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Résumé

L’endométriose est une maladie gynécologique chronique de la femme qui se
caractérise par le développement d’un tissu semblable à la muqueuse utérine en
dehors de l’utérus, colonisant d’autres organes avoisinants comme les ovaires, les
trompes utérines ou dans des cas plus rares le côlon. Elle entraîne des douleurs
abdominales et pelviennes, une fatigue chronique et un risque accru d’infertilité.
Le diagnostic de l’endométriose repose sur deux modalités d’imagerie médicale,
à savoir l’échographie (US) et l’imagerie par résonance magnétique (IRM). Selon
le stade de maladie, la chirurgie laparoscopique s’avère être l’unique traitement
efficace contre l’endométriose. Outre le diagnostic, les images US et IRM sont
utilisées pour localiser précisément les lésions et leur profondeur d’infiltration avant
la chirurgie. L’image US, effectuée par voie intravaginale pour cette application,
fournit des détails internes fins des structures imagées grâce à sa haute résolution
spatiale, mais a un champ de vision limité et un faible rapport signal/bruit. L’IRM,
en revanche, offre un large champ de vision avec un bon rapport signal/bruit mais
une résolution spatiale plus faible. Par conséquent, des repères anatomiques à
l’échelle millimétrique seraient sous-évalués lors de l’utilisation de cette modalité
seule. Construire une image rassemblant les avantages des deux modalités (bon
contraste et bon rapport signal sur bruit) est d’un grand intérêt pour aider à la
chirurgie de l’endométriose. Dans les applications pratiques, les examens US et
IRM sont effectués séparément, ce qui donne des séries d’images US 2D et des
volumes IRM 3D non-alignés.

L’objet de cette thèse de doctorat est d’abord de proposer un algorithme de
recalage d’images IRM 3D et US 2D. Le but de ce recalage est d’extraire la coupe
IRM qui ressemble le plus à l’image US, maximisant un critère de similarité adapté.
Le recalage prend en compte une transformation rigide globale caractérisée par des
paramètres de rotation et de translation qui est associée à une déformation locale
basée sur des fonctions B-spline. Il permet une mise en correspondance plus précise
entre les images, permettant d’exploiter également les déformations géométriques
locales au sein de l’image.

Dans un deuxième temps, un modèle de fusion 2D/2D est proposé pour les
images IRM et US. La méthode est basée sur un problème inverse, réalisant une
super-résolution de l’image IRM et un débruitage de l’image US. La relation entre
les niveaux de gris des deux images a été modélisée dans la littérature par une fonc-
tion polynomiale. Dans cette thèse, nous étudions l’intérêt potentiel de remplacer
cette fonction polynomiale par une transformation non-paramétrique construite à
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partir de la théorie des espaces de Hilbert à noyaux reproduisants. L’image fu-
sionnée obtenue avec cette méthode rassemble les avantages des deux modalités, et
présente un contraste plus net que lorsqu’on utilise un polynôme. Un autre avan-
tage significatif en faveur de la transformation à base de noyaux est qu’elle n’est
pas directement liée à la direction de propagation du scan US, qui n’est pas facile
à obtenir dans les applications pratiques. Le prix à payer avec l’approche proposée
est sa complexité. Le modèle peut nécessiter l’estimation de quelques centaines de
milliers de paramètres en fonction de la taille de l’image et des patchs choisis.

Nous proposons un second modèle de fusion basé sur le filtrage guidé. L’image
fusionnée est obtenue grâce à une pondération des images Base et Détail calculées
à partir des images IRM et US. Les poids attribués à l’image US tiennent compte
de la présence de bruit de speckle, tandis que les poids attribués à l’image IRM
permettent d’améliorer le contraste de l’image fusionnée.

L’intérêt des modèles proposés est analysé au moyen de tests quantitatifs et
qualitatifs effectués sur un ensemble de données varié, incluant des images synthé-
tiques, des images d’un fantôme expérimental et des données réelles.



Abstract

Endometriosis is a chronic gynecological disease affecting women of childbearing
age which is characterized by the development of tissue similar to the uterine lining
(the endometrium) outside the uterus, colonizing other nearby organs such as the
ovaries, the fallopian tubes or, in rarer cases, the colon. This tissue is influenced by
hormonal changes during subsequent menstrual cycles, leading to abdominal and
pelvic pain, chronic fatigue and an increased risk of infertility. The diagnosis of
endometriosis is based on two medical imaging modalities, namely ultrasound (US)
and magnetic resonance imaging (MRI). Depending on the stage of the disease,
laparoscopic surgery proves to be the only effective treatment for endometriosis.
Besides their use for diagnosis, US and MRI images are used to identify the precise
location of lesions and their depth of infiltration before surgery. The US image,
performed intravaginally for this application, is a high spatial resolution modality
that provides fine internal details of the imaged structures. This modality has
some limitations, including a limited field of view and a low signal-to-noise ratio.
On the other hand, MRI offers a large field of view of the patient’s anatomy with
a good signal-to-noise ratio but with relatively low spatial resolution. Therefore,
precise anatomical landmarks at the millimeter scale would be undervalued when
using this modality alone. In this context, producing an image bringing together
the advantages of both modalities (good contrast and good signal-to-noise ratio)
would be of great interest. In practical applications, US and MRI examinations are
performed separately, resulting in unaligned 2D US images and 3D MRI volumes.

The first aim of this PhD thesis is to propose a slice-to-volume registration al-
gorithm of 3D MRI and 2D US images. The goal of this registration would be to
extract the MRI slice that best resembles the US image, maximizing an adapted
similarity criterion. The registration takes into account a global rigid transforma-
tion characterized by rotation and translation parameters which is associated with
a local deformation based on B-spline functions. The latter will allow more precise
matching between images, making it possible to exploit local geometric deforma-
tions within the image.

Secondly, a 2D/2D fusion model is proposed for MRI and US images. The
method is problem-based inverse, achieving super-resolution of the MRI image and
denoising of the US image. The relationship between the gray levels of the two
images has been modeled in the literature by a polynomial function. We study
the potential interest of replacing this polynomial function by a non-parametric
transformation constructed from the theory of Hilbert spaces with reproducing ker-
nels. The fused image obtained with this method combines the advantages of both
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modalities, and presents a sharper contrast than when using a polynomial. An-
other significant advantage in favor of the kernel-based transformation is that it
is not directly related to the propagation direction of the US scan, which is not
easy to obtain in practical applications. The drawback of the proposed approach is
its complexity. The model may require the estimation of a few hundred thousand
parameters depending on the size of the image and the patches chosen.

We propose a second fusion model based on guided filtering, which consists of
separating images into base and detail layers, calculating specific weights, and then
fusing them. The fused image is obtained by weighting the Base and Detail images
of the MRI and the US. The weights assigned to the US image take into account the
presence of speckle noise, while the weights assigned to the MRI make it possible
to improve the contrast of the fused image.

The interest of the proposed models is analyzed by means of quantitative and
qualitative tests carried out on several datasets, including synthetic images, images
of an experimental phantom and real data.
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1.1 Endometriosis

Endometriosis is a chronic inflammatory medical condition that occurs when tissue
similar to the lining of the uterus (endometrium) grows outside of it. These growths,
also known as lesions or nodules, are most frequently found on the ovaries, fallopian
tubes, the intestines, or the bladder. In rare cases, this endometrial-like tissue can
even appear on other internal organs (Fig. 1.1). This aberrant tissue behaves like
normal endometrial tissue, responding to the hormonal changes of the menstrual
cycle by growing, thickening, and then breaking down and bleeding. However,
unlike the tissue within the uterus, this displaced tissue has no way to exit the
body. As a result, it becomes trapped, leading to inflammation, the formation of
scar tissue, and adhesions. These adhesions can cause organs to stick together,
creating a variety of complications [Eskenazi 1997].

Endometriosis affects approximately one in ten women of childbearing age (from
the first menstrual period until menopause), i.e. about 1.5 million women in France,
according to the Ministry of Health, and almost 200 million worldwide, according
to the World Health Organization (WHO) [Fazleabas 2002].
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Figure 1.1: Anatomy of a uterus with endometriosis [Endometriosis-UK ].

1.1.1 Symptoms of endometriosis

The symptoms of endometriosis vary widely among affected individuals, both in
type and severity. The most common symptoms are pelvic pain and infertility.
Pelvic pain is often chronic and can be particularly severe during menstruation, a
condition known as dysmenorrhea [Harada 2013]. However, this pain is not limited
to menstrual periods; it can also occur at other times, causing significant discomfort
and disruption to daily life. Pain during or after sexual intercourse (Dyspareunia) is
another frequent symptom [Denny 2007]. Additionally, women with endometriosis
may experience menstrual irregularities such as heavy bleeding (menorrhagia) or
bleeding between periods. Endometriosis can also affect bowel and bladder function,
leading to painful bowel movements or urination, especially during menstruation.
Other symptoms include fatigue, depression and anxiety, further impacting the
quality of life for those with the condition [Ramin-Wright 2018].

Regarding infertility, one third of women with infertility problems have en-
dometriosis and among women with endometriosis, approximately 40% are infertile
[Bulletti 2010]. The mechanisms connecting endometriosis to infertility are still not
fully understood. In fact, the inflammation caused by the endometrial-like lesions
can directly damage both eggs and sperm, reducing their viability and function.
Additionally, the formation of scar tissue and adhesions can block the fallopian
tubes, preventing the egg and sperm from meeting, or impair the mobility of the
fallopian tubes, affecting the transport of the fertilized egg to the uterus (Fig. 1.2).

Furthermore, endometriosis can disrupt the hormonal environment within the
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Figure 1.2: An example of endometriosis lesions and adhesions that attach the
fallopian tube to the uterus [Fertility 2024].

pelvis. This alteration in hormone levels can negatively impact ovulation, the pro-
cess by which an egg is released from the ovary. It can also interfere with the
implantation of an embryo into the uterine lining, a crucial step for a successful
pregnancy.

The average time to detect endometriosis is between seven and ten years dur-
ing which patients suffer from physical and psychological consequences [Ghai 2020].
This huge delay in diagnosis can be explained by the variability of symptoms and
their overlap with other conditions. Women who experience pain during menstru-
ation are usually not immediately concerned, and unfortunately neither are those
around them or medical personnel. The tendency to dismiss menstrual pain as a
routine part of being a woman can lead to significant delays in seeking and receiv-
ing appropriate medical attention. Moreover, there are numerous other potential
causes of period pain, painful intercourse, and bowel movements that need to be
ruled out, which complicates the diagnostic process. Conditions such as irritable
bowel syndrome, pelvic inflammatory disease, and ovarian cysts can present with
similar symptoms, leading to misdiagnosis or underdiagnosis.

A lack of awareness about endometriosis among both medical professionals and
the wider population contributes to the lengthy time to diagnosis. For the general
population, there is often a limited understanding of endometriosis, which can lead
to women normalizing their pain and not advocating for themselves as strongly as
they might for more widely recognized conditions [Fazleabas 2002].
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1.1.2 Causes of endometriosis

The exact cause of endometriosis is not fully known, but several theories exist. One
theory, known as retrograde menstruation [Fallas 1956], suggests that menstrual
blood flows backward through the fallopian tubes into the pelvic cavity instead
of leaving the body, causing endometrial cells to implant and grow outside the
uterus. Another theory involves embryonic cell transformation, where hormones
such as estrogen may transform embryonic cells into endometrial-like cell implants
during puberty. Additionally, surgical scars from procedures like hysterectomy
or Caesarean-section can provide sites for endometrial cells to attach and grow.
Immune system disorders may also play a role, as problems with the immune
system can make the body unable to recognize and destroy endometrial-like tissue
growing outside the uterus, allowing the condition to persist and worsen over time.

Several factors can increase the risk of developing endometriosis. Women who
have never given birth are at higher risk, as are those who started menstruating
at an early age or go through menopause at an older age. Short menstrual cycles
(less than 27 days), heavy menstrual periods lasting longer than seven days, and
higher levels of estrogen or greater lifetime exposure to estrogen also increase the risk
[Darrow 1993]. A low body mass index (BMI) and a family history of endometriosis
(having close relatives such as a mother, aunt, or sister with the condition) are
additional risk factors [Zondervan 2001].

1.2 Endometriosis diagnosis and treatment

The diagnosis of endometriosis typically begins with a detailed medical history
and a physical examination. A pelvic exam is performed to check for painful
spots, irregular growths or cysts that can be palpated. However, small areas
of endometriosis can’t be felt during this exam. To enhance the accuracy of
the diagnosis, medical imaging techniques are employed. The most commonly
used imaging techniques are Transvaginal Ultrasound (TVUS) and Magnetic
Resonance Imaging (MRI), both of which can provide detailed images of the pelvic
region and help identify abnormalities [Smith 1991] [Zanardi 2003]. Computed
tomography (CT) scanning is not typically performed in the radiologic evaluation
of endometriosis because the appearance of endometriosis is nonspecific. If CT
scanning is performed, endometriomas appear as cystic masses [Weinfeld 1998].
At this stage, doctors make a "clinical diagnosis" based on the medical history,
physical exam findings and imaging results. Although this is not a definitive
diagnosis, it allows the patient to begin prescribed medications right away without
needing an invasive surgical diagnostic procedure, to avoid delays in treatment.
The only conclusive way to diagnose endometriosis is through laparoscopy. This
surgical procedure allows the surgeon to directly visualize the endometrial tissue
and, if necessary, take a biopsy for further examination.
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The condition is then classified into four stages: Stage I (minimal), Stage II
(mild), Stage III (moderate), and Stage IV (severe). The determination of these
stages is based on several factors, including the location, size, and depth of organ
infiltration by the endometrial tissue [Parazzini 1995].
There is no cure for endometriosis, but depending on the stage of the disease, several
treatments can help manage symptoms:

• Pain Medication: Medications such as pain relievers, can help alleviate the
chronic pain and discomfort associated with the condition. These medicine in-
clude nonsteroidal anti-inflammatory drugs and acetaminophen [Brown 2017].

• Hormone Therapy: Hormone treatments, including birth control pills,
GnRH agonists, progestin therapy, and aromatase inhibitors, can help regulate
or suppress the hormonal fluctuations that trigger the growth and shedding
of endometrial-like tissue, thereby reducing the proliferation of endometriosis
and alleviating symptoms [Tosti 2017]. Combined (Estrogen-progestin) con-
traceptives are often the first-line treatment [Vercellini 2016], they work by
suppressing the ovaries, which may slow the progression of the endometriosis.
Danazol helps reduce endometriosis-caused pain. It resembles testosterone
and therefore can cause side effects, including acne, hirsutism (excessive hair
growth in women), and a deepening of the voice. Because of these side effects,
danazol is not widely used [Barbieri 1982].

• Surgical Intervention: Conservative surgery (Laparoscopy) removes en-
dometriosis tissue. It aims to remove as much endometriosis as possible while
preserving the uterus and ovaries [Duffy 2014].

• Hysterectomy: It consists in the ablation of the uterus [Martin 2006]. Hys-
terectomy is the last resort to ease pain for women with endometriosis who
still experience symptoms despite other treatments and who do not intend to
become pregnant in the future [Uccella 2016].

1.3 Laparoscopy

Laparoscopy, also known as minimally invasive surgery (MIS), is a diagnosis and
treatment surgical procedure that allows surgeons to access the inside of the
abdomen and pelvis without having to make large incisions in the skin. It is
a commonly used technique in modern surgery due to its advantages in terms
of reduced recovery time, minimal scarring, and decreased postoperative pain
[Duffy 2014]. This surgery is administrated under general anesthesia, ensuring the
patient remains unconscious and pain-free throughout. The patient is positioned
on the operating table, generally lying on their back, and the abdominal area is
cleaned and sterilized. The surgeon then makes a small incision, usually around
the navel, through which a cannula (a thin tube) is inserted. This cannula is
used to inflate the abdomen with carbon dioxide gas, creating a working space
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Figure 1.3: Laparoscopy protocole for endometriosis [Larrea 2024].

by lifting the abdominal wall away from the internal organs. A laparoscope, a
long, thin tube equipped with a high-intensity light and a high-resolution camera
at its end, is then inserted through this incision. The camera transmits images
to a video monitor, providing the surgeon with a detailed real-time view of the
pelvic cavity. One or more additional small incisions are made to insert specialized
instruments to manipulate, cut or remove tissues as needed (Fig. 1.4). After
completing the procedure, the instruments are withdrawn, the carbon dioxide gas
is allowed to escape and the small incisions are finally closed with stitches (Fig. 1.3).

This endometriosis surgery is particularly sensitive and challenging due to sev-
eral critical factors. One significant aspect is that many women undergoing this
surgery are of childbearing age. The primary goal of the surgeon is therefore to
meticulously remove as much of the endometrial lesions as possible to alleviate
pain and other symptoms, while ensuring the uterus and ovaries remain intact and
functional, to preserve the patient’s fertility and ability to conceive in the future.

This balance between thoroughness and preservation is delicate, and it is
often impossible to remove 100% of the lesions. Some may be microscopic, deeply
infiltrated, or located in areas that are too risky to operate on without causing
significant harm. This incomplete removal can lead to a recurrence of symptoms.
Studies suggest that endometriosis can recur in up to 40-50% of women within five
years after conservative surgery [Guo 2009].

The precision of a laparoscopy procedure relies heavily on the accuracy of the
pre-operative diagnosis, which is primarily achieved through imaging techniques
such as MRI and US. These imaging modalities are employed to detect and eval-
uate the lesions, their precise locations, and the depth of their infiltration into
surrounding tissues before the surgery. Such detailed information is essential for
effective surgical planning, and doctors rely on these images to plan the removal of
the lesions [Craig 2020]. However, once the surgery begins, the surgeon operates
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Figure 1.4: Laparoscopic excision of a moderate endometriosis lesion
[Gynaescope 2015].

without direct access to these images with no possibility of checking them back if
a nearby monitor is not available. The real-time visualization provided by the la-
paroscope during the procedure offers a different perspective, and the surgeon must
rely on their memory and understanding of the pre-operative data. This is due to
time constraints that make it impractical to leave the sterile field, access preoper-
ative images and then return to the precodure. Surgeons already manage a high
cognitive load during procedures, making numerous decisions in real-time. Having
to mentally switch between real-time operative views and preoperative images is
inefficient as it adds to this cognitive load. Also, prolonged anesthesia exposure can
increase the risk of complications such as infections.

1.4 Imaging modalities

In this section, we will delve into the imaging modalities used for diagnosing en-
dometriosis, specifically MRI and US. Having established their critical role in en-
hancing the precision of laparoscopy, we will first provide an overview of these imag-
ing techniques and then focus on their application in the context of endometriosis.

1.4.1 US Imaging

Ultrasound imaging uses high-frequency sound waves to view inside the body. The
frequencies used are higher than those audible to the human ear, typically rang-
ing between 2 to 20 Megahertz. These high-frequency sound waves are generated
by a transducer or probe, which contains special ceramic crystal materials called
piezoelectrics. When an electrical current is applied to these crystals, they vibrate
and produce ultrasound waves. When the returning echoes strike the crystals, they
generate an electrical signal that is then converted into an image [Genovese 2016].
The transducer emits these sound waves into the body, where they travel through
tissues. To ensure efficient transmission, a gel is applied between the transducer
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and the skin to eliminate air gaps, which would otherwise cause significant loss of
sound energy. The ultrasound waves pass through the body and reflect off different
internal structures before returning to the transducer as echoes.

These echoes vary in intensity depending on the density and type of tissues
they have encountered. Strong echoes return from dense structures like bone, while
weaker echoes return from softer tissues. The transducer receives these echoes
and sends them to the ultrasound scanner, which processes the data to create an
image (Fig. 1.5). Using the the speed of sound and the time it took the echoes to
return, the machine constructs a two-dimensional image of the internal structures,
where the brightness (or echogenicity) of each pixel represents the intensity of the
echo. Dark areas typically indicate fluid-filled structures (like cysts or soft tissues),
while brighter areas indicate denser structures or greater acoustic impedance, which
reflects more ultrasound waves back to the transducer (like bone or tumors).

Figure 1.5: Mechanism of US Imaging [Watanabe 2017].

Ultrasound imaging is used for many medical procedures, some examples in-
clude nephrology [Singla 2022] (to detect kidney stones for instance), gynecology,
gastroenterology and cardiology [M Thijssen 2014].

1.4.1.1 Interaction of Ultrasound Waves with Tissues

The US image is formed by transmitting pulses of high-frequency sound waves into
the body and detecting the reflected echoes. As these sound waves travel through
different tissues, they encounter boundaries between tissues of varying densities.
Many phenomena can occur during their propagation that affect the quality of the
resulting image [Chan 2011].

• Reflection: It occurs when ultrasound waves encounter a boundary between
tissues with different acoustic impedances. At these boundaries, part of the
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Figure 1.6: Illustration of wave reflection [Ultrasonography 2016].

ultrasound wave is reflected back towards the transducer while the rest con-
tinues to travel deeper into the body (Fig. 1.6). The intensity of the reflected
wave depends on the difference in density between the two tissues. For in-
stance, the boundary between muscle and bone produces a stronger echo
compared to the boundary between muscle and fat. These returning echoes
are detected by the transducer and converted into electrical signals, which are
then processed to form the ultrasound image.
The changing intensities of these echoes create the different shades of gray
seen on the image. Reflection is the primary mechanism through which ultra-
sound images are formed, providing detailed information about the internal
architecture of the body.

• Refraction: It happens when ultrasound waves pass through tissues of vary-
ing densities, causing the waves to bend at the interface due to changes in
the speed of sound (Fig. 1.7). This bending happens because the speed of
sound changes as it moves from one type of tissue to another with different
acoustic properties. Refraction can lead to displacement or distortion of the
ultrasound waves, resulting in artifacts in the resulting image.

• Scattering: Is the diffusion of the US beam in many directions. It happens
when the ultrasound waves encounter irregular structures within tissues, by
far smaller than the incident wavelength, causing them to disperse in multiple
directions rather than reflecting directly back to the transducer (Fig. 1.8).
These structures, known as scatterers, include red blood cells or the elemen-
tary cells within tissues or organs. The scattered waves can interact with each
other, leading to constructive and destructive interferences. Constructive in-
terference occurs when the scattered waves coincide in phase, amplifying the
echo signal, while destructive interference happens when the waves are out
of phase, reducing the echo signal. This scattered waves result in the typical
speckle noise of US images.
Speckle noise gives a grainy texture to the resulting image, that can obscure
fine details and compromise the clarity of the visual information.

• Attenuation: It refers to the gradual loss of ultrasound wave energy as it
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Figure 1.7: Illustration of wave refraction [Ultrasonography 2016].

Figure 1.8: Illustration of wave scattering [Ultrasonography 2016].

travels through tissues. It is influenced primarily by two factors: the fre-
quency of the ultrasound waves and the properties of the medium through
which they travel. Higher frequency waves experience greater attenuation be-
cause they are absorbed and scattered more readily by tissues compared to
lower frequency waves. Consequently, for imaging deeper structures, lower
frequency transducers (typically in the range of 3-5 MHz) are utilized. These
lower frequencies penetrate tissues more effectively, reducing the impact of
attenuation, but they come at the expense of spatial resolution.

1.4.1.2 Ultrasound Modes

Different techniques are used to capture and display information in US imaging,
referred to as modes:

• A-mode: A-mode (Amplitude mode) is one of the simplest ultrasound imag-
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ing techniques. It displays the amplitude of the returning echoes as a function
of time or depth along a single line. When displayed, on the X axis we see
depth, whilst on the Y axis we see the amplitude of the echo response (Fig.
1.9). When the waves are reflected from different densities of materials, we
see distinct peaks and troughs, allowing us to assess how deep each layer of
material is. A-mode is limited as it only provides a one-dimensional view and
does not show the spatial relationships about structures.

Figure 1.9: A-mode.

• B-mode: B-mode (Brightness mode) is a two-dimensional image (Fig. 1.10).

Figure 1.10: B-mode.

It represents the envelopes of the received radio-frequency (RF) signals fol-
lowing a logarithmic compression operation, defined by the equation:

yUS = b log(|rIQ|) + g (1.1)

where b and g are constants for linear gain, and yUS denotes the B-mode US
image. rIQ is the phase and quadrature signal obtained from the raw signal
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rRF captured by the transducer. For the remainder of this work, the focus
will be on the B-mode US image, which will be referred to simply as the US
image.

• M-mode: M-mode (Motion mode) allows us to view the motion of structures
over time by recording a single line of ultrasound data as a function of time
(Fig. 1.11). It is primarily used in cardiology to assess the motion of heart
valves and the movement of cardiac walls.

Figure 1.11: M-mode.

• Doppler mode: It assesses blood flow and the movement of fluids within
the body by measuring changes in the frequency of the reflected ultrasound
waves (Fig. 1.12).

Figure 1.12: Doppler mode.

For more details about the US image formation, the reader is referred to the book
[Sanches 2012].

1.4.2 MR Imaging

Magnetic Resonance Imaging is a sophisticated medical imaging technique used
to visualize detailed internal structures and tissues within the body. MRI utilizes
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strong magnetic fields and radiofrequency pulses to generate images of organs, tis-
sues, and other internal structures without using ionizing radiation, unlike X-rays
or CT scans (Fig. 1.13).

Figure 1.13: MR machine

MRI systems use powerful magnets, typically superconducting magnets, to gen-
erate a static magnetic field with strengths typically ranging from 1.5 to 3.0 Tesla,
and sometimes even higher. The underlying principle of MRI is based on the phe-
nomenon of nuclear magnetic resonance (NMR) [Young 1984] [Kinley 2015]. It
involves the interaction between hydrogen nuclei and the magnetic field. When
the strong magnetic field is applied, the hydrogen nuclei, which have a magnetic
moment due to their spin, align with the field. This alignment creates a net mag-
netization in the direction of the magnetic field. The application of Radiofrequency
(RF) pulses causes these nuclei to absorb energy and move to a higher energy state.
Once the RF pulse is removed, the hydrogen nuclei return to their original align-
ment with the magnetic field, a process known as relaxation [Tang 2018]. During
relaxation, the nuclei release the absorbed energy in the form of radiofrequency
signals. These emitted signals vary based on the tissue types and their chemical en-
vironments, allowing the MRI system to capture detailed images of different tissues
and structures within the body. This process of alignment and signal production
is central to the generation of high-resolution MRI images. Fig. 1.14 explains the
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mechanism of magnetic resonance imaging.

Figure 1.14: Mechanism of MR Imaging [Fordham 2021].

RF pulses play a pivotal role in MRI by exciting the hydrogen nuclei within the
body’s tissues. Once the hydrogen nuclei are aligned with the strong magnetic field,
RF pulses, which are short bursts of electromagnetic energy, are applied. These
pulses are tuned to a specific frequency that matches the resonance frequency of
the hydrogen nuclei. When the RF pulse is applied, it temporarily disrupts the
alignment of the hydrogen nuclei, causing them to move out of alignment with
the magnetic field. This excitation process is essential for generating the signals
needed for imaging. After the RF pulse is turned off, the hydrogen nuclei begin
to realign with the magnetic field, releasing energy in the form of radiofrequency
signals. These signals are then detected by the MRI system and used to construct
images of the internal structures.

MRI scanners are especially effective for imaging the body’s soft tissues, as
opposed to bony structures. They provide superior visualization of the brain, spinal
cord, nerves, muscles, ligaments, and tendons compared to traditional X-rays and
CT scans. This enhanced clarity makes MRI particularly valuable for assessing
injuries and conditions involving soft tissues, such as those in the knee and shoulder.
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As a result, MRI is frequently used to diagnose and evaluate injuries in these areas.

1.4.2.1 MRI Imaging sequences

Tissues can be characterized by two distinct relaxation times: T1 and T2. T1,
known as the longitudinal relaxation time, represents the time constant that deter-
mines how quickly excited protons return to their equilibrium state. It measures
the duration required for protons to realign with the external magnetic field after
being disturbed. T2, or transverse relaxation time, describes the time constant that
determines how rapidly excited protons lose phase coherence with one another. It
indicates the time needed for spinning protons to become out of phase among the
nuclei spinning perpendicular to the main field (Fig. 1.15):

• T1-Weighted Images: T1-weighted MRI images are characterized by their
ability to provide high-resolution images where tissues with short T1 relax-
ation times (such as fat) appear bright, and those with longer T1 times (such
as water) appear darker. This imaging mode is particularly useful for evalu-
ating anatomical detail and differentiating between different types of tissues.
T1-weighted images are often employed in neuroimaging to assess brain struc-
ture, identify lesions, and visualize anatomical features such as the gray and
white matter. They are also useful in musculoskeletal imaging for evaluating
the integrity of soft tissues and detecting changes in fat content.

• T2-Weighted Images: T2-weighted MRI images highlight tissues with long
T2 relaxation times, making them appear bright, while tissues with shorter
T2 times appear darker. This imaging mode is valuable for detecting fluid
and edema because water-based tissues, like cerebrospinal fluid and inflam-
matory fluid, are prominently displayed. T2-weighted images are commonly
used in diagnosing and monitoring conditions such as tumors, infections, and
degenerative diseases, particularly in the brain and spinal cord. They are also
useful in musculoskeletal imaging for visualizing joint effusions and soft tissue
injuries.

• Proton Density Images: Proton density (PD) images are characterized by
the contrast provided by the concentration of hydrogen nuclei in tissues. Un-
like T1 and T2-weighted images, which are influenced by relaxation times, PD
images emphasize differences in the density of hydrogen nuclei, providing a
clearer distinction between tissues with varying hydrogen concentrations. PD
imaging is particularly useful in musculoskeletal imaging for evaluating car-
tilage, ligaments, and tendons, as it provides clear anatomical detail without
the contrast effects of T1 or T2 weighting.
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Figure 1.15: Example of T1-weighted, T2-weighted and PD-weighted MR images
[Al-Majeed 2020].

Besides conventional MRI previously presented, other types of MRI techniques
exist, each designed to provide specific information based on the area being exam-
ined and the condition being diagnosed. Functional MRI (fMRI) is a specialized
imaging technique used to map brain activity by detecting changes in blood flow
associated with neural activity. fMRI measures variations in the blood oxygena-
tion level-dependent signal, which reflects changes in oxygenated and deoxygenated
blood levels in active brain regions. It is commonly used in brain research to un-
derstand brain function, mapping areas responsible for specific cognitive tasks, and
investigating neurological and psychiatric disorders [Gore 2003]. Another technique
is Diffusion MRI (dMRI) that assesses the diffusion of water molecules within tis-
sues, providing insights into tissue microstructure and integrity. Diffusion-weighted
imaging (DWI), a subtype of dMRI, measures the direction and extent of water
molecule movement, which can reveal abnormalities in the brain’s white matter
tracts and other tissues [Kiselev 2017].

1.4.3 US and MRI for endometriosis

Having established a foundational understanding of MRI and US, let us now explore
their application in the diagnosis and treatment of endometriosis.
Most diagnostic US probes are typically placed on the skin for general imaging.
However, to enhance image quality, especially in the context of pelvic conditions
like endometriosis, probes may be inserted into the body via the gastrointestinal
tract, vagina, or blood vessels. For endometriosis, transvaginal ultrasound (TVUS)
is the most commonly used approach. This method allows for a closer and more
detailed view of the pelvic organs. These organs include the uterus, the cervix,
fallopian tubes and ovaries (Fig. 1.16).
TVUS plays a crucial role in diagnosing endometriomas (endometriosis cysts) and
assessing deep endometriosis prior to surgery. It is particularly valuable for identi-
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fying the extent of disease in women with a strong clinical suspicion of endometrio-
sis. This imaging method is cost-effective, readily available, and requires no spe-
cial preparation [Guerriero 2016]. The sonographer can detect deep infiltrating
endometriosis, including adhesions and implants, and assess their size and location.
Despite its advantages, TVUS has limitations such as significant speckle noise, which
reduces the signal-to-noise ratio, and a restricted field of view with lower contrast.
Enhancing the detection of deep infiltrating endometriosis through improved sono-
graphic techniques could decrease the need for diagnostic laparoscopy, better inform
management strategies, and ultimately improve patient quality of life.

Figure 1.16: Example of a 2D TVUS image, showing a deep infiltrating endometrio-
sis [Daniilidis 2022].

On the other hand, MR imaging produces three-dimensional detailed anatomical
images. It can identify tissues through various parameter sequences and, unlike
transvaginal ultrasound (TVUS), is not dependent on the operator’s skill. Its wide
field of view allows for comprehensive visualization of the entire pelvis, facilitating
the evaluation and detection of lesions. MR images offer high contrast, enabling
the creation of a precise map of endometrial implants (Fig. 1.17). However, MRI is
not widely used for endometriosis diagnosis due to its high cost, limited availability,
and lower spatial resolution, especially at the millimetric scale. MR images can
provide sub-centimeter resolution. However, for early diagnosis, lesions can be very
tiny and require millimetric scale resolution, making them subtle or undetectable.

Table 1.1 details the comparaison between MR and TVUS images.
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Figure 1.17: Axial MR T2 image, showing an endometriotic lesion infiltrating the
rectum (arrows), creating adhesions with the right ovary (*) [Scardapane 2014].

Table 1.1: Comparison between MRI and Ultrasound (US)

Criteria MRI US
Expense High Low
Cost Expensive Affordable
Contrast High Low
Spatial Resolution Limited High
Field of View Broad Limited
Availability Limited Widely Available
Scan Time Long Short
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1.5 Motivation and objectives

As we have explained in this detailed introduction, endometriosis is a complex and
highly sensitive disease that affects millions of women worldwide. It can cause
severe pain, infertility, and other debilitating symptoms. Accurate diagnosis and
effective treatment planning are crucial for improving patient outcomes. Besides
being used for diagnosis, US and MRI are essential tools for identifying endometrial
implants and assessing their depth of infiltration in organs before surgery. These
imaging techniques play a vital role in preoperative planning and determining the
extent of the disease.

US imaging is a modality with high spatial resolution that provides fine inter-
nal details of structures. This makes it particularly effective for visualizing small
anatomical features and detailed tissue characterization, which is critical in detect-
ing and evaluating endometrial lesions. However, this modality is constrained by
a limited field of view and a low signal-to-noise ratio, which can reduce the clarity
and comprehensiveness of the images obtained.

In contrast, MRI offers a broad field of view of patient anatomy, providing a
comprehensive overview of the pelvic region and beyond. It has a good signal-
to-noise ratio, which enhances image clarity and contrast, making it useful for
identifying deep and extensive endometrial implants. However, MRI’s relatively
low spatial resolution means that precise anatomical landmarks at the millimetric
scale may be under-evaluated when using this modality alone. This limitation can
be problematic when small lesions need to be identified and accurately mapped.

Fusing these two modalities appears particularly promising. Indeed, assembling
all the critical information from both US and MRI modalities into a single infor-
mative image is expected to significantly improve pre-operative disease mapping
and subsequent surgical approaches. The primary goal of this work is to generate
an image that combines the high contrast of MRI with the fine resolution of US,
thereby leveraging the strengths of both imaging techniques.

Previous work on the fusion of MRI and US images for endometriosis has pri-
marily focused on the 2D/2D case [El Mansouri 2020]. Given that MRI provides
a 3D volume, this PhD thesis goes a step further by first considering a 3D/2D
registration algorithm, followed by the 2D/2D fusion process.

The first objective is to propose a registration model for 3D MR and 2D US
images that will extract from the MR volume the image that best matches the US
image. This involves aligning the MRI and US images to ensure that the anatomical
features correspond accurately between the two modalities. Two fusion techniques
are then proposed in the second part of this PhD thesis to generate a single in-
formative image. The first technique involves a statistical model based on a least
squares problem. The second technique employs guided filtering, which separates
the images into base and detail layers, computes specific weights, and then fuses
them.

This PhD thesis was conducted in collaboration with a gynecologist surgeon
Dr. Fabien VIDAL from Clinique La Croix du Sud - Ramsay Santé, Toulouse,
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France. He provided valuable clinical data essential for this research (experimental
phantom, in vivo data), and played an integral role in validating the results.
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1.6 Organization of the manuscript

The remaining of this thesis is organized as follows:

Chapter 2 provides a comprehensive overview of image registration, a funda-
mental technique in image processing and computer vision. It begins with a lit-
erature review that explores several methods proposed to address this challenging
problem, with a particular focus on medical image registration. Following this, the
main contribution of the chapter is presented, that is a general framework for regis-
tering 3D magnetic resonance (MR) and 2D ultrasound (US) images [Bennioui 2023]
[El Bennioui 2023b]. This proposed registration accounts for a global rigid trans-
formation, characterized by rotation and translation parameters, along with a local
deformation based on B-spline functions. To validate the registration results, we
apply a 2D-2D US-MRI fusion algorithm, generating a final image that combines
the main characteristics of both MR and US images. The rationale behind this
validation step is that well-aligned MR and US images will produce an accurate
and high-quality fusion, while poorly matched images may result in artifacts or
distortions.

The accuracy of the registration method is analyzed through quantitative and
qualitative tests conducted on experimental phantoms, synthetic data generated
from an in vivo MRI volume, and real data, with particular attention to en-
dometriosis treatment.

Chapter 3 first presents state-of-the-art models and methods used in image
fusion. It highlights the advantages, disadvantages, and challenges encountered in
various applications. Next, the proposed fusion method for 2D Ultrasound (US)
and 2D Magnetic Resonance (MR) images is presented. The goal is to create a
hybrid image, referred to as the MARIUS image (MAgnetic Resonance Imaging &
UltraSound), which combines the advantages of both modalities in the context of
endometriosis diagnosis [El Bennioui 2023a].

This method is built upon the idea developed in [El Mansouri 2020], focusing
on constructing two observation models associated with US and MR images to
exploit the complementarity of both images in terms of resolution and contrast.
For the MR image, a linear model formed by blurring and downsampling operators
is proposed, motivated by its good performance in super-resolution. A despeckling
model is employed for the US image to mitigate the effect of noise. Since US and
MR modalities differ in their nature and content, there is no simple correspondence
between the gray levels of these images. Therefore, we propose a new model using a
non-parametric transformation defined using the theory of reproducing kernels and
evaluating its benefits compared to the polynomial transformation investigated in
[El Mansouri 2020].

The proposed fusion method is evaluated on an experimental phantom and
synthetic data generated from an in vivo MRI volume, with specific attention to
endometriosis treatment.
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Chapter 4 explores a novel fusion method developed for combining magnetic
resonance (MR) and ultrasound (US) images. The proposed method is based
on guided filtering, leveraging the advantages of this technique to enhance the
quality of fused images. The fusion process involves creating a weighted average
of base and detail images derived from both MR and US images. Specifically, the
weights for the US image address the challenge of speckle noise, while the weights
for the MR image enhance the contrast of the fused result. The effectiveness
of this method is assessed using both synthetic data, phantom data and real
data demonstrating promising outcomes. The fused images produced by this
method have the potential to improve visualization and support decision-making
in endometriosis surgery, representing a significant advancement in the field of
medical image fusion [El Bennioui 2024].

Chapter 5 concludes the present thesis and provides a guideline for future
work.
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2D/3D MR-US Image
registration
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This chapter aims to provide a comprehensive overview of image registration, a
fundamental technique in the field of image processing and computer vision. Image
registration involves aligning two or more images of the same scene or object to
facilitate comparison, analysis, or integration of the information they contain. This
process has applications across various domains, from remote sensing and astronomy
to medical imaging. We start with a comprehensive literature review, that presents
several methods that have been proposed to deal with this challenging problem,
with a particular focus on medical image registration. Then, a general framework
for the registration of 3D magnetic resonance (MR) and 2D ultrasound (US) images
is presented. The proposed registration takes into account a global rigid transforma-
tion characterized by rotation and translation parameters, associated with a local
deformation based on B-splines functions. A 2D-2D US-MRI fusion algorithm is
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also applied to validate the registration results, generating a final image contain-
ing the main characteristics of the two MR and US images. The rationale behind
this validation step is that if the MR and US images are well-aligned, the resulting
fusion will be accurate and of high quality. However, if the images do not match
well, the fusion process may introduce artifacts or distortions. The accuracy of
the registration method is analyzed by means of quantitative and qualitative tests
conducted on experimental phantom, synthetic data generated from an in vivo MRI
volume, and real data with a specific attention to endometriosis treatment.

2.1 Literature review

Image registration involves aligning and merging data from multiple image sources
into a unified coordinate system. It compares a source image with a reference image
in order to identify the optimal geometric transformation that captures accurate
spatial correspondence between them by optimising a registration criterion. Numer-
ous applications requiring image registration have emerged, driving the community
to develop increasingly precise and efficient strategies. In remote sensing, image reg-
istration is used to align and integrate images from different sensors and platforms,
enabling the creation of multi-sensor/multi-temporal image datasets for land cover
classification, change detection, and environmental monitoring [Bentoutou 2005].
It is also a key component in various computer vision tasks such as object recog-
nition, scene understanding, and 3D reconstruction, where aligning images accu-
rately is essential for feature matching and scene interpretation [Movahed 2020]. In
the medical field, image registration techniques aid in the comparison and fusion
of images from different modalities or acquisition times, assisting clinicians in di-
agnosing diseases, tracking disease progression, and evaluating treatment efficacy
[Anila Satheesh 2021]. Moreover, the integration of preoperative and intraopera-
tive images, provides surgeons with real-time guidance during surgical procedures,
enhancing accuracy, and improving patient outcomes. In cardiac imaging, these
techniques are employed for example to align cardiac images acquired from dif-
ferent modalities or cardiac phases, which helps in capturing and quantifying the
motion of the cardiac cycle of the heart and myocardial viability [Atehortúa 2019].
Image registration is also extensively used in neuroimaging to facilitate the analysis
of brain structures and functions by aligning brain images from different sessions
[Rivaz 2015].

The primary goal of image registration techniques is to spatially or temporally
align a moving image with a fixed image target. These registration algorithms
typically consists of three main components:

• Transformation model: Rigid or elastic (non-rigid) to be performed on the
moving image enabling the images to be registered with local geometric
differences.
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Figure 2.1: General image registration framework

• Cost function: Often referred to as a matching criterion or a (dis)similarity
measure that quantifies the degree of alignment between the images.

• Optimization method: Estimates the optimal transformation to best mini-
mize/maximize the defined matching criterion.

Figure 2.1 summarizes the iterative registration framework. It is typically performed
by estimating a transformation using the model, applying it to the moving image
and evaluating the cost function between the fixed and moving images. The cost
function guides the algorithm in how to estimate a more accurate transformation for
the next iteration. This process continues and optimizes until either the moving and
fixed images are deemed aligned (reaching a local minimum in the cost function)
or a predefined maximum iteration count is reached.

2.1.1 Matching Criterion

The matching criterion quantifies the alignment between the images. Registra-
tion methods can be classified into two categories, namely, intensity-based (iconic)
methods, and feature-based (geometric) methods.

2.1.1.1 Intensity-based methods

Intensity-based approaches rely on the intensity information associated to pix-
els/voxels in the input images. They either consider the intensities themselves, or
evaluate a statistical information from them, such as gradients, gray levels, etc. In
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monomodal cases, i.e. the images are captured using the same modality, pixel/voxel
intensity values corresponding to the same anatomical structures are highly corre-
lated or even identical in both images. Therefore, the task of measuring similarity
between the images is straightforward and simple measures can be used. Exam-
ples of these metrics include the sum of squared differences (SSD) [Fogtmann 2014],
[Rueckert 2010], [Heldmann 2009]. It is defined as follows (for two vectorized images
X and Y ):

SSD(X,Y ) =
∑
i∈Ω

[X(i) − Y (i)]2, (2.1)

where Ω is the region of interest. Similar to SSD, sum of absolute differences (SAD)
[Ferrante 2013] provides a measure of the overall difference between images, with
smaller SAD values indicating greater similarity. These metrics operate under the
assumption of a direct correspondence between the intensity values in both images.

Another metric used is the Pearson Correlation Coefficient (CC). It is a mea-
sure of the strength and direction of the linear relationship between two variables
[Sarvaiya 2009], [Van den Elsen 1995]. Given a pair of images X and Y , the Pear-
son correlation coefficient is defined as:

CC(X,Y ) = cov(X,Y )
σXσY

, (2.2)

where cov(., .) and σ are the covariance and standard deviation operators.
In the multimodal scenario, such simple metrics can present challenges due to

the lack of obvious relationships between pixel intensities from different modalities.
More sophisticated metrics have therefore been developed to leverage the statis-
tical properties of the observed intensity values in images. The most popular is
the mutual information (MI). Using mutual information for image registration was
originally presented in [Wells 1996], and since then, it has become one of the most
widely used registration cost functions [Sengupta 2022]. Its success largely comes
from its probabilistic nature, which gives it robustness to noise and shifts in inten-
sity. MI quantifies the "amount of information" provided by one random variable
given that the other random variable is observed. It is defined as:

MI(X,Y ) =
∑

x∈ΩX

∑
y∈ΩY

p(x, y) log
[
p(x, y)
p(x)p(y)

]
, (2.3)

where ΩX and ΩY are the regions of interest for the two images X and Y .
The strength of MI as a similarity measure lies in the fact that no assumptions
are made regarding the nature of the relation between the intensity values of the
image, as long as such a relationship exists. The main drawback of MI comes
from its probabilistic nature. The measure relies on an accurate estimate of the
probability density of the image intensities. As a result, its effectiveness decreases
significantly when working with small regions within the image, where there is not
enough intensity samples to accurately estimate such densities. As a result, MI need
to be calculated over a relatively large region of the image, which can diminish its
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ability to handle small changes between the moving and fixed images.
The gradient magnitude of the images can also be used as well as the prede-

fined metrics. In [Su 2013], SSD of both image intensities and gradients are used
to register CT and CT-Fluoroscopy images. A robust patch-based correlation ratio
was investigated in [Rivaz 2015] for the registration of 3D US and MR images for
Image-Guided Neurosurgery. The Robust Patch Based Correlation Radio (RaP-
TOR) computes local correlation ratio values on small patches and adds them to
form a global cost function. This metric is proved to be invariant to large amounts
of spatial intensity inhomogeneity.

2.1.1.2 Feature-based methods

Geometric or feature-based methods focus on establishing correspondances between
significant anatomical locations or salient landmarks. The selection of features to
be considered is an important step, that should gather ease and accuracy of detec-
tion. The features can be markers attached to the patient’s anatomy or intrinsic
anatomical features. While extrinsic features are defined using artificial markers at-
tached to the patient’s body, this approach can be uncomfortable and not so feasible
due to the elasticity and movement of some human organs. As a result, intrinsic
features are preferred for more reliable and comfortable registration. Points, curves
and surfaces are the most common features extracted.

The advantage of such methods is their ability to handle multimodal image reg-
istration where intensity values may not directly correspond. They can also provide
improved robustness against noise and artifacts, as well as a wider capture range
for deformations. However, the effectiveness of geometric methods heavily depends
on the accurate detection and matching of these features, which can be challenging
and computationally intensive, especially in complex or cluttered images.

The Iterative Closest Point (ICP) algorithm introduced by Besl and McKay
in [Besl 1992] is commonly used to measure the distance between two curves, two
surfaces or two volumes. In ICP, each point or a selected set of points in the point
cloud of the moving image is matched with the closest point in the point cloud of
the reference image. It minimizes the least square rigid transformation that relates
these sets of points and iterates until convergence is achieved. It is a simple and
fast method that requires an accurate initialization to perform effectively and not
converge to a local minimum [Farnia 2012], [Moradi 2012], [Sinko 2018]. Yavariabdi
et al. in [Yavariabdi 2013] proposed a novel variational one-step deformable ICP
method to register transavaginal ultrasound (TVUS) and MR images. First, the
data is manually segmented by an expert. Second, a deformable ICP method is
used to compute a dense deformation field while establishing point correspondences
automatically.

In [Singh 2008], Singh et al. introduced a manual registration technique for real-
time transrectal ultrasonography (TRUS) and pre-acquired MR images to assist
in prostate biopsies. They manually registered the MR image sequence to the
ultrasound (US) images using custom software, enabling real-time navigation and
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feedback. However, this method depends on the accuracy of selecting control points
and ensuring their correspondence in both images. To reduce user interaction,
[Kadoury 2012] also presented automatic and semi-automatic registration methods
as alternatives to the manual approach.

Recently, deep learning has been suggested as a tool to build efficient registration
methods. These methods can automatically learn and extract intricate features from
images, eliminating the need for manual feature selection and reducing operator-
dependent variability [Haskins 2020].

2.1.2 Transformation Model

Transformation in image registration is defined as the coordinate mapping from the
reference image domain to the source image domain. Transformation model can be
subdivided into rigid and non-rigid. Rigid transformations handle global rotations
and translations, whereas non-rigid deformable models can generate local in-plane
and out-of-plane deformations.

2.1.2.1 Rigid models

Rigid registration identifies the six degrees of freedom, mainly consisting of three ro-
tational and three translational transformations, that map each point in the source
image to its corresponding point in the reference image. These models are effective
in applications where there is minimal to no change in the shape or position of
the structure being analyzed. Rigid transformation models are the most common
choice in the literature for 2D/3D registration, since they can deal with in-plane
and out-of-plane rotations and translations [Meskine 2013]. Rigid transformations
preserve the spatial distance between any consecutive points, they can be defined
using different parametric forms, some of them being recalled below:
A translation, i.e., a constant displacement over space

x′ = x+ tx, y
′ = y + ty,

where x and y are the coordinate of a pixel in the moving image before registration,
x′ and y′ are the same coordinates after registration and tx and ty are the translation
parameters in the x and y axes, and/or a rotation:

x′ = x cos θ + y sin θ; y′ = −x sin θ + y cos θ,

where θ defines the clockwise rotation. The number of degrees of freedom equals 3
for 2D images and 6 for 3D images.
An affine transformation can be decomposed into a linear transformation and a
translation. In the 2D case, the affine model has six independent parameters:

x′ = a11x+ a12y + tx; y′ = a21x+ a22y + ty
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Such models maintain spatial relationships between points and asserts that lines
that are parallel before transformation remain parallel after transformation.

2.1.2.2 Non-Rigid models

Non-rigid models are suitable for registration tasks where there is an anatomical
variability across subjects or imaged body organs, which undergo soft-tissue type
of deformation. Non-rigid registration requires determining a deformation field for
the images. On one hand, a representation with higher degrees of freedom tends
to be more expressive and may achieve better registration. On the other hand,
higher degrees of freedom require determining a larger number of variables, leading
to increased computational costs. A proper representation of the deformation
field needs to be chosen to ensure sufficient expressiveness for a precise alignment
without incurring excessive computational costs. These approaches can be classified
into different categories according to i) The way in which the distance between
the data and model sets is approximated (e.g., point wise, distance field) ii) The
transformation used for mapping data set towards model set (e.g., Thin Plate
Splines (TPS), Free Form Deformations (FFD), Laplacian deformation, etc).

Point wise position variables
A straightforward approach to defining a deformation field is to consider the point
positions on the new deformed image as variables and compute them through
optimization [Liao 2009], [Huang 2011], [Yamazaki 2013]. However, in practice,
due to the physical behavior modeled by the deformation, a vertex often cannot
move independently of other vertices. This can result in redundant degrees of
freedom when using pointwise position variables. To address this, additional
regularization is typically applied to the variables, such as local shape preservation
[Liao 2009], [Huang 2011] and local similarity [Yamazaki 2013], to ensure more
meaningful and coherent deformations.

Pointwise Affine Transformation
Instead of considering point positions as variables, some methods define an affine
transformation (Ai, ti) for each point on the source image

x′
i = Ai xi + ti,

where xi is a point on the source image and x′
i is the point after deformation.

Ai ∈ R3×3 and ti ∈ R3. Compared to pointwise position variables, this approach
can better capture complex deformations, including local rotations. Based on
the observation that the deformations in many non-rigid registration problems
are locally rigid, affine transformations are often constrained to be close to rigid
transformations. That is, the matrix Ai ∈ R3×3 should be close to a rotation
matrix [Amberg 2007].
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Radial Basis Functions
Radial Basis Functions (RBFs) are a class of mathematical functions that depend
only on the distance between points. They are typically used for interpolation
and approximation of functions, particularly in scattered data interpolation and
approximation problems. In their basic form, RBFs define a mapping from Rd to
R, where d is the dimension. A 2D RBF f is defined by a R2 → R basis function ψ
and a set of l centres qk as:

f(x) =
l∑

k=1
wkψ(∥x− qk∥).

It consists of a sum of l weighted terms with coefficients wk of the basis function
applied to the distance between x and the centre qk. The basis function can have a
localised influence (e.g. Gaussian) or a global behavior (e.g. TPS).
TPS are frequently used to generate a dense deformation field from a sparse set of
control points. These methods involve a set of control points that can be located
in arbitrary positions, which are usually obtained by detecting salient structures.
TPS minimizes a bending energy based on this interpolation function, which gives
a closed-form solution whose uniqueness is guaranteed in most cases. It can be
decomposed into an affine and a local component [Chui 2003]:

x′ = a0 + a1 x+ a2 y +
l∑

k=1
wk∥x− qk∥2 log(∥x− qk∥),

y′ = b0 + b1 x+ b2 y +
l∑

k=1
wk∥x− qk∥2 log(∥x− qk∥).

In [Osechinskiy 2011], TPS are used to parametrize a smooth 3D deformation of a
2D slice. Control points are placed in a regular grid on the 2D image domain, and
a 3D wrap is defined using three independent TPS functions.
In [Mitra 2010], an automatic deformable method for MR and US registration
for prostate biopsy is proposed. The deformation model was based on TPS. One
contribution was to estimate the spline knots using a triangulation technique
with the axes of the segmented prostate in MR and TRUS images. A Shepard
interpolation was used to overcome interpolation artefacts caused by the inverse
TPS transform.

B-Splines
Cubic B-splines are a type of basis functions commonly used in interpolation and
curve fitting. The term "B-spline" stands for "Basis spline," where "basis" refers to
the piecewise polynomial functions that make up the spline. B-splines are defined
recursively using a set of control points and a degree parameter. The B-splines used
in medical image registration mainly consist of linear interpolating B-splines, convex
nuclear B-splines, and cubic B-splines, which are the most commonly used. They
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have a degree of 3, and provide a good balance between simplicity and accuracy.

Denote as Ω = {(x, y) | 0 ≤ x < N, 0 ≤ y < M} the domain of the image-plane
and consider an nx × ny mesh of control points ϕij with identical spacing. The
cubic B-spline local transformation is defined as:

Tl(x, y) =
3∑

m=0

3∑
n=0

Bm

( x
nx

)
Bl

( y
ny

)
ϕix+m,jy+n, (2.4)

with ix = ⌊ x/nx⌋ − 1, jy = ⌊y/ny⌋ − 1, and ⌊.⌋ is used for the integer part. The
cubic B-spline uniform functions are defined as:

B0(u) = 1
6(1 − u)3,

B1(u) = 1
6(3u3 − 6u2 + 4),

B2(u) = 1
6(−3u3 + 3u2 + 3u+ 1),

B3(u) = 1
6u

3.

After constructing the B-spline grid, it is used to deform the local neighborhood
of every control point in the moving image. Once the moving image has been
deformed, it is compared to the reference image using a similarity measure
[Klein 2007].

Free-form deformation models
Free-form deformation (FFD) transforms are commonly employed in non-rigid
image registration to model complex deformations of anatomical structures. They
allow for local deformations by defining a grid of control points that can be moved
to reshape and deform the image [Rueckert 1999]. In this model, the weighting
functions are cubic B-splines. Unlike Thin-Plate Splines (TPS), where control
points influence the entire domain during interpolation, the control points in this
model have limited local support. They are uniformly distributed over the image
domain in a grid-like form. In [Ferrante 2015], FFDs were used in a graph-based
discrete optimization framework to perform slice-to-volume deformable mapping.
In this model, a 2D grid-like graph simultaneously encodes the plane position
(rigid body transformation) and the in-plane deformation of a slice with respect to
its corresponding position at the 3D. The in-plane deformation is achieved through
FFD interpolation, with the graph nodes serving as control points.
Fuerst et al. proposed an MR-US registration in [Fuerst 2014]. They used
a free-form deformation based on cubic B-splines to build the transformation
between the two images. They assumed that the US intensity is either correlated
with the MR intensity or with the gradient of MR which leads to a first order
polynomial function that relates the US image to the MR image and its gradient.
Their approach demonstrated promising results in image-guided neurosurgery.
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2.1.3 Optimization Algorithms

Optimization algorithms are used to select the optimal transformation to best min-
imize/maximize the defined matching criterion. These algorithms can be separated
into two categories depending on the nature of the variables: continuous and dis-
crete. The former optimizes a function through real values, while the latter extracts
discrete variables from a discrete set.

2.1.3.1 Continuous Algorithms

Optimization method based on continuous variables essentially looks for the zeroes
of the differential of an objective function, employing various parameter definitions
for their optimization processes. For instance, when the stepsize remains consis-
tent across iterations, each step aims to minimize the search direction. Typically,
the search direction usually takes advantage of first-order or second-order specific
information. A mathematical formulation of this strategy can be given by:

θt+1 = θt + αtdt,

where θ contains the parameters of the transformation, t is the iteration number, αt

is the step size or gain factor and dt is the search direction at iteration t. Based on
the variations in search strategies, the commonly employed optimization methods
for continuous variables include:

• Gradient descent method (GD): It is an iterative optimization algorithm used
to minimize a function by iteratively moving towards the direction of the
steepest descent, as indicated by the negative gradient of the function. In
essence, it operates by calculating the gradient of the objective function at the
current point and then adjusting the parameters in the direction that reduces
the function value the most. The magnitude of the adjustment is determined
by a predefined stepsize, referred to as the learning rate, which influences
the convergence speed and stability of the algorithm. While GD is concep-
tually straightforward and computationally efficient, its performance can be
sensitive to the choice of the learning rate, requiring careful tuning to ensure
convergence to the global minimum in complex optimization landscapes. The
FFD registration algorithm proposed by [Rueckert 1999] is GD-based.

• Conjugate Gradient Method (CG): In the Conjugate Gradient method, each
search direction is conjugate to the previous ones, meaning they are orthog-
onal with respect to the problem’s quadratic form. This property allows the
method to converge faster than Gradient Descent, especially for problems with
poorly conditioned or ill-conditioned Hessians. CG has overall faster conver-
gence rate and improved performance. [Elen 2010] used CG to estimate rigid
slice-to-volume mapping functions.
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• Quasi-Newton: The Quasi-Newton method has a convergence rate that is
higher than that of GD. In addition, compared to the CG method, Quasi-
Newton algorithms use second-order information to speed up convergence.
Other factors contributing to this quick convergence are their accumulation
and the use of iterative information. The search direction is computed based
on an estimation of the Hessian, using provided information from the previ-
ous iteration. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is
a common quasi-Newton method. [Hansen 2014] used the limited-memory
version of it to solve multi-slice to volume registration.

• Nelder-Mead: Also known as the downhill simplex method, it is a direct
search method that does not require the calculation of derivatives. It relies
on a notion of simplex ”a special polytope of n+ 1 vertices in n dimensions”
to explore the space of solutions. The algorithm operates by performing a
series of transformations on the simplex, such as reflection, expansion, con-
traction, and shrinkage, guided by the evaluations of the objective function at
the simplex vertices. Although easy to implement and apply to nondifferen-
tiable functions or cases where the gradient is unknown, Nelder-Mead may not
always converge to the global minimum and is sensitive to the initialisation
[Dréo 2006], [Fei 2003].

• Powell: Powell’s conjugate direction is a non-gradient method that does not
require the function to be differentiable, and no derivatives are taken. It ex-
plores the search space by performing bi-directional searches along N different
vectors, and iterating until no significant improvement is made. Powell’s algo-
rithm is known for its simplicity and robustness, making it suitable for a wide
range of optimization problems. [Smolikova-Wachowiak 2005] used Powell’s
algorithm to register two-dimensional cardiac images to preprocedural three-
dimensional images for interventional applications.

2.1.3.2 Discrete Algorithms

Discrete optimization deals with variables that take a finite set of distinct values.
In image registration applications, discrete variable optimization essentially uses
the Markov random field (MRFs) to conduct the optimization. Discrete variable
optimization has the advantage of high calculation efficiency, and is currently used
in medical image registration. Besides being inherently gradient-free compared to
most continuous models, discrete optimization algorithms are not as prone to stuck
in local minimas when the functions are not convex. Indeed, even complex functions
can be optimized in the discrete scenario if the search neighborhood is large enough.
Other methods include belief propagation methods [Yang 2010], graph-based meth-
ods, etc. In [So 2011], a graphcut-based method for non-rigid registration of brain
MR images was used. The problem was formulated as a discrete labeling problem,
and optimized by using α-expansions, which is a powerful combinatorial optimiza-
tion tool, capable of yielding either a global minimum or a local minimum in a
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strong sense.

2.1.4 US-MR registration: State of art

Up to this point, we have provided a general literature review on image registra-
tion, exploring various methods, techniques, and applications across different fields
of medical imaging. In this section, we will narrow down our focus to the specific
context of this study, which involves the registration of Ultrasound (US) and Mag-
netic Resonance (MR) images. We will present some state of the art algorithms
that have been used for these specific modalities, i.e., 2D US and 3D MR image
registration.

Atehortua et al. presented a 3D multimodal registration strategy to fuse 3D
real-time echocardiography images with cardiac cine MRI images [Atehortúa 2019].
This alignment was performed in a saliency space, which was designed to maximize
the similarity between the two imaging modalities. This fusion improves the quality
of the available information. The used method performs in two steps: temporal and
spatial registrations. A temporal alignment was firstly achieved by non linearly
matching pairs of correspondences between the two modalities using a dynamic
time warping. A temporal registration was then carried out by applying nonrigid
transformations in a common saliency space where normalized cross correlation
between temporal pairs of salient volumes was maximized.

Marami et al. presented in [Marami 2014] an automatic method for dynamically
tracking the deformation of a soft tissue based on registering pre-operative three-
dimensional (3D) MR images to intra-operative two-dimensional (2D) US images.
The metric used is intensity-based, modality independant neighborhood descriptor
(MIND), and the registration is based on an elastic deformation model correlating
the images in the spatial and temporal domains.

Craene et al. in [De Craene 2004] studied a non-rigid MR/US registration al-
gorithm based on a finite element elastic deformation model to capture the de-
formation in the liver ablation and the prostate biopsy. The similarity measure
used in this study was a mix between mutual information and linear elastic energy.
The optimization was performed using a new method referred to as Perturbation
Stochastic Approximation (PSA). The use of volumetric meshes applied to the sur-
faces of organs to build the deformation showed promising results.

Kadoury et al. investigated in [Kadoury 2012] an approach to rigidly register
the preoperative MR and the intraoperative US to allow pertinent needle placement
during the ablation of liver metastases. Their contribution consists of training a
deformable model for unsupervised segmentation of the liver in the MR image and
extracting automatically the liver boundaries from the US image. The registration
was performed using a weighted ICP algorithm with internal energy as a penaliza-
tion.

An alternative approach leverages the Modality INdependent Descriptor
(MIND) [Heinrich 2012] and its variant, the Self-Similarity Context (SSC)
[Heinrich 2013]. Unlike methods based on global intensity relationships, these
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techniques utilize differences in predefined neighborhood maps. The work in
[Rivaz 2014] introduced the Self-Similarity α-MI (SeSaMI) metric as a similarity
measure tailored for B-spline registration of MR and US images. This method
demonstrated robustness to signal nonstationarity and intensity distortions, deliv-
ering promising results in image-guided neurosurgery.

Ferrante et al. [Ferrante 2017] presented a comprehensive survey of the litera-
ture about slice-to-volume registration, presenting a categorical study of different
algorithms for medical imaging.

An iconic slice-to-volume registration was also studied in [Fei 2004] in the con-
text of image guided surgeries. The idea is that low-resolution single photon emis-
sion computed tomography can be registered with a high-resolution MRI volume,
which could be subsequently fused with live-time interventional MRI. A 3D mu-
tual information registration method is used for the first step, and a robust slice to
volume registration algorithm with special features for the latter.

2.1.5 Conclusion

In the first part of this chapter, we presented a comprehensive literature review of
image registration models, highlighting their principal components such as matching
criteria, transformation models, and optimization algorithms. We then discussed
various methods specifically used for MR/US registration. This concluded with an
overview of the state-of-the-art in MR and US registration. In the second part of this
chapter, we introduce the proposed method for slice to volume registration. This
method incorporates first a global rigid transformation characterized by rotation
and translation parameters, then is combined with a local deformation based on
B-spline functions.

2.2 Rigid slice to volume registration

This section investigates a registration model of 3D magnetic resonance (MR) and
2D ultrasound (US) images. The main objective of this work is to propose a rigid
slice to volume registration algorithm inspired by [Porchetto 2017], and to use it
as a prior step for US/MR image fusion. The algorithm of [Porchetto 2017] was
pioneer in using discrete methods to solve the challenging slice-to-volume registra-
tion task, giving promising results when compared to a continuous approach. The
results can be further refined using a continuous method, generating more accu-
rate estimations. The accuracy of the proposed registration method is analyzed
by means of quantitative and qualitative tests conducted on experimental phantom
and realistic synthetic data generated from an in vivo MRI volume, with a specific
attention to endometriosis treatment.
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2.2.1 Slice-to-volume Model

The primary objective of our method is to achieve 3D/2D registration, commonly
referred to as slice-to-volume mapping. A 2D US image is registered to a 3D MR
volume, by searching the best matching MR slice, not necessarily following one of
the three orthogonal directions of acquisition. This slice is defined by three rotation
angles and three translation parameters. Its resemblance to the US image is based
on a similarity measure, which has an important impact on the registration results.

Figure 2.2: Schematic view of the proposed registration algorithm. I represents a
2D US image, related by a geometrical transformation π to a best-matching MRI
slice π[J ].

Given an MR volume J and a 2D US image I, the goal of the method is to esti-
mate the rigid transformation π defined by π = (rx, ry, rz, tx, ty, tz), containing the
rotation angles r and the translations t in the three spatial dimensions denoted by
x, y and z, that better aligns I with a slice from J . This is achieved by solving the
following optimization problem:

π̂ = argmin
π

M(I, π[J ]), (2.5)

where π[J ] is a slice extracted from J specified by the rigid transformation π, as
illustrated in Fig. 2.2 and M is the matching criteria that defines the dissimilarity
between the 2D image I and the slice π[J ], which is inversely proportional to a
similarity measure.
Depending on the characteristics of the images being registered, different matching
criterias can be employed. In cases of monomodal images, where intensities exhibit
linear correlation across both images, simple functions like the sum of absolute
differences (SAD) or sum of squared differences (SSD) can effectively serve the
purpose. However, in more complex scenarios such as multimodal registration,
where the relationship between intensity values in the images is typically nonlinear,
more sophisticated functions like mutual information (MI) are utilized.

The optimization problem associated with image registration is frequently tack-
led using continuous methods, both gradient-based and non-gradient-based. How-
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ever, these methods are highly sensitive to initialization and may become trapped
in local minima. To address this, the rigid slice-to-volume registration will be ap-
proached as a discrete labeling problem. This approach follows the discretization
strategy proposed by [Zikic 2010].

2.2.2 Discrete labeling problem

Rigid slice-to-volume registration, along with numerous other problems in computer
vision, can be modelled as a discrete labeling challenge within a pairwise Markov
Random Field (MRF) framework. In formal terms, a discrete pairwise MRF con-
stitutes an undirected graph G = ⟨V,E⟩, where each node vi ∈ V , i = 1, ..., |V |,
denotes a discrete variable. Two variables vi and vj are interdependent if there
exists an edge (vi, vj) ∈ E connecting their respective nodes. The potential values
assignable to a discrete variable are constrained by the label space L. The objective
of a discrete labelling problem within a pairwise MRF is to assign a label li ∈ L to
each vi ∈ V , with the aim of minimizing the following energy function:

P (x;G;F ) =
∑

vi∈V

gi(li) +
∑

(vi,vj)∈E

fij(li, lj). (2.6)

Here, x = (l1, ...., ln) represents a labelling assigning a label li to each vi ∈ V . The
functions G = gi(.) correspond to the unary potentials associated with vi ∈ V , while
F = fij(., .) represent the pairwise potentials associated with edges (vi, vj) ∈ E.
These functions yield scalar values upon assigning labels li to variables vi. Since
the optimization is cast as a minimization problem, potentials should assign lower
values to labellings representing favorable solutions and higher values otherwise.

In equation (2.5), the aim is to explore the space of parameters π to identify the
values giving the best matching. Since the problem is cast as discrete, we need a
strategy to discretize the inherently continuous space of rigid transformations π. In
their work [Zikic 2010], the authors demonstrated the feasibility of estimating linear
transformations, particularly rigid body transformations, by solving a discrete and
approximate version of this formulation.

Following their proposal, we model rigid slice-to-volume registration through a
graph G = ⟨V,E⟩, associating every parameter of the rigid transformation π = (rx,
ry, rz, tx, ty, tz) to a variable vi ∈ V , giving a total of 6 variables (nodes in the graph).
G is a fully connected pairwise graph where E = {(vi, vj), ∀vi ̸= vj}, meaning that
all variables (parameters) depend on each other. In this strategy, every parameter
vi is updated through a discrete variation dli associated with the label li. Figure
2.3 shows the topology of the MRF graph obtained for the registration problem,
where the parameters of the transformation are represented by the nodes and the
edges encode the image similarity costs associated with the variation of the labels
of the adjacent nodes.

Each parameter of the transformation π will be constrained to a finite set
and optimized in order to satisfy (2.5). More precisely, starting from an initial
rigid transformation π0 = (r0

x, r0
y, r

0
z , t

0
x, t

0
y, t

0
z), the space of solutions is explored
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Figure 2.3: Topology of the 2D/3D registration MRF model. The parameters of the
transformation are represented by the nodes. The edges encode the image similarity
costs associated with the variation of the labels of the adjacent nodes.

by sampling discrete variations of π0 to determine the transformation associated
with the slice π[J ] best matching the image I through the similarity measure
M . For a maximum size ωi and a quantization factor ki, the variations of the
variable vi associated with one component of π are constrained to be in the
set {0,±ωi

ki
,±2ωi

ki
, ...,±kiωi

ki
}. Since the algorithm is guaranteed to reduce the

energy in every step, we can assume that the new estimate is closer to the locally
optimal solution, and reduce the search ranges for the parameters. Therefore,
after each iteration, the maximum size ωi is decreased by a factor αi to allow a
finer exploration of the search space. The total number of resulting values of vi

at iteration i is li = 2ki + 1. Note that 0 is also included because the current
parameter value can be preserved. For example, when the rotation variable rx is
considered, for ω0 = 0.4 and k0 = 2, the search space for v0 is {r0

x, r
0
x ±0.2, r0

x ±0.4}.

Since the number of possible solutions is exponential, it is not possible in a
reasonable time to explore all the possible values of π. Instead, we adopt a pairwise
approximation where only variations for pairs of variables are considered. These
variations are encoded in the pairwise terms of the energy defined as fij(li, lj) =
M(I, πli,lj [J ]). Here πli,lj denotes the updated version of π0, where only vi and vj

are modified according to the labels li and lj , while the rest of the parameters remain
fixed. Unary potentials gi are not considered since we are only interested in the
interaction between variables. Therefore, the discrete version of the optimization
problem introduced in (2.5) becomes:

x̂ = argmin
x

P (x;F ) = argmin
l1,...,ln

∑
(vi,vj)∈ϵ

M(I, πli,lj [J ]), (2.7)

where the optimal label vector x̂ represents the final rigid transformation π̂ used
to extract the solution slice π̂[J ]. Note that this pairwise model is clearly an
approximation, since the real dependency between the parameters is not necessarily
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pairwise. However, as stated in [Zikic 2010], similar approximations have shown
to be good enough to estimate linear transformations, while making the problem
tractable.

The key idea behind this approximation is related to the order of the model. The
order of an MRF model is the maximum size of the involved cliques. It expresses the
degree of conditional dependence of parameters on each other. Consider a simple
first-order model: in this scenario, assigning a value to one parameter does not
affect the labeling of other parameters within the MRF energy term. As a result,
the labeling of individual parameters can be done independently. Going one step
further and looking at a second-order model, we see that the choice of the label for
one parameter will influence the choice for the labeling of all the parameters that
form cliques together with it. Optimization methods for higher-order models have
been proposed, but they are still not as general and efficient, and are complex to use.
In [Zikic 2010], authors proposed an approximation to optimize high-order models
by using second order cliques in the graph only. This means that the second-order
cliques in the graph are used to encode a cost of a simultaneous variation of two
parameters, while the other parameters are fixed to their current values. The MRF
determines the parameters by optimizing the sum of the edge costs. This encodes
the dependency of the similarity measure on the two respective parameters, while
the dependency on all the other parameters is ignored. However, by simultaneously
taking into account all possible combinations of parameter pairs, the overall energy
term is constructed such that the selection of one parameter value depends on all
the others.

2.2.3 Discrete method: FastPD

Discrete methods offer several advantages over continuous approaches in the context
of image registration, as explained in Section 2.1.3. We propose to solve the discrete
multi-labeling problem in (2.7) using FastPD [Komodakis 2007]. FastPD is a dis-
crete optimization algorithm based on principles from linear programming and pri-
mal dual strategies, which generalizes the α-expansion method [Komodakis 2008].
It solves a series of max-flow min-cut problems on a graph. In that sense, it is similar
to alpha-expansion, which also performs MAP inference on multi-label problems by
solving successive binary max-flow min-cut problems. The main difference between
these approaches is the construction of the graph where max-flow min-cut algorithm
is applied. The α-expansion constructs the binary problem by restricting the label
space, so that the only options for a given variable are to remain in its current as-
signment, or to take a label alpha (which varies in every iteration). Instead, FastPD
constructs these binary problems by performing a Linear Programming Relaxation
(LPR) of the integer program that represents the discrete MRF formulation. It
builds upon principles drawn from the duality theory of linear programming, ap-
plying the well known primal-dual schema to the relaxed version of the MRF integer
programming formulation. One of the main advantages of FastPD is its modular-
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ity/scalability, since it deals with a much wider class of problems than α-expansion,
being an order of magnitude faster while providing the same optimality guarantees
when performing metric labeling.

2.2.4 Refinement Step

To enhance the accuracy and efficiency of the optimization process, the final discrete
solution is used as initialization, and a continuous optimization strategy based on
a simplex method (Nelder-mead) is finally run to further improve the result. The
cost function to minimize is the same matching criteria M chosen before. This
hybrid approach leverages the strengths of both discrete and continuous optimiza-
tion techniques, aiming to strike a balance between computational efficiency and
solution quality.

2.3 Experiments

In this section, we present the experimental evaluations conducted to validate the
slice-to-volume 2D US and 3D MR images model. The primary application under
investigation is the diagnosis of endometriosis. To assess the efficacy and accuracy
of the proposed model, we initially validate it using an experimental phantom, for
which both MRI and US acquisitions were performed. This phantom-based evalu-
ation allowed us to simulate realistic imaging scenarios and assess the robustness
of the chosen registration approach. Subsequently, our model was tested on a syn-
thetic dataset. This dataset comprises a true volume MRI scan of a patient with
endometriosis, from which we generate the corresponding observed MR and US
images. For all the experiments, we use this fixed parameter setting: maximum
translation size ωtrans = 7, maximum rotation size ωrot = 0.02, quantization factor
k = 2, and modification rate α = 0.8.

2.3.1 Phantom Data

This section evaluates the results of the proposed registration model using a phan-
tom dataset. The experimental phantom was designed to mimic uterus and en-
dometrium responses to MR and US imaging. It was made of a beef steak on top of
which was stuck a polyvinyl alcohol (PVA) phantom, using cyanoacrylate instant
glue. The beef meat is composed of muscular tissues and its echogenicity and re-
sponse to MR are similar to those of uterus tissue. The PVA phantom has roughly
the same echogeneicity as the beef meat, but has different magnetic properties re-
sulting in high contrast in the MR image. From this viewpoint, its properties are
similar to those of endometrium. Finally, the glue between the two structures is
visible on US image due to its high resolution and absent in MR image because
of its limited resolution, mimicking the depth of penetration information, a crucial
element for the surgery.
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Figure 2.4: 3D MRI volume of the experimental phantom.

MRI acquisitions were performed using a 3T clinical imaging system (Philips
Achieva dStream, Inserm/UPS UMR 1214, ToNIC Technical plateform, Toulouse,
France). Axial fat-suppressed T1-weighted sequences (multishot mode; 4 mm slice
thickness; voxel matrix 4 × 1 × 4 mm) and axial, sagittal and coronal T2-weighted
sequences (multishot mode; 2 mm slice thickness; voxel matrix 0.8 × 2 × 2 mm)
were acquired. For US image acquisition, the experimental phantom was immersed
in a bucket full of water. A US examination was performed using a Voluson S10
system (General Electrics, USA). All images were acquired with a 10-MHz linear
array transducer. More details about the experimental model design and image
acquisition can be found in [Vidal 2019].

The dimensions of the images differ between the US and the MR modalities.
Indeed, the US image has 600×600 pixels whereas the MRI volume has 320×320×90
voxels. Given the wider field of view of the MRI, a manual cropping was done to
adjust the MR volume to 100 × 100 × 90, so as to ensure similar fields of view for
both modalities. Finally, a despeckling of the US and a bicubic interpolation of the
MR image were performed to ensure similar pixel dimensions.
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(a) US image (b) Ground truth MR

Figure 2.5: Pair of MR slice and US image corresponding to manual 3D-2D regis-
tration.

For the 3D-2D registration task, the best matching MR slice from the volume
corresponding to the 2D US (2.5(a)) image was manually identified with the help
of an expert gynecologist surgeon. This slice will serve as the ground truth and is
shown in Figure 2.5(b). The proposed registration algorithm was then tested using
various initialization settings, representing MR slices with positions ranging from
minor to more substantial deviations from the manual ground truth. The intensity-
based metric used for performance evaluation in this example is the sum of squared
differences (SSD). While this metric is not always the optimal choice for multimodal
image alignment due to the differences in intensity distributions between MR and
US, it is a suitable metric to explore in the case of the phantom since the images here
exhibit close resemblance and share identical structures. Section 2.3.1.1 provides a
comparative analysis of SSD with other commonly employed metrics, namely the
Pearson Correlation Coefficient (CC) and the Mutual Information (MI).
The performance of the registration method was evaluated qualitatively through
visual inspection of the registered image pairs, and quantitatively using the root
mean square error (RMSE) defined as:

RMSE =
√

1
N

∥π̂[J ] − xtrue∥2
2,

where xtrue is the MR slice extracted manually to best match the US image, and
π̂[J ] is the MR slice automatically estimated by the registration algorithm. The
ultimate goal of this work is to create a reliable framework that produces a final
informative image from the US and MRI. To this end, we will use an existing al-
gorithm for 2D-2D MR/US image fusion [El Mansouri 2020], specifically designed
for the same endometriosis diagnosis application. The rationale behind this ap-
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proach is that an accurate registration should facilitate better fusion results, as
misalignment in registration would inevitably lead to less accurate fusion results.
Post-fusion evaluation will be conducted using the contrast-to-noise ratio (CNR)
and the profile slope between two structures computed on the fused image. For two
patches extracted from two different structures (PVA phantom and beef steak in
this case), the CNR is defined as:

CNR = |µi − µj |√
σ2

i + σ2
j

,

where µi, µj , σ
2
i , σ

2
j are the means and standard deviations of two blocks of pixels.

Figs. 2.6 (a) and (c) show two initial slices given as input to the registration
algorithm, corresponding to close and far locations from the ground truth. The
registration results obtained for these initializations are displayed in Figs. 2.6 (b)
and (d), showing that the estimated MR images are close to the ground truth of
Fig. 2.5 (b) in both cases.
An example of the progression of the algorithm towards finding the final solution
is shown in Fig. 2.7. Starting from the initial image depicted in Fig. 2.6 (a), we
showcase the extracted slice after 1, 2, 3, 5, 30 and 60 iterations.
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(a) Initial slice (b) Estimated slice after registration

(c) Initial slice (d) Estimated slice after registration

Figure 2.6: Image registration results obtained using an initialization slice with a
small then an important deviation from the manual ground truth.
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(a) Initial slice (b) Iteration 5

(c) Iteration 10 (d) Iteration 30

(e) Iteration 60 (f) Final result

Figure 2.7: Progression of the registration algorithm towards finding the final solu-
tion
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In real life situations, the initialisation can be made using anatomical markers
or based on acquisition knowledge, so that its deviation with respect to the MR
slice best matching to the US image can be assumed to be small. Therefore, the
following quantitative analysis focuses on the first set of images presented in Fig
2.6(a)-(b). The RMSE between the ground truth and estimated MR images is 7e−4,
which is very promising. This result shows that using SSD as a similarity metric
can be sufficient for this experimental case, due to the similarity between the images
acquired on the phantom.

Fig. 2.8 shows the fused image (US image in Fig. 2.5(a) and extracted MR
slice after registration in Fig. 2.6(b)). The fusion is based on an inverse problem,
performing a super-resolution of the MR image and a denoising of the US image
[El Mansouri 2020]. The fused image has a good contrast, comparable to the MRI,
and a good spatial resolution similar to the US image. Moreover, the fused image
can differentiate neighbouring structures and highlight small structures as the glue,
contrary to the MR image. For example, the part between the PVA phantom and
the beef meat is not distinguishable in the MRI, while it is clearly visible in the
US and fused images. These results are confirmed in Table 2.1 presenting the CNR
values and the slopes computed at the frontier between the steak and the glue.
Note that the slopes are commonly used as an indicator of spatial resolution in US
imaging.

MRI US Fused image
CNR 54.21 dB 18.91 dB 43.17 dB
Slope 0.3 × 10−2 1.5 × 10−2 1.8 × 10−2

Table 2.1: CNR and slope values after fusion.

Figure 2.8: Fused image.
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2.3.1.1 Comparaison between several intensity-metrics

This section demonstrates the efficiency of the proposed MRI/US registration
method using other intensity-based metrics. We use the same initial slices as before
as input to the registration algorithm (Figs. 2.9(a) and 2.10(a)). Figs. 2.9 and
2.10(b,c) show the registration results obtained for different initializations, using
the two tested similarity metrics. The results are visually close to the US image in
Fig. 2.5 (a) for CC, but less accurate for MI as highlighted by the results in Fig
2.9(c) and 2.10(c), where a noticeable cut in the beef steak and a different PVA
phantom shape is observed.

(a) Initial slice (b) Registration using CC

(c) Registration using MI

Figure 2.9: Image registration results obtained using an initialisation slice with a
small deviation from the manual ground truth.
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(a) Initial slice (b) Registration using CC

(c) Registration using MI

Figure 2.10: Image registration results obtained using an initialisation slice with an
important deviation from the manual ground truth.
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Fig 2.11 shows the fused images estimated from the US image and the MR
slices estimated using both CC and MI. The fused images have a good contrast,
comparable to the MRI, and a good spatial resolution similar to the US image. Note
that the artifact visible in Fig 2.11(b) is caused by the misalignment induced by
the registration error. These results are confirmed by the CNR and slope values in
Tables 2.2 and 2.3. As we can observe, MI does not yield the best results compared
to Cross-Correlation CC or SSD. This is because MI relies on an accurate estimate
of the probability density of the image intensities. As a result, its effectiveness
decreases significantly when the images have poor statistical consistency or lack
clear structure. Examples of this include cases where there is overwhelming noise
or conversely, when the area has very homogeneous intensities and provides very
little information. In the phantom scenario, the images have black background with
the beef steak in the middle, MI is focusing on the statistical dependence between
pixel intensities and may not fully capture the spatial information or structural
similarities between images.

(a) Fused image - CC (b) Fused image - MI

Figure 2.11: Image fusion results.

MRI US Fused image
SSD 54.21 dB 18.91 dB 43.17 dB
CC 54.41 dB 18.91 dB 42.93 dB
MI 53.91 dB 18.91 dB 34.74 dB

Table 2.2: CNR values after fusion.

2.3.2 Synthetic data

This section presents the results of the proposed registration model using a syn-
thetic data set with controlled ground truth. The simulations presented in this
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MRI US Fused image
SSD 0.3 × 10−2 1.5 × 10−2 1.8 × 10−2

CC 0.3 × 10−2 1.5 × 10−2 2.1 × 10−2

MI 3.4 × 10−4 1.5 × 10−2 1.66 × 10−2

Table 2.3: Slope values after fusion.

section have been obtained using a real high-resolution MR image which was inten-
tionally degraded to simulate an image resembling that obtained for endometriosis
acquisitions. The original 3D high-resolution MRI volume in Fig. 2.12 captures
detailed anatomical structures, including the uterus, bladder, and endometriosis
lesions within the pelvic region.

Figure 2.12: 3D MRI volume of a patient with endometriosis.

To create a degraded version of this high-resolution MRI, a combination of noise
and blurring was applied. Specifically, the high-resolution volume was contaminated
by an additive white Gaussian noise with a Signal-to-Noise Ratio (SNR) of 21.5 dB.
Additionally, a 2D Gaussian filter with a standard deviation of σ2 = 4 was used for
the blurring. The ground truth high-resolution MRI image is shown in Figure 2.13
(a), whereas the initial slice extracted from the degraded volume and used as an
input to the registration algorithm is displayed in Fig. 2.13 (b).

To simulate the US image, a third-order polynomial transformation, as in
[El Mansouri 2020], was applied to the clean high-resolution MRI image. This
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transformation was corrupted by a log- Rayleigh additive noise to simulate the typ-
ical speckle observed in clinical US imaging, yielding the image displayed in Fig.
2.13 (c), with an SNR of 8 dB. The intensity-based metric used in this section is
the mutual information. Given the initial slice in Fig. 2.13 (b), Fig. 2.13(d) shows
the estimated registered image, with an RMSE between the ground truth and es-
timated MR images equal to RMSE = 0.02. The fused image obtained using the
two registered US and MR images is displayed in Fig. 2.13(e). This image provides
a good compromise between the US and MR data. Specifically, the fused image is
less affected by US speckle and MRI blur, provides well-defined contours and good
contrast compared to the native MR and US images.
In addition to the visual inspection of the different images, CNR was used to eval-
uate the contrast between two different structures of the images. The two regions
considered here are extracted from the uterus and the bladder. The CNR values
for the MR and the US images are respectively 41 dB and 19.17 dB. The final fused
image had a CNR of 39.01 dB, which clearly demonstrates that the fusion process
improves the contrast in the images compared to the US image.
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(a) (b) (c)

(d) (e)

Figure 2.13: (a) True high resolution MR image (Ground truth). (b) Initial MRI
slice (MR low-resolution and blurred image). (c) US image (polynomial function
of the noiseless MRI with additive log-Rayleigh noise). (d) Extracted slice after
registration. (e) Fused image.

2.4 Non-Rigid Registration

The 2D/3D rigid registration method presented earlier incorporates a global rigid
transformation characterized by rotation and translation parameters to align the
MR slice with the corresponding US image effectively. Although the experiments
conducted demonstrated the efficiency and reliability of the approach, real-world
scenarios present challenges since US and MRI scans are conducted under different
conditions. For instance, in pelvic US, patients are advised to drink plenty of water
to fill the bladder, facilitating better imaging by moving the uterus upwards and
pushing the bowel away. Conversely, for MRI exams, patients are instructed to fast
for at least four hours prior to the exam, resulting in a different bladder shape in
the images. These variations generate local deformations that are not captured by
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rigid registration. A non-rigid approach is therefore required to achieve accurate
alignment in a real data scenario. We propose to use a B-spline deformation mesh.
The basic principle of the method is to express the image deformation field using
control points defining the local movement of their neighboring coordinates. The
motion field of the points between the control points is then estimated using cubic
B-spline functions.

Let Ω = {(x, y) | 0 ≤ x < N, 0 ≤ y < M} be the domain of the image-plan and
consider an nx × ny mesh of control points ϕij . The local B-spline transformation
is defined by:

Tl(x, y) =
3∑

m=0

3∑
n=0

Bm

( x
nx

)
Bl

( y
ny

)
ϕix+m,jy+n, (2.8)

with ix = ⌊ x/nx⌋ − 1, jy = ⌊y/ny⌋ − 1, where ⌊.⌋ denotes the entire part. The
uniform cubic B-spline functions considered in this study are defined as follows:

B0(u) = 1
6(1 − u)3,

B1(u) = 1
6(3u3 − 6u2 + 4),

B2(u) = 1
6(−3u3 + 3u2 + 3u+ 1),

B3(u) = 1
6u

3.

Once the grid of the B-spline has been constructed, it is used to distort the lo-
cal neighborhood of each control point in the MRI image. The best deformation
provides the distorted MRI image closest to the reference image (here, the US im-
age), i.e., which minimizes the chosen similarity measure. Note that for each rigid
transformation πi estimated at iteration i using the rigid registration algorithm, an
optimization of the parameters of the B-spline functions is carried out generating
a new image π′

i[J ]. Instead of seeking to minimize/maximize the (dis)similarity
measure between the US image I and πi[J ], the optimization will be carried out
between I and π′

i[J ].

2.4.1 Real Data

This section considers experiments using real data to evaluate the non-rigid reg-
istration approach. For this, we use the previously mentioned real MRI volume
along with a real abdominal US, moving away from the simulated US used in our
earlier tests. This shift to authentic data allows us to assess the performance and
robustness of the proposed registration method in more realistic clinical scenarios.

US imaging was performed using a Voluson P6 imaging system (GE Healthcare
Austria GmbH & Co OG). For the MRI, acquisitions were performed using a 1.5T
clinical imaging system (GE Medical Systems Signa). Axial, sagittal, and coronal
T2-weighted sequences were obtained with a 4 mm slice thickness and 5 mm spacing
between slices, ensuring adequate coverage of the pelvic region. The images were
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acquired using a 2D acquisition mode with a repetition time (TR) of 3586 ms and
an echo time (TE) of 138.0400 ms. The echo train length was set to 34, enhancing
the quality of the T2-weighted sequences. The imaging frequency was 63.9053 MHz,
targeting the hydrogen nuclei (1H) for optimal signal acquisition.

(a) (b) (c)

(d) (e) (f)

Figure 2.14: (a) US image (Endometriosis lesion - Red, Bladder - Blue). (b) Initial
MR slice. (c) Estimated image after rigid registration. (d) Estimated image after
non-rigid registration. (e) Deformation grid. (f) Fused image.

The sizes of the acquired images are 400×300 for the US image and 512×512×24
for the MRI volume. As the field of view of the MRI image is wider than that of
the US image, the volume was manually cut to have 220×270×24 voxels, to ensure
similar fields of view for both modalities. Finally, bicubic interpolation of the MRI
image was performed to ensure the same pixel size in the MRI and US images. MI
is used as a similarity metric for the registration since it measures the statistical
dependency between the images and has proven to be a more reliable and versatile
metric for image registration in multi-modal real data imaging.

Figures 2.14(a) and 2.14(b) show the observed US image and the MRI slice
chosen as initialization of the 3D-2D registration code. Figures 2.14(c) and 2.14(d)
show the results of the 2D-3D rigid registration, then the registration after taking
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into account non-rigid deformations. It can be seen that the shapes of the bladder
and endometriosis lesion in image 2.14(d) match those in image 2.14(a) more closely
than in 2.14(c). The deformation of the grid carried out is shown in Fig. 2.14(e).
The MI values in Table 2.4 confirm the benefit of the adjustment carried out.
Finally, we also show the result of the 2D-2D fusion of US and MRI images in figure
2.14(f). This image brings together information from both modalities, allowing good
localization of the endometriosis lesion (circled in red) in relation to the bladder,
using US, and good contrast of the fibroid using MRI.

Mutual Information
US vs Initial MR slice US vs Estimated slice

(Fig. 2.14) 0.46 0.56

Table 2.4: Mutual information values between the US image and the initial MRI
image or the final MRI image after registration.

2.5 Conclusion

The chapter focused on medical image registration, particularly tailored for our
specific application, which is endometriosis diagnosis and surgery. We introduced
various algorithms and components of a registration model, alongside state-of-the-
art models. Subsequently, we presented a slice-to-volume framework based on a
discrete labeling problem solved using a discrete optimization algorithm and further
refined using a continuous optimization algorithm. Different similarity metrics were
considered depending on the datasets used. Moreover, the proposed method was
enhanced by incorporating non-rigid deformations to address challenges like bladder
deformations. A natural progression of this multimodal registration work is to
combine it with multimodal image fusion, which will bring us closer to the ultimate
goal of this study: transforming an initial set of 3D MRI and 2D US images into a
final informative image, which is the aim of the next chapter.
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2D/2D MR-US fusion: A
non-parametric approach
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Image fusion refers to the process of combining multiple images from differ-
ent sources, modalities, or time points to create a single composite image that
contains more information than any of the individual images alone. In this chap-
ter, we will first present state-of-the-art models and methods used in image fu-
sion. This will provide a comprehensive overview of how image fusion is ap-
proached in the literature, highlighting its advantages, disadvantages, and the chal-
lenges encountered in various applications. Then, we introduce the proposed fusion
method for 2D Ultrasound (US) and 2D Magnetic Resonance (MR) images. The
goal is to create a hybrid image (referred to as MARIUS image, for MAgnetic
Resonance Imaging & UltraSound) gathering the advantages of both modalities.
This method is built upon the idea developed in [El Mansouri 2020], which fo-
cuses on constructing two observation models associated with US and MR images
to exploit the complementarity of both images in terms of resolution and con-
trast. For the MR image, a linear model formed by blurring and downsampling
operators was proposed, motivated by its good performance for super-resolution
[Gholipour 2010, Greenspan 2002, Manjón 2010]. Meanwhile, a denoising model
was employed for the US image in order to mitigate the effect of speckle noise
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[Aysal 2007a, Gupta 2005]. Since US and MR modalities are different by their
nature and content, there is no simple correspondence between the gray levels of
these images. We propose to use a non-parametric transformation defined using
the theory of reproducing kernels and to evaluate its benefit when compared to the
polynomial transformation investigated in [El Mansouri 2020]. The proposed fusion
method is evaluated on an experimental phantom and synthetic data generated from
an in vivo MRI volume, with a specific attention to endometriosis treatment.

3.1 Literature review

Image fusion refers to assembling all the important information from multiple
images and including them in fewer images, e.g., in a single image. The purpose
of image fusion is to build an enhanced image that is informative, comprehensible
and accurate for the desired application [Amin-Naji 2018]. For instance, in remote
sensing, combining images from optical and radar sensors can provide detailed
and accurate terrain analysis [Zou 2022] [Joshi 2016]. Similarly, in surveillance,
fusing data from infrared and visible light cameras can significantly improve target
detection and identification in diverse lighting conditions [Kaur 2022]. In the field
of environmental monitoring, merging satellite images with different spectral prop-
erties aids in better tracking and understanding of climate changes [Byun 2015],
forest monitoring, land use [Sanli 2017], coastal zone evolution [Yang 2012] and
natural disasters [Tlig 2022]. In medical imaging, image fusion is becoming
increasingly common for the study of various pathologies [Muzammil 2020],
diagnosis accuracy [Haribabu 2023], treatment planning [Krempien 2003] [Ge 2008]
and monitoring [Giesel 2009]. By combining images from different modalities,
clinicians can leverage the unique strengths of each modality to gain a more
comprehensive understanding of a patient’s condition [James 2014]. A large and
growing body of literature has investigated various techniques to address these
challenges. Researchers have explored different methods to fuse images, while
maintaining the necessary information from all of them [Meher 2019, James 2014].

Fusion methods for medical images have their own advantages and disadvan-
tages. They offer a comprehensive view of the patient’s condition due to the com-
bination of different modalities. This highlights specific features such as tumors or
lesions, e.g., PET scans show metabolic changes that occur at a cellular level in an
organ or tissue, which is where diseases can first be detected [Liao 2012]. MRIs can-
not view the tissue at this scale, but rather are useful for detecting larger changes in
the organ or tissues [Lladó 2012]. Fusing these modalities can lead to more accurate
diagnoses as doctors can see different aspects of the anatomy and pathology in a
single image [Bhavana 2015]. Fusion methods can also reduce the need for multiple
diagnostic tests by providing sufficient information in one go, saving time and reduc-
ing patient discomfort and exposure to radiation [Goreczny 2017]. However, image
fusion techniques can be sensitive to noise and introduce additional artifacts or er-
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rors, particularly if the images are not perfectly aligned, or if the algorithms used
are not optimal. The process of fusion can also be complex and require advanced
software and equipment [Khan 2020]. This can lead to higher costs, which may not
be affordable or available in all medical facilities, especially with the absence of a
generic method applicable to all modalities [Tan 2020].

Image fusion models can be classified into three main categories: pixel level,
feature level and decision level. Each of these approaches offers distinct advantages
and methods for combining information from multiple images to enhance the final
output:

• Pixel level techniques for image fusion involve directly integrating the raw
data from input images to produce a fused image. This approach works
by combining pixel intensities from different images, which allows for the
preservation of detailed information from each source [Li 2017].

• Feature level techniques, on the other hand, focus on the extraction and
integration of salient features from the input images. These features can
include pixel intensities, textures, edges, and other significant details that
are then compounded to create a richer, more informative merged image
[Calhoun 2009]. These techniques are based on the enhancement of specific
attributes in the images. They are useful and employed in various applications
such as image recognition, where distinguishing different objects or patterns
is crucial.

• Decision level fusion techniques take a different approach by processing input
images separately to extract relevant information before combining them. As
an example, the images of interest can be segmented into homogeneous regions
and this segmentation can be used to define a fusion model [Liu 2017].

3.1.1 Image fusion techniques

The sharp increase in scientific papers on fusion techniques is driven by the demand
for high-accuracy models at a low cost in various domains. There exist a lot of
techniques on image fusion, each offering advantages and limitations and dealing
with different modalities. Figure 3.1 shows a classification of these methods. In this
section, we will introduce some of the most commonly employed fusion techniques
[Kaur 2021]. Multimodal fusion methods typically operate in three main steps.
Firstly, the input images are decomposed into sub-images or representations that
capture specific aspects of the data from each modality. Secondly, fusion rules are
applied to combine the information from these sub-images. Finally, the fused image
is formed by using appropriate reconstruction algorithms.

3.1.1.1 Image decomposition and reconstruction

Numerous decomposition and reconstruction algorithms were proposed in the
literature. Here, we present two fundamental methodologies commonly employed in
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Figure 3.1: Image fusion techniques "Figure extracted from [Mishra 2015]".
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Figure 3.2: DWT-based Image fusion steps "Figure extracted from
[TRIVEDI 2023]".

medical image fusion: discrete wavelet transform and Laplacian pyramid transform.

Discrete Wavelet Transform (DWT): The discrete wavelet transform
(DWT) is a powerful tool for image fusion [Tao 2011, Maranur 2018]. In DWT-
based image fusion, the source images are first transformed into the wavelet do-
main, where each image is represented by its wavelet coefficients. These coefficients
capture both spatial and frequency information, which is crucial for preserving
important features from the original images. The transformation process applies
wavelet filters to the images, which results in the decomposition into approxima-
tion (low-frequency) and detail (high-frequency) subbands at multiple resolution
levels. The approximation subband contains the coarse information, while the de-
tail subbands capture edges and finer details. This filtering and downsampling
procedure is repeated according to the desired level of decomposition. Typically,
higher resolution images necessitate a greater level of decomposition compared to
lower resolution images. Figure 3.2 shows the basic steps in image fusion process
using DWTs. Once the images have been decomposed, the fusion process begins by
combining the corresponding wavelet coefficients from each source image. Different
fusion rules can be applied to select and merge these coefficients, such as choos-
ing the maximum absolute value, averaging, or using more sophisticated adaptive
techniques that consider the local context of the coefficients. The choice of fusion
rule significantly impacts the quality of the fused image, as it determines how well
the important features from each source image are preserved and integrated. After
fusing the coefficients, an inverse discrete wavelet transform (IDWT) is applied to
reconstruct the fused image from the combined coefficients.

A DWT-based fusion method was studied in [Reddy 2014] where a DWT
architecture was considered to fuse images collected from various angles using
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Figure 3.3: A fusion framework based on the Laplacian transform "Figure extracted
from [Sabre 2018]".

Micro Air Vehicles. In [Garg 2005], a region level image fusion technique, has been
implemented and analyzed for MR T1 and T2 images. The fusion strategy uses
multi-level decomposition of the images obtained using the wavelet transform.
Loza et. al. proposed a new methodology for multimodal image fusion based on
non-Gaussian statistical modelling of wavelet coefficients, with a special emphasis
on noisy images [Loza 2010].

Laplacian Pyramid Fusion: This technique utilizes a Gaussian filter as a
blur operator and calculates the difference between images at adjacent pyramid
levels to reconstruct the high-resolution image. Laplacian pyramid fusion consists
of three phases: image decomposition, image fusion using precise fusion rules, and
reconstruction of the fused image using the inverse Laplacian pyramid transform.
Figure 3.3 shows the fusion framework based on the Laplacian Pyramid. This
approach is widely used for fusing different imaging modalities, such as MR and
CT scans, MR and SPECT scans, and MR and PET scans [Li 2018, Sahu 2014].
However, this method can be computationally expensive in term of data storage,
particularly when processing large images. Saleem et al. proposed a contrast en-
hancement technique to improve the visibility of image details without introducing
unrealistic visual appearances or unwanted artefacts. Their technique is based on
a multi-resolution method using a Laplacian pyramid decomposition to account for
the multi-channel properties of the human visual system [Saleem 2012]. Finally,
we mention here other decomposition and reconstruction algorithms based on the
Kekre’s wavelet transform [Dhannawat 2013] or curvelets [Zhao 2023].

Deep learning: Recently, fusion methods based on deep learning techniques
have emerged as an active field of research [Li 2021] [Zhang 2021]. The ability
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of neural networks to predict, analyze and infer information from a given data
without going through a rigorous mathematical solution makes them attractive to
use for medical image processing, as the nature of variability between the images is
subjected to change every time a new modality is used. Training neural networks to
adapt to these changes enable several applications for image fusion. Convolutional
neural network (CNN), which is a category of neural networks, usually is superior
to traditional manual feature extractors in feature extraction. In [Zhu 2022], a
general CNN framework for image fusion, called IY-Net, is designed. The proposed
model has the characteristics of a fully CNN with relatively good generality. It
doesn’t need to specify fusion rules and has a simple network structure. This is
the key innovation point. Compared with the existing CNNs and traditional fusion
algorithms, the proposed model not only has generality and stability but also has
some strengths in subjective visualization and objective evaluation. A deep CNN
was used in [Mathiyalagan 2018] to extract the high frequency details from the two
source images. A focus map is generated after the several convolution and max-
pooling layers which contains the clarity information of the source images. The
proposed bilateral filter is a very efficient edge-preserving filter which smoothen
the regions around the boundaries of the obtained decision map. The pixel-wise
weighted average strategy is calculated to get the fused image with high visual
quality. Experimental results show that the proposed CNN-based method produces
more natural effect of the fused image.

3.1.1.2 Fusion rules

To combine information from the obtained sub-images, various fusion rules can be
used, some of them being recalled below.

Minimum/Maximum techniques: The pixels in the fused image are
obtained by selecting the pixel with the lowest/highest intensity values of the
pixels to form the different images [Meher 2019, James 2014].

Principal Component Analysis (PCA): PCA is a technique that converts
a set of correlated variables into a set of uncorrelated variables known as principal
components. The first principal component aims to explain as much of the
data’s variance as possible, and each succeeding component accounts for as much
of the remaining variance as possible. The advantage of PCA is its ability to
reduce a large set of variables to a smaller one while still containing most of the
information that was available in the large set. Fusion techniques based on PCA
were investigated in [Patil 2011, Zhao 2017].

Guided filtering: Guided filtering is a computationally efficient, edge-
preserving, translation-variant operator based on a local linear model which avoids
the drawbacks of bilateral filtering [He 2013]. It ensures that the significant fea-
tures such as edges and textures are preserved in the fused image. The filter works
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by computing a linear transformation of the guidance image within a local window
around each pixel, thereby ensuring that the local linear model can capture the
relationship between the guidance image and the source images. In [Geng 2019],
experiments conducted on brain images demonstrate better results using guided
filtering compared to Principal Component Analysis (PCA) and Multi-Resolution
Singular Value Decomposition (MSVD) techniques. They highlight the advantages
of guided filtering in terms of edge preservation and noise reduction, leading to
clearer and more accurate fused images. A novel weighted average technique based
on guided filtering was proposed in [Li 2013] to make full use of spatial consistency
for fusion of the base and detail layers for multi-spectral, multi-focus, multimodal
and multi-exposure images.

3.1.1.3 Fusion metrics

To assess the accuracy of any fusion method, it is essential to employ various fusion
metrics. These metrics help in quantifying the performance and effectiveness of
the fusion process. Common fusion metrics include:

Root Mean Square Error (RMSE): RMSE measures the square root of the
average squared differences between the fused image and the reference image. It
provides an indication of the overall deviation, with lower values representing better
fusion quality:

RMSE =

√√√√ 1
n

n∑
i=1

[If(i) − Ir(i)]2, (3.1)

where If(i) and Ir(i) are the pixel values of the fused and reference images at
position i and n the total number of pixels.

Contrast-to-Noise Ratio (CNR): CNR evaluates the contrast of the fused
image relative to the noise. It highlights the ability of the fusion method to distin-
guish between different regions, with higher values indicating better contrast. For
two regions A and B in the image, CNR is defined as follows:

CNR = |µA − µB|√
σ2

A + σ2
B

, (3.2)

where µA, µB, σA and σB are the mean intensities and the standard deviations of
the intensities in the regions A and B.

Peak Signal-to-Noise Ratio (PSNR): PSNR assesses the ratio between the
maximum possible power of a signal and the power of corrupting noise, expressed in
decibels. It evaluates the quality of the fused image, with higher values representing
higher quality [Paramanandham 2018]:

PSNR = 20 log [max(If, Ir)] − 10 log(RMSE). (3.3)
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Structural Similarity Index (SSIM): The SSIM index measures the similar-
ity between two images and is designed to complement the standard Mean Squared
Error (MSE) or Peak Signal-to-Noise Ratio (PSNR) [Ma 2018]. It considers changes
in structural information s, luminance l, and contrast c:

SSIM(If, Ir) = lα(If, Ir)cβ(If, Ir)sγ(If, Ir). (3.4)

Given two images, luminance analysis compares the local mean intensities to assess
brightness similarity, contrast analysis compares the local standard deviations to
evaluate texture or variation, and the structure index measures the local Pearson
correlation to capture the alignment of spatial patterns. Note that SSIM values
range between −1 and 1, where 1 indicates a perfect similarity between the fused
image and the reference image.

Universal Quality Index (UQI): This index is used to evaluate the fused im-
age, determining how much salient information from the reference image is retained
[Blasch 2008]. It is defined as:

UQI =
[
σIrIf

σIrσIf

] [
2µIrµIf

µ2
Ir

+ µ2
If

] [
2σIrσIf

σ2
Ir

+ σ2
If

]
, (3.5)

where µIr , µIf
, σIr and σIf

are the means and the variances of images Ir and If ,
and σIrIf

is the covariance of these images.

3.1.2 Medical Image fusion

This section recalls briefly some fusion techniques used in the literature for different
medical image modalities:

• Bhavana et al. [Bhavana 2015] proposed a novel fusion method using MRI and
PET brain images based on the discrete wavelet transform. They test their
model on three datasets - normal axial, normal coronal and Alzheimer’s brain
disease images, and obtain accurate results without losing any anatomical
information in comparison with the existing techniques.

• Qiu et al. [Qiu 2017] proposed an image fusion model for CT and MR im-
ages. First, the images are both mapped into the non subsampled shearlet
transform (NSST) domain. They use the absolute-maximum rule to merge
high-frequency components and use a sparse representation-based approach
to merge the low-frequency components.

• In [Yang 2019], the authors propose a novel multimodal medical image fusion
method based on structural patch decomposition (SPD) and fuzzy logic tech-
nology. First, the SPD method is employed to extract two salient features
for fusion discrimination. Next, two novel fusion decision maps referred to
as incomplete fusion map and supplemental fusion map are constructed from
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salient features. In this step, the supplemental map is constructed by two dif-
ferent fuzzy logic systems. The supplemental and incomplete maps are then
combined to construct an initial fusion map. The final fusion map is obtained
by processing the initial fusion map with a Gaussian filter. Finally, a weighted
average approach is adopted to create the final fused image.

• Zhong et al. propose an unsupervised multi-stage deep learning framework
called PAMRFuse for misaligned PAT and MRI image fusion. They start by
a registration network to align the input pair images, then a self-attentive
fusion network is used for fusion [Zhong 2024].

• In [Wang 2014], a multi-modal medical image fusion is developped using the
inter-scale and intra-scale dependencies between image shift-invariant shearlet
coefficients. Their method was validated on MRI-SPECT of normal brain
aging, and MRI-PET images of a patient with Mild Alzheimer’s Disease.

3.1.3 Conclusion

In the first part of this chapter, we provided a comprehensive literature review on
image fusion techniques. This review included various methods and fusion rules,
as well as different metrics used for evaluating image fusion quality. We presented
numerous studies that address image fusion in both general contexts and specifically
within the scope of medical imaging. In the following sections, we introduce the
proposed fusion model for 2D MR and 2D US images. For MR images, a linear
model using blurring and downsampling is employed due to its effectiveness in super-
resolution. For US images, a denoising model addresses speckle noise. We propose
a non-parametric transformation based on reproducing kernel theory to correlate
the gray levels of these images.

3.2 2D-2D MR-US fusion using reproducing kernels

This section presents a new 2D-2D MR-US fusion algorithm for endometriosis
surgery. This method combines the advantages of each modality, i.e., the good
contrast and signal to noise ratio of the MR image and the good spatial resolu-
tion of the US image. The method is based on an inverse problem, performing a
super-resolution of the MR image and a denoising of the US image. To model the
relationships between the gray levels of the MR and US images, a non-parametric
transformation built using the theory of reproducing kernel Hilbert spaces is in-
troduced. A non-linear cost function is used to solve the fusion problem and is
constructed using the observation models associated with the MR and US images,
as well as the kernel transformation that relates the two images. Minimizing this
cost function is challenging and is handled by a proximal alternating linearized min-
imization (PALM) algorithm. The proposed image fusion method is evaluated on
synthetic data from an in vivo MR volume, as well as on experimental data acquired
from a phantom with imaging characteristics similar to those of endometriosis. Both
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qualitative and quantitative results allow the performance of the resulting fusion
method to be appreciated.

3.2.1 Observation models

As explained previously, MRI and US are two medical modalities that have their
specific strengths and weaknesses. The main purpose of obtaining a fused image
from these two modalities is to take benefit from their strengths and mitigate their
weaknesses. This section studies a fusion method for 2D MR and 2D US images.
Considering the limitations of each modality, we construct two observation models
to enhance the quality (in terms of resolution and contrast) of both images.

In the following, ymri ∈ RM and yus ∈ RN denote the observed MR and US
images, which are the inputs of the proposed fusion algorithm. Both observed im-
ages are related to the ideal fused image through two models accounting for the
degradations affecting the two modalities. In particular, the low spatial resolu-
tion of the MR image is classically modelled using a blur, a down-sampling oper-
ator [Gholipour 2010, Greenspan 2002, Manjón 2010] and additive white Gaussian
noise. A denoising model was considered for the US image in order to mitigate
the effect of speckle noise, modelled as an additive log-Rayleigh noise with local-
ization parameter γ [Aysal 2007a, Gupta 2005]. Combining these super-resolution
and denoising models leads to the following fusion model already investigated in
[El Mansouri 2020]:

ymri = SCxmri + nm,

yus = xus + nu,
(3.6)

where xmri ∈ RN is the non-observable high-resolution vectorized MR image,
ymri ∈ RM is the low-resolution observed MR image, nm ∈ RN is an indepen-
dent identically distributed (i.i.d.) additive white Gaussian noise with variance σ2

m,
C ∈ RN×N is a matrix with block circulant with circulant blocks modelling the
blurring effect of the MRI point spread function (PSF) with circulant boundary
conditions, S ∈ RM×N (with N = d2

m) is a decimation operator with a decimation
factor d. On the other hand, yus ∈ RN is the vectorized observed B-mode US
image, xus ∈ RN is the vectorized speckle noise-free US image and nu ∈ RN is an
i.i.d. log-Rayleigh noise with localization parameter γ 1.

Since US and MR modalities are different by their nature and content, there is no
simple correspondence between the gray levels of these images and we need to define
a function to link xus and xmri. [El Mansouri 2020] considered a linear function
that links directly the US image to the MRI and the gradient of MRI. Motivated by
[Roche 2001], a polynomial transformation was used in [El Mansouri 2020] to link

1The probability density function of a variable distributed according to a log-Rayleigh distri-
bution (z ∼ LR(γ)), is p(z) = (ez)2

γ
exp
(

− (ez)2

2γ

)
IR+ (z), where IR+ is the indicator function on

R+.
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xus and xmri as:
xus = f

(
xmri,∇xH

mriu
)
, (3.7)

where f : RN × RN → RN is an unknown polynomial function of the image xmri,
its gradient, and the US scan direction u. Using this relationship between MR and
US images, the image formation models in (3.6) can be rewritten as:

ymri = SCx+ nm,

yus = f(x,∇xH
mriu) + nu,

(3.8)

where x ∈ RN is the unknown image to be estimated, containing relevant infor-
mation from both MR and US data. The conditional distributions of ymri and yus
given x can be determined using the noise distributions:

ymri|x ∼ N (SCx, σ2
mIN ),

yus|x ∼
N∏

i=1
LR(γ).

(3.9)

where N (µ,Σ) denotes the normal distribution with mean vector µ and covariance
matrix Σ, and LR is the log-Rayleigh distribution with localization parameter γ.
Using Bayes rule and the independence between the noise vectors nm and nu, the
posterior distribution of x can be computed:

p(x|ymri,yus) ∝ p(ymri|x)p(yus|x)p(x), (3.10)

where p(x) is the prior distribution of x and ∝ means "proportional to". Finally,
the log-posterior distribution can be written as:

− log p(x|ymri,yus) = K + 1
2σ2

m

||ymri − SCx||2︸ ︷︷ ︸
MRI fidelity term

− log[p(x)]︸ ︷︷ ︸
regularization

+
N∑

i=1

[
exp(yus,i − fi(x,∇xHu)) − γ(yus,i − fi(x,∇xHu))

]
︸ ︷︷ ︸

US fidelity term

,

(3.11)

where yus,i and fi(x,∇xHu) are the ith components of yus and f(x,∇xHu) and
K is a constant. Different prior distributions p(x) have been considered in the
literature to solve ill-posed problems. In this study, the classical total variation
(TV) is used. Estimating x in the sense of the maximum a posteriori principle



3.2. 2D-2D MR-US fusion using reproducing kernels 71

using this TV regularization leads to the following minimization problem:

x̂ = argmin
x

1
2∥ymri − SCx∥2︸ ︷︷ ︸

MRI data fidelity

+ τ1∥∇x∥2 + τ3∥∇f(x,∇xH
mu)∥2︸ ︷︷ ︸

regularization

+ τ2

N∑
i=1

{
exp

[
yus,i − ∇fi(x,∇xH

mu)
]

− γ
[
yus,i − ∇fi(x,∇xH

mu)
]}

︸ ︷︷ ︸
US data fidelity

,

that can be solved using the proximal alternating linearized minimization (PALM)
[Bolte 2014, El Mansouri 2020].

3.2.2 Relation between MR and US images

This section defines a new function f to link US and MR images based on re-
producing kernels. Kernel methods have become universal since they are capa-
ble of approaching complex non linear relationships between signal and images.
These methods have been used successfully in the context of point cloud registra-
tion [Ma 2016], image denoising [Bouboulis 2010], super-resolution [Deng 2016] and
segmentation [Kang 2014]. They need to define an appropriate kernel function be-
tween the signals or images of interest such as the Gaussian kernel with parameter
β defined as:

K(x,y) = exp
(
−β∥x− y∥2

)
, (3.12)

where ∥.∥ is an appropriate norm. In the following, as in [Bouboulis 2010], x and
y are patches of size n× n centered around pixels of the US and MR images. The
idea is that each pixel of a patch in the noise-free US image is a linear combination
of the kernel applied to the pixels of the corresponding MR image patch. Since a
given pixel of the US image belongs to several patches, the final value of the pixel
intensity of the US image is defined as the average of the intensities resulting from
different patches, i.e.,

xus,i = 1
ni

∑
p∈Ji

 n2∑
k=1

cp,kK(xmri,i,xmri,hk(p))

 , (3.13)

where xus,i is the ith US pixel (belonging to different patches of size n2), Ji is the
set of indices of the patches containing the pixel i, ni ≤ n2 is the cardinality of Ji

(each patch is identified by the index of its central pixel) and hk(p) is the index of
the kth pixel of Patch #p. To estimate the coefficient vector cp = (cp,1, ..., cp,n2)T

of Patch #p, we assume that the transformation (3.13) is also valid for the observed
MR and US images and consider the least squares (LS) estimator

min
cp

n2∑
i=1

yus,i −
n2∑

k=1
cp,kK(ymri,i,ymri,hk(p))

2

, (3.14)
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that can be written in matrix form as:

min
cp

||Acp − pus||2, (3.15)

where Ai,j = K(pmrii ,pmrij ), pus and pmri are patches extracted from yus and ymri.
The solution of (3.15) is ĉp = A†pus, whereA† = (ATA)−1AT is the pseudo-inverse
of A. Another strategy would be to plug the relation (3.13) into the observation
models (3.6) and to estimate jointly the unknown image xmri and the coefficient
vector cp using a modified PALM algorithm.

3.2.3 PALM Algorithm

The presence of the nonlinear function f in the minimization problem prevents the
use of algorithms based on the alternate direction method of multipliers (ADMM).
Consequently, we propose hereafter an algorithm based on the proximal alternating
linearized minimization (PALM), adapted to nonconvex and nonsmooth functions.

The PALM algorithm was originally designed to minimize functions of two vec-
tors x and v for the following optimization problem:

min
x,v

ψ(x,v) := l(x) + g(v) +H(x,v), (3.16)

where l and g are continuous convex functions and H may be non-linear. More-
over, these three functions must respect the following conditions to fit the PALM
framework:

• l and g are inf-bounded infRN (l) > −∞ et infRN (g) > −∞

• For any fixed v, the function x 7→ H(x,v) is C1,1 and the partial gradient
∇xH(x,v) is globally Lipschitz.

• For any fixed x, the function v 7→ H(x,v) is C1,1 and the partial gradient
∇vH(x,v) is globally Lipschitz.

• ∇H is Lipschitz continuous on bounded subsets of the image domain.

PALM can be viewed as a minimization of the sum of the two functions l and g

with a linearization of H around a given point xk. The alternate minimization with
respect to the two blocks x and v proposed in [Bolte 2014] generates a sequence
(xk,xk) using the following steps:

Step 1: Choose γ1 > 1, set ck = γ1Lx(vk) and update xk as follows:

xk+1 = proxl
ck

(
xk − 1

ck
∇xH(xk,vk)

)
,

= argminx (x− xk)H∇xH(xk,vk) + ck

2 ||x− xk||2 + l(x),
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where Lx(vk) is the Lipschitz constant of x 7→ H(x,vk) and vk is the value of v
at iteration k.

Step 2: Choose γ2 > 1, set dk = γ2Lv(xk) and update vk as follows:

vk+1 = proxg
dk

(
vk − 1

dk
∇vH(xk,vk)

)
,

= argminv (v − vk)H∇vH(xk,vk) + dk

2 ||v − vk||2 + g(x),

where Lv(xk) is the Lipschitz constant of v 7→ H(xk,v) and xk is the value of x at
iteration k.

3.2.4 PALM for MR-US fusion

This section studies a PALM algorithm allowing (3.6) to be solved, when the US
and MR images are linked by (3.13). We introduce the following functions:

l(x) = 1
2 ||ymri − SCx||2 + τ1||∇x||2, (3.17)

g(v) = τ2

N∑
i=1

[exp(yus,i − vi) − γ(yus,i − vi)] + τ3||∇v||2, (3.18)

H(x,v) = τ4

N∑
i=1

vi − 1
ni

∑
p∈Ji

 n2∑
k=1

cp,kK(xi, xhk(p))

2

(3.19)

where v = f(x). Note that l and g are data fidelity terms associated with the MR
and US images and that H is used to enforce the relationship between the US and
MR images based on kernels (defined in (3.13)). Using these definitions, the PALM
algorithm reduces to alternate between updates of x and v as explained below.

3.2.4.1 Update x

The first step of PALM algorithm reduces to

xk+1 = proxl
Lk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
,

= argminx
{ 1

2 ||SCx− ymri||2 + τ1||∇x||2

+ Lk+1
2

∥∥∥∥x−
(
xk − 1

Lk+1
∇xH(xk,vk)

)∥∥∥∥2
}
,

with Lk+1 the Lipschitz constant at iteration k + 1. This minimization problem
admits an analytical solution, which can be computed efficiently in the Fourier
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domain. The update of x at iteration k + 1 is obtained as follows:

xk+1 =
[
CHSHSC + 2

(
τ1D + Lk+1

2 IN

)]−1
R, (3.20)

with
D = DH

h Dh +DH
v Dv

and
R = CHSHymri + 2Lk+1[xk − 1

Lk+1
∇xH(xk,vk)],

where Dh and Dv are the horizontal and vertical finite difference operators, n =
(n1, ..., nN )T and J = (J1, ..., JN )T gathers all the patches. The direct computation
of (3.20) requires the inversion of a high-dimensional matrix, which can be handled
using a diagonalization in the Fourier domain [El Mansouri 2020].
Appendix A further details the computation of the Lipschitz constant and the
update of x.

3.2.4.2 Update v

The vector v is updated using gradient descent with backtracking line search, given
that the function to be minimized here is differentiable and convex, i.e.,

vk+1 = argminv τ2
∑

i

[exp(yus,i − vi) − γ(yus,i − vi)]+

τ3||∇v||2 + dk

2

∥∥∥∥v −
(
vk − 1

dk
∇vH(xk+1,vk)

)∥∥∥∥2
,

(3.21)

with dk = Lv(xk) = 2τ4 the Lipschitz constant of ∇vH.

3.2.4.3 Proposed fusion algorithm

Algorithm 1 summarizes the different steps of the proposed fusion algorithm using
reproducing kernels:

Algorithm 1 Proposed Kernel-based Fusion Algorithm.
1: Input: ym, yu, S, C, τ , γ, β
2: Estimate the coefficients of the kernel as ĉp = A†pus
3: while stopping criterion is not satisfied do
4: Step 1 : Compute Lk+1 and update x using (3.20)
5: Step 2 : Set dk = 2τ4 and update v using (3.21)
6: end while
7: Output: Fused image x
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3.3 Experiments

3.3.1 Synthetic data from real MR acquisition

The proposed MRI/US fusion algorithm was first validated on synthetic data. The
simulations presented hereafter have been obtained using a real high resolution MR
image that has been degraded to generate an image close to that obtained for en-
dometriosis surgery. The 3D high resolution MR volume corresponds to a real pelvic
MRI capturing the uterus, bladder and endometriosis lesions. A blurred and noisy
3D MRI is then generated from this high-resolution MR volume. More precisely,
the HR volume was blurred using a 2D Gaussian filter of standard deviation σ2 = 4,
and then was contaminated by an additive white Gaussian noise (SNR = 21.5 dB),
yielding the MR image displayed in Fig. 3.4(a). A kernel transformation as defined
in (3.13) was used to generate the clean US image from the corresponding clean
high-resolution MR image. Then, log-Rayleigh additive noise was added, yielding
the image displayed in Fig. 3.4(b) (SNR= 11.5 dB).

(a) (b) (c)

(d)

Figure 3.4: (a) MR image, (b) US image, (c) MARIUS image: Proposed approach,
(d) MARIUS image: Polynomial approach [El Mansouri 2020].

The performance of the non-parametric fusion method was evaluated qualita-
tively through visual inspection of the final image, and quantitatively using the
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contrast-to-noise ratio (CNR). For two patches extracted from two different struc-
tures (uterus and bladder in this case), we recall that the CNR is defined as
CNR = |µi−µj |√

σ2
i +σ2

j

, where µi, µj , σ
2
i , σ

2
j are the means and standard deviations of

two blocks of pixels.
The MARIUS image obtained using the proposed algorithm is displayed in Fig.

3.4(c). This image provides a good compromise between the US and MR data.
Specifically, the fused image is less affected by US speckle and MRI blur, provides
well-defined contours and good contrast compared to the native MR and US im-
ages. The CNR values for the MR and the US images are 39.52 dB and 27.15 dB,
whereas the MARIUS images obtained using polynomial (Fig. 3.4(d)) and kernel
transformations have CNRs equal to 34.96 dB and 38.65 dB respectively. These
results show the interest of replacing the polynomial by a kernel.

3.3.2 Phantom data

This section evaluates the proposed fusion algorithm on experimental phantom
data. The phantom was made of a beaf steak on top of which was stuck a polyvinyl
alcohol (PVA) phantom using cyanoacrylate instant glue. It was designed to mimic
uterus and endometrium responses to MR and US imaging. More details about the
experimental model design and image acquisition can be found in [Vidal 2019]. The
sizes of the acquired images are (600 × 600) for the US, and (320 × 320 × 90) for
the MRI volume. The field of view of the MR image is wider than the one of the
US image. Therefore, the MR volume was manually cropped to (100 × 100 × 90) to
ensure similar fields of view for the two modalities. Bicubic interpolation of the MR
image was finally performed to ensure the same pixel size in MR and US images.
Note that the proposed fusion method requires registered images. In the following
experiments, the images were registered using the algorithm presented in Section
2.2 and are shown in Figs. 3.5(a,b).
The proposed fusion algorithm was applied to the US and MR images with the
following parameters: β = 10−5, τ1 = 10−5, τ2 = 0.5, τ3 = 0.01 and τ4 = 10−5. The
parameters were fixed to their best values by visual inspection of the fused images.
Section 3.3.2.2 details the influence of the hyperparameters on the fused image.

The first result is that the fused image shown in Fig. 3.5(c) has a good spa-
tial resolution similar to the US image, and a contrast equivalent to the MRI. In
particular, the different structures of interest are much better highlighted: (i) the
glue between the steak and the PVA phantom, mimicking the depth of penetration,
not visible on MRI because of the lack of resolution, appears clearly on the US and
MARIUS images, this part is really crucial for the case of endometriosis surgery
since it could represent the border between a tumor and the uterine tissue in which
it is necessary to incise with precision. Making this part of the image stand out
confirms the efficiency of the model; (ii) the steak and the PVA are well contrasted
on the MR and MARIUS images, which is not the case in the US image.
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(a) (b) (c)

(d)

Figure 3.5: (a) US image, (b) MR image, (c) MARIUS image: Proposed approach,
(d) MARIUS image: Polynomial approach [El Mansouri 2020].

This improved resolution is visually depicted in Fig. 3.6, which shows pixel inten-
sities for the same vertical straight line (Fig. 3.7) from the US, MR and MAR-
IUS images using a kernel transformation (proposed method) and a polynomial
[El Mansouri 2020]. For the MRI, the plot shows the change of pixel intensities
between the beef steak and the PVA, this indicates the presence of contrast but a
less defined edge. For the US, one can see the sharp transition in pixel intensities
at the boundary, highlighting US’ability to detect fine details and precise edges. In
the fused image, both the intensity difference and the peak are present, combining
the strenghts of both modalities. Quantitative results are provided in Tab. 4.1,
which reports the CNR values between the PVA phantom and the beef steak for
the different images.
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Figure 3.6: Normalized pixel intensities of US (Green), MRI (Black), and MARIUS
images using polynomial (Blue) and kernel functions (Red).

Figure 3.7: The vertical straight line.

MRI US Proposed Fusion [El Mansouri 2020]
CNR 54.21 dB 18.91 dB 52.23 dB 43.17 dB

Table 3.1: CNR values for the US, MR and MARIUS images.

3.3.2.1 Influence of β

This section analyzes the impact of the parameter β of the Gaussian kernel on the
fusion results. The value of β is related to the ability of the kernel approximation
to reconstruct the US image from the MR image. In order to appreciate the role
of this parameter on the fusion results, problem (3.14) was solved for different
values of β. The root mean square error (RMSE) between the true US image and
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Figure 3.8: RMSE between the image estimated using a non-parametric kernel
transformation and the targeted US image.

its reconstruction obtained using the MRI as defined in 3.13 was computed as a
function of β yielding Fig. 3.8. One may note from Fig. 3.8 that the RMSE is a
decreasing function of β, which is explained in this section.
First, note that when β tends to infinity, one has:

∀i ̸= j, K(pmrii ,pmrij ) = exp(−β(pmrii ,pmrij )) −→
β→+∞

0.

and thus the matrixA tend towards the identity when β tends to infinity. Therefore,
for large values of β, the problem mincp ||Acp − pus||2 becomes trivial and admits
the solution cp = pus, implying pus, estimated = Acp = pus. An undesirable effect
occurs in this case, by perfectly modeling the relationship between MR and US
pixels. At the other extreme, when β tends towards 0, all the elements in A tend to
1: A† = 1

n4A, so cp = A†pus = 1
n4Apus = 1

n4
∑n2

i=1 pus,i (1, ..., 1)T and pus, estimated =
Acp = 1

n2
∑n2

i=1 pus,i (1, ..., 1)T . Each estimated patch is in this case constant, equal
to the average intensity of the target US patch. Note that the fusion algorithm fails
when β is beyond 10−2 due to a gradient calculation in (3.21) that becomes NaN.
In conclusion, the best value of β should be neither too large nor too small. In this
study, β was set to 10−5.

3.3.2.2 Other hyperparameters

This section shows the effect of the different hyperparameters τ1, τ2, τ3 and τ4 of
the proposed algorithm on fusion results. The hyperparameters τ1 and τ3 have
an influence on the resolution of the image, which means that increasing τ1 or τ3



80 Chapter 3. 2D/2D MR-US fusion: A non-parametric approach

(a) (b)

Figure 3.9: Influence of the parameter τ3 on the fused image. (a) shows the CNR
evolution, (b) shows the slope evolution.

decreases the resolution of the fused image, that is measured using slope interfaces.
Fig. 3.9 of the evolution of the parameter τ3 highlights this: When τ3 increases the
slope starts decreasing and the fused image is blurred.
τ2 and τ4 weight the dependence of the fused image on the MR or US image. Fig.
3.10 and 3.11 show the influence of the parameters τ2 and τ4 on the CNR and
slope values for the US, MR and fused images. Increasing (or decreasing) these
hyperparameters make the fused image close to the MRI or (US image).
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(a) (b)

Figure 3.10: Influence of the parameter τ2 on the fused image. (a) shows the CNR
evolution, (b) shows the slope evolution.

(a) (b)

Figure 3.11: Influence of the parameter τ4 on the fused image. (a) shows the CNR
evolution, (b) shows the slope evolution.
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3.4 Conclusion

This chapter studied a new fusion method based on reproducing kernels for MR and
US images. The fused MARIUS image obtained with this method brings together
the advantages of both modalities: resolution and contrast. The MARIUS image is
more contrasted when using a kernel transformation instead of a polynomial. This
improved contrast is clearly interesting for the detection and treatment of lesions
related to endometriosis. Another significant advantage in favour of the kernel
transformation is that it is not directly related to the direction of propagation of the
scan US (vector u in [El Mansouri 2020]), which is not easy to obtain in practical
applications. The price to pay with the proposed approach is its computational
complexity. Indeed, unlike the polynomial approach which requires only about ten
coefficients to be estimated upstream, the kernel transformation may need some
hundreds of thousands of parameters to be estimated depending on the image and
patch sizes.

In the next chapter, we propose a novel fusion method that emphasizes a two-
scale decomposition to highlight the advantages of each imaging modality. This
approach aims to extract and enhance the strengths of both images. Additionally,
we compute specific weights to apply to these decomposed images, creating a final
fused image that is more informative and comprehensive.
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This chapter studies a new fusion method designed for magnetic resonance (MR)
and ultrasound (US) images. The proposed method is based on guided filtering,
leveraging the advantages of this technique to enhance the quality of fused images.
The fused image is a weighted average of base and detail images computed from the
MR and US images. The weights assigned to the US image account for the presence
of speckle noise, a common challenge in US imaging whereas the weights assigned to
the MR image allow the contrast of the fused image to be enhanced. The effective-
ness of the method is evaluated using synthetic, phantom and real data, showing
promising results. The image provided by the proposed fusion method holds poten-
tial for enhancing visualization and aiding decision-making in endometriosis surgery,
offering a valuable contribution to the field of medical image fusion.

4.1 Image Guided Filtering

Using the notations of [Li 2013], the guided filter involves a guidance image I = (Ii)
and an input image P = (Pi) and provides an output image O = (Oi). All these
images are vectorized and i denotes the pixel index. The guided filter assumes that
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the output O is a linear transformation of the guidance image I in a local window
ωk, i.e.,

Oi = akIi + bk, ∀i ∈ ωk, (4.1)

where ωk is a window of radius r centered around the pixel k, and (ak, bk) are some
coefficients assumed to be constant in ωk, that can be estimated by minimizing the
squared difference between the output image O and the input image P :

E(ak, bk) =
∑
i∈ωk

[
(akIi + bk − Pi)2 + ϵa2

k

]
, (4.2)

where ϵ is a regularization parameter that needs to be adjusted by the user, prevent-
ing ak from being too large. Straightforward computations detailed in [He 2013]
show that the coefficients ak and bk have the following closed-form expressions:

ak =
1

|ωk|
∑

i∈ωk
IiPi − µkP̄k

δk + ϵ
, (4.3)

bk = P̄k − akµk,

where µk and δk are the mean and variance of the guidance image I in ωk, |ωk|
is the number of pixels in ωk, P̄k is the mean of the input image P in ωk, and ϵ

represents the blur degree of the filter. Considering that pixel i is involved in all
the overlapping windows ωk that cover i, the value of Oi in (4.1) is not identical
when it is computed in different windows. A simple strategy is to average all the
possible values of Oi, which means that, after computing (ak, bk) for all windows
ωk in the image, the filtered output is:

Oi = 1
|ωk|

∑
k|i∈ωk

(akIi + bk). (4.4)

Finally, according to [He 2013], (4.4) can be further converted as

Oi =
∑

j

Wi,j(Ii)Pj , (4.5)

where Wi,j is a function of the guidance image I, assumed independent of P . The
guided filter operation will be denoted as O = GFr,ϵ(P , I).

4.2 Image Fusion with a Guided Filter

The image fusion model introduced in this section assumes that the MR and US
images to be fused, denoted as Imri and Ius, are already aligned, i.e., there is no
geometric distortion between them, Imri is a 2D image extracted from the MRI
that best matches Ius. This can be obtained after an appropriate pre-registration
[Bennioui 2023]. Inspired from prior work in image fusion using guided filtering
[Li 2013], the proposed algorithm is based on MR and US image decompositions
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and subsequent weight computations. First, two-scale representations are obtained
by applying an average filter to the MR and US images yielding base and detail
images. Then, the base and detail MR and US images are weighted. A novel
aspect is introduced by incorporating speckle-related considerations in the weight
assignment for the US image.

4.2.1 Proposed fusion algorithm

Algo. 2 summarizes the different steps of the fusion model.

Algorithm 2 Fusion of MR and US images.
1: Input: Ius, Imri and parameters r1, ϵ1, r2, ϵ2, patch size |ω|, Z, K1 and K2
2: Output: Fused Image F
3: Step 1: Two-scale decompositions of Ius, Imri with (4.7)
4: Step 2: Calculate B̄mri and D̄mri as explained in (4.9)
5: Step 3: Calculate B̄us and D̄us:

a) Construct guidance images Bg
us and Dg

us using 3 × 3 averaging of Bus and
Dus.

b) Compute Wi,j(Bus,B
g
us), Wi,j(Dus,D

g
us) in (4.12)

c) Compute B̄us and D̄us in (4.13)
6: Step 4: Combine the base and detail layers for fusion

F = B̄mri + D̄mri + B̄us + D̄us. (4.6)

4.2.2 Two-scale decomposition

The base and detail layers of each image are obtained as:

Bmri = Imri ∗ Z ; Bus = Ius ∗ Z
Dmri = Imri −Bmri ; Dus = Ius −Bus

(4.7)

where Z is an average filter [Gonzalez 2008] and ∗ denotes 2D convolution. This
two-scale decomposition is designed to partition each source image into a base layer
capturing the significant variations in intensity at a larger scale, and a detail layer
containing the finer details at a smaller scale.

4.2.3 Weight construction for the MR image

The weights for the MR are constructed as in [Li 2013]. First, a Laplacian filter is
applied to each source image to obtain the high-pass filtered images:

Hmri = Imri ∗ L, Hus = Ius ∗ L,
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where L is the 3 × 3 Laplacian filter. Then, the local average of the absolute value
of these high-pass images is used to construct the saliency maps:

Smri = |Hmri| ∗ grg ,σg , Sus = |Hus| ∗ grg ,σg ,

with g a Gaussian low-pass filter of size (2rg + 1) × (2rg + 1). Subsequently, the
weights are determined by constructing the following indicator:

P k
mri =

{
1 if Sk

mri = max
(
Sk

mri, S
k
us

)
,

0 otherwise,

where Sk is the saliency value of the pixel k. The weight maps often exhibit noise
that may produce artifacts to the fused image. This issue is usually addressed
by incorporating spatial consistency, i.e., adjacent pixels with similar brightness
or color should have comparable weights. This can be achieved by using guided
filtering. Referring to (4.1) and (4.3), it becomes apparent that when the local
variance at a position is very small, which means that the pixel is in a flat region
in the guidance image, ak tends to 0 and the filtering output tends to P̄k, i.e.,
the average of adjacent input pixels. In contrast, if the local variance at a pixel is
significant, suggesting an edge region, ak becomes far from 0, so only the weights on
one side of the edge are averaged. In both scenarios, pixels with similar brightness
will have similar weights. Guided filtering is performed on the weight map Pmri
with the source image Imri serving as the guidance image:

WB
mri = GFr1,ϵ1(Pmri, Imri), WD

mri = GFr2,ϵ2(Pmri, Imri), (4.8)

where r1, ϵ1, r2, and ϵ2 are the parameters of the guided filter, and WB
mri and WD

mri
are the resulting weight maps of the base and detail images. The final results for
the MRI are:

B̄mri = WB
mri ×Bmri, D̄mri = WD

mri ×Dmri. (4.9)

4.2.4 Weight construction for the US image

The guided filter has shown good results for images corrupted by additive Gaus-
sian noise. However, in practical applications such as US imaging, where the most
prominent noise, i.e., speckle, is non-Gaussian, its performance is limited. In US
imaging, speckle is mainly caused by constructive and destructive intereferences be-
tween scattered US waves. A reasonable trade-off between accuracy and simplicity
is to model this speckle as a multiplicative artifact following a Rayleigh distribution
[Aysal 2007b].

Recent works on despeckling extended the linear guided filter to a nonlinear
filter [Ni 2016], whose expression can be derived using Bayesian Non-Local Means
(NLM). We propose to use the results of [Ni 2016] to define the US weights.
To illustrate the derivation of the final closed-form weights, a simplified notation
will be used by considering an observed speckled image y and a noise-free image x.
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The final weights will be subsequently applied to both the base and detail layers
(Bus, Dus) of the US image. Using these notations, the nonlinear filter is:

x̂i =
∑

j

Wi,j(y, xg) yj , (4.10)

where x̂, y, xg are the despeckled image, the speckled observed image, the guidance
image, yj is the jth pixel of y, and Wi,j(y, xg) is a non-linear weight kernel, where
i and j are the pixel positions. We propose to define the guidance image using a
simple averaging over every patch in the observed image. In [Ni 2016], the modified
Bayesian NLM is expressed as:

x̂i =
∑

j∈ωi
p(yi|yj , xi = xj , xg) p(yj , xi = xj , xg) yj∑

j∈ωi
p(yi|yj , xi = xj , xg) p(yj , xi = xj , xg) ,

where yi and yj are the vectorized patches of size M ×M centered at pixels i and
j, xi and xj are the noise-free patches corresponding to the speckled patches yi and
yj , and xg is the corresponding patch in the guidance image. For an image with
fully developed and independent speckle, the conditional probability is:

p(yi|yj , xi = xj , xg) =
M×M∏
m=1

p(yi,m|yj,m, xi,m = xj,m, x
g
m),

where yi,m, yj,m, xi,m, xj,m and xg
m are associated with the mth pixel in the cor-

responding patches. Without knowledge of p(yi,m|yj,m) and assuming the event
yi,m|yj,m, xi,m = xj,m independent on xg

m, Bayes rule leads to:

p(yi,m|yj,m, xi,m = xj,m, x
g
m) p(yj,m, xi,m = xj,m, x

g
m)

∝ p(yi,m, yj,m|xi,m = xj,m)︸ ︷︷ ︸
likelihood

p(xi,m = xj,m|xg
m)︸ ︷︷ ︸

prior

p(xg
m),

where the likelihood is the data fidelity term, and the prior is related to the probabil-
ity of having xi,m = xj,m given the corresponding value xg

m in the guidance image.
Due to the high dimensionality of image patches, the prior distribution p(xg

m) is
assumed to be uniform for simplicity. For US images corrupted by a multiplica-
tive speckle noise distributed according to a Rayleigh distribution, the following
probability density function is obtained:

p(yi,m|xi,m) = yi,m

x2
i,mσ

2
η

exp
(

y2
i,m

x2
i,mσ

2
η

)
I]0,+∞[(yi,m), (4.11)

where I]0,+∞[ is the indicator function on ]0,+∞[ and σ2
η is the noise variance. The

conditional density p(xi,m|xg
i,m) is also assumed to be Rayleigh with a parameter

σ2
g(xg

i,m)2. The likelihood and prior introduced before can then be computed as
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follows:

p(yi,m, yj,m|xi,m = xj,m) =
∫

D
p(yi,m|θ)p(yj,m|θ)dθ,

∝ yi,myj,m

(y2
i,m + y2

j,m) 3
2
,

p(xi,m = xj,m|xg
m) = exp

{
−KL[p(xi,m|xg

i,m), p(xj,m|xg
j,m]

}
,

where D is the domain of pixel values and KL is the symmetric Kullback-Leibler
divergence between two Rayleigh distributions. Note that the Kullback-Leibler di-
vergence between two Rayleigh distributions of densities f1 and f2 with parameters
σ2

1 and σ2
2 denoted as KLD(f1, f2) is defined by:

KLD(f1, f2) =
∫ ∞

0

t

σ2
1

exp
(

− t2

2σ2
1

)[
t2

2

( 1
σ2

2
− 1
σ2

1

)
+ log

(
σ2

2
σ2

1

)]
dt,

which can be decomposed as the sum of two integrals

I1 = log
(
σ2

2
σ2

1

)∫ ∞

0

t

σ2
1

exp
(

− t2

2σ2
1

)
dt = log

(
σ2

2
σ2

1

)
,

and
I2 = 1

2

( 1
σ2

2
− 1
σ2

1

)∫ ∞

0

t3

σ2
1

exp(− t2

2σ2
1

)dt = σ2
1
σ2

2
− 1.

The symmetric Kullback-Leibler divergence between the densities f1 and f2 is:

KL(f1, f2) = KLD(f1, f2) + KLD(f2, f1) = (σ2
1 − σ2

2)2

σ2
1σ

2
2

.

Therefore,

p(xi,m = xj,m|xg
m) = exp

{
−KL[p(xi,m|xg

i,m), p(xj,m|xg
j,m]

}
,

∝ exp

−

[
(xg

i,m)2 − (xg
j,m)2

]2
(xg

i,m)2(xg
j,m)2

 ,
The non-linear weights are finally defined as [Deledalle 2009]:

Wi,j(y, xg) = exp

− 1
K1

∑
m

log

(y2
i,m + y2

j,m) 3
2

yi,m yj,m


− 1
K2

∑
m

[
(xg

i,m)2 − (xg
j,m)2

]2
(xg

i,m)2(xg
j,m)2

 . (4.12)

Using the normalization parameters K1 and K2 measuring the relative contributions
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of y and xg, one obtains:

x̄ =
∑

j∈ωi
Wi,j(y, xg) y∑

j∈ωi
Wi,j(y, xg) . (4.13)

This operation is applied to both base and detail US images.

4.3 Experiments

4.3.1 Synthetic data from real MR acquisition

To demonstrate the efficiency of the proposed MR/US fusion method, this section
first considers a set of synthetic images. The simulations presented hereafter have
been obtained using a real high-resolution MR image intentionally degraded to
simulate an image closely resembling that obtained for endometriosis diagnosis. The
3D high-resolution MR volume corresponds to an actual pelvic MRI capturing the
uterus, bladder, and endometriosis lesions. A blurred and noisy 3D MRI is then
generated from this high-resolution MR volume. More precisely, the HR volume
was blurred using a 2D Gaussian filter of standard deviation σ2 = 4, and then was
contaminated by an additive white Gaussian noise (SNR = 18.17 dB), yielding the
MR image displayed in Fig. 4.1(a). A Rayleigh multiplicative noise was applied to
the native MR image, yielding the US image in Fig. 4.1(b) (SNR= 4.8 dB). The
size of the average filter was set to 31 × 31 and the guided filter parameters were
fixed to their best values by visual inspection of the fused images, leading to r1 = 7,
ϵ1 = 1e−4, r2 = 10, ϵ2 = 1e−6. The partial normalization parameters were set to
K1 = 30 and K2 = 40 as in [Ni 2016]. This fixed parameter setting was used for
both datasets.

(a) (b) (c)

Figure 4.1: (a) MR image (b) US image (c) MARIUS image.

The performance evaluation of the fusion method involved both qualitative analysis
through visual inspection of the resultant image and quantitative analysis using the
contrast-to-noise ratio (CNR). For two patches extracted from distinct structures,
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such as the uterus and bladder in this context, CNR is defined as CNR = |µi−µj |√
σ2

i +σ2
j

,

where µi, µj , σ
2
i , σ

2
j are the means and standard deviations of two blocks of pixels.

The fused image is displayed in Fig. 4.1(c). This image provides a good compromise
between the US and MR data. Specifically, the fused image is less affected by US
speckle and MRI blur, provides well-defined contours and good contrast compared
to the native MR and US images. The CNR values for the MR and the US images
are 35.43 dB and 18.47 dB, whereas the obtained fused image has a CNR equal to
37.54 dB.

4.3.2 Phantom data

This section evaluates the proposed fusion method on a phantom data. The experi-
mental phantom was designed to replicate the responses of uterine and endometrial
tissues to MR and US imaging. It was made of a beef steak on top of which was
stuck a polyvinyl alcohol (PVA) phantom, using cyanoacrylate instant glue. On the
one hand, the beef meat consists of muscular tissues, exhibiting echogenicity and
a response to MR similar to that of uterine tissue. On the other hand, the PVA
phantom has roughly the same echogeneicity as the beef meet, but has a different
response resulting in high contrast in the MRI. From this viewpoint, its properties
are similar to the properties of the endometrium. Finally, the glue between the two
structures is visible in US images due to their high resolution but remains absent in
MRI due to the more limited resolution, simulating the depth of penetration infor-
mation, a crucial element for the surgery. Additional details about this experiment
can be found in [Vidal 2019].

Fig. 4.2 illustrates the two-scale decomposition of the phantom data as an
example, showing both the base and detail layers. The detail layer of the US image
emphasizes the contribution to precise contour and edge details, while the base
layer of the MRI image highlights the contribution to contrast enhancement.

(a) (b) (c) (d)

Figure 4.2: (a) Base US (b) Detail US (c) Base MRI (d) Detail MRI.
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(a) (b) (c)

Figure 4.3: (a) MR image (b) US image (c) MARIUS image.

The fused image of Fig. 4.3 (c) has a spatial resolution similar to the US image,
and a contrast equivalent to the MRI. In particular, the different structures of
interest are much better highlighted: (i) the glue between the steak and the PVA
phantom, simulating the depth of penetration, which is indiscernible in MRI due
to resolution limitations, is distinctly visible in both the US and fused images; (ii)
the contrast between the steak and the PVA is well defined in the MR and fused
images, allowing a clear distinction of the parts of interest.

Conventional fusion methods are then compared to the proposed method. Note
that contrary to deep learning (DL) methods, which typically require extensive
datasets for training, the proposed approach uses only two images (MRI and US)
to perform fusion. Acquiring datasets of registered MR and US images for this
specific application is challenging due to privacy concerns and the need for patient
consent. Given these constraints, opting for DL methods becomes impractical,
reinforcing our decision to benchmark against established non-DL fusion techniques.
Quantitivative results are provided in Table 4.1, which compares the CNR values
between the PVA phantom and the beef steak for the different images, with fusion
models from the literature.

MRI US [El Mansouri 2020] [Li 2013] Proposed method
CNR 54.21 18.91 43.17 37.28 47

Table 4.1: CNR (dB) values for the US, MR and fused images.

While the CNR achieved by the fused image may not match that of the MRI, it
represents a good compromise between contrast and resolution in the context of
endometriosis surgery. The CNR surpasses that of the US, enabling differentiation
of various image components. The glue separating the two structures and symbol-
izing the boundary of the tumor to be incised is more distinctly visible in both the
US and fused image compared to the MRI. This improved resolution is visually
depicted in Fig. 4.4, illustrating the differences in pixel intensities for the same
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vertical straight line (Fig. 4.5) from the US, MR and MARIUS images. For the
MRI, the plot shows the change of pixel intensities between the steak and the PVA.
For the US, one can see the peak for the glue boundary, that is not highlighted in
the MRI due to its low spatial resolution. The fused image shows both the intensity
difference and the peak, combining the strengths of both modalities.

Figure 4.4: Normalized pixel intensities of US (Green), MRI (Black), and fused
image (Red) for a vertical straight line.

Figure 4.5: The vertical straight line.

This MR/US image fusion based on the guided filtering has demonstrated better
performance than existing methods, as evidenced by both quantitative and quali-
tative results.

Note that the method using kernel transformation, presented in the previous
chapter (See section 3.2), achieved a superior CNR on the experimental phantom
compared to this model using guided filtering (52.23 dB vs 47 dB). This enhanced
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contrast is particularly crucial for applications such as endometriosis imaging, where
it helps to distinctly highlight and delineate lesions, improving diagnostic accuracy
and facilitating more precise treatment planning. However, it is important to high-
light that the kernel transformation-based method requires more computational
time to complete the fusion process compared to the guided filtering approach. The
extended processing time is a trade-off for the improved contrast quality, which can
be a significant consideration in clinical settings where efficiency is also a priority.
The guided filtering method, though less complex, still provides satisfactory visual
results and is faster because it does not involve calculating coefficients, it may be
preferred in situations where processing speed is critical.

4.3.3 Real data

This section considers experiments using real data to evaluate the guided filtering
fusion approach. We use an in vivo MRI volume along with an abdominal US of
a patient with endometriosis lesions. US imaging was performed using a Voluson
P6 imaging system (GE Healthcare Austria GmbH & Co OG), with a frequency
of 7MHz. For the MRI, acquisitions were performed using a 1.5T clinical imaging
system (GE Medical Systems Signa). Axial, sagittal, and coronal T2-weighted
sequences were obtained with a 4 mm slice thickness and 5 mm spacing between
slices, ensuring adequate coverage of the pelvic region. The images were acquired
using a 2D acquisition mode with a repetition time (TR) of 3586 ms and an echo
time (TE) of 138.0400 ms. The echo train length was set to 34, enhancing the
quality of the T2-weighted sequences. The imaging frequency was 63.9053 MHz,
targeting the hydrogen nuclei (1H) for optimal signal acquisition.

Registration was performed using the model presented in Section 2.2 with the
following parameter setting: maximum translation size ωtrans = 7, maximum ro-
tation size ωrot = 0.02, quantization factor k = 2, and modification rate α = 0.8.
The MRI slice corresponding to the US image (Fig. 4.6 (a)) is presented in Fig.
4.6 (b). Fig. 4.6 (c) shows the fusion result. We zoom on the lesion area to better
observe the differences between the MRI, US, and fused images. Fig. 4.7 shows the
endometriosis lesion in the different images.

Fig. 4.8 (a) shows pixel intensities of US, MR and the fused image for a vertical
straight line (Fig. 4.9). It shows the distinct characteristics of each modality. The
MRI exhibits a sudden switch in intensities, highlighting the difference between the
bladder and the lesion. The US image, while having a less noticeable difference,
shows a peak for the contour line that is indiscernible in the MRI. In the fused
image, both the peak and the intensity difference are present, combining the
strengths of both modalities.

The proposed fusion method, although gathered information from both input
MR and US images, did not ultimately lead to a significant enhancement in im-
age quality. This limitation can be attributed to the nature of the data used in
this study. Specifically, the US image available for this research was an abdominal
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(a) (b) (c)

Figure 4.6: (a) US image (Endometriosis lesion - Red, Bladder - Blue). (b) MR
image. (c) MARIUS image.

(a) (b) (c)

Figure 4.7: (a) Lesion in the US image. (b) Lesion in the MR image. (c) Lesion in
the MARIUS image.

ultrasound rather than a transvaginal ultrasound (TVUS). Abdominal ultrasound
images typically provide less details compared to TVUS images, which are better
suited for pelvic examinations due to their ability to offer higher resolution and
more precise anatomical details in the pelvic region. High-frequency ultrasound
waves provide higher resolution images but have shorter wavelengths, which lim-
its their depth of penetration. By performing a TVUS, the ultrasound probe is
inserted into the vagina, and is much closer to the pelvic organs. This proximity
reduces the distance the ultrasound waves need to travel, improving image clarity
and detail. For abdominal ultrasound, lower frequencies are used since they can
penetrate deeper into the body, allowing for visualization of structures that are fur-
ther from the surface. However, this comes at the cost of lower resolution compared
to TVUS. As a result, the abdominal US image did not contribute as much valuable
information as a TVUS image would have.

Given that TVUS images are more effective in visualizing endometrial lesions
due to their superior resolution and localized view, the fusion process might have
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Figure 4.8: Normalized pixel intensities of US (Green), MRI (Black), and fused
image (Red) for a vertical straight line.

Figure 4.9: The vertical straight line.

yielded better results if TVUS images were used instead. The limitations of the
abdominal US image constrained the potential benefit of the fusion method, high-
lighting the importance of using accurate imaging data to achieve optimal results.

4.4 General framework

In this section, we summarize the general framework explored throughout this PhD
thesis. This framework encompasses the comprehensive process of integrating 3D
MR and 2D US images to produce the final MARIUS image. The figures below
illustrate the complete scheme for both phantom and real data.

The presented figures offer a visual representation of the transition from raw
imaging data to the final integrated result. They highlight the potential of com-
bining MR and US imaging modalities to provide more informative and clinically
relevant images, ultimately contributing to improved diagnostic accuracy and pa-
tient care.
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Figure 4.10: Framework for 3D/2D registration and 2D/2D fusion applid to exper-
imental phantom.

Figure 4.11: Framework for 3D/2D registration and 2D/2D fusion applid to in vivo
dataset.
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4.5 Conclusion

This chapter introduced a new fusion method for magnetic resonance (MR) and
ultrasound (US) images based on guided filtering. The fused image obtained with
this method brings together the advantages of both modalities: resolution and
contrast. The combination of information arising from both MRI and US into a
single image may improve preoperative mapping and surgical plan. An important
perspective of this work is to validate the model with other datasets (in vivo data).
Future work will be devoted to including the fused image with the video stream
collected during laparoscopy, allowing a safer decision-making and therefore a more
precise endometriosis surgery.





Chapter 5

Conclusions and Perspectives

Context

Image processing is a powerful tool that has significantly advanced various fields,
particularly medical imaging. By enhancing image clarity, contrast, and detail, im-
age processing techniques make it easier for healthcare professionals to interpret
and analyze medical images. This, in turn, improves the accuracy of diagnoses, the
monitoring of diseases, and the planning and execution of complex medical proce-
dures. Techniques such as image registration and fusion allow for the integration of
multiple imaging modalities, providing a more comprehensive view of anatomical
structures and potential abnormalities.

Endometriosis is one of the pathologies that requires the use of MR and US
modalities in convential clinial practice. This painful condition, which involves the
growth of endometrial tissue outside the uterus, can be challenging to diagnose
and treat. Precise imaging is crucial for accurately locating and characterizing
endometrial lesions. By registring and fusing the images, surgeons can obtain a
more detailed and accurate view of the affected areas, allowing for safer decision-
making and precise laparoscopies.

The objective of this PhD thesis was to investigate methods for the registration
and fusion of magnetic resonance (MR) and ultrasound (US) images, specifically
tailored for the pre-operative diagnosis and surgical planning of endometriosis. This
task is of sensitive importance as it directly impacts the precision and effectiveness
of laparoscopic surgeries. Through this research, we aim to provide robust method-
ologies that can enhance the visualization of endometrial tissues, leading to more
precise and targeted surgical interventions. Experiments were conducted on dif-
ferent datasets, acquired with the collaboration of Dr. Fabien VIDAL (Clinique
La Croix du Sud - Ramsay Santé, Toulouse, France). These datasets included
synthetic images, an experimental phantom, and a real dataset of a patient with
endometriosis. The synthetic images were used as a preliminary step to test our
models, allowing us to evaluate their performance under controlled conditions. The
experimental phantom, which mimics the response of lesions and tissue to MRI and
US imaging, provided a standardized environment to further assess the accuracy
and precision of the registration and fusion techniques. Finally, the real dataset of
a patient with endometriosis allowed for a practical assessment of the methods in
a clinical context.
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Conclusions

Chapter 1 presented the clinical context in which this present work takes place.
We defined the pathology of endometriosis, detailing its causes, symptoms, and
the impact it has on patients. Additionally, we discussed the surgical procedure of
laparoscopy, emphasizing its sensitivity and the precision required for successful
outcomes. The chapter then introduced the imaging modalities of MRI and US,
explaining their advantages and limitations and how these images are formed and
used in the diagnosis and treatment of endometriosis.

Chapter 2 gave a general overview of image registration, covering state-of-the-art
models for registration and its essential components such as matching criteria,
transformation model and optimization algorithms. We then introduced a regis-
tration method for 3D MR and 2D US images. The method was able to extract
the MR slice best matching the US input image with respect to a chosen similarity
measure. The registration took into account the global rigid transformation
characterized by rotation and translation parameters, associated with a local
deformation based on B-splines. A 2D/2D US/MRI fusion algorithm was also
applied to validate the registration results, generating a final image containing
the main characteristics of the two images. Results obtained on an experimental
phantom, synthetic data generated from an in vivo MRI volume, and a real dataset
show the interest of the proposed registration framework.

Chapter 3 presented state-of-the-art models and methods used in image fusion.
We then presented a new 2D/2D fusion method for registered MR and US images.
The chapter studied the potential interest of modelling the relationship between
MR and US images by a non-parametric patch-based transformation defined using
the theory of reproducing kernels and evaluate its benefit compared to a global
polynomial transformation investigated in the literature. The method is based
on an inverse problem, performing a super-resolution of the MR image and a
denoising of the US image. A non-linear cost function is used to solve the fusion
problem, and its minimization is conducted using PALM algorithm. Qualitative
and quantitative results with different datasets allow the performance of the fusion
method to be appreciated. However, the proposed appraoch was computationally
costly since it may require hundreds of thousands of parameters to be estimated
depending on the image and the patch sizes.

In Chapter 4, we aimed to explore more efficient alternatives. Motivated by the
promising results of guided filtering reported in the literature, we presented a new
2D/2D fusion algorithm for MR and US images. The fused image is a weighted
average of base and detail images from the MR and US images. The weights assigned
to the MR image allow the contrast of the fused image to be enhanced. For the
US image, the key ingredient was to take into account the presence of speckle
noise, a common challenge in US imaging. Results on different datasets show very
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promising results. The images produced by the proposed fusion method have the
potential to enhance visualization and aid decision-making in endometriosis surgery,
representing a valuable contribution to the field of medical image fusion.
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Future work

Short-term perspectives

• Observation models: For the sake of simplicity and given the complexity and
non-linearity of the fusion task, we assumed the presence of independent iden-
tically distributed noises in both MRI and US images. A natural progression
of this work is to address potential correlations among noise samples, par-
ticularly for US images, consider the impact of possible artifacts, and adjust
the algorithm for cases of not-fully-developed speckle. Daba et al. developed
stochastic models to handle partially-developed speckle noise, where a Poisson
point process is modulated by a Gram-Charlier series of Laguerre-weighted
exponential functions, resulting in a doubly stochastic filtered Poisson point
process [Daba 2008].

• Hyper-parameters: Hyper-parameters play an important role in determining
the quality of the obtained fused images (Chapter 3). The choice of these
hyper-parameters was done manually, relying on visual inspection of the im-
ages and a study of the effect of each parameter on the fused image. We
analyzed plots showing the impact of each parameter on appropriate metrics,
which guided our selection process. This manual selection process, while ef-
fective to some extent, can be subjective and time-consuming. Therefore, it
would be interesting to explore methods that can automatically tune these
hyper-parameters based on the data. Such automated approaches could en-
hance the consistency and efficiency of the fusion process, ensuring optimal
parameter settings without manual intervention. Future research in this area
could significantly improve the robustness and reliability of image fusion tech-
niques [Pereyra 2016].

• Clinical study: The tests conducted in this PhD thesis were first validated
using a synthetic dataset with controlled ground truth, then using an experi-
mental phantom designed to mimic the uterus and endometrium responses to
MR and US imaging. For the real dataset, we used an in vivo MRI volume
and a 2D US abdominal image from a patient with endometriosis. Given the
promising results, we are now ready to proceed with a clinical study to fur-
ther validate and refine the methods developed in this research. This study
should include transvaginal US images that are actually used in practice and
are better suited for the application. Additionally, exploring the application
of the proposed methods to other in vivo datasets for the same purpose would
be an interesting direction for future research.



103

Long-term perspectives

• Augmented reality-assisted surgery: The 3D/2D registration and 2D/2D fu-
sion of MR and US images marks the initial phase of an extensive study
aimed at developing a virtual navigator based on augmented reality for en-
dometriosis surgery [Collins 2021] [Shahzad 2023]. Augmented reality is an
evolving technology that overlays computer-generated information onto the
real-world environment. It transforms the user’s field of view into a dynamic
display, where real-world objects complement virtual data [Dennler 2021]. For
instance, Pratt et. al. [Pratt 2018] used Microsoft HoloLens™ stereo head-
mounted display, an augmented reality technology for reconstructive surgery.
They used pre-operative computed tomography angiography imaging to help
the surgeon see through the patient’s skin. Fig. 5.1 shows the patient’s
body as viewed by the surgeon using HoloLens, where information from pre-
operative imaging is imposed.

Figure 5.1: Augmented reality overlay of models as viewed by the surgeon from
remote HoloLens for reconstructive surgery [Pratt 2018].

For endometriosis surgery, the goal of this future study is to combine this
newly fused MARIUS image, which combines the advantages of both MR
and US images, into the video stream collected using a small camera during
laparoscopy. This integration should provide real-time, detailed anatomical
information overlaid directly onto the surgeon’s view, improving spatial aware-
ness and accuracy during procedures. Surgeons can benefit from enhanced
visualization of the critical structures, precise guidance for instrument place-
ment, and improved decision-making [Qian 2019] [Birlo 2022]. Ultimately,
this technology has the potential to make laparoscopies safer, more effective,



104 Chapter 5. Conclusions and Perspectives

reducing surgical complications and improving the lives of many women.

• Other medical applications: Many other medical applications use MR and
US images and could benefit from the proposed registration and fusion frame-
work. Registration and fusion of mammograms with breast MRI or ultrasound
can provide a more comprehensive view of the tumor’s extent and its rela-
tionship with surrounding tissues [Bessa 2020] [Sivaramakrishna 2005]. For
liver tumors, fusion of preoperative imaging (such as MRI or CT) with real-
time ultrasound or intraoperative imaging allows for accurate targeting of
the tumor. This ensures that the ablation is applied precisely to the tu-
mor while minimizing damage to surrounding healthy tissue. After the abla-
tion [Mauri 2014], fused images can be used to assess the treatment’s success
by comparing pre- and post-procedure images. This helps in determining if
the tumor has been adequately treated or if further intervention is required
[Spinczyk 2020]. Other applications include Prostate biopsy [Gao 2013] Car-
diology and [Tavard 2014].



Appendix A

Update of x in the PALM
algorithm of Section 3.2.4.1

A.1 Lipshitz constant

The Lipshitz constant Lx(v) of x 7→ ∇xH(x,v) is complicated to evaluate and not
straighforward. In [El Mansouri 2020], PALM with a backtracking stepsize rule was
used:

Note that one of the pillars of PALM’s convergence proof is the following lemma
for smooth functions.

Lemma: Let (h : Rn → R) be a continuously differentiable function with
Lipschitz continuous gradient and Lipschitz constant Lh. Then for any L ≥ Lh and
for all x,y ∈ Rn,

h(x) ≤ h(y) + (x− y)H∇xh(x) + L

2 ∥x− y∥2.

Using simple algebra, one can show that the function ψ defined in 3.16 satisfies
the following relation:

ψ(x,v) ≤ QL(x,y,v), (A.1)

where

QL(x,y,v) = l(x) + g(v) +H(y,v) + (x− y)H∇xH(y,v) + L

2 ∥x− y∥2.

In order to ensure the convergence of the PALM algorithm, the backtracking rule
consists of verifying that the inequality A.1 is satisfied at every step. To estimate
the Lipschitz constant, at each iteration k, we search for the smallest nonnegative
integer ik such that Lk+1 = λikLk verifies

ψ(pL̄(xk),vk) ≤ QL̄(pL̄(xk),xk,vk),

with

pL̄(xk) = proxl
Lk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
.

Remark: Since inequality A.1 is satisfied for L ≥ Lx(v), for all v, where
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Lx(v) is the Lipschitz constant of x 7→ ∇xH(x,v), the following inequalities can
be obtained:

Lx(vk) ≤ Lk+1 ≤ λLH(vk),

where LH(vk) denotes the Lipschitz constant of H with respect to v at vk. Note
that the inequality Lx(vk) ≤ Lk+1 is sufficient to ensure the convergence of PALM.
However, the second inequality Lk+1 ≤ λLH(vk) allows the convergence rate to be
controlled by an appropriate choice of λ.

Finally, once the smallest nonnegative integers ik such that

ψ(pL̄(xk),vk) ≤ QL̄(pL̄(xk),xk,vk),

with L̄ = ikLk is found, we set Lk+1 to Lk+1 = ikLk and x is updated.

A.2 Update of x

The update of x is done using Eq. 3.20. Since it requires the inversion of a high-
dimensional matrix, we adopt the solution used in [El Mansouri 2020]. The blurring
matrix C is block circulant and can be diagonalized in the Fourier domain:

C = FHΛF ,

where F and FH are the 2D Fourier and inverse Fourier operators, Λ = diag(Fh) ,
with h the first column of C. The equation (3.20) can thus be rewritten as follows:

xk+1 = 1
τ1Lk+1

FHψFr − 1
τ1Lk+1

FHψΛH(2τ1sIN + ΛψΛH)−1ΛψFr,

with
r = CHSHymri + Lk+1(xk − 1

Lk+1
∇xH(xk,vk))

and
Λ = diag(Λ1, ...,Λd)

is a block diagonal matrix and its diagonal elements are matrices Λi, and where

ψ = F

(
τ1
(
DH

h Dh +DH
v Dv

)
+ Lk+1

2 IN

)−1
FH
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