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Quantiles multivariés et transport optimal régularisé

Résumé : L’objet d’intérêt principal de cette thèse est la fonction quantile de Monge-
Kantorovich. On s’intéresse d’abord à la question cruciale de son estimation, qui revient
à résoudre un problème de transport optimal. En particulier, on tente de tirer profit de la
connaissance a priori de la loi de référence, une information additionnelle par rapport aux
algorithmes usuels, qui nous permet de paramétrer les potentiels de transport par leur sé-
rie de Fourier. Ce faisant, la régularisation entropique du transport optimal permet deux
avantages : la construction d’un algorithme efficace et convergent pour résoudre la ver-
sion semi-duale de notre problème, et l’obtention d’une fonction quantile empirique lisse
et monotone. Ces considérations sont ensuite étendues à l’étude de données sphériques,
en remplaçant les séries de Fourier par des harmoniques sphériques, et en généralisant
la carte entropique à ce cadre non-euclidien. Le second objectif de cette thèse est de
définir de nouvelles notions de superquantiles et d’expected shortfalls multivariés, pour
compléter l’information fournie par les quantiles. Ces fonctions caractérisent la loi d’un
vecteur aléatoire, ainsi que la convergence en loi, sous certaines hypothèses, et trouvent
des applications directes en analyse de risque multivarié, pour étendre les mesures de
risque classiques de Value-at-Risk et Conditional-Value-at-Risk.
Mots-clés : Quantiles régularisés, Transport entropique, Données sphériques, Superquan-
tiles

Multivariate quantiles and regularized optimal transport

Abstract: This thesis is concerned with the study of the Monge-Kantorovich quantile
function. We first address the crucial question of its estimation, which amounts to solve
an optimal transport problem. In particular, we try to take advantage of the knowledge
of the reference distribution, that represents additional information compared with the
usual algorithms, and which allows us to parameterize the transport potentials by their
Fourier series. Doing so, entropic regularization provides two advantages: to build an
efficient and convergent algorithm for solving the semi-dual version of our problem, and
to obtain a smooth and monotonic empirical quantile function. These considerations are
then extended to the study of spherical data, by replacing the Fourier series with spheri-
cal harmonics, and by generalizing the entropic map to this non-Euclidean setting. The
second main purpose of this thesis is to define new notions of multivariate superquantiles
and expected shortfalls, to complement the information provided by the quantiles. These
functions characterize the law of a random vector, as well as convergence in distribution
under certain assumptions, and have direct applications in multivariate risk analysis, to
extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk.
Keywords: Regularized quantiles, Entropic optimal transport, Spherical data, Superquan-
tiles
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Résumé substanciel en français

Quantiles multivariés

La fonction quantile est un outil fondamental en statistiques, idéal pour décrire
et caractériser une distribution de probabilité, utile depuis l’analyse descriptive
jusqu’à des outils de régression, [100], ou des méthodes d’analyse robuste, [93]. La
question de la définition des fonctions quantile et de répartition pourrait sembler
triviale au lecteur familier avec les concepts univariés. Pourtant, ce qui est connu
en dimension d = 1 ne se généralise pas d’une unique manière quand d > 1, en
l’absence d’une relation d’ordre canonique. Pour ce qui est de la droite réelle R,
une variable aléatoire X de fonction de répartition F (x) = P(X ≤ x) admet pour
fonction quantile

Q(α) = inf{x : F (x) ≥ α},

pour α ∈ [0, 1]. En d’autres termes, une observation x égale le quantile d’ordre α
si la proportion de données inférieures à x égale α, ce qui demande, en pratique,
d’ordonner les observations de gauche à droite. Les quantiles fournissent ainsi une
information de centralité, illustrée par la boîte à moustaches, comme en Figure 1,
qui donne une région centrale contenant 50% des observations.

Figure 1 – Jeu de données réel et boîte à moustaches associée.

Toutefois, cette définition pour des données dans R ne s’étend pas directement
à des distributions multivariées. Pour d > 1, l’espace Rd n’est pas muni d’une
relation d’ordre canonique : il existe plusieurs manières satisfaisantes d’ordonner
des vecteurs aléatoires, chacune avec ses atouts et limites. Pour une vue d’ensemble
de différentes approches, des références instructives sont [87, 156]. Une fonction de
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répartition d’un vecteur aléatoire (X1, · · · , Xd) peut être définie par

F (x1, · · · , xd) = P(X1 ≤ x1, · · · , Xd ≤ xd).

Néanmoins, puisque F : Rd → [0, 1] n’est pas inversible, ceci n’est pas associé à
une fonction quantile multivariée. À l’inverse, le concept de profondeur statistique
[169] préfère un ordre du centre vers l’extérieur, jugé plus naturel pour un nuage de
points en l’absence de contexte supplémentaire. La Figure 2 illustre la profondeur
de Tukey [169] sur un échantillon Gaussien bivarié.

Figure 2 – Contours de même profondeur de Tukey, [169], dans R2.

Une liste de critères désirables pour une fonction quantile multivariée Q est
proposée dans [156] sous forme de plusieurs questions, que nous reprenons ici.

(Q1) Existe-t-il une interprétation probabiliste analogue au cadre réel ?

(Q2) Est-il possible de formuler des statistiques descriptives de centralité, comme
la médiane ou les moyennes tronquées ?

(Q3) Est-il possible de formuler des statistiques descriptives de dispersion ?

(Q4) Est-ce que Q satisfait des propriétés d’invariance convenables ?

(Q5) Peut-on construire des tests statistiques efficaces pour les hypothèses clas-
siques ?

Les quantiles de Monge-Kantorovich, construits à partir du transport de mesures
de probabillité [33, 87] répondent par l’affirmative à la plupart de ces pré-requis.

Tout d’abord, en dimension d = 1, il est bien connu que la fonction quantile de
ν est solution du problème de transport optimal quadratique entre la loi uniforme
sur [0, 1] et ν, see e.g. [138][Remark 2.30]. La définition des quantiles de Monge-
Kantorovich en dimension d ≥ 2 quelconque étend tout simplement cette propriété.
Il s’agit, en fonction d’une loi de référence µ, de considérer la fonction Q : Rd → Rd

qui transporte µ vers ν de manière adéquate. Pour rappel, on dit d’une fonction
T : Rd → Rd qu’elle transporte µ vers ν, si, pour tout ensemble mesurable B de
Rd, ν(B) = µ

(
T−1(B)

)
, ce qu’on note ν = T#µ. En termes de vecteurs aléatoires,

il suffit d’échantillonner U selon µ pour simuler T (U) selon ν = T#µ.



La première brique dans la construction des quantiles de Monge-Kantorovich
est le choix d’une distribution de référence µ idéale, pour laquelle les points sont
ordonnés de manière naturelle. Par exemple, on peut considérer la loi uniforme sur
la boule ou le cube unité, ou une loi normale centrée réduite. Des régions quantiles
indexées par leur µ-probabilité peuvent alors être facilement définis, ce qui permet
de répondre favorablement aux pré-requis énoncés ci-dessus.

Pour définir des quantiles pour une loi multivariée quelconque ν, il s’agit ensuite
de transporter l’ordre naturel de µ vers ν par une fonction Q : Rd → Rd, qui
joue ainsi le rôle d’une fonction quantile multivariée. Parmi toutes les manières
de transporter µ vers ν, reste à en choisir une unique, en imposant que Q soit le
gradient d’une fonction convexe. D’une part, être gradient d’une fonction convexe
est une généralisation de la monotonie d’une fonction quantile univariée. D’autre
part, la fonction quantile de Monge-Kantorovich est ainsi bien définie de manière
unique pour n’importe quelle distribution ν, par un théorème de McCann, [121].

La Figure 3 illustre l’ordre induit par ces concepts, en prenant pour référence
la loi sphérique uniforme µ = Ud définie par le produit RΦ entre les variables
aléatoires indépendantesR et Φ, tirées uniformément sur [0, 1] et sur la sphère unité,
respectivement, [33, 87]. Pour une telle loi, les régions quantiles d’ordre α ∈ [0, 1]

sont les boules de rayon α. En Figure 3, les rayons en rouge et les cercles en bleu
sont transportés depuis la boule unité vers un jeu de données quelconque par la
fonction quantile de Monge-Kantorovich. Puisque la définition de [33, 87] requiert
que Q#µ = ν, l’ordre centre-extérieur s’adapte naturellement à la géométrie du
support sous-jacent, même s’il n’est pas convexe.

Figure 3 – (Gauche) quantiles d’une loi de référence et (droite) quantiles de
Monge-Kantorovich d’une loi discrète ν obtenus par Q#µ = ν.

La première question (Q1) est relative aux régions quantiles de ν, qui doivent
être indexées par leur ν-probabilité. En d’autres termes, une région quantile d’ordre
50% doit contenir la moitié des observations, comme pour la boîte à moustaches,
en Figure 1. Les régions quantiles Cα = Q(B(0, α)) vérifient bien ce pré-requis,
puisque

ν
(
Q(B(0, α))

)
= Ud

(
B(0, α)

)
= α.



Concernant (Q2) et (Q3), des statistiques descriptives peuvent être définies de ma-
nière intuitive. Une médiane multivariée est donnée par l’intersection de toutes
les régions quantiles [87] et des moyennes tronquées se calculent aisément via
E[X|X ∈ Cα] = E[Q(U)|U ∈ B(0, α)], ce qui apparaît naturellement dans [60, 85],
avec l’objectif de courbes de Lorenz multivariées. La même remarque est vraie pour
des mesures de dispersion, notamment avec l’estimation des volumes des régions
quantiles proposée dans [15]. Au regard de (Q4), les seules invariances connues deQ
concernent la translation et multiplication par une constante positive, [74][Lemma
A.7], ainsi que les transformations orthogonales, [74][Lemma A.8], lorsque la loi de
référence est sphérique. Finalement, depuis l’introduction des quantiles de Monge-
Kantorovich, de nombreux tests statistiques ont été proposés, concernant l’adé-
quation, [50], l’indépendance, [50, 132, 159-161], la symmétrie [92], ou encore des
modèles de regression, [82, 83, 86] ainsi que des bornes d’efficacité de Pitman [49].
Une propriété en particulier plaide en faveur de l’approche par transport optimal
vis-à-vis de (Q5) : la distribution des rangs de Monge-Kantorovich est indépendante
de celle des observations, [33, 50, 87].

Travaux de thèse

À la lumière de ses bonnes propriétés et de l’ensemble des travaux récents déjà
évoqués [81], la fonction quantile de Monge-Kantorovich paraît prometteuse pour
étendre dans Rd des méthodes d’inférence classiques sur la droite réelle. Du point de
vue pratique, l’estimation deQ correspond à la résolution du problème de transport
optimal de Monge entre la loi de référence µ et une mesure empirique ν̂n associées
à des données Y1, · · · , Yn,

min
T :T#µ=ν̂n

EX∼µ
[
‖X − T (X)‖2

]
.

Ce problème général a reçu beaucoup d’attention au cours des dernières années,
et il existe différentes approches numériques pour le résoudre. Avant de pouvoir
appliquer les quantiles de Monge-Kantorovich pour de l’inférence multivariée, la
première question est donc le choix d’un estimateur.

Dans cette perspective, la première idée avancée dans cette thèse, dès le Cha-
pitre 2, est de tirer profit de la connaissance a priori de la loi de référence µ.
En effet, les approches existantes pour résoudre un problème de transport optimal
considèrent des lois µ et ν quelconques, mais le contexte spécifiques des quan-
tiles multivariés nous donne l’information supplémentaire de la loi de référence
µ. En considérant la loi uniforme sur l’hypercube µ = Unif([0, 1]d), le potentiel
u : [0, 1]d → R tel que Q(·) = ∇

(‖·‖2
2
− u(·)

)
peut être assimilé à une fonction

périodique et paramétré par ses coefficients de Fourier. De cette façon, il devient
possible de formuler un algorithme du gradient stochastique pour résoudre le pro-
blème de transport optimal continu entre µ = Unif([0, 1]d) et ν. Ici, le terme continu
signifie qu’il n’est pas requis que la loi ν soit discrète, ce qui est communément dé-



signé par les cas discret ou semi-discret. Ainsi, à la limite de ses itérations, notre
algorithme converge vers la solution du transport entre µ et une loi ν arbitraire,
discrète ou continue. Afin d’obtenir des garanties de convergence, le problème de
transport est régularisé, [138], ce qui convexifie notre problème d’optimisation et
nous permet d’appliquer des schémas de preuve issus de l’optimisation stochastique.
Par ailleurs, pour de nombreuses applications, il convient de régulariser la fonction
quantile empirique puisque cette dernière est restreinte à prendre ses valeurs dans
{Y1, · · · , Yn}. Précisément, notre approche qui repose sur la carte entropique, [140,
153], fournit naturellement un estimateur lisse et monotone de Q, au sens d’être le
gradient d’une fonction convexe.

Pour aller plus loin, la définition des quantiles de Monge-Kantorovich a récem-
ment été étendue pour des données non-euclidiennes, [84], ce qui constitue le point
de départ du Chapitre 3. Puisque le besoin d’estimateurs efficaces et lisses est le
même que dans Rd, nous avons généralisé l’estimation de quantiles régularisés au
contexte de données sphériques. Sur la sphère Sd−1 = {x ∈ Rd, ‖x‖ = 1}, les po-
tentiels peuvent être paramétrés par des harmoniques sphériques, analogues aux
séries de Fourier, pour considérer, encore une fois, un algorithme de résolution du
problème continu entre une loi uniforme et une loi ν arbitraire. Cette estimation
régularisée permet des applications en analyse descriptive, pour comparer des dis-
tributions de probabilité selon leur dispersion. En outre, une notion de profondeur
statistique permet de catégoriser une observation selon sa centralité vis-à-vis de
plusieurs nuages de points, [113]. Des applications pour de la classification sont
donc également considérées dans le Chapitre 3, par le biais d’une version direction-
nelle de la profondeur statistique de Monge-Kantorovich, que l’on définit et dont on
étudie les propriétés au regard des traditionnels axiomes de Liu-Zuo-Serfling. Sur
les tâches d’inférence considérées, les quantiles régularisés de Monge-Kantorovich
présentent des avantages qualitatifs et quantitatifs par rapport aux notions de
quantiles existantes sur la sphère S2, ce qui motive d’autant plus leur étude.

Un dernier axe de recherche est de définir des versions multivariées de super-
quantiles et d’expected shortfalls à partir des quantiles de Monge-Kantorovich, un
problème ouvert selon [87]. En dimension d = 1, ces fonctions sont définies à partir
de la fonction quantile Q, par

S(α) =
1

1− α

∫ 1

α

Q(t)dt et E(α) =
1

α

∫ α

0

Q(t)dt.

Les définitions du Chapitre 4 sont aussi des versions intégrales de la fonction quan-
tile de Monge-Kantorovich Q, définies de manière similaire par

S(u) =
1

1− ‖u‖

∫ 1

‖u‖
Q
(
t
u

‖u‖

)
dt et E(u) =

1

‖u‖

∫ ‖u‖
0

Q
(
t
u

‖u‖

)
dt.

Ce faisant, elles préservent l’interprétation univariée d’une observation typique au
delà, ou en dessous, d’un quantile. Nous montrerons que ces fonctions caractérisent



les vecteurs aléatoires et leur convergence en loi sous certaines hypothèses, ce qui
souligne leur importance. Sur la droite réelle, leur principale application concerne
l’analyse de risque, bien que certains auteurs plaident pour un usage plus général,
[105, 145]. En effet, en dimension d = 1, les mesures de risque les plus communé-
ment utilisées sont certainement la Value-at-Risk et la Conditional-Value-at-Risk,
définies simplement comme un quantile ou un superquantile. Il convient alors d’ex-
plorer l’extension multivariée de ces notions par le biais de nos nouvelles définitions,
ce qui est fait par la suite, avec des mesures de risques qui préservent l’intuition
univariée, et dont le bon comportement est vérifié en pratique sur des données
réelles et simulées.
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1
Introduction

With the advent of machine learning, [89], the statistical world has been deeply
transformed, giving rise to a plethora of techniques to picture data, in the termino-
logy of Tukey, [169]. Somehow surprisingly, there is still no consensus for a concept
of quantile and distribution function beyond the real line R, even if these preoccu-
pations lie at the foundations of univariate statistics, [43, 158]. A recent proposal
builds on optimal transportation of measures, for which this first chapter provides
an introduction. Doing so, we motivate the remaining of the thesis, from the issue of
finding regularized estimators to the extension of the latter to a directional setting,
together with new concepts derived from MK quantiles, to describe peripheral or
central areas of point clouds.

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 The old problem of ordering multivariate data . . . . . . 14

1.1.2 Optimal transport in a nutshell . . . . . . . . . . . . . . 16

1.2 Multivariate statistics from optimal transport . . . . . 18

1.2.1 Monge-Kantorovich quantiles . . . . . . . . . . . . . . . 18

1.2.2 The issue of regularized estimation . . . . . . . . . . . . 21

1.3 Contributions and outline of the thesis . . . . . . . . . 25

1.3.1 A new approach to solve continuous EOT . . . . . . . . 25

1.3.2 Directional counterparts . . . . . . . . . . . . . . . . . . 26

1.3.3 New concepts of superquantiles and expected shortfalls . 26

13



1. Introduction

1.1 Background

Quantiles are a fundamental tool in statistics, from the very basis of descriptive
analysis to more developed inference, such as quantile regression [100] or robust
analysis [93]. The definition of distribution and quantile function might not seem
an issue for the reader familiar with univariate concepts. Nevertheless, the latter
do not readily extend to the multivariate setting, where a canonical order relation
is lacking, [33, 87, 156]. Despite profuse efforts in this direction, the quest for a
consensus about multivariate quantile and distribution functions is still ongoing.
The present thesis is particularly interested in the recent proposal that builds upon
the theory of optimal transportation (OT) [33, 87] and that has been shown to
benefit from most of sought-after properties. In some sense, the latter concepts are
in line with the modern formalism of probability and statistical theory [101] since
they are rooted in the basic tools of measure theory. While it is well-known that
the distinction between discrete and continuous distributions is avoided with the
formalism of measures [42] the main objective of OT-based concepts is to overcome
another arbitrary distinction between univariate and multivariate distributions.

1.1.1 The old problem of ordering multivariate data

The issue of defining proper concepts of multivariate distribution and quantile
functions is of major importance, as evidenced by the fundamental position of
univariate counterparts [43, 158]. The main objective is to order points within a
data set in a meaningful way, with regions indexed by their probability content
α ∈ [0, 1]. Indeed, for a univariate distribution ν with cumulative distribution
function F (x) = Pν(X ≤ x), recall that the quantile Q(α) of level α ∈ [0, 1] is
given by

Q(α) = inf{x : F (x) ≥ α}. (1.1)

In other words, an observation x equals the quantile of order α if the proportion
of data at the left of x is equal to α. Thus, in practice, quantiles are given by
ranking the observations from left to right. One may think of the univariate boxplot,
illustrated in Figure 1.1, that gives a central quantile region containing 50% of the
observations.

Apart for univariate data, these concepts are well understood for elliptical dis-
tributions [33] where quantile contours shall coincide with density contours. Indeed,
with elliptic symmetry, it is quite natural to order points from the center to the
outward with respect to the covariance structure. The outlyingness of a point shall
thus be consistent with Mahalanobis distance, see e.g. the discussion in [80] that
relates the latter with Monge-Kantorovich quantiles. However, data of interest in
practice is far from being limited to univariate or elliptical samples. The traditional
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Background

Figure 1.1 – Samples on the real line and their associated boxplot.

multivariate distribution function for a random vector (X1, · · · , Xd) is given by

F (x1, · · · , xd) = P(X1 ≤ x1, · · · , Xd ≤ xd), (1.2)

but this is not readily invertible, and thus it does not come with a suitable quan-
tile concept. Such cumulative distribution function leverages an adequate feature
of a distribution function, that is F (x) = P(X ∈ Bx), for some set Bx. However,
the choice of Bx =] − ∞, x1] × · · ·×] − ∞, xd] is somehow arbitrary. Of course,
it is inherited by the univariate case where ≤ orders the whole space canonically
and where the choice ]−∞, x] is not restrictive. Yet, in Rd, there is no reason for
this left-to-right ordering to be prevalent in view of intuitive notions of quantile
regions. These considerations gave rise to the concept of statistical depth, that aims
to overcome the lack of a canonical ordering in Rd with a data-dependent ordering.
To some extent, statistical depth and multivariate quantiles are the two sides of
the same coin. The first of the kind, the halfspace depth, was introduced by Tukey
in [169], with descriptive analysis and geometric intuition in mind, and an appli-
cation to multivariate boxplots, as illustrated in Figure 1.2. This halfspace depth
characterizes the underlying distribution when it is discrete [45] or under ellipti-
cal symmetry [103] but not in general [128]. Under elliptical symmetry, contours
of same halfspace depth also share the same value for the density functions [177]
which yields a highly satisfactory ordering of points from such a distribution.

Figure 1.2 – Contours of same halfspace depth on a Gaussian sample in R2.
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1. Introduction

The issue of defining adequate statistical depths has gained too much attention
for us to provide an exhaustive survey. Rather, we refer to [10, 112, 127, 157], see
also [75, 94] for applications in classification or clustering. There, quoting [33],

“if the ultimate purpose of statistical depth is to provide, for each dis-
tribution P , a P -related ordering of Rd producing adequate concepts of
quantile and distribution functions, ranks and signs, the relevance of a
given depth function should be evaluated in terms of the relevance of the
resulting ordering, and the quantiles, ranks and signs it produces.”

To that extent, we shall see that the concepts based on optimal transport show
promising features, with meaningful concepts of distribution and quantile functions,
ranks and signs.

1.1.2 Optimal transport in a nutshell

This part is dedicated to provide a short introduction to optimal transport
adapted to our needs. For further precisions, we refer the reader to the classical
books [172, 173]. An important notion for our purposes is the one of push-forward
measure, that allows the very definition of a probability P as a measure on some
unspecified measure space (Ω,F ,P) such that P(Ω) = 1, [101]. Informally, a push-
forward measure ν = T#µ is defined by transporting a measure µ using a measurable
function T . For any measurable set B, this definition writes

T#µ(B) = µ
(
T−1(B)

)
. (1.3)

This yields a change-of-variables formula. For any integrable function g,∫
B

gd(T#µ) =

∫
T−1(B)

g ◦ Tdµ. (1.4)

In terms of random variables, a sample from ν = T#µ can be generated by T (U) if
U is a random variable drawn from µ. Throughout the following, we will also refer
to T as a push-forward map, or mapping, from µ to ν.

Among all push-forward mappings from one distribution µ towards another ν,
optimal transportation seeks for the one that minimizes the average cost of its
displacements. Denote by X ,Y the respective supports of the measures µ and ν.
Consider a cost function c on X × Y . Then, the Monge problem writes as follows.

Monge optimal transport problem :

Minimize I[T ] =

∫
X
c (x, T (x)) dµ(x) on the set of T such that ν = T#µ (P0)

A solution of the above problem is often called a Monge map. In addition,
the Kantorovich relaxation allows that one amount of mass x can be sent towards
several locations with a given probability. This is made possible by considering
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joint probabilities instead of mappings T : Rd → Rd. Let Π(µ, ν) be the set of all
joint probability measures on X × Y whose marginals are µ, ν. The Kantorovich
relaxation of OT writes as follows.

Kantorovich optimal transport problem :

Minimize I[π] =

∫
×Y

c(x, y)dπ(x, y) subject to π ∈ Π(µ, ν). (P ′0)

When the underlying space is endowed with a distance d, optimal transport
comes with the Wasserstein distance between probability measures, [173][Chapter
6]. Crucially, the problem (P ′0) admits a dual formulation. Define the set Φc of
measurable functions (ϕ, φ) ∈ L1(dµ)×L1(dν) such that, almost everywhere, ϕ(x)+

φ(y) ≤ c(x, y). Then, (P ′0) is equivalent to the following [173][Theorem 5.10],

Dual Kantorovich problem :

sup
(ϕ,φ)∈Φc

∫
ϕ(x)dµ(x) +

∫
φ(y)dν(y). (D0)

When the optimum of (D0) is reached, one necessarily has that ϕ and φ are
c-transform one to another, [173][Chapter 5], meaning that

ϕ(x) = inf
y∈Y
{c(x, y)− φ(y)} and φ(y) = inf

x∈X
{c(x, y)− ϕ(x)}. (1.5)

Thus, one can fix either ϕ = φc or φ = ϕc in the dual problem (D0), giving rise to
the following semi-dual formulation,

Semi-dual Kantorovich problem :

sup
ϕ∈L1(dµ)

∫
ϕ(x)dµ(x) +

∫
ϕc(y)dν(y). (S0)

These equivalent formulations (P ′0),(D0) and (S0) each allow different solvers to
estimate the solution of Kantorovich problem, [138]. Under a number of situations,
Monge and Kantorovich problems are in fact equivalent, [173]. This is the case for
the quadratic cost c(x, y) = 1

2
‖x − y‖2, if µ is continuous and if µ, ν ∈ P2(Rd),

by the result known in the literature as Brenier’s theorem [27] and independently
shown in the probabilistic literature by Cuesta and Matrán in [44]. Without finite
second-order moments, even if the Monge-Kantorovich problem with quadratic cost
does not make sense, a theorem of McCann states the existence of a monotonic
mapping between µ and ν, [121]. The following, taken from [87], summarizes these
fundamental results.

Theorem 1.1 (Brenier-McCann). Let P1 and P2 denote two distributions respecti-
vely supported on X ,Y ⊂ Rd. Suppose that P1 is absolutely continuous with respect
to the Lebesgue measure. Then,
(i) there exists a lower semi-continuous convex ψ : Rd → R such that ∇ψ#µ = ν,
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1. Introduction

(ii) if ψ′ is another such function, ∇ψ and ∇ψ′ coincide P1-a.s.,

(iii) if P1,P2 ∈ P2(Rd), any such ∇ψ is a Monge map pushing P1 towards P2.

Besides, the latter convex function ψ involved in the µ-a.e. unique Monge map
∇ψ can be retrieved via the solution ϕ of (S0), through ψ(x) = 1

2
‖x‖2−ϕ(x), [27].

In other words, a Monge map shall verify

T (x) = x−∇ϕ(x). (1.6)

In the one-dimensional setting, it is well-known that computing the classical
quantile function of ν amounts to solve the optimal transport problem between ν
and µ the uniform distribution over [0, 1], [138][Remark 2.30]. By stating this as
a definition when d ≥ 2, the authors of [33] have extended univariate quantiles to
define the Monge-Kantorovich quantile function. In the next part, we shall present
the main definitions about Monge-Kantorovich quantile and distribution functions,
taken from [33, 87]. Doing so, we motivate and introduce the contributions of the
present thesis.

1.2 Multivariate statistics from optimal transport

1.2.1 Monge-Kantorovich quantiles

The first step is to depart from a reference distribution µ that is endowed with
a natural ordering, so that a relevant notion of quantiles can be derived from it. For
instance, one can choose the uniform distribution over some compact and convex
set, such as the unit ball B(0, 1) or the unit square [0, 1]d. Another natural choice
is the spherical uniform distribution, denoted by µ = Ud. The latter is given by
the product RΦ between two independent random variables R and Φ, being drawn
respectively from a uniform distribution on [0, 1] and on the unit sphere. Samples
from Ud are distributed from the origin to the outward within the unit ball, so that
the balls of radius α ∈ [0, 1] have probability α while being nested, as α grows.
With this in mind, the hyperspheres of radius α are relevant quantile contours with
respect to Ud. Thus, the spherical uniform distribution Ud plays a specific role for
the interpretation of quantiles. In addition, for U sampled from Ud, the radius ‖U‖
and the unit vector U/‖U‖ are appropriate notions of multivariate ranks and signs,
respectively, and their independence is also a convenient property.

Then, the basic idea of the MK quantile function of ν is to transport adequately
the ordering of the reference µ towards ν.

Definition 1.2. The MK quantile function of a multivariate distribution ν, with
respect to a reference distribution µ, is the a.e. unique push-forward map Q#µ = ν

such that Q = ∇ψ for some convex potential ψ : Rd → R.
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Multivariate statistics from optimal transport

Moreover, the MK distribution function of ν is defined by F = ∇ψ∗ where ψ∗
is the Fenchel-Legendre transform of ψ,

ψ∗(x) = sup
u∈B(0,1)

{〈x, u〉 − ψ(u)}. (1.7)

Being the gradient of a convex function is a multivariate kind of monotonicity,
desirable for a quantile function, that is equivalent to

∀x, y ∈ Rd, 〈Q(x)−Q(y), x− y〉 ≥ 0.

It follows from Theorem 1.1 that, as soon as µ is absolutely continuous, such a
Monge map Q exists and is unique. Moreover, if µ and ν have finite moments of
order two, Q is characterized as the solution of the Monge problem of optimal
transport. Regarding the MK distribution function F, our definition follows from
[74]. It is defined for an arbitrary ν, and it satisfies F = Q−1 when Q is invertible,
which holds under continuity assumptions on ν, as discussed in [74, 87].

When the reference measure on Rd is the spherical uniform distribution µ = Ud,
Q is also referred to as the center-outward quantile function of ν [87]. In view of
Q#µ = ν, the related ordering is adapted to the underlying geometry, as illustrated
in Figure 1.3, where the radius in red and circles in blue are transported from the
unit ball to a banana-shaped distribution thanks to a regularized estimator of Q,
to be introduced in Chapter 2. This relevant ordering clearly catches the geometry
of the support of the target distribution ν, and it comes with quantile regions
indexed by a probability level α ∈ [0, 1], by use of the change of variables formula
for push-forward maps (1.4). More details are given in [33, 87].

Figure 1.3 – (Left) center-outward quantiles of the spherical uniform distribution
µ = Ud, and (right) center-outward quantiles of a discrete distribu-
tion ν obtained by Q#µ = ν.

Figure 1.3 illustrates the MK quantile contours and sign curves, as defined in
the following.
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1. Introduction

Definition 1.3 (Quantile contours, ranks and signs). For ν supported on X ⊂ Rd

with center-outward quantile function Q and distribution function F,

(i) the quantile region Cα of order α ∈ [0, 1] is the image by Q of the ball B(0, α),

(ii) the quantile contour Cα of order α ∈ [0, 1] is the boundary of Cα,

(iii) the rank function Rν : X → [0, 1] is defined by Rν(x) = ‖F(x)‖,

(iv) the sign function Dν : X → B(0, 1) is defined by Dν(x) = F(x)/‖F(x)‖.

The ν-probability of Cα is α, by the change of variables formula for push-
forward maps, which is a first requirement for quantile regions. We emphasize that
the choice of the reference measure µ = Ud plays a specific role for the interpretation
of quantile regions indexed by a probability content level.

A major feature of our concepts is the distribution-freeness of MK ranks.
In the real line, this mainly correspond to the fact that F (X) ∼ Unif([0, 1]) when
the distribution function F is continuous, no matter the distribution ν. This is the
main virtue of univariate ranks, or equivalently the empirical distribution func-
tion up to scaling by the number of observations. Indeed, on a sample X1, · · · , Xn,
the usual ranks correspond to Fn(X1), · · · , Fn(Xn) where Fn stands for the em-
pirical distribution function. In other words, ranks are uniformly distributed on
{1/n, 2/n, · · · , 1} with probability 1/n each, no matter the underlying distribu-
tion, and thus they are distribution-free. Univariate distribution-freeness can be
rewritten as F#ν = Unif([0, 1]), and this is precisely the property that is put
forward with the OT-based concepts from [33, 87]. As a matter of fact, this has
inspired a wide range of literature interested in distribution-free statistical testing,
see for instance the general framework of [50]. Among the existing statistical tests
built upon these ideas, some have focused on goodness-of-fit, [50], others on in-
dependence [50, 132, 159-161], symmetry [92], various regression models, [82, 83,
86], or Pitman efficiency lower bounds [49]. We refer the reader to the introduction
of [87] for a detailed discussion on rank-based inference and distribution-freeness,
altogether with the notion of maximal ancillarity.

As opposed to these, we mainly focus on another major feature of MK quantiles :
their descriptive power inherited from the fact that Q#µ = ν. Notably, the data-
adaptive ordering related to MK quantiles is not restricted to convex shapes, [33], in
contrast with the majority of other existing definitions. In terms of random vectors,
Q#µ = ν implies that Q(U) ∼ ν as soon as U ∼ µ. A direct consequence is that Q
must contain all the available information, which is appealing with the purpose of
summing up unknown features of multivariate data. Indeed, as highlighted in [156],
the utility of a multivariate proposal of quantile function for descriptive analysis is
a key feature that is expected. Due to their intuitive definition, MK quantiles are
easy to use, as for descriptive statistics that have already been derived either in
terms of trimmed means, [60, 85], or in terms of dispersion measurements, [15].
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Multivariate statistics from optimal transport

1.2.2 The issue of regularized estimation

Finding regularized estimators that are also monotone in an appropriate fashion
is a building block of MK quantiles [15, 87], and a pre-requisite before further
investigation. Quite naturally, this is the first axis of the present thesis. A main idea
towards this goal is to take advantage of the knowledge of the reference distribution
µ to derive practical regularized estimators. To better highlight our contributions,
we begin with an overview of the existing alternatives.

In practice, ν is often replaced by its empirical counterpart

ν̂n =
1

n

n∑
i=1

δYi

built from a sample {Y1, · · · , Yn}. Thus, it has a finite second order moment, and
the estimation of the quantile map amounts to solve the plug-in version of the OT
problem (P0), that is

min
T :T#µ=ν̂n

EX∼µ
[
‖X − T (X)‖2

]
. (1.8)

Such estimator, by nature, suffer from the impossibility to interpolate between the
observations. Consequently, regularization naturally enters the picture, as within
[15, 87] that provide interpolated maps built from empirical OT.

Optimal matchings and distribution-freeness

The estimation of Q using the plug-in estimator solving (1.8) can begin with
various computational strategies to solve OT between µ and ν̂n. One can replace µ
by a discrete measure µ̂n on a regular grid and then solve a discrete OT problem
between µ̂n and ν̂n as in [33, 87]. These solvers naturally render an optimal matching
between two samples of same size. This is ideal to enforce the distribution-freeness
of empirical MK ranks [74, 87], that may be crucial in practice, e.g. for statistical
testing [50]. We refer the reader to Proposition 2.5 and Corollary 2.2 from [87].
However, one can think of other applications that require to compute out-of-sample
estimates, where a mapping object Q : Rd → Rd is highly desirable.

Map estimation by plug-in

A mapping object Q : Rd → Rd can always be retrieved from the solution of
(S0). This was stressed in [33], with an estimator given by

Q̂n(x) = argsup
y∈Y

{〈x, y〉 − 1

2
‖y‖2 + φ̂n(y)}, (1.9)

where φ̂n is the solution of the semi-dual problem (S0) between µ and ν̂n. However,
this is not entirely satisfactory as Q̂n is restricted to the sample Y = {Y1, · · · , Yn}.
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On the computational side, the cost of discrete OT solvers, [74, 87], is potentially
very high because it scales cubically in the number of observations, [46]. Rather,
it is proposed in [74] to compute the semi-dual problem (S0) using the Newton-
type algorithms proposed in [99]. Still, the estimator in [74] is of the form of (1.9),
and suffers from the same restriction to Y = {Y1, · · · , Yn}. As a matter of fact,
regularization is required to interpolate between these observations, [15, 87].

Regularized estimators

A satisfactory computation of quantile contours and sign curves requires a
smooth empirical quantile function. One may cite the purpose of quantile regres-
sion where a prediction restricted to the observations is prohibitive, [11, 31, 136].
Smoothness was also the main consideration within [120], to use OT-based rank
statistics as a differentiable loss for generative modeling. With Goodness-of-Fit
purposes, computing the volumes of quantile regions in [15] also relied on differen-
tiability of their estimator. Regularized empirical quantiles were also advocated in
[85] for multivariate extensions of Lorenz curves, where it is required to estimate
objects of the form of truncated expectations or integrals. As a last example, our
multivariate superquantiles and expected shortfalls, [19], that will be discussed in
Chapter 4, amount to integrals of Q along sign curves. There again, it is more
satisfactory to use a smooth estimator for Q in practice.

The use of Moreau envelopes in [87] preserves the cyclical monotonicity as well
as the optimal matchings (Xn, Yn). These are ideal theoretical properties, because
the result preserves the distribution-freeness of associated ranks. However, a sup-
plementary gradient descent is required when computing a single Q(x) for x ∈ X .
This is alleviated in [15] with an approximation of Q rather than an interpolation.
This yields a smooth estimator for Q that is consistent while ensuring the gradient-
of-convex property. Nevertheless, the most famous regularization of OT is certainly
the entropic one, that is a cornerstone of modern computational OT, [138]. In com-
parison with the approaches above, the use of entropic optimal transport (EOT)
represents a step towards more regularization, with a monotone estimator related
to recent advances in computational OT. Notably, insightful results were obtained
in the context of MK quantiles in [31, 120].

Specifically, our context imposes the knowledge of the reference measure µ a
priori, as it is fixed once for all. As a byproduct, it is appealing to take advan-
tage of this additional information. This motivated the first main direction of the
present thesis, to construct a solver for EOT that makes use of the knowledge of
the reference measure µ, [19, 20]. In view of convergence guarantees, entropic regu-
larization of OT provides known computational advantages, [138]. This comes with
additional benefits regarding the smoothness and monotonicity of the regularized
estimator. To better emphasize our contribution, we shall now present the entropic
regularization of OT and the resulting entropic map.
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Entropic maps under general assumptions

The EOT problem can be introduced without imposing finiteness of second-
order moments, thanks to [24, 73]. In the quantiles context, this is an important
concern of the recent papers [33, 87], as a quantile function must be defined for every
measure ν. Define the Kullback-Leibler divergence between joint probabilities, for
π, ξ ∈ Π(µ, ν), by

KL(π|ξ) =

∫
X×Y

(
log

(
dπ

dξ
(x, y)

)
− 1

)
dπ(x, y),

for dπ
dξ

the relative density of π with respect to ξ. Then, the primal version of EOT
[47, 70] is given by

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) + εKL(π|µ⊗ ν), (Pε)

where ε ≥ 0 stands for a regularization parameter. We say that this problem has a
finite value when there exists π0 ∈ Π(µ, ν) such that∫

X×Y
c(x, y)dπ0(x, y) + εKL(π0|µ⊗ ν) < +∞.

Under such condition, the property of cyclical invariance introduced in [24, 73] has
been showed to characterize optimality in (Pε). In addition, for continuous costs,
Theorem 1.3 from [73] ensures the existence of a unique cyclically invariant coupling
πε in Π(µ, ν) even if all couplings have infinite cost.

Thus, for the particular case of c being the quadratic cost, one can consider such
a coupling πε even if µ and ν have infinite variance, for any ε > 0. Now, denote by
uc,ε the smooth c-transform of u ∈ L1(µ) given by

uc,ε(y) = −ε log

(∫
X

exp
(u(x)− c(x, y)

ε

)
dµ(x)

)
. (1.10)

For ϕ given in [73][Corollary 2.6], by taking uε(x) = ε logϕ(x), it exists a unique,
up to additive constants, potential uε : Rd → R satisfying

uε = (uc,εε )c,ε. (1.11)

Moreover, from the proof of [73][Corollary 2.6], πε writes

dπε(x, y) = exp

(
uε(x) + uc,εε (y)− c(x, y)

ε

)
dµ(x)dν(y). (1.12)

We now introduce the dual and semi-dual counterparts of (Pε) as stated in [71][Pro-
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position 2.1]. For

Iε(u, v) = ε

∫
exp

(
u(x) + v(y)− c(x, y)

ε

)
dµ(x)dν(y),

the dual EOT problem writes

max
(u,v)∈L1(µ)×L1(dν)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− Iε(u, v), (Dε)

and the semi-dual EOT problem is given by

max
u∈L1(µ)

∫
X
u(x)dµ(x) +

∫
Y
uc,ε(y)dν(y)− ε. (Sε)

The regularized problems are equivalent to (P ′0), (D0) and (S0) when ε = 0, and
uc,0(y) = uc(y). As argued in [70, 71], first-order optimality conditions for (Dε)
write u = vc,ε and v = uc,ε, see also [133]. The semi-dual (Sε) is obtained by
plugging v = uc,ε in (Dε). In view of these first-order conditions, the potential uε
solution of (Sε) must verify (1.11), even when µ and ν have infinite variance.

From a solution of the EOT problem, one can retrieve the entropic map, [140,
153]. It leverages the efficiency of entropic regularization to obtain a smooth func-
tion, defined by barycentric projection of the optimal plan πε in (1.12), that is
Qε(x) = E(X,Y )∼πε [Y |X = x]. Using (1.12) and (1.11), a closed-form expression of
Qε is given by

Qε(x) =

∫
Y
y

exp
(

uc,εε (y)−c(x,y)
ε

)
∫
Y exp

(
uc,εε (z)−c(x,z)

ε

)
dν(z)

dν(y). (1.13)

It follows once again from (1.11) together with a direct calculation that the above
coincides with Qε(x) = x−∇uε(x), the entropic counterpart of (1.6), see [140][Pro-
position 2]. Similarly, one can define an entropic map from ν towards µ, through

Fε(y) =

∫
X
x

exp
(

uε(x)−c(x,y)
ε

)
∫
X exp

(
uε(z)−c(z,y)

ε

)
dµ(z)

dµ(x). (1.14)

Here, it is important to note that Qε does not push µ forward to ν anymore,
although it is expected to be close to it for ε close to 0. Indeed, the theoretical
behavior for vanishing ε has been the subject of many works, showing convergence
towards OT couplings, [24, 30, 107], potentials, [4, 52, 133] or maps [139, 140].
In addition, for a fixed regularization parameter ε > 0, plug-in estimators for the
costs ([13, 72, 123]), potentials and maps ([13, 77, 78, 143]) can converge to their
regularized population counterparts with a statistical rate independent from the
dimension, which is a particularly appealing feature.
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In practice, considering a fixed ε > 0 can be gainful because of the regu-
larity it induces. Notably, the definition and continuity of Qε does not depend
on the regularity of ν, which is in sharp contrast with the unregularized setting.
In fact, Qε benefits from greater regularity. Let ψε(x) = 1

2
‖x‖2 − uε(x), so that

Qε(x) = x − ∇uε(x) = ∇ψε(x). Direct computation of the Hessian of ψε shows
that it is a positive definite matrix, so that ψε is strictly convex, see [34][Lemma
1]. Thus, Qε is the gradient of a convex function, that is the desired multivariate
monotonicity in our context. As a byproduct, the interpolation that Qε provides
between observations in practice preserves the structure of optimality. Of major
importance, the continuity of Qε yields continuous quantile contours and strictly
nested and closed quantile regions of any order α ∈ [0, 1].

Besides, this has direct implications regarding the invertibility of Qε, that can
be particularly relevant in view of MK ranks. Indeed, Qε being the gradient of the
strictly convex function ψε, [146][Theorem 26.5] ensures that Qε is one-to-one from
X to Y , with Q−1

ε (y) = ∇ψ∗ε(y) for

ψ∗ε(y) = sup
x∈X

{
〈x, y〉 − ψε(x)

}
the Legendre transform of ψε. Consequently, the envelope theorem allows to write

Q−1
ε (y) = argsup

x∈X

{
〈x, y〉 − ψε(x)

}
. (1.15)

For the above reasons, Qε is appealing for the estimation of regularized MK
quantiles. On the computational side, from an estimate of uc,εε , a plug-in estimator
of Qε in (1.13) can be computed in linear time. Thus, the estimation of dual poten-
tials uε and uc,εε is the main computational bottleneck. For this task, as previously
argued, it is tempting to take advantage of the information of the reference measure
µ to design a computational scheme specifically for MK quantiles.

1.3 Contributions and outline of the thesis

1.3.1 A new approach to solve continuous EOT

Making use of the knowledge of the reference measure µ allows to develop a
fast solver that targets the continuous EOT problem between µ and ν at the limit
of the iterations, [19]. This is the first main contribution of the present thesis,
presented in Chapter 2. It relies on a parameterization of uε by its Fourier series,
in the semi-dual problem (Sε). This allows to compute partial derivatives, hence
to construct a stochastic gradient descent in the space of Fourier coefficients, that
are constrained to belong to the Banach space `1 by construction.

This algorithm is proven to be almost surely consistent with the help of tools
from stochastic optimization. Importantly, a main difficulty arising here is the re-
quirement that our stochastic sequence belongs to the infinite-dimensional Banach
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space `1, that is customary to ensure well-defined gradients along the iterations.
Moreover, a main feature of our approach is that our convergence results are

directly formulated as a function of the number n of observations Y1, · · · , Yn from
ν, in contrast to discrete or semi-discrete solvers that are estimators of the plug-
in problem between µ and ν̂n. In practice, the computational complexity at each
iteration is inherited from our use of Fast Fourier transforms. Consequently, it
depends on the size of a chosen grid of size p independent from n, which can prove
beneficial in practice.

1.3.2 Directional counterparts

Going further, this computational approach can be extended beyond the setting
of euclidean data, following recent advances, [84]. In Chapter 3, it will be stressed
that the definition of the entropic map can be extended to a non-euclidean setting,
with data on the hypersphere Sd−1 = {x ∈ Rd : ‖x‖ = 1}. This is of major
importance because the need for smooth and efficient estimators is the same in
Sd−1 than in Rd. In this context, the regularized Kantorovich potentials can be
parameterized by their series of spherical harmonics, that are spherical analogs of
Fourier series. There again, a stochastic algorithm can be formulated that targets
the continuous EOT problem between the reference measure µ and the target
measure ν.

Such regularized estimation allows applications in descriptive analysis, to com-
pare distributions depending on their dispersion, via volumes of quantile regions.
Besides, a notion of statistical depth allows to classify an observation depending
on its centrality with respect to several point clouds, [113]. Applications for classi-
fication are thus considered, with the help of a new directional version of the MK
statistical depth, [33]. Our numerical approach based on EOT appears especially
useful and convenient for these purposes. As an aside, this directional MK depth
shows appealing properties with regards to the traditional Liu-Zuo-Serfling axioms.
In comparison with existing notions of quantiles for spherical data, the adaptivity
to the geometry of a distribution reveals particularly satisfying for descriptive ana-
lysis, as illustrated by numerical experiments. Moreover, another byproduct is that
classification based on the spherical MK depth improves performance with respect
to other notions of quantiles. These findings provide motivations for further use of
directional MK quantiles for inference, in a regularized fashion.

1.3.3 New concepts of superquantiles and expected short-
falls

Inspired by the descriptive power of MK quantiles, another main direction of
this thesis has been to develop multivariate notions of superquantiles and expected
shortfalls derived from MK quantiles, that is an open problem of the founding paper
[87]. Recall that the combination between MK quantile contours and the sign curves
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provide a curvilinear coordinate system within the support of the distribution of
interest ν, as illustrated in Figure 1.3. This is a convenient and promising way
to render the available information, that shows how the directional information
is contained in the sign curves. In dimension d = 1, superquantiles and expected
shortfalls are defined from the quantile function Q by

S(α) =
1

1− α

∫ 1

α

Q(t)dt and E(α) =
1

α

∫ α

0

Q(t)dt.

The definitions of Chapter 4 provide similar integral versions of the MK quantile
function Q, but along sign curves, that is

S(u) =
1

1− ‖u‖

∫ 1

‖u‖
Q
(
t
u

‖u‖

)
dt and E(u) =

1

‖u‖

∫ ‖u‖
0

Q
(
t
u

‖u‖

)
dt.

Doing so, the MK superquantile and expected shortfall functions preserve the univa-
riate interpretation of a typical observation beyond or ahead a quantile Q(u). These
functions will be shown to have suitable properties, as they characterize random
vectors and their convergence in distribution, under some assumptions. These theo-
retical findings extend univariate properties, [145], and highlight the importance of
the proposed notions. In Figure 1.3, the circles and radius were transported by the
MK quantile function Q. Using instead the integrated counterparts S and E, one
can define MK superquantile and expected shortfall contours and averaged sign
curves, that are illustrated in the representative plots of Figure 1.4, showing how
E and S characterize respectively central or peripheral areas of a point cloud.

Figure 1.4 – Center-outward expected shortfall (left) and superquantile (right)
contours in blue and averaged sign curves in red.

On the real line, a major application of these functions is risk analysis, [79],
although several authors argue for a wider use in data science, [105, 145]. Indeed,
in dimension d = 1, the most well-known risk measures certainly are the Value-at-
Risk and Conditional-Value-at-Risk, that are simply defined by a quantile and by
a superquantile. It is then natural to explore the multivariate extension of these
notions with the help of our new integrated quantile functions, which is done with
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1. Introduction

an emphasis on the univariate interpretation. These are to be understood respec-
tively as the worst risk encountered with ν-probability α, and as the averaged risk
beyond this worst-case observation, but in a meaningful multivariate way.

We end this introduction with an outline of the thesis.

Chapter 2 : Stochastic algorithms to solve optimal transport

A first step for the estimation of the entropic map is to solve the dual version
of entropic optimal transport (EOT). This Chapter is devoted to a new stochastic
algorithm designed to directly solve the continuous problem between arbitrary
probability measures µ and ν. Using the knowledge of the source measure, it is
suggested to parametrize a Kantorovich dual potential by its Fourier coefficients. In
this way, each iteration of the proposed stochastic algorithm reduces to two Fourier
transforms that enables to make use of the Fast Fourier Transform (FFT) in order
to implement a fast numerical method to solve EOT. Under suitable assumptions,
we prove the almost sure convergence of our stochastic algorithm, that takes its
values in an infinite-dimensional Banach space. Numerical experiments illustrate
the performances on the computation of regularized Monge-Kantorovich quantiles.
In particular, the potential benefits of entropic regularization are investigated for
the smooth estimation of multivariate quantiles using data sampled from the target
measure ν.

Chapter 3 : Directional statistics

The goal of this Chapter is to develop a computational approach for the es-
timation of regularized quantiles on the unit sphere S2. The definition of Monge-
Kantorovich quantile and distribution functions has recently been extended for
directional data in [84]. In practice, regularization is mandatory for applications
that require out-of-sample estimates. To this end, the definition of the entropic map
is extended to the spherical setting. A stochastic algorithm to directly solve a conti-
nuous EOT problem between the uniform distribution and a target distribution is
proposed, by expanding Kantorovich potentials in the basis of spherical harmonics.
In addition, a directional Monge-Kantorovich depth is defined, and it is shown to
benefit from desirable properties related to the traditional Liu-Zuo-Serfling axioms
for the statistical analysis of directional data.

Chapter 4 : Superquantiles and expected shortfalls

This chapter deals with new notions of center-outward superquantile and ex-
pected shortfall functions, that provide a natural way to characterize multivariate
tail probabilities and central areas of point clouds. Crucially, our new concepts
preserve the univariate interpretation of a typical observation that lies beyond or
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ahead a quantile, but in a meaningful multivariate way. Moreover, these functions
characterize random vectors, and their convergence is shown to be equivalent to
convergence in distribution under some assumptions, which underlines their impor-
tance. Building on these notions appears fruitful to extend the standard notion of
value at risk and conditional value at risk from the real line to Rd. The behavior
of our risk measurements is illustrated on both real and simulated datasets.

This thesis gave rise to the writing of the following papers.

Bernard, Bercu, Jérémie Bigot, and Gauthier Thurin.
Stochastic optimal transport in Banach Spaces for regularized estimation
of multivariate quantiles. arXiv :2302.00982 (2023)

Bernard, Bercu, Jérémie Bigot, and Gauthier Thurin.
Monge-Kantorovich superquantiles and expected shortfalls with appli-
cations to multivariate risk measurements. arXiv :2307.01584 To appear in
Electronic Journal of Statistics, vol 18, (2024)

Bernard, Bercu, Jérémie Bigot, and Gauthier Thurin.
Regularized estimation of Monge-Kantorovich quantiles for spherical
data. arXiv :2407.02085 (2024).
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2
Stochastic algorithms to solve optimal

transport

We introduce a new solver for entropic optimal transport (EOT) between two
absolutely continuous probability measures µ and ν. Using the knowledge of the
source measure, we propose to parametrize a Kantorovich dual potential by its
Fourier coefficients. In this way, each iteration of our stochastic algorithm reduces
to two Fourier transforms that enables us to make use of the Fast Fourier Transform
(FFT) in order to implement a fast numerical method to solve EOT. Under suitable
assumptions, we prove the almost sure convergence of our procedure that takes its
values in an infinite-dimensional Banach space. This chapter is based on [19].
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2. Stochastic algorithms to solve optimal transport

2.1 Solving entropic optimal transport

2.1.1 Different types of solvers

A main reason behind the wide use of OT-based methods in statistics and ma-
chine learning, [46], is certainly the efficiency of Sinkhorn algorithm for EOT, [47],
whose complexity scales quadratically in the number of data, while being adapted
to parallel implementation. A possible concern of it is the storage of the cost matrix
between large sets of points, which motivated stochastic algorithms, [17, 22, 71], for
either the discrete, the semi-discrete or the continuous setting. These refer to the
assumptions on the measures µ and ν involved, either if both are discrete, if one is
continuous, or if both are continuous, respectively. For the latter, the leading idea
is to parametrize dual potentials by classes of functions. For this purpose, [153]
used neural networks, making the problem lose its convexity. Instead, consistency
holds for the RKHS parametrization of [71], or for kernel expansions based on re-
gularized c-transforms, [124]. For both of them, to ensure convergence, the number
of parameters grows with the iterations, increasing numerical complexity.

As opposed to these, we propose Fourier series when the reference measure is the
uniform over the hypercube [0, 1]d. Indeed, the quantiles’ context fixes the reference
measure, and it is tempting to make use of this information a priori. We stress that
our theoretical results do not depend on the orthonormal basis for the potentials,
neither on the cost, so that our algorithm may be adapted, e.g. for wavelets on
Rd. As an aside, we mention that non equispaced Fast Fourier Transforms were
used recently for better time and memory allocations in discrete Sinkhorn, [106],
albeit not very much related to our proposal of Fourier parametrization of dual
potentials.

2.1.2 Stochastic algorithms

Stochastic algorithms to solve EOT were first introduced in [71], by noticing
that the dual (Dε) and semi-dual (Sε) objectives can be rewritten as expectations of
a convex loss. This approach is particularly useful when the number of observations
n is large and prevents the storage of the cost matrix, of size n2. In the semi-discrete
case, one is interested in the EOT problem (Dε) between the absolutely continuous
measure µ and the empirical measure ν̂n associated with a sample Y1, · · · , Yn. There,
the potential v ∈ L1(ν̂n) can be identified with its values (v(Yi)) ∈ Rn. As studied
in [17, 22, 69, 71], this yields the following optimisation problem, for ε > 0,

min
v∈Rn

H̃ε(v) with H̃ε(v) = E[h̃ε(v,X)] (2.1)
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where X is a random variable with distribution µ, and

h̃ε(v, x) = ε log

(
1

n

n∑
j=1

exp

(
vj − c(x, Yj)

ε

))
− 1

n

n∑
j=1

vj + ε.

Based on independent samplesX1, . . . , Xm from µ, these works approach the unique
solution ṽn ∈ Rn of the problem (2.1) when m→ +∞ and n is held fixed. From ṽn,
as from any estimate of the regularized dual potential, one can derive an empirical
entropic map. It is sufficient, for all x ∈ X , to consider the plug-in of (1.13) by

Q̃n
ε (x) =

n∑
j=1

F̃j(x)Yj where F̃j(x) =
exp
( ṽn,j − c(x, Yj)

ε

)
∑n

`=1 exp
( ṽn,` − c(x, Y`)

ε

) . (2.2)

Hereafter, we shall propose another rewriting of (Sε), to directly target the conti-
nuous EOT problem between two arbitrary measures µ and ν at the limit of the
n iterations. The numerical performances of the associated empirical entropic map
will be compared to Q̃n

ε in Section 2.4.

2.2 From functions to Fourier coefficients

From now on, µ is assumed to be the uniform distribution on X = [0, 1]d,
except in some of the numerical experiments carried out in Section 2.4 where a
change of variable enables to consider the spherical uniform distribution Ud for
which X = B(0, 1). Moreover, ν is assumed to have a finite moment of order two.
Then, we consider the normalization condition for the dual potential in (Sε)∫

X
u(x)dµ(x) = 0. (2.3)

Taking the support of µ to be equal to [0, 1]d is motivated by the choice to para-
metrize a dual function u ∈ L1(µ), satisfying the identifiability condition (2.3), by
its decomposition in the standard Fourier basis φλ(x) = e2πi〈λ,x〉, for λ ∈ Zd,

u(x) =
∑
λ∈Λ

θλφλ(x),

where Λ = Zd\{0} and θ = (θλ)λ∈Λ are the Fourier coefficients of u,

θλ =

∫
X
φλ(x)u(x)dµ(x). (2.4)

We refer to [164] for an introduction to multiple Fourier series on the flat torus Td =

Rd/Zd. Hereafter, Td stands for the set of equivalence classes [x] = {x+k ; k ∈ Zd}
for all x ∈ [0, 1[d. With a slight abuse of notation, we identify Td to its fundamental
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domain [0, 1[d, so that integration on Td is Lebesgue-integration on [0, 1[d, see [164]
or [38, 116] in the OT literature. Then, for a given regularization parameter ε > 0,
we rewrite the dual problem (Dε) with this parametrization, to consider, for `1(Λ)

defined hereafter, the following stochastic convex minimisation problem

θε = argmax
θ∈`1(Λ)

Hε(θ) with Hε(θ) = E [hε(θ, Y )] (2.5)

where Y is a random vector with distribution ν and

hε(θ, y) = ε log

(∫
X

exp

(∑
λ∈Λ θλφλ(x)− c(x, y)

ε

)
dµ(x)

)
+ ε.

Remark 2.1. We emphasize that the formulation (2.5) can be considered with any
other orthonormal basis of functions φλ, or ground cost c, with (2.3) and (2.4).
Our theoretical results would then continue to hold, under the assumption that
c ∈ L1(µ × ν). In particular, Chapter 3 deals with spherical harmonics on the
2-sphere, with a quadratic cost inherited from the Riemannian distance.

In view of a gradient descent, one needs to compute first-order derivatives. We
refer to [95, Chapter 8] for a basic course on Fréchet differentiability and Taylor
formulas for functions between Banach spaces. In Section 2.3.2, it is shown that,
for every y ∈ Y , the function θ 7→ hε(θ, y) is Fréchet differentiable only if θ belongs
to the convex set

`1(Λ) =

{
θ = (θλ)λ∈Λ ∈ CΛ : θ−λ = θλ and ‖θ‖`1 =

∑
λ∈Λ

|θλ| < +∞

}
.

Moreover, its differential Dθhε(θ, y) is identified as an element of the dual Banach
space

`∞(Λ) =

{
v = (vλ)λ∈Λ ∈ CΛ : v−λ = vλ and ‖v‖`∞ = sup

λ∈Λ
|vλ| < +∞

}
.

The components of the first order Fréchet derivative Dθhε(θ, y) are the partial
derivatives

∂hε(θ, y)

∂θλ
=

∫
X
φλ(x)Fθ,y(x)dµ(x) (2.6)

that are the Fourier coefficients of the function

Fθ,y(x) =
exp

(∑
λ∈Λ θλφλ(x)−c(x,y)

ε

)
∫
X exp

(∑
λ∈Λ θλφλ(x)−c(x,y)

ε

)
dµ(x)

. (2.7)

One can observe that Fθ,y is a probability density function, which is a key property
that we shall repeatedly use.

Let (Yn) be a sequence of independent random vectors sharing the same dis-
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tribution ν. In the spirit of [144], we propose to estimate the solution of (2.5) by
considering the stochastic algorithm in the Banach space (`1(Λ), ‖ ·‖`1) defined, for
all n ≥ 0, by

θ̂n+1 = θ̂n − γnWDθhε(θ̂n, Yn+1) (2.8)

where γn = γn−β with γ > 0 and 1/2 < β ≤ 1, which clearly implies the standard
conditions

∞∑
n=0

γn = +∞ and
∞∑
n=0

γ2
n < +∞. (2.9)

Moreover, W is the following linear operator{
W : (`∞(Λ), ‖ · ‖`∞) → (`1(Λ), ‖ · ‖`1)

v = (vλ)λ∈Λ 7→ w � v = (wλvλ)λ∈Λ

where w = (wλ)λ∈Λ is a deterministic sequence of positive weights satisfying the
normalizing condition

‖w‖`1 =
∑
λ∈Λ

wλ < +∞. (2.10)

A main difficulty arising here is that the space `1(Λ) of parameters differs from
its dual space `∞(Λ) to which the Fréchet derivative Dθhε(θ, y) belongs. This is
a classical issue when considering convex optimization in Banach spaces, see e.g.
[28], and this is the reason why we introduce the linear operator W in (2.8) that
maps `∞(Λ) to `1(Λ). The use of the linear operator W also induces two weighted
norms on the space

`2(Λ) =

{
θ = (θλ)λ∈Λ ∈ CΛ : θ−λ = θλ and ‖θ‖2

`2
=
∑
λ∈Λ

|θλ|2 < +∞

}
.

Trivially, `1(Λ) ⊂ `2(Λ).

Definition 2.2. For every θ ∈ `2(Λ) and for a sequence w = (wλ)λ∈Λ of positive
weights satisying (2.10), we define the two weighted norms

‖θ‖2
W =

∑
λ∈Λ

wλ|θλ|2 and ‖θ‖2
W−1 =

∑
λ∈Λ

w−1
λ |θλ|

2. (2.11)

Remark 2.3. Imposing that the Fourier coefficients θ = (θλ)λ∈Λ form an absolutely
convergent series implicitly requires that the optimal dual potential minimizing (Dε)
satisfy periodic conditions at the boundary of [0, 1]d. For the clarity of the exposure,
a detailed discussion on sufficient conditions for the un-regularized optimal dual
potential u0 to be periodic is postponed to Appendix A.2.

Hereafter, a regularized estimator of the potential defined from θε in (2.5), by

uε(x) =
∑
λ∈Λ

θελφλ(x) (2.12)
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is naturally given by
ûnε (x) =

∑
λ∈Λ

θ̂n,λφλ(x). (2.13)

In practice, our numerical procedure starts by considering a discretization of the
dual potential u over a regular grid Xp = {x1, . . . , xp} of points in X . This allows us
to compute the corresponding set of Fourier coefficients at frequencies Λp of size p by
the Fast Fourier Transform (FFT). Then, the sequence (θ̂n,λ)λ∈Λp satisfying (2.8) is
easily implemented using, at each iteration, the FFT and its inverse, see Algorithm
1 below. Hence, the computational cost, at each iteration, of our algorithm is of
orderO (p log(p)), while the cost of the celebrated Sinkhorn algorithm [47] isO (pn),
using a discrete source measure supported on Xp, and the one of the semi-discrete
stochastic algorithms proposed in [17, 22, 71] is O (n) at each iteration.

In our approach, the computational cost depends on the size p of the grid
on Xp that is fixed by the user. This size p does not require to be particularly
large, as showed by numerical experiments. However, we stress that this appealing
computational cost of O (p log(p)) comes with a drawback regarding the dimension.
Indeed, the number p of points in a uniform grid on [0, 1]d grows exponentially with
d. Thus, a standard implementation of the FFT on a uniform grid becomes difficult
for medium dimensions such as d = 10. Extending our work to the high-dimensional
setting would require the study of more sophisticated FFTs as proposed in [141],
but this issue is beyond the scope of this chapter.

Algorithm 1 Stochastic algorithm
Initialize N ∈ N, Xp = {x1, · · · , xp}, u ∈ Rp and W ∈ Rp×p

θ ← FFT(u)
while n ≤ N do

y ← Yn
u← IFFT(θ)
for i ∈ {1, · · · , p} do

F [i]← exp
(

(u[i]− c(xi, y))/ε
)

end for
F ← F/mean(F ) . estimate of (2.7)
grad← FFT(F )
θ ← θ − γnW · grad

end while
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Barycentric projection

Since the entropic map can be estimated from any solution of (Dε), we propose
the following, derived from (1.13) and (2.13),

Q̂n
ε (x) =

n∑
j=1

F̂j(x)Yj where F̂j(x) =
exp
((ûnε )c,ε(Yj)− c(x, Yj)

ε

)
∑n

`=1 exp
((ûnε )c,ε(Y`)− c(x, Y`)

ε

) ,
(2.14)

that is obtained by computing the smooth conjugate (ûnε )c,ε ∈ Rn of ûnε in (2.13).
Note that if one denotes by ((ûnε )c,ε)c,ε(x) the smooth conjugate of (ûnε )c,ε at x, then
our estimator can also be expressed as

Q̂n
ε (x) = x−∇((ûnε )c,ε)c,ε(x).

Immediately, our regularized estimator Q̂n
ε is a smooth and monotone (see e.g.

[34][Lemma 1]) estimator of the MK quantile function

2.3 Main results

2.3.1 Convergence of our algorithm

Hereafter, it is assumed that ε > 0. Moreover, the convergence of our algorithm,
as stated below, is valid for any cost function c that is lower semi-continuous.
Consequently, the restriction to the quadratic cost is not needed.

In order to state our main results, it is necessary to introduce two suitable
assumptions related to the optimal sequence of Fourier coefficients θε = (θελ)λ∈Λ

and the second order Fréchet derivative of the function Hε given by (2.5).

Assumption 2.1. The sequence (θελ)λ∈Λ satisfies ‖θε‖W−1 < +∞.

Assumption 2.2. For any regularization parameter ε > 0, there exists a posi-
tive constant cε such that the second order Fréchet derivative of the function Hε

evaluated at the optimal value θε satisfies, for any τ ∈ `1(Λ),

D2Hε(θ
ε)[τ, τ ] ≥ cε‖τ‖2

`2
. (2.15)

Our main theoretical result is devoted to the almost sure convergence of the
random sequence (θ̂n)n defined by (2.8). For the sake of readability, its proof is
deferred to Section 2.5.

Theorem 2.4. Suppose that the initial value θ̂0 is any random element in `2(Λ)

such that ‖θ̂0‖W−1 < +∞. Then, under Assumptions 2.1 and 2.2, the sequence
(θ̂n) converges almost surely in `2 towards the solution θε of the stochastic convex
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minimisation problem (2.5), i.e.

lim
n→∞

‖θ̂n − θε‖`2 = 0 a.s. (2.16)

Equivalently, we also have that

lim
n→∞

∫
X
|ûnε (x)− uε(x)|2dµ(x) = 0 a.s. (2.17)

Assumption 2.1 can be made more explicit by the choice of a specific sequence
of weights w = (wλ)λ∈Λ and by imposing regularity assumptions on the function
uε ∈ L1(µ) given by (2.12). For example, one may assume in dimension d = 2 that
uε is differentiable (with periodic conditions on the boundary on X ) and that its
gradient is square integrable,∫

X
‖∇u(x)‖2dµ(x) < +∞.

Then, under such assumptions, one may use the fact that∇u(x) =
∑

λ∈Λ 2πiλθελφλ(x)

and Parseval’s identity, [164][Theorem 1.7], to obtain that∑
λ∈Λ

‖λ‖2|θελ|2 < +∞.

Consequently, for the specific choice wλ = ‖λ‖−2, we find that Assumption 2.1 holds
properly. In higher dimension d, it is necessary to make additional assumptions on
the differentiability of uε. Note that we shall also prove in Lemma 2.10 that for any
θ, τ ∈ `1(Λ),

D2Hε(θ
ε)[τ, τ ] ≥ 1

ε

(
2−

∫
Y

∫
X
F 2
θε,y(x)dµ(x)dν(y)

)
‖τ‖2

`2
.

Therefore a sufficient condition for Assumption 2.2 to hold is to assume that∫
Y

∫
X
F 2
θε,y(x)dµ(x)dν(y) < 2 with cε =

1

ε

(
2−

∫
Y

∫
X
F 2
θε,y(x)dµ(x)dν(y)

)
.

2.3.2 Properties of the objective function Hε

The purpose of this section is to discuss various keystone properties of the
functions hε and Hε that are needed to establish our main result on the convergence
of our stochastic algorithm θ̂n.

Let us first discuss the first and second order Fréchet differentiability of the
functions Hε and hε that are functions from the Banach space (¯̀

1(Λ), ‖ · ‖`1) to R.
The following proposition gives the expression of the first order Fréchet derivative,
that we shall sometimes refer to as the gradient, of hε and Hε, as well as upper
bounds on their operator norm.
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Proposition 2.5. For any y ∈ Y, the first order Fréchet derivative of the function
hε(·, y) at θ ∈ ¯̀

1(Λ) is the linear operator Dθhε(θ, y) : ¯̀
1(Λ) → R defined for any

τ ∈ ¯̀
1(Λ) as

Dθhε(θ, y)[τ ] =
∑
λ∈Λ

∂hε(θ, y)

∂θλ
τλ (2.18)

where
∂hε(θ, y)

∂θλ
=

∫
X
φλ(x)Fθ,y(x)dµ(x). (2.19)

Moreover, the linear operator Dθhε(θ, y) can be identified as an element of ¯̀∞(Λ)

and its operator norm satisfies, for any θ ∈ ¯̀
1(Λ) and y ∈ Y,

‖Dθhε(θ, y)‖op = sup
‖τ‖`1≤1

|Dθhε(θ, y)[τ ]| ≤ sup
λ∈Λ

∣∣∣∣∂hε(θ, y)

∂θλ

∣∣∣∣ ≤ 1. (2.20)

The first order Fréchet derivative of the function Hε at θ ∈ ¯̀
1(Λ) is the linear

operator DHε(θ) : ¯̀
1(Λ)→ R defined for any τ ∈ ¯̀

1(Λ) as

DHε(θ)[τ ] =
∑
λ∈Λ

∂Hε(θ)

∂θλ
τλ (2.21)

where
∂Hε(θ)

∂θλ
=

∫
Y

∂hε(θ, y)

∂θλ
dν(y).

Moreover, the operator norm of the linear operator DHε(θ) satisfies, for any θ ∈
¯̀
1(Λ),

‖DHε(θ)‖op = sup
‖τ‖`1≤1

|DHε(θ)[τ ]| ≤ sup
λ∈Λ

∣∣∣∣∂Hε(θ)

∂θλ

∣∣∣∣ ≤ 1. (2.22)

The proposition below gives the expression of the second order Fréchet deri-
vative, that we shall sometimes refer to as the Hessian, of hε and Hε and upper
bounds on their operator norm.

Proposition 2.6. For any y ∈ Y, the second order Fréchet derivative of the
function hε(·, y) at θ ∈ ¯̀

1(Λ) is the following symmetric bilinear mapping from
¯̀
1(Λ)× ¯̀

1(Λ) to R

D2
θhε(θ, y)[τ, τ ′] =

1

ε

∑
λ′∈Λ

∑
λ∈Λ

τ ′λ′τλ

∫
X
φλ′(x)φλ(x)Fθ,y(x)dµ(x) (2.23)

− 1

ε

(∑
λ∈Λ

τ ′λ

∫
X
φλ(x)Fθ,y(x)dµ(x)

)(∑
λ∈Λ

τλ

∫
X
φλ(x)Fθ,y(x)dµ(x)

)
.

and its operator norm satisfies, for any θ ∈ ¯̀
1(Λ) and y ∈ Y,

‖D2
θhε(θ, y)‖op = sup

‖τ‖`1≤1,‖τ ′‖`1≤1

|D2
θhε(θ, y)[τ, τ ′]| ≤ 1

ε
. (2.24)
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Moreover, the second order Fréchet derivative of Hε : ¯̀
1(Λ)→ R is the symmetric

bilinear mapping from ¯̀
1(Λ)× ¯̀

1(Λ) to R defined by

D2Hε(θ)[τ, τ
′] =

∫
D2
θhε(θ, y)[τ, τ ′]dν(y). (2.25)

and its operator norm satisfies, for any θ ∈ ¯̀
1(Λ),

‖D2Hε(θ)‖op = sup
‖τ‖`1≤1,‖τ ′‖`1≤1

|D2Hε(θ)[τ, τ
′]| ≤ 1

ε
. (2.26)

We now provide useful results on the regularity of Hε.

Proposition 2.7. For any y ∈ Y, the functions hε(·, y) and Hε are strictly convex
on ¯̀

1(Λ).

As already noticed in previous works [17, 71] dealing with related objective
functions, the function Hε is not strongly convex. Nevertheless, one can obtain a
local strong convexity property of the function Hε in the neighborhood of its mini-
mizer θε. This result is a consequence of the notion of generalized self-concordance
introduced in [8], that has been shown to hold for semi-discrete EOT in [17], and
which we extend to the setting of the functional Hε on the Banach space ¯̀

1(Λ).

Proposition 2.8. For all θ ∈ ¯̀
1(Λ), we have

Hε(θ)−Hε(θ
ε) ≤ 1

ε
‖θ − θε‖2

`1
. (2.27)

Moreover, for any θ ∈ `1(Λ), the following local strong convexity property holds

DHε(θ)[θ − θε] ≥ g
(2

ε
‖θ − θε‖`1

)
D2Hε(θ

ε)[θ − θε, θ − θε], (2.28)

where, for all x > 0,

g(x) =
1− exp(−x)

x
. (2.29)

2.4 Numerical experiments

Influence of the dimension d

We first investigate the convergence of our numerical scheme for the estimation
of the entropic map using various values of the dimension d.

To do so, our estimator Q̂n
ε (x) in (2.14) is compared to Q̃n

ε (x) in (2.2) where
the dual potential ṽn ∈ Rn needed to compute Q̃n

ε (x) is obtained with either the
Sinkhorn algorithm [47] or a stochastic algorithm as proposed in [17, 71]. Starting
from the uniform distribution on [0, 1]d, we consider the map Q : x 7→ LTLx + b

where L is a lower triangular matrix and b ∈ Rd, both filled with ones. Trivially,
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Q is the gradient of a convex function, so that it is the MK quantile function of
ν = Q#µ. Thus, by Monte-Carlo sampling, we are able to approximate the mean
squared error of any estimator Q̂ defined as

MSE(Q̂) = E
[
‖Q̂(X)−Q(X)‖2

]
. (2.30)

The three ways of estimating Q are based on iterative schemes that we let running
until convergence of the MSE below the value 10−2 for d = 2, 3, 4, and by taking
ε = 0.005.

Figure 2.1 illustrates the time before convergence, in seconds, as a function of
n (the number of observations). In what follows, the continuous, semi-discrete, and
discrete approaches refer to Algorithm 1 withW the identity matrix, the stochastic
algorithm from [17, 71], and the Sinkhorn algorithm [47] respectively. For Xp given
in Algorithm 1, the uniform distribution on Xp is taken as a discrete reference mea-
sure for the Sinkhorn algorithm to ensure a fair comparison with our algorithm.
The MSE is estimated through m = 500 other random samples from µ. The size
p of the grid Xp is maintained comparable in every considered dimensions. Results
are averaged over 10 experiments for several samples (Y1, · · · , Yn), and standard
deviation is indicated around each MSE curve. Overall, these numerical experi-
ments reveal a potentially faster convergence for approaches based on stochastic
algorithms when the number of observations grows.

(a) d = 2, p = 202. (b) d = 3, p = 103. (c) d = 4, p = 64.

Figure 2.1 – Overall time, in seconds, until convergence of the MSE below 10−2

for different solvers for EOT.

Numerical experiments in dimension d = 1

The univariate setting allows us an explicit knowledge of the ground truth Q.
There, we study our algorithm with either the standard quadratic cost in Rd given
by c(x, y) = 1

2
‖x− y‖2 or the quadratic cost on the flat torus Td = Rd/Zd that is

c(x, y) =
1

2
dTd(x, y), with dTd(x, y) = min

λ∈Zd
‖x− y + λ‖. (2.31)
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The choice of the quadratic cost on the torus is motivated by the discussion in the
Appendix A.2 on sufficient conditions related to the summability of the Fourier
coefficients of an optimal dual potential.

For the learning rate γn = γn−c, we took γ = ε and c = 3/4. The sequence
of weights w = (wλ)λ∈Λ is chosen as wλ = |λ|−2 for λ ∈ Z\{0}. Taking a larger
exposant than 2 results in smoother estimators of the optimal dual potential uε.
For various values of ε ∈ [0.005, 0.5], we consider a beta(a, b) distribution ν on
Y = [0, 1] with parameters a = 5 and b = 5. The optimal dual potential u0 and
quantile function Q0 are straightforward to compute when d = 1 for the standard
quadratic cost. For a sample of size n = 105, ûnε and Q̂n

ε are displayed in Figure 2.2
using either the standard quadratic cost or the quadratic cost of the torus. One can
observe that the choice of the cost yields a different regularization effect. Choosing
ε = 0.005 yields values of ûnε and Q̂n

ε that are very close to u0 and Q0 respectively.
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(a) Standard quadratic cost

0.0 0.2 0.4 0.6 0.8 1.0

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.005

0.067

0.129

0.191

0.252

0.314

0.376

0.438

0.5

(b) Quadratic cost on the torus

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.005

0.067

0.129

0.191

0.252

0.314

0.376

0.438

0.5

(c) Standard quadratic cost
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(d) Quadratic cost on the torus

Figure 2.2 – Estimators ûnε and Q̂n
ε on the first and second lines respectively. The

black and dashed curves are either the un-regularized optimal dual
potential u0 or the un-regularized quantile function Q0 of the beta
distribution for the standard quadratic cost.

From now on, let us consider a sample (Y ∗1 , . . . , Y
∗
J ) of small size J = 100 of the

same beta(a, b) distribution. We illustrate the potential benefits of using regularized
OT to obtain a smoother estimator than the usual empirical quantile function Q̂J

0
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defined as the generalized inverse of the empirical cumulative distribution function

F̂ J
0 (x) =

1

J

J∑
j=1

1{Y ∗j ≤x}.

To this end, for various values of ε ∈ [0.005, 0.5], we compute the two estimators
Q̂n,J
ε from (2.14) and Q̃m,J

ε from (2.2) with sequences of n = m = 105 random
variables sampled from the discrete measure ν̂∗J or the uniform measure on [0, 1]

respectively. In Figure 2.3, we display in logarithmic scale the point-wise mean-
squared errors

MSE(Q̂n,J
ε (x)) = E

[
|Q̂n,J

ε (x)−Q0(x)|2
]
,

and
MSE(Q̃m,J

ε (x)) = E
[
|Q̃m,J

ε (x)−Q0(x)|2
]
,

where the above expectations are approximated using Monte-Carlo experiments
from 100 repetitions of the above described procedure. The MSE of these regu-
larized estimators is then compared to the MSE of the usual empirical quantile
function Q̂J

0 defined accordingly. For all values of ε, it can be seen, from Figure 2.3,
that regularization always improves the estimation of Q0(x) by Q̂J

0 (x) around the
median location x = 0.5. For the smallest values of ε, regularization also improves
the estimation of Q0(x) for x ∈ [0.1, 0.9], and the best results are obtained with
the stochastic algorithm based on the FFT.
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−8

−7

−6

−5

−4

−3

−2

0.005

0.054

0.104

0.154

0.203

0.252

0.302

0.352

0.401

0.45

0.5

(a) logMSE(Q̂n,J
ε (x))
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(b) logMSE(Q̃m,J
ε (x))

Figure 2.3 – Point-wise error of the regularized estimators Q̂n,J
ε and Q̃m,J

ε for
various values of ε ∈ [0.005, 0.5]. The black and dashed curve is the
point-wise error of the unregularized empirical quantile function Q̂J

0 .

Numerical experiments in dimension d = 2

As argued in [87], taking as reference the spherical uniform distribution µS
on the unit ball B(0, 1) induces different properties for MK quantiles. Thanks to
a change in polar coordinates, one can parametrize on B(0, 1) instead of [0, 1]d.
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By definition, a random vector X with spherical uniform distribution is given by
X = RΦ where R and Φ are independent and drawn uniformly from [0,1] and
the unit hypersphere Sd−1, respectively. In dimension d = 2, X writes in polar
coordinates as

X =

(
R cos(2πΨ)

R sin(2πΨ)

)
∈ B(0, 1),

where (R,Ψ) is uniform on [0, 1]2. Then, for a function u ∈ L1(B(0, 1), µS), its
parametrization in polar coordinates is given, for all (r, ψ) ∈ [0, 1]× [0, 1], by

u(r, ψ) = u

(
r cos(2πψ)

r sin(2πψ)

)
.

Hence, by definition of µS, the function u is an element of L1 ([0, 1]2, µ) where
µ is the uniform distribution on X = [0, 1]2. Consequently, thanks to this re-
parametrization, we propose to solve in the Fourier domain, for Λ = Z2\{0}, the
following regularized OT problem

θε = argmax
θ∈`1(Λ)

Hε(θ) with Hε(θ) = E
[
hε(θ, Y )

]
, (2.32)

where Y = (Y1, Y2) ∈ Rd2 is a random vector with distribution ν, and hε is given
by

hε(θ, y) = ε log
( ∫
X

exp

(∑
λ∈Λ θλφλ(r, ψ)− cy(r, ψ)

ε

)
dµ(r, ψ)

)
+ ε,

with φλ(r, ψ) = e2πi(λ1r+λ2ψ) for λ = (λ1, λ2) ∈ Z2, and cy refers to the quadratic
cost,

cy(r, ψ) =
1

2

(
(r cos(2πψ)− y1)2 + (r sin(2πψ)− y2)2

)
.

In order to solve (2.32), we adapt the stochastic algorithm (2.8) which yields, after
n iterations, the sequence θn and the estimator, in polar coordinates,

unε (r, ψ) =
∑
λ∈Λ

θn,λφλ(r, ψ). (2.33)

In practice, we discretize [0, 1]2 by choosing equi-spaced radius points 0 ≤ r1 <

. . . < rp1 ≤ 1 and angles 0 ≤ ψ1 < . . . ψp2 < 1 which results in taking a grid of
p = p1p2 points

Xp =
{

(r`1 , ψ`2)(`1,`2)∈{1,p1}×{1,p2}
}
⊂ [0, 1]2.

Finally, the stochastic algorithm (2.8) is implemented on this polar grid using the
weight sequence wλ = 1 for all λ ∈ Λp that is with α = 0. Of course, Assumption 2.1
is always verified if (wλ) ≡ (1, 1, · · · , 1, 0, 0, · · · ). This is motivated by the fact that
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choosing wλ = ‖λ‖−α with α ≥ 1 would impose periodic constraints on the dual
potentials ū(r, ψ) along the radius coordinate. However, as shown by the following
numerical experiments, an optimal dual potential typically does not satisfy the
polar periodic conditions ū(0, ψ) = ū(1, ψ) for all ψ ∈ [0, 1]. The counterpart of Q̂n

ε

in (2.14) directly follows from (2.33), that is

Q
n

ε(x) =
n∑
j=1

F j(x)Yj where F j(x) =
exp
((unε )c,ε(Yj)− c(x, Yj)

ε

)
∑n

`=1 exp
((unε )c,ε(Y`)− c(x, Y`)

ε

) ,
(2.34)

where the integral in the computation (unε )c,ε(·) is approximated with the polar
grid Xp. In what follows, we report numerical experiments for the banana-shaped
distribution ν considered in [33]. It corresponds to sampling Y as the random vector

Y =

(
U +R cos(2πΦ)

U2 +R sin(2πΦ)

)
,

where U is uniform on [−1, 1], Φ is uniform on [0, 1], R = 0.2Z(1− (1−|U |)/2 with
Z uniform on [0, 1], and U,Φ and Z independent. In these simulations, the random
variable Y is also centered and scaled so that it takes its values within the subset
[−0.6, 0.6]× [−0.4, 0.5] ⊂ [0, 1]2.

We first consider a sample Y ∗1 , . . . , Y ∗J of size J = 103 that is held fixed and
displayed in Figure 2.4. Then, we draw n = 105 random variables Y1, . . . , Yn from
the associated discrete distribution ν̂∗J , and we run the stochastic algorithm (2.8)
with different sizes (p1, p2) = (10, 100) and (p1, p2) = (100, 1000) for the discre-
tization Xp. Note that the cost of each iteration of the stochastic algorithm is of
order O (p log(p)) for p = p1p2. Therefore, the choice of discretization of the polar
coordinates greatly influences the computational cost of the algorithm. In Figure
2.4, we display the resulting regularized dual potentials ûnε in cartesian and polar
coordinates for ε = 0.005. We also draw the resulting MK contour quantiles of
level r = 0.5 for each choice of discretization, to illustrate that the results can be
very similar with a much lowest computational cost for the discretization of size
(p1, p2) = (10, 100).

Figure 2.5 contains a comparison of the convergence between our FFT-based
scheme (2.14) and (2.2), based on the stochastic gradient descent from [17], that we
refer to as the regularized SGD. The reference distribution is taken to be the spheri-
cal uniform. Also, we compare these regularized approaches (using ε = 0.005) with
classical un-regularized ones. To this end, we implement a subgradient descent for
semi-discrete unregularized OT, namely the same Robbins-Monro scheme as (2.1)
with ε = 0, and rely on (??). Finally, we use the OT network simplex solver from
the Python library [64] to compute the solution of un-regularized OT between two
empirical discrete distributions with supports Xp = {x1, . . . , xp} and (Y ∗1 , . . . , Y

∗
J ).

We first consider a sample Y ∗1 , . . . , Y ∗J of size J = 104 that is held fixed. For our

45



2. Stochastic algorithms to solve optimal transport

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(a) Quantile contour of order
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ε (r, ψ) ; (p1, p2) = (10, 100)
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(d) Quantile contour of order
r = 0.5 ; (p1, p2) = (100, 1000)

(e)
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(f) un
ε (r, ψ) ; (p1, p2) = (100, 1000)

Figure 2.4 – The blue curves are regularized MK quantile contours at level
r = 0.5 for ε = 0.005 from the discrete measure ν̂J (displayed with
black points) using two different discretizations (p1, p2) = (10, 100)
(first row) and (p1, p2) = (100, 1000) (second row). The second (resp.
thrid) columns represent the values of the regularized dual poten-
tials in cartesian (resp. polar) coordinates.

FFT approach, we let p1 = 20, p2 = 500, so that p = p1p2 = 104. For the three
iterative schemes, the number of iterations varies between 104, 105 and 106. This
corresponds, for our FFT approach, to a stochastic algorithm with 1, 10 and 100

epochs, whereas the other approaches sample from the reference distribution µS.

The first line of Figure 2.5 contains the corresponding quantile contours of
order r = 0.5 for each method, for several number of iterations. Unlike regularized
estimators, the values of un-regularized quantiles are restricted to (Y ∗1 , . . . , Y

∗
J ).

The second line of Figure 2.5 deals with convergence depending on the number
of iterations. As customary, we consider a recursive estimation of the values of
our objectives, respectively Hε for (2.5), H̃ε for (2.1) and H̃0 for (2.1) with ε = 0.
These objectives are recursively estimated along the iterations by gradual averaging
in order to account for convergence, as in [17]. For J = p = 104, the computational
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Figure 2.5 – Comparison between regularized (with ε = 0.005) and unregularized
approaches.

cost at each iteration of the two regularized procedures is of the same order. It can
be seen that the un-regularized SGD has not converged with 106 iterations, whereas
the regularized approaches (2.14) and (2.2) have similar convergence behavior.
Together with the first line of Figure 2.5, these results illustrate that entropically
regularized methods converge faster towards a more suitable solution.

We finally propose a last numerical experiment to highlight the behavior of
EOT when varying the regularization parameter ε. We chose to draw n = 107

random variables Y1, . . . , Yn from the banana-shaped distribution, and we ran the
stochastic algorithm (2.8) for the discretization (p1, p2) = (10, 1000). Doing so, the
obtained sample is very close to the true density, and the various resulting contours
only depend on ε. In Figure 2.6, we display the resulting regularized MK quantile
contours of levels r ∈ {0.2, 0.3, . . . , 1} for different values of ε ∈ [0.002, 0.5]. This
visualization warns on the choice of the regularization parameter that must be
chosen small enough. Note that, for n = 107 observations, we have not been able to
implement the Sinkhorn algorithm. Moreover, the cost at each iteration of either
regularized or un-regularized SGD being O(n), these algorithms are much slower
to converge than our approach.
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(a) ε = 0.5 (b) ε = 0.1 (c) ε = 0.05

(d) ε = 0.01 (e) ε = 0.005 (f) ε = 0.002

Figure 2.6 – In the background, a density histogram from the empirical measure
ν̂n = 1

n

∑n
j=1 δYj sampled from the banana-shaped distribution with

n = 107. The blue curves correspond to regularized MK quantile
contours of levels r ∈ {0.2, 0.3, . . . , 1} for ε ∈ [0.002, 0.5].

2.5 Proofs of the main results

The proofs of Proposition 2.5, Proposition 2.6 and Proposition 2.7 are given in
the Appendix, see Sections A.1.1, A.1.2 and A.1.3. We shall now proceed to the
proofs of the main results from Section 2.3.

Proof of Proposition 2.8

For θ ∈ `1(Λ) and t ∈ [0, 1], we denote θt = θε + t(θ − θε) and we define the
function ϕ(t) = Hε(θt). Then, we deduce from a second order Taylor expansion of
ϕ with integral remainder that

ϕ(1) = ϕ(0) + ϕ′(0) +

∫ 1

0

(1− t)ϕ′′(t)dt. (2.35)

However, we clearly have

ϕ′(t) = DHε(θt)[θ − θε] and ϕ′′(t) = D2Hε(θt)[θ − θε, θ − θε]. (2.36)
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Consequently, as ϕ′(0) = DHε(θ
ε)[θ − θε] = 0, (2.35) can be rewritten as

Hε(θ)−Hε(θ
ε) =

∫ 1

0

(1− t)D2Hε(θt)[θ − θε, θ − θε]dt. (2.37)

Therefore, (2.27) immediately follows from (2.26) and (2.37). It only remains to
prove (2.28). Our strategy is to adapt to the setting of this chapter the notion of
self-concordance as introduced in [7, 8] and used in [17, 22] to study the statistical
properties of stochastic optimal transport.

Lemma 2.9. For θ ∈ `1(Λ) and for all 0 < t < 1, denote θt = θε+ t(θ−θε). Then,
the function ϕ(t) = Hε(θt) verifies the self-concordance property

|ϕ′′′(t)| ≤ 2

ε
‖θ − θε‖`1ϕ′′(t). (2.38)

Proof. For a fixed y ∈ Y , let φ(t) = hε(θt, y). Firstly, we show that φ(t) verifies the
self-concordance property. From the chain rule, we obtain that

φ′(t) = Dhε(θt, y)[θ − θε],
φ′′(t) = D2hε(θt, y)[θ − θε, θ − θε],
φ′′′(t) = D3hε(θt, y)[θ − θε, θ − θε, θ − θε],

where D3hε denotes the third order Fréchet derivative of hε(·, y). It follows from
(2.18) that

φ′(t) =

∫
X
S(x)Fθt,y(x)dµ(x) where S(x) =

∑
λ∈Λ

(θλ − θελ)φλ(x). (2.39)

Similarly, (2.23) yields

εφ′′(t) =

∫
X
S(x)2Fθt,y(x)dµ(x)−

(∫
X
S(x)Fθt,y(x)dµ(x)

)2

. (2.40)

Hereafter, denoting by Zt the random variable with density Fθt,y with respect to
µ, it appears that εφ′′(t) = E[S(Zt)

2]−E[S(Zt)]
2 = E[(S(Zt)−E[S(Zt)])

2], that is

εφ′′(t) =

∫
X

(
S(x)−

∫
X
S(z)Fθt,y(z)dµ(z)

)2

Fθt,y(x)dµ(x). (2.41)

Furthermore, using (A.6) in the derivation of (2.40), we have that

εφ′′′(t) =

∫
X
S(x)2 d

dt
Fθt,y(x)dµ(x)

− 2

(∫
X
S(x)

d

dt
Fθt,y(x)dµ(x)

)∫
X
S(x)Fθt,y(x)dµ(x),
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which yields

ε2φ′′′(t) =

∫
S3(x)Fθt,y(x)dµ(x)−

∫
S2(x)Fθt,y(x)dµ(x)

∫
S(z)Fθt,y(z)dµ(z)

− 2

∫
S(x)Fθt,y(x)dµ(x)

[∫
S2(x)Fθt,y(x)dµ(x)−

(∫
S(x)Fθt,y(x)dµ(x)

)2
]
.

Consequently,

ε2φ′′′(t) = m3 −m2m1 − 2m1(m2 −m2
1) = m3 − 3m2m1 + 2m3

1,

where mi stands for the i-th moment of the distribution of S(Zt). Then, one re-
cognizes the formula for the cumulant of order 3 of a random variable, and so the
above equality can be factorized as

ε2φ′′′(t) = E[(S(Zt)−m1)3] =

∫
(S(x)−m1)3Fθt,y(x)dµ(x). (2.42)

Thanks to the connection between εφ′′(t) and the variance term in (2.41), the above
(2.42) leads to

ε|φ′′′(t)| ≤ sup
x∈X
|S(x)−m1|φ′′(t).

It is easy to see that |S(x)−m1| ≤ |S(x)|+ |m1| ≤ 2‖θ − θε‖`1 . Hence

|φ′′′(t)| ≤ 2

ε
‖θ − θε‖`1φ′′(t). (2.43)

Finally, given that ϕ(t) = Hε(θt) =
∫
Y hε(θt, y)dν(y) =

∫
Y φ(t)dν(y), (2.43) induces

the self-concordance property of ϕ.

We are now in a position to prove inequality (2.28). Denote δ = 2‖θ−θε‖`1/ε. It
follows from inequality (2.38) that, for all 0 < t < 1, |ϕ′′′(t)| ≤ δϕ′′(t), which leads
to ϕ′′′(t)

ϕ′′(t)
≥ −δ. By integrating the above inequality between 0 and t, we obtain that

logϕ′′(t)− logϕ′′(0) ≥ −δt, which means that ϕ′′(t)
ϕ′′(0)

≥ e−δt. Integrating once again
the previous inequality between 0 and 1, we obtain that

ϕ′(1)− ϕ′(0) ≥
(

1− e−δ

δ

)
ϕ′′(0). (2.44)

Finally, as ϕ′(1) = DHε(θ)(θ− θε), ϕ′(0) = 0 and ϕ′′(0) = D2Hε(θ
ε)[θ− θε, θ− θε],

inequality (2.28) holds, which completes the proof of Proposition 2.8.
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A sufficient condition for Assumption 2.2

Lemma 2.10. For any τ ∈ `1(Λ),

D2Hε(θ
ε)[τ, τ ] ≥ 1

ε

(
2−

∫
Y

∫
X
F 2
θε,y(x)dµ(x)dν(y)

)
‖τ‖2

`2
. (2.45)

Proof. We already saw from (2.25) that for any τ ∈ `1(Λ),

D2Hε(θ
ε)[τ, τ ] =

1

ε

∑
λ′∈Λ

∑
λ∈Λ

τλ′τλ

∫
Y

∫
X
φλ′(x)φλ(x)Fθε,y(x)dµ(x)dν(y)

− 1

ε

∫
Y

∣∣∣∣∣∑
λ∈Λ

τλ

∫
X
φλ(x)Fθε,y(x)dµ(x)

∣∣∣∣∣
2

dν(y). (2.46)

Our proof consists in a study of the two terms in the right-hand side of (2.46).
Since (2.21) only defines DHε(θ

ε)λ for all λ 6= 0, we deduce from (2.19) and (2.21)
that, for all λ 6= λ′,∫
X
φλ′(x)φλ(x)Fθε,y(x)dµ(x)dν(y) =

∫
Y

∫
X
φλ′−λ(x)Fθε,y(x)dµ(x)dν(y) = DHε(θ

ε)λ′−λ.

Moreover, as soon as λ = λ′,∫
Y

∫
X
φλ(x)φλ(x)Fθε,y(x)dµ(x)dν(y) =

∫
Y

∫
X
Fθε,y(x)dµ(x)dν(y) = 1.

Hence, from the optimality condition DHε(θ
ε) = 0, we obtain that∫

Y

∫
X
φλ′(x)φλ(x)Fθε,y(x)dµ(x)dν(y) = δ0(λ′ − λ),

where δ0 stands for the dirac function at 0. Therefore, it follows that

1

ε

∑
λ′∈Λ

∑
λ∈Λ

τλ′τλ

∫
Y

∫
X
φλ′(x)φλ(x)Fθε,y(x)dµ(x)dν(y) =

1

ε
‖τ‖2

`2
. (2.47)

From now on, our goal is to find an upper bound for the second term in the right-
hand side of (2.46). By Cauchy-Schwarz’s inequality, we have that∣∣∣∣∣∑

λ∈Λ

τλ

∫
X
φλ(x)Fθε,y(x)dµ(x)

∣∣∣∣∣
2

≤ ‖τ‖2
`2(Λ)‖Dhε(θε, y)‖2

`2(Λ). (2.48)

Moreover, it follows from Parseval’s identity, [164][Theorem 1.7] together with the
fact that

∫
X Fθε,y(x)dµ(x) = 1, that

‖Dhε(θε, y)‖2
`2(Λ) =

∫
X
F 2
θε,y(x)dµ(x)− 1. (2.49)
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Hence, combining (2.48) and (2.49), we obtain that

∫
Y

∣∣∣∣∣∑
λ∈Λ

τλ

∫
X
φλ(x)Fθε,y(x)dµ(x)

∣∣∣∣∣
2

dν(y) ≤ ‖τ‖2
`2

(∫
Y

∫
X
F 2
θε,y(x)dµ(x)dν(y)− 1

)
.

(2.50)
Finally, we deduce (2.45) from (2.46), (2.47) and (2.50).

Proof of Theorem 2.4

We shall proceed to the almost sure convergence of the random sequence (θ̂n)n.
Let (Vn) be the Lyapunov sequence defined, for all n ≥ 1, by

Vn = ‖θ̂n − θε‖2
W−1 .

Assumption 2.1 ensures that ‖θε‖W−1 < +∞. Moreover, we clearly have from (2.8)
that

W−1/2θ̂n+1 = W−1/2θ̂n − γnW 1/2Dθhε(θ̂n, Yn+1),

where Wα stands for the linear operator, for α ∈ {−1/2, 1/2}, that maps v =

(vλ)λ∈Λ ∈ `∞(Λ) to (wαλvλ)λ∈Λ. It follows from (2.11) that ‖θ̂n‖W−1 = ‖W−1/2θ̂n‖`2 .
Consequently,

‖θ̂n+1‖W−1 ≤ ‖θ̂n‖W−1 + γn‖W 1/2Dθhε(θ̂n, Yn+1)‖`2 .

Furthermore, we obtain from (2.20) that

‖W 1/2Dθhε(θ̂n, Yn+1)‖2
`2
≤ ‖w‖`1 sup

λ∈Λ

∣∣∣∣∂hε(θ, y)

∂θλ

∣∣∣∣2 ≤ ‖w‖`1 <∞.
Therefore, thanks to the assumption that ‖θ̂0‖W−1 < +∞, we deduce by induction
that ‖θ̂n‖W−1 < +∞, which means that the Lyapunov sequence (Vn) is well defined.
From now on, it follows from (2.8) and (2.11) that for all n ≥ 0,

Vn+1 = ‖θ̂n − θε − γnWDθhε(θ̂n, Yn+1)‖2
W−1 ,

= Vn − 2γn〈θ̂n − θε, Dθhε(θ̂n, Yn+1)〉+ γ2
n‖Dθhε(θ̂n, Yn+1)‖2

W .

Moreover, (2.20) implies that ‖Dθhε(θ̂n, Y
n+1)‖2

W ≤ ‖w‖`1 which ensures that for
all n ≥ 0,

Vn+1 ≤ Vn − 2γn〈θ̂n − θε, Dθhε(θ̂n, Yn+1)〉+ γ2
n‖w‖`1 . (2.51)

Denote by Fn = σ(Y1, . . . , Yn) the σ-algebra generated by Y1, . . . , Yn drawn from ν.
From Proposition 2.5, E[Dθhε(θ̂n, Yn+1)|Fn] = DHε(θ̂n), which implies via (2.51)
that for all n ≥ 0,

E[Vn+1|Fn] ≤ Vn + An −Bn a.s. (2.52)

52



Proofs of the main results

where (An) and (Bn) are the two positive sequences given, for all n ≥ 0, by

An = γ2
n‖w‖`1 and Bn = 2γnDHε(θ̂n)[θ̂n − θε].

Therefore, as
∑∞

n=0An <∞, we deduce from the Robbins-Siegmund theorem [144]
that the sequence (Vn) converges almost surely to a finite random variable V and
that the series

∞∑
n=0

Bn = 2
∞∑
n=0

γnDHε(θ̂n)[θ̂n − θε] <∞ a.s. (2.53)

Hence, by combining (2.53) with the first condition in (2.9), it necessarily follows
that

lim
n→∞

DHε(θ̂n)[θ̂n − θε] = 0 a.s. (2.54)

Hereafter, our goal is to prove that ‖θ̂n−θε‖`2 goes to zero almost surely as n tends
to infinity. From now on, let g be the function defined in (2.29). One can easily
see that g is a continuous and strictly decreasing function. Moreover, using the
Cauchy-Schwarz inequality, one has that ‖θ̂n − θε‖2

`1
≤ ‖w‖`1Vn. Hence, it follows

from inequality (2.28) that for all n ≥ 0,

DHε(θ̂n)[θ̂n − θε] ≥ g
(2

ε
‖w‖1/2

`1
V 1/2
n

)
D2Hε(θ

ε)[θ̂n − θε, θ̂n − θε]. (2.55)

Therefore, we obtain from Assumption 2.2 and inequality (2.55) that for all n ≥ 0,

DHε(θ̂n)[θ̂n − θε] ≥ cεg
(2

ε
‖w‖1/2

`1
V 1/2
n

)
‖θ̂n − θε‖2

`2
. (2.56)

Since (Vn) converges a.s. to a finite random variable V , it follows by continuity of
g that

lim
n→∞

g
(2

ε
‖w‖1/2

`1
V 1/2
n

)
= g
(2

ε
‖w‖1/2

`1
V 1/2

)
a.s. (2.57)

and the limit in the right-hand side of (2.57) is positive almost surely. Therefore,
we conclude from (2.54), (2.56) and (2.57) that

lim
n→∞

‖θ̂n − θε‖`2 = 0 a.s.

Finally, we deduce from Parseval’s identity, [164][Theorem 1.7] that∫
X
|ûnε (x)− uε(x)|2dµ(x) = ‖θ̂n − θε‖2

`2

which achieves the proof of Theorem 2.4.
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3
Directional statistics

The definition of Monge-Kantorovich quantile and distribution functions has
recently been extended to non-euclidean data in [84]. Again, providing regulari-
zed estimators is highly desirable. Thus, we generalize the entropic map on the
unit hypersphere Sd−1 and motivate its use. In addition, we extend our algorithm
from Chapter 2 to solve entropic optimal transport, by expanding dual poten-
tials in the basis of spherical harmonics. Besides, we define a directional Monge-
Kantorovich depth, and show that it benefits from desirable properties related to
Liu-Zuo-Serfling axioms for the statistical analysis of directional data. This chapter
is based on [20].
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3. Directional statistics

3.1 Introduction

3.1.1 Context and bibliography

Quantiles for directional data

In various situations, data naturally correspond to directions that are modeled
as observations belonging to the circle or the unit d-sphere Sd−1 for d ≥ 2. Such
observations, referred to as directional data, can be found in various applications
including wildfires [5], gene expressions [58], or cosmology [119] to name but a
few. Directional statistics [109, 110, 118, 137] is the field that brings together the
corresponding models, methods and applications for statistical inference. In this
chapter, we focus on the concept of quantiles for directional data. Beyond the
setting of distributions with rotational symmetry [108], the absence of a canonical
ordering on Sd−1 precludes a consensual definition of quantiles. In this context,
Monge-Kantorovich quantiles have recently been introduced in [84], in line with the
euclidean definitions, [33, 87]. Starting from independent and identically distributed
(i.i.d.) directional data X1, · · · , Xn sampled from a target measure ν, the main idea
in [84] is to define an empirical quantile function Qn as a Monge map, from µSd−1

the uniform probability distribution on Sd−1 towards the empirical measure ν̂n =
1
n

∑n
i=1 δXi , with a transport cost equal to the squared Riemannian distance. In this

manner, if U denotes a random variable with distribution µSd−1 , the random vector
Qn(U) follows the empirical distribution of the observations, which is consistent
with the standard univariate quantile function. Many statistical properties of these
directional quantiles and related notions of ranks, signs and MANOVA are then
investigated in [84], with various numerical experiments.

Related works

The first notion of directional depth function was introduced in [162], followed
by the work of [113] that developed three different approaches. The properties of
the latter have been studied and applied for inference in [3, 149]. The required
computational effort led the authors of [108] to build the angular Mahalanobis
depth, and, doing so, they provided the first concept of directional quantiles. Des-
pite appealing properties, the obtained contours are constrained to be rotationally
symmetric, motivating the elliptic counterpart from [90]. Still, the elliptic assump-
tion is a strong one as discussed in [84]. Facing either this lack of adaptiveness or
the computational burdens of previous references, distance-based depths were pro-
posed in [135], even though not explicitly related to the notion of quantiles. These
directional depth functions can been applied, for instance, in data analysis and
inference [3, 102, 113, 162], classification [54, 55, 102, 113, 130, 135] or clustering
[134]. Among recent years, two concepts of multivariate quantiles have emerged in
Rd, namely the spatial quantiles [32] and the center-outward ones [33, 87], both
gathering most of commonly sought-after properties. More importantly here, these
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promising ideas have successfully been extended to directional data [84, 102], im-
proving on the lack of adaptiveness of Mahalanobis quantiles [108], with desirable
asymptotic results inherited from the formalism of quantiles.

To put it in a nutshell, existing concepts of directional quantiles include Ma-
halanobis quantiles, Spatial quantiles and Monge-Kantorovich ones. On the one
hand, a statistical depth associated to a notion of quantiles is amenable to benefit
from the best of both worlds, that is adaptivity to the underlying geometry and
consistency of empirical versions, as argued for instance in [102]. On another hand,
in comparison with other directional quantiles, Monge-Kantorovich ones present
an additional descriptive power inherited from the fact that Q(U) ∼ ν. A direct
consequence is that Q must contain all the available information, which is appea-
ling with the purpose of summing up unknown features of multivariate data. Even
more, these concepts provide a curvilinear coordinate system within the support of
the distribution of interest, [84], which is a promising way to render the information.

Main contributions

To compute the estimator Qn, it is proposed in [84] to first approximate the
uniform measure µSd−1 by a “regular" grid of n-points over the unit sphere Sd−1.
Then, the empirical quantile function is defined through the discrete OT problem
between this n-points grid and ν̂n. However, being a matching between two dis-
crete distributions, the resulting quantile function does not provide out-of-sample
estimates which is desirable in many statistical applications. There, regularization
naturally enters the picture, as argued in [15, 87]. Consequently, the entropic map
is extended here to the spherical setting, similarly to what is done in [48] for gene-
ral costs in Rd. To the best of our knowledge, this appears to be new, although it
benefits from explicit formulation tractable in linear time, given the dual potentials
solving EOT. This belongs to the line of work estimating OT maps on manifolds,
see e.g. [37, 66, 136].

In addition, the computational cost of finding a numerical solution to a discrete
OT problem is known to scale cubically in the number of observations [46]. To
circumvent this issue, we suggest to adapt the stochastic algorithm developed in
[19] dealing with multivariate data in Rd, that is not assumed to belong to the
unit d-sphere. On the sphere S2, dual potentials can be parameterized via spherical
harmonics coefficients instead, that is the analog of the Fourier basis for square-
integrable functions on S2. In this manner, using a sequence of random variables
X1, . . . , Xn sampled from a target distribution ν supported on S2, we construct a
stochastic algorithm in the space of spherical harmonics coefficients. In practice,
this algorithm depends on the choice of a grid of points in S2 of size O (p2) to
implement a FFT on S2 [175]. The computational cost at each iteration is thus of
order O

(
p2 log2(p)

)
[104].

Finally, we introduce the directional version of the MK statistical depth, in
accordance with the euclidean MK depth [33]. We discuss its properties relative to
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traditional Liu-Zuo-Serfling axioms for the statistical analysis of directional data.
Moreover, we study statistical applications built from it, and provide a comparison
with other estimators, to better highlight the potential of entropic regularization
for empirical spherical quantiles.

3.1.2 Mathematical prerequisites

In this section, we introduce the main definitions of OT-based distribution and
quantile functions for spherical data, beginning with notation related to spherical
harmonics and differentiation on S2.

Preliminaries and notations

The unit 2-sphere is defined by S2 = {x ∈ R3 : ‖x‖ = 1}. The points x ∈ S2

can be written in spherical coordinates, with longitude φ ∈ [−π, π] and colatitude
θ ∈ [0, π], as

x = Φ(θ, φ) := (cosφ sin θ, sinφ sin θ, cos θ). (3.1)

On the 2-sphere, the geodesic distance is d(x, y) = arccos(〈x, y〉), and the squared
Riemannian distance is

c(x, y) =
1

2
d(x, y)2. (3.2)

Both d and c are continuous and bounded as d(x, y) ∈ [0, π]. Moreover, (S2, d) is a
separable complete metric space, with Borel algebra B2. The surface measure σS2

on S2 is given by ∫
S2

f(x)dσS2(x) =

∫ π

0

∫ π

−π
f(Φ(θ, φ)) sin θdφdθ,

and the uniform measure on S2 writes µS2 = 1
4π
σS2 . The space of all equivalence

classes of square integrable functions on S2 is denoted by L2(S2). We define the
spherical harmonic function of degree l ∈ N∗ and order m ∈ {−l, · · · , l} by

Y m
l (x) = Y m

l (Φ(θ, φ)) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ,

where the associated Legendre functions Pm
l : [−1, 1] → R verify, for l ∈ N∗ and

m ≥ 0,

Pm
l (t) =

(−1)m

2ll!
(1− t2)m/2

dl+m(t2 − 1)l

dtl+m
and P−ml (t) = (−1)m

(l −m)!

(l +m)!
Pm
l (t).

Importantly, the spherical harmonics form an orthonormal basis of L2(S2), so that
every function f ∈ L2(S2) is uniquely decomposed, for x ∈ S2, as

f(x) =
∞∑
l=0

l∑
m=−l

f̄ml Y
m
l (x), (3.3)
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where the sequence of spherical harmonic coefficients f̄ = (f̄ml ) verifies

f̄ml =
1

4π

∫
S2

f(x)Y m
l (x)dσS2(x). (3.4)

We refer to [35] for an introduction to Fourier analysis on the sphere.
Below, we introduce a few notation from differential geometry [163], that one

can find for instance in [61]. At any point x ∈ S2, the tangent space is TxS2 = {y ∈
R3 : 〈x, y〉 = 0}, and the associated orthogonal projection ρx : R3 → TxS2 verifies

ρxξ = (I − xxT )ξ = ξ − 〈ξ, x〉x. (3.5)

The exponential map at x ∈ S2, Expx : TxS2 → S2, has the explicit form

Expx(v) = cos(‖v‖)x+ sin(‖v‖) v

‖v‖
,

and its inverse Logx writes

Logx(z) =
d(x, z)√

1− 〈x, z〉2
ρxz = d(x, z)

ρx(z − x)

‖ρx(z − x)‖
. (3.6)

We take the extrinsic viewpoint for the manifold S2 embedded in R3, so that the
Riemannian gradient is given by orthogonally projecting Euclidean derivatives onto
the tangent space. For a smooth function f : S2 → R, its Riemannian gradient
∇f(x) at x is thus defined by

∇f(x) = ρxDf(x), where Df(x) =
(∂f(x)

∂xi

)
i,j∈{1,2,3}

. (3.7)

The Riemannian Hessian ∇2f(x) : TxS2 → TxS2 at x is defined by the same token,

∇2f(x) = ρx

[
D2f(x)− 〈Df(x), x〉I

]
with D2f(x) =

(∂2f(x)

∂xi∂xj

)
i,j∈{1,2,3}

.

(3.8)

Main definitions for directional MK quantiles

Here, we fix the definitions of directional distribution and quantile functions
as introduced in [84]. Given µ and ν two probability measures supported on S2,
optimal transportation follows the same definitions than in Chapter 1. Before consi-
dering the existence of Monge maps, we recall the key definition of c-transforms as
stated in [122] on Riemannian manifolds, that is equivalent to the formulation of
[84][Definition 2].

Definition 3.1. Given a function ψ : S2 → R, its c-transform is defined by

ψc(y) = inf
x∈S2
{c(x, y)− ψ(x)}.
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3. Directional statistics

Then, ψ is said to be c-concave when ψcc := (ψc)c = ψ.

The proper summary of [84][Proposition 1] highlights that c-concavity is related
to optimality in Monge’s OT problem (P0). For our continuous and bounded cost c,
an appropriate assumption is that the reference measure belongs to B2, the family
of σS2-absolutely continuous distributions with densities bounded away from 0 and
∞, see [122][Theorem 9], which is the case for the uniform measure µS2 . This enables
the definition of directional distribution and quantile functions, first introduced in
[84].

Definition 3.2. The directional MK quantile function of the arbitrary probability
measure ν is the µS2-a.s. unique map Q : S2 → S2 such that Q#µS2 = ν and there
exists a c-concave differentiable mapping ψ : S2 → R such that, σS2-a.e.,

Q(x) = Expx(−∇ψ(x)).

In addition, the directional MK distribution function of ν is given by

F(x) = Expx(−∇ψc(x)).

As soon as ν belongs to B2, [122][Corollary 10] ensures that F = Q−1 almost
everywhere, whereas Q−1 might not exist if ν is not absolutely continuous. Com-
pared to [84], our definition begins with Q instead of F, and it does not require
the absolute continuity for ν. This follows developments from [74] for measures
supported in Rd.

Remark 3.3 (Regularity). The regularity of OT maps on the sphere is a delicate
subject that has inspired a number of works, including [53, 114, 115, 131]. Firstly,
any c-concave potential ψ is twice differentiable almost everywhere [39][Proposi-
tion 3.14]. For further regularity, an appropriate requirement is that the underlying
measures are smooth and belong to B2. In particular, if, a minima, ν has den-
sity f ∈ C1,1(S2) with respect to σS2, then the MK quantile function Q belongs to
C2,β(S2) for all β ∈ ]0, 1[, see [115] for more details.

Remark 3.4 (Gradient mappings). A gradient mapping is built from a c-concave
potential ψ, through x 7→ Expx(−∇ψ(x)). A statistical model based on convex com-
binations of such maps was introduced in [154], and further used for directional
data in [155]. With the viewpoint of [33, 84, 87], this amounts to a barycenter
model for MK quantile functions.

In view of the proof of [122][Theorem 9], ψ solves the semi-dual version of
Kantorovich’s problem (S0). Our proposal is to build upon this to tackle the issue
of finding regularized estimators for F and Q. Before that, we recall the definitions
of directional quantile contours and regions from [84], that simplify in dimension
d = 3. A central point in S2 must be chosen for the uniform distribution µS2 ,
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in view of defining nested regions with µS2-content τ ∈ [0, 1]. In our Riemannian
framework, a well-suited notion of central point is the Fréchet median

θM = argmax
z∈S2

EZ∼ν [d(Z, z)], (3.9)

that can be computed with the package geomstats [126], in Python. Then, the
spherical cap with µS2 probability τ ∈ [0, 1] centered at F(θM) is

CU
τ =

{
x ∈ S2 : 〈x,F(θM)〉 ≥ 1− 2τ

}
,

with boundary CUτ = {x ∈ S2 : 〈x,F(θM)〉 = 1− 2τ} a parallel of order τ . This
defines a rotated version of the usual latitude-longitude coordinate system (3.1),
with respect to the pole F(θM), as follows. Any x ∈ S2 decomposes into

x = 〈x,F(θM)〉F(θM) +
√

1− 〈x,F(θM)〉2SF(θM )(x), (3.10)

where 〈x,F(θM)〉 is a latitude, constant over the parallel CUτ , while the directional
sign

SF(θM )(x) =
x− 〈x,F(θM)〉F(θM)

‖x− 〈x,F(θM)〉F(θM)‖
(3.11)

is a longitude, with the convention 0/0 = 0 for x = ±F(θM). The unit vector
SF(θM )(x) takes values on the rotated equator CU1/2, and thus allows to characterize
meridians crossing s ∈ CU1/2 through MU

s = {x ∈ S2 : SF(θM )(x) = s}. For ease of
understanding, we take the example of F(θM) = (0, 0, 1)T : taking x ∈ CUτ such that
〈x,F(θM)〉 = 1−2τ is equivalent to x3 = 1−2τ . Thus, we retrieve that for a fixed τ ,
quantile contours CUτ have indeed a fixed latitude in the classical longitude-latitude
system (3.1). In fact, one can use contours of constant latitude in the system (3.1)
to discretize a reference quantile contour oriented towards F(θM), by choosing the
appropriate rotation matrix O that sends (0, 0, 1)T towards F(θM). Numerically, it
can be computed using Rodrigues’ rotation formula, for instance.

The image by Q of the parallel / meridian system (3.10) provides curvilinear
parallels Q(CUτ ) and curvilinear meridians Q(MU

s ) adapted to the geometry of
the support of ν, giving rise to suitable directional concepts of quantile contours
and signs [84]. Intuitively, a change in coordinates in a data-adaptive fashion must
retain all the available information, in a simpler form amenable to be summed up.

Definition 3.5 (Quantile contours, regions and signs). Let ν ∈ B2, with directional
quantile function Q. Then,

— the quantile contour of order τ ∈ [0, 1] is Cτ = Q(CUτ ),

— the quantile region of order τ ∈ [0, 1] is Cτ = Q(CU
τ ),

— the sign curve associated with s ∈ CU1/2 is Q(MU
s ).

Since Q is a push-forward mapping, Q#µS2 = ν, the ν-probability content of
Cτ is τ . Moreover, the quantile contours of ν ∈ B2 are continuous and the quantile
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regions are closed, connected and nested, as stated in [84]. Invariance properties,
that were shown in [84], are gathered in Appendix B.1, for the sake of completeness.

3.2 Regularized estimation of MK quantiles on the
2-sphere

3.2.1 Entropic OT on the 2-sphere

We now introduce an algorithm based on the spherical Fourier transform to solve
the regularized Kantorovich problem on the 2-sphere. In the Euclidean case, Kan-
torovich’s problem is known to be easier to solve than Monge’s problem [46]. Even
more so, since the founding work of [47], adding an entropic regularization term to
(P ′0) has been a cornerstone for the development of OT-based methods in statistics
and machine learning. In [71], rewriting the dual objective function to be optimized
allowed the introduction of stochastic algorithms to obtain provably convergent al-
gorithms, see also [17]. For arbitrary measures, (not only discrete ones), the dual
variables cannot be viewed as finite-dimensional vectors anymore. Therefore, one
requires the use of nonparametric families of dual functions, as proposed in [71]
with reproducing kernel Hilbert spaces or in [153] with deep neural networks. In
Chapter 2, we suggested the use of Fourier series in the specific context of center-
outward quantiles to take advantage of the knowledge of the reference measure.
The resulting algorithm directly targets the continuous OT problem between the
reference measure and the underlying ν, instead of the discrete or semi-discrete OT
problem towards the empirical measure ν̂n. The idea that we are introducing here
for spherical distributions is in the same spirit. We mention that several algorithms
exist in order to solve the unregularized OT problem on the sphere, see [88] and the
references therein. Also, the Network simplex and Sinkhorn algorithm only depend
on the cost matrix, so that they can be adapted trivially on any space. While these
discrete solvers require the storage of the cost matrix, of size n2 for two samples of
sizes n, stochastic algorithms are designed to avoid it.

In our spherical setting, the cost is bounded, thus the problem (Sε) admits
a solution in L∞, unique up to additive constants, [70][Theorem 7]. To leverage
unicity, we impose that

∫
S2 u(x)dµS2(x) = 0, so that the problem (Sε) becomes

max
u∈L∞(S2)

∫
S2

uc,ε(y)dν(y).

It is well-known, [71, 133], that uε is solution of (Sε) if and only if uε = ((uε)
c,ε)c,ε,

see (1.11). Note that a Lipschitz continuous function on S2 shall equal its spherical
Fourier series (3.3) pointwise [125][Theorem 5.26]. One can find in [122][Lemma
2] that the cost c and the true unregularized potentials are Lipschitz, because S2

has a finite diameter |S2| = π. Furthermore, the same holds in the regularized case
ε > 0, from the optimality condition (1.11), see Proposition 12 from [62][Appendix
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B] or [133][Lemma 3.1]. Consequently, we suggest to parameterize the dual variable
in (Sε) by its spherical harmonic coefficients. For a given ε > 0, we consider the
optimal sequence of coefficients ūε defined as the solution of the following stochastic
convex minimisation problem

ūε = argmax
ū∈`1

Hε(ū) with Hε(ū) = E [hε(ū, X)] (3.12)

where X is a random vector with distribution ν , ū = (ūml )l≥1 and

hε(ū, x) = −uc,ε(x) with u(z) =
∞∑
l=0

l∑
m=−l

ūml Y
m
l (z).

Note that the spherical harmonic coefficient ū0
0 equals 0 because of the identifiability

condition
∫
S2 u(x)dµS2(x) = 0.

We shall now discuss the equivalence between (3.12) and the original problem
(Sε), and in particular the restriction ū ∈ `1. On the 2-sphere, the series of sphe-
rical harmonics of a continuously differentiable function is uniformly convergent,
see [98][p.259] or [96]. To obtain the stronger result that the sequence of spherical
harmonics belongs to `1, the function needs to be twice continuously differentiable,
[96][Theorem 2]. Regarding the unregularized Kantorovich potentials, such diffe-
rentiability requires smoothness of the measures involved, as highlighted in Remark
3.3. A sufficient condition when the reference measure is µS2 is that the density of ν
is differentiable and bounded above and below by positive constants, see [115][Co-
rollary 6.2]. It appears that such conditions on ν are not needed for the regularized
potential solving (Sε). Indeed, it shall be proven in Proposition 3.14 that uε is
always twice continuously differentiable.

Consequently, the problem (3.12) is equivalent to the original one (Sε). The main
virtue of this parameterization is that partial derivatives of hε with respect to the
parameters ūml can be derived easily, which is appealing in view of a stochastic
gradient scheme. Here, the objective hε(·, x) is of the same mathematical nature
than in [19], so that it is differentiable and the following property holds.

Proposition 3.6. For every x ∈ S2, the function hε(·, x) : `1 → R is Fréchet
differentiable and its differential Dūhε(ū, x) belongs to the dual Banach space (`∞, ‖·
‖`∞) where ‖ū‖`∞ = supl,m |ūml |. The components of Dūhε(ū, x) are the partial
derivatives

∂hε(ū, x)

∂ūml
=

1

4π

∫
S2

gū,x(z)Y m
l (z)dσS2(z), (3.13)

that are the spherical harmonics coefficients of the function

gū,x(z) =
exp

(
u(z)−c(z,x)

ε

)
∫

exp
(
u(y)−c(y,x)

ε

)
dµS2(y)

with u(z) =
∞∑
l=0

l∑
m=−l

ūml Y
m
l (z). (3.14)
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For (Xn) a sequence of independent random vectors with distribution ν, we
consider the stochastic algorithm in the Banach space (`1, ‖ · ‖`1) defined, for all
n ≥ 0, by

ûn+1 = ûn − γnWDûhε(ûn, Xn+1) (3.15)

where γn = γn−α is a decreasing sequence of positive numbers with 1/2 < α < 1

and γ > 0. Because `1 differs from its dual space `∞, the linear operator W is
defined by {

W : (`∞, ‖ · ‖`∞) → (`1, ‖ · ‖`1)

v̄ = (v̄ml ) 7→ w̄ � v̄ = (w̄ml v̄
m
l )

where w̄ = (w̄ml ) is a deterministic sequence of positive weights satisfying the condi-
tion

‖w̄‖`1 =
∞∑
l=0

l∑
m=−l

w̄ml < +∞. (3.16)

In all the experiments carried out hereafter, we use the sequence w̄ml = (l2 +m2)−1.
For a given regularization parameter ε > 0, a regularized estimator of the optimal

potential uε(x) =
∞∑
l=0

l∑
m=−l

ūmε,lY
m
l (x) is naturally given by

ûε,n(x) =
∞∑
l=0

l∑
m=−l

ûmn,lY
m
l (x). (3.17)

From a practical point of view, the stochastic sequence (3.15) must be discre-
tized. To do so, one must consider a grid of p2 points on the 2-sphere and the
associated spherical harmonics coefficients. We emphasize that this discretization
takes place in the space of frequencies, willing to take advantage from implicit in-
terpolation in this space. The Python library pyshtools [175], implements spherical
harmonics transforms and reconstructions. Our numerical procedure builds upon
it as the stochastic algorithm (3.15) requires computing the spherical harmonics
coefficients of the function gû,y(x) in (3.14), that relies on u(x) reconstructed from
û thanks to the inverse Fourier transform on the 2-sphere. With the help of the
fast routine within pyshtools, the computational cost at each iteration of (3.15) is
of order O

(
p2 log2(p)

)
[175]. Finally, the estimator ûε,n(x) in (3.17) can be quickly

recovered for any x thanks to the Python library sphericart [25].

Remark 3.7. To study the convergence of the stochastic algorithm (3.15), we could
adapt the theoretical results in [19] to our setting, because they were irrespective of
the orthonormal basis and the cost c.

3.2.2 Regularized distribution and quantile functions

We now introduce the regularized counterpart of Definition 3.2. When dealing
with measures supported on Rd, one can use the entropic map, defined as the ba-
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rycentric projection of the entropic optimal plan, see e.g. [140, 143]. At first sight,
this requires a notion of average on the sphere, as done in [66] from the unregu-
larized empirical OT plan. Nonetheless, this map is alternatively characterized by
analogy with Brenier theorem [140][Proposition 2], whose building block is the gra-
dient of Kantorovich potential. Based on such differentiation, entropic maps were
introduced in [48] for OT problems involving general convex costs in Rd. Because
this enforces the structure of optimality, we pursue this idea for our non-Euclidean
setting. Our numerical experiments in Section 3.4 flesh out the empirical benefits
and shortcomings when varying ε.

Definition 3.8. Let ν be an arbitrary probability measure supported on S2, and uε :

S2 → R be a solution of (Sε) between µS2 and ν. Then, the regularized distribution
function of ν is given by

Fε(z) = Expz(−∇uc,εε (z)), (3.18)

and the regularized quantile function of ν is

Qε(x) = Expx(−∇uε(x)). (3.19)

This requires the differentiation of entropic Kantorovich potentials. For a given
regularization parameter ε > 0, partial derivatives can be retrieved by

∂uε(x)

∂xi
=
∞∑
l=0

l∑
m=−l

ūml
∂Y m

l (x)

∂xi
,

where the package sphericart [25], allows the computation of ∂Yml (x)

∂xi
easily. The

Riemannian gradient ∇uε follows using (3.7). But because this may lead to nume-
rical instabilities, we suggest instead to make use of first-order conditions (1.11).
With discrete counterparts in practice, changing a couple of potentials (u, v) to
(vc,ε, uc,ε) improves the objective to solve. As (1.10) depends on the measure µS2 ,
its symmetric version (1.11) depends on ν instead. Notably, Sinkhorn’s algorithm
corresponds to perform such alternative smooth conjugates [70][Proposition 10].
The next proposition gives a generalized entropic map on the hypersphere S2.

Proposition 3.9. Denote by

gε(x, z) =
−d(x, z)√
1− 〈x, z〉2

exp
(uε(x)− c(x, z) + uc,εε (z)

ε

)
. (3.20)

Then, the Euclidean partial derivatives of uε admit the closed-form expression

∂xiuε(x) =

∫
zigε(x, z)dν(z). (3.21)
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Similarly, the Euclidean gradient of uc,εε verifies

∂ziu
c,ε
ε (z) =

∫
xigε(x, z)dµS2(x). (3.22)

Proof. Denote by v = uc,εε . Then, using the chain rule in (1.11) gives

∂xiuε(x) = −ε∂xiJ(x)

J(x)
for J(x) =

∫
exp

(v(z)− c(x, z)
ε

)
dν(z). (3.23)

We now turn to the differentiation of J . As shown in [133][Lemma 2.1],

inf
x∈X
{c(x, z)− uε(x)} ≤ v(z) ≤

∫
c(x, z)dµS2(x).

By boundedness of S2, v is bounded and so is the integrand in (3.23). As we deal
with probability measures, this justifies using the differentiation under the integral
sign, that induces

∂xiJ(x) =

∫
−∂xic(x, z)

ε
exp

(v(z)− c(x, z)
ε

)
dν(z). (3.24)

Fix z ∈ S2, so that

∂xic(x, z) = d(x, z)∂xid(x, z) and ∂xid(x, z) =
−1√

1− 〈x, z〉2
zi. (3.25)

Combining (3.24) with (3.25),

∂xiJ(x) =

∫
zi
ε

d(x, z)√
1− 〈x, z〉2

exp
(v(z)− c(x, z)

ε

)
dν(z). (3.26)

Plugging (3.26) in (3.23) gives (3.22), where gε defined in (3.20) shows up because,
by properties of exp,

exp
(v(z)− c(x, z) + uε(x)

ε

)
=

exp
(
v(z)−c(x,z)

ε

)
∫

exp
(
v(y)−c(x,y)

ε

)
dν(y)

(3.27)

By symmetry, the same arguments on uc,εε (z) = −ε log
∫

exp
(

uε(x)−c(x,z)
ε

)
dµS2(x)

yield (3.21).

Combining Proposition 3.9 with the definition of the Riemannian gradient on
S2, (3.7), yields the following corollary, recalling that

(x, z) 7→ exp
(uε(x)− c(x, z) + uc,εε (z)

ε

)
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is the density of the optimal entropic plan with respect to µ⊗ ν, [133].

Corollary 3.10. The regularized distribution and quantile functions of ν on S2

admit closed-form expressions through

Qε(x) = Expx

∫
Logx(z) exp

(uε(x)− c(x, z) + uc,εε (z)

ε

)
dν(z),

and
Fε(z) = Expx

∫
Logz(x) exp

(uε(x)− c(x, z) + uc,εε (z)

ε

)
dµS2(x).

Proof. Using the Euclidean derivatives obtained in Proposition 3.9,

∇uε(x) = ρx

∫
zgε(x, z)dν(z) and ∇uc,εε (z) = ρz

∫
xgε(x, z)dµS2(x).

But this is equivalent to

∇uε(x) =

∫
− d(x, z)√

1− 〈x, z〉2
ρx(z) exp

(uε(x)− c(x, z) + uc,εε (z)

ε

)
dν(z),

and

∇uc,εε (z) =

∫
− d(x, z)√

1− 〈x, z〉2
ρz(x) exp

(uε(x)− c(x, z) + uc,εε (z)

ε

)
dµS2(x).

There, one recovers Logx = Exp−1
x , (3.6), that gives

∇uε(x) = −
∫

Logx(z) exp
(uε(x)− c(x, z) + uc,εε (z)

ε

)
dν(z),

and
∇uc,εε (z) = −

∫
Logz(x) exp

(uε(x)− c(x, z) + uc,εε (z)

ε

)
dµS2(x).

Remark 3.11. It should be noted that Fε, resp. Qε, does not push ν forward
to µS2 anymore, resp. µS2 forward to ν. However, they are expected to be close
to their unregularized counterparts, for small values of ε > 0, as studied, for the
quadratic cost in Rd, in [77, 140, 165]. The limit ε→ 0 has been considered outside
the Euclidean setting [24, 133], although not directly about the generalized entropic
map itself. In particular, up to some sequence (εk) such that limk→+∞ εk = 0,
Proposition 3.2 from [133] gives us the uniform convergence of potentials (uεk) on
compact subsets of S2, towards ψ solving (S0).

From Corollary 3.10, Fε and Qε can be seen as weighted averages in the tangent
space. We argue that this can be gainful in practice, because of the regularity it
induces. In particular, one can infer from the next proposition that Fε and Qε must
be continuous.
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Proposition 3.12. The potential uε is twice-differentiable everywhere, and

∂2uε
∂xi∂xj

(x) =

∫
c̃ij(x, z) exp

(uε(x)− c(x, z) + uc,εε (z)

ε

)
dν(z) +

∂xiuε(x)∂xjuε(x)

ε
,

where

c̃ij(x, z) =
∂2c(x, z)

∂xi∂xj
−
∂xic(x, z)∂xjc(x, z)

ε
.

Besides, the same holds for uc,εε , replacing c̃ij(x, z) by

cij(x, z) =
∂2c(x, z)

∂zi∂zj
−
∂zic(x, z)∂zjc(x, z)

ε
.

Proof. The same calculus can be found in [70][Lemma 3], up to the fact that one
can recognize partial derivatives of uε, that is (3.21), in the result, at the very
end of our proof. First of all, gε is bounded by using [133][Lemma 2.1] and the
compacity of S2. Thus, one can differentiate in (3.21) under the integral sign, and

∂2uε
∂xi∂xj

(x) =

∫
∂xjzigε(x, z)dν(z). (3.28)

In view of using classical rules of differentiation, note that

zigε(x, z) = (∂xic(x, z))G(x, z) for G(x, z) = exp
(uε(x)− c(x, z) + uc,εε (z)

ε

)
.

(3.29)
Besides,

∂xjG(x, z) =
1

ε
G(x, z)∂xj(uε(x)− c(x, z)).

As a byproduct,

∂xjzigε(x, z) =
∂2c(x, z)

∂xi∂xj
G(x, z) + ∂xic(x, z)

1

ε
G(x, z)

(
∂xjuε(x)− ∂xjc(x, z)

)
,

= G(x, z)
(∂2c(x, z)

∂xi∂xj
+ ∂xic(x, z)

∂xjuε(x)− ∂xjc(x, z)
ε

)
. (3.30)

Plugging (3.30) in (3.28) and using (3.29) when rearranging,

∂2uε
∂xi∂xj

(x) =

∫
G(x, z)

(∂2c(x, z)

∂xi∂xj
−
∂xic(x, z)∂xjc(x, z)

ε

)
+
∂xjuε(x)

ε
zigε(x, z)dν(z),

=

∫
G(x, z)

(∂2c(x, z)

∂xi∂xj
−
∂xic(x, z)∂xjc(x, z)

ε

)
dν(z) +

1

ε
∂xiuε(x)∂xjuε(x).

where we also used the explicit derivatives of uε from (3.21). The Hessian of uc,εε
follows by symmetry.
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Remark 3.13. One can find e.g. in [61] that first-order derivatives of the cost c
are given by

∂xic(x, z)∂xjc(x, z) =
d(x, z)2

1− 〈x, z〉2
zizj,

and that second-order derivatives write

∂2c(x, z)

∂xi∂xj
= d(x, z)

〈x, z〉√
1− 〈x, z〉2

(
1i=j −

1

1− 〈x, z〉2
zizj

)
+

1

1− 〈x, z〉2
zizj.

Before turning to the description of the empirical counterparts in the next
section, twice differentiability of uε allows to infer regularity for the associated
sequence of spherical harmonics, as already discussed in Section 3.2.1.

Proposition 3.14. Let uε be a solution of (Sε). Then, uε is twice continuously
differentiable, and, as a byproduct, its series of spherical harmonics belongs to `1.

Proof. From Proposition 3.12, uε is twice-differentiable everywhere, that gives us
the continuity of Qε, and of ∂xiuε. In the expression of the second-order partial
derivatives given in (3.12), the term 1

ε
∂xiuε(x)∂xjuε(x) is thus continuous. The re-

maining term takes the form of a parameter-dependant integral, whose integrand
is continuous and bounded. Thus, the result follows by a direct application of the
theorem for continuity under the integral sign, and by using the property that a
sequence of spherical harmonics belongs to `1 for functions that are twice conti-
nuously differentiable, see [96][Theorem 2].

3.2.3 Regularized estimators

Suppose that the estimator ûε,n, defined in (3.17), has been computed using
the stochastic algorithm (3.15) from i.i.d. observations X1, · · · , Xn sampled from ν

supported on S2. To obtain a regularized quantile function, the empirical counter-
part of Corollary 3.10 involves integrals with respect to µS2 to compute the smooth
conjugate of ûε,n. Therefore, we consider a random sample U1, · · · , UN uniformly
drawn on S2, and we define the following estimator (as an approximation of ûc,εε,n)

ûc,εN,n(z) = −ε log
1

N

N∑
i=1

exp
( ûε,n(Ui)− c(Ui, z)

ε

)
. (3.31)

Hence, plugging (3.31) into (3.27), we propose the following estimator, for the
regularized quantile function Qε defined in Corollary 3.10,

Q̂ε
N,n(x) = Expx

( n∑
i=1

ĝεN,n(x,Xi)Logx(Xi)
)
, (3.32)
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where

ĝεN,n(x, z) =
exp

(
ûc,εN,n(z)−c(x,z)

ε

)
∑n

j=1 exp
(

ûc,εN,n(Xj)−c(x,Xj)
ε

) .
In the same token, an estimator of Fε is given by

F̂ε
N,n(z) = Expz

( N∑
i=1

g̃εN,n(Ui, z)Logz(Ui)
)
, (3.33)

with

g̃εN,n(x, z) =
exp

(
ûε,n(x)−c(x,z)

ε

)
∑N

j=1 exp
(

ûε,n(Uj)−c(Uj ,z)
ε

) .
Note that the empirical version of unregularized MK quantiles that is proposed in
[84] relies on discrete OT, yielding a bijection between a reference grid of points
in S2 and the samples. This is beneficial for statistical testing where distribution-
freeness of the ranks is highly desirable. On the contrary, regularization yields, even
empirically, smooth maps that are not constrained to belong to the set of observed
data, which is crucial for the descriptive analysis of Section 3.3.

Besides, the estimation of contours in [84] requires to solve two different discrete
OT problems. The first one estimates the central point F(θM), whereas the second
involves a grid oriented towards the estimate of F(θM), to render MK contours.
On the contrary, with our algorithm targeting continuous OT, there is no need to
solve two different OT problems, as the estimate ûε,n yields both F̂ε

N,n and Q̂ε
N,n,

and a fortiori F̂ε
N,n(θM).

3.3 Depth-based data analysis

This section is dedicated to study a companion concept of directional MK quan-
tiles, the MK statistical depth. We state a directional definition and discuss its pro-
perties. After that, we introduce descriptive tools in the spirit of the ones presented
in [112] in the euclidean setting.

For the sake of completeness, we first study the Euclidean setting Rd before
the directional one, that is of particular interest for us. Indeed, the results that we
derive below do not appear as such in the literature, at least to the best of our
knowledge.

3.3.1 Euclidean setting

From the euclidean definitions of MK quantile and distribution functions, see
Definition 1.2, the MK depth is defined in Rd as follows, [33].
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Definition 3.15. Let ν be an arbitrary probability measure on Rd. Its MK quantile
function is the unique Q = ∇ψ for some convex ψ : Rd → R such that Q#Ud = ν.
Then, the MK depth of x ∈ Rd is the depth of ∇ψ∗ under Tukey’s depth, [169],

Dν(x) = DTukey
Ud

(
∇ψ∗(x)

)
.

The Liu-Zuo-Serfling axioms [111, 176], describe desirable properties for depth
concepts. The MK-depth softens some of them, to reach more relevant contours [33].
Firstly, MK depth corresponds to Tukey depth for elliptical families [33]. Moreover,
it benefits from invariance properties [74][Lemmas A.7,A.8], with respect to scaling
(multiplication by a positive constant), translations, and orthogonal transforma-
tions (multiplication by an orthogonal matrix). Note that the affine-invariance does
not hold. Another axiom is the linear monotonicity relative to the deepest points,
that is Dν(x) ≤ Dν((1 − t)x0 + tx) for all t ∈ [0, 1] if x0 is a deepest point. This
is not fulfilled by the MK depth [33], although it verifies a similar property along
sign curves, as we shall see now.

Proposition 3.16 (Curvilinear monotonicity relative to the deepest points). As-
sume that ν is continuous. The MK depth is monotonically decreasing along sign
curves, that is, for each u ∈ B(0, 1) and t ∈ [0, 1],

Dν(Q(u)) ≤ Dν(Q(tu)).

Proof. Recall that Tukey’s depth verifies linear monotonicity relative to the deepest
points [176]. As the origin is the deepest point for Ud, this writes, for any t ∈ [0, 1],

DTukey
Ud

(u) ≤ DTukey
Ud

(tu). (3.34)

From Definition 3.15, Dν(Q(u)) = DTukey
Ud

(∇ψ∗ ◦Q(u)). By continuity of ν, ∇ψ∗ ◦
Q(u) = u a.e., see [74] or [172][Theorem 2.12 and Corollary 2.3]. Thus the result
follows, with (3.34).

This corresponds to the classical linear monotonicity under distributions with
straight sign curves, including spherical families due to the particular form of the
MK quantile function in this setting, taken from [33].

Corollary 3.17. For spherically symmetric distributions, sign curves are straight
lines, and the MK depth verifies linear monotonicity relative to the deepest point.
For any x in the support of ν, for x0 = E(X) the deepest point of ν,

∀t ∈ [0, 1], Dν(x) ≤ Dν((1− t)x0 + tx). (3.35)

Proof. Let X be a random vector associated with a spherically symmetric distri-
bution, for which E(X) and the deepest point shall coincide. From [33], the MK
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distribution function of X is known. By inverting it, we get its quantile function

Q(u) =
u

‖u‖
G−1(‖u‖) + E(X),

where G is the univariate distribution function of the radial part ‖X − E(X)‖.
Because ‖X‖ ≥ 0 a.s. and G−1 is increasing, G−1(t‖u‖)/G−1(‖u‖) ∈ [0, 1] and

Q(tu) =
u

‖u‖
G−1(t‖u‖) + E(X) =

G−1(t‖u‖)
G−1(‖u‖)

(
Q(u)− E(X)

)
+ E(X).

This rewrites, for δt = G−1(t‖u‖)/G−1(‖u‖), Q(tu) = δtQ(u) + (1 − δt)E(X).

Besides, δt takes all values between 0 and 1 for t ∈ [0, 1]. This, combined with
Proposition (3.16) induces

∀u ∈ B(0, 1),∀δ ∈ [0, 1], Dν(Q(u)) ≤ Dν(δQ(u) + (1− δ)E(X)).

But any x in the support of ν writes Q(u) for u = F(x), which gives (3.35).

We now turn to the properties of the directional MK depth.

3.3.2 Directional setting

Using the same ideas than in [33], one can define the MK depth on the sphere
through any statistical depth with respect to the uniform µS2 oriented towards
F(θM). The simplest is certainly to consider the proximity with F(θM).

Definition 3.18. Let ν be an arbitrary probability measure on S2, with directional
distribution function F. The directional MK depth of x ∈ S2 is defined by

Dν(x) = 1− d(F(x),F(θM))/π.

Regarding the S2-adapted versions of Liu-Zuo-Serfling axioms, [111, 176], the di-
rectional MK depth behaves like its Euclidean counterpart. We begin with the four
classical properties that are direct spherical counterparts of the Euclidean axioms,
see e.g. [108]. The affine-invariance is replaced on S2 by rotational invariance, which
holds true from [84], see also Proposition B.1. Moreover, it is straightforward that
Dν attains its maximum at the center F(θM), and that it vanishes at −F(θM),
the spherical counterpart of infinity. Finally, monotonicity along great circles is not
fulfilled, but it is replaced in the same data-adaptive fashion than in Rd.

Proposition 3.19 (Curvilinear monotonicity relative to the deepest points). As-
sume that ν is continuous. The directional MK depth is monotonically decreasing
along sign curves. For each x ∈ S2 and t ∈ [〈x,F(θm)〉, 1], let xt ∈ MU

s , for
s = SF(θM )(x), such that

xt = tF(θM) +
√

1− t2s. (3.36)
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Then,
Dν(Q(x)) ≤ Dν(Q(xt)). (3.37)

Proof. Fix x ∈ S2. Let s = SF(θM )(x) be the directional sign associated to x, from
the decomposition (3.10). For t ∈ [−1, 1], let xt ∈ MU

s be a parameterization
of the reference sign curve associated to s, as in (3.36). Hence, one may note
that 〈xt,F(θM)〉 = t, and xt = x for t = 〈x,F(θM)〉. Besides, Dν(Q(xt)) = 1 −
d(xt,F(θM))/π = 1−arccos(t)/π. Thus, as soon as t ≥ 〈x,F(θm)〉, (3.37) holds.

Explicit formulations for rotationally invariant distributions are given in [84],
and recalled in Appendix B.2. As a direct byproduct, the multivariate optimal
transport only acts on 〈x, θM〉, thus it reduces to univariate optimal transport
along the axis ±θM . In particular, for such distributions, MK quantile contours
coincide with Mahalanobis ones, [108], so that the following is straightforward.

Corollary 3.20. For rotationally invariant distributions, sign curves are great
circles. Thus, the MK depth verifies linear monotonicity along great circles, re-
lative to the deepest point.

Other desirable axioms have been put forward recently in [129, 130], namely the
upper semi-continuity and the non-rigidity of central regions. Upper semi-continuity
is ensured to hold as soon as the MK distribution function F is continuous, thus at
least for ν ∈ B2. Even more, when ν is arbitrary, taking the regularized directional
MK depth built from Fε, for ε > 0, imposes continuity, which may motivate such
regularized estimator. Lastly, the non-rigidity of central regions states that quantile
regions are not restricted to be spherical caps, which is readily true for the MK
depth. In fact, its adaptivity to the underlying support is one of its main feature,
and it can be seen as a stronger non-rigidity axiom, requiring that Q(U) ∼ ν as
soon as U ∼ µ. Furthermore, Proposition 3.19 and Corollary 3.20 shed some light
on the non-verified axiom of monotony along great circles. Our results suggest that
the directional MK depth alleviates these axioms when necessary, e.g. for complex
distributions such as mixtures, whereas the axioms are fulfilled for distributions for
which it is useful, in particular for rotationally invariant ones.

3.3.3 Descriptive tools

The seminal paper [112] gathers descriptive tools based on data depths. Monge-
Kantorovich analogs already exist for data in Rd, and we shall now extend some
of them to the directional setting. We stress that the ability of our regularized
estimator to interpolate between data points is crucial for (i) smooth contours in
practice and (ii) computing volumes of quantile regions.

Representative plots

Firstly, [112] study representative plots for bivariate data, and the MK analog
is given by the descriptive plots from [84, 87], the latter with the added information
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of sign curves. Figure 3.1 illustrates it on a Tangent von-Mises Fisher distribution,
[68], and on a Mixture of two von-Mises Fisher distributions, with the help of our
empirical regularized quantile function. One can observe that the shapes of the
distributions are well recovered.

Figure 3.1 – Regularized quantile contours of levels {0.1, 0.25, 0.5, 0.75, 0.9} and
associated sign curves, with ε = 10−1.

Scale or dispersion

Hereafter, we present a graphical tool to describe the amount of dispersion,
called the scale curve in [112] and whose MK analog has been introduced in [15]
for Euclidean data. We mention that, in [112], this tool is also used to compare
the variance of vector-valued estimators. Put simply, given any level α ∈ [0, 1], we
consider the volumes V (α) of MK quantile regions. Plotting such volumes with
respect to α ∈ [0, 1] yields a scale curve [112]. The faster it grows, the greater the
dispersion. Thus, if the scale curve of ν1 is consistently above the one of ν2, then
ν1 is more spread out than ν2. On S2, the volume is bounded, so we consider the
normalized µS2 instead of σS2 . Define

V (α) =

∫
Cα
dµS2(x) =

∫
S2

1{x∈Cα}dµS2(x) =

∫
S2

1{〈F(x),F(θM )〉≥1−2α}dµS2(x).

This can be estimated with a sample U1, · · · , UN from µS2 , by the proportion

Vε,n(α) =
1

N

N∑
i=1

1{〈F̂εN,n(Ui),F(θM )〉≥1−2α}.

On the left-hand side of Figure 3.2, we draw the scale curves of von-Mises Fisher
distributions with varying concentration parameter κ ∈ {1, 2, 5, 15}. It is well-
captured that the lower the value of κ, the more spread out is the underlying
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distribution. Besides, univariate order statistics (and equivalently, quantiles) are
fundamental to analyse the presence of outliers. In our spherical setting, the scale
curve is able to conveniently summarize this type of information, as illustrated in
the right-hand side of Figure 3.2. We consider n = 500 observations coming from
three identical von-Mises Fisher distributions with dispersion parameter κ = 15

and mean (0, 1, 0)T , but each with a certain number N ∈ {5, 20, 50} of outliers
localized near from (0, 0, 1)T . It appears that the volumes of quantile regions up to
the order α ≈ 0.6 are identical, whereas the dispersion increases with the number
of outliers for peripheric quantile regions, which is precisely the expected behavior.

Figure 3.2 – Scale curves of von-Mises Fisher distributions with various (left)
dispersion parameter κ and (right) number N of added outliers.

3.4 Numerical experiments

Other concepts of quantiles

In Figure 3.3, we display a visual comparison of existing concepts for quantiles
on the sphere by focusing on mixtures of two (first row) and three (second row) von-
Mises Fisher distributions. It can be observed that Mahalanobis quantile regions
[108] are concentric spherical caps, whereas spatial quantiles [102] and our regulari-
zed MK quantiles can exhibit more complex shapes that better fit the geometry of
the data. To that extent, spatial and regularized MK quantiles, obtained through
our regularized estimator Qε, are both more satisfactory. For the spatial quantiles,
our naive implementation forces them to belong to data samples. For each notion
of quantiles, 100 points are drawn within each contours, with straight lines to link
them. We emphasize that spatial quantiles are not indexed by their probability
content, as opposed to the MK ones [84]. Because entropic MK quantiles interpo-
late between data points, contours cross the void between mixture components. A
careful inspection shows that the number of points per contour within this void
is much lower than in the high density areas. This illustrates how the variation of
mass, that is the underlying geometry, is captured by our regularized estimator.
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(a) Mahalanobis quantiles (b) Spatial quantiles (c) Monge-Kantorovich quan-
tiles

(d) Mahalanobis quantiles (e) Spatial quantiles (f) Monge-Kantorovich quan-
tiles

Figure 3.3 – Quantile contours of orders {0.1, 0.25, 0.5, 0.75, 0.9}

Influence of the regularization strength

In Figure 3.4, we study the influence of the regularization parameter on the
estimation of known quantile contours, that were described in [84] and that are
recalled in Appendix B.2 for the sake of completeness. The mean-squared error
from uniform samples (xi) ⊂ S2 is

Rn(Q̂) =
1

n

n∑
i=1

c(Q(xi), Q̂(xi)),

for Q̂ denoting either our regularized MK quantile estimator Qε or the unregulari-
zed one Q̂0 proposed in [84]. Samples of size n = 500 are drawn from the uniform
µS2 and from a von-Mises fisher distribution of location (0, 0, 1)T and concentration
κ = 10. For several values of ε, Qε and Q̂0 are computed, and compared to the
ground truth by Rn(Q̂).

By doing this experiment 50 times, we obtain a boxplot of MSE values for each
ε, that are reported in Figure 3.4 where ε = 0 refers to Q̂0. The dashed horizontal
line illustrates the median value for the MSE of Q̂0. It can be observed that the
entropic regularization is able to significantly outperform the estimation of the
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quantile map, in particular for values around ε ≈ 0.09.

Figure 3.4 – Mean squared error Rn(Q̂ε) as a function of ε ∈ [0, 0.2].

In Figure 3.5, we visually compare regularized and unregularized MK spherical
quantile contours of orders 24.4%, 48.8%, 75.6% on the same von-Mises fisher dis-
tribution than in Figure 3.4. Such uncommon probability contents are inherent to
empirical unregularized contours because the number of contours as well as their
size depends on the sample size, that is here fixed at n = 2001. Ground-truth
contours deduced from (B.3) are presented together with unregularized and regu-
larized ones, for ε ∈ {0.01, 0.05, 1}. Each contour contains 100 points, linked by
straight lines. For ε = 0.01, contours adapt too much on the finite-sample data,
causing errors as ground-truth contours are smoother. For ε = 1, contours are
smoother, but there is too much bias in the approximation between Q̂ε and the
underlying ground truth. For the well-chosen ε = 0.05, the trade-off between re-
gularity and low-bias allows the better estimation. This sheds some light on the
behavior of regularization. The lower the ε, the more adapted Q̂ε is to the finite-
sample data and its irregularities. Larger values of ε induce smoother contours,
as a byproduct of a greater regularity for Q̂ε. Thus, this emphasizes the need for
calibration of the regularization strength.

Max-depth classification

Furthermore, following experiments in [102], we report a quantitative compari-
son between different notions of directional quantiles on the task of supervised clas-
sification, based on the max-depth approach from [75]. Because statistical depths
are designed to measure outlyingness within a distribution, one can classify x ∈ S2

as coming from the distribution ν1 instead of ν2 if the depth of x with respect
to (w.r.t.) ν1 is greater than the one w.r.t. ν2. As highlighted in [102], the vani-
shing property of many statistical depths [113, 169], raises issues when the sample
x lies outside the convex hull of empirical data, where new data is classified ran-
domly. On the contrary, the depth associated to spatial quantiles [102][Section 5], is
strictly positive everywhere, and the same holds trivially for the MK depth. In each
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(a) ε = 0.01 (b) ε = 0.05 (c) ε = 1

Figure 3.5 – Empirical regularized quantile contours in blue, unregularized ones
in orange, and ground truth in green.

setting, we learn the quantile functions on 200 points coming from distributions
(P1, P2), before computing misclassification rates on a test data of 200 different
observations. Define O the rotation matrix fixing the first coordinate and mapping
m1 = (0, 0, 1)T to m2 = (0, sin(π/3), cos(π/3))T . We consider for (P1, P2) :

1. von-Mises Fisher : P1 is a vMF with location m1 and concentration κ = 3,
P2 is the distribution of OX for X ∼ P1.

2. Tangent von-Mises Fisher : P1 is the distribution of

X = Zm1 +
√

1− Z2S,

where Z = 2V −1 for V a Beta(2, 8) distribution, S3 = 0 and (S1, S2)T follows
a von-Mises Fisher distribution with location (1, 0)T and concentration κ′ = 5.
Again, P2 is the distribution of OX for X ∼ P1.

3. Non-convex data : P1 is the same mixture of three vMF distributions than in
Figure 3.3. P2 is a vMF distribution centered at (0, 0, 1)T with concentration
parameter κ = 50.

Examples of data sampled from these three distributions are displayed in Figure
3.6, with observations sampled from P1 in blue and P2 in red.

For each notion of depth, we run 20 times the classification, and we gather
the misclassification rates. Figure 3.7 gives the results for the MK depth with
ε = 10−1 in comparison with existing notions of quantiles. All methods provide
comparative results when both the supports of P1 and P2 are convex. However, in
the third setting, classification based on the MK depth significatively outperforms
the others. This illustrates the potential of entropically regularized quantiles for
inference.
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(a) von-Mises Fisher (b) Tangent von-Mises Fisher (c) Non-convex data

Figure 3.6 – Data for max-depth classification.

(a) Von-Mises Fisher (b) Tangent von-Mises Fisher (c) Non-convex data

Figure 3.7 – Misclassification rates with several statistical depths.

79





4
Superquantiles and expected shortfalls

“The superquantile function [...] is as fundamental to a random variable
as the distribution and quantile functions.”

Rockafellar & Royset, [145]

This chapter defines center-outward superquantile and expected shortfall func-
tions, to provide a natural way to characterize multivariate tail probabilities and
central areas of point clouds. These notions characterize the underlying distribu-
tions and their weak convergence, which underlines their importance. Applications
in risk analysis are provided, with multivariate extensions of the standard notions
of value-at-risk and conditional-value-at-risk. This chapter is based on [18].
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4. Superquantiles and expected shortfalls

4.1 Introduction

Superquantile, expected shortfall

Modeling the dependency between the components of a random vector is at
the core of multivariate statistics. To that end, one way to proceed is to charac-
terize the multivariate probability tails. For distributions supported on the real
line, this is often tackled with the use of superquantiles or expected shortfalls, that
complement the information given by the quantiles. Let X be an integrable abso-
lutely continuous random variable with cumulative distribution function F . For all
α ∈ ]0, 1[, recall that the quantile Q(α) of level α is given by

Q(α) = inf{x : F (x) ≥ α},

whereas the superquantile S(α) and expected shortfall E(α) are defined by

S(α) = E[X
∣∣X ≥ Q(α)] =

E[X1X≥Q(α)]

P(X ≥ Q(α))
=

1

1− α
E[X1X≥Q(α)], (4.1)

and
E(α) = E[X

∣∣X ≤ Q(α)] =
E[X1X≤Q(α)]

P(X ≤ Q(α))
=

1

α
E[X1X≤Q(α)]. (4.2)

As illustrated in Figure 4.1, S(α) focuses on the upper-tail while E(α) targets
the lower-tail. We emphasize that using the terms of superquantile and expected
shortfall is a subjective consideration taken from [1, 145]. Most of the time, one
does not consider the upper and the lower tails together, so that a single name is
required, up to considering the distribution of −X. In this vein, depending on the
application, the expected shortfall may refer to the same as the Conditional-Value-
at-Risk, Conditional-Tail-Expectation, see e.g. [2], or even the superquantile, that
aims to be a neutral alternative name in statistics [145].

Figure 4.1 – Illustration of the notions of superquantile S(α) and expected short-
fall E(α) for an univariate Gaussian distribution.

The main contribution of the present chapter is to extend (4.1) and (4.2) to-
wards a notion of multivariate superquantile and expected shortfall. As part of
the difficulty, both the mathematical meanings of “ahead”, “beyond” and “typical”
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do not adapt canonically in Rd. We argue that sufficient notions are provided by
the Monge-Kantorovich (MK) quantiles, ranks and signs, introduced in [33, 87].
In particular, the traditional left-to-right ordering is replaced in our approach by
a center-outward one that is more intuitive for a point cloud [33]. Hence, the two
subsets of observations that we are interested in are located at the outward or
near the mean value, which requires to adapt the concepts of (4.1) and (4.2) in
Rd. It is well-known from a simple change of variables in R that S and E average
observations beyond and ahead the quantile of level α, in the sense that

S(α) =
1

1− α

∫ 1

α

Q(t)dt and E(α) =
1

α

∫ α

0

Q(t)dt. (4.3)

In Section 4.2, our definitions generalize the formulation (4.3). If Q stands
for the multivariate MK quantile function instead of the classical univariate one,
center-outward superquantile and expected shortfall functions are defined, for any
u in the unit ball B(0, 1)\{0}, by

S(u) =
1

1− ‖u‖

∫ 1

‖u‖
Q
(
t
u

‖u‖

)
dt and E(u) =

1

‖u‖

∫ ‖u‖
0

Q
(
t
u

‖u‖

)
dt.

Importantly, the univariate quantile and related functions are deeply rooted in
risk analysis. On the one hand, risk measures which are both coherent and regular
can be characterized by integrated quantile functions [79]. On the other hand, given
a level α, fundamental risk measures are given by Q(α) and S(α), called Value-
at-Risk (VaR) and Conditional-Value-at-Risk (CVaR), respectively. As a matter
of fact, a natural main contribution of the present paper is to provide meaningful
multivariate extensions of VaR and CVaR.

Background on multivariate risk measurement

MK quantiles and the related concepts have already been applied to multiva-
riate risk measurement in [15], and, in some sense, in the previous works [59, 67].
The theory in [59] states ideal theoretical properties for coherent regular risk mea-
sures, while the maximal correlation risk measure of [15] furnishes a real-valued
risk measure with these properties. This constitutes, to the best of our knowledge,
the short literature on risk measurement based on the MK quantile function. In
this work, we argue that an adequate procedure of multivariate risk measurement
shall account for all the information on the tails, both in terms of direction and
spreadness. To answer this issue, vector-valued risk measures are natural candi-
dates. There also exist several extensions of VaR or CVaR to the multivariate
setting, including [6, 29, 40, 41, 76, 91, 142, 167, 170], but none of them is based
on the theory of optimal transportation and its associated potential benefits. In
particular, our concepts do not require any assumption on the tail behavior of the
data, nor any statistical model, because MK quantiles adapt naturally to the shape
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of a point cloud. On the real line, the VaR and the CVaR have a clear interpre-
tation : for a level α ∈ [0, 1], the VaR is the worst observation encountered with
probability 1 − α whereas CVaR is the average value beyond this worst observa-
tion. Such a meaningful definition is surely part of the reason for their wide use
in practice. Under the name of Conditional-Tail-Expectation, the idea proposed in
[41, 57] preserves this interpretation, but relies on level sets defined from the theory
of copulas. Specifically, the obtained quantile levels do not adapt automatically to
the shape of the data. Still, this notion averages over a certain quantile level, and it
returns a tail observation of the same dimension as the data. Our work is inspired
by this approach, as we aim to give the same information about multivariate tails,
but we use the MK quantile function, which yields, to our opinion, concepts with
even better interpretability. A result of independent interest is also provided, giving
a new family of Monge maps between known probability distributions. This may
motivate changing the reference distribution under generalized gamma models.

4.2 Center-outward superquantiles and expected-
shortfalls

4.2.1 Main definitions

On the real line, the notion of superquantile and expected shortfall relies heavily
on the one of quantile. It is then natural to make use of the Monge-Kantorovich
(MK) quantile function and its appealing properties in order to define associa-
ted superquantile and expected shortfall functions. In the remaining, the reference
measure is taken as Ud, which is highlighted by the denomination of center-outward
quantiles instead of Monge-Kantorovich. By simplicity, we shall restrict ourselves
to the set of integrable probability measures over Rd, that is

P1(Rd) =
{
ν : EX∼ν [‖X‖] < +∞

}
.

We also make some assumptions to ensure continuity of Q, that are described
hereafter. Following [87], we assume, without loss of generality, that ψ in Definition
1.2 satisfies ψ(0) = 0 and, for u ∈ Rd such that ‖u‖ = 1,

ψ(u) = lim inf
v→u
‖v‖<1

ψ(v). (4.4)

Moreover, we impose, for all u ∈ Rd such that ‖u‖ > 1,

ψ(u) = +∞. (4.5)

This being said, the convex potential ψ is uniquely defined over its domain Dom(ψ) =

{u|ψ(u) < +∞}, that verifies B(0, 1) ⊂ Dom(ψ) ⊂ B(0, 1). Although ψ can be
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chosen to be continuous over B(0, 1), [146][Theorem 10.3], the gradient ∇ψ is only
defined almost everywhere. At every u where ψ is not differentiable, one can still
define the subdifferential

∂ψ(u) = {z ∈ Rd : ∀x ∈ Rd, ψ(x)− ψ(u) ≥ 〈z, x− u〉}.

Then, for all u ∈ B(0, 1), we can define Q(u) as the average of ∂ψ(u) so that Q is
defined everywhere, without ambiguity. Note that considering any other point in
the subdifferential ∂ψ(u) would be as satisfactory. In fact, from [63], as soon as ν
is a continuous probability measure with non vanishing density on Rd, ψ can be
shown to be differentiable everywhere on B(0, 1)\{0}. The same result is showed
under milder assumptions in [51], that are presented hereafter.

Assumption 4.1. Let ν be an absolutely continuous measure with probability den-
sity function p defined on its support X . For every R > 0, there exist two constants
0 < λR < ΛR such that, for all x ∈ X ∩ B(0, R),

λR ≤ p(x) ≤ ΛR.

Assumption 4.2. The support X ⊂ Rd of ν is convex.

Under these assumptions, the next theorem is given in [51].

Theorem 4.1 (Regularity of the center-outward quantile function, [51]). Under
Assumptions 4.1 and 4.2, there exists a compact and convex set K with Lebesgue
measure 0 such that the center-outward quantile function Q is a homeomorphism
from B(0, 1)\{0} to X\K, with inverse

Q−1(x) = ∇ψ∗(x) = argsup
u∈B(0,1)

{〈x, u〉 − ψ(u)}.

We also define P∗(Rd) as the set of integrable probability measures for which Q
is a homeomorphism from B(0, 1)\{0} to its image, see Theorem 4.1. This includes
any ν satisfying assumptions 4.1 and 4.2, that is also integrable, to ensure finiteness
of the center-outward superquantiles. We stress that, for any ν ∈ P∗(Rd), Q is
defined everywhere on B(0, 1)\{0}, as opposed to almost everywhere on B(0, 1).

Hereafter, this allows us to properly define quantile contours, ranks and signs,
where continuity and invertibility of Q are required. The next definitions, taken
from [33, 87], gather the main concepts that we use in the following.

Definition 4.2 (Quantile contours, ranks and signs). Let ν with center-outward
quantile function Q and supported on X ⊂ Rd. Then, for the distribution ν,

(i) the quantile region Cα of order α ∈ [0, 1] is the image by Q of the ball B(0, α),

(ii) the quantile contour Cα of order α ∈ [0, 1] is the boundary of Cα,
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(iii) the rank function Rν : X → [0, 1] is defined by Rν(x) = ‖Q−1(x)‖,
(iv) the sign function Dν : X → B(0, 1) is defined by Dν(x) = Q−1(x)/‖Q−1(x)‖.

A few remarks follow from Definition 4.2. The ν-probability of Cα is α, by the
change of variables formula for push-forward maps, which is a first requirement
for quantile regions. As already stressed, one may note that the rank and sign
functions require the invertibility of Q. Also, the ranks and signs are independent
for any distribution ν. Furthermore, one can consider the sign curve associated to
u ∈ B(0, 1), that is the image by Q of the radius

Lu =
{
t
u

‖u‖
: t ∈ [0, 1]

}
.

These sign curves gather a sort of curvilinear directional information in a conve-
nient fashion, that will be critical hereafter. Together with the quantile contours,
they provide a curvilinear polar coordinate system adapted to a point cloud, as
illustrated in Figure 4.2.

Figure 4.2 – (Left) center-outward quantiles of the spherical uniform distribution
µ = Ud, and (right) center-outward quantiles of a discrete distribu-
tion ν obtained by Q#µ = ν.

From [87][Section 2], the continuity and invertibility of Q outside the origin
ensures the crucial fact that the quantile contours are closed and nested. It is the
notion of center-outward ranks that allows to order points in X relatively to ν,
consistently with Tukey’s halfspace depth, as highlighted in [33]. It induces the
following weak order.

Definition 4.3. For ν ∈ P(Rd) and x, y ∈ X , we denote x ≥R y and say that y is
deeper than x if

‖Q−1(x)‖ ≥ ‖Q−1(y)‖.

The deeper a point is in X , the more central it is with respect to ν. For a
fixed u ∈ B(0, 1)\{0}, we can then write x ≥R Q(u) which enables to consider
the observations “beyond” Q(u) in the sense of being less central. Thus, a dataset
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X1, · · · , Xn can be ordered from the center to the outward, and relabeled to get
the order statistics X[1] ≤R · · · ≤R X[n].

Focusing on the central areas of a point cloud, u 7→ E[X|X ≤R Q(u)] has been
introduced in [85] as a center-outward Lorenz function for X, see Section 4.6. The
reverse conditional expectation E[X|X ≥R Q(u)] might be thought of as a natural
candidate for a superquantile concept. Nevertheless, it cannot be understood as a
“typical” observation within outward areas. Indeed, consider the following example.

Example 4.4. Suppose that ν = Ud, so that Q is the identity. For every u ∈
B(0, 1)\{0}, E [X|X ≥R Q(u)] = E

[
X
∣∣‖X‖ ≥ ‖u‖] is the expectation of a symme-

tric distribution over an annulus centered at the origin. Therefore, one has that
E[X|X ≥R Q(u)] = 0 and it cannot be thought of as a typical extreme observation.

This is caused by a lack of information in E[X|X ≥R Q(u)]. In fact, the rank
function neglects the directional information of X, which lies in the sign function.
In order to overcome this issue, we have to introduce a few notation. For any
u ∈ B(0, 1)\{0}, let

Lu =
{
t
u

‖u‖
: t ∈ [0, 1]

}
(4.6)

be a parametrization of the radius of B(0, 1)\{0} whose direction is u/‖u‖. The
sign curve Cu associated to u is the image of Lu by the center-outward quantile
function, namely

Cu = Q(Lu).

Several sign curves are represented in red at the right-hand side of Figure 1.3.
Averaging observations less deep that Q(u) along the sign curve Cu induces a
“typical” value “beyond” Q(u) in a meaningful multivariate way.

Definition 4.5. Let ν ∈ P1(Rd) with center-outward quantile function Q. The
center-outward superquantile function of ν is the function S defined, for any u ∈
B(0, 1)\{0}, by

S(u) =
1

1− ‖u‖

∫ 1

‖u‖
Q
(
t
u

‖u‖

)
dt,

where the above integral is to be understood component-wise.

Remark 4.6 (Consistency with the univariate case). On the real line, there is
only one sign curve C1 = {Q(t); t ∈ [0, 1]}. Thus, definition (4.3) can be seen as
averaging observations less deep than Q(α), w.r.t. ν, along the sign curve C1. No-
netheless, note that center-outward quantiles slightly differ from classical quantiles
in dimension d = 1, because U([−1, 1]) 6= U([0, 1]), even if they carry the same
information, [87][Appendix B].

By the same token, we can define the center-outward expected shortfall function.

Definition 4.7. Let ν ∈ P1(Rd) with center-outward quantile function Q. The
center-outward expected shortfall function of ν is the function E defined, for any

87
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u ∈ B(0, 1)\{0}, by

E(u) =
1

‖u‖

∫ ‖u‖
0

Q
(
t
u

‖u‖

)
dt,

where the above integral is to be understood component-wise.

Remark 4.8. For ν ∈ P∗(Rd), Q is neither defined at the origin nor at the boun-
dary of the unit ball, unless the support of ν is compact. Hence the integrals in S(u)

and E(u) are improper and they shall be understood respectively as

lim
r→1−

∫ r

‖u‖
Q
(
t
u

‖u‖

)
dt and lim

r→0+

∫ ‖u‖
r

Q
(
t
u

‖u‖

)
dt.

However, note that they are convergent as soon as ν ∈ P1(Rd). In fact, the necessary
assumption is rather the following integrability along sign curves,∫ 1

0

∥∥∥∥Q(t
u

‖u‖
)

∥∥∥∥ dt <∞. (4.7)

By the change of variables formula for push-forwards maps and by definition of Ud,
Eν [‖X‖] = EUd [‖Q(U)‖] = E(R,Φ)[‖Q(RΦ)‖]. In other words, denoting by PS the
uniform probability measure on the sphere Sd−1 = {ϕ ∈ Rd : ‖ϕ‖ = 1},

Eν [‖X‖] =

∫
Sd−1

∫ 1

0

‖Q(tϕ)‖dt dPS(ϕ).

Thus, one can see by contradiction that, as soon as Eν [‖X‖] < ∞, (4.7) holds for
almost all ϕ ∈ Sd−1, thus S and E must be finite almost everywhere.

The following naturally extends Definition 4.2.

Definition 4.9 (Superquantile and expected shortfall regions and contours). Let
ν ∈ P1(Rd) with center-outward superquantile function S and expected shortfall E.
Then,
(i) the superquantile (resp. expected shortfall) region Csα (resp. Ceα) of order α ∈
[0, 1] is the image by S (resp. E) of the ball B(0, α).
(ii) the superquantile (resp. expected shortfall) contour Csα (resp. Ceα) of order α ∈
[0, 1] is the boundary of Csα (resp. Ceα).
(iii) averaged sign curves by E or S are respectively defined by E(Lu) and S(Lu)

for any u ∈ B(0, 1)\{0}.

The distribution of a point cloud can be split into a central area and a periphe-
ral one, that can be described through the superquantile and expected shortfall
functions, as illustrated in the numerical experiments carried out in Section 4.5.

4.2.2 Invariance properties

The two following lemmas are immediate consequences of [74, Lemmas A.7, A.8].
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Lemma 4.10. Assume that X ∈ Rd is an integrable random vector. Suppose that
a > 0, b ∈ Rd and Y = aX+b. Denote by SX , SY and EX , EY their center-outward
superquantile and expected shortfall functions. Then, for u ∈ B(0, 1)\{0},

SY (u) = aSX(u) + b and EY (u) = aEX(u) + b.

Proof. We only detail SY , as one can deduce EY identically. From [74][Lemma A.7],

SY (u) =
1

1− ‖u‖

∫ 1

‖u‖
QY (t

u

‖u‖
)dt,

=
1

1− ‖u‖

∫ 1

‖u‖

(
aQX(t

u

‖u‖
) + b

)
dt = aSX(u) + b. �

Lemma 4.11. Assume that X ∈ Rd is an integrable random vector. Let SX , SY
and EX , EY be the center-outward superquantile and expected shortfall functions
associated respectively with X and Y = AX, for A an orthonormal matrix. Then,
for u ∈ B(0, 1)\{0},

SY (u) = ASX(ATu) and EY (u) = AEX(ATu).

Proof. Again, we only detail SY , as the proof for EY is identical. Combining
[74][Lemma A.8] with the fact that ‖ATu‖ = ‖u‖ for an orthogonal matrix,

SY (u) =
1

1− ‖u‖

∫ 1

‖u‖
QY (t

u

‖u‖
)dt,

=
1

1− ‖u‖

∫ 1

‖u‖
AQX(tAT

u

‖u‖
)dt = ASX(ATu). �

4.2.3 Main results

Quoting Rockafellar & Royset in [145],

“the superquantile function [...] is as fundamental to a random variable
as the distribution and quantile functions”.

This assertion is partially motivated by the fact that the distribution, quantile and
superquantile functions are uniquely determined one to another, and by the fact
that pointwise convergence of these functions metrizes convergence in distribution.
Such properties hold for our integrated concepts and are stated hereafter. First of
all, we shall make repeated use of the fact that the center-outward superquantile
and expected shortfall functions are two sides of the same coin, that is, for u ∈
B(0, 1)\{0}, ∫ 1

0

Q
(
t
u

‖u‖

)
dt = ‖u‖E(u) + (1− ‖u‖)S(u). (4.8)
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This is a generalization of the immediate property that, for the univariate setting
given in the introduction with (4.1) and (4.2), we have for all α ∈]0, 1[,

E[X] = αE(α) + (1− α)S(α).

A first main result reads as follows.

Theorem 4.12. Let ν1, ν2 ∈ P1(Rd) with respective center-outward quantile, su-
perquantile and expected shortfall functions denoted by Q1, S1, E1 and Q2, S2, E2.
Then, the following are equivalent.

(i) ν1 = ν2

(ii) Q1 = Q2 Ud-a.e.

(iii) S1 = S2 Ud-a.e.

(iv) E1 = E2 Ud-a.e.

Proof. First of all, it is already known that (i) ⇔ (ii). Indeed, with the choice of
Ud as the reference distribution, McCann’s theorem [121] ensures that (i) ⇒ (ii).
Obviously, (ii) ⇒ (i), from the very definition of push-forward measures that is
ν1(A) = Ud(Q

−1
1 (A)) and ν2(A) = Ud(Q

−1
2 (A)). Hereafter, we proceed through the

implication loop (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii). Let PS be the uniform probability
measure on Sd−1 = {ϕ ∈ Rd : ‖ϕ‖2 = 1}. Let R and ϕ be drawn uniformly
on [0, 1] and Sd−1, respectively. Suppose that they are independent, so that their
joint distribution is given by dP(R,ϕ)(r, ϕ) = dPR(r)dPS(ϕ). There, by definition, if
f : (r, ϕ) 7→ rϕ on [0, 1] × Sd−1, then Ud = f#P(R,ϕ). Hence, from the change of
variables formula for push-forward measures, for any Borel set A = f(B × C), for
B ⊂ [0, 1], C ⊂ Sd−1,∫

A

(S1 − S2)(u)dUd(u) =

∫
B

∫
C

(S1 − S2)(rϕ)dPS(ϕ)dr,

=

∫
B

∫
C

( 1

1− r

∫ 1

r

(Q1 −Q2)(tϕ)dt
)
dPS(ϕ)dr. (4.9)

Nonetheless, for any r ∈ B, by the same change of variables,∫
C

∫ 1

r

(Q1 −Q2)(tϕ)dtdPS(ϕ) =

∫
f(C×[r,1])

(Q1 −Q2)(u)dUd(u). (4.10)

Note that Ud(f(C× [r, 1])) = (1−r)PS(C), which is positive since r < 1. Obviously,
(4.10) vanishes as soon as Q1 = Q2 Ud-a.e. It implies that (4.9) also vanishes, which
justifies that (ii)⇒ (iii). Furthermore, we claim that (iii)⇒ (iv). Indeed,∫ 1

0

Q1(t
u

‖u‖
)dt = lim

r→0+
S1(r

u

‖u‖
) and

∫ 1

0

Q2(t
u

‖u‖
)dt = lim

r→0+
S2(r

u

‖u‖
).
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Consequently, if we assume that S1 = S2 Ud-a.e., we obtain that∫ 1

0

(Q1 −Q2)(t
u

‖u‖
)dt = 0. (4.11)

Using (4.8), the desired result follows, (iii) ⇒ (iv). Finally, assume that E1 = E2

Ud-a.e. Consequently, for all r ∈]0, 1[ and for all ϕ ∈ Sd−1,∫ r

0

Q1(tϕ)dt =

∫ r

0

Q2(tϕ)dt.

Using that
∫ b
a

=
∫ b

0
−
∫ a

0
, for any 0 ≤ a ≤ b ≤ 1,∫ b

a

Q1(tϕ)dt =

∫ b

a

Q2(tϕ)dt. (4.12)

For any measurable B ⊂ Sd−1, by integrating (4.12) w.r.t. PS,∫
B

∫ b

a

Q1(tϕ)dPR(t)dPS(ϕ) =

∫
B

∫ b

a

Q2(tϕ)dPR(t)dPS(ϕ).

By use of Ud = f#P(R,ϕ), a change of variables above yields, for anyA ⊂ B(0, 1)\{0},∫
A

Q1(u)dUd(u) =

∫
A

Q2(u)dUd(u),

and the result follows.

Interestingly enough, our proposed integrated quantile functions are both sim-
ply related to the Kantorovich potential. Somehow, this development generalizes
the work of [148] where the distribution function is related to the univariate super-
quantile by the way of the surexpectation function, which is nothing more than a
particular primitive of the distribution function.

Proposition 4.13. The center-outward expected shortfall function of ν ∈ P1(Rd)

satisfies, for any u ∈ B(0, 1)\{0},

〈E(u), u〉 = ψ(u). (4.13)

Moreover, the center-outward superquantile function of a compactly supported pro-
bability measure ν ∈ P∗(Rd) verifies, for every u ∈ B(0, 1)\{0},

〈S(u), u〉 =
‖u‖

1− ‖u‖

(
ψ(

u

‖u‖
)− ψ(u)

)
. (4.14)

Proof. Fix u ∈ B(0, 1)\{0} and let f(t) = ψ(tu). Then f is a finite and convex
function on ]− a, a[ for some a > 1, so that one can apply [146][Corollary 24.2.1].
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Combined with a.e. differentiability, [146][Theorem 25.3], this yields

ψ(u) =

∫ 1

0

〈∇ψ(tu), u〉dt, (4.15)

which can be rewritten as

ψ(u) = 〈
∫ 1

0

Q(tu)dt, u〉 = 〈E(u), u〉,

from a simple change of variables, leading to our first point (4.13). Moreover, denote
for any u ∈ B(0, 1)\{0},

f(t) = ψ(t
u

‖u‖
).

This function is finite on [0, 1] but not on a larger interval anymore. But, because
ν ∈ P∗(Rd), f is differentiable everywhere on ]0, 1[, and we have by the chain rule
formula,

f ′(t) = 〈Q(t
u

‖u‖
),

u

‖u‖
〉.

Since f ′(t) is a non-decreasing function from R to [−∞,+∞] finite at t = ‖u‖,
[146][Theorem 24.2] ensures that the function F , defined for all x ∈ R, by

F (x) =

∫ x

‖u‖
f ′(t)dt,

is a well-defined closed proper convex function on R. We emphasize that F (x)

takes infinite values as soon as x > 1, while, for x = 1, F is well-defined as a
Lebesgue integral, or as a limit of Riemann integrals, as explained in the proof of
[146][Theorem 24.2], and it may take finite or infinite values. In addition, the latter
theorem tells us that F (x) = f(x)+α for some α ∈ R everywhere. But F (‖u‖) = 0

and f(‖u‖) = ψ(u), so F (x) = f(x)− ψ(u). Assuming that the support X of ν is
compact, ψ must be lipschitz continuous, [122][Lemma 2], a fortiori bounded and
the subdifferential ∂ψ(K) must also be bounded, see e.g. [147]. As a byproduct,
ψ(u/‖u‖) and Q(u/‖u‖) are finite. In this case, F (1) = f(1) − ψ(u) is finite and
can be rewritten as

F (1) =

∫ 1

‖u‖
〈Q(t

u

‖u‖
),

u

‖u‖
〉dt = ψ(

u

‖u‖
)− ψ(u),

which implies (4.14), completing the proof of Proposition 4.13.

Thanks to this relation between the potential ψ whose gradient gives Q and
the center-outward expected shortfall function, we are now able to characterize the
convergence in distribution for a sequence of random vectors through superquantiles
and expected shortfalls. For that purpose, we rely on existing results, [74, 87], on the
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relation between convergence in distribution and center-outward quantile functions.

Lemma 4.14. Let (X,Xn) be a sequence of random vectors with distributions ν
and νn respectively, in P∗(Rd). Then,

Xn
L→ X ⇔ ∀u ∈ B(0, 1), lim

n→∞
ψn(u) = ψ(u), (4.16)

⇔ lim
n→∞

sup
u∈K
|ψn(u)− ψ(u)| = 0, (4.17)

⇔ lim
n→∞

sup
u∈K
‖Qn(u)−Q(u)‖ = 0, (4.18)

for every compact K ⊂ B(0, 1)\{0}. In fact, uniform convergence of ψn towards ψ
even holds on every compact K ⊂ B(0, 1).

Proof. On the one hand, assume that (Xn) converges in distribution to X. Then,
the right-hand side of (4.18) is the main result of [74][Theorem 4.1] when Qn and
Q are homeomorphisms between convex sets, with uniform convergence on any
compact subset. But, with reference distribution Ud, center-outward quantile maps
are not, because of the discontinuity at the origin, see [87][Remark 3.4]. Nonetheless,
as highlighted in the proof of [87][Proposition 3.3], the assumption thatXn

L→ X for
νn, ν ∈ P∗(Rd) is sufficient to apply Theorem 2.8 in [12]. As a consequence, ψn(u)

converges towards ψ(u) for every u ∈ B(0, 1), that is the right-hand side of (4.16).
Being finite and convex functions, [146][Theorem 10.8] ensures that such pointwise
convergence implies the right-hand side of (4.17). Since ψn and ψ are differentiable
on B(0, 1)\{0} as soon as νn, ν ∈ P∗(Rd), one can apply [146][Theorem 25.7] on any
open and convex set K ′ ⊂ B(0, 1)\{0}. This gives us the uniform convergence of Qn

towards Q for any compactK included in an open and convex setK ′ ⊂ B(0, 1)\{0}.
To extend this to any compact K, we use that, by compacity, one can extract from
the open cover {B(x, δ);x ∈ K} a finite cover. Consequently, it exists N ∈ N and
x1, · · · , xN ∈ K such that

sup
u∈K
‖Qn(u)−Q(u)‖ ≤

N∑
k=1

sup
u∈B(xk,δ)

‖Qn(u)−Q(u)‖. (4.19)

Here, the closure of each ball B(xk, δ) is a compact set, which, because of the choice
of δ, is a subset of some open and convex set K ′ ⊂ B(0, 1)\{0}. But we already
know that Qn uniformly converges towards Q on such a set, thus the right-hand
side of (4.19) vanishes when n → 0, which yields the right-hand side of (4.18). It
only remains to prove that Xn

L→ X as a direct consequence. This last claim relies
on the Portmanteau theorem which says that (Xn) converges in distribution to X
iff for any bounded and continuous function f ,

lim
n→+∞

E[f(Xn)] = E[f(X)]. (4.20)
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However, we clearly have for any bounded and continuous function f ,

E[f(Xn)] =

∫
Rd
f(x)dνn(x) =

∫
B(0,1)

f(Qn(u))dUd(u).

using the change of variables νn = Qn#Ud. Hence, as f ◦Qn is uniformly bounded,
the dominated convergence theorem leads to (4.20).

Theorem 4.15. Let (X,Xn) be a sequence of random vectors with distributions ν
and νn respectively, in P∗(Rd). Then,

Xn
L→ X ⇔ ∀u ∈ B(0, 1)\{0}, lim

n→+∞
En(u) = E(u), (4.21)

⇔ lim
n→∞

sup
u∈K
‖En(u)− E(u)‖ = 0, (4.22)

for every compact K ⊂ B(0, 1)\{0}.

Proof. On the one hand, assume that (Xn) converges in distribution to X. Then,
it follows from (4.18) that (Qn) converges uniformly to Q on any compact K ⊂
B(0, 1)\{0}. For any u ∈ B(0, 1)\{0}, we have from Definition 4.7 that

‖En(u)− E(u)‖ ≤ 1

‖u‖

∫ ‖u‖
0

Rn(t
u

‖u‖
)dt,

where Rn(v) = ‖Qn(v)−Q(v)‖ . Fix a compact K ⊂ B(0, 1)\{0} such that for
every u ∈ K, C < ‖u‖ < D for some positive constants C,D. Then, we clearly
have

sup
u∈K
‖En(u)− E(u)‖ ≤ 1

C

∫ D

0

sup
u∈K

Rn(t
u

‖u‖
)dt.

Consequently, for any ξ ∈ R such that 0 ≤ ξ < D,

sup
u∈K
‖En(u)− E(u)‖ ≤ 1

C

(∫ ξ

0

sup
u∈K

Rn(t
u

‖u‖
)dt+

∫ D

ξ

sup
u∈K

Rn(t
u

‖u‖
)dt

)
. (4.23)

On the one hand, for all t ∈ [ξ,D] and u ∈ K, tu/‖u‖ lies inside a compact
K ′ ⊂ B(0, 1)\{0}, so that the second term in (4.23) satisfies∫ D

ξ

sup
u∈K

Rn(t
u

‖u‖
)dt ≤ (D − ξ) sup

v∈K′
Rn(v) ≤ sup

v∈K′
Rn(v), (4.24)

which vanishes when n→ +∞. On the other hand,∫ ξ

0

sup
u∈K

Rn(t
u

‖u‖
)dt ≤ ξ sup

v∈B(0,D)

Rn(v). (4.25)

We now claim that supv∈B(0,D) Rn(v) is bounded by a constant. Recall that, for
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any v ∈ B(0, D), Qn(v) and Q(v) belong to the subdifferentials ∂ψn(v) and ∂ψ(v),
by definition. Because S = B(0, D) is a compact subset of the open unit ball, and
because, for any u ∈ S, ψn(u) is convergent and a fortiori bounded, see Lemma 4.14,
we are in position to apply [146][Theorem 10.6]. It directly implies that the sequence
(ψn) is uniformly bounded and equi-Lipschitz on S. However, it is well-known that
any L-lipschitz convex function φ on S must have a bounded subdifferential ∂φ(S),
see e.g. [147]. Indeed, for any u ∈ S and any ξ ∈ ∂φ(S), consider δ > 0 such that
y = u− δξ belongs to S. By definition of ∂φ(S) and the lipschitz constant L,

Lδ‖ξ‖ ≥ φ(y)− φ(u) ≥ 〈ξ, y − u〉 = δ‖ξ‖2.

This immediately gives us the existence of a uniform bound on the family of sub-
differentials (∂ψn(S))n. Because ∂ψ(S) is also bounded, by lipschitz regularity of
ψ on S,

sup
v∈B(0,D)

Rn(v) ≤ sup
v∈B(0,D)

‖Qn(v)‖+ ‖Q(v)‖ ≤M < +∞. (4.26)

Therefore the right-hand side of (4.25) can be bounded by ξM for M given in
(4.26). Then it follows from (4.23) and (4.24) that, for any ξ ∈ [0, D[, it exists
n1 ∈ N such that, for all n ≥ n1,

sup
u∈K
‖En(u)− E(u)‖ ≤ 1

C

(
ξM + sup

v∈K′
Rn(v)

)
.

Thus, for any ξ ∈ [0, D[,

lim
n→+∞

sup
u∈K
‖En(u)− E(u)‖ ≤ ξM

C
.

which leads to the right-hand side of (4.22) as ξ goes to zero. In addition, the
right-hand side of (4.22) immediately implies the right-hand side of (4.21). On the
other hand, assume that the right-hand side of (4.21) holds. Then, we obtain from
(4.13) that ∀u ∈ B(0, 1),

lim
n→+∞

ψn(u) = ψ(u).

Thus, the desired result follows from Lemma 4.14, which completes the proof of
Theorem 4.15.

Our last result requires some uniform integrability assumption on the sequence
(Xn).

Theorem 4.16. Let (X,Xn) be a sequence of random vectors with distributions
ν and νn respectively, in P∗(Rd). In addition, suppose that there exists a random
variable Z greater than 1 such that E[Z ln(Z)] < +∞ and for all n ∈ N,

‖Xn‖ ≤ Z a.s. (4.27)
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Then,
Xn

L→ X ⇔ lim
n→∞

Sn(u) = S(u), (4.28)

for almost all u ∈ B(0, 1).

Remark 4.17. One can observe that if the support of every νn is bounded by some
constant M , (4.27) is no longer needed. Under this restrictive assumption, there is
no mass going out to infinity in any direction and one can easily check that

Xn
L→ X ⇔ lim

n→∞
sup
u∈K
‖Sn(u)− S(u)‖ = 0,

for every compact K ⊂ B(0, 1)\{0}.

Proof. On the one hand, assume that (Xn) converges in distribution to X. We
clearly have from (4.27) that, if Φ(x) = x ln(x), then

E[ sup
n∈N

Φ(Xn)] ≤ E[Z ln(Z)] < +∞.

Hence, using the same change of variables as in the proof of Theorem 4.12, we
obtain that

E[ sup
n∈N

Φ(Xn)] =

∫
Sd−1

∫ 1

0

sup
n∈N
‖Qn(tϕ)‖ ln(‖Qn(tϕ)‖)dtdPS(ϕ) < +∞, (4.29)

where we recall that Sd−1 = {ϕ ∈ Rd : ‖ϕ‖2 = 1}. Consequently, we deduce from
(4.29) that for almost all ϕ ∈ Sd−1,

sup
n∈N

∫ 1

0

‖Qn(tϕ)‖ ln(‖Qn(tϕ)‖)dt ≤
∫ 1

0

sup
n∈N
‖Qn(tϕ)‖ ln(‖Qn(tϕ)‖)dt < +∞.

(4.30)
It clearly leads to the uniform integrability of (Qn) along sign curves, see [26][Theo-
rem 4.5.9]. However, we already saw from Lemma 4.14 that the convergence in dis-
tribution of (Xn) to X implies the pointwise convergence of Qn to Q on B(0, 1)\{0}.
Therefore, it follows from the Lebesgue-Vitali theorem [26][Theorem 4.5.4] that for
almost all ϕ ∈ Sd−1,

lim
n→+∞

∫ 1

0

Qn(tϕ)dt =

∫ 1

0

Q(tϕ)dt,

which means that for almost all u ∈ B(0, 1)\{0},

lim
n→+∞

∫ 1

0

Qn

(
t
u

‖u‖

)
dt =

∫ 1

0

Q
(
t
u

‖u‖

)
dt. (4.31)
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Hereafter, we already saw from (4.8) that

Sn(u)−S(u) =
1

1− ‖u‖

(∫ 1

0

(Qn −Q)
(
t
u

‖u‖

)
dt− ‖u‖

(
En(u)− E(u)

))
. (4.32)

Finally, the right-hand side of (4.28) follows from (4.21) together with (4.31) and
(4.32). On the other hand, assume that the right-hand side of (4.28) holds. We
have for almost all u ∈ B(0, 1)\{0},

lim
n→+∞

∫ 1

‖u‖
Qn

(
t
u

‖u‖

)
dt =

∫ 1

‖u‖
Q
(
t
u

‖u‖

)
dt. (4.33)

Hence, we obtain from (4.33) that for almost every r ∈]0, 1[ and ϕ ∈ Sd−1,

lim
n→+∞

∫ 1

r

Qn(tϕ)dt =

∫ 1

r

Q(tϕ)dt. (4.34)

Obviously, for almost all r ∈]0, 1[ and almost all ϕ ∈ Sd−1,

lim
n→+∞

∫ 1

0

(Qn −Q)(tϕ)dt = lim
n→+∞

(∫ r

0

(Qn −Q)(tϕ)dt+

∫ 1

r

(Qn −Q)(tϕ)dt

)
,

= lim
n→+∞

∫ r

0

(Qn −Q)(tϕ)dt.

In addition, this integral is always finite since (4.7) holds for integrable probability
measures. As the left-hand side does not depend on r,

lim
n→+∞

∫ 1

0

(Qn −Q)(tϕ)dt = lim
r→0

lim
n→+∞

∫ r

0

(Qn −Q)(tϕ)dt. (4.35)

From the uniform integrability of (Qn) along sign curves, we obtain that

lim
r→0

lim
n→+∞

∫ r

0

‖Qn(tϕ)−Q(tϕ)‖dt = 0.

Hence, by use of (4.35), we find that

lim
n→+∞

∫ 1

0

Qn(tϕ)dt =

∫ 1

0

Q(tϕ)dt.

It ensures that for almost all u ∈ B(0, 1)\{0},

lim
n→+∞

∫ 1

0

Qn

(
t
u

‖u‖

)
dt =

∫ 1

0

Q
(
t
u

‖u‖

)
dt. (4.36)

Consequently, we deduce from (4.32) and (4.36) that for a.e. u ∈ B(0, 1)\{0},

lim
n→+∞

En(u) = E(u) (4.37)
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Finally, it follows from (4.37) together with (4.21) that (Xn) converges in distribu-
tion to X, which completes the proof of Theorem 4.16.

4.3 A class of reference measures

Until now, the concepts of MK superquantiles and expected shortfalls strongly
rely on the choice of the reference distribution, and one may question the choice
of Ud. This issue is discussed hereafter, with explicit MK quantile functions for
generalized gamma models, by calibrating the reference distribution. Ultimately,
one obtains nested regions indexed by their probability content. The choice of the
reference distribution µ is a major tool to adapt MK quantiles, ranks and signs to
any task encountered. Notably, the uniform distribution over the unit hypercube
has advantages concerning marginal independence, [50, 74], whereas orthogonal
invariance only holds with a spherical reference distribution, [74, 85]. Ud plays
a specific role for the interpretation of quantile regions indexed by a probability
content level. This section deals with an alternative class of reference measures
defined by α-level sets on the p-unit ball, that preserve the interpretability of Ud.
We also consider the restriction of Ud to Rd

+, with a left-to-right ordering that might
be preferred in the subsequent risk applications to the center-outward one. Denote
by Sd,p the unit sphere Sd,p = {ϕ ∈ Rd : ‖ϕ‖p = 1} with

‖ϕ‖pp =
d∑

k=1

|ϕk|p,

and Sd,p+ = Sd,p ∩ Rd
+. Moreover, let q be the Hölder conjugate of p, given by

1

p
+

1

q
= 1.

Definition 4.18. The q-spherical conjugate distribution Ud,q is defined as the pro-
duct RΦ between two independent random variables R and Φ where

- R has uniform distribution on [0, 1],

- the distribution of Φ ∈ Sd,q is given by Φ = Ψ⊗(p−1) for Ψ uniformly drawn
on Sd,p, and ⊗ the component-wise exponent.

The restriction of Ud,q to the convex cone Rd
+ is denoted by U+

d,q.

With reference measure Ud,q, the MK quantile function Qq can always be defined
almost everywhere from a convex potential ψ by Definition 1.2, for which we can
always assume that ψ(0) = 0. At any point u of non differentiability of ψ, one can
still define Qq(u) as the average of the subdifferential ∂ψ(u), so that Qq is defined
everywhere on the q-unit ball. The interpretability of the quantile concepts remains
the same among this class, as the Ud,q-probability of the q-ball of radius α ∈ [0, 1]

98



A class of reference measures

is α,
P(‖RΦ‖q ≤ α) = P(R ≤ α) = α.

Crucially for us, our definitions and properties of superquantiles and expected
shortfalls naturally adapt. Definition 4.5 as well as Definition 4.7 extend, for all
u ∈ B(0, 1), to

Sq(u) =
1

1− ‖u‖q

∫ 1

‖u‖q
Qq(t

u

‖u‖q
)dt

and

Eq(u) =
1

‖u‖q

∫ ‖u‖q
0

Qq(t
u

‖u‖q
)dt.

We now develop on how to sample uniformly on p-spheres Sd,p. Let Γ stand
for the Euler Gamma function and denote by Lp the probability distribution with
density function

fp(x) =
p

Γ(p−1)
exp(−xp)IR+(x).

A random variable X on R+ is drawn from Lp if and only if Xp follows a Gamma
distribution with shape and scale parameters 1/p and 1. The following lemma
indicates how to sample uniformly on p-spheres when p > 0.

Lemma 4.19 ([14, 152]). For any real p > 0, the components of a random vector
X ∈ Rd

+ are independent with distribution Lp if and only if the random variables
‖X‖p and ‖X‖−1

p X are independent where

- ‖X‖−1
p X is uniformly distributed on Sd,p+ ,

- ‖X‖pp has Gamma distribution with shape and scale parameters d/p and 1.

For p = 2, Lp corresponds to |Z| where Z is drawn from a N (0, 1) distribution.
The MK distribution function with reference Ud (or Ud,2) has been obtained in
[33][Section 2.4]. Here, we use similar arguments to find gradient-of-convex maps
for our alternative class of reference measures. We emphasize that such maps are
invariant to shifts, see [74][Lemma A.7], whereas invariance to rotations requires a
spherically symmetric reference measure, [74][Lemma A.8].

Proposition 4.20. Suppose that the components of a random vector X ∈ Rd
+ are

independent with Lp distribution for p > 1, and let q = p/(p − 1). Then, the MK
distribution function with respect to U+

d,q has the explicit formulation

Fq(x) = (‖x‖−1
p x)⊗(p−1)G(‖x‖p), (4.38)

where ⊗ stands for the component-wise exponent and G is the univariate distri-
bution function of ‖X‖p. Its inverse, the MK quantile function, is given, for all
u ∈ Rd

+ such that ‖u‖q ≤ 1, by

Qq(u) = (‖u‖−1
q u)⊗(q−1)G−1(‖u‖q). (4.39)
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The MK superquantile and expected shortfall functions are respectively given, for
all u ∈ Rd

+ such that ‖u‖q ≤ 1, by

Sq(u) = (‖u‖−1
q u)⊗(q−1)S(‖u‖q), (4.40)

Eq(u) = (‖u‖−1
q u)⊗(q−1)E(‖u‖q), (4.41)

where S and E are the univariate superquantile and expected shortfall functions
associated with the distribution of ‖X‖p.

Proof. Denote by G the probability distribution function of ‖X‖p. Moreover, for
z ∈ R, let

Ψ(z) =

∫ z

−∞
G(t)dt,

and ϕ(x) = Ψ(‖x‖p). Then, ϕ is convex by the composition between the non-
decreasing function Ψ and ‖ · ‖p, both convex, see [145][Theorem 5.1]. In addi-
tion, ∇ϕ(x) = Fq(x), which means that Fq is the gradient of a convex func-
tion. It remains to show that Fq(X) follows the distribution U+

d,q. From Lemma
4.19, Fq(X) is the product of two independent random variables, G(‖X‖p) and
(‖X‖−1

p X)⊗(p−1). On the one hand, G(‖X‖p) is uniformly distributed on [0, 1], by
definition of G. On the other hand, the distribution of ‖X‖−1

p X is uniform on Sd,p+ ,
which implies (4.38). In order to compute Qq = F−1

q , it remains to invert (4.38). If
u = (‖x‖−1

p x)⊗(p−1)G(‖x‖p),

‖u‖qq = G(‖x‖p)q
d∑

k=1

( xk
‖x‖p

)p
.

Thus, ‖u‖q = G(‖x‖p) which yields ‖u‖−1
q u = (‖x‖−1

p x)⊗(p−1). This rewrites

‖u‖−1
q u‖x‖p−1

p = x⊗(p−1),

where ‖x‖p−1
p = G−(p−1)(‖u‖q), so

‖u‖−1
q uG−(p−1)(‖u‖q) = x⊗(p−1).

Finally, (4.39) follows by applying the exponent q − 1 = 1/(p − 1), which implies
(4.40) and (4.41), completing the proof of Proposition 4.20.

Remark 4.21. It is well-known that in the special case p = 2, the distribution of
(‖X‖−1

p X)⊗(p−1) is uniform on Sd,q+ where q = p = 2, see [33]. One may wonder
if this property holds true for other choices of p > 1. This is actually not the case
as we shall see now. As q is the Hölder conjugate of p, we clearly have ‖X‖p−1

p =
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‖X⊗(p−1)‖q which implies that(
X

‖X‖p

)⊗(p−1)

=
X⊗(p−1)

‖X⊗(p−1)‖q
.

All the components of X share the same Lp distribution. Consequently, each Xp
i

has a Gamma distribution with shape and scale parameters 1/p and 1. It implies
that Xp−1

i = X
p/q
i is the power 1/q of a Gamma distribution. We immediately

deduce from Lemma 4.19 that, as soon as p 6= 2, (‖X‖−1
p X)⊗(p−1) is not uniformly

distributed on Sd,q+ .

Figure 4.3 illustrates Proposition 4.20. Each column contains the reference mea-
sure U+

d,q for q = p/(p−1) in the first line, and the associated distribution with i.i.d.
components Xi ∼ Lp below. Reference contours of orders 0.25, 0.5, 0.75 are repre-
sented as well as the explicit MK quantile contours. Whereas the center-outward
ordering intrinsic to Ud is natural for elliptical models, [33][Section 2.4], the left-
to-right ordering may be more relevant under generalized Gamma models in Rd

+.

(a) U+
d,q, q = 3 (b) U+

d,q, q = 2 (c) U+
d,q, q = 5/4

(d) p = 1.5 (e) p = 2 (f) p = 5

Figure 4.3 – (First line) Reference measures U+
d,q for indices q conjugate with

p. (Second line) Generalized Gamma distributions Lp and explicit
quantile contours and sign curves.
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4.4 Multivariate values and vectors at risk

Considering several univariate risks separately leads to neglecting the corre-
lation structure between the components of a random vector. Hence, studying a
notion of risk in a multivariate way is of major importance. We refer to [59][Sec-
tion 2.1] for motivations for intrinsically multivariate risk analysis problems. The
risk framework considers a vector of dependent losses X ∈ Rd

+, where each com-
ponent is a positive measure whose unit may be different from one to another.
Naturally, the larger the value of a component, the greater the associated risk. On
the one hand, we argue that real-valued risk measures are not sufficient in such
setting. With real-valued random variables, real-valued risk measures are able to
catch all the information needed. But, with the increase of the dimension, one
may need vectors in Rd to get the directional information of the multivariate tails.
With this in mind, we make here a proposal for vector-valued risk measures, namely
Vectors-at-Risk and Conditional-Vectors-at-Risk, which aim to sum up the relevant
information contained in the center-outward quantiles and superquantiles. Related
to these vector-valued measures, we define multivariate values-at-risk and multi-
variate conditional-values-at-risk which are measures of the form of ρ : Rd

+ → R
able to compare X and Y by ρ(X) > ρ(Y ). Importantly, the computation of these
real-valued measures gives the vector-valued ones, hitting two targets with one
shot without added complexity. On the other hand, a multivariate extension of the
concepts of VaR and CVaR shall have the same interpretation as in R. In dimen-
sion d = 1, the VaR of some risk at a level α is simply the quantile of order α.
Accordingly, the CVaR is the superquantile of order α. These are to be understood
respectively as the worst risk encountered with ν-probability α, and as the averaged
risk beyond this quantile. Being an observation from the underlying distribution,
it shall be vector-valued in our multivariate framework.

By construction, the MK quantile contour of order α ∈ [0, 1] contains the points
having the most outward position with ν-probability α. Hence, we argue that a
Vector-at-Risk of order α should belong to this contour. Even if it is always adap-
ted to the geometry of ν, a MK quantile contour can either describe a central or
a bottom-left area, by changing the reference measure. We explore both these pos-
sibilities, leaving it to the reader to decide which tool to adopt. In what follows,
we rely on Ud and U+

d , its restriction to Rd
+. Of course, other p-spherical uniform

distributions could be used, but we do not know if this would induce any bene-
fit. Starting from the choice between central or bottom-left areas for MK quantile
contours, the worst vectors of losses are the furthest from the origin in our context.
Then, we suggest to select points from the center-outward quantile contour of order
α with maximal norm, using Definition 4.2. Conditional-Vectors-at-Risk (CVaRs)
are defined in the same way, but considering the center-outward superquantiles,
with Definition 4.9.
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Multivariate values and vectors at risk

Definition 4.22. The Vector-at-Risk at level α is defined by

VaRα(X) ∈ argsup { ‖X‖1 ; X ∈ Cα } .

Similarly, the Conditional-Vector-at-Risk is defined by

CVaRα(X) ∈ argsup { ‖X‖1 ; X ∈ Csα } .

The choice of ‖ · ‖1 in the above definition depends on how to compare different
risks. We emphasize that this choice is very distinct to the one of the reference
measure : this consideration takes place once the contours are fixed. Without added
information, we believe that two observations of same 1-norm shall be considered
of same importance. Intuitively, when comparing multivariate risks, the risks per
component add up. For example, if

x1 =

(
1

0

)
and x2 =

(
0.5

0.5

)
belong to the same quantile contour of level α, choosing ‖·‖2 instead of ‖·‖1 in Defi-
nition 4.22 would induce to consider that x1 is worst than x2. This choice is coherent
with the common practice of computing univariate VaR and CVaR on the random
variable ‖X‖1 in financial applications, but a major difference is that it encodes
the multivariate joint probability of the vector X before applying the sum. Thus, it
takes into account the correlations, while providing more information, because ty-
pical values for component-wise risks can be retrieved through our Vectors-at-Risk.
With this in mind, the Vector-at-Risk of order α is to be understood as the “worst”
risk encountered with probability α, whereas the Conditional-Vector-at-Risk is the
average risk beyond this “worst” observation, where the notion of “worst” is charac-
terized here by ‖·‖1 and the focus is either on central or on bottom-left areas. Thus,
this generalizes the understanding of univariate VaR and CVaR. We displayed in
Figure 4.4 the VaRα and CVaRα with quantile and superquantile contours esti-
mated via EOT for ε = 10−3. Each red point is the worst observation inside the
corresponding quantile or superquantile regions.

Intuitively, Definition 4.22 already gives a real-valued risk measure. Note that
the set { ‖X‖1 ; X ∈ Cα } is the same as { ‖QX(u)‖1 ; ‖u‖2 = α } for both the
reference distribution Ud and its restriction U+

d to Rd
+.

Definition 4.23. The multivariate value-at-risk at level α is defined as

ρQα (X) = sup
u
{ ‖QX(u)‖1 ; ‖u‖2 = α } .

Similarly, the multivariate conditional value-at-risk is defined as

ρSα(X) = sup
u
{ ‖SX(u)‖1 ; ‖u‖2 = α } .
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4. Superquantiles and expected shortfalls

(a) Center-outward reference Ud (b) Left-to-right reference U+
d

Figure 4.4 – Gaussian distribution with VaRα and CVaRα in red and associated
MK quantile and superquantile contours in blue, for α = 0.5.

These multivariate (conditional) values-at-risk indicate on the spreadness of the
point cloud drawn from a vector of losses, and contain information about its centra-
lity and the correlations between its components. Empirical experiments have been
conducted in Section 4.5.1 where they are compared with the maximal correlation
risk measure from [15].

4.5 Numerical experiments.

In the experiments of the next section, we use the entropic map as a regulari-
zed empirical quantile map. Plugging Qε into Definitions 4.5 and 4.7 induces the
entropic analogs

Sε(u) =
1

1− ‖u‖

∫ 1

‖u‖
Qε

(
t
u

‖u‖

)
dt (4.42)

and

Eε(u) =
1

‖u‖

∫ ‖u‖
0

Qε

(
t
u

‖u‖

)
dt. (4.43)

In order to solve EOT between the empirical measure ν̂n = 1
n

∑n
i=1 δXi and the

reference distribution µ, we use the stochastic Robbins-Monro algorithm taken from
[17, 71]. The resulting estimator is Q̃n

ε , defined in (2.2). Empirical counterparts Ŝε,n
and Êε,n are obtained by plug-in estimators, replacing Qε by Q̃n

ε within definitions
(4.42) and (4.43). The regularization strength is taken as ε = 10−3 and the integrals
in (4.42) are estimated by Riemann sums.
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Numerical experiments.

4.5.1 Empirical study on simulated data

Descriptive plots for expected shortfalls and superquantiles

Descriptive plots associated with Definition 4.9 are given in Figure 4.5, to des-
cribe all the information contained in our new concepts. The continuous reference
distribution Ud is transported to the discrete banana-shaped measure ν with sup-
port of size n = 5000, via our empirical center-outward expected shortfall (resp.
superquantile) function. Note how the data splits into a central area and a periphery
area by the range of points covered by both maps. These are satisfying estimators
for the well-suited ε = 10−3, that is to say the first column of Figure 4.5. As the re-
gularization parameter ε for Eε and Sε grows, the contours concentrate around the
mean vector of ν, which is a known feature of entropic optimal transport. One can
observe that our regularized approach yields smooth interpolation between image
points. For visualization purposes, the red points of averaged sign curves are linked
by straight paths. The blue points are not, to illustrate how the contours capture
the empty space in the middle of the non convex point cloud.

(a) Expected shortfalls,
ε = 0.001

(b) Expected shortfalls,
ε = 0.005

(c) Expected shortfalls,
ε = 0.01

(d) Superquantiles, ε =
0.001

(e) Superquantiles, ε =
0.005

(f) Superquantiles, ε =
0.01

Figure 4.5 – Center-outward expected shortfall and superquantile contours of
levels α in {0.1, 0.3, 0.5, 0.7, 0.9} in blue and averaged sign curves
Cu in red.
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4. Superquantiles and expected shortfalls

(a) Same Gaussians, reduced covariance matrix.

(b) Same Gaussians, added outliers.

(c) Same Gaussians with shift.

(d) Gaussians pointed in the vertical or horizontal direction

Figure 4.6 – VaRs (+) and CVaRs (×) on toy examples. Third column : real-
valued risk measurements for the point clouds of the same line.
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Numerical experiments.

Risk measurements on toy examples

In dimension d = 2, an empirical distribution can be represented with a scatter
plot and the riskiest observations are visible with the naked eye : they are located
furthest from the origin. From this principle, we selected easy-to-handle situations
to evaluate our risk measures in Figure 4.6. Each row refers to a situation where
a blue scatter plot (first column) is to be compared with an orange one (second
column). For each situation, our (Conditional) Vectors-at-Risk of order α = 0.75 is
illustrated on each scatter plot. Moreover, the associated ρQα and ρSα are computed
and compared to the maximal correlation risk mesure ρC from [15] in the third
column. The higher the bar, the riskier the corresponding vector of losses. In view
of their comparison, the measurements ρ ∈ {ρQα , ρSα, ρC} are rescaled. For Y1 the
distribution of the blue scatter plot and Y2 the orange one, one considers, for the
height of the bars,

ρ(Y1)/max
(
ρ(Y1), ρ(Y2)

)
and ρ(Y2)/max

(
ρ(Y1), ρ(Y2)

)
.

For each situation, our VaR and CVaR provide typical observations in the multiva-
riate tails. The maximal-correlation risk measure ρC performs as well as expected,
while our CVaR succeeds in more situations. Indeed, ρC benefits from several theo-
retical properties but only measures the riskiness of X − E(X), hence it neglects
the shift effects.

Figure 4.6(a) contains two Gaussian distributions with identical mean vectors
and covariance matrices related through the multiplication by a positive real. This
is well tackled by each real-valued risk measurement. The existence of more outliers
must be taken into account similarly, as in figure 4.6(b), where the two scatter plots
originate from the same underlying distribution, but some outliers are added to the
orange one. The CVaR is much more sensitive to these outliers than the VaR, as
in dimension d = 1. Note that ρC ignores the outliers and leads to the wrong
decision in the sense than the blue distribution is considered as the riskiest one.
In the situation of Figure 4.6(c), the orange scatterplot is identical to the blue
one, but shifted to the right side, so that it must be the riskiest. As ρC ignores
this shift, it induces the wrong decision. Finally, in the last example of Figure
4.6(d), making a decision on the relative risk between the underlying distributions
requires a preference for one of the components. Here, the two situations reveal
risks of same intensity but directed towards different directions. To inform on the
underlying directional information, vector-valued risk measures such as our VaRs
and CVaRs are needed in complement.

4.5.2 Risk measurements on wind gusts data

In this section, we illustrate our new multivariate risk measures on the analysis
of a real dataset provided by the ExtremalDep R package, [16], and dedicated to the
study of strong wind gusts. This dataset has previously been studied in [56, 76, 117]
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4. Superquantiles and expected shortfalls

in a context of risk measurement. The three variables are hourly wind gust (WG) in
meters per second, wind speed (WS) in meters per second, and air pressure at sea
level (DP) in millibars, recorded at Parcay-Meslay (France) between July 2004 and
July 2013. We consider the 1450 weekly maximum of each measurement. Because
the variables are of different nature, it is the precise framework where multivariate
risk analysis is useful, rather than the aggregation of several variables.

Figure 4.7 – Three dimensional wind gust data set.

Figure 4.7 represents our three-dimensional dataset with pair scatterplots under
the diagonal and Pearson correlation values above. The diagonal represents empiri-
cal density functions of each variable. Upper-right dependence can be observed and
has physical explanations. Strong wind gusts occur with stormy weather, during
which strong wind speed and high air pressure are frequently recorded.

(a) Risk level 0.25 (b) Risk level 0.5 (c) Risk level 0.75

Figure 4.8 – Vectors-at-Risk and Conditional-Vectors-at-Risk.

Figure 4.8 represents the three dimensional empirical distribution in red toge-
ther with our vectorial risk measures. With the increase of the dimension, such
representative plots are no longer convenient. Rather, these measurements can be
retrieved as in Table 4.1.
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On the class of integrated quantile functions

V aR0.25 V aR0.5 V aR0.75

WS 8.21 9.98 12.36
WG 15.06 18.45 21.58
DP 11.92 13.65 17.84

CV aR0.25 CV aR0.5 CV aR0.75

WS 11.40 12.37 14.26
WG 21.28 22.43 26.24
DP 16.68 19.86 23.15

Table 4.1 – Components of (Conditional) Vectors-at-Risk for several risk levels.

This summarizes the targeted information contained in the dataset. For ins-
tance, with a given probability 0.25, 0.5 or 0.75, one shall expect, at worst, wind
gusts of respective speed 15.06, 18.45, 21.58 m/s. With respectively same probabi-
lity, averaged observations beyond these worst cases shall lie around 21.28, 22.43,
26.24 m/s. As in [117], we interpret these results thanks to the Beaufort scale. Note
that this scale does not capture the speed of wind gusts, as it usually averages over
10 minutes, by convention. Values between 13.9 and 17.1 m/s can be considered as
high winds. Strong winds begin with 17.2 m/s, with severely strong winds above
20.7 m/s up to 24.4 m/s. Severely strong winds can cause slight structural damage,
but less than storms for values around 24.5-28.4 m/s. Above and up to 32.6 m/s,
violent storms are very rarely experienced and cause widespread damage. Wind
speeds greater than 32.7 m/s correspond to hurricanes. Thanks to Table 4.1, with
probability 0.75, the worst scenarios in Parcay-Meslay for wind gusts are severely
strong winds. Moreover, along the tail events corresponding to 25% of occurrences,
one shall expect wind gusts of same speed as storms. Also, to illustrate the fact
that considering univariate measures leads to underestimating the risk, we display
in Figure 4.2 traditional univariate Values-at-Risk of WG, the wind gusts. For
example, its median is 11.80, (strong breeze), and must be compared with 18.45,
(strong winds), the second coordinate of V aR0.5.

Min 1st quartile Median 3rd quartile Max
4.10 9.80 11.80 14.90 34

Table 4.2 – Univariate quantiles of our variable WG.

Such differences have statistical foundings. The median depends on the univa-
riate empirical distribution of WG to describe a probability of 1/2. Conversely,
our multivariate V aR0.5 encodes the multivariate joint probability of the whole
point cloud (WG,WS,DP). This can be summarized by the fact that univariate
risk measures neglect the correlations, which legitimates the use of multivariate
risk analysis.

4.6 On the class of integrated quantile functions

We end this chapter with bibliographical notes. The role of integrated quantile
functions in dimension d = 1 has been highlighted in [79]. Obviously, this chapter
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belongs to the line of works trying to extend such functions to the setting d > 1.
In Section 4 of [85], two different approaches are discussed, in view of generalizing

α 7→
∫ α

0

Q(t)dt. (4.44)

Hereafter, we bridge their concepts with ours, namely Definition 4.7 that extends
(4.44). Recall that Sd−1 = {ϕ ∈ Rd : ‖ϕ‖2 = 1} and PS is the uniform probabi-
lity measure on Sd−1. There, the (absolute) center-outward Lorenz function from
[85][Definition 4] writes as

LX± : α 7→ E[X1X∈Cα ] =

∫
Sd−1

αE(αϕ)dPS(ϕ). (4.45)

This being said, we believe that our proposed concepts of integration along sign
curves contain more information, namely directional. When targeting the contri-
butions of central regions to the expectation, LX± provides meaningful concepts of
Lorenz curves, but this approach is insufficient for superquantiles and multivariate
tails, as illustrated in Example 4.4.

Another important generalization of (4.44) is the one from [60] about multiva-
riate Lorenz curves. A main difference between the concepts of [60] and [85] is the
reference distribution, either the uniform on the unit hypercube or the spherical
uniform. Here, Lorenz curves aim to visualize inequalities within a given popula-
tion. In this context, one could focus either on the contribution of middle classes
as in [85], or on the one of the bottom of the population as in [60], in a way that
these works are in fact complementary. Furthermore, an (absolute) center-outward
Lorenz potential function is proposed in [85][Definition 6], α 7→ Eϕ[ψ(αϕ)], that is
real valued for ϕ ∈ Sd−1. This is quite natural because, at the core of the univariate
considerations of [79], one can retrieve the property that the quantile function is the
gradient of a convex potential, that is the definition of the center-outward quantile
function Q. Also, it has a physical interpretation, with a measurement of the work
of the quantile function. There, one might note that our center-outward expected
shortfall function draws a connection between [85][Definition 4] and [85][Definition
6], through (4.45) and (4.13). Somehow, this strengthens the relation between LX±

and the potential function ψ. Studying deeper such connections between existing
notions might lead to interesting results, but is left for further work.
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Conclusion

In this thesis, we studied the notion of Monge-Kantorovich quantiles and related
objects, from their estimation to their application for data analysis. We motivated
the use of entropic regularization to obtain a smooth and monotone estimator of
the MK quantile function, that can be defined without assuming finite second-order
moments. On the computational side, a convenient rewriting allowed to formulate
a stochastic algorithm that converges almost surely towards the solution of conti-
nuous EOT. This algorithm lies in an infinite dimensional Banach space of Fourier
coefficients, which makes it difficult to analyze. Moreover, our approach was exten-
ded for spherical data, by replacing Fourier coefficients in Rd by spherical harmonics
on the hypersphere Sd−1. By the way, it has been showed that the entropic map can
be generalized on Sd−1, building on the particular form of Riemannian gradients on
Sd−1. In addition, we proposed a multivariate definition for the superquantile and
expected shortfall functions, based on optimal transportation ideas. On the real
line, these integrated quantile functions characterize distributions and their weak
convergence, a fact that continues to hold for our multivariate extensions. Our
new definitions come with multivariate extensions of value-at-risk and conditional-
value-at-risk, that are fundamental measurements of the riskiness of a point cloud.

Here are some future research perspectives.

A broader use for our stochastic algorithm?

Our stochastic algorithm introduced in Chapter 2 is of particular interest when
the number of observations n is large and prevents the storage of the cost matrix.
A major appealing feature is that the computational cost at each iteration is inde-
pendent from n and only depends on the size of a regular grid in [0, 1]d fixed by the
user. Nonetheless, the size of such a grid grows exponentially with the dimension,
that is a main bottleneck of our algorithm. Because this grid especially underlines
our implementation of the Fast Fourier Transform, one can hope that more sophis-
ticated transforms could alleviate this, see for instance [141]. The extension to other
orthonormal basis may also be pursued, like we did with spherical harmonics on S2

in Chapter 3, where, again, the limitation with respect to the dimension is due to
memory constraints. One might also think of non orthonormal expansions, such as
dictionaries, [168], that may preserve the convexity of the objective function, being
linear in the parameters.
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It may also be applied beyond the context of MK quantiles. For instance, in
the linear optimal transport framework, [174], one also looks for Monge maps from
a fixed reference distribution µ. The aim is to construct Hilbertian embeddings of
probability distributions, typically on images in [0, 1]2 with a number of pixels n
potentially high. Note that the same objective can be investigated via regularized
potentials instead of Monge maps, [9]. In this setting, the reference measure µ is ty-
pically an average of given images, which questions our restriction µ = Unif([0, 1]d).
But the knowledge of the reference measure µ is mostly required to ensure that the
optimal potential verifies uε : [0, 1]d → R, and for computing integrals with respect
to µ. Thus, one could in fact replace µ = Unif([0, 1]d) by other measures supported
on [0, 1]d.

About superquantiles ?

Perspectives related to our multivariate notions of superquantile and expected
shortfall functions are both theoretical and practical.

Firstly, regularity assumptions for the weak convergence of Theorems 4.15 and
4.16 might be alleviated, as they are stronger than the ones on the real line [145].
It would also be interesting to question limit distributions of empirical Vectors-
at-Risk and Conditional-Vectors-at-Risk, in light with recent results from [150] for
the maximum tail correlation. In a broader sense, the convergence of empirical
entropic optimal transport towards its population counterpart is an active field,
[13, 78, 123, 140], and it remains to study to what extent existing results adapt to
the convergence of Ŝε,n and Êε,n.

Besides, one might note that our estimation of MK superquantiles and expected
shortfalls can be expensive as it relies on Riemann sums. In R, these objects have
different characterizations that allow their estimation by stochastic algorithms, [21].
It would be interesting to study if such equivalent formulations are possible for our
multivariate concepts, in view of similar numerical procedures.

Extending our definitions to extreme quantile levels and building related proce-
dures is another line of study. For instance, [171][Theorem 4.3] ensures the existence
of a MK quantile map which is stable as moving further to the tail contours, which
is not the case with the spherical uniform Ud. Our proposed center-outward super-
quantiles can be defined with other spherical reference measures, thus one can also
calibrate these superquantiles as the work of [171] suggests.

In addition, the many applications of the univariate superquantile function in
other fields than risk measurement, such as superquantile regression, [145], or opti-
mization with a superquantile loss, [105], appeal for further work, even more so with
Theorems 4.15 and 4.16. Superquantiles-based statistical tests of Goodness-of-Fit
may be constructed, where one expects advantages with respect to the robustness.
Also, our risk measures appeal for being used in practical settings, as done in [65].
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A
Annex for Chapter 2

A.1 Additional proofs

A.1.1 Proof of Proposition 2.5

We first state a result about Fréchet differentiation under Lebesgue integrals,
that follows from [166, Lemma A.2], and which extends well-known results on the
differentiation of integral functionals. For the proof of a similar result, we also refer
to the unpublished note [97].

Lemma A.1 (Leibniz’s rules of Fréchet differentiation). Let (Θ, ‖·‖) be an infinite
dimensional Banach space and σ a finite measure on a measurable space T. Let
θ0 ∈ Θ and denote by B(θ0, R) ⊂ Θ the ball of center θ0 and radius R. Consider
a function f : Θ × T → R that is Fréchet differentiable at θ0 (for every t ∈ T),
and suppose that there exists K ∈ L1(σ) such that, for all θ1, θ2 ∈ B(θ0, R) and all
t ∈ T,

|f(θ1, t)− f(θ2, t)| ≤ K(t)‖θ1 − θ2‖.

Then, the integral functional F : Θ→ R defined by F (θ) =
∫
T f(θ, t)dσ(t) is Fréchet

differentiable at θ0 and

DF (θ0) =

∫
T
Dθf(θ0, t)dσ(t),

where Dθf(θ0, t) denotes the Fréchet derivative of θ 7→ f(θ, t) at θ0.

In what follows, we will apply Lemma A.1 with Θ = ¯̀
1(Λ), T = X and σ = µ

to obtain the expression of the Fréchet differential of Hε. Let us first prove that,
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for every y ∈ Y , the function hε(·, y) : ¯̀
1(Λ) → R defined in (2.5) is Fréchet

differentiable. To this end, we introduce the function gy(·, x) : ¯̀
1(Λ) → R defined

as

gy(θ, x) =
1

ε

(∑
λ∈Λ

θλφλ(x)− c(x, y)

)
(A.1)

andGy(θ) =
∫
X exp(gy(θ, x))dµ(x). In this way, one has that hε(θ, y) = ε logGy(θ)+

ε. For every x ∈ X , the function θ 7→ exp(gy(θ, x)) is clearly Fréchet differentiable
and, for τ ∈ ¯̀

1(Λ),

Dθ exp(gy(θ, x))[τ ] =
1

ε

∑
λ∈Λ

exp(gy(θ, x))φλ(x)τλ. (A.2)

Moreover, it is a bounded linear operator from ¯̀
1(Λ) to R. In what follows, we

identify this operator to the infinite-dimensional vector

Dθ exp(gy(θ, x)) =
1

ε
exp(gy(θ, x))

(
φλ(x)

)
λ∈Λ

.

From now on, let θ0 ∈ ¯̀
1(Λ) and R > 0. Then, for any θ1, θ2 ∈ B(θ0, R), the mean

value theorem for functions defined on a Banach space implies that

| exp(gy(θ1, x))− exp(gy(θ2, x))| ≤ sup
θ∈B(θ0,R)

‖Dθ exp(gy(θ, x))‖op‖θ1 − θ2‖`1 , (A.3)

where the operator norm of Dθ exp(gy(θ, x)) is defined as

‖Dθ exp(gy(θ, x))‖op = sup
‖τ‖`1≤1

|Dθ exp(gy(θ, x))[τ ]|.

Since

|Dθ exp(gy(θ, x))[τ ]| =

∣∣∣∣∣1ε∑
λ∈Λ

exp(gy(θ, x))φλ(x)τλ

∣∣∣∣∣ ≤ 1

ε
exp(gy(θ, x))

∑
λ∈Λ

|τλ|,

one has that, for any θ ∈ ¯̀
1(Λ),

‖Dθ exp(gy(θ, x))‖op ≤
1

ε
exp(gy(θ, x)) ≤ 1

ε
exp

(∑
λ∈Λ |θλ|+ c(x, y)

ε

)
(A.4)

Consequently, let

Ky(x) =
1

ε
exp

(
c(x, y)

ε

)
sup

θ∈B(θ0,R)

exp

(
‖θ‖`1
ε

)
.

It follows from (A.3) and (A.4) that, for all θ1, θ2 ∈ B(θ0, R) and x ∈ X ,

| exp(gy(θ1, x))− exp(gy(θ2, x))| ≤ Ky(x)‖θ1 − θ2‖`1 .
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Because µ is compactly supported, it is obvious that, for all y ∈ Y , the function Ky

belongs to L1(µ), and therefore, by Lemma A.1, we conclude that Gy and hε(·, y)

are Fréchet differentiable and that the linear operator Dθhε(θ, y) is identified as an
element of ¯̀∞(Λ) given by

Dθhε(θ, y) =

(∫
X φλ(x) exp(gy(θ, x))dµ(x)∫
X exp(gy(θ, x))dµ(x)

)
λ∈Λ

. (A.5)

Similarly, to prove that the function Hε(θ) =
∫
Y hε(θ, y)dν(y) is Fréchet differen-

tiable, it is sufficient to bound the operator norm of Dθhε(θ, y) for θ ∈ B(θ0, R).
Recalling that

Fθ,y(x) =
exp (gy(θ, x))∫

X exp (gy(θ, x)) dµ(x)
,

we remark that, for any τ ∈ ¯̀
1(Λ),

|Dθhε(θ, y)[τ ]| =

∣∣∣∣∣∑
λ∈Λ

∫
X
Fθ,y(x)φλ(x)dµ(x)τλ

∣∣∣∣∣ ≤
∫
X
Fθ,y(x)dµ(x)

∑
λ∈Λ

|τλ| = ‖τ‖`1 .

Therefore, ‖Dθhε(θ, y)‖op ≤ 1 which proves inequality (2.20). It also means that
Dθhε(θ, y) can be identified as an element of ¯̀∞(Λ). Thus, arguing as previously,
that is by combining the mean value theorem with Lemma A.1, we obtain that
Hε(θ) is Fréchet differentiable with

DHε(θ) =

∫
Y
Dθhε(θ, y)dν(y) =

(∫
Y

∂hε(θ, y)

∂θλ
dν(y)

)
λ∈Λ

which can also be identified as an element of ¯̀∞(Λ) such that ‖DHε(θ)‖op =

‖DHε(θ)‖`∞ satisfies inequality (2.22) by combining inequality (2.20) together with
the fact that ν is a probability measure. This achieves the proof of Proposition 2.5.

A.1.2 Proof of Proposition 2.6

First, let us recall that, for (Θ, ‖·‖) a given Banach space, a function f : Θ→ R
is twice Fréchet differentiable if Df is Fréchet differentiable. In this case, the second
order Fréchet derivative of f at θ0 is denoted by D2f(θ0) and it is identified as an
element of L(Θ × Θ,R) the set of continuous bilinear mapping from Θ × Θ to R.
Moreover, the operator norm of D2f(θ0) is defined as

‖D2f(θ0)‖op = sup
‖θ‖`1≤1,‖θ′‖`1≤1

|D2f(θ0)[θ, θ′]|.

115



To derive the expression of the second order Fréchet derivative of the functions
hε(·, y) and Hε, we use similar arguments to those in the proof of Proposition 2.5.
First, recall from (A.5) that the Fréchet derivative Dθhε(θ, y) is the linear operator
defined as

Dθhε(θ, y) =

(∫
Fθ,y(x)φλ(x)dµ(x)

)
λ∈Λ

=

∫
ψy(x, θ)dµ(x)

where ψy(x, θ) : ¯̀
1(Λ)→ R is the linear operator

ψy(x, θ)[τ ] =
∑
λ∈Λ

Fθ,y(x)φλ(x)τλ =
∑
λ∈Λ

Fθ,y(x)φλ(x)τλ.

As a standard strategy, we aim to derive this with respect to θ. From (A.1), one
has that

Fθ,y(x) =
exp(gy(θ, x))

Gy(θ)
.

Therefore, using (A.2) combined with the differentiability of Gy(θ),

DθFθ,y(x)[τ ] =
1

ε

(∑
λ∈Λ

τλφλ(x)Fθ,y(x)− Fθ,y(x)

∫
X

∑
λ∈Λ

τλφλ(z)Fθ,y(z)dµ(z)

)
.

(A.6)
Thus, the mapping θ 7→ ψy(x, θ)[τ ] is clearly Fréchet differentiable, and its Fré-
chet derivative can be identified as the following symmetric bilinear mapping from
¯̀
1(Λ)× ¯̀

1(Λ) to R

Dθψy(x, θ)[τ, τ
′] =

1

ε

∑
λ,λ′∈Λ

τ ′λ′τλ

(
φλ′(x)φλ(x)Fθ,y(x)− φλ′(x)Fθ,y(x)φλ(x)Fθ,y(x)

)
=

1

ε

∑
λ,λ′∈Λ

τ ′λ′τλφλ′(x)φλ(x)Fθ,y(x)−
∑
λ∈Λ

τ ′λφλ(x)Fθ,y(x)
∑
λ∈Λ

τλφλ(x)Fθ,y(x).

We now compute an upper bound for the norm of this linear operator. One can
observe that, for τ = τ ′,

|Dθψy(x, θ)[τ, τ ]| ≤ 1

ε
Fθ,y(x)‖τ‖2

`1
, (A.7)

thanks to the elementary fact that

∑
λ∈Λ

τλφλ(x)Fθ,y(x)
∑
λ∈Λ

τλφλ(x)Fθ,y(x) =

∣∣∣∣∣∑
λ∈Λ

τλφλ(x)Fθ,y(x)

∣∣∣∣∣
2

≥ 0. (A.8)

Then, using the equality,

4Dθψy(x, θ)[τ, τ
′] = Dθψy(x, θ)[τ + τ ′, τ + τ ′]−Dθψy(x, θ)[τ − τ ′, τ − τ ′]
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combined with the upper bound (A.7), we obtain that

4|Dθψy(x, θ)[τ, τ
′]| ≤ 1

ε
Fθ,y(x)

(
‖τ + τ ′‖2

`1
+ ‖τ − τ ′‖2

`1

)
.

Therefore, we immediately obtain that

sup
‖τ‖`1≤1,‖τ ′‖`1≤1

|Dθψy(x, θ)[τ, τ
′]| ≤ 2

ε
Fθ,y(x).

Consequently, we may proceed as in the proof of Proposition 2.5 to obtain that
hε(·, y) is twice Fréchet differentiable and that its second Fréchet derivative is the
following symmetric bilinear mapping from ¯̀

1(Λ)× ¯̀
1(Λ) to R

D2
θhε(θ, y)[τ, τ ′] =

1

ε

∑
λ′∈Λ

∑
λ∈Λ

τ ′λ′τλ

∫
X
φλ′(x)φλ(x)Fθ,y(x)dµ(x)

− 1

ε

(∑
λ∈Λ

τ ′λ

∫
X
φλ(x)Fθ,y(x)dµ(x)

)(∑
λ∈Λ

τλ

∫
X
φλ(x)Fθ,y(x)dµ(x)

)
.

Note that, for τ = τ ′, an application of Jensen’s inequality with respect to the
probability measure Fθ,y(x)dµ(x) implies that D2

θhε(θ, y)[τ, τ ] ≥ 0. Moreover, it
follows once again from (A.8) together with the elementary fact that

∫
X Fθ,ydµ = 1,

that
D2
θhε(θ, y)[τ, τ ] ≤ 1

ε
‖τ‖2

`1
. (A.9)

Hereafter, we deduce from the equality

4D2
θhε(θ, y)[τ, τ ′] = D2

θhε(θ, y)[τ + τ ′, τ + τ ′]−D2
θhε(θ, y)[τ − τ ′, τ − τ ′],

the positivity of D2
θhε(θ, y)[τ − τ ′, τ − τ ′] and inequality (A.9), that

4|D2
θhε(θ, y)[τ, τ ′]| ≤ D2

θhε(θ, y)[τ + τ ′, τ + τ ′] ≤ 1

ε
‖τ + τ ′‖2

`1
.

It ensures that

‖D2
θhε(θ, y)‖op = sup

‖τ‖`1≤1,‖τ ′‖`1≤1

|D2
θhε(θ, y)[τ, τ ′]| ≤ 1

ε
,

which proves inequality (2.24).
Finally, combining the above upper bound on ‖D2

θhε(θ, y)‖op and using again
an adaptation of Lemma A.1 to obtain a Leibniz’s formula for the second order
Fréchet differentiation under the integral sign, one can prove that Hε(θ) is twice
Fréchet differentiable by integrating D2

θhε(θ, y) with respect to dν(y), which implies
that D2Hε(θ) is the linear operator defined by (2.25). Moreover, the upper bound
(2.26) follows from inequality (2.24) and the fact that ν is a probability measure,
which completes the proof of Proposition 2.6.
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A.1.3 Proof of Proposition 2.7

For x ∈ X , y ∈ Y and for (θ(1), θ(2)) ∈ ¯̀
1(Λ)× ¯̀

1(Λ), denote

e1(x, y) = exp

(∑
λ∈Λ θ

(1)
λ φλ(x)− c(x, y)

ε

)

and

e2(x, y) = exp

(∑
λ∈Λ θ

(2)
λ φλ(x)− c(x, y)

ε

)
.

We have, for all 0 < t < 1, and for a fixed y ∈ Y , that

thε(θ
(1), y) + (1− t)hε(θ(2), y) = εt log

∫
X
e1(·, y)dµ+ (1− t) log

∫
X
e2(·, y)dµ+ ε

= εlog

((∫
X
e1(·, y)dµ

)t(∫
X
e2(·, y)dµ

)1−t
)

+ ε.

(A.10)

Hereafter, applying Hölder’s inequality to f(x) = et1(x, y) and g(x) = e1−t
2 (x, y)

with Hölder conjugates p = 1/t and q = 1/(1− t), we obtain that∫
X
f(x)g(x) dµ(x) ≤

(∫
X
e1(x, y)dµ(x)

)t(∫
X
e2(x, y)dµ(x)

)1−t

. (A.11)

However, one can observe that∫
X
fg dµ =

∫
X

exp

(
t
∑

λ∈Λ θ
(1)
λ φλ(x) + (1− t)

∑
λ∈Λ θ

(2)
λ φλ(x) + c(x, y)

ε

)
dµ(x),

which ensures that

ε log

∫
X
f(x)g(x) dµ(x) + ε = hε(tθ

(1) + (1− t)θ(2), y).

Hence, combining the above equality with (A.10) and (A.11), we obtain that

hε(tθ
(1) + (1− t)θ(2), y) ≤ thε(θ

(1), y) + (1− t)hε(θ(2), y),

which proves the convexity of θ 7→ hε(θ, y). Since Hε(θ) = E [hε(θ, Y )], we also
obtain the convexity of the function Hε. Furthermore, assume that Hölder’s in-
equality (A.11) becomes an equality, which means that the functions fp and gq

are linearly dependent in L1(µ). This would mean that it exists βy > 0 such that
e1(x, y) = βye2(x, y) for all x ∈ X . Applying the logarithm, this equality is equiva-
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lent to
1

ε

∑
λ∈Λ

θ
(1)
λ φλ(x) = log βy +

1

ε

∑
λ∈Λ

θ
(2)
λ φλ(x).

By integrating the above equality with respect to µ, and from our normaliza-
tion condition (2.3), the equality case in the Hölder inequality (A.11) implies that
log βy = 0 and thus βy = 1. But then one has that e1(x, y) = e2(x, y), implying
that

∑
λ∈Λ(θ

(1)
λ − θ

(2)
λ )φλ(x) = 0 for all x ∈ X . Hence, we necessarily have that

θ(1) = θ(2) which yields a contradiction. Therefore, the function θ 7→ hε(θ, y) is
strictly convex. Since Hε(θ) = E [hε(θ, Y )] this also implies the strict convexity of
Hε, which achieves the proof of Proposition 2.7.

A.2 Optimal transport with periodicity constraints

In this section, we focus our attention on conditions such that the dual potential
(Dε) is periodic at the boundary of X .

A.2.1 The case of the standard quadratic cost

Using classical results in the analysis of multiple Fourier series (see e.g. [164,
Corollary 1.8]), assuming that the Fourier coefficients θ0 = (θ0

λ)λ∈Λ of u0 form an
absolutely convergent series implies that u0 can be extended as a continuous and
Zd-periodic function on Rd. Hence, under this assumption, u0 has to be a continuous
function that is constant at the boundary of X = [0, 1]d. However, for the quadratic
cost c(x, y) = 1

2
‖x − y‖2, we are not aware of standard results on the regularity

of optimal transport (through smoothness assumptions on ν) that would imply
periodic properties of u0 and its derivatives at the boundary of X .

A.2.2 The quadratic cost on the torus

Nevertheless, guaranteeing the periodicity of u0 and the summability of its
Fourier coefficients is feasible by considering the setting X = Y = Td, where
Td = Rd/Zd is the d-dimensional torus, that is endowed with the usual distance

dTd(x, y) = min
λ∈Zd
‖x− y + λ‖.

Hereafter, we identify the torus as the set of equivalence classes {x+ λ : λ ∈ Zd}
for x ∈ [0, 1)d, and we use the notation [x] = x + λ0 where λ0 ∈ Zd is such that
‖x + λ‖ is minimal for λ ∈ Zd. We also recall that a function u : Td → R can be
identified as a Zd-periodic function on Rd. Finally, one can observe that for a given
y ∈ Td, the cost function c(x, y) = 1

2
d2
Td(x, y) is almost everywhere differentiable,
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and its gradient is (see e.g. [151, Section 1.3.2])

∇xc(x, y) = [x− y],

at every x /∈ y + {∂Ω + Zd} where ∂Ω denotes the boundary of Ω = [−1
2
, 1

2
]d.

Assuming that the probability measure ν is also supported on the d-dimensional
torus Td allows to use existing results for optimal transport on the torus (see e.g.
[38], [116, Section 2.2] and [151, Section 1.3.2]). Formally, taking X = Y = Td

implies that ν is considered as a periodic positive Radon measure on Rd with
ν(Td) = 1, and that µ is understood as the Lebesgue measure on Rd. Note that
this setting is not restrictive, as it allows to treat the example of an absolutely
continuous measure ν with support on [0, 1]d whose density fν takes a constant
value on the boundary of [0, 1]d, implying that fν can be extended over Rd as a
Zd-periodic function.

Then, thanks to the identification of u : Td → R as a Zd-periodic function on
Rd, it follows that

inf
x∈Td

{
1

2
d2
Td(x, y)− u(x)

}
= inf

x∈Rd

{
1

2
‖x− y‖2 − u(x)

}
.

Therefore, it is equivalent to define the conjugate of a function u : Td → R with
respect to the cost c(x, y) = 1

2
d2
Td(x, y) or to the quadratic cost c(x, y) = 1

2
‖x− y‖2

using the periodization of u over Rd. Now, using results on optimal transport on
Td, previously established in [38] or [116, Proposition 4], it follows that

(i) there exists a unique optimal transport map Q : Td → Td from µ to ν such
that

Q = argmax
T : T#µ=ν

E
(
d2
Td(X,T (X))

)
,

(ii) Q(x) = x−∇u0(x) where u0 is a Zd-periodic function on Rd that is a solution
of the dual problem (D0) with X = Y = Td and c(x, y) = 1

2
d2
Td(x, y),

(iii) ‖Q(x)− x‖2 = d2
Td(x,Q(x)) for almost every x ∈ Rd.

Entropically regularized optimal transport on the torus has also been recently
considered in [23] and [36, Section E]. One can thus also consider the dual formu-
lation of entropic OT as in (Dε) with the cost c(x, y) = 1

2
d2
Td(x, y).

We conclude this section on optimal transport on the torus by a discussion
on the regularity of the optimal dual functions in the un-regularized case ε = 0.
For s ∈ N, we denote by Cs(Td), the set of Zd-periodic functions f on Rd having
everywhere defined continuous partial derivatives. Then, the following regularity
result holds as an immediate application of results from [38] and [116, Theorem 5].

Lemma A.2. Let u0 be a a solution of the dual problem (D0) with X = Y = Td

and c(x, y) = 1
2
d2
Td(x, y). Suppose that the probability distribution ν is absolutely
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continuous with a density fν that is lower and upper bounded by positive constants.
Assume further that fν ∈ Cs−1(Td) for some s > 1. Then, u0 belongs to Cs+1(Td).

Consequently, under the assumptions of Lemma A.2, one has that if fν ∈
Cs−1(Td) for some s > d/2 − 1, then u0 belongs to Ck(Td) with k > d/2. The-
refore, by standard results for multiple Fourier series (see e.g. [164, Corollary 1.9]),
one has that

∑
λ∈Λ |θ0

λ| < +∞. Hence we can conclude that if the density of ν is
sufficiently smooth (and is upper and lower bounded by positive constants), then
the Fourier serie of u0 actually belongs to `1(Λ).
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B
Annex for Chapter 3

B.1 Invariance properties

Invariance properties of empirical versions of F and Q were shown in [84]. The
same holds in fact for the population counterparts, with the same argument : the
transport problem inherits invariance from the Riemannian distance.

Proposition B.1. In dimension d, let O be a d × d orthogonal matrix and let
ν ∈ B2. Denote by O#ν the distribution of OZ if Z ∼ ν, and by FZ ,QZ, (resp.
FOZ ,QOZ), the distribution and quantile functions of ν, (resp. O#ν). Then,

FOZ(Oz) = OF(z).

and
QOZ(Oz) = OQ(z).

Proof. Note that the Kantorovich problem, equivalent to (P0) when ν ∈ B2, mini-
mizes ∫

S2

∫
S2

c(x, y)dπ(x, y),

over the set of joint probabilities π supported on S2× S2 with marginals µS2 , ν, see
e.g. [84]. Because c(Ox,Oy) = c(x, y), the transport problem between µS2 and ν is
equivalent to the one between O#µS2 and O#ν. Going back to Monge’s problem
(P0), it immediately follows that the Monge map T#µS2 = ν verifies

OT (z) = TOZ(Oz).

Up to interverting the reference and the target measures, the result follows.
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The following corollary is straightforward.

Corollary B.2. For any τ ∈ [0, 1], OCτ = QOZ(OCUτ )

B.2 Explicit forms

Closed-form expressions of F for rotationally invariant distributions were given
in [84] and simplify in dimension d = 3, allowing to deduce the inverse map Q. Let
Z ∼ ν be such a random vector with axis ±θM . Then, assume that ν has density

z ∈ S2 7→ cff(zT θM),

for f some positive angular function and cf a normalizing constant. For r ∈ [−1, 1],
denote by

Ff (r) =

∫ r

−1

f(s)ds/

∫ 1

−1

f(s)ds

the distribution function of ZT θM and by Qf = F−1
f its quantile function. Then,

letting F ∗f (r) = 2Ff (r)− 1, the directional distribution function of Z writes

F(z) = F ∗f (zT θM)θM +
√

1− F ∗f (zT θM)2SθM (z). (B.1)

For instance, taking f(s) = exp(κzT θM) corresponds to the von Mises-Fisher distri-
bution with location parameter θM and concentration parameter κ ∈ R+. Crucially,
the transport (B.1) reduces to univariate transport along the axis θM = F(θM). If
θM = (0, 0, 1)T , that is to say up to some rotation thanks to Proposition B.1 and
Corollary B.2, this corresponds to changing the latitude w.r.t. the usual coordinate
system (3.1). Indeed, as soon as θM = (0, 0, 1)T ,

F(z) = F ∗f (z3)θM +
√

1− F ∗f (z3)2
(z1, z2, 0)T

‖(z1, z2, 0)T‖
.

The third coordinate is changed to F ∗f (z3), and the other coordinates are adapted
to the constraint F(z) ∈ S2. This rewrites, in accordance with (3.1),

F(z) = F(Φ(θ, φ)) = Φ(θ, φ) for θ = arccos
(

(F ∗f )(z3)
)
. (B.2)

Consequently, to get the inverse map Q = F−1, it suffices to change the pseudo
latitude of F(z) ∈ CUτ w.r.t. the axis ±θM . If x = F(z), x3 = F ∗f (z3) and z3 =

(F ∗f )−1(x3), that is

Q(x) = Q(Φ(θ, φ)) = Φ(θ̃, φ) for θ̃ = arccos
(

(F ∗f )−1(x3)
)
. (B.3)

As highlighted in [84], this shows that MK quantile contours coincide with Maha-
lanobis ones from [108] under the rotationally symmetric model.
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