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Formes limites pour le modèle de dimères dans des domaines
non simplement connexes

Résumé

Cette thèse se compose de trois parties, le but de la première partie est d’étudier les
pavages aléatoires de dominos d’un domaine non simplement connexe avec une fonction
de hauteur définie sur l’espace de revêtement universel du domaine. Nous établissons un
principe de grandes déviations pour la fonction de hauteur dans deux régimes asymptotiques.
Le premier régime couvre tous les pavages de dominos du domaine. Une loi des grands
nombres pour le changement de hauteur dans ce régime est également obtenue. Le second
régime couvre les pavages de dominos avec un changement de hauteur asymptotique donné.
La deuxième partie de la thèse est une extension de la première partie. Nous prouvons
l’existence d’une forme limite pour le modèle de dimères sur des graphes bipartis périodiques
planaires avec un domaine fondamental arbitraire et des poids périodiques arbitraires. La
troisième partie est consacrée au calcul de la courbe arctique du diamant aztèque avec trous
dans deux régimes. Le premier régime, appelé cas non contraint, correspond à la mesure
uniforme sur l’ensemble des pavages par dominos. Le second régime, appelé cas contraint,
pose une condition sur le changement de hauteur des dominos.

Mots-clés : dimères,pavages,principe variationnel, forme limite, surfaces aléa-
toires, grandes déviations"



Limit shapes of the dimer model in multiply-connected
domains

Abstract

This thesis consists of three parts, the goal of the first part is to study random domino
tilings of a multiply-connected domain with a height function defined on the universal
covering space of the domain. We establish a large deviation principle for the height function
in two asymptotic regimes. The first regime covers all domino tilings of the domain. A
law of large numbers for height change in this regime will also be derived. The second
regime covers domino tilings with a given asymptotic height change. The second part of
thesis is an extension of the first part. We prove the existence of a limit shape for the
dimer model on planar periodic bipartite graphs with an arbitrary fundamental domain
and arbitrary periodic weights. The third part is devoted to computation of the arctic
curve of the multiply-connected Aztec diamond in two regimes. The first regime, called an
unconstrained case, corresponds to the uniform measure on a set of domino tilings. The
second regime, constrained case, puts a condition on the height change of domino tilings.

Keywords:Dimers, tilings, variational principle, limit shapes
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Chapter 1

Introduction

1.1 Physical motivation

Random objects, like air particles, or crystal surfaces surround us everywhere. Thus,
describing their behavior is important. However, what is a reasonable description of a
random object? If we look at an air molecule or a crystal atom, we can try to memorize the
position and the speed of each particle at every moment in time, in total six numbers for
each particle at every moment of time. This would be a complete description, yet extremely
difficult to deal with. As we know, the number of atoms in 1 gram has the order of the
Avogadro number NA ≈ 1023. It means that at any given time, the state of this 1 gram
would be described by a vector in a space of dimension dim ≈ 6 × 1023, which would
be impossible to operate in daily life. Therefore, we would like to come up with a better
description. A common way of doing it is to look at the average quantities among all the
particles of the system. For example, instead of the speed v of each air particle,we typically
use the air temperature, which is proportional to the average kinetic energy of the particles
T ∝ m⟨v2⟩/2, where m is the mass density. The proportionality coefficient is called the
Boltzmann constant k ≈ 1.38 × 10−23JK−1.

Instead of the positions of the particles, we tend to describe their densities. Further,
rather than dealing with the Newton equations for each particle, we operate with so-called
thermodynamic laws.

In our example of air particles in a room, we may look at molecules of a heavy gas,
like carbon dioxide, in two cases: a high temperature T ≫ 100K, and low temperature
T ≈ 100K. In the first situation, the particles have enough kinetic energy to neglect the
force of gravity. Thus, they are distributed uniformly at random in the room. While in the
second example, the temperature is low, and the molecules cannot neglect the potential
energy, therefore they tend to stay closer to the floor of the room, and one would observe
the so-called barometric formula from thermodynamics, see § 38 in [LL58]. It describes the
normalized density distribution c(h) depending on the height h and the mass density m,

c(h) = c0e
−h gm

T NAk , (1.1.1)

here g ≈ 9.8m/s2 is the acceleration of free fall, and c0 is the density distribution at h = 0.
One could say that this law is a result of the competition between the potential energy,

and the temperature (in fact, people refer to it as the competition between energy and
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entropy). Indeed, in the high temperature (or low mass m) regime, the concentration almost
does not depend on h, while for the high mass m, and low temperature, the particles tend
to concentrate around h = 0.

The transition from the individual description of each particle simultaneously to the
description of the whole system is called the thermodynamic limit. Also, one often calls
the state of the system in the first parametrization a microstate, while in the second
parametrization a macrostate. Therefore, the latter is thought as the “limit” of a sequence
of microstates of a growing sequence of systems. Now, we arrive at two problems: first how
to take the thermodynamic limit of a given system, and second, how to parametrize and
analyze the system afterwards.

In this thesis, we study analogs of these two problems for a sequence of random sys-
tems {ΓN }:

• How to define the thermodynamic limit of {ΓN }, such that

lim
N→∞

ΓN = G, (1.1.2)

• How to describe the limit G.

We analyze these two problems for a different model of statistical mechanics called the
dimer model. This model is describing the arrangement of two-atomic molecules in a two-
dimensional plane, and it is sufficiently rich to model physical phenomena such as phase
transitions, yet simple enough to study it mathematically rigorously. Let us discuss another
example of a model of statistical physics, the Ising model, as a warm-up before the main
discussion.

1.1.1 Ising crystal

Let us introduce a model of a two-dimensional crystal on the square grid, following the
exposition from [Oko15]. Assume that we deal with a finite region Γ ⊂ Z2 thought to be the
union of unit squares of Z2, or equivalently, Γ is a subset of Z2 bounded by a finite lattice
path. Then, the configuration of the model is a coloring of the faces of Γ by two colors, say
blue and white, see Figure 1.1.

Figure 1.1: Example of a configuration of the Ising model for Γ being a rectangle, taken
from [Oko15].

We think of a microstate of the model as an arrangement of white crystals inside the
overall blue system, and the energy of the microstate S is proportional to the length of the
interface L(S) between the blue and the white squares, E(S) ∝ L(S). Then, the probability
of observing the system in the state S is given by the Boltzmann distribution PΓ,

PΓ(S) = 1
Z
e−E(S)/kT . (1.1.3)

Where the normalization constant Z := ∑
S e

−E(S)/kT is called the partition function, and
the sum is taken over all the configurations S on Γ. The Ising model originally describes a
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Figure 1.2: The contour representation of the Ising model, contours are in the red color.

Figure 1.3: The energy minimizing configuration of the Ising model, the figure from [Oko15].

two-dimensional ferromagnetic material. In the first order approximation, the microstates of
such materials are given by the magnetic dipole moments of atoms at each lattice site. The
dipole moment in this model is oriented either upwards, or downwards. Thus, the microstate
of each lattice site takes two possible values, either +1 or −1 depending on the orientation.
We distinguish them by color, either white or blue. One could also describe the crystal
surface in the model by the interface between the two colors. Then, a configuration of the
Ising model can be seen as a configuration of lattice contours separating the two phases,
blue and white, of the model. Let us concentrate on the situation with the fixed number of
the white squares.

Looking at the formula (1.1.3), it is clear that the energy minimizer is the one that
minimizes the length of the interface between the white and the blue squares. Clearly, such
a state is not the one from Figure 1.1, but rather a square from Figure 1.3,

If the temperature T is low, the only configurations that we may observe are the low
energy configurations that have the low interface lengths L(S). Thus, let us look at the
corner of the crystal minimizing the energy as on Figure 1.3. While the number of white
squares allows formation of the perfect square, the minimizing configuration is the straight
angle near its corner. However, if one deletes one or several one white squares (i.e., replacing
them by the blue squares), the minimizing energy interface would take the configuration, for
example as on Figure 1.4. Call such a modification a defect. One can notice that the shape
of this interface separating the phases of the Ising model near the corner is given by an
arrangement of unit cubes. Moreover, since the interface is supposed to minimize the length
of the path separating two colors, the boxes should stick to each other. One can parametrize
the defect by the length of each row. A collection of such lengths is naturally ordered from
bottom to top and gives an example of a Young diagram corresponding to a partition of the
natural number that is the size of the defect. A Young diagram is an ordered partition of
integer N = ∑

k λk, λ = {λ1 ≥ · · ·λi}. For instance, on the Figure 1.4, the defect consists
of ten white squares replaced by the blue ones, and the partition is 10 = 5 + 3 + 1 + 1. The
integers are the row length starting the bottom row, let us denote the corresponding Young
diagram is λ := (5, 3, 1, 1). Since configurations are random, so is the interface and the
partition. Therefore, we can define a microstate of the Ising model with a defect as random
partition of a given natural number for each corner. Moreover, it is reasonable to expect
that a macrostate would be a continuous analog of this interface, a so-called limit shape for
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Figure 1.4: Energy minimizer of the Ising model with a defect

Figure 1.5: The limiting interface of the Ising model for various values of temperature, T = 0
corresponds to the square, figure is taken from [Oko15].

the Young diagrams corresponding to the partitions encoding the corners
This means that a typical Young diagram would tend to this shape as its size grows.

This phenomenon is well-studied in the literature [Shl07] and §140 in [LL58].
Thus, the question from statistical mechanics turns out to be related to combinatorics,

or more precisely to random Young diagrams. We are going to describe the thermodynamic
limit in this situation in this language.

1.2 Limit shape of Young diagrams.

Let us describe the random Young diagrams and their limit shape. The limit shape is the
most probable state of a large system such that nearby states are distributed according to
the law, whose maximum is at the limit shape, while probabilities to observe other states are
exponentially suppressed. Such law is often the Gaussian law. Let us give the first example
of the limit shape, which goes back to the works by A. Vershik and S. Kerov [VK77], and,
independently, by B. Logan and L. Shepp [LS77] on asymptotics for the Plancherel measure
on Young diagrams. The main ingredient of their proofs is a variational principle. Moreover,
the works[Ver96; DVZ00] generalize the works for the uniform measure on Young diagrams
of a large fixed size.

Young diagrams are central objects in combinatorics and representation theory. For
example, Young diagrams λ with N boxes encode conjugacy classes of the symmetric group
SN , and therefore complex irreducible representations of SN , the so-called Specht modules
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Figure 1.6: Example of Young diagram (5, 4, 1).

Sλ. Therefore, information about a large Young diagram would give us information about
representation theory of a large symmetric group. One can assign two natural probability
distributions on the set of Young diagrams. The first one is the uniform distribution, which
is related to the example from the previous section. The second natural choice is the
Plancherel measure, which is natural from the point of view of the representation theory.
The Plancherel measure assigns to a Young diagram λ the probability µ(λ) = dim2 λ

N ! , where
dimλ is the dimension of the Specht module Sλ. This is indeed a well-define probability
measure due to Burnside’s formula, ∑

λ⊢N

dimλ)2

N ! = 1 (1.2.1)

which follows from the Robinson–Schensted correspondence.
This dimension is usually expressed by the hook length formula discovered by Frame,

Robinsonx and Thrall [FRT54]. See also [GNW79] for a probabilistic interpretation of it.
Having the cell in position (i, j) of the i-th row and j-th column, the hook Dλ(i, j) is the set
of cells (a, b) such that a = i and b ≥ j or a ≥ i and b = j. The number of cells of Dλ(i, j)
is the hook length dλ(i, j). Then,

dimλ = N !∏
(i,j) dλ(i, j) . (1.2.2)

Here, the product is taken over squares of λ at position (i, j).

Figure 1.7: The Vershik-Kerov-Logan-Shepp limit shape, figure from [Ros23]. Here we use
the standard coordinates rotated by 45◦ degrees.

1.2.1 Variational principle and Vershik-Kerov-Logan-Shepp curve

The idea of this method is linking the discrete problem of finding of the typical large but
finite Young diagram with a continuous problem in the following sense. Fix a probability
distribution PN on Young diagrams with N boxes, which can be either the uniform measure,
or the Plancherel measure µN .

First, a Young diagram λ defines a piece-wise constant function hλ,

hλ(x) := {Number of boxes of λ above point x}. (1.2.3)
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Call such function the height function of λ. Then, consider a coordinate system (X,Y )
rotated by 45◦ degrees as on Figure 1.7, this notation called the Russian notation. In such
notation, the height function of a Young diagram is a piecewise linear function of slope ±1.
Therefore, it is reasonable to expect that in the limit of as N → ∞ the normalized height
function will approximate a continuous 1-Lipschitz function.

Let us use normalized coordinate xN = X/
√
N and yN = Y/

√
N and normalized version

of the height function hN
λ := hλ/

√
N . We want to find a such a functional Ent : h 7→ Ent(h)

that its value Ent(h) equals to the asymptotic weight of Young diagrams λ(N) with N boxes
whose normalized height functions hN

λ(N) are close to h with respect to the uniform norm.

Ent(f) = lim
N→∞

N−1 logPN

(
λ(N) :

∥∥∥hN
λ(N) − h

∥∥∥
∞

≤ O(N−1/2)
)
. (1.2.4)

After it, once Ent has a unique minimizerzer h⋆, then for sufficiently large N the height
function of a random Young diagram hN

λ(N) will be close to h⋆ with overwhelming probability.
Or in other terms, the probability of observing a Young diagram whose normalized height
function is far away from h⋆ will tend to zero as N → ∞. We call such function h⋆ the limit
shape of Young diagrams with respect to measure PN .

One can prove such a statement in the following order.
• Find such functional space H that any h ∈ H can be realized as limN→∞ hN

λ(N)(x) =
h(x) for a suitable family of Young diagrams λ(N) and vice versa, each normalized
height function hN

λ can be approximated by a function from H, that is there exists
h ∈ H such that

∥∥∥hN
λ − h

∥∥∥
∞

≤ N−1/2.

• Compute the asymptotic growth rate Ent(h) of the weight of Young diagrams whose
height functions are close to h, and prove that it has a unique minimizer h⋆ ∈ H

• Prove the concentration of measure, that is, the law of large numbers for Young
diagrams for every c > 0 and sufficiently large N , PN (hN

λ(N)(x) − hN
λ (x) > c) < e−cN ,

where hN
λ(N)(x) is the expectation value of hN

λ(N) at x.
The first two steps allows us to find a unique candidate for the limit shape h⋆, and the

third step helps us to prove that it is, indeed, the limit shape.
Let us describe the case of the Plancherel measure from [VK77; LS77] in more detail

following the book [Ker03]. Looking at formula (1.2.1), it is more convenient to use the
following expression for the Plancherel measure µN of diagrams with N boxes,

µN (λ) = N !∏
i,j d

2
i,j

. (1.2.5)

This formula tells us that if we want to maximize the value of the Plancherel measure,
we need to minimize the hook length. It turns out that in the limit as N → ∞, one needs
to minimize the hook integral that takes the following form[Ker03, Eq.3.1.6] for an L ∈ H,

Θ(L) := 1 + 2
∫∫

log 2(s− t)(1 − L′(s))(1 + L′(t))dsdt (1.2.6)

And it has the unique minimizer

Ω(X) = 2
π

(X sinX +
√

1 −X2) (1.2.7)

for |X| < 1, and Ω(X) = |X| for |X| > 1. This Ω is the Vershik-Kerov-Logan-Shepp limit
shape.

The correspondence between low temperature limit of the Ising model and a typical
Young diagram in two dimensions extends to the three-dimensional situation, which we
discuss in the next subsection.
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1.2.2 Limit shapes of 3d Young diagrams

In our setting, the Ising model in three dimensions is a coloring by two colors of the unit
boxes of Z3 a finite region Γ ⊂ R3. A generalization of a Young diagram is so-called plane
partition.

It is a filling of a Young diagram λ by positive integers πi,j such that

πi,j ≥ πi,j+1

πi,j ≥ πi+1,j

for all boxes of λ in position (i, j), see Figure 1.8. We think of such plane partition as
a two-dimensional stepped surface formed by an arrangement of unit boxes inside the
three-dimensional space. And the number of boxes, the height, at position (i, j) of λ
equals to πi,j . Therefore, we may think that this surface is a graph of a piece-wise constant
function that assigns the height πi,j to each square of λ. Such function is called the height
function corresponding to the plane partition πi,j . See example of a plane partition, and the
corresponding discrete surface on Figure 1.8.

Figure 1.8: Two realizations of a plane partition.

Then, a natural question is what is a typical 3-dimensional Young diagram? First, we
need to understand what does ”typical” mean in this situation, that is we need to have
a probability measure on plane partitions. A common way of doing it is so-called qVolume

measure, which for a |q| < 1 assigns to a plane partition πi,j the weight qnumber of boxes in πi,j .
For this measure, limit shape was found in the limit as q → 1 in [CK01], where the authors
studied low-temperature asymptotics of the interface of the three-dimensional Ising model
and identified it with the limit shape of plane partitions with qVolume measure, the parameter
q here is related with the temperature. The limit shape here is given by the Ronkin function
R(X,Y ), which recall later in the Chapter. The main technique of the paper is the so-called
Wulff crystal construction, which describes the limit shape as an envelope of its tangent
planes. We describe this approach in Chapter 4 in more detail.

Another interpretation of a plane partition is through the lozenge tilings. One may look
at a projection of a three-dimensional Young diagram onto the plane x+ y+ z = 0 in (1, 1, 1)
direction, as on the Figure 1.8. Each plane partition corresponds to a tiling by three types
of lozenges of a hexagon. Under this projection, different faces of the boxes are mapped into
different lozenges. Since there are three types of faces of a box, parallel to planes x+ y = 0,
x+ z = 0 and y+ z = 0, we obtain three types of lozenges. The topic of random tilings, and
lozenge tilings in particular, is a popular subject of combinatorics. One of the most famous
result about it in the paper [JPS98], where the authors discovered that uniformly-random
lozenge tiling of a hexagon with sides aN × bN × cN is asymptotically fixed outside the
ellipse inscribed into the hexagon. Such an ellipse is called the arctic curve meaning that
informally, lozenges inside the ellipse are random, while outside the ellipse they are fixed
or somehow frozen. One then calls the region outside the ellipse the frozen region, while
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Figure 1.9: The Wulff crystal around which plane partitions concentrate at large scales.

Figure 1.10: A lozenge tiling of a hexagon of side length N = 20.

the inner region inside ellipse the liquid region. The distinction between the frozen and the
liquid regions is also in the behavior of fluctuations, they tend to disappear inside the frozen
region, while inside the liquid region they tend to be Gaussian in the limit as N → ∞.

Another famous result concerning the lozenge tilings of the hexagon is the McMahon
formula of the number of lozenge tilings of the hexagon

Z(A,B,C) =
A∏

i=1

B∏
j=1

C∏
k=1

i+ j + k − 1
i+ j + k − 2 . (1.2.8)

The number of lozenge tilings of an arbitrary domain Γ is given by a determinant of a
certain matrix, the so-called Kasteleyn operator, a suitably signed adjacency matrix of Γ,
which we discuss in Section 1.4.

The interpretation of a plane partition by lozenges allows giving a local definition of the
height function for other domains as well as for the hexagon A×B × C,

1.2.3 The height function

Suppose that a planar region Γ on the hexagonal lattice can be tiled by lozenges, i.e., covered
by them without gaps or overlaps.

Then, the function H on faces of Γ is the height function of a lozenge tiling D if

• H(p0) = 0 for a fixed p0 ∈ ∂Γ.

• H(u) = H(v) + 1 if the edge (u, v) does not cross a lozenge.
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Figure 1.11: Example of lozenge tiling with the corresponding height function and represen-
tation by the dimer model.

• H(u) = H(v) − 2 if the edge (u, v) crosses a lozenge..

For a simply-connected Γ, the height function is a well-defined map. In fact, the famous
Thurston tileability [Thu90] theorem states that a simply-connected domain of the hexagonal
lattice Γ is tileable if and only if it admits a well-defined height function.

However, the most famous example of a limit shape goes to [JPS98] and the arctic circle
theorem for random domino tiling of the typical random domino tiling of a large Aztec
diamond. These examples are quite similar, and we mostly discuss domino tilings. Let us
give a glance on this model with necessary details.

1.3 Domino tilings

Counting the number of domino tilings of a region such as the chess board is a classical
problem in combinatorics. However, how does a typical domino tiling of a given region look
like? It turns out that for a large region both the question, and the answer are way deeper
than it seems at first glance. Indeed, random domino tilings, or, more generally, dimer
configurations provide examples of sharp phase transitions and random surfaces sufficiently
rich to be non-trivial, while simple enough to be accessible from the mathematical level of
rigor. The mathematical formulation of the problem can be done as follows.

Let Γ be a finite, connected region on the square grid Γ ⊂ Z2 viewed as a subset of R2

with the set of vertices V (Γ) and a fixed chessboard coloring. We assume that Γ can be
seen as a discretization of a planar domain Ω. Suppose also that it can be tiled by dominoes
(i.e. by 2 × 1 rectangles), and let Z(Γ) be the number of such domino tilings D of Γ. See
example on Figure 1.12.

Figure 1.12: The same domino tiling of Aztec diamond AD4 with two graphical representa-
tions. There are four types of dominoes with respect to chess board coloring on the left,
and their color representation on the right.

Let PΓ be the uniform measure on the set of domino tilings of Γ. Then, one might be
interested in what is the probability of observing a particular type of domino at a given
location of Γ. This type of questions became very popular after the Arctic Circle Theorem
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[JPS98], where the authors analyzed a typical domino tiling of a growing sequence of lattice
domains, so-called Aztec diamonds ADN , see Figure 1.12. It was shown that for large N , a
uniformly random domino tiling of ADN forms two kinds of regions separated by the circle
inscribed to the normalized domain, the unit square rotated by 45◦. Statistics of dominoes
in the inner region remains random in the limit as N → ∞, all four types of dominoes
w.r.t. their orientation have a positive density. However, regions outside the unit circle, the
so-called frozen regions, exhibit a deterministic statistics, each region is covered by a fixed
type of domino, see Figure 1.14.

The behavior of domino tilings inside the unit circle is governed by the Gaussian free
field, whereas the interface between the frozen and liquid region has a scaling limit described
by the Airy point process and is in the KPZ universality class, [BF08; Joh05]. This behavior
is known in the literature as the Arctic boundary or Arctic curve.

Soon after, H.Cohn, R.Kenyon and J.Propp proved that this limit shape phenomenon
holds for a generic simply-connected domain in [CKP00]. Let us give a glance on their main
theorem with the necessary details.

Figure 1.13: Values of the height function of a domino tiling D of a rectangle 2 × 3.

Let Γ be a simply-connected region and 0 ∈ Γ, a standard algorithm encodes a domino
tiling D of Γ by a height function, HΓ

D : V (Γ) → Z, defined on vertices of Γ by the following
combinatorial rule, see example on Figure 1.13.

Definition 1.3.1.

1. Set the value of HΓ
D(p0) := 0 for all D and a fixed point p0 ∈ ∂Γ.

2. If the edge v := (p1, p2) has a black square on its left, then HD(p2) equals HD(p1) + 1
if v does not cross a domino in D and HD(p1) − 3 otherwise.

It is worth mentioning that boundary values for HΓ
D are fixed by Γ.

Figure 1.14: Simulation of a uniformly random domino tiling of large Aztec diamond.

The authors of [CKP00] consider a sequence of normalized tilable domains ΓN with
mesh 1

N that approximates a continuous simply-connected domain Ω such that discrete
boundary conditions for HΓ

D converge to a continuous one b. Then, the random normalized
height function 1

NH
ΓN
D converges in probability to a non-random continuous function h⋆, the
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limit shape. Moreover, h⋆ minimizes over the space of Lipschitz functions with prescribed
boundary conditions the entropy functional F : h 7→ −

∫
Ω σZ2( ∂h

∂x ,
∂h
∂y )dxdy for an explicit

convex function σZ2 . Further, the normalized logarithm of the number of domino tilings of
ΓN has the following asymptotics,

lim
N→∞

N−2 logZ(ΓN ) = −
∫

Ω
σZ2

(
∂h⋆

∂x
,
∂h⋆

∂y

)
dxdy. (1.3.1)

Moreover, ∀ϵ > 0 ∃c(ϵ) such that for sufficiently large N

PN

(
|N−1HΓN

D − h⋆|∞ > ϵ
)

≤ exp
(
−c(ϵ)N2

)
(1.3.2)

This statement is known in the literature as a variational principle for domino tilings.
The domino tiling and the lozenge tilings are particular cases of a more general model

called the dimer model. Let us define it.

1.4 Periodic dimer model
We shall start with a Z2-periodic bipartite lattice Λ, it means two properties: first: Λ is a
bipartite graph, that is the vertices of Λ are either black B(Λ) or white W(Λ) such that only
vertices of different colors are connected by edges. Second, translations of Z2 map black
vertices to black, and white vertices to white. Or simply they preserve the color or bipartite
structure of Λ. Then, we can define a fundamental cell (fundamental domain) of the lattice
by Λ0 := Λ/Z2, see example on Figure 1.16. We mostly interested in dimer covers of a finite
connected subset of Λ, usually denoted by Γ and called a lattice region.

Then, a dimer configuration (cover) D of Γ is a subset of its edges such that every vertex
of Γ is adjacent to an edge from D. One assigns a Z2-periodic weight to D, call it ν(D).
We focus on the edge weight systems, i.e., abusing notation, define

ν(D) =
∏
e∈D

ν(e) (1.4.1)

where the product goes over all edges contained in D. More precisely, we fix a positive
function ν on edges of Λ0 and extend it to Λ by periodicity. Then, for a D ∈ Conf(Γ) define
its probability by the following formula,

P(D) := ν(D)
Z(Γ) (1.4.2)

where Z(Γ) is a normalization constant called the partition function:

Z(Γ) =
∑

D∈Conf(Γ)
ν(D). (1.4.3)

The height function of a dimer configuration D on Γ is defined by first choosing a
reference dimer cover D0, which we keep fixed. Then, a simple combinatorial argument
shows that the union of D and D0 is a collection of double edges and cycles Ci, which can
be oriented so that dimers from D are oriented from black vertices to white, whereas dimers
from D0 in the opposite direction. Then, the height function HD,D0 is a level function of
these cycles. Then, a probability measure P on dimer configurations on the whole lattice
Λ. Call it a Gibbs measure, for any finite subgraph Γ conditioned on edges that lie outside
Γ, the restriction of P on the dimer configuration inside is given by the weight ν. Further,
call it an ergodic Gibbs measure if it is invariant and ergodic under the action of Z2 by
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translations. Define for an ergodic Gibbs measure P its slope (s, t) to be the expected value
of horizontal and vertical height, s := E(H(v+ (1, 0)) −H(v), t := (E(H(v+ (0, 1)) −H(v)).

Then, the question is how to evaluate the partition function Z(Γ) for a given example,
and the answer for the square grid was found by Kasteleyn in [Kas61].

The partition function of a finite subregion of the square grid can be computed as a
determinant of a matrix, the so-called Kasteleyn operator K. This operator is the matrix
whose matrix elements labeled by the white and black vertices, i.e., assign a vector space
C to each vertex, then the Kasteleyn operator K : CB(Γ) → CW(Γ). Its matrix elements
K(w, b) = δ(wb)ν(wb), where wb is the edge between w and b, and the sign δ(wb) = ±1 is
called the Kasteleyn sign. It satisfies the following conditions:

• Each face f with 0 mod 4 edges has the odd number of δ = −1 signs.

• Each face f ′ with 2 mod 4 edges has even number of δ = −1 signs.

By the Kasteleyn’s theorem [Kas61], such a δ always exists for a planar graph Γ.

Theorem 1.4.1 ([Kas61]). For any planar graph Γ, there exist Kasteleyn signs.
Moreover, Z(Γ) = det K(Γ).

This trick can be done in more general context, and these signs have a deep topological
meaning in terms of so-called Kasteleyn’s orientation or discrete spin structures, see discussion
in [CR08].

1.4.1 The Newton polygon

Let us now describe the computation of the Kasteleyn operator K for the square grid Z2. Let
us pick the following fundamental domain, and attach extra weights to the edges, so-called
magnetic altered signs z, w. To an edge e we assign the weight depending on the intersection
with the fundamental cycles of the torus, call them Ay, Bx for the horizontal and vertical
cycles. That is, We assign the weight z⟨e,Ay⟩w⟨e,Bx⟩, see Figure 1.16.

The local rule for the height function in this situation becomes as on Figure 1.15.

Figure 1.15: The local rule for height function defined on the dual graph. The edge occupied
by a dimer is in black.

Now it becomes an operator C⊗Z2 → C⊗Z2 from the tensor product of vector spaces
attached to the white vertices to the tensor product corresponding to the black ones. Thus,
a vector f ∈ C⊗Z can be considered as a function on the white vertices, whose value at a
white vertex v equals to the coefficient of f ev in basis labeled by the white vertices. Now,
Z2 periodicity of the lattice implies that K takes a block-diagonal form in the basis of Z2

quasiperiodic functions,i.e., f(b+ (x, y)) = f(b)zyw−x . This block is called the Kasteleyn
operator K(z, w).

For example, for the square grid, we can take the fundamental domain represented on
Figure 1.16, the corresponding Kasteleyn operator is given by

K(z, w) = 1 + z + w − zw. (1.4.4)
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Figure 1.16: Weights of the fundamental domain of the square grid with Ay and Bx cycles.
The reference dimer cover is in dashed color.

Figure 1.17: Correspondence between heights and monomials in z, w.

The determinant of the Kasteleyn operator is called the characteristic polynomial
P (z, w) := det K(z, w). For the square grid in our conventions, it becomes P (z, w) =
1 + z + w − zw, where the minus agrees with the Kasteleyn theorem (we have only one face
with four edges around it). Also note that P (z, w) may have negative powers, i.e., it is a
Laurent polynomial.

Once we have P (z, w) we define the Newton polygon of it,

N := Conv{(i, j) : ziwj is monomial in P (z, w)}. (1.4.5)

The Newton polygon is the set of allowed slopes for the height function by Theorem 3.2
[KOS06], for example for the square grid our conventions give the square with vertices
(0, 0), (1, 0), (0, 1) and (1, 1). We follow these conventions in Chapter 4. However, in Chapter 2
we use a different normalization of height function. It differs by rotation of the Newton
polygon by 45 degrees, thus it has vertices (±1, 0) and (0,±1), and a multiplication by 2.
In terms of P (z, w) and the Newton polygon, we can analyze the asymptotic behavior of
the model.

1.4.2 Asymptotics on torus, the Ronkin function

Suppose (s, t) ∈ R2, and let Confs,t(ΛN ) be the set of dimer configurations on torus with the
slope (⌊sN⌋, ⌊Nt⌋). Assuming that it is nonempty, we have a classification of the ergodic
Gibbs measures on Conf(ΛN ),[KOS06, Section 2 and Section 3, Theorem 3.2].

Theorem 1.4.2. For any (s, t) ∈ NΛ, there exists a unique Ergodic Gibbs measure µ(s, t)
of slope (s, t), which is a limit of discrete measures µN (s, t) of slopes ( ⌊sN⌋

N , ⌊Nt⌋
N ). Moreover,

µN (s, t) exists for sufficiently large N and every ergodic Gibbs measure of slope (s, t) is
µ(s, t)
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Figure 1.18: Plot of Amoeba for Z2 and our choice of P (z, w). Quadrants correspond to the
frozen regions.

The next question is can we compute the partition function of dimer configurations with
a given slope on torus with N ×N fundamental domains? Call this quantity the surface
tension σ,

σΛ(s, t) = − lim
N→∞

N−2 logZΛ
N (⌊sN⌋

N
,
⌊tN⌋
N

). (1.4.6)

The computation of σΛ requires several steps, and the first one is the following partition
function.

The partition function of a larger domain, for example the torus made of N × N
fundamental domains, factorizes in P (z, w) and can be computed recursively,

KN (z, w) =
∏

zN
0 =z

∏
wN

0 =w

P (z0, w0) (1.4.7)

This formula follows from Fourier transform argument.
This factorization allows us to write the following asymptotics of the partition function

by Theorem 3.5 [KOS06],

− 1
N2 logZN = 1

(2πi)2

∫
T2

log |P (z, w)|dzdw
zw

+ o(1). (1.4.8)

We can look at the modified partition function, where we alter the weights z and w in
the characteristic polynomial P (z, w) by eX and eY , the resulting asymptotic function is
called the Ronkin function R(X,Y ),

R(X,Y ) := 1
(2πi)2

∫
T2

log |P (eXz, eY w)|dzdw
zw

. (1.4.9)

The curve {P (z, w) = 0} in C2 is called the spectral curve C(P ), and a closely related object
to it is the image of the spectral curve under the map (z, w) 7→ (log |z|, log |w|), the so-called
amoeba A(P ). In our example of the square grid, the spectral curve admits a rational
parametrization λ 7→ (λ, λ+1

λ−1). Therefore, in this case, it has genus 0 thus it is the Riemann
sphere. Moreover, it has an obvious involution of complex conjugation, (z, w) 7→ (z̄, w̄),
which allows us looking at the upper part isomorphic to the upper-half plane C+ ≃ H and
its image under conjugation isomorphic to the lower-half plane C− ≃ H. The real points
of the curve are fixed under the involution. The Ronkin function is strictly convex in the
interior of amoeba.

It turns out that R is a limit shape for a particular boundary condition, see [KO05,
Theorem 5]. For example, for the hexagon lattice with P (z, w) = 1 + w + z we have the
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limit shape from Figure 1.9. Moreover, the unbounded components of amoeba are frozen
regions, thus, they correspond to particular vertices of NΛ and the corresponding edges.

The Ronkin function R is related to the surface tension σ, which turns out to be the
Legendre transform of R,

σ(s, t) = max
(X,Y )∈A

(sX + tY − R(X,Y )) . (1.4.10)

The surface tension is defined on the Newton polygon N , and it is strictly convex in
the interior of it. However, the exact formulas for σ are relatively complicated, let us give
two main examples for the hexagonal lattice and the square grid. First, recall (s, t) =
∇h. Introduce the Lobachevsky function L(z) = −

∫ z
0 log |2 sin t|dt and quantities pa =

pa(s, t), pb = pb(s, t), pc = pc(s, t), pd = pd(s, t) that are determined by system expression
(1.4.12). Then, the surface tension is the following function,

σ(s, t) = − 1
π

(L(πpa) + L(πpb) + L(πpc) + L(πpd)) . (1.4.11)

Here, pa, pb, pc and pd are asymptotic probabilities of four types of dominoes on torus
that are determined by the following system [CKP00],

2(pa − pb) = t,

2(pd − pc) = s,

pa + pb + pc + pd = 1
sin(πpa) sin(πpb) = sin(πpc) sin(πpd).

(1.4.12)

Analogously for the hexagonal lattice, we have

−σHex(s, t) = 1
π

(L(πpa) + L(πpb) + L(πpc)) , (1.4.13)

where pa, pb, pc are asymptotic probabilities of the three types of lozenges on torus, and
satisfy the system

pa + pb + pc = 1,
pa = s,

pb = t.

(1.4.14)

1.5 The presentation of results

1.5.1 A variational principle for multiply-connected domains

In the Chapter 2, we are interested in asymptotic behavior of domino tilings of a multiply-
connected domain. The result of [CKP00] does not apply to discretization ΓN of a multiply-
connected domain Ω, see Figure 1.20. The first reason is that HΓN

D might be a multivalued
function. More precisely, when one tries defining it by Definition 2, HΓN

D may get a non-zero
increment (monodromy) after going around a hole in ΓN , see Figure 1.19. Moreover, the
boundary values for the height function are no longer fixed, and, in fact, may depend on
D. More precisely, it means that boundary height functions BD1 and BD2 may differ by a
multiple of four on a connected boundary component. Thus, boundary conditions a priori
do not converge to a continuous function b. Therefore, the variational problem may be
ill-defined.

In the work [Kuc21] we study random domino tilings of a multiply-connected domain.
It is known height function HD is well-defined only as a function on universal cover of
a region, see discussion of height functions on torus in [KOS06], and on more general



26 Chapter 1. Introduction

Figure 1.19: Domino tiling D of the ring with multivalued height function (the square in
the center is not a part of Γ)

surfaces in [CR08]. We work with the height function HΓ
D defined this way, as functions

HD : Γ̃ 7→ Z defined on the universal cover of Γ. Our result shows that as ΓN with mesh 1/N
approximates Ω, these functions still converge after appropriate scaling to a deterministic
limit h⋆ : Ω̃ 7→ R, which is defined on a universal cover of Ω. The limiting function h⋆

turns out to be the solution of a variational problem in the spirit of the work by H.Cohn,
R.Kenyon and J.Propp, but again, this variational problem gets two extra twists due to the
following facts:

• the space Ω̃ is not compact; the space of optimization of the variational problem is
not compact;

• the boundary condition of h⋆ is the solution of the variational problem for functional
F .

Our theorem is the following, recall the surface tension functional FZ2(h) =
∫

Ω σ(∂h
∂x ,

∂h
∂y )dxdy,

Theorem 1.5.1 ([Kuc21]). Suppose ΓN is a sequence of lattice region that approximates a
multiply-connected domain Ω. Then,

lim
N→∞

N−2 logZ(ΓN ) = −FZ2(h⋆) (1.5.1)

and 1
NH

ΓN → h⋆ in probability in ∞-norm topology as N → ∞.

Figure 1.20: Simulation of random domino tilings of multiply-connected versions of the
Aztec diamond, Aztec diamond ADN with removed Aztec diamond ADN/4 at the center;
monodromy-free version on the left and with monodromy N/2 on the right.

One extra corollary of Theorem 1.5.1 is an extension of the arctic circle theorem for
multiply-connected domains. In a recent work [ADPZ20] the authors studied a similar
variational problem to the one we have, but without connection to dominoes. They were
able to prove several geometrical properties of h⋆ such as the Arctic boundary phenomenon
for polygonal domains with sides parallel to sides of NG, a generalization of arctic circle
theorem for other domains. The proof works for multiply-connected regions as well upon
the assumption of a variational principle there. Therefore, we have the following corollary

Corollary 1.5.1.1. The arctic curve is a piecewise algebraic curve with a connected compo-
nent for each connected boundary component of a polygonal domain Ω.
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1.5.2 A variational principle for the dimer model

In Chapter 3, we generalize Theorem 1.5.1 for other lattices. For example, for the hexagonal
lattice as on Figure 1.21.

Figure 1.21: Lozenge tilings model and bijection with the dimer model.

Since there is a variational principle for the lozenge tilings of simply-connected domains,
also applies to lozenge tilings [CKP00; Ken09]. Therefore, it is reasonable to expect the
variational principle for lozenge tilings in multiply-connected domains as well:

Theorem 1.5.2. Suppose ΓN is a sequence of lattice regions on the honeycomb lattice that
approximates a multiply-connected domain Ω. Then,

lim
N→∞

N−2 logZ(ΓN ) = −FHex(h⋆) (1.5.2)

and 1
NH

ΓN → h⋆ in probability in ∞-norm topology as N → ∞, where

FHex(h) =
∫

Ω
σHex

(
∂h

∂x
,
∂h

∂y

)
dxdy

and h⋆ is the minimizer of FHex among the space of Lipschitz functions on Ω with
prescribed boundary conditions.

A variational principle for domino (lozenge) tilings can be viewed as a particular case of
a variational principle for the generic dimer model.

We use an example of a periodic planar dimer model with an arbitrary fundamental
domain and arbitrary periodic weights. Past results for arbitrarily planar domains were
done for domino tilings (the fundamental domain correspondent to lattice Z2 in the dimer
model) and weights equal to one [CKP00].

In the work [Kuc17], we prove a generalization of the variational principle from [CKP00]
for a generic bipartite periodic lattice Λ instead of Z2 for a simply-connected region Ω. Here,
we prove its generalization for a multiply-connected region Ω.

Theorem 1.5.3. Suppose ΓN ∈ 1
N Λ is a sequence of lattice regions, that approximates a

multiply-connected domain with piecewise smooth boundary Ω. Then,

lim
N→∞

N−2 logZ(ΓN ) = −FΛ(h⋆), (1.5.3)

where h⋆ minimizes FΛ among Lipschitz functions on Ω̃ with prescribed boundary conditions,
and constraint ∇h(x, y) ∈ NΛ almost everywhere for the Newton polygon NΛ.

Moreover, 1
NH

ΓN → h⋆ in probability in ∞-norm topology as N → ∞.

This theorem is also applicable to so-called dimer model, particular bipartite lattice
with fundamental domain shown on Figure 1.22. Dimer configurations on this lattice are in
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Figure 1.22: Fundamental domain of for dimer city lattice on the left, and approximation
ΩN of region Ω by the dimer city lattice on the right.

bijection with configurations of the six-vertex model at free-fermionic point ∆ = 0 [MW73;
RS17].

Despite the success and generality of a variational approach, little is known on robust
computational methods that determine the arctic curve. One of such methods, developed
in [KO05] for a particular case of the honeycomb lattice, involves real algebraic geometry,
and reduces the hard analytical problem to a reasonably simple combinatorial task in
the so-called tropical limit of the problem. Other methods rely on particular integrable
properties, such as a parametrization of domino tilings by family of Young diagrams as in
[OR01; Pet12; BK16]. However, extensions of these methods to multiply-connected domains,
such as the Aztec diamond with a hole on the right of Figure 1.20, are not known as far as
we are aware.

Figure 1.23: Random domino tiling of multiply-connected Aztec diamond with the maximal
height change

This domain is defined as the Aztec diamond of size N with a removed Aztec diamond of
size N/4 in the center supposing that N/4 ∈ Z. First on all, one can add two defects on the
inner and outer connected boundary components so that height function gets monodromy
after a turn around the center. Therefore, we deal with a one-parameter family of domains
parametrized by monodromy of the height function, or in other words the size of the defects.
These modifications create a random path visible on the left of Figure 1.20. Further, random
boundary conditions result in emergence of a new parameter of domino tilings, height change,
which is equal to the difference between values of the height function between points of
the inner boundary, and the outer boundary. While, Theorem 1.5.1 guarantees a law of
large numbers for the height change RN , our computer simulations show that the resulting
arctic curve depends on RN as on a modular parameter, see Figure 1.23 in comparison
with the right fig. on Figure 1.20. Furthermore, there are two different regimes, for the
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maximal (resp.minimal) height change the arctic curve consists of two independent circles
as on Figure 1.23, while for a typical value of RN the curve forms an inner curve, and an
outer one as on Figure 1.20

1.5.3 The tangent plane method

The Chapter 4 is devoted to a new method of computation of arctic curves, the tangent
plane method [KP22; KP24].

The method is based on results on generic analytic properties of the limit shape h⋆

in [ADPZ20]. In the work [KP22], R. Kenyon and I. Prause propose the tangent plane
method.

Since the surface tension σ is strictly convex in the interior of the Newton polygon N ,
(which, we recall, is the set of allowed slopes (s, t) := ∇h) by [KOS06, Corollary 3.7]. Thus,
it defines a non-degenerate metric g on N , let s, t be coordinates on N .

g := σs,sds
2 + 2σs,tdsdt+ σt,tdt

2. (1.5.4)
After passing to conformal (isothermal) coordinates u := U(s, t) + iV (s, t), the metric

writes as g = eΦ(dU2 + dV 2) for a function Φ = Φ(s, t). Such coordinate is determined by
the Beltrami equation [Spi79], we give a proof of it in Appendix 4.3.3. Moreover, Beltrami
equation for lozenge tilings is equivalent to the complex Burger’s equation studied in [KO05]
and differential du determines a complex structure on L, also known as the intrinsic complex
structure.

In [KP22], the authors introduce a function c(u) := h(u) − s(u)x(u) − t(u)y(u) called
the intercept on the liquid region L.

This function allows us to parametrize the planes tangent to the graph of the limit shape
in R3 over a given point (x0, y0) ∈ Ω,

Px0,y0 = {(x, y, z) ∈ R3|{s(x0, y0)x+ t(x0, y0)y + c(x0, y0) = z}. (1.5.5)
Then, if we know three functions s, t and c, we can recover the limit shape as the envelope
of its tangent planes. The key observation of the paper is that there is a particular choice of
a coordinate u on L such that s, t and c are harmonic functions of u by Theorem 3.1 [KP22].
Further, they have a piecewise constant boundary conditions, which makes it possible to
perform explicit harmonic extension to the bulk. The arctic curve is determined from the
following complex equation in u (see (20) in [KP22]),

sux+ tuy + cu = 0. (1.5.6)
This equation can be viewed as a system of two equations, for the real part, and the
imaginary one. In particular, we know the limit shape through its slopes s(x, y), t(x, y).
The arctic curve can be found as the boundary of a domain of definition of u. Functions
s(u), t(u) does not depend on the boundary conditions, and are determined by σ and N
only. Thus, the limit shape is parametrized by a harmonic function c.

In Chapter 4, we compute the limit shape for the Aztec diamond with a hole from
Figure 1.20.

The of the key ingredients of this problem are elliptic functions. Both s(u), t(u) and
c(u) viewed as functions on Ω̃ are periodic with respect to shifts, and expressed in terms of
Weierstrass σ functions. Those expressions allow expressing the limit shape h⋆(u) in the
intrinsic coordinate u as h⋆ = x(u)s(u) + y(u)t(u) + c(u), where x(u) and y(u) are found
from the system (4.2.8). (1.5.5)

However, the program is not totally complete: our harmonic extension have several
parameters that need to be fixed by the geometry of the problem. We discuss the condition
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Figure 1.24: Limit shape for unconstrained case.

that one can probably use is to do it in Chapter 4. We also found a one parameter family
of the limit shapes for the Aztec diamond with a hole with the parameter r, which is
responsible for the relative height between two connected boundary components, i.e., the
height of the hole.

We also computed the frozen curve with different size of the torus, i.e., dependence on
the elliptic parameter τ in Figure 4.22, which were taken to be τ = i in the figures above.



1.5. The presentation of results 31

(2,0)(-2,0)

(0,2)
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r=-0.5

r=0
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Figure 1.25: One parameter family of limit shapes indexed by r.
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Chapter 2

A variational principle for domino tilings of
multiply-connected domains

Abstract

We study uniformly random domino tilings of a multiply-connected domain with
a multivalued height function according to the usual definition. We consider it as a
function on the universal covering space of the domain that makes it a well-defined
function. It allows us to prove that as the domain grows, normalized height functions
converge in probability to a deterministic continuous function in two regimes. The first
regime covers all domino tilings of the domain, for which we also prove a convergence in
probability of the height change. In the second regime, we consider domino tilings with
a given height change RN that converges to a fixed asymptotic height change r.

2.1 Introduction
Counting the number of domino tilings of a region such as the chess board is a classical
problem in combinatorics. However, how does a typical domino tiling of a given region
look like? The first attempt answering this question for a simply-connected region is given
by the variational principle in [CKP00]. The authors encode a domino tiling D by the
height function HD, and show that, after appropriate scaling, the height function of a
typical domino tiling is close to a solution of the variational problem. However, for a
multiply-connected region this description typically fails, and HD is a multivalued function.
The goal of this paper is to define the height function on a multiply-connected domain, and
extend the variational principle for domino tilings of a multiply-connected domain.

Figure 2.1: The same domino tiling of Aztec diamond AD4 with two graphical representations
and four types of dominoes w.r.t. their orientation.

Historically, one of the first such theorems regarding the law of large numbers for ge-
ometrical objects coming from combinatorics is the famous Vershik–Kerov–Logan–Shepp
limit shape for the Young diagrams [VK77; LS77]. After that, there began a widespread
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development in the area starting with the Arctic Circle Theorem in [JPS98]. The authors
analyzed typical domino tilings of a growing sequence of lattice domains, so-called Aztec
diamonds ADN (see Figure 2.1). It was shown that for large N , a uniformly random domino
tiling of ADN forms two kinds of regions separated by the circle inscribed to the normalized
domain, the unit square rotated by 45◦. Statistics of dominoes in the inner region remains
non-trivial in the limit as N → ∞, all four types of dominoes w.r.t. their orientation have a
positive density. However, regions outside the circle exhibit a deterministic statistics, each
of them is tiled by a fixed type of domino.

Soon after, H.Cohn, R.Kenyon and J.Propp proved that this phenomenon holds for a
generic simply-connected domain in [CKP00]. Let us give a glance on their main theorem
with necessary details.

Let Γ ⊂ Z2 be a finite, connected region with a fixed chessboard coloring, and viewed as
a subset of R2 consisting of unit squares of Z2 with set of vertices V (Γ). A domino tiling of
Γ is a covering of it without gaps or overlaps with dominoes (i.e., 1 × 2 or 2 × 1 rectangles)
We call a region Γ tileable if it admits a domino tiling. Equip the set of domino tilings of Γ
with the uniform measure PΓ. Then, define the boundary of Γ, ∂Γ := {p ∈ Γ|p ∼ Z2 \ Γ},
where ∼ means graph adjacency on Z2.

The main technical tool used in [CKP00] is an encoding of a domino tiling D by a height
function, HD : V (Γ) → Z called the height function. Its value is fixed at a reference vertex
p0 by HD(p0) = 0, and the value H(p) is given by the integral of a natural flow associated
to the domino tiling D via The Local rule , for details see Definition 2. Moreover, it turns
out that in a simply-connected region, a height function HD is fixed on the boundary ∂Γ
and does not depend on a domino tiling.

Then, the authors of [CKP00] consider a sequence of lattice domains ΓN ⊂ 1
N Z2 that

approximates a connected, simply-connected compact set Ω ⊂ R2. Furthermore, it is
assumed that the boundary condition BN := HD

∣∣
∂ΓN

after normalization by N−1 converges
to a deterministic continuous Lipschitz function b : ∂Ω → R.

Now, let h⋆ be the unique minimizer over space of Lipschitz functions with boundary
condition b of the surface tension functional F : h 7→

∫∫
Ω σZ2(∂xh, ∂yh)dxdy, which we post-

pone defining until Section 2.5.3. The main theorem of [CKP00] states that the normalized
logarithm of the number of domino tilings of ΓN with a boundary condition BN , Z(ΓN , BN ),
has the following asymptotic behavior as N → ∞.

Theorem 2.1.1 (Cohn Kenyon Propp).

N−2 logZ(ΓN , BN ) N→∞−−−−→ −F (h⋆) . (2.1.1)

Furthermore, the normalized height functions 1
NH

ΓN converge uniformly in probability to h⋆

as N → ∞, PΓN

(
|HΓN − h⋆| > ε

)
→ 0

However, this theorem does not cover domino tilings of a multiply-connected domain
such as the modified Aztec diamond, see Figure 2.2 and Section 2.9.3. The first reason is
that a height function HD defined by The Local rule becomes a multivalued function as one
sees by applying it consequently along a non-trivial loop, for instance for annulus from fig
2.3 one gets an extra factor of 4 after each such turn. This gain is the monodromyM(δ) of a
loop δ ∈ π1(Ω), see Figure 2.3. The monodromy M(δ) is fixed by the domain and δ for all
domino tilings.

The second reason is that in a multiply-connected domain, the boundary condition
B usually depends on D, see Figure 2.3 and Figure 2.7. More precisely, it means that
restrictions of two height functions to ∂Γ may differ by a multiple of 4. For instance, it
happens for two domino tilings of the region from Figure 2.7. Thus, boundary conditions a
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priori do not converge to a continuous function b. Therefore, the variational problem may
be ill-defined.

Despite these difficulties, several results on domino tilings of multiply-connected domains
exist. We make a review of these works in Final remarks.

Figure 2.2: Computer simulation of a random domino tiling of AD500 with height change
R = 300 and monodromy M = 400. For further details, see Section 2.9.3.

Figure 2.3: Height function H(p, γ) and H(p, γ′) with M(γ′γ−1) = 4, for details see
Definition 2.

We formulate a generalization of Theorem 2.1.1 for a multiply-connected domain in
Theorem 2.1.2. To the best of our knowledge, it is the first generic result for random domino
tilings of a multiply-connected domain that works with a height function with a monodromy.

(2) Instead of defining the height function by The Local Rule, we modify it so that
it depends not only on the point p ∈ Γ, but also on a path γp0 7→p from a fixed reference
point p0 to p. This dependence keeps track of the topology and makes the height function a
well-defined function. After going around a hole, not only the value of the height function
changes, but also the path in the argument. It means the following, suppose that δp 7→p is
the loop around a hole, then we call the transformation H(p, γp0 7→p) 7→ H(p, δp 7→p ◦ γp0 7→p)
turning around the hole. Or in other words, we apply the local rule consecutively along
δp 7→p.

This situation is very similar to the definition of the complex logarithm map, for details
see discussion in Remark 2.3.3. We also keep track of relative heights between different
points on each connected boundary component. Assuming that the value of the height
function at the point p0 is zero, and fixing the set of paths modulo continuous transformation
{γp0 7→pi}

g
i=1, we end up with a collection of numbers RD := {HD(pi, γp0 7→pi)}

g
i=1 that we

call the height change of domino tiling D. Here, by a continuous transformation of a path
γp0 7→p : [0, 1] 7→ Ω, γp0 7→p(0) = p0, γp0 7→p(1) = p we mean another path γ′

p0 7→p which is
homotopic to γp0 7→p. That is there exists a such continuous map F (t, s) : [0, 1] × [0, 1] → Γ
that F [t, 0] = γp0 7→p(t) and F [t, 1] = γ′

p0 7→p(t).
Define a similar collection of g of real numbers r = {ri}g

i=1 for a continuous function
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h. That is, fix a set of points of ∂Ω, {xi ∈ ∂Ωi} on each connected boundary component
of Ω denoted as ∂Ωi. We also fix them together with a set of paths γx0 7→xi with values
{ri} := {h(xi, γx0 7→xi)}, which we call asymptotic height change.

its values at a fixed point x0, h(x0, γx0 7→)
on each connected boundary component with the set of paths {γx0 7→xi}

g
i=1 continuous

transformation. Before the main theorem, let b be an extendable boundary condition on
the universal cover of Ω such that there exists such a function h : Ω̃ 7→ R that h

∣∣
∂Ω̃ = b.

Then, let h⋆ be the minimizer of F over the space of Lipschitz functions on Ω̃ with
boundary condition b with an arbitrary height change. Our main result is the following,

Theorem 2.1.2. The normalized logarithm of the number of domino tilings of ΓN divided
by the area of Ω has the following asymptotic behavior as N → ∞,

N−2 logZ(ΓN , BN ) N→∞−−−−→ −F(h⋆). (2.1.2)

Moreover, 1
NH

ΓN
D

PN→ h⋆ uniformly in probability, and the normalized height change of
domino tilings converge to the height change of h⋆, 1

NRN
PN→ r⋆ as N → ∞.

Note that in Z(ΓN , BN ) we count domino tilings with arbitrary height change. The
version of this theorem for a fixed asymptotic height change r also holds, see Corollary 2.6.2.
Furthermore, for a simply-connected Ω we recover Theorem 2.1.1 since Ω̃ becomes Ω itself,
and it has only one connected boundary component on which the height function is fixed.
What is important is that for a multiply-connected Ω, Ω̃ is not a compact space unlike the
situation for simply-connected domain.

Structure of the paper

• In Section 2.2 we discuss topological notations: universal cover, fundamental domain
of it, and quasiperiodic functions together with analogy between the height function
and the complex logarithm map.

• Section 2.3 is devoted to the definition of the height function on universal covering
space and the bijection between domino tilings and height functions.

• In Section 2.4 we prove several properties of the height functions: we give a formula
for the maximal extension with given boundary height function, criterion of extension
of height functions in Proposition 2.4.3, and define the space of asymptotic height
functions with a given, and an arbitrary) asymptotic height change. Also, in Theorem
2.4.4 we prove compactness of both spaces. We also prove Theorem 2.4.7, which states
that discrete height functions approximate asymptotic height functions and vice versa.

• In Section 2.5 we prove the concentration inequality for the uniform measure on
domino tilings of multiply-connected domains in Lemma 2.5.1. Then, and we recall
the exact formula for function σZ2 in (2.5.10).

• In Section 2.6 we state and prove the variational principle for arbitrary height change,
Theorem 2.6.1, and for a fixed asymptotic height change, Corollary 2.6.2

• In Section 2.7, we prove existence and uniqueness of the minimizer for the variational
problem in Proposition 2.7.1.

• Section 2.8 is devoted to Theorem 2.8.1.

• The last Section 2.9 contains final remarks.
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2.2 Topological notation
In this section we recall and fix basic topological notations, which we will use later, for
details see [Hat02; DC04; Mei08].

2.2.1 Fundamental domain

First, let Ω be a planar domain, that is a compact subset of R2 with a piecewise smooth
boundary ∂Ω, which consists of g + 1 connected components, ∂Ω = ⊔g

i=0 ∂Ωi, where ∂Ω0 is
the external boundary.

Recall that the universal covering space Ω̃ is a simply-connected set, and can be realized
as a set of pairs (x, γx) of points x ∈ Ω with paths γx that connect x to a fixed base point
x0 ∈ ∂Ω. Moreover, one can notice a natural action of fundamental group of Ω on Ω̃. Recall
that having two paths modulo continuous transformations, γ1 connecting p1 to p2 and γ2
connecting p2 to p3, one can obtain a third path γ3 := γ2 ◦ γ1. This path goes first from
p1 to p2 and then from p2 to p3 called a concatenation or composition of paths γ1 with γ2,
which is defined also modulo continuous transformations. If we take p2 = p3 so that γ2 is
a loop, we obtain an action of π1(Ω) on points of Ω̃ that maps a point (p, γ) to (p, δ · γ).
Denote the action of δ ∈ π1(Ω) on a subset A ⊂ Ω̃ by δ · A. It is also worth noting that
Ω = Ω̃/π1(Ω).

Definition of fundamental domain

Let us define a fundamental domain D(Ω) as follows,

• D(Ω) ⊂ Ω̃ is a closed set

• Ω̃ = ⋃
δ∈π1(Ω) δ · D(Ω), where (δ1 · D(Ω)) ∩ (δ2 · D(Ω)) has no interior for δ1 ̸= δ2.

Below, we give one realization of D(Ω) in Construction 2.2.1 that we use later.
Let us explain the definition of D(A) on a ring A with a radius 1 of the internal circle

and radius 2 of the external circle. It can be seen in polar coordinates as

A = {(ℓ cosϕ, ℓ sinϕ)|ℓ ∈ [1, 2], ϕ ∈ R/2πZ}, (2.2.1)

or as {(ℓ, ϕ)|ℓ ∈ [1, 2], ϕ ∈ R/2πZ} in different coordinates. Then, the universal cover can
be seen as

Ã = {(ℓ, ϕ)|ℓ ∈ [1, 2], ϕ ∈ R}. (2.2.2)
The corresponding fundamental domain is D(A) = {(ℓ, ϕ)|ϕ ∈ [0, 2π], ℓ ∈ [1, 2]}. Here

the fundamental group π1(A) ≃ Z acts by shifts (ℓ, ϕ) 7→ (ℓ, ϕ + 2πk), k ∈ Z, where the
integer k represents the winding number of a loop. Note that here we have g = 1.

Construction of fundamental domain.

The example above can be generalized to a construction of D(Ω) for a generic multiply-
connected domain Ω. First, pick g smooth curves {γi}g

i=1 on Ω that connect ∂Ω0 with all
other connected boundary components {∂Ωi}g

i=1 and avoid self-intersections such that after
the cut along curves {γi}g

i=1 the resulting domain D0(Ω) is connected and simply-connected.
Also note that D0(Ω) can be naturally viewed as a subset of Ω̃.

Then, we take the closure of D0(Ω) in Ω̃ and obtain D(Ω) = D0(Ω). It can be proved
that at the end we obtain a fundamental domain, for details, see Section 1.1, 1.3 in [Hat02].
Note that the boundary of a fundamental domain consists of an extra 2g boundary pieces
in addition to ∂Ω, ∂D(Ω) = ∂Ω ∪

⋃2g
i=1 υi, where υi and υi+g are the result of cutting along

γi. One can also note that ∂D(Ω) has one connected boundary component.
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2.2.2 Decomposition of paths

Each path γx from x0 to x can be decomposed after a continuous transformation into a
product γx = δ̂ · γ′

x of a path γ′
x conditioned to stay inside D(Ω), and a loop δ̂ ∈ π1(Ω). It is

easy to see that such a path γ′
x is unique modulo continuous transformations after choosing

D(Ω). Also note that the action of δ ∈ π1(Ω) on Ω̃ maps δ̂ by multiplying by δ : δ̂ 7→ δ · δ̂,
while leaving γ′

x unchanged. This allows us to look at a point of Ω̃ as a pair (x̂, δ) of a point
x ∈ D(Ω) and a loop δ̂, which is changing after going around a loop δ′ as (x, δ̂) 7→ (x, δ′ · δ̂).
Also, it is worth comparing with Definition 2.2.1.

2.2.3 Quasiperiodic functions

Throughout the paper, all functions on Ω̃ are assumed to be quasi-periodic. These functions
are similar to the complex logarithm map, which is almost a well-defined map, but it gets
the increment 2πi after one turn around zero in counter-clockwise direction.

Suppose that we have a monodromy map m, that is a map m : π1(Ω) → R that
m(δ′ · δ) = m(δ′) + m(δ). Then, f : Ω̃ → R is a quasiperiodic function with monodromy m if
after going along a loop δ on Ω, it changes as

f(x, δ · δ̂) = f(x, δ̂) + m(δ), (2.2.3)

or in other words upon substitution δ = δ′ · δ̂−1,

f(x, δ̂) = f(x, δ̂′) − m(δ′
x · δ̂−1). (2.2.4)

The monodromy m keeps track of the possible ambiguity of f after going along a loop.
Denote the space of quasiperiodic functions for a given monodromy m by H(Ω,m).

Two examples of quasiperiodic functions are the complex logarithm map log z defined
on a punctured complex plane (for details see Subsection 2.3.3), and the function (ϕ, ℓ) 7→
ϕ+ ℓ cosϕ defined on the ring A from Example 2.2.1. Since π1(A) ≃ Z, each δ̂ corresponds
to an integer, which enumerates “landings of a stairwell” see Figure 2.5.

The action of π1(Ω) on Ω̃ naturally extends to an action of π1(Ω) on quasi-periodic
functions on A ⊂ Ω̃. That is, for a quasi-periodic function f and a δ ∈ π1(Ω) define
δ · f(p, δ̂) := f(p, δ · δ̂) = f(p, δ̂) + m(δ).

Another property of quasi-periodic functions is that the difference between two functions
f, f ′ from H(Ω,m), f − f ′, is a well-defined function on Ω since f − f ′ has monodromy 0.

Lemma 2.2.1. Suppose f, f ′ ∈ H(Ω,m). Then, functions defined by x 7→ f(x) − f ′(x) and
x 7→ ∇f(x) are well-defined as functions on Ω.

Proof. Indeed, f and f ′ gain the same increment m(δ) going around the loop δ, therefore
f − f ′ has the trivial monodromy, and thus, it is a well-defined function on Ω. Moreover, if
f is differentiable, then its gradient by definition is also a well-defined map on Ω.

Remark 1. Since the gradient of continuous(discrete) height function is a well-defined map,
we could in principle formulate all the statements in the language of continuous/discrete
gradients. Discrete gradients parametrize domino tilings without any ambiguity as naively
defined height functions. Probably, this is a possible alternative to our approach. However,
it would require a more sophisticated technique i.e., topology of the space of continuous
gradients as in a recent work[CSW23].

An important fact about quasiperiodic functions is that their behavior is determined by
their values on D(Ω). It can be formulated as the following proposition.
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Figure 2.4: Parametrization of domino tilings by the discrete slopes.

Proposition 2.2.2. Suppose we have two quasi-periodic functions f, f ′ ∈ H(Ω,m) that
coincide on D(Ω). Then, f = f ′ on Ω̃.

Proof. By definition of the fundamental domain, we can express the universal covering space
Ω̃ as the union of fundamental domains,

Ω̃ =
⋃

δ∈π1(Ω)
δ · D(Ω). (2.2.5)

Now, the proof is straightforward, we need to use two facts. The first fact is the assumption
that the values of f, f ′ coincide on D(Ω). The second one is that both functions have the
same monodromy data m(δ) that gives agreement of their values on δ · D(Ω).

Proposition 2.2.2 allows recovering a quasi-periodic function f defined on Ω̃ uniquely
from its restriction to D(Ω) if we know the monodromy m.

Call the subspace of functions on D(Ω) obtained by restriction of functions from H(Ω,m)

H′ (D(Ω),m) := {f : f = g
∣∣
D(Ω) for some g ∈ H(Ω,m)}. (2.2.6)

Proposition 2.2.3. Functional spaces H′(D(Ω),m) and H(Ω,m) are isomorphic with each
other. In other words, each function f ′ ∈ H′(Ω,m) extends to a function f ∈ H(Ω,m)
uniquely.

Proof. We have the projection from H(Ω,m) to H′(Ω,m) that is surjective by definition of
H′(Ω,m). In order to construct the map in the opposite direction suppose that f̂ := f

∣∣
D(Ω),

so we know the value f̂(x) = f(x, I) for the trivial loop I. Then, f(x, δ) = f̂(x, I)+m(δ·I) =
f̂(x, I) + m(δ). Therefore, once we know that f̂ can be extended to a function on Ω̃ with
monodromy m, we can recover its values on the whole Ω̃ from the values on D(Ω).

2.2.4 Boundary condition of quasi-periodic functions.

Let us take a point xi on a connected boundary component ∂Ω̃i for each 0 ≤ i ≤ g, and
let f ∈ H(Ω,m). Boundary conditions of f is a set of functions bi : ∂Ω̃i → R on each
connected boundary component, such that f

∣∣
∂Ω̃i

(x, δ) − f(xi, δ) = bi(x, δ) for x ∈ ∂D(Ω)i.
This condition determines f on ∂Ω̃i up to an additive constant that can be fixed by an extra
condition f(xi, δ) = ri for an ri ∈ R. We also assume that f(x0, I) = 0

Once we think of f as a surface, the value ri := f(xi, δ) − f(x0, δ) represents the relative
height of ∂Ω̃i compared to ∂Ω̃0. Call {ri}g

i=1 the height change. Then, there are two ways
to fix the boundary condition of f , the first way is to take g + 1 functions {bi}g

i=0 on each
connected boundary component ∂Ω̃i and fix f

∣∣
∂T ildeOmegai

(x, δ) − f(xi, δ) = bi(x, δ). This
way we fix f up to an additive shift, denote the space of such quasi-periodic functions on Ω̃
with monodromy m H(Ω,m, {bi}). The second option is to further fix value f(xi, I) = ri

for ri ∈ R, call the space of such functions H(Ω,m, {bi}, ri).
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2.3 Height function on universal covering space of discrete
domains

This section is devoted to definitions of height functions and asymptotic height functions.
Our first goal is the definition of the universal cover of a lattice domain. Then, we define

the height function and construct a bijection between the set of height functions and the set
of domino tilings of a multiply-connected lattice domain Γ.

2.3.1 Universal cover of a lattice domain

Suppose that we have a multiply-connected domain Ω with a lattice domain Γ ⊂ Ω. Let us
define the universal cover of Γ denoted by Γ̃ as a subset of Ω̃ as follows. Recall that the
expression of the universal cover of Ω, Ω̃ = ⋃

δ∈π1(Ω) δ · D(Ω).
Since Γ is a subset of Ω, define the fundamental lattice domain D(Γ) to be the lattice

domain remaining after performing the cuts γi from construction 2.2.1, where the cuts are
continuously changed so that a path γi consists of edges of Γ.

Then, we can define the universal cover of a lattice domain Γ denoted by Γ̃ similarly to
Definition 2.2.1,

Γ̃ :=
⋃

δ∈π1(Ω)
δ · D(Γ). (2.3.1)

It is easy to see that Γ̃ is a subset of Ω̃.

2.3.2 Height function

First, recall the usual definition of the height function for a simply-connected domain Γ.
Define the boundary of Γ, ∂Γ := {p ∈ Γ|p ∼ Z2 \ Γ}, where ∼ means graph adjacency
on Z2. Later we will assume that Γ approximate a continuous domain Ω, so that ∂Γ will
approximate ∂Γ.

The height function is defined by the Local Rule as follows.

Definition 2.3.1. A function HD : V (Γ) → Z is called a height function if for a fixed
p0 ∈ ∂Γ the following holds,

1. Set the value of HD(p0) := 0 for all D and a fixed point p0 ∈ ∂Γ.

2. If the edge v := (p1, p2) has a black square on its left, then HD(p2) equals HΓ
D(p1) + 1

if v does not cross a domino in D and HD(p1) − 3 otherwise.

By [Thu90], HD is a well-defined for a simply-connected Γ. However, in a multiply-
connected region, HD might get a non-zero increment going along a loop around a hole, see
Figure 2.3. Therefore, we need to modify this definition so that it will be still a well-defined
map.

Let us give an intrinsic definition of the height function HΓ defined on a connected,
multiply-connected lattice domain Γ. Here we follow our conventions from Subsection 2.2.3.

We pick once point pi ∈ Γ on each connected boundary component ∂Γi, where ∂Γ0 is
the external connected boundary component of Γ. Fix also a set of paths {γ′

i}
g
i=1 from p0 to

each pi and a path γ from p0 to a point p ∈ Γ.
Also, let {Ri}g

i=0 be a collection of integers with R0 = 0.
Let us mark a single edge on every lattice square of Γ. We assume that this edge is not

a boundary edge. And suppose that MΓ is a monodromy, that is MΓ : π1(Ω) → 4Z and
satisfies MΓ(δ · δ′) = MΓ(δ) +MΓ(δ′). Let us proceed to definitions of height function and
its boundary condition,
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Figure 2.5: “Riemannian Surface” of a ring.

Definition 2.3.2. Call a family of integer functions BΓ
i : ˜∂Γi → Z the boundary heights if

they satisfy the following conditions

• the value of BΓ
i increases by 1 counterclockwise along the edges of any black square

except the marked edge on it.

• the value of BΓ
i increases by 1 clockwise along all edges of any white square except

the marked edge on it.

• going along a loop δi ∈ π1(Ω) BΓ
i (v, δv) changes as follows:

BΓ
i (v, δi · δ) = Bi(v, δ) +MΓ(δi). (2.3.2)

Then, we can define the height function with given boundary heights.

Definition 2.3.3. A function HΓ : Γ̃ → Z is a height function with monodromy M , set of
reference points {pi}g

i=0, boundary heights Bi and height change {Ri}g
i=0 if the following

holds,

• H
∣∣
∂Γi

(p, δ) −H(pi, δ) = Bi(p, δ) for p ∈ ∂Γ̃i.

• H(pi, γ
′
i) = Ri.

• the value of H increases by 1 counterclockwise along all edges of any black square
except the marked edge on it.

• the value of H increases by 1 clockwise along all edges of any white square except the
marked edge on it.

• going along a loop δ ∈ π1(Ω) H(v, δv) changes as follows:

H(v, δ · δv) = H(v, δv) +MΓ(δ). (2.3.3)

We think of a marked edge as a dual object to a domino, in other words to a dimer. In
fact, the marked edge cuts a domino into two unit squares. Thus, a boundary of a domino
is formed by non-marked edges (edges with increment ±1).

Note that a different choice of points {pi}g
i=1 changes {Ri}g

i=1 by an additive shift. For
instance, if we change a point xi to an adjacent point p′

i ∈ ∂Γ, the height change component
Ri will change by ±1 depending on the value H(p′

i).
The height function defined this way on the ring is, in fact, a well-defined function only

on the corresponding “Riemannian surface” that can be schematically viewed on Figure 2.5.
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2.3.3 Analogy with complex analysis

In order to fully grasp the definition of the height function on a multiply-connected domain,
it is useful to keep in mind the definition of log z for complex z through the analytic
continuation along a path. Recall that one can define log z for z ∈ C\{0} by fixing the value
log(1) = 0, and then by the direct analytic continuation along a path γ that connects point
1 with point z via logγ(z) =

∫
γ

dζ
ζ . However, two such logarithms logγ z and logγ′ z defined

this way may differ by an integer multiply of 2πi. Therefore, one needs to choose a cut to
make logγ(z) a single-valued function with a branch-cut with a tradeoff of discontinuity
at the branch-cut. There is also a way to make log z a continuous function defined on the
corresponding so-called “Riemann surface” [Lan99]. A point of this surface, known as the
universal covering space, can be seen as a pair of a point z ∈ C \ {0} with a path connecting
z to point 1 modulo continuous transformations in C \ 0.

In Definition 2.3.6 we define the height function HD of domino tiling D of a ring similarly
to log z. In order to choose a branch, we make a cut along R>0 and fix a value of HD at
a point p0. Then, the residue of logγ(z) is analogous to monodromy of HD. Globally, the
height function HD is also a well-defined function only on the corresponding “Riemann
surface” Ã. Later on, we generalize this setup to a more complicated domain.

In the following discussion, by a path we mean an oriented lattice path on Z2, that is a
sequence of oriented edges. Let also γ, γ′ be two paths modulo continuous transformations
that connect point p0 with point p. Note in mind that γ−1γ′ is a loop. Also recall that I is
the constant map of the point p0 to itself. See a summary of this analogy between H and
logγ in Table 2.1.

logγ z HD(p, γ)
Residue of 1

z at z = 0 Monodromy of H
logI(1) = 0 HD(p0, I) = 0

logγ(z) =
∫

γ
dζ
ζ The Local rule

logγ z = logγ′ z +
∫

γ−1γ′
dζ
ζ HD(p, γ) = HD(p, γ′) +M(γ−1γ′)

Branch-cut along R>0 Branch-cut along path connecting different
connected boundary components.

Table 2.1: Analogy between height function HD(p, γ) and logγ z

Let us show correctness of the definition of height function H. That is increments of H
along any two paths γ, γ′ with the same starting point p and ending point p′ coincide once
the paths can be continuously transformed one into the other.

Lemma 2.3.4. The increment of H along the path γ equals to its increment along the path
γ′ if these paths can be continuously transformed one into another.

H(p′, γ) = H(p′, γ′) (2.3.4)

Proof. It is an easy exercise on topology to show that a lattice domain Γγ′
γ obtained between

γ and γ′ is simply-connected, for details see Chapter 1 in [Hat02]. Therefore, the height
function on Γγ′

γ is well-defined. Thus, the value of H at p′ can be computed along both
paths with the same result.

Monodromy MΓ(δ) is, in fact, fixed by ∂Γ and one can write a formula for it along a
single loop δ.
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Let e be an edge of Γ and define ∆e to be +1 if e has black square on its left and
−1 otherwise. A single loop γ divides Z2 into two connected components, Γ′, the finite
component, and Γ′′, the infinite component. Denote the number of black squares in Γ′ by
B(Γ′) and the number of white square in Γ′ by W(Γ′).

Lemma 2.3.5. The monodromy M(δ) of a height function H on a lattice domain Γ does
not depend on H, and it can be computed by the following formula,

M(δ) =
∑
e∈δ

∆e = B(Γ′) − W(Γ′). (2.3.5)

Proof. The loop δ can be continuously shrunk to the connected boundary component ∂Γ′.
The increment of H going along ∂Γ′ can be computed using The Local Rule, and, since
there are no marked edges on ∂Γ′, the value of H changes by ∆e = ±1 only. Therefore, the
monodromy can be written as follows,

M(δ) =
∑

e∈∂Γ′

∆e. (2.3.6)

The monodromy M(δ) divided by 4 equals to the difference between B(Γ′) and W(Γ′).

M(δ) =
∑

e∈∂Γ′

∆e = 4
(
B(Γ′) − W(Γ′)

)
(2.3.7)

This formula follows from the Stokes theorem applied to the height function, see section
2 in [Ken09] and [Thu90].

The formula from xtends to an arbitrary loop as follows. Suppose we have a loop
δ ∈ π1(Ω) and a set of generators of π1(Ω)), {αi}i=1. The loop δ can be decomposed into
generators, δ = ∏

i=1 α
ai
i . From (2.3.7), we have a formula for monodromy around each αi.

Suppose without loss of generality that αi can be continuously shrunk to ∂Γi. Then, we can
express the monodromy M(δ) as follows,

M(δ) = M

(∏
i=1

αai
i

)
=
∑
i=1

ai ·M(αi) =
∑
i=1

ai ·M(∂Γi) = 4
∑
i=1

ai ·(B(Γ′
i)−W(Γ′

i)). (2.3.8)

2.3.4 Height function of a domino tiling

A typical example of a height function can be obtained starting with a domino tiling D. We
modify the usual definition of the height function corresponding to a domino tilling from
[Thu90; CKP00; Fou96] such that it becomes a well-defined function for a domino tiling of
a multiply-connected domain.

Definition 2.3.6. Let D be a domino tiling of a multiply-connected lattice domain Γ. Then,
HD : Γ → Z is a height function of a domino tiling D if it satisfies the following properties.

• Fix the value of HD at (pi, γi), HD(pi, γi) = Ri.

• if an edge (p, v), does not belong to any domino in D (i.e. intersects) then HD(v, γ) =
HD(p, γ) + 1 if (p, v) has a black square on the left, and HD(v, γ) = HD(p, γ) − 3
otherwise.

• going along a loop δ ∈ π1(Ω, p0) HD(v, γ) changes as follows:

HD(v, δγv) = HD(v, γv) +M(δ). (2.3.9)

eq:monodromy#Lemma \ref {eq:monodromy}.e
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Now we are ready to give a proof of the following theorem,

Theorem 2.3.7. There is a bijection between the set of height functions on Γ and domino
tilings of it.

Proof. The height function of a domino tiling defined Defenition 2.3.6 obviously satisfies
conditions of Definition 2.3.3, the marked edges are the edges that cross the dominoes.

In the other direction we need to assign a domino tiling to a height function H. Note
that H changes by −3 counterclockwise along the marked edge of Sb, which is because there
are three non-marked edges of Sb with increments +1. Therefore, there exists a unique edge
on every lattice square with increment 3. Moreover, each marked edge is, automatically,
the marked edge of two adjacent squares of different colors. Thus, we can declare that the
domino covers these two squares. This way we can cover by dominoes all the squares of Γ
and obtain a domino tiling.

One can further notice that marked edges are dual to the perfect matching on the dual
graph Γ⋆ in language of the dimer model.

2.4 Proofs of properties of height functions
We have two kinds of height functions, discrete height functions, which arise from domino
tilings, and asymptotic height functions, which are natural limiting objects for sequences
of height functions. Both height functions and their continuous counterparts share many
properties. Thus, it is worth recalling a basic construction for a usual Lipschitz function f
[Val45].

Let M be a metric space with the distance d(·, ·). Suppose that X ⊂ M is a compact
subset of M and f : X → R is a Lipschitz function. Then, f can be extended to a Lipschitz
function on M with the same Lipschitz constant by the following formula:

f̂(x) = min
y∈X

(f(y) + d(x, y)) (2.4.1)

f̂ is also the maximal extension of f that is for any extension g of f we have g ≤ f̂ .
Let us prove it for the sake of self-completeness,

Proof. We need to show two properties of f̂ , the Lipschitz property and that f̂ agrees with
f on X. First, pointwise minimum of Lipschitz functions f1, f2 is again a Lipschitz function.
Simply, we can express (̂f) = min{f1, f2} = f1+f2−|f1−f2|

2 and use that the sum and the
difference of Lipschitz functions is again Lipschitz.

Second, let us notice that for any function under the minimum we have f(x) ≤ f(y) +
d(x, y) due to the Lipschitz condition. Therefore, we have f(x) ≤ f̂(x). The second
inequality, f̂(x) ≤ f(x), holds because for y = x, the two functions f(x) and f(y) + d(x, y),
coincide with each other.

For X = ∂M and X ⊂ Rn we recover the Kirszbraun theorem for extension of Lipschitz
functions in Rn.

Furthermore, one can write a similar formula for the minimal extension,

f̌(x) := max
y∈X

(f(y) + d(x, y)). (2.4.2)

For quasiperiodic functions on Ω a similar formula holds, let f : ∂Ω̃ → R be a function with
monodromy m and (x, γx), (y, γy) ∈ D(Ω). Then,

f̂(x, γx) = inf
(y,γy)∈∂D(Ω)

(f(y, γy) + d((x, γx), (y, γy)). (2.4.3)
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This gives a well-defined map on D(Ω) since ∂Ω is a compact set, and thus the value
f̂(x, γx). Then, we need to check that it also gives a well-defined quasi-periodic function
defined on Ω̃ with the same monodromy data as f . Let us move f̂(x, γx) around a loop δ. By
definition, the expression f(y, γx)+d((x, γx), (y, γy)) changes to f(y, γ ·δ)+d((x, γx), (y, γy))+
m(δ) since d((x, δ · γx), (y, δ · γy)) = d((x, γx), (y, γy)), and the change is independent of y.
Therefore, we have the desired transformation, so f̂ is a quasi-periodic function.

2.4.1 Extension of a boundary height function.

In the following discussion, we need functions that satisfy only the second condition of
Definition 2.3.6. Let us call them partial height functions. To prove that a partial height
function η is an actual height function, we need to check that η has the right boundary
conditions. Recall an analog of the Lipschitz condition for height functions from [CEP96]:
let Γ be a lattice domain with a height function H defined on it. Let βΓ(p1, p2) be the
length of a minimal path π joining points p1 and p2 inside Γ such that every edge of π
(oriented from p1 towards p2) has a black square on its left. Also, it is not hard to check
that βΓ(p1, p2) satisfy the second condition of Definition 2.3.6 as function of p1 with a fixed
p2. Thus, βΓ(p1, p2) is the maximal increment of the height function between p1 and p2(βΓ

is only increasing by 1 on the path).
Then, for every two points p1, p2 ∈ Γ,

H(p1) ≤ H(p2) ± βΓ(p1, p2) (2.4.4)

Let us also set β(p, p) := 0. Note that this condition implies a constraint for height change
of a height function, −βΓ(xi, x0) ≤ Ri ≤ βΓ(xi, x0).

Figure 2.6: Example of a domino tiling of a concave domain, where the height function does
not satisfy the Lipschitz condition for points p and q with β defined by (2.4.1).

Call Condition (2.4.9) the lattice Lipschitz condition. For points p1, p2 at distance d in
sup-norm and a convex Γ ⊂ Z2, βΓ(p1, p2) ≤ 2d(p1, p2) + 1 [CEP96]. Also, one can write an
exact expression for β(x, y) for such a Γ taken from [Fou96] in the form of lemma 2.1 from
[PST16].

Suppose x = (a, b), y = (a+i, b+j) ∈ Z2 and set κ(i, j) = i−j mod 2. If a−b = 0 mod 2,
one sets

β(x, y) =
{

2∥y − x∥∞ + κ(i, j), if i ≥ j,

2∥y − x∥∞ − κ(i, j), if i < j.
(2.4.5)

If a− b = 1 mod 2, then

β(x, y) =
{

2∥y − x∥∞ − κ(i, j), if i ≥ j,

2∥y − x∥∞ + κ(i, j), if i < j.

We need several properties of the height function on a multiply-connected lattice domain
that are crucial for the proofs on a simply-connected lattice domain. Let us recall them
[PST16], later we extend them to a multiply-connected lattice domain.
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These properties are analogous to the basic properties of a usual Lipschitz function.
Moreover, we will show that the height function is a discrete analog of the Lipschitz function
in a sense that it approximates continuous Lipschitz functions after a suitable normalization
on a large lattice domain, see Theorem 2.4.7. In order to show it, we need the following
lemma,

Lemma 2.4.1. Assume that HD and H ′ are height functions. Assume also that p is a
vertex of Γ. Then, H(p) = H ′(p) mod 4

Proof. By its definition, two height functions coincide at the reference point (p0, γ0). Then
values at an adjacent point p′ may be either H or H ± 4 according to the definition of height
function Definition 2.3.6. Or in other words, the discrete gradient of the difference H −H ′

along any edge always takes its values in {−4, 0, 4}.
This way we can obtain the proof using induction with respect to the length of a path

connecting the point p with the reference point p0.

Another important property of the set of height functions is that it has additional
operations, which turn this set into a lattice. Namely, we can take pointwise maximum or
pointwise minimum of two such functions and obtain another element from this set. For a
proof for a simply-connected domain, see discussion in section 1.4 of [CKP00]. Since we
use a modified height function, we need to show this property for the functions defined by
Definition 2. Suppose that {pi}i=g

i=0 ∈ ∂Γ points on each connected boundary component of
Γ and H and H ′ are two height functions on Γ with height changes {Ri}g

i=0 and {R′
i}

g
i=0.

Then,

Lemma 2.4.2. Pointwise maximum of two height functions H,H ′ defined on a lattice
domain Γ is again a height function Ȟ defined as

Ȟ(p) := max{H(p), H ′(p)}. (2.4.6)

Further, height change of Ȟ is maximum between height changes of H,H ′,

Ři = max{Ri, R
′
i}. (2.4.7)

Proof. We need to show that Ȟ satisfies four conditions from Definition 2. To show the
second and the third properties we can use the same arguments as in [CKP00; PST16].
That is supposing that H(v) ̸= H ′(v) for a point v ∈ Γ (if there is no such a point, it would
imply Ȟ = H = H ′). Then, H(v) must differ from H ′(v) by a multiple of 4 by Lemma 2.4.1.
Without loss of generality, suppose that H(v) = H ′(v) + 4ℓ for ℓ ∈ N⋆. Together with the
definition of height function, this implies that at all points u adjacent to v, H(u) ≤ H ′(u).
Therefore, Ȟ at points v and u coincides with H. Repeating this argument we obtain the
desired.

For the fourth condition note that monodromy of a height function is fixed by the domain
by Lemma 2.3.7.

Finally, let us prove the first condition. Note that the height change of Ȟ equals the
values of Ȟ at the reference points on the ∂Γ, Ř = {Ři}g

i=0 = Ȟ(pi)g
i=0. These values are

maxima between the values of H and H ′ at reference points. Thus, height change of Ȟ
equals to the maximum between height change of H and H ′, Ři = max{Ri, R

′
i}.

Here we assumed that two height functions are defined on ˜Gamma and coincide at
the reference point (p0, γ0). However, the proof also works with the assumption that they
coincide modulo 4 that allows us to use Lemma 2.4.1. Further, monodromies of all height
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functions are the same since monodromy is determined by the lattice domain by Lemma
2.3.7.

Moreover, the same works for pointwise minimum of the height functions, pointwise
minimum of height functions H and H ′ is, again, the height function, denote it H̃,

H̃(p) = min{H(p), H ′(p)}. (2.4.8)

Height function on a multiply-connected domain satisfy a refined lattice Lipschitz
condition,

H(x, δ̂) −H(y, δy) ≤ βΓ(x, y) +M(δ̂ · δ−1
y ). (2.4.9)

This condition can be obtained by applying Condition 2.4.4 to a height function onC(⊗).
This constraint allows us to formulate a criterion of extension of boundary values to a height
function as follows,

Proposition 2.4.3. Let Γ be a multiply-connected domain with a fixed height function H
with monodromy M on a subset Γ̄ ⊂ Γ. And suppose that boundary height function satisfies
the following condition for all x, y ∈ ∂Γ and δ, δ′,

H(x, δ) −H(y, δ′) − π(x, y) = 0 mod 4. (2.4.10)

Then, H admits an extension to a height function on Γ if there exist a height change
R = {Ri}i = 1g such that two conditions hold all points x, y of Γ̄,

H(x, δ̂) −H(y, δy) ≤ βΓ(x, y) +M(δ̂ · δ−1
y ) (2.4.11)

Proof. Let us take a family of height functions on Γ, {Ȟy : x 7→ H(y) + β(x, y)} indexed by
the points x of Γ̄. The pointwise minimum of two partial height function from the family
is again a partial height function by Lemma 2.4.2 since Ȟy(x) satisfies the local rule as a
function of x. Then, taking the pointwise minimum over the whole family, we get a height
function on Γ

Hmax(x, γx) := min
y∈Γ̄

(H ′(y, γy)) (2.4.12)

We need to show that Hmax agrees with H on Γ̄.
Let x, y, v ∈ Γ̄, and let us take a function H ′

x : y 7→ H(y) + βΓ(x, y). It is clear that
H(x) ≤ H(y) + βΓ(x, y) holds for every y since it is the lattice Lipschitz condition for H,
therefore we have H(v) ≤ Hmax(v). Inequality Hmax(v) ≤ H(v) also holds because for
y = x we have the equality since βΓ(x, x) = 0.

The height change and monodromy of Hmax are given by the boundary condition H.

Note that due to (2.4.3) Hmax is the maximal extension of H to a height function on Γ.
The minimal extension of H can be constructed by almost the same way as the maximal.
Let us define the minimal extension Hmin,

Hmin(x, γ) := max
y∈Γ̄

(H(y, γ) − β(x, y)). (2.4.13)
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2.4.2 Asymptotic height function

Here we define an asymptotic height function as a continuous counterpart to the discrete
height function. We saw that discrete height functions satisfy the lattice Lipschitz condition.
Therefore, it is natural to expect that in a scaling limit they approximate continuous
Lipschitz functions. However, as the example on Figure 2.6 suggests we need to consider
functions that are 2-Lipschitz in intrinsic sup norm, which can be defined by the following
formula

∥x− y∥Ω
∞ := inf

γ

∫ 1

0

∥∥γ′(t)
∥∥

∞ dt. (2.4.14)

Here the curve γ connects x to y by as a path inside Ω, γ(0) = y, γ(1) = x. Moreover, let us
use such a path of the minimal length w.r.t. the intrinsic distance on Ω.

Let us note that theorems for the standard sup norm such as Arzela Ascoli theorem
and Rademacher’s theorem hold for intrinsic norm as well, as one can check using the same
arguments as for standard sup norm locally (i.e. by using partition of unity with convex
support).

Fix a set of points {(xi, γ) ∈ D(Ω)|xi ∈ ∂Ωi} and a monodromy data, i.e., a map
m : π1 → R such that m(γ · γ′) = m(γ) + m(γ′) and m(γ−1) = −m(γ). Also, let r := {ri}g

i=0
be a sequence of real numbers and denote point z = (z1, z2) ∈ Ω.

Also define the Newton polygon, which is the set of allowed slopes for the height function
arising from domino tilings, N := {(x, y) ∈ R2||x| + |y| ≤ 2} [CKP00; KOS06]

A function h is an asymptotic height function with height change r = {ri}g
i=1 and

monodromy m if the following holds,

• h
∣∣
∂Ωi

(x) − h(xi) = bi(x)

• h(xi, γi) = ri,

• h is 2-Lipschitz function with respect to the intrinsic sup norm on Ω, that is
|h(x, δ) − h(y, δ′)| ≤ 2 ∥x− y∥Ω

∞ + m(δ−1δ′) and ∇h : Ω → N

• after going around a loop δ′, values of h changes as follows:
h(x, δ′ · δ) = h(x, δ) + m(δ′).

It is important to mention that numbers ri for asymptotic height function take their
values in intervals due to the Lipschitz constraint, −2 ∥xi − x0∥Ω

∞ ≤ ri ≤ 2 ∥xi − x0∥Ω
∞.

Let H (Ω,m, br) be the space of asymptotic height functions with monodromy m and
boundary condition br. Also define a union of H (Ω,m, br) over all possible height changes
r, H (Ω,m, b) := ⋃

r H (Ω,m, br).

Theorem 2.4.4. The spaces H (Ω, b,m) and H (Ω, br,m, r) are compact spaces with respect
to the intrinsic sup norm.

Proof. The idea of the proof is to show compactness of the space of functions on the
fundamental domain that will lead us to compactness of H (Ω, b,m). Then, H (Ω, br,m, r)
is compact as a closed subset of H (Ω, b,m).

Recall that by Proposition 2.2.2, the behavior of these functions is determined by their
values on D(Ω). Thus, it is sufficient to show compactness of H (D(Ω), b). In order to show
it, one can apply Arzela-Ascoli theorem. The first requirement, the existence of a uniform
bound for the functions f ∈ H (D(Ω), b), is satisfied because of the boundary condition
b that is fixed on ∂Ω0. The equicontinuous follows directly from the Lipschitz condition.
Then, these function with a given monodromy data m form a closed subspace of H (D(Ω), b).
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Thus, it is a compact space. The same works for the subspace with a given height change r
and a fixed monodromy data m, H (Ω, br,m, r). The latter is, again, a compact space as a
closed subset of H (Ω, b,m).

Note that the gradient of an asymptotic height function is well-defined on Ω. Further,
pointwise difference between two quasi-periodic functions with the same monodromy is,
again, a well-defined function on Ω

2.4.3 Approximations of a domain

Assume that Ω ⊂ R2 is a domain and ΓN tends to Ω as N → ∞ with respect to the Hausdorff
distance dH , dH(X,Y ) = inf{ε ≥ 0 : X ⊆ Yε and Y ⊆ Xε}, where Xε is ε-neighborhood
of X, dH(Ω,ΩN ) → 0, as N → ∞.

Now, let ΓN ⊂ 1
N Z2 ∩ Ω be a sequence of lattice domains with normalized boundary

conditions {BN }. Let us follow ideas from [CKP00; KOS06; Agg20] and call a sequence of
regions with boundary conditions (ΓN , BN ) an approximation of (Ω, b) if

1. ΓN ⊂ 1
N Z2 ∩ Ω, where 1

N Z2 is Z2 with mesh 1
N .

2. each ΓN admits at least one domino tiling with normalized boundary condition BRN
N

for each non-trivial RN = {Ri
N }g

i=1.

3. for every admissible asymptotic height change r, there exists a sequence of admissible
normalized height changes {RN } that converges to r, Ri

N → ri as N → ∞.

4. Γ tends to Ω with respect to the Hausdorff distance dH , dH(Ω,Γ) → 0, as N → ∞.

5. Further, |BRN
N (xN ) −br(x)| ≤ O(N−1) for the standard Euclid distance for sufficiently

large N with xN ∈ ∂Γ, x ∈ ∂Ω such that |xN − x| ≤ O(N−1) (the existence of such
points is guaranteed by the previous assumption).

Furthermore, note that the convergence of boundary conditions means that the discrete
monodromy data { 1

NMi} converges to the continuous {mi}.
These conditions are modifications of conditions of Theorem 1.1 from [CKP00], which

are needed for multiply-connected domains. Convergence of the boundary conditions implies
convergence of discrete monodromy MN (δ) to its continuous counterpart m(δ).

2.4.4 Convergence of the maximal extensions

In this section we prove convergence of discrete norm βΓ(x, y) to continuous intrinsic norm
∥x− y∥Ω

∞. Firstly, we need to normalize β,

βΓN
N := βΓ

N
. (2.4.15)

For Γ = Z2 and convex domains we have an exact formula for β (2.4.1), which tells that
β(x, y) approximates sup norm up to a factor ±1/N . For other domains it still holds.

Let ΓN be an approximation of a domain with a boundary condition Ω. Then,

Proposition 2.4.5. ∃C > 0 such that ∀p, q ∈ ΓN viewed as points of Ω, the following holds

|βΓN
N (p, q) − ∥p− q∥Ω

∞ | ≤ C

N
(2.4.16)
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Proof. Let us take a path γ connecting x to y that minimizes integral from ∥x− y∥Ω
∞. Then,

cover γ by a family of open balls Bi ⊂ Ω that lie strictly inside Ω, γ ⊂
⋃C

i=1 Bi, let C be
their number. On each ball we have the convergence of βN (x, y) to ∥x− y∥Ω

∞ by formula
(2.4.1), which might give an error 1

N on each Bi. Thus, we have the desired estimate on Ω
up to an error of C

N .

Let domain Ω be a domain with a fixed boundary condition b : ∂Ω̃ → R. Further, let
(ΓN , BN ) be an approximation of (Ω, b), and let Hmax

N be the maximal extension of BN .
Then, Hmax

N approximates the maximal extension of b as N → ∞,

Proposition 2.4.6. Then for sufficiently large N and x ∈ ΓN viewed as point of Ω,

|Hmax
N (x) − hmax(x)| ≤ O(N−1) (2.4.17)

Note that there is a lattice analog of the formula of the maximal extension, where we
take the minimum is taken over points of ∂Γ instead of ∂Ω. Recall the expression of maximal
extension of b,

hmax(x) := min
y∈∂D(Ω)

(b(y) + 2∥(x− y)∥∞) (2.4.18)

the lattice analog of it is the following,

hmax
#,N (x) := min

y∈∂D(Γ)
(b(y) + 2∥(x− y)∥∞). (2.4.19)

By the Lipschitz condition, hmax
#,N approximates hmax up to an error of order O(N−1). Denote

approximations obtained this way by subscript #, N . Now, let us prove Proposition 2.4.6.

Proof. The maximal extension of BN is

Hmax
N (x) := Hmax/N = min

y∈∂D(Γ)
(BN (y) + βN (x, y)). (2.4.20)

It approximates Hmax
N (x) up to O(N−1) due to the fact that |βN (x, y) − 2∥(x− y)∥∞|Ω ≤ C

N
for C > 0 independent of x, y. Thus, it approximates hmax.

2.4.5 Density lemma

Now we are ready to prove the density Lemma, In the proof we use the following tautological
way to express a Lipschitz function in terms of its own values,

h(x) := min
y∈D(Ω)

(h(y) + 2∥(x− y)∥Ω
∞). (2.4.21)

We use the lattice version of the above expression for the lattice 1
N Z2 that gives us an

approximation of the function.

h#,N (x) := min
y∈D(Γ)#

N

(h(y) + 2∥(x− y)∥Ω
∞) (2.4.22)

It is clear that h#,N approximates h to within an error of order of O(N−1) due to the
Lipschitz condition.

Theorem 2.4.7 (The Density lemma). Let (ΓN , BN ) be an approximation of (Ω, b). Then,
∃C > 0 such that for every h ∈ H (Ω, b) there exists a sequence of normalized height
functions HN , such that ∥h −HN ∥Ω

∞ ≤ C
N .

Vice versa, ∃C ′ > 0 such that for every normalized height function HN on (ΓN , BN )
there exists an asymptotic height function h ∈ H (Ω, b) such that ∥h −HN ∥Ω

∞ ≤ N−1C ′.
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Proof. The strategy is to use (2.4.21) and (2.4.22) for the function h and its lattice analog
for discrete height functions.

Recall that a function c′
y : x 7→ c′ + β(x, y) satisfies the local rule as a function of x. Let

us define the partial height function that approximates h. For it let us take an infimum over
all height functions that are above h, one way of doing it is to take such a height function
at every lattice point, and then take infimum over these functions.

ĤN (x, γ) := min
y∈D(Γ)

(⌊h(y, γy)⌋p0
+ βN (x, y)), (2.4.23)

where ⌊h(y, γ)⌋p0
means the following: first, we need to take the integer part of N × h(y, γ),

second we subtract the fractional part of N × (h(p0, γ) − β(p0, x)) modulo 4, so that the
value of height functions under the infimum coincide modulo 4 at point p0 as they should
by Lemma 2.4.1, and second we divide it by N . These modifications change ĤN by an error
of order Const

N , and guarantee that all the lattice operations are well-defined, thus we obtain
the height function.

Clearly ĤN approximates h#,N up to O(N−1) (see (2.4.22)), and thus approximates h.
Note that so far, ĤN is just a function on vertices of Γ̃N with some boundary conditions
that satisfy the local rule from Definition 2. However, we need to check all five properties
from Definition 2.3.3 to obtain the desired height function, so far we have only two of them,
the third and the fourth properties. The rest three can be in fact fixed by the right boundary
conditions since all these three properties are basically governed by the boundary conditions.

We can “balance” ĤN between the maximal and the minimal extensions of BN that may
change the height function only by O(N−1) due to the fact that ĤN is fit to h to within
O(N−1). After it, we have the desired normalized height function HN

HN := max(HN
min, (min(HN

max, ĤN ))). (2.4.24)

The proof of the second part of the statement easier, let us build such a function ĥ that
is simply a linear interpolation of values of HN at even points (points with even coordinates).
We take even points because of the jumps of the height function by ±3.

2.5 The Concentration Lemma

In this section we prove a concentration inequality for height functions on Ω̃. (We suppose
that Ω is a domain, b : ∂Ω → R can be extended to an asymptotic height function on Ω, and
(ΓN , BN ) is an approximation of (Ω, b)) Also, recall that HN (p) is the expectation value of
HN (p), then the concentration inequality is the following statement:

Lemma 2.5.1 (The Concentration Lemma). ∃ℓ(Ω) > 0 such that ∀C > 0 and for sufficiently
large N

PN

(∥∥∥HN −HN

∥∥∥
∞
> C

)
< exp

(
−C2N

ℓ(Ω)

)
. (2.5.1)

Proof. The idea of the proof is to deduce Lemma 2.5.1 from the concentration for a simply-
connected domain proved in Theorem 21 [CEP96]. Let us recall it.

Suppose that Γ is a tileable connected simply-connected lattice domain with boundary
values of height function B, uniform measure PΓ on the set of domino tilings of Γ. Take a
point p ∈ Γ in the interior of Γ such that there is a lattice path from p to ∂Γ with m vertices.
The concentration inequality from Theorem 21 in [CEP96] is the following statement:
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∀a > 0,
PΓ

N

(
|H(p) −H(p)| > a ·

√
m
)
< 2 exp(−a2/32). (2.5.2)

Recall the proof of this result. Let us fix a path (x0, . . . , xm) with m+ 1 vertices from
∂Γ to the p. Then, the authors considered a filtration of σ algebras Fk generated by
outcomes of H(xi) for i ≤ k (H(x0) is fixed since x0 ∈ ∂Γ). Then, they took the conditional
expectation value at point p with respect to Fk, Mk = E(H(v)|Fk). By the tower property
for conditional expectations, Mk = E(H(v)|Fk) form a martingale with bounded increments,
that is E(Mk+1|Fk) = Mk, which after applying Azuma’s inequality gives the concentration
inequality.

Let us renormalize the concentration inequality (2.5.2) for a large N as follows. Denote
PΓ

N the uniform measure on domino tilings of ΓN . Then divide by N inequality in the
left-hand side of (2.5.2) to get that

PΓ
N (|HN (p) −HN (p)| > N−1a ·

√
m) < 2 exp(−a2/32). (2.5.3)

Choose a such that C = N−1a
√
m. The length of a path m behaves for large N as

m ≈ ℓ′(Ω, p)N . The quantity ℓ′(Ω, p) is approximately the length of the shortest path
inside Ω from point p ∈ Ω to ∂Ω. Let us define ℓ′(Ω) := maxp ℓ(Ω, p), which is finite due to
compactness of Ω.

The resulting concentration inequality so far is the following,

PΓ
N (|HN (p) −HN (p)| > C) < 2 exp

(
− NC2

32ℓ′(Ω)

)
, (2.5.4)

To obtain the probability PΓ
N (
∥∥∥HN −HN

∥∥∥Ω

∞
≥ C), we need to sum over all point p ∈ Γ

probabilities that |HN (p) −HN (p)| ≥ C,

PΓ
N

∥∥∥HN −HN

∥∥∥Ω

∞
> C) =

∑
p∈Γ

P(|HN (p) −HN (p)| ≥ C) (2.5.5)

The number of terms in the letter expression is bounded from above by N2|Ω|, where |Ω| is
the area of Ω, which is due to the fact that the number of vertices of ΓN is approximately
|Ω| ×N2,

PΓ
N

(∥∥∥HN −HN

∥∥∥Ω

∞
> C

)
< 2|Ω|N2 exp

(
− C2N

32ℓ′(Ω)

)
. (2.5.6)

One can further choose an ℓ(Ω) < 32ℓ′(Ω)) to absorb the prefactor 12|Ω|N2 for sufficiently
large N , and factor 32 in front of ℓ′

PΓ
N

(∥∥∥HN −HN

∥∥∥Ω

∞
> C

)
< exp

(
−C2N

ℓ(Ω)

)
. (2.5.7)

Once we have a multiply-connected domain Γ, the situation slightly changes, however,
the original bound still holds. In fact, there are two ways to get the desired inequality.

The first way is a straightforward repetition of the same arguments as in Theorem 21 in
[CEP96]. One can always find a lattice path from a vertex of Γ̃0 to its boundary, where
boundary values of the height function are fixed, and then apply the same arguments with
the Azuma inequality.

Another way is to notice that it is sufficient to show the concentration inequality on
D(Ω) by Proposition 2.2.3. Since Γ ∩ D(Ω) is a finite simply-connected domain, therefore
we can use theorem 21 from [CEP96] in the form of Lemma 2.5.1.
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2.5.1 Piecewise linear approximations of asymptotic height functions

In this subsection we recall piecewise linear approximations of Lipschitz functions that we
use in the proofs.

Let us take ℓ > 0 and take a triangular mesh with equilateral triangles of side ℓ. We
map an asymptotic height function h ∈ H (Ω) to a piecewise linear approximation, that
is linear on every triangle, moreover it is a unique linear function that agrees with h at
vertices of the triangle. Let us denote this approximation of h by ĥ. In Lemma 2.2 [CKP00]
the authors show that in a simply-connected domain, h approximates ĥ on the majority of
triangles. In a multiply-connected domain, we can build a piecewise linear approximation of
h on D(Ω). Moreover, one can use such a triangulation of Ω that ∂D(Ω) consists of sides of
the triangles. The resulting approximation ĥ has the same increments between connected
boundary components νi and νi+g as h. The latter fact allows us to extend ĥ to Ω̃ with the
same monodromy data as h and with the desired approximation property. Thus, we have
the following.

Claim 1. Let h ∈ H (Ω) be asymptotic height function and let ε > 0. Then for sufficiently
small ℓ > 0, on at least 1 − ε fraction of the triangles in the ℓ-mesh that intersect Ω, we
have the following two properties: first, piecewise linear approximation hℓ is fit to within εℓ
to h. Second, on at least 1 − ε fraction(in measure) of points x, ∇h(x) exists and is within
ε to ∇hℓ.

2.5.2 The cutting rule

Suppose that we have a domain with a boundary condition (Γ, b) and a subset ρ on the
dual lattice from the boundary of Γ to itself (thus, Γ/ρ consists of several components, let
us denote them Γi). We want to calculate the partition function of Γ and one way to do it is
to calculate partition functions Z(H(ρ)) with the given height function H(ρ) along ρ. Then
to sum up Z(H(ρ)) over all H(ρ). The result is the original partition function because we
just permute terms in a finite sum.

Then, we can interpret each Z(H(ρ)) as the product of the partition functions saying
that ρ cuts Γ.

Z(Γ, κ) =
∑
Bρ

∏
i

Z(Γi, Bi
ρ) (2.5.8)

where Bi
ρ is the boundary height function on Γi that coincide with the original boundary

height function B and Bρ where it is possible.

2.5.3 Surface tension

Recall from [CKP00] that the asymptotic growth rate σZ2(s, t) of the number of domino
tilings of a rectangle N×N with periodic boundary conditions with the slope (s, t) is defined
by the following formula as N → ∞,

Z(RN (s, t)) ≈ exp
(
−N2σZ2(s, t) +O(N)

)
. (2.5.9)

The precise expression of σZ2(s, t) is the following. Recall the Lobachevsky function L(z) =
−
∫ z

0 log |2 sin t|dt and quantities pa = pa(s.t), pb = pb(s.t), pc = pc(s.t), pd = pd(s.t) that are
determined by expression (2.5.11). Then, the surface tension is the following function,

σZ2(s, t) = −1/π (L(πpa) + L(πpb) + L(πpc) + L(πpd)) . (2.5.10)
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The probabilities of four types of dominoes pa, pb, pc and pd that are determined by the
following system in the limit as N → ∞ [CKP00],

2(pa − pb) = t,

2(pd − pc) = s,

pa + pb + pc + pd = 1
sin(πpa) sin(πpb) = sin(πpc) sin(πpd).

(2.5.11)

2.6 The variational principle

In this section we formulate and prove Theorem 2.1.2 and its corollary,Theorem 2.6.2.

2.6.1 Statement of theorems

Suppose Ω is a domain with an boundary condition b and let (ΓN , BN ) be an approximation
of (Ω, b), further r is a continuous height change.

We also need to assume that the boundary condition b is non-degenerate, that is it admits
an extension to an asymptotic height function h whose gradient is in the interior of the
newton polygon N on the set of positive measure. We need to assume this to guarantee the
uniqueness of the limit shape h⋆, which is not the case for pathological boundary conditions,
which could have only linear extensions of slope ∂N , i.e., extensions with only frozen regions,
where we can not use convexity of σZ2 .

Also recall that HN := 1
NH is a normalized height function together with the normalized

height change 1
NRN . Finally, let h⋆ be the unique minimizer of F over H (Ω, b). And let r⋆

be the continuous height change of h⋆. Then,

Theorem 2.6.1. In the limit as N → ∞

lim
N→∞

|Ω|−1N−2 logZ (ΓN , BN ) = −F(h⋆) = −
∫∫

Ω
σZ2(∇h⋆)dxdy. (2.6.1)

Moreover, there exists ℓ > 0 such that for all δ > 0 as N → ∞ we have

PN

(
max
xN ∈Γ

|HN (xN ) − h⋆(xN )| > δ

)
≤ exp

(
−Nδ2

ℓ

)
. (2.6.2)

and RN converge to r⋆ with respect to PN as N → ∞.

This theorem can be formulated for a fixed height change r ∈ Rg, assume also that
1
NRN → r and N → ∞. Then we have the following Corollary,

Theorem 2.6.2. There exists h⋆
r ∈ H (Ω, b, r) such that in the limit N → ∞ and then

δ → 0
lim

N→∞
|Ω|−1N−2 logZ (ΓN , BN , RN ) = −

∫∫
Ω
σZ2(∇h⋆

r)dxdy. (2.6.3)

Furthermore, there exists ℓ > 0 such that for all δ > 0 and N → ∞ the following holds,

PR
N

(
max
xN ∈Γ

|HN (xN ) − h⋆
r(xN )| > δ

)
≤ exp

(
−Nδ2

ℓ

)
. (2.6.4)

In the remaining section we prove Theorem 2.6.1 in three steps, and deduce from it
Theorem 2.6.2. The steps are
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2.6.2 Convergence of height functions to the limit shape

Here, we give a proof of a law of large numbers for height function. More precisely, we show
that a normalized height function converges in both regimes to its expected value that is
approximately the unique solution to the variational problem. We write it for an arbitrary
height change, and later discuss the modifications for a fixed height change.

Consider a sequence {HN } of expectation values of normalized height functions on
(ΓN , BN ). We know that by Theorem 2.4.7 there exists a sequence of asymptotic height
functions {hN }, such that

∥∥∥hN −HN

∥∥∥Ω

∞
≤ C

N . By Proposition 2.4.4 {hN } has a convergent
subsequence, denote its limit by h. Without loss of generality, we suppose that the convergent
subsequence is {hN } itself. We will see later that h = h⋆

Lemma 2.6.3. One can find such an ℓ′ that for ∀δ > 0 and for sufficiently large N

P(∥HN − h∥Ω
∞ > δ) ≤ exp(−Nδ2/ℓ′). (2.6.5)

Proof. We deduce it from a combination of Lemma 2.5.1 applied to HN and convergence of
hN to h. The goal is to show that the inequality ∥HN − h∥Ω

∞ ≤ δ holds for sufficiently large
N with probability exponentially close to 1.

By the triangle inequality we have
‘

∥HN − h∥Ω
∞ ≤

∥∥∥H̄N − hN

∥∥∥Ω

∞
+ ∥hN − h∥Ω

∞ +
∥∥∥HN − H̄N

∥∥∥Ω

∞
. (2.6.6)

The first term in the right-hand side of (2.6.6) is smaller than δ/3 for sufficiently large
N by definition of hN , that is by Lemma 2.4.7 we have C > 0 such that

∥∥∥hN − H̄N

∥∥∥Ω

∞
< C

N ,
which is smaller than δ/3 for sufficiently large N . The second terms of (2.6.6) is smaller
than δ/3 for sufficiently large N due to convergence of hN to h, which holds by definition of
h.

The third term (2.6.6) is smaller than δ/3 with the probability 1 − exp(− δ2N
ℓ ), where

we defined ℓ = 3ℓ′ for ℓ′ from Lemma 2.5.1. Therefore, we have ∥HN − h∥Ω
∞ > δ with

probability bounded by exp(−Nδ2/ℓ′).

So far, we know that up to extracting a subsequence, normalized height functions
converge with respect to the uniform norm in probability to h and the contribution of height
functions that are far away from h are exponentially suppressed. Thus, h is the limit shape.
Since height change RN is a continuous function of HN , it converges to the height change of
the limit shape, which is r. Later, we prove that h = h⋆.

2.6.3 Convergence of partition function

Let us show that one can find an asymptotic expression of the partition function, which is
a straightforward corollary of the convergence of height functions to the limit shape. The
following proof holds for a fixed height change r after replacing h by hr and Z(ΓN , BN ) by
Z(ΓN , BN , RN ).

Define UN
δ (h⋆) to be the set of height functions on ΓN that are fit to within δ to h⋆,

∥HN − h⋆∥Ω
∞ ≤ δ.

Then, the following holds due to the concentration inequality above,

PN ∥HN − h⋆∥Ω
∞ ≤ δ) = 1 − PN (∥HN − h⋆∥Ω

∞ > δ). (2.6.7)
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Or more precisely,
Z(ΓN , BN |h⋆, δ)

Z(Γ, BN ) = 1 +O(exp(−δ2N/ℓ)). (2.6.8)

Now, let us take the logarithm of both sides and normalize them by N−2. Also introduce
the notation S(N, δ) := 1 +O(exp(−δ2N/ℓ)) for the simplicity.

N−2 logZ(ΓN , BN ) = N−2 log(Z(ΓN , BN |h⋆, δ)) +N−2 log(S(N, δ)). (2.6.9)

Now we can take limit as N → ∞ to make logS(N, δ) converge to zero. Finally, we
obtain the desired expression by Theorem 2.8.1,

N−2 logZ(ΓN , BN ) −−−−→
N→∞

−F(h⋆). (2.6.10)

2.6.4 The Surface tension functional and the limit shape

We still need to show that h minimizes F , that is h = h⋆. Again, it follows easily from the
concentration of height functions around h.

Assume that h ̸= h⋆. We need to show that F(h) ≥ F(h⋆). Suppose the opposite, that is
F(h) < F(h⋆). By Theorem 2.8.1, F(h⋆) (resp.F(h)) is the limit of the normalized number
of domino tilings whose normalized height functions are fit within δ to h⋆ (resp.h) for δ → 0.
Then, we can use that normalized height functions HN concentrate around h, which can be
separated from h⋆ by the choice of a smaller δ > 0. The contradiction follows from the fact
that the overwhelming majority of domino tilings are δ-close to h, but not to h⋆ and thus,
we are done.

The proof for the fixed asymptotic height change r works the same way after replacing
of h by hr.

2.7 Existence of the minimizer
Here we show the existence of solution of the variational problems, for an arbitrary height
change, and for a given asymptotic height change.

Before formulating the theorems, we need an extra assumption on the boundary con-
ditions. Recall that σZ2 : N → R is convex only in the interior of N , thus in order to
guarantee the uniqueness, we must have ∇h ∈ N ◦ on a set of positive Lebesgue measure.
Therefore, call a boundary condition non-degenerate if it admits an extension to such an
asymptotic height function h that there exists a proper subset Ω′ ⊆ Ω that ∀pΩ′ ∇h(p) ∈ N ◦.
This way we have a subregion of Ω where we can use the strict convexity of σZ2 following
proposition 2.4 from [CKP00]. It is easy to construct counterexamples in the situation
where this condition does not hold, and the boundary condition admits two different totally
frozen extensions, see discussion of figure 39 from [CSW23].

Proposition 2.7.1. There exists a unique minimizer h⋆ of F over the space H (Ω,m, b).
There exists a unique minimizer h⋆

r of F over the space H (Ω,m, br, r).

Proof. Consider a fundamental domain D(Ω) for action of π1(Ω) on the universal covering
space of Ω. Recall that by Proposition 2.2.3, it is sufficient to find a minimizer of F on
D(Ω).

The boundary ∂D(Ω) consists of two parts, ∂D(Ω) = ∂Ω⊔ ∂D1(Ω), the first one is
supplemented with boundary condition b and the other one is the union of 2g curves {υi}2g

i=1
matched in pairs υi, υ

′ with free boundary conditions subject to periodicity across the pairs
so that the values on υi coincide with the values on υ′

i(recall that υi and υ′
i were obtained

by the cut along the curve γi)
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The space H (Ω,m, b)(resp. H (Ω,m, br, r)) is compact by Theorem 2.4.4. Then, F is
upper semi-continuous on spaces H (Ω,m, br, r) and H (Ω,m, b). This follows from Lemma
2.1 from [CKP00], which uses only the convexity of σZ2 and the Lipschitz condition, and
thus, trivially extends to partially free periodic boundary conditions.

Therefore, there exists the minimizer h⋆ of F on H (Ω,m, b) (resp. there exists the
minimizer h⋆

r on H (Ω,m, br, r)). By the same convexity argument as in Lemma 2.4 from
[CKP00], this minimizer is unique.

A priori h⋆ and h⋆
r depend on a particular choice of the fundamental domain D(Ω).

However, since gradients of functions from H (Ω̃, b) are well-defined objects on Ω by Lemma
2.2.1 and σZ2 is strictly convex everywhere in the interior of the domain of definition [CKP00;
KOS06], we can use Proposition 4.5 from [DS08] to show uniqueness. See also the discussion
in Section 5.6 in [ADPZ20].

2.8 The Surface Tension Theorem.
In this section we formulate Theorem 2.8.1 and give a proof of it.

Theorem 2.8.1. Let Ω be a domain in R2 and h ∈ H (Ω, b). Suppose that (ΓN , BN ) is an
approximation of (Ω, b).

Then, for ∀δ > 0 sufficiently small,

lim
N→∞

sup
∣∣∣∣ 1
|Ω|

N−2 logZ(ΓN , BN | h, δ) +
∫

Ω
σZ2(∂xh, ∂yh)dxdy)

∣∣∣∣ = oδ(1), (2.8.1)

Mind that we have a plus sign since we subtract a negative quantity, that is −
∫

Ω σZ2(∂xh, ∂yh)dxdy).

Proof. Fix a fundamental domain D(Ω) with branch-cuts made along curves {γi}g
i=1.

For the proof we need a triangular mesh a side length ℓ and piecewise linear approxima-
tions of Lipschitz functions from Claim 1. Consider a triangular mesh of length size ℓ that
triangulates D(Ω) into triangles T j of the standard area A(T j). Let also hℓ be the piecewise
linear approximation of h that is linear on each triangle and coincides with the values of h
at the vertices of the triangles.

Then, we choose small ε and take ℓ such that ℓε < δ, and on at least at 1 − ϵ fraction of
points of a triangle in measure we have two properties: first, |hℓ − h| ≤ ℓε, and second, the
gradient of h exists and fit within ε to the gradient of hℓ in ℓ2 norm, which is possible by
Lemma 2.2 [CKP00]. We need these properties in order to write F(hℓ) = F(h) + oδ(1) as
ε → 0.

Let us use the (2.5.8) for a subset ρ obtained from the intersection of the triangular mesh
with the domain. Note that the subset ρ cuts ΓN into triangles with boundary conditions
along ρ. Denote the triangles by {T j} and their boundary height functions by {Bj

ρ}.

Z(ΓN , BN |h, δ) =
∑
bρ

Z(ΓN , Bρ|h, δ) =
∑
bρ

∏
j

Z(T j , Bj
ρ|h, δ), (2.8.2)

There are two types of triangles {T j}. The included triangles (the first type) that do
not intersect the boundary of the fundamental domain and where hℓ is fit to within ℓε to h.
The excluded triangles (the second type) intersect the boundary of the fundamental domain
or where hℓ does not approximate h.

We make an upper and a lower bound for the normalized partition function
N−2logZ(ΓN , BN |h, δ). In both cases, we can estimate the two types of triangles separately.
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For the included triangles we use Corollary 4.2 from [CKP00], and for the excluded we make
a rough estimate. Then, after taking limit as N → ∞, the normalized estimates differ from
each other by oδ(1).

2.8.1 The lower bound.

In the lower bound, it is sufficient to include some height functions that are δ-close to
h. To do this, we can take only one term from (2.8.2) corresponding to one boundary
height function Bρ (for instance, we can take Bρ obtained from the restriction of H ′

N )
(Theorem 2.4.7 gives us a sequence of normalized height functions {H ′

N } that converges to
h as N → ∞).

Let us estimate the triangles of the first type by the product that includes only triangles
of this type.

Z(ΓN , BN |h, δ) ≥
∏

Tjof 1st type
Z(T j , Bj

ρ|hℓ, δ) (2.8.3)

The bound for the included triangles obtained by using Corollary 4.2 [CKP00] to count
δ-close height functions to make sure that we include only height functions δ-close to h.
Thus, for triangles of the first type, we have the following,

N−2 log
∏

Tjof 1st type
Z(T j , Bj

ρ|hℓ, δ) =
∑

Tjof 1st type
−σZ2(sj , tj)×A(T j)+o(N−1)+O(ε1/2 log ε),

(2.8.4)
where (sj , tj) is a slope of hℓ on the triangle T j and A(T j) is the area of the triangle T j .
Finally, for sufficiently large, N the lower bound is the following,

N−2 logZ(ΓN , BN |h, δ) ≥
∑

j

(−σZ2(sj , tj))A(T j) + o(N−1) +O(ε1/2 log ε), (2.8.5)

where we fixed a height function on the excluded triangles to be H ′
N .

2.8.2 The upper bound.

We can use almost the same strategy to make an upper bound. First, we have to include
all height function δ-close to h. Let us estimate the included triangles the same way as
for the lower bound to count height functions δ-close to h. For the excluded triangles we
make a rough estimate since the area of those triangles is proportional to ε, the number of
configurations is bounded from above by exp(ε) times the number of terms in the cutting
rule, which is 2O(N) since it is the number of configurations of a line of size N .

Z(Γ, BN |h, δ) ≤
∏

Tjof 1st type
Z(T j , Bj

ρ|hℓ, δ))2O(N) +N2ε (2.8.6)

And after taking limit as N → ∞, the normalized upper bound is the following, where terms
O(N−1) and O(ε) come from the bounds of triangles of the second type.

N−2 logZ(Γ, BN |h, δ) ≤
∑

j

(−σZ2(sj , tj))A(T j) + o(N−1) +O(ε1/2 log ε) +O(ε). (2.8.7)

Taking into account that
∫

Ω σZ2(∇hℓ)dxdy = ∑
j σZ2(sj , tj)A(tj), one can see that both

bounds after dividing by the area of Ω are equal to F(hℓ) + o(N−1) + O(ε1/2 log ε) that
differs from F(h) by oδ(1) by Lemma 2.3 from [CKP00].
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2.9 Final remarks

As mentioned in [Gor21], there are two approaches in studying random domino tilings of a
multiply-connected domain Γ that are equivalent for a simply-connected domain.

The first approach is looking at domino tilings of Γ with the uniform measure P defined on
them. In this framework, one might be interested in fluctuations either of a height function
or a height change. For instance, in [BGG17] the authors showed Gaussian fluctuation of
normalized height change 1

NRN using the method of log-gaze.
The second option is fixing a boundary height function BR with the height change R and

looking at uniformly random height functions that extend BR to Γ. Denote PR
N the uniform

measure on such extensions, which is just PN conditioned to have the fixed height change R.
This approach suits a random surface point of view on tilings, where we look at a plot of a
height function as a random stepped surface. Computer simulation of domino tilings with
different height change in 2.9.4 shows that this parameter is extremely important. Results
in this direction include the first description of a non-simply-connected domain in [BF08].
The authors proved a law of large numbers and a central limit theorem for domino tilings of
so-called holey Aztec diamond. Up to our knowledge [BG19] is the only work that deals
with multivalued height functions, yet the authors do not find h⋆ explicitly or characterize
it besides the law of large numbers. Other works focused on a problem of random lozenge
tilings of multiply-connected domains with monodromy-free height functions. In [KO05] the
analysis using the complex Burgers equation was done with an example of a frozen(Arctic)
curve in a non-simply-connected region. In recent years there also appeared combinatorial
works with enumerating results by M. Ciucu et al. for example see [CL19]. Further results
are obtained using the tangent method by P.Di Francesco et al. in [DDG20], where the
authors have found the frozen curve for quarter-turn symmetric domino tilings of a holey
Aztec square, which is a multiply-connected domain with a hole of a finite size.

Also, the idea of defining a height function on Ω̃ in a different notation is already known,
for instance [BLR19].

2.9.1

The case of a hole of a finite size, as in [DDG20], can be, probably, analyzed in our framework
as follows. Since the hole converges with respect to Hausdorff distance to a point (x0, y0)
as N → ∞, we left with one parameter that encodes the height of (x0, y0). So, we need
to modify the space of function by fixing the value of height functions at (x0, y0). As the
result, one would expect conic singularities of the limit shape as it is approaching the point
(x0, y0), as in a similar example noted in [KO05].

2.9.2

Let us recall that a flip of a domino tiling is a replacement of two adjacent vertical dominoes
by two adjacent horizontal dominoes. The property of domino tilings of a simply-connected
region Γ is that any two domino tilings are related by a sequence of flips [Thu90; STCR95].
In other words, the set of domino tilings forms one orbit under the action of flips. This
property is in the core of computer simulations of random domino tilings [PW96]. Thus,
the simulation algorithm of uniformly random domino tilings should include an extra move
that change R. This move is a cyclic rotation of dominoes along the non-trivial loop. See
details in [DDG20].
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Figure 2.7: Two domino tilings of AD1 with height change R1 = 3 on the right figure and
R1 = 7 on the left. The crossed squares are missing from the domain.

2.9.3

Let us define our main example, the modified Aztec diamond ADN . Also, we explain certain
features of ADN and possible ways to analyzing it.

Recall that the Aztec diamond of order N is the union of unit squares on Z2 whose
centers (x, y) satisfy |x| + |y| ≤ N . Let N = 4k, k ∈ N and introduce the Aztec diamond
with a modified constraint AD◦

N , N/4 ≤ |x| + |y| ≤ N . The boundary of AD◦
N consists

of two connected components, the external boundary and the internal one. For our main
example we make four defects to the latter boundaries, that is consider AD◦

N and add N/4
squares in the following four locations, right upper and left bottom external boundaries(resp.
left upper and right bottom internal boundaries). See an example of AD1 on Figure (2.7).
A height function on this domain has monodromy M = 8. It is not hard to check using a
checkerboard coloring that ADN is tillable for arbitrary N = 4k, k ∈ N.

One interesting property of ADN is an emergence of two paths on the top and on
the bottom of it that can be clearly seen on Figure (2.2). These paths exist in all the
domino tilings of ADN , which can be seen from the parametrization of domino tilings by
non-intersections paths via bijection with non-intersecting line ensemble as in Figure 2.8.

Recall that a frozen region is the set of points of Ω where fluctuation of HN disappears
as N → ∞, the boundary of the frozen region is called a frozen(arctic) curve. The paths
mentioned above approximate the tangent lines to the arctic curve. This property is in the
core of the heuristics of the tangent method [CS16], which reconstructs the arctic curve from
its tangent lines. Recently, this method was proved for a particular case of the six-vertex
model, the ice-model on a three-bundle domain [Agg19]. We think that this technique can
be used to determine the Arctic curve in our situation. We leave it for future work.

Figure 2.8: Bijection between domino tilings and non-intersecting line paths

More interestingly, one can modify the definition of ADN by changing the size of the
defects and obtain a one-parameter family of domains and frozen curves. See Section 2.9.4
for simulations of ADN,M with different defects.

2.9.4 Computer simulations of the modified Aztec diamond.

Here, we present simulations of random domino tilings of ADN made for a randomly-chosen
height change r. The simulations are obtained using the following Markov chains, where the
main difficulty is to generate a random height change, which cannot be done using local
moves i.e., flips. First, we create an initial tiling of the multiply-connected region by Kuhn’s
algorithm. Second, we find tilings with the maximal, and minimal height change. Third, we
superimpose our initial tiling with the maximal/minimal one, which consist of cycles. Then,
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we rotate randomly along these cycles to generate a random height change. The probability
whether to rotate or not along a cycle C is proportional to exp(−L(C)), where L(C) is the
length of C. We introduced this weight because otherwise the algorithms does not stabilize
due to rotations along big cycles. After it, we perform flips to generate a random tiling with
the height change obtained before.

Also, we used another, yet similar, algorithm. In this earlier version, we begin with an
initial tiling obtained by Kuhn’s algorithm. Then, we perform flips until the picture becomes
uniform, and then we delete the inner Aztec diamond from the graph. Then, we apply
Kuhn’s algorithm again to compete the tiling, and flip it once again until the configuration
becomes uniform. This way we were able to generate random tilings with monodromy. The
previous algorithm requires existence of the highest and lowest configurations, which do not
exist for the domain with monodromy.

We did not prove that the resulting distribution is uniform. However, we expect that it
is almost uniform, since the only stationary(i.e., invariant) distribution under action of flips
is the uniform distribution.

Figure 2.9: A domino tiling of AD50 with M = 50 and R = 88.
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Figure 2.10: A domino tiling of AD50 with M = 100 and R = 72

Figure 2.11: A domino tiling of AD50 with M = 150 and R = 76
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Figure 2.12: A domino tiling of AD50 with M = 200 and R = 88

Figure 2.13: A domino tiling with the minimal height change R = −300. Almost all the
dominoes are vertical.
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Figure 2.14: A typical domino tiling with the minimal height change R = −300.



Chapter 3

A variational principle for the dimer model in
multiply-connected domains

Abstract

We study random dimer covers of a large multiply-connected domain of a doubly-
periodic lattice with arbitrary positive weights. We encode such a dimer cover by the
discrete height function defined on a universal cover of the domain. It allows us to
prove that in the limit as the domain grows, the random normalized height function
converges to a deterministic continuous Lipschitz function h⋆. Moreover, this function
can be found as a unique minimizer of a certain convex functional.

3.1 Introduction to the dimer model on generic lattice

In this Chapter, we extend results from Chapter 2 for generic lattice. The main strategy
remains the same, but some key players need to be changed. The main difference is that
we work with the dual graph to the one in Chapter 2, and instead of the lattice Z2, we
work with Z2-periodic lattice Λ. It means that instead of domino tilings, we are dealing
with the perfect matching of the dual graph. It also requires a change in notations for the
height function, which becomes a function on the faces of the dual graph. These changes,
however, still allows formulation of the thermodynamic limit as the mesh of the lattice goes
to 0. In asymptotic description, we, basically, repeat the same steps. The main difference is
that here we prove the concentration inequality since we cannot apply them directly from
[CKP00], as we did in Chapter 2.

3.1.1 Dimer covers

In this subsection we recall basic facts of the dimer model on a planar bipartite graph for
further details see [Ken09; KOS06].

Let Γ be a finite bipartite planar graph with the set of vertices V(Γ) and set of edges
E(Γ). A dimer configuration, also known as a dimer cover, on Γ is a subset of edges called
dimers D ⊂ E(Γ) such that each vertex of Γ is adjacent to exactly one dimer from D.
Denote the set of dimer configurations on Γ by Conf(Γ). One can orient edges from white
vertices to black ones, call this orientation the bipartite orientation.

One of the basic operations over dimer covers is rotation along a cycle, see 2.3.2 in
[KOS06]. Suppose γ := (b1.w1, b2, w2, · · · , bk, wk, bk+1) is a cycle on Γ with bi being black
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vertices, and wi being white ones with bk+1 = b1. There are two dimer covers of γ, Dγ

consisting of edges {(bi, wi)}k
i=1, and the other one formed by the edges {(wi, bi+1)}k

i=1.
Once we take a dimer cover D that includes Dγ , we can always get another dimer cover that
coincides with D everywhere except on γ, which we cover by the second dimer configuration
of γ. The resulting dimer cover is called the rotation of D along cycle γ and denoted D∆γ.

Having two dimer configurations D and D′ on Γ define their symmetric difference
C(D,D′) := D ∪ D′/D ∩ D′. Connected components of C(D,D′) are called composition
cycles of dimer configurations D and D′. Also note that one can orient D′ in the opposite
direction to the bipartite orientation, which orient composition cycles of D and D′ compatibly
with orientation of D, see Figure 3.1. Clearly, definitions of composition cycle and rotation
along cycle allow us to express the dimer configuration D′ in terms of dimer configuration
D and their composition cycles C(D,D′), D∆(C(D,D′)) = D′, see example on Figure3.1.

Figure 3.1: Example of dimer covers D in bold, and D′ in dashed. Their symmetric difference
C(D,D′) is the hexagon with one composition cycle, the clockwise oriented hexagon.

3.1.2 Boundary condition of dimer cover

We also need dimer covers with a given boundary condition, and prior to that define
boundary ∂Γ to be the subgraph of Γ that consists of one-valent vertices (boundary vertices)
V(∂Γ), one-valent edges (boundary edges) E(∂Γ) and boundary faces F(∂Γ), which are
adjacent to E(∂Γ) and V(∂Γ). We call vertices V(Γ) \ V(∂Γ) internal vertices, similarly for
edges and faces.

A dimer configuration D on Γ induces a partition of V(∂Γ) into a subset of vertices
occupied by dimers and the other ones. Let us denote the set of occupied boundary vertices
by α ⊂ V(∂Γ). Now, a dimer cover with a boundary condition α is a set of edges of Γ that are
adjacent to all internal vertices of Γ, and to all vertices of α. See example on Figure 3.2. Here,

Figure 3.2: Example of Γ non-trivial boundary. See description in Discussion (3.1.2)

the boundary vertices V(∂Γ) = {w4, b4, b5}, boundary edges E(∂Γ) = {(w4, b1).(w3, b5)}
and the boundary faces F(∂Γ) = {f0, f2, f3}. It is important that the graph Γ itself does not
admit any dimer configurations, we simply have 5 black vertices and 4 white ones. However,
if we look at dimer configurations with α = (w4, b4), there is a dimer configuration with this
boundary condition α(we could also choose b5 instead of b4).
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3.1.3 Height function

A common way of encoding a dimer cover D is through a discrete function, so-called the
height function HD. This parametrization is suitable for the scaling limit, where the height
function is going to approximate a continuous Lipschitz function.

In order to define HD, recall that symmetric difference between two dimer covers D,D′

consists of oriented loops denoted by C(D,D′). Also, note that D and D′ are related by a
rotation along C(D,D′).

Each dimer cover D defines a white to black flow φ(D) on edges of Γ, which takes the
value +1 for an edge with a dimer oriented with respect to bipartite orientation. Once we
have two such flows φ(D), φ(D′) their difference φ(D) − φ(D′) is divergence-free flow, at
each vertex of Γ two flows either coincide and cancel each other, or one goes to the vertex,
whereas the other goes from the vertex.

The total flux of it between two faces, a fixed reference face f0, and f along a path γ is
defined as follows. The path intersects C(D,D0) at edges ei where (φ(D) − φ(D0))(ei) ̸= 0.
Let us denote the set of such edges as ei ∈ γ ∩ C(D,D0). Then, using the bipartite
orientation, we can attach a sign +1 for each intersection in a positive direction, and −1
otherwise, denote this sign ⟨(φ(D) −φ(D0))(ei), γ⟩. Now we can write an expression for the
height function as a sum of signs of the intersections along γ.

Definition 3.1.1. The height function is a map HD,D0 : Γ̃⋆ → Z defined by the following
two conditions,

1. HD,D0(f0, γ0) = 0 for fixed (f0, γ0) ∈ D(Γ)

2. Value at a face f can be computed as following,

HD,D0(f, γ) =
∑

ei∈γ∩C(D,D0)
⟨(φ(D) − φ(D0))(ei), γ⟩ (3.1.1)

Figure 3.3: Example of two dimer covers, D with fat edges, and D′ with dashed ones on the
left, and the corresponding height function on the right. Boundary faces are colored in gray.
The reference face f0 is the bottom left one.

This way the level sets of this function are precisely the composition cycles C(D,D′),
see Figure 3.3, Figure 3.4.

For a simply-connected Γ, i.e., without non-trivial loops, the height function does not
depend on γ, and has two important properties.

Proposition 3.1.2. 1. A reference face f0 with the value HD,D0(f0) uniquely determines
the function HD,D0 for given D and D0.
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Figure 3.4: Two dimer covers D1, D2 that agree at fat black edges, while disagree on the
red and on the blue edges(they form composition cycle C(D1, D2)). Height function HD1,D2

gets increment ±1 after going around the center. Here, the boundary of Γ is empty.

2. Boundary height function HD,D0

∣∣
∂Γ is fixed for given D0, f0.

Proof. Indeed, let us take two different paths γ1 and γ2. By the assumption, they are related
by a continuous transformation. Thus, this transformation will respect intersections of the
paths with composition cycles with their parity, and the values HD,D0(f, γ1), HD,D0(f, γ2)
differ by a rearrangement of the terms.

However, in graphs with non-trivial loops, these properties typically fail. A value
HD,D0(f) now may depend on the path γ, as we see on Figure 3.4. Dimer covers D and D0
from the figure have different boundary conditions, and their composition cycle goes from
one connected boundary component to the other one, which creates the monodromy after
going around the center.

Note that after going around a loop ψ, the value HD(f) changes by an additive mon-
odromy M(ψ).

HD(f, ψ ◦ γ) = HD(f, γ) +M(ψ). (3.1.2)

Later we assume that γ is such a path that (p, γ) ∈ D(Γ). This way, we define functions
on D(Ω), which determine them uniquely by Proposition 2.2.2.

After such a modification, we can recover the dimer cover D from HD,D0 and D0 even
on a multiply-connected graph. From the height function we know its level sets C ′(HD,D0),
thus we can get D from D0 by rotation of D0 along each C ′(HD,D0). This clearly recovers
the original dimer cover, this can be formulated as the following proposition,

Proposition 3.1.3 (Proposition 5.1 [CR08]). Elements of Conf(Γ) for a fixed reference face
f0 with a reference dimer cover D0 are in bijection with height functions HD0,D on Γ.

3.1.4 Height change and boundary heights

Once the composition cycle of two dimer covers D1 and D2 have a loop around a hole,
boundary conditions of HD1,D0

∣∣
∂Γi

and HD2,D0

∣∣
∂Γi

differ by 1, where Γi is connected
boundary component around that hole. Therefore, boundary condition splits into two parts.

Let us define the boundary condition of HD,D0 in a multiply-connected domain as a
fixed function on each connected boundary component {Bi}g

i=1 that does not depend on D
called boundary heights, and additive shifts {Ri}g

i=1 called the height change, which depend
on D.

Due to the above reasons, a boundary condition is a family of boundary heights Bi on
each connected boundary component ∂Γi such that HD,D0(f, γ)

∣∣
Γi

−HD,D0(fi, γ) = Bi(f)
for a base face fi ∈ F(Γi). One can further fix HD,D0(fi, γi) = Ri(D) for an integer constants
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Figure 3.5: Example of two dimer covers(their composition cycle consists of colored edges)
with different boundary heights.

Ri(D) called the height change of dimer cover D and a family of paths γi that stays inside
D(Ω). We also call a set of integers {Ri}g

i=1 an admissible height change if there is a dimer
cover this with height change.

Therefore, a boundary condition of the height function HD,D0 splits into boundary
heights {Bi}g

i=1 independent of D, and height change {Ri}g
i=1 that depend on D.

3.1.5 Pointwise maximum and minimum of height function, co-cycle
identity

One of the important property of the height function is co-cycle identity, which follows
immediately from Definition 3.1.1, see also section 5.2 [CR08],

HD,D1 +HD1,D2 = HD,D2 (3.1.3)

With this identity, it is easy to see that the pointwise maximum of two height functions
with a given reference dimer cover is again a height function.

Proposition 3.1.4. For any two given dimer covers D,D0 there exists such a dimer cover
Ď that the pointwise maximum (minimum) of two height functions HD,D0 and HD′,D0 is a
height function of Ď

max{HD,D0 , HD′,D0} = HĎ,D0
(3.1.4)

In fact, this is a generalization of the fact for the square grid. There, in a simply-
connected region any two domino tilings are linked by a sequence of flips. And to obtain
the pointwise maximum, we need to flip each square in case it increases the height.

Proof. Height functions of two dimer covers D and D′ differ by HD,D′ by the identity
(3.1.3), therefore their pointwise maximum ȞĎ corresponds to the dimer cover Ď that
can be obtained from D after rotation along cycles C(D,D′) which increase the value of
height function. Height change of HĎ,D0

is maximum between those of HD,D0 and HD′,D0 .
Similarly, one sees the analogous statement for pointwise minimum.

min{HD,D0 , HD′,D0} = HĎ,D0
(3.1.5)

where Ď is obtained from D after rotation along composition cycles C(D′, D) with the
opposite orientation compared with the situation with the pointwise maximum.
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3.1.6 Weight system and Boltzmann distribution on dimer configurations

Let us introduce a probability distribution on the set of dimer covers.
A weight system on Γ is a map from the set of dimer covers Conf(Γ) to positive numbers

R>0. A weight system w defines a Boltzmann distribution on the set of dimer covers. For a
D ∈ Conf(Γ) let us define its probability by (3.1.6),

P(D) := w(D)
Z(Γ) (3.1.6)

where D ∈ D(Γ) and Z(w; Γ) is a normalization constant called the partition function:

Z(Γ) =
∑

D∈Conf(Γ)
w(D). (3.1.7)

We shall focus on a particular type of weight systems called edge weight systems. Let us
assign to each edge e of Γ a positive real number w(e) called the weight of the edge e. The
associated edge weight system on Conf(Γ) is given by

w(D) =
∏
e∈D

w(e) (3.1.8)

where the product goes over all edges contained in D.
In statistical mechanics, these weights are called Boltzmann weights. Their physical

meaning can be expressed by the following formula:

w(e) = exp
(−E(e)

kT

)
, (3.1.9)

where E(e) is the energy of the dimer occupying the edge e, T is the absolute temperature
and k is the Boltzmann constant.

3.2 Doubly-periodic dimer model

Although the dimer model on generic graphs has lots of interesting features, we are mostly
interested in doubly-periodic graphs, which allow us to study asymptotic behavior of
dimer covers. Let Λ be a Z2-periodic bipartite planar graph. By this, we mean that Λ is a
bipartite graph embedded into the plane R2 so that translations of Z2 act by color-preserving
isomorphisms of Λ – isomorphisms which preserve the color of vertices.

Later on we will need finite sub-graphs of Λ, call them lattice regions. Λ is fixed in
all the following discussion. Two typical examples of such an Λ are a square lattice and a
honeycomb lattice.

We also need in the fundamental domain of Λ defined as Λ1 := Λ/Z2 and a torus made
of N ×N Λ fundamental domains, ΛN := Λ/NZ2. Let us fix D0 to be a dimer cover of Λ1
extended to a dimer cover of Λ by periodicity.

3.2.1 Doubly-periodic weight systems and Boltzmann distribution

We will be interested in height functions defined on Λ, thus let us mention some of their
properties, which follow directly from the definition.
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3.2.2 Newton polygon

Let us recall the next ingredient from section 3 in [KOS06], characteristic polynomial of
Λ1 and its Newton polygon. Let us modify weight system on Λ1 by multiplying weights by
z±1 and w±1 depending on intersection of edges that cross horizontal γx and vertical γy.
If an edge intersects γx such that the black vertex is on the left, we multiply the weight
of the edge by z, and by z−1 otherwise. Similarly, for γy and w. Then, the characteristic
polynomial of Λ1 is the partition function of the fundamental domain Λ1 with such weight
system P (z, w) := Z(Λ1). For more details, see 3.1.3 in [KOS06]. The Newton polygon of
P (z, w) is defined as follows,

NΛ := Convex hull{(i, j) ∈ Z2|ziwj is a monomial in P (z, w)} (3.2.1)

A different change of D0 shifts NΛ by a constant integer vector. The important property
of NΛ1 is that it is the set of allowed slopes of the height function: for each point of the
Newton polygon, there is a height function on ΛN with this slope, maybe asymptotically for
large N , see Proposition 3.2 in [KOS06].

3.2.3 Surface tension

For fixed (s, t) ∈ R2 we denote by Confs,t(ΛN ) the set of dimer covers on ΛN , that have a
height change (⌊Ns⌋, ⌊Nt⌋).

Consider the normalized partition function of dimer covers with the fixed slope (⌊Ns⌋, ⌊Nt⌋)
of ΛN , denote the set of such dimer covers Confs,t(ΛN ), the normalized partition function
Zs,t(ΛN ) is defined as

Zs,t(ΛN ) = N−2 log
∑

D∈Confs,t(ΛN )
w(D). (3.2.2)

This expression admits a limit as N → ∞ and the answer is

lim
N→∞

Zs,t(ΛN ) = −σ(s, t) (3.2.3)

Here σ is minus Legendre transform of Ronkin function of P (z, w),

R(Bx, By) := 1
(2πi)2

∫∫
|z|=eBx ,|w|=eBy

logP (z, w)dzdw
zw

(3.2.4)

From the corollary 3.7 from [KOS06], σ is a convex function on N and strictly convex
in the interior of the Newton polygon N 1.

3.3 Properties of the height functions

3.3.1 Lattice Lipschitz condition for the height function

In this subsection, we are dealing with a finite connected subset of Γ ⊂ Λ called a lattice
domain. Let X (f −f ′) be pointwise maximum over all height functions whose value at a face
f ′ ∈ F(Γ) is zero, and call it the support height function based at face f . The motivation of
the term will be seen later in the paper, in the scaling limit X (f) converges to the support
function of a convex polygon, the Newton polygon N .

The difference between values of a height functions HD,D0 at faces f and f ′ is always
bounded by the value of the support height function based at face f ′.

1In our notations of σ we follow [KOS06], so they differ from the notations in [CKP00] by the sign of σ.
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Proposition 3.3.1. Values of a height function HD,D0 at faces f, f ′ satisfy the following
inequality

HD,D0(f, δ) −HD,D0(f ′, δ′) ≤ X (f − f ′) +M(δ−1δ′). (3.3.1)

Proof. Let us shift the height function HD,D0 by its value at (f ′, δ′),

HD,D0 7→ HD,D0(f, δ) −HD,D0(f ′, δ). (3.3.2)

We get a height function that vanishes at f ′, and thus, is bounded by X (f − f ′) by
definition. The factor M(δ−1δ′) keeps on whether we make a non-trivial loop by computing
the difference.

3.3.2 Criterion of extension and maximal extension

Recall a simple property of Lipschitz function on a compact domain. Suppose that Ω ∈ R2

is a compact planar set, and g is a function on ∂Ω that satisfies |g(x) − g(y)| ≤ |x− y| for
x, y ∈ ∂Ω. Then, it extends to Ω by the function fg(x) := maxy∈∂Ω{g(y) − |x− y|}. and it
is the minimal extension of g.

The aim of this subsection is to mimic the property above for the height function, and
to deduce the criterion of extension of boundary height function B from the boundary ∂Γ
to lattice domain Γ.

Proposition 3.3.2. Suppose that f and f ′ are boundary faces of Γ and boundary height
function B satisfies the lattice Lipschitz condition

B(f) −B(f ′) ≤ X (f − f ′). (3.3.3)

Then, there is a height function HD,D0 on Γ that extends B.

Proof. Let us define the maximal height function Hmax(f) that extends B,

Hmax(f) := min
f ′∈∂Γ

{B(f ′) + X (f − f ′)}. (3.3.4)

Each B(f ′) + X (f − f ′) is a height function for fixed f ′, and pointwise minimum is, as well,
a height function by Proposition (3.1.4). It is easy to check that it has boundary conditions
B from the lattice Lipschitz condition and definition of H. H(f)

There is analogues formula for the maximal extension of boundary height function,

Hmax(f) := max
f ′∈∂Γ

{B(f ′) − X (f − f ′)}. (3.3.5)

Let us discuss example of the support function, which we already saw in the Chapter
2. We follow exposition from example 29.4(b) [RLa92]. Let K be the square in R2 with
vertices at (0,±1) and (±1, 0). For a given vector u = (2, 1) we want to maximize the linear
form ⟨k, u⟩ where k ∈ K. The maximum is archived on the vector (1, 0), ⟨(1, 0), (2, 1)⟩ = 2.
In general, θK(u) = max u1, u2 where u = (u1, u2).

3.4 Scaling limit of the dimer model
For the later purposes, it is worth giving notations in more general context. Suppose that
K ⊂ R2 is a compact convex set and let < ·, · > be the standard scalar product on R2. In
the dimer model K = NΛ, and in Chapter 2 we had used it in the definition of asymptotic
height functions, ∇h ∈ NΛ, or more explicitly |hx| + |hy| ≤ 2. The relation between the
Newton polygon and the inequality is the following.
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Suppose we have a linear map ℓ(x) = ℓ(x1, x2) := ax1 +bx2 defined on R2 with (a, b) ∈ K.
The value of ℓ(x) is bounded by the supremum of the values of linear functionals k with
slope in K over K,

ℓ(x) ≤ θK(x) := sup
k∈K

{⟨k, x⟩}. (3.4.1)

. The function θK is called the support function of K. Also define the polar set of K,
K̊ := {x ∈ R2|⟨x, k⟩ ≤ 1∀k ∈ K}. This set is also a convex compact set. It is easy to check an
alternative definition, θK(x) = min{λ ≥ 0|x

λ ∈ K}. From it, we see that θK(x) ≤ 1 implies
x ∈ K. Furthermore, the support function is positively homogeneous, θK(αx) = αθK(x)
and θK(αx) is a convex function. Therefore, it defines a norm. However, this norm might
be non-symmetric if K is not centrally symmetric. The most important property is that
a linear function with gradient (slope) ∇f ∈ K is by definition bounded from above by
the value of the support function θK , whose value at a point is the maximal value of the
linear function with slope in K. Therefore, a continuous function h with ∇h ∈ K satisfy the
Lipschitz property h(x) − h(y) ≤ θK(x− y).

It is useful to keep in mind three examples, 1-Lipschitz functions, where K is just a unit
disk and θK(x) = |x|. In the Chapter 2, however, have a more complicated situation. For
the Newton polygon of the square grid, the rhombus NZ2 = {(s, t) ∈ R2||s| + |t| ≤ 2}, while
the norm we used is twice the ∞-norm 2|(x, y)|∞ := 2 max{|x|, |y|}. The unit ball in this
norm is a square B1 := {(x, y) ∈ R2| max {|x|, |y|} ≤ 2}. The relation between these two
sets is that they are polar dual of each other.

The unit ball in this norm is the set of points v such that 1 = θΛ(v) = supa∈NΛ
⟨v, a⟩,

which is by definition the boundary of N̊Λ, the polar dual of NΛ.
The support function is clearly a Lipschitz function and thus, it has a gradient almost

everywhere by the Rademacher theorem, and further, the slope of the support function lies
on ∂K. This is due to the fact that in time 1 it reaches ∂K. Its value at x = (0, 0) is 0 and
it is the maximal function among continuous functions with the value 0 at (0, 0). Therefore,
we obtain the following Lipschitz condition

h(x) − h(y) ≤ θΛ(x− y). (3.4.2)

Simply because the function x 7→ h(x) − h(y) for a fixed y, is an asymptotic height
function, which vanishes at x = y. Therefore, its value is bounded by the maximal such
function θ. Let us call it the Support Lipschitz condition.

With the help of θΛ, this definition can be rewritten as

H (Ω) := {h : Ω → R | h(x) − h(y) ≤ θΛ(x− y)}, (3.4.3)

3.4.1 Asymptotic height functions

Following the literature [KOS06; CKP00] let us define a set of asymptotic height functions
on planar domain Ω ⊂ R2 as a subspace of the space of Lipschitz functions on Ω, Lip(Ω)
with the constraint on their gradient,

H (Ω) := {h ∈ Lip(Ω) | ∇h ∈ NΛ almost everywhere}. (3.4.4)

An equivalent way to encode asymptotic height functions is saying that they are Lipschitz
functions in the norm induced by the Newton polygon. The norm is given by the support
function of the Newton polygon NΛ. Abusing notations, we denote the support function of
the Newton polygon NΛ by θΛ.

As the example of the square grid shows (2.6), one should change this norm to the
intrinsic one,
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∥x− y∥Ω
∞ := inf

γ

∫ 1

0
θΛ(γ′(t))dt. (3.4.5)

Important fact of asymptotic height functions is compactness of the space of asymptotic
height functions with a given boundary conditions b, call this space H (Ω, b). Further
introduce its close subset of asymptotic height functions with a given boundary conditions
and a given asymptotic height change r := {ri}g

i=1, (Ω, b, r).
Both spaces trivially extend to the universal covering space Ω̃, and their compactness

still holds.
Fix a set of points {(xi, γ) ∈ D(Ω)|xi ∈ ∂Ωi} and a monodromy data, i.e., a map

m : π1 → R such that m(γ · γ′) = m(γ) + m(γ′) and m(γ−1) = −m(γ). Also, let r := {ri}g
i=0

be a sequence of real numbers and denote point z = (z1, z2) ∈ Ω. A function h is an
asymptotic height function with height change r = {ri}g

i=1 and monodromy m if the
following holds,

• h
∣∣
∂Ωi

(x) − h(xi) = bi(x)

• h(xi, γi) = ri,

• h satisfy the intrinsic support Lipschitz on Ω, that is
|h(x, δ) − h(y, δ′)| ≤ ∥x− y∥Ω

∞ + m(δ−1δ′) and ∇h : Ω → NΛ

• after going around a loop δ′, values of h changes as follows:
h(x, δ′ · δ) = h(x, δ) + m(δ′).

It is important to mention that numbers ri for asymptotic height function take their
values in intervals due to the Lipschitz constraint, − ∥xi − x0∥Ω

∞ ≤ ri ≤ ∥xi − x0∥Ω
∞.

Let H (Ω,m, br) be the space of asymptotic height functions with monodromy m and
boundary condition br. Also define a union of H (Ω,m, br) over all possible height changes
r, H (Ω,m, b) := ⋃

r H (Ω,m, br).

Theorem 3.4.1. The spaces H (Ω, b,m) and H (Ω, br,m, r) are compact spaces with respect
to the intrinsic norm.

Proof. The idea of the proof is to show compactness of the space of functions on the
fundamental domain that will lead us to compactness of H (Ω, b,m). Then, H (Ω, br,m, r)
is compact as a closed subset of H (Ω, b,m).

Recall that by Proposition 2.2.2, the behavior of these functions is determined by their
values on D(Ω). Thus, it is sufficient to show compactness of H (D(Ω), b). In order to show
it, one can apply Arzela-Ascoli theorem. The first requirement, the existence of a uniform
bound for the functions f ∈ H (D(Ω), b), is satisfied because of the boundary condition
b that is fixed on ∂Ω0. The equicontinuous follows directly from the Lipschitz condition.
Then, these function with a given monodromy data m form a closed subspace of H (D(Ω), b).
Thus, it is a compact space. The same works for the subspace with a given height change r
and a fixed monodromy data m, H (Ω, br,m, r). The latter is, again, a compact space as a
closed subset of H (Ω, b,m).

Theorem 3.4.2. Spaces of asymptotic height functions H (Ω̃, b) and H (Ω̃, b.r) are compact
with respect to the intrinsic norm given by NΛ.

Proof. Let us use Arzela–Ascoli theorem to obtain compactness of the H (D(Ω), b). Since
asymptotic height functions satisfy the Lipschitz condition, they are equicontinuous, and
they are also uniformly bounded because of the boundary condition b fixed on the external
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boundary of Ω. The last detail is that condition ∇h ∈ NΛ is a closed constraint. Therefore,
we have compactness of H (D(Ω), b), which is isomorphic to H (Ω̃, b) by Proposition ??.
Here the compactness is with respect to sup norm, and applying a partition of unity that
vanishes outside Ω, we obtain compactness with respect to the intrinsic norm. The space
H (Ω̃, b.r) is compact as a closed subset of H (Ω̃, b)

Immediately from the compactness we obtain existence and uniqueness of the minimizer
of F over these spaces. Recall the expression of function F : h 7→

∫∫
Ω σ(∇h)dxdy.

Corollary 3.4.2.1. There exists a unique minimizer h⋆ of functional F over the space
H (Ω̃, b).

There is a unique minimizer h⋆
r of F over the space H (Ω̃, b.r).

Proof. The proof is the same as for the case of Λ = Z2 in Theorem 2.7.1.
Consider a fundamental domain D(Ω) for action of π1(Ω) on the universal covering space

of Ω. Recall that by Proposition ??, it is sufficient to find a minimizer of F on D(Ω).
The boundary ∂D(Ω) consists of two parts, ∂D(Ω) = ∂Ω⊔ ∂D1(Ω), the first one is

supplemented with boundary condition b and the other one is the union of 2g curves {υi}2g
i=1

matched in pairs υi, υ
′ with free boundary conditions subject to periodicity across the pairs

so that the values on υi coincide with the values on υ′
i(recall that υi and υ′

i were obtained
by the cut along the curve γi)

The space H (Ω,m, b)(resp. H (Ω,m, br, r)) is compact by Theorem 2.4.4. Then, F is
upper semi-continuous on spaces H (Ω,m, br, r) and H (Ω,m, b). This follows from Lemma
2.1 from [CKP00], which uses only the convexity of σ and the Lipschitz condition, and thus,
trivially extends to partially free periodic boundary conditions.

Therefore, there exists the minimizer h⋆ of F on H (Ω,m, b) (resp. there exists the
minimizer h⋆

r on H (Ω,m, br, r)). By the same convexity argument as in Lemma 2.4 from
[CKP00], this minimizer is unique.

A priori h⋆ and h⋆
r depend on a particular choice of the fundamental domain D(Ω).

However, since gradients of functions from H (Ω̃, b) are well-defined objects on Ω by Lemma
2.2.1 and σ is strictly convex everywhere in the interior of the domain of definition [CKP00;
KOS06], we can use Proposition 4.5 from [DS08] to show uniqueness. See also the discussion
in Section 5.6 in [ADPZ20].

Later on we will prove that asymptotic height function are natural limits of height
functions in the scaling limit, see Proposition 3.4.5. In all those statements, we will need
that support height function approximates θΛ after normalization. By Theorem 2.1 [KOS06],
for each point (s, t) ∈ NΛ there is a sequence of dimer covers DN of ΛN with height change
(⌊Ns⌋, ⌊Nt⌋). Therefore, after normalization by 1

N we have a sequence of height functions
of 1

N Λ with the value 0 at the point p, and the slope that converges to (s, t). This further
implies the convergence of 1

N Xp to the support function θΛ.

3.4.2 Approximation of lattice regions

We call a sequence of lattice regions with boundary conditions {ΓN , BN } an approximation
of (Ω, {bi}g

i=1) if

1. ΓN ⊂ 1
N Λ ∩ Ω, where 1

N Λ is Λ with mesh 1
N .

2. each ΓN admits at least 1 dimer cover with normalized boundary condition BRN
N for

each non-trivial RN = {Ri
N }g

i=1.
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3. for every admissible asymptotic height change r, there exists a sequence of admissible
normalized height changes {RN } that converges to r, Ri

N → ri as N → ∞.

4. Γ tends to Ω with respect to the Hausdorff distance dH , i.e., for sufficiently large N
dH(Ω,ΓN ) = O(N−1).

5. Further, |BRN
N (xN ) −br(x)| ≤ O(N−1) for the standard Euclid distance for sufficiently

large N with xN ∈ ∂ΓN , x ∈ ∂Ω such that |xN − x| ≤ O(N−1) (the existence of such
points is guaranteed by the previous assumption).

Figure 3.6: Fundamental domain of for dimer city lattice on the left, and approximation
ΩN of region Ω by the dimer city lattice on the right.

3.4.3 Convergence of maximal extensions and the density lemma

In this subsection, we are going to show consecutively three lemmas. The first of them
is about asymptotic behavior of the support height function suitably normalized, which
approximates the continuous support function θ.

Lemma 3.4.3. Suppose we have faces f, f0 ∈ ΛN and points x, x0 ∈ R2 such that x ∈ f
and f0 ∈ f0. Then, for sufficiently large N we have

N−1(X (f − f0)) − θ(x− x0) = O(N−1). (3.4.6)

Proof. Without loss of generality, suppose that x0 = 0, thus the term with θ vanishes at
0, θ(0) = 0. Then, θ(x) is the maximal possible value of the asymptotic height functions
whose value at 0 is zero. Then, the value of X (f) is also zero at f0 due to our normalization.
Therefore, we have agreement of the values at 0 and f0. Now, by [KOS06, Theorem 3,
2], the Newton polygon is the set of allowed slopes for dimer covers. Therefore, since the
slope of ∇θ ∈ ∂NΛ, it can also be archived, that is there exists a sequence of dimer covers
DN of ΛN whose slope converges to the slope of θ (more precisely, slope of DN is already
O(N−1)-close to ∇θ). Therefore, the value of θ at point x is O(N−1)-close to the value of
1
N X (f).

We know Thus, let us derive from it the converge of the maximal lattice extension to the
continuous counterpart. Suppose Ω is a domain with boundary condition b, and (ΓN , BN )
its approximation. Further, let Hmax

N be the normalized maximal extension of a BN , and h
be the maximal extension of b. Then,
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Proposition 3.4.4. For sufficiently large N , we have the following estimate,

∥Hmax
N − hmax∥∞ = O(N−1) (3.4.7)

Proof. Recall expressions for both extensions,

Hmax
N (f, γ) = N−1 min

f ′∈∂D(Γ)
{B(f ′) + Xf (f ′)}, (3.4.8)

hmax(x, γ) := min
y∈∂D(Ω)

{b(y, γ) + θ(x, y)}. (3.4.9)

These expressions look similar, however the minimums are taken over different sets. To fix
this, let us define a lattice approximation of h#,N : F(Γ) → R. It is the restriction of h to
a point of every face of ΓN . In fact, it does not matter which internal point we take, a
different choice would a value with an error of order o(N−1) due to the Lipschitz condition
of h. We fix this point to be the center of each face for the sake of reducing ambiguity.
In other words, we have that |h − h#,N | < o(N−1). Now, let us compare expressions for
Hmax

N and h#,N , the minimum is taken over the same set D(ΓN ). Thus, we only need to
compare the expressions themselves. But the boundary conditions are O(N−1) close due to
the assumption that (ΓN , BN ) is an approximation of (Ω, b), and the other terms are close
due to 3.4.3.

Theorem 3.4.5. For every asymptotic height function h there is a sequence of normalized
height functions { 1

NHN } that converges to h with respect to intrinsic sup norm. And wise
versa, around each height function HN there is an asymptotic height function h′ such that
∥HN − h′∥Ω

∞ ≤ O(N−1)

Proof. A key ingredient of the proof is a lattice approximation of asymptotic height functions.
Suppose that h is an asymptotic height function on a domain Ω that has its approximation
{ΓN }. Since a height function H is a map F(ΓN ) → Z, we can make it a map Ω → R after
declaring the value of H at a point x to be its value at the face Fx containing x. Analogously,
we can think of the function h : F(ΓN ) → R after declaring the value h(f) to be the value
h(xF ) for the center point of the face F , where the precise definition of the central point is
irrelevant, it can be any internal point. Different choices differ by an error O(N−1).

Then, the height function that approximates h from below is

ĤN (x, γ) := min
y∈D(Γ)

(⌊h(y, γy)⌋ + βN (x, y)), (3.4.10)

where ⌊h(y, γ)⌋ stands the integer part of h(y, γ).
We need to show that this function satisfies three properties:

1.
∥∥∥ĤN (xN , γ) − h(x, γ′)

∥∥∥Ω

∞
= O(N−1)

2. ĤN (x, γ) is a height function defined on Γ̃

3. ĤN

∣∣∣
∂ΓN

(x, γ) = B

The first property follows from that fact that ĤN is fit within O(N−1) to h#,N , which
is O(N−1) close to h itself. The second property follows from the fact that the pointwise
minimum of two height functions is a height function. In order to guarantee the third
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property, let us squeeze ĤN (x, γ) between the maximal, and the minimal extensions. This
operation acts trivially on a height function H with the right boundary conditions as by
definition H is bigger or equal than the minimal extension, and it is less or equal than the
maximal extension. Thus, we change the function by only terms of order O(N−1) near the
boundary ∂Γ (remember, ĤN is already is O(N−1) close to the right boundary condition
due to the first property).

3.5 Asymptotic enumeration of dimer covers
One characteristic of the universality phenomenon, which is believed to happen for the dimer
model, is independence of precise details conditions. In particular, the partition function
of a domain with two nearly equal boundary conditions should be relatively close to each
other. In order to justify this sentence, we are going to prove several propositions. The first
of them is the computation of the partition function of a square with approximately linear
boundary conditions.

3.5.1 Independence of precise boundary condition

In this subsection we give two proofs of the fact that the partition function of a convex
lattice domain with nearly linear boundary conditions B is independent of precise details of
B up to a small error negligible in the scaling limit as N → ∞. The first proof mimics the
original proof for the square grid in Lemma 3.5 [CKP00] and also [Gor21].

First, let us fix two positive reals, ϵ and k. Let (Γ, B) be a convex lattice domain with
normalized boundary condition B that are fit to within ϵ to a linear function S of slope
(s, t). We further assume that Γ fits into a rectangle of K × L fundamental domains, and
L > ϵ−1.
Proposition 3.5.1. Then, the normalized partition function Z(Γ, B) is independent of
precise choice of BN , keeping (s, t) fixed, up to an additive error of order ϵ

1
2 log 1

ϵ .

Proof. Let us consider separately two cases, (s, t) that is separated by ϵ 1
2 from ∂NΛ, and

the case where it is close to the boundary of Newton polygon to within ϵ
1
2 .

In the first case, take another boundary condition B′ that is fit within ϵL the linear
function of slope (s, t). We will show that Z(Γ, B) differs from Z(Γ, B′) by at most ϵ 1

2 log 1
ϵ ,

or in other words, the weighted number of extension of B, roughly, equals to the weighted
sum of extensions of B′.

Assume that B ≤ B′ (we can always path from B to B′′ := min{B,B′} so that B ≤ B′′.
And let H⋆ and H⋆

′ be the minimal extension of B, and the maximal extension of B′. Then,
our goal is to define two maps F and G on the set of height functions on Γ, if H extends B,
then F (H) := max{H⋆, H} which now extends B′. The second map G is defined similarly,
it takes an extension of B′ and produces an extension of B,

G(H) := min{H⋆
′ , H}. (3.5.1)

Note that F (G(H)) = H at points where H⋆ ≤ H ≤ H⋆
′ . Further, recall the formula for

H⋆(the formula for H⋆
′ is similar),

H⋆(f) := max
f ′in∂Γ

{B(f ′) + X (f − f ′))}. (3.5.2)

Due to convexity of Γ and Proposition 3.4.4, H⋆(f ′) and H⋆
′ (f ′) differ by a constant from

θ(f − f ′). Thus, both extensions differ from the value of S(x) by at least ϵ 1
2 maxy∈∂Γ θ(x, y)

since the slope of S is separated from ∂NΛ by ϵ 1
2 .
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Our goal is to show that this map is a bijection with probability tending to 1 for a large
N . Let us show that a typical extension B is close to S. We embed Γ into torus TN with
the weights that are alternated by the magnetic fields (Bx, By) in such a way that the slope
of dimer covers of TN converges to the slope of S as N → ∞. From Proposition 3.7.3 we
know that a random height function on TN is close to S with high probability, in particular
on ∂Γ. It means that we have two boundary conditions on ∂Γ both of which converge to S.
Thus, by results of 3.7.3 we conclude that with the high probability, a random extension of
B is fit to within ϵN to S. Thus, we know that H(F (H)) = H at all the points at least at
distance ϵ1/2 log(1

ϵ )N from ∂Γ.
What remains in the first case, is to deal with the points at most at distance ϵ1/2 log(1

ϵ )N
from ∂Γ. Let us estimate the number of extensions of B that close to ∂Γ. At each step
from the boundary, the height function could take two possible values. Thus, the number of
extensions can be bound by 2A, where A(ϵ) is the number of points at the distance at most
ϵ1/2 log(1

ϵ )N . This number is A = O(ϵ1/2 log(1
ϵ )N2), which is a rough estimate of entropy

that we needed.
Now, let us deal with the second case, when (s, t) are ϵ-close to ∂NΛ. By convexity of

NΛ, (s, t) is ϵ-close to a point (s⋆, t⋆) ∈ ∂NΛ, and (s′, t′) should be a convex combination
of two point vertexes, denote them (s1, t1) and (s2, t2). Further, recall that each of those
points correspond to a dimer cover of the fundamental domain D(Λ) with such a slope, call
them D1 and D2. The only way to obtain a slope (s, t) for a dimer cover is to cover the
vast majority of fundamental domains with either D1 or D2.

This results in estimate order of O(
(N2

ϵN2
)
). Define A := N2 for convention,

(
A

cϵN2

)
≤ Acϵ1/2N2(

cϵ1/2N2

e

)cϵ1/2L2 ≤
(

N2

cϵ1/2N2

)cϵ1/2N2

=
(

e

cϵ1/2

)cϵ1/2N2

= exp
(
N2O(ϵ2 log 1

ϵ
)
)

(3.5.3)
Thus, after taking log and dividing by N2, we get the desired. The second way to arrive to
this result is to compare the partition function Z(Γ) with two partition functions, Z(Γmin, N)
from below and Z(Γmax, N) from above in such a way that Z(Γmin, N) + ϵ log(ϵ) < Z(Γ) <
Z(Γmax, N) + ϵ log(ϵ), where lattice region Γmin is contained in Γ such that it is close to Γ
Dist(∂Γ, ∂Γmin) < CN , and the boundary conditions on Γmin are taken from restriction of
dimer configuration from torus. Similarly, for the upper bound, we take a lattice region
Γmax such that Dist(∂Γ, ∂Γmax) < C ′N with periodic boundary conditions obtained from
torus. Then, we can use the criterion of extension for the height function from a smaller
region to a larger one. This way we obtain a bijection between dimer configurations on a
torus and on a square up to a partition function of Γ \ Γmin (or Γmax \ Γ). Those partition
functions can be estimated by area, which gives the same answer as in the previous proof.

The straightforward corollary is the partition function of the square.

Proposition 3.5.2 (The square lemma). Let (S, b) be a continuous domain with a boundary
condition, where S is a unit square and b is δ-close to a linear function with the slope (s, t).

Suppose that (ΓN,BN ) is an approximation of (S, b) and let BN be δ-close to a linear
function with the slope (s, t). Then, the partition function of (ΓN , BN ) is independent of
BN up to an additive error of order O(δ 1

2 log(1
δ )).

N−2 logZ(ΓN , BN ) = −σ(s, t) +O(δ
1
2 log(1

δ
)) (3.5.4)
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3.5.2 Triangular lemma

Here, we prove an estimate for the partition function of a triangle based on the computation
for the square. Further, we need an axillary statement, the cutting rule.

Suppose that we have a domain with a boundary condition (Γ, b) and a subset ρ on the
dual lattice from the boundary of Γ to itself (thus, Γ/ρ consists of several components, let
us denote them Γi). We want to calculate the partition function of Γ and one way to do it is
to calculate partition functions Z(H(ρ)) with the given height function H(ρ) along ρ. Then
to sum up Z(H(ρ)) over all H(ρ). The result is the original partition function because we
just permute terms in a finite sum.

Then, we can interpret each Z(H(ρ)) as the product of the partition functions saying
that ρ cuts Γ.

Z(Γ, κ) =
∑
Bρ

∏
i

Z(Γi, Bi
ρ) (3.5.5)

where Bi
ρ is the boundary height function on Γi that coincide with the original boundary

height function B and Bρ where it is possible.
Now we are ready to for the computation of the partition function of the triangle.

Claim 2. Let Ω be an equilateral triangle in R2 and b : Ω → R extends to a function in
H (Ω). Let h ∈ H (Ω, b) be an asymptotic height function δ-close to a linear with the slope
(s, t) and let (ΩN , BN ) be an approximation of (Ω, b).

lim
δ→0

lim
N→∞

N−2 logZ(h, δ |ΩN , BN ) = −σ(s, t) (3.5.6)

Proof. Let us take a square lattice with the mesh ℓ 2 and use the cutting rule for the curve
ρ obtained from the intersection of the square lattice and Ω.

Z(ΩN , BN ) =
∑
Bρ

Z(Bρ) =
∑
Bρ

∏
j

Z(Sj , Bj
ρ), (3.5.7)

where Sj is the square from the Square lattice with the boundary height function Bj
ρ.

We have two types of squares: included squares that do not intersect ∂(Ω) and excluded
squares that intersect ∂(Ω). We want to build an upper and a lower bound of the partition
function of (ΩN , Bn|h, δ), let us denote the upper bound by ZL(ΩN ) and the lower bound by
ZU (ΩN ). We estimate included squares using the Square lemma and make a rough bound
for the excluded squares.

The lower bound.

We want to make a lower bound of sum from the cutting rule, let us take only one summand
corresponding to a boundary height function BN .3

Here we estimate the excluded squares by the minimal weight of an edge (let us denote
it by wmin) to the power of number of edges in these squares.

logZ(ΩN , BN ) ≥ logZL(ΩN ) := logwminSex +
∑

k

logZk
N (s, t), (3.5.8)

where Sex is the total number of edges in the excluded squares that we estimate by o(ℓ).
And Zk

n(s, t) is the partition function of the square Sk. After the normalization, we have
2Where we take ℓ ≤ δ such that ℓ = o(δ)
3Existence of such height function follows from the density lemma applied to h. A boundary height

function is a restriction of the height function that approximates h.
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limn→∞N−2 logZk
N (s, t) = −σ(s, t) × A(Sk) + o(δ) from the square lemma and remark 1.

Finally, the lower bound is,

N−2 logZL(ΩN ) =
∑

k

N−2 logZk
N (s, t) + o(δ). (3.5.9)

The upper bound.

In the upper bound we estimate the sum in the Cutting Rule by taking the maximal
summand times the number of summands, which is the number of the all boundary height
functions.

We bound the excluded squares by the maximal weight of the edge to the power of the
total number of edges. For the included squares we estimate the same way as for the lower
bound. Let us bound the number of boundary height function by 2o(N)

Z(ΩN , BN ) ≤ ZU (ΩN ) := wo(ℓ)
max × 2o(N) ×

∑
j

N−2 logZj
N (s, t) (3.5.10)

Finally, after taking the limit as N → ∞ the first summands differ from each other by
o(δ) . Thus, both estimates differ from −σ(s, t) × Area of the triangle by o(ℓ). So after
taking limit as ℓ → 0 and δ → 0 we have the proposition.

3.5.3 Surface tension theorem

Theorem 3.5.3. Let Ω be a compact, connected, multiply-connected domain in R2. Then
let (Ω.b) be the domain with a boundary condition h ∈ H (Ω, b and (ΩN , BN ) be an approxi-
mation of (Ω, b). We recall that Z(h, δ | ΩN , BN ) is a partition function of configurations
with height functions δ-close to h. Then

lim
δ→0

lim
N→∞

N−2 logZ(g, δ |ΩN , BN ) = −
∫

Ω
σ(∇g)dxdy (3.5.11)

Proof. Fix a fundamental domain D(Ω) with branch-cuts made along curves {γi}g
i=1.

For the proof we need a triangular mesh a side length ℓ and piecewise linear approxima-
tions of Lipschitz functions from Claim 1. Consider a triangular mesh of length size ℓ that
triangulates D(Ω) into triangles T j of the standard area A(T j). Let also hℓ be the piecewise
linear approximation of h that is linear on each triangle and coincides with the values of h
at the vertices of the triangles.

Then, we choose small ε and take ℓ such that ℓε < δ, and on at least at 1 − ϵ fraction of
points of a triangle in measure we have two properties: first, |hℓ − h| ≤ ℓε, and second, the
gradient of h exists and fit within ε to the gradient of hℓ in ℓ2 norm, which is possible by
Lemma 2.2 [CKP00]. We need these properties in order to write F(hℓ) = F(h) + oδ(1) as
ε → 0.

Let us use the (3.5.5) for a subset ρ obtained from the intersection of the triangular mesh
with the domain. Note that the subset ρ cuts ΓN into triangles with boundary conditions
along ρ. Denote the triangles by {T j} and their boundary height functions by {Bj

ρ}.

Z(ΓN , BN |h, δ) =
∑
bρ

Z(ΓN , Bρ|h, δ) =
∑
bρ

∏
j

Z(T j , Bj
ρ|h, δ), (3.5.12)

There are two types of triangles {T j}. The included triangles (the first type) that do
not intersect the boundary of the fundamental domain and where hℓ is fit to within ℓε to h.
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The excluded triangles (the second type) intersect the boundary of the fundamental domain
or where hℓ does not approximate h.

We make an upper and a lower bound for the normalized partition function
N−2logZ(ΓN , BN |h, δ). In both cases, we can estimate the two types of triangles separately.
For the included triangles we use Corollary 4.2 from [CKP00], and for the excluded we make
a rough estimate. Then, after taking limit as N → ∞, the normalized estimates differ from
each other by oδ(1).

3.5.4 The lower bound.

In the lower bound, it is sufficient to include some height functions that are δ-close to
h. To do this, we can take only one term from (3.5.12) corresponding to one boundary
height function Bρ (for instance, we can take Bρ obtained from the restriction of H ′

N )
(Theorem 3.4.5 gives us a sequence of normalized height functions {H ′

N } that converges to
h as N → ∞).

Let us estimate the triangles of the first type by the product that includes only triangles
of this type.

Z(ΓN , BN |h, δ) ≥
∏

Tjof 1st type
Z(T j , Bj

ρ|hℓ, δ) (3.5.13)

The bound for the included triangles obtained by using Corollary 4.2 [CKP00] to count
δ-close height functions to make sure that we include only height functions δ-close to h.
Thus, for triangles of the first type, we have the following,

N−2 log
∏

Tjof 1st type
Z(T j , Bj

ρ|hℓ, δ) =
∑

Tjof 1st type
(−σ(sj , tj))×A(T j)+o(N−1)+O(ε1/2 log ε),

(3.5.14)
where (sj , tj) is a slope of hℓ on the triangle T j and A(T j) is the area of the triangle T j .
Finally, for sufficiently large, N the lower bound is the following,

N−2 logZ(ΓN , BN |h, δ) ≥
∑

j

(−σ(sj , tj))A(T j) + o(N−1) +O(ε1/2 log ε), (3.5.15)

where we fixed a height function on the excluded triangles to be H ′
N .

3.5.5 The upper bound.

We can use almost the same strategy to make an upper bound. First, we have to include
all height function δ-close to h. Let us estimate the included triangles the same way as
for the lower bound to count height functions δ-close to h. For the excluded triangles we
make a rough estimate since the area of those triangles is proportional to ε, the number of
configurations is bounded from above by exp(ε) times the number of terms in the cutting
rule, which is 2O(N) since it is the number of configurations of a line of size N .

Z(Γ, BN |h, δ) ≤
∏

Tjof 1st type
Z(T j , Bj

ρ|hℓ, δ))2O(N) +N2ε (3.5.16)

And after taking limit as N → ∞, the normalized upper bound is the following, where terms
O(N−1) and O(ε) come from the bounds of triangles of the second type.
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N−2 logZ(Γ, BN |h, δ) ≤ −
∑

j

σ(sj , tj)A(T j) + o(N−1) +O(ε1/2 log ε) +O(ε). (3.5.17)

Taking into account that
∫

Ω σ(∇hℓ)dxdy = ∑
j σ(sj , tj)A(tj), one can see that both

bounds after dividing by the area of Ω are equal to F(hℓ) + o(N−1) + O(ε1/2 log ε) that
differs from F(h) by oδ(1) by Lemma 2.3 from [CKP00].

3.6 Variational principle

Theorem 3.6.1. Let (Ω, b) be a domain with a boundary condition and (ΩN , BN ) be an
approximation of (Ω, b), then

lim
N→∞

N−2 logZ (ΩN , BN ) = −
∫∫

Ω
σ(∇h⋆)dxdy

where h⋆ is the minimizer of the functional F(h) :=
∫∫

Ω σ(∇h)dxdy on the set H(Ω, b).
Moreover, let HN be a random height function on (ΩN , BN ). Then we have the conver-

gence in probability for HN to h⋆, that is for each δ > 0

P
(
∥HN − h⋆∥Ω

∞ > δ
)

→ 0 as N → ∞.

So a random height function converges to h⋆ in probability with respect to the intrinsic norm.

3.6.1 Convergence of height functions to the limit shape

Here, we give a proof of a law of large numbers for height function. More precisely, we show
that a normalized height function converges in both regimes to its expected value that is
approximately the unique solution to the variational problem. We write it for an arbitrary
height change, and later discuss the modifications for a fixed height change.

Consider a sequence {HN } of expectation values of normalized height functions on
(ΓN , BN ). We know that by Theorem 3.4.5 there exists a sequence of asymptotic height
functions {hN }, such that

∥∥∥hN −HN

∥∥∥Ω

∞
≤ C

N . By Proposition 2.4.4 {hN } has a convergent
subsequence, denote its limit by h. Without loss of generality, we suppose that the convergent
subsequence is {hN } itself. We will see later that h = h⋆

Lemma 3.6.2. One can find such an ℓ′ that for ∀δ > 0 and for sufficiently large N

P(∥HN − h∥Ω
∞ > δ) ≤ exp(−Nδ2/ℓ′). (3.6.1)

Proof. We deduce it from a combination of Lemma 3.7.3 applied to HN and convergence of
hN to h. The goal is to show that the inequality ∥HN − h∥Ω

∞ ≤ δ holds for sufficiently large
N with probability exponentially close to 1.

By the triangle inequality we have
‘

∥HN − h∥Ω
∞ ≤

∥∥∥H̄N − hN

∥∥∥Ω

∞
+ ∥hN − h∥Ω

∞ +
∥∥∥HN − H̄N

∥∥∥Ω

∞
. (3.6.2)

The first term in the right-hand side of (3.6.2) is smaller than δ/3 for sufficiently large
N by definition of hN , that is by Lemma 3.4.5 we have C > 0 such that

∥∥∥hN − H̄N

∥∥∥Ω

∞
< C

N ,
which is smaller than δ/3 for sufficiently large N . The second terms of (3.6.2) is smaller
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than δ/3 for sufficiently large N due to convergence of hN to h, which holds by definition of
h.

The third term (3.6.2) is smaller than δ/3 with the probability 1 − exp(− δ2N
ℓ ), where

we defined ℓ = 3ℓ′ for ℓ′ from Lemma 3.7.3. Therefore, we have ∥HN − h∥Ω
∞ > δ with

probability bounded by exp(−Nδ2/ℓ′).

So far, we know that up to extracting a subsequence, normalized height functions
converge with respect to the uniform norm in probability to h and the contribution of height
functions that are far away from h are exponentially suppressed. Thus, h is the limit shape.
Since height change RN is a continuous function of HN , it converges to the height change of
the limit shape, which is r. Later, we prove that h = h⋆.

3.6.2 Convergence of partition function

Let us show that one can find an asymptotic expression of the partition function, which is
a straightforward corollary of the convergence of height functions to the limit shape. The
following proof holds for a fixed height change r after replacing h by hr and Z(ΓN , BN ) by
Z(ΓN , BN , RN ).

Define UN
δ (h⋆) to be the set of height functions on ΓN that are fit to within δ to h⋆,

∥HN − h⋆∥Ω
∞ ≤ δ.

Then, the following holds due to the concentration inequality above,

PN ∥HN − h⋆∥Ω
∞ ≤ δ) = 1 − PN (∥HN − h⋆∥Ω

∞ > δ). (3.6.3)

Or more precisely,
Z(ΓN , BN |h⋆, δ)

Z(Γ, BN ) = 1 +O(exp(−δ2N/ℓ)). (3.6.4)

Now, let us take the logarithm of both sides and normalize them by N−2. Also introduce
the notation S(N, δ) := 1 +O(exp(−δ2N/ℓ)) for the simplicity.

N−2 logZ(ΓN , BN ) = N−2 log(Z(ΓN , BN |h⋆, δ)) +N−2 log(S(N, δ)). (3.6.5)

Now we can take limit as N → ∞ to make logS(N, δ) converge to zero. Finally, we
obtain the desired expression by Theorem 3.5.3,

N−2 logZ(ΓN , BN ) −−−−→
N→∞

−F(h⋆). (3.6.6)

3.6.3 The Surface tension functional and the limit shape

We still need to show that h minimizes F , that is h = h⋆. Again, it follows easily from the
concentration of height functions around h.

Assume that h ̸= h⋆. We need to show that F(h) ≥ F(h⋆). Suppose the opposite, that is
F(h) < F(h⋆). By Theorem 2.8.1, F(h⋆) (resp.F(h)) is the limit of the normalized number
of domino tilings whose normalized height functions are fit within δ to h⋆ (resp.h) for δ → 0.
Then, we can use that normalized height functions HN concentrate around h, which can be
separated from h⋆ by the choice of a smaller δ > 0. The contradiction follows from the fact
that the overwhelming majority of domino tilings are δ-close to h, but not to h⋆ and thus,
we are done.

The proof for the fixed asymptotic height change r works the same way after replacing
of h by hr.
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3.7 Probability estimates and concentration lemma

In this section we follow section «6.2. Robustness.» from [CEP96] to conclude the Density
Lemma. We begin with the properties that are based on locality of the height function (the
value H(v) determines the sets of possible values at faces adjacent to v), and the Markov
property of the distribution.

3.7.1 Auxiliary estimates

First, we need to understand that partition functions with two close boundary conditions
B1, B2, Z(Γ, B1) and Z(Γ, B2) are close to each other as well. Further, the expectation
values of height functions extending B1 and B2 are also close. This is used in the core of
enumeration of dimer configurations.

Theorem 3.7.1. Let B1 and B2 be two extendable boundary heights such that B1 ≤ B2.
Then, let H1 be a random extension of B1 and similarly H2 be a random extension of B2.
Then, we can sample H1 and H2 such that E(H1(w)) ≤ E(H1(w)) for w ∈ Γ.

Proof. Let us prove it by induction with respect to cardinality of F(Γ/∂Γ). The base is the
case of Γ = ∂Γ.

Since B1 ≤ B2, there exists a boundary face v ∈ F(Γ) where B1(v) ≤ B2(v) (if it does
not exist, then we are done since we can sample in such a way that H1 = H2). Let us take
a face w adjacent to v, and sample first the values at w and then sample the rest. Note
that, necessary, faces v and w have one edge in common, call e. Assume, without loss of
generality, that if we go from v to w, we intersect e in a positive direction.

Then, for a dimer cover D there are four possible outcomes for the values of the height
of w that can be summarized as follows,

1. Edge e belongs to both the reference dimer configuration D0 and to D.

2. Edge e belongs to the reference dimer configuration D0, but not to D.

3. Edge e does not belong either to the reference dimer configuration D0, or to D.

4. Edge e does not belong to the reference dimer configuration D0, but it belongs to
dimer cover D.

Then, in principle, we have to consider eight possible outcomes for D = D1, and, indepen-
dently, for D = D2. However, the first and the second cases results in the same height of w,
which equals to H(v).

Therefore, we can note that in either case of e belongs to D0, or does not, the possible
outcomes for the extensions H1(w) and H2(w) differ no more than by 1, |H1(w)−H2(w)| ≤ 1.
After it, we can apply the induction hypothesis to sample on Γ \ {w}.

Notice that this theorem implies that we also have E(H1) ≤ E(H2). We can also deduce
a similar result for two “close” lattice regions Γ1 and Γ2 with “close” boundary conditions
B1 and B2. By “close” we mean the discrete Hausdorff distance, more precisely it means
the following. Suppose that every face f1 ∈ F(∂Γ1) could be connected with F(∂Γ2) by a
path of length d1, and wise-versa, each for every f2 ∈ F(∂Γ2). Further, assume that values
|H(f1) −H(f2)| ≤ d2. Then, we have the following.
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Theorem 3.7.2. There exists a constant C > 0 such that for every v ∈ F(Γ1 ∩ Γ2) we have

|E(H1(v)) − E(H2(v))| ≤ C(d1 + d2), (3.7.1)

where H1 is a random extension of boundary condition B1, and H2 is a random extension
of boundary condition B2.

Proof. Let us follow the argument from [CEP96; Gor21], let H̃1 be the minimal extension
of B1 and H̃2 be the maximal extension of B2. Then, we have H̃1(v) ≥ H̃2(v) − C(d2 + d1)
for v ∈ ∂Γ1 ∩ ∂Γ2, for some constant C > 0. Since the inequality holds for the minimal
extension H̃1, it holds for any other extension. A repetition of those arguments for H̃2
implies that for any extensions H1, H2. With the help of the discussion in the previous
theorem, we have the desired.

3.7.2 Coupling lemma

Claim 3. Let (Γ, ∂Γ) be a graph with a boundary and let f and g be two boundary height
functions on Γ. We denote by H̄g an average height function on (Γ, g), H̄f on (Γ, f). We
suppose that f ≤ g, then H̄f ≤ H̄g pointwise.

Proof. Let H(Γ, g) and H(Γ, f) be sets of height functions on Γ with boundary height
functions f and g. Denote induced probability measures by µf , µg.

Let us prove condition f ≤ g implies that H̄f ≤ H̄g. To do this we need to build a
coupling of measures µf and µg. It is a probability measure π on H(Γ, g) ×H(Γ, f), such
that its projection on H(Γ, g) gives µg and the same is true respectively for f . The most
important constraint is that Pπ (H1, H2) = 1 for only pairs of height functions such that
H1 ≤ H2. In case we have such a measure, we get H̄f ≤ H̄g pointwise, because H̄f and H̄g

can be obtained as projections of π.
Let us prove it using induction by number of internal vertices of Γ. The base of induction

where the set of internal vertices is empty is trivial. Moreover, the case of f = g is
trivial as well. Thus, it is sufficient to prove for f < g at a boundary face v. Note that
Hf (v) ≤ Hg(v) + 1. Let us pick an internal face w adjacent to v. There are two possible
values for Hg(w), namely H and H−1 for some H (respectively H ′ and H ′ −1 for Hf (w) for
some H ′). Therefore, the probability distributions µf and µg are the convex combinations of
measures mu±

f and µ±
g corresponding each outcome(in other words, to each extra boundary

condition at face w),
µf = αµ+

f + (1 − α)µ−
f (3.7.2)

µg = βµ+
g + (1 − β)µ−

g (3.7.3)

where α is proportional to the partition function of the dimer covers with the extra boundary
condition f+ at face w, and β is proportional to the partition function with the extra
boundary condition f− at w. Thus, we can use our induction hypothesis to conclude that
the coupling exists for any pair measures with an extra boundary condition at w, and it is
given by a convex combination of couplings, which exist by the induction hypothesis.

Now, recall Azuma–Hoeffding inequality for values of a martingale with bounded differ-
ence. Suppose Mk, {k = 0, 1, · · · } is a martingale such that |Mk −Mk−1| ≤ ck,

P(|MN −M0| ≥ ϵ) ≤ 2 exp
(

− ϵ2

2∑N
k=1 c

2
k

)
(3.7.4)

We mimic theorem 21 from [CEP96]
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Proposition 3.7.3. There exists a constant ℓ(Ω) > 0 such that for all C > 0 and for
sufficiently large N the following inequality holds,

PN (
∥∥∥HN − H̄N

∥∥∥Ω

∞
> c) < exp (−NC2

ℓ(Ω) ). (3.7.5)

Proof. Let us fix a path (f0, . . . , fm) with m+1 points from the boundary faces F(∂Γ) to an
internal face f ∈ F(Γ). Then, consider a filtration of σ algebras Fk generated by outcomes
of H(fi) for i ≤ k (H(f0) is fixed since f0 ∈ F(∂Γ)). Then, took the conditional expectation
value at a face f with respect to Fk, Mk = E(H(f)|Fk).

By the tower property for conditional expectations, Mk = E(H(f)|Fk) forms a martingale
with bounded increments, that is E(Mk+1|Fk) = Mk. Now recall that Azuma’s inequality
for a martingale Xk with bounded increment |Xk −Xk−1| ≤ ck is

P(|MN −M0| ≥ ϵ) ≤ 2 exp
(

− ϵ2

2∑N
k=1 c

2
k

)
(3.7.6)

Therefore, application of Azuma’s inequality to Mk gives the concentration inequality.

PΓ
N (|HN (f) −HN (f)| > N−1a ·

√
m) < 2 exp(−a2/2). (3.7.7)

One can renormalize this concentration inequality exactly as we did it for the square
lattice in 2.5.2, and the resulting inequality for normalized height functions is the following.

Choose a such that C = N−1a
√
m. The length of a path m behaves for large N as

m ≈ ℓ′(Ω, f)N . The quantity ℓ′(Ω, f) is approximately the length of the shortest path inside
Ω from the face f ∈ F(Ω) to ∂Ω. Let us define ℓ′(Ω) := maxf ℓ(Ω, f), which is finite due to
compactness of Ω.

The resulting concentration inequality so far is the following,

PΓ
N (|HN (f) −HN (f)| > C) < 2 exp

(
− NC2

2ℓ′(Ω)

)
, (3.7.8)

To obtain the probability PΓ
N (
∥∥∥HN −HN

∥∥∥Ω

∞
≥ C), we need to sum over all faces f ∈ F(Γ)

probabilities that |HN (f) −HN (f)| ≥ C,

PΓ
N

∥∥∥HN −HN

∥∥∥Ω

∞
> C) =

∑
f∈F(Γ)

P(|HN (f) −HN (f)| ≥ C) (3.7.9)

The number of terms in the letter expression is bounded from above by N2|Ω|, where |Ω|
is the area of Ω, which is due to the fact that the number of faces of ΓN is approximately
|Ω| ×N2,

PΓ
N

(∥∥∥HN −HN

∥∥∥Ω

∞
> C

)
< 2|Ω|N2 exp

(
− C2N

2ℓ′(Ω)

)
. (3.7.10)

One can further choose an ℓ(Ω) < 32ℓ′(Ω)) to absorb the prefactor 12|Ω|N2 for sufficiently
large N , and factor 2 in front of ℓ′

PΓ
N

(∥∥∥HN −HN

∥∥∥Ω

∞
> C

)
< exp

(
−C2N

ℓ(Ω)

)
. (3.7.11)
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Appendix: Absolute height functions

3.7.3 Absolute height functions

Due to the dependence of HD,D0 and NΛ on D0, sometimes it is more convenient to define
an analogue of D0 which a priori does not come from a single dimer configuration. One way
to do it is to take a canonical flow of divergence 1 at each vertex.

It can be done for every bipartite graph without self-intersections, see Theorem 3.3
in [GK11]. We will focus on regular graphs, i.e., graphs with the same valence N for all
vertices.

In this case, one can define φ(v) = 1
N Obtained height functions are called absolute

height functions. However, the absolute height function takes values at Q instead of Z or to
multiply coefficients by N to make them integers.

One can notice that absolute height functions obey the local rule. It states that around
each vertex they increase with the respect to cyclic order around this vertex: around black
vertices they increase in clock-wise direction and around white vertices in counter-clock-wise
direction. See an example on Figure 3.7 .

Figure 3.7: The local rule for an absolute height function

Moreover, it is not hard to check that every function on faces that satisfy the local rule
is an absolute height function of some dimer cover.

Proposition 3.7.4. There is a bijection between absolute height functions and functions on
faces that satisfy the local rule.

Also note that absolute height functions are Lipschitz functions in a sense described
below, which is a consequence of the local rule.

Let π(f1, f2) be the length of the shortest oriented path on dual graph of Γ that connects
faces f1 and f2.

Proposition 3.7.5. Every absolute height function satisfies modified Lipschitz condition:

HD(f1) −HD(f2) ≤ 1
N
π(f1, f2) (3.7.12)



Chapter 4

The Tangent plane method

Abstract

The aim of this chapter is to give an introduction to the Tangent plane method,
which gives an explicit parametrization of the arctic curve for the wide range of models.
It was proposed by Richard Kenyon and Istvan Prause in their work [KP22]. We discuss
it on the example of random domino tilings of Aztec diamond, and Aztec diamond with
a hole.

4.1 Introduction

Variational problems we see in the large deviation principle for the dimer model and random
domino tilings have a long story. They arise in the physical description of formation of
the equilibrium shape of crystals, where we are interested in the shape minimizing the
total surface free energy with a fixed volume. The Wulff construction [Wul01] gives a
phenomenological description of the minimizer’s graph as an envelope of its tangent planes.
This description was known in physical literature, for instance §140 in [LL58], without a
mathematically rigorous proof. However, such a proof appeared for two-dimensional Ising
model in [RRS92], where the shape is the interface separating the two phases of the system.
Later, the rigorous construction for the three-dimensional Ising model in a low temperature
limit appeared in [CK01], where the limiting interface was identified with the limit shape of
the plane partitions.

Another parallel story to crystal formation is soap filming, where the shape minimizes
the surface tension of the soap film. This analogy gives the name for the function σ and
the functional F in the dimer model. Moreover, a soap film is the realization of a minimal
surface, which is a surface that locally minimizes the area. The latter given by functional
h 7→

∫ √
1 + ∇h2dxdy, thus we arrive at another variational problem. However, how to

analyze such a problem? The first idea is to look at the corresponding Euler-Lagrange
equations, or in physical terms, equations of motion.

The usual Laplace equation ∆u = 0 is nothing but the Euler-Lagrange equation for
the functional

∫
Ω ∥∇u∥2 dxdy. What is more important, one can obtain a solution to the

Laplace equation out of an analytic function f defined on a simply-connected domain Ω
simply by taking the real or imaginary part of the function f . In this chapter, we are
going to apply a similar strategy to analyze Euler-Lagrange equations corresponding to the
variational problems coming from the dimer model. These variational problems fit into a
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particular class of problems, the so-called gradient variational problems. Unlike the classical
functional

∫
Ω ∥∇u∥2 dxdy, in the dimer model we deal with a functional

∫
Ω σ(∇h)dxdy with

non-smooth σ, which makes their analysis more difficult. Also, in this chapter we are using
a different notation for the Newton polygon for the square lattice turned by 45 degrees so
that the characteristic polynomial is P (z, w) = 1 + z + w − zw and the Newton polygon is
the unit square with vertices (0, 0), (1, 0), (0, 1), (1, 1).

4.2 Gradient variational problems
Solving a gradient variational problem in R2 means finding a function h : Ω → R that
minimizes a certain functional I(h) that depends only on ∇h over a suitable functional space
H (Ω). We further assume that the functional I(h) can be written as,

I(h) =
∫

Ω
σ(∇h)dxdy (4.2.1)

for a given convex function σ : N → R, which is bounded and strictly convex in interior of a
convex polygon N and extended to +∞ outside N . Strict convexity of σ implies existence
and uniqueness of the minimizer h⋆ over the space of functions with prescribed boundary
conditions and the gradient constraint ∇h ∈ N by [DS08]. In the dimer models, N is the
Newton polygon NΛ from 1.4.1. However, we can formulate the gradient variational problem
without connection to the dimer model.

Such a variational problem also arises in the study of minimal surfaces in R3, which are
surfaces of locally minimal area for given boundary conditions. The variational characteriza-
tion of a minimal surface given by (x, y, h(x, y)) is that h is a critical point of the functional
I(h) =

∫
Ω
√

1 + |∇h|2dxdy. The famous Weierstrass-Enneper parameterization encodes such
a surface in terms of two arbitrary holomorphic functions. One example of a minimal surface
is the helicoid (see Figure 4.1), a surface defined parametrically in Cartesian coordinates as

x = ρ cos(αθ), y = ρ sin(αθ), z = θ. (4.2.2)

The Costa surface, discovered in [Cos84], is another example. It is a surface of genus 1
embedded into R3 without self-intersections, see Figure 4.1. An explicit parametrization of
this surface in terms of Weierstrass elliptic functions was obtained in [FGM95].

Figure 4.1: Plots of the helicoid on the left, and of the Costa surface on the right obtained
by Mathematica.

In the dimer model, we deal with a particular example of gradient variational problem,
and the situation is similar to the minimal surfaces. An asymptotic description of the model
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is given by the continuous height function h, which solves the gradient variational problem.
The tangent plane method is a method that help us in reconstructing the minimizer h out of
three harmonic functions, two components of the gradient (s, t) := ∇h, and a third function
called the intercept c.

Other gradient variational problems recently appeared, for instance in studies of the
six-vertex model, and the five-vertex model [RS17; KP22; KP24]. The main difference is
that while for the dimer models the main functions are harmonic, in the five-vertex model
they are ratios of harmonic functions with a common denominator.

The functional space on which the functional is minimized is composed of Lipschitz
functions, whose gradient is well defined almost surely by Rademacher’s theorem. The fact
that σ takes finite values only inside N implies that the gradient of the solution h belongs to
N almost everywhere. Let us introduce several technical definitions. In this discussion, we
assume that L,F ,G,Q are open subsets of Ω, and the points in the definition 4.2.1 belong
to Z2.

Definition 4.2.1.

• P = (p1, . . . , pk) are the vertices (corners) of N .

• G = (q1, . . . , ql), qi ∈ N̊ are the gas points.

• Q = (pk+1, . . . , pk+m) are the quasifrozen points, points on pi ∈ ∂N \ P.

With the help of these notations, we define four regions on Ω from Definition 2.7
from [ADPZ20],

Definition 4.2.2. The liquid region of h is

L := Int{z ∈ Ω : h is C1 in a neigbourhood of z, ∇h(z) ∈ N̊ \ G }. (4.2.3)

The frozen region of h is

C := Int{z ∈ Ω : h is C1 in a neighborhood of z, ∇h(z) ∈ P}. (4.2.4)

The gas region of h is defined as

G := Int{z ∈ Ω : h is C1 in a neighborhood of z, ∇h(z) ∈ G }. (4.2.5)

The gas phase is discussed in the context of the doubly-periodic Aztec diamond, where
there is a unique point q ∈ G .

Moreover, h is C∞ smooth in the liquid region L by results from [DS08], see also
discussion on page 29 in [ADPZ20].

The Euler-Lagrange equation for (4.2.1), defined in the liquid region L is:

div(∇σ ◦ ∇h) = 0. (4.2.6)

This equation itself, follows from a standard calculus in variations, see [Eva10, Chapter 8]:
simply take a test function h, which is a smooth function supported strictly inside L and
look at the expansion in ε of I(h⋆ +εh), where we assume that h⋆ +εh has a gradient strictly
inside N (we can choose a small enough ε for this). A sufficient and necessary condition for
h⋆ to be the minimizer of the convex functional I is vanishing of the linear order in ε in
expansion of I(h⋆ + εh) for any choice of function h. Or in other words, one needs to check
vanishing of the Gâteaux derivative of I at h⋆ in any direction h. After expanding σ(h + εh)
up to the first order, we get
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∫
Ω
σ(∇h(x, y) + ε∇h(x, y))dxdy =

∫
Ω
σ(∇h(x, y))dxdy+

ε

∫
Ω

(∇σ ◦ ∇h(x, y) · ∇h(x, y)) dxdy + o(ε) (4.2.7)

Then, after applying the Stokes theorem (note h
∣∣
∂Ω = 0), we obtain the following expression

for coefficient of the linear term in ε,

−
∫

Ω
h(x, y) div(∇σ ◦ ∇h(x, y))dxdy. (4.2.8)

Since (4.2.8) should vanish for any function h, we necessarily have div(∇σ ◦ ∇h⋆) = 0 for
the minimizer h⋆. We would also need to check that the second order expansion is positively
defined, but it holds automatically due to convexity of the functional I.

4.2.1 Brief summary of analytic properties of limit shape

In the article [ADPZ20], the authors establish analytic properties of the minimizers coming
from the dimer models. Let us mention some of them. The paper discusses the generic
dimer model with periodic weights. However, we will focus on the case of random domino
tilings, or lattice Λ = Z2 with uniform weights (all the weights equal to 1).

We need to restrict ourselves to a particular class of domains called natural domains
with natural boundary heights (boundary conditions). First, let us orient the sides of the
Newton polygon NZ2 in the counterclockwise direction, and denote them PN ,PW ,PS , PE .
A natural domain Ω ∈ R2 is a polygon with edges {ℓi}i=k

i=1 such that for each pair of adjacent
edges ℓk, ℓk+1 we can find a pair of adjacent edges lm, lm+1 of the Newton polygon NZ2 such
that ⟨ℓk, lm⟩ = 0 and ⟨ℓk+1, lm+1⟩ = 0 or ⟨ℓk+1, lm⟩ = 0 and ⟨ℓk, lm+1⟩ = 0.

More precisely, for the square lattice, it means that the sides are parallel to the directions
of the square lattice, with an angle of ±90 degrees between two consecutive sides. Therefore,
the natural domains look similarly to the Aztec diamond, for example Aztec rectangles.

A natural domain admits various boundary conditions, and we call b a natural boundary
condition if on every edge ℓi connecting consecutive vertices zj , zj+1 of Ω with z being a
point on ℓi,

b(z) = ⟨pn, z − zj⟩ + b(zj). (4.2.9)

In practice, it means that the asymptotic height function h has ∇h ∈ ∂N and the
function is affine on the components of the boundary in the continuous picture, while on
the discrete picture each side of the domain consists of brick-wall patterns like sides of an
Aztec diamond.

We may expect a situation similar to the Aztec diamond with a liquid region in the
center of the domain, and frozen phases near the corners. Let us define them once again,
starting from minimizer h. Let us follow notations from [ADPZ20]. First, define three sets

Let us explain the quasifrozen regions on the following computer simulation on Figure 4.2,
where we have two types of boundary behavior near ∂L. The two connected components
of the liquid region are separated from each other by the quasifrozen region, which in the
discrete picture consists of two types of lozenges in contrast to the frozen regions, which
consists of exactly one type. Furthermore, the boundary conditions do not fix the picture
completely, for example on the Figure 4.2, there are two different simulations done for the
same boundary conditions.

Theorem 5.15 from [ADPZ20] summarizes boundary regularity,
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Figure 4.2: Quasifrozen domain for a lozenge tiling model with the same boundary conditions,
but with different functions σ, computer simulations by M.Duits [ADPZ20]

Theorem 4.2.3 ([ADPZ20]).

1. The boundary ∂L is the real locus of an algebraic curve.

2. Each connected component of ∂L is isomorphic to ∂D, ∂Lk = fk(∂D), where fk is
holomorphic inside the disk.

3. ∂L is locally smooth and convex except at a finite number of points.

4. The only singularities of ∂L are cusps and tacnodes, see Figure 4.3.

Figure 4.3: Examples of curves having a singularity at the origin: a cusp for the curve in
yellow, and a tacnode for the curve in blue.

Therefore, we have the following picture going from the boundary of the region to the
bulk: near the boundary ∂Ω, we have frozen and quasifrozen regions, where h is linear with
the maximal possible slope, h ∈ ∂N . The boundary of this part is the arctic curve C, which
is smooth except at finitely many points. After crossing the boundary, we end up in the
liquid region, where ∇h ∈ N̊ . There, we might have another connected component of the
arctic curve C, which bounds a gas phase where the gradient is constant ∇h = q. Now,
we know enough properties of ∂L to perform some computations, and the main tool are
isothermal coordinates, which help to simplify the analysis of the Euler-Lagrange equations
for the dimer model.

4.2.2 The tangent plane method and the complex Burgers equation

Here we discuss a novel method of computation of the arctic curves, the tangent plane
method proposed by Kenyon and Prause in [KP22]. The method can be applied to a generic
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zw

zw

1

πtπs

Figure 4.4: Relation between coordinates (s, t) and (z, w)

gradient variational problem. However, we are going to give the description for the situation
for random domino tilings. For generic situation, see [KP22; KP24].

The idea is that we start with the liquid region L, and then assuming that h is the
minimizer, we map the liquid region to the Newton polygon, (x, y) 7→ (s, t) := ∇h(x, y) ∈ N .
Moreover, in the paper [KP22], the authors look at N as a Riemann surface with the metric
g given by the Hessian of surface tension σ:

g = σssds
2 + 2σstdsdt+ σttdt

2. (4.2.10)

Convexity of σ implies that the Hessian is positive definite, and thus corresponds to a
(non-degenerate) metric.

Then, they perform the main trick of the method, that is a specific change of coordinates,
(s, t) 7→ z, for complex variables z on the spectral curve P (z, w) = 0. The relation between
(s, t) and (z, w) can be formulated graphically as on Figure 4.4. We justify this figure in
Theorem 4.2.4 below.

Such z is an example of an isothermal/conformal coordinate, which diagonalizes metric
g, as we are going to show. More generally, call a map ζ that completes the following
commutative diagram the intrinsic coordinate,

L N

Σ+ C+

Σ C

1:1

∇h

1:1

⊂

deg d

⊂

π

There is always a choice of orientation of such an intrinsic coordinate ζ, and we fix it so
that it is an orientation-reversing map to the upper half plane, such an intrinsic coordinate
is z. (The upper half plane is the upper half of the spectral curve, which is in this case the
Riemann sphere).

Theorem 4.2.4. In the liquid region L, there are defined two functions z(x, y), w(x, y)
satisfying the following properties,

1. ∇h = 1
π (argw,− arg z),

2. Ampère’s equation zx
z + wy

w = 0,

3. spectral curve equation P (z, w) = 0.
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Proof. We start with a point (z0, w0) on the spectral curve {P (z, w) = 0}. Then, we know
that the real part of its image under the logarithm map (log |z0|, log |w0|) defines a point
in the amoeba (X,Y ) := (log |z0|, log |w0|) ∈ A. Here, we assume that (z0, w0) is a generic
point, so that (X,Y ) = (log |z0|, log |w0|) is in the interior of A. We further assume that
z0 ∈ H (so that w0 has a negative imaginary part. In fact, we know from the Harnack
property of the spectral curve that there is exactly another root of P , which is sent to the
same point of the amoeba, given by (z̄0, w̄0). We write

z0 = eX+iθ0 , w0 = eY +iω0 ,

with θ0 ∈ (0, π) and ω0 ∈ (π, 2π).
The gradient of the Ronkin function R evaluated at this point defines the corresponding

slope (s, t). More precisely, we have the following equation,

(s, t) := ∇R(log |z|, log |w|). (4.2.11)

Let us compute the derivatives of the R by its definition,

s = ∂

∂X

1
(2πi)2

∫∫
T2

logP (eXz, eY w)dzdw
zw

= 1
(2πi)2

∫
|w|=eY

(∫
|z|=eX

∂XP (eXz, eY w)
P (eXz, eY w)

dzdw

zw

)

= 1
2πi

∫
|w|=eY

dw

w

(
1

2πi

∫
|z|=eX

d logP
)
, (4.2.12)

where we look at
(

1
2πi

∫
|z|=eX d logP

)
as a function of w, which is fixed, and then integrate it

over the circle {|w| = eY }. For a given value of w, there is a unique value of z = z(w) = w+1
w−1

such that P (z(w), w) = 0. It turns out that when w moves counterclockwise around the
circle of radius eY , the root z(w) is inside the disc of radius eX when w is on the arc from
w̄0 to w0, and outside when w is on the arc from w0 to w̄0. As a consequence, the function
w 7→

∫
|z|=eX d logP (·, w) is a the indicator function of the arc (w̄0, w0).

Therefore, the remaining integral is

s =
∫ w0

w̄0

1
2πi

dw

w
= 1

2πi(logw0 − log w̄0) = 1
2iπ (log(eY +iω0) − log(eY +i(2π−ω0))) = ω0

π
− 1.

The computation for the other coordinate of the gradient corresponding to t is the same
except that the integral 1

2iπ

∫
|w|=eY d logP (z, ·) is the indicator function of the oriented arc

from z0 to z̄0. This means that when we integrate the result over z, we get

t =
∫ z̄0

z0

1
2πi

dz

z
= 1

2πi(log z̄0 − log z0) = 1
2iπ (log(eX+i(2π−θ0)) − log(eX+iθ0))) = 1 − θ0

π
.

As a result, we have that

log z0 = X + πi(1 − t), logw0 = Y + πi(1 + s). (4.2.13)

By a global translation of the set of slopes by the vector (1,−1) (or by replacing z by −z
and w by −w), we can assume that the following relation holds

log z0 = X − iπt, logw0 = Y + iπs. (4.2.14)

We now associate to each point (x, y) of the liquid region a pair (z, w), in such a way
that the arguments of z(x, y) = z0 and w(x, y) = w0 match the (translated) slopes −t and s
respectively, times π according to (4.2.14).



96 Chapter 4. The Tangent plane method

Now, we substitute X,Y from (4.2.14) to the intrinsic Euler Lagrange equation, which
can be rewritten as Xx + Yy = 0 and see that it becomes Re( zx

z + wy

w ) = 0. This is one real
equation, which should be supplemented with a consistency condition ∂s

∂y = ∂t
∂x = ∂2h

∂y∂x or
− ∂s

∂y + ∂t
∂x = 0, which by (4.2.11) can be written as ⟨(− ∂

∂y ,
∂

∂x),∇R(log |z|, log |w|)⟩ = 0, since
∇R(log |z|, log |w|) = 1

π (+ argw,− arg z). Thus, we end up with the second real equation
Im( zx

z + wy

w ) = 0. It completes the derivation of the Ampère’s equation.

It turns out that the coordinate z itself defines isothermal coordinates (U, V ) :=
(Rez, Imz). In fact, let us look at (4.2.14). Since logarithm is a holomorphic map, it
satisfies the Cauchy-Riemann equations, and so does the right-hand side. For example, for
Y + iπs we have two equations,

YU = πsV , YV = −πsU . (4.2.15)

and for X − iπt.

XU = −πtV , XV = πtU . (4.2.16)

These equations are combined into complex equations with the help of Wirtinger
derivatives,

Xz = 1
2(XU − iXV ) = 1

2(−iπ(sU − isV )) = −iπsz,

Yz = iπtz. (4.2.17)

We also see that Yz
sz

= iπ = −Xz
tz

, therefore, we have Xz
tz

+ Yz
sz

= 0. It is the first criterion for
z being an intrinsic variable from proposition 2.1 from [KP24].

Then, recall that X = σs(s, t), Y = σt(s, t), which enables us writing

πsV = YU = σstsU + σtttU , πtV = −XU = −σsssU − σsttU . (4.2.18)

This is nothing but the real Beltrami equation, a sufficient condition for the coordinates
(U, V ) to be isothermal/conformal. Thus, z = U + iV is the intrinsic coordinate according
to the definition of [KP22]. The authors there propose a criterion for a coordinate ζ to be
an intrinsic one, that we formulate in the following Proposition:

Proposition 4.2.5 ([KP22], Proposition 2.1). The following two equations are each equiva-
lent to ζ being an intrinsic coordinate

Xζ

sζ
+ Yζ

tζ
= 0 (4.2.19)

sζ

tζ
= −σst − i

√
detHσ

σss
(4.2.20)

And in the case the above equations hold, we have

Xζ

tζ
= −i detHσ = −Yζ

sζ
. (4.2.21)

Note also that the last relation from Proposition 4.2.5 together with (4.2.17) implies
that detHσ = π2.
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Proof. Let us define γ := sζ

tζ
. Then, due to Xζ = (σs)ζ = σsssζ + σsttζ , we write Xζ

tζ
=

σssγ + σst. Rewriting this computation for Y , we see Yζ

sζ
= σtt

1
γ + σst. Therefore, the first

condition of Proposition 4.2.19 is nothing but

σssγ
2 + 2σstγ + σtt = 0. (4.2.22)

The two roots are

γ = −σst ± i
√

detHσσss

σss
. (4.2.23)

Since in our convention, ζ is assumed to be orientation-reversing map, Im(γ) < 0 and
we have the minus sign. Furthermore, Xζ

tζ
= −i

√
detHσ = Yζ

sζ
.

Now, with the help of Proposition 4.2.5 we can prove the intrinsic Euler-Lagrange
equation in two forms,

Proposition 4.2.6. For (x, y) ∈ L we have

Xζζx + Yζζy = 0, (4.2.24)

ζx

ζy
= sζ

tζ
= γ. (4.2.25)

Proof. The last expression of the proof of Proposition 4.2.5 implies that (we are using the
chain rule for Xx = Xζζx +Xζ̄ ζ̄x and f̄(z̄) = ¯f(z)) ,

Xx − i
√

detHσtx = Xζζx +Xζ̄ ζ̄x − i
√

detHσ(tζζx + tζ̄ ζ̄x) = (4.2.26)

= (Xζ − i
√

detHσtζ)ζx + (Xζ + i
√

detHσtζ)ζx = 2Xζζx. (4.2.27)

Similarly for Y ,
Yy + i

√
detHσsy = 2Yζζy. (4.2.28)

Therefore, since tx = sy we have the following intrinsic Euler-Lagrange equation

Xζζx + Yζζy = 0. (4.2.29)

Let us look at (4.2.14), the left-hand side X − iπt is a holomorphic function of ζ, as well
as Y + iπs. Therefore, they satisfy the Cauchy-Riemann equation, which tells us that

Xζ = iπtζ , (4.2.30)
Yζ = −iπsζ . (4.2.31)

Which in combination with Xζζx + Yζζy = 0 gives us that tζζx − sζζy = 0 or tζ

sζ
= ζy

ζx
= 1

γ .
Then, apply the Proposition 4.2.6 combined with the relation − yz̄

xz̄
= zx

zy
. It follows from

z = z(x, y), where we take the derivative with respect to z̄ and obtain 0 = zxxz̄ + zyyz̄.
Finally, we get − yz̄

xz̄
= zx

zy
= sz

tz
, and we are done.

However, one can see that z is a conformal coordinate directly from the equation we
already have. Let us show that the metric g in coordinates (U, V ) is diagonal, i.e., that
the scalar product g( ∂

∂U ,
∂

∂V ) = 0 and g( ∂
∂U ,

∂
∂U ) = g( ∂

∂V ,
∂

∂V ). For this, let us note the
expressions for the vector fields in coordinates (s, t).
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∂

∂U
= sU

∂

∂s
+ tU

∂

∂t
,

∂

∂V
= sV

∂

∂s
+ tV

∂

∂t
.

Now, the scalar product g( ∂
∂U ,

∂
∂V ) equals to

σsssUsV + σst(sV tU + sU tV ) + σtttU tV . (4.2.32)

Then, using (4.2.14) we have

πsV = YU = σstsU + σtttU , πtV = −XU = −σsssU − σsttU . (4.2.33)

It helps us to express the derivatives with respect to V through derivatives with respect
to U in (4.2.32), let us write each term of (4.2.32) and mark by the same color the terms
which cancel each other in the sum (4.2.32).

πσsttUsV = σ2
stsU tU + σstσttt

2
U ,

πσstsU tV = −σssσsts
2
U − σ2

stsU tU

πσsssUsV = σssσsts
2
U + σssσtttUsU

πσtttU tV = −σssσtttUsU − σstσttt
2
U

As for the diagonal elements of the metric, we have

g( ∂

∂U
,
∂

∂U
) = σsss

2
U + 2sU tUσst + σttt

2
U , (4.2.34)

g( ∂

∂V
,
∂

∂V
) = σsss

2
V + 2sV tV σst + σttt

2
V . (4.2.35)

Let us repeat the same steps and express derivatives with respect to V , (note that we
have an extra multiple π in (4.2.33), which appear each time we transform derivative with
respect to V into derivative with respect to U)

1
π2 (σss(σstsU + σtttU )2

+ 2σst(σstsU + σtttU )(−σsssU − σsttU )
+ σtt(σsssU + σsttU )2). (4.2.36)

Then, comparison of coefficients in front of s2
U shows that in (4.2.34) we have σss, while in

(4.2.36) we have

1
π2σss(σ2

st − 2σ2
st + σttσss) = σss

σssσtt − σ2
st

π2 = σss (4.2.37)

(terms which contribute to the coefficient are in the olive color). A similar computation
done for coefficients in front of t2U shows that (the terms are in the red color), on one hand,
we get σtt, while on the other hand

1
π2σtt(σssσtt − σ2

st) = σtt. (4.2.38)

Finally, the same computation shows agreement for the coefficient in front of sU tU , 2σs,t on
one hand, and 1

π2 (2σs,t(σs,sσt,t − σ2
s,t − σt,tσs,s + σt,tσs,s)) = 2σs,t on the other.
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4.2.3 An intermediate parameterization

It may happen that there are several points in the liquid region with the same slope
(s, t) ∈ N̊ \ G . In that case it is not possible to parameterize the liquid region by the slope,
and thus by the coordinate z. However, the degree d of ∇h : L → N̊ \ G is constant except
many at a finite number of points. We can therefore introduce a ramified covering Σ of
degree d over the spectral curve {P (z, w) = 0} such that the variables z and w are now
meromorphic functions of the variable u ∈ Σ. Let Σ+ the preimage by z of the upper-half
plane. This gives a diffeomorphism from Σ+ to the liquid region.

The functions s and t, considered before as functions of z, can be now seen also as
functions of u ∈ Σ+.

4.2.4 The intercept function

Let us look at the graph of the minimizer h⋆. More precisely, take the tangent plane Px0,y0

to it at a given point (x0, y0). It has a slope given by ∇h⋆(x0, y0) = (s(x0, y0), t(x0, y0)). It
also intersects the vertical axis at the ordinate (h⋆ −(sx+ty)). The function c := h⋆ −sx−ty
is called the intercept. With its help, we can parametrize the tangent planes to the plot of
h⋆ as follows,

Px0,y0 = {(x, y, z) ∈ R3|{s(x0, y0)x+ t(x0, y0)y + c(x0, y0) = z}. (4.2.39)

The important properties of c for us are first, it is constant on every frozen region since
on each frozen region h⋆ is linear with a fixed slope, and so is its tangent plane. Thus, after
subtracting the linear part of h⋆, the difference takes a constant value on each frozen region.
Further, the minimizer h⋆ can be reconstructed from s, t and c as h⋆ = sx+ ty + c. After it,
the limit shape is obtained as the envelope of planes given by (4.2.39). The main property of
these planes is harmonicity of functions s, t and c as functions of the isothermal coordinate,
which is discussed in the next section.

4.2.5 Harmonicity of s, t and c

The property of functions s, t and c as functions of isothermal coordinate u is that they are
harmonic by Theorem 3.1 from [KP22].

Now, let us re-formulate Proposition 4.2.5 in real terms and prove harmonicity of s, t
and c in isothermal coordinates.

Proposition 4.2.7. The functions s, t and c are harmonic in the variable u ∈ Σ+.

Proof. Functions s and t are harmonic in the variable u since they are equal to the argument
(imaginary part of the logarithm) of z and w, which are holomorphic functions of u in the
interior of Σ+.

Next, consider c = (h − (sx+ ty)), and let us apply to it ∂u and ∂ū remembering that

∇h = (hx, hy) = (s, t),

cu = (h − (sx+ ty))u = hxxu + hyyu − (sux+ tuy + sxu + tyu) = −sux− tuy. (4.2.40)

Then, applying ∂ū we obtain by harmonicity of s, t

∂ū(sux+ tuy) = suxū + tuyū. (4.2.41)
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Moreover, taking the derivative of u = u(x, y) with respect to ū (which gives 0), we get
by the chain rule: 0 = uxxū + uyyū. Since u is locally a holomorphic function of z, it is also
an intrinsic coordinate. We can therefore apply Proposition 4.2.6, and get

− yū

xū
= ux

uy
= su

tu
,

from which it follows that
∆uc = 4cu,ū = 0.

Therefore, we can hope to reconstruct all three functions as long as we are able to
perform explicit harmonic extensions of piecewise constant boundary conditions. As a
corollary, we can obtain the limit shape h⋆ as envelope of harmonically moving planes by
Theorem (4.2.9), see also [KP22, Theorem 3.2],

4.2.6 Tangent plane equation

Introduce the main equation of the method, Equation (20) from [KP22], which will help us
to compute the arctic curve.

Proposition 4.2.8. Inside the liquid region, parameterized by u ∈ Σ+, the following equation
holds:

sux+ tuy + cu = 0 (4.2.42)

What is important is that this complex equation is equivalent to two real equations for
the real and imaginary parts, which gives for every u ∈ Σ+ a linear system for (x(u), y(u)),
once we know s, t, and c as functions of u.

Proof. Let us apply the Wirtinger derivative ∂u to the minimizer h, remembering that
∇h = (s, t), we have the following equalities

hu = sxu + tyu = (sx+ ty)u − (sux+ tuy) (4.2.43)

sux+ tuy + (h − (sx+ ty))u = 0, (4.2.44)
which is the same as

sux+ tuy + cu = 0. (4.2.45)

In practice, we deal with harmonic extensions made of linear combinations of arg(u),
the important identities are first arg(u) = Im log(u), which we use to take the Wirtinger
derivative as

∂u arg(u) = 1
2i

1
u
. (4.2.46)

As a corollary of (4.2.7) and (4.2.8), we obtain the plot of the minimizer h⋆ over Σ+

can be recovered as an envelope of harmonically moving planes with the slope given by
(s(u), t(u)), u ∈ Σ+.

Theorem 4.2.9 (Theorem 3.2 [KP22]). The graph of the minimizer h⋆ over u ∈ Σ+ is the
envelope of harmonically moving planes Pu that satisfy two conditions:

• Pu := {(x(u), y(u), z(u)) ∈ R3|s(u) + t(u) + c(u) = z(u)}

• sux+ tuy + cu = 0
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Figure 4.5: Example of the Aztec diamond of order 4 on the left, and a domino tiling of it
on the right, with four types of dominoes according to the chess-board coloring.

4.3 Applications for the random domino tilings
In the rest of the chapter, we are going to explain the method applied to a simply-connected
domain, the Aztec diamond, and to our main example, the Aztec diamond with a hole. We
also need to use assumption for the number of frozen regions of the particular domains,
and values of s, t and c there. This data is inferred from discrete boundary conditions and
computer simulations.

4.3.1 A case with a simply-connected liquid region: the uniform Aztec
diamond

Recall that the Aztec diamond of order N is the union of unit squares S(m,n) of the square
lattice whose centers (m,n) satisfy

|m− 1
2 | + |n− 1

2 | ≤ N. (4.3.1)

It is also convenient to introduce chess-board coloring on the square grid, this way we obtain
4 types of dominoes, see Figure 4.6.

Figure 4.6: Example of the same domino tiling in color notation, and domino tiling of Aztec
diamond of order 50 by J.Propp.

We consider in this section the case of the uniform measure on tilings of the Aztec
diamond of size N . As N goes to infinity, the height function converges in probability to a
deterministic function which is linear in the four regions in the limiting renormalized square
deprived from the inscribed disc (the frozen regions) and is smooth inside the inscribed disc
(the liquid region). This statement is due to Jockush, Propp and Shore [JPS98]. The goal
of this section is to recover this result using the tangent plane method, described above,
following loosely [KP22, Section 6.1],[Section 2.3][KP24].
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Applying the tangent plane method

In the case of the uniform Aztec diamond, it is convenient to use a coordinate system (x, y) in
the renormalized domain wich is rotated by 45 degrees with respect to the horizontal/vertical
discrete coordinate axes, so that the renormalized domain becomes in the limit the unit
square [0, 1] × [0, 1]. See Figure 4.8 to see the directions of the two axes for x and y.

In the liquid region L, there is a unique point where the limiting height function has
a given slope in the interior of the Newton polygon (the fact that each of the four frozen
phases is seen only once on the boundary of L is a sign that the degree d from u to z or w
is 1). This is thus a case when we can take u = z: the liquid region can be paramaterized
by z ∈ H. We now determine the values for s, t and c on the boundary of the liquid region
(which corresponds to z ∈ R ∪ {∞}, bounded by the four distinct frozen regions.

Each interval (−∞,−1), (−1, 0), (0, 1), (1,∞) corresponds to an arc of the arctic curve
touching a given frozen phase, with slope (s, t) given respectively (with the convention of
the slope given by Equation (4.2.13)) by (1, 0), (0, 0), (0, 1) and (1, 1) respectively.

We form a table consisting of four columns for each frozen region, and three rows for
each function s, t and c.

(1) (2) (3) (4)
z < −1 −1 < z < 0 0 < z < 1 1 < z
1 > w > 0 0 > w > −1 −1 > w w > 1

s 1 0 0 1
t 0 0 1 1
c 0 1 0 0

The value of c is determined up to some additive constant, fixed here to be zero. Its
value in each region is fixed by the condition that the linear parts of the height functions
with the given slopes in the table should match at the “turning points”, where two frozen
regions touch on the boundary of the Aztec diamond. See Figure 4.7 for a picture of those
linear pieces.

Figure 4.7: Height above the frozen regions of the Aztec diamond, which is a piecewise
linear function. The values of c on each arc of the arctic curve reflect the continuity of the
height along the boundary of the liquid region.

We represent visually on Figure 4.8 the information of the table, and four specific values
of z at the transition between two frozen phases near the arctic curve.
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xy

(1) : x(3) : y

(2) : 1

(4) : x+ y

0 −1

1 ∞

Figure 4.8: The four frozen phases of the Aztec diamond, with colors corresponding to
branches of the boundary of the amoeba from Figure 1.18. For each region, we indicate
in black the equation for the ordinate as an affine function of x and y. For each “turning
point”, we indicate in purple the corresponding value of z in the parametrization.

Parametrization of the limit shape of the Aztec diamond

We know that s, t and c are harmonic functions of the variable z. We construct explicit
harmonic extensions of the boundary values from the table. For s and t, the answer is given
directly by Equation (4.2.13), which can be rewritten as

s(z) = 1
π

arg(−w(z)) = 1
π

arg 1 − z

1 + z
, t(z) = − 1

π
arg(−z) = 1 − 1

π
arg(z).

For c, we proceed with the same idea, using building blocks of the form

f(z) = 1
π

arg z − b

z − a

which is the harmonic extension of the indicator function of interval [a, b]. The corresponding
harmonic extensions is:

c(z) = 1
π

arg z

z + 1 .

Another choice of conformal coordinate instead of z which will be useful in connection
with the next example is choosing ζ = 2

π arctan z, which maps the complex plane to an infinite
cylinder C/2Z. The upper-half plane for z parametrizing the liquid region (respectively the
real axis together with the point at infinity parametrizing the arctic curve) is mapped to
the upper half of the cylinder (respectively to R/2Z).

The table of boundary conditions of s, t and c for AD for the variable ζ is the following
(where the intervals for ζ represent a cyclic order, as on the cylinder, −1 = 1):

(1) (2) (3) (4)
−1 < ζ < −1

2 −1
2 < ζ < 0 0 < ζ < 1

2
1
2 < ζ < 1

s 1 0 0 1
t 0 0 1 1
c 0 1 0 0

The harmonic extensions in this parametrization are given by the pullback under the
map z 7→ 2

π arctan(z), that is, by a composition with the map ζ 7→ tan(πζ
2 ).
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s(ζ) = 1
π

arg
1 − tan(πζ

2 )
1 + tan(πζ

2 )
= 1
π

arg tan(π2 (1
2 − ζ)),

t(ζ) = 1 − 1
π

arg(tan(πζ2 )),

c(ζ) = 1
π

arg
tan(π

2 ζ)
tan(π

2 ζ) + 1 .

Now, we need to plug them into linear system for (x, y) given by Equation (4.2.8). For
it, we need derivatives of s, t and c. Recall that we differentiate the arg z by applying the
Wirtinger derivative using the identity arg(z) = Im log z, which gives a factor i

2 to each arg,
and therefore factorizes. Thus, we present derivatives without this common factor. In the
coordinate z after a common multiplication by 2πi, we have

2iπsz = 1
z − 1 − 1

z + 1 = 2
z2 − 1 ,

2iπtz = 1
z
,

2iπcz = 1
z

− 1
z + 1 = 1

z(z + 1) .

With the help of expressions, we can build parametric plots using linear system szx+
tzy+ cz = 0 for finding (x(z), y(z)), which continuously depends on z, and then by inversion,
compute for every (x, y) in the liquid region the value of s(x, y), t(x, y), c(x, y), which would
give the equation of the tangent plane to the limit shape above the point (x, y). This would
finally allow us to reconstruct the limiting height function h as the enveloppe of this family
of tangent planes.

But before that, there is something simpler we can do: we can look at the image of
∂H by the map z 7→ (x(z), y(z)) which corresponds exactly to the arctic curve, that is the
boundary of the liquid region.

Furthermore, from a computational point of view, it may be hard to give an analytical
expression for the solution (x(z), y(z)) (except for the uniform Aztec diamond in coordinate
z, as we will see). Rather, we can instead for each z compute the linear system and its
solution, (x(z), y(z)) and plot it by varying z.

In fact, the functions defining the coefficients may not well-defined precisely on the
boundary, thus if we try to do it numerically, we add a small positive imaginary part to z.
This reflects the fact that gradient ∇h is defined only in the interior of the liquid region,
and not on the arctic curve.

Re(sz)x+ Re(tz)y + Re(cz) = 0, (4.3.2)

Im(sz)x+ Im(tz)y + Im(cz) = 0. (4.3.3)
This is the approach we will use for the next examples.

But it turns out, as it is often the case for the Aztec diamond, that computations are
quite easy, and we can find x(z), y(z) for every z ∈ H by solving the simple linear system,

x(z) = |z − 1|2

2(|z|2 + 1) , y(z) = 1
1 + |z|2

, (4.3.4)

or even invert it to find z(x, y). Indeed, the two real equations (4.3.2) and (4.3.3) are
equivalent to the degree-2 complex equation in z:

2zx+ (z2 − 1)y − z + 1 = 0,
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Figure 4.9: Left: the argument of z(x, y) for (x, y) in the liquid region. Cyan means that
z is pure imaginary, purple and pink (close to the right boundary) correspond to z near
R−, whereas yellow and orange (on the left) means that z is close to R+. Right: a large
piece of the arctic curve obtained from the parametrization by Equations 4.3.4, for z real
between −20, 20. One can see that the bottom of the circle is cropped, meaning that this
part corresponds to z in a neigbourhood of ∞.

for which we search the solution with positive (or rather non-negative) root, which is given
by:

z(x, y) = 1 − 2x+ i
√

1 − (2x− 1)2 − (2y − 1)2

2y ,

At this point, we already recognize the arctic circle of radius 1
2 and center (1

2 ,
1
2) as the

limit of definition of the square root defining z: this corresponds to the boundary of the
liquid region. As mentionned before, another way to recover a parametrization of the arctic
curve would be to take the solutions from Equation (4.3.4) and plot it for z ∈ R∪ {∞}. See
Figure 4.9 for a plot of the argument of z across the liquid region, and for a parametric plot
of the arctic curve.
Remark 2. Instead of taking the smallest fundamental domain with one white and one black
vertex, and considering the spectral curve presented in Section 1.4.1, one could have taken a
fundamental domain made of two white and two black vertices forming a 2 × 2-square. See
Figure 4.10. The coordinate axes (x, y) are now aligned with the horizontal and vertical
axes of the square lattice, so that the renormalized domain is a rotated square |x| + |y| ≤ 1.
If we label with 1 the vertices on the top row, and with 2 those of the second row of the
fundamental domain, the modified Kasteley matrix K(z, w) is given by

K(z, w) =
(

1 − w z − 1
1
z − 1 1

w − 1

)
(4.3.5)

and the characteristic polynomial can be written as −4 + z + w + 1
z + 1

w . See Figure 4.10,
right for the Newton polygon of this characteristic polynomial, and Figure 4.11 for its
amoeba, with the indication of the four frozen phases. A similar table for boundary values
of s, t and c.

(1) (2) (3) (4)
s 1 0 −1 0
t 0 −1 0 1
c −1

2
1
2 −1

2
1
2

Note that in that case, z itself does not parametrize the liquid region: for a given value of
z, there are two values of w such that (z, w) is on the spectral curve. However, one can
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- -

-
w−1

z−1

z

w
(4)

(2)

(1)(3)

Figure 4.10: Left: a 2 × 2-fundamental domain for the square lattice. Kasteleyn minus
signs are indicated on the edges, as well as the extra factors z±1 and w±1 for edges crossing
the fundamental domain. Right: the Newton polygon of the corresponding characteristic
polynomial.
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4
(4)
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(1)(3)

Figure 4.11: Amoeba of the characteristic polynomial −4 + z + w + 1
z + 1

w . The connected
components of the complement are labeled with numbers corresponding to frozen phases
and vertices of the Newton polygon, together with the corresponding type of edges.

parametrize both z and and w using rational fractions of a variable u living on the Riemann
sphere, which could be chosen as the isothermal coordinate.

4.3.2 A case with a multiply-connected liquid region, Aztec diamond with
two-periodic weights

We follow loosely the discussion here [KP24, Section 2.3].
Before analysis of a multiply-connected region, let us discuss our example with a multiply-

connected liquid region, where the region is the simply-connected, but the liquid region is
non simply-connected due to presence of smooth or gas phase, so-called bubble. This can
be achieved for non-uniform distribution on the set of dimer configurations, and the most
common example of such phenomenon is the doubly-periodic Aztec diamond[CJ14; KP24].

This system of weights for the square lattice is related to the dimer model on the
square-octagon graph: there is a weight-preserving correspondence between configurations
on the two lattices (obtained by performing the so-called spider move or square move),
which maps domino tilings of doubly-periodic square grid to dimer configurations on the
square-octagon lattice as long as the weights a2 = 2b from Figure 4.12.

In that case, the modified Kasteleyn matrix from (4.3.5) becomes

K(z, w) =
(
b− w z − b
1
z − b 1

w − b

)
(4.3.6)
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Figure 4.12: Edge weights of the square grid on the left, and the corresponding weights of
the octagon lattice on the right, the correspondence between weights is a2 = 2b.

-4 -2 2 4

-4
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2

4

Figure 4.13: Amoeba of the 2-periodic weight function on the square lattice, for b = 0.5.
The hole in the middle corresponds to the gas or smooth phase of the corresponding dimer
model, which describes the bubble appearing in the middle of the pictures of Figure 4.14.

and the characteristic polynomial is −2(1 + b2) + b(z + w + 1
z + 1

w ). See Figure 4.13 for
its amoeba. The spectral curve is a genus 1 algebraic curve C if b ≠ 1, which is a Harnack
curve. It can be uniformized to a rectangular torus C/(2Z + 2τZ), with τ ∈ iR∗

+: there is a
birational map

ψ : ζ ∈ torus 7→ (z(ζ), w(ζ)) ∈ C.

See for example [BCT23, Section 5] and [BT24, Proposition 9].
The relation between b and τ (assuming that b < 1, there is a symmetry b ↔ 1

b ) is given
by

b =
√
k′, with k′ = θ4(0|τ)2

θ3(0|τ)2 .

In particular, for τ = 1, k′ = 1√
2 , and b = 2−1/4.

Based, for example, on computer simulations Figure 4.14 of domino tilings of the doubly-
periodic Aztec diamond on Figure 4.14, we see presence of all three phases, frozen, rough
and smooth, together with arctic curve with two connected components, the outer curve
separating frozen and rough regions, and the inner curve separating rough and smooth phase
regions. This is again a situation where there is a unique point in the liquid region for a
given slope in the Newton polygon. The restriction of ψ to the annulus A = R/2Z + (0, τ)
parametrizes the upper half of the spectral curve C+, and thus ζ ∈ A gives a parametrization
of the liquid region as an isothermal coordinate. The lower boundary of the annulus is
mapped to the outer boundary of the liquid region (the liquid/solid interface): up to a
horizontal translation, we may assume that the turning points correspond to ζ = −1

20, 1
2 , 1
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Figure 4.14: Random domino tiling of doubly-periodic Aztec diamond for b = 0.5 in two
representations, the color representation on the left with eight colors to distinguish rough
and smooth phases, and with eight different gray colors on the right.

(mod 2). The upper boundary is mapped to the inner boundary of the liquid region (the
liquid/gas interface).

The boundary conditions along the outer boundary are the same as in the uniform case:
(1) (2) (3) (4)

−1
2 < ζ < 0 0 < ζ < 1

2
1
2 < ζ < 1 1 < ζ < 3

2
s 1 0 −1 0
t 0 −1 0 1
c −1

2
1
2 −1

2
1
2

In order to perform harmonic extensions in a multiply-connected domain, we need a
particular toolbox of special functions. Basically, we are going to apply the same strategy:
first write down a basic building block, and then to construct harmonic extensions in terms
of these building blocks. Since the spectral curve is a torus, these blocks will be constructed
from elliptic functions that we discuss now.

Elliptic functions and their classification by Weierstrass functions

Let Λ be a lattice generated two vectors ω1 and ω2 called periods of Λ, Λ := {nω1 +mω2 :
n,m ∈ Z}. Then, a Λ-elliptic function is a meromorphic function on C that satisfies
f(z) = f(z + ω1) = f(z + ω2).

The most famous example of elliptic functions is Weierstrass’s ℘-function, which is
defined as

℘(z,Λ) := 1
z2 +

∑
λ∈Λ\{0}

( 1
(z − λ)2 − 1

λ2

)
. (4.3.7)

The function ℘ clearly has poles of order two at each lattice point. It is an elliptic function,
which follows from the definition. For the next subsections, we need two other Weierstrass
functions.

The Weierstrass ζ-function is a function fixed by the equation
dζ(z,Λ)
dz

= −℘(z,Λ). (4.3.8)

This defines it up to an additive constant that we fix in a way that limz→0 ζ(z,Λ) − 1
z = 0.

Using ellipticity of ℘ one can derive quasi-periodic properties of ζ Weierstrass function,
ζ(z + ωi) = ζ(z) + 2ηi, where ηi = ζ(ωi/2).
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The Weierstrass σ-function is defined by

d log(σ(z,Λ)
dz

= ζ(z,Λ). (4.3.9)

Here, we fix an integration constant so that limz→0 σ(z,Λ) − z = 0. by definition of σ and
quasi-periodicity of ζ one derives quasi-periodicity of σ,

σ(z + ωi) = e−2ηi(z+ωi/2)σ(z). (4.3.10)

Function σ is a suitable building block of elliptic functions, and every elliptic function
can be expressed in terms of Weierstrass σ function [NIA90].

Theorem 4.3.1. Suppose f is an elliptic function with periods ω1, ω2 and set of zeroes in a
fundamental domain of Λ at points {κi} of the corresponding orders {ni} and set of poles
{κ′

i} of the orders {n′
i} subject to two conditions:

• ∑
niκi = ∑

n′
iκ′

i,

• ∑
ni = ∑

n′
i.

And let us define a function g as

g(z) :=
∏

i σ(z − κi,Λ)ni∏
i σ(zi − κ′

i,Λ)n′
i

. (4.3.11)

Then, the ratio f
g is constant on C.

Proof. First, g is elliptic by quasi-periodicity of σ recalled in Equation (4.3.10), and
by (4.3.11). Moreover, by (4.3.11) it has the same zeroes and poles with the same multiplic-
ities as f . Thus, ratio f(z)

g(z) has no zeroes no poles on C and thus is is constant by Liouville’s
theorem.

In our case, Λ = 2Z + 2τZ, so that ω1 = 2 and ω2 = 2τ .

Applying the tangent plane method

The solution from [KP24], adapted to our normalization, is the following,

s(ζ) = 1
π

arg
σ(ζ)σ(ζ − 1

2)
σ(ζ − 1)σ(ζ + 1

2)
,

t(ζ) = 1
π

arg
σ(ζ + 1

2)σ(ζ)
σ(ζ − 1

2)σ(ζ + 1),
,

c(ζ) = 1
2 + 1

π
arg

σ(ζ + 1
2)σ(ζ − 1

2)
σ(ζ − 1)σ(ζ) − 1

4Im(ζ)

The functions s and t are arguments of genuine elliptic functions in the variable ζ on the
whole torus, by Theorem 4.3.1. For the function c, the zeros and the poles of the fraction in
the argument are fixed by the wanted behavior along the outer boundary, but this does not
define a proper elliptic function as it is not of the form given by Theorem 4.3.1. We need
to add the multiple of the imaginary part of u to guarantee periodicity in the horizontal
direction. The coefficient 1

4 is specific for the choice of τ = 1. For an arbitrary value of τ , it
should be replaced by η1

π (when ω1 = 2 and ω2 = 2τ , then η1 = π
4 ).
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Figure 4.15: Plot of the functions s, t, and c for ζ on (in fact very close to) the lower
boundary of the cylinder A, matching the table, in blue, yellow and green respectively.

Writing the master equation for the harmonically moving planes,

sζx+ tζy + cζ = 0,

solving for x = x(ζ) and y = y(ζ) for each ζ on the boundary of the annulus A gives a
parametrization of the arctic curve. This curve is represented on Figure 4.16: the yellow
connected component corresponds to Im(ζ) = 0, whereas the blue component, delimiting
the boundary of the gas bubble, corresponds to Im(ζ) = 1. We can determine the equation
of the tangent plane to the gaz bubble by evaluating s, t and c along the blue boundary,
and obtain that with our convention, that plane is the plane z = 0.

In the next section, we will reuse these expressions in a more complicated situation.

4.3.3 Formulation of problem for Aztec diamond with a hole

Here, we perform computations for the Aztec diamond with a hole for both constrained and
unconstrained cases. Furthermore, instead of letter ζ, we denote the intrinsic coordinate by
u to distinguish it from ζ-Weierstrass function. First, using computer simulation Figure 4.17
we can assume that the number of frozen phases equals to 16, 4 phases around the external
boundary, and 12 around the internal boundary. Then, we define the uniformization map
u : L → A, where A = [0, 2] × [0, τ ]/∼. Later, we assume a case of τ = 1. The upper
connected boundary component of ∂A consists of 12 intervals (ai, ai+1), subject to

ai+3 = ai + 1/2, where a1 = τ − 1/2 − a, a2 = τ − 1/2, a3 = τ − 1/2 + a for a small
parameter a, which we later take as a = 1/6. The lower boundary has the same boundary
conditions as AD, and it consists of 4 intervals (ai, ai+1), 13 ≤ i ≤ 16. Thus, for the lower
boundary conditions we can use the expression for the ring from the section above (it will
not change the behavior on the line Imu = Imτ since those extensions are zero there).

u (a1, a2) (a2, a3) (a3, a4) (a4, a5) (a5, a6) (a6, a7)
s 0 -1 0 1 0 -1
t 1 0 -1 0 1 0
c +κ/2 -κ/2 -3κ/2 −κ/2 κ/2 3κ/2
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Figure 4.16: Frozen curve for the doubly-periodic Aztec diamond. The grey square is the
limiting domain of a renormalized large Aztec diamond. The liquid phase, homeomorphic to
an annulus, is bounded on the outside from the four frozen phases by the yellow component,
and bounded in the inside from the gas bubble by the blue components. The frozen regions,
labeled (1), (2), (3), (4) in the table, appear in the right, top, left, bottom corner respectively.
The equation of the corresponding plane can be read from the matching column in the table.
The one for the gas bubble is z = 0.

Figure 4.17: Computer simulations of random domino tiling of Aztec diamond with a hole

κ parametrize the size of the hole, 0 < κ < 1. The boundary data for c(u) is obtained by
analogy with the Aztec diamond (4.3.3), c(u) changes by 1 each time we move from one
frozen region to the other. Since we removed the Aztec diamond of scale κ, we have the
same boundary conditions for c up to a global scaling by κ.

Functions s, t and c are periodic on the universal cover of A, and can be found as
arguments of ratios of σ Weierstrass functions. The basic block of our harmonic extensions
is a periodic step function defined on the infinite strip S = R × [0, τ ], which is the universal
cover of the ring A,

1
π

arg
(
σ(u− b)
σ(u− a)

)
(4.3.12)
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The plot of this function is as a step function with height 1 from a to b defined on the real
axis,

Figure 4.18: Example of plot of function S for a = 1
3 and b = 1.

Although the symmetry of Aztec diamond allows as to write the harmonic extensions
with several parameters,

s(u) = 1
π

arg σ(u)σ(u− 1/2)σ(u− (τ − 1/2))σ(u− (τ − 1/2 + a))σ(u− (τ + a))
σ(u− 1)σ(u+ 1/2)σ(u− (τ − 1/2 − a))σ(u− (τ − a))σ(u− τ) +

+ 1
π

arg σ(u− (τ + 1 − a))σ(u− (τ + 1))σ(u− (τ + 1/2 − a))
σ(u− (τ + 1/2 + a))σ(u− (τ + 1 + a))σ(u− (τ + 1/2)) . (4.3.13)

The function t(u) can be obtained by symmetry from s(u) as t(u) = s(u+ 1/2). These
two functions are arguments of meromorphic functions as the product of σ function under
the arg satisfy conditions of Theorem 4.3.1. For function c, however, the situation slightly
different,

c(u) = 1
π

arg σ(u+ 1/2)σ(u− 1/2)
σ(u− 1)σ(u) +κ

π
(arg σ(u− (τ − a))

σ(u− (τ − 1/2 − a))+arg σ(u− τ)
σ(u− (τ − 1/2))+

arg σ(u− (τ + a))
σ(u− (τ − 1/2 + a)) + arg σ(u− (τ + 1 − a))

σ(u− (τ + 1/2 − a)) + arg σ(u− (τ + 1))
σ(u− (τ + 1/2)))

+ 1
π

arg σ(u− (τ + 1 + a))
σ(u− (τ + 1/2 + a)) +K(a, b, τ). (4.3.14)

Here, the product of σ functions does not satisfy Theorem 4.3.1 like in the doubly-periodic
Aztec diamond. Therefore, the resulting function changes after shift by a period, we subtract
this change with the help of ζ-Weierstrass functions, this term is called K(a,κ, τ). For
example, for τ =

√
−1, K(a,κ, τ) = 1

2 + η1
π (3κ + 1

2).

Plot of the height function

In order to produce a parametric plot of the surface given by h⋆, we need to check that this
surface is well-defined. In practice, it means that we need to look at intrinsic coordinate z,
which is related with isothermal coordinate u by a rational transformation of degree 4(this
is because, based on computer simulations, each frozen phase repeats 4 types going around
the boundary).

At the critical points of z(u), derivative zu vanishes, therefore, the whole expression
szzu + tzzu + cu = 0 vanish as well. Thus, we must have cu = 0 at those points. Combining
(4.3.13) with (4.2.14) we see that z(u) is given by the expression in the argument of arg in
s(u),
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Figure 4.19: Plot of the derivative of w(u) on the whole torus with two critical points inside
the liquid region repeated 4 times

z(u) =
(
σ(u+ 1

2)
σ(u)

)(
σ(u− (τ − 1 + a))

σ(u− a)

)(
σ(u− (1 − 1

2))
σ(u− (a+ k))

)(
σ(u− 1)

σ(u− (1 + l))

)
(
σ(u− (1 + a))
σ(u− 1)

)(
σ(u− (1 + a+ k))
σ(u− (2 − k))

)
. (4.3.15)

.
Also, there is a similar expression for w(u), which we omit. However, its plot shows that

there is a unique critical point inside the liquid region in the fundamental domain.
On the figure 4.19 we see analytic properties of w(u) on the whole torus. There are 8

zeros and 8 poles on the boundary of ∂L, which are real zeros that we see directly from the
expression. Moreover, there are 2 complex zeroes repeated 4 times in the interior of L. They
are linked by two involutions, the complex conjugation, and symmetry w(u+ 1) = w(u−1).

This constraint determines the sets of parameters, which correspond to the actual limit
shapes. We did not check it, and leave it for the future investigation.

The Tangent plane method for the constrained case

To obtain the constrained case, we need to modify only function c, more precisely add
a multiple of Im(u)(call this multiple r), which changes the value on the line Imu = 1
keeping the value on the real axis unchanged. This modification makes c(u) not exactly
elliptic, however, for the sake of obtaining the arctic curves, it gives the right values. For
intermediate values of r we obtain a deformed picture as on Figure 4.20.

We can also perform our computations for various sizes of the hole κ.

Is it a circle?

Plots of the arctic curve for the doubly-periodic Aztec diamond and for the Aztec diamond
with a hole share a feature that the outer connected component looks like a circle. Therefore,
its worth investigating whether it is an actual circle, or not. To check it, we built the plot
of function x2 + y2 on points of the curve (x, y). If the connected component was the circle
given by x2 + y2 = 2, we would get a constant plot. However, it is not the case, and we
obtain two slightly different non-constant plots, see the plot for the doubly-periodic Aztec
diamond on Figure 4.23 and for Aztec diamond with a hole on Figure 4.24. These plots
show that the outer connected components of the arctic curves are close to the circle up to
approximately 99%, as the circle equation is satisfied up to a small error of order less than
1%, which is invisible for human vision.
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Figure 4.20: Limit shape for the Aztec diamond with a hole for different values of parameter
r and κ = 0.3.

Figure 4.21: Plot of the frozen curve for unconstrained case with κ = 0.15 on the left, and
for κ = 0.6 on the right.
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Figure 4.22: Plot of the frozen curve for unconstrained case with τ =
√

−1√
5 on the left, and

for τ =
√

−1√
3 on the right.

Figure 4.23: Plot of circle equation x2 + y2 on the external frozen boundary of doubly-
periodic Aztec diamond.

Figure 4.24: Plot of circle equation x2 +y2 on the external frozen boundary of Aztec diamond
with a hole.
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Appendix to Chapter 4: Isothermal coordinates

Here we discuss Isothermal coordinates and the Beltrami equation on the Newton polygon
N with a surface tension σ defined on it.

Since σ is convex, the Hessian of σ Hσ defines a non-degenerate metric g on N \ G ,

g = σssds
2 + 2σstdsdt+ σttdt

2. (4.3.16)

Also note that since by Theorem 5.5 from [KOS06], detHσ = π2.
In the isothermal coordinate u := U(s, t) + iV (s, t) the metric g writes as

g = ρ(U, V )2(dU2 + dV 2) (4.3.17)

for a function ρ(U, V ). Isothermal coordinates exist on two-dimensional manifolds for metric
with Hölder coefficients by result from [Kor14; Lic16]. For example, Theorem 18 i [Spi79] is
the following,

Theorem 4.3.2. Let Σ be a C∞-smooth two-dimensional surface embedded into R2 with
metric g = ⟨, ⟩, and let p ∈ Σ be a point, whose components with respect to the standard
coordinate system are real analytic. Then, there exists a real analytic isothermal coordinate
system in a neighborhood of p.

Metric g =
(
a b
b c

)
defines scalar product ⟨·, ·⟩g on vector fields on N , and we can

determine the isothermal coordinates after comparing ⟨ ∂
∂U ,

∂
∂V ⟩g in coordinates s, t and U, V .

In latter coordinates, it equals to zero by definition, while for coordinates s, t it becomes an
equation. This condition together with ⟨ ∂

∂V ,
∂

∂V ⟩g = ⟨ ∂
∂U ,

∂
∂U ⟩g results in the system of two

real equations, which we call the Real Beltrami equations.

Us = ρ(bVs − aVt), (4.3.18)
Ut = −ρ(bVt − cVs). (4.3.19)

This system naturally arises in the context of the dimer model as we are going to see in
this Chapter. Further, it is equivalent to one complex equation for a complex coordinate u
on N , in terms of coordinates u = U + iV, ū = U − iV , the real Beltrami equations results
in the usual Beltrami equation, used for example in [KP22]. In terms of us, ut, it is the
following equation,

∂̄u

∂u
=

1
2(us + iut)
1
2(us − iut)

= 1
µσ
. (4.3.20)
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where the Beltrami coefficient µσ is given by

µ := σss − σtt + 2iσst

σss + σtt − 2
√
σssσtt − σ2

st

. (4.3.21)

Also, ρ(U, V ) =
√
σss + σtt − 2√

σssσtt.
Existence of a solution for this equation follows from the strict convexity of σ on N̊ , or

in terms of Beltrami coefficient |µσ| < 1. It is worth noting that the Beltrami equation for
surface tension corresponding to the dimer model on hexagonal lattice is equivalent to the
complex Burgers equation studied in [KO05].

Proof of Theorem 4.3.2. Let us first find Beltrami equation for real coordinates (U, V ), let
us start with ⟨ ∂

∂U ,
∂

∂V ⟩g = 0, which is just the definition of isothermal coordinates. In the
(s, t) coordinates, it is non-trivial identity. First, the vector fields in (s, t) coordinates are

∂

∂U
= sU

∂

∂s
+ tU

∂

∂t
,

∂

∂V
= ∂s

∂V

∂

∂s
+ ∂t

∂V

∂

∂t
. (4.3.22)

Their scalar product is

σsssUsV + σst(sV tU + sU tV ) + σtttU tV = 0. (4.3.23)

Let us express 4.3.23 in terms of derivatives of U, V using the Jacobian matrix,

J =
(

∂s
∂U

∂s
∂V

∂t
∂U

∂t
∂V .

)
=
(

∂U
∂s

∂U
∂t

∂V
∂s

∂V
∂t

)−1

(4.3.24)

Using J , we express the desired derivatives as

su = Vt/ det J , sv = −Ut/ det J , tu = −Vs/det J , tv = Us/ det J . (4.3.25)

After substitution of derivatives to 4.3.23 and multiplying by det J we obtain

Ut(Vsσst − Vtσss) + Us(Vtσst − Vsσtt) = 0. (4.3.26)

From this equation, we see that Us and Ut are proportional and thus there is such a ρ that

Us = ρ(Vsσst − Vtσss),

Ut = −ρ(Vtσst − Vsσtt). (4.3.27)

We also have the equation for the diagonal scalar products,

⟨ ∂

∂U
,
∂

∂U
⟩g = ⟨ ∂

∂V
,
∂

∂V
⟩g. (4.3.28)

Or more precisely,

⟨ ∂

∂U
,
∂

∂U
⟩g = s2

Uσss + t2Uσtt + 2σstsU tU ,

⟨ ∂

∂V
,
∂

∂V
⟩g = s2

V σss + t2V σtt + 2σst(sV tV ). (4.3.29)
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Let us substitute (4.3.27) into (4.3.29) to find ρ. We need first to express the derivatives of
s and t in terms of derivatives of U and V , and then use equations (4.3.27).

ρ = ⟨ ∂

∂U
,
∂

∂U
⟩ = 1

det J 2 (V 2
t a+ 2b(−VsVt) + cV 2

s ),

ρ = ⟨ ∂

∂V
,
∂

∂V
⟩ = 1

det J 2 (aU2
t + cU2

s + 2b(−UsUt)) (4.3.30)

V 2
t a− 2bVsVt + cV 2

s ,

aρ2(bVt − cVs)2 + cρ2(bVs − aVt)2 + 2bρ2(bVs − aVt)(bVt − cVs). (4.3.31)

We see from comparison of coefficients in front of V 2
t in both equations

a = ρ2(ab2 + ca2 − 2bab)
1 = ρ2(ca− b2). (4.3.32)

Similarly, for the coefficient in front of V 2
s ,

c = ρ2(ac2 + cb2 − 2bbc)
1 = ρ2(ac− b2). (4.3.33)

Finally, the coefficient in front of Vt · Vs,

− 2b = −2aρ2bc− 2cρ2ba+ 2bρ2(b2 + ac)
1 = ρ2ca+ ρ2pca− ρ2(b2 + ca)

1 = ρ2(ca− b2). (4.3.34)

Thus, we deduce that ρ =
√
Hσ :=

√
σssσtt − σ2

st.
In order to obtain the complex Beltrami equation, assume that we have a solution

U, V of the real Beltrami equation (4.3.27). The let us look at their complex combination
u := U + iV (ū := U − iV ), and the Wirtinger derivatives with respect to u, ū,

Using the Wirtinger derivatives, we have the following rules of computation of derivatives
of a function w:

wu = 1
2(wU − iwV ), wū = 1

2(wU + iwV ) (4.3.35)

and
wU = wu + wū, wV = wū − wu

i
. (4.3.36)

Now, suppose U, V satisfy the Beltrami equations, then write

2wū

√
ac− b2 = (b− ia+ i

√
ac− b2)Vx + (c− ib−

√
ac− b2)Vy (4.3.37)

and
2wz

√
ac− b2 = (b+ ia+ i

√
ac− b2)Vx + (c+ ib+

√
ac− b2)Vy (4.3.38)

Then, dividing the two equations and calculations, which we omit, we get an equivalent
Beltrami equation in holomorphic coordinates,

wz̄

wz
= c− a− 2ib
c+ a+ 2

√
ac− b2

. (4.3.39)
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Or in other words,
wz̄ = µwz, (4.3.40)

where µ = c−a−2ib
c+a+2

√
ac−b2 is the Beltrami coefficient.

Thus, we derived the Belrami equation for the conformal coordinates in two forms. Then,
by the theory of elliptic PDE [AIM09], Beltrami equation admits a solution as long as
|µ| < 1, which is the condition of existence of isothermal coordinates. In the dimer model,
it follows from strict convexity of σ[ADPZ20]. Therefore, inside the liquid region, where the
gradient ∇h is in the interior of the Newton polygon, we have the existence of isothermal
coordinates z.
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