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Abstract

Big data query processing has become increasingly important, prompting the devel-

opment and cloud deployment of numerous systems. However, automatically tuning

the numerous parameters in these big data systems introduces growing complex-

ity in meeting users’ performance goals and budgetary constraints. Determining

optimal configurations is challenging due to the need to address: 1) multiple com-

peting performance goals and budgetary constraints, such as low latency and low

cost, 2) a high-dimensional parameter space with complex parameter control, and

3) the requirement for high computational efficiency in cloud use, typically within

1-2 seconds.

To address the above challenges, this thesis proposes efficient multi-objective

optimization (MOO) algorithms for a cloud optimizer to meet various user objec-

tives. It computes Pareto optimal configurations for big data queries within a high-

dimensional parameter space while adhering to stringent solving time requirements.

More specifically, this thesis introduces the following contributions.

The first contribution of this thesis is a benchmarking analysis of existing MOO

methods and solvers, identifying their limitations, particularly in terms of efficiency

and the quality of Pareto solutions, when applied to cloud optimization.

The second contribution introduces MOO algorithms designed to compute Pareto

optimal solutions for query stages, which are units defined by shuffle boundaries. In

production-scale big data processing, each stage operates within a high-dimensional

parameter space, with thousands of parallel instances. Each instance requires re-

source parameters determined upon assignment to one of thousands of machines,

as exemplified by systems like MaxCompute. To achieve Pareto optimality for each

query stage, we propose a novel hierarchical MOO approach. This method de-



composes the stage-level MOO problem into multiple parallel instance-level MOO

problems and efficiently derives stage-level MOO solutions from instance-level MOO

solutions. Evaluation results using production workloads demonstrate that our hi-

erarchical MOO approach outperforms existing MOO methods by 4% to 77% in

terms of latency and up to 48% in cost reduction while operating within 0.02 to 0.24

seconds compared to current optimizers and schedulers.

Our third contribution aims to achieve Pareto optimality for the entire query

with finer-granularity control of parameters. In big data systems like Spark, some

parameters can be tuned independently for each query stage, while others are shared

across all stages, introducing a high-dimensional parameter space and complex con-

straints. To address this challenge, we propose a new approach called Hierarchical

MOO with Constraints (HMOOC). This method decomposes the optimization prob-

lem of a large parameter space into smaller subproblems, each constrained to use

the same shared parameters. Given that these subproblems are not independent, we

develop techniques to generate a sufficiently large set of candidate solutions and ef-

ficiently aggregate them to form global Pareto optimal solutions. Evaluation results

using TPC-H and TPC-DS benchmarks demonstrate that HMOOC outperforms ex-

isting MOO methods, achieving a 4.7% to 54.1% improvement in hypervolume and

an 81% to 98.3% reduction in solving time.
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Resumé

Le traitement des requêtes Big Data est devenu de plus en plus important, ce qui a

conduit au développement et au déploiement dans le cloud de nombreux systèmes.

Cependant, le réglage automatique des nombreux paramètres de ces systèmes Big

Data introduit une complexité croissante pour répondre aux objectifs de performance

et aux contraintes budgétaires des utilisateurs. La détermination des configurations

optimales est un défi en raison de la nécessité de prendre en compte : 1) plusieurs

objectifs de performances et contraintes budgétaires concurrents, tels qu’une faible

latence et un faible coût, 2) un espace de paramètres de grande dimension avec

un contrôle de paramètres complexe, et 3) l’exigence d’une configuration élevée.

efficacité de calcul dans l’utilisation du cloud, généralement en 1 à 2 secondes.

Pour relever les défis ci-dessus, cette thèse propose des algorithmes d’optimisation

multi-objectifs (MOO) efficaces pour un optimiseur de cloud afin de répondre à

divers objectifs des utilisateurs. Il calcule les configurations Pareto optimales pour

les requêtes Big Data dans un espace de paramètres de grande dimension tout en

respectant des exigences strictes en matière de temps de résolution. Plus précisément,

cette thèse présente les contributions suivantes.

La première contribution de cette thèse est une analyse comparative des mé-

thodes et solveurs MOO existants, identifiant leurs limites, notamment en termes

d’efficacité et de qualité des solutions Pareto, lorsqu’elles sont appliquées à l’opti-

misation du cloud.

La deuxième contribution présente des algorithmes MOO conçus pour calculer

des solutions optimales de Pareto pour les étapes de requête, qui sont des unités

définies par des limites de mélange. Dans le traitement de données volumineuses à

l’échelle de la production, chaque étape fonctionne dans un espace de paramètres de



grande dimension, avec des milliers d’instances parallèles. Chaque instance nécessite

des paramètres de ressources déterminés lors de l’affectation à l’une des milliers

de machines, comme l’illustrent des systèmes comme MaxCompute. Pour atteindre

l’optimalité de Pareto pour chaque étape de requête, nous proposons une nouvelle

approche MOO hiérarchique. Cette méthode décompose le problème MOO au niveau

de l’étape en plusieurs problèmes MOO parallèles au niveau de l’instance et dérive

efficacement des solutions MOO au niveau de l’étape à partir de solutions MOO au

niveau de l’instance. Les résultats de l’évaluation utilisant des charges de travail de

production démontrent que notre approche MOO hiérarchique surpasse les méthodes

MOO existantes de 4 à 77% en termes de latence et jusqu’à 48% en réduction des

coûts tout en fonctionnant dans un délai de 0,02 à 0,24 seconde par rapport aux

optimiseurs et planificateurs actuels.

Notre troisième contribution vise à atteindre l’optimalité Pareto pour l’ensemble

de la requête avec un contrôle plus fin des paramètres. Dans les systèmes Big

Data comme Spark, certains paramètres peuvent être ajustés indépendamment pour

chaque étape de la requête, tandis que d’autres sont partagés entre toutes les étapes,

introduisant ainsi un espace de paramètres de grande dimension et des contraintes

complexes. Pour relever ce défi, nous proposons une nouvelle approche appelée

MOO hiérarchique avec contraintes (HMOOC). Cette méthode décompose le pro-

blème d’optimisation d’un grand espace de paramètres en sous-problèmes plus pe-

tits, chacun contraint d’utiliser les mêmes paramètres partagés. Étant donné que

ces sous-problèmes ne sont pas indépendants, nous développons des techniques pour

générer un ensemble suffisamment large de solutions candidates et les agréger ef-

ficacement pour former des solutions Pareto optimales globales. Les résultats de

l’évaluation utilisant les benchmarks TPC-H et TPC-DS démontrent que HMOOC

surpasse les méthodes MOO existantes, obtenant une amélioration de 4,7% à 54,1%

de l’hypervolume et une réduction de 81% à 98,3% du temps de résolution.
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CHAPTER 1

Introduction

The prevalence of cloud technology among big data users is notable both currently

and is expected to increase in the foreseeable future. Presently, approximately 94%

of global companies utilize cloud software [91]. Gartner projects that by 2025, over

95% of new digital workloads will transition to cloud-native platforms, a significant

increase from 30% in 2021 [28]. Furthermore, it is anticipated that by 2028, 70% of

all workloads will be conducted within cloud computing environments [27].

Running cloud-based analytical tasks presents significant challenges for users,

particularly due to the multitude of requirements involved. Consider an enterprise

user intending to execute a Spark analytic task [109] in the cloud. Initially, the user

must select an appropriate hardware configuration from over 300 available instances

on Amazon EC2 [2], each offering various combinations of CPU power, memory,

storage, and networking capabilities. Subsequently, the user is required to configure

several software parameters, such as the number of CPU cores, memory size, num-

ber of executors, shuffle behaviors (e.g., number of shuffle partitions), and memory

management (e.g., fraction of memory allocated for execution and storage). These

configurations critically influence both performance metrics, such as latency, and

monetary costs, in accordance with the pricing strategy of Amazon EC2.

The necessity for automatic optimization of user analytic tasks stems from the

need to fulfill diverse user requirements, encompassing factors like latency, monetary

cost, and additional objectives. Typically, cloud service providers mandate users to

choose a cloud instance—a set of machines tailored with specific computing capa-



Chapter 1. Introduction

bilities—suitable for their application demands. Nonetheless, the manual scaling,

deployment, and configuration of cloud services often result in suboptimal settings

that diminish performance [6], thereby escalating latency and monetary costs.

The predominant theoretical approach for optimizing multiple, potentially con-

flicting, user performance objectives is Multi-Objective Optimization (MOO). MOO

identifies a Pareto-optimal set of solutions that illustrates the trade-offs among var-

ious objectives, with no single solution outperforming others across all dimensions.

This framework empowers users to select the optimal solution according to their pref-

erences. For example, in balancing two competing objectives—latency and cost—the

solution set might be categorized into three distinct groups: low latency at a higher

cost, medium latency at a moderate cost, and high latency at a reduced cost. Con-

sequently, MOO provides the flexibility for users to choose a solution tailored to

specific preferences, such as low latency.

The Pareto optimal solution yielded by MOO is identified as a configuration

after an extensive search through a vast parameter space in big data systems. A

configuration for cloud analytical tasks is defined as a constant vector that assigns

specific values to each tuning parameter within a fixed and ordered set. For instance,

the configuration [1,5] for the parameters [CPU cores,memory size] establishes a

system setting with 1 CPU core and 5 GB of memory. This configuration is utilized

by cloud analytical tasks to operate within big data systems, aiming to achieve

performance goals that encompass multiple objectives, such as reducing latency and

minimizing monetary costs.

In this thesis, we propose the development of a Cloud Optimizer grounded in

MOO principles. The primary aim of this optimizer is to automatically determine the

optimal configuration for each incoming analytical task across a range of objectives,

optimizing them simultaneously. The Cloud Optimizer is designed to accommodate

both SQL and Machine Learning (ML) tasks. At its core, it employs a systematic

MOO methodology to generate a set of optimal configurations, from which the most

suitable configuration is selected to best satisfy all specified objectives.

2



1.1. Technical Challenges

1.1 Technical Challenges

The primary distinction between our research and existing studies is our approach

to addressing the MOO problem with detailed, complex parameter control under

strict time constraints. While state-of-the-art methods [35, 49, 55, 96] tackle MOO

in parameter tuning for big data systems, they do not typically differentiate between

types of parameters or accommodate the stringent 1-2 second time limits that are

characteristic of cloud environments. In contrast, a recent study, UDO [102], clas-

sifies database system parameters into heavy and light categories based on the cost

of value modification. Nevertheless, UDO’s focus is on optimizing throughput or

latency exclusively, rather than addressing broader MOO challenges.

In particular, we tackle the following technical challenges.

• Good quality and coverage of the cloud optimizer: Fundamentally

distinct from single-objective optimization, MOO introduces significant chal-

lenges for a Cloud Optimizer tasked with exploring the Pareto frontier—the

set of all optimal solutions in MOO. Achieving good quality and coverage along

this frontier means identifying solutions that not only perform optimally across

all objectives but also represent a diverse range of preferences within the ob-

jective space. Traditional MOO methods such as the Weighted Sum approach

[19] often struggle to provide comprehensive coverage of the Pareto frontier.

On the other hand, evolutionary algorithms like NSGA-II [22] promote diver-

sity but typically offer only an approximation of the Pareto frontier. Moreover,

the quality of solutions and the computation time are heavily influenced by

hyperparameters such as population size and the number of evaluations.

• High efficiency of the cloud optimizer: Achieving high efficiency presents

a considerable challenge, as the Cloud Optimizer must recommend configura-

tions within stringent time constraints typical for cloud usage, such as the 1-2

second window necessary to avoid delays in starting cloud-based analytical

tasks. Previous research on MOO for Spark tuning [86] demonstrated that the

Multi-Objective Bayesian Optimization method [20] typically requires about
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48 seconds to deliver Pareto solutions. Such extended processing times are

highly impractical for cloud environments, underscoring the need for more

rapid solution methodologies.

• High-dimensional parameters: In practical applications, the number of

tuning parameters can be vast due to unique workload characteristics. For in-

stance, service providers like Alibaba Cloud are tasked with assigning resource

plans to all instances within a query stage, defined by shuffle boundaries.

These resource plans dictate the allocation of resources, such as CPU cores

and memory size, to each instance on a specific machine [64, 71]. In scenarios

where a stage includes m instances, the parameter space expands dramatically

to 2 ×m, with m potentially surpassing 6,000 in real workloads. The use of

the Evolutionary method [22], although powerful, proves impractical in such

contexts as it may require more than 10 minutes to deliver Pareto solutions

for stages comprising thousands of instances, rendering it unsuitable for the

rapid-response demands of Alibaba Cloud’s operational environment.

• Fine-grained complex control of parameters: Unlike previous works that

uniformly tune parameters across queries [12, 26, 108, 112, 114, 119], cloud

engines like Spark [109] offer a diverse range of parameters, which can be cate-

gorized into three groups. Context parameters (θc ⊆ Rdc) are used to initialize

the Spark context, allocating shared resources and influencing runtime behav-

iors such as shuffling. Query plan parameters (θp ⊆ Rdp) govern the translation

from logical to physical query plans. Query stage parameters (θs ⊆ Rds) opti-

mize individual query stages within the physical plan. The parameters θp and

θs offer fine-grained control over each query stage, creating a high-dimensional

parameter space. For example, if a query comprises m stages, the total num-

ber of fine-grained parameters is calculated as dc + (dp + ds) ×m, leading to

a significantly large parameter space when m is substantial.

These diverse parameters introduce significant complexity in controlling dif-

ferent stages of a query. For example, in Spark [109], θc manages shared

resources across all stages and must be established at query submission to
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initialize the Spark context. In contrast, θp and θs are ideally fine-tuned per

stage at runtime, taking advantage of precise, real-time statistics. This in-

tricate control scheme presents substantial challenges, necessitating a hybrid

approach that merges compile-time and runtime optimization techniques. Ad-

ditionally, the interdependencies among these parameters further complicate

the optimization process.

1.2 Contributions

To address the challenge of ensuring both efficiency and Pareto optimality in MOO

problems involving high-dimensional parameters and complex controls within cloud

optimization contexts, we propose novel MOO approaches. These are designed to

enhance the performance and effectiveness of cloud optimizers. Our contributions

are outlined as follows:

1.2.1 Benchmark study of Multi-Objective Optimization

A benchmark study is conducted to evaluate various MOO algorithms and exist-

ing solvers. Approaches to addressing MOO generally categorize into two dis-

tinct methodologies: transforming MOO problems into single-objective optimization

problems or solving the MOO problems directly. While optimizing a single objective

involves the use of specific solvers, addressing MOO directly has attracted consider-

able research interest, as evidenced by significant contributions in the literatures [20,

22, 69]. To determine the efficacy of existing solvers and MOO algorithms within

the context of the Cloud Optimizer, we analyze the performance of two commercial

solvers alongside several state-of-the-art MOO methods.

Study on Solvers. (Section 4.1) Our optimization challenge is categorized as

a Mixed Integer Non-Linear Programming (MINLP) problem, stemming from the

presence of non-linear objective functions and a diverse range of parameter types,

which include both continuous and integer variables. These non-linear objectives

originate from learned models employed to avoid the resource-intensive evaluation

of operational configurations in large-scale data systems. An example of such non-
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linear behavior can be observed in the Rectified Linear Unit (ReLU), a commonly

used activation function in Deep Neural Networks (DNNs).

Taking DNNs equipped with ReLU activation functions as a case study for our

objective function, we analyze the performance of the commercial solver: Knitro

[42]. Knitro, a Non-Linear Programming (NLP) solver, is adept at directly handling

MINLP problems that incorporate DNN objectives.

Experimental Evaluation of Solvers and MOO Algorithms. (Section

4.2) We employ various performance metrics to evaluate solvers and MOO algo-

rithms. For solvers tackling single-objective optimization problems, we assess solu-

tion quality based on the objective values, while efficiency is measured by the time

taken to solve the problem. In contrast, MOO algorithms produce a set of solu-

tions that highlight trade-offs among diverse user preferences. To evaluate these, we

use hypervolume (HV) [41] [4], which quantifies the extent of the space dominated

by the Pareto solutions, alongside solving time to gauge both the performance and

efficiency of MOO methods.

In our experimental evaluation, we compare the performance of three solvers:

Knitro, grid search, and random sampling. While Knitro yields objective results

comparable to those of grid search and random sampling, it requires significantly

more solving time, exceeding 40 minutes.

We implemented and evaluated existing MOO methods, assessing both the HV

of the solutions returned and the time required for solving. The methods tested

include the Weighted Sum (WS) approach [69], the Evolutionary (EVO) method

[22], and Multi-Objective Bayesian Optimization (MOBO) [20], each representing a

distinct category of MOO strategies. The WS method transforms an MOO problem

into a single-objective optimization challenge by applying weights to each objective,

facilitating the use of a single-objective solver. The EVO method, a randomized

approach, employs genetic operations such as crossover and mutation on randomly

initialized populations. Conversely, MOBO extends Bayesian Optimization (BO) to

MOO problems by modeling each objective function with a surrogate model and

designing an acquisition function to identify new points likely to yield Pareto opti-

mal solutions. In comparative analysis, both WS and EVO methods outperformed
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MOBO in terms of HV, achieving more than 72.2% compared to 41.8%, while also re-

quiring significantly less solving time—less than 0.03 seconds compared to MOBO’s

290 seconds.

Given the stringent demands for high quality and efficiency imposed by the

Cloud Optimizer, we have chosen grid search and random sampling as the primary

solvers. Additionally, the WS and EVO methods are selected as the baseline MOO

approaches for subsequent experiments.

1.2.2 Stage-level Optimizer

We propose a novel MOO algorithm specifically designed to compute Pareto opti-

mal solutions for stages which are distinct units defined by shuffle boundaries in

large-scale big data processing. Within these environments, such as those man-

aged by Alibaba Cloud’s MaxCompute system [71], each stage functions within a

high-dimensional parameter space, handling thousands of parallel instances. Each

instance requires specific resource allocations across a multitude of machines. This

scenario constitutes a Multi-Objective Resource Optimization (MORO) problem,

where multiple performance goals, including stage latency and cost, are considered

simultaneously. Aimed at minimizing these stage-level objectives concurrently, our

approach seeks to achieve Pareto optimality in MORO while enhancing efficiency

for cloud usage. The main contributions of this approach are detailed in Chapter 5.

System design and our approach. (Section 5.1 and 5.2) We augmented the

MaxCompute system with a resource optimizer tailored for each stage. The core

design principle involves segmenting the MORO problem into a series of more man-

ageable sub-problems. Each sub-problem is strategically tackled by two specialized

modules: the Intelligent Placement Advisor (IPA) and the Resource Assignment

Advisor (RAA). The IPA module is engineered to allocate instances to specific ma-

chines effectively, whereas the RAA module is focused on fine-tuning the resource

allocations for each instance to optimize the balance between stage latency and cost.

To address the MORO problem under stringent time constraints, we developed

a two-step approach, each corresponding to one of the extended modules. In Step

1, the IPA aims to minimize stage latency by optimally allocating instances to
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machines, considering factors such as machine capacities and individual instance

latencies. Step 2 involves the RAA, which refines the resources assigned to each

instance on a designated machine to achieve optimal outcomes in stage latency,

cost, and other relevant objectives. The detailed formulations of this two-step ap-

proach are explored in Section 5.2. This thesis primarily concentrates on the MOO

strategies employed in Step 2 (RAA), which involves intricate fine-tuning of resource

parameters across multiple objectives.

Resource Assignment Advisor. (Section 5.3) We introduce a hierarchical

MOO approach designed to fine-tune the resources allocated to each instance, with

the aim of reducing stage latency, cost, and other objectives. This method effectively

decomposes the complex stage-level MOO problem into multiple, parallel instance-

level MOO problems. From these, it efficiently synthesizes stage-level MOO solutions

that are derived from the solutions at the instance level. Furthermore, our approach

is proven to achieve Pareto optimality at the stage level.

Experimental evaluation. (Section 5.4) Utilizing production workloads com-

prising 0.6 million jobs and 1.9 million stages, alongside a simulator of the enhanced

MaxCompute environment, our evaluation yields promising results: 1) Relative to

the default MaxCompute settings, our approach significantly improves performance,

achieving latency reductions between 36% and 80% and cost savings from 29% to

75%, all while maintaining solving times between 0.02 to 0.24 seconds. 2) When

compared to existing MOO methods, our approach consistently delivers solutions

for all workloads within 0.24 seconds. In contrast, existing MOO methods often

fail to generate feasible solutions for some queries within a generous 60-second time-

frame. Furthermore, our method achieves a reduction in stage latency by 4-77% and

a decrease in stage cost by up to 48% relative to these methods. 3) Moreover, our

approach demonstrates adaptive resource allocation capabilities, assigning increased

resources to longer-running jobs in comparison to MaxCompute’s default settings.

1.2.3 Query-level Optimizer

We have developed a novel MOO algorithm aimed at achieving Pareto optimality

across entire queries, facilitated by finer-granularity control over parameters. In
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complex big data systems like Spark [109], parameter tuning is intricate due to

the parameter settings: some parameters can be independently adjusted for each

query stage, while others are global, affecting all stages and thus creating a high-

dimensional parameter space with complex constraints. Specifically, global param-

eters are set at compile time, dictating behaviors such as resource allocation during

query execution, and cannot be modified during runtime, unlike other parameters

that are adjustable during runtime. Our primary contributions, designed to address

these challenges, are outlined as follows:

Hybrid compile-time/runtime optimization overview. (Section 6.1) We

introduce a hybrid optimization strategy that combines compile-time and runtime

approaches to effectively manage the diversity and complex control of parameters

in Spark. At compile time, optimal configurations for shared parameters are deter-

mined using estimated statistics, with a careful consideration of their interdepen-

dencies with other parameters. Subsequently, during runtime, adjustments to other

parameters are made for each query stage, based on real-time statistics and the

specific structure of the query. This thesis specifically emphasizes the MOO strate-

gies applied during the compile-time phase, focusing on addressing the challenges of

parameter diversity and achieving fine-grained control.

Compile-time optimization. (Section 6.2 and 6.3) We propose a novel ap-

proach, termed Hierarchical MOO with Constraints (HMOOC), aimed at reducing

query-level latency and cost. This method systematically decomposes the over-

arching optimization problem within a large parameter space into smaller, more

manageable subproblems. Each subproblem is bound by the requirement to utilize

shared parameters, acknowledging their interdependence. To address these inter-

linked challenges, we develop techniques to generate a comprehensive set of candi-

date solutions. Additionally, we introduce various aggregation methods to efficiently

synthesize these candidates into global Pareto optimal solutions. A detailed theoret-

ical analysis of our proposed approach, including proofs and a complexity analysis,

is presented in Section 6.3.

Experimental evaluation (Section 6.4) We conducted optimization analyses

using datasets from the TPC-H and TPC-DS benchmarks, focusing on the following
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evaluations: 1) We assessed the performance of three proposed aggregation methods,

all of which are designed to ensure the return of at least a subset of query-level opti-

mal solutions, based on sub-query level optimal inputs. The most effective method

achieved the optimal configuration in only 0.5-0.8 seconds for all TPC-H and TPC-

DS queries. 2) When compared to existing MOO methods, our compile-time MOO

algorithm (HMOOC), tailored for fine-grained parameter tuning, demonstrated im-

provements in hypervolume (measuring the space dominated by the Pareto front) by

4.7%-54.1% and achieved reductions in solving time by 81%-98.3%. 3) In compari-

son to query-level tuning, which applies uniform configurations across all sub-queries

without finer-grained adjustments, our approach significantly outperformed in both

hypervolume (improving from 87% to 93%) and solving time (reducing from an

average of over 14 seconds to just 0.8 seconds).

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 introduces state-of-the-art MOO ap-

proaches and related works on parameter tuning and resource optimization in big

data systems. Chapter 3 provides a general definition of the MOO problem in big

data systems and an overview of the corresponding system. In Chapter 4, we present

a benchmark study of MOO, including existing solvers and MOO algorithms. Chap-

ters 5 and 6 develop MOO algorithms for the cloud optimizer in two popular big

data systems: MaxCompute [71] and Spark [109]. Finally, Chapter 7 summarizes

the thesis and discusses future work.
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CHAPTER 2

Basics and Related Work

This chapter introduces the Multi-Objective Optimization (MOO) problem by sur-

veying existing MOO algorithms and discussing various performance indicators.

Additionally, it reviews state-of-the-art research related to parameter tuning and

resource optimization in cloud-based data analytics.

2.1 Multi-Objective Optimization (MOO)

2.1.1 Definitions

The general multi-objective optimization (MOO) problem could be defined as fol-

lows:

Definition 2.1.1. General Multi-Objective Optimization (MOO) problem.

argmin
x

F (x) = [F1(x), ..., Fk(x)] (2.1)

s.t.

gl(x) ≤ 0, l ∈ 1, 2, ...,m

he(x) = 0, e ∈ 1, 2, ..., n

x ∈ Rd

where k is the number of objectives, m is the number of inequality constraints, and

n is the number of equality constraints. x is the decision variable with d dimensions.
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Figure 2.1: Example of MOO definitions

Usually, the objectives in MOO compete with each other, leading to trade-

offs among different objectives. Consequently, unlike single-objective optimization,

which yields a single optimal solution, MOO returns a set of solutions.

Definition 2.1.2. Pareto domination. A point F (x∗) Pareto-dominates another

point F (x) iff ∀i ∈ [1, k], Fi(x
∗) ≤ Fi(x) and ∃j ∈ [1, k], Fj(x

∗) < Fj(x), where

x,x∗ ∈ Rd.

Definition 2.1.3. Pareto optimal. A point F (x∗) is Pareto optimal iff there does

not exist another point that Pareto-dominates it.

Definition 2.1.4. Pareto set (frontier). The Pareto set (frontier) P includes

all the Pareto optimal solutions in the objective space and it is the solution to the

MOO problem.

Definition 2.1.5. Utopia point. A point U is Utopia iff for each i = 1, 2, . . . , k,

Ui = minimum
x

{Fi(x)|x ∈ Rd, Fi(x) ∈ P}.

Definition 2.1.6. Nadir point. A point N is Nadir iff for each i = 1, 2, . . . , k,

Ni = maximum
x

{Fi(x)|x ∈ Rd, Fi(x) ∈ P}.

Utopia and Nadir points do not exist in the objective space; rather, they are vir-

tual constructs used to bound the objective space formed by all the Pareto solutions

P .

Figure 2.1 illustrates the aforementioned definitions with two competing objec-

tives, F1 and F2. All circle points represent solutions in the objective space, where

the yellow points are dominated by the blue points. The blue points are Pareto
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optimal and form the Pareto frontier P , as they cannot be dominated by any other

points. The Utopia (green squared point) and Nadir (red squared point) points, U

and N respectively, are derived from the Pareto frontier (blue points), representing

the minimum and maximum values of each objective.

2.1.2 MOO Algorithms

This section reviews state-of-the-art works on MOO algorithms, categorized into

preference-based algorithms, evolutionary algorithms, Multi-Objective Bayesian Op-

timization (MOBO) algorithms, and other existing MOO algorithms.

Preference-based Algorithms. Preference-based algorithms convert a MOO

problem into a single-objective optimization by specifying preferences for different

objectives. These preferences can be determined based on user preference or the

goal of covering the entire Pareto front.

The Weighted Sum (WS) approach transforms a MOO problem into a single-

objective optimization problem by assigning weights to different objective functions.

While it is easy to implement, it often fails to provide good coverage over the Pareto

front [19, 69].

The ϵ-constraint method [31] transforms a MOO problem into a constrained

single-objective optimization problem by optimizing a single objective (e.g., the i-

th objective) while treating the other objectives as constraints with user-defined

values ϵj, j = 1, . . . , k, j ̸= i. However, the optimality of this method depends on

the choices of these user-defined values, making the hyperparameters difficult to

determine.

Similarly, the Normalized Normal Constraint (NNC) method [74] transforms a

MOO problem into a series of constrained single-objective optimization problems

by forming a set of evenly distributed index points. A post-processing filter is then

required to eliminate non-Pareto solutions. However, the number of Pareto solutions

is limited to the number of index points, and the method can face time efficiency

issues.

Overall, the preference-based MOO algorithms discussed above transform the

MOO problem into either unconstrained or constrained single-objective optimiza-
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tion problems. However, their performance may be affected by issues such as low

efficiency, poor coverage, or suboptimal hyperparameter selection.

Evolutionary Algorithms. Evolutionary algorithms are population-based meth-

ods inspired by natural evolution. Starting with a randomly initialized population

of solutions, these algorithms iteratively refine potential solutions using genetic op-

erations such as selection, crossover, and mutation. They can be highly efficient

since they do not require gradient information.

A popular multi-objective evolutionary algorithm, the Nondominated Sorting

Genetic Algorithm-II (NSGA-II) [22], aims to generate a set of Pareto solutions

by using dominance rank while maintaining diversity through crowding distance

among individuals. It is a randomized method designed to return an approximation

of the Pareto set. NSGA-III [21] improves upon NSGA-II by enhancing diversity

maintenance through the use of well-distributed reference points on a hyperplane,

replacing the crowding distance operator. The offspring population is then selected

based on proximity to these reference points.

MOEA/D [111] decomposes a general MOO problem into multiple scalar op-

timization subproblems, each associated with a uniform-spread weight vector to

convert the approximation of the Pareto frontier into a single-objective optimiza-

tion problem, such as through the Weighted Sum approach. These subproblems can

be optimized in parallel. Leveraging the idea that information from neighboring

weight vectors can aid in updating neighboring solutions, MOEA/D reduces the

complexity of generating new solutions by utilizing information from these adjacent

weight vectors.

SPEA2 [120] addresses the MOO problem by evaluating individuals based on

domination and maintaining diversity through the density of individuals. It assigns

fitness values to individuals using a domination count, where a count of 0 indicates

that an individual is non-dominated by others.

Although evolutionary algorithms can quickly provide results, they only yield an

approximation of the Pareto frontier and their performance is sensitive to hyperpa-

rameters related to genetic operations, such as the population size and the number

of iterations.
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Multi-Objective Bayesian Optimization (MOBO) Algorithms. Bayesian

Optimization (BO) can be extended to solve MOO problems. Traditional BO opti-

mizes expensive-to-evaluate black-box functions by using a surrogate model to ap-

proximate the black-box function and an acquisition function to determine the next

evaluation point [104]. In the context of MOO, each objective function is modeled

with its own surrogate model, and the acquisition function is designed to search for

new points that are likely to be Pareto optimal. Sequential exploration and batch

exploration are two methods for exploring new points.

Sequential exploration. In MOBO with sequential selection, ParEGO [47] ad-

dresses MOO by transforming multiple objectives into a single objective in each

iteration. It then maximizes the expected improvement (EI) using an evolutionary

algorithm. PESMO [36] selects the next point by maximizing the expected reduc-

tion in the entropy of the posterior distribution over the Pareto set in each iteration.

The Pareto set sample is obtained using grid search or NSGA-II. However, optimiz-

ing the acquisition function is computationally expensive, with a complexity that

scales cubically with the sample size of the Pareto set, and the performance that

depends on the number of Monte Carlo samples used. The UseMO [9] framework

is designed to approximate the true Pareto frontier of MOO problems with black-

box objectives using MOBO. It solves the MOO problem with multiple acquisition

functions, selecting new points based on the maximum volume of the uncertainty

hyperrectangle formed by the lower and upper confidence bounds of the surrogate

models for multiple objectives. However, it primarily integrates the existing MOO

solver, NSGA-II, into the BO process to determine the next point to explore.

Batch exploration. Parallel Expected Hypervolume Improvement (qEHVI) [20]

designs its acquisition function to maximize the hypervolume improvement (HVI)

between one or multiple candidate points and a set of reference points, which serve

a similar role to Nadir points. The newly explored points are considered potential

Pareto optimal solutions. Although qEHVI searches multiple points simultaneously,

it suffers from high computational complexity, with the HVI calculation being ex-

ponential in the number of candidates. Diversity-Guided Efficient Multi-Objective

Optimization (DGEMO) [48] explores multiple points while considering diversity.
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It divides the performance space into sub-regions and, within each previously un-

explored sub-region, greedily selects one point that provides the maximum hyper-

volume improvement with respect to the global Pareto frontier. Lin et al. [57]

proposes a method for learning the Pareto set in MOBO that incorporates prefer-

ences. In each iteration, the method selects a small number of points to maximize

the hypervolume improvement relative to the points already evaluated. However,

the optimality of this approach may be compromised by the potential limitations of

the learned model’s performance.

A major limitation of the BO-based approach is the extended time required to

produce a satisfactory Pareto set. This inefficiency poses challenges in meeting the

stringent time constraints of cloud optimization.

Other state-of-the-art works. LaMOO [116] is a multi-objective optimizer that

demonstrates superior sample efficiency empirically. The approach consists of two

main steps: first, it learns a model from the observed samples to partition the search

space. Then, for the promising regions likely containing a subset of Pareto solutions,

it applies state-of-the-art MOO methods for exploration. While LaMOO measures

efficiency based on the number of samples rather than exact time cost, it presents

empirical results without providing a theoretical analysis of optimality for general

MOO problems.

The Progressive Frontier (PF) approach [86] aims to incrementally transform

the MOO problem into a series of constrained optimization (CO) problems (i.e.,

single-objective optimization problems), each of which can be solved individually. It

computes a Pareto optimal set of configurations to reveal trade-offs among different

objectives, recommends new configurations that best explore these trade-offs within

a few seconds. However, its efficiency is limited in high-dimensional parameter

spaces.

A cloud optimizer based on MOO demands both optimality and high efficiency

for cloud use. In real scenarios, where hundreds or thousands of parameters need to

be optimized, state-of-the-art MOO methods suffer from low efficiency.
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2.1.3 Performance Indicators

Unlike single-objective optimization, MOO returns a set of solutions called the

Pareto frontier. Visualization tools facilitate the comparison of different Pareto

fronts in bi-objective problems. However, for optimization problems with more than

two objectives, quantification of the Pareto front is more suitable, as visualizing

higher-dimensional Pareto fronts is challenging [41].

The performance metrics of a Pareto frontier can be divided into four categories

[41] [4]:

1. Cardinality : the number of non-dominated solutions generated by a MOO

algorithm.

2. Convergence: the approaching to the true Pareto frontier.

3. Uniformity : the evenness of a Pareto frontier approximation.

4. Distribution: the distribution and coverage of a Pareto frontier approximation.

Different performance metrics exhibit various properties. For Cardinality, in-

tuitively, a higher cardinality indicates better performance. However, it fails to

represent diverse user preferences, particularly when non-dominated solutions are

clustered in a small objective region. Additionally, it does not convey the quality of

Pareto solutions when compared to other Pareto frontiers. For Convergence, most

metrics require knowledge of the true Pareto front for evaluation. However, in prac-

tice, evaluating the true Pareto frontier is often not feasible. Uniformity measures

the diversity of a Pareto frontier, with evenly distributed Pareto solutions indicating

the capability to meet various user preferences. However, it does not capture how

well a Pareto frontier performs in the objective space compared to another Pareto

frontier. Distribution indicates how Pareto solutions are spread in the objective

space, capturing dominance information when compared to other Pareto frontiers.

Our optimization problem requires a performance indicator that includes prop-

erties of both Uniformity and Distribution for the following reasons. First, we do

not have knowledge of the true Pareto frontier. Additionally, when comparing dif-

ferent MOO baselines, it is essential to ensure both the quality and coverage of the
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Figure 2.2: Examples of performance indicators (The hypervolume is highlighted in red,
while the uncertainty space corresponds to the white region enclosed by the four blue
points.)

Pareto solutions. This means that no other solutions should perform better in all

objectives, and the solutions should cover a diverse range of the objective space to

meet various user preferences.

Two example performance indicators suitable for our MOO problem are as fol-

lows.

Hypervolume Indicator. The Hypervolume Indicator (HV) [41] [4] measures the

volume of the objective space dominated by the Pareto front. As illustrated in Figure

2.2, the red-shaded area represents the HV for the bi-objective case, defined by a

reference point (i.e., N in Figure 2.2) and the non-dominated solutions (specifically,

f 1, f 2, f 3, and f 4). The larger the HV, the better the Pareto frontier P is, as it is

closer to the Utopia point U and covers a larger portion of the objective space.

Uncertainty space. The uncertainty space, as discussed in [86], serves as an indica-

tor of regions with potential non-dominated solutions that merit further exploration.

As illustrated in Figure 2.2, the white space representing uncertainty space corre-

sponds to the non-dominated solutions, which can be explored to uncover additional

potential Pareto optimal solutions. In Figure 2.2, the green-shaded area, defined by

the Utopia point and the Pareto frontier, denotes a region where no non-dominated

solutions are currently present. If a non-dominated solution f ′ were to exist within

this green-shaded area, it would dominate all the current Pareto optimal solutions,

thereby invalidating their Pareto optimality. Consequently, the uncertainty space is

defined by excluding the regions with no non-dominated solutions and subtracting
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the HV from the hyper-rectangle formed by the Utopia and reference points. The

smaller the uncertainty space, the better the Pareto frontier.

In the experiments discussed in later chapters, we use HV for two key reasons.

First, both HV and uncertainty space utilize the dominated space defined by the

Pareto frontier and a reference point. Second, since the true Pareto frontier is

unknown in our MOO problem and only an approximation of the Pareto frontier is

available, the green-shaded area cannot be safely discarded because a true Pareto

solution may exist within this region. Consequently, only the dominated space can

be discarded with certainty, reducing the uncertainty space to the entire objective

space excluding HV. Thus, both methods function similarly in computing HV within

the entire objective space.

2.1.4 MOO for SQL Queries

MOO for SQL queries searches for optimal Pareto optimal query plans that achieve

optimal trade-off among competing objectives [29, 34, 35, 94, 95, 96, 98, 99, 100].

Given a query modeled as a set of tables to be joined, with the query plan spec-

ifying the join order and the operator implementation used for each scan and join,

multi-objective query optimization is addressed in [94, 95, 96]. An approximation

scheme is proposed to guarantee near-optimal plans by minimizing both execution

time and monetary fees [94]. This scheme employs an approximation precision that

is iteratively refined until a near-optimal plan is identified. An incremental algorithm

is developed to iteratively form the Pareto front through cost-bounded optimization

[95]. Plans generated in different iterations are retained and reconsidered for the

same query to avoid redundant computation. They further propose a fast algo-

rithm to approximate the Pareto plan set using a multi-objective version of the hill

climbing method, which improves upon a random query plan [96]. Similar to [95],

a cache of Pareto-optimal plans is maintained to store potentially useful interme-

diate results discovered across different iterations. A weighted sum model (WSM)

is proposed to select the optimal query execution plan by optimizing query execu-

tion time, monetary cost, and energy consumption [34]. It introduces a normalized

weighted sum algorithm to combine weights for both users and the environment.
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However, it only considers the optimal choice from a set of 20 query plans. An ex-

tended multi-objective query optimizer is proposed for Spark SQL [29]. The Pareto

front is formed by the fastest plans under different fixed computing instances and

numbers of Spark executors.

Multi-objective query re-optimization is considered in [98, 99, 100]. Based on the

optimal query plan obtained from the WSM [34], ML-based models are applied to

determine whether to re-optimize a stage during query execution [98]. These models

use the differences in selectivities of a stage before and after execution as inputs.

Q-learning is utilized to determine the allocation of machines to each operator by

considering execution time and monetary cost in its reward function [99]. The reward

is further diminished if the execution time and monetary cost violate the Service

Level Agreement (SLA) [100].

MOO for workflow scheduling [35] assigns specific operators to machines (e.g.,

containers) in the cloud while simultaneously optimizing both time and cost. This

2D optimization problem is addressed by first optimizing a single-objective problem

under each container limit (e.g., 20 containers). Pareto solutions are then formed

by combining solutions from all container limits, with dominated solutions being

filtered out.

These works address a MOO problem distinct from ours, which focuses on tuning

parameters of big data systems to optimize multiple performance goals, including

latency, monetary cost, and other objectives.

2.2 Parameter tuning of DBMS and big data sys-

tems

Parameter tuning is crucial in database management systems (DBMS) and big data

systems, as performance metrics such as latency heavily depend on parameter con-

figurations. This area has garnered significant interest and has become an active

research field. The following section discusses existing work of parameter tuning in

DBMS and big data systems.

Tuning in DBMS. Recent work applies machine learning (ML) techniques to
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DBMS tuning, where tuning decisions are made based either on feedback from trial

runs or on learning-based models, such as Gaussian Processes (GP) and Reinforce-

ment Learning (RL) models.

Trial runs. UDO [102] aims to tune the parameters of database systems for spe-

cific workloads within a given time limit. It categorizes parameters into ’heavy’ and

’light’ types, where heavy parameters are costly to modify and light parameters are

less expensive to adjust. The method proposes using a RL-based approach to first

optimize and recommend the heavy parameters in the outer loop, followed by the

optimization of light parameters based on the recommendations for heavy parame-

ters. The evaluation is conducted based on feedback from trial runs. However, UDO

is not specifically designed to address MOO.

GP-based. ONLINETUNE [114] addresses the online database tuning problem

by considering both the dynamic nature of the context and the safety of the recom-

mended configurations. Dynamicity refers to the tuner’s ability to adapt to changing

contexts, such as varying workloads, while safety of configurations ensures that the

recommendations do not degrade the database’s performance. To address dynamic-

ity, they propose incorporating the context features along with configurations into

the GP model. To address safety of configurations, domain knowledge and the con-

fidence bounds of the contextual GP are utilized to exclude unsafe configurations.

OtterTune [97] is designed to optimize DBMS configurations for workloads by uti-

lizing historical data and modeling with GPs to recommend optimal configurations.

To address the issue of having a large number of parameters, OtterTune identifies

the most important knobs that significantly impact the DBMS’s performance and

determines their importance order using the Lasso path algorithm [33]. OtterTune

also leverages past experience by employing a workload mapping strategy and then

uses GPs to recommend configurations for the DBMS. ResTune [113] aims to au-

tomatically find the optimal configurations for a database management system by

optimizing resource utilization while meeting throughput and latency requirements.

The latency and throughput constraints are modeled using GPs, and the BO frame-

work is employed to recommend promising feasible configurations.

RL-based. QTune [53] proposes a query-aware database tuning system that em-
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ploys a deep reinforcement learning model for each query. It uses the feature vector

of the given query as input to recommend optimal knob values. QTune supports

query-level, workload-level, and cluster-level tuning, offering optimization choices

for query latency, throughput, or both. CDBTune [110] utilizes deep reinforcement

learning to determine the optimal configurations for cloud databases. It relies on a

reward function that combines latency and throughput with weighted sums, where

the weights are adjusted according to user preferences. The optimal configuration is

recommended using the deep deterministic policy gradient method to handle high-

dimensional state spaces.

UniTune [112] proposes a unified framework to coordinate existing ML-based

tuning agents for DBMS, including both BO-based and RL-based agents. To avoid

inaccurate modeling caused by environmental changes after tuning a component,

they encapsulate environmental changes as context in the tuning models. For ex-

ample, they augment the context in the input of the surrogate model used by the

BO-based agent. A reinforcement learning algorithm is used to allocate the tuning

budget (e.g., time) permitted for tuning a DBMS.

Tuning in big data systems. Techniques used in state-of-the-art works for tun-

ing big data systems primarily fall into two categories: search-based methods and

learning-based methods.

Search-based. Bilal et al. [12] introduce a framework for the automatic param-

eter tuning of stream processing systems, with a focus on Apache Storm. The

performance benchmark is a discontinuous objective that includes both latency and

throughput. Unlike our approach, which optimizes multiple objectives simultane-

ously, their method selects candidate configurations based on solutions that achieve

at least a minimum level of throughput. A gray-box heuristic approach searches

for optimal parameter values by using user-provided hints, which indicate whether

changes in parameter values improve latency and throughput. However, such hints

are not available in our problem.

BestConfig [119] searches for the optimal system configuration for a given work-

load, aiming to optimize a scalar performance metric that may include one or mul-

tiple performance goals. They combine the divide-and-diverge sampling method
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with the recursive bound-and-search algorithm to address the two subproblems of

sampling and performance optimization. The sampling method diverges samples by

representing each interval of every parameter exactly once within a high-dimensional

configuration space, aiming for broad coverage with a limited number of samples.

The bound-and-search algorithm then recursively searches for the best configuration

within a bounded space defined by these samples.

ML-based. ML-based methods use GP or other learned models to identify more

promising configurations.

Tuneful [26] is designed to tune high-dimensional Spark configurations for various

data analytical workloads. It aims to achieve results comparable to state-of-the-art

tuners while requiring significantly fewer executions. Based on the observation that

only a small subset of parameters significantly impacts overall performance, Tuneful

focuses on tuning only the important parameters using GP models. Additionally, a

similarity analyzer is designed to reuse existing models for new, similar workloads

based on their similarities, which greatly reduces tuning costs over time.

LOCAT [108] proposes a BO-based approach to automatically tune Spark SQL

applications, with the goal of optimizing execution time. To avoid the high overhead

of collecting training samples, they exclude configuration-insensitive queries during

the tuning process. Moreover, to reduce optimization time by decreasing the number

of tuning parameters, they eliminate unimportant parameters using the Spearman

correlation coefficient approach and further identify key parameters through Kernel

principal component analysis. Finally, to adapt the tuning process to changes in

input data size, they represent each configuration in the surrogate model using both

configuration parameters and input data size. They then optimize these configura-

tions within the BO framework.

Recent work [55] proposes an online tuning framework for periodic Spark jobs,

supporting multiple tuning goals and constraints. Rather than addressing MOO di-

rectly, multiple tuning goals are represented using a single formula with constraints.

Preference weights are assigned to runtime and resource functions, and constraints

set upper bounds on runtime and resource usage. The optimization is then per-

formed using the BO framework. The GP model serves as the surrogate model
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and incorporates data size to support dynamic workloads. Additionally, to enhance

accuracy, the tuning history from previous similar tasks is integrated into the surro-

gate model. To handle the high-dimensional parameter space, a safe configuration

acquisition method is designed to explore a subspace of parameters.

RelM [51] addresses memory management tuning for workloads by analyzing and

utilizing the interactions between important memory configuration options. The

goal is to recommend a memory pool setup that prioritizes safety, high task con-

currency, and cache hit ratio, while minimizing garbage collection overheads. This

analysis is used to refine the GP surrogate model in BO to identify safe, efficient,

and low-overhead configurations.

ClassyTune [118] is designed to automatically tune configurations for cloud sys-

tems. Instead of modeling system performance directly, ClassyTune uses a classifi-

cation model to identify the optimal performance configuration. The classification

model predicts whether one configuration outperforms another, generating a list of

winning configurations to identify promising subspaces. ClassyTune then samples

these promising subspaces and selects the best-performing configuration based on

the evaluation of these samples. It is not applicable to our problem, as classification

methods cannot be easily extend to MOO settings.

LITE [56] is proposed for auto-tuning Spark configurations. It employs a code

learning framework that extracts stage-level code and DAG scheduler information as

training features, enabling it to use these code features to learn complex correlations

between application performance and knob values. Additionally, the online model

identifies knob regions using the mean value of a knob as the center and the standard

deviation to determine the span. This approach helps to reduce tuning overhead

by randomly sampling a small number of candidates within the promising, smaller

search space. However, LITE is not practical for cloud providers because user code

is not available due to privacy constraints.

These solutions are not suitable for our MOO problem, as they focus on a scalar

performance goal and do not solve the complex control of fine-grained parameters.
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2.3 Resource optimization in cloud data analytics

Resource optimization involves determining and optimizing resource configurations

for queries, which is crucial in cloud data analytics because the number of resources

directly impacts performance (e.g., latency) and monetary cost due to the pay-as-

you-go cloud pricing strategy. Based on resource optimization strategies, state-of-

the-art approaches can be categorized into three directions: resource saving, optimal

resource estimation, and optimal resource configuration tuning.

Resource Saving. The main concept is to prevent resource over-allocation for

jobs.

Bag et al. [7] propose a plan-aware resource allocation approach that releases

excess resources (i.e., containers) by estimating the peak resource usage for each

stage in the remaining job execution. While this method saves resources without

impacting job latency by leveraging the complex DAG structures of stages, it does

not optimize latency and cost simultaneously.

Observing that default resource allocation is often over-allocated in SCOPE,

AutoToken [83] introduces a peak resource allocation strategy to conserve resources

for recurring jobs. It develops a model that learns the relationship between required

resource usage and job characteristics from past recurring jobs, and then predicts the

appropriate resource counts for incoming jobs. However, it only conserves resources

without achieving optimal resource allocation for each job.

Optimal Resource Estimation. Recent work proposes modeling the relationship

between the number of resources and performance (e.g., job execution time) using

historical data, and then estimating the optimal amount of resources on demand.

JUGGLER [1] is designed to cache appropriate datasets (e.g., RDDs in Spark)

in memory and recommend an optimal cluster configuration (i.e., number of ma-

chines) to optimize execution time and cost (i.e., number of machines × time) for

big data applications. It determines the datasets based on the maximum reduction

in computational overhead achieved through caching. Using the size of the cached

datasets, JUGGLER predicts the required number of machines based on the mem-

ory available for caching per machine. Finally, it selects the most suitable dataset
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based on predefined deadlines or cost constraints.

To determine the optimal instance configuration for query processing in the

cloud, recent work [52] focuses on optimizing workload cost in dollars under runtime

constraints, rather than minimizing running time. They propose an intuitive model

with six variables (e.g., CPU hours, scanned data) to represent a query workload.

For a given configuration of this model, they estimate workload cost and execution

time for different hardware instances and generate a corresponding Pareto frontier,

where each Pareto point represents one instance. After estimating all instances, they

recommend the instance with the optimal workload cost or execution time as the

best hardware configuration. However, this paper focuses solely on recommending

the best instance without addressing fine-grained parameter control. Additionally,

the proposed model is quite simple, using only six variables, whereas our MOO

problem involves tuning thousands of resource parameters.

ReLocag [37] proposes a predictor to allocate a near-optimal number of CPU

cores for data-parallel jobs. The inputs to the predictor include the number of CPU

cores and contextual information about the jobs, while the output is the predicted

job completion time. To train the prediction model effectively, ReLocag introduces

a heuristic sampling method that selects training samples in a way that avoids

both underestimations and overestimations of the number of CPU cores. Finally,

the near-optimal number of CPU cores is determined by selecting the configuration

that corresponds to the smallest job completion time, based on inputs of various

CPU core counts. However, it addresses a single-objective optimization problem

and focuses solely on CPU cores, which is not applicable to our scenario as we need

to optimize multiple objectives across a broader range of resource parameters.

WiSeDB [67] proposes generating cost-aware workload schedules using decision-

tree models. These schedules determine the number of Virtual Machines (VMs) to

provision, their placement for queries, and the order of query execution within the

workload. Cost functions are defined by the price of renting VMs, performance goals

(e.g., latency of a query template or workload), and penalties incurred for failing

to meet these performance goals. A decision tree model is trained using optimal

schedules derived from the minimum cost paths in the schedule graph. Given a
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workload as input, the decision tree estimates the performance and cost of executing

the workload. The model then recommends the schedule that best balances the

performance goal and cost. While WiSeDB explores the trade-off between latency

and cost for queries in a workload, it does not support finer control of resources

within a query.

Morpheus [39] codifies implicit user expectations as Service Level Objectives

(SLOs) and enforces these SLOs using scheduling techniques, focusing on job dead-

lines or completion times. Morpheus aims to economically allocate resources (i.e.,

containers) for job execution to meet the SLOs. It provides a job model that es-

timates resource usage at each time step based on historical data. However, its

optimization of container allocation uses system utilization as the cost function,

which is not suitable for optimizing multiple objectives simultaneously.

Optimal Resource Configuration Tuning. Resource configurations encompass

various elements such as resource instances (e.g., VMs, machines, containers), re-

source managers in database systems, and runtime parameters related to resources

(e.g., partition count of a stage). Achieving optimal resource configurations has

garnered significant attention.

Accordia [61] is designed for recurring big data analytics jobs and aims to find the

optimal cloud configuration for VM instances while minimizing total execution cost

and meeting job completion time requirements. It extends the Gaussian-Process

(UCB) algorithm for online cloud configuration selection, but it does not support

MOO.

CLEO [85] aims to integrate learned latency models of operators within the query

optimizer (i.e., a Cascades optimizer) to minimize latency at each stage by tuning

the partition count. However, it addresses a single-objective optimization problem

rather than MOO. Furthermore, it focuses solely on tuning the partition count,

without considering the hundreds of parameters and other resource optimization

choices.

Perforator [80] addresses the resource optimization problem by identifying the

best hardware resources (e.g., VMs) for a given execution plan. Its goal is to either

minimize the execution time of queries or the monetary cost. This single-objective
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optimization problem is addressed by exhaustively exploring the search space, which

includes cluster capacity, available VM types, and predicted execution time from its

model. However, it does not address MOO and this exhaustive search approach is

not practically feasible for large parameter spaces.

Tempo [90] tunes configurations of the resource manager in multi-tenant database

systems, considering various Service-Level Objectives (SLOs), such as average job

response time under a given threshold and job throughput. It addresses a MOO

problem for a single SLO across multiple tenants by using a proxy model to transform

the constrained MOO into a constrained single-objective optimization problem, with

the goal of optimizing the SLO for all tenants. However, this approach does not

address complex fine-grained parameter control.

Li et al. [54] addresses resource optimization for parallel database systems

through an optimal data partitioning scheme among a set of machines. This par-

titioning scheme is modeled and optimized as a linear programming problem to

minimize workload execution time.

Pimpley et al. [76] [77] propose allocating an optimal number of containers to

a query based on runtime as the performance metric at the big data processing

platform SCOPE [14]. They train a global model for all incoming jobs to capture

the relationship between the number of containers and performance, which is ap-

proximated using an exponentially decaying curve. The gradient descent method

is then applied to optimize the resource allocation. AutoExecutor [84] employs a

similar approach to model the resource-performance relationship for Spark. It ex-

tends Spark to allocate resources at the beginning of a query execution, making the

resource allocation transparent to users. However, their approach focuses solely on

single-objective optimization.

Overall, this line of work focuses on a small set of resource-related parameters,

whereas our cloud optimizer deals with a large number of parameters.

2.4 Summary

This chapter surveys the state-of-the-art work on multi-objective optimization (MOO),

parameter tuning, and resource optimization in big data systems. However, none of
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these approaches address the specific challenges of our problem, which include mul-

tiple competing performance goals and budgetary constraints, a high-dimensional

parameter space with complex control, and the need for high efficiency in cloud

environments (e.g., 1-2 seconds). This thesis will propose novel MOO approaches

for Alibaba Cloud and Spark, addressing the technical challenges outlined above.
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CHAPTER 3

System Overview and Problem Statement

This chapter presents the system overview of the Cloud Optimizer, detailing the job

description of an incoming analytical task and the system design based on Multi-

Objective Optimization (MOO). It also introduces a general problem statement of

MOO within the Cloud Optimizer framework and provides a formal representation.

3.1 System Overview

3.1.1 Job Description

A cloud analytical task can be modeled as a dataflow program, essentially a Directed

Acyclic Graph (DAG) of data collections flowing between operations. Figure 3.1

illustrates an example of an input request for an analytical task, using SQL query Q1

from the TPCH benchmark [92]. Figure 3.1(a) presents the SQL script, while Figures

3.1(b) and 3.1(c) depict the corresponding Logical Query Plan (LQP) and Physical

Query Plan (PQP) after parsing, analysis, and optimization of the submitted SQL

query. The LQP represents a DAG of logical operators, while the PQP represents

a DAG of physical operators after applying join algorithms in a LQP. The PQP is

further divided into a DAG of stages, where each stage is a DAG of operators with

operations such as shuffling or broadcasting serving as boundaries. Both the LQP

and PQP can be considered as the dataflow program denoted as a job. Similar to

the stage in PQP, we introduce a new notation, subQ, which denotes a group of



Chapter 3. System Overview and Problem Statement

2

SELECT 
l_returnflag, 
l_linestatus, 
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as 

sum_disc_price, 
sum(l_extendedprice * (1 - l_discount) * 

(1 + l_tax)) as sum_charge, 
avg(l_quantity) as avg_qty, 
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

FROM 
lineitem WHERE l_shipdate <= date 

'1998-12-01' - interval '90' day 
GROUP BY

l_returnflag, l_linestatus
ORDER BY    

l_returnflag, l_linestatus;
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Figure 3.1: An example of an analytical task of TPCH-Q1
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Figure 3.2: Job description

logical operators that correspond to a stage when the logical plan is translated to a

physical plan.

Figure 3.2 illustrates an example of a job with a PQP, where each stage itself

is composed of a DAG of operators. Dependencies exist between stages, indicating

that a child stage cannot start running until all of its parent stages finish. Within

each stage, computations are further broken down into tasks, which operate on

different data partitions. The number of partitions and their sizes are determined

by corresponding parameters of the big data systems. These tasks are executed

on executors, with the number of executors and the allocation of CPU cores and

memory size also being determined by parameters.

The control of parameters in big data systems is intricate, with varying behaviors
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observed even within stages and across different systems. For example, in Spark

[109], resource settings must be uniform across all stages, while factors such as

partition size and the number of partitions may differ between stages. Conversely,

in MaxCompute [71] within Alibaba Cloud, there is support for setting the number

of CPU cores and memory size for each data partition independently. In response to

these nuanced control behaviors, this thesis proposes optimization solutions tailored

to Spark and MaxCompute, as detailed in Chapters 5 and 6 respectively.

3.1.2 System Design

We assume that each analytical task comes with user-specified objectives that need

to be optimized during execution. In order to execute these analytical tasks effec-

tively, it is essential to instantiate parameters that govern system behaviors. These

parameters may include settings related to resource allocation (such as the number

of CPU cores and memory size), degree of parallelism, join strategies, compression

options, shuffling strategies, and more.

The configurations of cloud analytical tasks need to be quickly adapted when

objectives or loads change, imposing requirements for high efficiency. Building upon

our prior work [86], our system is designed with two asynchronous modules: a

model server providing objective predictions and a MOO procedure computing and

recommending optimal configurations within a few seconds. To avoid the time-

consuming modeling process of learned models, the model server is trained offline

whenever new training data becomes available. MOO is performed online, leveraging

the latest trained model to return objective predictions by taking configurations as

input.

Our system design offers two significant benefits. Firstly, our MOO module

is designed to work with multiple model types, including complex ones such as

Deep Neural Networks (DNNs), Gaussian Processes Regression (GPR), Multi-layer

Perceptron (MLP), as well as simple closed-form regression functions. This stands in

contrast to existing works like [97, 110], which are limited to specific model choices

(GPR or DNN). Our approach provides users with a more flexible way to implement

different models. Secondly, our system supports any MOO algorithm for analytical
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Figure 3.3: System design

tasks, catering to the diverse requirements of users. As a result, our system design

offers flexible choices for both model servers and MOO approaches, meeting the

varying demands of users.

Figure 3.3 illustrates the architecture of our Cloud Optimizer, which interfaces

with existing big data systems (like Spark [109] and MaxCompute [71]) as analyt-

ical engines. When a user submits a job, which is essentially a dataflow program

structured as a DAG, along with a set of objectives (F1, . . . , Fk), each stage of the

job can configure its parameter values (e.g., Θ1, Θ2, Θ3). Our Cloud Optimizer

is versatile and accommodates various objectives, including but not limited to la-

tency, monetary cost, and IO cost. Additionally, it offers flexibility for incorporating

additional objectives based on users’ specific requirements.

Our Cloud Optimizer operates on each job in the following manner: Upon receiv-

ing a submitted job along with multiple user-specified objectives, the MOO module

takes them as input. It employs MOO algorithms and solvers to produce a set of

Pareto solutions. These Pareto solutions are then processed by the recommendation

module, which selects the optimal configuration based on user preferences. This

configuration, designed to best explore all specified objectives, is subsequently ex-

ecuted on analytical engines such as MaxCompute and Spark. The model server

plays a crucial role in providing objective predictions during the optimization pro-

cess. These predictions are utilized by the MOO module to explore the configuration

space and compute Pareto optimal solutions. The model server is trained offline and

updated whenever new training data becomes available. It collects runtime data dur-

ing job execution, including query traces with query plans and operators, as well as
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machine-level traces such as machine system state. Separate predictive models are

employed for each objective.

Modeling choices. Although this thesis primarily focuses on MOO, it is important

to briefly discuss relevant modeling techniques, because they provide objective pre-

dictions during the optimization process. Our optimizer provides support for various

modeling options: Simple models where users can define customized models based

on domain knowledge, employing simple function shapes. For instance, cost can

be represented as resource usage (e.g., CPU cores), the monetary cost of resource

utilization (e.g., CPU cores multiplied by latency), or a weighted combination of

CPU-hour and IO cost [5]. Learned models, where existing research has applied

Machine Learning (ML) methods [68, 112], Reinforcement Learning (RL) methods

[112], or Gaussian Processes Regression (GPR) [114] to learn predictive models.

Chapter 5 and Chapter 6 will provide an overview of the model construction based

on a large number of parameters tailored to two specific big data systems.

3.2 Problem Statement of MOO

The MOO module within our Cloud Optimizer is responsible for handling the op-

timization problem and implementing various MOO approaches. We define the

problem statement for the general MOO problem within this module as follows:

Definition 3.2.1. General MOO problem in Big Data Systems

argmin
Θ

F (Θ) =


F1(Θ) = f1(Θ, α)

...

Fk(Θ) = fk(Θ, α)

 (3.1)

s.t. Θ ∈ Σ ⊆ Rd

where F1, . . . Fk denote k objectives to be optimized. f1, . . . fk represent the evalu-

ation functions used to obtain objective values. Θ denotes the configuration to be

optimized and α denotes the non-decision variables.

In our optimization problem, f1, . . . , fk functions could involve learned models
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or aggregations based on such models, with varying granularities of learned mod-

els. For instance, consider the optimization problem of a query (i.e., a job with a

DAG of stages) with objectives like query-level latency and query-level cost. When

using a coarse-grained learned model to predict the objective value of an analytical

task, where f1, . . . , fk represent objectives of a query, these predictions can be com-

puted directly with configurations during optimization. However, when employing

finer-grained models for better control over each stage, with each learned model pre-

dicting objective values of a stage, the overall query-level latency and cost must be

aggregated (e.g., using sum) from multiple stage-level latency and cost predictions.

Chapter 5 will expand the configurations and learned models for resource opti-

mization of practical workloads in Alibaba Cloud, aiming to achieve Pareto optimal

solutions for each stage. The configurations of each instance in a stage can vary, in-

cluding 1) CPU cores and 2) memory size of each instance. Thus, given m instances

within a stage, the total number of configurations (i.e., Θ) is 2 ×m, introducing a

high-dimensional parameter space since m could be in the thousands. Fine-grained

models are applied to predict instance-level latency and cost. The values of stage-

level objectives (i.e., F1, . . . , Fk) are aggregated from the instance-level values, where

the stage-level latency is the maximum latency among all instances, and the stage-

level cost is the sum of all instance-level costs within a stage, defining f1, . . . , fk.

The goal is to minimize the stage-level latency and cost.

Chapter 6 will address the MOO problem defined in Equation (3.1) with finer-

granularity control of Spark parameters, aiming to minimize the query-level latency

and cost at compile-time (i.e. with a DAG of subQs). Spark supports Adaptive

Query Execution (AQE) to enable re-optimization of a logical plan of a stage at

runtime with actual statistics. Some parameters can be tuned independently for

each query stage (i.e. θp), while others are shared across all stages (i.e. θc), in-

troducing a high-dimensional parameter space and complex constraints. Thus, the

configurations of different subQs could vary in θp and are subject to the constraint

of identical θc. Fine-grained models of each subQ are built to obtain the subQ-level

objective values, i.e., analytical latency and cost. The query-level objective values

(i.e., F1, . . . , Fk) are then aggregated from the subQ-level objective values with the
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constraint of identical θc, which defines f1, . . . , fk. The configurations of a query

(i.e., Θ) include the configurations of all subQs.

3.3 User Experience

During big data processing, users can specify performance goals, hard constraints

and optionally preferences to enhance system efficiency. Users input dataflows into

the Cloud Optimizer on cloud platforms, where they may set multiple, possibly com-

peting, performance objectives, such as latency and cost. Additionally, users define

hard constraints; for example, a job must complete within one day. Preferences

are specified optionally. For instance, while users generally seek a balance between

latency and cost, assigning equal weights [0.5,0.5] preferences might shift based on

the time of day. During peak hours, greater emphasis may be placed on reducing

latency, with weights adjusted to [0.7,0.3]. Conversely, during off-peak hours, cost

efficiency becomes the priority, with a weight distribution of [0.3,0.7].

Addressing MOO challenges within the Cloud Optimizer diverges significantly

from traditional approaches that employ fixed weights to transform these into a

single-objective optimization problem. Prior work [53, 110, 119] used fixed weights

to combine multiple objectives into a single objective (SO) and solved it to return

one solution, denoted as the SO-FW method. It is a special case of a classical MOO

algorithm, weighted sum (WS) [69], that repeatedly applies n weight vectors to

create a set of SO problems and returns a solution for each, denoted as the MO-WS

method. It is known from the theory of WS that trying different weights to create

SO problems is unlikely to return points that evenly cover the Pareto front unless

the objective functions have a very peculiar shape [69]. Empirically, MO-WS has

been reported with sparse coverage of the Pareto front in prior work [86]. Such

sparse coverage of the Pareto front leads to poor adaptability when the user shifts

preference (e.g., from favoring latency to favoring cost) because there are not enough

points on the Pareto front to capture the tradeoffs between the objectives.

For this reason, this thesis casts the optimization problem in multi-objective

optimization (MOO) framework [23, 69, 73, 74], which computes the Pareto front

properly to capture the tradeoffs and later allows us to recommend one that best
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matches the user preference.

3.4 Summary

Our Cloud Optimizer seamlessly integrates MOO with a model learning module to

dynamically recommend optimal configurations for analytical tasks within seconds.

Given that learned models are trained offline and the model server can continually

update models with new training data in the background, the efficiency of generating

Pareto solutions from MOO becomes a critical performance metric. Chapter 5 and

Chapter 6 will introduce novel MOO approaches tailored to their respective big data

systems.
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CHAPTER 4

Benchmark Study of Multi-Objective Opti-

mization

This chapter introduces a benchmarking analysis of existing MOO methods and

solvers, identifying their limitations, particularly in terms of efficiency and the qual-

ity of Pareto solutions, when applied to cloud optimization.

The optimization problem defined in Equation (3.1) is a Mixed Integer Non-

Linear Programming (MINLP) problem due to its non-linear objective functions and

mixed parameter types, including both continuous and integer variables. Especially,

the objective functions in our optimization problem are learned models, such as

Deep Neural Networks (DNN), Gaussian Process Regression (GPR), and Multi-layer

Perceptrons (MLP), which utilize non-linear functions. For example, the Rectified

Linear Unit (ReLU) is a non-linear activation function used in DNNs.

Solvers and Multi-Objective Optimization (MOO) algorithms are essential im-

plementation and theoretical tools for solving MINLP problems with multiple objec-

tives. Theoretically, an MOO problem can be approached in two ways: transform-

ing it into a single-objective optimization problem, or applying MOO algorithms

directly. The former approach can be optimized using various solvers. Examples of

using such transformation techniques include Weighted Sum (WS) [69], Normalized

Normal Constraint (NNC) [74] and Progressive Frontier (PF) [86] algorithms. The

other direction solves MOO directly using MOO algorithms, such as NSGA-II [22].

To better understand how existing solvers and MOO algorithms perform for our
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optimization problem, the following sections will provide a study on existing solvers

and a benchmarking analysis of MOO algorithms.

The objective function in our MINLP problem utilizes a DNN with ReLU as the

activation function, serving as an example of learned models.

Example learned model. In this context, a DNN with ReLU activation functions

can be represented as a function f mapping a mixed-integer variable vector X to an

objective y. Formally, this can be described as: y = f(X), where X = [x1, x2, ..., xn]

is a vector of mixed variables, and each xi can be either a continuous or an integer

variable.

A simple DNN with one layer and two input variables is defined as follows:

y = ReLU(XW T ) (4.1)

where X = [x1, x2] is the variable vector, W = [w1, w2] are the weight vector.

Then, a two-layer mapping with two input variables is represented as follows:

y = ReLU(Z(W 2)T ), where Z = ReLU(X(W 1)T ) (4.2)

where Z is the intermediate results of the first layer, X is the variable vector, W 1

and W 2 are the weight vectors of the first and second layers respectively, defined in

Equation (4.3).

W 1 =

w1
11 w1

12

w1
21 w1

22

 W 2 = [w2
1, w

2
2] (4.3)

More complex DNN can be built in the same manner.

4.1 Study on Solvers

This section reviews existing solvers for single-objective optimization. Theoreti-

cally, this MINLP problem can be tackled directly using a Non-Linear Programming

(NLP) solver or, if the MINLP problem can be converted into a Linear Programming

(LP) problem, an LP solver. This section also analyzes how the commercial solver
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Knitro [42] addresses the MINLP problem, specifically focusing on the cases where

the objective function is represented by a DNN with ReLU activation functions.

4.1.1 Existing solvers

This thesis examines two basic solvers, i.e. random sampling and grid search, as

well as existing NLP solvers capable of addressing our MINLP problem.

Basic solvers. Random sampling and grid search are two fundamental solvers

feasible for addressing our MINLP problem.

Random sampling generates independent samples randomly from a uniform den-

sity over the same parameter space as the initial set of trials, with the best sample

selected as the solver’s solution. While this method can be efficient, it only produces

a limited number of random samples from the parameter space.

Grid search requires a set of grid values for each variable, denoted as N (1), . . . , N (n),

and constructs the initial set of trials through the Cartesian Product of these n sets

of grid values [10], i.e., S =
∏n

i=1 N
(i). The best solution is subsequently selected

from this initial set of evaluations. Grid search ensures even coverage of the param-

eter space by establishing uniform grids for each variable. However, this Cartesian

Product approach is subject to the curse of dimensionality, as the number of trials

grows exponentially with an increase in the number of variables.

Both solvers are basic and straightforward to implement and parallelize. How-

ever, these methods do not guarantee optimality of the solutions obtained.

NLP solvers. Methods for addressing MINLP typically involve the decomposition

or relaxation of the problem into simpler subproblems, usually consisting of NLP

and MILP components. Consequently, reliable and efficient NLP and MILP solvers

are often essential components of effective MINLP solutions [18]. In examining a

general MINLP problem, this thesis reviews existing NLP solvers, assessing their

capabilities based on information from user manuals and webpages.

SCIP [11, 82] is a non-commercial solver that tackles MINLP problems using

a spatial branch-and-bound algorithm. However, SCIP cannot solve our specific

MINLP problem, as it lacks support for non-linear function representations incor-

porating the max function, which is utilized in the DNN model.
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Commercial solvers like BARON [8], Artelys Knitro [42], and LindoGlobal [58]

are designed for achieving global optimal solutions of MINLP problems, employing

various branch-and-bound type algorithms. Among these, BARON, unlike Knitro

and LindoGlobal, does not support certain functions, including max, making it un-

suitable for our MINLP problem.

The subsequent section will use Artelys Knitro [42] as a representative example

of NLP solvers to illustrate how our MINLP problem is addressed.

4.1.2 Knitro

Artelys Knitro [42] is a commercial optimization software library designed primarily

for solving nonlinear optimization problems. The library offers four algorithms for

NLP and two algorithms specifically for MINLP [45, 46].

The optimization problem addressed by Knitro is formulated as follows:

min f(x) subject to cL ≤ c(x) ≤ cU bL ≤ x ≤ bU (4.4)

Where f(x) represents the objective function, cL and cU denote the lower and

upper bounds (which may be infinite) on the general constraints, and bL and bU

represent the lower and upper bounds (which may also be infinite) on the variables.

The variables x ∈ Rn can be continuous, binary, or integer. The objective function

f(x) supports various mathematical functions, such as exponential functions and

maximization.

The general implementation of Knitro involves configuring properties for the ob-

jective functions, variables, and constraints. These properties include representation

functions for objectives, variables, and constraints; the number of objectives, vari-

ables, and constraints; the types of variables (e.g., binary, continuous, integer); and

the lower and upper bounds for both variables and constraints, among other factors.

To use Knitro for solving our MINLP problem, the objective function must

be represented using native mathematical functions. In our example, the learned

models use a maximization function within ReLU to represent the objective.

DNN representation using mathematical functions. Given the simple DNN
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defined by Equation (4.1) as the objective function, the MINLP can be represented

as follows:

min y = ReLU(XW T ) = max (x1w1 + x2w2, 0) (4.5)

Similarly, for a more complex DNN defined by Equation (4.2) as the objective

function, the MINLP is formulated as follows:

min y = ReLU(Z(W 2)T ) = max(z1w
2
1 + z2w

2
2, 0) (4.6)

where Z = [z1, z2] is flattened as:

z1 = max(x1w
1
11 + x2w

1
12, 0)

z2 = max(x1w
1
21 + x2w

1
22, 0)

(4.7)

Knitro recommends setting exact derivatives whenever possible to achieve faster

solutions and enhanced robustness [43, 44]. If it is not possible, it offers two types

of derivative approximation methods for computing first derivatives: forward finite

differences and centered finite differences. These two options assist in optimizing

the objective with a DNN when the first derivatives do not exist at points where

ReLU is zero.

To enable the solution of our MINLP problem using not only NLP solvers but also

Linear Programming (LP) solvers, we provide a theoretical analysis demonstrating

the compatibility of our MINLP formulation with an LP solver, such as CPLEX

[16]. Further details are provided in Appendix A.1.

4.2 Experimental Evaluation of Solvers and MOO

Algorithms

This section presents the experimental results of our optimization problem, evalu-

ating various solvers and MOO algorithms.
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Table 4.1: Selected Spark parameters

Index Description

1 spark.default.parallelism
2 spark.executor.instances
3 spark.executor.cores
4 spark.executor.memory
5 spark.reducer.maxSizeInFlight
6 spark.shuffle.sort.bypassMergeThreshold
7 spark.shuffle.compress
8 spark.memory.fraction
9 spark.sql.inMemoryColumnarStorage.batchSize
10 spark.sql.files.maxPartitionBytes
11 spark.sql.autoBroadcastJoinThreshold
12 spark.sql.shuffle.partitions

4.2.1 Setup

Workloads. We apply the batch workloads from our previous work [86]. Our batch

workloads use the TPCx-BB benchmark [93] with a scale factor of 100GB. TPCx-

BB consists of 30 templates, including 14 SQL queries, 11 SQL queries with UDFs,

and 5 ML tasks, which we modified to run on Spark. We parameterized these 30

templates to create 258 workloads. For performance testing, we use 30 workloads to

evaluate solvers and 258 workloads to assess the performance of MOO algorithms.

We executed these under various configurations, generating a total of 24560 traces,

each with 360 runtime metrics. These traces were utilized to train workload-specific

models for latency, cost, and other factors. Feature selection identified 12 key Spark

parameters, including the number of executors, number of cores per executor, mem-

ory per executor, shuffle compression, and parallelism, among others. The complete

list is provided in Table 4.1.

Hardware. Our system was deployed on a cluster with 20 compute nodes. The

compute nodes are CentOS based with 2xIntel Xeon Gold 6130 processors and 16

cores each, 768GB of memory, and RAID disks.

Solvers and MOO algorithms. To evaluate the performance of the solvers, we

compare Knitro with random sampling and grid search, as Knitro solves MINLP
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Figure 4.1: Comparison for performance of solvers among 30 workloads

problems directly.

For MOO algorithms, we compare various methods from different categories

discussed in Section 2.1.2. This includes the Weighted Sum (WS) [69], NSGA-II

[22] as a prominent Evolutionary (EVO) method [23] and qEHVI from BoTorch [20]

as a recent Multi-objective Bayesian Optimization (MOBO) method.

Model. We use the DNN model as the latency objective function to evaluate the

solvers. For the MOO benchmark evaluation, latency and cost are considered as

the two objectives. Cost is defined as the total number of cores, calculated by

multiplying the number of executors (index 2 in Table 4.1) by the number of cores

per executor (index 3 in Table 4.1).

4.2.2 Evalution Results

Expt 1: Comparison with existing solvers. Considering latency as the objective func-

tion to be minimized, Figures 4.1 compare the performance of three solvers: Knitro,

grid search, and random sampling. Both grid search and random sampling use the

same number of samples, totaling 6,720.

Figures 4.1 illustrates that while the average latency across 30 workloads achieved

by the random-sampling and grid-search solvers is slightly better than that of Knitro

(15.6 seconds and 13.5 seconds for random sampling and grid search, respectively,

compared to 15.8 seconds for Knitro), there is significant variation in solving time.

Specifically, random sampling achieves lower latency than Knitro for 16 out of 30

workloads, yet its solving time is approximately 1 million times faster than that of
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Figure 4.2: Comparison for performance of existing MOO methods among 258 workloads

Knitro.

Expt 2: Comparison with existing MOO methods. Figures 4.2 compare the perfor-

mance of existing MOO methods in terms of hypervolume and solving time. In these

comparisons, WS-R and WS-G refer to the Weighted Sum (WS) method using random

sampling and grid search as solvers, respectively.

Compared to MOBO, both WS and EVO achieve higher hypervolume scores (greater

than 72.2% vs. 41.8% on average) and significantly lower average solving times (less

than 0.03 seconds vs. 290 seconds). Among these, EVO performs slightly worse than

WS in both hypervolume and solving time.

4.2.3 Discussion on solvers

In the previous evaluation, Knitro exhibited lower solution quality compared to

basic solvers such as random sampling and grid search. The possible reasons for this

discrepancy are outlined below.

Knitro offers multiple tunable options that can influence solver performance, in-

cluding algorithm settings and warm-start capabilities. Theoretically, solving an

MINLP problem with Knitro involves addressing relaxed, continuous nonlinear op-

timization subproblems, a process governed by the MINLP and NLP algorithms

available within the solver. Specifically, Knitro provides two algorithms for MINLP

and four for NLP, automatically selecting one method for each by default. Fur-

thermore, Knitro’s warm-start strategy allows users to provide an initial point close

to the likely solution to facilitate quicker convergence. However, as the tuning of
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Knitro is beyond the scope of this thesis, the solver was primarily utilized with its

default settings, which may impact performance.

The complexity of the DNN model significantly impacts solver performance. As

noted in Section 4.1.2, Knitro advises users to provide exact derivatives to enhance

efficiency and robustness. Relying on first derivative approximations can diminish

both the performance of the solver and the likelihood of converging to a solution

[43, 44]. In our MINLP problem, where the objective function is a complex DNN

model, computing both first and second derivatives is challenging due to the appli-

cation of the chain rule. Additionally, the non-existence of first derivatives at points

where the ReLU activation function is zero necessitates the use of first derivative

approximations in Knitro, potentially degrading its performance.

The accuracy of predictive models significantly impacts the evaluation results

of solvers. In our optimization problem, the objectives are modeled by DNNs.

For example, the predictive model tends to underestimate objective values when

it receives inputs at the boundary values of variables (i.e., at their lower or upper

limits). Given that the objective function is non-convex, Knitro might become

trapped in a local optimum. In contrast, basic solvers like random sampling and

grid search are more likely to sample boundary values and evaluate them using the

predictive model, which could yield better solutions than those obtained with Knitro.

Consequently, in our solver evaluation, these basic solvers outperform Knitro.

4.3 Summary

This chapter presents a benchmarking analysis of MOO, including existing solvers

and MOO algorithms. Given the high quality and efficiency requirements (i.e., 1-2

seconds) for the Cloud Optimizer, Knitro and MOBO are not suitable for cloud use.

Consequently, we selected random sampling and grid search as solvers, and WS and

EVO methods as MOO baselines for the experiments in Chapter 5 and Chapter 6.
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CHAPTER 5

Stage-level Optimizer

This chapter presents MOO algorithms designed to compute Pareto optimal solu-

tions for query stages, which are units defined by shuffle boundaries. In production-

scale big data processing, each stage operates with a high-dimensional parameter

space, with thousands of parallel instances. Each instance requires resource pa-

rameters determined upon assignment to one of thousands of machines, as exem-

plified by systems like MaxCompute. To achieve Pareto optimality for each query

stage, we propose a novel hierarchical MOO approach. This method decomposes the

stage-level MOO problem into multiple parallel instance-level MOO problems and

efficiently derives stage-level MOO solutions from instance-level MOO solutions.

Evaluation results using production workloads demonstrate that our hierarchical

MOO approach outperforms existing MOO methods by 4% to 77% in terms of la-

tency performance and up to 48% in cost reduction while operating within 0.02 to

0.24 seconds compared to current optimizers and schedulers.

5.1 Problem Statement and Overview

In this section, we provide background on MaxCompute [71], Alibaba Cloud’s big

data query processing system, and introduce our proposed extended architecture for

resource optimization. We then formally define the Multi-Objective Resource Op-

timization (MORO) problem and present an overview of our two-step optimization

approach.
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Figure 5.1: The lifecycle of a query job in MaxCompute

5.1.1 Background on MaxCompute

In MaxCompute, a submitted user job is represented hierarchically using stages and

operators, which will then be executed by parallel instances. As shown in Figure

5.1, a job is a Directed Acyclic Graph (DAG) of stages, where the edges between

stages are inter-machine data exchange (shuffling) operations. A stage is a DAG

of operators, where edges are intra-machine pipelines without data shuffling. The

input data of each stage is partitioned over different machines, where each partition

is run as an instance of the stage in a container.

Figure 5.1 shows the functionality of query optimizers and the scheduler in the

lifecycle of a submitted job.

Cost-Based Optimizer (CBO): MaxCompute’s Cost-Based Optimizer (CBO)

is a variant of the Cascades optimizer [30]. It follows traditional SQL optimization

based on cardinality and cost estimation and generates a Physical Operator Tree

(POT), which is a DAG of stages where each stage is a DAG of operators.

History-Based Optimizer (HBO): To facilitate resource optimization, a History-

Based Optimizer (HBO) gives an initial attempt to recommend a partition count

(number of instances) for each stage and a resource plan (the number of cores and

memory needed) for all instances of the stage based on previous experiences. This

history-based approach is known to be suboptimal because it does not consider the

machines to run these queries and their current states. Both hardware character-

istics and system states affect the latencies of instances, and an optimal solution
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should try to minimize the maximum latency of parallel instances, in addition to

cost objectives. Moreover, HBO needs expensive engineering efforts, especially when

workloads change and the system upgrades. We will address these issues in our new

system design.

Scheduler: During job execution, the granularity of scheduling is a stage: a

stage that has all dependencies met is handed over to the Fuxi scheduler [115]. Fuxi

uses a heuristic approach to recommending a placement plan that sends instances

to machines, and each instance is assigned to a container on a machine with a

previously-determined resource plan for CPU and memory. These decisions, how-

ever, are made without being aware of the latency of each instance. As such, an

instance with a potential longer running time (e.g., due to larger input size) may be

sent to a heavily loaded machine while another instance with less data may be sent

to an idle machine, leading to overall poor stage latency (the maximum of instance

latencies). A detailed example is given later in Figure 5.3.

Workload and Cluster complexity. Production clusters take workloads with

a vast variety of characteristics. Workload A from an internal department includes

1 - 64 stages in each job. A stage may involve 2 - 249 operators and be executed

by 1 - 42K instances, where an instance could take sub-seconds up to 1.4 hours to

run. Further, production clusters consist of heterogeneous machines. For example,

we observed 5 different hardware types when executing workload A, where each

hardware type includes 30 - 7K machines. Moreover, the system states in each

machine vary over time. Take CPU utilization for example. The average CPU

utilization varies from 32%-83%, and the standard deviation ranges from 6%-23%.

Finally, each machine could run multiple containers, and a container runs an instance

with a quota of CPU and memory based on a resource plan. For workload A, we

observed 17 different resource plans for containers. Since there is no perfect isolation

between containers and the host OS [87], containers with the same resource plan

could perform differently on machines with different hardware or system states,

making the running environment more complex.
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5.1.2 System Design for Resource Optimization

We next show our design for resource optimization by extending the MaxCom-

pute architecture. Our work aims to support multi-objective resource optimization

(MORO). Here, we can support any user objectives (as long as we can obtain training

data for them). For ease of composition, our discussion below focuses on minimizing

both the stage latency (maximum latency among its instances) and the cloud cost

(a weighted sum of CPU-hour and memory-hour), the two common objectives of

our users.

To achieve MORO, the resource optimizer needs to make three decisions: (1) the

partition count of a stage; (2) the placement plan (PP) that maps the instances of

a stage to the available machines; (3) the resource plan (RP) that determines the

resources (the number of cores and memory size) assigned to each instance on a

given machine. Our design is guided by two principles:

Simplicity and Efficiency. An optimal solution to MORO may require ex-

amining all possibilities of dividing the input data into m instances and arranging

them to run on some of the n machines, each using one of the r possible resource

configurations. In production clusters, both m and n could be 10’s of thousands,

while all the RO decisions must be made well under a second. Hence, it is infeasible

to run an exhaustive search for optimal solutions.

Our design principle is to break MORO into a series of simpler problems, each

of which can run very fast. First, we keep the History-Based Optimizer (HBO)

that uses past experiences to recommend a partition count for a stage and an initial

resource plan for its instances. There is a merit of learning such configurations from

past best-performing runs of recurring jobs (which dominate production workloads).

While the recommendations may not be optimal, they serve as a good initial solution.

Second, given the output of HBO, we design an Intelligent Placement Advisor

(IPA) that determines the placement plan (PP), mapping the instances to machines,

by predicting latencies of individual instances. Third, our Resource Assignment

Advisor (RAA) will fine-tune the resource plan (RP) for each instance, after it is

assigned to a specific machine, to achieve the best tradeoff between stage latency

and cost.
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Figure 5.2: Extended system architecture for resource optimization

Fine-grained Modeling and Hierarchical MOO. As discussed earlier, instance-

level recommendations for PP and RP are key to minimizing latency and cost. To do

so, we leverage a fine-grained model that predicts the latency of each instance based

on the workload characteristics, hardware, machine states, and resource plan in use.

The model will be used in IPA to develop the PP that minimizes the maximum

instance latency (while using the same RP for all instances). The instance-level

model will be further used in RAA to improve the RP by solving a hierarchical

MOO problem: We first compute the instance-level MOO solutions that minimize

the latency and cost of each individual instance. We then combine the instance-

level MOO solutions into stage-level MOO solutions, and recommend one of them

that determines the instance-specific resources with the best tradeoff between stage

latency and cost.

Figure 5.2 presents the detailed architecture that extends MaxCompute with

three new components (colored in purple): The trace collector collects runtime

traces, including the query traces (the query plan and operator features such as car-

dinality), instance-level traces (input row number and data size of an instance, and

the resource plan assigned to it), and machine-level traces (machine system states

and hardware type). The model server featurizes the collected traces and inter-

nally learns an instance-level latency model. The internal model gets updated peri-

odically by retraining or fine-tuning when the new traces are ready. It will serve as

an instance-level latency predictor for resource optimization of online queries. The

Stage-level Optimizer (SO) consists of the IPA and RAA, as described above.

For a stage to be scheduled, it calls the predictive model to estimate the latency of

each instance on any available machine, and determines the PP by minimizing stage
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latency and then the RP by minimizing both stage latency and cost.

5.1.3 Our Resource Optimization Approach

We next introduce our approach for the Stage-level Optimizer that minimizes both

stage latency and cost based on instance-level models.

During execution, once a stage is handed to the scheduler, two decisions are

made: the placement plan (PP) that maps instances to machines, and the resource

plan (RP) that determines the CPU and memory resources of each instance on its

assigned machine. The current Fuxi scheduler [115] decides a PP for m instances

as follows: (1) Identify the key resource (bottleneck) in the current cluster, e.g.,

CPU or IO. (2) Pick m machines with top-m lowest resource watermarks. (3)

Assign instances, in order of their instance id, to the m machines, and use the same

resource plan for each instance as suggested by HBO. However, its negligence of

latency variance among instances leads to suboptimal decisions for PP and RP:

Example 1. Figure 5.3 shows how Fuxi gets a suboptimal placement plan in a toy

example of sending a stage of 2 instances (i1, i2) to a cluster of 3 available machines

(m1, m2, m3) [64]. Assume that the instance latency is proportional to its input

row number on the same machine, and the current key resource in the cluster is

the CPU. In this example, Fuxi first picks m1 and m2 as machines with the top-2

lowest CPU utilization (watermarks) and assigns i1 to m1 and i2 to m2 respectively.
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The stage latency, i.e., the maximum instance latency, is 24s. However, the optimal

placement plan could achieve a 16s stage latency by assigning i1 to m3 and i2 to m1.

This assignment is based on the best possible latency (BPL) of instances, where BPL

is defined as the minimum latency that an instance can achieve among all available

machines. Further, using the same resources for i1 and i2 is not ideal. Instead,

an optimal resource plan would be adding resources to i2 and reducing resources for

i1 so as to reduce both latency and cost, indicating the need for instance-specific

resource allocation.

MOO Problems. To derive the optimal placement and resource plans, we begin

by providing the mathematical definition of multi-objective optimization (MOO)

and present an overview of our approach.

Instance-level MOO. First, consider a given instance to be run on a specific

machine. We use f1, ..., fk to denote the set of predictive models of the k objectives

and θ to denote a resource configuration available on that machine.

Given the technical context provided by the work from our colleague, the learned

model f utilizes five channels to characterize various factors as input. Specifically,

Channel 1 introduces stage-oriented features shared among instances within a

stage. Channels 2-5 characterize individual instances: Channel 2 includes in-

stance metadata such as input row number and size, Channel 3 details the resource

plan for each instance, specifying CPU cores and memory size, Channel 4 records

machine system state including CPU utilization, memory utilization, and IO activi-

ties, and Channel 5 identifies hardware types using machine models to distinguish

between different sets of hardware types.

Stage-level MOO. We next consider the stage-level MOO problem over multiple

instances. Consider m instances, (x1, ..., xm), and n machines, (y1, ..., yn). We use

x̃i to denote the characteristics of xi based on its features of Channel 1 and Channel

2 in its multi-channel representation, and ỹj to denote the features of Channel 4 and

Channel 5 of machine yj. Then consider two sets of variables, B and Θ:

1. B ∈ Rm×n is the binary assignment matrix, where Bi,j = 1 when xi is assigned

to yj, and
∑

j Bi,j = 1, ∀i = 1...m.
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2. Θ = [Θ1,Θ2, ...,Θm], denotes the collection of resource configurations of m

instances, where ∀i ∈ [1, . . . ,m],Θi ∈ Σ∗
i ⊆ Rd, and Σ∗

i is set of possible

configurations of d resources (e.g., d = 2 for CPU and memory resources) for

instance i.

Given these variables, suppose that f is the instance-level latency prediction

model, i.e., f(x̃i,Θi, ỹj) gives the latency when xi is running on yj using the re-

source configuration Θi. Then the stage-level latency can be written as, Lstage =

maxi,j Bi,jf(x̃i,Θi, ỹj). The stage cost is the weighted sum of cpu-hour and memory-

hour and can be written as, Cstage =
∑

i,j Bi,jf(x̃i,Θi, ỹj)(w · ΘT
i ), where w is the

weight vector over d resources and w · ΘT
i is the dot product between w and Θi.

Other objectives can be written in a similar fashion. Then we have the Stage-level

MOO Problem:

Definition 5.1.1. Stage-Level MOO Problem.

argmin
B,Θ


L(B,Θ) = maxi,j Bi,jf(x̃i,Θi, ỹj)

C(B,Θ) =
∑

i,j Bi,jf(x̃i,Θi, ỹj)(w ·ΘT
i )

...

 (5.1)

s.t.

Bi,j ∈ {0, 1}, ∀i = 1...m,∀j = 1...n∑
j Bi,j = 1, ∀i = 1...m∑
iBi,jΘ

1
i ≤ U1

j , . . . ,
∑

iBi,jΘ
d
i ≤ Ud

j ,∀j = 1...n

where Uj ∈ Rd is the d-dim resource capacities on machine yj.

Existing MOO Approaches. Given the above definition of stage-level MOO, one

approach is to call existing MOO methods [23, 69, 74, 86] to solve it directly. How-

ever, this approach is facing a host of issues: (1) The parameter space is too large.

In our problem setting, both m and n can reach 10’s of thousands. Hence, both

B ∈ Rm×n and Θ = [Θ1,Θ2, ...,Θm], ∀i,Θi ∈ Rd, involve O(mn) and O(md) vari-

ables, respectively, which challenge all MOO methods. (2) There are also constraints

specified in Definition 5.1.1. Most MOO methods do not handle such complex con-

straints and hence may often fail to return feasible solutions. We will demonstrate
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the performance issues of this approach in our experimental study.

Our MOO Approach. To solve the complex stage-level MOO problem while

meeting stringent time constraints, we devise a novel MOO approach that proceeds

in two steps:

Step 1 (IPA): Take the resource configuration Θ0 returned from the HBO opti-

mizer as the default and assign it uniformly to all instances, Θi = Θ0, ∀i ∈ [1, ...,m].

Then minimize over B in Definition 5.1.1 by treating Θ0 as a constant.

Step 2 (RAA): Given the solution from step 1, B∗, we now minimize over the

variables Θ in Definition 5.1.1 by treating B∗ as a constant.

The intuition behind our approach is that if we start with a decent choice of

Θ0, as returned by HBO, we hope that step 1 will reduce stage latency via a good

assignment of instances to machines by considering machine capacities and instance

latencies. Then step 2 will fine-tune the resources assigned to each instance on a

specific machine to reduce stage latency, cost, as well as other objectives.

5.2 Formulations of Resource Optimization

Based on the two-step method discussed in the previous section, the Multi-Objective

Resource Optimization (MORO) problem can be solved in two scenarios:

1. Plan A: Optimization over B and Θ. This scenario considers the entire

parameter space with B and Θ as variables, where B determines the placement

plan of instances on machines, and Θ determines the resource plans of all

instances. Plan A solves the MORO by jointly configuring the placement

plan and resource plans for all instances.

2. Plan B: Optimization over Θ. Based on the optimal placement plan B∗,

Plan B solves the MORO by configuring the resource plans for all instances

in Step 2 (RAA), with Θ as the variable.

5.2.1 Plan A: Optimization over B and Θ
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Plan A can be solved by strictly applying the MOO definition in Equation (5.1),

which optimizes both B and Θ simultaneously. However, it faces challenges due to

the large number of variables and constraints, resulting in m ∗ (n + d) variables

and m + (d + 1) ∗ n constraints, where m represents the number of instances, n

represents the number of machines, and d represents the dimensions of the resource

plans. Given that both m and n can be several thousand, the problem may involve

millions of parameters and thousands of constraints.

arg min
B′,Θ′


L′(B′,Θ′) = maxi,j I(B′

i,j)f(x̃′
i,Θ

′
i,j, ỹ′j)

C ′(B′,Θ′) =
∑

i,j B
′
i,jf(x̃′

i,Θ
′
i,j, ỹ′j)(w ·Θ′T

i,j)

...

 (5.2)

s.t.

∑
j B

′
i,j = |X ′

i|, ∀i = 1...m′∑
i B

′
i,jΘ

′
i,j

1 ≤
∑

r U
1
r ∀j = 1...n′, r = 1...|Y ′

j|∑
i B

′
i,jΘ

′
i,j

2 ≤
∑

r U
2
r ∀j = 1...n′, r = 1...|Y ′

j|

...∑
i B

′
i,jΘ

′
i,j

d ≤
∑

r U
d
r ∀j = 1...n′, r = 1...|Y ′

j|∑
iB

′
i,j/|Y ′

j| ≤ α ∀j = 1...n′

To reduce dimensionality, we consider Clustered Plan A, which defines a con-

strained MOO problem as shown in Equation (5.2) after clustering instances and

machines. After clustering, let there be m′ instance clusters X
′
1, ..., X

′

m′ and n′ ma-

chine clusters Y ′
1 , ..., Y

′

n′ , where x
′
i represents the representative instance of instance

cluster X
′
i and y

′
j represents the representative machine of machine cluster Y

′
j . Let

x̃
′
i denote the features from Channel 1 and Channel 2 of x′

i, and ỹ
′
j denote the

features from Channel 4 and Channel 5 of y
′
j. Given two sets of variables B′

and Θ′, and assuming f is the instance-level latency prediction model, we define

f(x̃
′
i,Θ

′
i,j, ỹ

′
j) as the latency when x

′
i runs on y

′
j using the resource configuration

Θ
′
i,j. We assume that instances within the same instance cluster behave similarly

when scheduled on machines from the same machine cluster. I(B′
i,j) is an indica-
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tor function of B′
i,j, which indicates the number of instances in X

′
i running on the

machine cluster Y
′
j ; |X ′

i | denotes the number of instances in the instance cluster

X
′
i ; |Y

′
j | denotes the number of machines in the machine cluster Y

′
j ;

∑
r Ur ∈ Rd is

the total capacity of the d resources on the machine cluster Y
′
j ; α defines the max-

imum number of instances each machine cluster can accomodate based on diverse

placement preferences, where α >= ⌈m/n⌉.

In the Clustered Plan A, the number of variables and constraints are reduced

to m′ × (d+ n′) and m′ + ((d+ 1)× n′) respectively. These constraints ensure that

the requested resources of instances allocated in the same machine cluster do not

exceed its capacity.

5.2.2 Plan B: Optimization over Θ

To reduce the parameter space in the original problem, a colleague designed an

IPA algorithm that takes the default configuration and determines the best machine

placement strategy, B∗, that minimizes stage latency [64]. Given the optimal solu-

tion from step 1, B∗, the MORO problem in Equation (5.1) transforms to Equation

(5.3).

argmin
Θ


L(B∗,Θ) = maxi,j B

∗
i,jf(x̃i,Θi, ỹj)

C(B∗,Θ) =
∑

i,j B
∗
i,jf(x̃i,Θi, ỹj)(w ·ΘT

i )

...

 (5.3)

s.t.
∑

i B
∗
i,jΘ

1
i ≤ U1

j , . . . ,
∑

i B
∗
i,jΘ

d
i ≤ Ud

j ,∀j = 1...n

Similar to Plan A, Equation (5.3) can be directly solved by existing MOO

methods, where the number of variables is m × d and the number of constraints

is n × d. Note that both m and n can be tens of thousands, resulting in a high-

dimensional problem.

To further reduce the number of variables and constraints, we consider the Clus-

tered Plan B, which addresses the optimization problem after clustering instances.
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After clustering, we have m′ instance clusters X ′
1, ..., X

′
m′ and n machines (y1, ...,

yn), where x′
i is the representative instance of instance cluster X ′

i, and yj denotes

the allocated machine for x′
i after B∗ is determined. Let x̃′

i denote the features from

Channel 1 and Channel 2 of the representative instance x′
i in instance cluster

X ′
i, and ỹj denote the features from Channel 4 and Channel 5 of the allocated

machine yj.

To align with the instance clustering in Clustered Plan A, we use B′∗ to

denote the instance placement in Clustered Plan B, where B′ and B′∗ differ.

There are two main differences. First, instance clustering differs between Plan A

and Plan B. In Plan A, where elements in B′ are variables, instance clustering

considers only instance features (e.g., cardinality). In Plan B, B′∗ is predetermined,

allowing instance clustering to consider both instance features and machine state.

This results in more sub-clusters than in Plan A, leading to a different number of

instance clusters (rows in B′ and B′∗). Second, B′∗ in Plan B is predefined, with

B′∗
i,j being a binary value indicating whether the representative instance of instance

cluster X ′
i is scheduled on specific machine yj rather than a machine cluster. In

contrast, columns of B′
j in Plan A represent machine clusters. Therefore, the

number of columns differs between B′ in Plan A and B′∗ in Plan B.

In the Clustered Plan B, we denote the variables as Θ′. Assuming f is the

instance-level latency prediction model, we define L′
i,j = f(x̃′

i,Θ
′
i,j, ỹj) as the latency

when x′
i runs on yj using the resource configuration Θ′

i,j. We assume groups of

instances may exhibit similar behavior. After instance clustering, the constrained

MOO problem is defined as shown in Equation (5.4):

argmin
Θ′

 L(B′∗,Θ′) = maxi,j B
′∗
i,jf(x̃′

i,Θ
′
i,j, ỹj)

C(B′∗,Θ′) =
∑

i,j B
′∗
i,jf(x̃′

i,Θ
′
i,j, ỹj)(w ·Θ′T

i )|X ′
i|

 (5.4)

s.t.
∑

i Θ
′
i,j

1γ′j
i ≤ U1

j , ...,
∑

i Θ
′
i,j

dγ′j
i ≤ Ud

j , ∀j = 1...n

where |X ′
i| denotes the number of instances in the instance cluster X ′

i; γ′j
i denotes

the number of instances in cluster X ′
i allocated on the same machine yj, where
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γ′j
i =

∑
i B

′∗
i,j, i ∈ I, and I represents the indices of instances in cluster X ′

i. These

constraints ensure that the requested resources of instances allocated in the same

machine do not exceed its capacity. In Clustered Plan B, the number of variables

can be reduced to m′ × d.

Overall, Plan A provides a general problem statement, considering both place-

ment plans B and resource plans Θ as variables. Plan B presents a formal problem

statement for optimization in RAA, with Θ as variables under an optimal placement

plan B∗. We will demonstrate both scenarios in our experimental study.

This thesis focuses on the algorithm design for resource optimization in Plan B

(RAA), where the resource configurations of instances are optimized with multiple

performance goals. This optimization is performed after the IPA determines the

placement plan for a stage, scheduling each instance to run on a specific machine.

Additional details on IPA, provided by our colleague, can be found in our technical

report [63].

5.3 Resource Assignment Advisor (RAA)

In this section, we propose a MOO algorithm design within the Resource Assign-

ment Advisor (RAA) module—a hierarchical multi-objective optimization (MOO)

approach to tune the resource plan of each instance. This aims to optimize stage

latency, cloud cost, and other objectives.

5.3.1 Overview of Optimization in RAA

Since the stage-level values are aggregated from the instance-level values, the opti-

mization problem defined in Plan B is reformulated as follows:

Stage-level MOO. Consider the stage-level MOO problem defined in Definition

5.1.1. By ignoring the constant B, we can rewrite it in the following abstract form
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using aggregators (g1, ..., gk), each for one objective, to be applied to m instances:

argmin
Θ

FΘ = F (Θ) =


F1(Θ) = g1(f1(Θ1), ..., f1(Θm))

...

Fk(Θ) = gk(fk(Θ1), ..., fk(Θm))

 (5.5)

where Θ = [Θ1,Θ2, ...,Θm] = [θl11 , θ
l2
2 , ...θ

lm
m ], θlii denotes the li-th resource configura-

tion of the i-th instance (i ∈ {1, ...,m}), and the aggregator gj (j=1,...,k) is either

a sum or max.

As in the instance-level, we define the stage-level resource configuration

as Θ = [θl11 , θ
l2
2 , ...θ

lm
m ], with its corresponding FΘ in the objective space Φ ⊆ Rk.

Then we can define stage-level Pareto Optimality and the Pareto Set similarly

as shown in Section 2.1.1.

Note that we are particularly interested in two aggregators. The first is max: the

stage-level value of one objective is the maximum of instance-level objective values

over all instances, e.g., latency. The second is sum: the stage-level value of one

objective is the sum of instance-level objective values, e.g., cost.

Example of stage-level objective values. In Figure 5.4, we have f1 as the predic-

tive model for latency (g1 = max) and f2 for cost (g2 = sum). Suppose Θ = [θ11, θ
2
2]

as the stage-level resource configuration. Then we have the stage-level latency as

F1(Θ) = max(150, 100) = 150, the stage-level cost as F2(Θ) = sum(5, 5) = 10, and

the stage-level solution FΘ is [150, 10].

While one may consider using existing MOO methods to solve Equation (5.5), it

is still subject to a large number (O(md)) of variables. To enable a fast algorithm, we

next introduce our Hierarchical MOO approach developed in the divide-and-conquer

paradigm.

Definition 5.3.1. Hierarchical MOO. We solve the instance-level MOO problem

for each of the m instances of a stage separately, for which we can use any existing

MOO method. Suppose there are k stage-level objectives, each with its max or sum

aggregator to be applied to m instances. Our goal is to efficiently find the stage-

level MOO solutions from the instance-level MOO solutions, for which we use f j
i to
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Figure 5.4: Example of RAA

denote the j-th Pareto-optimal solution in the i-th instance by using θji .

Example of RAA. In Figure 5.4, we calculate the lower and upper bounds of

the stage-level latency as max(55, 100) = 100 and max(150, 300) = 300 respectively.

Then we enumerate all the possible stage-level latency values within the bounds

(100, 150, 300) to collect potential Pareto-optimal solutions. For latency=100, there

is only one feasible Θ choice (Θ = [θ21, θ
2
2]) and hence the only solution is [100, 25].

Similarly for latency=150, we get another solution [150, 10]. When latency=300,

there are two solutions: [300, 24] with Θ = [θ21, θ
1
2] and [300, 9] with Θ = [θ11, θ

1
2].

The first one will be filtered because it is dominated by the latter one. Finally,

we further filter solutions being dominated in the chosen set and get the stage-

level MOO solutions as [[100, 25], [150, 10], [300, 9]]. After getting the stage-level

MOO solutions, one optimal solution is recommended by Weighted Utopia Nearest

(WUN) in our prior work [86].

5.3.2 General Hierarchical MOO solution

Suppose that there are k user objectives, where k1 objectives use the max and k2

objectives use sum, k1+k2 = k. The high-level idea is to keep the optimality of stage-

level k1 and k2 objective values respectively as they can be addressed differently.

For a k1 objective, since its stage-level value is the maximum among all instance-
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Algorithm 1: General Hierarchical MOO
Require: f j

i , i ∈ [1,m], j ∈ [1, pi], where pi is the number of Pareto-optimal solutions in
i-th instance and [θ1i , ..., θ

pi
i ]

1: POΘ = [], POF = []
2: minMList, maxMList = find_range(f)
3: k1Combs = find_all_possible_values(f , minMList, maxMList)
4: for c in k1Combs do
5: for i in m do
6: optimal_solution, index = find_optimal(c, [f1

i , ...f
pi
i ])

7: Θi = θindexi

8: end for
9: POΘ.append(Θ), POF .append(F (Θ))

10: end for
11: POF , POΘ = filter_dominated(POF , POΘ)
12: return POF , POΘ

level k1 objective values, it exists in one of the instance-level Pareto solutions. Thus

it is possible to get all the stage-level k1 objective values from the given instance-level

Pareto sets. For example in Figure 5.4 with latency as k1 objective, we can easily

enumerate all the stage-level latency values as (100, 150, 300). Under each stage-level

latency value, it is important to efficiently make optimal decisions by considering

k2 objectives. For instance, in the same example, when stage-level latency is 300, it

is expected to quickly find the stage-level solution [300, 9] with Θ = [θ11, θ
1
2] rather

than [300, 24] with Θ = [θ21, θ
1
2] as the latter one is dominated. For a k2 objective, we

cannot easily get all its stage-level values as it sums up all instance-level k2 objective

values.

Algorithm 1 gives the full description of the General hierarchical MOO algorithm.

After initialization, line 2 obtains the lower and upper bounds for each of the k1 max

objectives. In line 3 (find_all_possible_values), we first find for each max objective

all the possible values as one list and then use the Cartesian product of these lists

as the candidates for the k1 max objectives. In lines 4 to 10, given one candidate,

we try to find the corresponding Pareto-optimal solution for the k2 sum objectives.

For the k2 objectives using sum, due to the complexity of the sum operation, we can

not afford the enumeration, which grows exponentially in the number of instances,

O(pmmax) where pmax is the maximum number of instance-level Pareto points among

m instances. To reduce the complexity, we resort to any existing MOO method,
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Table 5.1: Additional notation for the proof of General Hierarchical MOO Problem

Symbol Description

k1 the number of objectives with max operator.
k2 the number of objectives with sum operator.
fijv the v-th objective value of j-th solution in i-th instance.
Fh the stage-level h-th objective value in k1 objectives (h ∈ [1, ..., k1]).
Fv the stage-level v-th objective value in k2 objectives (v ∈ [1, ..., k2]).
wv the weight setting of v-th objective, v ∈ [1, ..., k2].

denoted by the function find_optimal, that (in line 6) for each instance selects one

Pareto-optimal solution for the k2 objectives. At the end of the procedure, we add

a filter to remove the non-optimal solutions.

Proposition 5.3.1. For a stage-level MOO problem, Algorithm 1 guarantees to

find a subset of stage-level Pareto optimal points.

RAA with Clustering. For efficiency, we run the General hierarchical MOO

algorithm by clustering the instances and machines, where m is replaced by m′ << m

in the complexity.

Resource plan recommendation. After getting the stage-level Pareto set,

we reuse UDAO’s Weighted Utopia Nearest (WUN) strategy to recommend the

resource plan [86], which includes a configuration for each instance of the stage. It

recommends the resource plan whose objectives could achieve the smallest distance

to the Utopia point, which is the hypothetical optimal in all objectives.

5.3.3 Theorectical Analysis

This section provides proof and complexity analysis for Algorithm 1. Table 5.1

shows the notations used in the proof of Proposition 5.3.1.

Proposition 5.3.1 For a stage-level MOO problem, Algorithm 1 guarantees to find

a subset of stage-level Pareto optimal points.

Now we first prove for a special case: when there are only k2 objectives using

the sum operator.

Lemma 5.3.1. For a stage-level MOO problem with k2 objectives that use the sum
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operator only, Algorithm 1 guarantees to find a subset of stage-level Pareto optimal

points.

In proving Lemma 5.3.1, we observe that Algorithm 1 is essentially a Weighted

Sum procedure over Functions (WSF). Indeed we will prove the following two Propo-

sitions: 1) each solution returned by WSF is Pareto optimal; 2) the solution returned

by the function find_optimal is equivalent to the solution returned by WSF. Then

it follows that the solution returned by Algorithm 1 is Pareto optimal.

To introduce WSF, we first introduce the indicator function xij, i ∈ [1, ...,m], j ∈

[1, ..., pi], to indicate that the j-th solution in i-th instance is selected to contribute

to the stage-level solution. pi is the number of Pareto-optimal solutions in i-th

instance.
∑pi

j=1 xij = 1 means that only one solution is selected for each instance.

Then x = [x1j1 , ...xmjm ] represents the 0/1 selection for all m instances to construct

a stage-level solution.

So for the v-th objective, its stage-level value could be represented as the function

H applied to x:

Fv = Hv(x) =
m∑
i=1

pi∑
j=1

xij × fijv,

where

pi∑
j=1

xij = 1, i ∈ [1, ...,m], j ∈ [1, ..., pi], v ∈ [1, ...k2]

(5.6)

Now we introduce the Weighted Sum over Functions (WSF) as:

argmin
x

(

k2∑
v=1

wv ×Hv(x)) (5.7)

s.t.
v∑

v=1

wv = 1 (5.8)

Next, we prove for Lemma 5.3.1. As stated before, It is done in two steps.

Proposition 5.3.2. The solution constructed using x returned by WSF is Pareto

optimal.

Proof.

Assume that x∗ (correspoding to [F ∗
1 , ..., F

∗
k2
] ) is the solution of WSF. Suppose
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that an existing solution [F
′
1, ..., F

′

k2
] (correspoding to x

′) dominates [F ∗
1 , ..., F

∗
k2
].

This means that
∑k2

v=1wv ×Hv(x
′
) is less than that of x∗.

This contradicts that x∗ is the solution of WSF. So there is no [F
′
1, ..., F

′

k2
] dom-

inating [F ∗
1 , ..., F

∗
k2
]. Thus, [F ∗

1 , ..., F
∗
k2
] is Pareto optimal.

Proposition 5.3.3. The optimal solution returned by the function find_optimal in

Algorithm 1 is equivalent to the solution constructed using x returned by WSF.

Proof.

Suppose x′ is returned by WSF. The corresponding stage-level solution is [F ′
1, ..., F

′

k2
]

x
′
= argmin(

k2∑
v=1

wv ×Hv(x))

= argmin(

k2∑
v=1

wv × (
m∑
i=1

pi∑
j=1

xij × fijv))

= argmin(
m∑
i=1

(

k2∑
v=1

pi∑
j=1

(wv × fijv)× xij))

(5.9)

For the solution [F
′′
1 , ..., F

′′

k2
] returned by the function find_optimal in Algorithm

1, x′′ represents the corresponding selection. It is achieved by minimizing the fol-

lowing formula:

m∑
i=1

(WSij|j ∈ [1, pi])

=
m∑
i=1

(

k2∑
v=1

wv × fijv|j ∈ [1, pi])

=
m∑
i=1

(

k2∑
v=1

pi∑
j=1

(wv × fijv)× xij)

(5.10)

where WSij =
∑k2

v=1 wv × fijv.

So, we have:

x
′′
= argmin(

m∑
i=1

(

k2∑
v=1

pi∑
j=1

(wv × fijv)× xij)) (5.11)
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Since they are of the same form and achieve their minimum at the same time, we

have x′ = x′′.

With these two propositions, we finish the proof of Lemma 5.3.1.

Finally, we prove that for the general case that also involves k1 objectives that

use the max aggregate operator, Proposition 5.3.1 holds as well.

Proof. Recall that Algorithm 1 enumerates all combinations of stage-level k1 objec-

tive values. Thus, there does not exist a stage-level k1 solution [F
′
1, . . . , F

′

k1
] that

cannot be found by Algorithm 1. Together with Lemma 5.3.1, this completes the

proof of Proposition 5.3.1.

Here, we discuss the time complexity when WS is utilized in the find_optimal

function in Algorithm 1. It takes O(m×pmax) to find all the values within the lower

and upper bounds of stage-level values for each max objectives. So, the Cartesian

product of all k1 lists takes O((m× pmax)
k1). Within the loop of each combination,

Algorithm 1 varies w weight vectors to generate multiple stage-level solutions. And

under each weight vector, it takes O(m × pmax) to select the optimal solution for

each instance based on WS. Thus, the overall time complexity is O((m× pmax)
k1 ×

w × (m× pmax)) = O(w × (m× pmax)
k1+1).

For the particular case of k = 2 with one using max and the other using sum,

k1 = 1 and k2 = 1, which means the weight vector for find_optimal is fixed.

Therefore, Algorithm 1 takes O((m× pmax)
2).

5.4 Experimental Evaluation

This section presents the evaluation of our stage optimizer. Using production traces

from MaxCompute, we report the end-to-end performance of our stage optimizer

using a simulator of the extended MaxCompute environment (detailed in Figure

5.5) by replaying the production traces.
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Figure 5.5: Simulation framework

5.4.1 Setup

Hardware Property. Our experiments are deployed over 3 machines, each with 2x

Intel Xeon Platinum 8163 CPU with 24 physical cores, 500G RAM, and 8 GeForce

GTX 2080 GPU cards.

Simulator. Our simulator emulates the extended MaxCompute environment de-

picted in Figure 5.5 [63]. First, it caches query plans and instance metadata for

the workload to replace all productive traces. Second, it incorporates a stage de-

pendency manager and an extensible scheduler capable of supporting both Fuxi and

Stage-level Optimizer (SO). Third, it generates system states and capacities for each

machine by sampling from prior knowledge.

To assess the performance of the proposed algorithm across various jobs, we

evaluate it on three distinct production workloads.

Workload Characteristics. We analyzed three representative workloads totaling

approximately 0.62 million jobs, encompassing around 2 million stages and approxi-

mately 0.12 billion instances. Each workload comprises productive jobs executed by

a business department over five consecutive days at Alibaba, detailed in Table. 5.2.

Sub-workloads for RAA Evaluations. We monitored CPU utilization trends

daily and averaged them across five consecutive days, using a 40-minute sliding

window to identify periods of peak and minimal average CPU utilization for each

workload.
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Table 5.2: Workload statistics for 3 workload over 5 days

WL
Num.
Jobs

Num.
stages

Num.
Inst

#stages
/job

#insts
/stage

#ops
/stage

Avg Job
Lat(s)

Avg Stage
Lat(s)

Avg Inst
Lat(s)

A 405K 970K 34M 2.40 35.45 3.71 30.97 14.64 16.85
B 173K 858K 36M 4.95 42.02 6.27 120.15 39.72 15.63
C 41K 100K 50M 2.42 505.51 5.31 376.83 181.88 71.08

Subsequently, we subsampled jobs from these two time periods for each workload

over the five consecutive days, resulting in 29 sub-workloads. These sub-workloads

collectively include 12,000 jobs, 51,000 stages, and 6 million instances.

5.4.1.1 Resource Optimization settings

Resource Parameters. In our experiment, we focused on d = 2 types of resources,

specifically CPU and memory. Our implementation of existing MOO methods was

tailored for these two resources. However, our framework is designed to be readily

extendable to cases where d > 2.

Clustering choices. We present various options for clustering instances in RAA:

1. RAA(Fast_MCI): Implements a customized strategy based on Machine-Clustered

Instance (MCI) to cluster instances. It leverages instance clusters derived from

IPA’s clustering result, which employs fast 1D clustering [63].

2. RAA(DBSCAN): Utilizes the DBSCAN clustering algorithm [24] to partition in-

stances into clusters based on their features.

3. RAA(W/O_C): This approach does not involve clustering instances during algo-

rithm execution, potentially achieving the best stage-level latency (excluding

solving time) and cost. However, it typically incurs higher overhead compared

to other methods.

Furthermore, when a clustering method is applied, each instance cluster is rep-

resented by a single instance, where the latency of the cluster equals that of its

representative instance, and the cost is the representative instance’s cost multiplied

by the cluster size. After clustering, we use the term ’instance’ to refer to an in-
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stance cluster for simplicity, provided it does not cause confusion. By default, we

choose RAA(Fast_MCI) for its efficiency.

MOO Baselines. We denote the solutions to the hierarchical MOO problem, ob-

tained by applying a general hierarchical MOO solution (Algorithm 1) to address

stage-level MOO problems, as RAA(General). Baseline MOO algorithms are distin-

guished by their specific names: WS, EVO, and PF. To distinguish between Plan A

and Plan B as defined in Section 5.2, we use IPA to indicate results from Plan B,

where the placement plan is determined by IPA(Cluster). For instance, results for

EVO under Plan A and Plan B are denoted as EVO and IPA+EVO, respectively.

Implementation details for these algorithms are provided as follows.

Method 1: Evolutionary algorithm. We apply NSGA-II [22], a well-known algorithm

in the family of Evolutionary (EVO) algorithms [23] to solve the MOO problem of both

clustered Plan A and Plan B. We performed hyperparameter tuning to determine

the optimal population size and the number of iterations for both Plan A (EVO)

and Plan B (IPA+EVO). The NSGA-II is implemented using the Platypus library

[78]. The technical details are as follows.

1. Complex functions and constraints: When calculating the stage-level

function values, we call the instance-level predictive model. The variables are

part of the input features (i.e., Channel 3) to obtain latency predictions.

Additionally, the constraints in Plan A are quadratic, adding complexity

compared to a linear representation.

2. Evaluation time: As discussed previously, the number of variables and con-

straints is related to the number of instances, causing the time cost of dif-

ferent stages to vary significantly if the stages have very different numbers of

instances. Based on our observation, a stage could take over 10 minutes to

return solutions, which is not acceptable given the requirement of efficiency

and the fact that we have 0.1M-1M stages running. Therefore, we limit the

time cost to 60 seconds for solving a stage MOO problem.

3. Hyperparameter tuning: Population size and the number of iterations are

two crucial hyperparameters influencing optimization performance. To select
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an optimal set of hyperparameters within the 60-second time limit, we test

12 sets of hyperparameters on a workload consisting of 103 stages, where the

number of instances varies from 1 to over 6,000. The final hyperparameters

are selected based on the highest coverage of feasible stages and the highest

reduction rate in stage-level latency and cost.

4. Randomness: NSGA-II is an evolutionary algorithm that initializes the pop-

ulation randomly and executes genetic operations (such as crossover and mu-

tation) based on a given probability. To ensure reproducibility of the results,

we fix the randomness for each iteration related to population generation and

genetic operations.

Method 2: Weighted Sum. We applied WS(Sample) [69] to reduce a MOO problem

into a single-objective optimization (SOO) problem by minimizing the weighted sum

of the stage latency and cost. In our implementation, we used a random sampling

approach to solve the SOO problem. For each stage, we obtained the corresponding

MOO solutions over a set of weights for latency and cost by the following steps:

1. Sample up to 100,000 variable choices randomly.

2. Filter out variables that violate resource capacity constraints or diverse pref-

erences.

3. Evaluate the objective values for each filtered variable.

4. Iterate the objective weights for latency and cost and return the variables that

minimize the weighted sum of the objectives.

5. Construct the MOO solutions based on the returned variables.

Method 3: Progressive Frontier (PF). We implemented our previous work PF(MOGD)

in a parallel version (PF-AP) to progressively solve the MOO problem [86]. PF(MOGD)

transforms the MOO problem into a series of single-objective constrained optimiza-

tion (CO) problems and employs the Multi-Objective Gradient Descent (MOGD)

solver to solve them.
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5.4.2 Resource Optimization (RO) Evaluation

This section presents the results from the aspects of clustering methods, the baseline

MOO algorithms, and our proposed methods for resource optimization in the Stage-

level Optimizer.

Evaluation results. We next evaluate the end-to-end performance of our Stage-

level Optimizer (SO) against the current HBO and Fuxi scheduler [115], as well as

other MOO methods using production workloads A-C. As we cannot run experi-

ments directly in the production clusters, we developed a simulator of the extended

MaxCompute (as shown in Figure 5.5) and replayed the query traces to conduct our

experiments.

We consider the following metrics in resource optimization (RO):

1. Lat
(in)
s , the average stage latency that includes the RO time;

2. Costs, the average cloud cost of all stages in a workload;

3. Ts, the Resource Optimization (RO) time cost.

4. Coverage, the ratio of stages that receive feasible solutions within 60s;

We use the reduction rate of latency and cost based on results from the HBO

and Fuxi scheduler (i.e. denoted as default solutions). For example, if the reduction

rates of the latency and cost are high, it indicates the obtained latency and cost are

lower and better than the default latency and cost.

Expt 1: IPA+RAA. We run RAA with three choices using IPA(Cluster). Re-

ferring to results from the IPA only, the clustered version IPA(Cluster) reduces the

stage latency (including the solving time) by 12-50% and cost by 4-14%, with the

average time cost between 10-33 msec [64]. As shown in Table 5.3, IPA+RAA(W/O_C)

does RAA without clustering and suffers high overhead (up to 19s for a stage).

IPA+RAA(DBSCAN) applies DBSCAN [24] for the instance clustering, which incurs

up to 937 msec for a stage, hence inefficient for production use. IPA+RAA(General)

shows the performance of our general hierarchical MOO approach, which incurs up

to 241 msec. Compared to IPA only, all the choices of RAA reduce more stage

73



Chapter 5. Stage-level Optimizer

Table 5.3: Average Reduction Rate (RR) against Fuxi in 29 sub-workloads within 60s

Coverage (%)Lat(in)s ↓ (%)Costs ↓ (%) avg(Ts) (ms) / max(Ts) (ms)

SO choice A B C A B C A B C A B C

IPA+RAA(W/O_C) 100 100 100 8 79 58 31 76 75 2.5K / 19K 177 / 220 3.5K / 6.3K
IPA+RAA(DBSCAN) 100 100 100 27 69 67 21 64 74 223 / 937 132 / 136 258 / 452

IPA+RAA(General) 100 100 100 36 80 76 29 75 75 100 / 241 20 / 23 167 / 229
EVO 0 82 0 – -36 – – 66 – – / – 21K / 24K – / –

WS(Sample) 90 85 82 -140 48 -74 -107 49 -52 7.4K / 22K 465 / 753 9.8K / 12K
PF(MOGD) 99 100 98 -15 49 65 24 56 75 2.7K / 4.0K 2.1K / 2.5K 1.5K / 2.3K

IPA+EVO 98 100 98 -27 69 43 22 75 71 3.0K / 7.3K 2.4K / 2.6K 5.0K / 5.9K
IPA+WS(Sample) 100 100 100 -36 76 -1 -19 72 32 3.5K / 10K 517 / 741 12K / 18K

IPA+PF(MOGD) 100 100 100 -0.4 51 69 26 56 75 1.6K / 2.5K 1.2K / 1.6K 1.2K / 2.2K

latency (including the solving time) and cost, where IPA+RAA(General) performs

the best which reduces stage latency by 36-80% and cost by 29-75%.

Expt 2: MOO baselines. We next compare to SOTA MOO solutions, EVO [23],

WS(Sample) [69], and PF(MOGD) [86], using Definition 5.1.1. As shown in the 3 red

rows of Table 5.3, (1) over 29 sub-workloads, none of them guarantees to return all

results within 60s; (2) their latency and cost reduction rates are all dominated by

IPA+RAA(General), and even lose to the Fuxi scheduler on some workloads; (3) their

solving time is 1-2 magnitude higher than our approach, making them infeasible to be

used by a cloud scheduler. As an alternative, we apply IPA to solve the B variables

and these MOO methods to solve only Θ based on Equation (5.5). As shown in the

last 3 blue rows in Table 5.3, they are still inferior to IPA+RAA(General) in both

latency and cost reduction and in running time (mostly taking 1-6 sec to complete).

5.4.3 Breakdown Analysis

This section provides a detailed analysis of IPA+RAA and demonstrates the adaptivity

of our resource optimization approach.

Analysis on IPA+RAA of three workloads. Figures 5.6-5.8 illustrate the distribu-

tion of reduction rates in stage latency (both including and excluding solving time)

as well as total cost for three distinct workloads, with IPA(Cluster) as the default

choice.
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Figure 5.6: RAA with instance clustering (General)
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Figure 5.7: RAA with instance clustering (DBSCAN)

For the workload with the most long-running jobs (workload C), our approach

IPA+RAA(General) outperforms IPA+RAA(DBSCAN) across all workloads. Specif-

ically, compared to IPA+RAA(W/O_C), IPA+RAA(General) achieves a significantly

higher latency reduction rate (including solving time), reaching at least 60% com-

pared to approximately 40%. For the workloads predominantly composed of short-

running jobs (workloads A and B), IPA+RAA(General) shows a comparable perfor-

mance in stage latency (excluding solving time) and cost reduction rate to that of

IPA+RAA(W/O_C).

Analysis on adaptivity of resource optimization. The key insight of Multi-

Objective Resource Optimization (MORO) within a stage is the adaptive allocation

of resources to instances. For example, it allocates more resources to long-running

instances while assigning fewer resources to short-running instances.

Figure 5.9 demonstrates the performance of a long-running stage comprising 479

instances with similar input cardinality, focusing on their latency, cost, cardinality,
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Figure 5.8: RAA without instance clustering
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Figure 5.9: An example of stage latency and cost analysis

and resource plans. Figure 5.9(a) and 5.9(b) show the latency and cost of each

instance by using Fuxi (row 1), IPA only (row 2), and IPA+RAA (row3). IPA reduces

stage latency by decreasing latency for 53% of instances and increasing it for 34%

of instances. When combined with RAA, IPA+RAA further reduces latency and cost

for all instances by optimizing the resource plan. In this example, the correspond-

ing adjusted resource plans are shown in Figure 5.10. IPA+RAA adjusts CPU core

assignments and increases memory size to 6x for each instance, outperforming the

Fuxi policy in both latency and cost.
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Figure 5.10: Instance cardinality and resource plans in Fuxi, IPA and IPA+RAA

5.5 Summary

We presented an algorithm design for multi-objective resource optimization based

on the MaxCompute [71] big data system. To address the complexity of our system,

our Stage-level Optimizer exploits fine-grained instance-level models and develops a

novel RAA module to derive instance-specific resource plans, thereby reducing stage

latency and cost within a hierarchical MOO framework. Evaluation using production

workloads shows that IPA+RAA achieved the reduction of 36-80% latency and 29-75%

cost while running in 0.02-0.24s compared to the Fuxi scheduler [115]. It could reduce

4-77% latency and up to 48% cost at the same time, compared to the existing MOO

methods.
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CHAPTER 6

Query-level Optimizer

The previous chapter aimed at stage-level Pareto optimality, while this chapter

targets query-level Pareto optimality. In addition, it is motivated by the latest big

data systems like Spark that allow fine-grained parameter tuning. For example, some

parameters can be tuned independently for each query stage, while others are shared

across all stages, introducing a high-dimensional parameter space and complex con-

straints. To address this challenge, we propose a new approach called Hierarchical

MOO with Constraints (HMOOC). This method decomposes the optimization prob-

lem of a large parameter space into smaller subproblems, each constrained to use

the same shared parameters. Given that these subproblems are not independent, we

develop techniques to generate a sufficiently large set of candidate solutions and ef-

ficiently aggregate them to form global Pareto optimal solutions. Evaluation results

using TPC-H and TPC-DS benchmarks demonstrate that HMOOC outperforms ex-

isting MOO methods, achieving a 4.7% to 54.1% improvement in hypervolume and

an 81% to 98.3% reduction in solving time.

6.1 Problem Statement and Overview

In this section, we provide background on Spark including its adaptive query execu-

tion extension and present initial results illustrating the benefits and complexity of

fine-grained tuning. We then formally define our Spark parameter tuning problem

and provide an overview of our compile-time/runtime optimization approach.
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6.1.1 Background on Spark

Apache Spark [109] is an open-source distributed computing system for large-scale

data processing and analytics. The core concepts of Spark include jobs, representing

computations initiated by actions, and stages, which are organized based on shuffle

dependencies, serving as boundaries that partition the computation graph of a job.

Stages comprise sets of tasks executed in parallel, each processing a specific data

partition. Executors, acting as worker processes, execute these tasks on individual

cluster nodes.

Spark SQL seamlessly integrates relational processing into the Spark frame-

work [3]. A submitted SQL query undergoes parsing, analysis, and optimization

to form a logical query plan (LQP). In subsequent physical planning, Spark trans-

forms the LQP to one or more physical query plans (PQP), using physical operators

provided by the Spark execution engine. Then it selects one PQP using a cost model,

which mostly applies to join algorithms. The physical planner also performs rule-

based optimizations, such as pipelining projections or filters into one map operation.

The PQP is then divided into a directed acyclic graph (DAG) of query stages (QSs)

based on data exchange dependencies such as shuffling or broadcasting. These query

stages are then executed in a topological order.
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Table 6.1: Spark parameters in three categories

θc Context Parameters Default

k1 spark.executor.cores 1
k2 spark.executor.memory 1G
k3 spark.executor.instances -
k4 spark.default.parallelism -
k5 spark.reducer.maxSizeInFlight 48M
k6 spark.shuffle.sort.bypassMergeThreshold 200
k7 spark.shuffle.compress True
k8 spark.memory.fraction 0.6

θp Logical Query Plan Parameters Default

s1 spark.sql.adaptive.advisoryPartitionSizeInBytes 64M
s2 spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin 0.2
s3 spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold 0b
s4 spark.sql.adaptive.autoBroadcastJoinThreshold 10M
s5 spark.sql.shuffle.partitions 200
s6 spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes 256M
s7 spark.sql.adaptive.skewJoin.skewedPartitionFactor 5.0
s8 spark.sql.files.maxPartitionBytes 128M
s9 spark.sql.files.openCostInBytes 4M

θs Query Stage Parameters Default

s10 spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor 0.2
s11 spark.sql.adaptive.coalescePartitions.minPartitionSize 1M

The execution of a Spark SQL query is configured by three categories of pa-

rameters, as shown in Table 6.1, providing different controls in query lifetime. As

Figure 6.1(a) shows [65], query plan parameters θp guide the translation from

a logical query plan to a physical query plan, influencing the decisions such as the

bucket size for file reading and the join algorithms to use via Spark’s parametric

optimization rules. Figure 6.1(b) shows a concrete example of translating a LQP

to PQP [65], where each logical operator is instantiated by specific algorithms (e.g.,

the first join is implemented by sorting both input relations and then a merge join

of them), additional exchange operators are injected to realize data exchanges, and

query stages are identified at the boundaries of exchange operators. Further, query

stage parameters θs control the optimization of a query stage via parametric rules,

such as rebalancing data partitions. Finally, context parameters θc, specified on

the Spark context, control shared resources, shuffle behaviors, and memory manage-
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ment throughout query execution. While they are in effect only at runtime, θc must

be specified at the query submission time when the Spark context is initialized.

Adaptive Query Execution (AQE). Cardinality estimation [32, 59, 62, 75,

79, 88, 101, 105, 106, 107, 117] has been a long-standing issue that impacts the

effectiveness of the physical query plan. To address this issue, Spark introduced

Adaptive Query Execution (AQE) that enables runtime optimization based on pre-

cise statistics collected from completed stages [25]. Figure 6.2 shows the life cycle of

a SQL query with the AQE mechanism turned on [65]. At compile time, a query is

transformed to a LQP and then a PQP through query optimization (step 3). Query

stages (QSs) that have their dependencies cleared are then submitted for execution.

During query runtime, Spark iteratively updates LQP by collapsing completed QSs

into dummy operators with observed cardinalities, leading to a so-called collapsed

query plan LQP (step 5), and re-optimizes the LQP (step 7) and the QSs (step 10),

until all QSs are completed. At the core of AQE are runtime optimization rules.

Each rule internally traverses the query operators and takes effect on them. These

rules are categorized as parametric and non-parametric, and each parametric rule is

configured by a subset of θp or θs parameters. The details of those rules are in our

tech report [65].
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Figure 6.3: Profiling TPCH-Q9 (12 subQs) over different configurations

6.1.2 Effects of Parameter Tuning

We next consider the issue of Spark parameter tuning and present initial observations

that motivated our approach.

First, parameter tuning affects performance. While Spark supports AQE through

parametric and non-parametric rules, it does not support parameter tuning itself.

The first observation that motivated our work is that tuning over a mixed parameter

space is crucial for Spark performance. Figure 6.3(a) shows that for TPCH-Q9,

query-level parameter tuning using a prior MOO method [86] and then running

AQE (the middle bar) can already provide a 13% improvement over AQE with the

default configuration (left bar) [65].

Second, fine-grained tuning has performance benefits over query-level tuning.

While existing work on Spark parameter tuning [51, 53, 55, 56, 86, 108] focuses

on query-level tuning, we show in Figure 6.3(a) that adapting θp for different col-

lapsed query plans during runtime can further reduce the latency by 61% (the right

bar) [65]. Figure 6.3(b) shows the simplified query structure of TPCH-Q9, including

6 scan operators and 5 join operators [65]. Adapting θp for different collapsed query

plans with observed statistics allows us to discover a new physical query plan with

3 broadcast hash joins (BHJs) and 2 shuffled hash joins (SHJs), outperforming the

query-level tuning result with 2 sort-merge joins (SMJs) + 3 BHJs.

Third, the parameters that are best tuned at runtime based on precise statistics

are correlated with the parameters that must be set at submission time. While the

θp and θs parameters are best tuned at runtime to benefit from precise statistics,

they are strongly correlated with the Spark context parameters, θc, which control
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shared resources and must be set at query submission time when the Spark context

is initialized. Figure 6.3(c) illustrates that the optimal choice of s5 in θp is strongly

correlated with the total number of cores k1 ∗ k3 configured in θc [65]. Many similar

examples exist.

6.1.3 Our Parameter Tuning Approach

We next introduce our approach that supports multi-granularity parameter tuning

using hybrid compile-time/runtime optimization and formally define the optimiza-

tion problem in the MOO setting.

6.1.3.1 Hybrid, Multi-Granularity Tuning

The goal of our work is to find, for each Spark query, the optimal configuration

of all the θp, θs, and θc parameters under multi-granularity tuning. While the

context parameters θc configure the Spark context at the query level, we tune other

parameters at fine granularity to maximize performance gains, including setting the

query plan parameters θp distinctly for each collapsed query plan and the query

stage parameters θs for each query stage in the physical plan.

To address the correlation between the context parameters θc (set at query sub-

mission time) and θp and θs parameters (best tuned at runtime), we introduce a

hybrid compile-time / runtime optimization approach, as depicted by the two red

boxes in Figure 6.2 [65].

Compile-time: Our goal is to (approximately) derive the optimal θ∗
c , by lever-

aging the correlation of all the parameters, to construct an ideal Spark context

for query execution. Our compile-time optimization uses cardinality estimates by

Spark’s cost optimizer.

Runtime: With Spark context fixed, our runtime optimization runs as a plugin of

AQE, invoked each time the collapsed query plan (LQP) is updated from a completed

query stage, and adjusts θp for the collapsed query plan based on the latest runtime

statistics. Then AQE applies θp to its parametric rules to generate an updated

physical query plan (PQP). For the query stages in this new physical plan, our

runtime optimization kicks in to optimize θs parameters based on precise statistics.
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Figure 6.4: MOO solutions for TPCH Q2

Then AQE applies parametric rules with the tuned θs to optimize data partitions

of these stages.

This thesis focuses on algorithm design for compile-time optimization, emphasiz-

ing its ability to address parameter diversity and complexity of fine-grained param-

eter control at compile-time rather than at runtime.

6.1.3.2 Multi-Objective Optimization

Targeting cloud use, our optimization problem concerns multiple user objectives such

as query latency and cloud cost in terms of CPU hours or a weighted combination

of CPU, memory, and IO resources.

Recall the explanation in Section 3.3 that solving MOO problems is not the

same as using fixed weights to create a single-objective (SO) optimization problem.

Figure 6.4 illustrates this for TPCH-Q2 in the 2D space of query latency and cloud

cost: 11 SO problems generated from evenly spaced weight vectors return only two

distinct solutions (marked by the blue dots), where 10 of them collide to the same

bottom point. Increasing to 101 weight vectors still returns only 3 distinct points.

Figure 6.4 shows a Pareto front for TPCH-Q2. Most configurations (e.g. grey

dots) are dominated by the Pareto optimal configurations (e.g. red dots) in both

objectives. Hence, the MOO solution allows us to skip the vast set of dominated con-

figurations. Furthermore, the Pareto points themselves represent tradeoffs between

the two competing objectives. The optimizer can recommend one of them based on

the user preference, e.g., favoring latency to cost in peak hours with weights 0.9 to
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0.1 and vice-versa in off-peak hours. The recommendation can be made based on

the Weighted Utopia Nearest (WUN) distance [86] of the Pareto points from the

Utopia point U , which is the hypothetical optimum in all objectives, marked by the

orange dot in the figure. Figure 6.4 illustrates several recommendations generated

by running WUN on the Pareto front with varying weighted preferences for the

objectives.

We next define the MOO problem for Spark parameter tuning.

Definition 6.1.1. Multi-Objective Optimization for Spark SQL

arg min
θc,{θp},{θs}

f(θc, {θp}, {θs}) =


f1(LQP,θc, {θp}, {θs}, α, β, γ)

...

fk(LQP,θc, {θp}, {θs}, α, β, γ)

 (6.1)

s.t.

θc ∈ Σc,

{θp} = {θp1,θp2, ...,θpt, ...},∀θpt ∈ Σp

{θs} = {θs1,θs2, ...,θsi, ...},∀θsi ∈ Σs

where LQP denotes the logical query plan with operator cardinality estimates, and

θc, {θp}, {θs} represent the decision variables configuring Spark context, LQP trans-

formations, and query stage (QS) optimizations, respectively. More specifically, {θp}

is the collection of all LQP parameters, and θpt is a copy of θp for the t-th trans-

formation of the collapsed query plan LQP. Similarly, {θs} is the collection of QS

parameters, and θsi is a copy for optimizing query stage i. Σc,Σp,Σs are the feasible

space for θc, θp and θs, respectively. Finally, α, β, γ are the non-decision variables

(not tunable, but crucial factors that affect model performance), representing the

input characteristics, the distribution of partition sizes for data exchange, and re-

source contention status during runtime.

6.2 Compile-time Optimization

In this section, we will present our compile-time optimization approach to multi-

granularity parameter tuning with the multi-objective optimization setting.
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6.2.1 Hierarchical MOO with Constraints

To provide a technical context for our problem, an overview of the learned models

is presented, provided by our colleague to facilitate optimization at compile-time.

Compile-time model. At compile time, Spark provides a LQP and then a PQP,

but no any data structures that would suit our goal of fine-grained tuning. There-

fore, we introduce the notion of compile-time subquery (subQ) to denote a group of

logical operators that will correspond to a query stage (QS) when the logical plan

is translated to a physical plan. In other words, it is a sub-structure of the logical

plan that is reversely mapped from a query stage in a physical plan. Figure 6.1(b)

illustrates the LQP of TPCH-Q3, which can be divided into five subQs, each cor-

responding to one QS. As an enhancement, our work can sample multiple physical

plans for each query at compile time, which will lead to different subQ structures.

We collect all of these subQ structures, and develop a predictive model for each

subQ to enable fine-grained tuning of θp at compile-time.

Our compile-time optimization finds the optimal configuration θ∗
c of the context

parameters to construct an ideal Spark context for query execution. Our approach

does so by exploring the correlation of θc with fine-grained θp and θs parameters for

different subqueries, under the modeling constraint that the non-decision variables

for cardinality estimates are based on Spark’s cost-based optimizer. Nevertheless,

even under the modeling constraint, capturing the correlation between the mixed

parameter space allows us to find a better Spark context for query execution, as we

will demonstrate in our experimental study.

The multi-objective optimization problem in Definition 6.1.1 provides fine-grained

control of θp and θs, at the subquery (subQ) level and query stage level, respectively,

besides the query level control of θc. As such, the dimensionality of the parameter

space is dc +m · (dp + ds), where dc, dp and ds denote the dimensionality of the θc,

θp, θs parameters, respectively, and m is the number of query stages. Such high

dimensionality defeats most existing MOO methods when the solving time must be

kept under the constraint of 1-2 seconds for cloud use, as we shall demonstrate in

our experimental study.

To combat the high-dimensionality of the parameter space, we propose a new
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approach named Hierarchical MOO with Constraints (HMOOC). In a nutshell, it

follows a divide-and-conquer framework to break a large optimization problem on

(θc, {θp}, {θs}) to a set of smaller problems on (θc, θp, θs), each corresponding to a

subQ of the logical query plan. However, these smaller problems are not independent

as they must obey the constraint that all the subproblems must choose the same θc

value. More specifically, the problem for HMOOC is defined as follows:

Definition 6.2.1. Hierarchical MOO with Constraints (HMOOC)

argmin
θ

f(θ) =


f1(θ) = Λ(ϕ1(LQP1,θc,θp1,θs1), . . . , ϕ1(LQPm,θc,θpm,θsm))

...

fk(θ) = Λ(ϕk(LQP1,θc,θp1,θs1), . . . , ϕk(LQPm,θc,θpm,θsm))

(6.2)

s.t. θc ∈ Σc ⊆ Rdc , θpi ∈ Σp ⊆ Rdp ,θsi ∈ Σs ⊆ Rds , i = 1, . . . ,m

where LQPi denotes the i-th subQ of the logical plan query, θi = (θc,θpi,θsi)

denotes its configuration, with i = 1, . . . ,m, and m is the number of subQs. Most

notably, all the subQs share the same θc, but can use different values of θpi and

θps. Additionally, ϕj is the subQ predictive model of the j-th objective, where

j = 1, . . . , k. The function Λ is the mapping from subQ-level objective values to

query-level objective values, which can be aggregated using sum based on our choice

of analytical latency and cost metrics.

The main idea behind our approach is to tune each subQ independently under the

constraint that θc is identical among all subQ’s. By doing so, we aim to get the local

subQ-level solutions, and then recover the query-level Pareto optimal solutions by

composing these local solutions efficiently. In brief, it includes three sequential steps:

(1) subQ tuning, (2) DAG aggregation, and (3) WUN recommendation.

Figure 6.5 illustrates an example of compile-time optimization for TPCH-Q3

under the latency and cost objectives. For simplicity, we show only the first three

subQ’s in this query and omit θs in this example. In subQ-tuning, we obtain subQ-

level solutions with configurations of θc and θp, where θc has the same set of two

values (θ1
c , θ2

c ) among all subQ’s, but θp values vary. Subsequently in the DAG

aggregation step, the query-level latency and cost are computed as the sum of the
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Figure 6.5: Example of the Compile-time optimization of TPCH Q3
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Figure 6.6: Example of missed global optimal solutions of TPCH Q3

three subQ-level latency and cost values, and only the Pareto optimal values of

latency and cost are retained. Finally, in the third step, we use the WUN (weighted

Utopia nearest) policy [86] to recommend a configuration from the Pareto front.

6.2.2 Subquery (subQ) Tuning

Subquery (subQ) tuning aims to generate an effective set of local solutions of (θc,

θp, θs) for each subQ while obeying the constraint that all the subQs share the same

θc. For simplicity, we focus on (θc, θp) in the following discussion as θs is treated

the same as θp.

One may wonder whether it is sufficient to generate only the local Pareto solu-

tions of (θc, θp) of each subQ. Unfortunately, this will lead to missed global Pareto

optimal solutions due to the constraint on θc. Figure 6.6 illustrates an example with
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3 subQs, where solutions sharing the same index fall under the same θc configura-

tion and have achieved optimal θp under that θc value. The first row in Figure 6.6

showcases subQ-level solutions, where triangle points represent subQ-level optima

and circle points denote dominated solutions. The second row in Figure 6.6 displays

the corresponding query-level values, where both query-level latency and cost are

the sums of subQ-level latency and cost. Notably, solution 6 is absent from the

local subQ-level Pareto optimal solutions across all subQs. Due to the identical θc

constraint and the sum aggregation from subQ-level values to query-level values,

although solution 6 is dominated in all subQs, the sum of its subQ-level latency and

cost performs better than solution 4 (constructed from subQ-level Pareto optimal

solutions).

Our main idea is to maintain an effective set of solutions, more than just lo-

cal Pareto solutions, for each subQ in order to recover query-level Pareto optimal

solutions. To do so, we introduce the following two techniques.

1. Enriching θc Candidates. To minimize the chance of missing global solutions,

we seek to construct a diverse, effective set of θc configurations to be considered

across all subQs. θc can be initialized by random sampling or grid-search over

its domain of values. Then, we enrich the θc set using a few methods. Drawing

inspiration from the evolutionary algorithms [23], we introduce a crossover operation

over the existing θc population to generate new candidates. If crossover cannot

generate more candidates, e.g., for some grid search methods used for initial sampling

of θc candidates, then we add random sampling to discover new candidates.

2. Optimal θp Approximation. Next, under each θc candidate, we show that

it is crucial to keep track of the local Pareto optimal θp within each subQ. The

following proposition explains why.

Proposition 6.2.1. Under any specific value θj
c, only subQ-level Pareto optimal

solutions (θj
c,θ

∗
p) contribute to the query-level Pareto optimal solutions.

The above result allows us to restrict our search of θp to only the local Pareto

optimal ones. However, given the large, diverse set of θc candidates, it is computa-

tionally expensive to solve the MOO problem for θp for each θc candidate. We next

introduce a clustering-based approximation to reduce the computation complexity.
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It is based on the hypothesis that, within the same subQ, similar θc candidates ex-

hibit similar optimal θp values in the tuning process. By clustering similar θc values

into a small number of groups (based on their Euclidean distance), we then solve

the MOO problem of θp for a single θc representative of each group. To expedite

the repeated solving of θp for different θc representatives, we maintain a pool of

samples of θp and among them find the Pareto optimal values for each θc represen-

tative. We then use the optimized θp as the estimated optimal solution for similar

θc candidates within each group.

Algorithm 2: Effective Set Generation
Require: Q, ϕi, n, ∀i ∈ [1, k], α, β, γ, C, P .
1: Θ

(0)
c ,Θ

(0)
p = sampling(C, P )

2: rep_c_list, C_list, κ = cluster(Θ(0)
c , n)

3: Θ∗
p = optimize_p_moo(Θ(0)

p , rep_c_list, ϕ, α, β, γ, Q)
4: Ω(0), Θ(0) = assign_opt_p(C_list, rep_c_list, Θ∗

p, ϕ, α, β, γ, Q)
5: Θ

(new)
c = enrich_c(Ω(0), Θ(0))

6: C_list(new) = assign_cluster(Θ(new)
c , rep_c_list, κ)

7: Ω(new), Θ(new) = assign_opt_p(C_list(new), rep_c_list, Θ∗
p, ϕ, α, β, γ, Q)

8: Ω, Θ = union(Ω(0), Θ(0), Ω(new), Θ(new))
9: return Ω, Θ

Algorithm. Algorithm 2 describes the steps for obtaining an effective solution set

of (θc,θp) for each subQ. Line 1 initiates by generating C×P samples, where C and

P are the numbers of distinct values of θc and θp, respectively. The θc candidates

are then grouped using a clustering approach (Line 2), where rep_c_list constitutes

the list of θc representatives for the n groups, C_list includes the members within

all n groups, and κ represents the clustering model. In Line 3, θp optimization is

performed for each representative θc candidate (using the samples from Line 1).

Subsequently, the optimal θp of the representative θc is assigned to all members

within the same group and is fed to the predictive models to get objective values

(Line 4). After that, the initial effective set is obtained, where Ω(0) represents the

subQ-level objective values under different θc, and Θ(0) represents the corresponding

configurations. Line 5 further enriches θc using the crossover method or random

sampling, which expands the initial effective set to generate new θc candidates.

Afterwards, the cluster model κ assigns the new θc candidates with their group labels
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(Line 6). The previous optimal θp values are then assigned to the new members

within the same group, resulting in their corresponding subQ-level values as the

enriched set (Line 7). Finally, the initial set and the enriched set are combined as

the final effective set of subQ tuning (Line 8).

Sampling methods. We next detail the sampling methods used in Line 1 of the

algorithm. (1) We include basic sampling methods, including random sampling and

Latin-hypercube sampling (LHS) [72] as a grid-search method. (2) To reduce dimen-

sionality, we introduce feature importance score (FIS) based parameter filtering: we

sort the parameters by the FIS value from the trained model and leverage the long-

tail distribution to drop the parameters at the tail. Precisely, many parameters at

the tail have a low cumulative FIS and we apply a threshold (e.g., 5% model loss) to

remove them from sampling. (3) We further propose an adaptive grid search method

with FIS-based parameter filtering. Given the sample budget (C or P ), it goes down

the FIS ranking list and progressively covers one more parameter, including its min,

median and max values. If it reaches the budget before adding all parameters, it

ignores those uncovered ones. Otherwise, it loops over the list again to add more

sampled values of each parameter. (4) We conduct hyperparameter tuning to derive

low, medium, and high values for C and P . We also employ a simple runtime adap-

tive scheme to adjust the sampling budget based on the predicted latency under the

default configuration. See our tech report [65] for more details.

6.2.3 DAG Aggregation

DAG aggregation aims to recover query-level Pareto optimal solutions from subQ-

level solutions. This task is a combinatorial MOO problem, as each subQ must select

a solution from its non-dominated solution set while satisfying the θc constraint, i.e.,

identical θc configuration among all subQs. The complexity of this combinatorial

problem can be exponential in the number of subQs. Our proposed approach be-

low addresses this challenge by providing optimality guarantees and reducing the

computation complexity.

Simplified DAG. A crucial observation that has enabled our efficient methods is

that in our problem setting, the optimization problem over a DAG structure can be
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simplified to an optimization problem over a list structure. This is due to our choice

of analytical latency and cost metrics, where the query-level objective can be com-

puted as the sum of subQ-level objectives, which applies to the analytical latency,

IO cost, CPU cost, etc., as explained in the previous section. The functionality of a

DAG can be simulated with a list structure for computing query-level objectives.

HMOOC1: Divide-and-Conquer. This method was contributed by our col-

league. Under a fixed θc, i.e., satisfying the constraint inherently, we propose a

divide-and-conquer method to compute the Pareto set of the simplified DAG, which

is reduced to a list of subQs. The idea is to (repeatedly) partition the list into

two halves, solve their respective subproblems, and merge their solutions to global

Pareto optimal ones. The merge operation enumerates all the combinations of so-

lutions of the two subproblems, sums up their objective values and retains only the

Pareto optimal ones.

This DAG aggregation method is described in Algorithm 3. The Ω,Θ are the

effective set of all subQs, where Ω represents subQ-level objective values, and Θ

represents the corresponding configurations, including {θc, {θp}, {θs}}. If there is

only one subQ, it returns the Ω,Θ (lines 1-2). Otherwise, it follows a divide-and-

conquer framework (lines 4-8).

The main idea is a merging operation, which is described in Algorithm 4. The

input includes the subQ-level objective values (e.g. Fh is a Pareto frontier) and its

configurations (Cr) for the two nodes to be merged, where h and r denote they are

two different nodes. It merges two nodes into a pseudo node by enumerating all the

combinations of solutions in the two nodes (lines 2-3), summing up their objective

values (lines 4-5) and taking its Pareto frontier as the solutions of this pseudo node

(line 8).

HMOOC2: WS-based Approximation. We propose a second technique to

approximate the MOO solution over a list structure. For each fixed θc, we apply

the weighted sum (WS) method to generate evenly spaced weight vectors. Then for

each weight vector, we obtain the (single) optimal solution for each subQ and sum

the solutions of subQ’s to get the query-level optimal solution. It can be proved that

this WS method over a list of subQs guarantees to return a subset of query-level
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Algorithm 3: General_Divide_and_conquer
Require: subQ-level values Ω, subQ-level configurations Θ.
1: if |Ω| == 1 then
2: return Ω, Θ
3: else
4: Ωh, Θh = first_half(Ω, Θ)
5: Ωr, Θr = second_half(Ω, Θ)
6: Fh, Ch = General_Divide_and_conquer(Ωh, Θh)
7: Fr, Cr = General_Divide_and_conquer(Ωr, Θr)
8: return merge(Fh, Ch,Fr, Cr)
9: end if

Algorithm 4: merge
Require: Fh, Ch,Fr, Cr.
1: F , C = ∅, ∅
2: for (F1, F2), (c1, c2) ∈ (Fh, Ch) do
3: for (F ′

1, F
′
2), (c

′
1, c

′
2) ∈ (Fr, Cr) do

4: F = F ∪ {(F1 + F ′
1, F2 + F ′

2)}
5: C = C ∪ {(c1, c′1), (c2, c′2)}
6: end for
7: end for
8: return F∗, C∗ = filter_dominated(F , C)

Pareto solutions.

Algorithm 5 describes the full procedures. The input includes a subQ_list, which

includes both subQ-level objective values and the corresponding configurations of all

subQs. ws_paris are the weight pairs, e.g. [[0.1, 0.9], [0.2, 0.8], . . . ] for latency and

cost. Line 1 initializes the query-level objective values and configurations. Lines

3-9 address the Weighted Sum (WS) method to generate the query-level optimal

solution for each weight pair. Specifically, Lines 5-8 apply the WS method to obtain

the optimal solution choice for each subQ, and sum all subQ-level values to get

the query-level values. Upon iterating through all weights, a Pareto solution set is

derived after the necessary filtering (Line 12).

HMOOC3: Boundary-based Approximation. Given that DAG aggregation

under each θc candidate operates independently, it is inefficient to do so repeatedly

when we have a large number of θc candidates. Our next approximate technique

stems from the idea that the objective space of DAG aggregation under each θc can

be approximated by k extreme points, where k is the number of objectives. In this
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Algorithm 5: Compressing_list_nodes
Require: subQ_list, ws_pairs.
1: PO = [ ], conf = [ ]
2: for [wl, wc] in ws_pairs do
3: po_n = [ ], conf_n = {}
4: for subQ_po, subQ_conf in subQ_list do
5: subQ_po_norm = normalize_per_subQ(subQ_po)
6: opt_ind = minimize_ws([wl, wc], subQ_po_norm)
7: po_n.append(subQ_po[opt_ind])
8: conf_n.append(subQ_conf[opt_ind])
9: end for

10: PO.append(sum(po_n)), conf.append(conf_n)
11: end for
12: return filter_dominated(PO, conf)
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Figure 6.7: Approximated DAG optimization

context, the extreme point under a fixed θc is the Pareto optimal point with the

best query-level value for any objective. Then, the approximate query-level Pareto

set is determined by the non-dominated extreme points among all θc points.

The rationale behind this approximation lies in the observation that solutions

from different θc candidates correspond to distinct regions on the query-level Pareto

front. This arises from the fact that each θc candidate determines the total resources

allocated to the query, and a diverse set of θc candidates ensures good coverage

across these resources. Varying total resources, in turn, lead to different objectives

of query performance, hence resulting in good coverage of the Pareto front of cost-

performance tradeoffs.

Therefore, we consider the degenerated extreme points to symbolize the bound-
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aries of different (resource) regions within the query-level Pareto front. Figure 6.7

illustrates an example. Here, extreme points and the dashed rectangles of different

colors represent the query-level objective space of Pareto optimal solutions under

various θc candidates. The brown dashed line represents the approximate query-

level Pareto front derived by filtering the dominated solutions from the collection of

extreme points. The star solution indicates a missed query-level Pareto solution, as

it cannot be captured from the extreme points.

The algorithm works as follows. For each θc candidate, for each objective, we

select the subQ-level solution with the best value for that objective for each subQ,

and then sum up the objective values of such solutions from all subQs to form one

extreme point. Repeating this procedure will lead to a maximum of kn query-level

solutions, where k is the number of objectives and n is the number of θc candidates.

An additional filtering step will retain the non-dominated solutions from the kn

candidates, using an existing method of complexity O(kn log(kn)) [50].

Our formal results include the following, and more details of theoretical analysis

in compile-time optimization are discussed in Section 6.3.

Proposition 6.2.2. Under a fixed θc candidate, the query-level objective space of

Pareto optimal solutions is bounded by its extreme points in a 2D objective space.

Proposition 6.2.3. Given subQ-level solutions, our boundary approximation method

guarantees to include at least k query-level Pareto optimal solutions for a MOO

problem with k objectives.

6.2.3.1 Multiple Query Plan Search

Our compile-time MOO algorithm so far has considered only one physical query

plan (with the corresponding subQs) based on the default configuration. Since

at runtime, AQE may generate a very different physical plan, we further enhance

our compile-time optimization by considering multiple physical plans. Initially, we

sample plan-related parameters (s3 and s4) in θp to collect different physical query

plans. We then rank these plans based on their predicted query latency under

the default configuration. Subsequently, we trigger compile-time optimization (the

HMOOC algorithm) for each of the top-k fastest query plans, run them in parallel,
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and merge their Pareto solutions into the same objective space to obtain the final

Pareto set.

6.3 Theoretical Analysis

In this section, we include the algorithms, proofs and complexity analysis of our

optimization techniques.

6.3.1 Subquery (subQ) Tuning

Proposition 6.2.1 Under any specific value θj
c, only subQ-level Pareto optimal

solutions (θj
c,θ

∗
pi) for the i-th subQ contribute to the query-level Pareto optimal

solutions (θj
c,{θ∗

p}).

Proof. Let F j
q be a query-level Pareto optimal solution for θj

c. It can be expressed

as F j
q =

∑m
i=1 F

j
si. Assume that there exists at least one i, e.g., i1, such that F j

si1
is

not optimal for the i1-th subQ. Let F j′
q = F j′

si1
+

∑m
i=1,i ̸=i1

F j
si where F j′

si1
is Pareto

optimal for the i1-th subQ.

We have

F j
q − F j′

q = F j
si1

− F j′
si1

(6.3)

Since F j′
si1

is optimal for the i1-th subQ, we have F j
si1

> F j′
si1

. This means that F j
si1

is dominated by F j′
si1

, which contradicts our hypothesis. Therefore, a Pareto optimal

solution for the query-level can only contain subQ-level Pareto optimal solutions

under a fixed θj
c.

Complexity analysis of model inference related to the sampling rate. The

sampling rate includes the number of θc and θp samples, denoted as Nc and Np

respectively. The model is called three times in line 3, 4 and 7 respectively.

Line 3 calls the model to provide the predictions of C cluster-representative θc

and Np θp samples. For m subQs, there is m × C × Np predictions. It filters the

dominated solutions of each θc under each subQ to ensure that θc is identical among

all subQs while maintaining the optimality of θp, as illustrated in Proposition 6.2.1.
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Line 4 assigns the optimal θp solutions to Nc initialized θc samples for all subQs

and provides the corresponding predictions. Since the number of optimal solutions

of a θc sample for different subQs could be different, for simplicity, we use pavg to

denote the average number of optimal solutions among all θc samples and all subQs.

The total number of predictions is Nc × pavg ×m.

Line 7 functions the same as line 4, where the only difference is to assign the

optimal θp solutions (returned from line 3) to the newly generated θc samples for all

subQs. Assume Nnew
c new θc samples are generated, the total number of predictions

is Nnew
c × pavg ×m.

6.3.2 DAG Aggregation

We provide further details of three methods for DAG aggregation.

HMOOC1: Divide-and-Conquer. From the perspective of optimality, given the

effective set of subQ-level solutions, Algorithm 3 is proven to return a complete set of

query-level Pareto optimal solutions, as it enumerates over all subQ-level solutions.

The complexity of merge function is O(M ∗N)+O((M ∗N)log(M ∗N)) if there

are M and N solutions in two nodes, where the enumeration takes O(M ∗ N) and

filtering dominated solutions takes O((M ∗N)log(M ∗N)). However, after multiple

merging operations, both M and N could become large, leading to a potentially

high total complexity.

The core operation in HMOOC1 is the merge, which enumerates over all subQ-

level solutions. The following are the theoretical proof. For the sake of simplicity,

we consider the case with two nodes.

Proposition 6.3.1. Algorithm 3 always output the full Pareto front of the simplified

DAG.

Proof. Let D and G be two nodes (e.g., subQs or aggregated subQs). Let ⊕ be the

Minkowski sum, i.e., D ⊕ G = {FD + FG, FD ∈ D,FG ∈ G}. Let Pf denote the

Pareto Front of a node.

Pf(Pf(D)⊕ Pf(G)) = Pf(D ×G) (6.4)
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Let ED : CD → R be the evaluation function of node D, where CD is the set

of configurations for node D. We define EG in a similar manner. We also define

E : (cD, cG) 7→ ED(cD) + EG(cG), where cD and cG are one configuration in CD and

CG respectively.

Let p ∈ Pf(Pf(D)⊕ Pf(G)). Then p can be addressed as a sum of two terms:

one from Pf(D) and the other from Pf(G), i.e.,

p = pD + pG, pD ∈ Pf(D), pG ∈ Pf(G) (6.5)

Let cD ∈ Pf−1(pD) and cG ∈ Pf−1(pG), i.e., cD is chosen such as ED(cD) = pD,

and likewise for cG. Then we have p = E(cD, cG), so p belongs to the objective

space of D × G. Suppose p doesn’t belong to Pf(D × G). This means that there

exists p′ in Pf(D ×G) that dominates p. p′ can be expressed as p′ = p′D + p′G with

p′D ∈ Pf(D) and p′G ∈ Pf(G). p′ dominates p can be expressed as p′D < pD and

p′G ≤ pG or p′D ≤ pD and p′G < pG in our optimization problem with minimization,

which contradicts the definition of p as belonging to the Pareto Front. Therefore p

must belong to Pf(D ×G) and thus Pf(Pf(D)⊕ Pf(G)) ⊆ Pf(D ×G).

Let us now suppose that p ∈ Pf(D × G). Then there exists c in D × G, i.e.,

c = (cD, cG) with cD ∈ D, cG ∈ G, such that p = E(c). By setting pD = ED(cD)

and pG = EG(cG), we have p = pD + pG. By definition, pD belongs to Pf(D) and

pG belongs to Pf(G). Hence, p ∈ Pf(D)⊕ Pf(G).

Suppose that p doesn’t belong to Pf(Pf(D)⊕ Pf(G)) and that there exists p′

in Pf(Pf(D) ⊕ Pf(G)) that dominates p. We showed above that p′ must belong

to Pf(D×G). Thus both p and p′ belong to Pf(D×G) and p′ dominates p, which

is impossible. Therefore p′ must belong to Pf(Pf(D)⊕ Pf(G)) and Pf(Pf(D)⊕

Pf(G)) ⊆ Pf(D ×G).

By combining the two inclusions, we obtain that Pf(Pf(D)⊕Pf(G)) = Pf(D×

G), where the left side is the Pareto optimal solution from the Algorithm 3 and the

right side is the Pareto optimal solution over the whole configuration space of two

nodes. Thus, Algorithm 3 returns a full set of Pareto solutions.

99



Chapter 6. Query-level Optimizer

HMOOC2: WS-based Approximation.

Lemma 6.3.1. For a DAG aggregation problem with k objectives that use the sum

operator only, Algorithm 5 guarantees to find a non-empty subset of query-level

Pareto optimal points under a specified θc candidate.

In proving Lemma 6.3.1, we observe that Algorithm 5 is essentially a Weighted

Sum procedure over Functions (WSF). Indeed we will prove the following two Propo-

sitions: 1) each solution returned by WSF is Pareto optimal; 2) the solution returned

by the Algorithm 5 is equivalent to the solution returned by WSF. Then it follows

that the solution returned by Algorithm 5 is Pareto optimal.

To introduce WSF, we first introduce the indicator variable xij, i ∈ [1, ...,m], j ∈

[1, ..., pi], to indicate that the j-th solution in i-th subQ is selected to contribute to

the query-level solution.
∑pi

j=1 xij = 1 means that only one solution is selected for

each subQ. Then x = [x1j1 , ...xmjm ] represents the 0/1 selection for all m subQs to

construct a query-level solution. Similarly, f = [f 1
1j1

, . . . , fk
mjm ] represents the value

of the objectives associated with x.

So for the v-th objective, its query-level value could be represented as the function

H applied to x:

Fv = Hv(x; f) =
m∑
i=1

pi∑
j=1

xij × f v
ij,

where

pi∑
j=1

xij = 1, i ∈ [1, ...,m], v ∈ [1, ...k]

(6.6)

For simplicity, we refer to Hv(x; f) as Hv(x) when there is no confusion. Now

we introduce the Weighted Sum over Functions (WSF) as:

argmin
x

(
k∑

v=1

wv ×Hv(x)) (6.7)

s.t.
k∑

v=1

wv = 1, wv ≥ 0 for v = 1, . . . , k (6.8)

where wv is the weight value for objective v. Next, we prove for Lemma 6.3.1. As
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stated before, It is done in two steps.

Proposition 6.3.2. The solution constructed using x returned by WSF is Pareto

optimal.

Proof.

Assume that x∗ (corresponding to [F ∗
1 , ..., F

∗
k ] ) is the solution of WSF. Suppose

that another solution [F
′
1, ..., F

′

k] (corresponding to x′) dominates [F ∗
1 , ..., F

∗
k ]. This

means that
∑k

v=1 wv ×Hv(x
′) is smaller than that of x∗.

This contradicts that x∗ is the solution of WSF. So there is no [F
′
1, ..., F

′

k] domi-

nating [F ∗
1 , ..., F

∗
k ]. Thus, [F ∗

1 , ..., F
∗
k ] is Pareto optimal.

Proposition 6.3.3. The optimal solution returned by the Algorithm 5 is equivalent

to the solution constructed using x returned by WSF.

Proof.

Suppose x′ is returned by WSF. The corresponding query-level solution is [F ′
1, ..., F

′

k]

x′ = argmin
x

(
k∑

v=1

wv ×Hv(x))

= argmin(
k∑

v=1

wv × (
m∑
i=1

pi∑
j=1

xij × f v
ij))

= argmin(
m∑
i=1

(
k∑

v=1

pi∑
j=1

(wv × f v
ij)× xij))

(6.9)

For the solution [F
′′
1 , ..., F

′′

k ] returned by Algorithm 5, x′′ represents the corre-

sponding selection. It is achieved by minimizing the following formula:

m∑
i=1

min
j∈[1,pi]

(WSij)

=
m∑
i=1

min
j∈[1,pi]

(
k∑

v=1

wv × f v
ij)

=
m∑
i=1

min
j∈[1,pi]

(
k∑

v=1

pi∑
j=1

(wv × f v
ij)× xij)

(6.10)
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where WSij =
∑k

v=1wv × f v
ij. Given a fixed i, xij can only be positive (with value

1) for one value of j.

So, x′′ must solve:

x′′ = (
m∑
i=1

argmin
xij

(
k∑

v=1

pi∑
j=1

(wv × f v
ij)× xij))

= argmin
x

(
m∑
i=1

(
k∑

v=1

pi∑
j=1

(wv × f v
ij)× xij))

(6.11)

Here, optimizing for each subQ is independent of the optimization of the other

subQs, so we can invert the sum over i and the argmin. Thus, x′ = x′′. Therefore,

WSF and Algorithm 5 are equivalent.

With these two propositions, we finish the proof of Lemma 6.3.1.

Algorithm 5 varies w weight vectors to generate multiple query-level solutions.

And under each weight vector, it takes O(m ·pmax) to select the optimal solution for

each LQP-subtree based on WS, where pmax is the maximum number of solutions

among m subQs. Thus, the overall time complexity of one θc candidate is O(w ·

(m · pmax)).

HMOOC3: Boundary-based Approximation.

Proposition 6.2.2 Under a fixed θc candidate, the query-level objective space of

Pareto optimal solutions is bounded by its extreme points in a 2D objective space.

Proof.

Assume that F 1
q = [F 1∗

q , F 2−
q ] and F 2

q = [F 1−
q , F 2∗

q ] are two extreme points under

a fixed θc, recalling that the extreme point under a fixed θc is the Pareto optimal

point with the best query-level value for any objective. Here the superscript {1∗}

means it achieves the best in objective 1 and {2∗} means it achieves the best in

objective 2. The two extreme points form an objective space as a rectangle.

Suppose that an existing query-level Pareto optimal solution F
′
q = [F 1′

q , F 2′
q ] is

outside this rectangle, which includes 2 scenarios. In scenario 1, it has F 1′
q < F 1∗

q

or F 2′
q < F 2∗

q , which is impossible as extreme points already achieves the minimum
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values of two objectives. In scenario 2, it has F 1′
q > F 1−

q or F 2′
q > F 2−

q , which is

impossible as F
′
q is dominated by any points inside the rectangle.

So there is no Pareto optimal solution F
′
q existing outside the rectangle and it

concludes the proof.

Proposition 6.2.3 Given subQ-level solutions, our boundary approximation method

guarantees to include at least k query-level Pareto optimal solutions for a MOO

problem with k objectives.

Proof.

Assume that F 1
q , ...F

k
q are k extreme points, which are Pareto optimal and achieve

the best (e.g. the lowest in the minimization problem) query-level values of objec-

tives 1, ..., k among all θc configurations. Suppose that an existing Pareto optimal

solution F
′
q , distinct from the extreme points, dominates any point in F 1

q , ...F
k
q . F

′
q

must achieve a better value than F 1∗
q , ...F k∗

q in any objectives 1, ..., k, where the su-

perscript {1∗} means it achieves the best in objective 1 and {k∗} means it achieves

the best in objective k. which is impossible as the extreme points already achieves

the best.

So these k extreme points cannot be dominated by any other solutions. Thus,

they are Pareto optimal and this concludes the proof.

6.4 Experimental Evaluation

In this section, we evaluate our fine-grained compile-time optimization techniques.

6.4.1 Setup

Spark setup. We perform SQL queries at two 6-node Spark 3.5.0 clusters with

runtime optimization plugins. Our optimization focuses on 19 parameters, including

8 for θc, 9 for θp, and 2 for θs, selected based on feature selection profiling [40] and

best practices from the Spark documentation. More details are in tech report [65].

Workloads. We generate datasets from the TPC-H and TPC-DS benchmarks with

a scale factor of 100. We use the default 22 TPC-H and 102 TPC-DS queries for the
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Figure 6.8: Comparison of performance of all DAG aggregation methods

optimization analyses and end-to-end evaluation. To collect training data, we further

treat these queries as templates to generate 50k distinct parameterized queries for

TPC-H and TPC-DS, respectively. We run each query under one configuration

sampled via Latin Hypercube Sampling [72].

Implementation. We implement our optimizer using plugins into Spark. (1)

The trace collector is implemented as customized Spark listeners to track runtime

plan structures and statistics, costing an average of 0.02s overhead per query. (2)

The compile-time optimizer operates as a standalone module, costing an average

of 0.4s. (3) The model server maintains up-to-date models on the same server as

the optimizer. The TPC-H and TPC-DS traces were split into 8:1:1 for training,

validation, and testing. It took 6-12 hours to train one model and 2 weeks for

hyperparameter tuning on a GPU node with 4 NVIDIA A100 cards.

6.4.2 Compile-time MOO Methods

We next evaluate our compile-time MOO methods against existing MOO methods.

The objectives include query latency and cloud cost as a weighted sum of cpu hours,

memory hours, shuffle sizes.

Expt 1: DAG Aggregation methods. We first compare the three DAG aggregation

methods (§6.2.3) in the HMOOC framework in terms of accuracy and efficiency.

Hypervolume (HV) is a standard measure of the dominated space of a Pareto set in

the objective space. All three methods provide similar HV but varies in solving time.

Figures 6.8 shows that Boundary-based Approximation (HMOOC3) is the most efficient

for both benchmarks, achieving the mean solving time of 0.5-0.8s. Therefore, we use
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HMOOC3 in the remaining experiments.
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Figure 6.9: Accuracy and efficiency of our compile-time MOO algorithms, compared to
existing MOO methods

Expt 2: Sampling Methods. We next compare different sampling methods used

with HMOOC3, where H3-R and H3-L denote Random sampling and Latin Hypercube

Sampling (LHS), and H3-R̂ and H3-L̂ denote their variants with feature importance

score (FIS) based parameter filtering. Further, H3-A denotes our Adaptive grid-

search with FIS-based parameter filtering. The sampling rate is set uniformly (C =

54)× (P = 243) for all methods. Figures 6.9 report on HV and solving time, in the

first 5 bars in each group. In terms of HV, H3-A is the best for TPC-H, and H3-L

and H3-R slightly outperform the other three with parameter filtering for TPC-DS.

Considering solving time, we see that H3-A achieves the lowest solving time, finishing

all TPC-H queries in 1s and 100/102 TPC-DS queries in 2s. The methods without

parameter filtering can have the solving time exceeding 6 seconds for some TPC-DS

queries. Overall, H3-A achieves a good balance between HV and solving time.

Expt 3: Comparison with SOTA MOO methods. We next compare with SOTA

MOO methods, WS [69] (with tuned hyperparameters of 10k samples and 11 pairs of

weights), Evo [23] (with a population size of 100 and 500 function evaluations), and

PF [86], for fine-grained tuning of parameters based on Definition 6.1.1. Figures 6.9

report their HV and solving time, in the last three bars of each group. HMOOC3

outperforms other MOO methods with 4.7%-54.1% improvement in HV and 81%-

98.3% reduction in solving time. These results stem from HMOOC’s hierarchical

framework, which addresses a smaller search space with only one set of θc and θp

at a time, and uses efficient DAG aggregation to recover query-level values from
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subQ-level ones. In contrast, other methods solve the optimization problem using

the global parameter space, including m sets of θp, where m is the number of subQs

in a query.
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Figure 6.10: Analytical performance of our algorithm, compared to the state-of-the-art
(SOTA) methods with query-level tuning

Expt 4: Comparison with Query-level Tuning. Figures 6.10 show results of query-

level tuning, where TPC-H queries take over an average of at least 2.7s and much

lower HV (at most 87%) than HMOOC3 (93%). All of TPCDS queries with query-

level tuning lose to HMOOC3 in HV (at most 83% v.s. 89%) and in solving time (the

average exceeding 14s v.s. 0.8s).

Additional end-to-end experimental results provided by our colleague can be

found in our technical report [65], which extends our best compile-time optimization

method, HMOOC3, to include runtime optimization.

6.4.3 Breakdown Analysis

This section provides a breakdown analysis of DAG aggregation methods, the ne-

cessity of finer control of parameters, and the enrichment of new θc.

106



6.4. Experimental Evaluation

0.145 0.150 0.155 0.160 0.165
Query Cost

10

20

30

40
Q

ue
ry

 L
at

en
cy

Pareto

(a) Pareto frontier of TPCH Q2

0.145 0.150 0.155 0.160 0.165
Query Cost

10

20

30

40

Q
ue

ry
 L

at
en

cy

HMOOC1(1_1g_4)
HMOOC3(1_1g_4)
HMOOC1(3_3g_16)
HMOOC3(3_3g_16)
HMOOC1(5_20g_16)
HMOOC3(5_20g_16)

(b) Pareto frontier of TPCH Q2 with dif-
ferent total resources

Figure 6.11: Objective space under differen resources

Analysis on DAG aggregation methods. HMOOC1 and HMOOC3 achieve compa-

rable hypervolume because they have the similar coverage of the Pareto frontiers

in the objective space. To verify this, θc candidates are implemented with three

different total resource settings, as shown in Figure 6.11. For example, the setting

1_1g_4 indicates the values of parameters k1, k2, and k3, representing the number

of cores per executor (e.g., 1), the memory size per executor (e.g., 1g), and the

number of executors (e.g., 4), respectively. Figure 6.11 demonstrates that solutions

from diverse total resources cover various regions of the Pareto frontier, and HMOOC3

achieves the boundary points of HMOOC1. It is noteworthy that all DAG aggrega-

tion methods have the same effective set. Thus, HMOOC3 is able to achieve similar

coverage of the Pareto frontier to that from HMOOC1 when θc candidates within the

effective set cover diverse total resources.
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Figure 6.12: Comparison of query-control and finer-control with smaller searching space

Analysis on necessity of finer-control. It’s noteworthy that query-control can-
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Figure 6.13: Comparison of Hypervolume and solving time with/without new θc extension
for three sampling methods

not achieve a higher upper bound than finer-control. To verify this, we implemented

a smaller search space (each parameter having only 2 values) for WS to fully explore

query-control, where WS performs the best among all baselines for both TPC-H and

TPC-DS. Figure 6.12 displays the hypervolumes (HVs) of WS under different num-

bers of samples, with blue and orange bars representing the HVs of finer-control and

query-control, respectively. It is observed that as the number of samples increases,

the HV of query-control stops increasing at 1M samples (89.8%), while the HV of

finer-control continues to improve (90.6%). This demonstrates that finer-control has

the potential to achieve better solutions than query-control, illustrating the necessity

of finer-control in our problem.

Analysis on new θc extension. Figure 6.13 compares HV and solving time with

and without new θc extension for all sampling methods, where H3-Ā, H3-L̄ and

H3-R̄ denote results without new θc extension from adaptive grid search, LHS and

random sampling.

For adaptive grid search, it extends new θc by random sampling. Figures 6.13(a)

and 6.13(d) show the HV and solving time of all queries in TPC-H and TPC-DS.

Without new θc extension, HV reduces slightly compared to the HV with new θc

extension (≤ 0.6%). This is because the adaptive grid search uses random sampling

to extend new θc, which works to extend more global Pareto optimal θc while with
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Figure 6.14: Comparison of Pareto frontiers with/without crossover in LHS and random-
sampling

limit capability due to the high-dimensional space. Figures 6.13(b) and 6.13(e) com-

pare the performance of LHS with and without the new θc extension by crossover.

These figures display the HV and solving time for all queries in TPC-H and TPC-

DS. Without crossover, HV decreases by up to 2.6% compared to HV with crossover.

The HV reduction is not substantial because boundary solutions (i.e., those with

minimum latency or minimum cost) have a significant impact on HV by defining

the boundaries of the dominated space on the Pareto front. Meanwhile, crossover

contributes to generating better global optimal solutions within the middle region of

the Pareto front, as illustrated in Figures 6.14. The solving time without crossover

decreases as it reduces the procedures following the new θc extension. Similar ob-

servations are seen in Figures 6.13(c) and 6.13(f) for extending new θc in random

sampling.

Figures 6.14 show the Pareto frontiers of example queries based on the maximum

HV differences between results with and without crossover using LHS and random

sampling. Green points represent solutions with the crossover operation, while or-

ange points represent solutions without crossover. For both LHS and random sam-
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pling as the initial sampling methods, solutions with crossover yield better results

in the middle region of the Pareto front. This improvement is due to the crossover

location set in the implementation. In our experiment, the crossover location is set

to 3 based on hyperparameter tuning, which splits θc into two sets: resource and

non-resource parameters. The Cartesian product of these two sets does not generate

new values for total resources. Consequently, the crossover explores better solutions

in the middle region rather than better boundary solutions with significantly lower

latency or cost.

6.5 Summary

This chapter presented an efficient MOO algorithm designed for fine-grained Spark

parameter tuning with complex control, aiming to achieve Pareto optimality for the

entire query. Our approach decomposes the optimization problem of a large pa-

rameter space into smaller subproblems, each constrained to use the same shared

parameters. Evaluation results using the TPC-H and TPC-DS benchmarks demon-

strate that HMOOC outperforms existing MOO methods, achieving improvements in

hypervolume ranging from 4.7% to 54.1% and reductions in solving time ranging

from 81% to 98.3%.
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CHAPTER 7

Conclusions and Future Work

This chapter summarizes the thesis and discusses some interesting directions for

future research.

7.1 Thesis Summary

This thesis focuses on the design of Multi-Objective Optimization (MOO) algorithms

for the Cloud Optimizer in big data systems, addressing: 1) multiple competing

performance goals and budgetary costs; 2) high-dimensional parameter space and

complex finer-control; and 3) high efficiency for cloud use (i.e., 1-2 seconds). Our ex-

perimental evaluation, conducted using MaxCompute in Alibaba Cloud and Spark,

demonstrates that our approaches outperform existing methods in both performance

and solving time.

More specifically, in Chapter 4, a benchmark analysis of MOO methods and

solvers is presented to identify their limitations, particularly regarding efficiency and

the quality of Pareto solutions. We compare the performance of three solvers—Knitro,

grid search, and random-sampling, and three representative MOO methods: Weighted

Sum (WS), Evolutionary (EVO), and Multi-Objective Bayesian Optimization (MOBO).

Experimental results demonstrate that the MOBO method and Knitro are not suit-

able for cloud use due to their high solving time. The other methods are chosen as

the MOO baselines for the experiments in Chapters 5 and 6, as they show compa-

rable performance in both quality and efficiency for cloud use.

Chapter 5 proposes a novel hierarchical MOO approach designed to compute
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Pareto optimal solutions for query stages in MaxCompute. To fine-tune resources

of instances within a stage, this method decomposes the stage-level MOO problem

into multiple parallel instance-level MOO problems and efficiently derives stage-

level MOO solutions from instance-level MOO solutions. Evaluation results using

production workloads demonstrate that our hierarchical MOO approach outperforms

existing MOO methods by 4% to 77% in terms of latency performance and up to 48%

in cost reduction while operating within 0.02 to 0.24 seconds compared to current

optimizers and schedulers.

Chapter 6 develops a new approach, called Hierarchical MOO with Constraints

(HMOOC), to achieve Pareto optimality for the entire query with finer-granularity

control of Spark parameters. This method decomposes the optimization problem of

a large parameter space into smaller subproblems, each constrained to use the same

shared parameters. Given that these subproblems are not independent, we develop

techniques to generate a sufficiently large set of candidate solutions and efficiently

aggregate them to form global Pareto optimal solutions. Evaluation results using

TPC-H and TPC-DS benchmarks demonstrate that HMOOC outperforms existing

MOO methods, achieving a 4.7% to 54.1% improvement in hypervolume and an 81%

to 98.3% reduction in solving time.

7.2 Future Work

For future study, we propose several interesting directions related to this thesis, as

outlined below.

Extension to other big data systems. Our MOO modules implemented in

MaxCompute and Spark demonstrate superior performance compared to other MOO

baselines and the default settings. In the future, we plan to extend our approach to

other big data/DBMS systems such as Presto [89] and Greenplum [66].

Take Presto as an example. Presto is a distributed SQL query engine designed

for big data environments [89]. It executes queries across a hierarchical structure

of stages. To enhance efficiency, Presto incorporates several optimization strate-

gies, including cost-based optimization, history-based optimization, and adaptive
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execution. The cost-based optimizer minimizes overall memory usage by optimizing

join type selection and join reordering. In its history-based optimizer, Presto lever-

ages precise execution statistics from previously completed queries to improve the

performance of future repeated queries. Similarly, akin to Spark’s adaptive query

execution, Presto enables its planner to re-optimize query plans for downstream

tasks during runtime, utilizing statistics gathered from already completed tasks.

Our Cloud Optimizer can be integrated with Presto to enhance its performance

through the addition of MOO and model server modules. Suppose a user submits a

query represented as a Directed Acyclic Graph (DAG) of stages, accompanied by a

set of query-level objectives. The MOO module then computes the Pareto optimal

solutions, drawing on objective predictions from the model server. For instance,

consider fine-grained models, such as stage-level models, where each stage can in-

dependently configure its parameters with the objectives of minimizing query-level

latency and cost. If the query-level latency and cost are aggregated from stage-

level values using sum or max aggregators, the General Hierarchical MOO method,

as proposed in Chapter 5, is appropriate for generating a set of Pareto optimal

solutions. Furthermore, if stage-level parameters are subject to constraints, such

as sharing certain parameters across all stages, the Hierarchical MOO method with

Constraints, discussed in Chapter 6, becomes applicable. In another scenario, where

only a coarse-grained model is available that allows for query-level parameter con-

figurations, the MOO module can employ any existing MOO method to directly

compute the query-level Pareto optimal solutions.

Workload-level optimization. Query optimization for workload-level optimiza-

tion in big data systems presents significant challenges due to the complexity of

decision-making, influenced by stringent user constraints. For instance, consider a

scenario where the objective is to optimize the 99th percentile latency and cost of a

workload, all within a one-month budget. In this thesis, our Cloud Optimizer takes

an analytical task as input, with the MOO module supporting optimization at the

task, stage, and query levels by focusing on latency, cost, and other objectives. In

practice, performance goals could extend to the workload level, such as optimizing

multiple queries within a workload. In the future, the Cloud Optimizer could be
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extended to support workload-level optimization, making it adaptable to all levels

of granularity in optimization.

Recent works addressed workload-level optimization using both coarse-grained

and fine-grained approaches [26, 38, 53, 81]. QTune [53] aimed to identify an op-

timal configuration for entire query workloads to maximize throughput. However,

this approach may lead to higher latency as it applies a coarse-grained optimization

to the entire query workload rather than tuning individual queries. SparkCruise [81]

implemented a feedback loop for Spark workloads, collecting queries to generate a

unified workload representation. This facilitates further optimization through the in-

tegration of additional optimizer rules. Tuneful [26] prioritized key parameters that

influence overall workload performance, rather than focusing on individual queries.

Conversely, Microlearner [38] developed a method to segment big data workloads

at Microsoft into smaller subsets and created tailored micromodels for each subset,

enabling more precise optimizations.

The MOO module in the Cloud Optimizer is well-suited for addressing workload-

level optimization from a fine-grained perspective. For instance, consider a scenario

where workload-level latency is represented by the 99th percentile of query-level

latencies, and the cost is the aggregate of all query-level costs. Since the 99th per-

centile latency reflects the maximum latency for the fastest 99% of queries and the

cost is computed as the sum of query-level cost, it aligns with the max and sum ag-

gregation functions employed in the General Hierarchical MOO method. Therefore,

when workload-level objectives are aggregated through functions like max or sum

from query-level models, employing the General Hierarchical MOO method within

the MOO module is an effective approach for solving this type of multi-objective

workload-level optimization.

Enable MOO solutions with model uncertainty. The current MOO module in

the Cloud Optimizer assumes that predictions from the learned models are accurate.

However, the accuracy of these models can significantly impact MOO performance,

as inaccurate predictions may lead to incorrect Pareto frontiers.

Future work will focus on integrating model uncertainty into the MOO module

to more effectively address and mitigate inaccuracies in the models. There are two
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primary existing approaches to solving the MOO problem when model uncertainty

is involved. These approaches can generally be classified into: 1) MOO methods,

and 2) stochastic methods [60].

The first approach involves quantifying model uncertainty and incorporating it

into the objectives, which are then addressed using existing MOO methods. For ex-

ample, UseMO [9] represents model uncertainty as confidence bounds of predictive

models for multiple objectives. Employing a multi-objective Bayesian optimization

framework, this method resolves the MOO problem using multiple acquisition func-

tions through NSGA-II [22], selecting new points based on the maximum volume of

the uncertainty hyperrectangle.

The second direction transforms the MOO problem with model uncertainty into

a stochastic single-objective problem. Stochastic programming methods can tackle

this challenge by modeling the randomness in uncertain parameters using probability

distributions [13]. This area requires further investigation in future research.

Distributed data centers. Our current cloud optimizer is designed without con-

sidering a multi-data center scenario, where an analytical task involves accessing

geographically distributed data centers. This introduces additional challenges for

MOO, particularly when predictive models are called and updated across distributed

locations. In such scenarios, network costs cannot be neglected when invoking pre-

dictive models from different locations during optimization.

In the future, our Cloud Optimizer could be adapted to effectively handle dis-

tributed data centers. Two potential strategies for this adaptation involve enhance-

ments related to the model server and the MOO module within the Cloud Optimizer.

The first strategy involves integrating data location and network features into the

model, enabling the model server to more accurately capture the impact of data dis-

tribution and network dynamics. This integration aims to enhance the optimizer’s

performance by accounting for the complexities of distributed data centers and the

variability of network traffic. The second strategy focuses on quantifying network

costs and incorporating them into the optimization objectives. These costs could

then be addressed using MOO approaches. For instance, NEAL [15] aims to reduce

communication time for distributed big data operators. For this strategy, the MOO
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module might either utilize existing MOO methods directly if they are deemed suit-

able, or require the development of novel MOO methods tailored to these specific

network challenges. Further research is necessary to explore these directions more

comprehensively.
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APPENDIX A

Additional Materials for Benchmark Study

of Multi-Objective Optimization

Unlike Knitro [42], CPLEX primarily functions as a Linear Programming (LP) solver

[16]. We provide a theoretical analysis on the feasibility of transforming ReLU

activations into linear expressions and extend this transformation approach to the

broader context of MINLP problems. This analysis seeks to explore the potential

for representing Mixed Integer Non-Linear Programming (MINLP) problems within

a linear framework.

A.1 CPLEX

Consider CPLEX [16] as an example of an LP solver. CPLEX is an optimization

software package designed for solving LP problems. The representation of the op-

timization problem solved by CPLEX follows the format defined in Equation (4.4).

However, CPLEX is limited to LP and its extensions, such as Quadratic Program-

ming (QP), Mixed Integer Programming (MIP), and network-flow problems [17,

103]. The general implementation in CPLEX involves configuring properties for

objectives, constraints, and variables.

Theoretically, CPLEX can solve our MINLP problem once the non-linear repre-

sentation of the DNN is converted into a linear expression. Specifically, the crucial

step is transforming the ReLU function into a linear representation. After this trans-
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formation, the MINLP optimization problem falls into the MIP category due to the

mixed variable types. CPLEX addresses this using a highly general and robust

algorithm based on branch-and-cut.

ReLU transformation. The main idea is to convert the maximization function

into a constrained linear representation by introducing new variables, as discussed

in an online math community [70]. For example, consider the ReLU function y =

max(x1w1 + x2w2, 0). The conversion steps are as follows:

1. Add a new variable x0 and let x0 = max(x1w1 + x2w2, 0);

2. Add a new binary variable δ and then convert the max function into linear

constraints using the formulation in Equation (A.1), where M represents a

sufficiently large constant (big-M).

subject to



x0 ≤ x1w1 + x2w2 +M(1− δ)

x0 ≥ x1w1 + x2w2 −M(1− δ)

x0 ≤ 0 +Mδ

x0 ≥ 0−Mδ

x1w1 + x2w2 ≤ 0 +Mδ

0 ≤ x1w1 + x2w2 +M(1− δ)

(A.1)

Finally, Equation (4.5) is reformulated to minimize y = x0 with constraints

defined in Formula (A.1), by introducing one new variable, one new binary variable,

and six corresponding constraints.

To demonstrate the validity of this transformation, note that since δ is a binary

variable included in the constraints, the following is evident: 1) when δ = 0, it

results in x0 = 0; 2) when δ = 1, it results in x0 = x1w1 + x2w2.

MINLP transformation. We now extend the ReLU transformation to a more

general MINLP transformation. After this conversion, the MINLP problem is re-

formulated as a constrained MIP problem, where both the objective function and

constraints are linear.
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Starting with the two-layer DNN defined in Equation (4.2), the corresponding

representation of the objective, as shown in Equations (4.6) and (4.7), includes

three ReLU functions. Applying the conversion steps, the MINLP is reformulated

to include three new variables, three new binary variables, and eighteen constraints.

Finally, the MINLP problem is converted into a constrained MIP problem, aiming

to minimize y = x
′
0, where

x
′

0 = max(x11
0 w2

1 + x12
0 w2

2, 0) (A.2)

with x11
0 and x12

0 represented as:

x11
0 = max(x1w

1
11 + x2w

1
12, 0)

x12
0 = max(x1w

1
21 + x2w

1
22, 0)

(A.3)

Additional new binary variables and constraints are introduced for x11
0 , x12

0 , x
′
0, fol-

lowing the formulation in Equation (A.1).

Overall, the MINLP transformation introduces new variables and constraints,

with their total numbers dependent on the DNN configuration. For a MINLP with

an arbitrary DNN model as the objective, where the DNN includes L layers, m

nodes in each hidden layer, and one node in the output layer, the total number of

ReLU functions is m× (L− 1)+ 1. For each ReLU function, two new variables and

six constraints are introduced to convert the MINLP to a MIP. Consequently, the

total number of new variables is 2 × (m × (L − 1) + 1), and the total number of

new constraints is 6× (m× (L− 1)+1). This can lead to a large-scale optimization

problem when L and m are large.
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Titre : Optimisation multi-objectifs pour l’analyse de données dans le cloud

Mots clés : Multi-objectif, optimisation, cloud computing, réglage des paramètres, base de données

Résumé : Le traitement des requêtes Big Data est
devenu de plus en plus important, ce qui a conduit
au développement et au déploiement dans le cloud
de nombreux systèmes. Cependant, le réglage auto-
matique des nombreux paramètres de ces systèmes
Big Data introduit une complexité croissante dans
la satisfaction des objectifs de performance et des
contraintes budgétaires des utilisateurs. Déterminer
les configurations optimales est un défi en raison de
la nécessité de répondre à : 1) de multiples objec-
tifs de performance concurrents et des contraintes
budgétaires, tels qu’une faible latence et un faible
coût, 2) un espace de paramètres de grande dimen-
sion avec un contrôle de paramètres complexe, et 3)
l’exigence d’une efficacité de calcul élevée dans l’uti-
lisation du cloud, généralement dans les 1 à 2 se-
condes.
Pour relever les défis ci-dessus, cette thèse pro-
pose des algorithmes d’optimisation multi-objectifs
(MOO) efficaces pour un optimiseur de cloud afin de
répondre à divers objectifs utilisateur. Il calcule des
configurations optimales de Pareto pour les requêtes

Big Data dans un espace de paramètres de grande di-
mension tout en respectant des exigences strictes en
matière de temps de résolution. La première contribu-
tion de cette thèse est une analyse comparative des
méthodes et des solveurs MOO existants, identifiant
leurs limites lorsqu’ils sont appliqués à l’optimisation
du cloud. La deuxième contribution présente les al-
gorithmes MOO conçus pour calculer des solutions
optimales de Pareto pour les étapes de requête, qui
sont des unités définies par des limites de mélange.
Notre troisième contribution vise à atteindre l’optima-
lité de Pareto pour l’ensemble de la requête avec un
contrôle de granularité plus fin des paramètres.
Les résultats d’évaluation basés sur des systèmes de
big data existants démontrent que nos approches sur-
passent considérablement les algorithmes MOO exis-
tants en termes de mesures de performance telles
que les réductions simultanées de la latence et du
coût, ou les améliorations de l’hypervolume, le tout
obtenu dans un temps de résolution faible (moins de
2 secondes).

Title : Multi-Objective Optimization for Data Analytics in the Cloud

Keywords : Multi-objective, optimization, cloud computing, parameter tuning, database

Abstract : Big data query processing has become
increasingly important, prompting the development
and cloud deployment of numerous systems. Ho-
wever, automatically tuning the numerous parame-
ters in these big data systems introduces growing
complexity in meeting users’ performance goals and
budgetary constraints. Determining optimal configura-
tions is challenging due to the need to address : 1)
multiple competing performance goals and budgetary
constraints, such as low latency and low cost, 2) a
high-dimensional parameter space with complex pa-
rameter control, and 3) the requirement for high com-
putational efficiency in cloud use, typically within 1-2
seconds.
To address the above challenges, this thesis pro-
poses efficient multi-objective optimization (MOO) al-
gorithms for a cloud optimizer to meet various user
objectives. It computes Pareto optimal configurations

for big data queries within a high-dimensional para-
meter space while adhering to stringent solving time
requirements. The first contribution of this thesis is
a benchmarking analysis of existing MOO methods
and solvers, identifying their limitations when applied
to cloud optimization. The second contribution intro-
duces MOO algorithms designed to compute Pareto
optimal solutions for query stages, which are units
defined by shuffle boundaries. Our third contribution
aims to achieve Pareto optimality for the entire query
with finer-granularity control of parameters.
Evaluation results based on existing big data sys-
tems demonstrate that our approaches significantly
outperform existing MOO algorithms in terms of per-
formance metrics such as simultaneous reductions in
latency and cost, or improvements in hypervolume, all
achieved within a low solving time (less than 2 se-
conds).
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