N

N

Multi-Objective Optimization for Data Analytics in the

Cloud
Qi Fan

» To cite this version:

Qi Fan. Multi-Objective Optimization for Data Analytics in the Cloud. Databases [cs.DB]. Institut
Polytechnique de Paris, 2024. English. NNT : 2024IPPAX069 . tel-04820858

HAL Id: tel-04820858
https://theses.hal.science/tel-04820858v1

Submitted on 5 Dec 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-04820858v1
https://hal.archives-ouvertes.fr

OLYTEC
Q
"@
Ok
c
/A
9
1, N
DE eP

INSTITUT
POLYTECHNIQUE
DE PARIS

NNT : 2024IPPAX069

fe
-
O
O
o
5
©
g
©
V)
D
- -
I—

ECOLE
POLYTECHNIQUE

02 IP PARIS

Multi-Objective Optimization for Data
Analytics in the Cloud

These de doctorat de I'Institut Polytechnique de Paris
préparée a Ecole polytechnigue

Ecole doctorale n°626 Ecole Doctorale de I'Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thése présentée et soutenue a Palaiseau, le 23/09/2024, par

Ql FAN

Composition du Jury :

Laurent d’Orazio

Professor, CNRS IRISA, Rennes 1, University Président & Rapporteur

Reza Akbarinia

HDR, LIRMM, INRIA, University of Montpellier Rapporteur
Peter J. Haas

Professor, University of Massachusetts Amherst Examinateur
Pierre Bourhis

Junior Researcher, INRIA, CNRS, Universite Lille 1 Examinateur
Yanlei Diao

Professor, Ecole polytechnique Directeur de these

Acknowledgements

I would like to take this opportunity to express my heartfelt gratitude to everyone
who provided support and encouragement throughout my Ph.D. journey.

First and foremost, the completion of my dissertation would not have been pos-
sible without the support and nurturing of my supervisor, Prof. Yanlei Diao. Her
dedicated mentorship and exceptional technical expertise have been invaluable to
me. She has generously devoted her time to offer advice on reading, writing, pre-
sentations, and even technical communication skills. T am deeply grateful for her
encouragement, patience, and continued support.

I would like to express my deepest appreciation to my committee members, Prof.
Laurent D’Orazio, Dr. Reza Akbarinia, Prof. Peter J. Haas, and Dr. Pierre Bourhis,
who engaged with my thesis diligently and enthusiastically, providing valuable sug-
gestions. I am also extremely grateful to the jury members of the Comité de Suivi,
Prof. Leo Liberti and Dr. Pierre Bourhis, for their guidance on this thesis.

I would like to extend my sincere thanks to my colleagues at Ecole Polytechnique
and Inria. I had a wonderful time working alongside my team members, Chenghao
Lyu, Guillaume Lachaud, Vincent Jacob, Arnab Sinha, Fei Song, who offered in-
valuable help and advice, not only in our work but also in life. Special thanks to
Ioana Manolescu and Oana Balalau; your help and valuable suggestions regarding
research and my future career cannot be overestimated. I also greatly appreciate the
time spent together with Oana Goga, Madhulika Mohanty and Garima Gaur, Abir
Benzaamia, Asmaa El fraihi, Nardjes Amieur, Hiba, Ghufran Khan, Kun Zhang,
Salim Chouaki, Théo Bouganim, Théo Galizzi, Tom Calamai, Simon Ebel, Nelly
Barret, Khaled Zaouk, Luciano di Palma, and Pawel Guzewicz. You all contribute

to a pleasant work environment, where we enjoy fascinating experiences of sharing

food from different countries and engaging in interesting discussions on various cul-
tures and religions. In addition, I'd like to acknowledge the assistance of Frédéric
Ayrault, Jessica Gameiro, Héléna Kutniak and Bahareh Yazdi with administrative
matters.

I would like to thank my friends Enhui Huang, Guili Zhao and Mengyu Gao for
their companionship in France. It has been an unforgettable experience, especially
living in a foreign country.

I would like to thank the China Scholarship Council (CSC) and European Re-
search Council (ERC) for their funding of my Ph.D. studies in France. This expe-
rience and the memories will remain in my heart forever.

Finally, I would like to express my deepest gratitude to my parents, my sister,

and my boyfriend for their endless love, understanding, and spiritual support.

Thank you all!
Merci a tous!

Qi FAN

v

Abstract

Big data query processing has become increasingly important, prompting the devel-
opment and cloud deployment of numerous systems. However, automatically tuning
the numerous parameters in these big data systems introduces growing complex-
ity in meeting users’ performance goals and budgetary constraints. Determining
optimal configurations is challenging due to the need to address: 1) multiple com-
peting performance goals and budgetary constraints, such as low latency and low
cost, 2) a high-dimensional parameter space with complex parameter control, and
3) the requirement for high computational efficiency in cloud use, typically within
1-2 seconds.

To address the above challenges, this thesis proposes efficient multi-objective
optimization (MOO) algorithms for a cloud optimizer to meet various user objec-
tives. It computes Pareto optimal configurations for big data queries within a high-
dimensional parameter space while adhering to stringent solving time requirements.
More specifically, this thesis introduces the following contributions.

The first contribution of this thesis is a benchmarking analysis of existing MOO
methods and solvers, identifying their limitations, particularly in terms of efficiency
and the quality of Pareto solutions, when applied to cloud optimization.

The second contribution introduces MOO algorithms designed to compute Pareto
optimal solutions for query stages, which are units defined by shuffle boundaries. In
production-scale big data processing, each stage operates within a high-dimensional
parameter space, with thousands of parallel instances. Each instance requires re-
source parameters determined upon assignment to one of thousands of machines,
as exemplified by systems like MaxCompute. To achieve Pareto optimality for each

query stage, we propose a novel hierarchical MOO approach. This method de-

composes the stage-level MOO problem into multiple parallel instance-level MOO
problems and efficiently derives stage-level MOO solutions from instance-level MOO
solutions. Evaluation results using production workloads demonstrate that our hi-
erarchical MOO approach outperforms existing MOO methods by 4% to 77% in
terms of latency and up to 48% in cost reduction while operating within 0.02 to 0.24
seconds compared to current optimizers and schedulers.

Our third contribution aims to achieve Pareto optimality for the entire query
with finer-granularity control of parameters. In big data systems like Spark, some
parameters can be tuned independently for each query stage, while others are shared
across all stages, introducing a high-dimensional parameter space and complex con-
straints. To address this challenge, we propose a new approach called Hierarchical
MOO with Constraints (HMOOC). This method decomposes the optimization prob-
lem of a large parameter space into smaller subproblems, each constrained to use
the same shared parameters. Given that these subproblems are not independent, we
develop techniques to generate a sufficiently large set of candidate solutions and ef-
ficiently aggregate them to form global Pareto optimal solutions. Evaluation results
using TPC-H and TPC-DS benchmarks demonstrate that HMOOC outperforms ex-
isting MOO methods, achieving a 4.7% to 54.1% improvement in hypervolume and

an 81% to 98.3% reduction in solving time.

vi

Resumé

Le traitement des requétes Big Data est devenu de plus en plus important, ce qui a
conduit au développement et au déploiement dans le cloud de nombreux systémes.
Cependant, le réglage automatique des nombreux parameétres de ces systémes Big
Data introduit une complexité croissante pour répondre aux objectifs de performance
et aux contraintes budgétaires des utilisateurs. La détermination des configurations
optimales est un défi en raison de la nécessité de prendre en compte : 1) plusieurs
objectifs de performances et contraintes budgétaires concurrents, tels qu’une faible
latence et un faible coiit, 2) un espace de paramétres de grande dimension avec
un controle de paramétres complexe, et 3) l'exigence d’une configuration élevée.
efficacité de calcul dans 'utilisation du cloud, généralement en 1 & 2 secondes.

Pour relever les défis ci-dessus, cette thése propose des algorithmes d’optimisation
multi-objectifs (MOO) efficaces pour un optimiseur de cloud afin de répondre a
divers objectifs des utilisateurs. Il calcule les configurations Pareto optimales pour
les requétes Big Data dans un espace de parametres de grande dimension tout en
respectant des exigences strictes en matiére de temps de résolution. Plus précisément,
cette thése présente les contributions suivantes.

La premiére contribution de cette thése est une analyse comparative des mé-
thodes et solveurs MOO existants, identifiant leurs limites, notamment en termes
d’efficacité et de qualité des solutions Pareto, lorsqu’elles sont appliquées a l'opti-
misation du cloud.

La deuxiéme contribution présente des algorithmes MOO congus pour calculer
des solutions optimales de Pareto pour les étapes de requéte, qui sont des unités
définies par des limites de mélange. Dans le traitement de données volumineuses a

I’échelle de la production, chaque étape fonctionne dans un espace de paramétres de

grande dimension, avec des milliers d’instances paralléles. Chaque instance nécessite
des parameétres de ressources déterminés lors de l'affectation & I'une des milliers
de machines, comme l'illustrent des systémes comme MaxCompute. Pour atteindre
I'optimalité de Pareto pour chaque étape de requéte, nous proposons une nouvelle
approche MOO hiérarchique. Cette méthode décompose le probléme MOO au niveau
de I’étape en plusieurs probléemes MOO paralléles au niveau de l'instance et dérive
efficacement des solutions MOO au niveau de I'étape a partir de solutions MOO au
niveau de l'instance. Les résultats de 1’évaluation utilisant des charges de travail de
production démontrent que notre approche MOO hiérarchique surpasse les méthodes
MOO existantes de 4 & 77% en termes de latence et jusqu’a 48% en réduction des
colits tout en fonctionnant dans un délai de 0,02 a 0,24 seconde par rapport aux
optimiseurs et planificateurs actuels.

Notre troisiéme contribution vise a atteindre I'optimalité Pareto pour I’ensemble
de la requéte avec un contrdle plus fin des parameétres. Dans les systémes Big
Data comme Spark, certains paramétres peuvent étre ajustés indépendamment pour
chaque étape de la requéte, tandis que d’autres sont partagés entre toutes les étapes,
introduisant ainsi un espace de parameétres de grande dimension et des contraintes
complexes. Pour relever ce défi, nous proposons une nouvelle approche appelée
MOO hiérarchique avec contraintes (HMOOC). Cette méthode décompose le pro-
bléme d’optimisation d’un grand espace de parameétres en sous-problémes plus pe-
tits, chacun contraint d’utiliser les mémes paramétres partagés. Etant donné que
ces sous-problémes ne sont pas indépendants, nous développons des techniques pour
générer un ensemble suffisamment large de solutions candidates et les agréger ef-
ficacement pour former des solutions Pareto optimales globales. Les résultats de
I’évaluation utilisant les benchmarks TPC-H et TPC-DS démontrent que HMOOC
surpasse les méthodes MOO existantes, obtenant une amélioration de 4,7% a 54,1%

de 'hypervolume et une réduction de 81% a 98,3% du temps de résolution.

viii

Contents

List of Figures. e xi
List of Tables o o xiv

1 Introduction 1
1.1 Technical Challenges 3
1.2 Contributions L e)
1.2.1 Benchmark study of Multi-Objective Optimization)

1.2.2 Stage-level Optimizer 7

1.2.3 Query-level Optimizer 8

1.3 Thesis Outline o o 10

2 Basics and Related Work 11
2.1 Multi-Objective Optimization (MOO) 11
2.1.1 Definitionso L oo 11

2.1.2 MOO Algorithms o000 13

2.1.3 Performance Indicators L. 17

2.1.4 MOO for SQL Queries 0oL 19

2.2 Parameter tuning of DBMS and big data systems 20
2.3 Resource optimization in cloud data analytics 25
2.4 SUMIATY . . v v o v e 28

3 System Overview and Problem Statement 31
3.1 System Overview e 31
3.1.1 Job Description 0 .. 31

3.1.2 System Design o oo 33

Contents

3.2 Problem Statement of MOO 35
3.3 User Experience oo e 37
34 Summaryl e e 38
Benchmark Study of Multi-Objective Optimization 39
4.1 Study on Solvers 40
4.1.1 Existingsolvers e 41
4.1.2 Knitroo e 42
4.2 Experimental Evaluation of Solvers and MOO Algorithms 43
421 Setup 44
4.2.2 Evalution Results00 oL, 45
4.2.3 Discussionon solvers Lo 46
4.3 Summary ... oL e e e e e e e e A7
Stage-level Optimizer 49
5.1 Problem Statement and Overview 49
5.1.1 Background on MaxCompute 20
5.1.2 System Design for Resource Optimization 52
5.1.3 Our Resource Optimization Approach 54
5.2 Formulations of Resource Optimization o7
5.2.1 Plan A: Optimizationover Band ©®. o7
5.2.2 Plan B: Optimizationover © 59
5.3 Resource Assignment Advisor (RAA) 61
5.3.1 Overview of Optimization in RAA. 61
5.3.2 General Hierarchical MOO solution 63
5.3.3 Theorectical Analysis L. 65
5.4 Experimental Evaluation, 68
541 Setup 69
5.4.2 Resource Optimization (RO) Evaluation 73
5.4.3 Breakdown Analysis 74
5.5 SUMMATY o o e e e e e e e e e e e e e e e e e 7

Contents

6 Query-level Optimizer 79
6.1 Problem Statement and Overview 79
6.1.1 Background on Sparko o000 80

6.1.2 Effects of Parameter Tuning 83

6.1.3 Our Parameter Tuning Approach 84

6.2 Compile-time Optimization 86
6.2.1 Hierarchical MOO with Constraints 87

6.2.2 Subquery (subQ) Tuning 89

6.2.3 DAG Aggregation e 92

6.3 Theoretical Analysis o oo oo 97
6.3.1 Subquery (subQ) Tuning 97

6.3.2 DAG Aggregation oo 98

6.4 Experimental Evaluation 103
6.4.1 Setup e 103

6.4.2 Compile-time MOO Methods 104

6.4.3 Breakdown Analysis, 106

6.5 Summaryl e e 110

7 Conclusions and Future Work 111
7.1 Thesis Summary 111
7.2 Future Worko 112
Bibliography 117

A Additional Materials for Benchmark Study of Multi-Objective Op-

timization 131

A1l CPLEX . . . e 131

x1

Contents

xii

List

of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2

Example of MOO definitions 12
Examples of performance indicators (The hypervolume is highlighted

in red, while the uncertainty space corresponds to the white region

enclosed by the four blue points.) L. 18
An example of an analytical task of TPCH-Q1 32
Job description L 32
System design e 34
Comparison for performance of solvers among 30 workloads 45

Comparison for performance of existing MOO methods among 258

workloads L 46
The lifecycle of a query job in MaxCompute 50
Extended system architecture for resource optimization 53
Example of IPA 54
Example of RAA 63
Simulation frameworko Lo 69
RAA with instance clustering (General) 75
RAA with instance clustering (DBSCAN) 75
RAA without instance clustering 76
An example of stage latency and cost analysis 76

Instance cardinality and resource plans in Fuxi, IPA and IPA+RAA . 77

Spark parameters provide mixed control through query compilation

and execution L, 80

List of Figures

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11
6.12

6.13

6.14

Query life cycle with an optimizer for parameter tuning 82
Profiling TPCH-Q9 (12 subQs) over different configurations 83
MOO solutions for TPCH Q2 85
Example of the Compile-time optimization of TPCH Q3 89
Example of missed global optimal solutions of TPCH Q3 89
Approximated DAG optimization 95
Comparison of performance of all DAG aggregation methods 104
Accuracy and efficiency of our compile-time MOO algorithms, com-

pared to existing MOO methods 105
Analytical performance of our algorithm, compared to the state-of-
the-art (SOTA) methods with query-level tuning 106
Objective space under differen resources 107
Comparison of query-control and finer-control with smaller searching
SPACE « v v v e 107
Comparison of Hypervolume and solving time with/without new 6.
extension for three sampling methods 108
Comparison of Pareto frontiers with/without crossover in LHS and

random-sampling oL Lo 109

Xiv

List of Tables

6.1

Selected Spark parameters

Additional notation for the proof of General Hierarchical MOO Problem 65
Workload statistics for 3 workload over 5days 70

Average Reduction Rate (RR) against Fuxi in 29 sub-workloads within

CHAPTER 1

Introduction

The prevalence of cloud technology among big data users is notable both currently
and is expected to increase in the foreseeable future. Presently, approximately 94%
of global companies utilize cloud software [91]. Gartner projects that by 2025, over
95% of new digital workloads will transition to cloud-native platforms, a significant
increase from 30% in 2021 [28]|. Furthermore, it is anticipated that by 2028, 70% of
all workloads will be conducted within cloud computing environments [27].

Running cloud-based analytical tasks presents significant challenges for users,
particularly due to the multitude of requirements involved. Consider an enterprise
user intending to execute a Spark analytic task [109] in the cloud. Initially, the user
must select an appropriate hardware configuration from over 300 available instances
on Amazon EC2 2|, each offering various combinations of CPU power, memory,
storage, and networking capabilities. Subsequently, the user is required to configure
several software parameters, such as the number of CPU cores, memory size, num-
ber of executors, shuffle behaviors (e.g., number of shuffle partitions), and memory
management (e.g., fraction of memory allocated for execution and storage). These
configurations critically influence both performance metrics, such as latency, and
monetary costs, in accordance with the pricing strategy of Amazon EC2.

The necessity for automatic optimization of user analytic tasks stems from the
need to fulfill diverse user requirements, encompassing factors like latency, monetary
cost, and additional objectives. Typically, cloud service providers mandate users to

choose a cloud instance—a set of machines tailored with specific computing capa-

Chapter 1. Introduction

bilities—suitable for their application demands. Nonetheless, the manual scaling,
deployment, and configuration of cloud services often result in suboptimal settings

that diminish performance [6], thereby escalating latency and monetary costs.

The predominant theoretical approach for optimizing multiple, potentially con-
flicting, user performance objectives is Multi-Objective Optimization (MOO). MOO
identifies a Pareto-optimal set of solutions that illustrates the trade-offs among var-
ious objectives, with no single solution outperforming others across all dimensions.
This framework empowers users to select the optimal solution according to their pref-
erences. For example, in balancing two competing objectives—latency and cost—the
solution set might be categorized into three distinct groups: low latency at a higher
cost, medium latency at a moderate cost, and high latency at a reduced cost. Con-
sequently, MOO provides the flexibility for users to choose a solution tailored to

specific preferences, such as low latency.

The Pareto optimal solution yielded by MOO is identified as a configuration
after an extensive search through a vast parameter space in big data systems. A
configuration for cloud analytical tasks is defined as a constant vector that assigns
specific values to each tuning parameter within a fixed and ordered set. For instance,
the configuration [1,5] for the parameters [CPU cores,memory size| establishes a
system setting with 1 CPU core and 5 GB of memory. This configuration is utilized
by cloud analytical tasks to operate within big data systems, aiming to achieve
performance goals that encompass multiple objectives, such as reducing latency and

minimizing monetary costs.

In this thesis, we propose the development of a Cloud Optimizer grounded in
MOO principles. The primary aim of this optimizer is to automatically determine the
optimal configuration for each incoming analytical task across a range of objectives,
optimizing them simultaneously. The Cloud Optimizer is designed to accommodate
both SQL and Machine Learning (ML) tasks. At its core, it employs a systematic
MOO methodology to generate a set of optimal configurations, from which the most

suitable configuration is selected to best satisfy all specified objectives.

1.1. Technical Challenges

1.1 Technical Challenges

The primary distinction between our research and existing studies is our approach
to addressing the MOO problem with detailed, complex parameter control under
strict time constraints. While state-of-the-art methods [35, 49, 55, 96| tackle MOO
in parameter tuning for big data systems, they do not typically differentiate between
types of parameters or accommodate the stringent 1-2 second time limits that are
characteristic of cloud environments. In contrast, a recent study, UDO [102], clas-
sifies database system parameters into heavy and light categories based on the cost
of value modification. Nevertheless, UDO’s focus is on optimizing throughput or
latency exclusively, rather than addressing broader MOO challenges.

In particular, we tackle the following technical challenges.

e Good quality and coverage of the cloud optimizer: Fundamentally
distinct from single-objective optimization, MOO introduces significant chal-
lenges for a Cloud Optimizer tasked with exploring the Pareto frontier—the
set of all optimal solutions in MOOQO. Achieving good quality and coverage along
this frontier means identifying solutions that not only perform optimally across
all objectives but also represent a diverse range of preferences within the ob-
jective space. Traditional MOO methods such as the Weighted Sum approach
[19] often struggle to provide comprehensive coverage of the Pareto frontier.
On the other hand, evolutionary algorithms like NSGA-II [22] promote diver-
sity but typically offer only an approximation of the Pareto frontier. Moreover,
the quality of solutions and the computation time are heavily influenced by

hyperparameters such as population size and the number of evaluations.

e High efficiency of the cloud optimizer: Achieving high efficiency presents
a considerable challenge, as the Cloud Optimizer must recommend configura-
tions within stringent time constraints typical for cloud usage, such as the 1-2
second window necessary to avoid delays in starting cloud-based analytical
tasks. Previous research on MOO for Spark tuning [86] demonstrated that the
Multi-Objective Bayesian Optimization method [20] typically requires about

Chapter 1. Introduction

48 seconds to deliver Pareto solutions. Such extended processing times are
highly impractical for cloud environments, underscoring the need for more

rapid solution methodologies.

High-dimensional parameters: In practical applications, the number of
tuning parameters can be vast due to unique workload characteristics. For in-
stance, service providers like Alibaba Cloud are tasked with assigning resource
plans to all instances within a query stage, defined by shuffle boundaries.
These resource plans dictate the allocation of resources, such as CPU cores
and memory size, to each instance on a specific machine [64, 71|. In scenarios
where a stage includes m instances, the parameter space expands dramatically
to 2 x m, with m potentially surpassing 6,000 in real workloads. The use of
the Evolutionary method [22], although powerful, proves impractical in such
contexts as it may require more than 10 minutes to deliver Pareto solutions
for stages comprising thousands of instances, rendering it unsuitable for the

rapid-response demands of Alibaba Cloud’s operational environment.

Fine-grained complex control of parameters: Unlike previous works that
uniformly tune parameters across queries [12, 26, 108, 112, 114, 119], cloud
engines like Spark [109] offer a diverse range of parameters, which can be cate-
gorized into three groups. Context parameters (0. C R%) are used to initialize
the Spark context, allocating shared resources and influencing runtime behav-
iors such as shuffling. Query plan parameters (6, C R%) govern the translation
from logical to physical query plans. Query stage parameters (85 C R%) opti-
mize individual query stages within the physical plan. The parameters 6, and
0, offer fine-grained control over each query stage, creating a high-dimensional
parameter space. For example, if a query comprises m stages, the total num-
ber of fine-grained parameters is calculated as d. + (d, + d;) X m, leading to

a significantly large parameter space when m is substantial.

These diverse parameters introduce significant complexity in controlling dif-
ferent stages of a query. For example, in Spark [109], 6., manages shared

resources across all stages and must be established at query submission to

1.2. Contributions

initialize the Spark context. In contrast, 8, and 6, are ideally fine-tuned per
stage at runtime, taking advantage of precise, real-time statistics. This in-
tricate control scheme presents substantial challenges, necessitating a hybrid
approach that merges compile-time and runtime optimization techniques. Ad-
ditionally, the interdependencies among these parameters further complicate

the optimization process.

1.2 Contributions

To address the challenge of ensuring both efficiency and Pareto optimality in MOO
problems involving high-dimensional parameters and complex controls within cloud
optimization contexts, we propose novel MOO approaches. These are designed to
enhance the performance and effectiveness of cloud optimizers. Our contributions

are outlined as follows:

1.2.1 Benchmark study of Multi-Objective Optimization

A benchmark study is conducted to evaluate various MOO algorithms and exist-
ing solvers. Approaches to addressing MOO generally categorize into two dis-
tinct methodologies: transforming MOO problems into single-objective optimization
problems or solving the MOO problems directly. While optimizing a single objective
involves the use of specific solvers, addressing MOO directly has attracted consider-
able research interest, as evidenced by significant contributions in the literatures [20,
22, 69]. To determine the efficacy of existing solvers and MOO algorithms within
the context of the Cloud Optimizer, we analyze the performance of two commercial
solvers alongside several state-of-the-art MOO methods.

Study on Solvers. (Section 4.1) Our optimization challenge is categorized as

a Mixed Integer Non-Linear Programming (MINLP) problem, stemming from the
presence of non-linear objective functions and a diverse range of parameter types,
which include both continuous and integer variables. These non-linear objectives
originate from learned models employed to avoid the resource-intensive evaluation

of operational configurations in large-scale data systems. An example of such non-

Chapter 1. Introduction

linear behavior can be observed in the Rectified Linear Unit (ReLLU), a commonly

used activation function in Deep Neural Networks (DNNs).

Taking DNNs equipped with ReLLU activation functions as a case study for our
objective function, we analyze the performance of the commercial solver: Knitro
[42]. Knitro, a Non-Linear Programming (NLP) solver, is adept at directly handling
MINLP problems that incorporate DNN objectives.

Experimental Evaluation of Solvers and MOO Algorithms. (Section

) We employ various performance metrics to evaluate solvers and MOO algo-
rithms. For solvers tackling single-objective optimization problems, we assess solu-
tion quality based on the objective values, while efficiency is measured by the time
taken to solve the problem. In contrast, MOO algorithms produce a set of solu-
tions that highlight trade-offs among diverse user preferences. To evaluate these, we
use hypervolume (HV) [41] [4], which quantifies the extent of the space dominated
by the Pareto solutions, alongside solving time to gauge both the performance and

efficiency of MOO methods.

In our experimental evaluation, we compare the performance of three solvers:
Knitro, grid search, and random sampling. While Knitro yields objective results
comparable to those of grid search and random sampling, it requires significantly

more solving time, exceeding 40 minutes.

We implemented and evaluated existing MOO methods, assessing both the HV
of the solutions returned and the time required for solving. The methods tested
include the Weighted Sum (WS) approach [69], the Evolutionary (EVO) method
[22], and Multi-Objective Bayesian Optimization (MOBO) [20], each representing a
distinct category of MOO strategies. The WS method transforms an MOO problem
into a single-objective optimization challenge by applying weights to each objective,
facilitating the use of a single-objective solver. The EVO method, a randomized
approach, employs genetic operations such as crossover and mutation on randomly
initialized populations. Conversely, MOBO extends Bayesian Optimization (BO) to
MOO problems by modeling each objective function with a surrogate model and
designing an acquisition function to identify new points likely to yield Pareto opti-

mal solutions. In comparative analysis, both WS and EVO methods outperformed

1.2. Contributions

MOBO in terms of HV, achieving more than 72.2% compared to 41.8%, while also re-
quiring significantly less solving time—Iless than 0.03 seconds compared to MOBO'’s
290 seconds.

Given the stringent demands for high quality and efficiency imposed by the
Cloud Optimizer, we have chosen grid search and random sampling as the primary
solvers. Additionally, the WS and EVO methods are selected as the baseline MOO

approaches for subsequent experiments.

1.2.2 Stage-level Optimizer

We propose a novel MOO algorithm specifically designed to compute Pareto opti-
mal solutions for stages which are distinct units defined by shuffle boundaries in
large-scale big data processing. Within these environments, such as those man-
aged by Alibaba Cloud’s MaxCompute system [71], each stage functions within a
high-dimensional parameter space, handling thousands of parallel instances. Each
instance requires specific resource allocations across a multitude of machines. This
scenario constitutes a Multi-Objective Resource Optimization (MORO) problem,
where multiple performance goals, including stage latency and cost, are considered
simultaneously. Aimed at minimizing these stage-level objectives concurrently, our
approach seeks to achieve Pareto optimality in MORO while enhancing efficiency
for cloud usage. The main contributions of this approach are detailed in Chapter

System design and our approach. (Section and 5.2) We augmented the

MaxCompute system with a resource optimizer tailored for each stage. The core
design principle involves segmenting the MORO problem into a series of more man-
ageable sub-problems. Each sub-problem is strategically tackled by two specialized
modules: the Intelligent Placement Advisor (IPA) and the Resource Assignment
Advisor (RAA). The IPA module is engineered to allocate instances to specific ma-
chines effectively, whereas the RAA module is focused on fine-tuning the resource
allocations for each instance to optimize the balance between stage latency and cost.

To address the MORO problem under stringent time constraints, we developed
a two-step approach, each corresponding to one of the extended modules. In Step

1, the IPA aims to minimize stage latency by optimally allocating instances to

Chapter 1. Introduction

machines, considering factors such as machine capacities and individual instance
latencies. Step 2 involves the RAA, which refines the resources assigned to each
instance on a designated machine to achieve optimal outcomes in stage latency,
cost, and other relevant objectives. The detailed formulations of this two-step ap-
proach are explored in Section 5.2. This thesis primarily concentrates on the MOO
strategies employed in Step 2 (RAA), which involves intricate fine-tuning of resource
parameters across multiple objectives.

Resource Assignment Advisor. (Section 5.3) We introduce a hierarchical

MOO approach designed to fine-tune the resources allocated to each instance, with
the aim of reducing stage latency, cost, and other objectives. This method effectively
decomposes the complex stage-level MOO problem into multiple, parallel instance-
level MOO problems. From these, it efficiently synthesizes stage-level MOO solutions
that are derived from the solutions at the instance level. Furthermore, our approach
is proven to achieve Pareto optimality at the stage level.

Experimental evaluation. (Section 5.1) Utilizing production workloads com-

prising 0.6 million jobs and 1.9 million stages, alongside a simulator of the enhanced
MaxCompute environment, our evaluation yields promising results: 1) Relative to
the default MaxCompute settings, our approach significantly improves performance,
achieving latency reductions between 36% and 80% and cost savings from 29% to
75%, all while maintaining solving times between 0.02 to 0.24 seconds. 2) When
compared to existing MOO methods, our approach consistently delivers solutions
for all workloads within 0.24 seconds. In contrast, existing MOO methods often
fail to generate feasible solutions for some queries within a generous 60-second time-
frame. Furthermore, our method achieves a reduction in stage latency by 4-77% and
a decrease in stage cost by up to 48% relative to these methods. 3) Moreover, our
approach demonstrates adaptive resource allocation capabilities, assigning increased

resources to longer-running jobs in comparison to MaxCompute’s default settings.

1.2.3 Query-level Optimizer

We have developed a novel MOO algorithm aimed at achieving Pareto optimality

across entire queries, facilitated by finer-granularity control over parameters. In

1.2. Contributions

complex big data systems like Spark [109], parameter tuning is intricate due to
the parameter settings: some parameters can be independently adjusted for each
query stage, while others are global, affecting all stages and thus creating a high-
dimensional parameter space with complex constraints. Specifically, global param-
eters are set at compile time, dictating behaviors such as resource allocation during
query execution, and cannot be modified during runtime, unlike other parameters
that are adjustable during runtime. Our primary contributions, designed to address

these challenges, are outlined as follows:
Hybrid compile-time /runtime optimization overview. (Section 6.1) We

introduce a hybrid optimization strategy that combines compile-time and runtime
approaches to effectively manage the diversity and complex control of parameters
in Spark. At compile time, optimal configurations for shared parameters are deter-
mined using estimated statistics, with a careful consideration of their interdepen-
dencies with other parameters. Subsequently, during runtime, adjustments to other
parameters are made for each query stage, based on real-time statistics and the
specific structure of the query. This thesis specifically emphasizes the MOO strate-
gies applied during the compile-time phase, focusing on addressing the challenges of

parameter diversity and achieving fine-grained control.
Compile-time optimization. (Section and 0.3) We propose a novel ap-

proach, termed Hierarchical MOO with Constraints (HMOOC), aimed at reducing
query-level latency and cost. This method systematically decomposes the over-
arching optimization problem within a large parameter space into smaller, more
manageable subproblems. Each subproblem is bound by the requirement to utilize
shared parameters, acknowledging their interdependence. To address these inter-
linked challenges, we develop techniques to generate a comprehensive set of candi-
date solutions. Additionally, we introduce various aggregation methods to efficiently
synthesize these candidates into global Pareto optimal solutions. A detailed theoret-
ical analysis of our proposed approach, including proofs and a complexity analysis,

is presented in Section
Experimental evaluation (Section 6.1) We conducted optimization analyses

using datasets from the TPC-H and TPC-DS benchmarks, focusing on the following

Chapter 1. Introduction

evaluations: 1) We assessed the performance of three proposed aggregation methods,
all of which are designed to ensure the return of at least a subset of query-level opti-
mal solutions, based on sub-query level optimal inputs. The most effective method
achieved the optimal configuration in only 0.5-0.8 seconds for all TPC-H and TPC-
DS queries. 2) When compared to existing MOO methods, our compile-time MOO
algorithm (HMOOC), tailored for fine-grained parameter tuning, demonstrated im-
provements in hypervolume (measuring the space dominated by the Pareto front) by
4.7%-54.1% and achieved reductions in solving time by 81%-98.3%. 3) In compari-
son to query-level tuning, which applies uniform configurations across all sub-queries
without finer-grained adjustments, our approach significantly outperformed in both
hypervolume (improving from 87% to 93%) and solving time (reducing from an

average of over 14 seconds to just 0.8 seconds).

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 introduces state-of-the-art MOO ap-
proaches and related works on parameter tuning and resource optimization in big
data systems. Chapter 3 provides a general definition of the MOO problem in big
data systems and an overview of the corresponding system. In Chapter 4, we present
a benchmark study of MOO, including existing solvers and MOO algorithms. Chap-
ters 5 and 6 develop MOO algorithms for the cloud optimizer in two popular big
data systems: MaxCompute [71] and Spark [109]. Finally, Chapter 7 summarizes

the thesis and discusses future work.

10

CHAPTER 2

Basics and Related Work

This chapter introduces the Multi-Objective Optimization (MOO) problem by sur-
veying existing MOO algorithms and discussing various performance indicators.
Additionally, it reviews state-of-the-art research related to parameter tuning and

resource optimization in cloud-based data analytics.

2.1 Multi-Objective Optimization (MOO)

2.1.1 Definitions

The general multi-objective optimization (MOO) problem could be defined as fol-

lows:

Definition 2.1.1. General Multi-Objective Optimization (MOOQO) problem.

argmy}n F(x)= [Fi(@),..., F(x)] (2.1)
a(x) <0, 1€1,2,...,m
s.t. he(x) =0, e€l1,2,...,n
x € R?

where k is the number of objectives, m is the number of inequality constraints, and

n is the number of equality constraints. « is the decision variable with d dimensions.

Chapter 2. Basics and Related Work

v

Figure 2.1: Example of MOO definitions

Usually, the objectives in MOO compete with each other, leading to trade-
offs among different objectives. Consequently, unlike single-objective optimization,

which yields a single optimal solution, MOO returns a set of solutions.

Definition 2.1.2. Pareto domination. A point F'(x*) Pareto-dominates another
point F(x) iff Vi € [1,k], Fi(x*) < Fj(x) and 35 € [1,k], F;(x*) < Fj(x), where

x,z* € R%

Definition 2.1.3. Pareto optimal. A point F(x*) is Pareto optimal iff there does

not exist another point that Pareto-dominates it.

Definition 2.1.4. Pareto set (frontier). The Pareto set (frontier) P includes
all the Pareto optimal solutions in the objective space and it is the solution to the

MOO problem.

Definition 2.1.5. Utopia point. A point U is Utopia iff for each i = 1,2,... k,
U; = minimum{ F;(z)|x € RY, Fi(x) € P}.

Definition 2.1.6. Nadir point. A point IN is Nadir iff for each i = 1,2,... k,
N, = maximmum{ﬂ(m)kv € RY, Fi(x) € P}.

Utopia and Nadir points do not exist in the objective space; rather, they are vir-
tual constructs used to bound the objective space formed by all the Pareto solutions
P.

Figure illustrates the aforementioned definitions with two competing objec-
tives, F; and F,. All circle points represent solutions in the objective space, where

the yellow points are dominated by the blue points. The blue points are Pareto

12

2.1. Multi-Objective Optimization (MOO)

optimal and form the Pareto frontier P, as they cannot be dominated by any other
points. The Utopia (green squared point) and Nadir (red squared point) points, U
and IN respectively, are derived from the Pareto frontier (blue points), representing

the minimum and maximum values of each objective.

2.1.2 MOO Algorithms

This section reviews state-of-the-art works on MOO algorithms, categorized into
preference-based algorithms, evolutionary algorithms, Multi-Objective Bayesian Op-

timization (MOBO) algorithms, and other existing MOO algorithms.

Preference-based Algorithms. Preference-based algorithms convert a MOO
problem into a single-objective optimization by specifying preferences for different
objectives. These preferences can be determined based on user preference or the
goal of covering the entire Pareto front.

The Weighted Sum (WS) approach transforms a MOO problem into a single-
objective optimization problem by assigning weights to different objective functions.
While it is easy to implement, it often fails to provide good coverage over the Pareto
front [19, 69].

The e-constraint method [31] transforms a MOO problem into a constrained
single-objective optimization problem by optimizing a single objective (e.g., the i-
th objective) while treating the other objectives as constraints with user-defined
values €;,7 = 1,...,k,j # i. However, the optimality of this method depends on
the choices of these user-defined values, making the hyperparameters difficult to
determine.

Similarly, the Normalized Normal Constraint (NNC) method [74] transforms a
MOO problem into a series of constrained single-objective optimization problems
by forming a set of evenly distributed index points. A post-processing filter is then
required to eliminate non-Pareto solutions. However, the number of Pareto solutions
is limited to the number of index points, and the method can face time efficiency
issues.

Overall, the preference-based MOO algorithms discussed above transform the

MOO problem into either unconstrained or constrained single-objective optimiza-

13

Chapter 2. Basics and Related Work

tion problems. However, their performance may be affected by issues such as low

efficiency, poor coverage, or suboptimal hyperparameter selection.

Evolutionary Algorithms. Evolutionary algorithms are population-based meth-
ods inspired by natural evolution. Starting with a randomly initialized population
of solutions, these algorithms iteratively refine potential solutions using genetic op-
erations such as selection, crossover, and mutation. They can be highly efficient

since they do not require gradient information.

A popular multi-objective evolutionary algorithm, the Nondominated Sorting
Genetic Algorithm-II (NSGA-II) [22], aims to generate a set of Pareto solutions
by using dominance rank while maintaining diversity through crowding distance
among individuals. It is a randomized method designed to return an approximation
of the Pareto set. NSGA-III [21]| improves upon NSGA-II by enhancing diversity
maintenance through the use of well-distributed reference points on a hyperplane,
replacing the crowding distance operator. The offspring population is then selected

based on proximity to these reference points.

MOEA /D [111] decomposes a general MOO problem into multiple scalar op-
timization subproblems, each associated with a uniform-spread weight vector to
convert the approximation of the Pareto frontier into a single-objective optimiza-
tion problem, such as through the Weighted Sum approach. These subproblems can
be optimized in parallel. Leveraging the idea that information from neighboring
weight vectors can aid in updating neighboring solutions, MOEA /D reduces the
complexity of generating new solutions by utilizing information from these adjacent

weight vectors.

SPEA2 [120] addresses the MOO problem by evaluating individuals based on
domination and maintaining diversity through the density of individuals. It assigns
fitness values to individuals using a domination count, where a count of 0 indicates

that an individual is non-dominated by others.

Although evolutionary algorithms can quickly provide results, they only yield an
approximation of the Pareto frontier and their performance is sensitive to hyperpa-
rameters related to genetic operations, such as the population size and the number

of iterations.

14

2.1. Multi-Objective Optimization (MOO)

Multi-Objective Bayesian Optimization (MOBO) Algorithms. Bayesian
Optimization (BO) can be extended to solve MOO problems. Traditional BO opti-
mizes expensive-to-evaluate black-box functions by using a surrogate model to ap-
proximate the black-box function and an acquisition function to determine the next
evaluation point [104]. In the context of MOO, each objective function is modeled
with its own surrogate model, and the acquisition function is designed to search for
new points that are likely to be Pareto optimal. Sequential exploration and batch

exploration are two methods for exploring new points.

Sequential exploration. In MOBO with sequential selection, ParEGO [417] ad-

dresses MOO by transforming multiple objectives into a single objective in each
iteration. It then maximizes the expected improvement (EI) using an evolutionary
algorithm. PESMO [36] selects the next point by maximizing the expected reduc-
tion in the entropy of the posterior distribution over the Pareto set in each iteration.
The Pareto set sample is obtained using grid search or NSGA-II. However, optimiz-
ing the acquisition function is computationally expensive, with a complexity that
scales cubically with the sample size of the Pareto set, and the performance that
depends on the number of Monte Carlo samples used. The UseMO [9] framework
is designed to approximate the true Pareto frontier of MOO problems with black-
box objectives using MOBO. It solves the MOO problem with multiple acquisition
functions, selecting new points based on the maximum volume of the uncertainty
hyperrectangle formed by the lower and upper confidence bounds of the surrogate
models for multiple objectives. However, it primarily integrates the existing MOO

solver, NSGA-II, into the BO process to determine the next point to explore.

Batch exploration. Parallel Expected Hypervolume Improvement (qEHVI) [20]

designs its acquisition function to maximize the hypervolume improvement (HVI)
between one or multiple candidate points and a set of reference points, which serve
a similar role to Nadir points. The newly explored points are considered potential
Pareto optimal solutions. Although qEHVTI searches multiple points simultaneously,
it suffers from high computational complexity, with the HVI calculation being ex-
ponential in the number of candidates. Diversity-Guided Efficient Multi-Objective
Optimization (DGEMO) [48] explores multiple points while considering diversity.

15

Chapter 2. Basics and Related Work

It divides the performance space into sub-regions and, within each previously un-
explored sub-region, greedily selects one point that provides the maximum hyper-
volume improvement with respect to the global Pareto frontier. Lin et al. [57]
proposes a method for learning the Pareto set in MOBO that incorporates prefer-
ences. In each iteration, the method selects a small number of points to maximize
the hypervolume improvement relative to the points already evaluated. However,
the optimality of this approach may be compromised by the potential limitations of

the learned model’s performance.

A major limitation of the BO-based approach is the extended time required to
produce a satisfactory Pareto set. This inefficiency poses challenges in meeting the

stringent time constraints of cloud optimization.

Other state-of-the-art works. LaMOO [116] is a multi-objective optimizer that
demonstrates superior sample efficiency empirically. The approach consists of two
main steps: first, it learns a model from the observed samples to partition the search
space. Then, for the promising regions likely containing a subset of Pareto solutions,
it applies state-of-the-art MOO methods for exploration. While LaMOO measures
efficiency based on the number of samples rather than exact time cost, it presents

empirical results without providing a theoretical analysis of optimality for general

MOO problems.

The Progressive Frontier (PF) approach [86] aims to incrementally transform
the MOO problem into a series of constrained optimization (CO) problems (i.e.,
single-objective optimization problems), each of which can be solved individually. It
computes a Pareto optimal set of configurations to reveal trade-offs among different
objectives, recommends new configurations that best explore these trade-offs within
a few seconds. However, its efficiency is limited in high-dimensional parameter

spaces.

A cloud optimizer based on MOO demands both optimality and high efficiency
for cloud use. In real scenarios, where hundreds or thousands of parameters need to

be optimized, state-of-the-art MOO methods suffer from low efficiency.

16

2.1. Multi-Objective Optimization (MOO)

2.1.3 Performance Indicators

Unlike single-objective optimization, MOO returns a set of solutions called the
Pareto frontier. Visualization tools facilitate the comparison of different Pareto
fronts in bi-objective problems. However, for optimization problems with more than
two objectives, quantification of the Pareto front is more suitable, as visualizing
higher-dimensional Pareto fronts is challenging [41].

The performance metrics of a Pareto frontier can be divided into four categories

1] [4):

1. Cardinality: the number of non-dominated solutions generated by a MOO

algorithm.
2. Conwvergence: the approaching to the true Pareto frontier.
3. Uniformity: the evenness of a Pareto frontier approximation.
4. Distribution: the distribution and coverage of a Pareto frontier approximation.

Different performance metrics exhibit various properties. For Cardinality, in-
tuitively, a higher cardinality indicates better performance. However, it fails to
represent diverse user preferences, particularly when non-dominated solutions are
clustered in a small objective region. Additionally, it does not convey the quality of
Pareto solutions when compared to other Pareto frontiers. For Convergence, most
metrics require knowledge of the true Pareto front for evaluation. However, in prac-
tice, evaluating the true Pareto frontier is often not feasible. Uniformity measures
the diversity of a Pareto frontier, with evenly distributed Pareto solutions indicating
the capability to meet various user preferences. However, it does not capture how
well a Pareto frontier performs in the objective space compared to another Pareto
frontier. Distribution indicates how Pareto solutions are spread in the objective
space, capturing dominance information when compared to other Pareto frontiers.

Our optimization problem requires a performance indicator that includes prop-
erties of both Uniformity and Distribution for the following reasons. First, we do
not have knowledge of the true Pareto frontier. Additionally, when comparing dif-

ferent MOO baselines, it is essential to ensure both the quality and coverage of the

17

Chapter 2. Basics and Related Work

fl?._ _______________ !N
.fz

(. ‘ \
U f f

Figure 2.2: Examples of performance indicators (The hypervolume is highlighted in red,
while the uncertainty space corresponds to the white region enclosed by the four blue
points.)

Pareto solutions. This means that no other solutions should perform better in all
objectives, and the solutions should cover a diverse range of the objective space to

meet various user preferences.

Two example performance indicators suitable for our MOO problem are as fol-

lows.

Hypervolume Indicator. The Hypervolume Indicator (HV) [41] [4] measures the
volume of the objective space dominated by the Pareto front. As illustrated in Figure

, the red-shaded area represents the HV for the bi-objective case, defined by a
reference point (i.e., IN in Figure 2.2) and the non-dominated solutions (specifically,
Y f2 f3, and f%). The larger the HV, the better the Pareto frontier P is, as it is

closer to the Utopia point U and covers a larger portion of the objective space.

Uncertainty space. The uncertainty space, as discussed in [36], serves as an indica-
tor of regions with potential non-dominated solutions that merit further exploration.
As illustrated in Figure 2.2, the white space representing uncertainty space corre-
sponds to the non-dominated solutions, which can be explored to uncover additional
potential Pareto optimal solutions. In Figure 2.2, the green-shaded area, defined by
the Utopia point and the Pareto frontier, denotes a region where no non-dominated
solutions are currently present. If a non-dominated solution f’ were to exist within
this green-shaded area, it would dominate all the current Pareto optimal solutions,
thereby invalidating their Pareto optimality. Consequently, the uncertainty space is

defined by excluding the regions with no non-dominated solutions and subtracting

18

2.1. Multi-Objective Optimization (MOO)

the HV from the hyper-rectangle formed by the Utopia and reference points. The
smaller the uncertainty space, the better the Pareto frontier.

In the experiments discussed in later chapters, we use HV for two key reasons.
First, both HV and uncertainty space utilize the dominated space defined by the
Pareto frontier and a reference point. Second, since the true Pareto frontier is
unknown in our MOO problem and only an approximation of the Pareto frontier is
available, the green-shaded area cannot be safely discarded because a true Pareto
solution may exist within this region. Consequently, only the dominated space can
be discarded with certainty, reducing the uncertainty space to the entire objective
space excluding HV. Thus, both methods function similarly in computing HV within

the entire objective space.

2.1.4 MOQO for SQL Queries

MOO for SQL queries searches for optimal Pareto optimal query plans that achieve
optimal trade-off among competing objectives [29, 34, 35, 94, 95, 96, 98, 99, 100].
Given a query modeled as a set of tables to be joined, with the query plan spec-
ifying the join order and the operator implementation used for each scan and join,
multi-objective query optimization is addressed in [94, 95, 96]. An approximation
scheme is proposed to guarantee near-optimal plans by minimizing both execution
time and monetary fees [94|. This scheme employs an approximation precision that
is iteratively refined until a near-optimal plan is identified. An incremental algorithm
is developed to iteratively form the Pareto front through cost-bounded optimization
[95]. Plans generated in different iterations are retained and reconsidered for the
same query to avoid redundant computation. They further propose a fast algo-
rithm to approximate the Pareto plan set using a multi-objective version of the hill
climbing method, which improves upon a random query plan [96]. Similar to [95],
a cache of Pareto-optimal plans is maintained to store potentially useful interme-
diate results discovered across different iterations. A weighted sum model (WSM)
is proposed to select the optimal query execution plan by optimizing query execu-
tion time, monetary cost, and energy consumption [34]. It introduces a normalized

weighted sum algorithm to combine weights for both users and the environment.

19

Chapter 2. Basics and Related Work

However, it only considers the optimal choice from a set of 20 query plans. An ex-
tended multi-objective query optimizer is proposed for Spark SQL [29]. The Pareto
front is formed by the fastest plans under different fixed computing instances and
numbers of Spark executors.

Multi-objective query re-optimization is considered in [98, 99, 100|. Based on the
optimal query plan obtained from the WSM [34], ML-based models are applied to
determine whether to re-optimize a stage during query execution [98]. These models
use the differences in selectivities of a stage before and after execution as inputs.
Q-learning is utilized to determine the allocation of machines to each operator by
considering execution time and monetary cost in its reward function [99]. The reward
is further diminished if the execution time and monetary cost violate the Service
Level Agreement (SLA) [100].

MOO for workflow scheduling [35] assigns specific operators to machines (e.g.,
containers) in the cloud while simultaneously optimizing both time and cost. This
2D optimization problem is addressed by first optimizing a single-objective problem
under each container limit (e.g., 20 containers). Pareto solutions are then formed
by combining solutions from all container limits, with dominated solutions being
filtered out.

These works address a MOO problem distinct from ours, which focuses on tuning
parameters of big data systems to optimize multiple performance goals, including

latency, monetary cost, and other objectives.

2.2 Parameter tuning of DBMS and big data sys-

tems

Parameter tuning is crucial in database management systems (DBMS) and big data
systems, as performance metrics such as latency heavily depend on parameter con-
figurations. This area has garnered significant interest and has become an active
research field. The following section discusses existing work of parameter tuning in

DBMS and big data systems.

Tuning in DBMS. Recent work applies machine learning (ML) techniques to

20

2.2. Parameter tuning of DBMS and big data systems

DBMS tuning, where tuning decisions are made based either on feedback from trial
runs or on learning-based models, such as Gaussian Processes (GP) and Reinforce-

ment Learning (RL) models.

Trial runs. UDO [102] aims to tune the parameters of database systems for spe-
cific workloads within a given time limit. It categorizes parameters into "heavy’ and
light” types, where heavy parameters are costly to modify and light parameters are
less expensive to adjust. The method proposes using a RL-based approach to first
optimize and recommend the heavy parameters in the outer loop, followed by the
optimization of light parameters based on the recommendations for heavy parame-
ters. The evaluation is conducted based on feedback from trial runs. However, UDO

is not specifically designed to address MOO.

GP-based. ONLINETUNE [114] addresses the online database tuning problem
by considering both the dynamic nature of the context and the safety of the recom-
mended configurations. Dynamicity refers to the tuner’s ability to adapt to changing
contexts, such as varying workloads, while safety of configurations ensures that the
recommendations do not degrade the database’s performance. To address dynamic-
ity, they propose incorporating the context features along with configurations into
the GP model. To address safety of configurations, domain knowledge and the con-
fidence bounds of the contextual GP are utilized to exclude unsafe configurations.
OtterTune [97] is designed to optimize DBMS configurations for workloads by uti-
lizing historical data and modeling with GPs to recommend optimal configurations.
To address the issue of having a large number of parameters, OtterTune identifies
the most important knobs that significantly impact the DBMS’s performance and
determines their importance order using the Lasso path algorithm [33]. OtterTune
also leverages past experience by employing a workload mapping strategy and then
uses GPs to recommend configurations for the DBMS. ResTune [113] aims to au-
tomatically find the optimal configurations for a database management system by
optimizing resource utilization while meeting throughput and latency requirements.
The latency and throughput constraints are modeled using GPs, and the BO frame-

work is employed to recommend promising feasible configurations.

RL-based. QTune [53] proposes a query-aware database tuning system that em-

21

Chapter 2. Basics and Related Work

ploys a deep reinforcement learning model for each query. It uses the feature vector
of the given query as input to recommend optimal knob values. QTune supports
query-level, workload-level, and cluster-level tuning, offering optimization choices
for query latency, throughput, or both. CDBTune [110] utilizes deep reinforcement
learning to determine the optimal configurations for cloud databases. It relies on a
reward function that combines latency and throughput with weighted sums, where
the weights are adjusted according to user preferences. The optimal configuration is
recommended using the deep deterministic policy gradient method to handle high-

dimensional state spaces.

UniTune [112| proposes a unified framework to coordinate existing ML-based
tuning agents for DBMS, including both BO-based and RL-based agents. To avoid
inaccurate modeling caused by environmental changes after tuning a component,
they encapsulate environmental changes as context in the tuning models. For ex-
ample, they augment the context in the input of the surrogate model used by the
BO-based agent. A reinforcement learning algorithm is used to allocate the tuning

budget (e.g., time) permitted for tuning a DBMS.

Tuning in big data systems. Techniques used in state-of-the-art works for tun-
ing big data systems primarily fall into two categories: search-based methods and

learning-based methods.

Search-based. Bilal et al. [12]| introduce a framework for the automatic param-
eter tuning of stream processing systems, with a focus on Apache Storm. The
performance benchmark is a discontinuous objective that includes both latency and
throughput. Unlike our approach, which optimizes multiple objectives simultane-
ously, their method selects candidate configurations based on solutions that achieve
at least a minimum level of throughput. A gray-box heuristic approach searches
for optimal parameter values by using user-provided hints, which indicate whether
changes in parameter values improve latency and throughput. However, such hints

are not available in our problem.

BestConfig [119] searches for the optimal system configuration for a given work-
load, aiming to optimize a scalar performance metric that may include one or mul-

tiple performance goals. They combine the divide-and-diverge sampling method

22

2.2. Parameter tuning of DBMS and big data systems

with the recursive bound-and-search algorithm to address the two subproblems of
sampling and performance optimization. The sampling method diverges samples by
representing each interval of every parameter exactly once within a high-dimensional
configuration space, aiming for broad coverage with a limited number of samples.
The bound-and-search algorithm then recursively searches for the best configuration

within a bounded space defined by these samples.

ML-based. ML-based methods use GP or other learned models to identify more

promising configurations.

Tuneful [26] is designed to tune high-dimensional Spark configurations for various
data analytical workloads. It aims to achieve results comparable to state-of-the-art
tuners while requiring significantly fewer executions. Based on the observation that
only a small subset of parameters significantly impacts overall performance, Tuneful
focuses on tuning only the important parameters using GP models. Additionally, a
similarity analyzer is designed to reuse existing models for new, similar workloads

based on their similarities, which greatly reduces tuning costs over time.

LOCAT [108] proposes a BO-based approach to automatically tune Spark SQL
applications, with the goal of optimizing execution time. To avoid the high overhead
of collecting training samples, they exclude configuration-insensitive queries during
the tuning process. Moreover, to reduce optimization time by decreasing the number
of tuning parameters, they eliminate unimportant parameters using the Spearman
correlation coefficient approach and further identify key parameters through Kernel
principal component analysis. Finally, to adapt the tuning process to changes in
input data size, they represent each configuration in the surrogate model using both
configuration parameters and input data size. They then optimize these configura-

tions within the BO framework.

Recent work [55] proposes an online tuning framework for periodic Spark jobs,
supporting multiple tuning goals and constraints. Rather than addressing MOO di-
rectly, multiple tuning goals are represented using a single formula with constraints.
Preference weights are assigned to runtime and resource functions, and constraints
set upper bounds on runtime and resource usage. The optimization is then per-

formed using the BO framework. The GP model serves as the surrogate model

23

Chapter 2. Basics and Related Work

and incorporates data size to support dynamic workloads. Additionally, to enhance
accuracy, the tuning history from previous similar tasks is integrated into the surro-
gate model. To handle the high-dimensional parameter space, a safe configuration

acquisition method is designed to explore a subspace of parameters.

RelM [51] addresses memory management tuning for workloads by analyzing and
utilizing the interactions between important memory configuration options. The
goal is to recommend a memory pool setup that prioritizes safety, high task con-
currency, and cache hit ratio, while minimizing garbage collection overheads. This
analysis is used to refine the GP surrogate model in BO to identify safe, efficient,

and low-overhead configurations.

ClassyTune [118] is designed to automatically tune configurations for cloud sys-
tems. Instead of modeling system performance directly, ClassyTune uses a classifi-
cation model to identify the optimal performance configuration. The classification
model predicts whether one configuration outperforms another, generating a list of
winning configurations to identify promising subspaces. ClassyTune then samples
these promising subspaces and selects the best-performing configuration based on
the evaluation of these samples. It is not applicable to our problem, as classification

methods cannot be easily extend to MOO settings.

LITE [56] is proposed for auto-tuning Spark configurations. It employs a code
learning framework that extracts stage-level code and DAG scheduler information as
training features, enabling it to use these code features to learn complex correlations
between application performance and knob values. Additionally, the online model
identifies knob regions using the mean value of a knob as the center and the standard
deviation to determine the span. This approach helps to reduce tuning overhead
by randomly sampling a small number of candidates within the promising, smaller
search space. However, LITE is not practical for cloud providers because user code

is not available due to privacy constraints.

These solutions are not suitable for our MOO problem, as they focus on a scalar

performance goal and do not solve the complex control of fine-grained parameters.

24

2.3. Resource optimization in cloud data analytics

2.3 Resource optimization in cloud data analytics

Resource optimization involves determining and optimizing resource configurations
for queries, which is crucial in cloud data analytics because the number of resources
directly impacts performance (e.g., latency) and monetary cost due to the pay-as-
you-go cloud pricing strategy. Based on resource optimization strategies, state-of-
the-art approaches can be categorized into three directions: resource saving, optimal

resource estimation, and optimal resource configuration tuning.

Resource Saving. The main concept is to prevent resource over-allocation for
jobs.

Bag et al. [7] propose a plan-aware resource allocation approach that releases
excess resources (i.e., containers) by estimating the peak resource usage for each
stage in the remaining job execution. While this method saves resources without
impacting job latency by leveraging the complex DAG structures of stages, it does
not optimize latency and cost simultaneously.

Observing that default resource allocation is often over-allocated in SCOPE,
AutoToken [83] introduces a peak resource allocation strategy to conserve resources
for recurring jobs. It develops a model that learns the relationship between required
resource usage and job characteristics from past recurring jobs, and then predicts the
appropriate resource counts for incoming jobs. However, it only conserves resources

without achieving optimal resource allocation for each job.

Optimal Resource Estimation. Recent work proposes modeling the relationship
between the number of resources and performance (e.g., job execution time) using
historical data, and then estimating the optimal amount of resources on demand.
JUGGLER [1] is designed to cache appropriate datasets (e.g., RDDs in Spark)
in memory and recommend an optimal cluster configuration (i.e., number of ma-
chines) to optimize execution time and cost (i.e., number of machines x time) for
big data applications. It determines the datasets based on the maximum reduction
in computational overhead achieved through caching. Using the size of the cached
datasets, JUGGLER predicts the required number of machines based on the mem-

ory available for caching per machine. Finally, it selects the most suitable dataset

25

Chapter 2. Basics and Related Work

based on predefined deadlines or cost constraints.

To determine the optimal instance configuration for query processing in the
cloud, recent work [52] focuses on optimizing workload cost in dollars under runtime
constraints, rather than minimizing running time. They propose an intuitive model
with six variables (e.g., CPU hours, scanned data) to represent a query workload.
For a given configuration of this model, they estimate workload cost and execution
time for different hardware instances and generate a corresponding Pareto frontier,
where each Pareto point represents one instance. After estimating all instances, they
recommend the instance with the optimal workload cost or execution time as the
best hardware configuration. However, this paper focuses solely on recommending
the best instance without addressing fine-grained parameter control. Additionally,
the proposed model is quite simple, using only six variables, whereas our MOO

problem involves tuning thousands of resource parameters.

ReLocag [37] proposes a predictor to allocate a near-optimal number of CPU
cores for data-parallel jobs. The inputs to the predictor include the number of CPU
cores and contextual information about the jobs, while the output is the predicted
job completion time. To train the prediction model effectively, ReLocag introduces
a heuristic sampling method that selects training samples in a way that avoids
both underestimations and overestimations of the number of CPU cores. Finally,
the near-optimal number of CPU cores is determined by selecting the configuration
that corresponds to the smallest job completion time, based on inputs of various
CPU core counts. However, it addresses a single-objective optimization problem
and focuses solely on CPU cores, which is not applicable to our scenario as we need

to optimize multiple objectives across a broader range of resource parameters.

WiSeDB [67] proposes generating cost-aware workload schedules using decision-
tree models. These schedules determine the number of Virtual Machines (VMs) to
provision, their placement for queries, and the order of query execution within the
workload. Cost functions are defined by the price of renting VMs, performance goals
(e.g., latency of a query template or workload), and penalties incurred for failing
to meet these performance goals. A decision tree model is trained using optimal

schedules derived from the minimum cost paths in the schedule graph. Given a

26

2.3. Resource optimization in cloud data analytics

workload as input, the decision tree estimates the performance and cost of executing
the workload. The model then recommends the schedule that best balances the
performance goal and cost. While WiSeDB explores the trade-off between latency
and cost for queries in a workload, it does not support finer control of resources
within a query.

Morpheus [39] codifies implicit user expectations as Service Level Objectives
(SLOs) and enforces these SLOs using scheduling techniques, focusing on job dead-
lines or completion times. Morpheus aims to economically allocate resources (i.e.,
containers) for job execution to meet the SLOs. It provides a job model that es-
timates resource usage at each time step based on historical data. However, its
optimization of container allocation uses system utilization as the cost function,

which is not suitable for optimizing multiple objectives simultaneously.

Optimal Resource Configuration Tuning. Resource configurations encompass
various elements such as resource instances (e.g., VMs, machines, containers), re-
source managers in database systems, and runtime parameters related to resources
(e.g., partition count of a stage). Achieving optimal resource configurations has

garnered significant attention.

Accordia [61] is designed for recurring big data analytics jobs and aims to find the
optimal cloud configuration for VM instances while minimizing total execution cost
and meeting job completion time requirements. It extends the Gaussian-Process
(UCB) algorithm for online cloud configuration selection, but it does not support

MOO.

CLEO [85] aims to integrate learned latency models of operators within the query
optimizer (i.e., a Cascades optimizer) to minimize latency at each stage by tuning
the partition count. However, it addresses a single-objective optimization problem
rather than MOOQO. Furthermore, it focuses solely on tuning the partition count,
without considering the hundreds of parameters and other resource optimization
choices.

Perforator [80] addresses the resource optimization problem by identifying the
best hardware resources (e.g., VMs) for a given execution plan. Its goal is to either

minimize the execution time of queries or the monetary cost. This single-objective

27

Chapter 2. Basics and Related Work

optimization problem is addressed by exhaustively exploring the search space, which
includes cluster capacity, available VM types, and predicted execution time from its
model. However, it does not address MOO and this exhaustive search approach is
not practically feasible for large parameter spaces.

Tempo [90] tunes configurations of the resource manager in multi-tenant database
systems, considering various Service-Level Objectives (SLOs), such as average job
response time under a given threshold and job throughput. It addresses a MOO
problem for a single SO across multiple tenants by using a proxy model to transform
the constrained MOO into a constrained single-objective optimization problem, with
the goal of optimizing the SLO for all tenants. However, this approach does not
address complex fine-grained parameter control.

Li et al. [54] addresses resource optimization for parallel database systems
through an optimal data partitioning scheme among a set of machines. This par-
titioning scheme is modeled and optimized as a linear programming problem to
minimize workload execution time.

Pimpley et al. [76] [77] propose allocating an optimal number of containers to
a query based on runtime as the performance metric at the big data processing
platform SCOPE [14]. They train a global model for all incoming jobs to capture
the relationship between the number of containers and performance, which is ap-
proximated using an exponentially decaying curve. The gradient descent method
is then applied to optimize the resource allocation. AutoExecutor [841] employs a
similar approach to model the resource-performance relationship for Spark. It ex-
tends Spark to allocate resources at the beginning of a query execution, making the
resource allocation transparent to users. However, their approach focuses solely on
single-objective optimization.

Overall, this line of work focuses on a small set of resource-related parameters,

whereas our cloud optimizer deals with a large number of parameters.

2.4 Summary

This chapter surveys the state-of-the-art work on multi-objective optimization (MOO),

parameter tuning, and resource optimization in big data systems. However, none of

28

2.4. Summary

these approaches address the specific challenges of our problem, which include mul-
tiple competing performance goals and budgetary constraints, a high-dimensional
parameter space with complex control, and the need for high efficiency in cloud
environments (e.g., 1-2 seconds). This thesis will propose novel MOO approaches

for Alibaba Cloud and Spark, addressing the technical challenges outlined above.

29

Chapter 2. Basics and Related Work

30

CHAPTER 3

System Overview and Problem Statement

This chapter presents the system overview of the Cloud Optimizer, detailing the job
description of an incoming analytical task and the system design based on Multi-
Objective Optimization (MOO). It also introduces a general problem statement of

MOO within the Cloud Optimizer framework and provides a formal representation.

3.1 System Overview

3.1.1 Job Description

A cloud analytical task can be modeled as a dataflow program, essentially a Directed
Acyclic Graph (DAG) of data collections flowing between operations. Figure
illustrates an example of an input request for an analytical task, using SQL query Q1
from the TPCH benchmark [92]. Figure presents the SQL script, while Figures
and depict the corresponding Logical Query Plan (LQP) and Physical
Query Plan (PQP) after parsing, analysis, and optimization of the submitted SQL
query. The LQP represents a DAG of logical operators, while the PQP represents
a DAG of physical operators after applying join algorithms in a LQP. The PQP is
further divided into a DAG of stages, where each stage is a DAG of operators with
operations such as shuffling or broadcasting serving as boundaries. Both the LQP
and PQP can be considered as the dataflow program denoted as a job. Similar to

the stage in PQP, we introduce a new notation, sub(), which denotes a group of

Chapter 3. System Overview and Problem Statement

SELECT

Scan

I_returnflag,) v
|_linestatus, Relation ColumnarToRow
sum(l_quantity) as sum_qty, v — +
sum(l_extendedprice) as sum_base_price, — =y Project
sum(l_extendedprice * (1 - I_discount)) as (@} Filter g v
sum_disc_price, -g HashAggregate
sum(l_extendedprice * (1 - I_discount) * w ¢ v
(1 +1_tax)) as surrchharge, Project Exchange
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price, Exchange
avg(l_discount) as avg_disc, ~ l ~ v
* 9
FROM(:ount() as count_order g e .&0 HashAgfregate
lineitem WHERE |_shipdate <= date > 2 Exchange
'1998-12-01' - interval '90' day Lo l
GROUP BY G
I_returnflag, |_linestatus _(cj) Sort % e
ORDER BY S & ¥:
I_returnflag, |_linestatus; wv 2l Seirt
(a) SQL Script (b) Logical query (c) Physical query
plan (LQP) plan (PQP)

Figure 3.1: An example of an analytical task of TPCH-Q1

Scan
v
ColumnarToRow

— v 7 r
S’D Project
g v Executor 1
HashAggregate
v
Exchange
Executor 2
o v
(V]
?'p HashAggregate
- * — —
n
Exchange
Executor 3
32} Exchange
&
© v - -
&H Sort]

Figure 3.2: Job description

logical operators that correspond to a stage when the logical plan is translated to a
physical plan.

Figure 3.2 illustrates an example of a job with a PQP, where each stage itself
is composed of a DAG of operators. Dependencies exist between stages, indicating
that a child stage cannot start running until all of its parent stages finish. Within
each stage, computations are further broken down into tasks, which operate on
different data partitions. The number of partitions and their sizes are determined
by corresponding parameters of the big data systems. These tasks are executed
on executors, with the number of ezecutors and the allocation of CPU cores and

memory size also being determined by parameters.

The control of parameters in big data systems is intricate, with varying behaviors

32

3.1. System Overview

observed even within stages and across different systems. For example, in Spark
[109], resource settings must be uniform across all stages, while factors such as
partition size and the number of partitions may differ between stages. Conversely,
in MaxCompute |71] within Alibaba Cloud, there is support for setting the number
of CPU cores and memory size for each data partition independently. In response to
these nuanced control behaviors, this thesis proposes optimization solutions tailored

to Spark and MaxCompute, as detailed in Chapters 5 and 0 respectively.

3.1.2 System Design

We assume that each analytical task comes with user-specified objectives that need
to be optimized during execution. In order to execute these analytical tasks effec-
tively, it is essential to instantiate parameters that govern system behaviors. These
parameters may include settings related to resource allocation (such as the number
of CPU cores and memory size), degree of parallelism, join strategies, compression
options, shuffling strategies, and more.

The configurations of cloud analytical tasks need to be quickly adapted when
objectives or loads change, imposing requirements for high efficiency. Building upon
our prior work [86], our system is designed with two asynchronous modules: a
model server providing objective predictions and a MOO procedure computing and
recommending optimal configurations within a few seconds. To avoid the time-
consuming modeling process of learned models, the model server is trained offline
whenever new training data becomes available. MOO is performed online, leveraging
the latest trained model to return objective predictions by taking configurations as
input.

Our system design offers two significant benefits. Firstly, our MOO module
is designed to work with multiple model types, including complex ones such as
Deep Neural Networks (DNNs), Gaussian Processes Regression (GPR), Multi-layer
Perceptron (MLP), as well as simple closed-form regression functions. This stands in
contrast to existing works like [97, 110], which are limited to specific model choices
(GPR or DNN). Our approach provides users with a more flexible way to implement
different models. Secondly, our system supports any MOO algorithm for analytical

33

Chapter 3. System Overview and Problem Statement

Objective
{ Stagel Stage2 i-Objective [Pl
g [(Eg)] 1. N_'UI.t' O.bjectlve === 3. Model Server
[04] 2 Optimization e.g. Latency
o - L/ Cost .
— 5

Stage 3 Pareto g‘\
[33] Job solutions‘g N

Objectives [Fy, ..., Fy]
2. Configuration
.. Recommendation
Cloud Optimizer

Figure 3.3: System design

Optimal 556 Runtime Engine
configuration R

MaxCompute {_

tasks, catering to the diverse requirements of users. As a result, our system design
offers flexible choices for both model servers and MOO approaches, meeting the
varying demands of users.

Figure 3.3 illustrates the architecture of our Cloud Optimizer, which interfaces
with existing big data systems (like Spark [109] and MaxCompute [71]) as analyt-
ical engines. When a user submits a job, which is essentially a dataflow program
structured as a DAG, along with a set of objectives (F1, ..., Fy), each stage of the
job can configure its parameter values (e.g., ®1, @2, O3). Our Cloud Optimizer
is versatile and accommodates various objectives, including but not limited to la-
tency, monetary cost, and IO cost. Additionally, it offers flexibility for incorporating
additional objectives based on users’ specific requirements.

Our Cloud Optimizer operates on each job in the following manner: Upon receiv-
ing a submitted job along with multiple user-specified objectives, the MOO module
takes them as input. It employs MOO algorithms and solvers to produce a set of
Pareto solutions. These Pareto solutions are then processed by the recommendation
module, which selects the optimal configuration based on user preferences. This
configuration, designed to best explore all specified objectives, is subsequently ex-
ecuted on analytical engines such as MaxCompute and Spark. The model server
plays a crucial role in providing objective predictions during the optimization pro-
cess. These predictions are utilized by the MOO module to explore the configuration
space and compute Pareto optimal solutions. The model server is trained offline and
updated whenever new training data becomes available. It collects runtime data dur-

ing job execution, including query traces with query plans and operators, as well as

34

3.2. Problem Statement of MOO

machine-level traces such as machine system state. Separate predictive models are

employed for each objective.

Modeling choices. Although this thesis primarily focuses on MOO, it is important
to briefly discuss relevant modeling techniques, because they provide objective pre-
dictions during the optimization process. Our optimizer provides support for various
modeling options: Simple models where users can define customized models based
on domain knowledge, employing simple function shapes. For instance, cost can
be represented as resource usage (e.g., CPU cores), the monetary cost of resource
utilization (e.g., CPU cores multiplied by latency), or a weighted combination of
CPU-hour and 10 cost [5|. Learned models, where existing research has applied
Machine Learning (ML) methods [68, 112], Reinforcement Learning (RL) methods
[112], or Gaussian Processes Regression (GPR) [L14] to learn predictive models.
Chapter 5 and Chapter 0 will provide an overview of the model construction based

on a large number of parameters tailored to two specific big data systems.

3.2 Problem Statement of MOO

The MOO module within our Cloud Optimizer is responsible for handling the op-
timization problem and implementing various MOO approaches. We define the

problem statement for the general MOO problem within this module as follows:

Definition 3.2.1. General MOO problem in Big Data Systems

F(©) = /1(©,q)
argm(gn F(O)= : (3.1)

Fk(@) = fk(@aa)
s.t. ®cYy CR?

where [, ... F} denote k objectives to be optimized. fi,... fx represent the evalu-
ation functions used to obtain objective values. ® denotes the configuration to be
optimized and « denotes the non-decision variables.

In our optimization problem, fi,..., fr functions could involve learned models

35

Chapter 3. System Overview and Problem Statement

or aggregations based on such models, with varying granularities of learned mod-
els. For instance, consider the optimization problem of a query (i.e., a job with a
DAG of stages) with objectives like query-level latency and query-level cost. When
using a coarse-grained learned model to predict the objective value of an analytical
task, where f1,..., fr represent objectives of a query, these predictions can be com-
pu