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Abstract / Résumé

Abstract

Escherichia coli diversity and evolution:

perspectives from the study of 80,000 genomes

A commensal bacteria in the gut of humans and many vertebrates, Escherichia coli is also

a deadly pathogen responsible for 950,000 deaths per year worldwide. As a generalist organ-

ism capable of adapting to different ecological niches, it is a species of choice for studying

evolution on different time scales. Its status as a model organism in biology and its impor-

tance for human health have led to the sequencing of many strains worldwide. The aim of

this thesis is to analyse the diversity present in 81,440 of these genomes and to understand

how this diversity can inform us about the evolutionary processes at work in this species.

The 81,440 genomes collected cover the natural diversity of Escherichia coli. Strains iso-

lated in humans and more specifically in a clinical context are largely represented. In par-

ticular, 11,000 of these genomes are Shigella, obligate pathogenic strains of primates that

have adopted an intracellular lifestyle. To study these 81,440 genomes, I extracted the cod-

ing sequences and organised them in a database. A comparison of the core genomes of these

strains allowed me to classify them into 240 clusters from which I was able to infer a global

phylogeny of the species corrected for recombination.

In order to further analyse the mutational patterns, I used Direct-Coupling Analysis (DCA).

This statistical physics approach allows to predict the effect of a mutation occurring in a gene

and inducing an amino-acid change in the corresponding protein. By modelling the inter-

actions between pairs of amino acids within the protein, DCA allows the genetic context in

which the mutation occurs to be taken into account.

By applying DCA to thousands of E. coli core genes, I have shown that it can predict not

only the native amino acids of this species but also the polymorphisms observed in it. DCA

also predicts the probability of observing a mutation at a certain frequency. In doing so, it

reveals differences in the efficiency of natural selection between different subpopulations of

E. coli. In particular, natural selection appears to be much less effective in Shigella strains,
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consistent with the reduced effective size of this population.

Genetic context was found to be key to the quality of the predictions made by DCA. This

context is built up over long time scales by the addition of many weak interactions between

amino acids. These do not affect all residues of a protein in the same way. DCA can predict

the variability of these residues. In particular, between 30% and 50% of the sites in a protein

are highly constrained by the genetic background of E. coli. A mutation at one of these sites

will generally be deleterious if it occurs alone. These sites do not therefore tolerate polymor-

phisms. However, they can co-evolve over long time scales so that the amino acids observed

there vary widely between species.

If individual residues of a protein can evolve at different rates, so can proteins. I have

developed a selection test, based on the DCA, which allows genes to be compared with each

other. In the short term, the essential genes are those under the strongest purifying selection

pressure, while the level of expression determines the long-term rate of evolution. This test

also detects inactivations of transcriptional factors, inactivations that appear to be selected

in the short term but counter-selected in the longer term.

The present work demonstrates the interest of coupling the study of large genome

databases with modelling approaches to understand the evolution of a species on different

time scales.

Keywords Escherichia coli, Population genetics, Recombination, Core genome, Polymorphism, Epis-

tasis, Mutation effect prediction, Direct-Coupling Analysis, Inactivations.
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Résumé

Diversité et évolution d’Escherichia coli :

perspectives ouvertes par l’étude de 80 000 génomes

Bactérie commensale de l’intestin de l’homme et de nombreux vertébrés, Escherichia coli est

aussi un pathogène mortel responsable de 950,000 morts par an dans le monde. Organisme général-

iste capable de s’adapter à différentes niches écologiques, il s’agit d’une espèce de choix pour étudier

l’évolution sur différentes échelles de temps. Son statut d’organisme modèle en biologie et son im-

portance pour la santé humaine ont favorisé le séquençage de très nombreuses souches dans le

monde entier. L’objectif de cette thèse est d’analyser la diversité présente dans 81 440 de ces génomes

et de comprendre comment celle-ci peut nous informer sur les processus évolutifs à l’œuvre dans

cette espèce.

Les 81 440 génomes rassemblés couvrent la diversité naturelle d’Escherichia coli. Les souches

isolées chez l’humain et plus précisément dans un contexte clinique sont largement représentées.

En particulier, 11 000 de ces génomes sont des Shigella, des souches pathogènes obligatoires des

primates ayant adopté un mode de vie intra-cellulaire. Pour étudier ces 81 440 génomes, j’en ai extrait

les séquences codantes que j’ai organisées dans une base de données. Une comparaison du core

génome de ces souches m’a permis de les répartir en 240 clusters à partir desquels j’ai pu inférer une

phylogénie globale de l’espèce corrigée pour la recombinaison.

Afin d’analyser plus en profondeur les profils mutationnels, j’ai employé le Direct-Coupling Anal-

ysis (DCA). Cette approche issue de la physique statistique permet de prédire l’effet d’une mutation

survenant dans un gène et induisant un changement d’acide aminé dans la protéine correspondante.

En modélisant les interactions entre paires d’acides aminés au sein de la protéine, le DCA permet de

prendre en compte le contexte génétique dans lequel la mutation survient.

En appliquant le DCA à des milliers de core gènes d’E. coli, j’ai montré qu’il pouvait prédire les

acides aminés natifs de cette espèce mais aussi les polymorphismes qui y sont observés. Le DCA

prédit également la probabilité d’observer une mutation à une certaine fréquence. Ce faisant, il per-

met de mettre en évidence des différences d’efficacité de la sélection naturelle entre différentes sous-

populations d’E. coli. En particulier, la sélection naturelle semble nettement moins efficace dans les

souches de Shigella, en accord avec la taille efficace réduite de cette population.

Le contexte génétique s’est avéré clé dans la qualité des prédictions faites par le DCA. Ce contexte

se construit sur des échelles de temps longues par l’addition de nombreuses interactions faibles en-

tre acides aminés. Celles-ci n’affectent pas tous les résidus d’une protéine de la même manière. Le

DCA permet de prédire la variabilité de ces résidus. En particulier, entre 30% et 50% des sites d’une

protéine sont extrêmement contraints par le contexte génétique d’E. coli. Une mutation sur l’un de

ces sites sera généralement délétère si elle survient seule. Ces sites ne tolèrent donc pratiquement

pas de polymorphismes. Cependant ils peuvent coévoluer sur de longues échelles de temps de sorte

que les acides aminés qui y sont observés varient largement d’une espèce à l’autre.

Si les différents résidus d’une protéine peuvent évoluer à différentes vitesses, il en est de même

des protéines. J’ai développé un test de sélection, basé sur le DCA, permettant de comparer les gènes

entre eux. À court terme les gènes essentiels sont ceux sous la plus forte pression de sélection puri-

fiante tandis que le niveau d’expression détermine le taux d’évolution à long terme. Ce test détecte

aussi des inactivations de régulateurs de la transcription, inactivations qui semblent sélectionnées à
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court-terme mais contre-sélectionnées sur le plus long terme.

Le présent travail démontre l’intérêt de coupler l’étude de larges banques de génomes à des ap-

proches de modélisation pour comprendre l’évolution d’une espèce sur différentes échelles de temps.

Mots clés Escherichia coli, Génétique des populations, Recombinaison, Core génome, Polymorphisme,

Épistasie, Prédiction de l’effet des mutations, Direct-Coupling Analysis, Inactivations.

iv



Remerciements

En février 2020, j’arrivais à IAME pour un stage de master qui allait se poursuivre par un doctorat. Si le

présent manuscrit retranscrit à peu près fidèlement le cheminement scientifique que j’y ai suivi, il ne

rend nullement compte de toutes les personnes formidables que j’ai pu rencontrer chemin faisant.

En premier lieu, je souhaite très vivement remercier Olivier. Si je t’ai si naturellement demandé

d’être mon directeur de thèse, c’est parce que je connaissais depuis longtemps tes excellentes qualités

tant scientifiques qu’humaines. Tu m’as fait découvrir la génétique des populations lorsque, encore

étudiante à l’X, je me disais confusément que je souhaiterais bien conjuguer informatique et biolo-

gie. Tu m’as accompagnée tout au long de mon projet de recherche de troisième année sans compter

tes heures. Fidèle à ce que tu es : gentil, jovial, désintéressé et, bien évidemment, excellent scien-

tifique. C’est comme cela que je t’ai retrouvé deux années plus tard comme superviseur de stage de

master puis comme directeur de thèse. Nos nombreuses discussions scientifiques, ton enthousiasme

communicatif, et nos déjeuners passés à refaire le monde vont me manquer.

Débuter dans la recherche académique en février 2020, n’est pas faire preuve d’un excellent sens

du timing. Les confinements successifs, les différentes vagues de Covid-19 avec les nécessaires re-

strictions sanitaires associées, auraient facilement pu assombrir cette thèse. Mes remerciements vont

donc tout naturellement vers Erick Denamur qui a largement fait en sorte que cela ne soit pas le cas.

Merci de m’avoir accueillie si chaleureusement à IAME. Merci d’avoir veillé tout au long de ces années

au bien-être de chacun d’entre nous. Ta connaissance encyclopédique d’Escherichia coli, et le plaisir

évident que tu as à la partager, ont largement contribué à me faire m’intéresser à cette bactérie. Cela

aura toujours été un plaisir d’échanger avec toi et j’espère que tu apprécieras ce manuscrit.

C’est à IAME que j’ai effectué la majeure partie de ma thèse. J’y ai trouvé un environnement

de travail chaleureux et ouvert, et j’y ai rencontré nombre de personnes formidables. Je tiens en

particulier à remercier tous les membres de l’équipe QEM et de l’équipe EVRest pour nos échanges

scientifiques passionnants et nos discussions autour du déjeuner peut-être moins scientifiques mais

tout aussi passionnantes. En particulier, Antoine pour ta bonne humeur et le plaisir que j’ai toujours

eu à venir te parler de science ; Imane pour ta grande gentillesse et ton enthousiasme scientifique à

toute épreuve ; Mélanie et Benoît pour m’avoir si bien accompagnée dans notre haine commune des

tomates crues ; Mathilde pour ton énergie à soulever des montagnes dont BacteriaGame et Transmis-

sion sont de superbes exemples ; Hervé et Lionel pour avoir géré les serveurs avec brio mais surtout

pour votre gentillesse, votre disponibilité et votre réactivité au moindre souci ; Claire H. et André pour

m’avoir fait découvrir les joies du microbiote intestinal ; toutes celles et ceux qui ont rejoint ce bu-

reau du fond du couloir et ont découvert, à leurs dépens, ma tendance au bavardage, en particulier

Claire P. Un laboratoire n’irait nulle part sans celles et ceux qui en assurent la gestion administrative

au quotidien. Et IAME est particulièrement chanceux en la matière, merci Myriam, Stefan et Houda

v



Remerciements

pour votre efficacité, votre gentillesse et votre disponibilité.

Je me dois une attention particulière pour deux personnes que j’ai rencontrées à IAME et qui ont

joué un rôle majeur dans mon parcours. En premier lieu, Alaksh. Nous avons collaboré sur certains

projets et j’ai eu largement l’occasion d’y apprécier tes compétences scientifiques et la simplicité avec

laquelle tu rends service sans rien attendre en retour. Mais c’est bien au-delà de cela, la certitude que

j’ai toujours eu de pouvoir échanger avec toi sur n’importe quel sujet, de trouver un interlocuteur

ouvert, à l’écoute, empathique. En second lieu, mes remerciements vont tout naturellement vers

Zoya. Nous sommes arrivées à IAME à quelques mois d’écart l’une de l’autre et notre expérience

commune du doctorat nous a rapprochées. Avoir pu parler de nos vies avant, pendant et après le

doctorat, de nos joies et de nos passages à vide, tout cela a eu beaucoup de valeur à mes yeux. Tu le

sais déjà mais tu es bien plus qu’une collègue, une véritable amie.

Arriver dans un nouveau laboratoire en milieu de dernière année de doctorat n’est pas évident.

Mais c’est sans compter l’équipe géniale que j’ai rejointe en venant à l’Institut Cochin : Magia, Sophi-

ane, Maureen, Justine, Alan, Juliette, Marie-Florence, Chantal, Sébastien, Flavia, José, Erika, Célia,

Caroline, Adèle, Maïra, Laura, Auguste, Hugo, Anne, Arnaud. Excusez-moi pour les coups de fil parfois

incongrus auxquels vous avez dû répondre, je vous avais caché mon expertise avancée en médecine.

Ces quelques pages sont un peu courtes pour vous remercier individuellement mais sachez que vous

avez chacun contribué à embellir la fin de ma thèse. Je suis venue chaque jour à Cochin avec le

sourire et c’est grâce à vous. Ivan, c’est à Bath que je t’ai rencontré et que j’ai tout de suite apprécié ta

gentillesse (et ton goût pour l’histoire de l’Europe !). Une fois à Cochin, j’ai constaté l’étendue de tes

connaissances sur les mécanismes de réparation de l’ADN mais j’ai surtout pu apprécier l’attention

que tu portes à chacun. Merci pour l’accueil que tu m’as réservé !

Une heureuse surprise de ma thèse aura été d’intégrer le programme Jeunes Talents L’Oréal-

UNESCO Pour les Femmes et la Science. Un grand merci à la Fondation L’Oréal pour son accom-

pagnement tout au long des derniers mois. Je tiens aussi à remercier chacune des 34 autres lauréates.

Nos échanges, souvent très personnels, ont été précieux dans mon parcours. Et pour celles qui vivent

ou sont de passage à Paris, c’est toujours un plaisir de se retrouver.

La thèse n’est qu’une étape d’un parcours qui débute bien plus tôt. Je ne saurais dire en quelques

mots la chance d’être née et d’avoir grandi dans une famille aimante, heureuse, joyeuse. Merci papa

pour les cours de physique option (très) jeune public, merci Pierre pour le pendant en mathéma-

tiques. Merci maman, Hélène, Marie-Gabrielle, Isabelle et Ségolène pour avoir toujours été à mes

côtés, m’avoir soutenue et encouragée dans mes choix. Vous avez chacune été des exemples qui

m’ont aidé à grandir. Merci à mes neveux et nièces : Marius, William, Antoine, Juliette, Charlotte,

Raphaël, Manon et Gaspard. Cela fait huit ans que je m’émerveille de chacun de vos progrès.

Il y a un monde en dehors de la thèse, et les amis qui le peuplent. Il y a ceux que l’on connaît

depuis (pratiquement) toujours. Merci Pernelle, Camille, Marie, Pauline et Julie pour votre présence

à mes côtés depuis si longtemps. Nos aventures aux quatre coins de la France puis au Rwanda ont

forgé la femme que je suis aujourd’hui. Il y a aussi les amis que l’on rencontre plus tard mais qui ne

comptent pas moins : Antoine, Morgane, Arthur, Lucie, Camille, David, Dimitri O., Dimitri K., Gladys,

Gauthier, Jean-Côme, Mathieu, Matthieu, Philippe, Emeline, Amalia (bien évidemment), Romain et

Teven. Toujours prêts à débattre de n’importe quel sujet et toujours partants pour se retrouver, votre

présence a été un vrai bol d’air.

Dimitri, tu sais tout ce que tu représentes pour moi. Tu es à mes côtés depuis maintenant sept

vi



Remerciements

ans. Tu m’as aidée et soutenue bien avant que je ne démarre une thèse et bien plus encore depuis.

Merci pour tout cela et bien davantage.

Enfin, puisque la forme n’est autre que le fond qui refait surface, il me reste à remercier Philippe

pour le généreux partage de son template LATEX et Dimitri pour sa relecture typographique, si la ty-

pographie de cette thèse laisse encore à désirer ce n’est nullement une carence de ta part mais sim-

plement que je n’ai pas su tirer tout le bénéfice de tes excellents conseils.

vii





Preamble

Throughout my PhD research, I focused on understanding the diversity and evolution of E. coli species.

To achieve this, I studied a vast collection of over 80,000 genomes of E. coli and Shigella. To analyze

these genomes, I organized more than 400 million coding sequences into a database. For further in-

vestigation, I employed Direct-Coupling Analysis (DCA), an unsupervised machine learning method

inspired by statistical physics. DCA allowed me to model amino-acid sequences and capture pairwise

epistatic couplings, which helped infer the effects of the mutations observed in E. coli.

The first three chapters of this manuscript serve as the introduction. Chapter 1 provides an

overview of E. coli as a species, discussing its ecology and importance in public health. Chapter 2

delves into the evolution of E. coli, highlighting how advances in the field of population genetics have

enhanced our understanding of the species’ diversity. Chapter 3 explores two practical tools used

in evolutionary studies: experimental evolution and protein mutational landscapes. It specifically

focuses on three important evolutionary topics that proved relevant to my research: the impact of

metabolism on niche adaptation, the transition from commensalism to pathogenicity, and the devel-

opment of antibioresistance.

The next four chapters form the core of my work. Chapter 4 describes the methodology I em-

ployed to analyse over 80,000 genomes and effectively organize 400 million coding sequences into a

database. Chapters 5, 6, and 7 delve into different applications of Direct-Coupling Analysis for inter-

preting the diversity observed in these genomes. Chapter 5 demonstrates how individual mutations

can be predicted and analyzed. Chapter 6 focuses on studying the variability of amino-acid sites

both within E. coli and across distant species. Chapter 7 examines signatures of natural selection

at the gene level. Finally, Chapter 8 serves as the conclusion, summarizing the key findings of this

manuscript and suggesting potential avenues for future exploration.

The work presented in this manuscript has resulted in two publications:

• Vigué, L., Croce, G., Petitjean, M., Ruppé, E., Tenaillon, O., and Weigt, M. (2022). Deciphering

polymorphism in 61,157 Escherichia coli genomes via epistatic sequence landscapes. Nature

Communications, 13(1), 4030.

• Vigué, L., and Tenaillon O. Predicting the effect of mutations to investigate recent events of

selection across 60,472 Escherichia coli strains. Accepted for publication at Proceedings of the

National Academy of Sciences.

The findings of the first publication are discussed in chapters 5 and 6. These are the result of a fruitful

collaboration with Giancarlo Croce and Martin Weigt. The second publication is discussed in chap-

ter 7. I would also like to acknowledge the contributions of Marie Petitjean and Étienne Ruppé for

providing the 80,000 genomes that I have analyzed in this research.
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In addition to the research presented in this manuscript, I have also contributed to the analysis of

16S data from microbiota experiments. These contributions have resulted in two other publications:

• Hobson, C. A., Vigué, L., Magnan, M., Chassaing, B., Naimi, S., Gachet, B., ... and Birgy, A.

(2022). A Microbiota-Dependent Response to Anticancer Treatment in an In Vitro Human Mi-

crobiota Model: A Pilot Study With Hydroxycarbamide and Daunorubicin. Frontiers in Cellular

and Infection Microbiology, 618.

• Hobson, C. A., Vigue, L., Naimi, S., Chassaing, B., Magnan, M., Bonacorsi, S., ... and Tenail-

lon, O. (2022). MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study

microbiota-dependent response to antibiotic treatment. JAC-Antimicrobial Resistance, 4(4),

dlac077.

You can find all four articles in the Appendix section. Furthermore, I have been involved in analyzing

the dynamics of de novo mutations in experimental evolution. Although this work is not yet submitted

for publication, it is expected to lead to a future publication.
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Chapter 1

Ecology of E. coli and its role in health and

disease

1.1 E. coli in public health and research

Escherichia coli is a Gram-negative facultative anaerobic bacteria (Tenaillon et al. 2010). The ease with

which it is grown and manipulated in the laboratory has contributed to making it a model species in

life science research. Although most humans carry E. coli asymptomatically in their gut, this bacteria

can also act as a deadly pathogen. Approximately 950,000 people die each year from E. coli intra

and extra-intestinal infections, making E. coli the second leading cause of death among bacterial

pathogens (Ikuta et al. 2022).

In 2019, the World Health Organization declared antimicrobial resistance to be among the top ten

global public health threats facing humanity (EClinicalMedicine 2021). As the bacteria with the high-

est number of resistance-related and attributable deaths, E. coli is closely monitored (Murray et al.

2022). The emergence and spread of antibiotic-resistant clones in this species involves complex dy-

namics that are not yet fully understood. One of these clones is ST131, which increased rapidly in fre-

quency in the early 2000s before plateauing at intermediate levels (Kallonen et al. 2017). Meanwhile,

other drug-sensitive clones have managed to remain stable. Therefore, E. coli provides an excellent

model for studying the dynamics of antibiotic resistance in bacterial populations.

In nature, E. coli exhibits versatile behaviour, with a wide range of isolation sources, ecological in-

teractions and lifestyles. As a generalist organism, it inhabits a variety of ecological niches, including

the gut of various species, water, soil and sediments. It also covers the full range of possible interac-

tions with its host: from commensalism and even mutualism to facultative and obligate pathogenic-

ity in the case of Shigella and enteroinvasive E. coli (EIEC) (Khalil et al. 2018). Shigella and EIEC have

also adopted an intracellular lifestyle and limited their host range to primates. For this reason, E. coli

represents an excellent model to study adaptation to different ecological niches and transition from

commensalism to pathogenicity.

The E. coli population is structured into phylogroups referred to as A, B1, B2, C, D, E, F and G.

More distant strains, called Escherichia clades and numbered C-I to C-V, form a genetic continuum

within the genus Escherichia (Walk et al. 2009). Escherichia clade I is generally thought to belong to

the species E. coli, while the other clades are considered too distant, but the subject remains contro-
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versial (Clermont et al. 2013; Cobo-Simón et al. 2023). The striking phenotypic and clinical differences

between Shigella and E. coli led to their being studied as two distinct species (Touchon et al. 2009).

They were even assigned to separate genera in the 1940s in order to establish a strict separation be-

tween an obligate pathogen and what was thought to be solely a commensal (Lan et al. 2002). The

discovery of EIEC and advances in genomics in the following decades led to a reconsideration of this

separation. A new consensus gradually emerged that Shigella forms a subgroup of E. coli strains with

a specific set of virulence factors and an intracellular lifestyle that make them obligate pathogens of

primates.

1.2 First descriptions of E. coli and Shigella species

The common coli bacterium was isolated and described in 1885 (Friedmann 2014). It was later named

Escherichia coli after its discoverer, the Bavarian physician Theodor Escherich. Theodor Escherich

became interested in faecal bacteria after studying a cholera epidemic in Naples in 1884. At that time,

many direct causal links between specific pathogens and diseases were being discovered. Escherich

therefore naturally looked for the causative agent of infantile diarrhoea, one of the main causes of

death at the time. However, he soon concluded that the intensity of the changes observed in the

microbial composition of the gut during the course of the disease made it impossible to identify a

single causative agent. He therefore chose the opposite approach and focused his work on the stools

of healthy individuals, mainly infants and new-borns. He believed that a better understanding of

the bacteria found in a healthy gut would help to explain the physiology of digestion, the factors that

determine the onset of an intestinal disease and might even give clues as to how to treat it. The novelty

of his approach lies not only in his intuition that the ‘normal’ gut microbial flora must be studied to

understand the disease. Indeed, he was also among the first to use new technologies, in particular

microscopy and Robert Koch’s techniques for culturing and characterising bacteria. His research led

him to focus on Bacterium coli commune, a bacteria regularly found and often predominant among

the aerobic faecal flora of healthy individuals. He demonstrated that this bacteria could grow in the

absence of oxygen, a condition similar to that of the gut.

Shigella is the causative agent of bacillary dysentery. This disease, known since Antiquity, is char-

acterised by diarrhoea often accompanied by blood and mucus originating from the disruption of the

intestinal epithelium. In 1898, Kiyoshi Shiga described Bacillus dysenteriae after isolating it from the

faeces of a patient during a dysentery outbreak in Japan (Bensted 1956; Lan et al. 2002). Ten years

earlier, in 1888, Chantemesse and Widal had already isolated an organism that they believed caused

epidemic dysentery. This organism was later found to be identical to Bacillus dysenteriae. However,

Chantemesse and Widal had described it so poorly that the discovery of Bacillus dysenteriae is gen-

erally attributed to Kiyoshi Shiga, after whom it was renamed Shigella. In the following years, other

strains of Shigella were recurrently isolated during dysentery epidemics. When cultured, some were

shown to release a toxin that became known as Shiga toxin. Another name often associated with

early studies of Shigella is that of the German bacteriologist Walther Kruse. His work, published in

1907, was based on serological tests to characterise different types of Shigella, one of which was a late

lactose fermenter and was later referred to as Shigella sonnei, while the other types were incapable

of fermenting lactose. Compared to Kruse’s work, which was well known in Germany, the English-

speaking countries remained behind in the study of Shigella. It was not until the outbreak of the First

2



1.3. E. coli in the wild

World War, and the intense burden caused by dysentery among soldiers, that British scientists began

to actively study this bacteria. In 1929, Shigella boydii was isolated in India by the British bacteriolo-

gist John Boyd and, in 1940, a Shigella genus consisting of four species—S. dysenteriae, S. flexneri, S.

boydii and S. sonnei—was formally recognised.

1.3 E. coli in the wild

E. coli is a generalist organism that lives in the gut of vertebrates. It can also be sampled from envi-

ronmental sources: soil, water and sediments. Its population size is estimated at 1020 (Tenaillon et al.

2010).

The prevalence of E. coli in the gut of vertebrates varies from complete absence in some species

to over 90% in humans (Figure 1.1) (Gordon et al. 2003). It also reaches higher densities in human

faeces—typically 107 to 109 colony-forming units per gram of faeces, three orders of magnitude higher

than in domestic animals (Tenaillon et al. 2010). A wide range of factors were found to be significant

predictors of E. coli in a host species: climate, body mass, diet and host phylogeny. However, these

predictive factors tend to be correlated with one another, making it difficult to determine the exact

role played by each. Animals frequently exposed to human activities are also more likely to carry E.

coli in their gut. This highlights the importance of E. coli transmission between hosts and the role

of humans as a reservoir of E. coli for other species. Human exposure also impacts on the intra-host

diversity of E. coli, with domestic animals having lower intra-host diversity than their wild counter-

parts.

It was long thought that E. coli could not survive and multiply for an extended period of time in

the environment. Therefore, the presence of E. coli in the environment was interpreted as a marker

of faecal contamination. However, it is now known that some E. coli are able to persist and grow in

the environment. It is estimated that half of the E. coli population lives there (Tenaillon et al. 2010).

The frequent retrieval of closely related strains from distant locations indicates a global spread

and rapid circulation of E. coli. Phylogenetically distant strains are also commonly co-isolated from

the same source. However, this does not obscure the preferential association of certain phylogroups

with certain ecological niches. Phylogroups A and B1 adopt a generalist lifestyle as they can frequently

be found in the environment as well as in any vertebrate group. In comparison, phylogroups B2

and D have a more restricted host range, often limited to endothermic vertebrates. Phylogroup B2

is even more specialised, as it prevails in mammals with a hindgut fermentation chamber (Gordon

et al. 2003). While B2 strains are under-represented in the environment, Escherichia clade I seems to

favour this niche (Walk et al. 2009; Touchon et al. 2020). Yet, the preferential association of certain

phylogroups with certain niches should not mask the absence of host-specific strains. We observe a

differential pattern of phylogroup distribution between species rather than a direct association be-

tween certain ecological niches and certain phylogroups. In this respect, Shigella and EIEC stand

out as pathogens restricted to primates (Mattock et al. 2017). A human-specific commensal E. coli

clone has also been reported (Clermont et al. 2008), but the study was performed before the advent

of high-throughput sequencing and would require to be confirmed now that more data is available

on non-human E. coli reservoirs.

Human populations show different levels of intra-host E. coli diversity, with the highest levels in

tropical regions. Striking geographical and temporal differences also appear in the distribution of
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phylogroups in humans. In the 1980s, A strains predominated in France, while B1 strains predom-

inated in Mali. B2 strains were almost absent (around 2%) in Malian subjects, whereas they repre-

sented close to one fifth of Croatian commensal E. coli (Duriez et al. 2001). In France, the distribution

of phylogroups has changed radically in just two decades: while B2 represented 10.5% and A 61%

of the strains sampled in the 1980s, the former have increased almost threefold, reaching 29.5% in

the 2000s, and the latter have more than halved, falling to 25.5% (Tenaillon et al. 2010). These tem-

poral and geographical differences are generally attributed to lifestyle, including diet and hygiene,

rather than host genetics. Indeed, comparison of E. coli isolated from French metropolitans, French

metropolitans who had moved to French Guiana and local Wayampi Amerindians in French Guiana

showed that French metropolitans who had moved to French Guiana showed intermediate charac-

teristics between the other two populations (Skurnik et al. 2008). Climate or geographical location

are unlikely to play an important role in explaining these differences, as they cannot account for the

drastic temporal changes observed in metropolitan France between the 1980s and the 2000s.

1.4 E. coli in the human gut microbiota

The human body is home to approximately 1013 to 1014 bacteria, roughly the number of human cells

(Sender et al. 2016). Of these 1013 to 1014 bacteria, 70% reside in the colon. Indeed, the gastrointesti-

nal tract represents an excellent niche for micro-organisms as it provides them with a large surface

area and an abundant source of nutrients. We estimate that 500 to 1000 different species can be found

in an individual’s gut at any given time. The bacterial group composition varies longitudinally along

the gastrointestinal tract—biopsy samples from the small intestine and the colon show different bac-

terial composition—and latitudinally, with microbes present in the lumen differing from those found

in the mucosal layer close to the intestinal epithelium (Sekirov et al. 2010).

Studies in germ-free animal models—animals without microbiota—have shown the crucial im-

portance of the gut microbiota for host health. The presence of a gut microbiota benefits the host

in a number of ways: directly, by protecting it from incoming pathogens, extracting calories from

indigestible polysaccharides (Backhed et al. 2005) and sometimes playing a therapeutic role, and in-

directly, by developing its immunity.

The very high density of microbes in the gut generates strong competition for space and food.

Microorganisms also produce a range of antimicrobial compounds to prevent competitors from set-

tling in the gut. This intense competition provides a strong barrier to colonisation for any newcomer,

whether commensal or pathogenic. From the host’s point of view, it is particularly beneficial in lim-

iting the risk of infection by pathogenic species. The role of the gut microbiota extends beyond the

prevention of pathogenic infections. Indeed, the success of gut microbiota transplantations in cur-

ing certain digestive tract infections has highlighted the therapeutic role of the gut microbiota. The

success of certain drug-based therapies also seems to depend on the state of the microbiota (Sekirov

et al. 2010; Moran et al. 2019).

The intestinal mucosa represents the largest surface area in contact with the external environ-

ment. The dense community of microbes close to the mucosa therefore represents the largest fraction

of antigens that stimulate immune cells. Hence, the gut microbiota plays a key role in the education

of the host immune system (Sekirov et al. 2010). It is thought that changes in diet and hygiene can

reduce exposure to microorganisms, resulting in a disrupted and immature microbiota. This un-
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derdeveloped microbiota would be unable to educate the host immune system, thus increasing the

incidence of allergies and autoimmune disorders in the host (Moran et al. 2019).

In this landscape, E. coli represents the predominant aerobic organism of the gut microbial flora

(Tenaillon et al. 2010; Martinson et al. 2020). However, it accounts for only a small fraction of this mi-

crobiota as anaerobes dominate aerobes by two or three orders of magnitude. E. coli is also one of the

first bacteria to colonise newborns. It may contribute to depleting oxygen along the gastrointestinal

mucosa, thus paving the way for colonisation of the gut by strict anaerobes. In the gut, it inhabits

the large intestine, particularly the caecum and colon, where it lives in the mucosal layer. It regularly

detaches from the mucosa with degraded mucus and falls into the lumen to be excreted in the fae-

ces. As an early coloniser of the gut and inhabitant of the intestinal mucosa, E. coli is likely to play

an important role in the education of the immune system. Its lipopolysaccharide-rich outer mem-

brane, common to all gram-negative bacteria, stimulates the production of secretory immunoglob-

ulin A (sIgA) by the host. These sIgA bind microbes, preventing uncontrolled microbial growth. This

reduces the interaction between the gut microbiota and the mucosal immune system, thereby de-

creasing the host’s response to its resident microbes and the risk of high inflammation (Sekirov et al.

2010).

Most individuals carry one or two resident strains of E. coli and a few transient strains at any

given time (Martinson et al. 2020). Resident strains are those that remain in the gut for a long time,

at least several weeks. By contrast, transient strains remain there for only a few days. In other words,

resident strains are those that have successfully colonised the gut—they produce enough offspring to

compensate for their evacuation through intestinal transit—whereas transient strains fail to colonise

the gut, they are ingested and immediately lost. In a way, the latter provide a picture of an individual’s

daily exposure to E. coli present in their environment. The only context in which shared clones have

been repeatedly reported is when people live together in the same household. These clones may be

resident in one individual and transient in others, suggesting an important role for frequent exposure

and close contact in the sharing of E. coli strains.

The presence of E. coli resident and transient strains in the human gut has been known since the

mid-twentieth century (Sears et al. 1950; Sears et al. 1952). However, identifying the factors that deter-

mine whether a strain is resident or transient has proved difficult. Experimental attempts to colonise

the gut by ingesting strains almost inevitably fail. Sometimes ingested strains are not even recovered

as transient. Extreme procedures carried out on dogs, involving massive feeding, use of chemical

means to clean the gut and rectal injections, have also failed to achieve successful colonisation (Sears

et al. 1956). It was noted that mice treated with streptomicin as well as human neonates were easier to

colonise, suggesting an important role for the host microbiota in preventing colonisation (Tenaillon

et al. 2010; Lou et al. 2021). The advent of sequencing has given some insight into the factors deter-

mining residency by providing access to strain phylogroups and to their gene content. Phylogroups

B2 and D tend to be over-represented among resident strains, although this relationship is far from

systematic (Nowrouzian et al. 2005). Resident strains are also more likely to carry adhesion factors,

iron acquisition systems and genes involved in sugar and amino-acid metabolism (Lou et al. 2021). It

is important to note, however, that there is no single trait that determines residency: successful gut

colonisation probably relies on a wide range of genes. The failure of most experimental attempts to

colonise the gut, even with a previously resident strain, also suggests that even a very fit strain has

little chance of successfully colonising the gut of an adult with a mature microbiota.
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Resident strains do not stay in the gut forever and are eventually replaced. However, the factors

that determine this change remain unclear. Changes in an individual’s environment, such as travel,

have sometimes been linked to changes in residency, but in other cases travel has not impacted the

resident strains. Diarrhoea and artificial purging also failed to show an effect on residency (Sears et al.

1952; Sears et al. 1956). Some reports have linked antibiotic treatment to changes in resident strains,

but it is also possible for a resident strain to persist despite antibiotic treatment, even when the strain

is sensitive to the prescribed antibiotics (Martinson et al. 2020). Antibiotics are known to disrupt

the gut microbiota, with effects that can still be observed long after treatment has ended. However,

they have very different effects on different individuals (Andremont et al. 2019). For example, our

lab conducted a study in an in vitro gut model that revealed a reduced impact of ceftriaxone on the

composition of the microbiota when the microbiota exhibited high β-lactamase activity (Hobson et

al. 2022).

1.5 E. coli in human disease

E. coli is generally described as a commensal, as it inhabits the human gut without harming its host. It

benefits from the gut environment, including nutrients, protection from external stresses, transport

and dissemination. In turn, it may also provide some benefits to the host, suggesting a degree of

mutualism. Amongst these benefits, we have already mentioned its role in oxygen depletion of the

neonatal gut, education of the immune system and protection against pathogenic newcomers. It is

also capable of producing vitamin K, thus extending the metabolic capabilities of the host (Suvarna

et al. 1998). However, the harmless commensal can also turn into a deadly pathogen.

Figure 1.2 summarises the range of diseases that E. coli can cause. They can be divided into two

broad categories: intestinal and extra-intestinal diseases. The former are characterised by diarrhoea

and can lead to fatal haemolytic uraemic syndrome (HUS) when the strain produces Shiga toxin. On

the other hand, harmless commensals from the gut can translocate to another organ and cause an

opportunistic infection there, resulting in extra-intestinal disease. In this case, the severity of the

disease is mainly determined by the condition of the host: young, healthy people exhibit milder in-

fections than older, immuno-compromised patients (Denamur et al. 2021; Katouli 2010).

Enteroinvasive E. coli (EIEC) and Shigella have an invasive pathotype. Infection with these strains

occurs in several stages (Figure 1.3): the strain enters an M cell of the intestinal epithelium, is endo-

cytosed by a resident macrophage, induces its death and proceeds to infect adjacent epithelial cells

(Mattock et al. 2017; Pasqua et al. 2017). Different groups of Shigella have arisen independently at

various times in history, as is the case with EIEC. However, they infect by very similar mechanisms

and use the same set of genes, revealing a high degree of convergence (Wirth et al. 2006).

Strains involved in intestinal diseases harbour a restricted set of virulence genes with strong ef-

fects. In contrast to intestinal diseases, extra-intestinal virulence is multigenic: it relies on many

genes with small effects, usually genes coding for adhesins, toxins, protectins and iron uptake sys-

tems. These genes have been identified experimentally through the use of animal models, such as

the mouse model of sepsis (Denamur et al. 2021). In this model, E. coli strains exhibit two distinct

behaviours: some kill most of the injected mice (killer phenotype) while others kill almost none (non-

killer phenotype) (Picard et al. 1999). The B2 and D strains mainly belong to the first category and the

A, B1 and E strains to the second. It should be noted that, like any model, the mouse model of sepsis
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←
←

ExPEC

Intermediate pathotypes

InPEC

- Broad range of diseases
- Opportunistic infections (disease 
severity mostly depends on host state)
- Multigenic virulence

- Diarrhoea (with or without blood)
- Haemolytic and Uraemic Syndrome if 
Shiga-toxin producing strain (high 
morbidity)
- Paucigenic virulence

Shigella* (originated from B1)
EIEC* (A, B1, E)
AIEC (All phylogroups, majority of B2)
EAEC (A, B1, B2, D)
EHEC (B1, E)
EPEC (A, B1, B2, E)
ETEC (A, B1, C, E)
Hybrid InPEC (B1)

Newborn meningitis (B2, 
F)

Intra-abdominal, 
pulmonary, skin and soft 
tissues infections (B2)

Bacteremia (B2, C, D, F)

Urinary Tract Infections 
(B2, D) 

* Obligate pathogens & 
Primate restricted strains

DAEC (All phylogroups)
Hybrid InPEC-ExPEC (A)

FIGURE 1.2: Range of diseases caused by E. coli, main human pathotypes, and corresponding phylogroups.
ExPEC: Extraintestinal pathogenic E. coli; InPEC: Intestinal pathogenic E. coli; AIEC: adherent-invasive E.
coli; DAEC: diffusely adherent E. coli; EAEC: enteroaggregative E. coli; EHEC: enterohemorrhagic E. coli;
EIEC: enteroinvasive E. coli; EPEC: enteropathogenic E. coli; ETEC: enterotoxigenic E. coli. See (Denamur
et al. 2021) for further details on these pathotypes.

8



1.5. E. coli in human disease

2

Shigella

M cell

Macrophage

PMN

5

12

4
IL-18

Immune activation 
via IFN-γ

3

13

1

6

7

8

9

10
11

IL-8 IL-1β

Pyroptosis
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FIGURE 1.3: Stages of Shigella infection (adapted from (Mattock et al. 2017)).
Shigella colonizes the intestinal epithelium in two ways: entrance into M cells and destabilization of the
epithelial barrier. Shigella enters into M cells by inducing membrane ruffling (1), before being endocytosed
by a resident macrophage (2), evading the phagocytic vacuole (3) and inducing both the release of pro-
inflammatroy signals (4) and the macrophage death (6). The release of pro-inflammatroy signals leads
to the recruitment of polymorphonuclear leukocytes (PMN) that destabilize epithelial cell junctions thus
allowing other strains to cross the epithelial barrier (5). Macrophage death and lysis (6) allows Shigella to
invade epithelial cells from their basolateral membrane (7). The strain then escapes from its vacuole (8)
andmultiplies in the cell cytoplasm (9). Thanks to an actin tail, Shigella canmove inside the cell and infect a
neighbooring cell (10), there again it escapes its vacuole and enters the cytoplasm (11). Polymorphonuclear
leukocytes clear the infection (13). NB: EIEC infection follows very similar steps to those described above.
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cannot provide perfect information on the virulence of a strain. Indeed, in this model, the strains are

directly injected into the blood at high concentration, so that we do not detect any virulence gene

involved in the first stages of the infection.

E. coli, therefore, demonstrates a wide range of niches it inhabits and diseases it is capable of

causing. Different strains exhibit distinct ecological traits and varying levels of virulence. This diver-

sity, which has been widely observed by microbiologists, provides an excellent foundation for gaining

insights into the evolution of this species.
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Chapter 2

E. coli population genetics

2.1 E. coli population structure

The E. coli species inhabits a wide range of ecological niches and readily switches from commensal-

ism to pathogenicity. This generalist behaviour requires genetic flexibility and frequent adaptations.

As we have seen, different phylogroups tend to favour different niches and behave differently within

a human host. To decipher the determinants of E. coli evolution, we therefore need to better charac-

terise its population structure.

2.1.1 Pre-PCR era

The first attempts to elucidate the population structure of E. coli predate the discovery of the dou-

ble helix model of DNA structure. They trace back to Kauffman who developed serotyping in 1940

(Kauffmann 1947). This method consists of characterising three surface antigens of the bacteria: O

(somatic), K (capsular) and H (flagellar). Serotyping studies have led to two main discoveries. Firstly,

the O, K and H antigens show non-random associations. These combinations of O, H and K alleles

were called serotypes. Secondly, some serotypes can be found all over the world.

Another breakthrough came in the 1980s with the introduction of multilocus enzyme electrophore-

sis (MLEE) (Selander et al. 1986). MLEE characterises the relative electrophoretic mobility of several

housekeeping enzymes. Each mobility variant corresponds to an allele of the enzyme. The haplo-

types formed by the alleles observed at different loci can then be compared between strains. The

closer two strains are, the more alleles they should share. Robert K. Selander and Howard Ochman,

who pioneered the use of MLEE for bacterial species, also built the first E. coli reference collection

(ECOR) (Ochman et al. 1984). ECOR was compiled by sampling strains from various continents and

host species in an effort to capture the diversity of E. coli. MLEE studies performed on the ECOR

collection revealed that the strains’ haplotypes clustered into different groups. Strains from the same

cluster can originate from distant locations or from different host species, which again confirms the

existence of intense circulation of strains across the world and between species (Selander et al. 1980).

The population structure was formalised by identifying four phylogroups: A, B1, B2 and D (Herzer et

al. 1990; Johnson et al. 2001). Four remaining ECOR strains belong to what would later be designated

as phylogroup E (Clermont et al. 2021).

During these years, work accumulated suggesting a close proximity between E. coli and Shigella.
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In 1953, serotyping documented the sharing of identical O antigens between the two bacteria (Ewing

1953). Four years later, hybridisation experiments proved that they could recombine with each other

(Luria et al. 1957). In the late 1960s, nucleic acid reassociation experiments confirmed the proximity

of E. coli and Shigella by showing that the thermal stability of E. coli-S. flexneri DNA reassociation

products was comparable to that of E. coli-E. coli (Brenner et al. 1969). MLEE performed on Shigella

strains found that their electrophoretic types could fall into ECOR clusters (Ochman et al. 1983). More

importantly, different Shigella strains could fall into different clusters, suggesting distinct emergences

of different Shigella lineages from E. coli species.

2.1.2 PCR era

The advent of sequencing has opened a new era in population genetics. The 1990s saw the first com-

plete sequence of a cellular genome when a team of researchers led by J. Craig Venter published the

Haemophilus influenzae genome in 1995 (Fleischmann et al. 1995). In parallel with these efforts to

sequence complete genomes, a new method has emerged for using smaller DNA sequences: multi-

locus sequence typing (MLST) (Enright et al. 1999). The spirit of MLST is very similar to that of MLEE,

but instead of equating mobility variants with alleles, it directly uses the DNA sequences of genes

to detect alleles. This improves resolution because it allows gene sequences that code for enzymes

with similar electrophoretic mobility to be distinguished, typically when they differ only at synony-

mous sites. A haplotype based on alleles at different loci is called a sequence type (ST). There are two

main MLST classifications in use today: the Warwick classification (Wirth et al. 2006) and the Institut

Pasteur classification (Jaureguy et al. 2008).

Access to DNA sequences of housekeeping genes also made it possible to construct the first phy-

logenies (Lecointre et al. 1998). The phylogenies of the ECOR strains confirmed the first observations

of the MLEE method: the phylogroups coincide with the phylogenetic clades (Wirth et al. 2006). Sam-

pling of new strains allowed the phylogeny to be refined. Phylogroup D was found not to be mono-

phyletic and was divided into phylogroups D and F (Jaureguy et al. 2008). In addition, a sister clade to

phylogroups A, B1 and Shigella was named phylogroup C (Escobar-Páramo et al. 2004). The phyloge-

nies were also anchored on an outgroup species, such as Salmonella enterica. This suggested that B2

was the most basal phylogroup, followed by D (Lecointre et al. 1998).

In parallel, Rolland et al. applied ribotyping to a dataset based on the ECOR collection, to which

they had added strains of Shigella and enteroinvasive E. coli (EIEC) (Rolland et al. 1998). Their work

showed that Shigella emerged several times from phylogroups B1 and D, while EIEC were even more

widely distributed between phylogenetic groups A, B1 and B2.

Pre-PCR methods such as MLEE or ribotyping were already able to identify phylogroups. How-

ever, they were too complex and time-consuming to be used routinely in many laboratories. In this

respect, the advent of triplex-PCR proved to be a game-changer, as it greatly democratised the identi-

fication of strain phylogroups (Clermont et al. 2000). Based on the presence-absence pattern of three

DNA fragments (two genes and one anonymous DNA fragment), the phylogenetic group to which a

strain belongs can be found with a very low misclassification rate (Figure 2.1.B). In 2013, triplex-PCR

was transformed into quadruplex-PCR by adding a fourth DNA target (Clermont et al. 2013). This was

done in order to follow the progress made in our understanding of the structure of E. coli phylogroups.

In 2009, a study of 20 complete genome sequences of E. coli and Shigella paved the way for
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Tree scale: 0.01

A B

FIGURE 2.1: E. coli phylogeny and phylogroups.
A. Phylogeny of 1,294 E. coli strains isolated from diverse sources on the Australia continent, the different
phylogroups are highlighted with specific colors (Figure from (Touchon et al. 2020)).
B. Decision tree used to assign a phylogroup to an E. coli strain in the original triplex-PCR method (Figure
from (Clermont et al. 2000)).

genome-wide population genetics of E. coli (Touchon et al. 2009). Advances in sequencing over the

past decade now make it possible to conduct similar studies with over a thousand strains (Touchon

et al. 2020).

Currently, the phylogeny of E. coli is considered to consist of eight phylogroups (Figure 2.1.A)

(Touchon et al. 2020). Phylogroups A, B1, B2 and D are the most common and oldest known. The

other four (phylogroups C, E, F, G) are less common. Phylogroup G is the latest phylogroup to be

discovered and includes strains intermediate between phylogroups F and B2 (Clermont et al. 2019).

The notion of rarity or commonness of a phylogroup is of course very biased. The vast majority of E.

coli strains sequenced so far are human commensals or pathogens, which leads to an obvious bias

in the databases. The current picture of a species with eight phylogroups is far from fixed. Firstly,

because sampling of new strains, especially environmental or non-human strains, will certainly lead

to the identification of new phylogroups. One study has already suggested the existence of a phy-

logroup H (Lu et al. 2016), but so far only one strain of this phylogroup—found in the gut of Marmota

himalayana—is known. Secondly, the criteria on the basis of which phylogroups are split remain

controversial. A recent study advocates splitting some of the existing phylogroups into several, which

would result in a total of 14 phylogroups (Abram et al. 2021). Whatever refinements in phylogeny

may be made in the future, there is now a consensus that E. coli has a strong population structure

with different subgroups that have emerged one after the other and coexist today. A quick look at the

phylogeny may be enough to detect strong differences between these groups. Indeed, phylogroups

D and F have very long terminal branches compared to the other phylogroups, suggesting that they

follow distinct evolutionary dynamics.

As technologies have improved, more detailed knowledge of the population structure of E. coli has

become available. The very first technology used, serotyping, is subject to significant bias because it is
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based on surface antigens. These are under strong diversifying selection, hence their frequent evolu-

tion and exchange between strains. For example, strains of the same sequence type (ST) often exhibit

different O:H combinations. The advent of MLST has clearly improved the classification of strains.

However, the classification into STs is in itself somewhat arbitrary. Some old STs are very abundant

and show great diversity, while others have emerged recently as a result of a single mutation and

contain very few strains and almost no diversity. The decreasing cost of sequencing, year after year,

has allowed better analysis of genomes and the study of larger data sets, resulting in a more accurate

picture of the structure of the species. Another advantage of sequencing is that DNA sequences can

be made available online. This means that a genome can be studied by anyone in the world, even

if they do not have access to the strain. This allows large-scale computational studies, with publica-

tions based on the analysis of as many as 100,000 E. coli genomes (Abram et al. 2021). However, it

is worth noting that although serotyping and MLEE were far from perfect, the advent of sequencing

has mainly helped to refine the picture of E. coli population structure without really invalidating the

observations made with these earlier methods.

2.2 E. coli genome

Thus, E. coli represents a highly stuctured species. In order to understand the determinants of this

structure, we need to analyse its genome more in depth.

2.2.1 Genome size

A first and very basic statistic of genomes is their sizes. The E. coli genome is on average 5 Mb long,

but the range of variation in genome size spans nearly 2 Mb between E. coli strains (Touchon et al.

2020)—with phylogroups A and B1 having smaller genomes than B2 and D (Bergthorsson et al. 1998).

The factors that determine the size of bacterial genomes and the role that selection plays in this

process are not yet fully understood. The effective population size constitutes one of the main deter-

minants of the intensity of natural selection. It is itself influenced by the lifestyle of the species. When

examining prokaryotic species with different lifestyles—free-living bacteria, commensals, obligate

animal pathogens and obligate intracellular organisms—there is a general trend towards decreas-

ing effective population size and genome size. This suggests that when natural selection decreases,

genomes shrink (Bobay et al. 2017b; Bobay et al. 2018).

Another interpretation may be that parasites need fewer functions to survive because they de-

pend mainly on their host to provide them with the metabolic capabilities they lack. It has also been

suggested that the reduction in genome size may increase the growth rate, so that smaller genomes

are selected. However, studies using dN/dS—the ratio of the number of non-synonymous substitu-

tions per non-synonymous site to the number of synonymous substitution per synonymous site—to

estimate the strength of purifying selection have shown that genome size positively correlates with

purifying selection (Bobay et al. 2018). Furthermore, among E. coli strains, differences in genome

size do not translate into different growth rates (Bergthorsson et al. 1998). Overall, this suggests that

although the loss of some unnecessary genes may be selected for in parasites, natural selection may

not be strong enough in these species to maintain other useful functions (Mira et al. 2001).

These thoughts apply perfectly to the transition of E. coli to an intracellular lifestyle embodied
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by Shigella. Indeed, Shigella loses genes more rapidly than other E. coli strains, acquires them more

slowly and, once acquired, is also less likely to retain these new genes (Hershberg et al. 2007; Passel et

al. 2008). At the same time, it also has more non-synonymous mutations, a pattern consistent with re-

laxed selection (Balbi et al. 2009). However, the multiple emergence of Shigella and EIEC throughout

history allows the detection of some convergent gene losses that certainly reflect adaptation (Pupo

et al. 2000).

In 2002, Dmitri Petrov suggested that a simple neutral model could explain the observed varia-

tions in genome size (Petrov 2002). In this framework, genome size reflects a balance between rare

events of large DNA gains and many smaller losses. This model was developed on the basis of ani-

mal data. Bacterial genomes are of course very different from those of eukaryotic species, not least

because they contain less non-coding DNA—these regions being more likely to be selectively neutral

and therefore subject to frequent loss and acquisition. However, E. coli shows the same pattern of

small and frequent gene losses balanced by larger and less frequent gains (Touchon et al. 2009). In

this species, most differences in genome size tend to be inherited vertically. This is consistent with a

neutral scenario. However, selection seems to be at play when focusing on the location of these gains

and losses. Indeed, they tend to be correlated so that the origin of replication and the terminus of

replication remain diametrically opposed (Bergthorsson et al. 1998).

2.2.2 Chromosomal organization

Gene acquisitions do not occur randomly along the genome. They tend to cluster at specific locations

known as ‘integration hotspots’ (Touchon et al. 2009). These hotspots help to preserve the organisa-

tion of the rest of the genome. Indeed, conserved genes organize themselves in the same order in

most E. coli strains, despite huge variations in the content of accessory genes.

Natural selection may act to preserve this organisation. Indeed, any perturbation can generate

a fitness cost for multiple reasons. It could disrupt gene dosage by changing the distance between

a gene and the origin of replication. It could also reverse some genes, triggering a conflict between

DNA replication and transcription. If a rearrangement shifts the origin of replication, it will result in

two chromosomal branches of unequal length between the origin and the terminus of replication,

reducing the efficiency of DNA replication. In the long term, genome rearrangements can also be

deleterious because they create a barrier to recombination: homologous recombination events will

result in gene losses and duplications.

The number of genome rearrangements is reported to correlate with the number of insertion se-

quences (IS) (Touchon et al. 2009). This is expected because mobile elements trigger intra-genomic

recombination. However, we have to consider these reports with caution as insertion sequences also

make genome assemblies much more complex and we cannot exclude that some of these rearrange-

ments may simply correspond to assembly artefacts. However, studies have independently reported

an increase in IS accompanied by chromosomal rearrangements when species have evolved to an in-

tracellular lifestyle (Moran et al. 2004). These include studies focusing on the transition from E. coli

to Shigella (Jin et al. 2002; Touchon et al. 2009).
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2.2.3 GC content

Another simple statistics used to describe genomes is their GC content, i.e. the proportion of gua-

nines and cytosines in the DNA. The GC content of the genome varies considerably between bacterial

species, ranging from only 13.5% in Candidatus Zinderia insecticola (McCutcheon et al. 2010) to 74%

in Micrococcus luteus (Ohama et al. 1990). It correlates with effective population size and lifestyle,

with obligate endosymbionts showing some of the lowest GC contents. E. coli stands in the middle

with an average GC content of 50.6% (Touchon et al. 2020).

GC content shows little variation within E. coli strains, with a standard deviation of 0.14% (Tou-

chon et al. 2020). However, it varies along the genome, particularly in integration hotspots and at the

terminus of replication. The former is expected, as these hotspots contain DNA from distant species

with different GC content. The observation of AT enrichment at the terminus of replication is not yet

fully explained, but has been linked to a lower level of homologous recombination (Touchon et al.

2009).

It has long been thought that the variations in GC content observed between species reflected

differences in mutational bias between organisms. This hypothesis was supported by the observa-

tion that 4-fold degenerate sites—assumed to be weakly selected for protein function—showed the

greatest variation in GC content, while non-degenerate, highly constrained positions of the second

codon showed the least variation (Rocha et al. 2010). This argued in favour of GC content variations

being induced by neutral mechanisms.

However, several studies contradict this hypothesis. Indeed, most genomes—including GC-rich

genomes—show a strong and consistent mutation bias in favour of AT for de novo mutations. This

bias has been observed both experimentally in E. coli (Schaaper et al. 1991; J. Sargentini et al. 1994)

and in nature by examining recently emerged mutations in different species (Hershberg et al. 2010;

Hildebrand et al. 2010). It could be due to the spontaneous deamination of cytosines to uracils and

5-methylcytosine to thymine when the DNA is single-stranded, usually during transcription. Indeed,

induction of transcription increases the frequency of these deaminations on the non-transcribed

strand by a factor of four (Beletskii et al. 1996).

In this respect, Shigella has an even greater bias for AT mutations than E. coli. These are elimi-

nated over time when they do not occur at a 4-fold degenerate site. Together with the observation of a

higher dN/dS ratio in Shigella, these results support the hypothesis that enrichment in AT mutations

reflects weaker purifying selection (Balbi et al. 2009).

If mutation bias were the only factor at play, GC content should reach a much lower equilibrium in

many species, including E. coli and Shigella. Various hypotheses have been put forward to explain the

GC content values observed in nature, they are reviewed in (Rocha et al. 2010). One of the most hotly

debated issues concerns the role of recombination. Homologous recombination could counteract the

AT bias of mutation in at least two ways. First, while most de novo GC to AT mutations are deleteri-

ous, selection may favour recombination to restore ancestral nucleotides. Second, the recombination

process itself may create a GC bias. According to the biased gene conversion hypothesis, mismatches

in recombination heteroduplexes are repaired in favour of G and C. This hypothesis, which does not

require any action of selection, could explain the observed increase in GC content. In both cases, a

GC-rich genome would be the signature of a highly recombinant species. In contradiction with this

hypothesis, an increase in recombination rates does not necessarily correlate with an increase in GC
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content. Furthermore, newly recombined alleles observed in nature seem to show an AT bias instead

of a GC bias (Bobay et al. 2017a). Even if there were indeed a GC bias, it is not clear that recombina-

tion is sufficiently frequent to counteract the AT bias of de novo mutations. All attempts to study the

role of biased gene conversion in nature are necessarily limited by the difficulty of correctly detecting

recombination. Furthermore, even an association between the occurrence of recombination and an

increase in GC content cannot be taken as evidence for the biased gene conversion hypothesis, as

recombination is intrinsically linked to the efficiency of natural selection.

If no neutral process can explain the observed GC contents, an alternative would be that they are

selected for. The observation that E. coli strains harbouring GC-rich versions of genes grow faster

than their AT-rich counterparts supports an adaptive view of GC content (Raghavan et al. 2012). The

hypothesis of a selective role for GC content challenges some of the foundations of modern popula-

tion genetics. In particular, it suggests the absence of any neutral sites in the genome. Indeed, 4-fold

degenerate sites that are weakly selected for protein function would then reflect selection for nu-

cleotide composition. This also raises questions about the observed differences between species. Do

differences in GC content reflect different local fitness optima or differences in the strength of natural

selection to achieve the same global optimum? If high GC content is adaptive, it is also surprising that

the mutational processes that take place in bacteria have not evolved to be more biased towards GCs

(Rocha et al. 2010).

2.3 Genetic diversity in E. coli species

2.3.1 Mechanisms generating genetic diversity

Differences between strains can result from two main types of process: mutation and horizontal gene

transfer.

Mutations occur naturally as a result of errors during DNA replication or when DNA is damaged

and not properly repaired. In E. coli, estimates of the spontaneous mutation rate range from 10−4

to 3.7×10−3 mutations per genome per generation (Williams 2014). One important mechanism that

keeps the mutation rate so low is DNA mismatch repair (MMR). MMR controls the fidelity of DNA

replication by repairing errors in base incorporation, insertion or deletion. It also repairs some DNA

damage. MMR involves several proteins, including MutS, which recognises mismatched base pairs

and unpaired bases, and MutL, which recruits other proteins to repair the error once it has been

detected. Therefore, loss of MMR by inactivation of mutS or mutL genes results in a 100-fold increase

in transition rate and a 1000-fold increase in frameshift rate. The strain is then described as a mutator

(Denamur et al. 2006).

In addition to mutation, horizontal gene transfer is an important source of genome diversifica-

tion. To allow stable implantation of foreign DNA into a cell, the DNA must:

1. enter the cell,

2. establish itself as a self-replicating plasmid or by integrating the chromosome,

3. not be lost (through drift or counter-selection).
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DNA uptake proceeds by transformation, conjugation, transduction or lysogenic conversion (Fig-

ure 2.2).
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FIGURE 2.2: The three main modes of foreign DNA acquisition by bacteria.
Figure A is adapted from (Touchon et al. 2017).

Transformation is the direct uptake of extracellular DNA by the bacteria (Thomas et al. 2005).

Transformation is the only one of the three mechanisms that allows the uptake of foreign DNA with-

out the mediation of phages or mobile genetic elements, each having a restricted host range. Trans-

formation requires the bacteria to be naturally competent, a condition that was long thought not

to be met by E. coli (Mandel et al. 1970). However, some reports indicate a modest level of natural

competence for E. coli when present in water or food (Baur et al. 1996; Bauer et al. 1999).

Conjugation requires physical contact between the donor and recipient cell and the formation

of a pore through which DNA can pass (Thomas et al. 2005). The mobile genetic elements that code

for these conjugative systems are carried on plasmids or on a DNA fragment that excises from the

chromosome before transfer. Bacteria that code for closely related conjugative systems cannot initi-

ate conjugation, a phenomenon called surface exclusion. The effect of the capsule has not yet been

fully studied, but there is some evidence to suggest that conjugation between different serotypes is

less efficient and that loss of the capsule increases the rate of conjugation (Haudiquet et al. 2021).

Transduction and lysogenic conversion are phage-mediated uptakes of DNA (Touchon et al. 2017).

Lysogenic conversion occurs when the infectious phage integrates into the bacterial genome, result-

ing in the acquisition of the phage DNA. Transduction happens when the phage has mistakenly pack-

aged host DNA from the bacteria where it was produced (see Figure 2.2.A), resulting in the acquisition

of bacterial DNA by the recipient cell. Phages have a narrow host range. In particular, the presence or

absence of a capsule and the type of capsule present will determine the types of phage that can infect

the cell (Haudiquet et al. 2021).
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Once it has entered the cell, the DNA must establish itself either as a plasmid or by integrating the

chromosome. The first solution requires that it escapes restriction enzymes and can replicate inde-

pendently (Thomas et al. 2005). The second requires an additional step of integration into the chro-

mosome. Some mobile DNA fragments integrate into the chromosome by a series of mechanisms

known as ‘site-specific recombination’ because they occur at specific locations in the DNA (Grindley

et al. 2006). Homologous recombination (HR) is another mechanism of integration of foreign DNA

into the chromosome. HR is a major mechanism of DNA repair. But because it uses a DNA template,

it can also generate diversity if the template is not strictly identical to the damaged sequence. HR re-

lies on the RecA protein (Bell et al. 2016). When DNA is damaged, RecA searches for a repair template

by identifying a sequence that has perfect homology on a segment covering at least 23 to 27 base

pairs: the minimum effective processing segment (MEPS) (Shen et al. 1986). The number of MEPS

between two strains decreases exponentially with sequence divergence. This means that the prob-

ability of foreign DNA integrating into a chromosome by HR decreases exponentially with sequence

divergence (Vulić et al. 1997). MEPS homology checking is under the control of MutS protein (Delmas

et al. 2005). Therefore, inactivation of mutS gene will result in a recombinant phenotype (in addition

to the mutator phenotype already described).

2.3.2 Observed diversity in E. coli

Two randomly sampled E. coli strains will show on average a 3% divergence in nucleotide composition

(Touchon et al. 2009). This figure rises to 6.1% if the E. coli species boundaries are extended to include

E. coli clade I (Cobo-Simón et al. 2023). Conversely, the diversity will be lower when comparing strains

from the same phylogroup. Nucleotide diversity within a phylogroup is positively correlated with the

distance from its most recent common ancestor: the more time that has passed, the more divergence

has accumulated (Touchon et al. 2020).

When one compares the nucleotide sequences of two strains, most differences cluster in two re-

gions (Milkman 1997; Tenaillon et al. 2010). These regions have become known as ‘bastions of poly-

morphisms’. They correspond to the rfb operon which encodes the O surface antigen and to a region

containing the fim and the hsd operons. The fim operon encodes Type I Pili involved in adhesion

and is known to frequently change its transcriptional state. The hsd operon—host specificity genes—

encodes type I restriction and modification systems that allow bacteria to detect and cut foreign DNA.

Because of their function in self-recognition or in coding for proteins exposed at the cell surface, they

are subject to strong diversifying selective pressures, which explains their high level of divergence.

In contrast to a relatively low level of overall nucleotide divergence between shared genes, the

gene content between two strains diverges by more than 30% (Touchon et al. 2009). While an aver-

age E. coli strain harbours 4,700 genes, less than 2,500 of these were found in 99% of 1,294 isolates

(Touchon et al. 2020). The remaining genes vary from strain to strain.

It has long been known that bacteria can acquire new genes that allow them to express new char-

acteristics (Ochman et al. 2000). Antibiotic resistance genes are often carried by plasmids that strains

exchange. Some other traits—such as the ability to ferment a sugar—are linked to the presence of

specific genetic operons. A virulence plasmid is also involved in the invasive phenotype of Shigella

(Sansonetti et al. 1982). However, the extent of variability in the gene repertoire was clearly overlooked

before the advent of whole genome sequencing.
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In 2005, Tettelin and colleagues asked the question: ‘How many genomes are needed to fully

describe a bacterial species?’ (Tettelin et al. 2005). At the time, they were looking for a universal

vaccine that would effectively target all strains of Streptococcus agalactiae. To do this, they needed to

sequence enough strains to cover the full diversity of the species. Using a quantitative approach, they

showed that while the number of genes shared between strains tended to stabilise at around 1,806

genes, the addition of any new strain led to the identification of new genes. They coined the term

pan-genome to describe the genome of a species and came to the surprising conclusion that the

pan-genome of Streptococcus agalactiae was open. The observations of Tettelin and colleagues on

Streptococcus agalactiae were found to be true for most bacterial species, including E. coli (Touchon

et al. 2009) (Figure 2.3).

A B C

FIGURE 2.3: E. coli core and pan-genome (Figures from (Touchon et al. 2009)).
A. E. coli core genome size according to the number of genomes considered.
B. E. coli pan-genome size according to the number of genomes considered.
C. Frequencies of genes across all 20 genomes analysed.

We generally refer to genes shared by all members of a species as core genes and to others as

accessory genes. In practice, when studying large datasets, the more flexible definition of a persistent

genome that includes genes present in at least 95% or 99% of strains is preferred to that of a core

genome that requires genes to be present in absolutely all strains (Touchon et al. 2020). Indeed, as

the number of strains increases, the number of core genes should decrease to very low levels due to

sequencing artefacts or very rare gene losses.

The pan-genome follows a U-shaped distribution (Figure 2.3.C), with a high peak of very low fre-

quency genes and a lower peak of high frequency genes. The former consists mainly of singletons—

genes present in a single genome—and the latter corresponds to the persistent and core genomes

(Touchon et al. 2009).

The persistent genome contains many housekeeping genes. It has been suggested that the an-

cestral genome may be a better representation of the housekeeping functions of the species than a

core or persistent genome (Touchon et al. 2009). But as it is less practical to infer, it is rarely used in

practice. The size of the E. coli core genome decreases when Shigella strains are added, consistent

with the multiple gene losses that have accompanied the emergence of Shigella subgroups.

Although they represent a large part of the species pan-genome, singletons constitute on average

less than 1% of the genes in a single strain (Touchon et al. 2020). They include selfish DNA, such as

transposable elements and prophage elements (Touchon et al. 2009), as well as some defence sys-
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tems and cell envelope genes (Touchon et al. 2020). However, most of them have no clear functional

assignment, making it difficult to examine their exact role in E. coli evolution. Singletons also tend to

be smaller than other genes and are also more likely to be located near a contig edge. This suggests

that some of them could correspond to pseudogenes and others to sequencing and assembly arte-

facts. However, the singletons do not explain the openness of the pan-genome. Even after removing

them, the pan-genome remains open. The rest of the accessory genome—composed of genes at in-

termediate frequencies—shows an overrepresentation of genes involved in cell motility, intracellular

trafficking and secretion, carbohydrate transport and metabolism, and secondary metabolism. But

again, most genes have no clear functional assignment (Touchon et al. 2020).

Among the genes contributing to the accessory genome are the mobile genetic elements (MGEs).

These elements are selfish fragments of DNA that can move within a genome or from one genome

to another. They include prophages, plasmids and transposons. Genomes isolated from the same

environment tend to have a more similar number of MGEs, although these MGEs are not necessarily

the same. This could reflect a higher rate of MGE infection in certain niches or a higher probability

of adapting to certain niches through MGE acquisition. The first hypothesis might be more likely as

MGEs seem to be mainly a burden to the cell. Indeed, they are always present at low frequency and

no MGE belongs to the persistent genome of E. coli. Furthermore, most MGE acquisitions are on

terminal branches, suggesting that they are rapidly lost (Touchon et al. 2020).

The observation of rapid loss of MGEs raises questions about gene turnover rates. Phylogroups

A and B1 have the smallest genomes and persistent genomes and carry fewer MGEs than other phy-

logroups. Surprisingly, they have the most diverse pan-genome and also carry more diverse MGEs.

The smaller genomes could therefore reflect a higher turnover of genes rather than a lower rate of

gene acquisition (Touchon et al. 2020).

One might expect the accessory genome to reflect adaptation to specific niches. However, the

very low number of clade-specific genes somehow contradicts this view (Touchon et al. 2009). On the

other hand, phylogroups still clearly emerge from a principal component analysis conducted on a

gene family presence/absence matrix (Figure 2.4.A) (Touchon et al. 2020). In particular, phylogroups

A and B1, which are closely related in the phylogeny of the species, are also grouped on the basis of

the presence and absence of accessory genes: for these two phylogroups, relatedness in terms of the

persistent genome translates into relatedness in gene content. In contrast, phylogroups D and F are

quite divergent in species phylogeny but cluster in terms of gene repertoire. For these phylogroups,

a common environment could determine the gene repertoire more than vertical inheritance. Gene

repertoire relatedness (GRR) can help decipher the link between gene content and population struc-

ture. GRR measures the similarity between the gene repertoire of two genomes by dividing the num-

ber of common genes by the number of genes in the smaller genome. By comparing GRR to patristic

distance—i.e. the sum of the branch lengths between two genomes over the phylogeny inferred from

the persistent genome—we observe two main regimes (Figure 2.4.B (Touchon et al. 2020)):

• Strains that are very close in terms of persistent genome (low patristic distance) also share a

large number of common genes (high GRR). This is normal, as they may have diverged recently

and have not had time to fully change their genetic repertoire. However, the GRR varies very

strongly with patristic distance, suggesting significant gene turnover.

• For the less related strains, there is not a very strong relationship between GRR and their re-
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latedness in terms of persistent genome, as suggested by the very large variance around the

regression line.

This paints a dynamic picture of the propensity of E. coli to acquire and lose genes. However, the

precise function of this accessory genome remains enigmatic, particularly regarding the proportion of

genes that genuinely contribute to strain adaptation compared to those that represent a more neutral

diversity.

A B

FIGURE 2.4: Gene repertoire and strains relatedness (Figures from (Touchon et al. 2020)).
A. Principal component analysis of the pan-genome, phylogroups are shown with the same color code as
in Figure 2.1.A.
B. Top: Violin plots of the patristic distance computed between pairs of strains from the same ST (intra-ST,
blue), from different ST (inter-ST, purple) and from different phylogroups (inter-phylogroup, green). Bottom:
bivariate histogram of the association between Gene Repertoire Relatedness (GRR) and the patristic dis-
tance for pairs of strains. The linear fit is shown with a black solid line. The spline fit (generalized additive
model) for the whole comparison is shown with a black dashed line and the one for the intra-ST comparison
is shown with a blue solid line.

2.3.3 Roles of mutation and homologous recombination in E. coli evolu-

tion

As observed, E. coli exhibits a highly dynamic accessory genome. Nonetheless, despite being less

diverse, its core genome is far from being static. Two primary processes—namely mutation and ho-

mologous recombination—contribute significantly to its evolution.

Role of mutation

Mutations can be broadly classified into three categories: neutral, deleterious and beneficial. Popula-

tion genetics predicts that deleterious mutations will be purged by natural selection while beneficial

mutations will get selected. In contrast to these, neutral mutations will be able to segregate thanks to

random drift and contribute to the species diversification.
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In the early days of genetics, most de novo mutations were assumed to be deleterious. Therefore,

the spontaneous mutation rate had to be as low as possible to prevent them from occurring. Thus,

a non-zero spontaneous mutation rate was thought to reflect a balance between the cost of creating

deleterious mutations and the metabolic cost of reducing the mutation rate (Drake et al. 1998). The

study of mutators has challenged this view by suggesting that beneficial mutations were not so rare

and implying that we could witness adaptation occuring on far smaller time scales than previously

thought.

Mutators are expected to arise naturally as a result of spontaneous mutations in MMR genes.

However, it was soon observed that the rate of appearance of mutators in nature far exceeded the level

expected from the mutation/selection equilibrium (Denamur et al. 2006). This suggested an adaptive

role for high mutation rates under specific conditions. Indeed, mutation is not always detrimental, as

it also feeds evolution with new variants on which natural selection can act (Williams 2014). There-

fore, the cost of a high mutation rate will depend on the proportion of deleterious de novo mutations

relative to those that are neutral or beneficial. These proportions change according to the stage of

adaptation (Couce et al. 2015). For a maladapted strain, e.g. one that invades a new niche, a large

proportion of mutations will be beneficial. However, once it has reached a fitness peak, most of the

new mutations will be deleterious. Mutators often emerge in the early stages of adaptation to a new

environment by hitchhiking with the beneficial mutations they produce. To do this, mutator cells

must first reach an appreciable frequency in the population, a necessary condition for high mutation

rates to produce beneficial mutations.

The phylogenetic study of the mutS gene in E. coli indicates that this species has been able to lose

and reacquire mutS several times during its history (Denamur et al. 2000). As the loss of mutS gene

generates a mutator phenotype, this suggests that E. coli has evolved through alternating phases of

low and high mutation rates. Interestingly, the loss of mutS also triggers a highly recombinant phe-

notype that facilitates the reacquisition of a functional version of mutS through homologous recom-

bination. Another interesting feature is the proximity of the rpoS and mutS genes on the E. coli chro-

mosome. The loss of the former is beneficial to E. coli when the strain is faced with external stresses

such as nutrient deprivation. Large deletion events involving both rpoS and mutS could be selected

for due to the loss of rpoS (Bridier-Nahmias et al. 2021). This would allow the corresponding strains

to reach sufficiently high frequencies for the mutator phenotype induced by the loss of mutS to start

being beneficial. The highly recombinant phenotype of the strain would help reacquire a functional

mutS allele once a high mutation rate is no longer beneficial.

In addition to the emergence of mutators, mutation rates can also increase in response to envi-

ronmental signals. Indeed, the SOS response—activated in response to high stress—down-regulates

the mismatch repair, leading to an increase in mutation rates (Saint-Ruf et al. 2006). As we can see, the

field of population genetics has radically shifted from the view that most mutations are deleterious

and counter-selected to an adaptive role for high mutation rates.

Role of recombination

We often classify recombination into two distinct categories: homologous recombination (HR) and

horizontal gene transfer (HGT). The former replaces an existing DNA fragment with a homologous

fragment. The latter introduces new genetic material into the genome. Although these two phenom-
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ena can operate by the same mechanisms, they are usually studied separately, because of their very

different impact on the evolution of species. They can also complement each other: an initially rare

HGT event can spread in a species through homologous recombination at the flanking parts of the

foreign DNA region. There is some evidence to suggest that this process is at work around recombina-

tion hotspots in bacterial species (Schubert et al. 2009; Oliveira et al. 2017). Indeed, the phylogenies

of the core genes flanking these hotspots are often incongruent with the phylogeny of the species—a

potential signature of frequent HR. We have already discussed how HGT can influence pan-genome

dynamics. Hereafter, we will focus on the effect of homologous recombination on E. coli evolution.

Early studies of E. coli population genetics based on serotyping and MLEE all detected few hap-

lotypes and strong linkage between alleles (Tenaillon et al. 2010). They concluded that E. coli was a

clonal species. However, the bacterial mode of reproduction based on binary fission necessarily cre-

ates linkage between alleles (Feil et al. 2001). Even frequent recombination may not be sufficient to

completely break this linkage. Thus, recombination studies based solely on linkage may have under-

estimated the evolutionary role of homologous recombination in E. coli.

Access to the first DNA sequences allowed the construction of the first phylogenetic trees, open-

ing up new avenues to study the role of homologous recombination in E. coli. Indeed, if a gene has

undergone recombination, its phylogeny should be incongruent with that of other genes. That is,

strains that are clustered on the phylogeny of this gene could be distributed in different parts of the

trees of other genes. For example, it was a study of phylogenetic incongruence that suggested the

frequent loss and re-acquisition of mutS throughout the history of E. coli (Denamur et al. 2000).

While access to DNA sequences has undoubtedly provided a more detailed picture of human

recombination in E. coli, we must bear in mind that DNA sequence analysis does not allow us to

access the intrinsic rate of recombination that occurs in the wild. Firstly, because we only detect HR

when it brings mutations: we cannot detect recombination events between too closely related strains.

Secondly, because HR events pass through the filter of natural selection that eliminates deleterious

changes and favours beneficial ones (Touchon et al. 2009). This is evident from the observation that

bastions of polymorphisms in the E. coli genome—which are known to be subject to diversifying

selection—show the highest signals of recombination. However, the more strains we sample, the

more we have access to very recent recombination events that have not had time to pass through

the filter of natural selection. This highlights one of the potential benefits of analysing large strain

datasets.

The literature gives very different estimates of the size of recombination fragments, ranging from

50 bp (Touchon et al. 2009) to 1 kb (Milkman et al. 1993). As these sizes are inferred from direct analy-

sis of DNA sequences, they tend to underestimate the size of the incoming DNA fragment. Firstly, be-

cause one side of the recombinant fragment may be perfectly identical to that of the recipient strain it

replaces. Secondly, because frequent recombination events may overlap and create a mosaic of short

recombinant fragments. For these reasons, the estimation of the relative weight of HR versus muta-

tion in the contribution to new SNPs could also be questionable. However, it is estimated that both

generate on average the same level of nucleotide diversity in E. coli (Didelot et al. 2012).
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Role of mutation and recombination in sexual isolation: is E. coli clonal or panmictic?

The relative significance of mutation and recombination plays a crucial role in determining the pop-

ulation structure. When recombination is absent, new variants solely arise through mutation and are

vertically inherited, resulting in a clonal population characterized by a perfectly tree-like structure

(depicted on the left side of Figure 2.5). Conversely, when recombination greatly surpasses mutation

in generating diversity, the species is said panmictic or sexual. In this scenario, each gene possesses

its own history, and the species structure is better represented as a network rather than a tree (illus-

trated on the right side of Figure 2.5). Inferring the phylogeny of a panmictic species leads to a star-

like tree with long terminal branches, as strains are, on average, equidistant from each other. Such a

phylogeny provides very limited information about the species’ history. Between these two extreme

regimes, a phylogeny still emerges, albeit potentially disrupted by local recombination events.

Clonal
Population structure

Panmictic

FIGURE 2.5: Representation of possible population structures.
These structures range from perfectly clonal—when no recombination is at play—to perfectly panmictic—
when recombination strongly dominates. Between both regimes, a somehow structured population can
emerge, even if recombination remains frequent within each branch. Figure adapted from (Smith et al.
1993).

Speciation begins when a barrier to recombination arises between strains that previously recom-

bined freely. Sequence divergence forms an important barrier to successful homologous recombina-

tion. This is because the frequency of MEPS decreases exponentially with sequence divergence and,

with it, the probability of successful homologous recombination. As mutation rate determines the

speed at which two strains diverge, it therefore plays a crucial role in the establishment of sexual iso-

lation (Fraser et al. 2007). It is counteracted by recombination: each time a HR event succeeds, the

level of divergence decreases sharply (Figure 2.6.A). The balance between mutation and recombina-

tion thus defines two main regimes:

• The divergent regime where mutation increases the divergence between each pair of strains

and recombination is too weak to counteract it. Sexually isolated groups regularly emerge

within the population. The species is clonal.

• The metastable regime where recombination periodically mixes the strains, thus decreasing
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the divergence created by mutation. The population retains its cohesion. The species is pan-

mictic.

It should be noted that even when a population is in the metastable regime, stochastic events may

prevent recombination for a sufficiently long period of time for some strains to escape and become

sexually isolated.

A B

FIGURE 2.6: Roles of recombination and mutation in the speciation process.
A. Stochastic evolution of local divergence δ(t ) between pair of strains. While divergence increases linearly
due to mutation, it decreases sharply due to random events of recombination between the two strains up
to the moment when divergence reaches a threshold above which recombination is no longer possible.
B. The landscape of divergent and metastable regimes according to r /m, the relative strength of recombi-
nation over mutation, and θ/δT E , with θ = 2µNe , the population diversity, and δT E the transfer efficiency.
Bacterial species are mapped onto this landscape, E. coli is EC. Figures from (Dixit et al. 2017).

Using estimates of mutation and recombination rates in different bacterial species, Dixit and col-

leagues have shown that some belong to the former regime and others to the latter (Dixit et al. 2017).

As for E. coli, it remains on the border between the two regimes but could be classified as divergent:

even if recombination is high, it can still be considered a clonal species. The mismatch repair system

could also play a role, as it controls both mutation and recombination rates. We know that E. coli has

experienced episodes of MMR inactivation that have made the bacteria mutator and highly recom-

binant. This may have altered the balance between mutation and recombination and moved E. coli

onto the landscape shown on Figure 2.6.B.

With E. coli so close to the boundary between clonal and panmictic species, it is not surprising

that characterising its population structure remains controversial. Indeed, it all boils down to ac-

curately estimating the mutation and recombination rates in the wild. And estimating these rates,

especially the latter, is far from easy.

The observation that many phylogenies of individual genes are consistent with the species phy-

logeny obtained from the concatenation of all core genes supports the clonality of E. coli. Further-

more, coalescent simulations also supported the idea that the observed recombination rate did not

obscure the phylogeny (Touchon et al. 2009). The global aspect of E. coli phylogeny also pleads in

favour of clonality. Indeed, a freely recombining species should present us with a star-like phylogeny,

whereas E. coli’s phylogeny is much more structured with clearly visible clades.
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In 2021, Sakoparnig et al. challenged this widely accepted view (Sakoparnig et al. 2021). Using a

dataset of 91 strains, they compared strains two by two, counting the occurrence of single nucleotide

polymorphisms (SNPs) in a sliding window of 3 kb. Peaks of high SNP density were interpreted as re-

combination events. This allowed them to provide new estimates of the occurrence of recombination

in E. coli. From these estimates, they concluded that recombination was too frequent to maintain a

clonal structure. They justified the structured aspect of E. coli phylogeny by the existence of unequal

recombination rates between different strains: strains belonging to the same clade would frequently

recombine with each other but rarely with strains from other clades. However, these explanations

suffer from some weaknesses. There is no clear mechanism that could underlie these supposedly un-

equal recombination rates. Indeed, different phylogroups may be found in the same environment,

so that they are not geographically isolated and they are not sufficiently divergent for sequence di-

vergence to prevent recombination. Furthermore, if phylogeny reflects recombination rates, it is not

clear why regions known to recombine frequently (e.g. core genes flanking recombination hotspots)

are the least consistent with the species phylogeny. The methodology followed in the paper may

also present some limitations. Indeed, the recombinant regions are identified as those with a higher-

than-average SNP density. This seems adequate for closely related strains where recombination is

more likely to provide novelty. However, this may be misleading for more distantly related strains

where the recombinant regions are more likely to be those with lower-than-average SNP density. We

can also see some contradiction between estimating recombination rates based on the idea that re-

combination increases strain divergence and explaining the emergence of the structured phylogeny

of E. coli based on the idea that recombination prevails mainly between very closely related strains.

In summary, we are still far from fully understanding the population structure of E. coli. But there

is little doubt that any study of E. coli phylogeny must try to account for recombination.

2.3.4 Is this diversity neutral or selected?

Not all mutations that emerge in a population meet the same fate. Most disappear, some reach fix-

ation and others persist for a long time at intermediate frequencies. Population genetics aims to

identify the forces that decide these different fates.

The advent of the neutral theory in the late 1960s marked a major advance in this field. This

theory—formulated by Motoo Kimura (Kimura 1968) and independently by Jack L. King and Thomas

H. Jukes (King et al. 1969)—proposes that random drift, rather than natural selection, is responsible

for most of the observed genetic diversity: this diversity would reflect random occurrences of equally

adapted variants. In contrast to neutralists, adaptationists (Mayr 1983) consider that most differences

between organisms result from adaptation to different environments or from balancing selection.

A comparison of the occurrence of non-synonymous mutations and synonymous mutations has

enabled the predictions of these theories to be tested. Synonymous mutations are changes in the

DNA that do not alter the protein sequence. They are therefore expected to have a much smaller ef-

fect than non-synonymous mutations, which induce an amino-acid change. According to neutralists,

natural selection works mainly by eliminating harmful mutations rather than by promoting genetic

diversity. They therefore predict that natural selection will eliminate more non-synonymous mu-

tations than synonymous mutations. With the exception of some very specific loci that have been

shown to be subject to diversifying selection, the predictions of the neutral theory are broadly consis-
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tent with observed reality: in most of the genome, non-synonymous diversity segregates much less

than synonymous diversity (Ohta et al. 1996).

In the 1970s, Tomoko Ohta refined the neutral theory by focusing on the role of slightly deleteri-

ous mutations (Ohta 1973). She suggested the existence of a class of near-neutral mutations whose

effect on fitness is sufficiently small that natural selection cannot act effectively on them. These

mutations—mainly slightly deleterious variants—follow a dynamic driven by genetic drift, as do neu-

tral variants. A mutation is nearly neutral if its fitness s verifies: |s| ∼ 1/Ne , with Ne the effective

population size. It follows that natural selection will be more effective in large populations, while

random drift will dominate the fate of mutations in small populations.

In recent years, the growing interest in the role played by historical contingency has revived the

old ‘neutral’-versus-‘selective’ debate (Starr et al. 2016). Evolutionary contingency arises when muta-

tions that have reached fixation depend on permissive mutations that have occurred previously. Once

fixed, they influence the fate of future mutations and become increasingly deleterious to eliminate—

a phenomenon called entrenchment (Shah et al. 2015). The concept of contingency places epistasis

at the forefront of molecular evolution. An amino acid that is neutral or beneficial in one genetic con-

text may be deleterious in another due to epistatic interactions between residues (Breen et al. 2012).

Similarly, a gene may be beneficial in one strain but deleterious in another due to interactions with

other loci in the genome—a concept known as genome-wide epistasis. Characterising these epistatic

interactions is therefore essential for analysing the diversity we observe within and between species

and for understanding the extent to which contingency shapes molecular evolution.
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Studying E. coli evolution in practice

3.1 Experimental evolution

So far, we have seen how isolating E. coli strains from different ecological niches and studying their

genomes could help decipher the evolution of this species. In doing so, we collect current isolates and

aim to infer past events. A complementary approach to understanding the evolution of E. coli consists

in following its adaptation to a new environment. This is the purpose of experimental evolution.

In experimental evolution, scientists introduce a strain into a controlled environment and track

its evolution in real time. This type of setting makes it possible to test theoretical predictions of pop-

ulation genetics and to directly measure evolutionary parameters such as mutation rate or distribu-

tion of fitness effects. It is important to bear in mind that the environment in which we let the strain

evolve is generally far less complex than a natural one. Thus, we should always take the findings of

experimental evolution with care and not generalize them too quickly. That being said, two types of

experimental settings have played a crucial role in improving our understanding of E. coli evolution:

the long-term evolution experiment (LTEE) (Lenski et al. 1991) and mouse gut colonisation (Gordo

et al. 2014).

The LTEE is an ongoing experiment launched by Richard Lenski in 1988. Twelve populations of

E. coli REL606 grow at 37°C on DM25 medium. Each day, 1% of each population is transferred to a

new flask. Every 500 generations, a sample of each population is frozen to serve as a ‘fossil record’.

Of the twelve populations, six can grow on arabinose (Ara+ variants) and the other six cannot (Ara-

variants). This otherwise neutral marker allows for competition experiments between replicates to

assess changes in fitness. Overall, the LTEE can be described as a very basic and stable environment

with no ecological interactions between E. coli and other species.

The mouse gut represents a more realistic environment. In this context, a strain of E. coli will

have to invade and stably colonise the gut of a mammal. In doing so, it will interact with the host

immune system, evolve in a structured environment and sometimes compete with the resident mi-

crobiota. Different mouse models have been developed to address different biological questions. The

germ-free mouse—a mouse without microbiota—mimics the colonisation of the gut of newborns

during the early stages of life. As colonisation of a gut with a mature microbiota rarely succeeds, the

streptomycin-treated mouse offers an alternative where E. coli will still have to compete with a res-

ident microbiota, but with better chances of stably colonising the gut. This second model mimics

29



Chapter 3. Studying E. coli evolution in practice

a more mature gut that has lost its colonisation resistance—a situation that occurs after antibiotic

consumption or in the case of severe inflammation. Other models involve the choice of different host

states (young or old (Barreto et al. 2020a; Barreto et al. 2020b), immunocompetent or immunocom-

promised (Barroso-Batista et al. 2015)) and help to decipher the determinants of E. coli’s interaction

with its host.

Although the two types of environments offered by the LTEE and the mouse gut differ radically,

a series of very similar observations have been made in both contexts. These common observations

cover a range of theoretical questions from the predictability of evolution to the evolution of mutation

rate, as well as the existence of clonal interference or the role of epistasis in evolution.

The early stages of evolution appear to be highly reproducible, with the same set of mutations

occurring repeatedly from one replicate to another. Later stages of evolution can depend on the mu-

tations that previously reached fixation in each sample. As these mutations may differ between repli-

cates, the later stages of evolution will be more contingent and less reproducible (Tenaillon et al. 2016;

Gordo et al. 2014).

Mutation is the currency of evolution. Without new mutations, a strain cannot adapt. The mu-

tation rate is therefore a crucial factor in adaptation. Interestingly, the mouse gut and the LTEE have

seen the emergence of mutators (Tenaillon et al. 2016; Ramiro et al. 2020). However, increasing the

mutation rate is not the only way to adapt to a new niche. Indeed, in both contexts, mutators have

emerged in some replicates, but not in all. In cases where strains remained non-mutators, they accu-

mulated mutations at the same rate in the mouse gut and in the LTEE (Frazão et al. 2022).

When beneficial mutations emerge at low rates, they reach fixation one after the other. This evo-

lutionary dynamic follows successive selective sweeps. But if many beneficial mutations emerge at

the same time, they compete with each other: in the absence of recombination, we observe the Hill-

Robertson effect (Hill et al. 1966). In bacteria, this phenomenon is known as clonal interference. In

addition to preventing most of the beneficial mutations that arise in the population from reaching

fixation, clonal interference also limits their rate of fixation. In the LTEE and in the mouse gut, per-

vasive clonal interference has been observed (Maddamsetti et al. 2015; Barroso-Batista et al. 2014b).

Sometimes different mutations leading to the same phenotype compete with each other. This leads

to fixation of the new phenotype without loss of genetic diversity.

Epistasis occurs in evolution when the effect of one mutation depends on the presence or ab-

sence of other mutations. In other words, epistasis reflects the interaction between different genetic

loci. In the LTEE, a pattern of diminishing return epistasis emerges: mutations that fix early tend to

have a greater beneficial impact on fitness than if they fix later (Maddamsetti et al. 2015). An even

more radical case of negative epistasis occurs when mutations are mutually exclusive. In the mouse

gut, dcuB and focA are two frequent targets of adaptation. However, they are never mutated together

(Barroso-Batista et al. 2014b). This is probably due to their redundancy, as they both modulate anaer-

obic respiration: it is sufficient to mutate one of the two genes to obtain the desired phenotype, there

is no additional benefit to mutate the second.

The processes of adaptation occurring in genomes during experimental evolution also leave a

signature on sequences. Classical population genetics approaches such as those based on the com-

parison of synonymous and non-synonymous mutations have proven effective in detecting those

signatures (Tenaillon et al. 2012; Tenaillon et al. 2016).

An important difference between the LTEE and the mouse gut is the role of ecological interactions.
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By design, the LTEE aims to limit ecological interactions: E. coli is the only cultured species, a poor

medium and strong bottlenecks also limit the emergence of sub-lineages that would adapt to specific

niches. In contrast, an E. coli colonising a mouse gut will need to interact with the host and with

other species in the resident microbiota, if any. When mice harbour a resident microbiota, evolution

becomes less predictable (Barroso-Batista et al. 2020). Horizontal gene transfer events also occur,

typically between the resident E. coli and the new strain (Frazão et al. 2019; Barreto et al. 2020a; Frazão

et al. 2022). These can be triggered by phages or correspond to plasmids transferred by conjugation.

Although the design of the LTEE limits the emergence of ecological interactions, two clones (S

and L) with different metabolic capabilities eventually emerged at generation 6,000 (Bull 2000; Mad-

damsetti et al. 2015). The L type was better at growing on fresh media and during this phase secreted

a metabolite that was consumed by S, giving the latter an advantage during later stages of growth.

Other coexisting phenotypes based on differences in sugar consumption were also observed in the

mouse gut (Sousa et al. 2017).

Strikingly, many of the processes involved in the LTEE have also been observed during the evo-

lution in the mouse gut. This degree of convergence between very different experimental settings

suggests that experimental evolution can inform the evolutionary dynamics that occur in nature. Fur-

thermore, the longest evolutionary experiment to date—the LTEE—has now reached a point where

its time scale matches events that have occurred in nature, such as the expansion of the ST131 clone.

Bridging the gap between evolution in the laboratory and evolution in the wild is likely to yield valu-

able insights into the dynamics of evolution.

3.2 Protein mutational landscapes

During the course of an evolution experiment, we often detect mutations that increase fitness. If we

except trivial situations such as a premature stop codon that inactivate a gene, it is most of the time

very difficult to guess what these mutations do. In other terms, it is challenging to relate a genotype

to a phenotype.

Data-driven approaches may help to characterise the relationship between the genotype of an

organism and its phenotype. Applied at the scale of a single protein rather than that of the whole

organism, they generate ‘protein mutational landscapes’ (Figliuzzi et al. 2016). A protein mutational

landscape is a function that takes an amino-acid sequence as input and outputs the level of func-

tionality of the corresponding protein. It allows to investigate how mutations can affect this level of

functionality. It thus informs about the paths that evolution may follow.

Protein mutational landscapes have great similarities with fitness landscapes (Figure 3.1). How-

ever, the latter are inferred at the organism level. They provide information on the effect of a given

mutation on the survival and reproductive potential of the organism. The mutational landscape of

a protein cannot provide such information, as the relationship between protein functionality and an

organism’s fitness depends on many factors. For example, an enzyme that degrades antibiotics may

greatly improve the fitness of a bacteria exposed to antibiotics, but will be completely useless in an

environment without antibiotics. A mutation that decreases the activity of this enzyme will then be

highly deleterious in the former environment but neutral in the latter. However, if we focus on the

core genome of E. coli, we can make the plausible assumption that most of the proteins it encodes

are used at some point, so that the mutational landscapes of these proteins will be closely related to

31



Chapter 3. Studying E. coli evolution in practice

Fitness

A B

Genotypic
space

1100 1010 1001 0110 0101

1110 1101 1011 0111

1000

0000

Low

Fitness

High

1111

0100 0010 0001

0011

FIGURE 3.1: The concept of fitness landscape (adapted from (Visser et al. 2014)).
A. Illustration of a fitness landscape with three fitness peaks and two evolutionary paths.
B. Empirical fitness landscape of all possible combinations of four diallelic loci. Arrows link genotypes
differing by a single mutation and point toward the most fit genotype of the pair. Black arrows show the
shortest path between the wild type (0000) and global maximum.

the fitness landscape of the organism.

The pervasiveness of epistasis makes the construction of these landscapes a complex task. In-

deed, the effect of a mutation often depends on the rest of the genetic background (Starr et al. 2016).

This means that characterising the effect of three individual mutations may not be sufficient to guess

the effect of the combination of these three mutations if they are introduced together in the same

sequence. Epistasis may result from a non-linear relationship between a biological trait, such as the

stability of a protein, and the observed phenotype. For example, slightly deleterious mutations may

additively decrease the stability of a protein to a point where the protein can no longer fold. The first

mutations will then have very little impact on the functionality of the protein compared to the last

mutation that crosses the threshold between the folded and unfolded states of the protein. This type

of epistasis is known as global or non-specific epistasis. It is opposed to specific epistasis which in-

volves direct or indirect interactions between mutations, usually amino-acid sites that are in contact

in the three-dimensional fold of the protein.

Protein mutational landscapes can be derived from experimental data or inferred by in silico

methods. Deep mutational scans allow to characterise experimentally the effect of individual mu-

tations (Jacquier et al. 2013). However, reconstruction of the adaptive landscape also requires charac-

terising the effect of combinations of mutations. This quickly becomes experimentally unfeasible, as

the number of mutation combinations grows exponentially with the number of sites studied. There-

fore, only adaptive landscapes limited to a very small set of sites have been derived from experimental

data (Schenk et al. 2013).

In silico approaches allow the modelling of much more complex mutational landscapes. Some

of the most promising in silico approaches rely on evolutionary information to estimate the effect

of mutations. Some proteins or protein domains have evolved independently in different species

over millions of years. In the course of evolution, they have accumulated many mutations but have

managed to remain functional: while beneficial and near-neutral mutations have been able to reach
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fixation, most deleterious mutations have been eliminated by natural selection. In other words, when

we sample homologous protein sequences from distant species, we have access to some of the local

maxima of our landscape. Evolutionary methods use these amino-acid sequences observed in na-

ture to try to infer the overall shape of the mutational landscape (Figliuzzi et al. 2016) (Figure 3.2).

More concretely, they try to fit a function that takes an amino-acid sequence as input and outputs the

probability of observing that sequence in nature. This function should give a very good estimate of

the level of functionality of the protein, as protein sequences frequently observed in nature are likely

to be functional, whereas non-functional proteins will be counter-selected and therefore associated

with a very low probability of being observed in nature.

Distant homologues of
the same protein

Pair of correlated amino acids

Conserved
residue

Sequences not 
found in nature

Loss of a
conserved
residue

Broken epistatic
interaction

FIGURE 3.2: Evolutionary methods to study protein sequences.
Homologues of the same protein found in distant species can be aligned in a multiple sequence alignment
(MSA). The study of this MSA allows to detect patterns of conservation (green) and of correlation between
sites (red). These reflect functional constraints that limit the range of protein sequences that can be found
in nature.

Most evolutionary approaches can be classified as independent sites (or non-epistatic) methods

(IND). They focus on conservation patterns across homologous protein sequences (green residue on

Figure 3.2). For example, if in all species a tryptophan is observed at locus 123 of the protein of inter-

est, it is very likely that any mutation occurring at this locus will profoundly affect the functionality

of the protein. On the other hand, if all twenty amino acids are represented at approximately equal

frequencies at locus 321, we can assume that this locus is selectively neutral. In other words, any

mutation occurring at locus 321 will be close to neutral. IND methods include SIFT (Sorting Intol-

erant From Tolerant) (Ng et al. 2003) and PolyPhen (Polymorphism Phenotyping) (Adzhubei et al.

2013). In addition to evolutionary information, PolyPhen also takes into account structural infor-

mation. However, no IND method can take into account epistatic interactions between sites (red

residues on Figure 3.2). In contrast to IND, Direct-Coupling Analysis (DCA) (Morcos et al. 2011) takes

into account the above mentioned conservation patterns and also captures coevolutionary patterns

between pairs of sites. Sites that interact epistatically will tend to coevolve: when a site mutates, its

partner must mutate accordingly to maintain the interaction. This leaves a detectable signature of

correlation between amino-acid sites when distant amino-acid sequences are compared with each
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other. It is this signature that DCA uses to retrieve epistatic couplings between amino-acid sites. This

epistatic approach makes DCA context-aware, as opposed to IND which is context-agnostic. DCA de-

tects residues in contact in the three-dimensional fold of the protein, as these residue pairs correlate

strongly (Morcos et al. 2011). DCA has also been used in a variety of other contexts: protein design

(Russ et al. 2020), prediction of deep mutational scanning outcomes (Figliuzzi et al. 2016) and the

study of amino-acid changes between two closely related genomes (Couce et al. 2017). In all these

applications, it has consistently outperformed IND. There are epistatic approaches other than DCA

that give very similar results (Riesselman et al. 2018; Laine et al. 2019). However, DCA is explicitly

parameterised in terms of epistatic couplings and conservation, making it interpretable.

3.3 Bringing different approaches together to answer biolog-

ical questions

Sequence analysis with the classical tools developed in population genetics, evolution experiments,

and protein mutational landscapes, offer three complementary approaches to studying species’ evo-

lution. Each of these approaches sheds light on important evolutionary topics. Within this section,

I will concentrate on three specific subjects that have proven relevant to my research: the role of

metabolism in niche adaptation, the transition from commensalism to pathogenicity and the acqui-

sition of antibioresistance.

3.3.1 The role of metabolism in niche adaptation

Evolutionary experiments provide valuable insight into the early targets of adaptation to new ecolog-

ical niches. The regulation of metabolic pathways repeatedly emerges as one of these targets. In the

LTEE and in the mouse gut model, E. coli benefits from the loss of specific metabolic operons or from

their constitutive activation due to the loss of a repressor. For example, all twelve LTEE populations

lost D-ribose catabolism during the first 2000 generations of the experiment. This loss improved the

fitness of E. coli by 1% to 2% (Cooper et al. 2001). The gat operon is also lost very quickly during

the colonisation of the mouse gut (Barroso-Batista et al. 2014b). In this case, a mutational hotspot

could contribute to the emergence of this phenotype. However, other genes involved in metabolism

are also frequent targets of adaptation to the mouse gut. For example, in the gut of a streptomicin-

treated mouse, E. coli constitutively activates sorbitol metabolism (Barroso-Batista et al. 2014b). In

another experiment, led with a natural isolate of E. coli, it is the dgo operon, involved in the galac-

tonate pathway, that was constitutively activated due to the loss of its repressor dgoR (Lescat et al.

2017). After two weeks of colonising the gut of a germ-free mouse, E. coli loses lrp, a gene regulating

amino-acid catabolism (Barroso-Batista et al. 2020). This loss enhances E. coli’s ability to compete for

amino acids, particularly serine and threonine.

Evolutionary experiments have highlighted the key role of metabolism in niche adaptation. In-

terestingly, wild-type isolates of E. coli show differences in metabolic capacity that may correspond to

adaptation to different niches. For example, strains from phylogroup B1—a phylogroup often found

in the environment—carry genes involved in the degradation of rhamnose, sucrose, xylose, glycerate

and tartrate (Touchon et al. 2020). These pathways are likely to play a role in colonising plants. In
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contrast, phylogroup B2 is negatively associated with these traits. Metabolic genes present in all E.

coli also display different transcriptional profiles between environmental and enteric strains (Walk

et al. 2009). In the gut, E. coli feeds on mucus. Mucus is a complex growth medium composed of

at least 12 sugars. Different strains of E. coli have different abilities to grow on each of these sugars

(Foster-Nyarko et al. 2022). When E. coli invades the mouse gut, it also consumes these sugars in a

hierarchical order (Chang et al. 2004).

Altogether, these elements give a dynamic picture of the metabolic capabilities of E. coli. These

vary from strain to strain and change readily when a strain invades a new niche.

3.3.2 Transitioning from commensalism to pathogenicity

Mapping Shigella and enteroinvasive E. coli (EIEC) strains onto the species phylogeny reveals a strik-

ing pattern: multiple occurrences in unrelated parts of the tree (Wirth et al. 2006; Pasqua et al. 2017).

This observation supports the hypothesis of multiple emergence of these pathotypes, suggesting a

high level of convergence in the series of evolutionary events leading to the emergence of an invasive

phenotype.

Again, experimental evolution can help to uncover the processes involved. When cultured in the

presence of macrophages, commensal E. coli strains repeatedly increase their ability to survive in-

tracellularly and to escape from macrophages (Proença et al. 2017). Both of these characteristics are

essential to the invasive process that characterises bacillary dysentery. Experimental evolution thus

shows that E. coli can acquire pathogenic traits as a direct result of its evolution under the pressure

of the host’s innate immune system. Evolved populations show a reduced ability to grow on single

carbon sources, suggesting that adaptation to an intracellular lifestyle comes at the cost of more spe-

cialised behaviour (Azevedo et al. 2016). This latter finding is consistent with the restricted host range

of EIEC and Shigella compared to the generalist behaviour of the rest of E. coli.

When analysing the patterns of gene loss and gain along the E. coli phylogeny, the main evo-

lutionary event leading to the EIEC and Shigella pathotype is the horizontal acquisition of a pINV

plasmid carrying many virulence determinants (Pasqua et al. 2017). Other pathogenicity islands may

be acquired subsequently, but in a less systematic way. In addition to the acquisition of virulence

determinants, the strains also lost other genes such as ompT or cad. ompT encodes a protease that

reduces the invasive potential of the bacteria. Thus, pathoadaptation is not only achieved through

the acquisition of virulence genes but also through targeted inactivations.

A greater challenge is to study the transition from commensalism to pathogenicity among ExPEC

strains. Indeed, as they are not obligate pathogens and mainly cause opportunistic infections, the

determinants of their virulence are less easy to identify (Denamur et al. 2021). Strains causing urinary

tract infections (UTIs) are often also present in the patient’s gut as the dominant E. coli in the faecal

flora. Similarly, phylogroups B2 and D tend to be over-represented among gut-resident strains and

among strains responsible for extra-intestinal infections. These observations support the prevalence

theory which states that strains that successfully colonise the gut are also more likely to cause extra-

intestinal infections, because when they reside in the gut they have ample opportunity to move to

other organs. This view opposes the special pathogenicity theory, which supports the existence of

specific genes that enhance the virulence potential of some E. coli strains over others (Katouli 2010).

The existence of such virulence factors can be studied in animal models. As mentioned in section
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1.5, in a mouse model of sepsis, some E. coli strains exhibit a killer phenotype and others a non-

killer phenotype (Picard et al. 1999). Interestingly, the genetic determinants associated with the killer

phenotype may also promote colonisation of the gut. They include adhesion factors, siderophores,

polysaccharide capsules and toxins. Adhesion factors may play a key role in promoting colonisation

of the epithelial mucus layer by E. coli. It is known that iron scavenging is absolutely crucial for the

survival of bacteria in the host. Capsules and toxins are likely to help bacteria resist predation by

other species or infection by phages within the microbiota. It should be noted that extra-intestinal

diseases most likely represent an evolutionary dead end for E. coli, as the strain will either rapidly

kill its host or be eliminated by antibiotics and the host immune system. In addition, the strain will

have very little opportunity to spread to another host during the course of the infection. This last

element is still debated in the particular case of urinary tract infections, where the infectious strain

may have some opportunities to spread through urine. In most cases, it is likely that the selection for

virulence determinants comes from their association with improved survival in the gut. These ob-

servations contributed to the hypothesis that extra-intestinal virulence emerged as a by-product of

adaptation to the gut (Le Gall et al. 2007). In other words, pathogenicity could derive from commen-

salism. This hypothesis links the theories of prevalence and special pathogenicity. Indeed, ‘virulence

determinants’ would be selected to favour colonisation of the gut. Strains carrying these virulence

determinants will therefore be more likely to stably inhabit the gut, giving them the opportunity to

infect other organs—as predicted by the prevalence theory. Once infection has occurred, the same

virulence determinants could in turn increase the severity of the disease by increasing survival in

extra-intestinal compartments—as predicted by the special pathogenicity theory. The line between

mutualism and pathogenicity can be very difficult to draw: the factors that make E. coli Nissle 1917—

one of the most studied probiotics— so successful in preventing other E. coli strains from causing

intestinal disease are very similar to the determinants of virulence mentioned above. Indeed, Nissle

uses adhesion factors and siderophores to stably colonise the gut and out-compete these pathogenic

strains (Foster-Nyarko et al. 2022).

During extra-intestinal infection, E. coli can acquire patho-adaptive traits. One of the most stud-

ied is the appearance of point mutations in the fimH gene coding for type I fimbriae adhesion (Dena-

mur et al. 2021). These point mutations modulate the binding capacity of E. coli and have been shown

to be crucial in urinary tract invasion. Some gene inactivations were also identified in diseases, such

as that of lrhA, a type 1 fimbriae and flagellum repressor (Kisiela et al. 2017), or rbsR, the ribose operon

repressor (Bridier-Nahmias et al. 2021). These results suggest that motility and sugar metabolism play

an important role in the ability of a strain to invade an extra-intestinal compartment.

In summary, E. coli could increase its virulence through three main mechanisms (Denamur et

al. 2021). Firstly, by horizontally acquiring pathogenicity islands: the pINV plasmid for Shigella and

EIEC, the high pathogenicity island (HPI) encoding iron acquisition systems for ExPEC strains. Sec-

ondly, by inactivating certain genes: ompT or cad for Shigella and EIEC, lrhA or rbsR for ExPEC.

Thirdly, by mutating genes, as was observed with fimH.

3.3.3 The acquisition of antibioresistance

As a commensal of the human gut, E. coli frequently faces antibiotic treatment, even when not the

direct target. This context favours the acquisition of antibiotic resistance, which in turn could worsen
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the prognosis of an infection when E. coli translocates to an extra-intestinal body site. Although

mostly detected when E. coli causes disease, the acquisition of antibiotic resistance in this species

could result from an adaptation to the human gut (Tedijanto et al. 2018).

The study of antibiotic resistance in E. coli strains isolated from wild animals highlights the im-

portance of human exposure in the spread of resistance (Skurnik et al. 2006). Strains isolated from

animals in an area devoid of humans show no resistance, and levels of resistance increase with hu-

man density. For E. coli species, humans and human activities are most likely the main reservoir of

antibiotic resistance.

Antibiotic resistance involves a wide range of mechanisms as summarised in Figure 3.3. These

include preventing access to the target of the antibiotic, altering the target or directly inactivating the

antibiotics. At the molecular level, they can result from point mutations, acquisition of new genes by

horizontal gene transfer or changes in the regulation of existing genes—typically by the inactivation

of a repressor.

When grown in the presence of ciprofloxacin, E. coli readily acquires deleterious mutations in

the marR and acrR genes (Praski Alzrigat et al. 2021). These two genes repress the AcrAB-TolC efflux

pump. Their inactivation therefore leads to overexpression of these pumps, which expel the antibiotic

from the cell. Inactivation of marR comes at a cost because this gene also regulates other pathways.

In contrast, acrR only regulates the pump and its inactivation has no detectable growth cost. Evo-

lutionary experiments to identify mutations that would compensate for the loss of marR found only

mutations that restored growth by reducing resistance. This illustrates a trade-off between resistance

and growth for mutations targeting marR. We observe this trade-off in the clinic. Indeed, clinical

strains isolated from patients treated with ciprofloxacin show only mildly deleterious mutations in

marR, but no complete inactivation. This contrasts with in vitro experiments that can easily select for

complete inactivation of marR when E. coli is cultured in the presence of ciprofloxacin. The human

body certainly represents a more complex environment where the acquisition of resistance occurs at

a higher growth cost than that observed in in vitro assays.

TEM-β-lactamases are enzymes that hydrolyse penicillins and cephalosporins (Salverda et al.

2010). In 1963, researchers identified the first TEM variant—TEM-1—in a patient carrying a penicillin-

resistant bacteria. Since the 1980s, we have witnessed a ‘β-lactamase cycle’ in which each new an-

tibiotic brought to market led to the emergence of new β-lactamases that cause resistance to that

antibiotic. For this reason,β-lactamases have been extensively studied and used as a model for evolu-

tion. Figliuzzi and colleagues showed that DCA-based mutational landscapes can accurately capture

the genetic context of TEM-1 and predict the extent of resistance that arises from variants obtained

through large-scale mutagenesis (Figliuzzi et al. 2016).

Since the first β-lactamase variants emerged in the second half of the twentieth century, we now

have to cope with even more worrying variants: the extended-spectrum β-lactamases (ESBLs) (Bez-

abih et al. 2021). ESBLs are a class ofβ-lactamases that hydrolyse a wide range of antibiotics. They are

carried on plasmids that can spread horizontally among bacteria. Moreover, they tend to be acquired

from strains that already have resistance to other classes of antibiotics, leading to the emergence of

multidrug-resistant clones that pose a significant therapeutic threat. An example of such a clone is

E. coli ST131 (Nicolas-Chanoine et al. 2014). This B2 clone is of great concern because of its ten-

dency to infect extra-intestinal body sites. Most ST131s are resistant to fluoroquinolones due to point

mutations in the chromosomal genes gyrA and parC. In addition, some lineages also produce ESBL—
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FIGURE 3.3: Mechanisms of antibiotic resistance (adapted from (Blair et al. 2015)).
A: Of the three antibiotics A, B and C, only A is able to reach its target. Antibiotic C cannot enter the cell
while B reaches the periplasmic space but is pumped out before binding to its target.
B: Bacteria can acquire resistance to a specific antibiotic through two main types of mechanisms: changes
to the target and interaction with the antibiotic. The former can proceeds by a mutation in the target gene
that prevents the binding of the antibiotic to the target protein or by the action of an auxiliary gene that allows
to chemically modify the target protein without changing its amino-acid sequence. The latter involves the
production of an enzyme that hydrolyses the antibiotic or modifies its structure to prevent it from binding
to its target.
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typically CTX-M-15 which confers resistance to cefotaxime—while non-ESBL lineages have often ac-

quired other plasmids that confer resistance to ampicillin and amoxicillin. The evolutionary success

of ST131—which went almost undetected in the early 2000s before rapidly increasing in frequency

and stabilising at an intermediate level—suggests that this clone has found a way to compensate for

the fitness costs associated with multi-resistance.

If multidrug resistant E. coli clones with no associated costs were to emerge, one would expect

them to invade the population and replace the drug-sensitive clones. However, a longitudinal study

of strains isolated from bacteremia over a period of 10 years showed that ST131 stabilised, while the

drug-sensitive ST73 clone managed to remain stable and dominant (Kallonen et al. 2017). To explain

their results, the authors invoke the existence of frequency-dependent negative selection, but they

have no other elements to support their hypothesis. What is certain is that the dynamics of resistance

spread are complex and not yet well understood. The maintenance of drug-susceptible clones in an

era of intensive antibiotic use is reminiscent of the conflicting results regarding the role of antibiotics

on the residence of strains in the gut. While some studies have reported cases where antibiotic use

coincided with a change in residency, others have not observed such a change. In particular, one

study reported the case of a resident strain that remained for a year despite being exposed to and

sensitive to tetracycline (Martinson et al. 2020). This shows that in vitro resistance tests cannot en-

capsulate the complexity of mechanisms that allow a strain to survive antibiotic treatment. These

mechanisms include resistance, tolerance, protection by biofilm or cooperation with other members

of the microbiota that can confer collective antibiotic resistance by degrading antibiotics.

In the three topics we have explored so far, it is evident that both in natural and experimental evo-

lution, a diverse range of mutations can contribute to E. coli adaptation. These mutations encompass

not only the acquisition of new traits but also numerous instances of gene losses, particularly involv-

ing transcriptional regulators.

3.4 Objectives of this thesis

While the 1990s saw the first complete genome sequences, the 2000s witnessed the rise of the first

population genetic studies based on the comparison of a few genomes. At that time, acquiring new

genetic data required a lot of work, time and money, thereby limiting the size of the datasets used

for the studies. In the 2010s, the advent of high-throughput sequencing dramatically changed this.

With over 250,000 E. coli genomes already available on Enterobase (Zhou et al. 2019), collecting large

genetic datasets is no longer a challenge. The question is: is it worth it? What can be discovered with

so much data that could not be studied with a handful of carefully selected high-quality genomes?

Although this question may seem a bit provocative, we should keep in mind that the notion of a pan-

genome was discovered with only 8 genomes of S. agalactiae (Tettelin et al. 2005) and that one of the

reference studies on the genetic diversity of E. coli and Shigella is based on the analysis of 20 genomes

(Touchon et al. 2009).

Three main motivations underlie the use of such large data sets:

1. In large samples, rare events become frequent. An event that has a 0.1% chance of occurring

will rarely be observed in a dataset of 20 genomes, but on average should be found 80 times in

a dataset of 80,000 genomes. This gives us statistical power to detect and analyse these events.
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It also means that a large dataset gives a complete picture of the true genetic diversity of E. coli

in nature: an event never observed in 80,000 genomes should be extremely rare in nature.

2. A large number of genomes allows the construction of much more detailed phylogenies. A

phylogeny of 20 genomes has a few branches with many events occurring on each branch.

In contrast, a phylogeny of 80 000 genomes has many more branches, giving us a much more

detailed view of the history of species and a clearer idea of the order in which events took place.

3. In line with 2., a larger dataset also allows access to much more recent events. Indeed, once

you have sampled the genomes of most of the major clades, any new genome you add to your

dataset will be closely related to one of those already included and will therefore only differ

in recent mutation, recombination, deletion or duplication events. These recent events are

interesting because they give a picture of what happens in the wild before selection has time

to act, e.g. events of DNA acquisition by HGT before they have been filtered out by selection.

Paradoxically, they can also give access to some short-term dynamics of selection, typically the

first stages of adaptation to a new ecological niche.

In this manuscript, we aim to explore the natural diversity among more than 80,000 E. coli strains.

To do so, we will take advantage of modeling approaches—particularly DCA—to interpret and make

sense of this observed diversity. Our main focus is to gain insights into how this diversity builds up

over various time scales. Specifically, we seek to answer questions such as: Are the short-term dynam-

ics of drift and selection comparable to the long-term ones? Can evolutionary approaches based on

the study of distant species be applied to predict diversity within a species? How does the genetic con-

text evolve over time? To address these questions, we will investigate different genetic scales, ranging

from individual mutations to the variability of amino-acid sites, the intensity of natural selection on

various genes, and the diversity of gene repertoires among closely related strain clusters.

Chapter 4 of this manuscript outlines the process of analyzing and organizing 80,000 E. coli strains

into a database. In Chapter 5, we delve into the prediction and analysis of individual mutations.

Chapter 6 is dedicated to studying the variability of amino-acid sites, both within the E. coli species

and across distant species. Moving on to Chapter 7, we explore the signatures of natural selection at

the gene level. Finally, Chapter 8 serves as the conclusion, discussing the main results presented in

this manuscript and providing suggestions for future research directions.
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Chapter 4

Building a database of 81,440 E. coli and

Shigella genomes

4.1 Motivation

The goal of this thesis is to explore the natural diversity of a single species, E. coli, through the anal-

ysis of more than 80,000 genomes. However, working at such a scale also presents some difficulties.

Firstly, large databases are inherently biased. Unlike some E. coli collections that have been carefully

constructed to reflect the true diversity of the species in nature, public databases tend to be crowded

with specific clones of clinical interest and also lack isolates from non-human sources. Secondly,

the quality of the data available in public databases is variable, with high-quality complete genomes

alongside poorly sequenced and assembled contig files. These data therefore need to be carefully

cleaned before being analysed. Last but not least, most current bioinformatics softwares do not scale

well with the size of the datasets, typically if their complexity is quadratic.

In the present work, we decided to build a database of genes present in 80,000 E. coli and Shigella

strains. Working at the gene level allows us to circumvent most of the difficulties related to algorithmic

complexity. Indeed, due to the low level of nucleotide diversity in E. coli, we rarely observe more than

1000 distinct sequences of a single gene in our 80,000 strains. This means that we can perform most of

our analyses on these fewer distinct sequences and weight them according to their representation in

the 80,000 genomes. Gene sequences are also valuable for population genetics studies because they

offer us a range of tools for analysing evolutionary dynamics, e.g. comparison of synonymous and

non-synonymous mutations, protein mutational landscapes, etc. We can also annotate them and try

to infer their functions, which allows us to interpret the results in a more biologically relevant way.

The upcoming chapter will include very technical sections as it outlines the procedures under-

taken to construct a database comprising 81,440 strains of E. coli and Shigella.

4.2 Identifying homologous genes

81,440 genomes were downloaded from Enterobase (Zhou et al. 2019). These genomes were initially

provided as assembled contig files. The number of contigs within each file varied from 1 to 6,624 with

a median value of 226 (Figure 4.1.B).
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FIGURE 4.1: Open reading frames (ORFs) and contigs in each of the 81,440 genomes.
A. Distribution of the number of ORFs—as identified by Prodigal (Hyatt et al. 2010)—per genome.
B. Distribution of the number of contigs per genome.
C. Number of ORFs per genome located on contigs classified by PlaScope (Royer et al. 2018) as chromoso-
mal, plasmidic or not classified.
D. Proportion of ORFs per genome located on contigs classified by PlaScope (Royer et al. 2018) as chromo-
somal, plasmidic or not classified.
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4.2. Identifying homologous genes

To determine the phylogroup of each genome, we first processed these contig files using both

the in silico ClermonTyping and the Mash genome-clustering methods (Ondov et al. 2016; Beghain

et al. 2018). According to the metadata, 70,301 of these genomes are E. coli and the remaining 11,139

are Shigella. However, since the metadata could be inaccurate or incomplete at times, we employed

ShigEiFinder (Zhang et al. 2021) to classify all the genomes. This software identifies 59 Shigella serotypes

and 22 enteroinvasive E. coli (EIEC) serotypes, providing a more precise classification compared to

the available metadata.

We also used PlaScope (Royer et al. 2018) to classify the contigs within the files as either plasmidic

or chromosomal. This classification is valuable for conducting detailed analyses of gene transfer. In

the current dataset, this information holds even greater significance as certain plasmids may appear

to be missing not because they are absent in a particular strain, but rather because they have not

been sequenced. By focusing on chromosomal genes, analyses pertaining to rates of gene loss and

acquisition can be more dependable and accurate.

Next, we followed the steps outlined in Figure 4.2 to identify homologous genes. We screened

each contig file using Prodigal (Hyatt et al. 2010) to detect open reading frames (ORFs). Prodigal

also detects partial ORFs situated at the edges of contigs. Contig edges often correspond to repet-

itive sequences that are present multiple times in the genome, making their assembly challenging.

Genes truncated by the end of a contig may be pure assembly artefacts or indicative of noteworthy

events like duplications or transposon insertions. Although we do not analyse these partial ORFs in

this manuscript, we have included them in the database for future research purposes. The median

number of ORFs on plasmidic contigs is 163, corresponding to about 3.2% of the total ORFs in the

genomes (Figures 4.1.C and 4.1.D). This percentage is relatively high but not excessively so. Seven

contig files exclusively contain plasmidic ORFs, but all the others comprise less than 20% plasmidic

genes.

Prodigal identified a total of 409,049,104 ORFs across the 81,440 genomes. Two contig files con-

tained exactly 11,397 ORFs, indicating the likely merging of two distinct genome sequences. In

contrast, the remaining contig files ranged from 3,490 and 6,894 ORFs, with a median of 5,001,

which aligns with our understanding of E. coli (Figure 4.1.A). These 409,049,104 ORFs correspond

to 12,783,641 distinct DNA sequences that can be translated into 8,923,612 distinct amino-acid se-

quences. Following quality filtering, where only complete ORFs containing less than 5% unknown

amino acids were retained, we obtained a final set of 5,061,335 distinct amino-acid sequences.

This number of sequences is small enough to use MMseqs2 (Steinegger et al. 2017) for clustering

them with a 90% identity and 80% coverage threshold. MMseqs2 is a leading software for clustering

amino-acid sequences, and we anticipate it will perform well with our dataset. However, it is impor-

tant to note that it employs heuristics, which may not always yield optimal clustering results. We may

encounter situations where a sequence that meets the inclusion criteria (90% identity, 80% coverage)

is not assigned to the appropriate cluster (red sequence on Figure 4.2). Additionally, there may be in-

stances where a single cluster is split into multiple clusters (blue sequences on Figure 4.2), or where a

sequence is assigned to a cluster without meeting the inclusion criteria (brown sequence and yellow

cluster on Figure 4.2).

To ensure the reliability of the clustering results, we employed Clustal Omega (Sievers et al. 2014)

to generate multiple sequence alignments (MSAs) for each of the 402,134 clusters identified by MM-

seqs2. These MSAs allowed us to derive an amino-acid consensus sequence for each cluster. Sub-
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FIGURE 4.2: Steps followed to identify coding sequences and cluster them.
We run Prodigal (Hyatt et al. 2010) on each of the 81,440 contig files in order to identify open reading frames
(ORFs). These can be complete ORFs or partial if truncated by a contig edge. A first clustering step is
performed by MMseqs2 (Steinegger et al. 2017) on unique amino-acid sequences that meet quality criteria.
We compute the corresponding consensus sequences of the protein clusters derived by MMseqs2. To
avoid potential errors made by MMseqs2 clustering, we compare each of the unique amino-acid sequences
to the cluster consensus. If a sequence shares at least 90% identity in sequence and 80% coverage with a
consensus, it is assigned to the corresponding cluster. If it matches several consensus, it is assigned to the
largest cluster. If it does not meet inclusion criteria to any of the existing clusters, we create a new cluster
for this sequence.
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sequently, we compared the 5,061,335 amino-acid sequences to these 402,134 consensus sequences.

If a sequence exhibited a minimum of 90% identity and 80% coverage with a consensus sequence it

was assigned to the corresponding cluster. In cases where a sequence matched multiple clusters, it

was assigned to the largest cluster. Sequences that did not match any clusters were categorized as

singletons, i.e. clusters consisting of only one sequence. As a result, we obtained a total of 422,404

clusters, each accompanied by a consensus amino-acid sequence and a consensus DNA sequence.

We can assess the quality of our clustering by examining some basic plots. Our primary expec-

tation is that a gene would be rarely duplicated within a genome, meaning that sequences from the

same protein cluster should originate from different genomes. When this assumption holds true,

the number of distinct genomes represented in a protein cluster matches the number of sequences

within that cluster. To visualize this, we can create a scatterplot comparing the number of sequences

per cluster to the number of genomes represented (Figure 4.3.C). We observe that most data points

align along a diagonal line with the equation y = x, indicating a close match between these two quan-

tities. This suggests that our clustering process was effective.

Additionally, when we analyze the number of distinct genomes represented in each protein clus-

ter, we observe the familiar U-shaped histogram (Figure 4.3.B). The same pattern emerges when we

plot the number of sequences per protein cluster (Figure 4.3.A), although there are some clusters that

contain more than one sequence per genome, albeit they are in the minority. Specifically, only 30

clusters have more than 85,000 sequences, and this number decreases to 24 when considering clus-

ters with more than 90,000 sequences. Overall, these statistics provide confidence in the quality of

our clustering procedure.

FIGURE 4.3: Number of sequences and distinct genomes per protein cluster.
A. Histogram of the number of sequences in each protein cluster.
B. Histogram of the number of distinct genomes in each protein cluster.
C. Scatterplot of the number of sequences against the number of distinct genomes found in each protein
cluster.

4.3 Annotating genes

To make the most of this data, we need annotations, i.e. we need to link a biological function to a pro-

tein cluster. To achieve this, we compared each of the consensus amino-acid sequences of the protein

clusters with the amino-acid sequences of Swiss-Prot. Swiss-Prot, a subset of UniProtKB (Boutet et al.

2016), currently comprises 569,213 protein sequences that have been manually annotated by experts.

This annotation step also provides valuable information to analyse horizontal gene transfer. When
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one of our clusters matches a protein sequence in Swiss-Prot, we gain access to insightful information

such as the species to which the protein sequence belongs and the degree of identity between the two

sequences. This enables us to investigate and study the occurrence of horizontal gene transfer more

effectively.

4.4 Identifying pseudogenes

Up until now, we have assumed that each cluster corresponds to a unique gene. However, it is possible

that certain clusters actually represent fragments of another gene broken by a premature stop codon

(as depicted in Figure 4.4). To identify these clusters, we employed VSEARCH (Rognes et al. 2016)

to conduct global alignments by querying all the DNA consensus sequences against themselves. We

recorded all the resulting hits, but those most likely to correspond to pseudogenisation events are

those that meet the following criteria:

• The global alignment covers >95% of the smallest DNA sequence and <80% of the longest DNA

sequence.

• The identity between the two DNA sequences is greater than 95%.

• The smallest DNA sequence aligns with the beginning—i.e. the global alignment starts within

the first 30 nucleotides—or the end—i.e. the global alignment ends within the last 30 nucleotides—

of the longest DNA sequence.

ATG ... TAA

ATG ... TAA

ATG ATG

C

TAATAG
frameshift

base insertion
premature
stop codon

new reading frame

...

Initial gene sequence

Pseudogenization

Resulting MSA
>Complete gene sequence

>Fragment #1

TAG -------------------------------------ATG ...

>Fragment #2

------------------------------------------ TAAATG ...

FIGURE 4.4: Example of a pseudogenization event.
In this example, the pseudogenization event is caused by a base insertion resulting in a frameshift. It leads
to two open reading frames: one at the start of the gene and the other at the end of it.
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In cases where a gene is frequently pseudogenized throughout the 81,440 genomes, we anticipate

observing numerous hits involving pairs of clusters that both represent fragments of the same gene.

However, our focus lies on pairs consisting of a gene fragment and its corresponding complete gene.

Therefore, when we encounter multiple hits involving the same small DNA consensus sequence, we

prioritize selecting the hit that involves the long DNA consensus sequence that is most prevalent in

the database. This long DNA consensus sequence is deemed the ‘true’ complete gene sequence. By

employing this approach, we aim to accurately identify and distinguish between gene fragments and

complete gene sequences in our analysis.

After following this procedure, we obtained a total of 46,012 gene clusters identified as fragments

of other genes. Among these clusters, there were 12,175 fragments that belonged to genes appearing

at least 1000 times in the database.

4.5 Clustering genomes by similarity

To begin, we gathered a persistent E. coli genome at a 95% threshold. This low threshold prevents a

few poor quality genomes from artificially decreasing the size of the persistent genome. Subsequently,

we excluded any genes from the persistent genome that exhibited duplication in more than 1% of

the genomes. This step ensures that the persistent genome primarily consists of unique genes and

mitigates the influence of duplicated genes on our analysis.

For each of the 3,016 persistent genes, we aligned the corresponding DNA sequences while pre-

serving the codon alignment. We used these 3,016 multiple sequence alignments to construct a con-

catenated persistent genome alignment of all 81,440 genomes. Note that when a gene was duplicated

in one of the genomes, it was not included in the alignment—i.e. in that genome it was replaced

by gaps. We used this concatenated alignment of persistent genomes to construct a distance matrix

to capture the genetic distances between the 81,440 genomes. This distance matrix was created us-

ing Hamming distance on the non-gaped sites. This approach constitutes a first step to assess the

relationships among the genomes in our dataset.

To cluster the distance matrix, we employed the DBSCAN algorithm (Ester et al. 1996) with pa-

rameters: epsilon=0.5% and minimum samples=5. These settings dictated that two genomes would

be considered neighbors if their divergence per site is below 0.5%. The minimum samples parame-

ter imposes that the smallest cluster DBSCAN can produce must contain at least five genomes (one

genome and its four neighbours). Through this approach, we obtained a total of 240 genome clus-

ters. It’s worth noting that DBSCAN allows for the identification of outlier genomes that do not fit into

any cluster. In our analysis, we found 597 such outlier genomes, which formed individual singleton

clusters.

At this stage, we have an opportunity to assess the accuracy of genome annotations provided

by ShigEiFinder. Our expectation is that Shigella and EIEC strains will cluster together in a few dis-

tinct groups. We can also examine whether the ShigEiFinder annotations align with the Enterobase

metadata. Out of the 240 clusters, six clusters consist of over 99% of strains identified as Shigella by

ShigEiFinder. These clusters predominantly include strains that are also annotated as Shigella in the

Enterobase metadata, with proportions ranging from 87.5% to 100% depending on the cluster.

After excluding clusters with less than 5% of strains identified as Shigella, we find four additional

clusters with varying proportions of strains identified as Shigella by ShigEiFinder, ranging from 12.9%

47



Chapter 4. Building a database of 81,440 E. coli and Shigella genomes

to 87.4%. However, none of these clusters contain any strains annotated as Shigella in the Enterobase

metadata, which raises doubts about the accuracy of ShigEiFinder’s identification for those particular

clusters.

Furthermore, three clusters exclusively consist of strains identified as EIEC by ShigEiFinder, and

one cluster contains 11% of EIEC strains. Unfortunately, we cannot compare these findings with the

Enterobase metadata as it does not provide information about the EIEC status of strains.

In the remaining sections of this manuscript, when we refer to analyses conducted on Shigella

or EIEC clusters, we specifically mean the six clusters that include more than 99% of Shigella strains

and the three clusters that consist of 100% of EIEC strains based on the annotations provided by

ShigEiFinder.

4.6 Database structure

By following the steps outlined in the previous sections, we successfully extracted diverse data from

the collection of 81,440 genomes. To ensure easy accessibility for future research, we decided to orga-

nize this data into a SQL database. The structure of this database is depicted in Figure 4.5, providing

a clear framework for storing and retrieving the information gathered from the genomes. It is com-

posed of 17 tables, including:

• The genomes table where each entry correponds to a given strain with its Enterobase metadata

as well as its phylogroup and genome cluster.

• The contig table where each entry correponds to a given contig in a given genome together

with its classification as plasmidic or chromosomic.

• The genes table where each entry correponds to an ORF in a given contig of a given genome

together with the id of the corresponding unique DNA sequence of this ORF.

• The seq_ids table that makes the correspondance between the id of a unique DNA sequence

and the id of the corresponding unique amino-acid sequence.

• The dna_sequences table where each entry correponds to a unique DNA sequence id together

with its nucleotide sequence.

• The aa_sequences table where each entry correponds to a unique amino-acid sequence id

together with its amino-acid sequence.

• The proteins table where each entry corresponds to a unique amino-acid sequence id together

with the id of the protein cluster to which it belongs.

• The consensus table where each entry corresponds to a protein cluster id together with the id

of its amino-acid consensus sequence and the id of its DNA consensus sequence.

• The fragments table—built to detect pseudogenization events—where each entry corresponds

to a hit between two protein clusters.

• The annotations table where each entry corresponds to a hit between a protein cluster and a

Swiss-Prot entry.

48



4.7. E. coli core and accessory genomes

All the other tables correspond to Swiss-Prot data. This organized database structure enables

efficient exploration and utilization of the data for further studies.

contig

Genome TEXT
Contig_nb INTEGER
Contig_name TEXT
Classification TEXT

genomes

Genome TEXT
Year INTEGER
Source_niche TEXT
Source_type TEXT
Country TEXT
Lab TEXT
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Mash TEXT
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FIGURE 4.5: Diagram of the structure of the SQL database.
Table primary keys are highlighted with bold and italic fonts.

4.7 E. coli core and accessory genomes

One initial and straightforward application of this database consists in assessing the core and acces-

sory genomes of each cluster. Previous studies have already explored the comparison of core and

pan-genome sizes across different E. coli phylogroups. However, our approach brings a novelty to

this analysis. We have clustered E. coli genomes based on a criterion of within-cluster sequence di-

vergence of 0.5%. This means that we compare the gene repertoires of groups of genomes with similar

levels of nucleotide diversity. By considering genomes with more comparable levels of diversity, we

can gain insights into the variations in core and accessory genome sizes.

For each cluster, we can sample a given number of genomes N , starting from N = 1 up to N =
10000 for the sufficiently large clusters. For each random sample of N genomes, we count how many

genes are common to all the sampled genomes—these form the core genome—, how many of them

are found in at least 95% of the sampled genomes—these form the persistent genome—and, lastly,

how many genes are found in at least one of the sampled genomes—these form the pan-genome. This

analysis provides insights into the shared genes among the sampled genomes, the genes consistently

present across the landslide majority of genomes, and the overall gene diversity within the cluster.

We performed 10 samplings for each cluster and value of N and plotted the average number of

core, persistent and pan genes on Figure 4.6. The pan-genomes of all our clusters seem open (Figure
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FIGURE 4.6: Clusters core, persistent and pan genome sizes
A. Evolution of the size of the core genome of each cluster with increasing number of strains. Pseudogenes
were counted as true genes.
B. Evolution of the size of the core genome of each cluster with increasing number of strains. Pseudogenes
were discarded.
C. Evolution of the size of the persistent genome of each cluster with increasing number of strains. Pseu-
dogenes were counted as true genes.
D. Evolution of the size of the persistent genome of each cluster with increasing number of strains. Pseu-
dogenes were discarded.
E. Evolution of the size of the pan-genome of each cluster with increasing number of strains. Pseudogenes
were counted as true genes.
F. Evolution of the size of the pan-genome of each cluster with increasing number of strains. Pseudogenes
were discarded.
Each line represents the average of 10 random samplings of genomes for each cluster.
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4.8. Inferring the species phylogeny

4.6.E) even after excluding pseudogenes (Figure 4.6.F), indicating a continuous expansion of gene

diversity. Interestingly, the size of the core genome rapidly decreased as the number of sampled

genomes increased (Figures 4.6.A and B), whereas the number of persistent genes reached a stable

level after sampling just a few dozen genomes (Figures 4.6.C and D). This suggests that the concept of

a persistent genome is more relevant for describing the housekeeping functions of our clusters com-

pared to a core genome. The reasons behind the observed decline in the number of core genes as the

number of genomes increased remain unclear. It could be attributed to the lower quality of some rare

genome sequences or it might signify genuine biological events involving infrequent gene losses. It

would be interesting to investigate this question further.

Even if the global trends look very similar, we observe huge variations in the number of core,

persistent and pan genes between clusters:

• The average number of core genes found in 50 genomes ranges from 2175.5 to 3761.3 with a

median of 3319.15 (respectively 2046, 3736.9 and 3251.85 if we remove pseudogenes).

• The average number of persistent genes found in 50 genomes ranges from 2786.4 to 4226.8

with a median of 3827.85 (respectively 2687.2, 4103.6 and 3808.7 if we remove pseudogenes).

• The average number of pan genes found in 50 genomes ranges from 7021.1 to 17003.9 with a

median of 10238.45 (respectively 6157.4, 14680.4 and 9009.45 if we remove pseudogenes).

In particular, Shigella clusters tend to exhibit fewer persistent genes compared to other clusters,

although Shigella sonnei behaves more similarly to other E. coli clusters in this regard. Surprisingly,

the lower number of persistent genes in Shigella clusters does not seem to translate into a smaller

pan-genome (Figure 4.6.E). However, this pattern disappears if we exclude pseudogenes from the

analysis (Figure 4.6.F), suggesting that Shigella undergoes accelerated gene loss that artificially in-

flates its pan-genome.

Overall, we observe an important variability in core and accessory genome sizes between clusters,

despite being constructed to have similar levels of nucleotide diversity. This variability could stem

from local adaptations to different ecological niches, varying degrees of genetic recombination, or

differences in the effectiveness of natural selection in retaining genes.

4.8 Inferring the species phylogeny

4.8.1 General procedure

Our aim is to infer a phylogeny corrected for recombination. We chose to use Gubbins (Croucher

et al. 2015) to detect recombination. As this software cannot run on tens of thousands of genomes at

a time we proceeded in several steps:

1. We detected recombination within each of the 240 clusters.

2. We built 240 rooted phylogenies, one per cluster, and we inferred the ancestral sequence of

each cluster.

3. We detected recombination between the 240 ancestral sequences.
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4. We built an ancestral rooted phylogeny of the 240 clusters from the 240 ancestral sequences.

For all of these steps, we worked with the persistent genome described previously. To build a

persistent genome alignment, we organized the genes in the same order and orientation than what

was observed in E. coli ED1a strain—whose sequence was downloaded from MaGe (Vallenet et al.

2006). The high level of synteny observed in E. coli make this choice acceptable. 177 genes with no

homologs in E. coli ED1a had to be removed. Highly gapped sites impair Gubbins performances so

we removed sites with more than 5% gaps.

4.8.2 Detecting recombination within clusters

We ran Gubbins—with FastTree (Price et al. 2010) tree builder—to analyze the 231 clusters that con-

tained fewer than 1,500 genomes. We replaced by gaps any parts of the corresponding multiple se-

quence alignments (MSAs) that Gubbins detected as being recombined. We built phylogenies from

these corrected MSAs using IQ-TREE (Nguyen et al. 2015), applying a general time reversible model.

To root the phylogenies, we selected two genomes from the nearest cluster that contained at least 10

genomes.

The remaining 9 clusters were too large to be analyzed by Gubbins in their entirety. To overcome

this, we divided each of these clusters into smaller MSAs, each containing fewer than 1,500 genomes,

and ran Gubbins on each smaller MSA separately. To ensure thorough analysis, we repeated this pro-

cess 10 times for each cluster, creating new partitions of genomes each time. If Gubbins identified any

recombined segments during these runs, those segments were removed from the global cluster MSA.

The global MSAs being too massive to infer phylogenies, we changed them into ‘SNP-MSAs’ by re-

moving conserved sites. We opted to use FastTree instead of IQ-TREE for building these phylogenies.

Although FastTree may have slightly lower precision, it is more efficient in terms of computational

time. Consistent with the approach used for the 231 smaller clusters, we employed a general time

reversible model to infer the phylogenies, and we rooted the phylogenies using two genomes from

the nearest cluster that contained at least 10 genomes.

The approach we followed was successful for all clusters except for cluster 8. This particular clus-

ter initially consisted of 11,768 genomes, but due to its size, we decided to sub-sample 981 genomes

for analysis. We ran Gubbins exclusively on these 981 genomes and constructed a SNP phylogeny us-

ing only this subset of genomes. We deemed this phylogeny to be adequate for inferring the ancestral

sequence of cluster 8.

4.8.3 Detecting recombination between clusters to build a species phy-

logeny

We ran IQ-TREE to reconstruct ancestral sequences for each cluster based on the phylogenies we

previously inferred. These 240 ancestral sequences were then combined into a multiple sequence

alignment (MSA), which we subjected to Gubbins analysis to identify recombined segments. We con-

structed a phylogeny of these 240 ancestral sequences, accounting for recombination, and used Es-

cherichia fergusoni ATCC 35469T (downloaded from MaGe) to root it. We had to exclude the 597

singleton genomes from the phylogeny. This exclusion was necessary because Gubbins was unable
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FIGURE 4.7: Phylogenies of the 240 E. coli clusters.
A. Phylogeny corrected for recombination.
B. Phylogeny without correction for recombination.
The width of the terminal branches is proportional to the log of the number of genomes in each cluster.
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to process a MSA containing both the 240 ancestral sequences and these 597 sequences. This diffi-

culty may be attributed to the poor quality of these genomes or the presence of rare hybrids resulting

from extensive recombination events.

The phylogeny we inferred covers 240 clusters, representing a total of 80,843 genomes (or 70,056

genomes if we take into account the fact that only 981 genomes were used to reconstruct cluster 8’s

ancestral sequence). It is displayed on Figure 4.7.A, with different phylogroups indicated by colors.

However, there are some clusters for which the attribution to a specific phylogroup remains uncer-

tain, and they are displayed in white. The overall structure of the phylogeny aligns with previous

studies (see Figure 2.1).

One notable difference is observed in the branching pattern of phylogroup D. We believe that this

discrepancy may be attributed to the choice of our outgroup genome. To gain a more accurate un-

derstanding of the branching of phylogroup D, it would be necessary to explore alternative outgroup

genomes and calculate confidence estimates.

Consistent with other studies, we can observe multiple independent occurrences of Shigella and

enteroinvasive E. coli (EIEC) throughout the evolutionary history of the species. Interestingly, their

distribution is non-random. None of these strains emerged within phylogroups B2, F, and G, while six

distinct B1 clusters contain Shigella or EIEC strains. Additionally, we find that phylogroup C is nested

within phylogroup B1, confirming previous findings (see Figure 2.1) and raising questions about the

evolutionary relevance of this phylogroup.

We can compare the phylogeny obtained after correcting the MSA for recombination (Figure

4.7.A) with the one obtained without correction (Figure 4.7.B). We observe that the differences in

the tree structure are not massive. This does not imply that recombination does not occur in E. coli,

but rather that its impact is not strong enough to obscure the clonal phylogeny. When we consider a

sufficient number of persistent genes, the effects of recombination tend to average out.

One notable difference between the two phylogenies is observed in the branch lengths. In the

uncorrected phylogeny, the terminal branches appear longer while the ancestral branches are shorter.

This is expected because the presence of recombination leads to a more star-like pattern in trees,

resulting in longer branches leading to individual genomes.

Overall, this comparison suggests that while recombination does occur in E. coli, it does not sig-

nificantly disrupt the underlying clonal phylogeny. The effects of recombination become apparent in

the branch lengths rather than the overall tree structure.

4.9 The effects of recombination on the short term

Strains within the same cluster exhibit a very high degree of similarity in their persistent genome

sequences. This means that they have diverged very recently in the history of the species so that they

only differ from one another by very recent events. By examining recombination events within one of

the 240 clusters, we can gain insights into the short-term effects of recombination.

As strains within the same cluster are closely related, we anticipate that recombined segments

would exhibit higher-than-average sequence divergence. To examine this divergence along the genome,

we use two measures of population diversity: θWatterson and divergence with the ancestor. The former

is a commonly used statistic in population genetics, calculated based on the number of polymorphic

sites. The latter measures the proportion of strains diverging by more than 1% from the ancestral
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fim operon

K antigen

O antigen

Gubbins

Theta Watterson

Divergence

FIGURE 4.8: Signature of within-cluster recombination.
On the innermost circle is displayed the proportion of genomes for which Gubbins has detected recombi-
nation averaged over the 240 clusters (each dot is a gene). The second circle represents the proportion of
genomes that have more than 1% divergence with the ancestral sequence of their cluster (each blue dot is a
gene, a rolling average with a window of 11 genes is drawn with a black line). On the third circle, the average
value of θWatterson across clusters is plotted (each blue dot is a gene, a rolling average with a window of
11 genes is drawn with a black line). On the outermost circle is the order of genes on E. coli ED1a strain.
A blue bar corresponds to a persistent gene and a red one to an accessory gene. The three hotspots of
recombination are highlighted with black arrows.
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sequence of their respective cluster.

Rig
ht

TER

L
e
ft

O
R
I

FIGURE 4.9: The long-term effects of recombination in E. coli.
A. On the inner circle is displayed the proportion of ancestral sequences involved in recombination accord-
ing to Gubbins for each gene (blue dots). A rolling average with a sliding window of 11 genes is shown with
a black solid line. On the outer circle is displayed the cumulative sum of the difference to the mean for each
value of the inner circle. A decreasing trend—like the one in the TER region—signals a lower-than-average
level of recombination.
B. Histogram of the proportion of ancestral sequences where Gubbins detected recombination for each
gene.
C. Histogram of the proportion of the chromosome where Gubbins detected recombination for each ances-
tral sequence.
Some specific regions of the chromosome—origin of replication, Ter macrodomain and its left and right
sides—are highlighted with colors. Their coordinates were taken from (Espeli et al. 2008).

When we compare these two diversity statistics with the outputs from Gubbins (Figure 4.8), we

observe a strong correspondence between regions of higher-than-average sequence divergence and

the genes where Gubbins detected most of the recombination events. This alignment between the

Gubbins outputs and the other diversity measures instills confidence in the accuracy of the software’s

inferences. The majority of recombination events tend to occur around three specific regions—the

two ‘bastions of polymorphisms’ mentioned in the introduction and the K antigen, which are all sub-

ject to diversifying selection. However, it is important to note that there is also a low level of recom-

bination scattered throughout the chromosome. The proportion of recombined genomes seldom

reaches 0% along the chromosome.

4.10 The effects of recombination on the long term

In contrast to the short-term effects of recombination observed within clusters, studying ancestral se-

quences of clusters provides insights into more ancient recombination events. The inferences made
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FIGURE 4.10: Variations in GC content along the genome.
On the inner circle is displayed the average GC content (each blue dot is a gene), a rolling average with a
window of 11 genes is displayed with a black solid line. The median GC content is shown with a large solid
grey line. On the outer circle is displayed the cumulative sum of the difference to the mean GC content. A
decreasing trend—like the one in the TER region—signals a lower-than-average GC content. Some specific
regions of the chromosome—origin of replication, Ter macrodomain and its left and right sides—are high-
lighted with colors. Their coordinates were taken from (Espeli et al. 2008).
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by Gubbins on the 240 cluster ancestral sequences (Figure 4.9.A) strongly contrast with those made

within clusters (Figure 4.8). Indeed, all along the genome we find genes where more than half of the

clusters show signatures of recombination. However, this does not imply that recombination com-

pletely obscures the phylogeny. In fact, in half of the genes, less than 14.2% of the cluster ancestral

sequences have recombined (Figure 4.9.B). Moreover, recombined segments account for an average

of 22.7% of these ancestral sequences, with only three ancestral sequences containing more than 50%

recombined fraction (Figure 4.9.C). This indicates that the phylogeny constructed from the ancestral

MSA corrected for recombination (Figure 4.7.A) is indeed relevant.

GC-content may also deliver some information about the extent of recombination along the genome

(Figure 4.10). In particular, we well observe the drop in GC-content around the terminus of replica-

tion. This lower-than-average GC-content has been interpreted as a sign of reduced recombination,

although this interpretation is still a subject of debate. Interestingly, we also observe that Gubbins

identifies fewer instances of recombination in the same region, further supporting this explanation.

In summarizing our brief investigation of recombination, we can conclude that in the short-term,

it is primarily noticeable around three bastions of polymorphisms. Nonetheless, we still observe spo-

radic instances of recombination across the entire chromosome at a lower level. These infrequent

events gradually accumulate over extended time periods. Consequently, when we compare the an-

cestral sequences of the clusters, we discover compelling evidence of recombination spanning the

entire chromosome, with a distinct decrease observed near the terminus of replication.
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Chapter 5

Using protein mutational landscapes to

study individual mutations

The results presented in sections 5.1, 5.2, 5.3 and 5.5 were published in (Vigué et al. 2021). The com-

plete article is available in Appendix B.

5.1 Protein mutational landscapes and their application to

E. coli

A protein mutational landscape models the level of functionality of a protein or a protein domain. It

can be thought of as a function that takes as input an amino-acid sequence of a given protein or pro-

tein domain and provides as output the probability of observing that sequence in nature. With func-

tional variants being selected and non-functional variants being counter-selected, the probability of

observing a sequence in nature should closely match the level of functionality of the corresponding

variant.

Deriving a probability might require a normalisation step so that all probabilities sum to one.

This normalisation step can take a lot of computational time as it requires dealing with all possible

amino-acid variants. For example, if we take a sequence of 100 amino acids, there are 20100 variants

to consider, which is far beyond the computational power of any machine. For this reason, we can-

not always calculate probabilities and we rather rely on the energy level associated with an amino-

acid sequence. The energy level is related to the probability of observing an amino-acid sequence

(a1, a2, ..., aL) as follows:

P (a1, a2, ..., aL) = 1

Z
exp{−E(a1, a2, ..., aL)} (5.1)

where E(a1, a2, ..., aL) is the energy level of the sequence and Z the normalisation factor we cannot

always calculate in practice. As you can see in this formula, there is a minus sign in the exponential

function. This means that a low energy level corresponds to a high probability of observation. In

other words, the local maxima of the protein mutational landscape correspond to the local minima

of the corresponding energy landscape.

Protein mutational landscapes are deduced from homologous sequences found in distant species.
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Chapter 5. Using protein mutational landscapes to study individual mutations

These are sequences that have evolved independently over millions of years, so that they share only

20-30% identity in sequence. However, they still perform the same function and fold similarly in 3D:

the essence of the protein’s functionality has been preserved despite huge variations in the amino-

acid sequence. These sequences represent a sample of the local maxima of the protein mutational

landscape and thus a sample of the local minima of the corresponding energy landscape (Figure 5.1).
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Species closely
related to E. coli

Distant species

FIGURE 5.1: Representation of an energy landscape.
Amino-acid sequences found in nature corresponds to local minima of the landscape. The models are
trained on distant species (red) they may not necessarily be relevant to study more local structures around
E. coli (E. coli variants in yellow and closely related species in orange).

As we intend to use protein mutational landscapes to study the neighbourhood of E. coli se-

quences, we choose to exclude from the sample of distant homologues any sequence that shares

more than 90% identity with the reference E. coli amino-acid sequence. For this reason, we do not

know whether our protein mutational landscape accurately captures the local structure around E.

coli (yellow dots on Figure 5.1). This local structure reflects idiosyncratic constraints related to E.

coli’s adaptation to its ecological niche, as well as more global evolutionary constraints shared by all

distant homologs. And protein mutational landscapes can only account for the latter. In other words,

protein mutational landscapes are inferred from the study of long evolutionary timescales; can they

inform us about the dynamics of shorter evolutionary timescales?

5.2 Building a protein mutational landscape in practice: IND

and DCA

Protein mutational landscapes are inferred from a multiple sequence alignment (MSA) of homolo-

gous sequences found in distant species. These MSAs can be downloaded directly from Pfam (Bate-

man et al. 2004) if one is looking for Pfam protein domains or can be retrieved by querying large

protein databases such as UniRef (Suzek et al. 2015) with softwares based on profile hidden Markov

models (HMM) of proteins such as HHblits (Remmert et al. n.d.). These MSAs can be biased towards

certain species that have been sequenced more frequently than others. For this reason, we perform

a reweighting step where sequences that are too similar to each other are assigned a lower weight.
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5.2. Building a protein mutational landscape in practice: IND and DCA

We also exclude any sequence that shares more than 90% identity with E. coli. A further quality step

is performed to eliminate from the MSA any sites that are too frequently gaped (MSA columns with

>20% gaps).

From this MSA, we can construct a non-epistatic mutational landscape (independent model,

IND). In this simple model, the observation probability associated with an amino-acid sequence can

be directly deduced from the frequencies of the amino acids in each column of the MSA. Consider an

amino acid sequence of length L: (a1, a2, ..., aL). In this sequence, ai is the amino acid observed at

the i th position, it can take 21 possible values: any of the 20 amino acids or a gap. The probability of

observing amino acid a at position i is fi (a), the frequency of amino acid a in column i of the MSA.

The main assumption underlying IND is the additivity of mutation effects. In this simple framework,

we can compute the probability of observing an amino-acid sequence (a1, a2, ..., aL):

P IND(a1, a2, ..., aL) =ΠL
i=1 fi (ai ) (5.2)

The corresponding energy of the amino-acid sequence (a1, a2, ..., aL) is therefore:

E IND(a1, a2, ..., aL) =− logP IND(a1, a2, ..., aL) (5.3)

Two sequences (a1, a2, ..., aL) and (b1,b2, ...,bL) can be compared by taking the difference of their

energies E IND(b1,b2, ...,bL)−E IND(a1, a2, ..., aL). If this difference is negative, it means that IND pre-

dicts that (b1,b2, ...,bL) is more frequent in nature than (a1, a2, ..., aL), and conversely if it is positive.

An IND model ignores any contextual dependence of mutations: the effect of replacing one amino

acid with another is exactly the same regardless of the rest of the amino-acid sequence. If we want

to incorporate an interaction term between amino-acid sites, we can turn to a more complex mod-

elling framework: Direct-Coupling Analysis (DCA). A DCA model is composed of two matrices: h,

the site-dependent biases that evaluate the importance of single amino acids in individual sequence

positions, and J , the epistatic couplings connecting the amino acids in pairs of positions. In a DCA

model of an amino-acid sequence, the probability of observing the sequence (a1, a2, ..., aL) in nature

is:

P DCA(a1, a2, ..., aL) = 1

Z
exp

{−E DCA(a1, a2, ..., aL)
}

(5.4)

where Z = Σa1,...,aL exp
{−E DCA(a1, a2, ..., aL)

}
is the normalisation factor which we cannot calcu-

late in practice and E DCA(a1, a2, ..., aL) =−Σi< j Ji j (ai , a j )−Σi hi (ai ) is the energy of the sequence. In

statistical physics, E DCA corresponds to the Hamiltonian of a generalized Potts model.

The IND model only reproduces the amino-acid frequencies of the MSA columns—the fi (a). In

contrast, the DCA model reproduces both fi (a) and fi j (a,b), the latter being the frequency at which

amino acid a is observed in column i and amino acid b is observed in column j of the MSA. DCA

therefore reproduces the couplings between pairs of sites that have been observed in the MSA of

distant homologues. From a mathematical point of view:

P DCA
i (ai ) =ΣAk |k ̸=i P DCA(a1, a2, ..., aL) = fi (ai ) (5.5)

P DCA
i j (ai , a j ) =ΣAk |k ̸=i , j P DCA(a1, a2, ..., aL) = fi j (ai , a j ) (5.6)
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Chapter 5. Using protein mutational landscapes to study individual mutations

5.3 Testing the predictions of IND and DCA

5.3.1 Predicting E. coli native amino acids

E. coli sequence

DCA prediction of mutation effect

Deleterious:
loss of a 
conserved 
amino acid

Neutral

Deleterious:
broken epistatic 
interaction

IND predicts neutral
DCA predicts neutral

IND predicts deleterious
DCA predicts deleterious

IND predicts neutral
DCA predicts deleterious

FIGURE 5.2: Predicting the effect of mutations in an E. coli background.
We can use IND and DCA to predict the effect of single amino-acid changes in E. coli sequence. IND only
captures patterns of conservation while DCA detects both patterns of conservation and epistatic interac-
tions between pairs of sites.

We want to test the accuracy with which IND and DCA model an amino-acid sequence (Figure

5.2). To do this, we use a protein of length L whose reference sequence in E. coli is (a1, a2, ..., aL). At

each of these L sites, we can observe 20 possible amino acids (we choose here to study only the ‘true’

amino acids, not the effect of deletions, so we ignore gaps). Both DCA and IND give a probability of

observing the amino acid α at locus i in the amino-acid background a0
\i = (a1, a2, ..., ai−1, ai+1, ..., aL):

• P IND
i (α | a0

\i ) = P IND
i (α) = fi (α), the frequency of the amino acid α in the MSA after excluding

gaps. This probability does not depend on the amino-acid background a0
\i .

• P DCA
i (α | a0

\i ) = exp
{−E DCA(a1, a2, ..., ai−1,α, ai+1, ..., aL)

}
/zi , with the normalization zi chosen

such that P becomes a probability distribution over the values ofα, i.e. over the 20 theoretically

possible amino acids at locus i . Note that P DCA
i (α | a0

\i ) is not the probability of observing

the amino acid α at locus i but the conditional probability of observing the amino acid α at

locus i , given that the other loci take amino acids (a1, a2, ..., ai−1, ai+1, ..., aL). Therefore, the

normalisation factor zi can be calculated easily, as it only has 20 terms.

Using these probabilities, we rank the 20 possible amino acids at locus i from most likely to least

likely. We then examine the rank of E. coli native amino acid. A perfect model of an E. coli amino-acid

sequence would always rank this amino acid first. In practice, working at persistent genome scale, we

find that DCA ranks them first in 78% of cases, while this figure drops to 45% for IND (Figure 5.3.A).
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A

C D

B

FIGURE 5.3: Predicting E. coli native amino acids and polymorphisms with IND and DCA.
A. Rank of amino acid observed in an E. coli ST131 strain as compared to all 20 possible amino acids. DCA
model (red) outperforms IND (yellow) by predicting twice as many native amino acids to be the best possi-
ble.
B. DCA rank of major and minor allele for all sites that are polymorphic at a >5% threshold, among all 20
possible amino acids. Major alleles (alleles at frequencies >50%, in red) have better ranks than minor alle-
les (alleles at frequencies between 5 and 50%, in pink). The distribution of consensus alleles peaks at the
first rank (46.2% of polymorphic sites have major allele ranking first and 17.6% have second-best rank) while
the distribution of minor alleles peaks at the second rank (13.3% have the best rank against 17.6% that are
second-best).
C. IND rank of major and minor allele for all sites that are polymorphic at a >5% threshold, among all 20
possible amino acids. As with DCA, major alleles (in orange) have better ranks than minor alleles (in yellow)
and the distribution of consensus alleles peaks at the first rank. However, the distribution is spread towards
greater ranks (only 24.1% of polymorphic sites have major allele ranking first and 15.5% have second-best
rank, similarly minor alleles rank first in 9.6% and second-best in 13.3% of polymorphic sites) compared to
DCA ranking.
D. Distribution of DCA scores of non-synonymous polymorphisms observed at frequencies >5% across
>60,000 strains (blue) compared to mutations sampled from an IND model (yellow) or to random muta-
tions (gray). A large number of possible mutations are predicted to be highly deleterious (positive scores)
compared to naturally occurring polymorphisms that tend to be neutral (blue distribution centered on zero).
Polymorphisms predicted from IND are slightly deleterious once epistasis is taken into account (yellow
distribution shifted towards positive values). Boxplot center lines represent medians, box limits are upper
and lower quartiles, whiskers extend to show the rest of the distribution within an 1.5 × interquartile range,
outliers are represented with points; sample size is 3477 mutations for each of the three groups.
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Chapter 5. Using protein mutational landscapes to study individual mutations

5.3.2 Predicting E. coli polymorphisms

However, the approach followed in the previous section is subject to bias. In addition to ‘real’ epistatic

interactions reflecting physical constraints on the protein, DCA may also have captured some phylo-

genetic interactions: correlations of residues that have been inherited vertically together in different

species. This would inflate the predictive performance of DCA but give very little information about

the real factors constraining protein evolution. We tried to limit this bias by training the DCA models

on MSAs of distant homologues (any sequence with more than 90% identity to E. coli being excluded).

But some phylogenetic interactions may remain.

This is why we have chosen to focus on E. coli polymorphisms. These appeared recently in the

history of the species, after E. coli had diverged from other species. A model based on phylogenetic

correlations alone would therefore not be able to predict them.

If we focus on the polymorphic sites, we observe that almost half of them have a major allele that

is ranked first by DCA (Figure 5.3.B). As expected, the minor allele is more likely to be ranked second.

We observe the same overall trends with IND: the major allele is most likely to be ranked first and the

minor allele second (Figure 5.3.C). However, the overall distribution is flattened towards the higher

ranks, suggesting that, again, DCA performs better than IND.

Another way to study polymorphism is to use the DCA scores of the mutations directly. The DCA

score of the mutation of an amino acid α to an amino acid β at locus i in the amino-acid background

a0
\i = (a1, a2, ..., ai−1, ai+1, ..., aL) of the E. coli reference sequence is given by:

∆Ei = E DCA
i (a1, a2, ..., ai−1,β, ai+1, ..., aL)−E DCA

i (a1, a2, ..., ai−1,α, ai+1, ..., aL) (5.7)

This score is negative if the mutation is advantageous, zero if it is neutral and positive if it is dele-

terious.

The distribution of DCA scores for the mutations found in E. coli (blue distribution on Figure

5.3.D) peaks near zero—suggesting that these polymorphisms are close to neutral. In comparison,

DCA predicts that random amino acids are highly deleterious, as expected (grey distribution). More

importantly, DCA also predicts that amino acids sampled from an IND model are slightly deleterious

when inserted in an E. coli background (yellow distribution). This latter observation means that the

polymorphisms observed in E. coli are more adapted to the genetic background of E. coli than the

amino acids found in distantly related species. This confirms the entrenchment theory that states

that mutations that reach fixation are close to neutral in the genetic background where they occur,

but may be deleterious in another background.

5.4 The effect of natural selection on polymorphisms segre-

gating within E. coli

Polymorphisms regularly arise in a population due to random mutations. They can segregate for

quite some time before disappearing or, more rarely, reaching fixation. The expected time they spend

at a given frequency directly depends on their impact on fitness (Sethupathy et al. 2008). Therefore,

we expect to see some differences between the DCA score distribution of polymorphisms found at

different frequencies, even if there is no strict equivalence between a DCA score—that reflects the
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5.4. The effect of natural selection on polymorphisms segregating within E. coli

level of functionality of a protein—and an organism’s fitness.

We gather 454,636 polymorphisms in 1,200 distinct persistent genes, together with their frequen-

cies in all 81,440 E. coli genomes (Figure 5.4.A). For each protein sequence, we reconstruct the ances-

tral E. coli sequence by rooting the tree on the nearest Swiss-Prot sequence that is neither E. coli nor

Shigella. This allows us to orient observed mutations in order to determine which allele is the ances-

tral and which is the derived one. We can also calculate the distribution of DCA scores of all possible

single mutants of the ancestral sequence of each persistent protein (green histogram on Figure 5.4.B).

We compare this distribution with that of the DCA scores of polymorphisms found across our

81,440 E. coli genomes (blue histogram on Figure 5.4.B). As we can see, there is an over-representation

of beneficial mutations (low DCA scores) and a corresponding under-representation of deleterious

mutations (high DCA scores) among observed mutations compared to all possible single mutations.

If we compute the ratio of observed versus possible single mutations for each DCA score bin dis-

played on Figure 5.4.B, we see that this ratio follows an exponential decrease that spans more than

four orders of magnitude. More interestingly, we can study the evolution of this ratio according to the

frequency range of the observed polymorphisms (Figure 5.4.C): the higher the frequency, the sharper

the decrease.

We can notice that, even for very low frequency polymorphisms (purple line of polymorphisms at

≤ 0.1%), the ratio of observed versus possible polymorphims decreases with increasing DCA scores.

This might be confusing because at these very low frequencies we expect random drift to dominate

the fate of mutations and natural selection to play very minor role. However, we should remember

that some of the persistent genes are essential for the bacteria. Inactivating mutations occurring on

them might be filtered out almost instantly because they result in cell death or at least severely impair

cell growth. Some mutation bias may also contribute to this pattern. Indeed, amino-acid changes that

result from only one single nucleotide change in a given codon tend to be more frequent than those

that require more, and they are also less harmfull. However, we performed some complementray

analyses that showed that mutation biases could not alone account for the effect we observe here. All

these questions form the core of the work presented in Chapter 7.
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FIGURE 5.4: DCA scores and frequencies of polymorphisms observed across 81,440 E. coli genomes.
A. Histogram of the frequencies of mutations observed in 81,440 E. coli genomes.
B. Distribution of the DCA scores of all possible single mutations (in green) and observed mutations (in
blue). The ratio between those two distributions is displayed in orange.
C. Ratios of the distributions of DCA scores of observed versus possible single mutations according to the
frequency of observed mutations.

A limitation of our approach lies in the way we estimate frequencies. Indeed, our dataset of
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Chapter 5. Using protein mutational landscapes to study individual mutations

genomes is far from being representative of E. coli in the wild. Strains isolated in clinical context are

clearly over-represented, while non-human isolates remain rare. The frequency of a mutation found

in this dataset may thus be quite different from its frequency in nature. To overcome this obstacle, we

choose to estimate mutation frequencies within our 240 genome clusters. We choose to focus on the

128 clusters where we find at least 1,000 different mutations (Figure 5.5.A) for which we record their

corresponding frequencies (Figure 5.5.B).
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FIGURE 5.5: DCA scores and frequencies of polymorphisms within E. coli genome clusters.
A. Histogram of the number of mutations found in each of the 240 clusters.
B. Histogram of the frequencies of mutations observed in the 128 clusters with more than 1,000 mutations.
C. Ratio of the distributions of DCA scores of observed versus possible single mutations according to the
frequency of observed mutations in each of the 128 clusters with more than 1,000 mutations.
D. Slopes of the lines of Panel C according to the phylogroup and the E. coli/Shigella status of the clusters.
E. Ratios of the distributions of DCA scores of observed versus possible single mutations according to the
frequency of observed mutations in non-Shigella clusters.
F. Ratios of the distributions of DCA scores of observed versus possible single mutations according to the
frequency of observed mutations in Shigella clusters.
G. Ratios of the distributions of DCA scores of observed versus possible single mutations according to
the frequency of observed mutations in Shigella clusters plotted against the corresponding ratios in non-
Shigella clusters.

Before focusing on mutation frequencies, we can reproduce Figure 5.4.B at the scale of each clus-

ter by grouping all observed polymorphisms together independently of their frequencies. The result-
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5.5. How the genetic background impacts the effect of mutations

ing figure is displayed on Panel C of Figure 5.5. A striking finding is that deleterious mutations are

not filtered with the same efficiency in every clusters. To get some more quantitative insights into the

patterns we observe on Figure 5.5.C, we compute the slopes of the corresponding lines and sort them

according to the phylogroup the clusters belong to and their E. coli/Shigella status (Figure 5.5.D). In

both Figure 5.5.C and D, it is clear that deleterious mutations tend to segregate more within Shigella

populations (in orange on Figure 5.5.C) compared to other E. coli (in blue). This finding is perfectly

consistent with a decrease in effective population size that might have accompanied the transition to

an intra-cellular way of life.

We might now look at how polymorphisms segregate within clusters depending on their frequen-

cies. We have gathered all polymorphisms found in non-Shigella clusters with their corresponding

frequencies on Figure 5.5.E and performed the same procedure with Shigella clusters on Figure 5.5.F.

If we compare these two panels with Figure 5.4.C, it is clear that natural selection seems to be much

less effective at eliminating deleterious mutations within clusters compared with the species as a

whole. This is expected because polymorphisms segregating within clusters are far more recent, so

natural selection has had less time to act on them. Furthermore, they segregate within smaller pop-

ulations so natural selection is also less effective. We can see that here again E. coli clusters do better

than Shigella ones at filtering polymorphisms with increasing frequencies. At first sight, it might even

seem that there is no difference between the different frequency ranges on Panel F but that is only

because the differences are too thin to be clearly visible. Indeed, when we plot the E. coli ratio against

the Shigella one for each frequency range (Figure 5.5.G), we see that all lines superimpose. This means

that you can change the lines displayed on Panel E into the lines displayed on Panel F by multiplying

their slopes by roughly the same value.

5.5 How the genetic background impacts the effect of muta-

tions

We have seen so far that DCA consistently outperforms IND in predicting the amino acids observed

in E. coli. This suggests that DCA can accurately capture some of the E. coli genetic context. This

context is based on epistatic interactions between different loci in the protein. An intriguing question

arises regarding the construction of this context. Does it depend on a few strong interactions be-

tween specific amino acids, or does it involve a network of numerous weak couplings? If the former

holds true, modifying a few amino acids would be adequate to completely alter the genetic context,

consequently affecting the impact of other mutations. In this case, the mutational landscape would

exhibit extreme ruggedness. Conversely, if the latter is accurate, a larger number of mutations would

be required to observe any noticeable change in the mutation effect, resulting in a smoother muta-

tional landscape. Considering that DCA somehow captures this genetic context, it is worthwhile to

investigate how DCA models these epistatic interactions.

To answer this question, we want to determine the proportion of sites actually coupled to a locus

in a DCA model of an amino-acid sequence. To do this, we use the inverse participation ratio (IPR).

The inverse of the IPR corresponds to the effective number of non-zero components of a distribution.

It becomes minimal if there is only one non-zero component and reaches its maximum for a uniform

distribution. In a DCA model, the couplings between amino-acid sites are given by the matrix J . The
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effective proportion of sites that are epistatically coupled with a position i in a sequence of length L

is thus 1/(IPRi L), with:

IPRi =Σ j ̸=i (Ji j (ai , a j )2/Σk ̸=i Ji k (ai , ak )2)2 (5.8)

Figure 5.6 shows the distribution of the effective proportion of sites effectively coupled to an

amino-acid site in the DCA model. The median of the distribution is 24%: in a DCA model, residues

tend to be coupled to about a quarter of the other amino-acid sites. In other words, the epistasis

captured by DCA is a diffuse signal made up of many small couplings, not just a few strong couplings

derived from direct contacts with neighbouring amino acids.

FIGURE 5.6: Histogram of the effective proportion of sites coupled with a given amino-acid site.

Another way to study epistasis involves calculating an epistatic cost. The epistatic cost refers to

the difference between the cost of different mutations occurring together in a given sequence and the

sum of their individual costs if they were inserted individually in the same sequence. For a pair of

mutations, the epistatic cost for substituting the reference residues αi , α j with βi , β j writes:

∆∆Ei j =∆Ei j −∆Ei −∆E j = Ji j (αi ,β j )+ Ji j (βi ,α j )− Ji j (βi ,β j )− Ji j (αi ,α j ) (5.9)

Similarly, the epistatic cost of an arbitrary number of mutations is:

∆∆Ei j ...n =∆Ei j ...n − (∆Ei +∆E j + ...+∆En) (5.10)

+ +--
Epistatic cost = 

Cost of mutations 
altogether

Cost of the sum of all 
single mutations

FIGURE 5.7: Computation of the epistatic cost of three mutations.
This epistatic cost corresponds to the difference between the cost of mutating all three sites together and
the sum of the corresponding single mutations.
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In the absence of epistasis, the effects of mutations are additive, so that the two terms of the

difference are equal and the epistatic cost is zero. When we look at pairs of polymorphisms occurring

together in some E. coli strains, we can see that these terms are indeed almost identical: the points

on Figure 5.8.A form a line with a slope close to 1 and an intercept close to 0. In other words, we do

not detect any epistasis between the pairs of polymorphisms observed in E. coli.

A B C

FIGURE 5.8: Epistasis in E. coli and closely related species.
A. Mutational effect ∆Ei j of observed double mutations with respect to the reference, plotted against the
sum∆Ei +∆E j of the individual mutation scores. The absence of clear deviations from the diagonal reveals
the lack of strong epistatic couplings between pairs of mutations in our strain dataset.
B. Phylogenetic tree of studied strains. Tree built from an amino-acid sequence alignment of 878 core
genes.
C. DCA epistatic cost decreases with divergence. Negative values correspond to positive epistasis: mu-
tations are more beneficial (lower DCA score) taken altogether than the sum of their individual effects.
Boxplot center lines represent medians, box limits are upper and lower quartiles, whiskers extend to show
the rest of the distribution within an 1.5 × interquartile range, outliers are represented with points. Sample
sizes are n = 22,352 for <5%, n = 15,870 for 5-10%, n = 10,810 for 10-15%, n = 6776 for 15-20%, n = 3564

for 20-25%, n = 3432 for >25%.

This may contradict the finding that DCA performs better than IND in predicting the effect of mu-

tations. Indeed, if epistasis plays no role in protein evolution, the two models should perform sim-

ilarly. But this apparent contradiction disappears if we return to the proportion of residues coupled

to an amino-acid site: DCA captures a diffuse epistasis signal composed of many small couplings.

Therefore, one cannot expect to see strong couplings between pairs of polymorphisms.

To observe an epistasis signal, we need to examine more divergent sequences (Figure 5.8.B). We

chose to calculate the epistatic cost of all fixed differences between species closely related to E. coli. As

we can see on Figure 5.8.C, this cost starts to diverge substantially from zero at a divergence of about

10% in the amino-acid sequence. It is negative, which means that the DCA cost of the set of fixed

differences is less than the sum of the DCA costs of the individual mutations. In other words, the

fixed differences are more beneficial together than can be expected from the sum of their individual

effects. This is called ‘positive epistasis’. It is also compatible with a model in which fixed differences

are contingent on previous mutations and are entrenched by subsequent mutations.

In summary, epistasis plays an important role in determining the effect of mutations. However,

we do not expect to observe a large difference between the genetic background of two different E.

coli strains: most mutations should have the same effect in both. To start observing a real difference,

we need to mutate about 10% of the genetic background, which means comparing the genetic back-
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ground of two different species. Locally, the mutational landscape is rather smooth, but the overall

picture is much more rugged.
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Chapter 6

The determinants of amino-acid site

variability on short and long time scales

The results presented in sections 6.1, 6.2 and 6.3 were published in (Vigué et al. 2021). The complete

article is available in Appendix B.

6.1 Epistasis reduces the variability of an amino-acid site

Here we want to study how variable an amino-acid site can be, and how epistasis may play a role in

reducing this variability.

When we train an IND or DCA model, we use an MSA of distant homologues. These are proteins

or protein domains that have evolved independently for so long that they have accumulated many

mutations. As a result, they usually share only 20 or 30% identity in sequence, but still perform the

same function. This shows that over long evolutionary time scales, most protein sites can vary with-

out affecting the function of the protein too much.

However, these sites do not necessarily show the same level of variability in the short term. In-

deed, epistatic couplings with the rest of the sequence can restrict the spectrum of mutations that

a site can tolerate. For example, a proline may be observed at locus 55 of a protein found in E. coli,

whereas a glycine is observed at the same locus in its Mycobacterium tuberculosis counterpart. This

means that the site can vary over long evolutionary time scales, as it can tolerate at least two different

amino acids. However, a glycine or any amino acid other than a proline could be deleterious in the E.

coli context due to the context-dependence of mutation effect, thus preventing this amino-acid site

from tolerating polymorphisms in E. coli species.

We want to estimate the variability of an amino-acid site over the short and the long term. For

this purpose, we introduce two quantities: the Context-Independent Entropy (CIE) and the Context-

Dependent Entropy (CDE). They are based on Shannon entropy, a measure derived from information

theory that we use here to quantify the variability of an amino-acid site. A site with zero entropy

should tolerate only one amino acid: it is conserved. A value of one may, for example, correspond to

two amino acids with a frequency of 50% each. The entropy reaches its maximum value of log2(20) =
4.32, if all 20 possible amino acids have the same probability of being observed.

CIE quantifies the variability of an amino-acid site as predicted by IND. In practice, CIE is the

71
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observed variability of that site across distantly related species. We calculate CIE at locus i directly

from the amino-acid frequencies in the i th column of the MSA:

CIEi =−Σβ fi (β) log2( fi (β)) (6.1)

CDE quantifies the variability of an amino-acid site as predicted by DCA. CDE is therefore depen-

dent on the genetic background: it incorporates the epistatic constraints specific to the species on

which we are focusing. It corresponds to the expected level of variability of this site in a given species.

We calculate it using the conditional DCA probabilities of observing an amino acid in a specific ge-

netic background:

CDEi =−ΣβP DCA
i (β | a0

\i ) log2(P DCA
i (β | a0

\i )) (6.2)

We calculate the CIE and CDE for all amino-acid sites in our dataset. If epistasis was negligible,

these two quantities should take similar values. As can be seen on Figure 6.1, two groups clearly

emerge: a peak at the top right of sites with high CDE and CIE and a peak at the left of sites with

low CDE and low to high CIE. The former show very low context-dependence (both entropies have

comparable values). They reach entropy values close to 4, i.e. close to the upper limit of log2(20) =
4.32. These sites are variable between species and DCA predicts that they are highly polymorphic in

E. coli. Conversely, the latter can sometimes vary between distantly related species (CIE ranging from

0 to more than 3), but DCA predicts that they remain conserved in E. coli (CDE near 0). We expect

these sites to show a low level of polymorphism in E. coli.

A B

FIGURE 6.1: Predicting the variability of amino-acid sites.
A. Bivariate histogram of CDE and CIE for all sites in the dataset. Two populations of sites are clearly
recognizable, in particular separated by their CDE values.
B. Marginal distributions of CDE (red) and CIE (yellow) for all sites in the dataset. CDE divides amino-acid
sites into two populations of similar sizes: conserved (CDE < 1) and variable (CDE ≥ 1). On the contrary,
most of the amino-acid sites have a high CIE, i.e. IND predicts them to be highly variable.

The CIE and CDE distributions of all sites are very different. While only 8.3% of the sites are

conserved between distantly related species (CIE < 1, corresponding to an effective number of amino

acids less than 2), we predict that 45% of the sites will be conserved in E. coli (CDE < 1), mainly due to

local epistatic couplings.
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6.2. Taking epistasis into account is crucial to predict polymorphisms

6.2 Taking epistasis into account is crucial to predict poly-

morphisms

Neither CIE nor CDE use E. coli polymorphism data to predict variability within this species. We can

therefore compare their predictions with the observed variability among E. coli strains.

To do this, we classify E. coli sites into two categories: conserved sites (no polymorphism observed

in any of the strains) and variable sites (at least 5% of strains carry a mutation). Lowly polymorphic

sites (polymorphisms at frequencies <5%) may correspond to variable sites but also to conserved

sites with deleterious mutations segregating at low frequencies (or sequencing errors for some of the

lowest frequencies), so we choose to exclude them from the analysis.

Most of the conserved sites cluster on the left peak of low CDE, while the variable sites tend to

cluster on the upper right peak of high entropies (Figure 6.2). CDE seems to be more relevant than

CIE for distinguishing conserved sites from variable sites. Indeed, only 12.7% of conserved sites have

a CIE < 1, while 56.4% have a CDE < 1. There are, though, sites with a high CDE for which we ob-

served no polymorphism in any of our E. coli strains. We see two non-exclusive explanations for this

observation.

First, some amino acids may be tolerated at these sites, but they are rarely present in practice.

Indeed, we cannot obtain all 20 possible amino acids by mutating a given codon more than once.

Some amino-acid changes may require two or three nucleotide changes to occur. This chain of events

is unlikely, especially if the intermediate codons code for deleterious amino acids.

Second, random drift may limit the amount of neutral diversity that can segregate in a species.

To examine the effect of the first assumption, we can restrict the calculation of CIE and CDE to

amino-acid changes that only require a difference of one nucleotide—hereafter referred to as ‘1-SNP

amino-acid mutations’. This involves modifying the entries of the fi vector in the case of IND and

of the P DCA
i vector of conditional probabilities in the case of DCA to zero out all entries that do not

correspond to 1-SNP amino-acid mutations and then renormalizing these vectors. These updated

vectors can then be used in formulas 6.1 and 6.2 to calculate a CIE and CDE restricted to 1-SNP amino-

acid mutations. With these new 1-SNP CIE and CDE, 70.2% of the conserved sites have a CDE < 1

while only 24.8% have a CIE < 1.

Yet, this leaves 29.8% of conserved sites that are expected to be polymorphic (CDE ≥ 1). This

encourages us to examine the effect of random drift on limiting the amount of neutral diversity seg-

regating in E. coli. Indeed, even among synonymous mutations, many 1-SNP mutations are absent

from our dataset. Using simulations based on the amount of observed synonymous diversity, we can

estimate the proportion of amino-acid sites that will remain conserved while they could tolerate poly-

morphisms (high CDE). The exact procedure and results are detailed in (Vigué et al. 2021), available in

Appendix B. Overall, these results are qualitatively consistent with our observations: polymorphisms

may occur at these sites but have not yet been observed in nature.

6.3 Quantifying contingency

Many amino-acid sites are conserved in E. coli due to a network of epistatic interactions that limit the

range of possible mutations. We therefore want to quantify the role played by the genetic background
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A B

C D

FIGURE 6.2: Predicting amino-acid sites that are conserved or polymorphic in E. coli.
A. Bivariate histogram of CDE and CIE for sites that are conserved across >60,000 strains of E. coli. Most
of them cluster on the left peak of low CDE.
B. Bivariate histogram of CDE and CIE for sites that are polymorphic at a 5% threshold across >60,000
strains of E. coli. Most of them cluster on the right peak of high CDE.
C. Distribution of CIE for conserved (green) and polymorphic (blue) sites in E. coli. A non-epistatic model
fails at distinguishing between both populations. Most of the sites are predicted to have a high entropy so
to be highly variable, including those that display no mutation in >60,000 strains of E. coli (green distribu-
tion).
D. Distribution of CDE for conserved (green) and polymorphic (blue) sites in E. coli. A model that incorpo-
rates pairwise epistasis predicts a low entropy for conserved sites (the green distribution peaks near 0) and
a high entropy for variable sites (the blue distribution peaks near 4).

74



6.4. How amino-acid sites fix mutation with divergence

in reducing the diversity of amino acids that a site can tolerate.

Comparing CIE and CDE allows us to quantify contingency, as they both quantify site variability,

CIE being context-agnostic and CDE being context-aware. A simple difference between them gives

the information gain (IG).

IG = CIE-CDE (6.3)

IG quantifies the difference between the variability of an amino-acid site in distantly related

species and its potential variability in E. coli. It is expressed in bits: 1 bit corresponds to an effec-

tive reduction in available amino acids by a factor of 2, 2 bits by a factor of 4 and 3 bits by a factor of

8. If CDE is equal to CIE, no information is contained in the genetic background, IG=0. The lower the

CDE compared to the CIE, the higher the IG and therefore the contingency level.

We can roughly classify the amino-acid sites into three categories:

• First, 8.3% of the sites are conserved in all species as well as in E. coli (CIE < 1). It is likely that

they are functionally essential. A mutation will always be deleterious, so the context has no real

influence on their level of conservation. For example, they may correspond to key amino acids

in the active site of an enzyme.

• Second, 55.1% of the sites are variable in all species as well as in E. coli (CIE ≥ 1, CDE ≥ 1).

They are often constrained (CDE < log2(20)), but allow for considerable amino-acid variability,

even in the specific context of E. coli: at these positions we can observe both fixed differences

between species and polymorphisms within the E. coli population. Most of the mutations oc-

curring at these sites will be selectively neutral. These sites often correspond to the least critical

sites for protein folding and function, usually those exposed at the surface and located away

from the active site of an enzyme.

• Third, 36.6% of the sites are conserved in the E. coli context but vary between species (CIE ≥ 1,

CDE < 1). Amino acids observed in distantly related species will not be tolerated in this specific

context: evolution depends on the genetic context. These sites are those most constrained by

epistatic interactions, a good example being the amino-acid sites buried in the 3D structure of

the protein.

6.4 How amino-acid sites fix mutation with divergence

CDE predicts the variability of an amino-acid site within the genetic context of E. coli. A site with a

low CDE can exhibit two distinct behaviors: it can be conserved across all distant species—resulting

in low CIE and IG—or it can be variable in more distant species but conserved in E. coli due to a

network of epistatic interactions. In the first case, we would rarely observe any fixed differences at

that site. However, in the second case, we might observe fixed differences if the genetic context of the

sequence is significantly different from that of E. coli. Based on these observations, we can make two

predictions:

• Sites with low CDE will accumulate less fixed differences across distant species than those with

high CDE.
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Sites that are variable
across distant species
(high CIE) and in E. coli
(high CDE)
→ low IG

Sites that are conserved
across distant species (low
CIE) and in E. coli (low CDE)
→ low IG

Sites that are variable 
across distant species
(high CIE) but conserved
in E. coli (low CDE)
→ high IG

Entropy

Locus

Variability across distant species

Variability in Escherichia coli

CIE

IG
CDE

A

B

FIGURE 6.3: Quantifying the effect of the context in reducing amino-acid site variability.
A. The genetic background is expected to differentially impact amino-acid sites. It has a low influence on
sites that have the same level of variability in E. coli and across distant species. On the contrary, it strongly
impacts sites that are variable across distant species but are conserved in E. coli due to local epistatic
couplings.
B. Information gain (IG) quantifies the difference between an amino-acid site variability across distant
species and its potential variability in E. coli. Sites that are variable across distant species (CIE ≥ 1) but
conserved in E. coli (CDE < 1) are the ones with the highest information gains (dark green distribution).
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• It will require more sequence divergence to start observing fixed differences on sites with low

CDE compared to sites with high CDE.

These predictions align with the findings discussed earlier. Sites with high CDE can tolerate poly-

morphisms in E. coli, suggesting that they are also more likely to undergo amino-acid changes during

divergence between species compared to other types of sites. Our E. coli database allows us to com-

pare the sequences of E. coli persistent proteins with their homologues in Swiss-Prot. This compari-

son provides a straightforward method to validate our predictions and gain further insights into the

evolutionary dynamics of these sites.

First, let’s examine the proportion of amino-acid sites that have undergone the fixation of an

amino acid that is different from the one observed in E. coli (Figure 6.4.A). This proportion is obviously

influenced by the similarity between the E. coli sequence and its homologue: the more divergent the

homologue, the higher the proportion of fixed differences. The site’s CDE also plays a role: sites with

higher CDE are associated with a greater proportion of fixed differences. However, this outcome was

anticipated.

Interestingly, when observing Figure 6.4.A, we notice that the lines representing the most diverged

sequences (dark purple) appear flatter compared to those representing the less diverged ones. In se-

quences with over 90% identity to E. coli, a site with a CDE ≥ 3.5 has approximately 20 times higher

chances of undergoing a mutation compared to a site with a CDE ≤ 0.5. However, in sequences shar-

ing between 50% and 60% identity with E. coli, this figure drops to 8. In these more divergent se-

quences, the genetic context has undergone significant changes, allowing for more frequent fixation

of amino-acid changes at sites that are highly constrained by epistatic interactions.

Another approach to investigate the same question involves choosing, for each amino-acid site,

the least diverged sequence that has undergone a fixed difference at that specific site, if such differ-

ences exist. This analysis is presented in Figure 6.4.B. Although the boxplots demonstrate large vari-

ability within each CDE range, there is a noticeable overall pattern of decreasing sequence identity

as the CDE decreases. This further emphasizes that in order to fix a mutation at a highly constrained

site, significant alterations in the genetic context are necessary.
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FIGURE 6.4: Fixed differences and Context-Dependent Entropy (CDE).
A. Proportion of sites that display a fixed difference with E. coli in homologous sequences of varying diver-
gence according to the CDE of the amino-acid site.
B. Sequence identity of the closest homologous sequence found in Swiss-Prot that displays a fixed differ-
ence according to the CDE of the amino-acid site.
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Chapter 7

The determinants of protein evolution on

short and long time scales

The results presented in this chapter have been accepted for publication in PNAS but not published

yet. The complete article is available in Appendix C.

7.1 Motivation

We discussed in the previous chapter that amino-acid sites display different degrees of variability

and, more importantly, that some amino-acid sites exhibit contrasting patterns of variability over

short and long time scales. Indeed, some may vary between distant species but be constrained in E.

coli by a network of epistatic interactions. In this chapter we want to investigate somewhat similar

questions, but at the protein level. Do all proteins evolve at the same rate? Are the dynamics of protein

evolution similar in the short and long term?

We already have some answers to the first question. Indeed, it has been shown that the most crit-

ical parts of the genome evolve at a slower rate. In the early 2000s, it was observed that essential and

highly expressed genes had lower divergence rates. Because essential genes are often the most highly

expressed, it took careful statistical analysis to prove that the level of gene expression determines the

rate at which genes fix mutations and to close what was at the time a very hot debate (Hirsh et al.

2001; Pál et al. 2001; Jordan et al. 2002; Pál et al. 2003).

However, this seminal work focused on interspecies divergence: it relied on a handful of dis-

tant genomes and therefore studied mutations that had reached fixation. When taken into account,

polymorphism was thought to reflect a lack of selection. For example, the McDonald-Kreitman test

detects adaptive mutations that have reached fixation, using polymorphisms as a control (McDonald

et al. 1991; Smith et al. 2002). However, polymorphisms observed within a species are also subject to

selection. Moreover, they may undergo very different selective pressures than mutations fixed during

species divergence. For example, some polymorphisms may be transiently advantageous, typically

if an organism moves through different niches where it encounters abrupt environmental changes.

We can therefore investigate whether a signature of natural selection on polymorphism is detectable,

and if so, whether it is distinct from the signature observed on divergence.

E. coli could be an excellent model to study this topic. Firstly, because it is extensively sequenced
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and therefore we have a lot of polymorphism data to analyse. Secondly, because it is a generalist

organism that has to travel—and therefore adapt—to very different niches. For example, in the event

of an extra-intestinal infection, it leaves the gut and adapts to survive in another organ—a process

known as patho-adaptation.

Investigating selection within a species raises challenges, though. Approaches that compare non-

synonymous and synonymous mutations are suitable for studying distant species but give misleading

conclusions with closely related organisms (Rocha et al. 2006). Another obstacle lies in the choice of

sequenced organisms. The importance of a strain in a genome collection often reflects its scientific or

clinical relevance more than its prevalence in nature. This implies that tests based on mutation fre-

quencies may also be unreliable. For these reasons, we have chosen to focus again on the functional

impact of the observed amino-acid changes, as predicted by Direct-Coupling Analysis (DCA). To this

aim, we are introducing a new approach: the Gene-Level Amino-acid Score Shift (GLASS).

7.2 GLASS: using predicted effect of mutations to test for se-

lection

We often study selection by comparing the occurrence of synonymous and non-synonymous muta-

tions. This standard approach assumes that most non-synonymous mutations decrease fitness: the

more intense the purifying selection, the fewer non-synonymous mutations should remain (Rocha

2018). In contrast to this approach, we choose to focus only on the predicted effect of non-synonymous

mutations. We introduce a new test of selection based on DCA predictions of mutation effects: the

Gene-Level Amino-acid Score Shift (GLASS).

The idea behind GLASS is to compare the distributions of DCA scores of real and simulated mu-

tations (Figure 7.1). For a protein of length L, we first identify real mutations in natural isolates. We

note NA A the number of distinct mutations found. They represent a sample of the 19L mutations

that could occur in this protein. We can compute a DCA score for each of these NA A real mutations

as well as for all possible 19L mutations (blue and grey distributions in Figure 7.1). In the presence

of purifying selection, real mutations should be less detrimental—i.e. have lower DCA scores—than

the average ones. This means that the distribution of real mutations should be shifted to the left

compared to the distribution of all possible mutations.

Accurate comparison of the distribution of observed mutations with the distribution of all possi-

ble mutations is not straightforward. Using optimal transport theory, we can quantify the shift Sobs

between the two distributions. Optimal transport is a field of mathematics that aims to solve a simple

problem: what is the most efficient way to transport mass? We can think of two distributions as two

piles of sand and ask what is the most efficient way to move sand to transform the first distribution

into the second. Answering this question means finding an optimal match between the two distri-

butions. Using Python Optimal Transport library (Flamary et al. 2021), we can calculate an optimal

transport matrix M between the blue and grey histograms that have been normalised to the same

total number of mutations Nnor m . We then use this matrix to compute Sobs , as follows:

Sobs = (Σn
i=1Σ

n
j=1(i − j )Mi , j )/Nnor m (7.1)

If the distribution of scores of real mutations and the one of all possible mutations are super-
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FIGURE 7.1: Gene-Level Amino-acid Score Shift (GLASS) procedure to test for selection.
19L different mutations can occur on a protein of length L. Direct-Coupling Analysis (DCA) predicts the ef-
fect of these mutations (grey distribution, negative DCA scores correspond to beneficial mutations, positive
DCA scores to deleterious mutations, DCA scores of zero to neutral mutations). We analyse natural isolates
to gather mutations observed in nature (NA A distinct mutations whose DCA scores form the blue distribu-
tion). We simulate 100 sets of the same number of mutations (100 sets of NA A mutations shown in orange)
under a neutral evolutionary model, e.g. Jukes-Cantor 1969. By comparing each blue or orange distribution
to the grey distribution, we calculate shift values that represent how the distributions of DCA scores of the
real or simulated mutations are shifted towards lower values—i.e. more beneficial mutations—relative to
the distribution of DCA scores of all possible mutations. GLASS score compares the Sobs shift of the real
mutations to the average and standard deviation of the 100 Si

si m shift values of simulated mutations.
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imposable, Sobs = 0. The more beneficial mutations segregate on the gene, the higher Sobs . Sobs

is signed so that an excess of beneficial mutations translates into a positive value of Sobs , while an

excess of deleterious mutations results in a negative value.

We then compare Sobs to shift values expected in absence of selection. To do so, we simulate

100 sets of NA A mutations under Jukes Cantor 1969 model (orange distributions in Figure 7.1). We

compare each of these 100 orange distributions to the grey one to derive 100 Ssi m shift values. We

note their mean µ and their standard deviation σ. These allow us to calculate a GLASS score:

GLASS score =
Sobs −µ

σ
(7.2)

The GLASS score is a Z-score, i.e. it corresponds to the number of standard deviations between

Sobs and µ. It approaches zero if the real and simulated mutation distributions look the same. The

more efficient the purifying selection, the more different the distributions, the higher the GLASS

score. Of note, small numbers of mutations display high fluctuations. This impacts GLASS scores

that are more likely to be closer to zero for genes with low NA A values. Any comparison between

GLASS scores should thus account for the number of distinct mutations observed in each gene. This

also means that sampling more genomes will improve the power of the test by increasing NA A .

GLASS scores are based on the comparison of simulated and real mutations. Simulating muta-

tions allows us to take into account mutation biases. The most important of these biases is the fact

that mutations often involve only one of the three bases in a codon. This leads to changes between

amino acids that often share similar physico-chemical properties. Therefore, even in the complete

absence of selection, the observed mutations will tend to be less deleterious than all possible muta-

tions. By subtractingµ from Sobs in the calculation of the GLASS score, we correct for these mutational

biases to focus on the true action of purifying selection.

7.3 In the short term, essentiality and expression level deter-

mine the intensity of selection acting on a gene

We calculated GLASS scores for 2,534 persistent genes using polymorphisms found in 60,472 E. coli

genomes. Hereafter, these scores computed from E. coli polymorphisms will be referred to as GLASS-

P scores. We also computed non-synonymous to synonymous diversity ratios (ΠN /ΠS) and nucleotide

diversities (Π) for all 2,534 genes.

All mutations—regardless of their frequencies—contribute to the GLASS score equally. This makes

GLASS-P scores reflect very recent selection events. Indeed, most E. coli mutations segregate at low

frequencies and must be very recent. In contrast, ΠN /ΠS gives more weight to high frequency muta-

tions, as it is based on all pairwise comparisons. It thus tells us about selection acting on somewhat

longer time scales.

In the early 2000s, there had been an intense debate on the factors influencing the rate of gene

evolution and more precisely on the relative roles of gene expression level and gene essentiality in

driving gene evolution. For this reason, we wanted to estimate the level of expression of each gene,

as well as its essentiality, in order to see how these correlate with our GLASS scores. We used Codon

Adaptation Index (CAI) from MaGe (Vallenet et al. 2017) to estimate the level of gene expression. We

assessed gene essentiality with data from insertion-seq experiments (Couce et al. 2017).
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on a gene
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FIGURE 7.2: Short- and long-term selection patterns according to gene essentiality and expression level.
A. GLASS-P scores and numbers of observed distinct amino-acid polymorphisms, coloured by gene es-
sentiality (essential genes in blue, non-essential genes in orange, the linear fits for these two groups are
represented with solid lines). Essential genes carry fewer harmful polymorphisms than non-essential ones
(higher GLASS-P scores).
B. Gene non-synonymous to synonymous diversity ratios (ΠN /ΠS) and nucleotide diversities (Π), coloured
by gene essentiality. Essential genes tend to be less polymorphic (lower Π) and to carry slightly less non-
synonymous than synonymous polymorphisms (lower ΠN /ΠS ratio).
C. GLASS-D scores and numbers of observed distinct amino-acid fixed differences, coloured by gene es-
sentiality.
D. Gene non-synonymous to synonymous substitution rate ratios (dN /dS) and nucleotide substitution rates
(t ) during divergence between E. coli and S. enterica, coloured by gene essentiality.
E. GLASS-P scores and numbers of distinct amino-acid polymorphisms, coloured by CodonAdaptation Index
(CAI, a proxy for gene expression level). The higher the CAI, the higher the GLASS-P score: highly expressed
genes carry fewer deleterious polymorphisms.
F. Gene non-synonymous to synonymous diversity ratios (ΠN /ΠS) and nucleotide diversities (Π), coloured
by CAI. The higher the CAI, the lower Π and ΠN /ΠS ratio: highly expressed genes are less polymorphic and
carry less non-synonymous mutations compared to synonymous ones.
G. GLASS-D scores and numbers of distinct amino-acid changes fixed during divergence between E. coli
and S. enterica, coloured by CAI.
H. Gene non-synonymous to synonymous substitution rate ratios (dN /dS) and nucleotide substitution rates
(t ) during divergence between E. coli and S. enterica, coloured by CAI.
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The level of gene expression correlates with the intensity of purifying selection: the higher the

level of expression of a gene, the higher its GLASS-P score and the lower itsΠN /ΠS ratio (Figures 7.2.E,

7.2.F). The GLASS-P score and the ΠN /ΠS ratio explain a comparable proportion of the variance of

the CAI (8.7% and 10.5% respectively, see Table 7.1). These contributions to the prediction of the CAI

tend to complement each other. Indeed, a general linear model using both covariates explains on

average 8.5% more variance than a model that only uses one (Supplementary Note 2 in Appendix C).

This is because they carry different information. On one side, ΠN /ΠS reflects the occurrence of non-

synonymous mutations, GLASS-P scores, meanwhile, focus on their effects. As previously mentioned,

GLASS-P andΠN /ΠS also reflect selection acting on slightly different time scales.

The GLASS-P score better predicts gene essentiality: essential genes cluster in Figure 7.2.A based

on GLASS-P scores but not in Figure 7.2.B that usesΠN /ΠS . It explains 10 times more variance in gene

essentiality than theΠN /ΠS ratio (10.3% versus 1%, see Table 7.1). The association between GLASS-P

scores and gene essentiality remains statistically significant even after correction by gene expression

level.

TABLE 7.1: Proportion of the variance in essentiality or Codon Adaptation Index (CAI) explained by covari-
ates inferred from Escherichia coli polymorphisms

Essentiality CAI

GLASS-P 10.3% 8.7%

log(NA A) 5.4% 3.5%

log(ΠN /ΠS ) 1% 10.5%

log(Π) 4.9% 2.3%

Essentiality — 4.3%

CAI 4.5% —

Full model 27.0% 30.9%

A dominance analysis (Budescu 1993) was performed with generalized linear models (GLM) aiming at

predicting either gene essentiality or gene CAI from all possible combinations of five covariates to estimate

the contribution of each covariate to the prediction of the response variable. The total variance explained by a

GLM with all covariates is shown in the last row (Full model). We used McFadden’s R2 (McFadden 1974) to

estimate the variance explained by GLMs.

7.4 In the long term, the expression level drives the rate at

which a gene evolves

We then compared E. coli gene sequences with their counterparts in Salmonella enterica. We focused

on 1,421 genes that have fixed at least 10 mutations during divergence between these two species.

We used these fixed differences to compute: a non-synonymous to synonymous substitution rate

ratio (dN /dS), a nucleotide substitution rate (t ), and a GLASS score. The latter will be referred to as

GLASS-D score because it is based on divergence data.

Neither the GLASS-D score nor the dN /dS ratio predict gene essentiality well (Figures 7.2.C, 7.2.D,

Table 2). But, both t and dN /dS correlate very well with CAI. A general linear model (GLM) based on
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species divergence data (Table 7.2) better predicts CAI than a GLM based on polymorphisms found in

E. coli (Table 7.1). The level of expression rather than their essentiality determines the rate at which

genes diverge. This is in line with conclusions from other studies ((Pál et al. 2001), (Pál et al. 2003)).

The explanatory power of GLASS-D score remains low (Table 7.2). This lack of power could be

due to the small number of amino acids fixed during divergence. In comparison, GLASS-P scores use

all mutations found across tens of thousands of strains. Another difference lies in the effects of the

mutations. While some polymorphisms are neutral and others deleterious, all fixed mutations should

be close to neutral. Direct-Coupling Analysis will thus be more useful to analyse the former than the

latter. As a result, GLASS-P scores will carry more information than GLASS-D scores.

7.4.1 Genes that carry more deleterious polymorphisms are also more fre-

quently lost

Up to now, we focused on mutations found in gene sequences that are complete. But some strains

may contain only a fragment of a gene. This occurs when a nonsense mutation leads to a prema-

ture stop codon in the DNA sequence. For each of the 2,534 genes, we recorded the number of E.

coli strains that carry a complete gene sequence and those that carry only a fragment. Figure 7.3.A

shows a negative correlation between GLASS-P score and gene loss. Genes that are often lost also ac-

cumulate more deleterious mutations in the strains where they remain. ΠN /ΠS ratio also correlates

with gene loss but less strongly (Figure 7.3.B). What matters is not so much the number of polymor-

phisms that accumulate in a gene but their effects. For instance, the gene with the lowest GLASS-P

score—rbsR—is frequently pseudogenized (pseudogene to full gene ratio of 0.002345, i.e. higher than

the 80th percentile of the distribution) but has a rather low ΠN /ΠS ratio (0.02093, i.e. lower than the

30th percentile of the distribution). We have to keep in mind that we have focussed on genes that are

highly conserved within the E. coli species. This implies that most of them are needed at some point,

even if dispensable over short periods.

TABLE 7.2: Proportion of the variance in essentiality or Codon Adaptation Index (CAI) explained by covari-
ates inferred from mutations fixed during divergence between Escherichia coli and Salmonella enterica

Essentiality CAI

GLASS-D 0.2% 3.1%

log(NA A) 1.1% 5.2%

log(dN /dS ) 0.7% 8.3%

log(t ) 5.4% 19.9%

Essentiality — 2.8%

CAI 3.7% —

Full model 11.4% 38.9%

The same methodology than the one presented in Table 7.1 was used to obtain the estimates of the variance

explained by covariates.
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FIGURE 7.3: Divergent short-term selective pressures depending on gene function.
A. Scatterplot of pseudogene to full gene ratio according to GLASS-P score. This is the ratio of the number
of E. coli strains for which we find fragments of a given gene compared to the number of strains where
we find the complete gene sequence. We added 10−5 to pseudogene to full gene ratio values in order to
visualise null values on a log scale.
B. Scatterplot of pseudogene to full gene ratio according to gene ΠN /ΠS ratio.
C. GLASS-P scores for: all genes, biosynthetic genes deleted in (D’Souza et al. 2014) to produce auxotrophic
E. coli strains, and genes that code for transcription factors.
D. DCA scores of three samples of non-synonymous mutations in glyS gene: 20 mutations fixed during
divergence between E. coli and S. enterica, 597 mutations simulated under Jukes-Cantor 1969 model and
597 polymorphisms observed across E. coli strains.
E. DCA scores of four samples of non-synonymous mutations in acrR gene: 197 mutations fixed during
divergence between E. coli and S. enterica, 451 mutations simulated under Jukes-Cantor 1969 model, 451
polymorphisms observed across E. coli strains and 19 mutations found in at least one of 60,472 E. coli
genomes and shown to increase minimum inhibitory concentration (MIC) of E. coli K12.
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7.5 Deleterious polymorphisms target transcription factors

High GLASS scores signal very strong purifying selection. Under more relaxed selection, they should

approach zero. Yet, genes such as rbsR reach GLASS-P scores as low as -5.15: the number of deleteri-

ous polymorphisms segregating on these genes exceeds even what would be expected in the complete

absence of purifying selection.

Selection can favour deleterious polymorphisms in a gene. It occurs if the organism benefits from

the loss or the reduced functionality of the encoded protein. A deleterious mutation at the protein

level may therefore be beneficial at the organism level. This often depends on specific conditions:

inactivating a protein may increase fitness in an environment but decrease it elsewhere. Deleterious

mutations will then be promoted before being counter-selected. As a consequence, we will observe

an over-representation of deleterious mutations that never reach high frequencies. In line with this

scenario, no gene has a negative GLASS-D score (Figures 7.2.C, 7.2.G): they never fix more deleterious

mutations than expected by chance.

To investigate the function of genes with a negative GLASS-P score, we performed a GO-term en-

richment analysis. This analysis detects a strong overrepresentation of transcription factors (Figure

7.3.C). In particular, the most enriched biological process is “Positive regulation of cellular biosyn-

thetic process” (GO:0031328) with a 4.28-fold enrichment (16 observed genes) and the most enriched

molecular function is “DNA-binding transcription factor activity” (GO:0003700) with a 3.96-fold en-

richment (30 observed genes, many of which also belong to GO:0031328).

These transcription factors regulate very different functions. Some, such as rpoS and ada, control

the stress response. Strains stored in a lab often lose rpoS (Bleibtreu et al. 2014), we thus expected

to find many low frequency deleterious variants of this gene in our dataset. dpiA, narL, fhlA and

fnr—four regulators of growth under anaerobic conditions—also carry many deleterious mutations.

Other inactivations may reflect patho-adaptation. For example, lrhA, rcdA and flhC regulate motility

and biofilm. In particular, lrhA represses the expression of type 1 fimbriae and flagella—two known

virulence factors in extra-intestinal diseases (Lehnen et al. 2002). Strains isolated in urosepsis have

often inactivated lrhA (Kisiela et al. 2017). We also detect repressors of genes involved in antibiotic

resistance, e.g. mprA, nimR, acrR and marR. Their loss may allow a strain to respond to an antibiotic

treatment by increasing the expression of downstream genes. Last but not least, many genes with

negative GLASS-P scores regulate sugar metabolism: cdaR, chbR, rhaR, rhaS, xylR, rbsR, malT. Loss

of rbsR constitutes a case of convergent evolution, as it has been observed in isolates from differ-

ent patients suffering from extra-intestinal acute infection (Bridier-Nahmias et al. 2021). malT is a

special case: it activates the maltose operon to which lamB—the receptor of bacteriophage lambda—

belongs. Thus, its loss also triggers phage resistance (Cole et al. 1986).

Arguably, E. coli strains may benefit from the inactivation of genes other than transcription fac-

tors. For example, it has been suggested that the loss of essential biosynthetic pathways may increase

fitness when the corresponding metabolite is available. In particular, Glen D’Souza and colleagues

experimentally studied E. coli strains auxotrophic for several amino acids, nucleobases or vitamins

(D’Souza et al. 2014). To do so, they produced a library of E. coli strains that were deleted for one of

the following biosynthetic genes: trpE, trpA, proC, ilvA, lysA, argE, pheA, pyrF, leuB, argC, nadA, argB,

argH, hisD, metA, argA, bioH, hisC, panC, hisB, hisA, tyrA, trpD, argG, thrC, trpB, guaB. They showed

that most of these auxotrophic mutants exhibited higher fitness than the prototrophic wild type in
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competition experiments. Interestingly, all these biosynthetic genes show positive GLASS-P scores

(Figure 7.3.C). This suggests that although these losses may be beneficial under specific environmen-

tal conditions, E. coli rarely faces such conditions in the wild.

7.6 glyS, acrR and marR: three genes under divergent short-

term selective pressures

With scores of -3.91 and 13.24, acrR and glyS are at opposite ends of the GLASS-P score spectrum

(Figures 7.3.D, 7.3.E). The over-representation of deleterious polymorphisms in the former and their

under-representation in the latter suggest that these genes face very different short-term selective

pressures. In contrast to the short term, their positive GLASS-D scores (1.62 and 4.82 respectively)

imply that they both remain under purifying selection in the long term.

glyS encodes the beta subunit of glycine-tRNA ligase—the enzyme responsible for binding glycine

to its transfer RNA. It therefore plays a crucial role in the translation process. For this reason, we

find several genes encoding components of tRNA ligases—such as glyS—among the highest GLASS-P

scores in our dataset, reflecting a strong short-term purifying selection pressure on these genes.

Both the negative GLASS-P score and the high pseudogenization rate of acrR reflect the frequent

loss of this gene among E. coli strains (Figure 7.3.A). As mentioned previously, acrR represses the

AcrAB-TolC efflux pump involved in antibiotic resistance. Its loss in turn leads to overexpression of

this pump and increases antibiotic resistance. Lisa Praski Alzrigat and colleagues identified acrR mu-

tations in E. coli strains with increased resistance to ciprofloxacin (Praski Alzrigat et al. 2021). They

experimentally showed that 21 of these mutations enhanced the minimum inhibitory concentration

of E. coli strain K12. Of these 21 mutations, we found 19 in our 60,472 genomes. DCA predicts that

most of them are highly deleterious (high DCA mutation scores in Figure 7.3.E). Interestingly, another

gene also represses the AcrAB-TolC efflux pump: marR. This regulator also suffers several losses but

not as frequent as acrR (higher GLASS-P score than acrR, lower pseudogenization rate, see Figure

7.3.A). Unlike acrR, which specifically represses the AcrAB-TolC efflux pump, marR also regulates

other pathways. For this reason, inactivation of acrR and marR results in comparable increases in

antibiotic resistance, but the loss of marR is expected to have more collateral deleterious effects. This

finding is consistent with that of Lisa Praski Alzrigat and colleagues who identified a higher fitness

cost associated with marR loss (Praski Alzrigat et al. 2021).

7.7 Discussion

7.7.1 Influence of essentiality and expression level on polymorphism and

divergence

The question of whether essentiality or expression level determines the rate of gene evolution caused

much controversy in the early 2000s (Hirsh et al. 2001; Pál et al. 2001; Jordan et al. 2002; Pál et al.

2003). Here, we confirm that the level of gene expression plays a major role on long evolutionary time

scales. But we also show that gene essentiality is critical on shorter time scales.

This critical role of gene essentiality in the short term stems from the nature of the mutations that
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play a role on this time scale: in the short term, natural selection targets highly deleterious mutations.

First, because these mutations occur very frequently. For example, 13% of all possible amino-acid

changes inactivate the E. coli beta-lactamase TEM-1 (Jacquier et al. 2013). Second, because highly

deleterious mutations targeting an essential gene could severely impair cell growth in several envi-

ronments. Natural selection should therefore be particularly efficient in eliminating them from the

population. Third, because they induce important phenotypic changes and could therefore represent

a source of adaptation to colonise new environmental niches (Orr 1998).

In contrast to the short term, highly deleterious mutations no longer play a role in the long term.

Purifying selection, although not instantaneous, prevents most deleterious polymorphisms from in-

creasing in frequency and reaching fixation. Therefore, mutations that do fix are either beneficial,

neutral or slightly deleterious. Mildly deleterious mutations could represent a greater burden for

highly expressed genes. Indeed, many different costs scale with the number of protein or mRNA

copies produced (mRNA and protein misfolding, protein misinteractions, protein expression cost,

etc.) (Zhang et al. 2015). Therefore, many mechanisms may contribute to making the level of gene

expression one of the main drivers of long-term evolution. To evaluate the level of gene expression, we

chose to use the Codon Adaptation Index (CAI). Indeed, it should better approximate the expression

profile of E. coli genes in natural environments than laboratory measurements. However, CAI may

lead us to overestimate the strength of the correlation between gene expression level and the rate at

which genes fix mutations. This limitation remains minor, given that the novelty of our study lies in

investigating the short-term role played by gene essentiality—the long-term role of gene expression

being largely covered by the existing literature (Pál et al. 2001; Pál et al. 2003).

7.7.2 Benefits and limitations of GLASS

To investigate these very recent events of selection, we have introduced GLASS. This test is based

on the predicted effects of amino-acid changes and is particularly powerful for studying the over- or

under-representation of recent deleterious mutations segregating on genes. When considering gene

loss of function, it detects the common deleterious impact of many different rare mutations. This

opens up new opportunities to analyse rare variants with large effects that genotype-to-phenotype

association studies fail to capture (Gibson 2012). This test also complements approaches based on

allelic frequencies or on the comparison of synonymous and non-synonymous mutations. In contrast

to the latter, our test takes into account the fact that the proportions of near-neutral and deleterious

amino-acid mutations may vary from protein to protein. This can occur if one protein is more stable

than another. Ignoring mutation frequencies also makes our test robust to complex demographic his-

tories or biased genomic databases. This test is particularly well suited to the study of large databases,

as its statistical power increases with the number of genomes used. GLASS is based on DCA scores

that mainly capture the structural constraints of proteins. For this reason, the presented scores reflect

the intensity of purifying selection acting on a gene. These scores are not designed to capture signals

of diversifying selection or specific changes in protein function. Genes under these selection regimes

are unlikely to emerge at either tail of the DCA-based GLASS score distribution.

GLASS uses prediction of the effect of amino-acid changes to detect selection events. In this study,

we chose to use DCA to predict these effects as it has been shown to outperform independent-site

approaches (Figliuzzi et al. 2016). However, GLASS can be adapted to any method that gives a quan-
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titative score to mutations, typically SIFT (Ng et al. 2003) or scores based on Grantham’s matrix of

physicochemical distance (Grantham 1974) which are less computationally demanding than DCA

(Couce et al. 2019). GLASS performance depends on the accuracy of the predictions of mutation ef-

fects. Sequencing errors counted as mutations could also decrease its performance. In either case,

this would make the score distribution of observed mutations closer to the score distribution of sim-

ulated mutations. In other words, the GLASS scores would be closer to zero. This could lead to false

negatives—cases where we are unable to detect the true signature of natural selection—but not false

positives—cases where neutral events would be confused with natural selection. For simplicity, we

chose a rudimentary model of neutral evolution (JC69). Future studies may favour a more elaborate

version that better models E. coli mutational biases. However, this is unlikely to radically change the

general trends we observe regarding gene essentiality and deleterious mutations on transcription fac-

tors (see Supplementary Note 4 in Appendix C). A final limitation of our test is that we should always

control for the number of mutations before comparing GLASS scores. This is straightforward when

working with a large number of genes, as is the case in this study. However, if one wants to compare

only a few genes, we suggest resampling an equal number of mutations before calculating GLASS

scores (see Supplementary Notes 3 in Appendix C).

7.7.3 Dynamics of gene inactivations

We observe that some genes—mainly transcription factors rather than biosynthetic genes—undergo

several independent losses across E. coli strains. But these genes remain under purifying selection

over longer time scales. The loss of a transcriptional regulator is an effective strategy for adapting to a

new niche. First because it corresponds to a large mutational target. Stated differently, a much higher

number of mutations can result in the loss of the gene rather than a change in function (Murray 2020).

Second, because it has limited collateral deleterious effects, as an entire pathway can be turned off at

once. The differential dynamic between short and long term highlights the importance of biological

trade-offs. The loss or maintenance of rpoS—the general regulator of the stress response—illustrates

the balance between growth and self-preservation (Ferenci 2005). Similarly, in vitro evolution un-

der high antibiotic pressure often results in complete loss of marR, whereas clinical strains from

antibiotic-treated patients tend to show less functional variants rather than complete losses (Praski

Alzrigat et al. 2021). This suggests that a complex environment imposes trade-offs between different

cellular functions.

The contrast between the maintenance of a gene in a species and its recurrent loss over short

periods of time signals antagonistic pleiotropy: many genes allow E. coli to travel across niches but

the exact same genes may become a burden in a specific niche (Murray 2020). Since evolution is

short-sighted, they will suffer frequent losses. As most of these specific niches—typically other organs

in extra-intestinal infections—are transient, the loss of these genes is detrimental in the long term.

These transient niche colonisations thus follow a source-sink dynamic (Sokurenko et al. 2006). For

instance, the loss of a gene during patho-adaptation leads to an evolutionary dead-end: either the

strain manages to reverse this loss and returns to the gut, or it is evolutionary dead.

A notable exception to this dynamic of loss and reversion may occur if the secondary environment

that the strain invades is not transient but stable. When a strain adapts to a stable ecological niche,

some inactivations can propagate down the phylogeny. For example, O157:H7 E. coli strains cannot
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metabolise rhamnose (Ratnam et al. 1988). This serotype lives in a particular niche as it mainly in-

habits the intestines of cattle instead of humans (Bettelheim et al. 1974). In our dataset, hundreds of

O157 and O157:H7 strains carry a A243T mutation in the rhaS gene —an activator of the L-rhamnose

operon. A243T constitutes an example of a DCA-predicted deleterious mutation able to propagate

on the phylogeny. Adaptive laboratory experiments also represent cases of colonisation of stable

niches. There again, the loss of genes involved in sugar metabolism was reported in vitro, during

the Long Term Evolution Experiment (LTEE), and in vivo, during evolution in the mouse gut ((Cooper

et al. 2001), (Barroso-Batista et al. 2014a), (Lourenço et al. 2016), (Lescat et al. 2017), (Ghalayini et al.

2019)). In both cases, the constitutive activations or inactivations of the corresponding operons were

shown to be beneficial.

7.7.4 Conclusion

In the present chapter, we introduced GLASS, a new approach to study recent selection events based

on the effect of amino-acid changes. It allowed us to detect intense purifying selection acting on es-

sential genes. It also detects recurrent inactivations occurring mainly on transcription factors. This

shows the importance of regulatory changes for local adaptation to new niches. It also demonstrates

the importance of examining low-frequency polymorphisms to capture short-term selection dynam-

ics that differ strongly from long-term dynamics. GLASS opens up new possibilities to study local

adaptations for a wide range of species. It can also be used to detect mutations that induce differen-

tial costs in different environments, with potential applications to the study of resistance to phages or

to antibiotics. GLASS could also be applied to human genetics. For example, it could be used to revisit

the notion of gene essentiality, which cannot be tested experimentally beyond the cellular level due

to ethical constraints. We therefore expect that genes expressed early in development will have very

high GLASS scores. GLASS could also be an alternative to genome-wide association studies (GWAS)

to study rare variants with detrimental effects. To summarise, approaches that combine the predic-

tion of the effect of mutations with the study of polymorphism within a species could be powerful for

studying recent evolutionary history.
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Concluding remarks

In this manuscript, I have conducted a study on the evolution of Escherichia coli by analyzing the

extensive diversity present in over 80,000 genomes of E. coli and Shigella. The advantage of working

on such a large scale is that it provides access to rare events and enables us to obtain a more compre-

hensive understanding of the natural diversity within this species. However, it is important to note

that these large samples tend to have a bias towards human isolates and clinical strains.

I have organised over 400 million coding sequences obtained from 81,440 genomes into a SQL

database. To enhance their analysis, I annotated these sequences by comparing them with sequences

in the Swiss-Prot database. Subsequently, I performed clustering of genomes based on their persis-

tent genomes, resulting in a total of 240 genome clusters, each comprising at least 5 genomes, along

with 597 genomes that were not assigned to any cluster. As a complementary step, I inferred phylo-

genies for each cluster as well as a comprehensive phylogeny encompassing all clusters. Notably, all

phylogenies were carefully adjusted to account for the influence of recombination.

One of the main objectives of my project was to explore how the diversity observed across dis-

tantly related species could shed light on the diversity observed within E. coli. To achieve this, I

employed two different modeling approaches: an independent sites approach (IND) and Direct-

Coupling Analysis (DCA). Both IND and DCA were trained on datasets consisting of distant homologs

of persistent proteins found in E. coli.

IND focuses on identifying patterns of amino-acid conservation at specific sites, whereas DCA

goes a step further by also detecting co-evolution between pairs of sites. This enables DCA to make

predictions that account for the genetic context. Notably, DCA outperforms IND in predicting both

the amino acids native to E. coli and the polymorphisms observed within this species. As a result, I

employed DCA for further analysis and demonstrated its ability to accurately model the probability

of observing a polymorphism within a given frequency range.

The better performance of DCA comes from the fact that it can capture the genetic context to pre-

dict mutation effect. Accumulating evidence suggests that the genetic context has been established

over extended periods of evolution through the accumulation of numerous small epistatic couplings.

By examining single mutations, we can readily transition to analysing the variability of amino-

acid sites. The combination of IND or DCA with the concept of Shannon entropy enables us to esti-

mate the variability of a specific amino-acid site.

Upon comparing the rates of evolution across various amino-acid sites, I shifted my focus to com-

paring the rates of evolution among different genes. To accomplish this, I developed a selection test
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called the Gene-Level Amino-acid Score Shift (GLASS), which relies on the predicted effects of amino-

acid changes. By comparing the distribution of mutation effects observed in a gene to the expected

distribution in the absence of selection, GLASS quantifies the strength of selection.

I applied GLASS to a dataset comprising 60,472 E. coli strains, thus allowing to re-examine the

longstanding debate regarding the influence of essentiality versus expression level on the rate of pro-

tein evolution. Essential genes experience strong purifying selection in the short-term, while the rate

of gene evolution is primarily determined by expression level over the long term.

GLASS also identified an overrepresentation of inactivating mutations in specific transcription

factors, including efflux pump repressors, which aligns with selection for antibiotic resistance.

My research shows that patterns of variability can be examined across a wide range of scales.

By using DCA, I was able to investigate individual mutations and their frequencies. Additionally, I

explored the variability of amino-acid sites. The introduction of GLASS provided a means to compare

the rate of evolution among different genes. Furthermore, I have also clustered genomes by similarity,

which allowed me to compare the variability in gene repertoire of different genome clusters. This

comprehensive approach enabled a thorough analysis of variability at different levels, from individual

mutations to genome-scale diversity.

Throughout this work, we consistently observe contrasting dynamics between short and long

time scales. The mutational landscape exhibits local smoothness—mutations having similar effects

across various strains of E. coli. However, globally, the landscape is rugged, with up to 50% of amino-

acid sites where mutation effect depends on the specific genetic context of the species. Interestingly,

around 30% of these sites cannot tolerate polymorphisms in E. coli but exhibit variability across dis-

tantly related species. At the gene level, our analysis using GLASS reveals that essential genes are the

primary targets of selection in the short term, while the long-term rate of gene evolution is driven

by expression levels. When constructing genome phylogenies, we also observed stark differences in

recombination patterns between short and long-term scales. Within clusters, the signature of recom-

bination is primarily concentrated around three distinct regions. However, when examining recom-

bination between clusters, it appears to be more dispersed throughout the chromosome.

These findings highlight the complex and dynamic nature of evolution, where different scales of

analysis reveal varying dynamics and patterns.

A significant aspect of this study revolves around exploring the adaptive role of gene inactivations—

with the aid of GLASS, which detects such occurrences. Once again, we observe contrasting dynamics

in the short and long term. These inactivations have emerged independently in multiple strains, sug-

gesting short-term fitness gains. However, they did not reach fixation, indicating long-term counter-

selection. It is important to note that our research primarily focused on persistent genes, which are

likely needed at some point, thereby suggesting the presence of long-term counter-selection. Fu-

ture investigations could shift their attention to studying the dynamics of gene loss and acquisition

in accessory genes. Our database can prove instrumental in this regard, as it provides a phylogeny of

strains, corrected for recombination, along with a table identifying potential pseudogenes and linking

them to the respective strains in which they were identified. An intriguing case study could involve

examining the dynamics of gene losses during the transition from a generalist and commensal E. coli

strain to a primate-restricted and intracellular Shigella pathogen.

Another potential application of the database lies in conducting a more quantitative analysis of

core and pan-genome dynamics, beyond the scope of the present manuscript. This could involve
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comparing the behavior of different clusters. One hypothesis would be that in populations with lower

effective sizes, natural selection may not suffice to retain certain beneficial genes. Consequently,

clusters with the smallest effective population sizes are expected to exhibit smaller core and persistent

genomes. Linking this analysis with the frequency of observed deleterious mutations segregating

within these clusters would also be valuable, as both phenomena are likely influenced by effective

population sizes. Another question to address when comparing cluster core and persistent genomes

is the presence of cluster’s specific genes.

By examining pan-genomes, the database can offer deeper insights into horizontal gene transfer

events, addressing questions such as: Are genes acquired from more distantly related species less

likely to be retained in E. coli? Are there specific gene categories, like those conferring antibiotic

resistance, that are more prone to acquisition or retention during evolution? Additionally, focusing

on genomic islands like the High Pathogenicity Island (HPI) would allow us to investigate insertion

sites and determine the number of independent acquisition events from other species. Comparing

these rare instances of foreign source acquisition with the dynamics of homologous recombination

that facilitate their spread across E. coli strains holds considerable promise.

By exploring these subjects, we can enhance our understanding of core and pan-genome dynam-

ics, shed light on the interplay between effective population sizes and gene retention, and gain in-

sights into horizontal gene transfer events and the factors influencing their success within E. coli.

Our work used a modeling approach, DCA, to interpret the mutation patterns we observed in E.

coli. The remarkable performance of DCA in terms of predicting polymorphisms leads us to believe

that it has potential applications in other areas. In particular, it has been proposed that it could be

used to simulate neutral evolution by accounting for epistasis (Paz et al. 2020). However, the model

of evolution proposed by Paz et al. seems somewhat simplistic as it does not consider the underlying

DNA sequence but directly simulates evolution at the protein level. In other words, it assumes that all

19 possible amino-acid mutations are equally likely to occur at a given site, disregarding the fact that

mutations requiring only one single nucleotide change (SNP) are much more likely to occur by chance

alone. Building upon this work, we can develop a more realistic model of neutral evolution that takes

into account these probabilities and utilize it to simulate evolution. Such an approach would enable

us to gain a deeper understanding of the role of epistasis in shaping the patterns of diversity observed

across various time scales.

The abundance of available genomes, the recurrent emergence of pathological clones, and the

propensity of E. coli to adapt to various environments collectively position it as an ideal species for

studying evolution. To contribute to the understanding of this species, I have constructed a large

database comprising 81,440 genomes of E. coli and Shigella and I have trained thousands of DCA

models to model the effect of mutations in the main proteins found in this species. Beyond my PhD

project, these resources will be accessible for future research in the field.
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Appendix A

Résumé long

Escherichia coli est une bactérie anaérobie facultative à Gram négatif présente dans l’intestin des hu-

mains, de nombreux vertébérés ainsi que dans le sol, l’eau et les sédiments. Depuis sa première de-

scription à la fin du XIXe siècle par le médecin bavarois Theodor Escherich, elle est progressivement

devenu un organisme modèle dans différents champs de la recherche en biologie.

Bien que vivant le plus souvent en situation de commensalisme dans l’intestin humain, E. coli

peut dans certaines situations se changer en un pathogène mortel. Il est estimé qu’environ 950,000

personnes meurent chaque année de pathologies intra et extra-intestinales à E. coli, faisant de cette

espèce la deuxième bactérie la plus mortelle et la première cause de mort associée ou attribuable à la

résistance aux antibiotiques.

Son mode de vie généraliste, caractérisé par sa capacité à s’adapter à diverses niches écologiques,

et le panel complet d’interactions qu’elle établi avec son hôte, du commensalisme voire mutualisme

jusqu’à la pathogénie facultative ou obligatoire, en font une espèce de choix pour étudier l’évolution

d’un organisme sur différentes échelles de temps.

En effet, si E. coli peut provoquer diverses infections opportunistes, les Shigella et les E. coli

entéro-invasifs (EIEC) sont, pour leur part, devenus des pathogènes obligatoires des primates. Ces

clones pathogènes d’E. coli se caractérisent par un mode de vie intracellulaire, une capacité à sur-

vivre au sein des macrophages et à induire la mort de ces derniers, avant d’infecter d’autres cellules

de l’épithélium intestinal par leur pôle basal. Ils sont apparus à de multiples reprises dans l’histoire

évolutive de cette espèce, dénotant un haut niveau de convergence. Pour déchiffrer les déterminants

de l’évolution d’E. coli, il est donc nécessaire de comprendre la structure phylogénétique de cette

espèce.

Différentes méthodes ont permis de caractériser la structure de population d’E. coli. Depuis le

sérotypage dans les années 1940, jusqu’au séquençage de génomes complets de nos jours, en passant

par l’analyse des isoenzymes par électrophorèse (MLEE), le typage génomique multilocus (MLST),

chacune a permis de gagner en résolution dans la connaissance de la structure d’E. coli. L’efficacité

de ces techniques expérimentales n’aurait pas seule suffit à caractériser la diversité de cette espèce si

elles n’avaient été adossées à la création de collections de souches dont la plus célèbre est la collection

de référence d’E. coli (ECOR).

Il est progressivement devenu clair qu’E. coli se structurait en plusieurs phylogroupes dont les

quatre principaux sont A, B1, B2 et D mais auxquels il faut ajouter les phylogroupes C, E, F, G ainsi

que certainement de futurs phylogroupes qu’il reste à découvrir. Ces phylogroupes présentent des
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caractéristiques génétiques et écologiques différentes bien que se recouvrant encore largement. Ainsi

les phylogroupes A et B1 adoptent un mode de vie généraliste et sont fréquemment retrouvés dans

l’environnement. Par comparaison, les phylogroupes B2 et D sont davantage retouvés dans l’intestin

d’un panel restreint de vertébrés. Les souches de ces phylogroupes ont également plus de chances de

s’implanter durablement, c’est-à-dire durant plusieurs semaines ou plusieurs mois, dans l’intestin

humain. Cette capacité de colonisation de l’intestin a été reliée à la présence de différents traits

tels que des facteurs d’adhérence, des systèmes d’acquisition du fer ainsi que des gènes liés au

métabolisme des sucres et des acides aminés. Au-delà de l’élaboration d’une phylogénie de l’espèce,

l’accès à des génomes complets de plus en plus nombreux a permis de mieux comprendre l’évolution

d’E. coli et de caractériser les déterminants génétiques de son adaptation à ces différentes niches

écologiques.

Si le génome d’une souche d’E. coli est en moyenne long de 5 Mb, les variations au sein de cette

espèce s’étendent sur près de 2 Mb, les phylogroupes A et B1 rassemblant de plus petits génomes que

les phylogroupes B2 et D. Par ailleurs, les Shigella perdent plus rapidement des gènes et en acquièrent

de nouveaux moins vite que les autres E. coli. Si quelques pertes de gènes spécifiques apparaissent

de manière récurrente dans tous les groupes de Shigella et d’EIEC, suggérant un rôle adaptatif pour

ces pertes, la majorité des pertes observées est sans doute liée à une moindre efficacité de la sélection

naturelle dans ces populations de taille efficaces restreintes.

Le taux de GC, le contenu en guanines et cytosines de l’ADN, est une autre statistique descrip-

tive simple des génomes. Celui-ci est très variable entre les espèces mais beaucoup moins au sein

d’une espèce, dans notre cas E. coli. Par contre, des variations en taux de GC sont visibles le long du

chromosome. En particulier, le terminus de réplication du chromosome est enrichi en adénines et

thymines. Il a été suggéré que cela pouvait refléter un moindre niveau de recombinaison homologue

dans cette région, mais la question reste sujette à débat.

Pour avoir une idée plus précise de la diversité présente chez E. coli, il faut comparer les séquences

ADN de différentes souches d’E. coli. On observe alors une divergence d’en moyenne 3% entre les

portions conservées de l’ADN mais une variabilité de 30% dans le contenu en gène. Dans les por-

tions conservées de l’ADN, la diversité se concentre autour de "bastions de polymorphismes" qui

sont sous sélection diversifiante. Les portions non-conservées du génome forment le génome acces-

soire. L’ensemble des gènes conservés entre toutes les souches d’E. coli forment le "core génome" de

l’espèce, tandis que les gènes qui sont retrouvés dans au moins une souche forment le "pan-génome".

La notion de "génome persistant" vient s’ajouter à ces deux autres définitions, elle désigne les gènes

présents dans une très grandes majorité des souches (99% ou 95% selon les choix méthodologiques

effectués) et permet une plus grande flexibilité que la notion très restrictive de core génome. Les

éléments génétiques mobiles contribuent à élargir le pan-génome d’E. coli. Ceux-ci sont certaine-

ment majoritairement délétères pour les souches, comme en témoigne la rapidité avec laquelle ils

sont perdus après acquisition. Globalement, le rôle exact du génome accessoire dans l’évolution de

l’espèce reste à déterminer. Quelle proportion des gènes observés remplissent un rôle adaptatif et

permettent d’expliquer la distribution non-aléatoire des phylogroupes dans les niches écologiques

? À l’inverse, quelle proportion de gènes reflètent une diversification selon un processus purement

neutre, voire même un parasitisme d’E. coli par des éléments génétiques égoïstes ? Ces questions

demeurent ouvertes.

Deux principaux mécanismes expliquent la diversité observée : la mutation et la recombinai-
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son. Si la mutation a longtemps été considérée comme un fardeau pour la cellule, la découverte

du rôle adaptatif des taux de mutations élevés dans certains contextes a largement remodelé notre

conception de l’évolution. La recombinaison, quant à elle, peut amener de nouveaux gènes qui vi-

ennent enrichir le pan-génome de l’espèce, phénomène désigné sous le nom de transfert horizontal

de gènes, ou remplacer une portion d’ADN par un fragment homologue, on parle alors de recom-

binaison homologue. Ce second processus peut largement modifier la structure de la population,

transformant une structure clonale en structure panmictique. Dans le cas d’E. coli il est considéré

que, bien qu’importante, la recombinaison homologue n’est pas suffisamment forte pour masquer

la structure clonale de la population. Cependant certains travaux récents remettent ce consensus

en cause et soutiennent que la recombinaison homologue est encore sous-estimée. Ils nécessitent

cependant d’être confirmés par d’autres analyses.

Une approche complémentaire à l’analyse de séquences consiste à faire évoluer cette bactérie

en laboratoire dans un environnement contrôlé. Il peut s’agir de simples flasques de milieu nutri-

tif, comme dans le cas de l’évolution à long terme d’E. coli (LTEE) initée il y a plus de trente ans par

Richard Lenski, ou d’un environnement plus complexe comme l’intestin de la souris. Ces expériences

ont contribué à répondre à certaines interrogations sur la reproducibilité de l’évolution, le rôle adap-

tatif des taux de mutation élevés, l’importance de l’épistasie—c’est-à-dire de l’interaction entre dif-

férents sites dans le génome—durant l’évolution, ou encore de l’interférence clonale—la compétition

entre mutations avantageuses. Les adaptations observées en laboratoire laissent des signatures dans

les séquences ADN des génomes et peuvent donc être analysées avec les méthodes traditionnelles

de la génétique des populations. Nous avons également atteint le point où la plus longue expérience

d’évolution à ce jour, la LTEE, atteint des échelles de temps comparables à celles de l’expansion de

certains clones pathogènes tels que ST131, ouvrant de nouvelles perspectives de recherches visant à

comparer l’évolution en laboratoire à celle en milieu naturel.

L’évolution expérimentale permet de mettre en évidence nombre de mutations adaptatives. Cepen-

dant caractériser le rôle phénotypique de ces mutations est généralement long et complexe. La con-

ception de paysages mutationnels de protéines vise à modéliser le lien entre génotype et phénotype.

L’une des plus prometteuses, le Direct-Coupling Analysis (DCA), caractérise les motifs de conserva-

tion et de corrélation entre résidus dans les homologues distants d’une même protéine. Le DCA peut

ensuite prédire l’effet d’une ou de plusieurs mutations dans un contexte génétique précis.

Les outils classiques de la génétique des populations, l’évolution expérimentale et la construction

de paysages mutationnels de protéines ont chacun contribué à éclairer différents thèmes qui seront

abordés dans le cadre de cette thèse : le rôle du métabolisme dans l’adaptation à de nouvelles niches

écologiques, la transition du commensalisme à la pathogénicité—que ce soit sur le court terme dans

le cas d’infections opportunistes par des souches commensales ou sur des échelles de temps beau-

coup plus longues avec l’émergence de clones pathogènes obligatoires tels que les Shigella et les

EIEC—mais également l’acquisition de l’antibiorésistance. Dans chaque cas, il apparaît une réelle

diversité de stratégies adaptatives avec un rôle notable des pertes de gènes, en particulier de facteurs

de transcription, dans l’adaptation.

Dans le présent manuscrit, j’étudie la diversité et l’évolution d’E. coli en m’appuyant sur une col-

lection de plus de 81,000 génomes d’E. coli et Shigella séquencés dans le monde entier. Le recours

à une telle quantité de génomes permet de détecter des événements rares et ainsi d’avoir une vi-

sion quasi-exhaustive de la variabilité naturelle de l’espèce. Il permet également de construire des

119



Chapter A. Résumé long

phylogénies offrant un très haut niveau de résolution, en particulier sur les événements les plus ré-

cents. Cela se fait au prix d’un panel de génomes nettement plus biaisé envers les isolats humains et

cliniques que certaines collections historiques plus petites mais mieux construites. Le traitement in-

formatisé de ces données n’est pas non plus aisé. En effet, beaucoup de logiciels de bio-informatique

ont une complexité quadratique qui ne leur permet pas de traiter des dizaines de milliers de génomes

à la fois.

À partir de 81,440 génomes disponibles en ligne sur Entérobase, j’ai identifié plus de 400 millions

de séquences codant pour des protéines. Une étape de clustering suivie d’un contrôle qualité m’a per-

mis de regrouper ces séquences par homologie afin d’identifier les séquences codant pour une même

protéine. J’ai également annoté ces protéines en les comparant aux séquences annotées disponibles

dans la base de données Swiss-Prot. Puis j’ai identifié les pseudogènes, en cherchant les séquences

pouvant correspondre à des fragments de séquences plus grandes. J’ai regroupé les génomes en 240

clusters construit sur la base de la similarité d’un génome persistant à 95%, 597 génomes n’ont été

attribués à aucun de ces 240 clusters. J’ai organisé dans une base de données SQL l’ensemble des

informations ainsi extraites de ces génomes.

Une application évidente et immédiate de cette base de données est l’inférence des core génomes,

pan-génomes et génomes persistants pour chacun des 240 clusters. On note, qu’à l’exception notable

de sonnei, la plupart des Shigella ont une part plus faible de gènes conservés.

J’ai construit une phylogénie corrigée par la recombinaison de chacun des 240 clusters, à l’exception

d’un cluster particulièrement large pour lequel je n’ai construit qu’une phylogénie partielle. J’ai en-

suite complété cette approche par l’inférence d’une phylogénie globale, elle aussi corrigée pour la

recombinaison, des 240 clusters. Si à court terme la recombinaison se concentre surtout autour de

trois régions sous sélection diversifiante, à long terme elle laisse une signature plus largement répar-

tie le long du chromosome sans pour autant empêcher d’inférer une phylogénie cohérente. On note

une réduction de la recombinaison autour du terminus de réplication, dans la même zone qui est par

ailleurs enrichie en adénines et thymines.

Je me suis ensuite intéressée à la possibilité de prédire et d’interpréter le polymorphisme ob-

servé chez E. coli à l’aide de paysage mutationnels. J’ai pour cela comparé deux approches : un

modèle à site indépendant (IND) qui ne capture que les motifs de conservation d’acides aminés et

le Direct-Coupling Analysis (DCA) qui ajoute à ceux-ci des interactions entre paires de résidus. En

entraînant ces modèles sur des espèces distantes d’E. coli, j’ai montré qu’ils permettaient de prédire

à la fois les acides aminés natifs de cette espèce et les polymorphismes qui sont observés dans plus

de 60,000 souches d’E. coli. Le DCA effectuant à chaque fois de bien meilleures prédictions qu’IND,

cela souligne l’importance de prendre en compte le contexte génétique pour prédire l’effet d’une

mutation. Celui-ci se construit progressivement par une somme de multiples interactions faibles en-

tre résidus. Cela se traduit par un paysage mutationnel qui est localement lisse mais globalement

rugueux, l’effet d’une mutation étant très similaire dans deux souches d’E. coli mais nettement plus

variable dans le contexte génétique de deux espèces plus distantes.

Au-delà de simplement prédire la possibilité d’observer ou non un polymorphisme chez E. coli,

j’ai montré que le DCA pouvait correctement prédire la probabilité d’observer un polymorphisme

donné à une certaine fréquence au sein de cette espèce. Plus le DCA prédit une mutation délétère,

moins elle a de chance d’être observée à forte fréquence, un effet attendu de la sélection naturelle. De

manière plus intéressante, un polymorphisme prédit délétère n’a pas la même chance d’être observé
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à une fréquence donnée dans tous les clusters. En particulier, les polymorphismes prédits délétères

sont nettement moins bien filtrés dans les clusters de Shigella en comparaison des autres E. coli. Cela

découle certainement d’une taille efficace de population plus faible associée au basculement vers un

mode de vie intra-cellulaire, l’efficacité de la sélection naturelle étant directement corrélée à la taille

efficace de population.

L’analyse de la diversité des mutations possibles à un locus donné mène naturellement à s’intéresser

à la variabilité des différents résidus d’une protéine. Une approche couplant la notion d’entropie

de Shannon avec les modèles IND et DCA permet d’estimer la variabilité d’un site donné à travers

des espèces distantes ainsi qu’au sein d’un fond génétique particulier. Il en ressort qu’environ 10%

des résidus d’une protéine sont conservés à travers des espèces distantes ainsi que chez E. coli, sans

doute car ils sont essentiels à la fonction de la protéine, tandis qu’environ 60% des sites fixent des

acides aminés différents d’une espèce à l’autre et tolèrent des polymorphismes chez E. coli. Les 30%

restants correspondent à des sites sur lesquels on observe différents acides aminés d’une espèce à

l’autre mais où E. coli ne tolère pas de polymorphismes. Ce sont des sites fortement contraints par

une multitude d’interactions épistatiques qui limitent leur variabilité dans un contexte génétique fixé.

Ils peuvent cependant accumuler des différences sur des échelles de temps longues en co-évoluant

avec les autres résidus de la protéine.

J’ai conclu mon travail en changeant d’échelle pour ne plus comparer la vitesse de divergence des

résidus au sein d’une protéine mais étudier le rythme auquel différentes protéines évoluent. Pour

cela, j’ai développé un test nommé GLASS (Gene-Level Amino-acid Score Shift). Celui-ci compare

la distribution des effets prédit par le DCA des mutations non-synonymes observées sur un gène à

l’attendu en absence totale de sélection. Cela permet de quantifier la sur ou sous-représentation de

polymorphismes bénéfiques, neutres ou délétères observés sur un gène au sein d’une population. En

combinant GLASS à des approches de génétique des populations plus traditionnelles, j’ai pu retrou-

ver un résultat classique : les gènes les plus fortement exprimés fixent moins de mutations sur le long

terme. Cependant, j’ai montré que cette dynamique contrastait avec celle observée à court terme.

En particulier, sur le court terme ce sont les gènes essentiels qui sont sous la plus forte pression de

sélection purifiante. On observe aussi sur ces échelles de temps que certains facteurs de transcrip-

tion accumulent des mutations délétères, suggérant que celles-ci sont provisoirement avantageuses

pour s’adapter à des conditions environnementales spécifiques. Ainsi, on observe de nombreuses

mutations délétères au niveau de répresseurs de pompes à efflux, un phénomène qui pourrait ex-

pliquer une émergence rapide de certaines résistances aux antibiotiques. Ces mutations demeurent

cependant à faible fréquence, suggérant qu’elles sont contre-sélectionnées à plus long terme.

En conclusion, cette thèse montre l’intérêt de coupler l’analyse de grandes bases de données de

génomes à des approches de modélisation pour comprendre les dynamiques d’évolution à l’œuvre au

sein d’une espèce. Ces dynamiques peuvent fortement contraster avec celles observées à plus long

terme lors de la divergence entre les espèces, elles méritent donc d’être étudiées spécifiquement.

Pour y parvenir, j’ai du analyser des dizaines de milliers de génomes que j’ai organisés dans une base

de données, base de données qui pourra servir dans des travaux de recherche futurs sur la diversité

d’E. coli.
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The following article entitled ‘Deciphering polymorphism in 61,157 Escherichia coli genomes via

epistatic sequence landscapes.’ was written by:

• Lucile Vigué

• Giancarlo Croce

• Marie Petitjean

• Etienne Ruppé

• Olivier Tenaillon

• Martin Weigt

and published on 12th of July 2022 in Nature Communications.
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across 60,472 Escherichia coli strains

The following article entitled ‘Predicting the effect of mutations to investigate recent events of selec-

tion across 60,472 Escherichia coli strains.’ was written by:

• Lucile Vigué

• Olivier Tenaillon

and accepted for publication in the Proceedings of the National Academy of Sciences.
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The following article entitled ‘A Microbiota-Dependent Response to Anticancer Treatment in an In

Vitro Human Microbiota Model: A Pilot Study With Hydroxycarbamide and Daunorubicin.’ was writ-

ten by:

• Claire Amaris Hobson

• Lucile Vigué

• Mélanie Magnan

• Benoit Chassaing

• Sabrine Naimi

• Benoit Gachet

• Pauline Claraz

• Thomas Storme

• Stéphane Bonacorsi

• Olivier Tenaillon

• André Birgy

and published on 1st of June 2022 in Frontiers in Cellular and Infection Microbiology.
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The following article entitled ‘MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to

study microbiota-dependent response to antibiotic treatment.’ was written by:

• Claire Amaris Hobson

• Lucile Vigué

• Sabrine Naimi
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