPI 145
4 The Shamrock tree . 157
5 Summary . 172
References . 173

Foreword
In this chapter, we present the core work of this Ph.D. Thesis, that is the framework
at the core of the Shamrock code. This work corresponds to the majority of
the time spent on this Ph.D. Thesis. In a few numbers, in the past 3 years, the
development of the code corresponds to

• 441100 lines of code written, and 309466 removed (see Fig. 4.1),

• 310 merged pull requests,

• 2,244 CI workflow run,

• 528 C++ source files,

• Two broken DGX-workstation, and two laptops...

As of now, the code includes 4 numerical solvers:

• SPH: Fully tested up to 256 GPU nodes.

• Zeus: Prototype for the design of the grid in Shamrock, partially tested on
basic problems, scaling on multiple GPUs not assessed yet.

• Godunov (RAMSES): Prototype of Godunov AMR solver. The scheme is fully
implemented using AMR, but partial tested as of now, the dynamic refinement
during simulation has not yet been tested in hydrodynamical simulations.

• N-Body FMM (Appendix E): A prototype implementation of an FMM self-
gravity solver in Shamrock, tested on single GPU, ported to multi-GPU,
but its performance was not yet fully assessed.

139

CHAPTER 4. SHAMROCK

Figure 4.1: �Github statistics on the history of contributions to the git repository
since its creation.

As of now, the code has a total of 3 contributors aside from myself. The contribution
list is as follows:

• Yona Lapeyre (intern, Ph.D. starting in September 2024 with Guillaume Laibe):
Collaboration in the Sedov-Taylor blast comparison against Phantom and the
implementation of artificial conductivity. Implementation of α-disc viscosity
in SPH and warp disc simulation setup. Currently working on the extension
of the SPH solver to MHD.

• Francesco Lovascio (postdoctoral researcher at CRAL now working at ARM):
Collaboration in the design of the Zeus scheme implementation in Shamrock
and the shearing box in SPH.

• Thomas Guillet (postdoctoral researcher at Exeter): collaboration in the de-
sign of the Godunov scheme implementation in Shamrock, and implementa-
tion of the Riemann solvers in the code.

The work following this chapter was recently submitted to MNRAS, along with
the details of the SPH solver presented in Chapter 5.

140

1. INTRODUCTION

1. Introduction
The study of the formation of structures in the Universe is a field in which non-linear,
non-equilibrium physical processes interact at many different scales, requiring ever
greater computing resources to simulate them, right up to Exascale (one quintillion
operations per second). To increase energy efficiency with acceptable CO2 emissions,
recent super computers have been designed with specialised hardware such as ARM
central processing units (CPUs) or graphics processing units (GPUs). Those involve
multiple computational units that perform the same operation on multiple data
simultaneously through specific instructions (Single Instruction Multiple Data, or
SIMD parallel processing). This type of hardware differs radically from standard
x86 CPUs, requiring a complete rewrite of CPU-based codes.

Considerable efforts have recently been invested into developing codes adapted
to the new hybrid architectures aimed at Exascale (e.g. Idefix: Lesur et al. 2023;
Parthenon: Grete et al. 2022; Quokka: Wibking & Krumholz 2022). The perfor-
mance of those codes is conditioned by the rate at which data involved in the solver
can be prepared, explaining the efficiency of grid-based Eulerian codes developed
to date. For example, the multiphysics Godunov code Idefix uses a fixed grid, so
no overhead is required when executing the numerical scheme. On the other hand,
simulating moving disordered particles on Exascale architectures is a tremendous
challenge, regardless of whether they are tracers for Eulerian methods, super par-
ticles for Lagrangian methods or interpolation points for Fast Multiple Moments.
The rule of thumb is that performance decreases when the number of neighbours
increases and when they are unevenly distributed.

Our code Shamrock is a performance portable framework aiming at hybrid
CPU-GPU multi-node Exascale architectures (Sect. 2). The design of Shamrock
makes it appealing for with particle-based methods such as Smoothed Particle Hy-
drodynamics (e.g. Hopkins 2015; Price et al. 2018; Springel et al. 2021), while
remaining inherently compatible with any distribution of numerical objects (grids,
particles) and numerical schemes (grid-based or Lagrangian). Our strategy in Sham-
rock is that the tree used for neighbour search is never updated, unlike in existing
codes. Instead, we are aiming for a highly efficient fully parallel tree algorithm
that allows on-the-fly building and traversal, for any distribution of cells or par-
ticles. The specific nature of GPU architectures calls for a different design from
the state-of-the-art methods developed for CPUs (e.g. Gafton & Rosswog 2011).
The simulation domain undergoes an initial partitioning into sub-domains, fostering
communication and interface exchange through an outer layer of MPI parallelism
presented in Sect. 3. The core of Shamrock is its inner layer of parallelism, which
consists in distributing the operations performed for the hydrodynamical solver on
a sub-domain over the GPUs using the SYCL standard. The overall performance
of Shamrock hinges on the performance on neighbour finding on a single GPU.
Hence the need for a tree building and traversal procedure that doesn’t bottleneck
the hydrodynamical time step. In Sect. 4, we first present a tree algorithm that has

141

CHAPTER 4. SHAMROCK

Figure 4.2: Numerical integration of an hydrodynamic quantity U involves finding
neighbours i (particles, cells), then adding their contributions according to the cho-
sen solver F .

the required level of performance for any number of objects compatible with current
GPU capabilities. It combines state-of-the-art algorithms on Morton codes (Morton,
1966; Lauterbach et al., 2009) with specific optimisations, a key feature being the
Karras algorithm (Karras, 2012). The resulting tree building time is negligible. We
note that the subsequent implementation of a Smoothed Particle Hydrodynamics
solver (SPH) in Shamrock will be presented chapter 5, in Sect. 1, and present the
results obtained on standard astrophysical tests in Sect. 2. Our implementation is
almost identical to that of the Phantom code, facilitating performance assessments
and comparisons on both one and multiple GPUs (Sect. 3). We discuss potential
future directions for Shamrock in Sect. 2.

2. The Shamrock framework

2.1. Modular computational fluid dynamics
Computational fluid dynamics consists in discretising a physical system of partial
differential equations, alongside specifying initial and boundary conditions. Deter-
ministic numerical schemes can be viewed as being the combination of neighbour
finding and specified arithmetic (see Fig. 4.2), and an algorithm capable of operating
on neighbours can provide a generic framework for implementing schemes frequently
used in astrophysics, such as Lagrangian Smoothed Particle Hydrodynamics (SPH),
Eulerian Adaptive Mesh Refinement (AMR) grid-based methods, or others, within
the same structure. This is the very purpose of Shamrock: to abstract optimised
neighbour search, in a way that is versatile enough that the user only needs to pro-
vide functionality to write new schemes with minimal changes. Fig.4.3 sketches the
Shamrock framework: a collection of libraries connected by standardised inter-
faces, where models (CFD solvers or analysis modules) are implemented atop these
libraries.

142

2. THE SHAMROCK FRAMEWORK

2.2. Multi-GPUs architectures: choice of languages and stan-
dards

Modern computer hardware harnesses graphics processing units (GPUs) as com-
puting accelerators. A typical compute node configuration consists of several GPUs
connected to a CPU via a PCI express or other proprietary interconnect. Each GPU
is equipped with its network card, enabling direct communications from one GPU
to another with the Message Passing Interface (MPI) protocol. The GPUs them-
selves are specialised hardware capable of exploiting the full bandwidth of their
high speed memory in tandem with a high compute throughput using SIMT (Sin-
gle instruction, Multiple Threads) and SIMD (Single Instruction Multiple Data).
This design renders GPUs more potent and energy-efficient than CPUs, especially
for processing parallelized tasks involving simple, identical operations. Perform-
ing simulations on architectures comprising thousands of GPUs introduces several
challenges: evenly distributing the workload among the available GPUs (load bal-
ancing problem), communicating data between domains to perform the computation
while moving the communication directly to the GPU if possible (communication
problem), structuring and organising the workload on the GPU into GPU-executed
functions called compute kernels to make the best use of hardware capabilities (al-
gorithmic problem). The first two points are common issues associated with MPI,
while the third is specific to GPU architecture, raising the question of choosing an
appropriate backend.

GPU vendors have developed various standards, languages and libraries to han-
dle GPU programming, the most widely used to date for scientific applications being
CUDA and ROCm , which are vendor-specific. To address the issue of portability,
libraries and standard have been created to enable the same code to be used on any
hardware from any vendors. Current options include Kokkos (Trott et al., 2021),
Openacc and OpenMP (target). The SYCL standard, released by Khronos in
2016, is a domain-specific embedded language compliant with C++17, which is
compiled to the native CUDA , ROCm or OpenMP backend. With a single
codebase, one can directly target directly any GPUs or CPUs from any vendors,
eliminating the need for separate code paths for each supported hardware. To date,
the two main SYCL open source compilers are AdaptiveCpp (Alpay & Heuve-
line, 2020; Alpay et al., 2022), and OpenAPI/DPC++, which is maintained by
Intel. Among other heterogeneous parallelisation libraries, we use the SYCL stan-
dard to develop Shamrock, since it offers robustness, performance (Markomanolis
et al., 2022), portability (Deakin & McIntosh-Smith, 2020; Jin & Vetter, 2022) and
potential for durability. SYCL compilers can also generally compile directly to a
native language without significant overhead, delivering near-native performance on
Nvidia, AMD and Intel platforms (e.g. tests with Gromacs, Alekseenko & Páll
2023; Abraham et al. 2015; Alekseenko et al. 2024). Since C++ code written using
SYCL is compiled directly to the underlying backend (CUDA or ROCm or others),
we harness direct GPU communication and use vendor libraries directly in the code.

143

CHAPTER 4. SHAMROCK

MPI SYCL C++ STL

Comm Base

Backend

Algs Math

Core

SPH

Godunov

...

Bindings

pybind11

Python

Models :

Figure 4.3: Internal structure of Shamrock: functionalities for calculating neigh-
bour finding are organised in different layers of abstraction, enabling the independent
treatment of any numerical scheme (Models).

2.3. Elements of software design
Software design of Shamrock relies on

• A modular organisation of the code structured around interconnected cmake
projects,

• Python bindings provided through the use of pybind (Jakob et al., 2024),

• Version control development for forking and branching (Git),

• A comprehensive, automated test library handling multiple configurations of
compilers, targets and versions,

• Automated deployment of code across machines by the mean of environment
scripts,

• A user-friendly Python frontend for versatility.

Further details are provided in Sect. 4

144

3. DOMAIN DECOMPOSITION & MPI

3. Domain decomposition & MPI

3.1. Simulation box
The three-dimensional volume on which a numerical simulation is performed can be
embedded in a cube, whose edges define axes for Cartesian coordinates. This cube is
often referred as an Aligned Axis Bounding Box, or AABB , particularly within the
ray-tracing community. The box is parametrised by two values, rmin and rmax, which
are chosen to represent the minimum and maximum possible coordinates inside the
cube in all three dimensions. For convenience, we shall refer to this AABB as the
simulation box of Shamrock. Within this box, coordinates can be mapped to a
grid of integers, by subdividing the simulation box coordinates into Ng grid points
on each axis, where Ng is a power of two. In pratice, we use Ng = 221 or Ng = 242

(see Sect. 3.5).

3.2. Patch decomposition
The first level of parallelisation in Shamrock consists of dividing the simulation box
into elementary volumes, or subdomains, which are then distributed across nodes of
a computing cluster. For convenience, we shall further refer to these subdomains as
patches. In Shamrock, patches are constructed following a procedure of recursive
refinement. Starting from the simulation box, patches are divided into eight patches
of equal sizes by splitting in two equal parts the original patch on each axis. The
resulting structure is an octree, where each node is either a leaf or an internal node
with eight children. The patches managed by Shamrock are the leaves of this
octree. We call this structure the patch octree of Shamrock. The patch octree
is similar to the structure of a three-dimensional grid that has been adaptively
refined (AMR grid). The cells of this AMR grid would correspond to the patches
of Shamrock. Similar to an AMR grid, patches can be dynamically subdivided or
merged.

To each patch p, we associate an estimated load Wp, which is an estimate of the
time required to perform the computational load on the patch. The load depends a
priori on the type of simulation chosen by the user (e.g. fixed or refined grids, par-
ticles, see Sect. 3.5). If the estimated load of a patch exceeds a maximum threshold
(Wp > Wmax), the patch is subdivided. If the estimated load is below a minimum
threshold (Wmin), the patch is flagged for a merge operation. In Shamrock, patch
merging is performed when all eight patches corresponding to the same node in the
patch octree are flagged. To avoid cycling between subdivisions and merges, we en-
forceWmax > 4Wmin. Hence, the decomposition of the simulation box into patches is
only controlled by the values of Wmin and Wmax. Shamrock maps several patches
to a given MPI rank in a dynamical manner. We call this decomposition an abstract
domain decomposition. In practice, we find that 10 patches per MPI rank provides
a compromise between the level of granularity required for effective load balancing

145

CHAPTER 4. SHAMROCK

and the overheads associated with patch management.

3.3. Data Structure
Each patch in Shamrock is associated with two types of information. The first type
is the patch metadata, which encompasses the current status, location and identifier
of the patch. The second, called patch data, comprises the data pertaining to the
fields processed by the patch.

3.3.1. Patch metadata

Within Shamrock, metadata is synchronised across all MPI ranks. This synchro-
nisation is made possible by the use of a class of small size (80 bytes when compiled).
The metadata of a Shamrock patch is represented in the code with the following
class

template<u32 dim>
struct Patch{

u64 id_patch;
u64 pack_node_index;
u64 load_value;

std::array<u64,dim> coord_min;
std::array<u64,dim> coord_max;

u32 node_owner_id;
};

In this class, u32 denotes 32 bits unsigned integers and u64 their 64 bits variants,
id_patch the patch unique identifier, load_value the estimated load of a patch
(see Sect. 3.2), coord_min and coord_max represent edges of the AABB patch on
the integer grid, node_owner the MPI rank owning the current patch. Finally,
pack_node_index is an additional field used to specify that a patch aims to reside
in the same MPI ranks as another one (see section 3.4 for more details). We also
provide a dedicated MPI type to facilitate the utilisation of collective operations on
patch metadata.

3.3.2. Patch data

The patch data of a patch is a list of fields related to a collection of objects (cells
or particles). A field can contain one or multiple values per object, as long as the
number of values per object is constant. The first field, so-called the main field in
Shamrock, must have one value per object and stores the positions of every object
in the patch. Domain decomposition and load balancing are executed based on the

146

3. DOMAIN DECOMPOSITION & MPI

positions stored in the main field. When a patch is moved, split or merged, the
corresponding operations are applied to the other fields as well. This ensures that
communications are implicitly modified when the layout of the data is changed,
eliminating the need for direct user intervention. For efficient implementation of
new physics, the fields stored in the patch data can encompass a wide range of types
(scalar, vector, or matrices, with float, double, or integer data), arranged in any
order. This versatility is enabled by representing the patch data as a std::vector
of std::variant encompassing all possible field types. This aspect is abstracted
from the user, as only field identifiers and types are required. One example of such
use is

PatchData & pdat = ...
// get the layout of the patch data
PatchDataLayout &pdl = pdat.pdl;
// get id of the field (name and type specified)
// f64_3 is a 3 dimensional double precision vector
const u32 ivxyz = pdl.get_field_idx<f64_3>("vxyz");
// get the field at this id
PatchDataField<f64_3> & vxyz =

pdat.get_field<f64_3>(ivxyz);

3.3.3. Patch scheduler

In Shamrock, a single class is responsible of managing patches, distributing data
to MPI ranks and processing the refinement of the patch grid. This class contains
the patch octree, patch metadata, and patch data. It is referred internally as the
PatchScheduler. This class is only controlled by four parameters: the patch data
layout, which specifies the list of fields and the corresponding number of variables,
the split criterionWmax and the merge criterionWmin that control patch refinement,
and the load balancing configuration. The patch scheduler is designed to operate
as a black box for the user. The user calls the scheduler_step function, which
triggers the scheduler to execute merge, split, and load balancing operations. The
scheduler_step is called at the beginning of every time step in practice. Multiple
‘for each’ functions are provided in Shamrock as abstractions for iterating over
patches. An example of such use is

PatchScheduler & scheduler = ...

scheduler.for_each_patchdata(
// the c++ lambda contain the operation
// to perform on the patches
[&](const Patch & p, PatchData &pdat) {

// do someting on the patch
}

);

147

CHAPTER 4. SHAMROCK

These abstractions shield the end user from interactions with the MPI layer.
The strategy is as follows: one does not need to be aware of which patches reside on
which MPI ranks. Indeed, operations are conducted solely through ‘for each’ calls
to the patches, and the scheduler handles the other tasks.

3.4. Scheduler step
Fig. 4.4 illustrates a single scheduler step in Shamrock. During this step, patch
data are exclusively processed on their current MPI rank, while patch metadata
and the patch tree remain unchanged over all MPI ranks.

3.4.1. Synchronising metadata

The initial operation conducted during a scheduler step consists in synchronising
the metadata across the MPI ranks. This operation, named vector_allgatherv in
Shamrock, is implemented as an extension of the MPI primitive MPI_ALLGATHER_V
(see fig.4.5). Given a std::vector in each MPI ranks, vector_allgatherv returns
on all ranks the same std::vector made by concatenating the input vectors in each
ranks. We create an MPI type for the patch metadata, and use vector_allgatherv
to gather all the metadata of all patches on all MPI ranks. This operation returns
the list containing the metadata of all patches in the simulation (the step ‘Metadata
sync’ in Fig.4.4).

3.4.2. Listing requests

The operation ‘Get requests’ depicted in Fig.4.4 provides the list of identifiers for
patches requiring merging or splitting. A patch splits when its estimated load ex-
ceeds the split criterion (see Sect.3.2). If all children of a node in the patch tree
meet the merge criterion, they merge, resulting in the parent node being marked for
pending child merge and consequently transitioning into a tree leaf.

3.4.3. Patch splitting

Subsequent split operations on the metadata and the patch tree are carried out in
each MPI rank. If the MPI rank holds the patch data associated with the patch
being split into eight new patches, the patch data is then subdivided into eight new
patch data objects corresponding to the eight newly formed patches.

3.4.4. Collecting information on ranks

The pack index is a list containing necessary information indicating whether a given
patch a must reside in the same MPI rank as another patch b. After having executed
patch splitting, we then go through the list of merge operations along the MPI ranks.
We use an identifier that denotes the parent of the eight merging children patches.
With the exception of the first child, all the other children patches have their pack

148

3. DOMAIN DECOMPOSITION & MPI

Rank 0 Rank 1 Rank 2 Rank 3

Metadata sync

get requests

apply splits

apply mergesapply mergesapply mergesapply merges

load balance

// // //

set pack

load balance load balance load balance

Figure 4.4: Illustration of a scheduler step. Initially, a synchronisation of the patch
metadata occurs across all MPI ranks, resulting in each rank possessing an iden-
tical list of all patch metadata. Subsequently, each MPI rank generates a list of
split and merge requests. Split requests are then executed, followed by setting the
packing index. The subsequent operation consists in performing load balancing on
all patches. Finally, merge requests are carried out to complete the step.

149

CHAPTER 4. SHAMROCK

Rank 0 Rank 1 Rank 2 Rank 3

get sizeget sizeget sizeget size

2 2 1 1

MPI_ALLGATHER

2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

0 2 4 5 0 2 4 5 0 2 4 5 0 2 4 5

MPI_ALLGATHERV([0,2,4,5])

data data data data

Figure 4.5: Illustration of the steps performed in a vector_allgatherv operation.
Firstly, the size of each sent vector is retrieved. Secondly, all MPI ranks gather the
sizes sent by each other MPI ranks. An exclusive scan is performed on this list to
obtain the offset at which the data of each MPI rank will be inserted in the final
vector. Finally, a MPI_ALLGATHER_V is called using the provided offsets to retrieve
the gathered list in each MPI rank.

150

3. DOMAIN DECOMPOSITION & MPI

index set to the index of the first child in the global metadata list. This means that
the seven other children patches must be in the same MPI rank as the first one,
which enables the merge operation to be conducted at a later stage. The pack index
is used during the subsequent load balancing step.

3.4.5. Load balancing

Performing load balancing consists of grouping patches in chunks, and distributing
the chunks appropriately over the MPI ranks for their computational charge to be
as homogeneous as possible. Load balancing is performed in four sub-steps:

• The load balancing module receives a list of metadata that includes estimated
computational loads. Here, a strategy for patch reorganisation of patches
is computed (see Sect. 3.5 for the details of the load balancing procedure).
The code returns a list specifying the novel MPI rank assignment for each
patch. When compared to the current owner of each patch, this list identifies
necessary changes, indicating if a patch must move from one MPI rank to
another. Additionally, this list incorporates the pack index described above.

• The patch reorganisation encoded in the list of changes is subsequently imple-
mented. We iterate through the list of changes a first time. If the sender MPI
rank matches the MPI rank of the current process, it sends the corresponding
patch data using a non-blocking send of the serialized data (see 3.7 for details).

• We then go through the list of changes for a second time. If the receiver
patch matches the MPI rank of the current process, we execute an MPI non-
blocking receive operation to obtain the corresponding patch data in the new
rank.

• Finally, we finish by waiting for all MPI operations to complete, thereby
concluding the load balancing step.

Generating the list of changes accounts for the pack index. As such, patches intended
for merging together are in the same MPI rank after the load balancing operation.

3.4.6. Patch merging

Merge operations require for the eight children patches to be in the same MPI rank,
which is garanteed by the packing in the load balancing step. Similarly to split
operations, merges are executed across both metadata and the patch tree within all
MPI ranks. Merging is also applied to the patch data on the MPI rank that owns
the data.

151

CHAPTER 4. SHAMROCK

3.5. Load balancing strategies
The load balancing module generates the list of owner of each patch determined by
abstract estimates of its required computational load. Load balancing is processed
consistently across all MPI ranks for identical inputs. The load balancing module
initially utilises the list of all patch metadata, with the estimated load values as
input. Patches are then arranged along a Hilbert curve, which is subsequently
segmented into contiguous chunks of adjacent patches. The objective of optimal load
balancing is to identify a collection of chunks wherein the workload is distributed as
evenly as possible across all MPI ranks.

To achieve this, various load balancing strategies are dynamically evaluated in
Shamrock (e.g. analytic decomposition, round-robin method), and the one found
to be the most effective is selected. The computational overhead involved in as-
sessing the benefits of different load balancing strategies is minimal, since it relies
on simple estimations. This process yields a list specifying the new MPI ranks for
each patches. This list is compared against the current distribution of patches to
generate the change list when load balancing is applied.

3.6. Patch interactions

3.6.1. Interaction criteria

For a given collection of objects (cells or particles), we can establish a condition in-
dicating whether objects i and j interact, and define a Boolean interaction criterion
γo/o(i, j) to signify this condition. For example, in the Smoothed Particle Hydro-
dynamics method, γo/o is defined as true when particle i is within the interaction
radius of particle j, or vice versa.

A first generalisation of this object-object criterion is an object-group criterion,
which describes if there is interaction between an object and a group of objects. A
necessary condition for such a criterion is

γo/g(i, {j}j)⇐
∨
j

γo/o(i, j)

This condition formally expresses the fact that if the interaction criterion is fulfilled
for any object in the group, it must also hold true for the entire group. Failure
to meet this condition would imply the possibility of interaction with an element
of the group without interaction with the group as a whole, which is incorrect.
Both the object-object and group-object criteria are used in the tree traversal step
(detailed Sec. 4.12). Another extension of the aforementioned criteria is the group-
group interaction criterion, which similarly satisfies the following condition

γg/g({i}i, {j}j)⇐
∨
i

γo/g(i, {j}j)

This latter condition is used to manage ghost zones (see Sect. 3.6.2) and perform
two-stages neighbour search (see Sect. 4.14).

152

3. DOMAIN DECOMPOSITION & MPI

Sender patch

R
ec

ei
ve

r
p

at
ch

Figure 4.6: Matrix of the interaction graph between patches extracted from an
SPH simulation of a protoplanetary disc, involving several hundred patches. Empty
patches have been excluded from the graph as they do not meet any interaction
criteria due to their emptiness. The resulting interaction matrix is symmetrical and
sparse. This visualisation was generated using a debug tool in Shamrock, which
creates a dot graph representing the ghost zones of the current time step, which can
be rendered in its matrix form here showed.

3.6.2. Interaction graph

Patches themselves are objects that can interact. Their interaction is handled using
a group-group interaction criterion γg/g. The interaction criterion of an empty patch
is always false. After assessing the interaction status between all pairs of patches,
we define the interaction graph of the patches by considering the list of links such
that the group-group interaction criterion γg/g is true. Fig. 4.6 shows an example of
such a graph of interactions between patches.

3.6.3. Interfaces and ghost zones patch

We define the interface between two patches as the smallest set of individual objects
for which the group-group interaction criterion between their parent patches is sat-
isfied. To reduce communications between interacting patches, we communicate not
the entire patch content to its neighbour, but only their interfaces. These commu-
nicated interfaces consequently manifest as ghost extensions for the neighbouring
patch and are therefore called ghosts zones of patches. The graph of ghost zones
between patches is the same as the interaction graph, with links between vertices
representing the ghost zone of one patch being sent to another patch.

153

CHAPTER 4. SHAMROCK

3.7. Serialisation
In Shamrock, all communications are serialised, i.e. converted into a stream of
bytes to reduce the MPI overhead by performing less operations, and shield the
user from the MPI layer. To send a patch ghost zone, data are initially packed into
a byte buffer. Communication patterns and operations remain therefore unchanged,
regardless of the communication content. In particular, the addition of a field simply
adds extra data to the serialisation without altering the communication process.

// Data to be serialized
std::string str = "exemple";
sycl::buffer<f64_3> buffer = ...;
u32 buf_size = buffer.size();

SerializeHelper ser;

// Compute byte size of header and content
SerializeSize bytelen =

ser.serialize_byte_size<u32>()
+ ser.serialize_byte_size<f64_3>(buffer.size())
+ ser.serialize_byte_size(test_str);

// Allocate memory
ser.allocate(bytelen);

// Write data
ser.write(buf_size);
ser.write_buf(buffer, n2);
ser.write(test_str);

// Recover the result
sycl::buffer<u8> res = ser.finalize();

154

3. DOMAIN DECOMPOSITION & MPI

// The byte buffer
sycl::buffer<u8> res = ...;

// Give the buffer to the helper
shamalgs::SerializeHelper ser(std::move(res));

// Recover buffer size
u32 buf_size;
ser.load(buf_size);

// Allocate buffer and load data
sycl::buffer<f64_3> buf (buf_size);
ser.load_buf(buf, buf_size);

// Read the string
std::string str;
ser.load(recv_str);

Serialisation in Shamrock relies on a split header data approach. Individual
values are stored in the header on the CPU, while buffer data is stored on the device
(CPU or GPU). This organisation ensures that individual value reads incurs minimal
latency, thus avoiding high GPU load latency. The entire buffer is only assembled
on the device at the end of the serialisation procedure. During deserialisation, the
header is initially copied to the CPU. To circumvent constraints imposed by the
CUDA backend, all reads and writes are adjusted to 8-byte length.

3.8. Sparse MPI communications
In hydrodynamical simulations, interactions among objects are predominantly local,
resulting in each patch being connected to only a limited number of other patches in
the interaction graph. A crucial element of communication management in Sham-
rock is to uphold this sparsity. With synchronised metadata, each MPI ranks holds
information of the MPI rank to which every patch belongs. We therefore group com-
munication between patches involving the same pair of MPI ranks in a single patch
message (see Fig. 4.7). The graph corresponding to patch messages to be communi-
cated is also sparse (rank i 7→ rank j). We therefore apply an MPI operation that
extends MPI_Alltoall to accommodate a sparse graph structure. The operation,
referred to as sparse all-to-all, is structured as depicted in Fig. 4.8. Initially, we
compile the list of communications to be executed on each node. Subsequently, on
each node, we go through the communication list and execute a non-blocking MPI
send if the sender’s rank matches the current MPI rank. Following this, on each
node, we go through the communication list once more and initiate a non-blocking
MPI receive if the recipient’s rank aligns with the current MPI rank. Finally, we
conclude the operation by invoking an MPI wait on all non-blocking communica-
tion requests. Exchanges within the patch ghost zone graph are finalised once the
sparse all to all operation is completed. If the sender’s MPI rank matches that of

155

CHAPTER 4. SHAMROCK

Patch 0

Patch 1

Patch 2

Patch 3

Rank 0

Rank 1

pack unpacksparse all-to-all

patch message
(serialized)

patch message
(serialized)

MPI message
(bytes)

MPI message
(bytes)

Sp
ar

se
 a

ll-
ot

-a
ll

Figure 4.7: Illustration of the behaviour of a MPI sparse communication of patches
in Shamrock. The first step consists of packing communication between a same
pair of MPI ranks together. Subsequently, a sparse all-to-all operation is executed
(see Fig.4.8). Finally, the received buffers are unpacked.

the recipient, the communication is disregarded, and an internal memory move is
executed instead. Another approach could involve using an MPI reduce operation
to count the number of messages received, and trigger the corresponding number of
non-blocking receives with MPI_ANY_SOURCE. Given the limited number of commu-
nications, we observe no practical distinction between the two methods in practice.
Moreover, the former approach is easier to debug and optimise, since it eliminates
the need for sorting data to ensure determinism in the list of received messages.

156

4. THE SHAMROCK TREE

Rank 0

Rank 1

MPI message
(bytes)

MPI message
(bytes)

ve
ct
or
_a

ll
ga
th

er
v

isend

isend

irecv

irecv MP
I_
WA
IT

exchange
message list

non blocking
exchange

wait events

communication
skipped

communication
skipped

Figure 4.8: Illustration of the behaviour of a MPI sparse all-to-all communication in
Shamrock. Firstly, a vector_allgatherv is performed on the list of communica-
tion. Subsequently, each rank executes a non-blocking send of its data. To prepare
for receiving, a non-blocking receive is launched for every incoming message. The
operation is concluded by waiting for all non-blocking operation to finish. Commu-
nications for an MPI rank to itself are skipped by simply relocating the data within
the rank.

4. The Shamrock tree
Specific notations used in this Section are given in Table 4.1.

4.1. Morton codes
In hydrodynamic simulations, physical fields are represented on a discrete set of
elementary numerical elements such as grid cells or interpolation points (or numerical
objects for a generic terminology). The positions of these objects are represented
by coordinates, usually stored as floating point numbers such as (x, y, z) in three
dimensions. These coordinates are usually sampled on a 3D integer grid, which
in turn can be mapped onto a 1D integer fractal curve. The Morton space-filling
curve, also called Morton ordering, is commonly used for this purpose since it has
a natural duality with a tree structure (e.g. Samet 2006, see below). In practice,
Morton ordering can be constructed from a list of 3D positions as follows. First,
the real coordinates in each dimension are remapped over the interval [0, 1)3 (note
the exclusion of the value 1) by doing x 7→ (x − xmin)/(xmax − xmin), and a similar
procedure is applied for y and z respectively. This unit cube is then divided into a
3D grid of (2β)3 elements, where β is the number of bits used to represent integers.
Within this grid, the objects possess integer coordinates (X, Y, Z) ∈ [0, 2β − 1]3.

157

CHAPTER 4. SHAMROCK

Table 4.1: List of symbols used in Sect. 4.

Symbol Definition Meaning
x, y, z Sect. 4.1 particle coordinates

X, Y, Z Sect. 4.1 integer particle coordinates
β Sect. 4.1 bit count

X0X1 · · · Xβ−1 Sect. 4.1 binary representation of X
m X0Y0Z0 · · · generic Morton code

m1 ≡ 0101 Sect. 4.2 Morton code example 1
m2 ≡ 0111 Sect. 4.2 Morton code example 2

δ (a, b) eq.4.2 Karras δ operator
clz(a) Sect. 4.4 count leading zeros

aˆb Sect. 4.4 bitwise XOR operator
a & b Sect. 4.5 bitwise AND operator
a << b Sect. 4.5 left bitshift operator

ri position of particle i
mi Morton code of particle i
{µi}i µi = mϵi

sorted Morton codes
ϵi sort : ϵi 7→ i sort inverse permutation
ξi Sect. 4.9 Morton-keep mask

idi indexes of kept Morton codes
µleaf,i tree leaf Morton codes

158

4. THE SHAMROCK TREE

Figure 4.9: Illustration of the duality between Morton codes and the structure of
an octree. 3 bits can describe the procedure of dividing a cube into eight smaller
cubes. Repeating the procedure with triplets of additional bits produces an octree.

These integer coordinates are noted in their binary representation X = X0X1X2 · · · ,
where Xi denote the value of the ith bit (the same convention also applies for Y and
Z). The Morton space-filling curve comprises a sequence of integers, called Morton
codes (or Morton numbers), defined through the following construction in a binary
basis: the Morton code m of each object is obtained by interleaving the binary
representation of each coordinate m ≡ X0Y0Z0X1Y1Z1X2Y2Z2 · · · Xβ−1Yβ−1Zβ−1.

By default, and unless specified otherwise, Morton codes are presented in binary
notation, while other integers are expressed in decimal hereafter. A Morton code
can also be interpreted as an ordered position on an octree with β + 1 levels, or
alternatively as a position in a binary tree with 3β +1 levels (Fig. 4.9). To illustrate
this duality, let us consider the first bit X0 of a Morton code. If X0 = 0, the integer
coordinate X belongs to the half space where X < 2β−1 − 1. If X0 = 1, the integer
coordinate X belongs to the other half space X ≥ 2β−1 − 1. The following bits
Y0 and Z0 divide the other dimensions in a similar way. The next sequence of bits
X1, Y1, Z1 subdivides the subspace characterised by X0, Y0, Z0 in a similar manner,
and the construction of a tree follows recursively. After going through all bits and
reaching Xβ−1Yβ−1Zβ−1, one is left with the exact position in the space of integer
coordinates. This tree structure consists of nested volumes where each parent volume
encompasses all its children, forming as such a Bounded Volume Hierarchy (BVH).

4.2. Prefixes
A prefix is the sequence of the first γ ≤ β bits of a Morton code. One defines the
longest common prefix of two Morton codes a and b as the sequence of matching bits
starting from X0 until two bits differ. As an example, the longest common prefix of
m1 ≡ 0101 and m2 ≡ 0111 is 01. The longest common prefix of two Morton codes

159

CHAPTER 4. SHAMROCK

gives the minimal subspace of the integer 3D grid that contains the two Morton
codes. The number of bits used to represent the longest common prefix of a and b,
called the length of the longest common prefix of a and b, is denoted δ (a, b).

4.3. Bounding boxes
We use the terminology prefix class to refer to a set of Morton codes that have
common prefixes. The longest common prefix of any pair of elements in a prefix
class is at least of length γ (or equivalently, for any pair of Morton code a, b in the
prefix class, δ(a, b) ≥ γ).

Each prefix class corresponds to an axis aligned bounding box in the space of in-
teger positions, having for generic coordinates [xmin, xmax)× [ymin, ymax)× [zmin, zmax)
(Fig. 4.9). We refer to the set of three integers representing the lengths of the edges
of this bounding box as the size of the bounding box. Mathematically,

s(γ) =
{
2β−⌊γ/3⌋, 2β−⌊(γ−1)/3⌋, 2β−⌊(γ−2)/3⌋

}
, (4.1)

where ⌊·⌋ denotes the floor function of a real number. Indeed, for a given γ, the
Morton construction divides the x-axis ⌊γ/3⌋ times, the y-axis ⌊(γ−1)/3⌋ times and
the z-axis, ⌊(γ − 2)/3⌋ times. The exclusion of the upper bounds in the bounding
box ensures that the size on each coordinate axis is a power of 2. Similarly, we
define the largest common prefix class between two Morton codes a, b as the prefix
class corresponding to the longest common prefix between a and b. The size of the
corresponding bounding box is then denoted s(a, b) = s (δ(a, b)).

4.4. Longest common prefix length
The length of the longest common prefix of two Morton codes a and b is given by
(Karras, 2012)

δ (a, b) ≡ clz (aˆb) . (4.2)
Eq. 4.2 involves two binary operators. The first one is the bitwise XOR ˆ operator
(Exclusive OR), that returns the integer formed in binary by zeros where the bits
match and ones when they differ. As an example,

m1 ˆm2 = 0010, (4.3)
since m1 and m2 differ only by their third bit. The second operator is Count Leading
Zeros. clz operates on a binary integers and returns the numbers of zeros preceding
the first 1 in the binary representation. As an example,

clz(0010) = 2. (4.4)
Following this example, the longest common prefix of m1 ≡ 0101 and m2 ≡ 0111
is 01 and is of length 2. Eqs. 4.3–4.4 allow performance, since instructions clz and
XOR use only one CPU or GPU cycle on modern architectures. Getting the length
of the longest common prefix take only 2 cycles with such procedure (e.g. a xor
followed by lzcnt on Intel Skylake architectures).

160

4. THE SHAMROCK TREE

4.5. Finding common prefixes
To find the longest common prefix between two Morton codes a and b, we first
construct a mask c, which is an integer where the first p = δ (a, b) bits are set to
1 while the remaining bites are set to 0. For example, applying this mask to the
two Morton codes m1 and m2 from our previous example yields 1100. To generate
the mask, we take advantage of the bitwise shift-left operator. The bitwise shift-left
operator a << i returns the binary representation of a where the bits are shifted by
ith bits to the left, and zeros are introduced in place of non existing bits. Consider
u, the integer having only ones in binary representation (i.e u = 2β − 1, where β
is the size of the binary representation). c is obtained with the following binary
operation u << (β− δ (a, b)). In our previous example, β = 4 and β− δ (m1, m2) = 2
gives 1111 << 2 = 1100. Consider now the bitwise AND operator, denoted by &, that
returns the integer formed in binary by ones where the bits match and zeros when
they differ (& is the bitwise negation of the bitwise XOR operator). When applying
the bitwise AND between m1 or m2 and the mask, the result is a binary number
where the first bits are the prefix and the subsequent bits are zeros. As an example,
applying the bitwise AND between m2 and the mask yields 0111 & 1100 = 0100.

4.6. Getting coordinates sizes of bounding boxes
Consider the prefix class formed by Morton codes whose longest common prefix with
a (or equivalently b) is δ (a, b). This prefix class is a set of binary numbers whose
smaller and larger values, denoted p0 and p1 respectively, are given by

p0(a, b) ≡
(
2β − 1 << β − δ(a, b)

)
& a, (4.5)

p1(a, b) ≡
(
2β − 1 << β − δ(a, b)

)
& a +

(
2β−δ(a,b) − 1

)
. (4.6)

These two Morton codes correspond to two integer coordinates, denoted p0 and
p1, that are the coordinates of the lower and upper edges of the bounding box,
respectively. The size of the bounding box corresponding to this prefix class is

s(a, b) = p1(a, b)− p0(a, b) + (1, 1, 1). (4.7)

4.7. Binary radix tree
A binary radix tree is a hierarchical representation of the prefixes of a list of bit
strings, corresponding here to the binary representation of integers (e.g. Lauterbach
et al. 2009; Karras 2012). The tree is defined by a set of hierarchically connected
nodes, where nodes without children are called leaf nodes or leaves (light orange
circles on Fig. 4.10), and the other ones are called internal nodes (blue circles on
Fig. 4.10). The binary radix tree is a complete binary tree: every internal node has
exactly two children. As such, a tree having n leaves has exactly n−1 internal nodes.
This property allows us to know lengths of tables in advance, making it particularly

161

CHAPTER 4. SHAMROCK

0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 1 1 1 1
0 0 1 1 0 1 1 0 0 0 1 1
0 1 0 1 0 0 1 0 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11

0

1 2

3 4

5

6 7

8

9 10

()

(000) (001)

(00) (01)

(011)

(0) (1)

(11)

(110) (111)

Figure 4.10: The Karras Algorithm associates a structure of radix tree to a sorted list
of unduplicated Morton codes (depicted here within rectangles). Within this tree,
nodes can be either leaves, denoted by integers in light orange circles, or internal
nodes, indicated by integers in blue circles. The grey bars represent the ranges of
Morton codes covered by each internal node. Common prefixes of these Morton
codes are shown in brackets.

beneficial for GPU programming where dynamic allocation is not feasible. One
commonly acknowledged downside of this tree structure is the challenge of efficient
hierarchical construction (Lauterbach et al., 2009; Karras, 2012). The deeper one
goes down the tree, the longer the length of the common prefix of the Morton
codes. The corresponding bounding boxes for each node in the tree are nested and
become progressively smaller as one goes down the tree, while the length of the
common prefixes increases. The corresponding radix tree forms a Bounding Volume
Hierarchy, since each child in the bounding box is contained within the box of its
parents.

4.8. Karras algorithm
The Karras algorithm overcomes this difficulty with a fully parallel algorithm that
constructs a binary radix tree, in which the list of bit strings is a sorted list of Morton
codes without any duplicates Karras (2012). Fig. 4.10 shows a typical binary radix
tree constructed by the Karras algorithm. The integers within the light orange
circles represent the indices of the Morton codes in the sorted list, and they also
are the indices of the corresponding leaves in the tree. The integers within the blue
circles denote the indices of the internal nodes, their value come as a by-product
of the algorithm. The grey bars denote intervals of leaf indices corresponding to
any Morton code contained in the sub-tree beneath an internal node that shares

162

4. THE SHAMROCK TREE

Internal cell id 0 1 2 3 4 5 6 7 8 9 10
left-child-id 6 0 2 1 4 5 3 7 9 8 10
right-child-id 7 1 3 2 5 6 4 8 10 9 11
left-child-flag 0 1 1 0 1 1 0 1 0 1 1
right-child-flag 0 1 1 0 0 1 0 0 0 1 1

endrange 11 0 3 0 6 6 0 11 11 8 11

Table 4.2: Tables corresponding to the tree shown on Fig. 4.10 as returned by the
Karras algorithm.

the same common prefix. In Fig. 4.10, these prefixes are shown in brackets over
the grey bars. The deeper the position in the tree, the longer the prefix. Consider
the subset of Morton codes associated to an internal node. The Karras algorithm
divides this list in two sub-lists (arrows Fig. 4.10), each with a longer common prefix
compared to the original. Such a split is unique. Several tables are associated to the
construction of Fig. 4.10. Those are presented on Table 4.2. The split associated to
an internal node provides two numbers called the indices of the left and right children
respectively, denoted as left-child-id and right-child-id respectively. A priori,
these indices can correspond to either an internal node or a leaf. This distinction
is encoded by the value of the integers left-child-flag and right-child-flag,
where a 1 means that the corresponding child is a leaf and a 0, an internal node. The
grey bar of an internal node has two ends. One corresponds to the index of the node
itself, while the other is stored in endrange. Although this value is of no use in the
construction of the tree itself, it will be important later for calculating the sizes of a
bounding box associated to a prefix class and for iterating over objects contained in
leafs. The Karras algorithm performs dichotomous searches to compute the values
of Table 4.2 in parallel, with no prerequisites other than the Morton codes (we refer
to the pseudo-code of the algorithm in Karras 2012 for details). Its efficiency relies
firstly on the ability to pre-allocate tables before building the tree, and secondly
on the sole use of the δ operator defined in Sect. 4.4, which requires just 2 binary
operations on dedicated hardware.

4.9. Removal of duplicated codes
As mentioned in Sect. 4.8, the Karras algorithm requires a sorted list of Morton
codes without duplicates (line 1-5 in alg.3). To achieve this, we go through the list
of sorted Morton codes and compute a mask to select the Morton codes to retain.
The list of Morton codes without duplicates corresponds to the leaves of the tree
obtained after applying the Karras algorithm to construct the radix tree.

163

CHAPTER 4. SHAMROCK

Algorithm 3: Removal mask initialisation and reduction algorithm
Data: {mi}i∈[0,n) The morton codes.
Result: {ξi}i∈[0,n) The mask list.
// Flag removal of duplicates

1 for i in parallel do
2 if i == 0 then
3 ξi ← true;
4 else
5 ξi ← not(mi = mi−1);

// Reduction passes
6 for nred reduction steps do
7 for i in parallel do

// Get kept morton codes indexes
8 i−1 ← i− 1;
9 while (ξi−1 = false & i−1 ≥ 0) do

10 i−1 ← i−1 − 1;
11 i−2 ← i−1 − 1;
12 while (ξi−2 = false & i−2 ≥ 0) do
13 i−2 ← i−2 − 1;
14 i+1 ← i + 1;
15 while (ξi+1 = false & i+1 < Nmorton) do
16 i+1 ← i+1 + 1;

// Reduction criterion
17 δ0 ← δ(µi, µi+1);
18 δ−1 ← δ(µi−1 , µi);
19 δ−2 ← δ(µi−2 , µi−1);
20 if not(δ0 < δ−1 & δ−2 < δ−1) & ξi = true then
21 ξi ← true;
22 else
23 ξi ← false;

Algorithm 4: Leaf object iteration
Data: idi The leaf index map.
i the leaf index we want to unpack

1 for j ∈ [idi, idi+1) do
2 k ← ϵj // index map of the sort
3 F(k)

164

4. THE SHAMROCK TREE

4.10. Reduction
In certain situations, an object may interact with a large number of neighbours,
resulting in multiple leaves containing these neighbours for the object. One such
situation arises frequently in a Smoothed Particle Hydrodynamics solver, where each
particle typically interacts with an average of ∼ 60 neighbours. One optimisation
strategy to speed up the tree traversal consists in reducing the number of leaves
containing these 60 neighbours by grouping some leaves at the lower levels of the
tree before applying the Karras algorithm. We have integrated a so-called step of
reduction to achieve this. The resulting tree mirrors the initial one, but with grouped
leaves.

To perform reduction, we require a criterion determining when two leaves, each
containing two Morton codes, can be removed to yield the internal cell positioned
just above them. This procedure is carried out using Alg.3: if a Morton code
constitutes the second leaf of a shared parent, then it is removable. This property
is implemented in the radix tree by verifying when δ(µi−2 , µi−1) < δ(µi−1 , µi) >
δ(µi, µi+1). When this condition is satisfied, the Morton code i is removable. The
reduction step modifies the Morton tree list associated to the initial tree built. The
tree is therefore already reduced when it is built and has never had any additional
nodes.

4.11. Tree building
Fig. 4.11 outlines the tree building algorithm of Shamrock. Initially, Morton codes
are generated from coordinates and efficiently sorted while eliminating duplicates.
Morton tables are then prepared and pre-processed (a summary of these steps is
sketched in Fig. 4.12) before filling the values characterising the tree as in Table 4.2.
The lengths associated to the coordinates of the cells are finally calculated. The
algorithms described in this section are implemented using C++ metaprogramming,
enabling versatile use of any kind of spatial coordinates in practice.

Compute Morton codes

Morton codes are calculated entirely in parallel (step "To Morton" in Fig.4.11).
Initially, a buffer storing the positions of the elementary numerical elements is al-
located. These positions are mapped to an integer grid following the procedure
described in Sect. 4.1. The construction is tested by appropriate sanity checks. The
resulting integer coordinates are converted to Morton codes in a Morton code buffer
(mi in Fig.4.11).

Sort by Key

Initially, the list of Morton codes corresponding to the positions of elementary nu-
merical elements is unsorted. A key-value pair sorting algorithm is therefore used

165

CHAPTER 4. SHAMROCK

Internal logicPublic buffers

To morton

Bitonic sort

reduction +
duplicate

Stream
compaction

Select morton

Karras alg.

Compute cell
range (int)

Convert cell range
(int to float)

Figure 4.11: Flowchart illustrating the tree-building procedure, indicating the in-
terdependence between each algorithm (grey boxes) and the related buffers (orange
boxes). The internal logic box corresponds to the part of the algorithm inaccessible
to the user. Buffers depicted outside this box are structures used in other parts of
the code.

166

4. THE SHAMROCK TREE

ri = r0 r1 r2 r3 r4 r5 r6

to morton
mi = 011 000 001 100 011 000 010

sort (µi = mϵi
)

µi = 000 000 001 010 011 011 100

compute mask & reduction

ξi = 1 0 1 1 1 0 1

stream compaction

idi = 0 2 3 4 6 7

Select morton codes
µleaf,i = 000 001 010 011 100

T. Karras algorithm

Figure 4.12: The cyan slot in the idi row is the total lenght of the input array. ϵi is
the resulting permutation applied by the sort algorithm.

to sort the Morton codes while keeping track of the original index of the object
within the list. For this task, we use a GPU Bitonic sorting algorithm that we have
re-implemented using Sycl. The Bitonic algorithm is simple and its performance
is not heavily reliant on the hardware used (step "Bitonic sort" in Fig.4.11, see
e.g. Batcher 1968; Nassimi & Sahni 1979). While more efficient alternatives have
been suggested in the literature, our observation is that they are more difficult to
implement and are not as portable across architectures (e.g. Arkhipov et al. 2017;
Adinets & Merrill 2022).

Reduction

From the sorted list of Morton codes, we remove duplicates and apply reduction with
a procedure in two steps. In the first step, we generate a buffer of integers where
each value is 1 if the Morton code is retained at a given index and 0 otherwise. This
information is stored in a buffer called Keep Morton flag buffer (ξi in Fig.4.11). In
the second step, we use this buffer to perform a stream compaction algorithm (e.g.
Blelloch 1990; Horn 2005, see example in Fig. 4.12) to construct simultaneously two
lists: a list of Morton codes without duplicates, and the list of the indices of the
preserved Morton code prior stream compaction. The stream compaction algorithm
heavily depends on an internal exclusive scan algorithm. This algorithm, when
applied to the array {ai}i∈[0,n] returns the array {∑i−1

j=0 aj}i∈[1,n] and 0 when i = 0.

167

CHAPTER 4. SHAMROCK

In our case, we implemented the single-pass prefix sum with decoupled look-back
algorithm (Merrill & Garland, 2016).

Compute tree tables

At this point, we have a set of Morton codes sorted without duplicates. We then
apply the Karras algorithm described in Sect. 4.8 to generate in parallel the tables
from which the properties of the tree can be reconstructed (listed on Table 4.2).

Compute tree cell sizes

We define a tree cell as the bounding box that corresponds to the Morton codes
of the leaves under a given node. This node can either be an internal node or a
leaf. Tree cells are therefore the geometric representation of the tree, and needs to
be computed for neighbour finding (see Sect. 4.12). In practice, it is sufficient to
compute the boundaries of the edges of the cell [xmin, xmax)×[ymin, ymax)×[zmin, zmax)
(Sect. 4.6).

Algorithm 5: Compute tree cell sizes
Data: morton The morton code buffer.
Result: bmin, bmax, the bounds of the cells.

1 m1 = morton[i]
2 m2 = morton[endrange[i]]
3 σ = δkarras(m1, m2)
4 f0 = s(σ)
5 f1 = s(σ + 1)
6 mask = maxint << (bitlen− σ)
7 p0 = (morton→ real space) (m[i] & mask)
8 bmin[i] = p0
9 bmax[i] = p0 + f0

10 if left child flag[i] then
11 bmin[rid[i] + Ninternal] = p0
12 bmax[lid[i] + Ninternal] = p0 + f1

13 if right child flag[i] then
14 tmp = f0 − f1
15 bmin[rid[i] + Ninternal] = p0 + tmp
16 bmax[lid[i] + Ninternal] = p0 + tmp + f1

Alg. 5 provides the procedure to compute the size of tree cells, using the vector
position s defined by Eq. 4.7 and the quantities p0 and p1 defined by Eqs. 4.5 –
4.6. For internal cells that have leaves as children, the boundary of the edges can
be calculated by incrementing the value of δ(a, b) by one unity and using the new

168

4. THE SHAMROCK TREE

value in Eqs. 4.5 – 4.6. This gives the expected result for a left child, an extra shift
being added for the right child (cf. line 14 of Alg.5).

4.12. Tree traversal
Each cell, leaf or internal of the tree constructed by the procedure described above
consists of an axis-aligned bounding boxes and containing several numerical objects.
Searching for the neighbours of an object a therefore requires checking the existence
of an interaction between a cell of the tree c and the object a, using the object-
group interaction criterion γo/g(a, c). Per construction, if the criterion is true for a
child cell, it is also true for its parent. Neighbour finding requires therefore starting
from the root node and going down the tree, checking at each step whether the
interaction criterion is still verified or not. The result is a set of retained tree leaves,
that are likely to contain neighbours. The set of neighbours of a given object is
then obtained by verifying the object-object interaction criterion on each object in
each of the targeted leaves. The algorithmic procedure for these steps is detailed
in Alg. 6. It is based on the property that the depth of the tree is shorter than
the length of the Morton code representation. This allows a stack of known size to
be used to traverse the tree, which can be added at compile time and run on the
GPU since there is no dynamic memory allocation. The first step in the algorithm
is to push the root node onto the stack. In each subsequent step, we pop the node
on top of the stack, and we check whether or not it interacts with the object. If it
does, and if it is an internal node, we push its children onto the top of the stack and
move on to the next step. Otherwise, if it is a leaf, we iterate through the objects
contained in the leaf (Alg. 4), and check the object-object interaction criterion for
each object in the given leaf. In the source code of Shamrock, we abstract Alg. 6
under the rtree_for. It can be called from within a kernel on the device and can
be associated with any interaction criteria. It will then provide an abstract loop
over the objects found using the criteria.

4.13. Direct neighbour cache
Using neighbour search directly is technically feasible, but conducting it repeatedly
would result in substantial costs due to its intricate logic. Moreover, executing com-
putations within the core of a device kernel with extensive branching would nega-
tively impact performance. To circumvent these issues, we instead build a neighbour
cache when traversing the tree, and then reuse this cache for subsequent computa-
tions on the particles. The benefits are twofold: firstly, it increases performance
for the reasons outlined above, and secondly, it decouples neighbour finding from
calculations carried out on the particles, enabling optimisation efforts to be better
targeted. Conversely, using such an approach means that we store an integer index
for each pair of neighbours, which in SPH is roughly 60 times the number of parti-
cles. The memory footprint therefore increases significantly. Taking everything into

169

CHAPTER 4. SHAMROCK

Algorithm 6: Tree traversal
Data:
depth : The maximal tree depth, Ninode : The number of internal nodes in
the tree, {lchildid,j}j∈[0,Ninode), {rchildid,j}j∈[0,Ninode), {lchildflag,j}j∈[0,Ninode),
{rchildflag,j}j∈[0,Ninode)

// Setup index stack
1 i← depth− 1;
2 s← {err}i∈[0,depth);

// Enqueue the root node
3 si ← 0;
4 do

// Pop top of the stack
5 j = si;
6 si = err;
7 i← i + 1;

// Check if interaction
8 α← γo/g(. . . , j);
9 if α then

// If the current node is a leaf
10 if j ≥ Ninode then

// Iterate on objects in leaf
11 leaf object iteration(j);
12 else

// Push node childs on the stack
13 lid← lchildid,j + (Ninode) ∗ lchildflag,j;
14 rid← rchildid,j + (Ninode) ∗ rchildflag,j;
15 i← i− 1;
16 si = rid;
17 i← i− 1;
18 si = lid;
19 else

// Gravity
20 leaf exclude case(j);
21 while i < depth;

170

4. THE SHAMROCK TREE

account, we opt for the neighbour caching strategy due to its better performance
and extensibility.

Algorithm 7: Neighbour caching
Data: N : The number of objects to build cache for, γo/g : the

object-group interaction criterion, γo/o the object object interaction
criterion.

Result: {ξi}i∈[0,N+1) The offset map. {Ξi}i∈[0,Nneigh) The neighbour id map.
1 {ci ← 0}i∈[0,N+1);

// First pass to count neighbours
2 for i ∈ [0, N) in parallel do
3 c← 0;
4 for j ← rtree_for[γo/g(i, . . .)] do
5 if γo/o(i, j) then
6 c← c + 1;

7 ci ← c;
// ci contain the neighbours counts

8 {ξi}i∈[0,N+1) ← exclusive scan({ci}i∈[0,N+1));
// ξi contain the neighbour map offset

9 Nneigh ← cN ;
10 {Ξi ← 0}i∈[0,Nneigh);

// Second pass to get neighbours ids
11 for i ∈ [0, N) in parallel do
12 off ← ξi;
13 for j ← rtree_for[γo/g(i, . . .)] do
14 if γo/o(i, j) then
15 Ξoff ← j;
16 off ← off + 1;

We start by allocating a buffer to store the neighbour count for each object. We
perform an initial loop over all the objects and do a tree traversal for each of them
to obtain the neighbour counts. We then perform an exclusive scan, which gives the
offset used to write in the neighbour index map from our neighbour count buffer.
The neighbour count buffer has an extra element that is set to zero at its end, this
allows us to obtain the total number of neighbours in this slot after the exclusive
scan. A final loop writes the indexes of the neighbours to the neighbour index map.
Details of this procedure are given in Alg. 7. We can use a procedure similar to
the one used for the tree leafs in Alg. 4 to iterate over the neighbours stored in the
neighbour cache, as depicted in Alg. 8.

171

CHAPTER 4. SHAMROCK

Algorithm 8: Neighbour cache usage
Data: {ξi ← 0}i∈[0,N+1) the offset map, {Ξi}i∈[0,Nneigh) the neighbour cache

1 for j ∈ [ξi, ξi+1) do
2 k ← Ξj // index of neighbour
3 F(k)

4.14. Two-stages neighbour cache
The procedure described in Sect. 4.13 consists of a direct neighbour cache, in the
sense that for each object we search directly for its neighbours. A more sophisticated
approach, likely to improve performance in most cases, involves splitting the direct
case into two stages. In the first step, we search for the neighbours of each tree
leaf using the group-group interaction criterion and the group-object criterion. In
the second step, we first determine in which leaf the object is, then use the leaf
neighbour cache to find the neighbour of the object. The first step only searches
for neighbours within the leaves of the tree, while the second step produces the
same result as in the direct case. In a two-stages neighbour search, tree traversal is
performed once per tree leaf, instead of once per object. When combined with tree
reduction, this approach can decrease the number of tree traversals performed by
a factor of ten. On the flip side, adopting a two-stage neighbour caching approach
increases the number of kernels to be executed on the device and the allocation
pressure (temporarily, as the first step is discarded at the end, the memory footprint
is unchanged compared to the direct case, but temporary allocation can introduce
additional latency). Overall, we observe that two-stages neighbour caching generally
improves computational efficiency, and when combined with tree reduction, this
strategy ultimately yields the best performance.

5. Summary
In this chapter, we have presented the core of the Shamrock framework. The meth-
ods detailed here are applicable to any hydrodynamical numerical scheme regardless
of whether they are grid-based or particle-based, since patch decomposition, commu-
nications, and load balancing are abstracted from the scheme. Given the structure
of the MPI layer, we anticipate linear weak scaling, as long as simulation performed
is not constrained by communication bandwidth or latency. Furthermore, all the
major algorithms of the framework, in particular the construction of the radix tree,
are offloaded to GPUs following the guidelines discussed in Chapter 3. We therefore
expect a speedup compared to CPU execution. Additionally, the tree-building pro-
cess has been significantly optimized. This enables almost cost-free recomputation
of the tree, thereby eliminating the need for its communication. We will now test
the performance of the framework on hydrodynamical simulations.

172

5. SUMMARY

References
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E., 2015,

GROMACS: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers, SoftwareX, 19–25

Adinets A., Merrill D., 2022, Onesweep: A Faster Least Significant Digit Radix Sort for
GPUs, arXiv preprint arXiv:2206.01784

Alekseenko A., Páll S., in Proceedings of the 2023 International Workshop on OpenCL,
booktitle, IWOCL ’23. Association for Computing Machinery, New York, NY, USA,
doi:10.1145/3585341.3585350, https://doi.org/10.1145/3585341.3585350

Alekseenko A., Páll S., Lindahl E., 2024, GROMACS on AMD GPU-Based HPC Plat-
forms: Using SYCL for Performance and Portability, arXiv preprint arXiv:2405.01420

Alpay A., Heuveline V., in Proceedings of the International Workshop on OpenCL,
booktitle, IWOCL ’20. Association for Computing Machinery, New York, NY, USA,
doi:10.1145/3388333.3388658, https://doi.org/10.1145/3388333.3388658

Alpay A., Soproni B., Wünsche H., Heuveline V., in International Workshop on OpenCL,
booktitle, IWOCL’22. Association for Computing Machinery, New York, NY, USA,
doi:10.1145/3529538.3530005, https://doi.org/10.1145/3529538.3530005

Arkhipov D. I., Wu D., Li K., Regan A. C., 2017, Sorting with GPUs: A Survey, arXiv
e-prints, ADS link, arXiv:1709.02520

Batcher K. E., in Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, booktitle, AFIPS ’68 (Spring). Association for Computing Machinery,
New York, NY, USA, p. 307–314, doi:10.1145/1468075.1468121, https://doi.org/
10.1145/1468075.1468121

Blelloch G. E., 1990, Prefix sums and their applications, School of Computer Science,
Carnegie Mellon University Pittsburgh, PA, USA

Deakin T., McIntosh-Smith S., in Proceedings of the International Workshop on OpenCL,
booktitle, IWOCL ’20. Association for Computing Machinery, New York, NY, USA,
doi:10.1145/3388333.3388643, https://doi.org/10.1145/3388333.3388643

Gafton E., Rosswog S., 2011, A fast recursive coordinate bisection tree for neighbour
search and gravity, MNRAS, 418, 770-781

Grete P., et al., 2022, Parthenon – a performance portable block-structured adaptive mesh
refinement framework, arXiv e-prints, ADS link, arXiv:2202.12309

Hopkins P. F., 2015, A new class of accurate, mesh-free hydrodynamic simulation methods,
MNRAS, 450, 53-110

Horn D., 2005, Stream reduction operations for GPGPU applications, Gpu gems, 573–589
Jakob W., Rhinelander J., Moldovan D., 2024, pybind11–Seamless operability between

C++ 11 and Python, URL: https://github. com/pybind/pybind11
Jin Z., Vetter J. S., in Proceedings of the 13th ACM International Conference on Bioin-

formatics, Computational Biology and Health Informatics, booktitle, BCB ’22. Asso-
ciation for Computing Machinery, New York, NY, USA, doi:10.1145/3535508.3545591,

173

http://dx.doi.org/10.1145/3585341.3585350
https://doi.org/10.1145/3585341.3585350
http://dx.doi.org/10.1145/3388333.3388658
https://doi.org/10.1145/3388333.3388658
http://dx.doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
http://dx.doi.org/10.48550/arXiv.1709.02520
http://dx.doi.org/10.48550/arXiv.1709.02520
https://ui.adsabs.harvard.edu/abs/2017arXiv170902520A
http://arxiv.org/abs/1709.02520
http://dx.doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
http://dx.doi.org/10.1111/j.1365-2966.2011.19528.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418..770G
http://arxiv.org/abs/1108.0028
http://dx.doi.org/10.48550/arXiv.2202.12309
https://ui.adsabs.harvard.edu/abs/2022arXiv220212309G
http://arxiv.org/abs/2202.12309
http://dx.doi.org/10.1093/mnras/stv195
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450...53H
http://arxiv.org/abs/1409.7395
http://dx.doi.org/10.1145/3535508.3545591

CHAPTER 4. SHAMROCK

https://doi.org/10.1145/3535508.3545591

Karras T., in Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on
High-Performance Graphics, booktitle, pp 33–37

Lauterbach C., Garland M., Sengupta S., Luebke D. P., Manocha D., 2009, Fast BVH
Construction on GPUs, Computer Graphics Forum

Lesur G. R. J., Baghdadi S., Wafflard-Fernandez G., Mauxion J., Robert C. M. T., Van
den Bossche M., 2023, IDEFIX: A versatile performance-portable Godunov code for
astrophysical flows, A&A, 677, A9

Markomanolis G. S., et al.,in Supercomputing Frontiers: 7th Asian Conference, SCFA
2022, Singapore, March 1–3, 2022, Proceedings, booktitle, Springer-Verlag, Berlin,
Heidelberg, p. 79–101, doi:10.1007/978-3-031-10419-0˙6, https://doi.org/10.1007/
978-3-031-10419-0_6

Merrill D., Garland M., 2016, Single-pass parallel prefix scan with decoupled look-back,
NVIDIA, Tech. Rep. NVR-2016-002

Morton G. M., 1966, A computer oriented geodetic data base and a new technique in file
sequencing, International Business Machines Company New York

Nassimi Sahni 1979, Bitonic Sort on a Mesh-Connected Parallel Computer, IEEE Trans-
actions on Computers, 2-7

Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-
drodynamics Code for Astrophysics, PASA, 35, e031

Samet H., 2006, Foundations of multidimensional and metric data structures, Morgan
Kaufmann

Springel V., Pakmor R., Zier O., Reinecke M., 2021, Simulating cosmic structure forma-
tion with the GADGET-4 code, MNRAS, 506, 2871-2949

Trott C., et al., 2021, The Kokkos EcoSystem: Comprehensive Performance Portability
for High Performance Computing, Computing in Science and Engineering, 23, 10-18

Wibking B. D., Krumholz M. R., 2022, QUOKKA: a code for two-moment AMR radiation
hydrodynamics on GPUs, MNRAS, 512, 1430-1449

174

https://doi.org/10.1145/3535508.3545591
http://dx.doi.org/10.1051/0004-6361/202346005
https://ui.adsabs.harvard.edu/abs/2023A&A...677A...9L
http://arxiv.org/abs/2304.13746
http://dx.doi.org/10.1007/978-3-031-10419-0_6
https://doi.org/10.1007/978-3-031-10419-0_6
https://doi.org/10.1007/978-3-031-10419-0_6
https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back
http://dx.doi.org/10.1109/TC.1979.1675216
http://dx.doi.org/10.1109/TC.1979.1675216
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://arxiv.org/abs/2010.03567
http://dx.doi.org/10.1109/MCSE.2021.3098509
https://ui.adsabs.harvard.edu/abs/2021CSE....23e..10T
http://dx.doi.org/10.1093/mnras/stac439
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.1430W
http://arxiv.org/abs/2110.01792

Chapter 5
Shamrock SPH solver

Contents
1 Smoothed Particle Hydrodynamics in Shamrock 175
2 Physical tests . 185
3 Performance . 195
4 Software design . 203
5 Conclusion . 206
Appendices . 207
6 AABB extension/intersection permutation 207
References . 208

Foreword
We now present the Smoothed Particle Hydrodynamics (SPH) solver of Shamrock.
We have chosen to start with SPH because it is numerically the most complex
method to implement and establishes a robust foundation for many components
needed for other methods. Additionally, to our knowledge, no exascale scalable
multi-GPU SPH codes existed in the astrophysics community until now, and efforts
were already underway to port other methods to exascale architectures. Finally,
our choice of SPH was influenced by the local expertise at CRAL and a month-long
collaboration with Professor D. Price at Monash University (Melbourne, Australia).

1. Smoothed Particle Hydrodynamics in Sham-
rock

1.1. Equations of motion
As detailed in Chapter 1, Sec. 4 in Smoothed Particle Hydrodynamics (SPH), we
evolve particles in such a way that their dynamics approximate a fluid statisfying
Euler’s equation. In SPH, particle densities are defined by

ρa =
∑

b

mbWab(ha), (5.1)

Wab(ha) = Cnorm

h3
a

f

(
|ra − rb|

ha

)
, (5.2)

175

CHAPTER 5. SHAMROCK SPH SOLVER

The equation of motion for SPH with artificial viscosity are:

dva

dt
=
∑

b

mb

(
Pa + qa

ab

ρ2
aΩa

∇aWab(ha) + Pb + qb
ab

ρ2
bΩb

∇aWab(hb)
)

, (5.3)

Ωa = 1− ∂ha

∂ρa

∑
b

mb
∂Wab(ha)

∂ha

, (5.4)

where

qa
ab =

−
1
2ρavsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise,
, (5.5)

vsig,a = αAV
a cs,a + β|vab · r̂ab| , αAV

a ∈ [0, 1]. (5.6)

The internal energy equation with artificial conductivity is

dua

dt
= Pa + qa

ab

ρ2
aΩa

∑
b

mbvab · ∇aWab(ha) + Λcond, (5.7)

where vab ≡ va − vb, and the pressure Pa is related to the density ρa and other
variables through the equation of state. Additionally,

Λcond =
∑

b

mbβuvu
sig(ua − ub)

1
2

[
Fab(ha)
Ωaρa

+ Fab(hb)
Ωbρb

]
, (5.8)

vu
sig =

√√√√ |Pa − Pb|
(ρa + ρb)/2 , (5.9)

using Fab(ha) = r̂ab · ∇aWab(ha) and βu to represent the shock conductivity param-
eter.

In Shamrock, typical functions f with finite compact supports, such as Schoen-
berg (1946) B-splines like M4, M5, M6 , or Wendland functions like C2, C4, C6 (see
e.g., Wendland 1995), are implemented. We define la, the interaction radius of SPH
particle a, as la = Rkernha, where Rkern is the radius of f , the kernel generator
function.

The shock detection is performed by Cullen & Dehnen (2010) viscosity switch.
The value of the shock viscosity parameter αa is evolved using

dαa

dt
= −(αa − αloc,a)

τa

. (5.10)

The targeted value of the shock viscosity parameter αloc,a is defined using

αloc,a ≡ min
(

10Aa
h2

a

c2
s,a

, αmax

)
, (5.11)

176

1. SMOOTHED PARTICLE HYDRODYNAMICS IN SHAMROCK

where

Aa ≡ ξa max
[
− d

dt
(∇ · va) , 0

]
, (5.12)

is the shock indicator and ξa is the corrective factor (Balsara, 1995)

ξ ≡ |∇ · v|2

|∇ · v|2 + |∇ × v|2
. (5.13)

The rising time τa ≡ ha/(cs,aσd) is parameterised by the decay parameter σd = 0.1,
a typical value for practical cases. In practice, αa(t) is set directly to αloc,a if αloc,a >
αa(t). The SPH derivatives exact to the linear order are used to compute

d
dt

(∇ · va) =
∑

i

∂ai
a

∂xi
a

−
∑
i,j

∂vi
a

∂xj
a

∂vj
a

∂xi
a

, (5.14)

where for a given field ϕ, this accurate SPH derivative is

Rij
a

∂ϕk
a

∂xj
a

=
∑

b

mb

(
ϕk

b − ϕk
a

) ∂Wab (ha)
∂xi

, (5.15)

where,

Rij
a =

∑
b

mb

(
xi

b − xi
a

) ∂Wab (ha)
∂xj

≈ δij. (5.16)

Inverting Rij
a and applying it to Eq. 5.15 provides the desired derivative.

1.2. SPH interaction criterion
Eq. 5.3 shows that two SPH particles interact when their relative distance is inferior
to the maximum of their interaction radius. Formally, the object-object interaction
criterion between two particles a and b is

γo/o(a, b) ≡ {|ra − rb| < max(la, lb)} . (5.17)

Consider now a group of SPH particles, and let us embed them in an axis-aligned
bounding box (AABB). Consider another SPH particle. A necessary condition for
the latter particle to interact with the AABB is: it resides within the volume formed
by extending the AABB in all directions by the maximum of all interaction radii of
particles inside the AABB, or, a ball centered on the particle, with a radius equal
to its interaction radius, intersects the AABB. Formally, the interaction criterion
between the particle and the AABB of particles is therefore

γ1
o/g(a, {b}b∈AABB) ≡ (ra ∈ AABB ⊕ lAABB,b)

∨
(

B(ra, la) ∩ AABB ̸= ∅
)

, (5.18)

177

CHAPTER 5. SHAMROCK SPH SOLVER

where B(ra, la) is a ball centred on ra and of diameter 2la, lAABB,b is the maximum
interaction radius of the particles in the AABB, maxb∈AABB(lb), AABB ⊕ l is the
operation that extends the AABB in every direction by a distance l and ∨ is the
boolean or operator. Consider now the ball centred on ra with a diameter of 2la.
We denote AABB(ra, la) the square AABB with a side length of 2la, centred at ra,
ensuring that it encompasses the ball. Replacing the original ball by this AABB in
Eq. 5.18 yields the following group-object criterion

γ2
o/g(a, {b}b∈AABB) ≡ (ra ∈ AABB ⊕ lAABB,b)

∨
(

AABB(ra, la) ∩ AABB ̸= ∅
)

. (5.19)

Though less stringent than that of Eq. 5.18, this criterion is easier to handle in
practice. Indeed, one can show that (App. 6)

AABB1 ⊕ h ∩ AABB2 ̸= ∅ ⇔ AABB1 ∩ AABB2 ⊕ h ̸= ∅. (5.20)

Let AABB1e and AABB2e denote the extended version of AABB1 and AABB2,
extended by the distance h in all three directions respectively. Eq. 5.20 asserts
that if AABB1e intersects AABB1, it is equivalent for AABB1 to intersect AABB2e.
Applied on Eq. 5.19, Eq. 5.20 guarantees that the object-group interaction criterion
can be rewritten by moving the contribution of the interaction radius of the particle
a to the term corresponding to the AABB in the second brackets, as follows

γ2
o/g(a, {b}b∈AABB) ≡ (ra ∈ AABB ⊕ lAABB,b)∨ (5.21)

∨
(

AABB(ra, 0) ∩ AABB ⊕ la ̸= ∅
)

,

≡ (ra ∈ AABB ⊕ lAABB,b) (5.22)
∨ (ra ∈ AABB ⊕ la)

≡ [ra ∈ AABB ⊕max (lAABB,b, la)] . (5.23)

The three criteria discussed above satisfy the hierarchy

γ2
o/g(a, {b}b∈AABB)⇐ γ1

o/g(a, {b}b∈AABB)
⇐
∨
b

γo/o(a, b). (5.24)

Finally, one can extend the first form of γ2
o/g to the following group-group interaction

criterion

γg/g(AABB1,AABB2) ≡
(

[AABB1 ⊕ lAABB1,a] ∩ AABB2 ̸= ∅
)

∨
(

AABB1 ∩ [AABB2 ⊕ lAABB2,b] ̸= ∅
)

. (5.25)

178

1. SMOOTHED PARTICLE HYDRODYNAMICS IN SHAMROCK

Using Eq. 5.20 similarly as for Eq.5.19 we obtain the form of the group-group inter-
action criterion used in Shamrock,

γg/g(AABB1, AABB2) ≡(
AABB1 ∩ [AABB2 ⊕max(lAABB1,a, lAABB2,a)] ̸= ∅

)
. (5.26)

In summary, the interaction criteria used for SPH in Shamrock are:

• Object-object criterion :

γo/o(a, b) = |ra − rb| < Rkern max(ha, hb)

• Object-group criterion :

γ2
o/g(a, {b}b∈AABB) = [ra ∈ AABB ⊕Rkern max (hAABB,b, ha)]

• Group-group criterion :

γg/g(AABB1, AABB2) =
(

AABB1 ∩ [AABB2

⊕Rkern max(hAABB1,a, hAABB2,a)] ̸= ∅
)

1.3. Adaptive smoothing length
As mentionned Chapter 1, Sec. 4 in astrophysics, a typical choice consists in choosing
ha in a way that the resolution follows the density

ρ(h) = m

(
hfact

h

)3

, (5.27)

where hfact is a tabulated dimensionless constant that depends on the kernel (e.g.
hfact = 1.2 for the M4 cubic kernel). This specific form also implies that the aver-
aged number of neighbours within the compact support of a given SPH particle is
roughly constant throughout the simulation and conveniently ensure proper GPU
load balancing in our case. Eq. 5.27 must itself be consistent with the definition of
density Eq. 5.2, since h depends on ρ and vice versa. Achieving this requires for
density and smoothing length to be calculated simultaneously, by minimising the
function

δρ = ρa − ρ(ha). (5.28)
This approach allows an accurate use of ρ(ha) in the algorithms rather than cal-
culating the SPH sum. In practice, the iterative procedure is conducted with a
Newton-Raphson algorithm. The steps outlined in Alg. 9 describe the iterative pro-
cedure used to update the smoothing length. A technicality related to ghost zones

179

CHAPTER 5. SHAMROCK SPH SOLVER

Algorithm 9: Smoothing length update
Data: hn

a The smoothing lengths at timestep n, χ The ghost zone size
tolerance.

Result: hn+1
a The smoothing lengths at timestep n + 1.

1 {ϵa ← −1}a;
// Use a copy of hn

a to do iterations
2 {ha ← hn

a}a;
// Outer loop for ghost exchange

3 while mina(ϵa) = −1 do
4 . . . exchange ghosts positions with tolerance χ . . . ;

// Inner loop for Newton-Rahpson
5 while maxa(ϵa) > ϵc do
6 for a in parallel do

// Compute the SPH sum
7 ρa ←

∑
b mbWab(ha);

// Newton-Rahpson
8 δρ← ρa − ρ(ha);
9 dδρ← ∑

b mb
∂Wab(ha)

∂ha
+ 3ρa

ha
;

10 hn+1
a ← ha − δρ/dδρ;

// Avoid over/under-shooting
11 if hn+1

a > haλ then
12 hn+1

a ← haλ;
13 else if hn+1

a < ha/λ then
14 hn+1

a ← ha/λ;
15 ϵa ← |hn+1

a − ha|/hn
a ;

// Exceed ghost size
16 if hn+1

a > hn
aχ then

17 hn+1
a ← hn

aχ;
18 ϵa ← −1;

180

1. SMOOTHED PARTICLE HYDRODYNAMICS IN SHAMROCK

arises during this procedure. The size γ12 of the ghost zone separating two adjacent
patches, P1 and P2, is determined by the group-group interaction criterion between
these patches

γ12 = max
(

max
{a}

ha, max
{b}

hb

)
. (5.29)

where a and b stem for indices of particles in P1 and P2 respectively. In Shamrock,
the size γ12 is increased by a safety factor χ, termed as the ghost zone size tolerance.
This factor acknowledges that ghost zone structures should withstand fluctuations
in smoothing lengths throughout the iterative process. With this tolerance, the
smoothing length can fluctuate by a factor of χ during density iterations without
necessitating Shamrock to regenerate the ghost zones. In practice, we first ex-
change the ghost zones using a tolerance χ = 1.1, then iterate until all particles
converge to the consistent smoothing length or exceed the ghost zone size tolerance.
If the latter occurs, we restart the process from the beginning with the updated
smoothing length. We find that this almost rarely arises, except during the initial
time step when the smoothing length is converged for the first time. Alg. 9 shows
that in Shamrock, we use an additional safety factor, denoted as λ, to prevent
over- and undershooting throughout the iterations. Without this correction, the
iterative procedure may yield unstable negative smoothing lengths. In practice, we
use λ = 1.2.

1.4. Time stepping

1.4.1. Leapfrog integration

In Shamrock, we employ a symplectic second-order leapfrog integrator, or ‘Kick-
drift-kick’ (e.g. Verlet 1967; Hairer et al. 2003), which achieves second-order accu-
racy in space in smooth flows:

vn+ 1
2 = vn + 1

2∆tan, (5.30)

rn+1 = rn + ∆tvn+ 1
2 , (5.31)

v∗ = vn+ 1
2 + 1

2∆tan, (5.32)

an+1 = a
(
rn+1, v∗

)
, (5.33)

vn+1 = v∗ + 1
2∆t

[
an+1 − an

]
, (5.34)

where rn, vn and an denote positions, velocities and acceleration at the n−th time
step ∆t. In the scheme presented in Price et al. 2018, a combined iteration is used to
calculate the acceleration an+1 and update the smoothing length at the same time.
To minimise the amount of data communicated, we separate the acceleration and the
smoothing length update. In Shamrock, the smoothing length is calculated after
applying Eq. 5.32. Only positions are required for the smoothing length iteration.

181

CHAPTER 5. SHAMROCK SPH SOLVER

Once these iterations are complete, we first calculate Ωa using Eq. 5.4, then exchange
the ghost zones with the required fields, including Ωa subsequently used in derivative
computations. Similar to the approach used in Phantom, we use the correction
applied to the velocity, calculated during the correction step of the leapfrog, as a
reference to check that the resulting solution is reversible over time. The correction
applied at the end of the leapfrog scheme is as follows

∆vi = 1
2∆t

[
an+1

i − an
i

]
. (5.35)

We use the result of Eq. 5.35 to verify that the maximum correction does not exceed
a fraction ϵv of the mean square correction

max
i

|∆vi|/
√√√√ 1

N

∑
j

|∆vj|2|

 < εv. (5.36)

In practice, we set the value εv = 10−2. If any particles fail to meet this criterion,
we recalculate the acceleration and apply the correction step again with v∗ ← vn+1

instead.

1.4.2. Choice of the timestep

The value of the explicit time step is governed by the Courant-Friedrich-Levy sta-
bility condition (Courant et al., 1928). Following Price et al. (2018) from Lattanzio
et al. (1986); Monaghan (1997),

∆t ≡ min(Ccour
ha

vdt
sig,a

, Cforce

√
ha

|aa|
). (5.37)

The first term allows to correctly capture the propagation of the hydrodynamic
characteristic waves in the fluid at a given resolution. Similarly, the second term
ensures correct treatment of the action of external forces on the fluid. The safety
coefficients are set to the following values Ccour = 0.3 and Cforce = 0.25.

1.4.3. CFL multiplier

To minimize the cost associated with executing the correction cycles of the leapfrog
scheme, we reduce the time step for a few iterations when Eq. 5.36 is not satisfied,
similar to the approach taken in Phantom. To do this in Shamrock, we introduce
a so-called CFL multiplier λCFL, which consists of an additional variable factor
applied to the CFL condition. Therefore, the effective Ccour and Cforce used in
Shamrock SPH solver are

Ccour = λCFLC̃cour, Cforce = λCFLC̃force, (5.38)

182

1. SMOOTHED PARTICLE HYDRODYNAMICS IN SHAMROCK

where C̃cour and C̃force are the safety coefficients chosen by default by the user. If
Eq. 5.36 is not satisfied, we divide λCFL by a factor of 2. Otherwise, at each time
step,

λn+1
CFL = 1 + λstiffλn

CFL
1 + λstiff

, (5.39)

where λstiff is a coefficient that parameters the stiffness of the evolution of the CFL
multiplier. This numerical strategy allows to handle shocks in the simulation, auto-
matically cycling leapfrog iterations over the CFL condition, thereby reducing the
time step to enhance energy conservation. This procedure is particularly effective
during the first time steps of the Sedov-Taylor blast problem.

1.4.4. Shock detection

The shock viscosity parameter α is evolved according to Eq.5.10. After the leafprog
prediction step, an implicit time step is used for this integration

αn+1
loc,a =αloc,a(v∗,∇v∗,∇an), (5.40)

αn+1
a = max

(
αn

a + αn+1
loc,a∆t/τa

1 + ∆t/τa

, αn+1
loc,a

)
. (5.41)

1.4.5. Summary

We have implemented in Shamrock an SPH hydrodynamical solver with self-
consistent smoothing length that handles shock though the combined used of shock
viscosity and conductivity with state-of-the-art shock detector. Fig. 5.1 shows a
comprehensive overview of one SPH time step in Shamrock.

183

CHAPTER 5. SHAMROCK SPH SOLVER

Position update Legend :

Derivative update

Update patch load

Scheduler step

Sync particle accretion

apply position boundary

Compute ghost zone graph

Build BVHs

Neighbor caches Smoothing length update

Compute CFL

GPU kernel

MPI communication

MPI comm. + GPU kernel

Smoothing length update

Start End

Next
timestep

No

Yes

Yes

No

Figure 5.1: Illustration of an SPH time step through an organisational diagram
representing one time step of the SPH scheme, the process being divided into three
main sub-steps. Firstly, position updates (scheduling step for patch decomposition,
leapfrog prediction, and application of position boundaries if necessary). Secondly,
smoothing length updates (generation of ghost zone graph, construction of BVHs,
creation of neighbour caches, smoothing length adjustment, computation of Ω).
Thirdly, derivative updates (field exchange, viscosity and derivative updates, appli-
cation of leapfrog corrector). The step concludes with updating the CFL condition.
The corresponding equations showed on this flowchart correspond to the position
and derivative update to the equations shown Sect. 1.4.1 and 1.4.4. For the smooth-
ing length the corresponding equations are detailed in Sect. 1.3.

184

2. PHYSICAL TESTS

2. Physical tests

2.1. Generalities
First, we validate the SPH solver by performing convergence tests against classical
problems having analytical solutions, such as the Sod tube and the Sedov-Taylor
blast test. The hydrodynamic tests presented in this section are performed using the
M6 kernel with hfact = 1.0, with an average number of neighbours of 113 neighbours
for each SPH particle (almost no difference is expected in the results when using
other spline kernels, e.g. Price et al. 2018). In all tests, momentum is conserved to
machine precision. The choice of the CFL condition result in energy deviations that
do not exceed 10−6 relative error with respect to the initial value.

Secondly, we examine the residuals obtained from comparing the results gener-
ated by Shamrock and Phantom. Since both codes use the same SPH algorithm,
such an analysis is required for conducting further performance comparisons. L2
errors are estimated using the norm

L2(Asim, Aref) =
√√√√ 1

Npart

∑
i

|Ai,sim − Ai,ref |2, (5.42)

where Ai,ref represents the reference quantities, while Ai,sim denotes the quantities
computed in the simulation.

2.2. Advection
We first perform an advection test in a periodic box of length unity to verify the
correct treatment of the periodic boundaries by Shamrock. Three lattices of (16×
12× 12), (64× 24× 24) and (16× 12× 12) particles having velocities vx = 1.0 are
initially juxtaposed, such that ρ = 1.0 if 0.25 ≤ x ≤ 0.75, and ρ = 0.1 elsewhere.
We let the simulation evolve until the step has crossed several times the boundaries
of the box (we choose t = 11, although any other time, even very large, yields the
same outcome since SPH is Galilean invariant). The result obtained at the end of
the simulation is identical to the initial setup to machine precision.

2.3. Sod tube
We perform a Sod-tube test (Sod, 1978) by setting up a box with a discontinuity
between a left state and a right state initially positioned at x = 0.5. In the left state
x < 0.5, the density and the pressure are set to ρl = 1 and Pl = 1, while in the right
state x > 0.5, they are set to ρr = 0.125 and Pr = 0.1 respectively. To initialise the
density profile, we use a periodic box in which we setup a 24× 24× 256 hexagonal
close packed lattice in x ∈ [−0.5, 0.5] and 12× 12× 128 in x ∈ [0.5, 1.5]. The initial
velocity is uniformly set to zero throughout the simulation. The size of the simulation
box size is adjusted such that we ensure periodicity across the y and z boundaries.

185

CHAPTER 5. SHAMROCK SPH SOLVER

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

ρ

t = 11

Figure 5.2: Advection of a density step across several traversal of a periodic box, in
code units. SPH being Galilean invariant, the results (black dots) precisely match
the initial setup (red crosses) down to machine precision, thus validating the bound-
ary treatment in Shamrock.

We use γ = 1.4 to align our test with the Sod tube test commonly performed in grid
codes. No particle relaxation step is used in this test, since the initial distribution of
SPH particles closely resembles a relaxed distribution akin to a crystal lattice. We
use periodic boundaries in the x direction. Shock viscosity is setup with the default
parameters of Shamrock, namely σd = 0.1, β = 2, βu = 1. The setup presented
above is then evolved until t = 0.245. Fig. 5.3 shows results obtained for velocity,
density, and pressure, displaying additionally the shock-capturing parameter α. For
Nx = 128 particles L2 errors are ∼ 10−3 in v and ∼ 10−4 in ρ and P , similarly
to what is obtained with other SPH codes. Similar setups are used to perform
convergence analysis, except for the lattice, for which we use 24 × 24 × Nx, and
12× 12× (Nx/2) particles instead respectively. Results obtained when varying the
value of Nx are reported in Fig. 5.4. We observe second-order convergence on the
pressure, first-order convergence in density, and in-between convergence in velocity.
The scattering observed in the velocity field behind the shock corresponds to particle
having to reorganise the crystal lattice, a typical feature of SPH (e.g. Price et al.
2018). Letting the shock evolve further and interact with the periodic boundary, we
verify that we obtain a second symmetric shock, as expected.

186

2. PHYSICAL TESTS

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

v

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

ρ

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

α

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

P

Figure 5.3: Result obtained for the Sod-tube test by juxtaposing two tubes of 24×
24 × 512 particles in x ∈ [−0.5, 0.5] and 12 × 12 × 256 particles in x ∈ [0.5, 1.5]
organised in hexagonal compact packing lattices. The density is set to ρ = 1 in
x ∈ [−0.5, 0.5] and ρ = 0.125 in x ∈ [0.5, 1.5]. Initial pressure is P = 1 for
x ∈ [−0.5, 0.5] and P = 0.1 for x ∈ [0.5, 1.5], with zero initial velocities. An
adiabatic equation of states with γ = 1.4 is used. Boundaries are periodic, and only
half of the simulation is displayed. The simulation is performed until t = 0.245, and
numerical results are compared against the analytic solution. We additionally show
the values of the shock viscosity parameter α.

187

CHAPTER 5. SHAMROCK SPH SOLVER

64 128 256 512 1024 2048
Nx

10−6

10−5

10−4

10−3

L2

L2[ρ](Nx)

L2[vx](Nx)

L2[P](Nx)

order 1

order 2

Figure 5.4: L2 errors obtained for the Sod shock tube test presented on Fig.5.3 as
a function of the number Nx of particles used on the x axis for x ∈ [−0.5, 0.5]. We
observe second-order convergence on the pressure, first-order convergence in density,
and in-between convergence in velocity, as found in other SPH codes.

0.0 0.2 0.4
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ρ

Npart = 2.5 · 106, Nlin ' 1053

0.0 0.2 0.4
r

ρ

Npart = 2.0 · 107, Nlin ' 2103

0.0 0.2 0.4
r

ρ

Npart = 1.6 · 108, Nlin ' 4203

0.0 0.2 0.4
r

ρ

Npart = 1.3 · 109, Nlin ' 8403

Figure 5.5: Result of the densities (black dots) obtained for the Sedov-Taylor blast
test described in Sect. 2.4 at t = 0.1 for Npart particles, with Npart = 2.5 · 106, 2.0 ·
107, 1.6 ·108, 1.3 ·109 SPH particles (global time-stepping), corresponding to an inter
particle spacing on the HCP lattice of respectively 10−2/4, 10−2/8, 10−2/16, 10−2/32.
Results are represented against the analytical solution (solid red line). The legend
provides the effective linear resolution Nlin corresponding the cubic root of the num-
ber of particle displayed on each graphs which are truncated at r = 0.58.

188

2. PHYSICAL TESTS

101 102 103

Nlin

10−2

10−1

L2

L2[ρ](Nlin)

L2[vr](Nlin)

L2[P](Nlin)

order 1

Figure 5.6: Convergence study of the Sedov-Taylor blast test presented in Fig. 5.5.
Order one convergence is achieved for v, ρ and P , similarly to what is obtained with
other SPH codes.

2.4. Sedov-Taylor blast
We perform a Sedov-Taylor blast wave test (Sedov, 1959; Taylor, 1950a,b) by first
setting up a medium of uniform density ρ = 1 with u = 0 and γ = 5/3, in a 3D
box of dimensions [−0.6, 0.6]3. The particles are arranged locally on a compact
hexagonal lattice. The smoothing length is initially converged by iterating a white
time step. Internal energy is then injected in the centre of the box. This energy
peak is smoothed by the SPH kernel according to ua = W (r, 2h0)× E0, where the
total amount of energy injected is fixed at E0 = 1 and h0 is the smoothing length
of the particles after relaxation. For this test, the CFL condition is lowered to
C̃cour = C̃force = 0.1 to prevent leapfrog corrector sub-cycling caused by the strong
shock. This result in an enhanced energy conservation, with a maximum relative
error of 10−6 observed across all tests. The simulation is then evolved up to t = 0.1.
Simulations with N = 26, 52, 105, 210 have been performed on a single A100 GPU of
an NVidia DGX workstation. Simulations with N = 420 and N = 840 were executed
on the Adastra supercomputer (see Sect. 3) on 4 and 32 nodes respectively. The
highest resolution blast test involves 1.255 Gpart, including ghost particles. The
simulation consists in 14979 iterations performed in 14 hours, including setup and
dumps, on 32 nodes corresponding to 128 Mi250X or equivalently 256 GCDs (see
Sect. 3.1.1 for details). The total energy consumed for this test is 1.94 GJ, as reported
by Slurm. The power consumption per node is 1195 W, which equates to slightly
over half of the peak consumption of a single node (2240 W). Numerical results are
compared against analytical solutions. Fig.5.5 shows results obtained for the density
for N3 particles, with N = 105, 210, 420, 840. For the latter case, L2 errors are of

189

CHAPTER 5. SHAMROCK SPH SOLVER
y

-0.4

-0.2

0

0.2

0.4 M4 64 M4 64 M4 64

t=1.7
M4 64

y

x

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4 M4 64

x

-0.4 -0.2 0 0.2 0.4

M4 64

x

-0.4 -0.2 0 0.2 0.4

M4 64

x

-0.4 -0.2 0 0.2 0.4

1

2

3

de
n

si
ty

M4 64

Figure 5.7: Density profiles obtained in the low-resolution 3D Kelvin-Helmholtz
test described in Sect. 2.5 at t = 1.7 with the M4 kernel (top panel) and the M6
quintic kernel (bottom panel) respectively in code units. The instability is correctly
captured with the M6 kernel, similarly to the findings of Tricco (2019). From left to
right, the numbers of particles Nl and Nr used along the x axis for the low-density
and the high-density regions are: Nl = 128 and Nr = 192, Nl = 256 and Nr = 384,
Nl = 512 and Nr = 758, Nl = 1024 and Nr = 1536, which corresponds to 215× 103,
860× 103, 3.4× 106 and 13.7× 106 particles respectively.

order ∼ 10−1, which is similar to what is obtained with other SPH codes with this
particular setup. Figure 5.6 shows that order one convergence is achieved for v, ρ
and P , similarly to what is obtained with other SPH codes.

2.5. Kelvin-Helmholtz instability
We test the ability of Shamrock to capture instabilities related to discontinuities
on internal energy by performing a Kelvin-Helmholtz instability test (Price, 2008).
We adopt a setup close to the one proposed by Schaal et al. (2015), that gives rise to
secondary instabilities fostering additional turbulence mixing. The initial pressure,
density and velocity profiles are initialised according to

P = 3.5 (5.43)

ρ =
1, if |y| > ys/4,

(3/2)3, if |y| ≤ ys/4,
(5.44)

vx =
ξ/2, if |y| > ys/4,

−ξ/2, if |y| ≤ ys/4,
(5.45)

vy = ε sin(4πx)
{

exp
(
−(y − ys/4)2

2σ2

)
+ exp

(
−(y + ys/4)2

2σ2

)}
. (5.46)

190

2. PHYSICAL TESTS

The test is performed in 2.5D, restricting the z axis to a thin layer comprising only
6 SPH particles in the low density region, and 9 particles in the high density region.
We opt for a density ratio of (3/2)3 between the two regions to simplify the particle
setup process and circumvent unnecessary complexities associated with arranging
particles on closed-packed lattices. We use γ = 1.4. The slip velocity and the
perturbation parameters are ξ = 1, ϵ = 10−2, σ = 0.05/

√
2, similarly to the values

used in Schaal et al. (2015). Simulations are performed on a single A100-40GB GPU.
This GPU can accommodate a maximum of approximately ∼ 40 · 106 particles for
the M4 kernel and ∼ 20 · 106 particles for the M6 kernel. Fig. 5.7 shows results
obtained at increasing resolutions for the M4 kernel (top panel) and the M6 kernel
(bottom panel). Similarly to the findings of Tricco (2019), we first observe that the
M4 fails to accurately capture the instability, even at high resolutions, as vortices
appear flattened and overly diffused. Conversely, we observe that all these features
are effectively captured when employing the M6 kernel. The further Sect. 2.6 shows
that our results align almost perfectly with those obtained with Phantom. The
growth rate observed for the instability matches therefore the findings reported in
Tricco (2019).

2.6. Conformance with Phantom
We aim to benchmark the performance of Shamrock against a state-of-the-art,
robust, optimised and extensively tested SPH code running on CPUs. Several SPH
codes are in use in the community (e.g. Bonsai-SPH Bedorf & Portegies Zwart
2020, Gadget Springel et al. 2021, Gasoline Wadsley et al. 2004, Gizmo Hopkins
2014, Seren Hubber et al. 2011, Swift Schaller et al. 2018). We choose Phantom,
since it is optimised for hydrodynamics, well-used by the astrophysical community
and extensively tested and documented (Price et al., 2018). Before conducting
comparisons, one has to ensure that the two solvers are rigorously identical, up
to identified insignificant errors. This is the purpose of the next two tests, that
are uncommonly designed to reveal discrepancies by amplifying errors using lower
resolution or less regular kernels than achievable. For this, we generate the initial
conditions with Phantom, then start an identical simulation from the same dump
using a fixed time step.

2.6.1. Residuals: Low res Sedov-Taylor blast wave test

We first measure the residual discrepancies between Shamrock and Phantom by
comparing results obtained on two identical Sedov-Taylor blast wave tests described
in Sect. 2.4, fixing the time step to dt = 10−5. This three-dimensional test is highly
sensitive to rounding errors, primarily due to the presence of a low-density, zero-
energy region surrounding the blast wave. In particular, aligning the behaviours of
the shock viscosity parameter αAV proves being particularly challenging. Finally,
Fig. 5.8 shows that discrepancies between Shamrock and Phantom are imper-
ceptible to the naked eye. Quantitatively, the L2 errors are

191

CHAPTER 5. SHAMROCK SPH SOLVER

0.0 0.1 0.2 0.3 0.4
r

0.5

1.0

1.5

ρ

phantom

shamrock

0.0 0.1 0.2 0.3 0.4
r

0

100

200

u

0.0 0.1 0.2 0.3 0.4
r

0

2

4

v r

0.0 0.1 0.2 0.3 0.4
r

0.00

0.25

0.50

0.75

1.00

α

Figure 5.8: A comparison is made between the densities ρ, internal energies u,
velocities vr, and shock detection parameters α obtained at t = 1 from two identical
low-resolution Sedov-Taylor blast wave tests conducted by Phantom (red dots) and
Shamrock (black dots). Initially, Phantom is used to generate the same setup
file for the two simulations. Runs are then conducted using a fixed time-step of
dt = 10−5. The dots are indistinguishable by eye (e.g. the L2 error on the velocity
field is of order 5 · 10−4): the implementations of the SPH solver are identical in the
two codes.

192

2. PHYSICAL TESTS
y

0.2

0.4

0.6

0.8

t=0.2Phantom

t=0.5

t=1

t=2

y

x

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Shamrock

x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8

0.04

0.06

0.08

co
lu

m
n

d
en

si
ty

Figure 5.9: Density profiles obtained at t = 0.2, 0.5, 1, 2 on a low resolution Kelvin-
Helmholtz test by Phantom (top panel) and Shamrock (bottom panel). Results
are almost identical. The test is voluntarily performed with an unsuited M4 kernel at
low-resolution to accentuate residual discrepancies between the two solvers. Those
stem from the use of single precision in one and double precision in the other for
shock detection variables.

• relative L2 distance r : 2.0869658802024003e− 07,

• relative L2 distance h : 3.952645327403623e− 05,

• relative L2 distance vr : 0.0005418229957181854,

• relative L2 distance u : 3.6622341394801246e− 05.

Following an in-depth examination, the sole identified distinctions between the two
solvers are as follows: in Phantom, the shock parameter αAV and the estimate of
∇·v are stored as single-precision floating-point numbers, while in Shamrock, they
are double-precision.

2.6.2. Residuals: Low res Kelvin-Helmholtz instability test

We measure the residuals between Shamrock and Phantom by performing the
Kelvin-Helmholtz instability test implemented in Phantom at commit number
e01f76c3, at low resolution. Simulations are evolved to t = 2, while dumps are
produced every ∆t = 0.1 to sample the development of the instability. We choose
the M4 kernel and a low number of particles to reveal the differences between the
codes. Fig. 5.9 and Fig. 5.10 show the compared evolutions of the density and of
the shock parameter respectively. At t = 0.2, no difference is observed in the den-
sity field. For shock viscosity, we observe for Phantom a small noise of relative

193

CHAPTER 5. SHAMROCK SPH SOLVER
y

0.2

0.4

0.6

0.8

t=0.2Phantom

t=0.5

t=1

t=2

y

x

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Shamrock

x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8
x

0.2 0.4 0.6 0.8

-4.5

-4

-3.5

-3

lo
g

 <
 α

 >

Figure 5.10: Same plot as in Fig.5.9, revealing the amplitude of truncature errors
in the shock viscosity parameter. To our understanding, these errors represent the
sole source of discrepancies between the implementations of SPH in Phantom and
Shamrock.

amplitude ≲ 0.1% along the line y = 0.5, which we attribute to α, h,∇ · v being
stored as single precision fields in Phantom. These fluctuations are not present in
Shamrock, since these quantities are calculated in double precision. At t = 0.5 we
can distinguish at this low resolution a small line of higher shock viscosity and den-
sity in Shamrock, which is not present in Phantom. We attribute these residuals
to the fact that the Phantom simulation may have increased numerical viscosity
due to single precision errors, while the SPH lattice in the Shamrock simulation
is still reorganising. At t = 1, no significant difference is observed between the two
simulations. Finally, at t = 2, tiny differences can be observed at the edges of the
instability, for the same reasons as at t = 1.

2.7. Summary
The hydrodynamic SPH solver implemented in Shamrock passes successfully the
standard tests (advection, Sod tube, Sedov-Taylor blast, Kelvin-Helmholtz instabil-
ity). The implementation of the SPH solver in Shamrock is identical to that of
Phantom. Results obtained with the two codes are almost indistinguishable, the
residuals being attributed to the choice of floating-point precision for the quantities
h, α,∇ · v. This sets the basis for rigorous performance comparison.

194

3. PERFORMANCE

3. Performance

3.1. Characteristics of the benchmarks

3.1.1. Hardware specificities

The tests performed to estimate performance with Shamrock were conducted on
two systems. Single GPU and CPU tests were performed on an Nvidia A100-SXM4-
40GB GPU of an Nvidia DGX workstation. This workstation is equipped with 4
Nvidia A100 40GB GPUs paired with an Epyc7742 64-core CPU, and are exploited
via SIDUS (Quemener & Corvellec, 2013) by the Centre Blaise Pascal at ENS de
Lyon . CPU tests were carried out on the CPU of the same DGX workstation
using AdaptiveCPP OpenMP backend. For those Shamrock was compiled us-
ing -O3 -march=native. For single GPU tests of Shamrock compilation was
performed using the Intel fork of the llvm/clang-19 compiler, also referenced as
ONEAPI/DPC++ with optimizations -O3 -march=native. We voluntarily didn’t
used fast math optimisations as they would not be used in production. We use the
CUDA/PTX backend of Intel llvm targetting the CUDA architecture sm_s70 corre-
sponding to the compute capability of A100 GPUs. The Intel LLVM CUDA/PTX
backend generates code using PTX ISA, the assembly language used to represent
CUDA kernels. This result in a program that actually that is first lowered from
C++ to PTX, then compiled using Nvidia ptxas tool, which enable the code to be
profiled using Nvidia’s CUDA tools. The CUDA version used is 12.0.

Multi-GPU and multi node tests were performed on Adastra Supercomputer at
CINES in France, using up to 256 compute nodes, each compute node is a HPE Cray
EX235a each equipped with 4 Mi250X GPUs paired with a 64 Cores AMD Epyc
Trento CPU. On this platform we used ROCm/HIP backend of Intel llvm targetting
the AMD GPU architecture gfx90a corresponding to the compute capability of
Mi250X GPUs. The Intel llvm compiler was compiled using in the same module
environment as Shamrock. We used Cray CPE 23.12 with acceleration on gfx90a
and Trento on the host, in conjunction with the provided PrgEnv-intel. MPI
with GPU aware support support was provided by the cray MPIch 8.1.26 module.
ROCm support was provided by both amd-mixed 5.7.1 and rocm 5.7.1. Although the
Mi250X GPU is a single chip, it is made up of two GCDs, which appear as separate
instances on the compute node, where one MPI rank is assigned per GCDs.

3.1.2. Setups

We present the performances of the SPH hydrodynamical solver of Shamrock on
the Sedov Taylor blast wave, since it involves contributions of all the different terms
in the hydrodynamical solver, and it is neither specific to astrophysics nor SPH.
We compare the results with the one obtained with the hydro dynamical solver of
Phantom with an almost identical implementation (see Sect. 2.6), on a computing
units having similar power consumption.

195

CHAPTER 5. SHAMROCK SPH SOLVER

103 104 105 106 107 108

N

106

107

108

109

1010

p
ar

ti
cl

es
p

er
se

co
n

d

full tree

reduction

T. Karras

int range

morton build

morton sort

Figure 5.11: Benchmark of the performance of the tree building in Shamrock. Each
curve represents the number of particles processed per second for various segments
of the algorithm. The thick solid black curve shows the total time to build the tree.
The other curves show the performance of the main algorithms involved in the tree
building procedure. Those correspond to benchmarks of the isolated algorithms,
which break the asynchronous nature of SYCL. As such, the sum of the individual
times do not rigorously add up to the exact time of the entire algorithm. This
benchmark used a dataset of input positions generated from an hexagonal closed
packing lattice, with variations in lattice spacing. Varying the initial distribution
of particles will not affect total performance of the tree, since overall, the building
time is dominated by the bitonic sort. In this test, we used single precision Morton
codes.

We use the M4 kernel and set hfact = 1.2. To setup the lattice, we first consider a
box of size [−0.6, 0.6]3. For a desired number of particle N , the volume per particle
is cV/N , where c is compacity of a close-packing of equal spheres. As such, the
spacing dr between particles is dr = (3cV/4πN)1/3. We then adapt the boundaries
of the simulation volume to ensure periodicity in all directions for the initial close-
packed lattice of particles.

3.2. Performance of tree building
Fig. 5.11 shows the performance of the Shamrock tree building algorithm described
in Sect. 4.11, by presenting results of tests carried out over 103 to 108 objects dis-
tributed on a regular cubic lattice. The results are presented in figures showing the
number of object integrated to the tree per second, as a function of the total number

196

3. PERFORMANCE

103 104 105 106 107 108

N

0.4

0.6

0.8

1.0

1.2

1.4

1.6

re
la

ti
ve

p
er

fo
rm

an
ce

morton = u32

reduction = 2

reduction = 4

reduction = 6

reduction = 8

103 104 105 106 107 108

N

0.4

0.6

0.8

1.0

1.2

1.4

1.6

re
la

ti
ve

p
er

fo
rm

an
ce

morton = u64

reduction = 0

reduction = 2

reduction = 4

reduction = 6

reduction = 8

Figure 5.12: Relative performance of the complete tree building procedure for two
different types of Morton codes (left: u32, right: u64), for different levels of reduc-
tion. The setup for this test is identical to the one presented in Fig. 5.11.

of objects. This metric highlights the efficiency threshold of the GPU, where the
computation time is shorter than the actual GPU programming overhead. It also
highlights any deviation from a linear computation time as a function of the size of
the input.

For a small to moderate number of objects N ≲ Nc where Nc ∼ 106, the overhead
of launching a GPU kernel leaves a significant inprint compared to the computational
charge. A few million objects per GPU is the typical number of objects above which
the algorithm can be used efficiently. For any N ≥ Nc tested, the tree is built
at a typical constant rate of 5 × 10−9 s per object. Equivalently, 200 millions of
objects per second are processed for Morton codes and the associated positions in
double-precision.

For N ≥ Nc, the algorithm achieves an almost constant performance, as long
as it could be tested on current hardware. Fluctuations of up to 30% are observed
for specific values of N . These peaks are consistent across several executions, and
therefore probably due to the hardware scheduler on the GPU. Tree construction
is dominated by the bitonic sorting algorithm (see Fig. 5.11). Since this algorithm
does not depend on the values stored in the buffer, its performance is not affected by
the spatial distribution of objects, and regular or randomly arranged points deliver
the same performance. The performance of tree building of Shamrock is therefore
independent of the distribution of objects considered.

Fig. 5.12 shows that performance is almost unaffected by the type (single, double,
float or integer) used for the positions (∼ 5− 10%, spikes being probably due to the
hardware scheduler). Performance is increased by a factor ∼ 30% when the Morton

197

CHAPTER 5. SHAMROCK SPH SOLVER

code representation is reduced to single precision.

3.3. Performance of neighbour cache building
To measure performance of cache build and SPH time stepping, we first setup the
particles as discussed in Sect. 3.2. Additionally, the smoothing length has been
converged, resulting in 60 neighbours for the M4 kernel. After this setup, we per-
form a single time step. Fig. 5.13 reports the time spent during this time step to
build the cache and perform the iteration. We compare the results obtained for the
two strategies presented in Sect. 4.13 –4.14, along with different levels of reduction.
We find that enhancing the reduction level results in better overall performance,
particularly up to reduction level 6. For higher levels of reduction, performance
drops as a consequence of the too large number of particles per leaf. Optimal con-
figuration corresponds to ∼ 10 particles per leaf (reduction level of 4), which is
similar to the number of particles per leaf in Phantom (Price et al., 2018). Addi-
tionally, integrating a two-stage neighbour cache alongside the reduction algorithm
can double performance. To sum up, the combined use of reduction and a two-stage
cache enhances cache building performance by tenfold, while doubling time-stepping
performance.

3.4. Performance of time stepping

3.4.1. One GPU

We evolve setup a Sedov blast using Phantom git pulled at commit number
e01f76c3, with compile flags IND_TIMESTEPS=no MAXP=50000000 and evolve it with
Phantom for a five timesteps and lower both CFL to 10−3 to avoid leapfrog cor-
rector sub-cycling in both codes and produce a restart file. We then start both
Shamrock and Phantom on the same restart for 5 iterations, to avoid result be-
ing affected by cache warm up. IO has carefully been subtracted from the Phantom
measured time. The performance of Shamrock is first tested on a single A100-
SXM4-40GB GPU, of total power 275 W. Fig. 5.14 shows the number of particles
per second iterated as a function as the total number of particles Npart in the sim-
ulation. As expected, performance increase as the computational pressure on the
GPU increases, up to the point where the solver becomes memory-bound (∼ 106

particles). Beyond this threshold, a typical speed of 12 × 106 particles per second
is achieved. For a comparison, we perform a similar test with Phantom on an
AMD Epyc7742 CPU. On this architecture, Phantom fully exploit its OpenMP
parallelisation across the 64 cores (128 threads). The power consumption is also
similar to the one of the A100-SXM4-40GB used for Shamrock (∼ 275W). For the
test described above, one obtains ≳ 2×106 particles per second in most cases. Note
that on this Epyc7742 CPU architecture, Shamrock (compiled using AdaptiveCPP
OpenMP backend) achieves slightly higher performance. Despite the limitations
inherent in such a comparison, we estimate that Shamrock attains approximately

198

3. PERFORMANCE

104 105 106 107

N

106

107

108

p
ar

ti
cl

es
p

er
se

co
n

d

cache performance (1 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

104 105 106 107

N

106

107

108

p
ar

ti
cl

es
p

er
se

co
n

d

cache performance (2 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

104 105 106 107

N

106

107

p
ar

ti
cl

es
p

er
se

co
n

d

timestep performance (1 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

104 105 106 107

N

106

107

p
ar

ti
cl

es
p

er
se

co
n

d

timestep performance (2 stage cache)

reduction 0

reduction 2

reduction 4

reduction 6

reduction 8

Figure 5.13: Performances of cache building and time stepping measured on one time
step of the Sedov-Taylor blast wave test presented in Fig. 5.5. Increasing the level of
reduction yields improved performance overall up to reduction level 6. Additionally,
using two-stages neighbour caching improves performance up to a factor of two
when used in conjunction with the reduction algorithm. In total, employing both
reduction and a two-stage cache enhances cache building performance by a factor of
ten, while doubling time-stepping performance.

199

CHAPTER 5. SHAMROCK SPH SOLVER

106 107

Npart

0

2

4

6

8

10

12

14

p
ar

ti
cl

es
p

er
se

co
n

d

×106

Phantom Epyc7742 (64C)

Shamrock Epyc7742 (64C)

Shamrock A100-SXM4-40GB

Figure 5.14: Comparative benchmark of Shamrock and Phantom ran on a same
restart file of a Sedov-Taylor blast at multiple resolutions produced by Phantom.
Shamrock does a achieve a slightly higher performance on CPU compared to
Phantom, when run a on a single NVIDIA A100-SXM4-40GB GPU the perfor-
mance is around 5 times higher for large datasets. Small datasets are not large
enough to saturate the GPU explaining the lowered performance on GPU below 106

particles.

200

3. PERFORMANCE

a ∼ 5 factor gain in performance when executed on a single GPU compared to a
state-of-the-art SPH CPU code with equivalent power consumption.

3.4.2. Multiple GPUs

We perform the multi-GPU test of Shamrock on the Adastra supercomputer
of the French CINES, in its early February 2024 configuration. In this multi-GPU
test, the split criterion of patches is set at one-sixth of the number of particles per
GPU, guaranteeing a minimum of 8 patches per MPI process. We evolve over 5
time steps of the Sedov test and report the performance obtained on the last time
step. Unlike in the case of a single GPU, we do not evolve the simulation prior to
measurement to limit computational expenses. The scale at which internal energy
is injected remains consistent across all tests.

Fig. 5.15 shows that for 65× 109 particles distributed over 1000 GPUs (64× 106

particles per GPU), Shamrock achieves 9×109 particles iterated per second. Con-
sequently, iterating one time step over the entire 65 × 109 particles requires 7 sec-
onds on this cluster. These results correspond to around 1.5 times the performance
achieved by a single A100 on the same test at the same commit, a value close to
what is expected given the hardware specifications. This demonstrates no significant
deviation in behaviour attributable to the choice of GPUs. To achieve good load
balancing, we find that we need around 10 patches per MPI process. On Adastra,
this translates to 20 patches per GPU, amounting to a bit over 1 million particles per
Mi250x Graphics Compute Die. Fig. 5.14 shows that for small number of particles,
the GPU execution units are not loaded efficiently. A correct load corresponds to a
typical 2 millions of particles per GPU. Fig. 5.15 also reveals saw tooth shape as the
number of particles increases. This feature can be interpreted by noting that every
multiple of 8 GPUs, the patches are divided to avoid becoming too large, causing
performance to drop below the efficiency threshold. Efficiency then increases again
with the number of particles, until another factor of 8 in the resolution is reached,
necessitating further patch refinement. Additionally on Fig. 5.15 we also report
the energy efficiency of the weak scaling tests. We measure on every single nodes
tests the power consumption related to an iteration of the solver using the hardware
counters of the HPE Cray EX235a node. The reported value for multiple nodes is
extrapolated from the single node case assuming a total power consumption being
the product of the number of nodes times the single node power consumption time
the parallel efficiency. Finally we report the power efficiency measured in particles
per second per Watt which is also the number of particles processes with a single
Joule. The total power consumption of a node in those tests is not very sensible to
the number of particles per GPUs. However the GPU performance can be signifi-
cantly reduced when GPUs do not have enough particle to process, and having a
larger number of particle per GPUs result in the highest efficiency. Maximising the
number of particles per GPU maximises efficiency in most cases.

201

CHAPTER 5. SHAMROCK SPH SOLVER

10 100 1000

GPUs

1

2

3

4

5

6

7

8

9

P
a
rt

ic
le

/
se

co
n

d
s

/
G

P
U

×106

1.34e+06

5.22e+06

6.60e+06

8.52e+06

10 100 1000

GPUs

2500

5000

7500

10000

12500

15000

17500

20000

P
a
rt

ic
le

/
se

co
n

d
s

/
W

a
tt

2.83e+03

1.10e+04

1.39e+04

1.79e+04

10 100 1000

GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ar

al
le

l
effi

ci
en

cy

0.50

0.75
0.71

0.92

10 100 1000

GPUs

107

108

109

1010

P
ar

ti
cl

e
/

se
co

n
d

s 1.38e+09

5.34e+09
6.76e+09
8.73e+09

2e6 parts / GPUs

16e6 parts / GPUs

32e6 parts / GPUs

64e6 parts / GPUs

Figure 5.15: Weak scaling tests conducted on the CINES Adastra supercomputer.
These tests are performed for multiple resolutions, from 1 node to 256 nodes, corre-
sponding to using 4 GPUs with 8 MPI ranks to 1024 GPUs with 2048 MPI ranks.
In these tests, we use the setup of a Sedov-Taylor blast and report the number of
particles per GPU. The patch decomposition is set to have at least 8 patches per
MPI ranks. We observe that for large simulations, the scaling test results in 92%
parallel efficiency on 65 billion particles at 9 billion particle per seconds. Lowering
the base resolution reduce the per-GPU performance since GPUs start to be under-
utilised. Additionally the variation of the number of particle per patch result in
variation in per-GPU performance, resulting in a saw-tooth pattern. We also report
the energy efficiency of the tests, were the power consumption used was measured in
the single node case and extrapolated as being the product of the number of nodes
times the single node consumption.

202

4. SOFTWARE DESIGN

3.5. Summary
The larger the simulation, the higher the performance per GPU. Multi-GPU archi-
tectures therefore require large simulations to scale and be energy-efficient. With
Shamrock, this effect can be mitigated by reducing the number of patches, albeit
with the potential drawback of rising load balancing issues. Similar benchmarks
would be required for further implementations in Shamrock of additional physical
processes or setups, possibly involving different particle distributions.

4. Software design

4.1. Development

4.1.1. Codebase organisation

The Shamrock project aims to be fully modular, in the sense that it is made
up of several cmake projects which are connected using standardised interfaces. For
example, the algorithmic library of Shamrock is a cmake sub-project that depends
on the backend library. This allows the shamrock sub-projects to be as independent
as possible, avoiding merge conflicts and enabling development efforts to be better
focused. To date, the project comprises 12 sub-projects. This number is very likely
to change in the future, with future additions and refactoring.

4.1.2. Git

The Shamrock project is hosted on GitHub. We adopt a methodology akin to the
one employed by the LLVM project (Lattner & Adve, 2004), where the main branch
is protected and can only be modified by pull requests from the feature/fix branches
from contributors forks of the project. Releases are performed by branching from
the main branch, facilitating the implementation of fixes to existing versions of the
code. The CI test pipeline is routinely executed on GitHub, assessing both the
main branch and all incoming pull requests. Successful completion of all tests is
mandatory for changes to be merged into the main branch.

4.2. Testing
Numerous unit testing and validation options are available for C++. However,
none of the standard solutions available match our specific requirements, the main
one being that tests are integrated with MPI . Because of this constraint, we have
developed our own in-house test library, designed to provide the main features of
gtest, while retaining the ability to specify the number of MPI ranks for a par-
ticular test. The current test library is capable of performing unittest, validation
tests, and benchmarks. On GitHub, we use self-hosted runners to perform the tests
with multiple configurations of compilers, targets and versions.

203

CHAPTER 5. SHAMROCK SPH SOLVER

4.3. Environment scripts
Compiling Shamrock on different machines entails dealing with a wide range of
diversity. Typical technical aspects involve setting up LLVM, MPI and SYCL,
which may involve numerous steps on a machine with missing libraries or having
complex configuration. To ensure consistency in Shamrock configuration across
machines, we have designed environment scripts. These scripts aim to produce a
build directory with all the requirements for building the code, as well as to provide
an ‘activate’ script in this folder, which configures the environment variable and
loads the correct modules by sourcing them. In addition, these scripts offer utility
functions such as

• setupcompiler: Setup the SYCL compiler

• updatecompiler: Update the environment

• shamconfigure: Configure Shamrock

• shammake: Build Shamrock
This functionality is provided by a ‘new-env’ script that configures the build di-
rectory with all requirements, including the compiler SYCL, automatically. In
summary, only 5 commands are needed to build a working version of Shamrock,
an example would be

Setup the environment
./env/new-env \

--builddir build \
--machine debian-generic.acpp \
-- \
--backend cuda \
--arch sm_70

Now move in the build directory
cd build
Activate the workspace, which will
define some utility functions
source activate
Configure Shamrock
shamconfigure
Build Shamrock
shammake

4.4. Runscripts
In Shamrock, our aim is to handle setup files and configuration files that would

allow great versatility in the use of the code, as well as on-the-fly analysis. Han-
dling such a complexity through configuration files alone is both difficult and non-
standard. Moreover, a user should not be required to know C++ to be able to use

204

4. SOFTWARE DESIGN

import shamrock

Create a Shamrock context
ctx = shamrock.Context()
ctx.pdata_layout_new()

Get the SPH model
model = shamrock.get_SPHModel(

context = ctx,
vector_type = "f64_3",
sph_kernel = "M6")

configure the solver
cfg = model.gen_default_config()
cfg.set_artif_viscosity_VaryingCD10(

alpha_min = 0.0,
alpha_max = 1,
sigma_decay = 0.1,
alpha_u = 1,
beta_AV = 2)

cfg.set_boundary_periodic()
cfg.set_eos_adiabatic(gamma = 5./3.)
cfg.print_status()

model.set_solver_config(cfg)
model.set_cfl_cour(0.3)
model.set_cfl_force(0.25)

Initialise the patch scheduler
model.init_scheduler(

split_crit = 1e6,
merge_crit = 1e4)

.... Do setup

Run the simulation until t=1 and dump
t_end = 1.0
model.evolve_until(t_end)
dump = model.make_phantom_dump()
dump.save_dump("output")

Figure 5.16: Example of a simplified Shamrock runscript

205

CHAPTER 5. SHAMROCK SPH SOLVER

the code. Using a Python frontend offers a suitable solution to ensure both code
versatility and ease of use. To do this, we use pybind11 (Jakob et al., 2024), which
allows to map C++ functions or classes from the C++ source code to a ‘shamrock’
python library. In the current version of Shamrock, two uses are possible. The
first is to use Shamrock as a python interpreter that will go through and execute
the content of a runscript (the script of a Shamrock run), which can include, if
desired, configuration, simulation and post-processing in a single run and script (see
Fig. 5.16 for an example of a runscript).

The other use is to compile Shamrock as a Python library and install it through
pip, enabling the code to be used in Jupyter notebooks. Using Shamrock as a
Python library is ideal for local machine prototyping, while on a cluster, employing
Shamrock as a Python interpreter is highly recommended.

4.5. Units
In Shamrock we have chosen to use code units which are a rescaling of base SI
units, where the factor is chosen at runtime in the runscript.

5. Conclusion
We introduced Shamrock, a modular and versatile framework designed to run ef-
ficiently on multi-GPUs architectures, towards Exascale simulations. The efficiency
of Shamrock is due to its tree, based on a fully parallel binary logic (Karras al-
gorithm). On a single GPU of an A100, the algorithm builds a tree for 200 million
particles in one second. The tree traversal speed, while summing over approxi-
mately 60 neighbors, reaches 12 million particles per second per GPU. This property
makes it possible to build a Smoothed Particle Hydrodynamics (SPH) solver where
neighbors are not stored but recalculated on the fly, reconstructing a tree almost
instantaneously.

To exploit the efficiency of this framework, we have implemented and tested an
hydrodynamic SPH solver in Shamrock. For a Sedov-Taylor blast test performed
with 106 particles on a single A100 GPU, a Shamrock simulation is around ∼6
times faster than an identical simulation performed with Phantom on an Epyc 7742
multicore CPU architecture of equivalent power. The parallelization of Shamrock
on several nodes relies on an MPI protocol with hollow communications between the
interfaces of a patch system that groups calculations performed on different GPUs.
Shamrock ’s scaling has been tested on the Adastra supercomputer (2000 mi250x
GPUs). As expected, the higher the computational load on the GPU, the better the
efficiency of the code. For 32 × 106 particles per GPU and 65 billions of particles
in total, we achieve 92% efficiency at low scaling, in a simulation where 9 × 109

particles are iterated per second. Iterating one time step over the 65× 109 particles
takes therefore 7 seconds on this architecture. Shamrock is therefore a promising

206

6. AABB EXTENSION/INTERSECTION PERMUTATION

framework that will soon be extended to other grid-based algorithms with adaptive
refinement.

Appendix

6. AABB extension/intersection permutation
We prove the following theorem:

AABB1 ⊕ h ∩ AABB2 ̸= ∅ ⇔ AABB1 ∩ AABB2 ⊕ h ̸= ∅,

where AABB ⊕ l is the operation that extends the AABB in every direction by a
distance l. One initial observation is that an AABB is equivalent to a ball defined
using the infinity norm || · ||∞. Consequently, the intersection of two AABBs is the
result of intersecting along each axis independently. Formally, define a first AABB 1
as the Cartesian product of three intervals AABB1 = I1,x× I1,y × I1,z, and a second
AABB as AABB2 = I2,x × I2,y × I2,z. Their intersection is AABB1 ∩ AABB2 =
(I1,x∩I2,x)×(I1,y∩I2,y)×(I1,z∩I2,z). Hence, proving the theorem in one dimensions
directly extends to three dimensions. Consider now two one-dimensional intervals
I1 = [α1, A1], I2 = [β1, B1]. With d(a, b) the distance in one dimension between a
point a and b, and B(r, h) being a ball in one dimension of position r and radius h,
we have

∅ ≠ I1 ⊕ h ∩ I2

⇔ ∅ ̸= [α1 − h, A1 + h] ∩ [β1, B1]

⇔ ∅ ̸= B
(

A1 + α1

2 ,
A1 − α1

2 + h
)
∩B

(
B1 + β1

2 ,
B1 − β1

2

)

⇔ d

(
A1 + α1

2 ,
B1 + β1

2

)
≤ A1 − α1

2 + h + B1 − β1

2

⇔ ∅ ̸= B
(

A1 + α1

2 ,
A1 − α1

2

)
∩B

(
B1 + β1

2 ,
B1 − β1

2 + h

)
⇔ ∅ ̸= [α1, A1] ∩ [β1 − h, B1 + h]
⇔ ∅ ̸= I1 ∩ I2 ⊕ h,

which completes the proof.

207

CHAPTER 5. SHAMROCK SPH SOLVER

References
Balsara D. S., 1995, von Neumann stability analysis of smooth particle hydrodynamics–

suggestions for optimal algorithms, Journal of Computational Physics, 121, 357-372
Bedorf J., Portegies Zwart S., 2020, Bonsai-SPH: A GPU accelerated astrophysical

Smoothed Particle Hydrodynamics code, SciPost Astronomy, 1, 001
Courant R., Friedrichs K., Lewy H., 1928, Über die partiellen Differenzengleichungen der

mathematischen Physik, Mathematische Annalen, 100, 32-74
Cullen L., Dehnen W., 2010, Inviscid smoothed particle hydrodynamics, MNRAS, 408,

669-683
Hairer E., Lubich C., Wanner G., 2003, Geometric numerical integration illustrated by

the Störmer-Verlet method, Acta Numerica, 12, 399-450
Hopkins P. F., 2014, GIZMO: Multi-method magneto-hydrodynamics+gravity code, Oct.,

ADS link, Astrophysics Source Code Library, record ascl:1410.003
Hubber D. A., Batty C. P., McLeod A., Whitworth A. P., 2011, SEREN - a new SPH

code for star and planet formation simulations. Algorithms and tests, A&A, 529, A27
Jakob W., Rhinelander J., Moldovan D., 2024, pybind11–Seamless operability between

C++ 11 and Python, URL: https://github. com/pybind/pybind11
Lattanzio J., Monaghan J., Pongracic H., Schwarz M., 1986, Controlling penetration,

SIAM Journal on Scientific and Statistical Computing, 591–598
Lattner C., Adve V., in International Symposium on Code Generation and Optimization,

2004. CGO 2004., booktitle, pp 75–86, doi:10.1109/CGO.2004.1281665
Monaghan J. J., 1997, SPH and Riemann Solvers, Journal of Computational Physics,

136, 298-307
Price D. J., 2008, Modelling discontinuities and Kelvin Helmholtz instabilities in SPH,

Journal of Computational Physics, 227, 10040-10057
Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-

drodynamics Code for Astrophysics, PASA, 35, e031
Quemener E., Corvellec M., 2013, SIDUS—the solution for extreme deduplication of an

operating system, Linux Journal, 3
Schaal K., Bauer A., Chandrashekar P., Pakmor R., Klingenberg C., Springel V., 2015,

Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adap-
tive mesh refinement, MNRAS, 453, 4278-4300

Schaller M., Gonnet P., Draper P. W., Chalk A. B. G., Bower R. G., Willis J., Hausam-
mann L., 2018, SWIFT: SPH With Inter-dependent Fine-grained Tasking, May, ADS
link, Astrophysics Source Code Library, record ascl:1805.020

Schoenberg I. J., 1946, Contributions to the problem of approximation of equidistant data
by analytic functions. Part A. On the problem of smoothing or graduation. A first class
of analytic approximation formulae, Quarterly of Applied Mathematics, 45-99

Sedov L. I., 1959, Similarity and Dimensional Methods in Mechanics

208

http://dx.doi.org/10.1016/S0021-9991(95)90221-X
https://ui.adsabs.harvard.edu/abs/1995JCoPh.121..357B
http://dx.doi.org/10.21468/SciPostAstro.1.1.001
https://ui.adsabs.harvard.edu/abs/2020SciPA...1....1B
http://arxiv.org/abs/1909.07439
http://dx.doi.org/10.1007/BF01448839
https://ui.adsabs.harvard.edu/abs/1928MatAn.100...32C
http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408..669C
http://arxiv.org/abs/1006.1524
http://dx.doi.org/10.1017/S0962492902000144
https://ui.adsabs.harvard.edu/abs/2003AcNum..12..399H
https://ui.adsabs.harvard.edu/abs/2014ascl.soft10003H
http://dx.doi.org/10.1051/0004-6361/201014949
https://ui.adsabs.harvard.edu/abs/2011A&A...529A..27H
http://arxiv.org/abs/1102.0721
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1006/jcph.1997.5732
https://ui.adsabs.harvard.edu/abs/1997JCoPh.136..298M
http://dx.doi.org/10.1016/j.jcp.2008.08.011
https://ui.adsabs.harvard.edu/abs/2008JCoPh.22710040P
http://arxiv.org/abs/0709.2772
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930
https://api.semanticscholar.org/CorpusID:61400089
http://dx.doi.org/10.1093/mnras/stv1859
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.4278S
http://arxiv.org/abs/1506.06140
https://ui.adsabs.harvard.edu/abs/2018ascl.soft05020S
https://ui.adsabs.harvard.edu/abs/2018ascl.soft05020S
https://api.semanticscholar.org/CorpusID:125923957

6. AABB EXTENSION/INTERSECTION PERMUTATION

Sod G. A., 1978, Review. A Survey of Several Finite Difference Methods for Systems of
Nonlinear Hyperbolic Conservation Laws, Journal of Computational Physics, 27, 1-31

Springel V., Pakmor R., Zier O., Reinecke M., 2021, Simulating cosmic structure forma-
tion with the GADGET-4 code, MNRAS, 506, 2871-2949

Taylor G., 1950a, The Formation of a Blast Wave by a Very Intense Explosion. I. Theo-
retical Discussion, Proceedings of the Royal Society of London Series A, 201, 159-174

Taylor G., 1950b, The Formation of a Blast Wave by a Very Intense Explosion. II. The
Atomic Explosion of 1945, Proceedings of the Royal Society of London Series A, 201,
175-186

Tricco T. S., 2019, The Kelvin-Helmholtz instability and smoothed particle hydrodynamics,
MNRAS, 488, 5210-5224

Verlet L., 1967, Computer “Experiments” on Classical Fluids. I. Thermodynamical Prop-
erties of Lennard-Jones Molecules, Physical Review, 159, 98-103

Wadsley J. W., Stadel J., Quinn T., 2004, Gasoline: a flexible, parallel implementation
of TreeSPH, New A, 9, 137-158

Wendland H., 1995, Piecewise polynomial, positive definite and compactly supported radial
functions of minimal degree, Advances in computational Mathematics, 389–396

209

http://dx.doi.org/10.1016/0021-9991(78)90023-2
https://ui.adsabs.harvard.edu/abs/1978JCoPh..27....1S
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://arxiv.org/abs/2010.03567
http://dx.doi.org/10.1098/rspa.1950.0049
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..159T
http://dx.doi.org/10.1098/rspa.1950.0050
https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..175T
http://dx.doi.org/10.1093/mnras/stz2042
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5210T
http://arxiv.org/abs/1907.03935
http://dx.doi.org/10.1103/PhysRev.159.98
https://ui.adsabs.harvard.edu/abs/1967PhRv..159...98V
http://dx.doi.org/10.1016/j.newast.2003.08.004
https://ui.adsabs.harvard.edu/abs/2004NewA....9..137W
http://arxiv.org/abs/astro-ph/0303521

CHAPTER 5. SHAMROCK SPH SOLVER

210

Chapter 6
Conclusion

Contents
1 A first astrophysical application 211
2 Perspectives . 213
3 Conclusion . 218
References . 219

1. A first astrophysical application
In order to assess Shamrock’s potential to tackle systems of interest in the con-
text of protoplanetary discs we test the code on the numerical setup closed to the
one proposed by Duffell et al. (2024) as it is numerically challenging in three di-
mensions due its large resolution requirement. The numerical setup consist of two
stars of equal mass M1,2 = 0.5M⊙ orbiting with a constant binary separation of
d = 1au (i.e. with a null eccentricity). The units are chosen in order to have
GM⊙ = 1 such that a binary orbit time correspond to unity in time code units.
Around this binary star system a disc is set up with a surface density profile Σ(r) =
Σ0
[
(1− δ0) e−(Rcav/r)12 + δ0

]
, where the inner cavity radius is set to be Rcav = 2.5au,

and the background density to be δ0 = 10−5. The simulation is three-dimensional,
we adopt a Gaussian vertical density profile ρ(r, z) = Σ(r)

H
1√
2π

exp
(
− z2

2H2

)
where the

scale height of the discs H(r)/r is set to be constant equal to 0.1. Following Duffell
et al. (2024) we use a locally isothermal equation of state with the sound speed
cs(r) = (H

r
)
√
−Φ1(r)− Φ2(r), where Φ1,2(r) are the gravitational potential of the

two stars. For the velocity profile, we use a Keplerian velocity profile with sub-
Keplerian correction due to the radial pressure gradient. The gas is modelled using
SPH with the constant α-viscosity disc model to have an equivalent αSS = 10−3.
The disc density is set up using a Monte Carlo method such as described in Price
et al. (2018), then the velocity is set based on the particles positions. Lastly, we use
sink particles to model the binary stars with an accretion radius of racc = 0.05au,
where particles get accreted whenever their distance to a sink is below racc. Upon
accretion the mass, linear and angular momentum of the accreted particle is added
to the sink particle. The simulations were carried up to 5 binary orbits except for
the 109 particle simulations that is stopped after 2.4 orbits as we used remaining
hours in the time allocation to perform it on the Adastra supercomputer. The 109

particle simulation was performed on Adastra supercomputer for 2 days (at a rate of
about one orbit per day), on 8 GPU nodes, accounting for about 1500 GPU hours.

211

CHAPTER 6. CONCLUSION

x

y

-2 0 2

-2

0

2

-8

-7

-6

-5

-4

lo
g

 c
o

lu
m

n
 d

en
si

ty

(a) 107 particles.

x

y

-2 0 2

-2

0

2

-8

-7

-6

-5

-4

lo
g

 c
o

lu
m

n
 d

en
si

ty

(b) 108 particles.

x

y

-2 0 2

-2

0

2

-8

-7

-6

-5

-4

lo
g

 c
o

lu
m

n
 d

en
si

ty

(c) 109 particles.

0.0 0.5 1.0 1.5 2.0
Time [binary orbits]

0

1

2

3

4

δ M
s
in
k

[M
�

]

×10−8

sink 1 (1G part)

sink 2 (1G part)

sink 1 (100M part)

sink 2 (100M part)

sink 1 (10M part)

sink 2 (10M part)

(d) Evolution of the sinks mass in the
simulations.

Figure 6.1: SPH simulation of a circumbinary discs according to the setup proposed
by Duffell et al. (2024) performed with Shamrock SPH solver. Panels (a), (b) and
(c) shows face-on view of the column integrated density after 1.88 orbits of the discs
at different resolutions, respectively 107, 108 and 109 particles. The bottom right
panel (d) shows the evolution of the mass accreted by the sink particles δMsink in
the simulations shown in panels (a), (b) and (c) as a function of the time.

On Fig. 6.1 we observe that for the simulation at 107 particles the inner cavity
is under-resolved. This result in direct accretion of the gas falling into the cavity
to be accreted immediately onto the sink, this yield a large accretion rate. When
the resolution is increased to 108 particles, the gas entering on the cavity falls on
circumstellar discs (sometimes also called mini-discs) before being accreted by the
star. This result in a buffering of the accretion, which lowers the resulting accretion
rate, as detailed in Farris et al. (2014). Indeed, at this resolution we observe a
reduced accretion rate compared to 107 particles, however, the circumstellar discs are
under-resolved which lead to over-diffusivity, and enhanced accretion compared to
a resolved case. For the largest resolution simulation we performed, at 109 particles
the circumstellar discs having a significant resolution further reduce the accretion

212

2. PERSPECTIVES

rate compared to the 108 particle case as the circumstellar discs are more resolved.
Here the circumstellar discs are buffering the accretion as expected.

We capture a drastic reduction of the accretion rate due to the resolution of the
circumstellar discs, the accretion buffering behaviour of circumstellar discs in this
three-dimensional simulation, we can not conclude yet on the question of conver-
gence. Indeed, further increasing the resolution may further reduce the accretion
rate. Qualitatively, one do not expect the accretion rate to vary significantly as the
resolution increase once the circumbinary discs are resolved. This should further be
confirmed with simulations at higher resolution. One can not discard the hypoth-
esis of a novel physical accretion regimes triggered by physics at very small scales.
Also, independently of the convergence of such simulation, this question must be
tackled independently of the question of consistence as the absence of realistic ther-
mal structure of the circumstellar and circumbinary discs here may be a reasonable
approximation at lower resolution but should be accounted at larger resolutions, for
example when the cooling timescales can not be neglected any more, typically in
large resolution simulations of circumplanetary discs. Nevertheless, those simula-
tions pave the way toward the study of resolved accretion rates in double or triple
star systems which is a currently active subject in the community (see Ceppi et al.
2022).

2. Perspectives

2.1. Multi-physics
Multi-scale astrophysical problems are often multi-physical. To be consistent, very
high-resolution simulations must include realistic physics. The current version of
Shamrock focuses on a purely hydrodynamic SPH solver. Some examples of as-
trophysical simulation already possible with the Shamrock SPH solver are shown
in Fig. 6.2. Next steps of development consist of implementing local algorithms
to address the radiative dynamics of magnetized and dusty fluids. In principle, the
modular format of Shamrock facilitates the assembly of a new set of known numer-
ical equations into a solver. The biggest challenge is the implementation of gravity,
a non-local interaction that requires a new algorithmic layer based on group-group
interactions. Two main algorithms are used to handle gravity by the various as-
trophysical codes. SPH codes mainly use the method of Fast Multipole Moments
(FMM), which takes advantage of the tree structure inherent in particle methods.
The technical hurdle lies in achieving numerical efficiency, even for high opening
angles involving summation over hundreds or even thousands of neighbors. An al-
ternative approach is to employ a multigrid method, but to our knowledge this has
not yet been implemented in an SPH code. These additional physical elements re-
quire the implementation of an individual time step to maximize performance. It
will consequently be also possible to take advantage of Shamrock’s efficiency to
benchmark individual time stepping against fixed time stepping in simulations that

213

CHAPTER 6. CONCLUSION

(a) SPH simulation of a protoplanetary disc with a planet embedded inside per-
formed with Shamrock (10 millions of particles on the DGX machine).

(b) SPH simulation of Lense-Thirring precession in a disc around a Kerr black
hole performed with Shamrock.

Figure 6.2: Example of astrophysical simulations performed with Shamrock SPH
solver.

were previously not tractable.

2.2. Multi-methods
The Shamrock framework relies on the efficient construction and traversal of its
tree, irrespective of the numerical object considered. In this work, we have consid-
ered particles to develop an SPH solver, but these can be replaced by Eulerian cells
in an agnostic way. Since the tree algorithm of Shamrock scales almost perfectly

214

2. PERSPECTIVES

to any disordered particle distribution, we can expect similar performance, even on
an AMR (Adaptive Mesh Refinement) grid. In principle, various algorithms can
be implemented on this grid (such as finite differences or finite volumes), with the
moderate cost of incorporating a few specific modules tailored to these solvers (like
the accumulation of flows on faces for finite volumes).

The advantages of such a unified framework are twofold. Firstly, to validate an
astrophysical model by achieving consistent results with inherently different meth-
ods, while the physical model used is rigorously identical (e.g. opacities, cooling
rates, resistivities, chemical networks, equations of state). Secondly, to enable rig-
orous evaluation of numerical methods in terms of accuracy and computational
efficiency for specific numerical problems. To our knowledge, no such framework
currently exists.

So far, aside from the SPH solver, two prototypes of implementation of the Zeus
scheme and Godunov are actively in development in Shamrock. The Zeus scheme
is implemented as described in Chapter 2 and is yet to be fully tested. The Godunov
scheme is in a similar state. The only missing piece from the scheme described in
Chapter 2 is that the scheme does not feature time midpoint interpolation as of
now, making it first-order in time but second-order in space. We present a few ex-
amples of the Sod-tube test performed with both the Zeus and the Godunov solvers
with multiple configurations in Fig. 6.3. The implementation of both schemes is
performed by representing grid cells on an integer grid, replacing the interaction cri-
terion of SPH with a criterion where cells are neighbors if they share a common face.
Aside from those modifications and the scheme itself, the Zeus and the Godunov
schemes in Shamrock involve the same modules as the SPH solver (e.g. domain
decomposition, load balancing) and most of the algorithms (e.g. exchanging ghost
zones, building trees, finding neighbors, applying the scheme). The implementa-
tion of the Godunov scheme, to date, is more performant than the one of the Zeus
scheme. Experience on the implementation of the Zeus scheme helped us to optimize
the subsequent implementation of the Godunov solver. Current performances are
limited by memory allocation pressure and kernel submission latency. We recently
tested our Godunov implementation on the Adastra supercomputer, as shown in
Fig. 6.4. The solver currently achieves 248 million cells per second on a single Adas-
tra node. We expect both the Godunov and Zeus solvers to have massively improved
performance in the future with the addition of memory pooling in Shamrock to
reduce memory allocation pressure.

2.3. Data analysis
The efficiency of the Shamrock tree means that data analyses can be carried out
very efficiently, whether on particles, cells or both. We plan to develop a native
library that will enable these analyses to be performed efficiently on multi-GPU
parallel architectures.

215

CHAPTER 6. CONCLUSION

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

W
(c

o
d

e
u

n
it

s)
t=0.245

theory

rho

v

P

(a) Godunov, no slope limiter, Rusanov
Riemann solver.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

W
(c

o
d

e
u

n
it

s)

t=0.245

theory

rho

v

P

(b) Godunov, minmod slope limiter, Ru-
sanov Riemann solver.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

W
(c

o
d

e
u

n
it

s)

t=0.245

theory

rho

v

P

(c) Godunov, no slope limiter, HLL Rie-
mann solver.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

W
(c

o
d

e
u

n
it

s)

t=0.245

theory

rho

v

P

(d) Godunov, minmod slope limiter, HLL
Riemann solver.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

W
(c

o
d

e
u

n
it

s)

t=0.245

theory

rho

v

P

(e) Zeus, no slope limiter.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

W
(c

o
d

e
u

n
it

s)

t=0.245

theory

rho

v

P

(f) Zeus, van leer slope limiter.

Figure 6.3: Results of the Sod tube test in Shamrock with different configurations
of the grid solvers. We present the results using Godunov scheme in the plot a-d
and using Zeus scheme in e-f. For the Godunov scheme we have performed the test
using either the minmod slope limiter or no slope reconstruction, for the Riemann
solvers we used either the Rusanov or the HLL solvers (see Toro 2013).

2.4. Optimization of latencies
The Shamrock framework has been designed to optimize performance on multi-
node architectures. As discussed in the previous section, specificities of modern

216

2. PERSPECTIVES

10 100 1000
MPI ranks (1/Mi250x GCD)

107

108

109

1010

P
ar

ti
cl

e
/

se
co

n
d

s 1.38e+09

5.34e+09
6.76e+09
8.73e+09

Adastra mi250x

(SPH) 1e6 parts / GPUs

(SPH) 8e6 parts / GPUs

(SPH) 16e6 parts / GPUs

(SPH) 32e6 parts / GPUs

(AMR) 1283 cells / GPUs

(AMR) 2563 cells / GPUs

10 100 1000
MPI ranks (1/Mi250x GCD)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ar

ti
cl

e
/

se
co

n
d

s
/

ra
n

k

×107

6.71e+05
2.61e+063.30e+06
4.26e+06

Adastra mi250x

(SPH) 1e6 parts / GPUs

(SPH) 8e6 parts / GPUs

(SPH) 16e6 parts / GPUs

(SPH) 32e6 parts / GPUs

(AMR) 1283 cells / GPUs

(AMR) 2563 cells / GPUs

Figure 6.4: Performance of the Godunov scheme prototype in Shamrock compared
to the SPH scalling curves. The Godunov solver achieves around 248 million cells per
second on a single Adastra node. This performance is not definitive, as significant
optimizations can be performed by reducing allocations and optimizing latencies. On
those scalling curves, the SPH is tested with a Sedov-Taylor blast and the Godunov
on a Sod-tube test on a three-dimensional cube.

217

CHAPTER 6. CONCLUSION

hardware imply that performance increases with the computational load demanded
of the GPUs. Maybe counter-intuitively, Shamrock is therefore not designed by
default to run small simulations with a large number of iterations. Since efficient ex-
ecution of such simulations remains a complementary challenge to that of Exascale,
a layer of optimizations regarding remnant latencies remains to be implemented.
This would enable users to employ Shamrock for both small and large-scale sim-
ulations. We will benefit from the knowledge of the work done by the Gromacs
team towards optimizing latencies in SYCL (Alekseenko et al., 2024).

3. Conclusion
This Ph.D. thesis was initially motivated by the study of planet formation in the
early phase of the protostellar collapse. However, during an initial study of dusty
protostellar collapses, SPH was found to be limiting due to the absence of monofluid
formalism for the large grains, as well as its global performance. This led to the study
of extensions of dusty SPH schemes (monofluid and two-fluid) and the examination
of the viability of SPH on GPUs. Trying to port SPH on a GPU quickly suggested
the need for a tree algorithm. In our case, we realized that the Bounding Volume
Hierarchies (BVH) used in ray-tracing was a promising option. The feasibility of
such an approach was confirmed by the Karras (2012) algorithm, which can be
adapted to SPH to build the tree in negligible time compared to an SPH timestep.
This resulted in a single GPU SPH code, named at the time Sphive. Internally at
CRAL, this tree algorithm suggested the feasibility of an AMR grid where the AMR
Octree’s cells would be handled by such a tree algorithm. After initial prototyping
of the AMR grid, we finally decided to implement both the AMR and the SPH in a
single code to avoid duplication. This led to the construction of Shamrock, where
the AMR and SPH components are abstracted away in a common framework. At
this point, the code was capable of running only on a single GPU. The generalization
to multiple GPUs came from the possibility of exploiting the speed of the tree to
recompute it, instead of having to communicate it. At the same time, other multi-
GPU codes began to appear within the community. From our initial draft of a
single GPU SPH code, the code swiftly evolved into a multi-method multi-GPU
one developed during the majority of the Ph.D. thesis and was finally tested on an
exascale architecture near the end of the Ph.D., leading to better than expected
performance.

Due to the abstractions required to construct the Shamrock framework, the
code now abstracts various numerical schemes, algorithmics, communications, and
physics into independent modules connected through standardized interfaces. These
abstractions make it possible to work independently on different components of the
code. In the near future, we plan to enhance SHAMROCK by collaborating with
mathematicians on the schemes, computer scientists on the algorithms, as well as
physicists, geophysicists, hydrodynamicists, and engineers of new physical processes
to solve interesting problems.

218

3. CONCLUSION

References
Alekseenko A., Páll S., Lindahl E., 2024, GROMACS on AMD GPU-Based HPC Plat-

forms: Using SYCL for Performance and Portability, arXiv preprint arXiv:2405.01420
Ceppi S., Cuello N., Lodato G., Clarke C., Toci C., Price D. J., 2022, Accretion rates in

hierarchical triple systems with discs, MNRAS, 514, 906-919
Duffell P. C., et al., 2024, The Santa Barbara Binary-disk Code Comparison, ApJ, 970,

156
Farris B. D., Duffell P., MacFadyen A. I., Haiman Z., 2014, Binary Black Hole Accretion

from a Circumbinary Disk: Gas Dynamics inside the Central Cavity, ApJ, 783, 134
Karras T., in Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on

High-Performance Graphics, booktitle, pp 33–37
Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-

drodynamics Code for Astrophysics, PASA, 35, e031
Toro E. F., 2013, Riemann solvers and numerical methods for fluid dynamics: a practical

introduction, Springer Science & Business Media

219

http://dx.doi.org/10.1093/mnras/stac1390
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514..906C
http://arxiv.org/abs/2205.08784
http://dx.doi.org/10.3847/1538-4357/ad5a7e
https://ui.adsabs.harvard.edu/abs/2024ApJ...970..156D
http://arxiv.org/abs/2402.13039
http://dx.doi.org/10.1088/0004-637X/783/2/134
https://ui.adsabs.harvard.edu/abs/2014ApJ...783..134F
http://arxiv.org/abs/1310.0492
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930

CHAPTER 6. CONCLUSION

220

Appendix A
Polydisperse Magnetised SI

Contents
1 Context . 221
2 Non-ideal MHD with polydisperse dust in shearing box 222
3 Reducing the problem to standard PSI 226
4 Numerical method . 228
5 Results . 228
6 Discussion and future prospects 231
References . 233

Foreword
The following study was conducted in collaboration with F. Lovascio during his
postdoctoral position at CRAL over a period of one month in the summer of 2023.
This was motivated by the discovery that the polydisperse streaming instability
could be extended to MHD simply with minimal change to the community code
psitools. These two instabilities play a key role in planet formation: can SI quench
or favor MRI and vice-versa? Can an instability develop under the combined action
of magnetic fields and dust? We conducted the analytical work necessary for this
study and utilized psitools to produce the results presented hereafter. However, we
did not complete the physical interpretation of the results yet, and further validation
of the method would be required to ensure the correctness of the results.

1. Context
The linear SI is driven by the gas pressure gradient in discs. The pressure gradient
drives an azimuthal velocity drift between dust and gas, which subsequently induces
dust radial drift due to gas drag acting on the dust leading to a loss of angular
momentum and gas outwards radial drift due to dust back-reaction. The SI provides
a powerful mechanism for planet formation, and appears to well predict several
observables, like Kuiper-Belt object rotation distributions. The linear instability
itself, however, has been shown to not be as robust as previously thought. It has been
shown by Krapp et al. (2019); Paardekooper et al. (2020) that the SI considerably
changes character for multiple dust sizes and dust with a grain size distribution
(polydisperse).

221

APPENDIX A. POLYDISPERSE MAGNETISED SI

When going polydisperse, the usual dust density becomes an integral over the
dust distribution of mass:

ρd =
∫ amax

a0
σada, (A.1)

where ρd denotes the total dust density and σa the dust density distribution on the
dust size space. Similarly, the integrated dust fraction can be defined as such:

µ =
∫ amax

a0
ϵada, (A.2)

where µ = ρd/(ρd + ρg) is the fraction of dust mass in the fluid integrated in dust
sizes, and ϵa denotes the dust fraction distribution in sizes. From Paardekooper et al.
(2020, 2021), we have the following equations governing the polydisperse dust-gas
evolution:

∂tρg +∇ · (ρgvg) =0 , (A.3)
∂tσa +∇ · (σavd,a) =0, (A.4)

∂tvg + (vg · ∇)vg =− ∇p

ρg
+ fg −

1
ρg

∫
σafdrag,d,ada , (A.5)

∂tvd,a + (vd,a · ∇)vd,a =fd + fdrag,d,a, (A.6)

where ρg, vg are the gas density and velocity, and with drag

fdrag,d,a = −vd,a − vg

τs(a) , (A.7)

and stopping time

τs =
√

π

8
aρb

ρgc
. (A.8)

2. Non-ideal MHD with polydisperse dust in shear-
ing box

2.1. Basic equations
We consider the extension of the polydisperse dust-gas equations of motion in an
ionized gas medium with neutral grains, resulting in the coupling of the non-ideal
MHD equations for the gas and the magnetic field and polydisperse dust coupled to

222

2. NON-IDEAL MHD WITH POLYDISPERSE DUST IN SHEARING BOX

the gas via the drag force.

∂tρg +∇ · (ρgvg) =0 , (A.9)
∂tσa +∇ · (σavd,a) =0, (A.10)

∂tvg + (vg · ∇)vg =− ∇p

ρg
+ fg + 1

µ0ρg
(∇×B)×B

− 1
ρg

∫
σafdrag,d,ada , (A.11)

∂tvd,a + (vd,a · ∇)vd,a =fd + fdrag,d,a. (A.12)

The induction equation in non-ideal MHD, including ohmic diffusion, Hall effect,
and ambipolar diffusion, is (Mouschovias et al., 2009; Tsukamoto et al., 2023):

∂B
∂t

= ∇× (v×B)−∇× {ηOhm∇×B

+ηHall (∇×B)× B
B

+ ηAD
B
B
×
[
(∇×B)× B

B

]}
(A.13)

We also have the soleinoidal condition:

∇ ·B = 0 (A.14)

2.2. Background magnetic field
In order to perform an analysis of the linear instability, we must first choose a
background solution that will be perturbed. To achieve this, we adapt the procedure
from Lin & Hsu (2022) to our case. For the steady state background, we assume an
axysymmetric (∂ϕ = 0) and an unstratified case (∂z = 0). The solenoidal condition
(eq.A.14) gives here 1

r
∂
∂r

(rBr) = 0, hence

Br =
(

R0

R

)
Br,0 (A.15)

All components of the magnetic field B must exclusively be functions of r due to
the soleinoidal condition. Assuming that vg = rΩ(r)ϕ̂, we can use the induction
equation to compute a corresponding valid steady-state magnetic field. If we only
account for ohmic diffusion (e.g. Lin & Hsu (2022)), a valid solution for the B field is
a radial and azimuthal field varying in radius. But with the hall effect and ambipolar
diffusion, such a state is too complex to be solved analytically, and the background
solution from Lin & Hsu (2022) is incompatible with the induction equation. A valid
background solution is to take B = Bz(r)ẑ. For simplicity in this study, we chose
to stick with a constant vertical magnetic field B = Bz,0ẑ.

223

APPENDIX A. POLYDISPERSE MAGNETISED SI

For a magnetic field, only function of the radial coordinate, the Lorentz force
can be written to be

Fr = −(B2
ϕ,0/r)−Bϕ,0B

′

ϕ,0 −Bz,0B
′

z,0 (A.16)
Fϕ = (Br,0R0Bϕ,0)/r2 + (Br,0R0B

′

ϕ,0)/r (A.17)
Fz = (Br,0R0B

′

z,0)/r (A.18)

which result in a null Lorentz force in the steady state background, allowing us to
use the background solutions from Paardekooper et al. (2020, 2021). Adding back
a variation of the vertical magnetic field as a function of radius would result in a
radial Lorentz force, which can be treated as in Lin & Hsu (2022) in the form of an
additional drift term.

2.3. Polydisperse non-ideal MHD in shearing box
As per Goldreich & Lynden-Bell (1965); Lin (2021); Lin & Hsu (2022), we use a
local expansion around (r0, ϕ0, 0) in cylindrical The radial, azimuthal, and vertical
are renamed x, y, z. On top of that, we assume axisymetry ∂y = 0. The box is
corotating at velocity vk = −3

2xΩ0ŷ. The velocities are modified using the following
mapping:

v 7→ v + (r0 −
3x

2)Ω0ŷ (A.19)

using the transformation on velocities self-advection becomes:

∂tv + v ·∇v 7→ ∂tv + v ·∇v− 2Ω0vyx̂ + Ω0

2 vxŷ (A.20)

= ∂tv + v ·∇v + 2Ω× v (A.21)

The equations of conservation of mass are unchanged when moving to the shearing
box. The induction equation gets an additional shear term

∂B
∂t

= ∇× (v×B)−∇× {ηOhm∇×B (A.22)

+ηHall (∇×B)× B
B

+ ηAD
B
B
×
[
(∇×B)× B

B

]}
− ŷ

3
2Ω0Bx, (A.23)

In the shearing box approximation, treat the background pressure gradient as per-
turbative external force that sustains radial drift as per Lin (2021); Lin & Hsu (2022)
on the gas in the form of a force

fg = 2ηx̂−∇Φ, (A.24)

where

η = 1
2ρg

∂P

∂r
∼ c2

r0
, (A.25)

224

2. NON-IDEAL MHD WITH POLYDISPERSE DUST IN SHEARING BOX

This results in the following set of equations for the non-ideal MHD with poly-
disperse dust in the shearing box approximation:

∂tρg +∇ · (ρgvg) =0 (A.26)

∂tvg + (vg · ∇)vg =2ηx̂− ∇p

ρg
− 2Ω× vg −∇Φ

+ 1
µ0ρg

(∇×B)×B + 1
ρg

∫
σ

vd,a − vg

τs(a) da. (A.27)

∂tσa +∇ · (σavd,a) =0, (A.28)

∂tvd,a + (vd,a · ∇)vd,a =− 2Ω× vd,a −∇Φ− vd,a − vg

τs(a) . (A.29)

∂B
∂t

= ∇× (v×B)−∇× {ηOhm∇×B

+ηHall (∇×B)× B
B

+ ηAD
B
B
×
[
(∇×B)× B

B

]}
− ŷ

3
2Ω0Bx, (A.30)

∇ ·B = 0 (A.31)

2.4. Steady state solutions
As detailed in Chapter 2.3, the dust drifts inward due to the drag. When taken
in the polydisperse dust case, Paardekooper et al. (2020) details the background
solution to be

vgx =2η

κ

J1

(1 + J0)2 + J 2
1

, (A.32)

vgy =− Sx− η

Ω
1 + J0

(1 + J0)2 + J 2
1

, (A.33)

vdx =2η

κ

J1 − κτs(a)(1 + J0)
(1 + κ2τs(a)2)((1 + J0)2 + J 2

1)
, (A.34)

vdy =− Sx− η

Ω
1 + J0 + κτs(a)J1

(1 + κ2τs(a)2)((1 + J0)2 + J 2
1)

, (A.35)

with integrals

Jm = 1
ρg

∫ σ(κτs(a))m

1 + κ2τs(a)2 da, (A.36)

with the addition in this study of the vertical magnetic field. We note that taking a
varying magnetic field function of r results in a radial Lorentz force. In such a case,
the radial force applied to the gas force would be

fg = (2η + FL,x)x̂−∇Φ, (A.37)
which, as in Lin & Hsu (2022), can be interpreted as an additional drift pressure by
taking η to be ηtot = η + FR

2 .

225

APPENDIX A. POLYDISPERSE MAGNETISED SI

2.5. Plasma parameter
As detailed in Sec. 3.3, the relative importance of MHD can be related to a non-
dimensional parameter, the plasma beta, which is defined here as

β ≡ Pgas

Pmag
= 2µ0ρc2

s

γB2 = 2c2
s

γc2
a

, (A.38)

where the alfven speed is

ca ≡
|Bz|√
ρµ0

. (A.39)

Alternatively we can defines the magnetic field B using β and the soundspeed cs to
be

B =
√

2µ0ρ

γ

cs√
β

, (A.40)

ca =
√

2
γβ

cs. (A.41)

3. Reducing the problem to standard PSI

3.1. Solenoidal condition
The solenoidal condition becomes here

∇ ·B = 0 7→ ∇ · B̄ +∇ · δB. (A.42)

However, this solenoidal condition being already verified for the background implies
that

∇ · δB = 0 ⇔ k · B̃ = 0 (A.43)

The perturbed magnetic field must be orthogonal to the wavevector. In practice,
to impose such a condition, we can replace every occurence of, for example, B̃y by
−(B̃xkx + B̃zkz)/ky for non-null ky.

3.2. Lorentz force
In this section, the background state and the linear pertubation will be denoted by
the superscript 0. Additionally, axisymetric perturbed quantites are expanded as

226

3. REDUCING THE PROBLEM TO STANDARD PSI

Fourier modes: a1 = ãei(k·x−ωt), with ∂y = 0. The pertubed Lorentz force is

f 1
g,x = − 1

ρg
∂x

(
B0 ·B1

4π

)
+ 1

4πρg

(
B0 · ∇

)
B1

x,

f 1
g,y = − 1

ρg
∂y

(
B0 ·B1

4π

)
+ 1

4πρg

(
B0 · ∇

)
B1

y ,

f 1
g,z = − 1

ρg
∂z

(
B0 ·B1

4π

)
+ 1

4πρg

(
B0 · ∇

)
B1

z ,

where, using the vertical magnetic field background, the force can be written as

f 1
g,x = − 1

4πρg

(
B0

z ∂x

)
B1

z + 1
4πρg

(
B0

z ∂z

)
B1

x,

f 1
g,y = 1

4πρg

(
B0

z ∂z

)
B1

y ,

f 1
g,z = 0,

Therefor, the Lorentz force pertubation can be written as F̃L = −iχB̃ with

χ = 1
4πρg

 −B0,zkz 0 B0,zkx

0 −B0,zkz 0
0 0 0

 (A.44)

3.3. Induction equation
We now aim at rewriting the magnetic field as a function of the other parameters
in order to rewrite the Lorentz as an additional source term to the existing poly-
disperse problem without magnetic fields described in Paardekooper et al. (2020,
2021); McNally et al. (2021). In this paragraph, we denote the gas velocity simply
by v. Firstly, since the background magnetic field is constant,

∂δB
∂t

= ∇× (δv×B0) +∇× (v0 × δB)−∇× {ηOhm∇× δB

+ηHall (∇× δB)× B0

B0
+ ηAD

B0

B0
×
[
(∇× δB)× B0

B0

]}
− ŷ

3
2Ω0δBx, (A.45)

Replacing by the Fourier components yield,

−iωB̃ = ik× (ṽ×B0) + ik× (v0 × B̃)− ik×
{
ηOhmik× B̃

+ηHall (ik× B̃)× B0

B0
+ ηAD

B0

B0
×
[
(ik× B̃)× B0

B0

]}
− ŷ

3
2Ω0B̃x, (A.46)

which can be rewritten in the form

0 = ik× (ṽ×B0) + iωB̃ + ik× (v0 × B̃)− ik×
{
ηOhmik× B̃

+ηHall (ik× B̃)× B0

B0
+ ηAD

B0

B0
×
[
(ik× B̃)× B0

B0

]}
− ŷ

3
2Ω0B̃x, (A.47)

227

APPENDIX A. POLYDISPERSE MAGNETISED SI

Where all terms are either factors of ṽ or B̃, allowing us to rewrite it as the following
vector equality:

0 = N · ṽ + K · B̃, (A.48)

where N and K are matrices. Lastly we can rewrite the magnetic field perturbation
B̃ to be a function of ṽ

B̃ = −K−1 ·N · ṽ, (A.49)

provided that K−1, the invert of K exist. Using that result, we can rewrite the
Lorentz force in the gas velocity equation to be

F̃L = iχ ·K−1 ·N · ṽg (A.50)

Thus, the complete pertubation equation for the polydisperse dust gas mixture in a
shearing box with non-ideal MHD is the standard problem without a magnetic field,
with an additional source term on the velocity perturbation.

4. Numerical method
In order to study that system, we use the same method (implemented in the com-
munity code psitools) as described in Paardekooper et al. (2020, 2021); McNally
et al. (2021), where the Lorentz force is a source term for velocity perturbations.
It allows us to find the largest eigenvalues whose imaginary part is positive in the
continuous eigenvalue problem of the polydisperse streaming instability. Aside from
floating-point errors, the method is, by design, guaranteed to find the most unsta-
ble eigenvalue. However, the procedure can take up to a minute per value of k.
To be able to carry out this study, we parralelized using MPI the computation
of the eigenvalues. The strategy goes as follows: a main process is charged with
receiving any found eigenvalue. That process performs the following loop: perform
a MPI receive operation from any source; when a message is received, write the
result to the file storing the list of found eigenvalues. Then repeat until shutdown
of the program. The other processes perform the following loop: generate a random
non-dimensional wavenumber K = kη/Ω2 value in log space, find the corresponding
eigenvalue with the largest imaginary part, send the eigenvalue with the generated
K to the main process, then repeat until shutdown of the program. The results that
will be presented each consist of a few hours of computation on 256 cores.

5. Results
We first reproduced the standard SI for monodisperse grains in Fig. A.1. The low
Kx region (Kx < 1) and high Kz region (Kz > 1) correspond roughly to the so-
called epicyclic modes of streaming instability. The unstable band for higher Kx

corresponds to the so-called secular modes of streaming instability.

228

5. RESULTS

0.5 0.0 0.5 1.0 1.5 2.0 2.5
log10 (Kx)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(K

z)
1 = 0, = 0.5, = 0.05,monodisperse

10 8

10 7

10 6

10 5

10 4

10 3

10 2

(
m

ax
)

Figure A.1: Standard SI

0.5 0.0 0.5 1.0 1.5 2.0 2.5
log10 (Kx)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(K

z)

1 = 0, = 0.5, = 0.05,polydisperse

10 8

10 7

10 6

10 5

10 4

(
m

ax
)

Figure A.2: Standard PSI

When moving to polydisperse dust distribution, both the secular and epyciclic
streaming instability are much less unstable (Im(ωmax) is more than 2 orders of

229

APPENDIX A. POLYDISPERSE MAGNETISED SI

magnitude lower). Additionally, the unstable regions are narrower compared to
the standard streaming instability. As discussed in Paardekooper et al. (2021), the
addition of turbulence in this case can make the polydisperse streaming instability
inoperable.

0.5 0.0 0.5 1.0 1.5 2.0 2.5
log10 (Kx)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(K

z)

1 = 1, = 0.5, = 0.05,monodisperse

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

(
m

ax
)

Figure A.3: Magnetized SI

We now present the case of monodisperse dust in the presence of a magnetic
field, as shown in Fig. A.3. This situation should reproduce the results of Lin & Hsu
(2022). The result are qualitatively correct, we need now to perform a quantitative
analysis to verify that we fully reproduced them. The presence of the magnetic field
results in multiple changes to the streaming instability. First, most of the epyciclic
unstable modes are removed in presence of a magnetic field. Second, the secular
mode of streaming instability is still present. Last, an additional Alfven wave-
supported streaming instability is present along the Kx ≃ Kz axis (see Lin & Hsu
2022 for discussion about this specific mode). In addition to streaming instability
the magnetorotational instability is present on top of the streaming instability in
the 1 ≲ Kz ≲ 1.5 region on Fig. A.3.

Lastly, when using a polydisperse dust distribution, we now observe that most
of the features in the magnetized monodisperse streaming instability remain with a
comparable growth rate.

230

6. DISCUSSION AND FUTURE PROSPECTS

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log10 (Kx)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g 1

0
(K

z)
1 = 1, = 0.5, = 0.05,polydisperse

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

(
m

ax
)

Figure A.4: Magnetized PSI

6. Discussion and future prospects
We have shown in this study that the presence of a magnetic field can result in the
presence of modes that are attributed to magnetized streaming instability in the
polydisperse case, whereas the polydispersity results in the non-magnetized case in
quenching the instability. This suggests that the presence of a magnetic field makes
streaming instability more robust to polydisperse quenching. However, we note that
the modes attributed to the MRI have a larger growth rate and therefore could
dominate SI growth. However, the non-linear evolution of magnetized polydisperse
streaming instability would require numerical codes able to resolve polydisperse
dust distribution, which is a yet-to-be-solved numerical challenge. We, however,
did not assessed if the eigenvectors can still concentrate dust which is the charac-
teristic feature of streaming instability. We also did not fully validated that the
monodisperse magnetised case reproducing exactly results from Lin & Hsu (2022).
This study shows the possibility of resusing the community code psitools and ex-
tending it to the magnetised case without significant changes to the code. Future
prospects include getting a better understanding of the physical processes underly-
ing the magnetised polydisperse streaming instability and verifying its conformance
with the literature in the monodisperse case. Additionally the development of nu-
merical schemes able to capture polydisperse effects would be required to study its
non-linear evolution. In Shamrock, we aim at optimizing the future dust solver
to resolve simulations with large numbers of dust species and MHD to attempt to

231

APPENDIX A. POLYDISPERSE MAGNETISED SI

reproduce the linear results as well as exploring the non-linear phase.

232

6. DISCUSSION AND FUTURE PROSPECTS

References
Goldreich P., Lynden-Bell D., 1965, II. Spiral arms as sheared gravitational instabilities,

MNRAS, 130, 125
Krapp L., Beńıtez-Llambay P., Gressel O., Pessah M. E., 2019, Streaming Instability for

Particle-size Distributions, ApJ, 878, L30
Lin M.-K., 2021, Stratified and Vertically Shearing Streaming Instabilities in Protoplane-

tary Disks, ApJ, 907, 64
Lin M.-K., Hsu C.-Y., 2022, Streaming Instabilities in Accreting and Magnetized Laminar

Protoplanetary Disks, ApJ, 926, 14
McNally C. P., Lovascio F., Paardekooper S.-J., 2021, Polydisperse streaming instability

- III. Dust evolution encourages fast instability, MNRAS, 502, 1469-1486
Mouschovias T. C., Kunz M. W., Christie D. A., 2009, Formation of interstellar clouds:

Parker instability with phase transitions, MNRAS, 397, 14-23
Paardekooper S.-J., McNally C. P., Lovascio F., 2020, Polydisperse streaming instability

- I. Tightly coupled particles and the terminal velocity approximation, MNRAS, 499,
4223-4238

Paardekooper S.-J., McNally C. P., Lovascio F., 2021, Polydisperse streaming instability
- II. Methods for solving the linear stability problem, MNRAS, 502, 1579-1595

Tsukamoto Y., et al.,in Astronomical Society of the Pacific Conference Series, booktitle,
edited by Inutsuka, S. and Aikawa, Y. and Muto, T. and Tomida, K. and Tamura, M.,
p. 317

233

http://dx.doi.org/10.1093/mnras/130.2.125
https://ui.adsabs.harvard.edu/abs/1965MNRAS.130..125G
http://dx.doi.org/10.3847/2041-8213/ab2596
https://ui.adsabs.harvard.edu/abs/2019ApJ...878L..30K
http://arxiv.org/abs/1905.13139
http://dx.doi.org/10.3847/1538-4357/abcd9b
https://ui.adsabs.harvard.edu/abs/2021ApJ...907...64L
http://arxiv.org/abs/2011.12300
http://dx.doi.org/10.3847/1538-4357/ac3bb9
https://ui.adsabs.harvard.edu/abs/2022ApJ...926...14L
http://arxiv.org/abs/2111.10381
http://dx.doi.org/10.1093/mnras/stab112
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.1469M
http://arxiv.org/abs/2101.04761
http://dx.doi.org/10.1111/j.1365-2966.2009.14472.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.397...14M
http://arxiv.org/abs/0901.0914
http://dx.doi.org/10.1093/mnras/staa3162
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.4223P
http://arxiv.org/abs/2010.01145
http://dx.doi.org/10.1093/mnras/stab111
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.1579P
http://arxiv.org/abs/2101.04763

APPENDIX A. POLYDISPERSE MAGNETISED SI

234

Appendix B
Precision of 2-fluid SPH methods

Contents
1 The Dustywave problem 235
2 SPH dustywave . 236
3 Conclusion . 241
Appendices . 241
4 Linear expansion of the SPH equations 243
5 Discrete dispersion relation 247
References . 248

Foreword
This work was performed at the beginning of the Ph.D. thesis to understand the
precision of the dust-gas mixture in the SPH relative to the analytical model. It was
motivated as a possible extension of the analysis of the SPH soundwave presented in
Chapter 1,Sec. 4.10 and to deeply understand the behavior of two-fluid dusty SPH.
This work derives the analytical dispersion relation for the two-fluid SPH dust gas
model and finds an analytical criterion for the reconstruction parameter to maximize
the precision of the scheme.

1. The Dustywave problem
As presented in David-Cléris & Laibe (2021), we consider the following equations of
motion for the evolution of a one-dimensional astrophysical

∂tρg + vg∂xρg = −ρg ∂xvg, (B.1)
∂tρd + vd∂xρd = −ρd ∂xvd, (B.2)

∂tvg + vg∂xvg = +K

ρg
(vd − vg)− ∂xP

ρg
, (B.3)

∂tvd + vd∂xvd = −K

ρd
(vd − vg) , (B.4)

where g and d stand for gas and dust, respectively (e.g. Garaud et al. 2004) and K
denotes the drag coefficient. Assuming isothermal gas P = c2

sρg, we expand linearly

235

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

Eqs. B.1 – B.4 under the generic form a = a0 + δa, with vd0 = vg0 = 0. One obtains

∂tδρg = −ρg,0 ∂xδvg, (B.5)
∂tδρd = −ρd,0 ∂xδvd, (B.6)

∂tδvg = + K

ρg,0
(δvd − δvg)− c2

s
∂xδρg

ρg,0
, (B.7)

∂tδvd = − K

ρd,0
(δvd − δvg) . (B.8)

We decompose the perturbation on Fourier space under the form δa = ãei(kx−ωt) for
each perturbed field, giving the condition∣∣∣∣∣∣∣∣∣∣∣∣

−iω 0 icskρg,0
ρg,0+ρd,0

0
0 −iω 0 icskρd,0

ρg,0+ρd,0
icsk(ρg,0+ρd,0)

ρg,0
0 −iω + 1

tg
− 1

tg

0 0 − 1
td

−iω + 1
td

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (B.9)

where tg ≡ ρg,0
K

and td ≡ ρd,0
K

. We obtain the following dispersion relation

ω4 + i

ts
ω3 − c2

sk
2ω2 − i

ts
c2

sk
2(1− ϵ)ω = 0, (B.10)

where the barycentric stopping time is ts ≡ ρg,0ρd,0

K(ρg,0+ρd,0) and ϵ ≡ ρd,0
ρg,0+ρd,0

is the
total dust fraction. Rescaling time and space by ts and csts respectively gives in its
dimensionless form

ω4 + iω3 − k2ω2 − ik2(1− ϵ)ω = 0, (B.11)
where we preserved the notations ω and k for further readability. We disregard the
solution ωnull = 0 on the null space. On this space, Eq. B.11 reduces to

ω3 + iω2 − ωk2 − ik2(1− ϵ) = 0, (B.12)

which can alternatively be written under the convenient form.

ω2 − k2 + i

ω

(
ω2 − k2(1− ϵ)

)
= 0. (B.13)

2. SPH dustywave

2.1. Equation of motions
We want to study the behavior of a dustywave in SPH. In particular, we want
to study the response of the scheme described in Price & Laibe (2020) to linear
perturbation. As introduced in Chapter 4.10, we use a simplified model to study its

236

2. SPH DUSTYWAVE

linear response. For simplicity, we neglect the smoothing length evolution due to the
density perturbation and assume an isothermal equation of state P = c2

sρ. Using
index (a, b), (i, j), respectively, for the gas and the dust, the equations of motion of
the SPH model detailed in Price & Laibe (2020) can be written as follows:

dxa

dt
= va, (B.14)

dxi

dt
= vi, (B.15)

ρa =
∑

b

mbWab(ha), (B.16)

ρi =
∑

j

mjWij(hi), (B.17)

dva

dt
= −Da,g − Pa, (B.18)

dvi

dt
= +Di,d, (B.19)

where the pressure and drag terms are expressed in the following form:

Pa ≡c2
s

∑
b

mb

(
1
ρa

+ 1
ρb

)
∂Wab

∂x
, (B.20)

Da,g ≡
∑

i

mi
(v∗

ai · r̂ai) r̂ai

(ρa + ρi) ts
ai

Dai(h), (B.21)

Di,d ≡
∑

a

ma
(v∗

ai · r̂ai) r̂ai

(ρi + ρa) ts
ai

Dai(h), (B.22)

where index (a, b), (i, j) stand respectively for gas and dust, ts
aj = ρaρj

K(ρa+ρj) . h =
max(ha, hi). v∗ refers to the reconstruction used on the velocities from Price &
Laibe (2020), defined as follows:

v∗
ai · r̂ai = vai · r̂ai − µai|rai| (Sai + Sia) , (B.23)

where µai ≡ ma/(ma + mi) is a so-called reconstruction parameter, which allows
selecting where the drag force is evaluated on the line of sight joining two SPH
particles of different types.

2.2. Linear perturbation
We expand linearly thenumerical equations Eq. B.14 – B.22 using the following form

aa = aa,0 + δaa (B.24)
ai = ai,0 + δai (B.25)

δaa = ãgei(kxa,0−ωt) (B.26)
δai = ãdei(kxi,0−ωt) (B.27)

237

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

discrete SPH sum Cnntinuous limit
1(W)

SPH = 1
ρ

∑
a maW (xa − bb, h) 1

0(W)
SPH = 1

ρ

∑
a ma

dW
dx

(xa − bb, h) 0∑
a maf(xa) ρ

∫
dx f(x)

Table B.1: Continuous limit of the SPH terms involved in the derivation.

for a = (ρ, x, v). We note that under the following notation the velocity perturbation
is related by a factor −iω to the perturbation on the particle position, ṽg/d =
−iωx̃g/d. The details of the computation is presented Sec. 4.

2.3. Continuous limit
We now perform the continuous limit (infinite number of particle) on the results of
Sec. 4. To do so we use the dictionary presented Table B.1. The mass conservation
equation in the continuous limit yields

− iωρ̃g + ikρgŴgṽg = 0, (B.28)
− iωρ̃d + ikρgŴdṽd = 0. (B.29)

And the pressure and drag operators are

P = ei(kxa,0−ωt)c2
sk

2x̃g

[
2Ŵ − Ŵ 2

]
, (B.30)

Da,g = ei(kxa,0−ωt)
[

1
tg

ṽg −
1
tg

(
D̂h − kµŴd

∂D̂h

∂k

)
ṽd

]
, (B.31)

Di,d = ei(kxi,0−ωt)
[

1
td

(
D̂h − kµŴg

∂D̂h

∂k

)
ṽg −

1
td

ṽd

]
, (B.32)

where Ŵg, Ŵd, and D̂ denotes, respectively the Fourier transform of the SPH kernels
W for the gas, W for the dust, and drag SPH kernel D. Replacing the operators for-
mulas in the equation of motion Eq. B.14–B.19 provides the following set of equation
for the linear SPH dustywave problem.

0 =− iωρ̃g/d + ikρgŴ ṽg/d, (B.33)

0 =− iωṽg + ikc2
s

ρg

(
2− Ŵ

)
ρ̃g + 1

tg

(1− Zg) ṽg, (B.34)

0 =− iωṽd + 1
td

(1− Zd) ṽd, (B.35)

238

2. SPH DUSTYWAVE

were we defined,

Zg ≡ D̂h − kµŴd
∂D̂h

∂k
, (B.36)

Zd ≡ D̂h − kµŴg
∂D̂h

∂k
. (B.37)

The determinant condition for the dispersion relation can be written in a similar
form as eq.B.9 ∣∣∣∣∣∣∣∣∣∣∣

−iω 0 ikŴgρg 0
0 −iω 0 ikŴdρd

ic2
sk(2−Ŵg)

ρg
0 1

tg
− iω − 1

tg
Zg

0 0 − 1
td

Zd
1
td
− iω

∣∣∣∣∣∣∣∣∣∣∣
= 0 (B.38)

The corresponding dispersion relation for the complete perturbation, not accounting
for the continuous limit, is presented in Sec. 5.

2.3.1. With reconstruction

By computing the determinant Eq. B.38, we get the following dispersion relation:

0 = ω2 − c2
sk

2IW + i

ωts

(
ω2 − c2

sk
2(1− ϵ)IW

)
+ (1− ϵ)ϵ

t2
s

O∗
D, (B.39)

IW = 2Ŵg − Ŵ 2
g , (B.40)

O∗
D =

(
D̂h − kµŴd

∂D̂h

∂k

)(
D̂h − kµŴg

∂D̂h

∂k

)
− 1, (B.41)

where IW is the resulting numerical correction to the wavevector k. We recover the
physical dispersion relation in the h → 0 limit for any µ ∈ [0, 1] since IW → 1 and
O∗

D → 0. This shows the validity of the method in the continuum equation limit
(where SPH kernels converge to Dirac distributions).

2.3.2. Without reconstruction

The absence of reconstruction is equivalent to setting µ = 0. In absence of recon-
struction the SPH scheme is the usual two-fluid model as used in Price et al. (2018).
In this context the dispersion relation is

0 = ω2 − c2
sk

2IW + i

ωts

(
ω2 − c2

sk
2(1− ϵ)IW

)
+ (1− ϵ)ϵ

t2
s

OD, (B.42)

IW = 2Ŵg − Ŵ 2
g , (B.43)

OD = D̂2
h − 1. (B.44)

239

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

0.0 0.2 0.4 0.6 0.8 1.0
k

0.0

0.2

0.4

0.6

0.8

(
+

)

= 0
= 0.5
= 1

theory

Figure B.1: Real part of the root ω+ for different values of µ with ϵ = 8/9 for
the M4 kernel. The black dashed line provides the analytic solution of the phys-
ical dustywave problem. The Blue, green and red solid lines provide the analytic
solution of the smoothed equation in the continuous limit for different values of the
reconstruction parameter.

2.4. Analytic spatial resolution criterion
From eq.B.39, we see that the error in the numerical case comes from two sources:
the resolution of the drag and the gas dynamic. Since h = max(hi, ha), the drag
resolution is equal to the lowest resolution between gas and dust. The resolution
in the dust contributes mainly to the resolution of dust-specific features such as
mixture modes, bifurcation of the dustywave problem between non-propagative and
soundwave like mode, and the gas’s sound waves. Therefore, the CFL can still be
taken to be ∆t < C h

cs
, but in order to resolve the dust accurately, we need to have

h < csts to resolve the mixture mode and the transition to sound wave.

240

3. CONCLUSION

2.5. Optimal reconstruction
We now seek an optimal value for the reconstruction parameter µ from the dispersion
relation. We expand linearly Zg/d in orders of k. This yields

Zg/d = D̂h − kµŴg/d
∂D̂h

∂k

= 1 + k2

2
∂2D̂h

∂k2 − kµŴg/d(0)k∂2D̂h

∂k2 + o(k3)

= 1 + k2

2
∂2D̂h

∂k2 [1− 2µ] + o(k3),

which give the result

O∗
D = k2 ∂2D̂h

∂k2 [1− 2µ] + o(k3). (B.45)

When using µ = 0.5 (ie mg = md) the D′′(0) term is canceled. This results in the
error created by the drag term being of order 4 in k. It is therefore suitable to always
use µ = 0.5. We additionally show the real part of the root ω+ for different values
of the reconstruction parameter µ in Fig. B.1, where µ = 0.5 yields the best result.
This is the first time that the value of a reconstruction parameter is constrained
analytically in SPH.

2.6. Test in simulations
We have run the same tests as described in Price & Laibe (2020), for a dustfraction
of ϵ = 8/9, for multiple values of the reconstruction parameter µ. We present the
result of the L1 error of the Dustywave in Fig. B.2 and Dustyshock test in
Fig. B.3. Both tests also suggest µ = 0.5 as the best choice of the reconstruction
parameter as suggested by the performed analytical study.

3. Conclusion
We have derived the analytical dispersion relation of a two-fluid SPH dust gas model
with reconstruction developed in Price & Laibe (2020). From this dispersion relation,
the criterion µ = 0.5 was found to maximize the precision of the scheme in the linear
perturbation regime. Additionally, the two-fluid dust-gas SPH scheme reproduces
the analytical results of the dustywave problem detailed in David-Cléris & Laibe
(2021). We note, however, that this work was performed in the continuous limit,
and the effect of discrete errors should be ideally accounted for using the dispersion
relation detailed in Sec. 5, which could be an extension of this work. This analysis
may be helpful to improve the viscosity term in SPH with an optimal reconstruction.

241

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

0.0 0.2 0.4 0.6 0.8 1.0
10 2

10 1

100

101

102

L1
 e

rro
r

dustywave
Kdrag = 0.01
Kdrag = 1
Kdrag = 100
Kdrag = 1000

Figure B.2: Real part of the root ω+ for different values of µ with ϵ = 8/9 for the
M4 kernel.

0.0 0.2 0.4 0.6 0.8 1.0

0.015

0.020

0.025

0.030

0.035

0.040

0.045

L1
 e

rro
r

dustyshock

Figure B.3: Real part of the root ω+ for different values of µ with ϵ = 8/9 for the
M4 kernel.

242

4. LINEAR EXPANSION OF THE SPH EQUATIONS

Appendix

4. Linear expansion of the SPH equations

4.1. Mass conservation
We start by expanding linearly the mass conservation equation Eq. B.16:

ρa =
∑

b

mbWab(ha)

δρa = −ρg,0 +
∑

b

mbW (xa,0 − xb,0)︸ ︷︷ ︸
ρg,011SPH

+
∑

b

mb(δxa − δxb)
∂W

∂x
(xa,0 − xb,0)

ρ̃g = ρg,0 (11SPH − 1) e−i(kxa,0−ωt)

+ x̃g
∑

b

mb(1− e−ik(xa,0−xb,0))dW

dx
(xa,0 − xb,0, ha)

−iωρ̃g = −iωρg,0 (11SPH − 1) e−i(kxa,0−ωt)

+ ṽg
∑

b

mb(1− e−ik(xa,0−xb,0))dW

dx
(xa,0 − xb,0, ha)

−iωρ̃g = −iωρg,0 (11SPH − 1) e−i(kxa,0−ωt)︸ ︷︷ ︸
0disc,g

+ ṽg

∑
b

mb
dW

dx
(xa,0 − xb,0, ha)︸ ︷︷ ︸

ρg,00(Wg)
SPH

−
∑

b

mbe
−ik(xa,0−xb,0) dW

dx
(xa,0 − xb,0, ha)︸ ︷︷ ︸

ρg,0F
(W ′

g)
SPH

−iωρ̃g = 0disc,g + ṽgρg,0

[
0(Wg)

SPH −F
(W ′

g)
SPH

]
.

The same computation can be performed for the dust by replacing subscripts g by
d. Therefor

−iωρ̃g/d = 0disc,g/d + ṽg/dρg/d,0

[
0(Wg/d)

SPH −F
(W ′

g/d)
SPH

]
.

243

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

4.2. Pressure term

P =− c2
s

∑
b

mb

(
1
ρa

+ 1
ρb

)
∂Wab

∂x

=− c2
s

∑
b

mb

[(
1

ρa,0
+ 1

ρb,0

)
−

(
δρa

ρ2
a,0

+ δρb

ρ2
b,0

)][
∂W

∂x
(xa,0 − xb,0) + (δxa − δxb)∂2W

∂x2 (xa,0 − xb,0)
]

=− c2
s

2
ρg,0

∑
b

mb
∂W

∂x
(xa,0 − xb,0)︸ ︷︷ ︸

ρg,00(Wg)
SPH

−c2
s

2
ρg,0

∑
b

mb(δxa − δxb)∂2W

∂x2 (xa,0 − xb,0)

+ c2
s

1
ρ2

g,0

∑
b

mb (δρa + δρb) ∂W

∂x
(xa,0 − xb,0)

=− 2c2
s0(Wg)

SPH − c2
s

2
ρg,0

x̃gei(kxa,0−ωt)

[∑
b

mb
∂2W

∂x2 (xa,0 − xb,0)︸ ︷︷ ︸
ρg,00

(W ′
g)

SPH

−
∑

b

mbe−ik(xa,0−xb,0) ∂2W

∂x2 (xa,0 − xb,0)︸ ︷︷ ︸
ρg,0F

(W ′′
g)

SPH

]

+ c2
s

1
ρ2

g,0
ρ̃gei(kxa,0−ωt)

[∑
b

mb
∂W

∂x
(xa,0 − xb,0)︸ ︷︷ ︸

ρg,00(Wg)
SPH

+
∑

b

mbe−ik(xa,0−xb,0) ∂W

∂x
(xa,0 − xb,0)︸ ︷︷ ︸

ρg,0F
(W ′

g)
SPH

]

=− 2c2
s0(Wg)

SPH − 2c2
sx̃gei(kxa,0−ωt)

[
0(W ′

g)
SPH −F

(W ′′
g)

SPH

]
+ c2

s

1
ρg,0

ρ̃gei(kxa,0−ωt)
[
0(Wg)

SPH + F (W ′
g)

SPH

]
=− 2c2

s0(Wg)
SPH − 2c2

s

1

ρg,0

[
0(Wg)

SPH −F
(W ′

g)
SPH

] [ρ̃g + 0disc,g

iω

]
ei(kxa,0−ωt)

[
0(W ′

g)
SPH −F

(W ′′
g)

SPH

]
+ c2

s

1
ρg,0

ρ̃gei(kxa,0−ωt)
[
0(Wg)

SPH + F (W ′
g)

SPH

]
=− 2c2

s0(Wg)
SPH − 2c2

sx̃gei(kxa,0−ωt)
[
0(W ′

g)
SPH −F

(W ′′
g)

SPH

]
+ c2

s

1
ρg,0

ρ̃gei(kxa,0−ωt)
[
0(Wg)

SPH + F (W ′
g)

SPH

]
=−2c2

s0(Wg)
SPH −

2c2
s

ρg,0

0(W ′
g)

SPH −F
(W ′′

g)
SPH

0(Wg)
SPH −F

(W ′
g)

SPH

0disc,g

iω
ei(kxa,0−ωt)

︸ ︷︷ ︸
0disc,P,g

− 2c2
s

ρg,0

0(W ′
g)

SPH −F
(W ′′

g)
SPH

0(Wg)
SPH −F

(W ′
g)

SPH

ρ̃gei(kxa,0−ωt)

+ c2
s

1
ρg,0

ρ̃gei(kxa,0−ωt)
[
0(Wg)

SPH + F (W ′
g)

SPH

]
=0disc,P,g + c2

s

ρg,0

[
0(Wg)

SPH + F (W ′
g)

SPH

]
ρ̃gei(kxa,0−ωt) − 2c2

s

ρg,0

0(W ′
g)

SPH −F
(W ′′

g)
SPH

0(Wg)
SPH −F

(W ′
g)

SPH

ρ̃gei(kxa,0−ωt)

=0disc,P,g + c2
s

ρg,0

([
0(Wg)

SPH + F (W ′
g)

SPH

]
− 20(W ′

g)
SPH −F

(W ′′
g)

SPH

0(Wg)
SPH −F

(W ′
g)

SPH

)
ρ̃gei(kxa,0−ωt)

244

4. LINEAR EXPANSION OF THE SPH EQUATIONS

4.3. Drag term

Sa,i = ∂va

∂xa

=
−∑b mbvab

∂Wab

∂x
(ha)∑

b mb(rb − ra)∂Wab

∂x
(ha)

= − 1
11(W ′

a)
SPH ρa,0

∑
b

mb (δva − δvb)
∂Wab,0

∂x

= −ei(kxa,0−ωt)

11(W ′
a)

SPH ρa,0
ṽa

∑
b

mb

(
1− e−ik(xa,0−xb,0)

) ∂Wab,0

∂x

Da,g =
∑

i

mi

(
v∗

ai · r̂ai

)
r̂ai

(ρa + ρi) ts
ai

Dai(h)

=
∑

i

mi
1

(ρa + ρi) ts
ai

vaiDai(h) −
∑

i

miµ

(ρa + ρi)ts
(Sai + Sia) |rai|r̂aiDai(h)

=
1

ts
(

ρg,0 + ρd,0
) ei(kxa,0−ωt)

∑
i

mi

(
ṽg − ṽde−ik(xa,0−xi,0)

)
Dai,0(h) +

µ(
ρg,0 + ρd,0

)
ts

∑
i

mirai,0Dai,0(h)×[1

1(Wg)
SPH ρg,0

ei(kxa,0−ωt)ṽg
∑

b

mb

(
1 − e−ik(xa,0−xb,0)

) dWab

dx
(ha)

+
1

1(Wd)
SPH ρd,0

ei(kxi,0−ωt)ṽd

∑
j

mj

(
1 − e−ik(xi,0−xj,0)

) dWij

dx
(hi)
]

=
1

ts
(

ρg,0 + ρd,0
) ei(kxa,0−ωt)

(
ṽg
∑

i

miDai,0(h)︸ ︷︷ ︸
ρd,011(D)

SPH,d

−ṽd

∑
i

mie
−ik(xa,0−xi,0)Dai,0(h)︸ ︷︷ ︸

ρd,0F(D)
SPH,d

)

+
µ(

ρg,0 + ρd,0
)

ts

∑
i

mirai,0Dai,0(h)×[
1

1(Wg)
SPH ρg,0

ei(kxa,0−ωt)ṽg

(∑
b

mb
dWab

dx
(ha)︸ ︷︷ ︸

ρg,00(Wg)
SPH

−
∑

b

mbe−ik(xa,0−xb,0) dWab

dx
(ha)︸ ︷︷ ︸

ρg,0F
(W ′

g)
SPH

)

+
1

1(Wd)
SPH ρd,0

ei(kxi,0−ωt)ṽd

(∑
j

mj
dWij

dx
(hi)︸ ︷︷ ︸

ρd,00(Wd)
SPH

−
∑

j

mje−ik(xi,0−xj,0) dWij

dx
(hi)︸ ︷︷ ︸

ρd,0F
(W ′

d)
SPH

)]

=
ρd,0

ts
(

ρg,0 + ρd,0
) ei(kxa,0−ωt)

(
ṽg11(D)

SPH,d − ṽdF(D)
SPH,d

)
+

µ(
ρg,0 + ρd,0

)
ts

∑
i

mirai,0Dai,0(h)×[
1

1(Wg)
SPH

ei(kxa,0−ωt)ṽg

(
0(Wg)

SPH − F
(W ′

g)
SPH

)
+

1
1(Wd)

SPH

ei(kxi,0−ωt)ṽd

(
0(Wd)

SPH − F(W ′
d)

SPH

)]

245

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

=
ρd,0

ts
(

ρg,0 + ρd,0
) ei(kxa,0−ωt)

(
ṽg11(D)

SPH,d − ṽdF(D)
SPH,d

)
+[

µ(
ρg,0 + ρd,0

)
ts

1

1(Wg)
SPH

ei(kxa,0−ωt)ṽg

(
0(Wg)

SPH − F
(W ′

g)
SPH

)∑
i

mirai,0Dai,0(h)︸ ︷︷ ︸
ρd,00(D)

1,SPH,d

+
µ(

ρg,0 + ρd,0
)

ts

1
1(Wd)

SPH

ṽd

(
0(Wd)

SPH − F(W ′
d)

SPH

)∑
i

mirai,0Dai,0(h)ei(kxi,0−ωt)
]

=
ρd,0

ts
(

ρg,0 + ρd,0
) ei(kxa,0−ωt)

(
ṽg11(D)

SPH,d − ṽdF(D)
SPH,d

)
+[

µρd,0(
ρg,0 + ρd,0

)
ts

1

1(Wg)
SPH

ei(kxa,0−ωt)ṽg

(
0(Wg)

SPH − F
(W ′

g)
SPH

)
0(D)

1,SPH,d

+
µ(

ρg,0 + ρd,0
)

ts

1
1(Wd)

SPH

ṽd

(
0(Wd)

SPH − F(W ′
d)

SPH

)
ei(kxa,0−ωt)

∑
i

mirai,0Dai,0(h)e−ik(xa,0−xi,0)

︸ ︷︷ ︸
iρd,0∂kF(D)

SPH,d

]

=
ρd,0

ts
(

ρg,0 + ρd,0
) ei(kxa,0−ωt)

(
ṽg11(D)

SPH,d − ṽdF(D)
SPH,d

)
+[

µρd,0(
ρg,0 + ρd,0

)
ts

1

1(Wg)
SPH

ei(kxa,0−ωt)ṽg

(
0(Wg)

SPH − F
(W ′

g)
SPH

)
0(D)

1,SPH,d +
µρd,0(

ρg,0 + ρd,0
)

ts

1
1(Wd)

SPH

ṽd

(
0(Wd)

SPH − F(W ′
d)

SPH

)
ei(kxa,0−ωt)i∂kF(D)

SPH,d

]

=ei(kxa,0−ωt)
[

1
tg

ṽg

(
11(D)

SPH,d + µ
1

1(Wg)
SPH

(
0(Wg)

SPH − F
(W ′

g)
SPH

)
0(D)

1,SPH,d

)
︸ ︷︷ ︸

1d→g,g

−
1
tg

ṽd

(
F(D)

SPH,d − µ
1

1(Wd)
SPH

(
0(Wd)

SPH − F(W ′
d)

SPH

)
i∂kF(D)

SPH,d

)
︸ ︷︷ ︸

1d→g,d

]

=ei(kxa,0−ωt)
[

1
tg

ṽg1d→g,g −
1
tg

ṽd1d→g,d

]

4.4. Discrete sph equations

dva

dt
= −Da,g − Pa (B.46)

dvi

dt
= +Di,d (B.47)

− iωρ̃g/d = 0disc,g/d + ṽg/dρg/d,0

[
0(Wg/d)

SPH −F
(W ′

g/d)
SPH

]
(B.48)

P = 0disc,P,g + c2
s

ρg,0

[0(Wg)
SPH + F (W ′

g)
SPH

]
− 20(W ′

g)
SPH −F

(W ′′
g)

SPH

0(Wg)
SPH −F

(W ′
g)

SPH

 ρ̃gei(kxa,0−ωt) (B.49)

Da,g = ei(kxa,0−ωt)
[

1
tg

ṽg1d→g,g −
1
tg

ṽd1d→g,d

]
(B.50)

Di,g = ei(kxi,0−ωt)
[1
td

ṽg1g→d,g −
1
td

ṽd1g→d,d

]
(B.51)

246

5. DISCRETE DISPERSION RELATION

5. Discrete dispersion relation
Neglecting the offset term 0disc,P,g we get the following matrix to compute the dis-
persion relation∣∣∣∣∣∣∣∣∣∣∣

−iω 0 ρg,0

[
F (W ′

g)
SPH − 0(Wg)

SPH

]
0

0 −iω 0 ρd,0

[
F (W ′

d)
SPH − 0(Wd)

SPH

]
c2

s
1

ρg,0

[
0(Wg)

SPH + F (W ′
g)

SPH

]
0 −iω + 1d→g,g

tg
− 2c2

s
1

−iω

[
0(W ′

g)
SPH −F

(W ′′
g)

SPH

]
− 1d→g,d

tg

0 0 − 1g→d,g
td

−iω + 1g→d,g
td

∣∣∣∣∣∣∣∣∣∣∣
= 0

(B.52)
This yield the following dispersion relation for the SPH dustywave in the discrete

case

0 = −i

(
F (W ′

g)
SPH

2
− 2F (W ′′

g)
SPH

)(
11(D)

SPH,g − µ
F (W ′

d)
SPH

1(Wd)
SPH

0(D)
1,SPH,g

)
(−1 + ϵ)

+
(
F (W ′

g)
SPH

2
− 2F (W ′′

g)
SPH +

[(
11(D)

SPH,d − µ
F (W ′

g)
SPH

1(Wg)
SPH

0(D)
1,SPH,d

)(
11(D)

SPH,g − µ
F (W ′

d)
SPH

1(Wd)
SPH

0(D)
1,SPH,g

)

−

(
F (D)

SPH,d + µ
F (W ′

d)
SPH

1(Wd)
SPH

i∂kF (D)
SPH,d

)(
F (D)

SPH,g + µ
F (W ′

g)
SPH

1(Wg)
SPH

i∂kF (D)
SPH,g

)]
(−1 + ϵ)ϵ

)
ω

+ i

[
11(D)

SPH,g − µ
F (W ′

d)
SPH

1(Wd)
SPH

0(D)
1,SPH,g +

(
F (W ′

d)
SPH

1(Wd)
SPH

0(D)
1,SPH,g −

F (W ′
g)

SPH

1(Wg)
SPH

0(D)
1,SPH,d

)
µϵ + ϵ

(
11(D)

SPH,d − 11(D)
SPH,g

)]
ω2

+ ω3 (B.53)

247

APPENDIX B. PRECISION OF 2-FLUID SPH METHODS

References
David-Cléris T., Laibe G., 2021, Large dust fractions can prevent the propagation of

soundwaves, MNRAS, 504, 2889-2894
Garaud P., Barrière-Fouchet L., Lin D. N. C., 2004, Individual and Average Behavior of

Particles in a Protoplanetary Nebula, ApJ, 603, 292-306
Price D. J., Laibe G., 2020, A solution to the overdamping problem when simulating

dust-gas mixtures with smoothed particle hydrodynamics, MNRAS, 495, 3929-3934
Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-

drodynamics Code for Astrophysics, PASA, 35, e031

248

http://dx.doi.org/10.1093/mnras/stab931
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.2889D
http://arxiv.org/abs/2104.13787
http://dx.doi.org/10.1086/381385
https://ui.adsabs.harvard.edu/abs/2004ApJ...603..292G
http://arxiv.org/abs/astro-ph/0307199
http://dx.doi.org/10.1093/mnras/staa1366
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.3929P
http://arxiv.org/abs/2005.06562
http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930

Appendix C
Full-Monofluid formalism

Contents
1 Monofluid formalism . 249
2 SPH identities . 254
3 Derivation from conservation equations 255
4 Summary . 259
References . 261

Foreword
This project, which was started at the beginning of the Ph.D. thesis, aims at gen-
eralizing the dust-gas monofluid approach to large grains (St ≳ 1), for which the
terminal velocity approximation cannot be used. Indeed, the current formulation
proposed by Hutchison (2017) has been found to conserve energy to machine pre-
cision as it should, but not dust momentum. Previously, the scheme was built on
the energy conservation equation. In this work, we derive the full-monofluid formal-
ism from dust momentum conservation to ensure its conservation in the resulting
scheme. We first present the monofluid formalism without terminal velocity approx-
imation. We then proceed with developing the SPH operators for the full monofluid
formalism.

1. Monofluid formalism
In order to derive the monofluid equation of motion, we first need to rewrite the
dust or gas quantities in terms of mixture quantities.

vg = v− ρd

ρ
∆v = v− ϵ∆v, (C.1)

vd = v + ρg

ρ
∆v = v + (1− ϵ)∆v, (C.2)

ρg = (1− ϵ)ρ, (C.3)
ρd = ϵρ. (C.4)

The idea is to rewrite the Euler equations in terms of those mixed quantities to
reformulate the dust-gas mixture as one fluid with internal quantities.

249

APPENDIX C. FULL-MONOFLUID FORMALISM

Proposition ▶ Monofluid conservation of total mass

∂ρ

∂t
+∇ · (ρv) = 0

Proof. We start by reformulating the two-fluid Euler equations (Eq. 1.18-1.19) in
the one fluid formalism.

0 = ∂ρg

∂t
+∇ · (ρgvg) (C.5)

= ∂(1− ϵ)ρ
∂t

+∇ · [(1− ϵ) ρ (v− ϵ∆v)] (C.6)

= −∂ϵ

∂t
ρ + (1− ϵ)∂ρ

∂t
+∇ · [(1− ϵ)ρv]−∇ · [(1− ϵ)ρϵ∆v] , (C.7)

0 = ∂ρd

∂t
+∇ · (ρdvd) (C.8)

= ∂ϵρ

∂t
+∇ · [ϵρ (v + (1− ϵ)∆v)] (C.9)

= ∂ϵ

∂t
ρ + ϵ

∂ρ

∂t
+∇ · [ϵρv] +∇ · [(1− ϵ)ρϵ∆v] . (C.10)

Taking the sum (C.7) + (C.10), give the total mass conservation equation for the
monofluid formalism :

0 = ∂ρ

∂t
+∇ · (ρv)

Proposition ▶ Monofluid conservation of dust mass(
∂

∂t
+ v · ∇

)
ϵ + 1

ρ
∇ · [(1− ϵ)ϵρ∆v] = 0

250

1. MONOFLUID FORMALISM

Proof. Let us take the difference (C.10) - (C.7) :

0 = 2∂ϵ

∂t
ρ + 2ϵ

∂ρ

∂t
+ 2∇ · [ϵρv] + 2∇ · [(1− ϵ)ϵρ∆v] (C.11)

0 = ∂ϵ

∂t
ρ + ϵ

∂ρ

∂t
+∇ · [ϵρv] +∇ · [(1− ϵ)ϵρ∆v] (C.12)

0 = ∂ϵ

∂t
ρ + ϵ

∂ρ

∂t
+ ϵ∇ · [ρv]︸ ︷︷ ︸

mass conservation=0

+ρv · ∇ϵ +∇ · [(1− ϵ)ϵρ∆v] (C.13)

0 = ∂ϵ

∂t
+ v · ∇ϵ + 1

ρ
∇ · [(1− ϵ)ϵρ∆v] (C.14)

0 = ∂ϵ

∂t
+ v · ∇ϵ + 1

ρ
∇ · [(1− ϵ)ϵρ∆v] . (C.15)

Hence, the advection equation for the dust fraction is
(

∂

∂t
+ v · ∇

)
ϵ + 1

ρ
∇ · [(1− ϵ)ϵρ∆v] = 0.

Definition ▶ Barycentric forces

f = ρgfg + ρdfd

ρ

Definition ▶ Differential forces

∆f = fd − fg

Proposition ▶ Monofluid barycentric velocity(
∂

∂t
+ v · ∇

)
v = f − ∇P

ρ
− 1

ρ
∇ · [ρ(1− ϵ)ϵ∆v∆v]

Proof. For the momentum equations of dust and gas, the computation of their
monofluid counterpart is easier if we start from the conservative form of the mo-
mentum conservation equations of gas and dust.

∂ρgvg

∂t
+∇ · [ρgvgvg] = ρgfg −∇P + K (vd − vg) , (C.16)

∂ρdvd

∂t
+∇ · [ρdvdvd] = ρdfd −K (vd − vg) . (C.17)

251

APPENDIX C. FULL-MONOFLUID FORMALISM

We can find the equation for the velocity of the mixture by summing C.16 and C.17:
∂

∂t
(ρgvg + ρdvd) +∇ · [ρgvgvg + ρdvdvd] = ρf −∇P. (C.18)

Now we can replace every quantity with their monofluid counterpart
∂

∂t
(ρv) +∇ · [ρgvgvg + ρdvdvd] = ρf −∇P, (C.19)

∂

∂t
(ρv) +∇ · [(1− ϵ)ρ (v− ϵ∆v) (v− ϵ∆v) + ϵρ (v + (1− ϵ)∆v) (v + (1− ϵ)∆v)] = ρf −∇P,

(C.20)
∂

∂t
(ρv) +∇ · [ρvv] +∇ ·

[
ρ(1− ϵ)ϵ2∆v∆v + ρ(1− ϵ)2ϵ∆v∆v

]
= ρf −∇P, (C.21)

∂

∂t
(ρv) +∇ · [ρvv] = ρf −∇P −∇ · [ρ(1− ϵ)ϵ∆v∆v] , (C.22)(
∂

∂t
+ v · ∇

)
v = f − ∇P

ρ
− 1

ρ
∇ · [ρ(1− ϵ)ϵ∆v∆v] , (C.23)

giving us the equation of motion for the velocity of the mixture(
∂

∂t
+ v · ∇

)
v = f − ∇P

ρ
− 1

ρ
∇ · [ρ(1− ϵ)ϵ∆v∆v] .

Proposition ▶ Monofluid differential velocity

(
∂

∂t
+ v · ∇

)
∆v = −∆v

ts
+ ∆f − (∆v · ∇) v

+ (2ϵ− 1) (∆v · ∇) ∆v + ∆v (∆v · ∇) ϵ

Proof. For the ∆v equation, we can use the difference C.17
ρd
− C.16

ρg
,

1
ρd

∂t (ρdvd)− 1
ρg

∂t (ρgvg) + 1
ρd
∇ · (ρdvdvd)− 1

ρg
∇ · (ρgvgvg) =

∆f −K∆v

(
1
ρg

+ 1
ρd

)
+ ∇Pg

ρg
,

∂

∂t
∆v = ∆f − ∆v

ts
+ ∇Pg

ρg
+ (vg · ∇) vg − (vd · ∇) vd.

We can now develop the advection terms for gas and dust,

(vd · ∇) vd = v · ∇v + (1− ϵ)∆v · ∇ [(1− ϵ)∆v] +
v · ∇ [(1− ϵ)∆v] + (1− ϵ)∆v · ∇v,

(vg · ∇) vg = v · ∇v + ϵ∆v · ∇ [ϵ ∆v] −
v · ∇ [ϵ ∆v] − ϵ ∆v · ∇v.

252

1. MONOFLUID FORMALISM

Taking the difference yield,

(vg · ∇) vg − (vd · ∇) vd = ϵ∆v · ∇ [ϵ∆v]− (1− ϵ)∆v · ∇ [(1− ϵ)∆v]
− (v · ∇) ∆v− (∆v · ∇) v.

Hence, the result,(
∂

∂t
+ v · ∇

)
∆v = −∆v

ts
+ ∆f − (∆v · ∇) v

+ ϵ∆v · ∇ [ϵ∆v]− (1− ϵ)∆v · ∇ [(1− ϵ)∆v] .

We can further transform this expression as follows:

fI∆v = − (∆v · ∇) v + ϵ∆v · ∇ [ϵ∆v]− (1− ϵ)∆v · ∇ [(1− ϵ)∆v]
= − (∆v · ∇) v + ϵ∆v · ∇ [ϵ∆v]−∆v · ∇ [(1− ϵ)∆v] + ϵ∆v · ∇ [(1− ϵ)∆v]
= − (∆v · ∇) v−∆v · ∇ [∆v] + ∆v · ∇ [ϵ∆v] + ϵ∆v · ∇ [∆v]
= − (∆v · ∇) v−∆v · ∇ [∆v] + ϵ∆v · ∇ [∆v] + ∆v · ∇ [ϵ] ∆v + ϵ∆v · ∇ [∆v]
= − (∆v · ∇) v−∆v · ∇ [∆v] + 2ϵ∆v · ∇ [∆v] + ∆v · ∇ [ϵ] ∆v
= − (∆v · ∇) v + (2ϵ− 1)∆v · ∇ [∆v] + ∆v · ∇ [ϵ] ∆v

(
∂

∂t
+ v · ∇

)
∆v = −∆v

ts
+ ∆f − (∆v · ∇) v

+ (2ϵ− 1) (∆v · ∇) ∆v + ∆v (∆v · ∇) ϵ

It is also possible to use the vector analysis identity ∇(X ·X) = 2(X · ∇)X + 2X×
(∇×X) to transform the expression.(

∂

∂t
+ v · ∇

)
∆v = −∆v

ts
+ ∆f − (∆v · ∇) v

+ 1
2∇

(
ϵ2∆v ·∆v

)
− ϵ∆v× (∇× ϵ∆v)

− 1
2∇

(
(1− ϵ)2∆v ·∆v

)
+ (1− ϵ)∆v× (∇× (1− ϵ)∆v)

(C.24)

This lead to the equation on the differential velocity in the same form as presented
in Lebreuilly et al. (2019),(

∂

∂t
+ v · ∇

)
∆v =− ∆v

ts
+ ∆f − (∆v · ∇) v + 1

2∇ ((2ϵ− 1)∆v ·∆v)

− ϵ∆v× (∇× ϵ∆v) + (1− ϵ)∆v× (∇× (1− ϵ)∆v). (C.25)

253

APPENDIX C. FULL-MONOFLUID FORMALISM

Proposition 1.1 ▶ Monofluid conservation of energy(
∂

∂t
+ v · ∇

)
ug = − P

(1− ϵ)ρ∇ · (v− ϵ∆v) + ϵ∆v · ∇ug + K∆v2

ρg

Proof. Starting from the energy conservation equation in two-fluid formalism, the
monofluid variant is given by

∂ug

∂t
+ (vg · ∇) ug = −P

ρg
(∇ · vg) + K (vd − vg)2

ρg

∂ug

∂t
+ ((v− ϵ∆v) · ∇) ug = − P

(1− ϵ)ρ (∇ · vg) + K∆v2

ρg

∂ug

∂t
+ (v · ∇) ug = ϵ∆v · ∇ug −

P

(1− ϵ)ρ (∇ · (v− ϵ∆v)) + K∆v2

ρg
.

2. SPH identities

Definition ▶ SPH Symetric/Antisymetric notations

For sake of clarity, we adopt notations inspired from the one used in general
relativity. Using the unit vector 1, defined by 1a = 1,∀a, we define

(Ta + Tb) = T(a1b) = T(a1b),

(Ta − Tb) = T[a1b] = T[a1b].

In SPH, we often use the symmetry or antisymmetry of the operators to prove
the conservation equation. In order to do so, two formulas are useful to permute
a sum from its symmetry form to its antisymmetric form, or inversely, in a double
sum.

Proposition ▶ Symmetry permutation in SPH
∑

a

∑
b

mamb XaT(a1b)∇aWab =
∑

a

∑
b

mamb TaX[a1b]∇aWab,

∑
a

∑
b

mamb XaT(a1b) · ∇aWab =
∑

a

∑
b

mamb T ν
a Xµ

[a1b]∇aW ν
ab.

254

3. DERIVATION FROM CONSERVATION EQUATIONS

Proof. ∑
a

∑
b

mamb Xa(Ta + Tb)∇Wab

=
∑

a

∑
b

mamb XaTa∇Wab +
∑

a

∑
b

mamb XaTb∇Wab

=
∑

a

∑
b

mamb XaTa∇Wab −
∑

a

∑
b

mamb XbTa∇Wab

=
∑

a

∑
b

mamb Ta(Xa −Xb)∇Wab

∑
a

∑
b

mamb Xa [(Ta + Tb) · ∇Wab]

=
∑

a

∑
b

mamb Xa [Ta · ∇Wab] +
∑

a

∑
b

mamb Xa [Tb · ∇Wab]

=
∑

a

∑
b

mamb Xa [Ta · ∇Wab]−
∑

a

∑
b

mamb Xb [Ta · ∇Wab]

=
∑

a

∑
b

mamb T ν
a (Xa −Xb)µ∇W ν

ab

3. Derivation from conservation equations

3.1. Conservation of dust mass
In SPH, the pressure operator is given in its antisymmetric form by the following
discretization:

−1
ρ
∇(χ) −−→

SPH

∑
b

mb

(
χ

ρ2

)
(a1b)
∇Wab. (C.26)

As mentioned in Chapter 1, Sec. 4.3, using the antisymmetric form of the pressure
ensures the conservation of momentum. We use a similar guess for the conservation
of dust mass to build the SPH operator. In order to check the symmetry property
of the operator, we can write the conservation of the mass of the dust

0 = dMd

dt
= d

dt

∑
a

maϵa =
∑

a

ma
dϵa

dt
. (C.27)

This shows that the operator must be antisymmetric, which is the case using the
antisymmetric canonical SPH derivative. This causes the conservation of dust mass
in SPH to be

255

APPENDIX C. FULL-MONOFLUID FORMALISM

Proposition ▶ SPH equation of the conservation of dust mass

dϵa

dt
=
∑

b

mb

(
ϵ(1− ϵ)∆v

ρ

)
(a1b)
∇Wab

3.2. Conservation of dust momentum
To build operators for the other equations, we start with the conservation of dust
momentum, which is conserved in the absence of drag. Firstly, the dust momentum
in SPH is

Pd =
∑

a

ma(ϵava + ϵa(1− ϵa)∆va). (C.28)

Its time derivative should be null in the absence of dust

0 = dPd

dt
=
∑

a

ma

(
ϵa

dva

dt
+ dϵa

dt
va + ϵa(1− ϵa)d∆va

dt
+ (1− 2ϵa)dϵa

dt
∆va

)

= +
∑

a

ma

(
ϵa

dva

dt
|fg + ϵa(1− ϵa)d∆va

dt
|fg

)
(C.29)

+
∑

a

ma

(
dϵa

dt
va + ϵa(1− ϵa)d∆va

dt
|−(∆v·∇)v

)
(C.30)

+
∑

a

ma

(
(1− 2ϵa)dϵa

dt
∆va + ϵa(1− ϵa)d∆va

dt
|1
)

(C.31)

+
∑

a

ma

(
ϵa

dva

dt
|− 1

ρ
∇(...) + ϵa(1− ϵa)d∆va

dt
|2
)

. (C.32)

We will now construct the SPH operators for the terms of the equation on barycentric
and differential velocity so that we can ensure conservation of dust momentum. To
do so, we will group terms together and identify potential operators based on the
conservation of dust momentum. In most of the computation, we rely heavily on
the SPH double-sum permutation identities. See SPH identities for the following
formulas shown in Sec. 2. From here, we will work out the cancellation lines per line,
assuming that each line of the momentum equation (Eq. C.29-C.32) must be equal
to zero.

Equation C.29:

(C.29) =
∑

a

ma

(
ϵa

dva

dt
|fg + ϵa(1− ϵa)d∆va

dt
|fg

)
=
∑

a

ma (ϵa(1− ϵa)fg + ϵa(1− ϵa)(−fg)) = 0.

256

3. DERIVATION FROM CONSERVATION EQUATIONS

This expression can be solved by setting:

dva

dt
|fg = (1− ϵa)fg,

d∆va

dt
|fg = −fg.

Equation C.30:

(C.30) =
∑

a

ma

(
dϵa

dt
va + ϵa(1− ϵa)d∆va

dt
|−(∆v·∇)v

)

=
∑

a

ma
dϵa

dt
va +

∑
a

maϵa(1− ϵa)d∆va

dt
|−(∆v·∇)v

=
∑

a

mava

∑
b

mb

(
ϵ(1− ϵ)∆v

ρ

)
(a1b)
· ∇Wab

+
∑

a

maϵa(1− ϵa)d∆va

dt
|−(∆v·∇)v

=
∑

a

ma
ϵa(1− ϵa)

ρa

∑
b

mbv[a1b] [∆va · ∇Wab]

+
∑

a

maϵa(1− ϵa)d∆va

dt
|−(∆v·∇)v

=
∑

a

maϵa(1− ϵa)
[

1
ρa

∑
b

mbv[a1b] [∆va · ∇Wab] + d∆va

dt
|−(∆v·∇)v

]
.

This equation yields a possible choice for this term to be

d∆va

dt
|−(∆v·∇)v = − 1

ρa

∑
b

mbv[a1b] [∆va · ∇Wab] .

257

APPENDIX C. FULL-MONOFLUID FORMALISM

Equation C.31:

(C.31) =
∑

a

ma

(
(1− 2ϵa)dϵa

dt
∆va + ϵa(1− ϵa)d∆va

dt
|1
)

=
∑

a

ma

(1− 2ϵa)
∑

b

mb

(
ϵ(1− ϵ)∆v

ρ

)
(a1b)
· ∇Wab

∆va

+
∑

a

ma

(
ϵa(1− ϵa)d∆va

dt
|1
)

=
∑

a

∑
b

mamb [(1− 2ϵ)∆vµ]a
(

ϵ(1− ϵ)∆vν

ρ

)
(a1b)
∇νWab

+
∑

a

ma

(
ϵa(1− ϵa)d∆vµ

a

dt
|1
)

=
∑

a

∑
b

mamb

(
ϵ(1− ϵ)∆vν

ρ

)
a

[(1− 2ϵ)∆v][a1b]∇
νWab

+
∑

a

ma

(
ϵa(1− ϵa)d∆vµ

a

dt
|1
)

=
∑

a

ma

(
ϵ(1− ϵ)∆vν

ρ

)
a

∑
b

mb [(1− 2ϵ)∆v][a1b]∇
νWab

+
∑

a

ma

(
ϵa(1− ϵa)d∆vµ

a

dt
|1
)

=
∑

a

maϵa(1− ϵa)
(

d∆vµ
a

dt
|1 + ∆vν

a

ρa

∑
b

mb [(1− 2ϵ)∆v][a1b]∇
νWab

)
.

Therefore, we can take

d∆vµ
a

dt
|1 = −∆vν

a

ρa

∑
b

mb [(1− 2ϵ)∆v][a1b]∇
νWab,

which can be rewritten as

d∆va

dt
|1 = − 1

ρa

∑
b

mb [(1− 2ϵ)∆v][a1b] [∆va · ∇Wab] .

Equation C.32: For the last term, in order to find an expression, we must use an
ansatz to close the system of equations. We use the following ansatz:

dva

dt
|− 1

ρ
∇(...) =

∑
b

mb

[
ϵ(1− ϵ)

ρ
∆v∆v

]
(a1b)
· ∇Wab. (C.33)

258

4. SUMMARY

By replacing this ansatz in C.32, we can compute the last terms.

(C.32) =
∑

a

ma

(
ϵa

dva

dt
|− 1

ρ
∇(...) + ϵa(1− ϵa)d∆va

dt
|2
)

= 0

=
∑

a

maϵa

∑
b

mb

[
ϵ(1− ϵ)

ρ
∆v∆v

]
(a1b)
· ∇Wab +

∑
a

maϵa(1− ϵa)d∆va

dt
|2

=
∑

a

∑
b

mambϵa

[
ϵ(1− ϵ)

ρ
∆v∆v

]
(a1b)
· ∇Wab +

∑
a

maϵa(1− ϵa)d∆va

dt
|2

=
∑

a

∑
b

mambϵ[a1b]

[
ϵ(1− ϵ)

ρ
∆v∆v

]
a

· ∇Wab +
∑

a

maϵa(1− ϵa)d∆va

dt
|2

=
∑

a

ma

[
ϵ(1− ϵ)

ρ
∆v∆v

]
a

∑
b

mbϵ[a1b] · ∇Wab +
∑

a

maϵa(1− ϵa)d∆va

dt
|2

=
∑

a

maϵa(1− ϵa)
[

∆va

ρa

∆va ·
∑

b

mbϵ[a1b]∇Wab

]

+
∑

a

maϵa(1− ϵa)d∆va

dt
|2,

where the last SPH operator is
d∆va

dt
|2 = −∆va

ρa

∆va ·
∑

b

mbϵ[a1b]∇Wab.

Summary The complete set of equations for the full-monofluid formalism in SPH
is:

Proposition ▶ SPH full-monofluid formalism

dϵa

dt
=
∑

b

mb

(
ϵ(1− ϵ)∆v

ρ

)
(a1b)
∇Wab,

dva

dt
= (1− ϵa)fg +

∑
b

mb

[
ϵ(1− ϵ)

ρ
∆v∆v

]
(a1b)
· ∇Wab,

d∆va

dt
= −fg −

1
ρa

∑
b

mbv[a1b] [∆va · ∇Wab]

− 1
ρa

∑
b

mb [(1− 2ϵ)∆v][a1b] [∆va · ∇Wab]−
∆va

ρa

∆va ·
∑

b

mbϵ[a1b]∇Wab.

4. Summary
We have derived in this appendix a full monofluid formalism without terminal diffu-
sion approximation from the dust momentum conservation equation. This ensures

259

APPENDIX C. FULL-MONOFLUID FORMALISM

that the current scheme conserves the momentum of the dust. We, however, have
not yet included the modified derivatives from Price (2012) (with Ωa terms in the
denominator of gradient operators). As for the artificial viscosity, the only required
change to implement it is to replace the occurrence of the gas density in the solvers
by ρ(1 − ϵ) (e.g. Laibe & Price 2014). We also attempted to generalize the current
scheme to multiple dust species. However, the current procedure relies on term iden-
tification to build the formulas such that they ensure conservation of momentum,
which is much more complex for large systems such as the multiple-size case. Lastly,
even if this scheme conserves dust momentum, it is not guaranteed to conserve every
Noether’s invariants of the problem. A possible solution to ensure their conservation
would be to derive the scheme from a variational principle. Additionally, construct-
ing the scheme from a variational principle could also allow the generalization to
multiple dust sizes and ensure the correctness of the model by not relying on ansatz.

Using such schemes allows for a finely controlled dynamic of the dust while
resolving large Stokes numbers. This can allow, typically, simulations of dusty col-
lapse where the current formalism with terminal velocity approximation is limiting
for larger grain sizes (Lebreuilly et al., 2019, 2020). For some applications, such
as turbulence dust, the particle is precise enough due to artificial particle clump-
ing for grains with St ∼ 1, but the monofluid formalism cannot resolve them either
(e.g. Commerçon et al. 2023). This shows the necessity of a full-monofluid formalism
without a dust terminal velocity approximation. Additionally, such a scheme can be
used to try to reproduce the Lorén-Aguilar & Bate (2015), as it is currently inter-
preted as being the result of the dust dynamic at large stokes that is not captured
by the monofluid formalism in terminal velocity approximation. In such a case, the
full monofluid formalism should reproduce the instability. If that is not the case,
this instability would be either due to numerical effects or related to the kinetic
effects that are not captured by pressure-less fluids. We plan in a close future to
implement such a scheme in Shamrock.

260

4. SUMMARY

References
Commerçon B., Lebreuilly U., Price D. J., Lovascio F., Laibe G., Hennebelle P., 2023,

Dynamics of dust grains in turbulent molecular clouds. Conditions for decoupling and
limits of different numerical implementations, A&A, 671, A128

Hutchison M., 2017, PhD thesis, -
Laibe G., Price D. J., 2014, Dusty gas with one fluid, MNRAS, 440, 2136-2146
Lebreuilly U., Commerçon B., Laibe G., 2019, Small dust grain dynamics on adaptive

mesh refinement grids. I. Methods, A&A, 626, A96
Lebreuilly U., Commerçon B., Laibe G., 2020, Protostellar collapse: the conditions to

form dust-rich protoplanetary disks, A&A, 641, A112
Lorén-Aguilar P., Bate M. R., 2015, Toroidal vortices and the conglomeration of dust into

rings in protoplanetary discs, MNRAS, 453, L78-L82
Price D. J., 2012, Smoothed particle hydrodynamics and magnetohydrodynamics, Journal

of Computational Physics, 231, 759-794

261

http://dx.doi.org/10.1051/0004-6361/202245141
https://ui.adsabs.harvard.edu/abs/2023A&A...671A.128C
http://arxiv.org/abs/2301.04946
http://dx.doi.org/10.1093/mnras/stu355
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440.2136L
http://arxiv.org/abs/1402.5248
http://dx.doi.org/10.1051/0004-6361/201834147
https://ui.adsabs.harvard.edu/abs/2019A&A...626A..96L
http://arxiv.org/abs/1905.01948
http://dx.doi.org/10.1051/0004-6361/202038174
https://ui.adsabs.harvard.edu/abs/2020A&A...641A.112L
http://arxiv.org/abs/2007.06050
http://dx.doi.org/10.1093/mnrasl/slv109
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453L..78L
http://arxiv.org/abs/1507.05499
http://dx.doi.org/10.1016/j.jcp.2010.12.011
http://dx.doi.org/10.1016/j.jcp.2010.12.011
https://ui.adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://arxiv.org/abs/1012.1885

APPENDIX C. FULL-MONOFLUID FORMALISM

262

Appendix D
Shearing Box

Contents
1 Shearing box . 263
2 SPH implementation . 265
3 Axisymmetric shearing box 268
4 Sheared coordinates . 269
5 Summary . 274
References . 276

Foreword
In this appendix, we present a standard implementation of the local Shearing Box in
the SPH solver of Shamrock. We show that such implementation results in noise.
At numerical scale, lattice reorganization is destroyed by the local shear, enforcing
an unusual level of discretization errors. In order to potentially solve this issue,
we present two alternative methods that we derived analytically, but have to be
tested in the code. The first method consists of integrating the shearing direction
in an axisymmetric shearing box. The other method consists of using a sheared
coordinate system, so that the steady dynamics of the shearing box correspond to
null velocities, potentially improving SPH precision.

1. Shearing box
We have shown in Chapter 1,Sec. 2.2 that a steady solution of a protoplanetary disc
is a differentially rotating flow at sub-Keplerian velocities. In order to simulate a
small-scale effect, Goldreich & Lynden-Bell (1965) derived based on the work of Hill
(1878) a local box in which the differentially rotating flow results locally in a shear
flow (represented in Fig. D.1). From Hawley et al. (1995), the Euler equations in
the shearing box can be written in their primitive form as follows:

(∂t + v ·∇)ρ = −∇ · v, (D.1)

(∂t + v ·∇)v = −1
ρ

∇P − 2Ωek × v + 2ηxex − Ω2zez, (D.2)

(∂t + v ·∇)u = −P

ρ
∇ · v, (D.3)

263

APPENDIX D. SHEARING BOX

S
ur

uϕ

uz
O

O

r0

vK(r)

(a) Global.
L << r0

O

v(x)/B

ux

uy

uz

(b) Local

Figure D.1: Representation of the shearing box in a protoplanetary disc. (a) Position
of the shearing box in the global disc. (b) Local dynamics in the shearing box
resulting from local approximation. (Adapted from Laibe (2020))

where η ≡ qΩ2, and q ≡ −d ln Ω/d ln r parametrizes the shear associated to local
differential rotation. They correspond to the standard Euler equation with the
addition of an external force corresponding to the balance between inertial forces and
gravity in the local corotating frame rotating with the disc, as well as the Coriolis
force. Close to the midplane, the vertical component of the gravity is −Ω2zez.
When the vertical gravitational force is omitted, the shearing box is referred to as
unstratified. For sake of simplification, in the shearing box, a movement along the x
axis corresponds in the global disc to being on an eccentric orbit, which corresponds
in the shearing box to an oscillation on the orbit timescale called epicycles. Formally,
this effect takes the form of the force in the shearing box.

In order to simulate the shearing box, special care has to be taken for the bound-
ary conditions. Traditionally, the boundary conditions are taken to be so-called
shearing-periodic (e.g. Rein & Papaloizou 2010; Hawley & Balbus 1991; Youdin &
Johansen 2007). Shearing-periodic boundary conditions refer to a box where the
periodic images of the box are moving at the speed of the shear flow relative to the
simulation domain. Formally, for a field Φ(r, t) with periodic boundary conditions,
we have the following statement:

Φ(r, t) = Φ
(
r + i(Lxex + tvsey) + jLyey + kLzez, t

)
, (i, j, k) ∈ Z3. (D.4)

This condition is represented graphically in Fig. D.2. Corresponding to the following
transformation for the positions in a mirrored domain of index (i, j, k)

r 7→ r + i(Lxex + tvsey) + jLyey + kLzez,

264

2. SPH IMPLEMENTATION

Figure D.2: Shearing-periodic boundary conditions. The main box corresponds to
the simulation domain, and the auxiliary box corresponds to the shearing-periodic
images of the domain across the boundary condition. (Adapted from Rein & Pa-
paloizou (2010))

thus, the shear speed of the boundary is

vs = qΩLx.

Additionally, for the velocity field, the transformation differs as the boundary is
time-dependent. Instead, the velocity is transformed as follows across the shearing
periodic boundary:

v(r, t) = v
(
r + i(Lxex + tvsey) + jLyey + kLzez, t

)
+ ivsey, (i, j, k) ∈ Z3. (D.5)

2. SPH implementation
As presented in Chapter 4, Sec. 3.6.2 in Shamrock, a graph of ghost zones is used
to compute and exchange the ghost zones. With the implementation of ghost zones
in Shamrock based on an interaction criterion, only two modifications are needed
to convert the periodic boundary into a shearing periodic boundary First, the in-
teraction criterion is altered such that the domain mirroring is performed according
to the shearing periodic boundary conditions instead of the standard periodic ones
(as represented on Fig. D.2). Second, when mirrored across the boundary, the cor-
responding offset in position and velocity is applied to the ghost zone as specified.

265

APPENDIX D. SHEARING BOX

x

y

-0.5 0 0.5

-0.5

0

0.5
t=0

(a) Setup of the simulation, t = 0.

x

y

-0.5 0 0.5

-0.5

0

0.5
t=1

(b) t = 1.

x

y

-0.5 0 0.5

-0.5

0

0.5
t=10

(c) t = 10.

Figure D.3: Result of shearing box simulation in Shamrock with the SPH solver
using a cubic spline SPH kernel at different values of time, in code units. On plots
from a, b, and c, the positions of particles are shown. The corresponding velocity
profile is shown in Fig. D.4.

As a basic test of the shearing box, we present here the result of a steady-state
simulation in the shearing box. The particles are setup in three dimensions on a
hexagonal compact lattice to achieve a constant density in the box. Velocities are set
on a linear profile matching the shear velocity of the boundary conditions on both
sides (see Fig. D.4). We observe that particles are stable up to 3 shear time, after
which the crystal lattice destabilizes, leading to random local particle distribution
and therefore noise in the simulated fields. This effect is due to the particle being
forced out of a stable lattice arrangement by the shear. Initially, the particles are on
a hexagonal compact lattice, which is a stable arrangement of particles. However,
after roughly one shear time, the lattice is sheared into a nearly cubic one, which is
known in SPH to be unstable and transitioning to a random distribution in a short
time (e.g. Price 2012).

266

2. SPH IMPLEMENTATION

x

v y

-0.5 0 0.5

-0.5

0

0.5

t=0

(a) Setup of the simulation, t = 0.

x

v y

-0.5 0 0.5

-0.5

0

0.5

t=1

(b) t = 1.

x

v y

-0.5 0 0.5
-1

-0.5

0

0.5

1

t=3

(c) t = 10.

x

v y

-0.5 0 0.5

-0.5

0

0.5

t=4

(d) t = 10.

x

v y

-0.5 0 0.5

-0.5

0

0.5

t=10

(e) t = 10.

Figure D.4: Result of shearing box simulation in Shamrock with the SPH solver
using a cubic spline SPH kernel at different values of time, in code units. On plots
a, b, c, d, and e, the velocity is shown in code units.

267

APPENDIX D. SHEARING BOX

Aside from this result, we have not completed additional physical tests of the
implementation yet. We do, however, plan to test the Kida vortex (Kida, 1981),
an eccentric vortex solution that should remain steady if the scheme is sufficiently
precise. If not, a precession of the vortex should be observed.

3. Axisymmetric shearing box
We present in this section another procedure that we have derived that could be
suited for SPH simulation of an axisymmetric shearing box. The goal is to remove
the shearing motion of the particle, as this leads to noise in SPH. To do so, we
transform the equations of the shearing box as per Stone & Gardiner (2010), and
then, using the axisymmetric approximation, we integrate the shearing direction
away. The shearing box force can be written as being

fSB = 2Ω2qxex − 2Ωez × v− Ω2zez

= 2Ω2qxex − 2Ω (−vyex + vxey)− Ω2zez

= 2Ω2qxex + 2Ωvyex − 2Ωvxey − Ω2zez

= 2Ω (qΩx + vy) ex − 2Ωvxey − Ω2zez. (D.6)

From this form we see that the shearing box admit a simple steady-state solution:

vK = −qΩxey.

We may want to subtract such a steady background state from the actual equations
of the shearing box. To start off, we have to compute the convective derivative.
Defining

ṽx = vx, (D.7)
ṽy = vy + qΩx. (D.8)

The convective derivative can be transformed as such

∂v
∂t

+ v ·∇v = ∂ṽ
∂t

+ ṽ ·∇v̄ + v̄ ·∇ṽ + ṽ ·∇ṽ (D.9)

= ∂ṽ
∂t

+ ṽ ·∇(−qΩxey) + (−qΩxey) ·∇ṽ + ṽ ·∇ṽ (D.10)

= ∂ṽ
∂t
− qΩṽxey − qΩx∂yṽ + ṽ ·∇ṽ. (D.11)

Using this transformation, we get the Euler momentum conservation equation for
the relative velocity

∂ṽ
∂t
− qΩx∂yṽ + ṽ ·∇ṽ = −1

ρ
∇P + 2Ωṽyex + (q − 2)Ωṽxey − Ω2zez, (D.12)

268

4. SHEARED COORDINATES

If we have a barotropic equation of state (P = f(ρ)), the internal energy equation
is decoupled from the Euler equation as the pressure does not depend on it. If the
system is assumed to be axisymmetric, only the momentum equation is changed in
a shearing box based on the relative velocities. Therefore, we can try to rewrite it
in the case of axisymmetry (∂y = 0). We use the Euler equation in the following
form:

Dtv− qΩx∂yv = −1
ρ

∇P + 2Ωvyex + (q − 2)Ωvxey − Ω2zez, (D.13)

where Dt = ∂t+v·∇ is the convective derivative, and we denote the relative velocity
ṽ by simply v here. In the ey axis, the equation is using the axisymmetry (∂y = 0).

Dtvy = (q − 2)Ωvx. (D.14)

Integrating over time, we obtain the following solution:

vy = (q − 2)Ωξx, (D.15)

where ξx =
∫

dt vx is the Lagrangian displacement. Replacing the expression of the
azimuthal velocity in the Euler momentum conservation equation and accounting
for the axisymmetry yield

∂ṽ
∂t

+ ṽ ·∇ṽ = −1
ρ

∇P + 2(q − 2)Ω2ξxex − Ω2zez. (D.16)

Additionally, from this equation, we observe that for a constant velocity in space,
one solution is given on the ex axis by

d2ξx

dt2 = 2(q − 2)Ω2ξxex, (D.17)

which is a harmonic oscillator of frequency 2(q − 2)Ω2, which is the epicyclic fre-
quency. Indeed, this equation describes the oscillatory epicyclic motion mentioned
previously.

In SPH, the particles are Lagrangian. Therefore, ξx simply corresponds to the
difference between their starting position at t = 0 and their position at time t.
This could result in precise integration of the epicyclic motion in such an approach.
Additionally, the shear being along the axis ey is therefore removed in this approach
as the y direction has been integrated away. Lastly, for mechanisms such as the SI
or the MRI, the axisymmetric approximation is taken, allowing potential simulation
of such processes with this method.

4. Sheared coordinates
We want to remove the shearing motion of particles. The previous method does so
by integrating the motion along the azimuthal axis. However, this only allows 2.5D

269

APPENDIX D. SHEARING BOX

simulations. In order to perform three-dimensional simulations without having the
shearing motion in the particles, we need to transform the equations in such a way
that the steady solution of the shearing box is of null velocity. This can be done by
subtracting the background state, as in Eq. D.12. However, this approach results in
a modified equation for the conservation of mass. SPH, by design, cannot simulate
an Euler equation where the equation of conservation of mass is modified. In the
following section, we present how the steady-state shear flow can be moved to the
coordinate system such that the steady-state shear flow is of null velocity in the
new coordinates. This idea was motivated by trying to extend the derivation of the
FARGO fast advection algorithm to SPH, which also modifies the conservation of
mass. This work was performed in collaboration with Q. Vigneron (postdoctoral
position at Nicolaus Copernicus University).

Note that in this section we use notations of differential geometry with Einstein’s
summation convention, where repeated indices in superscripts and subscripts denote
implicit summation over all values. Superscripts denote contravariant components,
and subscripts denote covariant ones.

4.1. General coordinate transform
We want to subtract a background velocity profile v̄i. We first define a shift vector
Si corresponding to the advection due to the background velocity field

S(xµ, t)i =
∫ t

0
v̄i(xµ, t′)dt′. (D.18)

We can then subtract this shift vector from the coordinates to cancel the background
shear. We define the following change of coordinates:xi = x̃i + S(xµ, t)i ⇒ vi = ṽi + v̄i

t = t̃
, (D.19)

where ṽi is the velocity relative to the background shear flow. Under such transform
the derivative becomes:

∂t = ∂̃t − v̄i∂̃i

∂i = ∂x̃j

∂xi
∂̃j = ∂̃i −

∂Sj

∂xi
∂̃j = ∂̃i − σj

i ∂̃j

. (D.20)

Even if the time is unchanged by the transformation, the time derivatives are modi-
fied as the transformation is time-dependent (see Fig. D.5). In differential geometry,
vectors are generally defined in the so-called tangent space as V = V µ∂µ. Such
a definition is independent of any coordinate change, but the coordinates V µ are
subject to changes. In our case, the vectors will have to be changed as such

V t = ∂t

∂x̃i
Ṽ i = Ṽ t

V i = ∂xi

∂x̃j
Ṽ j = Ṽ i + ∂Si

∂x̃j
Ṽ j = Ṽ i + σ̃i

jṼ
j

. (D.21)

270

4. SHEARED COORDINATES

Figure D.5: Illustration of the definition of the time derivative in the modified
coordinates.

4.2. The continuity equation
The previously defined coordinate transform can be applied to the continuity equa-
tion. The continuity equation in general coordinates can be written as follows:

[∂t + vµ∂µ] ρ = −∇µvµ. (D.22)

By decomposing the velocity in the background and residual components[
∂t + v̄µ∂µ + v′µ∂µ

]
ρ = −∂µv̄µ − ∂µv′µ. (D.23)

We then apply the transform described by eq.D.20, D.21[
∂̃t + ṽµ∂̃µ

]
ρ̃ = −∂̃µv̄µ − ∂̃µṽµ. (D.24)

The resulting continuity equation here differs by a term −∂̃µv̄µ. By stating that the
background velocity must be divergence-free (which is the case in the shearing box),
we get [

∂̃t + ṽµ∂̃µ

]
ρ̃ = −∂̃µṽµ, (D.25)

which is the continuity equation, but in the new coordinate system. To summarize,
if we want to absorb a shearing flow as background in a transformation, by changing
the velocity in a coordinate change, and keep the same continuity equation, we need
the background velocity to be divergence-free.

4.3. Momentum equation
For the momentum equation, instead, we have to deal with the term v · ∇v, which
requires special care. In order to proceed, we use the Lie derivative, which for a
scalar f derived relative to a vector A is

(LAf) = Aµ∇µf = Aµ∂µf, (D.26)

271

APPENDIX D. SHEARING BOX

and the lie derivative of a vector v relative to the same vector A is
(LAv)µ = Aν∇νvµ − vν∇νAµ. (D.27)

This operator is antisymmetric, therefor Lvv = 0. We note that here the symbol ∇
denotes covariant derivatives. The self-advection of the velocity can be transformed
as follows:

f = (∂t + v · ∇) v (D.28)
= (L∂t + v · ∇) v (D.29)
= (L∂t+v + v · ∇) v (D.30)
=
(
L∂̃t+ṽ + v · ∇

)
v (D.31)

=
(
L∂̃t

+ Lṽ + v · ∇
)

v (D.32)

=
(
∂̃t + Lṽ + v · ∇

)
v (D.33)

= ∂̃tv + Lṽv + v · ∇v (D.34)
= ∂̃tv + ṽ · ∇v− v · ∇ṽ + v · ∇v (D.35)
= ∂̃tv̄ + ∂̃tṽ + ṽ · ∇v̄− v̄ · ∇ṽ + v · ∇v (D.36)
= ∂̃tv̄ + ∂̃tṽ + ṽ · ∇v̄− v̄ · ∇ṽ + v̄ · ∇v̄ + v̄ · ∇ṽ + ṽ · ∇v̄ + ṽ · ∇ṽ (D.37)
= ∂̃tv̄ + ∂̃tṽ + 2ṽ · ∇v̄ + v̄ · ∇v̄ + ṽ · ∇ṽ (D.38)
=
(
∂̃t + ṽ · ∇

)
ṽ +

(
∂̃t + v̄ · ∇

)
v̄ + 2ṽ · ∇v̄. (D.39)

Hence, the self-advection can be rewritten as such, where f contains the pressure
and external forces,(

∂̃t + ṽ · ∇
)

ṽ = f −
(
∂̃t + v̄ · ∇

)
v̄− 2ṽ · ∇v̄. (D.40)

4.4. Shearing metric tensor
As used in previous sections, the divergence ∂µvµ is invariant by coordinate change.
For other differential operators, such as the gradient and curl, we need to compute
the metric tensor. To define the metric, we can rely on the Cartesian distance and
then apply the coordinate transform. In such a case, the metric ηµν is defined by
the following relation:

ds2 = dxµdxνδµν = dx̃µdx̃νηµν . (D.41)
The following computation ensues:

ds2 = dxµdxνδµν (D.42)
= dx̃µdx̃νδµν + σ̃µ

j dx̃jdx̃νδµν + dxµσ̃ν
kdxkδµν + σ̃µ

j dxjσ̃ν
kdxkδµν (D.43)

= dx̃µdx̃νδµν + σ̃j
µdx̃µdx̃νδjν + dxµσ̃k

νdxνδµk + σ̃j
µdxµσ̃k

νdxνδjk (D.44)
=
[
δµν + (σ̃i

µδiν + σ̃i
νδµi) + σ̃i

µσ̃j
νδij

]
︸ ︷︷ ︸

ηµν

dxµdxν . (D.45)

272

4. SHEARED COORDINATES

Therefore, the shearing metric is

ηµν = δµν + (σ̃i
µδiν + σ̃i

νδµi) + σ̃i
µσ̃j

νδij (D.46)

The contravariant metric tensor ηµν is defined as being the matrix inverse of the
matrix defined by ηµν .

4.5. Cartesian shear metric
In a Cartesian shear, the shift vector is S = eyαxt, where α is the constant shear
gradient α = qΩ. The shift vector as a function of the sheared coordinate system is
unchanged from its definition, since the direction is constant along the direction of
the shear flow. Therefore,

Si(x̃µ, t) = δiyαx̃xt, (D.47)
Si(xµ, t) = δiyαxxt, (D.48)

which results in the following Jacobian matrix for the coordinate transformation:

σ̃i
j =

 0 0 0
αt 0 0
0 0 0

 , (D.49)

σi
j =

 0 0 0
αt 0 0
0 0 0

 . (D.50)

When replaced in the shearing metric tensor Eq. D.46, it yields the Cartesian shear
metric tensor:

ηµν =

 1 + (αt)2 αt 0
αt 1 0
0 0 1

 . (D.51)

This metric is explicitly dependent on time, which expresses the shearing motion of
the coordinate system. Additionally, an argument can be made that the shearing
box being a first-order approximation, the term (αt)2 can be neglected because it is
of second-order (E.Lynch, private communication). Lastly, the inverse of the metric
tensor is

ηµν =

 1 −αt 0
−αt (αt)2 + 1 0

0 0 1

 . (D.52)

273

APPENDIX D. SHEARING BOX

4.6. Differential operators
As used in previous sections, the divergence ∂µvµ is invariant by coordinate change.
For other differential operators, such as the gradient and curl, we need to use the
metric tensor. To define the metric, we can rely on the Cartesian distance and
then apply the coordinate transform. Using the metric tensor, we can introduce the
generalized gradient

(∇A)i = ηij∂jA.

4.7. Euler’s equation in the sheared coordinate system
In summary, the Euler equations in the sheared coordinates are:(

∂̃t + ṽ · ∇
)
ρ = −∇ · ṽ,(

∂̃t + ṽ · ∇
)
v = −1

ρ
∇P −

(
∂̃t + v̄ · ∇

)
v̄− 2ṽ · ∇v̄,

with the metric

ηµν =

 1 + (αt)2 αt 0
αt 1 0
0 0 1

 .

As the conservation of mass equation is unchanged, this allows the use of an SPH
implementation in a general metric to simulate such flow without modifying density
summation. SPH was indeed generalized to non-Cartesian metric tensors (see Liptai
& Price (2019)). In such a framework, the particles in the test presented in Sec. 2
would be static, implying that the steady solution of the shearing box would be stable
and without noise as they would not move from their stable lattice arrangement.

Two drawbacks could come from such an approach. First, when using SPH with
non-Cartesian metric tensors, the Cullen & Dehnen (2010) switch is not usable as no
extension of it was performed to generalized coordinates. Second, the metric being
time-dependent means that the off-diagonal terms will increase over the course of
the simulation to the point of reducing the method’s precision over a large period
of time. This last issue can be overcome by remapping the coordinates every fixed
number of shearing times to avoid the time explicit terms becoming too large.

5. Summary
We have presented the shearing box formalism as well as a first implementation of it
in the code Shamrock. We have shown that the shearing motion of particles results
in an unstable arrangement that transitions to a random particle arrangement and
noise. To solve such an issue, a first approach is to consider an axisymmetric shearing
box, where the shear motion is removed by integrating the shearing direction. Using

274

5. SUMMARY

such an approach, we obtain a system of equations that can be simulated using
two-dimensional SPH. Lastly, for the 3-dimensional shearing box, we have shown
that it is possible to use sheared coordinate systems to keep the conservation of
mass equation unchanged while removing the shearing motion in that coordinate
system. This yields modified equations of moitions in a modified metric, which
can be simulated by GRSPH methods (e.g. Liptai & Price 2019; Rosswog 2010a,b).
We plan on implementing both of those approaches in Shamrock, as the first one
requires minimal change to the code, and the second would also provide GRSPH
simulations as well as the shearing box with sheared coordinates.

275

APPENDIX D. SHEARING BOX

References
Cullen L., Dehnen W., 2010, Inviscid smoothed particle hydrodynamics, MNRAS, 408,

669-683
Goldreich P., Lynden-Bell D., 1965, II. Spiral arms as sheared gravitational instabilities,

MNRAS, 130, 125
Hawley J. F., Balbus S. A., 1991, A Powerful Local Shear Instability in Weakly Magnetized

Disks. II. Nonlinear Evolution, ApJ, 376, 223
Hawley J. F., Gammie C. F., Balbus S. A., 1995, Local Three-dimensional Magnetohy-

drodynamic Simulations of Accretion Disks, ApJ, 440, 742
Hill G. W., 1878, Researches in the Lunar Theory, American Journal of Mathematics,

129
Kida S., 1981, Motion of an elliptic vortex in a uniform shear flow, Journal of the Physical

Society of Japan, 50, 3517-3520
Laibe G., 2020, habilitation a diriger des recherches, -
Liptai D., Price D. J., 2019, General relativistic smoothed particle hydrodynamics, MN-

RAS, 485, 819-842
Price D. J., 2012, Smoothed particle hydrodynamics and magnetohydrodynamics, Journal

of Computational Physics, 231, 759-794
Rein H., Papaloizou J. C. B., 2010, Stochastic orbital migration of small bodies in Saturn’s

rings, A&A, 524, A22
Rosswog S., 2010a, Relativistic smooth particle hydrodynamics on a given background

spacetime, Classical and Quantum Gravity, 27, 114108
Rosswog S., 2010b, Conservative, special-relativistic smoothed particle hydrodynamics,

Journal of Computational Physics, 229, 8591-8612
Stone J. M., Gardiner T. A., 2010, Implementation of the Shearing Box Approximation

in Athena, ApJS, 189, 142-155
Youdin A., Johansen A., 2007, Protoplanetary Disk Turbulence Driven by the Streaming

Instability: Linear Evolution and Numerical Methods, ApJ, 662, 613-626

276

http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.408..669C
http://arxiv.org/abs/1006.1524
http://dx.doi.org/10.1093/mnras/130.2.125
https://ui.adsabs.harvard.edu/abs/1965MNRAS.130..125G
http://dx.doi.org/10.1086/170271
https://ui.adsabs.harvard.edu/abs/1991ApJ...376..223H
http://dx.doi.org/10.1086/175311
https://ui.adsabs.harvard.edu/abs/1995ApJ...440..742H
https://api.semanticscholar.org/CorpusID:124941001
http://dx.doi.org/10.1143/JPSJ.50.3517
http://dx.doi.org/10.1143/JPSJ.50.3517
https://ui.adsabs.harvard.edu/abs/1981JPSJ...50.3517K
http://dx.doi.org/10.1093/mnras/stz111
http://dx.doi.org/10.1093/mnras/stz111
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485..819L
http://arxiv.org/abs/1901.08064
http://dx.doi.org/10.1016/j.jcp.2010.12.011
http://dx.doi.org/10.1016/j.jcp.2010.12.011
https://ui.adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://arxiv.org/abs/1012.1885
http://dx.doi.org/10.1051/0004-6361/201015177
https://ui.adsabs.harvard.edu/abs/2010A&A...524A..22R
http://arxiv.org/abs/1006.1643
http://dx.doi.org/10.1088/0264-9381/27/11/114108
https://ui.adsabs.harvard.edu/abs/2010CQGra..27k4108R
http://dx.doi.org/10.1016/j.jcp.2010.08.002
https://ui.adsabs.harvard.edu/abs/2010JCoPh.229.8591R
http://arxiv.org/abs/0907.4890
http://dx.doi.org/10.1088/0067-0049/189/1/142
https://ui.adsabs.harvard.edu/abs/2010ApJS..189..142S
http://arxiv.org/abs/1006.0139
http://dx.doi.org/10.1086/516729
https://ui.adsabs.harvard.edu/abs/2007ApJ...662..613Y
http://arxiv.org/abs/astro-ph/0702625

Appendix E
Fast Multipole Method

Contents
1 Fast Multipole Method . 277
2 Moment translation & recombination 281
3 Implementation . 285
4 Results . 289
5 Extension to multiple GPUs 291
6 Summary . 291
References . 292

Foreword
In this appendix, we detail the prototype of the FMM (Fast Multipole Method)
implementation to resolve self-gravity in Shamrock. Currently, the FMM is im-
plemented in an N-body solver using a leapfrog integrator as a prototype for the
SPH implementation of self-gravity. We first present the principle of the FMM,
followed by its implementation in Shamrock and corresponding tests. In the end,
the current implementation seems to offer significant performance, and its extension
to multiple GPUs needs to be finalized.

1. Fast Multipole Method

1.1. Solved equations
In a self-gravitating system, the gravitational force fSG is related to the local density
of the medium via the Poisson equation

fSG = −∇Φ, (E.1)

where the gravitational potential Φ is given as the solution of the Poisson equation

△Φ = 4πGρ, (E.2)

where G is the gravitational constant and ρ the density of the fluid. Assuming free
boundary conditions, the green function G of the linear equation Eq. E.2, which is

277

APPENDIX E. FAST MULTIPOLE METHOD

a solution of the Poisson equation for a Dirac function as density is

G(x) = −Gm

||x||
. (E.3)

The gravitational potential can subsequently be expressed as the following convolu-
tion

ϕ(x) =
∫∫∫

V
ρ(xj)G(x− xj).

A difficulty of the Poisson equation in numerical code is that the equation is elliptic,
implying instantaneous long-range interactions between all fluid elements.

1.2. Basic multipole expansion

Figure E.1: Illustration of the variables in a basic multipole expansion. We have
two particles at positions xi and xj, particle j is in a box and its relative position
to the box center is bj. The relative position of the particle i to the box is r.

In tree-based N-body codes (as in Shamrock), the particles are organized to-
gether in the cells of a tree. In order to avoid computing the gravitational force
for any pair of particles (complexity of order O(N2)), one can instead approxi-
mate the solution by considering the gravitational interaction with a group of par-
ticles that corresponds to a tree cell. This corresponds to the situation shown in
Fig. E.1. Assuming that the box size is small compared to the distance to the par-
ticle (e.g. ||r|| ≫ ||bj||), the Green function can be expanded into multipoles, to the
order p in powers of ||bj||/||r||:

G(xi − xj) = G(r + bj)

≃
p∑

n=0

1
n!∇

(n)
r G(r) · b(n)

j .

Using that expansion in the solution of the Poisson equation Eq. E.4, the integral

278

1. FAST MULTIPOLE METHOD

can be moved inside the sum as such:

ϕ(xi) =
∫∫∫

V
ρ(xj)G(xi − xj) d3xj

≃
∫∫∫

V
ρ(xj)

p∑
n=0

1
n!∇

(n)
r G(r) · b(n)

j d3xj

=
p∑

n=0

1
n! ∇

(n)
r G(r)︸ ︷︷ ︸

Dn

·
(∫∫∫

V
ρ(xj)b(n)

j d3xj

)
︸ ︷︷ ︸

QB
n

,

where Dn are the gradients of the Green function and QB
n are the moments of the

mass distribution. Hence, the force can then be written as follows:

fg(xi) = ∇ϕ(xi) =
p∑

n=0

1
n!Dn+1 ·QB

n .

For point-mass particles, the moments reduce to

QB
n =

∑
j

mjb(n)
j .

It is important to note here that the gravitational field of an SPH particle is not the
gravitational field of a point mass particle, since gravity is regularized close to the
particle to avoid numerical divergences associated to the singularity at the origin
on the gravitational potential. This is traditionally accounted for by modifying the
Green function using so-called softened gravity, where the Green function is taken
to be the solution of the Poisson equation where the source term is an SPH kernel
instead of the Dirac function instead of modifying the multipole (e.g. Springel et al.
2021; Price et al. 2018).

In the basic multipole expansion method, rather than evaluating the Green func-
tion for each pair of particles, we compute it once for each pair of cell-particles,
assuming the multipole moments are known.

1.3. Fast Multiple Method
The Fast Multiple Method (FMM) is an alternative method to reduce the number
of evaluations of the Green function to once per pair of cells instead of once per
pair of particle-cells. Consider two cells as represented on Fig. E.2, we now have
two cells. The distance between the two particles i and j is xi − xj, which can be
rewritten as r + (bj − ai) here. Under the assumption ||(bj − ai)|| ≪ ||r||, one can
perform an expansion with respect to ai and bj instead of only bj as done for the
basic multipole expansion.

Firstly, for two vectors ai and bj and T a symmetric tensor of order larger than
n, we have the following equality:

T · (bj + ai)(n) = T ·
n∑

k=0

(
n

k

)
b(n−k)

j a(k)
i ,

279

APPENDIX E. FAST MULTIPOLE METHOD

Figure E.2: Illustration of the variables involved in a fast multipole method ap-
proach.

where the superscript (n) denotes the operation performing n times the tensorial
product of a vector with itself.

Using that expression, the Green function can be developed according to

G(xi − xj) = G(r + bj − ai)

≃
p∑

n=0

1
n!∇

(n)
r G(r) · (bj − ai)(n)

=
p∑

n=0

1
n!∇

(n)
r G(r) ·

n∑
k=0

(
n

k

)
b(n−k)

j (−ai)(k)

=
p∑

k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!∇

(n+k)
r G(r) · b(n)

j

=
p∑

k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k · b(n)

j .

From Eq. E.4, and applying the same procedure as above, one obtains

ϕ(xi) =
∫∫∫

V
ρ(xj)G(xi − xj) d3xj

≃
∫∫∫

V
ρ(xj)

p∑
k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k · b(n)

j d3xj

=
p∑

k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k ·

∫∫∫
V

ρ(xj)b(n)
j d3xj

=
p∑

k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k ·QB

n︸ ︷︷ ︸
symetrical tensor

=
p∑

k=0
a(k)

i ·
(−1)k

k!

p−k∑
n=0

1
n!Dn+k ·QB

n︸ ︷︷ ︸
Mk

,

280

2. MOMENT TRANSLATION & RECOMBINATION

and the corresponding gravitational force is:

fg(xi) =
∫∫∫

V
ρ(xj)∇G(xi − xj) d3xj (E.4)

≃
∫∫∫

V
ρ(xj)

p∑
k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k+1 · b(n)

j d3xj (E.5)

=
p∑

k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k+1 ·

∫∫∫
V

ρ(xj)b(n)
j d3xj (E.6)

=
p∑

k=0

(−1)k

k! a(k)
i ·

p−k∑
n=0

1
n!Dn+k+1 ·QB

n︸ ︷︷ ︸
symetrical tensor

(E.7)

=
p∑

k=0
a(k)

i ·
(−1)k

k!

p−k∑
n=0

1
n!Dn+k+1 ·QB

n︸ ︷︷ ︸
dMk

. (E.8)

Eq. E.8 implies that the Green function is required to be evaluated only once per pair
of cells. Lastly, the expansion relies on the development in order of ||(bj−ai)||/||r||.
This implies that, provided an upper bound of ||(bj−ai)||, it is possible to quantify
the error of the FMM compared to the analytical solution. Springel et al. (2021)
gives the following angle to use as a criterion:

θ = La + Lb

r
, (E.9)

where La and Lb are the side lengths of the boxes a and b, respectively, and r is
the distance between the boxes. Using a critical angle θc, the FMM expansion is
allowed only if θ < θc; otherwise, direct pairwise summation is used. This results in
an upper bound in the error of the expansion (see Sec. 4).

2. Moment translation & recombination
We now have detailed the procedure behind the FMM. However, as in N-body codes
based on tree algorithms, for large cells, one may want to combine moments of
chlidren cells instead of computing them directly from the contained particles (see
Fig. E.3). Springel et al. (2021) state using such a technique, but the details of
the procedure are not mentioned. In Shamrock we have derived an analytical
procedure to combine moments, who is not, to our knowledge explicitely described
in the literature.

First, we define the following vectors: for a particle at position x, its relative
position to the center of the child cell is b, its relative position to the center of the
parent cell is b′, and lastly, the offset from the center of the child cell to the center
of the parent cell is g. Here we have b′ = b + g.

281

APPENDIX E. FAST MULTIPOLE METHOD

Figure E.3: Illustration of the principle of moment recombination.

The moment of the parent cell B′ is

QB′

n =
∫∫∫

V
ρ(xj)b′(n) d3x

=
∫∫∫

V
ρ(xj) (g + b)(n) d3x

=
∫∫∫

V
ρ(xj) (g + b)⊗ · · · ⊗ (g + b)︸ ︷︷ ︸

n times

d3xj.

We now aim to rewrite each order of the moments as a function of the moments
QB

n of the child cell B by factorizing in powers of g. The moment of the parent will
simply be the sum of the contributions of the moments of the children translated to
the parent cell center. We now provide the moment-translation formulas up to the
fifth order.

Order 0

QB′

0 =
∫∫∫

V
ρ(xj) d3x = QB

0 .

Order 1

QB′

1 =
∫∫∫

V
ρ(xj)b′ d3x

=
∫∫∫

V
ρ(xj) (g + b) d3x

= g
∫∫∫

V
ρ(xj) d3x +

∫∫∫
V

ρ(xj)b d3x

= g⊗QB
0 + QB

1 .

282

2. MOMENT TRANSLATION & RECOMBINATION

Order 2

QB′

2 =
∫∫∫

V
ρ(xj)b′(2) d3x

=
∫∫∫

V
ρ(xj) (g + b)⊗ (g + b) d3xj

=
∫∫∫

V
ρ(xj)

gg + gb︸ ︷︷ ︸
gQB′

1

+ bg︸︷︷︸
QB

1 g

+ bb︸︷︷︸
QB

2

 d3xj

= g⊗QB′

1 + QB
1 ⊗ g + QB

2 .

Order 3

QB′

3 =
∫∫∫

V
ρ(xj) (g + b)⊗ (g + b)⊗ (g + b) d3x

=
∫∫∫

V
ρ(xj)

ggg + ggb + gbg + gbb︸ ︷︷ ︸
gQB′

2

+bgg + bgb + bbg + bbb

 d3xj

= g⊗QB′

2 +
∫∫∫

V
ρ(xj) (bgg + bgb + bbg + bbb) d3xj.

Using tensorial notations, we can further simplify the expression:

QB′

3 µνδ = gµQB′

2 νδ +
∫∫∫

V
ρ(xj)

bµgνgδ + bµgνbδ + bµbνgδ︸ ︷︷ ︸
QB

2 µν
gδ

+ bµbνbδ︸ ︷︷ ︸
QB

3 µνδ

 d3xj

= gµQB′

2 νδ +
∫∫∫

V
ρ(xj) (bµgδgν + bµbδgν) d3xj + QB

2 µνgδ + QB
3 µνδ

= gµQB′

2 νδ + gν

∫∫∫
V

ρ(xj) (bµgδ + bµbδ) d3xj + QB
2 µνgδ + QB

3 µνδ

= gµQB′

2 νδ + gν

(
QB′

2 µδ − gµQB′

1 δ

)
+ QB

2 µνgδ + QB
3 µνδ.

Order 4

QB′

4 =
∫∫∫

V
ρ(xj) (g + b)⊗ (g + b)⊗ (g + b)⊗ (g + b) d3x

=
∫∫∫

V
ρ(xj)

(
gggg + gggb + ggbg + ggbb + gbgg + gbgb + gbbg + gbbb︸ ︷︷ ︸

g⊗QB′
3

+

bggg + bggb + bgbg + bgbb + bbgg + bbgb + bbbg + bbbb
)

d3x

283

APPENDIX E. FAST MULTIPOLE METHOD

QB′

4 µνδϵ = gµQB′

3 νδϵ +
∫∫∫

V
ρ(xj) (bggg + bggb + bgbg + bgbb+

bbgg + bbgb + bbbg + bbbb︸ ︷︷ ︸
QB

4 µνδϵ

)µνδϵ d3x

=gµQB′

3 νδϵ +
∫∫∫

V
ρ(xj)

(bggg + bggb + bgbg + bgbb + bbgg + bbgb + bbbg)µνδϵ

d3x + QB
4 µνδϵ

=gµQB′

3 νδϵ +
∫∫∫

V
ρ(xj)

(gggb + ggbb + bggb + bgbb + gbgb + gbbb + bbgb)νδϵµ

d3x + QB
4 µνδϵ

=gµQB′

3 νδϵ +
∫∫∫

V
ρ(xj) (

gδ (ggb + gbb + bgb + bbb)νϵµ + (gbgb + gbbb + bbgb)νδϵµ

) d3x + QB
4 µνδϵ

=gµQB′

3 νδϵ +
∫∫∫

V
ρ(xj) (

gδ (ggb + gbb + bgb + bbb)νϵµ︸ ︷︷ ︸
(QB′

3 −g⊗QB′
2)

µϵν

+ (ggbb + gbbb + bgbb)νϵδµ

) d3x + QB
4 µνδϵ

=gµQB′

3 νδϵ + gδ

(
QB′

3 − g⊗QB′

2

)
µϵν

+
∫∫∫

V
ρ(xj) (

gϵgνbδbµ + gϵbνbδbµ︸ ︷︷ ︸
g(2)

ϵν QB
2 δµ

+gϵQB
3 νδµ

+ gνbδbϵbµ︸ ︷︷ ︸
gνQB

3 δϵµ

) d3x + QB
4 µνδϵ.

This computation yields the following result for the 4th order moment:

QB′

4 µνδϵ = gµQB′

3 νδϵ + gδ

(
QB′

3 µϵν − gµQB′

2 µϵν

)
+ g(2)

ϵν QB
2 δµ

+ gϵQ
B
3 νδµ + gνQB

3 δϵµ + QB
4 µνδϵ.

Order 5

QB′

5 µνδϵσ =gµQB′

4 νδϵσ +
∫∫∫

V

ρ(xj) (

bgggg + bgggb + bggbg + bggbb + bgbgg + bgbgb + bgbbg + bgbbb+
bbggg + bbggb + bbgbg + bbgbb + bbbgg + bbbgb + bbbbg + bbbbb)µνδϵσ d3x

284

3. IMPLEMENTATION

QB′

5 µνδϵσ =gµQB′

4 νδϵσ +
∫∫∫

V

ρ(xj)

(bgggg + bgggb + bggbg + bggbb + bgbgg + bgbgb + bgbbg + bgbbb)µνδϵσ +
(bbggg + bbggb + bbgbg + bbgbb + bbbgg + bbbgb + bbbbg + bbbbb)µνδϵσ d3x

QB′

5 µνδϵσ =gµQB′

4 νδϵσ +
∫∫∫

V

ρ(xj)

(gbggg + gbggb + gbgbg + gbgbb + gbbgg + gbbgb + gbbbg + gbbbb)νµδϵσ +
(bbggg + bbggb + bbgbg + bbgbb + bbbgg + bbbgb + bbbbg + bbbbb)µνδϵσ d3x

QB′

5 µνδϵσ =gµQB′

4 νδϵσ + gν

(
QB′

4 − g⊗QB′

3

)
µδϵσ

+
∫∫∫

V

ρ(xj)

(bbggg + bbggb + bbgbg + bbgbb + bbbgg + bbbgb + bbbbg + bbbbb)µνδϵσ d3x

QB′

5 µνδϵσ =gµQB′

4 νδϵσ + gν

(
QB′

4 − g⊗QB′

3

)
µδϵσ

+
∫∫∫

V

ρ(xj) bbggg︸ ︷︷ ︸
QB

2 µν
g3

δϵσ

+ bbggb︸ ︷︷ ︸
QB

3 µνσ
g2

δϵ

+ bbbgg︸ ︷︷ ︸
QB

3 µνδ
g2

ϵσ

+ bbbgb︸ ︷︷ ︸
QB

4 µνδσ
gϵ

+ bbgbg︸ ︷︷ ︸
QB

3 µνϵ
g2

δσ

+ bbgbb︸ ︷︷ ︸
QB

4 µνϵσ
gδ

+ bbbbg︸ ︷︷ ︸
QB

4 µνδϵ
gσ

+ bbbbb︸ ︷︷ ︸
QB

5 µνδϵσ

µνδϵσ

d3x.

Therefore, we have the following result for the fifth order moment translation:

QB′

5 µνδϵσ =gµQB′

4 νδϵσ + gν

(
QB′

4 − g⊗QB′

3

)
µδϵσ

+ QB
2 µνg3

δϵσ + QB
3 µνσg2

δϵ + QB
3 µνδg

2
ϵσ + QB

4 µνδσgϵ

+ QB
3 µνϵg

2
δσ + QB

4 µνϵσgδ + QB
4 µνδϵgσ + QB

5 µνδϵσ

All the translation formulas presented above were implemented and tested in
Shamrock. Those translation formulas are exact down to floating-point precision.
In the Shamrock test suite, we test for the difference between directly computing
the moment of a cell and computing for another cell, then translating the result to
the wanted cell. In relative errors, they are tested to be lower than 10−20.

3. Implementation
We now detail the implementation performed in Shamrock of the FMM method
to solve for self-gravity on a single GPU.

3.1. Symmetric tensors
In the FMM algorithm, we only manipulate symmetric tensors. To program the
corresponding formulas, we have implemented a class for symmetric tensors as well
as the associated contraction operators. During the implementation, we regularly

285

APPENDIX E. FAST MULTIPOLE METHOD

checked the generated assembly to ensure that the compiler was properly vectorizing
the tensorial operators. Additionally, we also provide a so-called tensor collection
class, which is a wrapper for a list of tensors of different ranks. We show here a
snippet from the implementation in Shamrock of the function computing the dMk

tensor defined Eq. E.8.

Exemple of the use of the symetric tensor class

template<class T>
inline SymTensorCollection<T,1,5> get_dM_mat(

SymTensorCollection<T,1,5> & D, SymTensorCollection<T,0,4> & Q
){

SymTensor3d_1<T> & TD1 = D.t1;
SymTensor3d_2<T> & TD2 = D.t2;
SymTensor3d_3<T> & TD3 = D.t3;
SymTensor3d_4<T> & TD4 = D.t4;
SymTensor3d_5<T> & TD5 = D.t5;

T & TQ0 = Q.t0;
SymTensor3d_1<T> & TQ1 = Q.t1;
SymTensor3d_2<T> & TQ2 = Q.t2;
SymTensor3d_3<T> & TQ3 = Q.t3;
SymTensor3d_4<T> & TQ4 = Q.t4;

constexpr T _1i2 = (1./2.);
constexpr T _1i6 = (1./6.);
constexpr T _1i24 = (1./24.);

auto M_1 = TD1 * TQ0 + TD2 * TQ1 + (TD3 * TQ2)*_1i2
+ (TD4 * TQ3)*_1i6 + (TD5 * TQ4)*_1i24;

auto M_2 = (T(-1.)*TD2 * TQ0) - TD3 * TQ1
- (TD4 * TQ2)*_1i2 - (TD5 * TQ3)*_1i6;

auto M_3 = _1i2 * (TD3 *TQ0 + TD4 *TQ1 + (TD5 * TQ2)*_1i2);
auto M_4 = _1i6 * ((T(-1.)*(TD4 *TQ0)) - TD5 *TQ1);
auto M_5 = (TD5 * TQ0)*_1i24;

return SymTensorCollection<T, 1, 5>{
M_1,M_2,M_3,M_4,M_5

};

}

The use of the tensor class ensures the absence of errors in their use, as well as
proper vectorization and convenience in their usage.

3.2. Computing moments (Upward step)
As presented in Alg. 10, we can compute the moments by first computing the ones
of the leaves directly from the particles and then translating the children moments

286

3. IMPLEMENTATION

Algorithm 10: Simplified pseudocode of the moment compute step
Data: Cells i of the tree, ci the associated cell center, and Qi

n the
associated moment of order n (initialized to zeros on all
components). The moments are computed up to order p. xa is the
position of particle a, and ma is its mass.

Result: The computed moments Qi
n.

// Accumulate moments in leafs
1 foreach leafs cells i, in parallel do
2 foreach particle a in cell i do
3 for n ∈ [0, p] do
4 Qi

n ← Qi
n + ma(xa − ci)(n);

// Propagate moments up the tree
5 foreach tree level l, decreasing from the lowest one do
6 foreach cells i in level l, in parallel do
7 foreach cells j child of cell i do
8 for n ∈ [0, p] do
9 T ← translate moments Qj

n from center cj to ci;
10 Qi

n ← Qi
n + T ;

to combine them in the parent cell up the tree recursively.

3.3. Computing force (Downward step)
As mentioned, the FMM is valid only up to a critical angle (θc) defined by the user.
As performed in Springel et al. (2021), the procedure goes as follows. To accumulate
the contribution of self-gravity in a leaf cell of a tree, we start at the root node of
the tree. If the angle is not satisfied, we go in with the children of that cell and
check the angle of the children, repeating the same process. We recursively go down
the tree until either the critical angle is satisfied, in which case we use the multipole
expansion, or the cell is a leaf, in which case we perform a pairwise summation. Note
that the target leaf cell will also accumulate its own contribution in such a procedure.
The procedure is illustrated in Fig. E.4. and can be summarized as presented in
Alg. 11. This procedure is a modification of the traversal algorithm normally used
in Shamrock, where instead of discarding a leaf if the interaction criterion is not
satisfied, we instead perform a long-range multipole summation of the force. In the
pseudo-code shown in Alg. 11, we have in practice optimized the indexing logic and
performed some optimizations to minimize the memory movements. In general, the
FMM can be summarized as first propagating the moments upward the tree, then
performing the downward step to compute the forces for each leaf cells.

287

APPENDIX E. FAST MULTIPOLE METHOD

Algorithm 11: Simplified pseudocode of the downward step of the FMM
Data: Cells i of the tree, ci the associated cell center, and Qi

n the
associated moment of order n. The order of the FMM multipoles p
to use. xa the position of particle a.

Result: The gravitational force fi applied on the particle i.
1 foreach leafs cells a, in parallel do

// Setup cell stack
2 s← {};

// Enqueue the root node
3 push 0 on stack s;
4 do

// Pop top of the stack
5 j ← stop;

// Check if interaction angle is larger
6 α← (La + Lj/||ca − cj|| > θc);
7 if α then
8 if if node j is a leaf then

// pairwise summation
9 foreach particles µ in cells a do

10 foreach particles ν in cells j do
11 fµ ← fµ + ∇G(xν − xµ)

12 else
// Push node childs on the stack s

13 else
// Multipole summation

14 for k ∈ [0, p− 1] do
15 dMk ← (−1)k

k!
∑p−k

n=0
1
n!Dn+k+1 ·QB

n ;
16 foreach particles µ in cells a do
17 fµ ← fµ +∑p

k=0(xµ − ci)(k) · dMk;

18 while stack not empty;

288

4. RESULTS

Figure E.4: Illustration of the recursive opening of the tree: cells in green correspond
to ones where the angle is larger than the critical angle, and red cells correspond to
ones where the angle is smaller than the critical one.

4. Results

4.1. Precision

10−2 10−1 100

θ

10−12

10−10

10−8

10−6

10−4

10−2

100

|Φ
fm

m
−

Φ
th
|/|

Φ
th
|

Gravitational potential (Φ)

fmm order = 5

fmm order = 4

fmm order = 3

fmm order = 2

fmm order = 1

fmm order = 0

10−2 10−1 100

θ

10−12

10−10

10−8

10−6

10−4

10−2

100

|f f
m

m
−

f t
h
|/|

f t
h
|

Gravitational force (f)

Figure E.5: Results of the FMM precision test.

We start by presenting the tests used to test the precision of the method. For
the first test, we generated two random particles and two random cell centers. We
compute moments associated with both cells and compute the corresponding long-
range force between the two particles. We report the normalized norm difference
between the direct pairwise force and the long-range one. We repeat this test for
millions of particles at multiple FMM orders. This result is presented for both the
potential and the force in Fig. E.5. We observe that the error converges to zero
when lowering the angle and that the orders of convergence match the expected
ones, validating this test.

289

APPENDIX E. FAST MULTIPOLE METHOD

To test the complete procedure, we generate a random set of particles. Build the
radix tree as for the SPH solver in Shamrock, build the moments on that tree, and
use the tree traversal with FMM to compute the forces on each particle. Lastly, we
compare the resulting forces against the ones obtained by direct pairwise summation
on the complete set of particles. The test passes if both values agree at a relative
precision of 10−5 with an opening angle of θc = 3 for fifth-order expansions. Note
that the tolerance is lower than the value reported on Fig. E.5. This is excepted as
the test in Fig. E.5 corresponds to the worst-case scenario; in practice, inaccuracies
will partially cancel out, lowering the error by two orders of magnitude in most of
our tests.

4.2. Performance

103 104 105 106

Npart

105

106

ob
j

p
er

se
c

A100

RTX 4090

RTX A5000

RTX 2080 Super

Figure E.6: Performance of the FMM implementation with fifth-order multipoles
and an opening angle of θ = 0.3.

Using the same test as previously described on a set of randomly distributed
particles, we measure the number of particles processed per second compared to
the number of particles in the simulation on a single GPU to be of the order of a
million particle per seconds. The results are reported on Fig. E.6. Even if the im-
plementation in its current state is working and yields correct results, we expect the
possibility of performing significant optimizations. Specifically, reduce the register
usage in the downward-step GPU kernel, group some memory load operations to
reduce latency, and change the algorithm layout to have more similar threads, re-
sulting in increased performance due to SIMT. We note, however, that the use of the
reduction algorithm the tree of Shamrock improves the performance significantly,
as shown in Fig. E.7, where the same test is performed with multiple tree reduction
levels and shows speedup by an order of magnitude due to reduction.

290

5. EXTENSION TO MULTIPLE GPUS

0 1 2 3 4 5 6 7 8
Reduction level

0

1

2

3

4

5

R
el

at
iv

e
ti

m
e

(l
ow

er
is

b
et

te
r)

··
·

x
11

.7
9

x
2.

18

x
2.

14

x
1.

53

x
1.

22

x
1.

00

x
1.

04 x
1.

46

x
4.

09

··
·

x
6.

49

x
3.

08

x
3.

02

x
3.

30

x
1.

42

x
1.

00

x
1.

80

··
·

x
5.

17

··
·

x
9.

93

x
4.

20

x
2.

87

x
2.

35

x
2.

51

x
1.

29

x
1.

08 x
1.

44

x
1.

00

x
2.

00

A100 RTX 4090 Intel(R) Xeon(R) W-2295

Figure E.7: Relative performance of the FMM test for different reduction levels.

5. Extension to multiple GPUs
As is, the implementation is not capable of running on multiple GPUs. However, it
is possible to extend it by transferring a partial tree with the required cells for the
downward step along the particles in the ghost zones. We do have a prototype of
such an implementation that requires further validation and performance testing as
the FMM is communication-intensive, which may result in bottlenecks on the MPI
side.

6. Summary
We have presented in this appendix the FMM to solve for the self-gravitating system
as it is presented in Springel et al. (2021). In addition to the FMM, we have
derived the moment-translation formulas to have exact moment recombination. Very
crudely, one estimates a acceleration of a factor ≃ 100 compared to the procedure of
Gadget-4 on a average server class CPU, also this number should be confirmed by
a rigorous quantitative benchmark. The current implementation works on a single
GPU, and a prototype is yet to be tested for the multiple GPU case. We expect
significant optimizations to be possible in the current implementation. Lastly, the
current implementation is standalone in a N-body solver and needs to be connected
to the SPH solver to enable self-gravitating simulations in SPH.

291

APPENDIX E. FAST MULTIPOLE METHOD

References
Price D. J., et al., 2018, Phantom: A Smoothed Particle Hydrodynamics and Magnetohy-

drodynamics Code for Astrophysics, PASA, 35, e031
Springel V., Pakmor R., Zier O., Reinecke M., 2021, Simulating cosmic structure forma-

tion with the GADGET-4 code, MNRAS, 506, 2871-2949

292

http://dx.doi.org/10.1017/pasa.2018.25
https://ui.adsabs.harvard.edu/abs/2018PASA...35...31P
http://arxiv.org/abs/1702.03930
http://dx.doi.org/10.1093/mnras/stab1855
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.2871S
http://arxiv.org/abs/2010.03567

6. SUMMARY

293

	Notations & Preamble
	A shorthand on numerical planet formation
	Context
	Understanding planet formation
	On the origins of discs
	Why is planet formation a complex problem ?

	Basic physics of a protoplanetary disc.
	Scale-lengths and fluid approximation
	Minimal disc model
	Dust evolution

	State of the art (Processes)
	Accretion and angular momentum transport
	Dust evolution
	Magnetohydrodynamics in discs
	Planets

	State of the art (instabilities)
	Hydrodynamical instabilities
	Dust-Gas instabilities
	Magnetohydrodynamical instabilities
	Rossby Wave Instability
	Self-gravity
	Dust-Gravitational instability

	 Conclusion
	References

	Numerical Computation of astrophysical flows
	Introduction
	Euler's equation
	Rankine-Hugoniot conditions

	Finite elements (Zeus & Fargo)
	Functional form of the equations
	Operator splitting
	Staggered mesh
	Artificial viscosity
	Substep 1 (Pressure gradient)
	Substep 2 (Artificial viscosity)
	Substep 3 (Compressional heating)
	Transport step
	Courant-Friedrichs-Lewy condition
	Performance

	Finite volume (Godunov)
	Formulation of hydro equations
	Riemann problem
	Cell averaging
	High order space reconstruction
	TVD slopes
	Courant-Friedrichs-Lewy condition
	Summary of the scheme
	Extension to mesh refinement
	Discussion

	Meshless (Smoothed particle hydrodynamics)
	Simulated equations
	SPH density interpolation
	Field interpolation in SPH
	Equation of motion
	Conserved quantities
	Artificial viscosity
	Shock detection
	Adaptive smoothing length
	Time stepping
	SPH dispersion relation

	Summary
	References

	Challenges of modern computing hardware
	Introduction
	Brief history of HPC supercomputing
	Monolythic supercomputers (1900-80)
	Distributed supercomputer (1975-Now)

	Recent evolution of computing hardware
	A deep dive in a GPU
	Topology of a computer

	GPU execution model
	SIMD on CPU
	SPMD (Single Program Multiple Data)
	SIMT parallelism
	Streaming multi-processor
	The GPU & Block scheduling

	GPU performance
	Rooflines
	GPU memory perfomance
	GPUs and branches
	SIMD on GPU
	Execution latency
	GPU internal Load balancing
	Streams
	Optimization guidelines for GPUs

	Expressing parallelism on GPU
	Basic parallelism
	Race conditions
	Single kernel synchronization

	Coding on GPU
	History
	SYCL

	Coding with SYCL
	Memory model
	Execution model
	SYCL datatypes

	Multi-GPU architectures
	Hardware
	Usage

	Summary
	References

	Shamrock
	Introduction
	The Shamrock framework
	Modular computational fluid dynamics
	Multi-GPUs architectures: choice of languages and standards
	Elements of software design

	Domain decomposition & MPI
	Simulation box
	Patch decomposition
	Data Structure
	Scheduler step
	Load balancing strategies
	Patch interactions
	Serialisation
	Sparse MPI communications

	The Shamrock tree
	Morton codes
	Prefixes
	Bounding boxes
	Longest common prefix length
	Finding common prefixes
	Getting coordinates sizes of bounding boxes
	Binary radix tree
	Karras algorithm
	Removal of duplicated codes
	Reduction
	Tree building
	Tree traversal
	Direct neighbour cache
	Two-stages neighbour cache

	Summary
	References

	Shamrock SPH solver
	Smoothed Particle Hydrodynamics in Shamrock
	Equations of motion
	SPH interaction criterion
	Adaptive smoothing length
	Time stepping

	Physical tests
	Generalities
	Advection
	Sod tube
	Sedov-Taylor blast
	Kelvin-Helmholtz instability
	Conformance with Phantom
	Summary

	Performance
	Characteristics of the benchmarks
	Performance of tree building
	Performance of neighbour cache building
	Performance of time stepping
	Summary

	Software design
	Development
	Testing
	Environment scripts
	Runscripts
	Units

	Conclusion
	Appendices
	AABB extension/intersection permutation
	References

	Conclusion
	A first astrophysical application
	Perspectives
	Multi-physics
	Multi-methods
	Data analysis
	Optimization of latencies

	Conclusion
	References

	Polydisperse Magnetised SI
	Context
	Non-ideal MHD with polydisperse dust in shearing box
	Basic equations
	Background magnetic field
	Polydisperse non-ideal MHD in shearing box
	Steady state solutions
	Plasma parameter

	Reducing the problem to standard PSI
	Solenoidal condition
	Lorentz force
	Induction equation

	Numerical method
	Results
	Discussion and future prospects
	References

	Precision of 2-fluid SPH methods
	The Dustywave problem
	SPH dustywave
	Equation of motions
	Linear perturbation
	Continuous limit
	Analytic spatial resolution criterion
	Optimal reconstruction
	Test in simulations

	Conclusion
	Appendices
	Linear expansion of the SPH equations
	Mass conservation
	Pressure term
	Drag term
	Discrete sph equations

	Discrete dispersion relation
	References

	Full-Monofluid formalism
	Monofluid formalism
	SPH identities
	Derivation from conservation equations
	Conservation of dust mass
	Conservation of dust momentum

	Summary
	References

	Shearing Box
	Shearing box
	SPH implementation
	Axisymmetric shearing box
	Sheared coordinates
	General coordinate transform
	The continuity equation
	Momentum equation
	Shearing metric tensor
	Cartesian shear metric
	Differential operators
	Euler's equation in the sheared coordinate system

	Summary
	References

	Fast Multipole Method
	Fast Multipole Method
	Solved equations
	Basic multipole expansion
	Fast Multiple Method

	Moment translation & recombination
	Implementation
	Symmetric tensors
	Computing moments (Upward step)
	Computing force (Downward step)

	Results
	Precision
	Performance

	Extension to multiple GPUs
	Summary
	References

