
HAL Id: tel-04819461
https://theses.hal.science/tel-04819461v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced reinforcement learning algorithms for
multi-Armed bandit problems

Francisco Robledo Relaño

To cite this version:
Francisco Robledo Relaño. Advanced reinforcement learning algorithms for multi-Armed bandit prob-
lems. Other [cs.OH]. Université de Pau et des Pays de l’Adour; Universidad del País Vasco. Facultad
de ciencias, 2024. English. �NNT : 2024PAUU3021�. �tel-04819461�

https://theses.hal.science/tel-04819461v1
https://hal.archives-ouvertes.fr

Advanced Reinforcement
Learning Algorithms for

Multi-Armed Bandit Problems

Francisco Robledo Relaño

PhD Thesis

PhD Thesis

Advanced Reinforcement Learning
Algorithms for Multi-Armed Bandit

Problems

Francisco Robledo Relaño

Supervisors
Urtzi Ayesta
Florin Avram

August 30, 2024

Acknowledgements

There are many people I would like to thank for their support and help during the
development of my PhD.

First and foremost, I would like to express my deepest gratitude to my PhD
advisor, Dr. Urtzi Ayesta, for his exceptional guidance, support, and advice through-
out my research journey. His expertise in the field of Reinforcement Learning and
Markov Decision Processes has been invaluable to me. His patience, encourage-
ment, and constructive feedback have significantly contributed to my professional
growth and the successful completion of this dissertation.

I would also like to extend my heartfelt thanks to Dr. Florin Avram for his
support during my PhD.

I am also deeply grateful to Dr. Konstantin Avrachenkov and Vivek Borkar for
their support and contributions to my research. Their expertise and advice have
been crucial in overcoming many challenges during my PhD.

Last but certainly not least, I would like to express my deepest appreciation
to my family for their unwavering support, love, and encouragement throughout
my PhD. Their belief in me and their understanding have been my anchor during
the most challenging times. To my parents, for their unconditional love and for
instilling in me the value of education;

Without the collective support and encouragement of all these individuals, this
thesis would not have been possible. Thank you all.

Abstract

This thesis presents advances in Reinforcement Learning (RL) algorithms for re-
source and policy management in Restless Multi-Armed Bandit (RMAB) problems.
We develop algorithms through two approaches in this area. First, for problems
with discrete and binary actions, which is the original case of RMAB, we have
developed QWI and QWINN. These algorithms compute Whittle indices, a heuris-
tic that decouples the different RMAB processes, thereby simplifying the policy
determination. Second, for problems with continuous actions, which generalize
to Weakly Coupled Markov Decision Processes (MDPs), we propose LPCA. This
algorithm employs a Lagrangian relaxation to decouple the different MDPs.

The QWI and QWINN algorithms are introduced as two-timescale methods for
computing Whittle indices for RMAB problems. In our results, we show mathe-
matically that the estimates of Whittle indices of QWI converge to the theoretical
values. QWINN, an extension of QWI, incorporates neural networks to compute
the Q-values used to compute the Whittle indices. We establish mathematically the
local convergence properties of the neural network used in QWINN. Our results
show how QWINN outperforms QWI in terms of convergence rates and scalability.

In the continuous action case, the LPCA algorithm applies a Lagrangian relax-
ation to decouple the linked decision processes, allowing for efficient computation
of optimal policies under resource constraints. We propose two different optimiza-
tion methods, differential evolution and greedy optimization strategies, to efficiently
handle resource allocation. In our results, LPCA shows superior performance over
other contemporary RL approaches.

Empirical results from different simulated environments validate the effec-
tiveness of the proposed algorithms. These algorithms represent a significant
contribution to the field of resource allocation in RL and pave the way for future
research into more generalized and scalable reinforcement learning frameworks.

iii

Contents

Contents v

List of Figures vii

List of Tables ix

Índice de algoritmos xi

1 Introduction 1
1.1 Overview of Reinforcement Learning and MDPs 1

1.1.1 Reinforcement Learning: An Introduction 1
1.1.2 Historical introduction to Reinforcement Learning 2
1.1.3 An introduction to Markov Decision Processes 4

1.2 Significance and Applications of RL in MDPs 5
1.3 Thesis Objective and Scope . 7

2 Background and Literature Review 9
2.1 Fundamentals of Markov Decision Processes 9

2.1.1 Markov Processes . 9
2.1.2 Markov Reward Processes 10
2.1.3 Markov Decision Processes 12

2.2 Multi-Armed Bandit Problems . 14
2.2.1 Introduction To Multi-Armed Bandits 14
2.2.2 MAB Model Formulation 15
2.2.3 Restless Multi-Armed Bandit Problems 18
2.2.4 Weakly Coupled MDP with Continuous Action Spaces . . 22

2.3 Lagrange relaxation . 23
2.3.1 Lagrangian relaxation for Multi-Armed Bandit Problems . 26
2.3.2 Lagrangian relaxation for RestlessMulti-Armed Bandit Prob-

lems . 27
2.4 Gittins and Whittle index computation 28

v

vi CONTENTS

3 Reinforcement Learning Algorithms 31
3.1 Tabular Q-learning and SARSA . 32
3.2 Function Approximation . 33

3.2.1 Neural Networks and its application in RL 34

4 Discrete Action Models in RMABP 41
4.1 QWI: Tabular Learning of the Whittle Indices 42

4.1.1 Algorithm Design and Implementation 43
4.2 QWINN: Enhancing QWI with Neural Networks 45

4.2.1 Proof of convergence of QWINN algorithm 48
4.3 Experimental Setup and Results for Discrete Models 50

4.3.1 Description of Test Environments 51
4.3.2 Evaluation Metrics and Benchmarks 54
4.3.3 Detailed Analysis of Experimental Results 56

5 Continuous Action Models in Weakly Coupled MDPs 73
5.1 Computation of Whittle Indices for Continuous Actions 73

5.1.1 Policy Heuristic for Continuous Actions 75
5.2 LPCA: Tackling Weakly Coupled MDPs with Continuous Actions 77

5.2.1 Problem Formulation . 77
5.2.2 Lagrangian Decomposition for Continuous Actions 78
5.2.3 LPCA Algorithm . 79
5.2.4 Differential Evolution Optimization (LPCA-DE) 82
5.2.5 Greedy Optimization Strategy (LPCA-Greedy) 84

5.3 Experimental Setup . 85
5.3.1 Description of Test Environments for Continuous Models 86
5.3.2 Evaluation Metrics and Benchmarks 89
5.3.3 Detailed Analysis of Experimental Results 89

6 Conclusion and Future Directions 95
6.1 Summary of Key Findings . 95
6.2 Future Directions and Potential Developments 97

A Appendix 99
A.1 Theoretical Foundations of QWI 99
A.2 Proof of convergence of QWI algorithm 103

Bibliography 105

List of Figures

4.1 Histogram of eigenvalue moduli of −(∇2
1E(θ∗, θ∗))−1∇2∇1E(θ∗, θ∗)

for the circular (left), restart (middle) and deadline scheduling (right)
problems. 49

4.2 Whittle indices per state for the circular problem with N = 5,M = 2
and |Si| = 4 (left) and the restart problem with N = 5,M = 2 and
|Si| = 5 (right) . 57

4.3 Spearman correlation coefficient for the circular problem (left) with
N = 5,M = 2 and |Si| = 4 and restart problem (right) with N =
5,M = 2 and |Si| = 5 . 57

4.4 Average rewards for the circular problem withN = 5,M = 2 (top left),
N = 10,M = 5 (top right) and N = 20,M = 8 (bottom) with |Si| = 4 58

4.5 Average rewards for the restart problem with N = 5,M = 2 (top left),
N = 10,M = 5 (top right) and N = 20,M = 8 (bottom) with |Si| = 5 59

4.6 Cumulative Distribution Function of the absolute error in the Whittle
indices (left) and Spearman’s Rank Correlation Coefficient (right) for
the Deadline Scheduling problem with N = 5,M = 2 and |Si| = 130 60

4.7 Average rewards for the Deadline Scheduling problem with N =
5,M = 2 (top left), N = 10,M = 5 (top right) and N = 20,M = 8
(bottom) with |Si| = 130 . 61

4.8 Cumulative Distribution Function of the absolute error in the Whittle
indices (left) and Spearman’s Rank Correlation Coefficient (right) for
the Circular problem with N = 5,M = 2 and |Si| = 10 (top) and
|Si| = 50 (bottom) . 63

4.9 Average rewards for the Circular problem with N = 5,M = 2 and
|Si| = 10 (left) and |Si| = 50 (right) 64

4.10 Cumulative Distribution Function of the absolute error in the Whittle
indices (left) and Spearman’s Rank Correlation Coefficient (right) for
the Restart problem with N = 5,M = 2 and |Si| = 20 (top) and
|Si| = 100 (bottom) . 65

vii

viii LIST OF FIGURES

4.11 Spearman’s Rank Correlation Coefficient for the first 5 states in the
Restart problem withN = 5,M = 2 and |Si| = 20 (left) and |Si| = 100
(right) . 66

4.12 Average rewards for the Restart problem with N = 5,M = 2 and
|Si| = 20 (left) and |Si| = 100 (right) 66

4.13 Cumulative Distribution Function of the absolute error in the Whittle
indices (top left), Spearman’s Rank Correlation Coefficient (top right)
and Average rewards (bottom) for the Deadline Scheduling problem
with N = 5,M = 2 and |Si| = 288 68

4.14 Spearman’s Rank Correlation Coefficient (left) and Average rewards
(right) for the Restart problem with N = 5,M = 2 and |Si| = 5 and
parameters x = y = {0.9, 0.8, 0.7, 0.6, 0.5} 70

4.15 Spearman’s Rank Correlation Coefficient (left) and Average rewards
(right) for the Deadline Scheduling problem with N = 5,M = 2 and
|Si| = 130 and processing cost c = {0.9, 0.7, 0.5, 0.3, 0.1} 71

5.1 Comparison of the Whittle Index for the Admission Control problem
using different levels of discretization. 76

5.2 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Type A environment with N = 4
and B = 2 (left) and N = 6 and B = 4 (right) 91

5.3 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Type B environment withN = 4 and
B = 2 (left) and N = 6 and B = 4 (right) 92

5.4 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, andWhittle indices for the Admission Control environment with
N = 4 and B = 1.8 (left) and N = 6 and B = 3.6 (right) 93

5.5 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Speed Scaling environment with
N = 4 and B = 0.7739 . 94

List of Tables

4.1 Relative Error in Algorithm Performance at Final Iteration for Discrete
Actions Problems according to Number of Arms in % 62

4.2 Relative Error in Algorithm Performance at Final Iteration for Discrete
Actions Problems according to Number of States in % 69

4.3 Whittle index values for the restart problem with N = 5,M = 2 and
|Si| = 5 and parameters x = y = {0.9, 0.8, 0.7, 0.6, 0.5} 70

4.4 Relative Error in Algorithm Performance at Final Iteration for Discrete
Actions Problems (homogeneous vs. heterogeneous) in % 72

5.1 Relative Error in Algorithm Performance at Final Iteration for Continu-
ous Actions Problems in % . 94

ix

List of Algorithms

1 Tabular QWI Algorithm . 45
2 QWINN Algorithm . 47
3 Generalized Multi-action Adaptive-greedy Whittle Index Algorithm 75
4 Continuous Action Whittle Index Heuristic 76
5 LPCA Training Process . 80
6 Update Q-values in LPCA Neural Network Model 81
7 Computation of Lagrange term λ∗ 82
8 Action Selection through Differential Evolution Optimization . . . 84
9 Greedy Action Selection for Continuous MDP 85

xi

Chapter1

Introduction

1.1 Overview of Reinforcement Learning and
MDPs

1.1.1 Reinforcement Learning: An Introduction

The concept of learning through interaction is fundamental to our understanding of
both natural and artificial intelligence. From the earliest moments of life, animals,
including humans, engage with their environment in a continuous process of
exploration and adaptation. This interaction-driven learning plays a key role in
shaping behaviors and capabilities.

Consider a child learning to navigate the world: through trial and error, they
discover the consequences of their actions. They learn that touching a hot surface
causes pain, and that listening to a lullaby often precedes sleep. This process
of acquiring knowledge through active engagement, where outcomes influence
subsequent actions, reflects the basic principle of learning theories. It highlights a
critical aspect of cognitive development-the ability to learn from the outcomes of
interactions, rather than from passive observation or instruction alone.

This learning paradigm, deeply rooted in the biological processes of natural
organisms, has inspired the development of artificial learning systems and led us
to the diverse field of machine learning.

In the field ofmachine learning, this natural learning process has been abstracted
and translated into computational models. Machine learning includes several
paradigms, each of which reflects a different aspect of learning in the natural world:
Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning is similar to the way humans learn from instruction. In
this case, the learning algorithm is presented with labeled examples, which it uses
to learn a mapping from inputs to outputs. This is similar to a child learning to
recognize animals from a book where each picture is labeled. Supervised Learning

1

1. Introduction

excels at tasks where the relationship between input data and output labels is clear,
such as image classification and regression problems. Unsupervised Learning, on
the other hand, involves finding patterns or structures in unlabeled data. It’s like a
child observing the world and identifying patterns without being explicitly told
what to look for. This paradigm is essential in scenarios where the underlying
structure of the data is unknown or where explicit labels are not available. It’s used
in clustering, anomaly detection, and dimensionality reduction.

Reinforcement Learning (RL), the focus of this thesis, is inspired by the way
organisms learn from the consequences of their actions. In RL, an agent learns to
make decisions by interacting with its environment. The agent receives rewards or
penalties based on its actions, which induce it to adjust its behavior to achieve better
outcomes over time. Going back to the child example, this would be equivalent to
receiving rewards such as toys or treats for good behavior and punishments for bad
behavior. This learning process is not about finding patterns in existing data, but
about discovering a strategy or policy through the consequences of actions taken
in a dynamic environment.

Reinforcement Learning is characterized by its similarity to the natural learning
processes observed in animals and humans. Reinforcement Learning embodies
the essence of learning by doing, a principle central to cognitive development and
behavioral adaptation. In RL, the agent’s ability to experiment, receive feedback,
and adjust its actions accordingly is critical. This mirrors the way a child learns to
walk or an animal learns to survive in its environment. It also differs from other
types of machine learning in the need to balance exploration and exploitation of
information. Our agents need to make the decisions that they know will maximize
their reward, but to do so, they must first explore the different types of actions
available to learn which ones are best. In other words, they must balance the
“exploitation” of information they already know with the “exploration” of new
information. Moreover, these agents cannot focus on either of these processes
without ultimately being detrimental to the task at hand: they must perform a
variety of actions while progressively focusing on those that are most beneficial.

1.1.2 Historical introduction to Reinforcement Learning

The history of reinforcement learning (RL) is a tapestry woven from two distinct
threads: optimal control and behavioral (trial-and-error) learning. Understanding
this evolution provides insight into RL’s unique position in the Machine Learning
landscape.

The concept of optimal control emerged in the 1950s, focusing on the design
of controllers to optimize the behavior of dynamical systems. A key figure in
this field was Richard Bellman, who in 1957 introduced the concept of a value
function or “optimal return function”, later known as the Bellman equation, to
represent the state of a dynamical system. This equation laid the foundation for
dynamic programming [1] andMarkov Decision Processes (MDPs) [2], foundational

2

1.1. Overview of Reinforcement Learning and MDPs

elements in RL. The latter will be further developed in the following subsection.
Despite the challenge of the “curse of dimensionality”, where the problem

complexity grows exponentially with the number of states, dynamic programming
remains an important approach for solving general stochastic optimal control
problems. The integration of dynamic programming with learning paradigms
became well-defined in the late 1980s, highlighted by Watkins’ pioneering work on
reinforcement learning using the MDP formalism [3].

Simultaneously, the field of behavioral learning, based in trial-and-error meth-
ods, was developing. Edward Thorndike’s “Law of Effect” [4], a principle that
states that actions leading to satisfying states are likely to be repeated, was an
early cornerstone. Influencing various learning theories and experimental methods,
such as Skinner’s [5], Thorndike’s work laid the groundwork for future research in
behavioral learning.

In the 1940s, Alan Turing’s notion of a “pleasure-pain system” [6] paralleled
Thorndike’s ideas and foreshadowed modern RL concepts. In the 1960s, however,
the focus in AI shifted to supervised learning, causing a temporary decline in trial-
and-error research. Notable exceptions included Marvin Minsky’s [7] discussions
of issues relevant to trial-and-error learning, and the development of “learning
automata” approaches [8], analogous to the k-armed bandit problem, by analogy
to a slot machine, except with k levers instead of one.

Harry Klopf’s works [9, 10, 11] in the 1970s reinvigorated interest in trial-and-
error learning by emphasizing the need for algorithms to guide their environment
toward desired outcomes. This perspective helped to delineate the differences
between supervised and reinforcement learning.

The concept of temporal difference (TD) learning emerged as a unifying force
between the two strands of optimal control and behavioral learning. Its origins can
be traced back to animal learning psychology, specifically the idea of secondary
reinforcers. Secondary reinforcers are stimuli that, when associated with primary
reinforcers, acquire the ability to produce similar effects.

Temporal difference learning was first proposed by Arthur Samuel [12] in 1959
as part of his checker playing program. Following Samuel’s initial contributions,
research in TD learning experienced a period of reduced activity until the 1980s,
when Harry Klopf’s work [13] brought renewed attention to TD methods and set
the stage for significant developments.

In the late 1970s and 1980s, Richard S. Sutton and AndrewG. Barto [14] extended
Klopf’s theories into a psychological model of classical conditioning based on TD
learning. Their work led to the development of the actor-critic architecture, which
combines TD and trial-and-error learning, as seen in its application to the pole-
balancing problem [15]. TD was finally formalized in Sutton’s 1988 paper [16],
which introduced the TD(λ) algorithm and some of its convergence properties.

The convergence of temporal difference learning and optimal control was fully

3

1. Introduction

realized in 1992 with the development of Q-learning by Christopher Watkins [17].
This represented a major milestone in the history of RL, combining the strengths of
dynamic programming with the principles of trial-and-error learning. Paul Werbos
[18] also contributed significantly to this integration, arguing for the convergence
of trial-and-error learning and dynamic programming. His arguments further
solidified the foundation of RL as an interdisciplinary field, synthesizing concepts
from control theory, psychology, and computer science.

The integration of function approximation methods, especially neural networks
[19], in the 1990s and 2000s marked another leap forward. This integration ad-
dressed the challenge of scalability in RL, allowing the application of RL algorithms
to problems with large or continuous state spaces. The seminal paper “Playing
Atari with Deep Reinforcement Learning” by Mnih et al. in 2013 [20] exemplified
this advancement, demonstrating the potential of combining deep learning with
RL.

In recent years, RL has made remarkable progress, driven by advances in com-
putational power, algorithmic efficiency, and cross-disciplinary integration. The
field has expanded beyond its traditional domains, finding applications in areas
such as robotics, healthcare, finance, and autonomous systems [21, 22, 23]. The
development of algorithms capable of handling complex, real-world environments
with high-dimensional data is a major focus of contemporary research.

Current trends also include the exploration of multi-agent RL [24, 25, 26], where
the presence of multiple learners introduces new challenges and dynamics. The
interplay between RL and other areas of machine learning, such as unsupervised
and supervised learning, is another growing area of interest, leading to more robust
and versatile learning models.

1.1.3 An introduction to Markov Decision Processes

A Markov Decision Process (MDP) is a fundamental concept in reinforcement
learning that provides a formal mathematical framework for modeling decision
making in environments with stochastic outcomes that are influenced by the actions
of a decision maker. The MDP concept, introduced by Richard Bellman [2], has
been essential in the study and development of RL algorithms.

At its core, an MDP is a stochastic control process, which means that it models
scenarios where events unfold overtime, with randomness playing a significant
role in the progression of these events. This framework is particularly well-suited
for decision-making situations where outcomes are partly under the control of a
decision maker (such as an RL agent) and partly random.

The theoretical foundation of MDPs is rooted in the concept of Markov chains,
named after the Russian mathematician Andrey Markov [27]. A Markov chain is a
stochastic model that describes a sequence of possible events, where the probability
of each event depends only on the state reached in the previous event.

4

1.2. Significance and Applications of RL in MDPs

Two types of Markov chains can be distinguished: discrete-time Markov chains
(DTMC) and continuous-timeMarkov chains (CTMC). Discrete-time chains perform
discrete transitions at regular time intervals, while continuous-time chains can
perform transitions at any continuous time. The key property of Markov chains,
and by extensionMDPs, is theMarkov property or “memorylessness”. This property
implies that future states of the process depend only on the current state, not on the
sequence of events that preceded it, and therefore predictions made with knowledge
of the previous state are as good as those made with knowledge of all previous
states. This can be thought of as a system where “what happens next depends only
on the current state of affairs”.

In an MDP, at each time step the system is in a particular state s, and the
decision maker has the option of choosing an action a from those available in that
state. The system responds to this action by transitioning to a new state s′ at the
next time step. This transition is not necessarily deterministic, but probabilistic
with a transition probability P (s′|s, a), which is influenced by the chosen action.
Along with this transition, the decision maker receives a reward R(s, a), which
represents the immediate payoff of performing the action in this state.

In the context of RL, MDPs provide a structured way to formalize the interaction
between an agent (decision maker) and its environment. They provide a clear
framework for defining the agent’s goals (maximizing cumulative rewards), the
challenges it faces (dealing with stochastic outcomes), and the strategies it must
develop (learning optimal actions in given states).

MDPs are central to many RL algorithms, providing the mathematical founda-
tion for the learning process. Whether an agent is navigating a maze, playing a
game, or managing resources, the MDP framework helps formalize the problem in
a way that facilitates the application of RL techniques.

1.2 Significance and Applications of RL in MDPs

Markov Decision Processes (MDPs) provide a powerful framework for modeling
decision-making in environments where outcomes are influenced by both random-
ness and the actions of a decision-maker. The significance of Reinforcement Learn-
ing (RL) in solving MDPs, especially when the parameters of these processes—such
as transition probabilities and reward functions—are unknown, cannot be over-
stated. RL’s ability to learn and optimize in uncertain and dynamic environments
makes it a critical tool for navigating the complexities inherent in MDPs.

One of the fundamental challenges in applying MDPs to real-world problems
is the lack of complete knowledge about the environment. In many scenarios, the
decision-maker does not have access to the transition probabilities that dictate
how the environment will respond to its actions, nor does it know the reward
function that evaluates the outcomes of its decisions. This is where RL shines,
offering methodologies for the agent to learn these unknown parameters through

5

1. Introduction

iterative interaction with the environment: the agent performs an action, observes
the resulting state and the reward obtained, and updates its knowledge of the MDP
based on this experience, learning to predict the consequences of its actions. This
allows the RL agent to learn an optimal policy: a strategy that dictates the best
action to perform in each state to maximize such rewards in the long run.

Consider, for example, a navigation problemwhere a robot is tasked with finding
the shortest path to a goal in a maze. The maze can be modeled as an MDP, where
each location is a state, and moving from one location to another is an action. The
transition probabilities (the likelihood of moving successfully from one state to
another) and the reward function (which can be modeled as the immediate cost or
benefit of moving to a new state) are initially unknown to the robot. As the robot
explores the maze, it learns from each movement’s success or failure, gradually
building an understanding of the maze’s layout (system’s dynamics such as the
transition probabilities and the state whole state space) and the consequences of its
actions (the rewards). Through reinforcement learning, the robot develops a policy
that efficiently guides it to the goal, minimizing the total travel time or distance.

Another illustrative example is in the domain of healthcare, where treatment
strategies can be modeled as MDPs. Here, states could represent different health
conditions of a patient, actions could correspond to various treatment options,
and rewards could be based on treatment outcomes. Given the complexity and
uncertainty of human health, transition probabilities (how a patient’s condition
will change following a treatment) and reward functions (the effectiveness of
treatments) are often unknown or highly uncertain. RL can be employed to learn
optimal treatment policies by iteratively experimenting with different treatment
strategies and observing patient outcomes, thereby learning to maximize patient
health over time.

The management of renewable resources, such as a fishery, is a further useful
example. Here, the states could represent the size of the fish population, the ac-
tions could be different levels of fishing effort, and the rewards could reflect the
balance between immediate profit from fishing and the long-term sustainability
of the fishery. The transition probabilities, which indicate how the fish popula-
tion evolves in response to fishing efforts, are initially unknown and potentially
complex, influenced by numerous environmental factors. By applying RL, a policy
can be developed that optimizes the long-term yield of the fishery, ensuring its
sustainability while maximizing profits. Through trial and error, the RL agent
learns which fishing efforts lead to sustainable practices, effectively managing the
resource without explicit knowledge of the biological dynamics at play.

In the financial sector, portfolio management can also be framed as an MDP
problem, where the states represent different market conditions, actions are in-
vestment choices, and rewards are financial returns. The stochastic nature of
financial markets means that both the transition probabilities (how market con-
ditions evolve) and reward functions (returns on investments) are uncertain and
dynamic. RL techniques can learn from historical data to predict market trends and

6

1.3. Thesis Objective and Scope

develop investment strategies that maximize long-term returns, adapting to new
information as it becomes available.

Through its capacity to learn from interaction and adapt to changing environ-
ments, RL empowers decision-makers to tackle a wide array of complex, dynamic
problems.

1.3 Thesis Objective and Scope

The previous examples illustrate the broad applicability of Reinforcement Learning
(RL) for solving Markov Decision Processes (MDPs) in various domains. However,
although RL has shown remarkable success in many applications, in most cases
this has been achieved by using huge amounts of data and computational resources.
This thesis aims to explore the complex realm of Markov Decision Processes (MDPs),
with a special focus on multi-armed bandit processes, restless multi-armed bandit
problems, and weakly coupled MDPs with continuous actions. These specialized
MDPs represent critical areas of research within the broader field of reinforcement
learning, and offer unique opportunities to obtain more efficient RL algorithms by
exploiting the specific structure of these problems.

Chapter 2 will provide a detailed introduction to MDPs and multi-armed bandit
processes. Among these, restless multi-armed bandit problems and Weakly Cou-
pled MDPs stand out for their practical importance. These problems exemplify
situations where there are multiple MDPs that, while not necessarily interacting
with each other, share resources from which they can perform actions, leading
to situations where an action in a given MDP affect the available actions in the
other. These environments not only evolve influenced by the agent actions but also
independently, increasing the complexity of devising optimal strategies.

Chapter 3 focuses on the application of classical Reinforcement Learning algo-
rithms such as Q-learning and SARSA to MDPs, as well as Neural Networks and
Deep Reinforcement Learning. These algorithms provide a solid foundation for
understanding the challenges presented by these problems, and the basis for the
algorithms proposed in this thesis.

The contributions of this thesis are divided into two major sections: In Chapter
4, we will explore the models for Restless Multi-Armed Bandit Problems introduced
in detail in Section 2.2.3, starting with the QWI (Section 4.1), first introduced in
[28] and later expanded in [29], and QWINN [29] (Section 4.2) algorithms, along
with an analysis of their numerical results (Section 4.3), including the description
of the environments employed, metrics and comparison.

In Chapter 5 wewill focus onmodels forWeakly CoupledMDPswith continuous
actions, introduced in 2.2.4. In this section we will introduce LPCA [30], a learning
algorithm to solve theseWeakly coupledMDPswith continuous actions (section 5.2).
We will compare the approach of both types of heuristics to these types of problems
and show experimental results along with descriptions of the environments used

7

1. Introduction

and evaluation metrics (section 5.3).
Finally, we will give a summary of the contributions and results of this thesis

(section 6), along with challenges and areas for further research.

8

Chapter2

Background and Literature Review

2.1 Fundamentals of Markov Decision Processes

2.1.1 Markov Processes
As we have seen in section 1.1.3, Markov Decision Processes (MDPs) serve as a
foundational framework in reinforcement learning, offering a formal description of
environments where decision-making under uncertainty is central. At the heart of
this framework lies the concept of Markov processes, also known as Markov chains.
Through the following sections, we will explore the fundamental principles of
Markov processes and Markov Reward Processes, and Markov Decision Processes.
A more detailed explanation of these concepts can be found in [31].

A Markov process characterizes an environment that is fully observable, where
the current state encapsulates all the necessary information to describe the process
at any given time. This feature simplifies the decision-making landscape, as there
is no need to consider the previous history of states to predict the future. Instead,
the present state offers all the information from the environment, making past
states irrelevant for future decision-making. This principle is present in most
reinforcement learning problems, allowing them to be formalized as MDPs.

This is the defining characteristic of a Markov process, the Markov property,
which can be succinctly captured by the statement, “The future is independent of
the past given the present”. Mathematically, this property is expressed as

P (st+1|st) = P (st+1|s1, . . . , st),

indicating that the probability of transitioning to the next state st+1 depends
solely on the current state st and not on the sequence of states that preceded it. This
property implies that the state is Markovian, embodying all relevant information
from the history of the process. Once the state is known, the history leading up to
that state can effectively be discarded, as it offers no additional predictive power
regarding future states.

9

2. Background and Literature Review

The transition between states in a Markov process is quantified by transition
probabilities. For a transition from state s to state s′, the probability is denoted as
Pss′ = P (St+1 = s′|St = s). These transition probabilities are organized into a
transition matrix P , with each element Pij representing the probability of moving
from state i to state j. This matrix is structured as follows:

P =

P11 . . . P1n
...
Pn1 . . . Pnn

One of the key properties of this matrix is that each row sums to 1, reflecting the
certainty that the process will transition from the current state to some state in the
next time step.

A Markov process, in essence, is a memoryless random process, a sequence of
random states s1, s2, . . . that adhere to the Markov Property. Formally it is defined
by the tuple ⟨S, P ⟩, where:

• State space S : The set of all possible states or the state space. The state of
the system at time t is denoted as s(t).

• Transition probability matrix P : The transition probability matrix that
governs the dynamics of the process. Each element Pss′ = EP (St+1 =
s′|St = s) represents the probability of transitioning from state s to state s′.

2.1.2 Markov Reward Processes
Expanding on the foundational concept of Markov chains, the introduction of
Markov Reward Processes (MRPs) incorporates the crucial element of value into
the equation, transforming the basic structure of Markov chains by adding rewards
to the transitions between states. An MRP is defined by the tuple ⟨S, P, R⟩, where:

• State space S : The set of all possible states, representing the environment’s
observable states. The state of the system at time t is denoted as s(t).

• Transition probability matrix P : The transition probability matrix, with
Pss′ = EP (St+1 = s′|St = s) indicating the probability of transitioning from
state s to state s′.

• Reward function R: The reward function, Ri = E[Rt+1|St = s], defining
the expected reward received when transitioning from state s.

Definition 2.1. The return Gt is the total accumulated reward from time step t
onwards.

This concept introduces different optimality criteria for evaluating the performance
of policies within this framework:

10

2.1. Fundamentals of Markov Decision Processes

• Expected total reward: Defined as the sum of the expected rewards from
time step t onwards:

G = lim
tmax→∞

E

[
tmax−1∑
t=0

Rt

]
.

This criterion, however, can lead to infinite returns, as the sum of rewards
can diverge [32].

• Expected average total reward: Defined as the averaged sum of the ex-
pected rewards from time step t onwards:

G = lim
tmax→∞

E

[
1

tmax

tmax−1∑
t=0

Rt

]
.

• Expected total discounted reward: Defined as the sum of the expected
discounted rewards from time step t onwards:

G = lim
tmax→∞

E

[
tmax−1∑
t=0

γtRt

]
,

where γ ∈ [0, 1) [33].

We will focus our discussion on the expected total discounted reward. This
criterion prioritizes immediate rewards over delayed rewards, introducing a factor
γ, known as the discount factor, which modulates the importance of future rewards.
A γ close to 0 leads to a myopic evaluation, emphasizing immediate rewards,
while a γ close to 1 enables a far-sighted evaluation, valuing future rewards more
significantly.

The use of discounted rewards is justified by several reasons. First, it avoids
the problem of potentially infinite rewards. Secondly, it can model the uncertainty
regarding the continuation of the environment at the next decision instant, making
it particularly relevant in scenarios where the decision horizon is uncertain. Lastly,
in fields like finance, immediate rewards can be more valuable as they can earn
interest over time. This approach mirrors the observed behavior in animals and
humans, who often show a preference for immediate rewards over delayed ones.

Definition 2.2. The state value function V (s) of an MRP is defined as the expected
return starting from state s:

V (s) = E[Gt|St = s].

This value function represents the long-term value of being in state s. The value
function can be decomposed into two parts: the immediate reward Rt+1 and the

11

2. Background and Literature Review

discounted value of the successor state γV (St+1).

V (s) =E[Gt|St = s]

=E[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s]

=E[Rt+1 + γ(Rt+2 + γRt+3 + · · ·)|St = s]

=E[Rt+1 + γGt+1|St = s]

=E[Rt+1 + γV (St+1)|St = s]

This decomposition leads to the Bellman Equation [34], which facilitates an
intuitive understanding of the value function as a balance between immediate
reward and the anticipated future benefits, encapsulated in the equation V (s) =
R(s) + γ

∑
s′∈S Pss′V (s′).

Given full knowledge of the reward function and the transition probability
matrix, the Bellman equation can be expressed in matrix form and solved directly:

V =R + γPV

(I − γP)V =R

V =(I − γP)−1R

(2.1)

However, this computational approach has a complexity of O(n3) for n states,
showing the challenge in solving these problems for large state spaces.

2.1.3 Markov Decision Processes
Markov Decision Processes (MDPs) extend the Markov Reward Processes (MRPs)
framework by incorporating decisions into the model, effectively turning it into a
comprehensive tool for decision-making under uncertainty. An MDP is defined as
a tuple ⟨S,A, P, R⟩, where:

• State space S : The set of all possible states, representing the environment’s
observable states. The state of the system at time t is denoted as s(t).

• Action space A: The set of all possible actions, representing the decisions
that can be made by the agent. The action taken at time t is denoted as a(t).

• Transition probability matrix P : The transition probability matrix, with
P a
ss′ = EP (St+1 = s′|St = s, At = a) indicating the probability of transi-

tioning from state s to state s′ under action a.

• Reward function R: The reward function, Ra
s = E[Rt+1|St = s, At = a],

defining the expected reward received when taking action a in state s.

Central to an MDP is the concept of a policy π, a distribution over actions given
states, defined as π(a|s) = P (At = a|St = s). The policy dictates the behavior

12

2.1. Fundamentals of Markov Decision Processes

of the reinforcement learning (RL) agent, prescribing a specific action or set of
actions to be taken in each state. Importantly, MDP policies are dependent solely
on the current state, reflecting the Markov property’s emphasis on the sufficiency
of present information for decision-making.

Definition 2.3. The state-value function Vπ(s) of an MDP is defined as the expected
return starting from state s and following policy π:

Vπ(s) = Eπ[Gt|St = s]. (2.2)

Definition 2.4. The action-value function Qπ(s, a) of an MDP is defined as the
expected return starting from state s, taking action a, and thereafter following policy
π:

Qπ(s, a) = Eπ[Gt|St = s, At = a]. (2.3)

Both Vπ(s) andQπ(s, a) can be decomposed to reflect the immediate plus future
rewards, represented by the discounted value of the successor state:

Vπ(s) = Eπ[Rt+1 + γVπ(St+1)|St = s] (2.4)

Qπ(s, a) = Eπ[Rt+1 + γQπ(St+1, At+1)|St = s, At = a] (2.5)

These equations can be rewritten in terms of the transition probability matrix
P and policy function π:

Vπ(s) =
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S

P a
ss′Vπ(s

′)

)

Qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′

∑
a′∈A

π(a′|s′)Qπ(s
′, a′)

Lastly, they can be expressed as functions of each other:

Vπ(s) =
∑
a∈A

π(a|s)Qπ(s, a)

Qπ(s, a) = Ra
s + γ

∑
s′∈S

P a
ss′Vπ(s

′)

Definition 2.5. The optimal state-value function V ∗(s) is defined as the maximum
value function over all policies:

V ∗(s) = max
π

Vπ(s).

Definition 2.6. The optimal action-value function Q∗(s, a) is defined as the maxi-
mum action-value function over all policies:

Q∗(s, a) = max
π

Qπ(s, a).

13

2. Background and Literature Review

These functions identify the best possible performance attainable from any state
or state-action pair under the best policy. Given a partial ordering over the policies
π ≥ π′ if Vπ(s) ≥ Vπ′(s),∀s ∈ S, these value functions can be learned through
iterative methods, such as value iteration or policy iteration, which iteratively
update the value functions until convergence to the optimal V ∗(s) and Q∗(s, a)
is reached, or through learning methods such as Q-learning or SARSA, further
introduced in Section 3.1.

Theorem 2.1. For any MDP, there exists an optimal policy π∗ that is better or equal
to all other policies, π∗ ≥ π,∀π.

All optimal policies achieve an optimal value function Vπ∗(s) = V ∗(s) and an
optimal action-value function Qπ∗(s, a) = Q∗(s, a).

The optimal policy can be found by maximizing over Q∗(s, a):

π∗(a|s) =

{
1 if a = argmaxa∈AQ

∗(s, a)

0 otherwise

However, due to the Bellman optimality equation’s non-linearity, this process
lacks a closed-form solution. This challenge has motivated the development of
iterative solution methods, such as value iteration, policy iteration, Q-learning [17],
and SARSA [35], each offering a pathway through the intricate landscape of MDPs
towards optimal decision-making.

2.2 Multi-Armed Bandit Problems

2.2.1 Introduction To Multi-Armed Bandits

The multi-armed bandit (MAB) problem is a classic paradigm in the field of rein-
forcement learning and decision theory, originally described by Thompson [36]
and further developed by Herbert Robbins [37] in 1952. This statistical decision
model represents the dilemma faced by an agent attempting to make a series of
decisions in an environment where it must simultaneously optimize its choices and
gather information to inform future decisions. The metaphor of a gambler choosing
which arm of a set of slot machines (or “bandits”) to play captures the essence of
the problem: each arm represents a different competing project or option, with its
own distinct distribution of returns.

A core characteristic of the MAB problem is that the distribution of rewards
from any given arm is influenced only when that arm is chosen. This means the
outcomes from playing one arm are independent of the rewards obtained from
other arms, isolating the impact of each decision to the specific context in which it
is made. This property simplifies the decision-making process to a series of isolated
choices, each with potentially different risks and rewards.

14

2.2. Multi-Armed Bandit Problems

The relevance of MAB models extends far beyond theoretical exploration, find-
ing practical application in scenarios such as clinical trials. In this example, the
goal is to experiment with different treatments while minimizing patient risk and
maximizing therapeutic outcomes. Each “arm” in this context represents a different
treatment path, and the challenge lies in navigating the trade-off between exploring
new treatments and exploiting known effective ones.

MAB models are fundamentally concerned with the optimal allocation of effort
over time across a collection of projects or choices that change state randomly,
depending on engagement. The activation rule is that at each discrete decision
epoch, exactly one project must be selected, where each project is capable of being
in one of a finite number of states. Projects not engaged maintain their states
unchanged or frozen, obtaining no rewards under passivity: the challenge lies
in activating projects in a manner that maximizes the total expected discounted
reward over an infinite horizon.

After Thompson’s [36] introduction of the problem, early academic exploration
of MAB problems by Robbins [37], Bellman [38], and others laid the groundwork
for a rich body of research. A significant milestone in the MAB problem was
achieved by John C. Gittins, who introduced the concept of the priority-index
rule [39], whereby an index is computed for each arm and each state, making the
policy to activate the arm with the highest current index at each decision epoch.
This approach was groundbreaking, offering a tractable solution to what was once
considered an intractable challenge.

However, for more complex MAB extensions, the Gittins heuristic is not optimal.
An example of this is when incorporating costs or delays when switching between
projects, as is the case studied in [40].

2.2.2 MAB Model Formulation

In this sectionwe present theMDP formulation and the concepts of theMulti-Armed
Bandit problem.

In this model, an agent is tasked with allocating effort among a collection of N
projects or arms, each characterized by its unique state space Si and modeled as a
Markov decision process. At each decision epoch t, for project i, a decision ai(t)
is made at state si(t) to either engage the project (ai(t) = 1) or remain passive
(ai(t) = 0). Engagement results in an immediate reward Ri(si) and a potential
state transition to s′i, whereas passivity yields no reward and no state change.

The objective is formalized as maximizing the expected sum of discounted
rewards over an infinite horizon:

maxE

[
∞∑
t=0

γtR(s(t), a(t))

]
(2.6)

15

2. Background and Literature Review

The standard MDP formulation for the MAB problem is defined by the tuple
⟨S,A,P,R, N⟩, where:

• State space S : The combined state space of all projects, defined as the
Cartesian product S = S1 × S2 × · · · × SN , where Si, 1 ≤ i ≤ N is the
state space of project i. The state of the system at time t is denoted as
s(t) = (s1(t), s2(t), . . . , sN(t)), with si(t) the state of project i at time t.

• Action space A: The set of available actions at each decision epoch, defined
as

A =

{
a = (a1, . . . , aN) :

N∑
i=1

ai = 1, ai ∈ {0, 1}

}
,

where a(t) = (a1(t), a2(t), . . . , aN(t)) is the action vector at time t, with
ai(t) the action for project i at time t. Under action ai = 1, bandit i is active,
while under ai = 0, it remains passive.

• Transition probabilities P: Whenever a bandit i is active with action
ai = 1, it evolves according to its transition probability matrix:

P (si(t+ 1) = s′|si(t) = s, ai(t) = 1) = P 1
i (s, s

′), s, s′ ∈ Si

whereas for the passive bandits with ai = 0, it remains in state s:

P (si(t+ 1) = s|si(t) = s, ai(t) = 0) = P 0
i (s, s

′), s, s′ ∈ Si

with

P 0
i (s, s

′) =

{
1 if s = s′

0 otherwise

Under the whole system representation with s ∈ S and action a ∈ A, the
transition probability matrix is given by:

Pa
s,s′ =

N∏
i=1

P ai
i (si, s

′
i),∀s, s′ ∈ S, a ∈ A

We define P as the collection of transition matrices Pa, P = {Pa
s,s′ : s, s

′ ∈
S, a ∈ A}, where Pa

s,s′ represents the probability of transitioning from state
s to state s′ under action a.

• Reward functionR: The reward function is defined as the expected reward
received when transitioning from state s to state s′ under action a. It is
bounded and stationary and defined as Ri : Si × Ai → R for all i. Given
an active transition from state si(t) = s to si(t + 1) = s′, occurs on arm i
at time t, a discounted reward γtRi(s, a) is obtained. Passive arms yield no
reward.

16

2.2. Multi-Armed Bandit Problems

• Number of projects N : The number of MDPs or projects, each with its
unique state space Si.

The optimal value function V (s) represents the maximum expected return
achievable from any initial state s, governed by the optimality equations:

V (s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P a
s,s′V (s′)|

N∑
i=1

ai = 1

}
, s ∈ S (2.7)

However, this formulation faces the curse of dimensionality, as the problem size
grows exponentially with the number of projects, making, for a long time, this
problem intractable.

A pivotal solution to this challenge is characterized by a dynamic allocation
index, or Gittins index, defined for each state of each project. For any state si ∈ Si,
the index λi(si) is defined as:

λi(si) = sup
τ>0

{
E[
∑τ−1

t=0 γ
tR(si(t))]

E
∑τ−1

t=0 γ
t

}
(2.8)

where τ is a stopping time that satisfies:

τ(si) = min{t : λi(si(t)) < λ(si)} (2.9)

An important property of the Gittins index is that the supremum in (2.8) is
achieved by (2.9) [39]:

Theory 2.1. The supremum of (2.8) is achieved by (2.9). It is also achieved by any
stopping time σ that satisfies:

σ ≤ τ(s) and λ(s(σ)) ≤ λ(s) (2.10)

Thus, the optimal index policy is to select the project with the highest index at
each decision step.

Theory 2.2. There exists functions λi(si(t)), 1 ≤ i ≤ N such that for any state s(t)
the policy π∗ which will activate the bandit processm(t) = iwhich satisfies λ(si(t)) =
max1≤j≤N λj(sj(t)) is optimal. The function λi(·), 1 ≤ i ≤ N is calculated from the
dynamics of process i alone.

This approach simplifies the decision-making process by reducing the complex
MAB problem to the computation of individual project indices λ(s), which reflect
the optimal reward rate attainable from each project when starting from its initial
state si(0) = s.

17

2. Background and Literature Review

Whittle’s dynamic programming analysis [41] on the Gittins indices further
expanded on Gittins’ analysis by introducing an alternative arm, or “standard
arm”, that never changes state and provides a fixed reward. Whittle considered a
modification of the multi-armed bandit project i, in which passivity is subsidized
with a constant amount λ, so that Ri(s, 0) = λ. This leads to the optimal value
function for a single-project sub-problem:

Vi(s, λ) = max

{
Ri(s) + γ

∑
s′∈Si

Pi(s, s
′)Vi(s

′, λ);λ+ γVi(s, λ)

}
, s ∈ Si (2.11)

As λ varies from −∞ to∞, the set of states where the optimal action is the
passive one increases monotonically from the empty set to the full set of the state
space, with the Gittins Index emerging as the critical breakpoint: the unique value
of λ that makes optimal both, the active and passive actions in state s.

2.2.3 Restless Multi-Armed Bandit Problems
The restless multi-armed bandit (RMAB) problem introduces a significant departure
from the classical multi-armed bandit (MAB) framework studied in sections 2.2.1
and 2.2.2 by changing one of its core assumptions: that projects or arms remain in
a static, frozen state when not engaged. This limitation restricts the applicability of
the traditional MAB model to a broad array of real-world problems, where passive
projects may evolve independently of active engagement, thus necessitating a more
dynamic approach to decision-making.

Whittle [42] showcased this complexity with examples where projects continue
to change states even in passivity. One classical example given by Whittle [42]:

. . . suppose m aircraft are trying to track the positions of n enemy
submarines, wherem < n, so that aircraft must change task from time
to time if all submarines are to bemonitored... The problem is to allocate
this surveillance... While a submarine is under observation, information
on its position... is being gained. While it is not, information is usually
being lost, because the submarine will certainly be taking unpredictable
evasive action.

Another example can be seen in deadline scheduling problems. In these sce-
narios, tasks or jobs must be completed by specific deadlines to avoid penalties or
maximize rewards. The challenge lies in dynamically allocating limited resources
to various tasks whose states can evolve over time, even when not actively worked
on.

To address these challenges, in this subsection we will consider the case where
M out of N projects must be selected for operation at each decision epoch. Unlike

18

2.2. Multi-Armed Bandit Problems

the traditional MAB model, both active and passive projects in RMAB evolve
according to their respective transition rules with their corresponding transition
probability matrices. This model is formalized as an infinite-horizon discounted
criterion problem with a Markov Decision Process (MDP) represented by the tuple
⟨S,A,P,R, N,M⟩.

• State space S : The combined state space of all projects, defined as the
Cartesian product S = S1 × S2 × · · · × SN , where Si, 1 ≤ i ≤ N is the
state space of project i. The state of the system at time t is denoted as
s(t) = (s1(t), s2(t), . . . , sN(t)), with si(t) the state of project i at time t.

• Action space A: The set of available actions at each decision epoch, defined
as the set of all possible combinations of M active projects out of the N
available,

(
N
M

)
, with an action space defined as:

A =

{
a = (a1, . . . , aN)|

N∑
i=1

ai =M,ai ∈ {0, 1}

}
(2.12)

where a(t) = (a1(t), a2(t), . . . , aN(t)) is the action vector at time t, with ai(t)
the action for project i at time t. Under action ai = 1, bandit i is active, while
under ai = 0, it remains passive. Under equation (2.12), onlyM projects can
be active at each decision epoch while the remainingN −M projects remain
passive.

• Transition probabilities P: Consider an action a taken at time t that
satisfies equation (2.12). For ai(t) = 1, the bandit i evolves according to its
transition probability matrix:

P (si(t+ 1) = s′|si(t) = s, ai(t) = 1) = P 1
i (s, s

′), s, s′ ∈ Si,

whereas for the passive bandits with ai(t) = 0, it transitions with probability
matrix:

P (si(t+ 1) = s|si(t) = s, ai(t) = 0) = P 0
i (s, s

′), s, s′ ∈ Si.

The N bandits evolve independently, and the transition probability matrix
for the whole system is given by:

Pa
s,s′ =

N∏
i=1

P ai
i (si, s

′
i),∀s, s′ ∈ S, a ∈ A.

• Reward functionR: The reward function is defined as the expected reward
received when transitioning from state s to state s′ under action a. It is
bounded and stationary and defined as Ri : Si × Ai → R for all i. For any
transition from s to s′ in bandit i, 1 ≤ i ≤ N , the discounted reward obtained
is γtRi(s, a).

19

2. Background and Literature Review

• Number of projects N : The number of MDPs or projects, each with its
unique state space Si.

• Number of active projectsM : The number of projects that can be active
at each decision epoch.

The goal is to maximize the expected sum of discounted rewards over an infinite
horizon, given the constraint that exactlyM projects must be active at each decision
epoch. We can, thus, define the optimal value function V (s) for this process,
evaluated at s ∈ S , as the maximal expected discounted reward from the initial
state s, encapsulated by:

V (s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

Pa
s,s′V (s′)|

N∑
i=1

ai =M

)
, s ∈ S (2.13)

Considering a simplified scenario where M = 1 and passive actions do not
alter the state nor yield rewards, we revert to the classical MAB framework from
sections 2.2.1 and 2.2.2.

Building on Gittins [39] optimal policy for the Rested bandits, Whittle [42] pro-
posed a heuristic based on indexability for RMAB problems, utilizing a Lagrangian
relaxation to approximate the original problem’s solution. In section 2.3 we will
examine this Lagrangian relaxation in more detail and how it can evolve into
heuristics for the Multi-Armed Bandits from sections 2.2.1 and 2.2.2, the Restless
Multi-Armed Bandits and even Weakly Coupled MDPs from section 2.2.4.

Whittle’s approach generalizes Gittins indices, adapting them to the restless
context where both active and passive states evolve.

Indexability and the resulting Whittle indices are properties of the individual
bandits. Hence, we will temporarily isolate an individual bandit and drop the bandit
identifier i. In Whittle analysis, this bandit generates an MDP parametrized by a
passive subsidy W ∈ R. The W -subsidy problem bandit is defined by the tuple
⟨S,A, P,R⟩, where:

• State space S: The state space of the bandit.

• Action space A: The action space of the bandit, which can take either action
a = 1 (active) or a = 0 (passive).

• Transition probabilities P : If action a = 1 is chosen at time t and the
bandit is in state s, it evolves according to its transition probability matrix:

P (s(t+ 1) = s′|s(t) = s, a(t) = 1) = P 1(s, s′), s, s′ ∈ S,

whereas for the passive bandit with a = 0, the transition probability matrix
is:

P (s(t+ 1) = s|s(t) = s, a(t) = 0) = P 0(s, s′), s, s′ ∈ S.

20

2.2. Multi-Armed Bandit Problems

We define P as the collection of passive and active transition matrices P 0

and P 1, P = {P 0, P 1}.

• Reward function R: The reward function is defined as the expected reward
received when transitioning from state s to state s′ under action a. Under
action a = 1 at time t, the discounted reward γtR(s, 1) is earned. On the
other hand, under action a = 0, at time t the discounted reward becomes
γt(R(s, 0) +W), whereW is the passive subsidy.

ThisW -subsidy problem redefines the value function V (s,W) for each state s
as:

V (s,W) = max

{
R(s, 1) + γ

∑
s′∈S

P 1(s, s′)V (s′,W);

R(s, 0) +W + γ
∑
s′∈S

P 0(s, s′)V (s′,W)

} (2.14)

In this system, the active action will be optimal if the first term of the value
function (2.14) is greater than the second term. Otherwise, the passive action will
be the optimal one.

We define Π(W) as the set of states where passive action is optimal under
subsidyW . This set grows monotonically asW increases if the bandit is indexable.

Definition 2.7. A bandit ⟨S,A, P,R⟩ is indexable if Π(W) is increasing inW :

W1 < W2 =⇒ Π(W1) ⊆ Π(W2).

A restless bandit is indexable when each of its individual bandits is indexable.

Indexability implies that a bandit’s preference for passive action expands with
the level of subsidy. Even though this might seem natural, this requirement is
typically challenging to establish and sometimes fails to hold.

Definition 2.8. If a bandit ⟨S,A, P,R⟩ is indexable, the Whittle indexW (s) for each
state s is defined as the minimal subsidy level at which passivity becomes optimal:

W (s) = inf{W : s ∈ Π(W)}, s ∈ S.

Given the boundedness of the reward function, the Whittle index is guaranteed
to exist and be finite for all states. The value ofW (s) reflects a fair subsidy that
makes the passive action as attractive as the active one.

In practice, the Whittle index heuristic advocates for activating theM bandits
with the highest current indicesWi(si(t)) at each time t, making the other N −M
bandits to passivity.

21

2. Background and Literature Review

2.2.4 Weakly Coupled MDP with Continuous Action Spaces
The exploration of Weakly Coupled Markov Decision Processes (MDPs) involve
an extension of Restless Multi-Armed Bandit Problems (RMABPs) binary decision
problems, where the action space can take not only values outside the range
A ∈ {0, 1}N but continuous values in an action space A ∈ [0, amax]

N .
These problems are characterized by being composed of multiple sub Markov

Decision Processes, each with independent state spaces, action spaces, and reward
and transition probability functions. However, these processes are in turn coupled
together by a constraint on the resource distribution: in each process i, with an
action ai and a state si, there is a cost associated with that action in that state
C(si, ai) which is subtracted from the available resources B in that decision epoch.
Formally, a Weakly Coupled MDP can be described as a tuple ⟨S,A,P,R,C, N,B⟩
where:

• State space S : The combined state space of all projects, defined as the
Cartesian product S = S1 × S2 × · · · × SN , where Si, 1 ≤ i ≤ N is the
state space of project i. The state of the system at time t is denoted as
s(t) = (s1(t), s2(t), . . . , sN(t)), with si(t) the state of project i at time t.

• Activation cost C: The cost of acting on each project i at each state si with
an action ai. It is bounded and stationary and defined as Ci : Si × Ai → R+

for all processes i.

• Action space A: The set of available actions at each decision epoch, defined
as the set of all possible combinations of actions that satisfy the resource
constraint. The action space is defined as:

A =

{
a = (a1, . . . , aN)|

N∑
i=1

C(si, ai) ≤ B, ai ∈ [0, amax]

}
, (2.15)

where a(t) = (a1(t), a2(t), . . . , aN(t)) is the action vector at time t, with
ai(t) the action for project i at time t. The resource constraint is defined as
the sum of the costs of the actions taken at each decision epoch being less
than or equal to the available resources B.

• Transition probabilities P: Consider an action a taken at time t that
satisfies equation (2.15). For each process i, with an action ai(t), its MDP
evolves according to its transition probability matrix:

P (si(t+ 1) = s′|si(t) = s, ai(t) = a) = P a
i (s, s

′), s, s′ ∈ Si, a ∈ Ai,

The N MDPs evolve independently and the transition probability matrix for
the whole system is given by:

Pa
s,s′ =

N∏
i=1

P ai
i (si, s

′
i),∀s, s′ ∈ S, a ∈ A.

22

2.3. Lagrange relaxation

• Reward functionR: The reward function is defined as the expected reward
received when transitioning from state s to state s′ under action a. It is
bounded and stationary and defined as Ri : Si × Ai → R for all i. For
any transition from s to s′ in process i, 1 ≤ i ≤ N , the discounted reward
obtained is γtRi(s, a).

• Number of projects N : The number of MDPs or projects, each with its
unique state space Si.

• Available resources B: The amount of resources available at each decision
epoch. This variable is key in defining the action space A and the resource
constraint defined in equation (2.15).

We can define the expected value function V (s) for this process, evaluated at
s ∈ S , as the maximal expected discounted reward from the initial state s that
follows the constraint action space defined in equation (2.15):

V (s) = max
a∈A

(
R(s, a) + γE[V (s′)|s, a]|

N∑
i=1

C(si, ai) ≤ B

)
,

s ∈ S, ai ∈ [0, amax],∀i ∈ {1, . . . , N}
(2.16)

Restless Multi-Armed Bandit Problems characterized by a binary action space
in each of their MDPs, are therefore a particular case of Weakly Coupled MDPs,
where the activation cost of each process is the binary action performed in that
process, C(si, ai) = ai, ai ∈ {0, 1}, ∀i ∈ {1, . . . , N}, and the available resources
B are the number of armsM to be activated in each decision epoch.

2.3 Lagrange relaxation
In the preceding sections, we explored the Multi-Armed Bandit problems (MAB),
detailed in section 2.2.2, the Restless Multi-Armed Bandit Problems (RMAB) in
section 2.2.3, and analyzed Weakly Coupled Markov Decision Processes (MDPs)
with continuous action spaces as outlined in section 2.2.4. These frameworks
collectively address scenarios involving multiple MDPs that are interconnected by
constraints on the available action space. Specifically, the MAB framework restricts
the activation to only one among N arms, whereas the RMAB scenario permits
activatingM out of N arms. The Weakly Coupled MDP framework extends these
concepts further by introducing a generalized cost function C(si, ai) that operates
over a set of resources B at each decision step.

A commonality among these models is the presence of N independent projects,
each generating rewards and undergoing state transitions independently. This in-
dependence allows for the decomposition of the overarching problem into smaller,
more manageable subproblems through the use of Lagrange multipliers. Conse-
quently, a complex N -dimensional problem is transformed into N simpler one-
dimensional subproblems.

23

2. Background and Literature Review

In the following subsection, we aim to briefly present the seminal work of
Hawkins [43], which shows the application of Lagrangian relaxation within Weakly
Coupled MDPs and its subsequent applicability to MAB and RMAB contexts.

Consider the Weakly Coupled MDP represented as ⟨S,A,P,R,C, N,B⟩ from
section 2.2.4, along with its associated Bellman equation (2.16). The original for-
mulation of this problem is generally considered intractable. To address these, we
introduce a Lagrange Multiplier λ, applied uniformly across all states s ∈ S , which
effectively incorporates the constraint directly into the optimization problem:

Ṽ (s, λ) = max
a∈A

(R(s, a) + γE[V (s′)|s, a] + λ(C(s, a)−B)) , (2.17)

Here, Ṽ (s, λ) approximates the true value function V (s), denoted in equation
(2.16). Subsequently, we define:

L(s, λ) = max
N∑
i=1

(Ri(si, ai)− λC(si, ai)) + γE[L(s′, λ)|si, ai] (2.18)

This formulation maintains the transition probabilities and reward functions of
the original value function (2.16) leading us to:

L(s, λ) =
N∑
i=1

Li(si, λ) + λB
1

1− γ
, (2.19)

and,

Li(si, λ) = max
ai∈Ai

{Ri(si, ai)− λC(si, ai) + γE[Li(s
′
i, λ)|si, ai]} . (2.20)

This analysis reveals that L(s, λ) can be decomposed into N independent max-
imization tasks, each significantly smaller than the original problem, yet intercon-
nected through the λ multiplier.

Given L(s) = minλ≥0 L(s, λ), we establish that:

• L(s) ≥ V (s), a result derived from standard Lagrangian theory [44], under-
scoring foundational principles beyond the scope of this thesis.

• L(s, λ) is convex and piecewise linear with respect to λ.

These insights facilitate the formulation of a new problem formulation, wherein
future constraints are relaxed, allowing decisions within each subproblem to solely
influence the state and cost associated with that particular subproblem.

24

2.3. Lagrange relaxation

One notable challenge in solving equation (2.16) in its original form is estimating
the termE[V (s′)|s, a]. The framework of Lagrangian relaxation offers an estimation
of this term:

E[V (s′)|s, a] ≤ E[L(s′, λ)|s, a] =
N∑
i=1

E[Li(s
′
i, λ)|si, ai] + λB

1

1− γ
, (2.21)

where Li(s
′
i, λ) corresponds to equation (2.20). This leads us to define a new

policy:

a(s, λ) = argmax

{
N∑
i=1

(Ri(si, ai) + γE[Li(si, λ)|si, ai])|
N∑
i=1

C(si, ai) ≤ B

}
,

(2.22)
Where the term λB 1

1−γ
is omitted in this formulation as it does not influence

the decision-making process a(s, λ).
In his exploration of Lagrangian relaxation, Hawkins [43] examines various

methodologies for determining the optimal value of the Lagrange multiplier, λ,
including setting it as λ = 0, which can be interpreted as ignoring future constraints,
and setting λ as the argmin of the Lagrange function of equation (2.19), as well as
its computation through integer optimization and piecewise approximations. In
this summary, we will focus on setting λ as the argmin of the Lagrange function,
which offers a structured approach to approximating the expected value function
E[V (s′)|s, a].

A key step in this approach is to focus on computing E [minλ≥0 L(s
′, λ)|s, a].

This calculation is essential for approximating the expected value function, yet it is
not decomposable as it depends on the state variable s′, which in turn is dependent
on decision a. To decouple this constraint, we select a static λ, specifically, a λ that
resolves the dual problem of (2.18). This is formalized as follows:

min L(s, λ)

s.t. λ ≥ 0
(2.23)

In this context, λ∗ represents the minimizing Lagrange multiplier, serving as
an approximate solution to E [minλ≥0 L(s

′, λ)|s, a]. This choice of λ∗ is key in
redefining the feasible policy from (2.22) as:

a(s, λ∗) = argmax

{
N∑
i=1

(Ri(si, ai) + γE[Li(si, λ
∗)|si, ai])|

N∑
i=1

C(si, ai) ≤ B

}
.

(2.24)

25

2. Background and Literature Review

To further improve the decision-making framework, we introduce a decision
set for each state and action pair as:

Di(si, λ) = argmax
ai∈A

Li(si, λ). (2.25)

Consequently, let D(s, λ) = (D1(s1, λ), . . . , DN(sN , λ)) represent the com-
prehensive decision set across all MDPs. The ensuing policy involves solving the
optimization problem:

min
N∑
i=1

C(si, Di(si, λ))λ

s.t.

N∑
i=1

C(si, Di(si, λ)) ≤ B

λ ≥ 0

(2.26)

And subsequently setting a = D(s, λ).
Looking ahead, we will now examine the setting of C(si, ai) = 1 whenever

ai = 1. This leads us to the derivation of the Gittins index policy, which is optimal
for the Multi-Armed Bandit Problem, and the Whittle index policy, which offers a
near-optimal solution for the Restless Multi-Armed Bandit problem.

However, it is important to acknowledge that constraints within this framework
can be nonlinear, complicating the minimization of C(s, a)λ.

2.3.1 Lagrangian relaxation for Multi-Armed Bandit
Problems

In the context of Multi-Armed Bandit (MAB) problems, the framework introduced
in this section takes on a new form. A key consideration of the MAB problem is that
the controller is permitted to select only one arm (or bandit) to activate at any given
time, while the rest remain passive. We can adapt the MAB value function provided
in (2.7) by redefining the constraint as

∑N
i=1C(si, ai) = 1. Here, the cost function

is defined such that C(s, a) = a for all states s ∈ S and actions a ∈ {0, 1}. In this
way, in each decision epoch, the controller is only able to activate one arm, and the
cost of activating that arm is 1. Equations (2.19) and (2.20) are then redefined as:

L(s, λ) =
N∑
i=1

Li(si, λ) +
λ

1− γ
,

where
Li(si, λ) = max

ai∈{0,1}
{Ri(si, ai)− λai + γE[Li(s

′
i, λ)|si, ai]} .

26

2.3. Lagrange relaxation

A notable difference in this setting with respect to the general Weakly Coupled
MDP is the definition of the constraint with an equality rather than an inequality.
This alteration permits the Lagrange multiplier, λ, to assume negative values.

Consider the functions:

F 0
i (si, λ) = Ri(si, 0) + γE[Li(si, λ)|si, ai = 0]

F 1
i (si, λ) = Ri(si, 1)− λ+ γE[Li(si, λ)|si, ai = 1]

(2.27)

The decision set defined in (2.25) is redefined as:

Di(si, λ) =

{
1 if F 1

i (si, λ) ≥ F 0
i (si, λ)

0 otherwise
(2.28)

This implies that if the Lagrangian value function for the active action, as
defined in equation (2.20), exceeds that of the passive action, then Di(si, λ) is set
to 1, and 0 otherwise.

Given the Gittins index equation (2.8), Hawkins [43] proposed the following
theorem:

Theorem 2.2. For a given state s, let λ(1) = maxi λi(si) represent the first order
statistic, and λ(2) denote the second order statistic λ(2) = maxi:λi(si)<λ(1)

λi(si). As-
suming λ(2) < λ(1), the following behavior is observed:

N∑
i=1

Di(si, λ)

= 0 for λ > λ(1)

= 1 for λ(2) < λ ≤ λ(1)

≥ 2 for λ ≤ λ(2)

(2.29)

Furthermore, it is optimal for λ(2) < λ ≤ λ(1) to set ai = Di(si, λ) for i =
1, . . . , N .

This theorem indicates that within a specific range of λ values, it is optimal to
set u = D(s, λ). This range aligns with the constraints defined the Gittins index
policy, which was previously identified as optimal for the MAB problem (section
2.2.2).

Therefore, the overarching goal in this setting is to find a λ value that, when
applied to (2.28) for all MDPs i ∈ 1, . . . , N , results in the activation of a singular
arm.

2.3.2 Lagrangian relaxation for Restless Multi-Armed Bandit
Problems

In this section we will adapt the terms developed for the Lagrangian relaxation
for multi-armed bandit from the section 2.3.1 for the Restless problem. Unlike the

27

2. Background and Literature Review

conventional Multi-Armed Bandit scenario, where the decision revolves around
activating a single arm, the RMAB framework complicates the decision-making
process by requiring the activation ofM out of N available arms at any given time,
as is shown in the constraints for the value function (2.13).

Given this new constraint, equations (2.19) and (2.20) become:

L(s, λ) =
N∑
i=1

Li(si, λ) + λ
B

1− γ

where:

Li(si, λ) = max
ai∈{0,1}

{Ri(si, ai)− λai + γE[Li(s
′
i, λ)|si, ai]} .

As in section 2.3.1, the use of an equality in the constraint instead of an inequality
allows us to consider negative values for λ.

Given equation (2.27), the decision set becomes analogous to that defined in
(2.28). The divergence in the RMAB scenario lies in selecting a specific value of
λ that ensures exactly M bandits are activated. This can be represented by the
requirement to find a λ for which the decision function Di(si, λ) = 1 applies to
preciselyM bandits, that is, the selection ofM arms based on the criterion that
F 1
i (si, λ) ≥ F 0

i (si, λ) for those selected bandits.

2.4 Gittins and Whittle index computation
In the previous sections, we have introduced Lagrangian relaxation techniques ap-
plied to weakly coupledMarkov decision processes (MDPs) and restless multi-armed
bandit problems (RMABPs). These explorations highlighted how the relaxation
methods simplify the complexity of managing multiple linked MDPs by decompos-
ing them into more tractable subproblems. Building on this foundation, we now
shift our focus to the numerical computation of Whittle indices for RMABPs. In
particular, the algorithm presented in [45] provides a method for computing these
indices in the context of RMABPs with binary action sets.

Given full knowledge of the transition probabilities, reward function, and cost
function, which in the RMAB framework is C(si, ai) = ai, we can define the
expected value and expected cost functions as:

fπ = (I − γP (s, a))−1R(s, a) (2.30)
gπ = (I − γP (s, a))−1C(s, a) (2.31)

Where γ denotes the discount factor relevant to discrete-time models, P rep-
resents the transition probability matrix, and R and C are the reward and cost

28

2.4. Gittins and Whittle index computation

functions, respectively, associated with a given vector of states and actions s, a.
These quantities can be formally expressed as expected values as:

fπ = Eπ

[
∞∑
t=0

γtR(s(t), a(t))

]
(2.32)

gπ = Eπ

[
∞∑
t=0

γtC(s(t), a(t))

]
(2.33)

respectively, where R(s(t), a(t)) and C(s(t), a(t)) denote the reward and cost
functions for the states and actions in a given time t. With these definitions, the
optimization problem is defined as

max
π

[fπ − λgπ]. (2.34)

The core of the approach in [45] lies in splitting the state space into two distinct
subsets: S0, the set of passive states, and S , the full state space, where S0 ⊂ S . If
λ in (2.34) is too large, the objective prioritizes minimizing gπ, which effectively
leads to the scenario where S0 = S .

Niño-Mora presents the concept of the marginal work measure, denoted as

wπ
i = gπi − g

π0
i = C(si, 1)− C(si, 0) + γ

∑
j∈S

(
P 1
ij − P 0

ij

)
gπ0
j . (2.35)

This measure captures the incremental cost associated with transitioning from
a passive to an active state and adopting the previous π0 policy afterward. Similarly,
the marginal reward measure is defined, expressing the difference in rewards by
the expression

rπi = fπ
i − f

π0
i = R(si, 1)−R(si, 0) + γ

∑
j∈S

(
P 1
ij − P 0

ij

)
fπ0
j . (2.36)

The decision criterion revolves around the comparison of marginal productivity
measures,

λπi =
rπi
wπ

i

, (2.37)

when wπ
i ̸= 0. This ratio provides a quantitative evaluation of the efficiency

of activating an arm, balancing the trade-off between additional rewards and the
costs incurred.

In an extension of the work initiated by [45], [46] broadens the scope to ac-
commodate multi-action scenarios, incorporating a more diverse set of actions
a = {0, 1, 2, . . . , aM}.

29

2. Background and Literature Review

Weber’smethodology divides the state space into a series of subsetsS0,S1, . . . ,SM−1

alongwithS . Within this structure, for each state s spanning the subsets {S0,S1, . . . ,SM−1},
Weber formulates the index

λ
Sj ,Sj+1

i =
f
⟨ji+1,Sj⟩
i − f ⟨ji,Sj⟩

i

g
⟨ji+1,Sj⟩
i − g⟨ji,Sj⟩

i

, (2.38)

where ji denotes the action taken in state i.
This formulation defines the marginal productivity associated with increasing

the action a = ji by one unit for state i, in the context of transitioning from policy
Sj and maintaining that policy.

With an action set encompassing aM possible actions over |S| distinct states,
the resulting framework requires the computation of (aM − 1)|S| indices.

Weber’s approach involves a systematic progression of each state through the
set of subsets, starting at S0.

30

Chapter3

Reinforcement Learning

Algorithms

In the previous chapter, we explored the basic frameworks of Markov decision
processes (MDPs), restless multi-armed bandit (RMAB) problems and weakly cou-
pled MDPs. These models are essential for formalizing decision processes in which
actions taken in uncertain environments affect future states and associated rewards.
However, a common challenge in these scenarios is the lack of complete informa-
tion about the system dynamics. This information is often either partially known
or completely unknown. In such cases, reinforcement learning (RL) techniques
provide a powerful framework for learning optimal policies through interaction
with the environment.

Reinforcement Learning (RL) has emerged as a powerful set of techniques to
address these challenges. RL does not require explicit knowledge of the underly-
ing model; instead, it focuses on learning optimal policies through trial and error,
interacting directly with the environment to maximize cumulative rewards. This
approach is not only applicable to RMABPs and weakly coupled MDPs, but also
extends to a wide range of problems in diverse domains, including robotics, auto-
mated control, and economics, where decision agents must learn to make sequences
of decisions under uncertainty.

This chapter introduces some RL techniques, such as tabular Q-learning and
SARSA (section 3.1), which are fundamental for dealing with environments where
the state and action spaces are sufficiently small to allow for a table-based approach.
In addition, we discuss how function approximators (section 3.2), specially neural
networks (section 3.2.1), are integrated into RL, providing the means to handle
larger, high-dimensional state spaces by approximating the value functions and
policies needed to effectively navigate more complex decision environments. Using
these techniques, we can develop robust policies that maximize rewards.

31

3. Reinforcement Learning Algorithms

3.1 Tabular Q-learning and SARSA

The Q-learning algorithm is a fundamental reinforcement learning technique. It
serves as the basis for the computation of the Q-values introduced in equations
(2.3) and (2.5), which represent the expected utility of taking a specific action in a
given state and following a given policy thereafter.

Q-learning, introduced in [17], aims to determine the Q-values associated with
state-action pairs by iteratively updating these values based on the observed transi-
tions. Within each decision epoch t, the agent observes a transition (s(t), a(t), r(t), s(t+
1)) that encapsulates the current state s(t), the action taken a(t), the reward re-
ceived r(t), and the following state s(t+ 1).

Q-learning is a model-free and value-based algorithm, which enables learning
the value functions using the observed transitions without prior knowledge of
the environment’s transition and reward dynamics. Model-based algorithms, in
contrast, require a priori knowledge of the environment’s dynamics, whereas policy-
based algorithms directly learn the optimal policy without estimating the value
function.

It is characterized as well by its off-policy nature, which means that it evaluates
and improves a policy that is different from the one used during the data collection
process. Being off-policy allows the algorithm to learn from a wider range of
experiences beyond the actions taken by the current policy, by decoupling the
exploration and exploitation strategies. The algorithm’s decoupling is evident in
several key aspects: First, Q-learning typically employs an exploration-focused
strategy, such as the ϵ greedy policy, during the training phase. This strategy dictates
that the agent chooses the action with the highest Q-value with probability 1− ϵ
and a random action with probability ϵ. This approach facilitates the exploration of
the action space and ensures that the agent does not prematurely converge to a
suboptimal policy by always exploiting the currently known best actions. Second,
the computation of expected future rewards in Q-learning explicitly reflects its
off-policy nature: Q-learning estimates future rewards based on the assumption
that the optimal action will be taken thereafter.

In tabular Q-learning, the agent initializes a Q-table, a comprehensive matrix
correlating every possible state-action pair with a value. This table is the agent’s
evolving knowledge base, guiding decision-making processes as it learns.

Initially, a higher ϵ encourages exploration to gain a broad understanding of
the environment. As learning progresses, ϵ is gradually reduced to focus more on
exploiting known information to optimize actions according to the Q-table.

When an action is executed, the environment transitions and provides new
data (s(t), a(t), r(t), s(t+ 1)). The Q-table is updated with this new information,
refining the agent’s understanding and strategy. The update mechanism uses
temporal difference error and incorporates immediate rewards, discounted future
rewards, and existing Q-values to adjust estimates:

32

3.2. Function Approximation

Qn+1(s(t), a(t))←Qn(s(t), a(t))+

α(t)
(
r(t) + γmax

v
Q(s(t+ 1), v)−Q(s(t), a(t))

)
,

(3.1)

where α is the learning rate, that needs to satisfy
∑∞

t=0 α(t)→∞,
∑∞

t=0 α
2(t) <

∞, γ is the discount factor defined in 0 ≤ γ < 1, and v denotes the possible actions
in the subsequent state s(t+ 1).

This method differs from the SARSA (“State-Action-Reward-State-Action”) al-
gorithm, introduced as a technical note in [35] and renamed by Richard Sutton,
which is an on-policy algorithm. In SARSA, the policy used in training is the final
policy, which not only includes the exploration method used, but also affects the
future rewards used to calculate these Q-values:

Qn+1(s(t), a(t))←Qn(s(t), a(t))+

α(t) (r(t) + γQ(s(t+ 1), a(t+ 1))−Q(s(t), a(t))) ,
(3.2)

where the future expected rewards Q(s(t + 1), a(t + 1)) (marked in red in
Equation (3.2)) use the current policy future actions a(t+ 1), which might lead to
a suboptimal action given an exploration strategy.

3.2 Function Approximation
In tabular frameworks such as Q-learning and SARSA, each state and action in the
environment must be visited frequently enough to accurately estimate the value
functions. This requirement can become prohibitively expensive in environments
with large or continuous state spaces, where the number of possible states and
actions can be large or infinite. As a result, achieving sufficient sampling of all
state-action pairs to learn effective policies becomes computationally infeasible.

Function approximators provide a powerful solution to this challenge by provid-
ing generalization across similar states. Rather than storing and updating a value
for each individual state-action pair, function approximators allow the agent to
infer values for unvisited states based on the properties and outcomes of states
that have been explored. This capability not only reduces the dimensionality and
complexity of the learning problem, but also increases the efficiency and scalability
of reinforcement learning algorithms. Using techniques such as neural networks,
linear regression, or decision trees, these approximators can effectively capture
the essential characteristics of the environment’s dynamics, enabling robust policy
learning even in complex scenarios with large or unbounded state spaces.

There are many models of function approximation, all of which are suitable for
different types of problems and applications. Linear models, for example, assume
a linear relationship between input features and target outputs. They provide a

33

3. Reinforcement Learning Algorithms

level of simplicity and ease of interpretation that is valuable in scenarios where
such a relationship is the dominant one. Neural networks, on the other hand, are
extremely well suited for dealing with more dynamic environments, thanks to
their remarkable flexibility and ability to capture complex, nonlinear relationships.
Decision trees provide an intuitive, hierarchical way to navigate through choices
by organizing decisions and their potential outcomes into a tree. Building on this
concept, random forests extend the decision tree model by merging multiple trees to
increase the accuracy of the prediction and reduce the risk of over-fitting through
the principles of ensemble learning. Kernel methods, including support vector
machines (SVMs) with nonlinear kernels, excel at implicitly mapping input features
into higher-dimensional spaces. This allows modeling of nonlinear relationships
without direct computation in these expanded dimensions. Gaussian processes excel
at not only providing predictions, but also assessing the uncertainty surrounding
those predictions by introducing a probabilistic lens to function approximation.
This feature is particularly valuable for making informed decisions under conditions
of uncertainty.

Within the reinforcement learning context, function approximators are instru-
mental across several domains:

• Value Function Approximation aims at estimating the value of states or
state/action pairs to guide decision making.

• Policy Approximation involves the direct estimation of policies, making a
probabilistic mapping of actions given a state.

• Model Approximation focuses on capturing the dynamics of the envi-
ronment, predicting subsequent states and rewards from current states and
actions.

3.2.1 Neural Networks and its application in RL
Neural networks, first introduced by [47], represent a paradigm shift in computa-
tional approaches. They are inspired by the biological neural networks observed
in animal brains. These models excel at pattern recognition and decision-making,
especially in tasks involving complex input-output relationships. Their ability to
learn from data allows them to tackle a wide range of challenges that are intractable
by traditional computational methods.

The architecture of a neural network consists of a series of interconnected
nodes, called artificial neurons or units. These units are systematically organized
into distinct layers:

• At the core of these layers are the neurons, the basic processing units of
the network. Each neuron computes a weighted sum of its inputs, adds a
bias, and then passes this sum through an activation function to produce an
output.

34

3.2. Function Approximation

• Weights and biases are the learnable parameters of the network. Weights
adjust the strength of connections between neurons, while biases shift the
activation function.

• The activation function introduces nonlinearity into the network, allowing
it to capture complex patterns. Commonly used activation functions include
sigmoid, tanh, ReLU (Rectified Linear Unit), and softmax, with ReLU being
the most widely used.

• The input layer receives the raw input data, with each neuron within this
layer representing a specific feature of the input.

• Hidden Layers lie between the input and output layers and perform most of
the computational processing and feature transformation. A neural network
can have one or more hidden layers, each containing any number of neurons.

• The output layer provides the final output of the network. The configura-
tion of this layer is tailored to the task at hand, whether it is classification,
regression, or some other form of decision making.

Neural networks work through a process known as forward propagation. In
this process, input data passes through the network from the input layer to the
output layer. At each neuron, the inputs from the previous layer (or the original
input data for the first layer) are multiplied by the neuron’s weights, summed, and
then adjusted by a bias term.

z(l) = W(l)a(l−1) + b(l)

for layer l, where a(l−1) is the input vector to layer l with dimension (nl−1 × 1),
andW (l) and b(l) are the weights and bias, being a matrix with size (nl × nl−1) and
a vector of size (nl× 1) respectively. The result of this linear transformation, z(l), is
then passed through an activation function g(·) applied element-wise to the vector
z(l), leading to the output

a(l) = g(z(l))

The loss function quantifies the discrepancy between the network’s predictions
and the actual target values. Common choices include mean squared error (MSE)
for regression and cross-entropy for classification. The equation for the MSE is

L =
1

N

N∑
i=1

(yi − ŷi)2

where L is the loss value, N is the number of samples, yi is the actual target value,
and ŷi is the predicted value. The equation for the cross-entropy loss is

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

35

3. Reinforcement Learning Algorithms

where yi is the actual target value (0 or 1), and ŷi is the predicted probability of the
positive class.

Backpropagation, introduced in [48], is the mechanism by which the network
updates its parameters. It involves calculating the gradient of the loss function with
respect to each parameter (weights and biases), and propagating these gradients
back through the network to inform updates. This is accomplished by applying the
chain rule of calculus, starting with the output layer and working backwards.

1. Initialization of Gradient Calculation at the Output Layer: The process
begins by calculating the gradient of the loss function with respect to the
activations of the output layer. This is mathematically represented as:

δ(L) =
∂L

∂a(L)
g′(z(L))

where δ(L) denotes the gradient of the loss with respect to the output activa-
tion a(L) at layer L, and g′(·) is the derivative of the activation function.

2. Backward Propagation of the Gradient: With the gradient at the output
layer computed, the next step involves propagating this gradient backward
through the network to compute the gradients with respect to the activations
of each preceding layer. For each layer l = L− 1, L− 2, . . . , 1, the gradient
δ(l) is calculated using the gradient from the subsequent layer (l + 1) as:

δ(l) = ((W (l+1))T δ(l+1))g′(z(l)).

This equation determines the gradient at layer l by considering the effect of
the gradient at layer (l + 1) and the derivative of the activation function at
layer l.

3. Calculation of the Gradients with Respect toWeights and Biases: With
the gradients of the loss with respect to the activations computed, the next
step involves determining how the loss changes with respect to the weights
and biases. The gradients are given by:

∂L

∂W (l)
= δ(l)(a(l−1))T

and
∂L

∂b(l)
= δ(l)

These equations compute the gradients of the loss function with respect to
the weights and biases at layer l.

4. Update of Weights and Biases using Gradient Descent: The final step
involves updating the weights and biases using the gradients computed in the
previous step. This is achieved through an iterative optimization algorithm,

36

3.2. Function Approximation

typically gradient descent or one of its variants, which incrementally adjusts
the parameters to minimize the loss. The update equations are given by:

W (l) = W (l) − α ∂L

∂W (l)

and
b(l) = b(l) − α ∂L

∂b(l)

where α is the learning rate, a hyperparameter that controls the size of the
update steps.

More recently, the Adam optimizer [49] has gained popularity for its adaptive
learning rate mechanism, which adjusts the learning rate for each parameter based
on the first and second moments of the gradients. This optimizer is known for its
effectiveness in adjusting neural network parameters through an adaptive learning
rate mechanism. The process is performed in the following steps:

1. Gradient Computation: First, the gradient of the loss function with respect
to the neural network parameters is computed. This gradient, denoted as
gt = ∇θL(θ), for each parameter θ, provides the direction in which the
parameters should be adjusted to minimize the loss.

2. Moment Updating: Adam distinguishes itself by tracking two moments
for each parameter, the first moment (mean) mt and the second moment
(uncentered variance) vt. These moments are updated in the following way:

mt = β1mt−1 + (1− β1)gt,
vt = β2vt−1 + (1− β2)g2t ,

(3.3)

where β1 and β2 are hyperparameters that control the exponential decay
rates of these moving averages, generally set close to 1. This dual-moment
mechanism allows Adam to adaptively adjust learning rates based on both
the first and second order moments of the gradients.

3. Bias Correction: One of Adam’s features is its implementation of bias
correction for both moments. This step is critical in the early stages of
training when the moments may be biased towards zero, potentially slowing
down the learning process. The corrected moments are calculated as

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,
(3.4)

where t represents the current timestep. These bias-corrected moments m̂t

and v̂t provide more accurate estimates for adjusting the parameters.

37

3. Reinforcement Learning Algorithms

4. Parameter Update: Once the gradients and corrected moments are com-
puted, the parameters are updated using an adaptive learning rate specific to
each parameter. This update is governed by the equation:

θt+1 = θt −
η√
v̂t + ϵ

m̂t, (3.5)

where η signifies the learning rate and ϵ is a small scalar (e.g., 10−8) added to
enhance numerical stability. This update rule ensures that each parameter is
adjusted based on its own historical gradient information.

There are a variety of architectures and types of neural networks, each for
different types of problems. Among them, the following types stand out:

• FeedforwardNeural Networks (FNN) represent the simplest form of neural
networks [50], where connections between the nodes do not form cycles. This
straightforward architecture allows for a clear, directed flow of information
from input to output layers, making FNNs particularly suited for a wide range
of prediction and classification tasks.

• Convolutional Neural Networks (CNN), introduced in [51], have proven
to be extremely effective for tasks involving image data. Using convolutional
layers, CNNs can capture spatial features, making them indispensable in
areas such as image recognition and computer vision.

• Recurrent Neural Networks (RNN) are designed to handle sequential data,
such as time series, speech, or text. They were first introduced [52], and
their unique architecture, which allows connections to form cycles, enables
RNNs to maintain a form of memory of previous inputs. This feature makes
them well suited for applications that require an understanding of temporal
dynamics.

• Deep Neural Networks (DNN) are characterized by their multiple hidden
layers, which enable them to learn complex patterns within the data. The
term was popularized by [53] and [54]. The depth of these networks is a key
factor in their ability to model highly complex relationships.

• Generative Adversarial Networks (GAN), first introduced in [55], consist
of two competing networks: a generator that creates data instances and a
discriminator that evaluates them. This setup allows GANs to generate new
data instances that mimic the training data, finding applications in areas such
as image generation and style transfer.

Deep Q-Networks (DQN) represent a significant advance in reinforcement
learning, combining the classical tabular Q-learning algorithm with the power of
deep neural networks. Introduced by [20], DQNs achieved remarkable success in

38

3.2. Function Approximation

mastering Atari 2600 games, often outperforming human players. By processing
the state of the environment as input and outputting the predicted Q-values for
each possible action, DQNs effectively manage high-dimensional state spaces.

These algorithms use several key components, which together contribute to the
robustness and effectiveness of DQNs in learning optimal policies. The experience
replay is fundamental, using a replay buffer to record the experiences of the agent,
represented as tuples of ⟨s, a, r, s′⟩. This method allows training on random batches
of past experiences, significantly improving learning efficiency and stability by
breaking the temporal correlation of successive samples.

Another key feature of the DQN architecture is the implementation of Q-targets,
which involves the use of a secondary network specifically tasked with generating
Q-values for updating targets within the Bellman equation. The purpose of these
networks is critical for stabilizing the learning dynamics, as it mitigates the risk of
rapid shifts in Q-value estimates that could potentially derail the learning process.
The weights of this target network are periodically updated to reflect those of
the main network, either by replacing the parameters of the secondary network
with those from the main network, or using a soft update formula: θtarget ←
τθmain + (1− τ)θtarget, ensuring a gradual and controlled update.

Finally, the choice of the loss function in DQNs, typically the Mean Squared
Error (MSE), is critical for quantifying learning performance. The MSE calculates
themean squared difference between the predicted Q-values and the target Q-values,
MSE = 1

N

∑
(Q(s, a)−Q′(s, a))2, providing a clear metric of the accuracy of the

network’s performance relative to the expected results. This loss function is critical
in guiding the optimization process, allowing prediction errors to be systematically
reduced through successive training iterations.

To further improve the performance of the basic Deep Q-Network (DQN) frame-
work, several modifications have been introduced. Prioritized Experience Replay
[56] improves learning efficiency by giving higher priority to more informative
experiences within the replay buffer, particularly emphasizing rare or underused
samples during training. In addition, Dueling DQN [57] refines the architecture by
making a clear distinction between the values of states and the benefits conferred
by each action. This separation enhances the algorithm’s ability to learn effectively,
especially in scenarios where the choice between actions does not significantly
change the outcome.

39

Chapter4

Discrete Action Models in RMABP

This chapter focuses on the development and analysis of algorithms for the Restless
Multi-Armed Bandit (RMAB) problem, a complex extension of the traditional multi-
armed bandit framework. Consider the RMAB problem described in Section 2.2.3,
denoted as ⟨S,A,P,R, N,M⟩, which extends the MAB problem where each of
the N arms, indexed by i = 1, . . . , N , has its own state space Si with size |Si|. The
coupled state space S is defined as S = S1 × S2 × · · · × SN with size |S|. At each
time step t, an arm is in state si(t), upon which an action ai(t) ∈ {0, 1} is taken,
resulting in a reward Ri(si(t), ai(t)). The transition probabilities for active and
passive arms are given by P 1(s(t + 1), s(t)) and P 0(s(t + 1), s(t)), respectively.
From the N available arms, onlyM can be set with ai(t) = 1, while the remaining
M −N arms are kept passive with ai(t) = 0.

Our objective is to identify a control policy π that activates those M arms
at each decision epoch to maximize the expected cumulative discounted reward,
formalized as:

V (s) = max
π

E

[
∞∑
t=0

N∑
i=1

γtR(si(t), ai(t))

]

s.t.
N∑
i=1

ai =M,

si(t) ∈ Si, ai ∈ Ai = {0, 1}, and t ≥ 0,

(4.1)

as discussed in Section 2.2.3, using a discount factor γ where γ is de discount
factor defined in 0 < γ < 1 (see Section 2.1.2).

To approach this problem, we build on Whittle’s insight [42], which suggests
a relaxation of the problem through Lagrangian relaxation, leading to a modified
objective:

V ′(s1, . . . , sN) = max
π′

E

[
∞∑
t=0

N∑
i=1

γ (Ri(si(t), ai(t)) + λ(1− ai(t)))

]
(4.2)

41

4. Discrete Action Models in RMABP

This relaxation introduces a subsidy for passivity λ, implicitly encouraging the
selection of the passive action in more states as λ increases.

The key of solving the RMAB problem lies then in decomposing it into individual
problems for each arm i, using the associated Bellman equation:

Vi(si) = max
a∈{0,1}

Qi(si, a) (4.3)

where Qi(si, a) is defined as:

Qi(si, a) = a

(
Ri(si, 1) + γ

∑
j∈Si

P 1
i (j, s)Vi(j)

)
+

(1− a)

(
Ri(si, 0) + λ+ γ

∑
j∈Si

P 0
i (j, s)Vi(j)

) (4.4)

The Whittle index for a state s is defined for the choice between activating and not
activating an arm is indifferent, i.e.,

λ(s) : Q(s, 1)−Q(s, 0) = 0. (4.5)

One of the properties of the RMAB problem is its generalization of the MAB
problem: whenM = 1, and the reward and transition probabilities for the passive
state are null, the RMAB problem reduces to the classical MAB problem. Further-
more, the Whittle index generalizes to the Gittins index for this case, which is a
well-known optimal heuristic for the MAB problem [39].

This introduction provides the framework for the presentation of two discrete-
action algorithms developed during this thesis: the QWI (Q-Learning for Whittle
Index) and QWINN (Q-Learning for Whittle Index Neural Network) algorithms,
which aim to efficiently solve the RMAB problem. In the following sections, we will
discuss these algorithms in detail, including their theoretical foundations, algorithm
design, and performance.

4.1 QWI: Tabular Learning of the Whittle Indices
The computation of Q-values (equation (4.4)) and Whittle indices (equation (4.5))
share a common dependency: the accurate estimation of Q-values is essential for
the calculation of Whittle indices, but these indices in turn influence the Q-values.
This dependency creates a cyclic link in which adjusting one parameter affects the
other, leading to instability in the learning process.

Traditional approaches to this dilemma have typically adopted a sequential
update mechanism, dedicating extended periods to refining the Q-values before
proceeding to adjust the Whittle indices based on these updated values [58, 59].

42

4.1. QWI: Tabular Learning of the Whittle Indices

Appendix A.1 provides the theoretical foundation for the QWI algorithm, which
is based on the two-timescale stochastic approximation method. This method al-
lows for the simultaneous updating of the Q-values and Whittle indices, ensuring
the convergence of both parameters. In this Section, we will follow Borkar’s [60]
analysis of multiple timescales in Markov Decision Processes (MDPs), which pro-
vides a robust framework for simultaneously updating interdependent parameters.
Borkar’s work lays the groundwork for a dual timescale stochastic approximation
method in which the Q-values and Whittle indices are updated simultaneously but
at different rates: a fast timescale for the Q-values and a slow timescale for the
Whittle indices.

In the following Section, we will present the QWI [29] algorithm design and im-
plementation, which leverages the two-timescale stochastic approximation method
to efficiently learn the Whittle indices for each arm in the RMAB problem.

4.1.1 Algorithm Design and Implementation
The Q-learning algorithm, introduced in Section 3.1, serves as the foundation for
the QWI algorithm. Building on the basic concepts of tabular Q-learning, the
QWI algorithm is designed to address the challenges posed by the RMAB problem.
The primary goal of the algorithm is to learn the Whittle indices for each arm by
decomposing the RMAB problem into its various subproblems, which are then used
to guide the decision process.

The core idea behind QWI lies in iteratively adjusting both the Whittle index
and the state-action values until convergence occurs. The Whittle index λ(x) for a
state x ∈ Si can be implicitly derived from the equilibrium condition in equation
(4.5). This is an implicit equation since the state-action function Q(·, ·) depends on
the value of the multiplier λ(x). The Whittle index is thus defined by the coupled
equations (4.4) and (4.5).

We will update Equation (4.4) to reflect the computation of the Q-values using
the specific Whittle index λ(x) instead of λ. For each arm i and each state x ∈ Si:

Qx
n+1(s(n), a(n)) =(1− α(n))Qx

n(s(n), a(n))+

α(n) ((1− a(n))(R0(s(n)) + λn(x))+

a(n)R1(s(n)) + γ max
v∈{0,1}

Qx
n(s(n+ 1), v)

) (4.6)

and
λn+1(x) = λn(x) + β(n) (Qx

n(x, 1)−Qx
n(x, 0)) , (4.7)

where s(n) is the state visited at time step n, x is a reference state for which we
want to learn theWhittle index,R0(s(n)) andR1(s(n)) are the sampled rewards for
passive and active actions, respectively, and α(n) and β(n) are learning parameters.
The superscripts x in (4.6) stand for the parametric dependence of the Q-values on
x, λ(x), where x is a fixed reference state and λ(x) is a slowly varying parameter

43

4. Discrete Action Models in RMABP

updated by (4.7). As explained in the Section A.1, the learning rates α(n) and β(n)
are chosen to satisfy the conditions for the two-timescale stochastic approximation
method, ensuring convergence of the Q-values and Whittle indices:∑
n

α(n) =∞,
∑
n

α(n)2 <∞,
∑
n

β(n) =∞,
∑
n

β(n)2 <∞ and β(n) = o(α(n)).

In our case, we use the following step sizes that meet the above-mentioned
conditions:

α(n) =
1

⌈n/5000⌉
(4.8)

β(n) =
1

1 + ⌈n log(n)/5000⌉
I{(n) mod(50) = 0} (4.9)

where β(n) is non-zero only once each 50 iterations.

Theorem 4.1. The QWI algorithm’s Whittle index estimates converge to the optimal
Whittle indices.

Proof: In Appendix A.2 we provide a proof of the convergence of the Whittle
index estimates to the optimal Whittle indices. The proof is based on the two-
timescale stochastic approximation method discussed in Section A.1.

The pseudocode implementation of QWI can be found in Algorithm 1. For
a given value of the discount parameter γ < 1 and the exploration parameter
0 ≤ ϵ ≤ 1, we initialize the N arms with random states. At each decision epoch,
denoted by n, actions are determined based on a balance between exploration and
exploitation: with a probability of 1− ϵ, the algorithm chooses a greedy strategy,
activating theM arms with the highest λn(x) values; on the other hand, with a
probability of ϵ, a random selection ofM arms is made. Once the action has been
executed, the rewards Ri(n) are collected and the resulting states si(n + 1) are
observed for each arm. The updates to both the state-action value functions and
the Whittle indices are then updated according to the equations (4.6) and (4.7).

The update process for a given arm i involves a comprehensive iteration over all
possible states within its state space Si, using each reference state x. This iterative
nature implies that the computational complexity of the QWI algorithm - quantified
as the total number of computations required for these updates - is proportional to
O(|Si|2, |A|), where the action spaceA encompasses the binary decisions 0, 1. This
method is significantly more computationally efficient than the original tabular
Q-learning application discussed in (3.1), where the MDPs are coupled and therefore
their state space size is |S| = |Si|N , leading to complexity O(|Si|N , |A|).

For the implementation of the QWI algorithm within this thesis, Python 3.10
serves as the primary programming language. Python offers versatility and exten-
sive support for scientific computing, making it an ideal choice for developing and
testing reinforcement learning algorithms.

44

4.2. QWINN: Enhancing QWI with Neural Networks

Algorithm 1 Tabular QWI Algorithm
Input: Discount parameter γ ∈ (0, 1), exploration parameter ϵ ∈ [0, 1],
Output: Whittle index matrix for all states in each arm i
Initialize s0 for all arms
for n = 1 : nend do
Define action ai(n) through ϵ-greedy policy for each arm i
Get new states si(n+1) and rewards ri(n) from states si(n) and actions ai(n)

Update learning rate α(n), β(n) as (4.8) and (4.9)
for x ∈ Si do
Update ⟨si(n), ai(n), x⟩ Q-values as (4.6) ∀i ∈ [1, N]
Update Whittle estimate for state x in each arm i as (4.7)

end for
end for

The only external library used in the implementation of the QWI algorithm is
Numpy, a library known for its powerful array manipulation and mathematical
operations. Its efficiency in handling large datasets and performing complex nu-
merical computations is crucial in facilitating the algorithm’s processing needs,
allowing for effective and efficient experimentation within the RMAB problem
space.

4.2 QWINN: Enhancing QWI with Neural
Networks

Traditional approaches to the RMAB problems require exhaustive exploration of
each state and action to converge to optimal policies. Due to this, they often fail due
to the curse of dimensionality. In particular, in RMAB scenarios, the computational
complexity escalates as O(|Si|N , |A|), where N is the number of arms involved.

The QWI algorithm represents a significant advance by reducing this complexity
to O(|Si|2, |A|), achieved by decoupling the arms via the Whittle indices. However,
this approach does not completely circumvent the challenge of comprehensive state
space exploration for individual arms. The requirement to explore the entirety of
a single arm’s state space-especially when faced with states that are infrequently
visited or exhibit significant variability in outcomes-can significantly slow the
convergence of both Q-values and, consequently, the Whittle indices.

This limitation is not unique to QWI, but is a challenge that is characteristic
of tabular methods, where the data for each pair of states and actions is isolated,
preventing the exploitation of insights across similar states or actions. To address
these challenges, function approximators, previously introduced in Section 3.2,
have emerged as powerful tools in machine learning and reinforcement learning,
among other fields, providing a means to generalize from observed data and predict

45

4. Discrete Action Models in RMABP

outcomes for unseen data points.
The development of QWINN [29], an innovative hybrid algorithm, utilizes the

integration of Feedforward Neural Networks (FNN) to compute Q-values within
the system, as introduced in Section 3.2.1, while maintaining a tabular approach for
the computation of Whittle indices. This combination leverages the strengths of
neural networks for handling the complex relationships inherent in the state-action
spaces of RMAB problems and the proven effectiveness of tabular methods for
index computation.

The neural network used in QWINN is structured with three hidden layers
of 100, 200, and 100 neurons, respectively. Each layer is connected by ReLU ac-
tivation functions, which facilitates the network’s ability to effectively capture
and model nonlinear dynamics while being highly optimized. The input to the
network is structured to incorporate two state variables: the visited state s and the
Whittle index reference state x, which refers to λ(x). Consequently, the outputs of
this neural network are the Q-values for the two possible actions, represented as
Qx

θ(s) = [Qx
θ(s, 0) Qx

θ(s, 1)].
The training process of QWINN proceeds iteratively, where at each step a set of

actions a is chosen based on the Whittle Index Heuristic, given the current states s.
In scenarios where all arms have identical properties, the transition tuple ⟨s, a, r, s′⟩
for each arm i is decomposed into individual tuples ⟨si, ai, ri, s′i⟩, each stored as
separate data in the replay buffer. When a sufficient number of samples has been
accumulated, a random batch of k transitions ⟨sj, aj, rj, s′j⟩, for j = 1, . . . , k, is
selected from this buffer for training.

To accommodate all possible reference states x ∈ Si, the algorithm prepares a
k′ = k|Si| set of transition samples ⟨sj, aj, x, rj, s′j⟩. In cases where |Si| exceeds
100, a random subset of 100 reference states x is chosen, thus limiting the number
of samples to k′ = 100k.

The following computations determine the predicted Q-values Qx
θ(sj, aj) and

the target Q-values. The latter are defined as

Qx
target(s(t), a(t)) = r(s(t), a(t))+(1−a(t))λ(x)+γmax

v∈A
Qx

θ′(s(t+1), v), (4.10)

using a secondary network θ′ for theQθ′ values. This secondary network, initialized
with the main network θ in weights, is periodically synced with the main network
θ every 100 iterations.

The algorithm computes the loss function as the mean squared error:

L(θ) =
1

k′

k′∑
j=1

(
Q

(j)
target −Qθ(s

(j), a(j))
)2
, (4.11)

for each j = 1, . . . , k′ sample. After calculating the loss function within the
QWINN algorithm, the next step is to apply the Adam optimizer technique [49] for

46

4.2. QWINN: Enhancing QWI with Neural Networks

Algorithm 2 QWINN Algorithm
Input: Discount parameter γ ∈ (0, 1), exploration parameter ϵ ∈ [0, 1],
Output: Whittle index vector for all states
Initialize s0 for all arms
for n = 1 : nend do
Define action ai(n) through ϵ-greedy policy for each arm i
Get new states si(n+1) and rewards ri(n) from states si(n) and actions ai(n).

Save each arm’s data into separated memories
if number of samples in memory > threshold then
for arm i ∈ N do
for x ∈ S do
Predict Q-values of sample batch ⟨si(n), ai(n)⟩ using reference state x
for Whittle index with Qx

θ

Compute target Q-value for sample ⟨sj, aj, x, rj, s′j⟩ as (4.10), using
secondary network Qx

θ′

end for
Compute the mean square error loss function between Qθ and Qtarget as
Equation (4.11)
Update the θ parameters of the Qθ regressor through backpropagation
using an Adam optimizer (Equations (3.3), (3.4), (3.5))
Update the Whittle index for all states x as (4.7)
if n%50 = 0 then
Copy the θ parameters from the main θ neural network into the sec-
ondary θ′ neural network

end if
end for
Update Whittle index learning rate β(n) as (4.9)

end if
end for

backpropagation as introduced in Section 3.2.1. The Adam optimizer is a popular
choice for training neural networks due to its adaptive learning rate mechanism,
which adjusts the learning rate for each parameter based on the historical gradients.

After every 50 iterations, the algorithm updates the Whittle indices for all
reference states x ∈ Si following Equation (4.7) and learning rate β(n) from (4.9).
The QWINN algorithm is presented in Algorithm 2.

In the following section we will analyze the convergence of the QWINN neural
network to its optimal parameters, providing a comprehensive understanding of
the algorithm’s convergence properties.

47

4. Discrete Action Models in RMABP

4.2.1 Proof of convergence of QWINN algorithm

In the following analysis, we investigate the local convergence properties of the
DQN algorithm used in QWINN. We strengthen a necessary condition for local
minima in optimization theory to an assumption and apply stochastic approxima-
tion theory to elucidate DQN’s behavior in a neighborhood of a local minimum
under specific conditions.

4.2.1.1 Preliminary Considerations

Consider the sequence θ̃m = θTn , defined for each Tn ≤ m < Tn+1, where Tn ↑ ∞.
We specify that for some n, the parameter θ∗n := θTn lies in a bounded neighborhood
around a local minimum θ∗ of the Bellman error function E(·, θ∗), defined as:

E(θ, τ) := E

[∥∥∥∥Qx
θ(s, a)− (1− a)(r0(s) + λ)− ar1(s)− γmax

v∈A
Qx

τ (s
′, v)

∥∥∥∥2
]
.

Let ∇1E ,∇2
1E denote the gradient and the Hessian of E with respect to the first

argument alone. Assuming that the Hessian ∇2
1E(θ∗, θ∗) is positive definite, the

inverse function theorem ensures a locally defined, bijective mapping F (τ) =
(∇1E(·, τ))−1(0), where 0 is the zero vector, in a neighborhood of θ∗. Let us
introduce an additional assumption.

Assumption 4.1. F (τ) is locally a contraction around the equilibrium point (θ∗, θ∗).

4.2.1.2 Local Convergence

Theorem 4.2. For a θ∗ as above, under Assumption 4.1 and the condition that the
Hessian∇2

1E(θ∗, θ∗) is positive definite, the DQN algorithm exhibits local convergence
to an open ball of radius 2ϵ

1−α
centered at θ∗, for Tn+1 − Tn sufficiently large.

Proof. By Assumption 4.1, F (θ∗) is locally a contraction with some factor
0 < α < 1, and assuming that ϵ is within the specified bounds, consider Fn(θ

∗
n) :=

(∇1E(·, θ∗n))−1(0). For Tn+1 − Tn sufficiently large, ∥θ∗n+1 − Fn(θ
∗
n)∥ < ϵ. By

continuity, for θ in the ϵ-neighbourhood of θ∗, ∥Fn(θ
∗
n)− F (θ∗)∥ < ϵ′, for some ϵ′

that we take to equal ϵ without loss of generality. Then

∥θ∗n+1 − θ∗∥ ≤ ϵ+ ∥Fn(θ
∗
n)− F (θ∗)∥

≤ ϵ+ ∥Fn(θ
∗
n)− F (θ∗n)∥+ ∥F (θ∗n)− F (θ∗)∥

≤ 2ϵ+ α∥θ∗n − θ∗∥.

Iterating, it follows that θ∗n approaches the δ-ball centred at θ∗. This establishes
the local convergence of the DQN algorithm within a neighborhood B of θ∗ to a
δ-neighborhood thereof.

48

4.2. QWINN: Enhancing QWI with Neural Networks

Figure 4.1Histogram of eigenvalue moduli of−(∇2
1E(θ∗, θ∗))−1∇2∇1E(θ∗, θ∗) for

the circular (left), restart (middle) and deadline scheduling (right) problems.

4.2.1.3 Observations and Practical Implications

One of the key assumptions we have introduced in Theorem 4.2 is that F (τ),
defined as F (τ) = (∇1E(·, τ))−1(0), is locally a contraction around the point θ∗.
This assumption is supported by numerical analysis, which shows that in our
examples, F (τ) is indeed a contraction around θ∗. However, finding sufficient
general conditions for this contraction to hold falls outside the scope of this thesis.

We have performed numerical calculations to illustrate that this assumption
holds in the problems considered in the thesis. In order to do so, we have proceeded
as follows. Linearizing∇1E(θ, τ) in the proximity (θ∗, θ∗) we get

∇1E(θ, τ) ≈ ∇1E(θ∗, θ∗)+∇2
1E(θ∗, θ∗)(θ−θ∗)+∇2∇1E(θ∗, θ∗)(τ−θ∗)+o(θ−θ∗, τ−θ∗).

Since, ∇1E(θ∗, θ∗) = 0, we get

(θ − θ∗) ≈ −(∇2
1E(θ∗, θ∗))−1∇2∇1E(θ∗, θ∗)(τ − θ∗).

To have a contraction (locally) around the equilibrium point, we need the spectrum
of −(∇2

1E(θ∗, θ∗))−1∇2∇1E(θ∗, θ∗) to be inside the unit disc in the complex plane
around the origin.

The foregoing assumes that E is differentiable in the second argument, i.e.,
the target. More generally, a version of Danskin’s theorem ensures existence of
directional derivatives and the foregoing can be modified accordingly.

To calculate numerically the eigenvalues we have considered a random batch
of training samples and compute the loss function. We then compute numerically
the gradient of the loss function with respect to the first argument (∇1E(·, ·)) and
then again, the gradient thereof with respect to the first argument (∇2

1E(·, ·)) and
the second argument (∇2∇1E(·, ·)).

We have numerically verified that the condition on the spectrum for all the
environments considered in Section 4.3.1 is satisfied. In Figure 4.1, we represent
the eigenvalues obtained using the homogeneous environments in our work, for a
neural network with size ((2, 50), (50, 100), (100, 50), (50, 2)), that is, with 10402
parameters.

49

4. Discrete Action Models in RMABP

Furthermore, the practical application of this contraction depends on the inter-
vals Tn+1 − Tn being sufficiently large. The larger these intervals are, the smaller
the choice of δ can be. This observation may not be consistent with settings where
Tn = nT is used for some fixed T > 0 with decreasing step sizes. Nevertheless, it
remains valid when a constant step size is employed, provided that T is sufficiently
large.

4.3 Experimental Setup and Results for Discrete
Models

In this section, we evaluate the performance of our algorithms, QWI and QWINN,
against established frameworks in the field: traditional Q-learning, the Deep Q-
Network (DQN), and NeurWIN, a neural network-based algorithm introduced
by [59], designed to directly compute the Whittle indices’ estimates λθ(sn) of a
problem using as an input for the neural network only the state whose index is to
be computed.

The NeurWIN algorithm considers that a policy of indices that achieves optimal
rewards for RMABP is equivalent to Whittle’s index policy. To obtain this policy,
they define an activation function using a sigmoid function:

σm(fθ(s[t])− λ) =
1

1 + e−m(fθ(s[t])−λ)
, (4.12)

wherem is a sensitivity parameter. This function selects action a = 1 with proba-
bility σm(fθ(s[t])− λ) and a = 0 with probability 1− σm(fθ(s[t])− λ). For each
mini-batch of episodes, they randomly choose two states s0 and s1, with s0 serving
as the fixed value λ = fθ(s0) and s1 as the initial state. Multiple episodes are
generated within each mini-batch, recording the actions and states visited based on
the policy defined by Equation (4.12). The gradients he are calculated as follows:

he ←

{
he +∇θ ln (σm(fθ(s[t])− λ)) if a[t] = 1

he +∇θ ln (1− σm(fθ(s[t])− λ)) if a[t] = 0
(4.13)

for each sample at time t within the episode. After all episodes in the mini-batch
are completed, the neural network parameters are updated as follows:

θ ← θ + Lb

∑
e

(Ge − Ḡb)he, (4.14)

whereGe represents the discounted net rewards,Gb is the average of these rewards,
and Lb is the learning rate.

In order to compare the convergence speed of all these algorithms to the desired
policy, we have decided to represent each NeurWIN episode update as a unique
transition, so that at each iteration all algorithms are updated simultaneously. It

50

4.3. Experimental Setup and Results for Discrete Models

is also important to highlight that, unlike in QWI and QWINN, the training and
execution phases are separate in NeurWIN, i.e., we first need to learn the indices
of each arm separately. This is showcased in the index Figures of Section 4.3.3.1,
where the indices learned by NeurWIN for all settings are the same, unlike QWI
and QWINN, which have different learning processes for each setting.

4.3.1 Description of Test Environments

We base our research in the context of three different Restless Multi-Armed Bandit
(RMAB) problems: the “restart problem”, as proposed in [61]; the “deadline schedul-
ing problem”, detailed in [62]; and the “circular environment problem”, explored in
[58].

A significant aspect of these selected RMAB problems is their analytical tractabil-
ity in terms of Whittle index computation. For each of these problems, we can
calculate analytical expressions of the Whittle Index, allowing us to assess the
accuracy of the Whittle index estimates produced by the algorithms under consid-
eration.

In Section 2.4 we explored the computation of these indices given full knowledge
of the problem’s dynamics.

4.3.1.1 Restart Problem

The restart problem presents an interesting scenario in the context of Restless Multi-
Armed Bandit (RMAB) problems, characterized by a state space Si = 0, 1, 2, 3, 4.
In this model, an active action (a = 1) always returns the arm to the initial state,
denoted by P 1(0, s) = 1. In contrast, the transition probabilities under a passive
action (a = 0) are represented by

P 0 =

1− x x 0 0 0
1− x 0 x 0 0
1− x 0 0 x 0
1− x 0 0 0 x
1− x 0 0 0 x

 ,

where the reward function is R0(s) = ys+1 for passive actions as opposed to
R1(s) = 0 for active actions. With parameters set to x = y = 0.9 and a discount
factor of γ = 0.9, theWhittle index values computed for each state are λ(0) = −0.9,
λ(1) = −0.7371, λ(2) = −0.5373, λ(3) = −0.3188, and λ(4) = −0.0939. These
are indicative of a policy that favors keeping all arm states near 0 to maximize
rewards.

An interesting feature of this problem framework is its ability to accommodate
a variety of real-world settings. For example, in a manufacturing environment,
machinery and equipment subject to wear and tear can be modeled using this
RMAB framework. The state space reflects different levels of machine degradation,

51

4. Discrete Action Models in RMABP

with proactive maintenance (active action) restoring optimal operating conditions,
thereby optimizing productivity while balancing maintenance costs.

Similarly, in healthcare management for chronic conditions, states can represent
the severity of a patient’s health, with interventions ranging from intensive treat-
ments (active actions) to outpatient care (passive actions). The goal is to manage
healthcare resources to improve patient outcomes while managing the trade-offs
between intervention costs and health benefits.

In the case of IT systems management, states could denote different levels of
system performance or security, with active actions such as system reboots or
upgrades ensuring optimal operational status. Passive actions, on the other hand,
involve continuous monitoring with the potential risk of performance or security
degradation. This scenario illustrates the need for strategic decision-making to
maintain system integrity while minimizing disruption.

4.3.1.2 Circular Problem

The circular problem introduces a new dynamic within Restless Multi-Armed Bandit
(RMAB) problems characterized by a compact state space Si = {0, 1, 2, 3}. This
model simulates cyclical processes in which active actions lead to either staying in
the same state with a probability of x or moving to the next state with a probability
of 1 − x. On the other hand, passive actions maintain the current state with a
probability of x or regress to the previous state with a probability of 1− x, creating
a circular transition dynamic that ensures continuity within the state space. The
transition probabilities are formalized as:

P 1 =

x 1− x 0 0
0 x 1− x 0
0 0 x 1− x

1− x 0 0 x

 , P 0 =

x 0 0 1− x

1− x x 0 0
0 1− x x 0
0 0 1− x x

 .

The reward structure in this problem does not depend on the action taken,
but only on the state, with R(0) = −1, R(1) = R(2) = 0, R(3) = 1. Given a
discount factor γ = 0.9, the computed Whittle index values for each state, defined
as λ(0) = −0.4390, λ(1) = 0.4390, λ(2) = 0.8652, λ(3) = −0.8652, suggest a
strategy that favors keeping arms in state 3 to maximize rewards through passive
actions and using active actions to move arms from state 2 to state 3.

This problem is notable for its sparse rewards, presenting several states with zero
rewards, thus requiring strategic navigation and far-sighted policies to optimize the
rewards. The model is relevant in practical application for a variety of real-world
scenarios that involve cyclical processes: One of such applications is ecological
succession and conservation, where the states within the model can be interpreted
as different stages of ecological development. Active actions, similar to conservation
efforts, aim to promote biodiversity by encouraging the regenerative cycle inherent
in natural ecosystems, but may also reset it to an earlier stage, reflecting the cyclical

52

4.3. Experimental Setup and Results for Discrete Models

process of destruction and regrowth in natural environments. Similarly, the model
relates to health and fitness programs, where states correspond to different levels
of health or fitness. This scenario underscores the need to balance vigorous activity
with adequate rest to prevent burnout, and thereby navigate the cyclical path to
achieving and maintaining optimal well-being.

Cyclical economic models further showcase the relevance of the model by
reflecting the tides of economic conditions through recession, recovery, growth, and
peak periods. Here, active and passive policy interventions are critical in steering the
economy through its cycles, highlighting the model’s utility in economic planning
and analysis.

4.3.1.3 Deadline Scheduling Problem

To study the deadline scheduling problem, we will base our model on the work of
[62], which explores its dynamics. The state space for each arm i, with |Si| = 130,
contains two variables: deadline T ∈ [0, 12] and service time B ∈ [0, 9], giving
place to states s = (T,B), while certain states (0, B ̸= 0) remain inaccessible
due to the constraints of the Markov chain dynamics. These variables, T and
B, represent the remaining time and the remaining workload to complete a task,
respectively.

The model assumes that if an arm i has no assigned task, it is in a resting state
(0, 0). Conversely, the engagement of an arm with a task is characterized by its
state si(n) = (Ti(n), Bi(n)), which is affected by an action ai(n) as:

sin+1 =

{
(Ti(n)− 1, (Bi(n)− ai(n))+) if Ti(n) > 1,

(T,B) with prob. P (T,B) if Ti(n) ≤ 1,

where the operator b+ = max(b, 0) ensures the non-negativity of the workload
variable.

In scenarios where T = 1, symbolizing the impending deadline, the system
transitions to a new state, including the possible resting state of (0, 0), chosen
uniformly at random. The decay of B depends only on the activation of the arm,
while T decays invariably. Failure to complete a task in time, represented by the
state (T = 1, B > 0), imposes an additional penalty, represented by the function
F (Bi(n) − ai(n)) = 0.2(Bi(n) − ai(n))2, in addition to the fixed activation cost
c = 0.8. The reward function is thus expressed as:

R(si(n), ai(n)) =

(1− c)ai(n) if Bi(n) > 0, Ti(n) > 1,

(1− c)ai(n)− F (Bi(n)− ai(n)) if Bi(n) > 0, Ti(n) = 1,

0 otherwise.

53

4. Discrete Action Models in RMABP

[62] extend their analysis by deriving an expression for theWhittle index, λ(T,B, c):

λ(T,B, c) =

0 if B = 0,

1− c if 1 ≤ B ≤ T − 1,

γT−1F (B − T + 1)− γT−1F (B − T)1− c if T ≤ B.
(4.15)

This model has multiple real life applications such as project management,
where it assists in the efficient allocation of resources to ensure timely completion
of tasks, thereby reducing the risk of project delays and budget overruns. An-
other key example is cloud computing, where it can streamline the scheduling
of virtual machines or containers to improve computing resource utilization and
avoid Service Level Agreement (SLA) violations. Similarly, in manufacturing, it
enables efficient scheduling of production lines to ensure that products meet their
production deadlines. Finally, in healthcare, the model provides a framework for
optimizing appointment and resource scheduling to maximize healthcare services
and minimize patient wait times, with penalties for delays emphasizing the critical
role of providing on-time healthcare.

4.3.2 Evaluation Metrics and Benchmarks

In our numerical analysis of Restless Multi-Armed Bandit (RMAB) problems, it’s
crucial to recognize that the Whittle index heuristic, while a powerful tool, does
not always yield the optimal policy. Instead, it is considered a suboptimal policy for
these problems. On the other hand, this suboptimality gap in many cases can be
considered negligible since Whittle’s index heuristic is asymptotically optimal as
the number of arms increases [63]. As we discussed in Section 2.2.2, MAB problems
suffer from the curse of dimensionality, where the state space grows exponentially
with the number of arms: a problem with one state space per arm with |Si| = 4
becomes |S| = 1048576 states with only 10 arms. With 20 arms, this number
increases to 1012, equivalent to the number of galaxies in the observable universe
[64]. A rigorous evaluation of the performance of an algorithm against the optimal
policy computed by value iteration is therefore infeasible. Instead, we will use the
theoretical Whittle index policy of the problems discussed in Section 4.3.1 as a
baseline for the optimal policy.

The value function at any given state can be formulated as the expected sum
of discounted rewards, following the Equation (2.6). Given these limitations, our
approach to evaluating an algorithm’s value function focuses on a stochastic evalu-
ation of its policy.

During each evaluation epoch, we examine the policy π(t) adopted by each
algorithm under consideration, including QWI, QWINN, Q-learning, DQN, a ran-
dom policy, and the theoretical Whittle index policy that serves as the baseline.
Over Ne = 10 evaluation runs, we fix our analysis to i ∈ [1, 500] random initial
states si, which are applied consistently to all algorithms to ensure coherence. Over

54

4.3. Experimental Setup and Results for Discrete Models

niter = 50 iterations for each initial state si, we aggregate the rewardsR(s(n), a(n))
according to the policy π(t), resulting in the total discounted reward

Ri =

niter∑
n=0

γnR(s(n), a(n)).

The next step is to average these discounted rewards over all initial states to
derive R = 1

500

∑500
i=1Ri. This process is repeated for each evaluation ne ∈ Ne,

yielding a vector of summed discounted rewards R = {Re}, e ∈ [1, . . . , Ne].
Consequently, at each evaluation epoch t, the averaged discounted summed reward
R(t) = 1

Ne

∑Ne

e=1Re(t) is computed along with its confidence interval, denoted by
the standard deviation σ(R(t)).

Given the computational constraints, we consider this stochastic evaluation to
be a reliable approximation of the mean-value function for all states s ∈ S . Thus,
given Vπ = 1

|S|
∑

s∈S Vπ(s), it is expected that

R(t)− σ(R(t)) ≤ Vπ(t) ≤ R(t) + σ(R(t)).

For a sufficiently small σ(R(t)) it follows that Vπ(t) ≈ R(t).
Tables 4.1, 4.2, and 4.4 provide a summary of the performance of each algorithm

in terms of the relative error of the value function Vπ(t) in the last iteration with
respect to the theoretical Whittle index policy, defined as:

Relative Error =
|Vπ(t) − VWhittle|
|VWhittle|

.

This analysis is conducted for each of the three RMAB problems discussed in Section
4.3.1 and all the configurations of arms and states.

In the case of algorithms that compute a Whittle index (QWI, QWINN, and
NeurWIN), emphasis is also placed on illustrating the convergence of these algo-
rithms’ estimates λ(s) to the theoretical Whittle index values λ∗(s). This serves
as an alternative benchmark to check how close each of these algorithms is to
Whittle’s index policy. Note that it is not the absolute value of these indices that
defines the heuristic, but the order of the indices themselves. That is, for a set
of indices where each index has a large error with respect to its corresponding
theoretical value, it is possible to still obtain a good policy as long as these indices
keep the same ordering as the theoretical ones. However, such a situation can easily
lead to suboptimal policies when each of the arms has slightly different dynamics,
in which case an accurate measurement of these indices is essential. For this reason,
we will introduce two metrics to show the accuracy of the Whittle index estimates
as well as their ordering: The first metric, the cumulative distribution function
(CDF) of the absolute error, serves as a quantifier of the estimation accuracy for
the Whittle indices. This distribution represents the proportion of indices (on the
Y-axis) whose absolute error is less than a given amount (shown on the X-axis).

55

4. Discrete Action Models in RMABP

On the other hand, the Spearman correlation coefficient [65] ρ is a non-parametric
measure used to assess the strength and direction of the association between two
ranked variables, defined as:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
,

where di is the difference between the ranks of the two variables for each observa-
tion i, and n is the number of observations. In the context of the Whittle indices,
we use ρ to assess the ordering of the estimated indices with respect to the theo-
retical indices. A value close to 1 indicates a strong positive association, that is,
the estimated indices closely match the theoretical indices ordering. On the other
hand, a value close to -1 indicates a strong negative association, suggesting that
the estimated indices are in reverse order with respect to the theoretical indices. A
value close to 0 indicates no association, suggesting that the estimated indices are
not in any particular order with respect to the theoretical indices.

4.3.3 Detailed Analysis of Experimental Results
In the following section, our exploration is structured around three main categories
within the RMAB framework: the effect of varying the number of arms, the effect
of varying the number of states per arm, and the dynamics introduced by heteroge-
neous arms. Each category reveals on different aspects of algorithm performance
and convergence characteristics in RMAB problems.

4.3.3.1 Scalability in the Number of Arms

In this section we addres the exponential growth of the total state space |S| as a
direct consequence of increasing the number of arms, a phenomenon commonly
referred to as “the curse of dimensionality”. Our analysis compares the performance
of index algorithms (QWI, QWINN, and NeurWIN) against DQN and tabular Q-
learning to illustrate the implications of this exponential growth. In particular,
we aim to highlight the efficiency and speed of convergence of these algorithms
in scenarios with varying numbers of arms. Through experiments set within the
“circular”, “restart”, and “deadline scheduling” environments with configurations
(N = 5,M = 2), (N = 10,M = 5), and (N = 20,M = 8), we intend to
demonstrate how index algorithms can mitigate the curse of dimensionality by
decoupling the state space. In particular, the application of tabular Q-learning
becomes impractical in larger settings due to the sheer volume of states to explore
(N = 10 implies 410 ≈ 106 states in the “circular” problem and 510 ≈ 107 states in
the “restart” problem), making it infeasible for comprehensive analysis in certain
scenarios.

In the following discussion, due to the significant difference in state space sizes,
we will separate the discussion of the “restart” and “circular” problems from the
“deadline scheduling” problem.

56

4.3. Experimental Setup and Results for Discrete Models

Figure 4.2Whittle indices per state for the circular problem with N = 5,M = 2
and |Si| = 4 (left) and the restart problem with N = 5,M = 2 and |Si| = 5 (right)

0 20000 40000 60000 80000 100000
Iteration

2.0

1.5

1.0

0.5

0.0

In
de

x

State 0

0 20000 40000 60000 80000 100000
Iteration

0.0

0.5

1.0

1.5

In
de

x

State 1

0 20000 40000 60000 80000 100000
Iteration

0

1

2

In
de

x

State 2

0 20000 40000 60000 80000 100000
Iteration

3

2

1

0

1

In
de

x

State 3

QWI QWINN NeurWIN Theoretical

0 20000 40000 60000 80000 100000
Iteration

2

1

0

In
de

x

State 0

0 20000 40000 60000 80000 100000
Iteration

1.0

0.5

0.0

In
de

x

State 1

0 20000 40000 60000 80000 100000
Iteration

1.0

0.5

0.0
In

de
x

State 2

0 20000 40000 60000 80000 100000
Iteration

1.0

0.5

0.0

0.5

In
de

x

State 3

0 20000 40000 60000 80000 100000
Iteration

5

0

5

In
de

x

State 4

QWI QWINN NeurWIN Theoretical

Figure 4.3 Spearman correlation coefficient for the circular problem (left) with
N = 5,M = 2 and |Si| = 4 and restart problem (right) with N = 5,M = 2 and
|Si| = 5

0 10000 20000 30000 40000 50000
Iterations

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

For both QWI and QWINN algorithm as well as NeurWIN, the Whittle indices
computed by those algorithms do not depend on the number of arms or resources.
As such, we will focus the analysis of those indices for the (N = 5,M = 2)
case, while the performance evaluation, specially for non-index algorithms, will be
conducted for all three cases.

Circular and restart problems.

57

4. Discrete Action Models in RMABP

Figure 4.4 Average rewards for the circular problem with N = 5,M = 2 (top left),
N = 10,M = 5 (top right) and N = 20,M = 8 (bottom) with |Si| = 4

0 10000 20000 30000 40000 50000
Evaluation

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Q-learning
Theoretical

0 10000 20000 30000 40000 50000
Evaluation

0

5

10

15

20

25

30

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

0 10000 20000 30000 40000 50000
Evaluation

40

20

0

20

40

60

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

Figure 4.2 showcase the convergence plots of the Whittle indices for QWI,
QWINN, and NeurWIN within the circular (left) and restart (right) problems, re-
spectively.

A common observation across these environments is the quick convergence of
both QWI and QWINN indices to their theoretical values, with QWINN outper-
forming QWI in convergence speed due to its ability to generalize information from
other states. NeurWIN, on the other hand, shows a significant divergence from the
theoretical values and lacks smooth convergence due to its optimization objective
of only maximizing rewards through an indexing policy, supposedly consistent
with Whittle’s indexing policy. This often leads to instabilities in the computation
of the Whittle index, which does not necessarily match the theoretical values.

Figure 4.3 illustrates the Spearman correlation for the circular and restart prob-
lems in QWI, QWINN, and NeurWIN. While all algorithms converge quickly to
an optimal ordering for the restart problem (Figure 4.3 right), shown as ρ = 1, the
circular problem (Figure 4.3 left) shows a noticeable misalignment of the indices
for NeurWIN, which is only corrected after approximately 30000-35000 iterations.

The performance metrics, shown in Figures 4.4 and 4.5 for the circular and
restart problems respectively, illustrate the performance of the algorithms. QWI

58

4.3. Experimental Setup and Results for Discrete Models

Figure 4.5 Average rewards for the restart problem with N = 5,M = 2 (top left),
N = 10,M = 5 (top right) and N = 20,M = 8 (bottom) with |Si| = 5

0 10000 20000 30000 40000 50000
Evaluation

20

21

22

23

24

25

26

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Q-learning
Theoretical

0 10000 20000 30000 40000 50000
Evaluation

32

34

36

38

40

42

44

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

0 10000 20000 30000 40000 50000
Evaluation

80

85

90

95

100

105

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

and QWINN consistently reach the optimal policy within the first few hundred
iterations. This is particularly noticeable in the circular problem (Figure 4.4), where,
in contrast, NeurWIN is stuck with a suboptimal policy for the first 25000 iterations
until it reaches the optimal policy. However, it does not remain completely stable,
as shown by the negative spike in performance at iteration 43000. Furthermore,
neither Q-learning nor DQN are able to obtain an optimal policy. Remarkably, Q-
learning shows a gradual improvement over DQN in Figure 4.4 top left, while DQN
fails to learn a good policy. However, as we increase the number of arms (Figures
4.4 top right and bottom), and consequently the number of states exponentially,
the tabular Q-learning training becomes infeasible. Conversely, DQN’s instabilities
increase for larger arm configurations.

In the restart problem (Figure 4.5), NeurWIN is also stuck with a suboptimal
policy for the first few thousand iterations until it rapidly converges to the optimal
policy, but only after the QWI and QWINN algorithms. DQN is able to obtain
the optimal policy for the N = 5 arm setting (Figure 4.5 top left), while tabular
Q-learning is stuck with a low performance policy, due to its inability to visit most
of the states in the problem. In the N = 10 (Figure 4.5 top right) and N = 20
(Figure 4.5 bottom) settings, however, DQN is unable to converge to a stable policy

59

4. Discrete Action Models in RMABP

Figure 4.6 Cumulative Distribution Function of the absolute error in the Whittle
indices (left) and Spearman’s Rank Correlation Coefficient (right) for the Deadline
Scheduling problem with N = 5,M = 2 and |Si| = 130

10 3 10 2 10 1 100 101 102 103

Error Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QWINN Error
QWI Error
NEURWIN Error

0 10000 20000 30000 40000 50000
Iterations

0.2

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

and its performance oscillates well below the rest of the algorithms.
This disparity between index and non-index algorithms increases as we move

to larger state-space problems, such as the deadline problem.
Deadline Scheduling Problem.

The Figure 4.6 left show the CDF of the absolute error in the Whittle indices for
the deadline problem with N = 5,M = 2 and |Si| = 130 at the end of the training
process. This figure shows the improved precision of QWINN, with most indices
clustering around an error size of 10−1. While QWI achieves similar accuracy for
60% of the indices, it also exhibits much larger errors for the remaining indices. In
contrast, NeurWIN has most of its indices with an absolute error between 10−1 and
1. This difference highlights QWINN’s ability to closely approximate a majority of
states with remarkable precision, surpassing the sporadic performance of QWI and
the broader error distribution of NeurWIN.

The evolution of the index ordering with respect to the theoretical Whittle
index values, as shown in the Figure 4.6 right, show how none of the algorithms
reach a correlation coefficient of ρ = 1, due to the harder difficulty of this larger
environment. This phenomenon can also be attributed to the dense clustering
of theoretical index values, where even small numerical inaccuracies can disrupt
the precise ordering. In this case, both QWINN and NeurWIN exhibit a higher
correlation coefficient than QWI, with QWINN showing a slight advantage over
NeurWIN.

The performance metrics, which are derived from a stochastic evaluation similar
to the one performed for the restart and circular problems, further illustrate the
behavior of QWI, QWINN, NeurWIN, and DQN over different arm configurations.
In theN = 5 setting (Figure 4.7 top left), both QWINN and NeurWIN show superior
performance, closely mirroring the optimal policy, with NeurWIN showing a slight
advantage in the second half of training by better ordering the most relevant states.
Meanwhile, QWI, despite its challenges with the Spearman correlation coefficient,

60

4.3. Experimental Setup and Results for Discrete Models

Figure 4.7Average rewards for the Deadline Scheduling problemwithN = 5,M =
2 (top left), N = 10,M = 5 (top right) and N = 20,M = 8 (bottom) with
|Si| = 130

0 10000 20000 30000 40000 50000
Evaluation

20

19

18

17

16

15

14

13

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

0 10000 20000 30000 40000 50000
Evaluation

38

36

34

32

30

28

26

24

22

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

0 10000 20000 30000 40000 50000
Evaluation

80

75

70

65

60

55

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

achieves remarkable performance, surpassing the performance metrics provided by
DQN.

In the N = 10 and N = 20 configurations (Figures 4.7 top right and bottom),
QWINN and NeurWIN maintain parity in their performance, converging to the
optimal policy threshold. DQN, on the other hand, has difficulties achieving a stable
policy, with its performance falling at the ∼ 30, 000 iteration mark for the N = 10
setting. In the N = 20 setting, DQN’s performance is stuck at a suboptimal policy,
with no signs of improvement.

It is in these problems, where the increase of states is due to the increase of
the number of MDPs, where index algorithms shine the most: classical methods
are not able to adapt to problems with such a large state space, especially tabular
Q-learning, which not only does not have enough samples to achieve convergence,
but its computation becomes infeasible for cases with more MDPs. In such cases,
QWINN is able to achieve the same optimal performance with similar or higher
convergence speed as NeurWIN for all problems, while computing more accurate
indices for all problems, while QWI, while being a tabular algorithm, is able to
achieve surprisingly high performance, outperforming NeurWIN for problems with

61

4. Discrete Action Models in RMABP

smaller |Si|.
Table 4.1 shows the relative error in the performance of the algorithms at the

final iteration for the different problems according to the number of arms, with
respect to the theoretical Whittle index policy. The results show that QWINN out-
performs the rest of the algorithms in most cases, except for the circular problem
with 20 arms, where QWI achieves a slightly lower relative error, and deadline
scheduling problem, where NeurWIN shows better performance. NeurWIN also
shows good performance in the restart environment, often matching QWINN and
QWI’s performance. DQN shows poor performance in all cases, with a relative error
above 16% in all scenarios, and even exceeding 100% in some cases. Q-learning,
where data is available, shows moderate performance, achieving a relative error
below 10% only in the restart problem with 5 arms. Overall, QWINN and Neur-
WIN demonstrate the most robust and effective performance across the different
environments and numbers of arms.

Table 4.1: Relative Error in Algorithm Performance at Final Iteration for Discrete Actions
Problems according to Number of Arms in %

QWI QWINN DQN NeurWIN Q-learning
Circular 5 arms 0.862 % 0.120 % 97.080 % 0.574 % 81.923 %
Circular 10 arms 0.173 % 0.100 % 80.606 % 0.586 %
Circular 20 arms 0.056 % 0.063 % 100.933 % 0.060 %
Restart 5 arms 0.015 % 0.011 % 0.177 % 0.011 % 10.358 %
Restart 10 arms 0.000 % 0.000 % 2.685 % 0.000 %
Restart 20 arms 0.005 % 0.003 % 23.071 % 0.004 %
Deadline 5 arms 4.198 % 0.891 % 38.207 % 0.223 %
Deadline 10 arms 2.705 % 1.258 % 16.301 % 0.052 %
Deadline 20 arms 1.372 % 0.376 % 21.459 % 0.229 %

4.3.3.2 Scalability in the Number of States per Arm

The second part of our analysis focuses on the convergence efficiency of the algo-
rithms as the number of states per arm is adjusted while keeping the number of
arms fixed. This analysis is particularly insightful for evaluating the performance
of neural network-based algorithms (QWINN, NeurWIN, and DQN) against QWI
and tabular Q-learning in environments characterized by large state spaces. By
studying environments such as “the circular environment” with |Si| = {4, 10, 50},
“the restart environment” with |Si| = {5, 20, 100}, and “the deadline scheduling
problem” with |Si| = {130, 288}, using {(T = 12, B = 9), (T = 17, B = 15)}, in
aN = 5,M = 2 setting, we aim to study the effect of the size of the state space per
arm. Memory constraints require the exclusion of Q-learning from this analysis.

For the discussion of index convergence in larger state spaces, we will use the
same metrics as in the “deadline scheduling” case in Section 4.3.3.1: the cumulative

62

4.3. Experimental Setup and Results for Discrete Models

Figure 4.8 Cumulative Distribution Function of the absolute error in the Whittle
indices (left) and Spearman’s Rank Correlation Coefficient (right) for the Circular
problem with N = 5,M = 2 and |Si| = 10 (top) and |Si| = 50 (bottom)

10 5 10 4 10 3 10 2 10 1 100

Error Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QWI Error QWINN Error NEURWIN Error

0 10000 20000 30000 40000 50000
Iterations

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

10 4 10 3 10 2 10 1 100

Error Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QWI Error QWINN Error NEURWIN Error

0 10000 20000 30000 40000 50000
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

distribution function (CDF) of the absolute error of the Whittle index estimates and
the Spearman correlation coefficient.

Circular problem.

In the circular problem (Figure 4.8), we observe the convergence of the Whittle
indices for QWI, QWINN, and NeurWIN in scenarios with |Si| = {10, 50}. In
the |Si| = 10 case, QWI and QWINN show remarkable precision in their index
computation, with errors predominantly around 10−2 (Figure 4.8 top left). This
accuracy extends to the ordering of the indices, where both QWI and QWINN
perfectly matchWhittle’s theoretical index policy after only 10,000 iterations (Figure
4.8 top right). NeurWIN, on the other hand, shows a broader error spectrum,
ranging between 10−1 and 1, a discrepancy that, although seemingly minor, leads
to a persistent misordering of states.

This situation evolves as we increase the state space per arm to |Si| = 50. QWI
shows remarkable robustness, maintaining high precision over its indices with
errors distributed between 10−4 and 10−1, as shown in Figure 4.8 bottom left. On the
other hand, QWINN shows a slight increase in error, mostly in the range between
10−2 and 10−1. Interestingly, NeurWIN mirrors QWINN’s error distribution for
about 60% of its indices, albeit with a subset having larger errors than those observed

63

4. Discrete Action Models in RMABP

Figure 4.9 Average rewards for the Circular problem with N = 5,M = 2 and
|Si| = 10 (left) and |Si| = 50 (right)

0 10000 20000 30000 40000 50000
Evaluation

0

2

4

6

8

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

0 10000 20000 30000 40000 50000
Evaluation

1

0

1

2

3

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

in QWI and QWINN. Crucially, the evaluation of the index ordering in Figure 4.8
bottom right shows that NeurWIN’s indices manifest an almost random policy due
to an unstable ordering, in stark contrast to the gradual increase of the Spearman
correlation coefficient for QWI and QWINN, which steadily approach to 1.

The performance comparisons for the |Si| = 10 scenario in Figure 4.9 left,
highlight the critical role of accurate index ordering. QWI and QWINN, which
benefit from their precise index alignment, show optimal performance beyond
10000 iterations. In contrast, NeurWIN’s misaligned indices lead to suboptimal per-
formance. It significantly underperforms DQN, underscoring a failure to effectively
capture the environment’s properties.

This divergence in optimality becomes even more pronounced in the |Si| = 50
setting (Figure 4.9 right). The initial index ordering advantage of QWINN over
QWI, shown in Figure 4.8 bottom right, eventually narrows as QWI becomes more
closely aligned with the optimal index ordering, leading to a significant performance
increase, particularly evident in the first 20000 iterations, as shown in Figure 4.9
right. The performances of NeurWIN and DQN deteriorate to the level of a random
policy, which is also true for DQN, which struggles against the huge size of the
state space |S| = 505 = 312500000. In contrast, QWI and especially QWINN show
convergence to optimal policy performance.

Compared to the indices’ ordering for |Si| = 4 in Figure 4.3 left and their
respective performance in Figure 4.4 top left, it is clear that the initial instabilities
of NeurWIN are amplified as we increase the number of states, while QWI and
QWINN suffer smaller reduction in the speed of convergence. DQN, on the other
hand, is not able to learn the properties of the problem correctly. It performs almost
randomly throughout the training for larger configurations of |Si|.

Restart problem.

When studying the restart problem over different state space sizes per arm,
the discussion of the convergence of the Whittle indices is reversed for QWI

64

4.3. Experimental Setup and Results for Discrete Models

Figure 4.10 Cumulative Distribution Function of the absolute error in the Whittle
indices (left) and Spearman’s Rank Correlation Coefficient (right) for the Restart
problem with N = 5,M = 2 and |Si| = 20 (top) and |Si| = 100 (bottom)

10 10 10 6 10 2 102 106 1010

Error Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QWI Error QWINN Error NEURWIN Error

0 10000 20000 30000 40000 50000
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

10 10 10 6 10 2 102 106 1010

Error Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QWI Error QWINN Error NEURWIN Error

0 10000 20000 30000 40000 50000
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

and NeurWIN. For a state space of |Si| = 20 (Figures 4.10 top), QWI exhibits
significantly larger errors, ranging from 10−2 to 1010, in contrast to QWINN and
NeurWIN, which largely maintain their index errors in the 10−2 range, as shown
in Figure 4.10 top left. This result is expected given the increasing challenge of
exploring all states within an arm as the state space expands, since a single active
action transitions the current state to the first state in the environment, making it
difficult to explore the later states. QWI’s reliance on frequent state visits results in
less accurate predictions for infrequently visited states, whereas the neural network
frameworks within QWINN and NeurWIN mitigate this problem through their
inherent ability to generalize across states.

This discrepancy in error translates directly into the ordering of the indices.
More specifically, QWI shows a poor Spearman Rank Correlation Coefficient,
fluctuating between 0 and 0.25 throughout the training, as shown in Figure 4.10
top right. Conversely, QWINN achieves a perfect ordering from the beginning,
and NeurWIN also shows a high degree of ordering accuracy, with only occasional
misplacements, indicating their robustness in preserving the theoretical index
ordering.

A similar trend is observed in the cumulative distribution function (CDF) of

65

4. Discrete Action Models in RMABP

Figure 4.11 Spearman’s Rank Correlation Coefficient for the first 5 states in the
Restart problem with N = 5,M = 2 and |Si| = 20 (left) and |Si| = 100 (right)

0 10000 20000 30000 40000 50000
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

0 10000 20000 30000 40000 50000
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

Figure 4.12 Average rewards for the Restart problem with N = 5,M = 2 and
|Si| = 20 (left) and |Si| = 100 (right)

0 10000 20000 30000 40000 50000
Evaluation

12

14

16

18

20

22

24

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

0 10000 20000 30000 40000 50000
Evaluation

10

12

14

16

18

20

22

24

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

errors when expanding the state space per arm to |Si| = 100, as highlighted in
Figure 4.10 bottom left. Both QWINN and NeurWIN, especially NeurWIN, show
very small absolute errors, close to 10−2. QWI, while showing comparable errors
for the majority of its indices, sees about 15% of its indices fall to significant error
magnitudes, escalating to 1010. This error distribution affects the Spearman Rank
Correlation Coefficient; in particular, NeurWIN’s correlation quickly converges to 1,
as shown in Figure 4.10 bottom right, with QWINN overcoming initial instabilities
to achieve convergence around iteration 10000. QWI, however, reflects its previous
performance problems with a large fraction of indices persistently out of order
throughout training.

Despite this seemingly good ordering, a comparison of algorithmic performance
on state spaces of |Si| = 20 and |Si| = 100, through Figures 4.12, reveals an
erratic performance by NeurWIN, fluctuating between random and optimal rewards.
In contrast, QWINN consistently converges to optimal performance, with DQN
showing particular strength. Surprisingly, despite its index ordering challenges,
QWI often outperforms NeurWIN. This phenomenon is due to the state transition

66

4.3. Experimental Setup and Results for Discrete Models

dynamics of the problem, where actions transition the state directly to state 0,
highlighting the importance of accurately ordering the first few states due to their
frequent visits and central role in stochastic performance evaluation.

Further analysis of the Spearman coefficient, focusing only on the first 5 states
in environments with |Si| = 20 and |Si| = 100 (Figures 4.11 left and right respec-
tively), shows that while QWINN quickly reaches optimal ordering, both QWI
and especially NeurWIN show fluctuating ordering, where both oscillate between
a positive and a negative ρ, indicating alternating index orderings. In compari-
son, QWINN is still able to converge to a high ρ value, albeit more slowly in the
|Si| = 100 setting.

To summarize, the escalation of state space complexity from the initial setting
of N = 5,M = 2, |Si| = 5 widens the performance gap for QWI, which is limited
by its inability to thoroughly explore and learn from the expanded state space. In
addition, NeurWIN, despite its ability to maintain good index ordering for the ma-
jority of states, fails with the most critical states, leading to suboptimal performance
that is even worse than that of QWI. QWINN, on the other hand, remains resilient
to the increase in state space complexity, maintaining optimal index ordering and
performance. DQN proves to be a surprisingly adaptable contender, able to handle
the extended state space well and holding second place behind QWINN.

Deadline Scheduling Problem.

For the CDF error distribution of the deadline scheduling problem with a state
space size of |Si| = 288 per arm, as shown in Figure 4.13 left, we see similar
results to those in the estimates for |Si| = 130 (Figure 4.6 left). Both QWINN and
NeurWIN manage to maintain absolute errors in the range of 10−2 to 1 for their
index estimates, with QWINN showing slightly better accuracy than NeurWIN. By
contrast, QWI exhibits significantly larger errors for about 85% of the states, with
absolute errors ranging from 1 to 104. This continuation of the trend observed in
Figure 4.6 left underscores the challenges QWI faces in comprehensively observing
and learning from the full state space. Meanwhile, the neural network-based
algorithms, QWINN and NeurWIN, effectively infer the characteristics of different
states, demonstrating their superior generalization ability.

The comparison of Spearman’s Rank Correlation for both state spaces, |Si| =
130 and |Si| = 288, illustrated in Figures 4.6 right and 4.13 right, shows how
NeurWIN improves its index ordering accuracy with respect to QWINN in the
|Si| = 288 setting, while both significantly outperform QWI. Interestingly, QWI
shows a slight but clear improvement in index ordering over time in Figure 4.13 right,
indicating a gradual alignment of its index ordering with theoretical expectations.
Meanwhile, QWINN and NeurWIN reach their peak performance around iteration
10000, with the following iterations showing minimal fluctuations in their ρ values,
indicating a stable index ordering.

The performance comparison, especially for the |Si| = 288 state space, shows
a close result between QWINN and NeurWIN, as highlighted in Figure 4.13 bottom.

67

4. Discrete Action Models in RMABP

Figure 4.13 Cumulative Distribution Function of the absolute error in the Whittle
indices (top left), Spearman’s Rank Correlation Coefficient (top right) and Average
rewards (bottom) for the Deadline Scheduling problem with N = 5,M = 2 and
|Si| = 288

10 2 100 102 104

Error Magnitude
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

QWI Error QWINN Error NEURWIN Error

0 10000 20000 30000 40000 50000
Iterations

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

0 10000 20000 30000 40000 50000
Evaluation

44

42

40

38

36

34

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

Initially, QWINN has a slight performance advantage over NeurWIN during the
first 8000 iterations. NeurWIN’s potentially better index ordering for certain states
does not significantly affect overall performance when compared to other states
that both algorithms prioritize accurately. QWI, despite its erratic performance,
shows potential for long-term improvement. DQN, faced with the challenge of a
large state space, struggles to generate an effective policy and lags behind, albeit
with marginal signs of incremental improvement over time.

These results show the effect of increasing the number of states per arm |Si|
on the different algorithms: Similar to increasing the number of arms, algorithms
that do not use index policies that decouple the state space, such as DQN, suffer a
decrease in performance as a result of dealing with significantly larger problems.
This problem is reduced in index algorithms such as QWI, QWINN and NeurWIN.
However, as the state space in each arm increases, especially for problems with
complicated exploration such as the restart problem, QWI suffers from performance
degradation due to worse index estimation for most of these states. This is where
the combined use of neural networks and index policy, as in QWINN and NeurWIN,
achieves higher performance, as they can combine the reduction of problem com-

68

4.3. Experimental Setup and Results for Discrete Models

plexity by decoupling the different MDPs, and at the same time obtain information
about all states by inference of the state properties.

Table 4.2 shows the relative error in the performance of the algorithms at the
final iteration for the different problems according to the number of states, with
respect to the theoretical Whittle index policy. The results show that QWINN out-
performs the rest of the algorithms in most cases, except for the circular problem
with 10 states and deadline scheduling with 130 states, where QWI and Neur-
WIN respectively achieve a slightly lower relative error. NeurWIN shows good
performance, often matching QWINN’s performance, especially in the restart
environment with 5 states and the deadline environments. DQN shows poor per-
formance in most cases, except for the restart environment. Q-learning, where
data is available, shows poor performance, and specially poor scalability in the
state space, with an increased relative error when going from the 4 state circular
problem to the 10 state case. Overall, QWINN demonstrate the most robust and
effective performance across the different environments and numbers of states.

Table 4.2: Relative Error in Algorithm Performance at Final Iteration for Discrete Actions
Problems according to Number of States in %

QWI QWINN DQN NeurWIN Q-learning
Circular 4 states 0.862 % 0.120 % 97.080 % 0.574 % 81.923 %
Circular 10 states 0.601 % 1.064 % 74.427 % 85.013 % 101.726 %
Circular 50 states 8.653 % 2.604 % 97.832 % 98.101 %
Restart 5 states 0.015 % 0.011 % 0.177 % 0.011 % 10.358 %
Restart 20 states 3.616 % 0.008 % 1.000 % 0.046 %
Restart 100 states 7.287 % 0.037 % 1.574 % 12.277 %
Deadline 130 states 4.198 % 0.891 % 38.207 % 0.223 %
Deadline 288 states 7.485 % 0.205 % 14.110 % 0.217 %

4.3.3.3 Performance in Heterogeneous Arms

The final part of our analysis deals with the complexity introduced by heteroge-
neous arms, where each arm has different dynamics. This aspect is crucial for
understanding the implications of learning accurate Whittle indices within the
indexing algorithms (QWI, QWINN, and NeurWIN). The main point of this section
is to show that mere accuracy in ordering Whittle indices for individual arms may
not be sufficient to achieve optimal global performance. For these heterogeneous
environment problems, we consider the setting N = 5,M = 2, where each of the
5 MDPs has different dynamic parameters.

Restart problem.

In the case of the restart problem, we will focus on the N = 5,M = 2, |Si| = 5
setting, similar to the original case in Section 4.3.3.1 (Figures 4.3 right and 4.5 top left).
In the original homogeneous setting, in addition to the impressive capability of QWI,
QWINN, and NeurWIN to converge to the optimal Whittle index policy, it is worth

69

4. Discrete Action Models in RMABP

State 0 State 1 State 2 State 3 State 4
x = y = 0.9 -0.9 -0.7371 -0.5373459 -0.31882516 -0.09391354
x = y = 0.8 -0.8 -0.5248 -0.2382848 0.02914796 0.26510922
x = y = 0.7 -0.7 -0.3577 -0.0597457 0.17455215 0.3499075
x = y = 0.6 -0.6 -0.2304 0.0333504 0.20520553 0.31272659
x = y = 0.5 -0.5 -0.1375 0.0690625 0.17803906 0.23380879

Table 4.3: Whittle index values for the restart problem with N = 5,M = 2 and |Si| = 5
and parameters x = y = {0.9, 0.8, 0.7, 0.6, 0.5}

Figure 4.14 Spearman’s Rank Correlation Coefficient (left) and Average rewards
(right) for the Restart problem with N = 5,M = 2 and |Si| = 5 and parameters
x = y = {0.9, 0.8, 0.7, 0.6, 0.5}

0 10000 20000 30000 40000 50000
Iterations

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

0 10000 20000 30000 40000 50000
Evaluation

12

13

14

15

16

17

18

19

20
Av

er
ag

e
di

sc
ou

nt
ed

 re
wa

rd

QWI
QWINN

NeurWIN
DQN

Theoretical

noting that DQN also showed remarkable convergence, achieving performance
close to optimal. However, Q-learning lagged behind in comparison. Furthermore,
in the homogeneous case, all three index algorithms (QWI, QWINN, and NeurWIN)
were able to achieve a Spearman correlation coefficient of ρ = 1, indicating a
perfect ordering of the Whittle index with respect to the theoretical values.

For the heterogeneous case of the restart environment, we consider a situation
where each of the 5 MDPs has different transition and reward parameters. As
described in Section 4.3.1.1, the restart problem is parametrized by the terms x, y
that determine the passive transition probabilities and reward functions respectively,
and in the previous sections they were set to x = y = 0.9. In this heterogeneous
case, this values will be x = y = {0.9, 0.8, 0.7, 0.6, 0.5}, each for a different MDP.
Varying these parameters results in the index values described in Table 4.3.

The evaluation of the Spearman correlation rank coefficient in the heteroge-
neous setting (Figure 4.14 left) illustrates the differences between the algorithms.
NeurWIN, which previously achieved perfect correlation, now shows a slight de-
cline in optimality, with a Spearman ρ close to 0.9. QWI faces significant instabilities
due to the narrow margin separating the index values of subsequent states, espe-
cially the final ones of the environment, which requires a very high numerical

70

4.3. Experimental Setup and Results for Discrete Models

Figure 4.15 Spearman’s Rank Correlation Coefficient (left) and Average rewards
(right) for the Deadline Scheduling problem with N = 5,M = 2 and |Si| = 130
and processing cost c = {0.9, 0.7, 0.5, 0.3, 0.1}

0 10000 20000 30000 40000 50000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 c
or

re
la

tio
n

QWI QWINN NeurWIN

0 10000 20000 30000 40000 50000
Evaluation

14

12

10

8

6

Av
er

ag
e

di
sc

ou
nt

ed
 re

wa
rd

QWI
QWINN

NeurWIN
DQN

Theoretical

precision for an accurate ranking. Remarkably, QWINN stands out as the only
algorithm that maintains stable convergence to a ρ value of 1, reproducing the
theoretical ordering of the Whittle indices.

In Figure 4.14 right, we compare the performance of QWI, QWINN, NeurWIN
and DQN. The disparity between NeurWIN’s performance in the homogeneous and
heterogeneous scenarios becomes clear, with a clear deviation from the optimal
rewards of the theoretical Whittle index policy. Despite QWI’s lower overall ρ
value, its performance surpasses that of NeurWIN, mainly due to the ranking
problems affecting the less frequently visited states. QWINN, on the other hand,
consistently reproduces the optimal rewards, demonstrating the algorithm’s robust
adaptability to heterogeneous environments. DQN impressively maintains a near-
optimal policy, a continuity from its homogeneous performance, while Q-learning
lags with sub-random policy effectiveness.

Deadline Scheduling Problem.

For the heterogeneous scheduling problem, we focus on a variety of processing
cost values across multiple arms. The Whittle indices for the deadline scheduling
problem, as defined in Equation (4.15), are closely related to the state variables -
deadline time T , remaining workload B - and, in particular, the processing cost
c associated with action execution. In this case, we assign different processing
costs c = {0.9, 0.7, 0.5, 0.3, 0.1} to each of the five MDPs, introducing a range of
different Whittle indices within the N = 5,M = 2, |Si| = 130 setting for each
MDP.

In the homogeneous case, previously discussed in Section 4.3.3.1, both QWINN
and NeurWIN showed a high Spearman correlation coefficient. This translates
into a high performance, with NeurWIN almost reaching the optimal policy, as
shown in Figure 4.7 top left. However, moving to the heterogeneous environment
increases the importance of precision in index computation. Since each MDP has a

71

4. Discrete Action Models in RMABP

Table 4.4: Relative Error in Algorithm Performance at Final Iteration for Discrete Actions
Problems (homogeneous vs. heterogeneous) in %

QWI QWINN DQN NeurWIN Q-learning
Restart Homogeneous 0.015 % 0.011 % 0.177 % 0.011 % 10.358 %
Restart Heterogeneous 0.044 % 0.043 % 0.403 % 1.441 % 20.735 %
Deadline Homogeneous 4.198 % 0.891 % 38.207 % 0.223 %
Deadline Heterogeneous 48.382 % 9.495 % 155.679 % 22.054 %

unique set of indices due to different processing costs, the algorithms are tasked
with accurately capturing the subtle differences associated with this setting. Figure
4.15 left shows the Spearman’s Rank correlation of QWI, QWINN and NeurWIN,
demonstrating QWINN’s superior capability to reproduce the theoretical Whittle
indices ordering throughout training. NeurWIN falls short of QWINN’s accuracy
to the theoretical benchmarks, with QWI trailing even further in the Spearman’s
correlation coefficient metric.

The performance evaluation shown in Figure 4.15 right shows how QWINN’s
proficiency in index estimation on a global scale results in a policy that outperforms
its counterparts, albeit without quite reaching optimal policy performance. Neur-
WIN manifests a noticeable optimality gap with respect to QWINN, reflecting the
differences in index ordering. Interestingly, despite its suboptimal index ordering,
QWI still achieves commendable performance, occasionally paralleling NeurWIN’s
performance. This suggests that, as with the heterogeneous restart problem previ-
ously discussed, most of QWI’s index ordering discrepancies are due to states that
are rarely encountered during both the training and evaluation phases. In contrast,
DQN struggles to surpass the baseline of random policy effectiveness.

Table 4.4 shows the relative error in the performance of the algorithms at
the final iteration for the different problems in homogeneous and heterogeneous
environments, with respect to the theoretical Whittle index policy. The results
indicate that QWINN is the most robust algorithm for heterogeneous environments.
While all algorithms experience an increase in absolute error, particularly in the
deadline scheduling heterogeneous case, QWINN’s increase is significantly less
pronounced. For example, NeurWIN, which had the best performance in the
homogeneous deadline case with a relative error of 0.22%, now has an error of
22.054% in the heterogeneous case. In contrast, QWINN’s error only increases
from 0.891% to 9.495%. This robustness is also seen in the restart heterogeneous
environment, where QWINN maintains the lowest error at 0.043%. DQN and Q-
learning show substantial increases in error across heterogeneous environments,
with DQN’s error reaching as high as 155.679% in the deadline heterogeneous
case. Overall, QWINN demonstrates superior robustness and effectiveness in
managing the increased complexity of heterogeneous environments compared to
other algorithms.

72

Chapter5

Continuous Action Models in

Weakly Coupled MDPs

In the previous chapters, we introduced the Restless Multi-Armed Bandit Problem
(RMAB), a complex framework in which multiple Markov Decision Processes
(MDPs) with binary actions are deeply coupled. To this end, we introduced the
novel algorithms QWI (Section 4.1) and QWINN (Section 4.2), which represent
the state-of-the-art for both tabular and neural network approaches to computing
Whittle indices, a key heuristic for decoupling the arms of the RMAB problem. This
significant advance was shown in comparison to NeurWIN, the previous benchmark,
alongside traditional stalwarts such as DQN and Q-learning. In particular, QWINN
showed a better performance in terms of fast and accurate computation of Whittle
indices across a range of problems varying in both the size of their state spaces and
the number of arms, including scenarios characterized by arm heterogeneity.

However, the domain of binary actions, while complex, represents only a frac-
tion of the variety of challenges encountered in real-world applications. Thus, our
analysis now extends to the domain of continuous action problems. Applications as
diverse as resource allocation in cloud computing, dynamic pricing, and renewable
energy management require a transition from binary to continuous multi-action.

This path reveals a number of challenges that are unique to continuous action
models. The inherent complexity of continuous actions introduces a new dimension
of constraints-constraints that are no longer binary or categorical, but often nonlin-
ear, leading to intricate relationships between the magnitude of actions, resource
utilization, and their resulting effects.

5.1 Computation of Whittle Indices for
Continuous Actions

Let us consider the Weakly Coupled MDP described in Section 2.2.4, characterized
by the tuple ⟨S,A,P,R,C, N,B⟩, where S is the state space, A is the action

73

5. Continuous Action Models in Weakly Coupled MDPs

space, P is the transition probability matrix,R is the reward function,C is the cost
function, N is the number of arms, and B is the budget or amount of resources
available at each time step.

In Section 2.4, we introduced the algorithms presented in [45] and [46] to
compute the Whittle indices for discrete actions in the binary and multi-action
cases respectively. In this section, we will extend these methods to the continuous
action case, providing a numerical method to compute the Whittle indices for an
arbitrary discretization in the action space.

To begin the computation of these indices, let us define the policy matrix Ω0,
a nstates × nactions matrix, where each row indicates the action intended for a state,
with all initial actions set to 0.

Ω0 =

1 0 0
1 0 0
· · · · · · · · ·
1 0 0

Through iterative processes, we examine states not yet associated with the

highest action, incrementing their actions to compute potential indices. This
computation uses the transition probability matrix PΩ, along with the reward and
cost vectors RΩ and CΩ, based on the existing policy Ωt. Given a target state, we
adjust P ′

Ω, R′
Ω, and C ′

Ω to change the action for that target state according to the
next policy Ωt+1. We then compute the difference ∆Ω = P ′

Ω − PΩ and evaluate it
for the specific target state: ∆Ω(starget), which corresponds to the row of starget in
the ∆Ω matrix.

Following Equations (2.30) and (2.31), we define the value and cost functions as:

V =

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

− γPΩ

−1

×RΩ (5.1)

C =

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

− γPΩ

−1

× CΩ (5.2)

This process results in the index formula:

λ =
f ′
Ω − fΩ
g′Ω − gΩ

=
R′

Ω −RΩ + γ∆(starget)× V
C ′

Ω − CΩ + γ∆(starget)× C
. (5.3)

Once all indices are computed, the highest index value dictates the subsequent
action, iteratively updating the policy matrix until it reaches the highest action for
all states, denoted Ωend.

74

5.1. Computation of Whittle Indices for Continuous Actions

Algorithm 3 Generalized Multi-action Adaptive-greedy Whittle Index Algorithm
Initialize policy matrix Ω0

while not all states have reached their highest action do
for each state s ∈ {1, 2, . . . , nstates} do
Update matrices P ′

Ω,R′
Ω, C ′

Ω based on new policy Ωt+1 := a′(starget) = a+δ

∆Ω ← P ′
Ω − PΩ

∆Ω(starget)← row of starget in ∆Ω

Define V , C and λ using Equations (5.1), (5.2), and (5.3) respectively.
Update policy matrix Ωt based on highest index value

end for
Update policy Ωt ← Ωt+1 for starget with highest index

end while
Output: List of indices λ(s, a)

Ωend =

0 0 1
0 0 1
· · · · · · · · ·
0 0 1

Algorithm 3 extends the methods of Niño-Mora and Weber to a broader range

of action discretizations, δ. Given δ = 1, it falls back to Weber’s Algorithm [46],
while using am = 1 we obtain the original Niño-Mora’s Algorithm [45].

5.1.1 Policy Heuristic for Continuous Actions
The heuristic for determining actions using the Whittle index in the context of
continuous actions requires a more complex approach beyond the simpler approach
inherent to the binary action scenario. In the traditional binary case, the method-
ology involves selecting the M projects with the highest indices. However, the
continuous action framework requires an examination of the costs associated with
each activation level in order to identify the optimal actions.

Consider Figure 5.1, which show the Whittle index computed using Algorithm
3 for different levels of discretization for a given problem. Given an index value λ,
the action values of each curve represents the appropriate activation level.

In the relaxed version of the problem, resource consumption is averaged over
time, allowing for scenarios where the total cost of the chosen action vector tem-
porarily exceeds or falls below the resource bound B. In contrast, the original
problem formulation enforces the constraint that the action vector a incurs a total
cost c(s, a) = B.

Algorithm 4 introduces a heuristic for computing the actions associated with
Whittle indices given a resource constraint B. This heuristic uses a binary search

75

5. Continuous Action Models in Weakly Coupled MDPs

Figure 5.1 Comparison of the Whittle Index for the Admission Control problem
using different levels of discretization.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Action

10 1

100

101

In
de

x
va

lu
e

a = 0.1
a = 0.2

a = 0.3
a = 0.4

a = 0.5
a = 1.0

Algorithm 4 Continuous Action Whittle Index Heuristic
Procedure: GreedyIndexContinuousActions(s, B, amax)
Initialize minimum and maximum index values λmin and λmax

while |λmax − λmin| > δ do
λtarget =

λmin+λmax

2

for each MDP i in the coupled problem do
λ(si, ai), ∀ai ∈ Ai

a∗i ← argminai |λtarget − λ(si, ai)|
end for
a∗ = {a∗i }
C(s, a∗) =

∑N
i=1C(si, a

∗
i)

if C(s, a∗) > B then
λmin ← λtarget

else
λmax ← λtarget

end if
end while
Output: a∗

over the index space for a given state vector s, seeking to adapt the policy so that
c(s, as(λ)) = B.

Starting with boundary values λmin and λmax, we estimate an initial target
index λtarget = λmin+λmax

2
. This serves as a preliminary estimate of the optimal

index under the resource constraint for a vector of states s. For each individual
MDP within the coupled problem, we evaluate all possible actions ai ∈ [0, amax] to
determine the index λ(si, ai), and then identify the action a∗i that minimizes the

76

5.2. LPCA: Tackling Weakly Coupled MDPs with Continuous Actions

absolute deviation from λtarget. Hence: a∗i = argminai |λtarget − λ(si, ai)|.
Once we have a vector of actions a∗, if the total cost c(s, a∗) exceeds B, it

implies that the action selection is too big. To mitigate this, we adjust by increasing
λtarget for the subsequent iterations, setting λmin = λtarget. Conversely, if the total
cost is below B, indicating overly conservative actions, we increase the potential
resource utilization by decreasing λtarget, setting λmax = λtarget.

This iterative process continues until the gap between λmax and λmin narrows
significantly, at which point convergence to the optimal action given the resource
constraints is achieved.

5.2 LPCA: Tackling Weakly Coupled MDPs with
Continuous Actions

In the following sections, we will reintroduce the problem formulation for the
Weakly Coupled MDP and present the algorithm for the Lagrange Policy for Con-
tinuous Actions (LPCA) [30], a reinforcement learning algorithm specifically de-
signed for weakly coupled MDP problems with continuous action spaces. LPCA
integrates a neural network-based framework (as introduced in Section 3.2.1) to
study weakly coupled MDP using the Lagrange relaxation introduced in [43] to
decouple the projects of the MDP, being able to study their dynamics independently
of one another and effectively balancing resource constraints and individual project
decisions. In Section 5.2.1, we will present the problem formulation for the LPCA
algorithm, followed by a detailed explanation of the LPCA algorithm in Section
5.2.3. Finally, in Section 5.3.3, we will present the experimental results of the LPCA
algorithm in a variety of scenarios.

5.2.1 Problem Formulation

Consider a ⟨S,A, P, R,N,B⟩ environment consisting of N projects, each charac-
terized by its unique state, action, and the resulting reward. Specifically, the state
of the system is given by s = (s1, ..., sN) ∈ S , where each project is represented as
si, an element from the finite state space Si, i = 1, ..., N. Analogously, the actions
taken in each project are denoted as elements ai belonging to the compact action
space Ai, and the complete action vector is denoted as a = (a1, ..., aN) ∈ A. The
rewards obtained from these actions are encapsulated as elements ri in the reward
vector r. The cost associated with each action ai is expressed as c(ai), and the
cumulative cost for all actions is given by C(a) =

∑
i c(ai).

The system dynamics are governed by a transition probability function P :
S ×A → S which specifies the probabilities of transitioning to new states given
particular state and action vector. Given the values of actions, P has a product
form. A discount factor γ ∈ (0, 1) is used to balance immediate and future rewards.

77

5. Continuous Action Models in Weakly Coupled MDPs

The long-term discounted reward can be expressed through the Bellman Value
function V (s), which is the expected sum of discounted rewards accumulated over
time, starting from the state s and satisfying the Bellman dynamic programming
equation [66]:

V (s) = max
a∈A, C(a)=B

[
N∑
i=1

ri(si, ai) + γE[V (s′) | s, a]

]
. (5.4)

5.2.2 Lagrangian Decomposition for Continuous Actions
The complexity of the problem comes primarily from the constraint imposed on
the actions, which are dictated by a common pool of resources. Specifically, each
project must select a continuous action ai ∈ [0, amax

i]. Their total activation cost,
represented by the total cost C(a), consumes from the available resources B. This
shared resource pool constraint means that actions across projects are inherently
coupled, which significantly increases the complexity of the decision space as the
number of projects increases. The exponential growth in decision space complexity
due to this coupling highlights the challenge of resource allocation and emphasizes
the need for efficient use of the shared resource pool [67].

To manage this complexity, [43] relaxed the value function using a Lagrange
multiplier λ. This transforms the original problem into a Lagrangian form, seeking
to maximize the value function while adhering to the resource constraint:

J(s, λ) =max
a∈A

[
N∑
i=1

ri(si, ai) + λ

(
B −

N∑
i=1

c(ai)

)
+ γE[J(s′, λ) | s, a]

]
.

(5.5)
Here, λ is the Lagrange multiplier associated with the resource constraint B.

By adjusting λ, we effectively balance the immediate cost of actions against their
long-term rewards, allowing for a decoupling of the projects’ decisions.

If we assume the additive structure of the value function with respect to the
projects of the weakly coupled MDP, the Equation (5.5) can be rewritten as:

J(s, λ) =
λB

1− γ
+

N∑
i=1

max
ai∈Ai

Qi(si, ai, λ), (5.6)

where

Qi(si, ai, λ) = ri(si, ai)− λc(ai) + γ
∑
s′i

P (si, ai, s
′
i) max

a′i∈Ai

Qi(s
′
i, a

′, λ). (5.7)

In this decoupled framework, the Lagrange multiplier λ is key in determining
the optimal policy for each project. Under the budget constraintB, λ acts as a trade-
off parameter by introducing a penalty term λc(ai) for the actions taken. A higher

78

5.2. LPCA: Tackling Weakly Coupled MDPs with Continuous Actions

λ parameter places more emphasis on minimizing the cost (i.e., staying within
the resource limit B), while a lower λ value shifts the focus towards maximizing
rewards with less emphasis on the cost implementations. As λ rises, the preferred
policy for each project will increasingly prefer actions that offer the highest “value-
to-cost” ratio. Thus, the function (5.6) is a measure of the total expected reward,
adjusted for the cost of the actions taken under that policy.

To balance the expected rewards with the cost of actions, we need to find λ∗
such that

λ∗ = argmin
λ
J(s, λ). (5.8)

This term is defined as the best trade-off between maximizing rewards and
minimizing the cost of actions. It is at this point that the policy aligns with the
discounted time-averaged resource constraints, ensuring that the actions selected
are not only rewarding but also resource-efficient.

Then, in a continuous action framework, at each time step t we aim to solve
the following Knapsack optimization problem:

max
a∈A

N∑
i=1

Qi(si(t), ai, λ
∗) s.t.

N∑
i=1

ci(ai) = B. (5.9)

In the LPCA algorithm, described in detail next, we interpolate the curve of
the Q-values Q(s, a, λ) as functions of the Lagrange multiplier λ through a neural
network. This curve is a convex function with respect to λ ([43]), making the
minimization of (5.6) a simple one-dimensional convex optimization problem once
the neural network is trained. For the optimization (5.9) we explore two approaches
as outlined in Sections 5.2.4 and 5.2.5.

5.2.3 LPCA Algorithm
The core methodology of the LPCA algorithm involves a two-timescale process
centered around learning and optimization. Initially, LPCA focuses on training a
neural network to accurately approximate the Q-values as defined in Equation (5.7).
This process involves learning the balance between immediate rewards, action costs,
and future rewards based on the transition dynamics of the system. Once the neural
network is effectively trained for the current coupled state s, LPCA computes the
value function J(s, λ) as described in Equation (5.6). The objective is to determine
the optimal Lagrangemultiplier λ∗ that minimizes J(s, λ) as formulated in Equation
(5.8). Finally, LPCA addresses the optimization problem set out in Equation (5.9)
through two possible methods: a differential evolution optimizer, described in
Algorithm 8, or a greedy optimizer presented in Algorithm 9.

The general training process of LPCA, as outlined in Algorithm 5, is a key aspect
of our approach. The algorithm begins by using a policy dictionary to interact with
the environment. This dictionary is a mapping of states to actions, where each

79

5. Continuous Action Models in Weakly Coupled MDPs

Algorithm 5 LPCA Training Process
Require: Environment, Niter, Update frequency N , Batch sizeM , Policy method
Ensure: Train LPCA Model, Update Policy Dictionary
1: Initialize Q-value neural network, policy dictionary, experience memory
2: for iteration = 1 to Niter do
3: Select and execute action a, store (s, a, r, s′, done)
4: if memory ≥M then
5: Update Q-values with mini-batch ofM (Algorithm 6)
6: end if
7: if iteration mod N = 0 then
8: Update policy with Differential Evolution or Greedy (Algorithm 7)
9: end if
10: end for

state corresponds to a unique action vector. During each interaction, an action is
selected based on the current policy, and the environment responds accordingly.
The response, including the state transition and reward information, is stored as
a transition sample. Notably, each process of the weakly coupled MDP is treated
individually, with the transition sample from each project recorded separately in
a memory buffer. This memory serves as a repository for experiences, which are
later used to update the neural network that approximates Q-values.

The training of the neural network, as detailed in Algorithm 6, is central to learn-
ing the Q-values from Equation (5.7) associated with state transitions (s, a, r, s′)
across a range of test λ values. These test values are selected as a random subset,
which encompasses a discretized set of λ values in the range of a problem-dependent
[−λmax, λmax], using 1000 discretization.

During each iteration of the training process, the algorithm samples a batch
of experiences from the memory. Each experience comprises the current state s,
the action taken a, the reward received r, the subsequent state s′, and a boolean
flag indicating the terminal status of s′ for a given individual project. For each
experience, the algorithm computes the target Q-values for the state-action pair
(s, a) using a random subset of λ values. This step involves evaluating the Q-value
function for different levels of resource utilization and cost. The computation of the
target Q-values Qtarget(s, a, λ) utilizes a target network, which is a lagged version
of the primary neural network, to provide stable targets for learning [68].

Through this training process, the LPCA algorithm efficiently learns the Q-
values for various state transitions under different levels of resource constraints, as
dictated by the varying λ values.

Once we have trained the neural network to generate accurate approximations
of the Equation (5.7), we proceed with Algorithm 7 to compute the value function
J(s, λ) for a given state s as in Equation (5.6). This calculation involves evaluating∑N

i=1 maxai Q(si, ai, λ) for each λ within a discretized set.

80

5.2. LPCA: Tackling Weakly Coupled MDPs with Continuous Actions

Algorithm 6 Update Q-values in LPCA Neural Network Model
1: for each random sample in memory do
2: Extract s, a, r, s′, done from sample
3: Q← Calculate target Q-values for s and a using a subset of λ
4: Vexpected ← Calculate expected value functions for s′ using target network

for each λ
5: if done then
6: Qtarget(s, a, λ)← r(s)− λc(a)
7: else
8: Qtarget(s, a, λ)← r(s)− λc(a) + γ · Vexpected
9: end if
10: Perform a gradient descent step on (Qtarget(s, a, λ)−Q(s, a, λ))2 to update

network weights
11: end for
12: Perform soft-update on target network weights θ′ ← θτ + (1− τ)θ′

Once this term is computed, finding the optimal λ∗ is a one-dimensional convex
optimization problem, as shown in Equation (5.8).

This recoupling of the individual si states into a coupled s state is critical for
synthesizing the individual decisions across different MDPs into a coherent policy.

While the initial decoupling in LPCA helps simplify the problem and allows for
faster and more accurate neural network training - as each subproblem becomes
more manageable - the recoupling phase introduces significant computational
complexity. The size of the state space, which contains all possible combinations of
individual MDP states, grows exponentially with the number of MDPs involved,
as discussed in Section 2.2.2. This exponential growth poses a major challenge, as
it drastically increases the complexity required to optimize this large state space.
Moreover, computation of a complete policy dictionary becomes exponentially
more intensive as the number of MDPs increases. One proposed solution, given a
large state space, is to compute the policy dictionary online, only for the visited
states, in case the inference phase is shorter than the number of coupled states,
making an upper bound for the computational complexity to the number of visited
states.

A key technical contribution of our work is how we explore the action space to
solve the knapsack problem described in Equation (5.9). We propose two different
strategies to explore this action space in order to make the best use of the available
resources and select the best action based on our Q-value estimates. The first
strategy, presented in Section 5.2.4, is an evolutionary algorithm (LPCA-DE). It
uses mechanisms similar to natural selection to iteratively search for the optimal
solution, effectively avoiding local minima by exploring a wider range of solutions.

The second strategy, presented in Section 5.2.5, is a greedy algorithm (LPCA-
Greedy). It focuses on choosing the action based on the gradient of the Q-values

81

5. Continuous Action Models in Weakly Coupled MDPs

Algorithm 7 Computation of Lagrange term λ∗

Require: method
Ensure: Updated policy dictionary π(s)
1: function PolicyDictUpdate(method)
2: for all s ∈ S do
3: Q← Zero Matrix of size [n_lambda, N]
4: for i ∈ 1 : N do
5: Q[:, i]← maxai Q(si, ai, λ),∀λ
6: end for
7: J(s, λ)← Compute value functions as (5.6)
8: λ∗(s)← argminλ J(s, λ)
9: if method = Evolution then
10: a∗ ← DifferentialEvolution(s, λ∗(s), amax)
11: else
12: a∗ ← Greedy(s, λ∗(s), amax, δ)
13: end if
14: π(s)← a∗

15: end for
16: end function

with respect to the actions for each project, selecting the action that promises the
highest increase in the Q-value per unit of resource expended. This method is
simpler and faster, and helps to quickly identify actions that increase payoff.

The main goal of employing the differential evolution and greedy approaches
within the LPCA framework is to effectively navigate this expansive action space.
These methods are specifically chosen over gradient-based optimization techniques,
which, while powerful in certain contexts, often fail in this setting due to their
propensity to become trapped in local optima.

5.2.4 Differential Evolution Optimization (LPCA-DE)
The first method, explained in Algorithm 8, employs a differential evolutionary
algorithm, renowned for its effectiveness in identifying global optima and circum-
venting local optima traps. This method is particularly adept at exploring the search
space comprehensively [69].

Evolutionary algorithms (EAs) are a class of stochastic, population-based opti-
mization algorithms inspired by biological evolution. These algorithms operate on
the principle of “survival of the fittest”, where a population of potential solutions
evolves over generations towards an optimal solution.

The general process of an evolutionary algorithm involves the initialization
of a population of solutions followed by the application of genetic operators such
as selection, crossover, and mutation. The selection process favors individuals
(solutions) with higher fitness scores to pass their genes (solution attributes) to

82

5.2. LPCA: Tackling Weakly Coupled MDPs with Continuous Actions

the next generation. Crossover and mutation introduce variability and new traits
into the offspring, promoting exploration of the solution space. The algorithm
iterates through these steps until a termination criterion is met, such as reaching a
maximum number of generations or achieving a satisfactory fitness level.

The mathematical formulation of an evolutionary algorithm typically involves
defining a fitness function f(x), which evaluates the quality of each solution x in
the population. The objective is to maximize (or minimize) this fitness function.
The evolutionary process can be described by the following generic steps:

1. Initialization: Generate an initial population P0 of solutions randomly or
based on heuristic information.

2. Evaluation: Compute the fitness f(x) for each solution x in the current
population.

3. Iterate:

a) Mutation: add weighted difference between two solutions and a third
one

xmutant = xtarget + T (xB − xC)

b) Crossover: combine mutated solutions with the current solution to
generate a trial solution. For a given crossover rate R and trial vector t,
each of its elements will be defined as

ti =

{
mi if rand(i) ≤ R or i = irand

ai otherwise

c) Selection: Choose the solution with the best fitness to pass to the next
generation.

4. Convergence: Repeat until the population converges to the optimal solution.

The actions obtained through this method are solutions to the relaxed version
of the problem, where the resource constraint is averaged over time. This leads
to situations where the total cost of the chosen action vector temporarily exceeds
or falls below the resource constraint B. Thus, a critical aspect of this approach
is the integration of a penalty mechanism to ensure that the choice of actions
remains within the resource constraints of the original problem. Actions that result
in resource usage beyond the available limit are subject to a significant penalty.
Without this penalty, the optimizer may select actions that exceed the resource
limit, leading to infeasible solutions.

On the other hand, it’s not uncommon for an action to use less than the available
resources. Given the λc(a) term in Equation (5.7), the derived optimal policy tends
to be cost-effective. However, it may not always coincide with the optimal policy

83

5. Continuous Action Models in Weakly Coupled MDPs

Algorithm 8 Action Selection through Differential Evolution Optimization
Require: State vector s, fixed Lagrange multiplier λfix, maximum action amax

Ensure: Optimal actions maximizing Q-values under resource constraints
1: function DifferentialEvolution(s, λfix, amax)
2: Bounds← [0, amax]
3: function ObjectiveFunction(a, s, λ∗)
4: Qtotal ←

∑N
i=1Q(si, ai, λ

∗)

5: Ctotal ←
∑N

i=1C(si, ai)
6: if Ctotal > B then
7: Penalty← Large constant value
8: Qtotal ← Qtotal − Penalty
9: else if Ctotal < B then
10: Penalty← B − Ctotal
11: Qtotal ← Qtotal − Penalty
12: end if
13: return −Qtotal
14: end function
15: a∗ ← Apply Differential Evolution optimization with (ObjectiveFunction,Bounds)

16: return a∗

17: end function

of the original constrained problem (5.4), leading to potential underutilization of
resources.

To address this, we introduce a secondary optional penalty, equal to the amount
of unused resources, into the differential evolution optimization problem. This
modification guides the optimizer toward actions that maximize resource utilization,
ensuring that the algorithm not only pursues cost-effective solutions, but also fully
utilizes the available resources.

5.2.5 Greedy Optimization Strategy (LPCA-Greedy)

The greedy optimization strategy, as described in the Algorithm 9, develops through
a gradual iterative process. This method evaluates the gradient of the Q-values in
relation to the actions for each project, and then directs resources to the project with
the highest gradient. This process is repeated until the pool of available resources
is completely utilized.

Our approach reflects a strategic focus on maximizing the use of resources,
optimally allocating resources to projects that have the greatest potential for in-
creasing the value of quality per unit of resource consumed. Unlike the differential
evolution approach, which searches for the optimal policy before making adjust-
ments to match resource availability, the greedy method operates on the principle
of ensuring total resource utilization. It achieves this by systematically allocating

84

5.3. Experimental Setup

Algorithm 9 Greedy Action Selection for Continuous MDP
Require: State s, λfix, max action amax, increment δ
Ensure: Optimal actions maximizing Q-values, maximum action amax

1: function Greedy(s, λfix, amax, δ)
2: Initialize action vector a to zeros, Bremaining = B
3: while Bremaining > 0 do
4: i← argmaxi

∂Q
∂ai

5: ai ← ai + δ, ensure ai ≤ amax

6: Bremaining ← B −
∑N

i=1 c(si, ai)
7: end while
8: return a
9: end function

resources in such a way as to optimize the incremental benefit gained from each
project.

5.3 Experimental Setup
Our LPCA models are intricately designed to tackle multi-armed bandit problems
characterized by continuous actions. These types of problems have traditionally
been addressed by techniques such as actor-critic models.

Actor-critic models employ a dual neural network structure: the actor network,
which suggests an action vector a given a complete state vector s, and the critic
network, which is tasked with evaluating the actor network’s performance Q(s, a).
The actor embodies the agent’s policy, seeking to generate actions that maximize
expected returns and refining its strategy based on the critic’s insights. Meanwhile,
the critic’s role is to predict future rewards from any given state by evaluating the
actions generated by the actor.

Learning in these models evolve in two concurrent phases: the critic refines its
value function for more accurate predictions of state or state-action pair values,
while the actor modifies its policy using the critic’s evaluations to improve decision
efficiency.

A notable example of such models is the Deep Deterministic Policy Gradi-
ent (DDPG) [70], which combines principles from DQN (Deep Q-Networks) and
deterministic policy gradient techniques. DDPG is characterized by three main
components: the actor network, which directly outputs the optimal action for
each state; the critic network, which evaluates the actor’s output by estimating its
Q-value; and target networks for both actor and critic, which reflect the double
DQN [68] technique to enhance stability. The critic’s learning process involves
decrease the gap between its Q-value predictions and the target Q-values, which
are derived from observed rewards and the target critic’s predicted Q-values of the
upcoming state. At the same time, the actor updates its policy by using the gradient

85

5. Continuous Action Models in Weakly Coupled MDPs

of the critic’s output with respect to the actions to guide policy improvement.
However, DDPG and actor-critic models in general traditionally generate actions

that are not bounded by resource constraints and are only limited by the action
space. To address this shortcoming, OptLayer, introduced by [71], modifies the
actor network by incorporating an additional layer that formulates the convex
optimization problem of Equation (5.10):

minimize ∥Wx+ b− y∥22
subject to

∑
y ≤ B

0 ≤ y ≤ amax

Wtilde = W

(5.10)

WhereW and b are the learnable parameters of the new layer, x is the output of
the previous layer (originally the actions that the Actor Network would produce),
and y are the new outputs of the Actor Network, the constrained actions that satisfy
the total resource constraint and the bound in the action space. This layer aims to
reconcile the actions proposed by the actor with the prevailing resource constraints,
ensuring that the actions not only comply with the space boundaries, but also with
the overall resource constraints.

We will use this model, together with the optimal heuristic from the Whittle
indices computed in Section 5.1.1, to evaluate the performance of our LPCA models
in several continuous actions weakly coupled problems.

5.3.1 Description of Test Environments for Continuous
Models

To evaluate the performance of our LPCA algorithms against theoretical Whittle
indices and the DDPG algorithm augmented with OptLayer, we will use four
different environments for testing: “Type A” and “Type B” from [72], both adapted
for continuous actions, as well as an admission control and a speed scaling problem.

5.3.1.1 Type A and Type B Environments

“Type A” and “Type B” environments are characterized by having two states per
arm, with their reward and cost functions simply defined in terms of the state of
the MDP and the action performed, respectively:

R(s, a) = s C(s, a) = a

A defining feature of these environments is their transition probabilities. For
“Type A”, we have adapted the original probabilities for three discrete actions
(a = {0, 1, 2}) from [72] to a continuous action spectrum a ∈ [0, amax], with

86

5.3. Experimental Setup

amax = 2, resulting in:

PA(s, a) =

(
0.02a2 − 0.09a+ 0.8 −0.02a2 + 0.09a+ 0.2

0.75e−0.947a 1− 0.75e−0.947a

)
and for “Type B”:

PB(s, a) =

(
0.95e−2.235a 1− 0.95e−2.235a

0.3347e−1.609a 1− 0.3347e−1.609a

)
In “Type A”, the transition probability to stay in state 1 increases with the action

at a faster rate than the probability to go from state 0 to state 1. This scenario leads
to a greater “return on investment” when allocating resources to MDPs in state 1
than in state 0.

“Type B” presents the opposite dynamic, with the transition probabilities of
state 0 to state 1 increasing at a faster rate than the probability of remaining in
state 1, suggesting an increased “return on investment” from prioritizing MDPs in
state 0.

5.3.1.2 Admission Control Environment

Our third environment will be the admission control problem, where we consider
each MDP as a processor managing incoming jobs with a maximum queue length
smax = 4. Here, for eachMDP i, the arrival rateαi(ai) = αmax

2−a
2

can bemodulated
by the agent’s actions, where αmax = 2 is the maximum arrival rate and µ = 1 is
the fixed departure rate. The action parameter a determines the rejection rate of
incoming jobs: an action a = 0 leads to the acceptance of all jobs, while a = 2
leads to their complete rejection. This scenario, originally set in continuous time,
requires a discretization to be compatible with our algorithms designed for discrete
time models.

This adjustment introduces a normalization factor ν = αmax + µ. The discount
factor, which is used to reduce future rewards and allow convergence in long-term
rewards (as seen in Section 2.1.2), is defined in continuous-time models as β, and
discounts rewards as R =

∑T
t=0 r(t)e

−βt. Given the current normalization factor ν,
we can relate this continuous discount factor to the discrete discount γ as γ = ν

ν+β
.

The transition probabilities for this time-discretized model are expressed as:

P (a) =

1− α(a)

ν
α(a)
ν

0 0
µ
ν

1− α(a)+µ
ν

α(a)
ν

0

0 µ
ν

1− α(a)+µ
ν

α(a)
ν

0 0 µ
ν

1− µ
ν

The reward function of the problem is structured to penalize higher states,

especially the final state smax, by including a “rejection cost” Cr. This leads to the

87

5. Continuous Action Models in Weakly Coupled MDPs

definition:

R(s, a) =
smax − s− Cr(s, a)

ν + β
=

{
smax−s−αmax

a
2

ν+β
if s < smax

−αmax−18
ν+β

if s = smax

Furthermore, the activation cost function is defined to reflect the cost of actions
in non-terminal states and to nullify it for the terminal state smax, due to the lack
of action dependence in the transition probabilities at this state:

C(s, a) =

{
a2

2
+2a

ν+β
if s < smax

0 if s = smax

To avoid a scenario where the final state smax might appear unreasonably
advantageous due to the absence of activation costs, we significantly increase
Cr(smax, ·) = λmax + 18 for smax, emphasizing the critical nature of this state.

5.3.1.3 Speed Scaling Environment

The final environment to be explored in our study is the speed scaling problem.
Similar to the admission control environment, each MDP in this setting acts as a
processor for incoming jobs. However, unlike the previous case, here the agent
has the authority to control the departure rate µi =

√
ai, while the arrival rate is

maintained at a fixed value α = 0.9, and the system is capped at a maximum state
smax = 6.

Originally formulated in continuous time, the transition to a discretized frame-
work involves employing a normalization factor ν = α + µmax and converting
the continuous discount factor β to its discrete counterpart γ via γ = ν

ν+β
. This

adjustment results in the following transition probability matrix:

P (a) =

1− α

ν
α
ν

0 0 0 0
µa

ν
1− α+µa

ν
α
ν

0 0 0
0 µa

ν
1− α+µa

ν
α
ν

0 0
0 0 µa

ν
1− α+µa

ν
α
ν

0
0 0 0 µa

ν
1− α+µa

ν
α
ν

0 0 0 0 µa

ν
1− µa

ν

In this setting, the reward function penalizes the higher states. Contrary to the

previous environment, the only time a rejection occurs is in the final state, with its
corresponding penalty. The reward function is defined as:

R(s) =
−s
ν + β

+
Cr

ν + β
=

{
−s
ν+β

if s < smax

−smax−10
ν+β

if s = smax

Including an additional rejection cost Cr = −10 in the final state increases the
penalty for reaching that state.

88

5.3. Experimental Setup

The first state, s = 0, is considered uncontrollable, since job departures are
infeasible in the absence of jobs. Therefore, the cost function is

C(s, a) =

{
0 if s = 0
a

ν+β
if s > 0

5.3.2 Evaluation Metrics and Benchmarks

Given the differences between LPCA’s index heuristics and the traditional Whittle
index for continuous actions, our comparative analysis will focus exclusively on
averaged discounted rewards obtained by each model’s policy. This approach is in
accordance with the methodology outlined in Section 4.3.2 and ensures a consistent
framework for evaluating algorithm performance.

During each evaluation epoch, we examine the performance of various algo-
rithms, including LPCA-DE, LPCA-Greedy, DDPG equipped with OptLayer, and
the theoretical continuous action Whittle indices, over the previously discussed
environments. This evaluation process involves performing Ne = 10 evaluation
runs, each going through 500 randomly selected initial states. For each state, we
compute the total discounted reward over niter = 50 iterations, following the policy
by each algorithm, resulting in an individual reward Ri. These rewards are then
averaged across all initial states to derive R, a process that is repeated for each
evaluation run to assemble a vectorR of averaged rewards.

To encapsulate the performance of each algorithm during epoch t, we compute
both the mean of R and its confidence interval, the latter denoted by the standard
deviation σ(R(t)).

Table 5.1 provide a summary of the performance of each algorithm in terms of
the relative error of the value function Vπ(t) in the last iteration with respect to the
theoretical Whittle index policy, defined as:

Relative Error =
|Vπ(t) − VWhittle|
|VWhittle|

.

5.3.3 Detailed Analysis of Experimental Results

In this section, we present the numerical results obtained from the implementation
of our models in the previously detailed environments: Type A, Type B, Admission
Control, and Speed Scaling. Each environment is designed to rigorously test the
effectiveness of our algorithms-LPCA variants and DDPG with OptLayer-against
the theoretical continuous Whittle indices, under different operational settings.

A single discrete discount factor, γ = 0.9, is used across all scenarios to ensure
comparability. For environments originally formulated in continuous time, such as
the Admission Control and Speed Scaling problems, the conversion to a discrete time
framework requires the definition of a continuous discount factor, β. This factor is

89

5. Continuous Action Models in Weakly Coupled MDPs

computed from the discrete γ and the maximum arrival rates λ and departure rates
µ, using the formula

β =
λ+ µ

γ
− (λ+ µ).

To evaluate performance across different levels of complexity and resource
allocation, each environment is tested with two different configurations:

• With N = 4 arms, where the available resources are just enough to fully
activate one arm, allowing us to evaluate the effectiveness of the algorithms
in distributing resources.

• With N = 6 arms, where resources are sufficient to fully activate two arms,
thus increasing decision complexity and testing the algorithms’ ability to
effectively manage more substantial resources and processes.

The progression through the environments is structured to escalate in difficulty,
not only in terms of requiring more nuanced policies for effective management, but
also by expanding the state space, which challenges the computational robustness
and adaptability of the algorithms.

Type A Environment.

In the Type A environment, our analysis is structured around two setups de-
signed to test the algorithms under resource-constrained conditions: the first with
N = 4 arms and a total resource budget ofB = 2, and the second withN = 6 arms
and a resource budget of B = 4. These setups imply that the cumulative action
across all MDPs satisfies the conditions

∑N
i=1 ai = 2 and

∑N
i=1 ai = 4, respectively.

Given the cost function of this environment, these configurations severely limit
the ability of the MDPs to operate at full capacity, thereby imposing a strategic
requirement for sensible resource management and allocation.

In the first configuration with N = 4, as shown in Figure 5.2 left, both LPCA
variants, LPCA-DE and LPCA-Greedy, show comparable performance. In particular,
from about iteration 30000, their results are close to the theoretical continuous
Whittle index, indicating a robust adherence to optimal policy guidelines. In con-
trast, DDPG initially lags behind during the first 40000 iterations, but eventually
converges to a similar performance level as the LPCA algorithms.

Moving to the more complex N = 6 scenario shown in Figure 5.2 right, the
differences between the algorithms become more pronounced. In this setting,
LPCA-Greedy slightly outperforms LPCA-DE, converging to the performance level
of the Whittle index and suggesting more efficient resource utilization and policy
execution. DDPG, which previously matched the LPCA algorithms in the N = 4
setting, now exhibits significantly weaker performance. This decline highlights
potential scalability issues with DDPG when faced with an increased number of
arms and narrower resource constraints.

90

5.3. Experimental Setup

Figure 5.2 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Type A environment with N = 4 and B = 2
(left) and N = 6 and B = 4 (right)

0 20000 40000 60000 80000 100000
Iteration

11

12

13

14

15

16

17

Di
sc

ou
nt

ed
 R

ew
ar

ds

LPCA-DE
LPCA-Greedy
DDPG
Index

0 20000 40000 60000 80000 100000
Iteration

23

24

25

26

27

28

29

Di
sc

ou
nt

ed
 R

ew
ar

ds

LPCA-DE
LPCA-Greedy
DDPG
Index

Type B Environment. In the Type B environment, we continue the evaluation
under the same configurations as previously described: with N = 4 arms and a
resource budget of B = 2, and thereafter with N = 6 arms and a resource budget
of B = 4. These setups require that the collective actions across all MDPs satisfy
the constraints

∑N
i=1 ai = 2 and

∑N
i=1 ai = 4, respectively.

For the initial setup ofN = 4, as shown in Figure 5.3 left, both LPCA algorithms-
LPCA-DE and LPCA-Greedy-exhibit a remarkable ability to closely match the
performance level of the theoreticalWhittle index policy. In contrast, DDPG exhibits
a more erratic trajectory; its performance fluctuates, aligning with the LPCAs
in some iterations while falling behind significantly in others. This variability
highlights potential challenges in DDPG’s adaptability or stability in consistently
learning optimal policies in this environment.

The complexity and challenges escalate with the expansion to N = 6 arms
and B = 4, as shown in Figure 5.3 right. In this more challenging scenario,
DDPG’s performance continues to deteriorate, significantly underperforming the
Whittle index policy and exhibiting significant deviation from optimal policies
even as it progresses through the training phases. This marked decline highlights
scalability issues or inefficiencies within DDPG’s learning mechanism when faced
with increased complexity and tighter resource constraints.

In contrast, both LPCA variants maintain their performance and converge
close to the Whittle index benchmark. In particular, the LPCA greedy variant is
characterized by excellent stability and robustness throughout the training process.
Remarkably, it achieves a high level of performance from the outset, demonstrating
its efficiency in quickly learning and adhering to highly effective policies with
minimal transition data requirements.

Admission Control Environment.

The admission control environment presents a more complex scenario than
the Type A and Type B environments, with a larger state space per arm and more

91

5. Continuous Action Models in Weakly Coupled MDPs

Figure 5.3 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Type B environment with N = 4 and B = 2
(left) and N = 6 and B = 4 (right)

0 20000 40000 60000 80000 100000
Iteration

20

22

24

26

28

30

32

Di
sc

ou
nt

ed
 R

ew
ar

ds

LPCA-DE
LPCA-Greedy
DDPG
Index

0 20000 40000 60000 80000 100000
Iteration

15

20

25

30

35

40

45

50

Di
sc

ou
nt

ed
 R

ew
ar

ds

LPCA-DE
LPCA-Greedy
DDPG
Index

complex dynamics.
For the admission control environment, we keep the same resource constraints

as in the previous settings, which translate to
∑N

i=1 ai = 2 and
∑N

i=1 ai = 4.
However, due to the different cost function associated with this problem, these
constraints are adjusted to N = 4 with B = 1.8 and N = 6 with B = 3.6. Despite
these modifications, the core challenge of resource allocation remains critical.

Looking at the first configuration of N = 4 arms with a resource budget of
B = 1.8, shown in Figure 5.4 left, we observe a strong divergence in the perfor-
mance results of the evaluated algorithms. In particular, DDPG shows a pronounced
inability to learn an effective policy; its performance remains well below the theo-
retical Whittle index threshold throughout the training period, and it significantly
underperforms compared to both LPCA versions. This inability to adapt or learn
efficiently in more complex scenarios underscores potential limitations in the utility
of DDPG with OptLayer in certain contexts.

Conversely, both versions of LPCA - LPCA-DE and LPCA-Greedy - show a
much closer approximation to theWhittle index performance, with LPCA-Greedy in
particular excelling due to its strategic incremental action assignment. This method
allows it to allocate resources judiciously without the need for exhaustive action
exploration, thus maintaining stability and consistency in performance. LPCA-DE,
while generally effective, experiences fluctuations in the first half of the training
process, especially in the early stages, with several negative performance spikes,
indicative of its broader exploratory approach in the action space.

In the second setting, shown in Figure 5.4 right, the admission control environ-
ment shows trends consistent with our earlier observations: DDPG continues to
exhibit limitations and adheres to a suboptimal policy throughout the evaluation
period. This performance stagnation highlights DDPG’s difficulty in effectively
scaling with an increased number of arms and more complex resource allocation
requirements.

92

5.3. Experimental Setup

Figure 5.4 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Admission Control environment with N = 4
and B = 1.8 (left) and N = 6 and B = 3.6 (right)

0 20000 40000 60000 80000 100000
Iteration

70

65

60

55

50

45

Di
sc

ou
nt

ed
 R

ew
ar

ds

LPCA-DE
LPCA-Greedy
DDPG
Index

0 20000 40000 60000 80000 100000
Iteration

80

70

60

50

40

Di
sc

ou
nt

ed
 R

ew
ar

ds

LPCA-DE
LPCA-Greedy
DDPG
Index

In contrast, the LPCA algorithms-especially LPCA-DE-demonstrate significant
adaptability and robustness under these increased conditions. Both LPCA-DE
and LPCA-Greedy closely approximate Whittle index policy performance, with
LPCA-DE showing particular strength in this regard. Their consistent performance
confirms the algorithms’ potential to effectively manage larger systems, making
them suitable candidates for complex real-world applications where resource opti-
mization is critical.

Speed Scaling Environment.

The speed scaling problem stands out as the most complex, due to its larger
state space per arm.

For this analysis, we will use the activation conditions as before, which, given
the cost function of the problem, lead to the settings N = 4 with B = 0.774, the
total resources required to fully activate one arm, and N = 6 with B = 1.5478, the
resources required to fully activate two arms.

In the first setting, shown in Figure 5.5, DDPG shows initial learning activity
within the first 20000 iterations, but soon reaches a plateau and eventually locks into
a significantly suboptimal policy. This behavior mirrors the difficulties observed
in the admission control problem, where DDPG’s performance not only fails to
reach the theoretical Whittle index policy threshold, but also falls behind the LPCA
variants significantly.

In contrast, both LPCA-DE and LPCA-Greedy show remarkable performance
in this environment. After about 30000 iterations, their performance trajectories
closely match, each converging toward the Whittle index policy performance. De-
spite this convergence, there remains a noticeable gap between their performance
and the optimal policy level, which is larger than that observed in previous en-
vironments. This gap underscores the increased difficulty of the speed scaling
problem, where even the more robust LPCA algorithms struggle to fully meet the
performance benchmark set by the Whittle index.

93

5. Continuous Action Models in Weakly Coupled MDPs

Figure 5.5 Performance comparison of LPCA-DE, LPCA-Greedy, DDPG with Opt-
Layer, and Whittle indices for the Speed Scaling environment with N = 4 and
B = 0.7739

0 20000 40000 60000 80000 100000
Iteration

100

90

80

70

60

50

Di
sc

ou
nt

ed
 R

ew
ar

ds
LPCA-DE
LPCA-Greedy
DDPG
Index

Table 5.1: Relative Error in Algorithm Performance at Final Iteration for Continuous
Actions Problems in %

LPCA DE LPCA Greedy DDPG+OptLayer
Type A 4 arms 3.1000 % 0.9804 % 2.0595 %
Type A 6 arms 0.7402 % 0.3946 % 3.7510 %
Type B 4 arms 1.3057 % 1.2772 % 4.1078 %
Type B 6 arms 0.4408 % 0.5285 % 7.8006 %

Admission Control 4 arms 6.1352 % 3.5535 % 53.6963 %
Admission Control 6 arms 0.9733 % 2.3220 % 122.3079 %

Speed Scaling 4 arms 5.8284 % 4.5809% 78.0848 %
Speed Scaling 6 arms 1.6280 % 1.9251 % 68.8295 %

For the second setting, due to the size of the state space, a complete analysis
of the performance of the algorithms throughout their training is not feasible.
Therefore, we decided to evaluate the performance of the algorithms in the last
iteration, where they are expected to have converged to an optimal policy. The data
presented in Table 5.1 shows the relative performance of LPCA-DE, LPCA-Greedy,
and DDPG with OptLayer algorithms.

For the 6-arm speed scaling scenario, LPCA DE has a relative error of 1.6280%,
while LPCA Greedy has a slightly higher error of 1.9251%. In contrast, DDPG with
OptLayer has a significantly higher relative error of 18.8295%. This significant
difference, present in all environments and settings, shows the superior efficiency
of the LPCA algorithms in closely approximating the theoretical performance, even
in a complex and resource-intensive environment.

94

Chapter6

Conclusion and Future Directions

6.1 Summary of Key Findings

In the field of discrete actionswithin RestlessMulti-Armed Bandit (RMAB) problems,
the development and implementation of the QWI and QWINN algorithms stand
out as significant achievements of this thesis. These two-timescale algorithms
are designed to compute the Whittle indices accurately, converging closely to
the exact theoretical values. The convergence rate of QWINN is shown to be
superior to that of QWI, due to the integration of neural networks that improve the
convergence of Q-values across all states. This fast and accurate index computation
is particularly evident in smaller scale environments, providing a robust foundation
for the algorithms’ effectiveness.

Throughout various test scenarios, both QWI and QWINN demonstrated con-
sistent performance in terms of index convergence, as illustrated by Spearman’s
rank correlation metrics. This consistency was observed regardless of the num-
ber of arms in the problem, demonstrating a clear performance advantage over
traditional reinforcement learning methods such as DQN and tabular Q-learning
as shown in Section 4.3.3.1. In environments characterized by large state spaces,
these algorithms not only matched, but occasionally surpassed the performance of
the previous state-of-the-art, NeurWIN, particularly in reducing absolute error, as
highlighted in Figure 4.6 left.

The practical impact of these algorithms is further illustrated by their perfor-
mance in larger environments, such as the extended restart and circular models
of section 4.3.3.2. In these environments, the rapid alignment of computed indices
with theoretical Whittle indices allowed for faster convergence to the optimal policy
performance. In particular, in the extended circular problem with state spaces as
large as |Si| = {10, 50}, NeurWIN struggled with correct index ordering-a chal-
lenge handled successfully by QWINN and even QWI, which effectively captured
the appropriate index order critical for policy optimization, as shown in Figures 4.9
left and right.

95

6. Conclusion and Future Directions

Furthermore, in the extended restart problem, QWINN consistently identified
the correct ordering of key states, a capability shown in Figure 4.10 top right and
bottom right. Even QWI, which uses a tabular approach, demonstrated superior
long-term performance over NeurWIN by achieving better index convergence in
essential states, as shown in Figures 4.12 left and right.

A notable advantage of QWI, and especially QWINN, is their accuracy in es-
timating Whittle indices in hybrid RMAB environments where arms may have
different transition probabilities and reward functions, as explored in Section 4.3.3.3.
This is evident as QWINN maintains close index orders across all states, in sharp
contrast to NeurWIN’s performance, which is competitive in homogeneous environ-
ments, as shown in Figure 4.7 top left, but struggles in heterogeneous environments,
as shown in Figure 4.13 bottom. Here, QWINN’s performance was significantly
closer to the theoretical Whittle Index threshold, emphasizing its robust adaptability
and accuracy in more complex scenarios.

Together, these results highlight the significant advances that QWI and QWINN
have brought to the computation of Whittle indices for RMAB problems.

In our continuous action analysis, we have extended the algorithms of Niño-
Mora [45] and Weber [46] for numerically computing Whittle indices to handle
multi-actions with any kind of discretization in the action space in Section 5.1. This
advancement allows us to compute Whittle indices for continuous action problems
with varying levels of discretization. By integrating this with the policy heuristic
introduced in Section 5.1.1, we can approximate a fully continuous action Whittle
index policy.

A key part of our research is the development of the Lagrangian Policy for
Continuous Action (LPCA) algorithm, an advanced approach for solving contin-
uous action reinforcement learning in weakly coupled problems, introduced in
Section 5.2. LPCA utilizes a Lagrangian relaxation to effectively decouple these
problems, enabling the optimization of expected rewards within given resource
constraints. The algorithm employs two distinct strategies: a differential evolution
algorithm designed to navigate the action space within these constraints, and a
greedy algorithm that sequentially allocates resources to optimize performance
rewards.

Our experimental results in Section 5.3.3 demonstrate that both versions of
LPCA consistently outperform DDPG with OptLayer in all tested environments and
configurations, achieving policy performances that closely match the theoretical
Whittle indices derived from our numerical evaluations. LPCA exhibits remarkable
resource allocation efficiency under conditions of resource scarcity, highlighting
its utility in critical scenarios.

Moreover, LPCA effectively handles both simple and complex problem struc-
tures. In simpler scenarios, such as the Type A problem, LPCA directs resources
to specific arms based on their state. In more complex environments, such as the
Admission Control and Speed Scaling problems, LPCA balances the distribution of

96

6.2. Future Directions and Potential Developments

resources across states to maintain equilibrium between the MDPs, significantly
improving overall system performance. This nuanced resource management con-
trasts sharply with DDPG with OptLayer, which is competent in simpler settings
such as Type A, but generally falters in more complex configurations.

In conclusion, the introduction of LPCA not only advances the computational
methodology for handling continuous action spaces in RMAB problems but also
sets a new benchmark for integrating resource constraints into policy computation.
This establishes a robust framework for future research and applications in this
area, demonstrating the potential for LPCA to address complex decision-making
problems under uncertainty and resource limitations.

6.2 Future Directions and Potential Developments
Several promising avenues for improving our algorithms emerge as we consider
the future directions and potential developments stemming from this thesis. These
ideas, with a particular focus on the QWINN and LPCA algorithms, aim to improve
the robustness and applicability of the models we developed.

For QWINN, a notable improvement would be the implementation of a dual
neural network system - one dedicated to computing Q-values and another special-
ized for Whittle index computation. The existing hybrid model, while efficient and
computationally light, could never handle continuous action spaces. By allowing
the action to be an input to the Whittle index neural network, the system could
calculate indices, while taking advantage of the stability of the two-time scale
method to improve accuracy and robustness. This development could be a signifi-
cant step towards a continuous action variant of QWINN, enhancing its utility in
more dynamic environments. Although the first steps towards this innovation have
been taken, considerable work remains to be done, mainly due to time constraints
on the initial research.

Turning to the LPCA algorithm, the recoupling of the state space to compute
the action policy dictionary is a significant computational challenge. This process
is critical as it integrates the decoupled Q-values back into a unified policy, but it
becomes increasingly expensive as the number of MDPs grows. Future research
could explore ways to optimize or completely redesign this recoupling process to
reduce the overhead.

In addition, we initiated research on the computation of the analytical contin-
uous Whittle index, which revealed intriguing possibilities for improving index
computation without relying on numerical discretization methods. This approach
promises improved precision and accuracy in dynamic environments with continu-
ous action spaces. However, the indexability properties of the algorithm require
further investigation to fully realize its potential.

97

AppendixA

Appendix

A.1 Theoretical Foundations of QWI
Consider the following definitions:

Definition A.1. A function is considered Lipschitz if it satisfies the condition that
for any two points x, y in its domain, there exists a constant L > 0 such that |f(x)−
f(y)| ≤ L|x− y|. This property ensures the function’s output changes at a controlled
rate in response to variations in the input, guaranteeing continuity and, if differentiable,
a bounded derivative.

Definition A.2. A σ-field is a mathematical structure that encompasses a collection
of sets, including the entire sample space, effectively organizing the conceivable events
up to a given time point

Definition A.3. An increasing σ-field, Fn, symbolizes a sequence of σ-fields where
each subsequent field incorporates all prior information, mirroring the accumulation
of knowledge over time.

Definition A.4. A martingale difference sequence with respect to increasing σ-fields
is a sequenceMn that meets the condition E[Mn+1|Fn] = 0 almost surely for all n.
This property indicates that, given the information up to the present, the expected
change at the next step is zero, implying that future updates do not systematically
favor any direction.

Given these descriptions, we shall abstract our notation of Q-values andWhittle
indices to develop the theoretical foundation for this convergence. Let us consider
the following iterations

xn+1 = xn + α(n)(h(xn, yn) +M
(1)
n+1) (A.1)

yn+1 = yn + β(n)(g(xn, yn) +M
(2)
n+1) (A.2)

99

A. Appendix

where h and g are Lipschitz functions andM (1)
n ,M

(2)
n are martingale differences.

The step sizes α(n), β(n) are chosen to satisfy specific conditions ensuring∑
n

α(n) =
∑
n

β(n) =∞,
∑
n

(α(n)2 + β(n)2) <∞, β(n)
α(n)

→ 0,

that is, β(n) diminishes to zero faster than α(n), reflecting the slower update
timescale of one of the stochastic processes.

This differential pacing is analogous to a system of O.D.E.s, where the fast time-
scale updates represent the transient behavior, while the slow time-scale updates
represent the long-term dynamics:

ẋ(t) =
1

ϵ
h(x(t), y(t)) (A.3)

ẏ(t) = g(x(t), y(t)) (A.4)

in the limit ϵ ↓ 0. Under this analogy, the system exhibits behavior where x(t)
rapidly adjusts to changes, while y is fixed.

The theoretical model requires several assumptions to ensure the convergence
of (xn, yn) to a stable equilibrium.

A (A.3) has a globally asymptotically stable equilibrium λ(y) where λ : Rk →
Rd is a Lipschitz map. For small values of ϵ we can expect x(t) to track λ(t).
ẏ(t) = g(λ(y(t)), y(t)) captures the behavior of y(·) in (A.4).

B (A.4) has a globally asymptotically stable equilibrium y∗.
Equations (A.3) and (A.4) define an ODE system where the solution trajectory
(x(t), y(t)) is expected to converge to the equilibrium point (λ(y∗), y∗). This
convergence property can be extended to Equations (A.2) and (A.1), where
Equation (A.2) represents a quasi-static view of Equation (A.1), and vice versa,
Equation (A.1) can be interpreted as an almost-averaged representation of
Equation (A.2).

C supn(∥xn∥ + ∥yn∥) < ∞, where ∥ · ∥ denotes the Euclidean norm. This
condition ensures that the sequence (xn, yn) remains bounded, preventing
the system from diverging.

Lemma A.1. (xn, yn)→ {(λ(y), y) : y ∈ Rd}.

Proof. Consider the original update equation (A.2) for yn reformulated as:

yn+1 = yn + α(n)(ϵn +M
(3)
n+1) (A.5)

where ϵn = β(n)
α(n)

g(xn, yn) represents the rescaled Lipschitz function andM (3)
n+1 =

β(n)
α(n)

M
(2)
n+1 denotes a rescaled martingale difference sequence, indexed by n ≥ 0.

100

A.1. Theoretical Foundations of QWI

This reformulation aligns with the two-timescale approach by adjusting the update
equation for yn to explicitly reflect the slower update rate through the term ϵn,
which diminishes as n increases. The interaction between the update equations
for xn and yn can be described by the pair of o.d.e: ẋ(t) = h(x(t), y(t)), ẏ(t) = 0,
where the dynamics of x(t) are influenced by the current state of y(t), but y(t)
itself remains constant over the infinitesimal time increments considered in the
o.d.e. framework. As a result, ∥xn − λ(yn)∥ → 0 as n → ∞, as {xn} tracks the
trajectory of {λ(yn)}.

Theorem A.1. (xn, yn)→ (λ(y∗), y∗)

Proof. To demonstrate this convergence, consider a sequence s(n) initialized at
s(0) = 0 and defined for n ≥ 1 by s(n) =

∑n−1
i=0 β(i). Additionally, define a zero

mean square-integrable martingale sequence ψn =
∑n−1

m=0
β(n)
α(n)

M
(2)
m+1, for n ≥ 1. A

piecewise linear continuous function ỹ(t), where ỹ(s(n)) = yn for t ≥ 0, linearly
interpolates the values of yn across intervals [s(n), s(n + 1)]. With [t]′ denoting
max s(n) : s(n) ≤ t for t ≥ 0, we can express ỹ(s(n +m)) as a sum of integrals
and sums capturing the dynamic and stochastic components of the updates.

ỹ(s(n+m)) = ỹ(s(n)) +

∫ s(n+m)

s(n)

g(λ(ỹ(t)), ỹ(t))dt

+

∫ s(n+m)

s(n)

(g(λ(ỹ([t]′)), ỹ([t]′))− g(λ(ỹ(t)), ỹ(t)))dt (a)

+
m−1∑
k=1

b(n+ k)(g(xn+k, yn+k)− g(λ(yn+k), yn+k)) (b)

+ (ψn+m+1 − ψn). (c)
(A.6)

The comparison of ỹ(t) with the trajectory ys(t) of the differential equation
ẏ(t) = g(λ(y(t)), y(t)), starting from ys(s) = ỹ(s), yields an upper bound on their
discrepancy over any interval [s, s+ T] through the application of the Gronwall
Inequality [73].

sup
[t∈s,s+T]

∥ỹ(t)− ys(t)∥ ≤ KT ((a) + (b) + (c)) (A.7)

This upper bound encompasses discretization error (a), tracking error (b), and
noise error (c). Each of those terms evolve as O(

∑
k≥n b(k)

2), O(supk≥n ∥xk −
λ(yk)∥) and O(supk≥n ∥ψk − ψn∥) respectively, and all of them diminish to zero
as s→∞, ensuring the convergence of ỹ(t) to ys(t) in the supremum norm over
any finite interval.

sup
t∈[s,s+T]

∥ỹ(t)− ys(t)∥ → 0

101

A. Appendix

Following Borkar’s [60] Theorem 2 from Chapter 2, this analysis leads to the
conclusion that yn converges to y∗, and by Lemma A.1, xn converges to λ(y∗),
thereby establishing the theorem’s claim.

An alternative approach to implementing this two-timescale method involves
using the same learning rate α(n) for both (A.1) and (A.2) updates but selectively
applying the (A.2) updates only at a subsequence of iterations n(k), where the
interval between successive updates grows unbounded, i.e. n(k + 1)− n(k)→∞
as k →∞.

In practice, a hybrid strategy that uses both techniques offers the most stable
and effective policy for simultaneous updates. We can achieve this by choosing step
sizes α(n) and β(n) such that β(n) corresponds to a slower timescale and applying
updates to (A.2) in a subsequence nN, n ≥ 0 for an integer N > 1, while keeping
yn constant between these updates.

102

A.2. Proof of convergence of QWI algorithm

A.2 Proof of convergence of QWI algorithm
Equations (4.6) and (4.7) naturally lead to the abstract two-timescale stochastic
approximation method in Equations (A.2) and (A.1). We define F λ

su(Ψ(j, b)) and
Mn+1(s, u) as follows:

F λ
sa(Ψ(j, b)) = (1− a)(R0(s) + λ) + aR1(s)+

γ
∑
j

p(j|i, a) max
v∈{0,1}

Ψ(j, v) (A.8)

and
Mn+1(s, a) = (1− a)(R0(s) + λn(x)) + aR1(s)+

max
v∈{0,1}

Qn(xn+1, v)− F λn(x)
sa (Qn)

(A.9)

With these definitions, the Q-value update in (4.6) can be expressed as:

Qx
n+1(s, a) = Qx

n(s, a) + α(n)
[
F λn(x)
sa (Qn)−Qn +Mn+1(s, a)

]
(A.10)

Comparing equations (4.6) and (A.10), we obtain:

• a(n) = α(n)

• h(xn, yn) = F
λn(x)
sa (Qn)−Qn, where xn = Qn and yn = λn are the Q-value

and Whittle index estimate respectively

• Mn+1(s, a) is the martingale difference sequenceM (1)
n+1

Similarly, the equivalence of equations (4.7) and (A.2) leads to:

• b(n) = β(n)

• g(xn, yn) = Qx
n(x, 1)−Qx

n(x, 0)

• The martingale difference sequenceM (2)
n+1 = 0

Assuming the boundedness of Equations (4.6) and (4.7), a condition we will
establish subsequently, we commence by rephrasing the equation for computing
the Whittle indices (4.7) as follows:

λn+1(x) = λn(x) + α(n)

(
β(n)

α(n)

)
(Qx

n(x, 1)−Qx
n(x, 0)), (A.11)

To capture the evolution of Qx
n and λn(x), we introduce Q̄(t) and λ̄(t) as piece-

wise linear continuous functions interpolating their trajectories over each interval
[τ(n), τ(n+ 1)], for n ≥ 0, where τ(n) =

∑n
m=0 α(m) form ≥ 0.:

103

A. Appendix

Q̄(t) = Q(n) +

(
t− τ(n)

τ(n+ 1)− τ(n)

)
(Q(n+ 1)−Q(n)) (A.12)

λ̄(t) = λ(n) +

(
t− τ(n)

τ(n+ 1)− τ(n)

)
(λ(n+ 1) + λ(n)) (A.13)

for t ∈ [τ(n), τ(n+ 1)].
These functions reflect the asymptotic dynamics of the system described by

Q̇(t) = h(Q(t), λ(t)), λ̇ = 0

with the second equation stemming from the fact that β(n)
α(n)
→ 0 as per (A.11).

From the perspective of Q(t), λ(·) effectively acts as a constant, leading to the
simplified differential equation Q̇ = h(Q(t), λ′). This system is both well-defined
and bounded, converging to a stable equilibrium Q∗

λ, as outlined in Theorem 3.4, p.
689 in [74], ensuring that Qx

n −Q∗
λn
→ 0 as n→∞.

For the trajectory of λ(t), we define an alternative timescale via:

λ̃(t) = λ(n) +

(
t− τ ′(n)

τ ′(n+ 1)− τ ′(n)

)
(g(n+ 1)− g(n)), (A.14)

for t ∈ [τ ′(n), τ ′(n + 1)], where τ ′(n) =
∑n

m=0 β(m) for n ≥ 0. This alternative
trajectory aligns with the differential equation:

Λ̇(t) = Q∗
Λ(t)(x, 1)−Q∗

Λ(t)(x, 0)

In this framework, whenΛ(t) > λ(x) (indicating an excess subsidy), the passive
mode becomes preferable, driving Λ(t) downwards. Conversely, should Λ(t) <
λ(x), Λ(t) ascends. Consequently, Λ(·)’s trajectory remains within bounds. Given
its well-defined and bounded nature, this scalar differential equation converges to
a stable equilibrium where Q(

Λx, 1) = Q
(
Λx, 0), identifying the equilibrium point

as the Whittle index, where both action policies are equally favorable.

104

Bibliography

[1] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966. See page 2.
[2] Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Me-

chanics, 6(5):679–684, 1957. See pages 2, 4.
[3] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

See page 3.
[4] Edward L. Thorndike. The Law of Effect. The American Journal of Psychology,

39(1/4):212–222, 1927. See page 3.
[5] B. F. Skinner. The Behavior of Organisms: An Experimental Analysis. B. F. Skinner

Foundation, December 2019. Google-Books-ID: S9WNCwAAQBAJ. See page 3.
[6] Alan M Turing. Intelligent machinery, a heretical theory. Philosophia Mathematica,

4(3):256–260, 1996. See page 3.
[7] Marvin Minsky. Steps toward Artificial Intelligence. Proceedings of the IRE, 49(1):8–30,

January 1961. See page 3.
[8] Michael Lvovitch Tsetlin. On behaviour of finite automata in random medium.

Avtomat. i Telemekh, 22(10):1345–1354, 1961. See page 3.
[9] A. Harry Klopf. The hedonistic neuron : a theory ofmemory, learning, and intelligence.

(No Title). See page 3.
[10] A. Harry Klopf. Brain Function and Adaptive Systems: A Heterostatic Theory. Air Force

Cambridge Research Laboratories, Air Force Systems Command, United States Air
Force, 1972. Google-Books-ID: QExVCsabOasC. See page 3.

[11] A. Harry Klopf. A comparison of natural and artificial intelligence. ACM SIGART
Bulletin, (52):11–13, June 1975. See page 3.

[12] A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 3(3):210–229, July 1959. See page 3.

[13] A. Harry Klopf. A neuronal model of classical conditioning. Psychobiology, 16(2):85–
125, June 1988. See page 3.

[14] Richard S. Sutton andAndrewG. Barto. Toward amodern theory of adaptive networks:
Expectation and prediction. Psychological Review, 88(2):135–170, 1981. See page 3.

105

Bibliography

[15] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5):834–846, September 1983. See page 3.

[16] Richard S. Sutton. Learning to predict by themethods of temporal differences.Machine
Learning, 3(1):9–44, August 1988. See page 3.

[17] Christopher JCHWatkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992. See pages 4, 14, and 32.

[18] Paul J. Werbos. Building and Understanding Adaptive Systems: A Statisti-
cal/Numerical Approach to Factory Automation and Brain Research. IEEE Transactions
on Systems, Man, and Cybernetics, 17(1):7–20, January 1987. See page 4.

[19] Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3):58–68, 1995. See page 4.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement
Learning. Technical report, December 2013. arXiv:1312.5602 [cs] type: article. See
pages 4, 38.

[21] Abubakar Sadiq Abdulhameed and Serhii Lupenko. Potentials of reinforcement learn-
ing in contemporary scenarios. Bulletin of the Ternopil National Technical University,
106(2):92–100, 2022. See page 4.

[22] Maroning Useng and Suleiman Abdulrahman. A Survey on Distributed Reinforcement
Learning. Mesopotamian Journal of Big Data, 2022:44–50, November 2022. See page 4.

[23] Ali Alameer, Haitham Saleh, and Khaled Alshehri. Reinforcement learning in quanti-
tative trading: A survey. Authorea Preprints, 2023. See page 4.

[24] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. See page 4.

[25] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. Monotonic value function factorisation for
deep multi-agent reinforcement learning. The Journal of Machine Learning Research,
21(1):178:7234–178:7284, January 2020. See page 4.

[26] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls,
and Thore Graepel. Value-Decomposition Networks For Cooperative Multi-Agent
Learning. Technical report, June 2017. arXiv:1706.05296 [cs] type: article. See page 4.

[27] Andrei Andreevich Markov. Rasprostranenie zakona bol’shih chisel na velichiny, zav-
isyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom
universitete, 15(135-156):18, 1906. See page 4.

[28] Francisco Robledo, Vivek Borkar, Urtzi Ayesta, and Konstantin Avrachenkov. QWI:
Q-learning with Whittle Index. ACM SIGMETRICS Performance Evaluation Review,
49(2):47–50, January 2022. See page 7.

106

Bibliography

[29] Francisco Robledo Relaño, Vivek Borkar, Urtzi Ayesta, and Konstantin Avrachenkov.
Tabular and deep learning for the whittle index. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 2024. See pages 7, 43, and 46.

[30] Francisco Robledo, Urtzi Ayesta, and Konstantin Avrachenkov. Deep reinforcement
learning for weakly coupled MDP’s with continuous actions. June 2024. See pages 7,
77.

[31] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018. See page 9.

[32] Ronald A. Howard. Dynamic programming and Markov processes. Dynamic pro-
gramming and Markov processes. John Wiley, Oxford, England, 1960. See page
11.

[33] David Blackwell. Discrete Dynamic Programming. The Annals of Mathematical
Statistics, 33(2):719–726, 1962. See page 11.

[34] Richard Bellman. The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–515, 1954. See page 12.

[35] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cambridge,
UK, 1994. See pages 14, 33.

[36] William R Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.
See pages 14, 15.

[37] Herbert Robbins. Some aspects of the sequential design of experiments. 1952. See
pages 14, 15.

[38] Richard Bellman. A Problem in the Sequential Design of Experiments. Sankhyā: The
Indian Journal of Statistics (1933-1960), 16(3/4):221–229, 1956. See page 15.

[39] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society: Series B (Methodological), 41(2):148–164, 1979. See pages 15, 17, 20,
and 42.

[40] Manjari Asawa and Demosthenis Teneketzis. Multi-armed bandits with switching
penalties. IEEE Transactions on Automatic Control, 41(3):328–348, March 1996. See
page 15.

[41] Peter Whittle. Multi-Armed Bandits and the Gittins Index. Journal of the Royal
Statistical Society: Series B (Methodological), 42(2):143–149, 1980. See page 18.

[42] Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of
Applied Probability, 25(A):287–298, January 1988. See pages 18, 20, and 41.

[43] Jeffrey Thomas Hawkins. A Langrangian decomposition approach to weakly coupled dy-
namic optimization problems and its applications. PhD thesis, Massachusetts Institute
of Technology, 2003. See pages 24, 25, 27, 77, 78, and 79.

[44] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997. See page 24.

[45] José Niño-Mora. Dynamic priority allocation via restless bandit marginal productivity
indices. TOP, 15(2):161–198, December 2007. See pages 28, 29, 74, 75, and 96.

107

Bibliography

[46] Richard Weber. Comments on: Dynamic priority allocation via restless bandit
marginal productivity indices. Top, 15(2):211–216, 2007. See pages 29, 74, 75, and 96.

[47] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, December
1943. See page 34.

[48] Paul Werbos and Paul John. Beyond regression : new tools for prediction and analysis
in the behavioral sciences /. January 1974. See page 36.

[49] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Technical report, January 2017. arXiv:1412.6980 [cs] type: article. See pages 37, 46.

[50] Shunichi Amari. A Theory of Adaptive Pattern Classifiers. IEEE Transactions on
Electronic Computers, EC-16(3):299–307, June 1967. See page 38.

[51] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard, Wayne
Hubbard, and Lawrence Jackel. Handwritten Digit Recognition with a Back-
Propagation Network. In Advances in Neural Information Processing Systems, volume 2.
Morgan-Kaufmann, 1989. See page 38.

[52] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal
representations by error propagation, 1985. See page 38.

[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, May 2015. See page 38.

[54] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, January 2015. See page 38.

[55] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. See page 38.

[56] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience
Replay. Technical report, February 2016. arXiv:1511.05952 [cs] type: article. See page
39.

[57] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. Dueling Network Architectures for Deep Reinforcement Learning. pages
1995–2003. PMLR, June 2016. See page 39.

[58] Jing Fu, Yoni Nazarathy, Sarat Moka, and Peter G Taylor. Towards q-learning the
whittle index for restless bandits. In 2019 Australian & New Zealand Control Conference
(ANZCC), pages 249–254. IEEE, 2019. See pages 42, 51.

[59] Khaled Nakhleh, Santosh Ganji, Ping-Chun Hsieh, I-Hong Hou, and Srinivas Shakkot-
tai. NeurWIN: Neural Whittle Index Network For Restless Bandits Via Deep RL. In
Advances in Neural Information Processing Systems, volume 34, pages 828–839. Curran
Associates, Inc., 2021. See pages 42, 50.

[60] V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint. Springer, 48,
2009. See pages 43, 102.

[61] Konstantin E. Avrachenkov and Vivek Shripad Borkar. Whittle index based Q-learning
for restless bandits with average reward. Automatica, 139:110186, May 2022. See page
51.

108

Bibliography

[62] Zhe Yu, Yunjian Xu, and Lang Tong. Deadline scheduling as restless bandits. IEEE
Transactions on Automatic Control, 63(8):2343–2358, 2018. See pages 51, 53, and 54.

[63] José Niño-Mora. Markovian Restless Bandits and Index Policies: A Review. Mathe-
matics, 11(7):1639, January 2023. See page 54.

[64] Christopher J. Conselice, Aaron Wilkinson, Kenneth Duncan, and Alice Mortlock.
The evolution of galaxy number density at z < 8 and its implications. The Astrophysical
Journal, 830(2):83, October 2016. See page 54.

[65] Spearman Rank Correlation Coefficient, pages 502–505. Springer New York, New York,
NY, 2008. See page 56.

[66] Donald E. Kirk. Optimal Control Theory: An Introduction. Courier Corporation,
January 2004. Google-Books-ID: fCh2SAtWIdwC. See page 78.

[67] Dimitri Bertsekas. Dynamic Programming and Optimal Control: Volume I. Athena
Scientific, 2012. Google-Books-ID: qVBEEAAAQBAJ. See page 78.

[68] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016. See pages 80, 85.

[69] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential Evolution:
A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation,
15(1):4–31, February 2011. See page 82.

[70] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. Technical report, July 2019. arXiv:1509.02971 [cs, stat] type:
article. See page 85.

[71] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. OptLayer - Practical
Constrained Optimization for Deep Reinforcement Learning in the RealWorld. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 6236–6243,
May 2018. ISSN: 2577-087X. See page 86.

[72] Jackson A. Killian, Arpita Biswas, Sanket Shah, and Milind Tambe. Q-Learning
Lagrange Policies for Multi-Action Restless Bandits. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, pages 871–881,
New York, NY, USA, August 2021. Association for Computing Machinery. See page
86.

[73] T. H. Gronwall. Note on the Derivatives with Respect to a Parameter of the Solutions
of a System of Differential Equations. Annals of Mathematics, 20(4):292–296, 1919.
See page 101.

[74] Jinane Abounadi, Dimitrib Bertsekas, and Vivek S Borkar. Learning algorithms
for markov decision processes with average cost. SIAM Journal on Control and
Optimization, 40(3):681–698, 2001. See page 104.

109

	Contents
	List of Figures
	List of Tables
	Índice de algoritmos
	Introduction
	Overview of Reinforcement Learning and MDPs
	Reinforcement Learning: An Introduction
	Historical introduction to Reinforcement Learning
	An introduction to Markov Decision Processes

	Significance and Applications of RL in MDPs
	Thesis Objective and Scope

	Background and Literature Review
	Fundamentals of Markov Decision Processes
	Markov Processes
	Markov Reward Processes
	Markov Decision Processes

	Multi-Armed Bandit Problems
	Introduction To Multi-Armed Bandits
	MAB Model Formulation
	Restless Multi-Armed Bandit Problems
	Weakly Coupled MDP with Continuous Action Spaces

	Lagrange relaxation
	Lagrangian relaxation for Multi-Armed Bandit Problems
	Lagrangian relaxation for Restless Multi-Armed Bandit Problems

	Gittins and Whittle index computation

	Reinforcement Learning Algorithms
	Tabular Q-learning and SARSA
	Function Approximation
	Neural Networks and its application in RL

	Discrete Action Models in RMABP
	QWI: Tabular Learning of the Whittle Indices
	Algorithm Design and Implementation

	QWINN: Enhancing QWI with Neural Networks
	Proof of convergence of QWINN algorithm

	Experimental Setup and Results for Discrete Models
	Description of Test Environments
	Evaluation Metrics and Benchmarks
	Detailed Analysis of Experimental Results

	Continuous Action Models in Weakly Coupled MDPs
	Computation of Whittle Indices for Continuous Actions
	Policy Heuristic for Continuous Actions

	LPCA: Tackling Weakly Coupled MDPs with Continuous Actions
	Problem Formulation
	Lagrangian Decomposition for Continuous Actions
	LPCA Algorithm
	Differential Evolution Optimization (LPCA-DE)
	Greedy Optimization Strategy (LPCA-Greedy)

	Experimental Setup
	Description of Test Environments for Continuous Models
	Evaluation Metrics and Benchmarks
	Detailed Analysis of Experimental Results

	Conclusion and Future Directions
	Summary of Key Findings
	Future Directions and Potential Developments

	Appendix
	Theoretical Foundations of QWI
	Proof of convergence of QWI algorithm

	Bibliography

