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Abstract
Facing the diversity of communication needs of 5G networks and the future 6G, resource allocation
is considered as a key enabler to increase the number of devices, the data rate or the reliability of the
communication links. In machine-type communications networks, recent work has proposed to adapt
the temporal resource allocation as a function of the underlying process driving the activity of the
devices. This thesis firstly focuses on the impact of having only limited knowledge of the underlying
process, and proposes methods to mitigate the bias induced by the lack of knowledge. Secondly, an
algorithm for the joint optimization of the temporal resource allocation and the transmit power of
the devices is proposed. The algorithm ensures that devices that are likely to transmit on the same
resources do so with a sufficient power diversity to ensure their decodability by the base station.
Finally, in networks with an enhanced mobile broadband objective, we propose to jointly optimize
the power, the frequency resources used, as well as the number of parallel data streams used by the
devices. Our simulation study shows that our joint optimization outperforms current 5G baselines
for which these parameters are common to all devices of the cell.
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Résumé
Face à la diversité des besoins en communication des réseaux 5G et de la future 6G, l’allocation des
ressources disponibles est considérée comme un élément clé pour augmenter la densité de dispositifs,
leur débit ou la fiabilité de leurs communications. Dans les réseaux de communication de type
machine, des travaux récents ont proposé d’adapter l’allocation des ressources temporelles en fonction
du processus sous-jacent qui régit l’activité des dispositifs. Cette thèse se concentre tout d’abord sur
l’étude de l’impact d’une connaissance imparfaite de ce processus, et propose des méthodes pour
atténuer le biais induit par les connaissances erronées. En second lieu, un algorithme permettant
d’optimiser conjointement l’allocation des ressources temporelles et la puissance de transmission
des dispositifs est proposé. L’algorithme permet aux dispositifs ayant une forte probabilité de
transmettre au même moment, de le faire sur des ressources (temporelles ou de puissance) assurant
leur décodabilité. Enfin, dans les réseaux ayant un objectif de haut débit, nous proposons d’optimiser
conjointement la puissance, les ressources fréquentielles ainsi que le nombre de flux de données
parallèles utilisées par les dispositifs. Notre étude par simulations témoigne que notre optimisation
conjointe est plus performante que les méthodes utilisées actuellement en 5G pour lesquelles ces
paramètres sont calculés indépendamment les uns des autres.
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1.1 Wireless Cellular Communication: from 2G to the Future 6G
Starting from only voice communication and small text messages, wireless cellular network now also
provide high speed access to Internet. This shift of focus has been guided by the 3rd generation
partnership project (3GPP), a consortium of standard institutes, companies, telecommunications
operators, etc..., which helps the development and standardization of the different generations
of cellular communication. It produces different technical specifications that act as basis for the
definition of the different standards. Furthermore, it is in charge of defining the requirements and the
use cases of the networks, and describes in details how they will be implemented and interoperated.

Through the different generations of wireless cellular communication, each one provided new use
cases. The 2nd generation (2G) sparked the democratization of the mobile phone by allowing to
make calls and to send small text messages. Then, the 3rd generation (3G) generalized the ability
to connect to internet by making possible to send and receive data packets. Afterwards, the 4th

generation (4G) further increased the supported data rate which made possible the stream of videos
from Internet, video calls, and more generally enabled the versatility of smartphones. The focus
of 2G, 3G, and 4G was centered around providing the highest data rate to the devices (known as
mobile broadband (MBB)): the more data the better.

In contrast with the previous generations, the 5th generation (5G) was developed around three
different axes, each providing different applications for people as well as the industry:

• enhanced mobile broadband (eMBB), with an aim to increase by a factor of 10 to 100 the
theoretical data rate compared to 4G; as a consequence, the average monthly data consumption
per device went from 5GB in 2018 to 20GB in 2024 [33, Fig. 7].

• machine-type communications (MTC), designed to support the maximal number of devices
having strict power constraints, with applications to sensor networks or smart factories [110].
Device density could theoretically reach up to 1 million devices per km2 [50].

• ultra reliable low latency communications (uRLLC), with the purpose to provide fast and
reliable delivery of data packets with applications to time-sensitive networks [84]. Ideally, small
data packets should be received by the base station (BS) within 1ms with a probability of
1− 10−5[50].

The future 6th generation (6G), expected to be standardized around 2030, is envisioned to pursue
the development of the 5G axes with massive machine-type communications (mMTC) [71], extreme
uRLLC [80] and provide new services at their intersection [92] like massive uRLLC [60, 115].

To support such a wide variety of use cases, each of these axes have different technical specificities.
In particular, the physical (PHY) and multiple access control (MAC) layers have to be designed
differently depending on the target application of the network.
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1.2 PHY and MAC Layers
At the basis of wireless communication networks lies the PHY and the MAC layers. The PHY layer
job is to communicate bits over the wireless channel using, in the case of wireless communication,
electromagnetic waves. In this thesis, we focus on communication from devices to the BS (uplink).
The PHY layer defines how the bits are encoded into different waveforms and controls the transmit
power of the devices according to the data rates required and the regulations.

Lying on top of the PHY layer, the MAC layer orchestrates the communication of multiple devices
over the same medium. Because the exact moment a device seeks to transmit data is unknown to
the BS, the term random access (RA) is used. The aim of the MAC layer is to minimize the loss of
data due to interference between devices, also known as collisions. As such, resource allocation is a
key part of the MAC layer.

Traditionally, the PHY and MAC layers are viewed as two different building blocks of the network
and are optimized independently of each other. However, the different needs of the axes of 5G force
to rethink the relationship between the different layers and open the doors of performing cross-layer
optimization.

A current critical problem in the development of the next generations of wireless communication
networks is being able to efficiently handle communications coming from a possibly large number
of devices. Given that the communication needs strongly differ whether the network is eMBB,
MTC, or uRLLC, we should seek different solutions for each axis. This thesis thus revolves around
optimization of uplink communications at the level of the PHY and MAC layers through power
control, and the allocation of resources in a context where multiple devices want to transmit data.

The optimization of the PHY and MAC layers we propose in the different chapters rely on
long-term analysis, either because the optimization algorithms we develop converge asymptotically
or because the metrics we use are modelling asymptotic behaviors. As a result, we choose to not
consider uRLLC networks, which require guarantees at a finite horizon, and solely focus on the MTC
and eMBB types of networks.

1.3 Motivations and Challenges in MTC
MTC networks consist of Internet of Things (IoT) devices that operate without the intervention
of humans. They send data, which can be measurements or control information, periodically or
whenever they sense an event. Well-known applications of MTC networks are for:

• metering, like water or electricity meters

• controlling systems, with applications to smart industry or home automation,

• tracking of objects, used in fleet management or parcel tracking

• monitoring an area (detection of intrusions),
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• sensor networks (measuring environmental conditions on large areas).

The vast majority of IoT devices are small, low cost, and battery powered. The promises of MTC
networks are to contribute to the digitalization of society, with hopes of improving the efficiency of
some activities or industries.

The different application scenarios often require the deployment of a large number of devices.
Given that the communication resources are limited, a key problem is to ensure that all these
devices can inter-operate and reliably communicate their data. To avoid wasting power in requesting
resources, the selection of the resources used for communication is decentralized and made randomly
at the device. As such, in principle, no coordination mechanisms are implemented, whether between
the device and the BS nor between devices.

1.4 Motivations and Challenges in eMBB
Contrarily to MTC, eMBB networks focus on improving the data rate of the devices. The applications
are multifold:

• increase the capacity of the cells by supporting a higher number of devices,

• better support device mobility to enable seamless connectivity in moving vehicles (like trains),

• obtain higher peak data rate, to support applications with high data need (streaming of
ultra-high definition videos).

Given that devices have large amounts of data to send, communication of control information
and channel state information (CSI) is possible. As a result, the scheduling and usage of the
communication resources can be well orchestrated by the BS in a centralized manner. Furthermore,
with the help of the CSI, the devices can set their transmit power to match an expected received
power at the BS. However, due to the presence of hard constraints in the maximal transmit power,
some devices fail to meet the requirements and experience a degraded data rate.

1.5 Contributions of the Thesis and List of Publications

1.5.1 Contributions
Given that devices of MTC networks have typically small data packets to send, coordination between
the devices and the BS should be as limited as possible to avoid wasting energy. In the state of
the art, it is common to assume that the a priori probability that a specific device is active is
the same for all devices of the network. In the first two contributions of this thesis, we explore
whether the knowledge, either partial (in Chapter 3) or complete (in Chapter 4), of an underlying
process driving the activity of the devices can be used as a form of coordination to increase the
number of devices that can be supported by the network. The algorithms developed thus lie between
decentralized scheduling and centralized orchestration. Furthermore, in Chapter 4, in a form of
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PHY-MAC cross-layer optimization, the transmit power of the devices is also controlled to provide
new opportunities of decoding collisions.

In eMBB networks, because it is possible to afford more control communication, the usage of the
communication resources can be carefully orchestrated to ensure that no collisions occur. Currently,
in 5G, the computation by the BS of the transmission parameters used by the devices is based on
heuristics and performed independently for each device. In Chapter 5, we propose to jointly design
the different transmission parameters of all the devices. We formalize an optimization problem
which, based on the CSIs of the devices, returns an allocation of resources and transmit power to
each device that maximizes the geometric mean of the rates.

1.5.2 Readers Guideline
The thesis is organized as follows:

• Chapter 2 presents the different models that will be used as well as relevant related work.
We present the different channel models, the notion of communication resources, as well as
methods to allocate resources to the devices.

• Chapter 3 studies the impact of imperfect user detection when designing resource allocation
methods that are a function of the activity statistics of the devices. A method, based on
importance sampling, to mitigate the bias introduced by the limited knowledge of the active
devices is presented.

• Chapter 4 studies the possibility of performing a joint allocation of slot and power. The
algorithm we propose is able to take into account the correlations in the activity of the devices
and to assign orthogonal resources (slot or power diversity) to the devices that are highly likely
to transmit together.

• Chapter 5 formalizes an optimization problem to jointly assign to all devices of the network
their transmit power, the frequencies they use, as well as the number of parallel data streams.

• Chapter 6 summarizes our work, highlights its limitations, and presents some possible future
directions.

• Chapter 7 provides a summary in French of the different contributions (Chapter 3, 4 and 5).

• Finally, necessary background in gradient-based optimization is provided in Appendix A. The
analysis of the stochastic gradient descent (SGD) algorithm is made through the point of view
of stochastic approximations.
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1.5.4 Code Repository
The code developed and used for the simulation of Chapter 3 is available at: https://gitlab.inria.
fr/maracas/publications/exploiting-device-heterogeneity-in-gfra
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2.1 The Uplink Communication Channel
In cellular networks, we distinguish two types of communications channel: Uplink (UL) and downlink.
In the downlink channel, the BS acts as the transmitter and the devices1 as receivers. The focus
of this thesis is on uplink transmissions: when the devices are the transmitters and the BS is the
receiver. The main difficulties of uplink transmissions are making sure each device can reliably
communicate with the BS and ensuring enough coordination across the devices to guarantee reliable
reception of data coming from several devices. From an historical perspective, the first difficulty
is a PHY layer problem and the second a MAC layer problem. However, these two problems are
highly linked and are thus more and more studied altogether and jointly optimized in new wireless
technologies.

Several directions can be taken to enhance and tune the performance of the network with respect
to the different axes of the network: eMBB, IoT or uRLLC. Some key research directions are:

• channel coding [91],

• resource allocation [4, 10, 58],

• power control [3, 66, 70],

• scheduling [44],

• multiple input multiple output (MIMO) [108].

Machine learning (ML) and artificial intelligence (AI) are expected to be key enablers for the
optimization of different aspects of 6G networks [8, 82, 96, 102, 104]. This thesis mainly deals with
different aspects of resource allocation but also takes into accounts the power optimization in a
MIMO setting.

Throughout this chapter, we present different channel models and introduce key problems of the
PHY and MAC layers. Contrarily to most existing work, we purposely choose to present in parallel
the PHY and the MAC layers instead of presenting them sequentially. The goal is to emphasize on
their relationship and to gain intuition on how cross-layer optimization can be performed. Starting
with a basic Point-to-Point (P2P) additive white Gaussian noise (AWGN) channel to explain the
principles of communications, we then move to a multi-user AWGN channel and explain the concept of
communication resources and collisions. Afterwards, we present how the selection of communication
resources can be made to, ideally, avoid collisions. We then describe the concept of sporadic
communication, a key component of Chapter 3 and Chapter 4, and introduce it in the multi-user
AWGN model. Next we elaborate on the notion of channel and MIMO communications, and show
how power control can be used to decode colliding devices. Finally, we present different metrics to
study the performance of a network.

1We will use interchangeably use "device", "user", "user equipment (UE)", and "node".
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2.2 Communication Models

2.2.1 Transmission without Interference: Single User AWGN
The most basic P2P communication channel is the AWGN. In this model, for a single channel uses,
the data sent d lies in D ⊂ C, and the noise w is circularly symmetric white Gaussian w ∼ CN (0, σ2).
As we will present in 2.2.7, an interesting channel model is the multiplicative channel noise: f(d) = hd,
h ∈ C which we will ignore for the moment. Conceptually, the multiplicative noise can be canceled
either by considering an additive noise with a different variance w̃ ∼ CN (0, σ

2

h2 ) or by doing power
control (sending d

h instead of d). The AWGN model is thus:

y = d+ w, (2.1)

The data sent d is known as a symbol and D is the constellation, where often D has a finite
cardinality (|D| <∞); without loss of generality, we assume that, at each channel use, the symbols
are all equally likely to be sent and that ED[d] = 0 and ED[∥d∥2] = 1, meaning that no continuous
component is present and the average energy of the constellation is 1. Typical constellations are
pulse amplitude modulation (PAM) (D = {−1, 1}) and quadrature amplitude modulation (QAM)
(D = {−

√
2
2 − j

√
2
2 ,−

√
2
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√
2
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√
2
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√
2
2 ,

√
2
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2
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Symbols are the data unit of the PHY Layer and can be grouped into packets (also known as
burst) of size L symbols, making the "packet", the data unit of the MAC layer. The value of L varies
on the protocol used, but is usually constant over time. In this thesis, we only focus on memoryless
channels without inter symbol interference (ISI) (the transmission of a symbol does not affect the
subsequent symbols), hence the model of (2.1) can be easily extended to packet transmission:

y = d+w, (2.2)

where y ∈ CL, d ∈ DL, w ∼ CN (0, σ2IL), with IL the L× L identity matrix.

2.2.2 Transmission with Interference: Multi-User AWGN
Throughout this thesis, we assume that all devices of the network are synchronized and that they
all start their transmission at the same time. As a result, supposing we have N devices wishing to
send a packet to the BS, (2.2) can be extended to multiple device, leading to what is known as the
multi-user AWGN channel:

y =
N∑

n=1

dn +w, (2.3)

where dn ∈ DL
n is the packet of device n and Dn is the constellation of device n. However, in a model

like (2.3), the data of all the devices interferes; it is thus highly likely that the BS won’t be able to
recover the data of each device.
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2.2.3 Communication Resources
Supposing that the BS is not able to decode any of the devices’ data if interference is present in
(2.3), then BS can thus decode data only if N = 1. Such types of channel are known as collision
channels. To circumvent this limitation, we can use different communication resources to create
different channels (preferably independent of each other) that can be assigned to the devices of the
network.

A communication resource is a physical resource that devices have at their disposition to transmit
data to the BS. It can have several forms, the most common being time slots (time division
multiplexing), waveforms (waveform division multiplexing), carrier frequency (frequency division
multiplexing), or power levels (power division multiplexing)...

We distinguish two type of resources: orthogonal and non-orthogonal. Orthogonal resources
ensure that two transmissions over two different orthogonal resources will be independent of each
other. For example, if two transmissions take place during two disjoint time intervals, one does
not interfere with the other. On the other hand, the use of non-orthogonal resources can lead to
interference between the transmissions, making necessary the use of advanced decoders at the receiver
to separate the different data flows. Example of non-orthogonal resources are overlapping frequency
bandwidth, different transmit power... The multiplexing using orthogonal resources, known as
orthogonal multiple access (OMA), is the most reliable and should be preferred whenever possible.
Using an OMA scheme for a network of N devices will result in the creation of N independent channels
(2.1). However, the amount of orthogonal resources is scarce and the number of communication
technologies as well as the number of connected devices are increasing, making it harder and harder to
attribute a different orthogonal resource to each device. Furthermore, because devices might not need
to transmit data at all times, assigning exclusive resources to an inactive device can be considered
as a waste. Recent effort has been put toward developing communication over non-orthogonal
resources, known as non-orthogonal multiple access (NOMA), which has been first studied for code
division multiple access (CDMA) transmissions [95, 105]. In Section 2.2.7 we will describe how
non-orthogonal resources (diversity in transmit power) can be used for communication by using
power domain non-orthogonal multiple access (PD-NOMA) as an example.

Resources and Frame Structure in 4G and 5G

Since 4G, orthogonal frequency division multiplexing (OFDM) is used to provide efficient and reliable
transmission over several orthogonal subcarriers. The time-frequency representation of the OFDM
resource grid (RG) can be seen in Fig. 2.1 and Fig. 2.2 (zoom-out version of Fig. 2.1), with in the
x-axis the time domain, and in the y-axis the frequency domain. A pair of an OFDM symbol and a
subcarrier e = (φ, τ) forms a resource element (RE). The structure of the 5G frames are defined in
[1, Chapter 5.1]. In the frequency domain, the subcarriers are grouped into resource blocks (RBs)
(also known as physical resource blocks (PRBs)), with NSC = 12 subcarriers per RB. Then, resource
blocks are grouped into resource block groups (RBGs) (or physical resource block groups (PRBGs))
which are allocated to devices, one RBG containing Nblock contiguous RBs, as seen in Fig. 2.2. The
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Figure 2.1: Representation of the 5G OFDM RG, at the RE resolution, with the different terminologies
in the case of a subcarrier spacing of 30 kHz. On the axes τ represent the symbol index and φ the
subcarrier index.

total bandwidth used in 4G is between 5MHz and 20MHz and the total 5G bandwidth is noticeably
larger, ranging between 5MHz and 100MHz. In the time domain, OFDM symbols are grouped
into time slots, each consisting of L OFDM symbols (L = 14 in 5G and L = 7 in 4G). Then, in
5G slots are grouped into subframes of Nslot ∈ {1, 2, 4, 8, 16} depending on the subcarrier spacing
Sp (distance between two subcarrier) used, Sp ∈ {15, 30, 60, 120, 240}kHz respectively. In 4G, the
subcarrier spacing is fixed at 15 kHz, thus each subframes contains 2 slots (because each slot is 7
symbols in 4G). Finally, a radio frame lasts for (10ms) and consisits of 10 subframes of 1ms each.

The REs of the RG serve different purposes, depending on the protocols used and their configura-
tion: channel sensing (with transmission of pilots), transmission of control information, transmission
of downlink/uplink data...

For the remaining of this chapter as well as in Chapter 3 and in Chapter 4, we use a generic
communication model similar to Narrowband IoT (NB-IoT) and suited for MTC application. In
NB-IoT, uplink communications occur over a single subcarrier within a narrow bandwidth of 180 kHz,
shared by a set of devices that transmit in a single slot per frame. It can operate in two possible
subcarrier spacing: 3.75 kHz or 15 kHz. Frames also last for 10ms and consist in 5 slots of 2ms in
the 3.75 kHz subcarrier spacing, and 20 slots in the 15 kHz subcarrier spacing. Like in 4G, each slot
contains L = 7 symbols. Chapter 3 and 4 are aimed to provide resource allocation methods within

In Chapter 5, we consider a set of devices co-scheduled in a single slot that transmit their uplink
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data on one or several PRBGs.

Collision Channel

Setting aside the technicalities of the technology used, we now consider a generic frame structure
that consists of K slots per frames, without subframes (Nslot = 1), as shown in 2.3, and a single
subcarrier. We further assume that packets fit exactly in a slot and that, because devices are all
perfectly synchronized, no packets overlaps two different slots.

Let δtn =
[
δtn,1 . . . δtn,K

]
∈ {0, 1}K be the vector indicating for device n which slots are used

for the transmission of the packet. Note that δtn can contain several 1, meaning that the same packet
might be sent several times in a frame. The channel in slot k of frame t becomes:

yt
k =

∑

n=1

δtn,kd
t
n +wt

k. (2.4)

We denote δt ∈ {0, 1}N×K the matrix with elements δn,k characterizing which resources are utilized
in frame t.

Example 2.2.1. Suppose the network consists of N = 3 devices, K = 3 resources (time slots), the
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Slot 1 Slot 2 Slot 3

User 1 User 2 User 3

Figure 2.4: Example of a collision: in a frame of K = 3 slots, packets of device 1 and 2 collide in the first
slot: neither of them can be decoded whereas packet of device 3 can be decoded.

matrix of transmit slots is δ =



1 0 0

1 0 0

0 1 0


 which is also represented in Fig. 2.4. No collision would have

occurred if either device 1 or device 2 had used slot 3 instead of slot 1.

As seen in Example 2.2.1, the choice of the communication resource is important to avoid
collisions between packets. In the next subsections, we review different methods to select one or
several slots, under the assumption that no collision can be decoded. Note that in the following, to
ease the notations, the superscript t, denoting the frame index, is dropped whenever the frame index
is unnecessarily.

2.2.4 From RACH-based to GFRA
The channel model of (2.4) is exhaustive enough to delve into how the selection of the transmit
resources δn,k can be done as well as what the data packets dn might contain.

In telecommunications, we differentiate two types of data:

• the payload data, actual useful data that a device wishes to send

• the overhead, used for: control, signaling, synchronization, identification of devices, orchestra-
tion of the network, request of resources. . .

The symbols within a packet dn might contain either payload or overhead data or both.

Whenever a device has data to send, it will seek to transmit on a channel. As the exact moment
(which frame number t) a device will seek to access the channel is unknown to the base station, the
term random access is used. We distinguish two types of random access procedure:

• random access channel (RACH)-based, using a large amount of overhead, particularly suited
for MBB

• grant-free random access (GFRA), designed for limiting as much as possible the overhead,
particularly suited for MTC and uRLLC applications.
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RACH-based

The RACH procedure is based on a four-way handshake and is used to identify the active devices
and to obtain transmission parameters including:

• a grant for exclusive use of one or several resources

• cell-wide parameters of the radio ressource control (RRC) protocol (including open loop power
control α and P0, as will be discussed in Chapter 5.5)

The RACH procedure is initiated by devices whenever they join the network or if they have data to
send after being inactive for a while. The procedure is similar in both 4G and 5G and is represented
in steps 0-5 of Fig. 2.5a. The procedure can be described as follows [94]:

• Step 0: the BS periodically broadcasts information about a set of preamble sequences.

• Msg 1: The devices wishing to announce themselves choose a random preamble in the preamble
set and transmit it.

• Msg 2: The BS broadcasts a message comprising the list of all the preambles that have been
detected as well as, for all detected preambles, a resource grant for the transmission of the
next message.

• Msg 3: Devices send their own unique identifier on the transmit resource corresponding to the
preamble it sent in Step 1. If the message of Step 2 does not contain a device’s preamble, then
the device waits and reinitiates a RACH procedure later.

• Msg 4: the BS acknowledges the presence of the devices on the network, allowing devices
to know if they have been properly detected. The message also contains information about
cell-wide parameters (like α and P0, described in Chapter5.5) and a grant of resource (slots
and/or PRBs) that the device can use to transmit its data.

Usage of the RACH procedure brings, to the BS, the knowledge of the active devices and because
the BS decides which device uses which resource, collisions can be avoided. If the payload to be
transmitted is big and does not have strict temporal constraints (as is the case for most eMBB
applications) then performing a RACH procedure to obtain a grant is interesting.

However, it is inadequate for MTC: devices shouldn’t send 3 packets of overhead if they have
a single payload packet to transmit (as is common in MTC networks). Furthermore, it is also
inappropriate for uRLLC as the delay induced is not negligible. In 4G, the RACH procedure induces
a delay of 10ms (1 frame) and the grant request an additional delay of 5ms making a total delay of
15ms before sending the payload [94].

16 Chapter 2. System Model - State of the Art



UE

t

BS
0. Preamble broadcast

1. Preamble transmission

2. RA response

3. RRC connection request

4. Connection Setup + grant (δn)

5. Data transmission

6. ACK

(a) Grant based transmission to ensure collision
free data transmissions.

UE

t

BS
0. UL configuration broadcast

A. Preamble transmission
A. Data transmission

B. ACK

(b) 2-step random access (GFRA) without using a
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Figure 2.5: Comparison between the Grant-based and Grant-free random access.

RACH-Free (GFRA)

Another possibility is to perform RACH-free and grant-free transmissions using what is known as
GFRA [2, Section 19.1.2], [20, 62, 83]. This scheme, depicted in Fig. 2.5b, has the following steps:

• Step 0: BS broadcasts periodically uplink configuration information common to all devices.

• Msg A: the devices randomly select a preamble, transmit it and right after transmit their
payload. The preamble selected defines a resource on which the preamble and the data should
be transmitted. Similarly to RACH-based access, the preamble is drawn from a set common
to all devices. The selected preamble defines a specific slot in which the payload should be
transmitted [83].

• Msg B: The BS acknowledges the identity of detected devices and the successful decoding of
the data.

For both RACH-based and GFRA transmissions, the design of the preamble sequences is impor-
tant: they should be orthogonal to ensure that the BS can distinguish the different sequences, the
amount of preamble sequences should be large enough to obtain a low probability that two device
choose the same sequence, and they should be small enough to avoid wasting too much power in
the transmission of the preamble. In 4G and 5G, Zadoff-Chu sequences [16] of different length are
used. The BS can use algorithms based on generalized approximate message passing (GAMP) [18]
to identify directly which device is active and estimate the channel parameters 2.

The preamble is transmitted using first few symbols of the slot. As seen in Fig. 2.6a, where for

2Such algorithms are the subject of the thesis [17] of Lélio Chetot, former member of Inria MARACAS team.
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Figure 2.6: Example of frame structures used in GFRA and the equivalent model we consider.

simplicity we show only a single subcarrier, the slots are thus split into two subslots, one for the
pilot (preamble) and one for the payload. In the remaining of this chapter, Chapter 3 and Chapter 4,
we consider a conceptually equivalent model for GFRA model where devices first transmit their
preamble in a slot reserved for pilots and then transmit their payload in a subsequent slot of their
choice. To preserve the same device identification properties, the preamble of the devices in the
second frame structure should be longer, as depicted in Fig. 2.6b.

In comparison with RACH-based transmissions, GFRA allows devices to send their payload
faster and with less overhead, making this scheme particularly useful for MTC (to save transmit
power) and uRLLC (to transmit faster). The number of preamble sequences being fixed, if the
number of active devices in a frame is high, then it is highly probable that devices identification
errors will occur. As we will discuss in Chapter 3, we can distinguish different types of errors:

• thinking a payload packet belongs to the wrong device,

• receiving a payload packet without knowing the owner,

• detecting a device but not receiving its payload.

These errors will affect the estimated probability of activity of each device by the station and can
propagate in the optimization of the resource allocation.

Furthermore, in GFRA, collisions of payload data packet are likely to occur due to the BS not
being able to perform resource scheduling. The choice of the transmit resource(s) δn,k made by the
device is thus crucial. In the following, we review different state of the art coordination-free methods
to select the transmit resources.
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2.2.5 Selection of Resources in GFRA

Frame slotted ALOHA

The most popular and most basic, scheme is slotted ALOHA (SA) [90], with its framed version frame
slotted ALOHA (FSA) [109]. Inspired by the ALOHA protocol, where devices send their payload at
any time, this last variant works by selecting a single transmit resource uniformly at random among
the K available resources independently of the other devices. The elements of δn of (2.4) are thus:

δn,k =




1 k = rn

0 k ̸= rn
, rn ∼ U(K), ∀n, (2.5)

(2.6)

where U is the discrete uniform law over K elements. Let r =
[
r1 . . . rN

]
the vector of the selected

transmit slot of the devices. The GFRA protocol using FSA is described in Alg. 1 If FSA is used

Algorithm 1: GFRA using FSA.

1 (Downlink) Sync signal sent by the BS to indicate beginning of the first frame.
2 while True do
3 (Uplink) Each active device n sends their preamble bn on a common control channel.
4 (Local at devices) Each active device n selects their transmit slot rn ∼ U(K) and construct

vector δn according to 2.5.
5 (Uplink) Each active device n sends their data on the drawn slot rn.
6 (Local at BS) BS decodes data present in each slot k.
7 (Local at devices) Wait for beginning of next frame.
8 end

then the probability that at least two devices collide is:

Pr(at least one collision) = 1− Pr(no collision)

= 1− K!
(
K
N

)

KN
, (2.7)

where K!
(
K
N

)
is the (ordered) number of way of choosing N different slots among K slots. Note that

Pr(at least one collision) = 1 if N > K.

Coming back to the example of Fig. 2.4, a collision occurs with probability 1− 3!(33)
33

= 1− 6
27 = 0.77.

Such a scheme is not very efficient, even if N ≪ K as the probability that at least two devices
choose the same slot is rarely negligible.
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Coded random access

In the case where the number of available slots is much higher than the number of devices in the
network, then sending several repetitions of the same packet can drastically reduce the probability
of having collisions. The vector δn contains several 1 and thus can be viewed as a codeword [79].
Viewing the uncoordinated MAC problem as a coding problem is known as coded random access or
unsourced MAC [5, 69] and is expected to be a key enabler to massive multiple access for 6G. This
is the idea behind collision resolution diversity slotted ALOHA (CRDSA)[14], irregular repetition
slotted ALOHA (IRSA)[68], and coded slotted ALOHA (CSA)[78] protocols. In IRSA, the packet
of device n is repeated ln times, where ln is known as the device degree of device n. In CSA, it is
not repetitions of the same packet that are transmitted but different encoded versions. CRDSA is
a special case of IRSA with ln = 2, ∀n. In these three protocol, each copy contains, in addition
to the data, the index of the slots that contain the other copies of the packet. For CRDSA and
IRSA, the decoding follows the principle of a successive interference cancellation (SIC) decoder: if
one of the packets is decoded then, the receiver can remove the corresponding copy from the other
slots, possibly allowing for another packet to be decoded. In CSA, a SIC decoder is also used in
conjunction with the decoder associated to the encoder of the packets. The decoding process stops
whenever all packets have been decoded or if there are cycles in the decoding graph.

Focusing now on IRSA, the number of repetition ln sent by device n is drawn randomly from a
common probability distribution ln ∼ Λ, Pr(ln = d) = Λd,

∑
d Λd = 1.

The selection of the set of transmit slots I is performed uniformly at random without replacement.
Defining Kl = {J ⊆ {1, . . . ,K} : |J | = l,Ji ̸= Jj , ∀i ̸= j} the set of all subset of size l, δn,k is then:

δn,k =




1 i ∈ In
0 i /∈ In

, In ∼ U (Kln) , ln ∼ Λ. (2.8)

FSA is a special case of IRSA, with ln = 1 ∀n, and In ∼ U({1 . . .K}) ∀n.

The GFRA protocol using IRSA is described in Alg. 2, and an example of the SIC decoding
process can be found in Fig. 2.7.

Algorithm 2: GFRA using IRSA

1 (Downlink) Sync signal sent by the BS to indicate beginning of the first frame.
2 while True do
3 (Uplink) Each active device n sends their preamble bn on a common control channel.
4 (Local at devices) Each active device n draws its number of replicas ln ∼ Λ.
5 (Local at devices) Each active device n construct its vector δn using 2.8 (by drawing

uniformly at random and without replacement ln transmit slots).
6 (Uplink) Each active device n send their data according to δn.
7 (Local at BS) BS tries to decode data present in each slot k, using SIC if needed.
8 (Local at devices) Wait for beginning of next frame.
9 end
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Slot 1 Slot 2 Slot 3 Slot 4

User 1 User 2 User 3

(a) Step 1: the BS can decode the packet of user 3 in slot 4.

Slot 1 Slot 2 Slot 3 Slot 4

User 1 User 2 User 3

(b) Step 2: user 3 packet being decoded, the BS can now subtract it from slot 1, 2 and 3 decode user 1 in slot 2.

Slot 1 Slot 2 Slot 3 Slot 4

User 1 User 2 User 3

(c) Step 3: user 2 can now be decoded.

Figure 2.7: Example transmission in an IRSA frame with 3 users and 4 slots with device degree
distribution l =

[
3 2 3

]
. In this example all collisions can be recovered.
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The main difficulty in IRSA is choosing the right device degree probability distribution Λ for
the devices. As described in IRSA’s founding paper [68], a good probability distribution of the
degree is Λ =

[
0 0 0.5 0.28 0 0 0 0 0.22

]
, found by density evolution in the asymptotic

case where K →∞ and N →∞ and the ratio N
K is kept constant. However, using this distribution

means that with a non-negligible probability, the devices will send 8 replicas of their packet. As a
result, one of the main drawback of IRSA is the energy consumption induced by the transmission
of several replicas per packet. The method is thus particularly suited for uRLLC communication
(where latency is important), however for MTC communications, where transmit power is important,
it is preferable to favor distributions with a lower average number of replicas.

Decentralized/Distributed Access

Driven by progress on decentralized and federated learning, there is a significant research effort to
develop decentralized access protocol. An example is Learn2MAC [24], in which the devices select a
code δn defining on which slots to transmit according to a probability distribution. Then, after each
frame, the BS informs the devices of the status of each slot (collision, idle, decoded). Based on this
information and the knowledge of their respective transmit slots, the devices can run a step of an
exponentiated gradient algorithm to update their probability distribution. Nonetheless, Learn2MAC
has some drawbacks: the search space is big as the total number of possible codes is 2K ; and devices
should have sufficient computation capabilities to perform the gradient computation and update.

Another example is in [89], in which, the authors propose to formalize the random access
problem with strict delivery deadlines as a decentralized partially observable Markov decision
process (Dec-POMDP). The states of the agents (devices) are whether they have a packet to send,
and they take actions (on which slot to send their packet) according to a local policy. They then
received a reward if the transmission was successful and finally update their local policy accordingly,
with the help of a Deep-Q Network. The objective of the agents is to find the local policy that
maximizes the expected reward starting from a given state and taking the actions according to the
policy.

Because of the required computation capabilities of the devices to perform the learning mechanisms,
decentralized random access protocols are particularly well suited for uRLLC applications, as they
allow a faster access than performing a full RACH procedure. They are not particularly relevant
for eMBB as usually a latency of several milliseconds is tolerable and not realistic for MTC devices
which can not be expected to apply computationally expensive learning algorithms as they require
to have the lowest power consumption possible.
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2.2.6 Multi-User AWGN with Sporadic Activity
The multiple access methods presented above assume that all devices are active in all frames. This
assumption is often unrealistic for IoT networks and MTC as the amount of packet that devices in
these network need to send is often small. This leads to the concept of sporadic communications,
and can be integrated easily in the model of 2.4:

yt
k =

N∑

n=1

δtn,kx
t
nd

t
n +wt

k, (2.9)

where xtn ∈ {0, 1} represent whether device n is active or not in frame t. The above model can be
written more concisely by defining the set of active device in slot k of frame t: At

k = {n : δtn,kx
t
n = 1}.

yt
k =

∑

n∈At
k

dt
n +wt

k. (2.10)

The two previous multiple access method FSA and IRSA work similarly with sporadic activity
[42] by replacing the number of devices N by the average number of active devices, under the
assumption that all devices have the same a priori probability of being active and are independent
of each other. In other words, a ubiquitous assumption in the definition and design of multiple
access methods, is that the activity of the devices in the network is independent and identically
distributed (i.i.d.), and stationary. Defining the activity vector xt = [xt1, . . . x

t
N ] ∈ {0, 1}N , X its

associated random vector, and N t
a =

∑N
n=1 x

t
n the number of active devices in frame t, this means:

Pr(Xt = xt) =
N∏

n=1

Pr(Xt
n = xtn) (independence)

= Pr(Xt
1 = 1)N

t
aPr(Xt

1 = 0)N−Nt
a (identically distributed)

= Pr(X1 = 1)N
t
aPr(X1 = 0)N−Nt

a (stationary).

However, in practice, these three assumptions may not hold. Hence, we can consider, Xt ∼ pXt ,
where pXt is a generic probability distribution that might contain correlated and heterogeneous
random variable. Implication of having heterogeneous activity pattern in the resource allocation
is largely unexplored in the state of the art, except for few papers (reviewed below) [57, 85] that
consider only pairwise correlation, or higher order correlation [117, 118]. Chapters 3 and 4 pursue
the exploration of the line of work.

232.2. Communication Models



FSA with Soft Scheduling

If the i.i.d. assumptions are not met, it is interesting to individualize the slot access probabilities
and to diverge from the uniform selection. The key idea is that correlation can be viewed as a
form of coordination that can be exploited in the design of the random access strategy. In the first
article proposing soft scheduling, [57], the main application was to allocate different slots to highly
correlated devices, ensuring they never collide. In FSA with soft scheduling, the single transmit
slot of device n is not selected uniformly at random but according to a probability distribution An.
Whenever the device is active (xn = 1), δn,k becomes,

δn,k =




1 k = rk

0 k ̸= rk
, rk ∼ An, ∀n. (2.11)

Like for FSA (2.5), let r =
[
r1 . . . rN

]
∼ A the vector of the selected transmit slot of the devices.

The distributions of all devices form a matrix, called the allocation matrix, A ∈ RN×K , whose each
of its elements represent the probability that a device will use a given slot to transmit its data:
An,k = Pr(δn,k = 1|Xn = 1).

Example 2.2.2 (Allocation matrix). Similar to Example 2.2.1, consider a network with N = 3 devices

and K = 3 slots. The allocation matrix that has been used is the ALOHA allocation matrix:

AALOHA =




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 .

Assuming that all devices are active Xt =
[
1 1 1

]
,∀t, as seen in (2.7) the matrix AALOHA leads to a

fully decodable frame with probability 6
27 . However, in this example, as the number of slots is equal to

the number devices using the orthogonal allocation matrix:

A⊥ =



1 0 0

0 1 0

0 0 1


 ,

or any matrix that is identical up to a permutation of the columns leads to a decodable frame with

probability 1.

The transmission protocol using FSA with soft scheduling is found in Alg. 3

Usage of FSA with soft scheduling raises two questions:

1. How should the allocation matrix A should be chosen?

2. How is information about the devices’ activity distribution pXt can be obtained?
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Algorithm 3: GFRA using FSA with soft scheduling.

1 (Downlink) Sync signal sent by the BS to indicate beginning of the first frame and inform devices
about the allocation matrix A.

2 while True do
3 (Uplink) Each active device n sends its preamble bn on a common control channel.
4 (Local at devices) Each active device n randomly selects its transmit slot rn according to the

probability distribution An.
5 (Uplink) Each active device n sends its data on the slot rn.
6 (Local at BS) BS decodes data present in each slot k.
7 (Local at devices) Wait for beginning of next frame.
8 end

Design of the Allocation Matrix

In these type of multiple access protocols, we are interested in the expected performance of the
algorithm, not the performance of an individual frame. The allocation matrix A can be optimized
offline using common optimization methods, based on some knowledge of the activity statistics. In
the first paper to investigate soft scheduling, [57], the marginals of the distribution Pr(X = x) as well
as its pairwise correlations are assumed to be known. The inclusion/exclusion principle is then used
to compute upper and lower bounds on the expected throughput a given allocation matrix A provides.
Heuristics are then developed to find an allocation matrix that maximizes the throughput. In [85],
the throughput maximization problem, considering only pairwise correlation between devices, is
transformed into a quadratic program, and it is shown that the matrices maximizing the throughput
are all binary.

In [117, 118], the optimization of the allocation matrix A is performed in an online manner: in
each frame the activity vector Xt is assumed to be known, allowing to compute a stochastic gradient
of the throughput. As a result, algorithms similar to SGD (described in Section A.2) can be used to
provably converge to a stationary point of the throughput. This method thus does not require a
priori information about the distribution pXt but needs error-free observations of the realizations
Xt ∼ pXt to guarantee convergence to an allocation matrix having good expected performance.

Nevertheless, device identification occurs over wireless channels, with a variable reliability, we
might wonder what would be the implication on the network of either not detecting active devices
or miss-identifying them.

Q1: What is the impact of having device identification errors when optimizing the allocation
matrix A?

Q2: What can be done to mitigate the eventual performance loss?
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2.2.7 Channels with Multiplicative Noise

Multiple user single input single output (MU-SISO)

The multi-user AWGN is powerful to abstract the PHY layer in order to focus on the design on
MAC layer, however it is interesting to consider a more advanced PHY layer as it can also provide
possibilities to recover the collisions that might appear. Starting from 2.9, we can now explicitly
introduce the channel multiplicative noise:

yk =
N∑

n=1

δn,kxnhn
√
Pndn +wk (2.12)

yk =
∑

Ak

hn
√
Pndn +wk, (2.13)

where Pn ∈ R is the transmit power of device n, and hn ∈ C is known as the channel coefficient, which
represent the effect of the propagation (distance, reflections, obstacles) between the transmitted
signal and the received signal. The coefficient hn is random and consists of three components:

• Path loss, accounting for the reduction of the signal power as it propagates through space. It
depends on the distance between the transmitter and the receiver, and is expressed in dB:

PL(ρn) = −10η log10(ρn),

with ρn is the distance between device n and the BS, and η > 1 is the pathloss exponent
that depends on the environment and the technology used. Different values for η and more
elaborated pathloss models can be found in [76]. Some example are: η = 2 for transmissions in
free space, η ≤ 2 for transmission in "waveguided" environments like corridors, η = 2.6 in an
office and η = 3 in a house.

• Shadowing, representing possible physical obstacles between the transmitter and the receiver
and brings an additional attenuation to the signal. The shadowing is strongly dependent on
the environment considered, and allows to model spatially correlated channel coefficient. A
commonly used model is the log-normal shadowing [32, 41]. The shadowing term for device n,
in dB, is Shn ∼ N (0, σ2

Sh).

• Fading, modeling the reflection of the signal on different surfaces. Different fading models
exist, the most famous and most used being the Rayleigh channel when fn ∼ CN (0, σ2

fI). The
Rayleigh fading stands for the effect of multiple reflections of the signal on different surfaces
without a dominating line of sight, as such the amplitude |fn| follows a Rayleigh distribution

fR(x) =
x
σ2
f
e
− x

2σ2
f . Another popular propagation model is the Ricean fading [88], used when a

dominating line of sight between the device and the BS is present.
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The overall coefficient between the antenna of the device and the antenna of the BS taking into
account these three components is:

hn = fn

√
10

PL(ρn)+Shn
10 (2.14)

A channel model like (2.14) will be used in Chapter 4.

Multiplexing in the Power Domain: Capture Effect and SIC

Suppose a single active device is transmitting data with power P over a channel like (2.13). The
receive power of this packet is Pr = |h|2P and its associated signal to noise ratio (SNR) is :

SNR =
Pr

σ2
(2.15)

=
|h|2P
σ2

, (2.16)

where σ2 is the variance of the Gaussian noise w. Assuming, the PHY layer is working optimally we
can assume that the transmission of the packet will be successful if SNR > γ, γ > 0.

Considering now several active devices, the signal to interference plus noise ratio (SINR) of
device n can be expressed as:

SINRn =
|hn|2Pn∑

m∈Ak\{n} |hm|2Pm + σ2
. (2.17)

Under what conditions the data of device n can still be decoded? If the SINR of device n is still
higher than the threshold γ then we can assume that the packet will be correctly decoded. This
phenomenon is known as capture effect and is well studied in MAC protocols like FSA [90, 109] or
more recently IRSA [22].

If a packet was decoded then, instead of considering it as noise for the other devices, we can seek
to remove it from the received signal allowing to increase the SINR of the other devices. Repeating
this process iteratively until either all packets are decoded or no packets are transmitted with enough
power gives the SIC algorithm at the basis of PD-NOMA. Then a question to consider is which
device should be decoded first? A commonly used heuristic is, for the BS to order the devices in
terms of receive power and to try to decode first the device with the highest receive power, then if
decoding is successful, proceed to the decoding of the device with the second highest receive power,
etc. Other heuristics can also be considered and finding a good ordering is the topic of many paper
[25, 26, 27]

Example 2.2.3 (Power levels in AWGN). Suppose a multi-user AWGN channel with σ2 = 1 is used

and the base station implements a SIC receiver. The SINR threshold above which the transmission is
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assumed to be decodable is γ = 1. Devices transmit at different power. The channel is thus:

y =
N∑

i=1

√
Pidi + n. (2.18)

The construction of the transmit power vector ensuring that all devices have a sufficient SINR to be

decoded is as follows:

1. The first device should be able to transmit only in the presence of noise: SINR1 = P1
1 > 1 ⇒

P1 = 1 + ϵ1, ϵ1 > 0,

2. The second device should be able to transmit in the presence of the first device and the noise:

SINR2 =
P2

P1+1 > 1⇒ P2 = 2 + ϵ2, ϵ2 > ϵ1,

3. The third device should be able to transmit in the presence of the two first devices and the noise:

SINR3 =
P3

P1+P2+1 > 1⇒ P3 = 4 + ϵ3, ϵ3 > ϵ2,

4. . . .

5. The last device should transmit at power PN = 2N−1 + ϵN , ϵN > ϵN−1.

In practice, the number of power levels is strictly limited by the maximal transmit power PMAX, defined in

the standard of the technology used or constrained by some regulations. Furthermore, the definition of

power levels becomes unclear whenever more than one antenna is used at the BS, as it depends on

how the different observations on each antenna are combined [111].

Example 2.2.3 showcases that a set of devices can interfere but still be fully decodable by using a
SIC decoder and properly selected transmit powers. In the case of FSA with soft scheduling, the set
devices choosing the same slot is indirectly controllable through the allocation matrix A. As such, it
would be preferable to ensure that devices that are likely to transmit on the same slot, transmit at a
power that allows their decoding.

Q3: In models similar to (2.12), can the selection of the resource δ be optimized jointly with
the transmit power of the devices ?

Multiple user multiple input multiple output (MU-MIMO)

To further increase the reliability of the channel, it is common to assume that the BS and the devices
possess several antennas. The main advantage is to reduce the effect of bad channel condition or of
high noise variance. The antennas of the transmitter can be used in different ways:

• sending several symbols in parallel,

• sending a function of the symbols sent on some antennas on the other antennas (repetition,
linear combination) to give the receiver extra information on the symbols sent,

The number of independent symbols sent in parallel is referred as the rank, the number of layers, or
the number of streams. We will interchangeably use these three terminologies.
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The channel coefficient described in (2.14) becomes a matrix Hn ∈ CNr×Nt with elements
representing the channel conditions between receive antenna i and transmit antenna j :

hn,i,j = fn,i,j

√
10

PL(ρn)+Shn
10 , (2.19)

where the pathloss and shadowing term are constant across the different antennas because they only
depend on the position of the device n, only the random fading factor depends on the (i, j) pair.

In the uplink channel, we can define Nt the number of transmit antennas of the devices, which
we assume to be the same for all devices, and Nr the number of the receive antennas of the BS. We
can define the MU-MIMO system:

Yk =

N∑

n=1

δn,kxnH
H
nQn

√
diag(Pn,k)Dn +Wk (2.20)

=
∑

n∈Ak

HH
nQn

√
diag(Pn,k)Dn +Wk, . (2.21)

As there are several transmit antennas, more data symbols can be sent in parallel, hence we
have νn ≤ Nt the number of parallel data streams used by device n, Dn ∈ Cνn×L, Yt

k ∈ CNr×L,
Wn ∈ CNr×L, Qn ∈ CNt×νn , the precoder spreading the data symbols on the transmit antennas,
and Pn ∈ Rνn the vector of transmit power on each data stream of device n. The system can be
further expressed as:

Yk = H̃H
kDk +Wk. (2.22)

H̃H is the effective channel obtained by stacking the matrices {HH
nQndiag(Pn,k), ∀n ∈ Ak} column

wise and Dk is obtained by stacking the matrices {Dn, ∀n ∈ Ak} row wise.

Example 2.2.4 (Increase in diversity). Suppose that Nt = 4, it is possible to send the symbols on the two

antennas simultaneously to increase diversity in the observations of the BS, increasing the probability of

correctly decoding the symbols. In this case ν = 1 and Q = 1
2

[
1 1 1 1

]T
.

Example 2.2.5 (Precoder in 5G). If the quality of the channels are good, then sending 4 repetitions

might be considered as a waste of power, it is then possible to double the number of sent symbols by

creating two parallel data stream. For example a possible precoder used in 5G, to send two parallel

streams over four antennas is the following [37, Table 5.3.3A.2-3]:

Q =
1

2




1 0

1 0

0 1

0 −j



.

The symbols of the first stream are sent using antennas 1 and 2 and of the second stream using antennas

3 and 4.
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The precoders of Examples 2.2.4 and 2.2.5 work by being agnostic to the channel (they do not
depend on H). It is also worth noting that some other precoder spread the symbols over the antennas
and over several channel uses, giving rise to space-time bloc codes (STBCs), like Alamouti coding
[6]. Such codes are not considered in this thesis.

The usage of a MU-MIMO channel as described in Eq(2.20) can bring additional opportunities
to enable the decoding of devices sharing the same resources. In particular if the channels Hn are
known, either at the transmitter (channel state information at transmitter (CSIT)), the receiver
channel state information at receiver (CSIR), or both (channel state information at transmitter and
receiver (CSITR)), they can be exploited to provide spatial multiplexing.

Spatial Multiplexing

If the channel is known at the transmitter (CSIT), specific precoders depending on the channel can
be applied to (2.20) to limit as much as possible the interference between the devices. However,
computing these precoders can be computationally intensive as they often rely on matrix inversion
and thus might not be suited for MTC and IoT networks. The BS, having less computational
constraints is better suited perform such tasks. Assuming a CSIR scenario, the devices send their
data being agnostic to the channel and the BS implements a decoder to recover the transmitted
packets in presence of interference. We review here three main linear decoders: maximum ratio
combining (MRC), zero forcing (ZF), minimum mean squared error (MMSE).

• MRC is a decoder that seeks to maximize the receiver power of the signal of a given device,
by reapplying the channel of the devices we seek to decode to the received signal Yk It is
expressed as:

MMRC,n = H̃n. (2.23)

The resulting best approximation (in terms of received power) D̃n of Dn sent over resource k

is thus:

D̃n = MMRC,nYk (2.24)

= H̃n


∑

n∈Ak

H̃H
nDn +Wk


 (2.25)

= H̃nH̃
H
nDn +


 ∑

m∈Ak\n
H̃nH̃

H
mDn + H̃nWk


 . (2.26)

Conceptually, a MRC receiver is trying to focalize the signal is seeks to decode. As a result,
the received power of the signal from the device is maximized, however, the interference from
the other transmitting devices is not taken into account. If the product HnH

H
m is close to

the null matrix 0 then device m will not interference with device n, but no guarantees are
provided.
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• ZF is another decoder that seeks to reduce as much as possible the interference from the other
devices. Starting from the effective channel model (2.22), we can express the ZF matrix as the
Moore Penrose pseudo inverse of the channel H̃H

n :

MZF,n =
(
H̃nH̃

H
n

)−1
H̃n. (2.27)

Which applied to Yk, allows to cancel the channel of the device:

D̃n = MZF,nYk (2.28)

=
(
H̃nH̃

H
n

)−1
H̃n


∑

n∈Ak

H̃H
nDn +Wk


 (2.29)

= Dn +


 ∑

m∈Ak\n

(
H̃nH̃

H
n

)−1
H̃nH̃

H
mDn +

(
H̃nH̃

H
n

)−1
H̃nWk


 . (2.30)

If some channels are almost colinear, the Moore Penrose pseudo-inverse will likely contain
diverging coefficient, leading to poor performances.

• MMSE is a decoder similar to ZF but that seeks to minimize the mean square error. It is also
more robust than ZF as it does not tend to diverge.

MMMSE,n =
(
H̃nH̃

H
n + σ2I

)−1
H̃n. (2.31)

Adding the term σ2I, before the matrix inversion, allows avoiding having matrices that are
almost singular and thus results in more stable results.

In a network whose channel model is like (2.20), three parameters are easily tunable: the resource
selection δ over which the base station might or might not have direct control (depending on whether
the network is RACH-based or GFRA), the transmit power P and the number of streams used by
each device νn.

Q4: In a similar spirit as Q3, can δ, P, and νn be jointly optimized?

The uplink channel model is now completely defined. The following chapters will use different
variations of the channel model (2.20) to present algorithms that to appropriately select the transmit
resources δ, the transmit power P, and/or the precoder Q under various constraint but also as a
function of the activity distribution pX of the devices.
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2.3 Measuring the Performance of an Allocation

2.3.1 Throughput
The key performance metric we will use throughout this thesis is the throughput.

In a framed network (2.4) we can define the throughput of each device as the rate of packets that
are received during a period of time (between frame index t1 and frame index t2) (t1, t2) ∈ N2, t1 < t2:

Tn =
Number of packets received from device n between t1 and t2

t2 − t1
, (2.32)

and is expressed in packets per channel use. The throughput can be affected by the different
PHY layer parameter like the variance of the additive Gaussian noise, or the presence of channel
multiplicative noise between the device and the BS. If we make the assumption that the PHY layer
is properly optimized, no packet loss occurs meaning that the throughput of a P2P network with a
device sending a packet per frame is always 1.

In a multi-user network (2.4), because of the limited amount of resources, collisions might occur
and reduce the throughput of some devices. We define by T =

[
T1, . . . TN

]
the vector of throughputs.

The multiple access strategy (selection of transmit resources δ) used will lead to different individual
throughput values and different properties on the vector T. Examples of different commonly desired
properties are:

• Tn = Tm, ∀n,m (egalitarian rule),

• max
∑N

i=n Tn, (max sum throughput),

• max
∑N

n=1 un, with un a utility function (utilitarian rule), measuring the utility that a device
makes of the resources,

• maxminn Tn (maximin rule),

• proportionally fair: an allocation T is proportionally fair if for any other allocation T′:
∑N

n=1
T ′
n−Tn

Tn
≤ 0, meaning that any change in allocation T will induce an average negative

change,

• α-fair [74]: an allocation T is α-fair if for any other allocation T′:
∑N

n=1
T ′
n−Tn

Tα
n
≤ 0, where α

is a hyperparameter controlling the trade-off between the throughput and fairness. Interesting
values are α = 0 leading to max sum throughput, α = 1 giving proportional fairness, α =∞
giving the maximin rule.

The definition and assignation (indirectly via the multiple access strategy) of throughput to
devices is thus a resource allocation problem. Generally, finding an allocation satisfying desired
properties implies solving difficult optimization problems [15, 48, 74], in particular, if the objective
or the constraints contain non-convex or non-differentiable functions.
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2.3.2 Success Rate, Collision Rate
The throughput only gives insight on the number of packets received by the BS but doesn’t give
information on whether all packets of a particular device have been received. A device with a low
throughput could be either a device with a high communication need and a high packet loss (e.g.
due to collisions) or a device with a low communication need that doesn’t suffer from collisions.

Similarly to the throughput, the success rate of device n between frames t1 and t2 is defined as:

Sn =
Number of packets received from device n between t1 and t2
Number of packets transmitted by device n between t1 and t2

. (2.33)

In a network where only collisions are source of packet loss like in (2.9), the collision rate of device n

is:

Cn = 1− Sn. (2.34)

Both the success rate and the collision rate can be thought as a utility function of the throughput.
If a device has a success rate of 1, then allocating more resources to that particular device, will not
increase further its throughput as the current allocation already satisfies its need.

2.3.3 Jain’s Index: a Fairness Measure

For a given vector of utility u =
[
u1 . . . uN

]
(throughput, success or collision rate...), one might

wonder whether the allocation that is made is fair. Situation where the utility function is high for
some devices and close to 0 for others might be perceived as unfair while situations where all devices
have an equal utility can be seen as maximally fair. The Jain’s index [51] can help get insight on
whether an allocation is fair:

J(U) =

(∑N
n=1 Un

)2

N
∑N

n=1 U
2
n

. (2.35)

The index ranges between 1
N and 1, 1 being attained when the allocation induces an equal utility for

each device and J(U) = n
N when n devices have an equal utility and N − n devices have a utility of

0.

2.3.4 Case Study: Throughput and Fairness Trade-off
In the case of FSA with soft scheduling (described in Alg. 3), the allocation matrix A is key to
decide which device transmit in which slot and to control how likely some devices will collide. Thus,
different allocation matrices will lead to different throughput vectors. Furthermore, the sporadicity
of the network model (2.9) also affects the utility that a device makes out of a resource.

Considering that the distribution of the activity vector X ∼ pX is stationary, the throughput
(2.32) of any device n can be defined over a single frame (t2 = t1 + 1) regardless of the frame index
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t1. As a result, the average throughput per frame of device n, is the probability that no other active
device will collide with device n whenever it seeks to transmit. It can be expressed as:

T (A, pX)n = EX∼pX


Er∼A




K∑

k=1

Xn1{ri = k}
∏

m ̸=n

(Xm1{rm ̸= k})






= EX∼pX


Er∼A




K∑

k=1

Xn1{ri = k}
∏

m ̸=n

(1−Xm1{rm = k})






= EX∼pX




K∑

k=1

XnAn,k

∏

m̸=n

(1−XmAm,k)


 . (2.36)

Moreover, the collision rate of device n can be expressed as a function of its throughput:

C(A,p)n = 1− T (A,P)n
EXn∼pXn

[Xn]
, (2.37)

where pXn is the marginal of pX for device n.

Example 2.3.1 (Independent but heterogeneous network). Consider a network of N = 4 devices and

K = 3 slots where devices are independent but not equally likely to be active in each frame, X ∼ Ber(p)

with p =
[
0.2 0.3 0.4 0.6

]
. The throughput of devices in the network can be expressed using (2.36):

T (A,p)n =

K∑

k=1

pnAn,k

∏

m ̸=n

(1− pmAm,k).

The normalized sum-throughput is then computed as:

TN (A,p) =
1

EX∼pX [
∑N

n=1Xn]

N∑

n=1

T (A,p)n (2.38)

=
1

∑N
n=i pn

N∑

n=1

T (A,p)n. (2.39)

It represents the average transmission success rate, with TN (A,p) = 1 whenever all packet of all

devices in the network are successfully decoded. However, in the case of networks with heterogeneous

activity, maximizing the sum-throughput often leads to sacrificing the devices least active in order to

favor devices having the biggest impact on this metric.

Table 2.1 shows the throughput vector, the normalized sum-throughput and the Jain’s index for

different matrices. The ALOHA matrix achieve a poor normalized sum-throughput but because all

devices are equally likely to use any slot, the fairness index in terms of collision rate is higher, even

though device 4 as a collision rate that is 0.1 lower than device 1. Athr achieves the highest normalized

sum-throughput by assigning a collision free slot to the two most active devices, providing an increase of

≈ 36%, but this comes at the price of a low Jain’s index J(T) as the individual throughput values are

quite disparate and a highly unfair distribution of the collisions because only the two first devices have a
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AALOHA Athr Afair Atd

A




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3







1 0 0

1 0 0

0 1 0

0 0 1







0 0.83 0.17

0.93 0.07 0

0 0.51 0.49

0.44 0.01 0.55







0.26 0.65 0.09

0.13 0.79 0.08

0.1 0.06 0.84

0.95 0.03 0.02




T [0.12 0.19 0.27 0.44] [0.14 0.24 0.4 0.6] [0.14 0.21 0.29 0.45] [0.13 0.23 0.35 0.52]

TN (A,p) 0.68 0.92 0.74 0.81

J(T) 0.83 0.80 0.85 0.81

C [0.38 0.35 0.33 0.27] [0.3 0.2 0 0] [0.26 0.27 0.27 0.25] [0.36 0.24 0.13 0.14]

J(C) 0.986 0.48 0.999 0.83

Table 2.1: Individual throughput T, normalized sum-throughput TN (·) and Jain’s Index J(·) for different al-
location matrices in a network of independent devices with activity probabilities p =

[
0.2 0.3 0.4 0.6

]
.

risk of having collisions. On the contrary, the matrix Afair achieves the highest collision fairness, with

a collision rate that is almost equal for all devices, and outperforms AALOHA in terms of normalized

sum-throughput and collision fairness, indicating AALOHA is not on the Pareto front of the trade-off

between TN (·) and J(C). Note that component-wise, the throughput vector of Afair is higher than the

one of AALOHA and the collision rate vector of Afair is lower than the one of AALOHA. Finally, we can

try to balance the three metrics and use matrix Atd.

Example 2.3.1 shows the interest of tuning the allocation matrix A to the statistics of the
network. By doing so, a fine control over of the performances and the properties of the network can
be operated.

2.4 Conclusion
In this chapter, we introduced the different models that we use in this thesis as well as the relevant
literature. In the following chapters, we will with develop different resource allocation methods in
the context of MTC and eMBB. Table 2.2 present which models are used in the different Chapters.

We first consider, in Chapter 3, an IoT network with an access policy based on FSA with soft
scheduling (Alg. 3). The allocation matrix A is optimized iteratively, frame after frame, based on
the activity vector X that might contain errors. Chapter 3 answers to Q1 and Q2; it studies the
impact of uncertainty in the optimization of the resource allocation and present ways of mitigating
the performance loss.

Then, Chapter 4, still using GFRA, but under the assumption of error-free activity vector X,
answers to Q3; we add resources from the power domain and propose to jointly optimize the slot
selection matrix A and the transmit power of the devices. Furthermore, we exploit the correlations of
the underlying process driving the activity of the devices to improve the throughput of the network.
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Model (PHY) Selection of resources (MAC)
Chapter 3 (2.9) Alg.3
Chapter 4 (2.20) (with Nt = 1) Alg.3
Chapter 5 (2.20) RACH (Fig.2.5a)

Table 2.2: PHY/MAC models used in the different chapters of the thesis.

Finally, in Chapter 5, in the context of an eMBB network, we explore the possibility and the
interest of jointly optimizing several transmission parameters: the power, the PRBs and the rank of
each device of the network, allowing to answer to Q4.

36 Chapter 2. System Model - State of the Art



3 Slot Allocation with Imperfect
Device Detection

CHAPTER

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Device Activity and Resource Selection . . . . . . . . . . . . . . . . . . . . 41

3.2.2 GFRA Protocol and Device Identification . . . . . . . . . . . . . . . . . . . 42

3.2.3 Feedback of the Allocation Matrix A . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Stochastic Resource Allocation Problem . . . . . . . . . . . . . . . . . . 43

3.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Stochastic Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Mitigating Errors in Activity Estimation . . . . . . . . . . . . . . . . . . 46

3.4.1 Impact of Activity Estimation Error . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Unbiasing Gradient Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4 Computing the Importance Weight . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Parameters and Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Symmetric Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.3 Asymmetric Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.4 Errors Arising from GAMP-Based Detection . . . . . . . . . . . . . . . . . 55

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

37



3.0 Summary
Driven by the need of reliable GFRA protocols, there has been an interest in designing FSA algorithms
for networks with heterogeneous activity probabilities, in particular FSA with soft scheduling, as
described in Chapter 2.2.6. These works have established that the throughput can be significantly
improved over a standard FSA with uniform slot allocation. However, the algorithms for optimizing
the probability a device accesses each slot require perfect knowledge of the active devices within each
frame. In practice, this assumption is limiting as device identification algorithms in GFRA rarely
provide activity estimates with zero error. In this chapter, we seek to answer to question Q1 and
Q2. To do so, we study the impact of having only limited knowledge of the activity statistics and
propose a new algorithm to optimize the access policy in the presence of activity estimation errors.

This Chapter is based on the work published in J3, C3 and C4 (resp. [52, 54, 55]).

3.1 Introduction
A challenge in large-scale multiple access is ensuring reliable transmissions while efficiently utilizing
resources and limiting latency. One approach to this challenge in cellular systems is GFRA, described
in Chapter 2.2.4 [20, 28, 67, 94], where active devices transmit a preamble immediately followed by
data transmission. In contrast with the random access channel (RACH) procedure, GFRA does not
require a response from a base station before transmitting a data packet. As a consequence, the
access delay is reduced.

While the RACH procedure provides devices with reserved resources, this is not the case for
GFRA. As such, devices must select their own resources, such as the time slot they will use for data
transmission. Contention resolution is therefore a critical problem in GFRA, requiring a careful
selection of slots by devices in order to reduce re-transmissions.

Due to the lack of coordination in GFRA and limited information about the statistics of the
network, slot selection policies are often based on variants of FSA [90]. In the original form of FSA
[109], active devices randomly select a single slot within a frame in a uniform fashion (Alg. 1).

Other variants of FSA have also been proposed where devices may utilize more than one slot in
a single frame including IRSA [68] (Alg. 2) and CSA [78]. Nevertheless, slotted ALOHA remains
the de facto MAC protocol used IoT applications [112, 113], in particular when the average number
of active devices is close to the number of available resources.
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3.1.1 Related Work
A ubiquitous assumption in the design of random access protocols is that devices are homogeneous;
namely, each device is active independently within a frame with a common probability. This
assumption applies to the classical FSA protocols [109], as well as recent work focusing on stability
[112] and age of information (AoI) minimization [49, 113].

The homogeneity assumption is also the basis of variants of FSA. In the CRDSA scheme [14],
two identical copies of a data packet are transmitted in two different slots. Due to the repetitions,
the reception of a single packet is sufficient to decode the data. The performance can be further
improved by utilizing SIC [106], where successfully decoded packets can be subtracted from other
slots allowing for additional packets from other devices to be decoded. The IRSA scheme [68]
improves upon CRDSA by allowing for additional repetitions, with the quantity selected from a
probability distribution known to the base station. Decoding of data packets is achieved via message
passing algorithms analogous to decoding of low-density parity check (LDPC) [38]. In recent work,
the impact of SIC has been investigated [97] and tailored to device identification algorithms [100].

CSA [78] generalizes IRSA by splitting a data block into several packets and applying a packet-
level linear block code. This yields coded packets instead of repetitions as in CRDSA and IRSA. The
code for each device is selected from a predefined set according to a code probability distribution. As
for IRSA, decoding at the base station is achieved via message passing algorithms. Recent work has
investigated code distribution design for erasure channels [116], the impact of interference cancellation
errors [31], the optimization of the power distribution [101], and the impact of time-dependence in
packet arrivals for individual devices [98].

In practice, the homogeneity assumption may not hold, either due to heterogeneous activity
probabilities or statistical dependence in the activity of multiple devices. For example, devices may
be sensors that observe different phenomena and have heterogeneous activity probabilities. Sensors
may also observe a common phenomenon, which induces correlation in their activity.

As the homogeneity assumption is ubiquitous, a key question is whether any heterogeneity in
device activities can be exploited in order to improve the performance of slotted ALOHA schemes.
As FSA is the basis of modern multiple access systems in the context of the IoT [112], it is natural
to first relax the homogeneity assumption for this family of protocols.

To this end, in [57], a new variant of FSA has been proposed in order to account for heterogeneity
in the activity of the devices. In this scheme, the probability that a given active device accesses each
slot is optimized based on the joint probability distribution of the device activities. The main benefit
of this approach is that devices with high activity probabilities or correlation can be allocated in
different slots. As a consequence, the probability of contention can be significantly reduced, leading
to an improved throughput.

Two key difficulties arising in the approach proposed in [57] are: (i) obtaining knowledge of the
activity distribution; and (ii) optimizing the slot allocation probabilities for each device. In [57],
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these difficulties were addressed by assuming known pairwise correlations between device activities
and utilizing a heuristic method to optimize the allocation probabilities based on upper and lower
bounds on the expected throughput.

In [118], the two key difficulties (i) and (ii) were addressed via a data-driven approach. In each
frame, the activity of each device, rather than the probability distribution, was assumed to be
known. The slot allocation probabilities were then updated frame after frame via SGD. In [117,
118], contention was further managed by exploiting SIC at the physical layer. The slot allocation
probabilities were then chosen to maximize the expected sum-rate or the expected number of devices
with a SINR exceeding a desired threshold.

3.1.2 Main Contributions
The schemes in [57, 117, 118] were shown to significantly improve the performance in comparison
with the standard FSA scheme by exploiting heterogeneity in the distribution of the device activities.
However, it was assumed that either the probability distribution of device activities or the device
activity in each frame is perfectly known.

In practice, preamble detection and packet decoding is rarely error-free in large-scale multiple
access systems [59, 119], even when device heterogeneity is accounted for [17, 18]. Similarly, advanced
NOMA transmissions based on blind signature classification [77] also have classification errors.
Moreover, the impact of imperfect knowledge of device activities in each frame affects system
performance is poorly understood, as well as how to mitigate the impact of activity estimation errors
on the optimization of slot allocation probabilities.

In this chapter, we propose a throughput maximization algorithm to optimize slot allocation
probabilities in FSA accounting for imperfect knowledge of device activities. Our main contributions
are as follows:

(i) We demonstrate that the algorithms recently proposed in [117, 118] can be highly sensitive to
activity estimation errors, leading to a suboptimal throughput. This is significant as, in the
absence of activity estimation errors, these algorithms achieve a high performance. Moreover,
we show that the suboptimality arises from bias in gradient estimates due to estimation errors.

(ii) To mitigate the impact of the bias arising from activity estimation errors, we exploit importance
weighting in a manner analogous to sample bias correction [114] and bias reduction in private
synthetic data [40]. We prove that by weighting the gradient estimates in the stochastic
optimization algorithm in [117, 118], the slot allocation probabilities converge to a stationary
point with probability one.

(iii) In practice, the weight on the gradient estimates requires the evaluation of the true activity
distribution and the imperfect activity distribution induced by erroneous activity estimation.
As these distributions may be difficult to obtain, we propose heuristic weights that are readily
available in practical systems, leading to new stochastic optimization algorithms for the slot
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allocation probabilities.

(iv) The proposed algorithms are validated by an extensive numerical study under different types of
errors. Several models of activity estimation errors are considered, including independent and
symmetric or asymmetric errors and a realistic error model based on generalized approximate
message passing (GAMP) [18] arising in pilot-based device identification. Under each model
for activity estimation errors, numerical results show that our algorithm is robust to activity
estimation errors. Moreover, our algorithm leads to performance improvements over the
algorithms in [117, 118], which do not account for activity estimation errors.

This chapter is organized as follows: in Section 3.2 we detail the system model. In Section 3.3,
we recall the stochastic resource optimization algorithm in [117, 118], which does not account for
activity estimation errors. In Section 3.4, we study the impact of activity estimation errors and
develop a new stochastic resource optimization algorithm to mitigate the errors. In Section 3.5, we
present a numerical study comparing our new algorithm with existing methods that do not account
for activity estimation errors. In Section 3.6, we conclude.

3.2 System Model
Consider a network consisting of a BS equipped with Nr antennas and N devices equipped with
a single antenna. Transmissions by active devices occur in frames over a single subcarrier using a
protocol similar to NB-IoT each frame containing K slots.

3.2.1 Device Activity and Resource Selection
Within a given frame, each of the N devices are either active or inactive. The activity of device n in
frame t is represented by the binary Bernoulli distributed random variable Xt

n ∼ Ber(pn), where
pn ∈ [0, 1] is the probability that device n is active. That is, Xt

n ∈ {0, 1} with Xt
n = 1 if device n is

active and Xt
n = 0 otherwise. The activity vector in frame t is then denoted by Xt ∈ {0, 1}N and we

denote the vector of device activity probabilities by p = [p1, . . . , pN ] ∈ [0, 1]N . To simplify notations,
we write in the remaining of this chapter Xt ∼ p instead of Xt ∼ Ber(p). We make the following
assumptions for Xt, t = 1, 2, . . .:

(i) Xt
n is independent of Xt

m, m ̸= n.

(ii) Xt is independent of Xt′ , t′ ̸= t, t ∈ N.

(iii) p is not perfectly known to the access point. In the following sections the imperfect knowledge
of p is denoted by p̃.

In GFRA, each active device selects the time-frequency resources utilized for data transmission
without coordinating with the access point nor any other devices. In the absence of any coordination, a
common policy for resource selection is the classical FSA protocol [109]. As described in Chapter 2.2.6,
a more general policy allows devices to select resources with different probabilities. In this policy,
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the resource allocation matrix A ∈ RN×K
+ describes the probability that a given device chooses a

particular slot.

Ank = Pr(device n selects resource k|Xn = 1) (3.1)

3.2.2 GFRA Protocol and Device Identification
A generic resource selection and data transmission protocol using a pilot-based identification is
given in Alg. 4. Specific protocols vary in how device identification information is communicated
to the access point. In the sequel, device identification is critical for optimization of FSA with
heterogeneous device activity distributions. We consider two types of protocols where device
identification information is included within the preamble or in the data packet.

Algorithm 4: Grant-Free Random Access Protocol.

1 (Downlink) Sync signal sent by the BS to indicate beginning of the first frame and inform devices
about the allocation matrix A.

2 while True do
3 (Uplink) Each active device n sends their preamble bn on a common control channel.
4 (Local at devices) Each active device n randomly selects the slot rn with probability Anrn .
5 (Uplink) Each active device n sends their data on the selected slot rn.
6 (Local at BS) BS decodes data present in each slot k.
7 (Local at devices) Wait for beginning of next frame.
8 end

Identification at the PHY Layer: Device Identification in the Preamble

In GFRA, each time a device seeks to transmit, it randomly selects a preamble from a set of
preambles and transmits it for identification purposes. In this chapter, we will neglect the probability
that two devices use the same preamble. We can thus conceptually assume that each device n is
assigned with a unique preamble of length L, bn ∈ CL that remains the same regardless of the frame
index. In each frame, the preamble of each active device is then transmitted over a block fading
control channel consisting of L symbols, represented by the Pilot slot of Fig. 2.6b. The output of
the control channel in frame t, Yt ∈ CL×Nr , is given by

Yt = BHt +Wt, (3.2)

where B = [b1, . . . ,bN ] is the matrix of preambles, Ht ∈ CN×Nr is the matrix of channel coefficients
for all devices and BS antennas, and Wt ∈ CL×Nr is the additive white Gaussian noise.

Given the channel output Yt
Pilot of the pilot slots, an estimate of the channel coefficients Ĥt

and of the activity vector X̂t can be obtained. This is typically achieved via approximate message
passing algorithms such as the GAMP algorithm in [18]. Active devices then transmit their data by
randomly selecting a data slot based on the allocation matrix A. Data decoding is carried out by
exploiting the estimate of the channels Ĥt obtained from the GAMP algorithm.
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Identification at the MAC Layer: Device Identification in the Data

An alternative approach is to utilize the preambles only for the purpose of channel estimation. In
this case, the protocol proceeds in the same fashion as in Sec. 8; however, the output of the pilot slot
Yt

Pilot is only used to estimate the channel coefficients, Ĥt, of the active devices. Active devices then
transmit their data as well as a unique identifier in a slot randomly selected based on the allocation
matrix A. The key difference is that data decoding reveals both the data of the active devices and
their identity. As a consequence, the activity estimate X̂t is only obtained after data decoding.

3.2.3 Feedback of the Allocation Matrix A

The GFRA protocol in Alg. 4 does not require a multistep handshake procedure as in the RACH
procedure. However, it is necessary to inform devices of the allocation matrix A in order to select
the resource to be used in each frame. We assume that the activity statistics of the devices typically
do not change significantly over a large number of frames. As a consequence, it is only necessary to
communicate the matrix A to the devices every F frames, where the choice F accounts for downlink
usage constraints.

On the other hand, the BS obtains new information about the activity of each device at each
frame. This information can be utilized to update the matrix A at each frame at the BS, as is
discussed in the following section. We emphasize that the BS does not need to communicate the
updated allocation matrix at each frame.

3.3 Stochastic Resource Allocation Problem
The stochastic resource allocation protocol described in Alg. 4 is common in FSA systems and their
variants. For example, in the simplest form of ALOHA, an equal probability is assigned to each
time slot for all devices. In IRSA and CSA, the slot or code allocation is also randomized [68, 78].
However, these protocols have been designed under the assumption of an equal activity probability
for all devices.

In this section, we formalize the problem of stochastic resource allocation in FSA for devices
with heterogeneous activity probabilities. We present an algorithm based on [118] to optimize the
allocation under the assumption of perfect knowledge of the activities Xt for the throughput objective.
A new algorithm to mitigate the impact of imperfect knowledge of Xt due to preamble detection or
data decoding errors is developed in Sec. 3.4.
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3.3.1 Objective
A key performance metric of a network is the throughput that can be characterized, in the scenario
we consider in this chapter, as the expected number of collision-free transmissions per frame. As seen
in Chapter 2.3.4, given an allocation matrix A and activity vector X, the instantaneous throughput
for device n is given by

Tn(A;X) =
K∑

k=1

XnAnk

N∏

m=1
m̸=n

(1−XmAmk), (3.3)

and the total instantaneous throughput by:

TX(A) =
N∑

n=1

Tn(A;X). (3.4)

After averaging over the activity vector X, the throughput is then

T (A;p) = EX∼p[T
X(A)]. (3.5)

In the case were the activity of each device is independent, the throughput is simplified as

T (A;p) =
N∑

n=1

K∑

k=1

pnAnk

N∏

m=1
m ̸=i

(1− pmAmk). (3.6)

In order to compare the performance of the algorithms in scenarios with different activity probability,
we define the normalized throughput as

TN (A;p) =
1

∑N
n=1 pn

T (A;p).

3.3.2 Stochastic Optimization Problem
An optimal allocation A∗ is a solution to the stochastic optimization problem

A∗ ∈ arg min
A∈RN×K

+ :∑K
k=1 Ank=1, n=1,...,N

−T (A;p). (3.7)

In general, the objective T (A;p) is non-convex in A.

If the distribution p is known to the BS, it is, in principle, possible to obtain solutions to (3.7)
via gradient descent (GD). However, this approach has a very high complexity due to the fact that
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the throughput has 2N terms. Indeed,

T (A;p) =
∑

x∈{0,1}N
Pr(X = x)TX(A). (3.8)

In practice, only limited knowledge of p is available as it must be estimated based on the activity
estimates X̂t obtained from the preamble or data decoding. As the activity estimates are error-prone,
X̂t can be considered as being drawn from another distribution p̂, different from p. An alternative
approach is to directly utilize the activity estimates X̂t to solve the allocation problem in (3.7). As
observed in [118], this can be achieved via projected SGD.

Suppose, for the moment, that the activity vectors X1,X2, . . . for each frame are perfectly known
to the BS. The projected SGD algorithm (summarized in Alg. 5) updates the allocation matrix A

each frame via the recursion

At+1 = ΠH
{
At + γt+1g(At;Xt+1)

}
, (3.9)

where (γt) is a positive step size sequence, ΠH denotes the Euclidean projection on the constraint set

H = {A ∈ RN×K
+ :

K∑

k=1

Aik = 1, i = 1, . . . , N}, (3.10)

and g(At;Xt+1) is a stochastic gradient estimate based on the activity vector Xt+1. In particular,
the gradient estimate for the throughput objective is given by (the superscript t is dropped for the
sake of clarity).

g(A;X) =
N∑

n=1

gn(A;X), (3.11)

g(A;X)ql =

N∑

n=1

gn(A;X)ql

= Xq

N∏

m=1
m̸=q

(1−XmAml)−
N∑

n=1
n̸=q

XqXnAnl

N∏

m=1
m̸=n
m ̸=q

(1−XmAml) (3.12)

where

gn(A;X)ql =





Xq
∏N

m=1
m ̸=q

(1−XmAml) if q = n

−XqXnAnl
∏N

m=1
m ̸=n
m̸=q

(1−XmAml) if q ̸= n

Note that in this case, g(A;X) ∈ RN×K is an unbiased estimate of ∇AT (A;p) = EX∼p[g(A;X)]

due to the absence of device identification errors. As such, under appropriate conditions on the step
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size sequence {γt} and perfect knowledge of X1,X2, . . ., the iterates {At} converge almost surely to
a stationary point of T (A;p) [118].

Algorithm 5: Stochastic optimization algorithm when device identification is error-free.

1 Choose initial allocation matrix A1 ∈ RN×K such that
∑K

k=1A
1
n,k = 1, n = 1, . . . , N , and

step-size sequence {γt} with γt > 0, t = 1, 2, . . .
2 t← 1
3 while not converged do
4 Based on Xt+1 ∼ p, compute an unbiased estimate g(At;Xt+1) of ∇AtT (A;p).
5 At+1 ← ΠH[At + γt+1g(At;Xt+1)]
6 t← t+ 1

7 end

In practice, however, perfect knowledge of X1,X2, . . . is not available to the BS due to errors in
device identification. As we discuss in the following section, this can lead to a significant degradation
in performance.

3.4 Mitigating Errors in Activity Estimation

3.4.1 Impact of Activity Estimation Error
As noted in the previous section, perfect knowledge of device activities X1,X2, . . . is not available to
the BS. A key question is then the impact on the performance of Alg. 5. In fact, errors in the activity
estimates can lead to a significant performance degradation, even in small networks as illustrated in
the following example.

Example 3.4.1. Consider a network consisting of three devices sharing two time slots. The true activity

probabilities of the devices are p =
[
0.3 0.4 0.9

]
. Suppose that the device identification algorithm

is not always able to distinguish between the first and last devices. In particular, with probability ϵ, the

estimated device activity vector available to the BS is in fact governed by p̂ =
[
0.9 0.4 0.3

]
. The

observed distribution is thus p′ = (1− ϵ)p+ ϵp̂.

Fig. 3.1 shows the impact of ϵ on the network throughput T (A) after optimizing A with Alg. 5 for 500

frames. The throughput of standard FSA is also plotted, where every element of the allocation matrix

A is 1
2 . The case ϵ = 0 corresponds to the case of perfect device identification and ϵ = 1 to the case

where the activity vector is always drawn from p̂.

Observe that as ϵ increases (corresponding to a higher probability of errors in the estimation of

X), the throughput significantly decreases compared with the baseline where X has been perfectly

estimated. If the average number of errors is too large, then the resulting throughput is worse than

ALOHA.
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Figure 3.1: Expected throughput with device identification errors for a network of three devices sharing
two slots. Baseline, in pink, corresponds to ϵ = 0. Drawing samples Xt with probability ϵ from p̂ instead
of p (in blue) can reduce the throughput by up to 35%.

3.4.2 Unbiasing Gradient Estimates
In order to develop an algorithm to mitigate the impact of device identification errors, we first
examine the impact of the errors on the SGA algorithm in Alg. 5. To this end, consider the update
rule

At+1 = Π
{
At + γt+1g(At;Xt+1)

}

= At + γt+1g(At; X̂t+1) + γt+1Zt+1, (3.13)

where γt+1Zt+1 is the smallest vector (w.r.t the Euclidean norm) needed to projectAt+γt+1g(At; X̂t+1)

into the constraint set H. We then have

At+1 = At + γt+1
(
EX∼p[g(A

t;Xt+1)] + βt+1 + ∂Mt+1
)

+ γt+1Zt+1, (3.14)

where

βt+1 = EX̂∼p̂[g(A
t; X̂t+1)]− EX∼p[g(A

t;Xt+1)]

∂Mt+1 = g(At; X̂t+1)− βt+1 − EX∼p[g(A
t;Xt+1)]. (3.15)
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Note that Et+1[∂M̃
t+1] = 0, where Et+1[·] is the conditional expectation with respect to the σ-algebra

generated by the iterates up to time t.

In the case that there are no device identification errors, βt+1 = 0, g(At;Xt+1) is an unbiased
estimate of the gradient. Moreover, Alg. 5 is guaranteed to converge to a stationary point under
the hypotheses in Theorem 5.2.10 of [65]. However, when βt+1 ≠ 0, the gradient estimate is biased.
As a consequence, there is no guarantee of convergence, even to a stationary point. The resulting
performance reduction is illustrated in Fig. 3.1.

3.4.3 Proposed Algorithm
Because the performance reduction is due to biased gradient estimates, it is necessary to utilize a
bias reduction method. Bias reduction algorithms have been exploited in various machine learning
problems; e.g., sample selection bias correction [114] and privacy [40]. We now adapt these methods
to our problem.

Consider the weighting function w : x 7→ w(x) for x ∈ {0, 1}N consisting of the ratio between a
target distribution and a proposal distribution, it is defined by

w(x) =
Pr(X = x)

Pr(X̂ = x)
, (3.16)

where X is the true activity vector and X̂ is the estimated activity vector. Suppose that w(x) <

∞, x ∈ {0, 1}N where we adopt the convention that 0
0 = 0. For the purposes of bias reduction, a

key property of w(x) is then that for all A ∈ H,

EX∼p[g(A;X)] =
∑

x∈{0,1}N
g(A;x)Pr(X = x)

=
∑

x∈{0,1}N
g(A;x)w(x)Pr(X̂ = x)

= EX̂∼p̂[w(X̂)g(A; X̂)]. (3.17)

In other words, w(X̂)g(A; X̂) is an unbiased estimate of EX∼p[g(A;X)] as long as w(x) <∞ for all
x such that Pr(X = x) > 0. As such, as we rigorously establish in Theorem 1, this choice of weight
overcomes the key problem preventing convergence of Alg. 5.

Algorithm 6: Stochastic optimization algorithm with device identification errors.

1 Choose initial allocation matrix A1 ∈ RN×K such that
∑K

k=1A
1
n,k = 1, n = 1, . . . , N , and

step-size sequence {γt} with γt > 0, t = 1, 2, . . .
2 t← 1
3 while not converged do
4 Based on the estimate X̂t+1 ∼ p̂, compute a biased estimate g(At; X̂t+1) of ∇AtT (A;p).
5 At+1 = ΠH[At + γt+1w(X̂t+1)g(At; X̂t+1)]
6 t← t+ 1

7 end
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Incorporating the weight w(x) in (3.16) into Alg. 5 leads to Alg. 6. This algorithm has the
following convergence guarantee.

Theorem 1. The iterates At of Alg. 6 converge almost surely as t→∞ to a stationary point provided

that the step size sequence {γt} satisfies

(i) γt > 0, t > 0;

(ii)
∑∞

t=1 γ
t =∞;

(iii)
∑∞

t=1(γ
t)2 <∞,

and w(x) <∞ for all x ∈ {0, 1}N .

Proof. Observe that the update rule can be written as

At+1 = At + γt+1
(
EX̂t+1∼p̂[w(X̂

t+1)g(At; X̂t+1)]

w(X̂t+1)g(At; X̂t+1)− EX̂t+1∼p̂[w(X̂
t+1)g(At; X̂t+1)]

)

+ γt+1Zt+1

= At + γt+1
(
EXt+1∼p[g(A

t;Xt+1)] + ∂M̃t+1
)

+ γt+1Zt+1

= At+1 + γt+1
(
∇AtT (At) + ∂M̃t+1

)
+ γt+1Zt+1, (3.18)

where

∂M̃t+1

= w(X̂t+1)g(At; X̂t+1)− EX̂t+1∼p̂[w(X̂
t+1)g(At; X̂t+1)] (3.19)

satisfies Et+1[∂M̃
t+1] = 0, where Et+1[·] is the conditional expectation with respect to the σ-algebra

generated by the iterates up to time t. The last equality then follows from the identity in (3.17).

To establish convergence, we apply Theorem 5.2.1 in [65]. To do so, we verify the following conditions:

• A.5.2.1:

sup
t

EX̂t+1∼p̂[w(X̂
t+1)g(At; X̂t+1)] <∞, (3.20)

which holds under the assumption that w(x) <∞ for all x ∈ {0, 1}N .

• A.5.2.2: There exists g : RN×M → R such that

EX̂t+1∼p̂[w(X̂
t+1)g(At; X̂t+1)] = g(At), (3.21)

which holds by setting g(At) = ∇AtT (At;p).
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• A.5.2.3: ∇AT (A;p) is continuous, which immediately follows from the definition of T (A;p).

• A.5.2.5: The gradient estimate w(X̂t+1)g(At; X̂t+1) is unbiased, which follows from (3.17).

A further condition on the constraint must also hold. As the same constraint is present in [118] for the

case without errors, the same argument can be applied to complete the proof.

3.4.4 Computing the Importance Weight
Theorem 1 shows that even when there are errors in X̂, Alg. 6 converges to a stationary point for
the problems in (3.7). This is in contrast to the standard SGA algorithm in Alg. 5, for which these
guarantees hold only when there are no errors.

However, the implementation of Alg. 6 requires knowledge of both p and p̂ in order to compute the
weight w(x) in (3.16). In practice, the BS does not have perfect knowledge of p nor p̂. Nevertheless,
estimates can be obtained as follows:

(i) Estimation of the target distribution p: The target distribution corresponds to the prior distri-
bution required by the GAMP algorithm. Knowledge of the prior is obtained via expectation-
maximization algorithms (see [36] for details on GAMP and estimation of the prior). Another
possibility is that the devices can periodically feedback estimates of activity probabilities.
We model the resulting estimated distribution, accounting for errors, by adding a Gaussian
perturbation to the true distribution, p̃ = p+ η, with η ∼ N (0, σ2I), where p̃ is clipped, if
needed, to be between 0 and 1. We denote X̃ ∼ Ber(p̃) and w̃(x) = Pr(X̃=x)

Pr(X̂=x)
the estimated

importance weight.

(ii) Estimation of the proposal distribution p̂: the estimation of p̂ can be achieved by empirical
distribution estimation via the outputs of the device identification algorithm (e.g., GAMP).

As a consequence, the weight w(x) in (3.16) is not perfectly known in practical systems. Nevertheless,
as we show in the following section, an imperfect estimate of the weight w(x) still yields improved
performance over Alg. 5, which ignored the impact of device identification errors.
Moreover, if Pr(X̂ = x) is close to 0, w(x) will be very large. This mean that the optimization
algorithm can take very large steps, pushing the optimization towards undesired local maxima. To
increase the stability of the algorithm, we propose Alg. 7, in which we clip the weight of iteration t

to a maximal value of κt > 0.

3.5 Numerical Results

3.5.1 Parameters and Baseline Methods
To support our theoretical analysis, we provide simulation results for different types of errors
introduced by the device detection algorithms. We compare the throughput given by several
methods:
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Algorithm 7: Stochastic optimization algorithm with device identification errors, approximate
target distribution and weight clipping.

1 Choose initial allocation matrix A1 ∈ RN×K such that
∑K

k=1A
1
n,k = 1, n = 1, . . . , N , clipping

parameter sequence κt > 0, and step-size sequence {γt} with γt > 0, t = 1, 2, . . .
2 t← 1
3 while not converged do
4 Based on the estimate X̂t+1 ∼ p̂, compute a biased estimate g(At; X̂t+1) of ∇AtT (A;p)

5 w̃(X̂t+1) = min
{
κt, Pr(X̃=x)

Pr(X̂=x)

}

6 At+1 = ΠH[At + γt+1w̃(X̂t+1)g(At; X̂t+1)]
7 t← t+ 1

8 end

• Optimization of A using Alg. 5 with perfect detection of devices, as baseline, where the true
activity vector X is known,

• Optimization of A using Alg. 5 with imperfect device detection representing the optimization
obtained when using the error-prone activity vector X̂,

• Optimization of A using Alg. 7 with true weight w for Fig. 3.2 and Fig. 3.4 (with true target
p empirically estimated proposal p̂ for Fig. 3.5)

• Optimization of A using Alg. 7 with an imperfect weight due to a target distribution p̃ that is
known up to a Gaussian perturbation of different standard deviations σ.

• A greedy allocation Ah obtained via Alg. 8: the devices that are the most likely to transmit
are allocated their own slot, while all the others devices share a single slot.

Algorithm 8: Construction of Greedy Allocation Matrix Ah.

1 Given a sorted vector of activity probabilities p in the network and K slots
2 k ← 1
3 A← 0N×K

4 for i← 1; i ≤ N −K; i← i+ 1 do
5 Ai,1 ← 1
6 end
7 for k ← 2; k ≤ K; k ← k + 1 do
8 AN−k+1,k ← 1
9 end

• The Frame Slotted ALOHA allocation, a constant matrix having Aik = 1
K as elements,

• A0 represents the initial random matrix that was used.

In the following figures, we plot the normalized throughput, corresponding to the expected
throughput per frame of the optimized matrix A for a given network of N devices with activity
probability pi. It should be noted that if this policy is implemented for a large number of frames,
a small difference in the per-frame throughput can lead to significant differences in the number of
successfully decoded packets over long time periods.
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Figure 3.2: Resulting throughput after 10000 frames for different values of pflip.

The simulated network consists in N = 20 devices and K = 5 slots, 5 being the number of
slots of an NB-IoT frame in the 3.75 kHz subcarrier spacing [73]. We run the different methods for
10 000 frames. We should note that in this scenario of NB-IoT, the duration of a slot is 2ms and
a frame 10ms [73], thus 10 000 frames represent 100 s. Each method is simulated using the same
random sequence of activity vectors, and we repeat the simulations 20 times to isolate the effect of
the detection errors on the resulting allocation. For the weight w̃ in Alg. 7, a new target distribution
p̃ is drawn for each run according to the description in Section 3.4.4.

The step size and the maximum weight in the different algorithms are set constant across all
simulations, frames and type of channels with value γt = 1

100 and κt = 5. In our following figures,
the shaded area represent ± the standard deviation.

3.5.2 Symmetric Errors
Consider a detection algorithm where the false alarm and miss-detection probabilities for each device
are equal and given to pflip ∈ [0, 0.5]. In other words, if device i is active, the probability it is not
detected is pflip. Similarly, if device i is not active, it is detected with probability pflip. In this case,

p̂i = pi + pflip − 2pflippi, i = 1, . . . , N. (3.22)

Fig. 3.2 shows the impact of the error probability pflip on the throughput achieved by each
algorithm. The activity probability of each device i, pi, is drawn once independently from the
uniform distribution Unif[0, 0.45] and kept constant across the different runs.
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Figure 3.3: Trajectories of the different method presented in Fig. 3.2 with pflip = 0.35.

Observe in Fig. 3.2 that Ah (in dashed light blue) has the worst performance. This is due to the
inefficiency of allocating a single device to a slot when the activity probabilities are low. The random
initial allocation A1 and the ALOHA allocation AALOHA are poorly performing. This is due to the
fact that neither account for the throughput objective in (3.3). For small values of pflip (< 0.25) the
algorithms have similar performance; however for higher error probability, applying Alg. 5 while
ignoring device identification errors (blue curve) leads to significant degradation in the throughput.
The proposed Alg. 6 with perfect knowledge of the weight in (3.16) (orange curve) and with imperfect
weight (green, red, purple) always outperforms Alg. 5 with identification errors. This highlights the
utility of our proposed algorithm as it mitigates the effect of device identification errors. Fig. 3.3
shows the trajectories for each method for pflip = 0.35. We can see that the blue curve (imperfect
detection) starts by increasing slightly before falling into a bad local maxima whilst the proposed
algorithms converge to a better one. We should note that the curves for methods different than the
perfect detection are not monotonically increasing because they are evaluated based on the objective
TN (A;p) for the true p whilst the activity vector X̂ used in the computation of the gradient is
drawn from p̂. The green, red and purple curves correspond to the proposed Alg. 6 with imperfect
knowledge of the weight, obtained by perturbing the true weight by Gaussian noise. As the standard
deviation of the noise increases, the throughput performance degrades. This is due to the fact that
the noise introduces bias in the gradient estimates. Nevertheless, Alg. 6 with weights corrupted by
noise still outperforms Alg. 5 (blue curve), which does not account for device identification errors.
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Figure 3.4: Resulting throughput after 10000 frames for different values of pmiss.

3.5.3 Asymmetric Errors
We now consider a detection algorithm that has Pr(false alarm) = 0 and Pr(miss detection) = pmiss

for pmiss ∈ [0, 0.5] common to each device. In other words, if device i is active, the probability that
it is not detected is pmiss. In contrast to the scenario of Fig. 3.2, if device i is not active, then the
probability of it being detected is zero.

p̂i = (1− pmiss)pi, i = 1, . . . , N. (3.23)

Fig. 3.4 shows the impact of the error probability pmiss on the throughput achieved by each
algorithm. The activity probability of each device i, pi, is drawn once independently from the
uniform distribution U [0, 0.9] and kept constant across the runs. That is, there is a high probability
that many devices will have an activity probability pi >

1
2 .

Observe in Fig. 3.4, the initial random allocation A1 and the ALOHA allocation AALOHA have
the worst performance. Due to the high heterogeneity of the network, the gap between AALOHA and
the best performing method is larger than in the previous scenario. In this case, as some devices
have a probability of activity pi >

1
2 , the greedy heuristic (in dashed blue) performs the best. The

pink curve corresponds to Alg. 5 with perfect device activity estimation. For small and large values
of pmiss, the pink curve is higher than any of the curves corresponding to proposed Alg. 6 and Alg. 5
with device identification errors. In particular, observe that, as for the symmetric errors, applying
Alg. 5 while ignoring device identification errors (blue curve) leads to significant degradation in the
throughput. Alg. 6 with perfect knowledge of the weight in (3.16) to mitigate device identification
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errors (orange curve) always outperforms Alg. 5.

Again, the green, red and purple curves show that the throughput degrades when the standard
deviation of the prior increases, but they still outperform Alg. 5 (blue curve), which does not account
for device identification errors, when the number of errors is high.

3.5.4 Errors Arising from GAMP-Based Detection
Finally, we consider the use of an active device detection algorithm based on GAMP [86]. As
described in Section 8, each device n is given a unique complex preamble (or pilot) bi of length
L = 15 with bn,l ∼ CN (0, 1), for l = 1 . . . 15, in each frame a new set of pilots is drawn. As L < N ,
it is impossible to find a set of pilots that are all mutually orthogonal. Pilots are sent with a unit
transmit power and are received by a single antenna (i.e., NA = 1 in this scenario). Devices are
active according to the following distribution:

p = [0.01 0.03 0.09 0.14 0.21 0.21 0.23 0.27 0.32 0.33 0.34 0.42 0.43 0.47 0.52 0.56 0.58 0.61 0.65 0.8].

Pilots are multiplied by a complex channel coefficient and corrupted by some Gaussian noise. The
modulus of the channel coefficients are

|H| = [1.6 0.8 0.5 0.5 1.2 1 2.4 0.3 1.0 0.1 0.5 1.2 1.7 0.2 2.5 1.6 2.1 1.4 0.5 0.2]

(the matrix H is a vector as there is a single receive antenna).

As the posterior distribution p̂ of GAMP is difficult to compute, it is estimated using a Monte
Carlo approximation by running the network for 10000 frames, and this estimation is used as the
denominator of the importance weight.

Fig. 3.5 shows the effect of the additive Gaussian noise on the throughput of the resulting
allocation given by each algorithm. The figure is shown as a function of the transmit SNR, i.e.
the ratio of the transmit power, 1, over the variance of the noise without taking into account the
channel coefficient. Note that the received SNR of the device with the worst channel ranges between
[0,−10.6]dB. The algorithms are run for 10000 frames.

In Fig. 3.5, similarly to the asymmetric errors, the random initial allocation A0 and the ALOHA
allocation AALOHA have the worst performance. In this case, the greedy heuristic (dashed blue)
performs the best as some devices have a probability of activity pi > 0.5. For small and large values
of SNR, the orange curve, representing the weight consisting of the true target and the empirical
distribution estimation, is above the curves of the algorithm Alg. 6. For high values of SNR, almost
no errors are introduced by the GAMP algorithm. In this regard, all algorithms achieve a similar
throughput. For smaller values of SNR (≤ 6dB), the Alg. 5 with imperfect detection (blue curve)
shows a degraded performance. This is partly due to the fact that the most likely device has a bad
channel gain, meaning that the GAMP algorithm often fails to decode it. Therefore, the resulting
resource allocation does not manage to take it sufficiently into account, leading to a decrease in
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Figure 3.5: Resulting throughput after 10000 frames for different values of SNR.

performance. Note that the proposed Alg. 7 (green, red, and purple) outperforms Alg. 5 (blue curve).

3.6 Conclusions
A problem arising the design of FSA algorithms with heterogeneous devices is the need for perfect
activity estimates in each frame. In this chapter, we have studied the impact of imperfect activity
estimation and observed a significant throughput performance degradation in existing algorithms.
To overcome this problem, we have proposed an importance weighted bias mitigation strategy. This
algorithm is shown to be capable of guaranteeing almost sure convergence of stochastic gradient
methods to a stationary point of the throughput maximization problem. A numerical study shows that
our method outperforms existing algorithms which do not account for imperfect activity estimation.
Moreover, our approach is robust to uncertainty in the importance weights.

56 Chapter 3. Slot Allocation with Imperfect Device Detection



4 Joint Slot Allocation and Power
Control

CHAPTER

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Activity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Slot Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Channel Model and Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Practical Consideration: Sampling the Power Set . . . . . . . . . . . . . . . 65

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Simulation Parameters and Methods Considered . . . . . . . . . . . . . . . 69

4.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

57



4.0 Summary
The frames of protocols using GFRA can be conceptually seen as split into two parts: device
identification; and data transmission, which can be viewed as a form of FSA. A common assumption
in FSA is device homogeneity; that is, the probability that a device seeks to transmit data in a
particular frame is the same for all devices and is independent of the other devices. Recent work
has investigated the possibility of tuning the FSA protocol as a function of the statistics of the
network by changing the probability for a particular device to access a particular slot. However, as,
highlighted in Q3, power control with a SIC receiver has not yet been considered to further increase
the performance of a FSA with soft scheduling protocol. In this chapter, we propose an algorithm
to jointly optimize both the slot selection and the transmit power of the devices to minimize the
probability that devices are outed of the network. The algorithm works sequentially, optimizing
frame after frame the resource allocation based on the devices that are active in each frame. As
a result, the possible correlations in the devices’ activity are observed and can be used to further
increase the objective function. We show via a simulation study that our algorithms can outperform
the baseline based on FSA.

This chapter is partially based on the work published in C2 ([53]).

4.1 Introduction
The selection of transmit resources with limited coordination between devices and with the base
station is a key problem in wireless multiple access networks which led to a family of protocols
known as ALOHA. As seen in Chapter 2.2.5, Slotted ALOHA [90] protocols, and most of its variants
such as FSA [109], CSA [78] and IRSA [68], assume that the network is homogeneous, meaning that
devices are independent and equally likely to transmit data. However, within the context of modern
communication networks like IoT or event-driven communication, the probability that a device is
active in a specific frame is likely to vary from device to device. Furthermore, it is also probable
that the devices will exhibit correlations in their activity patterns, if they monitor the same event
for example.

A key question is whether exploiting knowledge of devices’ heterogeneity and correlations can
improve the resource utilization through the individualization of the resource allocation policy. To
this end, new variants of Frame Slotted ALOHA have been proposed, as described in Alg. 3, in
Chapter 2.2.6, and in Chapter 3, where the probability that a particular device chooses a particular
slot is not uniform but is optimized as a function of the statistics of the network. In [57, 85],
stochastic resource selection is optimized based on the joint probability of activity of the devices.
Optimization is based on heuristics in [57] and by solving a quadratic program in [85]. However,
both approaches require the knowledge, by the base station, of the activity probability and the
correlation coefficient of the devices in the network. To relax these two assumptions, the work in
[117, 118] proposed to sequentially optimize, via SGD the stochastic resource allocation based only
on the devices active in each frame.
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Collisions arising from multiple devices utilizing the same resource is a limiting factor when
seeking to increase the density of the network. For this reason, it is common to assume that the base
station is able to exploit SIC. In SIC, the data of each device is sequentially decoded and subtracted
from the received signal in order to increase the SINR of the devices that are yet to be decoded.
SIC was used in [117] to take advantage of the different channel conditions to further reduce the
contention in the network. However, the power is assumed to be the same for all devices. Adding
power control, in addition to the selection of the transmit slot, is desirable to better exploit the SIC
decoder. As such, power control can be exploited similarly as PD-NOMA [75].

In this chapter, we propose an algorithm in the context of NB-IoT networks [47] to jointly
optimize two different types of resources: the temporal slot (orthogonal) and the transmit power
(non-orthogonal). The contributions of this chapter are as follows:

(i) we propose an algorithm to jointly optimize the slot selection and the transmit power of
the devices to minimize their outage probability, with a SIC receiver at the base station. In
contrast, existing work [117] using SIC assumes devices all transmit at the same power and
thus only exploits the channel characteristics of each device.

(ii) We show via a simulation study that our algorithm can exploit the heterogeneity and the
correlations in the activity of the devices, leading to improvements in throughput performance
and in energy efficiency.

This chapter is organized as follows: in Section 4.2 we present our system model, in Section 4.3
we define the objective function, in Section 4.4 we introduce the optimization method and some
implementation subtleties, and finally we show simulation results in Section 4.5.

4.2 System Model
Consider a single input multiple output (SIMO) network consisting of a single base station with
Nr antennas, and N devices equipped with a single antenna. Similarly to the NB-IoT protocol,
we consider that uplink communications occur over a single carrier that is shared by the devices.
Devices are assumed to be synchronized, and the time is split into frames. Each frame consists of
two parts: device identification and data transmission, as shown in Fig. 2.6b. During the device
identification part, all devices that seek to transmit data send their unique identifier (pilot) at the
same time. K slots are available for data transmission, and active devices can transmit data on only
one slot per frame. Each slot is further divided into L symbols. The considered communication
protocol is described in Alg. 9.
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Algorithm 9: Communication Protocol.

1 (Downlink) Sync signal sent by the BS to indicate beginning of the first frame and inform devices
about the allocation matrix A1 and the power matrix P1.

2 t← 1
3 while True do
4 (Uplink) Each active device n sends their preamble bn on a common control channel.
5 (Local at BS) The BS decodes the preambles and obtain the activity vector Xt without errors,

and the CSI.
6 (Local at devices) Each active device n randomly selects its transmit slot rtn ∼ At

n.
7 (Uplink) Each active device n sends its data at power P t

nrtn
on the selected slot rtn.

8 (Local at BS) BS decodes data present in each slot k using a SIC decoder.
9 (Local at devices) Wait for beginning of next frame.

10 (Local at BS) Compute the next transmission parameters At+1, Pt+1.
11 (Downlink) BS broadcasts At+1, Pt+1.
12 t← t+ 1

13 end

4.2.1 Activity Model
In each frame, only a subset of the N devices is active. Let Xt

n ∈ {0, 1} be the state of device n

in frame t (respectively inactive or active), and Xt ∈ {0, 1}N the vector of active devices in frame
t. Let At and N t

a be the set and the number (respectively) of devices that are active in frame t,
At = {n : Xt

n = 1}, and N t
a = |At| = ∑N

n=1X
t
n. In each frame, the vector Xt is drawn from

the same probability distribution pX, thus the activity vector Xt in frame t is independent of the
other frames; i.e., Xt is independent of Xt′ ∀t ̸= t′. For clarity, we drop the superscript t whenever
the frame index is not relevant. No assumption is made on the distribution pX, and, in general,
pX(x) ̸=∏N

n=1 pXn(xn). We consider the following assumptions:

(i) the base station does not have knowledge of the distribution pX.

(ii) the base station does not have knowledge of the marginals, the Pearson correlation coefficients
nor any moments of the distribution pX.

(iii) we assume that, during the pilot phase, the base station detects without error the active devices
(e.g. using receivers like [18]), and thus has access to the samples Xt, ∀ t = 1, 2, . . . .

4.2.2 Slot Selection
Like in Chapter 3 and as described in Chapter 2.2.6 and Alg. 3, the choice of the slots is made
randomly by the devices by following individual probability distributions, defined in the allocation
matrix At which is computed and optimized centrally by the BS. Let At

k and N t
a,k be the set and the

number of devices that are active in frame t and which selected the slot k to perform their transmission.
Using the N ×K binary matrix δt defined in Chapter 2.2.6, we have At

k = {n : δtn,kX
t
n = 1} and

N t
a,k = |At

k| =
∑N

n=1 δ
t
n,kX

t
n.
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4.2.3 Transmit Power
Contrarily to the slot selection, the transmit power is entirely determined by the matrix Pt ∈ RN×K

+ ,
computed and optimized centrally. The elements of Pt, P t

n,k are the transmit power of device n in
slot k of frame t, the transmit power is thus dependent on the slot. The transmit power of each
individual device is constrained by Pmin,i ≤ P t

n,k ≤ Pmax, where 0 < Pmin,i ≤ Pmax. Pmin,n has to be
large enough to ensure reliable reception, if no other device are transmitting, and is defined later in
(4.4). Pmax is a value that depends on the standard or other regulations.

4.2.4 Channel Model and Receiver
The channel between the device n and the base station is modeled by a channel hn ∈ CNr , described
in Section 4.5.1. During a slot, devices send a fixed number of symbols L. In the slot k of frame t,
assuming there are N t

a,k active devices, the received signal Yt
k ∈ CL×Nr is as seen in (2.22):

Yt
k =

√
diag(Pt

k)D
t(Ht)H +Wt, (4.1)

where diag(Pt
k) represents the N t

a,k ×N t
a,k diagonal matrix of the devices’ transmit power in slot

k, Dt =
[
dt
1
H

. . . dt
Nt

a,k

H
]
∈ CL×Nt

a,k , with E[∥dn∥2] = 1 ∀n, represents the data symbols sent

by the active devices, Ht =
[
ht
1
H

. . . ht
Nt

a,k

H
]
∈ CNr×Nt

a,k is the channel matrix, assuming the
channel is constant throughout the frame t, and Wt ∈ CL×Nr is circularly Gaussian ∼ CN (0, σ2I).

In this work, perfect CSIR is assumed (which can be obtained jointly with the vector of active
devices in the preamble phase using GAMP-based algorithm [18, 19]) and a MRC spatial filter is
utilized, as described in Chapter 2.2.7. The signal associated to device n is (superscript t is dropped
to ease the notation):

ŷn = Yk
hn

∥hn∥2
=
√

Pn,kdn +
∑

m∈Ak\{n}

√
Pm,kdm

h†
mhn

∥hn∥2
+ w̃n, (4.2)

where ŷn ∈ CL is the received approximation of dn, and w̃n ∼ CN
(
0, σ2diag

(
1

∥hn∥2
)
σ2
)
.

Let S ⊂ P(N), with P(N) the power set of {1, . . . , N}, be a set of devices ordered in decreasing
received power in slot k: ∥hS(i)∥2PS(i),k ≥ ∥hS(j)∥2PS(j),k, ∀ i < j. For a given power matrix P,
we can express the SINR in slot k of the first device S(1) in the set S under the noise and the
interference of the other devices of S:

SINRk(S,P) =





PS(1),k

σ2

∥hS(1)∥2 +
∑|S|

m=2

(
|h†

S(m)
hS(1)|

∥hS(1)∥2

)2

PS(m),k

|S| > 1

∥hS(1)∥2PS(1),k
σ2

|S| = 1

(4.3)

We assume that the data of S(1) can be decoded if SINRk(S,P) > γ; γ > 1. An outage arises when
SINRk(S,P) ≤ γ. Under this model, the minimum transmit power of device n is irrespective of the
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slot and is expressed as:

Pmin,n =
γσ2

∥hn∥2
+ ϵ, (4.4)

with ϵ > 0, obtained when no interfering devices are present.

We additionnaly assume that the receiver performs SIC, as described in Chapter 2.2.7: if
SINRk(S,P) > γ, the receiver can proceed to compute SINRk(S \ S(1),P), otherwise all undecoded
devices are considered outed of the network.

Remark. Because the channel model we use in the simulations exhibits spatially correlated channel

coefficients as described in Section 4.5.1, making use of a ZF receiver is unlikely to perform well.

Furthermore, due to our choice to sort the devices in terms of decreasing received power for the SIC

process, the MRC receiver is favored over a MMSE receiver as it maximizes the received power of each

signal. We emphasize that optimal ordering for SIC with multiple antennas is still an active research

area [25, 26, 27] and sorting by received power is only a heuristic. Using other heuristics like ordering by

SINR could provide different results and could lead to utilizing other receiving strategies.

4.3 Objective
In this chapter, we are interested in maximizing the expected number of devices that transmit
without an outage, as described in [117]. A device is considered as outed of the network whenever
the MRC filter followed by the SIC decoding process cannot decode the data of the device, either
because its SINR is not greater than the threshold, or because a device with a higher received power
was not decoded. This objective is the extension of the throughput maximization used in Chapter 3
to multi-antenna systems.

In a similar spirit as the objective of Chapter 3, the objective is defined as an expectation over
the activity distribution of the device pX:

T (A,P) = EX∼pX [T (A,P;X)] (4.5)

T (A,P;X) =
K∑

k=1

∑

S∈P(Ak)

Qk(A,S)SICk(S,P), (4.6)

where P(A) represents the power set of the active devices (the indices of X where Xn = 1), and

Qk(A,S) =
∏

i∈S
Aik

∏

j∈Sc

(1−Ajk), (4.7)

represents the probability that all devices in a subset of the active devices choose a particular slot
while the other devices choose another slot. Note the similarity with (3.3). SICk represents the
number of devices within a set of devices S that have a sufficient SINR to be decoded using a SIC
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decoder, and is defined as:

SICk(S,P) = 1 {SINRk(S,P) > γ}
+ 1 {SINRk(S,P) > γ}1 {SINRk(S \ {S(1)},P) > γ}
. . .

+ 1 {SINRk(S,P) > γ} . . . {SINRk(S \ {S(1) . . .S(|S| − 1)},P) > γ}

=

|S|−1∑

l=0

1 {SINRk(S,P) > γ}
l∏

m=1

1 {SINRk(S \ {S(1), . . . ,S(m)},P) > γ} . (4.8)

All sets S ∈ P(A) are sorted in terms of decreasing received power. Note that if a device S(n)
cannot be decoded, then all subsequent devices S(m), with n < m, also cannot be decoded.

To allow for a fair comparison of the performance under different network statistics, we define
the normalized expected number of devices that transmit without outage:

TN (A,P) =
EX∼pX [T1(A,P;X)]
∑N

n=1 EXn∼pXn
[Xn]

. (4.9)

4.4 Proposed Algorithm
To maximize the objective defined in (4.5), two types of resources are utilized:

• the slot selection policy is employed to schedule devices on different time slot,

• the transmit power of the devices is used to perform power multiplexing, taking advantage of
the SIC decoder.

In addition, two types of physical properties are exploited:

• the correlations in the activity distribution of the devices pX, with the goal of ensuring that
highly correlated devices do not use the same resources,

• the channel coefficients, allowing, for example, to put on the same slot and power resource
devices that have orthogonal channels.

Note that only the slot selection policy A and the transmit power can be used to maximize (4.5),
the channel coefficients and the correlations being dependent on the scenario considered. The
optimization problem is written as follows:

min
A∈RN×K

+ , P∈RN×K
+

− T (A,P)

subject to: Pmin,n ≤ Pn,k ≤ Pmax, ∀n ∈ {1 . . . N}, k ∈ {1 . . .K}
K∑

k=1

An,k = 1, ∀n ∈ {1 . . . N}.

(4.10)
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Note that problem (4.10) is non-convex due to the nature of (4.7). Note also that there is no
guarantee there exists a unique solution, and that the objective in (4.10) is not continuous and thus
not differentiable due to the indicator function in (4.8). To circumvent the latter issue, we propose
to approximate the indicator with a properly scaled sigmoid function centered on the threshold γ:

S̃ICk(S,P) =

|S|−1∑

l=0

σf (bSINRk(S,P)− γ)

·
l∏

m=1

σf (bSINRk (S \ {S(1), . . . ,S(m)},P)− γ) , (4.11)

where σf (x) =
1

1−e−x is the sigmoid function and b is a sharpness parameter. We thus can define:

T̃ (A,P;X) =

K∑

k=1

∑

S∈P(A)

Qk(A,S | X)S̃ICk(S,P). (4.12)

Because of the complex correlation structure that pX might exhibit, we propose to optimize A

and P in (4.5) in an iterative manner using SGD, similarly to Chapter 3, based on the vector of
active devices Xt of each frame t. In contrast to Chapter 3, such vector is assumed to be error-free
during the pilot phase of GFRA that takes place before the data transmission phase. The sample
Xt ∼ pX is utilized to yield T̃ (At,Pt;Xt). Considering that the two optimization variables A and
P have different impacts and that the activity of the devices is heterogeneous, we use ADAGRAD
[29], as described in Appendix A.3, to properly scale the learning rate of the different variables. The
optimization algorithm is detailed in Alg. 10, where ADAGRAD is as implemented in the Pytorch
package [81]. The operator ΠH{·} represents, like in Chapter 3, the projection of A to the closest
point in norm ℓ1 in the constraint set H = {A ∈ RN×K

+ :
∑K

k=1An,k = 1, ∀n}, and the operator
Π[Pmin,n,Pmax] represents the clipping of Pn,k between Pmin,n and Pmax.

Algorithm 10: Optimization of A and P used to solve (4.10).

1 Choose initial allocation matrix A1 initial power allocation P1, and step-size sequence {µt}.
2 t← 1
3 while not converged do
4 Detect active devices to obtain Xt.
5 (At+1,Pt+1)←ADAGRAD(µt, (At,Pt), T̃ (At,Pt;Xt))
6 At+1 ← ΠH[At+1]
7 Pt+1 ← Π[Pmin,n,Pmax][P

t+1]

8 end
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4.4.1 Practical Consideration: Sampling the Power Set
A major drawback of 4.12 is the presence of the power set of all active devices, which has a cardinality
of |P(A)| = 2Na , leading to an exponential running time in the number of active devices, which
can be problematic if Na is big. To reduce the complexity, we propose to sample uniformly at
random without replacement Ns ≤ |P(A)| sets from the power set and only use these to compute
the objective.

T (A,P;X) =

K∑

k=1

∑

S∈P(A)

Qk(A,S | X)SICk(S,P)

=

K∑

k=1

|P(A)|
∑

S∈P(N)

1

|P(A)|Qk(A,S | X)SIC(S,P)

= |P(A)|
K∑

k=1

ES∼U(P(A)) [Qk(A,S | X)SIC(S,P)]

= |P(A)|
(

K∑

k=1

Ns∑

i=1

1

Ns
Qk(A,Si | X)SIC(Si,P) + ϵ(A,P;X,Si)

)

≈ |P(A)|
K∑

k=1

Ns∑

i=1

1

Ns
Qk(A,Si | X)SIC(Si,P)

where S ∼ U(P(A)) means that S is drawn uniformly at random in the power set of the active devices
and Si is the i-th sample out of the Ns samples drawn uniformly at random and without replacement
from P(A), and where ϵ (A,P,X,Si) ∈ R is the error term that vanishes when Ns → 2Na .

The factor |P(A)| is necessary to maintain the property:

lim
Ns→|P(A)|

|P(A)|
K∑

k=1

Ns∑

i=1

1

Ns
Qk(A,Si | X)SIC(Si,P) = T (A,P;X) (4.13)

4.5 Numerical Results

4.5.1 Simulation Scenario

Channel Model

We consider a network consisting of a single cell, with a BS equipped with Nr = 2 antennas and
N = 15 devices with a single transmit antenna. The cell is represented as a D ×D square grid of
size D = 100, with the BS lying at the center (xBS, yBS) = (D2 ,

D
2 ). The width of the grid is 10 units

and thus each unit is made of 10 samples. The cell is represented in Fig. 4.2.

The frames consist of K = 3 slots. The channels are assumed to be fixed during all the simulations
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and are the same for all the slots. They consist of pathloss, shadowing and fading.

The channel between antenna i of the BS and device n is characterized as follows, as seen in
Chapter 2.2.7:

hn,i = fn,i

√
10

PL(xn,yn)+Sh(xn,yn)
10 (4.14)

where:

• fn,i ∼ CN (0, 1) is the Rayleigh fading coefficient,

• PL(xn, yn) = −10η log10(ρn) is the pathloss at distance ρn =
√
x2n + y2n, with xn and yn the

Cartesian coordinates of device n, and η = 2.6, representing an office-like environment.

• Sh(xn, yn) is the shadowing term representing the possible obstacles in the line of sight between
the BS and the device. In Chapter 2.2.7 shadowing was introduced as a log-normal distribution
independently affecting each device. To introduce spatial correlation in the channel model, the
shadowing term at each position of the 100× 100 grid is computed by creating a 100× 100

grid of random samples from N (0, 20), and then applying a Gaussian filter with a Gaussian
kernel of standard deviation 2.

The channel map used for the simulations can be seen in Fig. 4.2. Based on the channels of the
devices and regardless of the transmit power, we can have insights on whether the MRC receiver will
increase or reduce the interference of co-transmitting devices by computing the MRC interference

coefficient Mn,m =
h†
mhn

∥hn∥2
. Note that this coefficient is not symmetric: Mn,m ̸= Mm,n. If Mn,m < 1

then the MRC reduces the interference of device m, otherwise it is increased. If Mn,m = 0, then the
two channels are orthogonal, meaning that the devices will not interfere regardless of the transmit
power of the interfering device. Fig. 4.1 shows the MRC interference coefficient associated to the
channel map in Fig. 4.2.

Activity Model

The activity distribution pX of the devices is generic and available to the access point only trough
samples X ∼ pX. To simulate an activity distribution that is non-trivial, with correlations and
heterogeneous marginal activity, we use the following setup inspired by sensor networks:

• Devices are placed in the grid at fixed coordinates xn and yn.

• Each device has a detection radius rn ∼ U [1, 3].

• In each frame, events are generated on the grid according to an homogeneous Poisson point
process (HPPP): the position of the events are drawn uniformly at random on the grid and
the number of events follows a Poisson distribution of intensity λ. Events are generated
independently of the frame index.

• Devices that have at least one event within their detection radius will be active in the frame.
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Figure 4.1: MRC interference coefficient matrix M in dB.

The resulting simulation scenario (device positions, detection radius and channel gains) is found
in Fig. 4.2. Devices have different detection radius, thus they have different marginal activity
probability. Because they are placed in clusters, several devices are likely to see the same event
leading to correlations in the vectors Xt. The color represents the gain of the channel at different
(x, y) positions.

The properties (marginals, correlations...) of the activity distribution pX are strongly dependent
on the intensity λ, they cannot be explicitly expressed but can be estimated via simulation.

Example 4.5.1 (Properties of pX for λ = 0.01). The marginals p =
[
pX1 . . . pXN

]
of pX are

computed by sampling 100 000 realization of X giving (in sorted order):

p = [0.03 0.04 0.06 0.06 0.07 0.10 0.10 0.11 0.12 0.13 0.15 0.15 0.16 0.17]

The average number of active devices per frame is 1.6. Based on the 100 000 samples, we can also

obtain insights on the correlation structure of pX by computing the Pearson correlation coefficients

Rn,m = Cov(Xn,Xm)√
Var(Xn)Var(Xm)

. The Pearson matrix R is represented in Fig. 4.3.
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Figure 4.2: Position of the 15 devices, represented by a black dot with their detection radius and the
channel gain in the cell. The BS is at the center, represented by a cross.
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Figure 4.3: Pearson coefficient matrix R, for an intensity of the HPPP of λ = 0.01. The clusters of 3
devices present in Fig. 4.2 clearly appear as highly correlated with a coefficient close to 1.
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4.5.2 Simulation Parameters and Methods Considered
We evaluate the performance of a slot and a power allocation optimized with Alg. 10 in two different
scenarios:

• a highly constrained scenario, with Pmax = 6,

• a less constrained scenario, with Pmax = 12.

We compare the performance of four different (A,P) pairs:

(i) Initialization points A1 and P1 of Alg. 10

(ii) Optimization with Alg. 10 with Xt
n ∼ pXn , ∀n and Xn independent of Xm, ∀m ̸= n, i.e. same

marginals as pX but with independent devices.

(iii) Optimization with Alg. 10 with Xt ∼ pX

(iv) Allocation matrix AALOHA with transmission at a random power in each frame Pn,k ∼
U([Pmin,n, Pmax]).

The comparison between ((ii)) and ((iii)) allows to see the advantage of taking into account the
correlation of the devices while optimizing the access policy.

In all scenarios, the initial power matrix used corresponds to P 1
n,k = Pmin,n, ∀k as defined in

(4.4):

P1 =




0.642 0.642 0.642

0.7622 0.7622 0.7622

1.2744 1.2744 1.2744

1.182 1.182 1.182

0.8459 0.8459 0.8459

0.9511 0.9511 0.9511

4.5208 4.5208 4.5208

3.4823 3.4823 3.4823

2.1266 2.1266 2.1266

5.5045 5.5045 5.5045

4.2074 4.2074 4.2074

5.4802 5.4802 5.4802

3.166 3.166 3.166

1.5519 1.5519 1.5519

4.7563 4.7563 4.7563




(4.15)

We evaluate the performance of the different methods as a function of the intensity λ of the
HPPP. For a given λ, the process to evaluate ((ii)) and ((iii)) is performed according to the following
steps:
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Figure 4.4: Resulting objective TN (A,P) after optimizing for 30 000 frames. The shaded area represents
± the standard deviation.

1. For a given A1, Alg. 10 is run for 30 000 frames after which (4.5) is evaluated. Due to the
difficulty of evaluating the probability of having a particular activity vector (Pr(X = x) is
unknown), the objective is obtained by computing (4.6) for 4 500 activity vectors X ∼ pX and
averaging them, giving a Monte Carlo approximation of the objective.

2. Because the sequence of activity vectors Xt ∼ pX, t = 1 . . . 30 000 affects the directions taken
by Alg. 10, Step 1 is repeated for 10 different sequences of activity vector. The resulting
objectives are averaged to give an expected performance of the (A1,P1) pair.

3. Furthermore, because Alg. 10 only provides a guarantee of convergence to a local stationary
point (due to the non convexity of (4.5) in A), Step 1 and Step 2 are repeated with 5 different
A1, each drawn uniformly at random within the constraint space H, and with the same initial
power matrix P1 defined in (4.15). This allows to explore the optimization space.

4. Out of the 5 initializations of Step 3, we keep the three initializations that lead (respectively)
to the best objective for method ((i)), ((ii)) and ((iii)). We then plot the average resulting
objective of the 10 different trajectories associated to the best initialization for method ((ii))
and for method ((iii)).

4.5.3 Simulation Results
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Few Power Resources

Fig. 4.4 shows the normalized objective (4.9) for λ ranging between 0.002 and 0.05, corresponding
to an average of D2λ = 0.2 events per frames until D2λ = 5 events per frame. Note that an event
might spark either zero, one, or several devices; thus 5 events per frame does not mean an average
of 5 active devices. The expected number of devices is shown as a second x-axis on top of the
plot. For the low activity regime (D2λ ≤ 0.1), the optimization with the independent network only
provides a small increase (a maximum of 18% at D2λ = 0.8) compared to the ALOHA baseline. In
this regime, if the devices are all independent, the number of active devices is likely to be either
0 or 1. As a result no changes are made in the allocation of resources by ADAGRAD. For the
optimization that takes into account the correlation, the optimization algorithm saw with higher
probability several active devices even if the average number of active devices is the same. With this
advantage, the optimization algorithm is able to orthogonalize devices that are in the same cluster.
As a result, significant improvement over the ALOHA baseline and the independent case is obtained.
The number of decoded devices reaches 90% at the evaluation when the average number of event per
frame is 0.2 and provides an improvement of 40% over the independent case and of 65% over the
ALOHA baseline.

In the high activity regime (D2λ > 0.1, more than 1 event per frame in average), we can
observe that the performance of all methods drops because the resources available are too limited.
The optimization taking into account the Poisson correlations remains the method with the best
performance.

The difference of performance in the resulting resource allocation is due to the correlation
structure of the HPPP. To gain some insight, after optimizing the allocation with an intensity of
D2λ = 0.1, Fig. 4.5 shows the value of TN (A,P;X) for all possible pair of active devices, i.e. for all
(n,m) : Xn = 1, Xm = 1, Xl = 0, ∀l ̸= n,m. As it can be seen in Fig. 4.5a, when optimizing with
the assumption that the devices are independent, some devices that often transmit together (like 10
and 13) can never be decoded whenever both of them are active. On the other hand, all devices in
the clusters of the optmization that follows the HPPP (Fig. 4.5b) are, at least, pairwise decodable.

Regarding the transmit power, Fig. 4.6 shows EX

[∑N
n=1 EAn [XnPn]

]
, the expected total transmit

power of all devices in the network. We can see that the total transmit power increases with the
average number of active devices per frame. The initialization (blue, circle markers) is the lowest
because the transmit power of all the devices is set to Pmin,n,∀n. Interestingly, the ALOHA baseline,
the optimization assuming independence and the optimization taking into account the correlations
all have similar total transmit power. This suggests that the optimization algorithm manages to
assign various transmit power to the devices.

714.5. Numerical Results
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(a) Probability that data of n and m can be decoded, whenever n and m are the only two active devices and when
the optimization is carried with independent activity.
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(b) Probability that data of n and m can be decoded, whenever n and m are the only two active devices and when
the optimization is carried with activity following the HPPP.

Figure 4.5: TN (A,P;X) with Xn = 1, Xm = 1, Xl = 0 ∀l ̸= n,m for all possible n,m for D2λ = 0.01.
The red squares represent clusters of devices correlated present in Fig. 4.3.

72 Chapter 4. Joint Slot Allocation and Power Control



0.3 0.5 0.7 0.8 1.0 1.3 1.6 2.9 4.2 5.2 6.2
Average number of active device EX[X]

0.2 0.3 0.4 0.5 0.6 0.8 1 2 3 4 5
Average number of events D2λ

0

5

10

15

20

25
E X
[ ∑

N n
=

1
E A

n
[X

n
P
n
]]

Initialization
Independent
Poisson
ALOHA random power

Figure 4.6: Resulting expected total transmit power EX

[∑N
n=1 EAn [Pn]

]
after optimizing for 30 000

frames.

High Pmax

We evaluate the performances in the same scenario as previously, except that the maximal transmit
power Pmax is set to 12 instead of 6. Fig. 4.7 and Fig. 4.8 show the expected outage and the power
for different values of D2λ. The plots are similar to the ones of the previous scenario, however it is
interesting to notice that the gap between the optimization with the Poisson correlation and the
independent model is now considerably smaller for D2λ > 0.4. This highlights that the interest
of taking into account the correlation of the device is particularly noticeable when the available
communication resource as highly constrained. Overall, the higher transmit power (Fig. 4.8) allows
to increase the performance of all methods, (except the initialization that stays the same).

For small values of D2λ, the ALOHA baseline outperforms the optimization with the independent
assumption because the algorithms rarely observes more than one active device in a frame.

4.6 Conclusion
To fully exploit the capability of a SIC-enabled base station, controlling the transmit power of the
devices as well as their transmit slot is important. In this chapter, we proposed algorithms for jointly
optimizing both slot and power allocations for all devices of the network. Doing so increases the
performance of the network, measured here by the expected number of devices that transmit without
outage. Furthermore, the algorithm we propose is able to take into account the correlations in the
activity of the devices, ensuring that devices that are likely to transmit together are decodable.
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Figure 4.7: Resulting objective when Pmax = 12.
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Figure 4.8: Resulting transmit power Pmax = 12.
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Our simulation study shows that our algorithm, with its awareness of the correlations, can
significantly outperform existing ALOHA baselines in terms of throughput using a similar power.
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5.0 Summary
For 6G to support a higher number of devices at higher rates, it is envisioned that networks will
need to be more adaptive. To this end, transmission parameters, which are currently common to
the devices in the cell (in 4G and 5G), can be individualized. Contrarily to the previous chapters,
we focus on a eMBB type of network with the aim of maximizing the rate of the devices, assuming
they are all always active. We consider three transmission parameters: the transmit power, the
number of PRBs allocated to each device, and the number of layers (also known as spatial streams
or rank1) used by the devices; we investigate the possible advantageis of using jointly optimized
per-device parameters instead of cell-wide parameters. Our simulation results show that considering
PRB allocation, power optimization, and layer selection as a joint problem allows to outform the
baselines in terms of rates and power consumption.

This chapter is partially based on the works J2 ([99]) and P1.

5.1 Introduction
Leaving aside the MTC scenario, we now move to a eMBB-type of network, where the BS and the
devices exploit all the frequencies of the OFDM RG instead of using a single subcarrier.

In the current 5G standard, the transmit power of the devices is designed so that all the devices
in a cell are received with the same power spectral density (PSD) at the base station, easing the
equalization step and ensuring a fair treatment of the devices regardless of their distance to the BS.
The transmit power is subject to a hard constraint that indirectly affects the number of PRB used
by the device. However, this way of defining the transmit power can make the devices close to the
BS transmit at a power that is higher than necessary and devices close to the edge of the cell to
transmit at a power that is not high enough to meet the required received power, which can strongly
affect the quality of their transmission. Moreover, the function allocating the PRBs is the same for
all devices and is independent of the channel quality of each PRB [35, Chapter 6.1.2.2]. Similarly,
the number of layers used by the devices is defined by the rank indicator [64], a parameter computed
independently of the PRBs allocation and the power.

Optimization of these parameters has been individually investigated: in [21] an adaptive layer
selection method is reported, in [87] the optimization of the PRB allocation is performed using a
graph neural network (GNN). Regarding power control, several work try to leverage ML solutions to
learn a useful power allocation: [23, 61] present solutions based on reinforcement learning (respectively
for 5G and 6G), and [70] describes a method based on Bayesian inference to leverage prior knowledge
that could be obtained through already deployed networks. On the other hand, the joint optimization
of several transmit parameters is less investigated, we can mention [9] in which a joint PRB and
power allocation method has been described, but it does not include the layer optimization and
focuses on the coexistence of uRLLC and eMBB for downlink traffic.

1We will interchangeably use these three terms

78 Chapter 5. Joint Power, PRB and Rank Allocation



In this work, we investigate the possibility of jointly optimizing the power, the PRB and the
layer allocation. The contributions of this chapter are as follows:

• Instead of optimizing the target received power, we propose to directly optimize the transmit
power, without imposing identical received power, jointly with the number of PRB and number
of layers of the devices.

• We formalize an optimization problem for jointly optimizing these three parameters with the
goal of finding a proportional fair rate allocation to the devices in the cell. This problem is first
expressed as a non-convex mixed integer non-linear program (MINLP) that can be relaxed as
a convex non linear program (NLP) which can be solved using a mathematical solver (IPOPT)
[107].

• To satisfy some practical constraints, (latency) and obtain a constant execution time, we
develop a function approximator based on a neural network (NN) that learns the input-output
relationship of the mathematical solver, allowing to considerably reduce the computational
burden.

• We conduct a simulation analysis comparing our proposed method with different 5G baselines.

This chapter is organized as follows: in Section 5.2, we describe the resources available, the system
model and the assumptions we make; in Section 5.3, we describe the ideal optimization problem
we would like to solve; in Section 5.4, we define a relaxation of the problem and present the neural
network we use to learn the solver; in Section 5.5, we present the baselines we compare to, inspired
from the 5G standard; finally, in Section 5.6, we present simulation results showing the benefits of
our method.

5.2 System Model

5.2.1 Resources
We consider a cellular network made of a single cell. Transmission resources are as described in
Chapter 2.2.3 and Fig. 2.1. The subcarrier spacing is Sp =30 kHz. A PRBG consists of a single
PRB (Nblock = 1) and the total number of available PRBs is NPRB = 24. The number of subcarriers
per PRB is NSC = 12 and the number of OFDM symbols per slot is L = 14. Frames last for 10ms

and consist of NSF = 10 subframes of Nslot = 2 slots, making virtually 20 slots per frame and a
total of Nsymb,tot = LNslotNSF = 280 OFDM symbols per frame. REs are a time-frequency pair
in the resource grid. Let e = (φ, τ), with φ ∈ [1, NPRBNSC] the subcarrier index and τ ∈ [1, 2 . . . [

the symbol index (regardless of the frame index). RE e is the ((φ mod NSC) + 1)-th subcarrier of
PRB f = ⌊ φ

NSC
⌋ and the ((τ mod L) + 1)-th OFDM symbol of slot ⌊ τL⌋ mod NslotNSF of frame

t = ⌊ τ
Nsymb,tot

⌋.

We denote by t = 1, 2, . . . the frame index and by f = 1, . . . , NPRB the PRB index.

Motivated by eMBB applications, in contrast to the previous chapters, we assume that devices
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successfully performed a RACH procedure, as described in Fig. 2.5a. As a result, we focus on a set
of N = 8 devices that are active for a long time and have been co-scheduled by the BS to transmit
in the same slot for all frames (Xt

n = 1, n = 1, . . . , N, t = 1, 2, . . . ), the other slots being used by
other devices, or for other usage (control information, downlink data transmission...).

The PRBs used for transmission are, however, not necessary the same for all devices, and vary
across the frames. The PRBs allocated in frame t to the devices are represented by the binary matrix
δt ∈ {0, 1}N×NPRB , with δtn,f = 1 if device n is allocated to PRB f and 0 otherwise. Furthermore, we
define by δn(e) the function indicating if RE e belongs to a PRB and a slot that have been allocated
to device n.

We consider a MU-MIMO system where the base station is equipped with Nr receive antennas
and the devices all have Nt transmit antennas.

5.2.2 Model at RE Resolution
For a given RE e, the channel matrix of device n is denoted by: hn,φ,τ = hn,e ∈ CNr×Nt . Symbols of
device n are drawn from a unit-energy constellation Dn and are transmitted on one or several layers.

Let νe =
[
ν1,e . . . νN,e

]T
∈ NN νn,e ≤ Nt ∀n, e, with νn,e the number of layers used by device n on

e. Symbols are denoted by dn,e =
[
dn,e,1 . . . dn,e,νn,e

]T
∈ Cνn,e . The precoder of device n on RE e

is denoted by qn,e ∈ CNt×νn,e , it defines how symbols are spread on the antennas and describe which
transmit antennas are used by each device. Symbol dn,e,j is sent at power pn,e,j = pn,φ,τ,j ∈ R+,
under constraint of a maximal total transmit power per frame:

NSCNPRB∑

φ=1

tNsymb,tot∑

τ=(t−1)Nsymb,tot+1

νn,e∑

j=1

δn(e)pn,φ,τ,j ≤ Pmax, ∀e, ∀n. (5.1)

Let pn,e ∈ Rνn,e

+ be the vector of transmit powers on the different layers of device n on RE e.
The received signal at the BS on e ye ∈ CNr is:

ye =
N∑

n=1

δn(e)hn,eqn,e

√
diag(pn,e)dn,e +we, (5.2)

where we ∼ CN (0, σ2INr) is the additive Gaussian noise, which can be whitened if necessary. By
defining h̄t

e ∈ CNr×νtot,e , the effective channel obtained by stacking the matrices
{
hn,eqn,e, ∀n =

1, . . . , N such that : δn(e) = 1
}

rowise, and d̄e =




√
diag(p1,e)d1,e

...√
diag(pN,e)dN,e


 ∈ Cνtot,e , with νtot,e =

∑N
n=1 δn(e)νn,e, the vector of vertically stacked symbol vectors sent by all devices in RE e. We can

redefine (5.2) as:

ye = h̄ed̄e +we. (5.3)
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We consider that the channel is known at the receiver, and we assume the BS use a ZF receiver
to recover data symbols d̄e, as described in (2.27):

(h̄h
eh̄e)

−1hH
e ye = (h̄H

e h̄e)
−1hH

e

(
h̄ed̄e +we

)
(5.4)

= d̄e + (h̄H
e h̄e)

−1hH
e we (5.5)

= d̄e + w̃e, (5.6)

where the covariance matrix of the noise w̃e is now:

(h̄H
e h̄e)

−1hH
e

((
h̄H
e h̄e

)−1
hh
e

)H

= (h̄H
e h̄e)

−1hH
e he(h̄

H
e h̄e)

−1H

= (h̄H
e h̄e)

−1.

Remark (ZF receiver). The choice of a ZF receiver might seems surprising considering that, as discussed

in Chapter 2.2.7, the ZF receiver will likely yield poor performance results whenever the matrix h̄e is

ill-conditioned. However, because the devices follows the transmission parameters dictated by the BS,

we can safely assume that no devices with channels leading to an ill-conditioned matrix are co-scheduled

together in the same slot.

Remark (Communication of transmission parameters). The transmission parameters have to be sent to

the devices over a downlink channel. The transmit slot that co-schedules the device is obtained through

the RACH procedure. The other parameters could be transmitted with the feedback of the BS. To ensure

the smallest downlink data transmission possible, the transmit power should be discretized and limited

to certain predefined values. In this work, we choose to neglect the possible consequences of such a

discretization and assume that the BS can use as much downlink as necessary.

We are particularly interested in computing, for a given PRB allocation δt, power allocation
pn,e, ∀n, and layer allocation νt the rate rn,e of each device in e. We can define first the SINR of
device n for layer j on e = (φ, τ):

SINRn,e,j(h̄e, pn,e,j) =





pn,e,j(
h̄e

H
h̄e

)−1

l,l

δn(e) = 1

0 δn(e) = 0

, (5.7)

where l is the index of the symbol transmitted by device n on layer j in d̄e: l = j +
∑n

m=1 δm(e)νm.
The transmission occurs at rate:

rn,e,j(h̄e, pn,e,j) = log2(1 + SINRn,e,j(h̄e)). (5.8)

Giving a total rate per RE of:

rn,e(h̄e,pn,e) =

νn,e∑

j=1

rn,e,j(h̄e). (5.9)
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5.2.3 Model at PRB Resolution
Typically, channels are considered to be constant across the subcarriers of a PRB and through
the OFDM symbols of the frame. Furthermore, for practical reasons2, it is preferable to define
transmission parameters that are only dependent on the PRB and the frame used instead of the RE.
To emphasize this point, we rewrite (5.2) as a function of the PRB and the frame indices3, assuming
that RE e belongs to PRB f and frame t:

ye =
N∑

n=1

δtn,fH
t
n,fQ

t
n,f

√
diag(Pt

n,f )dn,e +we (5.10)

= H̄t
f d̄e +we, (5.11)

where H̄t
f = h̄e, and d̄e =




√
diag(Pt

1,f )d1,e

...√
diag(Pt

N,f )dN,e


 ∈ Cνtot . We can now express the rate in a given

PRB f and a given frame t as the sum-rate of all the NSC × L REs:

rtn,f (H̄
t
f ,P

t
n,f ) = NSCLrn,e(H̄

t
f ,P

t
n,f ), (5.12)

where we multiply by L as devices transmit once per frame, in the prescribed slot. Finally, the total
rate of device n in frame t can be expressed as:

rtn(H̄
t
1, . . . , H̄

t
NPRB

,Pt
n,1 . . .P

t
n,NPRB

) =

NPRB∑

f=1

δtn,fNSCLrn,e(H̄
t
f ,P

t
n,f ). (5.13)

5.3 Joint Power, PRB and Layer Optimization
With equations (5.8-5.13) we can see the relevant parameters that the BS can tune in order to
optimize the rates in a given frame t are:

• P t
n,f , ∀n, f , the transmit power of each device in each PRB,

• δtn,f , ∀n, f , the PRBs in which each device are transmitting,

• νtn, ∀n, the number of layers used by each device.

The last two parameters appear indirectly in the definition of H̄t
f . We thus propose to formalize

an optimization problem to jointly optimize these three parameters with the aim of maximizing
the total rates of the devices. To ensure fairness between devices and avoid favoring devices with
good channel conditions, we seek to find the parameters that maximize the proportional fair rate

2Mainly, maintaining a low peak to power average ratio (PAPR).
3To maintain consistency with the previous chapters, the frame index t is written as a superscript.
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(described in Chapter 2.3.1) under constraints of power and rate:

max
Pt∈RN×NPRB×Nt

δt∈{0,1}N×NPRB

νt∈NN

Nu∑

n=1

log
(
rtn(H̄

t
1, . . . , H̄

t
NPRB

,Pt
n,1 . . .P

t
n,NPRB

)
)

(5.14a)

Subject to:
NPRB∑

f=1

δtn,f

νtn∑

j=1

NSCLP
t
n,f,j ≤ Pmax, ∀n (5.14b)

rmin ≤
∑νtn

j=1

∑NPRB
f=1 rtn,f,j

νtn
∑NPRB

f=1 δtn,f
, ∀n (5.14c)

δtn,frmin ≤ δtn,fr
t
n,f,j ≤ rmax, ∀n, f, j (5.14d)

NPRB,min ≤
NPRB∑

f=1

δtn,f , ∀n (5.14e)

νtn ≤ Nt ∀n, (5.14f)

where δt and νt appear in rtn(·) through H̄t
f .

Remark. A meaningful additional constraint would be to impose the allocated PRBs to be contiguous as

it would help the waveform to maintain a low PAPR. These types of practical details are out of the scope

of this thesis and are thus not considered.

This problem in not convex due to the constraint (5.14c) and contains a mix of integer (δt,νt)
and continuous variables (Pt). For this type of problem, MINLP solvers (like Bonmine [11] or Baron
[93]) can be used, but they are slow and/or unlikely to give the optimal solution.

5.4 Computing the Allocation: Practical Considerations

5.4.1 An Alternative Optimization Problem
An alternative is to fix δtn,f = 1 ∀n, f , νtn = Nt, ∀n and solve a problem similar to (5.14) but only
to optimize the power:

max
Pt∈RN×NPRB×Nt

Nu∑

i=1

log
(
rtn(H̄

t
1, . . . , H̄

t
NPRB

,Pt
n,1 . . .P

t
n,NPRB

)
)

(5.15a)

Subject to:
NPRB∑

f=1

δtn,f

νtn∑

j=1

NSCLP
t
n,f,j ≤ Pmax, ∀n (5.15b)

0 ≤ δtn,fr
t
n,f,j ≤ rmax, ∀n, f, j. (5.15c)

Note that (5.15c) is a relaxed version of (5.14d) imposing no minimal rate, and thus no minimal
power per PRB. The problem is now convex and can be solved using mathematical solvers like
IPOPT [107]. Heuristics are then used to find the number of PRBs and the number of layers used.
The optimization process is found in Alg. 11, where OPT(·) is the function solving (5.15) and works
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as follows:

• Assuming that all devices are transmitting in all PRBs and all layers, a first power allocation
is found (Steps 2-5).

• For each device, the PRBs having a rate below rmin are discarded (Step 8).

• The number of layers is found in Steps 11-16; starting from a single layer, if adding another
layer improves the total rate and maintains an average rate per PRB and layers above rmin,
then the layer is used.

• If the resulting PRB allocation does not satisfy 5.14e, then the NPRB,min best PRBs are used.

• Finally, the solver is run once again with the PRB allocation and layer allocation found in the
previous steps to find a new power.

Algorithm 11: Algorithm to find the power, PRB and layer allocation.

1 Function parameter_optimization(Ht
1,f ,. . . ,Ht

N,f)
2 δtf ← 1 ; // Matrix of ones
3 νt ←

[
Nt . . . Nt

]
; // Constant vector of Nt

4 H̄t
f ←

[
Ht

1,fQ
t
1,f . . . Ht

N,fQ
t
N,f

]
; // stacking {Ht

n,fQ
t
n,f} column-wise

5 Pt ← OPT(H̄t
1, . . . , H̄

t
NPRB

)

6 for n ∈ N do
7 Compute rtn,f,j ∀f, j ; // According to (5.8)
8 δtn,f,j ← 1{rtn,f,j > rmin} ∀f, j
9 rb ← 0

10 for j ∈ 1, 2, . . . Nt do
11 δtn,f ←

∏j
i=1 δ

t
n,f,j

12 r ←∑NPRB
f=1 δtn,f

∑j
i=1 r

t
n,f,j ; // Compute total rate

13 rm = r

j
∑NPRB

f=1 δtn,f

; // Compute mean rate

14 if r > rb and > rmean > rmin then
15 rb ← r
16 νtn ← j

17 end
18 end
19 if

∑NPRB
f=1 δtn,f < NPRB,min then

20 νtn ← 1
21 δtn ← Find the NPRB,min PRBs with the biggest rates rtn,f,1
22 end
23 Reconstruct H̄t

f with the new δt and νt ∀f .
24 Pt ← OPT(H̄t

1, . . . , H̄
t
NPRB

)

25 return Pt, δt,νt

26 end
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5.4.2 Neural Network to Learn (5.15)
For a given CSI, the BS need to run Alg. 11 to obtain an allocation. In an ideal case, the BS receives
a CSI at each frame, meaning that the BS has approximately 10ms to compute the transmission
parameters and send them to the devices, hoping the channels will not change too much in the
subsequent frame. Even if Alg. 11 makes use of convex problems to find the allocation, its running
time is likely to be longer than 10ms. Furthermore, its running time is not constant for all inputs,
due to the IPOPT solver that runs until a certain precision is met.

To circumvent these issues, we propose to use a neural network to learn the input/output
relationship of Alg. 11 and act as a function approximator. This approach is interesting because,
once trained, the running of the NN will consist in a series of matrix multiplication and activation
layers providing approximately the same running time regardless of the input. Furthermore, with
the help of the ZF receiver, the base station can neglect the interference between the devices. This
means that for each devices, which PRBs are used, the transmit power on each used PRBs, and the
number of layers, solely depends on the coefficients of the ZF receiver, λf,l =

1

(H̄tH
f H̄t

f)
−1

l,l

, l being the

indices corresponding to the symbols associated to the device.

The input of the neural network should thus be the coefficients λ ∈ CNPRBNt of a single device.

Because we seek to learn three different outputs of different type, we propose to learn three
different neural networks:

v1 : RNPRBNt → RNPRB ,

v2 : RNPRBNt → {0, 1}NPRB ,

v3 : RNPRBNt → {0, 1}Nt .

v1 performs a regression task to find the optimal transmit power, while v2 and v3 perform classification
tasks to find (respectively) the PRB allocation and the number of layers to use (by summing over
the output of v3).

Network Structures

The neural networks consist of 8 layers (with 6 hidden), the number of neurons at each layer of the
neural network are obtained by trial and error and are:

• v1 : NPRB ×Nt, 512, 256, 256, 256, 256, 128, NPRB with ReLU activation functions and is evalu-
ated with a mean square error (MSE) loss (regression task).

• v2 : NPRB ×Nt, 512, 256, 256, 256, 256, 128, NPRB with ReLU activation functions except for
the last layer that uses a sigmoid activation to ensure the output is binary (or very close to
binary), and evaluated with a binary cross-entropy (BCE) loss (classification task).

• v3 : NPRB ×Nt, 512, 256, 256, 256, 256, 128, Nt with ReLU activation functions except for the
last layer that uses a sigmoid activation for the same reasons as v2 and also uses a BCE loss
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(classification task).

Training

To perform the training, we constitute a dataset of 80 000 λ ∈ CNPRBNt . Each λ is obtained by
simulating the channel matrices of the 8 devices on each PRB, then the matrices

(
H̄tH

f H̄t
f

)−1
are

computed for all PRBs. For each PRB, 8 different λf ∈ CNt can be obtained by forming groups

of Nt elements of the coefficients:
[

1

(H̄tH
f H̄t

f)
−1

i,i

. . . 1

(H̄tH
f H̄t

f)
−1

i+Nt,i+Nt

]
with i = {1, Nt + 1, 2Nt +

1, . . . , 8Nt + 1}. Afterwards, the 8 different groups of each PRB can be merged together to make
8 different λ =

[
λ1 . . . λNPRB]

]
∈ CNPRBNt . In other words, because the ZF receiver makes all

devices independent, the simulation of a network of 8 devices gives 8 samples to use for the training.
The output consists of three vectors:

• a vector of size NPRB corresponding to the power allocation,

• a binary vector of size NPRB corresponding to the PRB allocation,

• and a scalar corresponding to the number of layers used by the device.

The dataset is split into a training dataset containing 80% of the full dataset and a test dataset
containing 20%. The dataset is trained using mini-batches of size 80.

For the PRB allocation, the output dataset shows great imbalance. Indeed, almost ≈ 70% of
the devices transmit on all the PRBs. Such an imbalance encourages the neural network to learn
to almost always predict an allocation to all PRBs. To avoid this effect and encourage the neural
network to also predict different allocations, we augment the dataset in the following way:

1. Copy 3 times each input matrix that do not lead to allocation of 24 PRBs.

2. Perturb the input matrix of copy with some Gaussian noise N (0, 0.001).

3. Assign to each copy the same PRBs allocation as the original sample.

Doing so increases our dataset from 80 000 to 157 790 samples for v2.

Similarly to the PRB allocation, the dataset of the layer selection is highly imbalanced, with
more than 93% of the samples that allocate 4 layers. The same data augmentation trick is used
again but with 10 copies of each sample that does not allocate 4 layers. This makes the dataset of
v3 of size 137 620. The optimizer used is Adam [63] with a learning rate of 0.0001.
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5.5 Baselines

5.5.1 Power Control in Cellular Network
In 4G and 5G standards, the transmit power of any device n is computed according to the following
power control formula [34, Section 7]:

Ptr,n = min{Pmax, P0 + 10 log(NPRB,n) + αPL+ CL}, (5.16)

where:

• Pmax is the maximum transmit power, expressed in dBm,

• NPRB,n is the number of OFDM resource blocks assigned to device n,

• P0 is the target received power at the BS, expressed in dBm,

• PL is the pathloss compensation term

• α ∈ [0, 1] is a coefficient controlling the inter-cell interference, if α = 1 then the pathloss is fully
compensated but transmission by devices at the edge of the cell will likely generate interference
in the neighboring cells,

• CL is the closed loop power control (CPLC) parameter, allowing to refine the transmit power.
This parameter can be sent by the BS during its feedback to the device, meaning that power
can be adapted at short time intervals. However, to limit the overhead induced by sending
this piece of information, CL can take only four values: CL ∈ {−1, 0, 1, 3} dBm.

P0 and α are known as the open loop power control (OLPC) parameters, they can be configured
either statically or dynamically [70] but have to be the same for all devices in the cell. Several
issues are associated to these two parameters. Firstly, as was investigated in [43], some sets of
parameters might yield very poor throughput, in particular when considering a network of several cells.
Secondly, these parameters can be changed only using the network layer RRC protocol, introducing
a non-negligible latency. Indeed, they are initially received by the device during the "Connection
Setup" of the RACH procedure, as shown in Step 4 of Fig. 2.5a. If they change after the initial
setup of a device, a RRC ConnectionReconfiguration procedure can be triggered by the BS, but this
induces at least communication of two messages as described in [36, Section 5.3.5.3].
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Parameter Value
Nsimul 2 000
N 8
L 14

NPRB 24
NSC 12
Nr 64
Pmax 10 dBm

α 1 (no intra cell interference)
P0 {−75,−85,−90,−100,−110,−120}dBm
CL 0 dBm

NPRB,min 1
rmin 0.2
rmax 8

Table 5.1: Different simulation parameters.

5.5.2 PRB Scheduling
The network has a maximum of NPRB PRBs available for usage, the number of allocated PRBs to
each device is computed according to the formula:

NPRB,n = min
{
NPRB,max

{
NPRB,min, ⌊10

Pmax−P0−αPLn
10 ⌋

}}
. (5.17)

In other words, devices transmit on all PRBs if their transmit power, computed with (5.16), is
lower than Pmax. Otherwise, the number of PRBs is the maximum number of PRBs that ensures
transmission at a power lower than Pmax. Finally, to avoid having devices without allocated PRBs,
there is a minimum number of PRBs, NPRB,min.

Whenever the number of PRBs allocated to a device is less that NPRB, the selected PRBs are
the ones with the best channel gain.

5.5.3 Layer Selection
The number of layers used by each device depends on the ratio between the biggest and smal-
lest eigenvalues of each expected channel matrices. Let µ1 . . . µNt be the ordered eigenvalues of
Ef,t[H

t
n,f

H
Ht

n,f ] ∈ CNt×Nt . To ensure the relative quality of each used layers, we compute the
number of layers used by device n as : νn = max{i : µi

µ1
≥ 0.5}.

5.6 Simulation Results
In this section we show plots for the resulting rates, power, number of PRBs and layers used by the
different methods.

Table 5.1 summarizes the main parameters of our simulations.
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We perform comparison between seven different optimization methods:

• Naive scheme: all the devices transmit at 10 dBm of total power, using all PRBs, and on all
layers.

• Optimization of the transmit power, PRBs and layers (named "Solver" in Tab. 5.2) using
Alg. 11.

• Optimization using the neural network described in Section 5.4.2 trained to learn Alg. 11.

• Baselines optimization using the baseline described in Section 5.5 for
P0 = {−75,−85,−90,−100} dBm, α = 1, and CL = 0 dBm

For all methods, the minimum number of used PRB is NPRB,min = 1, and the minimum and maximum
rates per RE are respectively rmin = 0.2 and rmax =8 bit/RE.

We compute the different metrics for networks consisting of N = 8 devices each equipped with
Nt = 4 antennas, and a single BS with Nr = 64 antennas. The channels consist in pathloss and
fading: the pathloss of device n on PRB f is defined, in dB, as the sum of a pathloss per device and
a pathloss per PRB PLn +PLf . The coefficient i, j of the channel matrix on PRB f of device n are:

Hn,f,i,j = fn,f,i,j

√
10

PLn+PLf
10 (5.18)

with fn,f,i,j ∼ CN (0, 1), the Rayleigh fading, and PLn ∼ N (−105, 202) and PLf ∼ N (−10, 102).
The AWGN noise is the thermal noise drawn form N (0, TkBB) with T = 290 K, the ambient
temperature, kB = 1.3810−23, the Boltzmann constant, and B = NSCSp = 12× 30 000 = 360 000

Hz, the bandwidth of a PRB in the subcarrier spacing of Sp = 30 kHz. Evaluation of the different
methods is performed over Nsimul = 2000 different channel realizations. In Fig. 5.1-5.5, we present
the cumulative distribution functions (CDFs) of the N × Nsimul = 16 000 values of the different
quantities of interest and in Tab. 5.2 their (geometric or arithmetic) mean.

The first metric we are interested in is the rates, represented in Fig. 5.1 by the average rate per
RE, defined as rn

NtLNSCNPRB
. Regarding the baselines, we can observe that decreasing the target

received power from −75 dBm to −100 dBm generally increases the performance. Further reducing
to −110 dBm and −120 dBm reduces the number of devices that have a low rate but cannot offer a
rate higher than 5.3 and 2.4 bit/RE (respectively). As a result, the probability that a device does
not the reach the minimum rate (Fig. 5.2, and Fig. 5.1, zoom) decreases. The outage probability is
defined as the number of samples below rmin normalized by the number of devices: Pr(r<rmin)

N .

The rates obtained by the solver-based methods (green and orange) and the naive scheme provide
rates that are significantly higher than the baselines. This is reflected in the geometric mean (Tab. 5.2,
first row), where the geometric mean of the solver-based method is 2 bit/RE higher than the best
performing baseline (−110 dBm). Furthermore, by using the solver-based method or the naive scheme,
approximately 30% of the devices have a rate at (or close to) rmax = 8 contrarily to less than 2% for
the baselines at P0 ≤ −90dBm. The naive scheme, consisting in transmitting at full power on all
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Naive Solver NN solver
Baselines: P0 (dBm)

-75 -85 -90 -100 -110 -120
Rates (bit/RE) 2.05 3.37 3.25 0.22 0.35 0.46 0.83 1.24 1.04
Power (dBm) 10 6.3 6.4 9.4 8.3 7.4 4.4 -0.4 -7.1

PRBs 24 19.2 19 3 5.6 7.3 11.5 15.9 19.7

Table 5.2: Mean values of the different metrics. The geometric mean is used for the rates and the
arithmetic mean is used for the power and the number of PRBs.
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PRBs and all layers, closely follows the solver-based method and seems interesting in terms of rates,
but has a higher number of outed devices. As a result, its geometric average (first row of Tab. 5.2)
is lower than the one of the solver-based method. Moreover, using the naive scheme in practice will
lead to significant inter-cell interference, thus a study considering several cells will strongly disfavor
the naive method.

Regarding the transmit power shown in Fig. 5.3, we can observe that solvers’ transmit power lies
between the baselines at target received power of −100 dBm and −90 dBm. Baselines at −85 dBm
and −75 dBm transmit at a higher power than the solver-based methods, but does not induce an
increase in rates (purple and red curves of Fig. 5.1).

Due to the compensation of the pathloss and because the transmit power has to be the same
on all PRBs, devices easily reach the maximal transmit power, when using the baselines. Thus,
they can not transmit on all the PRBs at their disposition (Fig. 5.4). For baselines higher than
−100 dBm, devices transmit at high power on few PRBs (the ones with the best channels) whereas
baselines below −100 dBm transmit on more PRBs. The solver-based methods, because they can
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adapt the transmit power on each PRB depending on their quality, are able to make a better usage
of the different PRBs, explaining how they can reach higher data rates with a lower transmit power
than some of the baselines.

Regarding the layers used (Fig. 5.5 and Tab. 5.2 third row), we can observe that the solver-based
allocations use more layers compared to the baselines.

Finally, because the curve of the NN solver are following closely the curves of the joint optimizer,
we can infer that the NN solver successfully learned the input/output relationship of the optimization.

5.7 Conclusion
In this chapter, we proposed a method to increase the data rate (eMBB) of devices in an network.
Our key contribution is to jointly consider the optimization of the transmit power, the PRBs and
the layers used by the devices, allowing to have parameters adapted to the channel conditions of
each device. We first expressed an ideal non-convex MINLP problem that we relaxed to a convex
NLP problem (to obtain the power optimization) used in conjunction with an algorithm based on
heuristics to compute the PRBs and the layers. Our simulation study shows the benefits of our
method compared to the state of the art used in 5G through different quantities of interest. As a
result, this work could be an interesting feature to enable higher data rates in 6G networks. Because
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our method is based on CSI, the transmission parameters should be recomputed each time the
channels change, leading to a high computational overload by the BS and a delay before sending
the allocation. To circumvent these drawbacks, we propose to use a neural network to learn the
input/output of the method we propose, allowing for a faster and constant time computation of the
solution.

In contrast with the state of the art, our method does not impose a target received power common
to all devices of the network. As future work, our method could be used in conjunction with a SIC
receiver in the power domain at the BS to further increase the data rate.
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6.1 Conclusion
In this thesis, we presented different methods to perform uplink resource allocation in a MTC and
an eMBB context.

First, with applications to MTC networks, we studied of allocation policies that are functions of
the statistics driving the devices’ activity. Largely unexplored in the state of the art, such allocation
policies relax the ubiquitous assumption that all devices are independent and equally likely to be
active, and open the possibility of further improving the throughput of the network. The optimization
can be performed in two different ways: off-line, if the underlying activity statistics are known, or
online using the knowledge the active devices in each frame. Chapter 3 and Chapter 4 focus on the
second case.

In Chapter 3, we proposed a resource allocation algorithm that is optimized via a variant of
SGD using importance sampling. The algorithm we propose is particularly useful whenever the user
detection is imperfect. Motivated by some practical consideration, we studied different causes of
imperfect user detection: being unable to decode a payload packet containing the device identifier,
leading to missing some active devices, and a low SNR in the reception of the pilots, leading to
confusion between devices. We showed that applying a gradient based algorithm to perform the
optimization of the slots without taking into account the possible errors lead to a decrease in the
performance of the resulting allocation. The modified version of SGD we proposed has a step size
that depends on the likelihood of the received data instead of being constant (or function of the
iteration index). If the received activity vector is likely to be error-free (e.g. based on side knowledge,
or prior information) the step size taken is big, and if the activity vector seems unlikely, then a
small step is taken. We provided simulation results showing that our method is able to partially
compensate the effects errors can induce in different scenarios inspired from NB-IoT protocol. The
main limitation of this work is the reliance on some prior information to determine the step size.

In Chapter 4, we presented, under the assumption of a perfect device identification, a method to
address the joint optimization of slot and of power. The primary motivation is to further increase
the throughput of a frame slotted network by exploiting the power domain and the channels of the
devices. The algorithm we proposed is able to take the correlations of the devices into account
to ensure that highly correlated devices are utilizing resources that allow their decoding. In the
presented simulations, the devices’ correlations can help design an allocation policy that has a high
throughput, highlighting what could be called Statistical Multiple Access. The effect is particularly
noticeable when the communication resources are limited compared to the communication needs
of the devices in the network. The algorithm we developed suffers from an exponential number of
terms in the computation of the objective (and of the gradient), making it challenging to increase
the number of devices without loss of precision and performance.

Then, in Chapter 5, the MTC scenarios are put aside and replaced by an eMBB objective.
The throughput maximization is replaced by a proportional fair criterion, optimized through the
allocation of PRBs, power, and layers. In the state of the art of 5G networks, the allocation of each
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of these resources to the devices is not jointly considered and is independent of the allocation of
resources to the other devices. We proposed an ideal optimization problem to optimize the resource
allocation based on the channel conditions, and relaxed the assumption that the transmit power
of a device should be uniform across its allocated PRBs. To satisfy practical constraints (mainly
latency, and near constant execution time regardless of the input), we first proposed a relaxation
of the optimization problem, followed by a function approximator based on a neural network to
learn the input/output relationship of the relaxed problem. In our simulation study, in terms of rate
per RE, our methods (solver-based or neural network-based) significantly outperforms the different
baselines at a comparable transmit power, and generally are able to use more PRBs and layers.

The drawbacks of this work are twofold: we are relying on perfect CSI and use a single base
station in our analysis. Firstly, in practice, it is highly likely that the base station will have only
imperfect CSI, either because the measurements might contain errors, or because they can’t be
performed on every RE. As a result, it is uncertain how our algorithms will behave whenever the
true CSI differs from the ones measured. Secondly, eMBB networks are rarely unicellular, hence
we should also investigate how the algorithms we developed could be adapted to take into account
the particularities of multicellular networks, in particular how the communication of one cell might
interfere with the communication of the other. One possibility is to replace the objective function
by another that additionally seek to minimize the interference on the other cells. This could be
achieved by using for example, a regularizer term that is a function of the received power at the BSs
of the other cells. Another possibility could be to perform the optimization at the macro-cell level
and thus compute the transmit parameters of all devices in all neighboring cells at the same time.

We propose hereafter possible extensions of our works.

6.2 Perspectives

6.2.1 Time-dependent Activity Patterns
In Chapter 3 and Chapter 4, the process driving the underlying activity distribution is assumed
to be constant throughout the frames. In practice, however, the networks are likely to be more
dynamic, mainly for two main possible reasons:

• devices possess a queue where the packets that have not been received yet by the BS are stored,
either because they collided and should be retransmitted or because they have not been sent
yet,

• the underlying process changes,

The first point has been addressed in [118] where it is assumed that the process driving the
activity follows an irreducible Markov chain with a stationary distribution. Indeed, it can be shown,
using [65, Chapter 6], that the convergence theorem can be generalized to more complete stochastic
processes than the ones present in Appendix A.2. Hence, the convergence guarantees can be extended
to devices with a queue, as long as the queuing process follows a Markov process.
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The second point however is trickier, given that no stationary distribution exists, the online
stochastic approximation algorithms Alg. 5 and Alg. 16 will fail to converge to a local maxima. If
the process remains piecewise stationary, then a solution could be to restart the learning process as
soon as the process changes and tune the hyperparameters in order to obtain a new allocation policy
as fast as possible. The trigger for starting a new optimization could be based on statistical tests. In
the case where the process is not piecewise stationary, gradient-based algorithms are not suited and
other types of optimization algorithm should be considered. As proposed in [72], approaches inspired
from reinforcement learning and multi-arm bandit problems could provide gradient-free resource
allocation algorithms for dynamic networks.

6.2.2 Security Concerns: Denial of Sleep Attacks
A key assumption of Chapter 3 and Chapter 4 is that devices will follow the allocation matrix A

and are not malicious. Denial of sleep [12, 13, 39] is a type of attack in an IoT network where
some malicious devices are trying to obtain as many resources as possible from the BS to prevent
other devices from transmitting. In a GFRA network using FSA with a soft scheduling policy and
optimized with algorithms like Alg. 5 or Alg. 10, the allocation attributed to a device is directly
linked to how often its pilot is detected in the preamble slot (how often its bit X = 1). Thus,
malicious devices could pretend to be highly active by sending their pilot in almost all the frames
to obtain more resources, but not sending data in the data transmission part (or sending noise).
The performance of the network is thus affected. The throughput (3.6) metric fails to capture the
presence of malicious devices, and should be replaced by what can be called the "goodput", defined
as the sum throughput of the legitimate devices under the interference of the legitimate devices and
the malicious ones. Let B be the set of legitimate devices and E the set of malicious devices:

G(A;p) =
∑

n∈B

K∑

k=1

pnAnk

∏

m∈{B∪E}\{n}
(1− pmAmk).

Example 6.2.1. Consider the following scenario: a network made of K = 5 slots and N = 20 devices,

the 19 first being legitimate and the 20th being malicious. The activity of the legitimate devices is

X ∼ Ber(p) with p ∼ U(0, 0.5) fixed. Supposing the activity of the adversarial device is X20 ∼ Ber(0.7),

the "goodput", is thus the throughput of the 19 useful devices, taking into account the collisions generated

by the 20th device (note the sum going to 19 and the product going to 20).

G(A;p) =
19∑

n=1

5∑

k=1

pnAnk

20∏

m=1
m̸=i

(1− pmAmk). (6.1)

In Fig. 6.1, we can see the impact of the adversarial device on the goodput of the network. We

compare three scenarios:

1. The throughput of the network of the 19 legitimate devices without the adversarial.
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Figure 6.1: Trajectories of the different scenarios over 600 frames.

2. The BS naively uses T (A;p) to optimize the network, using Alg. 5, unknowing of the presence of

a malicious device.

3. The BS knows that the 20th device is malicious and tries to limit its impact by forcing it to use a

uniform slot selection: the 19 legitimate devices are optimized using Alg. 5 but last row of A is

always A20 =
[
1
5

1
5

1
5

1
5

1
5

]
.

Because the adversarial device is highly active, in scenario 2, the BS will tend to allocate a slot only

for the malicious device, the throughput objective (3.6) will be maximized, but not the goodput (6.1). The

resulting goodput is thus significantly affected. In contrast, in scenario 3, if the BS is able to identify the

malicious device, it can try to limit its impact by assigning it a uniform slot selection thus avoiding to

waste a slot.

Example 6.2.1 highlights the necessity of knowing how to deal with adversarial devices. A uniform
allocation has been used to reduce the impact of the adversarial device but is not necessarily the
best solution. A better way could be to use the goodput G(A,X) directly in Alg. 5.

Additionally, more extensive scenarios where either the BS or the malicious devices have more
flexibility could be interesting. What would be the strategies used by the malicious devices if they
know that the BS might detect suspicious devices? What could happen if the network contains
selfish devices that do not follow the allocation matrix A provided by the BS and try to minimize
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their own collision probability?

6.2.3 Heterogeneous IRSA
As discussed in Chapter 2.2.5, similarly to FSA, the parameters of IRSA are common to all devices:
the degree selection distribution Λ is the same for all devices and, once the degree is selected, the
distribution for the selection of the transmit slots is uniform. In Chapter 3 and Chapter 4, we sought
to individualize the probability distribution of selecting a particular slot. This idea can be extended
to IRSA.

If the number of slots per frames K is fixed, the two-step process used to form the vector δn

(described in Alg. 2) can be conceptually replaced by a single-step process. Let C = {0, 1}K be the
set of all binary vectors of size K, where a 1 at position k represents transmission in slot k. For a
given Λ, we can compute the probability of all the possible codewords δ ∈ C as:

Pr(δ) = Λl
1(
K
l

) (6.2)

l =

K∑

k=1

δk (6.3)

Thus, the selection of the codeword δ can be viewed as immediately drawing a codeword from C,
where the probabilities of each of the codewords are specified by Pr(δ).

This point of view of IRSA, known as random codeword (RC)-IRSA [46] [45, Chapter 8.3] is
similar to the setup used in Learn2Mac [24], also described in Chapter 2.2.5. It opens the possibilities
to use more generic probability distributions for the codewords, where two codewords with the same
number of replicas but different slots might have different probabilities. The main drawback is an
optimization space that is much bigger, 2K instead of K. In [45], the optimization is done with the
help of deep-reinforcement learning (RL) algorithms. However, the new probability distributions are
still the same for each device, suggesting that individualizing them to each device could potentially
lead to further performance improvements, in particular if the activity of the devices are correlated.
The optimization would thus become 2NK , raising questions on how to find interesting probability
distributions in such big spaces, especially when N and K become large.

6.2.4 Downlink Constellation Learning
The idea of individualizing the transmit parameters to the devices can be transposed to downlink.
In contrast with methods like linear precoders (Chapter 2.2.7), superposition coding associated
with a SIC decoder [7], or rate splitting multiple access (RSMA) [56], a possibility is to design
non-linear constellations for the broadcast channel. In [103], we have shown that online gradient
descent algorithms, similar to the ones used in Chapter 4, can be applied to such a task.

Under full knowledge of the CSIT, the BS can generate data symbols, simulate what each device
receives, and then compute the mutual information between the BS and each device. The different
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mutual information can be aggregated with an aggregation function to obtain a gradient, with respect
to the constellation points, can be obtained. Repeating this process until convergence allows to find
constellations Dn tailored to the channels that achieve higher mutual information than traditional
methods. The resulting joint constellation (constellations of all devices represented in the space of
transmit antennas) is not necessary a linear combination of all the individual constellations.

1016.2. Perspectives
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7.1 Allocation de Ressources sous Incertitude

7.1.1 Introduction
L’un des défis de l’accès multiple à grande échelle est d’assurer des transmissions fiables tout en
utilisant efficacement les ressources et en limitant les temps de latence. Une possible solution pour les
réseaux cellulaires est GFRA, décrite dans le Chapitre 2.2.4 [20, 28, 67, 94], où les dispositifs actifs
transmettent un préambule immédiatement suivi de la transmission de leurs données. Contrairement
à la procédure classique utilisant un canal à accès aléatoire (RACH), GFRA n’exige pas de réponse
de la part d’une BS avant de transmettre un paquet de données. Par conséquent, le délai d’accès est
réduit puisque que seul l’échange de deux paquets est nécessaire, au lieu de quatre dans la procédure
RACH classique.

Alors que la procédure RACH permet de fournir aux dispositifs des ressources qui leur sont
réservées, ce n’est pas le cas pour GFRA. Les dispositifs doivent donc sélectionner leurs propres
ressources, tel que le créneau temporel qu’ils utiliseront pour la transmission des données. La résolution
des conflits est donc un problème critique dans GFRA, nécessitant une sélection minutieuse des
créneaux temporels par les dispositifs afin d’éviter les retransmissions.

En raison du manque de coordination dans GFRA et des informations limitées sur les statistiques
du réseau, les politiques de sélection des créneaux sont souvent basées sur des variantes de slotted
ALOHA [90] tel que FSA [109] dans laquelle les dispositifs actifs sélectionnent uniformément
aléatoirement un seul créneau dans une trame (Alg. 1).

D’autres variantes de FSA ont également été proposées dans lesquelles les dispositifs peuvent
utiliser plus d’un créneau dans une même trame. On peut notamment citer IRSA [68] (Alg. 2) et
CSA [78]. Néanmoins, le protocole slotted ALOHA reste le protocole MAC de facto utilisé dans les
applications IoT [112, 113], en particulier lorsque le nombre moyen de dispositifs actifs est proche ou
supérieur au nombre de ressources disponibles. Dans ce dernier cas, il semble intéressant de chercher
à exploiter les statistiques générant l’activité des dispositifs pour réduire la probabilité de collisions.
En effet, dans les réseaux IoT il est probable que certains dispositifs aient des activations corrélées
ou différentes.

Dans [117, 118], les auteurs proposent de modifier les distributions de probabilité de choix de
créneaux des dispositifs en fonction de leurs statistiques d’activation. Pour ce faire, dans chaque
trame, les dispositifs actifs sont détectés, puis l’espérance du nombre de dispositifs décodés est calculé.
Enfin, cet objectif peut être dérivé afin d’appliquer un algorithme de gradient stochastique sur la
base des dispositifs détectés comme étant actifs.

Cependant, compte tenu du nombre de dispositifs transmettant leur séquence pilote en même
temps, il est peu probable que, dans chaque trame, tous les dispositifs soient détectés sans erreurs.
Dans cette première contribution, nous nous intéressons donc à l’impact que pourrait avoir une
détection imparfaite des dispositifs.

104 Chapitre 7. Résumé en Français



7.1.2 Modèle
Considérons un réseau à créneaux temporels composé d’une BS et de N dispositifs équipés d’une
antenne unique et partageant une sous porteuse commune (comme cela serait le cas en utilisant la
technologie NB-IoT). Les transmissions s’effectuent sur des trames de tailles fixes dans lesquelles
chaque dispositif n est actif avec une probabilité pn. L’activité de chaque dispositif est représenté par
la variable aléatoire Xn ∼ Ber(pn) et la distribution de probabilité jointe par pX. Nous considérons
que les dispositifs sont mutuellement indépendants, donc :

pX(x) = ΠN
n=1p

xn
n (1− pn)

1−xn , x ∈ {0, 1}N . (7.1)

Dans la trame t, l’activité de tous les dispositifs est noté par Xt = [Xt
1, . . . , X

t
N ]T . Les vecteurs

d’activités Xt sont mutuellement indépendants dans le temps t.

Protocole de Transmission

Le protocole de transmission, une variante de FSA [109], est décrit dans Alg. 12. Dans chaque trame t,
les dispositifs actifs choisissent un créneau sur lequel transmettre en fonction d’une matrice d’allocation
de ressources At. Les éléments de cette matrice, At

ij , i ∈ {1, . . . , N}, j ∈ {1, . . . ,K} représentent la
probabilité que le dispositif i sélectionne le créneau j, sous contrainte que

∑
j A

t
ij = 1, i = 1, . . . , N

(puisque chaque dispositif actif transmet une seule fois par trame). Contrairement aux protocoles
ALOHA classiques, la sélection du créneau de transmission ne suit pas forcément une loi uniforme.
Cette matrice peut donc être optimisée trame après trame dans le but de maximiser un objectif.

Algorithme 12 : Protocole de transmission dans la trame t en fonction de At.

1 (Liaison descendante) Signal de synchronisation marquant le début de la trame.
2 tant que Vrai faire
3 Chaque dispositif actif n tire aléatoirement un créneau rn selon la distribution de probabilité

définie par la ligne n de At.
4 Chaque dispositif actif n envoie son pilote puis ses données dans le créneau choisi rn.
5 La BS décode les données et estime Xt (les dispositifs actifs dans la trame.
6 La BS calcule At+1 sur la base de l’estimation de Xt.
7 La BS envoi At+1 aux dispositifs.
8 fin

Objectif d’Optimisation

L’objectif principal est l’optimisation de la matrice d’allocation de ressources A (l’exposant t est
enlevé pour alléger la notation lorsque l’indice de la trame n’est pas important). Ce problème a été
récemment adressé dans [117, 118] lorsque le vecteur d’activité est connu parfaitement dans chaque
trame. On cherche à maximiser le débit du réseau :

T (A;p) = EX∼p[T
X(A)], (7.2)
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où TX(A) est défini par :

Tn(A;X) =
K∑

k=1

XnAnk

N∏

m=1
m̸=n

(1−XmAmk)

TX(A) =
N∑

n=1

Tn(A;X)

Cet objectif peut être interprété comme étant la proportion de créneaux dans lesquels un seul
dispositif transmet ; nous cherchons donc à éviter au maximum les collisions. L’objectif peut être
normalisé afin de comparer différentes statistiques d’activation :

T (A;p)N =
1

∑N
n=1 pn

EX∼p[T
X(A)]. (7.3)

Le problème de l’allocation de ressources est ainsi de trouver une matrice d’allocation qui
maximise T (A) :

A∗ = argmin
A∈RN×K

+ ;
∑

k An,k=1

−T (A).

L’objectif T (A) n’est pas convexe en A. Nous pouvons aussi souligner que les procédés présentés
dans cet article ne se limitent pas à la maximisation du débit ; en changeant d’objectif, il devient
possible de, par exemple, maximiser l’équité proportionnelle.

7.1.3 Optimisation par Descente de Gradient en Ligne
Tel qu’observé dans [117, 118], le problème (7.2) peut être vu comme un problème d’optimisation
stochastique. Si l’on connaît parfaitement les vecteurs d’activités X1,X2, . . ., alors il est possible de
converger presque surement vers un point stationnaire en utilisant une descente de gradient en ligne.
Soit :

H = {A ∈ RN×K
+ :

K∑

k=1

An,k = 1, n = 1, . . . , N} (7.4)

l’espace de contrainte de la matrice A, et ΠH[·] l’opérateur de projection vers le point de H le plus
proche en norme Euclidienne. Pour un X donné, il est possible de calculer un gradient stochastique
g(A;X) ayant pour éléments g(A;X)ql, q ∈ {1, . . . , N}, l ∈ {1, . . . ,K} [118] :

g(A;X)ql = Xq

N∏

m=1
m̸=q

(1−XmAml)

−
N∑

n=1
n̸=q

XqXnAnl

N∏

m=1
m̸=n
m ̸=q

(1−XmAml). (7.5)
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Dans ce cas, g(A;X) est une estimation non biaisée de ∇T (A) = EX[∇ATX(A)].

Algorithme 13 : Algorithme d’optimisation stochastique avec identification sans erreurs.

1 Choisir une matrice d’allocation initiale A1 ∈ RN×K telle que
∑K

k=1A
1
n,k = 1, n = 1, . . . , N , et

une séquence de pas {αt} avec αt > 0.
2 t← 1
3 tant que non convergé faire
4 Sur la base de Xt, calculer une estimation non biaisée g(At;Xt) de ∇AtT (At).
5 At+1 ← ΠH[At + αtg(At;Xt)]
6 t← t+ 1

7 fin

Cependant, si les vecteurs d’activités Xt contiennent des erreurs, alors cette estimation de gradient
est biaisée, ce qui entraîne la convergence vers une solution sous-optimale et induit une perte de
performance.

Procédé de Réduction du Biais

La cause majeure de perte de performance est due à l’introduction de biais dans les étapes de
descente de gradient à cause de la détection imparfaite des dispositifs. Afin de compenser ce biais,
il est possible d’utiliser l’échantillonnage préférentiel [114, 40]. Considérons la fonction de poids
w : x 7→ w(x) avec x ∈ {0, 1}N définie par :

w(x) =
Pr(X = x)

Pr(X̂ = x)
, (7.6)

où X est le vecteur d’activités sans erreurs et X̂ est son estimation ; obtenu par exemple avec un
algorithme de détection de dispositifs tel que GAMP[18, 19].

Une propriété importante du poids w(x) est que pour tout A ∈ RN×K ,

EX[g(A;X)] =
∑

x

g(A;x)Pr(X = x)

=
∑

x

g(A;x)
Pr(X = x)

Pr(X̂ = x)
Pr(X̂ = x)

= EX̂[w(X̂)g(A; X̂)]. (7.7)

Autrement dit, w(X̂)g(A; X̂) est une estimation non biaisée de ∇T (A), si w(x) <∞, ∀x tel que
Pr(X = x) > 0. De ce fait, il est possible de compenser le biais introduit par les erreurs et de
maintenir la convergence de Alg. 13 en utilisant ce poids dans l’étape de mise à jour. Cette dernière
devient :

At+1 ← ΠH[At + αtw(x)g(At; X̂t)] (7.8)

Ce nouvel algorithme possède des garanties de convergence sous certaines conditions habituelles
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sur la séquence de pas αt.

Étape de Mise à Jour Proposée

Si le poids (7.6) permet de garantir la convergence, il est cependant difficile le calculer :

(i) le numérateur Pr(X = x) se base sur une distribution qui n’est pas parfaitement connue.

(ii) le dénominateur Pr(X̂ = x) se base sur une distribution postérieure qui peut être difficile à
calculer suivant la complexité de l’algorithme utilisé pour la détection de dispositifs.

La distribution utilisée au dénominateur peut être estimée en observant la sortie de l’algorithme
de détection de dispositifs et en calculant une approximation de Monte-Carlo sur de nombreuses
trames. Nous supposerons donc cette distribution comme connue. La distribution de probabilité
utilisée au numérateur peut typiquement être estimé par un algorithme espérance-maximisation. Si
les conditions pour que cet algorithme fonctionne sont satisfaites, il nous fournira un estimateur de
la distribution avec une certaine variance. Il est donc raisonnable de supposer que l’on peut avoir
accès à une distribution X̃ ∼ Ber(p̃), où p̃n = pn+η, ηn ∼ N (0, σ2), p̃i étant forcé à être dans [0, 1],
et donc à un poids w̃ de la forme :

w̃(x) =
Pr(X̃ = x)

Pr(X̂ = x)
. (7.9)

Nous proposons donc d’utiliser la mise à jour suivante :

At+1 ← ΠH[At + αtw̃(x)g(At; X̂t)] (7.10)

Le biais introduit par cette nouvelle mise à jour n’est pas 0 puisque le poids w̃ ne permet pas
de débiaiser complètement le gradient. Cependant, comme présenté dans la section 7.1.4, des gains
intéressants peuvent tout de même être obtenus, suggérant que le biais introduit par w̃ est plus faible
que celui introduit par la détection imparfaite.

7.1.4 Simulations
Nous évaluons le débit résultant dans un scénario où un algorithme de détection de dispositifs se
base sur un algorithme GAMP tel que décrit dans [18]. La détection se base sur des pilotes uniques
associés à chaque dispositif qui transmet ce dernier lors d’une phase d’annonce avant de transmettre
ses données. Cela permet d’effectuer à la fois l’estimation du canal et la détection des dispositifs
actifs. En fonction du SNR du pilote, l’algorithme de détection de dispositifs fera plus ou moins
d’erreurs.

Nous considérons un réseau composé de N = 20 dispositifs, chaque trame étant composée de
K = 5 créneaux. Chaque dispositif suit une probabilité d’activité pn ∼ U [0, 0.9], ∀n. Les dispositifs
sont mutuellement indépendants. L’optimisation se déroule sur 10 000 trames et les résultats sont
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moyennés sur 20 exécutions. L’espace H étant relativement grand et la fonction T (A) non-convexe,
nous supposons que la BS peut effectuer l’optimisation pour plusieurs (10) matrices en parallèle et
envoyer celle donnant les meilleures performances aux dispositifs. Les matrices A1 candidates sont
tirées aléatoirement dans H. Nous présentons le débit résultant de diverses méthodes :

• l’utilisation de Alg.13 avec une détection parfaite des dispositifs,

• l’utilisation de Alg.13 avec une détection imparfaite des dispositifs,

• l’utilisation de Alg.13 avec une détection imparfaite des dispositifs, mais avec la mise à jour
utilisant le poids de correction exact 7.8,

• l’utilisation de Alg.13 avec une détection imparfaite des dispositifs, mais avec la mise à jour
utilisant le poids de correction inexact pour différentes valeurs d’écart type,

• la matrice que donne le protocole ALOHA AALOHA : la matrice constante Aij =
1
K ∀i, j,

• une allocation gloutonne Ah ou les dispositifs les plus actifs possèdent un créneau pour eux
seuls.

Dans ce scénario, nous considérons que chacun des 20 dispositifs possède un pilote unique qui
est une séquence de L = 15 échantillons tirés aléatoirement dans CN (0,

√
P ) ou P est la puissance

d’émission commune à tous les dispositifs. Au début de la trame, un créneau spécial d’annonce est
utilisé par tous les dispositifs actifs dans lequel ils transmettent leurs pilotes. En fonction du SNR
à la réception, l’algorithme de détection de dispositifs introduit plus ou moins d’erreurs dans les
vecteurs de dispositifs actifs X̂t. Dans la Fig. 7.1, nous pouvons observer que si le SNR est faible,
de nombreuses erreurs sont introduites, ce qui réduit les performances de l’allocation résultante si
aucune compensation n’est effectuée (courbe bleu). Cependant, elles restent supérieures au débit
d’une matrice ALOHA classique. Nos méthodes (orange, bleu, rouge, violet) permettent ainsi de
limiter la baisse de performance. Il est intéressant de voir que dans ce cas, l’allocation gloutonne Ah

donne les meilleures performances.

7.1.5 Conclusion
L’allocation stochastique de ressources permet d’obtenir des gains de performance notables comparé à
un protocole ALOHA classique. En revanche, pour fonctionner de manière adéquate, il est nécessaire
de correctement détecter les dispositifs actifs dans chaque trame. Dans cette contribution, nous
avons proposé un moyen de compenser ces erreurs en utilisant l’échantillonnage préférentiel. Les
résultats numériques montrent que les algorithmes de descente de gradient avec échantillonnage
préférentiel peuvent se montrer résistants à la variance dans l’estimation de la probabilité d’activité
des dispositifs.
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FIGURE 7.1 : Performance des différentes méthodes lorsque X est estimé par GAMP.

7.2 Allocation Conjointe de Créneaux et de Puissance

7.2.1 Introduction
Comme vue dans la section précédente, en optimisant la matrice d’allocation de ressources A, il
est possible d’augmenter le débit du réseau comparativement à la méthode de référence (ALOHA).
Néanmoins, même en supposant que tous les dispositifs sont parfaitement détectés dans chaque trame,
des collisions de paquets seront toujours présentes, surtout si le nombre de ressources disponibles
est inférieur au nombre de dispositifs. Dès lors, les collisions résultant de l’utilisation de la même
ressource par plusieurs dispositifs constituent un facteur limitant lorsque l’on cherche à augmenter
la densité du réseau. De ce fait, il est courant de supposer que la station de base est en mesure
d’exploiter un algorithme SIC. Avec un tel algorithme, les données de chaque dispositif sont décodées
séquentiellement et soustraites du signal reçu afin d’augmenter le SINR des dispositifs qui doivent
encore être décodés. SIC a été utilisé dans [117] pour tirer parti des différentes conditions du canal
afin de réduire davantage la contention dans le réseau. Cependant, la puissance est supposée être la
même pour tous les dispositifs. L’ajout d’un contrôle de puissance, en plus de la sélection du créneau
d’émission, est souhaitable pour mieux exploiter le décodeur SIC. Ainsi, le contrôle de la puissance
peut être exploité de la même manière que PD-NOMA [75].

Dans cette section, nous proposons un algorithme dans le contexte des réseaux NB-IoT [47] pour
optimiser conjointement deux types de ressources différentes : le créneau temporel (orthogonal) et la
puissance d’émission (non orthogonale).
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7.2.2 Modèle
Nous supposons un modèle SIMO dans lequel les dispositifs sont équipés d’une seule antenne à
l’émission et où la station de base est équipée de Nr antennes en réception. Comme dans la section
précédente, dans chaque trame, un sous-ensemble de dispositifs est actif, selon une distribution
X ∼ pX, et chacun du sous-ensemble actif choisit un créneau de transmission selon la matrice
d’allocation de ressources A, que nous cherchons à optimiser.

Le canal entre le dispositif n et la station de base est modélisé par un canal avec atténuation,
affaiblissement et zones d’ombre hn ∈ CNr . Durant un créneau, les dispositifs envoient un nombre
fixe de symboles L. Dans le créneau k de la trame t, en supposant qu’il y ait N t

a,k dispositifs actifs,
le signal reçu Yt

k ∈ CL×Nr est, comme on le voit dans (2.22) :

Yt
k =

√
diag(Pt

k)D
t(Ht)H +Wt, (7.11)

où diag(Pt
k) représente la matrice de puissance de transmission des dispositifs dans le créneau k, Dt

la matrice des symboles des données des dispositifs, Ht est la matrice de canal, et Wt est le bruit
Gaussien.

Dans cette section, nous supposons que le canal est connu au niveau du récepteur (CSIR), ainsi
il est possible d’utiliser un filtre spatial MRC. Le signal après filtrage est donc :

ŷn = Yk
hn

∥hn∥2
=
√

Pn,kdn +
∑

m∈Ak\{n}

√
Pmdm

h†
mhn

∥hn∥2
+ w̃n, (7.12)

avec ŷn ∈ CL l’approximation de dn.

7.2.3 Optimisation Conjointe de Puissance et de Créneau
L’objectif considéré dans cette section est le suivant :

T (A,P) = EX∼pX [T (A,P;X)] (7.13)

T (A,P;X) =
K∑

k=1

∑

S∈P(Ak)

Qk(A,S)SICk(S,P), (7.14)

où P(A) représente l’ensemble des parties de l’ensemble des dispositifs actifs, et

Qk(A,S) =
∏

i∈S
Aik

∏

j∈Sc

(1−Ajk), (7.15)

définit la probabilité qu’un ensemble de dispositifs actifs choisissent un créneau tandis que les autres
choisissent n’importe quel autre créneau. Enfin, SICk(·) désigne le nombre de dispositifs pouvant
être décodés (le nombre de dispositifs ayant un SINR suffisant) en utilisant un décodeur SIC.

L’objectif 7.13 peut être optimisé, trame après trame, en utilisant l’algorithme ADAGRAD décrit
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FIGURE 7.2 : Gain du canal dans la cellule et position des dispositifs.

dans l’Annexe A.3. La fonction SICk(·) n’est pas dérivable, cependant elle peut être approximée par
une fonction sigmoïde.

7.2.4 Simulations
Nous présentons des simulations inspirées d’un réseau de capteurs représenté dans la Fig. 7.2. Le
réseau de capteurs comprend une cellule consistant en une BS et N = 15 dispositifs. Chaque dispositif
possède une aire de détection dont le rayon varie. Dans chaque trame, des évènements sont générés
uniformément aléatoirement dans la cellule, le nombre d’évènements correspondant à une loi de
Poisson d’intensité λ. Les dispositifs actifs dans la trame sont ceux qui possèdent un évènement dans
leur rayon de détection.

Nous lançons l’optimisation des matrices A et P pendant 30 000 trames puis nous évaluons la
fonction objectif (7.13) sur 4 500 trames. Dans la Fig. 7.3, nous comparons l’objectif résultant de
quatre méthodes différentes :

• les matrices d’initialisation A et P,

• l’utilisation avec de la matrice AALOHA avec une puissance aléatoire,

• l’optimisation avec les activités tirés du scénario basé sur un processus de Poisson,

• l’optimisation avec des dispositifs indépendants, dont les marginales sont identiques à celle du
processus de Poisson.

Nous comparons l’objectif résultant en fonction de l’intensité du processus de Poisson. Il est possible
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FIGURE 7.3 : Débit normalisé du réseau en fonction du nombre moyen d’évènements.

d’observer que les deux premières méthodes ont les moins bonnes performances. L’optimisation avec
les dispositifs indépendants n’apporte que peu d’intérêt (voir pas du tout dans les intensités faibles)
tandis que l’optimisation qui tient en compte les corrélations permet de augmenter significativement
les performances du réseau, soulignant ainsi l’intérêt de notre méthode.

7.2.5 Conclusion
Dans cette section, nous avons présenté un moyen d’optimiser de manière conjointe la puissance
d’émission des dispositifs ainsi que la sélection de leur créneau de transmission. La méthode que nous
proposons améliore nettement les méthodes de l’état de l’art, en particulier lorsque les dispositifs du
réseau sont susceptibles d’avoir des activités corrélées.

7.3 Allocation Jointe de PRB, de Puissance et de Couches

7.3.1 Introduction
Laissant de côté le scénario MTC, nous nous intéressons maintenant à un réseau de type eMBB, où
la BS et les dispositifs exploitent toutes les fréquences de la RG OFDM, au lieu d’utiliser une seule
sous-porteuse.

Actuellement, dans la 5G, la puissance d’émission des dispositifs est conçue afin que tous les
dispositifs d’une cellule soient reçus avec la même PSD à la station de base, ce qui facilite l’étape
d’égalisation et garantit un traitement équitable des dispositifs, quelle que soit leur distance par
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rapport à la BS. La puissance d’émission est soumise à une contrainte stricte qui affecte indirectement
le nombre de PRB utilisés par le dispositif.

Toutefois, cette façon de définir la puissance d’émission peut amener les dispositifs proches de la
BS à émettre à une puissance plus élevée que nécessaire et les dispositifs proches du bord de la cellule
à émettre à une puissance qui n’est pas assez élevée pour atteindre la puissance de réception requise,
ce qui affecte fortement la qualité de leur transmission. D’autre part, la fonction d’attribution des
PRB est la même pour tous les dispositifs et est indépendante de la qualité du canal de chaque
PRB [35, Chapter 6.1.2.2]. De même, le nombre de couches utilisées par les dispositifs est défini par
l’indicateur de rang [64], un paramètre calculé indépendamment de l’allocation de PRB et de la
puissance.

7.3.2 Modèle et Problème
Nous considérons un réseau composé d’une unique cellule équipé de Nr = 64 antennes et d’un
nombre fixe (N=8) de dispositifs, chacun équipé de Nt = 4, antennes qui transmettent tous dans le
même créneau temporel. NPRB = 24 PRB sont disponibles.

Sur un RE du PRB f , le signal reçu par la BS est :

ye =
N∑

n=1

δn,fH
t
n,fQ

t
n,f

√
diag(Pt

n,f )dn,e +we (7.16)

= H̄t
f d̄n,e +we, (7.17)

où δn,f est un bit indiquant si le PRB f est alloué au dispositif n et Q est le précodeur définissant
le nombre de couches (flux de données parallèle) utilisées par le dispositif n.

En utilisant la formule rn,e,j = log2(1 + SINRn,e,j) pour calculer le débit d’un dispositif dans un
RE sur une couche j, et en utilisant le fait qu’il y ait L symboles dans un créneau et NSC dans un
PRB, on peut calculer le débit de chaque dispositif dans un PRB sur une couche particulière :

rn,f,j = LNscrn,e,j . (7.18)

Dès lors, il est possible d’obtenir le débit rn en sommant rn,f,j sur toutes les couches j et tous les
PRB f que le dispositif utilise.

On peut ainsi exprimer le problème d’optimisation conjointe de la puissance d’émission, des PRB
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et des couches utilisés :

max
P∈RN×NPRB×Nt

δ∈{0,1}N×NPRB

ν∈NN

Nu∑

i=1

log
(
rn(H̄

t
1, . . . , H̄

t
NPRB

,Pt
n,1 . . .P

t
n,NPRB

)
)

(7.19a)

Tel que :
NPRB∑

f=1

δn,f

νn∑

j=1

NSCLP
t
n,f,j ≤ Pmax, ∀t, n (7.19b)

rmin ≤
∑νn

j=1

∑NPRB
f=1 rtn,f,j

νn
∑

f=1NPRB δtn,f
∀n (7.19c)

δn,frmin ≤ δn,frn,f,j ≤ rmax, ∀n, f, j (7.19d)

Nprb,min ≤
Nprb∑

f=1

δn,f ∀n (7.19e)

νn ≤ Nt ∀n. (7.19f)

Ce problème présente quelques difficultés : il est composé de variables entières et réelles et n’est
pas convexe. Ces deux particularités peuvent être contournées en relaxant le problème et en le
combinant avec un algorithme heuristique pour trouver l’allocation de PRB et de couches.

Un dernier point bloquant est que l’utilisation d’un solveur mathématique pour résoudre le
problème relaxé peut s’avérer longue et la durée de résolution peut varier selon l’instance traitée.
Ainsi, afin de satisfaire à des contraintes temporelles (l’allocation doit être trouvée en moins d’une
trame radio, 10ms), nous proposons de créer un jeu de données d’entrée/sortie et d’apprendre le
fonctionnement du solveur combiné aux heuristiques par 3 réseaux de neurones (un pour la puissance,
les PRB et les couches).

7.3.3 Simulations

État de l’Art

Dans les normes 4G et 5G, la puissance d’émission de chaque dispositif n est calculée selon la formule
de contrôle de puissance suivante [34, Section 7] :

Ptr,n = min{Pmax, P0 + 10 log(NPRB,n) + αPL+ CL}, (7.20)

où :

• Pmax représente la puissance d’émission maximale, exprimée en dBm,

• NPRB,n est le nombre de OFDM blocs de ressources attribués au dispositif n,

• P0 est la puissance cible reçue à la BS, exprimée en dBm,

• PL est le terme de compensation de l’affaiblissement,
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• α ∈ [0, 1] est un coefficient contrôlant l’interférence intercellulaire, si α = 1 l’affaiblissement
est entièrement compensé, cependant la transmission par des dispositifs au bord de la cellule
génèrera probablement des interférences dans les cellules voisines,

• l’élément CL est le paramètre CPLC qui permet d’affiner la puissance d’émission. Ce paramètre
peut être envoyé par la BS lors de sa rétroaction vers le dispositif, ce qui signifie que la puissance
peut être adaptée à court terme. Cependant, pour limiter le surcoût induit par l’envoi de cette
information, CL ne peut prendre que quatre valeurs : CL ∈ {−1, 0, 1, 3} dBm.

P0 et α sont connus sous le nom de paramètres OLPC, ils peuvent être configurés de manière
statique ou dynamique [70], mais doivent être les mêmes pour tous les dispositifs de la cellule.
Ces deux paramètres posent plusieurs problèmes. Premièrement, comme cela a été étudié dans
[43], certains ensembles de paramètres peuvent produire un débit très faible, en particulier si l’on
considère un réseau composé de plusieurs cellules. Deuxièmement, ces paramètres ne peuvent être
modifiés qu’à l’aide du protocole de couche réseau RRC, ce qui introduit un temps de latence non
négligeable. En effet, ils sont initialement reçus par le dispositif au cours de l’établissement de la
connexion de la procédure RACH, comme le montre l’étape 4 de la Fig. 2.5a. S’ils changent après
la configuration initiale d’un dispositif, une procédure RRC ConnectionReconfiguration peut être
déclenchée par la BS, mais cela induit au moins la communication de deux messages comme décrit
dans [36, Section 5.3.5.3].

Nos simulations comparent le débit résultant de l’allocation obtenue par différentes valeurs de
l’état de l’art, notre méthode ainsi que son approximation par les réseaux de neurones, et une
méthode dite « naïve » qui consiste à transmettre à la puissance maximale sur tous les PRB et
toutes les couches.

Fig. 7.4, présente la CDF du débit moyen par RE des différentes méthodes considérées. Nous
pouvons observer que trois méthodes se distinguent particulièrement, les deux méthodes que nous
proposons (vert et orange) et la méthode naïve. Ces trois méthodes permettent d’obtenir des débits
nettement plus élevés que l’état de l’art et atteignent dans environ 30% des cas le débit maximal
rmax = 8.

Dans la Fig. 7.5, nous pouvons observer la CDF de la puissance d’émission des dispositifs. La
méthode naïve y est clairement désavantagée puisqu’elle utilise toujours une puissance maximale à
10 dBm. Nous pouvons remarquer que nos méthodes possèdent une puissance d’émission comparable
à celles des références à P0−100 dBm et −90 dBm.
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7.3.4 Conclusion
Dans cette section, nous avons proposé une méthode pour augmenter le débit de données des
dispositifs dans un réseau cellulaire axé sur l’eMBB. Notre principale contribution consiste à
envisager conjointement l’optimisation de la puissance d’émission, des PRB et des couches utilisées
par les dispositifs, ce qui permet d’avoir des paramètres adaptés aux conditions du canal de chaque
dispositif. Nous avons d’abord exprimé un problème idéal non convexe que nous avons relaxé en
un problème convexe (pour obtenir l’optimisation de la puissance) utilisé en conjonction avec un
algorithme basé sur des heuristiques pour calculer les PRB et les couches. Notre étude par simulation
montre l’avantage de notre méthode par rapport à l’état de l’art utilisé dans la 5G à travers
différentes métriques. Par conséquent, ce travail pourrait constituer une caractéristique intéressante
pour permettre des débits de données plus élevés dans les réseaux 6G. Comme notre méthode est
basée sur les CSI, les paramètres de transmission doivent être recalculés à chaque changement de
canal, ce qui entraîne une forte surcharge de calcul pour la BS et un délai avant l’envoi de l’allocation.
Pour contourner ces inconvénients, nous proposons d’utiliser un réseau neuronal pour apprendre les
entrées/sorties de la méthode que nous proposons, ce qui permet un calcul plus rapide et en temps
constant de la solution.

Contrairement à l’état de l’art, notre méthode n’impose pas une puissance reçue cible commune
à tous les dispositifs du réseau. Dans le cadre de travaux futurs, notre méthode pourrait être utilisée
conjointement avec un récepteur SIC dans le domaine de la puissance à la BS afin d’augmenter
davantage le débit de données.
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Stochastic gradient descent is a widely used method to minimize a function. As this tool will be
used extensively throughout the thesis, this section provides an overview of SGD as well as summary
of its convergence guarantees. The motivation, intuition, as well as sketches of proof given here
largely follows Chapter 4 and 5 of [65].

A summary of a popular variant of SGD, ADAGRAD is also provided.

A.1 Gradient Descent
Let f : Rd → R be a continuous and differentiable function and ∇wf(w) =

[
∂f(w)
∂w1

. . . ∂f(w)
∂wd

]

its gradient. We are interested in finding its minimums w⋆ which are obtained at the points w⋆

where ∇wf(w
⋆) =

[
0 . . . 0

]
. The minimization of f(w) thus amounts to finding the roots of

∇wf(w). Starting with an initial point w1, gradient descent is an iterative algorithm described
in Alg. 14 that can be used to find a local stationary point, under conditions on the step size γt:
∑∞

t=1 γ
t =∞; γt ≥ 0 ∀t, γt → 0. If the function f is convex, then the stationary point is also the

global minimum. If the function f is non-convex, then other local stationary points can be obtained
by running Alg. 14 with different initial point w1 and step size sequence {γt}.

The stopping condition of the while loop can be based on several criteria:

• a fixed number of iteration T ,

• the reduction of the function being smaller than a threshold |f(wt+1)− f(wt)| < ϵ, ϵ > 0,

• a sequence of length l not providing significant improvement in the minimization of the function:
∑L

l=1 |f(wt+1)− f(wt+1−l)| < ϵ, ϵ > 0.
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Algorithm 14: Gradient Descent.

1 Function gd(f)
2 Choose initial w1 ∈ Rd and step-size sequence {γt} with γt > 0, t = 1, 2, . . ..
3 t← 1
4 while not converged do
5 wt+1 ← wt − γt∇wtf(wt)
6 t← t+ 1

7 end
8 return wt

Usually, the motivation of GD is done through the Taylor expansion of order one of f(w) around
the point wt. We describe here another motivation, based on ordinary differential equation (ODE),
appropriate for a better generalization to the stochastic case discussed in Section. A.2.

Consider Step. 5 of Alg. 14:

wt+1 = wt + γt∇wtf(wt). (A.1)

Define the piece wise constant function wt(τ) =
∑∞

l=tw
l
1{τ ∈ [

∑l
i=1 γ

i,
∑l

i=1 γ
i + γl+1]}, (A.1) can

be rewritten as:

wt+1(τ) = wt(τ) + γt∇wtf(wt) (A.2)

wt+1(τ)−wt(τ)

γt
= ∇wtf(wt). (A.3)

Remark that the left-hand side of (A.3) looks like a derivative when γt → 0. The sequence of function
wt(τ) can be shown to converge1 to a asymptotic function w(τ) that is a solution of the mean ODE
defined as:

∂w(τ)

∂τ
= ∇wtf(wt). (A.4)

We are thus interested in the points were the function w(τ) is flat, i.e. where ∂w(τ)
∂τ = 0 which will

represent the roots of ∇wtf(wt).

An important extension of GD is when the parameters w are constrained to lie within a certain
constraint space H. Sparing some mathematical technicalities, that can be found in [65, Chapter
4.3], it can be shown that convergence guarantees hold if:

• the projection back to the space of feasible w ∈ H is done at after each step,

• the normal of the surface of the constraint space H is continuously differentiable.

Two topological spaces particularly interest us:

1The proof is out of the scope of this thesis and can be found in [65, Chap 4 and 5], it consists in essentially showing that the
sequence of function wt(τ) is equicontinuous then applying the Arzelà-Ascoli theorem to show that there exists a converging
subsequence.
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• the hyperrectangle H = {w : li ≤ wi ≤ ui}, (li, ui) ∈ R2, li ≤ ui, i = 1, . . . , d,

• the simplex H = {w :
∑d

i=1wi = 1}.

Hence, by defining ΠH[w] the projection of w to its closest point (in terms of ℓ2-norm) that lie
in H, the step of projected gradient descent can be written as:

wt+1 = ΠH[wt + γt∇wtf(wt)] (A.5)

= wt + γt∇wtf(wt) + γtzt, (A.6)

where zt is known as the reflection term: it is the vector of smallest ℓ2-norm that brings back
wt + γt∇wtf(wt) into the constraint set H. For the hyperrectangle the projection is obtained by
clipping coordinate-wise the coordinates that are outside of H. For projection onto the simplex, the
projection can be obtained by using algorithms like the one described in [30]

A.2 Projected Stochastic Gradient Descent
The main issue of gradient descent is that computing the exact gradient can be computationally
intensive, either because the number of parameters is big or because the function is difficult.

As a result we can choose to use a different function g(wt) to perform the updates instead of relying
on ∇t

w

(
f(wt)

)
. When g(wt) has some randomness, it is known as the stochastic approximation of

the gradient.

Example A.2.1 (Randomly sampling ∇t
wf(w

t)). A commonly used method to construct g(wt) is to

compute the gradient only for a random subset of the indices of the parameters. Defining P(X ) the

powerset of X , the gradient estimate is:

g(wt)i =




0 i /∈ It

∇wtf(wt)i i ∈ It
, It ∼ U (P ({1, . . . , d}) \ ∅) .

Example A.2.2 (When objective function is an expectation). Often, in machine learning application

and in the following chapters of this thesis, the objective function is the expectation of a function of a

random variable, thus f(w) = EX [h(w;X)], with X a random variable. Depending on X computing

the expectation can be difficult or even impossible. As a result, if T samples {xi}, i = 1, . . . T of X are

available, a Monte Carlo approximation f̂(w) = 1
T

∑T
i=1 h(w, xi) of the expectation can be obtained.

The stochastic approximation of the gradient is thus:

g(wt) = ∇wt f̂(wt).

Alg. 15 describe the SGD algorithm, the main difference with Alg. 14 is the usage of the function
g(wt) in Step. 5 instead of ∇wtf(wt). We might thus wonder what properties should g(·) posses in
order to maintain the convergence guarantees of Al. 14.
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Algorithm 15: Projected stochastic gradient descent.

1 Function psgd(f)
2 Choose initial allocation matrix w1 ∈ Rd such that w1 ∈ H, and step-size sequence {γt}

with γt > 0, t = 1, 2, . . ..
3 t← 1
4 while not converged do
5 wt+1 ← ΠH[wt − γtg(wt)]
6 t← t+ 1

7 end
8 return wt

The theorem 5.2.1 of [65] allows to give convergence guarantees of Alg. 15 based on the properties
of the function g(·) and the same conditions on sequence {γt} as for Alg. 14. We briefly sketch the
proof here.

Step. 5 can be rewritten as:

wt+1 = ΠH[wt + γtg(wt)] (A.7)

= wt + γtg(wt) + γtzt (A.8)

= wt + γt
(
∇wtf(wt) + δM t + βt

)
+ γtzt. (A.9)

Where ΠH{w} represents the projection to the closest element (in terms of ℓ2 norm) of w in the
constraint set H, and where δM t = g(wt)−E[g(wt)|w1, g(wi), i ≤ t] is a martingale difference noise
accounting for the dependence over time in the values of g(wt), and βt is bias term. In the case that
interest us in this thesis, the stochastic approximation of the gradient at time t, g(wt) is independent
of the stochastic approximation of the gradient at any other time t′, meaning that Et[δM

t] = 0.

In the same spirit as (A.1), the sequence {wt} generated by (A.7) can be shown to converge to
the mean ODE defined in (A.4) under the following assumptions, described in [65, A.5.2.1-A.5.2.5]:

• (A.5.2.1) supt E[g(w)t] <∞,

• (A.5.2.2) E[g(wt)] = ∇wtf(wt) + βt,

• (A.5.2.3) ∇wtf(wt) is continuous,

• (A.5.2.4)
∑∞

t=1(γ
t)2 <∞;

∑∞
t=1 γ

t =∞; γt ≥ 0 ∀t, γt → 0,

• (A.5.2.5)
∑∞

t=1 γ
t|βt| <∞.

Assumption (A.5.2.5) ensures the bias term becomes negligible and that it decreases faster than the
step size.
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A.3 The ADAGRAD Variant
As can be seen in Alg. 14, because γt ∈ R all parameters have the same learning rate. However, in
practical applications not all parameters have the same impact on the objective function. A desirable
property of an optimization algorithm would be to assign high learning rates to parameters having a
high impact on the objective and small learning to parameters having a small impact. By doing so,
the algorithm would focus on the most the important parameters and converge faster to the local
stationary point. This is the driving idea behind the ADAGRAD algorithm, described in Alg. 16.

Algorithm 16: ADAGRAD.

1 Function ADAGRAD(f)
2 Choose initial allocation matrix w1 ∈ Rd, and step-size sequence {γt} with

γt > 0, t = 1, 2, . . ..
3 t← 1
4 while not converged do
5 Based on the observation xt, compute g(wt;xt).

6 wt+1 ← wt − γt
√
ϵI+Gt

g(wt;xt)

// Projection on ΠH can be added if needed
7 t← t+ 1

8 end
9 return wt

The step size of ADAGRAD in Step. 6 slightly differs from the one in gradient descent: ϵ > 0 is
a term to avoid division by 0, I is the identity matrix and Gt is the matrix of accumulated squared
gradient, defined as:

Gt =




∑t
τ=1 g(w

τ+1;x)21 0 . . . 0

0
∑t

τ=1 g(w
τ+1;x)22 . . . 0

0 . . .
. . .

...

0 . . . 0
∑t

τ=1 g(w
τ+1;x)2d



.

133A.3. The ADAGRAD Variant



FOLIO ADMINISTRATIF

.. . . . . . . .THÈSE .. . .DE.. . . . . . . .L’INSA .. . . . . . .LYON, . . . . . . . . . . . .MEMBRE.. . . .DE .. . . . . . . . . . . . . . . . .L’UNIVERSITÉ .. . .DE.. . . . . . .LYON

NOM : JEANNEROT Date de soutenance : 16/12/2024

Prénoms : Alix Sébastien Thibaut

TITRE : Uplink Resource Allocation Methods for Next-Generation Wireless Networks

Nature : Doctorat Numéro d’ordre : 2024ISAL0109

École Doctorale : Électronique, Électrotechnique et Automatique

Spécialité : Traitement du Signal

Résumé :

Face à la diversité des besoins en communication des réseaux 5G et de la future 6G, l’allocation des ressources disponibles est

considérée comme un élément clé pour augmenter la densité de dispositifs, leur débit ou la fiabilité de leurs communications. Dans

les réseaux de communication de type machine, des travaux récents ont proposé d’adapter l’allocation des ressources temporelles

en fonction du processus sous-jacent qui régit l’activité des dispositifs. Cette thèse se concentre tout d’abord sur l’étude de l’impact

d’une connaissance imparfaite de ce processus, et propose des méthodes pour atténuer le biais induit par les connaissances

erronées. En second lieu, un algorithme permettant d’optimiser conjointement l’allocation des ressources temporelles et la puissance

de transmission des dispositifs est proposé. L’algorithme permet aux dispositifs ayant une forte probabilité de transmettre au même

moment, de le faire sur des ressources (temporelles ou de puissance) assurant leur décodabilité. Enfin, dans les réseaux ayant un

objectif de haut débit, nous proposons d’optimiser conjointement la puissance, les ressources fréquentielles ainsi que le nombre de

flux de données parallèles utilisées par les dispositifs. Notre étude par simulations témoigne que notre optimisation conjointe est

plus performante que les méthodes utilisées actuellement en 5G pour lesquelles ces paramètres sont calculés indépendamment les

uns des autres.

Mots-clés : wireless networks, resource allocation, stochastic gradient descent, machine type communication, enhanced

mobile broadband

Laboratoire de recherche : Centre of Innovation in Telecommunications and Integration of Service (CITI)

Directeur de thèse : Jean-Marie GORCE

Présidente du jury :

Composition du Jury :

Valeria LOSCRI, Gianluigi LIVA, Inbar FIJALKOW, Petar POPOVSKI, Alvaro VALCARCE, Cédric ADJHI,

Jean-Marie GORCE, Malcolm EGAN


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Wireless Cellular Communication: from 2G to the Future 6G
	PHY and MAC Layers
	Motivations and Challenges in MTC
	Motivations and Challenges in eMBB
	Contributions of the Thesis and List of Publications
	Contributions
	Readers Guideline
	Publications
	Code Repository


	System Model - State of the Art
	The Uplink Communication Channel
	Communication Models
	Transmission without Interference: Single User AWGN
	Transmission with Interference: Multi-User AWGN
	Communication Resources
	From RACH-based to GFRA
	Selection of Resources in GFRA
	Multi-User AWGN with Sporadic Activity
	Channels with Multiplicative Noise

	Measuring the Performance of an Allocation
	Throughput
	Success Rate, Collision Rate
	Jain's Index: a Fairness Measure
	Case Study: Throughput and Fairness Trade-off

	Conclusion

	Slot Allocation with Imperfect Device Detection
	Introduction
	Related Work
	Main Contributions

	System Model
	Device Activity and Resource Selection
	GFRA Protocol and Device Identification
	Feedback of the Allocation Matrix A

	Stochastic Resource Allocation Problem
	Objective
	Stochastic Optimization Problem

	Mitigating Errors in Activity Estimation
	Impact of Activity Estimation Error
	Unbiasing Gradient Estimates
	Proposed Algorithm
	Computing the Importance Weight

	Numerical Results
	Parameters and Baseline Methods
	Symmetric Errors
	Asymmetric Errors
	Errors Arising from GAMP-Based Detection

	Conclusions

	Joint Slot Allocation and Power Control
	Introduction
	System Model
	Activity Model
	Slot Selection
	Transmit Power
	Channel Model and Receiver

	Objective
	Proposed Algorithm
	Practical Consideration: Sampling the Power Set

	Numerical Results
	Simulation Scenario
	Simulation Parameters and Methods Considered
	Simulation Results

	Conclusion

	Joint Power, PRB and Rank Allocation
	Introduction
	System Model
	Resources
	Model at RE Resolution
	Model at PRB Resolution

	Joint Power, PRB and Layer Optimization
	Computing the Allocation: Practical Considerations
	An Alternative Optimization Problem
	Neural Network to Learn (5.15)

	Baselines
	Power Control in Cellular Network
	PRB Scheduling
	Layer Selection

	Simulation Results
	Conclusion

	Conclusion and Future Work
	Conclusion
	Perspectives
	Time-dependent Activity Patterns
	Security Concerns: Denial of Sleep Attacks
	Heterogeneous IRSA
	Downlink Constellation Learning


	Résumé en Français
	Allocation de Ressources sous Incertitude
	Introduction
	Modèle
	Optimisation par Descente de Gradient en Ligne
	Simulations
	Conclusion

	Allocation Conjointe de Créneaux et de Puissance
	Introduction
	Modèle
	Optimisation Conjointe de Puissance et de Créneau
	Simulations
	Conclusion

	Allocation Jointe de PRB, de Puissance et de Couches
	Introduction
	Modèle et Problème
	Simulations
	Conclusion


	Bibliography
	Gradient Methods for Optimization
	Gradient Descent
	Projected Stochastic Gradient Descent
	The ADAGRAD Variant


