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Professeur, École nationale des ponts et chaussées Président

Frédéric Legoll
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Abstract

This thesis is concerned with the application of a Multi-scale Finite Element Method (MsFEM)

to solve incompressible flows in multi-scale media. Indeed, simulating the flow in a multi-scale

media with numerous obstacles, such as nuclear reactor cores, is a highly challenging endeavour.

In order to accurately capture the finest scales of the flow, it is necessary to use a very fine mesh.

However, this often leads to intractable simulations due to the lack of computational resources.

To address this limitation, this thesis develops an enriched non-conforming MsFEM to solve

viscous incompressible flows in heterogeneous media, based on the classical non-conforming

Crouzeix–Raviart finite element method with high-order weighting functions. The MsFEM

employs a coarse mesh on which new basis functions are defined. These functions are not

the classical polynomial basis functions of finite elements, but rather solve fluid mechanics

equations on the elements of the coarse mesh. These functions are themselves numerically

approximated on a fine mesh taking into account all the geometric details, which gives the multi-

scale aspect of this method. A theoretical investigation of the proposed MsFEM is conducted

at both the continuous and discrete levels. Firstly, the well-posedness of the discrete local

problems involved in the MsFEM was demonstrated using new families of finite elements. To

achieve this, a novel non-conforming finite element family in three dimensions on tetrahedra was

developed. Furthermore, the first error estimate for the approximation of the Stokes problem in

periodic perforated media using this MSFEM is derived, demonstrating its convergence. This is

based on homogenization theory of the Stokes problem in periodic domains and on usual finite

element theory. At the numerical level, the MsFEM to solve the Stokes and the Oseen problems

in two and three dimensions is implemented in a massively parallel framework in FreeFEM.

Furthermore, a methodology to solve the Navier–Stokes problem is provided.

Keywords: Multi-scale Finite Element Method, Crouzeix–Raviart element, Navier–Stokes equa-

tions, Heterogeneous media, Numerical Analysis, High Performance Computing.
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Résumé

Cette thèse porte sur l’application d’une méthode d’éléments finis multi-échelles (MsFEM) pour

résoudre les écoulements incompressibles dans des milieux multi-échelles. En effet, la simulation

de l’écoulement dans un milieu multi-échelle comportant de nombreux obstacles, tel que le cœur

d’un réacteur nucléaire, est un défi de taille. Afin de capturer avec précision les échelles les plus

fines de l’écoulement, il est nécessaire d’utiliser un maillage très fin. Cependant, cela conduit

souvent à des simulations difficiles à réaliser en raison du manque de ressources informatiques.

Pour remédier à cette limitation, cette thèse développe une MsFEM non-conforme enrichie pour

résoudre les écoulements visqueux incompressibles dans des milieux hétérogènes, basée sur la

méthode classique des éléments finis non conformes de Crouzeix–Raviart avec des fonctions de

poids d’ordre élevé. La MsFEM utilise un maillage grossier sur lequel de nouvelles fonctions

de base sont définies. Ces fonctions ne sont pas les fonctions de base polynomiales classiques

des éléments finis, mais résolvent les équations de la mécanique des fluides sur les éléments du

maillage grossier. Ces fonctions sont elles-mêmes approximées numériquement sur un maillage

fin en tenant compte de tous les détails géométriques, ce qui confère à cette méthode son aspect

multi-échelle. Une étude théorique de la MsFEM proposée est menée aux niveaux continu et

discret. Tout d’abord, le caractère bien posé des problèmes locaux discrets impliqués dans la

MsFEM a été démontré à l’aide de nouvelles familles d’éléments finis. Pour ce faire, une nouvelle

famille d’éléments finis non conformes en trois dimensions sur les tétraèdres a été développée.

En outre, la première estimation d’erreur pour l’approximation du problème de Stokes dans des

milieux perforés périodiques à l’aide de cette MSFEM est établie, démontrant sa convergence.

Cette estimation est basée sur la théorie de l’homogénéisation du problème de Stokes dans les

domaines périodiques et sur la théorie usuelle des éléments finis. Au niveau numérique, la

MsFEM pour résoudre les problèmes de Stokes et d’Oseen en deux et trois dimensions a été

implémenté dans un cadre massivement parallèle dans FreeFEM. En outre, une méthodologie

pour résoudre le problème de Navier–Stokes est fournie.

Mots clés : Méthode des Éléments Finis Multi-échelles, Élément de Crouzeix–Raviart, Équations

de Navier–Stokes, Milieux hétérogènes, Analyse Numérique, Calcul Haute Performance.
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personnes qui ont rendu ces trois années mémorables.
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accepté de faire partie de mon jury.

Je souhaite ensuite exprimer ma profonde gratitude à ceux sans qui cette thèse n’aurait pas
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2.4 Un exemple illustratif simple en une dimension : un problème de diffusion oscillante 40
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2.5 Maillage de référence Th(Ωε). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



List of Figures

2.6 Coefficient de diffusion Aε , ε = 1× 10−1. . . . . . . . . . . . . . . . . . . . . . 40

2.7 Fonctions de base P1, φi, H = 1/8. . . . . . . . . . . . . . . . . . . . . . . . . . 41
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1.1 Motivation

1.1.1 Multi-scale media

This thesis is concerned with the development of computational methods for incompressible flows

in multi-scale media. A multi-scale medium is a medium with either significant characteristics,

such as diffusion coefficient or thermal conductivity, or its geometry itself, which vary at several

different scales (magnitudes) of space or present an oscillating nature. The latter with a multi-

scale geometry can be found in many areas. We can think, for example, of the soil, which are

made up of materials of different sizes or a dense city, where buildings, cars or other installations
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Chapter 1. Introduction of the thesis

create obstacles of different sizes to the air or water flow. In this thesis, we are interested in this

latter category of multi-scale media. In the literature, they can be referred to by various names:

porous media in the geosciences, congested domains or heterogeneous domains in the nuclear

field, or even perforated domains.

Indeed, at the French Alternative Energies and Atomic Energy Commission (CEA), what

interests us is to compute the flow in the nuclear reactor cores, such as in a Reactor Pressure

Vessel (RPV) of a Pressurized Water Reactor (PWR), which are definitely multi-scale media

with obstacles whose sizes vary across more than four orders of magnitude and whose scales

of interest spread over several orders of magnitude. To get an idea of the scales involved, we

give, in what follows, some numerical values. The overall length of the RPV is about 14 meters.

The reactor core is about 4 to 5 meters in diameter and consists of between 157 and 200 fuel

assemblies (see Figure 1.1). The fuel assembly is about 4 to 5 meters long and consists of

fuel rods or pins generally bundled in a square array of 14 × 14 to 17 × 17. The thickness of

the mixing vanes in the spacer mesh is about 1 centimeter. To summarise, the RPV contains

therefore various scales and the global scale is about 104 times larger than the local scale.

≈
14

m
et
er
s

Figure 1.1: Schematic description of a PWR (left) and a fuel assemby (right) [1].

A typical modelling of such a multi-scale medium is to consider a domain Ω ⊂ Rd (d = 2, 3)

perforated by a set of periodic obstacles Bε, where ε > 0 is the period (or the length-scale of the

heterogeneities). It is important to note that this domain can be also non-periodic. However,

for further quantitative results (see for example Chapter 6 and Chapter 9), especially for homog-

enization, the periodic nature is one of the possible framework. Quantitative homogenization

results can also be obtained in the stochastic framework but with additional hypothesis such as

ergodicity and stationarity [22]. However, this setting is out of the scope of this thesis.

An illustrative example of a perforated domain is given in Figures 1.2 and 1.3 respectively
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1.1. Motivation

in two and three dimensions. The domain Ω is divided into a fixed solid part Bε and its

complementary fluid part Ωε, i.e. Ωε = Ω \Bε.

Boundary of the obstacles ∂Bε

Obstacles Bε

Domain Ωε

ε

Figure 1.2: Two-dimensional porous domain Ωε, obtained from a domain Ω perforated by a set
of solid obstacles Bε.

Obstacles Bε

Figure 1.3: Three-dimensional porous domain Ωε, obtained from a domain Ω perforated by a
set of solid obstacles Bε.

1.1.2 Flow modelling

Once the multi-scale medium given, the flow problem in this medium has to be modelled. In the

case of Pressurised Water Reactors (PWRs), the water in the core reaches approximately 325°C

and is maintained at a high pressure of approximately 150 bar in order to prevent it from

transforming into steam. Under nominal conditions, the Reynolds number in the core is of

the order of 1 × 105, which suggests that the flow is fully turbulent [2, 59]. In this work,

we restrict our attention to incompressible, single-phase problems as a preliminary step before

considering more complex applications. Furthermore, we do not consider turbulent flows, as this

would necessitate the introduction of a turbulence model, such as the k − ε model proposed by

Hanjalić and Launder [89] or the k − ω model proposed by Wilcox [167]. This is beyond the

scope of this thesis. We note the velocity uε and the pressure pε to recall that we solve the flow

in a multi-scale domain with heterogeneities length-scale (or the period) of size ε. An overview

of different flow problems is given below.
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Chapter 1. Introduction of the thesis

The Navier–Stokes equations The incompressible Navier–Stokes equations can be used to

model fluid flows in the domain Ωε. The steady-state incompressible Navier–Stokes problem

with homogeneous Dirichlet boundary conditions is to find the velocity uε : Ωε → Rd and the

pressure pε : Ω
ε → R solution to

−ν∆uε + (uε ·∇)uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Ωε,

(1.1)

with f the applied force and ν > 0 the viscosity.

The Oseen equations The Oseen approximation is a partial linearisation of the Navier–

Stokes equations. The non-linear term (uε ·∇)uε is replaced by the linear term (U0 ·∇)uε,

with U0 a known velocity, called the Oseen velocity. The steady state Oseen problem with

homogeneous Dirichlet boundary conditions is to find the velocity uε : Ωε → Rd and the

pressure pε : Ω
ε → R solution to

−ν∆uε + (U0 ·∇)uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Ωε,

(1.2)

with U0 the Oseen velocity, f the applied force and ν > 0 the viscosity.

In both above problems, the non-linear convective term (uε ·∇)uε for the Navier–Stokes

problem, and the linear convective term (U0 ·∇)uε for the Oseen problem, increase the difficulty

in mathematical analysis and numerical solutions of these problems. The predominance of the

convective term can be predicted by the Reynolds number, noted Re, a dimensionless number,

defined as the ratio between the inertial forces and the viscous forces in the flow, i.e.

Re =
UcL

ν
,

where Uc is a characteristic velocity magnitude, ν the viscosity and L a characteristic length.

The Stokes equations The Reynolds number of flows in porous media is usually small and

the inertial forces can be neglected compared to the viscous forces. This simplification leads

to the Stokes problem. The steady state Stokes problem with homogeneous Dirichlet boundary

conditions is to find the velocity uε : Ωε → Rd and the pressure pε : Ω
ε → R solution to

−ν∆uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Ωε,

(1.3)

with f the applied force and ν > 0 the viscosity.

The first approach, to study the flow in a multi-scale medium, is the direct computation of

one of the flow problems mentioned above (the Stokes, the Oseen or the Navier–Stokes problems).

However, simulating the flow in a multi-scale medium with many obstacles is very challenging.
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Indeed, in such a medium, the flow is influenced by phenomena which occur at the finest scales.

Then, to capture the finest scales of the flow, one needs to use a very fine mesh which often

leads to intractable simulations due to the lack of computational resources. At the CEA, the

computational fluid dynamics (CFD) studies of the nuclear reactor cores are conducted using

the open-source software TrioCFD [45]. It is a software developed for about 20 years in the Nu-

clear Energy Division of the CEA. It is an object-oriented, massively parallel code implemented

in C++, which has been developed for use in a variety of scientific and industrial studies and

research applications. The code has been designed to treat efficiently a range of physical prob-

lems, including turbulent flows, fluid/solid coupling, multiphase flows and flows in porous media

[32, 153, 147]. An overview of the TrioCFD code can be found in [16, 17].

For illustration purposes, let us define a mesh TH of a polyhedral periodic perforated domain

Ωε as a decomposition of Ωε into polyhedra T , each of diameter at mostH. We define the classical

velocity space V = H1
0 (Ω

ε)d and pressure space M = L2
0(Ω

ε) = {q ∈ L2(Ωε), s.t.
∫
Ωε q = 0}

equipped respectively with the |·|1 H1 semi-norm and the ∥·∥0 L2 norm. For non-conforming

approaches, we introduce the broken Sobolev space as

H1(TH) =
{
u ∈ L2(Ωε)d such that u|T∈ H1(T )d, ∀T ∈ TH

}
.

We also define the H1-broken norm |u|H,1 in the H1 broken space as

|u|H,1 =

 ∑
T∈TH

|u|2H1(T )

 1
2

.

Then, we can think about solving the Stokes equations (1.3) in this domain Ωε. Assume that

the Stokes problem is discretized with the Crouzeix–Raviart Finite Element [61], then, it is well-

known that the error between the exact solution (uε, pε) and its finite element approximation

(uH , pH) is given by

1

|uε|H1(Ωε)

(
|uε − uH |H,1 + ∥pε − pH∥L2(Ωε)

)
≤ CH

(
|uε|H2(Ωε) + |pε|H1(Ωε)

) 1

|uε|H1(Ωε)︸ ︷︷ ︸
βε

,

with C a constant independent of the mesh. Now, it is known that in the periodic case (see

Chapter 6 for more details), functionally, i.e. for the function and its derivatives of any order,

we have uε ≈ ε2u(x, xε ) and therefore the term βε is of order ε−1 (since at each derivation of

u(x, xε ), a factor 1/ε comes out). Consequently, obtaining a good approximation of the solution

requires a mesh size H much smaller that ε. Since ε can be very small in practice, satisfying

this condition is often impossible. For example, to capture the finest scales of the flow in the

physical RPV presented above, a typical mesh to discretize this domain can contain hundreds of

millions of elements. It is clear that direct simulations on such a mesh require a massive amount

of memory and computing time, which can exceed today’s computing power. Even if such a

computation is possible, it cannot be done on a regular basis, but only in exceptional cases, as

the CFD calculations of turbulent flows around PWR mixing grids with more than one billion
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degrees of freedom done in TrioCFD [32].

In order to overcome these difficulties, a popular class of numerical methods, based on

the strategy of averaging or “upscaling”, has been developed. It corresponds to the process

to approximate fine scale models by a coarse scale models. In whats follows, we present two

methods of upscaling, the Representative Elementary Volume (REV) and homogenization.

1.1.3 Approaches based on averaging strategy or upscaling

Representative Elementary Volume (REV) REV is a first method to “upscale” or average

fine scale models [149]. The idea of this approach is the following [102]. Let u be a real valued

function on a domain Ω which describes certain physical quantities with rapid spatial oscillations.

To smoothen this function, one considers local averages of the form

⟨u⟩(x) =
∫
V (x)

u(y)dy,

where V (x) is a small neighborhood of the point x of the size of a REV. If the oscillations of

u reflect the behaviour of the physical quantity in question on a “microscale”, the averaged

function ⟨u⟩ is supposed to describe its properties on a larger scale, i.e. on a “macroscale”.

Several works [56, 120] applied this strategy to derive coarse scale model of the flow in porous

media.

Homogenization Homogenization is another mathematical method that allows to “upscale”

or average differential equations [102]. The idea of homogenization is to consider a family of

functions uε (where ε > 0 is a spatial (length) scale parameter). And then, ones have to

determine the limit

u = lim
ε→0

uε, (1.4)

and considering this limit as the result of the upscaling procedure. The objective of the homoge-

nization procedure is to determine the differential equations that the limit u satisfies and proving

that (1.4) holds. Applied to incompressible flows, it is well-known that the homogenization of

the Stokes equations (1.3), i.e. finding the limit system satisfied by the limit of (uε, pε) as ε goes

to zero [154, 160, 9], leads to Darcy’s law for the velocity u and the homogenized pressure p∗,
u = 1

νA
∗(f −∇p∗) in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω,

where A∗ is a constant permeability tensor (see Chapter 6 for more details). This method is often

combined with upscaling method in which the fine scales properties of the problem are averaged

in order to find effective macroscopic parameters, which are then introduced in the coarse scale

model defined by the homogenization theory. For example, in case of the Darcy problem, this

method consists in finding an effective permeability from local permeabilities. This method has

been applied for several problems in the literature to derive coarse scale flow problems in highly

heterogeneous media or composite materials [169, 51, 110, 53, 77, 109].

8
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The drawback of these two mentioned approaches is that only the average behaviour of the

flow is captured. Indeed, they cannot capture the flow behaviour at the finest scales, for example

the oscillating or fluctuating features, unless correctors are used.

To overcome this limitation, another approach, inspired by these ideas, has been developed

to attempt to resolve scales below the coarse mesh scale. Instead of computing the effective

properties as in upscaling approaches, the fine scale features are incorporated in the coarse scale

computation via a multi-scale approach. Most of the methods using this approach consist in

solving fine scale problems and then, using these solutions in a coarse scale problem. A review

of some multi-scale methods is done in Section 1.2. In this thesis, we focus on one of them,

which is the Multi-scale Finite Element Method (MsFEM), since it is the continuation

of previous works on MsFEM for incompressible flows [111, 78, 79]. In Section 1.3, we give the

main ideas of MsFEM and we illustrate this approach through a simple example in Section 1.4.

Then, in Section 1.5, we give an overview of the development of MsFEM in the literature.

1.2 An overview of different multi-scale methods

In this section, we give an overview of different multi-scale methods developed in the literature.

1.2.1 The Variational Multi-scale Method (VMS)

The Variational Multi-scale Method was first introduced by [106, 108] as a general procedure

for deriving numerical methods capable of dealing with multi-scale phenomena. This method is

based on the decomposition of the solution, u = u + ũ, where u is the resolved part or coarse

scale and ũ is the unresolved part or fine scale. Then, it consists in solving u numerically and

attempting to determine ũ analytically, eliminating it from the problem for u.

1.2.2 Localized Orthogonal Decomposition (LOD)

The Localized Orthogonal Decomposition (LOD) was first introduced in [97, 98], in which the

authors construct a local generalized finite element basis for elliptic problems with heterogeneous

and highly varying coefficients. The basis functions are solutions of local problems on vertex

patches. The advantage of this method is that the local problems are localized with a fast

decrease allowing to restrict the computational domain of the local problems on a small patch.

This method has been applied successfully in the literature for example for Helmhotz-type

problem [140], for wave equation [6] or for performing numerical homogenization [95, 13].

1.2.3 Heterogeneous Multi-scale Method (HMM)

The Heterogeneous Multi-scale Method (HMM) was first introduced in [166, 67]. This method

provides a general methodology for the efficient numerical computation of multi-scale and multi-

physics problem, involving a macroscopic model U and a microscopic model u. These models

are defined on different domains and are linked together with reconstruction and compression

operators. The aim of this method is to approximate the macroscopic state of the system on a

macroscopic grid that resolves the large scale of the problem, and estimate the necessary missing

9
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data for the macroscale scheme from the microscopic scheme. This method involves therefore

two main components: an overall macroscopic scheme for U and an estimate of the missing

data from the microscopic model for u. This method is qualified as heterogeneous to emphasize

the fact that different physical models and numerical techniques are used at different scales

and on different grids. This method has been applied successfully in the literature for different

problems such as diffusion problems [7], homogenization problems [68, 66] or for modelling

complex fluids [150].

1.2.4 Multi-scale Finite Volume Method (MsFVM)

The Multi-scale Finite Volume Method (MsFVM) was first introduced by [112] for sub-surface

flow simulations and extended in [113] for multiphase flows and transport in porous media. This

method is based on the construction of two set of basis functions: the first one is used to build

transmissibilities for the coarse scale problem and the second one is used to reconstruct the fine

scale velocity field from the coarse solution. These basis functions which ensure the mass balance

at both scales are computed on a dual grid. This method was mainly applied for subsurface flow

and reservoir simulations [126, 168, 114, 137, 87, 127, 88].

1.2.5 Multi-scale Hybrid Mixed Method (MHM Method)

The Multi-scale Hybrid Mixed Method (MHMMethod) was first introduced by [91] for the Darcy

problem and by [19] for elliptic problems. This method aims to incorporate multiple scales into

the construction of basis functions. This method is based on a mixed-formulation: it relaxes the

continuity of the primal normal component through the action of Lagrange multipliers, while

ensuring the strong continuity of the normal component of the flux. The local problems consist

in finding basis functions that approximate the space of the Lagrange multipliers. This method

has been applied for advection-reaction dominated problems with heterogeneous coefficients [92]

or for second order elliptic problems with rough periodic coefficients [143]. It has been used as

well, for solving in heterogeneous media, the Stokes and Brinkman problems [20], the Maxwell

equations [119], the Helmholtz equation [47] or the Oseen problem [18].

1.2.6 Other multi-scale approaches

There are several other methods in addition to the ones mentioned above. We can cite for

example the Mortar Multi-scale Finite Element Methods [85] used for solving Stokes and Darcy

flows or the Multi-scale Discontinuous Galerkin Method [73, 72] used for second order elliptic

problems.

1.3 Introduction to Multi-scale Finite Element Method (Ms-

FEM)

The main idea of the Multi-scale Finite Element Method (MsFEM) is to approximate a global

problem on a coarse mesh TH , which does not take into account the geometric details (see

for example Figure 1.4b), using a Galerkin approximation. However, the basis functions are

10
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no longer the classical Lagrange polynomial basis functions of finite elements, but solve local

problems on the elements T of the coarse mesh. These functions are themselves numerically

approximated on a fine mesh Th(T ) taking into account all the geometric details (see for example

Figure 1.4c), which gives the multi-scale aspect of this method.

So far, we have not made any assumptions about the shape of the elements of the coarse mesh.

These elements may be of different types (triangles, squares or polygons in two dimensions,

and tetrahedra, rectangles or polyhedra in three dimensions). However, for convenience, the

elements of the coarse mesh are chosen to be triangles and tetrahedra (respectively in two and

three dimensions) in the different illustrations and in the numerical simulations.

Two key points should be considered at this stage. The first point is that these local basis

functions do not depend on the boundary conditions and the applied forces of the global problem.

Consequently, these basis functions can be reused to solve the global problem but with different

boundary conditions and applied forces, which makes this method very relevant for parametric

studies. The second point is that the basis functions are entirely local, i.e. the basis functions

associated with a given coarse element is independent of those of other coarse elements. This

point makes the computation of the local basis functions very efficient, since their computations

can be done entirely in parallel, i.e. without any communication between the different elements

of the coarse mesh.

This method consists of two main steps, described below.

The offline step The first step, called the offline step, corresponds to the computation of the

local basis functions in each coarse element of the coarse mesh, by solving local problems of type

AT (ϕ, v) = FT (v). During this step, matrices of the global problem are assembled. This step

is considered as the expensive stage since it requires to solve, possibly in parallel, several local

problems on fine meshes.

The online step Once the basis functions computed, the second step, called the online step,

consists in assembling the right-hand side, applying the boundary conditions and solving the

global problem of type ATH (u, v) = FTH (v) on the coarse mesh. This step is considered as the

cheap stage, since it implies to solve a problem on a coarse mesh which contains few elements. If

the global problem needs to be recomputed, but with different boundary conditions and loads,

only the online step, i.e. the cheap one, needs to be re-computed.

A third step consists in reconstructing the solutions on the fines meshes and post-processing

the results.

To summarise, the MsFEM procedure reads as follows.

11
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Algorithm 1.1 (MsFEM procedure).

� Partition the domain into a set of coarse elements, which forms the coarse mesh (see

Figure 1.4b).

� Offline stage. For each coarse element (In parallel):

– Partition the element into a fine mesh (see Figure 1.4c).

– Construct multi-scale basis functions by solving local problems on this fine mesh.

– Compute matrices locally and assemble global matrices.

� Online stage. Apply boundary conditions, assemble the right-hand side and solve the

global problem on the coarse mesh.

� For each coarse element (In parallel):

– Reconstruct fine-scale solutions on the fine meshes.

– Post-process the solutions.

(a) Heterogeneous domain Ωε. (b) Coarse mesh TH and element T .

(c) Fine mesh Th(T ).

Figure 1.4: Description of MsFEM procedure.

For the sake of comparison, the fine-scale solutions can be reconstructed on the whole fine

mesh, called “reference mesh”, given in Figure 1.5.
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Figure 1.5: Reference mesh Th(Ωε).

In what follows, for the sake of understanding, we illustrate the MsFEM through a simple

example: a diffusion problem with oscillating diffusion coefficient in one dimension.

1.4 A simple illustrative example in one dimension: an oscillat-

ing diffusion problem

Let I be the interval [0, 1] ⊂ R and f ∈ L2(I) be a given function. We consider the following

diffusion problem with homogeneous Dirichlet boundary conditions.

− d

dx

(
Aε(x)

duε
dx

(x)

)
= f(x) in I,

uε(0) = 0,

uε(1) = 0.

(1.5)

We consider the following oscillating diffusion coefficient Aε,

Aε(x) =
1

2 + cos (2π(x/ε))
,

with ε > 0 a small parameter. The oscillations of Aε are presented in Figure 1.6 for ε = 1×10−1.

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

x

A
ε
(x
)

Figure 1.6: Diffusion coefficient Aε, ε = 1× 10−1.
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For the particular right-hand side f = 1, the exact solution to the problem (1.5) is given by

uε(x) = x− x2 + ε

2π

(
1

2
− x
)
sin
(
2π
x

ε

)
+

ε2

4π2

(
1− cos

(
2π
x

ε

))
.

The weak formulation of problem (1.5) is to find uε ∈ H1
0 (I) such that, for all v ∈ H1

0 (I),

a(uε, v) =

∫
I
fvdx,

with

a(uε, v) =

∫
I
Aε(x)

duε
dx

dv

dx
dx.

LetN ∈ N∗ be a given integer. Let the segment I be divided intoN+1 sub-intervals Ii = [xi, xi+1]

of size H = 1
N+1 with i ∈ J0, NK. Let us suppose that the exact solution to (1.4) is approached

by the solution to the following discrete problem. Find uH ∈ VH such that, for all vH ∈ VH ,

a(uH , vH) =

∫
I
fvHdx, (1.6)

where VH , the approximation space, is a subset of H1
0 (I) to be defined.

Approximation with piecewise affine functions First we propose to solve (1.6) with linear

piecewise functions. The approximation space is the P1 Lagrange space, defined as

VH =
{
φ ∈ C0(I) s.t. φ = 0 on ∂I, φ|Ii∈ P1(Ii), ∀i ∈ J0, NK

}
,

where P1(Ii) denotes the space of polynomials of total degree at most 1 in Ii. The basis of this

space in one dimension is shown in Figure 1.7.
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)

Figure 1.7: P1 basis functions φi, H = 1/8.

The approximation of the oscillating problem (1.5) with affine piecewise functions is given

in Figure 1.8. It can be easily seen that the P1 approximation of this problem fails to capture

the oscillating solution, unless using a very fine mesh. To solve this problem, the integrals

have been computed using the default quadrature formula in FreeFEM for one-dimensional

integration, i.e. qforder = 6, which is exact on P5.
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It should be noted that the phenomena observed in Figure 1.8 two causes: an insufficient

precise integration of Aε(x) when H is large and an intrinsic aspect of the P1 approximation

which fails to capture the oscillations [13].

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

x

u
(x
)

uε
P1 approx. of uε , H = 1

8

P1 approx. of uε, H = 1
32

P1 approx. of uε , H = 1
100

Figure 1.8: Finite element approximation of the oscillating diffusion problem.

Approximation with MsFEM approach Now, instead of considering an approximation

space consisting in piecewise affine functions, we consider an approximation space composed of

well-adapted functions to the oscillating problem. We define the new approximation space VH

as

VH =

{
φ ∈ C0(I), − d

dx

(
Aε(x)

d

dx
φ(x)

)
|Ii= 0, ∀i ∈ J0, NK

}
,

The basis of this space in a one-dimensional domain is shown in Figure 1.9. It can be seen that

the basis functions encode the oscillating nature of the problem in themselves.
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Figure 1.9: MsFEM basis functions, φi, H = 1/8.

The approximation of the oscillating problem (1.5) with the Multi-scale Finite Element
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Method is given in Figure 1.10. It can be seen that, now, MsFEM allows to approximate the

solution to problem (1.5) much better than the P1 Finite Element. In addition, the plot of

the gradient of the multi-scale approximation in Figure 1.11 (computed element-wise since the

gradients are not continuous at the interface of coarse element) allows to see that the multi-scale

approach allows to capture the oscillations of the solution compared to the P1 approximation

which does not see the oscillations.
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Figure 1.10: MsFEM approximation of the oscillating diffusion problem.
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Figure 1.11: Gradient of MsFEM approximation of the oscillating diffusion problem.

The following section presents an overwiew of the development of Multi-scale Finite Element

Methods (MsFEMs) in the literature.
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1.5 An overview of Multi-scale Finite Element Methods (Ms-

FEMs) in the literature

Given that the evolution of the MsFEM has been largely motivated by the improvement of

the error estimate between the exact solution (denoted with the index ε) and the approximated

solution (denoted with the index H), we include in loose terms the corresponding error estimates

in this overview. In these estimates, H is the size of the coarse mesh which consists of coarse

elements T , and C a generic constant that does not depend on H. It should be noted that the

error estimates presented in this section are valid only for periodic coefficients, and obtained

by assuming that the computation of the local basis functions is exact. For non-conforming

approaches in case of perforated domains Ωε, we define the broken Sobolev space as

H1(TH) =
{
u ∈ L2(Ωε)d such that u|T∈ H1(T ∩ Ωε)d, ∀T ∈ TH

}
,

and the H1-broken norm |u|H,1 in the H1 broken space as

|u|H,1 =

 ∑
T∈TH

|u|2H1(T∩Ωε)

 1
2

.

1.5.1 MsFEM for elliptic problems

In the context of the preliminary work that has been carried out by [24, 133], the original Multi-

scale Finite Element Method was first introduced in [104] for elliptic problems in composite

materials as well as in porous media and in [103] for elliptic problems with rapidly oscillating

coefficients. In these first works, the following elliptic problem has been considered

−div (Aε∇uε) = f in Ω, uε = 0 on ∂Ω, (1.7)

with Aε an oscillating diffusion coefficient. The local basis functions are computed using a similar

elliptic problem in each coarse element. For their computations different boundary conditions

have been chosen. Considering first linear boundary conditions on each coarse element, this

method leads to the following error estimate

|uε − uH |1 ≤ C
(√

ε+H +

√
ε

H

)
, (1.8)

where uH is the solution obtained using the MsFEM. Oscillatory boundary conditions (bound-

ary conditions that are given by the solution to the oscillatory ordinary differential equation

obtained by taking the trace of the original equation on edges) have also been considered. It

was shown that the same bound of the error (1.8) holds for this approach. Nevertheless, numeri-

cal examples showed that using oscillatory boundary conditions leads to significant improvement

on the accuracy of the numerical results. However, it was shown that considering one of these

two types of boundary conditions leads to a resonance between the mesh scale and the small scale

in the physical solution. This is emphasized by the presence of the term
√

ε
H , called “resonance

error”, in the error estimate (1.8).
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Then, to mitigate the cell resonance, due to the boundary layers and the choice of boundary

conditions, [104, 71] proposed the so-called oversampling method. This method consists in

solving the local problems on a domain bigger than the coarse element and then truncating

the solution inside the coarse element. This method, which makes the solution less dependent

of the boundary conditions chosen, leads to non-conforming problems since quantities are not

continuous on the element borders. It was shown that using oversampling leads to the following

error estimate

|uε − uH |H,1 ≤ C
(√

ε+H +
ε

H

)
. (1.9)

From (1.9), it is easy to see that the resonance is mitigated, but still exists.

Consequently, to remove the “cell resonance”, in [105], the approach has been modified,

introducing a Petrov–Galerkin formulation with non-conforming multi-scale trial functions and

linear test functions. Using this new approach, the following error estimate has been reached,

|uε − uH |H,1 ≤ C
(√
ε+H + ε

)
,

which does not involve the “resonance error”. A complete study of these first methods can be

found in [70].

In [12], Multi-scale Finite Element Method has been used to perform numerical homogeniza-

tion of diffusion problems. The same elliptic problem (1.7) has been considered. One of the

novelty of this work is the introduction of a composition rule, or change of variables, for the

construction of finite element basis which allows a simple treatment of high-order finite element

methods. An optimal fine mesh size h minimising the numerical error has also been exhibited.

Inspired by [12], [101] developed a high-order Multi-scale Finite Element Method for elliptic

problems with highly oscillating coefficients, but by constructing a more explicit multi-scale

finite element space.

One of the last improvement in the field of Multi-scale Finite Element Methods was to con-

sider a method in the vein of the classical Crouzeix–Raviart finite element method, i.e. a method

in which the continuity through the faces of the coarse elements is enforced in a weak sense:

only the mean value is continuous through the faces. Since boundary conditions are required on

each coarse element, the MsFEM à la Crouzeix-Raviart allows natural boundary conditions on

the faces of the coarse element. This method was first introduced in [121] for highly oscillatory

elliptic problems (1.7). In order to solve this problem, the Galerkin approximation space has

been constructed from ideas similar to those by Crouzeix and Raviart in their construction of a

classical finite element space [61]. The following error estimate has been reached,

|uε − uH |H,1 ≤ CH∥f∥L2(Ω) + C

(√
ε+H +

√
ε

H

)
∥∇u∗∥C1(Ω),

where u∗ is the solution to the homogenized problem and with the constant C independent of

H, ε, f and u∗. Although the error estimate was not improved compared with the MsFEM

with linear boundary conditions on each coarse element, numerical experiments showed that

this approach outperforms the classical one.
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This work has been pursued in [122], in which the approach was adapted to address multi-

scale problems on a perforated domain Ωε, considering the following problem. Find uε : Ω
ε → R,

the solution to

−∆uε = f in Ωε, uε = 0 on ∂Ωε.

The main novelty of this approach is the enrichment of the multi-scale finite element space

using bubble functions. In the case of periodic perforations in two dimensions, with a sufficient

regularity of the right-hand side f , the approximation uH satisfies

|uε − uH |H,1 ≤ Cε
(√

ε+H +

√
ε

H

)
∥f∥H2(Ω),

with a constant C independent of H, ε and f , but depending on the geometry of the mesh and

other parameters of the problem.

Next, in [63], the application of MsFEM à la Crouzeix-Raviart has been extended to advection-

diffusion problems with non-homogeneous boundary conditions. The following problem has been

considered. Find uε : Ω
ε → R, the solution to
−div (Aε∇uε) +w ·∇uε = f in Ωε,

uε = 0 on ∂Bε ∩ Ωε,

uε = g on ∂Ω ∩ Ωε,

with w the advection term. Through several numerical examples, it was shown that this par-

ticular method outperforms more conventional MsFEM approaches. The study of MsFEM for

advection-diffusion problems has been the subject of numerous theses [141, 128, 33].

Recently, [123] developed another MsFEM approach for diffusion problems with oscillatory

diffusion coefficient, in which the basis functions associated to faces and elements are enriched

using Legendre polynomials. This approach allows to reduce the “resonance error” in the regime

where the coarse mesh size H is of order of the small scale ε of the oscillations. Besides, MsFEM

for elliptic distributed optimal control problem with rough coefficients has been investigated

in [38, 39].

In addition other works [99, 46] deal with adaptative MsFEM by computing an a posteriori

error estimate which depends on the coarse mesh size H and the fine mesh size h.

1.5.2 Extension of MsFEM to incompressible flows

The first use of MsFEM for incompressible flow was done in [136], in which the authors proposed

an MsFEM à la Crouzeix–Raviart (i.e. only the mean value of the velocity is continuous through

the faces of the coarse elements) for solving the Stokes problem (1.3). However, they reached

an error estimate that was not entirely satisfactory since depending on the oscillating nature of

the exact solution on the faces of the coarse elements.

Then, [111] generalized this method to arbitrary sets of weighting functions used to enforced

continuity across the faces of coarse elements. They gave an error bound for a particular set

of weighting functions in a periodic setting in two dimensions (the so-called CR3 MsFEM, in
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which the three weighting functions on faces are e1, e2, the canonical basis of R2, and the

normal component of a linear polynomial), which reads as follows

|uε − uH |H,1 + ε∥pε − pH∥L2(Ωε)

≤ Cε
[(
H +

√
ε+

√
ε

H

)(
∥f∥H2(Ω)∩C1(Ω) + ∥p

∗∥H2(Ω)

)]
,

where p∗ is the homogenized pressure and C is a constant depending only on the mesh regularity

and the perforation pattern.

Next, [135] extended this approach for solving the Oseen problem (1.2) in heterogeneous

media. However, the applications were limited for small Reynolds number. Recently [79] de-

veloped an enriched non-conforming MsFEM for solving the Stokes problem in heterogeneous

media, which generalized the method proposed in [111], by considering high-order sets of weight-

ing functions on the faces as well as in the elements, rather than just high-order sets of weighting

functions on the faces.

1.5.3 Conclusion

In this section, several MsFEMs have been described. However, it is relevant to note that in

all the works presented in this review, the numerical applications have been considered only

in two-dimensional domains. Furthermore, the study of the different estimates (obtained by

assuming that the computation of the local basis functions is exact) presented in this section is

not straightforward. Indeed, the errors converge to zero as H and ε tend to zero together (the

convergence of H to zero depending, nevertheless, on that of ε). However, for a given ε (fixed),

the error between the exact solution and the multi-scale approximation is not expected to tend

to zero as the coarse mesh size H decreases (in the regime nevertheless in which H > ε), but

will be bounded by a quantity depending on ε. An optimal value of H that minimises the error

can be found.

This thesis work is the continuation of the study led in this latter work [79]. Especially, this

thesis focus on the discrete level by showing the well-posedness of the discrete local problems

and by deriving an error estimate for the MsFEM approximations. We propose also an extension

of this method for solving the Oseen problem. The main contributions of the thesis are listed

in Section 1.6. The Multi-scale Finite Element Methods (MsFEMs) described in this thesis are

intended to be incorporated into the software TrioCFD. However, for the sake of convenience, the

preliminary numerical applications of this method are done in FreeFEM software [93], a more

academic software, chosen for its flexibility to implement new finite elements and its ease of

use for implementing and testing different methods. FreeFEM is an open-source parallel finite

element software. It allows to solve problems involving partial differential equations arising

from several branches of physics, such as fluid mechanics, fluid-structure interactions and many

others. In FreeFEM, the problem to be solved is defined in terms of its variational formulation.

FreeFEM is written in C++ and its language is a C++ idiom. For more complex applications, we

also take advantage of the fact that FreeFEM interfaces different libraries such as the partitioner

METIS [118] or the PETSc library [28].
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1.6 Contributions of the thesis

The main contributions of this thesis can be divided in two parts. Indeed, the first contributions

(Contributions 1 to 3) concern the development of preliminary tools, useful for the analysis

of the Multi-scale Finite Element Method (MsFEM). However, it is important to note that

these preliminary tools are not limited to the study of the MsFEM but can be re-employed in

other contexts. Contribution 1 concerns the derivation of a quantitative sharp convergence

rate of the homogenization of the Stokes problem in a perforated domain. The main theorem

of this contribution is one of the main ingredient of the derivation of an error bound for the

MsFEM applied to the Stokes problem. Contribution 2 concerns the introduction of a new

family of non-conforming finite element in three dimensions on tetrahedra in the vein of the

non-conforming finite element introduced in [132] in two dimensions on triangles. These families

of non-conforming finite element, in two and three dimensions, allow to prove the discrete

well-posedness of local problems arising from the MsFEM applied to the Stokes or the Oseen

problem. Indeed, for these locals problems involving Lagrange multipliers, the well-posedness

cannot be shown with classical pairs of finite elements. Consequently, for numerical purposes,

Contribution 3 concerns the implementation of the new non-conforming finite elements in

FreeFEM source code. Afterwards, the other contributions (Contributions 4 to 7) concern

more specifically the analysis of the MsFEM from a theoretical and numerical point of view.

Contribution 1 The first contribution is concerned with the derivation of a quantitative sharp

convergence rate of the homogenization of the Stokes problem (1.3) in a periodic perforated

domain. This contribution is presented in Chapter 6 and led to a publication [30]. It is well-

known that the homogenized or effective equations for the Stokes system, in a periodic perforated

domain, is Darcy’s law for the velocity u and the homogenized pressure p∗,
u = 1

νA
∗(f −∇p∗) in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω.

where A∗ is a constant permeability tensor (see Proposition 6.5). We establish a sharp con-

vergence rate O(
√
ε) for the energy norm of the difference of the velocities and the pressures,

where ε represents the size of the solid obstacles. This is achieved by using a two-scale asymp-

totic expansion of the Stokes equations and a new construction of a cut-off function which avoids

the introduction of boundary layers. This
√
ε error estimate has been first derived by [111] in

a two-dimensional space, and was independently and further improved in [156] for any space

dimension d ≥ 2, both under the assumption of isolated solid obstacles (as in Figure 6.1). How-

ever, this assumption is not physically realistic in dimension d ≥ 3. Therefore, we extend this
√
ε

error estimate to the case of connected solid obstacles in any dimension space d ≥ 2.

Before stating the main result (in loose terms, see Theorem 6.9 for a precise statement) we

need to introduce some notations. Actually the Darcy velocity u does not see the solid obstacles

and thus cannot be a good approximation of the original velocity uε. It must be corrected by
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introducing a better approximation which is

u2

(
x,
x

ε

)
=

1

ν

d∑
i=1

ωi

(x
ε

)(
fi(x)−

∂p∗

∂xi
(x)

)
,

where the local velocities ωi are solutions of cell problems (6.6). Actually the link between u2

and the Darcy velocity u is that u(x) is the average of u2(x, y) with respect to the periodic

variable y. The main novelty is that our analysis applies for the physically relevant case of

a porous medium where both the fluid and solid parts are connected. In loose terms, this

contribution reads as follows.

Theorem 1.2. Let uε, pε be the solution to the Stokes problem (1.3) and u2, p
∗, their

homogenized approximations. Assuming that f is smooth enough, there exists a constant C,

independent of ε, such that
∥pε − p∗∥L2(Ωε)

∥p∗∥L2(Ωε)
≤ Cε

1
2 ,

|uε − ε2u2|H1(Ωε)

|ε2u2|H1(Ωε)
≤ Cε

1
2 ,

∥uε − ε2u2∥L2(Ωε)

∥ε2u2∥L2(Ωε)
≤ Cε

1
2 .

Theorem 1.2 is stated in terms of relative errors since ε2u2 (and thus uε) is small. This

theorem is used in the derivation of an error estimate for the MsFEM approximation of the

Stokes problem in a periodic perforated domain (see Section 9.2).

Contribution 2 The second contribution is the development of a family of scalar non-conforming

finite elements of accuracy order two and three with respect to the H1-norm on tetrahedra. This

contribution is presented in Chapter 5 and led to a publication [29]. Indeed, for the class of

MsFEM developed in this thesis, the local problems involve polynomial divergence and Lagrange

multipliers, and therefore cannot be solved using classical pairs of finite elements. In two di-

mensions, the non-conforming finite elements introduced by [132] (and presented in Chapter 4)

associated with discontinuous piecewise polynomial pressures of order n allow to solve these

local problems. However, in three dimensions, no existing finite element pairs led to a discrete

problem whose well-posedness could be proved, except the ones developed here. Therefore, in

the vein of [132], we introduce a family of scalar non-conforming finite elements of order two

and three with respect to the H1-norm on tetrahedra. Their vector-valued version generates,

together with a discontinuous pressure approximation of order one and two respectively, an

inf-sup stable finite element pair of convergence order two and three for the Stokes problem in

energy norm. The scalar (local) degrees of freedom are defined by moments on faces Fα and in

tetrahedra K as

NFα
j (v) =

∫
Fα

vLFα
j j ≥ 0, α = 1, 2, 3, 4,
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NK
j (v) =

∫
K
vMK

j j ≥ 0,

where (LFα
j )j define an arbitrary basis of Pn(Fα) of dimension (n + 1)(n + 2)/2, and (MK

j )j

define an arbitrary basis of Pn−1(K) of dimension n(n+1)(n+2)/6. For each element K in the

mesh Th and any integer n ≥ 1, we define the set of degrees of freedom Nn+1(K) by

Nn+1(K) :=

{
NFα

j 1 ≤ j ≤ (n+ 1)(n+ 2)

2
, α = 1, 2, 3, 4

}
∪
{
NK

j 1 ≤ j ≤ n(n+ 1)(n+ 2)

6

}
.

(1.10)

Following [132], we enrich the local space Pn+1(K) with a proper subspace of Pn+2(K), de-

noted by Σn+2(K) ⊂ Pn+2(K), with a trivial intersection with Pn+1(K). Thus, the enriched

space Vn+1(K) is given by

Vn+1(K) = Pn+1(K)⊕ Σn+2(K).

Such spaces Vn+1 have been found only for the cases n = 1 and n = 2. Then, the main lemma

of this contribution reads as follows.

Lemma 1.3. Let K be a tetrahedron with barycentric coordinates λ1, λ2, λ3, λ4. Then, the

finite element spaces

V2 = P2 + span{λ1λ22, λ1λ23, λ2λ23},

and

V3 = P3 + span{λ31λ2, λ32λ3, λ33λ4, λ34λ1, λ32λ1, λ31λ4, λ34λ3, λ33λ2},

are unisolvent, respectively, with respect to the set of degrees of freedom N2 and N3 described

in (1.10).

It should be noted that the finite element spaces V2 and V3 described in Lemma 1.3 are not

unique (see for example the list of all suitable basis V3 in Appendix A.2). Furthermore, for the

case n = 1, we recover the finite element proposed by [50].

Contribution 3 As explained above, the discrete well-posedness of the local problems involved

in MsFEM is shown with non-classical finite element. Indeed, in two dimensions we made use

of the family of finite elements introduced in [132] and presented in Chapter 4. In three di-

mensions, we made use of the family of finite elements introduced in Chapter 5 and in [29]. In

both cases, these finite elements are associated with discontinuous polynomial pressure approx-

imation of order n. Consequently, for numerical purposes, i.e. the computations of the local

basis functions, these new finite elements have been implemented in FreeFEM [93] source code.

First, we implemented the non-conforming finite element of accuracy order three, introduced in

[132], in FreeFEM source code, and it is known under the name P3pnc1. The non-conforming

1https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc.cpp
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finite element of accuracy order two, known under the name P2pnc2 was already implemented.

For numerical applications in three dimensions, we implemented the two non-conforming finite

elements, of order two and three discussed in Chapter 5 and in [29]. They are known respec-

tively under the name P2pnc3d3 and P3pnc3d4. It is pertinent to highlight that as well as

being useful for this thesis, these non-conforming finite elements can now be used

by any FreeFEM users to solve physical problems.

Contribution 4 We propose the first error estimate for the approximation of the Stokes

problem in a periodic perforated domain using the MsFEM developed in this thesis, which

allows to show the convergence of the proposed method. The derivation of the error estimate

is presented in Section 9.2 and is based on the Strang Lemma, which is the classical lemma for

error estimation for non-conforming finite element method, and the quantitative homogenization

convergence introduced in Chapter 6. This error estimate is obtained by assuming that the

computation of the local basis functions is exact. The methodology used is inspired by the error

derivation done in [111]. The main result reads in loose term (see Theorem 9.27 for a precise

statement) as follows.

Theorem 1.4. Let f be sufficiently smooth. The following error bound holds between the

solution (uε, pε) to the Stokes problem (1.3) in perforated periodic domain and its MsFEM

approximation (uH , pH).

ε−1|uε − uH |H,1+∥pε − pH∥L2(Ωε)

≤ C
(
Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω) +

(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
where the constant C is independent of ε, H and f .

More precisely, at H fixed, the term pε − pH is O(1) as ε goes to zero. Besides, recalling

that in a periodic domain, we have uε ≈ ε2u(x, xε ) (and that at each derivation of u(x, xε ), a

factor 1/ε comes out), then, the above error estimates for the velocity and pressure essentially

says that the relative errors are of the order

(
Hn +

√
ε+

√
ε

H

)
. In this sum, the term

√
ε,

which comes from the boundary layers in the homogenization process, is negligible. Indeed, the

dominant term is the classical “resonance error”
√

ε
H , which says that the coarse mesh size H

should be much larger than ε to have a good approximation. However, the presence of the

term Hn allows to choose an H big enough without significantly reducing the accuracy of the

approximation, which shows the interest of considering high-order methods. The optimal value

2https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc.cpp
3https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc_3d.cpp
4https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc_3d.cpp
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of the coarse mesh size H which minimises the error is given by

Hopt =

(√
ε

2n

) 1

n+1
2 .

Furthermore, using H = Hopt in the error estimate, we note that the error becomes of order
√
ε

as n→∞ (we recover the order of convergence of homogenization).

Contribution 5 We extend the MsFEM, initially developed for the Stokes problem (see for

example Figure 1.12), to the Oseen problem (1.2) in Part IV (see for example Figure 1.13). The

main difference with MsFEM for the Stokes problem is that in this case local problems are Oseen

type problems, with the same Oseen velocity U0 as in the global problem. Furthermore, through

numerical experiments, we show that this MsFEM allows to deal with high Reynolds number,

and that the MsFEM Petrov–Galerkin formulation (in which the test functions are solutions of

local problems derived from the Oseen adjoint problem and the trial functions are solutions of

local problems derived from the Oseen problem) does not lead to more accurate results.

(a) MsFEM approximation (n = 1, 4096
coarse elements).

(b) Reference solution computed on a fine
mesh.

Figure 1.12: Simulation of a Stokes flow in an open channel, ν = 1, flow from left to right with
a parabolic inlet, a free outlet and zero velocity at the top, the bottom and on osbtacles.
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(a) MsFEM approximation (n = 2, 4096
coarse elements).

(b) Reference solution computed on a fine
mesh.

Figure 1.13: Simulation of an Oseen problem in a two-dimensional open channel, Reynolds
number Re = 2000 (ν = 5× 10−4, U0 = [y(1− x2),−x(1− y2)]t), flow from left to right with a
parabolic inlet, a free outlet and zero velocity at the top, the bottom and on osbtacles.

Contribution 6 We implement the MsFEM for solving the Stokes and the Oseen problems

in two and three dimensions (see for example Figure 1.14) in a high-performance framework in

FreeFEM [93]. Indeed, for solving the local problems, we develop two levels of parallelism: a

parallelism between each coarse element (allowing to consider each coarse element in parallel)

and a parallelism inside each coarse element (allowing to compute local problems themselves in

parallel). What is more, for the sake of comparison, we implement solvers to compute reference

solutions on fine meshes (“reference meshes”). The details of these implementations are pre-

sented in Appendices D and E. In addition, we propose the first implementation at order n = 2

of the MsFEM under study (see for example Figure 1.13).

Outlet

Inlet (a) Cut of the velocity magnitude field
along the z axis (transverse to the cylin-
ders).

Figure 1.14: MsFEM approximation of Stokes flow in three-dimensional open channel with a
parabolic inlet, a free outlet and zero velocity on the other boundaries (n = 2, 3072 coarse
elements).
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Contribution 7 We propose a methodology to solve the stationnary Navier–Stokes prob-

lem (1.1) on a coarse grid using adaptative MsFEM basis functions in Chapter 16 (see for

example Figure 1.15). As the problem involves non-linear terms, we propose a pseudo-transient

approach to solve it. However, the main difficulty for solving iteratively the Navier–Stokes prob-

lem using a multi-scale approach is that this problem cannot be solved using only one fixed basis,

derived either from the Oseen problem (with a given arbitrary Oseen velocity U0) or from the

Stokes problem (equivalent to the Oseen problem with a null advection velocity). Indeed, at

each iteration the global problem to be computed changes since the advection velocity changes.

In particular, as soon as the advection velocity of the global problem differs too much from

the one used for the basis functions, the basis functions become non-adapted to the problem.

Consequently, to overcome this difficulty, at each iteration, new basis functions are computed so

that the basis functions remain well-adapted to the problem. In addition, we propose a discus-

sion on the possibility of solving such a problem using the Generalized Finite Element Method

(GMsFEM) [69].

(a) Velocity magnitude. (b) Pressure field.

Figure 1.15: MsFEM approximation (n = 2, 256 coarse elements) of the steady Navier–Stokes
in a two-dimensional open-channel, Reynolds number Re = 1000 (ν = 1× 10−3), flow from the
left to right with a parabolic inlet, a free outlet and zero velocity at the top, the bottom and on
osbtacles.
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d’échelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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2.2.2 Décomposition orthogonale localisée (LOD) . . . . . . . . . . . . . . . 36
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2.1 Motivation

2.1.1 Milieux multi-échelles

Cette thèse porte sur le développement de méthodes de calcul pour les écoulements incom-

pressibles dans les milieux multi-échelles. Un milieu multi-échelle est un milieu dont les car-

actéristiques significatives, telles que le coefficient de diffusion ou la conductivité thermique,
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ou la géométrie elle-même, varient à plusieurs échelles différentes (magnitudes) en espace ou

présentent une nature oscillante. Un tel dernier milieu à géométrie multi-échelle peut être ren-

contré dans de nombreux domaines. On peut penser, par exemple, au sol, qui est constitué de

matériaux de différentes tailles ou à une ville dense, où les bâtiments, les voitures ou d’autres

installations créent des obstacles de différentes tailles à l’écoulement de l’air ou de l’eau. Dans

cette thèse, nous nous intéressons à cette dernière catégorie de milieux multi-échelles. Dans la

littérature, ils peuvent être désignés par différents noms : milieux poreux en géosciences, do-

maines congestionnés ou domaines hétérogènes dans le domaine nucléaire, ou encore domaines

perforés.

En effet, au Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), nous

nous intéressons au calcul de l’écoulement dans les cœurs de réacteurs nucléaires, comme dans

une cuve sous pression d’un réacteur à eau pressurisée (REP), qui sont des milieux multi-échelles

avec des obstacles dont les tailles varient sur plus de quatre ordres de grandeur et dont les échelles

d’intérêt s’étendent sur plusieurs ordres de grandeur. Pour avoir une idée des échelles en jeu,

nous donnons, suit, quelques valeurs numériques. La longueur totale de la cuve sous pression

est d’environ 14 mètres. Le cœur du réacteur a un diamètre d’environ 4 à 5 mètres et comprend

entre 157 et 200 assemblages de combustible (voir la Figure 2.1). L’assemblage combustible

mesure environ 4 à 5 mètres de long et se compose de barres ou de crayons de combustible

généralement regroupés en un réseau carré de 14 × 14 à 17 × 17. L’épaisseur des ailettes de

mélange est d’environ 1 centimètre. En résumé, la cuve sous pression contient donc différentes

échelles et l’échelle globale est environ 104 fois plus grande que l’échelle locale.

≈
14

m
èt
re
s

Figure 2.1: Schéma d’un REP (gauche) et d’un assemblage de combustible (droite) [1].

Une modélisation typique d’un tel milieu multi-échelle consiste à considérer un domaine

Ω ⊂ Rd (d = 2, 3) perforé par un ensemble d’obstacles périodiques Bε, où ε > 0 est la période
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(ou l’échelle de longueur des hétérogénéités). Il est important de noter que ce domaine peut

également être non périodique. Cependant, pour d’autres résultats quantitatifs (voir par exemple

le Chapitre 6 et le Chapitre 9), en particulier pour l’homogénéisation, la nature périodique est

l’un des cadres possibles. Il est à noter que, des résultats quantitatifs d’homogénéisation peuvent

également être obtenus dans le cadre stochastique, mais avec des hypothèses supplémentaires

telles que l’ergodicité et la stationnarité [22].

Un exemple illustratif d’un domaine perforé est donné aux Figures 2.2 and 2.3 respectivement

en deux et trois dimensions. Le domaine Ω est divisé en une partie solide fixe Bε et sa partie

fluide complémentaire Ωε, c’est-à-dire Ωε = Ω \Bε.

Frontière des obstacles ∂Bε

Obstacles Bε

Domaine Ωε

ε

Figure 2.2: Domaine bidimensionnel poreux Ωε, obtenu à partir d’un domaine Ω perforé par un
ensemble d’obstacles solides Bε.

Obstacles Bε

Figure 2.3: Domaine tridimensionnel poreux Ωε, obtenu à partir d’un domaine Ω perforé par un
ensemble d’obstacles solides Bε.

2.1.2 Modélisation de l’écoulement

Une fois le milieu multi-échelle donné, le problème de l’écoulement dans ce milieu doit être

modélisé. Dans le cas des réacteurs à eau pressurisée (REP), l’eau dans le cœur atteint envi-

ron 325°C et est maintenue à une pression élevée d’environ 150 bars afin d’éviter qu’elle ne se

transforme en vapeur. Dans les conditions nominales, le nombre de Reynolds dans le cœur est

de l’ordre de 1× 105, ce qui suggère que l’écoulement est entièrement turbulent [2, 59]. Dans ce

travail, nous limitons notre attention aux problèmes incompressibles et monophasique comme

31



Chapter 2. Introduction de la thèse en français

une étape préliminaire avant d’envisager des applications plus complexes. En outre, nous ne

considérons pas les écoulements turbulents, car cela nécessiterait l’introduction d’un modèle de

turbulence, tel que le modèle k − ε proposé par Hanjalić et Launder [89] ou le modèle k − ω
proposé par Wilcox [167]. Cela dépasse le cadre de cette thèse.

Nous notons la vitesse uε et la pression pε pour rappeler que nous résolvons l’écoulement

dans un domaine multi-échelle avec des hétérogénéités d’échelle de longueur (ou de période) de

taille ε. Un aperçu des différents problèmes d’écoulement est donné ci-dessous.

Les équations de Navier–Stokes Les équations de Navier–Stokes incompressible peuvent

être utilisées pour modéliser les écoulements fluide dans le domaine Ωε. Le problème de Navier–

Stokes incompressible et stationnaire avec des conditions de Dirichlet homogènes est de trouver

la vitesse uε : Ωε → Rd et la pression pε : Ω
ε → R solution de

−ν∆uε + (uε ·∇)uε +∇pε = f dans Ωε,

divuε = 0 dans Ωε,

uε = 0 sur ∂Ωε,

(2.1)

avec f la force appliquée et ν > 0 la viscosité.

Les équation de Oseen L’approximation de Oseen est une linéarisation partielle des équations

de Navier–Stokes. Le terme non-linéaire (uε ·∇)uε est remplacé par le terme linéaire (U0 ·∇)uε

avec U0 une vitesse connue, appelée vitesse de Oseen. Le problème de Oseen en régime station-

naire avec des conditions de Dirichlet homogènes est de trouver la vitesse uε : Ωε → Rd et la

pression pε : Ω
ε → R solution de

−ν∆uε + (U0 ·∇)uε +∇pε = f dans Ωε,

divuε = 0 dans Ωε,

uε = 0 sur ∂Ωε,

(2.2)

avec U0 la vitesse de Oseen, f la force appliquée et ν > 0 la viscosité.

Dans les deux problèmes ci-dessus, le terme convectif, non-linéaire (uε · ∇)uε pour le

problème de Navier–Stokes, et linéaire (U0 ·∇)uε pour le problème de Oseen, accrôıt la difficulté

de l’analyse mathématique et des solutions numériques de ces problèmes. La prédominance de ce

terme convectif peut être prédite par le nombre de Reynolds, noté Re, un nombre sans dimension,

défini comme le rapport entre les forces d’inertie et les forces visqueuses dans l’écoulement,

Re =
UcL

ν
,

où Uc est une vitesse caractéristique, ν la viscosité et L une longueur caractéristique.

Les équations de Stokes Le nombre de Reynolds des écoulements dans les milieux poreux

est généralement faible et les forces d’inertie peuvent être négligées par rapport aux forces

visqueuses. Cette simplification conduit au problème de Stokes. Le problème de Stokes en

régime stationnaire avec des conditions aux limites homogènes de Dirichlet consiste à trouver la
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vitesse uε : Ωε ∈ Rd et la pression pε : Ω
ε ∈ R solution de

−ν∆uε +∇pε = f dans Ωε,

divuε = 0 dans Ωε,

uε = 0 sur ∂Ωε,

(2.3)

avec f la force appliquée et ν > 0 la viscosité.

La première approche pour étudier l’écoulement dans un milieu multi-échelle est par le

calcul direct de l’un des problèmes mentionnés ci-dessus (les problèmes de Stokes, d’Oseen ou

de Navier–Stokes). Cependant, la simulation de l’écoulement dans un milieu multi-échelle avec

de nombreux obstacles est très difficile. En effet, dans un tel milieu, l’écoulement est influencé

par des phénomènes qui se produisent aux échelles les plus fines. Ainsi, pour capturer ces

échelles les plus fines, il est nécessaire d’utiliser un maillage très fin, ce qui conduit souvent

à des simulations irréalisables en raison du manque de ressources informatiques. Au CEA,

les études de dynamique des fluides numérique (CFD) des coeurs de réacteurs nucléaires sont

réalisées à l’aide du logiciel open-source TrioCFD [45]. Il s’agit d’un logiciel développé depuis

une vingtaine d’années à la Division de l’Énergie Nucléaire du CEA. TrioCFD est un code

orienté objet, massivement parallèle, implémenté en C++, qui a été développé pour être utilisé

dans une variété d’études scientifiques et industrielles et d’applications de recherche. Le code

a été conçu pour traiter efficacement différents problèmes physiques, tels que les écoulements

turbulents, le couplage fluide/solide, les écoulements multiphasiques et les écoulements dans les

milieux poreux [32, 153, 147]. Une vue d’ensemble du code TrioCFD est disponible dans [16, 17].

À titre d’illustration, définissons un maillage TH d’un domaine polyédrique perforé périodique

Ωε comme une décomposition de Ωε en polyèdres T , chacun ayant un diamètre d’au plus H.

Nous définissons l’espace classique des vitesses V = H1
0 (Ω

ε)d et l’espace des pressions M =

L2
0(Ω

ε) = {q ∈ L2(Ωε), t.q.
∫
Ωε q = 0} muni respectivement de la semi-norme H1 |·|1 et de la

norme L2 ∥·∥0. Pour les approches non-conformes, nous introduisons l’espace de Sobolev brisé

H1(TH) =
{
u ∈ L2(Ωε)d telle que u|T∈ H1(T )d, ∀T ∈ TH

}
.

Nous définissons aussi la semi-norme H1-brisée |u|H,1 dans l’espace H1 brisé par

|u|H,1 =

 ∑
T∈TH

|u|2H1(T )

 1
2

.

Nous pouvons alors envisager de résoudre les équations de Stokes (1.3) dans ce domaine Ωε.

Supposons que le problème de Stokes soit discrétisé avec les éléments finis de Crouzeix–Raviart

[61], il est alors bien connu que l’erreur entre la solution exacte (uε, pε) et son approximation

par éléments finis (uH , pH) est donnée par

1

|uε|H1(Ωε)

(
|uε − uH |H,1 + ∥pε − pH∥L2(Ωε)

)
≤ CH

(
|uε|H2(Ωε) + |pε|H1(Ωε)

) 1

|uε|H1(Ωε)︸ ︷︷ ︸
βε

,
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avec C une constante indépendante du maillage. Or, on sait que dans le cas périodique (voir le

Chapitre 6 pour plus de détails), fonctionnellement, c’est-à-dire pour la fonction et ses dérivées

d’ordre quelconque, on a uε ≈ ε2u(x, xε ) et donc le terme βε est d’ordre ε−1 (puisque à chaque

dérivation de u(x, xε ), un facteur 1/ε apparâıt). Par conséquent, l’obtention d’une bonne ap-

proximation de la solution nécessite une taille de maillage H beaucoup plus petite que ε. Comme

ε peut être très petit en pratique, il est souvent impossible de satisfaire cette condition. Par

exemple, pour capturer les échelles les plus fines de l’écoulement dans la cuve sous pression

présentée ci-dessus, un maillage typique pour discrétiser ce domaine peut contenir des centaines

de millions d’éléments. Il est clair que les simulations directes sur un tel maillage nécessitent

une quantité massive de mémoire et de temps de calcul, qui peut dépasser la puissance de calcul

actuelle. Même si un tel calcul est possible, il ne peut être effectué régulièrement, mais seulement

dans des cas exceptionnels, tel que les calculs CFD des écoulements turbulents autour des grilles

de mélange des REP avec plus d’un milliard de degrés de liberté effectués avec TrioCFD [32].

Afin de surmonter ces difficultés, une classe populaire de méthodes numériques, basée sur

la stratégie de calcul de la moyenne ou “remontée d’échelle”, a été développée. Elle correspond

au processus d’approximation des modèles à l’échelle fine par des modèles à l’échelle grossière.

Dans ce qui suit, nous présentons deux méthodes de remontée d’échelle, le volume élémentaire

représentatif (VER) et l’homogénéisation.

2.1.3 Approches basées sur la stratégie de la moyenne ou de la remontée

d’échelle

Volume élémentaire représentatif (VER) Le VER est une première méthode pour “met-

tre à l’échelle” ou moyenner des modèles à échelle fine [149]. L’idée de cette approche est la

suivante [102]. Soit u une fonction à valeur réelle sur un domaine Ω qui décrit certaines quan-

tités physiques avec des oscillations spatiales rapides. Pour lisser cette fonction, on considère

des moyennes locales de la forme

⟨u⟩(x) =
∫
V (x)

u(y)dy,

où V (x) est un petit voisinage du point x de la taille d’un VER. Si les oscillations de u

reflètent le comportement de la grandeur physique en question à une “micro-échelle”, la fonc-

tion moyennée ⟨u⟩ est censée décrire ses propriétés à une plus grande échelle, c’est-à-dire à une

“macro-échelle”. Plusieurs travaux [56, 120] ont appliqué cette stratégie pour obtenir un modèle

à grande échelle de l’écoulement dans les milieux poreux.

L’homogénéisation L’homogénéisation est une autre méthode mathématique qui permet de

“mettre à l’échelle” ou de moyenner des équations différentielles [102]. L’idée de l’homogénéisation

est de considérer une famille de fonctions uε où ε > 0 est un paramètre d’échelle spatiale

(longueur). Ensuite, il faut déterminer la limite

u = lim
ε→0

uε, (2.4)
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et en considérant cette limite comme le résultat de la procédure de mise à l’échelle. L’objectif

de la procédure d’homogénéisation est de déterminer les équations différentielles auxquelles la

limite u satisfait et de prouver que (2.4) est valable. Appliquée aux écoulements incompressibles,

il est bien connu que l’homogénéisation des équations de Stokes (2.3), c’est-à-dire la recherche

du système limite satisfait par la limite de (uε, pε) lorsque ε tends vers zéro [154, 160, 9], conduit

à la loi de Darcy pour la vitesse u et la pression homogénéisée p∗,
u = 1

νA
∗(f −∇p∗) dans Ω,

divu = 0 dans Ω,

u · n = 0 sur ∂Ω,

où A∗ est un tenseur de perméabilité constant (voir le Chapitre 6 pour plus de détails). Cette

méthode est souvent combinée avec une méthode de remontée d’échelle dans laquelle les pro-

priétés à fine échelle du problème sont moyennées afin de trouver des paramètres macroscopiques

effectifs, qui sont ensuite introduits dans le modèle à grande échelle défini par la théorie de

l’homogénéisation. Par exemple, dans le cas du problème de Darcy, cette méthode consiste

à trouver une perméabilité effective à partir des perméabilités locales. Cette méthode a été

appliquée à plusieurs problèmes dans la littérature pour définir des problèmes d’écoulement à

grande échelle dans des milieux fortement hétérogènes ou des matériaux composites [169, 51,

110, 53, 77, 109].

L’inconvénient de ces deux approches est que seul le comportement moyen de l’écoulement est

pris en compte. En effet, elles ne peuvent pas saisir le comportement de l’écoulement aux échelles

les plus fines, par exemple les caractéristiques oscillantes ou fluctuantes, à moins d’utiliser des

correcteurs.

Pour surmonter cette limitation, une autre approche, inspirée de ces idées, a été développée

pour tenter de résoudre les échelles inférieures à l’échelle du maillage grossier. Au lieu de calculer

les propriétés effectives comme dans les approches de remontée d’échelle, les caractéristiques de

l’échelle fine sont incorporées dans le calcul à l’échelle grossière par le biais d’une approche multi-

échelle. La plupart des méthodes utilisant cette approche consistent à résoudre des problèmes

à l’échelle fine, puis à utiliser ces solutions dans un problème à l’échelle grossière. Une revue

de certaines méthodes multi-échelles est effectuée dans la Section 2.2. Dans cette thèse, nous

nous concentrons sur l’une d’entre elles, à savoir la Méthode des Éléments Finis Multi-

échelle (MsFEM), puisqu’elle est la continuation de travaux antérieurs sur les MsFEMs pour

les écoulements incompressibles [111, 78, 79]. Dans la Section 2.3, nous présentons les principales

idées de la MsFEM, et nous illustrons cette méthode au travers d’un example simple dans la

Section 2.4. Puis dans la Section 2.5, nous donnons un aperçu de l’évolution des MsFEMs dans

la littérature.

2.2 Une vue d’ensemble des différentes méthodes multi-échelles

Dans cette section, nous donnons un aperçu des différentes méthodes multi-échelles développées

dans la littérature.
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2.2.1 La méthode variationnelle multi-échelle (VMS)

La méthode variationnelle multi-échelle (VMS) a été introduite pour la première fois par [106,

108] comme une procédure générale permettant d’élaborer des méthodes numériques capables

de traiter des phénomènes multi-échelles. Cette méthode est basée sur la décomposition de

la solution, u = u + ũ, où u est la partie résolue ou échelle grossière et ũ est la partie non

résolue ou échelle fine. Il s’agit alors de résoudre numériquement u et de tenter de déterminer

analytiquement ũ, en l’éliminant du problème pour u.

2.2.2 Décomposition orthogonale localisée (LOD)

La décomposition orthogonale localisée (LOD) a été introduite pour la première fois dans [97,

98], dans lesquels les auteurs construisent une base d’éléments finis généralisée locale pour les

problèmes elliptiques avec des coefficients hétérogènes et très variables. Les fonctions de base

sont des solutions de problèmes locaux sur des patchs de noeuds. L’avantage de cette méthode

est que les problèmes locaux sont localisés avec une diminution rapide permettant de restreindre

le domaine de calcul des problèmes locaux sur un petit patch. Cette méthode a été appliquée

avec succès dans la littérature, par exemple pour des problèmes de type Helmhotz [140], pour

l’équation des ondes [6] ou pour effectuer l’homogénéisation numérique [95, 13].

2.2.3 Méthode hétérogène multi-échelle (HMM)

La méthode hétérogène multi-échelle (HMM) a été introduite pour la première fois dans [166, 67].

Cette méthode fournit une méthodologie générale pour le calcul numérique efficace des problèmes

multi-échelles et multi-physiques, impliquant un modèle macroscopique U et un modèle micro-

scopique u. Ces modèles sont définis sur des domaines différents et sont liés par des opérateurs

de reconstruction et de compression. Le but de cette méthode est d’approximer l’échelle macro-

scopique du système sur un maillage macroscopique qui résout la grande échelle du problème, et

d’estimer les données manquantes nécessaires pour le schéma macroscopique à partir du schéma

microscopique. Cette méthode comporte donc deux composantes principales : un schéma macro-

scopique global pour U et une estimation des données manquantes du modèle microscopique

pour u. Cette méthode est qualifiée d’hétérogène pour souligner le fait que différents modèles

physiques et techniques numériques sont utilisés à différentes échelles et sur différents maillages.

Cette méthode a été appliquée avec succès dans la littérature pour différents problèmes tels que

les problèmes de diffusion [7], les problèmes d’homogénéisation [68, 66] ou pour la modélisation

de fluides complexes [150].

2.2.4 Méthode des volumes finis multi-échelle (MsFVM)

La méthode des volumes finis multi-échelle (MsFVM) a été introduite pour la première fois

par [112] pour les simulations d’écoulement souterrain et étendue dans [113] pour les écoulements

multiphasiques et le transport dans les milieux poreux. Cette méthode est basée sur la con-

struction de deux ensembles de fonctions de base : le premier est utilisé pour construire les

transmissibilités pour le problème à grande échelle et le second est utilisé pour reconstruire le

champ de vitesse à petite échelle à partir de la solution à grande échelle. Ces fonctions de
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base, qui assurent l’équilibre de la masse aux deux échelles, sont calculées sur un maillage dual.

Cette méthode a été principalement appliquée à l’écoulement souterrain et aux simulations de

réservoirs [126, 168, 114, 137, 87, 127, 88].

2.2.5 Méthode hybride mixte multi-échelle (méthode MHM)

La méthode hybride mixte multi-échelle (MHM) a été introduite pour la première fois par [91]

pour le problème de Darcy et par [19] pour les problèmes elliptiques. Cette méthode vise à

incorporer des échelles multiples dans la construction des fonctions de base et est basée sur une

formulation mixte : elle relâche la continuité de la composante normale primale par l’action

des multiplicateurs de Lagrange, tout en assurant la continuité forte de la composante nor-

male du flux. Les problèmes locaux consistent à trouver des fonctions de base qui approchent

l’espace des multiplicateurs de Lagrange. Cette méthode a été appliquée pour des problèmes

d’advection-réaction à coefficients hétérogènes [92], pour des problèmes elliptiques du second

ordre à coefficients périodiques rugueux [143]. Elle a également été utilisée pour résoudre,

dans des milieux hétérogènes, les problèmes de Stokes et de Brinkmann [20], les équations de

Maxwell [119], l’équation de Helmholtz [47] ou le problème d’Oseen [18].

2.2.6 Autres approches multi-échelles

Il existe un certain nombre d’autres méthodes en plus de celles mentionnées ci-dessus. On peut

citer par exemple la méthode des éléments finis multi-échelles de type Mortar [85] utilisée pour

résoudre les écoulements de Stokes et de Darcy ou la méthode de Galerkin discontinu multi-

échelle [73, 72] utilisée pour des problèmes elliptiques du second ordre.

2.3 Introduction à la Méthode des éléments finis multi-échelles

(MsFEM)

L’idée principale de la méthode des éléments finis multi-échelles (MsFEM) est d’approximer un

problème global sur un maillage grossier TH , qui ne prend pas en compte les détails géométriques

(voir par exemple la Figure 2.4b), à l’aide d’une approximation de Galerkin. Cependant, les

fonctions de base ne sont plus les fonctions de base polynomiales de Lagrange des éléments finis,

mais résolvent des problèmes locaux sur les éléments T du maillage grossier. Ces fonctions sont

elles-mêmes approximées numériquement sur un maillage fin Th(T ) prenant en compte tous les

détails géométriques (voir par exemple la Figure 2.4c), ce qui donne l’aspect multi-échelle de

cette méthode.

Jusqu’à présent, nous n’avons fait aucune hypothèse sur la forme des éléments du maillage

grossier. Ces éléments peuvent être de différents types (triangles, carrés ou polygones en deux

dimensions, et tétraèdres, parallélépipède ou polyèdres en trois dimensions). Toutefois, par

commodité, les éléments du maillage grossier sont choisis comme étant des triangles et des

tétraèdres (respectivement en deux et trois dimensions) dans les différentes illustrations et dans

les simulations numériques.
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Deux points essentiels doivent être pris en compte à ce stade. Le premier point est que ces

fonctions de base locales ne dépendent pas des conditions aux limites et des chargements du

problème global. Par conséquent, ces fonctions de base peuvent être réutilisées pour résoudre

le problème global mais avec des conditions aux limites et des chargements différents, ce qui

rend cette méthode très pertinente pour les études paramétriques. Le deuxième point est que

les fonctions de base sont entièrement locales, c’est-à-dire que les fonctions de base associées à

un élément grossier donné du maillage grossier sont indépendantes de celles des autres éléments

grossiers. Ce point rend le calcul des fonctions de base locales très efficace, puisque leurs calculs

peuvent être effectués entièrement en parallèle, c’est-à-dire sans aucune communication entre

les différents éléments du maillage grossier.

Cette méthode se compose de deux étapes principales, décrites ci-dessous.

L’étape hors ligne La première étape, appelée étape hors ligne, correspond au calcul des

fonctions de base locales dans chaque élément grossier du maillage grossier, en résolvant des

problèmes locaux du type AT (ϕ, v) = FT (v). Au cours de cette étape, les matrices du problème

global sont assemblées. Cette étape est considérée comme la plus coûteuse car elle nécessite de

résoudre, éventuellement en parallèle, plusieurs problèmes locaux sur des mailles fines.

L’étape en ligne Une fois les fonctions de base calculées, la deuxième étape, appelée étape

en ligne, consiste à assembler le second membre, à appliquer les conditions aux limites et à

résoudre le problème global du type ATH (u, v) = FTH (v) sur le maillage grossier. Cette étape

est considérée comme l’étape peu coûteuse, puisqu’elle implique de résoudre un problème sur un

maillage grossier qui contient peu d’éléments. Si le problème global doit être recalculé, mais avec

des conditions aux limites et des charges différentes, seule l’étape en ligne, c’est-à-dire l’étape

peu coûteuse, doit être recalculée.

Une troisième étape consiste ensuite à reconstruire les solutions sur les maillages fins et à

post-traiter les résultats.

En résumé, la procédure de la MsFEM est la suivante.
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Algorithm 2.1 (La procédure de la MsFEM).

� Partitionner le domaine en un ensemble de mailles grossières qui forme le maillage grossier

(voir la Figure 2.4b).

� Étape hors-ligne. Pour chaque élément du maillage grossier (En parallèle) :

– Partitionner l’élément grossier en un maillage fin (voir la Figure 2.4c).

– Construire les fonctions de base multi-échelles en résolvant les problèmes locaux sur

ce maillage fin.

– Calculer les matrices locales et assembler les matrices globale.

� Étape en ligne. Appliquer les conditions au limites, assembler le second membre et

résoudre le problème global sur le maillage grossier.

� Pour chaque élément grossier (En parallèle) :

– Reconstruire la solution fine sur les maillages fins.

– Post-traiter les résultats.

(a) Domaine hétérogène Ωε. (b) Maillage grossier TH et un élement T .

(c) Maillage fin Th(T ).

Figure 2.4: Description de la précédure MsFEM.

A des fins de comparaison, les solutions peuvent être reconstruites sur un maillage fin, appelé

“maillage de référence”, donné dans la Figure 2.5.
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Figure 2.5: Maillage de référence Th(Ωε).

Dans la section suivante, pour une meilleure compréhension, nous illustrons la MsFEM par

un exemple simple : un problème de diffusion avec un coefficient de diffusion oscillant en une

dimension.

2.4 Un exemple illustratif simple en une dimension : un problème

de diffusion oscillante

Soit I l’intervalle [0, 1] ⊂ R and f ∈ L2(I) une fonction donnée. Nous considérons le problème

de diffusion suivant avec conditions de Dirichlet homogènes.

− d

dx

(
Aε(x)

duε
dx

(x)

)
= f(x) dans I,

uε(0) = 0,

uε(1) = 0.

(2.5)

Nous considérons le coefficient de diffusion oscillant Aε suivant

Aε(x) =
1

2 + cos (2π(x/ε))
,

avec ε > 0 un petit paramètre. Les oscillations de Aε sont présentées dans la Figure 2.6

pour ε = 1× 10−1.
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Figure 2.6: Coefficient de diffusion Aε , ε = 1× 10−1.
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Pour le second membre particulier f = 1, la solution exacte du problème (2.5) est donnée

par

uε(x) = x− x2 + ε

2π

(
1

2
− x
)
sin
(
2π
x

ε

)
+

ε2

4π2

(
1− cos

(
2π
x

ε

))
.

La formulation faible du problème (2.5) est de trouver uε ∈ H1
0 (I) telle que, pour tout v ∈ H1

0 (I),

a(uε, v) =

∫
I
fvdx,

avec

a(uε, v) =

∫
I
Aε(x)

duε
dx

dv

dx
dx.

Soit N ∈ N∗ un entier donné. Soit le segment I divisé en N +1 sous-intervalles Ii = [xi, xi+1] de

taille H = 1
N+1 avec i ∈ J0, NK. Supposons que la solution exacte de (1.4) soit approchée par la

solution du problème discret suivant. Trouver uH ∈ VH tel que pour tout vH ∈ VH nous avons

a(uH , vH) =

∫
I
fvHdx, (2.6)

où VH , l’espace d’approximation, est un sous-ensemble de H1
0 (I) à définir.

Approximation avec des fonctions affines par morceaux Nous proposons tout d’abord

de résoudre (2.6) avec des fonctions linéaires par morceaux. L’espace d’approximation est

l’espace de Lagrange P1, défini comme suit

VH =
{
φ ∈ C0(I) telle que φ = 0 sur ∂I, φ|Ii∈ P1(Ii), ∀i ∈ J0, NK

}
,

où P1(Ii) désigne l’espace des polynômes de degré total au plus égal à 1 dans Ii. Une base de

cet espace en une dimension est présentée dans la Figure 2.7.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ
i(
x
)

Figure 2.7: Fonctions de base P1, φi, H = 1/8.

L’approximation du problème oscillant (2.5) avec des fonctions affines par morceaux est

donnée dans la Figure 2.8. On peut facilement constater que l’approximation P1 de ce problème

ne parvient pas à capturer la solution oscillante, à moins d’utiliser un maillage très fin. Pour la

résolution de ce problème, les intégrales ont été calculées en utilisant la formule de quadrature
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par défaut de FreeFEM pour l’intégration unidimensionnelle, c’est-à-dire qforder = 6, qui

est exacte pour des polynômes P5. Il convient de noter que les phénomènes observés dans la

Figure 2.8 peuvent avoir deux causes : une intégration insuffisamment précise de Aε(x) lorsque

H est grand et un aspect intrinsèque de l’approximation P1 qui ne parvient pas à capturer les

oscillations [13].
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uε
P1 approx. of uε , H = 1

8

P1 approx. of uε, H = 1
32

P1 approx. of uε , H = 1
100

Figure 2.8: Approximation éléments finis du problème de diffusion oscillant.

Approximation avec une approche MsFEM Maintenant, au lieu de considérer un es-

pace d’approximation composé de fonctions affines par morceaux, nous considérons un espace

d’approximation composé de fonctions bien adaptées au problème oscillant. Nous définissons le

nouvel espace d’approximation VH comme suit

VH =

{
φ ∈ C0(I), − d

dx

(
Aε(x)

d

dx
φ(x)

)
|Ii= 0, ∀i ∈ J0, NK

}
,

La base de cet espace dans un domaine unidimensionnel est représentée dans la Figure 2.9. On

peut voir que les fonctions de base encodent en elles-mêmes la nature oscillante du problème.

42



2.4. Un exemple illustratif simple en une dimension : un problème de diffusion oscillante

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ
i(
x
)

Figure 2.9: Fonctions de bases MsFEM, φi, H = 1/8.

L’approximation du problème oscillant (2.5) avec la méthode des éléments finis multi-échelles

est donnée dans la Figure 2.10. On peut voir que la MsFEM permet maintenant d’approcher

la solution du problème (2.5) beaucoup mieux que la méthode des éléments finis P1. En outre,

le tracé du gradient de l’approximation multi-échelle dans la Figure 2.11 (calculé élément par

élément puisque les gradients ne sont pas continus à l’interface des éléments grossiers) permet de

voir que l’approche multi-échelle permet de capturer les oscillations de la solution contrairement

à l’approximation P1 qui ne voit pas les oscillations.
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Figure 2.10: Approximation MsFEM du problème de diffusion oscillant.
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Figure 2.11: Gradient de l’approximation MsFEM du problème de diffusion oscillant.

La section suivante présente un aperçu du développement des méthodes d’éléments finis

multi-échelles (MsFEM) dans la littérature.

2.5 Une vue d’ensemble de la méthode des éléments finis multi-

échelles (MsFEM) dans la littérature

Étant donné que l’évolution de la MsFEM a été largement motivée par l’amélioration de l’estimation

de l’erreur entre la solution exacte (dénotée par l’indice ε) et la solution approchée (dénotée par

l’indice H), nous incluons en termes vagues les estimations d’erreur correspondantes dans cet

aperçu. Dans ces estimations, H est la taille du maillage grossier, composé d’élément grossier T ,

et C une constante générique qui ne dépend pas de H. Il convient de noter que les estimations

d’erreur suivantes ne sont valables que pour des coefficients périodiques et sont obtenues en sup-

posant le calcul numérique des fonctions de base locales exact. Pour les approches non-conformes

dans des milieux perforés, nous définissons l’espace de Sobolev brisé par

H1(TH) =
{
u ∈ L2(Ωε)d telle que u|T∈ H1(T ∩ Ωε)d, ∀T ∈ TH

}
,

et la semi-norme H1-brisée |u|H,1 dans l’espace H1 brisé par

|u|H,1 =

 ∑
T∈TH

|u|2H1(T∩Ωε)

 1
2

.

2.5.1 MsFEM pour des problèmes elliptiques

Dans le cadre des travaux préliminaires effectués par [24, 133], la méthode originale des éléments

finis multi-échelles a été introduite pour la première fois dans [104] pour les problèmes elliptiques
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dans les matériaux composites ainsi que dans les milieux poreux et dans [103] pour les problèmes

elliptiques avec des coefficients à oscillation rapide. Dans ces premiers travaux, le problème

elliptique suivant a été considéré

−div (Aε∇uε) = f dans Ω, uε = 0 sur ∂Ω, (2.7)

avec Aε un coefficient de diffusion oscillant. Les fonctions de base locales sont calculées à l’aide

d’un problème elliptique similaire dans chaque élément grossier. Pour ces calculs, différentes

conditions aux limites ont été choisies. En considérant d’abord les conditions aux limites linéaires

sur chaque élément grossier, cette méthode conduit à l’estimation d’erreur suivante

|uε − uH |1 ≤ C
(√

ε+H +

√
ε

H

)
, (2.8)

où uH est la solution obtenue à l’aide de la MsFEM. Des conditions aux limites oscillantes

(conditions aux limites données par la solution de l’équation différentielle ordinaire oscillante

obtenue en prenant la trace de l’équation originale sur les bords des éléments grossiers) ont

été aussi prises en compte. Il a été montré que cette approche mène à la même estimation de

l’erreur (2.8). Néanmoins, à l’aide d’exemples numériques, il a été montré que l’utilisation de

conditions aux limites oscillantes conduit à une amélioration significative de la précision des

résultats numériques. Cependant, la prise en compte de l’un de ces deux types de conditions

aux limites conduit à une résonance entre l’échelle du maillage grossier et la petite échelle dans

la solution physique. Ceci est mis en évidence par la présence du terme
√

ε
H , appelé “erreur de

résonance”, dans l’estimation de l’erreur.

Ensuite, pour atténuer la résonance due aux couches limites et au choix des conditions limites,

[104, 71] ont proposé la méthode dite de l’oversampling. Cette méthode consiste à résoudre les

problèmes locaux sur un domaine plus grand que l’élément grossier et à tronquer la solution

à l’intérieur de l’élément grossier. Cette méthode, qui rend la solution moins dépendante des

conditions aux limites choisies, conduit à des problèmes non-conformes puisque les quantités ne

sont pas continues sur les bords des éléments grossiers. L’utilisation de l’oversampling conduit

alors à l’estimation d’erreur suivante

|uε − uH |H,1 ≤ C
(√

ε+H +
ε

H

)
. (2.9)

A partir de (2.9), il est facile de voir que l’erreur de résonance a été réduit mais existe toujours.

Par conséquent, pour éliminer la résonance, dans [105], l’approche a été modifiée, en introduisant

une formulation de Petrov–Galerkin avec des fonctions d’essai non-conformes multi-échelles et

des fonctions test linéaires. En utilisant cette nouvelle approche, l’estimation d’erreur suivante

a été obtenue

|uε − uH |H,1 ≤ C
(√
ε+H + ε

)
,

qui ne fait, cette fois ci, pas intervenir l’erreur de résonance. Une étude complète de ces premières

méthodes peut être trouvée dans [70].

Dans [12], la MsFEM a été employée pour effectuer l’homogénéisation numérique des problèmes
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de diffusion. Le même problème elliptique (2.7) a été considérée. L’une des nouveautés de ce

travail est qu’une règle de composition (changement de variables) a été introduite pour la con-

struction de bases d’éléments finis qui permet un traitement simple des méthodes d’éléments

finis d’ordre élevé. Une taille de maillage fin h optimal qui minimise l’erreur a aussi été exhibée.

Inspiré par [12], [101] développa une méthode d’éléments finis multi-échelle d’ordre élevé pour les

problèmes elliptiques avec des coefficients fortement oscillants, mais en construisant un espace

d’éléments finis multi-échelle plus explicite.

L’une des dernières avancées dans le domaine des méthodes d’éléments finis multi-échelles

a été d’envisager une méthode dans la veine de la méthode classique des éléments finis de

Crouzeix–Raviart, c’est-à-dire une méthode dans laquelle la continuité à travers les faces des

éléments grossiers est uniquement considérée dans un sens faible : seule la valeur moyenne est

continue à travers les faces. Puisque des conditions aux limites sont requises sur chaque élément

grossier, la MsFEM à la Crouzeix-Raviart permet des conditions aux limites naturelles sur les

faces de l’élément grossier. Cette méthode a été introduite pour la première fois dans [121]

pour les problèmes elliptiques fortement oscillants (2.7). Pour résoudre ce problème, l’espace

d’approximation est construite à partir d’idées similaires à celles de Crouzeix et Raviart dans

leur construction d’un espace d’éléments finis classique [61]. L’estimation d’erreur suivante a

été obtenue

|uε − uH |H,1 ≤ CH∥f∥L2(Ω) + C

(√
ε+H +

√
ε

H

)
∥∇u∗∥C1(Ω),

où u∗ est la solution du problème homogénéisé et avec la constante C indépendante de H, ε, f

et u∗. Bien que l’estimation de l’erreur ne soit pas améliorée par rapport à la MsFEM avec des

conditions aux limites linéaires sur chaque élément grossier, les expériences numériques montrent

que cette approche est plus performante que l’approche classique.

Ce travail a été poursuivi dans [122], dans lequel l’approche a été adaptée pour traiter

des problèmes multi-échelles dans un domaine perforé Ωε, en considérant le problème suivant.

Trouver uε : Ω
ε → R, la solution de

−∆uε = f dans Ωε, uε = 0 sur ∂Ωε.

La principale nouveauté de leur approche est l’enrichissement de l’espace des éléments finis multi-

échelles à l’aide de fonctions bulle. Dans le cas de perforations périodiques en deux dimensions,

avec une régularité suffisante du second membre f , l’approximation uH satisfait

|uε − uH |H,1 ≤ Cε
(√

ε+H +

√
ε

H

)
∥f∥H2(Ω),

avec une constante C indépendante de H, ε et f , mais dépendant de la géométrie du maillage

et d’autres paramètres du problème.

Ensuite, dans [63], les auteurs l’application de la MsFEM à la Crouzeix-Raviart a été étendue

aux problèmes d’advection-diffusion avec des conditions aux limites non homogènes. Le problème
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suivant a été considéré. Trouver uε : Ω
ε → R, la solution de

−div (Aε∇uε) +w ·∇uε = f dans Ωε,

uε = 0 sur ∂Bε ∩ Ωε,

uε = g sur ∂Ω ∩ Ωε,

avec w le terme d’advection. Au travers de plusieurs exemples numériques, les auteurs ont

montré que cette méthode particulière est plus performante que les approches MsFEM plus

conventionnelles. L’étude des MsFEMs pour les problèmes d’advection-diffusion a fait l’objet

de nombreuses thèses [141, 128, 33].

Récemment, [123] a développé une autre approche MsFEM pour les problèmes de diffusion

avec un coefficient de diffusion oscillant, dans laquelle les fonctions de base associées aux faces

et aux éléments sont enrichies à l’aide de polynômes de Legendre. Cette approche permet de

réduire l’erreur de résonance dans le régime où la taille du maillage grossier H est de l’ordre de

la petite échelle ε des oscillations. De plus, des MsFEMs pour les problèmes de contrôle optimal

elliptiques avec des coefficients rugueux ont été étudiés dans [38, 39].

En outre, d’autres travaux [99, 46] traitent des MsFEMs adaptatives en calculant une esti-

mation de l’erreur a posteriori qui dépend de la taille du maillage grossier H et de la taille du

maillage fin h.

2.5.2 Extension de la MsFEM pour les écoulements incompressibles

La première utilisation de la MsFEM pour les écoulements incompressibles a été faite dans [136],

dans lequel a été proposé une MsFEM à la Crouzeix–Raviart (c’est-à-dire que seule la valeur

moyenne de la vitesse est continue à travers les faces des éléments grossiers) pour résoudre le

problème de Stokes (2.3). Cependant, l’estimation d’erreur obtenue dans ce travail n’était pas

entièrement satisfaisante car dépendant du caractère oscillant de la solution exacte sur les faces.

Ensuite, dans [111], cette méthode a été généralisée à des ensembles arbitraires de fonctions

de poids utilisées pour imposer la continuité entre les faces des éléments grossiers. Pour un

ensemble particulier de fonctions de poids dans un cadre périodique en deux dimensions (la

MsFEM dite CR3, dans laquelle les trois fonctions de poids sur les faces sont e1, e2, la base

canonique de R2 et la composante normale d’un polynôme linéaire), la borne d’erreur suivante

a été établie

|uε − uH |H,1 + ε∥pε − pH∥L2(Ωε)

≤ Cε
[(
H +

√
ε+

√
ε

H

)(
∥f∥H2(Ω)∩C1(Ω) + ∥p

∗∥H2(Ω)

)]
,

où p∗ est la pression homogénéisée et C est une constante dépendant seulement de la régularité

du maillage et du motif des perforations.

Ensuite, [135] a étendu cette approche pour résoudre le problème d’Oseen (2.2) dans des mi-

lieux hétérogènes. Cependant, les applications étaient limitées aux petits nombres de Reynolds.

Récemment [79] a développé une MsFEM non conforme enrichie pour résoudre le problème de
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Stokes dans des milieux hétérogènes, qui généralise la méthode proposée dans [111], en con-

sidérant également des fonctions de poids d’ordre élevé sur les faces et dans les éléments, plutôt

que de simplement considérer des fonctions de poids d’ordre élevé sur les faces.

2.5.3 Conclusion

Dans cette section, plusieurs MsFEM ont été décrits. Il est pertinent de souligner que dans

tous les travaux présentés dans cette revue, les applications numériques ont été considérées

uniquement dans des domaines bidimensionnels et les différentes estimations d’erreur ont été

obtenues dans un cadre périodique et en supposant que le calcul des fonctions de base sont

exactes. De plus, l’étude des différentes estimations d’erreurs présentées dans cette section n’est

pas simple. En effet, ces erreurs convergent vers zéro lorsque H et ε tendent vers zéro ensemble

(la convergence de H vers zéro dépendant toutefois de celle de ε). Cependant, pour un ε fixé,

l’erreur entre la solution exacte et l’approximation multi-échelle ne devrait pas converger vers

zéro à mesure que la taille du maillage grossier H diminue (dans le régime néanmoins dans lequel

H > ε), mais sera bornée par une quantité dépendante de ε. Une valeur optimale de H peut

être trouvée afin que l’erreur soit minime.

Ce travail de thèse s’inscrit dans la continuité de l’étude menée dans ce dernier travail [79]. En

particulier, cette thèse se concentre sur le niveau discret en montrant le caractère bien posé des

problèmes locaux discrets et en dérivant une estimation d’erreur pour les approximations multi-

échelles. Nous proposons également une extension de cette méthode pour résoudre le problème

d’Oseen. Les principales contributions de la thèse sont répertoriées dans la Section 2.6. Les

méthodes d’éléments finis multi-échelles (MsFEM) décrites dans cette thèse sont destinées à

être incorporées dans le logiciel TrioCFD. Cependant, par souci de commodité, les applications

numériques préliminaires de cette méthode sont effectuées dans le logiciel FreeFEM [93], un

logiciel plus académique, choisi pour sa flexibilité à mettre en œuvre de nouveaux éléments finis

et sa facilité d’utilisation pour la mise en œuvre et le test de différentes méthodes. FreeFEM

est un logiciel, open-source, parallèle d’éléments finis. Il permet de résoudre des problèmes

impliquant des équations aux dérivées partielles issues de différentes branches de la physique,

telles que la mécanique des fluides, les interactions fluide-structure et bien d’autres. Dans

FreeFEM, le problème à résoudre est défini en termes de formulation variationnelle. FreeFEM

est écrit en C++ et son langage est un idiome du C++. Pour les applications plus complexes,

nous profitons également du fait que FreeFEM s’interface avec différentes bibliothèques telles

que le partitionneur METIS [118] ou la bibliothèque PETSc [28].

2.6 Contributions majeures de la thèse

Les principales contributions de cette thèse peuvent être divisées en deux parties. En ef-

fet, les premières contributions (Contributions 1 à 3) concernent le développement d’outils

préliminaires, utiles pour l’analyse de la méthode des éléments finis multi-échelles (MsFEM).

Cependant, il est important de noter que ces outils préliminaires ne sont pas limités à l’étude

de la MsFEM mais peuvent être réutilisés dans d’autres contextes. La Contribution 1 con-

48



2.6. Contributions majeures de la thèse

cerne la quantification de la convergence de l’homogénéisation du problème de Stokes dans un

domaine perforé. Le théorème principal de cette contribution est l’un des principaux ingrédients

de l’élaboration d’une borne d’erreur pour la MsFEM appliquée au problème de Stokes. La

Contribution 2 concerne l’introduction d’une nouvelle famille d’éléments finis non-conformes

en trois dimensions sur des tétraèdres dans la veine des éléments finis non-conformes introduits

dans [132] en deux dimensions sur des triangles. Ces familles d’éléments finis non-conformes, en

deux et trois dimensions, permettent de prouver le caractère bien posé discrète des problèmes

locaux issus de la MsFEM appliquée au problème de Stokes ou d’Oseen. En effet, pour ces

problèmes locaux impliquant des multiplicateurs de Lagrange, le caractère bien posé ne peut pas

être démontré avec des paires classiques d’éléments finis. En conséquence, à des fins numériques,

la Contribution 3 concerne l’implémentation des nouveaux éléments finis non-conformes dans

le code source de FreeFEM [93]. Ensuite, les autres contributions (Contributions 4 à 7) con-

cernent plus spécifiquement l’analyse de la MsFEM d’un point de vue théorique et numérique.

Contribution 1 La première contribution concerne la dérivation d’un taux de convergence

quantitatif pour l’homogénéisation du problème de Stokes (2.3) dans un domaine perforé périodique.

Cette contribution est présentée dans le Chapitre 6 et a donné lieu à une publication [30]. Il

est bien connu que les équations homogénéisées ou effectives pour le système de Stokes, dans un

domaine perforé périodique, est la loi de Darcy pour la vitesse u et la pression homogénéisée p∗,
u = 1

νA
∗(f −∇p∗) dans Ω,

divu = 0 dans Ω,

u · n = 0 sur ∂Ω.

où A∗ est un tenseur de perméabilité constant (voir la Proposition 6.5). Nous établissons un taux

de convergence O(
√
ε) pour la norme d’énergie de la différence des vitesses et des pressions, où ε

représente la taille des obstacles solides. Ceci est réalisé en utilisant une expansion asymptotique

à deux échelles des équations de Stokes et une nouvelle construction d’une fonction de coupure qui

évite l’introduction de couches limites. Cette estimation de l’erreur
√
ε a d’abord été démontrée

par [111] dans un espace bidimensionnel, et a été indépendamment améliorée dans [156] pour

n’importe quelle dimension d’espace d ≥ 2, dans les deux cas sous l’hypothèse d’obstacles solides

isolés (comme dans la Figure 6.1). Cependant, cette hypothèse n’est pas physiquement réaliste en

dimension d ≥ 3. Par conséquent, nous étendons cette estimation d’erreur
√
ε au cas d’obstacles

solides connectés dans tout espace de dimension d ≥ 2.

Avant d’énoncer notre résultat principal (en termes vagues, voir le Théorème 6.9 pour un

énoncé précis), nous devons introduire quelques notations. En fait, la vitesse de Darcy u ne

voit pas les obstacles solides et ne peut donc pas être une bonne approximation de la vitesse

originale uε. Elle doit être corrigée en introduisant une meilleure approximation qui est

u2

(
x,
x

ε

)
=

1

ν

d∑
i=1

ωi

(x
ε

)(
fi(x)−

∂p∗

∂xi
(x)

)
,

où les vitesses locales ωi sont des solutions de problèmes de cellule (6.6). Le lien entre u2 et la
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vitesse de Darcy u est que u(x) est la moyenne de u2(x, y) par rapport à la variable périodique

y. La principale nouveauté est que notre analyse s’applique au cas physiquement pertinent

d’un milieu poreux où les parties fluides et solides sont connectées. En termes simples, cette

contribution se lit comme suit.

Theorem 2.2. Soit uε, pε la solution du problème de Stokes (2.3) and u2, p
∗, leur approxi-

mations homogénéisées. En supposant que f est suffisamment lisse, il existe une constante C,

indépendante de ε, telle que
∥pε − p∗∥L2(Ωε)

∥p∗∥L2(Ωε)
≤ Cε

1
2 ,

|uε − ε2u2|H1(Ωε)

|ε2u2|H1(Ωε)
≤ Cε

1
2 ,

∥uε − ε2u2∥L2(Ωε)

∥ε2u2∥L2(Ωε)
≤ Cε

1
2 .

Le Théorème 2.2 est énoncé en termes d’erreurs relatives puisque ε2u2 (et donc uε) est

petit. Ce théorème est utilisé dans la dérivation d’une estimation d’erreur pour l’approximation

MsFEM du problème de Stokes dans un domaine perforé périodique (voir la Section 9.2).

Contribution 2 La deuxième contribution est le développement d’une famille d’éléments finis

scalaires non-conformes d’ordre de précision deux et trois par rapport à la norme H1 sur des

tétraèdres. Cette contribution est présentée dans le Chapitre 5 et a conduit à une publication

[29]. En effet, pour la classe de MsFEM développée dans cette thèse, les problèmes locaux im-

pliquent une divergence polynomiale et des multiplicateurs de Lagrange, et ne peuvent donc pas

être résolus en utilisant des paires classiques d’éléments finis. En deux dimensions, les éléments

finis non-conformes introduits par [132] (et présentés dans le Chapitre 4) associés à des pressions

polynomiales discontinues d’ordre n permettent de résoudre ces problèmes locaux. Cependant,

en trois dimensions, aucun couple d’éléments finis existant n’a conduit à un problème discret dont

le caractère bien posé a pu être prouvé, à l’exception de ceux développés ici. Par conséquent,

dans la veine de [132], nous introduisons une famille d’éléments finis scalaires non-conformes

d’ordre deux et trois par rapport à la norme H1 sur des tétraèdres. Leur version vectorielle

génère, avec une approximation de pression discontinue d’ordre un et deux respectivement, une

paire d’éléments finis vérifiant la condition inf-sup d’ordre de convergence deux et trois pour le

problème de Stokes dans la norme d’énergie. Les degrés de liberté scalaires (locaux) sont définis

par des moments sur les faces Fα et dans les tétraèdres K,

NFα
j (v) =

∫
Fα

vLFα
j j ≥ 0, α = 1, 2, 3, 4,

NK
j (v) =

∫
K
vMK

j j ≥ 0,
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où (LFα
j )j définit une base arbitraire de Pn(Fα) de dimension (n+1)(n+2)/2, et (MK

j )j définit

une base arbitraire de Pn−1(K) de dimension n(n + 1)(n + 2)/6. Pour chaque élément K du

maillage Th et tout entier n ≥ 1, nous définissons l’ensemble des degrés de liberté Nn+1(K) par

Nn+1(K) :=

{
NFα

j 1 ≤ j ≤ (n+ 1)(n+ 2)

2
, α = 1, 2, 3, 4

}
∪
{
NK

j 1 ≤ j ≤ n(n+ 1)(n+ 2)

6

}
.

(2.10)

Suivant [132], nous enrichissons l’espace local Pn+1(K) avec un sous-espace propre de Pn+2(K),

dénoté par Σn+2(K) ⊂ Pn+2(K), avec une intersection triviale avec Pn+1(K). Ainsi, l’espace

enrichi Vn+1(K) est donné par

Vn+1(K) = Pn+1(K)⊕ Σn+2(K).

De tels espaces Vn+1 n’ont été trouvés que pour les cas n = 1 et n = 2. Le lemme principal de

cette contribution est donc le suivant.

Lemma 2.3. Soit K un tétraèdre avec des coordonnées barycentriques λ1, λ2, λ3, λ4. Alors,

les espaces éléments finis

V2 = P2 + span{λ1λ22, λ1λ23, λ2λ23},

et

V3 = P3 + span{λ31λ2, λ32λ3, λ33λ4, λ34λ1, λ32λ1, λ31λ4, λ34λ3, λ33λ2},

sont unisolvants, respectivement, par rapport à l’ensemble des degrés de liberté N2 and N3

décrits dans (2.10).

Il faut noter que les espaces d’éléments finis V2 et V3 décrits dans le Lemme 2.3 ne sont pas

uniques (voir par exemple la liste de toutes les bases convenables V3 dans l’Annexe A.2). De

plus, pour le cas n = 1, nous retrouvons l’élément fini proposé par [50].

Contribution 3 Comme nous l’avons expliqué plus haut, la caractère bien posé des problèmes

locaux impliqués dans la MsFEM est démontrée à l’aide d’éléments finis non classiques. En

effet, en deux dimensions, nous avons utilisé la famille d’éléments finis introduite dans [132]

et présentée dans le Chapitre 4. En trois dimensions, nous avons utilisé la famille d’éléments

finis introduite dans le Chapitre 5 et dans [29]. Dans ces deux cas, ces éléments finis sont

associés à une approximation polynomiale discontinue d’ordre n. Par conséquent, à des fins

numériques, c’est-à-dire pour le calcul des fonctions de base locales, ces nouveaux éléments finis

ont été implémentés dans le code source de FreeFEM [93]. Tout d’abord, nous avons implémenté

l’élément fini non-conforme d’ordre de précision trois, introduit dans [132], dans le code source de

FreeFEM, et il est connu sous le nom P3pnc1. L’élément fini non-conforme d’ordre de précision

1https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc.cpp

51

https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/plugin/seq/Element_P3pnc.cpp
https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/plugin/seq/Element_P3pnc.cpp


Chapter 2. Introduction de la thèse en français

deux, connu sous le nom P2pnc2, était déjà implémenté. Pour les applications numériques en

trois dimensions, nous avons implémenté les deux éléments finis non-conformes, d’ordre deux

et trois, présentés dans le Chapitre 5 et dans [29]. Ils sont connus respectivement sous le nom

de P2pnc3d3 et P3pnc3d4. Il est pertinent de souligner qu’en plus d’être utiles pour

cette thèse, ces éléments finis non-conformes peuvent maintenant être utilisés par

tous les utilisateurs de FreeFEM pour résoudre des problèmes physiques.

Contribution 4 Nous proposons la première estimation d’erreur pour l’approximation du

problème de Stokes dans un domaine perforé périodique en utilisant la MsFEM développée dans

cette thèse, ce qui permet de montrer la convergence de la méthode proposée. La démonstration

de l’estimation d’erreur est présentée dans la Section 9.2 et est basée sur le lemme de Strang,

qui est le lemme classique pour l’estimation d’erreur pour les méthodes d’éléments finis non-

conformes, et la convergence quantitative de l’homogénéisation du problème de Stokes introduite

dans le Chapitre 6 et dans [30]. Cette estimation de l’erreur est obtenue en supposant que le cal-

cul des fonctions de base locales est exact. La méthodologie utilisée s’inspire de la démonstration

de l’erreur effectuée dans [111]. Le résultat principal se lit en termes vagues (voir le Théorème

9.27 pour un énoncé précis) comme suit.

Theorem 2.4. Soit f suffisamment lisse. L’erreur entre la solution (uε, pε) du problème de

Stokes (2.3) dans un domaine périodique perforé et à son approximation MsFEM (uH , pH)

est donnée par

ε−1|uε − uH |H,1+∥pε − pH∥L2(Ωε)

≤ C
(
Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω) +

(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
,

où la constante C ne dépend pas de ε, H et de f .

Plus précisément, à H fixé, le terme pε − pH est O(1) lorsque ε tends vers zéro. De plus,

en rappelant que dans un domaine périodique, on a uε ≈ ε2u(x, xε ) (à chaque dérivation de

u(x, xε ), un facteur 1/ε apparâıt), les estimations d’erreur ci-dessus pour la vitesse et la pression

indiquent essentiellement que les erreurs relatives sont de l’ordre de

(
Hn +

√
ε+

√
ε

H

)
. Dans

cette somme, le terme
√
ε, qui provient des couches limites dans le processus d’homogénéisation,

est négligeable. En effet, le terme dominant est l’erreur de résonance classique
√

ε
H , qui indique

que la taille de la maille grossièreH doit être beaucoup plus grande que ε pour obtenir une bonne

approximation. Cependant, la présence du terme Hn permet de choisir un H suffisamment

grand sans réduire significativement la précision de l’approximation, ce qui montre l’intérêt de

considérer des méthodes d’ordre élevé. La valeur optimale du maillage grossier H qui minimise

2https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc.cpp
3https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc_3d.cpp
4https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc_3d.cpp
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2.6. Contributions majeures de la thèse

l’erreur est donnée par

Hopt =

(√
ε

2n

) 1

n+1
2 .

De plus, en utilisantH = Hopt dans l’estimation de l’erreur, nous remarquons que l’erreur devient

de l’ordre
√
ε lorsque n→∞ (nous retrouvons l’ordre de convergence de l’homogénéisation).

Contribution 5 Nous étendons la MsFEM, initialement développée pour le problème de

Stokes (voir par exemple la Figure 2.12), au problème d’Oseen (2.2) dans la Partie IV (voir par

exemple la Figure 2.13). La principale différence avec la MsFEM pour le problème de Stokes est

que dans ce cas, les problèmes locaux sont des problèmes de type Oseen, avec la même vitesse

d’Oseen U0 que dans le problème global. De plus, à travers des expériences numériques, nous

montrons que cette MsFEM permet de traiter des nombres de Reynolds élevés, et que la for-

mulation MsFEM Petrov–Galerkin (dans laquelle les fonctions test sont solutions de problèmes

locaux dérivés du problème adjoint d’Oseen et les fonctions d’essai sont solutions de problèmes

locaux dérivés du problème d’Oseen) n’aboutit pas à des résultats numériques plus précis.

(a) Approximation MsFEM (n = 1, 4096
éléments grossiers).

(b) Solution de référence calculée sur un
maillage fin.

Figure 2.12: Simulation bi-dimensionnelle d’un écoulement de Stokes dans un canal ouvert,
ν = 1, écoulement de la gauche vers la droite avec une entrée parabolique, une sortie libre, et
une vitesse nulle sur les bords haut, bas et sur les obstacles.
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(a) Approximation MsFEM (n = 2, 4096
éléments grossiers).

(b) Solution de référence calculée sur un
maillage fin.

Figure 2.13: Simulation bi-dimensionnelle d’un problème de Oseen dans un canal ouvert, nombre
de Reynolds Re = 2000 (ν = 5× 10−4, U0 = [y(1− x2),−x(1− y2)]t), écoulement de la gauche
vers la droite, avec une entrée parabolique, une sortie libre, et une vitesse nulle sur les bords
haut, bas et sur les obstacles.

Contribution 6 Nous implémentons la MsFEM pour résoudre les problèmes de Stokes et

d’Oseen en deux et trois dimensions (voir par exemple la Figure 2.14) dans un cadre de haute

performance dans FreeFEM [93]. En effet, pour résoudre les problèmes locaux, nous développons

deux niveaux de parallélisme : un parallélisme entre chaque élément grossier (permettant de

considérer chaque élément grossier en parallèle) et un parallélisme à l’intérieur de chaque élément

grossier (permettant de calculer les problèmes locaux eux-mêmes en parallèle). De plus, à des

fins de comparaison, nous implémentons des solveurs pour calculer des solutions de référence sur

des maillages fins. Les détails de ces implémentations sont présentés dans les Annexes E et D.

En outre, nous proposons la première implémentation à l’ordre n = 2 pour la MsFEM étudiée

(voir par exemple la Figure 2.13).

Outlet

Inlet

(a) Coupe dans le champ de magnitude de
la vitesse suivant l’axe z (perpendiculaire
aux cylindres).

Figure 2.14: Approximation MsFEM d’un écoulement de Stokes dans un canal ouvert tridimen-
sionnel avec une entrée parabolique, une sortie libre et une vitesse nulle sur les autres bords
(n = 2, 3072 éléments grossiers).
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Contribution 7 Nous proposons une méthodologie pour résoudre le problème stationnaire de

Navier–Stokes (2.1) sur une grille grossière en utilisant des fonctions de base MsFEM adaptatives

dans le Chapitre 16 (voir par exemple la Figure 2.15). Comme le problème comporte des termes

non linéaires, nous proposons une approche pseudo-transitoire pour le résoudre. Cependant, la

principale difficulté pour résoudre itérativement le problème de Navier-Stokes en utilisant une

approche multi-échelle est que ce problème ne peut pas être résolu en utilisant une seule base

fixée, dérivée soit du problème d’Oseen (avec une vitesse d’Oseen arbitraire donnée U0) soit du

problème de Stokes (équivalent au problème d’Oseen avec une vitesse d’advection nulle). En ef-

fet, à chaque itération, le problème global à calculer change puisque la vitesse d’advection change.

En particulier, dès que la vitesse d’advection du problème global diffère trop de celle utilisée

pour les fonctions de base, ces dernières deviennent inadaptées au problème. Par conséquent,

pour surmonter cette difficulté, à chaque itération, de nouvelles fonctions de base sont calculées

afin que les fonctions de base restent bien adaptées au problème. En outre, nous proposons une

discussion sur la possibilité de résoudre un tel problème à l’aide de la méthode des éléments finis

généralisée (GMsFEM) [69].

(a) Velocity magnitude. (b) Pressure field.

Figure 2.15: Approximation MsFEM (n = 2, 256 éléments grossiers) d’un problème de Navier–
Stokes stationnaire sans un canal ouvert en deux dimensions, nombre de Reynolds Re = 1000
(ν = 1× 10−3), écoulement de la gauche vers la droite, avec une entrée parabolique, une sortie
libre, et une vitesse nulle sur les bords haut, bas et sur les obstacles.
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Chapter 3

Some useful reminders
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3.1 The Crouzeix–Raviart finite element

Let Ω be a connected and bounded open set in Rd with d = 2 or 3. We denote by Th a

discretization of Ω by triangles in two dimensions or tetrahedra in three dimensions. Let K be

an element of Th. Let Fh be the set of faces in the discretization and let F be an element of Fh.

The Crouzeix–Raviart finite element was introduced first in [61]. The velocity unknown of

this finite element is the value of the shape functions at the centers of the faces and the pressure

degrees of freedom are located at the barycenter of each element (see Figure 3.1).

Figure 3.1: Crouzeix–Raviart element with locations of unknowns in two dimensions.
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We note Vh and Mh the approximation space of the velocity uh and the pressure ph respec-

tively. The spaces Vh and Mh are defined as

Vh =
{
vh ∈ L2(Ω)d s.t. vh|K∈ P1(K)d, vh is continuous at the middle of the faces, ∀K ∈ Th

}
,

Mh = {qh ∈ L2
0(Ω) s.t. qh|K∈ P0(K), ∀K ∈ Th}.

The approximation space Vh is not included in V = H1
0 (Ω)

d and thus it is non-conforming.

Let {a0, . . . ,ad} be the vertices of K, Fi be the face of K opposite to ai and ni be the outward

normal to the face Fi. The associated barycentric coordinates (λ0, . . . , λd) [75] are defined by

λi :
Rd → R
x 7→ λi(x) = 1− (x−ai)·ni

(aj−ai)·ni
for 0 ≤ i ≤ d,

where aj is an arbitrary vertex in Fi. The barycentric coordinate λi is an affine function, it is

equal to 1 at ai and vanishes at Fi, i.e. λi(aj) = δij (with δij the Kronecker symbol). In partic-

ular, the barycentric coordinates satisfy the following properties. For all x ∈ K, 0 ≤ λi(x) ≤ 1,

and for all x ∈ Rd,
d∑

i=0

λi(x) = 1 and

d∑
i=0

λi(x)(x− ai) = 0.

Let {ϕ0, . . . , ϕd} be the basis functions of each component of Vh (the scalar version of Vh is

of dimension d+1). Using the barycentric coordinates (λ0, . . . , λd), ϕi reads on each element K

ϕi|K= 1− dλi|K , for 0 ≤ i ≤ d.

By noting xi the center of the face Fi, we have ϕi|K(xi) = δij . Consequently, any function of Vh

can be written as

uh =
d∑

i=0

uh(xi)ϕi(x).

By introducing [[vh]] the jump of vh across an internal face F defined by

[[vh]]F = vh
−n− + vh

+n+,

where F is the common face of K± ∈ Th, vh± = vh|K± and n± are the outward unit normal

of K± along F , and with [[vh]] = vh on ∂Ω, then the space Vh can be written as

Ṽh = {vh ∈ L2(Ω)d s.t. vh|K∈ P1(K)d,

∫
F
[[vh]] = 0, ∀K ∈ Th, ∀F ∈ Fh}

Indeed, since ϕi|K∈ P1(K), the mean value over a face is equal to the value at the barycenter.

The condition

∫
Fi

[[vh]] = 0 for Fi ∈ Fh implies that functions of Ṽh are only continuous at the

center of the face Fi. Therefore, Vh and Ṽh are the same spaces.
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3.2 Inf-sup related theorems

3.2.1 Continuous version

Let V and M be two Hilbert spaces. The scalar product defined on these spaces are denoted

respectively by (·, ·)V and (·, ·)M . The norms associated with these scalar products are denoted

respectively by ∥·∥V and ∥·∥M . Let V ′ and M ′ be the dual spaces of V and M and let ∥·∥V ′

and ∥·∥M ′ be the associated dual norms. The dual space V ′ (respectively M ′) is the space of

continuous linear forms defined on V (respectively M). We denote by < ·, · > the product of

an element in the Hilbert space and an element of its dual space. Let f and g be element of V ′

and M ′ respectively, i.e. f and g are two linear forms.

Let a(·, ·) and b(·, ·) be two continuous bi-linear forms, defined by

a(·, ·) : V × V → R and b(·, ·) :M × V → R.

Then we consider the following variational problem. Given f ∈ V ′ and g ∈M ′, find (u, p) ∈ V ×M
such that {

a(u, v) + b(p, v) =< f, v > ∀v ∈ V,
b(q, u) =< g, q > ∀q ∈M.

(3.1)

First, we suppose that g = 0, and introduce the following subspace W of V defined by

W = {v ∈ V s.t. ∀q ∈M, b(q, v) = 0}.

The problem (3.1) can be rewritten as: find u ∈W such that

a(u, v) =< f, v > ∀v ∈W. (3.2)

The well-posedness of problem (3.2) is ensured by the Lax-Milgram lemma [75, Lemma 2.2].

Lemma 3.1 (Lax-Milgram). We assume that

� a(·, ·) is continuous, i.e. there exists a constant β such that

|a(u, v)| ≤ β∥u∥W ∥v∥W , ∀u, v ∈W.

� a(·, ·) is coercive on W , i.e. there exists a constant α such that

a(v, v) ≥ α∥v∥2W , ∀v ∈W.

Then, the problem (3.2) is well-posed i.e. has one and only one solution u ∈ W , with

the a priori estimate

∥u∥W ≤
1

α
∥f∥V ′ .

Proof. This lemma is a consequence of the Banach-Nečas–Babuška (BNB) Theorem (Theo-

rem 3.2).
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A generalization of Lax-Milgram’s lemma and its proof is presented in [75, Theorem 2.6].

Indeed as noted in [75] the Lax-Milgram Lemma holds in Hilbert spaces only, since the coercivity

(an Hilbertian property) is required, while the Banach-Nečas–Babuška (BNB) Theorem holds

in a Banach space.

Theorem 3.2 (Banach-Nečas–Babuška (BNB)). Let X be a Banach space and let Y be a

reflexive Banach space. Let a(·, ·) be a bi-linear form: X × Y → R and f ∈ Y ′. Then, the

problem (3.2) is a well-posed if and only if

∃α > 0, inf
w∈X

sup
v∈Y

a(w,v)
∥w∥X∥v∥Y ≥ α,

∀v ∈ Y, (∀w ∈ X, a(w, v) = 0) =⇒ (v = 0).

Moreover, the following a priori estimate holds

∀f ∈ Y ′, ∥u∥X ≤
1

α
∥f∥Y ′ .

For more general problems, in the case g ̸= 0, we cannot introduce a similar subspace W .

Consequently, we need necessary and sufficient conditions so that the saddle point problem (3.1)

is well-posed, i.e. has one and only one solution. This case has been considered in [84].

Theorem 3.3. Assume that

1. a(·, ·) is a bi-linear form continuous on V × V ,

2. b(·, ·) is a bi-linear form continuous on M × V ,

3. a(·, ·) is V -elliptic, i.e. there exists a constant α > 0 such that

a(v, v) ≥ α∥v∥2V ∀v ∈ V,

4. b(·, ·) verifies the inf-sup condition: there exists a constant β > 0 such that

inf
q∈M, q ̸=0

sup
v∈V

b(q, v)

∥v∥V ∥q∥M
≥ β. (3.3)

Then, the problem (3.1) is well-posed and it has one unique solution u ∈ V , p ∈ M for

any f ∈ V ′, g ∈M ′.

The inf-sup condition (3.3), also called the LBB condition for Ladyzhenskaya–Babuška–

Brezzi, was introduced by Babuška [23] and Brezzi [40].
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3.2.2 Discrete version

When the problem (3.1) is discretized using finite elements, it is important that the discrete

inf-sup condition is satisfied. Let h denote the discretization parameter tending to zero. Let Vh

and Mh two finite dimensional spaces, called approximation spaces. We introduce two bi-linear

forms ah(·, ·) : Vh × Vh → R and bh(·, ·) : Mh × Vh → R. We approximate the problem (3.1) by

the following discrete problem. Find (uh, ph) ∈ Vh ×Mh such that{
ah(uh, vh) + b(ph, vh) = < f, vh > ∀vh ∈ Vh,

bh(qh, uh) = < g, qh > ∀qh ∈Mh,
(3.4)

with f ∈ V ′ and g ∈M ′. The existence and uniqueness of a solution to system (3.4) is guaranteed

by the following discrete inf-sup condition, which is a discrete version of Theorem 3.3.

Theorem 3.4. Assume that

1. ah(·, ·) is a bi-linear form continuous on Vh × Vh,

2. bh(·, ·) is a bi-linear form continuous on Mh × Vh,

3. ah(·, ·) is Vh-elliptic, i.e. there exists a constant αh > 0 such that

ah(vh, vh) ≥ αh∥vh∥2Vh
∀vh ∈ Vh,

4. bh(·, ·) verifies the inf-sup condition: there exists a constant βh > 0 such that

inf
qh∈Mh, qh ̸=0

sup
vh∈Vh

bh(qh, vh)

∥vh∥Vh
∥qh∥Mh

≥ βh.

Then, the problem (3.4) is well-posed and it has one unique solution uh ∈ Vh, ph ∈ Mh

for any f ∈ V ′, g ∈M ′.

3.3 Introduction to homogenization

In Chapter 6, we address the homogenization of the Stokes problem in a periodic perforated

domain. Therefore, for the sake of understanding, in this section we make a brief introduction

to homogenization, largely based on [10]. For a more advanced presentation of homogenization

the reader may refer to the following books [31, 26, 164, 57, 161]. Homogenization is a rigorous

version of what is known as averaging. To put it another way, homogenization enables the

extraction of homogeneous, effective parameters from disordered or heterogeneous media. The

technique of homogenization was initially developed for periodic structures. Indeed, in numerous

fields of science and technology, one is required to solve boundary value problems in periodic

media. However, homogenization is not limited to the periodic case and can be applied to any

kind of disordered media. In general, the size of the period is relatively small compared to

the size of a sample of the medium. By denoting by ε their ratio, an asymptotic analysis, is

therefore necessary as ε goes to zero. Homogenization is the process whereby an asymptotic
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analysis is conducted in order to derive an averaged formulation. It enables the transition from

a microscopic description of a problem to a macroscopic, or effective, description, making it

easier to analyse or to solve.

3.3.1 General procedure of homogenization

In what follows, we give the main steps of homogenization.

1. Identify the small parameter ε that characterises the ratio between the microscopic and

macroscopic scales.

2. Expand the solution uε in powers of ε (asymptotic expansion) generally as

uε

(
x,
x

ε

)
= u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ . . . .

3. Replace the asymptotic expansion into the governing equations and gather terms of the

same order in ε, in order to derive the effective or macroscopic equation. The leading-order

terms usually yield the effective macroscopic equations.

4. Integrate the microscopic properties to derive the effective (homogenized) coefficients for

the macroscopic equations.

As result, we obtain an effective macroscopic model that captures the averaged behaviour

of the microscopic model. This model is often simpler and more tractable than the original

microscopic one. For example, in the case of heat conduction, the homogenized equation could

be a heat equation with effective thermal conductivity. For fluid flows in porous media, the

homogenized equation could be the Darcy law with an effective permeability.

To introduce the mathematical approach, in what follows, we apply this procedure to a

simple problem of conductivity.

3.3.2 Setting of the problem

Let Ω be a periodic domain (see for example Figure 3.2) which is a bounded open set in Rd (d is

the space dimension) with periodicity ε > 0 (assumed to be very small in comparison with the

size of the domain), and Y be the re-scaled unit periodic cell Y = (0, 1)d. The conductivity in

Ω is not constant, but varies periodically with period ε in each direction. It is a matrix tensor

A(y), where y = x/ε ∈ Y is the fast variable, while x ∈ Ω is the slow variable. Equivalently,

x is called the macroscopic variable, and y the microscopic variable. The matrix A can be any

second order tensor that is bounded and positive definite, i.e. there exist two positive constants

β ≥ α > 0 such that, for any vector ξ ∈ Rd and at any point y ∈ Y ,

α|ξ|2 ≤
d∑

i,j=1

Aij(y)ξiξj ≤ β|ξ|2.

The matrix A(y) is a periodic function of y, with period Y , and it may be discontinuous in y

(to model the discontinuity of conductivities from one phase to the other).
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Figure 3.2: A periodic domain Ω.

Denoting by f(x) the source term (a scalar function defined in Ω), and enforcing a Dirichlet

boundary condition (for simplicity), the model problem of conductivity reads{
−div

(
A
(
x
ε

)
∇uε

)
= f in Ω,

uε = 0 on ∂Ω,
(3.5)

where uε(x) is the unknown function, modelling physical quantities such as temperature, elec-

trical potential. Considering f ∈ L2(Ω), then the problem (3.5) is well-posed due to the Lax–

Milgram lemma which implies existence and uniqueness of the solution uε in the Sobolev space

H1
0 (Ω).

The domain Ω, with is conductivity A
(
x
ε

)
, is highly heterogeneous with periodic hetero-

geneities of length-scale ε. In practice, it is not necessary to have the full details of the variations

of uε, rather, it is sufficient to have some global or averaged behaviour of the domain, considered

as a homogeneous domain. What is more, from a numerical point of view, solving problem (3.5),

by any method will require too much computational resources, in particular if ε is small since the

number of elements for a fixed level of accuracy grows like 1/εd. It is thus preferable, to find an

effective or equivalent macroscopic conductivity of the domain Ω and compute an approximation

of uε on a coarse mesh.

The mathematical theory of homogenization works in a completely different way to tradi-

tional physical approaches such as the Representative Volume Element (RVE), which consists

of averaging physical quantities in a sample of heterogeneous medium. In fact, instead of con-

sidering a single heterogeneous medium with a fixed length scale, the problem is first embedded

in a sequence of similar problems for which the length scale ε becomes smaller and smaller, goes

to zero (see Figure 3.3). Then, an asymptotic analysis is performed as ε tends to zero, and the

conductivity tensor of the limit problem is said to be the effective or homogenized properties.

In the case of a periodic medium Ω, this asymptotic analysis of system (3.5), as the period ε

goes to zero, is simple. Formally, the solution uε is written as a power series of ε, i.e.

uε =
+∞∑
i=0

εiui.

65



Chapter 3. Some useful reminders

The first term u0 of this series is identified with the solution of the so-called homogenized

equation, for which effective conductivity A∗ can be exactly computed. We can show that A∗

is a constant tensor, describing a homogeneous medium, which is independent of f and of the

boundary conditions. Consequently, numerical computations of the homogenized equation do

not require a fine mesh since the heterogeneities of size ε have been averaged out. It is important

to note that this homogenized tensor A∗ is rarely an ordinary average.

ε = 1/8

ε = 1/16

ε = 1/32

ε→ 0, Macroscopic Description

Unit cell Y , y = x/ε

H
o
m
o
g
e
n
iz
a
ti
o
n

Figure 3.3: Homogenization procedure.

3.3.3 Two-scale asymptotic expansions

3.3.3.1 Ansatz

The method of two-scale asymptotic expansions is an heuristic method, which allows one to

formally homogenize a great variety of models or equations posed in a periodic domain. The

starting point is to consider the following two-scale asymptotic expansion (also called ansatz),

for the solution uε of problem (3.5),

uε(x) =

+∞∑
i=0

εiui(x,
x

ε
), (3.6)
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where each term ui(x, y) is a function of both variables x and y, periodic in y with period

Y = (0, 1)d, ui is thus called a periodic function with respect to y. This series is plugged into

(3.5), and the following derivation rule is used

∇
(
ui

(
x,
x

ε

))
= (ε−1∇yui +∇ui)

(
x,
x

ε

)
, (3.7)

where ∇ and ∇y denote the partial derivative with respect to the first and second variable of

ui
(
x, xε

)
. For example, one has

∇uε(x) = ε−1∇yu0

(
x,
x

ε

)
+

+∞∑
i=0

εi(∇yui+1 +∇ui)
(
x,
x

ε

)
.

Problem (3.5) becomes a series in ε,

− ε−2[ divy A∇yu0]
(
x,
x

ε

)
− ε−1[ divy A(∇xu0 +∇yu1) + divA∇yu0]

(
x,
x

ε

)
− ε0[ divA(∇u0 +∇yu1) + divy A(∇u1 +∇yu2)]

(
x,
x

ε

)
−

+∞∑
i=1

εi [ divA(∇ui +∇yui+1) + divy A(∇ui+1 +∇yui+2)]
(
x,
x

ε

)
= f(x).

(3.8)

Identifying each coefficient of (3.8) as an individual equation yields a cascade of equations (a

series of the variable ε is zero for all values of ε if each coefficient is zero). The three first

equations are enough for our purpose. The ε−2 equation is

−divy A(y)∇yu0(x, y) = 0,

which is nothing else that an equation in the unit cell Y with periodic boundary condition. In

this equation, y is the variable, and x plays the role of a parameter. It can be checked that there

exists a unique solution of this equation up to a constant (i.e. a function of x independent of y

since x is just a parameter). This implies that u0 is a function that does not depend on y, i.e.

there exists a function u(x) such that

u0(x, y) = u(x).

Since ∇yu0 = 0, the ε−1 equation is

−divy A(y)∇yu1(x, y) = divy A(y)∇u(x), (3.9)

which is an equation for the unknown u1 in the periodic cell Y . Again, it is a well-posed

problem, which admits a unique solution up to a constant, as soon as the right-hand side is

known. Equation (3.9) allows one to compute u1 in terms of u, and it is easily seen that u1(x, y)

depends linearly on the first derivative ∇u(x).

67



Chapter 3. Some useful reminders

Finally, the ε0 equation is

−divy A(y)∇yu2(x, y) = divy A(y)∇u1 + divA(y)(∇yu1 +∇u) + f(x), (3.10)

which is an equation for the unknown u2 in the periodic unit cell Y . Equation (3.10) ad-

mits a solution if a compatibility condition is satisfied (the so-called Fredholm alternative,

see Lemma 3.5). Indeed, integrating the left-hand side of (3.10) over Y , and using the pe-

riodic boundary condition for u2, we obtain∫
Y

divy (A(y)∇yu2(x, y))dy =

∫
∂Y

[A(y)∇yu2(x, y)] · nds = 0,

which implies that the right-hand side of (3.10) must have zero average over Y , i.e.∫
Y
[ divy A(y)∇u1 + divA(y)(∇yu1 +∇u) + f(x)]dy = 0,

which simplifies to

−div

(∫
Y
A(y)(∇yu1 +∇u)dy

)
= f(x) in Ω. (3.11)

Since u1(x, y) depends linearly on ∇u(x), (3.11) is simply an equation for u(x) involving only

the second order derivatives of u.

3.3.4 The cell and homogenized problems

The method of two-scale asymptotic expansions leads to a couple of equations ((3.9) and (3.11))

that have a mathematical, as well as physical, interpretation. In order to compute u1 and to

simplify (3.11), we introduce the so-called cell problems. We denote by (ei)1≤i≤d the canonical

basis of Rd. For each unit vector ei, consider the following conductivity problem in the periodic

unit cell {
−divy A(y)(ei +∇yωi(y)) = 0 in Y,

y → ωi(y) Y − periodic,
(3.12)

where ωi(y) is the local variation of potential created by an averaged (or macroscopic) gradi-

ent ei. The existence of a solution ωi, to problem (3.12) is guaranteed by Lemma 3.5.

Lemma 3.5. Let f(y) ∈ L2
#(Y ) be a periodic function. There exists a solution in H1

#(Y )

(unique up to an additive constant) of{
−divy A(y)∇ω(y) = f(y) in Y,

y → ω(y) Y − periodic,

if and only if

∫
Y
f(y)dy = 0 (this is called the Fredholm alternative).

We recall that L2
#(Y ) denotes the L2 space of Y -periodic functions i.e.

L2
#(Y ) = {φ ∈ L2

loc(Rd), φ is Y − periodic},
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endowed with the usual scalar product and norm of L2(Y ), and H1
#(Y ) denotes the H1 space

of Y -periodic functions, i.e.

H1
#(Y ) = {φ ∈ H1

loc(Rd), φ is Y − periodic},

endowed with the usual scalar product and norm of H1(Y ).

By linearity, it is not difficult to compute u1(x, y), solution of (3.9) in terms of u(x) and

ωi(y),

u1(x, y) =
d∑

i=1

∂u

∂xi
(x)ωi(y).

In reality, u1(x, y) is merely defined up to the addition of a function ũ1(x) (depending only

on x), but this not matter since only its gradient∇yu1(x, y) is used in the homogenized equation.

Inserting this expression in (3.11), we obtain the homogenized equation for u that we supplement

with a Dirichlet boundary condition on ∂Ω,{
−div (A∗∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω.

The homogenized conductivity A∗ is defined by its entries

A∗
ij =

∫
Y
[(A(y)∇yωi) · ej +Aij(y)] dy,

or equivalently, after a simple integration by parts in Y ,

A∗
ij =

∫
Y
A(y)(ei +∇yωi) · (ej +∇yωj)dy.

The constant tensor A∗ describes the effective or homogenized properties of the heterogeneous

material A
(
x
ε

)
. It is important to note that A∗ does not depend on the choice of domain Ω,

source term f , or boundary condition on ∂Ω. Therefore, the solution uε can be approximated (at

the order 1) by

uε(x) ≈ u(x) + εu1

(
x,
x

ε

)
= u(x) + ε

d∑
i=1

∂ui
∂xi

(x)ωi

(x
ε

)
,

where the term εu1

(
x,
x

ε

)
is the corrector term.

69





Chapter 4

Presentation of an inf-sup stable

non-conforming family of finite

elements on triangles of arbitrary

accuracy order

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Discrete setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 A family of scalar non-conforming finite element . . . . . . . . . . . . . . . . . 74

4.3.1 Definition of the non-conforming finite element . . . . . . . . . . . . . 74

4.3.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Implementation in FreeFEM source code . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Strategy to construct a finite element interpolant . . . . . . . . . . . . 76

4.4.2 Computation of the quantities Ni(f) . . . . . . . . . . . . . . . . . . . 77

4.4.3 Computation of the local basis functions ΦK
i . . . . . . . . . . . . . . 80

4.4.4 Computation of the derivatives of the local basis functions ΦK
i . . . . 82

4.4.5 Final structure of the finite element interpolant . . . . . . . . . . . . . 82

4.4.6 Plotting of non conforming finite element . . . . . . . . . . . . . . . . 84

4.4.7 Assessment of the implementation of the finite element V3 . . . . . . . 84

4.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Note: We would like to thank Prof. Frédéric Hecht for his help with the implementation of

the finite elements in FreeFEM source code.

This chapter is dedicated to the presentation of the family of non-conforming finite elements

of arbitrary accuracy order on triangles in two dimensions introduced in [132]. This family of

finite element is useful for solving the discrete local problems in two dimensions arising from

the Multi-scale Finite Element Method (MsFEM) for the Stokes or the Oseen problem (see
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Chapter 8). For these local problems, the discrete well-posedness could not be shown with

classical pairs of finite elements. For this purpose, we have implemented the non-conforming

finite element of accuracy order 3 in FreeFEM [93] source code, and it is known under the

name P3pnc1. The non-conforming finite element of accuracy order 2, known under the name

P2pnc2, was already implemented, and the one of accuracy order 1, corresponding to the well-

known Crouzeix–Raviart finite element [61], was obviously already implemented in FreeFEM,

and it is known under the name P1nc.

In this chapter, for the sake of completeness, and to help understand Chapter 8, as well as

the next chapter, Chapter 5, which is about the extension of this non-conforming finite element

in three dimensions on tetrahedra, we recall the definition of this family of non-conforming finite

element and the main theoretical results of [132]. Then, we explain the general procedure to

implement such a non-conforming finite element in FreeFEM and apply it for the finite element

P3pnc. Finally, we carry out numerical experiments to assess the implementation of these finite

elements.

4.1 Introduction

We consider the Stokes problem in two dimensions. Let Ω ⊂ R2 be a bounded connected domain.

The steady-state Stokes problem is to find the velocity u : Ω→ R2 and the pressure p : Ω→ R
solution to

−ν∆u+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

(4.1)

with ν > 0 the viscosity and f the applied force. We consider homogeneous boundary conditions

but all the theoretical analyses hold for non-homogeneous boundary conditions. Vector valued

functions are written in bold. We denote by

(u, v) =

∫
Ω
uvdx,

the scalar product in L2(Ω). We use the same notation for vector-valued function, i.e. the L2(Ω)

scalar product for vector-valued functions is given by

(u,v) =

∫
Ω
u · v dx,

where u · v denotes the Euclidian scalar product in R2. We define the classical velocity

space V = H1
0 (Ω)

2 and pressure space M = L2
0(Ω) = {q ∈ L2(Ω), s.t.

∫
Ω q = 0} equipped

respectively with the |·|1 H1 semi-norm and the ∥·∥0 L2 norm. We introduce the bi-linear

1https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc.cpp
2https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc.cpp
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4.2. Discrete setting

forms a(·, ·) : V × V → R and b(·, ·) :M × V → R defined by

a(u,v) = (∇u,∇v), b(p,v) = (p, div v).

Then, a weak formulation of the Stokes problem (4.1) reads as follows. Find u ∈ V and p ∈M
such that {

a(u,v) + b(p,v) = (f ,v) ∀v ∈ V,
b(q,u) = 0 ∀q ∈M,

(4.2)

with f ∈ (L2(Ω))2. It is well-known [84] that there exists a unique weak solution to system (4.2),

due to the Ladyzhenskaya–Babuška–Brezzi (LBB) condition, also called inf-sup condition (see

Theorem 3.3), namely there exists β > 0 such that

inf
q∈M

sup
v∈V

b(q,v)

|v|1∥q∥0
≥ β.

Next, when the Stokes problem is discretized using finite elements, it is important that the

discrete inf-sup condition (4.5) is satisfied uniformly in the mesh size h. This condition imposes

constraints on the choice of the pairs of finite elements (for velocity and pressure), since this

condition is not satisfied for every pair of finite elements.

4.2 Discrete setting

Let Ω ⊂ R2 be a polyhedral domain. We note {Th} a family of triangulations of Ω parametrized

by a positive parameter h which tends to 0. Each triangulation Th consists of a finite number

of triangles K such that Ω = ∪K∈ThK. Let hK = diam(K) and h := maxhK . We assume

that the triangulations are conformal in the sense that the intersection of the closures of two

different cells K is either empty, a common vertex or a common edge. Besides, we assume that

the triangulations are shape regular, i.e. there exists a positive constant C independent of the

mesh parameter h such that

hK
σK
≤ C, ∀K ∈ Th, hK > 0,

where σK denotes the maximum diameter of a ball which can be inscribed in K. We denote by

Eh the set of all edges E of Th. The length of E and the area of K are denoted respectively by

|E| and |K|.

For any integer n and any integer 1 ≤ l ≤ d (with d the space dimension, here d = 2),

we denote by Pl
n the linear space spanned by l-variate polynomial functions of total degree at

most n. The dimension of Pl
n is

N l
n := dim(Pl

n) =

(
n+ l

n

)
.

For any K ∈ Th, we denote by Pn(K)2 the restriction to K of polynomials in (Pn)
2. For

any E ∈ Eh, we denote by Pn(E) the restriction to E of Pn. For the sake of simplicity, we denote

Pn(K)2 by Pn(K).
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For a domain D ⊂ R2, we use the Sobolev spaces Hm(D), Hm
0 (D), and L2(D) = H0(D) for

non-negative integer m. The norms and semi-norms in the scalar and vector-valued versions of

Hm(D) are denoted by ∥ · ∥m,D and | · |m,D respectively. We define the H1 broken space by

H1,h(Ω) := {v ∈ L2(Ω), s.t. v|K∈ H1(K), ∀K ∈ Th}.

On the broken spaceH1,h(Ω), an analogue of the semi-norm | · |1 is defined, for any v ∈ H1,h(Ω)2,

by

|v|1,h :=

∑
K∈Th

|v|21,K

1/2

,

where |v|1,K = ∥∇v∥0,K . Let ∇hv and divh v denote the piecewise gradient and piecewise

divergence of v ∈ H1,h(Ω)2, defined by

(∇hv)|K = ∇(v|K), ( divh v)|K = div (v|K).

Let Vh ⊂
(
L2(Ω)

)2
be a non-conforming finite element space andMh ⊂M . Let f be in

(
L2(Ω)

)2
.

Then, the discrete Stokes problem reads as follows. Find uh ∈ Vh and ph ∈Mh such that{
ah(uh,vh) + bh(ph,vh) = (f ,vh) ∀vh ∈ Vh,

bh(qh,uh) = 0 ∀qh ∈Mh,
(4.3)

where ah(·, ·) : Vh × Vh → R and bh(·, ·) :Mh × Vh → R are respectively the discrete versions of

the bi-linear forms a(·, ·) and b(·, ·), defined by

ah(uh,vh) = (∇huh,∇hvh), bh(ph,v) = (ph, divh vh). (4.4)

It is well-known that the discrete problem (4.4) is well-posed under the following conditions: ah(·, ·)
and bh(·, ·) are continuous, ah(·, ·) is symmetric and coercive and the spaces Vh and Mh satisfy

the discrete Ladyzhenskaya–Babuška–Brezzi (LBB) condition (or the discrete inf-sup condition,

or are said to be inf-sup stable), namely there exists β∗ > 0, independent of h, such that

inf
qh∈Mh

sup
vh∈Vh

bh(qh,vh)

|vh|1∥qh∥0
≥ β∗. (4.5)

4.3 A family of scalar non-conforming finite element

4.3.1 Definition of the non-conforming finite element

The main goal of the work presented in [132] is to define a scalar non-conforming finite element

space such that its vector-valued version associated with a discontinuous pressure approximation

of polynomial order n form an inf-sup stable finite element pair of accuracy order n+ 1, n ≥ 0

for the Stokes problem.

To construct the non-conforming finite element space, they propose to enrich the local poly-

nomial space Pn+1(K) with a proper subspace of Pn+2(K), denoted by Σn+2 ⊂ Pn+2(K), with
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a trivial intersction with Pn+1(K). For n ≥ 1, they define the space Σn+2 as

Σn+2 = span
{
bKλ

n−1−i
1 λi2, i = 0, ...., n− 1

}
,

where

bK = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1),

and λ1, λ2, λ3 are the three barycentric coordinates associated with the triangle K.

Remark 4.1. For n = 0, Σn+2 = ∅.

The enriched space Vn+1(K) obtained is therefore given by

Vn+1(K) = Pn+1(K)⊕ Σn+2(K).

They introduce the following scalar (local) degrees of freedom, defined on H1,h(Ω) by

NEα
j (v) =

∫
Eα

vLEα
j j ≥ 0, α = 1, 2, 3, (4.6)

NK
j (v) =

∫
K
vMK

j j ≥ 0, (4.7)

where (LEα
j )j define an arbitrary basis of Pn(Eα) of dimension (n + 1), and (MK

j )j define an

arbitrary basis of Pn−1(K) of dimension n(n + 1)/2. Thus, for each element K ∈ Th and any

integer n ≥ 1, the set of degrees of freedom Nn+1(K) is defined by

Nn+1(K) :=
{
NEα

j 1 ≤ j ≤ (n+ 1), α = 1, 2, 3
}

∪
{
NK

j 1 ≤ j ≤ n(n+ 1)

2

}
.

(4.8)

Remark 4.2. For the case n = 0, the set of degrees of freedom is reduced to

N1(v) =

{
1

|Eα|

∫
Eα

v , α = 1, 2, 3

}
which corresponds clearly to the well-known Crouzeix–Raviart finite element [61].

4.3.2 Theoretical analysis

In this section, we recall the main theoretical results established in [132]. The proof of all the

following results can be found in [132].

Theorem 4.3. For any integer n ≥ 0, the finite element space Vn+1(K) is unisolvent with

respect to the set of degrees of freedom Nn+1(K).
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Theorem 4.4. The finite element Vn+1 associated with a discontinuous pressure approxima-

tion of polynomial order n (noted Pdc
n ) satisfies the discrete inf-sup stability condition (4.5)

for the discrete Stokes problem.

Lemma 4.5. There exists interpolation operators Ih : V → Vn+1 and Jh : M → Mh such

that

|u− Ihu|1,h ≤ Chn+1|u|n+2 ∀u ∈ V ∩Hn+2(Ω),

∥p− Jhp∥0 ≤ Chn+1|p|n+1 ∀p ∈M ∩Hn+1(Ω).

Theorem 4.6. Assume that the approximation property (Lemma 4.5) and the discrete inf-

sup condition (4.5) are satisfied. Let (u, p) be the solution to the Stokes problem (4.1) and

assume that

u ∈ V ∩ (Hn+2(Ω))2, p ∈ Hn+1(Ω).

Then, (4.3) has a unique solution (uh, ph) and the following error estimate holds

|u− uh|1,h + ∥p− ph∥0 ≤ Chn+1 (|u|n+2 + |p|n+1) ,

with C a constant independent of the mesh size h.

4.4 Implementation in FreeFEM source code

For numerical applications of the Multi-scale Finite Element Method presented in Chapters 7

and 12, we need the non-conforming finite elements V2 (finite element of accuracy order two

corresponding to n = 1) and V3 (finite element of accuracy order three, corresponding to n = 2).

The non-conforming finite element V2 (finite element P2pnc) being already implemented in

FreeFEM, as explained in the introduction of this chapter, part of the thesis work was to im-

plement the finite element V3 (finite element P3pnc) in FreeFEM source code. In this section,

we explain the implementation of such a non-conforming finite element in FreeFEM. We note

M := card(Nn+1), the number of degrees of freedom of the finite element Vn+1. The implemen-

tation is done in the reference element K̂ and then an affine operator is applied to define the

finite element in any element K.

4.4.1 Strategy to construct a finite element interpolant

When implementing a new finite element in FreeFEM, the main task is to build the local

(scalar-valued) finite element interpolant IKh : H1(K)→ Vn+1(K). We recall that in the case of

a non-conforming finite element, the structure of the local finite element interpolant is given by

IKh f =
M−1∑
l=0

Nl(f) Φ
K
l , (4.9)
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with f the function to be interpolated, Nl ∈ Nn+1, defined in (4.8), a local degree of freedom,

and ΦK
l the associated scalar local basis functions, satisfying

Ni(Φ
K
j ) = δij , for 0 ≤ i, j ≤M − 1, (4.10)

where δij is the Kronecker symbol. Finally, the local finite element interpolant (4.9) satisfies

Nj(I
K
h f) = Nj(f), for j = 0, . . . ,M − 1.

Consequently, the construction of this local interpolant consists of two main steps. The first

step is to be able to compute numerically the quantities Ni(f) defined in (4.6) and (4.7). The

second step consists in building a set of local scalar basis functions ΦK
i , such that (4.10) holds.

In Section 4.4.2, we explain the computation of the quantities Ni(f). In Section 4.4.3, we

explain the computation of the local scalar basis functions ΦK
i . Finally, in Section 4.4.5, we

summarise the final structure of the local finite element interpolant.

4.4.2 Computation of the quantities Ni(f)

The quantities Ni(f) in (4.9), i.e. integrals of type (4.6) and (4.7), are not determined analyti-

cally. They are approximated using quadratures rules.

Definition 4.7. A quadrature rule is a linear map of the form

InQF
D : F 7→

nQF−1∑
l=0

ωlF(ζl),

which associates to any function F a quantity InD(F) supposed to approximate

∫
D
F(x)dx i.e.

∫
D
F(x) ≈

nQF−1∑
l=0

ωlF(ζl),

where nQF is the number of points of evaluation. The points (ζl)l are called the integration

points and the coefficients (ωl)l are called weights.

In this section, the domain D represents either the element K or the edge Eα.

Remark 4.8. Generally, the quadrature formula can be defined on the reference edge (the

segment [0, 1]) thanks to a change of variable. For example, for one dimensional integration,

between the points x0 and x1, we have

F(x) = g(t),

with 0 ≤ t ≤ 1 and x defined as x = (1− t)x0 + tx1. The two-dimensional case is treated in

the same way.
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4.4.2.1 Construction of the lists of integration points and weights for degrees of

freedom defined over edges

Using quadrature formulas to compute the integrals (4.6) leads to the following approximation

NEα
j (f) =

nQFE−1∑
l=0

clLj(P
Eα
l )f(PEα

l ),

=

nQFE−1∑
l=0

wEα
j,l f(P

Eα
l ),

for j = 0 . . . , n and α = 1, 2, 3. The PEα
l designate the integration points, the wEα

l the associated

weights, and nQFE the number of integration points.

In the case of the non-conforming finite element V3, for the integration over the edge Eα (one

dimensional integration), we use the quadrature formula qf4pE, defined in FreeFEM. This

quadrature corresponds to the quadrature rule of Gauss Legendre of order 4, which is exact

for polynomial of order 7. This quadrature rule is constructed as (with the change of variable

described in Remark 4.8)∫
Eα

F(x) ≈ |Eα|
72

(b1g(s1) + b1g(s2) + b2g(s3) + b2g(s4)) ,

where
b1 = 18−

√
30, b2 = 18 +

√
30,

s1 =
1−
√

525+70
√
30

35

2
, s2 =

1 +

√
525+70

√
30

35

2
,

s3 =
1−
√

525−70
√
30

35

2
, s4 =

1 +

√
525−70

√
30

35

2
.

Noting x0 and x1 the two vertices of the edge Eα, the list P
Eα of integration points are defined

as

PEα = {s1x0 + (1− s1)x1, s2x0 + (1− s2)x1, s3x0 + (1− s3)x1, s4x0 + (1− s4)x1}

and the lists of weights are defined as

wEα
j = {b1Lj(s1x0 + (1− s1)x1), b1Lj(s2x0 + (1− s2)x1),

b2Lj(s3x0 + (1− s3)x1), b2Lj(s4x0 + (1− s4)x1)} .
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4.4.2.2 Construction of the lists of integration points and weights for degrees of

freedom defined over element

As for the edges, using quadrature formulas to compute the integrals (4.7) leads to the following

approximation

NK
j (f) =

nQFK−1∑
l=0

dlM
K
j (PK

l )f(PK
l )

=

nQFK−1∑
l=0

wK
j,lf(P

K
l ),

for j = 1, . . . , n(n+1)
2 . The PK

l designates the integration points, the wK
l the associated weights,

and nQFK the number of integration points.

In the case of the non-conforming finite element V3, for the integration over the elements

(two dimensional integration), we use the quadrature formula qf5pT, defined in FreeFEM. This

quadrature rule, exact for polynomials of order 5, is constructed (with the change of variable of

Remark 4.8) as [159], i.e.

∫
K
F(x) ≈

(
c1g(t1, t1) + c2g(t2, t2) + c2g(t2, t4) + c2g(t4, t2)

+ c3g(t3, t3) + c3g(t3, t5) + c3g(t5, t3)
)
,

with

c1 = 0.225, c2 =
155−

√
15

1200
, c3 =

155 +
√
15

1200
,

t1 =
1

3
, t2 =

6−
√
15

21
, t3 =

6 +
√
15

21
,

t4 =
9 +
√
15

21
, t5 =

9−
√
15

21
.

Noting (xi, xj) the global coordinates of any point in the triangle K defined by the parametric

coordinates (ti, tj), the list PEα of evaluation points are defined as

PK = {(x1, x1), (x2, x2), (x2, x4), (x4, x2), (x3, x3), (x3, x5), (x5, x3)} ,

and the lists of weights are defined as

wK
j =

{
c1M

K
j (x1, x1), c2M

K
j (x2, x2), c2M

K
j (x2, x4), c2M

K
j (x4, x2),

c3M
K
j (x3, x3), c3M

K
j (x3, x5), c3M

K
j (x5, x3)

}
.
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4.4.3 Computation of the local basis functions ΦK
i

4.4.3.1 General idea

To build the local scalar-valued basis functions ΦK
i , for 0 ≤ i ≤M − 1, first we consider a basis

of the space Vn+1 composed of monomials pk, for 0 ≤ k ≤ M − 1. Then, we construct ΦK
j as a

linear combination of the mononials pk, i.e.

ΦK
i =

M−1∑
k=0

ai,kpk. (4.11)

Now, the goal is to determine the coefficients ai,k, such that (4.10) holds. To do this, we apply

the degree of freedom Ni to both members of (4.11), leading to

Nj(Φ
K
i ) =

M−1∑
k=0

ai,kNi(pk) = δij . (4.12)

By defining the matrix C as

C = (Nj (pi))0≤i,j≤M−1 ,

and the unknown matrix A = (aij)i,j , it follows that (4.12) is equivalent to

AC = IM ,

with IM the identity matrix of size M . Therefore, the coefficients aij are given by

A = C−1,

where C−1 is the inverse matrix of C, which is invertible since the (pk)k is a basis of the space Vn+1.

At the end, we compute the local basis functions ΦK
i as

ΦK
0
...

ΦK
M−1

 = C−1


p0
...

pM−1

 .

For the sake of understanding, let us consider the following example.
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Example 4.9. We consider a finite element W0 with two degrees of freedom N1 and N2. We

define also two monomials p1 and p2, basis of W0. We note Φ1 and Φ2 the two basis functions

that we are looking for. The matrix C is defined by

C =

(
N1(p1) N2(p1)

N1(p2) N2(p2)

)
,

and it inverse C−1 is given by

C−1 =
1

det(C)

(
N2(p2) −N2(p1)

−N1(p2) N1(p1)

)
,

where det(C) = N1(p1)N2(p2)−N1(p2)N2(p1). The basis functions are therefore defined by(
Φ1

Φ2

)
= C−1

(
p1

p2

)
=

1

det(C)

(
N2(p2)p1 −N2(p1)p2

−N1(p2)p1 −N1(p1)p2

)
.

Now, it is easy to check that {
N1(Φ1) = 1, N2(Φ1) = 0,

N1(Φ2) = 0, N2(Φ2) = 1.

Consequently, we have built a set of basis functions such as Ni(Φj) = δij .

4.4.3.2 Numerical applications for V3

Remark 4.10. Some of these basis functions depend on the edge orientation. Consequently,

in FreeFEM, the implementation is not exactly as presented here. According to the edge

orientation, one needs to swap some monomials.

To implement the finite element V3, we choose the monomials pk as
p0 = λ30, p1 = λ31, p2 = λ32,

p3 = λ20λ1, p4 = λ20λ2, p5 = λ21λ0,

p6 = λ21, p7 = λ22λ0, p8 = λ22λ0,

p9 = λ0λ1λ2, p10 = bKλ0, p11 = bKλ1.

where λ0, λ1, λ2 are the barycentric coordinates of the triangle K, defined by

λ0 = 1− x− y, λ1 = x, λ2 = y,

and

bK = (λ0 − λ1)(λ1 − λ2)(λ2 − λ0).

To define the degrees of freedom NEα
j , we choose for the set

{
LEα
j

}
j
, which defines a basis of

the space P2(Eα), the set {t, 1 − t, t(1 − t)} with t the parametric coordinate on the edge. To

define the degree of freedom NK
j , we choose for the set

{
MK

j

}
j
, which defines a basis of the
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space P1(K), the set {λ0, λ1, λ2}. Using the following formula [163],

∫
D

d∏
i=0

λαi
i =

1

|D|
d!
∏d

i=0 αi!

(d+
∑d

i=0 αi)!
,

where D = K and d = 2 for integrals over elements and D = Eα and d = 1 for integrals over

edges, the matrix C−1 for the finite element V3 is given by



−1.2 −1.2 1.2 1.2 6 −15.6 6 1.2 −15.6 −9.6 4.8 4.8

6 1.2 −15.6 −1.2 −1.2 1.2 1.2 6 −15.6 4.8 −9.6 4.8

1.2 6 −15.6 6 1.2 −15.6 −1.2 −1.2 1.2 4.8 4.8 −9.6

−8.4 −73.2 298.8 73.2 10.8 −306 −46.8 20.4 97.2 189.6 −192 2.4

10.8 75.6 −205.2 −63.6 −46.8 349.2 10.8 −10.8 −54 21.6 86.4 −108

10.8 73.2 −306 −73.2 −8.4 298.8 20.4 −46.8 97.2 −192 189.6 2.4

−46.8 −63.6 349.2 75.6 10.8 −205.2 −10.8 10.8 −54 86.4 21.6 −108

−10.8 −73.2 198 37.2 20.4 −154.8 −8.4 10.8 46.8 −24 −81.6 105.6

20.4 37.2 −154.8 −73.2 −10.8 198 10.8 −8.4 46.8 −81.6 −24 105.6

12 12 −180 12 12 −180 12 12 −180 60 60 60

0 −84 252 84 84 −504 −84 0 252 84 −168 84

−84 −84 504 84 0 −252 0 84 −252 168 −84 −84



.

4.4.4 Computation of the derivatives of the local basis functions ΦK
i

The local basis function ΦK
i being defined as a linear combination of the monomials pk

ΦK
i =

M−1∑
k=0

ai,kpk,

their derivatives are defined as linear combinations of derivatives of the monomials pk, i.e.

∂ΦK
i

∂x
=

M−1∑
k=0

ai,k
∂pk
∂x

,

∂ΦK
i

∂y
=

M−1∑
k=0

ai,k
∂pk
∂y

.

4.4.5 Final structure of the finite element interpolant

At the end, we implement the finite element interpolant using a summation indexed by k, i.e.

IKh f =

kP i−1∑
k=0

αkfjk(Ppk) Φ
K
ik
. (4.13)

Below, we detail all the indices and lists involved in (4.13). First, we have

kPi = 57,

since this finite element has three degrees of freedom on each edge and for each of them we use

four integration points to compute integrals of type (4.6), and three degrees of freedom on the
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element and for each of them we use seven integration points to compute integrals of type (4.7),

i.e.

57 =3 edges× 3 degrees of freedom× 4 integration points

+ 1 element× 3 degrees of freedom× 7 integration points.

Then, since we define a scalar-valued finite element interpolant, f has only one component. We

define, consequently a list consisting of kP i zeros (0 to select the first component for f , 1 to

select the second component of f if it is vectorial, and so on) i.e.

jk =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
.

Afterwards, we define the list ik allowing to select the considered basis functions, numbered

from 0 to 8 for the basis functions associated with edges and from 9 to 11 for basis functions

associated with the element. The basis functions associated with edges are repeated four times,

since we use four integration points to compute integrals of type (4.6) and the basis functions

associated with the element are repeated seven times, since we use seven integration points to

compute integrals of type (4.7), which gives

ik =
{
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,

5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9,

10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11
}
.

Next, we define the integration points. We have in total npPi = 19 integration points numbered

from 0 to 18 (four integrations points on each edge and seven in the element), which gives the

list of indices pk

pk =
{
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 4, 5, 6,

7, 4, 5, 6, 7, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 12, 13, 14, 15, 16, 17, 18, 12, 13, 14, 15, 16, 17, 18
}
.

If we consider a set of indices of integration points associated with an edge, for example the

set {0, 1, 2, 3}, associated let us say to the edge E1, this set of indices is repeated three times

since we have three degrees of freedom on the edge E1, and similarly for the other two edges.

Similarly the set of indices of integration points on the element {12, 13, 14, 15, 16, 17, 18}
is repeated three times since we have three degrees of freedom on the element. The integration
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points are chosen using the index pk in the list P defined as

P =
{
s1A+ (1− s1)B, s2A+ b(1− s2)B, s3A+ (1− s3)B,

s4A+ (1− s4)B, s1B + (1− s1)C, s2B + b(1− s2)C,

s3B + (1− s3)C, s4B + (1− s4)C, s1C + (1− s1)A,

s2C + b(1− s2)A, s3C + (1− s3)A, s4C + (1− s4)A,

(x1, x1), (x2, x2), (x2, x4), (x4, x2), (x3, x3), (x3, x5), (x5, x3)
}
.

The kP i associated weights are defined by

α =
{
b1L0

(
s1A+ (1− s1)B

)
, b1L0

(
s2A+ (1− s2)B

)
, b2L0

(
s3A+ (1− s3)B

)
,

b2L0

(
s4A+ (1− s4)B

)
, b1L1

(
s1A+ (1− s1)B

)
, b1L1

(
s2A+ (1− s2)B

)
,

b2L1

(
s3A+ (1− s3)B

)
, b2L1

(
s4A+ (1− s4)B

)
, b1L2

(
s1A+ (1− s1)B

)
,

b1L2

(
s2A+ (1− s2)B

)
, b2L2

(
s3A+ (1− s3)B

)
, b2L2

(
s4A+ (1− s4)B

)
,

b1L0

(
s1B + (1− s1)C

)
, b1L0

(
s2B + (1− s2)C

)
, b2L0

(
s3B + (1− s3)C

)
,

b2L0

(
s4B + (1− s4)C

)
, b1L1

(
s1B + (1− s1)C

)
, b1L1

(
s2B + (1− s2)C

)
b2L1

(
s3B + (1− s3)C

)
, b2L1

(
s4B + (1− s4)C

)
, b1L2

(
s1B + (1− s1)C

)
,

b1L2

(
s2B + (1− s2)C

)
, b2L2

(
s3B + (1− s3)C

)
, b2L2

(
s4B + (1− s4)C

)
,

b1L0

(
s1C + (1− s1)A

)
, b1L0

(
s2C + (1− s2)A

)
, b2L0

(
s3C + (1− s3)A

)
,

b2L0

(
s4C + (1− s4)A

)
, b1L1

(
s1C + (1− s1)A

)
, b1L1

(
s2C + (1− s2)A

)
,

b2L1

(
s3C + (1− s3)A

)
, b2L1

(
s4C + (1− s4)A

)
, b1L2

(
s1C + (1− s1)A

)
,

b1L2

(
s2C + (1− s2)A

)
, b2L2

(
s3C + (1− s3)A

)
, b2L2

(
s4C + (1− s4)A

)
,

c1M
K
0 (x1, x1), c2M

K
0 (x2, x2), c2M

K
0 (x2, x4), c2M

K
0 (x4, x2), c3M

K
0 (x3, x3),

c3M
K
0 (x3, x5), c3M

K
0 (x5, x3), c1M

K
1 (x1, x1), c2M

K
1 (x2, x2), c2xM

K
1 (x2, x4),

c2M
K
1 (x4, x2), c3M

K
1 (x3, x3), c3M

K
1 (x3, x5), c3M

K
1 (x5, x3), c1M

K
2 (x1, x1)

c2M
K
2 (x2, x2), c2xM

K
2 (x2, x4), c2M

K
2 (x4, x2), c3M

K
2 (x3, x3), c3M

K
2 (x3, x5),

c3M
K
2 (x5, x3)

}
.

4.4.6 Plotting of non conforming finite element

In FreeFEM, for the plot, each triangle is cut in n2sub sub-triangles, where the parameter nsub is

defined in the finite element builder. The vectors are then plotted on the vertices of this cutting.

For the finite element V3 we choose nsub = 4 since it involves polynomials P4.

4.4.7 Assessment of the implementation of the finite element V3

Following the implementation of the finite element, this section is dedicated to an assessment

of the results. In particular, the implementation of the basis functions and their derivatives is

verified.
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Assessment of the basis functions First, to assess the implementation of the local basis

functions ΦK
i , we compute in FreeFEM the terms

NEα
j (ΦK

i ) =
1

|Eα|

∫
Eα

ΦK
i L

Eα
j , 0 ≤ i, j ≤ 2, α = 1, 2, 3,

NK
j (ΦK

i ) =
1

|K|

∫
K
ΦK
i M

K
j , j = 1, 2, 3.

In order to compute these integrals, the quadrature formulas qforder = 7 are employed for

integrations over edges and qforder = 6 for integrations over elements. Consequently, the

result is the identity matrix, I12 as expected, which serves to validate the computation of the

basis functions.

Assessment of the derivatives Afterwards, we assess the implementation of the derivatives

of the basis functions ΦK
i . For this purpose, we use the space of polynomial of order 4 fully

discontinuous (noted Pdc
4 ), as reference. We call Π

P dc
4

h the interpolation operator in the space

Pdc
4 . We apply the following procedure.

1. For each basis function ΦK
i ∈ V3, we consider Φ̂K

i = Π
P dc
4

h (ΦK
i ), its interpolate in the space

Pdc
4 . Consequently, Φ̂K

i is an element of the space Pdc
4 .

2. We compute

dxΦ
K
i =

∂ΦK
i

∂x
, dyΦ

K
i =

∂ΦK
i

∂y
,

d̂xΦK
i =

∂Φ̂K
i

∂x
, d̂yΦK

i =
∂Φ̂K

i

∂y
.

The quantities d̂xΦK
i and d̂yΦK

i are used as reference since the computation of the deriva-

tives in the space Pdc
4 is already validated.

3. Then we compute the following error

ex = ∥d̂xΦK
i −Π

P dc
4

h (dxΦ
K
i )∥L2(Ω),

ey = ∥d̂yΦK
i −Π

P dc
4

h (dyΦ
K
i )∥L2(Ω).

4. We check that ex and ey are smaller than 1× 10−10.

As result, we get ex < 1×10−10 and ey < 10−10 which allows to validate the implementation

of the derivatives of the basis functions.

4.5 Numerical experiments

At this stage, the finite element spaces V2 and V3 (corresponding respectively to the cases n = 1

and n = 2), are available in FreeFEM. Therein, they are referenced respectively under the names
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P2pnc3 and P3pnc4. In this section, we present the convergence orders obtained with these new

finite elements in order to verify the theoretical analysis. The obtained results are compared

with those obtained with classical Taylor–Hood finite elements of accuracy order two and three.

For this purpose, we solve the Stokes equations (4.1) with the test case proposed in [132].

Let Ω = (0, 1)2, ν = 1 and f and g are chosen such that

u(x, y) = (sin(x) sin(y), cos(x) cos(y))T ,

p(x, y) = 2 cos(x) sin(y)− 2 sin(1)(1− cos(1)),

is solution to (4.1), which leads to

f(x, y) = (0, 4 cos(x) cos(y))T ,

g = u|∂Ω.
.

All numerical tests are performed in FreeFEM, considering a regular grid composed of trian-

gular elements. For the different pairs of finite elements tested, we compare the finite element

approximations to the exact solutions for the velocity and the pressure.

Figure 4.1: Error in norm L2 between the computed velocity and the exact velocity for different
pairs of finite elements.

3https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc.cpp
4https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc.cpp
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4.6. Conclusion

Figure 4.2: Error in norm H1 between the computed velocity and the exact velocity for different
pairs of finite elements.

Figure 4.3: Error in norm L2 between the computed pressure and the exact pressure for different
pairs of finite elements.

It can be seen from Figures 4.1 to 4.3, that we obtain the expected orders of convergence for

the non-conforming pairs V2–Pdc
1 and V3–Pdc

2 . The results obtained are comparable with those

obtained with conforming pairs of finite elements.

4.6 Conclusion

In this chapter, we have presented the family of non-conforming finite elements introduced

in [132]. In particular, we have implemented in FreeFEM the finite element of order of accuracy

three (corresponding to the case n = 2). We carried out numerical simulations to assess the
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non-conforming finite element of accuracy order two and three. Finally, for the solution to

the classical Stokes problem, the error obtained with the non-conforming pairs and with the

conforming ones are comparable. However, we recall that we need these non-conforming finite

elements to solve the local problems involved in MsFEM (see Chapter 8). In the next chapter,

we extend this non-conforming finite element in three dimensions on tetrahedra.
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The content of this chapter has been published in [29].

[29] L. Balazi, G. Allaire, P. Jolivet, and P. Omnes. Inf-sup stable non-conforming finite

elements on tetrahedra with second and third order accuracy. https://hal.science/ hal-04541809,

April 2024.

This chapter is dedicated to the introduction of a family of scalar non-conforming finite

elements of order two and three with respect to the H1-norm on tetrahedra. This family of

finite element is an extension in three dimensions of the non-conforming family of finite element

introduced by [132] and presented in Chapter 4. As in the two-dimensional case, this family

of finite element is useful for solving the discrete local problems in three dimensions arising

from the Multi-scale Finite Element Method (see Chapter 8). More precisely, for the class

of MsFEM developed (see Chapters 7 and 12), these local problems involve polynomial diver-

gence and Lagrange multipliers, and therefore cannot be solved using classical pairs of finite

elements. In two dimensions, the non-conforming finite elements introduced by [132] associated

with discontinuous piecewise polynomial pressures of order n allow to solve these local problems.

However, in three dimensions, no existing finite element pairs led to a discrete problem whose

well-posedness could be proved, except the ones developed here. For numerical purposes, the

two non-conforming finite element, of order two and three, have been implemented in FreeFEM

(following the same procedure as described in Chapter 4). They are known respectively under

the name P2pnc3d1 and P3pnc3d2.

In this chapter, for the sake of simplicity, we present the new family of scalar non-conforming

finite elements in the context of the Stokes problem. Indeed, their vector-valued version gener-

ates, together with a discontinuous pressure approximation of order one and two respectively,

an inf-sup stable finite element pair of convergence order two and three for the Stokes problem

in energy norm.

5.1 Introduction

We consider the Stokes problem, which is a simple model for viscous incompressible flows and

a first step towards more complex problems such as the Oseen problem or the Navier–Stokes

problem. Let Ω ⊂ R3 be a bounded connected domain. The steady-state Stokes problem is to

find the velocity u : Ω→ R3 and the pressure p : Ω→ R solution to

−ν∆u+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

(5.1)

with ν > 0 the kinematic viscosity and f the load. Although, throughout this paper, we

consider homogeneous boundary conditions, the generalization of the study for non-homogeneous

Dirichlet boundary conditions is straightforward.

1https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc_3d.cpp
2https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc_3d.cpp
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5.1. Introduction

We denote by

(u, v) =

∫
Ω
uvdx

the scalar product in L2(Ω). We use the same notation for vector-valued functions (which are

denoted using boldface letters), i.e. the L2(Ω) scalar product for vector-valued functions is given

by

(u,v) =

∫
Ω
u · v dx,

where u · v denotes the Euclidean scalar product in R3. Then, we define the classical ve-

locity space V =
(
H1

0 (Ω)
)3

and pressure space M = L2
0(Ω) = {q ∈ L2(Ω), s.t.

∫
Ω q = 0}

equipped respectively with the |·|1 H1 semi-norm and the ∥·∥0 L2 norm. We define the bi-linear

forms a(·, ·) : V × V → R and b(·, ·) :M × V → R by

a(u,v) = (∇u,∇v), b(p,v) = (p, div v).

Then, a weak formulation of the Stokes problem (5.1) reads as follows. Find u ∈ V and p ∈M
such that {

a(u,v) + b(p,v) = (f ,v) ∀v ∈ V,
b(q,u) = 0 ∀q ∈M,

(5.2)

with f ∈ L2(Ω)3. It is well-known [84] that system (5.2) has a unique solution due to the

Ladyzhenskaya–Babuška–Brezzi (LBB) condition, also called inf-sup condition, namely there

exists β > 0 such that

inf
q∈M

sup
v∈V

b(q,v)

|v|1∥q∥0
≥ β.

Then, when the Stokes problem is discretized using finite elements, it is important that the

discrete inf-sup condition is satisfied uniformly in the mesh size h. This condition imposes

constraints on the choice of finite element pairs for velocity and pressure, as not every pair

satisfies this requirement.

Additionally, to our own interest, the design of inf-sup stable pairs for the Stokes equations,

especially in three dimensions, is essential in many applications involving fluid mechanics (en-

vironmental flow, biological flow, in the energy sector, and others). A first class of such inf-sup

stable methods is given by the conforming velocity/pressure pair Pn+1−Pn (where Pn+1 and Pn

are respectively the spaces of polynomials of order less or equal to n+1 and n), called the Taylor–

Hood method. Indeed, the classical Taylor–Hood method, obtained with n = 1 for tetrahedra

in three dimensions, was first studied by R. Stenberg [158] who showed that it is sufficient that

any element of the tetrahedral mesh has at least one vertex in the interior of Ω for this pair to

be inf-sup stable for the Stokes problem. Then, D. Boffi [34] extended the Taylor–Hood method

for higher-order polynomials for tetrahedra and proved that these pairs of finite elements satisfy

the inf-sup condition for n ≥ 1 under mesh restrictions less stringent than those in [158].

Another appealing approach to build inf-sup stable pairs for the Stokes problem is to consider

non-conforming approximations. This class of approximations may have some advantages such

as fewer geometric constraints on the mesh and in some cases fewer degrees of freedom and far

fewer non-zero matrix entries than the corresponding conforming discretisations [131]. It also
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allows to use the inf-sup stable lowest order approximation (P1-P0) which is not possible with

conforming elements. Thus, in [61], families of non-conforming finite elements are introduced:

one of accuracy order one (the Crouzeix–Raviart finite element) on triangles and tetrahedra,

and one of accuracy order three on triangles in two dimensions, which are inf-sup stable for the

Stokes problem. Then, non-conforming finite elements have been developed for quadrilaterals

and hexahedra. Indeed, a constructive method for deriving finite elements of nodal type for

rectangles and rectangle parallelepipeds was developed in [96]. More recently, [131] developed

families of scalar non-conforming finite elements of arbitrary orders with optimal approximation

properties on parallelograms and parallelepipeds. In two dimensions, [132] introduced a family of

scalar non-conforming finite elements of accuracy order n+1 (n ≥ 0) with respect to theH1-norm

on triangles, by enriching the local space of polynomials of order n+ 1 with a proper subspace

of polynomials of order n + 2. The authors of [132] showed that their vector-valued versions

associated with discontinuous pressure approximations of polynomial order n form inf-sup stable

finite element pairs of accuracy order n + 1 for the Stokes problem. For n = 0, their non-

conforming finite element recovers the well-known Crouzeix–Raviart element. However, the

generalization of these non-conforming finite elements to three dimensions on tetrahedra has

not been studied. Based on the general definition of non-conforming finite elements in [61], the

authors of [155] introduce a specific example of such a family on tetrahedra with P2 velocities.

This finite element associated with a discontinuous pressure of polynomial order one, form an

inf-sup stable finite element pair with quadratic accuracy for the Stokes problem.

More recently, two families of scalar non-conforming finite elements of accuracy order two and

three with respect to the H1-norm on tetrahedra were introduced in [50]. The authors showed

that their vector-valued versions, associated with a discontinuous pressure approximation of

polynomial order one and two, respectively, form inf-sup stable finite element pairs with accuracy

order two and three for the Stokes problem.

In this chapter, inspired by the work of [132], we develop a new non-conforming family of

finite elements of order two (quadratic velocity approximation error) and three (cubic velocity

approximation error). The main difference with [50] is that we consider moments of order n− 1

in the element while in [50] only moments of order zero in the element are considered. For the

case n = 1, the two methods are equivalent.

The content of this chapter is the following. Section 5.2 recalls the discretisation setting

for the Stokes problem. Section 5.3 is concerned with the definition of a family of scalar non-

conforming finite elements, that are used to approximate the velocity space. Explicit bases of

order two and three are provided. Section 5.4 is devoted to the study of the discrete inf-sup

condition and the approximation properties of the finite element pair for the Stokes problem

defined by the previous family of non-conforming finite elements for velocity and a piecewise

discontinuous polynomial pressure of order n. To complete this study, we present an efficient

preconditioning strategy for the resulting linear system in Section 5.5. In Section 5.6, we carry

out numerical experiments allowing to assess the new non-conforming pairs of finite elements

and we compare them with conforming pairs. Finally, Section 5.7 gives a comparison of the

non-conforming and conforming pairs of finite elements in terms of degrees of freedom and

computational times.
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5.2 Discrete setting

Let Ω ⊂ R3 be a polyhedral domain. We note {Th} a family of triangulations of Ω parameterized

by a positive parameter h which tends to 0. Each triangulation Th consists of a finite number

of tetrahedra K such that Ω = ∪K∈ThK. Let hK = diam(K) and h := max hk. We assume

that the triangulations are conformal in the sense that the intersection of the closures of two

different cells K is either empty, a common vertex, a common edge, or a common face. Besides,

we assume that the triangulations are shape regular, i.e. there exists a positive constant C

independent of the mesh parameter h such that

hK
σK
≤ C, ∀K ∈ Th, hK > 0,

where σK denotes the maximum diameter of a ball which can be inscribed in K.

We denote by Fh the set of all faces F of Th. The set of inner faces will be denoted by F i
h and

the set of boundary faces by Fb
h. The area of F and the volume of K are denoted respectively

by |F | and |K|. We note nK the outer unit normal vector on ∂K. For any face F , we note nF

a fixed unit normal vector to F . If F ∈ F b
h, then nF coincides with the outer normal vector

to ∂Ω.

For any integer n and any integer 1 ≤ l ≤ d (with d the space dimension, here d = 3),

we denote by Pl
n the linear space spanned by l-variate polynomial functions of total degree at

most n. The dimension of Pl
n is

N l
n := dim(Pl

n) =

(
n+ l

n

)
.

For any K ∈ Th, we denote by P3
n(K) the restriction to K of polynomials in P3

n. For any F ∈ Fh,

we denote by P2
n(F ) the restriction to F of P2

n. For the sake of simplicity, we denote P3
n(K)

and P2
n(F ) respectively by Pn(K) and Pn(F ).

We define the H1 broken space by

H1,h(Ω) := {v ∈ L2(Ω), s.t. v|K∈ H1(K), ∀K ∈ Th}.

For v ∈ H1,h(Ω), we define the jump across a face F ∈ F i
h by

[v]F = (v|K)|F − (v|K̃)|F ,

whereK and K̃ are the two cells which are adjacent to the face F oriented such that the unit nor-

mal vector nF points into K̃. For a domain D ⊂ R3, we use the Sobolev spaces Hm(D), Hm
0 (D),

and L2(D) = H0(D) for non-negative integer m. The norms and semi-norms in the scalar and

vector-valued versions of Hm(D) are denoted by ∥ · ∥m,D and | · |m,D respectively. For any v in

the broken space
(
H1,h(Ω)

)3
, an analogue of its semi-norm | · |1 is defined, by

|v|1,h :=

∑
K∈Th

|v|21,K

1/2

,
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where |v|1,K = ∥∇v∥0,K . Let ∇hv and divh v denote the piecewise gradient and piecewise

divergence of v ∈ H1,h(Ω)3, defined by

(∇h v)|K = ∇(v|K), ( divh v)|K = div (v|K).

Let Vh ⊂ L2(Ω)3 be a non-conforming finite element space and Mh ⊂ M . Let f be in L2(Ω)3.

Then, the discrete Stokes problem reads as follow. Find uh ∈ Vh and ph ∈Mh such that{
ah(uh,vh) + bh(ph,vh) = (f ,vh) ∀vh ∈ Vh,

bh(qh,uh) = 0 ∀qh ∈Mh,
(5.3)

where ah(·, ·) : Vh × Vh → R and bh(·, ·) :Mh × Vh → R are respectively the discrete versions of

the bi-linear forms a(·, ·) and b(·, ·), defined by

ah(uh,vh) = (∇huh,∇hvh), bh(ph,vh) = (ph, divh vh). (5.4)

It is well-known that the discrete problem (5.4) is well-posed under the following conditions: ah(·, ·)
and bh(·, ·) are continuous, ah(·, ·) is symmetric and coercive and the spaces Vh and Mh satisfy

the discrete Ladyzhenskaya–Babuška–Brezzi (LBB) condition (or the discrete inf-sup condition,

or are said to be inf-sup stable), namely there exists β⋆ > 0, independent of h, such that

inf
qh∈Mh

sup
vh∈Vh

bh(qh,vh)

|vh|1∥qh∥0
≥ β⋆.

5.3 A family of scalar non-conforming finite elements

In this section, we introduce a family of scalar non-conforming finite elements and a set of

degrees of freedom.

5.3.1 Definition of the degrees of freedom

In the vein of [132], our aim is to define a scalar non-conforming finite element space of accuracy

order n+1, n ≥ 0 such that its vector-valued version Vh,n+1 is rich enough to satisfy the inf-sup

condition when associated with the pressure approximation space Mh,n made up of globally

discontinuous piecewise Pn(K) pressures, with vanishing mean-value on Ω. This global pressure

approximation space is also denoted Pdc
n in what follows. The scalar (local) degrees of freedom

are defined for any v ∈ H1(K) as

NFα
j (v) =

∫
Fα

vLFα
j j ≥ 0, α = 1, 2, 3, 4, (5.5)

NK
j (v) =

∫
K
vMK

j j ≥ 0, (5.6)

where (LFα
j )j define an arbitrary basis of Pn(Fα) of dimension (n+1)(n+2)/2, and (MK

j )j define

an arbitrary basis of Pn−1(K) of dimension n(n+ 1)(n+ 2)/6. Thus, for each element K ∈ Th
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and any integer n ≥ 0, we define the set of degrees of freedom Nn+1(K) by

Nn+1(K) :=

{
NFα

j 1 ≤ j ≤ (n+ 1)(n+ 2)

2
, α = 1, 2, 3, 4

}
∪
{
NK

j 1 ≤ j ≤ n(n+ 1)(n+ 2)

6

}
.

(5.7)

Remark 5.1. In the n = 0 case, (5.5) reduces to the integral of v on each of the 4 faces of

the tetrahedron while (5.6) completely disappears. Since for P1 functions, the integral over

a face is simply the area of the face multiplied by the value at the barycenter of that face,

the degrees of freedom in the n = 0 case can be assimilated to those of the standard P1 non-

conforming (Crouzeix–Raviart) finite element space. Then, the vector version of this finite

element space associated with the P0 pressure space is known to satisfy the discrete inf-sup

property and to provide a first-order accurate approximation of the velocity in the H1 norm

and of the pressure.

5.3.2 Definition of the finite element basis

Following [132], for n ≥ 1, the idea is to enrich the local space Pn+1(K) with a proper subspace

of Pn+2(K), denoted by Σn+2(K) ⊂ Pn+2(K), such that Σn+2(K) has a trivial intersection

with Pn+1(K). Thus, the enriched space Vn+1(K) will be given by

Vn+1(K) = Pn+1(K)⊕ Σn+2(K).

The first requirement is to ensure that

dim(Vn+1) = card(Nn+1).

Given that

dim(Pn+1) =
(n+ 2)(n+ 3)(n+ 4)

6
,

we should have

dim(Σn+2) = dim(Vn+1)− dim(Pn+1)

=
n(n+ 1)(n+ 2)

6
+ 4

(n+ 1)(n+ 2)

2
− (n+ 2)(n+ 3)(n+ 4)

6

= n(n+ 2),

and we have to ensure that

Pn+1(K) ∩ Σn+2(K) = {0}.

Consequently, to build the space Vn+1, i.e. to complete the space Pn+1(K), we are looking for

a proper subspace Σn+2(K) of Pn+2 of dimension n(n+ 2).

95



Chapter 5. Inf-sup stable non-conforming finite elements on tetrahedra of accuracy order two
and order three

Remark 5.2. By noting that

dim(Pn+2 \ Pn+1) =
(n+ 3)(n+ 4)

2
,

we remark that, for n > 5,
(n+ 3)(n+ 4)

2
− n(n+ 2) < 0.

Therefore, the proposed approach would work in theory at most for n ≤ 5. However, in

standard applications and for our purposes, considering accuracy order up to three is enough.

Now, we recall the notion of unisolvence. A finite element is defined by a set (K,V (K),N (K))

where V (K) is a space of functions of finite dimensionM , andN (K) is a space ofM independent

linear forms (ψi)i=1,...,M . The unisolvence property reads as follows.

Definition 5.3. The set (K, V (K), N (K)) is said to be unisolvent if and only if the appli-

cation
V (K) → RM

v 7→ (ψ1(v), . . . , ψM (v))

is an isomorphism.

We can state the following result.

Lemma 5.4. Let K be a tetrahedron with barycentric coordinates λ1, λ2, λ3, λ4. Then, the

finite element spaces

V2 = P2 + span{λ1λ22, λ1λ23, λ2λ23},

and

V3 = P3 + span{λ31λ2, λ32λ3, λ33λ4, λ34λ1, λ32λ1, λ31λ4, λ34λ3, λ33λ2},

are unisolvent with respect to the sets of degrees of freedom N2 and N3, respectively, described

in (5.7).

Proof. We propose a numerical proof of the unisolvence of the finite element spaces V2 and V3 us-

ing Definition 5.3. On the reference tetrahedron and with the basis of Pn+1 given by Lemma A.1

and the additional basis functions given in Lemma 5.4, we build (Φj)j a basis of Vn+1. Then, we

assemble the square matrixMi,j = Ni(Φj) for i = 1, . . . , card(Nn+1) and j = 1, . . . ,dim(Vn+1),

with Ni ∈ Nn+1. It should be noted that the two resulting matrices are of small size (13 × 13

for V2 and 28 × 28 for V3). Since the matrices contain small coefficients, the value of their de-

terminant can be non relevant (near to zero) to check for inversibility. Instead, we compute the

conditioning of these matrices (in this paper, we use the NumPy linear algebra functions [3]). In

the end, we find that the conditioning of matrixM has a value around 188 for the case n = 1 and

around 2307 for the case n = 2, which are clearly different from infinite and allows to conclude

on the inversibility ofM. It should be noted that a rigorous proof could be done using interval

arithmetic, with software such as Xcas [144]. For the unisolvence of the finite element space V2,

a proof can be found in [50].
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In Lemma 5.4, we have proposed a basis for V2 and one for V3. In Appendix A, we explain

how these bases have been found and how to find additional bases.

Remark 5.5. For the case n = 1, we recover the finite element proposed by [50]. However,

for the case n = 2, the proposed finite element space differs from that proposed in [50], since

in their work the authors consider only moments of order zero in the element, while in our

work, we consider moments of order n − 1 in the element (i.e. moment of order one for the

case n = 2).

Remark 5.6. The finite element spaces V2 and V3 described in Lemma 5.4 are not unique.

We propose a numerical strategy in Appendix A.1 to find relevant bases of functions. It has

to be noted that none of these bases are symmetric, that is to say, the finite element space

depends on the face numbering. However, we can suppose that in non-structured meshes, the

non-symmetry of the global finite element space will have little influence.

Summarizing, for any integer n ≥ 0, the finite element we consider is given by the set

(K, Vn+1(K), Nn+1(K)) provided that Vn+1(K) is unisolvent with respect to the set Nn+1(K)

(which is known for n = 0 and which we have proved for n = 1, 2). Then, we define the global,

vector-valued finite element space Vh,n+1 by

Vh,n+1 =



v ∈
(
H1,h(Ω)

)3
: v|K ∈ (Vn+1(K))3 , ∀K ∈ Th∫

F
q[v]F = 0, ∀F ∈ F i

h, q ∈ Pn(F )∫
F
qv = 0, ∀E ∈ Fb

h, q ∈ Pn(F )


. (5.8)

5.4 Approximation properties and the discrete inf-sup condition

In this section, the order n is fixed. We show that the non-conforming finite element space Vh,n+1

(under Assumption 5.7) together with the Pdc
n space for the pressure fulfil the discrete inf-sup

condition and have an accuracy of order n+ 1.

Assumption 5.7. In this section, we assume that such a space Vn+1(K), unisolvent with respect

to the set of degrees of freedom Nn+1(K), exists for n ≤ 5.

In what follows, we introduce the local (scalar-valued) interpolation operators. We define

the finite element interpolant as

IKh : H1(K)→ Vn+1(K) JK
h : L2(K)→ Pn(K).

Using the set of degrees of freedom from Nn+1(K), we define IKh v for v ∈ H1(K) by

Ni(I
K
h v) = Ni(v), ∀Ni ∈ Nn+1(K). (5.9)
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Then, IKh v can be written as

IKh v =

card(Nn+1)∑
j=1

Nj(v)φj ,

where {φj} is the dual basis for Nn+1(K) i.e. Ni(φj) = δij ∀(i, j). Next, we define JK
h p ∈ Pn(K)

for p ∈ L2(K) by the L2(K)-projection in Pn(K) as

(JK
h p, q)K = (p, q)K , ∀q ∈ Pn(K).

It can be seen that the interpolation operator IKh preserves Pn+1(K). Indeed, for p ∈ Vn+1, p

and IKh p have the same degrees of freedom and then by unisolvence IKh p = p. In particular, this

holds for Pn+1 which is included in Vn+1. From its definition, JK
h preserves Pn(K) evidently.

Moreover, it can be seen from the definitions of IKh and its vector-valued version IKh and

the definition of Vh,n+1 in (5.8) on the one hand, and from the definition of JK
h on the other

hand, that these local interpolants generate global interpolation operators Ih : V → Vh,n+1 and

Jh :M →Mh,n := Pdc
n

⋂
L2
0(Ω).

5.4.1 The discrete inf-sup condition

In this section, we show that the discrete version of the inf-sup (LBB) condition, that we recall

below, is valid uniformly in h, for the finite element pair Vh,n+1 −Mh,n, i.e.

∃β⋆n > 0 such that ∀h inf
qh∈Mh,n

sup
vh∈Vh,n+1

bh(qh,vh)

|vh|1,h∥qh∥0
≥ β⋆n, (5.10)

where the bi-linear form bh(·, ·) is defined in (5.4).

Theorem 5.8. The finite element pair Vh,n+1 −Mh,n satisfies the discrete inf-sup stability

condition (5.10).

In order to prove Theorem 5.8, we recall Fortin’s lemma [80].

Lemma 5.9 (Fortin’s lemma). If the continuous inf-sup condition holds with the constant β

and if there exists a linear operator Πh : V → Vh,n+1 such that

bh(qh,Πhu) = b(qh,u), ∀qh ∈Mh,n, ∀u ∈ V,

|Πhu|1,h ≤ C|u|1,∀u ∈ V,

then the discrete inf-sup condition holds with β⋆n ≥ β |||Πh|||−1, where |||·||| denotes the

operator norm.

Below, we prove Theorem 5.8.

Proof. Let Ih be the interpolant defined above, then we remark that for any qh ∈ Mh and for
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any v ∈ V , we have

bh(qh, Ihv) = ( divh Ihv, qh)

=
∑
K∈Th

( divh I
K
h v, qh)K

=
∑
K∈Th

(
−(IKh v,∇qh)K + (Ihv · nK , qh)∂K

)
,

by integration by parts. Now, since ∇qh|K ∈ (Pn−1(K))3 and from the definition of the degrees

of freedom (5.6) and the interpolation properties (5.9) we get (IKh v,∇qh)K = (v,∇qh)K . In

the same way, since qh|Fα ∈ Pn(K) and from the definition of the degrees of freedom (5.5) and

the interpolation properties (5.9), we get that (Ihv ·nK , qh)∂K = (v ·nK , qh)∂K . It follows that

bh(qh, Ihv) =
∑
K∈Th

(−(v,∇qh)K + (v · nK , qh)∂K)

=
∑
K∈Th

( div v, qh)K

= (div v, qh) = b(qh,v).

Besides, from Lemma 5.10 (see Section 5.4.2) with k = 0, it follows that

|Ihu|1,h ≤ C|u|1, ∀u ∈ V,

with a constant C that does not depend on the mesh. Finally, we conclude thanks to Fortin’s

lemma, that the pair of finite elements Vh,n+1 −Mh,n satisfies the discrete inf-sup condition for

the Stokes problem.

5.4.2 Approximation property and error analysis

In this section, we derive an error estimate for the new non-conforming family of finite elements.

We follow the same procedure as developed in [132]. First, we introduce Lemma 5.10.

Lemma 5.10. The local interpolation operators IKh : H1(K)→ Vn+1(K) and JK
h : L2(K)→

Pn(K) satisfy for all K ∈ Th:

|u− IKh u|1,K ≤ Chk|u|k+1,K ∀u ∈ Hk+1(K), k = 0, . . . , n+ 1, (5.11)

∥p− JK
h p∥0,K ≤ Chn+1|p|n+1,K ∀p ∈ Hn+1(K). (5.12)

with C a constant that does not depend on the mesh.

Proof. First, let K be an arbitrary element and K̂ the reference element and let us denote by

πK : K̂ −→ K

x̂ 7−→ x = πK(x̂) = AK x̂+ bK ,
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the affine invertible mapping such that K = πK(K̂). Using the standard scaling properties of

the reference transformation and its inverse [76, chapter 11.1 - 11.2], it is sufficient to show the

following estimates on the reference tetrahedron K̂

|û− IK̂h û|1,K̂ ≤ Ĉ|û|k+1,K̂
, ∀û ∈ Hk+1(K̂), k = 0, . . . , n+ 1,

∥p̂− JK̂
h p̂∥0,K̂ ≤ Ĉ|p̂|n+1,K̂

, ∀p̂ ∈ Hn+1(K̂),

where IK̂h and JK̂
h denote the corresponding interpolation operators on the reference tetrahedron.

In order to apply the Bramble–Hilbert Lemma [76, Lemma 11.9], we first need to show the

continuity of the interpolation operators. From the continuity of the trace operator û 7→ û|
F̂
,

we get for the degrees of freedom associated with the faces

|N F̂α
j (û)| ≤ Ĉ∥û∥

0,F̂α
≤ Ĉ∥û∥

1,K̂
.

The degrees of freedom associated with the element satisfy

|N K̂
j (û)| ≤ Ĉ∥û∥

0,K̂
≤ Ĉ∥û∥

1,K̂
,

which leads to

|û− IK̂h û|1,K̂ ≤ C∥û∥1,K̂ ≤ C∥û∥k+1,K̂
. (5.13)

We conclude that the mapping û 7→ (û − IK̂h û) is continuous on the spaces Hk+1(K̂) for k =

0, . . . , n+1. Besides, this mapping vanishes on the subspace Pk. Thus, from [76, Theorem 11.13]

based on the Bramble–Hilbert Lemma, estimate (5.13) becomes

|û− IK̂h û|1,K̂ ≤ Ĉ|û|k+1,K̂
.

Then, using the standard scaling properties, we obtain (5.11). We prove estimate (5.12) using

the same procedure.

It is clear that the properties of the scalar local interpolation operator IKh carry over to

its vector-valued version IKh . Furthermore, for the generated global interpolation operators

Ih : V → Vh,n+1 and Jh :M →Mh,n, we have the following result.

Lemma 5.11. The global interpolation operators Ih and Jh satisfy

|u− Ihu|1,h ≤ Chn+1|u|n+2 ∀u ∈ V ∩Hn+2(Ω)

∥p− Jhp∥0 ≤ Chn+1|p|n+1 ∀p ∈M ∩Hn+1(Ω).

This leads to the error estimate for the solution to (5.1).
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Theorem 5.12. Let (u, p) be the solution to the Stokes system (5.1) and assume that

u ∈ V ∩Hn+2(Ω)3, p ∈ Hn+1(Ω).

Then, system (5.3) has a unique solution (uh, ph) and the following error estimate holds

|u− uh|1,h + ∥p− ph∥0 ≤ Chn+1 (|u|n+2 + |p|n+1) , (5.14)

with C a constant independent of the mesh size h.

Proof. Given that the approximation property (Lemma 5.11), the discrete inf-sup condition (5.10)

and the patch test, which follows from the definition of Vh by (5.8), are satisfied, then we have the

classical error estimate (5.14) that holds for non-conforming finite elements (see for example [61,

Theorem 3] or [84, Theorem 2.6]).

Remark 5.13. To establish the result given by Theorem 5.12, we only use the Pn+1 part of

Vn+1 and not the subspace Σn+2. One could imagine that taking into account Σn+2 could

improve the error bound of Theorem 5.12. However, as shown in the numerical results, the

presence of the subspace Σn+2 does not improve the order of convergence but only the accuracy

level. This observation does not encourage us to investigate more about the consideration of

the subspace Σn+2 in the error estimate.

We have shown, that the pair of finite elements Vh,n+1−Mh,n is inf-sup stable for the Stokes

equations and fulfils the approximation properties under Assumption 5.7. Thus, these properties

are satisfied in particular for the non-conforming finite elements Vh,2 −Mh,1 and Vh,3 −Mh,2.

5.5 Efficient preconditioning strategy for the Stokes equations

Below, we present an efficient preconditioning strategy to solve the discrete Stokes problem in

three dimensions. The solver is developed in FreeFEM [93] interfaced with PETSc [28]. The

aim of this section is to show that standard preconditioners that are known to perform well for

conforming finite elements may handle just as well the proposed non-conforming finite elements.

This is an appealing feature, since it means there is no need to derive a new preconditioning

strategy, which can be challenging for high-dimensional and ill-posed linear systems.

5.5.1 Stokes problem in matrix form

It is well-known that the discretisation of the Stokes problem (5.1) leads to a linear system

featuring a two-by-two block matrix. Let m and n be two integers with m < n. Let A be a

sparse n × n matrix, B be a sparse n × m full-rank matrix of constraints, and C an m × m
matrix (in particular C = 0 is allowed). From this, a saddle point matrix is built as

A =

(
A B

BT C

)
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We also define

b =

(
f

g

)
,

where f is the source term and g is the value of the divergence (g is usually equal to 0 for the

Stokes problem since we consider a divergence-free velocity). The objective is thus to efficiently

solve the following linear system

Ax = b, (5.15)

where x is the vector of unknowns. In the case of the Stokes system, x =

(
u

p

)
, with u the

velocity unknowns and p the pressure unknowns. Below, we introduce a preconditioning strategy

based on a decomposition of the problem by blocks with respect to the physics. This strategy

is not new [74, 41], but our goal here is to make the chapter self-contained. It is based on the

Schur complement, which is an appealing approach for two-by-two blocks, as in the problem

considered.

5.5.2 Fieldsplit preconditioning based on the Schur Complement

The Schur complement is defined as

S = C −BTA−1B.

For the sake of simplicity, from now on we consider C = 0. In our implementation, we consider

a lower Schur factorization, in which the action of the lower Schur factorization is defined by

Mp =

(
A 0

BT S

)
. (5.16)

Remark 5.14. Calculating explicitly M−1
p leads to

M−1
p =

(
A−1 0

−S−1BTA−1 S−1

)
.

It is then easy to show thatMp is a good left preconditioner for (5.15). However, applying this

strategy requires to solve exactly systems of the form Sz = w, which may be very expensive.

That is why we use Mp as a right preconditioner with not fully converged solutions of systems

of the form Sz = w, taking advantage of the Flexible Generalized Minimal Residual method

(FGMRES [151]) as the outer Krylov method which allows for inexact inner solvers at each

outer iteration.

For applying this preconditioning strategy, one needs to solve systems of the form Mpy = z.

These systems will themselves be preconditioned with approximate inverses of A and Ŝ defined

by Ŝ = −BTdiag(A)−1B (where diag(A) stands for the square diagonal matrix made of the

diagonal entries of A), since Ŝ can be computed explicitly while S cannot because it is dense

and not stored explicitly in practice.
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In Section 5.5.3.1, we present a preconditioner to solve linear systems involving matrix A. In

Section 5.5.3.2, we present a preconditioner to solve linear systems involving matrix S. These

preconditioners are called respectively Ap and Sp.

5.5.3 Approximations of the physical blocks

5.5.3.1 Solution of linear systems involving matrix A

The preconditioner Ap is defined in a domain-decomposition approach using the restricted ad-

ditive Schwarz method (RAS, see [43]) with an algebraic overlap

A−1
p =

N∑
j=1

R̃T
j (RjAR

T
j )

−1Rj ,

where N is the number of blocks (or number of subdomains), which is by default the same as

the number of MPI processes, Rj is the velocity restriction operator that returns a local vector

from a global vector, and R̃j is the same operator, but scaled by 0 on the overlap, of the jth

block. By default, this preconditioner has one layer of overlap.

Remark 5.15. In general, larger overlaps lead to faster convergence up to a certain point

where increasing the overlap does not further improve the convergence rate. Unfortunately,

larger overlap implies greater communication and computation requirements.

In each block, MUMPS [15] is used to compute the action of local inverses using an LU

factorization.

Remark 5.16. Boundary conditions are applied using a symmetric method, based on row

and column eliminations, which allows to keep matrix A symmetric. Since it is also symmetric

definite positive, MUMPS could be used to compute a Cholesky factorization instead. In

theory, this choice would lead to better performance, however, our numerical experiments

show that LU factorizations give better performance (less undesirable numerical pivoting).

5.5.3.2 Solution of linear systems involving matrix S

The effectiveness of Schur complement-based factorization depends on the availability of a good

preconditioner Sp for the Schur complement matrix. Determining a good preconditioner for the

Schur complement is often a difficult task since we hardly know the structure of the Schur comple-

ment (we recall that it is not assembled explicitly). This is why we replace in the preconditioner

formula S by its approximation Ŝ. The preconditioner Sp is defined in a domain-decomposition

approach by using the block Jacobi method

S−1
p =

N∑
j=1

RT
j (RjŜR

T
j )

−1Rj ,

where N is still the number of blocks (or number of subdomains), which is by default the same

as the number of MPI processes, and Rj (resp. RT
j ) is the pressure restriction (resp. pressure
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extension by 0) operator of the jth block. It has to be noted that the operator Rj is not the

same as in Section 5.5.3.1 since here we are dealing with pressure unknowns and not velocity

unknowns, and we do not consider overlap compared to the one layer of overlap in Section 5.5.3.1.

This method does not require any communication as each block of the preconditioner acts only

on unknowns internal to each MPI process. In each of the blocks, the solution is computed using

the sparse direct solver MUMPS, which is internally computing an LU factorization.

5.5.4 Final structure of the solver

Now, we summarise the proposed method for solving iteratively (5.15) and detail associated

PETSc instructions for the sake of reproducibility. We use the Flexible Generalized Minimal

Residual algorithm (FGMRES, -ksp_type fgmres), which iteratively solves (5.15) using (5.16)

as an outer right-preconditioner. The linear solves involving Mp require inner velocity and

pressure solves, with matrices A and S respectively, which are themselves solved iteratively

using the preconditioners Ap and Sp defined in Section 5.5.3.1 and Section 5.5.3.2, respectively.

The inner Krylov solver for both physical blocks is GMRES, performing at most 5 iterations

(-fieldsplit_ksp_max_it 5), which justifies the use of the flexible GMRES algorithm as an

outer Krylov solver. Concerning some other solver settings:

� the relative tolerance of the outer Krylov method is set to 10−10 (-ksp_rtol 1.0E-10,

ratio according to the norm of the initial unpreconditioned residual);

� for the setup of the velocity preconditioner, MUMPS parameter ICNTL(35) is set to 2

(-fieldsplit_0_sub_mat_mumps_icntl_35 2), which allows to activate its block low-

rank (BLR) feature [14] during both the factorization and solution phases. This allows

for memory gains by storing low-rank factors. Finally, the accuracy of the low-rank ap-

proximation is itself controlled by MUMPS parameter CNTL(7), which is set to 10−6

(-fieldsplit_0_sub_mat_mumps_cntl_7 1.0E-6).

5.6 Numerical experiments

The finite element spaces V2 and V3, presented in Lemma 5.4, have been implemented in the

open source finite element software FreeFEM [93] following the same procedure as described in

Section 4.4 for non-conforming finite element in two dimensions. Therein, they are referenced

respectively under the name P2pnc3d3 and P3pnc3d4. In this section, we present the convergence

orders obtained with these new finite elements for two different test cases, in order to verify the

theoretical analysis. The obtained results are compared with those obtained with classical

Taylor–Hood finite elements of order two and three. The accuracy of these methods both in

term of mesh size h and number of unknowns is also compared. For all the following cases, the

computational domain is the cube Ω = [0, 1]3 and the viscosity ν is set to 1.

3https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P2pnc_3d.cpp
4https://github.com/FreeFem/FreeFem-sources/blob/4307d439ca8313cd8fda1c6ce34384e096efea4a/

plugin/seq/Element_P3pnc_3d.cpp
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5.6. Numerical experiments

5.6.1 Case #1: Stokes with non-homogeneous Dirichlet boundary conditions

First, we consider the Stokes test case proposed in [145, Guide to Stokes]. We consider the

Stokes problem (5.1) with non-homogeneous Dirichlet boundary conditions g on all the faces of

the cube. The load function f and the velocity Dirichlet boundary conditions g are chosen such

that the exact solution is
ux = 2 sin(πx) + sin(πy) + sin(πz),

uy = −π cos(πx)y,
uz = −π cos(πx)z,
p = sin(2πx) + sin(2πy) + sin(2πz).

5.6.1.1 Relative errors according to the element size h

Figure 5.1: Relative error in L2 norm between computed and exact velocities for case #1
according to the mesh size h.
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Figure 5.2: Relative error in H1 semi-norm between computed and exact velocities for case #1
according to the mesh size h.

Figure 5.3: Relative error in L2 norm between computed and exact pressures for case #1
according to the mesh size h.

Figures 5.1 to 5.3 display orders of convergence for different pairs of finite elements with respect

to the mesh size h. It can be seen from these figures that the theoretical orders of convergence

(see Theorem 5.12) are obtained. It should be noted that, for a given order n, the same orders of

convergence are obtained for both the non-conforming and conforming pairs of finite elements.

It seems that the addition of some basis functions to the space Pn+1 does not improve the order

of convergence. Similar behaviors can be seen for non-conforming finite elements of order n in

two dimensions (see for example [132]). However, the non-conforming finite element pairs have

a better level of accuracy compared to the conforming ones (i.e. the constant C in the error

estimate is improved). This observation is more obvious for the relative pressure error in the L2
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norm.

5.6.1.2 Relative errors according to the number of unknowns

Figure 5.4: Relative error in L2 norm between computed and exact velocities for case #1
according to the number of unknowns.

Figure 5.5: Relative error in H1 semi-norm between computed and exact velocities for case #1
according to the number of unknowns.
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Figure 5.6: Relative error in L2 norm between computed and exact pressures for case #1
according to the number of unknowns.

Figures 5.4 to 5.6 display the relative errors with respect to the number of degrees of freedom.

These figures illustrate the well-known fact that, for regular solutions, it is better to choose

higher order polynomials than to refine the mesh to decrease the errors since a given accuracy

is achieved with fewer degrees of freedom.

5.6.2 Case #2: Stokes with partly Neumann boundary conditions

Second, we perform the test case proposed in [50]. The Stokes problem (5.1) is solved with a

different boundary condition. More precisely, a homogeneous Neumann boundary condition is

imposed on ΓN = {z = 1} ∩ ∂Ω and a homogeneous Dirichlet boundary condition is imposed

on ΓD = ∂Ω \ ΓN . The load function f is derived from the following exact solution

u = curl

y
2(1− y)2x(1− x)z2(1− z)3

x2(1− x)2y(1− y)z2(1− z)3

0

 p = (x− 1

2
)(y − 1

2
)(1− z).

One can indeed check that the respective boundary conditions are homogeneous on ΓN and ΓD.
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5.6.2.1 Relative errors according to the element size h

Figure 5.7: Relative error in L2 norm between computed and exact velocities for case #2
according to the mesh size h.

Figure 5.8: Relative error in H1 semi-norm between computed and exact velocities for case #2
according to the mesh size h.
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Figure 5.9: Relative error in L2 norm between computed and exact pressures for case #2
according to the mesh size h.

5.6.2.2 Relative errors according to the number of unknowns

Figure 5.10: Relative error in L2 norm between computed and exact velocities for case #2
according to the number of unknowns.
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Figure 5.11: Relative error in H1 semi-norm between computed and exact velocities for case #2
according to the number of unknowns.

Figure 5.12: Relative error in L2 norm between computed and exact pressures for case #2
according to the number of unknowns.

The cases presented above allow to assess the family of finite elements with Neumann boundary

conditions. From Figures 5.7 to 5.9 and from Figures 5.10 to 5.12, similar observations can be

done as in the case with Dirichlet boundary conditions (see Section 5.6.1).

5.7 Discussion about the number of degrees of freedom and the

computational times

In this section, we compare the non-conforming pairs and the conforming ones both in terms

of asymptotic number of degrees of freedom and in terms of computational times. We show
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that the non-conforming discretisations have asymptotically more degrees of freedom than the

conforming ones, leading to longer computational times. However, in return, the computational

times per degree of freedom are lower for the non-conforming discretisations.

5.7.1 Discussion about the number of degrees of freedom

We consider a family of three-dimensional triangulations (Thn)n∈N, obtained from an initial

mesh Th0 in which a regular partition is recursively applied. The triangulation Thn is made

of Nn nodes, En edges, Fn faces, and Tn tetrahedra. As noted in [146], the asymptotic behav-

ior (as n goes to infinity) of the adjacency relations between the topological elements (nodes,

edges, faces, and tetrahedra) in the mesh depends on the particular partition considered. First,

we recall the distribution of the degrees of freedom of different finite elements according to the

topological elements. Then, we make explicit the asymptotic number of degrees of freedom for

different pairs of finite elements on four different partitions.

5.7.1.1 Distribution of the degrees of freedom

In Tables 5.1 to 5.3 the distribution of the degrees of freedom for different finite elements

according to topological elements is recalled. This will be needed to calculate the number of

the degrees of freedom for each conforming pair Pn+1− Pn and of the proposed non-conforming

pairs V2 − Pdc
1 and V3 − Pdc

2 . In Table 5.2, for discontinuous finite elements, we consider that

all the degrees of freedom are located in the tetrahedra since these degrees of freedom are not

shared with neighboring elements.

Nn En Fn Tn
P1 1 0 0 0

P2 1 1 0 0

P3 1 2 0 4

Table 5.1: Number of unknowns of scalar conforming finite elements.

Nn En Fn Tn
Pdc
1 0 0 0 4

Pdc
2 0 0 0 10

Table 5.2: Number of unknowns of scalar fully discontinuous finite elements.

Nn En Fn Tn
V2 0 0 3 1

V3 0 0 6 4

Table 5.3: Number of unknowns of scalar non-conforming finite elements.

5.7.1.2 Computation of the number of degrees of freedom

Case of non-conforming pairs As noted in [146], the ratio Tn/Fn does not depend on the

choice of a given partition. Indeed, for any partition Tn/Fn = 1
2 asymptotically. Given that
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for the non-conforming pairs, the degrees of freedom are located on faces and in tetrahedra, the

number of unknowns of these pairs does not depend on the partition considered. Thus, an easy

computation, using data of Tables 5.2 and 5.3 (considering three components for the velocity

field and one for the pressure field) leads to

Finite element pairs Asymptotic number of unknowns

V2 − Pdc
1 25Tn

V3 − Pdc
2 58Tn

Table 5.4: Number of unknowns of non-conforming pairs.

Case of conforming pairs Contrary to non-conforming pairs, for conforming pairs some

unknowns are located on edges and vertices. As noted in [146], the relations between the

number of edges (as well as the number of vertices) and the number of tetrahedra depend on the

partition considered. Below, for the sake of completeness we give the definitions of common 3D

partitions as presented in [146] (for more details the reader can refer to [146]).

Definition 5.17 (3D-Bey partition). For any tetrahedron K, the 3D-Bey partition is defined

by dividing K into eight sub-tetrahedra by cutting off the four corners by the midpoints of

the edges, and the remaining octahedron is subdivided further into four tetrahedra by one of

the three possible interior diagonals.

Definition 5.18 (8T−LE partition). For any tetrahedronK, the 8T−LE partition is defined

by dividing K into eight sub-tetrahedra by performing the 4T −LE partition of the faces, and

then subdividing the interior of the tetrahedron in a manner consistent with the performed

division in the 2-skeleton.

Definition 5.19 (3D barycentric partition). For any tetrahedron K, the barycentric partition

is defined by inserting a new node P at the barycenter of K, putting new nodes at the

barycenters of the faces of K, and putting new nodes at the midpoints of the edges of K.

Then, on each face of K a barycentric triangular partition is performed. Finally, the node P

is joined with all the vertices of K, and with all the new nodes introduced.

Definition 5.20 (4T partition). For any tetrahedron K, the 4T barycentric partition is

defined by inserting a new node P at some interior point of K (for example at the barycenter

of K) and joining P with the all the vertices of K.

Then, for each of these partitions, the following relations hold asymptotically.

3D-Bey 8T − LE 3D barycentric 4T

Nn/Tn 1/6 1/6 2/11 1/3

En/Tn 7/6 7/6 13/11 4/3

Fn/Tn 2 2 2 2

Table 5.5: Relations between topological elements for different partitions.
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Using the relations in Table 5.5 with the data of Table 5.1 and considering three components

for the velocity field and one for the pressure field, we get the asymptotic number of degrees of

freedom for different pairs of finite elements given in Table 5.6.

Finite element pairs 3D-Bey 8T − LE 3D barycentric 4T

P2 − P1 4.16Tn 4.16Tn 4.27Tn 5.33Tn
P3 − P2 20.83Tn 20.83Tn 21Tn 22.66Tn

Table 5.6: Number of unknowns of different conforming pairs according to the partition consid-
ered.

Thus, for the non-conforming V2 − Pdc
1 pair, we asymptotically have 25Tn degrees of free-

dom. In comparison, for the conforming P2 − P1 pair, we have asymptotically around 5Tn

degrees of freedom (approximately four times less than the non-conforming case). For the non-

conforming V3 − Pdc
2 pair, we asymptotically have 58Tn degrees of freedom. In comparison, for

the conforming P3 − P2 pair, we have asymptotically around 22Tn degrees of freedom (approx-

imately 2.2 times less than the non-conforming case). In view of these results, it is clear that

using conforming methods for high-order is more advantageous.

5.7.2 Discussion about the computational times

In this section, we consider case #1 (Stokes with non-homogeneous Dirichlet boundary condi-

tions) seen in Section 5.6. We compare the computational times needed by the non-conforming

V2− Pdc
1 finite element pair with that needed by the conforming P2 − P1 finite element pair. To

do this, we consider the following computational steps:

� the assembly phase, during which the stiffness matrix and the right-hand side are assembled

in FreeFEM;

� the solution phase, during which the preconditioner is setup and the linear system is solved

algebraically.

The computations are run on ORCUS a cluster from CEA Saclay hosted at TGCC. It is

composed of AMD EPYC 7281 CPUs, clocked at 2.3GHz. For each test, the average number

of outer iterations is about 40. Deriving a more efficient preconditioner to decrease the number

of outer iterations is out of the scope of this paper.
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(a) Assemply phase.

(b) Solution phase.

Figure 5.13: Comparison of the computational times of the non-conforming FE pair V2 − Pdc
1

and the conforming FE pair P2 − P1 for different mesh sizes computed on 64 processes.

First, in Figure 5.13, we compare different computational times needed by the two pairs of

finite elements with different mesh sizes computed on 64 processes. As expected, the computa-

tional times needed by the non-conforming pair of finite elements are higher than those needed

by the conforming one, since it has more degrees of freedom. Besides, we clearly see that the

different computational times increase linearly with the mesh size (and thus with the number

of degrees of freedom), a clear manifestation of the good scaling of the implemented solver. In

Table 5.8, we compute the ratio of the computational times needed by the two finite element

pairs for different mesh sizes presented in Table 5.7.

Mesh ID 1 2 3 4 5 6

# of elements (6 ×) 203 303 403 503 803 1003

Table 5.7: Different considered meshes.

Mesh ID # of processes ÷ # of unknowns ÷ assembly phase ÷ solution phase ÷ total computational time

1

64

5.6 3.7 2.5 2.6
2 5.8 3.8 3.6 3.6
3 5.8 2.9 3.6 3.5
4 5.8 2.8 4.5 4.3

5
512

5.9 2.9 6.0 5.0
6 5.9 2.8 7.6 5.6

Table 5.8: Ratio (represented by the symbol ÷ ) between different computational times obtained
with the conforming P2 − P1 finite element pair and the non-conforming V2 − Pdc

1 finite element
pair.
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From Table 5.8, we see that the ratio of the computational times needed with the two finite

element pairs is lower than the ratio of the number of degrees of freedom of the two finite element

pairs. Indeed, although the non-conforming finite element pair has about six times more degrees

of freedom than the conforming one, the computational time ranges between 2.6 and 5.6 times

higher.

Remark 5.21. Similar comparisons can be done between the conforming P3−P2 finite element

pair and the non-conforming V3 − Pdc
2 finite element pair. The same conclusions apply.

5.8 Conclusion

In this chapter, two inf-sup stable non-conforming discretisations with accuracy order two and

three on tetrahedra were developed for the Stokes problem in three dimensions. From a given set

of degrees of freedom, we propose a strategy to find unisolvent finite element families with respect

to those degrees of freedom. The family of finite elements fulfils the consistency, approximability

and stability conditions, guaranteeing optimal orders of convergence which are indeed observed

in the numerical results. We recall that this family of finite elements has been designed for

solving the local problems involved in MsFEM (further details can be found in Part III). Given

the theoretical and numerical results presented in this paper, the two new non-conforming finite

elements proposed meet the requirements of these complex problems. However, for the solution

to the classical Stokes problem, the non-conforming discretisations are more expensive than the

conforming ones both in terms of number of degrees of freedom and computational times, for

ultimately comparable errors.
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This chapter is concerned with the homogenization of the Stokes equations in a periodic

perforated domain. We establish a sharp convergence rate O(
√
ε) for the energy norm of the

difference of the velocities and pressures, where ε represents the size of the solid obstacles.

This is achieved by using a two-scale asymptotic expansion of the Stokes equations and a new

construction of a cut-off function which avoids the introduction of boundary layers. The main

novelty is that our analysis applies for the physically relevant case of a porous medium where

both the fluid and solid parts are connected. The main result of this chapter (Theorem 6.9) is one
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of the main ingredient for the derivation of an error estimate for the Multi-scale Finite Element

Method (MsFEM) applied to the Stokes equations in perforated domains (see Chapter 9).

6.1 Introduction

Let Ω ⊂ Rd be a regular bounded open set. As shown in Figure 6.1, we divide the domain Ω into

a fixed solid part Bε and its complementary fluid part Ωε. Here ε denotes a small parameter

equal to the ratio between the characteristic length of the periodic heterogeneities and the

characteristic length of the domain. A first typical example of such a porous domain Ωε is given

by Figure 6.1 where the solid obstacles Bε are a collection of isolated and periodically repeated

obstacles. A second typical case, in dimension d ≥ 3, is a porous domain Ωε perforated by a

regular lattice of interconnected solid cylinders as presented in Figure 6.2. A precise definition

of Ωε is given in Section 6.2.

Figure 6.1: Porous medium Ωε, obtained from a domain Ω perforated by a set of solid isolated
obstacles Bε.

Figure 6.2: Regular lattice of interconnected cylinders.

We recall that the steady-state Stokes problem with homogeneous Dirichlet boundary con-

dition in a perforated domain is to find the velocity uε : Ωε → Rd and the pressure pε : Ω
ε → R
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solution to 
−ν∆uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(6.1)

where ν > 0 is the viscosity and f the applied force. Vector valued functions are written in bold.

In the literature, some authors consider a different scaling of (6.1), replacing the velocity uε

by uε = ε2ũε. This does not change anything to our methodology and our results, up to this ε2

factor.

We denote by (·, ·) the usual scalar product in L2(Ωε), we use the same notation for vector-

valued functions. We introduce the classical velocity space V = H1
0 (Ω

ε)d = {v ∈ H1(Ωε)d s.t.

v|∂Ωε= 0} and pressure space M = L2
0(Ω

ε) = {q ∈ L2(Ωε), s.t.
∫
Ωε q = 0}. In V , we shall often

use the semi-norm |·|H1 , equivalent to the usual norm and defined by

|v|H1(Ωε) = ∥∇v∥L2(Ωε), v ∈ H1(Ωε)d.

We introduce the bi-linear forms a : V × V → R and b :M × V → R by

a(u,v) = ν(∇u,∇v), b(p,v) = (p, div v).

Then, assuming that f ∈ L2(Ω)d, a weak formulation of the Stokes problem (6.1) reads as

follows: find uε ∈ V and pε ∈M such that{
a(uε,v) + b(pε,v) = (f ,v) ∀v ∈ V,

b(q,uε) = 0 ∀q ∈M.
(6.2)

It is well-known that, if Ωε is connected (to ensure that the zero-average condition of the pressure

is enough to remove the undetermined constant of the pressure), there exists a unique weak

solution to (6.2) [84].

The homogenization of the Stokes equations, i.e. finding the limit system satisfied by the

limit of (uε, pε) as ε goes to zero, was first investigated by [154, 160, 9]. A review of these results

can be found in [102], [48]. The homogenized or effective equations for the Stokes system, in a

periodic perforated domain, is Darcy’s law for the velocity u and the homogenized pressure p∗,
u = 1

νA
∗(f −∇p∗) in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω,

where A∗ is a constant permeability tensor (see Proposition 6.5).

The first convergence result for the homogenization of the Stokes equations was established

in [160], where the author proved the weak L2 convergence of the velocity and the strong L2

convergence of the pressure. The strong L2 convergence of the velocity with a corrector was

proven later in [9]. The first quantitative result of convergence in the H1-norm was obtained

in [130] with a relative error estimate of order ε1/6 in a two-dimensional domain (d = 2). This
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result has been improved to
√
ε in [111] for the case of isolated solid obstacles (still in two space

dimension d = 2). This
√
ε error estimate was independently and further improved in [156]

for any space dimension d ≥ 2, still under the assumption of isolated solid obstacles (as in

Figure 6.1). The main technical idea in [156] is to construct boundary correctors which control

the boundary layers appearing in the proof of the error estimate. Note that the assumption of

isolated solid obstacles is not physically realistic in dimension d ≥ 3.

The goal of the work present in this chapter is to extend this
√
ε error estimate to the case

of connected solid obstacles (as in Figure 6.2). Before stating our main result (in loose terms,

see Theorem 6.9 for a precise statement) we need to introduce some notations. Actually the

Darcy velocity u does not see the solid obstacles and thus cannot be a good approximation of

the original velocity uε. It must be corrected by introducing a better approximation which is

u2

(
x,
x

ε

)
=

1

ν

d∑
i=1

ωi

(x
ε

)(
fi(x)−

∂p∗

∂xi
(x)

)
,

where the local velocities ωi are solutions of cell problems (6.6). Actually the link between u2

and the Darcy velocity u is that u(x) is the average of u2(x, y) with respect to the periodic

variable y.

Theorem 6.1. Let uε, pε be the solution to the Stokes problem (6.1) and u2, p
∗, their

homogenized approximations. Assuming that f is smooth enough, there exists a constant C,

independent of ε , such that
∥pε − p∗∥L2(Ωε)

∥p∗∥L2(Ωε)
≤ Cε

1
2 ,

|uε − ε2u2|H1(Ωε)

|ε2u2|H1(Ωε)
≤ Cε

1
2 ,

∥uε − ε2u2∥L2(Ωε)

∥ε2u2∥L2(Ωε)
≤ Cε

1
2 .

Theorem 6.1 is stated in terms of relative errors since ε2u2 (and thus uε) is small. Its proof

follows the same strategy as that in [111] (but extends it to dimensions larger than 2) and differs

significantly from the proof in [156]. Actually, our proof is simpler in the sense that no boundary

layers (and thus correctors of their effect) appear. It turns out that we are able to use a cut-off

argument as in the standard elliptic case [31] but without compromising the divergence-free

condition for the velocities. Of course, the main novelty is that Theorem 6.1 applies to any case

of solide obstacles, isolated or connected. In dimension d ≥ 3, the physically relevant case is

that of connected obstacles and not isolated obstacles.

The content of this chapter is the following. Section 6.2 gives a precise definition of the

geometrical assumptions of a periodic porous medium. Section 6.3 is devoted to the formal two-

scale asymptotic expansion method which delivers the homogenized problem, as well as some

cell correctors, including the velocities ωi appearing in the definition of u2. In Section 6.4 is
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stated our main result (Theorem 6.9 which is just a rigorous statement of Theorem 6.1) and its

proof is decomposed in several technical lemmas.

6.2 Geometric modeling of the porous medium

As usual in periodic homogenization theory [31, 102, 154], we consider a porous medium obtained

by the periodic repetition of an elementary cell of size ε, in a bounded domain of Rd. We first

define the corresponding dimensionless elementary cell Y .

6.2.1 Definition of the elementary cell Y

Let Y =]0, 1[d be the open unit cube of Rd, d ≥ 2. Let YS be a closed subset of Y . We define YF ,

an open set of Rd, by YF = Y \ YS , where YS represents the part of Y occupied by the solid

and YF represents the part of Y occupied by the fluid. The fluid part YF and the solid part YS

satisfy YF ∪ YS = Y and YF ∩ YS = ∅ (see Figure 6.3). The closed set YS is repeated by Y -

periodicity and fills the entire space Rd, in order to obtain a closed set of Rd, noted ES . Let the

open set EF be the complementary of ES in Rd, i.e. EF = Rd \ ES . We assume the following

hypotheses on YF and EF :

1. YF and YS have strictly positive measure on Y (the elementary cell Y contains fluid and

solid together).

2. YF is an open connected set with a locally Lipschitz boundary.

3. EF and the interior of ES are open sets with smooth boundaries of class Cm+2, with

m > d
2 , and are locally located on one side of their boundary. Moreover EF is connected.

Remark that the solid part ES can be connected or not, corresponding to the two different

geometric cases of Figures 6.1 and 6.2 which are later called isolated obstacles or connected

obstacles. The assumption that EF is smooth and connected implies that, on each face of Y ,

there is a fluid sub-domain of non-zero (surface) measure.

(a) (b)

Figure 6.3: Isolated (left) or connected (right) solid obstacles in the unit cell Y = YF ∪ YS .
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6.2.2 Definition of the open set Ωε

Let Ω be a bounded and connected open set of Rd (d ≥ 2) which is assumed to have a smooth

boundary of class C3,α, for some 0 < α < 1. The set Ω is covered with a regular square mesh of

size ε, each cell being a cube Y ε
i . We define for any i ∈ Zd:

Yi = Y + i, Yi,F = YF + i, Yi,S = YS + i,

Y ε
i = ε(Y + i), Y ε

i,F = ε(YF + i), Y ε
i,S = ε(YF + i).

The periodic set of solid obstacles (or perforations) inside Ω is defined as

Bε =
⋃
i∈I

Y ε
i,S ,

where I ⊂ Zd is a set of indices which is precisely defined in Assumption 6.2 below. The role

of I is to remove obstacles from Ω only if they are sufficiently away from the boundary ∂Ω.

Finally, the fluid part Ωε of the perforated medium is defined by Ωε = Ω \Bε, i.e.

Ωε = Ω \
⋃
i∈I

Y ε
i,S .

The definition of I depends on the two cases of isolated or connected solid obstacles (see Fig-

ure 6.3).

Assumption 6.2. We consider two different sets of assumptions depending on the two cases of

isolated or connected solid obstacles.

1. If the solid part YS is isolated, namely strictly included in Y (not touching its boundary),

then I = {i ∈ Zd s.t. Y ε
i ⊂ Ω}. In other words, only entire obstacles Y ε

i,S are removed

from Ω and thus no obstacles are cut by the boundary ∂Ω.

2. If the solid part YS touches the boundary of Y , meaning that obstacles are connected,

then we define a first set of indices I1 = {i ∈ Zd s.t. Y ε
i ⊂ Ω} and an open subset of Ω

defined by its closure

Cε
1 =

⋃
i∈I1

Y ε
i .

Then, a second smaller set of indices is

I2 = {i ∈ I1 such that Y ε
i ∩ ∂C

ε
1 = ∅},

meaning that no cell Y ε
i in I2 touches the boundary ∂Cε

1 . Similarly, we define an open

subset of Ω defined by its closure

Cε
2 =

⋃
i∈I2

Y ε
i .

Finally, we choose I = I2, meaning that the obstacles are not cut by the boundary ∂Ω

and stay away from ∂Ω and ∂Cε
1 at a distance of the order of ε (see Figure 6.4, which

is 2-d sketch of a 3-d situation).
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Remark 6.3. The second item of Assumption 6.2 allows us to treat the realistic case of a

connected solid part, which is possible only for space dimensions d ≥ 3 because in 2-d EF

and ES cannot be connected simultaneously. The second item of Assumption 6.2 is similar to

an assumption in [48] and is slightly different from the assumption made in [9]. It is a necessary

assumption for several technical reasons, including the fact that, when ES is connected, there

may be some pathological cut obstacles near the boundary ∂Ω. In particular, the fluid domain

may not be connected.

Domain Ω

Cε
1

Cε
2

Figure 6.4: Porous medium Ωε when the solid part YS touches the boundary of Y .

6.3 Two-scale asymptotic expansion

This section recalls how to formally obtain the homogenized problem for the Stokes equations

(6.1), as well as the definitions of several corrector terms in the unit cell which are required for the

sequel. This is achieved by applying the classical method of two-scale asymptotic expansion [31,

154]. The following results are already well-known but are recalled since the notations are

required for the next sections. The formal method of two-scale asymptotic expansion starts

with the following ansatz for the velocity uε and pressure pε,

uε(x) =

+∞∑
k=2

εkuk

(
x,
x

ε

)
, pε(x) =

+∞∑
k=0

εkpk

(
x,
x

ε

)
. (6.3)

All functions uk(x, y), pk(x, y) are assumed Zd-periodic in y i.e. 1-periodic with respect to each

component y1, . . . , yd.

Remark 6.4. We begin the asymptotic expansion of the velocity uε at k = 2 since it is

well-known in the literature that the first terms u0 and u1 vanish.

We recall the following derivation rule

∇
(
uk(x,

x

ε
)
)
=
(
ε−1∇yuk +∇uk

) (
x,
x

ε

)
, (6.4)
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where ∇ and ∇y denote the partial derivatives with respect to the macroscopic variable x and

the microscopic variable y. Then, introducing the series (6.3) in the Stokes equations (6.1),

using the derivation rule (6.4), we have for the velocity uε

∇uε(x) =

+∞∑
k=2

εk
(
∇uk + ε−1∇yuk

)
=

+∞∑
k=2

εk (∇uk +∇yuk+1) + ε∇yu2,

divuε(x) =
+∞∑
k=2

εk
(
divuk + ε−1 divy uk

)
=

+∞∑
k=2

εk ( divuk + divy uk+1) + εdivy u2,

∆uε(x) =

+∞∑
k=2

εk
(
div∇uk + ε−1 div∇yuk + ε−1 divy∇uk + ε−2 divy ∇yuk

)

=
∞∑
k=0

εk ( div∇uk + div∇yuk+1 + divy ∇uk+1 + divy ∇yuk+2)

+ε ( div∇yu2 + divy ∇u2 + divy ∇yu3) + divy ∇yu2,

and for the pressure pε,

∇pε(x) =

∞∑
k=0

εk
(
∇pk + ε−1∇ypk

)
=

∞∑
k=0

εk (∇pk +∇ypk+1) + ε−1∇yp0.

Finally, we obtain for the momentum equation

−ν∆uε(x) +∇pε(x) = ε−1∇yp0 + ε0 {−ν divy ∇yu2 +∇p0 +∇yp1}

+ε {−ν( div∇yu2 + divy ∇u2 + divy ∇yu3) +∇p1 +∇yp2}

+
+∞∑
k=2

εk{−ν( div∇uk + div∇yuk+1 + divy ∇uk+1 + divy ∇yuk+2)

+∇pk +∇ypk+1} = f

and for the incompressiblity condition

divuε(x) = εdivy u2 +

+∞∑
k=2

εk{ divuk + divy uk+1} = 0.

Now, we identify the quantities associated with the different orders of ε. The leading order ε−1
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of the momentum equation is {
∇yp0 = 0 in YF ,

y → p0(x, y) Y − periodic.
(6.5)

From (6.5) one deduces that p0 does not depend on y and there exists a function p∗(x) such

that p0(x, y) = p∗(x). At the next order ε0 for the momentum equation and ε for the incom-

pressibility condition, we get
−ν∆yu2 +∇yp1 = f −∇p∗ in YF ,

divy u2 = 0 in YF ,

u2 = 0 on ∂YS ,

y → u2(x, y), p1(x, y) Y − periodic.

It follows that u2 and p1 are linear combinations of the solutions to the following cell Stokes

problems: for i = 1, . . . , d find ωi : Y → Rd and πi : Y → R, Zd-periodic and solutions to

−∆yωi +∇yπi = ei in YF ,

divy ωi = 0 in YF ,

ωi = 0 on ∂YS ,∫
Y
πi = 0,

y → ωi, πi Y − periodic.

(6.6)

Velocity and pressure are extended by 0 in YS . Using the Einstein summation convention on

repeated indices, it follows that
u2(x, y) =

1

ν
ωi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
,

p1(x, y) = πi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
.

(6.7)

Furthermore, averaging on YF the ε2 order term of the incompressibility condition (taking into

account the boundary conditions for u3 in (6.11)) yields

div ⟨u2⟩ = 0, (6.8)

where ⟨·⟩ stands for the average over YF , i.e.

⟨v⟩ = 1

|YF |

∫
YF

v(y)dy.

Inserting formula (6.7) for u2 in (6.8) leads to the Darcy equation for the pressure p∗. Further-

more, a similar asymptotic analysis can be performed on the boundary ∂Ω but the homogenized

boundary condition turns out to be weaker, namely only the normal component of u vanishes

on ∂Ω [9, 102, 111].
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Proposition 6.5. The Darcy velocity is defined as

u = ⟨u2⟩ =
1

ν
⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
(6.9)

and the homogenized pressure p∗ is the solution to the following Darcy problem{
divA∗(f −∇p∗) = 0 in Ω,

n · (A∗(f −∇p∗)) = 0 on ∂Ω,
(6.10)

where the constant tensor A∗ is defined by its columns

A∗ei = ⟨ωi⟩ =
1

|YF |

∫
YF

ωi(y)dy.

There exists a solution p∗ ∈ H1(Ω) of (6.10), which is unique up to an additive constant.

Furthermore, under Assumption 6.2 and assuming f ∈ C1,α(Ω)d with 0 < α < 1, then ∇p∗ is

of class C1,α(Ω) and p∗ is of class C2,α(Ω). Similarly, if f ∈ H2(Ω)d, then ∇p∗ ∈ H2(Ω)d too.

Proof. Problem (6.10) is well-posed inH1(Ω)/R because it is just a second-order elliptic equation

for the pressure p∗, complemented by a Neumann boundary condition (one can check that A∗

is positive definite). Recall that C1,α(Ω) is the space of functions in C1(Ω) with derivatives

which are α-Hölderian. Since f ∈ C1,α(Ω) then it is known that ∇p∗ is of class C1,α(Ω) (see for

example [83, Theorems 8.33 and 8.34]). Finally, f ∈ H2(Ω)d implies ∇p∗ ∈ H2(Ω)d by standard

Sobolev regularity theory for elliptic equations.

At the next order ε for the momentum equation and ε2 for the incompressibility condition,

we get 
−ν∆yu3 +∇yp2 = ν div∇yu2 + ν divy ∇u2 −∇p1 in YF ,

divy u3 = −divu2 in YF ,

u3 = 0 on ∂YS ,

y → u3(x, y), p2(x, y) Y − periodic.

(6.11)

Substituting the expressions (6.7) of u2 and p1 in (6.11) leads to

−ν∆yu3 +∇yp2 = (2∇yωi(y)− πi(y)Id)∇
(
fi(x)−

∂p∗

∂xi
(x)

)
.

By linearity, we deduce that
u3(x, y) =

1

ν
γij(y)

∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
,

p2(x, y) = θij(y)
∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
,

where, for i, j = 1, . . . , d, γij : Y → Rd and θij : Y → R are Zd-periodic solutions to another
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cell Stokes problem 

−∆yγij +∇yθij = 2
∂ωi

∂yj
− πiej in YF ,

divy γij = −ωi · ej + ⟨ωi · ej⟩ in YF ,

γij = 0 on ∂YS ,∫
Y
θij = 0,

y → γij , θij Y − periodic.

(6.12)

We recall some notations on Sobolev spaces of periodic functions (see [102, Appendix B.2.2] for

details). The L2 space of Y -periodic functions is

L2
#(Y ) = {φ ∈ L2

loc(Rd), φ is Y − periodic},

endowed with the usual scalar product and norm of L2(Y ). It turns out that L2
#(Y ) coincides

with L2(Y ). Higher-order Sobolev spaces are defined, for m ≥ 1, by

Hm
# (Y ) = {φ ∈ Hm

loc(Rd), φ is Y − periodic},

endowed with the usual scalar product and norm of Hm(Y ). Let us recall a classical regularity

result [44].

Lemma 6.6. Let m ≥ 0 and YF be of class Cm+2, consider f(y) ∈ Hm
# (Y )d and g(y) ∈

Hm+1
# (Y ) with zero mean on Y . The problem

−∆yu+∇yp = f(y) in YF ,

divy u = g(y) in YF ,

u = 0 on ∂YS ,

y → u(y), p(y) Y − periodic,

(6.13)

admits a unique solution u ∈ Hm+2
0,# (YF )

d and p ∈ Hm+1
# (YF )/R , where the space Hk

0,#(YF )

is defined by

Hk
0,#(YF ) =

{
φ ∈ Hk

#(YF ) such that φ = 0 on ∂YS

}
.

Remark 6.7. In Lemma 6.6, the regularity has to be understood in the unit torus (i.e. YF

repeated by Y -periodicity in Rd).

Proof. In this proof we propose to show that the problem (6.13) admits a unique solution (u, p) ∈
H1

0,#(YF )
d ×L2(YF ). First, we note that the function g is constrained by the relation

∫
Y
g = 0,

since the divergence formula implies∫
Y
g =

∫
Y

divy v =

∫
∂Y
v · n =

∫
∂YS

v · n+

∫
∂Y \∂YS

v · n = 0.
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We multiply (6.13) by v ∈ H1
0,#(YF )

d and by integration by parts, it follows

−
∫
Y
∆y ·w v +

∫
Y
∇yp · v =

∫
Y
∇w ·∇v −

∫
∂Y

∇w · n v −
∫
Y
p divy v +

∫
∂Y
pn · v

=

∫
Y
∇w ·∇v −

∫
∂YS

∇w · n v −
∫
∂Y \∂YS

∇w · n v

−
∫
Y
p divy v +

∫
∂YS

p n · v +

∫
∂Y \∂YS

p n · v

=

∫
Y
∇w ·∇v −

∫
Y
p divy v =

∫
Y
f · v,

where the second terms of the second and third lines is are equal to zero since v vanishes on

∂YS , and the third terms of the second and third lines are equal to zero by Y -periodicity of v.

Consequently, the variational form of (6.13) reads as follows. Find (u, p) ∈ H1
0,#(YF )× L2(YF )

such that
a(u,v) + b(p,v) = L1(v), ∀v ∈ H1

0,#(YF ),

b(q,u) = L2(q), ∀q ∈ L2(YF ),
(6.14)

where

a(u,v) =

∫
YF

∇u ·∇v, b(q,u) = −
∫
YF

divy u q,

L1(v) =

∫
YF

f · v, L2(q) =

∫
YF

gq.

It remains to verify that problem (6.14) is well-posed. First the bi-linear form a(·, ·) is continuous
on H1

0,#(YF )×H1
0,#(YF ), since for all (u,v) ∈ H1

0,#(YF )×H1
0,#(YF ),

|a(u,v)| =
∣∣∣∣∫

YF

∇u ·∇v
∣∣∣∣ ≤ ∫

YF

|∇u ·∇v|

≤ ∥∇u∥L2(YF )∥∇v∥L2(YF ) ≤ ∥v∥H1(YF )∥v∥H1(YF ),

by the Cauchy–Schwarz inequality. The bi-linear form a(·, ·) is coercive, since for all v ∈
H1

0,#(YF ),

a(v,v) =

∫
YF

(∇v)2 = ∥∇v∥2L2(YF ) ≤ C
(
∥v∥2L2(YF ) + ∥∇v∥

2
L2(YF )

)
,

with the Poincaré inequality. The bi-linear form b(·, ·) is continuous on H1
0,#(YF )×L2(YF ), since

|b(q,v)| =
∣∣∣∣−∫

YF

q divy v

∣∣∣∣ ≤ ∥v∥H1(YF )∥q∥L2(YF ).

The bi-linear form b(·, ·) verifies the “inf-sup” condition. Indeed, considering q ∈ L2(YF ) and

according to [84], there exists w ∈ H1
0 (YF ) such that q = −divw and ∥w∥H1(YF ) ≤ C∥q∥L2(YF ),

with C a constant independent of w and g. Consequently, we have

b(q,w) = −
∫
YF

q divw = ∥q∥L2(YF ) (6.15)
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leading to,
b(q,w)

∥w∥H1(YF )
≥ 1

C

b(q,w)

∥q∥L2(YF )
=

1

C
∥q∥L2(YF ).

We conclude that the problem (6.13) admits a unique solution (u, p) ∈ H1
0,#(YF )

d×L2(YF ).

Remark 6.8. If f = 0, then u = 0 and p = 0 in Y are obvious solution, hence the nullity of

the first two terms in the two-scale asymptotic expansion of uε.

Using Lemma 6.6, it is clear that (6.6) and (6.12) admit each a unique solution since the

right-hand side of the divergence condition has zero-average in YF . In particular ωi and γi,j are

in Hm+2
0,# (YF )

d, and, πi and θi,j are in Hm+1
# (YF )/R.

The conclusion of this section is that we obtained an approximation of order 3 of the velocity

uε(x) ≈ ε2u2

(
x,
x

ε

)
+ ε3u3

(
x,
x

ε

)
, (6.16)

and of order 1 of the pressure

pε(x) ≈ p∗(x) + εp1

(
x,
x

ε

)
. (6.17)

The derivation of (6.16) and (6.17) is merely formal but these approximations are key ingredients

in the rigorous proof of our main result of quantitative homogenization.

6.4 A quantitative homogenization result

6.4.1 Main result

Our main result is a quantitative error estimate for the homogenization of Stokes equations in

a periodic porous medium, which was loosely announced as Theorem 6.1 in the introduction. A

more precise statement of this result is given below.

Theorem 6.9. Let uε, pε be the solution to the Stokes equations (6.1), p∗ be the solution to

the Darcy equation (6.10) and u2 be defined by (6.7). Under Assumption 6.2 and assuming

that f belongs to H2(Ω)d ∩ C1,α(Ω)d with 0 < α < 1, there holds:

∥pε(x)− p∗(x)∥L2(Ωε) ≤ Cε
1
2 ∥f(x)−∇p∗(x)∥H2(Ω)∩C1,α(Ω), (6.18)

|uε(x)− ε2u2

(
x,
x

ε

)
|H1(Ωε) ≤ Cε

3
2 ∥f(x)−∇p∗(x)∥H2(Ω)∩C1,α(Ω), (6.19)

∥uε(x)− ε2u2

(
x,
x

ε

)
∥L2(Ωε) ≤ Cε

5
2 ∥f(x)−∇p∗(x)∥H2(Ω)∩C1,α(Ω), (6.20)

where C is independent of ε and the data.

Theorem 6.9 was already proved in the easier case of isolated obstacles in [111] when d = 2

and in [156] for any dimension. The main novelty of the work present in this chapter is that

Theorem 6.9 applies to the physically relevant case of connected obstacles (in dimension d ≥ 3)
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Remark 6.10. In Theorem 6.9, the regularity of f ensures that ∇p∗ also belongs to H2(Ω)d∩
C1,α(Ω)d (see Proposition 6.5). We assume that f ∈ H2(Ω)d ∩ C1,α(Ω)d, but all what follows

only requires the assumption that the difference (f −∇p∗) belongs to H2(Ω)d ∩ C1,α(Ω)d.

The space H2(Ω)d ∩ C1,α(Ω)d is equipped with the norm ∥·∥H2∩C1,α defined by ∥·∥H2∩C1,α =

∥·∥H2 + ∥·∥C1,α .

Remark 6.11. The two estimates for the velocity essentially mean that the relative error for

the velocity in the H1-norm is of the order
√
ε. Indeed, the velocity is of order ε2 (be it uε

or ε2u2), but its gradient is of order ε (see the derivative rule (6.4)) since they oscillate on the

length scale ε. Finally the relative error for the pressure is also of order
√
ε. Eventually, upon

rescaling the velocity, we can write

ε−2∥uε− ε2u2∥L2(Ωε)+ ε
−1|uε− ε2u2|H1(Ωε)+∥pε−p∗∥L2(Ωε) ≤ C

√
ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω).

The relative error of order
√
ε is worse than the expected ε. It is a classical phenomenon in

homogenization [31, 11, 111] due to boundary layer effects caused by the Dirichlet boundary

condition on ∂Ω. Technically, this is taken into account by introducing a suitably chosen

cut-off function ηε in the proof. If the boundary layers were absent, which would be the case,

for example, with periodic boundary conditions over a rectangular box Ω =
∏d

i=1(0, εni) with

ni ∈ N, the error estimate would improve and give a relative error of order ε

ε−2∥uε − ε2u2∥L2(Ωε) + ε−1|uε − ε2u2|H1(Ωε) + ∥pε − p∗∥L2(Ωε) ≤ Cε∥f −∇p∗∥H2(Ω)∩C1,α(Ω).

The proof of Theorem 6.9 is given in Section 6.4.5. Beforehand it requires three techni-

cal lemmas concerning (i) solving a non-homogeneous divergence equation in a porous domain

(Lemma 6.17), (ii) correcting non-homogeneous boundary conditions (Lemma 6.21) and (iii)

representing periodic divergence-free fields (Lemma 6.23).

6.4.2 Correction of the divergence condition

Notation 6.12. In what follows, for any ϕ ∈ H1
0 (Ω

ε), we also denote by ϕ its extension by zero

in Ω \ Ωε, which belongs to H1
0 (Ω).

Definition 6.13. We note πεi the linear continuous invertible application, composed of a

translation and an homothety of ratio 1
ε , which maps any cell Y ε

i onto the reference cell Y

πεi : Y ε
i −→ Y

x 7−→ y = x
ε + translation.

(6.21)

First, we recall the Poincaré inequality in perforated domains (for a proof, see [102]).
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Lemma 6.14. Assume that the hypotheses on the unit cell Y (Section 6.2.1) hold true, then

there exists a constant C > 0, independent of ε, such that, for any ϕ ∈ H1
0 (Ω

ε),

∥ϕ∥L2(Ωε) ≤ Cε|ϕ|H1(Ωε).

We now recall a result [160, 9] on a restriction operator for velocities defined on the full

domain Ω which are restricted to the porous domain Ωε.

Lemma 6.15. Assume that the hypotheses on the unit cell Y (Section 6.2.1) hold true. Then

there exists a linear continuous operator Rε such that

1. Rε ∈ L
(
H1

0 (Ω)
d;H1

0 (Ω
ε)d
)
;

2. u|Ωε∈ H1
0 (Ω

ε)d implies Rεu = u|Ωε in Ωε;

3. divu = 0 in Ω \ Ωε implies div (Rεu) = divu in Ωε;

4. there exists a constant C, which does not depend on ε, such that, for any u ∈ H1
0 (Ω)

d,

we have

∥Rεu∥L2(Ωε) + ε∥∇(Rεu)∥L2(Ωε) ≤ C
(
∥u∥L2(Ω) + ε∥∇u∥L2(Ω)

)
.

Remark 6.16. Lemma 6.15 was first proved in [160] for the case of a solid part YS strictly

included in the cell Y (see Figure 6.3a) and was then extended in [9] for the more general case

of a solid part YS which touches the boundary of Y (see Figure 6.3b).

Proof. Since we shall need specific properties of the operator Rε in the sequel, we briefly recall

how to construct this operator. We start with the simpler case of isolated obstacles, namely

when the solid part YS is strictly included in the cell Y (the general case is presented afterwards).

Consider a domain YM , strictly contained in Y , such that ∂YM is smooth and encloses YS as

presented in Figure 6.5.

YS

YM

YF

Figure 6.5: Schematic description of the domain YM around YS .
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Then for a given u ∈ H1(Y )d, there exists v ∈ H1(YM \ YS)d, q ∈ L2(YM \ YS)/R satisfying

−∆v +∇q = −∆u in YM \ YS ,

div v = divu+
1

|YM \ YS |

∫
YS

divu in YM \ YS ,

v = u on ∂YM ,

v = 0 on ∂YS .

This problem is well-posed, since the compatibility condition can easily be checked on the data,

namely ∫
YM\YS

div v =

∫
∂(YM\YS)

v · n.

Now, a restriction operator R is constructed as follow: for any u ∈ H1(Y )d

Ru =


u in Y \ YM ,
v in YM \ YS ,
0 in YS .

Clearly, R is linear continuous from H1(Y )d to its subspace of functions vanishing on YS , satis-

fying

∥Ru∥H1(Y ) ≤ C∥u∥H1(Y ), (6.22)

and such that, if u = 0 in YS , then Ru = u, and, if divu = 0 in YS , then divRu = divu in Y .

Then the operator Rε is defined by applying the mapping (6.21) to the operator R and, with

standard scaling properties, it comes from (6.22)

∥Rεu∥2L2(Ωε) + ε2∥∇(Rεu)∥2L2(Ωε) ≤ C
(
∥u∥2L2(Ω) + ε2∥∇u∥2L2(Ω)

)
,

which implies that Rε would satisfy all four properties of Lemma 6.15.

We now turn to the case of connected obstacles, namely when YS touches the cell bound-

ary ∂Y as presented in Figure 6.3b. The construction of Rε is slightly more involved. First, we

define a linear continuous operator Qε ∈ L
(
H1

0 (Ω)
d;H1

0 (Ω
ε)d
)
by

−∆(Qεu) = −∆u in Ωε ∩ Cε
1 ,

Qεu = 0 on ∂Ωε ∩ Cε
1 ,

Qεu = u on ∂Cε
1 ,

Qεu = u in Ω \ Cε
1 ,

where Cε
1 is defined by Assumption 6.2 as the union of entire cells inside Ω. Clearly, Qεu = u

if and only if u|Ωε∈ H1
0 (Ω

ε)d. Thanks to the definition of Cε
1 and Cε

2 , there exists a smooth

cut-off function ζε such that ζε(x) = 1 on ∂Cε
1 , ζ

ε(x) = 0 in Cε
2 and ∥∇ζε∥L∞(Cε

1)
≤ C

ε . One

can rewrite (6.4.2) for the new unknown wε = Qεu− ζεu as
−∆wε = −∆((1− ζε)u) in Ωε ∩ Cε

1 ,

wε = 0 on ∂Ωε ∩ Cε
1 ,

wε = 0 on ∂Cε
1 .

(6.23)
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Multiplying (6.23) by wε leads to an a priori estimate, which, combined with the Poincaré

inequality (Lemma 6.14), implies that there exists a constant C, which does not depend on ε,

such that, for any u ∈ H1
0 (Ω)

d, we have

∥Qεu∥L2(Ωε) + ε∥∇(Qεu)∥L2(Ωε) ≤ C
(
∥u∥L2(Ω) + ε∥∇u∥L2(Ω)

)
.

Then, for each cell Y ε
i , we define a linear operator Qi, from H1(Y )d to its subspace of functions

vanishing on YS , as follows: for any u ∈ H1
0 (Ω)

d,

(
Qi

(
u ◦ (πεi )−1

))
◦ πεi = Qεu in Y ε

i . (6.24)

Recall from Assumption 6.2 that we defined two sets of indices I1 and I2, corresponding to the

cells Y ε
i which cover Cε

1 and Cε
2 , respectively. Define a third set I0 = {i ∈ Zd s.t. Y ε

i ∩ Ω ̸= ∅},
so that I2 ⊂ I1 ⊂ I0. We now define a family of restriction operators Ri, depending on which

set I2, I1, I0 the index i belongs to.

For i ∈ I2 (meaning that the corresponding cell contains a solid obstacle), Ri is defined, for

any u ∈ H1(Y )d, by

−∆Riu+∇p = −∆u in YF ,

divRiu = divu+
1

|YF |

∫
YS

divu in YF ,

Riu = Qiu+ ϕk

(∫
Σk

(u−Qiu) · ek
)
ek on Σk ∩ YF ,

Riu = 0 on ∂YS ,

(6.25)

where (Σk)1≤|k|≤d are the 2d faces of the unit cube (Σk and Σ−k are opposite faces), with unit

normal vector ek, and (ϕk)1≤|k|≤d is a family of smooth, non-negative functions, compactly

supported in the periodic repetition of YF , satisfying∫
Σk

ϕk = 1, ϕk |Σk
≡ ϕ−k |Σ−k

and ϕk |Σk′
≡ 0 if k ̸= k′.

The existence of such a family of functions ϕk is guaranteed by the assumptions on the unit cell

in Section 6.2.1, which imply that the surface measure of Σk ∩ YF is non-zero (see [9] for more

details). Problem (6.25) is well-posed, since the data of the trace of Riu belongs to H1/2(YF )
d

and the compatibility condition on the divergence data is satisfied, namely∫
YF

divRiu =

∫
∂YF

Riu · n.

For i ∈ I1 \ I2 (meaning that the corresponding cell does not contain a solid obstacle but

one of its face may touch an obstacle), Ri is defined, for any u ∈ H1(Y )d, by

−∆Riu+∇p = −∆u in Y,

divRiu = divu in Y,

Riu = Qiu+ ϕk

(∫
Σk

(u−Qiu) · ek
)
ek on Σk,

Riu = u on Σ̃k,

(6.26)
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where Σk are the faces of the cell which touch an obstacle and Σ̃k are the faces of the cell which

do not touch any obstacle. Problem (6.26) is well-posed, since the data of the trace of Riu

belongs to H1/2(Y )d and the compatibility condition on the divergence data is satisfied, namely∫
Y

divRiu =

∫
∂Y
Riu · n.

For i ∈ I0 \ I1 (implying that the corresponding cell does not contain a solid obstacle and

none of its face touches an obstacle), Ri is simply defined as Riu = u. Note that this case

corresponds to cells Y ε
i which are cut by the boundary ∂Ω. Inside such a cell, with a possibly

wild geometry, it is not clear that a Stokes problem of the type of (6.26) satisfies a priori

estimates, independent of the geometry (this is precisely why the two sets of indices I1 and

I2 have been introduced). A similar estimate to (6.22) holds true for all operators Ri with a

constant C independent of i and ε.

Finally, the restriction operator Rε ∈ L
(
H1

0 (Ω)
d;H1

0 (Ω
ε)d
)
is defined, for any u ∈ H1

0 (Ω)
d,

by

Rεu =
(
Ri

(
u ◦ (πεi )−1

))
◦ πεi in Y ε

i .

It is easy again to check that Rε satisfies all four properties of Lemma 6.15. Note however

that, here, the definition of Rε is not local in each cell since they are all coupled through the

operator Qε.

We now state a key lemma for our analysis. It was already presented in [111] in two di-

mensions for the case when YS is strictly included in Y . It was also stated in [48, Theorem

14.2] for the general case of any YS and any space dimension but its proof was rather technical,

decomposed in several exercises. Here, we present a new and detailed proof, using different

arguments.

Lemma 6.17. For any q ∈ L2
0(Ω

ε) there exists vdε ∈ H1
0 (Ω

ε)d such that

div vdε = q in Ωε and |vdε|H1(Ωε) ≤
C

ε
∥q∥L2(Ωε) (6.27)

where C > 0 is a constant independent of ε.

Proof. For any q ∈ L2
0(Ω

ε) we still denote by q its extension by zero inside the obstacles Bε.

One can easily check that its average on Ω still vanishes and thus q ∈ L2
0(Ω) with q = 0 in Bε.

Using [84, corollary 2.4], there exists a (non unique) w ∈ H1
0 (Ω)

d such that

divw = q in Ω and ∥w∥H1(Ω) ≤ C∥q∥L2(Ω).

Since q = 0 in Bε, we have

divw = 0 in Ω \ Ωε.

Using the restriction operator Rε defined in Lemma 6.15, we have

div (Rεw) = q in Ωε.
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Considering ε < 1 in the fourth property of Lemma 6.15, it follows

∥Rεw∥L2(Ωε) + ε∥∇Rεw∥L2(Ωε) ≤ C∥w∥H1(Ω)

and consequently

ε∥∇(Rεw)∥L2(Ωε) ≤ C∥w∥H1(Ω) ≤ C∥q∥L2(Ωε).

Therefore, vdε = Rεw is a solution to (6.27).

6.4.3 Correction of the boundary condition

In this section, we build a divergence-free field which satisfies a given boundary condition. Recall

the definition of the curl∗ operator, proposed in [62].

Definition 6.18. The operator curl∗ is defined as

curl∗ : C1(Rd)d(d−1)/2 −→ C0(Rd)d

A 7−→

 i−1∑
j=1

∂Aji

∂xj
−

d∑
j=i+1

∂Aij

∂xj


1≤i≤d

where A = (Aij)1≤i<j≤d ∈ Rd(d−1)/2.

A simple computation shows that the image of this curl∗ operator is divergence-free, namely

div curl∗A = 0 for any A ∈ C1(Rd)d(d−1)/2. This is an expected property since curl∗ is an

extension, to any dimension d, of the standard curl operator in 2-d and 3-d. We now state a

preliminary lemma, also adapted from [62] .

Lemma 6.19. Let Ω ⊂ Rd be a bounded connected open set with a smooth boundary of class

C3,α, for some 0 < α < 1. Let g in C1,α
(
Ω
)d

with g · n = 0 on ∂Ω. Then there exists A in

C2,α(Ω)d(d−1)/2 such that

curl∗(A) = g on ∂Ω and A = 0 on ∂Ω.

In other words, the vector field curl∗(A) is divergence-free and its trace on ∂Ω coincides with

g.

Proof. [62, Lemma 1] ensures that there exists A ∈ C2,α(Ω)d(d−1)/2, with A = 0 on ∂Ω, such

that

∇Aij = (gjni − ginj)n on ∂Ω,

where n is the outward unit normal vector, gi and ni are respectively the ith coordinates of g

and n in the canonical basis of Rd. It remains to check that curl∗(A) = g on ∂Ω. Indeed, we
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have, on ∂Ω,

(curl∗A)i =
i−1∑
j=1

(ginj − gjni)nj −
d∑

j=i+1

(gjni − ginj)nj

=
d∑

j=1, j ̸=i

gin
2
j −

d∑
j=1, j ̸=i

gjnjni =
d∑

j=1

gin
2
j = gi,

where we used the assumption that g · n = 0 on ∂Ω.

The next step is to localize in the vicinity of the boundary ∂Ω the divergence-free field which

lifts a given boundary condition. To do this, we introduce the following classical cut-off function

as in [31, 111].

Definition 6.20 (Cut-off function). For a small enough constant c > 0, define a neighborhood

of the boundary ∂Ω, denoted by Oε := {x ∈ Ω : dist(x, ∂Ω) ≤ cε} (band of width cε near

∂Ω). Then we choose a cut-off function θε ∈ C∞(Ω) such that θε(x) = 1 in Oε/2, θε(x) = 0 in

Ω \Oε, and

∥∇θε∥L∞(Ω) ≤
C

ε
, ∥∇2θε∥L∞(Ω) ≤

C

ε2
.

The main result of this section is the following lemma.

Lemma 6.21. For any g ∈ C1,α
(
Ω
)d

with div g = 0 in Ω, g · n = 0 on ∂Ω, there exists

vbε ∈ H1(Ω)d such that supp vbε ⊂ Oε := {x ∈ Ω : dist(x, ∂Ω) < cε} and

vbε = g on ∂Ω, div vbε = 0 in Ω and |vbε|H1(Ω) ≤
C√
ε
∥g∥C1,α(Ω)

where C > 0 is a constant independent of ε.

Remark 6.22. Lemma 6.21 was already proved in [111] in two dimensions. Here, we extend

this result to any dimension.

Proof. Let g ∈ C1,α
(
Ω
)d

with div g = 0 in Ω, g ·n = 0 on ∂Ω. By virtue of Lemma 6.19, there

exists a function A ∈ C2,α(Ω)d(d−1)/2, such that curl∗(A) = g on ∂Ω. Define

vbε = curl∗(θεA),

where θε is the cut-off function introduced in Definition 6.20. Obviously, div vbε = 0 in Ω.

Then, vbε = g on ∂Ω since, in the vicinity Oε/2 of ∂Ω, we recall that θε ≡ 1. Finally, it remains

to bound |vbε|H1(Ω). We write

curl∗(θεA) = θεcurl∗(A) + Γ(A,∇θε)
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where Γ(A,∇θε) is defined as

Γ(A,∇θε)i =
i−1∑
j=1

Aji
∂θε

∂xj
−

d∑
j=i+1

Aij
∂θε

∂xj
.

It follows therefore

|vbε|H1(Ω) ≤ ∥θε∇curl∗(A)∥L2(Oε) + ∥∇θεcurl∗(A)∥L2(Oε) + ∥∇Γ(A,∇θε)∥L2(Oε)

≤ C
(√

ε∥∇∇A∥L∞(Oε) +
1√
ε
∥∇A∥L∞(Oε)

)
+ ∥∇Γ(A,∇θε)∥L2(Oε),

since meas(Oε) ≤ cε, and

∥∇Γ(A,∇θε)∥L2(Oε) ≤ C
(
∥∇θε∥L∞(Oε)∥∇A∥L2(Oε) + ∥∇∇θε∥L∞(Oε)∥A∥L2(Oε)

)
≤ C

(
1

ε
∥∇A∥L2(Oε) +

1

ε2
∥A∥L2(Oε)

)
≤ C

(
1√
ε
∥∇A∥L∞(Ω) +

1

ε
√
ε
∥A∥L∞(Oε)

)
.

We observe now that any point x ∈ Oε can be connected to a point x′ ∈ ∂Ω by a segment of

length not greater than cε lying in Oε. Recalling that A(x′) = 0 and using a Taylor expansion at

order 1 with integral remainder gives |A|(x) ≤ cε∥∇A(z)∥L∞(Oε). Consequently, ∥A∥L∞(Oε) ≤
cε∥∇A∥L∞(Oε) and

∥∇Γ(A,∇θε)∥L2(Oε) ≤
C√
ε
∥∇A∥L∞(Oε),

which concludes the proof.

6.4.4 Representation of divergence-free fields

A key ingredient in the proof of Theorem 6.9 is a representation of periodic divergence-free and

zero-mean fields as the image of a differential operator, the range of which is always divergence-

free. This representation is given by the following.
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Lemma 6.23. Let g ∈ L2
#(Y )d be periodic, satisfying∫

Y
gdy = 0, divy g = 0 in Y.

There exists a (non-unique) periodic solution φ ∈ H1
#(Y )d ∩H2

#(Y )d to the problem{
−∆yφ+∇y divy φ = g in Y,

y → φ(y) Y − periodic,
(6.28)

which satisfies, for some constant C > 0,

∥φ∥H2
#(Y ) ≤ C∥g∥L2

#(Y ).

Furthermore, for any ψ ∈ H2
#(Y )d, it holds that

divy (−∆yψ +∇y divy ψ) = 0 in Y.

Remark 6.24. More generally, the identity

div (−∆ψ +∇ divψ) = 0 in Rd

holds true for any vector field ψ ∈ (H2(Rd))d.

Proof. Using Fourier series the periodic solution φ and the periodic right-hand side g are written

as

φ(y) =
∑
ξ∈Zd

φ̂(ξ)e2iπξ·y, g(y) =
∑
ξ∈Zd

ĝ(ξ)e2iπξ·y,

where ĝ(0) = 0 and ĝ(ξ) · ξ = 0 for any ξ ∈ Zd, because of the assumptions on g. Then, (6.28)

becomes

4π2|ξ|2φ̂− 4π2(ξ · φ̂)ξ = ĝ. (6.29)

By writing (6.29) under matrix form, we have

Aφ̂ = ĝ, A(ξ) = 4π2
(
|ξ|2Id − ξ ⊗ ξ

)
.

We easily see that ker(A) = span(ξ). Since A is symmetric, we have Im(A) = ker(A)⊥ = {u ∈
Rd s.t. u · ξ = 0} and ĝ ∈ ker(A)⊥. Now, if we restrict the matrix A to its image, it is reduced

to |ξ|2Id. Consequently, its inverse is simply given by |ξ|−2Id which gives the following solution

φ̂ =
ĝ

4π2|ξ|2
for any ξ ̸= 0,

which is unique, up to the addition of a multiple of ξ. In other words, we obtained a solution φ(y)
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of (6.28) which is unique up to the addition of a constant and of a periodic gradient. Now,

recalling that ξ is an integer vector, we note that

|φ̂| = |ĝ|
4π2|ξ|2

≤ C|ĝ|, |ξφ̂| ≤ C|ĝ|, |ξξφ̂| ≤ C|ĝ|,

which allows to conclude that φ belongs to H2
#(Y )d.

In view of the proof of Theorem 6.9, Lemma 6.23 is applied to the solution ωi of the cell

problem (6.6). More precisely, introduce

ωi
′ = ωi − |YF |⟨ωi⟩ = ωi −

∫
Y
ωi,

which satisfies 
divy ωi

′ = 0 on Y,

ωi
′ is Zd − periodic,

ωi
′ has zero mean over Y.

According to Lemma 6.23, there exists a periodic function ψi ∈ H2
#(Y )d such that

−∆yψi +∇y divy ψi = ωi
′ in Y. (6.30)

In particular, since ωi ∈ H1
#(Y )d, then ψi ∈ H3

#(Y )d. This regularity cannot be improved since,

although ωi is smooth inside YF , it is not in the full cell Y . In particular, it implies that, at

least for large dimension d, ψi and ∇yψi may not belong to L∞(Y ). This lack of regularity

requires special care in the next subsection.

6.4.5 Proof of Theorem 6.9

Inspired by the approximation Equation (6.16) of the two-scale asymptotic expansion, namely

uε ≈ ε2u2+ ε3u3, the main idea is to compare the velocity uε with ε2u2+ ε3u3. The difficulty

is that the velocity correctors u2,u3, built in Section 6.3, do not satisfy the boundary condition,

i.e. u2,u3 do not vanish on ∂Ω, and are not divergence-free. To satisfy this Dirichlet boundary

condition for an approximation of uε, we introduce a cut-off function ηε as in [111].

Definition 6.25. For a small enough constant c > 0, define a neighborhood of the bound-

ary ∂Ω, denoted by Oε := {x ∈ Ω : dist(x, ∂Ω) ≤ cε} (band of width cε near ∂Ω). Then we

choose a cut-off function ηε ∈ C∞(Ω) such that ηε and all its derivatives vanish on ∂Ω, while

ηε(x) = 1 on Ω \Oε and

∥1− ηε∥L2(Ω) ≤ C
√
ε, ∥ηε∥L∞(Ω) = 1, ∥∇ηε∥L∞(Ω) ≤

C

ε
, ∥∇∇ηε∥L∞(Ω) ≤

C

ε2
. (6.31)

If we simply multiply the approximation ε2u2 + ε3u3 by the cut-off function ηε, of course

the Dirichlet boundary condition will be satisfied on ∂Ω but the divergence of the product is not

under control. Therefore, a more clever use of ηε is required. It turns out that only u2 needs a
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special treatment. Recall from (6.7) that

u2(x, y) =
1

ν
ωi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
.

The main idea is to decompose ωi as

ωi = ωi
′ + |YF |⟨ωi⟩,

and to use (6.30) to replace ωi
′ by its representation as derivatives of the periodic function ψi.

Then, the cut-off function is inserted inside this differential representation as

(−∆+∇ div ) (ηεψi),

which has the advantage of being divergence-free and vanishing on the boundary ∂Ω. We shall

not apply the cut-off function to the other (non-oscillating) term

1

ν
|YF |⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
≡ |YF |u(x),

where u is divergence-free (because it is the Darcy velocity) and satisfies u · n = 0 on ∂Ω.

To correct this boundary condition we apply Lemma 6.21 to g = |YF |u. The assumptions of

Lemma 6.21 are satisfied, by its definition (6.9), the Darcy velocity u belongs to C1,α(Ω)d,

satisfies divu = 0 in Ω and u · n = 0 on ∂Ω. Thus Lemma 6.21 ensures that there exists

vbε ∈ H1(Ω)d supported in Oε such that

div vbε = 0 on Ω, vbε = |YF |u on ∂Ω,

|vbε|H1(Ωε) ≤ C√
ε
∥u∥C1,α(Ω).

(6.32)

The key observation is that, because of our construction of Ωε, where obstacles are removed

from Ω only if the entire cell is included in Ω, all solid obstacles are uniformly away of the

boundary ∂Ω by a distance of the order of ε. Therefore, in the choice of the cut-off function ηε

(see Definition 6.25), one can choose the constant c small enough so that no obstacles are

contained or intersect the neighborhood Oε of the boundary ∂Ω, where the support of the

derivatives of ηε is restricted.

Based on the asymptotic expansion of order 3 for the velocity, ε2u2 + ε3u3, we define the

following velocity estimator,

uε,3(x) =
ε2

ν
|YF |⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
− ε2vbε

+
ε4

ν
(−∆+∇ div )

(
ηε(x)ψi

(x
ε

))(
fi(x)−

∂p∗

∂xi
(x)

)
+
ε3

ν
γij

(x
ε

)
ηε(x)

∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
− vdε,

(6.33)

where vbε, defined in (6.32), corrects the boundary condition of the first term above and vdε ∈
H1

0 (Ω
ε)d is going to be defined in the proof of Lemma 6.27 to correct the divergence-free condition
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of uε,3. Recall that ψi is defined by (6.30), ωi by (6.6), γij by (6.12) and all functions are

extended by 0 inside the obstacles so that uε,3 is well defined on the whole Ω. Similarly, we

define an estimator for the pressure, which is exactly the asymptotic expansion at first order of

the pressure (no need of using a cut-off function), as

pε,1 = p∗ + εp1, (6.34)

where p∗ is the homogenized pressure, solution to the Darcy problem (6.10) and p1 is defined

by (6.7).

Remark 6.26. A first key idea in the velocity estimator (6.33) is to apply a cut-off function

ηε only to the mean-zero oscillating velocity ωi
′ (see the second line of (6.33)). For the mean,

non-oscillating velocity (see the first line of (6.33)), since its normal component vanishes on the

boundary ∂Ω, one can build a boundary corrector vbε, thanks to Lemma 6.21. The same idea

is used in [165] (see e.g. (1.19) in [165]) but instead of Lemma 6.21 the authors rely on a so-

called radial cut-off function which leverages the Dirichlet boundary condition for the normal

component of the Darcy velocity. A second key idea is to introduce the cut-off function inside

the differential representation (6.30) of ωi
′, which thus does not destroy its divergence-free

character. This second idea is not found in [165], where (6.30) and Lemma 6.23 are replaced

by a weaker result, Propositions 2.1 and 2.2, expressing ωi
′ as a divergence (called there a flux

corrector). Therefore [165] needs to build another boundary layer corrector, which requires a

delicate decomposition of the boundary to optimally estimate its norm.

Lemma 6.27. There exists vdε ∈ H1
0 (Ω

ε)d such that the velocity estimator uε,3, defined by

(6.33), satisfies

uε,3 = ε2u2 + ε3u3 − vdε in Ω \Oε, (6.35)

uε,3 = 0 on ∂Ω, (6.36)

uε,3 = 0 on ∂Bε, (6.37)

divuε,3 = 0 in Ω, (6.38)

and

|vdε|H1(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω), (6.39)

with C independent of ε.

Proof. To check (6.35), simply recall that ηε ≡ 1 in Ω \Oε. Thus by virtue of (6.30) the second

line of (6.33) simplifies and, combined with the first line, yields ε2u2, since vbε is supported in

Oε. Similarly, the third line of (6.33) coincides with ε3u3 in Ω \Oε.

To check (6.36), we recognize that the first line of (6.33) vanishes on ∂Ω by construction

of vbε, while the second and third line vanish too because ηε and all its derivatives vanish on ∂Ω,

as well as vdε by definition.

By construction of the cut-off function and Assumption 6.2 on the solid obstacles which
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stay away from the boundary ∂Ω, we have ηε ≡ 1 in the vicinity of Bε. Therefore uε,3 =

ε2u2 + ε3u3 − vdε on ∂Bε. Furthermore, since ωi and γij vanish on YS , as well as vdε on ∂Bε

by definition, we deduce that (6.37) holds true.

It remains to compute the divergence of the estimator uε,3 and to prove (6.38) and (6.39).

The first line of (6.33) is divergence-free by construction and recall that div (−∆+∇ div ) = 0.

Therefore,

divuε,3(x) =
ε4

ν
(−∆+∇ div )

(
ηε(x)ψi

(x
ε

))
·∇(fi − ∂ip∗)(x)

+
ε3

ν
div

(
γij

(x
ε

)
ηε(x)

∂

∂xj
(fi − ∂ip∗)(x)

)
− div vdε,

where, for the sake of clarity, the partial derivative with respect to xi is simply denoted by ∂i,

An easy computation shows that

(−∆+∇ div )(ψi

(x
ε

)
ηε(x)) =

1

ε2
ηε(x)(−∆y +∇y divy )ψi

(x
ε

)
+

2

ε
(∇ηε(x) ·∇yψi

(x
ε

)
− divy ψi

(x
ε

)
∇ηε(x)) + (−ψi

(x
ε

)
∆ηε(x) +∇∇ηε(x)ψi

(x
ε

)
),

which leads to

divuε,3 = Lε +Gε − div vdε,

where Lε is made of terms of order 2,

Lε =
ε2

ν
ηε(x)(−∆y +∇y divy )ψi

(x
ε

)
·∇(fi − ∂ip∗)(x)

+
ε2

ν
ηε(x) divy γij

(x
ε

) ∂

∂xj
(fi − ∂ip∗)(x),

and Gε consists of the remaining terms of order 3 and 4,

Gε =
ε3

ν

(
∇ηε(x) divy ψi

(x
ε

)
−∇yψi

(x
ε

)
∇ηε(x)

)
·∇(fi − ∂ip∗)(x)

+
ε3

ν
γij

(x
ε

)
·∇ηε(x)

∂

∂xj
(fi − ∂ip∗)(x) +

ε3

ν
γij

(x
ε

)
ηε(x) ·∇ ∂

∂xj
(fi − ∂ip∗)(x)

+
ε4

ν

(
−ψi

(x
ε

)
∆ηε(x) +∇∇ηε(x)ψi

(x
ε

))
·∇(fi − ∂ip∗)(x).

(6.40)

Recalling that divy γij = −ωi · ej + ⟨ωi · ej⟩ and (−∆y +∇y divy )ψi = ωi− |YF |⟨ωi⟩, one can

check that Lε vanishes since

Lε =
ε2

ν
ηε(x)(ωi − |YF |⟨ωi⟩) ·∇(fi − ∂ip∗)(x)−

ε2

ν
ηε(x)(ωi − ⟨ωi⟩) ·∇(fi − ∂ip∗)(x)

=
ε2

ν
ηε(x)(1− |YF |)⟨ωi⟩ ·∇(fi − ∂ip∗)(x) = 0

in view of the homogenized equation (6.10). Therefore, the estimator divergence simplifies as

divuε,3 = Gε − div vdε,
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and we now prove the following bound

∥Gε∥L2(Ωε) ≤ Cε
5
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω). (6.41)

Indeed, the third term of Gε in (6.40) is bounded by Cε3∥(fi− ∂ip∗)∥H2(Ω) since ∥ηε∥L∞(Ω) = 1

and γij ∈ Hm+2(YF )
d ⊂ L∞(YF )

d by Sobolev embeddings (note that this bound is slightly

better than (6.41) and it is the only term in (6.40) to involve the H2-norm). All other terms

in (6.40) feature derivatives of ηε and have thus compact supports in Oε. In all those terms we

bound (fi − ∂ip∗) by its C1,α-norm. Although γij is bounded in L∞(YF )
d for the second term

of (6.40), it is not clear that it is the case for ψi and ∇yψi, at least for any space dimension.

Therefore, we rely on another argument that we explain on the first term of (6.40) (the other

ones being treated similarly). Since ∥∇ηε∥L∞(Ω) ≤ Cε−1, this first term is bounded in L2(Ωε)

by

Cε2∥(fi − ∂ip∗)∥C1,α(Ω)

(∫
Oε

|∇yψi

(x
ε

)
|2dx

)1/2

≤ Cε2∥(fi − ∂ip∗)∥C1,α(Ω)

(
nOεεd∥∇yψi (y)∥2L2(YF )

)1/2
, (6.42)

where we used the periodicity of ∇yψi and nOε = O(ε−d+1) is the number of cells Y ε
i which

cover Oε. This implies exactly the bound (6.41). Finally, remark that Gε has zero mean on Ωε

since ∫
Ωε

div (uε,3 + vdε) =

∫
∂Ωε

(uε,3 + vdε) · n = 0,

because uε,3 and vdε vanish on ∂Bε and ∂Ω, Consequently, to prove (6.38) we can rely on

Lemma 6.17 which ensures that there exists vdε ∈ H1
0 (Ω

ε)d such that

div vdε = Gε and |vdε|H1(Ωε) ≤
C

ε
∥Gε∥L2(Ωε) ≤ Cε

3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

which proves (6.38) and (6.39).

Now that all terms in the velocity estimator (6.33) are well defined, we turn to the estimates

for the residuals of the homogenization process. Define the velocity residualRuε and the pressure

residual Rpε by

Ruε = uε − uε,3, Rpε = pε − pε,1,

where the estimators uε,3 and pε,1 are given respectively in (6.33) and (6.34).
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Lemma 6.28. The velocity and pressure homogenization residuals verify
−ν∆Ruε +∇Rpε = Fε + divHε in Ωε,

divRuε = 0 in Ωε,

Ruε = 0 on ∂Bε,

Ruε = 0 on ∂Ω,

(6.43)

where the source terms are bounded by

∥Fε∥L2(Ωε) ≤ Cε∥f −∇p∗∥H2(Ω)∩C1,α(Ω), (6.44)

∥Hε∥L2(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω), (6.45)

with C independent of ε.

Proof. Obviously, divRuε = 0 in Ωε and Ruε = 0 on ∂Bε ∪ ∂Ω. We decompose the velocity

residual as Ruε = (uε − ε2u2) + (ε2u2 − uε,3) which leads to the first line of (6.43), where

Fε = −ν∆(uε − ε2u2) +∇(pε − pε,1) and Hε = −ν∇(ε2u2 − uε,3).

To prove estimate (6.44) for Fε, we compute

Fε = f −∇p∗ + (∆yωi −∇yπi)
(x
ε

)
(fi − ∂ip∗)(x) + 2ε∇yωi

(x
ε

)
∇(fi − ∂ip∗)(x)

+ ε2ωi

(x
ε

)
∆(fi − ∂ip∗)(x)− επi

(x
ε

)
∇(fi − ∂ip∗)(x),

and, rearranging the terms,

Fε = (∆yωi −∇yπi + ei)
(x
ε

)
(fi − ∂ip∗)(x)

+ 2ε∇yωi

(x
ε

)
∇(fi − ∂ip∗)(x)− επi

(x
ε

)
∇(fi − ∂ip∗)(x)

+ ε2ωi

(x
ε

)
∆(fi − ∂ip∗)(x).

(6.46)

The first term in (6.46) actually vanishes because of the cell equation (6.6). The next three

terms above are of order ε or higher. To bound the fourth term requires the H2 regularity of

(fi − ∂ip∗), while its C1,α regularity is sufficient for all other terms. In the end, we deduce the

bound (6.44) from (6.46).

Next, to prove estimate (6.45) for Hε, we rewrite

uε,3 − ε2u2 =
ε2

ν
(1− ηε(x))(|YF |⟨ωi⟩ − ωi

(x
ε

)
)(fi − ∂ip∗)(x)− ε2vbε − vdε

+
ε3

ν
ηε(x)γij

(x
ε

)
∂j(fi − ∂ip∗)(x)

+
ε3

ν

(
∇ηε(x) divy ψi

(x
ε

)
−∇yψi

(x
ε

)
∇ηε(x)

)
(fi − ∂ip∗)(x)

+
ε4

ν

(
−ψi

(x
ε

)
∆ηε(x) +∇∇ηε(x)ψi

(x
ε

))
(fi − ∂ip∗)(x).

(6.47)
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The gradient of (6.47), equal to Hε up to a ν-factor, is

∇(uε,3 − ε2u2) = −ε2∇vbε −∇vdε −
ε2

ν
∇ηε(|YF |⟨ωi⟩ − ωi) (fi − ∂ip∗)

− ε

ν
(1− ηε)∇yωi (fi − ∂ip∗) +

ε2

ν
(∇ηε∇y divy ψi −∇y∇yψi∇ηε) (fi − ∂ip∗)

+
ε3

ν
(∇∇ηε divy ψi −∇yψi∇∇ηε) (fi − ∂ip∗)

+
ε3

ν
(−∇yψi∆η

ε + (∇∇ηε)∇yψi) (fi − ∂ip∗)

+
ε4

ν
(−ψi∇∆ηε +∇(∇∇ηε)ψi) (fi − ∂ip∗)

+
ε2

ν
(1− ηε)(|YF |⟨ωi⟩ − ωi)∇ (fi − ∂ip∗) +

ε3

ν
∇ηεγij∂j (fi − ∂ip∗)

+
ε3

ν
(∇ηε divy ψi −∇yψi∇ηε)∇ (fi − ∂ip∗)

+
ε4

ν
(−ψi∆η

ε + (∇∇ηε)ψi)∇ (fi − ∂ip∗)

+
ε2

ν
ηε∇yγij∂j (fi − ∂ip∗) +

ε3

ν
ηεγij∇∂j (fi − ∂ip∗) .

(6.48)

We bound (6.48) in the same way as for the estimate of Gε. The first two terms of (6.48) are

bounded by (6.32) and (6.39). The last term of (6.48) is the only one requiring the H2-regularity

of (fi − ∂ip∗): for all other terms the C1,α-regularity of (fi − ∂ip∗) is sufficient. By Lemma 6.6

the cell solutions ωi, γij and the gradient ∇yωi belong to L∞(Y ). This is not the case for ψi

and its derivatives (at least for any space dimension d): therefore we rely on a similar trick as

in (6.42) for all terms involving ψi. Using the bounds (6.31) on the cut-off function ηε, it follows

that the terms in the first five lines of (6.48) are of order ε3/2. The terms of the three following

lines are of order ε5/2 and eventually in the last line the terms are respectively of order ε2 and ε3.

We do not detail the bounds except for the seemingly higher order term

∥ ε
ν
(1− ηε)∇yωi (fi − ∂ip∗) ∥L2(Ωε) ≤ Cε∥1− ηε∥L2(Ωε)∥∇yωi∥L∞(Y )∥(fi − ∂ip∗)∥C1,α(Ω)

≤ Cε3/2∥(fi − ∂ip∗)∥C1,α(Ω)

because of (6.31). In the end, we deduce estimate (6.45).

Remark 6.29. We cannot have a better estimate due the presence of boundary layers. Indeed,

the lower order
√
ε is due to the boundary condition uε = 0 on ∂Ω, which worsens the

approximation near the boundary. Technically, this is taken into account by the introduction

of the cut-off function ηε in the proof. This term satisfies the bound |ηε|H1(Ω) ≤ C√
ε
, which is

the origin of the
√
ε-order in the estimate.

Since the residual Ruε is divergence-free and belongs to H1
0 (Ω

ε)d, it can be used as test
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function, leading to

ν

∫
Ωε

∇Ruε ·∇Ruε = ν

∫
Ωε

∇Ruε ·∇Ruε −
∫
Ωε

Rpε divRuε

=

∫
Ωε

Fε ·Ruε −
∫
Ωε

Hε ·∇Ruε

≤ ∥Fε∥L2(Ωε)∥Ruε∥L2(Ωε) + ∥Hε∥L2(Ωε)|Ruε |H1(Ωε).

Using estimate (6.44) and the Poincaré inequality in perforated domains (Lemma 6.14), it follows

∥Fε∥L2(Ωε)∥Ruε∥L2(Ωε) ≤ Cε2∥f −∇p∗∥H2(Ω)∩C1,α(Ω)|Ruε |H1(Ωε).

Then, using (6.45), we conclude that

|Ruε |H1(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω). (6.49)

Now, writing uε − ε2u2 = Ruε + uε,3 − ε2u2, using (6.49) and (6.45) yields

|uε − ε2u2|H1(Ωε) ≤ |Ruε |H1(Ωε)+∥Hε∥L2(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

which is precisely the H1-estimate (6.19). The L2-estimate (6.20) is then a consequence of

the Poincaré inequality in perforated domains (Lemma 6.14). To prove the remaining pressure

estimate (6.18), recall that pressure is always defined up to a constant and choose the original

pressure pε, the homogenized pressure p∗ and the pressure estimator pε,1 with zero mean in Ωε

(if it is not the case, it suffices to consider pε,1 = p∗ + ε(p1 −
∫
Ωε p1)). Lemma 6.17 ensures the

existence of v ∈ H1
0 (Ω

ε)d such that div v = pε − pε,1. Then by integration by parts,∫
Ωε

(pε − pε,1)2 =
∫
Ωε

(pε − pε,1) div v = −
∫
Ωε

Fε · v +

∫
Ωε

ν∇(uε − ε2u2) ·∇v

≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω)|v|H1(Ωε) ≤ Cε

1
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω)∥pε − pε,1∥L2(Ωε),

using the estimate in Lemma 6.17. Thus,

∥pε − p∗∥L2(Ωε) ≤ ∥pε − pε,1∥L2(Ωε) + ∥pε,1 − p∗∥L2(Ωε) ≤ Cε
1
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

since (pε,1 − p∗) is of order ε as seen from (6.34), which concludes the proof of Theorem 6.9.

Remark 6.30. In this chapter, we have considered that the obstacles do not touch the border

of Ω for simplicity of presentation. However, the proof of Theorem 6.9 can be extended in the

case in which the obstacles touch the border of Ω. This extension is presented in Appendix B.
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Chapter 7

An MsFEM à la Crouzeix–Raviart

for the Stokes problem
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In this chapter, for the sake of completeness, we present the non-conforming high-order

Multi-scale Finite Element Method (MsFEM) introduced in [79] for solving the Stokes problem

in heterogeneous media. This method generalized the method proposed in [111], by considering

high order sets of weighting functions on the faces as well as in the elements. In what follows, we

recall the notations and the main theoretical results introduced in [79], which will be useful for the

additional theoretical analysis developed in Chapters 8 and 9, which are dedicated respectively

to the well-posedness of the discrete local problems involved in the MsFEM and to the derivation

of an error estimate for the MsFEM under study.

7.1 Problem definition

The steady state Stokes problem with homogeneous Dirichlet boundary conditions in a per-

forated domain is to find the velocity uε : Ωε → Rd and the pressure pε : Ωε → R solution

to 
−ν∆uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(7.1)

with f the applied force and ν > 0 the viscosity. We introduce the velocity space

V = H1
0 (Ω

ε)d = {u ∈ H1(Ωε)d such that u|∂Ωε = 0},
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and the pressure space

M = L2
0(Ω

ε) = {p ∈ L2(Ωε) such that

∫
Ωε

p = 0}. (7.2)

We note X = V ×M . For simplicity the fluid domain is assumed to be connected in order for

the pressure to be uniquely defined in M . We introduce the following bi-linear forms

a(u,v) = ν

∫
Ωε

∇u ·∇v, b(q,v) = −
∫
Ωε

q div v.

Then a weak formulation of the Stokes problem (7.1) reads: find (uε, pε) ∈ X such that a(uε,v) + b(pε,v) =

∫
Ωε

f · v ∀v ∈ V,

b(q,uε) = 0 ∀q ∈M.
(7.3)

To obtain the existence and uniqueness result for (7.1), the load f is assumed to have the

usual regularity f ∈ L2(Ω)d. It should be noted that f ∈ (H−1(Ω))d is sufficient for the well-

posedness of (7.1) (by replacing then (f ,v)L2 by < f ,v >H−1), which is indeed the case if

f ∈ L2(Ω)d. Then, existence and uniqueness of a solution to problem (7.3) is guaranteed by the

Ladyzhenskaya–Babuška–Brezzi (LBB) condition (see Theorem 3.3). We introduced another

bi-linear form c(·, ·) continuous on V ×M

c ((uε, pε), (v, q)) =

∫
Ωϵ

(ν∇uε ·∇v − pε div v − q divuε) .

The variational formulation of (7.1) is equivalent to: find (uε, pε) ∈ X such that

c ((uε, pε), (v, q)) =

∫
Ωϵ

f · v ∀(v, q) ∈ X, (7.4)

Then, existence and uniqueness of a solution to problem (7.4) is guaranteed by the Banach-

Nečas–Babuška (BNB) Theorem (see Theorem 3.2). Problem (7.4) is well-posed (admits a

unique solution) if and only if the bi-linear form c(·, ·) is continuous and satisfies the so-called

inf-sup condition, i.e. there exits α > 0 such that

inf
(uε,pε)∈X

sup
(v,q)∈X

c((uε, pε), (v, q))

∥(uε, pε)∥X∥(v, q)∥X
≥ α.

It is well-known (see for example [162]), that the Stokes problem (7.4) verifies the inf-sup con-

dition and thus admits a unique solution

uε ∈ H1
0 (Ω

ε)d, pε ∈ L2(Ωε)/R.

7.2 Crouzeix–Raviart Multiscale Finite Element Method

Assumption 7.1. We assume that Ω is a polygonal domain. We define a mesh TH on Ω

as a decomposition of Ω into non-overlapping polyhedra T , each of diameter at most H, and

150



7.2. Crouzeix–Raviart Multiscale Finite Element Method

denote FH the set of all faces of TH , F int
H ⊂ FH the internal faces and F(T ) ⊂ FH the set of

faces of T ∈ TH . We assume also that the mesh does not have any hanging nodes, i.e. each

internal face is shared by exactly two mesh elements.

7.2.1 Crouzeix–Raviart functional spaces

For any integer n and any integer 1 ≤ l ≤ d, we denote by Pl
n the linear space spanned by

l-variate polynomial of total degree at most n. The dimension of Pl
n is

N l
n := dim(Pl

n) =

(
n+ l

n

)
.

For any T ∈ TH , we denote by Pd
n(T ) the restriction to T of polynomials in Pd

n. For any F ∈ FH ,

we denote Pd−1
n (F ) the restriction to F of polynomials in Pd−1

n .

We now define weighting functions for velocity and pressure. Let s be a positive integer and d

the dimension of Ω. We associate vector-valued functions ωF,i : F → Rd to each face F ∈ FH

for i = 1, . . . , s. Let r be a positive integer. We associate vector-valued functions φT,k : T → Rd

to each coarse element T ∈ TH for k = 1, . . . , r. Let t be a positive integer. We associate scalar

functions ϖT,j : T → R to each coarse element T ∈ TH for j = 1, . . . , t.

Assumption 7.2. For n = 0, for any T ∈ TH and for any F ∈ FH , we choose
s = d, ωF,1 = e1, . . . ,ωF,s = ed,

r = 0,

t = 1, ϖT,1 = 1,

(7.5)

where (e1, . . . , ed) is the canonical basis of Rd.

For n ≥ 1, for any F ∈ FH and for T ∈ TH , we assume that:

1. s = dNd−1
n and (ωF,i)1≤i≤s is a set of basis functions of (Pn(F ))

d;

2. r = dNd
n−1 and (φT,k)1≤k≤r is a set of basis functions of (Pn−1(T ))

d;

3. t = Nd
n and (ϖT,j)1≤j≤t is a set of basis functions of Pn(T ).

Before constructing the approximation spaces of enriched Crouzeix–Raviart MsFEM, we

define the functional space V ext
H as presented in [79],

V ext
H =

 u ∈ (L2(Ωε))d s.t. u|T ∈ (H1(T ∩ Ωε))d for any T ∈ TH ,

u = 0 on ∂Bε,

∫
F∩∂Ωε

[[u]] · ωF,j = 0 for all F ∈ FH , j = 1, . . . , s


where [[u]] denotes the jump of u across an internal face and [[u]] = u on ∂Ω. The space V ext

H

plays the role of the H1 space for the classical Finite Element Method, but it is bigger that the

latter. The space V ext
H enhances the natural velocity space (H1

0 (Ω
ε))d so that we have at our

disposal discontinuous vector fields across faces of the coarse mesh TH . Therefore V ext
H is not
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included in (H1
0 (Ω

ε))d, the MsFEM is non-conforming and the boundary condition is weakly

enforced. The extended velocity-pressure space is defined as

Xext
H = V ext

H ×M, (7.6)

with M defined by (7.2). The objective is to decompose Xext
H in an unresolved space of infinite

dimension X0
H and a resolved space of finite dimension XH , which is the approximation space,

such that

Xext
H = X0

H ⊕XH .

We define the infinite dimensional space X0
H as follows.

Definition 7.3. The velocity-pressure space X0
H is defined as a subspace of Xext

H by

X0
H = V 0

H ×M0
H , with

V 0
H =

 u ∈ V ext
H s.t.

∫
F∩Ωε

u · ωF,j = 0,

∫
T∩Ωε

u ·φT,k = 0,

∀T ∈ TH , ∀F ∈ FH , j = 1, . . . , s, k = 1, . . . , r.

 (7.7)

and

M0
H =

{
p ∈M s.t.

∫
T∩Ωε

pϖT,j = 0, ∀T ∈ TH , j = 1, . . . , t

}
. (7.8)

As noted in [79], enriching only the set of edge weights ωF,j seems insufficient: indeed, in

that case, a given function u vanishing on the faces of any T would belong to the unresolved fine

scales whatever the number of face weights, but imposing the condition

∫
T∩Ωε

u ·φT,k = 0 for an

increasing number of element weights will reduce the norm of its component in the unresolved

space.

Afterwards, we define the subspace XH containing coarse scales.

Definition 7.4. The velocity-pressure space XH is defined as a subspace of Xext
H , being the

“orthogonal” complement of X0
H with respect to the bi-linear form cH as follows

(uH , pH) ∈ XH ⇐⇒
(uH , pH) ∈ Xext

H such that

cH((uH , pH), (v, q)) = 0 ∀(v, q) ∈ X0
H

where cH is defined by

cH((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(ν∇uH ·∇v − pH div v − q divuH).

Remark 7.5. The word “orthogonal” is written between quotes since the bi-linear form cH

is not a scalar product (not positive definite).
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In what follows, we explicit the definition of the subspace XH by introducing the functional

spaces VH and MH .

Definition 7.6. We introduce the functional spaces MH and VH by

MH =

{
q ∈M such that q|T ∈ Pn(T ), ∀T ∈ TH

}
, (7.9)

and

VH =


v ∈ V ext

H : ∀T ∈ TH , ∃ ζT ∈M0
H(T ) such that

−ν∆v +∇ζT ∈ span(φT,1, . . .φT,r) in T ∩ Ωε,

div v ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇vn− ζTn ∈ span(ωF,1, . . . ,ωF,s) on F ∩ Ωε, ∀F ∈ F(T ),

(7.10)

where F(T ) is the set of faces composing ∂T .

Remark 7.7. It is easy to check that MH , defined by (7.9), is orthogonal to M0
H , defined by

(7.8).

Lemma 7.8. In definition (7.10), the pressure ζT is uniquely defined for a given velocity v ∈
VH . Therefore gluing together the pressure ζT on all elements T ∈ TH yields a single function

πH(v) ∈ M0
H such that πH(v) = ζT on any element T ∈ TH . The operator πH : VH → M0

H is

linear and continuous.

Proof. Lemma 7.8 is proved in [79, Lemma 3.11].

Theorem 7.9. Using the notations of (7.9) and (7.10), we introduce the space

XH = span{(uH , πH(uH) + pH), uH ∈ VH , pH ∈MH}.

Then it coincides with the subspace XH , i.e.

XH = XH .

Proof. Theorem 7.9 is proved in [79, Theorem 3.12].

Theorem 7.10. The space Xext
H can be decomposed as

Xext
H = XH ⊕X0

H (7.11)

with the space X0
H from Definition 7.3 and the space XH from Definition 7.4.
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Proof. Theorem 7.10 is proved in [79, Theorem 3.15].

7.2.2 Local problem defined by the Stokes equations

Now, we construct some functions associated with faces and coarse elements of the coarse mesh.

From their definitions below, they evidently belong to V ext
H .

Basis functions associated with faces We first construct basis functions associated with

faces of the coarse mesh. For any F ∈ FH , for i = 1, . . . , s, find the function ΦF,i : Ω
ε → Rd,

the pressure πF,i : Ω
ε → R solution to

−ν∆ΦF,i +∇πF,i ∈ span(φT,1, . . . ,φT,r) in T ∩ Ωε,

divΦF,i ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇ΦF,in− πF,in ∈ span(ωE,1, . . . ,ωE,s) on E ∩ Ωε, ∀E ∈ F(T ),
ΦF,i = 0 on ∂Bε ∩ T,∫
E∩Ωε

ΦF,i · ωE,j =

{
δij , E = F

0, E ̸= F
∀E ∈ F(T ), ∀j = 1, . . . , s,∫

T∩Ωε

ΦF,i ·φT,l = 0, ∀l = 1, . . . , r,∫
T∩Ωε

πF,iϖT,m = 0, ∀m = 1, . . . , t.

(7.12)

Basis functions associated with elements Now, we construct basis functions associated

with elements of the coarse mesh. For each T ∈ TH , for k = 1, . . . , r, we find ΨT,k : Ωε → Rd

and πT,k : Ωε → R solution to

−ν∆ΨT,k +∇πT,k ∈ span(φT,1, . . . ,φT,r) in T ∩ Ωε,

divΨT,k ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇ΨT,kn− πT,kn ∈ span(ωE,1, . . . ,ωE,s) on E ∩ Ωε, ∀E ∈ F(T ),
ΨT,k = 0 on ∂Bε ∩ T,∫
E∩Ωε

ΨT,k · ωE,j = 0, ∀E ∈ F(T ), ∀j = 1, . . . , s,∫
T∩Ωε

ΨT,k ·φT,l = δkl, ∀l = 1, . . . , r,∫
T∩Ωε

πT,kϖT,m = 0, ∀m = 1, . . . , t.

(7.13)

Theorem 7.11. The functions ΦF,i for F ∈ FH and i = 1, . . . , s defined by (7.12) and the

functions ΨT,k for T ∈ TH and k = 1, . . . , r defined by (7.13) form a basis of VH defined by

(7.10). In other words,

VH = span{ΦF,i, ΨT,k, F ∈ FH , T ∈ TH , i = 1 . . . , s, and k = 1, . . . , r}

and {ΦF,i, F ∈ FH , i = 1 . . . , s}∪{ΨT,k, T ∈ TH , k = 1, . . . , r} forms a linearly independent

family.

Proof. The reader can refer to [79, section 3.5].
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Remark 7.12. We do not have explicit formulations of the functions in VH . However in a do-

main without obstacles discretized with coarse triangles in two dimensions or coarse tetrahedra

in three dimensions, it is easy to show that the space of polynomials of order n+1 is included

in VH . Consequently, in such a domain, the space VH can be written as VH = Pn+1 ⊕ Σ, Σ

being a subspace of V ext
H . In particular, during this thesis, we looked for Σ as a subspace

of Pn+2 with trivial intersection with Pn+1. However, we have shown that Σ is not a subspace

of Pn+2. To date, the characterization of Σ is still an open question.

Remark 7.13. For n = 0 the choice (7.5) of weighting functions implies that the enriched

Crouzeix–Raviart MsFEM becomes exactly the Crouzeix–Raviart MsFEM proposed in [136].

This also corresponds to the so-called CR2 method investigated in [111]. Furthermore, in

a domain without obstacles, i.e. Bε = ∅, discretized with triangles in two dimensions or

tetrahedra in three dimensions, the Crouzeix–Raviart MsFEM space with n = 0 becomes

the classical Crouzeix–Raviart finite element space (see Section 3.1 for the description of the

Crouzeix–Raviart space).

According to Theorem 7.11, any function of VH can be represented as

∀uH ∈ VH , uH |T=
∑

F∈F(T )

s∑
i=1

uF,iΦF,i +
r∑

k=1

uT,kΨT,k,

Similarly, an explicit formulation of the linear operator πH (see Lemma 7.8) is

∀uH ∈ VH , πH(uH)|T=
∑

F∈F(T )

s∑
i=1

uF,iπF,i +
r∑

k=1

uT,kπT,k.

7.2.3 MsFEM approximation

The coarse-scale formulation of the Stokes problem (7.1) reads: find (uH , pH) ∈ XH such that

cH((uH , pH), (v, q)) = (f ,v) ∀(v, q) ∈ XH .

Theorem 7.9 implies that pH can be decomposed as pH = πH(uH)+pH with πH(uH) ∈M0
H and

pH ∈ MH . It is easy to verify that

∫
T∩Ωε

πH(uH) div v = 0 for all uH ,v ∈ VH . The problem

above can consequently be reformulated as: find uH ∈ VH and pH ∈MH such that

aH(uH ,v) + bH(pH ,v) = FH(v) ∀v ∈ VH ,
bH(q,uH) = 0 ∀q ∈MH ,

(7.14)
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where

aH(uH ,v) =
∑
T∈TH

∫
T∩Ωε

ν∇uH ·∇v,

bH(pH ,v) = −
∑
T∈TH

∫
T∩Ωε

pH div v,

FH(v) =
∑
T∈TH

∫
T∩Ωε

f · v.

(7.15)

In order to prove the well-posedness of (7.14) we introduce the following theorem.

Theorem 7.14. The space VH and the space MH have the following relation

divH VH =MH

where divH is the broken divergence operator defined element by element

( divH v)|T = div v|T .

In other words, for any pH ∈MH , there exist vH ∈ VH and a constant β > 0 such that

div vH = pH on T ∩ Ωε, ∀T ∈ TH and |vH |H,1 ≤
1

β
∥pH∥L2(Ωε). (7.16)

Proof. The first part of Theorem 7.14 is proved in [79, Theorem 3.16]. We prove the second

part of the (7.16). For any q ∈MH , definition of MH shows that q ∈ L2
0(Ω

ε). Thus, there exists

v ∈ (H1
0 (Ω

ε))d and a constant β > 0 (the same as in the inf-sup condition) such that div v = q

and |v|1 ≤
1

β
∥q∥L2(Ωε) [84]. As in [79, Theorem 3.16], we construct vH as

v = vH + v0H with vH ∈ VH , v0H ∈ V
0
H .

We have by orthogonality between XH and X0
H ,

∑
T∈TH

∫
T∩Ωε

∇v0H ·∇wH−
∑
T∈TH

∫
T∩Ωε

p0H divwH−
∑
T∈TH

∫
T∩Ωε

qH div v0H = 0 ∀(wH , qH) ∈ XH .

Now, we remark that the second term vanishes by definition of M0
H and the fact that divwH ∈

Pn(T ). Now, by taking qH = 0 , and by noting v0H = v − vH , it comes

∑
T∈TH

∫
T∩Ωε

∇(v − vH) ·∇wH = 0 ∀wH ∈ VH .

By taking wH = vH and using the Cauchy-Schwarz inequality, it follows

|vH |2H,1 =
∑
T∈TH

∫
T∩Ωε

∇v ·∇vH ≤ |v|1|vH |H,1.

156



7.2. Crouzeix–Raviart Multiscale Finite Element Method

Finally,

|vH |H,1≤ |v|1≤
1

β
∥q∥L2(Ωε).

Making use of Theorem 7.14, we deduce that divuH = 0 in T ∩ Ωε for T ∈ TH . We can

therefore eliminate the pressure unknown from (7.14) by introducing a subspace of VH

ZH = {v ∈ VH such that divH v = 0, ∀T ∈ TH}.

Therefore (7.14) is equivalent for the velocity part uH to: find uH ∈ ZH such that

∑
T∈TH

∫
T∩Ωε

∇uH ·∇v =
∑
T∈TH

∫
T∩Ωε

f · v ∀v ∈ ZH .

The existence and uniqueness of a solution uH to this problem is guaranteed by the coercivity

of the bi-linear form over VH . Then, the existence and uniqueness of pressure pH follows from

the fact that divH VH = MH . As a result we have proved that (7.14) has one and only one

solution (uH , pH) ∈ VH ×MH .

After obtaining coarse solutions uH = (uT,1, . . . , uT,r)T∈TH ∪ (uF,1, . . . , uF,s)F∈FH
and pH =

(pH |T )T∈TH , we reconstruct on any coarse element T ∈ TH fine-scale solutions by

uH |T=
∑

F∈F(T )

s∑
i=1

uF,iϕF,i +
r∑

i=1

uT,kψT,k,

pH |T=
∑

F∈F(T )

s∑
i=1

uF,iπF,i +
r∑

i=1

uT,kπT,k + pH .

For the sake of understanding, in Figures 7.1a and 7.1b we represent schematically the degrees

of freedom of the high-order MsFEM developed for the case n = 1 and n = 2 in two dimensions.

It should be noted that the figures presented here are only schematic representations, since we

recall that the degrees of freedom for the velocity are not nodal, but defined by moments.

velocity

pressure

(a) MsFEM for n = 1.

velocity

pressure

(b) MsFEM for n = 2.

Figure 7.1: Scheme of the degrees of freedom of the MsFEM in two dimensions.
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Chapter 7. An MsFEM à la Crouzeix–Raviart for the Stokes problem

7.2.4 Definition of an interpolant

An important ingredient, useful in Chapters 8 and 9, is the definition of an interpolant. We note

NMsFEM the set of degrees of freedom of the MsFEM space. Using the degrees of freedom of the

MsFEM space, we introduce the local interpolation operators ITh : H1(T )→ VH , for v ∈ H1(T )

by

Ni(I
T
h v) = Ni(v) ∀Ni ∈ NMsFEM (T ),

which can be expressed explicitly by

ITh uε = wh =
∑

F∈FH

s∑
i=1

(∫
F∩Ωε

uε · ωF,i

)
ΦF,i +

∑
T∈TH

r∑
l=1

(∫
T∩Ωε

uε ·φT,l

)
ΨT,l. (7.17)

Similarly, we define the following interpolant for the pressure

ζKh uε = qh =
∑

F∈FH

s∑
i=1

(∫
F∩Ωε

uε · ωF,i

)
πF,i +

∑
T∈TH

r∑
l=1

(∫
T∩Ωε

uε ·φT,l

)
πT,l. (7.18)

In this chapter, we have recapitulated the Multi-scale Finite Element Method (MsFEM) in-

troduced in [79]. In the subsequent two chapters, we perform a discrete analysis of this MsFEM.

Indeed, in Chapter 8, we prove the well-posedness of the discrete local problems involved in the

MsFEM and in Chapter 9, we derive the first error estimate for the MsFEM under study applied

to the Stokes problem in perforated domains.
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Chapter 8

Well-posedness of the discrete local

problems
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As analytical solutions of the local problems are not known, at this stage, the implementation

of the MsFEM requires a numerical approximation of the local basis functions on local fine

meshes. In order to obtain this approximation, it is possible to select any appropriate numerical

method. In this thesis, we choose to solve the local problems using Finite Element Method.

Consequently, in this chapter, we propose a discretization of the local problems using Finite

Element Method. Afterwards, the main part of this chapter is dedicated to the proof of the

well-posedness of the discrete local problems involved in the Multi-scale Finite Element Method

(MsFEM). First, we investigate the well-posedness of the discrete local problems with usual pair

of finite elements. We show their limitations for solving the local problems. Then, in the last

section, we show the discrete well-posedness of the discrete local problems with the new pair of

finite elements introduced in Chapters 4 and 5.
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Chapter 8. Well-posedness of the discrete local problems

8.1 Notation

Choosing a coarse element T ∈ TH , let nF be the number of faces composing ∂T and ns = nF ×s
be the dimension of the vector containing the Lagrange multipliers λF,j for all F ∈ F(T ) and

j = 1, . . . , s, denoted by λF := (λF,j)F∈F(T ), 1≤j≤s. Moreover, r is the dimension of the vector

containing the Lagrange multipliers λvT,l for l = 1, . . . , r, denoted by λv
T := (λvT,l)1≤l≤r. In

addition t is the dimension of the vector containing the Lagrange multipliers λqT,m for m =

1, . . . , t, denoted by λq
T := (λqT,m)1≤m≤t.

We introduce the velocity space

VT =
{
v ∈ (H1(T ∩ Ωε))d, v = 0 on ∂Bε ∩ T

}
,

as well as M0
H(T ), the pressure space defined by

M0
H(T ) =

{
p ∈M such that

∫
T∩Ωε

p ϖT,i = 0, i = 1, . . . , t

}
,

where (ϖT,i)1≤i≤t is a set of basis function of Pn(T ).

8.2 Weak form of the local problems

Below, we present the weak form of the local problems.

Basis functions associated with faces The weak form of (7.12) is: for any F ∈ FH , for

i = 1, . . . , s, on the coarse element T , find ΦF,i ∈ VT , πF,i ∈ L2(T ∩ Ωε), λF ∈ Rns , λv
T ∈ Rr,

λq
T ∈ Rt by solving, for all (v, q,µF ,µ

v
T ,µ

q
T ) ∈ VT × L2(T ∩ Ωε)× Rns × Rr × Rt,

∫
T∩Ωε

ν∇ΦF,i ·∇v −
∫
T∩Ωε

πF,i div v +
∑

E∈F(T )

s∑
j=1

λE,j

∫
E∩Ωε

v · ωE,j−

r∑
l=1

λvT,l

∫
T∩Ωε

φT,l · v = 0,∫
T∩Ωε

q divΦF,i +

t∑
m=1

λqT,m

∫
T∩Ωε

ϖT,mq = 0,

∑
E∈F(T )

s∑
j=1

µE,j

∫
E∩Ωε

ΦF,i · ωE,j = µF,i,

r∑
l=1

µvT,l

∫
T∩Ωε

ΦF,i ·φT,l = 0,

t∑
m=1

µqT,m

∫
T∩Ωε

πF,iϖT,m = 0.

(8.1)

Basis functions associated with elements The weak form of (7.13) is: for any T ∈ TH ,

for k = 1, . . . , r, find ΨT,k ∈ VT , πT,k ∈ L2(T ∩ Ωε), λF ∈ Rns , λv
T ∈ Rr, λq

T ∈ Rt by solving,

for all (v, q,µF ,µ
v
T ,µ

q
T ) ∈ VT × L2(T ∩ Ωε)× Rns × Rr × Rt,
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∫
T∩Ωε

ν∇ΨT,k ·∇v −
∫
T∩Ωε

πT,k div v +
∑

E∈F(T )

s∑
j=1

λE,j

∫
E∩Ωε

v · ωE,j−

r∑
l=1

λvT,l

∫
T∩Ωε

φT,l · v = 0,∫
T∩Ωε

q divΨT,k +

t∑
m=1

λqT,m

∫
T∩Ωε

ϖT,mq = 0,

∑
E∈F(T )

s∑
j=1

µE,j

∫
E∩Ωε

ΨT,k · ωE,j = 0,

r∑
l=1

µvT,l

∫
T∩Ωε

ΨT,k ·φT,l = µvT,k,

t∑
m=1

µqT,m

∫
T∩Ωε

πT,kϖT,m = 0.

(8.2)

Remark 8.1. Ideally, we would like to choose the pressure πT,k ∈M0
H(T ), reducing the second

equations of (8.1) and (8.2) respectively to

∫
T∩Ωε

q divΦF,i = 0 and

∫
T∩Ωε

q divΨT,k = 0.

However, numerically, it is difficult to choose the test function q ∈ M0
H(T ). Consequently,

we impose this condition by using Lagrangian multipliers and we solve the local problems as

written in (8.1) and (8.2).

The variational formulation of local problems can be re-written as follows. Find (u, p,λF ,λ
v
T ,λ

q
T ) ∈

VT × L2(T ∩ Ωε)× Rns × Rr × Rt such that

aT (u,v) + bT (v, p) + cT (v,λF ) + dT (v,λ
v
T ) = 0 ∀v ∈ VT , (8.3)

bT (u, q) + eT (λ
q
T , q) = 0 ∀q ∈ L2(T ∩ Ωε), (8.4)

cT (u,µF ) = l1(µF ) ∀µF ∈ Rns , (8.5)

dT (u,µ
v
T ) = l2(µ

v
T ) ∀µv

T ∈ Rr, (8.6)

eT (µ
q
T , p) = 0 ∀µq

T ∈ Rt. (8.7)

where the bi-linear forms are defined by

aT (u,v) =

∫
T∩Ωε

ν∇u ·∇v,

bT (v, p) = −
∫
T∩Ωε

p div v,

cT (v,λF ) =
∑

E∈F(T )

s∑
j=1

λE,j

∫
E∩Ωε

v · ωE,j ,

dT (v,λ
v
T ) =

r∑
l=1

λvT,l

∫
T∩Ωε

v ·φT,l,

eT (λ
q
T , q) =

t∑
m=1

λqT,l

∫
T∩Ωε

πT,mq,
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Chapter 8. Well-posedness of the discrete local problems

and where the linear forms l1 and l2 are defined by

l1(µF ) = µF,i, l2(µ
v
T ) = 0 for (8.1)

l1(µF ) = 0, l2(µ
v
T ) = µvT,k for (8.2)

System (8.3)-(8.7) is called a twofold saddle point problem in the literature and can be

viewed as a single saddle point problem defined on VT × (M0
H(T )× Rns × Rr). By introducing

the following bi-linear form ∀(u, (p,λF ,λ
v
T )) ∈ VT × (M0

H(T )× Rns × Rr),

b̃T (v, (p,λF ,λ
v
T )) = bT (v, p) + cT (v,λF ) + dT (v,λ

v
T ), (8.8)

the system (8.3)-(8.7) can be reformulated as

aT (u,v) + b̃T (v, (p,λF ,λ
v
T )) = 0 ∀v ∈ VT ,

b̃T (u, (q,µF ,µ
v
T )) = l1(µF ) + l2(µ

v
T ) ∀(q,µF ,µ

v
T ) ∈M0

H(T )× Rns × Rr.
(8.9)

Lemma 8.2. The local problems defined by (8.1) and (8.2) are well-posed.

Proof. For details of the proof, the reader can refer to [79, section 3.4]. The proof is based on

the inf-sup theory. It is easy to check that the bi-linear form aT and b̃T are both continuous

over their spaces of definition. Additionnaly, the linear forms l1 and l2 are also continuous.

Moreover, the bi-linear form aT is coercive over the velocity kernel of the bi-linear form b̃T ,

since this kernel, for all n ≥ 0, contains vector functions which, at least, have mean values

that vanish on the faces of T , and this implies a Poincaré-like inequality. Finally, [79] proves

that the bi-linear form b̃T satisfies the following inf-sup condition: there exists α̃ > 0 such that

∀(q,µF ,µ
v
T ) ∈M0

H(T )× Rns × Rr,

sup
v∈VT

b̃T (v, (p,λF ,λ
v
T ))

(∥p∥L2(T∩Ωϵ) + ∥λF ∥+ ∥λv
T ∥)
≥ α̃.

8.3 Discretization of the local problems

To solve the local problems using Finite Element Method, we define a local fine mesh Th(T ) in
each coarse element T ∈ TH . We note {Th(T )} a family of triangulations of the coarse element T

parametrised by a positive parameter h which tends to 0. Each triangulation Th(T ) consists of
a finite number of triangles in two dimensions or tetrahedra in three dimensions, τ , such that

T = ∪τ∈Th(T )τ . Let hτ = diam(τ) and h := maxhτ . We assume that the triangulations are

conformal in the sense that the intersection of the closures of two different cells τ is either

empty, a common vertex, a common edge, or a common face. As usual, we assume that the

triangulations are shape regular. We denote by f a face of the element τ .

We write the local problems (7.12) and (7.13) in matrix form. First, we recall and introduce

some useful notations. Let FH be the set of all faces of TH including those on the domain
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boundary ∂Ω. Let F(T ) be the set of faces of a coarse element T . We have F(T ) = {F1, . . . , FnF }
with nF the number of faces of an element T .

Let ΦF,i be the local basis function number i associated with the face F and πF,i the

associated pressure. Let ΨT,k be the MsFEM local basis function number k associated with

the element T and πT,k is the associated pressure. Let Vh be the finite element space used to

compute the basis functions ΦF,i and ΨT,k. LetMh be the finite element space used to compute

the associated pressure πF,i and πT,k. The subscript h allows to recall the dependency of these

finite element spaces to the fine mesh Th(T ). We also note

M = dim(Vh) and N = dim(Mh)

and let {Λh
1 , . . . ,Λ

h
M} be a basis of the space Vh and {Θh

1 , . . . ,Θ
h
N} be a basis of the space Mh.

The discretization of the local problems (8.1)-(8.2) using the finite element spaces Vh and

Mh can be written under matrix form
AT BT CT DT 0

(BT )
t 0 0 0 ET

(CT )
t 0 0 0 0

(DT )
t 0 0 0 0

0 (ET )
t 0 0 0




XT

ΠT

λF

λv
T

λq
T

 =


0

0

BF,i

BT,k

0

 (8.10)

where the sub-matrices are defined by

(AT )a,b =

∫
T∩Ωε

ν∇Λh
a ·∇Λh

b , 1 ≤ a, b ≤M

(BT )a,b = −
∫
T∩Ωε

Θh
b divΛ

h
a, 1 ≤ a ≤M 1 ≤ b ≤ N

(CT )a,b =

[∫
F1∩Ωε

Λh
a · ωF1,b, . . . ,

∫
FnF

∩Ωε

Λh
a · ωFnF ,b

]
, 1 ≤ a ≤M, 1 ≤ b ≤ s

(DT )a,b = −
∫
T∩Ωε

Λh
a ·φT,b, 1 ≤ a ≤M, 1 ≤ b ≤ r

(ET )a,b =

∫
T∩Ωε

Θh
aϖT,b, 1 ≤ a ≤ N, 1 ≤ b ≤ t

whereXT ∈ RM is the vector of the basis coefficients in the finite element space used to compute

the solution ΦF,i, ΠT ∈ RN is the vector of the basis coefficients in the finite element space

used to compute the solution πF,i. The right-hand side, for basis functions associated with the

faces, i.e. defined by local problems (8.1), are defined by

(BF,i)a =
[
δF,F1 . . . , δF,FnF

]T
δi,a, 1 ≤ a ≤ s

(BT,k)a = 0,

and those for basis functions associated with the elements, i.e. defined by local problems (8.2),

are defined by

(BF,i)a = 0,

(BT,k)a = δk,a 1 ≤ a ≤ r.
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Chapter 8. Well-posedness of the discrete local problems

Once the local problems discretized, it is necessary to choose the appropriate Finite Element

Method (a method that allows to solve the local problems effectively). It is possible to choose

any ad hoc methods, let say, discontinuous Galerkin Method, HHO, . . . . However, for the sake

of simplicity, in what follows, we explore the resolution of the local problems using usual pairs of

finite elements (Crouzeix–Raviart, Taylor–Hood, . . . ), which are implemented in most of finite

elements software. Indeed, if such pairs of finite elements are suitable, this renders the method

straightforward to implement. However, in what follows, we notice that usual pairs of finite

elements cannot solve the local problems involved in the two-dimensional MsFEM for n ≥ 2,

and in the three-dimensional MsFEM. Hence the Section 8.5, in which we show the discrete

well-posedness of the discrete local problems with new pairs of finite elements (introduced in

Chapters 4 and 5).

8.4 Investigations of the discrete well-posedness of the local

problems with usual pairs of finite elements

8.4.1 Preliminaries

To show the well-posedness of the discrete local problems, we have to prove that the ker-

nel of the matrix involved in (8.10) is reduced to 0. Therefore, we want to show that if

(XT ,ΠT ,λF ,λ
v
T ,λ

q
T ) satisfy

ATXT +BTΠT + CTλF +DTλ
v
T = 0, (8.11)

(BT )
tXT + ETλ

q
T = 0, (8.12)

(CT )
tXT = 0, (8.13)

(DT )
tXT = 0, (8.14)

(ET )
tΠT = 0, (8.15)

then XT = 0, ΠT = 0, λF = 0, λv
T = 0 and λq

T = 0.

First, let us first prove that XT = 0. Multiplying (8.11) by XT yields

(ATXT ,XT ) + (ΠT , (BT )
tXT ) + (λF , (CT )

tXT ) + (λv
T , (DT )

tXT ) = 0. (8.16)

With (8.12), we have

(ΠT , (BT )
tXT ) = −(ΠT , ETλ

q
T ) = −((ET )

tΠT ,λ
q
T ).

Then, (8.15) implies that

((ET )
tΠT ,λ

q
T ) = 0.

Equation (8.13) implies that

(λF , (CT )
tXT ) = 0.

Equation (8.14) implies that

(λv
T , (DT )

tXT ) = 0.
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Combining these results, (8.16) becomes

(ATXT ,XT ) = 0. (8.17)

Equation (8.17) implies that ∇XT = 0 and therefore XT is constant. Taking advantage of

(8.14), we conclude that XT = 0. Consequently, Equations (8.11) to (8.15) are reduced to

BTΠT + CTλF +DTλ
v
T = 0 (8.18)

ETλ
q
T = 0 (8.19)

(ET )
tΠT = 0 (8.20)

It is straightforward to deduce from (8.19) that λq
T = 0. It remains to prove that ΠT = 0,

λF = 0 and λv
T = 0. Let f be a given face and ωf = {τ1, τ2} be the set of elements that share

the face f . Let Λh
i be the velocity basis function that has a degree of freedom located on the face

f (this is legitimate since we are considering in the subsections that follow the non-conforming

P1 or the Lagrange P2 finite element spaces for the velocity). Its support is included in ωf and

then the line i of the matrix equation (8.18) can be written as∫
ωf

divΛh
i qh =

r∑
l=1

∫
ωf

λvT,lφT,l ·Λh
i . (8.21)

In (8.21), qh is the unknown pressure in ωf , obtained by a linear combination of the pressure

basis functions (i.e. the basis functions of the finite element space Mh used to discretize the

functions πF,i and πT,k) associated with the pressure unknowns (the components of ΠT ) i.e.

qh =
∑
j∈J

θhj qj ,

where qj is the jth component of ΠT and J = {1 ≤ j ≤ N such that supp(θhj ) ∩ ωf ̸= ∅}.
It remains to prove that the pressure qh and the Lagrange multipliers λvT,l are equal to zero.

However, the proof of this latter assertion is contingent upon several parameters. These include

the MsFEM order, the dimensions of the problem (two or three dimensions) and the pair of

finite elements chosen to solve the local problems. Consequently, in what follows, we examine

whether the aforementioned equality holds for different pairs of finite elements.
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8.4.2 Well-posedness of the discrete local problems for the MsFEM in the

case n = 1 in two dimensions (2D)

Definition 8.3. The weighting functions for the MsFEM in the case n = 1 are defined in two

dimensions by
s = 4, ωF,1 = e1, ωF,2 = e2, ωF,3 = nFΨF , ωF,4 = τFΦF ,

r = 2, φT,1 = e1, φT,2 = e2,

t = 3, ϖT,1 = 1, ϖT,2 = x, ϖT,3 = y,

where ΨF and ΦF are non-vanishing functions in P1(F ) with vanishing mean values on F ∩Ωε.

In this section, we note ωf = {τ1, τ2} the set of elements that share a face f (see Figure 8.1).

We note nf = (nx,f , ny,f )
t a normal vector to the face f oriented from τ1 to τ2. We note s1 and

s2 the two vertices of the face f , and tf a tangential vector to the face f oriented from s1 to s2.

Figure 8.1: Scheme of the domain ωf .

Besides, in particular, for this MsFEM, (8.21) becomes in the domain ωf ,∫
ωf

divΛh
i qh =

∫
ωf

λvT,1φT,1 ·Λh
i +

∫
ωf

λvT,2φT,2 ·Λh
i . (8.22)

8.4.2.1 Discrete well-posedness with the Crouzeix–Raviart Finite Element

Definition 8.4. The functional spaces of the Crouzeix–Raviart Finite Element are defined by

Vh = {vh ∈ (C0(T ))2 s.t. vh|τ∈ P1(τ)
2 and continuous at the middle of the faces ∀τ ∈ Th(T )},

Mh =
{
qh ∈ C0(T ) such that qh|τ∈ P0(τ), ∀τ ∈ Th(T )

}
.

A scheme of this discretization is proposed in Figure 8.2.
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Figure 8.2: Scheme of the domain ωf discretized with Crouzeix–Raviart Finite Element.

Lemma 8.5. The MsFEM discrete local problems in the case n = 1 in two dimensions are

well-posed with the Crouzeix–Raviart Finite Element.

Proof. If velocity and pressure unknowns of the local problems are discretized using the Crouzeix–

Raviart Finite Element, then the pressure is constant in each element τ ∈ Th(T ). First, we

choose the test function Λh
i which is equal to (1, 0) on the face f and (0, 0) on the other faces.

Then, (8.22) becomes

(q1 − q2)|f |nx,f =
1

3
meas(ωf )λ

v
T,1. (8.23)

where we have used the fact that qh is constant and the Green formula on the left of (8.23) and

the fact that φT,1 = e1 and φT,2 = e2 on the right of (8.23). Repeat the same procedure with

the test function Λh
i which is equal to (0, 1) on the face f and (0, 0) on the other faces, (8.22)

becomes

(q1 − q2)|f |ny,f =
1

3
meas(ωf )λ

v
T,2. (8.24)

Then, by gathering (8.23) and (8.24), it follows

(q1 − q2)|f |nf =
1

3
meas(ωf )λ

v
T . (8.25)

Using (8.25), we deduce that λv
T is co-linear with nf . Besides, the same result is obtained

for the other faces fi of the element τ1. This result implies that λv
T is also co-linear with all

vectors nfi . In conclusion, λv
T = 0 which implies that q1 = q2. Using the same arguments for

any internal face f ∈ Fh of the mesh Th(T ), we verify that the pressure qh has the same value

on all elements τ ∈ Th(T ). In other words, qh is in the space P0(T ). Moreover, making use of

(8.20), it is straightforward to deduce that qh = 0. From (8.18), we deduce that λF = 0.

8.4.2.2 Discrete well-posedness with the P1-nonconforming/P1 finite element

Definition 8.6. The P1-nonconforming / P1 functional spaces are defined by

Vh = {vh ∈ (C0(T ))2 s.t. vh|τ∈ P1(τ)
2 and continuous at the middle of the faces, ∀τ ∈ Th(T )}

Mh = {qh ∈ C0(T ) such that qh|τ∈ P1(τ), ∀τ ∈ Th(T )}

A scheme of this discretization is proposed in Figure 8.3.
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Chapter 8. Well-posedness of the discrete local problems

Figure 8.3: Scheme of the domain ωf discretized with P1-nonconforming / P1 Finite Element.

Lemma 8.7. The MsFEM discrete local problems in the case n = 1 in two dimensions are

not well-posed with the P1-nonconforming/P1 finite element.

Proof. We propose to calculate directly the term

∫
ωf

divΛh
i qh. Since Λ

h
i ∈ P1−nonconforming,

we have divΛh
i = cste. First, we choose the test function Λh

i which is equal to (1, 0) on the

face f and (0, 0) on the other faces. Observe that with this choice of Λh
i , the following formula

holds

divΛh
i =

1

meas(τ1)

∫
τ1

divΛh
i =

1

meas(τ1)

∫
∂τ1

Λh
i · nf =

|f |
meas(τ1)

nx,f .

Consequently,∫
ωf

divΛh
i qh =

|f |
meas(τ1)

nx,f

∫
τ1

qh −
|f |

meas(τ2)
nx,f

∫
τ2

qh

=
|f |

meas(τ1)
meas(τ1)(q1 + q2 + q3)nx,f −

|f |
meas(τ2)

meas(τ2)(q1 + q2 + q4)nx,f

= |f |(q3 − q4)nx,f .

Besides, we also have,∫
ωf

λvT,1φT,1 ·Λh
i +

∫
ωf

λvT,2φT,2 ·Λh
i =

1

3
meas(ωf )λ

v
T,1,

given that λv
T ∈ R2 (r = 2) and φT,1 = e1 and φT,2 = e2. Therefore, it follows

|f |(q3 − q4)nx,f =
1

3
meas(ωf )λ

v
T,1. (8.26)

Repeat the same procedure with the test function vh which is equal to (0, 1) on the face f and

(0, 0) on the other faces, we have

|f |(q3 − q4)ny,f =
1

3
meas(ωf )λ

v
T,2. (8.27)

168



8.4. Investigations of the discrete well-posedness of the local problems with usual pairs of
finite elements

Now, gathering (8.26) and (8.27), we have

|f |(q3 − q4)nf =
1

3
meas(ωf )λ

v
T .

We conclude that λv
T is co-linear to all n, which implies that λv

T = 0. And then, we conclude

that q3 = q4. We have shown that if we choose a face f , the values of the pressure defined on the

two opposed vertices to f are equal. It remains to show that all qi are equal. If all the pressure

nodes are connected through together trougth opposed faces, then all qi are equal. However,

this condition is not statifies for a given arbitrary mesh. Indeed, as shown in Figure 8.4, all qi

opposed by a face are not linked together. In Figure 8.4, all the pressure of the same color are

equal but the three values taken by the pressure are a priori not equal.

Figure 8.4: Pressure unknowns (pressures with same symbol are equal).

8.4.2.3 Discrete well-posedness with the P2/P1 finite element (Taylor–Hood finite

element)

Definition 8.8. The Taylor–Hood functional spaces are defined by

Vh = {vh ∈ (C0(T ))2 such that vh|τ ∈ P2(τ)
2, ∀τ ∈ Th(T )}

with the function values at the principal lattice of order 2 as degrees of freedom.

Mh = {qh ∈ C0(T ) such that qh|τ ∈ P1(τ), ∀τ ∈ Th(T )}

A scheme of this discretization is proposed in Figure 8.5.
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Figure 8.5: Scheme of the domain ωf discretized with P2 / P1 Finite Element.

Lemma 8.9. The MsFEM discrete local problems in the case n = 1 in two dimensions are

well-posed with the Taylor–Hood finite element.

Proof. First, we choose the test function Λh
i which is equal to (1, 0) at the middle of the edge f

and (0, 0) on the other degrees of freedom. Since Λh
i vanishes on ∂ωf and qh belongs to H1(ωf ),

we have ∫
ωf

divΛh
i qhdx = −

∫
ωf

Λh
i ·∇qhdx

= −
(∫

τ1

Λh
i ·∇qhdx+

∫
τ2

Λh
i ·∇qhdx

)
.

Using the exact quadrature formula for quadratic function (see Appendix C.1) and the fact that

∇qh is constant on each τi, it follows∫
τi

Λh
i ·∇qhdx = ∇qh|τi ·

∫
τi

Λh
i dx =

meas(τi)

3
∇qh|τi · e1.

Consequently, ∫
ωf

divΛh
i qhdx =

meas(τ1)

3
∇qh|τ1 · e1 +

meas(τ2)

3
∇qh|τ2 · e1.

Besides, we have also∫
ωf

λvT,1φT,1 ·Λh
i +

∫
ωf

λvT,2φT,2 ·Λh
i = meas(ωf )λ

v
T,1,

given that λv
T ∈ R2 (r = 2) and φT,1 = e1 and φT,2 = e2. Therefore, it follows

meas(τ1)

3
∇qh|τ1 · e1 +

meas(τ2)

3
∇qh|τ2 · e1 = meas(ωf )λ

v
T,1, (8.28)

Repeat the same procedure with the test function Λh
i which is equal to (0, 1) on the face f and

(0, 0) on the other degrees of freedom, we have

meas(τ1)

3
∇qh|τ1 · e2 +

meas(τ2)

3
∇qh|τ2 · e2 = meas(ωf )λ

v
T,2, (8.29)
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Finally, combining (8.28) and (8.29), it follows

meas(τ1)

3
∇qh|τ1 +

meas(τ2)

3
∇qh|τ2 = meas(ωf )λ

v
T . (8.30)

Now, the definition of pressure gradient implies that

∇qh|τ1 · tf = q2 − q1,

∇qh|τ2 · tf = q2 − q1.

Consequently, by multiplying both sides of (8.30) by tf , it follows(
meas(τ1)

3
+

meas(τ2)

3

)
∇qh|τ1 · tf = meas(ωf )λ

v
T · tf ,

which can be reduced to

∇qh|τ1 · tf = λv
T · tf .

Using the same arguments, it is straightforward to verify that this equality holds true for all tfi

in the element τ1. In this case, we deduce that

∇qh|τ1 = λv
T .

Proceeding in this method for any internal face f of the mesh Th(T ), we deduce that qh is

in P1(T ) space. Combining (8.20) we conclude that qh = 0. Consequently, we have λv
T = 0 and

then (8.18) reveals that λF = 0.

8.4.3 Discussions about the well-posedness of the discrete local problems in

the case n ≥ 2 in two dimensions (2D)

In this section, we once again refer to Vh as finite element space of velocity approximation,

and Mh the space of pressure approximation. We note ωf = {τ1, τ2} the set of elements that

share a common face f . In particular for this MsFEM, making use of definition of DT , we have

in the domain ωf , ∫
ωf

divΛh
i qh =

r∑
l=1

∫
ωf

λvT,lφT,l ·Λh
i , (8.31)

with λv
T ∈ Rr and (φT,l)1≤j≤r a basis of the space (Pn−1(T ))

d. In order to proceed, we introduce

the Taylor–Hood method for higher-order polynomials, referred to as the Pn+1/Pn finite element.

Definition 8.10. The Taylor–Hood functional spaces for higher-order polynomials are defined

by

Vh = {vh ∈ (C0(T ))2 such that vh|τ ∈ Pn+1(τ)
2, ∀τ ∈ Th(T )},

with the function values at the principal lattice of order 2 as degrees of freedom, and

Mh = {qh ∈ C0(T ) such that qh|τ ∈ Pn(τ), ∀τ ∈ Th(T )}.
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Given the fact that some quantities λvT,lφT,l are of order n− 1 , we would like to choose qh

of polynomial order n so that ∇qh is also of order n − 1. We associate this pressure with a

velocity Λh
i of order n + 1. Then, the right-hand side of (8.31) is of order 2n. We would

like therefore integrate a polynomial of order 2n with quadrature points corresponding to the

degrees of freedom of Pn+1. However, no general quadrature formula can been found for high-

order polynonials [170, 94] (see Appendix C.2). For example, with the pair P2 − P1, this leads

to wanting to integrate a polynomial of order three with the quadrature points corresponding to

the principal lattices of order two in the triangle. Such a quadrature rule has not been found.

Remark 8.11. Numerical experiments have also shown that solving the local problems in two

dimensions for n = 2 with Crouzeix–Raviart finite element or with Taylor–Hood finite element

lead to instabilities in the numerical solutions.

8.4.4 Discussions about the well-posedness of the discrete local problems for

any order n in three dimensions (3D)

For the three-dimensional MsFEM with n = 1, we may think that the pair of finite elements

P2 − P1 allows to satisfy the discrete inf-sup condition for the discrete local problems, as for

the case n = 1 in two dimensions. We recall that in two dimensions, in the case n = 1, the

discrete inf-sup condition for the pair of finite elements P2−P1 holds due to the existence of an

exact quadrature formula for polynomials of degree 2 on triangle using the 6 points of Lagrange

interpolation (see Appendix C.1). However to my knowledge, and after a literature review, such

a formula does not exist in 3D. We cannot integrate exactly a polynomial of degree 2 on a

tetrahedron using the 10 points of Lagrange interpolation.

In the two previous discussions, we highlighted the limitations of usual pair of finite elements

to solve the discrete local problems in two-dimensions for n ≥ 2 and in three dimensions for

any order n. Consequently, to prove the well-posedness of the discrete local problems in two

and three dimensions, we proceed in another way: we use the so-called Fortin operator as in

[80, 36, 35, 49] associated with the new pairs of non-conforming finite elements introduced in

Chapters 4 and 5.

8.5 Unified theory: well-posedness of the discrete local prob-

lems at any order in two and three dimensions

In this section we prove the well-posedness of the discrete local problems, with the Fortin

Lemma [80], in two dimensions with the family of finite elements introduced by [132] (and

presented in Chapter 4) and in three dimensions with the family of finite elements introduced

in Chapter 5. We take advantage of the fact that these families of finite element have the same

degrees of freedom as the MsFEM space. In particular in this section, we keep the notations of

Chapter 5 for defining the different Sobolev spaces and associated norms. Besides, let T be an

element of TH and T̂ be a reference element, such that there exists a geometric transformation

πT from T̂ to T = πT (T̂ ).
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First, for the sake of completeness, we recall the degrees of the new non-conforming families

of finite elements.

Definition 8.12 (Degrees of freedom of the family of finite elements Vn+1 in 2D and 3D). The

finite element space Vn+1 is characterized by the following (local) degrees of freedom defined

on H1,h(T )

Nfα
j (v) =

∫
fα

vLfα
j , j ≥ 0, α = 1, . . . , d+ 1,

N τ
j (v) =

∫
τ
vM τ

j , j ≥ 0,

where the Lfα
j define an arbitrary basis of Pn(fα) and (M τ

j )j define an arbitrary basis

of Pn−1(τ).

Lemma 8.13. If the continuous inf-sup conditions holds with the constant β for the operator

b̃T defined in (8.8) and if there exists a linear operator: Πh : (H1
0 (Ω))

d → Vh such that

∀(qh,µF ,µT ) ∈Mh × Rns × Rr and v ∈ (H1
0 (Ω))

d, it holds

b̃T
(
Πhv, (qh,µF ,µ

v
T )
)
= b̃T

(
v, (qh,µF ,µ

v
T )
)

(8.32)

|Πhv|1,h ≤ C|v|1 (8.33)

where the constant C is independent of h, then the discrete inf-sup condition holds with

βh ≤ β |||Πh|||−1 where |||·||| denotes the operator norm.

Theorem 8.14. The local problems (8.9) are well-posed when discretizing the local basis

functions ΦF,i or ΨT,k with the finite element Vn+1, i.e. Vh = Vn+1 and the pressures πF,i or

πT,k with fully discontinuous polynomial of order n, i.e. Mh = Pdc
n

⋂
L2(T ∩ Ωε).

Proof. We prove below, that the interpolant Ih defined in (7.17) satisfies the properties defined

in the Fortin lemma. First, we prove that the interpolation operator Ih satisfies (8.32). Indeed,

we have, for any (qh,µF ,µT ) ∈Mh × Rns × Rr and v ∈ (H1
0 (T ∩ Ωε))d,

b̃T (Ihv, (qh,µF ,µT )) =−
∑

τ∈Th(T )

(
div Ihv, qh

)
τ
+

∑
τ∈Th(T )

r∑
l=1

µT,l
(
Ihv,φT,l

)
τ

+
∑

F∈F(T )

s∑
j=1

µF,j
(
Ihv,ωF,j

)
F
.
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By integration by parts, it comes

b̃T (Ihv, (qh,µF ,µT )) =
∑

τ∈Th(T )

((
Ihv,∇qh

)
τ
−
∑
f∈∂τ

(
Ihv · nf , qh|f

)
f

)

+
∑

τ∈Th(T )

r∑
l=1

µT,l
(
Ihv,φT,l

)
τ
+

∑
F∈F(T )

∑
f∈F

s∑
j=1

µF,j
(
Ihv,ωF,j

)
f
.

Now, using the fact that ∇qh|τ ∈ Pn−1(τ), qh|f ∈ Pn(f), (φT,l|τ ) is a basis of Pn−1(τ), (ωF,j |f )
is a basis of Pn(f) and the definition of the degrees of freedom, it follows

b̃T (Ihv, (qh,µF ,µT )) =
∑

τ∈Th(T )

((
v,∇qh

)
τ
−
∑
f∈∂τ

(
v · nf , qh|f

)
f

)

+
∑

τ∈Th(T )

r∑
l=1

µT,l
(
v,φT,l

)
τ
+

∑
F∈F(T )

∑
f∈F

s∑
j=1

µF,j
(
v,ωF,j

)
f
.

Finally, by integration by parts, we have

b̃T (Ihv, (qh,µF ,µT )) = −
∑

τ∈Th(T )

(
div v, qh

)
τ
+

∑
τ∈Th(T )

r∑
l=1

µT,l
(
v,φT,l

)
τ

+
∑

F∈F(T )

s∑
j=1

µF,j
(
v,ωF,j

)
F

= −
(
div v, qh

)
T
+

r∑
l=1

µT,l
(
v,φT,l

)
T
+

∑
F∈F(T )

s∑
j=1

µF,j
(
v,ωF,j

)
F

= b̃T (v, (qh,µF ,µT )) .

Then, we prove that the interpolation operator Ih satisfies (8.33). Using standard scaling

properties of the reference transformation and its inverse it is sufficient to show the following

estimate on the reference element

|I T̂h ûε|1,T̂ ≤ Ĉ|ûε|1,T̂ .

On the one hand, from the continuity of the trace operator ûε 7→ ûε|F̂ we get∣∣∣∣∫
F̂
ûε · ωF,i

∣∣∣∣ ≤ Ĉ∥ûε∥0,F̂ ≤ Ĉ|ûε|1,

and on the other hand, we have∣∣∣∣∫
T̂
ûε ·φT,l

∣∣∣∣ ≤ Ĉ∥ûε∥0,T̂ ≤ Ĉ|ûε|1,

which allows to conclude the proof.

In this chapter, we have demonstrated the well-posedness of the discrete local problems

in two and three dimensions. However, this necessitates the utilisation of novel finite elements,

introduced in Chapters 4 and 5. This may present a limitation to the utilisation of this MsFEM,
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particularly for high-order methods, given that the resolution of the local problems necessitates

the implementation of new finite elements. In particular, in three dimensions, due to the absence

of a generalisation of the family of finite elements introduced in Chapter 5 for any order, it is

currently possible to use the MsFEM only up to the order n = 2.

Remark 8.15. In this section, we have chosen to prove the well-posedness of the discrete

local problems by constructing a Fortin operator. However, it is important to note that it is

not the only way to prove the well-posedness of complex and non-standard problems. Instead

of constructing a Fortin operator, stabilisation technique can be used to address difficulties in

ensuring that the inf-sup condition holds in finite element approximations. The stabilization

techniques are particularly relevant for complex problems where standard discretization meth-

ods may fail. The choice of stabilization method depends on the problem at hand and requires

balancing stability and accuracy. For example in the context of Hybrid High-Order (HHO)

methods, stabilization technique is used to prove the inf-sup condition. The stabilization in

HHO methods is designed to ensure both the stability and accuracy of the discrete solution,

while allowing for a flexible choice of local approximation spaces. For HHO methods, the

challenge is to ensure that this condition holds when high-order polynomials are used for ap-

proximation. In HHO, the stabilization is typically face-based, meaning that it involves terms

that penalize the jump of the solution or its gradient across the interfaces between elements

(faces) [64, 60].
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Chapter 9

An error estimate
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This chapter is dedicated to the derivation of the first error estimate for the Multi-scale

Finite Element Method (MsFEM), introduced in Chapter 7, applied to solve the Stokes problem

in perforated domains. The main result of this chapter reads in loose term

Theorem 9.1. Let f be sufficiently smooth. The following error bound holds between the

solution (uε, pε) to the Stokes problem (7.1) in perforated periodic domains and its MsFEM

approximation (uH , pH).

ε−1|uε − uH |H,1 + ∥pε − pH∥L2(Ωε)

≤ C
(
Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω) +

(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
where the constant C is independent of ε, H and f .

The derivation of Theorem 9.1 is based on the usual finite element theory and homogenization

of the Stokes problem, in particular on the homogenization bounds introduced in Chapter 6.

The methodology used is inspired by the error derivation done in [111]. In this chapter, we

adopt definition of the perforated domain Ωε of Section 6.2. In addition, in this chapter

we eliminate the viscosity ν of the Stokes problem for the sake of clarity.
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Through this chapter, for a domain D ⊂ Rd, we use the Sobolev spaces Hm(D), Hm
0 (D) for

integer m > 1. The norms and semi-norms in the scalar and vector-valued versions of Hm(D)

are denoted by ∥ · ∥Hm(D) and | · |Hm(D) respectively. For the sobolev space L2(D) = H0(D),

the associated norm is denoted ∥ · ∥L2(D). Since the approach is non-conforming, we introduce

the broken Sobolev space

H1(TH) =
{
u ∈ L2(Ωε) s.t. u|T∈ H1(T ∩ Ωε)d, ∀ T ∈ TH

}
.

We also define the H1-broken norm |u|H,1 in the H1 broken space as

|u|H,1 =

 ∑
T∈TH

|u|2H1(T∩Ωε)

 1
2

.

This chapter is organized as follows. First, we introduce some useful technical lemmas for

the derivation of the error estimate. Then, the last part of this chapter is dedicated to the proof

of the main theorem.

9.1 Technical lemmas

Before proving the main theorem, in this section we introduce technical lemmas useful for the

error estimate. First, we present some lemmas borrowed from the usual finite element theory

and then we introduce lemmas related to perforated domains and oscillating functions.

9.1.1 Lemmas related to the reference element

As usual in finite element theory, most of the lemmas introduced in this part are proved first in

the reference element and then in any element using scaling properties. Let T̂ be the reference

polyhedron in Rd and let T ∈ TH be a mesh element. Let πT be the geometric mapping

from T̂ to T . Classical examples of reference elements are the unit interval [0, 1] in dimension

one, the unit simplex with vertices {(0, 0), (1, 0), (0, 1)} or the unit square [0, 1]2 in dimension

two, the unit simplex with vertices {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} or the unit cube [0, 1]3 in

dimension three. Then, for a given mesh element T = πT (T̂ ), the vertices, edges, and faces are

defined to be the image by the geometric transformation πT of the vertices, edges, and faces of

the reference element T̂ . To avoid some technical complications, we assume that the mapping πT

is affine, i.e.

πT : T̂ −→ T

x̂ 7−→ x = πT (x̂) = AT x̂+ bT

(9.1)

where AT is an invertible matrix defined on Rd×d and bT ∈ Rd.

Remark 9.2. The results presented in this chapter remain valid for non-affine transformations,

i.e. on general mesh shape (see for example [76, Chapter 13] for results on non-affine meshes).

Another option is to consider a finite family (possibly large) of reference elements, allowing to

recover all the elements T ∈ TH with affine mappings.
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We note v̂ = v ◦πT , the function v on T expressed on local coordinates on T̂ . The chain rule

for weak derivatives is given by

∂v̂

∂x̂i
=

n∑
j=1

∂v

∂xj

∂xj
∂x̂i

=

n∑
j=1

(AT )ij
∂v

∂xj
,

and the transformation rule for integrals by∫
T = πT (T̂ )

vdx =

∫
T̂
(v ◦ πT )|det(AT )|dx̂ =

∫
T̂
v̂|det(AT )|dx̂.

Then the following transformations of Sobolev semi-norms holds [76, Chapter 11].

Lemma 9.3. Let k ≥ 0 and 1 ≤ p ≤ ∞. there exists C > 0 such that for all T and

v ∈W k,p(T ), the function v̂ = v ◦ πT satisfies

|v̂|
Wk,p(T̂ )

≤ C ∥AT ∥k |det(AT )|−
1
p |v|Wk,p(T ),

|v|Wk,p(T ) ≤ C ∥A−1
T ∥

k |det(AT )|
1
p |v̂|

Wk,p(T̂ )
.

For a given element T , we define the diameter HT := max
x1,x2∈T

∥x1 − x2∥, the insphere diam-

eter ρT := 2max{ρ > 0 : Bρ(x) ⊂ T for some x ∈ T} (i.e. the diameter of the largest ball

contained in T ), the condition number σT :=
HT

ρT
.

Lemma 9.4. Let πT be an affine mapping defined as in (9.1), such that T = πT (T̂ ). Then,

|det(AT )| =
|T |
|T̂ |

, ∥AT ∥ ≤
HT

ρ
T̂

, ∥A−1
T ∥ ≤

H
T̂

ρT
.

9.1.2 Lemmas borrowed from the usual finite element theory

The following two lemmas, Lemmas 9.5 and 9.6, are Poincaré type inequalities.

Lemma 9.5. There exists a constant C (depending only on the regularity of the mesh)

independent of H such that for any T ∈ TH , ∀v ∈ H1(T ), verifying

∫
F
v = 0 for some

F ⊂ ∂T ,
∥v∥L2(T ) ≤ CH∥∇v∥L2(T ). (9.2)

Proof. First, we consider the reference element T̂ , with face F̂ ⊂ ∂T̂ . If there does not exist
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C > 0 such that, for all functions v ∈ H1(T̂ ) verifying

∫
F̂
v = 0,

∥v∥2
L2(T̂ )

≤ C∥∇v∥2
L2(T̂ )

.

then, there exists a sequence vn ∈ H1(T̂ ) such that

1 =

∫
T̂
|vn(x)|2dx > n

∫
T̂
|∇vn(x)|2dx. (9.3)

In particular (9.3), implies that vn is bounded in H1(T̂ ). By applying the Rellich theorem,

there exists a sub-sequence v′n which converges in L2(T̂ ). In addition, (9.3) shows that ∇v′n
converges to zero in L2(T̂ ). Therefore v′n is a Cauchy sequence in H1(T̂ ), which is a Hilbert

space, thus it converges in H1(T̂ ) to a limit v. As we have∫
T̂
|∇v(x)|2dx = lim

n→∞

∫
T̂
|∇vn(x)|2dx < lim

n→∞

1

n
= 0,

we deduce that v is constant in T̂ . Besides, since v is of zero integral on the border ∂T̂ , v is

null on the border ∂T̂ . We conclude that v is null in T̂ . Besides, we have∫
T̂
|v(x)|2dx = lim

n→∞

∫
T̂
|vn(x)|2dx = 1,

which is contradictory with the fact that v = 0. Therefore, we have proved that in the reference

element T̂ there exists C > 0 such that, for all functions v ∈ H1(T̂ ) verifying

∫
F̂
v = 0,

∥v∥2
L2(T̂ )

≤ C∥∇v∥2
L2(T̂ )

.

Now, with usual scaling arguments (see Lemmas 9.3 and 9.4), it comes, that in any element T

of size H,

∥v∥2L2(T ) ≤ CH
d∥v̂∥2

L2(T̂ )
≤ CHd∥∇v̂∥2

L2(T̂ )
≤ CHdH

2

Hd
∥∇v∥2L2(T ) ≤ CH

2∥∇v∥2L2(T ),

which proves (9.2).
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Lemma 9.6. There exists a constant C independent of H (depending on the regularity of the

mesh) such that for any T ∈ TH , for all v ∈ H1(T ) and any face F ⊂ ∂T ,

∥v∥2L2(F ) ≤ C
(
H−1∥v∥2L2(T ) +H∥∇v∥2L2(T )

)
. (9.4)

Under the additional assumption that

∫
F
v = 0, we have

∥v∥2L2(F ) ≤ CH∥∇v∥
2
L2(T ), (9.5)

and

∥v∥2
H1/2(F )

≤ C∥∇v∥2L2(T ). (9.6)

Proof. The inequality (9.4) is obtained using the continuity of the trace operator from H1(T̂ )

to L2(F̂ ) in the reference element which reads

∥v∥2
L2(F̂ )

≤ C
(
∥v∥2

L2(T̂ )
+ ∥∇v∥2

L2(T̂ )

)
. (9.7)

and, then usual scaling arguments. Next, combining (9.7) and Lemma 9.5, we obtain the

inequality (9.5). For the inequality (9.6), we use the continuity of the trace operator from H1(T̂ )

to H1/2(T̂ ), which reads

∥v∥2
H1/2(F̂ )

≤ C
(
∥v∥2

L2(T̂ )
+ ∥∇v∥2

L2(T̂ )

)
. (9.8)

Then, usual scaling arguments lead to

∥v∥2
H1/2(F )

= ∥v∥2L2(F ) + |v|
2
H1/2(F )

≤ CHd−1∥v̂∥2
L2(F̂ )

+ CHd−2|v̂|2
H1/2(F̂ )

≤ CHd−1|v̂|2
H1(T̂ )

+ CHd−2|v̂|2
H1(T̂ )

≤ CHd−1H
2

Hd
|v|2H1(T ) + CHd−2H

2

Hd
|v|2H1(T )

≤ C(1 +H)|v|2H1(T )

≤ C|v|2H1(T ),

which proves (9.6).

Lemma 9.7. Let Πn−1
H be the L2(Ω)-orthogonal projection on the space of piecewise polyno-

mials of degree smaller or equal to n− 1 on TH . Then, for any f ∈ H1(Ω)d,

∥f −Πn−1
H f∥L2(Ω) ≤ CHn|f |Hn(Ω),

with a constant C > 0 depending only on the regularity of TH .
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Proof. This is a standard finite element interpolation result [75, Proposition 1.12]).

Lemma 9.8. There exists a bounded linear operator InH : H2(Ω)d → H1(Ω)d such that InHv

is a polynomial of degree smaller or equal to n on any face F ∈ FH for any v ∈ H2(Ω)d and

|InHv − v|H1(Ω) ≤ CHn|v|Hn+1(Ω),

and

∥InHv − v∥L2(Ω) ≤ CHn+1|v|Hn+1(Ω),

with a constant C > 0 depending only on the regularity of TH .

Proof. Given that we consider v ∈ H2(Ω)d, one can simply take InH as the usual Lagrange

interpolation operator on Pn finite element if TH is a triangular mesh. Otherwise, we consider T̂H
a submesh of TH which consists of triangles only. To construct T̂H , one only needs to remesh all

the elements T in triangles, without adding nodes on ∂T . We can now define InH as the usual

Lagrange interpolation operator on Pn finite elements on T̂H . Then, the error bounds are given

by classical Finite Element results (see for example [75, Proposition 1.12]).

9.1.3 Lemmas related to perforated domains and oscillating functions

In this section, we introduce lemmas related to perforated domains and oscillating functions. The

main lemmas of this section are Lemmas 9.21, 9.22 and 9.24 which are Poincaré type inequalities

in perforated domains. In order to prove these lemmas, first, we introduce preliminary lemmas,

Lemmas 9.11 to 9.13, which are also Poincaré type inequalities but in periodicity cells Y ε
i , and

Lemma 9.14 which introduces a classical extension operator.

As previously, most of the following lemmas are proved first in the reference periodicity

cell Y (see for example Figure 6.3) and then in any cell Y ε
i using scaling properties. The precise

definition of the unit cell can be found in Section 6.2.1. We recall that the reference cell is

the unit square in two dimensions and the unit cube in three dimensions. Then, for a given

cell Y ε
i = πεi (Y ), the vertices, edges, and faces are defined to be the image by the geometric

transformation πεi of the vertices, edges, and faces of the reference cell Y . We recall that the

affine transformation from Y is defined as follows.

Definition 9.9. We note πεi the linear continuous invertible application, composed of a trans-

lation and an homothety of ratio 1
ε , which maps any cell Y ε

i onto the reference cell Y

πεi : Y ε
i −→ Y

x 7−→ y = x
ε + translation

(9.9)

For the proof of Lemma 9.13, we need also to introduce the notion of “adjacent cells”.

Definition 9.10. Two cells Y ε
1 and Y ε

2 are said to be adjacent if they share a common face

Γε.
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9.1.3.1 Preliminary results

Lemma 9.11. There exists a constant C > 0 independent of ε such that, for any Y ε
i and for

all v ∈ H1(Y ε) vanishing on ∂Y ε
i,S ,

∥v∥L2(Y ε
i ) ≤ Cε∥∇v∥L2(Y ε

i ).

Proof. Lemma 9.11 is a classical Poincaré inequality. It can be proved with a proof similar to

Lemma 9.5

Lemma 9.12. There exists a constant C > 0 independent of ε such that, for any cell Y ε
i and

for any face Γε
i ⊂ ∂Y ε

i and for all v ∈ H1(Y ε
i ) vanishing on ∂Y ε

i,S ,

∥v∥L2(Γε
i )
≤ C
√
ε∥∇v∥L2(Y ε

i ).

Proof. Lemma 9.12 is proved using the continuity of the trace operator from H1(Y ) to L2(Γ),

combined with Lemma 9.11 and usual scaling arguments applying the mapping (9.9) (as in

Lemma 9.6).

Lemma 9.13. There exists a constant C > 0 independent of ε such that, for any adjacent

cells Y ε
1 and Y ε

2 (in the meaning of Definition 9.10) and for all v ∈ H1(Y ε
1 ∪ Y ε

2 ),

∥v∥L2(Y ε
2 ) ≤ C

(
∥v∥L2(Y ε

1 ) + ε∥∇v∥L2(Y ε
1 ∪Y ε

2 )

)
.

Proof. Lemma 9.13 is a classical Poincaré inequality. It can be proved with a proof similar to

Lemma 9.5.

Lemma 9.14. Let T ⊂ TH . Let Y ε
iin

and Y ε
iout

be two adjacent cells (in the meaning of

Definition 9.10), such that Y ε
iin
⊂ T , Y ε

iout
̸⊂ T and Y ε

iout
∩T ̸= ∅. Assume that the cells do not

contain perforations. Then, for all v ∈ H1(Y ε
iin
∪ Y ε

iout
∩ T ) there exists an extension operator

P̃ ∈ L
(
H1(Y ε

iout ∪ Y
ε
iin ∩ T );H

1(Y ε
iout ∪ Y

ε
iin)
)
,

such that

∥∇P̃v∥L2(Y ε
iout

∪Y ε
iin

) ≤ C∥∇v∥L2(Y ε
iout

∪Y ε
iin

∩T ),

and

∥P̃v∥L2(Y ε
iout

∪Y ε
iin

) ≤ C∥v∥L2(Y ε
iout

∪Y ε
iin

∩T ).
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Proof. Let us construct an inclined cell Ỹ ε
i obtained by the translation of ∂T ∩Y ε

iout
of a distance

ε towards Y ε
iin

. Then, the extension of v in Y ε
iout
\ (Y ε

iout
∩T ) is given by the horizontal-symmetry

of Ỹ ε
i with respect to the axis passing by ∂T ∩ Y ε

iout
. Afterward, we use the trick of [58, Lemma

3] (which consists in applying the extension to v−M(v), whereM(v) stands for the average of

v over Y ε
iout
∪Y ε

iin
∩T ), which gives the estimates. It should be noted that the constant C in the

estimates depends on the face considered, but we recall that ∂T consists only in a finite number

of faces (we consider the maximun of these constants). We illustrate this construction with a

simple example in two dimensions in Figure 9.1. For each point (y1, y2) in Y
ε
iout
\ (Y ε

iout
∩ T ), we

define the unique value y1(y2) of the abcisse such that the point (y1(y2), y2) ∈ ∂T ∩Y ε
iout

. Then,

P̃v(y1, y2) = v(2y1(y2)− y1, y2). The generalization in any dimension is straightforward.

Figure 9.1: Example, in two dimensions, of the geometric configuration of Lemma 9.14.

9.1.3.2 Main lemmas

Assumption 9.15. We assume (and this is a purely technical assumption that does not matter

for the numerical practice) that the boundary ∂T of any element T ∈ TH consists of a set of

faces F , included in a hyperplane whose unit normal vector nF belongs to RZd (proportional

to a vector with integer coordinates), i.e.

T =

NF⋂
k=1

{x such that x · nFk ≤ cFk
}

with NF the number of faces of the element T , nF ∈ Sd, cF ∈ R [81, 82, 139]. The unit normal

vector is of the form
1

q
(p1, p2, . . . , pd)

t, where p1, p2, . . . , pd are integers, and q =

√√√√ d∑
i=1

p2i a real

number. We supposed that the pi are not too large, i.e. q2 ≤ C2 for a constant C, independent

of the face considered in the mesh and of the mesh size H. Figure 9.2 shows an example of such

a configuration in two dimensions.
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Figure 9.2: Example, in two dimensions, of the geometric configuration of Assumption 9.15.

Remark 9.16. Assumption 9.15 is a classical assumption when dealing with Multi-scale Finite

Element Methods (see for example [122, Theorem 2.2] or the works of [134, 81, 82]).

Assumption 9.15 yields periodicity tangentially to the hyperplane F . Indeed, we can consider

a new rotated cell, depending on the orientation of the face F and of size q, denoted Y F,q
i , whose

one of its face is parallel to F . Figure 9.2 shows an example, in two dimensions, of such a

cell, which corresponds to the square of size
√
p21 + p22 with the corners (0, 0), (p1, p2), (p1 −

p2, p1+ p2), (−p2, p1), with p1 = 3 and p2 = 2. This cell can be treated as the new periodic cell.

Indeed, one can choose the new set of coordinates x′ (obtained by the transformation which

maps the canonical vector ed = (0, . . . , 0, 1) to the normal vector nF ), such that the quantities

are periodic along F with period q possibly greater than 1. Now, any function which is periodic

in the coordinates x, with period ε, is also periodic in the coordinates x′ with period qε. A

function that is a function of the fast variable y =
x

ε
remains a function of the corresponding

fast variable y′ =
x′

ε
and if it is periodic in y, with period 1, it is periodic in y′, with period q.

Remark 9.17. If one has to choose a period q, one can always choose an integer multiple

of q such that each cell Y F,q
i contains one perforation at a distance of order at least 1 of the

boundary ∂Y F,q
i , which ensures that one perforation is at a distance of at least 1 of the border

∂T . This precaution guarantees that the Poincaré constant C of Lemma 9.12 does not depend

on the way the boundary ∂T cuts the cells Y F,q
i .

In what follows, we consider a large enough period q such that each cell Y F,q
i contains a
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perforation at a distance of at least 1 of the border ∂Y F,q
i , and we consider cells of size qε.

Definition 9.18. For any T ∈ TH , we define the domain ST (a domain which is slightly larger

than T such that T ⊂ ST ) as the dilation centered at T with a scale factor δ, for some δ > 1

(see Figure 9.3).

ST

T

Figure 9.3: Definition of the domain ST .

Remark 9.19. The use of such a domain ST is very common when dealing with Multi-scale

Finite Element Methods, for example in the case of oversamplig method (see [71, 105, 46]).

Assumption 9.20. Let ΓF,qε be any face separating two cells Y F,qε
+ and Y qε

− (Y F,qε
+ and Y F,qε

−

being samples of Y F,qε
i , the ε-scaled version of Y F,q

i ). For any T ∈ TH , the domain ST is chosen

such that there exists ε0 > 0, such that for all ε < ε0, if Γ
F,qε ∩ ∂T ̸= ∅ then either Y F,qε

+ or

Y F,qε
− is included in ST .

Lemma 9.21. Suppose H ≥ γε with some big enough γ. Let T ⊂ TH and consider a domain

ST as built in Definition 9.18. Then, under Assumptions 9.15 and 9.20, for any v ∈ H1(ST )

vanishing on Bε ∩ ST ,
∥v∥L2(∂T ) ≤ C

√
ε|v|H1(ST ).

The constants γ > 0 and C > 0 here depend only on the regularity of the mesh TH and on

the perforation pattern Bε.

Proof. Let F be a face of T (there are only a finite number of such faces F ). Assumption 9.15

and the assumption H > γε (with some large enough γ) ensure that each face F consists of a

finite number of small edges ΓF,qε
i ⊂ ∂Y F,qε

i (see for example Figure 9.4), i.e.

F =
∑
i∈Iin

ΓF,qε
i +

∑
i∈Iout

ΓF,qε
i ∩ F,

with {
Iin = {i ∈ N such that ΓF,qε

i ⊂ F},
Iout = {i ∈ N such that ΓF,qε

i ̸⊂ F and ΓF,qε
i ∩ F ̸= ∅}.
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Figure 9.4: Example, in two dimensions, of the geometric configuration considered in the proof
of Lemma 9.21.

Considering the domain ST instead of T with Assumption 9.20 ensures that for all ΓF,qε
i ,

with i ∈ Iin ∪ Iout, one of the cells Y F,qε
i sharing the face ΓF,qε

i is included in ST . Besides,

according to Lemma 9.12, there exits C > 0 such that

∥v∥2
L2(ΓF,qε

i )
≤ Cε∥∇v∥2

L2(Y F,qε
i )

.

We have,

∥v∥2L2(F ) =
∑
i∈Iin

∥v
Γ
F,qε
i
∥2
L2(ΓF,qε

i )
+
∑
i∈Iout

∥v
Γ
F,qε
i
∥2
L2(ΓF,qε

i ∩T )

≤
∑

i∈Iin∪Iout

Cε∥∇v
Y

F,qε
i
∥2
L2(Y F,qε

i )

≤ Cε∥∇v∥2L2(ST ).

Finally, by summing over the faces F ,

∥v∥2L2(∂T ) ≤ max
F∈∂T

{CF }ε∥∇v∥2L2(ST ),

which concludes the proof.
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Lemma 9.22. Suppose H ≥ γε. Then, for any T ∈ TH and any v ∈ H1(T ) vanishing on

Bε ∩ T ,
∥v∥L2(T ) ≤ Cε|v|H1(T ), (9.10)

with C > 0 independent of ε and of H.

Proof. First, we note{
Iin = {i ∈ N such that Y qε

i ⊂ T},
Iout = {i ∈ N such that Y qε

i ̸⊂ ∂T and Y qε
i ∩ T ̸= ∅}.

Step 1 For i ∈ Iin, the cell Y ε
i is fully included in the element T , which ensures that Y ε

i,S∩T ̸= ∅,
allowing to use the Poincaré inequality. From Lemma 9.11, it comes

∥v∥L2(Y ε
i ) ≤ Cε∥∇v∥L2(Y ε

i ).

Step 2 For i ∈ Iout, Y ε
i is not fully included in T . Then it is possible that Y ε

i,S ∩ T = ∅ which
prevents us to use the Poincaré inequality in Y ε

i ∩T . We overcome this difficulty, by considering

for each cell partially included in T an adjacent cell which is fully included in T . Indeed the

assumption H ≥ γε (with some big enough γ) ensures that for any iout ∈ Iout, there exists at

least a iin ∈ Iin such that Y ε
iout

and Y ε
iin

are adjacent (in the meaning of Definition 9.10). Now,

we consider v(x) ∈ H1(Y ε
iout
∪ Y ε

iin
∩ T ), and we rescale it by ε which leads to v̂(y) = v(xε ) ∈

H1(Yiout ∪ Yiin ∩ 1
εT ). We extend v(x) by 0 inside Bε ∩ T . Then, we are able to consider an

extension w(x) of v(x), as built in Lemma 9.14, such that w(x) ∈ H1(Y ε
iout
∪Y ε

iin
) and similarly

we rescale it by ε which leads to ŵ ∈ H1(Yiout ∪ Yiin). First, according to Lemma 9.13, there

exists a constant C(Yiout ∪ Yiin) > 0 such that

∥ŵ∥L2(Yiout )
≤ C(Yiout ∪ Yiin)

(
∥ŵ∥L2(Yiin

) + ∥∇ŵ∥L2(Yiout∪Yiin
)

)
.

With Lemma 9.14, we have

∥∇ŵ∥L2(Yiout∪Yiin
) ≤ C∥∇v̂∥L2(Yiout∪Yiin

∩ 1
ε
T ).

which leads to

∥v̂∥L2(Yiout∩
1
ε
T ) ≤ C

(
∥v̂∥L2(Yiin

) + ∥∇v̂∥L2(Yiout∪Yiin
∩ 1

ε
T )

)
,

and then by usual scaling arguments, it comes

∥v∥L2(Y ε
iout

∩T ) ≤ C
(
∥v∥L2(Y ε

iin
) + Cε∥∇v∥L2(Y ε

iout
∪Y ε

iin
∩T )

)
.

By using the Poincaré inequality in Y ε
iin

, it follows

∥v∥L2(Y ε
iin

) ≤ Cε∥∇v∥L2(Y ε
iin

).
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At the end, we conclude that

∥v∥L2(Y ε
iout

∩T ) ≤ Cε∥∇v∥L2(Y ε
iout

∪Y ε
iin

∩T ).

Step 3 We are now able to prove the estimation given in the lemma. Summing over the cells

in the element T , it comes

∥v∥L2(T ) =
∑
i∈Iin

∥v∥L2(Y ε
i ) +

∑
i∈Iout

∥v∥L2(Y ε
i ∩T )

≤
∑
i∈Iin

Cε∥∇v∥L2(Y ε
i ) +

∑
i∈Iout

Cε∥∇v∥L2(Y ε
i ∪Y ε

iin
∩T )

≤ Cε∥∇v∥L2(T ) = Cε|v|H1(T ),

where Y ε
iin

(iin ∈ Iin) is an adjacent cell to Y ε
i for i ∈ Iout.

Remark 9.23. In this proof, for each i ∈ Iout, we add to the cell Y ε
iout

a cell Y ε
iin

with iin ∈ Iin.
Consequently, in this estimate we consider an extra card(Iout) contributions of the cell Y ε

iin
.

However, this is not a problem since the set Iout is finite in virtue of Assumption 7.1. This

fact only worsens the constant C in this estimate which is therefore not optimal.

Lemma 9.24. Suppose H ≥ γε. Then, for any v ∈ H1(Ωε),

∥v∥L2(Ωε) ≤ Cε|v|H1(Ωε),

with C > 0 independent of ε and of H.

Proof. This lemma is a simple corollary of Lemma 9.22 obtained by summing (9.10) over all the

mesh elements.
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9.1.4 Other Lemmas

Lemma 9.25. Assume that the continuous velocity-pressure inf-sup property holds on Ωε

with a constant β > 0, i.e.

inf
p∈L2

0(Ω
ε)

sup
v∈H1

0 (Ω
ε)d

∫
Ωε

p div v

∥p∥L2(Ωε)|v|H1(Ωε)
≥ β,

Then, the discrete inf -sup property holds on VH ×MH with the same constant β > 0

inf
p∈MH

sup
v∈VH

∫
Ωε

pH div vH

∥pH∥L2(Ωε) |vH |H,1

≥ β.

In particular, for any pH ∈MH , there exists vH ∈ VH such that

div vH = pH on T ∩ Ωε, ∀T ∈ TH and |vH |H,1 ≤
1

β
∥pH∥L2(Ωε). (9.11)

Proof. This theorem is a direct consequence of Theorem 7.14.

Lemma 9.26. Let p∗H be the L2-orthogonal projection of InHp
∗ on MH , i.e.

p∗H = Πn
HI

n
Hp

∗ ∈MH ,

where InH is the operator defined in Lemma 9.8.

Then, for any pH ∈ MH , there exists vH ∈ VH and a constant C independent of the mesh,

such that for any T ∈ TH ,

div vH = pH − p∗H on T ∩ Ωε and |vH |H,1 ≤
C

ε
∥pH − p∗H∥L2(Ωε).

Proof. We note that pH − p∗H ∈MH . Then, Lemma 9.26 is a direct consequence of Lemma 9.25

and Theorem 6.9, with the inf-sup constant β =
ε

C
.
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9.2 Proof of Theorem 9.27 (Error estimate)

9.2.1 Main Result

Theorem 9.27. Adopt definition of the perforated domain Ωε of Section 6.2, Assumption 7.1

about the mesh and Assumption 7.2 about the choice of the weighting functions. Suppose also

that f is sufficiently smooth. The following error bound holds between the solution to the

Stokes equations in perforated domains and its MsFEM approximation.

ε−1 |uε − uH |H,1 + ∥pε − pH∥L2(Ωε)

≤ C
(
Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω) +

(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

) (9.12)

where the constant C is independent of ε, H and f .

Remark 9.28. In Theorem 9.27, p∗ is the homogenized pressure. As soon as f and the domain

Ω are sufficiently smooth (which is effectively the case for the domain Ω given Assumption 7.1),

then as p∗ is the solution to an elliptic problem, it follows that p∗ is also smooth (see for example

[86] for results about regularity of the solution to an elliptic problem).

Remark 9.29. At H fixed, the term pε− pH is O(1) as ε goes to zero. Besides, recalling that

in a periodic domain we have uε ≈ ε2u(x, xε ), then the above error estimate for the velocity

and pressure essentially says that the relative errors are of the order

(
Hn +

√
ε+

√
ε

H

)
. In

this sum, the term
√
ε, which comes from the boundary layers in the homogenization process,

is negligible. Indeed, the dominant term is the classical “resonnance error”
√

ε
H , which says

that the coarse mesh size H should be much larger than ε to have a good approximation.

However, the presence of the term Hn allows to choose an H big enough without significantly

reducing the accuracy of the approximation, which shows the interest of considering high-order

methods. We can determine the optimal value of the coarse mesh size H so that the error is

minimal, which is given by

Hopt =

(√
ε

2n

) 1

n+1
2 .

Furthermore, using H = Hopt in the error estimate, we note that the error becomes of order
√
ε as n→∞ (we recover the order of convergence of homogenization).
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Corollary 9.30. Suppose that f is sufficiently smooth. The following error bound holds

between the solution to the Stokes equations in periodic perforated domains and its MsFEM

approximation.

ε−2∥uε − uH∥L2(Ωε) ≤C
(
Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω)+(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
where the constant C is independent of ε, H and f .

Corollary 9.30 is proved by applying the Poincaré inequality (Lemma 9.22) in each ele-

ment T ∈ TH , which allows to improve the error bound for the velocity by a factor ε.

9.2.2 Preliminaries

9.2.2.1 Strang Lemma

The error estimation is essentially based on a Strang Lemma which is the classical lemma for

error estimate in case of non-conforming finite element method.

Lemma 9.31. Let uε be the exact solution and uH the approximated solution. Let aH(·, ·)
and FH(·) be respectively the bi-linear and linear forms defined in (7.15). Then,

∥uε − uH∥VH
≤ inf

wh∈ZH

∥uε −wh∥VH
+ sup

wh∈ZH\{0}

|FH(wh)− aH(uε,wh)|
∥wh∥VH

. (9.13)

The first term in (9.13) is the usual best approximation error present in the classical Céa

Lemma. The second term of (9.13) is the non-conformity error, that is roughly speaking, how

far ZH is from the divergence free subspace of H1
0 (Ω).

9.2.2.2 Interpolant properties

We note δε the difference between the velocity uε and its interpolant wh, defined in (7.17), i.e.

δε = uε −wh. In what follows, we emphasize two important properties of δε, summarized in

Theorem 9.32.
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Theorem 9.32. For any element T ⊂ TH and for any polynomial ΠT
n−1 ∈

(
Pn−1(T )

)d
,∫

T∩Ωε

δε ·ΠT
n−1 = 0. (9.14)

For any element T ⊂ TH and face F ⊂ ∂T , for any polynomial ΠF
n ∈ (Pn(F ))

d,∫
F∩Ωε

δε ·ΠF
n = 0. (9.15)

Proof. First, let T be an element of TH and let ΠT
n−1 be a polynomial in

(
Pn−1(T )

)d
. It follows

∫
T∩Ωε

δε ·ΠT
n−1 =

∫
T∩Ωε

uε ·ΠT
n−1 −

[ ∑
F∈FH

s∑
i=1

(∫
F∩Ωε

uε · ωF,i

)(∫
T∩Ωε

ΦF,i ·ΠT
n−1

)

+
∑

K∈TH

r∑
l=1

(∫
K∩Ωε

uε ·φK,l

)(∫
T∩Ωε

ΨK,l ·ΠT
n−1

)]
.

Now since

∫
T∩Ωε

ΦF,i ·ΠT
n−1 = 0 for all F ∈ FH and 1 ≤ i ≤ s, it comes

∫
T∩Ωε

δε ·ΠT
n−1 =

∫
T∩Ωε

uε ·ΠT
n−1 −

∑
K∈TH

r∑
l=1

(∫
K∩Ωε

uε ·φK,l

)(∫
T∩Ωε

ΨK,l ·ΠT
n−1

)

Now, we consider ΠT
n−1 = φT,j ∈ (Pn−1(T ))

d, the (φT,j)j being the weighting functions asso-

ciated with elements in the high-order MsFEM, which leads to∫
T∩Ωε

δε ·φT,j =

∫
T∩Ωε

uε ·φT,j −
∑

K∈TH

r∑
l=1

(∫
K∩Ωε

uε ·φK,l

)(∫
T∩Ωε

ΨK,l ·φT,j

)

=

∫
T∩Ωε

uε ·φT,j −
∑

K∈TH

r∑
l=1

(∫
K∩Ωε

uε ·φK,l

)
δl,jδT,K

=

∫
T∩Ωε

uε ·φT,j −
∫
T∩Ωε

uε ·φT,j

= 0.

Since
(
φT,j

)
j
is a basis of

(
Pn−1(T )

)d
, we have, for all polynomials ΠT

n−1 ∈
(
Pn−1(T )

)d
,∫

T∩Ωε

δε ·ΠT
n−1 = 0

which proves (9.14).
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Then, let F be an element of FH and let ΠF
n be a polynomial in (Pn(F ))

d. It follows

∫
F∩Ωε

δε ·ΠF
n =

∫
F∩Ωε

uε ·ΠF
n −

[ ∑
E∈FH

s∑
i=1

(∫
E∩Ωε

uε · ωE,i

)(∫
F∩Ωε

ΦE,i ·ΠF
n

)

+
∑
T∈TH

r∑
l=1

(∫
T∩Ωε

uε ·φT,l

)(∫
F∩Ωε

ΨT,l ·ΠF
n

)]
.

Since

∫
F
ΨT,l ·ΠF

n = 0 for all T ∈ TH and 1 ≤ l ≤ r, it comes

∫
F∩Ωε

δε ·ΠF
n =

∫
F∩Ωε

uε ·ΠF
n −

∑
E∈FH

s∑
i=1

(∫
E∩Ωε

uε · ωE,i

)(∫
F∩Ωε

ΦE,i ·ΠF
n

)
.

We consider ΠF
n = ωF,j ∈ (Pn(F ))

d, the (ωF,j)j being the weighting functions associated with

faces in the local problems. It follows∫
F∩Ωε

δε · ωF,j =

∫
F∩Ωε

uε · ωF,j −
∑

E∈FH

s∑
i=1

(∫
E∩Ωε

uε · ωE,i

)(∫
F∩Ωε

ΦE,i · ωF,j

)

=

∫
F∩Ωε

uε · ωF,j −
∑

E∈FH

s∑
i=1

(∫
E∩Ωε

uε · ωE,i

)
δijδEF

=

∫
F∩Ωε

uε · ωF,j −
∫
F∩Ωε

uε · ωF,j

= 0.

Since
(
ωF,i

)
i
is a basis of

(
Pn(F )

)d
, we have, for all ΠF

n ∈ (Pn(F ))
d,∫

F∩Ωε

δ ·ΠF
n = 0,

which proves (9.15).

Remark 9.33. These properties can be re-written as follows. For any element T ⊂ TH and

face F ⊂ ∂T , we have, for all ΠF
n ∈

(
Pn(F )

)d
and for all ΠT

n−1 ∈
(
Pn−1(T )

)d
,∫

F∩Ωε

wh ·ΠF
n =

∫
F∩Ωε

uε ·ΠF
n ,

and ∫
T∩Ωε

wh ·ΠT
n−1 =

∫
T∩Ωε

uε ·ΠT
n−1.
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Lemma 9.34. The interpolant wh, defined in (7.17), belongs to the space ZH , where the

space ZH is defined as

ZH = {v ∈ VH such that divH v = 0, ∀T ∈ TH}.

Proof. By construction, we have clearly wh ∈ VH . Besides, it is easy to see that wh ∈ ZH .

Indeed, we have, for all P T
n ∈ Pn(T ),∫

T∩Ωε

divwh P
T
n =

∫
∂T∩Ωε

P T
n n ·wh −

∫
T∩Ωε

wh ·∇P T
n ,

by integration by parts. Since P T
n n|∂T ∈

(
Pn(F )

)d
and ∇P T

n ∈
(
Pn−1(T )

)d
, it follows∫

T∩Ωε

divwh P
T
n =

∫
∂T∩Ωε

P T
n n · uε −

∫
T∩Ωε

uε ·∇P T
n

=

∫
T∩Ωε

divuε P
T
n

= 0,

by integration by parts in the second line and using the fact divuε = 0 in the last line. Now,

noting that divwh ∈ Pn(T ), it comes that divwh = 0 in T ∩ Ωε for T ∈ TH , which concludes

the proof.

Using Lemma 9.34 allows to eliminate the pressure unknown from (7.14) by introducing the

space ZH . Therefore, (7.14) is equivalent to find uH ∈ ZH such that

∑
T∈TH

∫
T∩Ωε

∇uH ·∇v =
∑
T∈TH

∫
T∩Ωε

f · v ∀v ∈ ZH .

9.2.3 Error estimate for velocity in perforated domains

9.2.3.1 Approximation error in perforated domains

We recall that δε is defined as δε = uε−wh, where uε is the velocity and wh is its interpolant.

First, we have

cH(δε, δε) =
∑
T∈TH

∫
T∩Ωε

∇(uε −wh) ·∇δε

=
∑
T∈TH

∫
T∩Ωε

∇(uε −wh) ·∇δε +
∫
T∩Ωε

qh div δε

=
∑
T∈TH

∫
T∩Ωε

∇uε ·∇δε +
∫
T∩Ωε

(
∆wh −∇qh

)
· δε −

∫
∂T∩Ωε

(
∇wh − qhI

)
n · δε,

where we have considered div δε = 0 in the element T in the second line to introduce the term qh

and made an integration by parts in the third line.
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Now, since (−∆wh +∇qh) ∈
(
Pn−1(T )

)d
, ∀T ∈ TH , and (∇wh − qhI)n ∈

(
Pn(F )

)d
, ∀F ∈ FH ,

using Theorem 9.32, we observe that the quantity cH(δε, δε) is reduced to

cH(δε, δε) =
∑
T∈TH

∫
T∩Ωε

∇uε ·∇δε. (9.16)

To handle expression (9.16) we introduce quantities which come from the homogeneisation of

the Stokes problem. First, we introduce ε2u2, where u2(x, y) = ωi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
from

(6.7) (we eliminate the viscosity ν in this chapter), the first term of the asymptotic expansion

of the velocity uε, which leads to

cH(δε, δε) =
∑
T∈TH

∫
T∩Ωε

∇uε ·∇δε

=
∑
T∈TH

∫
T∩Ωε

∇(uε − ε2u2) ·∇δε +
∫
T∩Ωε

ε2∇u2 ·∇δε

=
∑
T∈TH

∫
T∩Ωε

∇(uε − ε2u2) ·∇δε −
∫
T∩Ωε

ε2∆u2 · δε +
∫
∂T∩Ωε

ε2∇u2 n · δε,

(9.17)

by integration by parts in the third line.

Now, to handle the second term of the third line of (9.17), we make appear the residual Fε

due to homogenization introduced in Lemma 6.28. To do this, we introduce the source term f

and the quantity pε,1, defined as pε,1 = p∗ + εp1 (see (6.34)), the expansion of the pressure pε

at the order 1 in ε, with p1(x, y) = πi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
from (6.7). We remark first, since

div δε = 0 in the element T , that∫
T∩Ωε

∇pε,1 · δε =

∫
T∩Ωε

∇p∗ · δε +
∫
∂T∩Ωε

εp1n · δε.

Introducing these terms leads to

cH(δε, δε) =
∑
T∈TH

(∫
T∩Ωε

∇(uε − ε2u2) ·∇δε −
∫
T∩Ωε

(f + ε2∆u2 −∇pε,1) · δε

+

∫
T∩Ωε

(f −∇p∗) · δε +
∫
∂T∩Ωε

(ε2∇u2 − εp1I)n · δε
)

=
∑
T∈TH

(∫
T∩Ωε

∇(uε − ε2u2) ·∇δε −
∫
T∩Ωε

Fε · δε

+

∫
T∩Ωε

(f −∇p∗) · δε +
∫
∂T∩Ωε

(ε2∇u2 − εp1I)n · δε
)
.

(9.18)

Now, we bound separately the four terms, appearing in the right-hand side of (9.18), using

estimates derived from homogenization of the Stokes equations (see Chapter 6).

First term of approximation error To bound the first term on the right-hand side of (9.18)

we apply the Cauchy–Schwarz inequality, and then use homogenization bounds introduced in
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Theorem 6.9, which leads to∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇(uε − ε2u2) ·∇δε

∣∣∣∣∣∣ ≤ Cε√ε∥f −∇p∗∥H2(Ω) |δε|H,1 . (9.19)

Second term of approximation error For the second term on the right-hand side of (9.18),

we use the convergence result for the residual Fε due to the homogenization established in (6.44)

and the Poincaré inequality in perforated domains (Lemma 9.24), which leads to∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

Fε · δε

∣∣∣∣∣∣ ≤ Cε |δε|H,1

√
ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω). (9.20)

Remark 9.35. One may think that we can remove from the term Fε its projection on the

polynomial space (Pn−1(T ))
d, i.e. considering the term Πn−1

H Fε which vanished against the

term δε. However this method will not improve the error estimate since terms of order ε−n

will appear due to the derivation of the oscillating term Fε.

Third term of approximation error We note that the third term on the right-hand side

of (9.18) involves the non-oscillating term (f −∇p∗). We can consider thus its projection in

the polynomial space (Pn−1(T ))
d, i.e. the term Πn−1

H (f −∇p∗), by taking advantage that δε is

orthogonal to any polynomial in (Pn−1(T ))
d. We have consequently,∣∣∣∣∣∣

∑
T∈TH

∫
T∩Ωε

(f −∇p∗) · δε

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

(
(f −∇p∗)−Πn−1

H (f −∇p∗)
)
· δε

∣∣∣∣∣∣
≤
∑
T∈TH

(∫
T∩Ωε

(
(f −∇p∗)−Πn−1

H (f −∇p∗)
)2) 1

2
(∫

T∩Ωε

δε
2

) 1
2

≤
∑
T∈TH

∥(f −∇p∗)−Πn−1
H (f −∇p∗)∥L2(T )∥δε∥L2(T∩Ωε),

using the Cauchy–Schwarz inequality in the second line. Now using Lemma 9.7 and the Poincaré

inequality in perforated domains (Lemma 9.22), it follows∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

(f −∇p∗) · δε

∣∣∣∣∣∣ ≤
∑
T∈TH

Hn∥f −∇p∗∥Hn(T )Cε∥∇δε∥L2(T∩Ωε)

≤ CεHn

 ∑
T∈TH

∥f −∇p∗∥2Hn(T )

1/2 ∑
T∈TH

∥∇δε∥2L2(T∩Ωε)

1/2

≤ CεHn∥f −∇p∗∥Hn(Ω) |δε|H,1 ,

(9.21)

where we have used the discrete Cauchy–Schwarz inequality in the second term and then summed

over cells.
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Fourth term of approximation error To handle the fourth term on the right-hand side of

(9.18), we use the expressions of u2 and p1. Consequently, ∀T ∈ TH , we have∣∣∣∣∫
∂T∩Ωε

(
ε2∇u2 − εp1I

)
n · δε

∣∣∣∣
=

∣∣∣∣∫
∂T∩Ωε

(
ε2∇

(
ωi

(x
ε

))
(fi − ∂ip∗) + ε2ωi

(x
ε

)
∇(fi − ∂ip∗)− επi(fi − ∂ip∗)I

)
n · δε

∣∣∣∣
=

∣∣∣∣∫
∂T∩Ωε

(
ε2

1

ε
(∇yωi)

(x
ε

)
(fi − ∂ip∗) + ε2ωi

(x
ε

)
∇(fi − ∂ip∗)− επi(fi − ∂ip∗)I

)
n · δε

∣∣∣∣
≤
∫
∂T∩Ωε

(
|ε (∇yωi)

(x
ε

)
(fi − ∂ip∗)|+ |ε2ωi

(x
ε

)
∇(fi − ∂ip∗)|+ |επi(fi − ∂ip∗)|

)
|δε|.

where for the sake of clarity, the partial derivative with respect to xi is simply denoted by ∂i.

Now, we note that the terms ∇yωi, ωi and πi are bounded, which allows to write, ∀T ∈ TH ,∣∣∣∣ ∫
∂T∩Ωε

(
∇ε2u2 − εp1I

)
n · δε

∣∣∣∣ ≤ C ∫
∂T∩Ωε

(
|ε(fi − ∂ip∗)|+ |ε2∇(fi − ∂ip∗)|

)
|δε|

≤ C

((∫
∂T∩Ωε

|ε(fi − ∂ip∗)|2
) 1

2

+

(∫
∂T∩Ωε

|ε2∇(fi − ∂ip∗)|2
) 1

2

)(∫
∂T∩Ωε

|δε|2
) 1

2

≤ C∥δε∥L2(∂T∩Ωε)

(
ε∥f −∇p∗∥L2(∂T ) + ε2∥∇(f −∇p∗)∥L2(∂T )

)
,

using the Cauchy–Schwarz inequality in the second line. Now using the Trace inequality in

perforated domains (Lemma 9.21) and the classical Trace inequality (Lemma 9.6), it follows,

∀T ∈ TH ,∣∣∣∣ ∫
∂T∩Ωε

(
ε2∇u2 − εp1I

)
n · δε

∣∣∣∣ ≤ C√ε|δε|H1(T∩Ωε)ε

(
1

H
∥f −∇p∗∥2L2(T )

+H∥∇(f −∇p∗)∥2L2(T ) +
ε

H
∥∇(f −∇p∗)∥2L2(T ) + εH∥∇∇(f −∇p∗)∥2L2(T )

) 1
2

≤ Cε
√

ε

H
|δε|H1(T∩Ωε)∥f −∇p∗∥H2(T ),

where we have consideredH ≤ H−1 to reach the last inequality. Now, by summing over elements,

we have∣∣∣∣ ∑
T∈TH

∫
∂T∩Ωε

(
ε2∇u2 − εp1I)

)
n · δε

∣∣∣∣ ≤ Cε√ ε

H

∑
T∈TH

|δε|H1(T∩Ωε)∥f −∇p∗∥H2(T )

≤ Cε
√

ε

H

 ∑
T∈TH

|δε|2H1(T∩Ωε)

 1
2
 ∑

T∈TH

∥f −∇p∗∥2H2(T )

 1
2

≤ Cε
√

ε

H
|δε|H,1 ∥f −∇p∗∥H2(Ω),

(9.22)

using the discrete Cauchy–Schwarz inequality.
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Conclusion of approximation error Finally, by regrouping estimates (9.19) to (9.22), we

conclude that

|δε|H,1 ≤ CεH
n∥f −∇p∗∥Hn(Ω) + Cε

(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

≤ Cε
[(√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω) +Hn∥f −∇p∗∥Hn(Ω)

]
.

(9.23)

9.2.3.2 Non conformity error in perforated domains

We turn now to the non conformity error defined in the Strang Lemma (Lemma 9.31). We

consider first the following quantity,

aH(uε,wh)− FH(wh) =
∑
T∈TH

∫
T∩Ωε

∇uε ·∇wh −
∑
T∈TH

∫
T∩Ωε

f ·wh.

Now, by noting that divwh = 0 in any element T , we apply the same procedure as for deriving

the approximation error, which leads to

aH(uε,wh)− FH(wh) =
∑
T∈TH

(∫
T∩Ωε

∇(uε − ε2u2) ·∇wh −
∫
T∩Ωε

Fε ·wh

+

∫
∂T∩Ωε

(∇ε2u2 + εp1I)n ·wh −
∫
T∩Ωε

∇p∗ ·wh

)
.

(9.24)

We bound the first three terms appearing on the right-hand side of (9.24) using estimates already

shown for the approximation error, i.e. (9.19), (9.20) and (9.22).

To bound the last term on the right-hand side of (9.24), we use the operator InH as constructed

in Lemma 9.8 and observe that, ∀T ∈ TH ,∫
T∩Ωε

∇InHp
∗ ·wh = −

∫
T∩Ωε

InHp
∗ divwh +

∫
∂T∩Ωε

InHp
∗n · [[wh]] = 0.

It follows consequently,∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇p∗ ·wh

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

(∇p∗ −∇InHp
∗) ·wh

∣∣∣∣∣∣
≤
∑
T∈TH

(∫
T∩Ωε

(
∇(p∗ − InHp∗)

)2
) 1

2 (∫
T∩Ωε

wh
2

) 1
2

≤
∑
T∈TH

|p∗ − InHp∗|H1(T )∥wh∥L2(T∩Ωε),

with the Cauchy–Schwarz inequality. Now, applying the discrete Cauchy–Schwarz inequality
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and summing over elements, it follows

∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇p∗ ·wh

∣∣∣∣∣∣ ≤
 ∑

T∈TH

|p∗ − InHp∗|2H1(T )

 1
2
 ∑

T∈TH

∥wh∥2L2(T∩Ωε)

 1
2

≤ C|p∗ − InHp∗|H1(Ω)∥wh∥L2(Ωε).

Now, using Lemma 9.8 and the Poincaré inequality in perforated domains (Lemma 9.24), it

follows ∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇p∗ ·wh

∣∣∣∣∣∣ ≤ CHn|p∗|Hn+1(Ω)ε |wh|H,1 .

Gathering the estimates for the four terms apprearing on the right-hand side of (9.24), we

conclude that

sup
wh∈ZH

|FH(wh)− aH(uε,wh)|
∥wh∥VH

≤ Cε
[(√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω) +Hn|p∗|Hn+1(Ω)

]
.

(9.25)

9.2.3.3 Conclusion of error estimate for velocity

Finally, combining the approximation error (9.23) and the non-conformity error (9.25), we con-

clude that

|uε − uH |H,1 ≤ inf
wh∈ZH

|uε −wh|H,1 + sup
wh∈ZH

|FH(wh)− aH(uε,wh)|
|wh|H,1

≤ Cε
[(√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω) +Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω)

]
.

(9.26)

9.2.4 Error estimate for pressure in perforated domains

We now turn to the error estimation for pressure. In order to obtain an error estimate for

pressure, we consider the pressure p∗H defined as

p∗H = Πn
HI

n
Hp

∗ ∈MH

i.e. the L2-orthogonal projection of InHp
∗ on MH . Using the triangle inequality, it follows

∥pε − pH∥L2(Ωε) = ∥p∗ − pε + pH − p∗∥L2(Ωε)

≤ ∥p∗ − pε∥L2(Ωε) + ∥pH − p∗∥L2(Ωε).
(9.27)

First, we bound the first term and then the second term appearing in the right-hand side of

(9.27).
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First term of (9.27) To bound the first term on the right-hand side of (9.27), we use the

interpolation estimates given in Lemmas 9.7 and 9.8 and homogenization bounds given in The-

orem 6.9, leading to

∥p∗H − pε∥L2(Ωε) = ∥Πn
HI

n
Hp

∗ − pε∥L2(Ωε)

= ∥Πn
HI

n
Hp

∗ −Πn
Hp

∗ +Πn
Hp

∗ − p∗ + p∗ − pε∥L2(Ωε)

≤ ∥Πn
H (InHp

∗ − p∗)∥L2(Ω) + ∥Πn
Hp

∗ − p∗∥L2(Ω) + ∥p∗ − pε∥L2(Ωε)

≤ ∥InHp∗ − p∗∥L2(Ω) + ∥Πn
Hp

∗ − p∗∥L2(Ω) + ∥p∗ − pε∥L2(Ωε)

≤ CHn+1|p∗|Hn+1(Ω) + CHn+1|p∗|Hn+1(Ω) + C
√
ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω),

which allows to conclude that

∥p∗H − pε∥L2(Ωε) ≤ C
(
Hn+1|p∗|Hn+1(Ω) +

√
ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
. (9.28)

Second term of (9.27) To bound the second term of the pressure estimation (9.27), we use

the velocity vH as defined in Lemma 9.26 which leads to

∥pH − p∗H∥2L2(Ωε)=

∫
Ωε

(pH − p∗H)(pH − p∗H) =
∑
T∈TH

∫
T∩Ωε

(pH − p∗H) div vH . (9.29)

To bound (9.29), we consider first the weak form of the problem and we introduce successively

terms from homogenization to make appear already known quantities.

First, considering the weak form of the problem leads to

∥pH − p∗H∥2L2(Ωε)=
∑
T∈TH

∫
T∩Ωε

∇uH ·∇vH −
∫
T∩Ωε

f · vH −
∫
T∩Ωε

p∗H div vH .

Then, we introduce the velocity uε, which leads to

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇uε ·∇vH

−
∫
T∩Ωε

f · vH −
∫
T∩Ωε

p∗H div vH

)
.

Next, we introduce the term ε2u2, the first term of the asymptotic expansion of the velocity uε,

which leads to

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

+

∫
T∩Ωε

ε2∇u2 ·∇vH −
∫
T∩Ωε

f · vH −
∫
T∩Ωε

p∗H div vH

)
.
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By integration by parts, it follows

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

−
∫
T∩Ωε

(f + ε2∆u2) · vH +

∫
∂T∩Ωε

ε2∇u2 n · vH −
∫
T∩Ωε

p∗H div vH

)
.

To make appear the residual due to the homogenization, we introduce the quantity pε,1, the

expansion of the pressure pε at the order 1 in ε as defined in (6.34).

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

−
∫
T∩Ωε

(f + ε2∆u2 −∇pε,1) · vH +

∫
∂T∩Ωε

ε2∇u2 n · vH

−
∫
T∩Ωε

∇pε,1 · vH −
∫
T∩Ωε

p∗H div vH

)
.

Finally we introduce the term p∗, which leads to

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

−
∫
T∩Ωε

Fε · vH +

∫
∂T∩Ωε

ε2∇u2 n · vH −
∫
T∩Ωε

∇(pε,1 − p∗) · vH

−
∫
T∩Ωε

∇p∗ · vH −
∫
T∩Ωε

p∗H div vH

)
.

By integration by parts, it follows

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

−
∫
T∩Ωε

Fε · vH +

∫
∂T∩Ωε

(ε2∇u2 − (pε,1 − p∗)I) n · vH

+

∫
T∩Ωε

(pε,1 − p∗) div vH −
∫
T∩Ωε

∇p∗ · vH −
∫
T∩Ωε

p∗H div vH

)
.

Now, we introduce the term InHp
∗, where InH is the operator defined in Lemma 9.8, which leads,

at the end, to

∥pH − p∗H∥2L2(Ωε) =
∑
T∈TH

(∫
T∩Ωε

∇(uH − uε) ·∇vH +

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

−
∫
T∩Ωε

Fε · vH +

∫
∂T∩Ωε

(ε2∇u2 − (pε,1 − p∗)I) n · vH

+

∫
T∩Ωε

(pε,1 − p∗) div vH −
∫
T∩Ωε

∇(p∗ − InHp∗) · vH

−
∫
T∩Ωε

∇InHp
∗ · vH −

∫
T∩Ωε

p∗H div vH

)
.

(9.30)

Now, we remark that the last two terms on the right-hand side of (9.30) cancel each other.
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Indeed, by integration by parts and using the definition of p∗H , we have

−
∑
T∈TH

∫
T∩Ωε

∇(InHp
∗) · vH −

∑
T∈TH

∫
T∩Ωε

p∗H div vH

=
∑
T∈TH

∫
T∩Ωε

InHp
∗ div vH −

∑
F∈FH

∫
F∩Ωε

InHp
∗ [[n · vH ]]−

∑
T∈TH

∫
T∩Ωε

Πn
HI

n
Hp

∗ div vH

= −
∑

F∈FH

∫
F∩Ωε

InHp
∗ [[n · vH ]] +

∑
T∈TH

∫
T∩Ωε

(I −Πn
H)(InHp

∗) div vH .

Now, given [[n · vH ]] is orthogonal to any polynomials of degree ≤ n on the faces, we have

∑
F∈FH

∫
F∩Ωε

InHp
∗ [[n · vH ]] = 0,

and given Πn
H is defined as the L2-orthogonal projection on MH , (I −Πn

H) is orthogonal to any

polynomial in MH and by recalling that div vH ∈MH , we have

∑
T∈TH

∫
T∩Ωε

(I −Πn
H)(InHp

∗) div vH = 0,

which allows to conclude that∑
T∈TH

∫
T∩Ωε

∇(InHp
∗) · vH −

∑
T∈TH

∫
T∩Ωε

p∗H div vH = 0.

Then, we bound the other terms appearing in the right-hand side of (9.30), using estimates

already shown in the estimation of velocity error.

For the first term on the right-hand side of (9.30), we use the Cauchy–Schwarz inequality, then

the discrete Cauchy–Schwarz inequality and sum over the elements. We conclude by using the

error bound for velocity (see (9.26)), which leads to∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇(uH − uε) ·∇vH

∣∣∣∣∣∣ ≤ C |uH − uε|H,1 |vH |H,1 . (9.31)

For the second term on the right-hand side of (9.30), we use first the Cauchy–Schwarz inequality,

then the discrete Cauchy–Schwarz inequality and sum over the elements. We conclude by using

the homogenization bound for velocity (see Theorem 6.9), which leads to∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇(uε − ε2u2) ·∇vH

∣∣∣∣∣∣ ≤ C ∣∣uε − ε2u2

∣∣
H,1
|vH |H,1

≤ Cε
√
ε∥f −∇p∗∥H2(Ωε)∩C1,α(Ωε) |vH |H,1 .

(9.32)
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For the third term on the right-hand side of (9.30), similar arguments as for (9.20) leads to∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

Fε · vH

∣∣∣∣∣∣ ≤ Cε√ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω) |vH |H,1 . (9.33)

For the fourth term on the right-hand side of (9.30), we have as for (9.22),∣∣∣∣∣∣
∑
T∈TH

∫
∂T∩Ωε

(∇ε2u2 − (pε,1 − p∗)I) n · vH

∣∣∣∣∣∣ ≤ Cε
√

ε

H
∥f −∇p∗∥H2(Ω) |vH |H,1 . (9.34)

For the fifth term of the right-hand side of (9.30), considering

pε,1 − p∗ = εp1(x, y) = επi(y)

(
fi(x)−

∂p∗

∂xi
(x)

)
,

and that πi is bounded, we have by using first the Cauchy–Schwarz inequality, then the discrete

Cauchy–Schwarz inequality and sum over the elements,∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

(pε,1 − p∗) div vH

∣∣∣∣∣∣ ≤ Cε∥f −∇p∗∥H2(Ω)∥ divH vH∥L2(Ωε)

≤ Cε∥f −∇p∗∥H2(Ω)∥pH − p∗H∥L2(Ωε)

≤ C
√
ε∥f −∇p∗∥H2(Ω)∥pH − p∗H∥L2(Ωε),

(9.35)

where the second line is given by Lemma 9.26. For the sixth term on the right-hand side of

(9.30), we use first the Cauchy–Schwarz inequality, then the discrete Cauchy–Schwarz inequality

and sum over the elements. We conclude by using Lemma 9.8 and the Poincaré inequality in

perforated domains (Lemma 9.24), which leads to∣∣∣∣∣∣
∑
T∈TH

∫
T∩Ωε

∇(p∗ − InHp∗) · vH

∣∣∣∣∣∣ ≤ ∥∇(p∗ − InHp∗)∥L2(Ωε) ∥vH∥L2(Ωε)

≤ |p∗ − InHp∗|H1(Ωε) ∥vH∥L2(Ωε)

≤ Hn|p∗|Hn+1(Ωε)ε |vH |H,1 .

Grouping all the estimates (9.31) to (9.35), it comes

∥pH − p∗H∥2L2(Ωε) ≤ Cε
((√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

+Hn|p∗|Hn+1(Ωε) +Hn∥f −∇p∗∥Hn(Ω)

)
|vH |H,1

+ C
√
ε∥f −∇p∗∥H2(Ω)∥pH − p∗H∥L2(Ωε).

204



9.2. Proof of Theorem 9.27 (Error estimate)

Now, using |vH |H,1 ≤
C

ε
∥pH − p∗H∥L2(Ωε) from Lemma 9.26, it comes

∥pH − p∗H∥2L2(Ωε) ≤ C
((√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

+Hn|p∗|Hn+1(Ωε) +Hn∥f −∇p∗∥Hn(Ω)

)
∥pH − p∗H∥L2(Ωε),

which allows to conclude that

∥pH − p∗H∥L2(Ωε) ≤ C
((√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

+Hn|p∗|Hn+1(Ω) +Hn∥f −∇p∗∥Hn(Ω)

)
.

(9.36)

Now, from (9.27), (9.28) and (9.36), we get

∥pε − pH∥L2(Ωε) ≤ C
(
Hn+1|p∗|Hn+1(Ωε) +

√
ε∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
+ C

((√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

+Hn|p∗|Hn+1(Ωε) +Hn∥f −∇p∗∥Hn(Ω)

)
.

Noting that Hn+1 < Hn, we conclude that

∥pε − pH∥L2(Ωε)

≤ C
((√

ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω) +Hn|p∗|Hn+1(Ω) +Hn∥f −∇p∗∥Hn(Ω)

)
.

(9.37)

Now, gathering the estimates for velocity error (9.26) and pressure error (9.37), we reach the

estimate (9.12) given in Theorem 9.27, i.e,

|uε − uH |H,1 + ε∥pε − pH∥L2(Ωε)

≤ Cε
(
Hn∥f −∇p∗∥Hn(Ω) +Hn|p∗|Hn+1(Ω) +

(√
ε+

√
ε

H

)
∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

)
.

205





Chapter 10

Perspective for MsFEM applied to

the Stokes problem: ideas for

deriving an a posteriori error

estimate

10.1 Motivations

In a multi-scale framework, one important tool is the a posteriori error estimate. In particular,

it allows to identify an appropriate trade-off between accuracy and computational cost of the

multi-scale simulations. For example for the MsFEM, it allows to choose between decreasing the

fine mesh size h or the coarse mesh size H to reach a given accuracy. Several works have studied

a posteriori error estimates for incompressible flows in the framework of multi-scale methods.

We can cite, for example, [21, 18] which derived an a posteriori error estimate respectively for

the Stokes and Brinkman equations and the Oseen equations for the Multi-scale Hybrid-Mixed

(MHM) method, or [5] which established an a posteriori error estimate for the Stokes flow

in porous media for the Heterogeneous Multi-scale Method (HMM). However, concerning the

Multi-scale Finite Element Method (MsFEM) a posteriori error estimates have been developed

only for elliptic problems [99]. One of the most advanced work in this field is [46]. However, we

can hardly follow the methodology proposed in [46] to develop an a posteriori error estimation

for MsFEM for the Stokes problem since we cannot recast the MsFEM developed under a unified

formulation for coarse-scale and fine-scale computations (in particular due to the presence of

Lagrange multipliers). The main idea of a posteriori error estimates for MsFEM is to decompose

the error total, in a microscopic error emicro, which comes from the computation of the basis

functions and a macroscopic error emacro, which comes from the computation of the global

problem on the coarse mesh, i.e. etotal = emicro + emacro. The aim is not to get a certified

estimator for the error stemming from using a finite value h for the fine mesh size, but to

develop a methodology to assess the fine scale and coarse scale computations and to get an

approximation respectively of emicro and emacro.

Due to this absence of work for deriving a posteriori error estimates for MsFEMs for incom-
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pressible flows, as starting point, the purpose of this chapter is to take ideas from the derivation

of a posteriori error estimates for classical non-conforming finite element method. Indeed, we

recall that, the presented MsFEM of lowest order (n = 0), in absence of obstacles, allows to re-

cover the classical non-conforming Crouzeix–Raviart finite element. In this chapter, we present

the method for deriving a posteriori error estimates for the Stokes problem presented in [90].

This paper presents an unified framework to derive an a posteriori error for the Stokes problem

which works for a large class of method. In particular, this framework works for non-conforming

finite element such as the Crouzeix–Raviart element, and it is based on (H1
0 (Ω))

d-conforming

velocity reconstruction and H( div ,Ω)-conforming locally conservative flux.

10.2 Problem presentation

We consider the classical Stokes problem (7.1) with homogeneous boundary conditions. The

main idea of this methodology, is to introduce a “stress” tensor σ ∈ H( div ,Ω), which allows

to write the Stokes problems as a system consisting of the “constitutive law”

σ = ∇u− pI, (10.1)

the equilibrium equation

divσ + f = 0, (10.2)

and the divergence free constraint

divu = 0,

where I is the identity matrix d× d.

10.3 Estimator

In this part, we present the estimators that can be used for the a posteriori error estimates. We

consider an approximation (uH , pH) ∈ VH ×MH of the Stokes problem. The velocity uH can

be non-conforming (uH ̸∈ V ) and non divergence free. Let σH ∈H( div ,Ω). We introduce the

following estimators:

� Residual estimator

ηR,T = cP,THT ∥divσH + f∥T

where CP,T is the constant from the Poincaré inequality, related to the possible violation

of the equilibrium equation (10.2) in the approximate solution.

� Diffusive flux estimator

ηDF,T = ∥∇uH − pHI − σH∥T

related to the fact that the constitutive law (10.1) is not satisfied exactly by the approxi-

mate solution.
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� The non-conformity estimator

ηNC,T = ∥∇(uH − sH)∥T

where sH is arbitrary in V , that estimates the fact that uH is not necessarily in V .

� The divergence free estimator

ηD,T =
∥ div sH∥T

β

related to the divergence-free constraint.

The key for the a posteriori error estimates is to construct a flux (stress field) σH ∈H( div ,Ω)

that approximates the local equilibrium i.e. satisfying (10.3), which reads

( divσH + f , ei)T = 0, i = 1, . . . , d, ∀T ∈ TH (10.3)

Then according to [90] the following error holds.

Theorem 10.1 (Estimate for general approximation). Let (u, p) ∈ V ×M be the weak solution

to the Stokes problem. Let (uH , pH) ∈ VH ×MH be arbitrary. Choose an arbitrary sH ∈ V
and σH ∈H( div ,Ω) which satisfies (10.3). Then, it holds

|||(u− uH , p− pH)||| ≤

 ∑
T∈TH

η2NC,T

1/2

+
1

Cs

 ∑
T∈TH

[
(ηR,T + ηDF,T )

2 + η2D,T

]1/2

where

|||(u, p)||| := ∥∇u∥2 + β2∥q∥2,

with β the constant from the inf-sup condition.

In [90], the methodology to construct the flux σH is presented for the Crouzeix–Raviart

element. This allows us to have an a posteriori error estimate for the MsFEM applied to the

Stokes problem at the order n = 0 in a domain without obstacles. For future work along these

lines, it must be studied how the presence of obstacles in the domain affects this methodology.

What is more, during this thesis, we have specified the construction of the flux σH for high-

order Crouzeix–Raviart element. We do not present the calculation here, since it goes beyond

the scope of this thesis, and this is still preliminary work. This last point is motivated by the

fact that in a domain without obstacles, the space of polynomial of order n + 1 is included in

the multi-scale approximation space.
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In this introductory chapter, we study the Multi-scale Finite Element Method (MsFEM)

in the context of advection-diffusion problems in one dimension. The results presented in this

chapter are not new, and have been the subject of many works [128, 33]. The goal of this chapter

is first to emphasize the difficulty to solve Oseen type problems and second, to see how to use

this theoretical analysis to solve Oseen problems with the MsFEM.

11.1 Numerical difficulties for solving advection-diffusion prob-

lems

11.1.1 Problem definition

Through this chapter, we consider a simple one-dimensional example, inspired from [148, section

8 - page 258-260]. Let I be the interval [0, 1] ⊂ R and f ∈ L2(I) be a given function. The problem
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reads as follows. Find u : I → R solution to
−νu′′ + bu′ = f in I,

u(0) = 0,

u(1) = 1,

(11.1)

with constants ν > 0 and b > 0. For the particular right-hand side f = 0, problem (11.1) admits

for exact solution

u(x) = (eb/ν − 1)−1(ebx/ν − 1),

and exhibits a boundary layer of width O(ν/b) near to x = 1 if ν/b is small enough.

The weak formulation of problem (11.1) is to find u ∈ H1
0 (I) such that, for all w ∈ H1

0 (I),

we have

aadv(u,w) =

∫
I
fwdx, (11.2)

with

aadv(u,w) =

∫
I

(
νu′(x)w′(x) + bu′(x)w(x)

)
dx.

We note that since f ∈ L2(I), the solution u of (11.2) belongs to H2(I). Let N ∈ N∗ be a given

integer. Let the segment I be divided into N + 1 sub-intervals Ii = [xi, xi+1] of size H = 1
N+1

with i ∈ J0, NK. Let us suppose that the exact solution to (11.2) is approached by the solution

to the following discrete problem. Find uH ∈ VH such that, for all wH ∈WH , we have

aadv(uH , wH) =

∫
I
fwHdx, (11.3)

where VH (the space of trial functions) and WH (the space of test functions) are two conforming

subsets of H1
0 (I) with equal dimension to be defined.

11.1.2 Identification of instabilities through galerkin approximation and cen-

tral difference scheme

First, we consider the Galerkin approximation of (11.2), i.e. considering VH =WH . We approx-

imate (11.1) using usual Galerkin method with piecewise linear finite element (see Figure 11.1)

over a uniform grid, i.e. VH =WH =
{
φ ∈ C0(I) s.t. φ|Ii∈ P1, ∀i ∈ J0, NK

}
. Taking f = 0, the

finite element approximation leads to the following linear system

Aξ = F, (11.4)

with ξ the unknowns vector

ξ = {uH(xi)}i=1,...,N .

The matrix A is defined by

A = tridiag

(
− ν

H
− b

2
,
2ν

H
, − ν

H
+
b

2

)
,
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and the right-hand side is defined by

F =

(
0, . . . , 0,

ν

H
− b

2

)
.

Assuming that 2ν ̸= bH, we show that the solution to (11.4) is given by

ξi = uH(xi) =
(1+Pe
1−Pe)

i − 1

(1+Pe
1−Pe)

N+1 − 1
, i = 1, . . . , N, (11.5)

where Pe is the Péclet number defined by

Pe =
bH

2ν
.

If Pe > 1, then (1 + Pe)/(1 − Pe) < 0, and consequently the approximation uH exhibits an

oscillatory behaviour (see Figure 11.2). For fixed ν and b it is always possible to choose the

mesh size H small enough so that Pe < 1, thus avoiding oscillations. However, this is often

impractical if ν is very small compared to b, since one would obtain a linear system with too

many unknowns.

Another approach to highlight these instabilities, is to remark that the linear system (11.4)

is equivalent to the one obtained by approximating (11.1) by central finite difference scheme,

which reads 
−ν ui+1 − 2ui + ui−1

H2
+ b

ui+1 − ui−1

2H
= 0, for i = 1, . . . , N,

u0 = 0,

uN+1 = 1,

(11.6)

where ui is the approximation of u(xi).

Now it is easy to see that the solution will be inaccurate due to the lack of stability of the

discrete problem. Indeed, the first line of (11.6), can be rewritten as

(Pe− 1)ui+1 + 2ui − (1 + Pe)ui−1 = 0,

an equation whose product of roots of its characteristic polynomial is equal to 1+Pe
1−Pe . Conse-

quently, if Pe > 1, the characteristic polynomial has one positive root and one negative root,

resulting in instabilities in the numerical solution.
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Figure 11.1: P1 basis functions φi.
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Figure 11.2: P1 Finite Element approximations of (11.1) for different mesh size H.

To mitigate or remove these numerical instabilities, different stabilisation methods have been

developed in the literature for such problems. In the next section, we study a first way to mitigate

the instabilities using an upwind finite difference method, which can be shown to be equivalent

to a Petrov–Galerkin formulation, i.e. considering well-chosen different spaces for the trial and

test spaces.

11.1.3 First strategy of stabilisation: Petrov-Galerking formulation and Up-

wind Finite Difference

As noted in [148], the simplest stable discretization for the problem (11.1) is the upwind scheme,

defined as 
−ν ui+1 − 2ui + ui−1

H2
− bui − ui−1

H
= 0, for i = 1, . . . , N,

u0 = 0,

uN+1 = 1,

(11.7)

which admits for solution

ui =
(1 + 2Pe)i − 1

(1 + 2Pe)N+1 − 1
, i = 1, . . . , N.
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Now, it is easy to remark that ui no longer oscillates, whatever the value of the Péclet number Pe.

What is more, we remark that (11.7) is equivalent to

−ν ui+1 − 2ui + ui−1

H2
− bui+1 − ui−1

H
− bH

2

ui+1 − 2ui + ui−1

H2
= 0.

Consequently, the upwind scheme can be regarded as a stabilisation technique for the central

difference scheme (11.6) by introducing a numerical dissipation with the discretization of the

artificial viscous term −bH2 u
′′. As noted in [148], it is also possible to interpret the upwind dif-

ference scheme as a Petrov–Galerkin approximation of (11.1), with a space of trial functions VH

and a space of test functions WH that are different. The space of trial functions is chosen

as VH = X1
H ∩H1

0 (Ω) where

X1
H =

{
φ ∈ C0(I) s.t. φ|Ii∈ P1, ∀i ∈ J0, NK

}
,

To define the space of test functions WH , we consider the piecewise quadratic functions

σ2(x) =


−3x(1 + x), −1 ≤ x ≤ 0,

−3x(1− x), 0 ≤ x ≤ 1,

0, |x| ≥ 1.

We define then the finite dimensional space WH as

WH = span{ψ1, . . . , ψN},

where

ψi(x) = φi(x) + σ2(H
−1x− i), i = 1, . . . , N,

φi being the basis functions of VH corresponding to the node xi.

As conclusion, two methods for stabilising convection dominated problems have been pre-

sented. The first one is adding new terms (called stabilisation terms) in the discretization of the

problem. The second one, is using a Petrov–Galerkin formulation, i.e. using different spaces of

test and trial functions. In what follows, we focus on stabilisation techniques.

11.1.4 Stabilisation strategy

In view of (11.5), to eliminate the oscillations, one can refine the mesh so that the convection

no longer dominates at the element level. However, this is in contradiction with the paradigm

of MsFEM, whose goal is to capture macroscopic features of the problem on a rather coarse

mesh. Another approach is consequently to use stabilisation techniques. In the literature, it has

been proposed several stabilisation techniques to overcome advection-dominated regime. They

consist in adding a stabilisation term in the Galerkin formulation, by considering a new test

function w̃ as

w̃ = w + τ(Lss + ρLs)w,

where Ls : u 7→ −νu′′ and Lss : u 7→ bu′ are the symmetric part and the skew symmetric part

(provided that div b = 0) of the advection–diffusion operator L : u 7→ −νu′′ + bu′ and τ > 0 the
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stabilisation parameter. According to the value of the parameter ρ, different stabilised methods

can be recovered. If ρ = −1, we recover the DWG (Gouglas-Wang/Galerkin) method, if ρ = 1,

we recover the Galerkin/Least-Squares method (GLS), and if ρ = 0, we recover the Streamline

Upwind / Petrov-Galerkin method (SUPG).

In what follows, we focus only on the SUPG (streamline upwind / Petrov-Galerkin) formu-

lation that has been successfully applied for convection dominated problems [125, 37]. With the

SUPG formulation, the standard Galerkin test functions are modified by adding a streamline

upwind perturbation, which acts only in the flow direction, a priori eliminating the possibility of

any crosswind diffusion. The modified test functions can be applied to all terms in the equations,

resulting in a strongly consistent weighted residual formulation. The SUPG test function w̃ is

defined by

w̃ = w + τbw′,

where w is the Galerkin type test function and τ is the stabilisation parameter. One of the most

common τ is defined as

τ =
H

2|b|

(
coth(βH)− 1

βH

)
, (11.8)

with βH the Péclet number Pe.

We introduce the following bi-linear forms associated with the problem

aadv,stab(u, v) =

∫
I
τ(−νu′′ + bu′)bv′dx, (11.9)

with τ the stabilisation parameter. We introduce also the linear form

F (v) =

∫
I
fvdx.

The stabilised version of the advection–diffusion problem (11.1) is to find uH ∈ VH solution to

aadvH (uH , wH) + aadv,stabH (uH , wH) = F (wH) ∀wH ∈WH . (11.10)
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Exact Solution

P1-FE stabilised, H = 1/10

Figure 11.3: Stabilised P1 Finite Element approximation of (11.1).
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It can be seen from Figure 11.3, the stabilised finite element approximation with SUPG

method using the stabilisation parameter τ defined by (11.8) does not exhibit oscillatory be-

haviour compared to Figure 11.2.

Remark 11.1. The choice of an optimal parameter τ is a difficult and sensitive question,

since it affects the quality of the numerical approximation. The value of τ given in (11.8), is

one of the most used in the literature. It is derived in the framework of Variational Multi-scale

Methods (VMS) using Green’s function [107].

In the next section, we give an interpretation of the stabilisation parameter τ given in (11.8)

in the context of Multi-scale Finite Element Method.

11.2 Advection-Diffusion in the MsFEM context

The goal of this section is to give a justification to the choice of the parameter τ , defined

in (11.8), in the context of MsFEM. Now, instead of considering P1 finite element, we consider

well-adapted multi-scale basis functions to the problem (11.1). We suppose that VH andWH are

conforming in H1
0 (I) and defined respectively by functions satisfying the direct and the adjoint

problems on each segment Ii in the following way

VH =
{
φ ∈ C0(I),−ν(φ|Ii)′′ + b(φ|Ii)′ = 0, ∀i ∈ J0, NK

}
,

WH =
{
φ ∈ C0(I),−ν(φ|Ii)′′ − b(φ|Ii)′ = 0, ∀i ∈ J0, NK

}
.

Figures 11.4a and 11.4b represent respectively examples of basis functions in VH and WH .
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(a) Multi-scale basis functions of VH .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

φ
i(
x
)

(b) Multi-scale basis functions of WH .

Figure 11.4: Multi-scale basis functions.

The Galerkin formulation of problem (11.1) leads to the following linear system

Aadv(VH , VH)ξ = F (VH), (11.11)
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where Aadv(VH , VH) is the matrix form of (11.3) whose coefficients are given by

Ai,i−1 =
−b

1− e−
b
ν
H
,

Ai,i+1 =
−b e−

b
ν
H

1− e−
b
ν
H
,

Ai,i = |Ai,i−1|+ |Ai,i+1| = b coth

(
bH

2ν

)
.

Now, it is easy to conclude that this formulation (11.11) is always stable and no oscillations ap-

pear whatever the size of bH
ν due to the dominance of the diagonal (see for example Figure 11.5).

What is more, the following equality holds

Aadv(VH , VH) = Aadv(VH ,WH). (11.12)

where Aadv(VH ,WH) is the stiffness matrix obtained with a Petrov–Galerkin formulation of

problem (11.3). As we know that the discrete problem is well-posed with the Galerkin formu-

lation, then consequently due to (11.12), the discrete problem arising from the Petrov-Galerkin

formulation is also well-posed. The two formulations become equivalent if the right-hand side

is equal to 0. In particular, the Petrov–Galerkin formulation leads to an approximation that is

exact at the nodes (see Lemma 11.2).
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P1-FE approx.

MsFEM Galerkin approx.

Figure 11.5: MsFEM approximation compared to P1 approximation.

In the two following paragraphs, we give an interpretation of the choice of the stabilisation

parameter in the context of MsFEM and we prove that with a Petrov-Galerkin approach the

approximated solution of (11.1) is exact at the nodes.

11.2.1 Interpretation of the stabilisation parameter

Let us choose the stabilisation parameter τ as

τ =
H

2b

(
coth(βH)− 1

βH

)
, (11.13)
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with βH the Péclet number i.e.

Pe = βH =
bH

2ν
,

then the following equalities hold

Aadv(VH , VH) = Aadv(VH ,WH) = Aadv(P1,P1) +Aadv,stab(P1,P1), (11.14)

where Aadv(P1,P1) and Aadv,stab(P1,P1) are respectively the matrix forms of (11.3) and (11.9)

obtained with linear test and trial functions, which are defined by

Aadv(P1,P1) = tridiag

(
− ν

H
− b

2
,
2ν

H
, − ν

H
+
b

2

)
,

and

Aadv,stab(P1,P1) = tridiag

(
−τ b

2

H
, 2τ

b2

H
, −τ b

2

H

)
.

The equalities (11.14) allow to give an explanation to the choice of the stabilisation parameter τ .

Indeed, the choice of τ (11.13) leads to a stable formulation when discretising (11.10) with affine

piecewise polynomials. Besides, if the right-hand side is equal to 0, this choice of τ leads to

a numerical approximation that is exact at the nodes. One another important point is that

Aadv,stab(VH , VH) = 0, resulting that no stabilisation is required to solve problem (11.1) with

MsFEM.

11.2.2 High-order MsFEM and exactness of the solution

In what follows, we prove that the MsFEM Petrov–Galerkin formulation of (11.1) leads to an

approximation that is exact at the nodes. In particular, we consider a more general case by

considering an high-order MsFEM. Let k ∈ N be a given integer. We add the subscript k to

denote the approximations and the spaces, in order to emphasize their dependency regarding

to k. Let us suppose that the exact solution to (11.2) is approached by the solution to the

following discrete problem. Find uH,k ∈ VH,k such that, for all wH,k ∈WH,k, we have

aadv(uH,k, wH,k) =

∫
I
fwH,kdx,

where VH,k and WH,k are two conforming subsets of H1
0 (I) with equal dimension to be defined.

Let us now turn to the actual construction ofWH,k. Since exactness properties essentially rely on

the definition of WH,k, we start by its definition. We suppose that WH,k is conforming in H1
0 (I)

and defined by functions satisfying adjoint problems on each segment in the following way

WH,k =
{
wH,k ∈ C0(I),−ν(wH,k|Ii)′′ − b(wH,k|Ii)′ ∈ Pk−1(Ii) ∀i ∈ J0, NK

}
,

with the convention that, for the case k = 0, P−1(Ii) = {0}. Note that it is easily shown that

−ν(wH,k|Ii)′′ − a(wH,k|Ii)′ ∈ Pk−1(Ii)⇐⇒ wH,k|Ii ∈ Pk(Ii)⊕ span

{
x 7→ exp

(
−bx
ν

)}
.

We have then the following result.
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Lemma 11.2. Provided that (11.3) yields a well-posed problem and that functions in VH,k

are uniquely defined by their values at the vertices (xi)i∈J0,N+1K and by their moments against

all monomials x 7→ xq with q ∈ J0, k− 1K on each Ii with i ∈ J0, NK, the solution to (11.3) has

the following exactness properties,

uH,k(xi) = u(xi) , ∀i ∈ J0, N + 1K,∫
Ii

xquH,k|Ii(x)dx =

∫
Ii

xq(u|Ii)(x)dx , ∀i ∈ J0, NK , ∀q ∈ J0, k − 1K.

Proof. Let us detail the calculation of aadv(u,wH,k).

aadv(u,wH,k) =

N∑
i=0

∫
Ii

(
ν(u|Ii)′(x)(wH,k|Ii)′(x) + b(u|Ii)′(x)(wH,k|Ii)(x)

)
dx. (11.15)

On each interval Ii we can integrate by parts in (11.15) and, using that u ∈ H2(I) ⊂ C0(I), we
get ∫

Ii

(
ν(u|Ii)′(x)(wH,k|Ii)′(x) + b(u|Ii)′(x)(wH,k|Ii)(x)

)
dx

= νu(xi+1)(wH,k|Ii)′(xi+1) + bu(xi+1)(wH,k|Ii)(xi+1)

−
[
νu(xi)(wH,k|Ii)′(xi) + bu(xi)(wH,k|Ii)(xi)

]
+

∫
Ii

(
−ν(wH,k|Ii)′′(x)− b(wH,k|Ii)′(x)

)
(u|Ii)(x)dx.

(11.16)

Now, using the fact that functions in VH,k are uniquely defined by their values at the vertices

(xi)i∈J0,N+1K and by their moments against all monomials x 7→ xq with q ∈ J0, k − 1K on each Ii

with i ∈ J0, NK, we can define a function Πh,ku ∈ VH,k such that

Πh,ku(xi) = u(xi) ∀i ∈ J0, N + 1K,∫
Ii

xq(Πh,ku|Ii)(x)dx =

∫
Ii

xq(u|Ii)(x)dx ∀i ∈ J0, NK , ∀q ∈ J0, k − 1K.

Using this definition and the fact that (−ν(wH,k|Ii)′′ − b(wH,k|Ii)′) ∈ Pk−1(Ii) for all i ∈ J0, NK,
function u can be replaced by function Πh,ku in the right-hand side of (11.16) and integration

by parts can be performed the other way round to get

aadv(u,wH,k) = aadv(Πh,ku,wH,k) = (f, wH,k) , ∀wH,k ∈WH,k, (11.17)

the last equality being obtained using wH,k as test functions in (11.2). Now, since we have

supposed that (11.3) has a unique solution, then (11.17) proves that Πh,ku is this unique solution.

Therefore, the solution to (11.3) is such that it is exact at the vertices of the mesh and that it has

exact moments against all monomials x 7→ xq with q ∈ J0, k− 1K on each Ii with i ∈ J0, NK.

Remark 11.3. As long as we have not specified what the space VH,k is, these exactness

properties are not enough to ensure that Πh,ku is an accurate approximation of u.
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11.3 Conclusion

In this chapter, we have studied the MsFEM in the context of advection dominated problems in

one dimension. Before considering the genuine Oseen problem in two and three dimensions in the

next chapter, two main points should be kept from this chapter. The first one is that no stabili-

sation is required for MsFEM approximations of advection dominated problems since advection

is already encoded in the basis functions. The second one, is that the MsFEM Petrov–Galerkin

formulation of the advection-diffusion problem in one dimension leads to an approximation that

is exact at the nodes. The question now is to check whether these observations hold or not for

the Oseen problem. In particular, does the MsFEM Petrov–Galerkin formulation of the Oseen

problem lead to more accurate results?
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This chapter is dedicated to the extension of the Multi-scale Finite Element Method (Ms-

FEM) presented in Chapter 7 to the Oseen problem. In particular, we also propose an MsFEM

Petrov–Galerkin formulation of the Oseen problem, the trial and test functions solving respec-

tively local problems deriving from the direct and the adjoint Oseen problems. In Section 12.1,

we derive the local basis functions defined by the Oseen operator. In Section 12.2, we derive

the local basis functions defined by the Oseen adjoint operator. In Section 12.3, we explicit the

coarse Galerkin and Petrov–Galerkin formulation of the Oseen problem.

12.1 Multi-scale basis functions defined by the Oseen operator

12.1.1 Problem formulation

The steady state Oseen problem with homogeneous boundary conditions is to find the velocity

uε : Ωε → Rd and the pressure p : Ωε → R solution to

−ν∆uε + (U0 ·∇)uε +∇p = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(12.1)
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with U0 a known velocity, ν > 0 the viscosity and f a given force. We introduce the velocity

space

V = H1
0 (Ω

ε)d = {u ∈ H1(Ωε)d s.t. u|∂Ωε = 0},

and the pressure space

M = L2
0(Ω

ε) = {p ∈ L2(Ωε) s.t.

∫
Ωε

p = 0}.

We note X = V ×M . For simplicity the fluid domain is assumed to be connected in order for

the pressure to be uniquely defined inM . We introduce the bi-linear form aOs(·, ·) for the Oseen

problem

aOs(u,v) =

∫
Ωε

ν∇u ·∇v + (U0 ·∇)u · v

and the bi-linear form

b(q,v) = −
∫
Ωε

q div v.

The variational formulation of the Oseen problem is to find uε ∈ V and pε ∈M such that aOs(uε,v) + b(pε,v) =

∫
Ωε

f · v ∀v ∈ V,

b(q,uε) = 0 ∀q ∈M.
(12.2)

Theorem 3.3 guarantees the existence and uniqueness of a solution to problem (12.2). Indeed,

we introduce another continuous bi-linear form equivalent to aOs(·, ·), defined as

âOs(uε,v) =

∫
Ωε

ν∇uε ·∇v +

∫
Ωε

(U0 ·∇)uε · v

=

∫
Ωε

ν∇uε ·∇v +
1

2

∫
Ωε

(U0 ·∇)uε · v +
1

2

∫
Ωε

(U0 ·∇)uε · v

=

∫
Ωε

ν∇uε ·∇v +
1

2

∫
Ωε

(U0 ·∇)uε · v −
1

2

∫
Ωε

(U0 ·∇)v · uε −
1

2

∫
Ωε

div (U0)uε · v

=

∫
Ωε

ν∇uε ·∇v +
1

2

∫
Ωε

(U0 ·∇)uε · v −
1

2

∫
Ωε

(U0 ·∇)v · uε −
1

2

∫
Ωε

div (U0)uε · v

with uε = 0 on ∂Ω. Since the two bi-linear forms aOs(·, ·) and âOs(·, ·) are equivalent, the

coercivity of âOs(·, ·) implies the coercivity of aOs(·, ·). It is easy to observe that

âOs(uε,uε) =

∫
Ωε

ν∇uε ·∇uε −
1

2

∫
Ωε

div (U0)uε · uε ≥
∫
Ωε

ν|∇uε|2

as soon as div (U0) ≤ 0.

Remark 12.1. It is easy to show that âOs(·, ·) remains coercive if there exists α > 0 such

that

ν − 1

2
Cε∥ divU0∥∞ ≥ α

where C is the Poincaré constant.

Since the semi-norm ∥∇v∥L2(Ωε) is equivalent to the full H1 norm by Poincaré inequality, we
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12.1. Multi-scale basis functions defined by the Oseen operator

obtain that âOs(·, ·), and consequently aOs(·, ·) is elliptic on V . Besides b(·, ·) verifies the inf-sup
condition (similar as for the Stokes problem). Consequently, using Theorem 3.3, it comes that

the following variational formulation of the Oseen problem is well-posed. âOs(uε,v) + b(pε,v) =

∫
Ωε

f · v ∀v ∈ V,

b(q,uε) = 0 ∀q ∈M.

We introduce the bi-linear form ĉOs(·, ·),

ĉOs ((uε, pε), (v, q)) =

∫
Ωε

(
ν∇uε ·∇v +

1

2
(U0 ·∇)uε · v −

1

2
(U0 ·∇)v · uε −

1

2
div (U0)uε · v

)
−
∫
Ωε

pε div v −
∫
Ωε

q divuε.

The variational formulation of the Oseen problem (12.1) can be written as: find (uε, pε) ∈ V ×M
such that

ĉOs ((uε, pε), (v, q)) =

∫
Ωε

f · v ∀(v, q) ∈ V ×M. (12.3)

Theorem 3.2 guarantees the existence and uniqueness of a solution to problem (12.3).

12.1.2 The high-order Crouzeix–Raviart Multi-Scale Finite Element Method

defined by Oseen equations

To define the high-order Crouzeix–Raviart Multi-scale Finite Element for the Oseen problem,

we follow the same procedure as for the Stokes problem in Chapter 7.

Definition 12.2. The velocity-pressure space XOs
H is defined as a subspace of Xext

H , defined

in (7.6), being the “orthogonal” complement of X0
H (see Definition 7.3), with respect to the

bi-linear form ĉOs
H (·, ·) as follows

(uH , pH) ∈ XOs
H ⇐⇒

(uH , pH) ∈ Xext
H such that

ĉOs
H ((uH , pH), (v, q)) = 0 ∀(v, q) ∈ X0

H

,

where ĉOs
H is defined by

ĉOs
H ((uH , pH), (v, q)) =

∑
T∈TH

∫
T∩Ωε

(
ν∇uH ·∇v +

1

2
(U0 ·∇)uH · v

−1

2
(U0 ·∇)v · uH −

1

2
div (U0)uH · v

)
+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q divuH) .

Remark 12.3. The word “orthogonal” is written between quotes since the bi-linear form ĉOs
H

is not a scalar product (not positive definite).
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In what follows, we explicit the definition of the subspace XOs
H by introducing the functional

spaces V Os
H and MH .

Definition 12.4. We introduce the functional spaces MH ⊂M and V Os
H ⊂ V ext

H by

MH = {q ∈M such that q|T ∈ Pn(T ), ∀T ∈ TH} , (12.4)

V Os
H =


v ∈ V ext

H : ∀T ∈ TH , ∃ ζT ∈M0
H(T ) such that

−ν∆v + (U0 · ∇)v +∇ζT ∈ span(φT,1, . . .φT,r) in T ∩ Ωε,

div v ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇vn− 1
2(U0 · n)v − ζTn ∈ span(ωF,1, . . . ,ωF,s) on F ∩ Ωε, ∀F ∈ F(T ),

(12.5)

where F(T ) is the set of faces composing ∂T , and M0
H defined (7.8).

Lemma 12.5. In definition (12.5), the pressure ζT is uniquely defined for a given velocity v ∈
V Os
H . Therefore gluing together the pressure ζT on all triangles T ∈ TH yields a single function

πH(v) ∈ M0
H such that πH(v) = ζT on any triangle T ∈ TH . The operator πH : V Os

H → M0
H

is linear and continuous.

Proof. The proof of Lemma 12.5 is similar to the proof of [79, Lemma 3.11].

Theorem 12.6. Using MH (12.4) and V Os
H (12.5), we introduce the space:

XOs
H = span{(uH , πH(uH) + pH), uH ∈ V Os

H , pH ∈MH}

Then it coincides with the subspace XOs
H , i.e.

XOs
H = XOs

H .

Proof. The proof of Theorem 12.6 is similar to the proof of [79, Theorem 3.12].

12.1.2.1 The local problems defined by Oseen equations

In what follows, we construct a basis of the space V Os
H which consists of functions associated with

faces (face-based basis functions) and functions associated with coarse elements (element-based

basis functions) of the coarse mesh.

12.1.2.2 Strong form of local problems

Basis functions associated with faces We first construct basis functions associated with

faces of the coarse mesh. For any F ∈ FH , for i = 1, . . . , s, find the function ΦF,i : Ω
ε → Rd,
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12.1. Multi-scale basis functions defined by the Oseen operator

the pressure πF,i : Ω
ε → R by solving on T

−ν∆ΦF,i + (U0 ·∇)ΦF,i +∇πF,i ∈ span(φT,1, . . . ,φT,r) in T ∩ Ωε,

divΦF,i ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇ΦF,in− 1
2(U0 · n)ΦF,i − πF,in ∈ span(ωE,1, . . . ,ωE,s) on E ∩ Ωε, ∀E ∈ F(T ),

ΦF,i = 0 on ∂Bε ∩ T,∫
E∩Ωε

ΦF,i · ωE,j =

{
δij , E = F

0, E ̸= F
∀E ∈ F(T ), ∀j = 1, . . . , s,∫

T∩Ωε

ΦF,i ·φT,l = 0 ∀l = 1, . . . , r,∫
T∩Ωε

πF,iϖT,m = 0 ∀m = 1, . . . , t.

(12.6)

Basis functions associated with elements Next, we construct basis functions associated

with elements of the coarse mesh. For each T ∈ TH , for k = 1, . . . , r, the support of the function

ΨT,k is reduced to T ∩ Ωε. We find ΨT,k : Ωε → Rd and πT,k : Ωε → R by solving on T

−ν∆ΨT,k + (U0 ·∇)ΨT,k +∇πT,k ∈ span(φT,1, . . . ,φT,r) in T ∩ Ωε,

divΨT,k ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇ΨT,kn− 1
2(U0 · n)ΨT,k − πT,kn ∈ span(ωE,1, . . . ,ωE,s) on E ∩ Ωε, ∀E ∈ F(T ),

ΨT,k = 0 on ∂Bε ∩ T,∫
E∩Ωε

ΨT,k · ωE,j = 0, ∀E ∈ F(T ), ∀j = 1, . . . , s,∫
T∩Ωε

ΨT,k ·φT,l = δkl ∀l = 1, . . . , r,∫
T∩Ωε

πT,kϖT,m = 0 ∀m = 1, . . . , t.

(12.7)

Theorem 12.7. The functions ΦF,i for F ∈ FH and i = 1, . . . , s defined by their restrictions

(12.6) over each element T whose boundary includes F and ΨT,k for T ∈ TH and k = 1, . . . , r

defined by (12.7) form a basis of V Os
H defined by (12.5). In other words,

V Os
H = span{ΦF,i, ΨT,k, F ∈ FH , T ∈ TH , i = 1 . . . , s, k = 1, . . . , r}

and {ΦF,i, F ∈ FH , i = 1 . . . , s}∪{ΨT,k, T ∈ TH , k = 1, . . . , r} forms a linearly independent

family.

Proof. The proof of Theorem 12.7 is similar to the proof in [79, section 3.5].

12.1.2.3 Weak form of local problems

Using the same notations as in Chapter 8, the weak form of the local problems reads as follows.

Basis functions associated with faces The weak form of (12.6) is: for any F ∈ FH , for

i = 1, . . . , s, on the coarse element T find ΦF,i ∈ VT , πF,i ∈ L2(T ∩ Ωε), λF ∈ Rns , λv
T ∈ Rr,
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λq
T ∈ Rt by solving, for all (v, q,µF ,µ

v
T ,µ

q
T ) ∈ VT × L2(T ∩ Ωε)× Rns × Rr × Rt,



∫
T∩Ωε

ν∇ΦF,i ·∇v +

∫
T∩Ωε

(
1

2
(U0 ·∇)ΦF,i · v −

1

2
(U0 ·∇)v ·ΦF,i −

1

2
div (U0)ΦF,i · v

)
−
∫
T∩Ωε

πF,i div v +
∑

E∈F(T )

s∑
j=1

λE,j

∫
F∩Ωε

v · ωE,j −
r∑

l=1

λvT,l

∫
T∩Ωε

φT,l · v = 0,

∫
T∩Ωε

q divΦF,i +

t∑
m=1

λqT,m

∫
T∩Ωε

ϖT,mq = 0,

∑
E∈F(T )

s∑
j=1

µE,j

∫
E∩Ωε

ΦF,i · ωE,j = µF,i,

r∑
l=1

µvT,l

∫
T∩Ωε

ΦF,i ·φT,l = 0,

t∑
m=1

µqT,m

∫
T∩Ωε

πF,iϖT,m = 0.

(12.8)

Basis functions associated with elements The weak form of (12.7) is: for any T ∈ TH ,

for k = 1, . . . , r, find: ΨT,k ∈ VT , πT,k ∈ L2(T ∩ Ωε), λF ∈ Rns , λv
T ∈ Rr, λq

T ∈ Rt by solving,

for all (v, q,µF ,µ
v
T ,µ

q
T ) ∈ VT × L2(T ∩ Ωε)× Rns × Rr × Rt,



∫
T∩Ωε

ν∇ΨT,k ·∇v +

∫
T∩Ωε

(
1

2
(U0 ·∇)ΨT,k · v −

1

2
(U0 ·∇)v ·ΨT,k −

1

2
div (U0)ΨT,k · v

)
−
∫
T∩Ωε

πT,k div v +
∑

E∈F(T )

s∑
j=1

λE,j

∫
F∩Ωε

v · ωE,j −
r∑

l=1

λvT,l

∫
T∩Ωε

φT,l · v = 0,

∫
T∩Ωε

q divΨT,k +

t∑
m=1

λqT,m

∫
T∩Ωε

ϖT,mq = 0,

∑
E∈F(T )

s∑
j=1

µE,j

∫
E∩Ωε

ΨT,k · ωE,j = 0,

r∑
l=1

µvT,l

∫
T∩Ωε

ΨT,k ·φT,l = µvT,k,

t∑
m=1

µqT,m

∫
T∩Ωε

πT,kϖT,m = 0.

(12.9)

Remark 12.8. In this work, we used a skew-symmetric version of the advective term, i.e. the

bi-linear form âOs(·, ·), so that the problem is coercive as long as div (U0) ≤ 0. However, [33]

stated that using the skew-symmetric formulation leads to less accurate results, than using

the direct formulation aOs(·, ·). In this work, we have not made the numerical comparisons.

However, at the theoretical point of view, it is not clear how a change in the basis functions

leads to more of less accurate results at the coarse scale. It could be interesting, in the future,

to perform this comparison.
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12.2. Multi-scale basis functions defined by the Oseen adjoint operator

12.2 Multi-scale basis functions defined by the Oseen adjoint

operator

12.2.1 Problem formulation

By integration by parts, it is easy to show that the adjoint of the Oseen operator is given by

u 7→ −∆u− (U0 ·∇)u− div (U0)u.

The steady state Oseen adjoint problem with homogeneous boundary conditions is to find the

velocity u : Ωε → Rd and the pressure p : Ωε → R solution to

−ν∆uε − (U0 ·∇)uε − div (U0)uε +∇p = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(12.10)

with U0 a known velocity, ν the kinematic viscosity and f a given force. As previously, we

introduce for the velocity the space

V = H1
0 (Ω

ε)d = {u ∈ H1(Ωε)d s.t. u|∂Ωε = 0},

and for the pressure

M = L2
0(Ω

ε) = {p ∈ L2(Ωε) s.t.

∫
Ωε

p = 0}.

We note X = V ×M . For simplicity the fluid domain is assumed to be connected in order for

the pressure to be uniquely defined in M .

We introduce the bi-linear form aOs,ad(·, ·) for the Oseen adjoint problem,

aOs,ad(u,v) =

∫
Ωε

ν∇u ·∇v − (U0 ·∇)u · v − div (U0)u · v.

The variational formulation of the Oseen adjoint problem is to find uε ∈ V and p ∈ M such

that

aOs,ad(uε,v) + b(pε,v) =

∫
Ωε

f · v ∀v ∈ V,

b(q,uε) = 0 ∀q ∈M.
(12.11)

Theorem 3.3 guarantees the problem (12.11) is well-posed. Indeed, we introduce another con-
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tinuous bi-linear form which is equivalent to aOs,ad(·, ·),

âOs,ad(uε,v) =

∫
Ωε

ν∇uε ·∇v −
∫
Ωε

(U0 ·∇)uε · v −
∫
Ωε

div (U0)uε · v

=

∫
Ωε

ν∇uε ·∇v −
1

2

∫
Ωε

(U0 ·∇)uε · v −
1

2

∫
Ωε

(U0 ·∇)uε · v −
∫
Ωε

div (U0)uε · v

=

∫
Ωε

ν∇uε ·∇v −
1

2

∫
Ωε

(U0 ·∇)uε · v +
1

2

∫
Ωε

(U0 ·∇)v · uε +
1

2

∫
Ωε

div (U0)uε · v

−
∫
Ωε

div (U0)uε · v

=

∫
Ωε

ν∇uε ·∇v −
1

2

∫
Ωε

(U0 ·∇)uε · v +
1

2

∫
Ωε

(U0 ·∇)v · uε −
1

2

∫
Ωε

div (U0)uε · v.

Since the two bi-linear forms aOs,ad(·, ·) and âOs,ad(·, ·) are equivalent, the coercivity of âOs,ad(·, ·)
implies the coercivity of aOs,ad(·, ·). It is easy to observe that

âOs,ad(uε,uε) =

∫
Ωε

ν∇uε ·∇uε −
1

2

∫
Ωε

div (U0)uε · uε ≥
∫
Ωε

ν|∇uε|2,

as soon as div (U0) ≤ 0.

Since the semi-norm ∥∇v∥L2(Ω) is equivalent to the full H1 norm by Poincaré inequality,

we obtain that âOs,ad(·, ·), and consequently aOs,ad(·, ·) is elliptic on V . Besides b(·, ·) verifies

the inf-sup condition (similar as for the Stokes problem). Consequently, using Theorem 3.3, it

comes that the following variational formulation of the Oseen adjoint problem is well-posed. âOs,ad(uε,v) + b(pε,v) =

∫
Ωε

f · v ∀v ∈ V,

b(q,uε) = 0 ∀q ∈M.

We introduce also the bi-linear form ĉOs,ad(·, ·),

ĉOs,ad ((uε, pε), (v, q)) =

∫
Ωε

(
ν∇uε ·∇v −

1

2
(U0 ·∇)uε · v +

1

2
(U0 ·∇)v · uε −

1

2
div (U0)uε · v

)
−
∫
Ωε

pε div v −
∫
Ωε

q divuε.

The variational formulation of the Oseen problem can be written as: find (uε, pε) ∈ V ×M such

that

ĉOs,ad ((uε, pε), (v, q)) =

∫
Ωε

f · v ∀(v, q) ∈ V ×M. (12.12)

Theorem 3.2 guarantees the existence and uniqueness of a solution to problem (12.12).
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12.2.2 The high-order Crouzeix–Raviart multi-scale finite element method

defined by Oseen adjoint equations

Definition 12.9. The velocity-pressure space XOs,ad
H is defined as a subspace of Xext

H , defined

in (7.6), being the “orthogonal” complement of X0
H (see Definition 7.3), with respect to the

bi-linear form ĉOs,ad
H (·, ·) as follows

(uH , pH) ∈ XOs,ad
H ⇐⇒

(uH , pH) ∈ Xext
H such that

ĉOs,ad
H ((uH , pH), (v, q)) = 0 ∀(v, q) ∈ X0

H ,

where ĉOs,ad
H is defined by

ĉOs,ad
H ((uH , pH), (v, q)) =

∑
T∈TH

∫
T∩Ωε

(
ν∇uH ·∇v −

1

2
(U0 ·∇)uH · v

+
1

2
(U0 ·∇)v · uH −

1

2
div (U0)uH · v

)
+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q divuH) .

Remark 12.10. The word “orthogonal” is written between quotes since the bi-linear form

ĉOs,ad
H is not a scalar product (not positive definite).

In what follows, we make explicit the definition of the subspace XOs,ad
H by introducing the

functional spaces V Os,ad
H and MH .

Definition 12.11. We introduce the functional spaces MH and V Os,ad
H by

MH = {q ∈M such that q|T ∈ Pn(T ), ∀T ∈ TH} , (12.13)

V Os,ad
H =


v ∈ V ext

H : ∀T ∈ TH , ∃ ζT ∈M0
H(T ) such that

−ν∆v − (U0 ·∇)v − div (U0)v +∇ζT ∈ span(φT,1, . . .φT,r) in T ∩ Ωε,

div v ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇vn+ 1
2(U0 · n)v − ζTn ∈ span(ωF,1, . . . ,ωF,s) on F ∩ Ωε, ∀F ∈ F(T ).

(12.14)

where F(T ) is the set of faces composing ∂T and M0
H defined (7.8).

Lemma 12.12. In definition (12.14), the pressure ζT is uniquely defined for a given velocity

v ∈ V Os,ad
H . Therefore gluing together the pressure ζT on all triangles T ∈ TH yields a

single function πH(v) ∈ M0
H such that πH(v) = ζT on any triangle T ∈ TH . The operator

πH : V Os,ad
H →M0

H is linear and continuous.

Proof. The proof of Lemma 12.12 is similar to [79, Lemma 3.11].
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Theorem 12.13. Using MH (12.13) and V Os,ad
H (12.14), we introduce the space

XOs,ad
H = span{(uH , πH(uH) + pH), uH ∈ V Os,ad

H , pH ∈MH}

Then it coincides with the subspace XOs,ad
H , i.e.

XOs,ad
H = XOs,ad

H .

Proof. The proof of Theorem 12.13 is similar to [79, Theorem 3.12].

Now, we construct a basis of the space V Os,ad
H which consists of functions associated with

faces (face-based basis functions) and to coarse element (element-based basis functions) of the

coarse mesh.

12.2.2.1 Strong form of local problems

Basis functions associated with faces We first construct basis functions associated with

faces of the coarse mesh. For any F ∈ FH , for i = 1, . . . , s, find the function ΦF,i : Ω
ε → Rd,

the pressure πF,i : Ω
ε → R and solve on T



−ν∆ΦF,i − (U0 ·∇)ΦF,i − div (U0)ΦF,i +∇πF,i ∈ span(φT,1, . . . ,φT,r) in T ∩ Ωε,

divΦF,i ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇ΦF,in+ 1
2(U0 · n)ΦF,i − πF,in ∈ span(ωE,1, . . . ,ωE,s) on E ∩ Ωε, ∀E ∈ F(T ),

ΦF,i = 0 on ∂Bε ∩ T,∫
E∩Ωε

ΦF,i · ωE,j =

{
δij , E = F

0, E ̸= F
∀E ∈ F(T ), ∀j = 1, . . . , s,∫

T∩Ωε

ΦF,i ·φT,l = 0 ∀l = 1, . . . , r,∫
T∩Ωε

πF,iϖT,m = 0 ∀m = 1, . . . , t.

(12.15)

Basis functions associated with elements Now we construct basis functions associated

with elements of the coarse mesh. For each T ∈ TH , for k = 1, . . . , r, the support of the function
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ΨT,k is reduced to T ∩ Ωε. We find ΨT,k : Ωε → Rd and πT,k : Ωε → R by solving on T ,

−ν∆ΨT,k − (U0 ·∇)ΨT,k − div (U0)ΨT,k +∇πT,k ∈ span(φT,1, . . . ,φT,r) in T ∩ Ωε,

divΨT,k ∈ span(ϖT,1, . . . , ϖT,t) in T ∩ Ωε,

ν∇ΨT,kn+ 1
2(U0 · n)ΨT,k − πT,kn ∈ span(ωE,1, . . . ,ωE,s) on F ∩ Ωε, ∀E ∈ F(T ),

ΨT,k = 0 on ∂Bε ∩ T,∫
E∩Ωε

ΨT,k · ωE,j = 0, ∀E ∈ F(T ), ∀j = 1, . . . , s,∫
T∩Ωε

ΨT,k ·φT,l = δkl ∀l = 1, . . . , r,∫
T∩Ωε

πT,kϖT,m = 0 ∀m = 1, . . . , t.

(12.16)

Theorem 12.14. The functions ΦF,i for F ∈ FH and i = 1, . . . , s defined by their restrictions

(12.15) over each element T whose boundary includes F and ΨT,k for T ∈ TH and k = 1, . . . , r

defined by (12.16) form a basis of V Os,ad
H defined by (12.14). In other words,

V Os,ad
H = span{ΦF,i, ΨT,k, F ∈ FH , T ∈ TH , i = 1 . . . , s, k = 1, . . . , r}

and {ΦF,i, F ∈ FH , i = 1 . . . , s}∪{ΨT,k, T ∈ TH , k = 1, . . . , r} forms a linearly independent

family.

Proof. The proof of Theorem 12.14 is similar to the proof in [79, section 3.5].

12.2.2.2 Weak form of local problems

Using the same notations as in Chapter 8, the weak form of the local problems reads as follows.

Basis functions associated with faces The weak form of (12.15) is: for any F ∈ FH , for

i = 1, . . . , s, on the coarse element T , find ΦF,i ∈ VT , πF,i ∈ L2(T ∩ Ωε), λF ∈ Rns , λv
T ∈ Rr,

λq
T ∈ Rt by solving, for all (v, q,µF ,µ

v
T ,µ

q
T ) ∈ VT × L2(T ∩ Ωε)× Rns × Rr × Rt,

∫
T∩Ωε

ν∇ΦF,i ·∇v +

∫
T∩Ωε

(
−1

2
(U0 ·∇)ΦF,i · v +

1

2
(U0 ·∇)v ·ΦF,i −

1

2
div (U0)ΦF,i · v

)
−
∫
T∩Ωε

πF,i div v +
∑

E∈F(T )

s∑
j=1

λE,j

∫
F∩Ωε

v · ωE,j −
r∑

l=1

λvT,l

∫
T∩Ωε

φT,l · v = 0,

∫
T∩Ωε

q divΦF,i +

t∑
m=1

λqT,m

∫
T∩Ωε

ϖT,mq = 0,

∑
E∈F(T )

s∑
j=1

µE,j

∫
E∩Ωε

ΦF,i · ωE,j = µF,i,

r∑
l=1

µvT,l

∫
T∩Ωε

ΦF,i ·φT,l = 0,

t∑
m=1

µqT,l

∫
T∩Ωε

πF,iϖT,m = 0.

(12.17)
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Basis functions associated with elements The weak form of (12.16) is: for any T ∈ TH ,

for k = 1, . . . , r, find ΨT,k ∈ VT , πT,k ∈ L2(T ∩ Ωε), λF ∈ Rns , λv
T ∈ Rr, λq

T ∈ Rt by solving,

for all (v, q,µF ,µ
v
T ,µ

q
T ) ∈ VT × L2(T ∩ Ωε)× Rns × Rr × Rt,



∫
T∩Ωε

ν∇ΨT,k ·∇v +

∫
T∩Ωε

(
−1

2
(U0 ·∇)ΨT,k · v +

1

2
(U0 ·∇)v ·ΨT,k −

1

2
div (U0)ΨT,k · v

)
−
∫
T∩Ωε

πT,k div v +
∑

E∈F(T )

s∑
j=1

λE,j

∫
E∩Ωε

v · ωE,j −
r∑

l=1

λvT,l

∫
T∩Ωε

φT,l · v = 0,

∫
T∩Ωε

q divΨT,k +

t∑
m=1

λqT,m

∫
T∩Ωε

ϖT,mq = 0,

∑
E∈F(T )

s∑
j=1

µE,j

∫
E∩Ωε

ΨT,k · ωE,j = 0,

r∑
l=1

µvT,l

∫
T∩Ωε

ΨT,k ·φT,l = µvT,k,

t∑
m=1

µqT,m

∫
T∩Ωε

πT,kϖT,m = 0.

(12.18)

12.3 The Oseen coarse scale problem

12.3.1 The coarse scale problem

The discrete variational formulation of the Oseen problem (12.1) is: find (uH , pH) ∈ XOs
H such

that

cOs
H ((uH , pH), (v, q)) =

∑
T∈TH

∫
T∩Ωε

(ν∇uH ·∇v + (U0 ·∇)uH · v

+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q divuH),

∀(v, q) ∈ XOs
H or XOs,ad

H repectively if we consider a Galerkin or a Petrov–Galerkin formulation.

Theorem 12.6 implies that pH can be decomposed as pH = πH(uH)+pH with πH(uH) ∈M0
H

and pH ∈MH . It is easy to verify that

∫
T∩Ωε

πH(uH) div v = 0 for all uH ,v ∈ VH . The problem

above can be reformulated as: find uH ∈ VH and pH ∈MH such that

aOs
H (uH ,v) + bH(pH ,v) = FH(v) ∀v ∈WH ,

bH(q,uH) = 0 ∀q ∈MH ,
(12.19)

where VH = V Os
H , and WH = VH if we consider a Galerkin formulation or WH = V Os,ad

H if we
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consider a Petrov–Galerkin formulation, and

aH(uH ,v) =
∑
T∈TH

∫
T∩Ωε

ν∇uH ·∇v + (U0 ·∇)uH · v,

bH(pH ,v) = −
∑
T∈TH

∫
T∩Ωε

pH div v,

FH(v) =
∑
T∈TH

∫
T∩Ωε

f · v.

Theorem 12.15. The space V Os
H and the space MH have the following relation

divH V Os
H =MH .

Proof. The proof of Theorem 12.15 is similar to [79, Theorem 3.16].

Making use of Theorem 12.15, we deduce from (12.19) that divuH = 0 in T ∩Ωε for T ∈ TH .

We can therefore eliminate the pressure unknown from (12.19) by introducing a subspace of V Os
H ,

defined by

ZOs
H = {v ∈ V Os

H such that divH v = 0, ∀T ∈ TH}.

Therefore (12.19) is equivalent to find uH ∈ ZOs
H such that

∑
T∈TH

∫
T∩Ωε

∇uH ·∇v + (U0 ·∇)uH · v =
∑
T∈TH

∫
T∩Ωε

f · v ∀v ∈ ZOs
H .

The existence and uniqueness of a solution uH are guaranteed by Theorem 3.2. Then, the

existence and uniqueness of pressure pH follows from the fact that divH V Os
H =MH . As a result

we have proved that (12.19) has one and only one solution (uH , pH) ∈ V Os
H ×MH .

12.3.2 Reconstruction of the fine scale

After obtaining coarse solutions uH = (uT,1, . . . , uT,r)T∈TH ∪ (uF,1, . . . , uF,s)F∈FH
and pH =

(pH |T )F∈TH , we reconstruct on any coarse element T ∈ TH fine scale solutions

uH |T=
∑

F∈F(T )

s∑
i=1

uF,iϕF,i +
r∑

i=1

uT,kψT,k,

pH |T=
∑

F∈F(T )

s∑
i=1

uF,iπF,i +
r∑

i=1

uT,kπT,k + pH .
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Chapter 13

Settings of the Multi-scale Finite

Element Methods
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13.1 MsFEMs implemented

We implement the high-order MsFEM for the Stokes problem (see Chapter 7) and for the Oseen

problem (see Chapter 12) in FreeFEM [93] for the cases n = 1 and n = 2 in two and three

dimensions. For the sake of comparison, we also implement previous MsFEMs developed in

the literature: the MsFEM called “CR3” (introduced in [111]) and the MsFEM called “CR4”

(introduced in [78]), where “CR” stands for “Crouzeix–Raviart”, for the Stokes and the Oseen

problems in two dimensions. In two dimensions, the CR3 method is obtained by considering the

following weighting functions on faces of the coarse elements,

ωF,1 = e1, ωF,2 = e2, ωF,3 = nFψF

where ψF is a non-vanishing function in P1(F ) with vanishing mean-value on F ∩Ωε, (e1, e2) is

the canonical basis of R2 and nF is a normal vector to F . In two dimensions, the CR4 method

is obtained by enriching the CR3 method to reach the full P1(F )
2 weighting space on the faces,

i.e.

ωF,1 = e1, ωF,2 = e2, ωF,3 = nFψF , ωF,4 = tFϕF ,
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where ϕF is a non-vanishing function in P1(F ) with vanishing mean-value on F ∩ Ωε and tF a

tangential vector to F . In these two cited methods, the pressure weighting functions are limited

to constant polynomial, i.e. ϖT,1 = 1. No weighting functions are considered in the elements

contrary to the high-order MsFEM presented in this thesis. For the sake of understanding,

Figures 13.1a and 13.1b illustrate the degrees of freedom for the CR3 and CR4 MsFEMs. The

velocity degrees of freedom are represented in pink and pressure degrees of freedom are repre-

sented in blue. The main difference with high-order MsFEMs developed in this thesis is the

absence of velocity degrees of freedom in the elements. It should be noted that the figures pre-

sented here are only schematic representations, since we recall that the degrees of freedom for

the velocity are not nodal, but defined by moments.

velocity

pressure

(a) MsFEM CR3.

velocity

pressure

(b) MsFEM CR4.

Figure 13.1: Scheme of the degrees of freedom in two-dimensions for the CR3 and CR4 MsFEMs.

Increasing the MsFEM order imply growing costs which have to be compared to guide a

choice between the different approaches. Let us consider a coarse mesh made up of nT coarse

elements (triangles in two dimensions and tetrahedra in three dimensions) with nF faces. Then,

Tables 13.1 and 13.2 give the number of unknowns for the different methods. For the sake

of comparison, we use the following asymptotic relations: nF ≈ 3
2nT in two dimensions and

nF ≈ 2nT in three dimensions.

Two-dimensional MsFEM

Field
MsFEM in Lit. High-order MsFEM
CR3 CR4 n = 1 n = 2

Pressure nT nT 3nT 6nT
Velocity 3nF 4nF 2nT+4nF 6nT+6nF
Total nT+3nF nT+4nF 5nT+4nF 12nT+6nF

Asymp. Total 5.5nT 7nT 11nT 21nT

Table 13.1: Number of unknowns in the different MsFEMs in two dimensions.

242



13.2. Details of computation

Three-dimensional MsFEM

Field
MsFEM in Lit. High-order MsFEM
CR3 CR4 n = 1 n = 2

Pressure nT nT 4nT 10nT
Velocity 3nF 9nF 3nT+9nF 12nT+18nF
Total nT+3nF nT+9nF 7nT+9nF 22nT+18nF

Asymp. Total 7nT 19nT 25nT 58nT

Table 13.2: Number of unknowns in the different MsFEMs in three dimensions.

13.2 Details of computation

Unknows in local problems of CR3 and CR4 MsFEMs are discretized with the pair of finite

elements P2 − P1. Unknowns in the local problems of the two-dimensional high-order MsFEM,

presented in this thesis, are discretized respectively for n = 1 and n = 2 with the pairs of finite

elements P2pnc−Pdc
1 and P3pnc−Pdc

2 (presented in Chapter 4). Unknowns in the local problems

of the three-dimensional high-order MsFEM are discretized respectively for n = 1 and n = 2

with the pairs of finite elements P2pnc3d−Pdc
1 and P3pnc3d−Pdc

2 (presented in Chapter 5). To

compute the local basis functions, no-slip boundary conditions are imposed on the obstacles.

To solve the coarse-scale problem on the coarse mesh, we approximate the non-homogeneous

Dirichlet boundary conditions uH = g on ∂Ω in a weak form, i.e.∫
F∩∂Ω

uH · ωF,j =

∫
F∩∂Ω

g · ωF,j , ∀F ∈ FH ∩ ∂Ω, j = 1, . . . , s. (13.1)

Numerically, the conditions (13.1) are imposed using the penalization method. The readers may

refer to Appendix E for details about the computation of the local and coarse problems.

For the sake of comparison, we compute reference solutions, for the Stokes and the Oseen

problems, in two dimensions on fine meshes, called “reference meshes”, as shown in Figure 1.5.

The reference solutions are solved with the pair of finite element P2 − P1 (see Appendix D for

details about the computation of the reference solutions).

The different meshes used in this thesis are computed with the platform SALOME (an open

source platform for numerical simulation) [4] in the format .med. These meshes are read in

FreeFEM thanks to the module medio [25] (a library that enables input and output of mesh files

for FreeFEM in .med format).

All the numerical results (MsFEM approximations and reference solutions) presented in this

chapter are computed on Topaze a cluster from the CCRT. It is composed of AMD EPYC 7763

CPUs, clocked at 2.45GHz.

We note uH and pH , respectively the MsFEM approximations of the velocity and pressure. We

note uref and pref , respectively the reference velocity and pressure. In order to compare the

MsFEM approximations and the reference solutions, numerically, we define the relative error in

velocity in L2-norm

L2 Rel. U =
∥uH − uref∥L2

∥uref∥L2

,
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the relative error in velocity in H1-norm

H1 Rel. U =
|uH − uref |H1

|uref |H1

,

and the relative error in pressure in L2-norm

L2 Rel. P =
∥pH − pref∥L2

∥pref∥L2

,

where we recall that the L2-norm and the H1-norm are defined respectively by

∥u∥L2 =

√∑
T∈TH

∫
T∩Ωε

(u|T )2,

and

|u|H1 =

√∑
T∈TH

∫
T∩Ωε

(∇u|T )2.

13.3 Simulations in two-dimensional domains

13.3.1 Settings

In all following two-dimensional simulations, we fix the element size h of local fine meshes and

vary the element size H of coarse meshes. We choose h = 3.10−4 (the fine mesh contains more

than 21 millions of fine elements, see for example Table 13.3), which ensures that it is small

enough to well capture small obstacles in the domain Ωε, i.e. that h ≪ ε < H (this choice

of h corresponds to εmin/25 with εmin = 1/128, the smallest ε considered). Besides, this choice

ensures that the Péclet number is smaller than 1 for the computation of the local problems

involved in the MsFEM for the Oseen problem, and the computation of the reference solutions

for the Oseen problems, preventing thus oscillations to appear (see Chapter 11).

13.3.2 Test case: the channel flow

We consider a two-dimensional open channel Ω = [0 ≤ x ≤ 1, 0 ≤ y ≤ 1], where the hetero-

geneities are represented by solid obstacles. We assign the source term f = 0. The parabolic

inflow boundary condition u = y(1 − y)e1 is imposed at the inlet. The Neumann boundary

condition ν∇un− pn = 0 is imposed at the outlet and the no-slip condition is applied on other

boundaries. An example of computational domain is given in Figure 13.2 for the periodic cases

or in Figure 13.3a for the random cases.

13.3.3 Convergence analysis in a two-dimensional periodic case

We perform a convergence analysis in the periodic case. We choose a periodic arrangement, of

period ε, of circular obstacles (whose diameter is set to ε/2) in the domain Ω. We keep a region

free of obstacles of size 1/8 both upstream and downstream of the arrangement of obstacles so

that the flow develops. We consider different periods ε, from ε = 1/8 to ε = 1/128. Figure 13.2

illustrates the computational domain obtained for ε = 1/16. We fix the fine mesh size h and
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consider different coarse mesh sizes H, from H = 1/8 to H = 1/64, which leads from 256 to

16384 coarse elements. We are interested only in the case in which H ≥ ε, since the opposite

case H < ε is covered by classical finite element methods and MsFEMs are not needed. We

compare the MsFEM approximations in the different configurations to reference solutions. We

compute the relative errors for velocity in L2-norm and H1-norm and for pressure in L2-norm

between the MsFEM approximations and the reference solutions.

ε

Obstacles Bε

Top

Bottom

Inlet Outlet

1/8 1/8

e1

e2

Figure 13.2: Scheme of the computational domain Ωε for ε = 1/16.

It should be noted that in most industrial cases, such as in nuclear reactor cores, the geome-

tries considered are periodic.

13.3.4 Study of the number of unknowns

Mesh ID ε
number of elements

in ref. mesh
H

number of elements
in coarse mesh

average number
of fine elements

in a coarse element

#1

1/64 21 millions

1/8 256 83 590
#2 1/16 1 024 20 950
#3 1/32 4 096 5 260
#4 1/64 16 384 1 300

Table 13.3: Characteristics of perforated meshes for ε = 1/64 in two dimensions.

Mesh ID
#1 #2 #3 #4

number of unknowns in coarse problems
n = 1 2 880 11 392 45 312 180 736
n = 2 5 472 21 696 86 400 344 832

number of unknowns in reference problems ≈ 100 millions

Table 13.4: Number of unknowns in the coarse problems and reference problem in two dimen-
sions.
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Mesh ID
#1 #2 #3 #4

number of unknowns in local problems
high-order MsFEM

n = 1 920 000 230 000 60 000 15 000
n = 2 1 800 000 440 000 110 000 28 000

Table 13.5: Number of unknowns in the local problems in two dimensions.

Tables 13.3 and 13.4 illustrate the interest of MsFEM. Indeed, it can be seen that the number

of unknowns in the coarse problems may be up to 30 000 times smaller than the number of

unknowns in the reference problems. Table 13.5 shows the number of unknowns in the local

problems. These tables illustrate the trade-off to find for MsFEMs. The greater the simplicity

of the coarse problem (fewer unknowns), the more challenging the local problems become, due

to the increased number of unknowns. For example, the local problems defined on the mesh #1

are computing by allocating 16 CPUs to each local process due to the high-number of unknowns.

For the other meshes (#2, #3, #4), 1 CPU is allocated to each local process.

13.3.5 Two-dimensional domains with randomly placed obstacles

To show the robustness of the MsFEM, in addition to periodic domains, we consider random

perforated domains which consists in random distributions of obstacles. Figures 13.3a and 13.3b

show random perforated domains with respectively 1024 and 4096 obstacles of diameter 1/256.

(a) 1024 obstacles. (b) 4096 obstacles.

Figure 13.3: Domain with randomly located obstacles.

Remark 13.1. When considering randomly located obstacles, especially when obstacles are

densely packed, several meshing problems may appear. Indeed, the first one is the fact that if

obstacles are too close of corners of coarse triangles, then, they can cut coarse triangles into

two non-connected elements, which makes the method failed. The second one is the fact that

obstacles may be tangent to interfaces between coarse elements. In this case, meshing tools

may fail to generate meshes due to isolated tangent points. In addition, even if the meshing

tools do not fail, there will not be enough fine elements between obstacles and interfaces for

computation of the local problems. A solution to overcome these difficulties may be to allow

general coarse element shapes or to compute first the fine mesh on the whole perforated domain

and afterwards, to cut this fine mesh (possibly with some modifications) into polygonal coarse

elements avoiding symptomatic cases.
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13.4 Simulations in three-dimensional domains

We consider a three-dimensional open channel Ω = [0, 1]3, perforated by a periodic arrangement,

of period ε, of cylinders (whose diameter is set to ε/2). We keep a free region, of size 1/8,

downstream of the inlet and upstream of the outlet so that the flow develops. Figures 13.4a

and 13.4b present schemes of this domain respectively for ε = 1/8 and ε = 1/16. It should

be noted that the domain for ε = 1/16 is closer to reality since we recall that in a reactor

pressure vessel, the fuel rods are generally bundled in a square array of 14× 14 to 17× 17. The

parabolic inflow boundary condition u = x(1 − x)y(1 − y)e3 is imposed at the inlet. The flow

is oriented in a longitudinal direction with respect to the cylinders. The Neumann boundary

condition ν∇un− pn = 0 is imposed at the outlet and the no-slip condition is applied on other

boundaries. The coarse mesh size is set to H = 1/8, which leads to 3072 coarse elements. Each

coarse element is discretized with a fine mesh of size h = 10−2 for the domain Figure 13.4a

and h = 10−3 for the domain Figure 13.4b.

1/8

1/8

Outlet

Inlet

e1

e3

e2

(a) ε = 1/8.
(b) ε = 1/16.

Figure 13.4: Scheme of the computational domain Ωε in three dimensions.

Below, we give the characteristics of the meshes used.

Mesh ID ε
number of elements

in ref. mesh
number of elements

in coarse mesh

average number
of fine elements

in a coarse element

#5 1/8 11 millions 3 072 3 500

#6 1/16 73 millions 3 072 23 000

Table 13.6: Characteristics of perforated meshes in three dimensions (H = 1/8).
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Mesh ID
#5 #6

number of unknowns in coarse problems
n = 1 80 256 80 256
n = 2 185 088 185 088

number of unknowns in reference problems ≈ 47 millions ≈ 325 millions

Table 13.7: Number of unknowns in the coarse problems and reference problem in three dimen-
sions.

Mesh ID
#5 #6

number of unknowns in local problems
high-order MsFEM

n = 1 91 000 650 000
n = 2 210 000 1 500 000

Table 13.8: Number of unknowns in the local problems in three dimensions.

Tables 13.6 and 13.7 illustrate the interest of MsFEM. Indeed, it can be seen that the

number of unknowns in the coarse problems may be up to 2 300 times smaller than the number

of unknowns in the reference problems (if computed with the pair of finite elements P2 − P1.

Table 13.8 shows the number of unknowns in the local problems. Due to the small number of

degrees of freedom, each local problem can be computed using 1 CPU. However, for finer mesh,

such as the mesh #6, which allows to consider more realistic geometries, more than one CPU

is needed to compute in parallel each local problems (hence the development of parallelism for

the local problems, see Appendix E.1.1).
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applied to the Stokes problem

In this chapter, we solve the Stokes problem (7.1) on a coarse grid using basis functions defined

by the Stokes problem, i.e. the local problems (8.1) and (8.2). Through this chapter, we

set ν = 1. For the two-dimensional simulations, we consider the channel flow test case presented

in Section 13.3.2 and for the three-dimensional simulations, we consider the channel flow test

case presented in Section 13.4.

14.1 Example of MsFEM local basis functions

To get an idea of the local basis functions, Figure 14.1 shows the 14 basis functions of the high-

order MsFEM for n = 1 for the Stokes problem, obtained by solving (8.1) and (8.2). The first

two correspond to basis functions associated with the element while the remaining correspond

to basis functions associated with faces.
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Figure 14.1: The 14 basis functions of the high-order MsFEM for the Stokes problem, n = 1.

14.2 Convergence analysis in two-dimensional periodic domains

In this section, we perform the convergence analysis proposed in Section 13.3.3. Figures 14.2

to 14.4, present the computed relative errors between the reference solutions computed on ref-

erence meshes and the MsFEM approximations computed on coarse mesh for the cases n = 1

and n = 2. In these figures, the different periods ε considered are represented by different colors.

The high-order MsFEM for n = 1 is represented in solid line with square marks, while MsFEM

for n = 2 is represented by dashed line with circle marks.
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Figure 14.2: Relative errors between MsFEM approximations and reference solutions for velocity
in L2-norm (Stokes flow).

1/81/161/321/64

2.10−1

3.10−1

Coarse element size H

R
el
at
iv
e
er
ro
r
in

ve
lo
ci
ty

in
H

1
-n
or
m

ε = 1
8 , n = 1

ε = 1
16 , n = 1

ε = 1
32 , n = 1

ε = 1
64 , n = 1

ε = 1
128 , n = 1

ε = 1
8 , n = 2

ε = 1
16 , n = 2

ε = 1
32 , n = 2

ε = 1
64 , n = 2

ε = 1
128 , n = 2

Figure 14.3: Relative errors between MsFEM approximations and reference solutions for velocity
in H1-norm (Stokes flow).
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Figure 14.4: Relative errors between MsFEM approximations and reference solutions for pressure
in L2-norm (Stokes flow).

As expected, Figures 14.2 to 14.4 show that the relative error varies non-monotonically with

the coarse element size H. Some cases show a decrease in error as H decreases (finer coarse

mesh), while others exhibit an increase or fluctuations. However, in all cases, the relative errors

are bounded. The relative errors in velocity in L2-norm vary in a range approximately from 7×
10−2 to 1.5×10−1. The relative errors in velocity inH1-norm vary in a range approximately from

2× 10−1 to 3× 10−1. The relative errors in pressure in L2-norm vary in a range approximately

from 4 × 10−2 to 1 × 10−1. These errors are typical errors for MsFEM approximations. It is

difficult to identify the overall behaviour of the relative error. Indeed, for example if considering

Figure 14.2, the case ε = 1/128, n = 1 (solid orange square) shows a significant fluctuation with

the error dropping at H = 1/16 and peaking at H = 1/32, while the case ε = 1/64, n = 1

(solid green square) shows different error behaviors, with the error increasing until H = 1/32.

In the cases H ̸≈ ε, it seems that smaller ε values generally lead to lower relative errors for

the same coarse element size H (see for example H = 1/16 or H = 1/32). To approximate

the Stokes problem in the periodic cases, it seems that increasing the MsFEM order do not

allow to significantly improve the accuracy of results, except for a particular configuration in

which H ≈ ε. In this particular case, obstacles cut triangles only at their vertices. However,

we should not generalize the results obtained in the periodic settings for the Stokes problem to

any more general cases. Indeed, the complex behaviour of the errors suggests the presence of

multiple influencing factors, such as the ε, H, n but also the perforation patterns and the way

the perforations cut each coarse elements.

Comparisons with previous MsFEMs Figure 14.5 presents similar convergence curves as

previously but by including the relative errors obtained with previous MsFEMs, i.e. the CR3

and the CR4 MsFEMs, for ε = 1/64, in order to emphasize the interest of considering high-order
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MsFEMs. Additional comparisons can be found in Figures F.1 to F.3 in Appendix for other

periods ε.
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Figure 14.5: Relative errors between MsFEM approximations and the reference solution, ε =
1/64 (Stokes flow).

Figure 14.5 illustrates the fact that adding weighting functions in the volume allows to

significantly improve mainly pressure approximations. This can be explained by the fact that

for high-order MsFEM, the pressure approximation spaces, Pdc
1 and Pdc

2 respectively for the cases

n = 1 and n = 2, are richer than the P0 space used to approximate the pressure in previous

MsFEMs (the CR3 and CR4 MsFEMs). In contrast, adding weighting functions on the faces

seems to improve mainly velocity approximations. Indeed, this can be explained by the fact

that the more weighting functions there are on the faces, the more continuity there is between

the coarse elements.

Some illustrative figures In what follows, we illustrate these errors with some numerical

results. We focus on a periodic domain with ε = 1/16 for the ease of viewing.

253



Chapter 14. Numerical results for MsFEM applied to the Stokes problem

(a) Velocity magnitude. (b) Pressure field.

Figure 14.6: Reference solution (Stokes flow), ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 14.7: MsFEM approximation (Stokes flow), n = 1, H = 1/8 (256 coarse elements),
ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 14.8: MsFEM approximation (Stokes flow), n = 2, H = 1/8 (256 coarse elements),
ε = 1/16.
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14.3. Simulations in a two-dimensional domain with ramdomly placed obstacles

(a) Velocity magnitude. (b) Pressure field.

Figure 14.9: MsFEM approximation (Stokes flow), n = 1, H = 1/16 (1024 coarse elements),
ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 14.10: MsFEM approximation (Stokes flow), n = 2, H = 1/16 (1024 coarse elements),
ε = 1/16.

A visual inspection of the solutions reveals that the MsFEM approximations are very similar

for n = 1 (Figures 14.7 and 14.9) and for n = 2 (Figures 14.8 and 14.10). As expected,

the utilisation of H = 1/16 (Figures 14.9 and 14.10) enables more precise approximations in

comparison to the reference solution (Figure 14.6). For the sake of comparison, additional

numerical results, for other periods ε, are presented in Appendix F.1.2.

14.3 Simulations in a two-dimensional domain with ramdomly

placed obstacles

In this section, we present simulations of the Stokes flows in the domain Figure 13.3a.
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(a) Velocity magnitude. (b) Pressure field.

Figure 14.11: Reference solution (Stokes flow), domain with 1024 randomly placed obstacles.

(a) Velocity magnitude. (b) Pressure field.

Figure 14.12: MsFEM approximation (Stokes flow), n = 1, H = 1/32 (4096 coarse elements),
domain with 1024 randomly placed obstacles.

(a) Velocity magnitude. (b) Pressure field.

Figure 14.13: MsFEM approximation (Stokes flow), n = 2, H = 1/32 (4096 coarse elements),
domain with 1024 randomly placed obstacles.
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14.4. Simulations in a three-dimensional domain

A visual inspection of the solutions reveals that the MsFEM for n = 1 (Figure 14.12) appears

to underestimate the velocity magnitude in comparison to the reference solution (Figure 14.11).

The MsFEM for n = 2 (Figure 14.13) yields a more accurate approximation of pressure. For the

sake of comparison, simulations of the Stokes flows in the domain Figure 13.3b are presented in

Appendix F.1.2.

14.4 Simulations in a three-dimensional domain

In this section, we show the results of the channel test case presented in Section 13.4 in the

domains Figures 13.4a and 13.4b.

Figure 14.14: MsFEM approximation, n = 2, H = 1/8 (3072 coarse elements), ε = 1/8.

(a) Velocity magnitude (cut along the z axis). (b) Pressure field (cut along the y axis).

Figure 14.15: MsFEM approximation in a three dimensional domain (Stokes flow), n = 1,
H = 1/8 (3072 coarse elements), ε = 1/8.
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(a) Velocity magnitude (cut along the z axis). (b) Pressure field (cut along the y axis).

Figure 14.16: MsFEM approximation in a three dimensional domain (Stokes flow), n = 2,
H = 1/8 (3072 coarse elements), ε = 1/8.

(a) Velocity magnitude (cut along the z axis). (b) Pressure field (cut along the y axis).

Figure 14.17: MsFEM approximation in a three dimensional domain (Stokes flow), n = 1,
H = 1/8 (3072 coarse elements), ε = 1/16.
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14.4. Simulations in a three-dimensional domain

(a) Velocity magnitude (cut along the z axis). (b) Pressure field (cut along the y axis).

Figure 14.18: MsFEM approximation in a three dimensional domain (Stokes flow), n = 2,
H = 1/8 (3072 coarse elements), ε = 1/16.

For this test, we do not have a reference solution. However, a visual inspection of Fig-

ures 14.15 to 14.18 allows us to be confident in the validity of the solutions. The comparison

of the velocity magnitudes, allows to confirm that the MsFEM for n = 2 yields more accurate

results. Indeed for n = 1 the velocity magnitude (Figures 14.15a and 14.17a) is not entirely

symmetrical around the cylinders.

Remark 14.1. Three-dimensional simulations present greater challenges than their two-

dimensional counterparts. Indeed, the implementation of MsFEM in three dimensions raises

two computational issues. The first of these concerns the computation of the global problem,

or the so-called “online step”. Indeed, if the number of coarse elements (and thus the number

of unknowns) in the coarse mesh is too high, the direct computation of the global problem

requires a large amount of memory or is even intractable. Using the cluster Topaze, we have

been unable to consider more than 3072 coarse elements. On a cluster with more memory

per CPU, however, considering more coarse elements could be possible. The other limitation

concerns the computations of the local problems. Indeed, if the local fine mesh contains too

many elements, then a direct solver is no longer efficient and we reach out of memory. Here

also, using a cluster with more memory per CPU or developing a more efficient solver for

the local problems in three dimensions could allow for the consideration of finer local meshes.

However, this last task is not straightforward (see Appendix E.1.2 for further details).
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Chapter 15

Numerical results for MsFEM

applied to the Oseen problem

In this chapter, we solve the Oseen problem (12.1) on a coarse grid using basis functions defined

by the Oseen problem, i.e. the local problems (12.8) and (12.9), or by the Oseen adjoint problem,

i.e. the local problems (12.17) and (12.18). We consider only two-dimensional simulations. We

consider the channel flow test case presented in Section 13.3.2. We choose a viscosity ν = 5×10−4

and the Oseen velocity as U0 = [y(1 − x2),−x(1 − y2)]t, (note that div (U0) = 0) which leads

to a Reynolds number of 2000. This Oseen velocity is plotted in Figure 15.1.
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Figure 15.1: Oseen velocity field U0 = [y(1− x2),−x(1− y2)]t.

Remark 15.1. Numerical experiments done during this thesis have shown that the Petrov–

Galerkin formulation of the Oseen problem leads to similar result as using a Galerkin formula-

tion. We therefore propose not to proceed with this method. In addition, the Petrov–Galerkin

method is twice as expensive as the Galerkin method since it requires to compute another

local basis for the test functions.
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Chapter 15. Numerical results for MsFEM applied to the Oseen problem

Remark 15.2. In the numerical applications for the Oseen problem, we restrict ourselves to

a viscosity of 5×10−4 and to an Oseen velocity of magnitude order of 1, due to the restriction

on the mesh size imposed by the Péclet number. However, in view of the results, we can

imagine that if we consider smaller fine mesh size, then high-order MsFEMs are able to deal

with higher Reynolds number.

15.1 Convergence analysis in two-dimensional periodic domains

In this section, we perform the convergence analysis proposed in Section 13.3.3. Figures 15.2

to 15.4, show the relative errors between the reference solutions computed on reference meshes

and the MsFEM approximations computed on coarse meshes for the case n = 1 and n = 2. In

these figures, the different periods ε considered are represented by different colors. The high-

order MsFEM for n = 1 is represented in solid line with square marks, while MsFEM for n = 2

is represented by dashed line with circle marks.
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Figure 15.2: Relative errors between MsFEM approximations and reference solutions for velocity
in L2-norm (Oseen flow).
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Figure 15.3: Relative errors between MsFEM approximations and reference solutions for velocity
in H1-norm (Oseen flow).
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Figure 15.4: Relative errors between MsFEM approximations and reference solutions for pressure
in L2-norm (Oseen flow).

Contrary to the convergence analysis done for the Stokes problem in periodic cases in Sec-

tion 14.2, Figures 15.2 and 15.3 emphasize the interest to increase the MsFEM order. Indeed,

considering the MsFEM order n = 2, allows to improve significantly the velocity approxima-

tions. For example for the configuration (ε = 1/32, H = 1/32) or for the configuration (ε = 1/16,

H = 1/16) the relative error is between twice and three times as big for n = 1 as for n = 2.

What is more, for these configurations with n = 1, the errors do not decrease in the particular
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Chapter 15. Numerical results for MsFEM applied to the Oseen problem

cases where H ≈ ε, i.e. when obstacles cut triangles only at their vertices. However, for the

pressure approximations, Figure 15.4, the error behaviour is more complex. Indeed, it seems

that the MsFEM for n = 1 leads to better approximations. We are not able to explain this

phenomenon. In all cases, the relative errors are bounded. The relative errors in velocity in

L2-norm vary in a range approximately from 8×10−2 to 3×10−1. The relative errors in velocity

in H1-norm vary in a range approximately from 2 × 10−1 to 5 × 10−1. The relative errors in

pressure in L2-norm vary in a range approximately from 3× 10−2 to 8× 10−2. These errors are

typical errors for MsFEM approximations. These error behaviours emphasize the importance of

choosing appropriate H, ε, and n values to minimise errors in the computational simulations.

Comparison with previous MsFEMs Figure 15.5 presents similar convergence curves as

previously but by including the relative errors obtained with previous MsFEMs, i.e. the CR3

and the CR4 MsFEMs, for ε = 1/64, in order to emphasize the interest of considering high-order

MsFEMs. Additional comparisons can be found in Figures F.19 to F.21 in Appendix for other

periods ε.
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Figure 15.5: Relative errors between MsFEM approximations and the reference solution, ε =
1/64 (Oseen flow).

From Figures 15.5 and F.19 to F.21, same conclusions as for the convergence of MsFEMs for

the Stokes flows can be drawn. In particular, the high-order MsFEMs outperform the previous

MsFEMs, the CR3 and CR4 MsFEMs.
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15.1. Convergence analysis in two-dimensional periodic domains

Some illustrative figures In what follows, we illustrate these errors with some numerical

results. We focus on a periodic domain with ε = 1/16 for the ease of viewing.

(a) Velocity magnitude. (b) Pressure field.

Figure 15.6: Reference solution (Oseen flow), ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 15.7: MsFEM approximation (Oseen flow), n = 1, H = 1/8 (256 coarse elements),
ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 15.8: MsFEM approximation (Oseen flow), n = 2, H = 1/8 (256 coarse elements),
ε = 1/16.
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(a) Velocity magnitude. (b) Pressure field.

Figure 15.9: MsFEM approximation (Oseen flow), n = 1, H = 1/16 (1024 coarse elements),
ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 15.10: MsFEM approximation (Oseen flow), n = 2, H = 1/16 (1024 coarse elements),
ε = 1/16.

A visual inspection of the solutions reveals that for n = 1, the physical solution lacks continu-

ity when H = 1/8 (Figure 15.7) or H = 1/16 (Figure 15.9). Conversely, for n = 2 (Figures 15.7

and 15.9), the solutions are more continuous, and the variations of the velocity are captured

more effectively. The case n = 2 and H = 1/16 provides the most accurate approximations in

comparison to the reference solution (Figure 15.6), which is in agreement with the convergence

analysis. In both cases, where n = 1 and n = 2, the pressure field is in agreement with the ref-

erence solution. For the sake of comparison, additional numerical applications, for other periods

ε, are presented in Appendix F.2.2.
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15.2 Simulations in a two-dimensional domain with ramdomly

placed obstacles

In this section, we present simulations of the Oseen flows in the domain Figure 13.3a.

(a) Velocity magnitude. (b) Pressure field.

Figure 15.11: Reference solution (Oseen flow), domain with 1024 randomly placed obstacles.

(a) Velocity magnitude. (b) Pressure field.

Figure 15.12: MsFEM approximation (Oseen flow), n = 1, H = 1/32 (4096 coarse elements),
domain with 1024 randomly placed obstacles.
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(a) Velocity magnitude. (b) Pressure field.

Figure 15.13: MsFEM approximation (Oseen flow), n = 2, H = 1/32 (4096 coarse elements),
domain with 1024 randomly placed obstacles.

As for the Stokes problem, a visual inspection of the solutions reveals that the MsFEM

for n = 1 (Figure 15.12) appears to underestimate the velocity magnitude in comparison to

the reference solution (Figure 15.11). In contrast to the results of the convergence analysis

conducted in periodic cases (see Figure 15.4), the MsFEM for n = 2 (Figure 14.13) yields a

more precise approximation of pressure. For the sake of comparison, simulations of the Oseen

flows in the domain Figure 13.3b are presented in Appendix F.2.2.

In conclusion, this part presents several numerical applications of the MsFEMs developed in

this thesis. In all cases, the MsFEM approximations are in agreement with expectations and the

relative errors obtained are typical for multi-scale approximations. In particular, the interest of

considering high-order MsFEM and increasing the MsFEM order through numerical simulations

of Oseen problems is demonstrated. It should be noted that the quantitative analysis of the

numerical results is not straightforward. The first difficulty is obtaining reference solutions, as

the considered meshes are large and the problems difficult to resolve due to the presence of

perforations. The computation of reference solutions has necessitated the utilisation of domain

decomposition methods and state-of-the-art solvers and preconditioners. Furthermore, the com-

parison between the reference solutions and the MsFEM approximations is not straightforward,

as the solutions are not in the same finite element spaces. This necessitates the utilisation of

interpolations, which also engenders the introduction of certain numerical errors. Furthermore,

when the domains employed to compute the reference solutions (in the decomposition domains

methods) are not the coarse triangles, but are generated by an alternative partitioner, this

comparison could not be made due to difficulties in interpolating the solutions.
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Towards the Navier–Stokes problem
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Chapter 16

A first approach to solve the

Navier–Stokes problem and

perspectives
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In this chapter, we propose to solve the stationary Navier–Stokes problem using an MsFEM

approach. We propose a strategy to solve the Navier–Stokes problem on a coarse mesh using

well-adapted basis functions defined by Oseen problems.

16.1 Problem definition

The steady state Navier–Stokes problem with homogeneous Dirichlet boundary conditions in a

perforated domain is to find the velocity uε : Ωε → Rd and the pressure pε : Ω
ε → R solution to

−ν∆uε + uε ·∇uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(16.1)

271



Chapter 16. A first approach to solve the Navier–Stokes problem and perspectives

with f the applied force and ν > 0 the viscosity. We introduce the velocity space

V = H1
0 (Ω

ε)d = {u ∈ H1(Ωε)d such that u|∂Ωε = 0},

and the pressure space

M = L2
0(Ω

ε) = {p ∈ L2(Ωε) such that

∫
Ωε

p = 0}.

We note X = V ×M . For simplicity the fluid domain is assumed to be connected in order for

the pressure to be uniquely defined in M . We introduce the following non-linear form

cNS ((u, p), (v, q)) =

∫
Ωϵ

(ν∇u ·∇v + (u ·∇)u · v − p div v − q divu) .

Then, a weak formulation of the Navier–Stokes problem (16.1) reads: find (uε, pε) ∈ X such

that

cNS((uε, pε), (v, q)) =

∫
Ωε

f · v ∀(v, q) ∈ X.

The analysis of non-linear variational problems is more difficult than the analysis of linear

variational problem. We do not present this study in this thesis. The reader can found analysis

of such problems in [84].

16.2 Numerical strategy

The main difference between the Navier–Stokes problem and the Stokes (7.1) or the Oseen (12.1)

problems is the presence of non-linear terms. Consequently, iterative methods are required

to solve the flows. Different methods, such as the Newton method or the pseudo-transient

approach, are described in the literature. The aforementioned methodologies are all based on

the linearisation of the Navier—Stokes equations. Given an initial guess, u0 ∈ V , a sequence of

iterates {uk}k=1,...,n ∈ V is computed which is expected to converge towards the solution to the

weak formulation. In most of these methods, the linearisation consists in considering explicitly

the advection velocity, i.e. using the velocity at the previous iteration as advection velocity.

This procedure leads to solve an Oseen type problem at each iteration of the iterative method.

The main paradigm of MsFEM is to build well-adapted basis functions to the considered

problem. For example, as seen in Chapter 12, to solve the Oseen problem on a coarse grid,

with a given Oseen velocity U0, the basis functions are solutions of local problems which are

themselves Oseen type problems with the same Oseen velocity U0. However, as explained above,

for solving iteratively the Navier–Stokes problems, at each iteration the global problem to be

computed changes since the advection velocity changes. Consequently, to compute the Navier–

Stokes problem on a coarse grid with MsFEM, a new basis has to be computed at each iteration,

taking into account the new advection velocity.
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16.2. Numerical strategy

Remark 16.1. One may attempt to resolve the Navier–Stokes problem by utilising a single

fixed basis, derived either from the Oseen problem with a specified arbitrary Oseen velocity

or from the Stokes problem (equivalent to the Oseen problem with a null advection velocity).

Nevertheless, even if the iterative algorithm converges, the basis functions may not be adapted

to the problem, resulting in inaccurate outcomes. Indeed, as soon as the advection velocity of

the global problem differs significantly from the velocity used in the local problems, the basis

functions become non-adapted to the problem.

In what follows, we propose a procedure to solve the stationary Navier–Stokes problem using

a pseudo-transient strategy with adaptive basis. We consider a pseudo-transient problem and

wait for it to converge in long time to the solution to the stationary problem. In other words,

we solve the unsteady Navier–Stokes, possibly with large time steps, and wait until the solution

no longer moves in time.

16.2.1 The unsteady Navier–Stokes problem

Instead of considering the stationary Navier–Stokes problem, we consider the unsteady Navier–

Stokes problem. The unsteady Navier–Stokes problem with homogeneous Dirichlet boundary

conditions in a perforated domain is to find the velocity uε : Ωε → Rd and the pressure pε :

Ωε → R solution to

∂tuε − ν∆uε + uε ·∇uε +∇pε = f in Ωε × (0, T ),

divuε = 0 in Ωε × (0, T ),

uε = 0 on ∂Bε ∩ ∂Ωε × (0, T ),

uε = 0 on ∂Ω ∩ ∂Ωε × (0, T ),

uε(·, 0) = u0 in Ωε,

(16.2)

with f the load and ν > 0 the viscosity.

To compute the problem (16.2), we use a first order time integration, and we consider

explicitly the advection velocity. Consequently, for i > 0, problem (16.2) becomes

ui+1 − ui

∆t
− ν∆ui+1 + ui ·∇ui+1 +∇pi+1 = f in Ωε,

divui+1 = 0 in Ωε,

ui+1 = 0 on ∂Bε ∩ ∂Ωε,

ui+1 = 0 on ∂Ω ∩ ∂Ωε,

(16.3)

where ∆t > 0 is the time step. In particular the first equation of (16.3), can be rewritten as

ui+1

∆t
− ν∆ui+1 + ui ·∇ui+1 +∇pi+1 = f +

ui

∆t
,

which is a classical Oseen problem, with the Oseen velocity ui.

273



Chapter 16. A first approach to solve the Navier–Stokes problem and perspectives

16.2.2 Discretized coarse scale problem

We note VH the approximation space for the velocity and MH the approximation space for the

pressure. We recall that VH is the space generated by the multi-scale basis functions (derived

either from the Stokes or the Oseen problems) and MH is the space of fully discontinuous poly-

nomial of order n. The coarse-scale discretisation of the unsteady Navier–Stokes problem (16.3)

reads at each iteration, for i ≥ 0: find uH
i+1 ∈ VH and pi+1

H ∈MH(:= Pdc
n ) such that

mH(uH
i+1,v) + aH(uH

i+1,v) + cH(uH
i;uH

i+1,v) + bH(pi+1
H ,v)

= FH(v) +mH(uH
i,v) ∀v ∈ VH

bH(q,uH
i+1) = 0 ∀q ∈MH

(16.4)

where

mH (u,v) =
∑
T∈TH

∫
T∩Ωε

1

∆t
u · v,

aH (u,v) =
∑
T∈TH

∫
T∩Ωε

ν∇u ·∇v,

cH (w;u,v) =
∑
T∈TH

∫
T∩Ωε

(w ·∇)u · v,

bH(q,v) =
∑
T∈TH

∫
T∩Ωε

q div v,

FH(v) =
∑
T∈TH

∫
T∩Ωε

f · v.

16.2.3 Algorithm

We note BSt(ν) the MsFEM basis derived from the Stokes operator (see Chapter 7), computed

with the viscosity ν. We note BOs(ν,u0) the MsFEM basis derived from the Oseen operator (see

Chapter 12), computed with the viscosity ν and the Oseen velocity u0. Then, the procedure to

compute the Navier–Stokes problem on a coarse grid reads as follows.
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Algorithm 16.2 (Pseudo-transient Navier–Stokes).

� Set ∆t;

� Set uH
0 = 0;

� Compute BSt(ν);

� Find (uH
1, p1H) by computing (16.4), which is equivalent to a Stokes type problem due

to the choice of uH
0, on the coarse grid using the basis BSt(ν);

� for (i = 1, i < niter, i = i+ 1):

– Compute BOs(ν,uH
i);

– Find (uH
i+1, pi+1

H ) by computing (16.4) on the coarse grid using the basis

BOs(ν,uH
i);

– Compute the residuals;

– Break if convergence or divergence;

This procedure can be easily slightly improved. For example, if the residuals are small

enough, i.e. if the solution does not vary a lot, the computation of a new basis may not be

useful.

16.3 Numerical examples

We solve the Navier–Stokes problem (16.1) in a two-dimensional open channel Ω = [0 ≤ x ≤
1, 0 ≤ y ≤ 1], where the heterogeneities are represented by solid obstacles. We choose the fine

mesh size h = 1 × 10−3, so that the Péclet number is smaller than 1. We assign ν = 1 × 10−3

and f = 0. The parabolic inflow boundary condition u = y(1 − y)e1 is imposed at the inlet.

The Neumann boundary condition ν∇un − pn = 0 is imposed at the outlet and the no-slip

condition is applied on other boundaries. The Reynolds number is of 1000. Numerically, we

define the residuals as

res =
∥uH

i+1 − uH
i∥∞

∥uH
i+1∥∞

+
∥pi+1

H − piH∥∞
∥pi+1

H ∥∞
,

and consider that the algorithm has converged when the residual becomes less than 1×10−8. The

time step ∆t was set to 100 (this value has minimal impact on the results, numerical tests with a

time step of 10 or 1000 yielded comparable outcomes). In the different simulations presented in

the section, the algorithm converged in approximately 40 iterations. We present in Figure 16.1,

the residuals for the MsFEM approximations Figure 16.3 for different time-steps.
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Figure 16.1: Convergence of the pseudo-transient Navier–Stokes algorithm.

(a) Velocity magnitude. (b) Pressure field.

Figure 16.2: Reference solution, ε = 1/8.

(a) Velocity magnitude. (b) Pressure field.

Figure 16.3: MsFEM approximation of the steady Navier–Stokes, n = 1, H = 1/8 (256 coarse
elements), ε = 1/8.

276



16.3. Numerical examples

(a) Velocity magnitude. (b) Pressure field.

Figure 16.4: MsFEM approximation of the steady Navier–Stokes, n = 2, H = 1/8 (256 coarse
elements), ε = 1/8.

(a) Velocity magnitude. (b) Pressure field.

Figure 16.5: Reference solution, ε = 1/16.

(a) Velocity magnitude. (b) Pressure field.

Figure 16.6: MsFEM approximation of the steady Navier–Stokes, n = 1, H = 1/16 (1024 coarse
elements), ε = 1/16.
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(a) Velocity magnitude. (b) Pressure field.

Figure 16.7: MsFEM approximation of the steady Navier–Stokes, n = 2, H = 1/16 (1024 coarse
elements), ε = 1/16.

First, Figures 16.3, 16.4, 16.6 and 16.7 allow to validate the methodology presented in

Algorithm 16.2 to solve the unsteady Navier–Stokes problem. As expected, the velocity increases

between obstacles. A visual inspection of the approximations allows to confirm that the MsFEM

for n = 2 (Figures 16.4 and 16.7) yields to better physical solutions, in agreement with references

solutions (Figures 16.2 and 16.5). Indeed, the approximations for n = 2 capture well the

variations of the velocity magnitude on the one hand around the obstacles, and on the other

hand at the exit of the congested area. This analysis clearly demonstrates the benefits of

employing high-order MsFEM approaches.

Remark 16.3. The simulations presented in this section were conducted on a local machine.

Indeed, the procedure outlined in Algorithm 16.2 is not suitable for use on a cluster due to the

inherent limitations of the queueing system when submitting a job on a cluster. For instance,

the job allowing the compututation of the basis functions must await its turn in the queue

before being initiated.

16.4 Perspective to solve the Navier–Stokes problem: General-

ized Multi-scale Finite Element Method (GMsFEM)

The strategy presented in Section 16.2, consisting in computing a new basis at each iteration can

be too expensive and not tractable in practice. This might be a limitation of MsFEM for solving

the Navier–Stokes problem or in general for solving non-linear problems or time dependent

problems. One appealing approach to solve such problems is the Generalized Multi-scale Finite

Element Method (GMsFEM), introduced in [69]. This method was originally presented for

solving problems with input parameters, that we denote by θ in what follows. This method

allows to solve global problems of the form Lθ(v) = 0, in which θ is not known a priori when

computing the basis functions. A typical example of such an input is the permeability in

Darcy’s equation. This method has been applied successfully in the literature for flow problems

[54, 52, 55]. In what follows, we explain the concept of the Generalized Multi-scale Finite
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Element Method (GMsFEM) and a possible way to apply it to solve the Navier–Stokes problem

by considering the advective velocity as an input parameter.

16.4.1 Generic structure of GMsFEM

Similarly to MsFEM approach, GMsFEM is composed of two main steps: an offline step and an

online step.

The offline step The offline stage consists first in building a snapshot space, noted V snap
H . To

build this space, we consider Msnap well-chosen inputs θk, for k = 1, . . . ,Msnap, discretising as

best as possible the space in which the input parameter θ lies. Then, for each θk, we compute the

corresponding multi-scale basis, noted B(θk). Afterwards, the snapshot space V snap
H corresponds

to the space generated by the concatenation of all the basis B(θk). To summarise, we have

Bsnap =

Msnap⋃
k=1

B(θk), V snap
H = span{Bsnap}.

However, the basis Bsnap contains a large number of functions. This leads to an expensive

computation in the online stage. Consequently, it is possible to reduce the dimension of the local

snapshot space using a spectral decomposition and by selecting high energy elements. As result,

we obtain a new basis Boff which contains Moff functions, with Moff < Msnap. Each function

in Boff is a linear combination of functions in Bsnap. The offline space, noted V off
H , is the space

generated by Boff. To summarise we have

Boff = F(Bsnap), V off
H = span{Boff}.

with F representing a generic application.

Online step At this stage, we have at disposal, a multi-scale basis adapted to a large range

of input parameters. Then, in the online step, for a given input parameter, θon, of the global

problem, we compute the corresponding local space, called V on
H . This space is obtained by

computing Mon functions, with Mon ≤ Moff, obtained by linear combinations of functions in

Boff. The coefficients in the linear combination are given by well-chosen eigenvalue problems

involving the input parameter θon. In other words, we choose the basis functions the more

adapted to the input parameter θon. To summarise we have

Bon = F(θon;Boff), V on
H = span{Bon}.

16.4.2 Application to the Navier–Stokes problem

For solving the Navier–Stokes problem, we can consider the advection velocity as an input

parameter. The offline space will be obtained by computing local basis functions derived from

the Oseen problem for a large range of well-chosen Oseen velocities u0
k. Then, applying the

procedure described above, one needs at each iteration of the iterative method to determine

a new basis solving local eigenvalue problems and doing linear combinations. This procedure
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can be less expensive than computing a new basis at each iteration. Moreover, this approach is

more in accordance with the MsFEM paradigm, which comprises an offline phase and an online

phase. We did not consider this strategy in this thesis, since it is out of the scope of the work,

but it is a path for future development.
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Appendix of Chapter 5: Strategy to

find the unisolvent basis functions in

three dimensions and examples
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In Chapter 5, we have introduced a family of scalar non-conforming finite elements of order

two and three with respect to the H1-norm on tetrahedra. In this appendix, we explain the

strategy that we have used to find these finite elements. In addition, we give the list of the

suitable basis Σ3 to complete the polynomial space P2. This appendix is also the appendix of

[29].

A.1 Strategy to find the unisolvent basis functions

We propose to find numerically the additional functions of Pn+2 needed to complete the space

Pn+1 while ensuring that the generated space Vn+1 is unisolvent (in the sense of Definition 5.3)

with respect to the set Nn+1 of degrees of freedom. First, we introduce the following lemma.

Lemma A.1. Let K be a tetrahedron of vertices A, B, C, D, and λA, λB, λC , λD, the

associated barycentric coordinates. Then, the family
{
(λαAλ

β
Bλ

γ
Cλ

δ
D) such that (α, β, γ, δ) ∈

[[0, n]]4 and α + β + γ + δ = n
}
is a basis of the space Pn(K).

Proof. The proof consists of two steps. In the first one, we show that the family
{
(λαAλ

β
Bλ

γ
Cλ

δ
D)

such that (α, β, γ, δ) ∈ [[0, n]]4 and α + β + γ + δ = n
}
is linearly independent. In the

second one, we show that this family has the same dimension as the space Pn(K).

Step 1 Let us call (ABC) the face delimited by the vertices A, B and C, and (AB) the

edge delimited by the vertices A and B. We define similarly the other faces and edges of the
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tetrahedron K. Let us show that the family (λαi
A λ

βi

B λ
γi
C λ

δi
D) with αi + βi + γi + δi = n is linearly

independent. We define the polynomial P as

P =
∑
i

aiλ
αi
A λ

βi

B λ
γi
C λ

δi
D

with some real scalars ai. The objective is to show that P = 0 implies that all the coefficients

ai are equal to 0. Below, we give the general procedure to show this implication.

First, we consider the restriction of P on the edge (AB), i.e. on the edge on which λC = 0

and λD = 0. Consequently, P is reduced to

P |(AB)=
∑
i

aiλ
αi
A λ

βi

B = 0 (A.1)

with αi + βi = n. Now, given that on (AB), λB verifies λB = 1− λA, the family (λαi
A λ

βi

B )i is a

family of Bernstein polynomials which is known to be a basis of the space Pn(AB) (polynomials

of order n on the edge (AB)). Consequently, all the coefficients ai in (A.1) are null. We repeat

the same procedure on all the other edges of K, which allows to show that all the coefficient ai

associated with monomials involving at most two barycentric coordinates are null.

At this stage, it remains in P only monomials involving at least three barycentric coordi-

nates. We consider the restriction of P on the face (ABC), i.e. on the face on which λD = 0.

Consequently, P is reduced to

P |(ABC)=
∑
i

aiλ
αi
A λ

βi

B λ
γi
C = 0

with αi + βi + γi = n and αi ̸= 0, βi ̸= 0 and γi ̸= 0. Consequently, it is possible to factorize P

by the term λAλBλC which leads to

P |(ABC)= λAλBλC
∑
i

aiλ
α′
i

A λ
β′
i

B λ
γ′
i

C = 0

with α′
i + β′i + γ′i = n − 3. The polynomial P vanishing on (ABC) and λAλBλC not being the

null polynomial on (ABC), it follows that

Q =
∑
i

aiλ
α′
i

A λ
β′
i

B λ
γ′
i

C = 0.

It should be noted that in Q some α′
i, β

′
i or γ

′
i are equal to zero. Consequently, it is possible

to resctrict Q to edges of (ABC) to show that the coefficients associated with monomials in-

volving at most two barycentric coordinates are null. Afterwards, if necessary, it is one again

possible to factorize Q by λAλBλC and we repeat the procedure until we have shown that all

the coefficients ai in the polynomial Q are null. We repeat the same procedure on all the other

faces of K, which allows to show that all the coefficient ai associated with monomials involving

at most three barycentric coordinates are null.

At this stage, it remains in P only monomials involving exactly four barycentric coordinates,
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i.e. for n ≥ 4,

P =
∑
i

aiλ
αi
A λ

βi

B λ
γi
C λ

δi
D = 0,

with αi ̸= 0, βi ̸= 0, γi ̸= 0 and δi ̸= 0 and αi + βi + γi + δi = n. Consequently, it is possible to

factorize P by λAλBλCλD which leads to

P = λAλBλCλD
∑
i

aiλ
α′
i

A λ
β′
i

B λ
γ′
i

C λ
δ′i
D = 0

with α′
i + β′i + γ′i + δ′i = n− 4. The polynomial P vanishing on K and λAλBλCλD not being the

null polynomial on K, it follows that

Q =
∑
i

aiλ
α′
i

A λ
β′
i

B λ
γ′
i

C λ
δ′i
D = 0.

It should be noted that in Q some α′
i, β

′
i, γ

′
i or δ

′
i are equal to zero. Consequently, we can repeat

the above procedure (restriction of Q to faces, then to edges) to show that all coefficients ai

in Q are null. We have thus shown that all coefficients ai associated with monomials involving

four barycentric coordinates are null.

At the end of this general procedure, we have showed that all the coefficient ai in P

are null and consequently, that the family
{
(λαAλ

β
Bλ

γ
Cλ

δ
D) such that (α, β, γ, δ) ∈ [[0, n]]4 and

α + β + γ + δ = n
}
is linearly independent.

Step 2 In the second step, let us consider the following set

Epn =

{
(α1, . . . , αp) ∈ [[0, n]]p such that

p∑
i=1

αi = n

}
.

A basis of Pd
n (polynomial of order n with d variables) is given by

(
d∏

i=1

xαi
i

)
with

d∑
i=1

αi ≤ n.

Here, we have

(
d+1∏
i=1

λαi
i

)
with

d+1∑
i=1

αi = n. By noting that
d∑

i=1

αi ≤ n is equivalent to: there

exists c ≤ n such that
d∑

i=1

αi = n− c, then it is clear that

card(Ed+1
n ) = dim(Pd

n) =

(
n+ d

n

)
. (A.2)

And in particular,

card(E4n) =
(n+ 1)(n+ 2)(n+ 3)

6
= dim(P3

n). (A.3)

Below we prove the last equality of (A.2). First, we note that

card(Epn) =
n∑

i=0

card(Ep−1
i ).
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By noting that

card(E1n) = 1,

then, it follows that

card(E2n) = n+ 1,

card(E3n) =
(n+ 1)(n+ 2)

2
,

card(E4n) =
(n+ 1)(n+ 2)(n+ 3)

6
.

Consequently card(E4n) is exactly the dimension of P3
n. More generally, we show that

card(Ed+1
n ) =

(
n+ d

n

)
=

(n+ d)!

n!d!
= dim(Pd

n).

Combining the step 1 and the step 2 (in particular equality (A.3)) allows to conclude the

proof.

Below, we explain the main steps of the algorithm to find suitable additional functions.

1. Step 1: In order to complete the space Pn+1, we generate all functions of degree n + 2

that can be written as λi1λ
j
2λ

k
3λ

l
4 with i + j + k + l = n + 2 (see Lemma A.1). We store

them in the list AllFunctionsInSigma.

2. Step 2: For all possible combinations of n(n+ 2) functions among the list

AllFunctionsInSigma (for all possible Σn+2):

� Step 2.1: We generate the corresponding space Vn+1 by concatenating a basis of

Pn+1 with the considered basis of Σn+2.

� Step 2.2: We test the unisolvence of the considered basis of Vn+1. To verify the

unisolvence of the set of functions in Vn+1 according to the set of degrees of freedom,

we assemble the following matrix

Mij = Ni(φj) i, j ≥ 0,

for Ni in Nn+1 and φj ∈ Vn+1. Then, we compute the rank of the matrixM (in this

work, we use the NumPy linear algebra function matrix_rank [3]). If the matrixM
is of full rank, i.e. invertible, the set of functions (φj) is unisolvent with respect to

the set of degrees of freedom Nn+1 (see Definition 5.3).

Results for the case n = 1 We discuss about the output of the algorithm for the case n = 1.

� At the first step of the algorithm, we generate the list of the 20 functions of degree three.

� Then, by considering 3 functions among 20, we obtain 1140 potential spaces Σ3.

� By testing the unisolvence of the resulting space V2, we find that 128 spaces Σ3 are suitable

to complete P2. These subspaces are presented in Appendix A.2.
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Results for the case n = 2 We discuss about the output of the algorithm for the case n = 2.

� At the first step of the algorithm, we generate the list of 35 functions of degree 4.

� Then, by considering 8 functions among 35, we obtain 23,535,820 potential spaces Σ4.

� By testing the unisolvence of the resulting space V3, we find that 2,368,236 spaces Σ4 are

suitable to complete P3.

Conjecture for the case n = 3 For the case n = 3, we follow the same procedure. We

generate first the list of the 56 basis functions of P5(K). However, at this stage by considering 15

functions among the 56 functions to form the subspace Σ4, the number of possible combinations

is higher than 16,000 billion. Obviously, we cannot test the unisolvence of all resulting space V4.

We test randomly millions of possible space V4, but as of today, no suitable space Σ5 has been

found. The existence (or not) of such basis is still open.

A.2 Suitable basis of Σ3

In this section, we present the output of the procedure described in Appendix A.1 for the case

n = 1, i.e. all the basis of the space Σ3 that can be used to enrich P2 to build the space V2.
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In Chapter 6, we have considered that the obstacles do not touch the border of Ω for simplicity

of presentation. However, the proof of Theorem 6.9 can be extended in the case in which the

obstacles touch the border of Ω. This configuration may appear only when the obstacles are

connected. We give in this chapter the main outlines of the proof. One of the main difference

compared to the work presented in Chapter 6 is the definition of the domain Ωε when the

obstacles are connected. Then the proof of Theorem 6.9 follows the same lines that those

presented in Chapter 6 but with a different definition of the velocity estimator uε,3.

B.1 Definition of the open set Ωε in the case of connected ob-

stacles which touch the border of Ω

Let Ω be a bounded and connected open set of Rd (d ≥ 2). The set Ω is covered with a regular

square mesh of size ε, each cell being a cube Y ε
i . We define for any i ∈ Zd:

Yi = Y + i, Yi,F = YF + i, Yi,S = YS + i,

Y ε
i = ε(Y + i), Y ε

i,F = ε(YF + i), Y ε
i,S = ε(YF + i).

Define the set I = {i ∈ Zd s.t. Y ε
i ⊂ Ω} and the periodic set of perforations inside Ω as

Bε =
⋃
i∈I

Y ε
i,S .
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Finally, the fluid part Ωε of the perforated medium is defined by Ωε = Ω \Bε, i.e.

Ωε = Ω \
⋃
i∈I

Y ε
i,S = Ω ∩

⋃
i∈I

Y ε
i,F .

Remark that only entire obstacles Y ε
i,S are removed from Ω or, in other words, that no obstacles

are cut by the boundary ∂Ω.

Assumption B.1. If the solid part YS touches the boundary of Y , meaning that obstacles

are connected, then Ω is assumed to be a parallelepiped, namely a polygonal open set with

flat boundary faces which are each orthogonal to one of the unit canonical basis vector ek,

1 ≤ k ≤ d, of Rd and that Ω has commensurable sizes which guarantees the existence of a

sequence (εn)n∈N → 0 such that Ω =
⋃

i∈I Y
εn
i . In other words, Ω is the union of entire cells

and its boundary ∂Ω does not cut any cell.

Remark B.2. Assumption B.1 is possible only for space dimensions d ≥ 3 because in 2-d

EF and ES cannot be connected simultaneously. The general case of any smooth domain in

Assumption B.1 is much more tricky and we refer to [9] for more details. Indeed, when the

solid part YS touches the boundary of Y and Ω is not the union of entire cells
⋃

i∈I Y
ε
i , there

may be some pathological cut obstacles near the boundary ∂Ω. Therefore, only local results,

away from the boundary, can be obtained. For the sake of simplicity, this general case is not

discussed here.

Although the fluid domain EF is connected, Assumption B.1 does not ensure that the open

set Ωε is connected (which allows us to define a unique pressure in Ωε, up to a single additive

constant). Therefore, if Ωε is not connected, we remove the small connected components of Ωε

touching the boundary ∂Ω. For simplicity, we keep the notation Ωε for its main connected

components. In other words, we now assume that Ωε is connected. Assumption B.1 allows us to

treat the realistic case of a connected solid part and a diphasic boundary of the porous medium,

i.e. ∂Ω ∩ Ωε ̸= ∅ and ∂Ω ∩Bε ̸= ∅.

B.2 Proof of Theorem 6.9 in the case of connected obstacles

which touch the border of Ω

In such a case, contrary to the work done in Chapter 6, it is not possible to build a cut-off

function ηε which varies in the ε-vicinity Oε of ∂Ω and does not see any solid obstacles. The

difficulty is that the second line of the previous velocity estimator (6.33) does not vanish on ∂Bε

in Oε. To overcome this difficulty, we use the restriction operator Rε defined in Lemma 6.15
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and modify (6.33) as follows

uε,3(x) =Rε

{ε2
ν
|YF |⟨ωi⟩

(
fi(x)−

∂p∗

∂xi
(x)

)
− ε2vbε

}
+Rε

{ε4
ν
(−∆+∇ div )

(
ηε(x)ψi

(x
ε

))}(
fi(x)−

∂p∗

∂xi
(x)

)
+
ε3

ν
γij

(x
ε

)
ηε(x)

∂

∂xj

(
fi(x)−

∂p∗

∂xi
(x)

)
− vdε.

(B.1)

The pressure estimator (6.34) is unchanged.

In particular, the next two lemmas show that the restriction operator is almost the identity

when applied to functions which vanish on the solid obstacles outside from the ε-vicinity Oε

of ∂Ω.

Lemma B.3. Let Qε be the orthogonal projection operator on H1
0 (Ω

ε)d, defined by (6.4.2).

Let u ∈
(
H1

0 (Ω) ∩ C1(Ω)
)d

be such that u ≡ 0 in Bε \ Oε. Then, there exists a constant C,

which does not depend on ε, such that

∥∇(Qεu− u)∥L2(Ωε) ≤ C
√
ε∥∇u∥L∞(Ω).

Proof. Introduce a new cut-off function η̃ε, in the same spirit as in Definition 6.25. Recall that

Oε := {x ∈ Ω : dist(x, ∂Ω) ≤ cε}. The function η̃ε ∈ C∞(Ω) is chosen such that η̃ε and all its

derivatives vanish in Oε, while η̃ε(x) = 1 on Ω \O2ε and

∥1− η̃ε∥L2(Ω) ≤ C
√
ε; ∥η̃ε∥L∞(Ω) = 1; ∥∇η̃ε∥L∞(Ω) ≤

C

ε
.

In the minimization property (6.24) we choose the test function v = η̃εu, implying that

∥∇(Qεu− u)∥L2(Ωε) ≤ ∥∇(η̃εu− u)∥L2(Ωε) ≤ ∥(η̃ε − 1)∇u∥L2(O2ε) + ∥u∇η̃ε∥L2(O2ε).

It is easy to check that ∥(η̃ε − 1)∇u∥L2(O2ε) ≤ C
√
ε∥∇u∥L∞(Ω). Using for u the same type of

Poincaré-type argument as in Lemma 6.21, one obtains that ∥u∇η̃ε∥L2(O2ε) ≤ C
√
ε∥∇u∥L∞(Ω),

thus proving the lemma.

Lemma B.4. Let Rε be the linear operator on H1
0 (Ω

ε)d, defined by Lemma 6.15. Let u ∈(
H1

0 (Ω) ∩ C1(Ω)
)d

be such that u ≡ 0 in Bε \Oε. Then, there exists a constant C, which does

not depend on ε, such that

∥Rεu− u∥L2(Ωε) + ε∥∇(Rεu− u)∥L2(Ωε) ≤ Cε3/2∥∇u∥L∞(Ω). (B.2)

Proof. In view of system (6.25), if u ∈ H1(Y )d satisfies u ≡ 0 in YS , we deduce that Riu − u
satisfies a homogeneous Stokes equation with a boundary condition on ∂Y depending on Qiu−u,
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which implies that there exists a constant C such that

∥Riu− u∥2L2(YF ) + ∥∇(Riu− u)∥2L2(YF ) ≤ C∥∇(Qiu− u)∥2L2(YF ),

where we applied Poincaré inequality to (Qiu − u) which vanishes in YS . After scaling and

summation on all cells Y ε
i , recalling that Qε and Qi are related by (6.24), and using Lemma B.3,

we deduce (B.2).

Then using the estimator (B.1), and Lemmas B.3 and B.4, we are able to extend Lemma 6.27

to the case of connected obstacles which touch the border.

Lemma B.5. There exists vdε ∈ H1
0 (Ω

ε)d, such that the velocity estimator uε,3, defined by

(B.1), satisfies

uε,3 = ε2u2 + ε3u3 − vdε + rε in Ω \Oε

where rε is a small remainder term satisfying

∥rε∥L2(Ωε) + ε∥∇rε∥L2(Ωε) ≤ Cε3/2∥f −∇p∗∥C1,α(Ω),

uε,3 = 0 on ∂Ω,

uε,3 = 0 on ∂Bε,

divuε,3 = 0 in Ω

and

|vdε|H1(Ωε) ≤ Cε
3
2 ∥f −∇p∗∥H2(Ω)∩C1,α(Ω)

with C independent of ε.

Then Lemma 6.28 remains true with a little more technical proof, and the rest of the proof

follows the same lines.
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This appendix is dedicated to the proof of some results concerning quadrature rules. In par-

ticular, in Appendix C.1 we prove an exact quadrature rule for quadratic functions on triangles

and in Appendix C.2 we explain why we cannot show the discrete well-posedness of the local

problems for higher order MsFEM with usual pairs of finite elements.

C.1 Exact quadrature rule for quadratic function on a triangle

Lemma C.1. Let K be a non degenerated triangle. Let A1, A2 and A3 be the three vertices

of K and A1,2 the middle of A1A2, A1,3, the middle of A1A3, and A2,3 the middle of A2A3.

Let Q be a quadratic function, then the following exact quadrature rule holds∫
K
Q(x)dx =

|K|
3

(
Q(A1,2) +Q(A1,3) +Q(A2,3)

)
.

In this section, we prove Lemma C.1. The proof is done in two steps. In the first step, we

determine the Lagrange polynomials associated to the Lagrange interpolation points. In the

second step, we derive the quadrature rule using these polynomials.

291



Appendix C. Appendix of Chapter 8: Some results about quadrature rules

C.1.1 Definition of the Lagrange polynomials

Let us consider a triangle K with the barycentric coordinates λ1, λ2 and λ3. We consider the

three vertices A1 (1, 0, 0), A2 (0, 1, 0) and A3 (0, 0, 1), localized with the barycentric coordinates

and let A1,2 (12 ,
1
2 , 0) the middle of A1A2, A1,3 (12 , 0,

1
2), the middle of A1A3, and A2,3 (0, 12 ,

1
2)

the middle of A2A3. It is well-known that the family {λ21, λ22, λ23, λ1λ2, λ1λ3, λ2λ3} is a

basis of P2. Now, we propose to find the Lagrange polynomials associated with the Lagrange

interpolation points, i.e. the three vertices Ai and the three middle of edges Ai,j . First, we

note that everything is invariant by permutation of the vertices, this is sufficient to construct

for example the Lagrange polynomial corresponding to A1 and that corresponding to A1,2.

Let us start with the polynomial p1 associated with the node A1. We need a polynomial p1 ∈
P2 such that p1(A

1) = 1 and p1 vanishes at all the other vertices. First, p1 is of degree at most

two on the line (A2, A3) with three roots A2, A3 and A2,3, thus it vanishes on (A2, A3). The

equation of the straight line (A2, A3) is λ1 = 0, hence p1 is divisible by λ1. There exist a

polynomial q such that p1 = qλ1. Given that λ1 is of degree one, q is of degree at most one.

Moreover since λ1(A
1,2) = λ1(A

3,1) = 1
2 = 1

2 ̸= 0 we have q(A1,2) = q(A1,3) = 0. Thus q

vanishes along the line (A1,2, A1,3) of equation λ1 − 1
2 = 0. Thus q is divisible by λ1 − 1

2 , so

that q = c(λ1 − 1
2) with c a constant. Finally, given that p1(A

1) = 1, we have 1 = C
2 , hence

p1 = λ1(2λ1 − 1). Finally, we have

p1 = λ1(2λ1 − 1), p2 = λ2(2λ2 − 1), p3 = λ3(2λ3 − 1).

Now, we consider the polynomial p1,2 associated with the node A1,2. The polynomial vanishes

on both lines (A1, A3) and (A2, A3) hence p1,2 = cλ1λ2 where c is a constant. Using p1,2(A
1,2) = 1

gives c = 4. Finally, we have

p1,2 = 4λ1λ2, p1,3 = 4λ1λ3, p2,3 = 4λ2λ3.

C.1.2 Derivation of the quadrature formula

In this part, we denote the vertices of the triangle K with indices 1− 3 and the middle point of

the edges with indices 4− 6. We call pi the Lagrange polynomial associated with the Lagrange

interpolation point i. First, every quadratic function can be uniquely expressed in the Lagrange

basis as

Q(x) =
6∑

i=1

αipi(x).

Since the pi is the Lagrange basis functions, we have

Q(rj) =
6∑

i=1

αipi(rj) =
6∑

i=1

αiδi,j = αj , (C.1)

with rj the Lagrange interpolation point associated with Lagrange polynomial pj . We can thus

rewrite (C.1) as

Q(x) =
6∑

i=1

Q(ri)pi(x).
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Then, the integration over the triangle K reads

∫
K
Q(x)dx =

6∑
i=1

Q(ri)

∫
K
pi(x)dx =

6∑
i=1

f(ri)ωi.

We have seen above that the pi = λi(2λi − 1) and the pi,j = 4λiλj . Thus by symmetry we have

ω1 = ω2 = ω3 and ω4 = ω5 = ω6, and it is sufficient to compute

ωi =

∫
K
λi(2λi − 1)dx = 0,

and

ωi,j =

∫
K
4λiλjdx =

|K|
3
,

using the following exact integration formula for product of barycentric coordinates on polyhe-

dron [163],

∫
K

d+1∏
i=1

λαi
i = |K|d!

d+1∑
i=1

αi!(
d+1∑
i=1

αi + d

)
!

.

Finally, we have ∫
K
Q(x)dx =

|K|
3

(
Q(A1,2) +Q(A1,3) +Q(A2,3)

)
.

C.2 High order quadrature rules on triangles

In this section, we explain more in details why we cannot prove the well-posedness of the

discrete local problems with Taylor–Hood finite elements. This section is based of the results

about Gauss-Lobato quadrature rules presented in [170, 94]. Indeed, the discretization of the

local problems leads to integrals of type∫
T
div vh ph =

∫
T
λ φT · vh

with φT ∈ (Pn−1(T ))
d. Now, if we choose vh ∈ Pn+1(T ) and ph ∈ Pn(T ), it follows that the

terms div vh ph and φT · vh are polynomials of order 2n. Therefore, to show the discrete well-

posedness of the local problems, the objective is to find a quadrature formula for polynomials

of degree 2n, i.e. for polynomials in P2n(T ), using the Lagrange points of polynomials of degree

n+ 1, i.e. in Pn+1(T ).

Remark C.2. In two dimensions on triangles, we have seen that if n = 1, such a quadrature

rule exists, since this is equivalent to integrate a quadratic polynomial with the Lagrange points

of polynomials of degree 2 (see Lemma C.1), hence the well-posedness of the local problems

with the pair of finite element P2 − P1 for the two-dimensional MsFEM in the case n = 1.
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C.2.1 Theoreticals results

[94] shows that it is impossible to integrate polynomials of degree (2n+ 1) with
(n+ 2)(n+ 3)

2
points. By recalling that dim (Pn(T )) = (n+1)(n+2)

2 , it is consequently impossible to inte-

grate polynomials of degree (2n + 1) with the Lagrange interpolation points of polynomials

in Pn+1(T ). Nevertheless, in the present case, we need to integrate polynomials of degree 2n

with
(n+ 2)(n+ 3)

2
points. In what follows, we check if such a quadrature rule can exist.

First, we recall that the structure of the space Pn+1(T ) is as follows: three points at the

vertices, n points on the edges and n(n−1)
2 points in the element. [170] proposes a method to

build quadrature rules of the form

∫
Ω
Q(x, y)dxdy =

N∑
k=1

λkQ(xk, yk), (C.2)

with Q a polynomial. [170] gives also the lower bound N for such a quadrature rule, i.e.

N ≥

{
(n+1)(n+2)

2 + ⌊ (n+1)
2 ⌋ if deg(Q) = 2n+ 1,

(n+1)(n+2)
2 if deg(Q) = 2n.

It should be noted that the minimal quadrature rule could require more points that the lower

bound N . We re-write (C.2) as

∫
Ω
Q(x, y)dxdy =

NK∑
k=1

λk,0Q(xk,0, yk,0) +

NE1∑
k=1

λk,1Q(xk,1, 0) +

NE2∑
k=1

λk,2Q(0, yk,2)

+

NE3∑
k=1

λk,3Q(xk,0, 1− xk,3) + µ0f(0, 0) + µ1f(1, 0) + µ2f(0, 1)

with N = NK + NE1 + NE2 + NE3 + 3 where NK is the number of integration points in the

element K, NEi the number of integration points on each edge Ei. According to [94], such a

quadrature rule does not exist if deg(Q) = 2n + 1, NE1 = NE2 = NE3 and NK = (n−1)n
2 (it is

impossible to integrate a polynomial Q of degree (2n+1) with the Lagrange interpolation points

of polynomials in Pn+1(T )). The main result of [170] is that if such a quadrature rule exists (a

necessary condition but non sufficient) with deg(Q) = 2n− 1 or deg(Q) = 2n, then

NK ≥

{
n(n−1)

2 if deg(Q) = 2n− 1,
n(n−1)

2 + ⌊ (n−1)
2 ⌋ if deg(Q) = 2n,

and

NK +NEi ≥

{
n(n−1)

2 + ⌊ (n−1)
2 ⌋ if deg(Q) = 2n− 1,

n(n+1)
2 if deg(Q) = 2n.

In the following section, give some examples to illustrate this rule.
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C.2.2 Some illustrative examples

First, let us consider n = 2, then if a quadrature rule, allowing to integrate polynomials of degree

3 or 4 with the Lagrange interpolation points of P3, exists, then NK and NEi should verify

NK ≥

{
1 if deg(Q) = 3,

1 if deg(Q) = 4,

and

NK +NEi ≥

{
1 + ⌊12⌋ = 1 if deg(Q) = 3,
2×3
2 = 3 if deg(Q) = 4.

For the space P3, NK = 1 and NEi = 2, then such a quadrature rule to integrate polynomials

in P4 with the Lagrange interpolation points of P3 may exists.

Let us consider now n = 3, then if a quadrature rule, allowing to integrate polynomials of

degree 5 or 6 with the Lagrange interpolation points of P4, exists then NK and NEi should verify

NK ≥

{
3 if deg(Q) = 5,

3 + 1 = 4 if deg(Q) = 6,

and

NK +NEi ≥

{
3 + ⌊22⌋ = 4 if deg(Q) = 5,

6 if deg(Q) = 6.

For the space P4, NK = 3 and NEi = 3. Then, such a quadrature rule to integrate polynomials

in P5 with the Lagrange interpolation points of P4 may exists but a quadrature rule to integrate

polynomials in P6 with the Lagrange interpolation points of P4 may not exist.

Consequently, in view of the results presented in this section, it may be possible to show that

the local problems for the high-order MsFEM in the case n = 2 in two dimensions is well-posed

with the pair of finite element P3−P2. However, such a quadrature rule has not been found and

the existence of such a quadrature rule is not guaranteed. Besides, we not pursue in this way

to prove the discrete well-posedness since for higher order, let say n = 3, if we choose vh ∈ P4

and ph ∈ P3, it follows that the quantities φT · vh are polynomial of degree 6, and we have just

seen that we cannot integrate a polynomial of degree 6 with the Lagrange interpolation points

of polynomials of degree 4.
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the reference solutions.

For the sake of comparison with the MsFEM approximations, in absence of analytical so-

lutions, we compute reference solutions on reference meshes. In this appendix, we explain the

computation of the reference solutions for the Stokes and the Oseen problems in two-dimensional

heterogeneous domains.

The finite element discretisation of these problems leads to linear systems of equations in

the form

Ax = b, (D.1)

where A ∈ Rn×n is sparse, b is the right-hand side, and x the sought solution. Given that

the fine meshes considered, consist of millions of fine elements, the sparse matrix A resulting

from the discretisation of these problems is very large. A first class of method to solve such
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problems are methods based on direct factorisation of the sparse matrix such as the Cholesky

or LU factorisations. However, these direct methods, although robust and reliable, are mainly

sequential, and require consequently a very large amount of memory resources, often intractable.

Another popular class of methods is the iterative methods, relying on Krylov subspaces. These

methods require only a sparse matrix vector multiplication per iteration and they are highly

parallelizable. Among these methods, we can cite for example the Generalized Minimal Residual

(GMRES) [152], the Conjugate Gradient (CG) [129] or the Minimal Residual (MINRES) method

[142]. However, the convergence of these methods relies heavily on the properties of the matrix

A. For example, if A is symmetric positive definite (SPD), the A-norm of the error at the kth

iteration of CG algorithm, satisfies the following inequality

∥A−1b− xk∥A ≤ 2∥A−1b− x0∥A

(√
κ2(A)− 1√
κ2(A) + 1

)k

where κ2(A), the condition number of A, i.e. the ratio between largest and smallest eigenvalues

of A.

In particular, in the cases considered in this thesis, the discretisation of the Stokes or the Os-

een problems in highly heterogeneous domains with lots of obstacles, leads to very ill-conditioned

matrix, i.e. matrix with high condition number. Consequently, applying iterative solvers directly

on system (D.1) is not efficient to solve these problems. To overcome this limitation, we use a

preconditioning strategy, which consists to multiply both sides of (D.1), for example from the

left by a matrix M−1, such that the condition number of the resulting matrix M−1A is small.

In what follows, we explain the preconditioning strategy to compute the reference solutions

for the Stokes and the Oseen problems in two-dimensional heterogeneous domains. This pre-

conditioning strategy is based mainly on two level Schwarz type Domain Decomposition (DD)

associated with the GenEO (Generalized eigenvalue problem in the overlap) method.

D.1 Two level Schwarz type Domain Decomposition (DD) with

GenEO for symmetric positive definite (SPD) matrices

Domain decomposition methods [65] are one of the dominant paradigms for defining efficient

and robust preconditioners in modern large-scale applications. Besides, it is well-known that

one level method scales poorly when the number of subdomains used increases. That is why, in

this section we present a two level Schwarz type Domain Decomposition (DD) [65] associated

with the GenEO (Generalized eigenvalue problem in the overlap) method [157, 115]. These

types of domain decomposition methods are based on the two level method, the overlapping

additive Schwarz preconditioner, which consists in a coarse space and a formulation of how

this coarse space is incorporated into the domain decomposition method. Here, the coarse

space is derived using the GenEO method, taking advantage that we deal with positive definite

matrices, the GenEO methods having been developed for SPD matrices. The GenEO coarse

space is constructed automatically solving a generalized eigenproblem on each subdomain.

Let Z be a symmetric positive definite (SPD) matrix of size n×n. Then, the preconditioning
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of Z using a two level Schwarz type Domain Decomposition (DD) method reads (with an additive

correction)

M−1
Z,additive = RT

HZ−1
H RH +

N∑
j=1

RT
j Z−1

j Rj ,

where

ZH = RHZRT
H and Zj = RjZRT

j .

N is the number of subdomains, RH is a full rank matrix of size dim(VH)×n where VH (the coarse

space) denotes the space spanned by the columns of RT
H . However, more numerically efficient

corrections can be chosen, such as the deflated or balanced corrections defined respectively by

M−1
Z,deflated = RT

HZ−1
H RH +

 N∑
j=1

RT
j Z−1

j Rj

 (I −ZRT
HZ−1

H RH), (D.2)

M−1
Z,balanced = RT

HZ−1
H RH + (I −ZRT

HZ−1
H RH)

 N∑
j=1

RT
j Z−1

j Rj

 (I −ZRT
HZ−1

H RH). (D.3)

The action of each {RjZRT
j }

−1
i can be parametrized through a local KSP. In order to con-

struct the coarse space, VH , we use local generalised eigenvalue problems in each subdomains

allowing to select suitable coarse vectors that satisfy certain local stability estimates. Indeed, us-

ing the GenEO method [157, 115], it is possible to fix in advance two constants 0 < λm < 1 ≤ λM
and then, build a coarse space VH such that M−1

Z is spectrally equivalent to Z−1

1

λM
M−1

Z ≤ Z−1 ≤ 1

λm
M−1

Z . (D.4)

The dimension of the coarse space VH is proportional to the number of subdomains N . For each

subdomain 1 ≤ i ≤ N , let Di be a non negative diagonal matrix that defines a discrete partition

of unity, i.e.
N∑
i=1

RT
i DiRi = I

and ZNeu
i be a symmetric semi-definite positive matrix such that for the maximum multiplicity

of the intersection of subdomains denoted k1, we have

N∑
i=1

RT
i ZNeu

i Ri ≤ k1Z.

To build the Geneo coarse space, the eigenvalue problem to be solved, local to each subdomain,

reads as follows. Find (λik , Vik) ∈ R× Rrank(Ri) solution to

(DiRiZRT
i Di)Vik = λikZ

Neu
i Vik . (D.5)

Let τ > 0 be a positive threshold, the coarse space is the vector space spanned by the vector

RT
i DiVik , ∀λik > τ . Then, inequality (D.4) holds with λm = (1+ k1τ)

−1 and λM = k0 where k0
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is the maximal number of neighbours.

D.2 Computation of Stokes reference solutions in two dimen-

sions

D.2.1 Problem definition

The steady state Stokes problem with homogeneous Dirichlet boundary conditions in a per-

forated domain is to find the velocity uε : Ωε → R2 and the pressure pε : Ωε → R solution

to 
−ν∆uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(D.6)

with f the applied force and ν > 0 the viscosity. The analysis of the Stokes problem has

been extensively presented through different sections of this thesis. The readers may refer to

Chapter 4, Chapter 5 or Chapter 7.

D.2.2 Efficient preconditioning strategy for the Stokes equations

D.2.3 Stokes problem in matrix form

It is well-known that the discretisation of the Stokes problem (D.6) leads to a linear system

featuring a two-by-two block matrix. Let m and n be two integers with m < n. Let A be a

sparse n × n matrix, B be a sparse n × m full-rank matrix of constraints, and C an m × m
matrix (in particular C = 0 is allowed). From this, a saddle point matrix is built as

A =

(
A B

BT C

)
.

We also define

b =

(
f

g

)
,

where f is the source term and g is the value of the divergence (g is usually equal to 0 for the

Stokes problem since we consider a divergence-free velocity). The objective is thus to efficiently

solve the following linear system

Ax = b, (D.7)

where x is the vector of unknowns. In the case of the Stokes system, x =

(
u

p

)
, with u the velocity

unknowns and p the pressure unknowns. Below, we introduce a preconditioning strategy based

on a decomposition of the problem by blocks with respect to the physics, using the fieldsplit

strategy introduced in [42]. In particular, we use the same strategy as presented in [138] for

saddle point problems, taking the advantage of the two by two blocks structure of the Stokes
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problem. Indeed, the decomposition

A =

(
A B

BT C

)
=

(
I 0

BA−1 I

)(
A 0

0 −(C +BA−1BT )

)(
I A−1BT

0 I

)

shows that solving the system with A can be performed by solving sequentially linear systems

with A and one with the Schur complement S = C + BA−1BT . Consequently, we need a

preconditioner for A and a preconditioner for S. The development of efficient preconditioners

for A and for S, called respectively MA and NS , is the main topic of what follows. These

preconditioners are based on the methods presented in Appendix D.1. Then, we combine MA

and NS to define a compact way to precondition the parallel saddle point problem.

D.2.3.1 Preconditioning of the matrix A and S

The preconditioners for A and S, denoted respectively byMA and NS , are based on the two level

additive Schwarz method as presented in Appendix D.1. The matrix A is preconditioned consid-

ering Z = A in Appendix D.1. The development of a preconditioner for the Schur complement

S, defined by

S = C +BA−1BT

is more technical. We do not describe all the procedure. As presented in [138], the final

preconditioner NS for S reads

NS = S0 +MS1

where S0 is a coarse correction and MS1 is a preconditioner based on two-level domain decom-

position, whose expression can be found in [138].

D.2.4 Implementation details

The Stokes problem is discretized using classical Taylor–Hood finite element (the two compo-

nents of the velocity are discretized with P2 finite element and the pressure is discretized with

P1 finite element) and solved with the open-source parallel finite element software FreeFEM

[93]. The domain decomposition algorithm based on GenEO, presented above, is implemented

in PETSc [27] and in particular in the library HPDDM [116], interfaced in FreeFEM. As is

usual in domain decomposition methods, we assign one subdomain per MPI process. For the

ease of post-processing (comparison with MsFEM approximations), we use the same partitioning

as used in the MsFEM approach, i.e. a subdomain corresponds to a coarse element (a coarse

triangle in two dimensions or a coarse tetrahedron in three dimensions). If required, each coarse

element is partitioned again in subdomains using an automatic graph partitioner such as METIS

[118] or in contrary, several coarse elements can be glued together to form a new larger subdo-

main. In practice, in order to use GenEO from PETSc, the auxiliary operators {ANeu
i }1≤i≤N

(see (D.5), also known as Neumann matrices, representing the discretization of the problem on

the extended local subdomain with overlap, endowed with natural boundary conditions) and

the corresponding local to global map of degrees of freedom have to be provided. However, in

case where the matrix is constructed using the PETSc discretisation infrastructure (as in this

work), the relevant information are automatically passed from FreeFEM to PETSc. The GenEO
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eigenvalue problems are solved with SLEPc [100]. The default number of eigenvectors -esp_nev

used to build the coarse space is 20. The dimension of the coarse space is consequently, by

default, 20×N (with N the number of subdomains) under the assumption that all concurrent

SLEPc solves converge. The default coarse correction is the deflated ones (D.2). The precision

of the computations depends on the relative tolerance, -ksp_rtol, based on the L2-norm of the

residuals. Convergence is detected at iteration k if

∥rk∥2 > max(rtol∥b∥2, atol)

where rk = b−Axk. By defaut, rtol = 10−5 and atol = 10−50.

D.2.4.1 Final structure of the solver

Now, we summarise the proposed methodology for solving iteratively (D.7) and detail the as-

sociated PETSc instructions for the sake of reproducibility. We use the Flexible Generalized

Minimal Residual algorithm (FGMRES, -ksp_type fgmres) [151], which iteratively solves (D.7)

using full Schur complement as outer preconditioner on the right, taking advantage that FGM-

RES allows the preconditioner to change at each iteration. Indeed, the inner Krylov solver for

both physical blocks, performs only a few iterations (the relative tolerance on this solver is high),

which justifies the use of the flexible GMRES algorithm as outer Krylov solver. The first options

to initialise this solver are:

-ksp type fgmres

-ksp rtol 1.0E-10

-pc type fieldsplit

-pc type fieldsplit schur

-pc type fieldsplit schur precondition self

The linear solves require inner velocity and pressure solves, involving respectively matrices A

and S, which are themselves solved iteratively using the preconditioners MA and NS defined

above.

The options used to implement the preconditioner NS for the Schur complement are:
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-prefix push fieldsplit 1

-ksp rtol 1.0E-1

-ksp type fgmres

-pc type hpddm

-pc hpddm has neumann

-pc hpddm ksp rtol 1.0E-2

-pc hpddm schur precondition geneo

-prefix push pc hpddm levels 1

-eps nev 30

-eps threshold 0.4

-st share sub ksp

-eps gen non hermitian

-sub pc factor mat solver type mumps

-sub pc type lu

-eps tol 1.0E-2

-prefix pop

-prefix push pc hpddm coarse

-correction balanced

-pc type cholesky

-pc factor mat solver type mumps

-mat filter 1.0E-15

-prefix pop

-prefix pop

The inner Krylov solver for the Schur complement block is FGMRES (-ksp_type fgmres).

The relative tolerance (-ksp_rtol) of the outer Krylov method is set to 10−1 (only a few

iterations are required). The threshold τS1 (-eps_threshold) for selecting the local eigenvectors

involved in the coarse space is set to 0.4 and the maximum number of eigenvectors (-eps_nev) is

set to 30. Local subdomain matrices are factorised by the sparse direct solver MUMPS [15]. The

tolerance for the resolution of the eigenvalue problems (-eps_tol) is set to 10−2. The coarse

problem is solved using an exact Cholesky factorisation performed by MUMPS. For the coarse

correction, we use a balanced coarse scale correction as defined in (D.3). The coarse matrix is

filtered with a threshold set to 10−15 to reduced the amount of memory used.

The options used to implement the preconditioner M−1
A for the matrix A are:

-prefix push fieldsplit 0

-ksp rtol 1.0E-4

-pc type hpddm

-ksp pc side right

-pc hpddm has neumann

-pc hpddm define subdomains

-prefix push pc hpddm levels 1

-eps nev 60

-eps threshold 0.2

-st share sub ksp

-sub pc factor mat solver type mumps

-sub pc type lu

-prefix pop

-prefix push pc hpddm coarse

-pc type cholesky

-pc factor mat solver type mumps

-mat filter 1.0E-8

-mat mumps icntl 35 1

-mat mumps cntl 7 1.0E-7

-prefix pop

-prefix pop

The inner Krylov solver for the physical blocks is FGMRES (-ksp_type fgmres). The rela-

tive tolerance (-ksp_rtol) of the outer Krylov method is set to 10−4 (only a few iterations are

required). We set the threshold τA (-eps_threshold) for selecting the local eigenvectors involv-

ing in the coarse space to 0.2 and the number maximum of eigenvectors (-eps_threshold) is set

to 60. Local subdomain matrices are factorised by the sparse direct solver MUMPS. The coarse

problem is solved using an exact Cholesky factorisation performed by MUMPS. The MUMPS

parameter (ICNTL(35)) is set to 1, which allows an automatic choice of block low-rank (BLR)
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[14] by the software (the block low-rank (BLR) allows for memory gains by storing low-rank

factors). The accuracy of the low-rank approximation is itself controlled by MUMPS parameter

(CNTL(7)), which is set to 10−7. The coarse matrix is filtered with a threshold set to 10−8 to

reduced the amount memory used.

D.3 Computation of Oseen reference solutions in two dimen-

sions

D.3.1 Problem definition

The steady state Oseen problem with homogeneous Dirichlet boundary conditions in a perforated

domain is to find the velocity uε : Ωε → R2 and the pressure pε : Ω
ε → R solution to

−ν∆uε + (U0 ·∇)uε +∇pε = f in Ωε,

divuε = 0 in Ωε,

uε = 0 on ∂Bε ∩ ∂Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,

(D.8)

with f the applied force, ν > 0 the viscosity and U0 the known Oseen velocity. The analysis

of the Stokes problem have been extensively presented through different sections of this thesis.

The readers may refer to Chapter 12.

D.3.2 Preconditioning strategy

The discretisation of the Oseen problem leads to a saddle point matrix as in the case of the

Stokes problem, i.e.

Ax = b, (D.9)

where A is in the form of

A =

(
A B

BT C

)
.

Consequently, we precondition the resulting system, using the same fieldsplit strategy based

on the Schur complement, as presented above for the Stokes problem. However, in this case,

the matrix A is no longer symmetric, and in particular the problem becomes more and more

non-symmetric as the viscosity ν is decreasing. Consequently, we can no longer use the GenEO

strategy to precondition the matrix A. Instead, for preconditioning the matrix A we used the

strategy introduced in [8].

D.3.3 Final structure of the solver

We use the Flexible Generalized Minimal Residual algorithm (FGMRES, -ksp_type fgmres),

which iteratively solves (D.9) using full Schur complement as outer preconditioner on the right,

taking advantage that FGMRES allows the preconditioner to change at each iteration. The first

options to initialize this solver are:
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-ksp type fgmres

-ksp rtol 1.0E-10

-pc type fieldsplit

-pc type fieldsplit schur

-pc type fieldsplit schur precondition self

For preconditioning the Schur complement, we use the same strategy as for the Stokes problem.

The options used to implement the preconditioner for the Schur complement are:

-prefix push fieldsplit 1

-ksp rtol 1.0E-1

-ksp type fgmres

-ksp max it 100

-pc type hpddm

-pc hpddm has neumann

-pc hpddm ksp type fgmres

-prefix push pc hpddm levels 1

-eps nev 40

-eps threshold 0.6

-st share sub ksp

-eps gen non hermitian

-sub pc factor mat solver type mumps

-sub mat mumps icntl 14 400

-sub pc type lu

-eps tol 1.0E-2

-prefix pop

-prefix push pc hpddm coarse

-correction balanced

-pc type lu

-mat type baij

-pc factor mat solver type mumps

-mat mumps icntl 14 400

-p 4

-mat mumps icntl 24 1

-prefix pop

-prefix pop

The inner Krylov solver for the physical blocks is FGMRES (-ksp_type fgmres). The relative

tolerance (-ksp_rtol) of the outer Krylov method is set to 10−1. We set the maximum of

iterations (-ksp_max_it) to 100. The threshold τS1 (-esp_threshold) for selecting the local

eigenvectors involved in the coarse space is set to 0.6 and the number maximum of eigenvectors

(-esp_nev) is set to 40. Local subdomain matrices are factorised by the sparse direct solver

MUMPS. We use the MUMPS parameter (ICNTL(14)), set to 400, which allows to control

the percentage increase in the estimated working space. The coarse problem is solved using

an exact Cholesky factorisation performed with MUMPS. We used a balanced coarse scale

correction as defined in (D.3). We use the option -pc_hpddm_coarse_p to provide the size of

the subcommunicator that will be used to remap the coarse operator (with the default value of

1 the coarse matrix is centralised on a single process). Here, we use a value of 4. We use the

MUMPS parameter ICNTL(24), set to 1, which allows to detect null pivot row.

For preconditioning the matrix A, which is no longer SPD, we use the approach described

in [8] which proposes a fully algebraic two-level additive Schwarz preconditioner for general

sparse large-scale matrices. The coarse space is constructed based on the approximation of

two local subspaces in each subdomain. These subspaces are obtained by approximating a

number of eigenvectors corresponding to dominant eigenvalues of two generalised eigenvalue

problems. The number of eigenvectors can be chosen to control the condition number. For

general sparse matrices, the coarse space is constructed by approximating the image of a local
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operator that can be defined from information in the coefficient matrix. For the theoretical

analysis of this preconditioner the readers can refer to [8]. We present below the parameters

allowing to precondition the matrix A with this preconditioner, for the sake of reproducibility.

-prefix push fieldsplit 0

-ksp rtol 1.0E-4

-ksp max it 100

-pc type hpddm

-ksp converged reason

-ksp type fgmres

-ksp pc side right

-pc hpddm block splitting

-pc hpddm define subdomains

-pc hpddm levels 1 svd relative threshold 1E-6

-pc hpddm levels 1 svd nsv 200

-pc hpddm levels 1 eps gen non hermitian

-pc hpddm harmonic overlap 1

-prefix push pc hpddm levels 1

-eps gen non hermitian

-st share sub ksp

-sub pc factor mat solver type

mumps

-sub mat mumps icntl 14 400

-sub pc type lu

-prefix pop

-prefix push pc hpddm coarse

-pc type lu

-correction deflated

-pc factor mat solver type mumps

-mat type baij

-mat mumps icntl 14 400

-p 8

-mat mumps icntl 24 1

-mat filter 1.0E-8

-prefix pop

-prefix pop
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Note: We would like to thank Pierre Jolivet for his help with the development of parallelism

and solvers for the local problems.

This appendix is dedicated to give details about the computation of the local and global

problems involved in the MsFEM.

E.1 Computation of the local problems

The different local problems ((8.1), (8.2), (12.8), (12.9), (12.17) and (12.18)) are discretized and

solved in FreeFEM [93]. Each bi-linear involved in the local problems are assembled in matrix

form, and gathered in a PETSc nested matrix, resulting in a matrix of type (8.10). The matrices

inside the nested matrix can be sparse matrix (Mat), dense matrix (real[int, int]) or vector

(real[int]). We assemble a multiple right-hand side, so that the computation of all the basis

functions are managed directly by PETSc (instead of doing a for loop to solve one after the

other the local problems for each right-hand side).
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Appendix E. Computation of MsFEM local and coarse problems

E.1.1 Parallelism for the local problems

To compute the local problems, we use two levels of parallelism. The first level of parallelism

is a parallelism between each coarse elements (without communication), given that all coarse

element are fully decoupled (the computation of the basis functions are local). One process

(consisting of Nloc CPUs, with Nloc ≥ 1) is in charge of N coarse elements, with N ≥ 1. Each

process will treat each coarse element allocated to it sequentially (one after the other).

The second level of parallelism is a parallelism inside each coarse element. Indeed, if the

local problems are too big, a parallel computation is required. By setting, Nloc > 1, i.e. the

process is composed of more than one CPUs, the computation of the local problems inside each

coarse element is done in parallel. For this intra-parallelism, each coarse element is partitioned

first in two subdomains: a domain Dout which contains the border of the coarse element (useful

for computing the Lagrange multipliers on the faces), in yellow on Figure E.1, and a domain Din

which does not touch the border of the coarse element. Then, the subdomain Din is decomposed

in Nloc − 1 subdomains using classical partitioner such as METIS (see for example Figure E.1).

Figure E.1: Example of partitioning of a coarse triangle in four subdomains.

E.1.2 Preconditioning strategy to solve three-dimensional local problems

For the two-dimensional cases, the local problems are solved with a direct solver. However, for

three-dimensional problem a direct solver cannot be longer used due to the size of the problem.

However, preconditioning efficiently the local problems is very difficult due to the complexity of

the problems involving Lagrange multipliers. We use a pseudo-block FGMRES as implemented

in HPDDM to thread multiple right-hand sides simultaneously [117]. The parameters used to

implement this solver are given below:
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-ksp type hpddm

-ksp hpddm variant flexible

-ksp hpddm type gmres

-ksp gmres restart 5

-ksp matsolve batch size 5

-ksp rtol 1E-10

-mat mumps icntl 29 2

-mat mumps icntl 28 2

-pc type cholesky

-pc factor mat solver type mumps

-pc precision single

The Krylov solver is the flexible variant of GMRES (-ksp_hpddm_type gmres). The rel-

ative tolerance (-ksp_rtol) of the Krylov method is set to 10−10. We restart the Krylov

method each 5 iterations (-ksp_gmres_restart) which allows to save memory. Similarly, with

the aim to save memory, we limit the number of right-hand sides computed simultaneously to

5 (-ksp_matsolve_batch_size 5). As the problem is symmetric, the problem is factorised,

using single precision (instead of a double precision to save memory), with an exact Cholesky

factorisation performed by MUMPS. We use the MUMPS parameters ICNTL(28) and ICNTL(29)

which determine respectively whether a sequential or parallel computation of the ordering (to

reduce permutation) is performed and the parallel ordering tool to be used. We set the param-

eter ICNTL(28) to 2 allowing a parallel ordering and parallel symbolic factorisation and we set

the parameter ICNTL(29) to 2 which allows to use ParMETIS to reorder the input matrix, if

available.

Remark E.1. It may be thought that preconditioning the system using a fieldsplit strategy,

i.e. developing a preconditioner for each physical block is also possible. However, for the

moment, the fieldsplit preconditioning in FreeFEM does not handle multiple right-hand sides (a

block of right-hand sides). Consequently, applying the fieldsplit strategy will require to apply

the preconditioner right-hand side by right-hand side which is clearly not efficient. On the

contrary, with the proposed methodology, the set up is more expensive but the preconditioner

is applied once on a block of right-hand sides, which is much more efficient.
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E.1.3 Procedure for solving the local problems

Algorithm 1: Solving the local problems.

NCPU ← number of CPUs used ;

Nloc ← number of CPUs allocated to each sub-process ;

Initialise commGlobal ; // global MPI communicator of size NCPU

Initialise commLocal ; // MPI communicator for each sub-process of size Nloc

Initialise Aglob and Bglob ; // Global stiffness and velocity-pressure matrices

Initialise Atmp and Btmp ; // Temporary matrices to add local contributions

Ensure: Nloc|NCPU ;

foreach process Pj (composed of Nloc CPUs) do

foreach coarse element T allocated to the process Pj do

Load the local fine mesh Th(T ) ;
if Nloc > 1 then

Partition Th(T ) ;
end

Assemble the local problems under matrix form Aloc;

Assemble the multiple right-hand sides F ;

Solve Alocϕ = F on Nloc CPUs ;

if Nloc > 1 then

Reconstruct the basis functions on a non-partitioned mesh Th(T ) ;
end

if mpiRank(commLocal)=0 then

Store the basis functions ;

end

/* Assemble matrices locally */

if mpiRank(commLocal)=0 then

Compute AT ; // Local stiffness matrix

Compute BT ; // Local matrix velocity-pressure

Atmp+ = AT ; // Add local contributions

Btmp+ = BT ;

end

end

end

/* Gather the contributions of all the processes */

MPIAllReduce(Atmp, Aglob, commGlobal, mpiSUM) ;

MPIAllReduce(Btmp, Bglob, commGlobal, mpiSUM) ;

if mpiRank(commGlobal)=0 then

Store Aglob ;

Store Bglob ;

end
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E.2 Computation of the coarse problem

During the online stage, the resolution of the global problem, the assembly of the right-hand

side and the penalisation of the stiffness matrix can be done in parallel (see Algorithm 2). The

resolution of the resulting linear system is done with a direct solver, since this problem is quite

small (see Algorithm 3). The reconstruction of the solution on the fine mesh can also be done

in parallel (see Algorithm 4). During this online stage, the number of CPUs used is quite small.

Using more CPUs will decrease the time to compute the right-hand side, penalise the stiffness

matrix and reconstruct the solution, however in any case the coarse problem is solved on one

CPU.

Remark E.2. This part emphasises another advantages of MsFEM: no complex precondi-

tioning strategies have to be developed to have an approximation of the solutions.
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Algorithm 2: Boundary conditions and Load of the coarse problem.

NCPU ← number of CPUs used ; // A quite small number

ΓD ← Dirichlet boundary ;

g ← Dirichlet boundary conditions ;

f ← Source term ;

tgv ← big value for the penalization method ; // 1030

Load Aglob and Bglob ;

Initialise Ftmp and Fglob ; // temporary and global right-hand side

Initialise Atmp and Apenal ; // temporary matrices to apply the penalization method in

parallel

foreach process Pj (composed of 1 CPU) do

foreach coarse element T allocated to the process Pj do

Load the local fine mesh Th(T ) ;
for each basis functions φi do

I ← global numbering of the d.o.f. associated with φi ; // Face and Element

basis functions

b ←
∫
T f ·φi ;

Ftmp(I) += b ;

end

foreach F in FT do

if F ⊂ ΓD then

foreach weighting functions ωF,i do
I ← global numbering of the d.o.f. corresponding to the basis

functions ϕF,i ; // Face basis functions

penal ←
∫
F ϕF,i · ωF,i * tgv ;

bound ←
∫
F g · ωF,i * tgv ;

Atmp(I, I)+= penal ;

Ftmp(I) += bound ;

end

end

end

end

end

/* Gather the contributions of all processus */

MPIAllReduce(Atmp, Apenal, commGlobal, mpiSUM) ;

MPIAllReduce(Ftmp, Fglob, commGlobal, mpiSUM) ;

Aglob+ = Apenal ; // Apply the penalizations to the global stiffness matrix

312



E.3. Details about the MsFEM implementations

Algorithm 3: Solving the coarse problem.

Define cH(p, q) = −
∫
T η p ∗ q // η = 10−8

Compute Cglob = cH(MH ,MH) // To help the solving

Assemble Nglob =

(
Aglob Aglob

B′
glob Cglob

)
Set F = [Fglob,0]

t

Solve NglobXglob = F

Algorithm 4: Reconstruction of the local solutions.

NCPU ← number of CPUs used ;

Xglob ← global solution ;

Initialise uloc = 0 ; // Local velocity

Initialise ploc = 0 ; // Local pressure

foreach process Pj (composed of 1 CPU) do

foreach coarse element T allocated to the process Pj do

Load the local fine mesh Th(T ) ;
Load the local basis functions ;

foreach basis functions φi and the associated πi do

I ← global numbering of the d.o.f. associated with φi ; // Face and Element

basis functions

uloc+ = Xglob[I] ∗φi ;

ploc+ = Xglob[I] ∗ πi ;
end

ploc+= pH ; // Add the average global pressure

Store uloc and ploc ;

end

end

E.3 Details about the MsFEM implementations

In this thesis, for the ease of implementation, the coarse elements are triangles in two dimen-

sions and tetrahedra in three dimensions. In this section, we explain the construction of two

ingredients of MsFEM implementations: the barycentric coordinates and the tangential vectors

on the faces of the coarse elements. They are are useful to build polynomials on faces of the

coarse elements.

E.3.1 Construction of barycentric coordinates on faces in two and three di-

mensions

E.3.1.1 Construction of barycentric coordinates on faces in two dimensions

Given a non degenerated triangle (ABC), we consider the edge linking the vertices A and B.

The barycentric coordinate associated with the vertex A(xA, yA) is the function λA verifying

λA(A) = 1, λA(B) = 0, and which is null on the line normal to the edge (AB) and passing
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through the point B(xB, yB). This hyperplane is therefore uniquely defined: three parameters

to be determined and three constraints. Indeed, the equation of the barycentric coordinates in

two dimensions are of type

λ(x, y) = ax+ by + c.

In two dimensions, the two barycentric coordinates on the edge (AB) reads

λA(x, y) =
(x− xB)(xA − xB) + (y − yB)(yA − yB)

L2
,

λB(x, y) =
(x− xA)(xB − xA) + (y − yA)(yB − yA)

L2
,

where L is the length of the segment given by

L =
√
(xA − xB)2 + (yA − yB)2.

E.3.1.2 Construction of barycentric coordinates in three dimensions

Given a non degenerated tetrahedron (ABCD), we consider the face defined by the three points

A(xA, yA, zA), B(xB, yB, zB), C(xC , yC , zC). The barycentric coordinate associated with the

point A is the function λA verifying λA(A) = 1, λA(B) = 0, λA(C) = 0 and that is null on

the plane orthogonal to the face and passing through the points B and C. This hyperplane is

therefore uniquely defined: four parameters to be determined and four constraints. Indeed, the

equation of the barycentric coordinates in three dimensions is of type

λ(x, y, z) = ax+ by + cz + d.

In three dimensions, the three barycentric coordinates associated with the face (ABC) read

λA(x, y, z) =
a0(x− xA) + b0(y − yA) + c0(z − zA)

2S2
+ 1,

λB(x, y, z) =
a1(x− xB) + b1(y − yB) + c1(z − zB)

2S2
+ 1,

λC(x, y, z) =
a2(x− xC) + b2(y − yC) + c2(z − zC)

2S2
+ 1,

where S is the surface of a triangle ABC in three dimensions, given by

S =
1

2

√√√√√√√
det

xA xB xC

yA yB yC

1 1 1




2

+

det

yA yB yC

zA zB zC

1 1 1




2

+

det

zA zB zC

xA xB zC

1 1 1




2

and the constants ai, bi, ci, with i = 0, 1, 2, are chosen such that the properties, mentioned

above, of the barycentric coordinates are satisfied.
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E.3.2 Construction of tangential vectors in faces in two and three dimensions

In FreeFEM, we have only access to the normal vector n. We explain below, how to construct,

from the normal vector n, the tangential vector t in two dimensions and the tangential and

binormal vectors (t, b) in three dimensions.

E.3.2.1 Tangential vector on edge in two dimensions

In two dimensions, building the tangential vector from the normal vector is easy: it suffices to

swap the vector components and invert the sign of one of the entries. Then, given an arbitrary

normal vector n ∈ R2 \ {0} the orthogonal tangential vector t is obtained with

t = [−ny nx]t (E.1)

where nx and ny are respectively the first and the second components of the normal vector n.

E.3.2.2 Tangential vectors on faces in three dimensions

In three dimensions, the construction of the tangential vectors is more complex. The naive

approach is to consider a non-colinear vector v to the normal vector n, whose cross-product

would provide an orthogonal vector t. By applying a cross-product between n and t a second

vector, b, of the basis is obtained. However this approach is time consuming. Instead, in

order to compute the tangential and binormal vectors on faces, from the normal vector, we

use the approach proposed by [124]. In this work, the authors propose an efficient way to

determine the tangential and binormal vectors, from the normal vector, based on the Householder

transformation (they compare the efficiency of this method with other well-known methods such

as Eberly, Square Plate or Projection Matrix methods). Below, we present the peudo-code for

obtaining the unit vectors based on the Householder (HH) orthogonalization.
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Algorithm E.3 (HH orthogonalization).

� Evaluate the sign the unit’s vector first component, i.e. sign(nx);

� Determine the tangent vector vector with the following simplified expression:

t =



[
−ny 1−

n2y
nx + 1

− nynz
nx + 1

]t
, nx ≥ 0,

[
ny 1 +

n2y
nx − 1

− nynz
nx − 1

]t
, nx < 0,

� Determine the binormal vector with the following simplified expression:

b =



[
−nz 1− nynz

nx + 1
− n2z
nx + 1

]t
, nx ≥ 0,

[
nz 1 +

nynz
nx − 1

1 +
n2z

nz − 1

]t
, nx < 0.

E.3.3 Definition of the weighting functions in triangles and tetrahedra

E.3.3.1 Weighting functions for two dimensional MsFEM

The velocity weighting functions associated with the edge F are defined by:

ωF,1 = 1n, ωF,2 = 1t,

ωF,3 = (λ1 − 1
2)n, ωF,4 = (λ1 − 1

2)t,

ωF,5 = (λ1λ2 − 1
6)n, ωF,5 = (λ1λ2 − 1

6)t.

where λ1, λ2 are the two barycentric coordinates associated with the edge F . The vectors n, t

are respectively the normal and the tangential vectors (defined in (E.1)) to the edge F .

The velocity weighting functions associated with the element T are defined by:

φT,1 = e1, φT,2 = e2,

φT,3 = (x− xb)e1, φT,4 = (x− xb)e2,
φT,5 = (y − yb)e1, φT,6 = (y − yb)e2.

where xb, yb are the two components of the barycenter of the element T , and (e1, e2) are the

canonical basis of R2.

The pressure weighting functions associated with the element T are defined by:

ϖT,1 = 1, ϖT,2 = (x− xb), ϖT,3 = (y − yb),
ϖT,4 = (x− xb)(y − yb), ϖT,5 = (x− xb)2, ϖT,6 = (y − yb)2.

where xb, yb are the two components of the barycenter of the element T .
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E.3.3.2 Weighting functions for three dimensional MsFEM

The velocity weighting functions associated with the face F are defined by:

ωF,1 = 1
2n, ωF,2 = 1

2t, ωF,3 = 1
2b,

ωF,4 = (λ1 − 1
3)n, ωF,5 = (λ1 − 1

3)t, ωF,6 = (λ1 − 1
3)b,

ωF,7 = (λ2 − 1
3)n, ωF,8 = (λ2 − 1

3)t, ωF,9 = (λ2 − 1
3)b,

ωF,10 = (λ1λ2 − 1
12)n, ωF,11 = (λ1λ2 − 1

12)t, ωF,12 = (λ1λ2 − 1
12)b,

ωF,13 = (λ1λ3 − 1
12)n, ωF,14 = (λ1λ3 − 1

12)t, ωF,15 = (λ1λ3 − 1
12)b,

ωF,16 = (λ2λ3 − 1
12)n, ωF,17 = (λ2λ3 − 1

12)t, ωF,18 = (λ2λ3 − 1
12)b,

where λ1, λ2 and λ3 are the three barycentric coordinates associated with the face F . The

vectors n, t and b are respectively the normal, the tangential and the binormal vectors (defined

in Algorithm E.3) to the face F .

The velocity weighting functions associated with the element T are defined by:

φT,1 = e1, φT,2 = e2, φT,3 = e3,

φT,4 = (x− xb)e1, φT,5 = (x− xb)e2, φT,6 = (x− xb)e3,
φT,7 = (y − yb)e1, φT,8 = (y − yb)e2, φT,9 = (y − yb)e3,
φT,10 = (z − zb)e1, φT,11 = (z − zb)e2, φT,12 = (z − zb)e3

where xb, yb and zb are the three components of the barycenter of the element T , and (e1, e2,

e3) are the canonical basis of R3.

The pressure weighting functions associated with the element T are defined by:

ϖT,1 = 1, ϖT,2 = (x− xb), ϖT,3 = (y − yb),
ϖT,4 = (x− xb)(y − yb), ϖT,5 = (x− xb)(z − zb), ϖT,6 = (y − yb)(z − zb),
ϖT,7 = (x− xb)2, ϖT,8 = (y − yb)2, ϖT,9 = (z − zb)2.

where xb, yb and zb are the three components of the barycenter of the element T .
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Some additional numerical results

F.1 Additional numerical results for Stokes flows

This section is the Appendix of Chapter 14. As in Chapter 14, we solve the Stokes problem (7.1)

on a coarse grid using basis functions defined by the Stokes equations, i.e. the local problems

(8.1) and (8.2). We set ν = 1. For the two-dimensional simulations, we consider the channel

flow test case presented in Section 13.3.2.

F.1.1 Comparison between high-order MsFEMs and previous MsFEMs

In this section, we perform the convergence analysis proposed in Section 13.3.3. Figures F.1

to F.3 present the computed relative errors between the reference solutions computed on ref-

erence meshes and the MsFEM approximations computed on coarse meshes for high-order Ms-

FEMs and previous MsFEMs developed in the literature.
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Figure F.1: Relative errors between MsFEM approximations and the reference solution, ε = 1/16
(Stokes flow).
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Figure F.2: Relative errors between MsFEM approximations and the reference solution, ε = 1/32
(Stokes flow).
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Figure F.3: Relative errors between MsFEM approximations and the reference solution, ε =
1/128 (Stokes flow).

F.1.2 Numerical simulations of Stokes flows

F.1.2.1 Stokes flow in a periodic domain ε = 1/8

(a) Velocity magnitude. (b) Pressure field.

Figure F.4: Reference solution (Stokes flow), ε = 1/8.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.5: MsFEM approximation (Stokes flow), n = 1, H = 1/8 (256 coarse elements),
ε = 1/8.

(a) Velocity magnitude. (b) Pressure field.

Figure F.6: MsFEM approximation (Stokes flow), n = 2, H = 1/8 (256 coarse elements),
ε = 1/8.

F.1.2.2 Stokes flow in a periodic domain ε = 1/32

(a) Velocity magnitude. (b) Pressure field.

Figure F.7: Reference solution (Stokes flow), ε = 1/32.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.8: MsFEM approximation (Stokes flow), n = 1, H = 1/32 (4096 coarse elements),
ε = 1/32.

(a) Velocity magnitude. (b) Pressure field.

Figure F.9: MsFEM approximation (Stokes flow), n = 2, H = 1/32 (4096 coarse elements),
ε = 1/32.

F.1.2.3 Stokes flow in a periodic domain ε = 1/64

(a) Velocity magnitude. (b) Pressure field.

Figure F.10: Reference solution (Stokes flow), ε = 1/64.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.11: MsFEM approximation (Stokes flow), n = 1, H = 1/64 (16384 coarse elements),
ε = 1/64.

(a) Velocity magnitude. (b) Pressure field.

Figure F.12: MsFEM approximation (Stokes flow), n = 2, H = 1/64 (16384 coarse elements),
ε = 1/64.

F.1.2.4 Stokes flow in a periodic domain ε = 1/128

(a) Velocity magnitude. (b) Pressure field.

Figure F.13: Reference solution (Stokes flow), ε = 1/128.

324



F.1. Additional numerical results for Stokes flows

(a) Velocity magnitude. (b) Pressure field.

Figure F.14: MsFEM approximation (Stokes flow), n = 1, H = 1/64 (16384 coarse elements),
ε = 1/128.

(a) Velocity magnitude. (b) Pressure field.

Figure F.15: MsFEM approximation (Stokes flow), n = 2, H = 1/64 (16384 coarse elements),
ε = 1/128.

F.1.2.5 Stokes flow in domain with 4096 randomly placed obstacles

(a) Velocity magnitude. (b) Pressure field.

Figure F.16: Reference solution (Stokes flow), domain with 4096 randomly placed obstacles.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.17: MsFEM approximation (Stokes flow), n = 1, H = 1/32 (4096 coarse elements),
domain with 4096 randomly placed obstacles.

(a) Velocity magnitude. (b) Pressure field.

Figure F.18: MsFEM approximation (Stokes flow), n = 2, H = 1/32(4096 coarse elements),
domain with 4096 randomly placed obstacles.

F.2 Additional numerical results for Oseen flows

This section is the appendix of Chapter 15. As in Chapter 15, we solve the Oseen problem (12.1)

on a coarse grid using basis functions defined by the Oseen equations, i.e. the local problems

(12.8) and (12.9). In this section we consider only two-dimensional simulations. We consider

the channel flow test case presented in Section 13.3.2. We choose a viscosity ν = 5× 10−4 and

the Oseen velocity as U0 = [y(1 − x2),−x(1 − y2)]t (note that div (U0) = 0), which leads to a

Reynolds number of 2000.

F.2.1 Comparison between high-order MsFEMs and previous MsFEMs

In this section, we perform the convergence analysis proposed in Section 13.3.3. Figures F.19

to F.21 present the computed relative errors between the reference solutions computed on ref-

erence meshes and the MsFEM approximations computed on coarse meshes for high-order Ms-

FEMs and previous MsFEMs developed in the literature.
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Figure F.19: Relative errors between MsFEM approximations and the reference solution, ε =
1/16 (Oseen flow).

1/81/161/321/64

9.10−2
1.10−1

2.10−1

3.10−1

Coarse element size H

R
el
at
iv
e
er
ro
r
in

ve
lo
ci
ty

in
L
2
-n
or
m

1/81/161/321/64

2.10−1

3.10−1

4.10−1

Coarse element size H

R
el
a
ti
ve

er
ro
r
in

ve
lo
ci
ty

in
H

1
-n
or
m

1/81/161/321/64

3.10−2

5.10−2

8.10−2

1.10−1

2.10−1

Coarse element size H

R
el
at
iv
e
er
ro
r
in

p
re
ss
u
re

in
L
2
-n
or
m

CR3, ε = 1/32

CR4, ε = 1/32

n = 1, ε = 1/32

n = 2, ε = 1/32

Figure F.20: Relative errors between MsFEM approximations and the reference solution, ε =
1/32 (Oseen flow).
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Figure F.21: Relative errors between MsFEM approximations and the reference solution, ε =
1/128 (Oseen flow).

F.2.2 Numerical simulations of Oseen flows

F.2.2.1 Oseen flow in a periodic domain ε = 1/8

(a) Velocity magnitude. (b) Pressure field.

Figure F.22: Reference solution (Oseen flow), ε = 1/8.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.23: MsFEM approximation (Oseen flow), n = 1, H = 1/8 (256 coarse elements),
ε = 1/8.

(a) Velocity magnitude. (b) Pressure field.

Figure F.24: MsFEM approximation (Oseen flow), n = 2, H = 1/8 (256 coarse elements),
ε = 1/8.

F.2.2.2 Stokes flow in a periodic domain ε = 1/32

(a) Velocity magnitude. (b) Pressure field.

Figure F.25: Reference solution (Oseen flow), ε = 1/32.

329



Appendix F. Some additional numerical results

(a) Velocity magnitude. (b) Pressure field.

Figure F.26: MsFEM approximation (Oseen flow), n = 1, H = 1/32 (4096 coarse elements),
ε = 1/32.

(a) Velocity magnitude. (b) Pressure field.

Figure F.27: MsFEM approximation (Oseen flow), n = 2, H = 1/32 (4096 coarse elements),
ε = 1/32.

F.2.2.3 Oseen flow in a periodic domain ε = 1/64

(a) Velocity magnitude. (b) Pressure field.

Figure F.28: Reference solution (Oseen flow), ε = 1/64.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.29: MsFEM approximation (Oseen flow), n = 1, H = 1/64 (16384 coarse elements),
ε = 1/64.

(a) Velocity magnitude. (b) Pressure field.

Figure F.30: MsFEM approximation (Oseen flow), n = 2, H = 1/64 (16384 coarse elements),
ε = 1/64.

F.2.2.4 Oseen flow in a periodic domain ε = 1/128

(a) Velocity magnitude. (b) Pressure field.

Figure F.31: Reference solution (Oseen flow), ε = 1/128.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.32: MsFEM approximation (Oseen flow), n = 1, H = 1/64 (16384 coarse elements),
ε = 1/128.

(a) Velocity magnitude. (b) Pressure field.

Figure F.33: MsFEM approximation (Oseen flow), n = 2, H = 1/64 (16384 coarse elements),
ε = 1/128.

F.2.2.5 Oseen flow in a domain with 4096 randomly placed obstacles

(a) Velocity magnitude. (b) Pressure field.

Figure F.34: Reference solution (Oseen flow), domain with 4096 randomly placed obstacles.
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(a) Velocity magnitude. (b) Pressure field.

Figure F.35: MsFEM approximation (Oseen flow), n = 1, H = 1/32 (4096 coarse elements),
domain with 4096 randomly placed obstacles.

(a) Velocity magnitude. (b) Pressure field.

Figure F.36: MsFEM approximation (Oseen flow), n = 2, H = 1/32 (4096 coarse elements),
domain with 4096 randomly placed obstacles.
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[23] I. Babuška. The Finite Element Method with Lagrangian multipliers. Numerische Math-

ematik, 20(3):179–192, 1973.
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Titre : Méthode des éléments finis multi-échelles pour les écoulements incompressibles dans des milieux
hétérogènes : Implémentation et Analyse de convergence.

Mots clés : Méthode des Éléments Finis Multi-échelles, Élément de Crouzeix–Raviart, Équations de Navier–
Stokes, Milieux hétérogènes, Analyse Numérique, Calcul Haute Performance.

Résumé : Cette thèse porte sur l’application d’une
méthode d’éléments finis multi-échelles (MsFEM)
pour résoudre les écoulements incompressibles dans
des milieux multi-échelles. En effet, la simulation de
l’écoulement dans un milieu multi-échelle comportant
de nombreux obstacles, tel que le cœur d’un réacteur
nucléaire, est un défi de taille. Afin de capturer avec
précision les échelles les plus fines de l’écoulement,
il est nécessaire d’utiliser un maillage très fin. Ce-
pendant, cela conduit souvent à des simulations dif-
ficiles à réaliser en raison du manque de ressources
informatiques. Pour remédier à cette limitation, cette
thèse développe une MsFEM non-conforme enrichie
pour résoudre les écoulements visqueux incompres-
sibles dans des milieux hétérogènes, basée sur la
méthode classique des éléments finis non conformes
de Crouzeix-Raviart avec des fonctions de poids
d’ordre élevé. La MsFEM utilise un maillage gros-
sier sur lequel de nouvelles fonctions de base sont
définies. Ces fonctions ne sont pas les fonctions
de base polynomiales classiques des éléments fi-
nis, mais résolvent les équations de la mécanique
des fluides sur les éléments du maillage gros-

sier. Ces fonctions sont elles-mêmes approximées
numériquement sur un maillage fin, en tenant compte
de tous les détails géométriques, ce qui confère à
cette méthode son aspect multi-échelle. Une étude
théorique de la MsFEM proposée est menée aux ni-
veaux continu et discret. Tout d’abord, le caractère
bien posé des problèmes locaux discrets impliqués
dans la MsFEM a été démontré à l’aide de nou-
velles familles d’éléments finis. Pour ce faire, une
nouvelle famille d’éléments finis non conformes en
trois dimensions sur les tétraèdres a été développée.
En outre, la première estimation d’erreur pour l’ap-
proximation du problème de Stokes dans des mi-
lieux perforés périodiques à l’aide de cette MSFEM
est établie, démontrant sa convergence. Cette estima-
tion est basée sur la théorie de l’homogénéisation du
problème de Stokes dans les domaines périodiques
et sur la théorie usuelle des éléments finis. Au niveau
numérique, la MsFEM pour résoudre les problèmes
de Stokes et d’Oseen a été implémenté dans un cadre
massivement parallèle dans FreeFEM. En outre, une
méthodologie pour résoudre le problème de Navier-
Stokes est fournie.

Title : Multi-scale Finite Element Method for incompressible flows in heterogeneous media : Implementation
and Convergence analysis.

Keywords : Multi-scale Finite Element Method, Crouzeix–Raviart element, Navier–Stokes equations, Hetero-
geneous media, Numerical Analysis, High Performance Computing.

Abstract : This thesis is concerned with the applica-
tion of a Multi-scale Finite Element Method (MsFEM)
to solve incompressible flow in multi-scale media. In-
deed, simulating the flow in a multi-scale media with
numerous obstacles, such as nuclear reactor cores, is
a highly challenging endeavour. In order to accurately
capture the finest scales of the flow, it is necessary to
use a very fine mesh. However, this often leads to in-
tractable simulations due to the lack of computational
resources. To address this limitation, this thesis de-
velops an enriched non-conforming MsFEM to solve
viscous incompressible flows in heterogeneous me-
dia, based on the classical non-conforming Crouzeix-
Raviart finite element method with high-order weigh-
ting functions. The MsFEM employs a coarse mesh
on which new basis functions are defined. These func-
tions are not the classical polynomial basis functions
of finite elements, but rather solve fluid mechanics
equations on the elements of the coarse mesh. These
functions are themselves numerically approximated

on a fine mesh, taking into account all the geome-
tric details, which gives the multi-scale aspect of this
method. A theoretical investigation of the proposed
MsFEM is conducted at both the continuous and dis-
crete levels. Firstly, the well-posedness of the discrete
local problems involved in the MsFEM was demons-
trated using new families of finite elements. To achieve
this, a novel non-conforming finite element family in
three dimensions on tetrahedra was developed. Fur-
thermore, the first error estimate for the approxima-
tion of the Stokes problem in periodic perforated me-
dia using this MSFEM is derived, demonstrating its
convergence. This is based on homogenization theory
of the Stokes problem in periodic domains and on
usual finite element theory. At the numerical level, the
MsFEM to solve the Stokes and the Oseen problems
in two and three dimensions is implemented in a mas-
sively parallel framework in FreeFEM. Furthermore, a
methodology to solve the Navier–Stokes problem is
provided.
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