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Abstract

This thesis presents experimental realisations of topological systems obtained with dyspro-
sium atoms. Our protocols consist in encoding synthetic dimensions in dysprosium’s large
spin, J = 8, and in coupling these synthetic dimensions to momentum via Raman transitions.

We first emulate quantum Hall systems in two dimensions (one synthetic and one spa-
tial), on a planar geometry and on a cylindrical geometry. In the latter, we were able to
implement for the first time Laughlin’s topological charge pump, which is intimately linked
to the Hall conductance quantisation. Afterwards, we present the main result of this thesis
: the realisation a 4D quantum Hall system, by combining two spatial dimensions and two
synthetic ones. We compare our findings with the predictions of an effective model, which
describes our system as a direct sum of a pair of 2D Landau levels. We unveil typical fea-
tures of the 4D quantum Hall effect, including the anisotropic edge modes, the non-linear
electromagnetic response and the quantisation of the second Chern number.

Finally, we return to the 2D geometry, and investigate the entanglement Hamiltonian of
a single-particle quantum Hall system. An approximation of the entanglement Hamiltonian
is experimentally realised by following the Bisognano-Wichmann theorem. We present a
roadmap for extending this protocol to interacting topological systems.
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Résumé

Cette thèse présente des réalisations expérimentales de systèmes topologiques, obtenues avec
des atomes de dysprosium. Nos protocoles consistent à encoder deux dimensions synthétiques
dans le grand spin du dysprosium, J = 8, et à les coupler à la quantité de mouvement des
atomes via des transitions Raman.

Tout d’abord, nous simulons des systèmes de Hall quantiques en deux dimensions, sur une
géométrie plane et sur une géométrie cylindrique. Dans cette dernière, nous avons pu mettre
en œuvre pour la première fois la pompe topologique de Laughlin, qui est intimement liée
à la quantification de la conductance de Hall. Nous présentons ensuite le résultat principal
de cette thèse : la réalisation d’un système de Hall quantique en 4D, en combinant deux
dimensions spatiales et deux dimensions synthétiques. Nous comparons nos résultats avec
les prédictions d’un modèle effectif, décrivant notre système comme une somme directe d’une
paire de niveaux de Landau en 2D. Nous révélons des caractéristiques typiques de l’effet de
Hall quantique en 4D, notamment les états de bord anisotropes, la réponse électromagnétique
non linéaire et la quantification du second nombre de Chern.

Enfin, nous revenons à une géométrie bidimensionnelle et étudions l’hamiltonien d’intrication
d’un système de Hall quantique à une particule. Une approximation de l’hamiltonien
d’intrication est réalisée expérimentalement en s’appuyant sur le théorème de Bisognano-
Wichmann. Nous présentons une feuille de route pour étendre ce protocole à des systèmes
topologiques avec interactions.
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Introduction

In 1980, Klaus von Klitzing et al made the unexpected discovery of the quantum Hall effect
[1]. By studying the motion of a quasi two-dimensional gas of electrons in a MOSFET tran-
sistor at low temperature, they were able to detect the quantisation of the Hall conductance.
This discovery had both practical and fundamental applications. The quantum Hall effect
is used as a standard to measure resistances by defining the ohm based on fundamental
constants [2, 3]. Moreover, it led to the emergence of the TKKN theory two years later,
introduced by Thouless, Kohmoto, Nightingale and den Nijs in their seminal paper [4]. In
it, they proposed an interpretation of the Hall conductance quantisation based on topology.

Topology in physical systems

Topology is a branch of mathematics studying the properties of objects that are con-
served under continuous deformations. Its application to quantum physics started in the
1970s, where topological arguments were used in gauge theories, for instance to understand
the Aharonov-Bohm effect or to study magnetic monopoles [5, 6]. With the discovery of the
quantum Hall effect, topology has played an increasingly important role in condensed matter
physics. Following the work of TKKN and S.Pancharatnam [7], Michael Berry popularised
the concepts of Berry phase and Berry curvature [8, 9], that are now commonly used in
the field. By integrating the Berry curvature over the Brillouin zone of a system, one can
compute the topological invariant of this system and characterise its topological properties.
In short, a topological property is robust to disorder or to a deformation. The primary
observation of von Klitzing is an example of topological property.

Initially, topological properties were believed to arise only in two-dimensional electronic
systems submited to high magnetic fields. In 1988, Haldane made the first change to this
paradigm [10] , by showing that the key ingredient to obtain the quantum Hall effect is not
the presence of a magnetic field, but the breaking of time-reversal symmetry. More recently,
Kane and Mele generalised the concept of topology to the case of time-reversal invariant
systems in [11, 12], via the discovery of the quantum spin Hall effect in two dimensions,
which have been since then realised [13–16]. This also led to the notion of ‘topological
insulator’ [17, 18].

The creation of the topological classification in the late 2000s [19–21] generalised the
study of topological systems. This classification predicts, as a function of the symmetries of
the system and its dimensionality, the presence of a non-trivial topology. This classification
not only considers quantum Hall systems or topological insulators, but it also includes
topological superconductors [22]. To summarise, the study of topological properties went
from the 2D quantum Hall effect to a much richer family of physical systems, of various
dimensions and symmetries.
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Some of these topological systems are expected to exhibit exciting properties, particularly
when considering higher dimensions. The generalisation of the quantum Hall effect to 4D
[23] and 6D [24, 25] or the generalisation of 3D topological Weyl semimetals [26] to 5D [27]
predict exotic physical phenomena. As an example, the 4D quantum Hall effect is quantised
by a new topological invariant, the second Chern number, quantifying the non-linear response
to an electromagnetic perturbation.

Extending the classification to interacting systems also leads to new physical phenom-
ena. For instance, 2D fractional quantum Hall states [28–30] could host non-Abelian anyon
excitations [31–33], whose statistics are not bosonic nor fermionic. These anyons could have
important applications in quantum computing [34].

Most of the topological systems remain to be explored, and other fields of physics have
joined the effort of solid-state systems to study these exotic new phases of matter. Photonics
is one of them [35–37]. This field has enabled the observation of numerous new topological
phases, with for example observations of Floquet topological insulators [38–40] or 4D quan-
tum physics [41]. A more recent branch, topological electronic circuits, has permitted the
measurement of the first topological insulator in class AI and in four dimensions [42]. Ultra-
cold atomic gases represent another field that can contribute to the exploration of topological
quantum matter [43–46].
Cold atom experiments

Cold atom experiments study dilute ultracold gases of neutral atoms, with a high degree
of control achieved through electromagnetic fields. This field of research has been highly
productive over the last thirty years and has observed many theoretical predictions of new
phases of matter. Bose-Einstein condensation was observed in 1995 [47, 48] and the degen-
eracy of a Fermi gas was reached in 1999 [49]. More recently, there has been an effort to
simulate topological phases of matter.

These experiments offer various methods for emulating topological condensed matter
systems. The most common one involves the use of optical lattices, which naturally mimic
the physics of electrons in a crystalline potential. As we sill see later on, topological prop-
erties generally require external gauge fields and spin-orbit coupling to arise [43]. The cold
atoms community has thus developed several tool to engineer these gauge fields on neutral
atoms, going beyond the standard static optical lattices.

A significant advantage of cold atom experiments lies in the ability to finely tune the
interactions between atoms, for instance through Feshbach resonances. It is thus an interest-
ing platform to realise many-body topological phases of matter, such as fractional quantum
Hall states. A recent example of this was achieved using two atoms on a 4 × 4 lattice [30],
and could be use to probe non-abelian anyonic excitations if the system’s size was extended.
Another key advantage of these experiments is the capability to probe the topological nature
of the simulated model, which is often a challenging task due to the lack of local order pa-
rameter to identify it. For instance, edge modes can be observed through the ability to load
atoms directly into the edge states and via atomic in-situ imaging [50], revealing the topol-
ogy through the bulk-edge correspondence [51]. The topological invariant of the model (for
instance, the Chern number in a quantum Hall system) can be obtained by measuring the
center of mass response to a perturbation [52], enabling the characterisation of the topology.
Artificial gauge fields

Many topological effects are a consequence of spin-orbit coupling and external gauge
fields [43]. This is the case for the topological Bloch bands arising in quantum Hall systems.
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However, cold atom experiments involve neutral atoms, that do not experience the Lorentzi
force responsible for the quantum Hall effect. Instead, we use artificial gauge fields that
analogously mimic the effects of magnetic fields on electrons. In this manner, Hamiltonian
of the form

H = [p−A(r)]2

2M , (1)

can be emulated on neutral atoms, where the artificial gauge field A(r) can be made Abelian
or non-Abelian [53, 54].

These artificial gauge fields can be engineered in various ways in cold atom experiments.
The first one is through rotations of an atomic gas, where the Coriolis force replaces the
Lorentz force [55]. A second and fruitful possibility is the use optical lattices as mentioned
previously. By implementing laser-induced tunelling between the different lattices site [56,
57], or by Floquet engineering [58], artifical gauge fields can be produced, leading to the
simulation of various topological phases of matter. For instance, [59] reported the exploration
of 4D quantum Hall physics via time modulation of an optical superlattice. The Haldane
model [58], or the Hofstadter Hamiltonian [52] were realised in modulated optical lattices.
A third approach, which is employed in our laboratory, consists in treating the atom’s spin
as a synthetic dimension. By using Raman processes, we can couple the atomic spin to its
momentum, thereby generating spin-orbit coupling.
Synthetic dimensions

The use of synthetic dimensions has several advantages. First, it permits the emulation
of higher-dimensional systems [60]. For example, a one-dimensional lattice could be mapped
onto a two-dimensional system by taking into account the internal degree of freedom of the
atoms. Secondly, synthetic dimensions permit the engineering of both a bulk and sharp
boundaries, thereby allowing the observation of the edge states that occur at the boundaries
of a topological system. Additionally, they allow the implementation of radial artificial
gauge fields [61–63], something that is difficult to implement in solid-state systems. It is
worth noting that synthetic dimensions are not restricted to cold atom experiments and are
extensively used in other plateforms, such as photonics [36, 64, 65].

However, this method of engineering artificial gauge field comes with a drawback : it
requires implementing rather strong light shifts, which often result in a significant heating
due to off-resonant photon scattering when used with alkali atoms, the most common species
in cold atom experiments. This issue can be overcome by manipulating lanthanides atoms,
whose electronic structures lead to a more favorable interaction between light and matter.
Lanthanides

Lanthanides are a family of chemical elements whose atomic numbers range between 57
to 71. Despite being more challenging to manipulate and to cool than most alkali elements,
this family of atomic species has been gaining increasing interest.

The peculiar electronic structure of lanthanides (meaning, their open f shell) leads to a
rich landscape of electronic transitions, and for some of them, to a large spin in the ground
state. For instance, erbium and dysprosium have respectively a spin J = 6 and J = 8
in their ground state, resulting in a strong magnetic moment and therefore strong dipolar
interactions. To illustrate, the dipolar interaction between two dysprosium atoms is about
100 times higher than the one between two rubidium atoms [66]. These dipolar interactions
are the primary reason for the growing popularity of lanthanide experiments. Indeed, these
long-range interactions can give rise to new states of matter, such as quantum droplets that
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were observed recently [67, 68]. Another striking example is the roton-maxon spectrum and
its supersolid character, that have been experimentally studied [69–72].

An alternative area of research using lanthanides atoms (and more particularly dyspro-
sium atoms) consists in considering their macroscopic spin J as 2J fictitious qubits. This
can be used to study nonclassical states made of these virtual qubits, and have potential
applications in metrology [73–75].

In our group, we are recently interested in the quantum simulation of topological systems
by considering dysprosium’s spin as synthetic dimensions. We leverage dysprosium’s large
spin J = 8 to have both a bulk and sharp edges. Moreover, our protocols require the use
of strong light shifts, which would result in significant heating if implemented with alkali
atoms, as mentioned earlier. Dysprosium is well-suited to overcome this issue because its
transitions arrangement, consisting of many isolated narrow transitions, permits to avoid
off-resonant scattering. Secondly, the shape of the light-matter interactions for dysprosium
(and more generally for lanthanides) benefits from the non-vanishing tensorial polarisability,
and we can engineer first and second-order light shifts. We also note that combining the
light-matter interaction with dipolar-dipolar interactions could lead to the realisation of
more intriguing topological phases of matter [66].

In this thesis, we focus on the simulation of topological quantum Hall systems using an
ultracold gas of dysprosium atoms. An artificial gauge field is generated by using Raman
process and by considering dysprosium’s spin as synthetic dimensions. This manuscript is
organised as follows:

Chapter 1 is dedicated to the presentation of our experimental apparatus and of dyspro-
sium properties. We detail the interaction between light and dysprosium and see that
the light polarisation is the key ingredient to describe it. We present a few techniques
to measure the light polarisation and the magnetic field strength using dysprosium
atoms.

Chapter 2 introduces our protocol to emulate quantum Hall systems using the example of
the 2D quantum Hall ribbon, already realised previously in our group. In short, by
coupling dysprosium’s spin to its momentum via Raman transitions, we can emulate
artificial gauge fields in a space-synthetic system.

Chapter 3 centers on the encoding of two synthetic dimensions within dysprosium’s large
spin. We theoretically demonstrate the emergence of these two dimensions, one of
them being cyclic. We then use this cyclic synthetic dimension to engineer a quantum
Hall cylinder in which we implement Laughlin’s topological charge pump.

Chapter 4 provides a theoretical exploration of 4D quantum Hall systems. We first intro-
duce the topological classification and expose a few typical properties of topological
higher-dimensional systems. We then delve into a synthetic 4D quantum Hall system,
made of the two synthetic dimensions studied in chapter 3 and two spatial ones.

Chapter 5 presents the main result of this thesis, namely the experimental realisation
of a 4D quantum Hall system. We first reveal the system’s topology by measuring
anisotropic chiral edge modes at the boundaries. We then characterise the bulk topol-
ogy by measuring a second Chern marker equal to unity. Finally, we explore the
peculiar nature of cyclotron orbits in 4D, as well as the non-linear electromagnetic
response.
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Chapter 6 focuses on the notion of entanglement spectrum. We follow Bisognano-
Wichmann prescription to realise an approximation of the entanglement Hamiltonian
of a 2D non-interacting quantum Hall system. We measure its spectrum and unveil
a chiral dispersion relation, identifying the topology of our system via the bulk-edge
correspondence. Finally, we offer a proposal to extend our protocol to interacting
systems.

During my thesis, I contributed to four different projects, three of them being discussed
in this manuscript, with a strong emphasis on the realisation of a 4D quantum Hall system. I
had also the opportunity to work on the notion of pairwise entanglement, that I don’t detail
here. In short, we considered dysprosium’s large spin J as 2J fictitious qubits and studied
the entanglement between these virtual qubits. This study led to a publication [76] that we
provide in Appendix A. It is extensively described in thesis [77, 78].
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This chapter is dedicated to the study of dysprosium properties and to the presentation
of our experiment. We start by describing a few general properties of dysprosium. We study
the contact and dipolar interactions between two atoms, and see that they can be neglected
on the timescales of our experiments. We then focus on the interaction of dysprosium
with light. Thanks to its rich electronic structure, dysprosium has many transitions. The
arrangement of these transitions is quite favorable. In particular, it permits to work in the
vicinity of a given narrow transition without suffering too much from scattering. In this
regime, we show that the light-matter interaction can be greatly simplified, and that first
and second-order spin-dependent operators can be engineered on a dysprosium atom with
light.

Following this theoretical study, we briefly describe the dysprosium machine at Collège de
France. We then move on to the beams preparation and calibration. Since the polarisation
of light has a strong influence on the light shift properties, we attach great importance to
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the polarisation calibration of each laser beam. Subsequently, we focus on the magnetic
field control, from the ability to perform magnetic field rotations to the measurement of the
magnetic field norm.

Finally, we propose an experimental upgrade that would permit us in the future to have a
more robust Bose-Einstein condensate. This would be the first step towards the exploration
of many-body topological phases in our experiment.

1.1 Dysprosium properties

Dysprosium is a rare-earth element located at the 6th line and 12th column of the periodic
table. Its atomic number is 66. It is mainly found in four isotopes, see Fig. 1.1, 164Dy
isotope being the most abundant [79]. At room temperature and atmospheric pressure, it’s a
grey and ductile metal. At the moment, dysprosium has only few applications. It is used for
data storage (thanks to its high magnetic susceptibility), being incorporated in the surface
coatings of some hard drives. Dysprosium is also used in dosimeters, where its luminescence,
once exposed to ionising radiation, provides a measurement of the radiation level.

Dysprosium has one of the largest magnetic moment among the periodic table, which
makes it of peculiar interest for fundamental physics, for instance to study long-range in-
teractions. Moreover, as we will see in this manuscript, its huge spin J = 8 (for bosonic
dysprosium) is a useful tool to emulate condensed matter systems.

Figure 1.1: Isotopes of dysprosium and electronic configuration. a: Four most abundant
isotopes of dysprosium in nature. All the results presented in this thesis involve the 162Dy
isotope. Data from [79]. b : Electronic configuration of dysprosium in its ground state.

1.1.1 Electronic structure

The electronic structure of dysprosium can be written as :

[Xe]4f106s2 (1.1)

Even though the 6s shell of dysprosium is filled, the 4f shell lacks 4 electrons, which leads
to an orbital momentum L = 6 and an electronic spin S = 2, see Fig. 1.1b. Thus, the
total angular momentum is J = L + S = 8. The bosonic isotopes of dysprosium have
no nuclear spin, I = 0, and hence no hyperfine structure. The ground state of a bosonic
dysprosium is made of 17 degenerate Zeeman sublevels : |J = 8,m = −8⟩ , ..., |J = 8,m = 8⟩.

The four unpaired valence electrons of dysprosium lead to a high number of electronic
levels, thus a high number of electronic transitions. We show some of these transitions in
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Fig. 1.2. During this thesis, we essentially manipulated the atomic internal and external
degrees of freedom using the optical transitions at 421 nm and the 626 nm between the
electronic ground state and two excited states. Both are associated with the promotion of
an electron of the 6s shell to a 6p orbital.

Figure 1.2: Electronic transitions of dysprosium. Figure adapted from [80]. a : Electronic
transitions of dysprosium. Red states (resp. black states) correspond to states of even (resp.
odd) parity. We depict a few transitions of dysprosium. The ones used in our experiment are
the blue transition at 421 nm and the so-called ‘orange transition’ at 626 nm. b : Properties
of the 421 nm and the 626 nm transitions : linewidth, Doppler temperature and saturation
intensity.

1.1.2 Interactions between dysprosium atoms

Contact interactions

The contact interactions between two dysprosium atoms depend on the total spin Jtot of the
two atoms. For s-wave interactions, the exchange symmetry [81] imposes that the collision
is vanishing if the total spin is an odd number. For 162Dy, one should consider 9 collision
channels, with Jtot = 0, 2, ..., 16. The interaction potential between two atoms can be written
as [82] :

V = δ(r)
∑

even Jtot

gJtotPJtot , (1.2)

where r is the intra-particle distance, PJtot is the projector on the subspace of total spin
Jtot and gJtot is an interaction parameter. Nine interactions parameters, i.e nine scattering
lengths aJtot = MgJtot/(4πh̄2), are thus necessary to fully describe dysprosium interactions.
Indeed, if two interacting atoms in |−8⟩ or in |+8⟩ only involve a16, interactions between
other m states involve many channels, hence many scattering lengths.

The high complexity of dysprosium electronic structure makes the theoretical calcula-
tion of these scattering lengths challenging [83, 84]. We thus rely on experiments to get
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information on these scattering lengths. For the 162Dy and 162Dy, measurements using self-
bound dipolar droplets were realised, leading to a value a16 = 140(7)a0 for 162Dy [72] and
a16 = 69(4)a0 for 164Dy [68]. For now, we only know the scattering length a16 for the channel
Jtot = 16 among the 9 scattering lengths that fully describe the contact s-wave interactions.

Dipolar interactions

With its high magnetic moment, dysprosium has the strongest dipolar interactions in its
ground state among neutral atoms. Stronger dipolar interactions can still be obtained for
molecules or Rydberg atoms. We briefly describe dipolar interactions in this paragraph,
more details can be found in [66].
The dipolar-interaction potential between two dysprosium atoms separated by a vector r =
(x, y, z) has the following form :

Vdd = µ0g
2
Jµ

2
B

4πr3

(
r2J1 · J2 − 3(J1 · r)(J2 · r)

r2

)
, (1.3)

where J = (Jx, Jy, Jz) is the angular momentum operator, gJ the Landé factor, µB the Bohr
magneton and µ0 the vacuum permeability. The index 1 and 2 refer to two different particles.
Eq. (1.3) can be rewritten [66, 85, 86] :

Vdd = µ0g
2
Jµ

2
B

4πr3
[
J1zJ2z + 1

2(J1+J2− + J2+J1−)

− 3
4[(2z̃J1z + r̃−J1+ + r̃+J2−)(2z̃J2z + r̃−J2+ + r̃+J1−)]

]
,

(1.4)

where r̃± = x± iy
r

and z̃ = z

r
. Three different physical process can be extracted from this

interaction, as demonstrated in [66] :
(i) First, the terms proportional to J1zJ2z conserve the spin of each atom.
(ii) Secondly, the terms proportional to J1+J2− +J1−J2+ don’t conserve the spin of each

atom, but conserve the magnetisation of the pair. Providing there is no quadratic Zeeman
shift, the magnetic energy is also conserved.

(iii) Finally, the terms proportional to J1zJ2− and to J1−J2− (as well as their Hermitian
conjugates) result in a modification of the total magnetisation.

In the presence of a magnetic field, contribution (iii) leads to a conversion of Zeeman
energy into kinetic energy. This is the so-called ‘dipolar relaxation’ and is a source of heating.
The rates of dipolar relaxation are, for bosons, an increasing function of the magnetic field.
Working at high magnetic fields with bosonic dysprosium in any state other than |−8⟩1 is
thus challenging, especially at high density. We show in Fig. 1.3 an example of dipolar
relaxation in our experiment.

1the state |J = 8, m = −8⟩ doesn’t undergo dipolar relaxation since J− |J = 8, m = −8⟩ = 0.
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Figure 1.3: Dipolar relaxation at a 1G magnetic field. Atoms are initially prepared in a
coherent state of average magnetisation ⟨Jz⟩ ≃ 0. They are held in the dipole traps for
various durations. Solid line is a two-body loss fit. The red dashed line indicates the
usual maximum duration of our experiments tmax ≃ 1 ms. Note that the decay occuring
here is not only due to the dipolar relaxation involving two spin states m = 0. Indeed,
overtime, the contact interactions redistribute the spin populations. Hence, many different
dipolar relaxation channels can occur in parallel. The decay displayed here results from the
combination of all these different channels.

Competition between contact and dipolar interactions

The strength of contact interactions and dipolar interactions can be characterised by (re-
spectively) the scattering length a and the magnetic length :

add = µ0µ
2M

12πh̄2 , (1.5)

where M is the atomic mass, and µ is the dipolar moment of the species under study. The
ratio between the scattering length and the magnetic length, ϵdd ≡ add/a, quantifies the
dipolar character of an atomic species.

We show in Fig. 1.4 a comparison of the magnetic length and the scattering length of
87Rb, 162Dy and 164Dy. As one can see, this ratio is way higher for bosonic dysprosium
than for rubidium. Moreover, we also see that it is higher for 164Dy than for 162Dy (due to
its smaller scattering length). The isotope 164Dy is thus more interesting to probe dipolar-
related physics, such as supersolidity [69, 71, 87, 88]. However, our group uses 162Dy to
implement artificial gauge field in its synthetic dimension, because its large scattering length
favors evaporative cooling.

87Rb 162Dy 164Dy
a a11 = 100.9a0 a16 = 140(7)a0 a16 = 69(4)a0

add 0.7a0 129a0 131a0
ϵdd 0.007 0.92(5) 1.89(11)

Figure 1.4: Contact and dipolar interactions for dysprosium and rubidium. Scattering length
for 87Rb is taken from [89].
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The results presented in this thesis are performed with a (cold) thermal cloud of dys-
prosium atoms. The experiments are performed at relatively short timescales (below the ms
level), so if not mentioned, interactions will be neglected in the rest of the thesis. In the next
section, we focus on the interaction between a dysprosium atom and a photon.

1.2 Light-matter interaction
In this section, we first introduce the polarisability for a simple quantum system, and then
move on to the case of dysprosium atom.

1.2.1 Toy model

We suppose that an electric field E = E

2 e−iωtϵ + c.c, where ϵ is the polarisation, is applied
on an atom. The coupling between light and matter is written as :

H = −d ·E (1.6)

where d is the dipole operator. We suppose that the electric field is not resonant with any
transition. In this case, the interaction between light and matter can be considered by a
virtual absorption of a photon followed by a virtual emission. To treat this problem, we use
the dressed state formalism where we consider the system {atom + photon} as a whole. The
interaction between light and matter leads to a shift of eigenenergy that can be computed
using second-order perturbation theory. The energy shift of the ground state is given by :

dV = |E|
2

4
∑
e̸=g

|⟨g|d · ϵ |e⟩|2

Ee − Eg − h̄ω
+ |⟨g|d · ϵ |e⟩|2

Ee − Eg + h̄ω
(1.7)

For our model to describe the finite lifetime of the excited state, we write the energy of
the excited state with a non-vanishing imaginary part : Ee = h̄ωe + i

h̄Γe

2 where Γe is the
width of the excited state. The energy of the ground state is given by Eg = h̄ωg. In the end,
we are left with :

dV = |E|
2

4
∑
e̸=g

|⟨g|d · ϵ |e⟩|2

h̄(ωeg − ω) + ih̄Γe/2
+ |⟨g|d · ϵ |e⟩|2

h̄(ωeg + ω) + ih̄Γe/2
, (1.8)

where ωeg ≡ ωe−ωg. The second term of Eq. (1.8) is often neglected using the rotating wave
approximation (RWA)[90], leading to the simpler expression :

dV = |E|
2

4
∑
e̸=g

|⟨g|d · ϵ |e⟩|2

h̄(ωeg − ω) + ih̄Γe/2
(1.9)

This equation can be written in a much more compact form dV = −α(ω)|E|2, which
defines the frequency-dependent atomic polarisability α(w) of the ground state. The energy
shift dV = U − i h̄Γscat

2 and the polarisability has both a real and an imaginary part, each
of them describing different physical processes.
Real part

The real part is related to the (real) energy shift of the atomic levels, and is often referred
to as the light shift. It describes a conservative potential :

U(r) = −Re [α(ω)] |E(r)|2. (1.10)
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Within RWA and introducing the detuning ∆eg = ωeg − ω, it can be expressed as :

U(r) = |E(r)|2
4h̄

∑
e ̸=g

| ⟨g|d · ϵ |e⟩ |2∆eg

∆2
eg + Γ2

e/4
(1.11)

The sign of this potential thus depends on the sign of the detuning : a red-detuned (resp.
blue-detuned) laser will lead to an attractive (resp. repulsive) potential. The spatial depen-
dance of the potential is given by the light intensity profile. This opens plenty of possibilities
to trap the atoms, from the optical dipole traps creating an harmonic confinement to optical
lattices, where the atoms are trapped in the interference patterns whose typical size is set
by the laser wavelength.
Imaginary part

The imaginary part of the energy shift describes the scattering :

Γscat(r) = −2
h̄

Im [α(ω)] |E(r)|2 (1.12)

Similarly, it can be expressed as :

h̄Γscat(r) = |E(r)|2
4h̄

∑
e ̸=g

| ⟨g|d · ϵ |e⟩ |2Γe

∆2
eg + Γ2

e/4
(1.13)

This term accounts for the absorption/spontaneous emission cycles, due to the finite
lifetime of the excited states. To limit the scattering, the ratio Γe/∆eg needs to be reduced,
which means working further away from resonances or using narrower transitions.
In practice, as seen on Eq. (1.11) and Eq. (1.13), the real part scales in 1/∆eg whereas the
imaginary part scales in 1/∆2

eg. We can thus neglect the scattering compared to the light
shift, when we are working with an off-resonant beam.

To summarise, we have seen with this simple model how a detuned light can be used
to shape attractive or repulsive potential on the atoms, via the real part of the atomic
polarisability. We now move on to the more complicated case of dysprosium atoms.

1.2.2 Off-resonant light-matter interaction for Dyprosium

The above model doesn’t take into account the internal structure of the ground state. The
formalism of light-matter interaction for real atoms is well established [90], and we summarise
here the principal results for the case of dysprosium atoms. More details can be found in
[91, 92]. The off-resonnant light-matter potential for a dysprosium atom in a given J state
can be separated into three contributions :

V = Vscalar,J + Vvectorial,J + Vtensorial,J , (1.14)

where :
Vscalar,J = αscalar,J(ω)|ϵ|21

Vvectorial,J = −iαvectorial,J(ω) (ϵ∗ × ϵ) · J2J

Vtensorial,J = αtensorial,J(ω)3 [(ϵ∗ · J) (ϵ · J) + (ϵ · J) (ϵ∗ · J)]− 2J2

2J(2J − 1)

(1.15)

While the vectorial and tensorial components depend on the spin, the scalar does not. The
prefactors αscalar, αvectorial, αtensorial are respectively called the scalar, vectorial and tensorial
polarisability. They carry the dependence on the light intensity.
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They can be expressed as :

αscalar,J =
√

1
3(2J + 1)

∑
J ′

(−1)J ′+J

{
1 0 1
J J ′ J

}
VJ,J ′ ,

αvectorial,J = −
√

6J
(J + 1)(2J + 1)

∑
J ′

(−1)J ′+J+1
{

1 1 1
J J ′ J

}
VJ,J ′ ,

αtensorial,J = −
√

10J(2J − 1)
3(J + 1)(2J + 1)(2J + 3)

∑
J ′

(−1)J ′+J+2
{

1 2 1
J J ′ J

}
VJ,J ′ ,

(1.16)

where the sum spans all the possible transitions and where the curly braces represent the
Wigner-6j symbols. The prefactor VJ,J ′ contains the dependency on the transition and on

the light via VJ,J ′ = 3πc2

2ωJ,J ′

ΓJ,J ′

∆J,J ′
I. First, ΓJ,J ′ refers to the transition linewidth and h̄ωJ,J ′ is

the transition energy. On the other hand, ∆J,J ′ is the detuning between the light frequency
and the resonance, and I is the light intensity.

As we see, the off-resonant interaction between light and a dysprosium atom is quite
complicated. Interestingly, at first sight, all the transitions are involved to describe the
interaction between an atom and a photon at frequency ω. Fortunately, Eq. (1.14) can be
greatly simplified by considering two different regimes. This simplification is permitted by
the peculiar distribution of dysprosium transitions.

Dysprosium transition structure

As seen in the beginning of this chapter, the complex electronic structure of dysprosium
leads to many different transitions. These transitions follow a typical pattern. At high
energy (near-UV wavelengths), dysprosium exhibits three broad and nearby transitions :
405 nm, 419 nm, 421 nm. On the other hand, in the visible and IR domains, dysprosium has
only narrow transitions, which are all well separated. We propose in Fig. 1.5 a schematic
of dysprosium’s transition landscape. This structure leads to two different regimes that we
detail below.

Figure 1.5: Schematic of dysprosium transitions. Only a few of them are depicted. There is
a triplet of broad transitions in the near-UV regime. On the other hand, there are several
narrow transitions in the visible and IR domains. Regime (a) : We are in the vicinity of a
transition, here the 626 nm transition. Regime (b) : We are far-detuned from any transition.

Far-detuned light

For a far-detuned light, the main contribution of the interaction comes from the triplet
of broad transition in the near-UV regime. Indeed, these transitions have a much bigger
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linewidth, and the ratio Γ/∆, proportional to the interacting potential, is much more fa-
vorable for any transition of the blue triplet than for any narrow transitions. For example,
assuming a 1070 nm light, we have :

Γ626
|∆626|

≃ 6.8× 10−10

Γ421
|∆421|

≃ 7.4× 10−8
(1.17)

In this configuration, the majority of the interaction is due to the scalar contribution of
the near-UV triplet. Indeed, the contribution to the vectorial and tensorial polarisabilities1

of the three blue transitions nearly cancels out when the light is far-detuned from this UV-
triplet [91, 92]. This regime is used to trap atoms in the optical dipole traps.

Vicinity of a narrow transition

In the vicinity of a narrow transition, the scalar ‘background’ contribution due to the near-
UV triplet can be neglected in front of the contribution of the transition under study. In such
case, the scalar, vectorial and tensorial contributions of the polarisability are of the same
order of magnitude. We can hence engineer spin-dependent light shifts. The light-matter
interaction Eq. (1.14) can be greatly simplified in this regime. We are left with [91]:

V = U

[
α01− iα1 (ϵ∗ × ϵ) · J2J + α2

3 [(ϵ∗ · J) (ϵ · J) + (ϵ · J) (ϵ∗ · J)]− 2J2

2J(2J − 1)

]
, (1.18)

where the coefficients α0, α1, α2 are frequency-independent, their value being only given by
the excited state involved in the transition. The interaction is described by three terms :
the scalar light shift, the vectorial light shift and the tensorial light shift.

We provide the values of these coefficients in Fig. 1.6. The prefactor U is often referred to
as the light shift for Clebsch-Gordan coefficients equal to unity. It contains the dependency
on the light power and detuning, and is given by :

U = 3πc2

2ω0

Γ
∆I, (1.19)

where I is the light intensity, Γ the transition linewidth, ∆ the detuning between the reso-
nance and the light frequency, and ω0 is the resonance frequency.

Figure 1.6: α0, α1, α2 coefficients. We encircle in orange the column corresponding to the
626 nm transition, that is the transition we use to engineer spin-dependent light shifts in this
thesis.

1defined in Eq. (1.16)
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Most of the results of this thesis were obtained in this regime, by working in the vicinity
of the 626 nm transition. In the following, we present two examples of spin-dependent light
shifts that will be encoutered during this manuscript, obtained by working in the vicinity of
a narrow and well-isolated transition.

Example : linear polarisation

We assume that the quantisation axis is the z axis. We assume that the light is propagating
along the y axis and that its polarisation is perfectly linear, making an angle θ with the

quantisation axis. The polarisation vector can thus be written ϵ =

sin(θ)
0

cos(θ)

. Let’s compute

the three different components of the light shift operator.

Scalar light shift

The contribution of the scalar light shift is straighforward since it is polarisation-
independent. We have :

Vscalar = U
2J + 3

3(2J + 1)1 (1.20)

The scalar contribution is negative (resp. positive) for red (resp. blue) detuned light, leading
to a spin-independent attracting (resp. repulsive) term.

Vectorial light shift

For a purely linear polarisation, we have ϵ∗ = ϵ, the cross product involved in the vectorial
term thus cancels out. We have :

Vvectorial = 0 (1.21)

To emulate first-order spin operator with light, the polarisation needs to have some
ellipticity.

Tensorial light shift

This term will be the most interesting one, since it is spin-dependent. To compute it,
one can use the fact that J2 = J(J + 1)1 (since the light is detuned, the excited state is
barely populated, leading to the conservation of the spin J).

Vtensorial = −U (sin(θ)Jx + cos(θ)Jz)2

(J + 1)(2J + 1) + U
J

3(J + 1)1 (1.22)

This expression contains two term, the first one being spin-dependent and the second
one being spin-independent. By choosing θ = π/2 and dropping the term proportional to
identity that doesn’t play any role on the spin degree of freedom, we recover the famous
one-axis twisting Hamiltonian H ≃ J2

x .
As a sidenote, we emphasise that this expression can be simplified to a much easier form,

in a regime where the Larmor frequency ωz is comparable or bigger than U . Indeed, after
the gauge transformation U = eiωztJz , the operators J2

x and {Jx, Jz} can be rewritten as :

J2
x →

1
4
[
{J+, J−}+ e2iωztJ2

+ + e−2iωztJ2
−

]
{Jx, Jz} →

1
2
[
eiωzt {J+, Jz}+ e−iωzt {J−, Jz}

] (1.23)
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Within RWA, keeping only the diagonal terms (that don’t oscillate), we have :

J2
x →

1
4 {J+, J−}

{Jx, Jz} → 0
(1.24)

Hence, in this regime, the tensorial contribution can be well approximated by :

Vtensorial = U

2(J + 1)(2J + 1)
[
1− 3 cos2(θ)

]
J2

z + U
J

6(2J + 1)
[
3 sin2(θ)− 1

]
1, (1.25)

where we have used the conservation of J to rewrite {J+, J−} as a linear combination of J2
z

and 1 :

{J+, J−} = 2J2
x + 2J2

y

= 2(J2 − J2
z )

= 2
(
J(J + 1)1− J2

z

) (1.26)

Example : circular polarisation

We still assume that the quantisation axis is the z axis. We now suppose that the light is

propagating along the z axis and that its polarisation is circular : ϵ = 1√
2

1
i
0


Scalar light shift

The contribution of the scalar light shift is the same as the previous case :

Vscalar = U
2J + 3

3(2J + 1)1 (1.27)

Vectorial light shift

This time, the vectorial light shift is non-vanishing since the beam polarisation has some
ellipticity. The effect of such vectorial term in this configuration is similar to a Zeeman field
:

Vvectorial = U
2J + 3

2(J + 1)(2J + 1)Jz (1.28)

Tensorial light shift

Using the conservation of the spin, we have :

Vtensorial = U

6(J + 1)(2J + 1)J
2
z − U

J

3(2J + 1)1 (1.29)

Again, we were able to implement a second-order spin operator with this polarisation.
The key point to note with the circular polarisation is that we can’t have a vectorial light
shift without having a tensorial light shift. Hence, we can’t apply only a light Zeeman field
without having higher-order spin operators with a single beam.
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1.2.3 Advantage over alkali atoms

Light-matter interaction with dysprosium (and more generally, lanthanides) present some
advantages compared to the interaction between light and alkali atoms. First, for atoms with
F = 1/2, the tensorial polarisability is vanishing, implying that spin-dependent light shifts
are limited to first-order spin operators. Secondly, the transition landscape of dysprosium
is quite favorable. Indeed, it is made of few broad transitions in the near-UV spectrum
and of many narrow and well separated transitions in the visible-IR domain. The latter
permits to engineer spin-dependent light shifts of order one or two. Moreover, these light
shifts don’t come together with a strong scattering, thanks to the small linewidth of dys-
prosium transitions and thanks to the fact that these transitions are far from the broad ones1.

To summarise, we have seen in this section that the complex electronic structure of
dysprosium results in a favorable transition landscape. This transition landscape permits to
engineer first and second-order spin-dependent light shift, without suffering too much from
scattering. The shape of these light shifts can be tuned with the light polarisation.

1.3 Overview of the experiment
The dysprosium experiment at Collège de France was started in 2013. When I began my
thesis, the experiment was already able to produce a cold atomic cloud on the daily basis.
We present in this section a quick overview of the experiment, which were already discussed
in detailed in thesis [91, 93] and publications [94, 95].

Producing a collimated gaseous dysprosium jet

The experiment starts in an oven heated up to about 103 K and placed in a low-pressure
environment (10−8 mBar). We put in this oven a crucible filled with approximately 15 g of
dysprosium cut in small pieces. At such pressure and temperature, dysprosium undergoes a
sublimation, and a gaseous jet of dysprosium atoms exits the oven through a small aperture.
This atomic jet is diverging, we use a collimator and a transverse cooling apparatus, detailed
in [78], to reduce the beam divergence.

Zeeman slower

The atoms in this jet are quite fast, with a typical velocity v ≃ 500 m s−1. In order to
trap the atoms in a magneto-optical trap (MOT), we first use a Zeeman slower to reduce
their velocity. The Zeeman slower is made with the blue transition of dysprosium at 421 nm.
This transition is ideal for the Zeeman slowing because of its large linewidth, that enables
to do many absorption/emission cycles in a short amount of time. Our blue laser at 421 nm
is locked in frequency on a dysprosium cathode lamp, looking at a Lamb dip signal using
modulation transfer spectroscopy.

Magneto-Optical trap

After the Zeeman slower, the atoms are trapped in a magneto-optical trap (MOT) using
the red transition at 626 nm of dysprosium. This 626 nm light is obtained by summing two
commercial infrared lasers (at 1050 nm and 1550 nm) in a non-linear PPLN crystal. The
lock in frequency of this laser is a bit more demanding than the one of the blue laser due to
its narrower linewidth Γ ≃ 2π × 135 kHz. It is performed by saturated spectroscopy using
fluorescence, on the atomic jet.

1Indeed, in the vicinity to a narrow transition, the broad transitions only lead to a small contribution in
the imaginary part of the total polarisability
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Our narrow-line MOT works in a similar way than other lanthanides MOT, like erbium
[96]. In short, the competition between the radiative forces, the magnetic forces (due to a
magnetic quadrupole) and the gravity leads to a polarised MOT with Natoms ≃ 4×107 atoms
in |J = 8,m = −8⟩ at T ≃ 15 µK. Note that the MOT is quite cold thanks to the narrow
linewidth of dysprosium’s 626 nm transition, but we don’t reach the Doppler temperature at
this wavelength TD ≃ 3 µK.
Transport to the science cell

We then transport the atoms in a glass cell, that we call the science cell, to perform
evaporative cooling. The purpose of this step is to gain new optical accesses. As we will see
later in the thesis, the physics that we probe mainly relies on Raman processes, involving
several pairs of counterpropagating beams, but the optics surrounding the MOT chamber
are already quite numerous.

The transport stage relies on laser trapping in an optical dipole trap, using a far-detuned
infra-red beam at 1070 nm of power P ≃ 40 W. The beam is initially focused at the MOT
position, and the atoms are transferred from the MOT to the dipole trap. We then move the
beam focus by changing the length of the optical path after the focusing lens. The duration
of the transport is about 1 s. After this stage, we are left with Natoms ≃ 3× 106 atoms at a
temperature of typically 100 µK.
Loading in the dipole traps

Once transported to the science cell, the atoms are cooled down to increase the collisional
rate, which will favor both the loading into the crossed dipole trap and the further evapo-
rative cooling. A single laser beam with circular polarisation performs Doppler cooling, on
the 626 nm transition, while the atoms are trapped in the optical dipole trap. This stage is
studied in detail in [95].

Two 1064 nm laser beams at respectively 20 W and 3.2 W of waist w0 ≃ 25 µm are then
shined on the atomic cloud. The horizontal position of the first one is modulated, using an
acousto optic modulator (AOM), at f ≃ 50 kHz to increase the trapping volume [92]. We
typically load Natoms ≃ 3× 105 atoms in the crossed dipole trap.
Evaporative cooling

Finally, evaporative cooling is performed by ramping down the optical dipole trap in-
tensities. Bose-Einstein condensates were obtained in our group back in 2018. However,
all the works presented in this thesis were performed at a relatively high magnetic fields
|B| > 220 mG and imply all the Zeeman sublevels. The lifetime of the condensate1 in these
conditions would be small, owing to the dipolar relaxation. As a consequence, we prefer to
use a cold thermal cloud of dysprosium, with typically 3×104 atoms at 0.1 µK < T < 0.5 µK.

At this stage, the ‘preparation’ sequence is done. We then apply spin-dependent light
shifts and eventual spin rotations to probe different types of physics. Once the experiments
have been performed, we need to measure different observables, in particular the magnetisa-
tion, that we access by measuring the spin projections in the Dicke basis. This is done using
a Stern-Gerlach procedure and absorption imaging.
Stern-Gerlach procedure

A Stern-Gerlach experiment can be performed along the vertical axis. For this, we send
a high and short in time (in the ms timescale) current, up to 500 A, in a coil oriented along

1in any other state than |m = −8⟩
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the gravity direction. To generate such a current pulse, we charge two large capacitors (of
capacitance C ≃ 2.2 mF) during the previous stages. The capacitors are then suddenly
discharged in the coil by opening an insulated-gate bipolar transistor (IGBT). The geometry
of the coil permits to create a magnetic field gradient of typically ∂zB ≃ 50 G cm−1 on the
cloud position. This procedure permits us to spatially separate the different m sublevels.
The magnetic field gradient is applied during a time-of-flight (TOF) expansion of 2.4 ms.

Absorption imaging

We finally use an absorption imaging protocol. The imaging protocol is made of two
steps. In the first one, we shine resonant light at 421 nm during about 40 µs. Atoms undergo
several cycles of absorption/spontaneous emission during this imaging pulse, the cloud is
thus heated up a lot. This is followed by a waiting time of 100 ms so that atoms leave the
imaging region. In the second step, we shine a second light pulse, when normally all the
atoms have left.

The two light pulses are recorded on a camera. By calculating the optical density (OD)
between the first pulse and the second pulse, we can detect the atomic cloud. This imaging
process can be performed immediately after our experiments if we want to measure the
position of the atoms, or after a TOF if we want to access the atoms velocity.

By combining the Stern-Gerlach procedure and the absorption imaging, we can measure
the projection probability in each m state. Suppose we prepare a state |ψ⟩ after the light
shifts sequence. This state can be expanded on the Dicke basis |Ψ⟩ = ∑

m ⟨m|Ψ⟩ |m⟩, the
population in each m state being given by Πm = | ⟨Ψ|m⟩ |2. From the probability distribution
Πm, we can access different observables such as the magnetisation along z or the variance
along z via :

⟨Jz⟩ =
∑
m

mΠm ; ⟨J2
z ⟩ =

∑
m

m2Πm (1.30)

By performing spin rotations before the Stern-Gerlach experiment, we can measure the
first and second spin moments in any direction (θ, ϕ) of the generalised Bloch sphere [97].

Figure 1.7: Experimental OD. a : Example of an OD obtained after Stern-Gerlach and
absorption imaging. The state corresponds to a coherent state of average magnetisation
⟨Jz⟩ ≃ 1.45, experimentally realised by a Rabi oscillation. b : Populations in the different
m states corresponding to a.

As a sidenote, we emphasise that this measurement is performed on a thermal cloud in our
system. The fact that we have N ≃ 3× 104 atoms only acts as an averaged mechanism, that
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permits us to access the full probability distribution of the prepared state |Ψ⟩ in a single shot.

We have detailed in this section the preparation and the detection of a cloud of dyspro-
sium atoms. These steps are separated by a timestep where we shine lasers on the atoms, to
implement spin-dependent light shifts.

1.4 Laser beam preparation
All the results presented in this thesis rely on the spin-dependent light shifts introduced
above. We detail in this section how the different laser beams are prepared and calibrated.
As seen earlier, dysprosium presents several transitions to different excited states : J ′ =
J−1, J ′ = J, J ′ = J+1. We will only consider here light close to the 626 nm transition that
is used throughout the thesis. The preparation of laser beams at other wavelengths would
rely on similar techniques.

1.4.1 Optical paths

We currently have four beams at 626 nm focused on the atoms that we use after evaporative
cooling. These lasers are fibered to improve the long term stability of the experiment.

The 626 nm light of these four beams is independent from the one used in the MOT
and in the Doppler cooling stage. It is also obtained by summing two infrared lasers, at
respectively 1050 nm and 1550 nm, in a non-linear PPLN crystal. A wavemeter (precise to
100 MHz) permits to measure the wavelength. By tuning the temperature of one of the IR
diodes, we can tune the frequency of the red light, to be either blue or red-detuned, depending
on the application. We usually work in the vicinity of the 626 nm transition, being typically
red-detuned by ∆ ≃ −2π × 10 GHz from the resonance.

The light is then divided into five paths. One is used to monitor the wavelength with
the wavelength meter. The four other paths consist in an acousto-optic modulator and a
fiber. These AOMs are used to control the beam powers and their frequencies.

After the fiber, we first ‘clean’ the polarisation with a polarising beamsplitter working in
transmission. Then, a tiny fraction of the light is picked-up, using either the transmission
through a polished mirror or a beam sampler, and sent to a photodiode. This photodiode
permits to monitor the light power going to the atoms, and to calibrate the implemented trap
depth. After this cleaning step, the beam is magnified with a telescope and then focused with
a lens of long focal length, such that we typically reach a waist of tyically 40 µm on the atoms.

The polarisation of each beam is set with a quarter waveplate and a half waveplate. As
demonstrated earlier in this chapter, in the vicinity of a transition, the polarisation of the
beam is a critical parameter in the spin-dependent part of the light-matter interaction. In
order to improve the control we have on the polarisations of the different laser beams, we
install these half and quarter waveplates on motorised mounts that we can tune remotely.
Finally, the last mirror before the science cell is usually mounted on a motorised mount,
such that we can finely adjust the laser’s position, in a reproducible manner.

Once the optical set-up is built, the beams are aligned on the atoms using a protocol
that we will explain below. The final steps in the beam preparation consists in setting the
polarisation of the laser beams and calibrating their power, using the atoms as a probe.
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1.4.2 Alignment on the atoms

Aligning the beam on the atoms is not a straightforward task because the atomic cloud size
is small, typically a few micrometers. The way we align the laser beams depend on the
sign of the detuning. We present in this paragraph our protocol to align a red-detuned beam.

A red-detuned beam, propagating along y, creates an attractive potential in the xz plane.
When the light is shined, if the atoms are not exactly in the propagation axis of the beam,
they will undergo oscillations (of both position and velocity) in this attractive potential.
This allows to tune the in-plane alignment, because of the the large difference of trapping
frequency for the radial and axial directions. Our protocol consists in flashing the beam for
various durations, and to measure the in-situ position of the atomic cloud right after. We
illustrate this protocol in Fig. 1.8. In the bottom panel, we show an example of oscillations
measured for a misaligned beam in the radial direction. We then adjust the laser position
in the xz plane with the motorised mount on which is mounted a mirror, such that the
amplitudes of the oscillations are minimised. This way, we can align the beam in the radial
direction. The alignement in the axial direction is made by measuring the radial trapping
frequency.

Figure 1.8: Radial alignement of a red-detuned beam. a : Experimental scheme. A red-
detuned beam misaligned along x̂ triggers center-of-mass (c-o-m) and velocity oscillations
along x̂. b : Oscillations of the x-position obtained with a misaligned beam. The alignement
is achieved by minimising the amplitude of the oscillations.

1.4.3 Setting the laser polarisation

As stated earlier, the polarisation of our laser beams is a critical parameter. In the results
that we will present in the last chapter of the thesis, the requirement on the polarisation
precision was below 0.1◦. We therefore try to measure the polarisation of the laser beams
by different concordant experiments.

An additional constraint is that the polarisation of the beams is dependent on the quan-
tisation axis direction, thus on the exact direction of the magnetic field. In case we need
to be extremely precise on the polarisation, we need to calibrate it with the same magnetic
field that will be used to perform the experiments. As we will see, it will be a constraint on
the type of experiment we can perform to set the beams polarisation. We present here three
experiments that were used to set the beams polarisation during this thesis.
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Spin dynamics at relatively low magnetic field

Lets assume we want to measure the beam polarisation, for a beam propagating along y,
parametrised as ϵ̂ = sin(θ)x̂+cos(θ)eiφẑ, with φ the dephasing between the two components
of the polarisation and θ the angle made by the polarisation vector and the z axis. We assume
that the magnetic field strength is relatively low : |B| ≤ 80 mG, and that it is oriented along
the z axis.1 The Hamiltonian of a dysprosium atom, considering only the spin degree of
freedom, is the following :

H = HLS(θ, ϕ) + h̄ωzJz, (1.31)

where HLS(θ, ϕ) is the polarisation-dependent light shift Hamiltonian induced by the beam,
and ωz the Larmor frequency.

The atoms are initially at rest in the ground state |J = 8,m = −8⟩. A priori, the Hamil-
tonian created by this beam on the atoms depends on the polarisation (θ, ϕ). Provided that
|J = 8,m = −8⟩ is not an eigen state of this Hamiltonian (this would occur for some partic-
ular choices of polarisation), the spin state will evolve under the action of Eq. (1.31). The
resulting time evolution of the spin distribution gives access to the polarisation of the beam,
via a fit of the spin populations evolution, see Fig. 1.9.
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Figure 1.9: Spin dynamics at low magnetic field (|B| ≃ 50 mG). Left : Time evolution of
the populations upon the action of a beam with an unknown polarisation. Right : Fit. Free
parameters are the beam polarisation (angle and phase) θ, φ and the trap depth U . The fit
permits us to measure any complicated polarisation.

Note that this protocol works only in the regime h̄ωz < ⟨HLS⟩. Indeed, as the magnetic
field increases, the rotating wave approximation presented in Section 1.2.2 becomes more
and more valid, and the light shift can be more and more approximated by a combination
of Jz and J2

z operators, that doesn’t trigger any evolution of the spin populations since the
|m⟩ states are eigenstates of these operators.

Spin dynamics at relatively high magnetic field

As the magnetic field is getting higher, the spin dynamics is suppressed2 and the above
protocol can’t be used to calibrate the light polarisation. Some experiments presented in
this thesis were performed with a magnetic field of |B| = 1 G, we thus need to find another
protocol to calibrate the polarisation in such a configuration.

1This criteria of ‘low’ magnetic field is a bit arbitrary. What matters here is that the light shift should
not be dominated by the Zeeman energy. |B| ≤ 80 mG roughly corresponds to a good regime, where the spin
dynamics doesn’t occur on a too short timescale and where we are not limited by the light power.

2for reasonable light powers
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One option to enhance the spin dynamics is to use amplitude modulation. The light power
is modulated in amplitude, via an AOM, at a frequency ω close to the Larmor frequency ωz.
Assuming that the beam is linearly polarised and that its polarisation is making an angle θ
with the quantisation axis, the Hamiltonian1 of a dysprosium atom becomes time-dependent
:

H(t) = U0
1 +R cos(ωt)

2
[
cos2(θ)J2

z + sin2(θ)J2
x + cos(θ) sin(θ){Jx, Jz}

]
+ h̄ωzJz, (1.32)

where R is the modulation constrast and U0 a prefactor containing the light shift for Clebsch
Gordan coefficient equal to unity and a scaling factor coming from the tensorial polarisability.
Within RWA at ωz, Eq. (1.32) becomes :

H = U0R sin(2θ)
8 {Jx, Jz}+ U0

3 cos2 θ − 1
4 J2

z − h̄δJz, (1.33)

where we introduced the detuning δ = ω− ωz. Provided that this detuning is small enough,
this Hamiltonian permits to trigger spin dynamics, hence to get information on the laser
polarisation, even at relatively large magnetic fields.

We show Fig. 1.10 an example on linear polarisation calibration relying on this protocol.
On the left pannel, we display theoretical magnetisation evolutions under Eq. (1.33) for
various linear polarisations. We reach a maximum in magnetisation for a polarisation θ0 ≡
arccos

(
1/
√

3
)
. On the right panel, we display (dots) the measured maximum magnetisation

achieved during the application time of the beam, for various positions of a half waveplate
(HWP) disposed on the beam path. The solid line is a fit. From this figure, we can deduce
the HWP angle to prepare arbitrary linear polarisation. In particular, the maximum of
magnetisation corresponds to an HWP angle leading to θ = arccos

(
1/
√

3
)
.
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Figure 1.10: Spin dynamics with amplitude modulation. Left : Theoretical evolution for
different linear polarisations. Blue curve : polarisation θ = θ0 = arccos

(
1/
√

3
)
. Black

curves : different polarisation angles between θ0− 10◦ and θ0 + 10◦. Maximal magnetisation
is achieved for θ = θ0. Right : Experimental measurements. For each half waveplate angle,
we display the maximal magnetisation measured during the time evolution. Straight line is
a fit, free parameters are polarisation, trap depth, contrast of modulation and detuning.

1We drop all the terms proportional to identity because they don’t affect the spin degree of freedom.
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This experiment could also be used to calibrate an elliptical beam, the relative phase
between the components of the polarisation being involved in the spin dynamics.

Spin-dependent light shift measurement

Finally, we present a third experiment to measure the light polarisation, relying on the
measurement of the 17 eigenvalues of the light shift operator in the Dicke basis. The method
consists in off-centering the understudy laser beam by a quantity w0/2 in one direction1, w0
being the waist of the beam. We show a scheme in Fig. 1.11. An atom in the Dicke state
|m⟩ will feel a force due to the spatial variation of the light potential :

Fm = −⟨m|HLS(θ, ϕ) |m⟩
w0

exp (−1/2) (1.34)

Figure 1.11: Light shift measurement experiment. Assuming a blue-detuned beam leads to a
repulsive force. a : Experimental scheme. b : Potential induced by the laser beam along the
radial direction x on a given m state. Dashed line indicates x = w0/2. U0 is the potential
at the waist position. c : Force induced by the laser beam along x on a given m state.

Provided the light pulse is applied during a short enough2 time Tpulse, the velocity of
each m state after the pulse application is :

vm(Tpulse) = a0Tpulse + FmTpulse/M, (1.35)

where a0 is a spin-independent acceleration, due to gravity and the spin-independent com-
ponent of the light shift. Performing a Stern-Gerlach experiment after the light pulse, we
can measure the velocity of each spin component, thus accessing Fm.

The experimental sequence is the following. We first prepare a coherent state, using a
radio-frequency pulse (see next section), to populate several m states. We then flash the
off-centered light beam for a short amount of time. We finally measure the induced velocity
for each populated m state via a Stern-Gerlach experiment. We reproduce the experiment

1This protocol would work for any beam misalignement, but the maximum force is induced for a mis-
alignement of w0/2 as shown Fig. 1.11

2if Tpulse is short enough, we can neglect the displacement of the cloud induced by the beam while the
light is shined. The atoms thus feel a constant force during the full pulse duration.
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for various initial coherent states, in order to measure the induced force on the 17 Zeeman
sublevels.

We use this protocol in Fig. 1.12 where we calibrate a linearly polarised beam at a high
magnetic field. We recall that, in such a configuration, the average light shift produced by
the beam reads1, within RWA, for a Dicke state |m⟩ :

⟨m|HLS(θ) |m⟩ = U

2(J + 1)(2J + 1)
[
1− 3 cos2(θ)

]
m2, (1.36)

where U is the value of the light shift for Clebsch-Gordan coefficient equal to unity. We
thus expect a parabolic evolution of the force with the magnetic projection m by combining
Eq. (1.34) and Eq. (1.36) : Fm ∝

[
1− 3 cos2(θ)

]
m2. This is verified on the left panel

of Fig. 1.12, where the 17 forces Fm are measured for a given linear polarisation. The
curvature of Fm = f(m) provides a measurement of

[
1− 3 cos2(θ)

]
, hence of the polarisation

angle θ. We can vary the polarisation with a half waveplate (HWP). We repeat this curvature
measurement for various HWP angles, leading to the right panel of Fig. 1.12.
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Figure 1.12: Linear polarisation calibration. Left : Fm for a given HWP angle. Solid line
is a fit to infer the curvature of Fm = f(m). Right : Measured curvature for various HWP
angles. Solid line is a fit with two free parameters : a proportional factor and the offset angle
of the HWP.

During this thesis, we often use a linear polarisation making an angle θ = arccos
(
1/
√

3
)

with the quantisation axis. This corresponds to a vanishing curvature, see Eq. (1.36), that
can be obtained using the measurements displayed in the right panel of Fig. 1.12.

We have studied in this section different way to precisely set a beam polarisation. In the
next section, we focus on the control of the magnetic field, which is also a crucial element in
our experiment.

1.5 Magnetic field control
During the experimental sequence, the magnetic field norm and direction are controlled using
sets of coils surrounding the experiment. We use mainly two sets of coils on the three axis
x, y, z, each of them being made of pairs of coils in Helmholtz configuration. The first set
of coils surrounds the whole optical table and create rather small but homogenous magnetic
fields. They are, for instance, useful to produce homogenous fields during the transport

1We didn’t consider here the component of the light shift proportional to identity, which doesn’t contribute
to Fm (being spin-independent).
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stage. However, they don’t permit to produce strong magnetic fields, and their response
time is slow. We thus have another set of coils surrounding the science cell, allowing to
adjust carefully and (relatively) rapidly the magnetic field before shining the laser beams on
the atoms.

1.5.1 Magnetic field rotations

As we detailed above, the polarisations of the lasers are quite critical in our experiment. We
have four beams aligned on the atomic cloud to perform spin-dependent light shifts, but some
of them have better control than other. For example, in the horizontal plane, two beams pass
through a dichroic mirror before heading towards the atoms. This optical element affects the
polarisation in a non-trivial way. Even if we can compensate for this effect using half and
quarter waveplates, we don’t reach such a good control than with the top beam, where there
is no such optical element just before the glass cell. As a consequence, for experiments that
require a fine tuning on the polarisation, we prefere to use the vertical beams. This choice
fixes a constraint on the initial magnetic field direction. For instance, if we want to use a π-
polarised light with the vertical beams, the magnetic field needs to be in the horizontal plane.

The Stern-Gerlach direction constitutes another constraint. The only coils whose geom-
etry allows a sufficiently strong magnetic field gradient are in the direction of gravity. This
means that the magnetic field direction must be vertical before the Stern Gerlach experiment
is performed. These two constraints lead to two different experimental sequences, depending
on the direction of the quantisation axis we want while shining the beams.

Using a vertical quantisation axis

This is the simplest case. The magnetic field being initially (during the evaporation
stage) vertical, we just need to ramp the norm of this field to the desired value (typical
value is |B| ≃ 220 mG). The only thing we need to be careful is to not change the magnetic
field sign (avoiding the 0-crossing point). After this ramp down, the lasers can be shined on
the atoms to realise the desired Hamiltonian. Then, the Stern Gerlach experiment and the
imaging can be performed. We illustrate in Fig. 1.15 the typical experimental timeline for
the case of a vertical magnetic field.

Figure 1.13: Scheme of the experimental sequence, using a vertical magnetic field.

Using an horizontal quantisation axis

This case is more difficult. Indeed, the ’initial’ magnetic field is still vertical (during
evaporation), so a spin rotation must be performed. After this spin rotation, we can shine
the laser beams on the atomic cloud. Before performing the Stern-Gerlach experiment,
we need to rotate back the magnetic field towards the vertical axis to measure the state
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populations in the good basis. We illustrate in Fig. 1.14 the typical experimental timeline
for the case of a vertical magnetic field.

Figure 1.14: Scheme of the experimental sequence, using an horizontal magnetic field.

This rotation must be realised as fast as possible, to avoid any losses (due to dipolar
relaxation for example), but the rotation time can’t be too small either, to ensure adiabaticity
and conserve the spin populations. Typically, the minimum rotation time is given by the
inverse of the Larmor frequency. Hence, the minimal time to remain adiabatic at a field of
|B| ≃ 1 G is roughly 50 µs. Experimentally, we perform the rotation in 100 µs. We see in
Fig. 1.15 the effect of varying the time of the second rotation (from x axis to z axis). For too
short rotation times (below 50 µs), the magnetisation is not conserved due to non-adiabatic
effects.
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Figure 1.15: Adiabaticity of magnetic field rotations. Initial state is |−8⟩x with a magnetic
field pointing in the x axis. The magnetic field is then rotated towards the z axis in various
durations. Finally, the average magnetisation is measured after a Stern Gerlach experiment.

For an infinitely fast rotation, we would expect to obtain a 0-magnetisation after the
Stern-Gerlach. This is not what we measured, because the Stern-Gerlach is performed using
only one coil : the gradient of magnetic field comes together with a strong bias along z,
which somehow participates to a rotation of the field towards the z axis.

1.5.2 Measuring the magnetic field

We must know precisely the norm of the magnetic field in our experiment. For example,
to emulate the quantum Hall systems we will present chapters II to VI, the lasers must be
detuned by the Larmor frequency. A magnetic probe measuring magnetic field between ±1 G
on the three axis, with a precision of 1 mG, is installed close to the science cell. However, the
field created by the inner coils is not homogeneous on the size of the cell, and differ between
the cloud position and the probe. We thus need to use the atoms as a probe to measure the
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actual magnetic field.

To measure relatively low magnetic field, ie |B| ≤ 100 mG, a ’DC’-Ramsey-like sequence
was previously implemented on the experiment [98]. The idea of this sequence is to rotate
the initial state |m = −8⟩ towards the equator of the generalised Bloch sphere, by flashing a
magnetic pulse in the x direction. We then wait for various times and apply a second π/2-
rotation around the x axis. After this protocol, the magnetisation of the atoms is measured.
The magnetisation undergoes oscillations, whose frequency gives a direct measurement of
the Larmor frequency.

However, this protocol doesn’t work as well when going to higher fields. Indeed, we are
limited by the strength of the magnetic pulses that we can create along the x axis. For high
enough bias field along z, the first x-pulse is not strong enough to bring |−8⟩ to the equator
of the generalised Bloch sphere. As a result, the amplitude of the Ramsey oscillations is
decreased, and the measurement of the frequency is less precise.

To circumvent this difficulty, we installed an antenna nearby the science cell to send
radio frequency (RF) signals. This will be used to perform RF-Ramsey sequence. We briefly
present here this Ramsey protocol we use to measure precisely relatively high magnetic fields.

The antenna creates an homogeneous time-dependent field B(t) = B0 cos(ωt+ϕ)x̂. The
following one-particle Hamiltonian is produced on the atoms :

H(t) = − h̄Ω
2 cos(ωt+ ϕ)Jx + h̄wzJz, (1.37)

where we introduced the Rabi frequency Ω that describes the strength of the RF-atom
coupling. This Hamiltonian is time-dependent. We can make it stationary by doing the gauge
transform U(t) = eiωtJz . Within RWA, we are left with a time-independent Hamiltonian,
where we introduce δ = ω−ωz, the detuning between the RF-field frequency and the Larmor
frequency :

H = h̄Ω
2 [cos(ϕ)Jx + sin(ϕ)Jy] + h̄δJz (1.38)

We can rewrite this Hamiltonian in a more compact form [99] :

H = h̄Ω′

2 Jû, with

Ω′ =
√

Ω2 + δ2 and

û = δẑ + Ω cos(ϕ)x̂ + Ω sin(ϕ)ŷ
Ω′

(1.39)

The action of this Hamiltonian is thus a rotation of the spin around the axis û. There
are two regimes depending on the relative strength of the Rabi frequency and the detuning.

If δ ≥ Ω′ , û points toward an angle located between the equatorial plane and the bottom
of the generalised Bloch sphere. Upon application of the RF, the state will undergo a rotation
on a small part of the sphere, going between |−8⟩ and |m⟩ where m ≪ 8 depends on the
ratio between the detuning and the Rabi frequency.

On the other hand, if δ ≪ Ω′ , û ≃ cos(ϕ)x̂+sin(ϕ)ŷ. The rotation axis lies the equatorial
plane : the spin will undergo full rotation around the generalised Bloch sphere, going from
|−8⟩ to |+8⟩.

To summarise, by applying the RF pulse, the average magnetisation undergoes oscilla-
tions, which amplitude and frequency are given by the detuning δ and the Rabi frequency Ω.
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The amplitude of these oscillations are maximised for a δ = 0 detuning. This is the famous
Rabi oscillation experiment, see Fig. 1.16.
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Figure 1.16: Rabi oscillations (experimental) Left : Evolution of the spin populations upon
application of a RF pulse. Initial state is |−8⟩. Right : average magnetisation during
the Rabi oscillations. Error bars are within the points extent. Fit (in straight line) gives
Ω = 2π × 14.0(1) kHz.

For a well chosen interogation time, say Ωτ = π, we can measure the final magnetisation
versus the RF detuning. We obtain a Lorentzian peaked on the resonance. The width
of this Lorentzian is given by 1/τ . This limitation is a pure Fourier transform argument
: if the interrogation time lasts for a duration τ , the frequency precision is on the order
of 1/τ . To get a more precise measurement of the resonance, i.e to reduce the width of
the Lorentzian, one strategy is to increase the interrogation time, going to for instance to
Ωτ = 10π. However, implementing stable long radio frequency pulses is experimentally
challenging.

The famous Ramsey interference protocol is well known to work around this difficulty
[100]. The basic idea is to split the π pulse into two π/2 pulses separated by a waiting
time Twait. In this configuration, the width of the Lorentzian scales as 1/Twait, again with
Fourier transform arguments. We can thus significantly increase the precision on the Larmor
frequency measurement just by adding a waiting time between two π/2 pulses, rather than
by implementing long RF pulses.

We show in Fig. 1.17 experimental realisation of a Ramsey interferometry using the RF
antenna. We verify that increasing the waiting time between the two π/2 pulses leads to a
sharper Lorentzian, hence a more precise measurement of the Larmor frequency.
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Figure 1.17: Measuring the Larmor frequency. In blue, a π-pulse is applied for various
RF frequencies, we measure a broad resonance. In green and orange, Ramsey sequences
are performed with (respectively) twait = 10 µs and twait = 20 µs. The resonance becomes
sharper as the waiting time increases.

1.6 Perspectives and conclusion
All the results that we will present in this manuscript were obtained with a cold thermal
gas of dysprosium atoms. Several future projects would require to go to degeneracy to
probe more exotic topological phases induced by interactions [78]. However, the dysprosium
machine at Collège de France doesn’t permit to have a Bose Einstein condensate with a
high number of atoms on the daily basis in its current implementation. Hence, the study of
interactions is limited.

The main constraints in our experiment to reach quantum degeneracy are the transport
from the MOT chamber to the science cell and the loading in the dipole traps, where we
typically lose 90% of the atoms. The loading in the dipole traps is poor due to the geometry
of our experiment : the transport beam has a very weak confinement in the axial direction
(f ≃ 12 Hz), but a strong confinement in the radial direction (f ≃ 1.8 kHz). The trap
created by the transport beam is thus quite elongated and doesn’t fit well with the geometry
of the intersection of the dipole traps, which is rather spherical. As a consequence, many
atoms are lost in the tails of the transport beam during this stage.

To enhance the axial confinement, one potential avenue is to perform the transport stage
using a moving lattice [101], which would lead to a strong axial confinement. Nonetheless,
the optical accesses of the current experimental setup complicates the implementation of this
proposal. In the following section, we introduce an alternative approach aimed at improving
the loading process in the crossed dipole trap. This approach consists in modulating the
transport beam to increase its radial size, thereby increasing its overlap with the crossed
dipole trap.

1.6.1 Modulating the transport beam

The modulation of dipole traps is a well established technique to increase the trap size. We
quickly recall the principle of this modulation. More details can be found in [92]. We denote
by x0 the focus position of the laser in one of the radial direction (for simplicity, we freeze
the other direction and assume the modulation is done only along the x axis). The principle
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of the modulation is to make this position time-dependent. For instance, for a sinusoidal
modulation, the position of the waist is given by x0(t) = A sin(2πt/T ) where T is the period
of modulation and A its amplitude. One can show that an arcsinus modulation leads to an
averaged trap really close to the usual gaussian trap. On the other hand, a sinus modulation
would lead to a double minimum averaged potential, which is not ideal for trapping.

When conducting experiments, it is crucial to ensure that the modulation frequency
greatly exceeds the trap’s radial frequency fr. Consequently, the atoms experience an av-
eraged trapping potential, which is shallower but wider than the non-modulated trap. The
amplitude of modulation A sets how much the trap is spatially averaged : as A increases,
the averaged trap gets broader and broader (see Fig. 1.18). In our experiment, this modu-
lation would be achieved through frequency modulation of the RF going in an AOM. Being
diffracted by the AOM, the transport beam position x(t) will follow the RF modulation.
The modulation amplitude is limited by both the AOM diffraction range and the optical
set-up. Typically, we can go up to A ≃ 4w0, where w0 is the waist of the beam without
modulation.

As seen in Fig. 1.18, an arcsinus modulation leads to an effective gaussian trap, which
width is given by the modulation amplitude. From this averaged-trap, one can derive an
effective waist and an effective Rayleigh length, describing the potential effectively felt by
the atoms. We show Fig. 1.19 these quantities as a function of the modulation amplitude
A, as well as the transverse and axial frequencies.
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Figure 1.18: Trap depth as a function of the modulation amplitude (arcsinus modulation).
Top left: 2D plot of the trap depth when the beam is not modulated. The z axis is the axis
of light propagation. The x axis is one of the two radial directions. Top right: 2D plot of
the trap depth when the beam is modulated with an amplitude A = 2w0. The dashed lines
indicate the 1D cuts at z = 0 used for the bottom panel. Bottom: trap depth as a function
of the radial position, at z = 0, considering four different modulation amplitudes (in unit of
w0).
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Figure 1.19: Effective trap parameters as a function of the amplitude modulation (arcsinus
modulation). a : The effective radial frequency decreases with the modulation amplitude.
b : The effective transverse frequency also decreases with the modulation amplitude. c:
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such that the volume of the trap is constant. d : Increase in the effective waist with the
modulation amplitude. e : Increase in the effective Rayleigh length with the modulation
amplitude. f : Evolution of the aspect ratio of the trap with the modulation amplitude :
the trap is getting more and more spherical as the modulation amplitude increases.

The increase in effective waist with the modulation amplitude corresponds to the desired
effect : increasing the overlap between the dipole traps and the transport beam. On the
other hand, the increase of the effective Rayleigh length is not intended : the trapping
frequency will become even smaller in the transport direction, which means that more atoms
will potentially be lost in the tails of the transport beam (at least at the beginning of the
evaporation stage, when the cloud is not cooled enough). However, the situation remains
favorable as the aspect ratio evolves in the right direction : the trap is getting more and
more spherical. To overcome the reduction of the axial frequency, we plan to use a higher
power transport beam. We are currently doing some preliminary tests with a 300 W laser at
1070 nm. The strategy is to increase the laser power while the modulation is on, to target
a similar axial frequency than the current set-up fz ≃ 12 Hz, but with a bigger effective
waist. We recall that the axial frequency scales as fz ∼

√
P with P the laser power. By

imposing the condition that the axial frequency remains unchanged while modulating, this
relationship sets an upper threshold on the modulation amplitude that can be used, given the
laser power. After the AOM and taking into account losses in the optics and the reflection on
the MOT windows, we can typically have 200 W on the atoms. This limits the modulation
amplitude to A ≃ 2.5w0, i.e an effective waist 3 times bigger than the current one, for a
similar effective Rayleigh length.
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1.6.2 Conclusion

In this chapter, we provided a brief overview of dysprosium’s properties. We then delved
into the interaction of dysprosium atoms with light, demonstrating how the vectorial and
tensorial components of the light shift enable the emulation of a diverse set of Hamiltonians
on dysprosium atoms. The pivotal element in this process is the light polarisation.

Afterwards, we presented an overview of the dysprosium machine utilised in our experi-
ments. Following this, we detailed protocols for beam preparation and calibration, empha-
sising the precise control of light polarisation, using the atoms as a probe. We also outline
our methodology for controlling the magnetic fields applied to the atomic cloud.

Lastly, we proposed a potential experimental upgrade aimed at increasing the number
of atoms captured by the dipole traps, with the ultimate goal of achieving a stable Bose-
Einstein condensate with a high number of atoms on a daily basis. This would facilitate the
exploration of interacting topological phases.
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In this chapter, we briefly recall the particular properties of Hall systems, principally
their insulating character in the bulk and the chiral edge modes appearing at their bound-
aries, insensitive to (small) disorder. We start with the classical Hall effect and move on to
the quantum Hall effect afterwards. The quantum Hall effect is illustrated using a toy model
made of an array of coupled quantum wires, as proposed by Kane in 2002 [102]. This model
is close to the experimental implementation that we will detail later on. Next, we describe
the attributes of a quantum Hall system in the context of its topological properties.

In the third section, we look at an experimental realisation of a 2D quantum Hall ribbon
using a cold gas of dysprosium atoms. This realisation relies on a synthetic dimension, a
powerfull tool that we will also introduce in this chapter. Finally, we compare our synthetic
quantum Hall system to the quantum wire model.

The experimental findings that we present in this chapter were already obtained in 2020
in our group [103], and are discussed in more details in Thomas Chalopin’s thesis [98]. The
figures displayed in this chapter are new experimental measurements, realised during my
thesis. The motivation for reproducing this system was to consequently create a spatial
bipartition of it, with the aim of realising its entanglement Hamiltonian [51]. It will be
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addressed in chapter VI. This chapter together with chapter III is also an introduction to
the chapters IV and V where we will present the realisation of a synthetic 4D quantum Hall
system.

2.1 Introduction to quantum Hall physics
The quantum Hall effect mainly concerns electrons moving in a two-dimensional plane
within a perpendicular magnetic field. Despite its apparent simplicity, this system reveals
a remarkably rich physics. In this section, we briefly study the classical Hall effect, before
focusing on the quantum Hall effect.

The results presented in this section are well established and inspired by [98, 103–105].

2.1.1 Classical Hall effect

We consider an electron moving in a 2D material in the plane xy. A homogeneous magnetic
field B = Bẑ is applied orthogonally to this plane. The classical trajectories of the electrons
in the bulk of the material are circular and called ‘cyclotron orbits’. The frequency of these
orbits is the cyclotron frequency, given by ωc = eB/M , where e is the electronic charge
and M the electron mass. If we apply a force along y (for instance, via an electric field),
the electrons will start to drift, with a velocity vdrift = −F × B/(eB2). This velocity is
transverse to the direction of the application of the force. This is the Hall effect. In short, in
a magnetic field, the movement of electrons will respond to a force in a direction orthogonal
to both the force and the magnetic field. This transverse response can be characterise by
the so-called ‘Hall mobility’ µ, defined by :

µ = ∂vx

∂Fy
. (2.1)

If the force is homogeneous, the mobility is constant in the bulk, and given by :

µbulk = −1/(eB). (2.2)

In the presence of edges, the reponse of the system is slightly modified. Even in the
absence of any external force, the cyclotron orbits bounce off the boundary, leading to the
so-called ‘skipping orbits’, displayed in Fig. 2.1. Macroscopically, they induce the presence of
a current at the edges of the sample. Unlike cyclotron orbits in the bulk, these skipping orbits
are not affected by any external force, see the right panel of Fig. 2.1. This is a consequence
of the fact that the Hall mobility vanishes at the edges of the sample [98].
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Figure 2.1: Classical Hall effect. Left : Semi-infinite material submitted to an orthogonal
magnetic field. Electrons undergo circular orbits in the bulk and skipping orbits close to
the edge. Right : Semi-infinite material submitted to an orthogonal magnetic field and to a
uniform force Fy. Electrons in the bulk acquire a velocity proportional to the Hall mobility.
This is the transverse Hall drift. Close to the edge, the Hall mobility goes to 0 and the
velocity of the skipping orbits is not affected by the external force.

Vailidity of the classical approach

In this picture, the electron is a particle with no extension. Its position and velocity are
localised in phase-space via the magnetic field, in a region of typical size ∆x∆px ≃Mv2

0/ωc,
where v0 is the initial velocity of the electron and px its momentum. This quantity will get
closer and closer to 0 as the magnetic field (and therefore the cyclotron frequency) increases.
At high enough magnetic fields, the position and momentum start to saturate Heisenberg
inequality ∆x∆px > h̄, and the wavy character of matter can’t be neglected anymore. We
thus rely on quantum mechanics to describe the system is this regime.

2.1.2 Quantum Hall effect

We consider the same system in the context of quantum mechanics. To obtain its properties,
we define its Hamiltonian :

H = [p + eA(r)]2

2M (2.3)

We have introduced the vector potential A, such that the magnetic field is obtained by
B = ∇ ×A(r). Defining new momenta Πj = pj + eAj (where j = x, y), the Hamiltonian
can be rewritten as :

Ĥ =
Π2

x + Π2
y

2M (2.4)

These momenta obey the commutation relation [Πx,Πy] = −ih̄eB, meaning that they are
canonically conjugated. The Hamiltonian of the system therefore corresponds to that of a
harmonic oscillator. Its spectrum can be directly derived, it forms the Landau levels. The
eigenenergies are given by En = h̄ωc(n+1/2) where n is an integer. We illustrate in Fig. 2.2a
these Landau levels.

Landau gauge

In the following, we work in the Landau gauge, which is convenient for the geometry that
we will study later on. This gauge consists in setting A = yBx̂. The translational invariance
is thus broken along the y axis but not along the x axis. In this framework, the Hamiltonian
becomes :
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H = (px − eBy)2

2M +
p2

y

2M (2.5)

Since the translation operator along x commutes withH, we can look for eigenstates of the
system that are also eigenstates of this translation operator, e.g plane waves along the x axis.
We are left with the following ansatz for the wavefunction : ψpx(x, y) = exp [ipxx/h̄]ϕpx(y),
where px is the momentum along x. We can plug this ansatz in the Schrödinger equation
H |ψ⟩ = E |ψ⟩ to obtain the system’s eigenstates and eigenenergies. After a bit of algebra,
one can show that the eigenstates are given by the Hermite polynomials. In particular, the
ground state of the system (called the lowest Landau level, LLL) can be written as :

ψpx(x, y) ∝ exp [ipxx/h̄] exp
[
−(y − pxℓ

2
B/h̄)2

2ℓ2B

]
; ℓB =

√
h̄/(eB), (2.6)

where we have introduced the magnetic length ℓB, characterising the spatial extent of the
wavefunction. The position along y of the LLL thus depends on its momentum along x. This
is something that we will experimentally verify later on. The LLL is degenerate. Indeed,
while an eigenvalue of the Hamiltonian is only labeled by one quantum number n, the
eigenstates corresponding to this eigenvalue are labeled by both n and px.

Figure 2.2: Landau levels. a : Landau levels without external potential. The energy levels
are degenerate and spaced by h̄ωc. b : Landau levels in the presence of a uniforme force
along y (equivalently, a linear potential along y). The Landau levels are tilted, leading to a
transverse drift along x.

Transverse response

We assume that a constant force F = F ŷ is applied along the direction y. The Hamilto-
nian of the system is modified and we should consider an additional linear potential V = −Fy
in the Hamiltonian :

H ′ = (px − eBy)2

2M +
p2

y

2M − Fy (2.7)

After a little algebra, this can be re-expressed as follows :

H ′ = (px − eB(y − y0))2

2M +
p2

y

2M −
pxF

2M − F 2M

2(eB)2 ; with y0 = MF/(eB)2 (2.8)

We obtain the inital Hamiltonian without perturbation, shifted by y0, and with an addi-
tional energy term proportional to the momentum px (and an energy offset). The eigenvalues
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of the perturbed Hamiltonian can be directly obtained from the ones of the unperturbed one
:

En(px) = h̄ωc(n+ 1/2)− pxF

eB
− F 2M

2(eB)2 (2.9)

Contrary to the previous case, the energy of the Landau levels now depend on the momentum
px. This dependency comes together with a non-vanishing group velocity. The group velocity
of the energy level n is given by:

⟨v(n)
x ⟩ = ∂E(n)

∂px
= −F

eB
(2.10)

Finally, by derivating this expression with respect to the force, we obtain the mobility
in the bulk of a quantum Hall system : µquantum

bulk = −1/(eB). We recover the bulk mobility
obtained within the classical picture.

At this stage, the quantum Hall effect seems quite similar to the classical Hall effect.
There is, however, a very peculiar property of the quantum Hall effect : the quantised
conductivity. In 1980, V.Klitzing et al [1] reported the first measurement of the quantised
nature of the transverse conductivity σH of a quantum Hall system. More precisely, the
conductivity of a quantum Hall system exhibits steps such that σH = νe2/h, where the
prefactor ν can take either integer or fractional values. The first case corresponds to the
integer quantum Hall effect, the latter to the fractional quantum Hall effect. The width of
these steps is robust to disorder or perturbations, and can be used as a universal definition
of the Ohm.

One way of understanding the quantisation of quantum Hall conductivity is to invoke
topology. In the next section, we study the integer quantum Hall effect in this framework.
We will rely on a new model consisting of coupled quantum wire, which is closer to our
experimental system that we will present in the third section.

2.2 Quantum Hall effect in an array of quantum wires

In 2002, subsequent to preliminary investigations by Sondhi and Yang [106], Kane et al [102]
demonstrated that different quantum Hall states can arrise in a 2D system made of coupled
quantum wires, within an orthogonal magnetic field. Inspired by this work, we present a
similar model and derive its properties. We will then use it as a support to introduce different
topological quantities. Finally, we will leverage these topologial quantities to reinterpret the
quantum Hall effect. This model will be an introduction to the topological systems that we
realise with our experiment.

2.2.1 Infinite system

We consider a system made of one-dimensional quantum wires infinitely elongated along the
x direction. The wires are spacially separated along the other direction, called m, which
is discrete and infinite too. We study the dynamics of one particle in this system, thus we
don’t consider interactions. We suppose that the particle is spinless. We also suppose that
there is no trapping potential along x or along m. The different quantum wires are coupled
via a tunneling amplitude Ω and a tunneling phase ϕ. We suppose that this tunneling phase
depends on the position x, via ϕ(x). In the following, we also assume that the phase evolves
linearly with x through ϕ(x) = 2kx, where the wavector k can take any value. This form
may seem arbitrary at this stage, but it will be close to the experimental scheme that we will
present afterwards. From this wavector k, we can define an energy scale Erec = h̄2k2/2M ,
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where M is the mass of the particle, and a momentum scale prec = h̄k. Within this picture,
the particle evolves freely in a wire along the x direction, and undergoes some hoppings to
the neigbouring wires, thereby acquiring a phase that depends on the x.

Figure 2.3: Infinite coupled quantum wire system. The quantum wires are infinite along
the direction x. Dimension m is discrete and also infinite. A particle can undergo hopping
between two neighbouring wires (blue arrows). A particle following the loop surrounding the
grey shaded area acquire a phase Φ.

We display in Fig. 2.3 a scheme of the system. A particle undergoing the loop sur-
rounding the grey shaded area acquires a non-vanishing phase Φ. This phase is equal to
Φ = 2kS = 2ka with S the surface of the shaded area and a the distance along x between the
two hoppings. It can be interpreted as an Aharonov-Bohm phase, ΦAB = qBS/h̄, leading to
the appearance of an effective magnetic field in the orthogonal direction. This model thus
maps to a particle of charge q = 1 within a magnetic field B = 2h̄k.

To summarise, we study the motion of a particle evolving in an infinite 2D system.
One dimension x is continuous, the other m is discrete. An effective magnetic field in the
orthogonal direction arrises from the space-dependent hopping phases. As we will see, this
effective magnetic field will be at the origin of a quantum Hall effect. We now discuss the
properties of this system.

2.2.2 Ground band properties

The Hamiltonian of the particle is the following :

H = p2
x

2M − Ω
(
Tme−2ikx + h.c

)
, (2.11)

where Tm is the hopping operator along the direction m, and Ω is the tunneling amplitude.
This system is highly symmetric, with a translation invariance along x of dx = π/k, and a
translation invariance along m of dm = 1. Bloch theorem thus apply and leads to introduce
the quasimomentum : q = (qx, qm). The Brillouin zone is defined by −π ≤ qm < π and
−k ≤ qx < k. One way to treat this problem is to replace the translation operator Tm by
Tm = e−iqm . The Hamiltonian becomes :
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Hqm = p2
x

2M − Ω
(
e−i(2kx+qm) + h.c

)
= p2

x

2M − 2Ω cos (2kx+ qm)
(2.12)

We retrieve the Hamiltonian of a one-dimensional cosine lattice, with a phase depending on
qm. There is thus a degeneracy along qm. According to Bloch theorem, the eigenstates of
the band n can be written as :

ψ(n)
qx,qm

(x,m) =
∑
j∈Z

C
(n)
j ei(qx+2kj)xei(qm+2πj)m, (2.13)

where the coefficients Cj have to be determined. By plugging these wavefunctions into the
Schrödinger equation, we recover the famous central equation :

C
(n)
j

(qx + 2kj)2

2M − ΩC(n)
j+1e

−iqm − ΩC(n)
j−1e

iqm = EC
(n)
j (2.14)

We can numerically solve this equation to get the ground band and the excited bands over
the Brillouin zone. We display the dispersion relation in Fig. 2.5 for various values of the
tunneling amplitude. As Ω increases, the bands are getting more and more flat, becoming
reminiscent of Landau levels. For all values of Ω, we observe a degeneracy along qm. Ad-
ditionally, the system becomes degenerate along qx too, as Landau levels. The dispersion
relation of this system is thus the reminiscent of the one of electrons within a large magnetic
field.
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Figure 2.4: Bandstructure of the infinite quantum wire model for various hopping amplitudes
Ω. The system is degenerate along qm. As Ω is increased, the gaps open and the bands flatten,
approaching the structure of Landau levels.
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2.2.3 The role of topology

In this paragraph, we introduce the Berry connection, the Berry curvature and finally the
Chern number, that characterises the topology of the system. We first introduce the Berry
connection of the band n [8] :

A(n)
qx,qm

= i⟨ψ(n)
qx,qm

|∇ψ(n)
qx,qm

⟩ (2.15)

From this quantity, we can define the Berry curvature of the band under consideration :

F (n)(qx, qm) = i∇×A(n)
qx,qm

(2.16)

It can be shown that, under the application of a weak electric field E = Ex, the velocity of
the wavepacket centered at q = (qx, qm) in the band n can be computed using the Berry
curvature through [107] :

v(n)(q) = ∂E(n)(q)
∂q

+ 1
h̄

E × F (n)(q), (2.17)

where E(n) is the unperturbed energy of the band under consideration. This equation
contains two terms. The first one describes the group velocity, due to the band curvature.
The second is often referred to as the ‘anomalous velocity’, and is reminiscent of the drift
velocity introduced previously. Since the berry curvature F is orthogonal to the plane xm
(Eq. (2.16)), the anomalous velocity is orthogonal to the orientation of the electric field. It
thus describes a transverse response, reminiscent of the Hall effect. The Berry curvature is
the analogue of the Hall mobility introduced in section 1. In the following, we suppose that
the electric field Eis oriented along m.

In order to derive the transverse conductivity of the system, we compute the current
density j induced by the electric perturbation. The current density is defined as :

j =
∑
q

v(q)
V

, (2.18)

where V is the volume of the system. Using Eq. (2.17), we obtain :

j = 1
V

∑
q

∂E(q)
∂q

+ E
h̄V

∑
q

F (q)x̂ (2.19)

We now replace the discret sum by an integral :
∑
q

←→ V

(2π)2

∫
BZ

dq, (2.20)

where the integral is performed over the full Brillouin zone.
After integration upon the Brillouin zone, the group velocity contribution cancels out,

due to the bandstructure periodicity. We are left with :

j = Ex
(2π)2h̄

∫
BZ
F (q)dq (2.21)

It is demonstrated that the integral of the Berry curvature over the Brillouin zone is a
multiple of 2π [8]. The current density thus reduces to :

j = ν

h
Ex̂ , ν ∈ Z (2.22)
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This results shows that the system transversally responds to the perturbation along
m. Moreover, this response is quantised by the integer ν. This number is the topological
invariant of the system and is defined by :

ν = 1
2π

∫
BZ

dqF (q) (2.23)

This number is an integer, and is topologically robust. Indeed, for weak enough perturba-
tions (in the sense that there is no gap closing), it always takes the same value, hence the
notion of topology. From Eq. (2.22), we obtain the transverse conductivity of our system :
σ = ν

h
. We recover the celebrated quantised Hall transverse conductivity (we recall that we

asssume a charge q = 1).

We display in Fig. 2.5 the Berry curvature of the infinite quantum wire system for different
values of Ω. The Berry curvature is strongly affected by the hopping amplitude. As Ω
increases, the Berry curvature flattens. For Ω = 5Erec, we have F ≃ 1/(2k) on the full
Brillouin zone. By integrating this value, we obtain

∫
Fdq ≃ (2k) × (2π) × 1/(2k) = 2π.

As expected, the integral of the Berry curvature over the Brillouin zone is a multiple of 2π.
Note that this integration leads to the same value for all Ω > 0, howing to the topological
robustness.
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Figure 2.5: Local transverse response : Berry curvature of the infinite quantum wire model
for various hopping amplitudes Ω. For low values of Ω, the Hamiltonian is essentialy given
by the kinetic energy along x, and the Berry curvature nearly vanishes (at least in the center
of the Brillouin zone). When increasing Ω, the Berry curvature homogenises and reaches
≃ 1/(2k) on the full Brillouin zone. Integrating the Berry curvature on the Brillouin zone
leads to the same value ν = 1 for all non-vanishing values of Ω.

For now, we have considered an infinite system and have revealed its topology by com-
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puting the integral of the Berry curvature on the Brillouin zone. By imposing edges on the
sample, howing to the bulk-boundary correspondence [51], one would expect to observe the
emergence of chiral edge modes. This concept will be studied more in details in chapter VI.
In the next paragraph, we impose edges along the direction m and see how they affect the
system’s properties.

2.2.4 Finite system

In the presence of boundaries along m, the translation symmetry is broken along this di-
rection. We suppose that we have 2J + 1 wires, whose position m goes from m = −J to
m = +J . At this stage, J is a positive integer. We will often consider J = 8 in the following,
to match our experimental system. The ground band of the system, originally indexed by
(qx, qm), maps to a set of 2J + 1 bands indexed by a single momentum. To deal with such a
geometry, it is more convenient to use the gauge transform U = e2ikx, leading to :

H = (p− 2h̄km̂)2

2M − h̄Ω (Tm + T−m) , (2.24)

where we put a hat on the position operator m̂, to distinguish it from the m sites. Within
this Landau gauge, the Berry curvature and the energy are indexed by a one-dimensional
momentum p that can take any values, contrary to the infinite case where it was a function
of a two-dimensional quasimomentum q = (qx, qm) defined on a Brillouin zone. We compare
the finite and the infinite system by looking at their spectrum in Fig. 2.6. The energy
bands of the infinite system are degenerate along qm. When edges are added along m, the
degenerated bands indexed by qm and qx merge into a single band indexed by p.
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Figure 2.6: Dispersion relation for the finite and the infinite system. Left : Infinite system.
There is a degeneracy along qm. Right : Finite system (with 17 wires). For the range of
momenta under consideration, the dispersion relation is reminiscent of the one of the infinite
system, that we display with black dashed lines.

We don’t see the effect of the edges on Fig. 2.6, because we where here only focuses on
momenta close to 0. As seen previously, the m-position of the wavefunctions depend on the
momentum p. By looking at larger momenta, the wavefunctions will explore to full range of
m, and will start to feel the boundaries at m = ±J .

We show in Fig. 2.7 the dispersion relation of the finite system with 17 wires on a broader
range of momenta. We observe the presence of a bulk, defined by E(0)(p) < E∗, where E∗ lies
in the middle of the gap between the ground band and the first excited band. For Ω = 4Erec,
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the bulk corresponds to |px| < p∗ ≃ 17prec. In the bulk, the dispersion relation is flat, and
matches the one of the infinite system (depicted in dashed black lines). We observe chiral
edge modes for |px| > p∗, where the energy dispersion relation becomes fully kinetic. These
edge modes are reminiscent of the chiral edge modes of the Hall effect, and are a direct
consequence of the system’s non-trivial topology.
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Figure 2.7: Properties of the finite system made of 17 quantum wires at Ω = 4Erec. a :
Dispersion relation. The horizontal orange line lies in the middle of the ground band and
the first excited band. It defines a bulk and edges. Bands are flat in the bulk, and we recover
chiral edge modes on the boundaries. Dashed black lines indicate the eigenenergies of the
infinite wires system. There is a good agreement between the two systems in the bulk. b :
Berry curvature. Close to p = 0, the Berry curvature is equal to 0.5h̄k. It goes to 0 on the
edges, in the same fashion as the Hall mobility. c : Local Chern marker. In the bulk of the
sample, the local Chern marker is equal to unity, highlighting the non-trivial topology.

The Berry curvature of the ground band in the bulk is equal to the one of the infinite
system. It goes to 0 for |px| > p∗, as a consequence of the presence of edges at m = ±J . This
is similar to the decay of the Hall mobility near the system’s boundaries. One may wonder
if the transverse conductivity is affected by the presence of edges. In this new geometry, the
response of the system is not homogeneous due to the edge effects. Considering the response
of the whole system is thus not meaningful. To overcome such an issue, we consider the local
Chern marker1 Cm, defined as [108] :

Cm =
∫

dpΠm(p)F (p), (2.25)

where Πm(p) is the squared propability to measure the ground state in the quantum wire
m at the momentum p. The local Chern marker characterises the local (in m) transverse
response. In the bulk, the local Chern marker of the ground band is equal to unity, similarly
to the infinite system, and characterises the non-trivial topology. This number replaces the
topological invariant ν for a non-homogeneous system.

In this section we have studied a system of coupled quantum wires, considering both
infinite and finite systems. A quantum Hall effect emerges in this model, due to the space-
dependent hopping phase between the neighbouring wires, even if the particle under con-
sideration is neutral. This toy model allowed us to introduce the Berry curvature and the
Chern number. We interpreted the quantisation of the transverse Hall conductivity through

1This quantity is also useful to deal with inhomogeneous systems due to impurities or disorder.
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the prism of topological arguments. Subsequently, we introduced boundaries to our system
and found that the bulk properties remained unaffected, while the edges exhibited chiral
edge modes. We now shift our focus to the experimental realisation of a synthetic quantum
Hall ribbon using dysprosium atoms, which is closely related to this quantum wire scheme.

2.3 Realisation of a dysprosium synthetic quantum Hall rib-
bon

In this section, we present our realisation of a 2D quantum Hall ribbon using dysprosium
atoms. This part will be a pedagogical introduction to our protocols, that we have used
to realise various topological systems and that we will present in the following chapters.
The results presented in this section were already obtained in our group back in 2020 [103].
Recently, we realised again this system, with the aim to study its entanglement Hamiltonian,
as we will see in chapter VI. Our protocol to engineer quantum Hall states relies on the use
of synthetic dimension [109–111].

2.3.1 Synthetic dimension

A synthetic dimension is a non-spatial dimension treated in the same way than a spatial
one. Most of the time, it is made of an internal degree of freedom of a system (its spin state,
its momentum state [112, 113], its orbital momentum state [114] ...) that is treated as an
effective dimension. This approach has been widely used in photonics [41, 64, 115], and in
the ultracold atoms community, where the spin degree of freedom can be considered as an
effective dimension [50, 61–63, 109, 111] as we do in our experiment [103].

Synthetic dimensions have several interesting properties. First, they permit to gener-
ate artificial gauge fields [109], a key ingredient to emulate topological systems. Secondly,
synthetic dimensions permit to engineer particular geometries, such as cylinders [61–63],
or systems with sharp edges. Finally, synthetic dimensions can be used to emulate higher-
dimensional systems [60, 115, 116] which is something that we will study in the chapters IV
and V.

In our experiment, we consider dysprosium’s large spin as a synthetic dimension. Hence,
the 17 Zeeman sublevels contained in the manifold J = 8 will be re-interpreted as a one-
dimensional lattice made of 17 sites. This system is large enough to have both edges (at
|m = ±8⟩) and a bulk. We generate artificial gauge fields by coupling the synthetic dimension
to a spatial one, thereby realising a 2D quantum Hall system.

2.3.2 Experimental implementation

Our implementation of a 2D quantum Hall ribbon relies on the scheme drawn Fig. 2.8,
involving lasers in Raman configuration. This scheme was detailed in [103], we only provide
here a brief idea.

The degeneracy between the different Zeeman sublevels is lifted using a magnetic field
along the quantisation axis z. These sublevels are separated by the energy h̄ωz, where ωz is
the Larmor frequency. We shine a pair of counterpropagating Raman beams on the atoms,
that are detuned by ∆ ≃ −2π×10 GHz with respect to the 626 nm transition. This detuning
is large compared to the transition linewidth Γ ≃ 2π × 135 kHz, hence the beams do not
induce a strong scattering.
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The frequency difference between the two lasers is set close to ωz, so that the atoms
can undergo a Raman process : absorbtion of a photon in beam 1 and stimulated emission
in beam 2 (and the Hermitian conjugate process). This Raman process is governed by the
polarisation of the beams.

The process |J = 8,mJ⟩ → |J ′ = 9,mJ + 1⟩ → |J = 8,mJ + 2⟩ that involves two σ+
photons is not resonant since our Raman beams are detuned by ωz but not by 2ωz, and can be
neglected. We are thus left with the process |J = 8,mJ⟩ → |J ′ = 9,mJ⟩ → |J = 8,mJ + 1⟩,
and its Hermitian conjugate.

Figure 2.8: Raman configuration. A magnetic field lifts the degeneracy between the Zeeman
sublevels. Two counterpropagating beams are shined on a dysprosium atom. They are
detuned by ∆ with respect to the 626 nm transition. The frequency difference between the
two lasers is set close to the Larmor frequency, such that the different Zeeman sublevels are
coupled by Raman transitions.

Each Raman transition comes together with a momentum kick. For instance, if a dys-
prosium atom absorbs one photon from beam 1 and emits one in beam 2, it will aquire a
net momentum kick p = 2h̄k = 2prec along the x direction. The internal and the external
degrees of freedom of the atoms are thus coupled via the operators : J+e−2ikx and J−e2ikx.
This scheme illustrates how Raman processes and synthetic dimensions lead to the emer-
gence of spin-orbit coupling. It can be shown that [103], within rotating wave approximation
and using appropriate gauge transform, this configuration permits to effectively realise the
following Hamiltonian :

H = (p− 2h̄kJz)2

2M − h̄Ω
2 (J+ + J−)

= (p− 2h̄kJz)2

2M − h̄ΩJx

(2.26)

This Hamiltonian is reminiscent of the one studied in Section 2.2. In the next paragraph, we
make the link between this Hamiltonian and the one of the quantum wire model considered
previously.

2.3.3 Mapping to the quantum wire system

We recall that the quantum wire Hamiltonian derived in Section 2.2 is the following :

HQW = (p− 2h̄km̂)2

2M − h̄ΩQW(Tm + T−m), (2.27)
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where we put a hat on m̂, to distinguish the position operator m̂ from the spin projection
m.

By considering the spin degree of freedom as a dimension, Jz plays the role of a position
operator along the direction m, hence it replaces m̂. The kinetic term is thus similar for
the two systems. The second term plays the role, in both cases, of a translation along m.
Indeed, J+ increases the spin projection m by one unit, while J− decreases it by one unit.
However, we have a slight discrepancy here. On one hand, for the quantum wire model,
the matrix element ⟨m+ 1|Tm |m⟩ is equal to unity for all sites m, the hopping amplitude
is thus constant along this direction. On the other hand, we have for the synthetic system
⟨m + 1|J+|m⟩ =

√
J(J + 1)−m(m+ 1)/2, see Fig. 2.9c. Hence, the hopping amplitude

is not constant in our synthetic system, due to the Clebsch-Gordan variations of the J±
operators. To compare the two models, we will adjust the respectives hopping amplitudes
Ω such that the matrix elements between |m = 0⟩ and |m = 1⟩ of the hopping operators are
the same in both cases. Thereby, in the following, we use Ωsynthetic = 4Erec for the synthetic
system and ΩQW = 4Erec

√
J(J + 1)/2 for the quantum wire system.

We compare our synthetic system and the finite quantum wire model (with 17 sites) in
Fig. 2.9a,b. While the quantum wire model has flat bands in the bulk, reminiscent of Landau
levels, the synthetic system provides a non-vanishing curvature in the bulk. Both systems
exhibit chiral edge modes, unveiling their topological character. The Berry curvature is also
slightly different between the two systems. However, the difference in the hopping matrix
elements makes no differences on the topological properties, which are insensitive to small
perturbations. This is illustrated by Fig. 2.9f, where we see that the local Chern marker is
equal to unity in both cases in the bulk.

Ground band flattening

To compensate for the curvature of the ground band of the synthetic system, an addi-
tional spin quadratic term −J2

z can be added in the Hamiltonian. Indeed, this term plays
the role of a quadratic trapping potential along the synthetic dimension, whose shape will
counterbalance the dispersion relation of the ground band.

We show in Fig. 2.9d,e,f the effect of an additional quadratic term. We see on the
dispersion relation that the quadratic term flattens the ground band in the bulk, making it
very close to the one of the quantum wire model. In such situation, the motion is frustrated
in the bulk of our synthetic system, reminiscent of the motion of electrons in the bulk of
a sample submitted to a strong magnetic field. The J2

z term slightly modifies the local
transverse response, as seen on the Berry curvature, and make it more close to the one of
the quantum wire system. However, the topology is not affected by the quadratic operator,
this can be seen on the local Chern marker that is similar in the bulk for the three systems
(quantum wire, synthetic system, synthetic system with quadratic spin term), see Fig. 2.9f.
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Figure 2.9: Comparison between the synthetic system and the 17-quantum wire system.
Ωsynthetic = 4Erec, ΩQW = 4Erec

√
J(J + 1)/2. Black curves refer to the quantum wire

system. Red curves refer to the synthetic system. Blue curves refer to the synthetic system
with an additional quadratic spin operator Q = −Ω/(2J + 3). a : Dispersion relation. b
: Berry curvature. c : Variation of the Clebsch-Gordan coefficients for the operators Tm

and J+. d : Dispersion relation. The quadratic spin operator flattens the bands of the
synthetic system. e : Berry curvature. In the presence of the quadratic operator, the Berry
curvature reaches 1/(2h̄k). f : Local Chern markers for the quantum wire system (black), the
synthetic system without a quadratic term (red) and the synthetic system with a quadratic
term (blue). They are all equal to one in the bulk.

2.3.4 Experimental results

We now present some experimental results that we obtained by realising this model. We
start by demonstrating the ground band flattening. As seen in chapter I, one way to realise
a J2

z coupling in our set-up is to shine an additional off-resonant beam linearly polarised,
which polarisation is making a well chosen angle θ with the quantisation axis. The frequency
of this additional beam must be detuned by several Larmor frequencies from the ones of the
two other beams to avoid any new resonant Raman process. Experimentally, we detuned
this beam by 10 MHz ≃ 6h̄ωz. Such a configuration leads to a vanishing vectorial light shift
and to a tensorial light shift equals to :

Vtensorial = U

2(J + 1)(2J + 1)
[
1− 3 cos2(θ)

]
J2

z = Q(U, θ)J2
z , (2.28)

where U is the light shift for Clebsch-Gordan coefficients equal to unity, introduced in
chapter I. Thus, depending on the polarisation angle θ and the detuning (through U),
we can implement a positive or negative J2

z coupling. Using red-detuned light (U < 0)
and a polarisation θ = π/2, this tensorial light shift leads to a negative J2

z term. By
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tuning the trap depth U (through the laser power), we can adjust the strength of this
quadratic spin term Q, such that it perfectly cancels the curvature of the ground band. It
can be shown that a term −Ω/(2J+3)J2

z is theoretically optimal to flatten the ground band.

We show in Fig. 2.10 (left) our measurements of the ground band velocity of our synthetic
system as a function of the momentum p, for various quadratic spin terms. The curvature
of the ground band can be inferred by computing the derivative of the velocity with respect
to p. As expected, in the bulk, the curvature is positive for Q = 0. Increasing the strength
of the quadratic term decreases the curvature and can even make it negative. We present
in Fig. 2.10 (right) our measurements of the ground band curvature for various quadratic
spin terms. The datas agree well with the theoretical evolution. In the end, for the choice
Q = −Ω/(2J + 3), we recover a (synthetic) 2D quantum Hall system with edges and a flat
ground band.
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Figure 2.10: Ground band flattening for Ω = 4Erec. Left : Measurement of the velocity in
the ground band of the synthetic quantum Hall system for three different quadratic terms.
In the bulk, the velocity is increasing with p for a zero quadratic term (blue curve) and
decreasing with p for a strong negative quadratic term (green curve). Note that we measured
chiral edge modes for |p| > 17prec. Right : Curvature of the ground band inferred from the
measured velocities for seven different values of Q. Solid lines is the theory. Black dashed
line corresponds to Q = −Ω/(2J + 3) where we theoretically expect a vanishing curvature.

We display in Fig. 2.11 the measured magnetisation and velocity in the ground band
and compare them to the theory. The average magnetisation ⟨Jz⟩ can be interpreted as a
position along the synthetic dimension. We recover the behavior of the LLL : the position of
the system along m linearly increases with the momentum p, at least in the bulk. The edges
|m = ±J⟩ are approached for |p| > 17prec. At these edges, the velocity of the ground band
is chiral, unveiling the system’s non-trivial topology. In the bulk, the measured velocity is
quasi-vanishing, revealing a frustration of motion.
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Figure 2.11: Experimental ground band properties for Ω = 4Erec and Q = −Ω/(2J+3). Left
: Experimental spin populations. Red curve is the theoretical magnetisation ⟨Jz⟩. We see the
presences of edges for |p| > 17prec, where the system starts to be polarised in m = ±J . Right
: Velocity in the ground band. Blue dots are experimental points and red line is theory. Error
bars are within the dots size. In the bulk, |p| < 17prec, the velocity is vanishing, exhibiting
the frustration of motion. On the boundaries, we observe chiral edges mode.

We then experimentally characterise the topology of our system via a measurement of
the Berry curvature and the local Chern marker, see Fig. 2.12. In the bulk, we measure a
local Chern marker consistant with unity, hence retrieving the expected quantisation for a
quantum Hall system.
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Figure 2.12: Experimental topological properties for Ω = 4Erec and Q = −Ω/(2J+3). Left :
Berry curvature F of the ground band. Blue points are experimental data, red line is theory.
Error bars are obtained by bootstrapping. The Berry curvature goes to 0 for |p| > 17prec,
due to the presence of edges, similarly to the Hall mobility. Right : Local Chern marker.
The measurements are consistent with Cm = 1 for |m| ≤ 4.
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2.4 Conclusion
We started this chapter by briefly introducing the classical and the quantum Hall effect.
Then, we presented a model made of coupled quantum wires. We have seen that an artificial
gauge field can arrise in this model, provided that the hopping terms between the different
wires come together with a space-dependent phase. This artificial gauge field is at the origin
of a quantum Hall effect, that we interpreted through the prism of topology. This quantum
wire model is an introduction to the physical systems that we are producing in our group.

Subsequently, we detailed our experimental realisation of a synthetic quantum Hall rib-
bon, considering dysprosium’s spin as a synthetic dimension. We were able to generate
artificial magnetic field on the neutral atoms via spin-orbit coupling. We compared our
system to the quantum wire model, and have implementend an additional quadratic spin
operator to make the two systems more similar. Finally, we have presented experimental
results obtained with our synthetic system. We recovered the typical behavior of the LLL,
and we demonstrated the system’s non-trivial topology by revealing the existence of chiral
edge modes and by the measurement of a local Chern marker consistent with unity in the
bulk.
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The study of topological systems encourages to consider higher dimensional systems,
where a rich physics is expected, such as the 4D [23] and the 6D quantum Hall effect [25],
or the 5D Weyl-semimetals [27]. However, in standard materials, going to dimension higher
than 3 is not straightforward. The community has developed several tools in the past
decades to overcome this problem. One idea relies on connectivity, where the different sites
of a system are connected in a clever way, through combination of short and long-range
couplings, leading to an effective higher dimensional system (see Fig. 3.1a). This idea has
been studied in [115, 116] and experimentally explored using electric circuits [42, 117] or
photonics [118].

Synthetic dimensions are another tool to study higher dimensional systems. In this chap-
ter, we propose to apply the connectivity approach to dysprosium’s spin synthetic dimension.
We will study how a combination of first-order and second-order spin operators applied on
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a spin J can lead to an effective two-dimensional synthetic system. We will see that, under
the good combination of these spin operators, the synthetic dimension of a spin J can be
seen as a cylinder, whose circumference is made of three sites. We will study the conditions
under which this picture is valid and the deviations from this ideal case. Subsequently, we
will couple the synthetic cylinder to a spatial dimension via Raman processes. We will see
that it permits to emulate a cylinder with an artificial magnetic field in both the radial
and the longitudinal directions, leading to the emergence of a quantum Hall effect. We will
finally expose experimental results of our realisation of a synthetic quantum Hall cylinder
made with dysprosium atoms. We were able to vary the quantity of magnetic flux injected
through the cylinder, thereby realising Laughlin’s thought experiment [119] for the first time.
Most of the results presented in this chapter were already extensively discussed in Aurélien
Fabre’s thesis [78]. This chapter is an introduction to the next two chapters, were we will
rely on two synthetic dimensions within dysprosium’s spin.

The results presented in this chapter were published in [120, 121].

3.1 The emergence of two dimensions within a large spin
In this section, we show how a combination of first and second-order spin operators can lead
to an effective two-dimensional system within a large spin.

3.1.1 Combination of short and long-range couplings

Consider a 1D chain of discrete sites, each of them being couple to their neighbouring : the
system is one-dimensional. Now, suppose we add order-4 couplings to the system (Fig. 3.1a).
The system is topologically equivalent to the one displayed Fig. 3.1b which is effectively a
two-dimensional lattice with a ‘screw’ geometry. Hence, by combining couplings of different
orders, one can effectively emulate higher dimensional systems, where each site is connected
to a greater number of sites. We propose here to apply this idea to the 2J + 1 sites of a spin
J .
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Figure 3.1: Combination of short and long-range couplings. a : 1D discrete system, whose
sites are combined through short-range couplings (connecting neighbouring sites) and long-
range couplings (connecting site n and site n+ 4). b : Two-dimensional system, equivalent
to the system a. It exhibits a ‘screw’ geometry. c : Synthetic dimension of a spin J ,
degeneracy being lift with magnetic field. Neighbouring spin states are coupled via J+ and
J− operator. Next neighbouring ones are coupled via J2

+ and J2
−. d : Figure from [121].

The system depicted in c is equivalent to this cylinder, whose circumference is made of three
sites labeled by r ≡ m (mod 3).

3.1.2 The case of a spin system

To apply this idea to a spin, we rely on a combination of rank-1 and rank-2 spin operators
(Fig. 3.1c). With well chosen relatives weights, we will see that it leads to an effective
two-dimensional systems with a dimension m and a (cyclic) dimension r made of three sites
(Fig. 3.1d). We will show that the dynamics between these two dimensions can be decoupled.
By applying this combination of spin operators, we can engineer the following Hamiltonian
on a spin J :

H = −Ua
J+
J
− Ub

J2
−

J(J − 1/2) + h.c, (3.1)

where Ua and Ub are the hopping amplitudes associated with the two spin operators.
The two transitions involved in the Hamiltonian lead to the emergence of three-sites cycle

: m→ m+ 1→ m+ 2→ m, as seen on Fig. 3.1c. Let’s treat the magnetic projection m as
a position, and consider r ≡ m (mod 3), the reminder of the euclidian division of m by 3.
The action of J+ is to increase m by one unit and to increase r by one unit. The action of
J2

− is to decrease m by 2 units and to increase r by one unit.
To give an intuition on the condition to have independents dynamics along m and r, we

first do an approximate derivation. We consider m and r as continuous variables, and study
the effect of the Hamiltonian on the wavefunction ψ(m, r). For the first-order couplings, we
have :

J+ + J−
J

ψ(m, r) ≃ ψ(m+1, r+1) + ψ(m−1, r−1)

≃
(
2 + ∂2

m + 2∂m∂r + ∂2
r

)
ψ(m, r),

(3.2)
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and for the second-order couplings :

J2
+ + J2

−
J(J− 1

2)
ψ(m, r) ≃ ψ(m+2, r−1) + ψ(m−2, r+1)

≃
(
2+4∂2

m−4∂m∂r +∂2
r

)
ψ(m, r).

(3.3)

To get these expressions, we have used a Taylor expansion in m and r, keeping only the
terms of first-order and second-order. Thereby, Eq. (3.1) can be approximated by :

H ≃ −2(Ua + Ub)− (Ua + 4Ub)∂2
m − (Ua + Ub)∂2

r − 2(Ua − 2Ub)∂m∂r (3.4)

The coupling between m and r comes only from the term ∝ ∂m∂r, that cancels out for
Ua = 2Ub. Under this condition, this Hamiltonian describes the motion of a particle on a
cylinder, of axial coordinate m and radial coordinate r.

In the following, we assume this condition to be fulfilled, and we define a single coupling
amplitude U ≡ Ua = 2Ub

3.1.3 Semiclassical analysis

To understand more clearly the dynamics, we perform a semiclassical analysis, which is
legitimate for J ≫ 1.

Variational study

We first carry out a variational study, restricting ourselves to the family of the coherent spin
states [122] |θ, ϕ⟩. We calculate the average energy E(θ, ϕ) ≡ ⟨θ, ϕ|H|θ, ϕ⟩ in these coherent
states. We find E(θ, ϕ) = −2U sin(θ) cos(ϕ)−U sin2(θ) cos(2ϕ). We plot Fig. 3.2 this energy
landscape. We see that it exhibits three extrema : one minimum located at (θ = π/2, ϕ = 0)
and two minima located at (θ = π/2, ϕ = 2π/3) and (θ = π/2, ϕ = 4π/3). In the following,
we perform an Holstein-Primakoff transformation [123] around these maxima and minima
to get a more precise description of the system.
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Figure 3.2: Semiclassical approximation. Left : Energy functional as a function of the
coherent state angles (θ, ϕ). It exhibits one minimum depicted by the red cross at (ϕ =
0, θ = π/2), and two maxima depicted by the green crosses at (ϕ = 2π/3, θ = π/2) and
(ϕ = 4π/3, θ = π/2). Right : Energy spectrum of the Hamiltonian H (blue) and of the
approximated Hamiltonian Hϕ (red, green). At low energy, the spectrum of H matches the
one of Hϕ=0. At high energy, it matches the ones of Hϕ=2π/3 and of Hϕ=4π/3.

Holstein-Primakoff transformation

By considering the spin J as en ensemble of 2J fictitious spins 1/2 [76], we can perform a
Holstein-Primakoff transformation to express the spin operators in term of bosonic creation
operator a† and annihilation operator a as :

Jx = J − a†a,

Jz − iJy =
√

2J − a†a a,

Jz + iJy = a†
√

2J − a†a,

(3.5)

Assuming J is large enough, we can develop these formula to first-order in 1/J :

Jx = J − a†a,

Jz = J

2 (a+ a†),

Jy = −iJ2 (a† − a),

(3.6)

Using these expressions, we can also develop the Hamiltonian in power series of 1/J . The
first-order coupling gives :

−U J+ + J−
J

= −2 + 2a
†a

J
, (3.7)
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The second-order couplings yields :

−U2
J2

+ + J2
−

J(J − 1/2) ≃ −
U

2
1

J(J − 1/2)
[
2(a†a)2 + J(a†2 + a2 − 6a†a) + 2J(J − 1/2)

]
(3.8)

In the end, keeping only the terms at first-order in 1/J , we obtain :

H/U ≃ −3 + 10a†a− a2 − a†2

2J . (3.9)

This quadratic Hamiltonian can be diagonalised using a Bogoliubov transform, by intro-
ducing the new bosonic operators :

b = ua+ va† ; b† = v∗a+ u∗a†, (3.10)

under the constraint
√
u2 + v2 = 1. For the choice u =

√
1/2 + 5/(4

√
6) and v = −

√
u2 − 1,

the quadratic Hamiltonian can be rewritten :

H = E0 + h̄ωb†b, (3.11)

where

E0 = U

(
−3 + 2

√
6− 5
2J

)
,

h̄ω = U
2
√

6
J

.

(3.12)

At first-order in 1/J , we have shown that, around the minimum of the energy functional,
the initial Hamiltonian maps to the one of a harmonic oscillator.

The same calculation can be performed around the two energy maxima, (θ = π/2, ϕ =
2π/3) and (θ = π/2, ϕ = 4π/3). Around these maxima, the dynamics can also be approxi-
mated by a harmonic oscillator. Overall, we get the following three Hamiltonians describing
the low and the high energy dynamics :

Hϕ = (E0 + h̄ωb†b) cos(ϕ) ; ϕ ∈
{

0, 2π
3 ,

4π
3
}
. (3.13)

We show in Fig. 3.2 the spectrum of the initial Hamiltonian together with the eigenen-
ergies of these three harmonic oscillators for J = 8. We see a good agreement for the lower
energy states and for the higher energy states.

3.1.4 Domain of validity of the semiclassical approach

We expect this semiclassical approach to be more and more valid as J increases. Moreover,
as the spin size decreases, the dynamics starts to be affected the by finite size of the synthetic
dimension, and will deviate from the harmonic oscillator. We checked numerically that the
number of eigenstates well described by a harmonic oscillator increases with the spin size J ,
as expected for a semiclassical analysis.

This approach is valid for atoms with a big enough spin, as dysprosium J = 8, Erbium
J = 6 or Thulium F = 4. It could also be extended to molecules where spins of even larger
sizes could be obtained [124]. In the following, if not stated, we assume that the spin size is
J = 8.
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3.1.5 Interpretation as a cylinder geometry

The derivation made here relies on a semiclassical approach, and is relevant only to describe
low and high energy states. However, treating on equal footing low and high energy states is
unusual. This difficulty will be resolved in the following parts, where one of these synthetic
dimensions will be coupled to a spatial degree of freedom, such that only the low energy
physics will become relevant. Yet, for now, we still consider the effective spin dynamics
restricted to the semiclassical spectrum derived previously.

Eq. (3.13) is reminiscent of the spectrum of a particle evolving on a one-dimensional ring
lattice of length L and spacing a : E(q) ∝ −2t cos(qa). The quasimomentum q takes the
discrete values 2πj/L, where j ∈ Z. By analogy, in our model, the angle ϕ plays the role
of a momenta, conjugated to the cyclic dimension of length L = 3. We can now perform
an inverse Fourier transform to define, from these momenta q, the position states in this
cylindrical picture :

|r, n⟩ = 1√
3

∑
ϕ=0,2π/3,4π/3

e−iϕr |ϕ, n⟩ (3.14)

At this stage, the physical meaning of these |r, n⟩ state may not be obvious. To give
more insights, we compute the overlap between such states and the Dicke state m : ⟨m|r, n⟩.
To do so, we first note that the state |ϕ, n⟩ can be obtained by applying a spin rotation of
angle ϕ around the z axis on the state |ϕ = 0, n⟩. Eq. (3.14) can thus be rewritten [78] as :

|r, n⟩ = 1√
3

[
|ϕ = 0, n⟩+ e−i2πr/3e−i2πJz/3 |ϕ = 0, n⟩+ e−i4πr/3e−i4πJz/3 |ϕ = 0, n⟩

]
(3.15)

Then, we can easily compute the overlap with |m⟩:

⟨m |r, n⟩ = 1√
3

∑
ϕ

e−iϕ(r−m)

 ⟨m |ϕ = 0, n⟩ (3.16)

In this equation, the term in paranthesis vanishes if r ̸= m (mod 3) and is equal to 3
otherwise. We find back the intuition we had at the beginning : each r state only involves
the m states equal to r modulo 3. We show in Fig. 3.3 the projection of |r, n = 0⟩, |r, n = 1⟩,
|r, n = 2⟩, for the three possible values of r, on the Dicke basis. The overall envelop is
given by the eigenstates of the initial Hamiltonian, similar to the eigenstates of a harmonic
oscillator. The |r, n⟩ states only involve different classes of m states.

The Hamiltonian can be rewritten in term of these |r, n⟩ states. We first diagonalise it
in the |ϕ, n⟩ basis :

Heff =
∑
n≥0

∑
ϕ=0,2π/3,4π/3

(E0 + nh̄ω) cosϕ |ϕ, n⟩ ⟨ϕ, n| (3.17)

Then, using the definitions of the |r, n⟩ states and a bit of algebra, we obtain the following
expression :

Heff =
∑
n≥0

∑
r=0,1,2

(
E0 + nh̄ω

2

)
|r + 1, n⟩ ⟨r, n|+ h.c (3.18)

We recognise the Hamiltonian of a particle on a cylinder of cyclic dimension r, and with
a harmonic potential along the axial coordinate m.
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Figure 3.3: Projection of the r states in the Dicke basis. Top : Projection of the three
|r, n = 0⟩ states. Middle : Projection of the three |r, n = 1⟩ states. Bottom : Projection of
the three |r, n = 2⟩ states. We recognise the ground state of a harmonic oscillator for n = 0
and the first two excited states for n = 1 and n = 2.

3.1.6 Extension to different geometries

In this section, relying on the intuition we had on the three-sites cycles, we demonstrated
how the Hamiltonian under study can mimick the Hamiltonian of a particle on a cylinder,
whose angular coordinate is made of three sites : r = m (mod 3). We can ask ourself if we
could treat this problem with another geometry, for example if the angular direction could
have only 2 sites, or n sites with n > 3.
2 sites in the dimension r?

We consider a spin J under the action of the same Hamiltonian and we suppose that the
dimension r has only two sites and that it can be defined by r = m (mod 2). In this case,
the action of J+ is still to increase m by one unit and to increase r by one unit. However, the
action of J2

− is to decrease m by 2 units and to leave r invariant. We can proceed to the same
calculation made at the beginning of the section, considering both m and r as continuous
variables. The effect of the first-order couplings are

J+ + J−
J

ψ(m, r) ≃ ψ(m+1, r+1) + ψ(m−1, r−1)

≃
(
2 + ∂2

m + 2∂m∂r + ∂2
r

)
ψ(m, r),

(3.19)

and the one of the second-order couplings are

J2
+ + J2

−
J(J− 1

2)
ψ(m, r) ≃ ψ(m+2, r) + ψ(m−2, r)

≃
(
2+4∂2

m

)
ψ(m, r).

(3.20)

There is no combination of Ua, Ub (with Ua ̸= 0) that cancels out the ∂m∂r term. Thus,
in this geometry, the two dimensions m and r can never be considered orthogonal.
More than 3 sites in the dimension r ?

We now consider a spin J under the action of the same Hamiltonian and we suppose
that the dimension r exhibits N sites, with N > 3. Following the same derivation as the one
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made in this section, this approach leads to a decoupled dynamics for Ub/Ua = 1/2(N − 2).
Then, we can compute the energy functional E(θ, ϕ), using this coupling ratio and assuming
the state to be a coherent state. This leads to an energy functional that exhibits only 2
extrema (if N ̸= 3). Thereby, we can’t define easily a basis of ‘momentum’ states as we did
for the case N = 3, and the picture of the cylinder with N sites no longer holds.

However, one way to increase the number of sites in the dimension r is to increase the
spin operators order. It can be demonstrated that a combination of J+ and JN

− (and their
Hermitian conjugates) leads to an effective geometry where the cyclic dimension exhibit
N + 1 sites [78]. The realisation of higher order spin operators, as J3

−, is not straightforward
and can’t be realised using static light shifts. Indeed, the vectorial and tensorial polarisabil-
ities only provide first-order and second-order spin operators. One way to engineer more
sofisticated light-spin couplings is to consider non-static light shifts [125], albeit coming
together with a micromotion.

We will illustrate this idea, considering a combination of J+ and J3
− spin operators.

The two transitions involved in this Hamiltonian lead to the emergence of four-sites cycles :
m → m + 1 → m + 2 → m + 3 → m. This time, we consider r ≡ m (mod 4), the reminder
of the euclidian division of m by 4. The action of J3

− is to increase r by one unit and to
decrease m by three unit. The action of J+ is unchanged. Similarly to what we did before,
we perform a Taylor expansion, treating m and r as continuous variables. This leads to the
approximate Hamiltonian :

H ≃ −2(Ua + Ub)− (Ua + 9Ub)∂2
m − (Ua + Ub)∂2

r − 2(Ua − 3Ub)∂m∂r. (3.21)

By chosing U ≡ Ua = 3Ub, the two dimensions m and r can be decoupled. Again, we
consider the family of coherent spin state |θ, ϕ⟩ and perform a variational approach. We get
the energy functional :

E(θ, ϕ) = −2U sin(θ) cos(ϕ)− U

3 sin3(θ) cos(2ϕ), (3.22)

which exhibits four extrema at the angles : θ = π/2 and ϕ = kπ/2 where k = 0, ..., 3.
The exact same derivation that we performed in this section can be generalised to this case,
leading to the emergence of a cylinder with four angular coordinates.

3.2 Excitations in the synthetic cylinder
In the following section, we illustrate this picture of two independent dimensions encoded
in a large spin J by studying the excitations of the system, either along m or along r. We
finally illustrate the deviation from the optimal case, by varying the system’s parameters.

3.2.1 Definition of the excitations

Velocities in the synthetic dimension

Starting in an eigenstate of the Hamiltonian, we perform a weak perturbation by in-
ducing a velocity either along the axis m or the axis r. We first define the velocities in the
synthetic dimension. To do so, we make an analogy with the definition of velocities in spatial
dimension. For instance, the velocity along the spatial coordinate x can be defined as :

vx ≡
i

h̄
[H,x] (3.23)
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Similarly, by identifying the operator Jz to a position along the axis m, we define the
velocity along m as :

vm ≡
i

h̄
[H,Jz]

= Ua
iJ+
J

+ Ub
−2iJ2

−
J(J − 1/2) + h.c

(3.24)

The definition of the velocity along r is not straightforward. Indeed, the variable r being
an angular variable, a definition of the position along r could be 3

2πarg⟨exp (2iπJz/3)⟩. This

operator not being Hermitian, the quantity i

h̄
[H, exp (2iπJz/3)] is not Hermitian either, and

can’t be used to define the velocity along r through its commutator with H [126, 127]. As
demonstrated in [121], the velocity along r can be recovered via :

vr ≡
i

h̄

1√
3

{
exp

(
−i2π3 Jz

)
, [H, exp (2iπ/3Jz)]

}
. (3.25)

A more intuitive derivation can be realised by replacing in the expression of the velocity
along m the −2 prefactor in front of J2

− by +1. Indeed, under the effect of J2
−, m decreases

by 2 but r increases by 1. The prefactor in front of the term J+ remains unchanged, since
this operator acts the same way on both m and r. These two methods lead to the expression
:

vr = Ua
iJ+
J

+ Ub
iJ2

−
J(J − 1/2) + h.c (3.26)

Definition of the perturbations

Now that we have defined velocity operators along the synthetic dimensions, we introduce
the perturbations. The following peturbation, creating a linear potential in m, acts only on
the m dimension :

V
(m)

pert = VmJz. (3.27)

Indeed, for high values of J , the three states |ϕ = 0, n = 0⟩, |ϕ = 2π/3, n = 0⟩, |ϕ = 4π/3, n = 0⟩
are sufficiently far apart in phase space for the first-order spin operators not to couple them.
We recall that our system can be seen as a cylinder, with harmonic trapping along the
axis m and cyclic dynamics along r. The action of this perturbation is similar to the one
of a linear potential in a harmonic oscillator, which is to shift the equilibrium position.
When turning on V

(m)
pert , the system switches its inital equilibrium position m0. Once the

perturbation is turned off, the system will undergo oscillations around m0, i.e oscillations of
mean magnetisation.

The perturbation along r is more complicated to implement, since it requires a coupling
between the three |ϕ, n = 0⟩ states, i.e it requires high order spin operators. The following
perturbation

V
(r)

pert = Vr cos
(2π

3 Jz − αt
)

(3.28)

couples all the ϕ states since it involves high order spin operators. Moreover, this perturba-
tion is diagonal in the m basis and is 3− periodic. Its value only depends on r, and can be
rewritten as :
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V
(r)

pert = Vr cos
(2π

3 r − αt
)

(3.29)

It corresponds to a perturbation moving in r at the velocity 3α/(2π), leading to ⟨vr⟩ ≠ 0.

3.2.2 Decoupling of m and r dynamics

We show in Fig. 3.4 the decoupling of the m and r dynamics after application of the two
perturbations described above. We consider a spin J = 8 and a coupling ratio Ub/Ua = 1/2.
We also assume that the initial state of the system is the ground state of the Hamiltonian
(|n = 0⟩). Note that we would find similar results by considering the system in the highest
excited states.

As expected, following the perturbation along m, the mean value ⟨Jz⟩ undergoes oscilla-
tions, while the populations along r, Πr, remain constant. This behavior is retrived on the
velocities, where vm undergoes oscillations that are out of phase with the ones of the mean
magnetisation. This behavior is similar to the one of a particle in a harmonic trap, moved
away from its equilibrium position.

The decoupling between m and r is also illustrated after a perturbation along r, where
the evolution of the spin populations leads to a constant value of ⟨Jz⟩, but where the average
‘position’ along r drifts. On the velocities, we see that vm remains equal to 0, while the
velocity along r gets significantly away from 0 after the perturbation. As a sidenote, we em-
phasise that the velocity along r remains quasi-flat after the perturbation along r, consistent
with the absence of any trapping along this direction.
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Figure 3.4: Decoupling of m and r dynamics. Left column : Excitation along m. Right
column : Excitation along r. a : Populations along m. The red line shows the mean
magnetisation, which undergoes oscillations. b : Populations along r. The three populations
are equal and constant, confirming the fact that the system doesn’t react along r. c :
Velocities along the synthetic dimensions after the m excitation. ⟨vm⟩ undergoes oscillations,
⟨vr⟩ is equal to zero. d : Populations along m. The red line shows the mean magnetisation,
which is constant and equal to 0. e : Populations along r. The red line shows the mean
value ⟨r⟩, which drifts after the perturbation. We see the cyclic aspect of r. f : Velocities
along the synthetic dimensions after the r excitation. ⟨vm⟩ is equal to 0, contrary to ⟨vr⟩
which exhibits a (constant) non-vanishing value.

3.2.3 Deviation from the ideal case

In the previous paragraph, we set the ratio between the two couplings to be equal to
Ub/Ua = 1/2. We were considering the case of a spin J = 8 ≫ 1 validating the semi-
classical approximation. Finally, we supposed that the inital state was the ground state of
the Hamiltonian. We study in this part the deviation from this ‘optimal’ situation.

Effect of J

The derivation we performed here relies on a semiclassical approximation, and on a first-
order development of the Hamiltonian in 1/J . We thus expect this model to be more and
more valid as J increases. We show in the left column of Fig. 3.5 the velocity along m and r
after a perturbation along m, starting in |n = 0⟩. We see that, for J = 4, the velocity along
r is not strictly zero and undergoes small oscillations (on the inset), that are much higher
than the ones obtained with J = 8.
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Effect of the initial state

We now perform the same perturbation along m, starting in different inital eigenstates
of the Hamiltonian, that we labeled by n (n ∈ N). As seen previously, at low energy, n = 0,
the two dynamics are decoupled. When increasing n, the picture of synthetic cylinder no
longer holds, and the two dynamics are no longer decouple : a perturbation along m induces
a response along r (Fig. 3.5 middle column). When going to the highest excited states
(Fig. 3.5 right column), n = 2J , the dynamics is again decoupled. This was expected since
our picture of synthetic cylinder was obtained by doing a Holstein-Primakoff transformation
around the energy minima and maxima of the Hamiltonian.
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Figure 3.5: Effect of J and n on the decoupling of the dynamics, following an excitation
along m. Top row : J = 4, increasing n from 0 to 2J . Bottom row : J = 8, increasing n
from 0 to 2J . For the low energy state (n = 0) and for the high energy state (n = 2J) the
dynamics are well decoupled. For the intermediate energy states (n = J), the dynamics are
no longer decoupled. Insets are zoom made at the beginning of the time evolution, to see
more clearly the decoupling between ⟨vm⟩ and ⟨vr⟩.

Effect of Ub/Ua

Finally, we study the effect of varying the coupling ratio Ub/Ua. We keep J = 8, n = 0
and Ua fixed, and vary Ub between 0 and Ua. We show in Fig. 3.6a the velocities after
a perturbation along m for two different coupling ratios : Ub/Ua = 1/2 in solid lines and
Ub/Ua = 1/4 in dashed lines. For the first case, vr is equal to 0 and vm undergoes oscillations.
This illustrates the orthogonality of these two dimensions for the ideal ratio Ub/Ua. However,
for the latter case, vr also undergoes oscillation, illustrating the deviation from the decoupled
case : in this situation, the two dimensions are no longer orthogonal, and the oscillations of
vr can be interpreted as the projection of the oscillations of vm along the r axis. A similar
behavior can be observed Fig. 3.6b, following an excitation along r. For Ub/Ua = 1/2, vm is
equal to 0, but for Ub/Ua = 1/4, vm is not vanishing anymore.

We summarise these observations in Fig. 3.6c, where we plot the velocity ratios vr/vm

(resp. vm/vr) following an excitation along m (resp. along r). In the case of an excitation
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along m, we display the ratio of the oscillation amplitudes. In the case an excitation along
r, we display the ratio of the mean values. In both cases, the dynamics are decoupled for
Ub/Ua ≃ 0.495 very close to the 0.5 predicted at the beginning of this chapter. This optimal
ratio gets closer and closer to 0.5 as J increases. These results validate our initial picture
treating m and r as continuous variables. As soon as the couplings get away from this
optimal ratio, the two variables m and r are no longer orthogonal.
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Figure 3.6: Effect of the ratio Ub/Ua on the decoupling of the dynamics. a : After an
excitation along m. Dashed lines indicate a ratio Ub/Ua = 1/4, solid lines indicate a ratio
Ub/Ua = 1/2. b : After an excitation along r. Dashed lines indicate a ratio Ub/Ua = 1/4,
solid lines indicate a ratio Ub/Ua = 1/2. c : Decoupling of the two dimensions for different
ratios Ub/Ua.

In this section, we studied the perturbations in the synthetic cylinder, validating the
picture of two orthogonal dimensions m and r, with harmonic trapping along m and free
dynamics along r. We have confirmed the fact that this picture is valid only for the minimum
and maxima of the inital Hamiltonian. This way of treating the energy maxima and minima
on equal footing is unusual. In the following section, we couple the synthetic cylinder to a
spatial coordinate x, in order to create a quantum Hall cylinder in the x, r dimensions. The
main difference will be that, in this case, the three ϕ states are involved only at low energy.
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3.3 Coupling to a spatial degree of freedom
In order to couple the spin degree of freedom to a spatial degree of freedom, we introduce a
space-dependent phase on the couplings J+ and J2

− (and their Hermitian conjugate), similarly
to what we presented in chapter II. We thus study the following Hamiltonian :

H = p2
x

2M + V,

V = −
[
Ua
J+
J

+ Ub
J2

−
J(J − 1/2)

]
e−2ikx + h.c,

(3.30)

where k is a wavector, px is the momentum along x of the particle under study and M its
mass. We then follow the similar treatment we did in the previous section, performing a
semiclassical analysis.

3.3.1 Semiclassical analysis

For each position x, we look for the energy minima of the potential V , assuming the system
to be well described by a coherent spin state |x, θ, ϕ⟩. We compute the semiclassical energy
functional :

Vcl(θ, ϕ, x) ≡ ⟨x, θ, ϕ|H|x, θ, ϕ⟩
= −2U sin θ cos(ϕ− 2kx)− U sin2 θ cos(2ϕ+ 2kx),

(3.31)

where we again assumed U ≡ Ua = 2Ub. This energy functional exhibits three minima, for the
spin orientations (θ = π/2, ϕ = 0), (θ = π/2, ϕ = 2π/3), (θ = π/2, ϕ = 4π/3). Performing an
expansion around these minima, we find the following harmonic spectrum :

Vϕ,n (x) = (E0 + nh̄ω) cos (ϕ− 2kx) (3.32)

We compare Fig. 3.7a this spectrum with the space-dependent potential of Eq. (3.30).
We find an excellent agreement for n = 0 and n = 1, and a slight deviation for n = 2.
We note that this potential exhibits three minima along x, each of them corresponding to a
different |θ = π/2, ϕ⟩ state. Contrary to the purely synthetic case, the coupling to a spatial
dimension permits to have the three ϕ states involved at low energy only.

Similarly to the previous derivation, the Hamiltonian Eq. (3.30) can be rewritten in term
of an effective potential, by diagonalising it in the |ϕ, n⟩ basis and in the |r, n⟩ basis :

Heff = p2
x

2M +
∑
n≥0

∑
ϕ

(E0 + nh̄ω) cos (ϕ− 2kx) |ϕ, n⟩ ⟨ϕ, n|

= p2
x

2M +
∑
n≥0

∑
r

(
E0 + nh̄ω

2

)
e−2ikx |r + 1, n⟩ ⟨r, n|+ h.c

(3.33)

We recognise the Hamiltonian of a particle evolving on a cylinder, with an axial coordinate
x, and a cyclic dimension r. Similarly to our study of the previous chapter, the hopping
between r and r + 1 comes with a space-dependent phase −2kx, leading to an artificial
gauge field in the xr plane. There is also a third degree of freedom along m with harmonic
trapping.

We can validate this effective Hamiltonian by comparing its band structure to the one of
the actual Hamiltonian. Both models are invariant upon a translation along x by λ/6 and a
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rotation along z of angle −2π/3, where λ = 2π/k. These symmetries lead to the conservation
of a quasimomentum q :

q ≡ Mvx

h̄
+ 2kJz (mod 6k), (3.34)

defined over the Brillouin zone −3k ≤ q < 3k. The Hamiltonian spectrum thus organises
in Bloch bands indexed by q. We compare in Fig. 3.7b the band structure of the actual
Hamiltonian and the effective one for different values of n. We see a good agreement at
low energy, and a deviation for n ≥ 2, similarly to the purely synthetic case. Note that the
lowest energy bands are completely flat, reminiscent of Landau levels.
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Figure 3.7: Comparison between the effective potential and the actual potential. a : Spatial
dependene of the semiclassical potential and the actual potential. Blue, red and green lines
correspond to the semiclassical potential with n = 0, n = 1, n = 2. Black dashed line
correspond to the actual potential. b : Band structure computed with either the actual
potential (black) or the effective ones (blue, red, green). In both cases, we see a good
agreement for n = 0 and n = 1, and a slight departure for n = 2.

3.3.2 Deviation from the optimal ratio

We now study the effect of a departure from the optimal ratio Ub/Ua = 1/2. We show in
Fig. 3.8 in blue, for each position x, the minimum of the semiclassical energy functional
for different coupling ratios, keeping U =

√
UbUa constant. The ratio is varied between

0.1 and 3. The functional exhibits three minima, at the positions x = −λ/6, 0, λ/6. The
position of these minima does not depend on Ub/Ua. We also indicate in red the minimum
of the semiclassical energy functional for the extreme cases Ub = 0 and Ua = 0. In such
cases, the minimum of the energy is space-independent. Indeed, the space component of the
Hamiltonian e−2ikx can be gauged away, and the Hamiltonian becomes invariant upon any
spatial translation.

We show in Fig. 3.8a,b,c the angles (θ, ϕ) at which these minima are reached as a function
of the coupling ratio. As expected, we recover the three states (θ = π/2, ϕ = 4π/3), (θ =
π/2, ϕ = 0), (θ = π/2, ϕ = 2π/3) whatever the coupling ratio. Contrary to the purely
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synthetic case, the coupling to the spatial degree of freedom has made these three states to
be involved only at low energy. It also means that these three states are relevant to describe
the system even when the condition Ub/Ua = 1/2 is not satisfied. However, in such case,
the picture with a harmonic confinement along m no longer holds and the two synthetic
dimensions are not orthogonal anymore, as we will see later on.

We show in Fig. 3.8d the same quantities, for the position x = λ/5, which doesn’t
correspond to an energy minimum. In such case, the optimal angle θ remains unchanged,
but the optimal angle ϕ acquires a dependence on the coupling ratio, highlighting the fact
that the three states (θ = π/2, ϕ = 4π/3), (θ = π/2, ϕ = 0), (θ = π/2, ϕ = 2π/3) are only
relevant to describe the low energy physics.
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Figure 3.8: Departure from Ub/Ua = 1/2. Top panel : (in blue) Energy minimum of the
semiclassical potential as a function of the position x for different coupling ratios. The
extreme cases Ub = 0 and Ua = 0 are displayed in red, where the translational invariance
leads to a constant energy. Bottom panel a, b, c, d : Angles θ and ϕ at which the energy
minimum is reached, as a function of Ub/Ua.

In Fig. 3.9, we study the behavior of this system following an excitation along m, for
Ub/Ua = 1/2 and Ub/Ua = 1/4, starting in the ground band of the Hamiltonian at q = 0.
For the first ratio (left column), the system’s velocity along r vanishes while ⟨vm⟩ undergoes
oscillations, confirming the orthogonality of m and r. The ⟨vm⟩ oscillations are out of phase
with the oscillations in average magnetisation. This illustrates the fact that the picture with
the harmonic confinement along m still holds at low energy when coupling the synthetic
cylinder to space. We also note that the average value of r remains quasi constant. On the
other hand, for a ratio Ub/Ua = 1/4 (right column), both ⟨vr⟩ and ⟨r⟩ are oscillating after
an excitation along m. This shows that m and r are not orthogonal anymore. Moreover,
we see some anharmomicity in the oscillations of ⟨vm⟩, indicating that the picture with the
harmonic confinement along m breaks down when getting away from Ub/Ua = 1/2 if the
system is coupled to space.

To conclude, coupling the synthetic cylinder to a spatial coordinate x has made the three
states ϕ = 0, 2π/3, 4π/3 relevant to describe the physics at low energy. It can be contrasted
with the purely synthetic case, where two of the ϕ states were involved at high energy only.
These three states are relevant to describe the low energy physics whatever the value of the
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coupling ratio Ub/Ua. For Ub/Ua = 1/2, the two dimensions m and r are orthogonal, and
the system exhibits harmonic confinement along m. For Ub/Ua ̸= 1/2, the two dimensions m
and r are not orthogonal anymore and the confinement along m is no longer harmonic. Yet,
the description of our system with two dimensions is still valid. In the next section, we will
study an experimental realisation of such space-synthetic cylinder using dysprosium atoms.
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Figure 3.9: Excitation along m in the space-synthetic system, at q = 0. Left column :
Ub/Ua = 1/2. We display the velocities along the synthetic dimension as well as the aver-
age values ⟨Jz⟩ and ⟨r⟩ following an excitation along m. Black dashed lines is a guideline
highlighting the π/2-shift between ⟨Jz⟩ and ⟨vm⟩. Right column : Ub/Ua = 1/4. The two
synthetic dimensions are not orthogonal anymore.

3.4 Application : a synthetic quantum Hall cylinder
Emulating a system in a cylindrical geometry necessitates the capacity to engineer periodic
boundary conditions. In one-dimensional system, this can be achieved through the use of
quantum rings [128, 129]. In 2D, periodic boundary conditions can be created using carbon
nanotubes [130–133]. Nevertheless, realising a quantum Hall system on a cylinder presents a
substantially greater challenge, as it requires the capability to generate a radial magnetic field
(for instance, via a magnetic field monopole [134]), or to implement a model with breaking of
time-reversal symmetry, following Haldane’s prescription [10]. Synthetic dimensions permit
to circumvent this difficulty by enabling the generation of artificial magnetic fields. By
emulating Eq. (3.30) with dysprosium atoms, we were able to realise a quantum Hall system
on a cylinder, using the cyclic aspect of the dimension r. The motivation to realise a quantum
Hall cylinder was to experimentally implement Laughlin’s topological charge pump [120].

3.4.1 Motivation

The first explanation of the robustness of the quantum Hall effect was provided by R.Laughlin
in 1981 [119], through a thought experiment. In the latter, Laughlin considered a hollow
cylinder submitted to a radial magnetic field B (Fig. 3.10). Under this magnetic field, the
single-particle wavefunctions of the electrons organise in Landau levels. Each wavefunction
is given by an eigenstate of a harmonic oscilator, centered at a position x0 depending on the
wavevector kr of the electron along the cyclic direction : x0 = h̄kr/Mωc, where M is the
electron mass and ωc the cyclotron frequency. Laughlin then considered the insertion of a
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varying magnetic flux ϕ through the cylinder. This magnetic flux leads to an electric field
along the circumference of the cylinder E ∝ ∂t(ϕ)er, Fig. 3.10, which modifies the electron
wavectors kr, hence shifting the wavefunction center positions x0. Note that we labeled the
angular coordinate by er, to be consistent with our synthetic cylinder, whose circumference
is made of the three r sites. When the flux inserted is equal to one unit of quantum flux
Φ0 = h/|e|, all the electronic wavefunctions are shifted by one site (Fig. 3.10, right), resulting
in the pumping of one electron from one edge to the other. We retrieve the quantised Hall
conductance. This pumping is robust to the properties of the sample or to the presence
of weak disorder, explaining the robustness of the quantisation of the quantum Hall effect.
This idea was later generalised by Thouless in 1983 [135] to any system subjected to slow
periodic perturbation, leading to the concept of Thouless pumping [136].

Figure 3.10: Laughlin’s thought experiment, adapted from its Nobel prize lecture [137]. a :
Scheme of the Hall cylinder of axial coordinate x and of cyclic coordinate r. A magnetic field
B pierces the cylinder. A magnetic flux Φ flows through the cylinder. b : The one-particle
wavefunctions of the electrons are shifted along x due to the flux Φ, resulting in the pumping
of one electron from one edge to the other.

So far, the Laughlin pump experiment has remained only a thought experiment, due
to the challenge to engineer periodic boundary conditions together with a radial magnetic
field in condensed matter systems. Synthetic dimensions permits to lift this difficulty.
Some groups have already realised quantum Hall cylinder in cold-atoms experiment [61–63]
using the spin of the atoms as a synthetic dimension, but the lack of control on the lon-
gitudinal magnetic field B|| disabled them from realising Laughlin’s topological charge pump.

In this section, we present our quantum Hall cylinder realised with dysprosium atoms.
Our protocol permits us to have both a radial effective magnetic field B⊥ and a tunable
longitudinal one B||. We can thus vary the phase Φ|| inserted through the cylinder, enabling
us to implement Laughlin’s thought experiment.

3.4.2 Experimental protocol

Our experimental protocol is close to the one presented section 3 and relies on a combination
of first and second-order spin-orbit couplings. This yields to the emergence of an effective
cyclic dimension r in the spin J = 8 manifold. Similarly to the experimental scheme presented
in chapter II, we shine Raman lasers on an ultracold dysprosium cloud to couple the spin
degree of freedom to the spatial degree of freedom. A first pair of lasers is resonant with
the transitions m→ m+ 1 and m→ m− 1, leading to the operators e−2ikxJ+ and e2ikxJ−.
Additionally, a second Raman process is made resonant with the transitions m → m + 2
and m → m − 2. This is done by adding a second frequency detuned by 2ωz in one of
the laser beam, leading to the operators e−2ikxJ2

+ and e2ikxJ2
−. The experimental scheme is

summarised Fig. 3.11a.
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In the end, the atoms dynamics is described by the Hamiltonian :

H = 1
2Mv2

x + V,

V = −T e−2ikx + h.c, T = taeiφa
J+
J

+ tbeiφb
J2

−
J2

(3.35)

Using a suitable spin rotation, the phase difference φa − φb can be gauged away, such
that we can consider only a single phase φ ≡ φa = φb. The potential V can be replaced by
an effective potential Veff, following the prescription of the section 3 :

Veff = −t
∑

r=0,1,2

[
ei(φ−2kx) |r + 1⟩ ⟨r|+ hc

]
, (3.36)

where we introduced the total hopping amplitude t = ta + tb. The atoms is thus evolving
on a cylinder, with axial coordinate x and cyclic coordinate r, the dimension m being just
playing the role of an additional harmonic potential. Similarly to what we derived in the
previous section, this model is invariant upon a translation along x of λ/6 and a spin rotation
along z of angle 2π/3, leading to the conservation of the quasimomentum q :

q ≡ Mvx

h̄
+ 2kJz (mod 6k), (3.37)

defined on the Brillouin zone −3k ≤ q < 3k.

Figure 3.11: Experimental protocol. a : Laser configuration, leading to two resonant Raman
processes. b : Scheme of the two Raman transitions within dysprosium’s synthetic dimension.
c : Appearence of three-sites cycles between different Zeeman sublevels. Only one cycle is
depicted here. d : Scheme of the quantum Hall cylinder emerging at low energy. The
hopping between two |r⟩ states comes together with a phase φ − 2kx. The 2kx term leads
to a radial artificial magnetic field, the phase φ to a longitudinal artificial magnetic field.
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Effective magnetic fields

In the same way as for the quantum wires model studied previously, the complex phase
2kx is at the origin of an artificial magnetic field B⊥ = 2h̄k in the radial direction of this
system (Fig. 3.11d) [120], assuming a particle of charge q = −1. This magnetic field defines
a magnetic length ℓmag, such that the flux through the surface S = Rℓmag (where R = 3 is
the radius of the cylinder) equals the unit quantum flux Φ0. This magnetic field is at the
origin of the quantum Hall physics in our system. On the other hand, the phase φ leads to
an effective magnetic field B|| in the axial direction. By varying the phase φ, we can vary the
magnetic flux Φ|| threaded through the cylinder, hence implementing Laughlin’s topological
charge pump.

3.4.3 Experimental results

In the next paragraph, we present experimental results obtained with our protocol. We
present only a brief overview of our findings. A more in-depth discussion can be found in
[78, 120].

Ground band properties

We present Fig. 3.12 the experimental ground band properties measured as a function of
the quasimomentum q (Eq. (3.37)). As expected, the mean magnetisation is equal to zero,
confirming the fact that the three coherent states pointing along θ = π/2 are relevant to
describe the low energy physics. By summing the population modulo 3, we can reconstruct
the populations distribution in the three r states. The q-variation of this distribution reveals
a chirality typical of quantum Hall effect. When increasing the quasimomentum by 2k, the
probability distribution cycles as Πr → Πr+1. Moreover, we measure a vanishing mean
velocity in the ground band along x (Fig. 3.12a), as expected for flat Landau levels.

Figure 3.12: Experimental ground band properties. a : Velocity along x in the ground
band. The average velocity is equal to zero, highlighting the flatness of the ground band. b
: Populations along m in the ground band. The average magnetisation is vanishing on the
full Brillouin zone. c : Summing the populations modulo 3 leads to the populations in the
three r states. Blue, red and green points refer to, respectively, r = 0, r = 1, r = 2. Solid
lines is the theory.

Laughlin’s topological charge pump

The chiral drift occuring along r when performing a Bloch oscillation gave us a first hint
on the topology of the system. To characterise it fully, we implement Laughlin’s topological
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charge pump. We prepare the system in a given ground state q and vary the phase φ of the
lasers, i.e we vary the magnetic flux Φ|| threaded through the cylinder. We then measure the
induced displacement ∆x of the atomic cloud. This displacement directly gives us the Berry
curvature F (q) of the ground band for this momentum q through ∆x = F (q)φ. Experimental
results are displayed Fig. 3.13b. The Berry curvature is, within error bars, equal to the
theoretical prediction F (q) = 1/(2k). By computing the q-averaged displacement ∆x over
the Brillouin zone, we can access the Chern number C of the ground band and verifiy
Laughlin’s prediction via :

⟨∆x⟩
ℓmag

= C
Φ||
Φ0
, C = 1.00(4) (3.38)

The measured value of the Chern number is in agreement with the expected quantisation of
transport C = 1 for a quantum Hall system on a cylinder.

Figure 3.13: Experimental realisation of Laughlin’s topological charge pump. a : Scheme of
the protocol. We insert a flux ∆Φ|| through the cylinder and measure the induced displace-
ment ∆x. b : Berry curvature of the ground band inferred from the displacement ∆x. c :
q-averaged displacement over the Brillouin zone. For each unit flux inserted, the system is
displaced by one magnetic length, as envisioned by Laughlin in his thought experiment.

3.5 Conclusion
In this chapter, we have seen that we can emulate 2D physics within a large spin J , through
a proper combination of first and second-order spin couplings. Moreover, we have seen that
one of these dimensions exhibits periodic boundary conditions.

Later on, we have extended this protocol by coupling the synthetic dimensions to space via
Raman processes. This led to the appearence of artificial magnetic field in a space-synthetic
cylinder, coming together with the emergence of a quantum Hall effect. This was permited
by the use of synthetic dimensions, which make possible the generation of an artificial radial
magnetic field.

Finally, we have presented experimental results obtained with dysprosium atoms. We
were able to emulate a quantum Hall cylinder and to vary the magnetic field flux threaded
through this cylinder, implementing Laughlin topological charge pump.

In the latter protocol, one of the two synthetic dimensions was playing no role. In the
next chapter, we exploit fully the two dimensions m and r to emulate a 4D quantum Hall
systems using dysprosium atoms, two dimensions being synthetic and two being spatial ones.
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The study of topological system has started with the discovery of the 2D integer quan-
tum Hall effect [1, 4]. Originally, topological effects were predicted to arise mainly in lower
dimensions, but it was discovered that new topological phases can emerge in 3D and 4D [17,
23, 138, 139]. These higher-dimensional topological systems bring new physical phenomena
that the community wishes to explore. In particular, the generalisation of the 2D integer
quantum Hall effect to 4D exposes a new transport equation, quantised by a novel topolog-
ical invariant : the second Chern number. Besides being captivating for their topological
characteristics, 4D quantum Hall systems are also examined by theoretical researchers, in
order to understand the origin of large magnetic field in the early universe [140] or to study
quantum gravity [23].
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In this chapter, we first present a brief historical review of the study of topological
systems, leading to their arrangement in the ‘tenfold classification’ [19–21]. As we point
out, many topological systems remain to be explored, especially in higher dimensions. We
then present few properties of 4D quantum Hall systems, that only appear for dimensions
higher than 3, namely the non-linear electromagnetic response and the anisotropic chiral
edge modes. Following this study, we do a state-of-the-art review about 4D quantum Hall
systems. First hints of non-trivial topological in 4D were observed [41, 42, 59]. However,
several phenomena inherently related to 4D remain to be detected. Finally, we present our
approach to realise for the first time a genuine 4D quantum Hall system in the topological
class A. We derive the properties of our model and exhibit its non-trivial topology.

The model presented in the last part of this chapter was experimentally realised and
published in [141].

4.1 From 2D topological systems to higher-dimensional topo-
logical systems.

4.1.1 Brief historical review of topological insulators and superconductors

The two previous sections focused on experimental realisations of 2D integer quantum Hall
systems. Such systems were the first known to exhibit topological states and lead to the
developement of the TKKN theory [4]. As the quantum Hall effect is not directly general-
isable to 3D [142, 143], topological states were initially limited to low-dimensional systems
submitted to a large magnetic field.1

In 1988 Haldane, introduced the first modification to this paradigm, suggesting a new
model [10] that exhibits quantum Hall effet without the presence of a net magnetic field. In
its paper, Haldane showed that the key ingredient to recover such physics is the breaking of
time-reversal symmetry. He considered a spinless fermionic system on a honeycomb lattice,
with real nearest neighbour hopping terms and complex next-nearest neighbour hopping
terms. The latter are responsible for the time-reversal symmetry-breaking, replacing the
magnetic field in the integer quantum Hall effect.

A second breakthrough occured in 2005, when Kane and Mele [11, 12] demonstrated that
a topological order can arise in a spin fermionic system with time-reversal symmetry. They
proved that spin-orbit coupling (a coupling preserving time-reversal symmetry) can lead
to the emergence of topological states. These states are known as the quantum spin Hall
states, and were soon after realised in 2007 in HgTe quantum wells [14], following a proposal
by Bernevig [13]. Such systems are at the origin of the term ‘topological insulator’. More
particularly, they are the first Z2− topological insulators discovered, meaning that their
topology is not defined by a Chern number belonging to Z, but by a topological invariant
belonging to Z2. Interestingly, contrary to the integer quantum Hall effect, the quantum
spin Hall effect can be directly generalised from d = 2 to d = 3 [17, 138, 139], and even
extended to higher dimensions. In parallel, Zhang and Qi [23] generalised the quantum Hall
effect to a four-dimensional system with time-reversal symmetry.

All these studies led to the discovery of new topological phases of matter, even in systems
of dimension greater than 2. Around the years 2008-2010, an effort towards a topological

1Actually, 3D quantum Hall effect was recently measured in ZrTe5, but its topology, involving three first
Chern numbers in three orthogonal planes, is essentially two-dimensional [144].
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classification was realised [19–21] to categorise all these new states of matter, from topological
insulators to topological superconductors. We introduce this classification in the following.

4.1.2 Topological classification

The topological classification relies on the classification of random matrices, initiated by Zirn-
bauer and Altland [145, 146], that can be mapped to fermionic non-interacting Hamiltonians
without gap closing. It consists in sorting topological systems as a function of the symmetries
of their Hamiltonian. A topological insulator or topological superconductor can be charac-
terised by three fundamental symmetries : the time-reversal symmetry Θ, the particle-hole
symmetry Ξ and the chiral symmetry Π, and thus assigned to a given topological class.
There are in total ten symmetry classes.

The 10 symmetry classes

The time-reversal symmetry operator is an anti-unitary operator Θ. Its square can take
two values : Θ2 = +1 or Θ2 = −1. If this operator commutes with the Hamiltonian of the
system, the latter preserves the time-reversal symmetry. In such case, there are two possible
scenarios : either Θ2 = +1, either Θ2 = −1. To simplify the notation, we usually write
Θ = +1 or Θ = −1. If the time-reversal symmetry operator doesn’t commute with the
Hamiltonian, the latter doesn’t obey time-reversal symmetry and we write Θ = 0. In total,
there are three possible values for Θ.

Similarly, for the particle-hole symmetry, there are three possible values for Ξ. The
combinations of these two symmetries lead to a total of 9 symmetry classes. Additionally,
one should consider the chiral symmetry Π, which is given by the product of the time-
reversal and the particle-hole symmetry. It can be demonstrated that for 8 of the 9 possible
combinations of Θ and Ξ, the value of Π is uniquely determined. Only the case (Θ = 0,Ξ = 0)
is ambiguious, and can lead either to Π = 0 or Π = 1. At the end of the day, the one-particle
fermionic Hamiltonians can be categorised in 10 different symmetry classes, leading to the
so-called tenfold classification.

The tenfold classification

The tenfold classification proposes to arrange all the topological states, from topological
insulators to topological superconductors, using these 10 symmetries combinations. Given
the system dimensionality d and its symmetries, the classification provides the topological
invariant, highlighting the difference between topologically trivial states (ν = 0) and topo-
logically non-trivial states (ν ∈ Z, ν ∈ 2Z, ν ∈ Z2).

We show in Fig. 4.1 the topological classification. The first column, sometimes labeled
‘AZ’, refers to the symmetry class name. The right columns provide the value of the topolog-
ical invariant for each symmetry class, as a function of the dimension d. We highlight on the
figure few well-known observed topological states. The celebrated 2D quantum Hall effect
belongs to the symmetry class A (breaking of time-reversal symmetry) in d = 2. As seen on
the classification, the topological invariant ν is indeed non trivial, ν ∈ Z. We highlight it in
blue. The quantum spin Hall states belong to the symmetry class AII, they are highlighted
in red (only for dimension d ≤ 3). Finally, the famous one-dimensional SSH model [147]
belongs to the symmetry class BDI, with a topological invariant ν ∈ Z; we highlight it in
green. In all the classes, the topological invariant either belong to Z2 either to Z or 2Z ,
depending on the dimensionality. This is a consequence of the dimensional hierarchy which
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is a general feature of the topological classification [20] that goes beyond the scope of this
thesis.

Figure 4.1: Topological classification, adapted from [20]. We highlight a few famous topo-
logical systems. In blue, the celebrated 2D quantum Hall effect in a time-reversal symmetry
breaking system. In green, the famous 1D SSH model. In red, we highlight the quantum
spin Hall systems, in dimensions 2 and 3.

Exploring higher-dimensional systems

Similarly to the case of the periodic table of the elements when it was invented, all the
entries of the topological classification have not been observed yet. This is in particular the
case for higher dimensional (d > 3) systems that are by nature more complicated to probe.
The work presented in this chapter and the next one consists in the first realisation of a
class A topological state in d = 4, i.e a generalisation of the 2D quantum Hall effect to four
dimensions. We acknowledge a recent realisation of a class AI d = 4 topological system
realised with electronic circuits [42].

More importantly than filling an entry in the topological classification, exploring a new
topological class in higher dimension gives access to a rich and exotic physics, otherwise
not present in d ≤ 3. We highlight in the next section three phenomena specific to the 4D
quantum Hall effect : the non-linear electromagnetic response, the peculiar nature of edge
modes in 4D and the cyclotron trajectories.

4.2 What does the fourth dimension bring?
In this section, we describe three new phenomena arising in the 4D quantum Hall effect,
namely the cyclotron orbits in 4D, the peculiar transport properties through the non-linear
electromagnetic response, and the edge modes in 4D. Beforehand, we will describe how the
magnetic field should be represented in 4D.

4.2.1 Magnetic field in four dimensions

In 2D and in 3D, the magnetic field if generaly described by a vector, or more precisely by
a pseudo-vector. We first stress that the ‘usual’ definition

B(r) = ∇×A(r), (4.1)

where A is the vector potential and r the positional vector, is not usable in dimensions
d > 3 since the vectorial product doesn’t exist in all higher dimensions, and particularly in
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d = 4 [148]. A safer definition that can be generalised to any dimensions relies on Einstein’s
notation, where the µν component of the magnetic field, can be expressed as :

Bµν = ∂µAν − ∂νAµ. (4.2)

In 3D, labelling the spatial coordinates x, y, z, this equation exhibits three non-zero
components : Bxy, Bxz, Byz, so that the magnetic field can be represented by a vector. In
4D, labelling the spatial coordinates x, y, z, w, this equation leads to six non-zero components
: Bxy, Bxz, Bxw, Byz, Byw, Bzw, and thus can’t be represented by a vector anymore. Instead,
the magnetic field is depicted by a rank-2 antisymmetric tensor :

B =


Bxx Bxy Bxz Bxw

Byx Byy Byz Byw

Bzx Bzy Bzz Bzw

Bwx Bwy Bwz Bww

 =


0 Bxy Bxz Bxw

−Bxy 0 Byz Byw

−Bxz −Byz 0 Bzw

−Bxw −Byw −Bzw 0

 , (4.3)

where the antisymmetry, given by Eq. (4.2), forces the diagonal coefficients to vanish. This
new description of magnetic field comes together with peculiar classical cyclotron orbits in
4D, that can be explained by the properties of rotations in higher dimensions.

4.2.2 Rotations and classical cyclotron orbits in 4D

Rotations in 4D

In 2D, a rotation occurs in a plane and is defined by one angle θ and one point which is
left invariant under the rotation (see Fig. 4.2a). It is described by a 2× 2 matrix :

R =
[
cos θ − sin θ
sin θ cos θ

]
(4.4)

The 3D case is similar, where a rotation occurs in a plane and is defined by one angle
and one axis, which is left invariant under the rotation (see Fig. 4.2b). It is described by a
3× 3 matrix :

R =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (4.5)

The 4D case is richer. Indeed, let’s consider a rotation occuring in the plane xy, of
rotation angle α. The plane zw is left invariant by this rotation. This type of rotation is
called ‘simple rotation’ and can be understood as a usual 2D-rotation occuring in a 4D-space.
However, we can directly see that more complex rotations can occur, that would only leave
one point invariant rather than one plane invariant. These ‘double’ rotations are defined by
two rotation angles and can be seen as two independent rotations, each of them leaving one
plane invariant and being define by one angle. The two planes under considerations are or-
thogonal. For instance, the rotation made of the combination of a rotation of angle α leaving
zw invariant and a rotation of angle β leaving xy invariant is a double rotation (see Fig. 4.2c).
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In its more general case, rotations in 4D can be described by a 4× 4 matrix, that can be
written (in the good basis) as :

R =


cosα − sinα 0 0
sinα cosα 0 0

0 0 cosβ − sin β
0 0 sin β cosβ

 , (4.6)

where α and β are the two angles of the rotation. If α = β, the rotation is called an ‘isoclinic’
rotation. We have introduced the rotations in 2D, 3D and 4D. We now make the link with
the cyclotron orbits.

Figure 4.2: Rotations in 2D, 3D and 4D. a : Rotation in a 2D space, defined by one angle
of rotation and leaving one point invariant. b : Rotation in a 3D space, defined by one
angle of rotation and leaving one axis invariant. c : Rotation in a 4D space. The rotation is
composed by a pair of ‘2D’ rotations, each of them being defined by their own angle α and
β.

Classical cyclotron orbits

In 2D and 3D, the cyclotron trajectory of a charge q within a magnetic field is planar and
can be described by an angle θ(t) = ωct where ωc is the Larmor frequency. The position of
the particle at time t, r(t), is given by a rotation of angle θ(t) applied on the initial particle
position vector r(0), such that :

r(t) = R[θ(t)]r(0), (4.7)

where R[θ(t)] is the rotation matrix of angle θ(t) around the axis made by the magnetic field.

This description still holds in 4D, albeit with the possibility of having double rotations.
The fact that a rotation in 4D involves two angles means that the magnetic field must
be described by two Larmor frequencies, contrary to the lower dimensional cases. The
properties of the cyclotron trajectories will directly depend on the ratio between these two
Larmor frequencies ω1 and ω2. In the following, we define these Larmor frquencies such that
ω2 ≥ ω1. We also introduce the corresponding periods Ti = 2π/ωi. There are three possible
scenarios :
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Case 1 : ω2 = ω1

This is the simplest case. This ratio of Larmor frequency leads to circular and closed orbits,
reminiscent of the 2D cyclotron orbits. See Fig. 4.3 where we plot the cyclotron trajectory
up to four different final times Tmax. At Tmax = T1, the system is back to its initial position.
For Tmax > T1, the system follows its initial trajectory.

Case 2 : ω2/ω1 ∈ Q
If the ratio between the Larmor frequencies is given by a rational number, the cyclotron
trajectories are non-planar, but are closed. We illustrate it on Fig. 4.4 where we choose a
ratio ω2/ω1 = 2. After a time Tmax = T1, the charge is back at its initial position. However,
the trajectory is not planar anymore. Similarly to the previous case, for Tmax > T1, the
system follows its initial trajectory.

Case 2 : ω2/ω1 ∈ R− Q
If the ratio between the Larmor frequencies is an irrational number, the cyclotron trajectory
is non-planar and open. We illustrate it on Fig. 4.5, where we use ω2/ω1 =

(
1 +
√

5
)
/2,

which is the golden number. After multiple periods T1, the system doesn’t go back to its
inital position.
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Figure 4.3: Cyclotron trajectories in 4D for ω2/ω1 = 1. We stop the trajectories at four final
times from left to right. The fourth spatial dimension is encoded in the color. The trajectory
is planar and closed.
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Figure 4.4: Cyclotron trajectories for ω2/ω1 = 2. We stop the trajectories at four final times
from left to right. The fourth spatial dimension is encoded in the color. The trajectory is
non-planar and closed.
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2 . We stop the trajectories at four final

times from left to right. The fourth spatial dimension is encoded in the color. The trajectory
is non-planar and open.

4.2.3 Transport properties

In this section, we show that the transport equations are peculiar in 4D. This derivation is
greatly inspired from [60] and from [107, 149, 150]. We will not detail the calculations, but
rather expose the different key points.

We consider a particle of charge q = −1 moving in a four-dimensional space, upon the
action of a strong magnetic field leading to a quantum Hall effect. Addtionnaly, the parti-
cle is submitted to a space-dependent potential exhibiting translation symmetry (it could
mimick electrons in a crystalline potential, or atoms in an optical lattice) such that Bloch
formalism is relevant to describe the particle’s dynamics. We consider initially an eigenstate
|un⟩ of the Bloch band n. We study the effect of a weak electromagnetic perturbation, made
of an electric field E = Eµe

µ and a magnetic field Bµν = ∂µAν − ∂νAµ. Our goal is to
compute the current density induced by these small electromagnetic fields. We assume that
these perturbations are uniform and time-independent. We propose here to follow a semi-
classical approach, in which we focus on a wavepacket of center of masse r and momentum k.

Assuming that the spatial variation of the potential vector A(r) occurs on lengthscale
greater than the wavepacket extension, the Hamiltonian of the system can be written, up to
second-order in the perturbations, as :

H ≃ H0 +H ′ +H ′′, (4.8)

where H0 is the Hamiltonian governing the wavepacket evolution without perturbation and
the two other terms are the first and second-order corrections in the perturbations. We will
then perform a semiclassical approximation to compute the current density.

The usual semiclassical approximation in 2D relies on the hypothesis that the system
follows adiabatically the eigenstate |un⟩ upon the application of the perturbations. In 4D,
in order to capture fully the specificity of the fourth dimension, one should considers a first-
order correction to this assumption. As a consequence, we consider the state |ũn⟩ defined as
:

|ũn⟩ = |un⟩+ |u′
n⟩ , (4.9)

where |u′
n⟩ takes into account for the band-mixing induced by the perturbations. The state

|ũn⟩ can be interpreted as an eigenstate of the perturbed magnetic Bloch band n. Using this
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formalism, we suppose that the system adiabatically follows the perturbed magnetic Bloch
band n and we drop the index n in the following.

Similarly, the Berry connection A has to be corrected to first order by A′. A contains
the effect of the strong magnetic field (at the origin of the quantum Hall effect), A′ contains
the first order correction in the perturbating fields. They are defined by :

Akµ = i⟨u|∂kµ |u⟩+ c.c
A′

kµ = i⟨u|∂kµ |u′⟩+ c.c
(4.10)

Consequently, one has also to consider the correction to the Berry curvature. We define
the Berry curvature of the perturbed Bloch band F̃µν by :

F̃µν = Fµν + F ′µν

F ′µν = ∂kµA′
kν + ∂kνA′

kµ ,
(4.11)

where Fµν is the Berry curvature of the unperturbed band, and F ′µν describes its first-order
correction. This modified Berry curvature can be used to recover the semiclassical equations
of motion :

ṙµ(k) = ∂Ẽ(k)
∂kµ

− k̇νF̃
µν(k), (4.12)

k̇µ = −Eµ − ṙνBµν , (4.13)

where we have introduced the correction to the band energy Ẽ(k) to second order in the
perturbating fields. In order to compute the mean group velocity of the wavepacket, one can
plug Eq. (4.13) into Eq. (4.12), keeping only terms of order 2 or less in the perturbations.

Finally, the current density jµ is obtained by summing the group velocity of each occupied
states k, and by dividing by the system size V :

jµ = 1
V

∑
k

ṙµ(k). (4.14)

This equation is not easy to express in a compact way. We can substitute the discrete
summation by an integral, using the phase space density of states. One needs to be careful
to the system dimensionality when performing this operation. Indeed, as shown in [149], the
4D phase space density should be replaced by its corrected version, in second-order to the
perturbations.

Performing this substitution, one obtains a heavy expression for the current probability
that we don’t display here but that can be found in [60]. The mentioned expression can be
greatly simplified, mainly using the antisymmetric properties of the magnetic field and the
Berry curvature tensors, and assuming a filled band. Under these hypothesis, the current
density can be expressed as :

jµ = Eν

(2π)4

∫
BZ
Fµνdk + ν2

(2π)2 ϵ
µνγδEνBδγ , (4.15)

where we have introduced the second Chern number of the considered band ν2, that can be
obtained by a non linear combination of the Berry curvature components :

ν2 = 1
4π2

∫
BZ

[
FµνF γδ + F δµF γµ + F γµF νδ

]
dk. (4.16)

This number is the topological invariant of the system, and is thus robust to any smooth
perturbation or to a relatively weak disorder. It can take only integer values.

95



The transport equation Eq. (4.15) is the main result of this section. It contains two terms.
The first one is similar to the 2D quantum Hall effect, resulting in a transverse response
proportional to the electric field, albeit without quantisation in 4D. The second term is more
interesting, and vanishes in dimension smaller than 4. This term is proportional to both the
electric and the magnetic perturbations and is referred to as the ‘non-linear electromagnetic
response’. It is quantised by the second Chern number ν2. We illustrate it in Fig. 4.6. In
short, the magnetic perturbation Byw lead to the emergence of a 2D quantum Hall effect in
the plane xz. Hence, together with Byw, the perturbative electric field Ez gives rise to a
current jx.

Figure 4.6: Quantum Hall effect in 2D and 4D. a : Linear response in a 2D quantum Hall
system. The strong magnetic field Bxy leads to a 2D quantum Hall effect in the xy plane.
The electric perturbation Ex leads to a quantised current jy in the transverse direction. b
: Non-linear response in a 4D quantum Hall system. The strong magnetic field components
Bxy and Bzw give rise to a 4D quantum Hall effect. The electromagnetic perturbations Byw

and Ez generate a quantised current jx in the fourth direction.

As as sidenote, we stress that Eq. (4.15) doesn’t invoke the corrected Berry curvature nor
the corrected band energy. This is a consequence of the band filling assumption. However,
the consideration of the first-order correction to the Berry connection and to the Berry
curvature, as well as the second-order correction to the eigenenergy are necessary to fully
grasp the anomalous Hall drift occuring in 4D for a partially filled band.

4.2.4 Anisotropic edge modes

The non-linear response quantised by the second Chern number occurs in the bulk of the
system. If we consider boundaries, the system is expected to exhibit edge modes at these
boundaries, via the bulk-boundary correspondence [21], similarly to the chiral edge modes
occuring in 2D quantum Hall effect. However, their behaviors is quite different in low and
high-dimensional systems.

In 2D, the boundary of the system is one-dimensional. The edges modes are chiral and are
constrained to propagate in 1D, by construction. In 4D, the boundary is three-dimensional.
However, it was shown that the edge modes doesn’t propagate on this 3D hyperedge, but
are still propagating through one-dimensional channels [151–153], thus not exploring the
full boundary. They are anisotropic. Moreover, this foliation is extremely sensitive to the
trapping potential, and can lead to very different behaviors, from integrable trajectories to
chaotic ones [151].
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4.3 State-of-the-art review
In this section, we briefly review experimental realisations of 4D quantum Hall systems. We
start by describing a few proposals, and then study some realisations based on topological
charge pumping, or implementation of a genuine 4D system.

4.3.1 Proposals

As seen previously, the study of high-dimensional topological systems is quite motivating,
particularly because it allows the discovery of new physical phenomena. To push forward
research in this direction, many proposals have been submitted to experimentally realise
four-dimensional systems.

Emulating a genuine 4D system

Emulating a four-dimensional system is not straightforward, spatial dimensions being lim-
ited to three. Several ideas permit to circumvent this difficulty. The first one relies on
connectivity and was studied in the previous chapter. More particularly, in [154], the author
proposes the realisation of a four-dimensional quantum Hall system on a lattice using only
real hopping operators, thus not breaking time-reversal symmetry. This proposal was soon
after realised using electric circuits [42]. The idea of connectivity could also be used in
photonics system to emulate higher-dimensional systems [115, 116].

Another strategy to emulate a four-dimensional system is to use, on top of the three
spatial dimensions, a synthetic dimension. Again, proposals have been made to extensively
describe realistic experiments. In, [60] the authors propose to use ultracold atoms on a 3D
lattice, the fourth dimension being provided by the internal states of the atoms and adressed
with Raman transitions. Similarly, this idea can be extended to photonics, where [155]
proposes to use a 3D array of ring resonators, the fourth dimension being encoded in the
modes of each resonator.

Mapping to a 2D topological charge pump

An alternative approach to emulate higher-dimensional systems relies on the correspondence
between a topological charge pump and a higher dimensional system [156]. Soon after
Laughin’s thought experiment, Thouless [135] proposed another approach to realise topo-
logical charge pumping, not requiring periodic boundary conditions, thus easier to realise
experimentally. We quickly describe below how a Thouless topological charge pump can be
mapped onto a higher-dimensional system, inspired by [157].

In its celebrated paper [135], Thouless considered a 1D spinless fermionic system upon a
perodic potential. It could for instance be a particle in a 1D-optical superlattice1 [157]:

VSL(x, φ) = V1 cos2
(2πx

a

)
+ V2 cos2

(
πx

a
+ φ

)
, (4.17)

where x is the spatial coordinate, a is the smaller lattice spacing and φ corresponds to
the dephasing between the two sublattices. He then showed that if one parameter of the
potential is adiabatically changed, returning to its initial value after a time T , the induced
current integrated over T is quantised by the Chern number. In the case of our superlattice,
it corresponds for instance to ramping the phase φ from 0 to 2π. Going to momentum

1Superlattices are obtained by superimposing lattices with different periodicities.
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space, the Hamiltonian of the particle can be replaced by a Bloch Hamiltonian verifying the
following invariances :

H(kx, φ) = H(kx + 2π/a, φ)
H(kx, φ) = H(kx, φ+ 2π),

(4.18)

where kx is the wavector along x. We can hence define a Brillouin zone −π ≤ φ < π,
−π/a ≤ kx < π/a, on which the Berry curvature can be computed. The Hamiltonian
being fully gapped in the Brillouin zone, we can obtain the ground band Chern number by
integrating the Berry curvature over the Brillouin zone, leading to a Chern number equal to
1. As shown by Thouless, the first Chern number quantises the charge transport through
the 1D system, similarly to the quantised transport in a 2D quantum Hall system. He also
demonstrated that, in both cases, the transport is topologially protected against disorder
or impurities. This idea is called ‘dimensional extension’ and has been implemented several
times experimentally in 1D topological charge pumps [158–162].

In parallel to these realisations, [156] proposed to implement a 2D-topological charge
pump. Following the same prescription, a 2D topological charge pump could be mapped
onto a four-dimensional system through dimensional extensions, the two pumps parameters
being interpreted as two additional momenta. Even though the proposal only realises a
dynamical version of a 4D quantum Hall effect, it predicts the ability to measure a charge
transport quantised by a second Chern number, something only possible in 4D. Subsequent
to these proposals, a few experiments have probed some aspects of 4D physics. We quickly
describe their findings in the next section.

4.3.2 Experimental realisations of 4D quantum Hall system

A 2D topological charge pump in an optical superlattice

In [59], the authors implemented a 2D topological charge pump using ultracold atoms in
an optical superlattice, hence realising a dynamical version of the 4D quantum Hall effect.
Their system, Fig. 4.7a, can be mapped to a pair of 2D quantum Hall systems in a cylinder
geometry via dimensional extension. Their experimental set-up provided them the ability
to probe the non-linear electromagnetic response (detailed in the previous section) occuring
in 4D, and the ability to measure the second Chern number. The measured value is in
agreement within error bars with ν2 = 1.

A 2D topological charge pump in photonic waveguides

At the same time, Zilberberg et al [41] presented a 2D topological charge pump made with
photonics waveguides, realising also a dynamical version of a 4D topological system (see
Fig. 4.7b). They tracked the propagation of light in their sample induced by the scan of
the pump parameters. Their main result consists in the observation of peculiar surface
states, that implies the existence of a non-trivial second Chern number in the bulk of their
system. This experiment, together with the experiment presented above [59], provides the
first evidence (and the measurement) of a non-trivial second Chern number.

A 4D topological insulator using electronic circuits

In [42], following the prescription of [154], the authors realised a 4D topological lattice using
appropriate connections between electronic constituents. This way, they realised for the first
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time a genuine 4D-topological system with time-reversal symmetry, thus belonging to the
class AI. Interestingly, this class is topologically trivial in dimension d ≤ 3 (see Fig. 4.1).
However, going to 4D leads to a non-trivial topology, coming together with a non-vanishing
topological invariant : ν2 ∈ Z2. In their experiment, they could switch from a topologically
trivial phase to a topologically non-trivial phase by adjusting a parameter. The non-trivial
topology manifests itself by the appearence of 3D edge modes. In Fig. 4.7c, we display the
local density of states they measured in the non-trivial phase. We see the existence of a bulk
(made of 16 sites), where the local density of states is low, and edges (made of the remaining
128 sites), where the local density of states is way higher. Moreover, the authors emphasise
that these edge modes are robust to disorder as expected for a topological system, since
each electronic components had a ≃ 10% deviation in their inductance or conductance. We
also point out that these edge modes are not anisotropic. They are related to Weyl points,
that host 3D topological surface states. These edge modes thus have a completely different
nature than the ones expected for the generalisation of the 2D quantum Hall effect to 4D,
which belongs to the topological class A.

Figure 4.7: Experimental measurements of 4D quanutm Hall physics. a : Reference from
[59]. A 2D topological charge pump is implemented on a optical superlattice, realising a
dynamical version of the 4D quantum Hall effect. b : Reference from [41]. An array of
photonics wires is used to implement a 2D topological charge pump, leading to a dynamical
version of the 4D quantum Hall effect. c : Reference from [42]. A genuine 4D Hamiltonian
is implemented on a a lattice made of electrical components. We display here the measured
local density of states.

The observation of these 3D edge modes is the main result of the paper, and is a direct
consequence of the non-trivial topology occuring in 4D. Their experimental set-up is the
first topological insulator observed in class AI, and the first system where the non-trivial
topology comes hand in hand with the higher dimensionality. However, no direct evidence
of transport quantisation has been reported.

These important realisations are the first steps towards the experimental exploration of
higher-dimensional systems. However, some 4D phenomeons still need to be probed. In the
following section, we present our model that led to the realisation of a genuine synthetic
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4D quantum Hall system in class A, using dysprosium atoms. To our knowledge, it is the
first observation of this topological class in 4D. It is also the first measurements of cyclotron
orbits in 4D, the first measurement of the second Chern number for a genuine 4D system
and the first measurements of the anisotropic edge modes.

4.4 Synthetic quantum Hall effect in four dimensions : ele-
ments of theory

In this section, we describe our model to realise a quantum Hall system in four dimensions.
We will mainly focus on the theory, our experimental results will be presented in the next
chapter.

4.4.1 Description of the model

Implementation with dysprosium atoms

The realisation of a 4D quantum Hall system relies on the same ingredients presented in the
two previous chapters. Counterpropagating Raman lasers are used to couple dysprosium’s
spin degree of freedom to its momentum. The four dimensions of our system are made
of two spatial dimensions, labeled x, z and two synthetic dimensions m, r, where m is the
projection of the spin along the quantisation axis and r ≡ m (mod 3) is the reminder
of the euclidian division of m by 3, as introduced in previously. In order to make the r
dimension relevant, we again combine two types of spin operators J+ and J2

−, leading to an
effective two-dimensional system within dysprosium’s spin. The two spatial dimensions x, z
are infinite1 but the synthetic dimension m exhibits edges at m = −J and m = +J . Finally,
the dimension r provides only three sites, albeit coming together with periodic boundary
conditions, so no edge effects are expected along this direction.

A magnetic field B = Bẑ lifts the degeneracy within the synthetic dimension of dys-
prosium. A first pair of Raman lasers propagating along x̂ is shined on dysprosium atoms.
Their polarisation is linear and set to θ = arccos

(
1/
√

3
)
. They are respectively detuned by

∆ + ωz and by ∆ with respect to the 626 nm transition, such that the process m → m + 1
(and its Hermitian conjugate) is resonant, while ∆ ≃ −2π × 7 GHz is big enough to limite
incoherent scattering. This Raman transition comes together with a net momentum kick
−2kx̂ (resp. +2kx̂). We label this process (x).

Similarly, a second pair of Raman lasers propagating along ẑ is sent on the atoms. These
beams are respectively polarised σ+ and σ−. They are detuned by ∆′− 2ωz and by ∆′, such
that the process m→ m− 2 (and its Hermitian conjugate) is resonant. Again, this Raman
transition comes together with a net momentum kick −2kẑ (resp. +2kẑ). We label this
process (z).

The detunings ∆′ and ∆ differ by several Larmor frequencies ≃ 50ωz, such that there
is no interference between the two pairs of Raman lasers. We summarise the experimental
scheme in Fig. 4.8. As for the previous chapter, k refers to the wavector associated to a
photon of wavelength λ = 626 nm. The recoil momentum prec and recoil energy Erec are
defined with respect to this wavector.

1Effectively, they are limited by the extent of the laser beam. The latter can be assumed big enough
compared to the system dynamics such that edge effects along x, z can be neglected.
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Figure 4.8: Experimental scheme leading to a 4D quantum Hall system. a : A pair of
counterpropagating Raman beams couple the spatial degrees of freedom (x, z) to the spin
degrees of freedom (m, r). b : A magnetic field lifts the degeneracy between the Zeeman
sublevels. We display the two Raman transitions. c : Summary of the Raman transitions.
The first two columns provide the hopping along the synthetic dimensions. The last column
provides the net momentum kick.

As we will show in the next chapter, within rotating wave approximation, the combination
of these two processes leads to the following single-particle Hamiltonian :

H = Mv2

2 −
(
txe

iϕx
J+
J

+ tze
iϕz
J2

−
J2 + h.c

)
+ β

J2
z

J2 . (4.19)

This Hamiltonian is made of three terms. The first one is the kinetic energy in real space
(x, z). The second one describes the Raman processes, where the phases ϕx = −2kx and
ϕz = −2kz are space-dependent. The last one is due to the tensorial component of the
atomic polarisability and influence the curvature of the energy dispersion. The hopping
amplitudes tx, tz and the quadratic term β are controlled via the laser intensities.

At first glance, its not obvious that Eq. (4.19) describes the motion of a particle in a 4D
space. We will make it more obvious at the end of the section by describing our system with
a continuous model. However, we will first give an intuition of why this model describes a
4D quantum Hall system in the next paragraph.

Interpretation as a four-dimensional quantum Hall system

We consider linear combinations of the processes (x) and (z) to define new Raman processes.
The combination (µ) ≡ 1

3 [(x)− (z)] leads to :

∆m = 1
∆r = 0

∆px = −2k/3
∆pz = 2k/3.

(4.20)
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Similarly, the combination (ν) ≡ 1
3 [2(x) + (z)] leads to :

∆m = 0
∆r = 1

∆px = −4k/3
∆pz = −2k/3.

(4.21)

Contrary to the processes (x) and (z), (µ) and (ν) act independently on the two spin
degrees of freedom. The process (µ) increases m by one unit and leaves r unchanged, while
imparting a net momentum kick h̄kµ = 2h̄k (x̂− ẑ) /3. On the other hand, the process
(ν) increases r by one unit and leaves m unchanged, while imparting a net momentum kick
h̄kν = 2h̄k (2x̂ + ẑ) /3. We introduce in this paragraph two new directions : µ̂ = (x̂− ẑ)/

√
2

and ν̂ = (2x̂ + ẑ)/
√

5. Similarly, we introduce the wavectors corresponding to the ‘virtual’
Raman processes kµ = kµµ̂ and kν = kν ν̂, where the norms of these vectors are given by
kµ = 2

√
2k/3 and kν = 2

√
5k/3. We illustrate these new directions Fig. 4.9a (the direction

ξ̂ displayed on this figure will be introduced later on).

Figure 4.9: Geometry of the Raman transitions and Brillouin zone. a : We display the
orientation of ν̂, µ̂, ξ̂ in the (xz) plane. b : Brillouin zone, shaded in blue, in the px, pz

plane. It is of finite extent along ν̂ and of infinite extent along ξ̂.

Similarly to what we presented in chapter II, each of these mechanism can be interpreted
as 2D quantum Hall system, respectively in the plane (µ,m) and in the plane (ν, r). Overall,
our system can be seen as a generalisation of the 2D quantum Hall effect to four dimensions,
thus belonging to the topological class A in d = 4.

The two directions µ and ν are not orthogonal. We can go back to the basis (x, z, r,m)
to define the magnetic tensor of our system, by interpreting the complex phases ϕx and ϕz

as Peierls phases. Assuming a unit charge, these Peierls phase provide an expression for an
effective potential vector through

ϕα = Ar∆r(α) +Am∆m(α), (4.22)
where α refers to (x, z). We recall that the process (x) increases both m and r by 1 unit,
while process (z) decreases m by 2 but increases r by 1. We thus have :

ϕx = Ar +Am

ϕz = Ar − 2Am.
(4.23)

We obtain the following explicit expression for the potential vector in the basis (x, z, r,m):

A = 1
3 (0, 0, 2ϕx + ϕz, ϕx − ϕz) . (4.24)
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Finally, through Eq. (4.2), we obtain the expression of the antisymmetric tensor describing
the magnetic field :

B = 2k
3


0 0 −2 −1
0 0 −1 1
2 1 0 0
1 −1 0 0

 . (4.25)

In this paragraph, we have given the Hamiltonian of our model, and have explained how
it can mimick the Hamiltonian of a charged particle evolving in a four-dimensional space in
the presence of a magnetic field. We have derived the corresponding magnetic field tensor.
In the following, we describe the Hamiltonian properties.

Hamiltonian invariances

The Hamiltonian Eq. (4.19) conserves the quasimomentum p = Mv+2h̄km (kµ + kν) (mod 3kν).
Indeed, upon the action of process (x), the change of momentum is :

dp = −2h̄kx̂ + 2h̄ (kµ + kν) = −→0 . (4.26)

Similarly, upon the action of process (z), the change of momentum is :

dp = −2h̄kẑ − 4h̄ (kµ + kν) = 3h̄kν = −→0 (mod 3kν) (4.27)

Within Bloch’s formalism, the energy bands of the Hamiltonian are indexed by p. We
can decompose this quasimomentum in the following way :

p = pξ̂ + qν̂, (4.28)

in which we introduced the direction ξ orthogonal to ν (see Fig. 4.9a) and where p can take
any real value while we have |q| < 3kν/2. This defines the Brillouin zone of the system,
that we draw in Fig. 4.9b. Additionally, we emphasise that the direction ξ is not canonically
conjugated to either m or either r.

The system exhibits a continuous translational invariance along ξ̂ and a discrete trans-
lational invariance along ν̂ of period 2π/(3kν). We stress that the reciprocal lattice is only
defined on a 2D space, contrary to what we could expect for a 4D system on a lattice. This
is similar to the case of chapter II, where we saw that a 2D system made of quantum wires
in the plane (x,m) were described by a one-dimensional momentum in Fourier space. Simi-
larly, we saw in chapter III a 2D cylinder described by a one-dimensional quasimomentum
in Fourier space. The model under study can be seen as a combination of these two systems,
leading to a 2D quasimomentum.

To summarise, we have defined three new directions ξ, ν, µ. µ and ν are the directions
canonically conjugated to, respectively, m and r. The Hamiltonian translational invariances
are described by the directions ξ and ν that are orthogonal to each other. It exhibits a
continuous translational invariance along ξ and a discrete translational invariance along ν.
These invariances lead to a 2D Brillouin zone, infinite in the direction ξ and finite in the
direction ν, of extent 3kν . The quasimomentum p̂ = pξ̂ + qν̂ is conserved, and we use it
within Bloch’s formalism in the following to index the magnetic Bloch bands.
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4.4.2 Energy spectrum

We display in Fig. 4.10 the energy spectrum of the Hamiltonian Eq. (4.19), for the couplings
tx, tz = 5.69Erec, 5.1Erec and β = −2tz, which corresponds to the ones studied experimen-
tally. p is varied between −12prec and 12prec while seven values of q uniformly spaning the
Brillouin zone are used. We observe a quasi-degeneracy of the bands with respect to q,
especially for the lowest energy ones. The band structure exhibits two main regions. First,
a bulk that we define by |p| < p∗ ≡ 7prec, q ∈ [−3kν , 3kν ], where the momentum cutoff p∗

is chosen such that the ground band energy at p∗ approximately lies in the middle of the
gap at p = 0. In the bulk, the ground band is nearly flat, revealing a frustation of motion.
The second region concerns the momentum in the intervals |p| > p∗, q ∈ [−3kν , 3kν ]. As
seen on the figure, this region hosts chiral edge modes : the ground band energy strongly
increases with the momentum projection p, leading to a negative velocity for p < −p∗ and
a positive velocity for p > p∗. In our system, the boundaries are provided by the dimension
m, exhibiting one edge at m = −J and one at m = +J .
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Figure 4.10: Spectrum of the Hamiltonian for tx, tz = 5.69Erec, 5.1Erec and β = −2tz. The
ground band is displayed in blue, the bulk region being displayed in dark blue and bounded
by ±p∗ = ±7prec. The excited bands are displayed in black.

The energy spectrum Fig. 4.10 is reminiscent of Landau levels with boundaries. In
the bulk, the ground band and the first excited bands are nearly flat, mimicking the flat
landau levels of a charged particle in a magnetic field. We will detail this aspect in the last
paragraph of this section.

The ground band flatness is not perfect in the bulk due to the variations of the Clebsch-
Gordan coefficients of J+ and J2

− with m, that are not entirely compensated by the ones
of the quadratic term J2

z . The flattening of the ground band can be improved by adjusting
the parameter β of Eq. (4.19), such that the Clebsh-Gordan coefficients of J2

z perfectly
compensate the ones of J+ and J2

− in the bulk. Using the same couplings tx, tz as before and
β = −2.456tz yields to the band structure displayed in Fig. 4.11, which is flatter than the
one presented in Fig. 4.10. Another way to flatten the ground band could be to adjust the
ratio between tx and tz. However, as we will see in the last section of the chapter, we can’t
change too much the range of the couplings tx, tz in order to remain in a regime where our
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model can be well described by a direct sum of 2D Landau levels.
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Figure 4.11: Ground band flattening. Using coupling values tx, tz, β = 5.69Erec, 5.1Erec, β =
−2.456tz results in a very flat ground band in nearly all the bulk.

In the following, if not mentioned, we stick to the couplings tx, tz, β = 5.69Erec, 5.1Erec,−2tz
corresponding to Fig. 4.10. Indeed, changing the quadratic term to β = −2.456tz would
require experimentally the addition of an off-resonant fifth beam, using its tensorial polar-
isability. Since the experimental apparatus is already quite involved with four beams and
since the small curvature does not affect the topology of our system, we decided to not
implement this fifth beam.

4.4.3 Theoretical ground band properties

This paragraph is dedicated to the properties of the ground band as a function of p, starting
by the spin degree of freedom.

Spin degree of freedom

We display in Fig. 4.12 the value of the two spin dimensions, namely ⟨m⟩ and ⟨r⟩, in the
ground band and in the center of the Brillouin zone.1 As expected, the system exhibits edges
along the dimension m. The edge m = −J is approached for p < −p∗, and the edge m = +J
is approached for p > p∗. For p > p∗, the system starts to polarise itself in m = +J , resulting
in a polarisation in r = +2.2 A similar behavior is observed on the opposite edge. In the
bulk, the mean magnetisation remains close to 0, while r explores its full dynamical range.
We also display in this figure the directions µ̂ and ν̂, which are canonically conjugated to m
and r.

1As seen in chapter III, the position in the dimension r is ill-defined being cyclic. In the following, we
adress 3

2π
arg⟨e2iπ/3Jz ⟩ to the mean value ⟨r⟩

2This behavior means that the two synthetic dimensions are correlated when the system is close to the
edges m = ±J . As we will see later on, this correlation falls down in the bulk, where one of the two synthetic
dimensions can drift while leaving the second one unchanged.
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Figure 4.12: Spin properties in the ground band. Top : Evolution of ⟨m⟩. The latter is
constant along ν̂ but not along µ̂. Bottom : Evolution of ⟨r⟩. It is constant along µ̂ but not
along ν̂.

We show on Fig. 4.13 the populations along m and along r along the direction µ̂. As
expected, the mean magnetisation linearly evolves when the quasimomentum is changed
along this direction, as a consequence of the Raman process (µ) introduced earlier. On the
other hand, even if the populations along m are changing, their foliation into the population
modulo 3 leads to a constant value of ⟨r⟩ in this direction. This figure illustrates the fact that
the momentum along µ̂ is indeed canonically conjugated to m, while leaving r unchanged.
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Figure 4.13: Evolution of ⟨m⟩ and ⟨r⟩ along µ̂ in the ground band. Left : Populations along
m are displayed and the average value ⟨m⟩ is plotted in red. Right : Populations modulo 3
deduced from Πm. The average value ⟨r⟩ is plotted in red and is quasi-constant.

Similarly, we display in Fig. 4.14 the populations along m and r following a cut along
the direction ν̂. The spin probabilities evolve as a function of q in such a way that the mean
magnetisation is constant, while ⟨r⟩ exhibits a drift. We also observe the cyclic aspect of
r, exhibiting a jump when crossing q ≃ −0.8prec. This figure illustrates the fact that the
momentum along the direction ν̂ is canonically conjugated to r, while leaving m unchanged.
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Figure 4.14: Evolution of ⟨m⟩ and ⟨r⟩ along ν̂ in the ground band. Left : Populations along
m are displayed and the average value ⟨m⟩ is plotted in red. Even though the populations
exhibit some features, their average value leads to a constant value ⟨m⟩ = 0. Right : Sum of
spin distribution modulo 3 deduced from Πm. The average value ⟨r⟩ is drifting. We observe
the cyclic aspect of r.

The two previous figures are remindful of two systems that we previously studied in this
manuscript. First, Fig. 4.13 is reminiscent of the properties of the 2D synthetic quantum
Hall ribbon presented in chapter II, the ribbon being encoded in the dimensions (µ,m). Sec-
ondly, Fig. 4.14 is reminiscent of the synthetic quantum Hall cylinder presented in chapter
III. The axial dimension of the cylinder being oriented along ν and its angular dimension
being encoded by r.

Similarly to what we studied before, the evolutions of ⟨m⟩ and ⟨r⟩ can be interpreted as
Hall drifts occuring in the (m,µ) plane and in the (r, ν) plane, these two Hall drifts being
independent from each other. Indeed, the change of momentum can be interpreted as the
action of an adiabatic force on a ground band wavepacket. When a force is applied along µ,
the drift occurs along ⟨m⟩, while when a force is applied along ν, it occurs along ⟨r⟩. We
will detail this Hall drift later on, invoking the Berry curvature.

Equivalently, these evolutions can be understood as a consequence of the spin-momentum
locking provided by the Raman processes. To simplify, one can consider the virtual Raman
processes (µ) and (ν). The first process leads to an increase of m by 1 and a momentum
kick −h̄kµ. The second process leads to an increase of r by 1 and a momentum kick −h̄kν .
Within this picture, the conserved quasimomentum can be rewritten as :

p = Mv + ⟨m⟩h̄kµ + ⟨r⟩h̄kν (mod 3kν). (4.29)

Considering the bulk only, we can neglect the velocity since the ground band energy disper-
sion is weak. It leads to a simpler expression :

p = ⟨m⟩h̄kµ + ⟨r⟩h̄kν (mod 3kν). (4.30)

This equation can be projected along ν or along µ, permitting to give an analytical expression
for the drifts presented in Fig. 4.13 and Fig. 4.14, valid in the bulk only :

⟨r⟩ = p · ν̂/(h̄kν)
⟨m⟩ = p · µ̂/(h̄kµ)

(4.31)
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Spatial degree of freedom

We now consider the spatial degree of freedom of the ground band. We display Fig. 4.15
the velocities along ξ̂ and along ν̂. In the bulk of the system, both velocities vanish, which was
expected from the ground band dispersion displayed in Fig. 4.10. We recover the behavior
of the bulk of a quantum Hall system. For |p| > p∗, the situation is different, where we
see a non-zero velocity mainly oriented along the direction ξ̂. This non-zero velocity is a
consequence of the presence of edges along m, and reveals the topology of our system. The
velocity along ν̂ becomes more and more negligible compared to its orthogonal counterpart
when going closer and closer to the system boundaries, so that the edge modes are essentially
pointing along ξ̂. As anticipated in the previous section for a four-dimensional system, the
edge modes are anisotropic : they don’t propagate in all the directions of the 3D boundaries.
Moreover, we recognise a chirality reminiscent of quantum Hall systems : the velocity is
oriented along +ξ̂ close to the edge m = +J (corresponding to p > p∗) but is oriented along
−ξ̂ close to the edge m = −J (corresponding to p < −p∗).
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Figure 4.15: Spatial velocities in the ground band. Top : Velocity along ξ̂. Bottom : Velocity
along ν̂. The two velocities vanish in the bulk. For |p| > p∗, the velocity is non-zero, mainly
pointing along ±ξ̂.

Anistropic edge modes

We illustrate these anisotropic chiral edge modes in Fig. 4.16 and in Fig. 4.17. To do
so, we initially consider a wave packet at (p, q) = (0, 0) in the ground band of the system.
We then apply a weak force on the system F pointing along −(ξ̂ + ν̂)/

√
2, such that the

system’s quasimomentum is adiabatically changed towards (p, q) = (−25prec,−25prec) in a
time t = Tmax. We chose this time to be long enough compared to the gap to the first excited
band, so that the system remains in the ground band. We compute the spatial velocities
and spin degree of freedom of the wavepacket while evolving the momentum. We integrate
the spatial velocities to compute the system’s position. While the momentum is increasing,
the mean magnetisation get close to the edge m = −J as seen in Fig. 4.16a, and reach it at
t ≃ Tmax/2.

We display on Fig. 4.16b the system’s position on the 3D hyperplane (ξ, ν, r) as a function
of the time. The spatial positions are displayed in arbitrary unit, and the time is encoded in
the color. At the beginning of the evolution (t < Tmax/2), the spatial positions remain very
close to 0, as a consequence of the insulating character of the bulk. Meanwhile, the system’s
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position along r is greatly changing. More interestingly, for the times (t > Tmax/2) where
the 3D hyperedge is reached, the system starts to drift in an anisotropic manner, its motion
being limited to the direction −ξ̂ and thus not fully exploring the 3D hyperedge.

Similarly, we display in Fig. 4.17 the system’s position when going towards the edge
m = +J , by applying a weak force pointing along +(ξ̂+ ν̂)/

√
2, such that the system’s quasi

momentum (p, q) is adiabatically evolving from (0, 0) to (+25prec,+25prec). This time, the
system is drifting towards +ξ̂ only, illustrating the chiral aspects of the edge modes.
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Figure 4.16: Anistropic edge mode at m = −J . a : ⟨m⟩-variation as the system is exploring
the ground band. m = −J edge is reached after t ≃ Tmax. b : Trajectory on the 3D
hyperedge (ξ, ν, r). Time is encoded in color. The edge mode is pointing towards −ξ̂.
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Figure 4.17: Anistropic edge mode at m = +J . a : ⟨m⟩-variation as the system is exploring
the ground band. m = +J edge is reached after t ≃ Tmax. b : Trajectory on the 3D-
hyperedge (ξ, ν, r). Time is encoded in color. The edge mode is pointing towards +ξ̂.

Berry curvature

The ground band bulk properties can be interpreted as anomalous Hall drifts by invok-
ing the Berry curvature. Indeed, the semiclassical equation of motion, in the absence of
perturbation, yields in the bulk of the system :

drµ = Fµνdpν . (4.32)

where we neglected the dispersion of the ground band, the latter being quasiflat. This
equation shows that increasing the momentum along, for example, ν leads to a response
along r given by F rν . The six Berry curvature components can be computed via Kubo
formula [107], using the velocities along the spatial and the synthetic dimensions, already
introduced in the previous chapter. We display the six Berry curvatures compontents over
the Brillouin zone in Appendix C. At the couplings tx, tz, β under considerations, the latter
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are quasiflat in the bulk of the system. We display in Fig. 4.18 their q-averaged value as
a function of p. Three Berry curvature components are vanishing. Fmν = 0 illustrates
that the application of a force along ν doesn’t induce a Hall response in m, as seen on
Fig. 4.14. Similarly, F ξν = 0 is expected from Fig. 4.15. Finally, Fmr = 0 indicates that ap-
plying a force along m, for instance a perturbative Zeeman field, doesn’t lead to any drift of r.

In a simpler manner, the bulk Berry curvature components can be derived directly from
the conservation of the quasimomentum Eq. (4.30). By projecting the latter on γ̂ ⊥ µ̂ and
on ξ̂, we obtain :

1√
10
pξ −

3√
10
pν = − 3√

10
h̄kν⟨r⟩

pξ = 3√
10
h̄kµ⟨m⟩.

(4.33)

Plugging these equations in Eq. (4.32), we can compute the Berry curvature components,
valid in the bulk only. We obtain : {Fmξ

bulk, F
mν
bulk, F

rξ
bulk, F

rν
bulk} = {

√
5/(2k), 0,−1/(2

√
5k), 3/(2

√
5k)}.

We plot these values in Fig. 4.18 in dashed lines. We see a good agreement in the bulk with
the components derived from the Kubo formula for Fmν , F rξ and F rν . There is though a
slight discrepancy for the component Fmξ. The latter comes from the fact that, with the
couplings tx, tz, β we are using, the ground band is not perfectly flat. As a consequence, the
assumption v = 0 is not rigorously valid and Eq. (4.33) is not exact. One can show that
using couplings that flatten the ground band (Fig. 4.11) leads to a good agreement between
the two methods to compute Fmξ. Interestingly, even though the quadratic term βJ2

z /J
2

affects the local properties of the ground band via the Berry curvatures, it doesn’t change
the system topology, as we will see in the next paragraph.
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Figure 4.18: Berry curvatures of the ground band. Four Berry curvature components are
displayed, the two other being Fmr = F ξν = 0. We plot in dashed lines the values derived
from the spin-momentum locking relation.

4.4.4 Topological properties

The presence of a gap in the bulk together with the existence of edge modes gave us some
hints about the topology of the system. As seen previously, in 4D, the transport is quantised
by the second Chern number ν2, which is expected to be equal to 1 for the topological
class A in dimension 4. Our system exhibiting edges along m, considering its topological
response as a whole is not meaningfull. We rather focus on the bulk response of the system
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considering the local second Chern marker. In the bulk, the latter should match the second
Chern number. The local second Chern marker is defined by [108] :

C2(r) = 2π2ϵξ,ν,r,m ⟨r|PrξPrνPrrPrmP |r⟩ , (4.34)

where ϵξ,ν,r,m is the Levi-Civita symbol, P refers to the projector on the ground band and
r = (ξ, ν, r,m) is the 4-dimensional position vector. This expression can be rewritten, such
that it involves observables experimentally accessible with our experiment. We detail the
derivation in [141]. In the end, Eq. (4.34) can be rewritten as :

C2(m) = 1
3

∫
bulk

dpdqΠm(p, q)ρ2(p, q), (4.35)

where the integral is performed on the bulk only. We introduce in Eq. (4.35) the second
Chern character ρ2 that can be obtained via a non-linear combination of Berry curvature
components (Eq. (4.16)) :

ρ2(p, q) = F ξνF rm + FmξF rν − F rξFmν , (4.36)

where the first contribution vanishes since both F ξν and F rm are zero.
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Figure 4.19: Topological properties of the ground band. Top : Second Chern character ρ2
in the ground band. It is quasiflat in the bulk. Bottom : Local second Chern marker. It
equals unity in the bulk, highlighting the topological character of the system.

We display Fig. 4.19 the second Chern character over the Brillouin zone. It is constant
in the bulk, its value being given by ρbulk

2 ≃ 3/(4k2). Weighting it by the m populations and
integrating over the bulk lead to the local second Chern marker, also displayed Fig. 4.19.
This quantity is constant in the bulk and is equal to 1, as expected for a topological system in
the class A in d = 4. The decrease of C2(m) for |m| ≥ 5 is a consequence of the boundaries at
m = ±J . As a sidenote, we point that similarly to what was presented in chapter II, the lo-
cal second Chern marker is topologically protected. We will illustrate this in the next section.

We have studied properties of our system and have interpreted it as a pair of 2D quantum
Hall system. In the following paragraph, we propose a continuous model to make this
interpretation more clear.
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4.4.5 Effective continuous model in the bulk

Derivation of the continuous model in the bulk
We have studied in the previous paragraph the properties of the Hamiltonian Eq. (4.19).

Even though the 4D character of this Hamiltonian was not immediately apparent, we have
seen that we can interpret it as a pair of two independent 2D Landau levels. In this para-
graph, we derive a semiclassical model, in the bulk of the system, to make this analogy more
obvious.

We start by replacing the spin ladder operators by translation operators along m and r,
involving the momenta along these directions : pm and pr. By considering these directions
continuous, and recalling that J+ increases both m and r by one unit, we obtain :

J+ ≃ e−i(pm+pr)
√
J(J + 1)−m(m+ 1). (4.37)

We also assume that the states under consideration are in the bulk only, so that |m/J | << 1.
We can develop Eq. (4.37) at second order in m/J , leading to :

J+ ≃ e−i(pm+pr)
(
J − m2

2J

)
. (4.38)

Similarly, we obtain :
J2

− ≃ e−i(pr−2pr)
(
J2 −m2

)
. (4.39)

We can now plug these expressions in Eq. (4.19), leading to the approximated Hamilto-
nian :

H ≃ p2
x + p2

z

2M −
[
tx

(
1− 1

2

(
m

J

)2
)

e−i(pm+pr−2kx) + tz

(
1−

(
m

J

)2
)

e−i(pr−2pm−2kz) + h.c
]
+βJ

2
z

J2 .

(4.40)
This expression can be simplified by Taylor expanding the exponentials and keeping only
the order 2 terms in all dynamical variables. It leads to :

H ≃ ϵ0 +Hkin + β
′
(
m

J

)2
. (4.41)

The first term of Eq. (4.41) is an energy offset given by ϵ0 = −2tx − 2tz. The last term
is a quadratic energy shift, with β′ = β + tx + 2tz. In the following, we are interested in the
kinetic term, defined by :

Hkin = p2
x + p2

z

2M + tx (pm + pr − 2kx)2 + tz (pr − 2pm − 2kz)2 (4.42)

Generalised Landau levels
By introducing the inverse mass tensor 1/M (in the basis (x, z, r,m)) :

1/M =


1/M 0 0 0

0 1/M 0 0
0 0 2tx + 2tz 2tx − 4tz
0 0 2tx − 4tz 2tx + 8tz

 (4.43)

and the artifical potential vector derived earlier :

A = −2k
3 (0, 0, 2x+ z, x− z) , (4.44)
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Eq. (4.42) can be rewritten :

Hkin = 1
2

( 1
M

)αβ

(pα −Aα) (pβ −Aβ) . (4.45)

This Hamiltonian corresponds to the Hamiltonian of a charged particle submitted to a
magnetic field in four dimensions.

As seen previously in this chapter, the magnetic field in 4D is described by two Lar-
mor frequencies. In order to compute the Larmor frequencies of our model, we re-express
Eq. (4.42) as :

Hkin = p2
x

2M + 4k2tx

(
x− 1

2k (pm + pr)
)2

+ p2
z

2M + 4k2tz

(
z − 1

2k (2pm − pr)
)2
. (4.46)

We recognise a direct sum of two harmonic oscillators, one in the plane (x,m + r) and one
in the plane (z, 2m− r).

From Eq. (4.46), we identify the two Larmor frequencies : ωx = 4
√
Erectx/h̄ describes the

motion of the particle in the (x,m+ r) plane and ωz = 4
√
Erectz/h̄ in the (z, 2m− r) plane.

For the couplings considered in this section, we have ωx ≃ 2π×30 kHz and ωz ≃ 2π×28.4 kHz.
The spectrum of Hkin corresponds to generalised Landau levels of energies : Enx,nz =

ωx (nx + 1/2) + ωz (nz + 1/2). These generalised Landau levels are macroscopically degen-
erated and are respectively indexed by pm + pr and 2pm − pr.

ωz ωx
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Figure 4.20: Mapping to a direct sum of 2D Landau levels. We display in blue the ground
band of the initial Hamiltonian and in black its excited bands. The three first eigenvalues
of Hkin (continuous model) are displayed in orange. The first gap corresponds to h̄ωz, the
second to h̄ωx.

We compare in Fig. 4.20 the spectrum of the initial Hamiltonian and the first eigenener-
gies of the generalised Landau levels. We see a good agreement in the bulk for the first two
excited bands. The first gap corresponds to excitations in the (z, 2m− r) plane, the second
in the (x,m + r) plane. We note that the curvature of the Hamiltonian is not captured by
the generalised Landau levels. It is a consequence of the fact that we considered only Hkin,
which doesn’t influence our discussion and would only add a dispersion to the generalised
Landau levels.
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Equation of motions

The continuous model can be used to derive the cyclotron trajectories, providing another
derivation of the Larmor frequencies, using the equation of motion :

∂tv = 1
M
Bv, (4.47)

where B is the magnetic field tensor. It leads to :

∂tv =


0 0 −4vrec/3 −2vrec/3
0 0 −2vrec/3 2vrec/3

4ktx/h̄ 4ktz/h̄ 0 0
4ktx/h̄ −8 ktz/h̄ 0 0

v. (4.48)

By derivating this equation with respect to the time, we obtain the following equations
governing the velocity in the (x, z) plane :

∂2
t vx = −16Erectxvx/h̄

2,

∂2
t vz = −16Erectzvz/h̄

2.
(4.49)

After integration, we obtain the projection of the 4D cyclotron trajectory in the (x, z) plane,
which involves the two Larmor frequencies defined previously :

x(t) = Ax cos (ωxt+ φx) ,
z(t) = Az cos (ωzt+ φz) ,

(4.50)

where Ai, φi respectively refer to an amplitude and a phase that we don’t detail here.

We have derived a continuous model in this paragraph from the initial Hamiltonian. The
latter permitted us to make the analogy with a direct sum of a pair of 2D Landau levels more
clear. We have computed the corresponding Larmor frequencies, and have seen that they
are in good agreement with the Hamiltonian bandstructure. In the following paragraph, we
study the domain of validity of this continuous model.

Domain of validity of the continuous model

We expect the continuous model to be less accurate in a regime where the discrete nature
of synthetic dimension cannot be neglected anymore. It occurs when the width of the ground
band orbitals is smaller than the spacing between the different sites. We show in Fig. 4.21
the populations along m for various couplings strengths in the ground band, at p = −→0 . We
see that the population widths increase with tx, tz. We observe clearly the discretisation for
the lower couplings case, where the probability distribution is peaked around m = 0. Note
that a similar behavior occurs along r, albeit more difficult to quantify since this dimension
only exhibits three sites.
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Figure 4.21: Orbital widths along m in the ground band at p = q = 0, for different couplings
tx, tz = α× 5.69Erec, α× 2.55Erec . a : α = 1/4. b : α = 1/2. c : α = 1. d : α = 2.

As a consequence, when decreasing the coupling, we expect our picture of a direct sum of
two 2D Landau levels to fall down. We illustrate it on figure Fig. 4.22, where we display ⟨r⟩
in the ground band for two values of the couplings. For the values tx, tz = 5.69Erec, 5.11Erec,
as shown earlier, the direction µ is not coupled to r. This is no longer the case for half of
these couplings, where we see a modulation of ⟨r⟩. We also highlight this effect on the second
Chern character ρ2 that exhibits a modulation in the bulk for the lower couplings (Fig. 4.23).
Even though our system cannot be decomposed anymore as a direct sum of a pair of 2D
Landau levels, its topological properties are conserved. We illustrate it in Fig. 4.23, where
we demonstrate that the local second Chern marker remains equal to unity in the bulk.
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Figure 4.22: Validity of the continuous model. Top : ⟨r⟩ in the ground band for tx, tz =
2.85, 2.55Erec. We see oscillations of ⟨r⟩ in the bulk along µ. Bottom : ⟨r⟩ in the ground
band for tx, tz = 5.69, 5.1Erec. ⟨r⟩ is quasiflat in the bulk along µ.
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Figure 4.23: Topological properties and coupling strengths. Left : Second Chern character
ρ2 in the ground band for p = 0 and various q, for two different coupling strengths. Right
: Local second Chern marker. For both coupling strengths, C2(m) is equal to unity in the
bulk, showing that the topological properties remain similar in the two situations.

The choice of laser couplings

As seen before, our model becomes closer to a direct sum of two 2D Landau levels as the
couplings tx, tz increase. This provides us a lower bound for the choice of these couplings.
However, we can’t use either too strong couplings.

The first reason is experimental. Using higher couplings means using higher light power,
hence more heating from spontaneous emission while the Raman processes are occuring.
The second reason is actually related to the orbitals widths : likewise what we displayed
in Fig. 4.21, the orbital width along r also increases with the coupling strengths. However,
since the r dimension only provides three sites, the probability distributions along r will
be less and less peaked, and our definition ⟨r⟩ = 3

2πarg⟨e2iπJz/3⟩ no longer holds. Finally,
the enlargement of orbital extent along m leads to more rapid manifestation of the edges.
Consequently, the transport is quantified over a decreasing bulk size. In the end, the choice
of the couplings tx, tz results from a compromise.

4.5 Conclusion
We have started this chapter by doing a brief historical review of the exploration of topolog-
ical systems. The latter leads to the tenfold classification, classifying topological insulators
and superconductors as a function of their symmetries and dimensionality. All the entries
of this classification have not been explored yet, and it is particularly the case in higher
dimensions, where exciting physical phenomena are expected.

We illustrated this on four-dimensional quantum Hall systems, demonstrating their rich
physics by invoking the anisotropic chiral edge modes and the peculiar nature of cyclotron
orbits. We also derived the transport equation in 4D, involving the notable non-linear
response, quantised by the second Chern number. This study motivated the experimental
exploration of four-dimensional systems.

Subsequent to this, we went back to experiments, discussing the proposals and experi-
mental realisations of four-dimensional quantum Hall systems. The second Chern number
was measured, but in a dynamical realisation using 2D topological charge pump. On the
other hand, a genuine 4D system was realised (in topological class AI), albeit without direct
measurement of transport quantisation.

116



Finally, we described our approach using dysprosium atoms to realise a 4D quantum
Hall system in topological class A. We derived the ground band properties of our system
and showed its non-trivial topology. By doing a continuous approximation, we interpreted
our system as a direct sum of 2D Landau levels.

We present our experimental realisation of this protocol in the next chapter. To our
knowledge, it consists in the first experimental realisation of a 4D topological system in the
class A.
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We described in the previous chapter how a particuliar Raman laser scheme can emulate
a 4D quantum Hall system. We show in this chapter the experimental realisation of this
scheme. We start by deriving the Hamiltonian

H = p2
x + p2

z

2M − tx
[
e−2ikxJ+

J
+ h.c

]
− tz

[
e−2ikz J

2
−
J2 + h.c

]
+ βJ2

z , (5.1)

characterising our system. Then, we detail the experimental protocol to prepare the ground
state of this Hamiltonian and describe the data analysis. Subsquently, we show experimental
results, starting from the spin and velocity properties in the ground band. In particular, we
unveil the anisotropic chiral edge modes, a peculiar feature of the 4D quantum Hall physics.
In the next section, we show our measurements of cyclotrons orbits in four dimensions.
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We recover the peculiar trajectories described in the previous chapter, which properties
are closely related to the choice of Larmor frequencies. Finally, we probe the topology of
our system. We first measure the second Chern number from a non-linear combination
of experimental Berry curvature component. We then explore the non-linear response and
propose a new protocol to exhibit the system’s non-trivial topology.

The results presented in this chapter are published in [141].

5.1 Hamiltonian derivation
We start this chapter by deriving the 4D Hamiltonian that we investigated previously. This
Hamiltonian consists in the combination of two Raman processes : one occuring along x and
one along z. The different beam frequencies are chosen to ensure that these two Raman
processes are not interfering with each other. A magnetic field |B| ≃ 220 mG oriented along
z lifts the degeneracy between the different Zeeman sublevels. We recall the experimental
scheme in Fig. 5.1.

Figure 5.1: Experimental scheme. a : Experimental scheme used to emulate the 4D quantum
Hall system. The beams involved in the process (x) are displayed in blue, the one involved
in the process (z) in red. A magnetic field B oriented along ẑ lifts the degeneracy between
the Zeeman sublevels. b : Raman transitions governed by the process (x) and the process
(z).

5.1.1 Process (x) only

Deriving the time-dependent Hamiltonian

The frequencies of the beams propagating along x are given by : ωx = ∆ and ωx′ = ∆ + ωz,
where ωz is the Larmor frequency and ∆ ≃ −2π × 7 GHz an overall detuning such that the
single photon processes are off-resonant. The polarisation of the two beams are assumed to
be linear, hence we write the electric fields as :

Ex′ =
√
Ix′ei(kx−ωx′ t)

 0
sin(θx′)
cos(θx′)

 ,
Ex =

√
Ixei(−kx−ωxt)

 0
sin(θx)
cos(θx)

 ,
(5.2)

where θx, θx′ define the polarisation of the beams. We now compute the AC-stark shift
induced by these two beams on a Dysprosium atom. We thus consider the total electric field
: E = Ex +Ex′ . Its important to note that the light shift induced by E is different from the
sum of the light shift induced by Ex and Ex′ due to the intereference terms. We compute
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the scalar light shift, vectorial light shift and tensorial light shift, given by the following
equation as seen in chapter I :

H = Hscalar +Hvectorial +Htensorial

= V

[
α0E

21− iα1 (E∗ ×E) · J2J + α2
3 [(E∗ · J) (E · J) + (E · J) (E∗ · J)]− 2J(J + 1)E21

2J(2J − 1)

]
.

(5.3)

In Eq. (5.3), α0, α1, α2 are the scalar, vectorial and tensorial polarisability associated with
the transition under study (in our case, the 626 nm transition) and V is a scaling factor, also
introduced in the first chapter.
Scalar light shift

We start by computing |Ex + E′
x|2 :

|Ex + Ex′ |2 = Ex.E
∗
x + Ex.E

∗
x′ + Ex′ .E∗

x + Ex′ .E∗
x′

= Ix + Ix′ + 2
√
IxIx′ cos [2kx+ ωzt] cos(θx′ − θx).

(5.4)

We can deduce the scalar component of the light shift, Hscalar using the light shifts for
Clebsch-Gordan coefficient equal to unity Ux, Ux′ and the scalar polarisability α0 for the
626 nm transition :

Hscalar(t) = α0Ux1+ α0Ux′1+ 2α0
√
UxUx′ cos(θx′ − θx) cos [2kx+ ωzt]1. (5.5)

Vectorial light shift

We compute E∗ ×E :

E∗ ×E = E∗
x′ ×Ex′ + E∗

x ×Ex + E∗
x′ ×Ex + E∗

x ×Ex′ (5.6)

Since the beams don’t have any ellipticity, the first two terms cancel out. After computing
the remaining two vectorial products, we get :

E∗ ×E = −2i
√
IxIx′ sin(θx′ − θx) sin [2kx+ ωzt] x̂. (5.7)

We can deduce from this equation the vectorial component of the light shift, Hvectorial,
using the vectorial polarisability α1 for the 626 nm transition :

Hvectorial(t) = −α1
√
UxUx′ sin(θx′ − θx) sin [2kx+ ωzt] Jx (5.8)

Tensorial light shift

The tensorial light shift is a bit more complicated to obtain. It contains two terms. The
first term is proportional to identity and involves |Ex + Ex′ |2, already derived above. It
leads to :

H
(1)
tensorial = −α2

J + 1
2J − 1

[
Ux + Ux′ + 2

√
UxUx′ cos(θx′ − θx) cos [2kx+ ωzt]

]
1, (5.9)

where α2 is the tensorial polarisability for the 626 nm transition. The second term is pro-
portional to the operator T ≡ (E∗.J) (E.J) + (E.J) (E∗.J), that we can rewrite as :

T = 2|Ey|2J2
y + 2|Ez|2J2

z + 2Re [EyE
∗
z ] {Jy, Jz}, (5.10)
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where we used the projections of E on the basis (x, y, z), given by :

|Ez|2 = Ix′ cos2(θx′) + Ix cos2(θx) + 2
√
IxIx′ cos(θx′) cos(θx) cos [2kx+ ωzt]

|Ey|2 = Ix′ sin2(θx′) + Ix sin2(θx) + 2
√
IxIx′ sin(θx′) sin(θx) cos [2kx+ ωzt]

Re [EyE
∗
z ] = Ix sin(θx) cos(θx) + Ix′ sin(θx′) cos(θx′) +

√
IxIx′ cos [2kx+ ωzt] sin(θx + θx′).

(5.11)

Using these projections, the operator T can be decomposed as T = Tx + Tx′ + Tx,x′ . The
first two terms correspond to the contributions of the two beams considered alone. The last
term corresponds to the intereference component. These terms are given by :

Tx = 2Ix

[
cos2(θx)J2

z + sin2(θx)J2
y

]
+ 2Ix sin(θx) cos(θx){Jy, Jz}

Tx,x′ = 4
√
IxIx′ cos [2kx+ ωzt]

[
cos(θx) cos(θx′)J2

z + sin(θx) sin(θx′)J2
y

]
+ 2

√
IxIx′ cos [2kx+ ωzt] sin(θx + θx′){Jy, Jz},

(5.12)

Tx′ being obtained by the same equation than Tx, replacing x by x′.

The total Hamiltonian derived from these three components is time-dependent. In par-
ticular, it oscillates at a frequency ωz. We can remove the time-dependency by performing
a rotating wave approximation.

Rotating wave approximation

In order to simplify the Hamiltonian, we consider the gauge transform U = eiωztJz and
remove the fast oscillating terms within rotating wave approximation (RWA). In our system,
we have two energy scales. The first one is the Zeeman energy, leading to a typical frequency
ωz ≃ 2π × 380 kHz. The second one is the energy scale provided by the Raman processes.
Experimentally, we are typically using coupling amplitudes tx, tz of a few recoil energy,
leading to the typical frequency ωLS ≃ 2π × 10 kHz. Hence, ωz ≫ ωLS. After the gauge
transformation, the RWA will consist in removing the terms oscillating at multiple values of
ωz, whose contribution would otherwise averaged out. In the rotating frame, the Hamiltonian
becomes :

H → UHU † + ih̄
dU
dt U

†. (5.13)

The second term is equal to −h̄ωzJz and cancels out with the Zeeman energy. The first term
is more complicated to compute. It requires the derivation of UJxU

†, UJ2
yU

†, U{Jy, Jz}U †

that can be performed using the Baker-Hausdorff formula1. We obtain :

UJxU
† = eiωzt

2 J+ + e−iωzt

2 J−

UJ2
zU

† = J2
z

UJ2
yU

† = 1
4
[
{J+, J−} − e2iωztJ2

+ − e−2iωztJ2
−

]
U{Jy, Jz}U † = 1

2i
[
eiωzt{Jz, J+} − e−iωzt{Jz, J−}

]
.

(5.14)

Then, we use these expressions to get the Hamiltonian in the rotating frame, neglecting the
fast oscillating terms (ie, terms oscillating at multiple values of ωz).

1eABe−A = B + [A, B] + 1
2! [A, [A, B]] + ...
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We are left with :
H = Hstatic +Hspin-changing. (5.15)

The first term of Eq. (5.15) conserves the spin of the state under study, and can be written
as a combination of the operators 1 and J2

z :

Hstatic =
[
Ux

5 + 4 cos2(θx)
2J + 1 + Ux′

5 + 4 cos2(θx′)
2J + 1

]
1

+
[
Ux

1− 3 cos2(θx)
2(J + 1)(2J + 1) + Ux′

1− 3 cos2(θx′)
2(J + 1)(2J + 1)

]
J2

z .

(5.16)

Within RWA, this term doesn’t involve any interference term between the two beams.
The second term of Eq. (5.15) contains spin-changing term :

Hspin-changing =
√
UxUx′ sin(θx′ − θx) J(2J + 3)

4(J + 1)(2J + 1)

[
ie2ikxJ−

J
+ h.c

]
+
√
UxUx′ sin(θx′ + θx) J2

2(J + 1)(2J + 1)

[
ie−2ikx {J+, Jz}

2J2 + h.c
]
.

(5.17)

The term proportional to {J+, Jz} is not symmetric under the transformation m→ −m and
would lead to asymmetric Bloch bands. As a consequence, we choose θx = −θ′

x such that
this term cancels out. In particular, we choose θx = acos

(
1/
√

3
)

such that the quadratic
spin term of Hstatic, that would lead to an important curvature of the ground band, also
cancels out. For simplicity, we use Ux = Ux′ .

We finally obtain the Hamiltonian induced by the beams propagating along the direction
x, within RWA1 :

H(x) = p2
x

2M − tx
[
e−2ikxJ+

J
+ h.c

]
,

with tx = J(2J + 3)
4(J + 1)(2J + 1) sin(2θx)Ux.

(5.18)

5.1.2 Process (z) only

The derivation of the Hamiltonian created by the process (z) is similar. This time, we
assume that the beams propagating along (z) are polarised σ− and σ+. They are detuned
by ∆′ and by ∆′ − 2ωz, where ∆′ ≃ ∆ + 2π × 20 MHz ≃ ∆ + 50ωz. We also suppose that
the intensities of the two beams are equal.

Under the RWA at ωz, we obtain in the rotating frame :

H(z) = p2
z

2M − tz
[
e−2ikz J

2
−
J2 + h.c

]
+ βJ2

z ,

with tz = − J2

2(J + 1)(2J + 1)Uz,

and β = −2tz.

(5.19)

1We dumped in this formula the term proportional to identity, which just creates an attractive potential
on the atoms independent on the spin degree of freedom, thus not relevant for the physics we probe. Note
that we also removed the ±π/2 phase factor in front of J−, J+, that can be absorbed by changing the origin
of times before performing RWA.
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5.1.3 Combination of process (x) and process (z)

Combining the two previous Hamiltonian, we recover the Hamiltonian presented in the pre-
vious section :

H = H(x) +H(z)

= p2
x + p2

z

2M − tx
[
e−2ikxJ+

J
+ h.c

]
− tz

[
e−2ikz J

2
−
J2 + h.c

]
+ βJ2

z

(5.20)

This Hamiltonian results from the sum of the two contributions. It assumes no interferences
between the x-propagating and the z-propagating beams. Experimentally, this condition is
ensured by detuning the horizontal beams by 20 MHz with respect to the vertical beams.
Indeed, the interferences between a x-propagating beam and a z-propagating beam lead to
light shifts oscillating at typically 50ωz, that are completely supressed within RWA.

We have shown in this paragraph how our Raman apparatus can create the Hamiltonian
studied in the previous chapter. We will now describe our typical sequence to study this
Hamiltonian experimentally.

5.2 Experimental sequence
The typical experimental sequence starts with the cold cloud preparation described in chapter
I. After evaporative cooling, we are left with a cold cloud of 3.0(3)×104 atoms at temperature
T = 260(10) nK under a magnetic field |B| ≃ 220 mG. We then ramp up the Raman beams
to emulate the 4D quantum Hall system.

The strength of our protocol relies in the ability to prepare individually any quasimo-
mentum state p = (p, q) in the ground band. We detail it in the following paragraph.

5.2.1 Preparation of arbitrary momentum state in the ground band

The preparation of any quasimomentum in the ground band is performed in two steps. First,
the atoms are loaded in the ground band at a given initial quasimomentum pi. Secondly, the
quasimomentum is adiabatically modified. Each of these steps requires to precisely control
the system’s quasimomentum.

Control of the quasimomentum

The control of the quasimomentum is enabled by considering an additional detuning
ω1 along x and ω2 along z. These detunings are small compared to ωz : their value is
typically set by the recoil energy ωrec ≃ 2π×3 kHz, much smaller than the Larmor frequency
ωz ≃ 2π× 380 kHz. As a consequence, we can’t neglect within RWA the terms oscillating at
ω1 or at ω2. The Hamiltonian becomes :

H = p2

2M − tx
[
e−i(2kx−ω1t)J+

J
+ h.c

]
− tz

[
e−i(2kz−ω2t)J

2
−
J2 + h.c

]
+ β

J2
z

J2 (5.21)

For ω1 = ω2 = 0, this Hamiltonian is time-independent and associated with a stationnary
wave. If ω1 ̸= 0 or ω2 ̸= 0, this Hamiltonian is time-dependent and is associated with a
running wave. For given detunings, we can define a moving lattice in which the Hamiltonian
is time-independent. This lattice has a velocity vframe in the lab frame :

vframe = ω1x̂ + ω2ẑ

2k (5.22)
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By imposing detuning ramps, we can make the frame velocity time-dependent. Hence, the
atomic motion in the moving frame is affected by an inertial force F (t) = −Mdvframe/dt.
Invoking Newton’s second law, the change of quasimomentum in the moving frame is given
by : dp = −Mdvframe. Overall, any quasimomentum can be reached by changing the frame
velocity via :

p = pi +Mvframe,i −Mvframe, (5.23)

where pi and vframe,i are the initial momentum and the initial frame velocity.
The choice of the initial frame velocity should ensure a good overlap between the initial

state |m = −J⟩ and the ground state of the Hamiltonian at the initial quasimomentum
(corresponding to the initial frame velocity). We propose to use initial detunings ω1 =
−ω2/2 ≃ 15Erec, corresponding to an initial frame velocity vframe,i ≃ 8.38vrecξ̂. Before
ramping up the Raman beams, the atoms are polarised in |m = −J⟩ and are at rest in
the lab frame, their velocity in the moving frame is thus given by −vframe,i. Using the
quasimomentum definition, p = Mv + 2h̄k⟨Jz⟩ (kµ + kν) (mod 3kν), we obtain the initial
value pi ≃ −15.5precξ̂ − 0.89precν̂. As seen in the previous chapter, the ground state of the
Hamiltonian for this quasimomentum is indeed very close to |m = −J⟩. Using vframe,i ≃
8.38vrecξ̂ is thus a good choice of initial frame velocity to load the atoms in the ground band.

Adiabatic preparation of a quasimomentum in the ground band

The Raman detunings are initially set to ω1 = −ω2/2 ≃ 15Erec as seen before. Their
intensities are then ramped up during T1 = 200 µs to tx = 8.2(6)Erec, tz = 7.4(1)Erec. This
ramp in intensity should be slow enough to adiabatically load the atoms in the ground
band. At this stage, we are in the ground band of the Hamiltonian, at the quasimomentum
pi = −15.5precξ̂ − 0.89precν̂.

We then apply detuning ramps (hence frame velocity ramps) to vary p = (p, q) to the
desired value. We first ramp p up to p = −2prec in a time T2. We then ramp q to the targeted
value in a time T3 and p to the desired value in T4. Finally, we ramp down the couplings to
reach tx = 5.69(6)Erec, tz = 5.1(1)Erec.1 The durations T3 and T4 depend on the final values
(p, q) we want to reach. The purpose of this sequence is to avoid as much as possible to cross
the gap minima located on the edges of the Brillouin zone and depicted in figure Fig. 5.2 (in
white) that could lead to a transfer towards excited bands via avoided crossing.

1The preparation could be done by directly ramping up the couplings during T1 to tx = 5.69(6)Erec, tz =
5.1(1)Erec. However, we found out that it was more beneficial to perform the p, q-ramps at higher couplings.
Indeed, the gaps are also higher in such case, which permits to perform adiabatic ramps at reduced times.
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Figure 5.2: Loading in the ground band. a : We display the gap to the first excited band as
a function of p and q. We display on yellow a typical evolution of p, q during the loading to a
given quasimomentum. b : Experimental sequence corresponding to the yellow arrow drawn
above. The first plot shows the evolution of the coupling values, the second the evolution
of the frame velocity along the axis ξ and ν, and the final one shows the corresponding
quasimomentum, in the moving frame.

Adiabaticity of the ramps

The ramp profile is adjusted so that the rate of momentum change is small compared
to the band gaps, ensuring that the atoms remain in the ground band during the whole
procedure. Interestingly, the gap is not constant over the Brillouin zone in our system, as
seen Fig. 5.2. A diabatic change of (p, q) will gradually populate the excited bands. We check
this in Fig. 5.3 by numerically simulating the preparation of a given state and computing
the fidelity of the prepared state with the ground state, while ramping the quasimomentum
from pi, qi to −2prec, qi for different ramp durations. Moreover, the p and q-variations are
smoothened to avoid any cusps that could lead to diabatic effects.

We choose the duration of the ramps by performing numerical simulations of adiabaticity,
see Fig. 5.3. In the end, we use the following ramp durations. The first ramp in p is performed
in T2 = 400 µs. The ramp in q lasts for T4 = 30 µs × ∆q/prec, where ∆q is the change of
q-quasimomentum. The final ramp in p is made in T6 = 50 µs × ∆p/prec, where ∆p is the
change of p-quasimomentum.
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Figure 5.3: Adiabaticity of the loading (simulations). Top : Simulated fidelity between
the prepared state and the ground state, during the first ramp in p, for three different
ramping times. Bottom : Evolution of the mean magnetisation while the quasimomentum is
changed. Non-adiabatic ramps result in a deviation between the mean magnetisation of the
prepared state and the one of the ground state. We use in the simulations tx = 5.69Erec, tz =
5.1Erec, β = −2tz.

To summarise, we use detuning ramps to control the system’s quasimomentum. The
protocol consists in interpreting the atomic motion in a moving frame, which velocity is
controled by detuning ramps. In this moving frame, the Hamiltonian is time-independent
and the atoms quasimomentum is changed by the inertial force associated with the frame
acceleration.

5.2.2 Imaging and data analysis

Imaging

At the end of the preparation, we turn off the Raman beams and let the atomic cloud
freely expand during 2.4 ms. A gradient of magnetic field is applied simultaneously (as
described chapter I) and separates the different m states along the z axis. We then image
the atoms and perform an algorithm to enhance the images quality (this algorithm is detailed
in [78]). A typical experimental image is displayed in Fig. 5.4.

-8 -4 0 4 8
m

vz

vx

Figure 5.4: Exemple of absorption image after loading in the ground band. Detuning are
chosen such that the atoms are in the state ⟨p⟩ = −→0 , corresponding to ⟨Jz⟩ ≃ 0.

The Stern-Gerlach apparatus permits us to spatially separate the different m-sublevels.
We can thus measure the populations in the m states and, by summing the population
modulo 3, access the populations in the r states. We can obtain this way the average
values ⟨m⟩ and ⟨r⟩. Moreover, the time-of-flight expansion probes the momentum distribu-
tion of the atomic cloud by recording the spatial distribution after a free fall. We can thus
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infer the system’s final mean velocity from the mean position of the cloud after time-of-flight.

Thermal broadening

As such, Fig. 5.4 is not easy to interpret. The reason is that Fig. 5.4 actually doesn’t
involve a single quasimomentum, but rather a distribution of quasimomenta, due to the
cloud temperature. The width of the quasimomentum distribution, after the loading in the
ground band, is typically σ ≃ 1.4prec. The mean value of the distribution, ⟨p⟩ = −→0 in the
case of Fig. 5.4, is given by the detuning ramps.

Taking into account the thermal broadening, the conservation of the quasimomentum
reads :

⟨v⟩ = 1
M

[⟨p⟩ − 2h̄kmx̂ + 3jh̄kν ] , j ∈ Z (5.24)

Eq. (5.24) shows that the distribution of quasimomentum is reflected into a velocity dis-
tribution, leading to typical image displayed Fig. 5.4. If our atoms were at a much lower
temperature after the detuning ramp, we should be able to detect after the Stern-Gerlach a
discrete set of velocities, in agreement with :

v = 1
M

[p− 2h̄kmx̂ + 3jh̄kν ] , j ∈ Z (5.25)

We propose to show some simulations of expected images to understand in more details
this effect. For this, we numerically prepare the atoms in the ground band of the Hamiltonian
under consideration. We set the detunings so that, on average, the atoms are in ⟨p⟩ = −→0 .
We take into account the thermal broadening by considering a distribution of quasimomenta,
centered around ⟨p⟩. We also simulate the Stern-Gerlach experiment, which separated the
Zeeman sublevels along the z axis.

Fig. 5.5a shows a simulated image with a quasimomentum distribution’s width σ ≃
0.35prec. For a given m state, the quasimomentum conservation imposes that only a certain
velocity class is accessible. Theoretically, this velocity class contains an infinite number of
velocities, all separated by 3h̄kν/M . However, the probability to populate these velocity
components is significant for only a few of them, explaining why we see typically 2 or 3
velocity components per m states in Fig. 5.5a. Then, we increase the width of the quasimo-
mentum distribution (mimicking the effect of a temperature increase) in Fig. 5.5b,c,d. As
the width of the quasimomentum distribution increases, all the clouds expand. They end up
merging in Fig. 5.5d, which actually corresponds to the same quasimomentum distribution
width that we have in the experiment. In the end, Fig. 5.5d is a numerical simulation of the
experimental image displayed in Fig. 5.4.

The thermal broadening due to the finite temperature can be understood by the Doppler
effect. Indeed, from the atoms point of view, the Raman beam frequencies are slightly
shifted by the atom’s velocities. If an atom is at rest in the lab frame, it feels the same
light detunings than the one we expect, and he ends up in the desired quasimomentum
state ptarget after the detuning ramps. If an atom has a non-zero velocity (in the lab
frame), he feels slightly different detunings, and ends up in a different quasimomentum state
ptarget + ∆pthermal.
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Figure 5.5: Numerical simulations of images after Stern-Gerlach. Effect of thermal broad-
ening. Atoms are initially prepared in the ground band, for the same couplings used in
the experiment, and at ⟨p⟩ = −→0 . a : The width of the quasimomentum distribution is
σ ≃ 0.35prec. We encircle in green the clouds belonging to m = −1, m = 0, m = 1. A given
m state can be expanded on different velocities, separated by multiple of 3h̄kν/M , depicted
in orange in the figure. b : σ ≃ 0.47prec. c : σ ≃ 0.93prec. d : σ ≃ 1.4prec. The last situation
corresponds to the typical exprimental conditions.

The effect ot thermal broadening is to blur the measured ground band properties, namely
the spatial velocities on the spin populations along m and r, which is not ideal. However, as
we will see later on, this thermal broadening can be deconvolve using the quasimomentum
conservation.

Correction of experimental offsets

To interpret the image after time-of-flight correctly, we need to perform a few corrections.
The first one consits in correcting the reached quasimomentum. Indeed, during the state
preparation, the atoms feel the gravitational force, which modifies their quasimomentum
(along the gravity direction, i.e ẑ), so that the actual quasimomentum results from both
the effect of the detuning ramps and gravity. The second correction consists in substracting
the Stern-Gerlach contribution to measure accurately the system’s mean velocity. This is
done by independent calibrations of our Stern-Gerlach apparatus. Finally, we need to apply
a more subtle correction which consists in substracting the drifts occuring during the state
preparation. Indeed, during the state preparation, the atoms acquire a non-zero velocity in
the lab frame due to the non-vanishing ground band curvature and to the change of frame.
It leads to a displacement of the cloud during the state preparation, in the lab frame. As a
consequence, the mean displacement of the cloud after time-of-flight doesn’t directly provide
the mean velocity of the system. To suppress this contribution, we take, for each final
detunings, an image of the cloud without time-of-flight. We then use it as a reference to
measure the cloud velocity after taking, for the same detunings, an image after time-of-flight.
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We also emphasise that the measurements of the system velocity are performed in the
lab frame. We then infer the system velocity in the relevant moving frame by performing, a
posteriori, the relevant change of frame.

Deconvolution of the thermal broadening

As stated earlier, the thermal broadening blurs the measured ground band properties. It
can be deconvolve via the quasimomentum conservation. Before implementing this deconvo-
lution, we need to check the validity of the quasimomentum conservation in our experiment.
To do so, we prepare the system in various states in the ground band, and infer, from the
absorption imaging, the average velocity ⟨v⟩ and the mean magnetisation ⟨m⟩ correspond-
ing to these states. We then compute ⟨p⟩ ≡ M⟨v⟩ + 2h̄k⟨m⟩ (mod 3kν) and compare it
to the expected values of p and q inferred from the detuning ramps. The latter are given
by p = pi −Mvframe · ξ̂ + pcorr and q = qi −Mvframe · ν̂ + qcorr. Here, we summarised in
pcorr and qcorr the corrections to the targeted momentum due to gravity and experimental
imperfections. We then compare the measured average momenta to the expected one. We
display the results in Fig. 5.6. We observe a good agreement between the measured average
momenta and the targeted momenta, showing that the conservation of thee quasimomentum
is respected.

Figure 5.6: Experimental verification of the quasimomentum conservation. a : Measured
value of ⟨p⟩ as a function of the expected p, q given by the detunings. b : Measured value of
⟨q⟩.

The deconvolution of the thermal broadening starts by measuring the spin-velocity den-
sity of states in the ground band. To obtain it, we sum the spin-resolved velocity distributions
for various quasimomenta (uniformely spanning the Brillouin zone) to treat all the momenta
on equal footing. We thus access to the averaged spin-resolved velocity distribution Dp(m,v).
By integrating these distributions over all momenta, we obtain the spin-velocity density of
states of the ground band (see Fig. 5.7).
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Figure 5.7: Experimental density of state, as a function of the velocity v and the magnetic
projection m. The density of state is obtained by integration of the spin-resolved density of
state over the momentum p. Horizontal (resp. vertical) dashed lines indicate vξ = 0 (resp.
vν = 0).

Now that we have the density of states, we can implement the deconvolution. As seen
earlier, the conservation of the quasimomentum imposes that each quasimomentum expends
on a discrete set of velocities :

v = 1
M

[p− 2h̄kmx̂ + 3jh̄kν ] , j ∈ Z (5.26)

Hence, for a given p, we can sum all the contributions in the density of states to access the
spin projections probability for this momentum Πm(p). By iterating this procedure for all
momenta, we access to the spin projections probability in the full Brillouin zone.

We illustrate this in Fig. 5.8, considering only three m states (for simplicity). We first
consider (in red) the quasimomentum p = (0, 0). Eq. (5.26) imposes that the velocity can
take only certain values, depicted by red dots on the figure1. We see that this quasimomentum
will have an important probability to be measured in |m = 0⟩, and to a weak probability to
be measured in |m = ±8⟩, which was expected from our theoretical study of the previous
chapter. Similarly, we show in green (resp. in orange) the velocities accessible to p =
(1prec, 0) (resp. to p = (0, 1prec)). As anticipated, the respective contributions of the three
quasimomenta in the density of state can be perfectly distinguished.

Figure 5.8: Illustration of the deconvolution of the quasimomentum. We display the density
of states as a function of three values of m. Red dots correspond to the velocity class
accessible to the quasimomentum (p, q) = (0, 0). Similarly, green and orange dots respectively
correspond to the velocity classes accessible to (p, q) = (1prec, 0) and (p, q) = (0, 1prec).

Additionally, we show in Fig. 5.9 the velocities accessible to (p, q) = (±8prec, 0). As
expected, for negative values of p, the system is more likely to be measured in |m = −8⟩
than in |m = 0⟩ or |m = 8⟩.

1Theoretically, an infinite number of velocities are accessible via Eq. (5.26). However, some velocities are
more probable than others, which is why only a few of them are depicted on Fig. 5.8
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Figure 5.9: Illustration of the deconvolution of the quasimomentum for three other values of
p = (p, q). We see that (p, q) = (−8prec, 0) have a higher probability to be in |m = −8⟩ than
in |m = 0⟩ or |m = 8⟩.

The measured spin projections probability Πm provides a direct measurement of the mean
spin projection ⟨m⟩ through :

⟨m⟩ ≡
∑
m

mΠm. (5.27)

We can also measure the mean value along the cyclic coordinate r via :

⟨r⟩ ≡ 2π
3

〈
exp

(
i
2π
3 m

)〉
. (5.28)

Following this method, we reconstruct the experimental ground band properties, that we
display in the next paragraph.

As a sidenote, we stress that we can already see typical properties of a quantum Hall
system on the spin-resolved density of states Fig. 5.7. Indeed, for |m| ≤ 5, the density of
states are centered around vanishing velocities, meaning that our system induces a frustration
of motion in the bulk. Its not the case anymore on the edges |m⟩ = ±J , where the density of
states are shifted along ±vξ showing the existence of chiral edge modes on the boundaries.
Moreover, these edge modes are anisotropic : the density of states are only shifted along ξ,
while remaining around vν = 0.

5.3 Experimental ground band properties
We display in the following the experimental ground band properties measured in the ground
band as a function of p and q.

5.3.1 Spin properties

Fig. 5.10c shows the experimental spin projections, measured for the couplings tx =
5.69(6)Erec, tz = 5.1(1)Erec, β = −2tz. Our measurement matches well with the theo-
retical predictions presented in the previous chapter. We present in Fig. 5.10a the spin
projections along the direction µ̂. As expected, ⟨m⟩ is evolving along this direction, while
⟨r⟩ is constant. Conversely, we present in Fig. 5.10b the spin projections along ν̂. While
⟨m⟩ is constant, ⟨r⟩ is drifting when performing a Bloch oscillation. We also observe exper-
imentally the chirality of r with the winding occuring at q ≃ −0.9prec. This measurement
shows that, in our experimental system, µ is indeed conjugated to m and ν is conjugated to r.

The evolution of the mean spin projections in the ground band can be interpreted as
anomalous Hall drift via :

d⟨rµ⟩ = Fµνdpν (5.29)
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By fitting the spin mean projection evolutions with p and q in the bulk, we measure the
following Berry curvature components :

{F rx, F rz, Fmx, Fmz} = {−1.00(2),−0.98(2),−0.98(2), 1.96(2)}/(2k). (5.30)

These values are consistent with the expected Berry curvature tensor in the bulk, obtained
by inverting the magnetic field tensor [151], defined in the previous chapter :

Fbulk = B−1 = 1
2k


0 0 1 1
0 0 1 −2
−1 −1 0 0
−1 2 0 0

 (5.31)

Figure 5.10: Experimental ground band spin properties. a : Evolution of the populations
along m and along r while the quasimomentum is evolving along µ̂. Mean values ⟨m⟩, ⟨r⟩
are displayed in red. b : Evolution of the populations while the quasimomentum is evolving
along ν̂. c : Experimental mean values ⟨m⟩, ⟨r⟩ as a function of p, q.

5.3.2 Velocity properties

Fig. 5.11a shows the measured velocities in the ground band. For |p| < p∗ = 7prec we
measured a vanishing velocity, illustrating that there is a frustration of motion in the bulk of
our system. It is consistent with the theoretical dispersion relation presented in the previous
chapter. This is not the case anymore on the boundaries m = ±J , that are approached for
|p| > p∗ (see Fig. 5.10), where the velocity is, mostly, pointing along ±ξ̂. Additionally, these
edge modes are chiral : they are oriented along +ξ̂ for p > p∗ and along −ξ̂ for p < −p∗.
We highlight this behavior Fig. 5.11b where we plot the q-averaged velocity as a function of p.
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The measured velocities of these edge modes can be interpreted considering a fermionic
quantum Hall insulator. The edge modes typically arise at the Fermi momentum pF ≃ p∗

corresponding to a Fermi energy equal to the bulk gap : EF ≃ 5Erec. Assuming a ballistic
motion, the corresponding Fermi velocity can be obtained by vF ≃ ±

√
2EF/M ± 2.2vrec.

This value is consistent with the measured value at this momentum : ⟨v⟩ = −1.4(2)vrec at
p = −p∗ and ⟨v⟩ = 1.6(2)vrec at p = p∗.

Figure 5.11: Experimental ground band velocities. a : Measured velocity as a function of
p, q. b : q-averaged velocities. The averaged velocity along ν remains close to 0, while the
averaged velocity along ξ is vanishing in the bulk but exhibit ballistic behavior on the edges.

To summarise, as anticipated in the previous chapter, we detected anisotropic chiral edge
modes at the boundaries of our 4D quantum Hall system. This measurement is a typical
feature of 4D physics. Moreover, the velocity of these edge modes can be easily interpreted
considering a fermionic 4D quantum Hall insulator.

5.3.3 Berry curvatures

The velocity properties of the ground band provide an other measurement of the Berry
curvature components, considering the p-variations of the measured velocities. The idea
consists in considering additional gauge fields Am, Ar along the synthetic dimensions and in
computing the induced spatial displacement due to these additional gauge fields. We detail
the derivation in [141]. It leads to the following expression of Berry curvature components,
after considering a projection along ξ̂ and ν̂ :

F ξr = 1
2
√

5k

[
1−M∂⟨vξ⟩

∂p
+ 3M∂⟨vξ⟩

∂q

]

F νr = 1
2
√

5k

[
−3−M∂⟨vν⟩

∂p
+ 3M∂⟨vν⟩

∂q

]
F ξm =

√
5

2k

[
−1 +M

∂⟨vξ⟩
∂p

]

F νm =
√

5
2k M

∂⟨vν⟩
∂p

(5.32)

From these expressions and from Fig. 5.11, we can access the experimental Berry cur-
vature components. We display figure Fig. 5.12 their q−averaged value. We also display in
solid lines the theoretical bulk values, obtained by putting to 0 the derivatives of the velocity
components. We obtain a good agreement between the measurements and the expected bulk
values.
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Figure 5.12: Experimental Berry curvature components. The Berry curvature components
are deduced from the measured velocity. We display in straight line the theoretical value in
the bulk. F rν and Fmν are quasi-flat because the velocity along ν itself exhibits only very
little variations in the Brillouin zone.

Equivalently, after proceeding to a projection along x̂ and ẑ, and considering the
bulk only, we recover the values inferred by inverting the magnetic field tensor, i.e :
{F rx

bulk, F
rz
bulk, F

mx
bulk, F

mz
bulk} = {−1,−1,−1, 2}/(2k).

The good agreement between the experimental ground band properties and Eq. (5.29)
shows that our system can be, up to a good approximation, understood as a direct sum of
2D Landau levels, as detailed previously with our continuous model.

5.4 Cyclotron orbits
We have studied theoretically in the previous chapter the peculiar cyclotron orbits in 4D.
We show in this paragraph our experimental realisation of such orbits, starting with the
protocol to trigger these orbits.

5.4.1 Experimental Protocol

Experimentally, we prepare analogues to the cyclotron orbits by preparing excitations of the
systems, that are referred to as magneto-plasmons [44]. They consist in a coherent super-
position of different Landau levels and their dynamics is governed by the Larmor frequencies.

We induce excitations of the system by performing a quench of the Raman detunings,
i.e a quench of the quasimomentum. The experimental sequence starts by preparing the
system in a given momentum p as described previously. We then quench p by pquench. As a
consequence, the system is not anymore in the ground state of the Hamiltonian and can be
described as a coherent superposition of contributions from the different energy bands. The
quench strength and direction need to be carefully adjusted.

The quench strength controls the number of populated bands after the excitation. If it is
too weak, the system remains essentially in the ground band and we don’t observe cyclotron
trajectory given our signal-to-noise ratio. If it is too strong, many bands are populated and
the resulting dynamics is quite complicated to interpret.

On the other hand, the quench direction dictates which excited band is mostly populated.
Indeed, as seen on the continuous model developed in the previous chapter, the first two
excited bands concern independently excitations in the (x,m + r) plane and excitations in
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the (z, 2m − r) plane. Consequently, quenching the quasimomentum along x or along z
independently triggers oscillations of vx or vz, of respective frequency ωx, ωz.

We propose Fig. 5.13 a scheme of the protocol to trigger cyclotron oscillations.

Figure 5.13: Cyclotron orbits protocol. a : The system is initially prepared in the ground
state of the Hamiltonian in a given quasimomentum p. b : After a quench of the quasimo-
mentum along x̂, the state of the system is a coherent superposition of the ground band and
of the second excited band. c : After a quench of the quasimomentum along ẑ, the state of
the system is a coherent superposition of the ground band and of the first excited band.

5.4.2 Independent excitations

We first show experimental results of independent excitations in Fig. 5.14. We prepare the
system in the ground band of the Hamiltonian, and then quench in three different directions
to reach (p, q) = (0, 0). We then hold for various waiting times, and measure the spatial
velocity of the system. For the left column, p is quenched by (prec/

√
2)ẑ. For the middle

column, p is quenched by
√

2precx̂. The right column results from a quench of the quasimo-
mentum by (prec/

√
2)x̂+

√
2precẑ. We adjust the light couplings such that the two hopping

amplitudes differ a lot : tx ≃ 16.5Erec and tz ≃ 5Erec. The purpose of this adjustement is to
make more clear the existence of two different Larmor frequencies.

After a quench along ẑ (Fig. 5.14, left column) the system mostly oscillates along ẑ, the
fitted amplitude being 10 times higher for vz than for vx. The fitted frequency f = 46(1) kHz
is in good agreement with fz = 4

√
Erectz/h ≃ 51 kHz. The discrepency can be explained

by the fact that the measured oscillations are damped1 while the fitting is performed with a
pure sinusoidal function, and by the fact that the continuous model doesn’t perfectly match
the Hamiltonian dispersion relation (see Fig.20 of the previous chapter).

Similarly, after a quench along x̂ (Fig. 5.14, middle column), the system mostly oscillates
along x̂. This time, the frequency of the oscillations is much smaller and given by f =
23(1) kHz. We were expecting a frequency of ωx = 4

√
Erectz/h ≃ 29 kHz. As before, the

discrepency can be explained by the damping of the oscillations and by the imperfection of
the continuous model.

When quenching along a mixed direction (Fig. 5.14, right column), namely (x̂ + ẑ)/
√

2,
both velocities are excited. vx is oscillating at fx and vz at fz, with similar amplitudes than
the case of the independent oscillations.

These experiments show that our system has two Larmor frequencies, determined by
the hopping amplitudes tx, tz. As expected, each of these Larmor frequencies is involved
in a different plane, one including the x direction, the other including the z direction. It
illustrates that our system can be seen as a direct sum of a pair of 2D Landau levels.

1the damping is not expected at this level theoretically. Experimentally it could be due to inhomogeneous
light intensity profile or small diabatic effect in the initial state preparation.
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Figure 5.14: Experimental cyclotron trajectory in the (x, z) plane. The data are fitted
with damped oscillations. The cyclotron trajectory are measured for tx ≃ 16.5Erec and
tz ≃ 5Erec. Left : Response of the system after a quench of the quasimomentum along ẑ,
only vz is oscillating. Middle : After a quench of the quasimomentum along x̂, only vx is
oscillating. Right : after a quench along (x̂ + ẑ)

√
2, both vx and vz oscillate.

5.4.3 Lissajous orbits

As seen in the previous chapter, the cyclotron trajectories in 4D are richer than their 2D and
3D counterparts, involving two frequencies in two different planes. We show in Fig. 5.15 such
4D orbits, for two different sets of Larmor frequencies. The experimental realisation of these
orbits follows the protocol described above. The atoms are initially prepared in the center
of the Brillouin zone, and the quasimomentum is quenched in a mixed direction (x̂+ ẑ)/

√
2,

such that the two excitations are triggered. The initial state is prepared with the desired
coupling strengths. The center-of-mass positions in the spatial dimensions are recovered by
time-integrating the measured velocities.

We first adjust the coupling such that the Larmor frequencies are roughly equal ωz ≃ ωx,
see Fig. 5.15a,b. We are in the regime of an ’isoclinic’ rotation, the trajectory is quasi-closed.

We then adjust the couplings such that the Larmor frequencies are separated by a ratio
of 2 : ωz ≃ 2ωx, see Fig. 5.15c,d. The trajectory is still closed, but not planar anymore.
After two periods T = 2π/ωz, the four coordinates x, z,m, r are roughly back to their initial
values.
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Figure 5.15: Cyclotron dynamics. Evolution of the atoms position in the 4D space (x, z, r,m)
following a quasimomentum excitation for two different ratio of Larmor frequencies. Time
is encoded in color and ⟨r⟩ is encoded in the size of the points. a : Cyclotron trajectory for
ωz ≃ ωx. The green arrow shows the viewpoint for the planar projection shown in b. b :
Two-dimensional projection illustrating the planar nature of the orbit, viewed from the side.
c : Cyclotron trajectory for ωx ≃ 2ωx. d : Two-dimensional projection in the xm plane,
illustrating the closed aspect of the trajectory, after two periods T ≃ 2π/ωz.

To our knowledge, these measurements consist in the first observation of the complex na-
ture of the cyclotron orbits in four dimensions, which have no equivalent in lower dimensions.

In the next paragraph, we study experimentally the topology of our system and reveal
properties closely related to its higher dimensionality.

5.5 Non-trivial topology
The non-trivial topological aspect of our system was unveiled by the existence of edge modes
at the system boundaries, via the bulk-edge correspondence [51]. In this section, we propose
an other evidence of the non-trivial topological properties of our system, focusing on the
bulk region.

5.5.1 Second Chern number measurement

The second Chern number C2 can be inferred from the measured Berry curvature. As seen in
the previous chapter, our system being gapless, we should not consider the system as a whole
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to consider its topological response but focus on the bulk region, via the local second Chern
marker C2(m) [108]. Its measurement relies on a non-linear combination of the measured
Berry curvatures. The second Chern marker can be measured using the measured Berry
curvature components and spin projection probabilities via [141]:

C2(m) = 1
3

∫
bulk

dpdqΠm(p, q)ρ2(p, q), (5.33)

where the second Chern character ρ2 is obtained by a non-linear combination of the measured
Berry curvature components.

We show Fig. 5.16a the experimental second Chern character in the Brillouin zone. We
measure a constant second Chern character in the bulk ρ2 ≃ 0.75(7)/k2, consistent with
the theoretical value 3/(4k2). Using this measurement together with the spin population
measurements, we can access the local second Chern marker. We display its value Fig. 5.16b.
In the region |m| ≤ 5, we get C2(m) ≃ 0.97(6), in agreement with the expected value C2 = 1
for a quantum Hall system of class A in dimension 4.

Figure 5.16: Topology of the ground band. a : Second Chern character in the ground band,
deduced from the measured Berry curvature components. b : Local second chern number
deduced from a. Experimental values are displayed with the dots, theory with the horizontal
lines.

5.5.2 Non-linear electromagnetic response

As seen in the previous chapter, the transport, via the non-linear electromagnetic response,
is quantised in 4D by the second Chern number. We recall that this response consists, for
a filled band, in an additional term in the current density induced by an electromagnetic
perturbation :

jµ = Eν

(2π)4

∫
BZ

Fµνdk + C2
2π2 ϵ

µνγδEνBγδ, (5.34)

where Eν and Bγδ are the electromagnetic perturbation. The standard topological exper-
iment to probe this non-linear response would be to have a fermionic insulator filling the
ground band of our system and to apply an electric perturbation along a direction, orthog-
onal to a magnetic field perturbation. We would expect to measure a current proportional
to the electric and the magnetic perturbation along the fourth direction. However, as seen
before, we use bosons and prepare wavepackets centered at a given quasi momentum ⟨p⟩.
Thus, we can’t probe the non-linear response as described in Eq. (5.34).

We propose in this paragraph to detect a modified version of the non-linear response,
assuming that our system is homogeneous. This hypothesis was theoretically verified in the
last part of the previous chapter, and is valid for high enough coupling strengths. We also
assume that the magnetic perturbation contains only two components : Brm = −Bmr and
that the electric perturbation is fully oriented along ν̂.
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The Berry curvature is modified by the magnetic perturbation and can be expressed, at
first-order, as F̃ = F+F (1), where F (1) is the contribution due to the magnetic perturbation.
The Berry curvature tensor can be obtained by inverting the magnetic field tensor [151]. It
becomes :

F̃ = F + F (1)

F̃ = 1
2k


0 0 1 1
0 0 1 −2
−1 −1 0 0
−1 2 0 0

+ 3
4k2


0 −Brm 0 0

Brm 0 0 0
0 0 0 0
0 0 0 0

 (5.35)

We will now re-express Eq. (5.34) under these hypothesis.
As detailed in [60], the current density is given by :

jµ =
∫

BZ
dkD (r,k) vµ (k) , (5.36)

where D (r,k) is the modified phase-space density of states and r the 4D positional vector.
The general expression of the modified phase-space density of states in four dimensions can
be expressed as [60, 149] :

D (r,k) = 1
(2π)4

[
1 + 1

2BµνF̃
µν + 1

64
(
ϵαβγδBαβBγδ

)
×
(
ϵµνλρF̃µνF̃ λρ

)]
, (5.37)

Eq. (5.37) can be greatly simplified assuming that the only components of the magnetic
perturbation are Brm and Bmr. We are left with :

D (r,k) = 1
(2π)4

[
1 + 1

2BrmF̃
rm + 1

2BmrF̃
mr
]

= 1
(2π)4 ,

(5.38)

where we have used F̃mr = F̃ rm = 0.
For our system, the transport equation thus reads :

jξ =
∫

BZ
dk vξ

(2π)4 = Eν

(2π)4

∫
BZ
F ξνdk + 1

(2π)4

∫
BZ
ρ2EνBmr, (5.39)

where there is no implicit summation on the indices ξ, ν. In our plateform, we have only
access to the response of individual wavectors k. We thus focus on the integrands in the
following. This choice is also motivated by the fact that, at our laser couplings, our system
can be considered as homogeneous, at least in the bulk. Using the fact that F ξν = 0, we
obtain a local expression that illustrates the non-linear response contribution for a given
wavevector :

vξ
NL(k) = ρ2(k)EνBmr (5.40)

In order to unveil this local non-linear response experimentally, we need to add an electro-
magnetic field perturbation. We propose to add a perturbative Brm field to our experimental
system. The electric perturbation is simulated by the detuning ramps, leading to a force
that we can interpret as a Lorentz force F = qE, which orientation can be carefuly chosen
by the choice of the detuning ramps.
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Implementation of a Brm field

Similarly to the Bmx field arising from x-dependent phase when hopping from m to m+ 1,
we can emulate a Brm field when making the hoppings r → r + 1 coming together with a
phase dependent on m.

To do so, we propose to change the polarisation of one of the two Raman beams prop-
agating along x to circular polarisations σ±. The spin-dependent light shift induced by the
pair propagating along x becomes :

Vx′ = −t′xe−2ikxJ+ + (γ + iϵ){J+, Jz}/2
J

+ h.c + β′J
2
z

J2 , (5.41)

where t′x = 3tx/4, β′ = J2t′x/(4
√

2(2J + 3)), ϵ = ±4
√

2/(3(2J + 3)) and γ = |ϵ|/
√

8. The
spin operator J+ is thus changed to J+ + γ + iϵ

2 {J+, Jz}.
The effect of this new spin-hopping term on a Dicke state |m⟩ is :

[
J+ + γ + iϵ

2 {J+, Jz}
]
|m⟩ = am

[
1 + γ

2 (2m+ 1) + i(ϵm+ ϵ/2)
]
|m+ 1⟩

≃ amei(ϵm+ϵ/2)+γ(2m+1)/2 |m+ 1⟩ ,
(5.42)

where we Taylor-expanded the exponential term, using ϵ≪ 1 and γ ≪ 1. We also introduced
am =

√
J(J + 1)−m(m+ 1), the hopping amplitude due to the ladder spin operator. The

phase component eiϵ/2 can be gauged away, such that we are left with :[
J+ + γ + iϵ

2 {J+, Jz}
]
|m⟩ ≃ ameγ(2m+1)/2eiϵm |m+ 1⟩ . (5.43)

The phase ϵm is at the origin of a Brm field. Indeed, using this new algebra of spin transitions
and interpreting the phase of these spin transitions as Peierls phase, we can obtain the new
potential vector A via :

ϕx = Ar +Am = 2kx+ ϵm

ϕz = Ar − 2Am = 2kz,
(5.44)

leading to A = (0, 0, 4kx+ 2kz + 2ϵm, 2kx− 2kz + ϵm) /3.

We finally obtain the magnetic perturbation Brm via Brm = ∂rAm − ∂mAr = −2ϵ/3.
The sign of this perturbation can be flipped by switching the polarisation from σ− to σ+.
When the polarisation is set back to a linear polarisation, the perturbation goes to 0.

Modified ground band dispersion

The dispersion relation is slightly modified by this new spin algebra, see Fig. 5.17. More
particularly, the ground band is now tilted in the bulk. The band deformation is due to the
terms β′J2

z and γ{J+, Jz}. We emphasise that this band deformation is not a consequence
of the Brm perturbation itself, but is rather a consequence of the way we implement this
perturbation in our system. The band dispersion is similar for the cases Brm ≃ ±0.0661. It
can be explained by the fact that, for the two possible circular polarisations, the terms β′J2

z

and γ{J+, Jz} are the same, whereas the value of the artificial Bmr field is only given by the
term iϵ{J+, Jz}, whose sign doesn’t affect the dispersion relation.
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Figure 5.17: Theoretical dispersion relation as a function of the Brm perturbation. For the
left and the right columns, the couplings are rescaled to tx = 4/3 × 5.69Erec, tz = 5.1Erec,
such that the gap to the first excited band is not affected by the perturbation. For the center
column, the couplings are tx = 5.69Erec, tz = 5.1Erec.

A non-linear response experiment?

We have all the tools to illustrate the non-linear response in our experimental system by
applying a force along a spatial direction (say along ν̂) and by measuring the induced dis-
placement along the orthogonal direction (in this case, ξ̂) in the presence and in the absence
of a Brm perturbation.

However, one need to be cautious when performing this measurement. Indeed, there are
several sources of possible displacements of the atoms along ξ̂ while applying a force along
ν̂. The first one is the curvature of the ground band. As seen Fig. 5.17, when the Brm field
is turned on, the derivative of the dispersion relation is not vanishing at p = 0, leading to a
non-zero velocity along ξ̂. We recall that this non-vanishing velocity is not a marker of the
non-linear response and is not a consequence of the perturbative Brm field, but is due to the
term γ{Jz, J+}. As a consequence, we expect a non-zero velocity component along ξ̂ when
the perturbation is on, which is partly due to the modified ground band dispersion and not
only to the electromagnetic perturbation. We correct Eq. (5.40) to take into account this
new dispersion :

vξ = vξ
NL + vξ

GB

vξ = ρ2EνBmr + ∂E
∂p
,

(5.45)

where E is the ground band energy.
The second cause of displacement along ξ̂ is the change of frame. Indeed, we measure

the position of the atoms in the lab frame, but we should interpret it in the moving frame.
Finally, the last source of displacement along ξ̂ is the the non-linear response itself, which
provides an additional drift in the presence of a perturbating magnetic field Brm and a
perturbating electric field along ν̂.

We generate a perturbating electric field by applying an (inertial) perturbative force on
the atoms via the change of frame velocity. Provided this force is applied adiabatically along
+ν̂, it will increase the ν-projection of the quasimomentum by +∆q. Assuming we start in
(p = pi, q = qi), the force will change the system’s quasimomentum to (p = pi, q = qi + ∆q).
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The velocity of the atoms at (p = 0, q = +∆q) in the lab frame is given by :

vlab(+∆q) = vGB(+∆q) + vframe(+∆q) + vNL(+∆q), (5.46)

where vGB stands for the contribution coming from the ground band dispersion, vframe is the
contribution due to the change of frame and vNL is the contribution due to the non-linear
response, that we wish to measure.

One way to distinguish the component vNL from the two other components is to perform
a second experiment where the force is applied towards −n̂u and to project Eq. (5.46) along
ξ̂. Indeed, the projections of the velocity along ξ̂ obey the following equations :

vξ
frame(+∆q) = vξ

frame(−∆q)
vξ

GB(+∆q) = vξ
GB(−∆q)

vξ
NL(+∆q) = −vξ

NL(−∆q)

(5.47)

we can thus isolate vξ
NL with :

vξ
lab(+∆q)− vξ

lab(−∆q) = 2vξ
NL(+∆q). (5.48)

The displacements of the cloud in the lab frame while evolving the q-component of the
quasimomentum by +∆q and −∆q are given by time-integration of the velocities in the lab
frame:

δξ(+∆q) =
∫
vξ

lab(q(t))dt

δξ(−∆q) =
∫
vξ

lab(q(t))dt
(5.49)

Hence, the difference in ξ-displacement between the two experiments is given by :

∆ξ = δξ(+∆q)− δξ(−∆q) = 2
∫
vξ

NL(q)dt. (5.50)

This expression only involves the non-linear response velocity component. As a conse-
quence, we expect this quantity to vanish when there is no Brm field. On the other, the
latter should be positive (resp. negative) when the Brm field is positive (resp. negative).

We show in Fig. 5.18 simulations of the difference in ξ-displacement given by Eq. (5.50).
In these simulations, the initial state of the system is pi = 0, qi = −0.89prec. We then
perform a parabolic ramp of q towards q = qi ± 20prec in 600 µs with and without Brm

field. We display the difference in displacement in the lab frame (Eq. (5.50)) following the
two experiments. The laser couplings are tx = 5.69Erec, tz = 5.1Erec, β = −2tz for the case
without Brm field. When the Brm field is turned on, tx is rescaled by 4/3 such that the gap
at the center of the Brillouin zone is similar with and without the magnetic perturbation.
As expected, ∆ξNL is vanishing for Brm = 0. It also changes sign when the direction of the
magnetic field perturbation is flipped.

We show in dashed lines the displacement induced by integrating the expected relation
derived earlier for a homogeneous system, vNL = ρ2BrmF (q), from qi to qi ± 20prec. We
see a good agreement between the prediction given by the simulation and the theoretical
non-linear reponse, confirming that our implemented Brm field can indeed by considered as
a perturbation and that the continuous approximation of our system is valid for the chosen
couplings. We checked numerically that this agreement breaks down for lower coupling
values.
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Figure 5.18: Non-linear response (simulations). We display in straight line the difference in
ξ-displacement after applying a force during 600 µs along +ν̂ and along −ν̂, as a function of
time and for three different values of the Brm perturbation. The dashed lines correspond to
the theoretical non-linear response.

As seen on Fig. 5.18, the signal of the non-linear response is very weak (approximately
0.2 µm), and is at the limit of our detection precision. Moreover, we recall that this signal
is obtained after substracting measurements from two experiments (one when the electric
perturbation is applied towards +∆q and one when its applied towards −∆q) and that it
supposes that these two experiments could be realised in a completely symmetric way, which
is not rigurously true in practice. Other source of noises that we don’t control perfectly can
also degrade this small signal, such as imperfection in the intensity profil of the beams and
noise in frequency in the detuning ramps (that would lead to imperfect frame velocity ramps).
Taking all these factors into account makes this effect quite difficult to detect experimentally.

Options to enhance the signal would be to apply the perturbation for a longer time or to
increase its strength. However, these strategies are not straightforward to implement. First,
Brm ≃ ±0.0661 is already the maximum value we can reach by changing the polarisation of
one of the x-propagating Raman beams, since its polarisation is already maximally circular.
Secondly, the increase in the electric perturbation (equivalently, in the force) is limited by
the adiabatic criterion since we want to remain in the ground band. Finally, applying the
electric perturbation for a longer time is complicated since it comes together with additional
drifts along ν̂, ultimately leading to an offcentering of the atomic cloud with respect to the
Raman beams. As a consequence, we were not able to detect the non-linear electromagnetic
response through this transport experiment.

In the following, we propose a new protocol to unveil the non-trivial topology, by per-
forming quenches of the system in the presence of a magnetic perturbation.

5.5.3 Precessions

The non-trivial topology of our system can be illustrated by the modified cyclotron orbits in
the presence of a magnetic perturbation. We present in this paragraph this idea, and show
its experimental realisation.
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Cyclotron orbits in the presence of a Brm field.

We consider again the continuous model developed in the previous chapter where the
magnetic field tensor contains the Brm contribution. The equation of motion reads :

∂t


vx

vz

vr

vm

 = 1
M
B


vx

vz

vr

vm



=


0 0 −4vrec/3 −2vrec/3
0 0 −2vrec/3 2vrec/3

4ktx/h̄ 4ktz/h̄ −2Brm(tx − 2tz)/h̄ 2Brm(tx + tz)/h̄
4ktx/h̄ −8ktz/h̄ −2Brm(tx + 4tz)/h̄ 2Brm(tx − 2tz)/h̄



vx

vz

vr

vm

 ,
(5.51)

where we have developed the product of the inverse mass tensor and the magnetic field
tensor. The second equation can be simplified by rewritting 1

M
B in terms of 2 × 2 block

matrices :
1
M
B =

[
0 E
F G

]
(5.52)

We thus obtain :

∂t

[
vx

vz

]
= E

[
vr

vm

]

∂t

[
vr
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]
= F

[
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]
+G

[
vr

vm

]
,

(5.53)

leading to the following equation in the xz plane :

∂2
t

[
vx

vz

]
= EF

[
vx

vz

]
+ EGE−1

[
vx

vz

]
. (5.54)

Using the expressions of the matrices E,F,G, we have :

∂2
t vx = −ω2

x

(
vx +MBrmρ

bulk
2 ∂tvz

)
∂2

t vz = −ω2
z

(
vz −MBrmρ

bulk
2 ∂tvx

)
,

(5.55)

We recover the equation of a Foucault pendulum in the xz plane when assuming that
the two Larmor frequencies are equal ωx = ωz ≡ ω :

∂2
t v = −ω2v + 2ωpn̂× v, (5.56)

where n̂ is normal to the xz plane and where ωp = Mρ2Brmω
2/2. We allow ourselves to

use a vectorial product in Eq. (5.56) by considering only a 3D space made of the degrees of
freedom x, z and an orthogonal direction to define the normal vector to the xz plane.

Eq. (5.56) shows that, in the presence of aBrm field, the projections of the cyclotron orbits
in the xz plane undergo a precession reminiscent of a Foucault pendulum. The precession
rate is proportional to the bulk second Chern character, thus providing a direct measurement
of the non-trivial topology.
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Experimental measurements

We measured experimentally such precessions. To do so, we follow the same protocol
described in the previous section, adjusting the light intensities of the x-propagating beams in
the presence of the modified polarisation, such that the two experimental Larmor frequencies
ωx, ωz are equal. The atoms are adiabatically prepared in the ground band in the bulk of
the system. This preparation is made with the modified polarisation of one of the Raman
beam, such that the effective magnetic field contains the desired value of the perturbation
Brm. We then quench the quasi-momentum along the direction x̂ by quenching the detuning
of the Raman beams. Finally, we hold for various time and measure the spatial velocities
following the excitation.

We display Fig. 5.19 our experimental results following such protocol. On Fig. 5.19b,
in the absence of magnetic field perturbation, the system mainly responds along x̂. This
is similar to the case studied in the previous section, where we initially quench the system
either along ξ̂ either along ν̂. This is no longer the case on Fig. 5.19a,c where the magnetic
perturbation connects the two spatial degrees of freedom. Equivalently, the magnetic per-
turbation leads to the appearence of a Hall effect in the xz plane. The measured evolution is
reminiscent of a Foucault pendulum trajectory. As expected from the continuous model, the
precession rate flips its sign when changing the sign of the magnetic field perturbation. We
compare on Fig. 5.19d the measured precession rate (dots) for three different magnetic field
perturbations and the theoretical prediction (blue line). Our measurements are consistent
with a second Chern character ρbulk

2 = 0.65(2)/k2, in good agreement with the value in-
ferred from the Berry curvature components 0.75(7)/k2 and with the theoretical predictions
ρ2 = 3/(4k2).

Figure 5.19: Magnetic field perturbation : cyclotron precessions in the plane (x, z). a, b, c :
Precessions for magnetic field perturbation Brm = −0.066, 0, 0.066. Time is encoded in color.
d : Dots : Measured precession rates for the three magnetic field perturbation. Straight line :
theory. The measured precession rates are in good agreement with the theoretical prediction
ρ2 = 3/(4k2).

This experiment is a new illustration of the non-linear response. It is not specific to our
synthetic system and could be generalised to any 4D quantum Hall system. By reproducing
this protocol for many quasimomenta p spanning the Brillouin zone, we could reconstruct
the local second Chern marker, hence accessing the topology of our system with another
experiment.
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5.6 Conclusion
We have presented in this chapter our experimental realisation of a 4D quantum Hall system.
Four mains results were obtained. First, the ground band properties were measured, unveiling
the existence of the anisotropic chiral edge modes at the system boundaries - a feature specific
to the 4D quantum Hall effect and a directe consequence of the system’s topology. Then, we
measured cyclotron orbits in the bulk of our system, showing the existence of two Larmor
frequencies and the complex nature of these orbits in 4D. Subsequently, we confirmed the
the non-trivial topology of our system by measuring a second Chern marker equals to unity
in the bulk. Finally, we illustrated the non-linear electromagnetic response using a new
protocol made of excitations in the presence and in the absence of a magnetic perturbation.
This protocol provided us a new measurement of the second Chern character.
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In the previous chapters, we studied quantum Hall systems in different geometries and
with different dimensionalities. The guideline for all these chapters were the topological
properties of the systems under consideration. All these systems were non-interacting, and
their topological character was related to their bandstructure. In a sense, their topology was
a ‘classical topology’ [163].

In some many-body systems, one can recover a ‘quantum topology’, which is often referred
to as a topological order [163]. Microscopically, the topological order is deeply connected to
the notion of long-range entanglement [164]. One of its macroscopic manifestations is the
ground state degeneracy. This degeneracy is robust upon any local perturbations, including
those that break symmetries, hence the notion of topology.

The detection of topological order is a challenging task because no local order parameter
can probe it. Numerically, its identification is also complicated, because it involves strongly
correlated systems, that are difficult to fully characterise when their size is increasing. Dif-
ferent tools were developed to determine the topological order of any system, mainly the
topological entanglement entropy [165, 166] and the entanglement Hamiltonian. The latter
was introduced by Li and Haldane in their seminal paper [51] considering fractional quantum
Hall states and can be generalised to non-interacting systems, such as Chern insulators or
integer quantum Hall states [167].

This chapter relates the experimental realisation of the entanglement Hamiltonian of a
non-interacting quantum Hall system. We start by introducing the von Neumann entropy
and the entanglement Hamiltonian, and motivate the use of the latter by the bulk-edge
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correspondence. Then, we briefly present our experimental findings and propose a guideline
to extend our protocole to interacting systems.

The results presented in this chapter are published in [168].

6.1 Topological entropy and entanglement Hamiltonian

6.1.1 Topological entropy

In 2006, a first link was made between topological ordering and an entanglement measure-
ment via the von Neumann entropy [165, 166]. The idea consists in considering a bipartition
in A and B of a quantum many-body system in its ground state |Ψ⟩. The von Neumann
entropy provides a measurement of the entanglement between A and B :

S [ρA] ≡ −Tr [ρA log ρA] , (6.1)

where ρA is the reduced density matrix obtained by tracing out the B subsystem.
For an infinite system, the von Neumann entropy can be expressed as :

S [ρA] = αLd−1 − γ, (6.2)

where d is the system’s dimension, α a non-universal constant and γ a universal constant
characterising the topological order. γ is called the topological entanglement entropy. This
quantity connects the topological ordering of a many-body system to the long-range entan-
glement of its ground state.

Hence, topological order can be inferred for an infinite system by a deviation to the area
law S [ρA] = αLd−1. However, the von Neumann entropy suffers from three main issues.
First, Eq. (6.2) is true only in the limit of infinite systems, and a non-universal additive
correcting term should be considered when dealing with finite-size systems. Secondly, its
accurate calculation is difficult, because it relies on scaling arguments [169, 170]. Finally
and more importantly, it doesn’t uniquely identify topological order.

In 2008, Li and Haldane in their celebrated paper [51] proposed a new tool to detect
topological ordering, the entanglement Hamiltonian.

6.1.2 Entanglement Hamiltonian

Originally introduced for non-abelian fractional quantum Hall states, the entanglement
Hamiltonian is a powerful tool to identify topological order that can be generalised to non-
interacting systems.

Definition

We consider a pure quantum many-body system in its ground state, and a spatial bipartition
of it in two subsystems A and B. The many-body ground state wave function can be written,
performing a Schmidt decomposition, as :

|Ψ⟩ =
∑

α

e−ξα/2 |ΦA
α ⟩ ⊗ |ΦB

α ⟩ . (6.3)

Using this decomposition, the reduced density matrix of the subsystem A can be expressed
as :

ρA = TrB [|Ψ⟩ ⟨Ψ|]
ρA =

∑
α

e−ξα |ΦA
α ⟩ ⟨ΦA

α | .
(6.4)
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We introduce the entanglement (or modular) Hamiltonian H̃A :

ρA =
∑

α

e−ξα |ΦA
α ⟩ ⟨ΦA

α | ≡ e−H̃A (6.5)

The coefficients {ξα} are thus the eigenvalues of the entanglement Hamiltonian. They
form the ‘entanglement spectrum’. The information about the entanglement between A
and B is contained in the values of the coefficients ξα. Indeed, if there is only one non-
vanishing e−ξα , the ground state can be written as a product state : |Ψ⟩ = |ΦA

α ⟩ ⊗ |ΦB
α ⟩,

and the two subsystems are not correlated. On the other hand, if several coefficients are
non-vanishing, the two subsystems are entangled. As a sidenote, we point out that the entan-
glement Hamiltonian could also be defined via a partition cut in momentum space [171, 172].

Figure 6.1: Entanglement Hamiltonian and bulk-edge correspondence. a : The system,
whose topology is unknown, is in its ground state Ψ. b : We perform a bipartition on this
system, defining the entanglement Hamiltonian H̃A. c : The entanglement spectrum shows
a chiral dispersion relation, revealing the existence of a virtual edge at the cut position. Via
the bulk-edge correspondence, it unveils the non-trivial topology of the state Ψ.

The entanglement Hamiltonian contains more information than the von Neumann en-
tropy. In particular, via the Li-Haldane conjecture [51], the entanglement Hamiltonian
reveals the edges excitations of the system, see Fig. 6.1. Hence, by measuring or computing
a chiral dispersion relation in the entanglement spectrum, one can identify wheter or not
the system is topologically ordered. This correspondence between the edge behavior of the
entanglement Hamiltonian and the bulk of the original Hamiltonian is called the bulk-edge
correspondence. In short, it means that all the information about the edges of a topological
system is encoded in its bulk.

State-of-the art

Despite growing theoretical interests, the experimental measurement of the entanglement
spectrum has remained challenging. It was directly measured by tomography [173] using the
IBM quantum computer, but this method is limited to small systems. Indeed, the exponen-
tial increase of the Hilbert space dimensionality with the system size generally prohibites the
full tomography of the entanglement Hamiltonian. As a consequence, for most of the inter-
acting systems, the entanglement Hamiltonian remains unknown. Some protocols avoiding
the full tomography were proposed [174], but remain extremely demanding to implement.
Similarly, its numerical computation for interacting systems is limited by the exponential
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growth of the Hilbert space size.

An other approach has recently emerged [175, 176] to experimentally realise an approx-
imation of the entanglement Hamiltonian as a physical Hamiltonian [176]. This approach
relies on the Bisognano-Wichmann (BW) theorem [177, 178]. This theorem states that the
entanglement Hamiltonian of an infinite, continuous and Lorentzian invariant system can be
well approximated by a spatial deformation of the initial Hamiltonian H. Considering a par-
tition cut along the y direction at y = 0, the BW theorem gives the following approximation
for the entanglement Hamiltonian H̃A :

H̃A ≃ HBW ≡ yH + C, (6.6)

where the constant C ensures the good normalisation. The BW theorem can be adaptated
to lattice system [179, 180], making it of particular interest for cold atom experiments.

In the next section, we propose a protocol relying on the BW theorem to realise, as a
physical Hamiltonian, the entanglement Hamiltonian of a single-particle 2D quantum Hall
system using dysprosium atoms. We will then present our experimental findings, mainly
focusing on the bulk-edge correspondence.

6.2 Experimental realisation
The protocol introduced in this section relies on the same toolbox used throughout all this
thesis, namely using Raman transitions and synthetic dimensions to emulate single-particle
quantum Hall systems.

6.2.1 System under study

The topological system we study in this section is a non-interacting synthetic 2D quantum
Hall ribbon, that was presented in chapter II. Our system is discrete along the synthetic
direction m and continuous along x. We will study its topological properties by performing
a ‘spatial’ partition cut at m∗ = 0.5, leading to two subregions. The subregion A corresponds
to m ≤ 0 and arbitrary x while the subregion B corresponds to m ≥ 1 and arbitrary x, see
Fig. 6.2.

Figure 6.2: Entanglement Hamiltonian adapted to our system. a : Topological system under
study : a synthetic 2D Quantum Hall ribbon. b : Definition of the subsystems A, B and
of the bipartition at m∗ = 0.5. c : Appearance of an edge after the partition cut, as a
consequence of the bulk-edge correspondence.

6.2.2 Principle of the protocol

Our strategy to implement the entanglement Hamiltonian of the 2D quantum Hall ribbon
is made of three steps. First, we prepare the single-particle ground state and measure its
properties (spin distribution, dispersion relation). We artificially introduce a partition by
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tracing out the subsystem B from our data to characterise the entanglement Hamiltonian of
our system (both its spectrum and its eigenvectors). Then, guided by the BW theorem, we
prepare a family of deformed Hamiltonians Hvar

A acting only on the subregion A. We measure
their eigenstates and eigenenergies, that we compare to the target state (obtained after the
first step) to realise an approximation of H̃A. Finally, we measure the energy spectrum of
this approximation of H̃A, and reveal the topological character of the initial system by the
detection of a chiral dispersion relation. We detail these three steps in the following.

6.2.3 Entanglement Hamiltonian characterisation

The first step of the protocol requires the realisation of the ground state of the single-particle
Hamiltonian that we want to study. The experimental scheme to realise the Hamiltonian of
a 2D quantum Hall ribbon was already described in chapter II. A Raman configuration, see
Fig. 6.3a, leads to the following Hamiltonian

H = (px − h̄kJz)2

2M − h̄ΩJx +QJ2
z , (6.7)

where the coupling amplitude Ω is given by the laser powers and where Q is chosen to
flatten the ground band. The bandstructure of the Hamiltonian Eq. (6.7) is indexed by the
momentum px.

We first measure the spin projection probabilities in the ground state as a function of
px, Fig. 6.3c. As demonstrated in [168], they permit to access the quasi-energy spectrum
EA(px) of H̃A via :

EA(px) = − log
[1− PA(px)

PA(px)

]
, (6.8)

where PA(px) is the probability to measure the ground state in the subsystem A at the
momentum px. We expect this quasi-energy to vanish when the probabilities to measure the
ground state in the subsystem A and in the subsystem B are the same. This occurs at a
momentum p∗

x = 2h̄km∗ = h̄k. By definition, we have :

EA(p∗
x) = 0 (6.9)

We obtain a chiral dispersion close to p∗
x, see Fig. 6.3e, which is in agreement with the

expected dispersion [181] :

EA(px) ≃ 4
π

(px − p∗
x)ℓx, (6.10)

where ℓx is the magnetic length along x, deduced from Fig. 6.3c.

By projecting the spin projection probabilities on the subsystem A, we can access to the
eigenstates of H̃A, Fig. 6.3d.1 We observe a virtual edge2 at m = 0. In parallel, we evaluate
the dispersion relation of the original Hamiltonian, Fig. 6.3b, by integrating the ground
band velocity. We obtain the first excited bands by measuring the cyclotron oscillation
frequencies, following a momentum kick, as seen in the previous chapter.

1We don’t measure the phase of the state with this method. However, the original Hamiltonian being real,
we can assume that the ground band wave functions are real too. In such case, the projection probabilities
provide a measurement of the ground state.

2Actually, the virtual edges is located at m = m∗ = 0.5, but the discrete nature of the synthetic dimension
causes this virtual edge to appear at m = 0.
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To summarise, we have measured the ground band spin projection probabilities Πm and
the dispersion relation of the initial system, recovering flat Landau levels. From the Πm

we deduced, for each momentum px, the probability to measure the ground state in the
subregion A. We have then inferred the eigenvalues EA of the entanglement Hamiltonian
corresponding to the bipartition via Eq. (6.8). We also measured the ground state |ΨA(px)⟩
of the entanglement Hamiltonian.

Our measurements of |ΨA(px)⟩ and EA provide an illustration of the Li-Haldane conjec-
ture [51]. Near the cut, the dispersion relation of the entanglement Hamiltonian is chiral,
revealing the existence of chiral edge modes at the system’s boundaries.

Figure 6.3: Entanglement Hamiltonian characterisation. a : Experimental scheme to realise
the 2D quantum Hall ribbon. Polarisations are set such that the Raman coupling reads Jx.
b : Measured ground band and first excited band. The ground band energy is inferred from
the ground band velocity. The first excited band is obtained by measuring cyclotron orbit
frequencies at different momenta. c : Experimental spin projections probabilities. We can
infer the magnetic lengths along m and along x : ℓx, ℓm. d : By discarding the subsystem
m > m∗ = 0.5, we obtain the spin projections probabilities (hence the eigenstates, since the
Hamiltonian is real) of the entanglement Hamiltonian of our system. We observe a virtual
edge at m = 0. e : From the spin projection probabilities, we deduce the quasi-energy
spectrum of the entanglement Hamiltonian. We observe a chiral dispersion, reminiscent of
a virtual edge mode that would occur at the virtual boundary m∗ = 0.5. Solid line is the
expected evolution given by Eq. (6.10).
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6.2.4 Approximate realisation of the entanglement Hamiltonian

We then implement a family of Hamiltonians guided by the BW theorem. The application of
BW theorem to our system would imply the realisation of HBW = JzH. Indeed, interpreting
m as a spatial coordinate, Jz plays the role of a position within the direction of the partition
cut. However, this expression is not strictly valid, since Jz doesn’t commute with Jx, hence
with H. We rather consider the anticommutator of Jz and H [168], leading to :

HBW = 4√
π

{
m∗ − Jz

ℓm
,
H − ϵ0
h̄ωc

}
, (6.11)

where ωc is the Larmor frequency of our system and ϵ0 an energy shift.

Engineering Eq. (6.11) with Raman transitions and spin-dependent light shifts is chal-
lenging. In particular, it would require the ability to emulate a J3

z term, that we can’t
produce with a two-photon process. We rather propose to follow a variational approach,
implementing a family of Hamiltonians :

Hvar
A = (px − h̄kJz)2

2M − h̄Ωvar (J+Jz + JzJ−) + bvarJz +QvarJ2
z , (6.12)

where the parameters Ωvar, bvar and Qvar are experimentally varied via laser powers and
detunings. The choice of this family of Hamiltonians is inspired from the BW theorem, even
though it doesn’t contain the exact BW Hamiltonian. However, we checked numerically
that we can obtain a very good approximation of the BW Hamiltonian with this method.
Interestingly, the term J+Jz +JzJ− realises the partition cut at m∗ = 0.5. Indeed, we have :

⟨m = 1| J+Jz + JzJ− |m = 0⟩ = 0 (6.13)

As a consequence, the family of Hamiltonians realised by Eq. (6.12) separates the two
subsystems m ≥ 1 and m ≤ 0, thus mimicking the effect of the entanglement Hamiltonian
that acts only on one of the two subsystems.

The J+Jz + JzJ− operator is obtained by changing the Raman beam linear polarisation,
θ1, θ2, to a configuration where θ1 ̸= −θ2. Additionally, we want to get rid of any J+ or J−
terms, that would couple the subspaces m ≤ 0 and m ≥ 1. This can be done by the choice of
relative polarisation θ1−θ2 ≃ 2.8◦, as shown in [168]. The polarisations must be tuned as pre-
cisely as possible, such that our variational Hamiltonians indeed decouple the two subspaces.

We detail the variational optimisation in [168]. In the end, we obtain in Fig. 6.4 a good
approximation of the entanglement Hamiltonian of our system, that we ’learnt’ in the first
part of the protocol.
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Figure 6.4: Approximate realisation of H̃A. a : Measured spin projection probabilities.
We observe an edge at m = 0. b : Fidelity between a and the entanglement Hamiltonian
characterised in Fig. 6.3d. We obtain a very good fidelity for momenta −10h̄k ≤ px ≤ 5h̄k,
which is the region over which we performed the variational approach. The grey shaded area
corresponds to the momenta where the variational optimisation is not performed, leading to
a smaller fidelity.

6.2.5 Inferring topological properties

We can then measure the dispersion relation of the optimised Hamiltonian, see Fig. 6.5.
The good agreement between the measured ground band energy and the quasi-energy EA

for momenta around p∗
x is the main result of our work. It unveils the non-trivial topology of

our system via the bulk-edge correspondence.

The agreement is only valid for the momenta close to p∗
x, and a strong deviation occurs

for px ≪ p∗
x or px ≫ p∗

x. This is due to the discrete nature of the synthetic dimension and
its finite size : for px ≫ p∗

x and for px ≪ p∗
x, the system is fully polarised in either m = 0 or

m = −8, leading to a quadratic dispersion. This deviation would not occur for a continuous
Hall system.

Figure 6.5: Revealing topological properties of our system. We measure the dispersion
relation of our approximated entanglement Hamiltonian. We display in blue the ground
band and in red the first excited band (measured with cyclotron excitations). We obtain
a good agreement with the quasi-energy EA (in green, measured previously) around the
momentum p∗

x.

To summarise, we have first characterised the entanglement Hamiltonian H̃A of our
system by realising a posterior partition cut on the ground state of the full system. Then,
we performed a variational approach to emulate an Hamiltonian which approximates well
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H̃A. This variational approach was guided by the BW theorem. Finally, we measured the
ground band dispersion of this optimised Hamiltonian, revealing the non-trivial topology of
the bulk of our system, by recognising a chiral dispersion relation. This measurement is an
illustration of the Li-Haldane conjecture.

6.3 Discussion

To our knowledge, this realisation, together with [182], consists in the first experimental
implementation of the BW theorem, and the first physical realisation of an entanglement
Hamiltonian. However, our system is non-interacting, which makes the notion of entan-
glement Hamiltonian less useful. For such non-interacting systems, we can generally fully
characterise the system theoretically, thereby knowing its topological properties in advance.
In particular, this is the case in our study, where the topological properties could be known
a priori.

Our group is currently doing a theoretical work together with Leonardo Mazza’s team to
generalise this protocol to interacting systems. The goal is to show that, for some quantum
many-body states1, the non-interacting component of the entanglement Hamiltonian is not
affected by the presence of interactions. Hence, our protocol could be generalised to any
quantum simulator where the interactions can be controlled, such as arrays of interacting
Rydberg atoms [183–186]. In such case, the measurement of the entanglement spectrum of
an interacting system would consist of four steps:
(i) One should turn off the interactions and measure the ground state of the non-interacting
system.
(ii) Secondly, one should realise a posterior bipartition of the measured ground state, provid-
ing a target state, that would be close to the ground state of the entanglement Hamiltonian
of the non-interacting system.
(iii) Then, by performing an experimental variational approach on the Hamiltonian param-
eters, guided by BW theorem, one could realise a state as close as possible to the target
state. For the optimal parameters, the implemented Hamiltonian would be a very good
approximation of the single-particle entanglement Hamiltonian.
(iv) Finally, the interactions could be turned back on, keeping the parameters found in the
previous step. The resulting Hamiltonian would be a good approximation of the entangle-
ment Hamiltonian of this interacting system (even considering uniform interactions!). The
measurement of the dispersion relation of this final Hamiltonian would reveal wheter or not
the system possesses a topological order.

1such as some Laughlin states
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7 Conclusion and outlook

7.1 Summary
This thesis was dedicated to the experimental realisation of topological quantum Hall sys-
tems using an ultracold gas of dysprosium atoms. By encoding synthetic dimensions in
dysprosium’s spin, and by coupling these synthetic dimensions to momentum via Raman
transitions, we were able to engineer artificial magnetic fields, at the origin of the quantum
Hall effect in our systems.

We started the manuscript by describing our experimental apparatus and by describing
the rich interactions between a dysprosium atom and a photon. We then introduced several
protocols aimed at controlling precisely the light polarisation.

In chapter II and III, we studied two-dimensional quantum Hall systems on two different
geometries, a quantum Hall ribbon and a quantum Hall cylinder. We implemented, for the
first time, Laughlin’s topological charge pump within this cylinder.

Chapter IV and V present the main result of this thesis : the realisation of a 4D quantum
Hall system combining two synthetic dimensions and two spatial ones. We observed a few
typical properties related to 4D quantum Hall physics. First, we unveiled the anisotropic
chiral edge modes occuring at the system’s boundaries, revealing a non-trivial topology. We
then characterised this non-trivial topology by measuring a second Chern number equal
to unity in the bulk. We also measured cyclotron orbits in the center of the Brillouin
zone, and observed a non-planar cyclotron trajectory, a direct consequence of the four-
dimensional aspect of our system. Finally, we detected a revisited version of the non-linear
electromagnetic response by examining the system’s response to excitations in the presence
of a magnetic perturbation.

In the last chapter, we briefly described an ongoing experiment focusing on the entangle-
ment spectrum of a two-dimensional single-particle quantum Hall system. We experimen-
tally realised its entanglement Hamiltonian by following the prescription from Bisognano
and Wichmann [178]. We finally provided a roadmap to extend our protocol to interacting
systems.

7.2 Perspectives

7.2.1 Many-body topological states

All the results presented in this thesis are related to single-particle physics. Exotic properties
are expected to arise in topological interacting systems [187–191], and our plateform would
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be a good candidate to explore these new phases of matter. For instance, we could realise
fractional quantum Hall states and probe the anyonic nature of the excitations [30, 192].

Several challenges must be met to study topological interacting systems with our exper-
iment. First, we need to have a robust and stable Bose-Einstein condensate on the daily
basis. This is an ongoing work with the modulation of the transport beam presented chapter
I, that should significantly increase the number of atoms loaded in the dipole traps. Secondly
and more importantly, we should adapt our protocols to lower magnetic fields, in order to
avoid any dipolar relaxation effects that would deteriorate the condensate on the timescales
of our experiments. Then, all the scattering lengths of dysprosium should be measured to
fully grasp the interactions within the synthetic dimensions [193]. Finally, the interactions
within synthetic dimensions being infinite-range1, we should find a protocol to control their
range, for example using multiple Feshbach resonances [194].

7.2.2 Vortices in 4D

Another exciting direction permitted by the interactions would be the study of vortices in
4D. Recently [195–197] studied theoretically the behavior of vortices in a 4D superfluid.
They demonstrated that vortices in 4D have exotic properties, which are directly linked to
the peculiar nature of rotations in higher dimensions, as seen in chapter IV.

General 4D rotations involve two rotation frequencies (or two rotation angles) ωxy and
ωzw, which induce rotations in the xy-plane and the zw-plane, respectively. The arrangement
of vortices in a 4D superfluid depends on the relative values of these rotation frequencies.
When they are equal, two vortices living in two orthogonal planes, thus intersecting at a
point, are in a stable configuration [195] (contrary to the 3D case, where the intersection
between two vortices would be a line and would lead to the reconnection phenomenon [198–
200]).

For unequal rotation frequencies, each of the vortices wants to align itself with the
highest rotation frequency (in order to minimise its rotational energy), and the two vortices
don’t remain in an orthogonal configuration. Consequently, they start to tilt and to interact
repulsively. The relative equilibrium orientation of the two vortices thus results from a
compromise between the interaction energy and the rotational energy, leading to a ‘skewed
vortex surface’. Interestingly, such ‘skewed vortex surface’ can be recovered for equal rotation
frequencies under certain hypothesis [197], via a sophisticated phenomenon that we don’t
detail here.

These theoretical predictions have no equivalent in lower dimensions, and would represent
an exciting area for experimental exploration. The study of vortices in our 4D system
would come naturally in the presence of interactions, since the artificial magnetic field2, by
mimicking a rotation, would stabilise the vortices [44, 55, 109, 201]. The findings of [195–
197] are based on a minimalistic model assuming, among other things, rotational invariance
and local interactions. In our system, we could expect to observe an even richer family of
vortices. Indeed, the hardwall boundary conditions, imposed by the synthetic dimension m,
break the SO(4) symmetry. We could also consider engineering various boundary conditions
along the spatial x, z dimensions via repulsive or attractive light shifts, and study how the
4D arrangement of the vortices would be modified.

1which could disable us from emulating certain systems, such as Bose-Hubbard models that require only
on-site interactions

2induced by the Raman processes
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Appendix A : Partitioning
dysprosium’s electronic spin to

reveal entanglement in nonclassical
states

We provide the reference [76] published during my thesis, that is not described in the
manuscript. In short, we considered dysprosium’s large spin J = 8 as 16 virtual qubits, and
studied the non-classical correlations between these qubits.

Partitioning dysprosium’s electronic spin to reveal entanglement in nonclassical states.
T. Satoor*, A. Fabre*, J.-B. Bouhiron, A. Evrard, R. Lopes, S. Nascimbene
Physical Review Research 3 (1), 043001 (2021)
* These authors contributed equally
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Quantum spins of mesoscopic size are a well-studied playground for engineering nonclassical states. If the
spin represents the collective state of an ensemble of qubits, its nonclassical behavior is linked to entanglement
between the qubits. In this paper, we report on an experimental study of entanglement between two subsystems of
dysprosium’s electronic spin. Its ground state, of angular momentum J = 8, can formally be viewed as a set of 2J
qubits symmetric upon exchange. To access entanglement properties, we partition the spin by optically coupling
it to an excited state J ′ = J − 1, which removes a pair of qubits in a state defined by the light polarization.
Starting with the well-known W and squeezed states, we extract the concurrence of qubit pairs, which quantifies
their nonclassical character. We also directly demonstrate entanglement between the 14- and 2-qubit subsystems
via an increase in entropy upon partition. In a complementary set of experiments, we probe decoherence of a
state prepared in the excited level J ′ = J + 1 and interpret spontaneous emission as a loss of a qubit pair in a
random state. This allows us to contrast the robustness of nonclassical pairwise correlations of the W state with
the fragility of the coherence involved in a Schrödinger cat state. Our findings open up the possibility to engineer
novel types of entangled atomic ensembles, in which entanglement occurs within each atom’s electronic spin as
well as between different atoms. Qubit ensembles with large entanglement depth could then be realized with a
few atoms only, facilitating the scaling up of quantum-enhanced sensors.

DOI: 10.1103/PhysRevResearch.3.043001

I. INTRODUCTION

Entanglement is a hallmark of nonclassical behavior in
compound quantum systems. Minimal entangled systems of
qubit pairs, as realized with correlated photon pairs, play a
central role in testing the foundations of quantum mechanics
[1,2]. Entanglement can also be engineered in many-particle
systems [3], such as an ensemble of interacting atoms [4].
In this case, the atoms are not individually addressable, and
quantum correlations are indirectly revealed by measuring
global properties, such as a squeezed spin projection quadra-
ture [5–8] or via the quantum enhancement of magnetic
sensitivity [9–11]. State-of-the-art experiments on photonic
systems [12], superconducting qubits [13], trapped ions [14],
and Rydberg atom arrays [15] can now produce highly entan-
gled states of tens of individually identifiable qubits, in which
entanglement is more readily observable.

Besides quantum state tomography, a wide array of meth-
ods have been developed for the detection of entanglement
[16,17]. In two-qubit systems, the degree of entanglement is
quantified by the concurrence [18,19]. Its direct measurement
remains challenging since it requires nonlinear operations on

*These authors contributed equally to this work.
†sylvain.nascimbene@lkb.ens.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the prepared state [20–23], and it was so far only achieved for
photon pairs in pure quantum states [21]. In the case of multi-
partite systems, the study of entanglement is cumbersome due
to the existence of distinct classes of entanglement [24]. It
is often revealed using entanglement witnesses, by measuring
the fidelity with respect to a given entangled state [25]—the
method being limited to simple enough target states.

In this paper, we study quantum entanglement between
subsystems of the electronic spin of dysprosium atoms, of
angular momentum J = 8 in its ground state and prepared
in nonclassical spin states. Quantum states with nonclassical
correlations have been extensively studied in single large-spin
systems, including photon qutrits [26], ground-state atomic
spins [27,28], molecules [29], and Rydberg atoms [30]. In
the formal analogy between a spin J and a set of 2J qubits
symmetric upon exchange [31], nonclassicality goes hand in
hand with entanglement between the virtual qubits. However,
as long as the angular momentum J is conserved, the qubit
ensemble cannot be partitioned, and the relevance of entan-
glement is disputable. Here, we use an optical coupling to
an excited electronic state of angular momentum J ′ = J − 1
to partition the 16-qubit ensemble associated with the spin
J , giving access to entanglement. The virtual absorption of
a photon is interpreted as the annihilation of a qubit pair
in a state defined by the light polarization, leaving a set of
14 qubits in the excited electronic level [see Fig. 1(a)]. This
process thus realizes a partition of the electronic spin J in
two subsystems—the excited electronic spin J ′ = J − 1 and
the photon angular momentum L = 1. We use this partition
to probe entanglement in nonclassical spin states, either by
characterizing nonclassical behavior of qubit pairs via the
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FIG. 1. Scheme of the experiments manipulating qubit pairs in
the electronic spin of dysprosium. An electronic spin of angular mo-
mentum J can be viewed as a set of 2J virtual qubits symmetric upon
exchange. (a) The coherent coupling to an excited state J ′ = J − 1
with σ− polarized light probes the probability to find a qubit pair
polarized in |↑ ↑〉z. (b) The spontaneous emission from an excited
state J ′ = J + 1 removes a random pair of qubits.

measurement of concurrence or by revealing an increase in
entropy upon partition. We extend this protocol to probe de-
coherence in states prepared in an excited electronic level
J ′ = J + 1 [see Fig. 1(b)]. There, the spontaneous emission
of a photon drives the system to the electronic ground state
J , which corresponds to the removal of a qubit pair randomly
drawn from the initial state. We reveal the robustness of non-
classical pairwise correlations with respect to qubit loss, as
well as the fragility of coherence in Schrödinger cat states.

This paper is organized as follows. We present in Sec. II
the experimental protocol used to measure the properties
of qubit pairs extracted from the electronic spin, based on
the polarization dependence of the light-spin interaction. In
Sec. III, we investigate the nonclassical character of these
qubit pairs via the measurement of the concurrence of the
reduced two-qubit density matrix and apply it to a W state
and a squeezed state. In Sec. IV, we investigate the increase
of entropy upon the 14|2 partition as a proof of entanglement
for W and Schrödinger cat states, by studying the mixed
nature of the reduced two-qubit density matrix. In Sec. V,
we study the decoherence upon the loss of a qubit pair trig-
gered by spontaneous emission. We show that nonclassical
pairwise correlations are robust with respect to the extraction
of qubits. In contrast, the coherence of a Schrödinger cat state
is completely destroyed upon qubit loss, due to the complete
which path information carried by the spontaneously emitted
photon’s polarization. In another superposition state, we show
the existence of a quantum jump leaving the path information
hidden, such that maximal-order coherence remains visible.
Finally, we present a possible extension of our work to en-
sembles of dysprosium atoms entangled together using an
optical resonator. Such systems would combine entanglement
between atoms and within each electronic spin, allowing one
to scale up entanglement depth and its application to quantum-
enhanced sensing.

II. PAIR HUSIMI FUNCTION MEASUREMENT

A. Probing pairs via light coupling

The electronic ground state J = 8 can be interpreted as the
sum of 2J = 16 virtual spin-1/2s, in a state symmetric upon
exchange. We discuss here the partition of this qubit ensem-
ble, prepared in a state ρ, through the coupling to an excited
electronic level, of angular momentum J ′ = 7. As sketched
in Fig. 1(a), the coupling to the excited manifold is induced
by light close to the optical transition, via the absorption of a
photon. The photon polarization ε defines an L = 1 quantum
state |ε〉 that can be considered as a symmetric two-qubit state.
We restrict ourselves here to the case of a circular polarization
σ−, which corresponds to qubits polarized in |↓↓〉z. Since the
excited state contains only 2J ′ = 14 qubits, two qubits are
removed upon photon absorption. The conservation of angular
momentum requires these removed qubits to be polarized in
|↑↑〉z, the time-reversed state of the absorbed photon’s polar-
ization. The excited state ρ ′ can be then written as a projected
state ρ ′ = 〈↑↑|zρ|↑ ↑〉z. The probability for a pair chosen
from the 16 qubits to be polarized in |↑↑〉z then reads

Qpair(ez ) = Trρ ′,

defining the pair Husimi function along the direction ez.
Hence the light absorption properties of the electronic spin J
can be linked to the properties of its two-qubit reduced density
matrix.

To probe this behavior, we measure the light shift V
induced by an off-resonant light beam close to the con-
sidered optical transition. The light shift, being induced by
virtual photon absorption processes, is proportional to the pair
Husimi function, as

V/V0 = Qpair(ez ), V0 = (dE )2

h̄�
,

where d = 〈J − 1||d||J〉 is the reduced dipole matrix element,
E is the light electric field amplitude, and � is the detuning
from resonance.

B. Application to Dicke states

We illustrate our method by measuring the value of the
Husimi function Qpair(ez ) for an arbitrary Dicke state |m〉
(with −J � m � J), which we denote Qm hereafter.

All our experiments are performed on a cloud of 1.0(1) ×
105 dysprosium atoms (of the bosonic isotope 162Dy), held
in an optical dipole trap at a temperature T = 0.54(3) μK.
The results described in this paper can be understood by
considering a single atom, with the ensemble acting as an
averaging mechanism only. The experimental scheme for the
Qm measurement is shown in Fig. 2(a). We prepare the atoms
in a coherent state |m = J〉n polarized along a direction n,
parametrized by the spherical angles (θ, φ). The polar an-
gle θ determines the projection probabilities �m along the
Dicke states |m〉, which are significant for values of m close
to J cos θ . We then push the atomic cloud by applying an
off-centered laser beam, with circular σ− polarization and
blue detuning with respect to an optical transition at 696 nm.
The intensity gradient then leads to a force along x propor-
tional to the light shift [Fig. 2(a)]. After this kick, a magnetic
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FIG. 2. Husimi function measurement for Dicke states.
(a) Scheme of the light shift measurement. We measure the force
induced on the atoms by an off-centered laser beam, blue detuned
with respect to the optical resonance. (b) Image of an atomic gas
prepared in a coherent state of polar angle θ � 100◦. The atoms
are kicked along x by the laser beam. Subsequently, we apply a
magnetic field gradient separating the magnetic sublevels |m〉 along
z during time of flight. The dashed line indicates the mean x position
in the absence of the repulsive laser beam. (c) Probability Qm for
a qubit pair taken in the Dicke state |m〉 to be in |↑↑〉z, deduced
from the kick amplitudes. In all figures, error bars represent the 1σ

statistical uncertainty (here smaller than the blue circles). The black
lines are the theoretical values of Eq. (1).

field gradient is applied to spatially separate the different m
components along z, which allows us to retrieve the light
shift experienced by each Dicke state independently. After a
2.3-ms time of flight, we image the atoms and measure the
x displacement for each Dicke state |m〉 that is significantly
populated, and hence their values Qm. A typical absorption
image is shown in Fig. 2(b). Repeating this measurement for
various angles θ , we measure the light shifts for all projections
m and infer the Qm values shown in Fig. 2(c) [32].

Our measurements are consistent with an absence of light
shift for the states |m = −J〉 and |m = −J + 1〉; that is, these
states are dark with respect to the J → J ′ = J − 1 optical
transition for σ− polarized light. In terms of the underlying
qubits, the state |m = −J〉 only contains |↓〉z-polarized qubits,
while the state |m = −J + 1〉 has a single qubit in |↑〉z. In both
cases, a qubit pair cannot be found polarized in |↑↑〉z; hence
Q−J = Q−J+1 = 0.

More generally, a Dicke state |m〉 is composed of J − m
qubits in |↓〉z and J + m qubits in |↑〉z [33]. The probability
to pick a pair |↑↑〉z simply reads

Qm =
(

J + m

2

)/(
2J

2

)
= (J + m)(J + m − 1)

2J (2J − 1)
, (1)

in good agreement with our measurements.
We use these measurements to probe the Husimi function

of states lacking z rotation symmetry. For this, we measure

their projection probabilities �m(n) along n by combining
a spin rotation and a Stern-Gerlach projective measurement
along z. We then infer the Husimi function by weighting these
probabilities with the Qm values, as

Qpair(n) =
∑

m

Qm�m(n). (2)

In the following, we use the theoretical values of Eq. (1)
rather than the measured ones to avoid propagating systematic
errors.

C. Coherent and W states

We first apply the above protocol to the quasiclassical
coherent spin state |m = −J〉 and the W state |m = −J + 1〉.
The coherent state can be viewed as a set of 2J qubits po-
larized in |↓〉z, forming a nonentangled product state. The W
state, which hosts a single qubit in |↑〉z, is a paradigmatic state
of a fundamental class of entanglement [24], which has been
realized and studied in various settings [34–41].

In our experiment, the atoms are initially spin polarized
in the coherent state |m = −J〉. To produce the W state,
we confine the system to the two spin states |m = −J〉 and
|m = −J + 1〉 by applying a strong quadratic light shift acting
on the other spin states only, leading to a constrained quantum
Zeno dynamics [42–44]. An additional resonant radio-
frequency π pulse then brings the system to |m = −J + 1〉.
The quadratic light shift is produced using the 696-nm laser
beam with a σ− polarization, leading to positive energy shifts
for all Dicke states |m〉, except for m = −J and −J + 1. We
reach a maximum W-state fidelity of 0.91(1), with residual
overlaps on other Dicke states below 4% [45].

We report in Figs. 3(a) and 3(b) the measured projection
probabilities �m(θ ) for these two states. For a given projec-
tion m, the coherent-state probabilities feature a single peak
centered on the expected maximum at θm = arccos(m/J ),
shown as red lines. For the W-state probabilities, we observe a
double-peaked distribution for all nonstretched states m 
= ±J .
This behavior results from the interference between two pro-
cesses, depending on whether the spin |↑〉z is projected on
|↑〉θ or |↓〉θ . The first (second) process dominates for θ � 0
(θ � π ), and the two processes destructively interfere at θm,
as observed in our data.

We combine these measurements to infer the pair Husimi
functions using Eq. (2), finding good agreement with theory
for both states [see Fig. 3(c)]. In particular, for the coherent
state, our data match well the probability Qpair(θ ) = sin4(θ/2)
that two qubits in |↓〉z are projected in |↑〉θ . In the following
sections we use these measurements to probe entanglement
properties.

III. NONCLASSICALITY OF QUBIT PAIRS

Our first characterization of entanglement of the 2J-qubit
state consists in revealing the nonclassical character of qubits
pairs extracted from it.

A. Measure of nonclassicality via the concurrence

The collective state ρpair of a qubit pair symmetric upon
exchange can be written as the state of an angular momentum
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FIG. 3. Qubit pair properties of coherent and W states. (a) and (b) Measured spin projection probabilities �m as a function of the polar
angle θ , for a coherent spin state (a) and for the W state (b). The red vertical lines indicate the expected maxima for the coherent state,
also corresponding to minima for the W state. The top panels represent the considered spin-J states on the Bloch sphere, where the red
circles indicate the spanned measurement projection axis. (c) Pair Husimi function Qpair computed from the (a) and (b) data (blue circles
and red squares, respectively). The lines correspond to the expected functions Qpair(θ ) for the coherent and W states (red and blue lines).
(d) Distribution Cn of nonclassical correlations as a function of the polar angle θ . The points Cn > 0 measured for the W state evidence
nonclassicality.

L = 1. Drawing an analogy with quantum optics [46,47], it
will be called classical if it can be expressed as a statistical
mixture of quasiclassical coherent states [48], as

ρ
(classical)
pair =

∑
n

wn||n〉〈n||, (3)

where ||n〉 is a spin-1 coherent state pointing along n, and
wn � 0,

∑
n wn = 1. Coherent states are the only pure states

that satisfy the equality

Z (n) ≡ 2
〈
L2

n

〉 − 〈Ln〉2 − 1 = 0 (4)

for arbitrary measurement axis n. Then it follows by convexity
that Z (n) � 0 for classical states. As shown in Ref. [48],
the existence of a strictly negative value Z (n) constitutes a
necessary and sufficient criterion of nonclassicality.

To apply this criterion to our system, we use the connection
between the mean values of spin projection and the Husimi
function of qubit pairs extracted from the electronic spin J ,

〈Ln〉 = Qpair(n) − Qpair(−n),〈
L2

n

〉 = Qpair(n) + Qpair(−n),

leading to the expression Z (n) = α Cn, where we introduce
the coefficient α = (

√
Qpair(−n) − √

Qpair(n))2 − 1 and the
distribution

Cn = 1 − (
√

Qpair(−n) + √
Qpair(n))2.

The parameter α being negative, nonclassicality is character-
ized by the existence of a direction n for which Cn is strictly
positive. This criterion of nonclassicality is equivalent to the
bipartite entanglement witness established in Ref. [49].

We show in Fig. 3(d) the distribution Cn computed from the
measured Husimi functions, for the coherent and W states. For
these states, symmetric upon rotations around z, we expect Cn
to only depend on the polar angle θ of the measurement axis
[50]. For the coherent state, the measured Cn remains close to
zero for all angles θ . Indeed, qubit pairs drawn from this state

form themselves a spin-1 coherent state, for which Cn vanishes
according to Eq. (4). For the W state, Cn takes significantly
positive values for θ close to 0 and π , showing a nonclassical
character.

We now show that the distribution Cn can be used to
quantify the degree of nonclassicality of a quantum state,
defined by its distance from the set of nonclassical states [51].
For a system of two qubits, this geometrical measure can be
directly expressed in terms of the concurrence C [52], the
most common measure of pairwise entanglement [18,19]. In
our system, qubit pairs should be considered as indivisible
quantum objects, such that the concurrence only measures the
amount of nonclassical correlations. The concurrence can be
explicitly written in terms of the density matrix, but it does
not correspond to a directly accessible physical observable.
Remarkably, the distribution Cn can be used to retrieve the
concurrence, as

C = max
[
0, max

n
Cn

]
.

This relation was conjectured and numerically checked for
randomly generated states in Ref. [53].

For the W state realized in the experiment, the measured
Cn takes its maximum for θ = 0 leading to a concurrence C =
0.089(5). This value is about 71% of the maximum possible
value C = 1/J = 0.125 in a system of 2J qubits symmetric
upon exchange [54], which would be reached for the W state
in the absence of experimental imperfections. In our system,
the concurrence is limited by the residual population �−J+2 �
0.03 in the Dicke state |m = −J + 2〉 that originates from
spin-changing collisions between atoms in |m = −J + 1〉.

B. Pairwise correlations in a squeezed state

Nonclassical correlations between qubit pairs play a central
role in the squeezing of a spin projection quadrature [55]. In
this section we extend the measurement of qubit pair proper-
ties to a squeezed spin state, which we produce via a nonlinear
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FIG. 4. Qubit pair properties for a squeezed state. (a) and
(b) Measured spin projection probabilities �m for a squeezed spin
state, as a function of the polar angle θ with azimuthal angles φmin

(a) and φmax (b). (c) Spin projection uncertainty �Jn computed from
the (a) and (b) data (blue circles and red squares, respectively).
The lines correspond to the projection uncertainties expected for the
targeted spin state. (d) Distribution Cn of nonclassical correlations as
a function of θ .

spin dynamics. We apply a h̄χJ2
x spin coupling, generated

by the spin-dependent light shift of the 696-nm laser beam,
using a linear polarization ex [56]. This coupling induces a
twisting of the spin distribution, leading to the squeezing of a
spin projection quadrature [55], as first implemented in atomic
Bose-Einstein condensates [8,9]. In our experiment, we apply
a nonlinear coupling of strength χ = 2π×32.1(4) kHz for
a duration t � 700 ns, in the presence of a z magnetic field
B = 75(1) mG.

In contrast to the Dicke states discussed above, the spin
projection probabilities are no longer invariant around z. We
show in Figs. 4(a) and 4(b) the probabilities �m(θ, φ) for
two azimuthal angles φmin = −0.4(2) rad and φmax = φmin +
π/2, which feature minimal and maximal spin projection
uncertainties, respectively. For θ = π/2, a minimum spin pro-
jection uncertainty �Jmin = 0.92(16) is measured at φmin [see
Fig. 4(c)], in agreement with the value �Jmin = 0.85 expected
for an optimally squeezed state (within the one-axis twisting
dynamics). We report in Fig. 4(d) the corresponding distribu-
tion Cn. The measured Cn takes its maximum for θ = π/2 and
φ = φmin, i.e., along the squeezed quadrature direction. This

maximum gives a value for the concurrence C = 0.058(6), in
agreement with the expected value of 0.055.

Our measurements can be used to check the direct link
between quadrature squeezing and nonclassical pairwise cor-
relations [57]. Indeed, for the states reached via the one-axis
twisting dynamics, one expects the concurrence to be ex-
pressed in terms of the minimum spin projection uncertainty,
as

C = 1 − 2�J2
min/J

2J − 1
. (5)

From the measured projection quadrature, we calculate a
value of 0.053(5) for the right-hand side of Eq. (5), in agree-
ment with the direct measurement of the concurrence.

IV. PROBING ENTANGLEMENT VIA
THE SUBSYSTEM ENTROPY

So far, we studied the entanglement of 2J-qubit states via
the nonclassical character of their qubit pairs. In this section,
we access entanglement more directly, by probing whether a
given state of the spin J = 8 is separable with respect to the
14|2 partition performed by the photon absorption. For this,
we use the fact that for a separable state, the global state
is more disordered than its parts [58]. More precisely, we
quantify disorder via the Rényi entropy of infinite order (also
called the min-entropy), defined as [59]

S∞(ρ) = − ln λmax(ρ),

where λmax is the maximum eigenvalue of the density ma-
trix ρ. This eigenvalue corresponds to the maximum possible
overlap of ρ with a pure state. To reveal entanglement within
a state ρ of the collective spin J , it is thus sufficient to show
that the entropy of the reduced pair state ρpair is strictly higher
than that of the original state ρ, i.e., if the conditional entropy
satisfies [58]

S∞(14|2) ≡ S∞(ρ) − S∞(ρpair ) < 0.

A. Entanglement of the W state

The evaluation of the pair state entropy S∞(ρpair ) is based
on the tomography of the pair density matrix [60]. Full in-
formation on the density matrix is contained in the Husimi
function Qpair(n). We fit the measured Husimi function by a
spherical harmonic expansion

Qpair(n) = 1

3
+

√
4π

3

2∑
�=1

�∑
m=−�

λ�,mY m
� (n) (6)

and infer the density matrix as

ρpair = 1

3
1+

1∑
m=−1

λ1,mLm +
2∑

m=−2

λ2,mQm, (7)

where the Lm and Qm matrices correspond to the L = 1
angular momentum components and quadrupole moments,
respectively (see Appendix B).
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FIG. 5. Characterization of entanglement in a Schrödinger cat state. (a) Measured spin projection probabilities �m for a cat state, as a
function of the polar angle θ . The azimuthal angle φ = 0.86(5) rad is chosen such that the two coherent-state Husimi functions destructively
interfere for odd m values around θ = π/2. (b) Distribution Cn inferred from the probabilities shown in (a) (blue circles). The solid line is the
expected variation for a perfect cat state. (c) Projection probabilities �m measured along equatorial directions (θ = π/2) parametrized by the
azimuthal angle φ. (d) Evolution of the mean parity 〈P〉 deduced from (c). (e) Projection probabilities �m measured after a Larmor rotation of
angle φ followed by a second nonlinear evolution. (f) Evolution of the mean sign of even projections 〈〉 deduced from (e). The solid lines in
(d) and (f) are fits with a Fourier series.

We apply this protocol to the W state, taking into account
the slight variation of the Husimi function Qpair(n) with re-
spect to the azimuthal angle φ in the prepared state [50]. We
infer a density matrix

ρpair �
⎛
⎝ 0.88 0.01 + 0.05i −0.01 − 0.01i

0.01 − 0.05i 0.12 0.01i
−0.01 + 0.01i −0.01i 0

⎞
⎠,

with typically 1% statistical uncertainty. The reconstructed
density matrix matches well the expected one

ρpair =
⎛
⎝7/8 0 0

0 1/8 0
0 0 0

⎞
⎠.

Diagonalization of the reconstructed density matrix gives a
maximum eigenvalue λmax(ρpair ) = 0.882(5).

We now consider the global spin-J state. The pro-
jection probability �−J+1 = 0.91(1) with the Dicke state
|m = −J + 1〉 provides a lower bound on the maximum over-
lap λmax(ρ) with pure states.

Combining these results together, we obtain

S∞(14|2) < −0.03(1).

Its negative value shows that the prepared state is not separa-
ble with respect to a 14|2 partition, and is thus entangled.

B. Entanglement of a Schrödinger cat state

We now consider the case of a Schrödinger cat state,
for which the effect of the 14|2 partition is more striking.
Schrödinger cat states, which constitute archetypal states with

highly nonclassical properties, have been realized in different
types of experiments [30,56,61–77].

The cat state considered here is the coherent superposition
of two quasiclassical spin states |m = ±J〉 [78]. To produce
it, we use the one-axis twisting dynamics discussed above,
with a stronger nonlinear coupling χ = 2π×1.25 MHz and
a reduced magnetic field B = 53.7(1) mG. After showing
quadrature squeezing at short times (t ∼ 10 ns), the spin
quadratures collapse to a featureless spin distribution, be-
fore a revival at a time tcat = π/(2χ ) = 200 ns, at which
the system forms a coherent superposition of stretched states
|m = ±J〉 [56].

In Fig. 5(a), we show the measured probabilities �m(n)
for various polar angles θ with a fixed azimuthal angle
φ. For θ = 0, we confirm the dominant population of the
two stretched states, with �−J = 0.38(2) and �J = 0.42(2).
When varying θ , the distribution is a superposition of the
contributions of each of the two coherent states forming the
cat state. Interestingly, we observe an interference between
the two distributions when they overlap, i.e., for θ � π/2.
As shown in Fig. 5(c), the interference pattern depends on
the azimuthal angle φ, with an alternation between even- and
odd-m projections of period 2π/(2J ) [79].

We first test whether a qubit pair extracted from this state
features nonclassical behavior. We expect the distribution
Cn to be rotationally invariant around z and thus study its
variation with the polar angle θ in Fig. 5(b) [80]. Our mea-
surements are consistent with Cn < 0 for all angles θ , showing
that the reduced two-qubit state is classical. This measurement
highlights the well-known property of this state that any of its
subsystems is classical.
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We now extend the tomography protocol to the cat state
and obtain the reduced two-body density matrix

ρpair �
⎛
⎝ 0.46 −0.01i −0.03 + 0.05i

0.01i 0.05 −0.01i
−0.03 − 0.05i 0.01i 0.49

⎞
⎠,

which we compare with the expected matrix

ρpair =
⎛
⎝1/2 0 0

0 0 0
0 0 1/2

⎞
⎠ (8)

obtained for a perfect cat state. We compute the maximum
eigenvalue λmax(ρpair ) = 0.53(1) of the reconstructed matrix.

In order to reveal entanglement in the prepared state,
we evaluate its overlap with perfect cat states |cat(α)〉 =
(|m = −J〉 + eiα|m = J〉)/

√
2, which constitute a family of

pure quantum states. The simple form of these states in the
Dicke basis allows us to express the overlap with a state ρ as

Oα = ρ−J,−J + ρJ,J + 2 Re(ρ−J,J eiα )

2
,

where the diagonal elements ρm,m correspond to the spin pro-
jection probabilities �m. The overlap Oα takes its maximum
value O for α = − arg ρ−J,J , with

O = �−J + �J + 2|ρ−J,J |
2

.

We present two protocols giving a lower bound on the ex-
tremal coherence |ρ−J,J |, both based on the measurement of
an observable A defined on the spin J . We consider its mean
value in a state obtained after the cat state preparation, fol-
lowed by a Larmor rotation around z of angle φ, as

〈A〉(φ) =
∑
m,m′

am,m′ρm′,mei(m′−m)φ.

The extremal coherence can be singled out by measuring the
Fourier coefficient A2J = |aJ,−Jρ−J,J | at frequency 2J [77,79].
We will use observables that can take values in the interval
[−1, 1] only, such that |aJ,−J | � 1. The coefficient A2J then
provides a lower bound on the extremal coherence |ρ−J,J |.

The first observable we consider is the parity P of
the spin projection along an equatorial direction n ⊥ ez—
an observable commonly used to characterize cat states
[64,65,69,70,75–77]. We fit its oscillation, shown in Fig. 5(d),
with a Fourier series, from which we get the Fourier coeffi-
cient P2J = 0.26(1). The second observable uses a nonlinear
evolution, obtained by repeating the one-axis twisting evolu-
tion used to produce the cat state [56,81–84] [see the scheme
in Fig. 5(e)]. In the absence of imperfections, the system is
brought to a superposition sin(Jφ)|m= − J〉+ cos(Jφ)|m=J〉,
which allows us to extract the maximal coherence from the
projection probabilities in stretched states only. The projec-
tion probabilities measured with this protocol are shown in
Fig. 5(e). In practice, we observe residual probabilities in
other projection values m, with m even only, as expected from
parity symmetry. We thus use an observable  defined as the
sign of the spin projection on even states, with

〈〉 =
∑

m even

sgn(m)�m.

Its oscillation, shown in Fig. 5(f), gives a Fourier coefficient
2J = 0.247(5). The advantage of the second method will
become clear when we consider a more complex quantum
state in the next section.

The two protocols lead to comparable estimates of the
extremal coherence. Using the measured probabilities �±J

quoted above, we infer a lower bound on the overlap O �
0.66(2) and thus on the eigenvalue λmax(ρ). Together, these
measurements provide a conditional entropy

S∞(14|2) < −0.23(3),

which proves entanglement more evidently than for the
W state. We note that the requirement O > λmax(ρpair ) =
0.53(1), which we used to demonstrate the nonseparability of
the 14|2 partition, is consistent with the entanglement witness
O > 0.5 extensively used for cat states [25].

V. DECOHERENCE UPON QUBIT LOSS

We now consider the removal of a pair of qubits ran-
domly drawn from the electronic spin, irrespective of its
quantum state. For this purpose, we prepare a quantum state
of interest ρ ′ in an excited level of angular momentum
J ′ = 9, corresponding to a symmetric state of 2J ′ = 18 qubits
[see Fig. 1(b)]. The spontaneous emission of a photon drives
the system to the ground state J = 8, which has two missing
qubits. Since the emitted photon can carry an arbitrary po-
larization, the process allows for three independent quantum
jumps associated with the polarizations e−, ez, e+, with e± =
(ex ± iey)/

√
2. The ground-state density matrix then reads

ρ =
∑

eu=e−,ez,e+

〈eu|ρ ′|eu〉,

which can be simply written as

ρ = Tr2ρ
′,

corresponding to the loss of an arbitrary qubit pair.

A. Robustness of pairwise quantum correlations

We first investigate the effect of particle loss on a W state
prepared in an excited electronic level of angular momen-
tum J ′ = J + 1, coupled to the ground state with an optical
transition of wavelength 626 nm. To produce the state |m′ =
−J ′ + 1〉 in the excited level, we start in the coherent state
|m = −J〉 of the lowest energy manifold and use π polar-
ized resonant light to couple the system to the desired state
[see Fig. 6(a)]. As shown in Fig. 6(b), we monitor the Rabi
oscillation via the atom recoil upon light absorption. The
comparison with a master equation model taking into account
spontaneous emission during the Rabi flopping allows us to
estimate a fidelity of 0.98 for a pulse duration tpulse � 62 ns—
the excited state lifetime being τexc � 1.2 μs [85].

Following the light pulse, we wait for spontaneous emis-
sion to occur before measuring the spin state in the ground
level. We observe significant populations only in the states
|m = −J〉 and |m = −J + 1〉, as expected from the selection
rule |m′ − m| � 1. The state |m = −J + 1〉 is dominantly
populated, showing that, in most cases, the |↑〉 excitation of
the W state is not removed upon the loss of a qubit pair. The
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FIG. 6. Loss of a qubit pair in a W state. (a) Scheme for the
preparation of the W state in the excited electronic level. (b) Evolu-
tion of the mean atom velocity acquired due to the photon absorption
recoil, as a function of the light pulse duration. The dashed line is
a model taking into account spontaneous emission during the pulse.
(c)–(e) Top panels: expected states, with a scheme of spontaneous
emission in (d) showing the Clebsch-Gordan coefficients for the two
possible quantum jumps. Bottom panels: spin projection probabili-
ties in the absence of the resonant light pulse (c), for a π pulse (d),
and for a 2π pulse (e). The solid lines are the probabilities expected
for a perfect W state, while the dashed lines use the same model as
in (b).

projection probabilities, shown in Fig. 6(d), are close to the
expected values �−J+1 = 1/(J + 1) and �−J = 1 − �−J+1,
with a residual difference mostly explained by the imperfect
state preparation.

The nonclassicality of qubit pairs in the final state is probed
via the distribution Cn introduced in Sec. III A. We remind
the reader that Cn is obtained from the spin projection prob-
abilities along n. Since its maximum value is expected to
be reached along z, we only consider projections along this
direction, and obtain Cz = 0.104(3). This value provides a
lower bound on the qubit pair concurrence, expected to be
C = 1/(J + 1) � 0.111 in the initial state. The proximity of
the initial state concurrence and the measured one after decay
illustrates that losing qubits does not alter nonclassicality of
the remaining qubit pairs [24].

B. Fragility of macroscopic coherence

We contrast this behavior with the fragility of entanglement
in coherent superpositions of states distant in phase
space [86].

We consider two examples, namely, a cat state |ψ1〉 =
(|m′ = −J ′〉 + |m′ = J ′〉)/

√
2 and the superposition |ψ2〉 =

(|m′ = −J ′ + 1〉+|m′ = J ′−1〉)/
√

2. Their preparation
consists in producing a cat state in the ground manifold
(|m = −J〉 + |m = J〉)/

√
2 (see Sec. IV B) and then applying

resonant light to couple it to the excited manifold. The
state |ψ1〉 is produced using an x-linear polarization
ex = (e+ + e−)/

√
2, which dominantly couples the stretched

states |m = ±J〉 to states |m′ = ±J ′〉 [see Fig. 7(a)].
Couplings to states |m′ = ±(J ′ − 2)〉 also occur, albeit
with very small Clebsch-Gordan coefficients, such that these
processes can be neglected [87]. The state |ψ2〉 is obtained
using a z-linear polarization [see Fig. 7(d)]. In both cases, a
coherent Rabi oscillation is observed when varying the pulse
duration, and the fidelity of the preparation is limited by that
of the cat state in the ground level. We show in Appendix C
that the coherence of the superposition is maintained during
Rabi flopping, by studying the states reached after 2π pulses.

We study the effect of qubit loss, triggered by sponta-
neous emission, on the superposition states |ψ1〉 and |ψ2〉.
For the cat state |ψ1〉, we only expect the population of
the stretched states |m = ±J〉 [see Fig. 7(b)]. To check the

FIG. 7. Loss of a qubit pair from superposition states. (a) Preparation method for the Schrödinger cat state |ψ1〉 in the excited electronic
level. Given the small values of their Clebsch-Gordan coefficients, we neglect the couplings between |m = ±8〉 and |m′ = ±7〉. (b) Scheme of
the subsequent spontaneous emission. (c) Top panel: spin projection probabilities measured in the xy plane, as a function of the azimuthal angle
φ. Bottom panel: The corresponding sign observable 〈〉, together with a fit with a Fourier series. The y-axis range has been reduced compared
with Fig. 5(f) to highlight the absence of oscillation. (d)–(f) show the same information for the superposition state |ψ2〉 = (|m′ = −8〉 +
|m′ = 8〉)/

√
2.
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coherence between them, we measure the sign observable
〈〉 as a function of the azimuthal angle φ, as in Sec. IV B.
As shown in the bottom panel of Fig. 7(c), its oscillation is
completely washed out, with a measured Fourier component
2J = 0.006(10), indicating an absence of coherence. For
the superposition state |ψ2〉, we observe dominant projection
probabilities in the states |m = ±(J − 1)〉, corresponding to
the spontaneous emission of a σ∓ polarized photon, respec-
tively [see Fig. 7(e)]. We do not measure any significant
variation of these probabilities with the azimuthal angle φ,
excluding coherence between them. We also measure resid-
ual projection probabilities in the stretched states |m = ±J〉,
which occur via the spontaneous emission of a π polarized
photon. The advantage of the sign observable  becomes
clear here: It allows one to test the coherence between the
states |m = ±J〉, without being perturbed by the atoms popu-
lating odd-m states. The measured probabilities in stretched
states coherently oscillate as a function of the angle φ

[see Fig. 7(f)]. More quantitatively, the sign observable, which
involves even m only, evolves with a Fourier component
2J = 0.024(1).

The complete loss of coherence when starting in the cat
state |ψ1〉 can be interpreted as follows. The spontaneous de-
cay involves two orthogonal polarizations, with a σ+ polarized
photon emitted when starting in the component |m′ = −J ′〉,
while a σ− polarized photon is associated with the decay of
the state |m′ = J ′〉 [see Fig. 7(b)]. The photon polarization
thus holds complete which path information on the spin state
polarization—a term referring to Einstein’s version of the
double-slit interference experiment [88,89]. In this case, the
coherence between the different paths is erased after sponta-
neous emission.

For the state |ψ2〉, the most probable quantum jumps corre-
spond to the emission of σ+ and σ− polarized photons, which
carry information about the state polarization [see Fig. 7(e)].
In contrast, the quantum jump associated with the emission
of a π polarized photon does not give this information, which
explains the residual coherence. The measured Fourier coef-
ficient 2J corresponds to 9.7(5)% of the value measured in
the absence of the excitation. This reduction is consistent with
the probability 1/(J + 1) � 11.1% of scattering a π polarized
photon for the considered state, showing that this channel fully
preserves coherence.

VI. SUMMARY AND OUTLOOK

In this paper, we show that the 2J-qubit ensemble associ-
ated with an atomic electronic spin J can be partitioned via the
optical coupling to an excited level J ′ = J − 1. Among these
qubits, 2J − 2 of them constitute the excited level, and the re-
maining two are annihilated by the absorbed photon, in a state
defined by the light polarization. We investigate this process
using atomic dysprosium and use it to probe entanglement in
nonclassical states of spin J = 8. We fully characterize the
nonclassical character of its reduced two-qubit state and study
the increase of entropy upon partition as a smoking gun for
entanglement.

In a second set of experiments, we consider the partition
of an angular momentum J ′ = J + 1 of an excited electronic
state. There, a random qubit pair is extracted by spontaneous

FIG. 8. Proposed scheme for entangling several Dy atoms in
an optical resonator. An off-resonant optical cavity in the strong-
coupling regime couples an ensemble of N atoms together. For σ+
polarized cavity light, the total spin projection along z is conserved,
and the cavity mediates the coherent exchange of ↑ qubit excita-
tions between atoms. Such couplings can be used to stabilize a W
state, with a single ↑ excitation symmetrically shared between the
N×(2J ) qubits.

emission towards the ground state J . We show that nonclassi-
cal pairwise correlations are robust to particle loss. In contrast,
we observe that coherent superpositions of states distant in
phase space are very fragile.

In this paper, the study of light-spin interaction is lim-
ited to measurements of the electronic spin. A first extension
would be to collect the spontaneously emitted photon, whose
polarization is entangled with the electronic spin, as for exper-
iments performed with trapped ions, atoms in optical cavities,
or solid-state qubits [90–93]. One would thus explicitly access
the which path information carried by the photon upon spon-
taneous emission of a Schrödinger cat state. More generally,
the photon would allow one to couple qubit pairs from the
electronic spin J = 8 to “flying qubits,” which could then be
manipulated to entangle distant atoms [94], and generalize
quantum communication schemes to a mesoscopic degree of
freedom [95].

Another interesting perspective would be to place the
atomic gas in an optical cavity. The electronic spin J of a
single atom would be coherently coupled to the cavity light
mode, leading to a compound light-spin object [96]. For
an atomic ensemble, the cavity light would also couple the
electronic spins together, similarly to standard ensembles of
spin-1/2 atoms coupled to optical cavities [4,97,98]. For a set
of N dysprosium atoms—each hosting 2J qubits—the size of
the Hilbert space would be (2J + 1)N , much smaller than the
size 22JN for the same number of qubits realized with spin-
1/2 atoms. This favorable scaling will mitigate decoherence
effects associated with, for example, particle loss.

To be more concrete, we show in Fig. 8 an example of an
application, with an ensemble of N atoms coupled to σ+ po-
larized cavity light. The light mediates the coherent exchange
of |↑〉 excitations among the atoms, which could serve to
stabilize a W state with one excitation symmetrically shared
among N × (2J ) qubits. Such many-body entangled states
could feature a strong quantum enhancement of magnetic
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sensitivity [99,100] or serve as a playground for studies of
decoherence.
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APPENDIX A: DEVIATION FROM z ROTATION
SYMMETRY IN THE W AND CAT STATES

The W state |m = −J + 1〉 is invariant upon rotations
around z, such that all observables should depend on the
polar angle θ only. In practice, the state prepared close to
the W state is not perfectly rotationally symmetric, because

FIG. 9. Deviation from z rotation symmetry in the prepared W
state. (a) and (b) Projection probabilities �m as a function of the
polar angle θ , for φ1 = 0.36(5) rad and φ2 = φ1 − π/2. (c) Pair
Husimi functions Qpair inferred from the (a) and (b) data (blue circles
and red squares, respectively). The error bars represent the statistical
uncertainty from a bootstrap random sampling analysis. The line
corresponds to the expected variation for the W state. (d) Distribution
Cn as a function of θ . The two azimuthal angles φ1 and φ2 are chosen
to minimize and maximize the measured Cn, respectively.

FIG. 10. Deviation from z rotation symmetry in the prepared
Schrödinger cat state. (a) Pair Husimi functions Qpair as a function
of the polar angle θ , for φ1 = 3.3(1) rad and φ2 = φ1 − π/2 (blue
circles and red squares, respectively). The line corresponds to the
expected variation for a perfect cat state. (b) Distribution Cn as a
function of θ deduced from the data in (a).

of a residual coherent admixture with other Dicke states. We
measure a small φ variation of the measured probability dis-
tributions �m(n), as well as the pair Husimi function Qpair

and distribution Cn deduced from them. We show in Fig. 9 the

FIG. 11. (a) Scheme of the 2π Rabi oscillation starting in a
Schrödinger cat state of the electronic ground level, for an x-
polarized laser excitation. (b) Top panel: spin projection probabilities
measured in the xy plane, as a function of the azimuthal angle φ.
Bottom panel: the corresponding sign observable 〈〉, together with
a fit with a Fourier series. (c) and (d) show the same information for
a z-polarized laser excitation.
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measured data for two azimuthal angles φ1 = 0.36(5) rad and
φ2 = φ1 − π/2, for which Cn is minimized and maximized,
respectively. The data shown in Fig. 3 of the main text corre-
spond to an average over φ, the error bars taking into account
this dispersion.

The cat state |m = −J〉 + |m = J〉 is not rotationally in-
variant. Yet, its reduced two-body density matrix, given by
Eq. (8), is invariant such that the pair Husimi function Qpair

and distribution Cn should depend on θ only. As for the W
state, we measure a slight variation of these quantities with
φ, as shown in Fig. 10. Since we focus on extracting the
concurrence from the maximum of Cn, we show in the main
text the data measured for an azimuthal angle φ1 = 3.3(1) rad
that maximizes Cn.

APPENDIX B: SPIN-1 TOMOGRAPHY USING
THE PAIR HUSIMI FUNCTION

The Husimi function of a spin-1 quantum state ρ expands
on the spherical harmonics Y m

� with � = 1, 2 and |m| � �,
as written in Eq. (6). This linear decomposition allows us to
retrieve the density matrix ρ, as given by Eq. (7), where we
introduce the operators

L0 = Lz, (B1)

L±1 = ∓(Lx ± iLy)/
√

2, (B2)

Q0 =
√

5

3

(
3L2

z − 2
)
, (B3)

Q±1 = ∓
√

5

2
[(Lx ± iLy)Lz + Lz(Lx ± iLy)], (B4)

Q±2 =
√

5

2
(Lx ± iLy)2. (B5)

APPENDIX C: COHERENCE OF SUPERPOSITION
STATES DURING RABI FLOPPING

The preparation of superposition states in the excited
electronic state, as studied in Sec. V B, uses coherent Rabi
oscillations, starting in a Schrödinger cat state of the ground
electronic level (|m = −J〉 + |m = J〉)/

√
2. To check that co-

herence is maintained during the Rabi oscillation, we study it
after a 2π excitation, by measuring the oscillation of the sign
observable 〈〉.

As shown in Fig. 11, we find that the coherence |ρ−J,J |, es-
timated by the Fourier component 2J , is reduced to 0.202(2)
[0.211(6)] for the x-polarized (z-polarized) excitation, i.e.,
above 80% of the value obtained with no Rabi pulse. These
measurements confirm that coherence is preserved during the
Rabi oscillation.
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Appendix B : Publication -
Laughlin’s topological charge pump

in an atomic Hall cylinder

We provide the article relating our experimental implementation of Laughlin’s topological
charge pump [120], briefly mentioned in chapter III.

Laughlin’s topological charge pump in an atomic Hall cylinder A. Fabre, J.-B. Bouhiron,
T. Satoor, R. Lopes, S. Nascimbene Phys. Rev. Lett. 128, 173202 (2022)
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(Dated: March 8, 2022)

The quantum Hall effect occurring in two-dimensional electron gases was first explained by Laugh-
lin, who developed a thought experiment that laid the groundwork for our understanding of topo-
logical quantum matter. His proposal is based on a quantum Hall cylinder periodically driven by
an axial magnetic field, resulting in the quantized motion of electrons. We realize this milestone
experiment with an ultracold gas of dysprosium atoms, the cyclic dimension being encoded in the
electronic spin and the axial field controlled by the phases of laser-induced spin-orbit couplings. Our
experiment provides a straightforward manifestation of the non-trivial topology of quantum Hall
insulators, and could be generalized to strongly-correlated topological systems.

The quantization of Hall conductance observed in two-
dimensional electronic systems subjected to a perpendic-
ular magnetic field [1] is intimately linked to the non-
trivial topology of Bloch bands [2] and the occurrence of
chiral edge modes protected from backscattering [3]. The
first step in its understanding was provided by Laughlin,
who gave an elegant argument by considering a Hall sys-
tem in a cylindrical geometry (Fig. 1) [4]. Besides the
radial magnetic field B⊥ yielding the Hall effect, this
geometry authorizes an axial field B‖, which does not
pierce the surface but threads the cylinder with a flux
Φ‖. Varying the flux Φ‖ controls a quantized electronic
motion along the tube, which is directly linked to the
underlying band topology. Such quantization of trans-
port was later generalized by Thouless to any physical
system subjected to a slow periodic deformation [5], as
implemented in electronic quantum dots [6, 7], photonic
waveguides [8] and ultracold atomic gases [9, 10].

So far, the topology of magnetic Bloch bands has been
revealed in planar systems only, by measuring the quan-
tization of transverse response [1, 11–13] or observing
chiral ballistic edge modes [14–16]. The realization of
Laughlin’s pump experiment requires engineering peri-
odic boundary conditions, which is challenging when us-
ing genuine spatial dimensions. The concept of a syn-
thetic dimension encoded in an internal degree of free-
dom provides an alternative method for the generation
of gauge fields [17]. Synthetic dimensions were first im-
plemented with open boundary conditions, leading to the
observation of chiral edge modes [18, 19]. More recently,
synthetic Hall cylinders were engineered using several
spin states coupled in a cyclic manner [20–22]. Never-
theless, the realization of Laughlin’s topological charge
pump was not realized yet, due to the absence of control
over an axial magnetic field B‖.

In this work, we use an ultracold gas of 162Dy atoms
to engineer a Hall cylinder whose azimuthal coordinate
is encoded in the electronic spin J = 8 [23]. We ma-
nipulate the spin using coherent optical transitions, such
that a triplet of internal states coupled in a cyclic man-
ner emerges at low energy, leading to an effective cylin-

∆Φ‖ = Φ0
Φ0

B⊥

`mag

FIG. 1. Laughlin’s thought experiment. Scheme of a
two-dimensional electronic system in a cylindrical geometry,
with a radial magnetic field B⊥ producing a quantum Hall
effect. The orange area, pierced by one magnetic flux quan-
tum Φ0, defines the length `mag of the magnetic unit cell –
each cell being filled with one electron in a quantum Hall insu-
lator. Laughlin’s thought experiment consists in performing
an adiabatic cycle by threading one flux quantum ∆Φ‖ = Φ0

through the cylinder. The cycle shifts electron occupations by
one unit cell, such that a single electron is pumped from one
edge to the other, or equivalently the center-of-mass position
is displaced by `mag.

drical geometry [24]. The exchange of momentum be-
tween light and atoms leads to a spin-orbit coupling that
mimics a radial magnetic field B⊥ [25]. The phases of
the laser electric fields also control an effective axial field
B‖, which is the crucial ingredient to implement Laugh-
lin’s thought experiment and reveal the underlying topol-
ogy. The topological character of the ground Bloch band
manifests as well in a complementary pump experiment
driven by Bloch oscillations.

In our experimental protocol, we apply a magnetic
field in order to lift the degeneracy between the mag-
netic sub-levels m (with −J ≤ m ≤ J and integer
m). Spin transitions of first and second order, i.e.
∆m = ±1 and ±2, are induced by resonant two-photon
optical transitions, using a pair of laser beams counter-
propagating along x (Fig. 2a) [26]. The configuration of
laser frequencies is chosen such that the atoms undergo



2

a momentum kick −2~k upon either resonant process
m → m + 1 or m → m − 2 shown in Fig. 2b. Here,
k = 2π/λ is the photon momentum for the laser wave-
length λ = 626.1 nm. The resulting spin-orbit coupling
breaks continuous translation symmetry, but conserves
the quasi-momentum q = Mvx/~ + 2km (mod 6k), de-
fined over the magnetic Brillouin zone −3k ≤ q < 3k,
where M and vx are the atomic mass and velocity. The
atom dynamics is described by the Hamiltonian

H =
1

2
Mv2

x + V, (1)

V = −Ty e−2ikx + hc, Ty = taeiϕa
J+

J
+ tbe

iϕb
J2
−
J2
, (2)

where J+ and J− are the spin ladder operators, and
ta, tb > 0 are the strengths of the first and second-order
transitions. The phase difference ϕa − ϕb can be gauged
away using a suitable spin rotation, such that we retain
hereafter a single phase ϕ ≡ ϕa = ϕb.

The combination of the two types of transitions induces
non-trivial 3-cycles m→ m+ 1→ m+ 2→ m (Fig. 2b),
with chiral dynamics in the cyclic variable y = m (mod 3)
– each step increasing y by one unit. As explained in a
previous theoretical work [24] and in the Supplemental
Material [26], this dynamics leads to the emergence at
low energy of a closed subsystem of dimension 3, spanned
by three spin states |y〉, with y = 0, 1, 2 and where |y〉
expands on projection states |m〉 with m = y (mod 3)
only. The |y〉 states are obtained by linear combinations
of three coherent spin states oriented along equatorial
directions of azimuthal angles φ = ϕ + {0, 2π/3, 4π/3}.
Hence, they only involve magnetic projections m around
0, with an r.m.s. width ∆m =

√
J/2 = 2. The |y〉 states

will be interpreted in the following as position eigenstates
along a cyclic synthetic dimension of length Y = 3. The
operator Ty involved in the spin coupling (2) then acts as
a translation Ty |y〉 = t |y + 1〉, with a hopping amplitude
t = ta + tb. The low-energy spin dynamics is described
by the effective potential

Veff = −t
2∑

y=0

(
ei(ϕ−2kx) |y + 1〉 〈y|+ hc

)
. (3)

Together with the kinetic energy 1
2Mv2

x, it describes the
motion of a particle on a cylinder discretized along its cir-
cumference (see Fig. 2c). The complex phase 2kx mim-
ics the Aharonov-Bohm phase associated with a radial
magnetic field B⊥ = 2~k (assuming a particle charge
q = −1). It defines a magnetic length `mag = λ/6, such
that the magnetic flux Φ⊥ = `magY B⊥ through a por-
tion of cylinder of length `mag equals the flux quantum
Φ0 = h/|q|.

Experimentally, we use a gas of about 4 × 104 atoms,
initially prepared at a temperature T = 0.54(3) µK,
such that the thermal momentum width σq ' 1.3 k is
much smaller than the Brillouin zone extent 6k, and

162Dy atom ω2
ω1a

ω1b x

(a)

ω2

a

ω1a

ω2

b

ω1b

magnetic projection m

Z
ee
m
an

en
er
g
y

-4 -3 -2 -1 0 1 2 3 4

(b)

y = 0

y = 1

y = 2

ei(ϕ−2kx)

Φ0

`mag

(d)

a
a

b
m

-2 -1 0 1 2

(c)

FIG. 2. Emerging quantum Hall cylinder. (a) Sketch
of the laser configuration involving two beams counter-
propagating along x and sent on a thermal sample of dyspro-
sium atoms – one beam having two frequency components.
(b) Scheme of the two-photon optical transitions resonantly
driving first- and second-order spin transitions, labelled a and
b, respectively. (c) Representation of a non-trivial 3-cycle be-
tween magnetic sub-levels induced by the light couplings. (d)
Scheme of the Hall cylinder dynamics emerging at low energy,
involving three spin states |y〉 (with y = 0, 1, 2). The hopping
amplitudes have a complex phase ϕ−2kx, where 2~k plays the
role of a radial magnetic field B⊥ and ϕ is linked to an axial
field B‖. The orange area, of length `mag = λ/6 is threaded
by one unit of magnetic flux quantum Φ0.

interaction effects can be neglected on the timescale of
our experiments. The atoms are adiabatically loaded
in the ground Bloch band with ta = 11.5(3)Er and
tb = 7.1(2)Er, by ramping the light coupling parame-
ters. Here, Er = ~2k2/(2M) is the single-photon recoil
energy. The mean quasi-momentum 〈q〉 is controlled by
applying a weak force Fx after the loading (see the Sup-
plementary Materials [26]). We simultaneously probe the
distribution of velocity vx and spin projection m. For
this, we abruptly switch off the light couplings and ramp
up a magnetic field gradient that spatially separates the
different magnetic sub-levels along z. The velocity distri-
bution is obtained from the density profile along x mea-
sured after a 2.3 ms expansion. A typical spin-resolved
velocity distribution is shown in Fig. 3a.

The velocity distribution, plotted in Fig. 3b as a func-
tion of q, exhibits a period 2k, similar to the case of a
simple λ/2-lattice. The mean velocity 〈vx〉, shown as a
red line, remains close to zero. Since it is linked to the
slope of the ground-band energy ∂qE0(q) = ~〈vx〉, this
shows that the band is quasi-flat. In fact, the band’s
flatness in protected from pertubations, such as external
magnetic field fluctuations, by the zero net magnetiza-
tion of the |y〉 spin states – a similar effect has been used
in another implementation of a Hall cylinder using dy-
namical decoupling techniques [22].

The probabilities Πm of projection on each sub-level
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FIG. 3. Ground band characterization. (a) Spin-resolved velocity distribution measured for a gas of mean quasi-momentum
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sampling analysis, are smaller than the symbols. The lines are calculated from the expected band structure.

m reveal a longer periodicity 6k (Fig. 3c), correspond-
ing to the full extent of the magnetic Brillouin zone. It
experimentally confirms the spatial separation of mag-
netic orbitals `mag = 2π/(6k) = λ/6 introduced above.
The Πm measurements also give access to the probabil-
ities Py of projection on the synthetic coordinate y, by
summing the Πm’s with m = y (mod 3) (Fig. 3d). The
q-variation of these distributions reveals a chirality typi-
cal of the Hall effect: when increasing the momentum by
2k, the Py distributions cycle along the synthetic dimen-
sion in a directional manner, as Py → Py+1 [27, 28]. We
stress that such a drift does not occur on the mean spin
projection 〈m〉, which remains close to zero (red line in
Fig. 3c).

The adiabatic y-drift occurring during Bloch oscilla-
tions provides a first insight into the topological character
of the lowest energy band – similar to the quantized flow
of Wannier function charge centers in Chern insulators
[29]. To quantify this drift, we cannot rely on the mean
y position, which is ill-defined for a cyclic dimension [30].
Instead, it is reconstructed by integrating the anomalous
velocity 〈vy〉 ≡ ∂ϕH/~ induced by the force Fx driv-
ing the Bloch oscillation. For this purpose, we conduct
a separate experiment, in which we suddenly switch off
the force Fx, such that the center-of-mass undergoes a
cyclotron oscillation, with the x- and y-velocities oscil-
lating in quadrature. More precisely, the rate of change
of the x-velocity gives access to the y-velocity, via the
exact relation

∂t〈vx〉 =
i

~
[H, vx] = −2~k

M
〈vy〉.

Hence, the velocity 〈vy〉 induced by the force Fx is given
by the initial slope of 〈vx〉 (Fig. 4b).

The center-of-mass drift 〈∆y〉, obtained upon integra-
tion of 〈vy〉 is shown in Fig. 4a. We find that it varies lin-

early with the quasi-momentum variation ∆q (Fig. 4a),
such that the drift per Bloch oscillation cycle reads

〈∆y〉
Y

= 0.97(5), (4)

consistent with a unit winding around the cylinder of
circumference Y [26]. The rotation along y occurring
over a Bloch oscillation cycle is thus quantized, providing
a first manifestation of the non-trivial band topology.

We now characterize the global band topology by im-
plementing Laughlin’s charge pump experiment, and ex-
tend the protocol to reveal the local geometrical proper-
ties. To simulate the axial magnetic field used to drive
the pump, we interpret the complex phase ϕ involved in
the y-hoppings (see equation 3) as the Peierls phase as-
sociated with the field B‖ threading the cylinder with a
flux

Φ‖ =
3ϕ

2π
Φ0. (5)

We vary Φ‖ by adjusting the phase difference ϕ between
the laser electric fields involved in the spin transitions
using acousto-optic modulators.

We drive the pump by slowly ramping the phase ϕ, and
measure the induced shift of the center-of-mass along the
real dimension x. The experiment is performed for var-
ious values of the quasi-momentum 〈q〉 uniformly span-
ning the magnetic Brillouin zone. The q-averaged drift,
shown in Fig. 4c, is consistent with a linear variation

〈∆x〉
`mag

= CΦ‖
Φ0
, C = 1.00(4),

in agreement with the expected quantization of transport
by the Chern number C = 1. The pump adiabaticity is
checked by repeating the experiment for various speeds
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FIG. 4. Topological charge pumps. (a) Center-of-mass
displacement 〈∆y〉 as a function of the quasi-momentum shift
∆q induced by a force Fx (orange squares), together with
a linear fit (orange line). (b) Evolution of the mean veloc-
ity 〈vx〉 immediately after switching off the force Fx (orange
squares), fitted with a damped sine (solid line). The veloc-
ity 〈vy〉 is obtained from the initial slope of the fit (dashed
line). (c) Displacement of the center of mass 〈∆x〉 induced
by an axial magnetic flux Φ‖ and averaged over the magnetic
Brillouin zone (blue cicles). The blue line is a linear fit. (d)
Berry curvature Ω measured as a function of the mean quasi-
momentum 〈q〉 (blue circles). The solid line is the expected
Berry curvature, which is not distinguishable from the con-
stant value Ω(q) = 1/(2k).

of the flux ramp, and measuring identical responses for
slow enough ramps [26].

Our experiments also give access to the anomalous drift
of individual momentum states ∆x = Ω(q)ϕ, propor-
tional to the Berry curvature Ω(q) that quantifies the
local geometrical properties of quantum states [31]. As
shown in Fig. 4d, the measured Berry curvature is flat
within error bars, consistent with theory, which predicts
Ω(q) = 1/(2k) with negligible q variation. The flatness
of the Berry curvature is a consequence of the continuous
translation symmetry along x, making our system simi-
lar to continuous two-dimensional systems with flat Lan-
dau levels. In contrast, discrete lattice systems, such as
Hofsdtater and Haldane models [32, 33], or previous im-
plementations of synthetic Hall cylinders [20–22], exhibit
dispersive bands with inhomogeneous Berry curvatures.

We have shown that implementing a quantum Hall

cylinder gives direct access to the underlying topology
of Bloch bands. Our realization of Laughlin’s pump pro-
tocol could be generalized to interacting atomic systems,
which are expected to form strongly correlated topolog-
ical states of matter at low temperature. In particu-
lar, at fractional fillings, one expects the occurrence of
charge density waves as one-dimensional precursors of
two-dimensional fractional quantum Hall states [34]. The
pumped charge would then be quantized to a rational
value, revealing the charge fractionnalization of elemen-
tary excitations [35].
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Appendix C : Berry curvature
components in the ground band

We display in this appendix the Berry curvature components in the ground band, for the
couplings tx = 5.69Erec, tz = 5.1Erec, β = −2tz.

The Berry curvature components of the nth band for the wavector k are computed via
Kubo formula :

Fαβ
n (k) = ih̄2 ∑

m ̸=n

⟨ψn(k)| vα |ψm(k)⟩ ⟨ψm(k)| vβ |ψn(k)⟩
[Em(k)− En(k)]2

, (7.1)

where vα is the velocity operator in the direction α, Em refers to the energy of the mth band
and ψm(k) is the wavefunction of the mth band for a momentum k.

This formula involves the velocity operators in the spatial and in the synthetic dimensions.
The first are defined by :

vξ = ∂pH (7.2)
vν = ∂qH (7.3)

To define the velocity in the synthetic dimensions, we follow the same prescription pro-
posed in chapter III. We define the velocity operator along m by identifying the operator Jz

as a position. We obtain :

vm = i

h̄
[H,Jz] (7.4)

= −tx
(
ie−2ikxJ+

J
+ h.c

)
− tz

(
−2ie−2ikz J

2
−
J2 + h.c

)
(7.5)

The velocity operator along r, vr, can be derived from the above expression, by replacing
the −2 prefactor in front of J2

− by +1, since J2
− decreases m by two units but increases r by

one unit.
Using these formula, we compute numerically the Berry curvature components in the

ground band. We see on the figures below that they are constant in the bulk. Their decay
for |p| > 7prec is due to the edges at m±J . We do not show Fmr and F ξν that are vanishing
in the full Brillouin zone.
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Figure 7.1: Ground band Berry curvature Fmξ.
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Figure 7.2: Ground band Berry curvature Fmν .
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Figure 7.3: Ground band Berry curvature F rξ.
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Figure 7.4: Ground band Berry curvature F rν .
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Résumé détaillé

En 1980, Klaus von Klitzing et al ont fait la découverte inattendue de l’effet Hall quantique
[1]. En étudiant le mouvement d’un gaz quasi bidimensionnel d’électrons dans un transistor
MOSFET à basse température, ils ont pu détecter la quantification de la conductance de Hall.
Cette découverte a eu des applications à la fois pratiques et fondamentales. Par exemple,
l’effet Hall quantique est utilisé comme étalon pour mesurer les résistances en définissant
l’ohm sur la base de constantes fondamentales [2, 3]. D’un point de vue plus théorique, cette
découverte a conduit à l’émergence de la théorie TKKN deux ans plus tard, introduite par
Thouless, Kohmoto, Nightingale et den Nijs dans leur article fondateur [4]. Ils y proposent
une interprétation de la quantification de la conductance de Hall basée sur la topologie.
Topologie dans les systèmes physiques

La topologie est une branche des mathématiques étudiant les propriétés des objets qui
sont conservées sous des déformations continues. Son application à la physique quantique
a débuté dans les années 1970, lorsque des arguments topologiques ont été utilisés dans les
théories de jauge, par exemple pour comprendre l’effet Aharonov-Bohm ou pour étudier les
monopôles magnétiques [5, 6]. Avec la découverte de l’effet Hall quantique, la topologie a
joué un rôle de plus en plus important dans la physique de la matière condensée. En suivant
les travaux de TKKN et de S.Pancharatnam [7], Michael Berry a popularisé les concepts
de phase de Berry et de courbure de Berry [8, 9], qui sont désormais communément utilisés
dans le domaine. En intégrant la courbure de Berry sur la zone de Brillouin d’un système,
on peut calculer l’invariant topologique de ce système et ainsi caractériser ses propriétés
topologiques. En bref, une propriété topologique est robuste à un désordre modéré ou à
des déformations continues. La quantification de la conductance de Hall est un exemple de
propriété topologique.

Initialement, on pensait que les propriétés topologiques n’apparaissaient que dans les
systèmes électroniques bidimensionnels soumis à des champs magnétiques élevés. En 1988,
Haldane a apporté le premier changement à ce paradigme [10], en montrant que l’ingrédient
clé pour obtenir l’effet Hall quantique n’est pas la présence d’un champ magnétique, mais
la rupture de la symétrie par renversement du temps. Plus récemment, Kane et Mele ont
généralisé le concept de topologie au cas des systèmes invariants dans le temps [11, 12],
grâce à la découverte théorique de l’effet Hall quantique de spin en deux dimensions, qui a
été observé depuis lors [13–16]. Cela a aussi conduit à la notion d’isolant topologique [17, 18].

La création de la classification topologique à la fin des années 2000 [19–21] a généralisé
l’étude des systèmes topologiques. Cette classification prédit, en fonction des symétries du
système et de sa dimensionnalité, la présence d’une topologie non triviale. Cette classifica-
tion ne considère pas seulement les systèmes de Hall quantique ou les isolants topologiques,
mais elle inclut également les supraconducteurs topologiques [22]. En résumé, l’étude des
propriétés topologiques est passée de l’effet Hall quantique en deux dimensiosn à une famille
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beaucoup plus riche de systèmes physiques, de dimensions et de symétries diverses. Certains
de ces systèmes topologiques devraient présenter des propriétés intéressantes, en particulier
si l’on considère ceux de haute dimensionalité. Ainsi, la généralisation de l’effet Hall quan-
tique en 4D [23] et en 6D [24, 25], ou la généralisation des semi-métaux de Weyl topologiques
en 3D [26] à 5D [27] prédit des phénomènes physiques exotiques. Par exemple, l’effet Hall
quantique 4D est quantifié par un nouvel invariant topologique, le second nombre de Chern,
qui quantifie la réponse non linéaire du système à une perturbation électromagnétique.

L’extension de la classification aux systèmes en interaction conduit également à de nou-
veaux phénomènes physiques. Par exemple, les états de Hall quantiques fractionnaires en
deux dimensions [28–30] pourraient accueillir des excitations anyoniques non-Abéliennes
[31–33], dont la statistique n’est ni bosonique ni fermionique. Ces anyons pourraient avoir
d’importantes applications en information quantique [34].

La plupart des systèmes topologiques restent à explorer, et d’autres domaines de la
physique se sont joints à l’effort des systèmes de matière condensée pour étudier ces nou-
velles phases exotiques de la matière. La photonique est l’un de ces domaines [35–37]. La
photonique a permis l’observation de nombreuses nouvelles phases topologiques, avec par
exemple l’observation d’isolants topologiques de Floquet [38–40] ou de la physique de Hall
quantique en quatre dimensions [41]. Une branche plus récente, les circuits électroniques
topologiques, a permis de mesurer le premier isolant topologique en classe AI et en qua-
tre dimensions [42]. Les gaz atomiques ultrafroids représentent un autre domaine pouvant
contribuer à l’exploration de la matière quantique topologique [43–46].
Expériences d’atomes froids

Les expériences sur les atomes froids étudient des gaz ultrafroids dilués d’atomes neutres,
avec un haut degré de contrôle obtenu grâce à des champs électromagnétiques. Ce domaine
de recherche a été très productif au cours des trente dernières années et a permis d’observer
de nombreuses prédictions théoriques concernant de nouvelles phases de la matière. Ainsi,
la condensation de Bose-Einstein a été observée en 1995 [47, 48] et la dégénérescence d’un
gaz de Fermi a été mesurée en 1999 [49]. Plus récemment, des efforts dans ce domaine ont
été déployés pour simuler des phases topologiques de la matière.

Les expériences d’atomes froids offrent diverses méthodes pour simuler des systèmes
topologiques de matière condensée. La plus courante consiste à utiliser des réseaux optiques,
qui imitent naturellement la physique des électrons dans un potentiel cristallin. Comme
nous le verrons plus loin, les propriétés topologiques nécessitent généralement des champs de
jauge externes et un couplage spin-orbite pour apparaître [43]. La communauté des atomes
froids a donc développé plusieurs outils pour concevoir ces champs de jauge sur des atomes
neutres, allant au-delà des réseaux optiques statiques standards.

Un avantage significatif des expériences d’atomes froids réside dans leur capacité à régler
finement les interactions entre les atomes, par exemple par le biais des résonances de Fesh-
bach. Il s’agit donc d’une plateforme intéressante pour réaliser des phases topologiques de la
matière à plusieurs corps, telles que des états de Hall quantique fractionnaires. Un exemple
récent de la réalisation de tels états a été obtenu en utilisant deux atomes sur un réseau
4×4 [30], et pourrait être utilisée pour sonder les excitations anyoniques non-abéliennes si la
taille du système était augmentée. Un autre avantage clé de ces expériences est la possibilité
de sonder la nature topologique du modèle simulé, ce qui est souvent une tâche difficile en
raison de l’absence de paramètre d’ordre local pour l’identifier. Par exemple, les états de
bord peuvent être observés grâce à la possibilité de charger des atomes directement dans
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ces états et grâce à l’imagerie atomique in situ [50], révélant la topologie du système via la
correspondance entre le centre du système et ses bords [51]. Aussi, l’invariant topologique du
modèle simulé (par exemple, le nombre de Chern dans un système de Hall quantique) peut
être obtenu en mesurant la réponse du centre de masse à une perturbation [52] permettant
la caractérisation de la topologie.

Champs de jauge artificiels

De nombreux effets topologiques sont la conséquence d’un couplage spin-orbite et de
champs de jauge extérieurs [43]. C’est le cas des bandes de Bloch topologiques qui appa-
raissent dans les systèmes à effet Hall quantique. Cependant, les expériences sur les atomes
froids impliquent des atomes neutres, qui ne subissent pas la force de Lorentz, à l’origine
de l’effet Hall quantique. Au lieu de cela, nous utilisons des champs de jauge artificiels qui
imitent de manière analogue les effets des champs magnétiques sur les électrons. De cette
manière, des Hamiltoniens de la forme

H = [p−A(r)]2

2M , (7.6)

peuvent être simulés sur des atomes neutres, où des champs de jauge artificiels A(r) peuvent
être rendus Abéliens ou non-Abéliens [53, 54].

Ces champs de jauge artificiels peuvent être conçus de différentes manières dans le cadre
d’expériences d’atomes froids. La première manière consiste à mettre un gaz d’atomes en
rotation, où la force de Coriolis remplace la force de Lorentz [55]. Une deuxième possi-
bilité fructueuse est l’utilisation de réseaux optiques comme mentionné précédemment. En
induisant un effet tunnel entre les différents sites du réseau optique [56, 57], ou par les méth-
odes de Floquet [58], des champs de jauge artificiels peuvent être produits, conduisant à la
simulation de plusieurs phases de la matière. Par exemple, [59] a reporté l’exploration de la
physique de Hall en quatre dimensions par modulation temporelle d’un super réseau optique.
Aussi, le modèle de Haldane [58], ou l’Hamiltonien de Hofstadter [52] ont été réalisés dans
des réseaux optiques modulés. Une troisième approche, employée dans notre laboratoire,
consiste à traiter le spin des atomes comme une dimension synthétique. En utilisant des
procédés Raman, nous pouvons coupler le spin des atomes à leur quantité de mouvement,
générant ainsi un couplage spin-orbite.

Dimensions synthétiques

L’utilisation de dimensions synthétiques présente plusieurs avantages. Tout d’abord, elles
permettent de simuler des systèmes de dimensions supérieures [60]. Par exemple, un réseau
unidimensionnel peut être transposé à un système bidimensionnel en tenant compte du degré
de liberté interne des atomes. Deuxièmement, les dimensions synthétiques permettent de
concevoir à la fois un centre et des bords nets, ce qui permet d’observer les états de bord qui
émergent aux limites d’un système topologique. En outre, ils permettent la mise en œuvre
de champs de jauge artificiels radiaux [61–63], ce qui est difficile à mettre en œuvre dans
les systèmes de matière condensée. Il convient de noter que les dimensions synthétiques
ne se limitent pas aux expériences d’atomes froids et qu’elles sont largement utilisées dans
d’autres domaines, tels que la photonique [36, 64, 65].

Cette méthode d’ingénierie de champs de jauge artificiels présente un inconvénient : elle
nécessite la mise en œuvre de décalages lumineux assez forts, qui se traduisent souvent par
un échauffement important dû à la diffusion de photons hors résonance lorsqu’ils sont utilisés
avec des atomes alcalins, les espèces les plus courantes dans les expériences d’atomes froids.
Ce problème peut être résolu en manipulant des atomes de la famille des lanthanides, dont
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les structures électroniques conduisent à une interaction plus favorable entre la lumière et la
matière.

Les lanthanides

Les lanthanides sont une famille d’éléments chimiques dont les numéros atomiques
sont compris entre 57 et 71. Bien qu’elle soit plus difficile à manipuler et à refroidir que
la plupart des éléments alcalins, cette famille d’espèces atomiques suscite un intérêt croissant.

La structure électronique particulière des lanthanides (c’est-à-dire leur couche f ouverte)
conduit à un riche paysage de transitions électroniques et, pour certains d’entre eux, à
un spin important dans l’état fondamental. Par exemple, l’erbium et le dysprosium ont
respectivement un spin J = 6 et J = 8 dans leur état fondamental, résultant en un impor-
tant moment magnétique et donc à des interactions dipolaires importantes. Pour illustrer
cela, l’interaction dipolaire entre deux atomes de dysprosium est en ordre de grandeur 100
fois supérieure que celle entre deux atomes de rubidium [66]. Ces interactions dipolaires
sont la principale raison de la popularité croissante des expériences sur les lanthanides. En
effet, ces interactions à longue portée peuvent donner naissance à de nouveaux états de la
matière, tels que les gouttes quantiques qui ont été observées récemment [67, 68]. Un autre
exemple frappant est le spectre roton-maxon et son caractère supersolide, qui ont été étudiés
expérimentalement [69–72].

Un autre domaine de recherche utilisant les atomes de lanthanides (et plus particulière-
ment les atomes de dysprosium) consiste à considérer leur spin macroscopique J comme
2J qubits fictifs. Cette méthode peut être utilisée pour étudier des états non classiques
constitués de ces qubits virtuels et a des applications potentielles dans le domaine de la
métrologie [73–75].

Dans notre groupe, nous nous sommes récemment intéressés à la simulation quantique
de systèmes topologiques en considérant le spin du dysprosium comme des dimensions syn-
thétiques. Nous tirons parti du grand spin du dysprosium J = 8 pour avoir à la fois un
cœur et des bords. De plus, nos protocoles nécessitent l’utilisation de décalages lumineux
importants, qui entraîneraient un chauffage significatif s’ils étaient mis en œuvre avec des
atomes alcalins, comme nous l’avons mentionné précédemment. Le dysprosium est bien
adapté pour résoudre ce problème car l’arrangement de ses transitions, qui consiste en de
nombreuses transitions étroites isolées, permet d’éviter la diffusion hors résonance. De plus,
la forme des interactions lumière-matière pour le dysprosium (et plus généralement pour les
lanthanides) bénéficie d’une polarisabilité tensorielle non-nulle, et nous pouvons créer des
décalages de lumière de premier et de second ordre. Il est important de noter également que
la combinaison de l’interaction lumière-matière avec des interactions dipolaires-dipolaires
pourrait conduire à la réalisation de phases topologiques de la matière plus exotiques [66].

Dans cette thèse, nous nous concentrons sur la simulation de systèmes de Hall quantiques
topologiques en utilisant un gaz ultra-froid d’atomes de dysprosium. Un champ de jauge
artificiel est généré en utilisant le processus Raman et en considérant le spin du dysprosium
comme des dimensions synthétiques. Ce manuscrit est organisé comme suit :

Le chapitre 1 est dédié à la présentation de notre dispositif expérimental et des propriétés
du dysprosium. Nous commençons par donner la structure électronique de l’atome de
dysprosium et voyons qu’elle a, notamment, trois conséquences avantageuses. Tout
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d’abord, elle conduit à un grand spin dans l’état fondamental J = 8, ce qui nous per-
met d’avoir un grand nombre (17) de sous-états Zeeman, qui seront très intéressants
une fois interprétés comme des positions selon une dimension synthétique. Ensuite,
la structure électronique du dysprosium lui confère un paysage de transitions élec-
troniques particuliers. Trois transitions larges (de plusieurs MHz) sont situées dans le
domaine bleu-proche UV. De nombreuses transitions fines (de quelques kHz) et bien
espacées, éloignées de ces transitions larges, permettent d’appliquer des décalages lu-
mineux dépendants du spin sans trop souffrir du chauffage causé par ces transitions
larges. Enfin, nous voyons que l’interaction lumière-dysprosium contient un terme ten-
soriel non négligeable, qui nous permet de simuler des Hamiltoniens quadratiques en
spin J2

x , J2
y , J2

z . Nous voyons que la polarisation de la lumière est l’élément principal
pour contrôler la forme de l’interaction lumière-dysprosium. Nous proposons différents
protocoles pour calibrer finement la polarisation de la lumière dans différent régimes, en
utilisant les atomes comme une sonde. Ensuite, nous montrons comment nous pouvons
mesurer la norme du champ magnétique avec des atomes de dysprosium, en mettant
en place le protocole d’interférométrie de Ramsey. Enfin, nous proposons une amélio-
ration possible de l’expérience, consistant en l’utilisation d’un faisceau haute puissance
modulé pour l’étape de transport.

Le chapitre 2 introduit nos protocoles pour simuler des systèmes de Hall quantiques avec
des atomes de dysprosium. Nous présentons tout d’abord un systèmes de fils quantiques
en deux dimensions, et montrons qu’un champ magnétique artificiel, à l’origine d’un
effet Hall quantique, émerge dans cette structure. Nous introduisons avec ce système
des notions de topologies, comme le nombre de Chern. Nous faisons ensuite le lien
entre ce modèle de fils quantiques et notre système, où nous traitons la projection du
spin selon l’axe de quantification, m, comme une dimension synthétique. Nous voyons
que notre système est proche du système de fils quantiques, et qu’en particulier, les
propriétés topologiques sont conservées. Notre protocole consiste à utiliser des lasers
en configuration Raman sur un atome de Dysprosium. Ce faisant, nous couplons le
spin du dysprosium à son moment selon un axe x. En d’autres termes nous générons
un couplage spin-orbite, à l’origine du champ magnétique artificiel, donc de l’effet Hall
quantique dans notre système en deux dimensions. Une dimension réelle, notée x,
est infinie, et l’autre dimension synthétique, m, est discrète et faite des 17 sous-états
Zeeman du dysprosium.

Le chapitre 3 montre comment il est possible de considérer deux dimensions synthétique
au sein du spin du dysprosium. L’idée consiste à combiner deux procédés Raman. L’un
couplant m à m + 1, l’autre couplant m à m − 2. Ce faisant, nous générons au sein
des 17 sous-états Zeeman, des cycles m → m + 1 → m + 2 → m. Nous montrons
théoriquement que cela conduit à l’émergence de deux dimensions synthétiques. La
première, notée m, est la projection du spin selon l’axe de quantification. La seconde,
notée r, est le reste de la division euclidienne de m par 3. Enfin, nous utilisons cette
dimension cylique afin de réaliser expérimentalement un cylindre de Hall quantique.
Nous implémentons dans ce cylindre, pour la première fois, la pompe topologique de
Laughlin.

Le chapitre 4 propose une exploration théorique des systèmes de Hall quantique en quatre
dimensions. Nous commençons par introduire la classification topologique. La plu-
part des classes topologiques n’ont pas encore été étudié expérimentalement, et c’est
en partie le cas pour les systèmes de haute dimensionnalité. Cette introduction mo-
tive l’étude des systèmes topologiques en quatre dimensions. Nous abordons quelques
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propriétés topologiques particulières de l’effet Hall quantique à quatre dimensions. En
particulier, nous introduisons la réponse non-linéaire, quantifié par le second nombre
de Chern. Enfin, nous abordons théoriquement un système de Hall synthétique en
quatre dimensions, avec deux dimensions spatiales et deux dimensions synthétiques.
Ce système résulte de la combinaison des systèmes de Hall présentés dans les deux
chapitres précédents.

Le chapitre 5 présente le résultat principal de cette thèse : la réalisation expérimen-
tale d’un système de Hall en quatre dimensions. Nous commençons par dériver
l’Hamiltonien de notre système et nous détaillons notre protocole expérimental. Nous
présentons ensuite des résultats expérimentaux. Nous commençons par révéler la
topologie non-triviale de notre système en mesurant des états de bord anisotropes
à la frontière de notre système. Ces états de bord anisotrope sont spécifiques à la
haute dimensionnalité. Ensuite, nous caractérisons la topologie du bulk, en mesurant
un second marqueur de Chern égale à 1. Ce second marqueur de Chern quantifie la
réponse non-linéaire du système, un aspect aussi spécifique à la haute dimensionnalité.
Enfin, nous mesurons des orbites cyclotrons en quatre dimensions, et voyons que leur
trajectoire est fondamentalement différente de celle de leur équivalent en deux et trois
dimensions.

Le chapitre 6 se concentre sur la notion de d’Hamiltonien d’intrication. Nous commençons
le chapitre par motiver l’étude de l’Hamiltonien d’intrication. Ce dernier permet
de déterminer l’ordre topologique d’un système de manière unique, et contient plus
d’information que la quantité habituellement utilisée : l’entropie de Von Neumann.
Cependant, cet Hamiltonien est très difficile à calculer pour des systèmes en interaction,
et sa réalisation expérimentale est difficile. Nous suivons le théorème de Bisognano-
Wichmann pour réaliser une approximations de l’Hamiltonien d’intrication d’un sys-
tème de Hall quantique en deux dimensions sans interaction. Cet Hamiltonien est
obtenu en réalisant une déformation de l’Hamiltonien original. Nous mesurons le spec-
tre de cet Hamiltonien et obtenons une relation de dispersion chirale. Via la conjecture
de Li-Haldane, cette relation de dispersion démontre l’existence d’un ordre topologique
dans notre système. Finalement, nous proposons une extension de notre protocole pour
des systèmes en interaction, où la notion d’Hamiltonien d’intrication prend tout son
sens.

Durant ma thèse, j’ai participé à quatre projets différents, trois d’entre eux étant discutés
dans ce mémoire, avec un fort accent sur la réalisation d’un système de Hall quantique en
quatre dimensions. J’ai eu aussi l’opportunité de travailler sur la notion d’intrication de
paire, que je n’ai pas détaillée dans le mémoire. En bref, nous avons considéré le spin J du
dysprosium comme 2J qubits virtuels, et avons étudié les propriétés d’intrication entre ces
qubits. Cette étude a conduit à une publication [76] que nous fournissons en appendice A.
Elle est décrite de manière exhaustive dans les thèses suivantes [77, 78].
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MOTS CLÉS

Simulation quantique, gaz quantiques, effet Hall quantique, matière topologique

RÉSUMÉ

Cette thèse présente des réalisations expérimentales de systèmes topologiques, obtenues avec des atomes de dyspro-
sium. Nos protocoles consistent à encoder deux dimensions synthétiques dans le grand spin du dysprosium, J = 8, et à
les coupler à la quantité de mouvement des atomes via des transitions Raman.
Tout d’abord, nous simulons des systèmes de Hall quantiques en deux dimensions, sur une géométrie plane et sur une
géométrie cylindrique. Dans cette dernière, nous avons pu mettre en œuvre pour la première fois la pompe topologique
de Laughlin, qui est intimement liée à la quantification de la conductance de Hall. Nous présentons ensuite le résultat
principal de cette thèse : la réalisation d’un système de Hall quantique en 4D, en combinant deux dimensions spatiales
et deux dimensions synthétiques. Nous comparons nos résultats avec les prédictions d’un modèle effectif, décrivant
notre système comme une somme directe d’une paire de niveaux de Landau en 2D. Nous révélons des caractéristiques
typiques de l’effet de Hall quantique en 4D, notamment les états de bord anisotropes, la réponse électromagnétique non
linéaire et la quantification du second nombre de Chern.
Enfin, nous revenons à une géométrie bidimensionnelle et étudions l’hamiltonien d’intrication d’un système de Hall quan-
tique à une particule. Une approximation de l’hamiltonien d’intrication est réalisée expérimentalement en s’appuyant sur
le théorème de Bisognano-Wichmann. Nous présentons une feuille de route pour étendre ce protocole à des systèmes
topologiques avec interactions.

ABSTRACT

This thesis presents experimental realisations of topological systems obtained with dysprosium atoms. Our protocols
consist in encoding synthetic dimensions in dysprosium’s large spin, J = 8, and in coupling these synthetic dimensions
to momentum via Raman transitions.
We first emulate quantum Hall systems in two dimensions (one synthetic and one spatial), on a planar geometry and
on a cylindrical geometry. In the latter, we were able to implement for the first time Laughlin’s topological charge pump,
which is intimately linked to the Hall conductance quantization. Afterwards, we present the main result of this thesis : the
realisation a 4D quantum Hall system, by combining two spatial dimensions and two synthetic ones. We compare our
findings with the predictions of an effective model, which describes our system as a direct sum of a pair of 2D Landau
levels. We unveil typical features of the 4D quantum Hall effect, including the anisotropic edge modes, the non-linear
electromagnetic response and the quantization of the second Chern number.
Finally, we return to the 2D geometry, and investigate the entanglement Hamiltonian of a single-particle quantum Hall sys-
tem. An approximation of the entanglement Hamiltonian is experimentally realised by following the Bisognano-Wichmann
theorem. We present a roadmap for extending this protocol to interacting topological systems.

KEYWORDS

Quantum simulation, Quantum gases, Quantum Hall effect, Topological matter
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