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Analyse pratique de standards symétriques et asymétriques dans le contexte de la
boîte blanche

Résumé : La cryptographie en boîte blanche vise à sécuriser les implémentations des algo-
rithmes cryptographiques dans des environnements hostiles où l’adversaire peut potentiellement
avoir un accès complet à l’implémentation et à son environnement d’exécution. Face à cet at-
taquant quasi omnipotent, toutes les solutions proposées à ce jour dans la littérature pour des
cryptosystèmes standards sont considérées comme vulnérables. Cependant, dans la pratique,
l’adversaire peut se heurter à certains obstacles pouvant compliquer l’application d’attaques
théoriquement efficaces, tels qu’une limite sur le nombre d’exécutions avec une clé donnée ou
des couches d’obfuscation obligeant à entreprendre une longue étape de rétro-ingénierie. Ainsi,
le modèle de la boîte blanche semble parfois définir un attaquant excessivement puissant pour
certains cas d’usage. Dans ce contexte, les entreprises développent des solutions propriétaires
dont la conception reste secrète et qui sont spécifiquement adaptées à leurs besoins. Il est donc
primordial d’étudier les attaques et les contre-mesures utilisables en pratique pour ces implé-
mentations.

Dans cette thèse, nous nous concentrons sur deux cryptosystèmes standards largement util-
isés en cryptographie symétrique et asymétrique, à savoir AES et ECDSA. Alors que la littérature
sur AES est abondante, très peu de publications concernent les implémentations en boîte blanche
d’ECDSA, malgré leur grande pertinence pour l’industrie. Pour ces deux cryptosystèmes, nous
présentons des attaques efficaces en pratique, mettant en avant des caractéristiques telles que
la possibilité d’automatisation, un nombre réduit d’exécutions et la non-nécessité de choisir les
entrées du programme. En particulier, nous examinons les diverses vulnérabilités potentielles
des boîtes blanches ECDSA et montrons que la plupart d’entre elles sont dues à l’absence de
sources d’aléa fiables dans le contexte de la boîte blanche. Nous détaillons les attaques que
nous avons effectuées pour casser les 97 implémentations candidates du concours WhibOx 2021.
Nous montrons également comment des injections de fautes peuvent permettre à un attaquant
de casser la toute première implémentation boîte blanche d’ECDSA publiée en 2020 par Zhou
et coll., et proposons une contre-mesure qui n’augmente pas la taille du code. Étant donné qu’il
n’existe aucune autre implémentation publique d’ECDSA, nous examinons également divers
brevets pour nous donner une idée des contremesures utilisées en pratique dans les produits.

Concernant les boîtes blanches AES, nous proposons une nouvelle attaque très efficace qui
nécessite très peu d’exécutions sur des entrées aléatoires. Nous étudions également la protection
fournie par les encodages internes contre les attaques par canaux auxiliaires. Cette contre-mesure
courante est utilisée sur les implémentations tabulées et consiste à appliquer des permutations
aléatoires sur les variables sensibles pour les cacher à l’attaquant. Bien qu’il soit de notoriété
publique que des encodages aléatoires puissent être cassés avec une grande probabilité, la ques-
tion de l’existence d’une classe particulière d’encodages qui pourrait prévenir les attaques par
canaux auxiliaires était toujours ouverte. Dans cette thèse, nous y répondons négativement et
montrons que construire des encodages avec des propriétés spécifiques n’est pas une solution
viable.

Mots-clés : Cryptographie en boîte blanche, cryptographie symétrique, cryptographie asymétrique,
cryptosystèmes standards, sécurité pratique, canaux auxiliaires, injection de fautes.

Unité de recherche
LaBRI UMR 5800, 351 Cours de la Libération, 33405 Talence, France.
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Practical Analysis of Symmetric and Asymmetric Standards in the White-Box
Context

Abstract: White-box cryptography aims to secure implementations of cryptographic algorithms
in hostile environments where the adversary may potentially gain full access to the implemen-
tation and its execution environment. Against this nearly omnipotent attacker, all solutions
proposed to date in the literature for standard cryptosystems are considered vulnerable. How-
ever, in practice, the adversary may encounter obstacles that complicate the application of
theoretically effective attacks, such as a limit on the number of executions with a given key or
obfuscation layers forcing him to undertake a costly reverse-engineering phase. Therefore, the
white-box model seems to define an attacker who is excessively powerful for several use-cases.
In this context, companies develop proprietary solutions whose designs remain secret and are
specifically tailored to their needs. It is thus crucial to study the attacks and countermeasures
that can be practically applied to these implementations.

In this thesis, we focus on two widely used standard cryptosystems in both symmetric and
asymmetric cryptography, namely AES and ECDSA. While the literature on AES is abundant,
very few publications address white-box implementations of ECDSA, despite their high relevance
for the industry. For both cryptosystems, we present real-life attacks, focusing on features such
as the possibility of automation, a reduced number of white-box executions and no requirement
for chosen inputs. Specifically, we examine the various potential vulnerabilities of ECDSA
white-boxes and show that most of them stem from the lack of reliable sources of randomness
in the white-box context. We detail the attacks that we carried out to break the 97 candidate
implementations of the 2021 WhibOx contest. We also demonstrate how fault injections can
break the very first white-box implementation of ECDSA published in 2020 by Zhou et al., and
we propose a countermeasure that does not increase the size of the code. Given that there is
no other public ECDSA implementation, we also review various patents to gain insights into
countermeasures used in practice in products.

Regarding AES white-boxes, we propose a new and highly efficient attack that requires very
few executions on random plaintexts. We also investigate the protection provided by internal
encodings against side-channel attacks. This common countermeasure is used on table-based im-
plementations and consists in applying random permutations on sensitive variables to obfuscate
them. Although it is widely known that random encodings are broken with high probability, the
question of whether a particular class of encodings could prevent side-channel attacks remained
open. In this thesis, we answer it negatively and show that carefully crafting encodings with a
specific property is not a viable solution.

Keywords: White-Box cryptography, symmetric cryptography, asymmetric cryptography, stan-
dard cryptosystems, practical security, side-channel attack, fault injection.
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Résumé étendu en français

Boîte noire, grise ou blanche

Les algorithmes cryptographiques sont principalement conçus pour être sécurisés dans le
modèle de la boîte noire, où un attaquant est limité à l’observation de leurs entrées et
sorties et ne dispose d’aucune information sur les variables intermédiaires. Ce modèle
est pertinent lorsque les opérations cryptographiques se déroulent dans un environnement
sécurisé et que seul le canal de transmission n’est pas fiable. Cependant, dans de nom-
breux scénarios, l’attaquant peut avoir accès à bien plus d’informations. En particulier, il
peut parfois mesurer le temps d’exécution de l’algorithme, la consommation de courant de
l’appareil dans lequel il est implémenté ou toute autre donnée obtenue à partir d’un canal
auxiliaire [KJJ99]. Etant liées aux valeurs manipulées lors de l’exécution, ces informations
peuvent permettre de retrouver la clé secrète si l’implémentation n’est pas protégée. Al-
ternativement, l’adversaire peut intentionnellement altérer le comportement du dispositif
physique et induire des erreurs lors de l’exécution de l’algorithme pour obtenir des in-
formations supplémentaires [BDL97]. Par conséquent, les développeurs doivent mettre
en place des contre-mesures spécifiques pour atteindre le niveau de sécurité initialement
attendu. Ce contexte, où l’adversaire a un accès limité au dispositif et peut effectuer
des attaques physiques, est décrit par le modèle de la boîte grise. Il est particulièrement
pertinent dans le contexte des systèmes embarqués où la cryptographie est déployée sur
des éléments sécurisés.

Enfin, le modèle de la boîte blanche, introduit il y a une vingtaine d’année par Chow et
al. [CEJv02,CEJv03], considère un attaquant encore plus puissant. En effet, le développe-
ment récent d’algorithmes cryptographiques sur des dispositifs ouverts ne contenant pas
nécessairement de matériel sécurisé, tels que les smartphones ou les objets connectés,
offre de nombreuses opportunités à l’attaquant. Dans le modèle de la boîte blanche,
l’adversaire contrôle tous les aspects de l’implémentation. La surface d’attaque est donc
très large : il peut analyser le binaire, altérer l’exécution ou observer toutes les informa-
tions d’exécution, telles que les variables intermédiaires ou les adresses mémoire accédées,
et ce pour toute entrée choisie. Bien sûr, toutes les attaques qui peuvent être effectuées
dans les modèles de la boîte noire ou grise sont également des menaces potentielles. Dans
un environnement si hostile, l’implémentation elle-même est la dernière ligne de défense
contre l’extraction de clé. Par abus de langage, une implémentation d’un algorithme cryp-
tographique conçue pour résister à un attaquant dans le modèle de la boîte blanche est
communément appelée une boîte blanche. Elle doit être méticuleusement générée pour que
les valeurs secrètes, telles que les clés, soient cachées à l’intérieur et difficiles à calculer.
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Cas d’usage des boîtes blanches
Les cas d’usage des boîtes blanches sont aujourd’hui variés. Elles sont employées dans di-
verses applications fonctionnant dans des environnements non sécurisés, en particulier sur
des téléphones mobiles qui ne disposent pas toujours de matériel sécurisé pour stocker les
clés secrètes et effectuer des opérations cryptographiques. Les exemples typiques incluent
– mais ne se limitent pas à – la gestion des droits numériques (DRM), les applications
de paiement mobile et les portefeuilles de cryptomonnaie. Chaque utilisation correspond
à un type d’attaquant avec des capacités potentiellement différentes. Par exemple, dans
le cadre des DRM, le propriétaire légitime de l’implémentation, un client ayant payé un
abonnement, pourrait être un attaquant potentiel et chercher à revendre la clé permettant
de lire le contenu chiffré stocké sur la plateforme. En revanche, dans le cas du paiement
mobile, le propriétaire légitime de l’application n’a aucun intérêt à ce que ses secrets
soient divulgués à d’autres. L’attaquant est plutôt une personne extérieure, ayant poten-
tiellement installé un virus sur le téléphone, mais n’étant probablement pas omnipotent,
surtout si l’application est protégée par des mécanismes d’authentification ou d’autres
mesures de sécurité.

Approche théorique
Une branche de la cryptographie en boîte blanche s’efforce de définir des notions de
sécurité précises [SWP09,DLPR14,BI15,AABM20]. En effet, la résistance à l’extraction
de clé est indispensable mais insuffisante pour de nombreux cas d’usage. Des propriétés
telles que la confidentialité et l’intégrité des données peuvent également être nécessaires.
De plus, les boîtes blanches doivent résister aux attaques par code-lifting, où le code est
volé et utilisé sur un autre appareil sans chercher à comprendre son fonctionnement ou
à récupérer la clé secrète. Des travaux théoriques définissant précisément les objectifs de
la cryptographie en boîte blanche sont donc essentiels. Il reste ensuite à déterminer si les
notions de sécurité ainsi définies sont atteignables ou non.

La plupart des recherches s’appuient sur des études théoriques dans un domaine con-
nexe : l’obfuscation de programmes. De manière informelle, un obfuscateur est un compi-
lateur qui prend en entrée un programme et en produit un nouveau ayant la même fonc-
tionnalité mais qui est, en un certain sens, “inintelligible”. Il existe différentes branches
de l’obfuscation, dont l’obfuscation en boîte noire virtuelle (VBB), qui vise à produire un
programme ne fournissant aucune information sur le programme original au-delà de ses
entrées et sorties. En 2001, Barak et al. [BGI+01] ont démontré que certains programmes
sont intrinsèquement non obfusquables au sens VBB. Cependant, il a été prouvé par
la suite que d’autres programmes simples le sont effectivement [Wee05]. Déterminer si
certains algorithmes cryptographiques sont VBB-obfusquables serait donc d’un grand in-
térêt, bien que cela semble peu probable. Néanmoins, il est à noter que l’obfuscation
VBB n’est pas exactement ce que nous visons en cryptographie en boîte blanche. Si seule
la clé secrète doit être protégée, fournir des informations “inutiles” à l’attaquant peut
être acceptable. Saxena et al. [SWP09] ont tenté de formaliser la distinction entre les
informations non boîte noire “utiles” et “inutiles”, prouvant également certains résultats
d’(im)possibilité. Ils ont montré que pour la plupart des programmes, certaines notions
de sécurité peuvent être satisfaites dans le contexte de la boîte noire mais pas dans celui
de la boîte blanche. Cependant, ils ont aussi démontré que certaines notions de sécurité
intéressantes pouvaient être atteignables avec des chiffrements ad-hoc.
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Approche pratique
En 2002 et 2003, Chow et al. ont proposé les deux premiers designs de boîtes blanches,
respectivement pour le Data Encryption Standard (DES) [CEJv02] et l’Advanced Encryp-
tion Standard (AES) [CEJv03]. En un mot, leur idée consiste à protéger la clé secrète en
l’intégrant dans des tables pré-calculées utilisées pendant l’exécution pour effectuer des
opérations sensibles. Toutes les variables intermédiaires, les entrées et les sorties des ta-
bles, sont ensuite obscurcies par des bijections aléatoires appelées encodages. Ces dernières
peuvent être classées en deux catégories : les encodages internes qui s’annulent les uns
avec les autres, et les encodages externes appliqués à l’entrée et à la sortie de l’algorithme.
Bien qu’ils augmentent la sécurité globale, les encodages externes modifient le comporte-
ment d’entrée/sortie du programme, ce qui est prohibitif dans de nombreux cas d’usage
où des cryptosystèmes standards sont nécessaires pour des raisons d’interopérabilité.

Les deux premières implémentations de Chow et al. ont été cassées quelques an-
nées après leur publication [BGEC04, WMGP07, GMQ07]. Elles ont rapidement été
suivies par de nombreux nouveaux designs [BCD06, XL09, Kar11, LLY14, BCH16] et at-
taques [DWP10, DRP13a, DRP13b, MGH09, DFLM18, BHMT16], la plupart concernant
l’AES. Malheureusement, il n’existe à ce jour aucun design publié d’un algorithme cryp-
tographique standard qui soit considéré comme sécurisé dans le modèle de la boîte blanche.

Pour des raisons d’interopérabilité et parce que plusieurs parties prenantes sont générale-
ment impliquées dans une solution spécifique, l’industrie est peu susceptible d’adopter des
cryptosystèmes ad-hoc pour de nombreux cas d’usage. Dans de telles circonstances, les
entreprises sont contraintes de concevoir des solutions personnalisées pour répondre à la
demande croissante de logiciels sécurisés. Leur objectif est de fournir une sécurité pratique
en protégeant la boîte blanche contre les attaques automatisées, telles que celles héritées
de la boîte grise, et en obfusquant le code pour forcer l’adversaire à passer par une phase
de rétro-ingénierie longue et ardue avant de pouvoir rechercher des vulnérabilités.

Même si ces solutions pratiques peuvent être moins sécurisées que ce qui est attendu
dans le modèle de la boîte blanche en théorie, il est important de noter que les adversaires
réels peuvent également être beaucoup moins puissants que prévu initialement. En effet,
les capacités et les objectifs des attaquants varient largement en fonction du cas d’usage.
Par exemple, dans les applications de paiement mobile, l’adversaire est généralement une
menace externe qui peut introduire un virus mais n’est probablement pas omnipotent. Des
mécanismes d’authentification ou une mise à jour régulière de la clé peuvent permettre
de limiter le nombre d’exécutions observables dans un délai donné.

Dans ce contexte, les concours WhibOx [Whi17,Whi19,Whi21,Whi24] ont été organ-
isés dans le cadre des ateliers associés à CHES pour motiver la recherche pratique sur les
boîtes blanches. À chaque édition, les développeurs étaient invités à soumettre le code
source d’une implémentation conçue secrètement, tandis que les attaquants devaient ten-
ter de la casser. Alors que les deux premiers concours ciblaient l’AES, les organisateurs
ont choisi l’Elliptic Curve Digital Signature Algorithm (ECDSA) pour les deux dernières
éditions. En effet, il existe un fort besoin de solutions ECDSA en boîte blanche pour
l’industrie, et sécuriser ce schéma pose plusieurs nouveaux défis [DGH21]. Ces concours
ont mis en avant une grande différence de maturité pour le design des boîtes blanches
AES versus ECDSA : alors que trois implémentations de l’AES avient résisté jusqu’à la
fin de l’édition de 2019, une vingtaine de jours après leur publication, la meilleure im-
plémentation de l’ECDSA soumise à l’édition de 2021 n’a tenu que 35 heures. Il parait
donc primordial de continuer à étudier les attaques et contremesures applicables à ces
implémentations pratiques.
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Contributions
Dans cette thèse, nous avons étudié à la fois l’AES et l’ECDSA, identifiant des attaques
réalisables en pratique et analysant l’efficacité d’éventuelles contre-mesures.

Après quelques rappels sur les attaques par canaux auxiliaires et injection de fautes,
nous présentons un court état de l’art sur les boîtes blanches AES, qui ont été largement
étudiées dans la littérature. Nous proposons ensuite une nouvelle attaque qui nécessite
avantageusement très peu d’exécutions sur des entrées aléatoires, puis nous étudions les
attaques par canaux auxiliaires et en particulier la protection offerte par les encodages
internes. Bien qu’il soit généralement admis qu’une implémentation de l’AES protégée
par de petites bijections aléatoires puisse être cassée avec grande probabilité [RW19]
par la Differencial Computation Analysis (DCA), une attaque par canaux auxiliaires, la
question de l’existence d’une classe particulière d’encodages pouvant empêcher l’attaque
restait ouverte. Dans cette thèse, nous y répondons négativement. Nous montrons que la
corrélation entre les valeurs prédites et celles qui sont effectivement manipulées dépend
en fait du spectre de Walsh des encodages utilisés, et bien que la sélection de bijections
avec de petites transformées de Walsh puisse prévenir l’attaque classique, il est toujours
possible de casser l’implémentation avec une variante. Par conséquent, les encodages
internes sont insuffisants pour protéger les boîtes blanches AES contre les attaques par
canaux auxiliaires, qu’ils soient choisis aléatoirement ou soigneusement sélectionnés.

La seconde partie de cette thèse concerne l’ECDSA et met en évidence les complex-
ités supplémentaires inhérentes à ce schéma. Nous décrivons plusieurs attaques efficaces,
notamment celles réalisées par l’équipe TheRealIdefix, dont nous faisions partie, et qui
a cassé le plus grand nombre de candidats au concours WhibOx 2021. Nous montrons
que les attaques par fautes sont particulièrement dévastatrices pour les versions déter-
ministes de l’ECDSA, comme la plupart de celles implémentées lors du concours. De
plus, nous fournissons un aperçu de la conception des deux candidats gagnants, dont les
contremesures sont théoriquement intéressantes bien qu’insuffisantes pour contrer toutes
les attaques automatisées.

Nous étudions également la seule autre source d’information publiquement accessible
sur les boîtes blanches ECDSA standards : les brevets déposés par certaines entreprises.
Bien que ces brevets puissent omettre des détails cruciaux sur l’implémentation ou le
modèle de sécurité, ils restent des sources précieuses d’informations sur les méthodes
mises en œuvre sur le terrain. Nous exposons donc dans cette thèse les principales idées
pour contrer les diverses attaques pouvant cibler les boîtes blanches ECDSA, en soulignant
leurs avantages et leurs limitations en termes de performances et de sécurité.

Enfin, nous présentons la première attaque sur le seul design de boîte blanche ECDSA
publié à ce jour [ZBJ20]. Ce dernier nécessite l’aide d’un serveur lors du calcul d’une
signature, ce qui limite son utilisation mais facilite sa sécurisation. La clé, entièrement
contenue du côté du client, est protégée par des tables encodées dont la taille reste rela-
tivement petite grâce à l’utilisation du Residue Number System (RNS). Nous montrons
que cette clé peut être efficacement récupérée par un attaquant induisant des fautes dans
les calculs. Plus précisément, nous présentons deux attaques différentes impliquant la
réinjection de valeurs spécifiques stockées lors d’une exécution précédente dans une nou-
velle exécution. Nous proposons également une contre-mesure basée sur des encodages
joints qui empêche les deux attaques sans impacter les performances du côté client.

En conclusion, cette thèse vise à faire progresser la recherche sur la cryptographie en
boîte blanche en étudiant des attaques pratiques sur l’AES et l’ECDSA et des contre-
mesures alignées avec les besoins industriels.
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1.1 Cryptography and Cryptanalysis
The word cryptography is derived from kryptos, which means “hidden” or “secret” in an-
cient Greek, and graphein, which means “writing”. The primary objective of cryptography
is thus to protect the confidentiality of written messages but it can also be used to achieve
other desirable security properties such as authenticity or integrity. While originally de-
ployed for military and diplomatic purposes, it is now ubiquitous: banks, hospitals, and
many businesses use it to protect their data. It is also present in our everyday lives, even
if we are not always aware of it, when we make a payment by credit card for instance.
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The process of transforming a readable message, the plaintext, into a seemingly in-
comprehensible sequence of characters, the ciphertext, is called encryption. Of course,
the reverse transformation, called decryption, should only be possible for the intended
recipient of the message. It thus requires the knowledge of a secret, usually referred to
as the key. In the case of symmetric cryptography (Figure 1.1), this secret is shared
between the recipient and the sender of the message, and is used both in the encryption
and decryption algorithms. Consequently, it must be securely exchanged between the
communicating parties prior to communication. In contrary, in asymmetric cryptography
(Figure 1.2), each party generates a pair of mathematically related keys: a public key
and a private key. The first one is widely distributed and used for encryption, while the
second one is kept secret and used for decryption. This eliminates the need for secure
key distribution, making asymmetric encryption ideal for scenarios where key exchange
is challenging or impractical. Additionally, asymmetric cryptography is useful to ensure
the authenticity of messages via digital signatures, which are generated with a private
key and can be verified with the corresponding public key. However, asymmetric schemes
tends to be computationally more intensive compared to symmetric ones.

The counterpart of cryptography is called cryptanalysis and consists in the study of
all the techniques allowing to bypass protections and recover the secret key, or at least
compromise a security requirement such as confidentiality or authenticity. To effectively
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prevent potential attacks, one must have a precise idea of what the adversary is capable
of. Indeed, the capabilities of the attacker, and therefore the security measures needed,
vary greatly depending on the context. Three main models are used to characterize the
type of attacker considered: the black-box, grey-box, and white-box models.

1.2 Black-Box, Grey-Box, White-Box

Cryptographic algorithms are primarily designed to resist key recovery attacks in the
black-box model where an attacker is restricted to the observation of their inputs and
outputs. While the adversary knows which algorithm is employed, he cannot observe any
intermediate variables. This model is sound when the cryptographic operations occur
within secure environments and only the transmission channel cannot be trusted. How-
ever, in many real-life scenarios, the attacker may have access to more information. In
particular, he may measure the execution timing of the algorithm, the power consumption
of the device in which it is implemented or any other side-channel leakage [KJJ99]. Since
these values are related to the data being processed, they could lead the attacker to the
secret key if the implementation is not protected. Alternatively, the adversary may physi-
cally tamper with the execution of the algorithm to obtain sensitive information [BDL97].
As a consequence, developers have to put countermeasures in place to reach the originally
expected security level. This setting, where the adversary has limited access to the device
and may perform physical attacks is depicted by the grey-box model. It is particularly
relevant in the context of embedded systems.

Finally, for about twenty years, we have been facing a new model, the white-box model,
which considers an even more powerful attacker. Indeed, the recent development of cryp-
tographic algorithms on open devices that do not necessarily contain secure hardware,
such as smartphones or connected objects, provides numerous opportunities to the at-
tacker. The white-box model assumes that the adversary controls every aspect of the
implementation. The attack surface is very large: one can analyze the binary, tamper
with the execution, or observe all the runtime information, such as the intermediate vari-
ables or the accessed memory addresses, for any chosen input. Of course, all the attacks
that can be performed in the black-box or grey-box models are also potential threats. In
such a hostile environment, the implementation itself is the last line of defense against
key extraction. By misuse of language, an implementation of a cryptographic algorithm
that is conceived to resist an attacker in the white-box model is commonly referred to as
a white-box. It must be meticulously generated in what we call the offline phase so that
secret values, such as keys, are hidden inside it and difficult to extract.

1.3 White-Box Use Cases

White-box implementations are currently employed in a variety of applications that run in
insecure environments. In particular, mobile applications deployed across diverse devices
cannot rely on secure hardware for storing secret keys and performing cryptographic
operations, as many mobile phones lack a secure element. Typical use-cases include – but
are not limited to – Digital Right Management (DRM) technologies, mobile payment or
key-less applications and cryptocurrency wallets.
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1.3.1 Digital Right Management
One of the first motivations for white-box cryptography is to be able to restrict the access
and distribution of content under copyright. Let us take the example of a movie available
on a streaming platform. Naturally, the platform does not want just anyone to be able
to watch it without having paid for a subscription, so the movie is encrypted. To allow
legitimate users access to the content, one might consider giving them the decryption
key directly. However, in that case, nothing would prevent them from selling this key
or sharing it with a friend. It is therefore preferable to provide legitimate users with a
white-box program that allows them to decrypt the movie without knowing the secret
key. Copying and reselling the code should then be more complicated than distributing
a simple key. To protect against such code-lifting attacks, the implementation can for
example be designed to work only on a specific device or to include hidden data that can
identify the person who illegally resells it.

1.3.2 Mobile Payment
Mobile payment applications enable users to utilize their mobile phones instead of credit
cards to make payments at NFC terminals [Pay]. During each payment, some transaction
credentials, stored encrypted, need to be decrypted to generate a valid transaction request.
Both the credential and the secret key used for decryption are sensitive information that
need to be protected. Note that the context is a bit different than the one of DRM: the
application owner has no interest in its secrets being disclosed to others. The goal of
white-box cryptography is rather to protect against a malicious third party who could try
to steal sensitive data, potentially through a malware installed on the phone. Once again,
preventing key extraction is necessary but not sufficient. First, it must be impossible
for the adversary to recover the sensitive data exchanged between the mobile and the
terminal, so confidentiality is required. It implies security against key-extraction but is
not restricted to it. Second, one should aim for integrity, meaning that the adversary
should not be able to alter the data. Finally, code-lifting attacks should also be prevented
since an adversary who has copied the code on his own device could use the latter to steal
money from the white-box owner by making a payment on a terminal of his choice.

1.3.3 Cryptocurrency Wallets
Cryptocurrencies are digital currencies that operate independently of central authorities,
such as governments or banks. They use cryptographic techniques to secure transactions
and control the creation of new coins. Cryptocurrencies can be stored either on hardware-
based or software-based wallets. While the use of USB sticks or smart cards gives less
power to a potential attacker than relying on a mobile application, it can be inconvenient
in practice. In the cases were pure-software cryptocurrency wallets are preferred, the use
of white-box cryptography is essential. As for mobile payment applications, the adversary
to consider is an external threat that goes against the interests of the white-box owner
and has potentially installed a malware designed to steal information on his phone.

1.3.4 Digital Car Keys
Digital key solutions [Ide] enable car access and engine start via mobile devices. They
allow users to easily share digital keys and restrict car usage when necessary, thereby
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simplifying car sharing and rental services. Similar to mobile payment solutions, these
applications must be protected against a white-box adversary who is not their rightful
owner. The attacker seeks to extract the code or steal the secrets that are stored on the
mobile phone and used for the authentication with the car in order to gain unauthorized
access to the vehicle.

1.4 Theoretical Approach
For about twenty years, several authors (e.g. [SWP09, DLPR14, BI15, AABM20]) tried
to define useful security notions for white-box cryptography. While resistance against
key-extraction is straightforward, we have seen that it is not sufficient for many use-
cases and that a white-box should also resist other threats, including code-lifting attacks.
Theoretical works defining precisely the objectives of white-box cryptography and proving
(im)possibility results are thus needed. In the following, we give a brief overview of the
literature on that topic, starting with the results that are inherited from the field of
program obfuscation.

1.4.1 Obfuscation and (Im)possibility Results
White-box cryptography is closely related to program obfuscation [HB15,BGI+01], their
common goal being to protect software implementations. Informally, an obfuscator is
a compiler that takes as input a program and produces a new one that has the same
functionality but is in a sense “unintelligible”. There are different ways to define more
precisely that idea of unintelligibility, leading to different branches of obfuscation, the most
famous ones being Virtual Black Box (VBB) and indistinguishability obfuscation (iO).
Intuitively, a VBB obfuscator intends to produce a program that provides no information
about the original one that cannot already be obtained from its inputs and outputs. An
iO obfuscator, on the other hand, produces indistinguishable programs, meaning that
given two programs P1 and P2 with the same functionality, and the obfuscation Q of one
of them, it is impossible to determine whether Q was generated from P1 or P2.

Theoretical research on obfuscation was initiated by Barak et al. [BGI+01], who
demonstrated the impossibility of creating a generic VBB obfuscator. While their work
confirms the existence of programs that are inherently not VBB-obfuscatable, it does not
imply that no algorithm can be implemented in a way that reveals no information beyond
its inputs and outputs. Indeed, it has later been proven that some simple programs, such
as point functions, are indeed VBB-obfuscatable [Wee05]. Even though it seems unlikely,
it would thus be of high interest to determine if some cryptosystems are actually VBB-
obfuscatable. Nevertheless, note that VBB-obfuscation is not exactly what we want to
achieve in white-box cryptography. Indeed, if only the secret key has to be protected, one
could accept giving some “useless” information to the attacker in addition to the inputs
and outputs of the algorithm. Saxena et al. [SWP09] tried to formalize the distinction be-
tween “useful” and “useless” non-black-box information by adapting standard public-key
security notions such as indistinguishability under chosen plaintext attacks (IND-CPA) in
the context of white-box cryptography. They also managed to prove some (im)possibility
results. In particular, they showed that for most programs, there are security notions
that can be satisfied in the black-box model but not in the white-box context. On the
positive side, they showed that there exists an implementation of an ad-hoc symmetric
encryption scheme that satisfies IND-CPA. Saxena et al.’s work highlighted the lack of
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theoretical foundations for white-box cryptography and motivated the search for useful
security notions.

1.4.2 White-Box Security Notions
Since the work of Saxena et al. [SWP09], many different security notions have been defined
in the literature for the white-box model. In the following, we briefly describe the most
common ones and gives information on their usefulness in practice.

Resistance Against Key Extraction (or Unbreakability). This first security no-
tion, formalized by Delerablée et al. in [DLPR14], captures the idea that an efficient
adversary should not be able to recover the secret key embedded in a white-box imple-
mentation. While obviously necessary, unbreakability is often not sufficient.

One-Wayness. The idea behind this security notion is that a white-box implementation
of an encryption algorithm should not facilitate the decryption of an arbitrary ciphertext.
An interesting fact about this property is that it enables the creation of an asymmetric
scheme from a symmetric one. The white-box implementation is then seen as the public
key for encryption (resp. verification) while the secret key enables the other party to
decrypt (resp. sign) messages.

Incompressibility. An implementation is called incompressible when it is difficult to
reduce its size without modifying its functionality. The motivation behind the definition of
such a security notion is that a large white-box implementation should be more difficult
to distribute, in particular online, than a short secret key. This property is therefore
intended to mitigate code-lifting attacks. While incompressibility might be thinkable for
use-cases such as DRM, it is not suited for mobile payment or any application that runs
on resource-constrained devices. Furthermore, note that it does not prevent code-lifting
attacks but rather minimizes their impact.

Space-Hardness. This notion introduced in [BI15] is very close to incompressibility.
An implementation is (M,Z)-space hard if an adversary having lifted a portion M of the
code has a probability lower than 2−Z of correctly encrypting/decrypting a random input.
The idea is again to complicate the work of an adversary trying to steal and sell the code.

Traceability. Another approach to mitigate code-lifting attacks involves watermarking
the implementation so that if unauthorized copies are distributed, the original program
owner can be identified. Again, this property may be useful in the context of DRM,
where the adversary may try to sell copies of his own decryption program. Nevertheless,
it is pointless for mobile payment applications, where the white-box has to be protected
against external adversaries trying to steal the legitimate owner of the program and not
against the latter trying to sell copies of its own implementation.

Hardware-Binding. In [AABM20], Alpirez Bock et al. pointed out the lack of security
notions addressing code-lifting attacks that are interesting for mobile payment applica-
tions. In that context, they suggest to rely on hardware-binding, which involves making
the implementation functional only when executed on a specific hardware device. This
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can be achieved, for instance, by incorporating a unique device fingerprint within the
white-box.

Application-Binding. A last possibility to mitigate code-lifting attacks consists in
making the white-box inseparable from a particular application instead of a specific hard-
ware device. This idea presents several advantages. First, it can enhance security, es-
pecially if the application incorporates authentication mechanisms. Second, a white-box
solely bound to an application, without any hardware-binding features, allows the pro-
gram owner to select the device on which he wishes to use it. However, as noted by
Alpirez Bock et al. in [AABM20], application-binding is difficult to formalize properly.

1.5 Practical Approach
Since the first white-box implementation introduced in 2002 by Chow et al. [CEJv02],
many designs and attacks were proposed. In the following, we give an overview of the
history of white-box cryptography.

1.5.1 White-Box Implementations of Block Ciphers
In 2002 and 2003, Chow et al. proposed two white-box designs intended to prevent key
extraction attacks in DRM applications. These implementations, of the Data Encryption
Standard (DES) [CEJv02] and the Advanced Encryption Standard (AES) [CEJv03] re-
spectively, initiated a long line of study on white-boxed block ciphers. In short, Chow
et al.’s idea consists in protecting the secret key by embedding it inside precomputed
look-up tables that are used during the execution to perform the sensitive operations.
All the intermediate variables, the inputs and outputs of the tables, are then obfuscated
by random bijections called encodings. The latter can be classified into two categories,
namely the internal encodings, that cancel each other, and the external encodings that are
the ones applied to the input and output of the cryptosystem. While they increase the
overall security, external encodings modify the input/output behavior of the program,
which is prohibitive for many use-cases where standard cryptosystems are required for
interoperability reasons.

The first two implementations of Chow et al. were proven insecure a few years after
their publication [BGEC04,WMGP07,GMQ07]. They were quickly followed by many new
designs [BCD06, XL09, Kar11, LLY14, BCH16] and attacks [DWP10, DRP13a, DRP13b,
MGH09, DFLM18, BHMT16], most of them concerning AES. Unfortunately, there is no
published implementation of either DES or AES that stands unbroken to this day. Even
the existence of a secure implementation is currently unknown.

In this context, the WhibOx contests of 2017 [Whi17] and 2019 [Whi19] were orga-
nized as part of the CHES workshops to motivate practical research on AES white-boxes.
Each time, developers were invited to submit the source code of a (secretly designed)
implementation and attackers to try and break it. The first contest ended with a vic-
tory for the attackers, with all the challenges being broken at the end of the allocated
time. On the contrary, three implementations – all due to Biryukov and Udovenko –
survived the 2019 WhibOx contest, which illustrates the advancement of the underlying
white-box techniques. Note however that they were all broken in the months following
the competition.
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1.5.2 Study of Other Standards
Apart from AES and DES, there is relatively little literature on white-box designs for
known crypstosystems. In 2022, Galissant and Goubin [GG22] took interest in multivari-
ate cryptography and proposed an implementation of HFE [Pat96] that has a claimed
level of security of 280 but is unfortunately impractical since it requires about 256GB of
memory. In the meantime, Ranea, Vandersmissen and Preneel [VRP22,RVP22] proposed
two solutions for the protection of ARX ciphers in the white-box model. Unfortunately,
the first one was broken by the authors themselves and the second one by Biryukov,
Lambin and Udovenko in [BLU23].

Recently, the ECDSA signature scheme benefited from quite a lot of attention. Indeed,
there is a strong need for ECDSA white-box solutions for the industry and securing this
scheme poses several new challenges [DGH21]. In particular, encoded look-up tables
are not well suited for operations on a large number of bits such as modular inversions
or scalar multiplications, so new countermeasures need to be invented. Furthermore,
the only design published in the literature [ZBJ20] relies on a cloud server during the
computation of the signatures, which is prohibitive for many use-cases, and has been
proven insecure [GH23]. In this context, the 2021 [Whi21] and 2024 [Whi24] editions of
the WhibOx contest switched the target from AES to ECDSA. The principle was similar
to previous editions: developers were invited to submit candidate implementations and
attackers to try to recover the corresponding secret keys. In 2021, all 97 challenges ended
up broken in less than 35 hours, yielding a clear victory for the attackers and showing
the difficulty of protecting ECDSA in the white-box context. This edition led to the
publication of two papers [BBD+22,BDG+22] discussing the attacks and countermeasures
that were used. As for the one of 2024, it is still ongoing, but less than a month before
the submission deadline, the best candidate also survived approximately 35 hours.

1.5.3 Ad-Hoc Cryptosystems
To this day, no practical public implementation of a standard algorithm has proven to be
resistant against key extraction. However, there are several ad-hoc cryptosystems in the
literature [BI15, FKKM16, BIT16, CCD+17, Bar20, KI21, LRH+22] that were specifically
tailored for the white-box context and some satisfy certain security notions presented in
Section 1.4.2. A large majority of these schemes focus on protection against key extraction
and code-lifting via incompressibility or space-hardness.

1.5.4 White-Box Cryptography in Practice
For reasons of interoperability and because multiple stakeholders are typically involved in
a specific solution, the industry is unlikely to adopt ad-hoc cryptosystems for many use
cases. Nevertheless, as we already mentioned, all public designs of standard algorithms
are currently considered broken. In such circumstances, the industry is compelled to de-
vise custom solutions to address the escalating demand for secure cryptographic software.
Their first objective is to provide practical security by shielding the white-box against
automated attacks, such as grey-box inherited ones. Obfuscation is then used to force the
adversary to go through a time-consuming and arduous reverse-engineering phase before
being able to search for vulnerabilities. Note that here, we do not talk about program
obfuscation (as described in Section 1.4.1) since it is unfortunately unpractical to this
day, but rather about code obfuscation that consists in transforming the code so that it
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remains functionally equivalent but becomes significantly more complex. Common tech-
niques include control flow obfuscation, which makes the execution path complex and
hard to follow, and instruction substitution, which replaces straightforward instructions
with more convoluted alternatives. The secrecy surrounding the design of such obfus-
cated implementations enhances their security, despite going against Kerckhoffs’ princi-
ple [Ker83], a fundamental concept in cryptography which asserts that everything about
the cryptosystem, except the key, must be considered publicly known. Furthermore, the
obfuscation layer might be different for each white-box, so that at least a part of the
reverse-engineering phase must be performed for each distinct target, complicating mass
attacks.

Even if these practical solutions might be less secure than what was initially expected,
it is important to note that the security model of white-box cryptography is too strong
for many use-cases, and real-life adversaries may be far less powerful than anticipated.
Indeed, the capabilities and objectives of attackers vary widely depending on the use-
case. For example, in mobile payment applications, the adversary is typically an external
threat who may introduce a virus but is unlikely to possess omnipotent capabilities. If
the white-box is bound to an application implementing authentication mechanisms, the
attacker should be unable to execute the code himself, making chosen plaintext attacks
impractical and limiting the number of side-channel traces obtainable within a given
time-frame. If the adversary were to induce a high number of faults, the legitimate user
of the application might detect that something is amiss. Moreover, for some use-cases,
the number of uses and lifespan of the key can be restricted, and the white-box can be
regularly updated to further reduce the number of executions observable by the attacker.
Finally, in addition to obfuscation techniques, other software protection mechanisms such
as anti-debug can also be implemented.

Practical white-box designs should thus be constructed for a specific purpose and
come with a detailed adversary model so that relevant analysis can be done. Similarly,
when a new attack is discovered, its practicability should be evaluated in terms of several
parameters, including the possibility of automation, the required number of executions
and the need to choose specific inputs or to induce faults.

1.6 Contributions and organization of the manuscript
This PhD thesis gathers the results of the four articles that I published in conferences.
They are listed in this section together with my other contributions, including the redac-
tion of a popular science article on white-box cryptography for the Interstices journal and
a patent on a countermeasure against fault attacks for ECDSA white-boxes.

1.6.1 Publications
In International Conferences/Journals

[DGH21] Emmanuelle Dottax, Christophe Giraud, and Agathe Houzelot. White-box
ECDSA: Challenges and Existing Solutions. In Shivam Bhasin and Fabrizio De
Santis, editors, COSADE 2021, volume 12910 of LNCS, pages 184–201. Springer,
Heidelberg, October 2021.

[BBD+22] Guillaume Barbu, Ward Beullens, Emmanuelle Dottax, Christophe Giraud,
Agathe Houzelot, Chaoyun Li, Mohammad Mahzoun, Adrián Ranea, and Jianrui

9



Xie. ECDSA White-Box Implementations: Attacks and Designs from CHES 2021
Challenge. IACR TCHES, 2022(4):527–552, 2022.

[GH23] Christophe Giraud and Agathe Houzelot. Fault Attacks on a Cloud-Assisted
ECDSA White-Box Based on the Residue Number System. In 2023 Workshop on
Fault Detection and Tolerance in Cryptography (FDTC), pages 72–80. IEEE, 2023.

[CH24] Laurent Castelnovi and Agathe Houzelot. On the (Im)possibility of Preventing
Differential Computation Analysis with Internal Encodings. Accepted for publica-
tion in TCHES, 2024(3), 2024.

In Popular Science Reviews

[CH23] Arnaud Casteigts and Agathe Houzelot. Vers une cryptographie en boîte blanche ?
In Interstices, INRIA, 2023. https://interstices.info/vers-une-cryptographie-
en-boite-blanche.

1.6.2 Patents
During my PhD, I contributed in the design of a proprietary ECDSA white-box for
IDEMIA. I also implemented the proof of concept in python and C. Our work on ECDSA
white-boxes lead to the following patent:

[DGH22] Emmanuelle Dottax, Christophe Giraud and Agathe Houzelot. Procédé de
signature cryptographique d’une donnée, dispositif électronique et programme d’ordinateur
associés. Patent FR3133251A1, 2022.

1.6.3 Thesis Outline
This thesis contributes to the field of practical white-box cryptography. We focused on
two widely-used standard cryptosystems, namely AES and ECDSA, trying to identify
attacks that could be performed by real-life adversaries and determine countermeasures
that could prevent them. The chapters are organized as follows:

Chapter 2: Grey-box Attacks and Countermeasures

While initially developed for the grey-box model, side-channel and fault attacks have
shown to be extremely effective in the white-box model, where the adversary has greater
capabilities. Given their significance in the subsequent parts of this thesis, this chapter
delves deeper into these attacks, discussing common countermeasures and highlighting
the differences in their implementation between the grey-box and white-box models.

Chapter 3: The Advanced Encryption Standard in the White-Box Model

Although all public white-box implementations of AES have been compromised, some
of the attacks are arguably difficult to execute in practice. Similarly, there are common
countermeasures in the literature, as external encodings, that are unlikely to be adopted
by the industry because they alter the input/output behavior of the algorithm. It is there-
fore crucial to study attacks that are feasible in real-life scenarios and to develop practical
countermeasures. In particular, finding a method to prevent side-channel attacks without
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relying on random values would be a significant breakthrough in white-box cryptogra-
phy. Internal encodings were once considered a potential solution, but Rivain and Wang
demonstrated in [RW19] that encoded AES implementations could be effectively broken
using Differential Computation Analysis (DCA) [BHMT16] with high probability.

In this chapter, we begin by reviewing the state-of-the-art on AES white-box imple-
mentations. We start with the designs that have been published in the literature and then
provide a brief overview of the various algebraic attacks. We then introduce a new col-
lision attack on practical AES implementations that requires very few executions. Next,
we delve into side-channel analysis, discussing previous works before presenting the main
contribution of this chapter: we identify the small class of encodings that cause DCA to
fail according to [RW19] and explain how to adapt the attack to defeat even these specific
bijections. We thereby demonstrate that no class of encodings can effectively protect an
AES white-box against side-channel attacks. Crafting bijections with specific properties,
rather than selecting them at random, is not a viable solution.

Chapter 4: The Elliptic Curve Digital Signature Algorithm in the White-Box
Model

Despite the limited academic literature and the fact that techniques used in symmet-
ric white-box cryptography cannot be directly applied to asymmetric algorithms, many
ECDSA white-boxes [SAS, Tha, Qua, Ird, Int, Inc, Ver, Dig] have been developed and sold
by companies. Understanding the challenges in designing such a white-box and studying
practical attacks and countermeasures is therefore essential.

This chapter begins with a discussion on the WhibOx 2021 contest. As participants
on the attacking team TheRealIdefix, we successfully broke the most submissions and
ranked third at the end of the contest. We detail the various attacks we employed, ranging
from the exploitation of biases in the nonce generation to fault attacks, and assess their
effectiveness against all the candidates. We also give an overview of the two best designs
that, although broken, contain new ideas that are theoretically interesting.

Next, we explore the most interesting countermeasures that we found in the various
patents filled by companies. Since their products’ documentation lacks technical details,
we examined patents to glean insights into the white-box designs. While they may omit
critical details and not fully explain the security context, we believe that patents still
provide valuable information on methods implemented in the field. As already suggested
by the results of the WhibOx contest, this study shows that known countermeasures seem
to be insufficient to prevent all the attacks that threaten ECDSA white-boxes, especially
the ones based on fault injections.

Finally, we analyze the security of the first published ECDSA white-box, that is Zhou
et al.’s cloud-based implementation [ZBJ20]. We present two efficient fault attacks based
on a common principle to re-inject some specific values from one signature execution to
another. We also propose a countermeasure that prevents these attacks without increas-
ing the size of the white-box on the clients’ side. It only has a slight impact on the
performances on the server’s side.
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Chapter 2

Grey-Box Attacks and
Countermeasures

Contents
2.1 Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Analyzing the Execution Flow . . . . . . . . . . . . . . . . . . 14
2.1.2 Analyzing the Processed Data . . . . . . . . . . . . . . . . . . . 15
2.1.3 Profiled Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Particularities in the White-Box Model . . . . . . . . . . . . . 17

2.2 Fault Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Particularities in the White-Box Model . . . . . . . . . . . . . 19

The grey-box model considers an adversary who has access to a physical device im-
plementing a cryptosystem and may exploit information leaked during an execution, such
as the power consumption, the electromagnetic radiations or the execution timing. Since
this side-channel information directly depends on the operations performed and the pro-
cessed data, it may be used to extract sensitive values, including cryptographic keys, from
unprotected implementations.

By manipulating the voltage, clock frequency, or other parameters of the device, at-
tackers can also intentionally introduce errors in the computation or disrupt the normal
execution flow. The obtained faulty output may then be used to obtain information on
the secret key if the implementation lacks adequate protection.

While initially introduced for the grey-box model, side-channel and fault attacks have
logically proven to be highly effective in the white-box model where the adversary is
more powerful [BHMT16]. This chapter provides more details on these attacks, including
information on typical countermeasures and the differences in their application between
the two models.

2.1 Side-Channel Attacks
Side-channel attacks (SCA) were first introduced in 1996 by Paul Kocher [Koc96], who
proposed to use differences in the execution timing to break unprotected implementations

13



of several cryptosystems such as Diffie-Hellman and RSA. Since then, a variety of attacks
exploiting different side-channels, such as power consumption [KJJ99] or electromagnetic
emanations [GMO01] have been described. They proved to be highly effective in practice
against a wide variety of cryptosystems.

Side-channel attacks all start with the acquisition of a set of traces during one or
several executions. These can consist of power consumption or any other side-channel
information over time. Then, the analysis of these traces can take various forms. Side-
channel attacks can be categorized into two groups based on the type of information
exploited: some analyze the operation flow, while others concentrate on the processed
data. They can also be classified according to whether they involve a profiling phase
or not. In this section, we give the basic principle of those attacks and discuss their
countermeasures.

2.1.1 Analyzing the Execution Flow

The success of some side-channel attacks, such as timing attacks [Koc96] or Simple Power
Analysis (SPA) [KJJ99] hinges on the dependence of the execution flow on a sensitive
variable. Different operations may take different amounts of time and generate distinct
power consumption or electromagnetic radiation patterns. Consequently, an attacker who
can observe these variations may gain insights into the secret key.

Figure 2.1 shows an example of SPA targeting the exponent of a modular exponen-
tiation implemented using the famous square-and-multiply algorithm. In this scenario,
variations in power consumption enable the attacker to discern whether a multiplication
operation occurred during each iteration of the loop, thereby allowing the recovery of the
exponent with a single power trace.

Algorithm 1: Square-and-multiply
Input: x, e = (e0, e1, . . . , eℓ)2 and n
Output: y = xe mod n
y ← 1
for i in J0, ℓK :

y ← y2 mod n
if ei = 1 :

y ← y · x mod n
return y

Figure 2.1: Left: the square-and-multiply algorithm for modular exponentiation. Right:
a power trace acquired during an execution of the algorithm, taken from [Riv09]. Since
square and multiply operations can easily be distinguished, the exponent is leaked as
shown under the curve.

Timing attacks are more sophisticated. For example, with the square-and-multiply
algorithm, an exponent with more 1’s in its binary representation results in more opera-
tions and thus longer execution timing. An attacker can thus infer sensitive information
by observing multiple executions and applying statistical analysis to the collected data.
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2.1.2 Analyzing the Processed Data
Some side-channel attacks exploit the disparity in power consumption or electromagnetic
emanations when manipulating a bit set to 0 or 1. Despite inherent noise, the intermediate
variables being processed at any time during an execution are somehow correlated to
the side-channel information, and this can be exploited to recover secret values if the
implementation lacks adequate protection. The attacks all consist of the following steps:

1. Acquire a set of traces by observing multiple executions on different inputs.

2. Select an intermediate variable that depends on a few key bits only. Such a variable
is said to be sensitive.

3. For all key guess, predict the said intermediate variable.

4. Choose a score function, called a distinguisher, and apply it to the predictions and
each point of the traces.

5. Validate the key hypothesis that obtains the highest score.

6. Repeat with another sensitive variable depending on other key bits until the whole
secret is recovered.

In the seminal paper of Kocher et al. [KJJ99], the proposed distinguisher was the
difference-of-means. It consists in dividing the collected traces into two sets based on the
predicted sensitive variable, and computing the mean of each set for each point. For a
wrong key guess and a correctly chosen sensitive variable, the sorting can be modeled as
random so the difference of means should approach 0 when the number of traces is high
enough. The correct key hypothesis can then be determined as the one that leads to the
highest absolute value of the difference-of-means (see Figure 2.2).

Figure 2.2: DPA on simulated AES traces. Left: difference-of-means over time for wrong
(resp. good) key guesses in grey (resp. red). Right: highest absolute value of the
difference-of-means for each key guess (good hypothesis highlighted in red) over the num-
ber of leakage measurements.
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Since the introduction of DPA, several other statistical tools have been suggested,
including Pearson correlation coefficient [BCO04], mutual information [GBTP08] and
maximum likelihood [CRR03]. The optimal choice of distinguisher largely depends on
the attacker’s knowledge of the leakage. If the latter is non-existent, mutual information
might be the most effective option. Conversely, likelihood-based attacks require a high
degree of knowledge.

2.1.3 Profiled Analysis
Unlike other SCA, profiled attacks require full control over a device which has to be
similar to the target one. It is used in what is called the profiling phase, where a large
number of traces are recorded for different known key values. These traces are employed
to either construct templates [CRR03] or train a deep-learning network [HGD+11] to learn
a leakage profile of the cryptosystem under attack. Subsequently, in the key extraction
stage, a small number of traces collected from the target device are used to find the correct
key based on the template or trained model. Note that even though profiled attacks are
considered very powerful, their application is sometimes complicated in practice since the
attacker needs to have a similar device that he can configure with different known key
values.

2.1.4 Countermeasures
A first idea to complicate side-channel attacks is to use hardware modules to flatten the
power consumption or increase the noise, but this is often insufficient to thwart practical
attacks. Preventing SPA or similar threats is relatively straightforward: one must ensure
that the execution flow remains independent of any sensitive data by employing atomic
or regular algorithms [CCJ03, Joy07, JT09, Riv11]. However, DPA-like attacks are more
challenging to mitigate. Since they typically require the analysis of many side-channel
traces, a first strategy could be to frequently update the secret key if the use-case allows
it. This can be done in combination with other countermeasures, such as masking or
shuffling, which help remove or at least reduce the dependence between trace points and
sensitive variables.

Masking

Masking is a widely-deployed countermeasure that has been proven efficient against side-
channel attacks [CJRR99, PR13]. It consists in splitting all the sensitive variables into
several shares and processing them individually. More precisely, a sensitive variable x is
represented as

x = x0 ⋆ x1 ⋆ x2 ⋆ . . . ⋆ xn (2.1)

where ⋆ is a group operation and n is called the masking order. The masks xi are
drawn at random for 1 ≤ i ≤ n and the masked variable x0 is computed so that (2.1) is
satisfied. The two most predominant types of masking are Boolean masking and arithmetic
masking for which ⋆ is respectively the XOR operation and the modular addition. The
choice of the masking type depends on the operations to be protected, and if needed,
there exists conversion methods from Boolean to arithmetic masking and the other way
around [Gou01,CT03,Deb12,BCZ18]. In any case, the computations must be performed
in a way that ensures that masks and masked variables are processed separately. Several
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methods, called masking schemes, have been described in the literature (e.g. [ISW03,
GPQ11,CGP+12]).

Assuming that the masks are uniformly distributed, recovering up to n shares does
not give any information on the sensitive variable. Since the shares are manipulated sep-
arately, the processed data is statistically independent from any secret value. Traditional
SCA that rely on the leakage from a single intermediate variable are thus no longer ap-
plicable. However, note that masking remains susceptible to higher-order side-channel
attacks, which exploit leakages from multiple intermediate variables simultaneously by
combining samples within a trace [Mes00,OMHT06,CPR07]. A masking scheme of order
n is theoretically vulnerable to an attack of order n+1. Nevertheless, because of the noise,
the complexity of higher-order SCA increases exponentially with the order [CJRR99], so
masking remains a sound countermeasure.

Shuffling

In order to increase the noise on the traces and complicate the attacks, one can im-
plement shuffling techniques [VMKS12], which involve randomly permuting the order of
independent operations at each execution of the program. Since the obtained traces are
misaligned, one has to observe a higher number of executions in order to compensate
the noise. Dummy operations or random delays can also be added for better results. In
combination with a masking scheme, shuffling can drastically increase the complexity of
higher-order side-channel attacks.

2.1.5 Particularities in the White-Box Model
The key distinction between side-channel attacks conducted in the grey-box versus the
white-box model lies in the nature of the traces. Indeed, in the white-box context, the
adversary has access to the memory, so he can trace the addresses that are accessed
during the execution or even the intermediate variables themselves. This way, he may
obtain noise-free traces, significantly enhancing the efficiency of the attacks.

Furthermore, the countermeasures that are usually deployed in the grey-box context
are not always straightforward to implement in the white-box model. Indeed, both mask-
ing and shuffling rely on the generation of random values, which is typically done by a
Random Number Generator (RNG). However, the output of such an external source of
randomness could easily be identified and fixed by a white-box adversary who controls the
execution environment. In this context, random variables are therefore usually computed
with a Pseudo-Random Number Generator (PRNG) applied to the input of the program.
Nevertheless, the implementation of such a PRNG can be challenging. Indeed, the ad-
versary should neither be able to find nor fix its output. Moreover, this value should be
unpredictable to the adversary. While using a keyed PRNG might seem like a good idea,
such a solution creates a vicious circle as the generator then has to be resilient against
side-channel attacks. The latter are thus both more efficient and more difficult to prevent
in the white-box model.

2.2 Fault Attacks
The idea of deliberately inducing errors in computations was introduced in 1996 by Boneh
et al. [BDL97]. There are many ways of perturbing a component to perform a fault attack,
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but the most common ones consist in inducing a glitch [BECN+04] (i.e. temporarily
modifying the power supply voltage or the clock frequency) or exposing the component
to a brief and intensive pulse of light [SA03, BECN+04]. The effect of a fault can differ
depending on the way it was induced, but also on the timing of the attack or on the area
of the chip targeted in the case of a laser-based fault injection. It may for instance alter
the value of an intermediate variable, skip an instruction or perform a jump in the code.
Some fault attacks are highly generic, but most rely on a precise fault model that specifies
which data has been corrupted and how the fault impacts it. Common models consider
the modification of a bit, a byte or a data word, to either a random value or a constant.

The treatment of the faulty outputs also varies widely depending on the targeted
scheme. Some attacks, as for instance the Bellcore attack against RSA [BDL97] or the
Differential Fault Analysis (DFA) against block ciphers [BS97,PQ03], analyze the differ-
ence between correct and faulty outputs in order to retrieve information on the secret
key. Others simply exploit the fact that the injected fault yields, or not, an erroneous
result [Cla07, DEK+18, YJ00]. Advantageously, such attacks may bypass some classical
countermeasures based on fault detection.

2.2.1 Countermeasures

First of all, fault attacks can be mitigated by hardware countermeasures, such as physical
sensors included in the chips to detect light or significant voltage and frequency variations.
Of course, there also exist software countermeasures. While they may vary depending on
the targeted scheme and the employed attack, most of them rely on redundancy. They
can be classified into two categories: detective and infective solutions.

Detective countermeasures rely on consistency checks. For example, performing a sen-
sitive operation twice and comparing the results can be effective for a large variety of
attacks and cryptosystems. Another method involves implementing the inverse transfor-
mation and applying it to the output of the algorithm, then verifying that it returns to
the original input. If a fault is detected, an error or an unusable output, such as a random
value independent of the computation, should be returned. This type of countermeasure
is straightforward to implement, but it doubles the execution time, which may be pro-
hibitive for some use cases. Furthermore, consistency checks can potentially be bypassed
with another fault, even though the complexity of executing such a double-injection attack
is already significantly higher.

Instead of checking the consistency of the computations, one can implement the al-
gorithm in such a way that any fault on a sensitive variable also corrupts other ones,
resulting in an output that is not exploitable by an attacker. Infective countermea-
sures [YKLM02, GST12, LRT12] are less susceptible to double injections compared to
detective ones, but they are challenging to design and to generalize to a large variety of
cryptosystems. It is essential to ensure that compromised outputs do not disclose any
sensitive information or some attacks may still succeed [YKM06,LRT12,BG13].

Note that some countermeasures employed against SCA (see Section 2.1.4) can also be
used to mitigate several fault attacks. For instance, unlike detection-based countermea-
sures, masking or other randomization techniques can be used to prevent some attacks
that exploit whether the fault injection produced an error or not. Shuffling, on the other
hand, can complicate the attacks that require precise fault injections.
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2.2.2 Particularities in the White-Box Model
Fault attacks are far easier to mount in the white-box context. Indeed, since the adversary
controls the execution environment, there is no need to use lasers or glitches to induce
errors. Instead, he can directly modify the executable or even use debugging tools to stop
the execution and, for example, skip an instruction or alter a specific register’s value.
Very precise faults are thus made possible, offering new possibilities for attackers. In
particular, it is easier to induce several faults and circumvent consistency checks. It is
thus often preferable to use infective countermeasures that propagate the error until the
result is unusable rather than relying on redundancy and fault detection.
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in the White-Box Model.
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3.1 Introduction
Selected by the NIST in 2001 after a rigorous evaluation process, the Advanced Encryption
Standard (AES) [AES23] has since become one of the most popular symmetric ciphers.
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It is indeed known for its efficiency in both software and hardware, straightforward im-
plementation, and minimal memory requirements.

AES is also by far the most studied cryptosystem in the white-box model. This study
was initiated by Chow et al., who introduced the first implementation in 2002 [CEJv03].
Their main idea was to implement all the operations with the help of look-up tables pro-
tected by random bijections, called encodings, applied to their inputs and outputs. Since
Chow et al.’s pioneering work, numerous attacks [BGEC04, DWP10, DRP13a, LRD+14,
BHMT16] and new designs [BCD06,XL09,Kar11] have emerged. While all of the public
implementations are currently broken, some of the attacks can be argued to be difficult
to execute in practice. Similarly, some of the countermeasures proposed are unlikely to
be used by the industry since they modify the input/output behavior of the algorithm,
therefore making it not standard anymore. It is thus of high interest to study more deeply
the attacks that are easy to perform in real-life scenarios and the countermeasures that
could be deployed in practice. In particular, finding a way to prevent side-channel attacks
without relying on a PRNG, unlike masking and shuffling, would be a significant advance-
ment in white-box cryptography. Encodings were once believed to be able to fulfill this
role but Rivain and Wang showed in [RW19] that encoded AES implementations could
actually be broken by a Differential Computation Analysis (DCA) [BHMT16] with high
probability.

In this chapter, we first go through the state-of-the-art on AES white-boxes. We
start with the designs that were published in the literature, and continue with a short
description of the diverse algebraic attacks. We take this opportunity to present a new
collision attack on practical AES implementations that requires a very low number of
executions. We then move to side-channel analysis and discuss previous works before
arriving to the main contribution of this chapter: we characterize the small class of
encodings that prevents DCA according to [RW19] and explain how to adapt the attack
so that even these specific bijections can be defeated. We thus demonstrate that no class
of encodings can efficiently protect an AES white-box against side-channel attacks.

3.2 Preliminaries

3.2.1 Description of AES
The Advanced Encryption Standard [AES23] is a Substitution Permutation Network
(SPN) that works on 128-bit blocks. Three different sets of parameters corresponding
to key lengths of 128, 192 or 256 bits are supported, but in this work as in many others,
we focus on AES-128 which uses a 128-bit key. The encryption algorithm then consists of
10 rounds during which the four following operations are successively applied on a 4× 4
array of bytes denoted as the state.

1. AddRoundKey: Binary addition between the state and a 128-bit roundkey kr de-
rived from the master key through a key-scheduling.

2. SubBytes: Parallel application of a non-linear bijection, the AES S-box S, to each
byte of the state.

3. ShiftRows: Permutation of the indexes of the state bytes. For i ∈ J0, 3K, the ith row
is shifted by i positions to the left in the 4× 4 array.
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4. MixColumns: Multiplication of each column of the state, seen as a 4-byte vector
with elements in F28 , by a constant matrix

MC =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 .

Note that the MixColumns operation of the last round is replaced by an exclusive-or with
a post-whitening key. The AES-128 encryption can thus be described as in Algorithm 2.

Algorithm 2: AES-128 encryption
Input: Plaintext m and roundkeys k1, k2, . . . , k11

Output: Ciphertext c
state ← m
for r in J1, 10K :

AddRoundKey(state, kr)
SubBytes(state)
ShiftRows(state)
if r ̸= 10 :

MixColumns(state)
AddRoundKey(state, k11)
c ← state
return c

As for the decryption algorithm, it simply applies the inverse of the operations in a
reversed order (see Algorithm 3).

Algorithm 3: AES-128 decryption
Input: Ciphertext c and roundkeys k1, k2, . . . , k11

Output: Plaintext m
state ← c
AddRoundKey(state, k11)
for r in J1, 10K :

if r ̸= 1 :
MixColumnsInv(state)

ShiftRowsInv(state)
SubBytesInv(state)
AddRoundKey(state, k11−r)

m ← state
return m
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3.2.2 Measuring the Dependence between Random Variables
Several tools can be used to measure the dependence between random variables. In this
chapter, we will use two of them, namely Pearson’s correlation coefficient and mutual
information.

Pearson’s Coefficient. this coefficient can be used to measure the linear correlation
between two random variables. In particular, as we will see in Section 3.5.1, it is used
in some side-channel attacks [BCO04, BHMT16] to assess the correlation between trace
points and predicted values.

Given two random variables X and Y , Pearson’s correlation coefficient is defined as

Cor(X, Y ) = Cov(X, Y )
σXσY

,

with Cov(X, Y ) denoting the covariance between X and Y and σX (resp. σY ) being the
standard deviation of X (resp. Y ).

Mutual Information. The mutual information of two random variables X and Y al-
lows to measure their dependence, that is to say the quantity of information that one
obtains on X by observing Y , or the opposite. The advantage compared to Pearson’s
coefficient is that it gives information about all dependences, whether linear or not. As
we will see in Section 3.5.1, mutual information is also used in some side-channel at-
tacks [GBTP08] to assess the dependence between trace points and predicted values.

Given two variables X ∈ X and Y ∈ Y , their mutual information is defined as

I(X, Y ) = −
∑

x∈X ,y∈Y
P(X = x, Y = y) · log2(

P(X = x, Y = y)
P(X = x) · P(Y = y)) .

3.2.3 The Hypergeometric Distribution
The hypergeometric distribution HG(α, β, τ) is a discrete distribution that describes the
probability of having t successes in τ draws without replacement from a population of
size β containing α successes, that is

Pα,β,τ (t) =

(
α
t

)(
β−α
τ−t

)
(

β
τ

) .

In the following, we denote by H̃G(n) the distribution HG(2n−1, 2n, 2n−1).

3.2.4 Boolean Functions
First, let us recall a few definitions. Let n,m ≥ 1 be two integers. A function f from Fn

2
to F2 is called a Boolean function while a function F from Fn

2 to Fm
2 is called a vectorial

Boolean function (VBF). If F (x) = (F0(x), F1(x), . . . , Fm−1(x)), the Boolean functions
F0, F1, . . . , Fm−1 are often referred to as coordinate functions of F . The function F is said
to be balanced if, for all y ∈ Fm

2 , #{x ∈ Fn
2 |F (x) = y} = 2n−m. The bias (or imbalance)

of a Boolean function f is defined as B(f) = ∑
x∈Fn

2
(−1)f(x).

In the rest of this chapter, we will use the notions of Walsh transform and Walsh spec-
trum of Boolean and vectorial Boolean functions. We thus recall the following definitions.
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Definition 1 (Walsh transform, Walsh spectrum).
• The Walsh transform of a Boolean function f : Fn

2 → F2 is defined as:
Wf : Fn

2 → Z

u 7→
∑

x∈Fn
2

(−1)f(x)+⟨u,x⟩ .

• The Walsh transform of a VBF F : Fn
2 → Fm

2 is defined as:
WF : Fn

2 × Fm
2 → Z

(u, v) 7→
∑

x∈Fn
2

(−1)⟨v,F (x)⟩+⟨u,x⟩ .

• The Walsh spectrum of a VBF F : Fn
2 → Fm

2 is the set of all the values that WF (u, v)
can take:

W(F ) = {WF (u, v) | (u, v) ∈ Fn
2 × Fm

2 } .

In this chapter, we only get interested in the case where the inputs u and v are of
Hamming weight 1. In this case, the value WF (u, v) can be seen as a measure of the
correlation between one input bit and one output bit of F . We will denote by W1(F ) the
subset of the Walsh spectrum restricted to the values u and v of Hamming weight 1:

W1(F ) = {WF (u, v) | (u, v) ∈ Fn
2 × Fm

2 ,HW(u) = HW(v) = 1} .

In the following, we will focus on the Walsh spectrum of encodings. Since the latter
are bijections, their coordinate functions are balanced Boolean functions and their Walsh
transforms have the following property.
Proposition 1. Let n ≥ 2 and f : Fn

2 → F2 be a balanced Boolean function. For all
u ∈ Fn

2 such that HW(u) = 1, Wf (u) is a multiple of 4.
Proof. Let n ≥ 2 and f : Fn

2 → F2 be a balanced Boolean function. Let u ∈ Fn
2 with

HW(u) = 1. Let us denote by A the biggest set A ⊆ Fn
2 such that ∑x∈A(−1)f(x)+⟨x,u⟩ = 0

and by B the set B = Fn
2 \ A. We then have:

Wf (u) =
∑
x∈B

(−1)f(x)+⟨x,u⟩ .

The value (−1)f(x)+⟨x,u⟩ is constant over B since otherwise we could add at least two
values in A. Therefore, proving that the cardinality of B is a multiple of 4 would conclude
this proof. Since #B = 2n−#A and n ≥ 2, it is also sufficient to prove that the cardinality
of A is a multiple of 4.

If f = x 7→ ⟨x, u⟩ or f = x 7→ ¬⟨x, u⟩, then we have #A = 0, which concludes the
proof. Otherwise, since f is balanced, there exist x1, x2, x3 and x4 in Fn

2 such that:
⟨x1, u⟩ = 0 and f(x1) = 1,
⟨x2, u⟩ = 0 and f(x2) = 0,
⟨x3, u⟩ = 1 and f(x3) = 1,
⟨x4, u⟩ = 1 and f(x4) = 0.

These four values x1, x2, x3 and x4 are different, so by definition of A, they belong to A.
Now let E = Fn

2 \ {x1, x2, x3, x4}. If f(x) = ⟨x, u⟩ or f(x) = ¬⟨x, u⟩ for all x in E , then
#A = 4. Otherwise, the argument above can be applied on E and the cardinality of A
is increased by 4. Recursively, we get that #A is always a multiple of 4, then so are #B
and Wf (u).
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3.3 AES White-box Implementations
A first idea to secure AES in the white-box model could be to use a unique look-up
table representing the bijection of F128

2 between plaintexts and ciphertexts for a given
key. This would restrict the possible attacks to those that are feasible in the black-box
context, but of course, it is totally impractical. Indeed, one would need to compute and
store a 2128 × 128-bit array. The challenge of white-box cryptography is thus to find an
implementation that is practical in terms of time and memory, even if it means giving a
little more information to the adversary.

Even though the very first published AES white-box design [CEJv03] is now considered
as insecure, the ideas that were introduced are still commonly employed in practice and
seen as an important basic security brick. We thus start this section with the description
of this implementation. We then briefly go through the other attempts that can be found
in the literature.

3.3.1 Chow et al.’s Implementation
Chow et al.’s AES white-box [CEJv03] is inspired from the T-tables suggested by Daemen
and Rijmen in their AES proposal [DR98]. The implementation is split into a network of
small look-up tables that we describe in the following.

AddRoundKey and SubBytes. At each round r, these operations are computed by
sixteen tables called T -boxes that map a byte to a byte and are defined as follows:T r

i,j(xi,j) = S(xi,j ⊕ kr
i,j) for i, j ∈ [0, 3] and r ∈ [1, 9]

T 10
i,j (xi,j) = S(xi,j ⊕ k10

i,j)⊕ k11
i,j−i mod 4 for i, j ∈ [0, 3]

where kr
i,j denotes the byte in position (i, j) of the roundkey kr.

MixColumns. First, note that the matrix multiplication between MC and a state
column can be decomposed into three exclusive-or of 4-byte vectors:


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0,j

x1,j

x2,j

x3,j

 = x0,j


02
01
01
03

⊕ x1,j


03
02
01
01

⊕ x2,j


01
03
02
01

⊕ x3,j


01
01
03
02


Let us denote by MCi the ith column of MC, for i in J0, 3K. In Chow et al.’s imple-
mentation, each of the four vectors is computed by a table taking a one-byte input and
returning a 4-byte output:

Tyr
i,j(xi,j) = xi,j ·MCi .

The results are then given as input to other tables that take two 4-bit values and return
their exclusive-or. The reason behind the partitioning in nibbles instead of bytes for this
operation is that each xor table would otherwise be quite big (216 × 8 bits = 65.536 kB).

Note that the tables T r
i,j and Tyr

i,j can be merged to improve the performances and
reduce the number of intermediate variables. The data flow for the computation of one
AES round of AES is depicted in Figure 3.1.
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input
•
•
•
•
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0,0
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0,0

32
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1,1
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1,1

32

8
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2,2

T yr
2,2

32

8

T r
3,3

T yr
3,3

32

⊕

output
8

8

8

8

Figure 3.1: Data flow for the computation of an AES round. Only one column is shown
but the implementation is similar for the other ones. The xor operation represented here
is in fact composed of multiple little xor tables that take two 4-bit values as input.

Adding Encodings. In the implementation outlined previously, the outputs of the Ty
tables are exposed to potential adversaries. Yet, these values depend on 8 key bits only, so
they are highly sensitive and have to be protected. Otherwise, an attacker could compute
all the 256 possible tables and compare them with the ones that are actually used to
validate a key hypothesis. As a solution, Chow et al. suggested to add random bijections,
called encodings, to the inputs and the outputs of the tables.

Definition 2 (Encoding). Let F : Fn
2 → Fm

2 . Let E0 an E1 be bijections over Fn
2 and

Fm
2 respectively. The function F = E1 ◦ F ◦ E0 is called an encoded function of F , and
E0 and E1 are called the input and output encodings respectively.

Encodings are used to obfuscate the tables; an attacker reading the memory does not
have access to a sensitive variable X anymore, but to E(X) with E being an unknown
bijection. They prevent the adversary from computing all possible tables and performing
a brute-force attack since the number of bijections over Fn

2 is 2n!, which quickly becomes
prohibitive when n increases. Due to the design of the xor tables that take two nibbles as
inputs, the encodings suggested by Chow et al. are bijections over F4

2. Output encodings
are drawn randomly, independently from each other, and applied to 4-bit portions of
intermediate variables. Note that in order to obtain the right result at the end of the
algorithm, they have to be canceled by the input encodings of the following operation
(see Figure 3.2). Only the external encodings, namely the bijections applied to the input
of the first operation and the output of the last one, are not canceled during the execution.
They mitigate several attacks since they prevent the adversary from having access to the
plaintexts and the ciphertexts, but they make the implementation not standard anymore,
which is prohibitive for many use-cases. In Chow et al.’s implementation, these external
encodings are linear bijections over F128

2 .
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Figure 3.2: A part of an AES round protected by nibble encodings.

Adding Mixing Bijections. In addition to the small encodings that are non-linear
with very high probability, Chow et al. suggest to implement bigger linear transformations
called mixing bijections in order to increase the diffusion. More precisely, they propose
to add :

• 8× 8 mixing bijections Lr
i,j on the input of T-boxes,

• 32× 32 mixing bijections MBr
i on the output of Ty tables.

Since these transformations are linear, they commute with the xor operations. The bi-
jections MBr

i can therefore be canceled by new tables that are added at the end of each
round. Of course, these tables do not take 32-bit inputs; the inverse transformation takes
the form of a multiplication by a matrix, which can be done similarly to the application
of MixColumns to the state. As for Lr

i,j bijections, their inverse must be applied at the
end of the previous round. We refer to [CEJv03] or [Mui13] for more details.

3.3.2 Overview of Other Designs
As we will discuss in Section 3.4, Chow et al.’s implementation has been proven insecure.
Consequently, several authors tried to improve it or came up with new designs. They
were unfortunately all broken in the end, but we briefly discuss these implementations in
this section for completeness. We refer the interested reader to [Ras20] for more details.

Bringer et al. In 2006, Bringer et al. [BCD06] introduced a white-box implementation
of a variant of AES with non-standard key-dependent S-boxes. Instead of using look-
up tables, each round is represented as a system of multivariate polynomials in a finite
field, the structure of which is hidden by the incorporation of random polynomials and
perturbation polynomials. The latter can be assimilated to well-controlled errors spread
along the execution and canceled in the last round with high probability. Consequently,
four carefully crafted instances of the white-box are necessary to ensure the correct result
after a majority vote. This implementation was broken by De Mulder et al. in [DWP10].
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Xiao and Lai. In 2009, Xiao and Lai [XL09] suggested an amelioration of Chow et
al.’s design that consists in selecting 16-bit linear encodings instead of 4-bit non-linear
ones. The linearity of the bijections allows to compute the xor operations directly on the
encoded values without necessitating look-up tables. Furthermore, the authors thought
that encodings impacting two state bytes instead of one could prevent the attacks that
were designed against Chow et al.’s white-box, but their implementation was also broken
a few years later by De Mulder et al. [DRP13a].

Karroumi. In 2010, Karroumi [Kar11] proposed a method to conceal the structure of
the AES white-box implementation introduced by Chow et al. He suggested to use dual
ciphers, which are alternative representations of a cipher, meaning that one can switch
between them using a known transformation. Karroumi uses the fact that each byte of
the AES state can be viewed as an element of F28 , that can be represented as F2[X]/P
where P is an irreducible polynomial of degree 8 over F2. There are 30 such polynomials
and one can use any of them to construct the field F28 and define a distinct polynomial
representation of a byte. Karroumi’s approach involves randomly selecting an irreducible
polynomial, and thus a different AES dual cipher, for each round. However, a few years
after the introduction of the design, De Mulder et al. [DRP13b] showed that an encoded
dual AES round can be represented by an encoded “normal” AES round using the same
key bytes. Hence, Karroumi’s white-box implementation is vulnerable to the same attacks
as Chow et al.’s.

Luo et al. In 2014, Luo et al. [LLY14] proposed to adapt the implementation of Chow et
al. to yet another type of encodings. They took up Xiao and Lai’s idea to use large linear
transformations that impact several state bytes but added small non-linear encodings on
top of them. This implementation is more resistant than previous ones but it can still be
broken by Michiels et al.’s generic algorithm for SPN ciphers [MGH09].

Baek et al. In 2016, Baek et al. [BCH16] suggested to implement two AES encryption
algorithms at once and encode the round inputs/outputs together with 256-bit linear
bijections. The resulting non-standard scheme thus takes and returns modified 256-bit
blocks. To reduce storage, Baek et al. use a particular class of encodings that have
a sparse structure. Their implementation was broken by Derbez et al. [DFLM18], who
showed how to efficiently recover linear encodings of any size applied to any SPN cipher.

3.4 White-Box Attacks
As announced in Section 3.3, all the published AES white-box designs have been proven
insecure. In this section, we focus on table-based implementations as introduced by Chow
et al. and present the different cryptanalysis that can be found in the literature. We also
introduce a new attack based on a round-reduced AES distinguisher that is very efficient in
the practical white-box scenario (Section 1.5.4) where the adversary has limited capacities.

3.4.1 BGE Attack and Extensions
Billet et al. [BGEC04] introduced the first algebraic attack on Chow et al.’s AES im-
plementation. Their idea is not to consider every table separately, but to group all the
operations performing one AES round. They represent the later with four mappings

29



Rr
j taking four bytes (x0, x1, x2, x3) as input and computing a column of the next state

(y0, y1, y2, y3). Figure 3.3 shows one of these mappings. Here, the Pi’s are the combination
of the two 4-bit input encodings and the 8×8 mixing bijection applied to the correspond-
ing T-box. Similarly, the Qi’s are the combination of an 8×8 mixing bijection and the two
4-bit output encodings applied on top. All the other internal transformations, including
the 32 × 32 mixing bijections, are inverted during the round so they are not considered
here.

x0
8

P0

T0

x1
8

P1

T1

x2
8

P2

T2

x3
8

P3

T3

MixColumns

Q0

8
y0

Q1

8
y1

Q2

8
y2

Q3

8
y3

Figure 3.3: Computation of the first column of an AES round output.

Phase 1. The first step of the attack consists in recovering the mappings Qi up to
an unknown affine transformation. To do so, consider the relations between inputs and
outputs of an Rr

j mapping:

y0
y1
y2
y3

 =


Q0(02 · T0(P0(x0))⊕ 03 · T1(P1(x1))⊕ T2(P2(x2))⊕ T3(P3(x3)))
Q1(T0(P0(x0))⊕ 02 · T1(P1(x1))⊕ 03 · T2(P2(x2))⊕ T3(P3(x3)))
Q2(T0(P0(x0))⊕ T1(P1(x1))⊕ 02 · T2(P2(x2))⊕ 03 · T3(P3(x3)))
Q3(03 · T0(P0(x0))⊕ T1(P1(x1))⊕ T2(P2(x2))⊕ 02 · T3(P3(x3)))


By fixing x1, x2 and x3 to constant values c1, c2 and c3 and making x0 vary, one can obtain
the look-up tables of the bijections

fi,c1,c2,c3(x0) = Qi(αi · Ti(Pi(x0))⊕ βc1,c2,c3) ,

where αi is an entry of the MixColumns matrix and βc1,c2,c3 is an unknown constant value.
From there, one can compute

fi,c1,c2,c3 ◦ f−1
i,c′

1,c2,c3
= Qi ◦ ⊕β ◦Q−1

i

for all value of β = βc1,c2,c3 ⊕ βc′
1,c2,c3 in F8

2. Billet et al. showed that this knowledge
is enough to recover Qi up to an unknown affine transformation. In other words, they
introduced an efficient algorithm (later improved by Tolhuizen [Tol12]) that allows one to
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find Q̃i = Qi ◦Ai with Ai affine from the look-up tables of the 256 functions Qi ◦⊕β ◦Q−1
i .

The inverse of Q̃i can then be applied to the corresponding round outputs so that the
later are now encoded by the affine bijection

Q̃i
−1 ◦Qi = A−1

i ◦Q−1
i ◦Qi = A−1

i .

Since the input encodings Pi are the inverse of the output encodings Qi, it is also possible
to recover them up to an affine transformation.

Phase 2. The next step is then to find the remaining affine encodings, and Billet et
al. gave an efficient algorithm to do so. Note however that it is specific to AES since it
uses properties of the MixColumns operation. Derbez et al. [DFLM18] later proposed a
generic and efficient algorithm to recover affine encodings of any size for any SPN cipher.

Phase 3. Once the input and output encodings of one round transformation are fully
recovered, the corresponding roundkey can easily be computed. Indeed, the inverses of
MixColumns, ShiftRows and SubBytes operations can be applied to the round output to
obtain the state after AddRoundKey. The latter, together with the input of the round,
trivially leads to the corresponding subkey. The master key can then be computed by
inverting the key scheduling.

All in all, the BGE attack enables the recovery of the whole secret key with a work
factor of about 230. Note that the latter was then reduced to 222 thanks to some op-
timizations [Tol12, LRD+14]. This attack was at first specific to AES but it was later
generalized to other SPN ciphers [MGH09].

The Attack in Practice. Although efficient against many table-based white-box im-
plementations, BGE might not be the simplest choice for real-world adversaries. Indeed,
it is complicated to understand and implement, requires some reverse engineering to find
the round outputs, and turns out impractical if the attacker cannot execute the white-box
himself since it is a chosen plaintext attack that involves a lot of executions.

3.4.2 Collision Attack
Another efficient attack against Chow et al.’s implementation was introduced by Lepoint
and Rivain [LR13]. Based on collision analysis, this attack is conceptually easier than
the one proposed by Billet et al. for an equivalent work factor. However, contrary to the
latter, it requires the knowledge of the order of the state bytes.

In the following, we will denote by f the function that maps four bytes of a plaintext
to a column of the first round’s output, and by

f ′ = (Q0∥Q1∥Q2∥Q3) ◦ f ◦ (P0∥P1∥P2∥P3)

the encoded version of f . Let f ′i be the 32-to-8-bit coordinate functions of f ′, with
f ′ = (f ′0, f ′1, f ′2, f ′3). The attack consists of the two following phases.

Phase 1. Let us denote by Si for 0 ≤ i ≤ 3 the functions

Si : x 7→ S(k(1)
i ⊕ Pi(x))
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and note that
f ′ = (Q0∥Q1∥Q2∥Q3) ◦MC ◦ (S0∥S1∥S2∥S3) .

The objective of the first phase of the attack is to recover these functions, starting with
S0 and S1. To do so, Lepoint and Rivain proposed to look for collisions of the form

f ′0(α, 0, 0, 0) = f ′0(0, β, 0, 0) ,

which imply that

Q0(02 · S0(α)⊕ 03 · S1(0)⊕ c) = Q0(02 · S0(0)⊕ 03 · S1(β)⊕ c)

with c = S2(0)⊕ S3(0), and thus

02 · S0(α)⊕ 03 · S1(0) = 02 · S0(0)⊕ 03 · S1(β) . (3.1)

Proceeding similarly with f ′1, f ′2 and f ′3, one can get 4×255 equations with 512 unknowns
(Si(x) for i ∈ {0, 1} and x ∈ F8

2), but unfortunately this system is not of full rank.
It is possible to get down to 510 unknowns with a change of variable that consists in
considering ui = S0(0)⊕ S0(i) and vi = S1(0)⊕ S1(i). Then, (3.1) can be written as

02 · uα ⊕ 03 · vβ = 0.

In all their experiments, the authors found that the systems were of rank 509, so all the
unknowns could be expressed in terms of one of them, say u1. They thus proposed to
do an exhaustive search on S0(0) and S0(1) before solving the system (we refer to [LR13]
or [LRD+14] for more details). This directly gives the look-up table of S0 and an additional
exhaustive search on S1(0) leads to the one of S1.

Once S0 and S1 have both been recovered, one can proceed similarly with S2 and S3,
solving the systems arising from collisions of the form f ′i(α, 0, 0, 0) = f ′i(0, 0, β, 0) and
f ′i(α, 0, 0, 0) = f ′i(0, 0, 0, β).

Phase 2. The second phase of the attack consists in computing the subkey of the second
round. First of all, notice that phase 1 allows an attacker to recover the output encodings
of the first round. Indeed, by evaluating f ′0(α, 0, 0, 0), one can get the value Q0(ψ(α))
where

ψ : α 7→ 02 · S0(α)⊕ 03 · S1(0)⊕ S2(0)⊕ S3(0)
is a bijective function known by the attacker. The latter can therefore fully retrieve

Q0(x) = f ′0(ψ−1(x), 0, 0, 0)

by looping on the 256 input values. Of course, the other output encodings Qi can be
recovered in a similar way, allowing the decoding of the second round input.

Now, let us denote by f ′′ the second round of AES with P
(2)
i (resp. Q

(2)
i ) as input

(resp. output) encodings. For 0 ≤ i ≤ 3, we define S(2)
i as

S
(2)
i : x 7→ S(k(2)

i ⊕ P
(2)
i (x)) .

For the recovery of k(2)
0 , consider the function

g : x 7→ f ′′0 (P (2)−1

0 (k(2)
0 ⊕ S−1(x)), 0, 0, 0) = Q

(2)
0 (02 · x⊕ c)
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with c = 03 ·S(2)
1 (0)⊕S(2)

2 (0)⊕S(2)
3 (0). The idea is to make a key guess, compute the look-

up table of g by executing the white-box, and check if the hypothesis is correct thanks
to a distinguisher. Note that with the right key guess, the algebraic degree is at most
4 by definition of the encodings proposed by Chow et al. In the opposite, an incorrect
key hypothesis leads to an algebraic degree that is greater than 4 with overwhelming
probability since the effect of passing through the AES S-box is not canceled. Therefore,
Lepoint and Rivain proposed to compute a 4th-order derivative of g and validate the key
guess if it is the null function. Of course, the other key bytes can be recovered in a similar
way.

The Attack in Practice. Compared to BGE, the collision attack is conceptually sim-
pler and requires less white-box executions. Nevertheless, it is also a chosen plaintext
attack that implies some reverse engineering to find round outputs. Furthermore, the
attacker needs to chose the inputs of round 2 at some point, which is not possible without
lifting the code or inducing several well-controlled faults.

3.4.3 Square Attack
As discussed in Section 1.5.4, there is a gap between white-box cryptography as presented
in the literature and as deployed in practice. For instance, all the published designs use
external encodings even if it is not always possible in real-life scenarios for reasons of
interoperability. Furthermore, in the literature, the difficulty of attacks is not always
evaluated according to all parameters that have an impact in real life. For instance, the
number of required white-box executions is rarely mentioned. It is thus possible that
designs considered as “broken” could be usable under the actual conditions of a product’s
use. In particular, in contexts such as mobile payment applications where the white-box
can be bound to an application with authenticating mechanisms, the attacker might not
be able to execute the code himself, making chosen plaintext attacks such as BGE or the
collision one impractical.

We thus think that it is interesting to study other attacks that could actually be
performed by such an adversary. In this section, we present a new way to recover the
secret key of a table-based implementation without external encodings. It is actually a
white-box variant of the square attack [DR98] on round reduced versions of AES, and
proves to be a good solution for passive attackers who cannot choose the messages to
encrypt and can only observe a very limited number of executions. Before describing it,
we give a remainder on the previous square attacks that were published in the literature.

Black-Box/Grey-Box Square Attacks

The square attack is a chosen plaintext attack exploiting byte-oriented structures that
was first described against the Square cipher [DKR97]. As shown by Daemen and Rijmen
in [DR98], it is also applicable to reduced versions of AES of up to 6 rounds. The attack
is based on the analysis of the structure of δ-sets through the AES operations.

Definition 3. A δ-set is a set of 256 states with the following properties:

• Some bytes are active: they take a different value in all of the states.

• The other bytes are passive: their value is constant in all of the states.

33



Note that the AddRoundKey and SubBytes operations do not change the structure
of a δ-set and ShiftRows only impacts the indexes of the active bytes (see Figure 3.4).
However, applying MixColumns on a δ-set does not necessarily maintain the structure:

• A column consisting of passive bytes only will remain passive.

• A column with only one active byte will become entirely active.

• If we apply the MixColumns operation on a column with several active bytes, then
the resulting bytes are neither active nor passive but they present an interesting
property: the xor of their value in the 256 states always equals zero. This gives a
distinguisher for round reduced versions of AES.

After After After After
SubBytes ShiftRows MixColumns AddRoundKey

Figure 3.4: Evolution of a δ-set through the AES operations. Passive bytes are represented
in white and active bytes in blue. The XOR of green bytes for all 256 states equals zero.
The color yellow symbolizes the loss of any structure.

In 2004, Carlier et al. [CCDP04] generalized the Square attack and showed how to
break a grey-box implementation of the full AES by mixing algebraic properties and
physical observations. They use a set of 232 states with 4 active bytes on the main
diagonal as plaintexts for the attack (see Figure 3.5). The latter consists of two phases:

• During the observation phase, the attacker executes the targeted AES implemen-
tation and uses side-channel traces in order to distinguish a set G of 216 plaintexts
that lead to two passive bytes in the first column of the first round output.

• During the attack phase, a 4-byte key hypothesis is made and the first column of
the first round output is computed for all plaintexts in G. If the obtained outputs
form a set with two passives bytes, then the key guess is confirmed. Note that all
the plaintexts do not have to be encrypted for all key guesses since as soon as a
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contradiction appears (the targeted bytes are not passive), we can reject the key
hypothesis.

Once the four key bytes have been recovered, the same process can be repeated with other
indexes until the full round-key is recovered.

Observation phase
232

AES
(1)
k

216

Put the plaintext
in group G

Attack phase

Group
G

216

AES
(1)
k̂

216

or

216

Confirm the
key hypothesis

Change key

hypothesis

Figure 3.5: Square EM attack from [CCDP04]. Here, the bytes in white are passive, those
in blue are active and those in pink vary. In the observation phase, the AES operations
are performed through the execution of the target implementation while in the attack
phase, they are computed based on a key guess k̂.

A New Square Attack for the White-Box Context

The side-channel attack of [CCDP04] that we just described could directly be applied to
AES white-boxes that use 4-bit or 8-bit internal encodings to protect the round outputs,
as in Chow et al.’s implementation (the mixing bijections impacting 32 bits are canceled
inside the round). Indeed, applying such encodings does not change the fact that some
bytes are passive/active or not and only modifies their value. However, this attack would
require hypotheses on four bytes of the secret key and 4 × 232 calls to the white-box
implementation, which would represent more than six months if each execution took one
millisecond, so it is definitely not practical.

We thus propose to use the additional advantages that a white-box adversary has
in order to improve this attack in our specific context. Instead of using side-channel
traces, the attacker may directly read the memory during the observation phase in order
to extract the encoded values of the targeted bytes. Thanks to this better precision, he
can form during the observation phase 256 distinct groups Gi containing the plaintexts
corresponding to each output of the first round with the first byte equal to i (see Figure
3.6). In the attack phase, the adversary makes a key hypothesis and computes the outputs
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Observation phase
m

WB
(1)
k

00
m0

. . .

F F

m255

Put the plaintext
in group G0

. . . Put the plaintext
in group G255

Attack phase

Group
Gi

mi

AES
(1)
k̂

mi

or

mi

if i = 255

Confirm the key
hypothesis

i
←

i
+

1

if i < 255

Change key

hypothesis

Figure 3.6: Our attack scheme. Here, the bytes in white are constant in all the states of
the set while the bytes in pink may vary.

of the first round of AES (restricted to the first column) for each plaintext in G0. Since
the white-box implementation is encoded, the first byte will not necessarily be equal to
0 even if the key hypothesis is correct. Nevertheless, in that case, the first byte should
remain constant. If this is verified, the attacker can test the results for the group G1, G2
and so on until G255. If at one point the outputs do not share the same first byte, then
the key hypothesis is rejected.

Note that with this method, we loose a lot of information since we do not consider
the values of the three other output bytes. In order to improve this attack, one could
thus create 4 × 256 different groups corresponding to all possible values for each byte of
the first column of the output and test all of them in the attack phase. The number
of AES encryptions performed in this second phase does not increase. Each plaintext is
put into four different groups but it can be encrypted once for all. With this solution,
more information is derived from each execution so the number of white-box calls can
be reduced. The attacker can settle for a set of m plaintexts with m far smaller than
232. According to our experiments (see Figure 3.7), it is sufficient to take m = 23 (resp
m = 36) to get a success probability over 99% (resp 99.99%), so the performance gain
is huge. Note that this is the total number of executions needed for the recovery of the
whole secret key since the attack can be performed in parallel on the four columns.

Furthermore, one can also reduce the complexity of the attack phase at the cost of a
few more white-box executions. Indeed, the attacker does not necessarily need to make
all the four plaintext bytes vary. If he is able to choose the messages to encrypt, he may
reduce the size of the key hypotheses by setting two appropriate bytes of the plaintexts
to a constant as shown in Figure 3.6. Denoting the four bytes by (x0, x1, x2, x3), with x2
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Figure 3.7: Success rate of our attack depending on the number m of inputs to the white-
box. A million tests were performed for each point on a toy white-box implementation
with random 8-bit encodings.

and x3 constant, the outputs of MixColumns can be computed as:

s = S(x0 ⊕ k0)⊕ S(x1 ⊕ k1)⊕ 2 · S(x2 ⊕ k2)⊕ 3 · S(x3 ⊕ k3)
= S(x0 ⊕ k0)⊕ S(x1 ⊕ k1)⊕ c

for some unknown constant c. They can thus be predicted, up to a constant, under an
only 16-bit key hypothesis and c does not hinder the attacker since he is not interested in
the value of those bytes but rather on collisions. Putting everything together, the whole
secret key can be recovered with overwhelming probability with only 2× 36 = 72 white-
box executions on chosen plaintexts and a worst case complexity of 2 × 36 × 216 ≈ 222

computations of the first round of AES for the attack phase.
Note nonetheless that if the attacker cannot choose the inputs of the white-box and is

only able to observe the intermediate values, then restricting himself to the case where two
bytes are fixed would force him to observe many executions. Indeed, only 1 plaintext over
216 has the desired shape and the attack could not be run in parallel on the four columns
anymore. A compromise may thus be chosen between the complexity of the observation
phase and the one of the attack phase depending on the attacker’s capabilities (see table
3.1).

Comparison with State-of-the-Art. Our variant of the square attack has several
advantages. First, it is easy to describe and to implement compared to BGE or the colli-
sion attacks. More importantly, it requires a very small number of white-box executions
and the messages to encrypt do not need to be chosen. We showed that with 36 random
plaintexts, the attacker can recover the secret key with a probability close to 99.99%. In
comparison, the first phases alone of BGE and the collision attack respectively involve 218

and 212 executions. Finally, another advantage of our attack is that it works with linear
or non-linear encodings of size 8 and can be extended for even bigger ones.

Nonetheless, we realize that comparing the square attack with BGE and the collision
attack is not really fair since it does not tackle external encodings. Despite our opinion on
their utility in practice, we did try to break them by solving a system of equations built
thanks to the square distinguisher. While we were able to retrieve a lot of information
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Table 3.1: Compromises between the complexities of the two phases in the chosen and
the random plaintext scenarios. Here, m is the number of inputs used to confirm a key
guess.

Number of
bytes varying

Scenario Average number
of executions

Maximum number of
AES computations

2 Chosen
Plaintexts

2×m 2×m× 216

Random
Plaintexts

4× 2×m× 216 4× 2×m× 216

4 Any m m× 232

on the encodings, the resulting attack was not competitive with other ones that were
published in the literature.

A fairer comparison would thus be the square-like attack on a weakened white-box
implementation without external encodings that was introduced in the original paper of
Chow et al. [CEJv03]. While it uses similar techniques, it requires the observation of
about 213 executions before performing a brute-force on 32 bits of the key, and is there-
fore less efficient. Another fair comparison would be with side-channel attacks. Although
the original idea is very different, we realized that our attack exploits the exact same
vulnerability as the collision side-channel attack of [RW19] that we will describe in Sec-
tion 3.5.1. It is thus highly similar, except that it gets the advantages and drawbacks of
side-channel attacks. In particular, it is a bit less efficient but does not require a reverse
engineering phase to find the round outputs.

3.5 Side-Channel Attacks: a State-of-the-Art

Compared to the attacks described in the previous section, side-channel attacks have the
advantage of being fully automated: they do not require any reverse engineering step1.
Furthermore, as mentioned in Section 2.1, the absence of inherent noise on the traces
makes these attacks highly efficient and they usually require a very small number of
executions on random plaintexts. They can thus be performed by adversaries with limited
capabilities. However, the drawback is that to this day, no side-channel attack allows to
break an implementation protected by external encodings. Indeed, the adversary has to
know the inputs or the outputs of the cryptosystem in order to be able to retrieve secret
information. Nevertheless, this drawback is acceptable since, as previously discussed,
external encodings are rarely employed in practice for interoperability reasons. In the
following, we will thus assume that the external encodings of the target white-boxes are
set to the identity.

1There is an exception when the execution time is particularly high and the relevant portions of the
code need to be selected to maintain the trace size within reasonable limits.
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3.5.1 Distinguishers
The general principle of side-channel attacks has been explained in Section 2.1. In a few
words, secret values are extracted from leakage traces with the help of statistical tools.
In the following, we present the various criteria, known as distinguishers, that have been
proposed in the literature to identify the correct key used in a white-box implementation
from a set of hypotheses.

DCA. In 2016, Bos et al. [BHMT16] proposed to adapt the well-known Differential
Power Analysis (DPA) of Kocher et al. [KJJ99] to the white-box context. The resulting
attack, called Differential Computation Analysis (DCA), can be used to break a major-
ity of the publicly available AES implementations. While the original paper focuses on
differential analysis, the attack has later been extended to other statistical tools, and in
particular correlation analysis [BCO04]. It then consists of the following steps:

1. Acquire a set T of computation traces of length t. Let Ti be the variable taking the
values of the trace point at index i with 0 ≤ i < t.

2. Select a sensitive variable Vk that depends on a relatively small number of key bits.
For example for AES, one could select the output of an Sbox in the first round, that
is Vk = S(x⊕ k) for any byte x of the plaintext and the corresponding byte k of the
first roundkey.

3. For each key guess k̂ and each point index 0 ≤ i < t, compute ρk̂,i = Cor(Vk̂, Ti)
with Cor representing Pearson’s correlation coefficient. Note that in the rest of the
chapter, we will often drop the subscript and denote by ρ× (resp. ρ∗) a score for a
wrong (resp. correct) key hypothesis.

4. Validate the key hypothesis that maximizes ρk̂,i.

5. Repeat with another sensitive variable depending on other key bits until the whole
roundkey is recovered. The master key can then be computed by inverting the
key-scheduling.

Note that without any countermeasure, the correlation should equal 1, that is the
maximum value, for the correct key guess and point index. The attack is thus successful
with overwhelming probability even with a very limited number of traces.

Collisions. In 2019, Rivain and Wang [RW19] proposed to use two other distinguishers
to break AES white-boxes. The first one is based on collision analysis and the attack is
as follows:

1. Acquire a set of n computation traces of length t. For each pair of traces (u(i1), u(i2))
with 0 ≤ i1, i2 < n, compute a correlation trace

w(i1,i2) = (w(i1,i2)
0 , w

(i1,i2)
1 , . . . , w

(i1,i2)
t−1 ) ,

with w
(i1,i2)
j = u

(i1)
j ⊙ u(i2)

j for every 0 ≤ j < t where the operator ⊙ is defined as

a⊙ b =
1 if a = b

0 otherwise
.
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2. Select a sensitive variable Vk that depends on a few key bits only. For example for
AES, one could select an output byte of the first MixColumns. Note that targeting
an SBox output of round 1 as proposed for DCA would not be pertinent since two
different plaintext bytes cannot lead to the same output of SubBytes.

3. For each key guess k̂ and each pair of plaintexts used to acquire traces, compute Vk

and predict if it collides or not. Then, for each point index of the collision traces,
compute the correlation between the sample and the collision prediction.

4. Validate the key hypothesis that maximizes the correlation.

5. Repeat with another sensitive variable depending on other key bits until the whole
roundkey is recovered. The master key can then be computed by inverting the
key-scheduling.

Again, in the absence of countermeasure, the correlation should equal 1 for the correct
key guess and point index. As we will see in Section 3.5.2, the motivation behind such a
distinguisher is that it performs better than DCA in the presence of internal encodings.

MIA. The second distinguisher investigated in [RW19] for the white-box context was
actually already introduced by [GBTP08] to break hardware implementations. It is par-
ticularly interesting when the attacker only has a very limited knowledge about the de-
pendencies between the leakage and the processed data. The attack is exactly the same as
DCA, except that instead of measuring linear correlations, the attacker analyses mutual
information between the trace points and the predicted values. This way, he may gain
information on all dependencies, whether linear or not.

3.5.2 Encodings vs SCA
Intuitively, even if they were not introduced for this purpose, internal encodings should
complicate DCA since they lower the correlation between the predicted values and the
processed data. Nevertheless, Bos et al. showed in [BHMT16] that DCA allows to break
several white-box instances that use this protection. At first, this was not well understood
and the results were purely experimental, but other authors then tried to understand the
reason behind the success of side-channel attacks on encoded implementations. In this
section, we discuss the state-of-the-art on the subject.

Sasdrich et al. In 2016, Sasdrich et al. [SMG16] proposed to use white-box techniques
to protect an AES implementation on a re-configurable hardware device. In particular,
they used mixing bijections and random 4-bit non-linear encodings as suggested by Chow
et al. The authors evaluated the vulnerability of the resulting implementation to several
side-channel attacks in the grey-box context. They targeted the outputs of the first-round
S-boxes and successfully retrieved the secret key, proving that Chow et al.’s encodings
cannot efficiently protect an AES implementation against side-channel attacks, even in
the grey-box model with noisy power traces.

Sasdrich et al. also investigated the reason behind the success of their attack and
showed that the encoded outputs yj of MixColumns are actually correlated to some un-
encoded S-box outputs xi despite the internal encodings. They computed the Walsh
spectrum of the functions f(xi) = yj and argued that the high values lead to high cor-
relation scores, explaining the success of the attack. They also stressed that selecting
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encodings such that their Walsh transforms are all equal to zero may not be a viable
strategy since this would lead to correlation scores so low that they could also be de-
tected. The construction of secure encodings was left for future research.

Lee. In [Lee18], Lee continued the work of Sasdrich et al. and tried to use encodings
to prevent side-channel attacks in the grey-box context. He proposed to use two com-
plementary sets of look-up tables. More precisely, if a set of tables T = {T0, T1, . . . , Tℓ}
is used in a classical encoded implementation, then Lee suggested to also create a set of
tables T̄ = {T̄0, T̄1, . . . , T̄ℓ} such that

y = Ti[x]⇔ ȳ = T̄i[x̄]

with x̄ being the binary complement of x (see Figure 3.8). At the beginning of an exe-
cution, one of the two sets of look-up tables is drawn at random. If the set T̄ is chosen,
then the plaintext and the ciphertext have to be complemented to get the correct result.

x

E0

f

E1

y

Ti

x̄

E0 ◦
⊕

FF

f

⊕
FF ◦E1

ȳ

T̄i

Figure 3.8: Construction of the tables Ti and T̄i. Here, E0 and E1 are two random 8-
bit encodings and f is the operation to be protected. The idea can be extended to any
encoding size.

The output encodings for the tables Ti being drawn at random, they are very likely
to contain high values in their Walsh spectrum, leading to high correlations. Neverthe-
less, Lee argued that if the used set of tables varies at each execution, the trace points
will sometimes negatively and sometimes positively correlate. The correlation coefficient
should thus tend to 0, preventing the attacks.

Although very costly in terms of memory, Lee’s solution seems to work well in the
grey-box model. But what about the white-box context? Note that implementing this
solution implies drawing random values during the execution of the algorithm, which is
known to be challenging to secure as discussed in Section 2.1.5. This is precisely the reason
why it would have been interesting to use encodings instead of masking techniques against
side-channel attacks. One could argue that the number of random values to be drawn is
far smaller with this solution, but still, if the attacker is able to predict or fix them, the
countermeasure becomes inefficient. By observing the accessed memory addresses, the
adversary may also be able to differentiate the executions where the set of tables T̄ was
used instead of T . He could then bypass the countermeasure by attacking only one half
of the traces.
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Alpirez Bock et al. As Sasdrich et al., Alpirez Bock et al. [ABMT18] also studied
the link between internal encodings and the success of DCA even if they did not use the
Walsh transform to do so. They considered two types of encodings: 4-bit non-linear and
8-bit linear ones. Note that the former are randomly selected in the set of bijections over
F4

2 and the latter are generated via a random 8× 8 invertible binary matrix that will be
multiplied with the state.

Alpirez Bock et al. showed that an attack targeting an output bit of a first-round
S-box protected by 8-bit linear encodings succeeds if and only if at least one of the rows
of the matrix generating the encoding has a Hamming weight equal to 1. Indeed in
that case, one of the sensitive bits is leaked since it is equal to one of the encoded bits.
Otherwise, the linear encoding acts as a masking scheme and prevents DCA. However, the
authors stress out that the secret key may still be recovered through a more sophisticated
attack that consists in analyzing the correlations between the trace points and any linear
combination of the predicted sensitive bits.

Regarding the non-linear 4-bit encodings, Alpirez Bock et al. proved that they lead
to correlation scores that are always multiples of 1

4 for the correct key guess. While a
score greater or equal to 0.5 leads to a successful attack with very high probability, a
correlation coefficient of 0 or 0.25 might be exceeded by other values corresponding to
wrong hypotheses. Nevertheless, the authors argued that the attack can be improved by
considering only key guesses leading to coefficient scores very close to a multiple of 1

4 so
that wrong hypothesis with a high score are quickly discarded.

Finally, Alpirez Bock et al. considered the combination of linear and non-linear en-
codings. They showed that depending on a given property of the matrix generating the
linear encoding, the correlation score for the right key guess either converges towards 0 or
is a multiple of 1

4 , so this scenario is quite similar to the other ones described previously.

Rivain and Wang. One year after Alpirez Bock et al.’s paper, Rivain and Wang [RW19]
took over their studies and generalized some of their results. In order to compute the
success probability of DCA when targeting an encoded implementation, they first analyzed
the distribution of the correlation scores under good and bad key hypotheses. To do
so, they placed themselves in an idealized model where the predicted variables can be
expressed as Vk̂,j = φk̂,j(X) with X a uniformly distributed plaintext variable, (φk̂)k̂∈K

some independent random balanced VBF from Fn
2 to Fm

2 and φk̂,j their restriction to
the jth output bit. For the sake of clarity, we denote by φ∗ (resp. φ×) the functions
corresponding to the good (resp. a bad) key guess.

Let i be the point index corresponding to the targeted encoded variable, that is
Ti = ϵℓ ◦ φ∗(X) with ϵ some unknown m-bit encoding and ϵℓ its restriction to the ℓth

output bit. In the idealized model, we have

Cor(Vk̂,j, Ti) = 1
2n
B(ϵℓ ◦ φ∗ + φk̂,j) (3.2)

where B denotes the bias of a Boolean function. Now, consider the following lemma.

Lemma 1. Let g : Fn
2 → F2 be a balanced Boolean function. Let f : Fn

2 → F2 be a random
function uniformly sampled in the set of balanced Boolean functions independently of g.
We have

B(f + g) = 4N − 2n with N ∼ H̃G(n),

where H̃G(n) is the hypergeometric distribution with parameters (2n−1, 2n, 2n−1).
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Let Y × be the bias B(ϵℓ ◦φ∗+φ×j ) and Y ∗ be the bias B(ϵℓ ◦φ∗+φ∗j). From Lemma 1,
we get that for a wrong key guess,

Y × = 4N − 2n with N ∼ H̃G(n) . (3.3)

Now, for the correct key hypothesis, we have

Y ∗ = B(ϵℓ ◦ φ∗ + φ∗j) = 2n−mB(ϵℓ + lj)

where lj(x) = xj (the jth coordinate of x). This time, from Lemma 1, one gets

Y ∗ = 2n−m+2N − 2n with N ∼ H̃G(m) (3.4)

Equation (3.2) implies that for DCA to succeed, the encoding ϵ protecting the sensitive
variable must be such that Y ∗ is greater than Y × for all incorrect key hypotheses, and
the number of traces must be high enough to get a good accuracy in the correlation
estimation. From (3.3) and (3.4), Rivain and Wang derived a formula for the probability
of success of DCA. We refer the interested reader to [RW19, Proposition 2] to get the
exact formula.

In the particular cases of random 4-bit encodings, the analysis is consistent with
the one of Alpirez Bock et al. Contrary to what was believed at the time, the work
of Rivain and Wang also showed that it is actually possible to break an AES white-
box implementation using random non-linear 8-bit encodings by targeting the output
of the MixColumns instead of the one of the S-box. If we focus on this cryptosystem
and on encoding lengths that are small powers of 2 – which are more convenient for
implementation – the conclusion of their work is roughly the following:

• An attack targeting an S-box output will succeed with very high probability if the
encodings are only applied on nibbles while it will succeed with very low probability
in the presence of 8-bit encodings.

• An attack targeting the output of the MixColumns will succeed with very high
probability even with 8-bit encodings.

Rivain and Wang also did a similar study for the two other distinguishers that they
introduce: the one based on collisions and MIA. The advantage of the first one is that
encodings do not alter the success probability of the attack since encoded values collide
whenever their unencoded versions do. Concerning the second one, it was precisely intro-
duced in the grey-box context for use-cases where the leakage function is odd or complex.
It is therefore totally suited for the white-box setting where only an unknown function
of the sensitive values is leaked because of the encodings. Consequently, MIA and the
collision attacks are expected to be more efficient than DCA, and Rivain and Wang indeed
showed that the number of traces that they require is significantly lower, that is in O(2m

2 )
instead of O(22m).

3.6 On the (Im)possibility of preventing DCA with
Internal Encodings

Many open questions were answered in [RW19] but one remains. Indeed, the authors gave
success probabilities but did not explain in which case the attacks were successful or not.
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In other words, they proved that picking encodings at random is not a good strategy to
protect white-box implementations against side-channel attacks, but did not discuss the
idea of carefully crafting them. The question that arises from their work is thus the one
of the existence of a particular class of encodings that effectively prevents DCA.

In this section, we look for such DCA-resistant encodings for white-box implemen-
tations of AES, focusing on 4-bit and 8-bit bijections for practical reasons. We show,
based on Sasdrich et al.’s work, that the S-box output can be protected by random 8-bit
encodings only. In particular, we argue that no 4-bit encoding can preserve the S-box
output from DCA-like attacks. Regarding MixColumns, although it has been demon-
strated that random 8-bit encodings are ineffective, we define a class of 8-bit encodings
that actually prevent DCA. However, we also explain how to adapt the traditional attack
in order to defeat even these specific bijections. We exhibit a difference of behavior of the
correlation coefficient depending on the key hypothesis, allowing the attacker to identify
the correct key guess, regardless of the 8-bit encodings applied. Therefore, we show that
MixColumns, and thus AES, cannot be protected from DCA by encodings of practical
size.

Part of the work presented in this section is currently under publication at CHES
2024 [CH24].

3.6.1 Protecting the S-box Output
In [RW19], Rivain and Wang showed that in an idealized model, DCA succeeds with prob-
ability close to 0.926 when targeting one bit of a first round’s S-box output protected by
4-bit encodings, while an implementation using 8-bit encodings is broken with probability
0.0025 only. In the following, we show that it is actually impossible to find 4-bit encodings
that are efficient against side-channel attacks. We also demonstrate that selecting 8-bit
encodings with specific properties in order to further reduce the DCA success probability
of 0.0025 is counterproductive. We indeed argue that randomly drawing 8-bit encodings
is both necessary and sufficient to prevent DCA.

Why Not to Use 4-bit Encodings

Since they are less expensive than their 8-bit counterpart in terms of memory, 4-bit
encodings are often used in the literature. For instance, if 8-bit non-linear encodings were
used in Chow et al.’s implementation, the total memory space per round of xor-tables
would amount to 4 · 216 · 8 bits ≈ 262 KB instead of 8 · 28 · 4 bits ≈ 1 KB. Finding a
class of 4-bit encodings that could be used to prevent side-channel attacks targeting the
S-box outputs would thus be of high interest. Unfortunately, we will now show that such
encodings do not exist.

We know from [SMG16] that the success of DCA is directly linked to the Walsh
spectrum of the encoding that hides the targeted value. Our study consists in computing
all the possible values for the Walsh transforms of 4-bit encodings and showing that the
implementation can be broken by side-channel attacks for all of them2. Let us start with
a proposition.
Proposition 2. Let E(1), E(2) : Fn

2 → Fn
2 be two bijections with n ≥ 2. Let f = E(1)∥E(2)

and {fi}0≤i<2n be the coordinate functions of f . For all 0 ≤ i < 2n and for all ω ∈ F2n
2

with HW(ω) = 1, Wfi
(ω) is a multiple of 2n+2.

2The process that we followed for the generation of the encodings with a specific Walsh spectrum that
we used for our tests can be found in Appendix A.
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Proof. For the sake of clarity, we will assimilate Fn
2 to the set of integers J0, 2n− 1K using

the bijection (x0, x1, . . . , xm−1) 7→ x0 + 2x1 + · · ·+ 2m−1xm−1.
We will only prove the proposition for 0 ≤ i < n, but the demonstration is similar for
n ≤ i < 2n. Let S be the set:

S = {{u+ 2nv | v ∈ J0, 2n − 1K} | u ∈ J0, 2n − 1K}.

By construction, S forms a partition of J0, 22n − 1K, so for all ω ∈ F2n
2 , we have

Wfi
(ω) =

∑
x∈F2n

2

(−1)fi(x)+⟨x,ω⟩

=
∑
S∈S

∑
x∈S

(−1)fi(x)+⟨x,ω⟩ .

When 0 ≤ i < n, fi is constant over S for all S ∈ S so for any xS ∈ S, we get:

Wfi
(ω) =

∑
S∈S

(−1)fi(xS) ∑
x∈S

(−1)⟨x,ω⟩ . (3.5)

If ω < 2n and HW(ω) = 1, then the function g : S → F2 such that g(x) = ⟨x, ω⟩
is balanced for all S ∈ S, so ∑x∈S(−1)⟨x,ω⟩ = 0 and Wfi

(ω) = 0, which is obviously a
multiple of 2n+2.

If ω ≥ 2n and HW(ω) = 1, the function g : S → F2 such that g(x) = ⟨x, ω⟩ is constant
for all S ∈ S, so: ∑

x∈S

(−1)⟨x,ω⟩ = #S · (−1)⟨xS ,ω⟩ .

By construction, all the sets in S share the same cardinality, hence (3.5) becomes:

Wfi
(ω) = 2n

∑
S∈S

(−1)fi(xS)+⟨xS ,ω⟩ . (3.6)

Furthermore, the integers 0, 1, . . . , 2n−1 are all in different sets. Then, by choosing them
as representatives of their respective set, (3.6) can be re-written as:

Wfi
(ω) = 2n

∑
0≤xs<2n

(−1)fi(xs)+⟨xS ,ω⟩ .

The above sum corresponds to the Walsh transform of a coordinate function of E(2). Note
that this function is balanced on Fn

2 because E(2) is a bijection, so Proposition 1 applies
and its Walsh transform is a multiple of 4. Hence, Wfi

(ω) is a multiple of 2n+2.

Proposition 2 states that the Walsh spectrum of a function corresponding to the
concatenation of two 4-bit encodings only contains multiples of 64. Through the following
proposition, this gives information on the possible correlation scores under the correct key
guess when targeting one bit of an S-box output protected by 4-bit encodings.

Proposition 3. Let E : Fn
2 → Fn

2 be an encoding. We have:

Cor(Ei(x), xj) = 1
2n
·WEi

(2j)

for each bit xj of a random variable x following the uniform distribution over Fn
2 and each

coordinate function Ei of E, with 0 ≤ i, j < n.
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Proof. Let f1, f2 : Fn
2 → F2 be two balanced Boolean functions and x be a random variable

following the uniform distribution over Fn
2 . According to [RW19, Section 2.4], we have:

Cor(f1(x), f2(x)) = 1
2n

∑
u∈Fn

2

(−1)f1(u)⊕f2(u) . (3.7)

Since E is a bijection, all its coordinate functions are balanced. Furthermore, the bit
xj of x can be written as the output of the function gj(x) = ⟨x, 2j⟩ which is also balanced.
Hence, we get:

Cor(Ei(x), xj) = Cor(Ei(x), gj(x))

= 1
2n

∑
u∈Fn

2

(−1)Ei(u)+⟨u,2j⟩

= 1
2n
·WEi

(2j) .

Therefore, if one applies 4-bit encodings on the first round’s S-Box outputs, the cor-
relation scores will always be multiples of 64/256 = 1/4. Note that this was also shown
in a different manner by Alpirez Bock et al. in [ABMT18].

Proposition 3 implies that, in order to resist DCA, one should select encodings with
only small (absolute) values in their Walsh spectrum. One could then be tempted to craft
encodings E such that W1(E) = {0}. This means that, for any coordinate function Ei of
E and any bit xj of the targeted intermediate value x = S(m ⊕ k), Cor(Ei(x), xj) = 0.
Therefore, the classical DCA would fail, but a variant that consists in searching the
key hypothesis with the lowest maximum correlation score would succeed with very high
probability, as we explain now.

Let n ≥ 2 and u ∈ Fn
2 with HW(u) = 1. Let f be a random variable following the uni-

form distribution on the set Bn of balanced n-variable Boolean functions. A consequence
of [RW19, Lemma 1] is that Wf (u) can be modeled as an affine transformation of a random
variable X following a hypergeometric distribution with parameters (2n−1, 2n, 2n−1):

Wf (u) ∼ 4X − 2n . (3.8)

Proposition 3 trivially translates (3.8) into:

Cor(f(x), xj) ∼
4
2n
X − 1 . (3.9)

Let x(k̂) be a predicted S-box output computed under the key hypothesis k̂. Then,
setting y = E(x), we get Cor(Ei(x), x(k̂)

j ) = Cor(Ei(x), g(k̂)(E(x))) = Cor(g(k̂)(y), yi) with:

g(k̂) : F8
2 → F2

z 7→ Sj(S−1(E−1(z))⊕ k̂ ⊕ k) .

Thanks to the good cryptographic properties of S, we can assimilate the functions g(k̂),
k̂ ∈ K \ {k}, to outcomes of a random variable following the uniform distribution on B8.
Then, (3.9) holds, which means that, for all k× ∈ K \{k}, Cor(Ei(x), x(k×)

j ) is an outcome
of the random variable Cor(f(x), xj). Therefore:

P(Cor(Ei(x), x(k×)
j ) = 0) = P

(
X = 28

4

)
.
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Figure 3.9: DCA targeting the most significant bit of the first round’s S-box output
protected by 4-bit encodings having only zero in their Walsh spectrum. Top: correlation
traces for wrong (resp. good) key guesses in grey (resp. red). Bottom: highest absolute
value of the correlation scores for each key guess (good hypothesis highlighted in red).

The probability for ρ× to be equal to 0 for a wrong key guess k× is the probability
that Cor(Ei(x), x(k×)

j ) = 0 for all 0 ≤ i < 8. Let us assume, as in [RW19], that the
coordinate functions Ei(x) and Ei′(x) are two independent and identically distributed
random variables when i ̸= i′. Then:

P(ρ× = 0) = P
(
X = 28

4

)8

.

Consequently, the correct key guess is the only one for which ρ = 0 with probability
(1 − P(X = 26)8)#K−1 ≈ 1 − 2−18.6. Therefore, the correct key guess can be identified
with very high probability as the only one that never gives any correlation. We verified
this experimentally (see Figure 3.9), performing a DCA targeting the output of S7 on
28 simulated traces: one trace per possible value of the input byte m, each trace being
computed as E0 ◦ S(m⊕ k)|| . . . ||E7 ◦ S(m⊕ k).

Since selecting encodings E = E(1)∥E(2) such that W1(E) = {0} does not work, one
could think of crafting encodings E(1) and E(2) with only the lowest possible non-zero
(absolute) value in their Walsh spectrum. The latter being equal to 64 in the case of
4-bit encodings applied to the S-box output, we would have W1(E(i)) ⊆ {−64, 64} for
i ∈ {1, 2}. Then, if one targets the bit x(k)

j with 0 ≤ j < 4, the correlation peaks should
equal ±0.25 for all point Ei(x) with 0 ≤ i < 4. Similarly, if one targets the bit x(k)

j with
4 ≤ j < 8, the correlation peaks should equal ±0.25 for all point Ei(x) with 4 ≤ i < 8.
This phenomenon can be observed in Figure 3.10.
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Figure 3.10: DCA targeting the most significant bit of the S-box output. Here, the Walsh
spectrum of the 4-bit encodings do not contain any other value than 64 or −64. Top:
correlation traces for wrong (resp. good) key guesses in grey (resp. red). Bottom: highest
absolute value of the correlation scores for each key guess (good hypothesis highlighted
in red).

The probability that a wrong key hypothesis exhibits a correlation score higher than
0.25 on some of the eight points equals:

P
(
|ρ×| > 1

4

)
= 1− P

(
28 − 26

4 < X <
28 + 26

4

)8

≈ 2−10.3 .

It would thus be very unlikely that DCA does not succeed. Furthermore, even if there
are some higher peaks for some bad key guesses, the attacker could just focus on key
hypotheses that give a correlation coefficient equal to ±0.25 as noticed by Alpirez Bock
et al. [ABMT18].

Moreover, an attacker searching for the least correlation score could still succeed.
Indeed, as a consequence of (3.5), if one targets the bit x(k)

j with 0 ≤ j < 4, then
the correlation scores under the correct key guess for the points Ei(x) would equal 0
for all 4 ≤ i < 8. Similarly, if one targets the bit x(k)

j with 4 ≤ j < 8, then the
correlation scores under the correct key guess for the points Ei(x) would equal 0 as
well for all 0 ≤ i < 4. The probability of this happening under a wrong key guess is
P(ρ× = 0) = P(X = 28/4)4 ≈ 2−13.3.

Therefore, we can conclude that a white-box implementation using 4-bit encodings to
protect the S-box output can always be broken by DCA. The attacker could first perform
a classical DCA and see if any key hypothesis gives very high correlations. If this is not
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the case, the attacker could verify if any key hypothesis gives correlation scores equal to
0 or ±0.25.

On 8-bit Encodings

Rivain and Wang [RW19] showed that applying random 8-bit encodings instead of two
concatenated 4-bit ones decreases the success probability of DCA from 0.926 to approxi-
mately 0.0025. While this probability is notably low, it is not absolute zero. One might
thus consider discarding encodings with Walsh spectrum values exceeding a certain thresh-
old. This would prevent an excessively high correlation score for the correct key guess,
but somewhat unexpectedly, it is actually counterproductive. Indeed, as we explain in
the following, randomly selecting 8-bit encodings allows to decorrelate the sensitive value
from the trace points, which is the best possible protection.

Let E : F8
2 → F8

2 be a random encoding and Ei for 0 ≤ i < 8 be its coordinate
functions. As argued previously, for all k× ∈ K \ {k}, Cor(Ei(x), x(k×)

j ) is an outcome
of the random variable Cor(f(x), xj). Moreover, so is Cor(Ei(x), x(k∗)

j ), as the random
selection of E from the set of bijections in F8

2 enables Ei to be considered an outcome
of a random variable following U(B8). This implies that the correlation scores of all key
hypotheses follow the same distribution. Consequently, the probability of observing a
given score is independent of the key byte’s value, and all hypotheses share an equal
probability of obtaining the highest correlation score.

Another way to get this intuition is to realise that for any wrong key guess k×, there
exists an encoding E ′ such that E ′(S(x⊕ k×)) = E(S(x⊕ k)), namely

E ′(z) = E(S(S−1(z)⊕ k× ⊕ k)) .

This shows that without the knowledge of the encodings, the trace points do not give any
information on the correct key byte. Note that a similar argument can be given for the
protection of other sensitive variables, as long as the encoded value is in bijection with
the part of the plaintext involved in its computation. In other words, randomly selecting
encodings having the same size as the sensitive variable that they are supposed to protect
is an efficient countermeasure against side-channel attacks.

In summary, random 8-bit encodings can thus serve as a flawless solution for the
protection of the S-box output. Unfortunately, we will see in the next section that securing
the MixColumns output is a far greater challenge.
Remark 1. At first glance, the success rate of 0.0025 computed by Rivain and Wang might
seem contradictory to our conclusion which might mistakenly suggest that the success
probability should equal 1/256 ≈ 0.0039. Nevertheless, it should be noted that the
success probability given by Rivain and Wang corresponds to the event where the correct
key guess obtains the maximum score alone. It is thus normal that this probability is
lower than 1/256. When considering the possibility of multiple candidates achieving the
maximum score simultaneously, the success rate is actually higher than 1/256 since the
events “k(i) has the maximum score” and “k(j) has the maximum score” are not disjoint.

3.6.2 Protecting the MixColumns Output
Attack Scenario

Considering what has been discussed in the previous section to protect the S-box output,
a straightforward way to protect the output of the first-round’s MixColumns from a side-
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channel attacker would consist in evaluating MixColumns through a large look-up table
that takes a 32-bit input and returns a 32-bit value encoded through a bijection of F32

2 .
The unaffordable drawback of this solution is the huge amount of memory that each
such table would require. For this reason, tables Tyr

i,j are used in [CEJv03], protected
by either 4-bit or 8-bit encodings. Since they contain the S-box output by definition
of the MixColumns matrix, they cannot be protected against DCA by 4-bit encodings.
Therefore, we only consider in the following the case of 8-bit encodings.

Although it is computationally feasible, guessing four bytes of the key to predict an
output byte of the first round’s MixColumns can be quite long. Nevertheless, if the at-
tacker is able to choose the messages to encrypt, he may reduce the number of hypotheses
by setting two appropriate bytes of the plaintexts to a constant. If we denote the plaintext
by (m0,m1,m2,m3), with m2 and m3 two constants, the targeted byte s can be written
as:

s = S(m0 ⊕ k0)⊕ S(m1 ⊕ k1)⊕ 2 · S(m2 ⊕ k2)⊕ 3 · S(m3 ⊕ k3)
= S(m0 ⊕ k0)⊕ S(m1 ⊕ k1)⊕ c

for some unknown constant c. Then, the value S(m0⊕ k0)⊕ S(m1⊕ k1) can be predicted
under an only 16-bit key hypothesis while c does not hinder the attacker since the addition
of a constant only affects the sign of the correlation scores.

In such an attack scenario, Rivain and Wang showed in [RW19] that if the encodings
hiding the output of the MixColumns are random bijections over F8

2, the success prob-
ability of DCA when targeting one bit of s is very close to 1 – approximately 0.99995.
Nevertheless, this probability is not 1, so the problem that naturally arises from this result
is to describe the set of encodings that prevent these attacks.

On Encodings with a Null Walsh Spectrum

We know that in order to reduce the correlation scores between a sensitive variable and its
encoded version, one needs to select an encoding with a Walsh spectrum that contains only
small (absolute) values. The question of describing the set of encodings that prevent DCA
then boils down to finding an appropriate bound on the maximum tolerable (absolute)
value in the Walsh spectrum of the encoding.

Let us first investigate the caseW1(E) = {0}. We have seen in Section 3.6.1 that when
targeting an S-box output protected by an encoding with a Walsh spectrum containing
only 0, the attacker may distinguish the correct key guess as the one showing the smaller
correlation. Consequently, one could wonder if the same phenomenon happens when
targeting a MixColumns output. We thus made an experiment. Let f : F8

2 × F8
2 → F8

2 be
the function (x0, x1) 7→ S(x0 ⊕ k0) ⊕ S(x1 ⊕ k1) and fi with 0 ≤ i < 8 be its coordinate
functions. We targeted the output of f0 on 216 simulated traces: one trace per possible
value of (x0, x1), each trace being computed as E0 ◦ f(x0, x1)|| . . . ||E7 ◦ f(x0, x1). The
result of this experiment is shown in Figure 3.11.

Contrary to what we observed for the S-box output in Figure 3.9, the correct key guess
is far from being the only one with a correlation score at 0 when W1(E) = {0}. In fact,
we count exactly 511 key hypotheses with a null score out of 216. Since the application
of (3.3) gives a probability P(ρ× = 0) ≈ 2−58.6 that an incorrect key guess produces a
null score, these hypotheses cannot be a random outcome. Figure 3.12 shows a structured
behaviour that strengthens this intuition. To understand what happens, we have to study
in depth the behaviour of the correlation coefficient when the key guess is incorrect.

Since the functions f and E ◦ f are surjective and balanced, so are their coordinate
functions. Thus, for any 0 ≤ i, j < 8, the correlation score between Ej ◦ f and fi can be
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Figure 3.11: DCA targeting f0. Here, the Walsh spectrum of the 8-bit encoding contains
only 0. Top: correlation traces for wrong (resp. good) key guesses in grey (resp. red).
Bottom: highest absolute value of the correlation scores for each key guess (good hypoth-
esis highlighted in red).

Figure 3.12: Zoom on the correct key guess of the bottom part of Figure 3.11.
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calculated using (3.7), seeing f as a function from F16
2 to F8

2:

Cor(Ej ◦ f, fi) = 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕fi(x0,x1)

= 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k0)⊕Si(x1⊕k1) .

Among all the 216 possible hypotheses for the couple (k0, k1), let us consider the
elements from the set {(k′0, k1)}k′

0∈F
8
2
. Let f ′ : (x0, x1) 7→ S(x0 ⊕ k′0) ⊕ S(x1 ⊕ k1). The

correlation scores between Ej ◦ f and f ′i can be written as:

Cor(Ej ◦ f, f ′i) = 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k′
0)⊕Si(x1⊕k1)

= 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k′
0)⊕Si(x0⊕k0)⊕Si(x0⊕k0)⊕Si(x1⊕k1)

= 1
216

∑
x0∈F8

2

(−1)Si(x0⊕k′
0)⊕Si(x0⊕k0) ∑

x1∈F8
2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k0)⊕Si(x1⊕k1) .

Notice that the sum over x1 is equal to WEj
(ω) for ω such that fi = ⟨f, ω⟩. Indeed, for all

x0 ∈ F8
2, x1 7→ f(x0, x1) is a bijection so we can make the change of variable u = f(x0, x1)

and write:

Cor(Ej ◦ f, f ′i) = 1
216

∑
x0∈F8

2

(−1)Si(x0⊕k′
0)⊕Si(x0⊕k0) ∑

u∈F8
2

(−1)Ej(u)⊕⟨u,ω⟩

= WEj
(ω) · 1

216

∑
x0∈F8

2

(−1)Si(x0⊕k′
0)⊕Si(x0⊕k0) . (3.10)

Therefore, the correlation scores obtained under a wrong key guess (k′0, k1) are multiples
of the Walsh transform of some coordinate function of the encoding. The same reasoning
can be applied to key hypotheses of the form (k0, k

′
1) for all k′1 ∈ F8

2. Consequently, when
W1(E) = {0}, all the correlation scores for those 511 key guesses will be equal to zero.

No other key guess is expected to get a null correlation score since, as stated previously,
it happens with probability 2−58.6 for a random guess. Then, when W1(E) = {0}, the
correct key is revealed by the following procedure:

1. Gather in a set Z the hypotheses that get a null correlation score; there are at least
511 of them,

2. For all z ∈ Z, compute z mod 256; the value that appears the most frequently – at
least 256 times – is the correct value of one key byte,

3. For all z ∈ Z, compute ⌊z/256⌋; the value that appears the most frequently – at
least 256 times – is the correct value of the other key byte.

On Encodings with a Non-Null Walsh Spectrum

Since the implementation can be broken if the encodings have been selected such that
W1(E) = {0}, one could be interested in what happens when encodings with small ab-
solute values in their Walsh spectrum are preferred. Let E : F8

2 → F8
2 be a random
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Figure 3.13: DCA targeting f0. Here, the Walsh spectrum of the 8-bit encoding is
{0, 4,−4}. Top: correlation traces for wrong (resp. good) key guesses in grey (resp.
red). Bottom: highest absolute value of the correlation scores for each key guess. The
good hypothesis is highlighted in red and is ranked 34th.

encoding with W1(E) ̸= {0}. According to Proposition 1, any non-zero value in W1(E)
is a multiple of 4. This implies through Proposition 3 that |ρ∗| is a multiple of 1/64. In
addition, (3.3) implies that under an incorrect key guess, P(|ρ×| > 1/64) ≈ 2−10.9. This
means that even for the lowest non-zero possible absolute value of W1(E), only about
thirty key guesses in average show higher correlation scores than the correct one, as can
be observed in Figure 3.13. Hence, the attacker could successfully recover the entire AES
key by brute-force (about 2(16−10.9)·8 ≈ 240 remaining keys to test). Thus, even if in such a
case DCA is considered by Rivain and Wang as having failed since the correct guess does
not get the best correlation score, E should be regarded as insecure as soon as W1(E)
contains a non-zero value.

Furthermore, note that (3.10) also has an effect that defeats any value ofW1(E) more
efficiently. One can in fact exhaustively verify that the sum over x0 can take only ten
values: 0, 256, ±8, ±16, ±24, ±32, with 256 appearing only for k′0 = k0. Therefore, the
distribution of the correlation scores when one of the guessed bytes is correct shows a
specific behaviour that can be detected by an attacker and used to identify the correct
byte value:

1. After the DCA has been performed, build 256 groups of 256 correlation traces, each
group gathering the traces for which one byte of the key hypothesis is constant,
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2. If, in a group, some samples from the correlation traces take exactly ten different
values, then consider the corresponding constant key hypothesis as the correct one.

Figure 3.14 exhibits the particular distribution of the correlation scores when both key
bytes are incorrect and when one of the two bytes is correct.

Figure 3.14: Top: correlation traces for random key guesses. Bottom: correlation traces
when one of the two key guess bytes is correct. The curve highlighted in red corresponds
to the two correct key bytes.

In the end, we have seen that no matter the 8-bit encodings that are selected to protect
the MixColumns output, the resulting implementation can always be broken by DCA.
We showed that carefully crafting encodings is as pointless as drawing them at random.
Therefore, this work does rule out the existence of a particular class of encodings that could
protect AES against side-channel attacks. It also highlights the challenge of establishing
a general result for other cryptosystems. Indeed, while there exist encodings that prevent
DCA under some conditions – met for example by the AES first round’s S-box output,
our attack on the MixColumns output shows that when these conditions are not satisfied,
the effect of the encodings heavily depends on the operation they are supposed to protect.
An interesting future work would thus be to analyze other cryptographic algorithms.
Specifically, finding – or building – a cryptosystem exclusively employing operations that
can be provably secured against side-channel attacks through the application of encodings
would be a significant breakthrough in white-box cryptography.
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3.7 Conclusion
For more than 20 years, AES white-boxes have been extensively studied. Nevertheless,
many questions are still open, starting with the (im)possibility of achieving resistance
against key extraction in the theoretical white-box model. Indeed, while many designs
were proposed, they were all broken in the subsequent years. In practice, this does
not prevent the industry to develop and sell proprietary white-box solutions for spe-
cific use-cases where potential attackers are not as powerful as in the theoretical model.
For instance, if the implementation is bound to a secure application with authentication
methods, the adversaries should not be able to execute the white-box themselves, which
prevents them from choosing the plaintexts or performing an attack that requires a high
number of executions. In this context, the main objective of the white-box designer is
to thwart automated attacks and force the adversaries to go through a time-consuming
reverse engineering phase to remove code obfuscation. However, even achieving this re-
laxed security goal is a challenge if one needs to keep the input/output behavior of the
algorithm unchanged. Indeed, the traditional countermeasures employed against the au-
tomated grey-box attacks pose some new problems in the white-box context. For some
time, encodings were believed to be a good alternative to prevent side-channel attacks but
Rivain and Wang [RW19] showed in 2019 that small random encodings can actually be
broken with very high probability by DCA when targeting the first round’s MixColumns
output.

In this chapter, we first went through a state-of-the-art on AES white-boxes. We
discussed both designs and attacks, highlighting the advantages and drawbacks of each
technique in practice. We presented a new and very efficient attack based on the square
distinguisher for round-reduced AES that conveniently requires a very small number of
executions. We also studied side-channel attacks and in particular the possibility of
using a specific class of encodings as a countermeasure. We were able to show that
carefully crafting encodings with small Walsh transforms instead of drawing them at
random actually allows to prevent a classical DCA targeting the MixColumns output.
However, we also illustrated how to adapt the attack and exploit the correlation traces
in order to defeat these specific bijections, showing along the way that encodings cannot
provide AES with efficient protection against side-channel attacks.

An interesting direction for future works could be to design a secure AES white-box
for a specific real-life use-case with a well-defined weakened attacker.
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Chapter 4

The Elliptic Curve Digital Signature
Algorithm in the White-Box Model.
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4.1 Introduction
While white-box implementations of block ciphers such as AES have been thoroughly
studied, the literature on asymmetric white-boxes is still very scarce. However, there is a
growing need for white-box implementations of asymmetric cryptosystems, especially the
Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS23] since it is used in many
protocols, as for instance in major cryptocurrencies such as Bitcoin and Ethereum. Most
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WBC solutions available on the market [SAS,Tha,Qua,Ird,Int,Inc,Ver,Dig] indeed propose
this algorithm as a service. This is in contradiction with the lack of papers on the
subject especially since the techniques employed in symmetric white-box cryptography
cannot be directly applied. The first ECDSA white-box implementation [ZBJ20] was
only published in 2020 and operates in a specific context only, where a semi-honest server
is accessible during each signature computation. In 2021, the CHES WhibOx contest was
held to encourage practical research, inviting developers to submit ECDSA white-box
implementations and attackers to break the corresponding submissions. In the end, all
of the 97 candidates were broken within 35 hours, suggesting the difficulty of protecting
this scheme against white-box attackers. Still, the contest lead to two new publications
[BBD+22,BDG+22] discussing both attacks and countermeasures.

Analyzing what happened during the 2021 WhibOx contest gives a good idea of the
challenges that one has to overcome to secure ECDSA in the white-box model. This is
thus how we start this chapter. At the time of the contest, we participated in the team
of attackers TheRealIdefix and managed to break the highest number of submissions. We
thus detail here all the attacks that we used and discuss their efficiency on the various
candidates. We also give an overview of the design of the two best implementations.

In the subsequent part of this chapter, we study the most interesting countermeasures
that we have found in patents. Indeed, as mentioned above, no public implementation
of ECDSA is secured in the white-box context, but several solutions are actually sold
by the industry. Their documentation provides no detail about the used techniques,
so the only option left for us to gain some information on the actual design of these
products was to look for patents on this subject. Of course, a patent is not comparable
to a published article: some important details might be omitted and all techniques to
reach overall security may not be found in the same patent. Also, the exact context
and security model are usually not explained, which complicates the evaluation of the
suggested countermeasures. However, these documents still give valuable information on
methods implemented in the field.

Finally, in the last part of this chapter, we analyze the security of Zhou et al.’s cloud-
based implementation [ZBJ20], which is the very first ECDSA white-box design to be
published. We exhibit two different and very efficient fault attacks based on a common
principle to re-inject some specific values from one signature execution to another. We
also suggest a countermeasure that prevents both these attacks without impacting the
size of the white-box.

4.2 Preliminaries
4.2.1 Elliptic Curve Cryptography
An elliptic curve over a finite field K of characteristic different from 2 and 3 is defined by
an equation of the form

y2 = x3 + ax+ b

with a, b ∈ K such that 4a3 + 27b2 ̸= 0. Note that for a field with characteristic 2 or 3,
the equation is somewhat more complicated.

Let E(K) denote the set of curve points to which is added the point at infinity O. It
has an abelian group structure where:

• O is the neutral element.
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• The opposite of a point P = (x, y) is the point −P = (x,−y).

• If P = (xP , yP ) and Q = (xQ, yQ) are two points such that P ̸= Q ̸= O, then the
point R = P +Q is given by:xR = α2 − xP − xQ

yR = yP + α(xR − xP )

with α = yQ−yP

xQ−xP
.

• If P = (xP , yP ) is such that P ̸= O and yP ̸= 0, then the point R = P + P is given
by: xR = α2 − 2xP

yR = yP + α(xR − xP )

with α = 3x2
P +a

2yp
.

The operation consisting in adding a point P to itself k ∈ N∗ times is called scalar
multiplication and denoted as [k]P . It can naturally be extended to k ∈ Z by defining
[0]P = O and [−k]P = [k](−P ). Scalar multiplication is a key operation for many
cryptosystems based on elliptic curves. It is therefore important to find both efficient and
secure algorithms, see for instance [Ver12,Chu17] for a survey.

Elliptic curve cryptography is based on the difficulty of the Discrete Logarithm Prob-
lem (DLP). Indeed, while the latter was first described in the multiplicative group of a
finite field, it can be adapted for the group of points of an elliptic curve. If we consider
a multiplicative group G, the problem is the following: given g ∈ G and h an element
of the subgroup of order n generated by g, find the integer x such that 0 ≤ x < n and
h = gx. Similarly, the elliptic curve discrete logarithm problem consists in finding k given
the points P and [k]P . Conveniently, the DLP seems to be harder in this scenario than
in the multiplicative group of a finite field, allowing the use of smaller keys for the same
security level.

4.2.2 Description of ECDSA
The Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS23] was introduced as a
variant of DSA by Vanstone in 1992. Its parameters are an elliptic curve E over Fq

with a generator G of order n and a cryptographic hash function H. The private key
d is randomly generated in F∗n and the public key Q is the point resulting of the scalar
multiplication between d and G, that is Q = [d]G. The ECDSA signature operation is
described in Algorithm 4, where xR and yR denote the affine coordinates of the point
R. The verification is as shown in Algorithm 5. Note that to prevent some attacks,
the parameters of the scheme should also be checked for consistency before validating a
signature.

The sensitive values manipulated in the signature algorithm are not only the secret key
d, but also the nonce k since its recovery allows the computation of d from the signature
(r, s) and the hash e as follows:

d = (ks−H(m))r−1 mod n. (4.1)

In the black-box context, the security of ECDSA relies on the difficulty of the Elliptic
Curve Discrete Logarithm Problem (ECDLP), that is on the difficulty of recovering d
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Algorithm 4: ECDSA signature operation
Input : the message m
Output: the signature (r, s)

1 e← H(m)
2 k

$←− J1, n− 1K
3 (xR, yR)← [k]G
4 r ← xR mod n
5 s← k−1(e+ rd) mod n
6 if r = 0 or s = 0 :
7 Go to step 2
8 Return (r, s)

Algorithm 5: ECDSA verification
Input : the message m and a signature (r, s)
Output: VALID or INVALID

1 e← H(m)
2 u1 ← es−1 mod n
3 u2 ← rs−1 mod n
4 (xR, yR)← [u1]P + [u2]Q
5 if xR ≡ r mod n :
6 Return VALID
7 Return INVALID

from Q = [d]G or k from R = [k]G, and on the quality of the used randomness. Indeed,
the nonce must not only remain secret but also differ at each execution of the algorithm
since its value can easily be recovered from two signatures (r, s) and (r′, s′) of different
hashed messages e′ ̸= e using the same nonce, that is with k′ = k. In that case, we also
have r′ = r, so the adversary may compute

k = (e′ − e)(s′ − s)−1 mod n . (4.2)

Furthermore, even smaller biases in the nonce generation can be exploited via lattice-based
attacks.

4.2.3 Lattice-Based Cryptography
In the remainder of this chapter, we will discuss lattice-based attacks that can be employed
to recover an ECDSA secret key from signatures generated with biased nonces. To provide
context for these discussions, we will first quickly review the fundamentals of lattice-based
cryptography.

Geometrically, a lattice is a discrete grid of points in an n-dimensional space. A full
rank lattice is typically specified by a basis B which is a n × n matrix with linearly
independent row vectors and real entries. The lattice generated by B is the set of all
integer linear combinations of its row vectors. It is important to note that a lattice can
be generated by an infinite number of different bases.

Lattices can be used in cryptography, either to construct cryptographic schemes [BDK+18,
DKL+18] or to attack others, such as RSA and (EC)DSA [DH20]. There are several lat-
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tice problems, one of the most famous being the Shortest Vector Problem (SVP), which
involves finding the vector with the smallest non-zero norm in a lattice given one of its
bases. These problems are known to be in NP for arbitrary lattices [Ajt96, AR04] and
remain hard to solve even with quantum computers, contributing to the popularity of
lattice-based cryptosystems as a potential post-quantum cryptographic solution. Nev-
ertheless, there exist algorithms such as LLL [LLL82, NS09] or BKZ [Sch87, SE94] that
can be used to find approximations within a reasonable time. Lattice-based attacks, as
the ones we will describe in Section 4.3.2, generally involve constructing a lattice that
contains a very short vector with sensitive entries and attempting to recover it using basis
reduction algorithms.

4.3 WhibOx 2021
The WhibOx contest, attached to the CHES conference, has been held three times since
2017 to encourage practical research in white-box cryptography from both the designer’s
and the attacker’s perspectives. Each time, during several months, coders are invited
to post white-box implementations and attackers to try to break them. Participants can
remain anonymous and silent about any detail on their work. The first two editions in 2017
and 2019 focused on white-box implementations of AES and exhibited the community’s
strong interest in this subject. Some candidates survived all attacks in the second edition
in 2019, showing a certain maturity for this algorithm. In 2021, organizers changed
the target and decided to consider the ECDSA signature algorithm, whose white-box
implementation is of substantial interest to the industry but virtually lacks scientific
literature. From May 17th to August 22nd 2021, 97 candidate implementations were
submitted for scrutiny by 37 (teams of) attackers. All challenges were broken within 35
hours, suggesting the difficulty of achieving a secure white-box implementation of ECDSA.

In this section, we present the attacks that we used to break the various challenges
during the contest as the team TheRealIdefix. We consider different attack paths against
ECDSA white-boxes: the ones inherited from traditional cryptanalysis, the extensions of
grey-box attacks and the ones that are specific to the white-box context. We discuss the
feasibility of automating each of them and provide detailed information regarding which
attacks succeeded (or failed) on each candidate. We also give an overview of the winning
challenge that was submitted by the team of designers zerokey. Although it was finally
broken during the contest as all others, the employed techniques are interesting and worth
mentioning.

The results presented in this section were published in a joint paper from the partici-
pants of the teams TheRealIdefix and zerokey [BBD+22].

4.3.1 Contest Rules
During the 2021 WhibOx contest, designers were required to post challenges computing
ECDSA signatures on the NIST P-256 curve under a hard-coded, freely chosen key, and
accepting as input any 256-bit message digest e = H(m). Notice that the cryptographic
hash function H was excluded from the intended white-box implementation of ECDSA
and the message m was also not provided. Acceptance of submitted implementations was
conditioned on some requirements:

• the public key corresponding to the embedded private key, as well as a proof of
knowledge of the private key, had to be provided,
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• submissions had to be source code in portable C,

• linking to external libraries was forbidden, except for the GNU Multi Precision
library [Gt20],

• the execution time was limited to 3 seconds, the program size to 20 MB, and the
RAM usage to 20 MB as well.

There was an elaborate system with scoreboards to reward designers and attackers who
managed to extract the private keys of the submissions. A challenge gained strawberries as
time goes by till broken. Challenges with a higher performance score (measured in terms
of execution time, code size, and RAM usage) gained strawberries faster. Eventually, the
challenge with the highest number of strawberries won the competition. Accordingly, when
submitting a matching private key to the system, attackers received bananas, the number
of which was determined by the number of strawberries of the challenge at the time of the
break. More detailed information can be found on the contest website [Whi21].

4.3.2 Automated Attacks on ECDSA White-Boxes
White-box implementations usually rely on encodings and other approaches to protect
the secret values and their manipulations. Furthermore, code obfuscation techniques are
often used to make the understanding of the design a time-consuming and challenging
task. We thus focused on designing efficient attack methods that do not require any
earlier reverse engineering step and can easily be automated.

Searching For Unprotected Sensitive Values

The most basic strategy to break white-box implementations is to look for sensitive values
that are mistakenly manipulated in plain, meaning unprotected, at some time during the
execution. Since the contest rules were a clear incentive for developers to use the GMP
library for big number arithmetic operations, a first attempt to break the submitted
challenges was then to search if sensitive values were manipulated by the GMP library. In
order to do this automatically, our approach has been to hook the calls to GMP functions
thanks to the so-called LD_PRELOAD trick.

Pre-loading is a feature of the dynamic linker on UNIX systems that allows loading
a specific shared library before all other libraries linked to a given executable binary1.
In our specific case, we built a shared library defining the same function as the GMP
library (e.g. mpz_mul, mpz_mod or mpz_invert). Each of these functions simply updates
a log of the given parameters before calling the real GMP function, explicitly using the
dynamic linker (thanks to the <dlfcn.h> module) to ensure the correct execution of the
white-box implementation. It is then only necessary to add our shared library to the
LD_PRELOAD environment variable of the dynamic linker on our system before calling the
ECDSA binary to have our custom functions called in place of the genuine GMP ones.
The corresponding log can then be analyzed in a second step to eventually reveal the
secret key if d, k or related values such as rd or e + rd are found in the log. Such an
approach allowed us to break 32% of the challenges.

1https://man7.org/linux/man-pages/man8/ld.so.8.html
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Biased Nonces

As discussed in Section 2.1.5, white-box designers often use a PRNG applied to the al-
gorithm’s input to generate random values. This is because the adversary controls the
execution environment and can manipulate the output of common sources of randomness.
Despite this, some designers attempted to introduce non-determinism into their imple-
mentations during the contest. Most of these challenges used calls to the time() function
from the C standard library, which could easily be replaced with a constant. Others
appeared to use addresses or the values of uninitialized variables as entropy sources. For
these challenges, disabling Address Space Layout Randomization (ASLR) was sufficient
to obtain the same result for each execution with the same input.

Let us now assume that all the potential sources of entropy, but the input of the
white-box, have been fixed. The nonce k is then computed as a function of the hash, i.e.
k = f(e). If the function f is not carefully selected, it could happen that the ki’s generated
from different ei’s are not uniformly random. In the worst case, we have collisions such
that different hash values e0 and e1 produce the same nonce (k0 = k1). If such a collision
occurs, one can recover the nonce with equation (4.2) and then the private key with (4.1).
Furthermore, this can be efficiently detected by looking at the r part of the signature.
To efficiently browse a subset of hash values in search of collisions, we limited ourselves
to hash values with a Hamming weight equal to 1 or 2. We thus considered 32 896 hash
values and were able to break 60% of the challenges with this technique.

In those cases where we did not find any collision, we looked for smaller biases in
the nonce generation and used well-known lattice-based attacks derived from [NS02]
and [FGR13]. These attacks may allow one to recover an ECDSA private key with
the knowledge of only a few bits of the nonces for several signatures. Basically, the
idea is to construct a lattice containing a short vector composed of sensitive values and
to recover it via a basis reduction algorithm. In our case, we computed (ri, si) with
si = k−1

i (ei + rid) mod n for 0 ≤ i < 1000 and ei = i. We selected some subsets of m
signatures to build our lattices and separately performed the attack on all of them.

Let us first assume that in a subset of m signatures, the l most-significant bits of the
nonces are all at zero. Let K = 2256−l, we have ki < K for 0 ≤ i < m. Note that in our
experiments, we often chose m = 70 and l = 6. For any signature (ri, si), one can write

ki = s−1
i smrir

−1
m km − s−1

i riemr
−1
m + s−1

i ei mod n .

If we denote ti = s−1
i smrir

−1
m and ui = −s−1

i riemr
−1
m + s−1

i ei, then the above equation can
be written as

ki = tikm + ui mod n .

We thus constructed the following lattice basis:

B =



n

n
. . .

n

t1 t2 · · · tm−1 1
u1 u2 · · · um−1 0 K


.

The vector (k1, k2, . . . , km, K) is in this lattice by construction and it is expected to be
one of the shortest ones since ki < 2256−l and its norm is smaller than the approximated
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norm of the shortest vector for a random lattice that can be computed using the Gaussian
heuristic [Ajt96]. Running algorithms such as LLL or BKZ on this lattice may thus allow
an attacker to recover the nonces and compute the private key from equation (4.1).

Note that the attack can be adapted for other values and other positions of the known
bits (see for example [DH20]). In particular, we also tried it with all the bits set to 1
and with the knowledge of the least-significant bits instead of the most-significant ones.
Finally, Lattice-based attacks can also be applied when the nonce k is the product of
a small random κ by another (large) constant scalar t. This is an interesting choice
from an implementation point of view since taking k = κt allows to perform the scalar
multiplication at a reduced cost as R = [κ]T = [k]G with T = [t]G a precomputed value
and without directly manipulating the nonce.

All in all, our attacks exploiting biases in the nonce generation allowed us to break
72% of the challenges.

Side-Channel Attacks

The most well-known side-channel attack against ECDSA implementations is probably
the Simple Power Analysis (SPA) targeting the nonce [Cor99]. It consists in the analysis of
a single trace obtained during the scalar multiplication and is made possible by the use of
non-regular algorithms as the double-and-add (see Algorithm 6) which is the elliptic curve
equivalent of the square-and-multiply presented in Section 2.1. Here, if the adversary is
able to distinguish the doublings from the additions, then he may recover the nonce bit
by bit and use it to compute the secret key as shown in equation (4.1).

Algorithm 6: Scalar multiplication – the double-and-add algorithm
Input : a scalar k = (k0, k1, . . . , kℓ)2 and a point P
Output: the point kP

1 Q← O
2 for i ∈ J0, ℓK :
3 Q← [2]Q
4 if ki = 1 :
5 Q← Q+ P

6 Return Q

Another possibility to break an ECDSA implementation is to make assumptions on
the computation of rd and try to attack this value by analyzing multiple traces. For
instance, if the multiplication is performed on 8-bit words, the attacker could guess a
byte of d and multiply it with a byte of r. He could then use the procedure described in
Section 2.1 and use a score function on the hypothesized sensitive values and the trace
points in order to distinguish the good key hypothesis. Note that there exists a variant
of the attack that targets the addition between e and rd rather than the multiplication.

In theory, side-channel attacks are particularly devastating since they can be fully
automated and do not require any earlier reverse engineering step. In practice, they
are quite difficult to apply in the white-box context because of the size of the traces,
in particular for cryptosystems such as ECDSA that have a relatively long execution
time. Indeed, if the whole white-box execution were to be recorded, each trace would
easily reach several gigabytes. Iterating over dozens of traces for the attack would thus be
overwhelming in time and memory. A time-consuming step of reverse engineering allowing
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to select a smaller window of the implementation before the attack is then required, which
is why we did not use this technique to break the challenges of the WhibOx contest.

Fault Injections

Several fault attacks can be performed on ECDSA in the grey-box context, and they are
obviously also a potential threat in the white-box context. For example, the attacker can
force the use of a weak elliptic curve during the scalar multiplication by disturbing the
curve parameters [BMM00] in order to solve the DLP easily. Alternatively, he can force the
use of biased nonces, for instance by sticking a word of k at zero during several executions.
The corresponding signatures can then be used to obtain information on the key using
lattice-based algorithms. Finally, modifying one byte of d during the computation of rd
may also allow one to recover information on the key, as shown in [GK04].

In addition, the white-box model offers new possibilities [PSS+17, ABF+18, DGH21]
arising from the fact the scheme is, or can be made, deterministic. When the algorithm
is used twice on the same message, the same nonce k is derived. The attacker may thus
obtain a correct signature for a given hash e, and an erroneous one by modifying a second
execution on the same input. To break the challenges of the WhibOx contest, we mainly
disturbed the computation of the first part of the signature r, obtaining faulty results r̃
and s̃ = k−1(e + r̃d) mod n. This allowed us to create and solve the following system in
k and d: s = k−1(e+ rd)

s̃ = k−1(e+ r̃d)
.

It is also possible to disturb other values, as the hash e after the computation of the
nonce. However, one would need to know the faulty value ẽ to solve the obtained systems = k−1(e+ rd)

s̃ = k−1(ẽ+ rd)
.

If the attacker can manage to induce a precise fault on say, a byte of the targeted value,
then he may make a hypothesis on ẽ and perform a brute-force attack. Interestingly, we
do not have this problem with the attack on r since the faulty value is just given to the
attacker as part of the output. Furthermore, the attack surface to disturb r is huge: the
fault may happen anywhere during the scalar multiplication. This is why we only altered
this variable in the context of the WhibOx competition. It indeed proved to be an efficient
attack since it allowed us to break 75% of the challenges.

Note that after the contest, two other teams called bananaramadama and auguste also
joined to publish a paper on their attacks and countermeasures [BDG+22]. In particular,
they used other more sophisticated fault attacks targeting different variables. These can
only be performed if the attacker manages to obtain the same faulty value twice in two
different executions on two different hash values, which is difficult but not impossible
in the white-box context where the adversary can directly modify the binary and the
faults are easily reproducible. For completeness, we briefly present these attacks in the
following.

The first attack is called the collision fault attack. Its advantage compared to the
simple one described above is that it can overcome some countermeasures. In particular,
it may allow the attacker to recover the secret key without any brute force even if the
faulty value is not known. For instance, suppose that the same faulty value ẽ can be
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induced in two executions. This could be realized for example by skipping the addition
of e during the computation of s (special case ẽ = 0). The attacker could then obtain

s1 = k−1
1 (e1 + r1d)

s2 = k−1
2 (e2 + r2d)

s̃1 = k−1
1 (ẽ+ r1d)

s̃2 = k−1
2 (ẽ+ r2d)

and solve this system of 4 equations in k1, k2, d and ẽ. Note that a similar key recovery
can be achieved with a fault induced on r, rd, e+ rd, k, k−1 or d.

The second attack is called the differential collision fault attack. It is a variant of the
first one, where the faulty value is the original one plus a constant. In other words, if the
fault is induced on e, it is assumed that ẽ = e + cst. One can thus obtain and solve the
following system in k1, k2, d and cst to retrieve the secret key:

s1 = k−1
1 (e1 + r1d)

s2 = k−1
2 (e2 + r2d)

s̃1 = k−1
1 (e1 + r1d+ cst)

s̃2 = k−1
2 (e2 + r2d+ cst)

.

Once again, this attack can be adapted to faults induced on r, rd, e+ rd, k, k−1 or d.

Attacks Results

We give in Appendix B the specific vulnerabilities of each of the 97 submitted challenges
as well as the corresponding private keys. The success rates of each attack methods
are presented in Table 4.1. We observe that lattice and fault attacks are very efficient.
Collision attacks also give good results.

Table 4.1: Success rate of each attack on the 97 challenges.

Attack type Percentage of
broken challenges

Hooking 32%

Bad nonce
- Collision 60%
- Lattice 72%

Fault Injection 75%

However, we noticed that many challenges had a low level of security, some were even
plain implementations. In order to focus on the strongest candidates, we thus excluded 30
challenges2 where the nonce and/or the private key were manipulated in plain. Table 4.2
illustrates the efficiency of the attacks presented in Section 4.3.2 on the remaining 67
challenges. We observe that hooking gives no significant result anymore, collision and
lattice attacks become less efficient, and fault injection is still the most powerful attack.

2The challenges 3, 4, 8, 10, 11, 32, 45, 54, 55, 57, 85, 97, 114, 135, 136, 139, 153, 157, 174, 185, 187,
231, 235, 267, 274, 299, 307, 320, 321, and 323 are considered as weak.
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Table 4.2: Success rate of each attack on the 67 strongest challenges.
Attack type Percentage of

broken challenges

Hooking 1%

Bad nonce
- Collision 49%
- Lattice 61%

Fault Injection 69%

Among the 67 strongest challenges, Challenges 226 and 227 are the winning ones. In
the next section, we give an overview of their design.

4.3.3 Best Candidates
Design overview

The two winning challenges of the WhibOx contest were both submitted by zerokey and
implemented with the same methodology. They only differ in some additional counter-
measures. Challenge 227, the one that obtained the highest number of strawberries, is the
lightweight variant. Challenge 226, the one that acheived second place in the contest and
stood unbroken for the longest time, is the hardened but heavier variant. Their design
was inspired from the white-box implicit framework of [RVP22].

Definition 4. Let F : Fl
q → Fl′

q . A function T : Fl+l′
q → Fl′′

q is called an implicit function
of F if for all u1, u2, . . . , ul and v1, v2, . . . , vl′ in Fq, it satisfies

T (u1, u2, . . . , ul, v1, v2, . . . , vl′) = 0⇔ F (u1, u2, . . . , ul) = (v1, v2, . . . , vl′) .

In that case, T is said to be quasilinear if for any (u1, u2, . . . , ul) ∈ Fl
q, the function

(v1, v2, . . . , vl′) 7→ T (u1, u2, . . . , ul, v1, v2, . . . , vl′) is affine over Fq.

The idea is to represent the operations of the scheme by quasilinear implicit functions
and to protect them with large affine bijections acting as encodings. The quasilinear prop-
erty allows the implicit evaluation of a function F in a point (u1, u2, . . . , ul) by solving
the affine system T (u1, u2, . . . , ul, v1, v2, . . . , vl′) = 0 for the variables v1, v2, . . . , vl′ . Fur-
thermore, the representation of the implicit functions as systems of multivariate polyno-
mials allows applying countermeasures from multivariate public-key cryptosystems. For
instance, in Challenge 226, additional variables and components preserving the input-
output behavior of the underlying encoded functions are added in the equations. Another
layer of obfuscation consists in multiplying each term with some random polynomials in
the input variables. Interestingly, this operation preserves the quasilinear property and
does not change the solution set. We refer the reader to [BBD+22] for more information
on how to obtain the implicit implementation in the specific case of ECDSA.

Attacks

Note that these challenges were specifically built for the WhibOx contest, where the at-
tackers did not know the design details. Once fully reverse-engineered, they are easy to
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break. Nevertheless, reverse-engineering is not mandatory as challenges 226 and 227 were
both broken by automated attacks during the contest. Indeed, we broke Challenge 227
with hooking techniques3 during the contest and lattice-based and fault attacks after-
wards. Challenge 226 resisted our automated attack tools at first, but was then proven
sensitive to fault attacks [BDG+22].

In the end, no candidate white-box resisted all the automated attacks, and no challenge
survived more than two days, showing that securing ECDSA in the white-box model really
is a challenging problem. Nevertheless, as mentioned earlier, some companies already sell
ECDSA white-boxes. In the next section, we will explore their patents and discuss some
of the employed countermeasures.

4.4 Patent Overview
In the last decade, several companies registered patents exposing different techniques to
protect white-box ECDSA implementations. Of course, a patent is not comparable to
a published article. It may omit crucial details and often lacks explicit explanations of
the context and security models, complicating the assessment of the proposed methods.
Furthermore, all the techniques used for achieving overall security might not be disclosed
within a single patent. Despite these limitations, patents remain valuable sources of
information on implemented methods in the field. After a careful research, we found
a dozen of such documents and studied them in detail before selecting the six most
interesting ones in our context [Boc20,CP18,GV20,SEMM15,RH18,SPC18].

In this section, we expose the main ideas to counteract the different attacks discussed
in Section 4.3.2. We distinguish the countermeasures that are meant to prevent active
attacks, where the adversary actively alters the execution of the white-box, from the
ones that tackle passive attacks as SCA. This survey was published in collaboration with
Emmanuelle Dottax and Christophe Giraud in [DGH21].

4.4.1 Countermeasures Against Passive Attacks
As discussed previously, the traditional protection against passive attacks in the white-
box model is the use of look-up tables protected by random encodings. Since the needed
memory space increases exponentially with the number of input bits of the tables, the im-
plementation is usually broken into a network of small tables acting on a restricted number
of bits, typically 4 or 8. Nevertheless, this technique is not well suited for asymmetric
white-box cryptography that usually relies on complex operations on a large number of
bits such as the scalar multiplication. This explains why, in the patents that we found,
encodings and look-up tables are often replaced by masking techniques or homomorphic
encryption. In the following, we show how these techniques are used to protect ECDSA
white-box implementations and we expose their advantages and drawbacks.

Masking

The two main use-cases for masking techniques are the scalar multiplication and the
inversion of k since they are very complex operations.

3The nonce and the key did not appear in the log, but we found another sensitive variable, that is the
nonce multiplied by a constant. We will see how this leads to the recovery of the key in Section 4.4.1
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For instance in [SEMM15], the base point G and the secret key d are both multiplica-
tively masked by a random value t selected offline. The point T = [t−1]G is used for the
scalar multiplication instead of G, which implies that the nonce is in fact κ = kt−1 rather
than k. The modified key δ = dt mod n is used instead of d to maintain the consistency
of the signature. The computation of s is then performed as shown in Algorithm 7.

Algorithm 7: ECDSA signature [SEMM15]
Input : the message m
Output: the signature (r, s)
// Precomputations:

1 t
$←− J1, n− 1K

2 T ← [t−1]G
3 δ ← dt

// Signature:
4 e← H(m)
5 k

$←− J1, n− 1K
6 (xR, yR)← [k]T
7 r ← xR mod n
8 u← te+ δr mod n
9 s← k−1u mod n = (κ)−1(e+ rd) mod n with κ = kt−1 mod n

10 if r = 0 or s = 0 :
11 Go to step 5
12 Return (r, s)

The point is that an adversary searching for the nonce or the secret key in the memory
would not find these values anymore. Nevertheless, notice that since both δ and k are
manipulated in plain, finding t may lead the attacker to a trivial key recovery. The
authors of the patent thus propose to protect t by computing step 8 of the algorithm
using a network of look-up tables, as usually done for symmetric white-box cryptography.
Nevertheless, even if the adversary is unable to recover t during that step, he may still
compute it together with the secret key by solving the following system of equationsk1s1 = t(e1 + r1d)

k2s2 = t(e2 + r2d)

with (r1, s1) and (r2, s2) two different signatures. This method can add some complexity to
the attacker’s task but does not prevent key recovery. Therefore, it must be implemented
alongside other countermeasures.

Another possibility is to use an additive mask for the scalar multiplication. In such a
case, v = k + t has to be computed from e in a secure way with t being a random mask
that can be generated offline [SPC18] or derived from e [RH18]. The point R can then
be computed as R = [k + t]G− T with T = [t]G potentially precomputed. However, the
nonce also needs to be inverted for the computation of s and this is not easily feasible
from (k + t)−1. A common technique to overcome this problem is to compute k from
e again, but this time, masking it multiplicatively [SPC18, RH18, Boc20]. The result is
then inverted in plain and multiplied again by the mask to give k−1. An example of
such an approach is given in [SPC18] where the constant t and the corresponding point
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T = [t]G are selected offline together with two symmetric encryption keys sk and sk′.
Let us denote by Encsk an encryption function with key sk. The signature algorithm is
depicted in Algorithm 8.

Algorithm 8: ECDSA signature [SPC18]
Input : the message m
Output: the signature (r, s)
// Precomputations:

1 t
$←− J1, n− 1K

2 T ← [t]G
3 (sk, sk′) $←− [0, 264 − 1]2

// Signature:
4 e← H(m)
5 v ← Encsk(e) + t = k + t
6 R← [v]G− T = [k]G
7 r ← xR mod n
8 w ← Encsk(e)× Encsk′(e) = kk′

9 s← Encsk′(e)w−1(e+ rd) = k−1(e+ rd)
10 if w−1Encsk(e)Encsk′(e) ̸= 1 :
11 Fault detected, abort or return random value
12 Return (r, s)

Once again, the mask t has to be protected or the nonce, and thus the key, could be
computed from v. Moreover, even the knowledge of v alone might be enough to break the
scheme. Indeed, since t is fixed, the attacker could guess its highest bits and obtain the
ones of k from v. If this is done for several signatures, a lattice-based attack could lead
to successful key recovery as shown in Section 4.3.2.

To conclude, masking prevents an attacker from directly reading the nonce and the
secret key in memory or from performing a classical side-channel attack. However, the
technique often seems easy to bypass when the masks are fixed and selected offline. Making
them vary randomly would be a good solution, but once again, this is difficult to achieve
in the white-box context. Furthermore, one has to be careful with the implementation so
that the masks cannot be recovered. In some cases, it may be difficult to get rid of them
without revealing any secret information. Masking is thus often combined with encodings
[SEMM15, SPC18, RH18]. Nevertheless, the latter implies the use of a large amount of
memory and all the published white-box implementations relying on this technique have
been broken. Some patents thus suggest another idea to protect data against passive
attacks: the use of homomorphic encryption. While it seems to be the safest solution, we
will see that it also has some drawbacks.

Homomorphic Encryption

Homomorphic encryption (see for instance [ABC+15]) allows to perform some compu-
tations directly on encrypted data without having to decrypt it first. The supported
operations depend on the encryption scheme, it can be both addition and multiplication
or only one of them.
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In the white-box context, sensitive data can be encrypted offline and never appear
in plain. For instance, the authors of [GV20] use a pool of pre-encrypted randoms to
compute the nonce, and none of these values is ever decrypted. Scalars (ki,0, ki,1) are
drawn offline for 1 ≤ i ≤ b, with b being the maximum bit length of a message, and
the corresponding (Ri,0, Ri,1) = ([ki,0]G, [ki,1]G) are computed. The scalars (ki,0, ki,1) are
then encrypted, resulting in couples (ci,0, ci,1) that are stored on the device together with
the generated points (Ri,0, Ri,1). The first step of the signature is the computation of
R = [k]G and c, the encrypted value of the nonce. Let us denote the i-th bit of the
message by mi. The computations are as follows:

c =
b∑

i=1
ci,mi

and R =
b∑

i=1
Ri,mi

.

The way the second part of the signature is computed from c, r and e is not detailed.
It is only mentioned that the encrypted value of s is obtained and not decrypted before
being sent with r to the verifier, so the verification algorithm is not standard. This is
the main drawback of using homomorphic encryption: one has to choose between using a
decryption white-box or not respecting the standard by returning an encrypted value.

In [Boc20], the first option is chosen. Paillier’s homomorphic encryption [Pai99],
denoted by Enc, is used to protect sensitive data during computations and a decryption
white-box allows the recovery of s in plain at the end of the algorithm. This white-box may
be very costly and not easy to build. Furthermore, it induces a security issue: an attacker
could apply it on encrypted sensitive variables to recover their plain values. Another
protection layer should thus be added. The inventors decided to mask the variables
before their encryption. For instance, the value Enc(dt) is used instead of Enc(d) for the
computation of s, with t a random mask that will be removed later on. This way, an
adversary trying to apply the decryption white-box to Enc(dt) would only recover the
masked value of the key. As we have seen before, this may increase the security but is
probably not enough to prevent key recovery.

4.4.2 Countermeasures Against Active Attacks
We showed in Section 4.3.2 that a white-box implementation of ECDSA is particularly
vulnerable to fault attacks. The usual countermeasures implemented for the grey-box
model rely on redundancy and consistency checking. These techniques can also be used
in the white-box context even if they are by essence memory consuming. An alternative
is to link several values by encoding them together so that disturbing one of them also
modifies the others with a high probability. The last known option is to precompute the
sensitive variables offline and embed them inside a white-box.

Redundancy and Checks of Consistency

A first fault attack that can be performed on ECDSA white-boxes consists in forcing the
use of the same nonce twice. Of course, the fault can be induced directly on k, but if the
computations are deterministic, the same result can also be obtained by signing twice the
same message and altering the hash e after the computation of the nonce during the second
execution. An idea to reinforce the security against this attack is exposed in [SPC18] (see
Algorithm 8). The nonce k is derived from e three times across the execution, in steps
5, 8 and 10, and its consistency is checked at the end of the algorithm. Hence, a fault

71



on k or e has to be induced several times to obtain an exploitable faulty output, which
drastically complicates the attack.

Another protection presented in [SPC18] consists in storing a list of all messages that
have been signed. This way, the attack on e cannot be performed since the white-box
would detect that the hash has already been used. However, this protection is not efficient
against an adversary having full control over the execution environment. Indeed, the latter
could erase parts of the list or restore the previous state of the white-box to be able to
perform his attack.

The fault on the first part of the signature presented in Section 4.3.2 seems even
more difficult to prevent. Indeed, this value necessarily appears in plain if the scalar
multiplication is not protected, which makes it is easy to find and alter. Moreover, r
is returned by the algorithm so the attacker always knows the result of the fault he
induced. In [SPC18], the inventors try to check the consistency of R without entirely
computing it twice, which could be quite costly, especially if the scalar multiplication is
protected against passive attacks. They suggest two techniques: the secure delegation of
calculus to a third party [CDKS15] and the technique of “small moduli”. The latter is not
described in the patent but we assume that it is a reference to Shamir’s method exposed
in [Sha99, Joy19]. The idea would consist in computing R = (xR mod ρn, yR mod ρn)
with the coordinates in Z/ρnZ instead of Z/nZ and then another time in Z/ρZ for ρ a
small random. Subsequently, one could check the integrity of R by computing (xR mod
ρ, yR mod ρ) and by comparing it with the second computation. This technique is usually
used in the grey-box context as a countermeasure against fault attacks. However in the
white-box context, the adversary may be able to control the fault he induces on the first
computation of R in Z/ρnZ. He could thus add a multiple of ρ to its coordinates and the
resulting faulty point would pass the verification. Hence, this technique prevents the use
of random faults on R but it could still be bypassed. Of course, the attacker could also
try to skip the consistency check, but the same problem arises for any redundancy-based
countermeasure. As for delegation of calculus to a third party, it may not be possible in
some contexts.

Joint Encodings

The idea of joint encodings is to link several values together. For instance, if the encodings
used in the scheme are bijections applied to bytes, one can jointly encode variables a and
b by applying the bijections on a nibble of a concatenated with a nibble of b. This way, it
shall be more difficult for an adversary to modify a without disturbing b. In particular,
joint encodings can prevent re-injections that consist in storing a variable obtained during
an execution to force its value in a subsequent one.

Joint encodings can for instance be used as described in [RH18]. Let us denote by
(x, y) the joint encoding of (x, y) and let α ≥ 2 be a security parameter. First, a function
f and several functions gi (for 0 ≤ i ≤ 2α − 1) are selected offline. Then, during the
execution, two sets A and B are generated:

A = {(f(e), gi(e))}0≤i≤2α−1 = {(k, ei)}0≤i≤2α−1,

B = {(g2j(e), g2j+1(e))}0≤j≤α−1 = {(e2j, e2j+1)}0≤j≤α−1.

The set A is used to compute an encoded version of the variable a = k+∑2α−1
i=0 ciei, with

ci being constants drawn offline. The point [a]G = R + [∑2α−1
i=0 ciei]G is then computed

and we would like to extract R from it. To do so, the point [∑2α−1
i=0 ciei]G is constructed
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from the set B and is subtracted from [a]G. The computation of s is performed similarly
to the scalar multiplication: two distinct sets containing jointly encoded values depending
on the nonce k and the hash e are used separately to compute two variables which, once
added together, give the value of s.

Joint encodings are quite costly, but they can prevent several fault attacks, and in
particular the one that consists in storing the value of k during an execution in order to
re-inject it in another one and obtain two signatures using the same nonce. Indeed, an
adversary attempting to fix k would have to also fix the ei’s in the set A, which would make
them inconsistent with those in the set B and lead to an unexploitable faulty output. If
the adversary also tried to re-inject the values of the set B, the resulting signature would
be correct but the signed hash would be the same as the previous one, so he would not
learn any new information.

Note however that joint encodings are not flawless: the adversary could for instance
manage to introduce a bias in the nonce without modifying the ei’s, in particular if some
part of the encoded value does not depend on them.

Offline r Computations

Since it is both difficult and costly to implement efficient protections against fault attacks
on k or r, the authors of [CP18] propose to precompute theses values and embed them
inside the white-box. Offline, several nonces ki are drawn at random and the corresponding
ri are computed. One-time usage white-boxes WBi embedding k−1

i and k−1
i rid are then

created and couples (ri,WBi) are stored in the device. To sign a message, a couple is
selected and the hash e is given as input to WBi, which only performs encoded modular
operations to compute si = k−1

i (e+ rid) mod n.
To prevent an adversary from using twice the same white-box on different messages,

which would lead him to two signatures using the same nonce, it is proposed to erase the
couple (ri,WBi) once it is used. However, this protection is inefficient against an attacker
having full control over the execution environment. Indeed, such an adversary could
extract a couple (ri,WBi) and use it as many times as he wants. Finding a countermeasure
seems to be a difficult task since a white-box cannot count on secure non-volatile memory
to prevent its use on two different inputs. Hence, this patent does not seem to be applicable
in every context. Furthermore, it implies to store many white-boxes, and thus use a lot
of memory, or to have a regular connection to a server providing new tables.

Table 4.3 summarizes the countermeasures presented in this section. They all prevent
some specific attacks but present limitations in terms of performances and/or security.
While simple automatic attacks may be avoided with a limited cost, an adversary having
full knowledge on the implementation would probably be able to recover the key despite a
combination of countermeasures. More work on the protection of ECDSA in the white-box
model is thus needed.

4.5 Cloud-Assisted ECDSA White-Box
As mentioned at the beginning of this chapter, there is actually one published ECDSA
white-box design [ZBJ20], even though it cannot be used in every context. In that scheme,
the signature is computed with the assistance of a cloud server that helps to enhance
the security by selecting some random values and by performing some of the ECDSA
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Table 4.3: Recap on the countermeasures and their main drawbacks.

Attack type Countermeasures Restrictions

Passive analysis Encoding Not suited for all op-
erations, all proposi-
tions broken.

Masking No reliable source of
randomness, not al-
ways secure with fixed
masks.

Homomorphic encryption Implies implementing
a decryption white-
box or outputting en-
crypted signatures.

Active analysis Redundancy and checks
of consistency

Can be bypassed with
two or more faults.

Joint encodings Difficult to apply to
some values without a
prohibitive cost, may
not prevent all fault
attacks.

Offline r computations Difficult to prevent
two uses of the same
nonce.
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Client TTP Cloudd

{f1, . . . , ft}, {g1, . . . , gt}{T1, . . . , Tt}

Figure 4.1: The ECDSA white-box implementation of [ZBJ20]: initialization.

operations. In this section, we analyze the security of this white-box design. We exhibit
two different and very efficient fault attacks based on a common principle to re-inject some
specific values from one signature execution to another. We also suggest a countermeasure
that prevents both these attacks without impacting the size of the white-box. Only the
performances on the server side are slightly impacted.

The results presented here were published in collaboration with Christophe Giraud
in [GH23].

4.5.1 Zhou et al.’s Construction
In 2020, Zhou et al. published the very first public ECDSA white-box scheme [ZBJ20].
In this proposal, the signature is partly computed on the client device and partly on a
cloud server. The latter is considered semi-honest, meaning that it may try to recover
information on the sensitive variables but stores the data without tempering with it
and honestly executes every operation. The key is fully contained on the client’s side,
preventing the server to learn any information about it, and is protected against a white-
box attacker by the use of encoded look-up tables. As previously mentioned, this method
is not well suited for operations involving a large number of bits, such as those performed
during an ECDSA signature. Here, the size of the tables is kept relatively small thanks
to the use of the Residue Number System (RNS).

The Residue Number System

The Residue Number System (RNS) was introduced in 1959 by Garner [Gar59]. The
idea is to represent an integer x by its values modulo several pairwise coprime integers
{p1, . . . , pt}, that is x = (x1, . . . , xt) with xi = x mod pi. Note that x is uniquely repre-
sented only if we add the condition 0 ≤ x < P with P = ∏t

i=1 pi. Additions, subtractions
and multiplications can then be performed on the small values xi in order to improve
their efficiency and the final result can be retrieved using the Chinese Remainder The-
orem (CRT). This means that for ⊙ ∈ {+,−,×}, x = (x1, . . . , xt) and y = (y1, . . . , yt),
the integer z = x ⊙ y can be represented by the zi = xi ⊙ yi mod pi for all 1 ≤ i ≤ t.
Furthermore, if 0 ≤ z < P , its value can be retrieved as

z =
t∑

i=1
Pi(ziP

−1
i mod pi) mod P,

where Pi = P/pi.

Initialization

As usually in white-box cryptography, an initialization phase is needed to compute the
tables containing the key. It is considered to be performed in a secure environment by a
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Trusted Third Party (TTP), see Figure 4.1. After receiving the key d from the client, the
TTP will follow these steps:

1. Select a basis for the RNS β = {p1, . . . pt} of pairwise co-prime integers. Some
ECDSA operations are going to be performed modulo P = ∏t

i=1 pi instead of modulo
n, and if some reductions occur, then the resulting signature is not valid. Hence,
the basis of the RNS has to be such that P is sufficiently big, and in our case,
P > n2 + n.

2. Select random permutations fi and gi on Zpi
for 1 ≤ i ≤ t.

3. Construct the tables

Ti(j, k) = f−1
i (j) + g−1

i (k)di mod pi

with di = d mod pi for 1 ≤ i ≤ t and 1 ≤ j, k ≤ pi.

4. Securely send the tables {T1, . . . , Tt} to the client and the permutations {f1, . . . , ft}
and {g1, . . . , gt} to the server.

5. Publish the RNS basis β = {p1, . . . pt}.

Computing a Signature

Once the initialization phase is over, the client and the cloud server can compute a sig-
nature together. As shown in Figure 4.2, the client starts by sending the hash e of the
message and a point R1 = [k1]G, k1 being a random value corresponding to its share of
the nonce k. The server can then compute the first part of the signature r, that is the
x-coordinate of the point R2 = [k2]R1 = [k1k2]G with k2 its own share of the nonce. It
also computes two values u = k−1

2 e mod n and v = k−1
2 r mod n and represents them in

the RNS basis as (u1, . . . , ut) and (v1, . . . , vt) with ui = u mod pi and vi = v mod pi. Since
these values would allow an attacker to recover the private key, they cannot be sent in
plain to the client, so they are first obfuscated by the functions fi and gi received from
the TTP. The server’s response to the client thus consists of the values r, (u1, . . . , ut) and
(v1, . . . , vt) with ui = fi(ui) and vi = gi(vi) for 1 ≤ i ≤ t. These values are then given as
inputs to the tables Ti stored on the client’s side, yielding

wi = Ti(ui, vi)

= ui + vidi mod pi.

Using the CRT, the client can reconstruct w = u+ vd mod P . Since the basis of the RNS
was chosen such that P > n2 +n > w, there is no reduction in the computation of w, and
w = u+ vd. Therefore, the second part of the signature can be computed as

s = k−1
1 w mod n

= k−1(e+ rd) mod n

with k = k1k2.
The authors of [ZBJ20] argue the security of their scheme against key recovery attacks

by explaining that an attacker knowing only the values of the intermediate variables on
the client side cannot learn any sensitive information. Similarly, an attacker that is only
in the cloud cannot recover the private key.
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Client Cloud

1. e← H(m)
2. k1

$←− J1, n− 1K
3. R1 ← [k1]G

e, R1

4. k2
$←− J1, n− 1K

5. R← [k2]R1
6. r ← xR mod n
7. If r = 0, then abort
8. u = (u1, . . . , ut)← k−1

2 e mod n
9. v = (v1, . . . , vt)← k−1

2 r mod n
10. For i in J1, tK :
11. ui ← fi(ui)
12. vi ← gi(vi)r, {ui, }i≤t,

{vi}i≤t13. For i in J1, tK :
14. wi ← Ti(ui, vi) = ui + vidi mod pi

15. w ← CRT (wi) = u + vd mod P

16. s← k−1
1 w mod n = k−1(e + rd) mod n

17. If s = 0, then abort
18. Return (r, s)

Figure 4.2: The ECDSA white-box implementation of [ZBJ20]: signature
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Resisting Code-Lifting Attacks

Zhou et al. also propose a slight modification of their scheme that allows to resist simple
code-lifting attacks, that consist in stealing the code and copying it on another device
in order to use it to encrypt chosen plaintexts. The idea is to bind the implementation
to a specific device by using its unique identification information I. The tables are then
constructed as

Ti(j, k) = f−1
i (j) + g−1

i (k)di + Ii mod pi

with Ii = I mod pi. We then get w = u + vd + I mod n and the second part of the
signature is computed as

s = k−1
1 (w − I) mod n.

Of course, the value I should not be stored in plain in the code but rather extracted from
the device for each signature.

Despite the apparent robustness of this solution, we will show in the next section that
this white-box implementation can actually be broken if the attacker uses fault attacks.

4.5.2 Two Fault Attacks
Both our fault attacks require the adversary to observe the computation of three signatures
and fault two of them. The first attack is more efficient but it requires to force the value of
the hash to zero, which could be detected by the server. On the contrary, the second one
is impossible for the server to detect. For the sake of simplicity, let us first describe the
attacks on the version of Zhou et al.’s scheme described in Figure 4.2 that is not protected
against code-lifting.

The Null Hash Attack

A first idea to break the protocol is based on the fact that when the hash is null, that is
e = 0, we have ui = 0 for all 1 ≤ i ≤ t, so one can obtain ui = fi(0) when observing the
exchange between the server and the client. This attack requires the adversary to ask for
three signatures. In the following, we denote by x(j) the value of x obtained during the
jth execution for 1 ≤ j ≤ 3. For example, e(2) is the hash value of the second execution.
Here are the steps that an attacker has to follow in order to retrieve the private key:

1. During a first execution, fault the hash value in order to obtain e(1) = 0 and store
u

(1)
i for all 1 ≤ i ≤ t. The fault can either be done during Step 1 of the protocol,

see Figure 4.2, or during the hash transmission from the client to the server;

2. During a second execution, store the values w(2) = u(2) + v(2)d and vi
(2) for all

1 ≤ i ≤ t;

3. During a third execution, re-inject the values u(1)
i and v(2)

i in order to obtain w(3) =
v(2)d mod P ;

4. Compute k(2)
2 = e(2)(w(2)−w(3))−1 mod n and recover d as shown in Equation (4.1).

This attack is very efficient but it has a small drawback: the server could detect that the
hash value was forced at zero. We now discuss another attack that cannot be detected
by the server.
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The Greatest Common Divisor Attack

Another solution for the adversary to recover the private key is to fix the values ui during
several executions so that the differences of the w(j) give multiples of d. The adversary
may then recover the private key by computing a greatest common divisor (gcd). In the
following, we denote by a∧ b the gcd of two variables a and b. The attack consists of the
following steps:

1. During a first execution, store the values w(1) = u(1) + v(1)d mod P and u
(1)
i for all

1 ≤ i ≤ t;

2. During a second execution, change u(2)
i into u

(1)
i for 1 ≤ i ≤ t in order to obtain

w(2) = u(1) + v(2)d mod P ;

3. During a third execution, change u
(3)
i into u

(1)
i for 1 ≤ i ≤ t in order to obtain

w(3) = u(1) + v(3)d mod P ;

4. Compute a = w(1) − w(2) = (v(1) − v(2))d mod P ;

5. Compute b = w(1) − w(3) = (v(1) − v(3))d mod P ;

6. Compute D = a ∧ b = α× d with α = (v(1) − v(2)) ∧ (v(1) − v(3));

7. Brute force the value of α.

Note that we are able to compute the gcd of a and b because there is no reduction modulo
P in the computations of w(1), w(2), and w(3). This is due to the fact that P is greater
that n2 + n. Furthermore, the last step of the attack is possible only if the value of α
is relatively small. If we model v(1) − v(2) and v(1) − v(3) as two independent random
variables in {1, . . . , n}, the probability of their gcd being large is very low. Indeed, it is
shown in [DE04] that if x and y are two random variables in {1, . . . , n}, then for all α in
{1, . . . , n} we have

P(x ∧ y = α) ≈ 6
π2α2 . (4.3)

Especially, we deduce from Equation (4.3) that the probability of our two variables being
co-primes, that is α = 1, approaches 0.61. Hence, our attack theoretically succeeds with
probability 0.614 without the brute-force step. Also from Equation (4.3), one can compute
that we reach a 99% success rate4 if we test all the α from 1 to 62.

As mentioned previously, the authors of [ZBJ20] also propose a slightly modified ver-
sion of their scheme where an identification information I is added in the tables in order
to resist code-lifting attacks. Interestingly, both our null hash and greatest common di-
visor attacks also apply to this version without any modification since in both cases we
subtract two values of w obtained during two different executions, thus getting rid of I.

Our work proves once again the difficulty of securing an ECDSA white-box against
fault attacks, even with the help of a cloud server.

4Note that to increase these success rates, one can also use other multiples of the key d. For instance,
we have b− a = (v(2) − v(3))d. In the sixth step of the attack, the computation of D is then replaced by
D′ = (a ∧ b) ∧ (b− a) = α′d with α′ = ((v(1) − v(2)) ∧ (v(1) − v(3))) ∧ (v(2) − v(3)) ≤ α.
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4.5.3 Experiments
We implemented both the null hash attack and the greatest common divisor attack in
Python with the parameters given as example in [ZBJ20, Table 2]. In particular,

β = {97, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193,
197, 199, 211, 223, 227, 229, 233, 239,
241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337,
347, 349, 353, 359, 367, 373, 379, 383,
389, 397, 401, 409, 419, 421, 431, 433,
439, 443, 449, 457, 461, 463, 467, 479}

and

n = 0x800000000000000000000000000000016288AEDF18093517F7A3E3CFF023CBFF .

While the null hash attack always succeeds, the greatest common divisor attack is
possible only if α is small. To confirm that this happens with a very high probability,
we attacked 50 000 different white-box instances (with different private keys), stored the
values of α that we encountered and computed accordingly the probabilities to recover
the private key depending on the effort we set for the brute force on α (see Figure 4.3).

If one fixes the limit for the brute force at 5 (resp. 58), he has a probability close
to 0.9 (resp. 0.99) to recover the private key. Hence, the attack is very efficient. These
results are coherent with the theoretical results of [DE04].

Figure 4.3: Probabilities of success for the greatest common divisor attack depending on
the limit set for the brute force on α. These are computed over 50 000 executions.
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Client TTP Cloudd

{h1, . . . , ht}{T ′1, . . . , T ′t}

Figure 4.4: Modified initialization.

4.5.4 Proposition of Countermeasure
The null hash attack presented in Section 4.5.2 requires the adversary to set the hash
value to 0 during an execution. This could be detected by the cloud but a signature for
e = 0 must be supported [DSS23]. In order not to disclose the values ui that are necessary
for the attack, one can store in advance some valid signatures for e = 0 on the client side
before making the server abort the protocol when a null hash is given. However, such
a solution cannot be implemented against the greatest common divisor attack since the
hash does not have to take any specific value. We thus propose a better solution, that
actually prevents both attacks.

The null hash attack and the greatest divisor attack both rely on the fact that it is
possible to fault the values ui without perturbing vi and vice-versa for all 1 ≤ i ≤ t. A
countermeasure against these attacks is thus to bind them together, following the principle
of joint encodings. We note ℓi the bit size of pi, that is ℓi = log(pi). Let qi be such that
qi = 22ℓi − 1 for all 1 ≤ i ≤ t. Also, let x[k] be the k most significant bits of x and x[k]
be the k least significant bits of x. We propose the following slight modifications of the
scheme (see Figure 4.4 and Figure 4.5):

• Instead of two sets of permutations {f1, . . . , ft} and {g1, . . . , gt} with each of the fi, gi

on {1, . . . , pi}, the TTP generates a unique set of bigger permutations {h1, . . . , ht}
with hi on {1, . . . , qi}.

• The TTP then constructs the tables T ′i as

T ′i (j) = h−1
i (j)[ℓi] + h−1

i (j)[ℓi]di mod pi .

• Instead of {u1, . . . , ut} and {v1, . . . , vt}, the server computes and sends {x1, . . . , xt}
with xi = hi(ui∥vi) for 1 ≤ i ≤ t.

• The client computes wi = T ′i (xi) = ui + vidi mod pi for 1 ≤ i ≤ t.

With these modifications, it is not possible anymore to select a value for ui without
impacting vi and the attacks presented in Section 4.5.2 do not work.

This countermeasure comes with a small overhead. In the TTP’s side, bigger permuta-
tions have to be selected, which induces an overhead in both time complexity and memory
consumption. The same is observed for the server that has to store a permutation twice
as big. However, the interesting thing is that nothing changes on the client side since the
size of the tables remains the same. Indeed, instead of taking two inputs of ℓi bits, the
tables takes one input of 2ℓi bits which does not make a difference.

4.6 Conclusion
In this chapter, we presented a variety of simple automated attacks against ECDSA white-
boxes and studied their efficiency on the challenges from the WhibOx 2021 contest. We
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Client Cloud

1. e← H(m)
2. k1

$←− J1, n− 1K
3. R1 ← [k1]G

e, R1

4. k2
$←− J1, n− 1K

5. R← [k2]R1
6. r ← xR mod n
7. If r = 0, then abort
8. u = (u1, . . . , ut)← k−1

2 e mod n
9. v = (v1, . . . , vt)← k−1

2 r mod n
10. For i in J1, tK :
11. xi ← hi(ui∥vi)r, {xi}i≤t

12. For i in J1, tK :
13. wi ← T ′

i (xi) = ui + vidi mod pi

14. w ← CRT (wi) = u + vd mod P

15. s← k−1
1 w mod n = k−1(e + rd) mod n

16. If s = 0, then abort
17. Return (r, s)

Figure 4.5: Modifed ECDSA signature operation.

then discussed various countermeasures that we found in patents, ranging from classical
ones as masking or encodings to more sophisticated solutions as the use of homomor-
phic encryption. We highlighted the advantages and limitations of each countermeasure.
Finally, we showed how to break the only published design with two fault attacks that
consist in re-injecting intermediate values from an execution to another.

Our work shows that securing ECDSA in the white-box model is an even bigger
challenge than the one faced for symmetric cryptography. Indeed, several new issues
are encountered. First, the usual encoding techniques are not well suited for arithmetic
operations on big numbers, so new solutions have to be invented and deployed. Second,
the security of ECDSA is heavily based on the possibility of drawing random values
during its execution, which is difficult in the white-box context. In an attempt to prevent
attackers from fixing them, designers often chose to derive the random values from the
only reliable source of randomness available, that is the input of the white-box. This
solution has the effect of making the scheme deterministic, which, in the case of ECDSA,
opens many efficient attack paths.

In particular, fault attacks can be devastating against deterministic ECDSA white-
boxes. The attack surface is huge as a lot of variables can be altered in order to retrieve
the secret key. Moreover, the white-box context makes the attacker extremely powerful
and may enable him to chose the value of the induced fault or to alter several variables
in a single execution. Usual countermeasures relying on consistency checks can therefore
be bypassed more easily. An interesting future work would thus be to find infective
countermeasures for ECDSA that even a white-box attacker could not defeat.
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Chapter 5

Conclusion

Despite an extensive study for some algorithms such as AES, the existence of secure
white-boxes for standard schemes is still an open problem as every published design is
currently broken. This has led companies to implement proprietary solutions tailored
to their specific use cases. These implementations are intended to prevent automated
attacks and use code obfuscation as a first barrier to force the adversary to go through a
time-consuming reverse-engineering process before attempting to identify vulnerabilities.
Nevertheless, even preventing automated attacks can be challenging, particularly so when
one wants to preserve the program’s normal input/output behavior for interoperability
purposes. Indeed, there exists a large variety of threats, including side-channel and fault
attacks inherited from the grey-box model which become even more powerful in the white-
box context.

For some use-cases, it may be possible to implement additional security features
through the application itself. For instance, one could add authentication mechanisms
or regularly update the secret key so that the number of executions observable by the
adversary is limited. Consequently, the most dangerous attacks in practice are the ones
that can be automated and require a reduced number of white-box executions on random
inputs. We believe that studying such attacks alongside practical countermeasures is of
significant interest, making it the primary focus of this thesis.

In this work, we concentrated on two standard and widely-used cryptosystems: AES
and ECDSA. After providing a brief overview of the current state-of-the-art on AES
white-box implementations, we proposed a new square-like attack that advantageously
requires very few executions on random plaintexts. We then studied side-channel attacks
and in particular the protection provided by internal encodings. While it was of common
knowledge that an AES implementation protected by small random bijections could be
broken by a Differential Computation Analysis (DCA) with high probability, the question
of the existence of a particular class of encodings that could actually prevent the attack
was still open. In this thesis, we answered it negatively. We showed that the correlation
between predicted values and trace points actually depends on the Walsh spectrum of the
used encodings, and although selecting bijections with only small Walsh transforms could
prevent a classical DCA, it is still possible to break the implementation with a variant
of the attack. Internal encodings are therefore insufficient for the protection of AES
white-boxes against side-channel attacks, whether drawn at random or carefully crafted.

We then turned our attention to ECDSA and highlighted the inherent additional
complexities of the scheme. Although very little studied to this day, ECDSA white-
boxes are crucial for the industry and solutions are already deployed on the field. This
contradiction motivated the 2021 and 2024 WhibOx contests, affiliated to the CHES
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workshops, which were organized to encourage practical research from both designers’
and attackers’ perspectives. In this thesis, we described several efficient attacks and in
particular those executed by the team who broke the highest number of challenges during
the 2021 edition, TheRealIdefix, which we were part of. We showed that fault attacks
are particularly devastating when the ECDSA white-box is deterministic, as most of
the ones implemented during the contest. Additionally, we provided an overview of the
design of the two winning candidates. While theoretically interesting, the countermeasures
employed were insufficient to thwart all automated attacks.

In the subsequent part of the chapter, we thus studied the only other source of in-
formation that is publicly available on standard ECDSA white-boxes: the patents that
were filled by some companies. Of course, patents may omit crucial details on the im-
plementation or the security model, but they remain valuable sources of information on
implemented methods in the field. We thus exposed in this thesis the main ideas to
counteract the various attacks that can be applied to ECDSA white-boxes, emphasizing
their advantages and limitations in terms of performances and security. We investigated
existing countermeasures against both passive and active automated attacks and showed
once again that it seems difficult to forestall all threats without a prohibitive memory
cost.

Finally, our last contribution is the first attack on the only published ECDSA white-
box design from Zhou et al. Since it requires the help of a semi-honest cloud server
during each signature computation, this scheme cannot be used in every context but
should be easier to secure. The key, fully contained on the client’s side, is protected with
encoded look-up tables which size is kept relatively small thanks to the use of the Residue
Number System (RNS). We showed that it can be efficiently recovered by an attacker
inducing faults into the computations. More precisely, we presented two different attacks
that involve re-injecting specific values stored during a previous execution in a new one.
What differentiates them is that the first attack can be detected by the server while
the other cannot but is a little less efficient. We also proposed a countermeasure based
on joint encodings that prevents both attacks and advantageously does not impact the
performances on the client’s side nor the input/output behavior.

To conclude, this thesis aimed to advance the research on practical white-box cryp-
tography by studying attacks that could be performed by real-life adversaries on AES or
ECDSA implementations, and countermeasures that are not in contradiction with indus-
trial needs. Specifically, the attacks we discussed require very few white-box executions
and most can be automated and/or applied on random inputs. The countermeasures
we considered are practical in terms of performances and do not alter the input/output
behavior of the algorithms. We also provided new insights into the protection offered by
internal encodings, one of the most widely deployed countermeasure, against DCA, one
of the most efficient and well-known attacks in white-box cryptography.

Future research directions

New countermeasures againt DCA. Since we show that no class of small encodings
could efficiently prevent side-channel attacks on AES white-boxes, it would be of high
interest to find other countermeasures that do not require drawing random variables
during the execution of the algorithm and that could, potentially in combination with
encodings, make DCA fail.
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Practical implementation of AES. We argue in this thesis that even though there
is currently no public implementation of AES that is secure in the theoretical white-box
model, some of them can be used to achieve practical security in some contexts. We
believe that it would be interesting to develop a design that intends to protect the secret
key against a very specific weakened attacker. For instance, one could consider that the
adversary cannot execute the code himself and thus has a bounded number of executions
to observe and/or alter. Preferably, such a design should not rely on external encodings
or any other countermeasure that modifies the input/output behavior of the algorithm.

WhibOx 2024 and ECDSA white-boxes. We have seen that for several reasons,
protecting ECDSA in the white-box model seems particularly challenging. More research
on this subject is therefore needed to achieve even practical security against automated
attacks. With the WhibOx contest being held once again in 2024 and still targeting
ECDSA, a first step would be to try to submit an implementation that is immune to all
the attacks mentioned in this thesis and could stay unbroken for a long period of time.

Other (post-quantum) standards. Finally, another research direction would be to
study the white-boxability of other standard asymmetric schemes. In particular, it would
be of high interest to find a secure design for a post-quantum algorithm such as the
Module-Lattice-Based Digital Signature Standard (ML-DSA, [ML-23]).
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Appendix A

Generating Encodings with Bounded
Walsh Transforms

Randomly drawing bijections is an inefficient method for obtaining encodings with only
small values in their Walsh spectrum, particularly so when the encoding size increases
(see Figure A.1). Therefore, we needed to develop an algorithm to generate permutations
with bounded Walsh transforms for testing purposes. In the following section, we discuss
the techniques we employed.

Let us represent an n-bit encoding by a table of 2n × n bits, where the ith row is the
binary representation of the encoded value of i, as in Figure A.2. In order to generate
a random encoding with bounded Walsh transforms, we construct its table one column
at a time. The general idea is to construct a tree for each column, with each node
corresponding to a bit being set to 0 or 1. As we traverse each branch of the tree, we
check the validity of the partially completed column. Based on the outcome, we either
prune the branch and backtrack to the previous node or continue forward by randomly
deciding another bit.

We now need to explain how to check the validity of a column. Let us start with
the generation of encodings with a null Walsh spectrum, which are the most challenging
to obtain. We aim for each column, representing a bit of the encoded values, to be

Figure A.1: Percentage of n-bit encodings having a given maximum absolute value in their
Walsh spectrum over 10 000 000 random draws. The left (resp. right) figure corresponds
to n = 4 (resp. n = 8). For the 8-bit case, we did not get any encoding with a maximum
absolute Walsh transform less than 16.
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Figure A.2: Representation of the 3-bit encoding {5, 0, 6, 3, 2, 7, 1, 4}, with plain values
on the left and encoded ones on the right. Note that this encoding has a null Walsh
spectrum.

uncorrelated to each column of the identity permutation, representing the bits of the
plain values. In other words, once the tree has been fully traversed, for each column xi

of the identity permutation and each column yj of our n-bit encoding, we want to get
HW (xi · yj) = 2n−2, where 0 ≤ i, j < n, and · denotes the coefficient-wise logical and.
This requirement also applies to the columns x′i of the identity permutation’s complement.
At each node of the tree for column yj, we thus compare HW (xi · yj) and HW (x′i · yj) to
2n−2 for all 0 ≤ i < n. If any Hamming weight exceeds the threshold, then we prune the
branch. If they are all strictly below the limit, then we randomly select another bit and
follow the corresponding branch. Finally, if equality is achieved, we set the necessary bits
to keep the column’s validity before continuing the process.

Once the first column has been fully generated, an additional challenge arises for the
subsequent ones. Since we want the encoding to be a permutation, each row must be the
binary representation of a distinct value. Consequently, a combination of valid columns
does not necessarily form a valid encoding. For instance, selecting the same column twice
obviously leads to a dead end. Therefore, when generating a column, we take the previous
ones into account and ensure that each partial row appears the correct number of times.
For example, when generating the second column of a 3-bit encoding, one has to ensure
that the partial rows 00, 01, 10 and 11 appear exactly twice. Experimentally, we found
that when this requirement is satisfied, a number k < n of generated columns seems to
always be extensible to a full permutation with a null Walsh spectrum, so we never need
to backtrack and modify previously completed columns.

The process for generating encodings with small non-zero Walsh transforms is very
similar, the only difference being slightly modified correlation constraints with different
values allowed for the Hamming weight of the columns.
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Appendix B

WhibOx 2021 Attacks Summary
Table

For each challenge submitted to the WhibOx 2021 contest, we show in Table B.1 which
attacks were successful and give the value of the corresponding key. During the contest,
we broke 92 out of 97 challenges. The 5 remaining ones have been broken a posteriori.

Table B.1: Vulnerabilities of the various challenges.
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3 ✓ ✓ ✓ ✓ 45189C81EADEE03202BFA06EAA15831789F0C76575508A563E1A739CA37B87BE

4 ✓ ✓ ✓ ✓ 22BEF7AC4C31B2B98227D95B5EB49AF23343004CF2713FED48BEC3B5B7C3D24D

8 ✓ ✓ ✓ ✓ F484955872415A32B1B5B731EA1A8C729458055C17DC5FE9C57BCB39D1A40BFE

10 ✓ ✓ ✓ ✓ 32D67733DF0D0257DA78E92752494CFD5112E303BA1413388126EA33BB60AEFC

11 ✓ ✓ ✓ ✓ E7F3287D91B528D78BF19D5E62828C845E1A4027A3E1F988B62B7407EBF5CF38

12 ✓ ✓ 773F0C0FFACB531F50FAE0987D2B8972FE1B9231BBF46859F475BAFB45257FED

13 ✓ ✓ 034332A23341538143FDB88F314FD942501FF8B6BA6A14D5013F1FC0984924BE

15 ✓ ✓ 3F77C51259E1C8CC48217A66998CCF3212A17120B0FCA09163E300576DFCD9E7

16 ✓ 23773F0BECFACB534250FAE0987D2B8969D1AFD7EF942F148746DC73A3C6B39A

32 ✓ ✓ ✓ 32D67733DF0D0257DA78E92752494FFD5112E303BA14133FF126EA33BB60AEFC

33 ✓ CD9540B70C2F92B2894594CABC4E724203A615B9144C459714758BC3CAA12242

34 ✓ ✓ ✓ 70253E6587D04D7A9A30A1461A80FCD235B28FBFC11FE8534CDFCE0A341C9257

36 ✓ 10D7EF92F06DF6EB94F2F344085DAD51D3A550E24A4569922460F579CB5DF11A

38 ✓ 70C3A9F11773C8DD795FD7942B5DB448FDFA5D12E6EC387691A19B6E523AE6AE

42 ✓ 1BEDDC1DD79F8856BF2E1FD66EB194073D60FEC658C5D0E2C8BAE02DC72ADF65

44 ✓ B519BB44EC5BF3380CB2DF555F39ED836CDBF4961E43A66C218FADB211BF468C

45 ✓ ✓ ✓ ✓ 32D67733DF3D0257DA78E92752494FFD5112E303BA14133FF126EA33BB60AEFC

50 ✓ 7A7AA97370B1EE16D64C71C7C5BC8C9F9456FBEA603780883399D89DA43F8A15

54 ✓ ✓ ✓ ✓ 32D67733DF3D0257DA78E92752494FFD5112E22222222222F126EA33F6E49790

55 ✓ ✓ ✓ ✓ 00498594859849584954E92752494FFD5112E2222222EE22F126EA33F6E49790

57 ✓ ✓ ✓ ✓ 7D1BBD475A8EB5AF7DDB238CD8A67F86B601E0EA101C04036849B31F96CA6083

58 ✓ ✓ ✓ BD3026C700A75B5970807802E2B47C2A892DF85E3CE57366D335EEBABCAAE255

61 ✓ ✓ ✓ F4DDC95A88146CF52DEC752E737F8E3FB16AE4F6B7E726068946F3B0BA0C8E95

62 ✓ ✓ ✓ 0A99EB20F9DE4DD7607288B8B766F6217FE5D2CE6DDD51C6159941066AF192ED

66 ✓ ✓ ✓ 8836AC84AA148440A20628810CA65EB038BB625841275CC11590D8F5BC7F1BAC
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70 ✓ ✓ ✓ 21A35C57E23B2D23ADDA19EA30325F1B532DA645489E29E47A13E92CA1F6670C

71 ✓ ✓ ✓ 588BEED930355AF54EEBAFAA46A7D26DA378A36EF5CD15D1F876D753A395F8AF

72 ✓ ✓ ✓ B7A9B0F7661FC9A1DEC001F2C2C9EAE08748AEB187E1247726663E3DD1AB36BF

73 ✓ ✓ ✓ 4DAA29CBD634F28137499B9557104FDD36D4D4EFDFE87EFC0D8BD03555F8497F

74 ✓ ✓ ✓ 12691AAC55A079F529FE81205DF775EF297A14CA81499BF0857643E694CF8816

76 ✓ ✓ ✓ F5178EEC7A9779E13CE01B35C8264BF32C094B172051CA32156DC61485718318

77 ✓ ✓ ✓ A0543814F86D1C4AF6A08094CD0246F606F7E76CEE47EC052B62328038146D93

78 ✓ ✓ ✓ 511128DCBF369E985B99D07CC1668A2D28F4BA535CF7AC7926D4C5F696C3D35F

79 ✓ ✓ ✓ 595AD4C8A0EB2FDA798BC01D322F4C5ED098A2E749004B2B54FD815215F46686

80 ✓ ✓ ✓ 8E938EA9BE9E51A28DFD30BD6EDB9D6765C1272B8F7048CE81021194759C3E52

81 ✓ ✓ ✓ F134975C5A989635F1D9FA7469C848A953622E9DA1BED7E12455DCD2AFA070BE

84 ✓ ✓ ✓ 36A990B9F35B79934FB25C64681DE3A83FC178DC2383C585FFCFDDD7C1F6C2B7

85 ✓ ✓ ✓ ✓ AB700D75274336FD26A1FE49D400ACEAE89F0FDBFE4BDE9A70373CA693003CA8

87 ✓ ✓ ✓ 9A4D4A94A1FE0FA1C559764C85D06496BD752498E0B5A2459624211013B9A088

89 ✓ ✓ C80682FCB2D78B2515A70A70D17C47A8512E24A127E797C073566D54586B9482

94 ✓ ✓ A04B6199A1DFE39EF35F6302454D71C872771A2F02A27AB5EC8130DA226F6F90

96 ✓ ✓ AFAAABE59B2EBB4FE15274E4EB5D1999C0554CC2D498BC92C59A3F6CD8FE2BC0

97 ✓ ✓ ✓ ✓ 0754CA8EA936675EC3F64782A14E1A75B3D357044D4B2C434C6011279D17E829

100 ✓ 7F58EDB783C1F3FA7FF424CF7F5DF6D4BCDCF18D8A98CE4559EC22EB17030578

101 ✓ 25D31D3AFF5773799ECF43DEC1882B8F05D9231697BDDA5482DE05B14FB8A63B

103 ✓ ✓ CC977E0748722D615B845C1B10EA554B69DFCA640440CA5C468BBEF84B8C0442

104 ✓ ✓ ✓ 638C9DFBF9F376CBB3E3B01DF27960EC53A689D2FF4DFF23D97EE5351ED4A3D0

105 ✓ ✓ ✓ D29E9D130016D930BF830BCAD071BC6503F877FB207922A9E495CF71A79631FE

107 ✓ ✓ ✓ 4E420B6AA9E9F07F19CF7ED97497871C1223BC2A68E83716575C235DE6D63E17

108 ✓ 60609404F0B9086D3A995AF0680D048724CF2B1AF2B33CEA8DD4AF4B62A5DDBB

114 ✓ ✓ ✓ 0000000000000000000000000000000000000000000000000000000000000005

127 ✓ 1144D82B9568581405D10CF8B219FF7E94E4559E0832B06056F1F87D43C75777

135 ✓ ✓ ✓ ✓ 0C2A5692FE1A7F9B8EE7EB4A7CD59CD62BCE33576B3123CECBB6406837BF51F5

136 ✓ ✓ ✓ 0C2A5692FE1A7F9B8EE7EB4A7CD59CD62BCE33476B3123CECBB6406837BF51F4

139 ✓ ✓ ✓ 000000000000000000000000000000004319055358E8617B0C46353D039CDAA9

153 ✓ ✓ 9C29EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875C3

157 ✓ ✓ ✓ ✓ F04DBFD1147F9D43747538C1C9256DD2BC20562F9D92B83E9AFA751299B160A4

165 ✓ ✓ ✓ 84DAF8B6620FC6669BF1EE264D1B214A4FBECACEADDFDC0DCBC89CF4B6E3232B

166 ✓ ✓ C746740A4A6BCBD462D9041023A0FEF5CCF0328FF80D9C50132682030D77D33C

172 ✓ ✓ ✓ 285E57F7BDDAAA6201D8870A0B9B168C7A5D8200085F62504EE3EBFCC11EF150

174 ✓ ✓ ✓ ✓ 9C29EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC

185 ✓ ✓ ✓ ✓ 7729EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC

187 ✓ ✓ ✓ ✓ 7779EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC

192 ✓ 09302BDFA5313312B9A665316F7E9365DCC57DA7E21FD8612CDCD553BABB51FE

193 ✓ E0FE06BE0684455EDD2F5134A3AE8B9F6852561C821672FA16606986233BF811

209 ✓ 6E3A09F8EC613B8A524F7608CB80B2D3C510E27506AD84FA14C3B6D018E659F7

212 ✓ D663E156F036F11D4E73CC0EC09A952DEAED316947DF73EB28467EC623C5740D
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2261 6F1D9093F3D5AE7C5F133659295914C9AF22E54B4ADE38CA421CA9BBD3D48A50

227 ✓ ✓ ADA6C6A1049825989811C9495D83681A68C67AB5E8EBDDC126CEE77056A7BB27

228 ✓ EA7BA345EB9D99F54261D01AE6319B184769E5745621706D77018E0DB46DDAFA

231 ✓ ✓ ✓ ✓ 8ADE24EE6413C6E408784DBB4D81D04F33238AB503CBE35C77400517EE5ABC96

235 ✓ ✓ ✓ ✓ 000000000000000000000000000000000000000000000000D0FACADE0DEFACED

251 ✓ ✓ ✓ DDE098A74086ECBB4DBA1848511BEA924145D1A9ED2EC9E64E0C5934BAAC97AE

253 ✓ ✓ B22DB44C9E66D567B3B2CBB3C720309D1EEAD38717017F5E79F05274F289A52C

256 ✓ F1662664E7E303740C0CA3927F9870A789978DAE95892302E73C85E3993B4CC9

261 ✓ ✓ 3266C9F6379DFDAE4AA763E8E6BA94526504CA364C482306829D4BF1E97BFF92

262 ✓ A0F00DCAA5DAB169FD4DFE2186BCBCBD22631AB68BFEFF1FC19306174EAF8970

264 ✓ D0EE17829A397C18074EA3888057AE815B5336773F9668E6CE4464D4B2B05F1F

267 ✓ ✓ ✓ ✓ C17536B60BCF94326A9C8CA17E0FC4EDBD76822532B350E8237CA2D8CF9C74B0

274 ✓ ✓ ✓ ✓ 0080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080

283 ✓ 79FE8D884DC2F7440824DE79C9F7C513C2B4549631D343523C73CB8F85983A4F

299 ✓ ✓ ✓ ✓ 3A0F803A874CD5B826023F2073FF200371D399E76E66B05E1241AA787B0564D6

304 ✓ EE8942A527CA1A58B8A8EA369441CB8518836DDB98F6380B8008B6053BC8182C

305 ✓ 311EA92FBCDD3C6A29D269589A9E71F13A231FFEC85FF36B398967EC9934805E

307 ✓ ✓ FA3FCDE70679E7E44391F7157E2B5822F5B9B9C93ADD95C2BA90FF4B95C8A6BB

308 ✓ ✓ 84CCCAA904CB397F41A36FF9E05D4EB6C58B8E203E02373C465B6C3F03280C82

314 ✓ 7E045DB89DD77BD6B2EAF23172A89A656B5084748642DB82BBAE931E737560C2

320 ✓ ✓ ✓ D235C2B1D089F158A0AE4E7799C2DCA9985E3D44C8F243BAD8B5E1A4EB647E1B

321 ✓ ✓ ✓ ✓ BA15757E1B0DB122F349C0C50C97071A4CFFF4FD2875B4A092FBDD985E8595DE

323 ✓ ✓ ✓ ✓ C7491BBC530FFA9DDCF3E7D732536FACF04239693D549C50DDAD41931A6244C2

325 ✓ ✓ 6902CD65AE124A45B9DD16BAEFD26D9CFFB5C291DC1E256D9CCE17BE3CF11775

327 ✓ 2BC6F2467C7F8DFA164EDC68DDCF65E795B8A2153182565481D8D6878D80EA81

328 ✓ 37170CF851A89AAFD3511234BE2B96C89B783A44D7A6C22E9A150872809F7CDF

335 ✓ EC90CC12DC70E3C5A7D47B6083A988F3F6C6B2B63EB0D8991F84B19E21ACC061

3361 D2E2AE325946DDADC9A67A2DFE8EE74065D8D39968707F5D818D7B62910894EA

345 ✓ 3266C9F6378DFDAE4AA763E9166B131E6514CA364C482306829D4BF1E97BFF92

346 ✓ 5EE43950837D0ABA419FE5B586D1A7AA44DDAAC6327DADC3133F18A850211B9F

1This challenge has not been broken by our automatic tools so we have used reverse engineering
techniques.
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