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Abstract
L’émergence de nouveaux pathogènes est une préoccupation importante pour les au-
torités de santé publique. Dans le contexte de la pandémie de COVID-19, le SARS-CoV-
2 et ses variants successifs ont suivi le même schéma. Un nouveau virus émerge dans
un pays, se dissémine à l’échelle internationale, et crée une augmentation rapide des
cas à travers le monde. Pour faire face à cette situation, il est important de surveiller
l’épidémie, déchiffrer les données de surveillance incomplètes ou incohérentes et de
rapidement mettre en place des interventions. Les modèles mathématiques peuvent
aider à interpréter cela. Dans cette thèse, nous nous intéressons aux deux aspects. Dans
un premier temps, nous avons développé un modèle mathématique pour comprendre
la surveillance et les facteurs de la propagation épidémique qui concourent aux don-
nées observées. Nous avons reconstruit rétrospectivement la dissémination du variant
Alpha durant l’automne 2020 à partir de données de séquençage et de trafic aérien.
Dans un deuxième travail, nous nous sommes concentrés sur la partie intervention.
Nous avons utilisé un modèle agent pour quantifier l’impact épidémiologique d’une
vaccination réactive ciblant entreprises et écoles où les cas sont détectés. Nous avons
testé la capacité de cette stratégie à mitiger l’augmentation générale des cas et à limiter
la propagation d’un nouveau variant.
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Introduction

La pandémie de Covid-19 s’est caractérisée par des vagues successives de cas.
Qu’il s’agisse de la souche historique apparue en Chine ou des variants ultérieurs, le
processus de dissémination a été le même : un nouveau virus/variant émerge dans un
pays, se propage à l’échelle mondiale et déclenche une augmentation rapide du nom-
bre de cas dans le monde entier. À chaque étape de la dissémination, il est essentiel
de surveiller l’évolution de l’épidémie afin d’obtenir les informations nécessaires pour
planifier la réponse appropriée. Les modèles mathématiques sont des outils essentiels
à cet égard. Ils peuvent d’abord aider à interpréter les données provenant de systèmes
de surveillance hétérogènes. Ils permettent de reconstituer la propagation du virus
en estimant des variables non accessibles directement. Toutefois, il ne suffit pas de
comprendre la situation épidémique. Les modèles peuvent être utilisés pour simuler
différentes interventions in silico. Cela permet de tester différents scénarios et de quan-
tifier le rapport coût-bénéfice de ces interventions. Les décideurs politiques peuvent
ensuite utiliser les résultats pour mettre en œuvre des mesures de santé publique.

Depuis le début de la pandémie de COVID-19, de nombreux cas n’ont pas été
détectés par les systèmes de surveillance pour plusieurs raisons. Les symptômes clin-
iques étaient aspécifiques et pouvaient facilement être confondus avec ceux d’autres
maladies respiratoires telles que la grippe. De nombreux cas sont restés totalement
asymptomatiques. En outre, la progression de la maladie comportait une phase présymp-
tomatique au cours de laquelle les individus étaient infectieux mais ne présentaient au-
cun symptôme, ce qui retardait la détection. Pour des raisons pratiques, il était difficile
d’assurer une surveillance virologique précise. Au début de la pandémie, la détection
des cas reposait uniquement sur les symptômes cliniques jusqu’à ce que les premiers
tests PCR soient disponibles à la mi-janvier 2020. Si la capacité de détection des cas
de COVID-19 s’est accrue tout au long de l’année 2020, l’émergence de nouveaux vari-
ants a posé de nouveaux défis, car leur détection et leur suivi ont nécessité la mise en
œuvre de systèmes de séquençage. Ces systèmes exigent des ressources et des infras-
tructures moins disponibles dans les pays à faible revenu, ce qui a entraîné de fortes
hétérogénéités dans la surveillance virologique mondiale.

Dans un premier temps, les interdictions de voyager visaient à contenir le virus
à sa source et à empêcher son importation. En janvier 2020, tous les voyages à des-
tination et en provenance de Wuhan ont été interdits , et une approche similaire a
été utilisée avec l’émergence de nouveaux variants. De nombreux pays ont restreint
les voyages en provenance du Royaume-Uni, de l’Afrique du Sud et de l’Inde, où les
variants Alpha, Beta et Delta sont apparues . Des mesures telles que la surveillance
active ou la recherche des contacts ont tenté de prévenir les cas importés de SRAS-
CoV-2 et de variants successifs. Lorsque cela a été possible, la vaccination réactive a
également été utilisée pour empêcher la propagation du variant Delta. Cependant, en
raison de la sous-détection des premiers cas, le virus (ou les nouveaux variants) s’est
propagé silencieusement et a déclenché des épidémies locales dans d’autres pays. Les
autorités étaient ensuites contraintes de mettre en œuvre des mesures d’atténuation
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Introduction

conçues pour freiner la transmission locale : confinement, couvre-feux, distanciation
sociale, recherche des contacts et, lorsqu’elle est devenue possible, vaccination. Dans
cette thèse, j’ai réalisé un travail de modélisation portant sur les deux faces de la mé-
daille : la surveillance et l’intervention. Il est tout d’abord nécessaire de comprendre
la situation épidémique pour réagir correctement à la propagation d’un nouveau virus
ou d’un nouveau variant. Pour cela, il faut être capable d’interpréter correctement les
données de surveillance.

La pandémie de COVID-19 s’est accompagnée d’une intense production scien-
tifique , dans laquelle la modélisation a joué un rôle important. La modélisation a été
utilisée pour l’évaluation de l’épidémie, l’estimation de paramètres épidémiologiques
clés (nombre de reproduction, temps de génération, part des asymptomatiques...), la
compréhension de l’épidémie en temps réel, la prévision de son déroulement à plus
long terme, et l’évaluation de l’efficacité des stratégies d’intervention. En fonction de
l’objectif spécifique, les études de modélisation peuvent être prospectives ou rétrospec-
tives, théoriques ou fondées sur des données. Pendant une pandémie, les résultats de
la modélisation doivent être concis et exploitables, adaptés aux besoins spécifiques des
décideurs. En outre, les modèles doivent être adaptés aux données disponibles pour
la paramétrisation et la validation . Les efforts de modélisation déployés pendant la
pandémie de COVID-19 ont utilisé des cadres élaborés pour des épidémies antérieures
et adaptés à la situation actuelle. Les modèles de métapopulation ont été largement
utilisés pour étudier la propagation d’un nouveau virus ou d’un variant. Ces mod-
èles décrivent la propagation du virus à travers des sous-populations interconnectées
dont l’échelle peut aller de celle d’une ville à celle d’un pays ou d’un continent. Le
type de connexions (trafic aérien, trafic routier, etc.) dépend du problème spécifique et
du modèle utilisé. L’utilisation de modèle compartimentaux et de modèles agent ont
également largement contribué à évaluer l’efficacité de différentes mesures.

Dans le premier article présenté dans cette thèse [1], nous avons étudié la prop-
agation internationale du variant Alpha à partir du deuxième semestre de 2020. Nous
avons développé un modèle de propagation internationale utilisant des données de
trafic aérien auquel nous avons ajouté une partie sur la détection. Pour cela, nous
avons utilisé des métadonnées des séquences soumises sur la plateforme GISAID ([2])
(pays de séquençage, date de collecte, date de soumission à GISAID). En ajustant les
dates de premières soumissions dans différents pays ainsi que la date de collecte asso-
ciée, nous avons estimé la date de première introduction du variant, et donc le temps
de circulation silencieuse. Nous avons pu montrer que les mesures de restriction
du trafic international étaient peu efficaces pour empêcher le variant de se propager
car mises en place trop tard. Néanmoins, des mesures de mitigation locales peuvent
freiner l’importation du variant.

Dans le deuxième article présenté dans cette thèse ([3]), nous nous sommes con-
centrés sur la partie intervention. Nous avons utilisé un modèle agent pour étudier
la faisabilité d’implémenter une stratégie de vaccination réactive face à l’arrivée d’un
nouveau variant.

Notre étude est calibrée sur une ville française de taille moyenne (Metz) pendant
la période d’arrivée du variant Delta au début de l’été. La population synthétique est
modélisée par un réseau multicouche dynamique qui représente les contacts entre in-
dividus dans cinq lieux différents (lieux de travail, transport, communauté, école et
foyers) et prend en compte les données réelles fournies par l’Insee (nombre et taille
des foyers, des écoles, des entreprises. . . ), le nombre de contacts moyen entre individus
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([4]) et l’impact des mesures de distanciation sociale ([5]). Nous avons également in-
troduit les échelles de temps pertinentes : temps pour les symptômes de se déclarer,
temps pour détecter un cas, délai pour détecter les contacts, pour acheminer les vac-
cins. . . Nous avons modélisé l’état des individus par un modèle compartimental qui
prend en compte la vaccination.

Nous avons choisi d’étudier ici une vaccination réactive qui cible les lieux de tra-
vail et les écoles. Quand un cluster est détecté, les personnes travaillant dans l’entreprise,
l’école ou l’université sont vaccinées (si elles le désirent) ainsi que les personnes vivant
avec elles. Nous avons comparé cette stratégie avec des vaccinations non réactives
(soit de masse, soit ciblant les lieux de travail, les écoles ou les universités). Nous
avons montré que, dans la plupart des scénarios, la vaccination réactive était plus per-
formante que les stratégies non réactives pour atténuer l’épidémie à nombre égal de
doses vaccinales. Une approche combinée, avec une vaccination de masse et une vac-
cination réactive, était également plus efficace que la seule vaccination de masse. Nous
avons testé l’impact des paramètres d’entrée sur l’efficacité de la vaccination réactive
afin de comprendre dans quelle situation cette stratégie de vaccination était indiquée.
Dans l’ensemble, les paramètres affectant le nombre de personnes vaccinées autour
d’un cas ont un impact plus important sur l’efficacité de la vaccination réactive. Par
exemple, si le nombre de personnes vaccinées est élevé dès le début de la simulation,
il y aura moins de candidats à la vaccination réactive autour d’un cas détecté. Dans
ce cas, la vaccination réactive sera moins avantageuse que lorsque moins de person-
nes sont initialement vaccinées. Inversement, si l’on modifie le nombre de reproduc-
teurs, il y aura moins de candidats à la vaccination réactive autour d’un cas détecté.
L’immunité naturelle au départ ou la réduction des contacts en raison du télétravail
ou de la limitation des activités sociales n’ont eu que peu d’impact sur l’avantage re-
latif de la vaccination réactive. L’absorption du vaccin a eu un impact important sur
l’efficacité de la vaccination réactive lorsqu’elle vise à la fois l’atténuation et le contrôle
de la maladie.
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Abstract
Emerging pathogens pose significant challenges to public health authorities. In the
context of the COVID-19 pandemic, the SARS-COV-2 and the variants of concern fol-
lowed a similar pattern. A new virus emerged in one country, spread globally, and then
triggered a rapid surge in cases worldwide. To deal with this situation, it is critical to
monitor the epidemic, decipher incomplete and incoherent data, and rapidly design in-
terventions. Mathematical models can help interpret heterogeneous surveillance data
and inform the design of interventions. In this thesis, we addressed both aspects. First,
we developed a mathematical framework to understand how surveillance and epi-
demic drivers concur in shaping observations. We retrospectively reconstructed the
international spread of the Alpha variant in the Fall of 2020 from sequencing and air
travel data. In a second work, we focused on intervention. We proposed an agent-
based model to quantify the epidemiological impact of a reactive vaccination strategy
targeting workplaces and schools where cases are detected. We tested the effective-
ness of this strategy to mitigate a general rise in cases and to limit the spread of a new
variant.
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Preface

The Covid-19 pandemic has been characterised by successive waves of cases.
Whether it is the original strain that emerged in China or the subsequent variants, the
pattern has repeated itself: a new virus or variant emerged in one country, spreads
globally, and then triggered a rapid surge in cases worldwide. At each stage of the
dissemination, it is crucial to monitor the epidemic unfolding to get the necessary in-
formation to plan tailored interventions. Mathematical models are essential tools in
this effort. Appropriate models help interpret the data coming from heterogeneous
surveillance systems. They allow for reconstructing the virus spread by inferring un-
seen variables. However, understanding the epidemic situation is not enough. Models
can be used to simulate different interventions in silico. This allows for the testing
of various scenarios and quantifying the cost-benefit balance of these interventions.
Policymakers can then use the results to implement public health measures.

Since the onset of the COVID-19 pandemic, many cases have gone undetected by
surveillance systems for several reasons. Clinical symptoms were aspecific and could
easily be mistaken for those of other respiratory illnesses such as influenza. Many
cases remained entirely asymptomatic. In addition, the progression of the disease fea-
tured a presymptomatic phase during which individuals were infectious but displayed
no symptoms, delaying the detection. Ensuring massive virological surveillance was
challenging for practical reasons. Early in the pandemic, case detection only relied on
clinical symptoms until the first PCR tests became available in mid-January 2020 [1].
While the capacity to detect COVID-19 cases increased throughout 2020, the emergence
of new variants posed new challenges as their detection and monitoring required the
implementation of sequencing systems. These systems demanded resources and in-
frastructures that were less available in low-income countries, which caused strong
heterogeneities in global virological surveillance [2].

Initially, travel bans aimed to contain the virus at its source and prevent impor-
tation. In January 2020, all travel to and from Wuhan was prohibited [3] and a similar
approach was used with the emergence of new variants. Many countries restricted
travel from the UK, South Africa, and India, where Alpha, Beta, and Delta variants
emerged [4]. Measures such as active surveillance or contact tracing attempted to pre-
vent imported cases of SARS-COV-2 and successive VOCs. Once it was possible, re-
active vaccination was also used to prevent the spread of the Delta variant. However,
due to the underdetection of initial cases, the virus or the new variant silently spread
and sparked local outbreaks in other countries. Consequently, authorities were forced
to implement mitigation measures designed to curb local transmission - lockdowns,
curfews, social distancing, contact tracing and, when available, vaccination.

In this thesis, I carried out modelling work dealing with both sides of the medal:
monitoring and intervention. It is first necessary to understand the epidemic situation
to properly respond to the spread of a new virus or variant. This requires the ability to
interpret surveillance data correctly. In the first part of this thesis, we focused on this
aspect. We retrospectively analysed the spread of the Alpha variant out of the UK [5].
We sought to relate the observed invasion to the actual one and quantify the detection
delays caused by the limited and heterogeneous surveillance. In the second part of

1



Preface

this thesis, we focused on assessing an intervention measure to contain and mitigate a
new variant once it is detected [6]. In particular, we studied the reactive vaccination.
We have developed an agent-based model to quantify the potential of this strategy to
mitigate the epidemic and limit introductions to spread locally further. We did this
study as the vaccination campaign unfolded in the first semester of 2021 to support
public health authorities’ recommendations [7].

In Chapter 1 , I provide an overview of the epidemiological context: how SARS-
CoV-2 emerged in China in 2019 and subsequently spread worldwide. I discuss new
variants’ emergence, dissemination, and impact on the pandemic dynamics. Then, I
examine how authorities have implemented surveillance systems to detect new out-
breaks or the arrival of a new variant. I further explore the measures implemented to
contain the spread of a new virus or variant or mitigate its impact once established.

In Chapter 2, I review models used during the COVID-19 pandemic. I first focus
on the dynamical models used to study the early international spread of SARS-COV-
2 and the subsequent emergence and spread of new variants. Secondly, I provide an
overview of different modelling frameworks used to quantify the effectiveness of in-
terventions. I present modelling frameworks developed before the pandemic and how
they were used for SARS-COV-2.

In Chapter 3, I present the retrospective study on the spread of the Alpha variant
during its emergence in the second half of 2020. I first introduce the data, including
metadata from sequences submitted to GISAID and air travel data. By comparing them
with other studies, I show why these surveillance data suggested the existence of silent
spread. Then, I present the results published in [5]. In this study, we reconstructed the
silent spread of the Alpha variant and quantified its duration. We then investigated
the factors that contributed to this silent circulation. Finally, we simulated the local
spread of the Alpha variant in six countries with two different models [8] [9, 10, 11].
We recovered the Alpha frequency obtained in the national investigation. These results
provided a validation of our model.

In Chapter 4, I present the results of our study on reactive vaccination, published
in [6]. First, I discuss the opportunities and challenges of reactive vaccination, drawing
on historical examples. Then, I present the agent-based model used in our analysis. I
detail the framework that produced a synthetic population from demographic and cen-
sus data and how we used it to study reactive vaccination. We conducted this study in
the context of a rise in cases caused by the importation of the Delta variant in France.
We quantified the ability of reactive vaccination to limit the initial spread of the vari-
ant. We also explored the ability of this strategy to mitigate a widespread epidemic.
We tested different scenarios and examined the influence of various factors (initial inci-
dence, population immunisation, social distancing measures). We compared this strat-
egy to mass and other targeted vaccination strategies.

In the conclusion, I draw conclusions to summarise the results presented in this
thesis and discuss potential avenues for further analysis to complement this work.
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Chapter 1

Covid-19 context: epidemic
dynamics, surveillance and
intervention.

In this chapter, I bring an overview of the epidemiological context. I discuss the
general dynamic of the spread of Sars-Cov-2 and the different variants. I also present
how countries have implemented monitoring systems and undertaken efforts to curb
the spread of the virus.

1.1 Chronology of COVID-19 invasion.

1.1.1 Coronavirus disease 2019.

COVID-19 was an infectious disease caused by the Sars-Cov-2 virus, mainly
transmitted through respiratory droplets during close contact between individuals and
via aerosols [12, 13]. It was characterised by symptoms common to other respiratory
illnesses [13], including fever, fatigue, cough, sore throat, and difficulty breathing. The
illness varied in severity, from completely asymptomatic cases to severe pneumonia
necessitating hospitalisation, sometimes in intensive care units, and even leading to
death. Analyses of early cases in Wuhan revealed that 13.8% were severe, with 6.1%
classified as critical [13]. The probability of developing severe symptoms increased
with age and the presence of comorbidities (hypertension, diabetes, cardiovascular
disease, chronic respiratory disease, or cancer). An analysis of reported cases in France
[14] estimated that 2.9% of infected cases required hospitalisation, with a 0.5% fatal-
ity rate. This fatality rate varied nearly 1,000-fold by age, ranging from 0.001% for
individuals under 20 to 8.3% for those over 80.

The pandemic initially emerged in China in Wuhan and spread globally in early
2020. The first recorded patient was hospitalised with pneumonia on December 12,
2019 [15]. By January 30, 2020, the World Health Organization (WHO) confirmed 7,818
cases worldwide, with 82 cases in 18 countries outside China [16]. On March 11, 2020,
WHO declared COVID-19 as a pandemic [16]. The first case was reported in France on
January 26, 2020 [17, 18]. The pandemic’s progression has been marked here by suc-
cessive waves of infections [19]. The first wave occurred in the spring of 2020, curved
by the lockdown, followed by low virus circulation in the summer. A resurgence in
early fall 2020 marked the onset of a second wave, peaking in early November and
sustaining transmission throughout winter. This last dynamic resulted from a series of
restrictions during the autumn (closure of bars and public places, followed by curfews
and lockdown), combined with the emergence of the Alpha variant, which was more
transmissible. A third wave occurred during spring 2021 with the emergence of the
Delta variant. In the following months, as the vaccination campaign was ramping up,
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social distancing measures were gradually relaxed. In January 2022, the emergence of
the Omicron variant triggered a new wave of cases.

1.1.2 Propagation of Sars-Cov-2 across the globe.

After emerging in Wuhan, SARS-CoV-2 spread across China and other conti-
nents [18, 20, 21]. Different studies suggested that the spread of SARS-CoV-2 was
largely mediated by international travel. At the within-country scale, the analysis of
the spatial distribution of cases detected around Wuhan showed that the main factor
in the spread of the epidemic was the flow of population from Wuhan [20]. The recon-
struction of the virus dissemination based on international travel data gave consistent
results with phylogenetic analyses [22, 23, 24]. In January, researchers used air traffic
data to Europe to estimate the risk of Covid-19 importation [25]. Their findings were
consistent with the epidemic situation observed a few weeks later. In particular, based
on airline traffic data, they estimated that the UK, Germany, France, Italy and Spain
faced the highest risk of importation in Europe. Indeed, these countries were the first
to report clusters [26]. Combining phylogenetic analysis, international traffic data and
analysis of imported cases allowed researchers to reconstruct the initial propagation
of SARS-COV-2 from Wuhan. The international dissemination was found to occur in
two phases [21, 22]. During the first phase, cases were exported from Wuhan to cities
across Europe, Asia and North America [21, 23]. Containment measures and travel
bans implemented in China in late January drastically declined exportation [17, 18].
However, most of the cases exported during this first phase went undetected. If 288
cases and 42 clusters were identified outside of China between January 3rd 2020 and
February 13th 2020, between 36% and 65% of imported cases until mid-February may
have gone undetected [18]. Then, cases continued to spread from countries outside of
China silently. Europe became the main epicentre of the epidemic in February 2020
[22], fueling a second phase of the global dispersion of the virus to the USA and other
countries [23].

1.1.3 Variants of Concern.

The emergence of new variants contributed to shaping the dynamic of the pan-
demic. Since SARS-CoV-2 is an RNA virus [27], it undergoes frequent mutations. Many
of these mutations were found in the Spike glycoprotein. Some of them resulted in
phenotypic changes, altering the virological and epidemiological characteristics of the
virus (new strains). Some of these mutations provided an increased transmissibility or
an immune escape. Various classification systems were used to identify new variants.
The Pango Lineage system [28] classified variants based on lineages and sub-lineages.
This classification relied on the variant’s phylogenetic tree. Lineages were named us-
ing a prefix with a letter (B or BA) followed by a number (.1 or .1.1.5) with additional
numbers added to the nomenclature for sub-lineages. Several surveillance organisa-
tions, including the CDC [29], ECDC [30], and WHO [31], employed a classification
system based on the level of concern associated with the lineage: Variant of High Con-
sequences (VOHC), Variant of Concern (VOC), Variant of Interest (VOI), and Variants
Being Monitored (VBM) [19, 29]. A VOHC had clear evidence that prevention mea-
sures or medical countermeasures had significantly reduced effectiveness relative to
previously circulating variants. This includes failure of diagnostic tests, a significant
reduction in vaccine effectiveness, a reduced susceptibility to therapeutics or a higher
hospitalisation rate. A VOI was a variant that exhibited a mutation known or predicted
to change its characteristics and was likely to impact public health (increased severity,
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reduced treatment effectiveness). When the correlation between the new phenotype
and the epidemiological impact had been demonstrated, the VOI was classified as a
VOC. VBM was the lowest level of severity of monitored variants. This includes vari-
ants with possible impact on public health based on genomic data or former VOI/VOC
not circulating anymore.

As of May 2021, WHO has used a nomenclature based on Greek letters to facil-
itate communication about the most monitored variants (Alpha, Beta, Gamma, Delta,
Omicron) [32].

1.1.4 Dissemination of Variants of Concern.

Several VOCs have emerged throughout the pandemic, appearing in one coun-
try and spreading globally. Some have replaced previous variants, while others coex-
isted [21]. The first variant, retrospectively identified, emerged in January 2020, with a
mutation at the D614G site [21, 33] and was associated with increased transmissibility
during the surge of cases in Europe in early 2020 [33].

The Alpha variant (B.1.1.7) was initially detected in the United Kingdom in late
September 2020 [30, 34], exhibiting increased transmissibility compared to the histor-
ical strain [21, 35, 36]. The Beta variant (B.1.351) was first detected in early October
2020 in South Africa [30, 34], and it showed both increased transmissibility and im-
mune evasion [21, 37]. The Gamma variant (P.1) was first detected in Brazil in Decem-
ber 2020 [30] and exhibited immune escape [21]. The Delta variant (B.1.617.2), initially
detected in India in March 2021 was more transmissible and showed immune escape
[30]. The Omicron variant (B.1.1.529), first identified in South Africa in late 2021 [30],
exhibited higher transmission and immune evasion [30]. It gradually replaced earlier
variants. Phylogenetic modelling of sequenced viruses worldwide has enabled the re-
construction of the historical spread of different variants across the globe [38, 39, 40,
41]. The initial emergence of the first three VOCs (Alpha, Beta, and Gamma) led to their
simultaneous circulation, replacing the historical strain. In this context, the countries
of origin (the UK for the Alpha variant, South Africa for the Beta variant, and Brazil
for the Gamma variant) served as the primary source of case importation into other
countries during the initial phase. The Alpha variant initially disseminated from the
UK to Europe, to Asia and North America, where it subsequently fueled the epidemic.
Similarly, the Beta variant first spread from South Africa to North America, and then
to Europe, and Asia by the end of 2020. Asia became, after that, a secondary source of
this variant in April 2021. Meanwhile, the Gamma variant remained largely confined
to South America until its exportation to other continents around May 2021. In the
second quarter of 2021, the Delta variant replaced these three VOCs [38]. After causing
a large outbreak in India in March 2021 [41], the Delta variant spread globally. Unlike
previous variants, India was not the major source of importation of the Delta variant.
Less than 15% of all introductions to other countries were attributed to India, other
countries rapidly acting as secondary sources [38]. The same pattern was observed for
the two lineages of the Omicron variant (BA.1 and BA.2) after their emergence in South
Africa. After one week of global dissemination, countries outside of South Africa were
already the source of importation [38]. Data from sequencing obtained through the
Flash Surveys conducted by Santé Publique France [19] have revealed four waves of
variants in France (Figure 1.1), playing a critical role in the dynamic of the epidemic.
The historical strain dominated throughout 2020. The first cases of Alpha variants
were detected in the last days of December 2020. In the following months, an increase
in cases occurred despite the enforcement of stringent measures. Curfews and social
distancing helped to limit the spread of the historical strain but were not strong enough
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to contain the exponential rise in cases caused by the new variant [10]. This propaga-
tion led to a plateau of cases, followed by a new wave. In April 2021 the Alpha variant
accounted for over 80% of sequenced cases. Then, it was progressively replaced by the
Delta variant in June 2021 (see Figure 1.1). From the December 6, 2021 survey, the Omi-
cron variant gradually replaced the Delta variant and represented 100% of sequenced
cases in surveys from February 14, 2022.

FIGURE 1.1: Evolution of the pandemic. The black line (right y-axis) represents the recorded
incidence in France. Values are extracted from French government dashbord [42]. Coloured

bars represent the number of sequences submitted to GISAID by Variant of Concern [43].

1.2 Response to the epidemics of Sars-Cov-2 and VOCs.

1.2.1 Monitoring of cases and detection of new outbreaks.

Following the emergence of SARS-CoV-2 in China in late 2019, other countries
worldwide implemented strategies to detect imported cases. In Europe, the ECDC and
the WHO regional division recommended that European countries report all detected
cases based on WHO criteria [26]: a confirmed case by RT-PCR regardless of symp-
toms or a suspected case with a negative laboratory test. The investigation of early
cases revealed the existence of clusters in France and Germany. Subsequently, various
surveillance systems were established with different objectives [44, 45]: following the
virus spread, conducting virological surveillance, identifying at-risk groups, monitor-
ing the impact on healthcare systems, and assessing the effects of mitigation measures.
Genomic surveillance of SARS-CoV-2 has resulted in unprecedented sequencing cov-
erage. Since the onset of the pandemic, over 16 million SARS-CoV-2 sequences have
been collected and submitted to the GISAID platform [43]. However, sequencing cov-
erages varied over time and between countries. Countries with lower sequencing ca-
pacity may have identified a new variant with a delay of several weeks or months [46].
French authorities, notably Santé Publique France (SPF), rapidly established surveil-
lance of variants circulation in France, aiming at achieving two primary objectives. The
first objective was to continuously measure the relative prevalence of different variants
within the French population in real-time. The aim was to understand the epidemic
situation and model variants’ impact on the overall epidemic dynamics. The second
objective was the early identification of variants of interest.

The first step of variant detection was screening [19]. When a COVID-19 case
was confirmed via RT-PCR, screening could rapidly identify specific known mutations
within 24 hours. Full genome sequencing of the viral genome allowed for a more com-
plex genetic analysis, capable of detecting any variant, even unknown ones. Unlike
screening, however, this method yielded results within a timeframe ranging from one
to two weeks. This sequencing served three distinct purposes:
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- Representative Sequencing: The goal was to obtain a representative sample of
variant diversity within a target population through regular Flash Surveys. These
flash surveys were coordinated by the EMERGEN consortium [47, 48], gathering mul-
tidisciplinary experts to roll out a nationwide genomic infection surveillance system.
These surveys involved a network of public and private laboratories capable of using
Next Generation Sequencing (NGS) techniques to fully sequence detected SARS-Cov-2
cases. Ces enquêtes Flash ont été mises en place pour cartographier à un instant donné
les variants du SARS-CoV-2 circulant en France. In the first two surveys (January 7-8,
2021, and January 27, 2021), only samples previously screened as Variants of Concern
were sequenced. Subsequent surveys included sequencing from a random sample of
SARS-CoV-2 positive samples, regardless of the screening result. To maintain sample
representativeness, the samples were not drawn from cluster investigations.

- Targeted Sequencing: The objective was to perform more comprehensive and sys-
tematic sequencing within a specific target population, such as severe hospital cases,
immunocompromised patients, or treatment failures.

- Interventional Sequencing: This reactive sequencing addressed a specific local sit-
uation, such as a rapid increase in cases or hospitalisations, to detect potential clusters
of an emerging variant.

1.2.2 Containment measures.

Just after the emergence of SARS-CoV-2 or a new variant, the primary goal of
health authorities was to contain the epidemic at its source and prevent the impor-
tation of cases. On January 23, 2020, Chinese authorities banned all travel from and
to Wuhan to prevent the spread of the novel Sars-Cov-2 to other provinces of China
[3]. In parallel, many other countries imposed travel reductions from China to prevent
the importation of cases. Many airline companies limited or suspended their flights to
China [17]. With the emergence of new variants, a travel ban from the source coun-
try was also used to prevent importation in other countries. In early December, many
European countries banned travel from the UK after the Alpha variant emergence [4].
The same restrictions were applied to South Africa for the Beta and Omicron variants
[49] and to India for the Delta variant [50]. Strict travel bans were combined with other
restrictions on travellers such as quarantine and screening [51]. The effectiveness of
these measures was limited. Studies of past epidemics have already shown that re-
ducing air traffic has a limited impact on the spread of a virus. In the case of H1N1
influenza, a 40% drop in travel flow from and to Mexico led to a delay of less than
three days on average in the arrival of the virus in other countries [52]. With a reduc-
tion of 90% in travel the delay would have been around two weeks. In 2014, airline
traffic connecting the West Africa region affected by Ebola was reduced by 60%. This
was not sufficient to prevent the exportation of the virus and resulted in a delay of
only a few days [53]. Containment measures in China for Sars-Cov-2 in January 2020
were much more intense and drastically decreased the reexportation of cases [17, 18,
54]. However, these measures were implemented too late, and countries outside China
witnessed an increasing report of clusters in early February [18]. The problem was
similar with the following variants, which circulated silently before the implementa-
tion of measures [38]. Once the variant circulates locally, travel measures were found
to be ineffective [51, 55].

Contact tracing strategies consisted of detecting cases and tracing their contacts
to break transmission chains. Detected cases and their contacts were then tested and
possibly quarantined. The aim was to target infected individuals to avoid costly gen-
eral interventions such as lockdowns. This strategy worked well in controlling the

9



Chapter 1. Covid-19 context: epidemic dynamics, surveillance and intervention.

epidemic in some places like Singapore, South Korea and China but failed in other
countries [56]. Contact tracing policy was shown to need high tracing coverage, strong
quarantine and short contact tracing delays. The contact tracing policy was imple-
mented in France after the first wave to prevent the reintroduction of cases during
the summer of 2020 [57]. However, this was not strong enough, with an average of
2.1 cases detected per index case [57], to prevent a rise in cases in September and the
implementation of a second lockdown.

1.2.3 Mitigation measures.

With containment efforts failing, most countries have implemented mitigation
measures to prevent a collapse of the healthcare system. If travel restrictions and con-
tact tracing failed to contain the spread of the virus, they participated in mitigating the
epidemic [18, 58, 59]. Mitigation resulted from a combination of implemented mea-
sures and responses to the rise of cases which aimed to limit the local transmission.
The Oxford COVID-19 Government Response Tracker project (OxCGRT) documented
the measures taken by different countries worldwide [60]. At some point during the
pandemic, over 80% of countries adopted measures such as the closure of public places
(schools, workplaces, public transports), cancellation of public events, restrictions on
gatherings, restrictions on internal movement, stay-at-home requirements and mask
mandates.

In France, schools were closed on March 12, and the first national lockdown was
implemented on March 17, 2020 [61]. These measures were gradually lifted starting on
May 11. On October 14, in response to a resurgence of cases, a curfew was imposed,
followed by a second lockdown. From December 15, 2020, the lockdown was lifted, but
the curfew remained. A third lockdown was implemented for four weeks on March 18,
2021, to curb the spread of Alpha. Initially at the regional level and then nationalised,
this lockdown was less stringent than the previous ones. During the first lockdown,
schools were closed as well as all non-essential businesses. People were required to
stay at home, except for essential needs (groceries or medical) or a daily leisure time
of one hour within a one-kilometre radius of their residence [61]. During the second
lockdown, schools remained open, as well as more workplaces [62]. During the third
lockdown, stay-at-home requirements were less stringent: people could move freely in
a radius of ten kilometres around their homes [62]. Mask-wearing became mandatory
after the first wave, initially in all public places [63] and later only indoors. Facilities
hosting public (museums, theatres, bars, restaurants, gyms) and outdoor gatherings
were alternatively closed [63] or subjected to capacity limits. Teleworking was made
mandatory and then only encouraged to minimise contact in workplaces and in public
transport [64]. The CoviPrev surveys [65], conducted by Santé Publique France (SPF),
reported that a majority of the French population adopted social distancing measures.
These measures included ventilating rooms, greeting without shaking hands, avoiding
hugs, regular handwashing, wearing masks in public, and avoiding gatherings and
face-to-face meetings. The survey results throughout the pandemic are presented in
Figure 1.2.

Many studies were conducted to assess the effectiveness of mitigation interven-
tions. Effectiveness on outcomes such as the number of severe cases or deaths has been
difficult to estimate. The delay at the individual level between the infection and the
onset of critical symptoms or the death results in a lag between the implementation of
measures and the observed effect on these types of outcomes. Studies on the effective-
ness of the transmission rate are more reliable [66]. The reduction of transmission rate
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FIGURE 1.2: Adoption of social distancing measures since the start of the pandemic, as mea-
sured by the Coviprev surveys. Figure from [65].

was shown to mostly results from a combination of measures, explaining the high ef-
fectiveness of lockdown [67]. Studies estimating the impact of each measure suggested
that limiting gathering and school closure were the most effective measures, while ad-
ditional stay-at-home orders and border closures had a limited impact on transmission
rate [68, 69].

1.2.4 Vaccination.

The introduction of several COVID-19 vaccines in late 2020 was a game-changer
in the fight against the pandemic. Vaccines relying on mRNA technology were rapidly
available and clinical trials demonstrated good efficacy. In particular, they showed
high effectiveness in preventing symptomatic and severe forms of the disease. Their
deployment was then a critical tool to alleviate the burden on healthcare systems and
to finally ease social distancing measures. They also helped to prevent infections and
limit the spread of new variants or outbreaks.

The initial studies reported an efficacy of 95% against symptomatic COVID-19
seven days after the second dose of the BNT162b2 mRNA vaccine provided by Pfizer-
BioNTech [70]. Studies regarding the mRNA-1273 vaccine provided by Moderna re-
ported a similar efficacy of 94.1% 14 days after the second dose for the historical strain.
The ChAdOx1 nCoV-19 vaccine provided by AstraZeneca showed lower efficacy, with
effectiveness against symptomatic cases of 81.7% for the historical strain and 70.4% for
the Alpha variant.

These estimates were computed from pre-vaccination campaign studies. After
a few months, they needed refinement for new variants, booster doses, and waning
immunity. A meta-analysis published in 2023 [71] provided an overview of the ef-
fectiveness of mRNA vaccines during the pandemic. For mRNA vaccines, protection
against symptomatic infection was shown to decrease over time. Effectiveness, across
all variants, decreased from 87% [84%, 90%] 14 days after a full vaccination sched-
ule (one or two doses, depending on the vaccine) to 66% [57%, 74%] after 112 days
and dropped to 51% [22%, 69%] after 280 days. However, effectiveness against hos-
pitalisation and mortality remained high over time. For hospitalisation, effectiveness
decreased from 93% [89%, 95%] after 14 days to 80% [64%, 88%] after 224 days. The
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mortality, decreased from 94% [88%, 97%] after 14 days to 87% [73%, 94%] after 140
days.

The emergence of new variants also affected vaccine effectiveness [21], as initial
vaccines were designed for the historical strain. Protection against symptomatic infec-
tion after 14 days remains high for the Delta variant (91% [88%, 93%]) but is reduced
for the Omicron variant (67% [53%, 77%]). Updated vaccines have recently shown high
effectiveness against Omicron and its subvariants [72].

Despite the rapid deployment of COVID-19 vaccines worldwide, with the first
doses distributed in early December [73], vaccine coverage in most Western countries
was far below the targets set by authorities at the start of summer 2021. As of June 1,
2021, six months after the vaccination campaign’s launch, the United States had dis-
tributed 315.29 million doses, France 38.23 million, and Canada 24.38 million. Assum-
ing that each vaccinated individual receives two doses, this represents a vaccinated
population share of 47% for the USA, 28% for France, and 31% for Canada.

When implementing vaccination policies, public health authorities had to face
practical challenges that limited or slowed down the effectiveness of vaccine deploy-
ment. In France, supply issues, logistical implementation, and public acceptance hin-
dered the rapid establishment of optimal vaccine coverage against COVID-19. While
the Pfizer vaccines allowed the vaccination campaign to begin in December 2020 [74],
their distribution required the purchase and installation of ultra-cold freezers. Mass
vaccination required the receipt of vaccine doses, organisation of various delivery
methods, transportation of doses, as well as all accompanying equipment (needles,
syringes, sterile medical devices) to pharmacies and equitable distribution throughout
the country.

To control the epidemic more efficiently despite limited doses, most of the coun-
tries opted to target populations at the highest risk of severe COVID-19 outcomes. On
December 27, the first vaccination phase [75] was launched, following the recommen-
dations of the French Haute Autorité de Santé (HAS) and supported by modelisation
[76]. This initial phase targeted elderly care facilities and healthcare personnel. Then,
vaccination was available progressively to other parts of the population. The main vac-
cination points included elderly care facilities, healthcare facilities, pharmacies, and
vaccination centres and used doses from Pfizer, Moderna and AstraZeneca.

1.3 Conclusion.

In this chapter, I reviewed the spread of SARS-COV-2, the surveillance efforts,
and the intervention response to the virus. The underdetection of cases led to a poor
understanding of the virus spread in the early phase of the pandemic. The decrease
in cases observed in China in January 2020 following the implementation of lockdown
measures created a false sense of security, making it difficult for health authorities of
other countries to justify the implementation of restrictive measures. With the virus al-
ready circulating locally, travel bans and border closures had little impact on the local
dynamic of the epidemic. The same problem occurred with the emergence of VOCs.
For instance, in the case of the Alpha variant, European countries banned travel in De-
cember 2020 [4] but the Alpha variant was likely circulating locally at that time and
caused a rise in cases during the first months of 2021. The COVID-19 pandemic pro-
vided an unprecedented amount of data on the virus’s spread and detection. We need
to exploit it and learn from COVID-19 experience to minimise the impact of underde-
tection in future pandemics. Retrospective studies can help to understand the drivers
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of cryptic transmission and its epidemiological consequences. To do so, complex mod-
els are needed to integrate the heterogeneous data available from surveillance systems.
Understanding the epidemic situation is an essential step to plan interventions, but is
not enough and policymakers must rapidly implement effective measures. However,
all measures come with costs, some very high like lockdowns. It is, therefore, crucial to
evaluate the cost-benefit balance of these interventions. This work involves estimating
the impact of a measure before implementing it. As conducting real experiments is not
feasible, mathematical models enable the testing of various scenarios to compare the
effectiveness of various interventions or combinations of interventions. However, un-
certainties remain about the epidemiological situation which translates into uncertain
and hard-to-estimate parameters. It is essential to quantify how different parameters
affect the effectiveness of these interventions. In the following chapter, I will present
the models used during the pandemic to study the international spread of the virus, as
well as those used to assess the effectiveness of intervention strategies.
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Chapter 2

Modelling frameworks to study the
COVID-19 epidemic.

The COVID-19 pandemic has been accompanied by intense scientific production
[77], in which modelling played a significant role. Modelisation has been used for epi-
demic assessment, estimating key epidemiological parameters (reproduction number,
generation time, part of asymptomatic. . . ), nowcasting and forecasting the epidemic
unfolding, and assessing the effectiveness of intervention strategies. Depending on the
specific objective, modelling studies can be prospective or retrospective, theoretical or
data-driven. During a pandemic, modelling outputs must be concise and actionable,
tailored to the specific needs of policymakers. Furthermore, models must be adapted
to the available data for parametrisation and validation [78]. Modelling efforts during
the COVID-19 pandemic used frameworks developed for past epidemics and adapted
to the current situation. We present here a review of modelling methodologies em-
ployed during the COVID-19 pandemic to study early dissemination and assess the
impact of interventions.

2.1 Modelling global invasion.

Several methods have been employed to study the global spread of new viruses
or variants, with several objectives. At the onset of a pandemic, the aim was to under-
stand the epidemiological situation, identify the epicentre of the epidemic, and deter-
mine the countries that had already imported the virus. In the short term, propagation
models allowed for estimating the risk of virus exportation. Studying the first im-
ported cases also enabled the quantification of relevant characteristics to understand
the epidemic: detection rate, effective reproduction rate, proportion of asymptomatic
cases, or generation interval. Analysis can also be retrospective to reconstruct the pat-
tern of global invasion. Some studies relied on the assumption that the risk of importa-
tion into a country was proportional to the volume of air traffic between the outbreak
source and the country. Before the COVID-19 pandemic, air transport data had already
been used to estimate the risks of exportation of MERS [79, 80] and Ebola [53] among
others. During the COVID-19 pandemic, the same approach was employed at the on-
set of the pandemic to estimate the risk of the virus importation from the top ten cities
in China receiving the most air passengers [81]. More detailed analyses focused on the
risk of importation in African [82] and European countries [25]. Air traffic data were
also used to analyse the spread of variants. In [83], the authors compared the spatial
distribution of the Alpha, Beta, and Gamma variants at the end of February 2021 with
the distribution of major traveller destinations from the source countries of these vari-
ants during the fall of 2020 (namely the UK, South Africa, and Brazil). Mobility data
from the UK was used to estimate the risk of exportation of the Alpha variant in fall
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2020 [84]. Additionally, air traffic data from the UK and South Africa were combined
with phylogenetic analyses to trace the spread of the Alpha and Beta variants in Oc-
tober 2020 [34]. At the onset of the pandemic, recorded cases were sporadic, and only
those reported by health agencies, government communications and media coverage
could be used. Studying travelling cases allowed modelling of early growth and in-
ference of the epidemic characteristic (detection rate, reproductive number, generation
time. . . ). In [85] authors used the number of detected cases and travel flows to estimate
early in the pandemic the number of cases in Wuhan. In [18] authors collected early
cases across multiple countries outside of China. They used a bayesian framework to
predict the trends in importation and quantify the proportion of undetected imported
cases. In [86] authors performed a regression between detected cases in locations out-
side of China and air travel volumes from Wuhan to estimate detection probability. In
[87], the authors developed a framework based on the first reported cases to estimate
the date of the emergence of Sars-Cov-2 or a new variant.

2.1.1 Metapopulation models.

Metapopulation models have been widely used to investigate the spread of a
new virus or variant. These models describe the virus’s propagation across inter-
connected subpopulations which can range in scale from city-level to country-level
or continent-level. The type of connections (air traffic, road traffic, etc.) depends on the
specific problem and model being used. The smallest metapopulation model consists
of two interconnected patches, where a SIR model describes the transmission in each
subpopulation. This model was used to theoretically study the interaction between
two coupled areas [88, 89]. This framework has been expanded to describe larger net-
works as for the spread of the Hong Kong flu pandemic in 1968-1969 [90, 91, 92]. In
these studies, the networks comprised major cities worldwide. The epidemic in each
city was described by SIR or SEIR compartmental models. At each time step, a person
in city i had a certain probability of travelling to city j. This probability was computed
from the number of air passengers travelling between the two cities. With advance-
ments in computational capabilities and the availability of big data, metapopulation
models evolved to become more complex and realistic. Many large-scale metapop-
ulation models were designed in the past, integrating real demographic and mobility
data to simulate the global spread of epidemics [93, 94, 95, 96]. Incorporating stochastic
temporal evolution also allowed for the description of intrinsic stochasticity in propa-
gation and uncertainties in certain variables [89]. In [90, 97], the metapopulation model
described a network of urban areas centred around 3100 airports connected by 17,182
links. In addition to being more comprehensive (representing 99% of global air traf-
fic), this network better accounted for heterogeneities in transit capacity and traffic be-
tween countries. This framework served as the basis for the GLEAM (Global Epidemic
And Mobility) project, a collaboration of researchers who leveraged mobility data in-
tegrated into stochastic models to simulate epidemic spread worldwide [98, 99, 100].
This project aimed at providing a realistic modelling tool for epidemic assessment in
case of pandemics. It was used for various epidemics: Zika [101], Influenza [99], Ebola
[53], seasonal influenza [102] and SARS-COV-2 [17, 103].

Besides providing the basis of computationally intensive simulations, the metapop-
ulation framework allowed for analytical calculations to gain an understanding of the
epidemic invasion dynamic. In [104] for instance, the authors computed the probabil-
ity distribution of a virus’s first arrival time for two connected subpopulations.

Let p be the probability to travel from city 0 to city 1 during a time interval ∆t and
I(t) the number of individuals infected in city 0 at time t. The probability P(t1 = n∆t)

16



2.2. Modelling intervention.

that the virus arrives for the first time in t1 = nt is given by the probability of having
no exportation of cases during (n − 1)t and at least one exportation at time nt :

P(t1 = nt) = (1 − (1 − p)I(t1))
n−1

∏
k=1

(1 − p)I(k.∆t)

Assuming that the growth of cases in city 0 is exponential (I(t) = I0eat) and
considering standard continuous approximation, the previous formula gives that t1
follows a Gumbel distribution

P(t1 = t) = peat.e−
p
a eat

with a mean

<tfirst introduction> = −1
a

ln(
p
a
)

This model was used to understand the impact of travel restrictions [55, 105].
In [52] authors analysed the effect of the 40% reduction in travel flows from and to
Mexico during the H1N1 pandemic in 2019. They showed that this reduction led to an
average delay of three days in the exportation of the virus [105]. Similar analyses have
been conducted for other outbreaks, including SARS, the West Africa Ebola outbreak,
and influenza epidemics [52, 53, 105, 106].

2.2 Modelling intervention.

Mathematical models are also powerful tools to test the effectiveness of interven-
tions. Different types of models can be employed depending on the specific objective,
timeframe, and available data. Most of these models were based on compartmental
frameworks, like SIR or SEIR [107], where the population is divided into compart-
ments describing the different states of illness (Susceptible, Exposed, Infectious and
Recovered). Basic SIR or SEIR models assumed homogeneous mixing and described
the evolution of the epidemic with a set of deterministic differential equations. How-
ever, deterministic models underestimate epidemic growth, particularly in the initial
phase. Stochastic models were shown to be more effective in modelling outbreaks, as
they account for the possibility of local epidemic extinction [8, 108]. It is also possible
to relax the assumption of homogeneous mixing. Incorporating contact matrices based
on demographic data allowed for stratifying the population into age groups [109, 110]
to account for age-specific transmission patterns and the effects of social distancing
across groups and settings.

At the onset of the COVID-19 pandemic, compartmental SIR or SEIR models, in-
formed with disease-specific epidemiological parameters, were used to assess the im-
pact of early interventions in China [111, 112, 113]. In [111], the authors analysed the
reduction of contact in Wuhan and Shangai in early February 2020 compared with pre-
pandemic surveys. From this data, they built an age-stratified SEIR model to assess
the effectiveness of social distancing and school closure. They found that social dis-
tancing measures alone could stop the transmission, while school closure would not
have been sufficient to control the spread. In [112], travel data combined with an SEIR
framework was used to model outbreaks across China with social distancing. This
study estimated that early detection and isolation of cases were more effective than
social distancing measures in preventing infection. As more information on the infec-
tion became available, SIR or SEIR models have been refined by adding compartments
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FIGURE 2.1: (A) From [97] Representation of the metapopulation model. Yellow dots repre-
sent the airports that constitute the nodes of the network. (B) Illustration of the basic principle
of a metapopulation model between two cities, i and j, interconnected by a flow of travellers.
(C) From (109). Gumbel distribution underlying the probability of the first arrival time of a

new virus in a city 1 connected to a city 0.

to describe better disease specificities [9, 10, 67, 114, 115]. For instance, the model de-
veloped in [9, 10, 114] was a SEIR model stratified by age used in France throughout
the pandemic. The "Infected" state was divided into four compartments, ranging from
least severe to most severe symptoms: asymptomatic, pauci-symptomatic, mild, and
severe. A presymptomatic compartment accounted for when an infected individual
had not yet exhibited symptoms. Contacts between individuals in the baseline sce-
nario were calculated from contact matrices derived from pre-pandemic surveys [116].
These matrices were then modified to reflect the change in behaviour due to interven-
tions such as school closures, lockdowns, curfews or teleworking. The transmission
rate was fitted using hospitalisation cases. Counting hospitalisation was considered
more robust than reported cases, as the detection rate did not constrain it. This model
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was used to address several public health issues in France. In [114], the authors com-
pared scenarios to exit the first lockdown in May 2020. A few months later, in Jan-
uary 2021, the same model was used to describe the interplay between the emergence
of the Alpha variant and the implemented measures to understand the dynamics of
cases. They showed that the measures implemented in the first months of 2021 (cur-
few, closure of large commercial centres, recommendation on teleworking) were strong
enough to limit the spread of the historical strain but too weak to contain the emerging
Alpha variant. Then, they provided scenarios to compare the impact of strengthening,
maintaining, or relaxing social distancing measures [10]. They predicted that a mild
lockdown could prevent some regions from facing a third wave. The model was also
adapted to understand better the heterogeneity at the regional level [117]. In particular,
they showed that the third lockdown was as effective as the second one. They also esti-
mated that a curfew starting at 6 pm was much more effective than a curfew beginning
at 8 pm. A similar framework was used to evaluate the impact of the first lockdown
and the level of immunity afterwards [14] and inform policymakers of the best way to
use lockdown as a last resort [118]. In [119], the authors used a compartmental model
to retrospectively study whether regional lockdowns targeting areas with higher in-
cidence would have been more efficient than a national lockdown. The stratification
by age was beneficial to assess the effectiveness of age-specific measures. In [120],
the authors showed that shielding elderlies was insufficient to relax social distancing
measures, as there is an important infection flow between age groups. The model was
used to assess the different prioritisation strategies for vaccines in the early roll-out
stage by adding compartments for vaccinated people. In [76], the authors showed that
age was the most crucial factor to consider in prioritisation. In the case where vac-
cination only impacted the severity of symptoms, vaccinating elderlies first is more
effective in averting hospitalisations and deaths. The effect was found to be weaker
if vaccination reduces transmission and susceptibility. To assess the effectiveness of
mass testing, the model was also adapted to consider testing and isolation. In [121]
infectious people who tested positive were assumed to have a reduced transmission
rate to model the effects of self-isolation. This study suggested that widespread testing
would be necessary to control a quickly growing epidemic.

2.2.1 Agent-based models.

In the compartmental models described in the previous section, parameters such
as the contact rate between age classes [122] are averaged. This framework does not
allow for the study of the virus spread at the individual level. Agent-based models
(ABM) can account for the heterogeneity of individual interactions [123]. In ABMs,
the state of each distinct individual (S, E, I, R, etc.) is explicitly computed at each time
step, and interactions with other individuals, which mediate transmission, are mod-
elled at the individual level. Early models assumed a simple contact network between
individuals based on regular lattices [124, 125]. These models were later enriched by
more realistic contact networks [126]. Some models focused on specific settings such
as hospitals or schools. For example, in [127, 128], the authors use face-to-face contact
data to construct a temporal contact network within schools. With this framework,
they tested different screening strategies (reactive or regular screening, quarantine,
symptoms-based isolation) under different vaccination coverage assumptions in the
context of the COVID-19 pandemic. Other models simulated the virus spread in a
general population across different settings (households, workplaces, schools, public
transport. . . ). Before the COVID-19 pandemic, ABMs were used to assess the effec-
tiveness of intervention [129] in various epidemics. With influenza in Southeast Asia,
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this framework was used to study targeted mass prophylactic use of antiviral drugs
[130], quarantine, and pre-vaccination campaigns [131]. Targeted vaccination was also
modelled in the context of smallpox [132], Malaria [133] and RSV [134].

With the COVID-19 pandemic, multilayer agent-based models were particularly
useful in evaluating the effectiveness of contact tracing strategies [135, 136], as several
NPIs were focused on specific settings (closure of leisure or public places, teleworking
enforcement). In [136], the authors used a multi-layer network to account for the di-
versity of contacts based on locations and household compositions. With this network,
they tested scenarios with different assumptions about testing, case tracing, and social
distancing measures. In [59], the population was age-stratified to study the impact of
digital contact tracing, as several parameters vary with age: contact rate, susceptibility,
transmissibility, and smartphone penetration rate in the population.

FIGURE 2.2: Representation of various modelling approaches for studying the propagation of
SARS-CoV-2 and assessing the impact of interventions. (A) : From [137] Reconstructed chains
among first detected cases in Hunan Province. (B) : From [114] Adapted SEIR model to take
into account the different phases of the disease. (C) : Structure of an Agent-Based Model with

a multi-layer network.

2.3 Conclusion.

In this chapter, I reviewed the approaches employed during the COVID-19 pan-
demic to model the early global spread of the virus and its variants and to quantify the
effectiveness of interventions. I dedicated particular attention to mechanistic models
which, unlike purely statistical frameworks, aim at describing the mechanisms driving
virus transmission. This approach requires knowledge and data from various fields:
mathematics, statistics, biology, epidemiology, public health and immunology [138].
Models synthesise different scales, from intra-host dynamics to spatial propagation.
While these models are always a simplified version of reality, they allow the formula-
tion of hypotheses so that they can be tested. For both studying the dissemination of
a virus and assessing the effectiveness of an intervention, it is difficult to disentangle
the relative roles of different drivers. Mathematical models can test a set of parameters
to quantify the relative role of different ingredients and to provide an understanding
of how these ingredients interact. In the case of global invasion, different aspects can
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affect the international dissemination of a virus. Travelling, local mixing, and sociode-
mographic features interact to drive the propagation. This was particularly true with
the emergence of new COVID-19 variants. In that period, countries were implement-
ing different levels of interventions resulting in a large heterogeneity in local transmis-
sion. When assessing the effect of interventions, disentangling the effect of the global
epidemic context and the synergy with other interventions is often challenging. The
effectiveness of public health interventions on a population scale cannot be assessed by
statistical protocols comparing individuals such as random control trials [139]. Math-
ematical models make it possible to test different scenarios in silico and to compute
counterfactual scenarios. However, it is important to assess the limits of the model and
to account for uncertainties that mainly come from three different sources: stochastic
uncertainties, parameter and model uncertainties [140]. Stochastic uncertainty comes
from the intrinsic stochasticity of the studied phenomena - as virus transmission - or
data generation - as sampling detected cases. This type of uncertainty can be informed
by the proper use of confidence intervals. Sensitivity analysis allows the comparison
of scenarios obtained with a wide set of parameters to compute how the findings of
a study are robust to inputs. Model uncertainty refers to the assumptions underlying
any modelling framework. These assumptions must be clearly discussed and stated.
Overall, it is critical to communicate carefully about the possible outcome predicted
by a model and to be transparent about the model’s limitations to support decision-
making.
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Chapter 3

Drivers and impact of the early
silent invasion of SARS-CoV-2
Alpha.

In this chapter, I present the work published in [5] where I analyse the drivers
and impact of the silent spread of the Alpha variant. I first present in detail the data
used in this analysis and what is the purpose of this work. Then, I will present the
article.

3.1 Introduction.

Originally launched in 2008 to facilitate the sharing of influenza genome se-
quences, GISAID [43] has evolved to support the rapid open-access sharing of se-
quences of viruses implied in various diseases, such as influenza, COVID-19, or mon-
keypox. For Sars-Cov-2, genomic surveillance was critical, notably to identify and
study new VOCs that raised important public health concerns. The use of GISAID
has become pivotal in the analysis of genomic sequences: in the first two years of the
pandemic, 78% of high-income countries sequenced more than 0.5% of their cases and
around 25% of these genomes were submitted within 21 days to the platform [141].

The New and Emerging Respiratory Virus Threats Advisory Group (NERVTAG)
in the UK identified the Alpha variant as more transmissible in December 2020. This
variant was the first to prompt an international alert and to be declared a VOC on
December 18, 2020 [142]. However, retrospective analysis of genomic sequences in GI-
SAID shows that Alpha sequences were collected in the three months before the alert,
suggesting low attention during three months. During the fall of 2020, most countries
implemented mitigation measures to prevent a second wave of cases. The UK entered
a lockdown on November 5th. Due to this epidemiological context, the spreading po-
tential was highly heterogeneous in the UK and across European countries and varied
in time.

In our study, we used metadata of sequences submitted to GISAID between Au-
gust 15, 2020, and June 1, 2021. We extracted three metadata: the country where the
sequences were collected, the date of sample collection (collection date) and the sub-
mission date to the GISAID platform. By analysing these data, we estimated the date
of the first detection of the Alpha variant for each country. We defined this date as the
collection date of the first Alpha sequence submitted to the GISAID platform in that
country. In theory, if all cases were detected and sequenced in time, these data could
allow us to reconstruct the spread of the Alpha variant. As shown in Figure 3.1 the
Alpha variant was first detected in early September 2020 in the United Kingdom, then
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in Denmark and Portugal in late October. However, these data should be considered
in perspective with other evidence.

FIGURE 3.1: Collection date of first submitted sequence of Alpha variant in each country on
GISAID.

FIGURE 3.2: Histogram of sequencing coverage (A) and International traffics (B) averaged
from 1st September 2020 to 31st December 2020.

First, the time lag between the first detection in the UK and in other countries
is quite long (over two months) and does not align with studies predicting the expor-
tation of the Alpha variant based on international travel data [34, 84] or phylogenetic
studies [38]. Furthermore, virological surveys suggest that, for many countries, the
first detection of the Alpha variant likely occurred when local transmission was al-
ready installed. Indeed, in France, the first case was detected on December 25, 2020,
but a flash survey conducted three weeks later [47] suggested that 3% of observed
cases were due to the Alpha variant. To reconcile observations, we investigated the
influence of different factors on the propagation and detection of the Alpha variant
using various data sources.

Some insight can be obtained by simple theory extending the calculations of
Chapter 2, where we reported the computation of the average time of first arrival in a
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country of a new virus or variant. The formulas showed that this duration was pro-
portional to the logarithm of the probability of travelling:

<tfirst introduction> = −1
a

ln(
p
a
).

We can extend this formula to the time to detection of first virus or variant in a
country. If we note s the probability for variant to be detected once it is imported, then
the mean time of first detection is given by

<tfirst detection> = −1
a

ln(
s.p
a
).

In the following article, we analyse the relationship between the time of first de-
tection of the Alpha variant, the probability of travelling and the sequencing coverage.
We show that the data about these three parameters follow the relationship derived
just before. To estimate bias introduced by the heterogeneity in sequencing between
countries, we defined a sequencing coverage index that measures the strength of the
surveillance system. This index was computed as the ratio between the number of
samples sequenced at a given day, and the number of COVID-19 cases reported the
same day. We also measured the time lag between the collection date and the sequence
submission date. Additionally, we used data on the number of passengers air travel-
ling from the UK to each studied country [143]. Raw analysis of these data showed
significant heterogeneity between countries (see Figure 3.2). Then, we used a Bayesian
model to integrate this data and reconstruct the invasion of the Alpha variant, from
its emergence and growth in the UK to its exportation, detection, and submission to
GISAID in other countries. This approach allowed us to estimate the silent spread for
each country, defined as the time between the first introduction and the first detection
of the Alpha variant.

To validate model estimates on the date of first importation, we simulated lo-
cal spread following importation in six destination countries using two different ap-
proaches (a branching process [8] and a two-strain compartmental model [10]). We
found that our reconstruction is coherent with early virological studies in countries
other than the source. Finally, we used the branching process to study the local spread
of the Alpha variant.

3.2 Article: Drivers and impact of the early silent invasion of
SARS-CoV-2 Alpha.
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Drivers and impact of the early silent
invasion of SARS-CoV-2 Alpha

Benjamin Faucher1, Chiara E. Sabbatini1, Peter Czuppon 2,
Moritz U. G. Kraemer3,4, Philippe Lemey 5, Vittoria Colizza 1,6,9,
François Blanquart7,9, Pierre-Yves Boëlle1,9 & Chiara Poletto 8,9

SARS-CoV-2 variants of concern (VOCs) circulated cryptically before being
identified as a threat, delaying interventions. Here we studied the drivers of
such silent spread and its epidemic impact to inform future responseplanning.
We focused on Alpha spread out of the UK. We integrated spatio-temporal
records of international mobility, local epidemic growth and genomic sur-
veillance into a Bayesian framework to reconstruct the first threemonths after
Alpha emergence. We found that silent circulation lasted from days tomonths
and decreased with the logarithm of sequencing coverage. Social restrictions
in some countries likely delayed the establishment of local transmission,
mitigating the negative consequences of late detection. Revisiting the initial
spread of Alpha supports local mitigation at the destination in case of emer-
ging events.

In December 2020, one year after SARS-CoV-2 emergence, the
increased transmissibility and severity of the Alpha variant (Pango
lineage B.1.1.7) prompted an international alert1,2. Attempts to contain
the variant in the UK, where it was first identified, were too late and its
global dissemination led to a resurgence of cases and deaths in many
countries. Sequences shared through GISAID3 in real time provided
records of the variant’s international spread4 and a number of studies
predicted the first countries that would be invaded based on interna-
tional travel from the UK5–7. Still, observations were not in agreement
with the expectations, and it soon became clear that the first Alpha
detection in countries outside the UK occurred when the variant had
been circulating silently in these territories for some time. For instance,
the first case infected by the Alpha variant was identified on 25 Dec
2020 in France3; yet, three weeks later, already 3% of the ~100,000
weekly reported COVID-19 cases were caused by the Alpha lineage8.
Late detection was also noted in Switzerland9 and the USA10,11.

Phylodynamics analysis and modeling studies revealed that silent
spread occurred for early SARS-CoV-2 lineages and subsequent

variants of concern (VOCs)12–20. This has sparked a public health
debate. The efforts to contain a variant at the source are ineffective if
they come too late, when the virus is already spreading cryptically out
of the source. Interventions aiming at mitigation or delay may instead
have an impact depending on the extent and duration of silent dis-
semination at the time they are implemented21,22. Recent works
addressed the minimal sequencing coverage to detect a variant early
enough for an effective response, and proposed modeling tools for
risk assessment23–27. However, the complex interplay of factors deter-
mining the duration of silent propagation remains poorly understood.
Indeed, SARS-CoV-2 VOCs emerged in a context of changing patterns
of genomic surveillance, international travel, population immunity,
and local interventions.When Alpha emerged in late 2020, sequencing
coverage was highly variable and changed dramatically as countries
increased genomic surveillance. It tookmonths from the emergence to
declaring Alpha a VOC2. During this period the epidemiological con-
text across many regions changed substantially. The efforts in the UK
and other countries to control a substantial autumn pandemic wave
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impacted the rate of exportations of Alpha out of the UK and the
chance to seed local transmission. This makes the emergence of Alpha
a paradigmatic example.

Herewe used a Bayesianmodel to retrospectively reconstruct the
initial international disseminationof Alpha from20Sep 2020 to 31 Dec
2020 out of the UK. By leveraging diverse sources of data for the
temporal and geographical change in international travel, sequencing
coverage and local epidemic growth, we show that these factors,
together with the effect of the international VOC alert on surveillance,
drove the duration of Alpha silent spread.

Results
Factors contributing to the spread of Alpha
The early spread of the Alpha variant in the UK occurred in the last
quarter of 2020, in a context where a lockdown in the UK, from 5 Nov
to 2 Dec 2020, reduced local transmission and the potential for
international propagation28–30. Air, train, Channel Tunnel and ferry
passengers traveling out of the UK in this month had fallen up to 20%
of that in September (Fig. 1A).

Over the same period, more than 200,000 sequences were sub-
mitted to GISAID from 73 countries, which allowed monitoring the
spread of Alpha. We defined the date of first Alpha detection in each
country as the date of collection of the first Alpha sequence submitted
to GISAID. We hypothesized that sequences collected earlier but sub-
mitted at a later date resulted from retrospective surveillance and
wouldmisrepresent the routine screening effort. Sequencing coverage
ranged over four orders of magnitude over countries: 59% of the cases
reported in New Zealand over Sep–Dec 2020 were sequenced, but the
median for all countries was only at 0.3%. As might be expected, the
date of first detection of Alpha was earlier with higher sequencing
coverage andmore travelers from theUK (Fig. 1B). TheUKwas the only
country to report the Alpha strain before Dec 1, 2020, followed by
Denmark (2 Dec 2020) and Australia (7 Dec 2020). The Alpha inter-
national alert on 18 Dec 2020, led to a rise in sequencing coverage
(Fig. 1C), shorter collection-to-submission times for Alpha sequences
than for others (27 days (CI [8,137]) vs. 52 days (CI [10,162]), Fig. 1D and
Supplementary Fig. 1) and prioritization of sequencing of travelers
from theUK4,31. Nineteen countries collected their first Alpha sequence
the week following the alert and submitted it with a median delay of
9 days. In most of these countries, the first case detected was a case
imported from the UK32.

We developed the Alpha international dissemination model to fit
the date of first detection and the corresponding date of submission
between the beginning of September and end of December in the 73
countries contributing to GISAID during the period. We used dates for
24 countries where the Alpha was detected during the period
(including the UK) and accounted for no detection in the other
countries by statistical censoring. The key assumption of the model is
that the hazard of submitting an Alpha sequence in a country outside
the UK results from the dynamically changing incidence in the UK,
outbound flows of travelers from the UK, sequencing coverage at
arrival and the delay from collection to submission. Thus, we assumed
that before the end of December, the first detected cases were tra-
veling cases4,32 and dissemination was at its early stage, i.e. traveling
cases were traveling out of the UK. Although a simplification, this is in
line with earlier work showing that the UK was the main source of
Alpha dissemination during the first three months, while other coun-
tries becamemore important at a later stage19. Time-varying incoming
travelers from theUK, sequencing coverage and collection-submission
delays were derived from data for each country. Fitted parameters
were the exponential growth rate in the UK before and after the
beginning of the November lockdown and the increase in genomic
surveillance among travelers compared to cases in the community in
destination countries following the international alert. Details are
given in the Methods section.

Observed dates of first detection and submission (Fig. 2A) and a
cumulative number of countries submitting an Alpha sequence
(Fig. 2B) matched the model predictions. Portugal and Germany
detected Alpha earlier than predicted by our model; there the delays
from collection to submission were the longest (48 days for Portugal
and 23 days for Germany, versus a median of 9 days in the other
countries submitting Alpha). For Portugal, the long gap between the
collection dates of the first and the second submitted sequences
suggests a retrospective investigation. The model predicted a median
seeding date of the Alpha epidemic in the UK on 8 Sep 2020 (95%
prediction interval [Aug 21, Sep 19])33. The estimated doubling time of
incidence in the UK was 4.2 days (95% crI [3.6, 5.3]) before 5 Nov 2020
and 10.6days (95% crI [6.5, 22]) afterwards. Assuming the reproductive
ratio R = 1 + rT , with T the generation time interval at 6.5 days34 and r
the Alpha exponential growth in the UK, these estimates would be
compatiblewithR =2:0 [1.8, 2.3] andR = 1:4 [1.1, 1.65] before and after 5
Nov 2020. These values broadly agree with previous estimates, with a
pattern of decreased transmission over time28–30,33,35. With these esti-
mates, the predicted trend of Alpha infections in the UK was in
agreement with the observations (Fig. 2C)36. The large number of
countries reporting Alpha almost simultaneously in late Decemberwas
explained by an estimated 50-fold (95% crl [12, 298]) increase of
sequencing coverage among travelers compared to non-travel related
cases following the alert, consistently with the active search of Alpha
cases among travelers and their contacts. Further details on parameter
estimates and fit convergence are reported in Supplementary Fig. 2
and Supplementary Table 5.

In a sensitivity analysis, results were found to be robust to a range
of modeling assumptions—e.g. changepoints for the exponential
growth of incidence in the UK, rate of detection of COVID-19 infections
outside the UK, and incubation period among the others. Details are
reported in Supplementary Table 5.

Silent spread ranged from days to weeks
We next used the international dissemination model to predict the
date of the first introduction of Alpha from the UK to each of the 73
countries under study and the duration of silent spread, i.e. the
duration of the time from the first introduction to the first detection
of Alpha. We found that up to ~65 countries could have experienced
the introduction of Alpha by the end of December, compared with
the 24 countries that reported it (Fig. 3A). Our model predicted that
the first introduction of Alpha in a country occurred up to 70 days
earlier than the date of first Alpha detection (Fig. 3B, C). For instance,
our model predicted that Alpha arrived 60 days earlier in Italy with
an average sequencing coverage of 0.3% during the period, while it
was only 15 days in Hong Kong with a sequencing coverage of 50%.
Overall, the duration of the silent spread showed a logarithmic
association with the average sequencing coverage (Fig. 3D). The
estimated dissemination pattern is consistent with real-time projec-
tions based on air-travel5. Early introductions in Denmark and the
USA were also consistent with the result of phylodynamic analyses
and retrospective surveillance10,11,37–39. We found that the collection
date of the first Alpha sample ever collected in each country (earlier
than the first detection in 34 countries because of retrospective
surveillance) was within the range of first introduction predicted by
the model but for Colombia.

Local dynamics affected the impact of silent spread
We then focused on the spread of Alpha in six countries where
national genomic investigations estimated the incidence of the Alpha
variant in early January 2021: Denmark, France, Germany, Portugal,
Switzerland, and the USA. We used a stochastic model (auto-
chthonous model A)40 to simulate chains of transmission generated
by infections introduced from the UK as predicted by the interna-
tional dissemination model described above. The model used
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country-specific time-varying reproduction number, overdispersion
in transmission, and a 60% transmission advantage of Alpha over the
wildtype28,29,41. The model reproduced the same trend of the
observed Alpha cases with a case ascertainment fraction around 50%
(Fig. 4A). Incidence in the USA was underestimated, possibly due to
heterogeneity in the different states. To test a finer spatial resolution

we retrieved Alpha frequency data for California, Florida, and New
York City, obtaining a good match with the data for California and
New York City and an under-estimation (within the range of possible
stochastic outcomes) for Florida (Supplementary Fig. 4). To test the
robustness of these predictions, we used a second model with age-
structure, temporal variation in social contacts due to restrictions,

Fig. 1 | Factors associated with the pattern of observed Alpha dissemination.
A Change in outbound international traffic from the UK over time, including air-
travel, train, ferry and Channel Tunnel59. The 73 countries contributing to GISAID
during 1 Sep 2020–31 Dec 2020 are shown as an example. Traffic is rescaled to the
maximum over the period. To improve readability, different months of traffic
maximum are associated with a different color. B Date of first detection, i.e. col-
lectionof thefirst Alpha sequence submitted toGISAID, for eachof the 73 countries
as in (A), according to sequencing coverage and international traffic (passengers/
day) averagedover 1 Sep 2020–31Dec 2020. For eachday, the sequencing coverage
of a country is defined as the numberof collected SARS-CoV-2 sequences onGISAID
—regardless the date of submission—divided by reported cases. The dashed line
provides a guide to the eye, as, under simplifying assumptions44,81, we expect the
date of first detection to be a function of log(sequencing coverage) + log(traveling
flaw) (Supplementary Information). C Number of countries with at least one Alpha

submission plotted by date of collection and date of submission. The black line
shows the average rescaled sequencing coverage. In each country, the sequen-
cing coverage was rescaled by themaximum over the period displayed in the plot
to highlight the trend. Countries’ rescaled time series were then averaged. For the
sake of visualization, the sequencing coverage is here smoothed over a 2 weeks
sliding window. The purple line indicates the date of Alpha international alert (18
Dec 2020). The dashed black line indicates the censoring date used in the analysis
(31 Dec 2020).DDistributions of delay (in days) from collection to submission for
Alpha and non-Alpha sequences collected outside the UK fromDecember 2020 to
mid-January 2021 and submitted up to June 2021 (non-Alpha sequences
n = 149699, Alpha sequences n = 6992). Boxplots represent the median (white
bar), the quartiles and the 95% range (whiskers). The violin plot shows the Kernel
estimation of the underlying distribution. Additional details are reported in
Supplementary Fig. 1.
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and the co-circulation between Alpha and wildtype that was cali-
brated and validated for France42,43 (autochthonous model B) finding
also in this case a good agreement (inset of Fig. 4A).

Besides supporting our estimates of Alpha dissemination out of
the UK, the reconstruction of local epidemics outside the UK allowed
investigating the potential impact of silent spread in the six focal
countries. The estimated Alpha cases as of 31 Dec 2020 broadly scaled
with the international traffic connecting the country with the UK,
showing the important role of importations in determining local Alpha
epidemic size (Fig. 4B). Still, potential consequences of silent spread
could only be gauged by taking into account changes in local trans-
mission (Fig. 4C). For example, while the first detected case in Ger-
many and Switzerland had been collectedwith a similar delay from the
predicted date of first importation, the reproductive ratio Rt in Ger-
many had generally been larger than in Switzerland during the period.

Therefore, the seeding of transmission chains still active at the end of
the year inGermany could takeplacewell before thefirst detected case
was collected for the first time in the territory, while in Switzerland
~50% of the transmission chains started after first virus detection
(Fig. 4C). Overall, later seeding of active chains was associated with
smaller averageRt over the period (Fig. 4D), but not with the reduction
in traveling (Supplementary Fig. 5). Therefore, our analysis suggests
that low levels of local Rt enhanced the relative contribution of late
importations, potentially countering the consequences of late
detection.

Discussion
Genomic surveillance has been a major advancement in monitoring
the spread of SARS-CoV-2 after initial emergence. However, inter-
preting these data is complicated as they do not follow a pre-

Fig. 2 | Comparison between the international dissemination model and
the data. A Date of collection of the first Alpha sample submitted to GISAID and
corresponding date of submission for the 24 countries submittingAlpha sequences
before 31 Dec 2020. Data are shown by purple circles (collection) and green tri-
angles (submission). Median date obtained from the model is indicated by gray
circles (collection) and gray triangles (submission). The horizontal bars display the
95% prediction interval over n = 500 simulations. B Median model predicted

cumulative number of countries submitting a first Alpha sequence to GISAID
comparedwithobservations. In panels A andB, the purple vertical line indicates the
date of Alpha international alert (18 Dec 2020). C Alpha incidence in the UK36 and
median model-predicted epidemic profile in the UK. Both model predictions and
data are rescaled to the sum over the period considered to allow comparing the
profiles of the curves. To account for testing delays model predictions are shifted
right of one week. The gray colored ribbon represents the 95% credible interval.
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established and coordinated sampling design. Retrospective analyses
of the past dissemination of VOCs can provide epidemiological
knowledge that enables us to better respond to future viral emergence
events. Here, taking the initial Alpha spread as an example, we showed
that several components of the highly heterogeneous epidemic con-
text had to be taken into account for interpretation.

Previous studies focused on traveling flows to explain the arrival
of a first infection into a new country44–48. Yet differences in genomic
surveillance capacity, over four orders of magnitude across countries
during Alpha emergence, profoundly affected the introduction-to-
detection delay with a logarithmic decrease in sequencing coverage.
Furthermore, extraneous events like the international alert further
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altered the speed of variant detection. These strong spatiotemporal
changes in genomic surveillance partially masked the true pattern of
Alpha invasion, to the point that the correlation between the dates of
detection and the international trafficwaspoor in the first 24 countries
reporting Alpha (spearman correlation 0.24, p = 0.3). Yet the good fit
obtained with the international dissemination model and the increase
of Alpha epidemic size with traveling flow (Fig. 4B) both suggest that
traveling flows were a driver of viral spread, in agreement with other
works19,44–47,49. A more uniform sequencing collection protocol would
have provided a coherent view of Alpha propagation improving public
health awareness and response. This highlights the importance of
eliminating surveillance blind spots by increasing sequencing in
countries with poor surveillance23.

According to our model, Alpha was introduced in more than 60
countries before the international alert. This provides evidence that
when an emerging pathogen is not reported in a given destination
country, it may likely be due to the surveillance system not yet being
able to detect it. The alert triggered heightened genomic surveillance
worldwide, reinstated lockdown measures in the UK, and resulted in
border screening and travel bans in countries connected to the
UK23,28–30. However, international response arrived at a moment in
which Alpha was already widespread in several countries, preventing
containment. Improving surveillance across countries would reduce
the time from importation to detection, but it would still clash with
the delay needed to recognize a novel variant as a VOC. A lineage
with important mutations can be identified relatively quickly if
sequencing coverage is high enough23,24,27, although the assessment
of clinical risk is slower24. Lineages have shown the ability to become
dominant without any increase in fitness in particular epidemiolo-
gical contexts50, while others like Beta remained at low frequency
despite mutations of clinical importance. A more rapid recognition
of Alpha as a VOC could have advanced the response by health
authorities to delay the establishment of Alpha during a time when
vaccination became available in some countries21. Similar delays in
declaring a VOC were also observed for subsequent VOC episodes19.
This underlines the complexity of the interpretation of a context with
emerging new variants51—especially when major known drivers such
as international travel are in place—and of the decision-making for
public health response.

The growing Alpha epidemic in the UK allowed dissemination
despite the drop in international traffic out of the UK and the social
restrictions in many countries. For instance, while UK travelers to
France dropped by 56% in November compared to September, the
number of Alpha-infected travelers to France still grew from 1 to 10
daily over November 2020 according to our model. The lockdown
implemented in France at this time likely did not prevent local trans-
mission because Alpha was more transmissible. Local restrictions may
however delay successful invasion, as was apparent from the in-depth
analysis of the six destination countries: a lower local reproductive
ratio delayed the seeding of local transmission chains following
importations up to one month. Although with the same analysis we
could not address the consequences of the decline in travel, we expect
that when local transmission is limited by control measures, intro-
ductions from the country of origin contribute more substantially to

the epidemic at destination20. We can thus hypothesize that limiting
importation early could act synergistically with local restrictions to
limit the size of the VOC epidemic. Still, we expect that the fine tuning
between different factors (e.g. quality and extent of borders control
and timing of their implementation22,52,53) can affect the impact of
travel restrictions.

Following Alpha, other SARS-CoV-2 variants raised concerndue to
their rapid emergence and spread, namely Beta, Gamma, Delta, Omi-
cron and its sublineages. Undetected introductions and silent spread
were likely common to all variants, although the epidemic context
progressively changed between 2021 and 2022. The rise in interna-
tionalmobility and social contacts accelerated the spread of Delta and
Omicron19. This has reduced the window for public health response
requiring an intensification of virus genomic surveillance to enable
authorities to identify variants in time. However the high costs of
genomic surveillance and the phasing out of the pandemic have now
reduced our ability to detect future VOC emergence events. The Alpha
experience shows the importance of designing sequencing protocols
able to balance sustainability and detection capacity by meeting the
minimal requirements of sequencing extent and reporting delay—e.g.
sequencing 0.5% of cases with a turnaround time smaller than 21 days
as previously proposed23, and by leveraging information frommultiple
sources, including wastewater and animal surveillance54,55. Impor-
tantly, this study also highlights that the knowledge of surveillance
extent and protocol adopted by countries is key to real-time data
analysis tobetter assist risk assessment and interventionplanning. This
would be facilitated by the widespread adoption of pre-established
surveillance protocols.

Our study is affected by a number of limitations. First, sequencing
coverage was computed at the country level and no distinction could
be made for traveler vs. local cases due to the poor available infor-
mation on testing rate among travelers18.Wedealtwith this by allowing
an increase in detection after theAlpha alert. Second,we analyzedhere
the period before 31 Dec 2020. This time window was long enough to
cover the seeding from the UK to the destination countries and
observe the consequent onset of local transmission. At the same time,
the window is sufficiently short to assume in first approximation the
UK to be the source of Alpha spread, before large epidemics in other
countries became the dominant source of traveling cases. Extending
the analysis to a longer period would require a more general frame-
work that can be the subject of future work. Third, it is not possible to
set a cut-off between real-time and retrospective surveillance when
computing sequencing coverage from GISAID metadata. The compu-
tation of sequencing coverage being affected by retrospective sur-
veillance could potentially overestimate the extent of the real-time
genomic surveillance. Fourth, we have here defined the date of first
Alpha detection in a country as the date of collection of the first
sequence submitted to GISAID. Reporting of variants of interest to
local public health authorities can be indeed more rapid than sub-
mitting the sequence to GISAID. Still, we acknowledge that this may
depend on the country and stage of the invasion, e.g. before and after
the alert. In addition, the public sharing of a variant’s sequence enables
the recognition of its presence in a given territory by a larger public,
including health authorities and the scientific community worldwide.

Fig. 3 | Timing of first importation and silent spread as estimated by the
international dissemination model. A Cumulative number of countries with an
Alpha introduction as predicted by the model. The quantity is computed from the
median predicted date of introduction in each countrywith 95%prediction interval
obtained over n = 500 simulations. B, C Median date of first introduction when
occurring before Dec 31 (vertical dashed line) for each country estimated by the
model with 95% prediction interval computed over n = 500 simulations. For each
country, we report the date offirst Alpha detection (i.e. collectionof first submitted
sequence) (light pink) and the date of the first ever collected Alpha sequence (dark

pink) from the data. For El Salvador, Papua New Guinea and Madagascar, no Alpha
sequence had been reported before June 2021. D Duration of silent spread in days
vs sequencing coverage. The distribution of the durations of silent spread is
reported in Supplementary Fig. 3. Duration of silent spread is computed as the
difference between the median date of first detection and the median date of first
introduction as predicted by the model. We restricted the analysis to countries for
which both first introduction and first detection were predicted to occur before 7
Jan 2021. Dashed line represents least-squares linear regression. P-value is com-
puted from Wald test with t-distribution.
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To conclude, by jointly modeling epidemic dissemination and
observation based on GISAID submissions we have quantified Alpha
silent spread in countries outside the UK unveiling its link with inter-
national travel and sequencing coverage. Our results show that the
duration of Alpha silent spread varied from days to months. Strong

spatiotemporal heterogeneities in surveillance provided a major
obstacle to data interpretation. Still, restrictions in place in destination
countries may have delayed the establishment of local transmission
and partially mitigated the negative consequences of late detection
and response. By the time a new variant is recognized as a potential

Fig. 4 | Local spread of Alpha in six destination countries. AModel vs. empirical
Alpha infections. In the main plot, the empirical estimates of Alpha cases are
computed by multiplying the Alpha frequency from virological investigations by
the reported COVID-19 incidence at the same date—the date is indicated in the plot.
Model estimates are obtained with the autochthonous model A (AM A in the plot).
Gray lines show ratios of 100%, 50% and 25% between observed and predicted
infections attributable to reporting. In the inset, the frequency of Alpha in France
obtained from the autochthonousmodel B (AM B in the plot) is compared with the
empirical data. In both panels, black error bars indicate the prediction interval over
500 stochastic simulations obtained with the median volume of Alpha introduc-
tion, output of the international dissemination model assuming a 7-day delay
between case and infection. Dark colored bars account for the variability in the
output of the autochthonous models accounting for the upper and the lower limit
of the prediction interval of the Alpha introductions as given by the international

dissemination model. Light colored bars account for variability in the delay from
infection to case reporting (ranging from 4 days to 10 days). B Empirical Alpha
infections vs average international traffic. C Comparison between the date of first
introduction as predicted by the international dissemination model and the seed-
ing time of the transmission chains survived until 31 Dec 2020, predicted with the
autochthonous model A. Circles indicate medians and segment the 95% prediction
interval. Colors indicate the effective reproduction number of the historical strain,
Rt , computed from weekly mortality data (Methods). The star shows the date of
first Alpha detection as a comparison. D Difference between the median delay of
seeding predicted by the autochthonous model A and the same quantity in the
reference case—i.e. when Rt is the same in all countries and traveling fluxes do not
change in time, plotted against the median Rt during the period from first intro-
duction to seeding.
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threat, surveillance authorities of countries outside the variant source
should be prepared for the variant being potentially already present in
the territory. Enhancement in local screening and measures aiming at
containing local transmission are thus key ingredients of a response
plan. Taken together these findings provide lessons learnt for the
future management of SARS-CoV-2 variants. Beyond that, retro-
spective reconstructions of SARS-CoV-2 spread are essential to
improve computational modeling and public health knowledge to
better guide the response to future spreadof viruseswith zoonotic and
pandemic potential.

Methods
Data
GISAID records. While we did not use any actual sequences in this
study, fromGISAID entries3 we retrieved collection dates, submission
dates, information on lineage (i.e. whether it was Alpha or not) and
country for all human SARS-CoV2 sequences submitted between 15
Aug 2020 and 1 Jun 2021 included (n = 1,735,675 downloaded on 2 Jun
2021). Data in GISAID originated from 144 countries, however, only
73 countries had submitted sequences collected between September
2020 and December 2020. We used GISAID entries to determine the
date of the first submission of an Alpha sample in each country and
the respective date of collection, the latter defined as the “detection
date”. Assuming that detection occurs at the time of sample collec-
tion corresponds to the optimistic hypothesis that surveillance
authorities are informed right after a sample is collected. We also
computed the date of the first collection ever of an Alpha sample in
each country, irrespective of the date submitted. Finally, we deter-
mined the distribution of delays from collection to submission and
the sequencing coverage from the number of sequences by country
and date of collection (see below). For GISAID sequences missing a
collection date (3%), we imputed the missing date with a date
selected at random from the sequences with complete data sub-
mitted in the same week and country. We resorted to imputation
instead of inferring a statistical model because of the small percen-
tage of missing records. In addition, the strong spatiotemporal var-
iations displayed by the data could be hard to capture by a
statistical model.

COVID-19 cases and death data. We retrieved the daily number of
COVID-19 cases by country from the COVID-19 data repository hosted
by the Center for Systems Science and Engineering at Johns Hopkins
University (CSSE)56 to compute the sequencing coverage. Incidence of
Alpha cases in the UK was obtained from the “Variants of Concern:
technical briefing 7—Data England” report36. We used the weekly
deaths time series from the European Center for Disease Prevention
and Control57 (downloaded on 1 Jul 2021) to compute the time varying
reproduction ratio in Denmark, France, Germany, Portugal, Switzer-
land and the USA.

Travel data. Travel flow from the UK to destination countries was
reconstructed combining air travel data, estimates of passengers via
train, Channel Tunnel and ferries. We computed probabilities of travel
assuming a catchment population of 36M for London airports. More
precisely:

• Air travel data were obtained from the International Air Transport
Association (IATA)58. It comprised the monthly number of pas-
sengers outbound from English airports by country of destina-
tion. From the monthly data we computed an averaged daily flux
of passengers over themonth. For each country,we aggregated all
passengers directed to the country and leaving fromall airports of
London.

• Eurostar rail passenger numbers going each day to France, Bel-
gium and the Netherlands were estimated as in59, assuming a 95%
reduction due to the COVID-19 pandemic60.

• We used the monthly number of cars crossing the Channel
Tunnel59,61 to derive an averaged daily flux of passengers over the
month.We assumed that 1.5 passengers travel on average for each
car59 and that the repartition of passengers among countries in
continental Europe is the same as for trains.

• Numbers of passengers via ferries to France, Belgium, the Neth-
erlands, Spain and Ireland were obtained by ref. 62. We used
monthly data to compute an averaged daily flux of passengers
over the month.

Virological investigation records. National investigations were con-
ducted in a number of countries in early January. Through biblio-
graphic search and via social media we gathered the data from
virological surveys or extensive screening for Denmark, France, Ger-
many, Portugal, Switzerland, the USA. These surveys give an estimated
frequency of Alpha infections for the cases detected a given day (or a
given time period). We also considered the daily number of detected
cases on the day of the survey (or the midpoint of the time period)
from CSSE. From these two numbers, we calculated the number of
detected Alpha cases. In Supplementary Table 1 we report the source,
the date of the survey, detected Alpha frequency, and the number of
Alpha cases computed for each country. In Supplementary Fig. 4, we
also analyzed three locations in the US, i.e. Florida, California and New
York City. Sources for these data are reported in Supplementary
Table 2.

Data processing
Sequencing coverage. The sequencing coverage was computed for
each day and each country as the number of sequences collected after
imputation divided by the number of cases. In Fig. 1C, we smoothed
the sequencing coverage with a two-week sliding window to highlight
the general trend.

Delays from collection to submission. We computed the collection-
to-submission times in different ways before and after the Alpha alert
on 18 Dec 2020. Before the alert, we hypothesized that Alpha
sequences would be reported with the same time pattern as other
sequences. We therefore computed a delay distribution by country
and by date of collection using all GISAID sequences as πcðd;uÞ= nu +d,c

Nu,c

where d is the delay, Nu,c the number of sequences collected on day u
in country c and nu+d,c those submitted on date u+d. For sequences
collected after the alert of 18 Dec 2020, we accounted for the different
delay distribution for Alpha and other sequences. Due to the limited
number of Alpha sequences collected outside the UK soon after the
alert we aggregated all data collected outside the UK, thus defining an
averageAlpha delay distribution for all countries.We thenused a 3-day
smoothing time window, where length 3 was chosen as the best
compromise to smooth out fluctuations without masking meaningful
trends. We therefore computed πcðd;uÞ= nd + u

Nu
with Nu the number of

Alpha sequences collected between day u� 1 and u+ 1, and nu+d the
number of those sequences submitted after d days for each country c.
Delays from collection to submission are reported in Fig. 1D and
Supplementary Fig. 1. In the sensitivity analysiswecomputed theAlpha
collection-to-submission delays after 18 Dec 2020 separately for each
country. We used a longer smoothing time window (7 days instead of
3 days) to compensate for the geographic disaggregation.

International dissemination model
We model the observed data consisting in date pairs fSc,Tcg by coun-
try, where Sc is the date of first submission of an Alpha sequence to
GISAID and Tc the corresponding date of collection in country c. The
model is based on the following assumptions: i) Alpha incidence in the
UK grows exponentially with a piecewise exponential rate to account
for the autumn lockdown; ii) imported cases are proportional to
international traffic; iii) collection and sequencing of a sample from an
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imported case of SARS-CoV-2 Alpha and its submission on GISAID is
proportional to sequencing coverage and the detection-to-submission
delay computed from GISAID metadata.

More precisely, we first described incident Alpha infections in the
UK at time t as exponentially growing with time according to
incUK ðtÞ= expðPt

T0
rðuÞÞ, where T0 is fixed at 15 Aug 202033, the date

when the risk of emergence starts and r(t) the daily exponential growth
rate. The daily exponential growth rate in the UK was considered
piecewise constant, r1 up to Nov 5th, 2020, when the UK entered a
lockdown, and r2 afterwards. In other words, incUK ðtÞ was a “two-
slope” exponential, growing as expðr1tÞ before Nov 5 and as expðr2tÞ
afterwards.We also explored amodel with no change of slope and two
changes of slopes (at 5Nov 2020and at 2Dec 2020, beginning and end
of the lockdown respectively) in the sensitivity analysis.

In the UK, the number of Alpha sequences collected depended on
incidence and sequencing coverage as

λ*UK ðtÞ=KUKsUK ðtÞ
XJ

j =0

incUK ðt � jÞ, ð1Þ

where sUK ðtÞ is the sequencing coverage on day t, J the duration of
incubation and KUK the detection probability. For the incubation
period we used 5 days63 and tested 4 and 6 days in the sensitivity
analysis. We considered that one case out of 4 would be tes-
ted (KUK =0:25)64.

Consistently with4,32 we assumed that the first case reported to
GISAID in each country outside the UK was an imported case, infected
in the UK but discovered abroad. Thus, we modeled detection and
sequencing in countries outside the UK without the need to model
local variant growth. There, the expected number of sequences col-
lected at time t in country c additionally accounted for traveling as

λ*cðtÞ=Kc pcðtÞ=NscðtÞ
XJ

j =0

incUK ðt � jÞ, ð2Þ

where pc(t)/N is the fraction of the population traveling from the
catchment area of the London airports to country conday twithN = 36
millions inhabitants the population of the area, and sc(t) the sequen-
cing coverage in country c on day t and Kc the fraction of imported
infections being detected asCOVID-19 cases.We assumed detection of
imported cases to be higher than the detection of local cases, thus we
usedKc =0:5 (>KUK ). In the sensitivity analysis, we tested all airports of
England, instead of airports of London, as the origin of Alpha infected
travelers, andKc =0.25. Finally, we allowed for an increase in collection
of Alpha sequences among travelers relative to others after the alert of
18 Dec 2020 due to increasing sampling of travelers from the UK4,32

using a multiplicative factor γ. Therefore, the expected number of
collected Alpha sequences on day t is λcðtÞ= λ*cðtÞ before 18 Dec 2020
and λcðtÞ= γλ*cðtÞ afterwards. Taking into account collection-to-
submission time, the expected number of sequences submitted at
time t in country c is therefore αcðtÞ=

P
u≤ tλcðuÞπcðt � u,uÞ, and the

probability that a sequence submitted on day t was collected on day u,
with u≤ t, is λcðuÞπcðt � u,uÞ=αcðtÞ.

Towrite up the likelihood of observations, we considered that the
model described the dynamics of collection and submission until the
end of 2020. We assumed Poisson variability in the number of Alpha
infections and computed the probability that an Alpha sequence is
submitted on GISAID for the first time on date Sc in country c as

PðScÞ= exp �
X

u<Sc

αcðuÞ
0

@

1

A 1� expð � αcðScÞ
� � ð3Þ

The log-likelihood of the data in the model was:

log Lðfr0,r1g,γ;fSc,TcgÞ=

=
X

c:Sc ≤D

logð1� expð�αcðScÞÞÞ + logðλcðTcÞπcðSc � Tc,TcÞ=αcðScÞÞ

�
X

c

XSc

T0

αcðuÞ,
ð4Þ

where the first sum runs on countries where an Alpha sequences was
submitted before date D (= 31/12/2020) and the second runs in all
countries. The summary of all fixed parameters and their values is
reported in Supplementary Table 3.

The model likelihood was explored with a Metropolis-Hastings
procedure using R v4.3. We used an Exp(0.1) exponential prior on the
first exponential growth rate r1, a N(0,1) prior on second growth rate r2
to allow for negative growth and an Exp(0.01) prior for the increase in
sampling γ (Supplementary Table 4). Unless stated otherwise, 3 chains
were run in parallel for 100000 iterations, with the first 50000 dis-
carded as burn-in, the second half was thinned (1 iteration every 25) for
a final posterior sample of size 2000. Convergence of the chains was
checked visually (Supplementary Fig. 2). Estimates and credible
intervals for the fitted parameters are reported in Supplementary
Table 5 (baseline values, first row).

We computed the predictive distribution for the date of detection
given the actual travel and sequencing coverage as

Fcðt;pc,sc,KcÞ= 1� exp �
Z t

T0

λcðu;pc,scÞdu
 !

ð5Þ

using the posterior sample and computed 95% prediction intervals
from these samples.

We finally computed the model-predicted date of first introduc-
tion in country c as the distribution Fcðt;pc,1,1Þ in each country,
assuming that 100% sequencing occurred (s = 1) and all cases were
detected (K = 1).

We computed predictive distributions from the model using
parameters taken in the posterior distribution as follows (where the
“hat” notation corresponds to the estimated value):

• Expected incidence in the UK:

incUK ðtÞ= exp
Xt

T0

r̂ðuÞ
0

@

1

A ð6Þ

• Distribution of time of emergence in the UK:

PðTe < tjTe <TUK Þ = 1� exp �
Xt

To

r̂ðuÞ
0

@

1

A= 1� exp �
XTUK

To

r̂ðuÞ
0

@

1

A

0

@

1

A

ð7Þ

• Cumulated distribution of date of first submission:

PðSc ≤ tÞ= 1� exp �
X

u≤ t

α̂cðuÞ
 !

ð8Þ

• Cumulated distribution of date of first introduction:

PðIc ≤ tÞ= 1� exp �
X

u≤ t

λ̂
1

cðuÞ
 !

ð9Þ
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with

λ1cðtÞ=pcðtÞ=N
XJ

j =0

incUK ðt � jÞ ð10Þ

the number of (detected and undetected) infections.

To visualize goodness of fit, we computed the cumulated number
of countries submitting an Alpha sequence by date t as

P
c PðSc ≤ tÞ,

and for the countries reporting an Alpha sequence, the cumulative
distribution of introduction date conditional on submission
date, PðIc ≤ tjScÞ.

Autochthonous model A
To simulate the number of Alpha variant infections at the beginning
of 2021 in each country of interest, we used the daily rates of
importation as estimated from the international dissemination
model λ1cðtÞ) and simulated the subsequent stochastic outcome of
each imported infectious individual in the destination country. The
different Alpha epidemic clusters initiated by each importation were
assumed to be independent. The stochastic epidemic growth model
has been described elsewhere40. For each day since T0 and each
country of destination, we drew the number of imported infections
in a Poisson distribution with rate λ1cðtÞ. Then, starting with each
imported infection, we simulated an epidemic chain assuming that
each infected individual produced a number of secondary infections
according to a negative binomial distribution with mean ð1 +αÞRt and
dispersion parameter κ =0:4, where Rt is the effective reproduction
number at date t and α =0:6 is the transmission advantage of the
Alpha variant relative to the historical strain, assumed to be the same
in every country41. The generation time distribution was gamma with
mean 6.5 days and s.d. 4 days (shape 2.64, scale 2.46)29. To compute
the effective reproduction number Rt of the historical strain from
mortality data, we computed first the daily exponential growth rate
as rt = 1=7 logðDw+ 1=DwÞ where Dw is the number of deaths in weekw.
To account for the lag between disease onset and death (approx.
3 weeks), we considered that this exponential growth rate applied to
infections for days t in week w� 3. We finally computed
Rt =

R1
0 expð�rtτÞgðτÞdτ with gðτÞ the generation interval

distribution65. Note that the calculation of Rt in this way is robust to
under reporting biases, provided that the reporting ratio does not
change substantially over the period. This approach yielded esti-
mates similar to the Epiestim method66.

The model was implemented in C + + (v11). In the simulations of
epidemic clusters, the code loopsover time, starting fromone infected
individual at the day of importation, and ending at 31 Jan 2021. Time
was discretized in time-steps of 0.1 day. The secondary infections are
added to their (future) date in the incidence table, and the code pro-
ceeds to the next infected individual at this time step, then to the next
time-step. Five hundreds (500) replicate simulationswere obtained for
each country to account for stochastic variability in the number and
timing of importations and growth of local epidemics.

Number of infections output of the model were compared to the
empirical number cases estimated from the virological survey.
Assuming a delay between infection and case detection of one week,
empirical cases were comparedwithmodel-predicted Alpha infections
7 days before. Since delay in reporting may vary from one country to
another—somecountries report casesbydateof testing, othersbydate
of notification, data may be smoothed, etc.—we also tested delays of 4
and 10 days.

Autochthonous model B
We used a stochastic discrete age-stratified, two-strain transmission
model to simulate the epidemic dynamics in France generated by the
estimated Alpha importations42,43,67.

The model integrates data on demography, age profile, social
contacts, mobility and adoption of preventive measures. Four age
classes are considered: [0–11), [11–19), [19–65) and 65+ years old
(children, adolescents, adults and seniors respectively). Transmission
dynamics follows a compartmental scheme specific for COVID-19
where individuals are divided into susceptible, exposed, infectious,
hospitalized and recovered. The infectious class is further divided into
prodromal, asymptomatic and symptomatic. Susceptibility and trans-
missibility depend on age68–70. Transmissibility also depends on the
level of symptoms71–74.

Contact matrices are setting-specific. Contacts at school are
modeled according to the French school calendar, while those at work
and on transports according to the workplace presence estimated by
Google data75. During the different stages of the pandemic, physical
contacts are modulated based on surveys on the adoption of physical
distancing76, self-protection42, and assuming a reduction in contacts
due to severe symptoms. The integration of all these data allows for
capturing the social distancing restrictions put in place in France to
curb the second wave, namely a lockdown with schools open77 from
week 44 (starting October 31, 2020) to week 51 (ending December
15, 2020).

The model was previously used to respond to the COVID-19 pan-
demic in France in 202042,43,63,78, assessing the impact of lockdown63, of
night curfew43 and of the reopening of schools78, estimating the
underdetection of cases42, and anticipating the impact of the Alpha
variant in France43. In particular, we used, here, the same two-strain
version of the model developed to study the impact of January 2021
curfew in France on the Alpha circulation in the territory43, with same
parametrization and same transmissibility calibrated to national daily
hospital admission data79. This accounts for the co-circulation of Alpha
variant and the historical strains, and assumes complete cross-
immunity between the two strains, higher hospitalization rate and an
increase in transmissibility of 50% for Alpha28. We also tested a 60%
advantage in transmission, finding that results were robust. Values of
other key parameters are generation time equal to 6.6 days, and
incubation period 5.2 days. Other parameter values are reported in
ref. 63. The model was implemented in Python 3.8.5.

We simulate the epidemic dynamics using the output of the
international dissemination model as seeding for the dynamics. At
each date, we extract the number of prodromal adults infected with
the variant from a Poisson distribution with mean equal to the travel-
ing cases at that date obtained from the international dissemination
model. We repeat this extraction for each of the 500 stochastic runs
performed and we simulate the resulting outbreak. We then compute
the proportion of Alpha on January 8 and compare it with the pro-
portion identified by the first large-scale genome sequencing initiative
(called Flash#1)41 conducted in the country on January 7-8, 2021 (Alpha
proportion in France equal to 3.3%).

Seeding time of active transmission chains
The time of seeding of a transmission chain still active at a reference
end time (time TR) is uniformly distributed over the range of possible
introduction times when the exponential growth rate r is the same in
the place of origin (here the UK) and in the destination country and
travelingflows are constant over time. This is because starting fromthe
date of emergence TE , the number of introductions in the destination
country at some time tI will be proportional to exp½rðtI � TE Þ� and each
case introduced will cause exp½rðTR � tI Þ� cases at time TR, so that the
overall number of cases at time TR is exp½rðtI � TE Þ� exp½rðTR �
tI Þ�= exp½rðTR � TE Þ� irrespective of the actual date of introduction.
Therefore, date ðTE +TRÞ=2 is the expected median introduction date
in this simple scenario of constant exponential growth rate and
traveling.

We therefore used the autochthonousmodel A to reconstruct the
distribution of the seeding times for the transmission chains still active
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on December 31st, 2020. We computed the distribution of seeding
times and the difference between the median of this distribution and
the expected median under the constant exponential growth rate and
traveling described above. The extent of this difference illustrates the
effect of the actual change in epidemic growth rate and traveling flows
on seeding success. We are here interested on how this quantity
changed across the six countries. We found that it increased for low-
ering values of Rt . This show that low values of Rt were likely hindering
the seeding of local transmission chains by the introduced cases,
making the late importations comparatively more important.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thefindings of this study are basedonmetadata associatedwith a total
of 1,735,675 sequences available on GISAID and submitted between 15
Aug 2020 and 1 Jun 2021 included and downloaded on 2 Jun 2021 via
gisaid.org (GISAID: EPI_SET_230724tv). To view the contributors of
each sequence associated with the metadata we used, visit https://doi.
org/10.55876/gis8.230724tv. Proprietary airline data are commercially
available from OAG and IATA databases (https://www.iata.org/). All
other data used in the study are publicly available online. Channel
Tunnel data were obtained from https://www.eurotunnelfreight.com/
fr/2021/01/trafic-navettes-du-mois-de-decembre-2020/, ferries data
were obtained from https://www.gov.uk/government/statistical-data-
sets/sea-passenger-statistics-spas, COVID-19 cases were obtained from
https://github.com/CSSEGISandData/COVID-19, COVID-19 deathswere
obtained from https://www.ecdc.europa.eu/en/publications-data/
data-national-14-day-notification-rate-covid-19, Alpha cases in the UK
were obtained from https://assets.publishing.service.gov.uk/media/
6059e4ad8fa8f545d5c339fc/Variants_of_Concern_VOC_Technical_
Briefing_7_England.pdf.

Code availability
Source codes to reproduce the results of this study are publicly shared
on zenodo80 and on github (https://github.com/EPIcx-lab/COVID-19/
tree/master/Adherence_and_sustainability).
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Supporting information Text 

Arrival times, number of passengers and sequencing coverage 

Assuming exponential increase of cases in the origin country, the time of first arrival with 

passenger flow 𝑝 is Gumbel distributed with mean proportional to 𝑙𝑜𝑔 (𝑝) 1. Assuming collection 

coverage 𝑠 on top, the mean arrival time based on first collection scales as 𝑙𝑜𝑔 (𝑝) 	+	𝑙𝑜𝑔 (𝑠) 

and “iso-arrival-time” lines are as 𝑙𝑜𝑔 (𝑝) 	+	𝑙𝑜𝑔 (𝑠) 	= 	𝑘 (anti diagonals). We report such lines in 

Fig. 1B as reference. 

 

International dissemination model: Sensitivity analysis  

In the sensitivity analysis we tested the following assumptions: 

● Mean incubation period equal to 4 days 

● Mean incubation period equal to 6 days 

● Delays computed for each countries after the alert averaged over a sliding time window 

of 7 days 

● Percentage of case detection outside the UK, Kc= 25% 

● Flights from all England airports with a catchment population of 56 millions inhabitants 

● No changepoint for the Alpha incidence exponential growth in the UK  

● Two changepoints for the Alpha incidence exponential growth in the UK an 5 Nov 2020 

and 2 Dec 2020 

Supplementary Table 5 shows the results of the sensitivity analysis. For the baseline scenario 

and the sensitivity models tested we provide best estimates and some model predictions 

chosen as reference. Varying the parameters had little impact on the parameters estimated in 

the model. The number of countries with introduction before 31 Dec 2020 increased in the 
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following cases: delays from collection to submission for Alpha computed for each country 

aggregated over 7 days, 25% detection of imported cases, no change of slope. 

 

Local dynamics in the USA at a finer spatial scale 

The analysis of Alpha local spread for the USA shows that this country is out of trend, with a 

high number of predicted Alpha cases compared with model estimates. Here, we carry out the 

comparison for two individual states, California and Florida, and for New York City - see sources 

of data reported in Supplementary Table 2. These locations were the port of entry of Alpha into 

the US, with early reported Alpha cases linked directly to the UK 2,3. 

As for the USA as a whole, the autochthonous model A was fed with importation fluxes 

estimated from the international dissemination model and we compared the model-predicted 

number of Alpha cases with the empirical estimates. We present these results on 

Supplementary Fig. 4. 

For California and New York City, the comparison between model and empirical estimates 
follows a trend similar to European countries. Florida registered a high proportion of Alpha 

cases 2. Such a high level of Alpha circulation can be compatible with model predictions in a 

scenario of early Alpha introduction, i.e. introduction dates close to the lower bound of the range 

predicted by the model.  

 

Median seeding time 

In the reference case in which traveling fluxes are constant in time and 𝑅-	is the same in the 

destination country as in the UK, the reference median date of seeding would fall halfway 

between the date of emergence and 31 Dec 2020 (see Methods). The median seeding dates of 

active chains at the end of 2020 departed from this assumed scenario. In Fig. 4D, we found that 

there was a negative correlation between the overall reproduction ratio over the period and the 

difference between computed median seeding date and reference median seeding date 

(spearman correlation -0.81 with p-value = 0.049), implying that lower transmissibility overall led 

to less success in early introductions. In Supplementary Fig. 5 we show that there was no 

significant correlation between the international traffic drop and the difference of the median 

seeding date with the reference date. 
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Supplementary Fig 1. Occurrences of delays between collection and submission in time. 
(A) Alpha variant.(B) Non Alpha variants. (C) Both. 
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Supplementary Fig. 2. MCMC convergence plot. The fitted model has 2 exponential growth 

rates (𝑟/,𝑟0) with a changepoint on November 5th,2020. Three independent chains (red, 

green,blue) were run for 100000 iterations, with 50000 discarded as burn-in. Posterior samples 

were thinned 1 in 25.  
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Supplementary Fig. 3 Distribution of silent spread in days (n=69). Silent spread is computed as 
in Fig. 3D. 
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Supplementary Fig. 4. Model vs. empirical cases of Alpha as in Fig. 4 of the main paper. Here, 
the USA is replaced by California, New York City (NYC) and Florida to address spatial 

heterogeneity inside the USA. The empirical estimates of Alpha cases are computed by 

multiplying the Alpha frequency from virological investigations by the reported COVID-19 

incidence at the same date - the date is indicated in the plot. Model estimates are obtained with 

the autochthonous model A (AM A in the plot). Gray lines show ratios of 100%, 50% and 25% 

between observed and predicted infections attributable to reporting. Black error bars indicate 

the prediction interval over 500 stochastic simulations obtained with the median volume of Alpha 

introduction, output of the international dissemination model assuming a 7-day delay between 

case and infection. Dark colored bars account for the variability in the output of the 

autochthonous model accounting for the upper and the lower limit of the prediction interval of 

the Alpha introductions as given by the international dissemination model. Light colored bars 

account for variability in the delay from infection to case reporting (ranging from 4 days to 10 

days). 
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Supplementary Fig. 5. Difference between the median seeding date predicted by the 

autochthonous model A with the same quantity when Rt is the same in all countries and 

traveling fluxes do not change in time, plotted against the international traffic drop. The 

international traffic drop is computed as the international traffic in Nov 2020 divided by the 

average of international traffic between Sep 2020 and Oct 2020. The Spearman correlation 

coefficient does not show a correlation between the two quantities (coefficient = 0.23, p-value = 

0.66, t-distribution with n-2 dof).  
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Supplementary tables 

 

Country Date of cases 
surveyed for 
Alpha 

Daily number cases Frequency Alpha Computed  
number of Alpha 
infections 

Source 

France 7 Jan 2021 18,004 0.033 594 4 

Portugal 4-10 Jan 2021 8,062 (7/01/2021) 0.068* 548 5 

Germany 23-29 Jan 
2021 

12,370 
(26/01/2021) 

0.103 1,274 6 

Denmark 4-10 Jan 2021 1,825 
(7/01/2021) 

0.035 64 7 

Switzerland 15 Jan 2021 2,204 0.058 128 8 

USA 7 Jan 2021 248,566 0.0048 1,193 2 

Supplementary Table 1. Summary of data used for the validation. France epidemiological 
report last accessed 26/05/2023. Germany report last accessed 26/05/2023. Denmark website 

last accessed 26/05/2023 (2 Mar 2021 version).  

* At week 01 of 2021, 7.38% of cases were suspicions of Alpha, 92% of which are true Alpha.  
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Country Date of cases 
surveyed for 
Alpha 

Daily number cases Frequency Alpha Computed  
number of Alpha 
infections 

Source 

California 7 Jan 2021 43314 0.0018 78 2 

Florida 7 Jan 2021 15939 0.0128 204 2 

NYC 7 Jan 2021 5808 0.013738 80 9 

Supplementary Table 2. Summary of data used for the local spread analysis for the 

locations within the US explored in Supplementary Fig. 4. 

 

 

Parameter Description Baseline value  

𝐾23 Fraction of sampled Covid 
cases. 

0.25 

𝐾4 Fraction of sampled imported 
Covid cases.  

0.5 

𝑒 Incubation period. 5 days 

𝑁 Population in the catchment 
area of London airports 

36M  

𝑇8 Beginning of the risk window for 
VOC emergence in the UK 

15 Aug 2020 

𝑇𝑐𝑝2 Date of change of the 
exponential transmission growth 
in the UK. 

5 Nov 2020 

Supplementary Table 3. Summary of the parameters values assumed in the international 
dissemination model.    
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Parameter Description Prior distribution 

𝑟/ Exponential growth rate in UK 
up to 5 Nov 2020 

Exp(0.1) 

𝑟0 Exponential growth rate in UK 
after 5 Nov 2020 

N(0,1) 

𝛾 Ratio of sampling among 
traveling vs. non-traveling 
cases after 18 Dec 2020 

Exp(0.01) 

Supplementary Table 4. Summary of the estimated parameters and their prior 
distribution. 
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Scenario 𝑟/ 𝑟0 𝛾 Predicted 
time of 
emergence in 
the UK 

Median date of 
first 
introduction for 
France, and 
Denmark 

#countries 
with 
introduction 
before 31 
Dec 2020 

Baseline 0.17 
[0.14;0.20] 

0.055 
[0.02;0.097] 

51.67 
[12.43;310.11] 

08/09 
[21/08;19/09] 

17/10 [18/09-
03/11] - 05/11 
[08/10-06/12] 
 

65 [52-73] 

Incubation 
= 4 days 

0.17 
[0.14;0.20] 

0.056 
[0.024;0.096] 

51.51 
[11.72;307.19] 

09/09 
[21/08;18/09] 

17/10 [20/09-
03/11] - 05/11 
[09/10-07/12] 
 

65 [52-73] 

Incubation 
= 6 days 

0.17 
[0.14;0.20] 

0.056 
[0.024;0.097] 

52.36 
[11.89;301.70] 

06/09 
[19/08;16/09] 

17/10 [19/09-
03/11] - 05/11 
[09/10-06/12] 
 

65 [52-73] 

Delays 
computed 
by country, 
aggregated 
on 7 days 
After 18 
Dec 2020 

0.16 
[0.11;0.19] 

0.086 
[0.043;0.13] 

36.26 
[7.60;186.32] 

02/09 
[17/08;18/09] 

17/10 [20/09-
09/11] - 09/11 
[09/10-07/12] 
 

69 [60-73] 

25% 
detection of 
imported 
cases 

0.18 
[0.15;0.21] 

0.058 
[0.025;0.1] 

51.20 
[11.53;300.63] 

06/09 
[19/08;18/09] 

15/10 [19/09-
31/10] - 31/10 
[07/10-30/11] 
 

70 [61-73] 

Air travel : 
flight from 
England 

0.17 
[0.14;0.20] 

0.056 
[0.025;0.097] 

73.13 
[15.46;415.13] 

02/09 
[17/08;18/09] 

19/10 [21/09-
06/11] - 07/11 
[10/10-08/12] 
 

64 [47-72] 

No change 
of slope 

0.12 
[0.11;0.13] 

 22.46 
[6.75;94.21] 

30/08 
[16/08;12/09] 

23/10 [14/09-
13/11] - 24/11 
[12/10-13/12] 
 

69 [59-73] 

2 changes 
of slope : 
11/5 and 
12/2 

0.16 
[0.12;0.20] 

r2 :  
0.07 
[0.026,0.15] 
r3 : 
0.023 
[0.022,0.48] 
 

61.32 
[13.19;332.14] 

02/09 
[17/08;17/09] 

18/10 [18/09-
08/10] - 08/11 
[09/10-07/12] 
 

65 [51-73] 

Supplementary Table 5. Sensitivity analysis of the international dissemination model. 
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Chapter 3. Drivers and impact of the early silent invasion of SARS-CoV-2 Alpha.

3.3 Conclusion.

In this chapter, using metadata from sequences of the Alpha variant submitted to
GISAID, we explored the interplay between sequencing coverage, air travel volumes
on the duration of silent circulation. The sequencing coverage, as well as the delay be-
tween the collection and submission of a genomic sequence, varied by several orders
of magnitude between countries. The volume of air traffic between the source of the
variant (UK) and other countries showed similar heterogeneity. A broader analysis,
considering sequences submitted to GISAID between December 1, 2019, and October
31, 2021, confirmed this disparity [2]. The authors of this study identified two main
sources of sequencing inequalities. First, they showed that the proportion of sequenced
cases was strongly correlated with the economic development level of the country.
Low-income countries were more likely to share fewer sequences than high-income
countries due to the lack of infrastructure. However, heterogeneity was also observed
across high-income countries. These differences were mainly due to different testing
policies. The latter point emphasised the importance of a coordinated sequencing pol-
icy among countries. Throughout the pandemic, international agencies such as ECDC
[144, 145] and WHO [146] had provided guidelines to standardise sequencing prac-
tices and improve data accessibility. These reports particularly emphasised the need
to provide high-quality data with standardised metadata. Once collected, sequences
should be publicly shared on platforms easily accessible to stakeholders worldwide.

Due to these heterogeneities, surveillance data were biased and incoherent. By
integrating all factors at play we estimated that the Alpha variant had circulated in
most countries undetected for a period of up to two months. More than 60 countries
had likely experienced an introduction of the Alpha variant before the end of Decem-
ber. Overall, our analysis showed that the virus propagation was largely driven by
passenger flows from the source country, which confirmed previous studies [38, 53,
104]. At the same time, however, the intensity of sequencing efforts mainly determined
the duration of silent circulation.

Our study provides a model that can integrate data from different sources to re-
construct the epidemic unfolding. The different components involved in viral dissem-
ination and detection have been explicitly modelled: growth in the UK, exportation
to another country, detection, and delay in sample collection to submission. We could
expand the analysis and test different hypotheses regarding sequencing and air travel
would be possible using counterfactual scenarios. We could determine the minimum
sequencing intensity required to detect a variant within a specified timeframe since its
emergence or investigate whether an earlier reduction in air travel could have delayed
the exportation of the variant. This framework could also be used to study the spread
and the detection of other variants, or future viruses.

While our study is retrospective, a similar framework could be used to analyse
the epidemic unfolding in real-time and forecast the propagation of a new variant un-
der certain conditions. Firstly, our framework needs real-time estimation of sequenc-
ing coverage across different countries as input data. Sequencing coverage computed
from the preceding months before such a study could be an acceptable proxy. Sec-
ondly, it is worth noting that our model assumes variant exportation occurs directly
from the source country to other countries. While other studies have validated this
assumption for the case of Alpha for the period under study, it implies that the model
may only apply to viruses/variants with a single source and during the initial months
of propagation. For instance, as discussed in the first chapter of this thesis, such an
assumption couldn’t be applied to the Delta or Omicron variant [38]. We could com-
plexify the model to allow exportation from a non-primary source country to relax this
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3.3. Conclusion.

assumption.
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Chapter 4

Agent-based modelling of reactive
vaccination of workplaces and
schools against COVID-19.

In this Chapter, I present the work published in [6]. In this study, we used
an agent-based model to assess the effectiveness of reactive vaccination to mitigate
COVID-19 spread and control the emergence of a new variant. Based on historical
examples, I review the different reactive vaccination strategies and the different epi-
demiological contexts in which they were used. Then, I present the details of the
agent-based model used in the study, and I will present the article.

4.1 Introduction.

4.1.1 Target vaccination.

Historical examples have demonstrated the effectiveness of vaccination in re-
ducing cases of infectious diseases [147] and even eliminating (polio or diphteria) or
eradicating (smallpox) them in some parts of the world [148]. The basic theory [149]
estimates the proportion of the population p to be vaccinated based on the basic repro-
duction number p = 1

VE (1 − 1
R0 ), where VE is the vaccine efficacy, and R0 is the basic

reproduction number. However, this theory relies on simplifying assumptions, such as
homogeneous mixing. The proportion p might change if contacts or susceptibility are
heterogeneous.

Choosing the right vaccination strategy was critical during the first semester of
2021. Vaccine distribution, while limited by the number of available doses, had to
reduce the incidence of COVID-19 in the context of pandemic fatigue [11], reducing
the impact of social distancing measures. In the context of the Delta wave in summer
2021, vaccination was employed as a strategy to limit the rise of cases. In particular,
a more targeted or reactive vaccination aimed at vaccinating those at the highest risk
of being infected was used occasionally to maximise the impact of the initial vaccine
doses distributed. In May 2021, the UK government chose to increase testing and vac-
cine distribution in areas where an increase in cases related to the spread of the Delta
variant was detected [150]. On a smaller scale, Cologne [151] massively vaccinated
neighbourhoods with detected hotspots, regardless of individuals’ ages. In France,
targeted vaccination was implemented in Bordeaux, Strasbourg, and Brest [7] to con-
tain the emergence of the Delta variant. In Strasbourg, vaccine doses were distributed
to students at an art school after a cluster of 4 cases of the Delta variant was detected
[152].
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Chapter 4. Agent-based modelling of reactive vaccination of workplaces and schools
against COVID-19.

Several successful reactive vaccination strategies have been implemented in the
past. Modelling studies assessed the effectiveness of vaccination of close contacts for
smallpox [132] and vaccination of children in urban areas where an outbreak was de-
tected for measles [153]. Ring vaccination was implemented in the context of the Ebola
virus endemic in West Africa in 2014-2015, with contacts and contacts of contacts of
detected cases being vaccinated. Randomised controlled trials assessed this reactive
intervention’s effectiveness [153, 154].

By targeting the contacts of detected cases, ring vaccination was expected to in-
terrupt transmission chains early, limiting the spread of the disease or even poten-
tially leading to its eradication [155]. Furthermore, ring vaccination was supposed
to decrease the vaccine doses needed compared with a traditional mass vaccination
campaign, which can be useful early in an epidemic when the total supply of vaccine
doses is unavailable [155]. However, this strategy may not be suitable for all cases.
The eradication of smallpox using this strategy was possible because the disease was
easily identifiable with recognisable symptoms, without a significant latent or asymp-
tomatic infectious phase [156]. Additionally, the vaccine was cheap, readily available,
and stable at high temperatures [156], with high effectiveness at preventing infection
and transmission. The vaccine was also fast to be effective after injection compared to
the long incubation period. Ring vaccination would be ineffective for diseases with a
significant pre-symptomatic phase during which an undetected individual could cause
secondary cases. It also requires an effective system for case detection and contact trac-
ing, adherence of contacts to getting vaccinated, and a sufficiently agile logistics sys-
tem for rapid deployment. A modelling study of the impact of ring vaccination in the
context of an Ebola epidemic in Sierra Leone [157], using an agent-based model, high-
lighted critical factors for the success of this strategy. In all scenarios, the effectiveness
of reactive vaccination decreased as transmissibility, human mobility, or the time be-
tween infection and hospital admission increased. The overall rate of vaccine coverage
had little impact.

Another type of reactive vaccination involves vaccinating all individuals in a lo-
cation (e.g., workplace, school) identified as a hotspot of the epidemic. This strategy
has been used several times to address resurgences of measles cases in past decades.
Between October 2012 and September 2013, multiple measles outbreaks were identi-
fied in the young population of the Greater Manchester area [158]. The UK authorities
targeted secondary schools where cases had been detected to contain measles spread.
These local vaccinations were accompanied by information campaigns to increase the
adherence of unimmunised families to the vaccination program. A similar strategy
was used in Edinburgh among students when outbreaks occurred in secondary schools
and universities in the city. In the case of the 2003-2004 measles epidemic in Niamey in
Niger, reactive vaccination was found to be the optimal strategy in case of low initial
vaccine coverage. In the context of the COVID-19 pandemic during the first semester
of 2021, we conducted a study to explore the feasibility and impact of implementing
a reactive vaccination strategy in France. Among the various possible forms of re-
active vaccinations, we examined a strategy targeting schools and workplaces where
cases were detected. Ring vaccination was unlikely to be useful for COVID-19 for
several reasons. First, a significant proportion of cases were asymptomatic or have
mild symptoms. A meta-analysis from 2020 demonstrated that 24.51% of transmis-
sions were asymptomatic [159]. Even among symptomatic cases, the majority went
undetected by the surveillance system. For example, in France, it was shown that
nine out of ten symptomatic cases went undetected during the first wave in spring
2020 [9]. Furthermore, even for symptomatic cases, there is a pre-symptomatic phase
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4.1. Introduction.

FIGURE 4.1: From [157]. Epidemic prevention potential of ring vaccination to contain Ebola
epidemic in Sierra Leone. Various parameters are tested. (A) Vaccine coverage. (B) Vaccina-
tion policy: C (Contact of index), CC (contact of contact of index), S (Geographical rings of
2 km). (C) Human mobility Spatial transmission is proportional to a power law kernel 1/(1
+ db) where d is the geographical distance and b regulates the decrease of transmission with

distance. (D) Time from symptoms to hospital.

during which individuals are infectious and can generate secondary cases before de-
veloping symptoms. The infectious period has been estimated to start days before the
onset of symptoms [160]. Additionally, even after an individual develops symptoms,
it takes several days for them to be detected by the health insurance system -on av-
erage, 2.6 days in France in the first half of 2021 [161]. Considering that the vaccine
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Chapter 4. Agent-based modelling of reactive vaccination of workplaces and schools
against COVID-19.

takes around two weeks [71] to become effective, a first-degree reactive ring vaccina-
tion would not be effective in reducing cases. It could have been possible to study
the effect of second-degree ring vaccination, where contacts of contacts are vaccinated.
However, this strategy would have raised many logistic issues and would have been
challenging to implement. Thus, it would have had a limited public health interest.
Vaccinating schools or workplaces of index cases allows for the easy targeting of the
contact network of cases, as most of an individual’s contacts were found to occur in
these settings [116]. Our study investigated the impact of such a vaccination strategy
in the context of the pandemic during the first half of 2021. At this time, several re-
strictions were in place (curfew, social distancing measures, teleworking), and vaccine
distribution was limited to the elderly population. On the other hand, many coun-
tries had already implemented TTI systems, allowing for detection of cases, tracing of
contact and isolation. The implementation of reactive vaccination could leverage these
existing infrastructures. Classical compartmental models have already been used to
address public health questions about vaccination [76, 162, 163, 164]. However, an
agent-based model would be more appropriate to study reactive vaccination as it re-
quires understanding the interplay between different time scales (detection of cases,
isolation, contact tracing, time necessary for the vaccine to become effective) at the indi-
vidual level. Our agent-based model was an extension of a previous one used to assess
the impact of contact tracing apps [59]. The stochastic nature of the model captured the
inherent randomness in the spread of the epidemic and incorporated uncertainty in
model parameters (network structure, seeding, and variations in contacts). Our work
aimed to investigate the impact of various epidemiological factors on the effectiveness
of reactive vaccination strategy, including population immunity, virus transmissibil-
ity, initial vaccine coverage, vaccine efficacy, and public adherence to vaccination. We
quantified the reduction in symptomatic cases and the daily number of vaccine doses
administered. We also examined the possibility of controlling an outbreak at the start
after detecting a local cluster to assess the strategy’s effectiveness against a new vari-
ant. Finally, if a reactive vaccination strategy was implemented, it would likely overlap
with a mass (e.g. non-targeted) vaccination. Then, to consider a realistic scenario, we
also studied a mixed situation where both strategies are employed simultaneously to
understand their interactions.

4.2 Details about the model.

4.2.1 Modelling population.

We extended the model described in [58] to model the spread of COVID-19 in a
population under social distancing restrictions. The synthetic population was stochas-
tically built using demographic data from Institut National de la Statistique et des
Etudes Economiques (INSEE). We reproduced statistics on age distribution, house-
hold number and type, and school and workplace number and size. We used Metz,
a middle-sized city in the Grand Est region, as a case study. Different types of house-
holds were considered, depending on whether they were composed of a couple or a
single individual, with or without children. Each household type had a certain proba-
bility of being composed of individuals of a certain age. At the start of a simulation, a
set of households is randomly generated, with their composition and type based on the
distributions observed in INSEE data, until the total population size of Metz (117,492
inhabitants) is reached [59]. Once the population is built, each individual is randomly
assigned to a school, university, or workplace based on their age. We modelled daily
contacts between individuals with a time-varying contact network with five layers,
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4.2. Details about the model.

each representing a location where contacts occur: school, workplace, home, commu-
nity, and public transport. For each simulation, we built an acquaintance network
formed by the combination of Erdos-Renyi networks in each location (e.g., each school
and workplace). The average degree χi(s, n) is a random variable that depends on the
type of location s and its size n. We sample its value from a gamma distribution with
an average χ̄i(s, n) and a variation coefficient CV. We assume that CV is the same for
all settings. We parametrise χ̄i(s, n) so that for small sizes, all individuals come into
contact, whereas as the size increases, the number of contacts saturates. We denote
with ws this maximum of contacts.

χ̄i(s, n) =
(n − 1).ws

ws + (n − 1)

Once the network is constructed, each link is assigned a daily activation rate x,
sampled from a cumulative distribution function Fs(x). This function is a sigmoid with
parameters As and Bs . Parameters As,Bs,ws and CV are fixed to reproduce the statistics
of daily contacts reported in [116]. Contacts are then sampled each day according to
the activation rate.

FIGURE 4.2: (from [59]): Synthetic population used in the model. (A) Construction of the
multilayer contact network. Contacts among individuals were represented as a multilayer
dynamical network, where each layer includes contacts occurring in a specific setting. (B)
Distribution of the number of daily contacts in the model. (C) Cumulative distribution of
the activation rate associated with the contacts in the model was calibrated to be consistent
with the information from INSEE. (D) Age contact matrix computed from the contact network

model.
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Chapter 4. Agent-based modelling of reactive vaccination of workplaces and schools
against COVID-19.

4.2.2 Modelling social distancing.

To analyse the impact of social distancing measures on the vaccination strategy,
we modelled contact tracing and isolation measures for detected cases and their con-
tacts. Once infected, an individual is detected with a probability pd,c if he is clinical or
with a probability pd,sc if he is subclinical and then isolated with a rate rd. Household
contacts of index cases are isolated with a probability pct,HH. As soon as an index case
is detected, a proportion of contacts outside the household is traced and isolated with
a mean delay r−1

ct . Frequent contacts are distinguished from the ones occurring more
rarely. To do so, we define a threshold fa such that cases frequently in contact with
the index case ( f ≥ fa) are detected with a probability pct,A while others are detected
with probability pct,sp. Only contacts that occurred D days before the detection of the
index case are traced. The duration of isolation depends on the infectious status of the
individual, as legislation could have differed between actual positive cases and non-
positive contacts. If infected, the individual stays isolated for a period dI . Otherwise
(Susceptible or Recovered), he stays isolated for a period dNI . Asymptomatic contacts
have a probability pdrop of dropping out of isolation each day.

The model also accounts for teleworking and social distancing. At the begin-
ning of each simulation, a portion of contacts is reduced in workplaces (to represent
teleworking) and the community (for social distancing measures). These contact re-
ductions remain constant throughout the simulated period - around two months. In
the baseline scenario analysed in the paper, we set the percentage of contacts removed
in workplaces at 10% and 5% in the community to match the values observed in France
during the autumn of 2021 and reported by Google Mobility data [165].

4.2.3 Epidemiological model.

The transmission of COVID-19 and individual infection history were described
by assigning each individual a status with susceptibility and severity depending on
age and vaccination status. An individual who has not yet encountered the disease
is Susceptible (S). Once infected, he remains exposed (E) for a random latency period
ϵ−1 following en Erlang distribution with an average of 3.7 days [166], during which
he is neither infectious nor symptomatic. The individual then become infectious and
can infect other susceptible individuals. To model the variation in symptom intensity,
the infectious individual can be subclinical (corresponding to asymptomatic or mildly
symptomatic cases) or clinical (with moderate to severe symptoms). The probabil-
ity pA

sc [167] of being subclinical is dependent on age A. Before entering the Ic or Isc
compartments, the infectious individual go through a pre-symptomatic phase with an
average duration µ−1

p of 2.1 days [166]. An infectious individual recovers and enters
the Recovered (R) compartment with an average duration µ−1 of 7 days. A recovered
individual is no longer infectious and can not be infected again. We did not mod-
elled waning immunity as we simulated an epidemic for a maximum of two months.
When an individual is susceptible, he can be infected by another infectious individual
with a probability per contact and per unit of time given by the product β.β I .ωS.σA.
The term β I represents the reduction in transmissibility of pre-symptomatic individ-
uals (β I=0.51) compared to symptomatic individuals (β I=1) [114]. This value is inde-
pendent of whether the individual is clinical or subclinical. The term ωs allows for
variability in transmissibility based on location (ωs = 1 for households, ωs = 0.3 for
community contacts and ωs = 0.5 in other places) [59]. Lastly, the term σA reflects
the variability in susceptibility of the infected individual based on their age [59]. The
value of β was set for each scenario so that the effective reproduction number Re f f at
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4.2. Details about the model.

the onset of the simulation is at a value of 1.6, corresponding to measurements for the
Delta variant [168]. We computed the Re f f as the average number of secondary cases
generated by an index case in a scenario without vaccination.

We assumed a "leaky" vaccination to model the effect of vaccination. All vac-
cinated people were partially protected against infection, transmission, and clinical
symptoms. We added compartments for vaccinated individuals to the SEIR-like model,
allowing for protection against infection and the development of moderate to severe
symptoms. Once a susceptible individual is vaccinated, he enters the SV,0 compart-
ment where he remains for an average time τ0, representing the delay in the first dose’s
effectiveness. The individual then moves to the SV,1 compartment, corresponding to
full single-dose vaccine efficacy. After an average time τ1 (the time needed to get the
second dose and for this to become effective), the individual entered the SV,2 compart-
ment where the two-dose vaccination was fully effective. For SV,2 compartment, we
denote with rs,2 the reduction in susceptibility to infection and with rc,2 the reduction
in the probability of developing clinical symptoms. Thus, we have:

rs,2 =
P(SV2 −→ EV2)

P(S −→ E)
= 1 − VEs,2,

and

rc,2 =
P(EV2 −→ IV2

p,c )

P(E −→ Ip,c)

with

1 − VEsp,2 =
P(Ic|V)

P(Ic|V̄)
=

P(Ic|V, E).P(E|V)

P(Ic|V̄, E).P(E|V̄)
= rc,2.(1 − VEs,2).

Here V designates a vaccinated individual and V̄ a non-vaccinated one.
From the latter equation, we thus obtain,

rc,2 =
1 − VEsp,2

1 − VEs,2

For SV1 compartment, we assume for simplicity a polarised effect, with a part of
the vaccinated population behaving as fully vaccinated (Figure 4.3). We note rS1 the
reduction in susceptibility and pv the probability for an infected individual to go to
compartment EV . A computation similar to the computations above gives :

1 − VEsp,1 = (1 − VEs,1).(pv.rc,2 + (1 − pv))

We assumed no reduction in transmissibility when a vaccinated person infects
another, but we assume that the infectious period is reduced by 25%. We summarise
the entire compartmental model in Figure 4.3.

We chose the vaccine effectiveness to match those observed for the BNT162b2
vaccine against the Delta variant. In the results section of the paper presented in this
chapter, we detail these values and their corresponding sources.

4.2.4 Strategies and outcomes.

We compared reactive vaccination to other strategies. We assumed all these
strategies were implemented when a given proportion of elderlies had already been
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Chapter 4. Agent-based modelling of reactive vaccination of workplaces and schools
against COVID-19.

FIGURE 4.3: Compartmental model of COVID-19 transmission and vaccination.

vaccinated. In all scenarios, only individuals willing to get the vaccine were vacci-
nated. We parametrised the compliance to vaccination based on statistics [169]. We
describe all strategies in the following.

Reactive vaccination: When a cluster of cases is detected in a workplace or a
school, the entire setting is vaccinated at a rate rv, as well as the household members of
people being in that setting. We defined a cluster as a number of cases greater than or
equal to ncl over a period of Tcl . In some scenarios, we assumed the maximum number
of doses administered per day (Vdaily) and over the entire simulation duration (Vtot)
was caped.

- Baseline scenario: No vaccination during the simulation.
- Mass vaccination: Every day, a set of individuals is randomly vaccinated. This

strategy corresponds to a vaccination setup in vaccination centres, by GPs, or pharma-
cists.

- School vaccination: Every day, schools are randomly selected to vaccinate chil-
dren attending the school, along with the household members of the children.

- Workplace/University vaccination: Every day, workplaces or universities are ran-
domly selected to vaccinate their population and household members. School or work-
place/university vaccinations are targeted vaccination but non-reactive strategies. By
comparing their results to the reactive approach, we can explore the specific advan-
tage of reactivity. Combined strategy: If reactive vaccination was implemented, it would
likely be carried out in addition to a mass vaccination strategy, with individuals vac-
cinated daily at vaccination centres. Therefore, we also explore the possibility of a
combination of mass vaccination and reactive vaccination. The number of detected
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4.3. Article: Agent-based modelling of reactive vaccination of workplaces and
schools against COVID-19.

cases determined the number of doses for reactive vaccinations. We assumed a certain
number of doses was distributed daily for non-reactive vaccinations.

At the beginning of each simulation, we set population immunity. We explored
each strategy’s ability to reduce the attack rate and the peak incidence compared to the
scenario without vaccination. We also assessed the feasibility of reactive vaccination
by measuring the doses distributed daily.

4.3 Article: Agent-based modelling of reactive vaccination of
workplaces and schools against COVID-19.
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With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility

and distribution could help keep transmission under control. Here, we study the impact of

reactive vaccination targeting schools and workplaces where cases are detected, with an agent-

based model accounting for COVID-19 natural history, vaccine characteristics, demographics,

behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a

higher reduction in cases compared with non-reactive strategies using the same number of

doses. The reactive strategy could however be less effective than a moderate/high pace mass

vaccination program if initial vaccination coverage is high or disease incidence is low, because

few people would be vaccinated around each case. In case of flare-ups, reactive vaccination

could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-

isolate and triggers an increased vaccine uptake. These results provide key information to plan

an adaptive vaccination rollout.
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Vaccination against SARS-CoV-2 has changed the course of
the COVID-19 pandemic due to the high efficacy of avail-
able vaccines in preventing infection and severe disease.

Yet, several months into the vaccination campaign, vaccine uptake
remained below official targets in many Western countries due to
logistical issues, vaccine accessibility and/or hesitancy. As of Fall
2021, less than 60% of the population in the United States and
Europe was fully vaccinated1. With intense virus circulation still
ongoing in many regions of the world due to the Delta variant and
the threat posed by emerging variants, it is important to investigate
whether vaccine use could improve with adaptive delivery. Indeed,
offering vaccination to individuals who were exposed to the virus
allows targeting those at higher risk of infection and, furthermore,
might help overcome barriers to vaccination2,3 since vaccine-
hesitant people are more likely to accept vaccination when the
perceived risk of infection is higher4.

Redirecting vaccine supplies to geographic areas of highest
incidence (or hotspot vaccination) is already part of the plans in
some European countries and was implemented to combat the
emergence of the Delta variant2. Other reactive vaccination
schemes are possible, such as ring vaccination that targets con-
tacts of confirmed cases or contacts of those contacts, or vacci-
nation in workplaces or schools where cases have been detected.
This could potentially improve the impact of vaccination by
preventing transmission where it is active and even enable the
efficient management of flare-ups. For smallpox or Ebola fever,
ring vaccination has proved effective in rapidly curtailing
outbreaks5–8. However, the experience of these past epidemics
cannot be transposed directly to COVID-19 due to the many
differences in the infection characteristics and epidemiological
context. For example, COVID-19 cases are infectious a few
days before symptom onset9 but often detected a few days after.
This gives time to infect their direct contacts and thwarts
ring vaccination. Vaccinating an extended network of contacts, as
could be done with the vaccination of whole workplaces or
schools, would have a larger impact, especially if adopted in
combination with strengthened protective measures to slow down
transmissions, such as masks, physical distancing and contact
tracing. This could be feasible in many countries, leveraging the
established test-trace-isolate (TTI) system that enables prompt
detection of clusters of cases to decide where vaccines should be
deployed. Properly assessing the interest of reactive vaccination
therefore requires a detailed examination of the interactions
of vaccine characteristics, the pace of vaccination, COVID-19
natural history, case detection practises and overall changes in
population behaviour.

We therefore extend an agent-based model that has been
previously described10 to quantify the impact of a reactive vac-
cination strategy targeting workplaces, universities and 12+ years
old in schools where cases have been detected. We compare the
impact of reactive vaccination with non-reactive vaccination
targeting similar settings or with mass vaccination, and test these
strategies alone and in combination. We explore differences in
vaccine availability and logistical constraints, and assess the
influence of the dynamic of the epidemic and different stages of
the vaccination campaign.

Results
Mass vaccination, targeted and reactive vaccination strategies.
We extended a previously described SARS-CoV-2 transmission
model10 to simulate vaccine administration alongside other inter-
ventions—i.e. contact tracing, teleworking and social restrictions.
Following similar approaches11–14, the model is stochastic and
individual-based. It takes as input a synthetic population reprodu-
cing demographic and social-contact data, workplace sizes and

school types (Fig. 1a) of a typical medium-sized French town
(117,492 inhabitants). Contacts are described as a dynamic multi-
layer network10 (Fig. 1b).

We assumed that the vaccine reduced susceptibility, quantified
by the vaccine effectiveness VES, and symptomatic illness after
infection, quantified by VESP15 (Fig. 1c). We considered a
vaccination strategy based on the Cominarty vaccine16 which is
very suitable for reactive vaccination given efficacy, only 3 weeks
between the two doses and wide availability. We described
the vaccine-induced protection with respect to the Delta variant—
i.e. the dominant variant as of Fall 2021. Real-life estimates are
heterogeneous, reflecting the complex interplay between the
timing of Delta introduction in the population, the co-circulation
of other variants, waning of immunity and differential impact by
age. In the baseline scenario we considered vaccine effectiveness
levels in the middle of the range of estimates provided in a
systematic review17. We used a three-week interval between doses
as in the vaccine trial16. For vaccine protection, we conservatively
assumed that there was no protection in the 2 weeks after
the first inoculation, followed by intermediate protection until
2 weeks after the second dose (VES,1= 48% and VESP,1= 53%,
see additional details in the Supplementary Table 2) and
maximum protection afterwards (VES,2= 70% and VESP,2=
73%), 5 weeks after the first dose. The maximum protection
values are close to the estimates obtained in a meta-analysis
for Delta, all vaccines combined18. Lower and higher vaccine
effectiveness are also explored.

In the baseline scenario we parametrised the epidemiological
context assuming that 32%19,20 of the population was fully
immune to the virus due to the previous infection. Initial
incidence was moderate/high, i.e. ~160 clinical cases weekly per
100,000 inhabitants, and the reproductive ratio was R= 1.6, in
the range of values estimated for the Delta wave of summer
20211,21. We modelled the baseline TTI policy after the French
situation, allowing 3.6 days on average from symptoms onset to
detection and 2.8 average contacts detected and isolated per index
case22 (Fig. 1d). We assumed that 50% of clinical cases and 10%
of subclinical cases were detected, leading to an overall detection
rate of ~25%20,23. Social restrictions were modelled assuming
10% of individuals were doing teleworking and contacts in the
community were reduced by 5% (see Methods).

We then modelled vaccination targeting all adults older than
12 years old with baseline vaccine uptake—set to 80% in the 12-
65 years old and 90% in the over 65 years old24. We assumed that
priority risk groups (e.g. elderlies) had already been vaccinated up
to that level at the start25–28. We modelled three non-reactive
vaccination strategies in the general population, where vaccina-
tion was carried out up to the maximum number of doses
available each day at random (i) in the whole population (mass)
or (ii) in schools sites (school locations, described below) or (iii)
in workplaces/universities (workplaces/universities). In the school
locations vaccination, we assumed vaccine sites were set up in
schools to vaccinate pupils and their parents/siblings over the age
of 1229. Then, we modelled a reactive vaccination strategy, where
the detection of a case thanks to TTI triggered the vaccination of
household members and those in the same workplace or school
(Fig. 1d). In this scenario, a baseline delay of 2 days on average
was assumed between the detection of the case and starting
vaccination to account for logistical issues—i.e. ~5.6 days on
average from the index case’s symptoms onset. In the baseline
scenario, we assumed vaccine uptake in the context of reactive
vaccination to be the same as in non-reactive vaccination.
The impact of each strategy was assessed by comparison with a
reference scenario, where no vaccination campaign is conducted
during the course of the simulation and vaccination coverage
remains at its initial level.
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In Fig. 2a–h we used the baseline parameters values presented
above but varied the initial vaccination coverage level for
comparison. We first considered the case of low vaccination
coverage, i.e. ~30% over the population—with 15% of the [12,60]
group and 90% of the 60+ group—as seen in some countries in
Eastern Europe and some US counties in the fall of 20211,30. For
non-reactive strategies, the vaccination pace ranged between
100 and 500 first doses per 100,000 inhabitants per day. The
vaccination pace in Western countries roughly fell within these
extremes for the majority of the vaccination campaign, with lower
values in general reached around the beginning and the end, due
to delivery issues at the beginning, and difficulty in overcoming
barriers to vaccination at the end1. For the reactive strategy,
vaccine deployment is triggered by detected cases, therefore the
number of doses used and the number of places where these doses

are administered depends on the epidemic situation. Figure 2a
shows the relative reduction in the attack rate after 2 months
as a function of the number of first daily doses and Fig. 2b
compares the incidence profiles under different strategies with the
same number of vaccine doses. The mass, school location and
workplaces/universities strategies have a similar impact on
the epidemic. They lead to a reduction between 2.7% and 3% of
the attack rate with 100 first doses per 100,000 inhabitants
administered each day, and between 13% and 15% with 500 per
100,000 inhabitants. Among the three strategies, the reduction
produced by mass vaccination was slightly lower. This is because
the strategies are compared at the same number of daily vaccine
doses and, in workplaces/universities and school locations, these
doses were directed to a more active population—working
population, or population living in large households—with a
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Fig. 1 Modelling reactive vaccination. a Distribution of workplace size and of school type for the municipality of Metz (Grand Est region, France), used in
the simulation study. b Schematic representation of the population structure, the reactive vaccination and contact tracing. The synthetic population is
represented as a dynamic multi-layer network, where layers encode contacts in household, workplace, school, community and transport. In the figure,
school and workplace layers are collapsed and community and transport are not displayed for the sake of visualisation. Nodes repeatedly appear on both
the household and the workplace/school layer. The identification of an infectious individual (in purple in the figure) triggers the detection and isolation of
his/her contacts (nodes with orange border) and the vaccination of individuals attending the same workplace/school and belonging to the same household
who accept to be vaccinated (green). c Compartmental model of COVID-19 transmission and vaccination. Description of the compartments is reported on
the Methods section. d Timeline of events following infection for a case that is detected in a scenario with reactive vaccination. For panels c, d transition
rate parameters and their values are described in the Methods and in the Supplementary Information.
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greater potential to transmit the infection. The reactive vaccina-
tion produced a stronger reduction in cases than the three other
strategies in the 2-months period (black dot in Fig. 2a and black
line in Fig. 2b). We found that 417 doses per 100,000 inhabitants

each day on average were used under the epidemic scenario
considered here, yielding an attack-rate relative reduction of 20%.

In Fig. 2c we considered the same parametrisation as in Fig. 2a,
b and we showed the number of first doses in time and the

Fig. 2 Comparison between vaccination strategies. a–h Comparison between reactive and non-reactive vaccination strategies for the baseline scenario and
different values of initial vaccination coverage. a, d, g Relative reduction (RR) in the attack rate (AR) over the first 2 months for all strategies as a function of the
vaccination pace. RR is computed as (ARref−AR)/ARref with ARref being the AR of the reference scenario, where no vaccination campaign is conducted during
the course of the simulation and vaccination coverage remains at its initial level. AR is computed from clinical cases. Three initial vaccination coverages are
investigated: 15% of adults (low) (a); 40% of adults (intermediate) (d) and 65% of adults (high) (g). b, e, h Weekly incidence of clinical cases for 100,000
inhabitants for the first 8 weeks with different vaccination strategies. The non-reactive scenarios plotted are obtained with the same average daily vaccination
pace as for reactive vaccination. Low, intermediate and high vaccination coverages are investigated in b, e, h, respectively. c Number of daily first-dose
vaccinations, and number of workplaces/schools (WP/S in the plot) where vaccines are deployed for the same reactive scenario as in a, b—low vacc. cov., with
15% initial vaccine coverage. f AR RR for different initial vaccination coverages. The four strategies are compared at equal numbers of vaccine doses. The baseline
epidemic scenario of panels a–h is defined by the following key parameters: R= 1.6; VES,1= 48%, VESP,1= 53%, VES,2= 70%, VESP,2= 73%; initial immunity 32%;
initial incidence 160 clinical cases weekly per 100,000 inhabitants; 90% of 60+ vaccinated at the beginning. i AR RR for different vaccine effectiveness levels,
assuming intermediate vaccination coverage (40% of adults) and all other parameters as in panels a–h. The baseline vaccine effectiveness values used in
the other panels is compared with a worst and a best-case scenario, defined respectively by VES,1= 30%, VESP,1= 35%, VES,2= 53%, VESP,2= 60%, and by
VES,1= 65%, VESP,1= 75%, VES,2= 80%, VESP,2= 95%. For each vaccine effectiveness scenario the four strategies are compared at equal numbers of vaccine
doses. In panels a, d, f, g, i, data are means over 2000 independent stochastic realisations and error bars are derived from the standard error of the mean—these
are smaller than the size of the dot in the majority of cases. In panels b, c, e, h, continuous lines are means over 2000 independent stochastic realisations and the
shaded areas are the standard error of the mean (±2SEM)—not visible in panels b, e, h. The distribution of outcomes over all 2000 independent stochastic
realisations is provided in Supplementary Fig. 3 comparing all vaccination strategies and considering the parameterisation of Fig. 2e as an example. The following
abbreviations were used in the Fig.: vacc. for vaccines, inhab. for inhabitants, cov. for coverage, inc. for incidence, univ. for universities.
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number of places to vaccinate—as a proxy to the incurred
logistics of a vaccine deployment. The number of daily inoculated
doses was initially high, with almost 1200 doses per 100,000
inhabitants used in a day at the peak of vaccine demand, but
declined rapidly afterwards down to 105 doses. The number of
workplaces to vaccinate followed a different trend. It slowly
increased to reach a peak and then declined. The breakdown in
Supplementary Fig. 4 shows that schools and large workplaces
were vaccinated at the very beginning. Thus a great number of
vaccines were initially deployed in large settings, requiring many
doses, while as the epidemic spread it reached a large number of
small settings where only a few individuals could be vaccinated.

In Fig. 2d, e, we then considered an intermediate vaccination
coverage at the beginning (40% of the [12,60] group and 90% of
60+, corresponding to ~45% of the whole population). Non-
reactive strategies led to a relative reduction in the attack rate after
2 months close to that in the low initial coverage case, but the
impact of reactive vaccination was reduced. Indeed, the proportion
of unvaccinated people attending workplaces/schools that are
targeted by vaccination is lower and fewer vaccine doses are
administered, leading to a smaller impact at the population level
(Fig. 2d). Still, reactive vaccination produced a 13% reduction in the
attack rate using ~250 doses per 100,000 inhabitants each day on
average, when the same reduction required ~400 doses per 100,000
inhabitants each day with non-reactive strategies. The impact of
reactive vaccination finally became very small when initial
vaccination coverage was high. Figure 2g, h shows a scenario
where 65% of the [12,60] group and 90% of 60+ is vaccinated at
the beginning, corresponding to ~60% of the whole population
close to the coverage reached in Europe in the Fall 20211. Only 94
daily vaccines per 100,000 inhabitants were used each day with a
5% reduction in the attack rate compared to a 3% reduction with
non-reactive strategies for an equal number of doses. Non-reactive
strategies with vaccination pace higher or equal to 300 doses per
100,000 inhabitants each day yielded a higher reduction in cases
(~8% or higher).

The effect of the initial vaccination coverage on the impact of
the different strategies is summarised in Fig. 2f. The relative
reduction declined roughly linearly with the initial vaccination
coverage. The reactive vaccination always outperformed non-
reactive strategies at an equal number of doses. Nevertheless,
the number of vaccinated people progressively decreased as
initial vaccination coverage increased in the reactive vaccina-
tion approach, eventually reaching the point where it was less
effective than non-reactive strategies with a large vaccination
pace. In Fig. 2i we relaxed the baseline assumption on vaccine
effectiveness and explored effectiveness parameters spanning
the range of real-life estimates17. We found that lower vaccine
effectiveness values led to a reduced effect of vaccination as
expected. The difference between reactive and non-reactive
strategies was also reduced.

In the Supplementary Information we compared reactive and
non-reactive strategies under alternative epidemiological scenar-
ios. In Supplementary Fig. 5 we assumed as a starting point the
baseline scenario with intermediate vaccination coverage—i.e. the
scenario in Fig. 2d, e with ~45% of the whole population
vaccinated. We then varied key parameters, e.g. alternative values
of transmission, incubation period, immunity level of the
population, reduction in contacts due to social distancing, the
time needed for the vaccine to become effective, compliance to
vaccination and vaccine effect on the infection duration. An
increase in the reproductive ratio, initial immunity and time
between doses reduced the impact of the reactive vaccination.
An increase in compliance to vaccination, instead, enhanced
the impact of both reactive and non-reactive vaccination. Other
parameters had a more limited role in strategies’ effectiveness.

We then considered a scenario of a flare-up of cases, as it may
be caused by a new variant of concern (VOC) spreading in
the territory. In Supplementary Fig. 6a–c all parameters are as
the baseline case of Fig. 2d, e, except for the initial incidence. The
deployment of vaccines in this case was limited and slow. We
then varied other parameters, i.e. the proportion of teleworking
and time from building immunity following vaccination, finding
that depending on their value the reactive strategy brought
limited or no benefit with respect to non-reactive strategies, when
the comparison was done at an equal number of doses
(Supplementary Fig. 6d, e). Eventually, we tested the robustness
of our results according to the selected health outcome, using
hospitalisations, ICU admissions, ICU bed occupancy, deaths,
life-years lost and quality-adjusted life-years lost, finding the same
qualitative behaviour (Supplementary Fig. 7).

Combined reactive and mass vaccination for managing sus-
tained COVID-19 spread. With the high availability of vaccine
doses, reactive vaccination could be deployed on top of
mass vaccination. We considered the baseline scenario with
intermediate vaccination coverage defined in the previous section
(i.e. ~45% of the whole population vaccinated, Fig. 2d, e)
and compared mass and reactive vaccination simultaneously
(combined strategy) with mass vaccination alone. We focused on
the first 2 months since the implementation of the vaccination
strategy. At an equal number of doses within the period, the
combined strategy outperformed mass vaccination in reducing
the attack rate. For instance, the relative reduction in the attack
rate ranged from 10%, when ~360 daily doses per 100,000
inhabitants were deployed for mass vaccination, to 16%, when the
same number of doses were used for reactive and mass vaccina-
tion combined (Fig. 3a).

We explored alternative scenarios where the number of
vaccines used and places vaccinated were limited due to
availability and logistic constraints. We assessed the effect of
three parameters: (i) the maximum daily number of vaccines that
can be allocated towards reactive vaccination (with caps going
from 50 to 250 per 100,000 inhabitants, compared with unlimited
vaccine availability assumed in the baseline scenario), (ii) the time
from the detection of a case and the vaccine deployment (set to
2 days in the baseline scenario, and here explored between 1 and
4 days) and (iii) the number of detected cases that triggers
vaccination in a place (from 2 to 5 cases, vs. the baseline value of
1). The number of first-dose vaccinations in time under the
different caps is plotted in Fig. 3b. A cap on the number of doses
limited the impact of the reactive strategy. Figure 3c shows that
the attack-rate relative reduction dropped from 16 to 6% if only
a maximum of 50 first doses per 100,000 inhabitants daily
was used in reactive vaccination, reaching the levels of mass
vaccination only. Doubling the time required to start reactive
vaccination, from 2 days to 4 days, had a limited effect on the
reduction of the AR (relative reduction reduced from 16 to 15%,
Fig. 3d). Increasing the number of detected cases used to trigger
vaccination to 2 (respectively, 5) reduced the relative reduction to
11% (respectively, 6%) (Fig. 3e).

We so far assumed that vaccine uptake was the same in mass
and reactive vaccination. This assumption is likely conservative,
in that individuals may be more inclined to accept vaccination
when this is proposed in the context of reactive vaccination due to
the higher perceived benefit of vaccination. In Fig. 3f we departed
from the baseline assumption and considered a scenario where
vaccine uptake with reactive vaccination climbed to 100%.
Attack-rate relative reduction increased in this case from 16 to
22%, with a demand of ~480 daily doses per 100,000 inhabitants
on average.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29015-y ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1414 | https://doi.org/10.1038/s41467-022-29015-y | www.nature.com/naturecommunications 5



Combined reactive and mass vaccination for managing a
COVID-19 flare-up. We previously mentioned that in a scenario
of a flare-up of cases reactive vaccination would bring limited
benefit compared to other strategies (Supplementary Fig. 6). Here
we analyse this scenario more in-depth assuming that reactive
vaccination is combined with mass vaccination but triggers an
increase in vaccine uptake and is associated with enhanced TTI,
as may be the case in a realistic scenario of alert due to initial
VOC detection. All other parameters were as in the baseline case,
with intermediate vaccination coverage at the beginning (as in
Fig. 2d, e).

We assumed mass vaccination with 150 first doses per day per
100,000 inhabitants was underway from the start, as well as
baseline TTI. To start a simulation, three infectious individuals
carrying a VOC were introduced in the population where the
virus variant was not currently circulating. Upon detection of the
first case, we assumed that TTI was enhanced, finding 70% of
clinical cases, 30% of subclinical cases (i.e. ~45% of all cases) and
three times more contacts outside the household with 100%
compliance to isolation (Supplementary Table 4)—the scenario
without TTI enhancement was also explored for comparison. As
soon as the number of detected cases reached a predefined

threshold, reactive vaccination was started on top of the mass
vaccination campaign. We assumed vaccine uptake increased to
100% for reactive vaccination but remained at its baseline value
for mass vaccination.

In Fig. 4 we compare the combined scenario with mass
vaccination alone at an equal number of doses and investigate
starting reactive vaccination after 1, 5 or 10 detected cases. With
reactive vaccination starting from the first detected case, the
attack rate decreased by ~10%, compared with the mass scenario.
However, the added value of reactive vaccination decreased if the
start of the intervention was delayed. Without enhancement in
TTI and increase in vaccine uptake, attack-rate values were much
higher and the benefit of reactive vaccination over the mass
vaccination was lower (~3%).

In Supplementary Fig. 10 we show different epidemic
scenarios, testing different values for the transmissibility and
vaccine effectiveness—including worst-case vaccine effective-
ness, and R as high as 1.8—and found similar trends. Finally, we
analysed the impact of vaccination on the flare-up extinction
(Supplementary Fig. 11). With the parameterisation of Fig. 4a,
the probabilities of extinction were 5.5% and 6% with mass
and combined strategies, respectively. These values increased to

Fig. 3 Combined reactive and mass vaccination for managing sustained COVID-19 spread. a Relative reduction (RR) in the attack rate (AR) over the first
2 months for the combined strategy (mass and reactive) and the mass strategy with the same number of first-dose vaccinations as in the combined
strategy during the period. RR is computed with respect to the reference scenario with initial vaccination only, as in Fig. 2. Combined strategy is obtained by
running in parallel the mass strategy—from 50 to 250 daily vaccination rate per 100,000 inhabitants—and the reactive strategy. Number of doses
displayed in the x-axis of the figure is the total number of doses used by the combined strategy, daily. Corresponding incidence curves are reported
in Supplementary Fig. 8. b Number of first-dose vaccinations deployed each day for the combined strategy with different daily vaccines’ capacity limits.
c, d, e AR RR for the combined strategy as a function of the average daily number of first-dose vaccinations in the 2-months period. Symbols of different
colours indicate: c different values of daily vaccines’ capacity limit; d different time from case detection to vaccine deployment; e different threshold size for
the cluster to trigger vaccination. In panel c and e the curve corresponding to mass vaccination only is also plotted for comparison. f Comparison between
100% and baseline vaccination uptake in case of reactive vaccination. Exception for the parameters indicated in the legend we assume in all panels baseline
parameter values with intermediate vaccination coverage at the beginning—i.e. R= 1.6; VES,1= 48%, VESP,1= 53%, VES,2= 70%, VESP,2= 73%; initial
immunity 32%; initial incidence 160 clinical cases weekly per 100,000 inhabitants; vaccinated at the beginning 90% and 40% for 60+ and <60,
respectively. In panels a, c, d–f data are means over 2000 independent stochastic realisations and error bars are derived from the standard error of the
mean. In panel b continuous lines are means over 2000 independent stochastic realisations and the shaded areas are the standard error of the mean
(±2SEM)—only the standard error of the unlimited case is shown for clarity. The following abbreviations were used in the Fig.: vacc. for vaccines, inhab. for
inhabitants, reac. for reactive.
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15% and 18% in a best-case scenario where vaccine protection
occurred sooner after the first dose, vaccine efficacy was larger
and TTI further strengthened.

Discussion
The rapid rise of more transmissible SARS-CoV-2 variants has
made the course of the COVID-19 pandemic unpredictable,
posing a persistent public health threat that jeopardises the return
to normal life25,31–35. More transmissible viruses call for vacci-
nation of a larger portion of the population and increased
accessibility and adaptation to a rapidly changing epidemic
situation2. In this context, we analysed reactive vaccination of
workplaces, universities and schools to assess its potential role in
managing the epidemic.

The agent-based model used in this study accounted for the
major factors affecting the effectiveness of reactive vaccination:
disease natural history, vaccine characteristics, individual contact
behaviour and logistical constraints. For a broad range of epi-
demic scenarios, reactive vaccination reduced the spread of
COVID-19 more than non-reactive vaccination strategies—
including untargeted mass vaccination—for an equal number of
doses used over a period of 2 months. In addition, combining
reactive and mass vaccination was more effective than mass
vaccination alone. For instance, in a scenario of moderate/high
incidence starting with 45% vaccination coverage, we found that
the relative reduction in the attack rate over 2 months increased
from 10 to 16% if 350 first vaccine doses per 100,000 habitants
per day were used in a combined mass/reactive vaccination
approach instead of mass only. However, the advantage of reac-
tive vaccination was limited or nought with respect to non-
reactive strategies under certain circumstances, as the number of
doses administered with the reactive vaccination depended on the
number and pace of occurrence and detection of COVID-19
cases. This occurred when vaccination coverage was already high
at the beginning and only a few people could be vaccinated
around detected cases, or in a flare-up scenario when only a few
cases were detected. Non-reactive strategies could then be more
effective provided the pace of vaccine administration was large
enough. But even in these situations, adding reactive vaccination

to mass vaccination could become of interest again by triggering
an increase in vaccine uptake, all the more when combined with
enhanced TTI.

Reactive vaccination has been studied for smallpox, cholera and
measles, among others5–7,36,37. Hotspot vaccination was found to
help in cholera outbreak response in both modelling studies and
outbreak investigation37,38. It may target geographic areas defined
at spatial resolution as diverse as districts within a country, or
neighbourhoods within a city, according to the situation. For Ebola
and smallpox, ring vaccination was successfully adopted to accel-
erate epidemic containment5–7. These infections, though, have
features making the approach a priori sensible: vaccine-induced
immunity mounts rapidly compared to the incubation period and
the mere absence of pre-symptomatic and asymptomatic trans-
mission makes it possible to reach secondary cases before they start
transmitting. Ring vaccination is also relevant when the vaccine has
post-exposure effects8. Reactive vaccination in schools and uni-
versity campuses has been implemented in the past to contain
outbreaks of meningitis39 and measles40,41.

For COVID-19, the use of reactive vaccination has been
reported in Ontario, the UK, Germany and France among
others2,42–47. In these places, vaccines were directed to commu-
nities, neighbourhoods or building complexes with a large number
of infections or presenting epidemic clusters or surge of cases due
to virus variants. While the goal of these campaigns was to mini-
mise the spread of the virus, it also addressed inequalities in access
to healthcare and increased fairness, since a surge of cases may
happen where people have difficulty in isolating due to poverty and
house crowding48. In France, reactive vaccination was imple-
mented to contain the emergence of variants of concern in the
municipalities of Bordeaux, Strasbourg and Brest45–47. In the
municipality of Strasbourg, vaccination slots dedicated to students
were created following the identification of a Delta cluster in an art
school45. Despite the interest in the strategy and its inclusion in the
COVID-19 response plans, very limited work has been done so far
to quantify its effectiveness49,50. A modelling study on ring vac-
cination suggested that the strategy could be valuable if the vaccine
had post-exposure efficacy and a large proportion of contacts could
be identified50. Still, post-exposure effects of the vaccine remain
currently hypothetical51, and it is likely that the vaccination of

Fig. 4 Combined reactive and mass vaccination for managing a COVID-19 flare-up. a, b Attack rate (AR) per 100,000 inhabitants in the first 2 months
for the enhanced (a) and baseline (b) TTI scenarios described in the main text. Four vaccination strategies are compared: mass only, combined where the
reactive vaccination starts at the detection of 1, 5, 10 cases (Comb. cl. s.= 1, 5, 10 in the Fig.). For mass vaccination the number of first-dose vaccinations
during the period is the same as in the comb. cl. s= 1 of the same scenario. Except when otherwise indicated parameters are the ones of the baseline
epidemic scenario with intermediate vaccination coverage at the beginning—i.e. R= 1.6; VES,1= 48%, VESP,1= 53%, VES,2= 70%, VESP,2= 73%; initial
immunity 32%; vaccinated at the beginning 90% and 40% for 60+ and <60, respectively. In both panels, data are means over 8000 independent
stochastic realisations and error bars are the standard error of the mean (±2SEM). Corresponding incidence curves are reported in Supplementary Fig. 9.
The following abbreviations were used in the Fig.: vacc. for vaccines, inhab. for inhabitants.
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the first ring of contacts alone would bring little benefit, if at
all. We have here tested reactive vaccination of workplaces and
schools, since focusing on these settings may be an efficient way
to easily reach an extended group of contacts. Workplaces
have been found to be an important setting for COVID-19
transmission, especially specific workplaces where conditions are
more favourable for spreading52,53. The university setting also
plays a central role in COVID-19 transmission, due to the high
number of contacts among students, particularly if sharing com-
mon spaces in residence accommodations54. Model results show
that reactive vaccination of these settings could have in many
circumstances a stronger impact than simply reinforcing vaccina-
tion in these settings.

Importantly, the effectiveness of the reactive strategy depends
on the epidemic context. We found that the higher the overall
vaccination coverage, the less reactive vaccination would be of
interest compared to non-reactive strategies if it did not increase
vaccine uptake. For example, with >40% vaccination coverage
among adults, the relative reduction in attack rates with reactive
vaccination is smaller than with non-reactive alternatives pro-
vided large enough vaccination pace and no increase in vaccine
uptake with reactive vaccination. Indeed, with large vaccination
coverage, only a few individuals who have not been vaccinated
before can be reactively proposed for vaccination, leading to few
shots in case of vaccine hesitancy. Moreover, the detection of
clusters is more difficult in a highly vaccinated population, where
breakthrough infections in the vaccinated yield a large proportion
of subclinical cases that are harder to detect.

If initial vaccination coverage is not too high, the feasibility and
advantage of the inclusion of reactive vaccination imply a trade-
off between epidemic intensity and logistical constraints. At a
moderate/high incidence level, combining reactive and mass
vaccination would substantially decrease the attack rate compared
to mass vaccination for the same number of doses, but the large
initial demand in vaccines may exceed the available stockpiles or
capacity to deliver. The timely deployment of additional per-
sonnel in mobile vaccine units and the need to quickly inform the
population by communication campaigns is indeed key to guar-
antee the success of the campaign. We explored with the model
the key variables that would impact the strategy effectiveness.
Delaying the deployment of vaccines in workplaces/schools upon
the detection of a case (from 2 to 4 days on average) would not
have a strong impact on its effectiveness. However, vaccines
should be deployed at the detection of the first case to avoid
substantially limiting the impact of the strategy—e.g. the relative
reduction went from 16 to 6% when workplaces/schools were
only vaccinated after the detection of 5 cases (Fig. 3e).

In the case of a COVID-19 flare-up the reactive strategy may
bring an advantage if the reactive strategy starts early, is com-
bined with increased TTI and triggers an increase in vaccine
uptake. Starting early after the introduction of a first VOC case
requires that tests for the detection of variants must be carried out
regularly and with large coverage. Genomic surveillance has
ramped up in many countries since the emergence of the Alpha
variant in late 2020. For example, as of Fall 2021, nationwide
surveys are conducted almost weekly in France to fully sequence
the viral genome in randomly selected positive samples55. A
proportion of positive tests are also routinely screened for key
mutations to monitor the circulation of the main variants regis-
tered as VOC or VUI55. This surveillance protocol contributes to
quickly identifying the presence of variants, but does not guar-
antee that interventions start with the few first cases, even more as
the relaxation of social restrictions may lead to super spreading
events. A strong intensification of TTI23 must also be part of the
wider response plan including reactive vaccination. Rapid and
efficient TTI efficiently mitigates spread on its own, but it is also

instrumental to the success of reactive vaccination by triggering
vaccination in households, workplaces and schools. Last, an
increased level of vaccine uptake is essential for reactive vacci-
nation to be of interest. Vaccination coverage remains highly
heterogeneous worldwide and, as of Fall 2021, low in many
countries of Eastern Europe and in many counties in the US1,30.
Besides the individuals who oppose vaccination, a reactive strat-
egy combined with the presence of a VOC may help increasing
the acceptability of the vaccine by making it more accessible and
anticipating an immediate benefit against the risk of infection. An
increase in vaccine uptake was indeed observed in the context of a
reactive vaccination campaign during the course of a measles
outbreak4. Reactive vaccination could therefore be a means to
improve access and acceptability in case of a flare-up.

The study is affected by several limitations. First, the synthetic
population used in the study accounts for the repartition of
contacts across workplaces, schools, households, etc., informed by
contact surveys. However, number of contacts and risk of
transmission may vary greatly according to the kind of occupa-
tion. The synthetic population accounts for this variability
assuming that the average number of contacts from one work-
place to another is gamma distributed10, but no data were
available to inform the model in this respect. Second, we model
vaccination uptake according to age only, when it is determined
by several socio-demographic factors. Clusters of vaccine-hesitant
individuals may play an important role in the dynamics and
facilitate the epidemic persistence in the population, as it is
described for measles56. In those countries where vaccination
coverage is high, heterogeneities in attitude toward vaccination
may have an impact. Third, the agent-based model is calibrated
from French socio-demographic data. The results of this study
can be extended to countries with similar societal structure and
contact patterns, e.g. other developed countries57. Still, COVID-
19 transmission potential, level of disease-induced immunity,
vaccination coverage, and extent of social restrictions vary sub-
stantially from one country to another. In addition, the waning of
immunity since vaccination and recommendations for booster
doses affect the level of protection of the population already
vaccinated and consequently the impact of reactive vaccination.
The large set of scenarios explored and reported in the Supple-
mentary Information is intended to fully understand the interplay
between epidemic spread and reactive vaccination and aid plan-
ning in case of future epidemic surges.

Methods
Synthetic population. We used a synthetic population for a French municipality
based on the National Institute of Statistics and Economic Studies (INSEE) cen-
suses and French contact survey information10,58. This included the following
input files: (i) a setting-specific, time-varying network of daily face-to-face contacts;
(ii) the correspondence between individuals and their age, (iii) between individuals
and the household they belong to, (iv) between individuals and their school, (v)
and between individuals and their workplace. The synthetic population has an age
pyramid, household composition, number of workplaces by size and number of
schools by type, reproducing INSEE statistics. Daily face-to-face contacts among
individuals are labelled according to the setting in which they occur (either
household, workplace, school, community or transport) and they have assigned a
daily frequency of activation, to explicitly model recurrent and sporadic contacts.
We considered the municipality of Metz in the Grand Est region, which has
117,492 inhabitants, 131 schools (from kindergarten to University) and 2888
workplaces (Fig. 1a). A detailed description of how the population was generated is
provided in10. Information about how to access population files is provided in the
Data availability section.

Overview of the model. The model was written in C/C++ , and is stochastic and
discrete-time. It accounts for the following components: (i) teleworking and social
distancing, (ii) COVID-19 transmission, accounting for the effect of the vaccine;
(iii) test-trace-isolate; (iv) vaccine deployment. Model output included time series
of incidence (clinical and subclinical cases), detailed information on infected cases
(time of infection, age, vaccination status), vaccines administered according to the
strategy, number of workplaces where vaccines are deployed. Different epidemic
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scenarios were explored and compared. In the Supplementary Information we also
analysed hospitalisation entries, deaths, ICU entries, life-year lost, quality-adjusted
life-year, ICU bed occupancy. These quantities were computed by postprocessing
output files containing detailed information on infected cases.

Teleworking and social distancing. Teleworking and other social restrictions
may alter the repartition of contacts across settings and in turn the effectiveness
of vaccination strategies23. We thus explicitly accounted for this ingredient in
the model. Specifically, to model teleworking we assumed a proportion of
individuals were absent from work, modelled by erasing working contacts and
transport contacts of these individuals. To account for the reduction in social
encounters due to the closure of restaurants and other leisure activities we
removed a proportion of contacts from the community layer. In Western
countries, the level of restrictions varied greatly both by country and in the time
since vaccines were first deployed at the beginning of 2021. We set the contact
reduction in the community to 5% and the teleworking to 10%. These were close
to the reduction values reported by google mobility reports for France during
Autumn 202159, and fell within the range of European countries’ estimates. Note
that levels of teleworking ~10% for European countries were reported also by
other sources60. Scenarios with different levels of contact reduction were com-
pared in the Supplementary Information. Telework and social distancing were
implemented at the beginning of the simulation and remained constant for the
duration of the simulation. Importantly, the reproductive ratio was set to the
desired value, independently by the level of contact reduction, as described in
the Supplementary Information.

COVID-19 transmission model. We used an extension of the transmission model
in ref. 10 (see Fig. 1c). This accounted for heterogeneous susceptibility and severity
across age groups61,62, the presence of an exposed and a pre-symptomatic stage9

and two different levels of infection outcome—subclinical, corresponding to
asymptomatic or paucisymptomatic infection and clinical, corresponding to
moderate to critical infection61,63. Precisely, susceptible individuals, if in contact
with infectious ones, could get infected and enter the exposed compartment (E).
After an average latency period ϵ−1 they became infectious, developing a sub-
clinical infection (Isc) with age-dependent probability pAsc and a clinical infection (Ic)
otherwise. From E, before entering either Isc or Ic, individuals entered first a pro-
dromal phase (either Ip,sc or Ip,c, respectively), that lasted on average μ�1

p days.
Compared to Ip,c and Ic individuals, individuals in the Ip,sc and Isc compartments
had reduced transmissibility rescaled by a factor βI. With rate μ infected individuals
became recovered. Age-dependent susceptibility and age-dependant probability of
clinical symptoms were parametrised from61. In addition, transmission depended
on setting as in10. We assumed that the time spent in the E, Ip,sc and Ip,c, was Erlang
distributed with shape 2, and rate 2ϵ for E, and 2μp for Ip,sc and Ip,c. Time spent in
Isc and Ic was exponentially distributed. Parameters and their values are sum-
marised in Supplementary Table 1.

We modelled vaccination with a leaky vaccine, partially reducing both the risk
of infection (i.e. reduction in susceptibility, VES) and infection-confirmed
symptomatic illness (VESP)15. The level of protection increased progressively after
the inoculation of the first dose. In our model we did not explicitly account for the
two-dose administration, but we accounted for two levels of protection—e.g. a first
one approximately in between the two doses and a second one after the second
dose. Vaccine efficacy was zero immediately after inoculation, mounting then to an
intermediate level (VES,1 and VESP,1) and a maximum level later (VES,2 and VESP,2).
This is represented through the compartmental model in Fig. 1c. Upon
administering the first dose, S individuals became, SV,0, i.e. individuals that are
vaccinated, but have no vaccine protection. If they did not become infected, they
entered stage SV,1, where they were partially protected, then stage SV,2 where
vaccine protection was maximum. Time spent in SV,0 and SV,1 was Erlang
distributed with shape 2 and rate 2/τ0 and 2/τ1 for SV,0 and SV,1, respectively. SV,1

and SV,2 individuals had reduced probability of getting infected by a factor rS;1 ¼
ð1� VES;1Þ and rS;2 ¼ ð1� VES;2Þ, respectively. In case of infection, SV,2

individuals progressed first to exposed vaccinated (EV), then to either preclinical or
pre-subclinical vaccinated (IVp;c or I

V
p;sc) that were followed by clinical and

subclinical vaccinated, respectively (IVc or IVsc). Probability of becoming IVp;c from EV

was reduced of a factor rc;2 ¼ ð1� VESP;2Þð1� VES;2Þ�1. For the SV,1 individuals
that get infected we assumed a polarised vaccine effect, i.e. they can enter either in
EV, with probability pV, or in E (Fig. 1c). The value of pV was set based on VESP,1
through the relation (1− VESP,1)= (1− VES,1)(pVrc,2+ (1− pV)). We assumed no
reduction in infectiousness for vaccinated individuals. However, we accounted for a
25% reduction in the duration of the infectious period as reported in refs. 64,65.

Under the assumption that no serological/virological/antigenic test is done
before vaccine administration, the vaccine was administered to all individuals,
except for clinical cases who showed clear signs of the disease or individuals that
were detected as infected by the TTI in place. In our model a vaccine administered
to infected or recovered individuals had no effect.

In the baseline scenario we parametrised VESP,1, VESP,2, VES,1 and VES,2 by
taking values in the middle of estimates reported in the systematic review by
Higdon and collaborators17 for the Comirnaty vaccine and the Delta variant66.
Chosen values of VESP,2, and VES,2 are also comparable with the effectiveness

estimates reported in a meta-analysis for the Delta variant, complete vaccination,
all vaccines combined18. We also tested values on the upper and lower extremes of
the range of estimates of17. Parameters are listed in Supplementary Table 2.

Test-trace-isolate. We model a baseline TTI accounting for case detection,
household isolation and manual contact tracing. Fifty percent of individuals with
clinical symptoms were assumed to get tested and to isolate if positive. We assumed
an exponentially distributed delay from symptoms onset to case detection and its
isolation with 3.6 days on average. Once a case was detected, his/her household
members isolated with probability pct,HH, while other contacts isolated with
probabilities pct,A and pct,Oth, for acquaintances and sporadic contacts, respectively.
In addition to the detection of clinical cases, we assumed that a proportion of
subclinical cases were also identified (10%). Isolated individuals resumed normal
daily life after 10 days unless they still had clinical symptoms after the time had
passed. They could, however, decide to drop out from isolation each day with a
probability of 13% if they did not have symptoms67.

In the scenario of virus re-introduction we considered enhanced TTI,
corresponding to a situation of case investigation, screening campaign and
sensibilisation (prompting higher compliance to isolation). We assumed a higher
detection of clinical and subclinical cases (70% and 30%, respectively), perfect
compliance to isolation by the index case and household members and a three-fold
increase in contacts identified outside the household.

A step-by-step description of contact tracing is provided in the Supplementary
Information. Parameters for baseline TTI are provided in Supplementary Table 3,
while parameters for enhanced TTI are provided in Supplementary Table 4.

Vaccination strategies. A vaccine opinion (willingness or not to vaccinate) was
stochastically assigned to each individual at the beginning of the simulation
depending on age (below/above 65 years old). The opinion did not change during
the simulation. In some scenarios we assumed that all individuals were willing to
accept the vaccine in case of reactive vaccination, while maintaining the opinion
originally assigned to them when the vaccine was proposed in the context of non-
reactive vaccination. Only individuals above a threshold age, ath,V= 12 years old,
were vaccinated. We assumed that a certain fraction of individuals were vaccinated
at the beginning of the simulation according to the age group ([12,60], 60+). We
compared the following vaccination strategies:

Mass. Vdaily randomly selected individuals were vaccinated each day until a Vtot

limit was reached.

Workplaces/universities. Random workplaces/universities were selected each day.
All individuals belonging to the place, willing to be vaccinated, and not isolated
at home that day were vaccinated. Individuals in workplaces/universities were
vaccinated each day until the daily limit, Vdaily, was reached. No more than Vtot

individuals were vaccinated during the course of the simulation. We assumed
that only workplaces with sizeth= 20 employees or larger implemented
vaccination.

School location. Random schools, other than universities, were selected each day
and a vaccination campaign was conducted in the places open to all household
members of school students. All household members willing to be vaccinated,
above the threshold age and not isolated at home that day were vaccinated. No
more than Vdaily individuals were vaccinated each day and no more than Vtot

individuals were vaccinated during the course of the simulation.

Reactive. When a case was detected, vaccination was done in her/his household
with rate rV. When a cluster—i.e. at least ncl cases detected within a time window of
length Tcl—was detected in a workplace/school, vaccination was done in that place
with rate rV. In the baseline scenario, we assumed vaccination in the workplace/
school was triggered by one single infected individual (ncl= 1). In both households
and workplaces/schools, all individuals belonging to the place above the threshold
age and willing to be vaccinated were vaccinated. Individuals that were already
detected and isolated at home were not vaccinated. No more than Vdaily individuals
were vaccinated each day and no more than Vtot individuals were vaccinated during
the course of the simulation. In the baseline scenario these quantities were
unlimited, i.e. all individuals to be vaccinated in the context of reactive vaccination
were vaccinated.

Parameters and their values are summarised in Supplementary Table 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The synthetic population used in the analysis is available on zenodo68.

Code availability
We provide all C/C++ code files of the model on zenodo68.
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Supplementary Methods 

1. COVID-19 transmission model  

We provide here in the following the parameter values for transmission and infection natural 

history (Supplementary Table 1), and the effect of vaccination (Supplementary Table 2). For a 

detailed explanation of the transmission model without vaccination we refer to1. Incubation 

period 𝐼𝑃	and length of the pre-symptomatic phase 𝜇%	are specific for the Delta variant. In 

particular, 𝜇%	is parametrised based on the proportion of pre-symptomatic transmission estimated 

in 2. 

Supplementary Table 1. Transmission parameters and their baseline values. 

Parameter Description Baseline value (other 
explored values) 

Source 

𝐼𝑃	 Incubation period 5.8 days ( 5.1 days, 6.3 
days) 

 2 (3,4) 

(𝜇%)()	 Average duration of the pre-
symptomatic stage 

2.1 days Computed to 
recover 74% of 

pre-symptomatic 

transmission as 

estimated in  2 

(𝜖)() Rate of becoming infectious for 

exposed individuals  

3.7 days 𝐼𝑃 − 𝜇%()	

𝜇	 Recovery rate (7 days)-1   5  

𝛽-	 transmissibility rescaling according to 
the infectious stage 

0.51 for 𝐼%,/0, 𝐼/0 

1 for 𝐼%,0, 𝐼0 

6 

𝜔/	 Transmission risk by setting  1 for household  

0.3 for community 

0.5 otherwise 

1 
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Supplementary Table 2. Vaccine effectiveness parameters and their baseline values. 

Parameter Description Baseline value 
(other explored 

values) 

Source 

𝑟3,)	 reduction in susceptibility in the 
partial-protection stage 

0.52 (0.35, 0.7) from 𝑉𝐸3,) = 48%,	in the middle of 

the range of estimates after one 

dose in 7 (from 30% and 65%, worst 

and best estimates from 7, 
respectively)	

𝜏;		 Average duration of the no-
protection stage after first-dose 

inoculation 

2 weeks (1 week)  

𝑟3,<	 reduction in susceptibility in the 
maximum-protection stage 

0.3 (0.2, 0.47) from 𝑉𝐸3,< = 70%	, in the middle of 

the range of estimates after two 

doses in 7 (from 53% and 80%, 

worst and best estimates from 7, 
respectively) 

𝑟0,<	 reduction in the probability of 
developing clinical symptoms in the 

maximum-protection stage 

0.9 (0.4, 0.95) from 𝑉𝐸3?,< = 73%, in the middle of 

the range of estimates after two 
doses in 7 (from 60% and 95%, 

worst and best estimates from 7, 

respectively) 

𝜏)	 Average duration of the 
intermediate-protection stage 

3 weeks (4 week, 8 
week) 

8 

𝑝B	 Probability of transition between 𝑆B,) 

and 𝐸B 

0.97 (0.65, 0.82) Computed from the parameters 

above and assuming 𝑉𝐸3?,) = 53%	,	

in the middle of the range of 

estimates after one dose in 7 (from 
35%, 75%, worst and best estimates 

from 7, respectively) (*) 

𝑟- Reduction in infection duration 25% (0) 9 

(*) Mid range estimate in 7, 𝑉𝐸3? = 55%, leads to a value of 𝑝B > 1, thus  𝑉𝐸3? = 53% is taken. 
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2. Test-trace-isolate  

We model case detection and isolation, combined with tracing and isolation of contacts 

according to the following rules: 

● As an individual shows clinical symptoms, s/he is detected with probability 𝑝G,0.  If detected, 

case confirmation and isolation occur with rate 𝑟G upon symptoms onset. 

● Subclinical individuals are also detected with probability 	𝑝G,/0, and rate 𝑟G . 

● The index case’s household contacts are isolated, with probability 	𝑝𝑐𝑡,𝐻𝐻, the same time the 

index case is detected and isolated. We assume that these contacts are tested at the time of 

isolation and among those all subclinical, clinical, pre-subclinical, and pre-clinical cases are 

detected (testing sensitivity 100%). 

● Once the index case is detected, contacts of the index case occurring outside the household 

are traced and isolated with an average delay 𝑟0K(). We define an acquaintance as a contact 

occurring frequently, i.e. with a frequency of activation higher than 𝑓N. We assume that an 

acquaintance is detected and isolated with a probability 𝑝0K,O, while other contacts (i.e. 

sporadic contacts) are detected and isolated with probability 𝑝0K,/%, with 𝑝0K,O > 𝑝0K,/% . We 

assume that traced contacts are tested at the time of isolation and among those all 

subclinical, clinical, pre-subclinical, and pre-clinical cases are detected (testing sensitivity 

100%). 

● Only contacts (among contacts occurring both in household and outside) occurring within a 

window of 𝐷 days before index case detection are considered for contact tracing. 

● The index-case and the contacts are isolated for a duration 𝑑- (for all infected compartments) 

and 𝑑R- (for susceptible and recovered compartments). Contacts with no clinical symptoms 

have a daily probability 𝑝GST% to drop out from isolation.  

● For both the case and the contacts, isolation is implemented by assuming no contacts 

outside the household and transmission risk per contact within a household reduced by a 

factor 𝜄.  

Parameter values are reported in Supplementary Table 3 and Supplementary Table 4 for 

baseline and enhanced TTI, respectively. 
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Supplementary Table 3. Model for test, trace, isolation. Parameters and their values for the baseline case. 

Parameter Description Value Source 

𝑝G,0	 Probability that a clinical case is 

detected 

0.5  

𝑝G,/0	 Probability that a subclinical case is 

detected 

0.1  

𝑟G	 For detected cases, rate of detection, 

confirmation and beginning of isolation 

0.28 = (3.6 days)-1 Average time from onset to 

testing is 2.6 days 10. We 
assume one day to have the 

test results. 

𝐷	 Length of the period preceding index-
case confirmation, used to define a 

contact  

6 days ≃2 days + 𝑟G() (a person is 

considered to be contact if s/he 

entered in contact with the index 

case during a window of 2 days 
preceding symptoms onset) 

𝑝0K,XX	 Probability that household contacts of 
an index case are identified and decide 

to isolate 

0.7  

𝑝0K,O	 Probability that acquittances of an index 
case are identified and decide to isolate  

0.08  Calibrated to get ≃2.8 contacts 

per index case on average 

(assumed 𝑝0K,YKZ = 𝑝0K,O/10) 10 

𝑝0K,YKZ	 Probability that sporadic contacts of an 
index case are identified and decide to 

isolate 

0.008  Calibrated to get ≃2.8 contacts 

per index case on average 

(assumed 𝑝0K,YKZ = 𝑝0K,O/10) 10 

𝑟0K	 Rate of detection and isolation of 

contacts outside household 

0.9 = (1.1 days)-1  

𝑓N	 Threshold frequency to define a contact 
as an acquaintance 

1/7 days  

𝑝GT	 Probability to drop out from isolation for 
individuals that are not clinical 

0.13 11 

𝜄 Reduction in household transmission 
during isolation 

0.5  
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𝑑R-, 𝑑- Duration of isolation for an individual 
that is not infectious, duration of 

isolation for an individual that is 

infectious 

10 days, 10 days 12 

 

Supplementary Table 4. Model for test, trace, isolation. Parameters and their values for the case of enhanced 
TTI. Only values different from the baseline case are reported. 

Parameter Description Baseline value  

𝑝G,0	 Probability that a clinical case is 
detected 

0.7 

𝑝G,/0	 Probability that a subclinical case is 
detected 

0.3 

𝑟G	 For detected cases, rate of detection, 
confirmation and beginning of isolation 

0.9 = (1.1 days)-1 

𝑝0K,XX	 Probability that household contacts of 

an index case are identified and decide 
to isolate 

1 

𝑝0K,O	 Probability that acquittances of an index 
case are identified and decide to isolate  

0.24 

𝑝0K,YKZ	 Probability that sporadic contacts of an 
index case are identified and decide to 

isolate 

0.024 

𝑝GT	 Probability to drop out from isolation for 
individuals that are not clinical 

0 

 

3. Vaccination strategies 

We provide here in the following the parameters values for the vaccination strategies detailed in 

the Methods section of the main paper. 

Supplementary Table 5. Vaccine administering. Parameters and their baseline values. 
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Parameter Description Baseline values (other explored values) 

𝑎KZ,B	 Minimum age for vaccination 12 years 

𝑃BN	 Probability an individual is willing to 
vaccinate 

90% for 65+ 

80% for <65   (60%, 100%) 

𝑛0^	 For reactive vaccination, cluster size for 

triggering reactive vaccination in a 
workplace or school 

1 (2, 3, 4, 5) 

𝑇0^	 For reactive vaccination, time window 
for cluster definition 

7 days 

(𝑟B)()	 For reactive vaccination, delay of 

implementation of the vaccination 
campaign once the cluster is identified 

(for workplaces/schools) and a case is 

identified (for households) 

2 days (1 day, 4 days) 

𝑉`Y`	 Maximum number of people vaccinated 

during one simulation 

Unlimited 

𝑉GNa	 Maximum number of people vaccinated 

each day 

Explored in the range [50, 500] per 100,000 

inhabitants per day for mass, 

workplaces/universities, school locations  

Unlimited for reactive (explored in [50, 250] per 

100,000 inhabitants per day)  

𝑠𝑖𝑧𝑒KZ	 For workplaces/universities, minimum 

size of a workplace that implement 
vaccination 

20 

𝑛fB  For reactive vaccination, cluster size for 
starting the reactive vaccination 

campaign in the flare up scenario 

1, 5, 10 

 Initial vaccination coverage  90% for 65+ 

40% for <65   (15%, 25%, 35%, 45%, 55%, 65%, 

75%) 
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4. Details on the epidemic simulations 

A schematic representation of the main program and of the simulation code and of the algorithm 

used for a single stochastic realisation are shown in Supplementary Figure 1 and 2, respectively. 

Simulations are discrete-time and stochastic. At each time step, corresponding to one day, three 

processes occur (Supplementary Figure 2):  

Vaccination Step: vaccines are administered according to the strategy or the strategies’ 

combination.  

Testing Step: cases are detected and isolated; contacts (within and outside household) are 
identified and isolated; isolated individuals get out from isolation. 

Transmission Step: infectious status of nodes is updated. This includes transmission, recovery 
and transition through the different stages of the infection (e.g. from exposed to pre-

symptomatic, from pre-symptomatic to symptomatic). 
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Supplementary Figure 1: Algorithm of the main program. Algorithm of the main program drawn with 
code2flow.com. 
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Supplementary Figure 2: Algorithm for one stochastic realisation. Algorithm for one stochastic realisation drawn 

with code2flow.com. 

A single-run simulation is executed with no modelled intervention, until the desired immunity 

level is reached. This guarantees that immune individuals are realistically clustered on the 

network. We added some noise, by reshuffling the immune/susceptible status of 30% of the 

nodes to account for travelling, infection reintroduction from other locations and large gathering 

with consequent super-spreading not accounted for by the model. In Fig. 2 and 3 of the main 
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paper, all processes (transmission, TTI, vaccination) are simulated from the beginning of the 

simulation. In the flare-up scenario (Fig. 4), TTI and mass vaccination are modelled from the 

beginning. TTI is enhanced from the detection of the first case. Reactive vaccination starts after 

the detection of the first 𝑛fBcases, with 𝑛fB = 1,5,10 explored. 

We vary COVID-19 transmission potential by tuning the daily transmission rate per contact 𝛽. 

The reproductive number 𝑅 is computed numerically as the average number of infections each 

infected individual generates throughout its infectious period at the beginning of the simulation. 

Therefore, it integrates the effect of the interventions and the level of disease and vaccine 

induced immunity in the population at the start. We tune 𝛽 to have the desired 𝑅 value for the 

reference scenario, i.e. with only vaccination at the start. We then compare different vaccination 

strategies at the same value of transmissibility 𝛽. 

To calibrate the duration of the pre-symptomatic stage from 2 (value reported in Supplementary 

Table 1) we generated an output file containing the list of all transmission events with the 

infection status of the infector. The proportion of pre-symptomatic transmission was computed as 

the fraction of transmission events with infector in the compartment 𝐼%,/0 or 𝐼%,0 over all infection 

events. 

 

Supplementary Note 1: Comparison between reactive and non-reactive 
vaccination strategies 

1. Distribution of the attack rates 

We compare here the distributions of the attack rates after two months across different 

strategies. In the Supplementary Figure 3, we consider the scenarios of Fig. 2e of the main 

paper and we show that the distribution and the standard deviation are similar among 

vaccination strategies.  
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Supplementary Figure 3: Distribution of the attack rate with different vaccination strategies. a Distribution of 
attack rates after two months for the scenarios analysed in Fig. 2e of the main paper. b Boxplots comparing the 

distributions of attack rates after 2 months for different vaccination strategies. Medians are represented by medium 

red lines and interquartiles (Q1-Q3) by boxes. The whiskers delimit the range between Q1 - 1.5*IQR and Q3 + 
1.5*IQR. Outside values are considered as outcomes and are represented by points. 

2. Vaccinated settings 

We provide here a detailed analysis of the time evolution of the number of settings where 

vaccines are deployed in the context of reactive vaccination. 

 

 
Supplementary Figure 4: Details analysis of settings where vaccines were deployed in the context of reactive 
vaccination. a, b Daily number of workplaces (a) and schools (b) where vaccines are deployed in the context of 

reactive vaccination. c Size of workplaces/Schools where vaccines are deployed as a function of time. Parameters 
are the same as in Fig. 2c of the main paper. In all panels continuous lines are means over 2000 independent 

stochastic realisations and the shaded areas are the standard error of the mean (+/- 2SEM).   
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3. Sensitivity analysis 

We compare here reactive vaccination with non-reactive vaccination strategies under a variety of 

epidemic scenarios.  

In Supplementary Figure 5 we compare all strategies at equal number of doses over the two-

months period, exploring the impact of the following parameters: reproductive ratio, immunity 

level of the population, repartition of contacts across settings due to social distancing, incubation 

period, effect of the vaccine in the infection duration, vaccine uptake, and time between doses. 

Except when otherwise indicated, parameters are the ones of the baseline scenario with 

intermediate vaccination coverage (~45% of the whole population vaccinated, Fig. 2 d, e of the 

main paper). Increasing the transmissibility or initial immunity reduces the impact of reactive 

vaccination (panel a, b). In panel c we explore the impact of teleworking and reduction in 

community contacts by comparing the baseline scenario with scenarios with no or stronger 

restrictions. Reactive vaccination becomes more effective when no restriction is in place - 

although the effect is not strong. This is likely due to the enhanced role of workplaces as a 

setting of transmission when no teleworking is in place, thus bringing to an increased benefit of 

reactive vaccination targeting this setting. In panel d, we analyse the impact of the choice of the 

incubation period exploring values ranging from 5.1 3 up to 6.3 4. We find that results are highly 

robust to the choice of the parameters within this range. In panel e we compare different 

hypotheses regarding the effect of the vaccine on the infection duration, i.e. the baseline case 

with the case in which the vaccine induces no reduction in the infectious duration. Also in this 

case, results are robust. Eventually in panel f we compare different levels of vaccine uptake - 

assuming uptake to be the same in the reactive and non-reactive strategies as in Fig. 2 of the 

main paper. The impact of vaccination increases with the uptake, the effect being stronger for 

the reactive strategy. Eventually, we compare in panel g different timing for vaccine-induced 

immunity to become effective. Specifically, we consider a case in which partial protection against 

infection mounts one week after the first dose. Assuming an incubation period of ~6 days, this 

would be consistent with no reduction in cases observed ~2 weeks after first-dose inoculation, 

as reported by some real vaccine effectiveness studies 13,14. We then consider a longer interval 

between doses (i.e. 4 and 8 weeks). Assuming that protection against infection starts one week 

after first-dose inoculation leads to a higher impact of vaccination for all four vaccination 

strategies.  
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Supplementary Figure 5: Comparison between vaccination strategies - sensitivity analysis. Relative reduction 

(RR) in the attack rate (AR) after two months for all strategies at equal number of doses. RR is computed with respect 

to the reference scenario with initial vaccination only. Different parameter values and modelling assumptions are 
compared. Vaccination rate for mass, workplaces/universities and school location vaccination is set to the average 

value recovered for reactive vaccination. Exceptions made for the parameter explored in each panel - indicated in the 

x-axis -, all parameters are as in Fig. 2e. Parameters explored are: a reproductive ratio; b natural immunity of the 
population at the start; c repartition of contacts across settings due to social distancing (Intermediate is the baseline 

scenario, while high is given by a 30% reduction in community contacts and a 20% of individuals doing teleworking); 

d incubation period, e vaccine-induced reduction in infection duration (yes, no),  f vaccine uptake, and g time 
between doses - the x-axis labels wNwM indicates the average number of weeks, N and M, of no protection following 
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first dose inoculation and of intermediate vaccine effectiveness, respectively. In all panels data are represented as 

means over 2000 independent stochastic realisations and error bars are derived from the standard error of the mean. 
These are smaller than the size of the dots in almost all cases.  

 

The impact of reactive vaccination and its demand in terms of vaccine doses varies depending 

on the incidence level. In Supplementary Figure 6a-c we compare all strategies under a scenario 

of flare-up of cases. All parameters are as in the baseline scenarios, intermediate vaccination 

coverage (~45% of the whole population vaccinated, Fig. 2 d, e of the main paper), except for 

initial incidence. Here we assumed three cases were infected at the beginning. Panel a shows 

the relative reduction in the attack rate after two months as a function of the number of first daily 

doses, while panel b compares the incidence profiles under different strategies at equal number 

of vaccine doses. The relative reduction produced by reactive vaccination is close to the one 

produced by mass, school location and workplaces/universities. Panel c shows the number of 

vaccines deployed each day for reactive vaccination and the number of workplaces/schools 

where vaccines are deployed. These are initially low and increase gradually with incidence.  

We then explore the impact of the reactive vaccination in the flare-up case in varying the 

different parameters. Specifically, we compare all strategies at an equal number of doses, 

varying the level of social distancing (Supplementary Figure 6d) and the timing for the immunity 

to mount after the first-dose vaccination (Supplementary Figure 6e). For certain parameter 

values reactive vaccination produces a higher relative reduction in the attack rate compared with 

non-reactive strategies. This is the case for instance when the development of vaccine immunity 

is rapid, and when no social restrictions are in place. In other cases it produces comparable 

effect. This is the case for instance of long delays between doses. Finally, in Supplementary 

Figure 6f, we provide an overview of the impact of initial incidence. As initial incidence increases 

the advantage of the reactive vaccination compared with the non-reactive strategies increases.  
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Supplementary Figure 6: Comparison between vaccination strategies - flare-up scenario. a Relative reduction 

(RR) in the attack rate (AR) over the first two months for all strategies as a function of the vaccination pace. RR is 

computed with respect to the reference scenario, with initial vaccination only. b Incidence of clinical cases with 
different vaccination strategies during the first 8 weeks. c Number of daily first-dose vaccinations, and 

workplaces/schools (WP/S in the plot) where vaccines are deployed. d AR RR after two months according to the 

repartition of contacts across settings due to social distancing - Intermediate is the baseline scenario, while high is 
given by a 30% reduction in community contacts and a 20% of individuals doing teleworking. e AR RR after two 

months according to the timing for the immunity to mount after first-dose vaccination - the x-axis labels wNwM 

indicates the average number of weeks, N and M, of no protection following first dose inoculation and of intermediate 
vaccine effectiveness, respectively. f AR RR after two months according to the initial incidence for all strategies at 

equal number of doses. In panels b,d-f all strategies are compared at equal number of doses. All panels, except for 

panel f, consider a flare up scenario, where the epidemic is seeded with 3 infectious individuals. All other parameters 
are as in Fig. 2d, e of the main paper.  In panels a, d-f data are represented as means over 2000 independent 

stochastic realisations and error bars are derived from the standard error of the mean. In panels b, c continuous lines 

are means over 2000 independent stochastic realisations and the shaded areas are the standard error of the mean 
(+/- 2SEM).  
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4. Additional epidemic outcomes  

Based on the estimated incidence of clinical cases per day provided by the transmission model, 

we infer outcomes related to hospital, namely hospital and intensive care unit (ICU) entries, beds 

in ICU ward, and deaths. We use age-dependent hospital admissions (ICU and non-ICU) risks 

estimated by 15,16 and ICU admission risks for hospitalised patients based on SI-VIC extract 17. 

Hospital admissions risks were adjusted to apply only to clinical cases 18 and to account for 

vaccine effectiveness for hospitalisation for zero, half (1 dose) and full (2 doses) vaccination. We 

assume the vaccine efficacies for hospitalisation were equal to 83% and 94% for half and full 

vaccinations, respectively7. We also assume that the hospital admission risk increases by 80% 

with the Delta variant compared to Alpha 19 and by 40% with the Alpha variant compared to the 

wild type 20. Patients who were hospitalised entered the hospital on average 7 days (sd = 3.9 

days – Gamma distribution) after the beginning of the infectious phase 21. Those who were 

admitted in ICU enter this unit with a mean delay of 1.69 days (assuming an exponential 

distribution) 17. To estimate the number of occupied beds, we use age-specific mean durations of 

stay and their corresponding standard deviations in ICU calculated on all the hospitalised cases 

in the first 9 months of the French epidemic (March-November 2020)17. We assume that the 

standard deviations of ICU lengths of stay were equal to the corresponding mean and do not 

consider post-ICU care in the estimation of occupied beds. We estimate the number of deaths 

using hospital and ICU death risks of hospitalised infected persons 17. Deaths are delayed in 

time using the mean delays and standard deviations from hospital or ICU admission to death 17. 

All lengths of stay are supposed to follow a Gamma distribution. Parameters and their values are 

summarised in Supplementary Tables 6 and 7. 

We also estimate the number of life years and quality-adjusted life years (QALY) lost for each 

death using life-tables provided by ‘French National Institute of Statistics and Economic Studies’ 

(INSEE) for 2012-2016 22 and utility measures of each age-group in France 23. 
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Supplementary Table 6. Risks of hospitalisation according to vaccination status, ICU admission and death in 
general ward and ICU 

Age 
group 

Hospitalisation 
risk for no-
vaccination 

Hospitalisation 
risk for 1-dose 

vaccination 

Hospitalisation 
risk for 2-doses 

vaccination 

ICU 
admission 

risk 

Death risk 
in general 

ward 

Death risk 
in ICU 

0-9 0.0246 0.0115 0.0066 0.159 0.006 0.078 

10-19 0.0136 0.0063 0.0037 0.159 0.006 0.078 

20-29 0.0364 0.0170 0.0098 0.159 0.006 0.078 

30-39 0.0443 0.0207 0.0119 0.159 0.006 0.078 

40-49 0.0617 0.0288 0.0166 0.219 0.016 0.103 

50-59 0.1697 0.0792 0.0457 0.270 0.030 0.175 

60-69 0.2360 0.1101 0.0635 0.299 0.064 0.268 

70-79 0.5113 0.2386 0.1377 0.235 0.140 0.366 

79+ 0.9496 0.4431 0.2557 0.053 0.308 0.468 

 

Supplementary Table 7. Delays in days from hospitalisation admission in general ward to death or hospital 
discharge and delays from ICU admission to ICU discharge or death. 

Age 
group 

Mean los in general 
ward (sd) 

Mean los in general 
ward for dying 

people (sd) 

Mean los in ICU 
(sd) 

Mean los in ICU for 
dying people (sd) 

0-9 6.4 (6.8) 10.6 (12.3) 12.7 (12.7) 22.3 (22.3) 
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10-19 6.4 (6.8) 10.6 (12.3) 12.7 (12.7) 22.3 (22.3) 

20-29 6.4 (6.8) 10.6 (12.3) 12.7 (12.7) 22.3 (22.3) 

30-39 6.4 (6.8) 10.6 (12.3) 12.7 (12.7) 22.3 (22.3) 

40-49 6.4 (6.8) 10.6 (12.3) 12.7 (12.7) 22.3 (22.3) 

50-59 6.4 (6.8) 10.6 (12.3) 12.7 (12.7) 22.3 (22.3) 

60-69 9.3 (9.1) 10.6 (12.3) 16.7 (16.7) 20.8 (20.8) 

70-79 11.7 (11.4) 10.6 (12.3) 17.5 (17.5) 18.9 (18.9) 

79+ 15 (13.8) 10.6 (12.3) 13.6 (13.6) 10.6 (10.6) 

Los: Length of stay. Sd = Standard deviation. 

 

Supplementary Figure 7 shows the relative reductions in the number of hospitalisations, deaths, 

ICU entries, life-year lost, quality-adjusted life-year lost and ICU bed occupancy at the peak, 

comparing each vaccination scenario with the reference scenario - i.e. vaccination only at the 

start. We consider here the high incidence and intermediate vaccine coverage scenario, 

analogously to Fig. 2d, e of the main paper. The six indicators show a behaviour similar to 

incidence. Overall reduction values are smaller. This is expected, since a large proportion of 

elderly are already vaccinated at the start, and the compared vaccination strategies target a 

population that is less at risk of severe infection. Still, all indicators show the same qualitative 

behaviour, with reactive vaccination outperforming the non-reactive vaccination strategies at 

equal number of first-dose vaccination. 
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Supplementary Figure 7: Comparison between vaccination strategies - additional epidemic outcomes. Relative 
reduction (RR) in the cumulative incidence of: a hospitalisations, b intensive care unit (ICU) entries, c deaths, d life 

years (LY) lost and e quality-adjusted life years (QALY) lost over the first two months for all strategies as a function of 
the vaccination pace. f Relative reduction (RR) in occupied ICU beds at the peak over the first two months for all 

strategies as a function of the average daily number of first-dose vaccinations. We consider here the baseline 

scenario with intermediate vaccination coverage - i.e. same parameters as in Fig. 2d, e. In all panels, data are 
represented as means over 2000 independent stochastic realisations and error bars are derived from the standard 

error of the mean. 
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Supplementary Note 2: Combined reactive and mass vaccination for managing 
sustained COVID-19 spread 

1. Additional results  

In Supplementary Figure 8 we show the incidence curve corresponding to the scenarios 

analysed in Fig. 3a of the main paper. Mass and combined vaccination with three different 

vaccination paces are compared. 

 

Supplementary Figure 8: Incidence of clinical cases for mass and combined vaccination strategies in the case 
of sustained spread. Scenarios are the same as the ones plotted in Fig. 3a of the main paper. Continuous lines are 

means over 2000 independent stochastic realisations and error bands are derived from the standard error of the mean 
(+/- 2SEM) - this is very low for this set of parameters. 

Supplementary Note 3: Combined reactive and mass vaccination for managing a 
COVID-19 flare-up 

1. Additional results  

In Supplementary Figure 9 we show the incidence curve corresponding to the scenarios 

analysed in Fig. 4 of the main paper. Mass and combined vaccination with the different 

vaccination scenarios considered are compared. 
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Supplementary Figure 9: Incidence of clinical cases for mass and combined vaccination strategies in the case 
of flare-up. Scenarios are the same as the ones plotted in Fig. 4 of the main paper. a Scenario with enhanced TTI. b 

Scenario with baseline TTI. In both panels, continuous lines are means over 8000 independent stochastic realisations 

and error bands are derived from the standard error of the mean. 

2. Sensitivity analysis  

In Supplementary Figure 10 we analyse the impact of combined and mass vaccination in a flare 

up scenario similarly to Fig. 4 of the main paper, by varying the hypotheses on virus 

transmissibility and vaccine escape. Specifically we consider values of the reproductive ratio 

from 1.2 to 1.8, and both worst and baseline vaccine effectiveness level - the worst vaccine 

effectiveness level is the same as in Fig. 2i of the main paper. Analogously to Fig. 4 we compare 

the attack rate for combined and mass vaccination, assuming both baseline and enhanced TTI 

and both baseline and 100% vaccine uptake in the context of reactive vaccination. We consider 

only the case in which reactive vaccination starts after the detection of the first case. For each 

set of parameters, scenarios with enhanced TTI and 100% uptake are associated with smaller 

attack rates and larger difference between mass and combined than the corresponding 

scenarios with baseline TTI and baseline uptake. 
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Supplementary Figure 10: Combined reactive and mass vaccination for managing a COVID-19 flare-up - 
sensitivity analysis. Average attack rate per 100000 inhabitants after two months for the flare-up case under 

different hypotheses: a, b, 𝑅 = 1.8 with baseline vaccine effectiveness; c-h worst vaccine effectiveness with 𝑅 = 1.2 

(c,d), 𝑅 = 1.6 (e,f) and 𝑅 = 1.8 (g,h). The worst vaccine effectiveness scenario is defined as in Fig. 2 i of the main 

paper, i.e. 𝑉𝐸3,) = 30%, 𝑉𝐸3?,) = 35%, 𝑉𝐸3,< = 53% and  𝑉𝐸3?,< = 60%. We compare enhanced and baseline TTI - a, 

c, e, g and b, d, f, h, respectively -, as well as baseline and 100% vaccine uptake. In all panels, parameters are the 

same as in Fig. 4 except for otherwise indicated. In all panels, data are represented as means over 8000 independent 
stochastic realisations and error bars are derived from the standard error of the mean.  

We then investigate the impact of combined and mass vaccination on the extinction of the flare-

up. In Supplementary Figure 11a we plot the probability of extinction for the scenario considered 

in Fig. 4a of the main paper (enhanced TTI and 100% vaccine uptake). We find that the 

probability of extinction is ~5%, and the difference between mass and combined is ~0.5%. The 

probability of extinction progressively increases under more optimistic hypotheses: increase in 

case detection from 70% and 30% (enhanced TTI) to 100% and 50% (strong TTI) for clinical and 

subclinical cases, respectively; increase in vaccine effectiveness to the best case scenario 

considered in Fig. 2i; rapid mounting of the vaccine effect, with partial immunity against infection 

already present one week after inoculation. In the best-case scenario plotted in panel h, the 
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probability of extinction reaches ∼0.15 and ∼0.18 for mass and combined vaccination, 

respectively. 

 

 

Supplementary Figure 11: Combined reactive and mass vaccination for managing a COVID-19 flare-up - 
probability of extinction. Three sets of parameters are investigated. 1) Baseline vaccine effectiveness (a,b,e,f) vs 

best effectiveness, i.e.  𝑉𝐸3,) = 65%, 𝑉𝐸3?,) = 75%,𝑉𝐸3,< = 80% and  𝑉𝐸3?,< = 95%, (c,d,g,h); 2) enhanced TTI 

(a,c,e,g) vs. strong TTI with 𝑝G,0= 1 and 𝑝G,/0= 0.5 (b,d,f,h). 3) 2 weeks (baseline) for vaccines to reach partial 

effectiveness (a,b,c,d) vs 1 week (e,f,g,h). In all panels, parameters are the same as in Fig. 4. In all panels, values 

represent the fraction of 15000  stochastic runs where the epidemic ends before two months. Error bars represent the 

standard error assuming the number of extinctions follows a binomial distribution. 

Supplementary References 

1. Moreno López, J. A. et al. Anatomy of digital contact tracing: Role of age, transmission 

setting, adoption and case detection. Science Advances eabd8750 (2021) 

doi:10.1126/sciadv.abd8750. 

2. Kang, M. et al. Transmission dynamics and epidemiological characteristics of Delta variant 

infections in China. 2021.08.12.21261991 

https://www.medrxiv.org/content/10.1101/2021.08.12.21261991v1 (2021) 

doi:10.1101/2021.08.12.21261991. 



 

25 

3. Lauer, S. A. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From 

Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med 172, 577–

582 (2020). 

4. Xin, H. et al. The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic 

Review and Meta-analysis. Clinical Infectious Diseases (2021) doi:10.1093/cid/ciab501. 

5. He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature 

Medicine 1–4 (2020) doi:10.1038/s41591-020-0869-5. 

6. Di Domenico, L., Pullano, G., Sabbatini, C. E., Boëlle, P.-Y. & Colizza, V. Impact of lockdown 

on COVID-19 epidemic in Île-de-France and possible exit strategies. BMC Medicine 18, 240 

(2020). 

7. Higdon, M. M. et al. A systematic review of COVID-19 vaccine efficacy and effectiveness 

against SARS-CoV-2 infection and disease. 2021.09.17.21263549 

https://www.medrxiv.org/content/10.1101/2021.09.17.21263549v1 (2021) 

doi:10.1101/2021.09.17.21263549. 

8. Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New 

England Journal of Medicine 383, 2603–2615 (2020). 

9. Kissler, S. M. et al. Viral Dynamics of SARS-CoV-2 Variants in Vaccinated and Unvaccinated 

Persons. New England Journal of Medicine 385, 2489–2491 (2021). 

10. SPF. COVID-19 : point épidémiologique du 6 mai 2021. 

https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-

respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-

epidemiologique-du-6-mai-2021. 

11. Smith, L. E. et al. Adherence to the test, trace and isolate system: results from a time 

series of 21 nationally representative surveys in the UK (the COVID-19 Rapid Survey of 

Adherence to Interventions and Responses [CORSAIR] study). medRxiv (2020) 

doi:10.1101/2020.09.15.20191957. 



 

26 

12. Info Coronavirus COVID-19 - Tester - Alerter - Protéger. Gouvernement.fr 

https://www.gouvernement.fr/info-coronavirus/tests-et-depistage. 

13. Nasreen, S. et al. Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against 

symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. 

2021.06.28.21259420 https://www.medrxiv.org/content/10.1101/2021.06.28.21259420v3 

(2021) doi:10.1101/2021.06.28.21259420. 

14. Tang, P. et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the 

SARS-CoV-2 Delta variant in Qatar. Nat Med 1–8 (2021) doi:10.1038/s41591-021-01583-4. 

15. Kiem, C. T. et al. Short and medium-term challenges for COVID-19 vaccination: from 

prioritisation to the relaxation of measures. (2021). 

16. Lapidus, N. et al. Do not neglect SARS-CoV-2 hospitalization and fatality risks in the 

middle-aged adult population. Infectious Diseases Now 51, 380–382 (2021). 

17. Lefrancq, N. et al. Evolution of outcomes for patients hospitalised during the first 9 

months of the SARS-CoV-2 pandemic in France: A retrospective national surveillance data 

analysis. The Lancet Regional Health – Europe 5, (2021). 

18. Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 

epidemics. Nature Medicine 1–7 (2020) doi:10.1038/s41591-020-0962-9. 

19. Sheikh, A., McMenamin, J., Taylor, B. & Robertson, C. SARS-CoV-2 Delta VOC in 

Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 397, 

2461–2462 (2021). 

20. Bager, P. and Wohlfahrt, J. and Rasmussen, M. and Albertsen, M and Grove Krause, T. 

Hospitalisation associated with SARS-CoV-2 delta variant in Denmark. Lancet Infect Dis 

(2021). 

21. Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science (2020) 

doi:10.1126/science.abc3517. 



 

27 

!!"# $%&'()#*(#+,-.%'/.0#1%-#)(2(3#45(#(.#6/7(%8#*(#7/(#9#$%&'()#*(#+,-.%'/.0#1%-#6/7(%8#*(#

7/(#:#;6)(("#<..1)=>>???"/6)(("@->@->).%./)./A8()>BBCCD!!E),++%/-(FBBCCD!G" 

23. Chevalier, J. & de Pouvourville, G. Valuing EQ-5D using time trade-off in France. Eur J 

Health Econ 14, 57–66 (2013). 

 



Chapter 4. Agent-based modelling of reactive vaccination of workplaces and schools
against COVID-19.

4.4 Conclusion.

In this chapter, we showed that in most scenarios, reactive vaccination outper-
formed non-reactive strategies in mitigating the epidemic for an equal number of vac-
cine doses. A combined approach, with both mass and reactive vaccination, was also
more effective than mass vaccination only. We tested the impact of input parameters
on the effectiveness of reactive vaccination to understand in what situation this vac-
cination strategy was indicated. Overall, parameters affecting the number of people
vaccinated around a case have a higher impact on the effectiveness of reactive vacci-
nation. For instance, if the number of vaccinated people is high already at the onset
of the simulation, there will be fewer candidates for reactive vaccination around a de-
tected case. In this case, reactive vaccination will be less advantageous than when
fewer people are initially vaccinated. Conversely, changing the reproductive number,
the natural immunity at the start or the reduction of contacts due to teleworking or
limitation of social activities showed little impact on the relative advantage of reactive
vaccination. Vaccine uptake had an important impact on the effectiveness of reactive
vaccination when aiming at both mitigation and control. Vaccine hesitancy has proven
to be a significant obstacle to vaccination policies, particularly in France [170, 171, 172].
Psychological studies have shown that individuals who perceive a low risk of illness
are the most likely to be hesitant about vaccination. Therefore, we could expect that a
reactive strategy could increase adherence to vaccination. Knowing the risk of infec-
tion within a school or workplace could encourage individuals attending those places
to get vaccinated. Lower vaccination rate is also associated with other factors such as
low socio-economic level, difficult access to vaccination or distrust in health authori-
ties [173, 174]. In response, reactive vaccination could be part of an “Aller-vers” policy
[175] that involves going out and vaccinating people who are less likely to go to vacci-
nation centres themselves where they live.
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Chapter 5

Conclusion and discussion.

The emergence of new pathogens poses important challenges to public health
authorities. During the COVID-19 pandemic, with the appearance of the new coron-
avirus in China in 2019 and the emergence of new variants, prompt and appropriate
reaction was needed to respond to the threat of new outbreaks. However, the het-
erogeneity of surveillance systems has made it difficult to interpret surveillance data
and plan appropriate responses. In this thesis, we developed mathematical models to
deal with this problem. In the work presented in 3, we presented a retrospective study
aimed at better interpreting surveillance data for epidemic reconstruction. We took the
emergence of the Alpha variant as a case study to understand the drivers and impacts
of the silent spread. More precisely, we used GISAID metadata of Alpha sequences to
reconstruct Alpha dissemination from the United Kingdom to other countries and es-
timated the importation date from the first detection date. We explored the interaction
between sequencing coverage, air travel volumes, and delay from collection to sub-
mission, in determining the duration of silent circulation. By integrating these factors,
we reconstructed the spread of the Alpha variant, and we showed that it circulated
silently for days to months and reached more than 60 countries by the end of 2020
to be compared with the 24 that reported cases. Finally, we used two different mod-
els to reproduce the local spread of the Alpha variant in six countries [8] [9, 10, 11].
We showed that countries implementing mitigation measures likely delayed the estab-
lishment of local transmission, mitigating the negative consequences of late detection.
While this study was retrospective, our framework could be used in future pandemics
to monitor the unfolding propagation of a new virus. Our results suggest that once
a new pathogen emerges, other countries should not wait to detect the virus before
implementing measures. In particular, enhancing screening and implementing local
mitigation measures could delay the variant propagation and decrease the impact of
silent spread.

Various mitigation measures were put in place during the pandemic: limita-
tion or ban of public gatherings, curfews, closure of certain shops, closure of schools,
target vaccination or strict lockdowns. However, these measures had important eco-
nomic and social costs [176, 177]. Uncertainty about the balance between the benefits
and costs of a mitigation measure can delay the implementation resulting in avoidable
cases and deaths. Mathematical models can help to propose scenarios of interven-
tion and quantify costs and benefits. In the second work of this thesis, we proposed
a model to assess the effectiveness of reactive vaccination in workplaces and schools.
We used an agent-based model, modelling the daily interaction of individuals in differ-
ent settings. We accounted for various factors: individual immunity, contact network
structure, number of available doses, and concomitant non-pharmaceutical interven-
tions. In most scenarios, reactive vaccination proved to be more effective than mass
or targeted vaccination in reducing the incidence of clinical cases over two months. In
particular, the comparative advantage was more pronounced in situations with low
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initial vaccination coverage or high vaccination uptake. We also examined a combined
strategy, where reactive vaccination is implemented on the top of mass vaccination
policy. Once again, the strategy involving reactive vaccination outperformed mass
vaccination alone in most scenarios. We also computed the number of daily vaccine
doses used. We found that on average over the period the reactive strategy saved
doses compared with mass vaccination. In case of a flare-up, like the emergence of a
new VOC, the combined strategy could help to limit the spread only if the vaccination
campaign is supported by a strong Test-Trace-Isolate system and an increase in vacci-
nation uptake. Provided that sufficient data are available, our model could be adapted
to evaluate reactive vaccination or targeted vaccination for any epidemics caused by
respiratory viruses like influenza. We could also evaluate the impact of contact trac-
ing policies, and test the impact of the detection rate, the delay in detection, or the
probability to trace contacts.

The work carried out in this thesis was conducted in a specific context during
the COVID-19 pandemic. The two studies, beyond their theoretical interest, aimed
to provide information relevant for public health authorities regarding concrete situa-
tions. The research on the Alpha variant aimed to understand the impact of available
data on monitoring the spread of a new virus. The second study sought to determine
whether the strategy of reactive vaccination could be implemented in response to the
emergence of the Delta variant in France. This work had to be adapted to the real-time
epidemic situation. The model was initially calibrated in early 2021 on the Alpha vari-
ant. We had to recalibrate the model parameters for the arrival of the Delta variant in
the summer of 2021 , and adapt certain results. We also took into account variations in
contact due to responses and measures to face waves of cases.

We used a highly detailed model to closely align with the situation being stud-
ied. Numerous parameters were examined to understand the feasibility of implement-
ing reactive vaccination. In addition to the effectiveness of this strategy in reducing
the attack rate, we tested the influence of various logistical parameters: detection rate,
number of cases required to trigger the strategy or the time required to implement
vaccination. Overall, we demonstrated that in the studied case, reactive vaccination
could be beneficial for mitigating the epidemic but would not be effective in contain-
ing the spread of a new variant. Logistical parameters that do not impact the number
of people to be vaccinated have little effect on the effectiveness of reactive vaccination.
However, the decision to implement this strategy requires balancing these conclusions
with data on available resources in practice.

The two works presented in this thesis relied on pre-existing frameworks but
were adapted to the COVID-19 situation by integrating data collected during the pan-
demic. The framework used to study the dissemination of the Alpha variant intro-
duced heterogeneous detection into the equations. The agent-based model, initially
developed to study influenza has rapidly been updated to study digital contact trac-
ing [59], and then reactive vaccination against COVID-19. These works have benefited
from the unprecedented amount of data produced during the pandemic [178]. Beside
the implementation of monitoring and reporting systems, the use of this data has been
made possible by a massive effort to gather, share and make this data easily accessi-
ble. At the onset of the pandemic, researchers had to manually aggregate data from
available reports [17, 18] to analyse data on the first cases. In addition, the emergence
of new variants has prompted the development of protocols for extensive genomic
surveillance. Many authorities implemented data repositories and dashboards that al-
lowed for quick access to the number of cases recorded per day. In most countries,
governmental agencies provided platforms to share data about daily detected cases,
hospitalisations and deaths, as in New York [179], France [42], Germany [180] or the
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UK [181]. Besides national sharing, academic and public health organisations have
aggregated this data to make it easier to access and enable comparison between coun-
tries. Among others, we can cite the COVID-19 Data Repository by the Center for
Systems Science and Engineering by Johns Hopkins University [182], the OurWorldIn-
Data project [73], the Global;health project [183] or the platform provided by WHO
[184]. For genomic surveillance, the GISAID database enabled the massive sharing of
COVID-19 sequences and associated metadata. While it has been active since 2008, the
GISAID initiative played a massive role in research during the COVID-19 pandemic.
The high quality and massive amount of genomic data played a crucial role in the
development of diagnostic tests and the first vaccines and enabled the monitoring in
realtime of VOC [185]. In addition to epidemiological data, complex models need to
be informed by data on the various factors contributing to the spread of the epidemic.
Publicly available results of surveys on statistics of contact tracing (number of contacts
traced, delay) [57], social distancing [65] provided useful data to enriched models on
contact tracing and reduction of presence in different settings for epidemic assessment
and scenario analysis. Contact rates and their reduction due to NPIs were not directly
accessible. The average number of contacts per individual was quantified before the
pandemic through surveys [116]. To access variations in contact rates, we used mo-
bility data recorded by Google [165], which provided a relative change in the number
of people travelling to a specific setting compared to before the pandemic. We used
this data as a proxy of the reduction of contact by setting. Other proxies have been
widely used to estimate the impact of NPIs, mostly from digital data: mobile phones,
google and social networks data, and GPS [186]. To prepare for future pandemics, it
is necessary to continue developing tools that allow for data sharing and accessibility.
Even though the COVID-19 pandemic is behind us, it is critical to continue to develop,
finance, and test agile and effective data sharing platforms to respond to future chal-
lenges. Concurrently, efforts should be made to continue to develop tools to collecting
data on factors affecting the course of an epidemic: real-time contact matrix, networks
of contact, socio-demographic data and traveller flows. Working on these issues in
peacetime has two objectives. Firstly, it allows us to work outside the emergency of
the pandemic, to carry out in-depth retrospective studies on the available data. Sec-
ondly, having data outside the pandemic period, for example on contacts or mobility,
provides a baseline to compute how these factors change during a pandemic.
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