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Résumé

Dans la thèse, je présente des résultats expérimentaux sur les réseaux micro-ondes
et les chambres réverbérantes. La description générale est basée sur la théorie de
la diffusion, décrivant la réflexion et la transmission via les pôles et les zéros de la
matrice de diffusion. Les pôles et les zéros peuvent être déterminés par l’approche de
l’hamiltonien effectif, où couplage et perte peuvent être pris en compte de manière
appropriée. La thèse est divisée en deux thèmes de recherche principaux : le pre-
mier concerne les réseaux micro-ondes, simulant des graphes quantiques, abordant
les comportements non-Weyl se produisant en raison de l’ouverture du système.
Le second est dédié à l’absorption parfaite cohérente (CPA) dans les chambres
réverbérantes à fortes pertes.

Les réseaux hyperfréquences sont décrits par des liaisons reliées par des vertex.
Pour la première fois, une variation de la force de couplage au réseau est implémentée
expérimentalement. Ceci est réalisé en utilisant une liaison pendante de longueur
variable attachée au vertex de couplage. Ainsi, nous faisons varier indirectement la
condition aux limites au vertex de couplage de Dirichlet à Neumann. En suivant
les pôles dans le plan complexe, on peut observer la fuite des pôles via une transi-
tion superradiante. Ces pôles manquants conduisent à une réduction du nombre de
pôles, rendant ainsi nécessaire un ajustement de la loi de Weyl, appelée comporte-
ment non-Weyl dans les graphes. Cela a été observé pour la première fois dans des
graphes tétraédriques ouverts, qui montrent une dynamique paramétrique complexe
des pôles. Cette dynamique riche est constituée de boucles, de régions de pôles
connectés et de pôles se rapprochant d’une partie imaginaire infinie. Les principales
caractéristiques se trouvent déjà dans les graphes de type lasso, qui peuvent être
résolus analytiquement.

Le deuxième sujet concerne les chambres réverbérantes, où les ondes électro-
magnétiques sont diffusées dans un environnement accordable. Par rapport aux
chambres réverbérantes standards, celle-ci est équipée de surfaces intelligentes re-
configurables (RIS). Ces dernières nous permettent d’ajuster les zéros de la matrice
de diffusion sur l’axe des fréquences réelles, ce qui correspond à un concept récent
nommé CPA en physique des ondes, où aucune onde ne s’échappe d’un système avec
perte pour une onde incidente spécifique. Nos résultats expérimentaux imposent
que l’existence des CPA ne puisse être expliquée que par les états superradiants
correspondants. Cette correspondance est confirmée numériquement à travers une
approche matricielle aléatoire basée sur l’hamiltonien effectif en régime de surcou-
plage, généralement négligé dans les études théoriques. De plus, nous constatons
que les zéros de la matrice de diffusion proches de l’axe réel sont plus sensibles dans
le cas surcouplé que dans le cas sous-couplé. Enfin, nous démontrons que la CPA
peut être utilisée comme sonde de température.

Mots clés: absorption parfaite cohérente, superradiance, théorie des matrices aléat-
oires, loi de Weyl, réseaux micro-ondes, chambre réverbérante
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Abstract

In the thesis, I present experimental results on microwave networks and reverbera-
tion chambers. The general description is based on scattering theory, describing the
reflection and transmission via poles and zeros of the scattering matrix. The poles
and zeros can be determined by the effective Hamiltonian approach, where coupling
and loss can be taken into account appropriately. The thesis is divided into two main
research subjects: the first one deals with microwave networks, simulating quantum
graphs, addressing non-Weyl behavior occurring due to the openness of the system.
The second one is dedicated to coherent perfect absorption (CPA) in reverberation
chambers with large losses.

Microwave networks are described by bonds which are connected by vertices. For
the first time a variation of the coupling strength to the network is experimentally
implemented. This is realized by using a dangling bond with variable length attached
to the coupling vertex. Thus we indirectly vary the boundary condition at the
coupling vertex from Dirichlet to Neumann. Following the poles in the complex
plane, one can observe the escape of poles via a superradiant transition. These
missing poles lead to a reduction of the number of poles, thus making an adjustment
of Weyl’s law necessary, which is termed non-Weyl behavior in graphs. This was first
observed in open tetrahedral graphs, which show a complex parametric dynamics
of the poles. This rich dynamics consists of loops, regions of connected poles and
poles approaching infinite imaginary part. The main features can be already found
in lasso graphs, which can be solved analytically.

The second subject concerns reverberation chambers, where electromagnetic
waves are scattered in a tunable environment. Compared to standard reverbera-
tion chambers, this one is equipped with reconfigurable intelligent surfaces (RIS).
The latter allow us to tune the zeros of scattering matrix to the real frequency axis,
which corresponds to a recent concept named CPA in wave physics, where no wave is
escaping from a lossy system for a specific incident wave. Our experimental findings
impose that the existence of CPAs can only be explained by corresponding super-
radiant states. This correspondence is numerically confirmed through a random
matrix approach based on the effective Hamiltonian in the over-coupling regime,
generally neglected in theoretical studies. Additionally, we find that the zeros of the
scattering matrix close to the real axis are more sensitive in the overcoupled case
than in the undercoupled one. Finally, we demonstrate that the CPA can be used
for temperature sensing.

Keywords: coherent perfect absorption, superradiance, random matrix theory,
Weyl’s law, microwave networks, reverberation chambers
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Chapter 1

Introduction

Already in the early stage of quantum physics, everything we know about nuclear
and atomic physics has been explored by scattering experiments, e.g. Rutherford’s
discovery of the nucleus or neutron or electron scattering in crystals [Rut11,Dav27].
Later in the 1950s and 1960s, interest in wave scattering was diverted to classi-
cally chaotic systems, where the main experimental data on spectra and scatter-
ing properties came from nuclear physics, where neutrons were scattered on nu-
clei [Hau52, Por65]. Two main theories were inspired and developed with these ex-
periments: random matrix theory (RMT), initiated by Wigner [Wig55] and extended
by Dyson, Mehta et al. [Por65], and scattering theory, proposed by Weidenmüller
and colleagues [Mah69]. By the 1980s, the interest in the properties of chaotic sys-
tems was suddenly renewed by the conjectures of Casati et al. [Cas80] and Bohigas
et al. [Boh84], now known as the Bohigas, Giannoni, Schmit (BGS) conjecture, sug-
gesting that the universal statistical properties of quantum systems with a classical
chaotic counterpart should be described by RMT. This conjecture has proved to
be extremely useful and injected a new impetus to the field, which has led to in-
tensive research activity in various areas, including nuclear physics, atomic physics,
mesoscopic physics, quantum optics, and wave physics, both theoretically and ex-
perimentally. Among these, classical wave experiments have become an especially
important tool. The earliest analogue experiments using vibrating solids [Wea89]
and chaotic microwave cavities [Stö90] were published in 1989 and 1990. Soon after,
the idea was extended to water surface and pressure waves [Blü92, Chi96], optical
systems [Doy01,Din02] and semiconductors [Mar92].

Microwave experiments, in particular, offer numerous advantages especially com-
pared to matter waves [Stö99]. First of all, they operate on a cm-scale, which is
much easier to manipulate compared to the nm-scale of quantum experiments and
allows for sub-wavelength precision and excellent control over the systems. Further
advantages arise from the fact, that the geometry of microwave system is precisely
known and can be easily varied: in 1D microwave networks [Hul04], by varying
phase shifter [Bia16]; in 2D microwave billiards, by moving disk [Mén03]; and in
3D reverberation chambers, by rotating stirrers [Bes11] allowing thus to investigate
statistical predictions made by RMT. Last but not least, the coupling from external
channels can be introduced, varied, and explicitly included in calculations.

Originally, these microwave experiments were designed to study the spectral

1



Chapter 1. Introduction

properties of closed chaotic systems. However, the introduction of antennas or trans-
ducers for measurements inevitably opens the systems. Therefore, for a quantitative
interpretation of the measurements, it became necessary to introduce scattering the-
ory and effective Hamiltonian approach [Mah69,Ver85,Sok89] to establish a relation
between Green’s function of the closed system and the scattering matrix of the open
system. This motivated a large number of experimental tests to verify the accuracy
of theoretical description in their open systems [Stö99,Kuh13,Stö22].

For open system, discrete eigenvalues no longer exists, now they appear as res-
onances in the spectrum, or poles of the scattering matrix in the complex plane.
This is due to energy decay induced by the coupling to an environment. As a result,
many predictions originally used for closed wave systems needed to be adjusted.
Such as Weyl’s law [Wey12a, Wey12b, Wey12c], a prediction used to describe the
density of states of a given closed system. To adapt Weyl’s law to open systems,
the fractal Weyl’s law [Non05, Pot12] was introduced, which counts the resonances
of open chaotic systems and reduces the wavenumber exponent due to its chaotic
behavior, relating this exponent to the dimension of the classical repeller. It is a
crucial ingredient that the number of “channels” increases with the wavenumber to
infinity. However, also in the case where the number of channels is fixed a devia-
tion to Weyl’s law is found in quantum graphs where now the prefactor is changed
compared to the original Weyl’s law. These deviations occur in open graph systems
when balanced vertices are present [Dav10, Dav11, Exn11, Lip15,  Lawni19]. To in-
vestigate this non-Weyl behavior experimentally, microwave networks with variable
coupling needed to be introduced.

As an inevitable factor in open systems, loss can be classified into three types, in-
cluding channel decay, global loss and local loss [Sav06]. It causes resonance overlap-
ping, and an important parameter to quantify it, is the mean modal overlap [Fyo96],
which is determined by the average resonance widths and their mean spacing. There
are microwave experiments that try to reduce the absorption from the resistance in
the walls, such as superconducting microwave billiards [Grä92, Die15]. However,
most microwave experiments are performed at room temperature where the losses
are not negligible [Kuh05], and in some cases, the absorption from the walls domi-
nates the losses in the system and the resonances show strong overlap [Kuh17]. Due
to these experiments, theoretical descriptions have been extended to include losses
as an ingredient. A large modal overlap is especially important in reverberation
chambers [Hil09] to guarantee sufficient statistically independent spectra allowing
for statistical investigation but still having high quality factors to perform electro-
magnetic compatibility (EMC) testing [Hil09].

Recently, the idea to introduce chaotic reverberation chambers (CRC) for better
statistical performance as well as for a better theoretical description based on the
effective Hamiltonian idea using RMT was proposed [Gro14a, Gro16]. These rever-
beration chambers allow to investigate coherent perfect absorption (CPA) [Cho10],
a phenomenon describing all coherent incident radiation is perfectly captured by
wave interference inside a lossy system. They are inherently related to the zeros of
the scattering matrix, more precisely a CPA occurs exactly when a zero is located
on the real axis of the complex plane [Fyo17]. CPAs are now proposed for very effi-
cient sensors [Bar17]. An ideal experimental platform to study CPAs [Fra20,Del22],
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is a CRC equipped with mechanical stirrers and reconfigurable intelligent surfaces
(RIS) [Kai14]. To understand the existence of CPAs in these systems a modeling
of the system’s loss and effective Hamiltonian is needed to accurately describe the
spectral and scattering properties of chaotic system, such as level dynamics of poles
and zeros [Kuh13], fluctuation properties of the scattering matrix [Leh95a,Leh95b],
and distribution of poles and zeros [Fyo97]. Furthermore, it may be necessary to
modify the coupling of the system, and in the case of over-coupling, superradi-
ance [Dic54,Wei21] may occur.

The thesis will be structured as follows: chapter 2 firstly introduces the theo-
retical description of closed and open wave systems, including Weyl’s laws, RMT,
scattering theory and effective Hamiltonian approach, as well as poles and zeros of
the scattering matrix and superradiance. Then, chapter 3 presents quantum graphs,
microwave networks and non-Weyl graphs, and discusses experiments on parametric
studies of non-Weyl phenomena in tetrahedral and lasso graphs. Finally, chapter 4
introduces CRC, implements the precise determination of loss before using them to
compare the zeros of the scattering matrix close to the real axis, intimately related
to CPAs, obtained by the experiment to RMT predictions. Additionally, a discus-
sion of the effects of parametric variation of the system on CPAs is done, confirming
that the description needs a superradiant system and those CPAs can be used as
sensors, here implemented as a temperature sensor.

3





Chapter 2

Theoretical Description of Wave
Systems

Contents
2.1 Electromagnetic and Matter Waves . . . . . . . . . . . 6

2.2 Closed Wave Systems . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Closed Systems: From 1D to 3D . . . . . . . . . . . . . . 7

2.2.2 Weyl’s Law . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Random Matrix Theory (RMT) . . . . . . . . . . . . . . 10

2.3 Open Wave Systems . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Scattering Systems . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Effective Hamiltonian Approach . . . . . . . . . . . . . . 16

2.3.3 Poles and Zeros of the Scattering Matrix . . . . . . . . . 17

2.3.4 Fluctuation Properties of the Scattering Matrix . . . . . 19

2.3.5 Superradiance . . . . . . . . . . . . . . . . . . . . . . . . 21

From one-dimensional network to two- or three-dimensional cavities, there are
many wave systems suitable for describing the occurrence of quantum/wave phe-
nomena. Even though they could be quite distinct in their theoretical description,
numerical simulation, and experimental realization, sometimes they share the same
properties in the eigenvalues of closed wave systems or in the scattering matrix of
the corresponding open systems. In this chapter, we will first examine the electro-
magnetic and matter waves, and discuss three types of closed microwave systems.
Then we will introduce Weyl’s law and random matrix theory (RMT), as well as
methods for describing open system: scattering theory and effective Hamiltonian
approach. Finally, we will study poles and zeros of scattering matrix in complex
plane, and superradiant state as an extreme wave phenomenon.
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Chapter 2. Theoretical Description of Wave Systems

2.1 Electromagnetic and Matter Waves

As this thesis mainly concerns microwave experiments, we will first describe the
propagation of electromagnetic waves, starting with Maxwell’s equations:

∇⃗ · D⃗ = 0 , (2.1)

∇⃗ · B⃗ = 0 , (2.2)

∇⃗ × E⃗ = −∂B⃗
∂t

, (2.3)

∇⃗ × H⃗ =
∂D⃗

∂t
. (2.4)

Where in vacuum, displacement D⃗ and induction B⃗ are related to the electric E⃗
and magnetizing field H⃗, respectively, by:

D⃗ = ϵ0E⃗ , (2.5)

B⃗ = µ0H⃗ . (2.6)

Here, ϵ0 and µ0 are permittivity and permeability of the vacuum. Note, that in medi-
ums other than vacuum, relative permittivity and permeability must be introduced,
as exemplified in microwave coaxial cables of networks, discussed in subsection 3.2.1.
Using vector identity ∇⃗ × (∇⃗ × A) = ∇⃗(∇⃗ · A) − ∆A, we get the time-dependent
wave equations:

∆E⃗ − 1

c2
∂2E⃗

∂t2
= 0 , (2.7)

∆B⃗ − 1

c2
∂2B⃗

∂t2
= 0 , (2.8)

where c is the speed of light in vacuum. Assuming that the electromagnetic fields
oscillate harmonically e−iωt, we obtain the vector Helmholtz equations:(

∆ + k2
)
ψ⃗ = 0 , ψ⃗ = E⃗, B⃗ , (2.9)

where k = ω/c is the wavenumber and ω is the angular frequency.

In this thesis, we use microwave systems to simulate quantum systems. To
establish the relation between these two, we now look at matter wave. It is described
by the time-dependent Schrödinger equation:[

− ℏ2

2m
∆ + V (r⃗)

]
Ψ(r⃗, t) − iℏ

∂

∂t
Ψ(r⃗, t) = 0 . (2.10)

For a free particle (V = 0) in a stationary state Ψ(r⃗, t) = ψ(r⃗) e−iEt/ℏ, Eq. (2.10)
reduces to scalar Helmholtz equation:

(∆ + k2)ψ = 0 , k =
√

2mE/ℏ , (2.11)
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where E is the energy of the system. The quadratic k-E relationship in quantum
systems contrasts with the linear k-ω relationship in wave equations due to their
differing orders of time derivatives in Eqs. (2.7) and (2.10).

Here, to simplify the discussion appearing later on, we use the form of Helmholtz
equation that includes both scalar and vector fields:

(∆ + k2)ψ = 0 , (2.12)

where k is the wavenumber and ψ can represent either a scalar field ψ (e.g., pressure,

electric potential, wavefunction) or a vector field ψ⃗ (e.g., electric field, magnetic
field).

As discussed in this section, electromagnetic and matter waves propagate freely
in space. So far, they are discussed in the context of a given system where specific
boundary conditions is applied. In this thesis, particular interest is focused on the
fact that the equations describing electromagnetic and matter waves are found to
be mathematically equivalent under certain boundary conditions. This equivalence
enables the use of microwave systems to simulate quantum systems, a point of great
interest, especially within the quantum chaos community. Specifically, to illustrate
this equivalence, examples such as the one-dimensional network and two-dimensional
cavity will be discussed in the following section 2.2.

2.2 Closed Wave Systems

Closed wave systems are physical environments where waves are confined within
finite boundaries, with no coupling to the outside. These systems have different
dimensions, shapes, and boundary conditions, leading to a wide variety of solutions
to the wave equations. Most importantly, some of these systems are able to simulate
corresponding quantum systems. In this section, we will introduce three closed
microwave systems, discussing their properties separately. Then we will discuss
Weyl’s law and RMT, which are useful for analyzing closed systems.

2.2.1 Closed Systems: From 1D to 3D

Here we will investigate three closed microwave systems: one-dimensional networks
(also known as graphs), as well as two- and three-dimensional cavities. While only
1D graph and 3D cavity are investigated in this thesis, the description of the 2D
cavity is included for completeness.

For the tetrahedral graph shown in table 2.1 (a), the size of the system is de-
termined by the total length of the graph. Waves propagate along the bonds of
the graph and can be described by the Eq. (2.12), where k is the wave number
and the field ψ represents the potential difference U between the inner and outer
conductors’ surface of the coaxial cable. The wave amplitude ψ satisfies Neumann
boundary condition at a vertex. This configuration leads to the equation describing
wave transport in network equivalent to 1D Schrödinger equation, thus microwave
networks can be used to simulate quantum graphs [ Lawni10]. Scientists also have
found that spectral statistics of these systems closely following prediction of RMT,
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Chapter 2. Theoretical Description of Wave Systems

Tetrahedral graph Sinai billiard Reverberation chamber

Dim: 1 2 3

Size: Length Area Volume

ψ: U Ez E⃗ or B⃗

BC: Neumann Dirichlet Mixed

Table 2.1: Sketches of three types of systems: (a) 1D microwave graph, (b) 2D microwave
billiard, (c) 3D microwave cavity. Dim denotes “Dimension” and BC indicates “Boundary
Conditions”.

if the network is sufficiently complex. Thus this model is widely used in the quan-
tum chaos community [ Lawni10,Lu20,Stö22]. For more detailed explanations of the
quantum graph and microwave network, see chapter 3.

The Sinai billiard [Sin63, Sri91] in table 2.1 (b), named after Yakov Sinai, is a
2D billiard system, where waves propagate within a square with a circular obstacle,
and its size is determined by the area. This can be experimentally realized within
cylindrical microwave cavities, i.e., whose shape is translationally invariant in the z
direction, and closed by top and bottom plates which are perpendicular to z, and are
separated by h. In these cavities, only TM0 modes can be excited if the excitation
frequency is below fmax = c/2h [Stö99], where c is the speed of light. In this case,
the electric field vector is always perpendicular to the bottom and top plates of the
cavity, and Ez satisfies the Dirichlet boundary conditions on the outer circumference
of the 2D cavity. Under these conditions, Helmholtz Eq. (2.9) becomes scalar (wave
amplitude ψ corresponds to Ez), which is equivalent to the Schrödinger equation
describing 2D quantum billiard system. Thus, 2D chaotic billiard is well-known in
the study of quantum chaos research, alongside another common example being the
Bunimovich Stadium [Bun79, Stö90]. Note that the 2D billiard will not be studied
in this thesis, we show it here because it is the one of the most classical example
in the field of quantum chaos or wave chaos. As well as in subsection 2.3.1, we will
use 2D billiard as a tutorial to help the reader better understand how to describe a
scattering system.

The reverberation chamber (RC) [Bes11] shown in table 2.1 (c) is a 3D electro-
magnetic cavity where the size is determined by the volume of the chamber, with
a scatterer located at the top surface. In this case, we need the vector Helmholtz
equation to describe the propagation of waves within the chamber, where k is the
wave number and the field ψ⃗ represents the electric E⃗ or the magnetic field B⃗. The
chamber’s walls are modeled as perfect electric conductors (PEC), meaning the tan-
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gential component of the electric field E⃗ is zero on the surface E⃗tan = 0, and the
normal component of the magnetic field B⃗ is zero on the surface B⃗n = 0. This RC is
chaotic, thus displaying spectral and spatial properties described by RMT already at
reasonably low frequencies [Gro14c]. This makes them important tools in the study
of wave chaos, even though there is no direct analogy between the vector Helmholtz
equation and the scalar Schrödinger equation (since E⃗ and B⃗ in Helmholtz equation
are not independent). In chapter 4, we will discuss RC in more detail and treat it
as a 3D chaotic cavity to study its scattering phenomena.

The tetrahedral graph, Sinai billiard, and RC are examples of microwave systems
spanning one to three dimensions that often used to reveal universal spectral statis-
tics. Beyond microwave, other platforms such as acoustics [Mor93], optics [Doy01]
also exhibit these characteristics. Despite variations in their geometry, boundary
conditions, or platforms, these systems all display unique discrete energy spectra.
Weyl’s law and RMT are effective in analyzing these behaviors, providing funda-
mental insights into the density of states of eigenvalues and spectra statistics of
wave systems. We discuss them in subsections 2.2.2 and 2.2.3. Additionally, in real
experimental environments, these closed systems must be transformed into open
systems. This transformation endows them with scattering properties and thus ex-
hibits universal features and potentially unexpected wave phenomena, which will be
explored in section 2.3.

2.2.2 Weyl’s Law

Weyl’s law, originally formulated by Hermann Weyl in 1911, was initially developed
to explain black body radiation, particularly for understanding the density of states
of a system based on its geometrical parameters [Wey12a, Wey12b, Wey12c]. It
counts the number of eigenvalues smaller than the energy E = k2 in quantum
systems, or in general wave systems smaller than a wave number k, in average. In
d-dimensional systems with a bounded domain Ω it is given by:

N(k) =
Vol(Ω)

(2π)d
ωdk

d +O(kd−1) , (2.13)

where Vol(Ω) is the volume of the domain Ω, and ωd is the volume of the unit ball
in Rd. For d = 1, 2, 3, the volumes are given by ω1 = 2, ω2 = π, and ω3 = 4π/3.

This formula indicates that once we determine the geometric parameters of the
system, we can predict the number of eigenvalues within a certain range of k. For
example, in 1D closed graph system, knowing its total length L allows us to estimate
the number of eigenvalues below a specific wave number:

N1D(k) =
L

π
k +O(1) , (2.14)

where O(1) is defined by the number of the vertices and boundary condition [Gnu06].
Similarly, for a 2D microwave cavity, the prediction becomes

N2D(k) =
A

4π
k2 +

C

4π
k +O(1) , (2.15)
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where A and C are the area and perimeter of the billiard, and O(1) depends on
the curvature and the corners in the system [Bal71]. In the case of a 3D (vectorial)
electromagnetic case and for perfectly conducting boundary conditions, Weyl’s law
is given by

N3D(f) =
8πV

3c3
f 3 + (bcurv + bedges)f + const , (2.16)

where V is the volume of the cavity, c is the speed of light, and bcurv and bedges
includes contributions from the curvature of the boundary and edge corrections.
The constant term is related to the geometric properties of the system. Here we
use the frequency f = ck/2π to remain consistent with the Ref. [Gro14c], and
detailed expressions for the second terms also could be found. Note that in the 3D
case, there is no term proportional to f 2 because the different contributions of both
polarisations TE and TM mutually cancel out [Bal77].

Moreover, Weyl’s law has been found to hold in systems that are strongly dis-
ordered, demonstrating its robustness across different types of physical environ-
ments [Pie14,Sav17]. Specifically, it has been shown that the mean length between
two consecutive bounces of a typical trajectory traversing a system depends only
on the size of the system and of its boundary, which are both independent of the
specific structure of the underlying medium. This robustness highlights the funda-
mental nature of Weyl’s law in describing the average properties of wave systems
regardless of the underlying physical conditions or specific details of the disorder,
which holds significant potential for practical applications.

When the system is gradually opened, new features emerge. In addition to
counting eigenvalues, known as Bound States in the Continuum (BICs) [Hsu16] in
this case, one must also account for resonances. The concept of volume becomes
ambiguous as the system couples to an external environment. For weak coupling,
Weyl’s law remains effective as long as the resonances develop only a small width.
However, with stronger coupling to the external environment, phenomena such as
the fractal Weyl law for chaotic systems appear, where the dimension d is no longer
purely spatial but instead relates to the dimension of the classical repeller within
the system [Zwo89, Non05, Kop10]. Experimental studies have demonstrated these
effects, showcasing the transition from closed to open systems and the resulting
changes in resonance behavior [Lu03,Pot12].

Despite the robustness of Weyl’s law in many contexts, there are special situa-
tions where non-Weyl behavior is observed [Dav10, Dav11, Exn11, Lip15,  Lawni19],
namely with a modified prefactor. Specifically, these deviations occur in graph sys-
tems, and the transition from a Weyl graph to a non-Weyl graph occurs when a
balanced vertex is introduced. A vertex is called balanced if the number of leads
attached to it equals the number of internal edges meeting at that vertex. It is
important to study these non-Weyl behaviors in order to better understand Weyl’s
law, and we will discussed it in detail in chapter 3.

2.2.3 Random Matrix Theory (RMT)

RMT was developed by Eugene Wigner in the 1950s to model the energy levels of
complex atomic nuclei. The field significantly developed over the following decades
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through contributions from Wigner, Dyson, Mehta and others [Wig55,Dys62,Meh91,
Haa18]. In particular, Dyson introduced the classification of random matrices into
different symmetry classes based on their invariance properties under orthogonal,
unitary, and symplectic transformations. This classification helped in understanding
the universal statistical properties of complex systems. Later, the theory experienced
a significant resurgence in the 1980s due to the groundbreaking work of Bohigas,
Giannoni, Schmit (BGS) and Casati, who conjectured that RMT could be applied
to the study of spectra in chaotic systems [Cas80, Boh84], broadening its relevance
and impact across various fields of physics.

In RMT, the Hamiltonian of a system is represented by an N × N matrix H,
where the elements Hnm are randomly distributed, typically following a Gaussian
distribution. These elements are depend on the symmetries of the physical system.
A key requirement is the Hermiticity of the Hamiltonian, expressed as Hmn = H∗

nm.
Another important symmetry is time-reversal symmetry (TRS), represented by a
time-reversal operator T . For the system with TRS, HT = TH.

In time-reversal invariant systems without half-integer spin, all matrix elements
of the Hamiltonian are real and the time-reversal operator satisfies T 2 = 1. If
these elements are uncorrelated and Gaussian distributed, the matrix belongs to the
Gaussian orthogonal ensemble (GOE). This ensemble is extensively studied [Stö99,
Haa18] and is most relevant to this thesis, such as the chaotic graph and cavity.
For completeness, we also present two other common ensembles in RMT. When
TRS is broken, the matrix elements become complex, resulting in the Gaussian
unitary ensemble (GUE). In systems with half-integer spin, where the time-reversal
operator satisfies T 2 = −1, it leads to the Gaussian symplectic ensemble (GSE).
Numerous studies have explored both the unitary [Bia16, Reh18, Lu20, Stö22] and
the symplectic one [Reh16,Lu20,Che21a,Stö22,Ma24]. Later the classical ensembles
had been extended to ten-fold way, see the work of Altland and Zirnbauer [Alt97].

In RMT, for a direct comparison with experiments, where usually only the eigen-
frequencies are accessible, it is essential to derive the distribution of the eigenenergies
of the Gaussian ensembles. The joint probability distribution of the eigenvalues En

is of practical interest and can be expressed in a single formula [Meh91]

P (E1, . . . , En) ∼
∏
n>m

(En − Em)β exp

(
−A

∑
n

E2
n

)
, (2.17)

where β is the universality index, taking values 1, 2 and 4 for GOE, GUE, and
GSE, respectively. The constant A is a normalization factor. The correlated energy
distribution function contains all relevant information on the Gaussian ensembles.
However, this joint probability distribution lacks of accessibility to compare to nu-
merical or experimental findings.

To explore this further, we consider the density of states, an important spectral
property in RMT. In the case of the Gaussian ensembles, we are interested in its
average over the complete ensemble

⟨ρ(E)⟩ =

〈∑
n

δ(E − En)

〉
. (2.18)
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Figure 2.1: Numerical examples of probability density function of GOE random matri-
ces, where N = 100 and it is averaged over 105 realizations.

There are several ways to calculate this quantity, such as starting from Eq. (2.17) or
using supersymmetry techniques. Here, we will not delve into the detailed deriva-
tion, as these details can be found in the literature, such as Mehta’s book [Meh91].
Instead, we will present the results for these matrix ensembles. When analyzing the
ensemble-averaged density of states, it is observed that, in the limit E → 0 the den-
sity becomes constant, and also N → ∞ is typically performed thus extending this
range to infinity. It is common practice to normalize the density to one (ρ(0) = 1),
thus giving:

⟨ρ(E)⟩ =

{√
1 −

(
πE
2N

)2
, |E| < 2N

π
,

0 , |E| > 2N
π
.

(2.19)

This is known as Wigner’s semicircle law. As shown in Fig. 2.1, we illustrate the
probability density function P (E) = ⟨ρ(E)⟩/N of the GOE random matrices from
the numerical simulation. In the function, the size of the Hamiltonian N is included
to ensure that the integral of the probability density function over all possible energy
values equals one. Note, that there is a small tail outside 2N/π due to the finite
size of Hamiltonian.

Among various spectral correlations in RMT, the nearest neighbor spacing distri-
bution stands out as one of the most extensively studied one, as it is easily accessible
once the spectra are numerically or experimentally extracted. It can be calculated
from the correlated eigenenergy distribution of Gaussian ensembles in Eq. (2.17) by:

p(s) =

∫ ∞

−∞
dE1

∫ ∞

−∞
dE2P (E1, E2)δ(s− |E1 − E2|) , (2.20)

where s is the level spacing and the distribution is determined by two normalization
conditions. The first one normalizes the total probability to one

∫∞
0
p(s)ds = 1, and
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the second normalizes the mean level spacing
∫∞
0
sp(s)ds = 1. The integrals yield

p(s) =
π

2
se−

π
4
s2 . (2.21)

This is the Wigner distribution for the GOE case, and it is particularly relevant for
the microwave systems introduced in this thesis. Additionally, there are analytical
predictions for the other two ensembles, GUE and GSE. Other spectral correlations,
such as the integrated spacing distribution, two-point correlation function, number
variance, and spectral rigidity, are also commonly studied [Stö99,Haa18].

With the intensive study of the universal statistical behavior of eigenenergies, it
has been found that the dynamics of energy levels can also be an important subject
of investigation. Consider a chaotic system that varies with a parameter X, the
velocity of the eigenvalues Ei(X) can be calculated as

vX,i =
∂Ei(X)

∂X
, (2.22)

and once normalized,

vi =
vX,i

σX
, σ2

X =
1

n

n∑
j=1

(vX,i − ⟨vX,i⟩)2 , (2.23)

the velocities should be Gaussian distributed with a variance of unity, independent
of the universality class, if the perturbation is global, i.e., has the same rank as
the Hamiltonian [Bar99]. This statistical behavior of the velocities is examined in
detail in chapter 4. Other correlations used in the study of level dynamics include
the avoided-crossing distribution [Zak91,Zak93b], curvature distribution [Zak93a] or
velocity-correlation function [Sim93].

While RMT provides a robust framework for understanding the statistical prop-
erties of closed chaotic systems, its applicability extends to open systems as well. In
open systems, energy levels become resonances with finite lifetimes, and the corre-
sponding Hamiltonians are no longer Hermitian. This leads to the study of complex
eigenvalues, where both the real and imaginary parts provide valuable information
about the system. In the next section, I’ll provide a detailed introduction to open
wave systems, exploring their unique properties.

2.3 Open Wave Systems

Open wave systems are crucial in real-world situations, as measurements inevitably
cause disturbances in closed systems. A mathematical framework to manage the
interaction between these systems and their external environment is scattering the-
ory [Ver85,Sok92]. In this section, we will first introduce scattering systems, includ-
ing commonly used concepts such as the scattering matrix. Next, we will discuss
the effective Hamiltonian approach, a powerful tool that can be used to establish
the relationship between closed and open systems. Finally, we will explore poles
and zeros of the scattering matrix, their behavior described by RMT, and specific
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Figure 2.2: Sketch of a scattering system with two attached channels.

phenomena such as superradiance.

2.3.1 Scattering Systems

Scattering theory, originally developed in nuclear physics [Mah69,Lew91], provides
a fundamental framework for understanding the wave behavior in different media.
A central concept in this theory is the scattering matrix, which encapsulates all the
information about how incoming waves are transformed into outgoing waves after
interacting with a system.

To illustrate this, we take a straightforward and intuitive example of a 2D mi-
crowave billiard of arbitray shape, coupled via waveguides as shown in Fig. 2.2,
providing an accessible introduction as a scattering system and to the principles of
scattering theory.

The amplitude of the field, denoted by ψ(r, k), satisfies the Helmholtz Eq. (2.12).
When the widths of the waveguides are small comparable to the wavelength, and
the waveguide supports only one mode, the number of channels is exactly equal to
the number of waveguides. In this case, the electromagnetic field within the i-th
waveguide can be described as a combination of one incoming wave and one outgoing
wave

ψ(r, k) = aie
ik(r−ri) − bie

−ik(r−ri) , (2.24)

where ri is the point of entrance of the i-th waveguide, k is the wavenumber, ai
and bi are the amplitudes that describing how waves are entering and leaving the
billiard. In this section bold variables are used for vectors. Since the width of the
waveguide is small compared to the wavelength, each waveguide can be assumed as
one scattering channel, and the scattering matrix S reduces to an M ×M matrix,
where M is the number of waveguides. Assuming the amplitude vector of the waves
entering or leaving the billiard by a = (a1, a2, . . . , aM) and b = (b1, b2, . . . , bM), the
scattering matrix of the billiard is defined by

Sa = b . (2.25)

The diagonal elements Sii of S correspond to the reflection as they describe the scat-
tering back inside the port, whereas the nondiagonal elements Sij are the transmis-
sion amplitudes describing the transport between different ports. For the scattering
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matrix of the system in Fig. 2.2, it is

S =

(
S11 S12

S21 S22

)
. (2.26)

The quantities |S11|2 and |S22|2 represent the reflectance at port 1 and port 2, re-
spectively. The transmittance from port 1 to port 2 is conventionally given by
|S21|2, from port 2 to port 1 given by |S12|2. As reciprocity holds in our system:
S21 = S∗

12. It is worth mentioning that reciprocity and time-reversal symmetry are
different [Sig22]. Time-reversal symmetry refers to the Hamiltonian of the closed
system, while reciprocity pertains to the scattering properties here. Some systems
have scattering reciprocity without time-reversal symmetry in their Hamiltonian.
In this thesis, we study systems where both reciprocity and time-reversal symmetry
are preserved.

Next, we explore the relationship between the Green function and the scattering
matrix. Starting from the system with Dirichlet boundary conditions, see the black
lines of the Fig. 2.2, at the opening of the leads, we assume Neumann boundary
conditions for the corresponding closed system. The system has a discrete spectrum
of eigenvalues k̄n and corresponding real eigenfunctions Ψ̄n. The resulting Green
function Ḡ(r, r′, k) is defined as:

Ḡ(r, r′, k) =
∑
n

Ψ̄n(r)Ψ̄n(r′)

k2 − k̄2n
. (2.27)

In this case, we assume for simplicity a point-like coupling, leading to the description
in terms of the wavefunctions Ψ̄n(r) at the openings. Without going into the detailed
derivation, the relationship between the scattering matrix S and the Green function
Ḡ is given by [Stö99]

S =
I− i

2
κḠ

I + i
2
κḠ

, (2.28)

where κ describes the coupling of the waveguides to the billiard, which has been
assumed to be equal for all waveguides. The unitarity of S can be seen from this
expression. By applying a perturbative approximation, particularly under the con-
dition that the resonances are isolated, we can derive the following expression:

Sij = δij − iκ
∑
n

Ψ̄n(ri)Ψ̄n(rj)

k2 − k̄2n + iΓn/2
, (2.29)

where δij denotes the Kronecker delta, Γn accounts for losses such as the opening
of the system by waveguides or antennas. This indicates that in open systems, we
no longer obtain the wavefunctions Ψn for closed system, and the resonances are
shifted to k̄2n with a broadened part Γn. This equation is the billiard equivalent of
Breit-Wigner-formula in the context of nuclear physics [Bla52].

Eq. (2.29) is valid when the eigenvalues k̄n are well separated, leading to spectra
that are combinations of Lorentzian-shaped resonances with amplitudes Ψ̄n(ri)Ψ̄n(rj).
In scenarios where the resonances overlap significantly, it becomes challenging to in-
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terpret Ψ̄n(r) as the wavefunctions of a closed system. Nonetheless, the spectrum
Sij still manifests as a superposition of Lorentzian resonances, provided that global
absorption and antenna couplings remain uniform across the individual Lorentz
lines.

The example in this subsection is particularly effective due to its straightfor-
ward physical interpretation, resembling a simplified billiard model. However, this
approach relies on a simplifying approximation and fails to capture more complex
scenarios where resonances overlap. In the following subsection, we will introduce
a more comprehensive method that covers overlapping resonances and enhances
our understanding of the system’s scattering behavior, moving beyond the simpler
approximations used here.

2.3.2 Effective Hamiltonian Approach

As previously noted, the Breit-Wigner formula is effective for isolated resonances but
proves insufficient for broader resonances that overlap significantly with each other.
This limitation leads us to adopt the effective Hamiltonian approach, which offers a
robust framework for handling such overlapping resonances. Initially developed in
nuclear physics [Mah69, Ver85, Sok89], this approach has been successfully applied
to various open systems, including wave billiards [Stö99, Fyo97, Dit00]. We begin
with a fundamental formula for the scattering matrix:

S =
I− iK

I + iK
, (2.30)

where K is the Wigner reaction matrix

K =
1

2
W †(E −H0)

−1W . (2.31)

Here, H0 denotes the Hermitian N × N Hamiltonian of the unperturbed system,
giving rise to N real energy levels. These levels are coupled to M continuum channels
via the N ×M matrix W . If the system is chaotic, then H0 can be replaced by a
random N×N matrix in GOE. The constraints on the elements of H0 are described
in detail in subsection 2.3.4. For W , its element wnm describes the coupling strength
between n-th resonance and m-th channel. An important parameter often used
later, the coupling strength κ, is actually related to wnm, which will be discussed
in subsection 2.3.4 . For point-like couplings, as the billiard models in previous
subsection, two equations here will simplify to Eq. (2.28), since wnm is proportional
to ψn(rm) at the coupling point rm for the m-th channel.

An alternative expression for the scattering matrix is:

S = I− iW † 1

E −Heff

W , (2.32)

where the effective Hamiltonian characterizes the open system

Heff = H0 −
i

2
WW † . (2.33)
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Since one is always interested in the singularities and zeros of scattering matrix,
we will take determinant for scattering matrix. By using the identity det(I−PQ) =
det(I−QP ), one can find:

detS = det(I− iW † 1

E −H0 + i
2
WW †W )

= det(I− iWW † 1

E −H0 + i
2
WW † )

=
det
(
E −H0 − i

2
WW †)

det
(
E −H0 + i

2
WW †

)
=

det
(
E − H̃eff

)
det
(
E −Heff

) =
N∏

n=1

E − zn
E − En

,

(2.34)

where H̃eff is essentially Heff with a flipped sign on the imaginary part:

H̃eff = H0 +
i

2
WW † . (2.35)

This configuration illustrates that the complex eigenvalues of Heff and H̃eff

En = En −
i

2
Γn ,

zn = En +
i

2
Γn

(2.36)

correspond to the poles and zeros of the scattering matrix, with eigen-energies En

and positive widths Γn. The detailed discussion on poles and zeros will be further
explored in the following subsection 2.3.3.

The coupling amplitudes are assumed to be energy independent within the rel-
evant energy range. In the general case, elements of the matrix W are complex,
as discussed in reference [Kö10], particularly when considering the coupling to a
variable antenna. For our purposes of this thesis, we consider only a real W matrix.

Since here we assume there is neither gain nor loss in the system, the scatter-
ing matrix S is unitary. However, in practical scenarios, losses are inevitable. We
will discuss how to formulate the scattering matrix to account for losses in subsec-
tion 4.1.2, providing a more realistic description of experimental setups.

2.3.3 Poles and Zeros of the Scattering Matrix

Beyond the effective Hamiltonian discussed in the previous subsection, which ex-
plains the interactions between closed systems and external environments, the poles
and zeros of the scattering matrix are also crucial for a thorough analysis of scat-
tering processes. The behavior of the scattering matrix is captured by Eq. (2.34),
which is a representation of the Weierstrass factorization theorem [Gri13,Kra19]. It
illustrates that the behavior of the scattering matrix is completely determined by
the locations of its poles and zeros. Understanding this straightforward framework
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helps clarify complex phenomena and is vital for furthering our knowledge of wave
interactions. This subsection will focus on detailing the specific roles of poles and
zeros in scattering phenomena.

Poles of the scattering matrix, En, are also commonly referred to as resonances.
The real part of these poles corresponds to the eigenenergy En of the resonance,
while the imaginary part describes their width Γn, indicating exponential decay of
the intensity of the n-th eigenstate in the time domain. Exploring these poles also
uncovers unexpected phenomena. One particular example is the appearance of ex-
ceptional points (EPs), where multiple poles converge in the complex plane, while
the corresponding eigenfunctions coalesce. These EPs introduce radical changes in
the systems behavior, such as sensitivity enhancements and unusual wave propaga-
tion patterns [Dem01,Pen14,Dop16, Özd19,Kra19].

The statistical characteristics of resonances in open chaotic systems have re-
ceived significant attention, much like the energy-level statistics in closed chaotic
systems. The bulk of research has concentrated on scenarios where effective cou-
pling is weak, characterized by the mean resonance width being smaller than the
mean level spacing, as depicted by ⟨Γ⟩ /∆ ≪ 1. In such conditions, resonances
remain well-separated, facilitating the application of simple first-order perturbation
theory. This separation allows for a straightforward application of the Breit-Wigner
formula (2.29), simplifying the process of extracting individual resonances. While if
the effective coupling is strong, it may introduce a phenomenon called superradiance,
where certain resonances aligned with the system’s channels, become dominant and
significantly impact the system, as detailed in subsection 2.3.5.

When the ratio of the average width of the resonances to the mean level spacing is
much greater than one ⟨Γ⟩ /∆ ≫ 1, it complicates the extraction of the resonances.
Traditional techniques such as direct curve-fitting are no longer suitable. Instead,
methods like harmonic inversion [Mai99] have been developed to effectively extract
resonances from a spectrum where the ratio is up to a few times [Kuh08], with the
results aligning well with RMT predictions. In this thesis, we will study poles and
zeros in the overlapping regime, and since this section focuses more on the case of
unitary scattering matrices, we will discuss it in chapter 4.

Zeros of the scattering matrix, zn, represent the specific energy levels at which
the scattering amplitude becomes zero, indicating points where the system exhibits
minimal scattering cross-section. In the case of systems without gain or loss, the
scattering matrix is unitary, thus all zeros and poles are symmetrically positioned
in the upper and lower halves of the complex energy plane, demonstrating zn = E∗

n,
as illustrated in Eq. (2.36) and Fig. 2.3.

Historically, zeros were often overlooked despite their symmetry with poles. How-
ever, the emergence of coherent perfect absorption (CPA), a phenomenon only oc-
curring for non-unitary matrices, has motivated recent studies [Fyo17,Fyo19,Osm20,
Kan21,Che20,Che21c] to reevaluate the importance of zeros in the scattering matrix.
A critical factor in this reevaluation is the role of loss. CPAs demonstrate that even
weakly lossy systems can act as perfect traps for coherent incident radiation through
wave interference effects. With the introduction of loss, as previously discussed, the
effective Hamiltonian needs to be reformulated to accurately describe the scatter-
ing matrix. Consequently, this leads to modifications in both the zeros and poles
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Figure 2.3: Sketch of the zeros and poles of a unitary scattering matrix in the complex
plane.

accordingly. Discussions on the role of loss are further detailed in subsection 4.1.2,
while the concept of CPA is explored more extensively in subsection 4.1.3.

Expanding upon this groundwork, recent theoretical studies have concentrated
on analyzing the zeros of the scattering matrix in chaotic system with uniform
[Li17] and non-uniform [Fyo17, Fyo19] losses, and where time-reversal symmetry is
preserved or broken. These explorations aim to further capitalize on these complex
interference and provide universal predictions for the properties of chaotic CPA
cavities. However, experimental investigations into the zeros and their statistical
distributions are still limited. This thesis aims to bridge this gap, with detailed
discussions and findings presented in chapter 4.

2.3.4 Fluctuation Properties of the Scattering Matrix

Just as the eigenvalue correlations in closed chaotic systems provide deep insights
into their dynamics, analyzing the scattering matrix in open chaotic systems can
reveal important characteristics. Here we study the ensemble-averaged scattering
matrix within the framework of the stochastic approach, which demands a statistical
consideration. First, we define the Hermitian part H0 of the effective Hamiltonian
Heff, as it belongs to the GOE, its elements Hnm following

⟨Hnm⟩ = 0 , ⟨HnmHn′m′⟩ =
λ2

N
(δnn′δmm′ + δnm′δmn′) . (2.37)

The eigenvalues of H0 lie in the interval [−2λ, 2λ] with the density given by Wigner’s
semicircle law, where in this thesis we have especially chosen

λ =
N

π
, (2.38)

yielding a unit level spacing at E = 0, see Eq. (2.19). Next, we specify the properties
of the coupling amplitudes wnm. These amplitudes are real and drawn from Gaussian
distribution with the following properties [Sok88,Sok89]:

⟨wnm⟩ = 0 , ⟨wnmwn′m′⟩ =
2κ∆

π
δmm′δnn′ , (2.39)
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where κ is the coupling parameter, assumed to be equal for all channels, and ∆ = 1
indicates the unit level spacing. In this thesis, κ is included in the product of
wnmwn′m′ , whereas in some other references, κ is treated separately. One can show
that the average diagonal elements of the scattering matrix are given by the following
expression:

⟨Saa⟩ =
1 − κg(E)

1 + κg(E)
, (2.40)

and g(E) is given by [Leh95a,Leh95b]

g(E) − 1

g(E)
+

mκ

1 + κg(E)
− i

E

λ
= 0 , (2.41)

with

m =
M

N
. (2.42)

Note that the calculation of g(E) is performed in the limit N → ∞, M → ∞,
and m < 1 [Leh95a]. The amplitudes may be chosen as fixed orthogonal vectors
[Ver85] or independent Gaussian-distributed random vectors [Sok92] and enter final
expressions of g(E). In this thesis, wnm are chosen from a Gaussian distribution
respecting Eq. (2.39).

In experimental settings, the transmission coefficient Ta is often the directly
measurable quantity, which makes it crucial for characterizing the coupling strength
to continua. We define Ta via the real transmission coefficients as follows:

Ta = 1 − |⟨Saa⟩|2 , (2.43)

where Ta ranges from 0 to 1, when Ta ≪ 1 means weak coupling and Ta = 1 indicates
perfect coupling. The subindex a will be used to denote the number of the channels.
A common way is to express Ta at E = 0:

Ta =
4κeff

(1 + κeff)2
, (2.44)

where the “effective” coupling constant is

κeff = κg(0) . (2.45)

Subsequently, κ can be explicitly related to κeff by

κ = κeff

[
1 + κeff

1 + (1 −m)κeff

]1/2
, (2.46)

where we obtain κ = κeff when m → 0, corresponding to N → ∞ for finite M . In
Eq. (2.44), we can see that if one substitutes 1/κeff for κeff, one gets the same Ta.
In other words, Ta induces two coupling parameters, one is under-coupled (κeff <
1), and the other is over-coupled (1/κeff > 1). Note, that this holds for κeff, not
necessarily for κ.

In the analysis, we choose E = 0 since the semicircle law guarantees the energy
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level density is normalized to 1 near E = 0, see Eq. (2.19). This aligns with standard
experimental unfolding procedures that normalize spectral density uniformly across
frequency, for a direct comparison between experimental findings and theoretical
predictions.

In fact, the introduction of κeff simplifies the determination of experimental cou-
pling, since most previous studies have assumed that the Hamiltonian corresponding
to their experimental system is infinite. Under these assumptions, κeff can be equiv-
alently viewed as κ. However, one should be careful when dealing with systems
with global losses (as discussed in subsection 4.1.2), where the relationship (2.46)
no longer applies and the loss parameters come into play. Therefore, when the sys-
tem has global losses, we need to study the coupling parameter κ, as it directly
describes the coupling of the effective Hamiltonian, and this topic will be further
discussed in the subsection 4.3.1.

2.3.5 Superradiance

Superradiance, initially described by Dicke, occurs when a radiating gas behaves as
a single quantum-mechanical system, leading to spontaneous emission of coherent
radiation from correlated molecular energy levels [Dic54]. This results in a redistri-
bution of energy states, significantly altering scattering cross-sections. Observations
of superradiance span gases [Skr73], plasmas [Xia12], semiconductors [Lim04], Bose-
Einstein condensates [Ino99], quantum dots [Sch07], and cold atoms [Ara16].

Apart superradiance has been described by Dicke in the fields of optics, cold
atomic systems, and so on. It also appears in systems with RMT as a background,
such as microwave networks [Lu24] and microwave billiards [Stö22]. In particular,
the phenomenon of resonance trapping [Per00,Stö02] arises in strongly open quan-
tum systems, where in the limit of strong coupling some resonance states align with
the channel and others return to the real axis and are trapped. The aligned states
are referred to as channel, doorway or superradiant states [Per99, Vol03, Guh09,
Aue11,Wei21], others remain long-lived, known as subradiant.

This behavior can be explained through the effective Hamiltonian (2.33), which
provides a robust framework. In the following, we will show how the distribution
manifest under two distinct limits of coupling strength. If H0 is from GOE and in
the limit of small coupling strengths, the poles are described by perturbation theory

En = E0
n −

i

2
(WW †)nn

= E0
n −

i

2

∑
m

|wnm|2 .
(2.47)

Due to the small magnitudes of the wnm, all the poles lie close to the real axis.
In the limit of large coupling strengths, Heff is substantially influenced by the

term − i
2
WW †. This scenario requires choosing a basis in which this term is diago-

nalized, while treating H0 as a perturbation. Assuming, for simplicity, the existence
of M mutually orthogonal vectors vm = wm/|wm| with normalized components, and
N−M additional normalized vectors uα, which are eigenvectors of H0 within the re-
duced subspace and orthogonal to all wm. Using these basis vectors, the eigenvalues
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Figure 2.4: Clouds of poles in the complex plane with M/N = 0.25 for five different
coupling strengths κ. The imaginary part is displayed in log scale. This figure is inspired
by [Leh95a].

of Heff are determined as follows:

En =

{
v†nH0vn − i

2
|wn|2 , for n ≤M ,

u†nH0un , for n > M .
(2.48)

Only M eigenvalues obtain imaginary parts. The remaining N −M eigenvalues, on
the other hand, remain undamped (at least to first order in perturbation theory).

The eigenvalues distribution of Hamiltonians of the type (2.33) have been studied
numerically and analytically by Haake, Lehmann and coworkers [Leh95a, Haa92].
Fig. 2.4 shows the distribution of complex eigenvalues of Heff in the complex plane
for M = 25 and N = 100 across different coupling strengths κ. At weak coupling of
κ = 0.2, the eigenvalues are densely distributed around the real axis, indicating that
long-lived states with narrow widths are very common. As the coupling strength
increases to κ = 0.5 and κ = 1, the eigenvalues begin to spread vertically, reflecting
their imaginary components grow. By κ = 2, an upper cloud forms, representing
superradiant states that are significantly shorter-lived due to their large imaginary
components. This cloud becomes more pronounced and separates further from the
main body at κ = 5, where the distribution shows a clear bifurcation, superradiant
states and the bulk of more stable, long-lived states. Note, that the short lived
states for κ = 5 show statistically a similar behavior as for κ = 1/5 = 0.2. Thus
predictions from RMT are often valid also for the over coupling case but solely for
the short-lived part taking then the κ as 1/κ.

The examples provided above offer a straightforward illustration of the funda-
mental principles involved, but when applying these concepts to various complex
wave systems, more targeted discussions are required. It is important to empha-
size that the large widths of superradiant states make their experimental detection
exceedingly difficult. Consequently, there are very few experimental investigations
into these phenomena, highlighting a substantial gap.

In this thesis, two examples of the superradiant states will be discussed. The first
involves the poles in complex microwave networks, where their widths tend to be-
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come infinitely large by a parametric variation. The second relates to our findings in
chaotic RC, where, according to numerical predictions, the zeros we observed in the
experiment are expected to demonstrate large widths of corresponding resonances.
These topics will be discussed in detail in chapters 3 and 4, respectively.
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Chapter 3. Superradiance in Non-Weyl Microwave Networks

3.1 Quantum Graphs

Quantum graphs are composed of bonds which are connected with each other at
vertices. Along the bonds wave propagation is governed by the Schrödinger equa-
tion without potential. The boundary conditions depend on the details of the
vertices. Quantum graphs were first introduced by Pauling [Pau36] in the con-
text of free electron models of organic molecules. Later, they were studied in-
tensely in physics [Kot97] and mathematics [Ber13], and experimentally imple-
mented in correspondingly-shaped microwave networks [Hul04], waveguide cavity
[Zha22a,Die24], insulator integrated photonic networks [Wan23] and photonic topo-
logical insulator [Ma24]. Using supersymmetry techniques Gnutzmann and Alt-
land [Gnu04] proved the RMT conjecture (see subsection 2.2.3) for the two-point
correlation function for fully connected graphs with incommensurate bond lengths
and infinite size. Their result was generalized to all correlation functions by Pluhař
and Weidenmüller [Plu14].

3.1.1 The Vertex Secular Equation

Here we look more in detail into the mathematical description of graphs, following
the work by Kottos and Smilansky [Kot99] and reference [Hof21]. In time-reversal
invariant graphs (absence of magnetic vector potential), the wave field ψnm on the
bond connecting vertices n and m obeys the following relation

− d2

dx2
ψnm(x) = k2ψnm(x) , (3.1)

where k is the wavenumber and x is the distance to vertex n. The wave fields within
the graph have to obey two constraints. The first one is energy conservation

ψnm(x)|x=0 = φn , ψnm(x)|x=lnm
= φm , (3.2)

where lnm is the length of the bond, and this means that at each vertex n there
exists a unique potential φn for all bonds meeting at this vertex. This condition is
automatically met by means of the ansatz

ψnm(x) =
1

sin klnm
[φn sin k(lnm − x) + φm sin kx] . (3.3)

The second constraint is current conservation at each vertex n∑
m

dψnm(x)

dx

∣∣∣∣
x=0

= 0 , (3.4)

where the sum is over all bonds connecting to vertex n. Eq. (3.4) holds for Neumann
boundary conditions at the vertices. Plugging the expression (3.3) into Eq. (3.4),
we obtain an homogeneous linear equation system for the potentials∑

m

hnmφm = 0 , (3.5)
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where
hnm = −δnm

∑
m′

fnm′ + gnm , (3.6)

with

fnm = cot klnm , gnm =
1

sin klnm
, (3.7)

for existing connections from vertex n to m and fnm = gnm = 0 otherwise. In
reference [Kot99], matrix h is constructed via the connectivity matrix and length
matrix. For the homogeneous equation system (3.5) nontrivial solutions exists if the
determinant of the matrix h(k) with elements hnm(k) vanishes,

deth(k) = 0 . (3.8)

The roots kn of this equation generate the spectrum of the graph.

3.1.2 Scattering Properties of Graphs

For an experimental study of the spectral properties, the graph has to be opened by
attaching external leads. Let us hence assume that a single lead is attached to the
vertices 1, . . . , N . The field within the lead may be written as the superposition of
two waves propagating in opposite directions

ψn(x) = ane
−ikx + bne

ikx, n = 1, . . . , N , (3.9)

where x is the distance to the vertex along the bond, and an and bn are the am-
plitudes of the waves propagating towards and away from the vertex, respectively.
Note, that in this thesis, the second term in Eq. (3.9) has a positive sign, follow-
ing the definition in [Kot99], while in quantum dots, quantum billiard or nuclear
physics, one prefers to use a negative sign, see also Eq. (2.24).

Also for the attached open leads, the wave fields need to follow two constraints
at the vertices 1, . . . , N , one being energy conservation

ψj(0) = aj + bj , (3.10)

the other being current conservation

dψj(x)

dx

∣∣∣∣
x=0

+
∑
m

dψnm(x)

dx

∣∣∣∣
x=0

= i(bj − aj) +
∑
m

hjmφm = 0 (3.11)

for j = 1, . . . , N . Now the equation system (3.11) has become inhomogeneous,

hφ = i(a− b) , (3.12)

where a = (a0, . . . , aN , 0, . . .)
T and b = (b0, . . . , bN , 0, . . .)

T . It follows that

φ = ih−1(a− b) . (3.13)
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Following the constrain (3.10) at the coupling vertices 1, . . . , N , the φj are fixed

a+ b = ih−1(a− b) . (3.14)

Incoming and outgoing amplitudes are connected via the scattering matrix S

b = Sa . (3.15)

By defining G = h−1(k) analogous to the Green function, the scattering matrix
yields

S = −I− iG

I + iG
. (3.16)

Here S is unitary since h is hermitian, which ensures current conservation. This
expression is similar to the Eq. (2.30), but with a negative sign due to the definition
of fields in Eq. (3.9).

The N×N scattering matrix in Eq. (3.16) is obtained from the graph that every
vertex is connected to an ideal coupled channel. In fact, especially in experiments, it
is not necessary to couple all N vertices. Thus, by considering a more general case,
we can assume that an arbitrary set of L vertices are coupled, with 1 ≤ L ≤ N .
The L× L scattering matrix S has to be modified in the following way [Kot99]

S = −I + 2iW T 1

heff(k)
W , (3.17)

with
heff(k) = h(k) + iWW T . (3.18)

where Wln = δln is the L × N leads-vertices coupling matrix, for the case that we
previously examined, with L = N and W = I. One can obtain the poles of the
scattering matrix with the determinant of heff vanishing

detheff(k) = 0 . (3.19)

Note, that it is important to distinguish between Eq. (2.32) and Eq. (3.17), the
former comes from the effective Hamiltonian approach, and the latter is used to
specifically describe the scattering matrix of the quantum graph. The effective
Hamiltonian Heff in Eq. (2.32) is independent of energy E, while in quantum graph,
heff depends on wavenumber k.

3.1.3 Bond Scattering Matrix and Secular Equation

Another method of quantization of graphs is accomplished in a different way which
is less efficient from the numerical point of view, but provides us with a natural,
intuitive and convenient starting point for understanding the scattering process in
quantum graphs [Kot97,Kot99,Kot03].

The general expression of the wave field on a bond d in a quantum graph is
written as a superposition of two waves traveling in opposite directions:

ψd(x) = ade
−ikx + bde

ikx , (3.20)
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where ad and bd are the incoming and outgoing wave amplitudes and k is the
wavenumber. In a vertex i where v bonds meet, the wave field must satisfy both
energy and current conservation{

ad1 + bd1 = ad2 + bd2 = · · · = adv + bdv ,

ik
∑v

j=1(adj − bdj) = 0 ,
(3.21)

and they can be restructured into a matrix form, linking the incoming and outgoing
wave amplitudes at vertex i: 

bd1
bd2
. . .
bdv

 = σ(i)


ad1
ad2
. . .
adv

 , (3.22)

with σ(i) being a unitary matrix that characterizes the scattering at the vertex:

σ
(i)
jj′ = −δjj′ +

2

v
. (3.23)

For the corresponding time-reversed bond d̂, the wave field is given by

ψd̂(x) = ad̂e
−ik(ld−x) + bd̂e

ik(ld−x) , (3.24)

and this leads to a relationship between the outgoing wave from the vertex i in the
direction of vertex j and incoming wave at j coming from i, showing that they are
essentially the same except for a phase shift

bd = e−ikldad̂ , bd̂ = e−ikldad . (3.25)

The combination of Eq. (3.22) and (3.25) leads to a set of 2B homogeneous linear
equations for a closed graph. The existence of non-trivial solutions of these equations
are determined by the secular equation:

ζB(k) = det [I− SB(k; {Φij})] = 0 , (3.26)

where SB is the “bond scattering matrix”, a 2B× 2B unitary matrix defined in the
2B space of directed bonds

SB(k; {Φij}) = D(k; {Φij})T , (3.27)

with D being a diagonal unitary matrix that represents the metric properties of
the graph, and T being a unitary matrix that encodes the graph’s connectivity and
vertex scattering processes

Dij,nm = δinδjme
ikLij+Φij , Tji,nm = δniδjiδnmσ

(i)
ji,nm , (3.28)

where Lij represents the length of the bond from vertex i to vertex j, Φij incorpo-
rates the additional phase in the bond, and the directionality is incorporated in the
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transition matrix Tji,nm from vertex m to vertex j via vertex i.
Now, we can open the graph by introducing vertex reflection amplitude ρ(i) and

the lead–bond transmission amplitudes {τ (i)j }

ρ(i) =
2

ṽ
− 1 , τ

(i)
j =

2

ṽ
, σ

(i)
jj′ = −δjj′ +

2

ṽ
, (3.29)

where ṽ represents the valency of vertex i, accounting for the number of bonds
and channels at vertex i. For vertices that are not connected to leads, the vertex
reflection amplitude is set to ρ(i) = 1, and the lead–bond transmission amplitudes
to τ

(i)
j = 0. With these definitions, we can construct the V × V unitary scattering

matrix
S
(V )
ij = δijρ

(i) +
∑
rs

τ (i)r (I− SB(k; {Φij}))−1
(ir),(sj)D(sj)τ

(j)
s . (3.30)

Note, that SB or D is not unitary anymore, since the graph has been coupled to
external leads.

The advantage of the method discussed in this subsection is that it can describe
quantum graph as close as possible to the experimental situation, for example, it can
describe circulators and it can also account for phases in the bonds [Lu20, Che21a,
Che22a]. This is exactly why, in this chapter, we will use this method to numerically
simulate our network. Its disadvantage is that it deals with 2B×2B matrices, which
requires more computing resources than the method introduced in subsection 3.1.1.

3.2 Microwave Networks

Just as quantum billiard and microwave billiard [Stö90,Kuh13,Die15,Stö22], there
is a one-to-one correspondence between a quantum graph and the corresponding
microwave network, which has been used in many experiments to study spectral and
scattering properties of microwave graphs [Hul04,  Lawni10, Reh16, Die17,  Lawni19,
Lu20,Che20,Che21a,Stö22,Lu24,  Lawni24].

3.2.1 Microwave Network Components

Microwave networks are constructed from standard microwave coaxial cables con-
nected by T junctions, see Fig. 3.1 (a) and (b). These cables are composed of an
inner conductor surrounded by an outer conductor, and the space between them is
filled with Teflon of permittivity ϵ. When operating below the cable’s cutoff fre-
quency, each cable supports a single propagating mode known as the TEM00 mode.
This mode can be described by the following one-dimensional wave equation:

− d2

dx2
U(x) =

ω2ϵ

c2
U(x) . (3.31)

Here, U(x) denotes the difference between the potentials at the conductors’ surfaces,
c is the velocity of light, and ω = 2πν is the angular frequency with ν the microwave
frequency. Eq. (3.31) is the telegraph equation, which is applicable for describing
lossless coaxial cables. At the T-junctions, where the cables are connected and
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(a)

(b)

(c)

(d)

Figure 3.1: (a) Photo of a coaxial cable. (b) Photo of a T junction. (c) Photo of a
phase shifter. (d) A VNA measures the reflection spectrum of a microwave network via a
black coaxial cable.

which correspond to vertices with valency 3, the potential difference U(x) is subject
to the laws of energy and current conservation. In an ideal Neumann scenario, the
scattering matrix at these T-junctions is given by:

ST =
1

3

−1 2 2
2 −1 2
2 2 −1

 , (3.32)

which aligns with the unitary vertex scattering matrix in Eq. (3.23).

Consequently, when the boundary conditions are applied, Eq. (3.31) becomes
mathematically analogous to the equation of a quantum graph with Neumann
boundary conditions. By equating the term

√
ϵω/c from the microwave network

with the wavenumber k of the quantum graph, it is revealed that the eigenfrequen-
cies of the microwave network correspond to the eigenvalues of the quantum graph.
It is important to note that within the context of this thesis, the term “length” for
cables invariably refers to the electrical length, thereby simplifying the relationship
to k = ω/c.

The advancement of microwave graph experiments has incorporated the use of
microwave phase shifters, as seen in Fig. 3.1(c). Phase shifters can be thought of as
variable-length coaxial cables, where the electrical length can be adjusted, and will
be used in our experiments.

In addition to these microwave components, common ones such as open or short
terminals [Hul12,Reh16], isolators [Hul04,Che22a], circulators [Bia16,Reh16,Che20,
Che22a], hybrids [Che22a,Far24], and attenuators [All14,Che20] can all be applied
to microwave networks to achieve different effects. A vector network analyzer (VNA)
measures the reflection from one open cable attached to the graph, see Fig. 3.1(d).
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Figure 3.2: (a) This sketch displays measurement points for varying lengths ℓ of the
phase shifter with same wavenumber positions, each represented by a unique color. The
blue curve represents the constant phase, which is the product of the wavenumber k and
length ℓ, and it equals 11π. (b) This sketch shows the transformation of the y-axis from
the length ℓ of the phase shifter to the phase φ, with the horizontal blue line marking the
phase value of 11π.

Microwave technology is subject to the 50 Ω convention, meaning an ideal matching
of the cables connected to the VNA and each attached cable connected to the VNA
is effectively an open channel with no reflections from the end.

3.2.2 Modeling Variable Phase: Length Transformation

In microwave network experiments, one uses coaxial cables and T-junctions to build
networks with diverse connectivity and metric properties. In the study, one often
encounters the need to vary parameters, such as changing the length of a bond or
achieving a phase difference. In this subsection, we will introduce how to achieve
length and phase changes in microwave networks.

Historically, if one wants to changes the bond lengths, which would involve phys-
ically replacing coaxial cables of varying lengths. However, the advent of phase
shifters has offered a more convenient approach. By connecting a phase shifter to a
stepper motor, we can dynamically change the effective length of the phase shifter
through computer commands that also control the measurements of a VNA, and
finally obtain the spectra of a set of networks with different lengths.

The process is illustrated in Fig. 3.2, which is a sketch, not a true example. In
Fig. 3.2 (a), we plot a series of points in the k-ℓ plane, where k is the wavenumber,
and ℓ is the length of phase shifter. The blue points (k, ℓ0) correspond to a mea-
surement result, where their position on the x-axis is determined by the measured
wavenumber k, and position on the y-axis is determined by length ℓ0. Each point
can contain information about the scattering matrix, such as reflection S11(k, ℓ0) or
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transmission S12(k, ℓ0). Now, if the phase shifter length is modified by an increment
∆ℓ, and the system remeasured at the same wavenumber points, we will acquire a
new measurement result, (k, ℓ0 + ∆ℓ), denoted by orange dots. The length of the
phase shifter is repeated increasing by ℓ = ℓ0 + n∆ℓ, where n = 1, 2, . . . , so that a
set of spectra could be obtained.

Sometimes one would like to introduce a phase in the network. For example,
A. Rehemanjiang and colleagues aimed to experimentally realize a quantum graph
with energy spectrum statistics resembling GSE [Reh16]. This required a pair of
subgraphs, emulating a spin up and down states, coupled at two symmetry points
with a π phase difference between these two coupling points [Joy14]. Attempts using
circulators and IQ modulators to achieve the necessary conditions for the experiment
did not yield satisfactory results [Reh18] beause of insertion losses. The successful
strategy emerged with the application of a phase shifter, which effectively varies the
bond length and thus the phase of the microwaves, as they pass through according
to

φ = kℓ =
2πν

c
ℓ , (3.33)

where φ is the phase shift that varies with microwave frequency ν or wavenumber
k.

Here we will use the example of Fig. 3.2 (a) to explain how to transform length
to phase. In Fig. 3.2 (a), the y-axis of all points (k, ℓ) represents length of phase
shifter ℓ. By keeping the x-axis position of these points unchanged, multiplying their
y-axis values by their respective k values, we get a new y-axis, k → kℓ = φ. As
shown in Fig. 3.2 (b), after the transformation, these points (k, φ) appear distorted
from the overall view. Since here only the points shown in (a) are transformed, it
leads to the lower and upper boundary of measurement points in the figure. Note,
that the scattering matrix information contained in these points are not changed.

Now, we will describe in detail how to extract the new spectrum with constant
phase. Take the blue lines in Fig. 3.2 (a) and (b) as an example. They represent a
spectrum with constant target phase φt, which is exactly what one wants to realize in
experiment. Here φt = 11π. For each wavenumber ki, we can choose the two points
closest to the constant phase line, one point is (ki, φ1), and the other point is (ki, φ2),
where φ1 < φt < φ2. We can then pick the scattering matrix information contained
in these two points, S(ki, φ1) and S(ki, φ2), and perform a linear interpolation to
obtain the complex S(ki, φt). Choosing i = 1, 2, . . . , we can get a spectrum S(k, φt)
with constant bond phase (zero bond length).

The quality of this new interpolated spectrum depends on the step size ∆ℓ and
the number of wavenumber points. Ideally, every 2π increment in phase φt should
yield an identical spectrum; however, due to distortion of the overall positions of the
spectrum points, their wavenumber ranges should be different. Also the microwave
absorption in the network will lead to differences. In section 3.4 and 3.5, we will
apply this transformation method to experimentally study tetrahedral and lasso
graphs. In next subsection 3.2.3, we will introduce another parameter, the channel
openness of the graph.
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Figure 3.3: (a) Sketch of the T-junction. (b) Sketch of the T-junction with a bond ℓφ
and a reflecting terminal φ0.

3.2.3 Modeling Variable Channel Openness

In microwave network experiments, the networks are attached with channels, i.e.
coaxial cables, to the VNA. Due to the impedance matching in microwave compo-
nents, the couplings from the channels are ideal, and their strengths are invariably
fixed. This is a restriction as sometimes one would like to tune the coupling strength
to the network to vary the “openess” of the graph over a large frequency range. Here,
we will introduce a method to resolve this dilemma, which can indirectly adjust the
coupling strength.

Let’s first discuss the properties of a T-junction as shown in Fig. 3.3 (a). The
unitary scattering matrix ST of the T-junction given by Eq. (3.32) connects the

incoming vector a⃗T = (a1, a2, a3)
T to the outgoing vector b⃗T = (b1, b2, b3)

T

ST a⃗T = b⃗T . (3.34)

Now we connect a bond with length ℓφ and a reflecting terminal of phase φ0 at one
of the ports, see Fig. 3.3 (b). Thus, at vertex 0 of the T-junction a total phase
φ = 2kℓφ + φ0 is acquired by the wave relating a3 = b3S3, where S3 = exp(iφ). For
an open terminal (emulating Neumann boundary condition), φ0 = 0. Then we can
calculate the transmission from a1 to b2 by assuming a2 = 0, and Eq. (3.34) becomes

1

3

−1 2 2
2 −1 2
2 2 −1

a10
a3

 =

b1b2
b3

 . (3.35)

By reducing the 3×3 scattering matrix of the T-junction in Fig. 3.3 (a), to the 2×2
scattering matrix of the T-junction in Fig. 3.3 (b), we find

Sφ =

(
rφ tφ
tφ rφ

)
, (3.36)
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Figure 3.4: Tφ as a function the phase φ, the results is calculated from Eq. (3.39).

with

tφ =
b2
a1

=
2(1 + eiφ)

3 + eiφ
, (3.37)

rφ =
b1
a1

=
√

1 − t2φ . (3.38)

This lead to the transmission coefficient of the T-junction

Tφ = |tφ|2 =

∣∣∣∣2(1 + eiφ)

3 + eiφ

∣∣∣∣2 . (3.39)

In Fig. 3.4, the blue line represents the relationship between φ and Tφ. It is
shown that, by varying the phase φ from 0 to 2π, the transmission coefficient Tφ is
changed between 0 and 1. An intuitive way to understand this phenomenon is that,
the wave propagating to the upper part of the T-junction is reflected and collected
a phase shift of φ, so it interferes with the excitation. If φ = π, this results in the
wave value at the vertex needing to be 0, thus imposing a Dirichlet condition on
both sides of the T-junction, effectively separating the right side from the left side,
which leads to Tφ = 0. While if φ = 0 or 2π, then the wave travels free from P1 to
P2, and Tφ = 1.

In this way, the openness of the channel can be adjusted, which affects the
transmission coefficient of the system and indirectly changes the coupling. More
importantly, this simple setup can be implemented experimentally, since a fixed
phase can be achieved through a phase shifter and a corresponding transformation,
as we mentioned in the previous subsection 3.2.2. Thus, the approach here lays the
foundation for subsequent experimental study. In section 3.4 and 3.5, we will use
this method to change the coupling of the system.
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Figure 3.5: (a) Sketch of the closed Weyl graph and (b) open Weyl graph. (c) Eigenval-
ues calculated from closed graph (a), each solid blue line represents an eigenvalue. (d) Re-
flection spectrum |S11|2 calculated from open graph (b) with complex wavenumber k+0.009i,
and each dip corresponds to a resonance. The black dashed lines represent the windows k1
and k2, where we count the number of resonances and eigenvalues.

3.3 Weyl’s Law in Graphs

In subsection 2.2.2, we introduced the Weyl’s law for 1D graph system. When the
graph is closed, Weyl’s law always works, but if the graph is opened, Weyl’s law
may fail. In this section, for simplicity, we refer to graphs that satisfy the behavior
on the wavenumber k as Weyl graphs, and graphs that do not meet the predictions
of the asymptotes as non-Weyl graphs, and discuss them separately.

3.3.1 Weyl Graphs

In this subsection, we will give two examples of Weyl graphs. The first one is the
closed tetrahedral graph, see Fig. 3.5 (a), without any connection to the outside.
The spectrum of the graph is a combination of discrete eigenvalues, as shown in
Fig. 3.5 (c). The second one is the open tetrahedral graph, see Fig. 3.5 (a), one
vertex of the graph is attached with a single channel P1. In the open graph case,
the spectrum is no longer discrete, but consists of resonances, see Fig. 3.5 (d).

To compare them with the prediction of Weyl’s law, we plot the eigenvalues
calculated from closed graph (a) as blue circles, and the resonances extracted from
open graph (b) as red triangles in the complex plane, see Fig. 3.6 (a). We define
a window k1 and k2 (dashed black lines) and count the number of resonances and
eigenvalues with their real part between these two wavenumbers, and find that the
number of resonances and eigenvalues are the same, and it can be predicted by the
following equation, which is deduced from Eq. (2.14),

∆N =
L

π
(k2 − k1) . (3.40)
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Figure 3.6: (a) Plot of the eigenvalues and resonances in complex plane. The blue circles
and the red triangles denote the eigenvalues of closed graph and the resonances of open
graph, respectively. (b) The counting functions N(k) for the closed (blue step function)
and open graph (red dotted step function).

However, this comparison is not rigorous enough. When the graph is opened,
the real and imaginary parts of the resonances will be slightly shifted from the
eigenvalues in the complex plane, and the number of eigenvalues for graph (a) and
resonances for graph (b) may depend on how the chosen window, so one of the safest
method is to compare their counting functions with the prediction of Weyl’s law.
See Fig. 3.6 (b), two counting functions start from k = 0, and as k increases, the
blue and red step functions almost coincide, indicating the number of eigenvalues for
graph (a) and resonances for graph (b) versus k are almost the same. Fitting these
two counting functions to the Weyl’s law, we can relate the fit to the total length
that graph should have. This shows closed and open graphs in Fig. 3.5 are Weyl
graphs. In next subsection 3.3.2, we will present the example of non-Weyl graph,
where the extracted length does not correspond to the total length.

3.3.2 Non-Weyl Graphs

There are several ways to make a graph to a non-Weyl graph, for example one can
introduce balanced-vertex to the graph [ Lawni19], or introduce a magnetic field to
the external leads [Dav10,Exn11], etc. Here, we will present a non-Weyl graph that
has the simplest balanced-vertex, meaning that the number of leads connected to
the vertex is the same as the number of internal bonds connected, which is 1.

In Fig. 3.7 (a), the sketch represents an open graph consisting of tetrahedral
graph and a dangling bond ℓd, and its vertex 0 is coupled to the lead P1. Fig. 3.7 (b)
shows the closed version of the graph in Fig. 3.7 (a). The total length of each
of the two graphs is L. Numerically, we can compute resonances of open graph
(a) and eigenvalues of closed graph (b), and plot them in the complex plane, see
Fig. 3.7 (c). We observe that, in the wavenumber window between k1 and k2, the
number of resonances for the open graph in Fig. 3.7 (a) is different from the number
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Figure 3.7: (a) Sketch of the non-Weyl graph. (b) Same graph as in (a), but without
coupling. (c) Plot of the eigenvalues and resonances in complex plane. The blue circles
denote the eigenvalues obtained from the closed graph (b), where there is no coupling from
outside. The red triangles denote the resonances extracted from the open graph (a).

of eigenvalues for the closed graph in Fig. 3.7 (b). Specifically at k ≈ 83.8, we
can only find one eigenvalue, with no corresponding resonance around it, and this
does not seem to be related to the window selection or missing levels, since the
phenomenon occurs in the middle of the window and there are no missing solutions
in our numerical calculations.

To show a more convincing result, we plot the counting functions of the eigen-
values of the closed graph (blue step function) and the resonances of the open graph
(red step function) in Fig. 3.8. It is obvious that the two functions have different
slopes and deviate from each other. For the closed graph in Fig. 3.7 (b), the number
of its eigenvalues is satisfying the prediction of Weyl’s law (2.14). However, for the
open graph in Fig. 3.7 (a), it is shown that the number of the resonances is reduced.
By fitting the counting function of open graph, we find the total length is no longer
L, thus Weyl’s law is not valid. In this case, the number of resonances is given by

N(k) =
L′

π
k + c , L′ = L− ℓd . (3.41)

The above results can be understood in the following way. When the graph is
closed, like the one in Fig. 3.7 (b), the wave will travel to all bonds, and the total
length must be L. When the graph is in perfect coupling with a dangling bond, such
as the graph in Fig. 3.7 (a), the perfect matching condition removes any scattering
at the vertex 0, thus resonances of the graph are only relevant to the tetrahedron,
and the total length becomes effective L′. Note, that, since the reference point of the
scattering is still at vertex 0, the length ℓd still appears in the reflection amplitude
as an additional acquired global phase Φd = 2kℓd.
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Figure 3.8: The counting function N(k) of the closed graph in Fig. 3.7 (b) is represented
by a blue step function, and N(k) of the open graph in Fig. 3.7 (a) is represented by a red
step function. The inset shows a zoom.

3.3.3 Motivation

Non-Weyl behavior has been observed experimentally by  Lawniczak et al. [ Lawni19]
for a vertex with two semi-infinite leads and two internal bonds. In a small wavenum-
ber region, the authors noticed a reduction of the number of resonances by two or
three, in good agreement with the theoretical expectations. In the experiment the
loss of resonances [ Lawni17] due to negligible coupling to the openings (or no cou-
pling as in case of BICs) is always a problem. In particular, there is never a guarantee
that all resonances are found.

In subsection 3.3.2, we numerically study a non-Weyl graph for a vertex with one
semi-infinite lead and one internal bond, see Fig. 3.7 (a). The analysis there confirms
that Weyl’s law cannot adequately describe this graph, because the total effective
length is reduced to L′. Although, unlike experiments, our numerical approach
does not encounter the same difficulties in extracting all resonances as observed in
experiments, a key question remains: where are the missing resonances going, and
is it possible to make them reappear in the complex plane experimentally?

Recalling the two graphs in Fig. 3.7, each representing an extreme configuration:
one is closed and the other is fully open. What happens when the system is at
intermediate coupling values? Could this offer insight into the non-Weyl behavior
we observe? A practical method for varying the coupling has been proposed in
subsection 3.2.3, involving the incorporation of a T-junction with a phase-adjustable
bond. This experimental approach allows for the parametric tracking of resonances
in the complex plane by varying the coupling. Not only does this help to overcome
the challenge of experimentally determining resonances, but it also enables us to
observe the transition of resonances to their final disappearance.

Thus, in section 3.4 and 3.5, we will parametrically study two examples, tetra-
hedral and lasso graphs, and try to explain the non-Weyl behavior in these graphs.
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Figure 3.9: Sketch of the tetrahedral graph.

3.4 Non-Weyl Tetrahedral Graphs

3.4.1 Microwave Setup

This subsection details the microwave experimental setup used to study the tetra-
hedral graph, as illustrated in Fig. 3.9. On the left side of the graph, there is a
T-junction, which is exactly used to vary the coupling parameters of the system, see
the discussions in subsection 3.2.3.

The first port of the T-junction is connected to the analyzer, and P1 represent
the port 1 of VNA (Agilent 8720ES), where the reflection amplitude S11 is measured.
The second port of the T-junction is connected to a bond (blue part) with length
ℓφ terminated by an open (corresponding to Neumann boundary condition), and ℓφ
is varied using a phase shifter (ATM, P1507). The third port of the T-junction is
connected to a graph, which consists of a dangling bond with length ℓd = 0.2435 m
and a tetrahedral graph with lengths ℓ1,...,7 m−1=0.949, 0.374, 1.75, 1.59, 0.868,
0.786, and 0.438. Each vertex (black circle) is a T-junction obeying Kirchhoff’s law,
i.e., Neumann boundary conditions.

The measuring frequency range of the experiment is from 0.1 GHz to 18 GHz,
the number of points is 64001, and the IF-bandwidth is 1 kHz. The measurement
starts with an initial length of ℓφ = 0.2981 m, and then every measurement we
increase the length by ∆ℓ using a phase shifter attached to a stepper motor. After
401 measurements, the final length of ℓφ is 0.3422 m, and we have collected 401
realizations of spectrum S11(k, ℓφ) with different length of ℓφ.

3.4.2 Spectra Transformation

In this subsection, we will describe the data processing in our experiment, that
transforming measured spectra with constant length ℓφ into spectra with constant
phase φ, which was introduced in subsection 3.2.2. Such transformations are im-
portant for varying the coupling of the system. Thus here, we will also compute
the transmission coefficients of the spectra after the transformations to demonstrate
couplings are indeed changed.

First, we show spectra with constant length ℓφ, see Fig. 3.10 (a), which is the
reflection intensity |S11|2 in a gray scale map. We can observe that |S11|2 is maximal
on the lines given by 2kℓφ = nπ (n ∈ N+), where n is an odd number, and one of
them is indicated by the cyan dotted line (n = 21). This property can be understood
by detailing the effect of the coupling T-junction. The bond ℓφ will reflect the wave
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Figure 3.10: (a) Reflection |S11|2 in dependence of wavenumber k for constant ℓφ in a
gray scale, where black corresponds to 0 and white to 1 in a linear scale. The measurements
for different ℓφ are stacked onto each other. The cyan dotted line indicates the condition,
where the phase φ = 2kℓφ induced by ℓφ is equivalent to 21π. (b) The same data but
now rearranged to constant φ using Eq. (3.42). (c) Superposition of the reflection spectra
shown in (b) along the lines φ = nπ for n = 18 (dashed orange), 19π (dotted green),
20π (solid blue), 21π (dotted cyan), and 22π (dashed red). Odd n values correspond to
Neumann, even n values to Dirichlet boundary conditions at the coupling T-junction.
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Figure 3.11: (a) Transmission coefficients Tφ as a function of φ from 13.5π to 21.7π,
The blue dots have been obtained from 1 − |⟨S11(k, φ)⟩k|2 and the red line corresponds to
Eq. (3.39). (b) Tφ plotted over φ mod 2π to highlight periodicity, using the same data
from (a).

with amplitude rφ = exp(iφ) to the vertex 0, where

φ = 2kℓφ . (3.42)

For φ = (2n+ 1)π the amplitude is inverted (rφ = −1) and the wave at vertex 0 has
to be zero, thus the incoming wave is totally reflected at vertex 0. This is also related
that the coupling strength is zero, so for this condition we have a closed graph with
Dirichlet condition at vertex 0. For φ = 2nπ the wave is propagating through the
vertex without any scattering, thus we have a perfectly matched condition for vertex
0 with Neumann boundary conditions.

Then, we show spectra with constant φ, see Fig. 3.10 (b). The transformation
uses Eq. (3.42), and has been specified in subsection 3.2.2 and Fig. 3.2. The empty
triangular parts in the upper left and lower right present the fact that the length
variation of ℓφ is limited. The same technique has been used to realize graphs with
GSE symmetry [Reh16,Reh18,Lu20, Lawni24]. In Fig. 3.10 (c), the reflection spectra
for the integer π values for constant φ = nπ are combined. For even n the resonances
have large imaginary parts, and for odd n they are small. For odd n there should be
a perfect reflection of 1, which is not the case as we neglected effects of absorption
in the bond ℓφ, leading to a reduction of |rφ|2 < 1. Note, that in the regimes where
contributions from different n overlap the spectra are nicely matching illustrating
the precision of the experimental setup.

Finally, we can compute the transmission coefficients of the different φ spectra,
reflecting whether they correspond to different couplings. In Fig. 3.11 (a) and (b),
the blue dots correspond to the experimental transmission coefficients Tφ = 1 −
|⟨S11(k, φ)⟩k|2, where ⟨.⟩k denotes an average over the measured wave number for
constant φ. Also in the figure, the transmission strengths Tφ computed according
to the Eq. (3.39) are shown by the red solid lines, and we find a good agreement
between them. With these different coupled spectra, we can extract resonances from
them. In next subsection 3.4.3, we investigate the behavior of the resonances as a
function of the coupling.
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Figure 3.12: The colored circle display the poles extracted from the experimental data by
harmonic inversion. The color of the circle indicates the φ value of the measured spectra
(value see colorbar). The solid black lines correspond to poles calculated via numeric
simulation not including absorption. The dotted and dashed vertical lines correspond to
(n+1/4)kd and (n+3/4)kd where kd = π/ℓd ≈ 12.90m−1, respectively. The dashed dotted
green line is indicating log(3/ℓmin).

3.4.3 Experimental Findings

Since we are interested in the resonances of the tetrahedral graph, and in the previ-
ous subsection we have obtained spectra with constant phase φ, here by harmonic
inversion technique [Kuh08], we can extract the corresponding resonances from these
spectra. Note, that sometimes the extraction may be difficult if the resonance is not
fully visible in the constant phase spectrum at a phase due to distortion after the
transformation. Also, experimentally there is a limit to resolve the resonances using
the harmonic inversion, which in this example is at about −Im(k) = 1.5 m−1. This
is in the spirit of fractal Weyl law where the counting of resonances in open systems
is restricted to a finite strip below the real axis [Non05,Pot12].

In Fig. 3.12 we present the resonances extracted from the experimentally mea-
sured reflection S11(k, φ) in the complex k-plane by colored circles, . The colors of
the circles indicates the phase values of the spectra used to extract the resonances,
where the colorbar on the right indicates their relation. The resonances show two
distinct behaviors within different wavenumber ranges. From (n + 1/4)kd (dotted
line) to (n + 3/4)kd (dashed line), kd = π/ℓd ≈ 12.90 m−1, only loops are observed.
From (n+ 3/4)kd (dashed line) to (n+ 5/4)kd (dashed line), the resonance exhibits
a continuous behavior with some additional small loop structures. Somewhat more
peculiarly, we find that when approaching φ → 2π− =̂ 0− (red dots), some reso-
nances become very broad, their −Im(k) value becomes relatively large, and there
is a tendency that they are moving to the top of the complex plane, which occurs
at (n+ 3/4)kd. Similarly, for φ→ 0+ (blue dots), we also observe this phenomenon,
but at this time these broad resonances are close to (n + 1/4)kd. In fact, these
resonances correspond to superradiant states disappearing in the continuum when-
ever the perfect matching condition holds, i.e., whenever the vertex is balanced.
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Figure 3.13: (a) and (b) are enlargements of the correspondingly marked regions in
Fig 3.12. The green crosses correspond to the resonances of the open tetrahedral graph
without dangling bond ℓd. The dotted horizontal line shows the estimated global absorption
γ = 0.0952m−1.

This superradiant state disappears regularly (determined by ℓd), thus leading to a
reduction in the total length, L→ L− ℓd, and Weyl’s law no longer holds.

In addition, we have calculated the poles from the bond scattering matrix of the
graph, see subsection 3.1.3, where the bond ℓφ was taken into account assuming a
zero length and a fixed phase φ. Note, that due to experimental absorption or errors
in the measurement of the electrical length of the cable, the numerical simulation
may not be accurate enough. Here, in order to achieve good agreement between
the numerical and the experimental results, we applied an optimization procedure
to better estimate the actual length of each bond. Specifically, we can numerically
calculate the complex reflection of the graph based on the known electrical length,
the connectivity of the network, and the frequency points used in the measurement.
Then, by minimizing the difference between the measured and simulated complex
reflections, we can obtain the bonds ℓi and global absorption γ that are closer to
the measured ones. The variation of the ℓi was of the order of a few mm, within
the experimental uncertainty of the cable lengths. A complex wave number k =
kr + iγ was used in the numerical calculations to take care of absorption, resulting
in γ = 0.0952 m−1. The solid lines correspond to this simulation for γ = 0, i.e.,
without including absorption. The shift in the imaginary part of the loops observed
in Fig. 3.13 (b) corresponds to the global absorption obtained (horizontal dotted
line).

In the numerical results, when φ = π, according to Eq. (3.39), Ta = 0. We
verified that the poles calculated from the scattering matrix touch the real axis, and
they correspond to the eigenvalues of the closed graph with a Dirichlet condition
at vertex 0. When φ = 0, Ta = 1, and the graph is fully open. The resonances
obtained from this spectrum correspond to the one of the tetrahedron without the
dangling bond, which are shown as crosses in Figs. 3.13 (a) and (b). When φ is
varying from π → 2π → π, we observe two behaviors. The first behavior is a line
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Graph 1

Graph 2

Figure 3.14: (a) Sketch of a setup, which is based on a T-junction, and the T-junction
is attached to port P1 and two separate graphs (Graph 1 and Graph 2). (b) Sketch of the
lasso graph with T-junction to vary the coupling.

connecting two different kind of superradiant states, as shown in Fig. 3.13 (a). The
second one is the loop structure, see Figs. 3.13 (b), the resonance width increases,
then attains the maximum and decreases. Similar features are found in case of
resonance trapping but there the resonances do not return to its original real parts
Re(k) [Mag99,Per98,Per00,Rot01,Kot04,Stö02].

Note, that the maximal −Im(k) for the individual resonance is not necessarily
reached for φ = 0 or 2π, but can be higher at other φ values. Also, in Fig. 3.12, we
show the horizontal dashed dotted line, which corresponds to −Im(k) = log(3/ℓmin),
where ℓmin is the minimal length in the tetrahedron and 3 is the maximal number
of bonds connected to a vertex, a prediction obtained in [Ing22] for non-balanced
graphs with Neumann boundary condition only. In our case, all resonances apart
from the ones with large width are below this limit.

In this subsection, we study the resonance dynamics in the same complex plane
by varying the parameter φ and observe the emergence of superradiance and non-
Weyl. Note that since non-Weyl here is related to a balanced vertex, its behavior
should be universal. In addition to the example of tetrahedral graph, we can also
use simpler graphs to understand this phenomenon or even solve it analytically, such
as the lasso graph, which consists of a dangling bond and a ring. In next section 3.5,
we will study lasso graphs numerically and experimentally.

3.5 Non-Weyl Lasso Graphs

3.5.1 Analytical Description

Before we discuss the lasso graph, we first look at the setup in Fig. 3.14 (a). This
setup is based on a T-junction, where one port of the T-junction is connected to
channel P1, and the other two ports are connected to two arbitrary graphs. For
this T-junction, one can describe the incoming and outgoing waves based on the
scattering matrix (see also Eq. (3.35))

1

3

−1 2 2
2 −1 2
2 2 −1

a0a1
a2

 =

b0b1
b2

 . (3.43)
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For arbitrary graph 1 and 2, their scattering matrices can be described as

S1 =
b1
a1
, S2 =

b2
a2
. (3.44)

Substituting Eq. (3.44) into Eq. (3.43), we get

S =
b0
a0

= −3S1S2 + S1 + S2 − 1

S1S2 − S1 − S2 − 3
. (3.45)

The above equation shows that for the setup of Fig. 3.14 (a), as long as we know
the scattering matrices of graphs 1 and 2, we can solve for the reflections at P1.

Then in our actual example, see Fig. 3.14 (b), we can define the blue part of
the sketch consisting of bond ℓφ and open terminal as graph 1, and define the lasso
graph consisting of dangling bond ℓd and ring bond ℓc as graph 2. The scattering
matrices of the two graphs can be given by the following description:

S1 = eiφ , φ = 2kℓφ , (3.46)

and

S2 = ε2d
3εc − 1

3 − εc
, εd = eikℓd , εc = eikℓc . (3.47)

Substituting in Eqs. (3.46) and (3.47) to Eq. (3.45), one gets

S =
(−9eiφ − 3)ε2d εc + (3eiφ + 1)ε2d + (eiφ − 1)εc − 3eiφ + 3

(3eiφ − 3)ε2d εc + (−eiφ + 1)ε2d + (eiφ + 3)εc − 3eiφ − 9
. (3.48)

Now, if we are looking for the pole of the scattering matrix, that is k that satisfies
the Eq. (3.48) with zero denominator. In next subsection 3.5.2, we will compare
the results for poles from numerical simulation using the bond scattering matrix
introduced in subsection 3.1.3 with those obtained by solving Eq. (3.48) with zero
denominator.

3.5.2 Numerical Findings

The lasso graph we choose here is analogous to the tetrahedral graph in section 3.4.
By keeping ℓc of the lasso graph the same as the total length of the tetrahedral
graph (excluding ℓd and ℓφ), and letting ℓd here the same as ℓd of the tetrahedral
graph, see Fig. 3.9 and 3.14 (b), we get a lasso graph with the same total length as
the tetrahedral graph.

In Fig. 3.15, we show numerical results for the resonances of the lasso graph with
different φ. For comparison, the display range in the complex plane is consistent
with Fig. 3.12. Clearly, both figures show similar behavior. The dotted lines at
(n + 1/4)kd and the dashed lines at (n + 3/4)kd have the same positions as the
ones in Fig. 3.12, due to kd = π/ℓd. We observe loop structures from dotted lines
to dashed lines and a continuous transition from dashed lines to dotted lines. The
dynamics of the poles in the lasso graph have simpler shapes than the dynamics
of the resonances in the tetrahedral graph, which is related to the complexity of
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Figure 3.15: The colored circles show the poles extracted from the numerical data of lasso
graph, where ℓc is equal to the total length of the tetrahedron graph in Fig. 3.9 excluding
ℓd and ℓφ, and ℓd of this lasso graph is equal to ℓd in Fig. 3.9. The solid black lines
correspond to poles calculated via Eq. (3.48). The display range of the complex plane,
dotted and dashed vertical lines in the figure are the same as Fig 3.12. Vertical slabs
indicate BICs, kc = 2nπ/ℓc.

the graph structure. As φ approaches 0+ (blue dots) or 2π− ≡ 0− (red dots),
the resonances are significantly broadened, corresponding to superradiance. These
superradiant resonances will escape to or come back from infinity at the same Re(k)
as in the tetrahedral graph, and can be predicted by dotted lines and dashed lines.
When φ = 0 or 2π, no resonances can be extracted in numerical calculations. For
this reason, the lasso graph no longer satisfies Weyl’s law.

In the previous subsection 3.5.1, we provided an analytical description of the
lasso graph and derived the scattering matrix for the setup shown in Fig. 3.14 (b),
as described in Eq. (3.48). Using this equation, we can compute the poles of the
scattering matrix, and the solid lines in Fig. 3.15 represent these calculations. Our
results show good agreement between the analytical predictions and the numerical
results, demonstrating the accuracy of the analytical description. The vertical slabs
indicate eigenvalues of the circular structure related to kc = 2nπ/ℓc, which do not
couple to the dangling bond thus neither to the environment, which correspond
to BICs [Gnu13, Wan24b]. Note that we cannot extract BICs from the scattering
matrix, so if one wants to compare the number of resonances in the lasso graph with
the predictions of Weyl’s law, one should additionally include the number of these
BICs. In subsections 3.5.3 and 3.5.4, we will study another example of a lasso graph
with ℓc/ℓd = 4.

3.5.3 Rational Lasso Graphs

Here we will further study the analytical description of the lasso graph, in particular
the case where the ratio of lc to ld is an integer. We can express the eiφ term in
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Eq. (3.48) by trigonometric functions:

eiφ = −1 − i cot φ
2

1 + i cot φ
2

, (3.49)

then the condition for the poles of the scattering matrix, that is the denominator of
Eq. (3.48) is 0, simplifies to

ε2d
3εc − 1

3 − εc
+ 1 = −2i cot

φ

2
. (3.50)

For a number of situations Eq. (3.50) allows for an analytic solution, in particular
for a lasso graph with a ratio of ℓc/ℓd = 4. One can simplify the result using εc = ε4d
to

3ε6d − ε4d − ε2d + 3

ε4d − 3
= 2i cot

φ

2
(3.51)

whence follows that the real part of the left hand side must be zero,

Re

(
3ε6d − ε4d − ε2d + 3

ε4d − 3

)
= 0 (3.52)

and defines which resonance exist for arbitrary φ values, whereas the imaginary part
of Eq. (3.51) precises for which φ the resonance is found. Introducing z = ε2d = x+iy
and defining ρ = |ε2d|2 = x2 + y2 and x = Re(ε2d) a quadratic equation for ρ(x) is
obtained

ρ2 (3x− 1) + ρ (26x− 6) − 36x3 + 12x2 + 3x− 9 = 0 (3.53)

with the solution

ρ1,2 =
−13x∓ 2

√
x (27x3 − 18x2 + 43x− 12) + 3

3x− 1
. (3.54)

Only solutions for ρ ∈ R+ are allowed giving rise to have either zero, one, or two
resonances, in accordance with the observation. In next subsection 3.5.4, we will
study the lasso graph with ℓc/ℓd = 4 by microwave experiment.

3.5.4 Experimental Findings

Here we will perform experimental investigations on the lasso graph, following the
experimental descriptions in section 3.4. In our experimental setup, the lasso graph
is configured with a dangling bond of length ℓd = 0.307 m and a ring graph approx-
imately four times this length, giving ℓc = 4ℓd. We choose this ratio because in this
case, loops and continues lines appear alternately and present the simplest pattern.
Note, that although our goal is to achieve this ratio accurately, slight deviations are
inevitable due to experimental limitations.

In Fig. 3.16, we show experimental results on the resonance of the lasso graph
with ℓc/ℓd = 4. For comparison, the display range in the complex plane is consis-
tent with Figs. 3.12 and 3.15. In this particular experimental setting, the unique
ratio between the dangling bond ℓd and the ring graph ℓc yields periodicity of the
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Figure 3.16: Similar to the description in Fig. 3.15, the colored circles in this figure
represent the experimental results, obtained from a lasso graph with ratio ℓc/ℓd = 4, where
ℓd = 0.307m. Vertical slabs indicate BICs, kc = 2nπ/ℓc.

structures. We observe that transitions from dotted lines to dashed lines form only a
single loop structure, while transitions from dashed lines back to dotted lines present
a continuous transition resembling the “W”-shape structure. Note, that since the ℓd
and total length of this examples are different from the examples in Figs. 3.12 and
3.15, there is no direct correspondence between their dashed or dotted lines, and the
number of resonance in each wavenumber interval. Nevertheless, the superradiance
phenomenon can still be observed. Specifically, the resonance goes to infinity as φ
approaches 0+ (indicated by the blue dots) or 2π− ≡ 0− (indicated by the red dots).

Here we also present the poles computed from Eq. (3.54), see the black solid
line in Fig. 3.16, which presents the solution where Im(k) = log(ρ)/2 and the real
part of k is determined by Re(k) = Re(log(εd)/2i). We found that these theoretical
predictions are in good agreement with experimental results, demonstrating the
accuracy of our analytical model. As discussed in subsection 3.5.2, the structure of
the ring graph inherently supports BICs, see the vertical slabs in the figure, which
in theory cannot be extracted from the scattering matrix. However, due to the
imperfections of the experimental setup, these BICs are transformed into observable
resonances, which appear as small loop structures in the complex plane. These
features can be seen in the vicinity of Re(k) ≈ 71.4, 76.5, 81.5, 91.9.

In this subsection, we experimentally study the lasso graph satisfies ℓc/ℓd = 4 and
find that loops and continues lines appear alternately, indicating that the relatively
simple lasso graph can reflect the complex tetrahedral graph in studying the dynamic
behavior of poles. In next subsection 3.5.5, we will look at other configurations of
the lasso graph.

3.5.5 Other Examples

Here we experimentally study two lasso graphs, one with the most natural ratio
ℓc/ℓd = 1 and the other with ℓc/ℓd = 3/2.

First, we look at the case where ℓc = ℓd = 0.4386 m, as shown in Fig. 3.17 (a).
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Figure 3.17: Similar to the description in Fig. 3.15, these colored circles represent the
experimental results from lasso graphs. For (a), ℓc = ℓd = 0.4386m. For (b), ℓc/ℓd = 3/2,
where ℓd = 0.4117m.
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3.6. Conclusion

Similar to the case of ℓc/ℓd = 4, the periodicity of the structure is immediately
observed, and here the dynamics of resonances from dotted lines to dashed lines
no longer show loop structures. Instead, they appear as the left or right part of a
widened “W” structure. And from dashed lines to dotted lines, the dynamics some-
times show a “∪”-shape or a “∩”-shape structure. Note, that when φ approaching
0 or 2π the resonances may appear outside of dashed/dotted vertical lines. These
structures are different from anything previously observed in other lasso graphs. By
calculating the poles from Eq. (3.50), see the black line in Fig. 3.17 (a), we confirm
good agreement between experimental and numerical results. The broad resonances
and the transition of the superradiant states are still existing, since the only es-
sential ingredients for this behavior is a graph coupled via a dangling bond to the
continuum. In this case, the BIC will only exist in the middle of the “W” structure,
see the black vertical slabs in Fig. 3.17 (a).

Next, we discuss the case where ℓc/ℓd = 3/2, and ℓd = 0.4117 m. The numerical
simulations, shown as black solid lines in Fig. 3.17 (b), highlight a range of dynamic
resonant behaviors, including loops, “∪”-shaped, and “W”-shaped structures, which
arise from the specific ratio of ℓc to ℓd. In this case, although more obscure, the
periodicity of the structure exists. The experimental results, shown as colored circles,
display deviations from the predictions. For example, in the Re(k) range of 120 to
150, a “W’ structure is expected to appear, but the experimental results show only
two isolated loop structures. This discrepancy may be caused by the imperfect
length of the coaxial cables used in the experiment. For the rest, the lasso graph
with this ratio explains why non-Weyl behavior occurs, which is due to the resonance
undergoing a superradiant transition and going to infinity.

3.6 Conclusion

In section 3.1, we introduce quantum graphs and how to compute their spectra and
scattering matrices. The two main numerical methods are vertex secular equation
and bond scattering matrix. The former takes less time in numerical calculations,
while the latter allows describing quantum graphs as close as possible to the exper-
imental situation, e.g. it allows taking into account phases in the bonds, which is
exactly what we want to describe in our thesis.

The section 3.2 introduces the definition and components of microwave networks,
such as coaxial cables, T-junctions, and phase shifters. It details how to obtain a set
of spectra with different lengths through phase shifter experiments and transform
them into spectra with different phases. It also introduces a method based on a T-
junction. By varying the phase of one port, it changes the boundary condition at the
vertex, thus indirectly changing the coupling. These two are important approaches
in this thesis.

In section 3.3, we mainly introduce Weyl’s law in quantum graphs and give some
examples. For closed graphs, they satisfy Weyl’s law. But when the graph is opened,
it may not be the case. We give some examples of Weyl and non-Weyl graphs, and
show their counting function of resonances, and compare them with the predictions.
We also give the motivation for this chapter, we want to know why Weyl’s law fails
in a graph with balanced vertex.
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In section 3.4, we discuss the experimental study based on tetrahedral network.
First, we introduce the microwave setup and use the method of modeling varied
phase. Then, in the experiment, we obtain the spectra with constant phase in a large
wavenumber interval. By harmonic inversion, we extract the resonances from these
spectra and plot them in the same complex plane as a function of coupling. While
going from closed (Dirichlet) to fully open (Neumann) graph, we see resonances
escaping via a superradiant transition leading to the non-Weyl behavior when the
coupling to the outside is balanced. The open tetrahedral graph displays a rich
parametric dynamic of the resonances in the complex plane presenting loops, regions
of connected resonances and resonances approaching infinite imaginary parts.

In section 3.5, we study the lasso graphs, since many features are already present
in these simple graphs. First, we analytically derive the reflection of the lasso graph
using the scattering theory of graph. Then, we numerically study the lasso graph
whose dangling bond and total length are consistent with the tetrahedral graph. We
find that its resonances behave as a function of phase very similarly to those shown in
the tetrahedral graph and exhibit rich parametric dynamics, including superradiance
that could lead to non-Weyl phenomena. Then, we analytically derive the lasso
graph satisfying lc/ld = 4 and perform experiments and comparisons, finding good
agreement. By observing the dynamics of resonances in the complex plane, we find
that they have loop and continuous line structures. We also show experimental
results for lc/ld = 1 and lc/ld = 3/2 lasso graphs, which exhibit different resonance
dynamics due to their special length ratios.
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4.1 Theoretical Background and Motivation

4.1.1 Chaotic Reverberation Chamber (CRC)

Reverberation chambers (RCs) are widely used in electromagnetic compatibility
applications or antenna characterizations [Kil02, War03]. A fully functional RC in-
cludes a metallic shielded room with finite conductivity, featuring a stirring device,
antennas, a device under test (DUT), and various utilities such as lamps, tables, and
supports. The characterizations and tests conducted within an RC rely on statis-
tical quantities, with theoretical evaluations based on isotropic, homogeneous, and
depolarized fields as a function of device and measurement antenna positions and
the stirring. However, at low frequencies, this assumption may not be valid. There-
fore, the operational frequency of an RC must always exceed a critical threshold
known as the lowest usable frequency (LUF) [Hil98]. In this chapter, all presented
experimental measurements are well above the LUF.

Then, chaotic reverberation chamber (CRC) was proposed [Gro14a], adopting
concepts from wave chaos. It has been noted that at quite low frequencies, most
modes in chaotic cavities exhibit Gaussian statistics [Stö99]. The CRC displays
universal spatial and spectral statistics in the low frequency range, meaning that it
can naturally fulfill the above mentioned fields requirements, and can be used as a
well-operating RC without the use of any spatial stirring [Gro14c,Gro15,Gro16].

Traditionally, CRCs are designed with irregular geometries, often based on par-
allelogram cavities by modifying their geometry, e.g., adding spherical lids or hemi-
spheres [Gro14c, Gro15, Gro16, Bas17, Kuh17, Oub20]. These cavities typically in-
clude mechanically movable elements known as stirrers, which enhance chaoticity
and enable ensemble averaging through mode stirring [Hil09].

More recently, Gros et al. explored a novel construction method for CRCs by
utilizing reconfigurable intelligent surfaces (RIS) [Gro20]. This technology allows
for local tuning of cavity boundary conditions. The chaoticity of these systems
was confirmed by comparing the experimental wave field distribution to RMT pre-
dictions for wave chaotic systems, with the mean modal overlap being the critical
experimental parameter [Gro20]. Further research indicated that RIS could rapidly
produce numerous uncorrelated field realizations even in small chambers, broadening
the potential applications of CRCs in fields such as computational imaging [Sle16],
antenna characterization [Kil04], and testing wireless devices [SH10].

In this chapter, we take a CRC equipped with three RISs as the study object.
In the next subsection 4.1.2, we will address the non-negligible losses in CRCs and
discuss how they can be introduced into the effective Hamiltonian approach.

4.1.2 Description of Global and Local Losses

In CRC microwave experiments, energy dissipation is unavoidable and comes from
various sources, such as antenna coupling, metal wall absorption, and localized in-
teractions with objects. Consequently, to accurately model systems experiencing en-
ergy dissipation, the effective Hamiltonian approach (introduced in subsection 2.3.2)
must be revised to include these diverse dissipation mechanisms.
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(i) The first type comes from the channels such as antennas or waveguides. These
components connect the system to external environments viaMa scattering channels,
resulting in energy leakage from the cavity to the coaxial feed. This phenomenon is
captured in the term W within Eq. (2.32). For clarity in this thesis, we refer to this
phenomenon as energy decay.

(ii) The second type involves Ohmic loss at the cavity boundaries. These bound-
aries can be viewed as distributedMb fictitious channels, each with ad hoc impedance.
Typically, in a 3D cavity, Mb is approximately 2πA/λ2, where A is the wall area
and λ is the wavelength, applicable in the limit A ≫ λ2 [Gro14a]. Additionally, we
also account for losses from the cavity’s internal volume, in our case the air, which
are generally negligible compared to the other ones. Here we refer to this type of
dissipation as global loss.

(iii) The third type arises from localized absorption on the boundary, distinct
from the second type. This dissipation is quantified by Mc channels, emphasizing
point dissipation of energy within the system. It may include elements like non-
measuring antennas or surface irregularities. These are not as finely distributed as
the wavelength and may involve the DUT or other aspects not fully captured by the
second type of dissipation mechanism. It can also be considered as the contribution
from non-measuring ports in a system [Fyo17,Fyo19,Pic19]. In the thesis, we refer
to this as local loss.

To refine our model, we decompose the coupling matrix W into three compo-
nents: {A,B,C}, corresponding to coupling through Ma antennas, Mb “bulk” and
Mc “contour” channels. This decomposition is crucial for modeling different dis-
sipation behaviors effectively. Accordingly, the total channel count is defined as
Mtot = Ma + Mb + Mc , leading to a N ×Mtot dimensional coupling matrix and a
corresponding Mtot ×Mtot scattering matrix:

Stot =

IMa − iA†GA −iA†GB −iA†GC
−iB†GA IMb

− iB†GB −iB†GC
−iC†GA −iC†GB IMc − iC†GC

 , (4.1)

where

G =
1

E −Heff

, Heff = H0 −
i

2

(
AA† +BB† + CC†) . (4.2)

If the system is chaotic (such as CRC), H0 is from GOE to describe the statis-
tical properties of the quantities of interest. The coupling matrices A, B and C
are composed of independent Gaussian-distributed random vectors with zero means
and specific covariance, similar to those described in Eq. (2.39) or as referenced
in [Sav06].

The total Mtot-dimensional scattering matrix (4.1) is constructed unitary by
assuming a Hermitian H0. However, experimentally, one can only access the Ma×Ma

subblock of the total scattering matrix Stot given by

S = IMa − iA† 1

E −Heff

A , (4.3)

which is notably subunitary.
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In cases where the number of weakly coupled fictitious channels is large, par-
ticularly at the high frequency limit where Mb → ∞ and their mean coupling
strength diminishes ⟨Tb⟩ → 0, the product Mb⟨Tb⟩ ≡ 2πΓhom/∆ remains con-
stant [Sav03, Sav06]. For a large number of fictitious channels, the central limit
theorem enables us to neglect the fluctuations in widths caused by Ohmic losses at
the walls, thus allowing for the isolation of the homogeneous term Γhom. With these
assumptions, the effective Hamiltonian simplifies to

Heff = H0 −
i

2

(
AA† + Γhom IN + CC†) . (4.4)

Note, that in the literature [Fyo17,Che21b], Γhom could also be included in complex
energy: E → E+ i

2
Γhom. Taking the determinant of Eq. (4.3) according to Eq. (2.34),

one finds:

detS(E) =
det
(
E −H0 − i

2
AA† + i

2
Γhom IN + i

2
CC†)

det
(
E −H0 + i

2
AA† + i

2
Γhom IN + i

2
CC†

)
=

det
(
E − H̃eff

)
det
(
E −Heff

) =
N∏

n=1

E − zn
E − En

.

(4.5)

In the above expression, the poles En of the scattering matrix are complex eigenvalues
of the non-Hermitian Hamiltonian Heff, whereas the zeros zn are complex eigenvalues
of the non-Hermitian Hamiltonian

H̃eff = H0 −
i

2

(
−AA† + Γhom IN + CC†) . (4.6)

If we assume both uniform and localized absorption are absent (i.e., Γhom =
CC† = 0), the description (4.3) of the scattering matrix will reduce to Eqs. (2.32)
and (2.33), where the poles and zeros of the system will be complex conjugates of
each other, as illustrated in Eq. (2.36), exhibiting symmetry along the real axis as
a consequence of scattering matrix unitarity.

In this chapter, we assume that global losses are present (Γhom > 0) while local
losses are absent (CC† = 0). This yields the effective Hamiltonian for poles to

Heff = H0 −
i

2

(
AA† + Γhom IN

)
, (4.7)

and for zeros to

H̃eff = H0 −
i

2

(
−AA† + Γhom IN

)
. (4.8)

This assumption primarily reflects the dominance of Ohmic losses at the walls over
other forms of energy dissipation, a condition encountered in our CRC experiments
as detailed in subsection 4.2.3. This scenario implies that all poles and zeros shift
downwards by Γhom/2 in the complex plane. Note, that the symmetry is preserved
in the system, since global loss only causes a shift effect, and each zero has a corre-
sponding pole. Consequently, if zeros can still be found near the real axis under the
influence of strong global loss, investigating these zeros corresponds to identifying
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the superradiant poles in the system. In this chapter, we discuss this phenomenon
both experimentally and numerically.

However, if CC† ̸= 0, the local losses break the symmetry of zn and En, shifting
them in an arbitrary fashion, though on average downwards. This type of local
loss will not be included in this chapter, but relevant discussions can be found
in [Fyo17,Che21b].

In this subsection, we have introduced the effective Hamiltonian framework for
analyzing three types of losses, setting the stage for our detailed examination of scat-
tering behaviors in open lossy systems. Moving forward, the next subsection 4.1.3
will explore the CPA phenomenon. Furthermore, in section 4.3, we will introduce
the uniform global loss into in the calculation of average scattering fluctuations,
improving the RMT description for lossy chaotic systems.

4.1.3 Coherent Perfect Absorption (CPA)

Perfect absorber (PA), where a device fully absorbs any incident electromagnetic
wave, is a significant achievement in optics [Ra’di15]. This occurs when all scattered
wave components within the device are absorbed, thereby converting the wave’s
energy into heat, electrical current, or fluorescence.

The recent development, CPA [Cho10,Bar17], is a special case of perfect absorp-
tion, as it is only absorbing perfectly a specific imcoming waves. The condition of
CPA is given by

SaCPA = 0 , (4.9)

where S is the scattering matrix connecting the incoming and outgoing waves, and
aCPA is a non-zero vector of input wave amplitudes.

As can be seen from Eq. (4.9), CPA is realized if all incoming energy is completely
absorbed for a specific injection aCPA, and corresponds to a zero eigenvalue of the
scattering matrix on the real frequency axis. It is crucial to distinguish the CPA
from a PA where S itself is zero. The CPA specifically leverages destructively
interference from coherent radiation to create perfect traps in lossy systems, while
the PA primarily focuses on directly reducing the amplitudes of the S parameters
to achieve absorption for any incoming wave front.

Of special interest is that CPA can be explained by zeros. Recall the zeros and
poles: if the scattering matrix is unitary, they are symmetrically distributed around
the axis, see Fig. 2.3. The additional loss makes the scattering matrix subunitary
and moves these zeros and poles around in the complex plane, as was discussed in
subsection 4.1.2. In Fig. 4.1 the case of adding uniform global loss to a system is
depicted by downshifting the zeros and the poles by Γhom/2, with mirror symmetry
maintained.

A CPA occurs whenever one zero is sitting at the real E axis, i.e., zn = Re(zn).
In fact, this is the exact contrary to what people do when they try to construct
lasers, where laser engineers try to move poles of the lower half plane upwards by
adding gain to the system. Therefore, this phenomenon of CPA can be associated
with a time reversed version of a laser, a so called “anti-laser”. This only holds for
the laser at threshold as thereafter non-linear effects take over in the laser, whereas
the CPA does not exhibit these non-linear effects.
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Figure 4.1: Sketch of the zeros and poles of a subunitary scattering matrix in the complex
plane, and the shift is due to uniform loss.

CPA phenomenon is not only investigated in many theoretical works [Cho10,
Li17, Fyo17], but was also realized in experiments, e.g., in optics [Wan11, Wan21,
Slo22, Jia24, Hö24], acoustics [Wei14, Men17] and microwaves [Pic19, Che20, Suw22,
dH20, Fra20]. At the very beginning people achieved CPA in highly symmetric
structures and excitation conditions [Won16], but nowadays, it is realized also in
complex environments [Pic19,Che20,dH20,Fra20,Jia24]. People have studied CPA
in experiments breaking time-reversal symmetry [Che20] and in nonlinear systems
[Suw22, Wan24a]. There are also works about EP CPA [Wan21, Suw22, Hö24]. It’s
worth mentioning that the recent tunable environment has also made realizing CPAs
much more elegant [Che20,dH20,Fra20]. In this thesis, we will study CPA in CRC
by using RIS as a tunable parameter.

4.1.4 Motivation

It now appears that the CRC is an ideal model due to its wave chaos property.
Instead of solving an irregular 3D cavity, one can construct an effective Hamiltonian
that reflects its statistical properties [Gro14c,Gro14b,Gro16,Gro20,Gro21,Dav21].
Recently, by introducing the new technique of RIS in CRC, we are able to obtain a
large number of uncorrelated realizations easily and quickly, which contributes to a
more comprehensive study of the statistics of spectral properties.

RISs promote a more efficient realization of CPA in complex scattering environ-
ments by tuning the boundary conditions of its programmable meta-atoms, which
has been achieved in several works [Fra20, dH21]. However, so far, these CPA ex-
periments rely more on the fact that CPA can be manipulated more conveniently in
tunable environments.

In addition, Chen and co-workers introduced a complex generalization of the
Wigner time delay to study CPAs [Che21b, Che22b]. However, the absorption in
their microwave networks are not large, resulting in both poles or zeros being still
relatively isolated.

Moreover, considering CPA as a specific zero and exploring its behavior through
the distribution of zeros has not been investigated experimentally. Fortunately, a
CRC equipped with RIS offers a platform that can be effectively analyzed using
RMT, providing a powerful tool to study zeros from a statistical perspective.
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Figure 4.2: Photograph of the CRC which have been removed the top plate.

In this thesis, we aim to explore why CPAs/zeros occur near the real axis in the
strong overlap regime. First in section 4.2, we will realize CPAs experimentally and
obtain the distribution of zeros. Then in section 4.4, we try to build a corresponding
model to describe our experimental findings. Finally, in sections 4.5 and 4.6, we
study the sensitivity of the CPAs to external perturbations.

4.2 Experimental Realization of CPA

4.2.1 Experimental Setup

The experimental setup consists of an aluminum CRC with dimensions of 100 cm×
77 cm×62 cm (see Fig. 4.2), which has already been used in [Kuh17,Oub18,Oub20]
to study statistics of reflection and transmission and estimate the number of inde-
pendent samples. Fourteen spherical caps are mounted on the cavity walls to reduce
parallel surface to suppress bouncing ball modes [Gro14c]: eight caps each with a
height of 8.5 cm and six caps with a height of 3 cm. The effective volume of the
cavity is 0.4629 m3, which will be used later to calculate the mean level spacing.

Three RISs (fabricated by Greenerwave) are positioned along the cavity walls,
see Fig. 4.2, which operate in the frequency range of 5− 5.5 GHz. In total there are
456 pixels that can be electronically configured to mimic Dirichlet and Neumann
boundary conditions by independently controlling the bias voltage of a diode, in-
ducing a relative π phase shift in the reflected electric field [Kai14]. Thus, RISs
offer 2456 distinct configurations, enabling unique wave reflection patterns for each
setting. Configuration commands to RISs are relayed through a USB connection
from a computer.

A metallic stirrer equipped with five paddles is installed at the base of the cham-
ber, see Fig. 4.2, and can be manipulated via computer commands to a step motor,
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allowing rotation to any specified angle. In section 4.5, we will use the stirrer to
apply perturbations to the system.

A four-port vector network analyzer (VNA, Keysight E5071C), not shown in
Fig. 4.2, is connected to 4 monopole antennas (l = 15 mm) via small holes (2 mm
radius) throuh 8 mm thick side walls, enabling the measurement of a 4×4 scattering
matrix. In the measurement, the coaxial cables are not placed in the CRC as shown
in Fig. 4.2, and they only injected into the cavity by about 3 cm, including the
antennas. In subsection 4.2.2, we will show that we can modify the change in
coupling by changing the antenna to different lengths. The calibration of VNA is
carried out through electronic calibration kit and the plane of calibration of the
VNA is where the coaxial cables are attached to the antennas.

To monitor the environmental conditions within the room, two temperature and
humidity sensors of differing accuracies are employed. The first sensor, a DHT22
(Grove), offers a temperature resolution of 0.1°C and an accuracy of 0.5° C. The
second, an SHT35 (Grove), provides a higher resolution of 0.01°C and an accuracy
of 0.1° C. Six sensors are strategically placed on the top surface of the cavity to
minimize measurement noise. These sensors are interfaced with an Arduino, en-
abling temperature and humidity data to be queried remotely from a computer via
command. The dynamics of zeros in response to temperature changes are studied in
two laboratory rooms. One room lacks temperature control, with temperature vari-
ations naturally occurring due to weather conditions. The other room is equipped
with an air conditioner, allowing for a rough manual temperature adjustment, and
has a better temperature stability over time. In section 4.6, we investigate the CPAs
behavior on temperature and show that it can act as a temperature sensor.

4.2.2 System Coupling

In our microwave experiment, the scattering matrix contains important information
about the CRC system, such as coupling and loss, and in this and next subsections
we will describe how to extract these parameters.

First we discuss coupling. Our objective is to enhance the interaction between
the external environment and the CRC, this is done by adjusting the length of
the monopole antennas. In our experiments, we use monopole antennas [Bal16], as
illustrated in Fig. 4.3 (a). These antennas are designed to efficiently radiate and
receive electromagnetic waves when their length l and wavelength λ follow

l =
λ

4
. (4.10)

Given that measurement frequency spans 5−5.5 GHz, corresponding to the operating
frequency of RISs, the antenna length are set to 15 mm to optimize transmission at
f = 5 GHz (or λ = 60 mm). In Fig. 4.3 (a), it shows the antennas’ reflection
measurements in free space, highlighting the reflection dips at 5 GHz. These dips
indicate minimal reflection, suggesting good coupling to the free space environment.

To accurately characterize the system’s coupling, one needs to install the an-
tennas in the CRC to assess their coupling effects. Referring back to Eq. (2.43),
transmission coefficient Ta is important in quantifying coupling, with Ta → 0 indi-
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Figure 4.3: (a) The reflections of the antennas with length of 15 mm measured in
free space, the colors represent 4 measured antennas. A monopole antenna used in the
experiment is shown in the upper left. (b) Transmission coefficient Ta calculated from
1−| ⟨Saa⟩ |2, where Saa is measured from random configurations of the RISs for antennas’
length of 15 mm.

cating nearly closed channels, and Ta → 1 representing completely open channels.
Experimentally, Ta is determined by setting the RISs’ pixels to random configura-
tions and averaging the measured scattering matrices ⟨Saa⟩. This is previously noted
in subsection 4.1.1, that these configurations are uncorrelated, allowing for ensemble
averaging to compute Ta.

As illustrated in Fig. 4.3 (b), Ta values derived from various reflections Saa are
plotted over the 5−5.5 GHz frequency range for antennas with l = 15 mm. The figure
shows the fluctuations of Ta. If we average over frequency and the four antennas
(a = 1, 2, 3, 4), then we get Ta = 0.97, which indicates that there is strong coupling
in the operating frequency range.

For completeness, Ta values from antennas of other lengths are also presented,
see Fig. 4.4. The monotonic behavior observed in the figure can be attributed to
the lengths of the monopole antennas, which determine the most effective operating
frequency, and none of the other lengths exhibit as strong coupling as the one with
l = 15mm.

In this subsection, we have obtained the measured transmission coefficients Ta,
which are crucial for determining the coupling parameter κ, as outlined in the ef-
fective Hamiltonian model discussed in subsection 2.3.4. However, the relationship
between κ and Ta in lossy systems is quite different from the descriptions typically
associated with non-lossy systems. To accurately determine the coupling parameter
κ and construct an exact RMT model for our CRC system, it is necessary to con-
sider these differences. Therefore, we will explore the relationship between κ and Ta
in the context of lossy systems in section 4.3. Here, in subsection 4.2.3, we will look
at another crucial experimental observation, the loss of the CRC.
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Figure 4.4: Comparison of the Ta with different length of antenna. Each length is
represented by four curves, corresponding to reflections from four different channels.

4.2.3 System Loss

Next we discuss loss. As previously noted in subsection 4.1.2, loss is an important
parameter in CRC, particularly in realizing CPAs. First, we evaluate the decay rate
of its impulse response, represented by I(t) ∼ e−⟨Γ⟩t.

In Fig. 4.5, the experimental curve I(t) = ⟨|F−1(Sij)|2⟩ is displayed, where ⟨·⟩
denotes average over both RIS configurations and all transmission pairs i ̸= j.
This curve results from the inverse Fourier transformation of 500 random scattering
matrix Srand, with their averages smoothing the curve and providing a more precise
estimation. By fitting the linear part of the curve on a logarithmic scale, depicted by
the orange dashed line in Fig. 4.5, an average width ⟨Γ⟩ = 19.67 MHz is extracted
from the experiment. The mean modal overlap d in 3D electromagnetic cavities
is determined by average resonance widths ⟨Γ⟩ and mean frequency spacing ∆f ,
following established relationships [Gro14a,Kuh17,Oub20]:

d =
⟨Γ⟩

2π∆f

, (4.11)

where ∆f is defined as

∆f =
c3

8πV f 2
, (4.12)

where V is the volume of the cavity, c is the speed of light and f is the center of
the measured frequency window, reflecting Weyl’s law for 3D cavities, which has
been discussed in subsection 2.2.2. At f = 5.25 GHz, the mean frequency spacing
of the system is calculated as ∆f = 84 kHz. This leads to a mean modal overlap of
d = 37.26 and a quality factor of Q = 2πf/⟨Γ⟩ = 1677.

In this analysis, it is crucial to distinguish between the quality factor Q and the
mean modal overlap d, as they relate differently to the system’s loss characteristics.
The quality factor Q is most directly associated with the average width of the
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Figure 4.5: The modulus squared of the ensemble-averaged inverse Fourier transform of
transmission data, collected with RIS in random configurations. The orange dashed line
indicates the linear fit on a logarithmic scale, which is fit with an exponential function
I(t) = exp(at+ b), where a = −0.0197 and b = −9.2523.

resonances ⟨Γ⟩. This factor primarily measures the energy loss per cycle relative to
the stored energy, with lower values indicating higher losses, typically under Q < 100
for high-loss systems.

On the other hand, the mean modal overlap d, not only depends on ⟨Γ⟩ but
also on the mean frequency spacing ∆f , describing the average degree of resonance
overlap. This measure is critical for assessing how individual resonances in the
system interact and overlap with each other. Unlike Q, a high d value (about 10 or
higher) indicates a significant overlap, suggesting a different aspect of system loss.

In this thesis, we primarily consider the system’s loss characteristics from the
perspective of the mean modal overlap d. It’s noteworthy that even with a high d,
it is possible to maintain a high quality factor Q. This observation underscores the
fact that a system can exhibit extensive resonance interactions while still preserving
a considerable amount of energy relative to its losses.

In our experiments, we extracted that ⟨Γ⟩ = 19.67 MHz, which includes all forms
of decay: energy decay from real antennas, global loss, and local loss. Importantly,
in these CRC experiments, the contribution from antennas is small, thus we assume
that the main absorption is from the resistance in the walls, which can be effec-
tively described by global loss Γhom, as described in subsection 4.1.2. Note that we
must distinguish between ⟨Γ⟩ and Γhom. ⟨Γ⟩ comes from the experiment and rep-
resents the average width of the resonance, while Γhom comes from the description
of Hamiltonian and represents the global loss parameter without units. Under this
assumption, the global loss Γhom is equated with the normalized averaged width,
namely the mean modal overlap, thus Γhom = d = 37.26.

As mentioned in subsection 4.1.2, global loss Γhom can be incorporated into the
effective Hamiltonian. The integration of this subsection bridges the experimental
observations of loss with the RMT model, effectively laying a robust foundation for
the numerical simulation in section 4.4.
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Figure 4.6: Flow chart of the optimization algorithm used to realize CPAs, where m is
the number of flipping pixels, n is the counting of measurement with a new m, λf is the
minimum eigenvalue of scattering matrix, and λt is the threshold.

4.2.4 CPA Optimization

Our objective is to find a CPA state at a specific frequency point, fCPA, by employing
an iterative optimization algorithm designed to minimize the modulus of eigenvalue
of the S matrix [Fra20, dH21]. Initially, we measure 500 random configurations
Srand and select the scattering matrix configuration with the smallest eigenvalue λf
as our starting point. During each iteration, we choose m pixels to flip their states
(0 → 1 or 1 → 0). If this action yields a smaller eigenvalue than the previous one,
we keep this configuration as the new reference. The optimization process involves
repeatedly flipping another m pixels as the iterations advance. If after n attempts
there is no improvement in minimizing the eigenvalue, we conclude that the process
has converged for that set of m and proceed to the next value. We define m as a
sequence [150, 60, 40, 25, 12, 6] and set n = 30. Once all the elements of m have been
used, we switch to flipping one pixel at a time. Finally, when all pixels are flipped
individually but there is no improvement or when λf reaches the threshold λt, we
considered the optimization has saturated. Here we also provide a flowchart of the
optimization algorithm, see Fig. 4.6.
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Figure 4.7: (a) An example of the eigenvalues λi of SCPA. (b) At fCPA, the eigenvalue
λ vary with the number of optimizations. The symbols represent those measurements for
which smaller eigenvalues were obtained.

One experimental example of the eigenvalues of SCPA where the system reaches
a quasi-CPA state is shown in Fig. 4.7 (a). In the figure we confirm that we can find
the smallest eigenvalue λmin close to 10−4, and around 5.16 GHz the curve has a very
sharp dip. We can further visualize this optimization by tracing the evolution of
the smallest eigenvalue at frequency point fCPA with the number of optimizations.
As we can see in Fig. 4.7 (b), the starting λ has been shown to be a very small
value from the selection of Srand, see green square marker. Then, the optimization
starts, but most of the configurations lead to larger eigenvalues until the 230-th
optimization (orange triangle). The eigenvalue is smaller than at the green square
one, so we take the configuration of RISs to and the eigenvalue here, as the new
references. Eventually, at the 302-nd optimization, the red circle in the figure, it
again refreshes the minimum eigenvalue record as well as reaches the threshold we
set, so the optimization terminates. Note, that in the experiments corresponding
CPA waveforms are not injected. The above realization of CPA is widely used in
this chapter, for example, in section 4.6, where we study the sensitivity of CPA to
temperature, it is necessary to first tune the initial state to the quasi-CPA state.

4.2.5 Extraction of Zeros

In this chapter, we are interested in zeros of scattering matrix, so now we will
describe how to extract complex zeros from experimental data.

One possibility to extract the zeros is inverse of the scattering matrix in Eq. (4.5),
and its determinant can be written as:

detS−1(E) =
N∏

n=1

E − En
E − zn

, (4.13)

where each zero zn appears in the denominator, manifesting as a pole in the spec-
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Figure 4.8: (a) An optimized zero is extracted by Lorentz fitting. Dots are experimental
measurements and the orange line is the fitted curve. The fitting results give that the real
part of the zero is 5.16 GHz, and the imaginary part is 3.07×10−6 GHz. (b) The extraction
of multiple zeros in full frequency window.

trum of |(S−1)12|2. Note, that Eq. (4.13) is represented in terms of the energy E,
whereas in the experiments the extraction of the zeros is performed in the frequency
domain. To extract these zeros, we utilize the same method applied for poles extrac-
tion. In our experiments, Lorentzian fitting is employed to determine the resonance
frequency and width of these zeros.

First, we look at a small frequency window, such as the optimized CPA in
Fig. 4.7 (a), where the CPA eigenvalue has a dip. However, instead of a dip, the
CPA in the spectrum |(S−1)12|2 corresponds to a narrow peak, see Fig. 4.8 (a). By
applying Lorentzian fitting to this single peak it is trivial to extract the zero (see the
orange fit line), we are able to get the information of complex zero and its residue.

Then when the frequency window becomes large, as shown in Fig. 4.8 (b), we
can observe numerous peaks in the modulus squared of diagonal element of S−1

rand.
The idea is actually the same, that we can use a Lorentzian to fit each peak, se-
quentially. In Fig. 4.8 (b), different colored lines represent the individual fitting
results. Nonetheless, a significant challenge remains in extracting zeros with small
amplitudes and broad width. Therefore, it is impossible to guarantee that we are
able to extract all zeros in the experiment. In the extraction, we impose a thresh-
old |(S−1)12|2 > 2 and disregard any peaks falling below this intensity. Current
research also explores an alternative method for the extraction of zeros, based on
the generalization of Wigner time delay [Che21b].

Here we look at the fitting results even further, in Fig. 4.9, a spectrum segment
is presented, where the blue line represents the experimental data, and the yellow,
green, and red lines indicate the fit results of a single Lorentzian locally to the
experimental data. If we only look at panel (a), we cannot determine the sign
difference of the imaginary frequency part between the extracted zeros, but in fact,
the yellow and green colors correspond to zeros with negative imaginary parts, while
the red line correspond to a zero with positive imaginary parts (see the values in
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Figure 4.9: An example of fitting zeros by Lorentzian fitting, where the blue lines are
from experiment, and the yellow, green, and red lines represent the fitting results of three
different zeros. The complex frequency values of these zeros are 5.179− 0.0005i (yellow),
5.189 − 0.0003i (green), and 5.199 + 0.0006i (red) in GHz. From (a) to (d), they display
module, phase, real and imaginary of (S−1)12.
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Figure 4.10: (a) The zeros, extracted from the spectrum of Fig. 4.8 (b), are plotted
with frequency on the horizontal axis and half of width Γ/2 on the vertical axis. (b) The
distribution of the imaginary part of zeros, normalized by ∆f , see Eq. (4.12), collected
from 500 random realizations. The dotted line is a Gaussian distribution.

the caption of Fig. 4.9). This information is actually contained within the phases,
see panel (b), which correspond to ascending and descending curves, respectively.
Note, that unlike the zeros, in the case of resonances, they always have a negative
imaginary part due to the global loss which makes them shift downward from the
real axis. It is also due to the fact that the imaginary part of the zeros in the
experiment has both positive and negative parts, making the harmonic inversion
method not applicable to extracting the zeros. In panels (c) and (d), the real and
imaginary parts of (S−1)12 are shown, for completeness. Note, that in order to
match the experimental data exactly, the Lorentz fit deals with complex data and
also takes into account the constant and linear background.

Now the extracted zeros can be drawn in the complex plane, as demonstrated
in Fig. 4.10 (a), which exactly are the fitting results of Fig. 4.8 (b). It is quite
obvious that zeros appear in the upper and lower parts of the real axis, respectively.
To better show the distribution of zeros, we can use RIS to generate uncorrelated
Srand, thus collecting as many zeros as possible. To be noticed that the length of the
antenna here is l = 15 mm, and we also try to extract the zeros of Srand obtained
from other lengths of antennas l = [6, 8, 11] mm, but we could not extract even a
single zero for them. This highlights the importance of achieving strong coupling of
the system and adjusting the antenna length, as mentioned in subsection 4.2.2.

In Fig. 4.10 (b), the distribution of the imaginary part of the zeros after un-
folding is presented. Note, that when the Lorentzian peaks have large widths, their
extraction becomes difficult. Importantly, we point out that the distribution of ex-
perimental zeros is asymmetric, there are more zeros with positive imaginary part.
The mean and standard deviation of the distribution P (Im(E)) of experimentally
obtained zeros are 5.52 and 7.21, respectively. Using these parameters to construct
a Gaussian distribution, as represented by the gray dots in Fig. 4.10 (b), it becomes
evident that the experimental results deviate from this Gaussian model.
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In this subsection, we find in our experiments, that realizing CPA and extracting
zeros in our CRC system are both feasible. Can this phenomenon be described the-
oretically? It would be nice to have statistical results that explain our experimental
results. In theory, assuming local losses can be neglected, the zeros and poles are
maintaining the mirror symmetry in the complex plane, and the uniform global loss
in CRC should drag all zeros by Γhom/2. This is a global description, but in order to
describe it as close as to our experiment results, we need to construct the effective
Hamiltonian with the parameters extracted experimentally. In sections 4.3 and 4.4,
we will try to find a statistical theoretical description that explains our experimental
findings, using effective Hamiltonian approach based on RMT.

4.3 Average Antenna Transmission with Global

Loss

4.3.1 Theoretical Description

As described in subsection 2.3.4, the fluctuation properties of the scattering matrix of
a chaotic system can be characterized statistically by effective Hamiltonian approach
and RMT. However, this description only includes the energy decay due to coupling
in an open system. In the thesis, we study CRC systems, thus for a more complete
description, other loss mechanisms must be included, as discussed in subsection 4.1.2.
Here, we will focus on the global losses, i.e., the Ohmic losses due to the CRC walls.

Given the fact that Eq. (2.41) also applies in the upper part of the complex
E-plane [Leh95a], we can introduce the global loss term Γhom to the complex energy

Ec = 0 + i
Γhom

2
. (4.14)

With Γhom = 0, substituting Ec into Eq. (2.41) yields:

g(0) − 1

g(0)
+

mκ

1 + κg(0)
= 0 , (4.15)

which aligns with the results from subsection 2.3.4. However, if Γhom ̸= 0, substi-
tuting Ec into Eq. (2.41), one arrives at

gγ −
1

gγ
+

mκ

1 + κgγ
+

Γhom

2λ
= 0 . (4.16)

where gγ = g(iΓhom/2). Note, that the last term on the left side of the equation
does not vanish, significantly affecting the calculations. In cubic Eq. (4.15), one can
solve g(0) given only m and κ. However, Γhom and λ enter the Eq. (4.16), making
the solution for gγ not straightforward.

In the case of κ of the order of unity, the equation for gγ can be simplified to

gγ ≃ −Γhom

4λ
+

√
(1 −m) +

Γ2
hom

16λ2
. (4.17)
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Using this approximation, we then can compute the average scattering matrix ⟨Saa⟩
by Eq. (2.40), and finally relate it to the transmission coefficients Ta.

This subsection provides both exact and approximate solutions for the aver-
age scattering characteristics of lossy systems. It mathematically formulates the
relationship between experimentally extractable data, specifically transmission co-
efficients Ta and global loss Γhom, and the coupling parameter κ of the RMT model.
Note, that although gγ in Eq. (4.16) can be explicitly solved, the approximation is
sufficient for our analysis in this thesis. To validate this, in subsection 4.3.2, we
will compare the exact and approximate solutions with numerical simulations by
systematically varying the parameters.

4.3.2 Numerical Verification

This subsection focuses on the numerical verification of our estimation about av-
eraging scattering properties for lossy systems. We compare the mathematical for-
mulations with numerical simulations. There are several key parameters that are
critical to our analysis: size of the Hamiltonian N , number of channels M , coupling
parameter κ, and global loss Γhom.

We will compare the results for Ta. In exact or approximate formulas, the trans-
mission coefficients Ta are determined by gγ and κ, where we need to substitute the
parameters into Eqs. (2.40), (2.43), (4.16) and (4.17). While in numerical simula-
tions, Ta is computed by constructing the scattering matrix S and then averaging
over ensembles and energies close to E = 0, as specified in Eqs. (2.43) and (4.3).

In the first comparison, we setN = 91, M = 4, κ = 0.996, and Γhom = 37.26. The
value of M is consistent with the actual number of antennas used in our experiments,
and Γhom is the global loss of CRC. The N is chosen because we want to test whether
the formulas are valid whenN is relatively small. The κ = 0.996 here keeps Ta = 0.97
when N = 91 and M = 4 with Γhom = 37.26. As shown in Fig. 4.11, each panel
illustrates the effect of varying a single parameter on the transmission coefficient
Ta. In panel (a), as the size of the Hamiltonian N increases, Ta stabilizes, which is
expected as the limit N → ∞. In panel (b), Ta decreases with an increasing number
of channels M . Notably, while the exact solution consistently aligns with numerical
results, the approximation shows significant deviation as M increases. In panel (c),
all results agree as Γhom increases, with Ta decreasing accordingly, confirming the
expected impact of higher global loss on reducing transmission.

For the second comparison, we have adjusted the initial parameter settings to:
N = 91, M = 4, κ = 2.005, and Γhom = 37.26. The reason for choosing to test
the higher κ value is that Ta suggests two potential κ values. In panel (d), as N
changes, Ta initially increases, peaks near N = 40, and subsequently decreases,
indicating a non-monotonic response before stabilizing as N increases. Panel (e)
shows an increase in Ta with an increasing number of channels M . And the gap
between the approximate and exact solutions becomes more pronounced with higher
M . Panel (f) illustrates that changing Γhom leads to Ta peaking around Γhom = 80
before it decreases, which highlights the complex relationship between global loss
and transmission performance.

Lastly, with fixed parameters M = 4 and Γhom = 37.26, we examined the impact
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Figure 4.11: Variation of transmission coefficient Ta with parameter adjustments across
different panels. Initial parameters for panels (a), (b), and (c) are set to N = 91, M = 4,
κ = 0.996, and Γhom = 37.26. For panels (d), (e), and (f), only κ has been changed
to κ = 2.005. Each sub-figure varies a single parameter while holding others constant.
Panels (g), (h), and (i) feature different values of N and varying κ, with constant M = 4
and Γhom = 37.26. Approximations based on Eq. (4.17) are depicted as blue solid lines,
exact solutions based on Eq. (4.16) as orange dashed lines, and numerical simulations are
represented by green dots.
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of varying κ for different values of N . In panel (g) for N = 50, panel (h) for N = 91,
and panel (i) for N = 200, we observed that as κ increases, Ta initially increase and
then decreases. Both the approximate and exact solutions show good agreement
with the numerical simulations.

In this way, we can isolate the effect of each parameter on Ta and thus get a
clear picture of their respective effects. The exact solution shows excellent agree-
ment with numerical simulations, affirming the applicability and accuracy of our
theoretical framework in practical situations. While the approximate solutions gen-
erally perform well, notable discrepancies arise only when increasing M . Note, that
in our thesis, M is treated as a fixed value, representing the real number of antennas
used in our experiments, thus the approximation remains sufficiently accurate for
the purposes of this study. In next subsection 4.3.3, we will take a more practical
view of our estimation about averaging scattering properties.

4.3.3 Parameter Relation for Constant Antenna Transmis-
sion

After verifying the reliability of our theoretical framework, we now turn our attention
to further refining the RMT parameters that describe our experimental system.
While some of the parameters have already been determined, M = 4 and Γhom =
37.26, the determination of N and κ remains outstanding. Instead of specifying
these parameters directly, we first try to establish a relationship between them.
This approach benefits from the transmission coefficient Ta = 0.97 extracted in
subsection 4.2.2. By solving for the objective Ta, we can efficiently compute the
relationship between N and κ.

Fig. 4.12 (a) illustrates the relationship between N and κ required to realize a
transmission coefficient, Ta = 0.97 for fixed parameters M = 4 and Γhom = 37.26. It
displays the theoretical curves where the solid lines represent approximate solutions
and the dashed lines represent exact solutions. It can be seen that for a given N ,
there are usually two κ solutions. Notably, when N is small, both κ values are
greater than 1. As N increases, one κ value remains greater than 1, while the other
decreases below 1. The difference between the approximate and exact solutions also
decreases as N increases.

To verify the accuracy of the theoretical predictions from Fig. 4.12 (a), we per-
formed numerical simulations. As shown in panel (b), N is varied between 50 and
100, and κ is obtained from Fig. 4.12 (a), with each N corresponding to two val-
ues. Two parameters N and κ, combine the established parameters M = 4 and
Γhom = 37.26 to compute the average scattering matrix ⟨Saa⟩, subsequently deriv-
ing Ta. The circular markers represent numerical simulations, which show that the
results agree very well with the target value Ta = 0.97 and that the error decreases
as N increases.

Another numerical simulation in Fig. 4.12 (b), N is varied between 50 and 100,
but κ is replaced by fixed κeff, respectively 0.7047 and 1.419, as computed by substi-
tuting Ta = 0.97 into Eq. (2.44). Clearly, these results marked by triangles deviate
significantly from the target value Ta, highlighting that the long-standing N → ∞
assumption and the use of κeff to model scattering matrices is inappropriate for our
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Figure 4.12: (a) Relationship between N and κ required to achieve Ta = 0.97 for fixed
parameters M = 4 and Γhom = 37.26, with approximate (solid lines) and exact (dashed
lines) solutions. (b) Comparison of numerical Ta values with the target Ta = 0.97 for
different N values. Blue and orange circles represent larger and smaller calculated κ
values, respectively. Green and red triangles indicate results from larger and smaller κeff,
respectively.

lossy system. This comparison highlights the need for modeling lossy system.

This subsection numerically verifies the feasibility of our theoretical predictions.
Although the corresponding numerical parameters are not yet fully determined,
since for any N a corresponding κ can always be found to satisfy the objective Ta,
we are still searching for a more rigorous approach. One possible way would be to
compare experimental and numerical zeros distributions. Thus, in subsection 4.4.1,
we will discuss how to obtain the zero distributions by numerical simulation, compare
between numerical and experimental results, and try to determine the appropriate
N and κ values for the RMT model.

4.4 Numerical Simulation of Zeros

4.4.1 Under and Perfect Coupling

Based on the numerical validation in the previous section, we confirm the reliability
of our formulas, both exact and approximate. In this subsection, we present the
distributions of numerically obtained zeros that are extracted either directly from the
Hamiltonian (4.8) or indirectly extracted from the scattering matrix, both of which
are constructed from the parameters of the established relationships. Specifically,
the distributions extracted from the scattering matrix will be used as numerical
results for comparison with experimental findings.

In Fig. 4.13 (a), we present the distribution of the imaginary parts of zeros
calculated from Hamiltonian (4.8). We focus on zeros whose real parts are close
to zero, satisfying |Re(E)| ≤ N/100, since the semicircle law states that density
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Figure 4.13: (a) Distribution of the imaginary parts of zeros calculated from Hamil-
tonian for perfect-coupling κP (purple dashed line) and under-coupling κU (green dashdot
line). The stripe (light yellow) marks the range of the imaginary part of the zeros ex-
tractable from the experiment, and the shading of the color represents the probability. (b)
Comparison of numerical distributions with experimental one for imaginary parts of ex-
tracted zeros. The numerical zeros here are extracted the same way as experiment.

of states is constant only near E = 0. This figure illustrates two distinct coupling
scenarios. The green dashed line represents an under-coupling case with parameters
N = 1500, M = 4, κU = 0.7196, and Γhom = 37.26. The purple dotted line depicts
a perfect-coupling scenario with κP = 1, while all other parameters remain identical
to those from the green line. Note, that here we have chosen a sufficiently large N ,
a typical way for numerical studies of quantum chaos problems. The under-coupling
κU is derived from solving the relationship between the experimentally obtained Ta
and three other parameters.

As shown in the figure, the distribution of zeros is shifted by −Γhom/2 due to
the global loss, which is due to the downward shift of the zeros in the complex
plane. Another notable observation is the decreasing behavior in the distribution,
where perfect-coupling allows for a significantly larger width of zeros than the under-
coupling case. This phenomenon can be better understood by reviewing the study of
superradiance, as shown in Fig. 2.4. The distribution of poles there in the complex
plane expands vertically as the coupling of the system goes from weak to strong and
then to perfect-coupling. The same is true here for zeros, since the uniform loss only
leads to global downshift.

However, it is important to note that the zeros distribution presented in Fig. 4.13
(a) cannot be directly compared with experimental data. In experiments, we are
only able to extract those zeros that are located near the real axis. We extracted an
average of 45 experimental zeros per realization, which predicts that there should
be 5955 zeros in a CRC system in the frequency interval 5 − 5.5 GHz according to
Weyl’s law, resulting in a percentage of 0.754%. Whereas the distribution shown here
includes all zeros, as they are calculated directly from the Hamiltonian. Obviously,
this comparison is not adequate because the experimental conditions inherently
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restrict the observable zeros.

A distribution that really needs to be used for comparison would be to extract
the zeros of the numerical simulation as the experiment. That is, one should build
a scattering matrix from the effective Hamiltonian, invert this scattering matrix in
an energy range close to 0, where the density of zeros/poles can be assumed to be
constant (ρ(E) ≈ 1). Then use Lorentzian fits to extract the zeros to finally get the
distribution of their imaginary parts, as done for the experiment as well.

In Fig. 4.13 (b), two numerical distributions are compared with the experimen-
tal findings. The distribution for the under-coupling case is centered on a negative
value, which clearly deviates significantly from the experimental results. This dis-
crepancy suggests that despite careful calculation of the κU values by incorporating
all parameters and processing the data according to the experimental procedure, the
model or the parameters still do not agree with the experimental results. Similarly,
for the κP case, the distribution does not align with the experimental results. In
fact, in the regime of 0 < κ < 1, the probability distribution P (Im(E)) always ex-
hibits a monotonically decaying behavior, resulting in a consistent shift towards the
left, see Fig. 4.13 (b). Note, that the figure shows that there are some zeros below
−Γhom/2, which is impossible from a theoretical point of view and is due to errors in
the fitting during extraction. Nevertheless, in the perfect-coupling case, the center
of distribution is shifted towards the right compared to the under-coupling case.
This may indicate to us that a larger κ is needed if we want to observe the effect of
shifting the distribution to the right in the experiment.

Here, we show that neither under-coupling nor perfect-coupling scenarios ad-
equately explain the experimental findings. In the case of under-coupling, the
monotonic decreasing characteristic leads to a distribution of zeros that is predomi-
nantly shifted towards negative values. Pushing the scenario to an idealized perfect-
coupling, we note a significant slowdown in the decreasing of the distribution, which
shifts the distribution in panel (b) center more towards positive values, approaching
a balance around zero. This adjustment to an extreme case raises an intriguing
question: What would the results be if the system were over-coupled, and could this
potentially explain the experimental findings? We will explore this possibility in the
following section, as detailed in subsection 4.4.2.

4.4.2 Over Coupling

Before discussing the distribution of zeros for over-coupled scenarios, it is useful
to examine their density of states. For under-coupling, the distribution of the real
parts of zeros typically aligns with the predictions of the semicircle law. Although
weak coupling is not explicitly displayed here, the limiting case of perfect-coupling
sufficiently illustrates the expected behavior.

For perfect-coupling, in Fig. 4.14 (a), zeros calculated from the effective Hamil-
tonian (4.8) are plotted in the complex plane, with colors representing probabilities
as indicated by colormap. The parameters used here are N = 1500, M = 4, κP = 1,
and Γhom = 37.26. When analyzing the distribution of the real parts of these ze-
ros, as shown in Fig. 4.14 (b), we find a perfect alignment with the semicircle law’s
predictions. Note, that for a better comparison with over-coupling case, the real
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Figure 4.14: (a) and (b) show the distribution of complex zeros and their real parts,
respectively, for a non-Hermitian Hamiltonian with N = 1500, M = 4, κP = 1, and
Γhom = 37.26. The real parts of the zeros have been rescaled by 91/N for the sake of
comparison to (c) and (d). (c) and (d) same as (a) and (b) but with N = 91 and κO =
2.005.
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part of zeros in panels (a) and (b) has been rescaled by a factor 91/1500 (91/N),
while the imaginary part remains unchanged. The black arrows indicate the real
energy interval |Re(E)| ≤ N/100, which is used to constrain the zeros for probability
statistics, as mentioned already in subsection 4.4.1. It is shown that the density of
states is practically constant and equal to 1 in this interval.

For over-coupling, the zeros in this case are calculated from an effective Hamilto-
nian with parameters N = 91, M = 4, κO = 2.005, and Γhom = 37.26. The specific
choice of parameters will become evident later as they will be the ones describing
the experimental results the best. Unlike the distribution observed in Fig. 4.14 (a),
which decreases significantly as the imaginary part increases, the distribution in
Fig. 4.14 (c) creates a distinct bump around the central region. Further examining
the distribution of the real parts of zeros, as shown in Fig. 4.14 (d), we can see that
a bump forms near E = 0. This deviation from the semicircle law highlights a dis-
tinct feature of over-coupling. As explained in subsection 2.3.5, large over-coupling
value can cause M eigenvalues to acquire large imaginary parts, leading to a clear
separation of the eigenvalue cloud. Note that in the region indicated by the black
arrow, although the density of states appears to be constant, it is slightly larger than
1, due to the fact that the 4 resonances associated with the 4 channels accumulate
close to zero (see also Fig. 2.4 in subsection 2.3.5). In this case the semicircular
behavior is created by the 87=91-4 standard states and the additional Gaussian like
bump at E = 0 by these 4 zeros related to the 4 superradiant states/resonances.

Note, that the imaginary part for perfect-coupling shows a larger tail than the
over-coupling one, but there is already an increased probability for zeros having
an imaginary part around 25. Turning our focus back to the main discussion, we
explored the distribution of the imaginary part of the zeros in the over-coupling
case, to see if it could possibly explain the experimental findings. Starting from the
most natural setup, as detailed in the previous subsection 4.4.1, we will choose a
fairly large Hamiltonian, with N = 1500. The number of channels, M = 4, and the
global loss, Γhom = 37.26, are kept unchanged. Within this framework, we apply
the average transmission formula trying to keep Ta = 0.97 as in the experiment and
κ as a function of M/N and Ta, which yields two values: one for under-coupling,
κ = 0.7196, which has already been discussed, and the other for over-coupling,
κ = 1.449.

As depicted by the green dash-dotted line in Fig. 4.15 (a), the zeros computed
from the Hamiltonian with N = 1500 and κ = 1.449 show a decreasing behavior
at very small imaginary parts, but show a clear bump between around 20 and 500.
Actually the distribution for small Im(E) < 100 is exactly the same as in the under-
coupling case with a slight renormalization due to the bump. The occurrence of the
bump is in line with expectations, as we’ve previously discussed the characteristics of
superradiant poles in subsection 2.3.5. To compare with experimental results effec-
tively, we must examine the extracted zeros for the over-coupling case. Fig. 4.15 (b)
displays the distribution of the imaginary parts of zeros extracted numerically for
N = 1500 and κ = 1.449, following the same process used in experiments. We find
that the distribution is centered on the negative imaginary value, despite the pres-
ence of over-coupling, which is clearly different from the experimental center and
similar to the under-coupling results of the previous subsection. Note, that it shows
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Figure 4.15: (a) Distribution of the imaginary parts of zeros calculated from non-
Hermitian Hamiltonian with N = 91 and κO = 2.005 (blue solid line), N = 500 and
N = 1500 (purple dashed line), and N = 1500 and κ = 1.449 (green dash-dotted line),
while maintaining M = 4, Γhom = 37.26, and corresponding over-coupling κ are calculated
for each N keeping Ta = 0.97. (b) Comparison of the distributions of the imaginary parts
of zeros extracted following experimental protocols, experimentally and numerically (as in
(a)).

that there are some zeros below −Γhom/2, which is theoretically impossible and is
due to fitting errors in the extraction process.

Going back to Fig. 4.15 (a), the orange region indicates the range of the imag-
inary part of the zeros that experimental extraction can reach. In this range, the
distribution of N = 1500 and κ = 1.449 shows a consistent decreasing, much like
the under-coupling case. In both the numerical and experimental setups, only real
energy/frequency is accessible, so that zeros can only be extracted near Im(E) = 0.
Thus, even the presence of a significant bump in the higher imaginary part is dif-
ficult to achieve in practice, which explains why the over-coupling distribution in
Fig. 4.15 (b) is so similar to the under-coupling distribution, see Fig. 4.13 (b).

This shows that, in the over-coupling case, zeros of extremely large widths occur.
However, these large width zeros do not substantially change the final distribution.
This observation leads to the question: what happens if we choose smaller N while
maintaining the high κ values typical of over-coupling?

In Fig. 4.15 (a) and (b), we show the simulation with N = 500 and κ = 1.511,
keeping M and Γhom unchanged. The κ value is calculated by keeping Ta as in
the experiment. The purple dashed line in Fig. 4.15 (a) shows that, despite the
reduction of N , the bump in the distribution still occurs at high values, beyond
the range of the experimental extraction. Therefore, as shown in Fig. 4.15 (b), the
distribution is still similar to the one observed with N = 1500 and κ = 1.449, and
does not adequately characterize the experimental results.

As observed, by decreasing N and adjusting κ, the bump in the distribution of
zeros computed from the Hamiltonian moves closer to Im(E) = 0. It is conceivable
that if this bump moves within the extractable range, the large width of the zeros
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Figure 4.16: (a) Distribution of the imaginary part of the extracted zeros, with the
experimental and numerical results shown as black dashed and solid lines, respectively.
The colors of the solid lines transition from yellow to red, as the size of Hamiltonian N
increases, and over-coupling κ is calculated correspondingly with M = 4 and Γhom = 37.26
satisfying experimental Ta = 0.97. (b) Mean squared error between the experimental and
numerical distributions across different values of N and over-coupling κ.

may significantly affect the final extracted distribution of zeros.

In Fig. 4.15 (a) and (b), the blue solid lines represent the cases N = 91 and
κO = 2.005. κO is calculated from N = 91, M = 4 and Γhom = 37.26 to keep
Ta = 0.97 as in the experiment. In panel (a), the distribution of the blue solid line no
longer exhibits monotonic decreasing within the orange region; it first decreases, then
reaches a local minimum around Im(E) = −7, and then increases. This suggests that
not only the decreasing part but also the bump part of the zeros can be reached,
which may influence the extracted distribution of zeros with respect to previous
observations. Panel (b) shows this distribution of imaginary part of extracted zeros,
and finally it is shifted towards positive values, having a good agreement with the
experimental one.

Parameters N = 91 and κO = 2.005 are carefully chosen. In Fig. 4.16 (a), we
show numerical simulations from N = 60 to N = 120, where each N corresponds
to a specific over-coupling parameter κ, with M = 4 and Γhom = 37.26 satisfying
Ta = 0.97. Comparing these results, one can observe that as N increases, the center
of the distribution shifts towards larger values and the peak of the distribution
decreases. This trend suggests that the best match with experimental results may
occur between N = 80 and N = 100. Fig. 4.16 (b) provides a detailed calculation
of the mean square error between the numerical and experimental distributions,
from N = 85 to N = 95. By increasing N by 1 each time and plotting the error
corresponding to each N , we find that there is a minimum value, which indicates
that the best match between numerical simulation and experimental findings at
N = 91 and κO = 2.005. Note, that in this chapter, long before this result was
given, some of the numerical simulations were done using these specific parameters
to present the finally relevant case already there.
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Here by comparing the distributions of imaginary parts of numerical and exper-
imental extracted zeros, we find the numerical parameters that best describe the
experimental findings are N = 91, κO = 2.005, M = 4 and Γhom = 37.26. In next
section 4.5, we will parametrically study the statistical behavior of the zeros, and
verify again that the description from RMT and effective Hamiltonian built from
the optimal parameters here, are consistent with the experimental findings.

4.5 Stirring generated Zeros Dynamics

4.5.1 Experimental Findings

Perturbation is a key tool in studying the dynamic behavior of zeros. It is possible
to generate a perturbation by flipping pixels of RIS, this imposing a shift of the
resonances, but then flipping another pixel leading to non-continuous behaviors of
the perturbation. To achieve a more consistent and continuous perturbation, we
use a mechanical stirrer in CRC. By combining RIS and the stirrer, we can find
zeros near the real axis, and continuously perturb the system, greatly facilitating
the observation of the dynamics of zeros.

Typically, a mechanical stirrer in RC is used to create perturbations and thus
allows for statistical investigations. Fig. 4.2 shows the mechanical stirrer in the
CRC system, which consists of five irregular paddles. The stirrer is controlled by a
stepper motor that receives commands from the computer, and the rotation of the
stirrer is synchronized with the measurements of the VNA.

In order to capture the full dynamics of the zeros in our experiments, we try to
move the zeros initially close to the real axis. This is because we want to capture the
movement of the zeros throughout the dynamics and the pronounced peaks in the
spectrum (S−1)12 facilitate the extraction. Specifically, we measured the scattering
matrix while RISs are in random configuration. If the eigenvalues of scattering
matrix is small (corresponds to a zero near real axis), we zoom in to this small
frequency range and rotate the stirrer at a small angle ∆α for 20 times, measuring
the scattering matrix after each angular adjustment. Note, that the rotation angle
of the stirrer needs to be adjusted so that even after rotation one can extract zeros,
and RISs remained unchanged until the stirrer has completed 20 steps (20∆α) and
moves on to the next set of experiments.

Using the method of zero extraction described in subsection 4.2.5, we can ob-
tain the dynamics of the zeros. Fig. 4.17 (a) presents an example of 4 consecutive
measurements from a set of 20 perturbations, with the order indicated by the color
from light red to dark red. In the top panel, we observe that the peak and center
position of the |(S−1)12| change as the stirrer rotates. Further inspection in the
middle panel, the phase of (S−1)12 reveals a phase shift near the peak, with first
two measurements showing a negative slope and last two showing a positive slope.
Recalling the example in Fig. 4.9, we may conclude that the imaginary part of the
zero is likely to change sign between the initial and final measurements. The bottom
panel confirms that the zeros extracted by the complex Lorentzian fit moves from
above to below the real axis, under the influence of stirrer-induced dynamics.

In Fig. 4.17 (b), we show the zero dynamics in an energy range, with both
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Figure 4.17: In the top and middle part of panel (a), the modulus and phase of (S−1)12
are shown. The bottom part plots the zeros in the complex plane, extracted from (S−1)12
by Lorentz fitting. The color of lines and dots indicated the order of dynamics, from light
red to dark red. Panel (b) shows the trajectories of zeros in the complex plane for several
experiments, each represented by a different color.

the real and imaginary parts normalized by the mean frequency spacing. Different
colors in the figure represent independent experiments, with each line consisting of
20 points. These zero curves show their diverse behavior in response to the stirrer’s
perturbations. One possible way to analyze their statistical behavior is to study
the velocity of these dynamics. As mentioned in subsection 2.2.3, the velocity of
eigenvalues in a chaotic system could be predicted by RMT. Here, we will compute
the velocities of the real part of the zeros Re(zi). Note, that for simplicity, Re(zi)
will be replaced by zi in the following discussion.

The velocity vα,i of zi with respect to the angle parameter α can be expressed as
a finite difference approximation of the derivative:

vα,i =
zi(α + ∆α) − zi(α)

∆α
, (4.18)

where ∆α is the single rotation angle of the stirrer. The system-specific properties
related to the parametric variation should be eliminated by unfolding the parameter
along zi(α):

ṽi =
vα,i
σα

, (4.19)

here the standard deviation σα is calculated from the data of all velocities. In our
experiments, σα = 381. So far, we have experimentally extracted the dynamics of the
zeros and computed the normalized velocities, and we will compare the distribution
of experimental with numerical results in subsection 4.5.2.
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ṽ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(ṽ
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Figure 4.18: (a) Dynamics of the numerical zeros, calculated by effective Hamilto-
nian (4.8) and (4.20), whose parameters are from over-coupling case. (Top panel) Dy-
namics of the zeros close to real axis, gathered from varying realizations. (Bottom panel)
Dynamics of the zeros close to −Γhom/2, calculated from a single realization for clarity and
consistency in the visualization of dynamics. (c) Experimental and numerical distribution
of the normalized velocity ṽ, for the real parts of the dynamical zeros. The experimental
data is depicted with light yellow filling. The labels for the lines are clarified in the main
text.

4.5.2 Numerical Findings

Like the continuous perturbation by the mechanical stirrer in experiment, numeri-
cally we can also parametrically study dynamics of zeros by introducing the Hamil-
tonian consists of an unstirred component Hus and a stirred component Hs [Die06]

HP = cos (β)Hus + sin (β)Hs , (4.20)

where β is the perturbation strength generating the dynamics, and both Hus and
Hs are drawn from GOE. If we replace the Hamiltonian H0 of Eq. (4.8) by HP, we
can calculate the zeros related to parameter β.

Fig. 4.18 (a) shows the simulation results, the upper and lower parts are the
zeros whose imaginary part is close to 0 and −Γhom/2. Here, we use the parameters
from subsection 4.4.2 that best match the experiment, namely N = 91, M = 4,
κO = 2.005, and Γhom = 37.26. The window of complex plane is chosen exactly
same as Fig. 4.17 (b). We adjust the parameter β length of the dynamics in the
upper figure to visually as similar as the one in experiment, and the lower figure has
the same parameter length with the upper one. Visually comparing the dynamics
of the upper and lower panels, we can see that for the upper one, the zeros move
over a larger area in the complex plane, while most of the zeros of Im(E) close to
−Γhom/2 are concentrated in a very small area. Note, that in the figure, for clarity,
we only draw part of the dynamics, and for the zeros in the bottom panel, some
may show a wider movement, indicating a superradiant transition.

For comparison with the experimental results, we calculated the normalized ve-
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locity of the zeros in our numerical simulations. Note, that the statistics include only
zeros in the real energy interval shown by the black arrow, where |Re(E)| ≤ N/100 to
keep the density of states practically constant and very close to 1 in the investigated
energy range. Fig. 4.18 (b) shows the distribution of ṽ, and we begin by discussing
zeros close to −Γhom/2, referring to the lower panel of Fig. 4.18 (a) and labeled “Nar-
row”. These zeros are selected from the range −Γhom/2 < Im(z) < −Γhom/2 + 1,
and the distribution of their velocities, shown by the green dash-dotted line in the
figure, exhibits Gaussian behavior. This aligns with the RMT predictions for the
velocity distribution of eigenvalues for under-coupling chaotic system [Bar99,Lu20].
It is clear, that this part of the zeros, its velocity distribution is not consistent with
the experiment. In this case, σβ = 0.53.

Next, we focus on zeros near the real axis, as shown in the upper panel of
Fig. 4.18 (a). In particular, we analyze the zeros where the imaginary part satisfies
−10 < Im(z) < 15 and the real part is restricted to the range shown by the black
arrows. The dynamics depicted by the solid blue line labeled “Super” in Fig. 4.18 (b),
and it matches the experimental findings very well, especially the tail. There is a
deviation in the middle peak of the two, which may be due to experimental error.
In this case, σβ = 1.9. The agreement here, in another respect, again validates our
numerical model for describing the experimental system using overcoupling.

To provide a more convincing demonstration, we also performed another sim-
ulation with under-coupling conditions using the parameters N = 1500, M = 4,
κU = 0.7196, and Γhom = 37.26. As shown in Fig. 4.13 (a), this setup predicts the
presence of zeros near the real axis. Thus in this case, we are able to observe the
dynamics of these zeros. By restricting the selection of zeros where their imaginary
part satisfies −10 < Im(z) < 15 and real part by the black arrows, their normal-
ized velocities can be calculated. We label this group as “Broad” with a value of
σβ = 1.8. In Fig. 4.18 (b), shown by the purple dashed line, the distribution derived
from under-coupling does not match the experimental results; it lies between the
“Super” and “Narrow” distributions.

In this section, the level dynamics of zero was investigated experimentally and
numerically. By comparing the experimental and numerical results, we find a good
agreement, affirming that over-coupling is an accurate way to describe CRC system,
which is a strong support for the discussion in this subsection 4.4.2. The discussion
confirms that the observed behavior of the zeros is different from the zeros with
narrow width under perturbation. In section 4.6, we will focus on the zero that
located on the real axis, CPA, and explore the sensitivity of this particular zero to
temperature perturbations in experimental studies.

4.6 CPA in CRC as Temperature Sensor

Earlier works have demonstrated the ability of the CPA to act as a sensor [Li19,
Zha22b]. In CRC, the sensitivity of the CPA could be used to verify the stability
of the chamber. This can infer whether a mechanical stirrer returns to its initial
position, whether opening and closing a door or other types of changes change
the RC. In this thesis, to demonstrate the sensitivity of CPA in our CRC system,
specifically, we will investigate the relation between temperature and the CPA.
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Figure 4.19: (a) Temperature of reverberation chamber versus time. Color variations
along the curves indicate elapsed time, with circles and stars marking the start and end
points, respectively. The red dotted curves represents a temperature curve reconstructed
from the relationship between temperature and the real part of zeros derived from (c). (b)
Time-dependent zeros plotted in the complex plane, illustrating the dynamical evolution of
a superradiant CPA. (c) The relation between temperature T and the real part of zeros.

In the first case, we study CPA in a lab where the temperature T is oscillating due
to day-night temperature variation. The discussion of experimental temperature and
humidity measurement, and the details of sensors can be found in subsection 4.2.1.
Fig. 4.19 (a) records the fluctuations of the temperature of the lab over several
days, where the color represents the time, and the circles and stars represent the
starting and ending points. At the starting point, we realized CPA, by optimizing
the eigenvalues of scattering matrix as close as possible to 0 through the RISs,
see the method mentioned in subsection 4.2.4. Then we re-measure the spectra at
around every 4 minutes, and we extract and trace the zeros in the complex plane,
where both real and imaginary parts are normalized. In Fig. 4.19 (b), we obtain the
variation of the zeros in the complex plane with time, which shows that the zeros
are moving further and further away from the real axis over time and on oscillating
behavior of the real part. This indicates that the CPA is not stable and will not lie
on the real axis once it is subjected to an external perturbation (e.g., temperature).

Then, we plot the temperature versus the real part of the zero, see Fig. 4.19 (c),
what we find is that zero’s real value gets smaller every time the temperature of the
room gets lower over the days, and these lines oscillate with a linear relationship. In
panel (c), we fit a linear function for the real part of zeros and temperatures with red
dotted line. Satisfying such a relationship, in fact, our CRC is acting like a sensor,
because now we can use the zeros to predict the temperature. The red dotted line in
Fig. 4.19 (a) is the reconstruction result, which is obtained by using the information
of experimental zeros and the fitting parameter. It is shown that the reconstructed
temperature is very close to the original temperature, and now just by measuring the
spectrum from the experiment and extract the zeros, we are able to determine the
temperature. Also, it is worth noting that the resolution of the temperature senor
in this measurement is 0.1°C, as can be seen from the measurements’ discretization
in Fig. 4.19 (a) and (c). However, based on the CPA, one could obtain temperature
curves with much better resolution.

Fig. 4.20 (a), (b) and (c) show the other example, where we installed the rever-
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Figure 4.20: (a), (b) and (c) replicate the analyses of Fig. 4.19 respectively, but are
conducted in a different laboratory environment (equipped with air conditioning).

beration chamber in an air-conditioned laboratory. By controlling the temperature
of the air conditioner to the maximum or minimum, the room has a greater range of
temperature changes. Similarly, following the experimental steps, we can obtain the
dynamics of the zeros in the complex plane as the temperature changes, as well as
obtaining the relationship between the real part of the zeros and the temperature.
The relationship between the two in Fig. 4.20 (c) can be fitted with a linear func-
tion (blue dotted line), which is consistent with the previously observed dependence.
Here we used a temperature sensor with a resolution of 0.01°C, thus no discretization
appears in the figure. In this case, the reconstructed curve (blue dotted line) also
agrees very well with the temperature line previously measured by the temperature
sensor, see Fig. 4.20 (a). Note, that we only found a relationship between tempera-
ture and the real part of zeros, we did not find any relationship between temperature
and the imaginary part of zeros, nor did we find any relationship between humidity
and the real or imaginary part of zeros.

The investigation into the stability behavior of CPA within a chaotic system,
has uncovered a linear relationship between the real part of zeros and temperatures.
This finding extends our understanding of CPA behavior in complex environments
and unveils a temperature-dependent aspect of CPA points.

4.7 Conclusion

In section 4.1, we introduce CRC and the phenomenon of CPA. We refine the descrip-
tion of lossy systems within the framework of the effective Hamiltonian approach,
setting the stage to explain why CPAs and zeros occur near the real axis in the
strong overlap regime.

The section 4.2 detail our experimental setup, three important experimental
parameters, number of the channels M = 4, transmission coefficient Ta = 0.97 and
global loss Γhom = 37.26. It also details how CPAs are realized experimentally and
how zeros are extracted, presenting the distribution of the imaginary parts of zeros
obtained from experiments.

In the section 4.3, aimed at deriving numerical parameters for the effective Hamil-
tonian, we adjust the average scattering characteristics of a chaotic system with
global loss. By incorporating complex energy into the formulation, we validate that
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both exact and approximate solutions align with numerical simulations, confirming
that our revised formulas meet our experimental needs.

The section 4.4 employs the refined approximate solution to initially attempt
describing experimental findings with an under-coupling numerical model, which
proves unsuccessful. We then discover that to account for the distribution of the
imaginary parts of zeros observed experimentally, over-coupling parameters are nec-
essary. The optimal parameters found are N = 91 and κO = 2.005, where κO is
calculated by substituting N = 91, M = 4, and Γhom = 37.26 into the formulas to
guarantee a transmission coefficient Ta = 0.97 with the RMT simulations matching
the experimental one.

In section 4.5, we apply continuous perturbations using a stirrer, and study
the distribution of the normalized velocities of the real parts of zeros. We further
confirm that the experimentally results can be fully described by the effective Hamil-
tonian constructed from over-coupling parameters, whereas again a description via
the under-coupling case shows prominent deviations.

In section 4.6, by investigating the temperature perturbation to CPA in two
environments, we find a linear dependence between external temperature and the
real part of CPA, suggesting that CPA could serve as a temperature sensor for the
reverberation chamber.
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Chapter 5

Conclusions and Outlook

In this thesis, I have conducted microwave experiments on two systems: microwave
networks and chaotic reverberation chambers (CRC). In both systems, I have com-
pared the experimental findings to numerical simulations fixing their parameters
partially on newly developed theoretical descriptions. In both cases superradiance,
i.e., the existence of fast decaying states due to strong coupling to the environment,
plays a crucial role. In case of the microwave network it leads toward the reduction
of resonances when the boundary conditions at the coupling vertex are varied from
near to exact Neumann conditions. In case of the CRC it guarantees the existence
of sufficient number of zeros in the vicinity of the real axis, predicted by the effective
Hamiltonian with over-coupling.

For the first time we succeeded to vary experimentally the coupling strength to
microwave networks over a large frequency range. This was realized by using a T-
junction with a phase-variable bond, where the boundary condition at the coupling
vertex was varied from Dirichlet to Neumann, based on the idea from the analogue
experiment [Reh16] of Gaussian symplectic ensemble (GSE) graphs. This technique
is particularly well-suited for studying non-Weyl graphs, open graphs with balanced
vertices where the relationship between the wavenumber and the number of reso-
nances does not satisfy Weyl’s law. In tetrahedral graphs with balanced vertex of
valency 2, we observed complex dynamics of resonances in the complex plane as a
function of coupling. These dynamics included loop structures, regions of connected
resonances, and some resonances escaping to infinite width via a superradiant tran-
sition, thus unambiguously demonstrating non-Weyl behavior. The latter features
is not related to the complexity of the graph but already appears in lasso graphs.
For this simple system an analytical solution was derived and had a good agreement
with experiments and perfect agreement with numerical simulations were found.
For rational ratios of the two length the spectrum shows a corresponding periodic
structures of the poles and the dependence of the pole structure on the ratios will
be investigated in the future. I would like to point out that close to balanced condi-
tions, superradiant states and bound states in the continuum coexist, thus providing
a basis for studying their interaction when small perturbations are introduced. In
the future, the technique of variable coupling gives the possibility to study numer-
ous interesting problems in graphs, such as the interlacing theorem [Ber13, Ber17]
in open systems, coherent perfect absorption (CPA) [Cho10, Che20, Wan24a] and
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exceptional points (EP) [Dem01,Dop16].
Also, I presented the studies of CPAs in a CRC system and found that the

proper description of CPAs in this system with large modal overlap relies on the use
of over-coupling, i.e., the existence of superradiance in the system. This conclusion
is obtained from comparing the experimental and numerical statistical distributions
in the strong modal overlap case. One key distribution is that of the imaginary part
of the zeros. Experimentally, we extracted zeros through uncorrelated realizations
generated by reconfigurable intelligent surfaces (RIS). Numerically, we computed the
zeros from the effective Hamiltonian where we have used experimentally determined
parameters related to losses and over-coupling. The other distribution is that of
the velocity of the real part of zeros. Experimentally, we collected these zeros
using a continuous perturbation via mechanical stirring, and numerically simulated
a parametrically varied internal Hamiltonian together with over-coupling. In both
cases, a good agreement was found only when over-coupling was present and distinct
deviations were found if it was not present. Thus, I could demonstrate that the
zeros measured in our experiments correspond to associated superradiant poles.
In addition, we changed the temperature of CPA systems, and found that these
CPAs are extremely sensitive to this perturbation, thus rendering them excellent
candidates to act as sensors, which I demonstrated experimentally. This work should
trigger new developments in the framework of RMT to address the till now more or
less neglected regime of over-coupling. Hopefully analytical descriptions of the here
investigated distributions as well as the density of states will be derived in the near
future. Additionally, the determination of the parameters like coupling strength,
size of Hamiltonian or number of channels will be hopefully better justified by new
theoretical means. This discovery should also pave the way to new sensors based on
CPAs in the strong modal overlap regime.

88



Bibliography

[All14] M. Allgaier, S. Gehler, S. Barkhofen, H.-J. Stöckmann, and U. Kuhl:
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[Dem01] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Re-
hfeld, and A. Richter: Experimental observation of the topological struc-
ture of exceptional points. Phys. Rev. Lett. 86, 787 (2001).

[dH20] P. del Hougne, D. V. Savin, O. Legrand, and U. Kuhl: Implementing
nonuniversal features with a random matrix theory approach: Applica-
tion to space-to-configuration multiplexing. Phys. Rev. E 102, 010201
(2020).

[dH21] P. del Hougne, K. B. Yeo, P. Besnier, and M. Davy: On-demand coherent
perfect absorption in complex scattering systems: Time delay divergence
and enhanced sensitivity to perturbations. Laser & Photonics Reviews
15, 2000471 (2021).

[Dic54] R. H. Dicke: Coherence in spontaneous radiation processes. Phys. Rev.
93, 99–110 (1954).

[Die06] B. Dietz, A. Heine, A. Richter, O. Bohigas, and P. Leboeuf: Spec-
tral statistics in an open parametric billiard system. Phys. Rev. E 73,
035201(R) (2006).

[Die15] B. Dietz and A. Richter: Quantum and wave dynamical chaos in super-
conducting microwave billiards. Chaos: An Interdisciplinary Journal of
Nonlinear Science 25, 097601 (2015).

[Die17] B. Dietz, V. Yunko, M. Bia lous, S. Bauch, M.  Lawniczak, and L. Sirko:
Nonuniversality in the spectral properties of time-reversal-invariant mi-
crowave networks and quantum graphs. Phys. Rev. E 95, 052202 (2017).

[Die24] B. Dietz, T. Klaus, M. Masi, M. Miski-Oglu, A. Richter, T. Skipa, and
M. Wunderle: Closed and open superconducting microwave waveguide
networks as a model for quantum graphs. Phys. Rev. E 109, 034201
(2024).

[Din02] J. Dingjan, E. Altewischer, M. P. van Exter, and J. P. Woerdman: Ex-
perimental observation of wave chaos in a conventional optical resonator.
Phys. Rev. Lett. 88, 064101 (2002).

91

http://dx.doi.org/10.1038/119558a0
http://dx.doi.org/10.1088/1751-8113/43/47/474013
http://dx.doi.org/10.1088/1751-8113/43/47/474013
http://dx.doi.org/10.2140/apde.2011.4.729
http://dx.doi.org/10.1103/PhysRevE.104.044204
http://dx.doi.org/10.1103/PhysRevE.104.044204
http://dx.doi.org/10.1063/5.0107041
http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1103/PhysRevE.102.010201
http://dx.doi.org/10.1103/PhysRevE.102.010201
http://dx.doi.org/https://doi.org/10.1002/lpor.202000471
http://dx.doi.org/https://doi.org/10.1002/lpor.202000471
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevE.73.035201
http://dx.doi.org/10.1103/PhysRevE.73.035201
http://dx.doi.org/10.1063/1.4915527
http://dx.doi.org/10.1063/1.4915527
http://dx.doi.org/10.1103/PhysRevE.95.052202
http://dx.doi.org/10.1103/PhysRevE.109.034201
http://dx.doi.org/10.1103/PhysRevE.109.034201
http://dx.doi.org/10.1103/PhysRevLett.88.064101


[Dit00] F.-M. Dittes: The decay of quantum systems with a small number of
open channels. Phys. Rep. 339, 215 (2000).

[Dop16] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch,
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[Exn11] P. Exner and J. Lipovský: Non-Weyl resonance asymptotics for quantum
graphs in a magnetic field. Phys. Lett. A 375, 805 (2011).

[Far24] O. Farooq, A. Akhshani, M.  Lawniczak, M. Bia lous, and L. Sirko: Cou-
pled unidirectional chaotic microwave graphs. Phys. Rev. E 110, 014206
(2024).

[Fra20] B. W. Frazier, T. M. Antonsen, S. M. Anlage, and E. Ott: Wavefront
shaping with a tunable metasurface: Creating cold spots and coherent
perfect absorption at arbitrary frequencies. Phys. Rev. Res. 2, 043422
(2020).

[Fyo96] Y. V. Fyodorov and H.-J. Sommers: Statistics of s-matrix poles in few-
channel chaotic scattering: crossover from isolated to overlapping reso-
nances. JETP Lett. 63, 1026 (1996).

[Fyo97] Y. V. Fyodorov and H.-J. Sommers: Statistics of resonance poles, phase
shifts and time delays in quantum chaotic scattering: Random matrix
approach for systems with broken time-reversal invariance. J. Math. Phys.
38, 1918 (1997).

[Fyo17] Y. V. Fyodorov, S. Suwunnarat, and T. Kottos: Distribution of zeros of
the s-matrix of chaotic cavities with localized losses and coherent perfect
absorption: non-perturbative results. J. Phys. A 50, 30LT01 (2017).

[Fyo19] Y. Fyodorov: Reflection time difference as a probe of s-matrix zeroes in
chaotic resonance scattering. Acta Physica Polonica A 136, 785 (2019).

[Gnu04] S. Gnutzmann and A. Altland: Universal spectral statistics in quantum
graphs. Phys. Rev. Lett. 93, 194101 (2004).

[Gnu06] S. Gnutzmann and U. Smilansky: Quantum graphs: Applications to
quantum chaos and universal spectral statistics. Advances in Physics
55, 527 (2006).

[Gnu13] S. Gnutzmann, H. Schanz, and U. Smilansky: Topological resonances in
scattering on networks (graphs). Phys. Rev. Lett. 110, 094101 (2013).
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[ Lawni19] M.  Lawniczak, Jǐŕı Lipovský, and L. Sirko: Non-Weyl microwave graphs.
Phys. Rev. Lett. 122, 140503 (2019).

[ Lawni24] M.  Lawniczak, A. Akhshani, O. Farooq, S. Bauch, and L. Sirko: Experi-
mental distributions of the reflection amplitude for networks with unitary
and symplectic symmetries. Acta Physica Polonica A ISSN 1898-794X
144, 469 (2024).

[Leh95a] N. Lehmann, D. Saher, V. V. Sokolov, and H.-J. Sommers: Chaotic scat-
tering: the supersymmetry method for large number of channels. Nucl.
Phys. A 582, 223 (1995).

[Leh95b] N. Lehmann, D. V. Savin, V. V. Sokolov, and H.-J. Sommers: Time delay
correlations in chaotic scattering: Random matrix approach. Physica D
86, 572 (1995).

[Lew91] C. H. Lewenkopf and H. A. Weidenmüller: Stochastic versus semiclassical
approach to quantum chaotic scattering. Ann. Phys. (N.Y.) 212, 53
(1991).

[Li17] H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz, and T. Kottos: Ran-
dom matrix theory approach to chaotic coherent perfect absorbers. Phys.
Rev. Lett. 118, 044101 (2017).

95

http://dx.doi.org/10.1088/0305-4470/36/12/337
http://dx.doi.org/10.1088/0959-7174/14/1/013
http://dx.doi.org/10.1364/AOP.11.000892
http://dx.doi.org/10.1088/0305-4470/38/49/001
http://dx.doi.org/10.1103/PhysRevLett.100.254101
http://dx.doi.org/10.1103/PhysRevLett.100.254101
http://dx.doi.org/10.1002/prop.201200101
http://dx.doi.org/10.1103/PhysRevE.81.046204
http://dx.doi.org/10.12693/APhysPolA.132.1672
http://dx.doi.org/10.1103/PhysRevLett.122.140503
http://dx.doi.org/10.12693/APhysPolA.144.469
http://dx.doi.org/10.12693/APhysPolA.144.469
http://dx.doi.org/10.1016/0375-9474(94)00460-5
http://dx.doi.org/10.1016/0375-9474(94)00460-5
http://dx.doi.org/10.1016/0167-2789(95)00185-7
http://dx.doi.org/10.1016/0167-2789(95)00185-7
http://dx.doi.org/10.1016/0003-4916(91)90372-F
http://dx.doi.org/10.1016/0003-4916(91)90372-F
http://dx.doi.org/10.1103/PhysRevLett.118.044101
http://dx.doi.org/10.1103/PhysRevLett.118.044101


[Li19] C. Li, J. Qiu, J.-Y. Ou, Q. H. Liu, and J. Zhu: High-sensitivity refractive
index sensors using coherent perfect absorption on graphene in the vis-nir
region. ACS Applied Nano Materials 2, 3231–3237 (2019).

[Lim04] S.-H. Lim, T. G. Bjorklund, F. C. Spano, and C. J. Bardeen: Exciton
delocalization and superradiance in tetracene thin films and nanoaggre-
gates. Phys. Rev. Lett. 92, 107402 (2004).
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