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Abstract

In this thesis, we consider images sensed by a miniaturized multispectral (MS) snapshot camera.
Contrary to classical RGB cameras, MS imaging allows to observe a scene on tens of different wave-
lengths, allowing a much more precise analysis of the observed content.

While most MS cameras require a scan to generate an image, snapshot MS cameras can instanta-
neously provide images, or even videos. When the camera is miniaturized, instead of a 3D data cube,
it gets a 2D image, each pixel being associated with a filtered version of the theoretical spectrum it
should acquire. Post-processing, called “demosaicing”, is then necessary to reconstruct a data cube.
Furthermore, in each pixel of the image, the observed spectrum can be considered as a mixture of
spectra of pure materials present in the pixel. Estimating these spectra named endmembers as well
as their spatial distribution (named abundances) is called “unmixing”. While a classical pipeline to
process MS snapshot images is to first demosaice and then unmix the data, the work introduced in this
thesis explores alternative strategies in which demosaicing and unmixing are jointly performed. Ex-
tending classical assumptions met in sparse component analysis and in remote sensing MS unmixing,
we propose two different frameworks to restore and unmixing the acquired scene, based on low-rank
matrix completion and deconvolution, respectively, the latter being specifically designed for Fabry-
Perot filters used in the considered camera. The four proposed methods exhibit a far better unmixing
enhancement than the variants they extend when the latter are applied to demosaiced data. Still, they
allow a similar demosaicing performance as state-of-the-art methods.

The last part of this thesis introduces a deconvolution approach to restore the spectra of such cam-
eras. Our contribution lies in the weights of the penalization term which are automatically set using
the entropy of the Fabry-Perot harmonics. The proposed method exhibits a better spectrum restoration
than the strategy proposed by the camera manufacturer and than the classical deconvolution technique
it extends.

Keywords: Snapshot Spectral Imaging, Unmixing, Demosaicing, Low-Rank Approximation,
Sparsity, Deconvolution.
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Résumé

Dans cette thèse, nous considérons des images captées par une caméra multispectrale (MS) miniatur-
isée « snapshot ». Contrairement aux caméras RVB classiques, l’imagerie MS permet d’observer une
scène sur des dizaines de longueurs d’onde différentes, permettant une analyse beaucoup plus précise
du contenu observé. Alors que la plupart des caméras MS nécessitent un scan pour générer une im-
age, les caméras MS snapshot peuvent fournir instantanément des images, voire des vidéos. Lorsque
la caméra est miniaturisée, au lieu d’un cube de données 3D, elle fournit une image 2D, chaque pixel
étant associé à une version filtrée du spectre théorique sensé être acquis. Un post-traitement, appelé «
dématriçage », est alors nécessaire pour reconstruire le cube de données. De plus, dans chaque pixel
de l’image, le spectre observé peut être considéré comme un mélange de spectres de matériaux purs
présents dans le pixel. L’estimation de ces spectres nommés endmembers ainsi que leur distribution
spatiale (appelée abondances) est appelée « démélange ».

Alors qu’un pipeline classique pour traiter les images MS snapshot consiste d’abord à dématricer
puis à démélanger les données, les travaux présentés dans cette thèse explorent des stratégies alterna-
tives dans lesquelles le dématriçage et le démélange sont effectués conjointement. En étendant les hy-
pothèses classiques rencontrées dans l’analyse des composantes parcimonieuses et dans le démélange
MS utilisé en télédétection, nous proposons deux cadres différents pour restaurer et démélanger la
scène acquise, basés respectivement sur la complétion de matrice de faible rang et la déconvolution,
cette dernière étant spécifiquement conçue pour les filtres Fabry-Pérot utilisés dans la caméra con-
sidérée. Les quatre méthodes proposées présentent une bien meilleure qualité de démélange que les
variantes qu’elles étendent lorsque ces dernières sont appliquées à des données dématricées. Néan-
moins, elles permettent des performances de dématriçage similaires à celles des méthodes de l’état de
l’art.

La dernière partie de cette thèse introduit une approche de déconvolution pour restaurer les spec-
tres de telles caméras. Notre contribution réside dans les poids du terme de pénalisation qui sont
automatiquement fixés en utilisant l’entropie des harmoniques de Fabry-Pérot. La méthode proposée
présente une meilleure restauration spectrale que la stratégie proposée par le fabricant de la caméra et
que la technique de déconvolution classique qu’elle étend.

Mots clés : Approximation et Complétion de Matrices de Faible Rang, Imagerie Spectrale Snap-
shot, Démelange, Dématriçage, Déconvolution.
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Ŷ , Ĝ, F̂ - Estimated matrices of Y , G, and F .

yi(λ) - Actual spectrum intended to be observed by pixel i at wavelength λ.

‖ · ‖2F - The Frobenius norm

≈ - Approximately equal

‖ · ‖22 - Squared Euclidean Norm

� - Much greater than

, - Is defined as or is equivalent to

◦ - Hadamard product

24



Résumé étendu

I.1 Cadre général
L’imagerie hyperspectrale (HSI) est une technique analytique basée sur la spectroscopie, qui implique
la capture de centaines d’images à diverses longueurs d’onde pour la même région spatiale. La véri-
table puissance de l’HSI réside dans sa capacité à détecter, identifier et quantifier des matériaux et
des phénomènes dans diverses applications. De la surveillance précise de la santé agricole et de la
surveillance environnementale [87], aux applications révolutionnaires dans les diagnostics médicaux
et la sécurité alimentaire [48], l’HSI fournit un outil crucial pour la recherche et l’industrie.

Un défi fondamental auquel les capteurs HSI doivent faire face est l’acquisition de données HSI
tridimensionnelles, englobant deux dimensions spatiales et une dimension spectrale, à l’aide d’un
détecteur unique, tel qu’un détecteur en réseau 1D ou en plan 2D. Ainsi, différentes stratégies dans
les conceptions d’acquisition HSI ont émergé de la disparité entre les demandes des détecteurs et la
dimensionnalité disponible, menant à des méthodes d’acquisition par balayage de longueur d’onde,
balayage ponctuel, balayage de ligne, et des méthodes d’acquisition instantanée [101, 151]. Néan-
moins, une caractéristique commune à tous les scénarios est la nécessité de balayer à plusieurs reprises
la scène et d’acquérir de nombreux clichés (cadres) pour compiler le cube de données à résolution
spatio-spectrale complète, tout en tenant compte des considérations relatives au coût et à la taille de
la caméra.

Une nouvelle génération d’architectures d’HSI1, connue sous le nom d’imagerie spectrale “snap-
shot” (SSI), a été introduite pour répondre aux défis mentionnés précédemment [54]. La SSI permet
l’acquisition efficace du contenu spatio-spectral de scènes dynamiques à l’aide de plateformes minia-
turisées et peut acquérir le cube complet à partir d’une seule ou de quelques expositions. Pour attein-
dre cet objectif, les architectures SSI associent chaque pixel spatial à une bande spectrale spécifique,
introduisant ainsi un compromis crucial entre la résolution spatiale et spectrale [143].

Ces caméras peuvent capturer des vidéos à un taux de trame élevé et sont utiles dans les cas où le
mouvement est imprévisible, et la caméra ou l’objet se déplace en 2D ou 3D, comme dans les applica-
tions robotiques ou le tri des voies [79]. Parmi les stratégies récentes qui ont émergé, les caméras SSI
utilisant des filtres Fabry-Perot (FPf) [53] produisent uniquement une image 2D dérivée des données

1En réalité, certaines de ces technologies ne permettent que l’acquisition d’images multispectrales, fournissant un
nombre de bandes spectrales plus réduit que l’HSI. Néanmoins, dans la suite de ce résumé étendu, nous parlerons d’HSI
pour indiquer à la fois des images multi- ou hyperspectrales.
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hyperspectrales 3D. Ensuite, une technique de post-traitement appelée “dématriçage” est nécessaire
pour estimer le cube de données hyperspectrales complet. Diverses approches ont été proposées pour
effectuer le dématriçage. Ces approches peuvent être classées en deux catégories, incluant les méth-
odes “traditionnelles” [27, 105, 108, 107, 22, 143] et les stratégies basées sur l’apprentissage profond
[39, 66, 116, 46, 178, 94].

Après que l’image hyperspectrale 3D ait été reconstruite à partir des données SSI 2D, nous pou-
vons employer toute technique de post-traitement de notre choix. En particulier, le processus de
démélange implique l’extraction des signatures spectrales de tous les membres finaux présents dans
une scène observée. Plus spécifiquement, les méthodes de démélange populaires fonctionnent sous
l’hypothèse que pour chaque membre final, il existe au moins un pixel spatial où le matériau corre-
spondant existe exclusivement. Cela implique que le spectre observé dans un tel pixel correspond
au spectre du membre final. Les algorithmes les plus utilisés sont l’analyse des composants verti-
caux (VCA) [110], N-FINDR [156], l’indice de pureté des pixels (PPI) et le cône convexe d’angle
maximal séquentiel (SMACC) [23]. L’analyse des composants parcimonie (SCA) est l’une des princi-
pales approches de la séparation aveugle de sources (BSS). Elle détecte des zones à source unique en
exploitant les propriétés de parcimonie des sources dans différents domaines de représentation [35].

I.2 Motivation et Objectifs de la Thèse
Une fois que le cube de données est construit en utilisant le dématriçage, toutes les applications de
post-traitement, par exemple, le démélange ou la classification, peuvent être appliquées pour traduire
les données spectrales brutes en informations interprétables et exploitables comme le montre la Fig. 1.

Toutefois, comme l’ont indiqué Tsagkatakis et al. [143], appliquer directement la classification
sur les images SSI après le dématriçage conduit souvent à des performances insatisfaisantes. Par
ailleurs, la plupart des méthodes de démélange existantes sont conçues pour fonctionner sur des cubes
de données pleinement reconstruits et ne prennent pas en compte les entrées manquantes inhérentes
aux scénarios d’imagerie “snapshot”. De plus, dans le contexte d’un problème d’étalonnage in situ
de capteurs mobiles, il a été démontré qu’une approche combinant complétion et factorisation ma-
tricielle de faible rang est nettement plus performante qu’un processus séquentiel en deux étapes de
complétion matricielle suivie de factorisation [42]. Ces résultats soulignent les limites du pipeline
séquentiel proposé par les fabricants de caméra snapshot.

Reconnaissant cette problématique, notre approche proposée vise à effectuer le dématriçage et
le démélange de manière conjointe, en se basant sur la factorisation de matrices de faible rang et la
complétion. Cette méthode intégrée a pour but non seulement d’améliorer les résultats du démélange
mais également de maintenir une performance optimale du dématriçage.

En nous appuyant sur ce cadre, nous analysons en outre la chaîne de traitement pour restaurer le
cube de données HSI introduit par le fabricant de la caméra et explorons l’utilisation de la matrice
de réponse harmonique des filtres Fabry-Perot (FPf) pour un dématriçage une déconvolution et un
démélange conjoints. Notre objectif est de démontrer que l’intégration de ces techniques conduit non
seulement à des résultats améliorés par rapport aux étapes séparées de dématriçage, démélange, et
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Figure 1 – Vue d’ensemble de l’acquisition et du traitement sur une scène contenant trois membres
finaux (sable, roches et œufs). L’image SSI peut être traitée soit par une approche en deux étapes,
soit en appliquant conjointement le démélange et le dématriçage pour restaurer le cube de données,
extraire les membres finaux, et trouver les cartes d’abondance.

correction spectrale – communément appelée déconvolution – mais simplifie également l’ensemble
du processus de traitement en intégrant la correction spectrale au sein du cadre conjoint.

I.3 Structure de la thèse

I.3.1 Chapitre 1 : Imagerie spectrale snapshot

L’imagerie spectrale snapshot (SSI) représente une avancée innovante dans le domaine de l’imagerie
hyperspectrale (HSI), permettant la capture de l’information spectrale complète en une seule exposi-
tion. Cette technologie se distingue des méthodes traditionnelles qui collectent les données de manière
séquentielle. L’introduction des technologies SSI, telles que la spectrométrie de champ intégré (IFS),
le fractionnement de faisceau multispectral (MSBS) et l’imagerie utilisant des filtres de Fabry-Perot
(FPfs), parmi d’autres, a ouvert de nouvelles perspectives dans divers domaines d’application allant
de la surveillance environnementale et l’agriculture de précision jusqu’au diagnostic médical et la
sécurité alimentaire.

Dans ce chapitre, nous présentons une étude complète de l’imagerie spectrale snapshot. Nous
commençons par un aperçu de l’HSI et ses vastes applications à travers divers domaines. Nous
explorons les complexités et les avancées des méthodes d’acquisition de données HSI, en mettant
en lumière la transition des techniques de balayage traditionnelles vers les technologies d’imagerie
snapshot. Ensuite, nous examinons en profondeur diverses méthodologies d’imagerie snapshot.

Enfin, puisque cette thèse se concentrera sur les caméras snapshot utilisant des filtres de Fabry-
Perot, nous approfondissons les étapes cruciales de la correction spectrale, reconnaissant que chaque
caméra nécessite des étapes d’étalonnage préalables et postérieures à l’acquisition de données, afin
de garantir une performance optimale.
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Figure 2 – Disposition de l’arrangement des filtres couleur de Bayer

I.3.2 Chapitre 2 : Dématriçage des images spectrales snapshot

Le dématriçage est un problème bien établi dans la communauté de l’imagerie. Il est crucial pour
les images couleur RGB, compte tenu de la présence de filtres structurés de Bayer. Dans une matrice
typique de filtres de Bayer, la moitié des pixels sont verts, tandis que le rouge et le bleu représentent un
quart des pixels totaux, comme le montre la Fig 2. Cette disposition reflète l’accent mis par le motif de
Bayer sur le vert, reconnaissant son importance dans la perception des couleurs par l’humain. Chaque
pixel de cette mosaïque capture uniquement l’une des trois couleurs, ce qui signifie que le capteur
manque des deux tiers des informations de couleur pour cet emplacement particulier à tout moment
donné.

Les algorithmes de dématriçage visent à reconstruire des images en couleur complète à partir de
ces données incomplètes. Ces algorithmes fonctionnent en interpolant les informations de couleur
manquantes pour chaque pixel. Par exemple, un pixel qui capte la lumière verte aura ses valeurs
rouge et bleue estimées en fonction des pixels adjacents qui capturent ces couleurs. Le défi réside
dans la prédiction précise de ces valeurs manquantes pour créer une image homogène et réaliste.

La complexité du processus de dématriçage varie selon l’algorithme utilisé. Les méthodes simples
pourraient employer une interpolation bilinéaire ou bicubique [65], qui calcule les valeurs de couleur
manquantes sur la base d’une moyenne pondérée des pixels voisins. Des techniques plus avancées,
comme l’interpolation basée sur le gradient ou dirigée par les bords [65], sont conçues pour mieux
préserver les bords nets et les détails fins, réduisant ainsi les artefacts. Ces algorithmes analysent
les motifs de pixels environnants pour faire des estimations plus éclairées, en particulier autour des
bords ou des zones de fort contraste, conduisant à une reconstruction plus précise et visuellement
satisfaisante.

Dans le domaine de l’imagerie spectrale snapshot (SSI), également connue sous le nom de ma-
trice de filtres multispectraux (MSFA), le dématriçage adopte un rôle unique et plus complexe. Con-
trairement à l’imagerie RGB conventionnelle, SSI/MSFA associe chaque pixel à une bande spectrale
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Figure 3 – Une approche typique consiste à regrouper ensemble des groupes de pixels, connus sous
le nom de “super-pixels”, pour produire des images à résolution spatiale plus basse avec plus (milieu)
ou toutes (en haut à droite) les bandes spectrales. Tandis que les approches de dématriçage visent à
repeupler le cube complet tout en conservant la pleine résolution spatiale (en bas à droite). Adapté de
[143].

spécifique, nécessitant une méthode différente pour la reconstruction d’image. Dans des scénarios
comme le cas à 16 bandes, une technique courante implique la formation de “super-pixels”. Cette
méthode, essentiellement une forme de sous-échantillonnage spatial, rassemble des groupes de pixels
4×4 en un seul super-pixel. Bien que cette approche simplifie le processus d’échantillonnage, elle en-
traîne une réduction notable de la résolution spatiale de jusqu’à 93,75%, comme illustré dans la Fig. 3
[143]. Ces super-pixels représentent une version condensée du tableau de pixels original, capturant
une gamme spectrale plus complète au détriment des informations spatiales détaillées. Cependant, le
dématriçage vise à générer l’ensemble du cube de données HS et à conserver la résolution spatiale.
Par conséquent, diverses approches pour estimer les informations manquantes ont été proposées. Ces
approches peuvent être classifiées en deux catégories, c’est-à-dire les méthodes “traditionnelles” et
les stratégies basées sur l’apprentissage profond.

Les méthodes traditionnelles représentent un éventail de stratégies algorithmiques développées
au fil des années pour relever le défi de la reconstruction de cubes de données dans le MSFA sans
recourir aux architectures complexes de réseaux neuronaux qui caractérisent les techniques modernes
d’apprentissage profond. Les méthodes traditionnelles de dématriçage sont ancrées dans diverses
approches algorithmiques et heuristiques, chacune conçue pour reconstruire un cube de données HSI
3D à partir des informations limitées capturées par les pixels individuels dans un MSFA.

Les méthodes traditionnelles de dématriçage peuvent être globalement divisées en cinq catégories
distinctes :
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• Dématriçage basé sur l’interpolation.

• Dématriçage basé sur l’analyse par ondelettes.

• Dématriçage basé sur les arbres binaires.

• Dématriçage basé sur l’analyse pseudo-panchromatique.

• Dématriçage basé sur l’approximation de matrices de faible rang.

D’autre part, ces dernières années, l’apprentissage profond (DL) a influencé de nombreux do-
maines de la science et de la technologie, offrant des améliorations substantielles par rapport aux
méthodes traditionnelles en termes de précision et d’efficacité. Dans le traitement d’images, les tech-
niques d’apprentissage profond ont particulièrement transformé l’approche du dématriçage des im-
ages MSFA. Cette section explore diverses méthodes basées sur l’apprentissage profond développées
pour relever les défis complexes associés au dématriçage des images MSFA.

En explorant ces méthodes avancées, nous pouvons les catégoriser en fonction de leurs archi-
tectures sous-jacentes – telles que les réseaux neuronaux convolutionnels (CNN) [13], les réseaux
résiduels (ResNets) [72] ou ceux intégrant des mécanismes d’attention [146] – ou par leurs fonc-
tionnalités spécifiques, comme le dématriçage et le débruitage conjoints ou la correction spectrale.
Cependant, il est essentiel de noter que malgré ces distinctions, il existe un chevauchement signifi-
catif dans les fonctionnalités offertes par les différentes architectures. Par exemple, les CNN et les
ResNets sont souvent utilisés avec des mécanismes d’attention pour améliorer les performances. Ce
chevauchement rend difficile la séparation nette de ces méthodes en groupes distincts.

Étant donné ces complexités et la nature intégrée de nombreuses approches d’apprentissage pro-
fond, nous n’avons pas encore regroupé les méthodes strictement par architecture ou fonctionnalité
dans cette discussion. Au lieu de cela, nous présentons un aperçu de chaque méthode, permettant une
comparaison fluide et une meilleure appréciation de la manière dont différentes techniques peuvent
être combinées ou adaptées pour répondre à des défis spécifiques de dématriçage.

I.3.3 Chapitre 3 : Post-traitement des images dématricées : techniques de
démélange

Dans le domaine de l’imagerie spectrale snapshot, la construction d’un cube de données 3D à partir
des images capturées n’est que le début de l’extraction d’informations significatives. Une fois qu’un
cube de données complet a été dématriqué, une gamme de tâches de post-traitement peut être ap-
pliquée, telles que le démélange, la classification, la détection d’anomalies ou la détection de change-
ments. Ces processus sont fondamentaux pour traduire les données spectrales brutes en informations
interprétables.

Le démélange hyperspectral (HU) est le processus qui sépare les spectres de pixels d’une image
hyperspectrale en une collection de signatures spectrales de matériaux observés (endmembers) et un
ensemble d’abondances fractionnelles, comme illustré dans la Fig. 4. Les endmembers représentent
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Figure 4 – Exemple de démélange hyperspectral (source : adapté de [99]).

les matériaux purs dans l’image, et les abondances à chaque pixel représentent la proportion de la
présence de chaque endmember dans le pixel [23].

Ce chapitre explore les diverses techniques et les défis associés au démélange hyperspectral, en
fournissant un bref aperçu des méthodes utilisées pour démêler les données hyperspectrales. Bien
que des études et des classifications exhaustives des méthodes de démélange existent dans la lit-
térature [23, 21, 47, 73, 26, 58], ce chapitre n’a pas pour but de revisiter de manière exhaustive
ces méthodologies. Au lieu de cela, nous esquisserons brièvement une classification générale des
techniques de démélange pour préparer le terrain à un examen ciblé de la factorisation en matrices
non-négatives (NMF) et de l’analyse en composantes parcimonieuses (SCA), car ces deux approches
sont particulièrement pertinentes pour nos cadres proposés.

I.3.4 Chapitre 4 : Méthodes localement de rang-un de démélange et déma-
triçage conjoints pour les images spectrales snapshot : un formalisme de
complétion de matrices

Dans les chapitres précédents, nous avons introduit les bases de l’imagerie spectrale snapshot et le
processus de dématriçage. Le dématriçage est une étape préliminaire cruciale qui reconstruit un cube
de données 3D complet à partir des données brutes acquises par les caméras spectrales snapshot. Une
fois ce cube de données construit, diverses applications de post-traitement, telles que le démélange ou
la classification, peuvent être appliquées pour traduire les données spectrales brutes en informations
interprétables et exploitables. Cependant, comme l’ont indiqué Tsagkatakis et al. [143], l’application
directe de la classification sur les images SSI après le dématriçage conduit souvent à des performances
insatisfaisantes. En revanche, la plupart des méthodes de démélange existantes sont conçues pour
fonctionner sur des cubes de données entièrement reconstruits et ne tiennent pas compte des entrées
manquantes inhérentes aux scénarios d’imagerie snapshot. De plus, dans le contexte d’étalonnage in
situ de capteurs mobiles, il a été démontré qu’une approche combinée de complétion de matrices de
faible rang et de factorisation est nettement plus efficace qu’un processus séquentiel en deux étapes
de complétion de matrices suivi de factorisation [42]. Cette lacune méthodologique souligne une lim-
itation cruciale dans les pratiques actuelles, où l’équilibre délicat entre le dématriçage et le démélange
n’est pas correctement abordé.

Reconnaissant ce problème, notre approche proposée cherche à effectuer le dématriçage et le
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démélange conjointement. Cette méthodologie intégrée vise non seulement à améliorer les résultats
du démélange mais aussi à maintenir une performance optimale de dématriçage.

Dans ce chapitre2, nos contributions au domaine de l’imagerie spectrale snapshot (SSI) sont dé-
taillées comme suit :

• Nous nous concentrons sur l’établissement d’un cadre général pour le dématriçage des images,
applicable à diverses matrices de filtres multispectraux (MSFA) [90]. Ce cadre à large portée
pose les bases de nos méthodes complètes de « dématriçage » et de « démélange » des images
hyperspectrales capturées par les caméras SSI.

• Notre investigation est motivée par l’hypothèse que la combinaison de la complétion de ma-
trices de faible rang et de la factorisation est plus efficace qu’un processus en deux étapes
impliquant ces composants séparément.

• Trois méthodes innovantes sont proposées pour le dématriçage et le démélange des images
brutes SSI :

– La première est une approche dite “naïve”, directement dérivée de la factorisation de ma-
trices non-négatives pondérée (WNMF).

– Tout en reprenant le formalisme de l’approche naïve, les deuxième et troisième méthodes
opèrent sous l’hypothèse de parcimonie des abondances au niveau des “patchs” du cap-
teur. Un patch correspond à un motif de la MFSA appliquée au capteur. Plus particulière-
ment, ces approches supposent qu’il existe pour chaque endmember au moins un patch
dominé par cet unique endmember. Ces méthodes suivent la même structure, à savoir (i)
l’approximation des données de chaque patch par WNMF de rang-1, (ii) une métrique
de confiance d’activité mono-source inspirée par la SCA, (iii) une phase d’extraction des
endmembers, et (iv) une étape finale d’estimation des abondances.
Ces méthodes diffèrent par leurs hypothèses et leur traitement des cas impliquant plusieurs
endmembers.

1. Une méthode suppose que tous les patchs de rang-1 sont purs, c’est à dire qu’ils sont
dominés par un endmember. Cette hypothèse correspond au formalisme de la SCA et
l’étape (iii) ci-dessus est réalisée par clustering des spectres estimés. L’approche pro-
posée se nomme alors KPWNMF pour K-means Patch-based Weighted Nonnegative
Matrix Factorization.

2. Au contraire, l’autre méthode suppose qu’il peut aussi exister des patchs dans lesquels
les abondances sont relativement constantes. Dans ce cas, l’approximation de rang-
1 permet d’estimer des spectres purs ou des mélanges de ces spectres. L’étape (iii)
est alors réalisée en appliquant une méthode de démélange fondée sur l’hypothèse
de pixel pur (ou NMF séparable / convexe). La méthode proposée se nomme alors
VPWNMF pour VCA Patch-based Weighted Nonnegative Matrix Factorization.

2Les méthodes présentées dans ce chapitre ont été publiées dans [6, 4, 3].
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I.3.5 Chapitre 5 : Méthodes localement de rang-un de démélange et déma-
triçage conjoints pour les images spectrales snapshot : Un formalisme
basé sur le filtrage

Dans le Chapitre 4, nous avons proposé des méthodes de dématriçage et de démélange conjoints pour
les systèmes d’imagerie spectrale snapshot (SSI). En plus d’une approche naïve, dérivée directement
de la factorisation de matrices non négatives pondérées (WNMF), nous avons proposé deux nou-
velles méthodes de dématriçage : KPWNMF et VPWNMF. Ces méthodes incorporaient l’hypothèse
de parcimonie des abondances au sein des patchs du capteur, où un seul endmember domine prin-
cipalement chaque patch. Les méthodes employaient des calculs de WNMF de rang-1, une mesure
de confiance d’activité mono-source spécifiquement proposée pour les données SSI, l’extraction des
endmembers et l’estimation des abondances. Cependant, elles divergeaient dans le traitement des
scénarios impliquant plusieurs endmembers, offrant des solutions distinctes pour aborder ces cas.

Dans ce chapitre3, nous analysons davantage la chaîne de traitement pour restaurer le cube de
données HSI – introduite précédemment en section 1.4 et illustrée dans la Fig. 5 – et explorons
l’utilisation de la matrice de réponse harmonique des filtres Fabry-Perot (FPf) pour la déconvolution,
le démélange et le dématriçage conjoints. Notre objectif est de démontrer que l’intégration de ces
techniques conduit non seulement à des résultats améliorés par rapport aux étapes séparées de déma-
triçage, démélange et correction spectrale – communément appelée déconvolution – mais simplifie
également la chaîne de traitement globale en intégrant la correction spectrale dans le cadre conjoint.
De plus, le pipeline de traitement d’image actuel des images snapshot implique l’application d’une
matrice de correction après le dématriçage afin de supprimer certaines harmoniques indésirables. En
revanche, nos approches proposées éliminent le besoin d’appliquer la matrice de correction et ini-
tient le processus de déconvolution directement à partir de l’image brute SSI. Grâce à cette nouvelle
méthodologie, nous visons à démontrer l’efficacité de nos approches pour obtenir des résultats de
démélange et de dématriçage améliorés tout en simplifiant la chaîne de traitement globale.

Il est important de noter les différences entre les deux cadres. Premièrement, dans le Chapitre 4,
nous établissons un cadre général pour le dématriçage des images. Cette approche est large en portée
et potentiellement applicable à diverses matrices de filtres multispectraux (MSFA) [90]. Ce cadre
pose les bases de notre discussion sur les méthodes conjointes pour effectuer le dématriçage et le
démélange des images hyperspectrales capturées par des caméras SSI. Basée sur des constatations
antérieures, notre investigation ici est motivée par l’hypothèse que l’incorporation conjointe de la
complétion de matrices de faible rang et de la factorisation est plus efficace qu’une approche en deux
étapes impliquant une complétion de matrices de faible rang suivie d’une factorisation de matrices.

En nous appuyant sur le cadre général établi dans le Chapitre 4, ce chapitre explore la chaîne
complète fournie par le fabricant de la caméra, en se concentrant sur de nouvelles approches de
démélange pour les images brutes SSI qui prennent en compte cette chaîne. Ce cadre est conçu
spécifiquement pour les applications impliquant des filtres Fabry-Perot ou tout capteur MSFA où les
filtres ne sont pas suffisamment sélectifs. La différenciation entre les deux cadres réside dans leur

3Les méthodes présentées dans ce chapitre ont été publiées dans [7, 2, 5].
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Figure 5 – Etapes de traitement requises par le fabricant de la caméra pour fournir des images SSI de
qualité à démélanger.
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focus et leur applicabilité : tandis que le premier jette les bases pour une approche générale, le second
s’attaque aux scénarios complexes spécifiques souvent rencontrés dans la pratique.

I.3.6 Chapitre 6 : Validation expérimentale
Dans ce chapitre, nous évaluons les performances des cadres proposés pour le dématriçage et le
démélange conjoints des images spectrales snapshot : les cadres basés sur la complétion de matrices
et sur le filtrage. L’évaluation est réalisée à l’aide d’images synthétiques et réelles capturées par
des caméras snapshot réelles. Nous examinons également les performances dans diverses conditions
de bruit pour garantir la robustesse de nos méthodes. Nos résultats expérimentaux montrent que
les méthodes proposées surpassent les approches en deux étapes, consistant d’abord à appliquer le
dématriçage, puis le démélange.

I.3.7 Chapitre 7 : déconvolution pénalisée par une pondération liée à l’entropie
Dans ce chapitre, nous introduisons une nouvelle méthode de déconvolution spectrale pour les caméras
hyperspectrales basées sur Fabry-Perot. Le fabricant de la caméra a proposé une matrice de correction
indépendante de la scène pour éliminer les harmoniques présentes dans l’image SSI. Par conséquent,
nous exploitons la réponse du filtre Fabry-Perot – comme nous l’avons fait dans le Chapitre. 5 – et
proposons une nouvelle méthode de correction et de calibration spectrale dépendante de la scène4.
Notre approche utilise la déconvolution avec régularisation de Tikhonov pondérée par l’entropie des
harmoniques de Fabry-Perot pour éliminer les artefacts générés et restaurer les spectres originaux.
Elle s’adapte aux caractéristiques uniques de la scène, réduisant les harmoniques et améliorant la
qualité des données hyperspectrales. Les expériences avec des données synthétiques et des images
réelles provenant de deux capteurs IMEC – i.e., linescan wedge et snapshot mosaique – que notre
méthode surpasse la solution du fabricant en éliminant les harmoniques et en améliorant les informa-
tions spectrales.

I.3.8 Conclusion générale et perspectives
I.3.8.1 Conclusion

Cette thèse a exploré de manière exhaustive les technologies d’imagerie spectrale snapshot (SSI),
en se concentrant sur l’intégration conjointe du dématriçage et du démélange directement à partir
des données brutes plutôt que de les traiter comme des étapes séparées. Nous avons commencé
au Chapitre 1 par une compréhension fondamentale de la SSI en tant qu’approche avancée dans
l’imagerie hyperspectrale (HSI), en soulignant sa capacité à capturer l’information spectrale complète
en une seule exposition. Le chapitre a également introduit les processus de calibration essentiels pour
optimiser la performance de la technologie SSI basée sur Fabry-Perot, en soulignant leur importance
pour produire des données spectrales fiables.

4Cette méthode est soumise à IEEE Sensors Letters [1].
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Le Chapitre 2 a exploré de manière approfondie les diverses méthodologies appliquées au dé-
matriçage des images spectrales snapshot, en passant en revue les méthodes traditionnelles et celles
basées sur l’apprentissage profond. Nous avons analysé de manière critique leurs capacités et leurs
limitations, en notant particulièrement les défis posés par les méthodes d’apprentissage profond dans
des scénarios avec des données d’entraînement limitées et très variables.

Le Chapitre 3 a exploré diverses méthodologies de démélange, en les catégorisant en méthodes
géométriques, statistiques, basées sur la régression parcimonieuse et basées sur l’apprentissage pro-
fond. Nous nous sommes concentrés sur la factorisation de matrices non négatives (NMF) et l’analyse
de composants parcimonieux (SCA), car ces approches sont particulièrement pertinentes pour nos
cadres proposés. Nous avons également identifié trois principales catégories de NMF : NMF con-
trainte, structurée et généralisée, chacune dédiée à relever des défis spécifiques de l’imagerie hyper-
spectrale.

Le Chapitre 4 a introduit les méthodes que nous avons proposé pour effectuer conjointement le
dématriçage et le démélange. Nous avons proposé deux nouvelles approches en plus de la méthode
naïve dérivée de la WNMF (Weighted Nonnegative Matrix Factorization). La première, KPWNMF
(K-means Patch-based Weighted Nonnegative Matrix Factorization), suppose que les abondances sont
parcimonieuses dans quelques patchs à trouver, de sorte qu’un endmember domine chacun de ces
patchs. Une telle hypothèse est similaire à la SCA, sauf que nous considérons des données par-
tiellement observées. En revanche, la seconde, VPWNMF (VCA Patch-based Weighted Nonnegative
Matrix Factorization), assouplit l’hypothèse de parcimonie nécessaire dans la première. Ces méth-
odes ont été conçues pour améliorer le traitement des images SSI et réduire les erreurs associées aux
processus traditionnels en deux étapes.

Le Chapitre 5 s’est concentré sur la réponse du filtre Fabry-Perot pour effectuer le dématriçage
et le démélange conjoints. Plus précisément, nous avons réalisé la déconvolution, le dématriçage
et le démélange conjoints, où nous avons intégré la déconvolution directement dans le processus de
démélange. Cette intégration utilise efficacement les réponses harmoniques des filtres Fabry-Perot,
améliorant la précision et l’efficacité du traitement des données spectrales. Nous avons proposé deux
nouvelles méthodes pour cet objectif : FPVCA (Filter Patch-based Vertex Component Analysis) et
FPKmeans (Filter Patch-based Kmeans).

Nos évaluations expérimentales approfondies, discutées dans le Chapitre 6, ont démontré la per-
formance supérieure de nos méthodes proposées par rapport aux techniques traditionnelles, notam-
ment dans leur capacité à traiter efficacement les données brutes SSI.

Enfin, le Chapitre 7 a introduit SDS-Cor, une méthode de correction spectrale dépendante de la
scène qui représente une avancée significative par rapport aux matrices de correction traditionnelles
indépendantes de la scène. SDS-Cor s’adapte aux caractéristiques spécifiques de la scène en utilisant
une régularisation de Tikhonov pondérée par l’entropie. Nous avons évalué SDS-Cor et démontré
qu’il réduisait significativement les distorsions harmoniques et améliorait la précision spectrale, sur-
passant la méthode de correction du fabricant, en particulier dans des environnements bruyants.
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I.3.8.2 Perspectives

Temps de Calcul et Traitement Vidéo Hyperspectral

Les caméras SSI peuvent capturer des vidéos avec un taux de trame élevé et sont utiles dans des
cas où le mouvement est imprévisible et où la caméra/l’objet se déplace en 2D ou en 3D, comme
dans les applications robotiques ou le tri des voies [79]. Cependant, une limitation notable de nos
cadres actuels – les cadres basés sur la complétion et sur le filtrage – est leur demande computation-
nelle. Le temps nécessaire pour traiter chaque trame est trop élevé pour les applications d’analyse
vidéo en temps réel. Pour relever ce défi, les travaux futurs se concentreront sur l’amélioration de
l’efficacité computationnelle de ces cadres. Une approche prometteuse est l’adoption de techniques
d’apprentissage compressé, qui peuvent réduire significativement le volume de données à traiter en
extrayant et utilisant des représentations compressées des données.

Variabilité Spectrale

L’un des principaux défis identifiés lors de notre exploration des technologies d’imagerie spectrale
snapshot (SSI) est la variabilité spectrale, qui impacte significativement les performances de nos
cadres proposés. La variabilité spectrale fait référence aux différences dans les signatures spectrales
des mêmes matériaux sous des conditions d’éclairage, des angles de vue et des facteurs environnemen-
taux variés. Ces variations conduisent à des inexactitudes dans les tâches de post-traitement. Les deux
cadres peuvent être améliorés pour gérer la variabilité spectrale. Cela implique de développer l’étape
d’estimation des endmembers en incorporant des modèles, tels que les extensions multicouches/pro-
fondes de la NMF [130, 45], qui détectent dynamiquement la variabilité des endmembers.

Variabilité des Filtres Fabry-Perot

La matrice de réponse qui enregistre la réponse réelle de la bande pour chaque FPf peut être sujette
au bruit en raison des erreurs potentielles dans son estimation. En tant que composant crucial des
méthodes proposées FPVCA, FPKmeans et SDS-Cor, elle peut affecter leurs performances. Par con-
séquent, l’effet de la matrice de réponse bruitée doit être étudié en profondeur et le cadre proposé doit
être mis à jour pour être robuste à ce bruit.

Intégration de la Correction d’Angularity

La correction d’angularité, introduite par Goossens et al. [62], ajuste la variabilité de l’angle de la
lumière. Notre méthode proposée, basée sur le filtrage et la méthode SDS-Cor, peut être étendue
pour traiter cette question. Cela améliorera la généralisabilité de nos méthodes dans divers scénarios
pratiques.
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Intégration de l’Apprentissage Profond

Les approches d’apprentissage profond démontrent généralement des performances supérieures par
rapport aux méthodes traditionnelles de dématriçage, notamment dans le traitement des données de
haute dimension et la préservation des détails et de la précision des couleurs. Malgré ces avancées,
les méthodes d’apprentissage profond rencontrent des défis significatifs, notamment en termes de
généralisation et de besoins en données. Elles nécessitent souvent de grandes quantités de don-
nées d’entraînement annotées pour être performantes. De plus, ces modèles peuvent avoir du mal
à généraliser à de nouvelles données ou à des configurations MSFA différentes de celles incluses
dans l’ensemble d’entraînement. Pour relever ces défis, les recherches futures sur l’apprentissage
profond pour le dématriçage MSFA pourraient se concentrer sur le développement de modèles plus
robustes nécessitant moins de données d’entraînement et capables de mieux généraliser à travers dif-
férents motifs MSFA. Des techniques telles que l’apprentissage par transfert [77], l’apprentissage par
few-shot [139], et la génération de données synthétiques [50] pourraient jouer des rôles significatifs
dans la réalisation de ces objectifs. De plus, l’intégration de paradigmes d’apprentissage non super-
visé ou semi-supervisé pourrait réduire la dépendance aux grands ensembles de données annotées et
améliorer la capacité du modèle à généraliser à de nouvelles conditions.
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General Introduction

II.1 General Framework

Hyperspectral Imaging (HSI) is an analytical technique based on spectroscopy, which involves cap-
turing hundreds of images at various wavelengths for the same spatial region. The real power of HSI
lies in its ability to detect, identify, and quantify materials and phenomena across diverse applications.
From precise monitoring of agricultural health and environmental surveillance [87], to revolutionary
applications in medical diagnostics and food safety [48], HSI provides a critical tool for research and
industry.

A fundamental challenge HSI sensors must address is acquiring three-dimensional HSI data, en-
compassing two spatial and one spectral dimension, using a single detector, such as a 1D-array or
2D-plane detector. Thus, different strategies in HSI acquisition designs have emerged from the
disparity between detector demands and available dimensionality, leading to wavelength-scanning,
point-scanning, line-scanning, and snapshot acquisition methods [101, 151]. Nonetheless, a common
characteristic across all scenarios is the need for repeated scanning of the scene and the acquisition
of numerous exposures (frames) to compile the full spatio-spectral resolution data cube, coupled with
considerations regarding the cost and size of the camera.

A new generation of HSI imaging architectures, known as Snapshot Spectral Imaging (SSI), has
been introduced to address the challenges mentioned earlier [54]. SSI enables the efficient acquisition
of the spatio-spectral content of dynamic scenes using miniaturized platforms and can acquire the
complete cube from a single or a few exposures. To accomplish this objective, SSI architectures
associate each spatial pixel with a specific spectral band, hence introducing a crucial trade-off between
spatial and spectral resolution [143]. These cameras can capture videos with a high frame rate and
are helpful in cases where motion is unpredictable, and the camera or object is moving in 2D or 3D,
such as in robotic applications or lane sorting [79]. Among the recent strategies that have emerged,
SSI cameras utilizing Fabry-Perot filters (FPf) [53] systems only produce a 2-D image derived from
the 3-D hyperspectral data. Then, a post-processing technique called “demosaicing” is required to
estimate the complete hyperspectral data cube. Various approaches have been proposed to perform
demosaicing. These approaches can be classified into two categories, including “traditional” methods
[27, 105, 108, 107, 22, 143] and deep-learning-based strategies [39, 66, 116, 46, 178, 94].

After the 3-D hyperspectral image has been reconstructed from the 2-D SSI data, we can employ
any post-processing technique of choice. In particular, the unmixing process involves extracting the
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spectral signatures of all endmembers present in an observed scene. Specifically, popular unmixing
methods operate under the assumption that for each endmember, there is at least one spatial pixel
where the corresponding material exclusively exists. This implies that the observed spectrum in such
a pixel matches the endmember spectrum. The most widely used algorithms are the vertex component
analysis (VCA) [110], N-FINDR [156], the pixel purity index (PPI), and the sequential maximum
angle convex cone (SMACC) [23]. Sparse component analysis (SCA) is one of the main approaches
to Blind Source Separation (BSS). It detects single-source zones by exploiting the source sparsity
properties in different representation domains [35].

II.2 Thesis Motivation and Objectives
Once the datacube is constructed using demosaicing, any post-processing applications, e.g., unmixing
or classification, can be applied to translate the raw spectral data into interpretable and actionable in-
sights as shown in Fig. 6. However, as Tsagkatakis et al. [143] have stated that applying classification
directly on SSI images post-demosaicing often leads to unsatisfactory performance. Contrastingly,
most existing unmixing methods are designed to work on fully reconstructed data cubes and do not
account for the inherent missing entries typical in snapshot imaging scenarios. Furthermore, in the
context of in-situ mobile sensor calibration, it has been demonstrated that a combined approach of
low-rank matrix completion and factorization is significantly more efficient than a sequential two-
stage process of matrix completion followed by factorization [42]. This gap in methodology under-
scores a crucial limitation in current practices, where the intricate balance between demosaicing and
unmixing is not adequately addressed.

Recognizing this issue, our proposed approach seeks to perform demosaicing and unmixing jointly
based on low-rank matrix factorization and completion framework. This integrated methodology aims
not only to enhance unmixing results but also to maintain optimal demosaicing performance.

Building upon this framework, we further analyze the pipeline to restore the HSI data cube—
introduced by the camera manufacturer—and explore the utilization of the harmonic response ma-
trix of Fabry-Perot filters (FPf) for joint demosaicing, deconvolution and unmixing. Our objective
is to demonstrate that integrating these techniques not only leads to enhanced outcomes compared
to the separate stages of demosaicing, unmixing, and spectral correction—commonly referred to as
deconvolution—but also simplifies the overall processing pipeline by embedding the spectral correc-
tion within the joint framework.

II.3 Thesis Structure
This Ph.D thesis is structured as follows:

Chapter 1 lays the foundation for the thesis by providing an introduction to Snapshot Spectral
Imaging (SSI) as an advanced hyperspectral imaging technique. It details the ability of SSI to capture
complete spectral information in a single exposure, which is very important for dynamic and real-time
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Figure 6 – Overview of acquisition and processing on a scene contains three endmemebers (sand,
rocks, and eggs). The SSI image can be processed either by a two-stage approach or by applying
unmixing and demosaicing jointly to restore the data cube, extract the endmembers, and find the
abundance maps.

applications. This chapter also discusses the essential calibration processes that optimize the perfor-
mance of Fabry-Perot-based SSI technologies, emphasizing the critical role of accurate calibration in
ensuring the reliability of spectral data.

Chapter 2 delves into the diverse methodologies utilized in demosaicing snapshot spectral images.
The chapter thoroughly reviews traditional and deep learning-based methods, critically analyzing their
capabilities and limitations.

Chapter 3 focuses on the unmixing process, which is crucial for interpreting hyperspectral images.
The chapter categorizes unmixing methodologies into Geometrical, Statistical, Sparse Regression-
based, and Deep Learning-based methods. It highlights nonnegative matrix factorization (NMF) and
sparse component analysis (SCA) as key techniques due to their relevance to the thesis proposed
frameworks.

Chapter 4 introduces our novel methods for jointly performing demosaicing and unmixing, mov-
ing beyond traditional two-step processes. We propose two new approaches alongside a naive method
derived from Weighted NMF (WNMF), namely KPWNMF and VPWNMF.

Chapter 5 explores using Fabry-Perot filter responses for joint demosaicing, deconvolution and
unmixing. We introduce two innovative methods, FPVCA and FPKmeans, that integrate deconvolu-
tion into the unmixing process. This integration significantly enhances spectral data processing by
utilizing the harmonic responses of Fabry-Perot filters.

The experimental evaluations are discussed in Chapter 6, where we demonstrate the superior per-
formance of our proposed methods compared to traditional techniques. The experiments particularly
focus on the methods ability to handle raw SSI data effectively.

Finally in Chapter 7 we present SDS-Cor, a novel spectral correction method that adapts to scene-
specific characteristics through entropy-weighted Tikhonov regularization. We also provide a detailed
assessment of SDS-Cor, showing its efficacy improving spectral accuracy, especially in challenging
noisy environments.
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Chapter 8 is the last chapter of the thesis. Here, we make a general conclusion, recapping methods,
experiments, results, contributions, and perspectives for future work.
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Chapter 1

Snapshot Spectral Imaging

“To photograph truthfully and effectively is to see beneath the surfaces and record the qualities of
nature and humanity which live or are latent in all things.”

— Ansel Adams

1.1 Introduction
Snapshot Spectral Imaging (SSI) represents an innovative advancement in the field of Hyperspec-
tral Imaging (HSI), enabling the capture of complete spectral information in a single exposure. This
technology differs from traditional methods that collect data in a sequence. The introduction of SSI
technologies, such as Integrated Field Spectrometry (IFS), Multispectral Beamsplitting (MSBS), and
Fabry-Perot-based imaging (FPfs), among others, has opened new views in various application do-
mains ranging from environmental monitoring and precision agriculture to medical diagnostics and
food safety. In this chapter, we present a comprehensive study of snapshot spectral imaging. We begin
with an overview of hyperspectral imaging and its vast applications across various fields. We delve
into the complexities and advancements in HSI data acquisition methods, highlighting the transition
from traditional scanning techniques to snapshot imaging technologies. Then, we do an in-depth
examination of various snapshot imaging methodologies. Finally, since this thesis will focus on
Fabry-Perot-based snapshot cameras, we delve into the critical steps of spectral correction, acknowl-
edging that every camera requires comprehensive preprocessing and postprocessing calibration steps
to ensure optimal performance.

1.2 Hyperspectral Imaging
Hyperspectral Imaging is an analytical technique based on spectroscopy, which involves capturing
hundreds of images at various wavelengths for the same spatial region. Hyperspectral imaging records
the complete light spectrum for every pixel within a scene, providing high-quality wavelength resolu-
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Figure 1.1 – Standard Scanning Methods (Source [154]).

tion, encompassing both the visible and near-infrared spectra. The gathered data forms a hyperspec-
tral cube, where two dimensions define the spatial dimensions of the scene, and the third dimension
represents its spectral content [23, 101, 87].

The real power of HSI lies in its ability to detect, identify, and quantify materials and phenom-
ena across diverse applications. From the precise monitoring of agricultural health, environmental
surveillance [87], and mineral exploration to its revolutionary applications in medical diagnostics
and food safety [48], HSI provides a critical tool for research and industry. This technology enables
the detection of subtle differences in material composition, changes in vegetation health, and even
the early detection of diseases through tissue analysis, demonstrating versatility across the scientific
spectrum [87, 82, 48].

A fundamental challenge that HSI sensors must address is how to acquire three-dimensional HSI
data, encompassing two spatial and one spectral dimensions, using a single detector, such as a 1D-
array or 2D-plane detector. Thus, different strategies in HSI acquisition designs have emerged from
the disparity between detector demands and available dimensionality, leading to wavelength-scanning,
point-scanning, line-scanning and snapshot acquisition methods [101, 151] as shown in Fig. 1.1.

The wavelength-scanning design—commonly referred to as area-scanning, focal plane scanning,
or tunable filter—involves acquiring hyperspectral images by keeping the image field of view (FoV)
fixed and capturing images at different wavelengths, one after the other. This approach provides an
entire image at each wavelength and allows for efficient data collection and analysis. This method
benefits applications requiring high spectral resolution over a large area, such as environmental mon-
itoring and material characterization. However, its sequential nature can be a drawback for capturing

47



dynamic scenes or moving objects, as changes during the scanning process can introduce artifacts in
the data [82, 121, 101].

On the other hand, the point-scanning methods—sometimes referred to as whisk-broom—involves
acquiring hyperspectral data by measuring the spectrum of a single point and then moving the sample
to measure another spectrum. This method is typically used in laboratory settings or for applications
that require high spectral resolution and low spatial resolution. The primary limitation is its slow data
acquisition rate, making it less suitable for large-area or fast-moving subjects [82, 121].

The third method, known as line-scanning or push-broom, involves acquiring spectral measure-
ments from a line of samples simultaneously recorded by an array detector. This method is commonly
used for remote sensing applications, where the platform is moving and linearly collecting data, such
as from an airborne or satellite platform. The line-scanning approach provides high spatial resolution
data and is particularly well-suited for mapping large areas of the earth surface. Although it can cover
large areas efficiently, it requires the sensor or the target to be in constant, linear motion, which can
be a limitation in stationary settings [82, 121, 101].

Finally, snapshot acquisition refers to the ability to acquire a complete hyperspectral image in a
single instant, without the need for scanning. If traditional scanning techniques are like painting a
picture stroke by stroke, snapshot imaging is like taking a photograph. The former builds the image
slowly over time, while the latter captures it all at once, offering a more immediate and complete view.
Snapshot systems offer significant advantages in scenarios where movement or variation in the scene
must be captured with minimal distortion. Examples include aerial surveillance, medical imaging
during surgeries, and dynamic scene analysis [106]. The challenge lies in the complexity of the optical
and computational methods needed to reconstruct the hyperspectral data from the snapshot image,
often requiring advanced algorithms and processing techniques [68]. In the following discussion,
we will focus on the snapshot imaging technologies, delving deeper into their technical aspects and
innovative solutions.

1.3 Snapshot Spectral Imaging

Snapshot spectral imaging aims to capture the complete spectral information of a scene in a single
snapshot, without the need for mechanical scanning or sequential data acquisition. This concept finds
its roots in the plenoptic function, a term first introduced to describe the vast array of light informa-
tion accessible to an observe [10]. The plenoptic function is fully characterized by simultaneously
accounting for seven key dimensions:

• The spatial dimensions are represented by two Cartesian coordinates (2-D).

• The spectral dimension denoted by the wavelength of light (1-D).

• Temporal changes over time (1-D).
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• The multi-angular perspectives from which light is captured, including horizontal, vertical, and
depth variations (3-D).

Expanding upon this foundational definition of the plenoptic function and applying it to the realm
of snapshot hyperspectral imaging, a “snapshot” imaging spectrometer efficiently captures the spatial
(2-D) and spectral (1-D) characteristics of the light within a scene in a single exposure. This results
in a 3-D datacube, a fundamental component of hyperspectral data analysis [106, 68].

Several innovative technologies have made the move from theoretical concepts to practical appli-
cations in snapshot spectral imaging possible. Each method offers a unique approach to resolving the
challenge of capturing an entire hyperspectral cube instantaneously without the need for traditional
scanning mechanisms. The following discussion will explore these technologies.

1.3.1 Integrated Field Spectrometry
Integrated Field Spectrometry (IFS) represents a class of snapshot imaging technologies designed to
capture spatial and spectral information without scanning simultaneously. IFS achieves this through
innovative optical designs that effectively dissect the incoming light into multiple spectra, each corre-
sponding to a distinct spatial element of the scene. This section explores three primary configurations
of IFS, highlighting their unique approaches and applications [68].

• Integrated Field Spectrometry with Faceted Mirrors (IFS-M)
IFS-M utilizes an array of small, precisely angled mirrors to direct different portions of the
incoming light to separate areas of a detector. Each mirror is aligned to reflect light from a
specific part of the scene, ensuring that the spectral information from each spatial region is
captured simultaneously. This method is particularly effective for capturing high-resolution
spectral data across a wide field of view, making it suitable for applications in astronomy and
remote sensing where detailed spectral mapping of large areas is required [14, 68].

• Integrated Field Spectrometry with Fiber arrays (IFS-F)
In the IFS-F configuration, a fiber optic array transports light from different spatial locations to
a shared detector. Each fiber acts as a light guide, preserving spectral information from discrete
points across the scene during transmission. This setup allows for a flexible arrangement of the
input aperture, accommodating various shapes and sizes of scenes. IFS-F is highly adaptable
and can be used in laboratory settings and field applications, including environmental moni-
toring and precision agriculture, where detailed analysis of spatially heterogeneous samples is
necessary [117, 68].

• Integrated Field Spectrometry with Lenslet arrays (IFS-L)
IFS-L employs a lenslet array, where each lenslet focuses light from a specific portion of the
scene onto the detector, effectively creating multiple small images side by side. The lenslet
array efficiently captures spectral data across diverse samples, enabling detailed analysis of
biological tissues and engineered materials [68].
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1.3.2 Multispectral Beamsplitting (MSBS)

MSBS technology uses specialized optical elements, such as dichroic mirrors or prism arrays, de-
signed to reflect or transmit light based on its wavelength. These elements are arranged to partition
the incoming light into predetermined spectral bands, each directed toward a specific sensor or de-
tector segment. This method ensures that multiple spectral images are captured in parallel, reducing
the time needed for data acquisition. MSBS technology finds applications in fields where speed and
spectral selectivity are crucial. Despite its advantages, MSBS faces challenges in terms of optical
complexity and the need for precise calibration. The design and alignment of the beam-splitting com-
ponents are critical for ensuring accurate spectral separation and imaging performance. Furthermore,
requiring multiple detector arrays can increase the system cost and complexity [68].

1.3.3 Multiaperture Filtered Camera (MAFC)

MAFC technology employs an array of microfilters, each designed to transmit a specific spectral band.
These filters are placed directly over the sensor array, with each filter corresponding to a unique set of
sensor pixels. This configuration allows the camera to capture different spectral bands in parallel, with
each aperture collecting light from the scene filtered at a distinct wavelength. The result is a composite
image comprising multiple spectral channels, each representing a narrow spectrum segment. Due to
its capacity for rapid, simultaneous acquisition of multispectral data, the MAFC finds applications in
fields as diverse as precision agriculture, environmental monitoring, and medical imaging. Despite
its benefits, the MAFC faces filter design and image processing challenges. Creating microfilters
that accurately transmit specific spectral bands while maintaining high optical throughput is complex
[102, 68, 138].

1.3.4 Computed Tomography Imaging Spectrometer (CTIS)

Computed Tomography Imaging Spectrometer (CTIS) employs advanced gratings to create overlap-
ping spectral cube projections on a 2-D sensor [51]. CTIS is inspired by X-ray computed tomography
(CT), a commercial technique with a rich history spanning over half a century. CTIS opts for spatial
division, splitting the imaging sensor into an array of regions, each capturing a distinct projection of
the target data cube from a particular angle [34]. Subsequently, complex algorithms, akin to those
used in CT are applied to extract the spectral cube from these overlapping projections[67]. However,
this approach comes with certain limitations:

1. Complex Reconstruction Algorithms: the reconstruction algorithms are complex, making
real-time visualization impractical. These complexities in data processing can hinder the effi-
ciency of CTIS.

2. Limited Spectral Cube Resolution: the spectral cubes generated using CTIS have restricted
resolution. Depending on the specific system, the number of pixels in the unrolled cubes can
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Figure 1.2 – The system layout for a computed tomography imaging spectrometer (Source [69]).

range from approximately 4.2% to 22 − 64% of the sensor size. This limited resolution may
affect the precision of spectral data [67, 84].

3. Snapshot Limitations: CTIS faces challenges as a snapshot instrument due to the inherently
ill-posed nature of its acquisition process. This limitation is associated with limited-angle pro-
jection tomography, which affects the completeness of the spectral information captured in a
single snapshot [67, 84].

1.3.5 Coded Aperture Snapshot Spectral Imager (CASSI)
CASSI is another snapshot imaging technology that depends on compressive sensing to capture the
full datacube in a few measurements and in some cases, a single shot [17]. It tries to overcome the
spatial versus spectral resolution multiplexing trade-off limitations by undersampling the scene spa-
tially in each band and using compressive sensing to rebuild the full spatial resolution. It enhances the
randomness in measurement to preserve more encoded information, facilitating a more efficient and
faster acquisition compared to traditional Nyquist sampling methods [168]. The compressive sensing
concept replaces the spatial versus spectral resolution trade-off with a signal-dependent spatial reso-
lution versus image quality trade-off, which makes the resulting quality unpredictable and typically
introduces spatial and spectral reconstruction artifacts [55].

1.3.6 Image Mapping Spectrometer (IMS)
IMS employs a micromachined remapping mirror positioned at the image plane of an objective lens.
This mirror, akin to image slicers used in astronomy, consists of numerous small striped facets ori-
ented in various directions (k different directions). Each facet redirects a column of pixels to one of
the k sub-images, leaving the remaining k − 1 columns empty in each sub-image. Subsequently, a
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prism is utilized to spectrally decompose each pixel within each column, filling the other k− 1 empty
columns in each subview with spectral data. Finally, collecting optics are used to refocus the light
onto the sensor [52]. However, this approach has some limitations:

1. Micromachined Mirror Precision: Achieving high accuracy in micromachined mirrors is
essential, and manufacturing defects can lead to issues such as crosstalk and reduced light
throughput, affecting the quality of spectral data.

2. Spectral Resolution Limitation: The spectral resolution is limited by the number of tilt angles,
which is constrained by the mirror accuracy and the numerical aperture (NA) of the collecting
lens.

3. Optical Complexity: The complete optical architecture of IMS can be quite complex, poten-
tially increasing the challenges associated with system design and maintenance [86].

1.3.7 Image-replicating Imaging Spectrometer (IRIS)
IRIS utilizes “Lyot filters” which are constructed using a combination of polarizers and waveplates
[71]. These successive polarizers are responsible for implementing spectral filtering. In the case of
IRIS, the polarizers take the form of “Wollaston prism polarizing beam splitters,” serving a dual pur-
pose of spectral filtration and image duplication. However, this system has its limitations, including
reduced light throughput due to the polarizing filters and a restricted number of spectral bands. The
use of Wollaston prisms to redirect the filtered subimages contributes to this limitation, impacting the
system’s spectral versatility.

1.3.8 Fabry-Perot-Based Sensors
The devices mentioned above share common limitations due to the complexity of their optical sys-
tems, involving custom and non-standard components. These complexities contribute to higher costs,
reduced optical throughput, alignment difficulties, manufacturing challenges, reconstruction artifacts,
and portability. These issues collectively impact the device efficiency, accuracy, and application ver-
satility [57, 53].

Therefore, technological advances have recently enabled fast, miniaturized, and low-cost spectral
cameras by monolithically integrating optical interference filters on top of standard CMOS image
sensors. It operates by integrating a set of Fabry-Perot filters (FPfs) organized as tiled filters, mosaic,
or any other custom design on top of a standard, off-the-shelf CMOS sensor [57].

The FPf is a well-developed and broadly utilized tool to direct and estimate wavelengths of light
in systems with compact, integrated, and widely tunable spectral filtering capabilities. Theoretically,
the FPf filter acts like sunglasses that only let through certain colors. These sensors selectively “see”
the world through spectral “lenses,” filtering out all but the desired wavelengths. Technically, the
FPf is made of a transparent layer (or cavity) with two mirrors on each side of that layer, as shown
in Fig. 1.3. The cavity length and the mirror reflectivity determine the filter’s selected wavelength
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Figure 1.3 – Fabry-Perot Structure (Source IMEC)

and the spectral bandwidth (or full width at half maximum), respectively [57, 53, 78]. By using the
monolithic integration of the filter on the sensor, the stray light in the system is heavily decreased, and
the sensor sensitivity and speed are increased. In addition, using CMOS process technology heavily
reduces the cost and improves the compactness of the hyperspectral camera as shown in Fig. 1.4.

However, FPfs are limited when applied in snapshot spectral imaging despite their precision and
versatility. For instance, they can exhibit additional harmonic responses around each desired wave-
length, leading to challenges such as spectral leakage and shifting. These imperfections require the
comprehensive calibration steps outlined in the Section 1.4. The filter layout describes the pattern in
which the filters are deposited on the sensor, and currently, there are two snapshot designs: Snapshot
Tiled, and Snapshot Mosaic as shown in Fig. 1.5. There are variations for each layout, depending
on the type, the active range of the sensor and the number of different filters in the layout [78].

1.3.8.1 Snapshot Tiled (SST)

The snapshot tiled filter layout employs an area design, arranging the k filters into a matrix of tiles
with uniform width and height. Each filter corresponds to a band image, represented by one tile on
the sensor active area. A comprehensive data cube requires the optical system to replicate the image
across all k tiles. This approach mitigates the limitations of scanning-based systems by facilitating
snapshot acquisition, capturing the entire multispectral data cube in a single shot. However, the
snapshot-tiled filter layout necessitates optics with a more complex design compared to other Fabry-
Perot-based sensors, incorporating advanced engineering to achieve its functionality and performance
[56].
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Figure 1.4 – Two packaged mosaic spectral snapshot sensors, alongside two tiny spectral cameras and
a Euro coin for scale (Source [61])

(a) Snapshot tiled layout (b) Snapshot mosaic layout

Figure 1.5 – Filter organization in Linescan, Snapshot Tiled, and Snapshot Mosaic layouts, respec-
tively.
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Figure 1.6 – Microscope images of snapshot mosaic imagers with different filter configurations. Each
pixel (size 5.5× 5.5 µm) within the cell is a different spectral filter. As can be seen, although current
commercial designs use a 4× 4 or 5× 5 cell layout, other configurations are possible (Source [61]).

1.3.8.2 Snapshot Mosaic (SSI)

The snapshot mosaic filter layout has a per-pixel design. The basic FPf structure is extended into a
set of filters by varying the cavity length for each pixel-level within a

√
k ×
√
k filter cell (

√
k could

be 3, 4, or 5) [57, 53]. It is worth noting that the most commonly employed filter patterns are 5 × 5
and 4 × 4, but various other configurations are also feasible as shown in Fig. 1.6 [61]. This mosaic
pattern, also known as a sensor patch, is replicated across the entire active area of the sensor surface.
The organization of the filters in the mosaic pattern is shown in Fig. 1.7 and Fig. 1.8. Due to its design
and contrary to the tiled filter, it can be used with a standard optical system.

These cameras can also capture videos with a high frame rate, and they are helpful in the case
where the motion is unpredictable, and the camera/object is moving in 2-D or 3-D, such as in robotic
applications or lane sorting [79].

Since SSI cameras associate each spatial pixel with a specific spectral band, thus introduce a
critical trade-off between spatial and spectral resolution, so a post-processing technique is known as
“demosaicing” must be applied to estimate the entire HS data cube and conserve the spatial resolution.
Demosaicing will be discussed later in the next chapter.

In this work, we will specifically focus on snapshot mosaic cameras that are based on Fabry-Perot
interferometers, delving into their unique capabilities and applications.

1.3.9 Concluding Insights
In this section, we discussed snapshot spectral imaging technologies in detail, from integrated field
spectrometry imaging techniques to the precision and efficiency of Fabry-Perot-Based sensors. Each
technology presents unique advantages and challenges. A synthesized comparison of these technolo-
gies, detailed in a Table 1.1, highlights their benefits and limitations, providing a clear overview for
selecting the appropriate method based on specific imaging requirements and constraints.
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Figure 1.7 – Snapshot mosaic 4× 4 filter layout (Source IMEC)

Figure 1.8 – Snapshot mosaic 5× 5 filter layout with example image (Source [74])
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Table 1.1 – Comparison of Snapshot Spectral Imaging Technologies

Technology Technique Pros Cons
Integrated Field
Spectrometry (IFS)

Utilizes arrays (mirrors,
fibers, lenslets) to split
incoming light into spectra

Efficient for capturing high-
resolution data and adaptable
for various scenes

Complexity in design and
manufacturing challenges

Multispectral Beam-
splitting (MSBS)

Employs dichroic mirrors or
prism arrays for spectral par-
titioning

Rapid, simultaneous acquisi-
tion and high spectral selectiv-
ity

Optical complexity and pre-
cise calibration needed

Multiaperture
Filtered Camera
(MAFC)

Uses microfilters over sen-
sor arrays for parallel spectral
band capture

Real-time data acquisition and
enhances image quality

Challenges in filter design and
image processing

Computed Tomogra-
phy Imaging Spec-
trometers (CTIS)

Advanced gratings create
spectral cube projections on a
2D sensor

Does not require mechanical
scanning

Complex reconstruction algo-
rithms and limited spectral
cube resolution

Coded Aperture
Snapshot Spectral
Imagers (CASSI)

Compressive sensing with
coded apertures for efficient
data capture

Fast acquisition Unpredictable image quality
and some reconstruction arti-
facts

Image Mapping
Spectrometer (IMS)

Micromachined mirror for
remapping and spectral
decomposition

High spatial resolution Precision in micromachined
mirrors and optical complex-
ity

Image-replicating
Imaging Spectrome-
ters (IRIS)

Utilizes ’Lyot filters’ for spec-
tral filtering and image dupli-
cation

Effective spectral filtering Limited spectral bands and re-
duced light throughput due to
filters

Fabry-Perot-Based
Sensors (FPf)

Integrates optical interference
filters on CMOS sensors for
spectral imaging

Fast, miniaturized, cost-
effective and high spatial
resolution

Challenges with filter design,
spectral leaking, shifting and
harmonics

57



1.4 Calibration of Fabry-Perot Based Cameras

As we delve into the steps of calibrating Fabry-Perot-based cameras, it is nice to remember that, much
like in music, “Fine-tuning the instrument improves the melody.” This proverb holds particularly
true in spectral imaging, where the precision of the “instrument”—the spectral camera—directly influ-
ences the clarity and accuracy of the “melody” it produces, namely the spectral images. The following
subsections will explore the essential calibration steps, each serving as a fine-tuning process to ensure
the camera performs at its best.

1.4.1 Tracing the Problem’s Roots

Miniaturized spectral cameras utilizing FPf technology exhibit certain imperfections due to physical
constraints and the type of used lenses, necessitating calibration steps. In an ideal scenario, an FPf
would efficiently transmit light within a narrow spectral range to the sensor while blocking light out-
side this range. However, in practical applications, FPfs tend to exhibit additional harmonic responses
around each desired wavelength.

Figure 1.9 presents the spectral response of a Fabry-Perot filter employed in a 5× 5 mosaic snap-
shot camera. The primary peak, labeled as the “central wavelength,” represents the desired first-order
response of the filter which corresponds to the specific wavelength the FPf is designed to transmit.
We expect most of the light energy to be focused on this peak, indicating the filter optimal opera-
tional wavelength. However, the figure also shows additional unintended peaks. The one marked as a
“second-order response” is an example of a harmonic response. These harmonics arise due to the con-
structive interference of light at these higher-order wavelengths within the FPf cavity. While ideally,
the FPf should only transmit the central wavelength, physical imperfections, and design limitations
can result in these additional responses. Another notable feature in the graph is the presence of “spec-
tral leaking” and “crosstalk.” Spectral leaking refers to the transmission of light outside the specified
spectral range, which can degrade the quality of the image data. Crosstalk, indicated by smaller peaks
within the active range of the sensor, refers to the mixing of signals from different wavelengths, which
can lead to inaccurate color representation in the spectral image. Finally, “FWHM” stands for Full
Width at Half Maximum, which measures the bandpass filter’s selectivity. It indicates the width of
the peak at half its maximum height and is a critical factor in determining the filter’s resolving power.
Furthermore, the cameras often encounter various challenges such as spectral shifting, and variations
in CMOS imager performance. As a result, they require both pre-processing and post-processing
steps to ensure the production of high-quality images [161, 155, 78, 148]. In the following subsec-
tions, we will delve into these calibration steps, highlighting their significance and their substantial
impact on the fidelity of spectral imaging.
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Figure 1.9 – Spectral response of Fabry-Perot filter of the 5 × 5 mosaic snapshot camera (Source
IMEC).

1.4.2 Band pass filters
First, incident light experiences particular conditioning through the application of a specialized re-
jection filter, strategically placed before the sensor, blocking all wavelengths outside the sensor’s
active range. This step acts as a robust defense against spectral leaking and undesirable second-order
responses [143, 78].

1.4.3 Dark Level Correction (Bias Correction)
The Dark Level Correction, also known as Bias Correction, is fundamental in pre-processing spectral
images. The correction is crucial because it accounts for the camera sensor’s noise floor—the base
level of electrical disturbance or “noise” without illumination. We can effectively isolate and remove
this noise by subtracting a dark reference image, which is captured with the lens cap on and no light
entering the sensor. This step is essential for enhancing the signal-to-noise ratio of the final image,
thereby improving the accuracy of subsequent spectral analysis.

1.4.4 White Balancing (Reflectance Calculation)
White Balancing, or Reflectance Calculation, is necessary to normalize the variations introduced
by the sensor sensitivity and the illumination conditions. This process uses a white reference to
standardize the image data, enabling the camera to represent colors and intensities accurately.
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1.4.5 Spectral Correction

While the rejection filters remove most undesired wavelengths, some persist within the sensor active
range, thus requiring spectral correction. The latter is performed by applying a fixed—i.e., scene-
independent—correction matrix denoted C which is determined through a process of minimizing
the difference between the actual band response, denoted as the response matrix H, and the desired
or ideal band response, represented as Hideal [120, 161]. This minimization process is expressed
mathematically as:

min
C
‖Hideal −C ·H‖2F , (1.1)

where ‖·‖2F denotes the Frobenius norm. To apply this correction matrix effectively, it typically re-
quires the calculation of reflectance using a white reference [78]. However, it is noteworthy that
Vunckx and Charle [148] have introduced an approach that enables spectral correction directly on
raw data that has already undergone dark-level correction.

The correction matrix C serves to transform physical wavelengths—as captured by the camera
sensor—into virtual wavelengths, representing the spectrally-corrected data. The number of virtual
bands is often less than that of the physical bands. Such discrepancies may arise from strong correla-
tions among the responses of specific physical bands or from a lack of signal captured by one or more
physical bands [78].

Furthermore, we note that the response matrix has crucial information about filter characteristics—
including first and second-order responses—and the full width of response peaks at half the maximum
of the peak (FWHM). The number of rows of the response matrix equals the number of filters on the
sensor and the number of columns equals the number of measurement points used during calibration
(i.e., 601 samples from 400-1000 nm) [78]. By multiplying this matrix with an irradiance spectrum,
we simulate the sensor response, thereby facilitating evaluations under realistic conditions.

1.4.6 Angularity Correction

Angularity correction proposed by Goossens et al. [62] addresses the challenge posed by the angular
sensitivity of thin-film interference filters. When integrated into camera sensors, these filters are
designed to be sensitive to light at specific wavelengths. However, their spectral response can shift
depending on the angle at which light strikes the filter. This phenomenon appeared from using non-
telecentric lenses often found in compact, lightweight remote sensing applications.

As the light enters the FPf at angles other than the normal, the effective optical path length within
the filter changes, leading to a shift in the spectral response toward shorter wavelengths, as shown
in Fig. 1.10. In practical terms, this means that the same target, when imaged at different positions
across the camera’s field of view, will produce spectra that appear to be from different wavelengths
due to these angular variations.

The calibration process to correct this spectral shift requires knowledge of the lens f-number and
the distance between the lens exit pupil and the image sensor. With these parameters, the shift in the
central wavelength can be calculated for each pixel position. This is achieved by applying a model
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Figure 1.10 – The measured spectrum of a sample appears shifted if placed at different distances from
the optical axis. Using spectral shift correction, the spectra can be realigned (Source [62]).

that adjusts the central wavelengths of each filter based on the chief ray angle, which is influenced by
the off-axis distance of the pixel and the lens f-number.

1.4.7 Non-uniformity Correction

Non-uniformity correction addresses the variations in the pixel response of a CMOS imager across
the sensor [148]. These variations can arise due to several factors, including inherent sensor non-
uniformities and optical effects such as vignetting caused by the lens. Vignetting leads to a decrease
in image brightness or saturation at the periphery compared to the image center.

The procedure for non-uniformity correction involves the creation of a non-uniformity correction
cube, which characterizes the spatial variation in pixel response throughout the image sensor. This
cube is obtained through calibration measurements using a uniform light source, such as an integrating
sphere or a uniformly illuminated white reflectance tile, as shown in Fig. 1.11.

Once the non-uniformity correction cube has been created, it can be used to correct the images
captured by the camera. This is done by dividing the reconstructed spectral cube—point-by-point—by
the non-uniformity correction cube. The result is a set of images where the non-uniformities have been
removed, leading to a more accurate and consistent representation of the scene spectral characteristics.
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Figure 1.11 – Two measurement setups for obtaining the non-uniformity correction cube (Source
[148]).

1.4.8 Final Key Insights
Camera calibration is crucial in achieving the highest fidelity in snapshot spectral imaging (SSI).
As outlined throughout this section, the complex process encompasses a series of systematic steps
designed to refine the raw spectral data captured by the camera’s sensor. These steps range from bias
correction to sophisticated angularity and non-uniformity adjustments, each serving a unique purpose
in increasing the spectral accuracy.

Fig. 1.12 shows the overall processing pipeline of the SSI images with the required steps. It
is important to note that some of these steps are optional and can be adapted based on specific re-
quirements. For instance, using white and black references is essential to obtain reflectance values.
However, these steps can be deleted if radiance values suffice for the intended analysis. Similarly,
angularity correction has its applicability tied to the availability of the f-number of the optics. This
correction is most relevant for fixed lenses, excluding those with autofocus mechanisms.

1.5 Conclusion
In this chapter, we explored SSI as an advanced approach within HSI, emphasizing its ability to cap-
ture complete spectral information in a single exposure. We began by introducing typical scanning
technologies used in hyperspectral imaging, detailing their operational mechanisms and limitations.
Then, we moved forward by exploring snapshot imaging technologies with a focus on Fabry-Perot-
based ones highlighting their innovative contributions and the critical need for precise calibration to
ensure data accuracy. The chapter also introduced the essential calibration processes for optimizing
SSI technology performance, underlining their importance in producing reliable spectral data. Mov-
ing forward, Chapter 2 will delve into the complexities of image processing, specifically focusing on
“Demosaicing,” an essential step in building the 3-D datacube from the raw data collected by snapshot
spectral cameras.
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Figure 1.12 – Processing steps as required by the camera manufacturer to ensure high-quality snapshot
spectral image restoration and unmixing.
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Chapter 2

Demosaicing Snapshot Spectral Images

“Only with the heart can one see rightly; what is essential is invisible to the eye.”

— Antoine de Saint-Exupéry, The Little Prince

2.1 Introduction

Demosaicing1 is a well-established challenge in the imaging community. It is pivotal for RGB color
images, considering the presence of Bayer-structured filters that sample the red, green and blue. In
a typical Bayer filter array, half of the pixels are green, while red and blue represent a quarter of the
total pixels, as shown in Fig 2.1. This arrangement reflects the Bayer pattern emphasis on green,
acknowledging its significance in human color perception. Each pixel in this mosaic captures only
one of the three colors, meaning the sensor lacks two-thirds of the color information for that particular
location at any given point.

Demosaicing algorithms aim at reconstructing full-color images from this incomplete data. These
algorithms work by interpolating the missing color information for each pixel. For instance, a pixel
that captures green light will have its red and blue values estimated based on the adjacent pixels that
capture these colors. The challenge lies in accurately predicting these missing values to create a
seamless and realistic image.

The complexity of the demosaicing process varies depending on the algorithm used. Simple
methods might employ bilinear or bicubic interpolation [65], which calculates the missing color val-
ues based on a weighted average of neighboring pixels. More advanced techniques, like gradient-
based or edge-directed interpolation [65], are designed to preserve sharp edges and fine details better,
thereby reducing artifacts. These sophisticated algorithms analyze the surrounding pixel patterns to
make more informed estimations, particularly around edges or areas of high contrast, leading to a
more accurate and visually satisfactory reconstruction.

1This chapter uses the terms “demosaicing” and “demosaicking” interchangeably. Both terms refer to the same process
of reconstructing a 3-D datacube from an SSI image.
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Figure 2.1 – Bayer color filter array arrangement

In the domain of snapshot spectral imaging (SSI), also known as Multispectral Filter Array (MSFA),
demosaicing adopts a unique and more complex role. Unlike conventional RGB imaging, SSI/MSFA
links each pixel with a specific spectral band, necessitating a different method for image reconstruc-
tion. In scenarios like the 16-band case, a common technique involves the formation of “super-pixels”.
This method—essentially a form of spatial down-sampling—gathers groups of

√
k×
√
k—with com-

mon values for k being 9, 16 or 25—pixels into a single super-pixel. Here, k represents the number
of wavelengths supported by the cameras. Although this approach simplifies the sampling process, it
results in a notable reduction in spatial resolution by as much as 93.75% in the case when k=16, as
illustrated in Fig. 2.2 [143]. These super-pixels represent a condensed version of the original pixel
array, capturing a more comprehensive spectral range at the expense of detailed spatial information.
However, demosaicing aims to generate the entire HS data cube and to conserve the spatial resolution.
Therefore, various approaches for estimating the missing information have been proposed. These ap-
proaches can be classified into two categories, i.e., “Traditional” methods and “Deep Learning-based”
strategies.

It is noteworthy that demosaicing is inherently influenced by the arrangement of wavelengths on
the sensor surface, which varies according to the design of the MSFA pattern employed [38]. Several
MSFA patterns are designed with specific goals, such as minimizing reconstruction artifacts, improv-
ing spatial and spectral resolution, and ensuring efficient data capture within hardware constraints.
The most notable designs are illustrated in Fig. 2.3.

In this chapter, we focus on demosaicing methods for multispectral filter arrays that utilize Fabry-
Perot interferometer technology (IMEC), Brauers (BRA) and Binary Tree-Based Edge-Sensing (BTES).
We acknowledge the presence of alternative techniques suited to different snapshot imaging systems
like those used in CASSI, as mentioned in Chapter 1. However, these methods fall outside our scope
due to their specific use cases and the lack of commercially available CASSI cameras. Therefore,
we limit our investigation to demosaicing techniques specific to the Fabry-Perot (IMEC) pattern due
to its commercial presence and the practical applicability of our research. The study will also cover
BTES and BRA methods since they are also applied in the literature to Fabry-Perot design.

Finally, it is essential to note that some of the approaches are adapted from techniques initially de-
veloped for the super-resolution problem. Super-resolution is designed to enhance the resolution of an
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Figure 2.2 – A typical approach involves binning together groups of pixels, known as “super-pixels”,
to produce lower spatial resolution images with more (middle) or all (top right) spectral bands. While
demosaicing approaches aim to repopulate the full cube and keeping the full spatial resolution (bottom
right). Adapted from [143].

image, either spatially or spectrally, by interpolating additional pixels or spectral bands not originally
captured by the sensor [163]. However, it is crucial to distinguish between spectral spectral/spatial
super-resolution and the demosaicing tasks addressed in this section. Demosaicing focuses on recon-
structing missed spectral information in each spatial pixel without altering the image resolution. In
contrast, spectral super-resolution aims to increase the spectral resolution by generating new bands
not captured by the imaging sensor. Similarly, spatial super-resolution enhances the spatial details by
increasing the image resolution.

2.2 Traditional Demosaicing Methods

This section focuses on a range of established methodologies distinct from contemporary deep-
learning approaches. These traditional methods represent a range of algorithmic strategies developed
over the years to address the challenge of datacube reconstruction in MSFA without relying on the
complex neural network architectures that characterize modern deep learning techniques. Traditional
demosaicing methods are rooted in various algorithmic and heuristic approaches, each designed to re-
construct a 3-D HSI datacube from the limited information captured by individual pixels in an MSFA.
Traditional demosaicing methods can be broadly divided into five distinct categories:

• Demosaicing Based on Interpolation.
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(a) RND (b) BN (c) BRA (d) SEQ

(e) UNIF (f) IMEC (g) BTES (h) OSP

Figure 2.3 – Different MSFAs with a spatial resolution 16 × 16 and spectral resolution 16 (Source
[147])
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• Demosaicing Based on Wavelet Analysis.

• Demosaicing Based on Binary Trees.

• Demosaicing Based on Pseudo-panchromatic Analysis.

• Demosaicing Based on Low-rank Matrix Approximation.

In this section, we will delve into each category, exploring the unique approaches and techniques
they encompass.

2.2.1 Demosaicing Based on Interpolation
Interpolation-based demosaicing represents a foundational approach to image reconstruction from
MSFA images. It estimates the missing spectral information at each pixel by leveraging the known
color values of neighboring pixels, assuming that adjacent pixels share similar spectral characteristics.

These methods are based on various interpolation strategies, ranging from simple bilinear inter-
polation to more sophisticated adaptive and weighted schemes.

2.2.1.1 Weighted Bilinear Interpolation (WB)

This demosaicing method employs a two-step process for reconstructing each spectral band in a mul-
tispectral image. Initially, it generates a sparse, raw image for each spectral band, utilizing only the
observed measurements. Demosaicing itself is achieved through a convolution process with a low-
pass filter. This filter is strategically normalized to accommodate the missing measurements, ensuring
that the interpolation is accurate and maintains the integrity of the original spectral information. The
importance of the WB method lies in its role as a fundamental base initialization step, often serving
as the starting point for most advanced demosaicing methods [27].

2.2.1.2 Spectral Difference (SD)

As outlined in [27], the Spectral Difference method leverages the disparities between spectral chan-
nels to enhance the sharpness in interpolated images. This approach is characterized by its utilization
of differences in spectral channels and a series of operations that refine the image quality. The key
steps of this method are:

• The process begins by subtracting one raw channel from another bilinear interpolated channel,
with the raw channel containing non-zero entries exclusively where actual measurement data is
present. This process is repeated over all the channels.

• To refine the chromatic color difference layer, a bilinear interpolation is applied. This step can
be interpreted as a smoothing operation, contributing to the overall enhancement of the image.
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• The final step involves an inverse transformation to generate the full interpolated image.

Although this method appears computationally complex, it is strong in maintaining image sharp-
ness while managing spectral disparities.

2.2.1.3 Median Filtering in Multispectral Filter Array Demosaicing

In [153], Wang et al. delve into the adaptation of color filter array (CFA) demosaicing techniques to
multispectral filter arrays, focusing on vector-based median filtering methods. Their study evaluates
two approaches: direct vector median filtering (DVMF) and spherical space median filtering (SSMF).
The former solves demosaicing problems by means of vector median filters, and the latter applies
median filtering to the demosaiced image in spherical space as a subsequent refinement process to
reduce artifacts introduced by demosaicing. The experiments show that while DVMF shows limited
success, especially with natural images, the refinement process using SSMF consistently enhances
image quality by reducing estimation errors.

2.2.1.4 A Linear Interpolation Algorithm for Spectral Filter Array Demosacing (LISFAD)

In [149] Wang et al. present a novel approach to demosaice MSFA images. The proposed method
is based on a linear interpolation strategy incorporating residual interpolation, where the difference
between the original measurements and the tentative estimation pixel values is interpolated to capture
the finer details and improve the overall estimation. The proposed method effectiveness relies signif-
icantly on spectral correlation for optimal performance. It was also initially designed and tested on 4
and 5-band MSFAs, but it can be adapted to the IMEC-MSFA design.

2.2.1.5 Iterative Spectral Difference (ItSD)

Mizutani et al. [108] introduced an advanced extension to the SD method, known as Iterative Spectral
Difference (ItSD). This method is particularly effective in scenarios with significant cross-correlation
among images captured at different wavelengths. The ItSD method enhances the cross-correlation
of demosaiced channels through an iterative process involving repeated interpolations considering
inter-channel correlations, using previously interpolated pixel values as tentative data for subsequent
interpolations.

A key aspect of ItSD is its dynamic regulation of the number of repetitions based on the spectral
sensitivity of the color filters. If the optical wavelengths of two bands are closely aligned, implying a
higher cross-correlation, the number of repetitions increases. This adaptive control mechanism is cru-
cial for preserving and enhancing inter-band relationships during the demosaicing process, improving
image quality. The method efficiency lies in its ability to iteratively interpolate bands by considering
the spectral proximity and cross-correlation, thereby significantly improving the reconstructed image
quality.
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Figure 2.4 – Main flow of MLDI

2.2.1.6 Multispectral Local Directional Interpolation (MLDI)

The Multispectral Local Directional Interpolation (MLDI) [136] is a demosaicing method that em-
phasizes using local directional information in the interpolation process. Initially, the center pixel of
an image is interpolated by considering the gradients among its four neighboring pixels: northwest
(nw), northeast (ne), southeast (se), and southwest (sw). This first step focuses on capturing the local
directional variations around the central pixel, thereby helping in a more accurate estimation of its
value.

After this initial interpolation, the method progresses to interpolate the center pixel surrounded
by the north, east, south, and west pixels. This further interpolation step refines the image by in-
corporating additional surrounding pixel information, thereby enhancing the overall accuracy of the
interpolation.

Once all pixels have been interpolated through these steps, the MLDI method enters its second
phase, where the interpolated pixels are modified using information from eight neighboring pixels,
expanding upon the initial four-pixel gradient calculation. This step is crucial as it adjusts the initially
interpolated pixels by incorporating a broader range of local information, leading to a more accurate
image reconstruction, as shown in Fig 2.4.

Through this two-step process, MLDI effectively utilizes local directional gradients and expanded
neighborhood information to achieve a good demosaicing of multispectral images.

2.2.2 Demosaicing Based on Wavelet Analysis
Wavelet Transform (WT) is a mathematical technique that decomposes a signal into components at
various scales or resolutions. It uses wavelet functions localized in both time and frequency [11].
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Meanwhile, discrete wavelet transform (DWT) is a specific implementation of the WT where both
the scale and translation parameters are discretized. This means that the signal is analyzed at discrete
intervals for both scale (frequency or resolution) and position (time) [40]. DWT is applied success-
fully to color filter array (CFA) demosaicing [43, 32]. In this section, we will explore its application
in MSFA demosaicing,

2.2.2.1 Discrete Wavelet Trasform (DWT) MSFA Demosaicing

The DWT process involves decomposing the image into various subbands, including an approxima-
tion subband and detail subbands representing high-frequency information at different scales [152].
This subband coding forms the basis for DWT-based demosaicing, exploiting the inter-channel cor-
relation inherent in most images. The DWT decomposition is achieved by applying high-pass and
low-pass filters to the image through the following steps:

• Initiate the process by performing DWT decomposition on the MSFA image. This step in-
cludes splitting the image into different subbands, each characterized by varying frequency
components.

• Employ linear estimation to determine the high-frequency coefficients of the decomposed im-
age. This step involves estimating the details present in the high-frequency components.

• Simultaneously, employ WB to estimate the low-frequency coefficients. This step focuses on
approximating the broader, low-frequency features within the image.

• Bring together the estimated low-frequency and high-frequency components, creating a com-
prehensive representation of the multispectral image.

• Apply the inverse discrete wavelet transform (IDWT) to the recombined components. This final
step reconstructs the final datacube, leveraging the inverse transformation to restore the image
original form.

The selected wavelet and the desired level of decomposition control the number of decomposition
levels in DWT. Stopping the decomposition process at a specific level involves a trade-off between
capturing sufficient frequency information and avoiding excessive computational complexity.

2.2.2.2 A Generic Multispectral Demosaicking Method Based on Inter-channel Spectrum Cor-
relation (GMDICC)

The authors in [181] propose a novel demosaicing method for MSFA based on DWT and inter-channel
spectrum correlation. The method is structured in three main parts:

1. Image Pre-processing:
This step deals with the grayscale differences between adjacent pixels in the raw image. Sig-
nificant grayscale differences can lead to noticeable horizontal and vertical bright bars, blurring
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the structure and edges of objects in the image. To overcome this issue, the method employs a
gray correction technique to normalize the gray level across all pixels, thus eliminating sharp
changes in the raw image. By using wavelet transform for image fusion enhancement process-
ing, the original spatial structure information of the image can be recovered, and the texture,
contour, and structure information in the image can be enhanced.

2. Spatial Reconstruction:
In this stage, the process distinguishes between low and high-frequency information in the raw
image. For the low-frequency components, which generally contain broader image features and
smoother gradients, the method employs weighted bilinear (WB) interpolation. This technique
effectively reconstructs these broader image aspects by averaging adjacent pixel values, thus
ensuring that the general structure and form of the image are preserved.

On the other hand, high-frequency details, which include finer textures and edges, require a
more accurate reconstruction approach. The process begins by decomposing the pre-processed
image into N down-sampled (DS) images to isolate and focus on particular pixel groups for
more detailed processing. After the down-sampling, each DS image is further decomposed us-
ing the DWT. This transform splits the images into various spatial frequency sub-bands, effec-
tively isolating different frequency components of the image. In the final step, the correspond-
ing DS images from the pre-processed image are used to replace the spatial high-frequency
sub-bands in the down-sampled images. This means that the high-frequency details in the
down-sampled images are substituted with those from the pre-processed images, ensuring that
these finer details are accurately represented in the final reconstructed image.

3. Demosaicing Process:
The demosaicing process involves estimating a fully defined channel difference and reconstruct-
ing each channel. This is done by summing the adjusted channel differences with the initial
image estimations across all channels. The method employs a combination of initial estima-
tions, channel difference calculations, and iterative refinement to achieve the final demosaicied
image.

In summary, the method addresses grayscale inconsistencies and enhances low and high-frequency
details. It combines gray correction, wavelet transform, weighted bilinear interpolation, and iterative
channel reconstruction to improve the quality of the spatial and spectral reconstruction of multispec-
tral images.

2.2.3 Demosaicing Based on Binary Trees
As previously discussed, the Binary Tree-based Edge-Sensing (BTES) method represents a strategic
approach to organizing the spectral bands on the sensor surface [105]. Several demosaicing methods
have been proposed to leverage the inherent advantages of the BTES structure, aiming to enhance the
quality of image reconstruction of MSFA images. In this section, we will explore these methods.
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2.2.3.1 Binary Tree-based Edge-sensing (BTES)

Miao et al. [105] proposed the BTES (Binary Tree-based Edge-Sensing) method exploiting the bi-
nary tree structure of the MSFA. The method starts with the band selection step, which determines the
interpolation order for different spectral bands during the demosaicing process. The selection order
adheres to the probability of appearance (PoA), where bands with higher PoAs have more detailed
information. Initiating interpolation with bands possessing higher PoAs ensures the preservation and
utilization of detailed information in the reconstruction process. The reconstructed image of a selected
band helps interpolate other spectral bands with lower PoAs, enhancing the overall quality of the re-
constructed image. Band selection happens by choosing leaf nodes at various levels of the binary
tree, with deeper levels corresponding to bands with smaller PoAs. Then, the interpolation algo-
rithm utilizes edge correlation information from the binary tree structure to perform the interpolation
process.

2.2.3.2 Probability of Appearance based Convolution Filter based Weighted Bilinear (PCWB)

The PCWB method [131] exploits the probability of appearance (PoA) of spectral bands in MSFA. It
employs a weighted bilinear interpolation algorithm that uses convolution filters specifically designed
based on the PoA of each band within the MSFA pattern. The design of these filters is guided by
several principles, including filter symmetry, accommodation of the minimum required known pixel
values for interpolation, and normalization of weights for interpolation. The PCWB algorithm selects
the appropriate filter for a band considering its PoA, facilitating the effective interpolation of missing
pixel values. This method is beneficial for handling images from binary-tree-based MSFA.

2.2.3.3 Probability of Appearance based Convolution Filter based Bilinear Spectral Difference
(PCBSD)

Building upon the initial estimates provided by the PCWB method, the PCBSD technique [131] fur-
ther refines the demosaicing process by incorporating spectral correlation through the SD approach.
This method calculates sparse band differences based on the initial multispectral image estimates and
then fully defines these band differences using the PCWB interpolation method. Subsequently, it
estimates the complete multispectral image by adjusting the interpolated values based on the calcu-
lated spectral differences. The PCBSD method enhances the quality of the generated datacube by
leveraging the spectral correlation, especially for BTES MSFAs.

2.2.3.4 Generic Multispectral Demosaicking Based on Directional Interpolation (GMDDI)

The MSFA demosaicing method outlined in [132] depends on the spectral and spatial correlations in
MSFA images. This method uses binary tree-based MSFA patterns, which are essential in determin-
ing the pixel arrangement for all bands, regardless of the number of bands in the raw image. Each
band probability of appearance (PoA) within these binary tree patterns guides the selection of the
appropriate interpolation scheme.
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The method employs a progressive approach, initially estimating parts of missing pixel values be-
fore using these estimated values along with initially known pixel values to interpolate other unknown
pixel values. It calculates four directional estimates of the band around an unknown pixel location
and combines these estimates based on weights calculated for each direction as MLDI method. These
weights are derived from the edge magnitude information of the band chosen for interpolation, dif-
fering from other methods that might use both the band chosen for interpolation and the band at the
target interpolation location.

It is worth noting that MLDI and GMDDI methods utilize directional information for interpola-
tion. However, while MLDI focuses on local directional gradients using neighboring pixels, GMDDI
takes a more holistic approach by considering the binary tree-based MSFA patterns and utilizing
progressive interpolation that integrates spectral and spatial correlations.

2.2.4 Demosaicing Based on Pseudo-panchromatic Analysis
Pseudo-Panchromatic Image (PPI) refers to an image generated from a multispectral or hyperspec-
tral image, where the pixel values are derived by averaging or summing across several or all spectral
bands. This process creates a grayscale image that closely represents the overall luminance or bright-
ness of the scene. In MSFA demosaicing, PPIs serve as a reference to help reconstruct full-resolution
multispectral images from the sparsely sampled data captured by MSFA sensors. This section ex-
plores the application of PPI in demosaicing MSFA images.

2.2.4.1 Pseudo-panchromatic Image Demosaicing (PPID)

The demosaicing method proposed in [107] employs a Pseudo-Panchromatic Image (PPI) to construct
the 3-D datacube. This method assumes that the PPI is strongly correlated with all channels. Then, the
average correlation coefficient between each channel and the PPI is computed to validate this. This
correlation is a key factor allowing PPI-based demosaicing methods to enhance fidelity by exploiting
inter-channel differences. The initial estimation of the PPI can be obtained through an averaging filter.
However, local directional information is considered for a sharper PPI estimation. This approach
involves computing weights based on the scale-adjusted raw image and integrating the estimated PPI
into the demosaicing procedure to enhance the overall quality of the reconstructed datacube.

2.2.4.2 Generic Multispectral Demosaicking Using Spectral Correlation Between Spectral Bands
and Pseudo-panchromatic Image (GMDSCPPI)

The demosaicing method presented in [133] employs a novel approach where a Pseudo-Panchromatic
(PPAN) image is first estimated from the raw image by calculating a weighted average of pixel values
from neighboring bands at each pixel location. Unique spatial filters designed for each band in the
raw image are then applied to ensure the inclusion of at least one-pixel value from each spectral
band. The reconstructed PPAN image is subsequently used to interpolate each spectral band in the
raw image. This interpolation is achieved by computing differences between the raw and PPAN
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images and applying convolution filters based on the probability of the appearance of each band. The
process involves iterative refinement, where the PPAN image and the spectral bands are progressively
enhanced to improve the overall quality of the reconstructed multispectral image.

2.2.5 Demosaicing Based on Low-rank Matrix Approximation
Low-rank matrix approximation (LRMA) is an essential technique to refine complex matrices, effec-
tively preserving their important attributes while minimizing data complexity. LRMA mainly aims to
reduce a matrix to a lower-rank version that closely resembles the original, based on specific norms
such as the Frobenius or spectral norm. LRMA is helpful in various domains, including image pro-
cessing, data compression, dimensionality reduction, and noise suppression [169, 88]. Additionally,
Low-Rank Matrix Completion (LRMC) extends LRMA capabilities by accurately estimating miss-
ing or incomplete data [112, 81]. This section explores the application of LRMA and LRMC in
demosaicing MSFA images.

2.2.5.1 Graph and Rank Regularized Demosaicing (GRMR)

Tsagkatakis et al. [143] present Graph and Rank Regularized Matrix Recovery (GRMR), a novel
approach to recovering high spatial and spectral resolution content from SSI images within the low
matrix completion framework. This approach advances beyond traditional sampling paradigms by
incorporating realistic sampling strategies considering spectral profiles associated with each pixel.
The method can be divided into two steps:

1. Spectral Measurements Matrix Sampling

The SSI camera captures a 2-D image with each pixel representing a different spectral band,
forming a subsampled matrix of the full-resolution hyperspectral tensor. An unfolding operator
converts this 3-D tensor into a 2-D spectral measurements matrix by collapsing the spatial di-
mensions into a single pixel index. Sampling matrices/masks are created using binary, random,
or spectral filter profile sampling methods.

2. Spectral Measurements Matrix Recovery

The demosaicing problem is formulated as a regularized recovery of the spectral measurements
matrix from limited measurements. Then, the nuclear norm with graph regularization is used
to estimate the missing information. After that, the Proximal Gradient method uses the nuclear
norm proximal operator to threshold the matrix singular values. Finally, the recovered matrix
is folded again into a 3-D restored datacube

2.2.5.2 Multispectral Snapshot Demosaicing Via Non-convex Matrix Completion (MSDMC)

The authors in [16] proposed a method based on the matrix completion framework. The process
involves solving an optimization problem to minimize the discrepancy between the observed data and
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Figure 2.5 – Comparative Analysis of Demosaicing Techniques through Venn Diagram

a matrix representing an unfolding of the three-dimensional data cube, subject to a rank constraint.
Then, algorithms like conjugate gradient iterative hard thresholding (CGIHT) [24] and alternating
steepest descent (ASD) [140] are used to solve the optimization problem initialized with estimates
from the spectral difference (SD) method.

2.2.5.3 Generalized MSFA Engineering With Structural and Adaptive Nonlocal Demosaicing
(SAND)

The demosaicing method described in the article [22] combines structural and adaptive nonlocal op-
timization. Firstly, Generalized Alternating Projection-based Total Variation (GAP-TV) [172] is used
to reconstruct multispectral images from the captured mosaic images. GAP-TV works by iteratively
refining the image reconstruction. Then, the structural block matching step groups similar image
blocks based on structural similarity across different spectral bands. This step allows more coherent
and effective optimization in later steps, as operations can be customized to the specific characteristics
of each group. After that, the image details are reconstructed by minimizing the rank of each block
information and using the latent information extracted from similar blocks. Finally, the recovery steps
are iterated adaptively and repeated several times with adjustments based on previous results until the
best image quality is reached.
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2.2.6 Discussion and Insights
In the realm of demosaicing for snapshot spectral imaging, we discovered various traditional method-
ologies, each with unique advantages and challenges. We classified them into five categories: In-
terpolation, Wavelet Analysis, Binary Trees, Pseudo-panchromatic Analysis, and Low-rank Matrix
Approximation.

Interpolation methods, such as Weighted Bilinear Interpolation and Spectral Difference, stand
out for their simplicity and computational efficiency. However, they can struggle with artifacts in
areas of high contrast or fine detail. Wavelet Analysis, on the other hand, offers a more sophisticated
approach to handling spatial and spectral resolution through its multi-scale decomposition. However,
its performance can heavily depend on the choice of wavelets and decomposition levels. Binary
Tree methods leverage hierarchical structures to optimize spectral band sampling, enhancing image
reconstruction quality. However, these methods can become complex, requiring careful design and
optimization of the tree structure. Pseudo-panchromatic techniques, which generate a grayscale image
reflecting the overall scene luminance, can effectively preserve spatial details but may oversimplify
the spectral information. Lastly, Low-rank Matrix Approximation and its extensions stand out for
their ability to recover high-quality images from undersampled data, offering a robust solution to
noise and missing data. However, these methods often involve intensive computations and complex
optimization procedures.

The Venn diagram in Fig. 2.5 provides a comprehensive overview of how these demosaicing
families intersect. Additionally, Table 2.1 summarizes all methods ordered by their publication date.

Table 2.1 – Traditional demosaicing methods comparison.

Method Name Approach Type Key Features Publication
Date

Weighted Bilinear
Interpolation [27]

Interpolation Fundamental base for other
methods, uses convolution

with a low-pass filter

2006

Spectral Difference (SD) [27] Interpolation Utilizes disparities between
channels, refines image

quality

2006

Binary Tree-based
Edge-sensing (BTES) [105]

Binary Trees Employs binary tree structure,
focuses on edge correlation

2006

Discrete Wavelet Transform
(DWT) [152]

Wavelet Analysis Decomposes image into
subbands, captures

high-frequency details

2013

Direct Vector Median
Filtering (DVMF) [153]

Interpolation Direct vector-based median
filtering for demosaicing

2013

Continued on next page

77



Table 2.1 – continued from previous page
Method Name Approach Type Key Features Publication

Date
Spherical Space Median
Filtering (SSMF) [153]

Interpolation Refines vector median
filtering to reduce errors

2013

Iterative Spectral Difference
(ItSD) [108]

Interpolation Enhances cross-correlation,
adaptive iterations based on

spectral sensitivity

2014

A Linear Interpolation
Algorithm for Spectral Filter

Array Demosaicing
(LISFAD) [149]

Interpolation Linear interpolation strategy
incorporating residual

interpolation

2014

Multispectral Local
Directional Interpolation

(MLDI) [136]

Interpolation Utilizes local directional
gradients and expanded

neighborhood information for
improved accuracy

2015

Pseudo-panchromatic Image
Demosaicing (PPID) [107]

Pseudo-panchromatic
Analysis

Utilizes mean value over all
channels, emphasizes

inter-channel differences

2017

Graph and Rank Regularized
Demosaicing (GRMR) [143]

Low-rank Matrix
Approximation

Combines rank and graph
regularization, uses proximal

gradient method

2019

Multispectral Snapshot
Demosaicing via Non-convex

Matrix Completion
(MSDMC) [16]

Low-rank Matrix
Approximation

Utilizes optimization and
algorithms like CGIHT and

ASD

2019

Generalized MSFA
Engineering With Structural

and Adaptive Nonlocal
Demosaicing (SAND) [22]

Structural and
Adaptive

Optimization

Combines GAP-TV,
structural block matching,

and adaptive iteration

2021

Probability of Appearance
based Convolution Filter
based Weighted Bilinear

(PCWB) [131]

Binary Trees Uses convolution filters
designed based on the

probability of appearance

2021

Probability of Appearance
based Convolution Filter
based Bilinear Spectral

Difference (PCBSD) [131]

Binary Trees Refines PCWB by
incorporating spectral

differences

2021

Continued on next page
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Table 2.1 – continued from previous page
Method Name Approach Type Key Features Publication

Date
Generic Multispectral

Demosaicking Based on
Directional Interpolation

(GMDDI) [132]

Interpolation Progressive approach,
combines spectral and spatial

correlations

2022

Generic Multispectral
Demosaicking Using Spectral
Correlation between spectral

bands and
pseudo-panchromatic image

[133]

Pseudo-panchromatic
Analysis

Uses Pseudo-Panchromatic
image, iterative refinement

2023

A Generic Multispectral
Demosaicking Method Based
on Inter-Channel Spectrum

Correlation (GMDICC) [181]

Wavelet Analysis Focuses on inter-channel
spectrum correlation,

pre-processing, and spatial
reconstruction

2023

2.3 Deep Learning-based Methods

In recent years, deep learning (DL) has influenced numerous fields of science and technology, offering
substantial improvements over traditional methods in accuracy and efficiency. In image processing,
deep learning techniques have particularly transformed the approach of demosaicing MSFA images.
This section delves into various deep learning-based methods developed to address the complex chal-
lenges associated with demosaicing MSFA images.

As we explore these advanced methods, we can categorize them based on their underlying ar-
chitectures—such as convolutional neural networks (CNNs) [13], residual networks (ResNets) [72],
or those incorporating attention mechanisms [146]—or by their specific functionalities, like joint de-
mosaicing and denoising or spectral correction. However, it is essential to note that despite these
distinctions, there is a significant overlap in the functionalities offered by different architectures. For
instance, CNNs and ResNets are often used with attention mechanisms to boost performance. This
overlap makes it challenging to separate these methods into discrete groups cleanly.

Given these complexities and the integrated nature of many deep learning approaches, we have yet
to group the methods strictly by architecture or functionality in this discussion. Instead, we present an
overview of each method, allowing for a fluid comparison and a better appreciation of how different
techniques may be combined or adapted to meet specific demosaicing challenges.
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2.3.1 Deep Demosaicking for Multispectral Filter Arrays (In-Net)
The authors in [137] proposed a deep learning method using residual network (ResNet) [72]. It begins
with preliminary interpolating the SSI image using a bilinear interpolation technique. Subsequently,
the method employs a ResNet that integrates multiple three-dimensional convolutional layers and
fixed linear units (ReLUs). This network structure refines the initially interpolated images by reducing
artifacts in the final 3-D datacube.

2.3.2 Hyperspectral Demosaicking and Crosstalk Correction using Deep Learn-
ing (DsNet)

The method presented in the article [39] leverages an end-to-end deep learning framework to correct
crosstalk and perform demosaicing in hyperspectral images. This network is based on CNN and is
trained to identify and correct the interference between different spectral bands (crosstalk) and recon-
struct full-resolution images from the SSI images. The network is trained with datasets containing
known crosstalk and resolution characteristics, enabling it to apply learned patterns to new images.

2.3.3 Deep Panchromatic Image Guided Residual Interpolation for Multi-
spectral Image Demosaicking (DGRI)

Pan et al. [115] proposed DGRI, a two-stage process utilizing deep learning for MSFA demosaicing.
The initial stage involves using a ResNet-based deep learning model, DPI-Net, to create a high-
quality panchromatic image from the raw MSFA data. This panchromatic image serves as a guide in
the subsequent stage, where a two-pass guided residual interpolation method is applied to estimate
and refine the missing spectral information for each pixel.

2.3.4 Deep Convolutional Networks for Snapshot Hyperspectral Demosaick-
ing (SpNet)

The paper [66] employs deep convolutional neural networks (CNNs) based on the HSCNN+ architec-
ture [162]. It includes 16 residual blocks and convolutional layers at both the input and output stages,
each accompanied by ReLU activation layers. The entire system is trained on simulated datasets of
hyperspectral images.

2.3.5 Deep Learning Approach for Hyperspectral Image Demosaicking, Spec-
tral Correction and High-resolution RGB Reconstruction

The method in [95] primarily focuses on enhancing medical imaging applications by generating high-
resolution RGB images from restored hyperspectral data cubes. This process is important for surgical
imaging, where precise visual clarity and color accuracy are essential for effective decision-making
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during surgeries. The method employs a CNN that incorporates the response of the Fabry-Perot
filter (FPf) filter into the simulation of data. After restoring the image through demosaicing, spectral
correction is applied, as Chapter 1 of the thesis outlines. Notably, applying the spectral correction
matrix is integrated into the neural network training stage. This integration ensures that the network
learns to reconstruct the hyperspectral image and simultaneously corrects spectral inaccuracies. The
final output is an RGB image derived from the corrected and enhanced hyperspectral data optimized
for medical applications.

2.3.6 Mosaic Convolution-Attention Network for Demosaicing Multispectral
Filter Array Images

Feng et al. [46] developed Mosaic Convolution-Attention Network (MCAN), a novel approach for
demosaicing SSI images. The network employs the Mosaic Convolution Module (MCM) and the
Mosaic Attention Module (MAM).

1. Mosaic Convolution Module (MCM): This module handles the splitting of the periodic spectral
mosaic in raw images. It does so while preserving the complete spatial information. The MCM
unique feature is its position-sensitive weight-sharing strategy, which assigns weights based on
the pixel relative position in the spectral mosaic pattern, as shown in Fig. 2.6.

2. Mosaic Attention Module (MAM): Complementing the MCM, the MAM targets the reduction
of mosaic distortion within the spectral feature maps. It employs a novel position-sensitive
feature aggregation strategy, termed “mosaic pooling”, to aggregate features in the same relative
position of the MSFA pattern. This module refines the spectral feature maps by focusing on the
mosaic patterns, reducing distortion, and enhancing the overall image quality.

2.3.7 Hyperspectral Demosaicing of Snapshot Camera Images Using Deep Learn-
ing

The article [157] introduces a DL method particularly useful in fields requiring rapid image capture
such as agricultural inspection. This technique uses a parallel neural network architecture trained on
a newly developed ground truth dataset captured in a controlled environment with a hyperspectral
snapshot camera. The dataset combines real-world captured scenes with simulated images adapted
to the camera 4 × 4 mosaic pattern. The proposed demosaicing network employs feature extraction
layers and two deconvolution layers. It operates by first converting the mosaic to a sparse cube and
then enhancing features through residual blocks to efficiently handle different spectral and spatial
information.
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Figure 2.6 – Mosaic convolution module (MCM) for one channel case

2.3.8 Joint Spatial-spectral Pattern Optimization and Hyperspectral Image
Reconstruction

Zhang et al. [179] introduce a deep-learning-based approach adopted from a super-resolution prob-
lem to optimize spatial and spectral patterns jointly. This method employs a CNN that involves joint
optimization of the MSFA and spectral sensitivity functions (SSFs) patterns, which are critical for
capturing high-quality spatial and spectral details. The network learns to optimize these patterns di-
rectly during training, allowing for a more integrated and efficient hyperspectral image reconstruction
process. It is worth noting that the article introduces the concepts of spatial demosaicing (SpaDM)
and spectral super-resolution (SpeSR), which are traditionally performed sequentially. The method
employs them simultaneously to reduce the errors accumulated when these processes are separated.

2.3.9 MSFA-Frequency-Aware Transformer for Hyperspectral Images Demo-
saicing (FDM-Net)

Zeng et al. [174] introduce FDM-Net. A novel demosaicing framework incorporating a unique
MSFA-frequency-aware multi-head self-attention mechanism called MaFormer and a Fourier zero-
padding method [44] to effectively separate and reconstruct high-frequency and low-frequency com-
ponents of the HSI. The model leverages the MSFA pattern information and non-local dependencies
to enhance the demosaicing process, particularly improving the recovery of high-frequency details,
which are often challenging to restore using conventional methods.
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2.3.10 A Snapshot Multi-Spectral Demosaicing Method for Multi-Spectral Fil-
ter Array Images Based on Channel Attention Network

The article [180] introduces a novel approach that leverages a channel attention network integrated
with a CNN to improve the demosaicing of multi-spectral images. The network utilizes a CNN as
the fundamental building block. CNNs are particularly effective in extracting hierarchical features.
Then, the channel attention mechanism focuses on enhancing specific features within the data channel
dimension. The network prioritizes which features are most relevant for reconstructing the missing
values by weighting the import of each channel.

2.3.11 Discussion and Insights
In this section, we explored deep learning methods for demosaicing multispectral filter array (MSFA)
images. These methods leverage complex neural network architectures, including Convolutional Neu-
ral Networks (CNNs), Residual Networks (ResNets), Attention Networks, and Transformers, to ad-
dress the challenges associated with reconstructing high-quality images from MSFA images. Table
2.2 summarizes all methods ordered by their publication date.

Deep learning approaches generally demonstrate superior performance over traditional methods,
especially in handling high-dimensional data and preserving details and color accuracy. Despite these
advancements, deep learning methods face significant challenges, notably in generalization and data
requirements. They often require large amounts of labeled training data to perform effectively. Fur-
thermore, these models may struggle to generalize to new, unseen data or different MSFA configu-
rations not included in the training set. To address these challenges, future research in deep learning
for MSFA demosaicing could focus on developing more robust models that require less training data
and can generalize better across different MSFA patterns. Techniques such as transfer learning [77],
few-shot learning [139], and synthetic data generation [50] could play significant roles in achieving
these goals. Additionally, integrating unsupervised or semi-supervised learning paradigms could re-
duce the dependency on large labeled datasets and help improve the model ability to generalize to
new conditions.

Table 2.2 – Deep Learning Methods for MSFA Demosaicing.

Method Name Key Characteristics Architecture Publication
Date

Deep demosaicking for multispectral
filter arrays (In-Net) [137]

Uses ResNet for
refining preliminary

interpolations

ResNet, CNN 2018

Hyperspectral demosaicking and
crosstalk correction using deep

learning (DsNet) [39]

Corrects crosstalk and
performs demosaicing

CNN 2018

Continued on next page
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Table 2.2 – continued from previous page
Method Name Key Characteristics Architecture Publication

Date
Deep Panchromatic Image Guided

Residual Interpolation for
Multispectral Image Demosaicking

(DGRI) [115]

Guides demosaicing
with a high-quality

panchromatic image

ResNet, CNN 2019

Deep convolutional networks for
snapshot hyperspectral demosaicking

(SpNet) [66]

Utilizes HSCNN+
architecture for

demosaicing

CNN 2019

Deep learning approach for
hyperspectral image demosaicing,

spectral correction, and
high-resolution RGB reconstruction

[95]

Optimizes medical
imaging applications

CNN 2021

Mosaic Convolution-Attention
Network for Demosaicing

Multispectral Filter Array Images
(MCAN) [46]

Incorporates attention
mechanisms to focus
on relevant features

Attention Network,
CNN

2021

Hyperspectral demosaicing of
snapshot camera images using deep

learning [157]

Uses a parallel neural
network trained on a

new ground truth
dataset

ResNet, CNN 2022

Joint spatial-spectral pattern
optimization and hyperspectral image

reconstruction [179]

Employs CNN for
optimizing MSFA and

SSFs patterns

CNN 2022

MSFA-Frequency-Aware
Transformer for Hyperspectral

Images Demosaicing (FDM-Net)
[174]

Incorporates
MaFormer and

Fourier zero-padding
to enhance high and

low-frequency details

Transformer, CNN 2023

A Snapshot Multi-Spectral
Demosaicing Method for

Multi-Spectral Filter Array Images
Based on Channel Attention Network

[180]

Uses a channel
attention network
integrated with a

CNN for enhanced
feature extraction

CNN, Channel
Attention Network

2024
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2.4 Conclusion
This chapter extensively explored the diverse methodologies applied in demosaicing snapshot spectral
images. Traditional methods remain relevant, showing persistent development with recent studies
extending into 2023. Deep learning-based methods have also made significant strides, providing
advanced solutions that often surpass traditional methods of detail preservation and computational
efficiency. However, despite their advanced capabilities, these methods face challenges such as high
data requirements and limited generalization. This can hinder their applicability when training data
is limited and highly variable.

Finally, it is worth noting that Tsagkatakis et al. [143] stated that applying classification di-
rectly on SSI images post-demosaicing often leads to unsatisfactory performance. This limitation is
primarily attributed to the estimation errors introduced during the demosaicing process, which can ac-
cumulate and propagate into subsequent image-processing tasks. This insight is essential for directing
future research efforts toward developing new approaches that bridge the gap between demosaicing
and subsequent image processing tasks like classification or unmixing.
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Chapter 3

Post-Processing of Demosaiced Images:
Unmixing Techniques

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

— Alan Turing

3.1 Introduction
In the field of snapshot spectral imaging, constructing a 3-D datacube from captured images is only
the beginning of extracting meaningful information. Once a complete datacube has been demosaiced,
a range of post-processing tasks can be applied, e.g., unmixing, classification, anomaly detection,
or change detection. These processes are fundamental in translating the raw spectral data into inter-
pretable insights.

Hyperspectral unmixing (HU) is the process that separates the pixel spectra from a hyperspectral
image into a collection of endmembers and a set of fractional abundances. The endmembers represent
the pure materials in the image, and the abundances at each pixel represent the percentage proportion
of the presence of each endmember in the pixel [23].

This chapter delves into the diverse techniques and challenges associated with hyperspectral un-
mixing, providing a brief overview of the methods utilized to unmix hyperspectral data. While ex-

Figure 3.1 – Example of hyperspectral unmixing (source: adapted from [99]).
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Figure 3.2 – Mixed and pure pixels in hyperspectral image (Source [33])

tensive studies and classifications of unmixing methods exist in the literature [23, 21, 47, 73, 26,
58], this chapter will not aim to exhaustively revisit these methodologies. Instead, we will briefly
outline a general classification of unmixing techniques to set the stage for a focused examination of
Nonnegative Matrix Factorization (NMF) and Sparse Component Analysis (SCA) because these two
approaches are particularly relevant to our proposed frameworks.

3.2 Fundamentals of Hyperspectral Unmixing

Hyperspectral unmixing (HU) refers to any process that separates the pixel spectra from a hyperspec-
tral image into a collection of constituent spectra, or spectral signatures, called endmembers, and a
set of fractional abundances, one set per pixel. The endmembers are generally assumed to represent
the pure materials present in the image and the set of abundances, or simply abundances, at each pixel
to represent the percentage of each endmember that is present in the pixel [70, 23].

In hyperspectral imagery, pixels typically fall into two categories: mixed and pure. Pure pixels are
those where the observed spectrum corresponds exclusively to a single material without interference
from other materials within the sensor field of view. These are ideal for the straightforward identi-
fication of endmembers because they represent the spectral signatures of the materials. Conversely,
mixed pixels contain spectral signatures from multiple materials. These occur due to the spatial res-
olution limits of the hyperspectral sensors, where the area represented by a single pixel may include
several different materials, as illustrated in Fig. 3.2. The challenge in hyperspectral unmixing lies in
accurately decomposing these mixed pixels into their constituent endmembers and determining the
proportion of each endmember, respectively, the abundances.
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(a) Linear Mixing (b) Nonlinear Mixing

Figure 3.3 – Linear and Nonlinear mixing models (Source [134])

The mixing model in mixed pixels can be characterized as either linear or nonlinear [58, 23,
70]. Linear mixing holds when the mixing scale is macroscopic, and the incident light interacts with
just one material, as shown in Fig. 3.3(a). Conversely, nonlinear mixing is usually due to physical
interactions between the light scattered by multiple materials in the scene as shown in Fig. 3.3(b).
These interactions can be at a classical, multilayered, a microscopic or intimate level [25, 23].

In addition to spectral mixing effects, many other interferences can significantly affect the process
of analyzing hyperspectral data as shown in Fig. 3.4. These external factors can introduce errors and
spectral variability [26] that complicate the unmixing process:

• Atmospheric Interferences: Atmospheric conditions such as the presence of water vapor and
various gases can act as potential sources of errors in spectral unmixing. These atmospheric
constituents can absorb and scatter electromagnetic radiation as it travels from the earth surface
to the sensor, altering the observed spectral signatures [101].

• Multiple Scattering Effects: The phenomenon of multiple scattering—where light rays bounce
off multiple surfaces before reaching the sensor—can also lead to model inaccuracies. This
effect mainly exists in complex environments like urban areas or dense forests, where light
interacts with multiple surfaces at different angles. Multiple scattering can result in nonlinear
mixture which complicate the unmixing process [12].

• Shadows and Variable Illumination Conditions: Shadows can cause underestimation of re-
flectance values, which may lead to incorrect interpretations of the material properties. Variable
illumination—due to changes in sunlight angle and cloud cover—can similarly alter the appear-
ance of the landscape in hyperspectral images taken at different times or dates [26].

Finally, the hyperspectral unmixing processing chain typically involves atmospheric correction,
dimensionality reduction, and the unmixing process. Dimensionality reduction is essential since the
data dimensionality is usually much lower than the number of available bands. Identifying the appro-
priate subspaces is essential for reducing dimensionality, which can enhance algorithms performance
and reduce both computational complexity and data storage needs [23, 58].
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In this chapter, we focus exclusively on methods related to the Linear Mixing Model (LMM),
which can be mathematically expressed as follows:

xi =

p∑
j=1

gij · fj + ωi (3.1)

where:

• · denotes the dot product.

• xi is the observed spectral vector for the i-th pixel.

• gij is the abundance of the j-th endmember in the i-th pixel.

• fj is the spectral signature of the j-th endmember.

• ωi is an additive noise vector for the i-th pixel.

• p is the number of endmembers.

To ensure the physical meaning of the abundances, two main constraints are imposed:

1. Abundance Nonnegativity Constraint (ANC):

gij ≥ 0, ∀i, j (3.2)

This constraint ensures that the abundances are non-negative, meaning that the proportion of
each endmember cannot be less than zero.

2. Abundance Sum-to-One Constraint (ASC):

p∑
j=1

gij = 1, ∀i (3.3)

This constraint ensures that the abundances sum to one, meaning the total proportion of all
endmembers in a pixel is exactly one.
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Figure 3.4 – Example of atmospheric interferers, multiple scattering, and shadows and variable Illu-
mination effects (Source [33])

3.3 Hyperspectral Unmixing Methods
Hyperspectral unmixing aims at decomposing mixed pixel spectra into a collection of spectral sig-
natures or endmembers and their corresponding abundance fractions. This decomposition is critical
for identifying and quantifying the materials present within each pixel of a hyperspectral image.
Various unmixing methods have been developed, each designed to leverage different aspects of the
data and assumptions about the scene. These methods fall into four categories: geometrical1, sparse
regression-based, deep learning-based, and statistical [47]. Each category encompasses a range of
algorithms designed to address specific challenges posed by hyperspectral data, such as nonlinearity,
noise, and high dimensionality. This section will explain each category briefly and the main methods
that it encompasses. Fig. 3.5 presents a visual classification of hyperspectral unmixing algorithms.

3.3.1 Geometrical Methods

Geometrical approaches to hyperspectral unmixing rely on the fact that linearly mixed vectors form a
simplex set or a positive cone. These approaches are typically executed in two steps. First, they aim to
estimate the endmember matrix. Then, the abundance matrix can be derived as a nonnegative regres-
sion problem. These methods are categorized into two main subcategories: Pure Pixel (PP) based
and Minimum Volume (MV) based. The pure-pixel-based2 algorithms operate under the “pure-pixel
assumption,” which states that for each endmember present in the image, at least one pixel consists
entirely of that material without mixing with other materials. When this assumption is satisfied, the
endmembers can be found in the data matrix. The challenge of these methods lies in how they iden-

1Most methods in this category are statistical methods with geometrical interpretations.
2This family of methods was discovered in the mathematics, computer science, and signal processing communities

under the names of “separable” or “convex” Nonnegative Matrix Factorization (NMF).
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Figure 3.5 – Classification of Hyperspectral Unmixing Algorithms. Supervised methods are high-
lighted in orange, and unsupervised methods in blue.

tify these pure pixels. The classical methods include the pixel purity index, N-FINDR, iterative error
analysis, vertex component analysis (VCA), simplex growing algorithm, and the sequential maximum
angle convex cone [23].

PPI projects spectral vectors onto numerous random vectors to identify extreme points, assuming
the existence of pure pixels. N-FINDR inflates a simplex within the data to find the set of pixels that
define the maximum volume. IEA implements a series of linear constrained unmixing, each time
choosing those pixels as endmembers to minimize the remaining error in the unmixed image. VCA
projects data in directions orthogonal to the subspace spanned by already identified endmembers. The
new endmember signature corresponds to the extreme of the projection. The algorithm iterates until
all endmembers are exhausted. SGA iteratively grows a simplex by adding vertices that maximize
the simplex volume, which can handle moderate mixing but struggles without pure pixels. SMACC
constructs a convex cone and selects new endmembers based on the maximum angle formed with the
existing cone.

Minimum Volume-Based algorithms focus on identifying the smallest simplex or cone that can
contain all the data points. The motivation behind these methods is that the true endmembers should
define a volume as small as possible, assuming that smaller volumes reduce the chances of including
mixed or outlier pixels within the endmember set. Minimum Volume Simplex Analysis (MVSA)
[93] is a notable MV method, which aims to minimize the volume of the simplex while ensuring that
all data points are contained within or are very close to the simplex boundaries. Minimum Volume
Enclosing Simplex (MVES) [28] and Robust Minimum Volume Enclosing Simplex (RMVES) [15]
further refine the approach by adding robustness to noise and outliers, ensuring that the simplex
accurately represents the pure materials.

Sparse Component Analysis (SCA) is one of the main approaches to Blind Source Separation
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(BSS). When applied to hyperspectral data, while a few SCA methods assume the endmembers to be
locally sparse [123], most works focused on the sparsity of the abundances [35] . Finally, while SCA
is not truly a geometrical approach, it incorporates some geometrical constraints and utilizes similar
assumptions to those found in geometrical methods. We will discuss SCA further in section 3.5.

3.3.2 Sparse regression-based Methods
Sparse regression-based methods depend on a spectral signature library and suppose each pixel in the
image as is a linear combination of a set of pure spectral signatures in this library, i.e., contrary to
the above methods, they are supervised. Multiple methods incorporating weights have been proposed
to enhance the sparsity of endmembers in the spectral library and boost the sparsity of fractional
abundances [176, 92, 128, 80]. Sparse regression-based optimization problem can be expressed as:

min
G
‖X −GF‖22 + λ‖G‖1 (3.4)

where:

• X is the observed spectral data matrix.

• F is the dictionary matrix containing spectral signatures (endmembers).

• G is the abundance matrix to be estimated.

• ‖ · ‖22 denotes the Frobenius norm, which measures the reconstruction error.

• ‖ · ‖1 denotes the `1-norm, which promotes sparsity in the abundance matrix G.

• λ is a regularization parameter that controls the trade-off between the data fitting term and the
sparsity term.

The constraints for the optimization problem are:

Gij ≥ 0, ∀i, j (3.5)

p∑
j=1

Gij = 1, ∀i (3.6)

3.3.3 Deep Learning-Based Methods
Recently, deep learning has shown remarkable power and potential in pattern recognition. Therefore,
multiple methods have been proposed using autoencoder and its variants for hyperspectral unmixing,
achieving more competitive unmixing performance [114, 118, 113, 21]. However, these approaches
still suffer from drawbacks because they require a lot of training and network parameters to achieve
acceptable unmixing performance [47].
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3.3.4 Statistical Methods

When the mixtures are highly mixed, the geometrical-based methods generate unsatisfactory results
because there are insufficient spectral vectors in the simplex facets. Instead, the statistical methods can
be used to simultaneously identify the endmembers and their corresponding abundances by utilizing
the HSI statistical properties. Independent component analysis (ICA) is a popular statistical method,
but its use is not applicable in its standard way because the independence assumption is not valid
due to sum-to-one constraints [111]. Still, modified ICA can be used for initializing other unmixing
methods [20]. Nonnegative matrix factorization (NMF) is one of the most used statistical methods
for unmixing. NMF provides a good fit for hyperspectral unmixing due to its nonnegativity and
interpretability. We will discuss NMF further in section 3.4.

3.3.5 Discussion

In addition to the aforementioned categories, unmixing methods can also be differentiated based on
their assumed mixing models: linear and nonlinear. In the linear mixing model (LMM), the observed
spectrum at each pixel is considered as a linear combination of a set of endmemebers weighted by
their abundance fractions. Contrarily, nonlinear mixing is due to the physical interactions between
the light scattered by multiple materials in the scene. Most of the methods mentioned above have
a low generalization ability in the nonlinear case. While bilinear and linear-quadratic models [103]
can tackle the nonlinearity in the mixtures and have a satisfactory unmixing performance simulta-
neously. Many methods have been proposed to that end, e.g., [171, 104, 167]. Further, unmixing
techniques can be classified based on their approach to the availability of prior knowledge: unsu-
pervised methods, which do not rely on known endmembers and typically include geometrical and
statistical approaches, and supervised methods, which utilize known spectral libraries as in sparse
regression-based methods.

Finally, the endmembers can be significantly affected by atmospheric, illumination, or environ-
mental variations within an image. Unfortunately, traditional spectral unmixing algorithms disre-
gard the spectral variability of the endmembers, which reproduces significant errors throughout the
whole unmixing process and compromises the quality of its results. Therefore, multiple methods
have been proposed to take spectral variability into account [26]. Zhang et al. [175] proposed a
convex optimization-based method for spectral variability-augmented reconstruction. Liu et al. [97]
introduced a wavelet domain approach with Bayesian methods for more accurate spectral variability
handling.

3.4 Nonnegative Matrix Factorization (NMF)

NMF is a powerful analytical tool with extensive applications in image processing, data mining,
and signal processing, particularly within hyperspectral unmixing [47]. NMF aims to decompose a
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nonnegative data matrix X into two lower-rank nonnegative matrices G and F , as follows

X ≈ G · F (3.7)

where · denotes the dot product. Since an exact decomposition is generally not achievable, the approx-
imation is typically assessed using several cost functions. The classical NMF optimization problem
using the Frobenius norm is defined as:

min
G,F≥0

‖X −G · F‖2F , (3.8)

where ‖ · ‖F denotes the Frobenius norm. To solve the NMF problem, multiple standard methods can
be employed, such as Multiplicative Updates (MU), Hierarchical Alternating Least Squares (HALS),
and Alternating Least Squares (ALS) [59].

In hyperspectral imaging, X represents the observed data matrix, consisting of the spectral signa-
tures of all pixels in the image, G is the abundance matrix, containing the proportions of each material
present in every pixel, and F is the endmember matrix, representing the pure spectral signatures of
the materials found within the scene. The fundamental assumption in NMF is that the endmembers
and their corresponding abundances in the data are nonnegative. Several NMF-based HU methods
have been proposed to seek better unmixing performance, which can be classified into three groups
[47]:

• Constrained NMF

• Structured NMF

• Generalized NMF

For a comprehensive overview of NMF and its extensive applications beyond hyperspectral un-
mixing, interested readers are encouraged to refer to [164]. In this section, we focus specifically on
applying NMF in hyperspectral unmixing.

3.4.1 Constrained Nonnegative Matrix Factorization
Constrained Nonnegative Matrix Factorization is a variant of the basic NMF that incorporates addi-
tional constraints into the optimization process to improve the unmixing performance. These con-
straints can be related to the properties of the endmembers and their abundances, helping to guide the
factorization towards more physically meaningful solutions [47].

The general form of the Constrained NMF optimization problem can be expressed as:

min
G,F≥0

D(X,G · F ) + αJ1(G) + βJ2(F ), (3.9)

subject to G ≥ 0 and F ≥ 0. Here, J1(G) and J2(F ) are regularization terms for the endmembers
and abundances, respectively, while α and β are nonnegative parameters that control the influence of
these regularization terms.
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The constraints for endmembers are integrated into NMF to account for endmember variability
[135], smoothness [83], manifold constraints [100] and introducing prior spectral information [142].

Abundance constraints ensure that the abundance coefficients meet certain criteria, sum-to-one
[47], sparsity [129, 183, 83], and manifold constraints [100].

3.4.2 Structured Nonnegative Matrix Factorization

Structured Nonnegative Matrix Factorization is a class of methods that incorporate additional struc-
tures into the factorization to handle specific problems in hyperspectral unmixing, such as accounting
noise or accommodating missing data.

• Weighted Nonnegative Matrix Factorization (WNMF) is an extension of NMF that is par-
ticularly useful for dealing with data matrices X where some entries are missing or unreliable.
WNMF aims to reconstruct the missing parts of X by introducing a weight matrix W where
each entry wij indicates the reliability or availability of the corresponding entry in X . This
approach modifies the NMF objective as follows:

min
G,F≥0

‖W ◦ (X −G · F )‖2F , (3.10)

where ◦ denotes the Hadamard product, and ‖ · ‖F denotes the Frobenius norm.

WNMF can be sovled using different strategies:

– Directly incorporating the weights into the update rules [75],

– Using an Expectation-Maximization (EM) framework [41],

– Employing stochastic gradient descent focusing on the available data points [89].

Among these strategies, the EM approach is reported to be particularly effective, offering faster
convergence and greater accuracy [41]. The EM strategy for WNMF includes two iterative
steps: the Expectation (E-step) and the Maximization (M-step).

In the E-step, the expected complete data matrix Ŷ is estimated considering both the known
data and the best estimates for the missing data, given by:

Ŷ = W ◦X + (1−W ) ◦ (Ĝ(t−1) · F̂ (t−1)), (3.11)

where 1 is an matrix of ones with the same size as W , and Ĝ(t−1) and F̂ (t−1) are the estimates
of G and F from the previous iteration (t− 1).

The M-step then consists of applying standard NMF update rules to Ŷ to derive Ĝt and F̂ t.
Once NMF converged to a given solution [177] or after a given number MaxoutIter of iterations
[41], Ŷ is updated in another E-step using the last estimates of Gt and F t [177, 41].
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• Project-based Nonnegative Matrix Factorization (PNMF) incorporates a predefined spectral
library within the NMF framework using the same principles of sparse regression-based meth-
ods [173]. This method introduces a transformation matrix V to project relevant spectra from
the spectral library U onto a subspace, thereby obtaining the projected endmembers expressed
as F = UV . The optimization problem can then be formulated as follows:

min
V≥0,G≥0

‖X − UV G‖2F (3.12)

This approach generates endmembers from the spectral library and directly ties them to the
hyperspectral images.

• Robust Nonnegative Matrix Factorization (Robust NMF) adapts the classic NMF frame-
work to better handle the diverse noise types that can affect hyperspectral images e.g., Gaussian
noise. The standard NMF is particularly sensitive to such noise, which can significantly degrade
the unmixing performance. To enhance the robustness of NMF against these noises, various
models have been developed that employ different metrics and regularizers designed to be less
sensitive to outliers, Gaussian, and non-Gaussian noise distributions. These include Bounded
Itakura–Saito (IS) Divergence [91], L2,1-Norm Regularizer [49, 76] and Cauchy Function [150].

3.4.3 Generalized Nonnegative Matrix Factorization
Generalized Nonnegative Matrix Factorization extends the traditional NMF framework to adapt to
various specific challenges by modifying the factorization approach. This generalization encompasses
several subcategories:

• Multilayer/Deep Extensions of NMF incorporate multiple layers or levels of factorization,
aiming to capture more complex structures and relationships within the data [130, 45].

• Nonnegative Tensor Factorization (NTF) deals with third-order tensors, which are the high-
dimensional extensions of matrices [160]. This is particularly useful in hyperspectral imaging,
where data naturally forms a three-dimensional tensor.

• Linear-quadratic NMF considers nonlinear interactions among the endmemebers by incorpo-
rating quadratic terms in the factorization model, allowing for the modeling of more complex
spectral signatures [171].

• Kernelized NMF is introduced for nonlinear hyperspectral unmixing without the need of esti-
mating the nonlinear mixture model [96, 182].

3.5 Sparse Component Analysis
Sparse Component Analysis (SCA) is a mathematical framework initially developed to address the
challenges of audio source separation and has since been expanded to encompass a broader range
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of applications, including hyperspectral unmixing and (post-)nonlinear mixtures [141, 145, 36, 126,
127]. SCA works primarily on signal sparsity, which means that signals can often be represented as
sparse in some domain, whether temporal, frequency, or time-frequency. In HSI, “signal sparsity”
can be either endmember sparsity [127] or abundance sparsity [85]. The advantage of SCA lies
in its ability to decompose complex mixtures into their sources without requiring prior information
about the mixing process. This characteristic is useful in environments where traditional methods
might fail due to the complexity of source overlaps or when the mixing elements are unknown or
complex. The methodology leverages mathematical techniques that transform signals into domains
where their sparse characteristics are most evident, such as through the Fourier transform. SCA
effectively exploits the sparse nature of data in this domains and isolates the individual components
[8, 37, 124, 63, 31]. SCA leverages several sparsity assumptions to isolate individual sources:

• 1-sparse sources: a source is considered 1-sparse if, within a given observation vector at a
specific time or transformed domain—such as time-frequency—only one source is active while
all others are not active. This high sparsity level is beneficial in environments where sources
do not overlap significantly in the time-frequency domain, such as in certain types of audio
processing where different sounds appear distinctly over time. This assumption was key in
early applications, such as the audio separation method described in [170].

• Sources are accessible: A source is considered accessible when there are zone within the
observation space—referred to as “single-source zones”—where the source is active while all
other sources remain inactive [35]. This assumption simplifies isolating and identifying each
audio source from a complex mixture. Methods like TiFROM [9]—later extended in [8, 124]—
utilize this concept to enhance the effectiveness of SCA. The notion of accessibility of sources
is similar to the “pure-pixel” assumption in hyperspectral unmixing. This assumption states that
for each endmember present in the image, at least one pixel consists entirely of that material
without mixing from other materials. Karoui et al. [85] extend the current SCA for applying
hyperspectral unmixing to hyperspectral images by assuming abundance sparsity. The process
involves identifying zones within the data where only one endmember is active. These zones
are essential for estimating tentative endmembers based on observed data. Then, a clustering
stage is employed to refine these estimates into a definitive set of unique endmembers. Finally,
the abundances of each endmember in the hyperspectral images are estimated by solving an
inverse problem.

• q-sparse sources: assume that up to q sources may be active simultaneously at any given obser-
vation point. This scenario often arises in complex signal environments where multiple sources
contribute to the observed data simultaneously [109]. A similar concept is applied through
methods that involve constraints like the Minimum Volume Constraint in hyperspectral unmix-
ing, which focus on minimizing the volume of the convex hull formed by the endmembers in
feature space [122]. Benachir et al. [19] proposed a geometrical method for blind unmixing
of hyperspectral data using a two-source sparsity constraint, assuming at most two endmem-
bers per local region. The methodology involves selecting local regions, extracting pairs of
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endmembers based on their geometrical structure, and estimating their abundances with least
squares.

3.6 Conclusion
In this chapter, we explored the fundamentals of the unmixing process, which attempts to decom-
pose hyperspectral images into endmembers and abundances. We discovered a set of hyperspectral
unmixing methods categorized into four groups: Geometrical, Statistical, Sparse Regression-Based,
and Deep Learning-Based methods.

Geometrical methods are particularly useful in scenarios where pure pixels exist within the im-
age, allowing for a straightforward identification and extraction of endmembers. While Statistical
methods are useful when geometrical approaches fail, especially in highly mixed scenarios where the
separation of spectral signatures becomes more complex. Sparse regression methods are supervised
approaches that utilize a predefined spectra library to facilitate the unmixing process. In contrast,
Deep Learning methods require extensive training data to achieve good performance but are increas-
ingly favored for their ability to handle complex scenarios where training data are available.

As our focus is on Nonnegative Matrix Factorization (NMF) for our frameworks, we discussed
its usage in unmixing. We identified three main categories of NMF: Constrained, Structured, and
Generalized NMF, each dedicated to addressing specific challenges in hyperspectral imaging.

Finally, we explored Sparse Component Analysis (SCA), a framework initially introduced for
audio source separation and later adapted to hyperspectral unmixing.

By the end of this chapter, we conclude the first part of the thesis, in which we conducted an
extensive study of snapshot spectral imaging and post-processing technologies, including spectral
correction, demosaicing, and unmixing. In the next part, we will discuss our frameworks for perform-
ing the post-processing techniques for snapshot spectral images.
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Part II

Proposed Frameworks

99



Chapter 4

Locally-Rank-One-Based Joint Unmixing
and Demosaicing Methods for Snapshot
Spectral Images: a Matrix Completion
Framework

“Innovation is seeing what everybody has seen and thinking what nobody has thought.”

— Albert Szent-Györgyi

4.1 Introduction
In the preceding chapters, we introduced the fundamentals of snapshot spectral imaging and the de-
mosaicing process. Demosaicing is a crucial preliminary step that reconstructs a full 3-D datacube
from the raw data acquired by snapshot spectral cameras. Once this datacube is constructed, any post-
processing applications, e.g., unmixing or classification, can be applied to translate the raw spectral
data into interpretable and actionable insights as shown in Fig. 4.1. However, as Tsagkatakis et al.
[143] have stated that applying classification on demosaiced SSI images often leads to unsatisfac-
tory performance. Contrastingly, most existing unmixing methods are designed to work on the full
3-D datacube and do not account for the inherent missing entries typical in snapshot imaging scenar-
ios. Furthermore, in the context of in-situ mobile sensor calibration, it has been demonstrated that
a combined approach of low-rank matrix completion and factorization is significantly more efficient
than a sequential two-stage process of matrix completion followed by factorization [42]. This gap in
methodology underscores a crucial limitation in current practices, where the intricate balance between
demosaicing and unmixing is not adequately addressed.

Recognizing this issue, our proposed approach seeks to perform demosaicing and unmixing jointly.
This integrated methodology aims not only to enhance unmixing results but also to maintain optimal
demosaicing performance.
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Figure 4.1 – Overview of acquisition and processing on a scene contains three endmemebers (sand,
rocks, and eggs). The SSI image can be processed either by a two-stage approach or by applying
unmixing and demosaicing jointly to restore the data cube, extract the endmembers, and find the
abundance maps.

In this chapter1, our contributions to the field of Snapshot Spectral Imaging (SSI) are outlined as
follows:

• We concentrate on establishing a general framework for demosaicing images, applicable to
various Multispectral Filter Arrays (MSFAs) [90]. This broad-scope framework sets the foun-
dation for our comprehensive methods in “demosaicing” and “unmixing” hyperspectral images
captured by SSI cameras.

• Our investigation is driven by the hypothesis that combining low-rank matrix completion and
factorization is more efficient than a two-stage process involving these components separately.

• Three innovative methods are proposed for RAW SSI image demosaicing and unmixing:

– The first is a Naive approach directly derived from Weighted NMF (WNMF).

– While building on the Naive approach, the second and third methods operate under the
assumption of sparsity within sensor “patches” mainly dominated by a single unique end-
member. These methods differ in their assumptions and treatment in cases involving mul-
tiple endmembers.

– The second and the third methods incorporate (i) rank-1 WNMF within the “patches”, (ii)
a single-source confidence metric, (iii) an endmember extraction stage, and (iv) a final
abundance estimation step.

Building on the general framework established in this chapter, Chapter 5 will explore the complete
pipeline provided by the camera manufacturer, focusing on new unmixing approaches for RAW SSI
images. This chapter is designed specifically for applications involving Fabry-Perot filters or MSFA
sensors with less selective filters, addressing complex scenarios often encountered in practice.

1Methods introduced in this chapter were published in [6, 4, 3].
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4.2 Problem Statement
As previously mentioned, the considered SSI technology operates on a mosaic of Fabry-Perot filters,
allowing each camera pixel only to capture one unique narrow band of wavelengths in the ideal case.
Unmixing the SSI images requires processing the images to build the 3-D data cube. We aim to apply
the unmixing and demosaicing jointly, starting from the raw SSI data (see Fig. 4.2). As a consequence,
in this section we define the SSI system and the joint demosaicing and unmixing problem we aim to
solve.
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Figure 4.2 – Principles of the two-step (in green) and joint (in red) strategies.

Formally, an SSI camera captures a two-dimensional image consisting of m × n pixels for each
exposure, where m and n represent the pixel counts in the horizontal and vertical dimensions, respec-
tively. Each of the spatial pixels among the m · n available ones corresponds to a distinct spectral
band from a total of k bands2 expected to be acquired by the camera. More specifically, this signifies

2Typical values of k are 16 or 25, such that the patch is of size 4× 4 or 5× 5, respectively.
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that an SSI image can be seen as a two-dimensional projection of a theoretical 3-D data cube with
dimensions m× n× k, which we will now formalize and model.

Following an unfolding strategy commonly utilized in unmixing, we express the theoretical 3-D
data cube as an (m · n)× k matrix whose rows correspond to spatial positions while column indices
are linked to wavelengths. As suggested in [143], it becomes feasible to create a data matrix of
dimensions (m · n) × k denoted as X , which contains missing entries. Both matrices X and Y are
linked through

W ◦X = W ◦ Y, (4.1)

where W represents a binary weight matrix, with its non-zero entries indicating the wavelengths
observed by the camera, Y is the unfolded 3-D data cube, X is the unfolded and expanded SSI
image—so that X and Y share the same dimensions, see Fig. 4.2—and the symbol ◦ signifies the
Hadamard product between matrices. Similarly, applying the unfolding process to the m × n SSI
image, as we did for the data cube Y , results in an (m · n)× 1 vector denoted as z. In this vector, the
i-th entry corresponds to the non-null value found in the i-th row ofX . Since the binary weight matrix
W is known, obtaining X from z is a straightforward process and vice-versa. Hence, we can assume
that X represents the original data matrix derived from the SSI acquisition process. The process of
retrieving Y from X corresponds to “demosaicing” the SSI image. In practice, this can be addressed
by, e.g., incorporating the assumption that Y is low-rank [143].

Additionally, we make the assumption that every row of Y can be represented as a linear mixture
of the spectra corresponding to the materials observed by the camera—a.k.a. endmembers—i.e.,

Y ≈ G · F, (4.2)

where F represents the p×k matrix of endmembers,G represents the (m·n)×p abundance matrix, and
p represents the number of endmembers present in the scene. Equation (4.2) is not only a very classical
model met in hyperspectral unmixing [23] but also a low-rank approximation model, provided p <
min{(m · n), k}. Combining Eqs. (4.1) and (4.2) provides the considered joint “demosaicing” and
“unmixing” model, i.e.,

W ◦X ≈ W ◦ (G · F ). (4.3)

Indeed, if it was possible to fully estimate both G and F from the partially observed matrix X , then
their product G · F is an estimation of Y and one may derive a more accurate one as

Ŷ = W ◦X + (1(m·n)×k −W ) ◦ (G · F ), (4.4)

where 1(m·n)×k represents the (m ·n)×k matrix of ones. Moreover, the information contained within
G and F can be valuable for various applications, such as spectral library learning through the use
of F , or for land use/cover analysis derived from G. Once more, it is important to emphasize our
objective of comparing the performance between a two-stage strategy—including a demosaicing step
where Y is estimated, followed by an unmixing step where G and F are derived (referred to as the
green framework in Fig.4.2)—and a joint demosaicing and unmixing strategy (depicted in red in
Fig.4.2). In Section 4.3, we introduce three different approaches for this joint strategy.
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4.3 Proposed Methods
We now present our proposed approaches. In fact, we are proposing three joint demosaicing and
unmixing methods. To start with, we introduce a “naïve” approach, derived from weighted NMF,
following the strategy presented in [42] for a different application. Subsequently, we propose two
novel methods, expressly developed for SSI data.

4.3.1 Naive Method
Initially, we introduce a naive method aimed at solving Eq. (4.3), which is a specific case of Weighted
NMF (WNMF). Due to its similarity with low-rank matrix completion [41], the naive approach be-
low can be seen as an alternative to [143] in which the structure of the low-rank matrix to recover is
more interpretable. As introduced in Subsect. 3.4.2, WNMF can be addressed using various strate-
gies, including (i) incorporating the weights into the update rules as proposed in [75], (ii) applying an
Expectation-Maximization (EM) Framework as discussed in [41], or (iii) employing stochastic gradi-
ent descent while focusing on the available data points [89]. The second strategy, as identified in [41],
was reported to be significantly faster and more accurate than the first one. Therefore, we choose this
approach.

In the EM strategy, there are two steps—i.e., the E-step and the M-step—which are alternatingly
and iteratively run. The E-step aims to estimate the expected complete matrix Ŷ with respect to the
known data W ◦X , the uncertain or unknown matrix data (1(m·n)×k −W ) ◦ Y , and the estimates of
G and F at the (t− 1) iteration, denoted Ĝ(t−1) and F̂ (t−1), respectively. Its solution reads [177]

Ŷ = W ◦X + (1(m·n)×k −W ) ◦ (Ĝt−1 · F̂ t−1). (4.5)

The M-step then consists of applying standard NMF update rules to Ŷ to derive Ĝt and F̂ t. Once
NMF converged to a given solution [177] or after a given number MaxoutIter of iterations [41], Ŷ is
updated in another E-step using the last estimates of Gt and F t [177, 41]. In this work, we choose
the Nesterov NMF (NeNMF) method [64] which is run until one of the following stopping criteria
is reached: a maximum number of NMF iterations has been run—i.e., 1000 NMF iterations in our
experiments—or the approximation error between the complete matrix derived in the E-step and its
NMF approximation is below a threshold (i.e., 10−5 in our experiments). Meanwhile, when the
abundance matrix Ĝt is updated, the sum to one constraint is satisfied by updating Ŷ and F̂ t using
the same strategy as in [47]. To apply this constraint, we modify the matrices Ŷ and F̂ by adding
an additional column of ones. This modification allows us to control the Abundance Sum-to-One
Constraint (ASC) using the parameter δ, which adjusts the influence of the sum-to-one constraint in
the optimization process3. The augmented matrices Ȳ and F̄ are represented as follows:

Ȳ ,
[
Ŷ δ1T(m·n)×1

]
, F̄ ,

[
F̂ δ1Tp×1

]
(4.6)

3In our implementation, the value of δ is set to be 15, as this value has been found to provide an effective balance in
the optimization process.
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The whole method is provided in Subsect. 4.3.4.

4.3.2 Locally Rank-1 and Clustering-based Proposed Technique

We now introduce our first proposed method, which originates from the fundamental approach to
restoring the data cube. Specifically, the image sensor is divided into patches that are replicated
across the sensor surface. Each patch has dimensions

√
k ×
√
k, with common values for k being 16

or 25 4. Therefore, a patch typically measures either 4× 4 or 5× 5. In this context, it is reasonable to
assume that each patch corresponds to a “super-pixel,” meaning that each patch is associated with a
unique endmember. In practice, such an assumption is not correct, which is why various demosaicing
methods have been developed. Nevertheless, this assumption could still be valid for certain patches to
find where one endmember significantly dominates over the others. This concept aligns with the pure-
pixel assumption [23], or the concept of abundance sparsity in SCA, as described in [35]. However,
the primary difference between our problem and the classical unmixing problem lies in the fact that
we only have partial observations of the data cube within a patch, and our goal is to estimate it based
on a limited number of available samples. This permits us to declare our first assumption.

Assumption 1 (Pure patch assumption)

For each endmember, there exists at least one sensor patch where only this endmember is
present.

Our proposed method is outlined as follows. We denote by Xi, Ŷi, and Wi the k × k sub-matrices of
X , Ŷ , and W , respectively, corresponding to Patch i. We obtain a rank-1 approximation of Ŷi from
Xi using the aforementioned WNMF strategy5, which can be expressed as follows:

Wi ◦Xi ≈ Wi ◦ (g
i
· fi), (4.7)

where g
i
6 represents a k × 1 column vector and fi represents a 1× k row vector.

When a patch contains only one dominant endmember, thereby satisfying Assumption 1, the patch
itself becomes rank-1. Consequently, the rank-1 approximation derived from partial data inXi enables
us to estimate the endmember fi. However, when a patch contains multiple endmembers, we must
not detect the patch as pure. This leads us to our second assumption.

4As the patch size directly equals the number of wavelength bands, k is consistently used to denote both elements.
5We employ WNMF with a Nesterov solver, using Expectation Maximization on each patch, to calculate the rank-1

approximation.
6In pure patches, g

i
is a vector of ones. While we could fix it and only estimate fi, our proposed methods performed

better when we also allowed g
i

to be estimated.
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Assumption 2

In the patches where several endmembers are present, their abundances should signifi-
cantly vary over each patch.

Assumption 2 is classically stated in SCA [35]. In practical situations, it is expected that the
SSI camera is positioned close enough to the observed scene, so that one may not expect multiple
abundances to remain in constant proportions over a patch. Consequently, if the i-th patch under
consideration is approximately pure, then

‖Wi ◦Xi −Wi ◦ (g
i
· fi)‖2F ≈ 0. (4.8)

Conversely, if this patch is not pure, then

‖Wi ◦Xi −Wi ◦ (g
i
· fi)‖2F � 0. (4.9)

In this context, this type of error can be regarded as a “single-source confidence measure,” cor-
responding to those commonly employed in SCA. Hence, from each patch, we obtain a tentative
estimate of a “true” endmember. The retrieved spectra that satisfy Eq. (4.8) are gathered and orga-
nized into a matrix denoted as F . These estimates are further assumed to be organized as clusters
of spectra distributed around the “true” source spectra. Therefore, we can employ any clustering
technique, such as K-means or K-medians, initialized with K-means++ [18], to extract the actual
endmembers. A refined approach involves identifying the patches where the squared Frobenius norm
mentioned above is small-enough7. This results in a smaller set of spectra, each of which is closer to
the “true” ones. This approach is similar to the Selective K-means or K-medians methods proposed in
[125] and was found to notably enhance the performance of our proposed method preliminary test8.

Once the true endmembers are extracted and stored in the matrix F , the abundance matrix G is
re-estimated using the Naive method described in Subsect. 4.3.1, with fixed F and the sum-to-one con-
straint on the abundance matrix G in the M-step. The whole strategy is provided in in Subsect. 4.3.4,
and we name it K-means (resp. K-medians) Patch-based Weighted Nonnegative Matrix Factorization
(KPWNMF). It is worth noting that the abundance estimation can also be accomplished using the
least-squares method, similar to what we applied in [4]. However, our experiments discovered that
running the Naive WNMF yields more accurate results.

7In practice, we keep all the patches where the rank-one approximation error is below a user-defined threshold. Esti-
mating the optimal threshold value is out of the scope of this work. In the experiments provided in Chapter 6, it is set as
the median of all the patch norm errors.

8It is noteworthy that K-medians with `1 norm is used for the clustering stage because it performs slightly better than
K-means. It tries to find p median points in the data such that the `1 distances from each data point to its closest median
are minimized. Moreover, the clustering process is repeated several times—e.g., 10 times—and the solution with the
lowest within-cluster sums of point-to-centroid distances is selected as the optimal solution.
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4.3.3 Method with Relaxed Abundance Sparsity Assumption

We now introduce our third approach. It may be seen as an extension of the previous one as it also
assumes Assumption 1 to be valid. However, it significantly relaxes Assumption 2 which is replaced
by the following one.

Assumption 3

In the patches where several endmembers are present, their abundances may or may not
vary over each patch.

This assumption9 states that in the patches where multiple endmembers are present, we do not require
any constraint on their abundances. Consequently, Eq. (4.8) is satisfied if the patch is pure (Assump-
tion 1) or, when several endmembers are present in a patch, their abundances do not vary within the
considered patch. Still, Eq. (4.9) occurs in patches where several endmembers are present and have
their abundance proportions to vary over the considered patches. As a consequence, the KPWNMF
method cannot be applied with such assumptions and a refined strategy must be proposed.

As for KPWNMF, we collect all the spectra fi which are estimated in patches where Eq. (4.8)
holds10 and we arrange them in a matrix denoted X. As explained above, each row vector of this
matrix is either an estimate of an endmember of F or a mixture of them. As we assumed an LMM,
this matrix can be written as

X = G · F. (4.10)

Due to Assumption 1, each row of F exists at least once in X and the estimation of F can be done
by applying a pure-pixel-based method11, e.g., VCA [110] or SPA [60]. Moreover, G represents a
specific abundance matrix associated with the spectral data in X. It differs from the final abundance
matrix G but is derived by selecting rows corresponding to the chosen patch indices in X.

Once the true endmembers are extracted and stored in the matrix F , the abundance matrix G is
re-estimated using the Naive method described in Subsect. 4.3.1, with fixed F and the sum-to-one con-
straint on the abundance matrix G in the M-step. The whole strategy is provided in in Subsect. 4.3.4,
and we name it VCA Patch-based Weighted Nonnegative Matrix Factorization (VPWNMF).

In conclusion, we proposed two frameworks, KPWNMF and VPWNMF. They both use spectra
estimated in patches where the rank-1 approximation error is low, making their first stages similar.
However, they differ in the final stage:

9Stating Assumption 3 is not strictly necessary, as we permit the selected rank-1 patches to be either pure or mixed
under certain constraints. This approach aligns the processing of the extracted endmembers with pure-pixel-based un-
mixing methods. Additionally, Assumption 3 can be interpreted as the negation of Assumption 2. However, including
Assumption 3 clarifies that we no longer utilize a sparse component analysis framework.

10As for KPWNMF, we only keep spectra estimated in patches where the approximation error is below the median of
all the patch norm errors.

11We selected VCA because it performed slightly better than the other methods in some preliminary tests.
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• Thanks to Assumption 2, we know that all the spectra kept in F correspond to tentative estimates
of the actual endmembers in F . Consequently, we can apply any clustering technique to derive
F from F , as it is classically done in SCA.

• When Assumption 2 is not met—i.e., when Assumption 3 is stated—some kept spectra might be
linear mixtures of the actual endmembers. This is why we here named the pool of kept spectral
X. We could propose an outlier robust clustering method to process these data to derive F ,
provided the number of mixed spectra in X is low. Instead, as its assumptions are satisfied in X

and as it is not sensitive to the number of mixed spectra, we use VCA instead.

4.3.4 Algorithms
This section introduces the pseudo code for our three proposed methods. While these algorithms
share several procedural steps, they fundamentally differ in their methodologies, as previously dis-
cussed. Algorithm 1 details our Naive WNMF approach, serving as the fundamental framework for
the following methodologies. Algorithm 2 introduces the shared patch processing steps essential to
both the K-means Patch-based WNMF (KPWNMF) and the VCA Patch-based WNMF (VPWNMF),
focusing on the extraction of tentative endmembers. Building upon this, Algorithm 3 and Algorithm 4
diverge to apply specific endmember extraction techniques needing Assumption 2 or Assumption 3,
respectively.

Algorithm 1 Naive Method
Input:
X represents the unfolded SSI image with a rank of p and is weighted by matrix W .
Output:
Y signifies the reconstructed unfolded data cube.
[G,F ] represents the final abundances and endmembers.
Processing:

1: Initialize G and F
2: for Counter1 = 1 to MaxouterIter do
3: Y = W ◦X + (1−W ) ◦ (G · F )Counter1−1

4: for Counter2 = 1 to MaxinnerIter do
5: Update G from Y and F using NeNMF
6: Update F from Y and G using NeNMF
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Algorithm 2 Rank-one patch detection and spectra estimation method used in both proposed KP-
WNMF and VPWNMF
Inputs:
X represents the unfolded SSI image with a rank of p and is weighted by matrix W .
nb_patches denotes the number of patches to be processed.
Output:
Matrix M containing the “best” vectors—according to Eqs. (4.8) and (4.9)—
for further processing.
Processing:

1: for i = 1 to nb_patches do
2: Let the submatrices Xi and Wi linked to Patch i
3: Initialize g

i
and fi

4: for t = 1 to MaxouterIter do
5: XComp

i = Wi ◦Xi + (1k×k −Wi) ◦ (g
i
· fi)

6: for Counter = 1 to MaxinnerIter do
7: Update g

i
from XComp

i and fi using NeNMF
8: Update fi from XComp

i and g
i

using NeNMF

9: Keep the 50% best vectors fi—according to Eqs. (4.8) and (4.9)—and organize them into matrix
M

10: return M

4.4 Conclusion
In this chapter, we aimed to perform “demosaicing” and “unmixing” jointly for the hyperspectral
images acquired by the SSI camera. Therefore, we proposed two novel approaches in addition to
the naive method derived from Weighted NMF (WNMF). The first one KPWNMF (K-means Patch-
based Weighted Nonnegative Matrix Factorization) assumes that the abundances are sparse in a few
patches to find, so that each of these patches is dominated by one endmember. Such an assumption
is similarly met with SCA, except that we consider partially observed data. In contrast, the second
one VPWNMF (VCA Patch-based Weighted Nonnegative Matrix Factorization) relaxes the sparsity
assumption needed in the latter. The performance of these proposed methods is assessed in Chapter 6,
where we comprehensively evaluate their effectiveness through various experiments. In the next
chapter, we will introduce our filtering-based framework to solve joint unmixing and demosaicing
problems. This framework is designed specifically for applications involving Fabry-Perot filters or
MSFA sensors with less selective filters, addressing complex scenarios often encountered in practice.
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Algorithm 3 K-means (resp. K-medians) Patch-based Weighted Nonnegative Matrix Factorization
(KPWNMF)
Inputs:
Matrix F the output from Algorithm 2.
Rank p.
Outputs:
Ŷ final signifies the reconstructed unfolded data cube.
[G,F ] represents the final abundances and endmembers.
Processing:

1: Call Algorithm 2 to get F
2: F = K-means(F , p) (resp. F = K-medians(F , p))
3: Initialize G of size (m · n)× p
4: Compute G and Ŷ final using Algorithm. 1 with fixed F

Algorithm 4 VCA Patch-based Weighted Nonnegative Matrix Factorization (VPWNMF)
Inputs:
Matrix X the output from Algorithm 2.
Rank p.
Outputs: Ŷ final signifies the reconstructed unfolded data cube.
[G,F ] represents the final abundances and endmembers.
Processing:

1: Call Algorithm 2 to get X
2: F = VCA(X, p)
3: Initialize G of size (m · n)× p
4: Compute G and Ŷ final using Algorithm. 1 with fixed F
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Chapter 5

Locally-Rank-One-Based Joint Unmixing
and Demosaicing Methods for Snapshot
Spectral Images: a Filtering-Based
Framework

“You never change things by fighting the existing reality. To change something, build a new model
that makes the existing model obsolete.”

— Buckminster Fuller

5.1 Introduction
In Chapter 4, we proposed joint demosaicing and unmixing methods for snapshot spectral imaging
(SSI) systems. In addition to a naive approach—straightforwardly derived from Weighted Nonnega-
tive Matrix Factorization (WNMF)—we proposed two novel demosaicing methods, i.e., KPWNMF
(K-means Patch-based Weighted Nonnegative Matrix Factorization) and VPWNMF (VCA Patch-
based Weighted Nonnegative Matrix Factorization). These methods incorporated the assumption of
sparse abundances within sensor “patches,” where a single endmember primarily dominates each
patch. The methods employed rank-1 WNMF computations, a specialized single-source confidence
measure, endmember extraction, and abundance estimation. However, they diverged in treating sce-
narios involving multiple endmembers, providing distinct solutions to address such cases.

Building upon these methods, in this chapter1, we further analyze the pipeline to restore the HSI
data cube—introduced previously in Sect. 1.4 and illustrated in Fig. 1.12—and explore the utiliza-
tion of the harmonic response matrix of Fabry-Perot filters (FPf) for joint demosaicing, deconvo-
lution and unmixing. Our objective is to demonstrate that integrating these techniques not only

1Methods introduced in this chapter were published in [7, 2, 5]
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leads to enhanced outcomes compared to the separate stages of demosaicing, unmixing, and spec-
tral correction—commonly referred to as deconvolution—but also simplifies the overall processing
pipeline by embedding the spectral correction within the joint framework. Furthermore, the current
image processing pipeline of snapshot images involves applying a correction matrix after demosaic-
ing in order to remove some unwanted harmonics. In contrast, our proposed approaches obviate the
need for applying the correction matrix and initiates the deconvolution process directly from the raw
SSI image. Through this novel methodology, we aim to demonstrate the efficacy of our approaches
in achieving improved unmixing and demosaicing results while simplifying the overall processing
pipeline.

It is worth noting the differences between the two frameworks. Firstly, in Chapter 4, we estab-
lished a general framework for demosaicing images. It is broad in scope and potentially applicable
to various Multispectral Filter Arrays (MSFAs) [90]. This framework sets the foundation for our dis-
cussion on the joint methods for conducting “demosaicing” and “unmixing” for hyperspectral images
captured by SSI cameras. Based on prior findings, our investigation here is driven by the hypothe-
sis that incorporating low-rank matrix completion and factorization together is more efficient than a
two-stage approach involving low-rank matrix completion followed by matrix factorization.

Building on the general framework established in Chapter 4, this chapter explores the pipeline pro-
vided by the camera manufacturer, focusing on new unmixing approaches for RAW SSI images that
consider this pipeline. This framework is designed specifically for applications involving Fabry-Perot
filters or any MSFA sensors where the filters are not selective enough. The differentiation between
the two frameworks lies in their focus and applicability: while the first one lays the groundwork for a
general approach, the second one works on specific complex scenarios often encountered in practice.

5.2 Problem Statement
In this section, we provide a definition of the SSI acquisition system and outline the problem that we
aim to address. Let us first recall that the SSI camera acquires a two-dimensional image consisting of
m×n pixels for each exposure, wherem and n represent the pixel counts in the horizontal and vertical
dimensions, respectively. Additionally, it is assumed that the camera observes k spectral bands. In
practice, the SSI technology relies on a mosaic of Fabry-Perot filters comprised of

√
k ×
√
k patches

that are replicated across the sensor surface. In an ideal scenario, an FPf permits only light within a
minimal spectral range to reach the sensor while blocking light outside this range. However, in real
implementations, these filters exhibit additional harmonics around each wavelength of interest, as
illustrated in Fig. 5.1. Fortunately, these filters are known and provided by the camera manufacturer
[53].

For the rest of this section, our focus will be on a single patch of Fabry-Perot filters. Denoting
xi(λi) as the i-th SSI pixel in the patch, which theoretically captures spectral information at λi nm,
we have:

xi(λi) =
k∑

j=1

hi(λj) · yi(λj) + ωi, (5.1)
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Figure 5.1 – The spectral response of the 25 spectral filters of the 5 × 5 mosaic Photon Focus SSI
camera covers the wavelength range from 400 to 1000 nm [119].

where hi(λ) represents the Fabry-Perot filter associated with Pixel i, yi(λ) is the actual spectrum
intended to be observed by Pixel i, and ωi denotes some additive noise. Furthermore, assuming a
linear mixture model, the observed spectrum can be expressed as a combination of endmembers, i.e.,

yi(λ) =

p∑
l=1

gilfl(λ), (5.2)

where p represents the number of endmembers in the observed scene, fl(λ) signifies the spectrum of
the l-th endmember, and gil is the corresponding abundance proportion in Pixel i, i.e.,

∀l = 1, . . . , p, 0 ≤ gil ≤ 1 and
p∑

l=1

gil = 1. (5.3)

By combining Eqs. (5.1) and (5.2), we obtain

xi(λi) =

p∑
l=1

gil

(
k∑

j=1

hi(λj) · fl(λj)
)

+ ωi. (5.4)

In this chapter, we aim to estimate the p endmembers fl(λ) with their associated abundance coeffi-
cients gil using Eqs. (5.4).

5.3 Proposed methods
We now introduce our proposed methods. We actually propose two novel methods for SSI data
exploiting the filter characteristics and using the same sparsity assumptions introduced in Chapter 4.
The latter are briefly recalled in the subsections below. Before introducing these methods, we re-
emphasize the classical strategy provided by the camera manufacturer.
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5.3.1 Classical Strategies
The traditional approach recommended by the camera manufacturer involves applying demosaicing,
deconvolution, and then unmixing. The deconvolution step corrects the spectral distortions caused by
the sensor and filters, typically using a correction matrix provided by the manufacturer. To estimate
the endmembers, one can apply a naive approach starting from Eqs. (5.4). We can define:

f̃l(λ) =
k∑

j=1

hi(λj) · fl(λj) (5.5)

where f̃l(λ) represents the convolution of the filter response with the endmember spectrum.
We can now write Eqs. (5.4) as follows:

xi(λi) =

p∑
l=1

gilf̃l(λi) + ωi. (5.6)

f̃l(λ) can be estimated using the approaches from Chapter 4. Then, deconvolve it to retrieve the
original endmember spectra fl(λ) using the inversion matrix proposed by IMEC.

5.3.2 Clustering and Filtering-based Proposed Technique
We now introduce our approach and assumptions to solve the problem described in the previous
section. Based on Eq. (5.1), the set of k observed SSI values and the k complete spectra of the patch
can be expressed:

x ,

 x1(λ1),
...

xk(λk)

 , Y ,

 y1(λ1) . . . y1(λk)
...

...
yk(λ1) . . . yk(λk)

 . (5.7)

where x is defined as a k-dimensional vector representing spectral values of one SSI patch across k
wavelengths, while Y is a matrix representing the full spectral values for this patch. Each row in Y
corresponds to a different pixel, and each column represents a specific wavelength. The dimensions
of Y are k × k, where the first dimension represents the number of pixels and the second represents
the number of spectral bands.

Estimating Y from x and Eq. (5.1) is an ill-posed problem. Therefore, we consider the same set
of assumptions that we presented in Chapter 4.

In a patch where Assumption 1 is verified, the matrix Y is approximately rank-1 and can be
replaced by a vector y = [y(λ1), . . . , y(λk)] corresponding to an endmember. By noting ω ,
[ω1, . . . , ωk]T the vector associated with the noise in the patch and

H ,

 h1(λ1) . . . h1(λk)
...

...
hk(λ1) . . . hk(λk)

 (5.8)
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is the matrix of Fabry-Perot filters (response matrix), Eq. (5.1) can be written as

x = H · yT + ω. (5.9)

For each patch, we first aim to recover a tentative spectrum y from Eq. (5.9). In practice, as the
matrix H can be ill-conditionned2, we aim to solve a penalized optimization problem, i.e.,

min
y≥0

1

2
‖x− H · yT‖22 +

α

2
‖D · yT‖22, (5.10)

whereD is a square matrix that accounts for the discrete derivative of the spectrum y, and α represents
the penalization term. Eq (5.10) is a quadratic problem which can be rewritten as [30]

min
y≥0

1

2

∥∥∥∥( x
0

)
−
(

H√
αD

)
· yT
∥∥∥∥2
2

. (5.11)

Using the same assumptions as in the previous chapter, we look for patches with low-error rank-
one approximations‖x − H · ŷ‖2, where ŷ is the estimated spectrum obtained from Eqs. (5.10) or
(5.11).

If Assumption 2 is satisfied, then all the selected vectors are the tentative rows of F, and we can
apply any clustering technique. As for KPWNMF, we here choose Selective K-means or K-medians
proposed in [125], initialized with K-means++ [18]3.

Once the actual endmembers are derived and stored in the matrix F , a final step involves esti-
mating the abundance in each pixel of the SSI image. We adopt the low-rank matrix completion
framework introduced in Chapter 4 for this purpose. At the patch level, we consider the observed val-
ues yi(λi) to be part of a partially observed k× k matrix Y . Denoting S as the matrix of endmembers
convolved by H, we obtain the matrix form of Eq. (5.4), i.e.,

H ◦ Y ≈ H ◦ (G · S), (5.12)

where G is the matrix of abundances in the considered patch, and H is a scaled version of H . In prac-
tice, we initialize G through least-squares regression using F and the patch demosaiced by Weighted
Bilinear interpolation (WB) approach [27]. Subsequently, we aggregate all these matrices Y to update
the abundance matrix using Naive WNMF in Chapter 4 globally. The whole strategy is provided in
Subsect. 5.3.4, and we name it Filter Patch-based Kmeans (resp. K-medians), (FPKmeans).

5.3.3 Method with Relaxed Abundance Sparsity Assumption
We now introduce our second approach. It may be seen as an extension of the previous one as it also
assumes Assumption 1 to be valid. However, it significantly relax Assumption 2 which is replaced by
the following Assumption 3.

2For example, the 5× 5 filter matrix H using real FPf in [143] has two rows which are almost null.
3Similarly to KPWNMF, this method utilizes K-medians clustering with the `1 norm. The clustering process is re-

peated 10 times, and the solution with the lowest within-cluster sums of point-to-centroid distances is selected as the
optimal solution.
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This assumption states that in the patches where multiple endmembers are present, we do not
require any constraint on their abundances. Consequently, the approximation error ‖x − H · ŷ‖2
tends to be low when a patch is pure (in accordance with Assumption 1) or when the abundances of
multiple endmembers remain consistent within the patch. However, the approximation error increases
significantly in patches with multiple endmembers and their abundance proportions vary across the
patch. As for FPKmeans, we collect the proportion4 ρ of tentative endmembers in the “best” patches—
i.e., those which provide the smallest approximation errors—and we arrange them in a matrix denoted
Y . As explained above, each row vector of this matrix is either an estimate of an endmember of F or
a mixture of them. As we assumed a linear mixture model (LMM), this matrix can be written as

Y = G · F. (5.13)

Then, as we did in VPWNMF in Chapter 4, VCA is used to extract the final set of endmembers.
Finally, the abundance matrix G is estimated using the same approach as in FPKmeans. The whole
strategy is provided in Subsect. 5.3.4, and we name it Filter Patch-based Vertex Component Analysis
(FPVCA)).

5.3.4 Algorithms
This section introduces the pseudo code for our proposed methods. While these algorithms share
several procedural steps, they fundamentally differ in their methodologies as previously discussed.
Algorithm 5 introduces the shared patch processing steps essential to both the Filter Patch-based
Kmeans (FPKmeans) and the Filter Patch-based Vertex Component Analysis (FPVCA), focusing on
the extraction of tentative endmembers. Building upon this, Algorithm 6 and Algorithm 7 diverge to
apply specific endmember extraction techniques needing Assumption 2 or Assumption 3, respectively.

4As for KPWNMF, we only keep spectra estimated in patches where the approximation error is below the median of
all the patch norm errors, i.e., ρ = 0.5.
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Algorithm 5 Rank-one patch detection and spectra estimation method used in both proposed FP-
Kmeans and FPVCA
Inputs:
The SSI matrix
p: the number of endmembers
H: the response matrix
α: the regularization parameter
nb_patches: the number of patches to be processed

Output:
- Matrix M containing the “best” vectors for further processing.
Processing:

1: for r = 1 to nb_patches do
2: Let xr be the SSI vector linked to Patch r
3: Estimate ŷ using Eq (5.11)

4: Keep the 50% best vectors ŷ—according to ‖xr − Hŷ‖2—and organize them as a matrix M

5: return M
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Algorithm 6 Filter Patch-based Kmeans (resp. K-medians), (FPKmeans)
Inputs:
Matrix F from Algorithm 5
p: the number of endmembers

Outputs:
[G,F ] represents the final abundances and endmembers.

Processing:
1: Call Algorithm 5 to obtain F

2: F = K-means(F , p) (resp. K-medians(F , p))
3: Compute G using Eq. (5.12) and Naive WNMF

Algorithm 7 Filter Patch-based Vertex Component Analysis (FPVCA)
Inputs:
Matrix Y from Algorithm 5
p: the number of endmembers

Outputs:
[G,F ] represents the final abundances and endmembers.

Processing:
1: Call Algorithm 5 to obtain Y

2: F = VCA(Y , p)
3: Compute G using equation (5.12) and Naive WNMF

5.4 Conclusion
In this chapter we focused on the Fabry-Perot filter response to perform the joint demosaicing and
unmixing. Specifically, we performed joint demosaicing, deconvolution and unmixing, where we
integrated deconvolution directly into the unmixing process. This integration effectively utilizes the
harmonic responses of Fabry-Perot filters, enhancing the accuracy and efficiency of the spectral data
processing. We proposed two novel methods for this goal: FPVCA (Filter Patch-based Vertex Com-
ponent Analysis) and FPKmeans (Filter Patch-based Kmeans). These methods leverage Fabry-Perot
filter deconvolution and extend the “pure pixel” framework to the SSI sensor patch level, enabling
improved unmixing accuracy and introducing the concept of localized spectral purity. It is worth
noting that our proposed methods eliminate the need for the manufacturer correction matrix, as the
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deconvolution is integrated directly into the framework. This integration enhances the overall spectral
accuracy and efficiency. The performance of these proposed methods is assessed in Chapter 6, where
we comprehensively evaluate their effectiveness through various experiments.
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Chapter 6

Experimental Validation

“It does not matter how beautiful your theory is, it does not matter how smart you are. If it does not
agree with experiment, it is wrong.”

— Richard P. Feynman

6.1 Introduction
In this chapter, we assess the performance of the proposed frameworks for joint demosaicing and
unmixing of snapshot spectral images: Matrix-Completion and Filtering-based frameworks. The
evaluation is conducted using synthetic and real images captured by real snapshot cameras. We also
examine the performance under various noisy conditions to ensure the robustness of our methods. Our
experimental results show that the proposed methods outperform the two-stage approaches, which
consist of applying demosaicing and, after that, unmixing.

6.2 Experimental Validation of Matrix-Completion Framework

6.2.1 Experimental Setup

To evaluate the effectiveness of the proposed methods, we carry out experiments using SSI simula-
tions generated from synthetic images as well as real SSI images captured by SSI cameras. For the
synthetic images, we did two experiments. In the first one, we create one image where assumptions
one and two are satisfied, and another where assumptions 1 and 3 are satisfied. Each one has 100×100
pixels with three endmembers, i.e., water, metal, and concrete, whose signatures are taken from [144].

We compare the performance reached with the naive method with our proposed approaches KP-
WNMF and VPWNMF and seven 2-step demosaicing-then-unmixing methods. For the latter, we
consider seven SotA demosaicing methods—i.e., GRMR [143], BTES [105], WB [27], PPID [107],
ItSD [108], SAND [22], and PCWB [131]—while in the second step, we unmix the restored data
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cube Y using VCA for estimating the endmembers and Fully Constrained Least Squares (FCLS)
for abundance estimation. To measure the effectiveness of the tested methods, we assess their demo-
saicing improvements by comparing the estimated Y matrices to the ground truth, utilizing the Peak
Signal-to-Noise Ratio (PSNR). For unmixing enhancement, we employ the Signal-to-Interference Ra-
tio (SIR), Spectral Angle Mapper (SAM) for endmember estimation, and Mixing Error Ratio (MER)
to measure the quality of abundance maps. We additionally incorporated RMSE for abundance esti-
mation accuracy and running time in seconds to assess computational efficiency

For the second experiment, we aim to validate the demosaicing enhancement provided by the pro-
posed approaches on more challenging data. We provide comparative results with the SoTA methods
on the CAVE dataset after simulating the 4 × 4 and 5 × 5 SSI images using the same strategy as
in [143] with all the images in the dataset. Moreover, using real multispectral images allow us to
experimentally investigate the validity of the stated assumptions.

Finally, we used real SSIs taken from the Hyko 2 dataset [155]. The images in the dataset are
captured using two snapshot mosaic cameras. It is the first dataset to capture hyperspectral data from
a moving vehicle, enabling hyperspectral scene analysis for road scene understanding. The data span
the visible and near-infrared spectral ranges, from 400 to 1000 nm.

(a) SSI Image (b) Water (c) Metal (d) Concrete

Figure 6.1 – Image 1, SSI image where assumptions 1 and assumption 2 are satisfied with abundance
maps of the three endmembers.

(a) SSI Image (b) Water (c) Metal (d) Concrete

Figure 6.2 – Image 2, SSI image where assumptions 1 and assumption 3 are satisfied with abundance
maps of the three endmembers.

121



Table 6.1 – PSNR, SAM, SIR, MER, RMSE, and Time in seconds obtained for the synthetic images
with 5x5 and 4x4 (into brackets) ideal filters. In bold, the highest performance value and for RMSE
and Time, the lowest value.

Method Image 1 (Assumptions 1 & 2) Image 2 (Assumptions 1 & 3)
PSNR SAM SIR MER RMSE Time PSNR SAM SIR MER RMSE Time

GRMR 27.2 (27.5) 0.3 (0.3) 14.3 (65) 2.1 (1.1) 0.4 (0.4) 1.6 (1.57) 29.7 (33.2) 0.4 (0.2) 12.1 (67) 4.9 (4) 0.3 (0.3) 1.5 (0.3)
BTES 24.1 (24.2) 0.4 (0.3) 13.41 (65.8) -1.2 (-5.4) 0.5 (0.5) 0.2 (0.3) 30 (29.1) 0.4 (0.3) 12.3 (65.5) -4.5 (-2) 0.4 (0.5) 0.4 (0.3)
WB 26.3 (28.9) 0.3 (0.2) 15.6 (70.2) -0.45 (1.8) 0.4 (0.4) 0.2 (0.3) 30.2 (31.2) 0.4 (0.3) 18.2 (63.2) 4.8 (1.5) 0.3 (0.2) 0.3 (0.3)
PPID 30.3 (30.2) 0.06 (0.06) 34.7 (85.9) 9.9 (9.8) 0.3 (0.3) 0.3 (0.3) 34.8 (38) 0.08 (0.05) 31.7 (86) 9.2 (14.9) 0.3 (0.2) 0.3 (0.3)
ItSD 24.5 (23.9) 0.7 (0.6) 8.2 (55.7) 0.5 (-7.4) 0.4 (0.4) 0.2 (0.3) 26.4 (26.1) 0.4 (0.5) 8 (56) -2.4 (-2.08) 0.4 (0.2) 0.3 (0.3)
SAND 30 (30.1) 0.1 (0.1) 31.2 (80.1) 11.3 (9.1) 0.2 (0.2) 3720 (2800) 35.4 (36.9) 0.1 (0.1) 32 (82) 10 (13.2) 0.2 (0.1) 3660 (2500)
PCWB 28.6 (20.3) 0.1 (0.2) 31.7 (70.3) 9.7(9.4) 0.2 (0.3) 0.2 (0.2) 31 (20.2) 0.4 (0.3) 15.5 (71.8) 1.2 (4) 0.4 (0.2) 0.2 (0.2)
Naive 32.5 (32.7) 0.2 (0.2) 19.8 (68.7) 9.2 (8.5) 0.3 (0.3) 15 (12) 34.5 (34.4) 0.2 (0.3) 21.5 (67.2) 10.7 (5.4) 0.3 (0.2) 15 (12)
KPWNMF 36.5 (35.5) 0.01 (0.007) 50.2 (103.5) 16.0 (14.8) 0.2(0.2) 6 (6) 40.3 (40.4) 0.003 (0.006) 50.3 (102.5) 20.9 (19.7) 0.1 (0.1) 6 (6)
VPWNMF 35.9 (33.7) 0.002 (0.003) 59.9 (111.0) 14.7 (12.8) 0.2(0.2) 5 (5) 41.4 (40.8) 0.0006 (0.001) 75.8 (117.0) 21.0 (19.7) 0.1 (0.1) 5 (5)

6.2.2 Performance Evaluation on Synthetic Images For The Ideal Case
In the first set of experiments, we generated an image (available on Fig. 6.1) that fulfills Assump-
tions 1 and 2, and another image (see Fig. 6.2) that satisfies Assumptions 1 and 3. Both images
have a resolution of 100×100 pixels and are composed of three endmembers—i.e., water, metal, and
concrete—with signatures sourced from [144]. In this simulation, we consider the ideal case where
each filter associated with each detector element corresponds to an ideal filter with perfect cut-off
characteristics, which allow light from a single wavelength to be captured by the detector element.
Both images simulate a scene observed from a short distance, implying that many patches are pure.
We consider 4 × 4 and 5 × 5 spectral filter patterns and investigate the performance of the tested
methods under different noise levels.

The PSNR, SAM, SIR, and SAM achieved by all the methods for 4 × 4 and 5 × 5 spectral filter
patterns are reported in Table 6.1. While the average performance with different noise levels for both
images with 4× 4 and 5× 5 filters is presented in Fig. 6.3 and Fig. 6.4, respectively.

GRMR BTES WB PPID ItSD SAND PCWB Naive KPWNMF VPWNMF
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Figure 6.3 – Mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 1 (Assumption 1&2)
with 4× 4 and 5× 5 filters—relative to input SNR.

A number of key observations can be made from the results presented in the table and the figures:

• The proposed KPWNMF and VPWNMF methods exhibit the highest PSNRs for both images,
i.e., the best demosaicing quality. While the demosaicing performance reached with PPID and
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Figure 6.4 – Mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 2 (Assumption 1&3)
with 4× 4 and 5× 5 filters—relative to input SNR.

the Naive method is almost similar, the remaining methods achieve lower reconstruction quality
for both images, with WB—i.e., a baseline method—performing similarly to GRMR and ItSD,
and with BTES showing the poorest performance. It is important to note that the performance
of these methods may vary under different noise levels. Our results show that KPWNMF and
VPWNMF continue to significantly outperform the other tested methods until the input SNR is
around 25 dB. With lower input SNRS, their performance degrades and both methods provide
a similar demosaicing performance as SotA methods.

• In addition to their superior reconstruction quality, the proposed KPWNMF and VPWNMF
methods demonstrate the highest performance in endmember identification as measured by the
spectral angle mapper (SAM) and signal interference ratio (SIR). Our experimental results show
that KPWNMF and VPWNMF achieved the lowest SAM and the highest SIR values among all
other methods, indicating their ability to accurately identify endmembers even in the presence
of noise. Moreover, our experiments demonstrate that KPWNMF and VPWNMF are robust to
noise, maintaining their superior performance even at higher noise levels. Fig. 6.5 and Fig. 6.6
show the true and estimated endmembers for both images with the 5 × 5 filter in the noiseless
case. The quality of the restored spectra with the proposed methods is much higher than the
2-stage approach using PPID for demosaicing, the latter being the SotA method to provide the
highest unmixing performance.

• The proposed methods KPWNMF and VPWNMF provide the highest MER values among all
other methods, indicating their superior abundance estimation performance. Moreover, our ex-
periments demonstrate that KPWNMF and VPWNMF are robust to noise, maintaining their
superior performance even at higher noise levels. The comparison between the restored abun-
dance maps and the true abundance maps for both images using the 5 × 5 filter is shown in
Fig.6.7 and Fig.6.8 in the noiseless case. As can be seen from the figures, the abundance maps
estimated by KPWNMF and VPWNMF are visually closer to the true abundance maps com-
pared to the other methods.

• In addition to MER, our analysis extends to the accuracy of abundance estimation, as measured
by RMSE. The RMSE results for the KPWNMF and VPWNMF methods underscore their
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(b) VPWNMF
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(c) Naive
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(d) PPID + Unmixing
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(e) PCWB + Unmixing
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(f) SAND + Unmixing

Figure 6.5 – Estimated spectra for the Image 1 with mosaic filter of size 5× 5.
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(b) VPWNMF
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(d) PPID + Unmixing
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(e) PCWB + Unmixing
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(f) SAND + Unmixing

Figure 6.6 – Estimated spectra for the Image 2 with mosaic filter of size 5× 5.
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(a) Ground truth (b) Naive

(c) KPWNMF (d) VPWNMF

(e) PPID (f) SAND

(g) PCWB

Figure 6.7 – Estimated abundance maps for the Image 1 with 5× 5 mosaic filter.

remarkable precision in estimating abundances, shown by the lowest RMSE values among all
methods evaluated. While the SAND method exhibits almost similar RMSE performance, a
closer examination of the restored abundance maps, as illustrated in Fig.6.7 and Fig.6.8, reveals
that our methods achieve superior details and quality.

• While evaluating the effectiveness of our proposed KPWNMF and VPWNMF methods, it is
essential to consider the computational time alongside other performance metrics. The exper-
imental results indicate that the running time for both methods is notably higher than other
evaluated methods. However, it is important to note that the primary focus of this study is
to demonstrate the accuracy and effectiveness of these methods in enhancing the quality of
demosaicing and unmixing in snapshot spectral imaging. Developing and optimizing the com-
putational efficiency of these algorithms falls outside the immediate scope of this work. Future
work will explore strategies to reduce computational time, making these methods more possible
for time-sensitive applications.
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(a) Ground truth (b) Naive

(c) KPWNMF (d) VPWNMF

(e) PPID (f) SAND

(g) PCWB

Figure 6.8 – Estimated abundance maps for the Image 2 with 5× 5 mosaic filter.

6.2.3 Performance Evaluation on CAVE Dataset

In addition to the experiments conducted on synthetic images, we evaluated the performance of the
proposed methods on the CAVE dataset, which consists of 32 spectral images captured by a multi-
spectral camera in the 400-700 nm range with 10 nm steps. The images have a resolution of 512×512
pixels and contain a variety of scenes and objects, making them a suitable dataset for evaluating the
performance of multispectral image reconstruction methods. We performed experiments on the CAVE
dataset using 4 × 4 and 5 × 5 spectral filter patterns using the same strategy as in [143] with all the
images in the dataset and evaluated the PSNR achieved by all the methods for both filter patterns. The
results are reported in Table 6.2, where our proposed methods KPWNMF and VPWNMF achieved
the highest PSNR values, indicating their superior performance in reconstructing the images. To fur-
ther evaluate the performance of the proposed methods, we also generated a visual comparison of
the restored images using the 4 × 4 spectral filter pattern. The restored images using KPWNMF,
VPWNMF, and other SotA methods are shown in Fig. 6.9. Our proposed methods demonstrated re-
markable results in restoring the details of the images demonstrating their ability to preserve crucial
spatial information in the images, which was not effectively captured by the other methods. These re-
sults demonstrate the proposed methods effectiveness in restoring hyperspectral images with complex
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Table 6.2 – Demosaicing performance averaged over all the images in the Cave dataset. Perf. crite-
rion: PSNR (in dB).

Method 16 bands 25 bands
GRMR 35.3 33.3
BTES 34.7 33.3
WB 35.0 33.4
PPID 37.1 35.4
ItSD 30.2 27.2
SAND 34.2 33.3
PCWB 33.7 33.7
Naive 35.1 34.1
KPWNMF 37.7 35.5
VPWNMF 37.7 35.5

spectral and spatial information and their superiority over other SotA methods.

6.2.4 Performance Evaluation on Hyko 2 Dataset

We conducted a real data experiment using one image from the Hyko 2 dataset [155], which captures
hyperspectral data from a moving vehicle. The dataset1 contains images captured using two snapshot
mosaic cameras and spans the visible and near-infrared spectral ranges from 400 to 1000 nm. We
selected one image from the dataset that contained a road, trees, sky, and white signs on the road. As
we do not know the real endmembers, we cannot estimate the unmixing accuracy. Instead, we use
unmixing to perform image segmentation, as shown in Fig 6.10. The segmentation is done using the
abundance maps generated by each method, where we select the dominant element in each pixel and
draw an image showing the segmentation.

Our proposed VPWNMF method—which is based on Assumption 1 and Assumption 3—performed
the best among all the methods. It can detect endmembers better than the other methods by using
VCA because of the flexibility of Assumption 3. On the other hand, KPWNMF—which is based on
Assumption 1 and Assumption 2—only considers the case where the abundance coefficients are sig-
nificantly changing when there are several endmembers. Therefore, it did not perform as well on this
image since the abundance maps were not significantly changing in certain patches. The other SotA
methods, including the Naive method, their performance varied and generally fell short in capturing
fine details compared to our proposed methods. While VPWNMF was the best-performing method,
its performance could have been better, as in some places, the road was classified as the sky. This

1The database is accessible at https://wp.uni-koblenz.de/hyko/.
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(a) Ground truth (b) KPWNMF (c) VPWNMF (d) PPID

(e) GRMR (f) WB (g) BTES (h) ItSD

(i) Naive (j) SAND (k) PCWB

Figure 6.9 – Comparison of the demosaicing performance of all the methods on the Cloths image
from the CAVE dataset with 4× 4 mosaic filter.

might be due to multiple issues, e.g., spectral variability, sensor impurities, or nonlinear mixtures in
some pixels.

6.3 Experimental Validation of Filtering-based Framework

6.3.1 Experiment Setup

To evaluate the effectiveness of our proposed methods FPKmeans and FPVCA, we conducted experi-
ments on synthetic images and real snapshot spectral imaging (SSI) images captured by SSI cameras.
We utilized the same set of images introduced in Sect. 6.2 for the synthetic images. Specifically,
we considered two scenarios: Assumptions one and two are satisfied Fig. 6.1, and Assumptions one
and three are satisfied Fig. 6.2. Each synthetic image consisted of a 100 × 100 pixel grid with three
endmembers, namely water, metal, and concrete, whose spectral signatures were obtained from [144].
Furthermore, we consider the real spectral profiles derived from the calibration files of the photonfo-
cus Snapshot 5x5 spectral camera [119]. Spectral correction is applied after processing the images
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(a) SSI Image (b) KPWNMF (c) VPWNMF (d) PPID

(e) WB (f) GRMR (g) ItSD (h) BTES

(i) Naive (j) SAND (k) PCWB

Figure 6.10 – Comparison of the segmentation performance of all the methods on the Hyko 2 Dataset
Image.

using the correction matrix provided by the camera manufacturer, as explained in Sect. 1.4.
In our evaluation, we compared the performance of our approaches against several baseline meth-

ods, including the Naive method, KPWNMF, VPWNMF, and seven two-step demosaicing-then-
unmixing methods. For the latter category, we employed seven state-of-the-art demosaicing methods,
namely GRMR [143], BTES [105], WB [27], PPID [107], ItSD [108], SAND[22], and PCWB [131].
In the second step, we unmix the restored data cube Y using VCA for estimating the endmembers
and Fully Constrained Least Squares (FCLS) for abundance estimation.

It is important to note that in these experiments, we consider a more complex scenario by sim-
ulating realistic filter responses. As a result, unlike the experiments in Sect. 6.2, an extra stage is
introduced for all the state-of-the-art (SotA) methods. This additional step involves applying the
correction matrix. We have two options for its placement: either after the demosaicing step or equiv-
alently after the unmixing step. However, for consistency and to maximize performance, we apply
the correction matrix after demosaicing for all methods because they perform better except PPID,
KPWNMF, and VPWNMF, which show similar performance trends in both placements.

We evaluated the tested methods by assessing demosaicing and unmixing enhancements. For
demosaicing, we measured the performance using Peak Signal-to-Noise Ratio (PSNR) by comparing
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estimated Y matrices with ground truth. While for unmixing, we utilized Signal-to-Interference Ratio
(SIR) and Spectral Angle Mapper (SAM) for endmember estimation, along with Mixing Error Ratio
(MER) for quantifying abundance map quality. We additionally incorporated RMSE for abundance
estimation accuracy and running time in seconds to assess computational efficiency.

We also conducted experiments to study the impact of regularization parameter in the deconvolu-
tion step on the effectiveness of the proposed methods.

For our real data experiment, we use images from the Hyko 2 dataset [155]. This dataset consists
of images captured by two snapshot mosaic cameras and covers the spectral range from 400 to 1000
nm, encompassing the visible and near-infrared regions.

6.3.2 The Impact of Regularization Parameter

In the first set of experiments we study the impact of the regularization on the deconvolution perfor-
mance. The regularization parameter α controls the Tikhonov regularization, which helps balance
the trade-off between data fidelity and regularization in the deconvolution process. Fig.6.11 shows
the influence of the regularization parameter α on the achieved Spectral Angle Mapper (SAM) value
for each noise level in the context of the inverse problem when applied to noiseless and noisy sce-
narios. We can see from the figure that a small value of α = 0.0005 results in the best SAM value.
However, as noise is introduced, the regularization parameter needs to be increased to improve the
robustness of the deconvolution process. This trend can be followed in the plot, where higher noise
levels correspond to larger values of α for achieving better SAM. It is important to note that in all
the following experiments, 0.0005 was chosen as the value for α for the noiseless case. For the noisy
case, we selected the value from the figure where SAM was the lowest, ensuring optimal performance
at each noise level.
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Figure 6.11 – Influence of the regularization parameter α on the achieved Spectral Angle Mapper
(SAM) value for each noise level
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Table 6.3 – PSNR, SAM, SIR, MER, RMSE, and Time in seconds obtained for the synthetic images
with 5x5 real filters. In bold, the highest performance value.

Method Image 1 (Assumptions 1 & 2) Image 2 (Assumptions 1 & 3)
PSNR SAM SIR MER RMSE Time PSNR SAM SIR MER RMSE Time

GMRM 23.0 0.52 8.3 0.7 0.4 1.7 24.3 0.36 10.8 0.2 0.4 1.6
BTES 18.6 0.52 9.4 -6.1 0.5 0.3 18.3 0.3 8.4 -3.3 0.5 0.5
WB 23.8 0.38 13.5 -4.2 0.4 0.3 26.4 0.3 16.4 -0.3 0.3 0.4
PPID 28.6 0.12 23.2 7.1 0.3 0.4 33.9 0.1 30.2 13.0 0.2 0.4
ItSD 24.4 0.32 11.8 0.2 0.5 0.3 26.3 0.32 14.3 0.6 0.4 0.4
SAND 28.9 0.13 24.3 7.9 0.3 3728 33.9 0.1 17.3 9.1 0.2 3700
PCWB 27.3 0.15 19 5.3 0.3 0.3 29.3 0.4 15 2.3 0.2 0.3
Naive 23.9 0.4 11.2 2.5 0.3 10 25.6 0.4 12.0 3.0 0.3 10
KPWNMF 30.1 0.06 32.7 12.5 0.2 6.1 34.9 0.08 32.2 16.4 0.2 6.1
VPWNMF 30.0 0.06 33.6 12.4 0.2 5.1 35.6 0.06 33.1 16.9 0.2 5.1
FPVCA 30.1 9 · 10−8 149.0 12.2 0.1 4 36.5 8 · 10−8 149.0 17.6 0.07 4
FPKmeans 30.1 9 · 10−8 149.0 12.2 0.1 4.5 35.8 0.05 104.5 17.1 0.07 4.5

6.3.3 Performance Evaluation On Synthetic Images For The Real Case

In the second set of experiments, we utilize images introduced in Sect. 6.2. We consider a real filter
with a 5× 5 filter pattern and investigate the performance of the tested methods under different noise
levels. The PSNR, SAM, SIR, and SAM achieved by all the methods are reported in Table 6.3. While
the average performance with different noise levels for both images with is presented in Fig. 6.12
and Fig. 6.13 respectively. The results presented in the table and figures reveal several significant
observations:

GRMR BTES WB PPID ItSD SAND PCWB Naive WNMF KPWNMF VPWNMF FPKmeans FPVCA
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Figure 6.12 – From left to right: mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 1
(Assumption 1&2) with 5× 5 real filter—relative to input SNR.

• The performance of both KPWNMF and VPWNMF methods drops when compared to the ideal
situation. This decline is mainly due to two reasons: first, the spectral correction step, which
causes estimation mistakes, especially when there is a lot of background noise. Second, the
weight matrix uses its values from the response matrix during the factorization step for each
rank-1 patch.
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Figure 6.13 – From left to right: mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 2
(Assumption 1&3) with 5× 5 Real filter—relative to input SNR.

• The proposed FPKmeans and FPVCA methods exhibit superior performance in PSNR com-
pared to our previous methods and the two-step approaches. The performance of these methods
may vary under different noise levels. FPKmeans and FPVCA consistently outperform the
other methods. However, their performance declines at lower input SNRs, and they exhibit
similar demosaicing performance to the state-of-the-art methods. It is worth mentioning that
the advantage of FPKmeans and FPVCA is that they eliminate the need for spectral correction
steps required in the other methods.

• In addition to their superior reconstruction quality, the proposed FPKmeans and FPVCA meth-
ods outperform all other methods regarding endmember identification as shown in Figures 6.14
and 6.15. They achieve the lowest spectral angle mapper (SAM) values and the highest signal
interference ratio (SIR) values, indicating their accurate identification of endmembers even in
the presence of noise. These methods exhibit robustness to noise, maintaining their superior
performance even at higher noise levels. However, it is worth noting an exception observed in
Image 2 with SNRs below 25 dB, where even PPID outperforms FPKmeans in terms of SIR.
In the case of Image 1, where the assumptions of FPKmeans are satisfied, the latter exhibits
slightly better performance than FPVCA.

• The proposed methods FPKmeans and FPVCA demonstrate comparable performance in terms
of the Mixing Error Ratio (MER), to the joint unmixing and demosaicing approaches KP-
WNMF and VPWNMF. These methods consistently achieve the highest MER values among
all other methods, indicating their superior accuracy in estimating the abundance maps. Fur-
thermore, the experiments reveal the robustness of FPKmeans and FPVCA to noise, as they
maintain their exceptional performance even at higher noise levels. Fig. 6.16 and Fig. 6.17
illustrate the comparison between the restored abundance maps and the true abundance maps
for both images, using the 5× 5 filter in the noiseless case.

• The RMSE results, implying precision in abundance estimation, show FPKmeans and FPVCA
as superior, even under various noise levels. Their lowest RMSE values, complemented by
the visual quality of abundance maps in figures Fig. 6.16 and Fig. 6.17 , demonstrate their
robustness and accuracy.
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(a) FPKmeans
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(b) FPVCA
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(c) PPID
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(d) SAND
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(e) PCWB
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(f) Naive
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(g) KPWNMF
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(h) VPWNMF

Figure 6.14 – Estimated spectra for the Image 1 with Real filter of size 5× 5.

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

(a) FPKmeans
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(b) FPVCA
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(c) PPID
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(d) SAND
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(e) PCWB
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(f) Naive
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(g) KPWNMF
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Figure 6.15 – Estimated spectra for the Image 2 with Real filter of size 5× 5.
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(a) Ground truth (b) PPID

(c) SAND (d) PCWB

(e) Naive (f) KPWNMF

(g) VPWNMF (h) FPVCA

(i) FPKmeans

Figure 6.16 – Estimated abundance maps for the Image 1 with real filter of size 5× 5
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(a) Ground truth (b) PPID

(c) SAND (d) PCWB

(e) Naive (f) KPWNMF

(g) VPWNMF (h) FPVCA

(i) FPKmeans

Figure 6.17 – Estimated abundance maps for the Image 2 with real filter of size 5× 5
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• In assessing the new methods FPKmeans and FPVCA, we note their computational time is im-
proved compared to KPWNMF and VPWNMF. However, it remains higher than some SotA
methods. Despite this, our study focuses on demonstrating the accuracy and effectiveness of
these methods in snapshot spectral imaging rather than on computational efficiency. Optimiz-
ing running time is considered future work to enhance these methods for more time-sensitive
applications

6.3.4 Performance Evaluation On Hyko 2 Dataset
In the first part of the experiments, the Hyko dataset was utilized to evaluate various methods for
image segmentation, including VPWNMF and KPWNMF. The results demonstrated that VPWNMF
achieved the best segmentation performance, followed by KPWNMF. Spectral correction was applied
to the output of these methods after the demosaicing step to improve the accuracy2. In the second
part of the journal, a similar experiment was conducted using the same dataset. However, in this case,
the proposed methods, FPVCA, and FPKmeans, exhibited comparable performance to VPWNMF
and KPWNMF, respectively, without spectral correction. The results in Fig. 6.18 show that FPVCA
exhibited comparable performance to VPWNMF, while FPKmeans outperformed all other methods,
including VPWNMF. It is worth noting that the spectral correction step did not affect the abundance
estimation for VPWNMF, and KPWNMF as their abudndances remained consistent even without
correction.

6.4 Conclusion
In this chapter, we evaluated our two novel frameworks for performing joint demosaicing and un-
mixing of hyperspectral images acquired by snapshot spectral imaging (SSI) cameras. In the matrix
completion framework, we aimed to integrate the “demosaicing” and “unmixing” processes within a
single step. Our comprehensive experiments with both synthetic and real SSI datasets revealed that
these proposed methods surpass traditional two-stage approaches, which separate demosaicing and
unmixing processes.

Furthermore, we explored the integration of deconvolution with unmixing in our second frame-
work, which proved highly effective. This approach utilizes the harmonic responses of the Fabry-
Perot filters from the spectral response matrix. It improves the accuracy of segmentation, demosaic-
ing, and unmixing and simplifies the processing pipeline by eliminating the need for post-demosaicing
spectral correction. Our experimental results indicated that incorporating these advanced sparsity and
deconvolution techniques could significantly enhance the performance of SSI systems, particularly
when compared to traditional methods and existing joint demosaicing-unmixing approaches.

Despite these advancements, our methods face ongoing challenges, such as errors introduced by
spectral variability and sensor impurities, which we plan to address in future research.

2The correction matrix was kindly provided to us by the Hyko 2 dataset authors.
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(a) SSI Image (b) KPWNMF (c) VPWNMF

(d) FPKmeans (e) FPVCA (f) Naive

Figure 6.18 – Comparison of the segmentation performance of all the methods on the Hyko 2 Dataset
Image
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Chapter 7

Improved deconvolution with
Entropy-weighted penalization

“Measurement is the first step that leads to control and eventually to improvement. If you can’t
measure something, you can’t understand it. If you can’t understand it, you can’t control it. If you

can’t control it, you can’t improve it.” — H. James Harrington

7.1 Introduction
In this chapter, we introduce a novel method for spectral deconvolution in Fabry-Perot-based hy-
perspectral cameras. The camera manufacturer proposed a scene-independent correction matrix to
remove the harmonics presented in the SSI image. Therefore, we exploit the response of the Fabry-
Perot filter—as we did in Chapter 5—and propose a novel scene-dependent spectral correction and
calibration method1. Our approach utilizes deconvolution with Tikhonov regularization weighted by
the entropy of the Fabry-Perot harmonics to remove the generated artifacts and restore the original
spectra. It adapts to the scene unique characteristics, reducing harmonics and improving hyperspectral
data quality. Experiments with synthetic data and real images from two IMEC sensors—i.e., linescan
wedge and snapshot mosaic FPI designs—–show our method outperforms the manufacturer solution
in eliminating harmonics and enhancing spectral information.

7.2 Preface
As we previously explained in Sect. 1.4, the camera manufacturer proposed a correction matrix to
remove the harmonics presented in the SSI image. The latter is determined through a process of
minimizing the difference between the actual band response, denoted as the response matrix H, and

1This method is submitted to IEEE Sensors Letters [1].
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Figure 7.1 – The Hyperspectral Linescan camera from XIMEA using a wedge pattern of 192 VISNIR
filters (Source [159]).

the desired or ideal band response, represented as Hideal [120, 161]. This minimization process is
expressed mathematically as:

min
C
‖Hideal −C ·H‖2F , (7.1)

where ‖·‖2F denotes the Frobenius norm.
This matrix is scene-independent and does not adapt to the scene characteristics. Therefore

we exploit the response of the Fabry-Perot filter—using the same concept in our filtering-based
framework—and propose a novel scene-dependent spectral correction and calibration method. Our
approach utilizes deconvolution with Tikhonov regularization weighted by the entropy of the Fabry-
Perot harmonics to remove the generated artifacts and restore the original spectra. It adapts to the
scene unique characteristics, reducing harmonics and improving hyperspectral data quality. This
approach is designed and tested on two Fabry-Perot-based cameras: linescan wedge and snapshot
mosaic.

The linescan wedge filter configuration employs a distinctive wedge-shaped design. The sensor
is segmented into k distinct bandlets in this layout, each corresponding to a unique Fabry-Perot filter
characterized by a specific cavity height. This differentiation enables the capture of varied spectral
information from the scene, as depicted in Fig. 7.1. These bandlets are typically arranged in an
ascending order based on their cavity heights, forming a pattern akin to a staircase, also known as a
discrete wedge.

This setup requires relative movement—placing the object on a conveyor belt or mobilizing the
camera, such as mounting it on an Unmanned Aerial Vehicle (UAV). It is also crucial to fine-tune
the camera frame rate to ensure synchronization and address the potential discrepancies arising from
capturing images at varying viewpoints, which may require correction [29, 106]. Consequently, the
raw images collected need the process of stitching and alignment to construct an initial, spectrally
uncorrected data cube. Then, spectral correction is required to build the final data cube.

While the linescan wedge filter configuration requires specific handling, such as image-stitching
and alignment, the process for the snapshot mosaic camera revolves primarily around demosaicing.
However, both the linescan wedge and snapshot mosaic cameras follow a similar image processing
pipeline, with the main difference being replacing the stitching step with demosaicing in the snapshot
mosaic setup. Fig. 7.2 illustrates the image processing pipeline—previously presented in Fig. 1.12—
adapted to integrate both camera configurations seamlessly.
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Figure 7.2 – The essential steps in processing images acquired by snapshot spectral and linescan
cameras. (Single Image Demosaicing vs. Multi-Image Stitching)
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7.3 Understanding the Role of Entropy
Entropy allows to quantify the level of information in a given system. Consider a d-dimensional
probability vector, denoted as u = (u1, u2, . . . , ud)

T where each ui represents the probability of the
ith event occurring in a d-dimensional probability space. The entropy of the vector u is defined as:

E(u) = −
d∑
i

ui · log(ui). (7.2)

Here, the logarithmic function can be either the natural logarithm or the binary logarithm, depending
on the context. The entropy here serves to quantify the extent of uncertainty or disorder inherent in
the values of u. One important characteristic of entropy is that it reaches its maximum value when
the probability distribution of u is equally distributed among all events, and conversely, it reaches its
minimum value when a single event dominates with near certainty [98].

Given the harmonics of the FPf shown in Fig. 7.3, when the band response exhibits multiple
peaks, the resulting entropy will be very high. Conversely, when there is only a single response peak,
the entropy is near zero. Incorporating this information into the deconvolution problem allows us to
effectively control the level of smoothness required for the corrected spectrum.
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(a) Entropy = 0.54
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(b) Entropy = 0.04

Figure 7.3 – Fabry-Perot filter responses for different bands of the linescan camera. On the left:
805 nm. On the right: 650 nm.

7.4 Proposed Spectral Correction Method
In our spectral imaging context, after the process of demosaicing or stitching, we encounter a dat-
acube where each spatial pixel is a k × 1 vector denoted as z—where k is the number of physical
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wavelengths—which reads
z = H · s. (7.3)

Here, H is the response matrix with dimensions k × q where q is the number of measurement points
used during the calibration of the sensor and s is the original spectrum that we intend to see in each
pixel. In practice, q = 601 as the manufacturer samples responses at every 1 nm interval within the
range of 400 nm – 1000 nm. The primary challenge we encounter is the estimation of the vector s
based on the observed spectral pixel vector z and the response matrix H. However, due to the available
dimensions, estimating s is an under-determined problem. Additionally, the use of the cut-off filter
results in the blocking of harmonics outside the sensor active range, making the matrix H not suitable
for the retrieval process. To address this, we propose to reduce the size of the matrix H to retain only
the applicable information. This reduction is achieved through a strategic sampling of the matrix H,
keeping values corresponding to virtual wavelengths that carry the most relevant information of the
sensor, while accounting for contributions from harmonics and cross-talk, as depicted in Fig. 7.4.
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(a) Photonfocus SSI 5× 5 [1]
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Figure 7.4 – Fabry-Perot filter responses (in blue) for one band from linescan and SSI cameras with
highlighted virtual wavelengths (in red)

Subsequently, we perform a scaling operation on the rows of matrix H to ensure that they sum to
one. The sampled response matrix is denoted as HS and has dimensions k ×m, where m represents
the number of virtual wavelengths. Thereafter, the size of the vector s is adjusted to m × 1 and is
referred to as v for clarity. In order to obtain v, we aim to solve a nonnegative least-squares problem,
which is formulated as

min
v≥0

1

2
‖z− HS · v‖22 +

λ

2
· ‖D · v‖22 +

λ

2
· R(HS,v). (7.4)
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The deconvolution incorporates regularization with a penalty term R(HS,v), controlled by the regu-
larization parameter λ. It reads

R(HS,v) = ‖E(HS) ·D · v‖22, (7.5)

where E(HS) is diagonal matrix accounts for the entropy of each column of the matrix HS as follows:

E(HS) =

 −
k∑

l=1

HS
l,j · log(HS

l,j) if i = j,

0 otherwise.
(7.6)

Here, i and j are the row and column indices. The entropy is applied to each column of the matrix
HS to automatically determine the degree of smoothness required in the estimation. In practice, it
can be interpreted as follows: when the band response exhibits multiple peaks, the resulting matrix
HS can be ill-conditioned, as most of its values will tend to be near zero2. This situation results in
a high entropy value indicating a need for increased smoothness regularization. Conversely, when
there is only a single response peak, the entropy is zero, signifying that no additional penalization for
smoothness is necessary. In summary, this method combines entropy regularization on the matrix HS

and Tikhonov regularization on the vector v, effectively balancing data fidelity and the desired level
of smoothness in the estimated spectrum. This approach ensures an adaptive optimization process
for recovering v from the observed data, and we refer to it as “Scene-Dependent Spectral Correction
(SDS-Cor)”

Finally, in the context of our proposed method, the possibility of doing super-resolution appears
when considering scenarios without cut-off filters. In such cases, the full informational content of the
harmonics in the response matrix H can be exploited for “super-spectral” resolution enhancement.
Our inverse problem framework is well-suited to exploit this opportunity by changing the dimensions
of H and adjusting the spectral estimation process accordingly.

7.5 Experimental Validation

7.5.1 Experimental Setup
We conducted experiments to precisely evaluate the effectiveness of our proposed spectral correction
method SDS-Cor. Our assessment contained both synthetic simulations, generated using response
matrices, and real-world image acquisitions obtained from two distinct physical cameras. To further
illustrate the versatility of our method, we included a specialized experiment involving a satellite
image. This experiment aimed to demonstrate how our spectral correction method performs in re-
mote sensing and spaceborne imaging. Finally, we conducted an experiment specifically designed to
showcase the super-resolution capabilities of our method.

2For example, the 5× 5 filter matrix H using real FPfs in [143] has two rows which are almost null.
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7.5.2 Synthetic Data Experiment

The synthetic experiment evaluated the spectral responses of water, metal, and concrete using spectral
signatures from [144] and the response matrices of the Snapshot Mosaic [119] and Linescan Wedge
cameras [158]. We simulated sensor responses to these materials, applied both our proposed and
IMEC’s correction methods [120], and assessed corrections by comparing the Spectral Angle Mapper
(SAM) scores between corrected and original spectra under varying noise levels.

However, we first study the impact of the regularization parameter λ on the NNLS problem.
Fig. 7.5 illustrates the influence of the regularization parameter λ on the SAM value for each noise
level in the context of the inverse problem for the linescan camera. Optimal SAM values are ob-
tained with λ = 0.0001 in noiseless scenarios, while higher noise requires larger λ values to maintain
deconvolution robustness. Throughout this section, λ = 0.0001 was used for noiseless synthetic ex-
periments, with noise-specific optimal values determined from the plot. For the real data experiment,
we chose the value λ = 0.0014, assuming the cameras to generate images with an input SNR equal
to 40 dB.
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Figure 7.5 – Reached SAM values vs the value of λ and the input SNR.

Our comparative analysis shown in Fig. 7.6, evaluates the performance across various noise levels
and highlights the advantage of incorporating entropy weighting into SDS-Cor method. The compar-
ison highlights SDS-Cor superiority to the IMEC method in noisy and noise-free settings, showing
greater fidelity to the original spectra even in high-noise conditions.

7.5.3 Jasper Ridge image Experiment

The second experiment assessed SDS-Cor on the Jasper Ridge image, simulating a real-world satellite
image acquired with an SSI camera featuring a 5 × 5 mosaic pattern. Post-simulation, we enhanced
spatial resolution through demosaicing and endmembers were estimated using the Vertex Component
Analysis (VCA) method [110]. Then, spectral correction of endmembers was performed using either
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Figure 7.6 – Results on synthetic simulation used USGS spectral data

Table 7.1 – Spectral correction using the proposed SDS-Cor and IMEC methods for Jasper Ridge
image. Performance criteria: PSNR, SAM, and SIR.

SDS-Cor IMEC
Method PSNR SAM SIR PSNR SAM SIR
GRMR 20.9 0.573 54.9 16.0 1.001 17.2

WB 21.7 0.455 55.8 16.3 1.023 18.6
KPWNMF 24.1 0.113 60.7 22.9 0.159 29.2

the IMEC correction or our SDS-Cor method. We compared against the KPWNMF, and analyzed per-
formance alongside two demosaicing methods, GRMR [143] and WB [27]. The performance of each
method was assessed using Peak Signal-to-Noise Ratio (PSNR), Spectral Information Ratio (SIR),
and SAM. The results of these evaluations are presented in Table 7.1. For all the tested methods, the
results showcase SDS-Cor superior performance over the IMEC correction approach.

7.5.4 Real Data Experiment
To further evaluate the effectiveness of our proposed method, we conducted experiments using lines-
can camera [158]. The camera captured images of colored papers in red, green, and blue under
natural sunlight. Subsequently, we measure the spectral information of the colored papers using an
ASD FieldSpec 4 spectrometer3, serving as the reference dataset for our assessment. We then applied

3See, e.g., https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range/fieldspec4-hi-
res-high-resolution-spectroradiometer.
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our method and IMEC correction matrix to the images and compared the corrected spectra with those
obtained from the spectrometer measurements. Fig. 7.7 display the restored spectra for the linescan
camera. Our method outperforms the manufacturer solution despite facing challenges in the spectral
range between wavelength numbers 30 to 60, attributed to harmonics from the Fabry-Perot filters.
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Figure 7.7 – Corrected spectral comparison for the linescan (LS) camera on the real data

7.5.5 Super Spectral Resolution

Finally, our proposed method can be used to enhance the resolution of hyperspectral imaging by
performing super-resolution, starting directly from the response matrix of the sensor. The snapshot
sensor initially supported 25 distinct wavelengths within its active range. Our primary objective was
to interpolate and restore additional spectral bands, mainly focusing on the midpoints between each
pair of successive bands. For instance, given that the sensor supports bands at 650 nm and 680 nm,
our first step was to accurately restore the band at 665 nm, which lies precisely in the middle of these
two bands. This process was iteratively conducted for all available bands, gradually increasing the
number of restored bands. As we progressed, the number of bands incrementally increased, reaching
49 bands. This enhancement effectively doubled the original spectral resolution of the sensor. To
evaluate the effectiveness of this super-resolution process, we utilized the SAM for each stage of
the reconstruction as the blue curve shows in Fig. 7.8(a). As the number of restored wavelengths
increases, we observe a corresponding increase in the SAM angle, implying a reduction in the spectral
reconstruction accuracy as shown by the red curve in Fig. 7.8(a). Moreover, Fig. 7.8(b) shows an
example of the super-resolution restored spectrum of the water, expanding from 25 to 601 bands with
a SAM value of 0.1. The results show the potential of our method in significantly enhancing spectral
resolution.
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7.6 Conclusion
In this chapter we introduced SDS-Cor, a new spectral correction method that use the same concept
in our Filtering-based framework. We exploited the response of the Fabry-Perot filter and propose a
novel scene-dependent spectral correction and calibration method. Our approach utilizes deconvolu-
tion with Tikhonov regularization weighted by the entropy of the Fabry-Perot harmonics to remove
the generated artifacts and restore the original spectra. The experimental results on synthetic and
real data demonstrated that the proposed method outperformed the manufacturer solution even in the
presence of noise. Lastly, it should be noticed that the proposed SDS-Cor method could also be in-
corporated in the filtering-based joint unmixing, deconvolution, and demosaicing methods proposed
in Chapter 5.
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Chapter 8

General Conclusion and Perspectives

“The important thing is not to stop questioning. Curiosity has its own reason for existing.”

— Albert Einstein

8.1 Conclusion
This thesis comprehensively explored snapshot spectral imaging (SSI) technologies, focusing on inte-
grating demosaicing and unmixing jointly directly from raw data rather than treating them as separate
stages. We started in Chapter 1 with a foundational understanding of SSI as an advanced approach
within hyperspectral imaging (HSI), emphasizing its ability to capture complete spectral information
in a single exposure. The chapter also introduced the essential calibration processes for optimizing
Fabry-Perot-based SSI technology performance, underlining their importance in producing reliable
spectral data.

Chapter 2 extensively explored the diverse methodologies applied in demosaicing snapshot spec-
tral images, reviewing traditional and deep learning-based methods. We critically analyzed their
capabilities and limitations, particularly noting the challenges posed by deep learning methods in
scenarios with limited and highly variable training data.

Chapter 3 explored various unmixing methodologies, categorizing them into Geometrical, Sta-
tistical, Sparse Regression-based, and Deep Learning-based methods. We focused on nonnegative
matrix factorization (NMF) and sparse component analysis (SCA) because these approaches are par-
ticularly relevant to our proposed frameworks. We also identified three main categories of NMF:
Constrained, Structured, and Generalized NMF, each dedicated to addressing specific challenges in
hyperspectral imaging.

Chapter 4 introduced our novel methods for jointly performing “demosaicing” and “unmixing”.
We proposed two novel approaches in addition to the naive method derived from Weighted NMF
(WNMF). The first one, KPWNMF (K-means Patch-based Weighted Nonnegative Matrix Factor-
ization), assumes that the abundances are sparse in a few patches to find, so that one endmember
dominates each of these patches. Such an assumption is similar to SCA, except that we consider
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partially observed data. In contrast, the second one, VPWNMF (VCA Patch-based Weighted Non-
negative Matrix Factorization), relaxes the sparsity assumption needed in the latter. These methods
were designed to enhance the processing of SSI images and reduce errors associated with traditional
two-step processes.

Chapter 5 focused on the Fabry-Perot filter response to perform the joint demosaicing and unmix-
ing. Specifically, we performed joint demosaicing, deconvolution and unmixing, where we integrated
deconvolution directly into the unmixing process. This integration effectively utilizes the harmonic
responses of Fabry-Perot filters, enhancing the accuracy and efficiency of the spectral data process-
ing. We proposed two novel methods for this goal: FPVCA (Filter Patch-based Vertex Component
Analysis) and FPKmeans (Filter Patch-based Kmeans).

Our extensive experimental evaluations, discussed in Chapter 6, demonstrated the superior perfor-
mance of our proposed methods over traditional techniques, particularly in their ability to handle raw
SSI data effectively.

Finally, Chapter 7 introduced SDS-Cor, a scene-dependent spectral correction method that sig-
nificantly advances traditional scene-independent correction matrices. SDS-Cor adapts to specific
scene characteristics by employing entropy-weighted Tikhonov regularization. We assessed SDS-cor
and showed that it significantly reduced harmonic distortions and improved the spectral accuracy,
outperforming the manufacturer correction method, particularly in noisy environments.

8.2 Perspectives

8.2.1 Running Time and Hyperspectral Video Processing
SSI cameras can capture videos with a high frame rate, and they are helpful in cases where the motion
is unpredictable and the camera/object is moving in 2-D or 3-D, such as in robotic applications or
lane sorting [79]. However, a notable limitation of our current frameworks—the completion-based
and filtering-based frameworks—is their computational demand. The time required to process each
frame is too high for real-time video analysis applications. To address this challenge, future work
will focus on improving the computational efficiency of these frameworks. One promising approach
is the adoption of compressed learning techniques [166, 165], which can significantly reduce the data
volume that needs to be processed by extracting and using compressed representations of the data.

8.2.2 Spectral Variability
One of the key challenges identified during our exploration of snapshot spectral imaging (SSI) tech-
nologies is spectral variability, which significantly impacts the performance of our proposed frame-
works. Spectral variability refers to the differences in spectral signatures of the same materials under
varying illumination conditions, viewing angles, and environmental factors. These variations lead
to inaccuracies in the post-processing tasks. Both frameworks can be enhanced to handle spectral
variability. This involves developing the endmemeber estimation step by incorporating models, e.g.,
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Multilayer/Deep Extensions of NMF [130, 45], that dynamically detect the variability in the end-
memebers.

8.2.3 Fabry-Perot Filter Variability
The response matrix that registers the actual band response for each FPf can be subject to noise
due to potential errors in its estimation. As a crucial component of the proposed methods FPVCA,
FPKmeans, and SDS-Cor, it can affect their performance. Therefore, the effect of the noisy response
matrix should be studied deeply and update the proposed framework to be robust to this noise.

8.2.4 Angularity Correction Integration
Angularity correction, as introduced by Goossens et al. [62], adjusts for light angle variability. Our
proposed method filtering-based framework and SDS-Cor method can be extended to tackle this issue.
This will improve the generalizability of our methods in diverse practical scenarios.

8.2.5 Integrating Deep Learning
Deep learning approaches generally demonstrate superior performance over traditional methods for
demosaicing, especially in handling high-dimensional data and preserving details and color accuracy.
Despite these advancements, deep learning methods face significant challenges, notably in general-
ization and data requirements. They often require large amounts of labeled training data to perform
effectively. Furthermore, these models may struggle to generalize to new, unseen data or different
MSFA configurations not included in the training set. To address these challenges, future research
in deep learning for MSFA demosaicing could focus on developing more robust models that require
less training data and can generalize better across different MSFA patterns. Techniques such as trans-
fer learning [77], few-shot learning [139], and synthetic data generation [50] could play significant
roles in achieving these goals. Additionally, integrating unsupervised or semi-supervised learning
paradigms could reduce the dependency on large labeled datasets and help improve the model ability
to generalize to new conditions.
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