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Abstract

Towards Explainable and Interpretable Deep Neural Networks

by Guillaume JEANNERET SANMIGUEL

English Version: Deep neural architectures have demonstrated outstanding re-

sults in a variety of computer vision tasks. However, their extraordinary perfor-

mance comes at the cost of interpretability. As a result, the field of Explanable AI

has emerged to understand what these models are learning as well as to uncover

their sources of error. In this thesis, we explore the world of explainable algorithms

to uncover the biases and variables used by these parametric models in the context

of image classification. To this end, we divide this thesis into four parts. The first

three chapters proposes several methods to generate counterfactual explanations.

In the first chapter, we proposed to incorporate diffusion models to generate these

explanations. Next, we link the research areas of adversarial attacks and counterfac-

tuals. The next chapter proposes a new pipeline to generate counterfactuals in a fully

black-box mode, i.e., using only the input and the prediction without accessing the

model. The final part of this thesis is related to the creation of interpretable by-design

methods. More specifically, we investigate how to extend vision transformers into

interpretable architectures. Our proposed methods have shown promising results

and have made a step forward in the knowledge frontier of current XAI literature.
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Version en français: Les architectures neuronales profondes ont démontré des ré-

sultats remarquables dans diverses tâches de vision par ordinateur. Cependant,

leur performance extraordinaire se fait au détriment de l’interprétabilité. En con-

séquence, le domaine de l’IA explicable a émergé pour comprendre réellement ce

que ces modèles apprennent et pour découvrir leurs sources d’erreur. Cette thèse

explore les algorithmes explicables afin de révéler les biais et les variables utilisés

par ces modèles de boîte noire dans le contexte de la classification d’images. Par

conséquent, nous divisons cette thèse en quatre parties. Dans les trois premiers

chapitres, nous proposons plusieurs méthodes pour générer des explications contre-

factuelles. Tout d’abord, nous incorporons des modèles de diffusion pour générer

ces explications. Ensuite, nous lions les domaines de recherche des exemples adver-

sariaux et des contrefactuels pour générer ces derniers. Le suivant chapitre propose

une nouvelle méthode pour générer des contrefactuels en mode totalement boîte

noire, c’est-à-dire en utilisant uniquement l’entrée et la prédiction sans accéder au

modèle. La dernière partie de cette thèse concerne la création de méthodes inter-

prétables par conception. Plus précisément, nous étudions comment étendre les

transformeurs de vision en architectures interprétables. Nos méthodes proposées

ont montré des résultats prometteurs et ont avancé la frontière des connaissances de

la littérature actuelle sur l’IA explicable.
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Chapter 1

Introduction

1.1 Context

Image-based deep learning has seen exponential growth over the past decade. The

pioneering work of Krizhevsky, Sutskever, and Hinton [97] introduced AlexNet,

the first deep convolutional neural network (CNN), which significantly reduced

the top 1 and top 5 classification errors on the 1000-way classification dataset Im-

ageNet [35]. From that point on, traditional machine learning methods were almost

discarded and researchers adopted neural architectures to explore solutions to all

kinds of problems.

In a nutshell, neural networks are parametric functions that operate through a se-

quence of linear and nonlinear differentiable operations. To optimize the function’s

parameters, the weights are adjusted to minimize a loss function, which quantifies

the disparity between the model’s prediction and the target. This optimization pro-

cess involves calculating the gradients of the loss function with respect to the model

parameters and updating these parameters using the gradient descent algorithm.

This process is commonly referred to as training or fitting a neural network.

Research has scaled up neural models to include billions of parameters to fit

colossal datasets in recent years. Progress has reached the point where deep archi-

tectures are being used for virtually all computer vision tasks and beyond because

of their superior performance, even surpassing humans in most tasks. However,

this gain in performance comes with a drawback in terms of interpretability. The

complex nature of the inner nonlinear operations prevents the decryption of the

decision-making mechanisms and, hence, understanding the learned variables is

nearly impossible. Ideally, we would like to know why a particular decision was

made and how it can be changed to produce a different result. This scenario would

shed light on the weaknesses of a target model and thus allow countermeasures

to overcome any side effects. Therefore, the research field of Explainable Artificial

Intelligence (XAI) emerged to open the black box and searches to give some insights

about this problem.

XAI is driven by two concepts: explainability and interpretability. While some

researchers do not distinguish between the two, explainability and interpretability
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are not interchangeable. So, we settle on a common ground and define them in the

context of machine learning. An explanation is a way to clarify how a prediction was

made by a particular model, via external methods. As noted by Wachter, Mittelstadt,

and Russell [181], an explanation has three main purposes: (i) to comprehend why a

model predicted a particular outcome, (ii) to establish a common ground where mul-

tiple outcomes could be produced by the model, and (iii) to understand what could

change in the input to produce a particular prediction. On the other hand, inter-

pretability is not well established and can vary in the literature. In this thesis, we

define this concept as the ability of the model to show, by itself, the decision-making

process of the prediction or the learned knowledge in a transparent and human-

friendly way [119].

Both interpretability and explainability approaches unravel the causal factors of

a phenomenon, yet this could be achieved using multiple and diverse perspectives.

So, the literature has shown different methodologies to approach the problem of

interpretability and explainability in computer vision, which we will go into de-

tail later in chapter 2. Common techniques encompass saliency maps that highlight

where the model is looking, prototype-based approaches to tell how an image looks
like, concept discovery to resume a list of notions that define a particular class, and

counterfactual explanations to flip the model predictions via intuitive and under-

standable modifications.

1.2 Scope of the Thesis

Two main lines of research emerge along the concepts of explainability and inter-

pretability. Related to the former, explanation generation algorithms are referred to

as Post-Hoc explanations. These methods design a strategy to open the inner work-

ings of the architecture under observation. In this thesis, we did not study the whole

spectrum, as it is too diverse. Rather, we focused on one particular type of explana-

tion: Counterfactual Explanations [181] (CE) for image classification in chapter 3 to

chapter 5.

A CE seeks to answer the following question: Given a model and an input, what
meaningful and minimal change could be made to the input such that the model changes
its original prediction? By analyzing these changes, we can infer what variables the

model is using for its prediction. While these changes could be performed in a va-

riety of forms, counterfactuals seek three main properties in order to remain useful:

realism, proximity, and diversity. However, to fulfill the aforementioned properties

in the image domain, we require powerful generative approaches capable of produc-

ing realistic and diverse images. To this end, we have employed diffusion models.

These generative models are trained to produce images by progressively removing

noise from an instance extracted from a Gaussian distribution.
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The second line of research focuses on interpretable-by-design (ID) architectures.

As the name implies, these methods are closely related to our definition of inter-

pretability. These algorithms produce predictions while exhibiting interpretable fea-

tures, thus aiding the analysis of their decision-making process. We observed that

most of the literature on ID methods is built for CNNs rather than vision transform-

ers. While CNNs have been the preferred architectures in the past, next-generation

neural networks are more frequently using transformer backbones. Consequently,

there is a compelling need to develop transformer-based ID architectures. In chap-

ter 6, we took a step forward in this area by developing transformer-based ID archi-

tectures for image classification.

1.3 Thesis Outline

Based on the framework outlined above, we now present the structure of this thesis.

Chapter 3 To generate CEs for image data, generative models are typically used as

a regularization constraint, serving as an asset in creating the explanation. There-

fore, it is crucial to have a generative approach that produces realistic changes. In

2020 and 2021, diffusion models [64] gained significant popularity, promising excel-

lent generative capabilities. As a result, we proposed DiME, the first approach to

generate counterfactual explanations based on diffusion models. In essence, DiME

adapts the guided diffusion proposed by Dhariwal and Nichol [36] to incorporate

the classifier under investigation.

Contributions:

• DiME is the first approach to generating counterfactual explanations based on

diffusion models.

• We proposed a new metric to evaluate an explanator’s ability to uncover spu-

rious correlations learned by the model.

• We proposed a metric to evaluate the diversity of an explanator.

Chapter 4 From the previous work, we began to notice other uses of diffusion mod-

els. For example, DDPM can be used to remove adversarial noise [132]. In addition,

the literature has shown that adversarial attacks on robust models would generate

plausible features in the image. So in chapter 4, we linked the world of adversarial

examples and counterfactual explanations, and proposed ACE. ACE operates with

adversarial examples in the classical fashion to generate the CE. Rather than ap-

plying the adversarial perturbation directly to the classifier’s input, our approach

generates these perturbations prior to a pre-processing step via a diffusion model’s
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denoising process, enhancing the robustness of the target model. Consequently, the

resulting output serves as a CE.

Contributions:

• We propose a novel approach to generating counterfactual explanations based

on adversarial examples, effectively linking adversarial examples and counter-

factuals.

• To assess our method in general data types, we extend some of the evaluation

metrics to broader domains.

• We prove that ACE provides meaningful explanations by generating real-world

modifications that confound the classifier’s prediction.

Chapter 5 Our previous work and concurrent literature have focused on guiding

counterfactual generation based on gradients through the denoising chain of diffu-

sion models. However, these methods are computationally expensive, so there is

a need to reduce this burden. To address this, in chapter 5 we proposed TIME. In

short, we distilled the classifier’s information into Stable Diffusion [151] in the form

of text tokens. This approach allows us to accelerate the CE generation process by

simplifying it into a straightforward denoising operation.

Contributions:

• We propose TIME, a text-to-image approach for counterfactual explanations.

• Our algorithm has the advantage of being completely black box, i.e. it does

not rely on any feature of the model, but rather operates on the classification

prediction and the input.

• TIME does not operate in the traditional setting of optimization to generate

the explanation. Rather, it inputs the modification via perfect DDIM inver-

sion [183].

Chapter 6 Finally, we shifted our focus from the counterfactual domain to the

Interpretable-by-Design (ID) domain. While transformers have emerged as the ar-

chitecture of choice due to their superior performance over CNN backbones, ID ar-

chitectures are predominantly designed for CNNs. To address this gap, in chapter 6

we propose HiT, a classification model that decomposes the classification token into

the contributions of each patch token, by disentangling the multi-headed attention

mechanism [179], the core function in transformers.
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Contributions:

• We propose an ID-transformer-like architecture that produces the importance

of each token intrinsically for the final prediction.

• To do this, we disentangled the self-attention mechanism so that we could de-

compose the classification token as the sum of individual tokens.

1.4 Publications

According to the plan outlined above, we have managed to publish four papers;

three in internationally renowned conferences and one in a journal. In addition, one

article is under review. Here are our papers:

• Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. “Diffusion Models for

Counterfactual Explanations”. In: Proceedings of the Asian Conference on Com-
puter Vision (ACCV). 2022.

• Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. “Diffusion Models for

Counterfactual Explanations”. In: Computer Vision and Image Understanding.

2024.

• Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. “Adversarial Counter-

factual Visual Explanations”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2023.

• Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. “Text-to-Image Models

for Counterfactual Explanations: a Black-Box Approach”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2024.

• Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. “Disentangling Visual

Transformers: Patch-level Interpretability for Image Classification”. Under Re-
view. 2024.

Finally, this thesis is a based on our work published during these three years. To

complement the content of each chapter, we have included a prologue and an epi-

logue to link all previous studies, provide some context, and state how the method

relates to the current literature.
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Chapter 2

Literature Review

Current XAI research can be organized into two groups: Post-Hoc explainability al-

gorithms and interpretability by-design architectures. The former seeks to create

algorithms to analyze a trained model, while the latter are models that create the

explanation and the decision simultaneously. In this chapter, we will synthesize

the current technological advances in the XAI community for both branches, along

with their advantages and drawbacks. To this end, we will discuss several axes:

Post-Hoc explanations in section 2.1, counterfactual explanations in section 2.2, and

interpretable by-design (ID) architectures in section 2.3.

2.1 Post-Hoc Explanation

Formally, a Post-Hoc explainability method ε takes as input an architecture f , and an

image x to produce an explanation e describing the outcome f (x) of the model:

e = ε( f , x). (2.1)

In addition, e is not restrained to a specific kind of data: it could be a textual expla-

nation, an image, a heat map, or any combination.

The literature presents several promising explanation technologies. One primary

way to categorize these methods is by distinguishing between black box, model-

agnostic, and model-specific algorithms. First, black box methods allow a model to

be analyzed while not having access to the weights, architectural details, or other

internal features of the model. Instead, they only have access to the input and out-

put labels. This provides a certain level of protection, such as avoiding data leakage

through gradients [209]. Second, model-agnostic methods provide explanations for

any architecture, but unlike black-box methods, they have access to the model’s ar-

chitecture, such as the probability distribution generated by the model or hidden

features. Finally, model-specific algorithms are tailored to a particular model and

leverage all of its features. These algorithms are more precise because they take ad-

vantage of all the specifications that make up a precise architecture. In our opinion,
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if the goal is to certify the correct behavior of the model under investigation, restrict-

ing access to the model’s internal workings creates an unnecessary hurdle.

Another way to distinguish Post-Hoc methods is between global and local expla-

nations. Global Post-Hoc explanation algorithms look for a bird’s eye view of the

model’s decision boundary and the used features. These methods are attractive be-

cause they summarize the model behavior in simple descriptions. However, today’s

complex models use a plethora of variables for their decision, so, extracting simple

and interpretable rules can be challenging. Thus, a desired simple rule may not hold

for every data sample, leading to building more complex rules. On the contrary, lo-

cal explanations search to create simple descriptions of a unique instance. Clearly,

local explanations are simpler than global ones as the justification accounts for the

sample and not a group of instances. While this is beneficial locally, the explanation

cannot be extrapolated to other instances.

Among the exhaustive list of algorithms, we highlight some of the most widely

used in computer vision. To begin with, saliency maps [206] - also known as class

activation maps (CAMs) - are the most popular approach to explain a vision archi-

tecture. These local explanations consist of creating a heat map to highlight the most

important pixels used by the model for the final prediction. Formally, the expla-

nation shows elevated values for the most influential pixels. In contrast, negative

values indicate inhibiting features. To build these CAMs, the vast majority of meth-

ods [76, 27, 161, 101, 185, 170] use the gradients of the predicted class with respect to

some features along with some post-processing steps. A small part of the literature

has approached this problem by proposing different mechanisms such as Shapley

values [205, 112], random [141] or super-pixel [148] perturbations, or layer-wise rel-

evance propagation techniques [14]. In addition, there are derivatives of these maps

that produce two maps between an image and a counterimage with a different pre-

diction [177, 56]. These maps show what should change between instances so that

the original image changes its prediction to the counter-image one.

FIGURE 2.1: The CAM
highlights the dog’s
top, but doesn’t reveal
specific features used
for prediction. Exam-

ple from [48].

CAMs provide only partial information about which fea-

tures the model is using for its prediction because these ex-

planations only highlight a region of the image and do not in-

dicate which features were the triggering ones. As an exam-

ple, we point the reader to Figure 2.1, which shows a CAM of

a dog. From this CAM, the user could infer that the decision

was based on the upper half of the dog’s physiological fea-

tures. However, this interpretation could be flawed because

the user is favoring his or her beliefs over the causal factor on

which the model’s prediction is based, e.g., a texture bias [51].

This phenomenon is called confirmation bias [2].

Another branch of research in Post-Hoc methods is con-

cept attribution. These algorithms can be categorized into
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global or local Post-Hoc methods. The main goal of this field is to find the variables

used by the classifier in the form of concepts [87] to give a global view of the fea-

tures used by the model or to resume the decision as a list of used concepts. For

example, Kim et al. [87] builds a dataset of concepts and tests whether they acti-

vate the response to a particular class, giving insight into what the model uses for

a particular class. Next, Ghorbani et al. [52] and Fel et al. [47] extend this work to

find the concepts automatically. Both studies work similarly: by decomposing the

images into sub-regions and then finding the corresponding concepts that activate

a certain class by clustering [52] or by non-negative matrix factorization [47]. Ge

et al. [50] proposes to create a structural graph corresponding to the prediction of

the classifier. This graph gives clues as to why the model chooses this class and not

others.

Among their benefits, concept attribution methods have stronger advantages in

contrast to CAMs, in our opinion. To begin with, recall that salience only provides

a "where" statement. In contrast, concept attributions search to give cues into what

was used for the classification. This information is more fine-grained than just show-

ing where the model is focusing on. But, these methods search for correlations in the

data and the concepts. Certifying that the found concepts are the ones used is essen-

tial. While this is informative, it is important to keep in mind that not all correlations

are factors of causation.

2.2 Counterfactual Explanations

This thesis primarily explores counterfactual explanations (CE). In this chapter, we

provide a comprehensive overview of recent advancements in CE methods. Coun-

terfactuals are categorized as local Post-Hoc explanations. Their main goal is to mod-

ify an input instance such that the modification alters the original prediction. While

this could be easily achieved using methods such as adversarial attacks [54], CE

generation algorithms must satisfy three key properties to be useful.

1. Proximity: The counterfactuals must be close to the original input. Without

this feature, we could create a naive counterfactual by replacing the original

instance with one classified in a different set. In this scenario, the naive coun-

terfactual would not provide useful information. Instead, providing proximal

explanations is equivalent to showing the most important variables used by

the model.

2. Realism: The generation pipeline should produce realistic and plausible changes

to the input image. This property guarantees that the causal factors driving

the decision change are plausible within real-world scenarios. From a user

perspective, there is an additional property that would be ideal: the changes
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FIGURE 2.2: Examples of good counterfactual properties. (a) Shows
a realistic “modification” of the input image so that the output shows
a cat. These modifications are not proximal enough to provide useful
insight into the model’s behavior. (b) Adversarial noise in an effec-
tive approach to reversing the classifier’s decision. This impercep-
tible noise is effectively proximal, but is not realistic and cannot be
analyzed. (c) Adding whiskers to the original image causes the classi-
fier’s decision to change. This indicates that the toy model is sensitive

to whiskers.

should be plausible in the sense that it should be possible to change the pro-

posed features from the initial input state. For example, suppose there is a

model that decides whether a bank can offer a loan to a user. This model takes

as input the user’s monthly income, gender, and age. Given the user’s input

information, the model decided that it could not provide a loan. As a result,

the user received an explanation that if he were one year younger, he would

have received the loan. This scenario illustrates the need to generate plausible

changes. While the scenario may exist in the data, it’s infeasible for the user to

implement this solution due to the impossibility of reversing the aging process.

3. Diversity: CE methods should be able to generate a diverse set of explanations.

This property is intended to highlight not just a single plausible scenario, but

a wide range of cases. Diversity is an important aspect of CE generation be-

cause if a feature is exposed more frequently than others, we can say that it

is one of the most important variables used locally by the model. Although

this property is desirable, we have found that most methods in the literature

neglect this property.

To exemplify the goodness of the introduced properties, in Figure 2.2, we high-

light two scenarios where two counterfactual generation methods produce meaning-

less explanations. First, (a) shows a case where the input image has been completely

replaced by another. Since the new image is in the image manifold, it is by definition

realistic. But in this scenario, the analyst can ask whether the features that caused

the misclassification were the color, the red nose, the collar, the shape, or some com-

bination of these features. Since the range of possibilities is too wide, the analyst will

not get any information. Second, (b) illustrates the case where the explanation is the

input image with adversarial corruptions. In practice, adversarial noise seeks to be
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FIGURE 2.3: Proximity ambiguity in counterfactual explanations.
Both CEs are valid while the first one can be considered as not proxi-
mal to the image. The second explanation adds a barely visible pedes-
trian, indicated by the red arrow. Image taken from the BBD100k

dataset [196] and edited by hand.

imperceptible, so it is proximal to the image both in image space and in human per-

ception (we perceive both images equally). Again, since the image is perceptually

indifferent to the original, it provides no visual cues. Finally, (c) shows an example

of a useful CE. The output shows both closeness and realism since the CE method

only painted the whiskers.

One of the major shortcomings of the explanatory methods introduced in sec-

tion 2.1 is the lack of intervention actions, that is, the alteration of a single or a group

of variables in order to observe an outcome. In contrast, counterfactuals follow this

intrusive approach by attempting to alter an image to observe a change in the clas-

sifier’s decision. In our view, intervention is analogous to the scientific method

because it involves formulating a hypothesis (i.e., does changing Z in X affect the

prediction?) and empirically validating the new outcome of the model by altering

the variables in question. This experiment allows certifying that Z is a variable that

influences the new prediction.

From a human perspective, CEs have additional advantages over other methods.

First, these explanations follow the same rationale as the human learning process

and its logic for explaining phenomena; i.e., in a contrastive and example-based ap-

proach [117]. Second, CEs tend to be concise because they change a few features in

the input. Providing a long and complex explanation of the circumstances surround-

ing a particular event will overwhelm the user, potentially rendering the information

as useless as providing no information about the outcome. Finally, CEs allow for a

higher degree of interactivity with the user because they provide clues as to what

could be changed to achieve a favorable outcome if the decision was negative.

Finally, counterfactuals are not perfect. Like all algorithms, CEs have limitations.

In the first place, many of the properties are ambiguous. For example, we define

property 1 as proximity to the input image. Intuitively, this feature makes sense, but

there is no real consensus on defining what proximity is for counterfactuals. Take

as an example Figure 2.3. This figure illustrates two toy counterfactuals for an au-

tonomous driving task (stop vs. continue). One contains a red bus and the other one

has a barely visible pedestrian. While several distance criteria can make a different
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measurement of proximity, both cases are perceptually close to the original instance,

in our opinion. Second, these CEs are only images. Even if they give information

about what to change, it is partial since there may be several ways to generate the

explanations. Ideally, we would like to supplement the explanation with additional

descriptors, such as text, to facilitate understanding. Third, the previous point raises

an important issue about explanations in general: what makes a good explanation?

Miller [117] manifested that the XAI community tends to define explanations in-

tuitively without resorting to psychology literature. This has led the community

to create explanators that fit their definition for a particular work, without having a

proper background. Finally, the evaluation of counterfactuals is not straightforward.

It consists in generating realistic changes in the picture. Thus, the CE literature has

adopted classical evaluation practices, such as the FID [63]. However, these have

several weaknesses, which we will discuss in depth in subsection 2.2.2.

2.2.1 Generating Counterfactual Explanations

CEs search to minimize a distance function between the counterfactual and the orig-

inal input such that their classification differs [181]. Formally, let x ∈ RD be the

D dimensional input, let d : RD × RD → R+ be a distance function, and define

the classifier as f : RD → {1, 2, ..., C}, where C is the number of classes. Then a

counterfactual xc ∈ RD is a solution to the minimization problem:

xc = argmin
x′∈RD

d(x′, x) s.t. f (x′) ̸= f (x). (2.2)

The previous formulation relates to untargeted counterfactuals, where there is no

specific target. In practice, counterfactuals are generated to predict an intended class

yt ∈ {1, 2, · · · , C}. So, Equation 2.2 becomes

xc = argmin
x′∈RD

d(x′, x) s.t. f (x′) = yt. (2.3)

Although the solution to this problem is a counterfactual, in practice this minimiza-

tion is difficult to optimize. Thus, virtually all methods solve a soft version of Equa-

tion 2.3. Defining l as the loss function between the network output and the reference

class, e.g. Cross Entropy, the minimization problem becomes

xc = argmin
x′∈RD

l( f (x′), yt) + λd(x′, x). (2.4)

Solving this task directly would yield acceptable results in tabular data. How-

ever, in the image domain, this optimization process will produce undesired adver-

sarial examples. To solve this issue, researchers use generative models to constrain

the generation of the image manifold. Hence, when setting G as a generative model,
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and z an input latent code, such that G(z) ∈ RD, Equation 2.4 becomes:

zc = argmin
z′

l( f (G(z′)), yt) + λd(G(z′), x). (2.5)

Thus, the solution G(zc) is the CE. The previous equation is the foundation problem

of counterfactual generation based on optimization for computer vision.

The literature has provided several ways to solve Equation 2.5. At the most ba-

sic level, CE methods have been equipped with different generative models. For

example, Looveren and Klaise [108] used autoencoders (AE), while Rodríguez et al.

[150] employed variational autoencoders [90] (VAE) to generate explanations by op-

timizing the latent code. As AEs and VAEs are optimized to reconstruct the input

image, finding the latent code that creates the original image is trivial, achieving the

proximity property easily. Since then, they have proven to be a valuable approach

for low-dimensional data. However, as datasets have adapted to higher resolutions,

both generative techniques have become obsolete due to their lack of generative fi-

delity in high-dimensional data. In our context, we need to generate high-resolution

images with high fidelity (property 2), so VAEs and AEs are out of scope as a tool

for CEs.

A common tool for CEs are Generative Adversarial Networks [53] (GAN). These

models have been the preferred tool for visual data generation for many years. Sev-

eral approaches have been proposed for CE generation. Singla et al. [167] used con-

ditional GANs to modify the image in a multi-step fashion. Nemirovsky et al. [130]

proposed using residual GANs to generate a delta such that the explanation is the

original image plus the delta. Similarly, Jacob et al. [74] proposed a conditional

GAN that uses segmentation maps as additional input features in the generator.

OCTET [200] uses BlobGAN [41] to specify the location and type of objects. Luo et

al. [113] and Khorram and Fuxin [85] used generated images from GANs to optimize

them directly in the latent space, without resorting to original images.

GANs have several advantages when building CEs. For example, these architec-

tures have been extensively studied and have achieved impressive quality, optimal

for the realism property. Additionally, GANs generate an image in a single pass, en-

suring fast generation. Nevertheless, these models present some weaknesses. First,

recovering a faithful estimate of the input is not trivial and requires an optimization

process. Without this, property 1 (proximity) may be difficult to achieve. Second,

GANs are not as diverse as diffusion models [131] and, as explained previously, we

are looking for methods that satisfy property 3 (diversity).

We believe that diffusion models are an ideal tool for CE, given the advantages

and drawbacks of the previous generative models. These architectures are known

to generate faithful instances of the training data (property 2), and diffusion models

produce diverse images compared to previous approaches (property 3). Although,

as with GANs, recovering the input image is a complex task. Nevertheless, diffusion
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models benefit from certain features, such as the generation of images from partially

noisy instances created from clean ones. This is advantageous because we can use

the diffusion model to recover a clean image from this noisy state while preserving

coarse details.

In the literature on diffusion models for counterfactual explanations, explain-

ers have adopted image-based and latent-based diffusion approaches. On the one

hand, image-based diffusion approaches in pixel space are computationally inten-

sive. For example, DiME (chapter 3) uses the noise chain to propagate the gradient

to the noisy instance. DVCE [10] used the blended diffusion strategy [12] and an

adversarially robust model to regularize the gradients of the target model. ACE

(chapter 4) drastically reduces the sampling steps to compute the gradients through

all steps. These three methods have in common that they circumvent the gradient

through the complete denoising chain by approximating the gradients in different

manners. On the other hand, Stable Diffusion [151] has opened the door to incor-

porating text-driven counterfactuals. LDCE [46] and CoLa-DCE [123] took a similar

approach to pixel-wise algorithms by using guided diffusion to generate the expla-

nations. LANCE [146] used image captioning methods [102] and LLMs [22] to find

concepts that change the classifier’s decision in a brute force manner. To add these

concepts, the approach used standard inpainting techniques [62, 118]. Similarly,

DiG-IN [11] used null-inversion [118] and optimized the entire noise chain to cre-

ate the explanation. Finally, Dataset Interface [180] and TIME (chapter 5) and uses

textual-inversion [49] along with perfect inversion [183], making it simpler than pre-

vious approaches.

2.2.2 Evaluation Metrics

Evaluating counterfactual explanations has proven to be a difficult task. As dis-

cussed in the previous section, counterfactual explanations aim to change the clas-

sifier’s decision by generating instances that satisfy three properties: realism, prox-

imity, and diversity. In addition, counterfactuals can be used as tools for uncovering

spurious correlations learned by a model, so, the literature also attempts to evaluate

this aspect. In table Table 2.1 we summarize the metrics used to assess counterfactu-

als.

Now, let us define some notation that will be used in this section. Let x ∈ RD be a

D-dimensional instance in the image manifold and yt ∈ {1, 2, ..., C} be its target class

in the label space, where C is the number of labels. Further, let f : RD → {1, 2, ..., C}
be the model to explain, xc the CE produced by a generation method ε. Finally, let y
be the predicted class by the model of an image x, i.e. f (x) = y. As a side note, yt can

be different for each image x, but, for simplicity, we will use yt as a general notation

for the target.
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Realism Proximity Diversity Spurious Correlations

· FID [63] · ℓp · σL [79] ·Attribute Mixing [167]
· sFID [78] · FVA [167] · CD [79]
· IM1 [108] · FS [78]
· IM2 [108] · S3 [78]

TABLE 2.1: Counterfactual Explanations evaluation metrics.

Flip ratio. First, we quantify the main goal of CEs: to change the classifier’s de-

cision. To quantify the accuracy of the CE algorithm, we measure the number of

images that correctly changed the classifier’s original prediction to the target label.

Naturally, this metric is defined as

FR =
1
N ∑

x∈X
1( f (xc) = yt). (2.6)

Realism. A common approach to evaluate this property is to use standard met-

rics from the generative literature. To this end, research in CEs for visual data has

adopted the Fréchet Inception Distance (FID) [63]. This metric computes a similar-

ity score between the real and fake distributions in the feature space of an incep-

tion network. Note that when we refer to the real distribution, we mean the origi-

nal dataset, and the fake distribution is the generated instances, or in our case, the

counterfactuals. Although the FID is a common choice when evaluating generative

methods, it has some weaknesses that need to be addressed. First, the FID is biased

towards certain classes and will respond more strongly to particular textures or ob-

jects [82]. Second, the FID assumes that both distributions are Gaussian, which is not

the case. Third, it fails to show some desired characteristics such as precision and

recall. Fourth, the FID cannot measure the realness of the inserted feature at a local

level but looks at all images together. Finally, the FID metric will favor small changes

(area-wise), since smaller changes mean that the image is closer to the original.

Although we did not address the first two weaknesses of the FID, in chapter 4 we

modified -at least partially- the last two by proposing the sFID. This metric divides

the data set into two equal parts and computes the FID between the counterfactuals

of one group and the original instances of the second set, thus removing the similar-

ities between the two.

In addition, there are some metrics that the community no longer uses for re-

alism: IM1 and IM2 [108]. The first metric, IM1, quantifies whether the image is

in the distribution of the target class compared to the source class. To do this, IM1

computes the ratio between the reconstruction errors of two AEs, one trained on the

target class yt and the other trained on the source class y. If the target AE can re-

cover the counterfactual, it means that the CE is in the target distribution, while the

second AE should have trouble recovering the explanation. So, setting both AEs as
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AEyt and AEy, the IM1 is:

IM1(xc, AEyt , AEy) =
∥xc − AEyt(xc)∥2

2

∥xc − AEy(xc)∥2
2 + ϵ

. (2.7)

The second metric, IM2, compares the reconstruction of the target autoencoder and

a general one called AEglobal . Looveren and Klaise [108]’s rationale is that if the

counterfactual lies on the target distribution, it should also exist on the general dis-

tribution. Thus, their proposed metric is

IM2(xc, AEyt , AEglobal) =
∥AEyt(xc)− AEglobal(xc)∥2

2

∥xc∥+ ϵ
. (2.8)

These metrics have many weaknesses. First, it requires the cumbersome task of

training C + 1 autoencoders. In addition, it requires checking that all AEs are work-

ing correctly. Second, the measurement is in pixel space, which is a poor statistic

for distance measurement. Finally, the metric assumes that all images are correctly

classified. Therefore, the source AE would not be able to correctly reconstruct the

CE if the original instance was already on a different distribution.

Proximity. The second property to evaluate is a distance metric between the input

instance and the counterfactual. Naively, we can compute a simple ℓp norm be-

tween xc and x. However, similar to the IM1 and IM2 metrics, measuring distances

in pixel space is not an ideal way to measure proximity between two images. Re-

call Figure 2.3, where we show two plausible counterfactuals. In this scenario, the

explanation 1 (containing a bus) is further away than the other explanation. In our

opinion, both valid cases are equidistant from the original input.

As a result, the literature has resorted to using specialized metrics to assess prox-

imity for specific types of visual data. A common dataset for evaluating CEs is at-

tribute recognition for face images (e.g. CelebA [107] and CelebAHQ [99]). Singla et

al. [167] proposed two complementary ways to assess proximity. First, they checked

whether the face changed its identity via the Face Verification Accuracy (FVA) [24].

Second, they measured the attributes that changed on the counterfactual. This met-

ric is called the Mean Number of Attributes Changed (MNAC). Both metrics comple-

ment each other, since the former checks if the identity remains equal, while the lat-

ter checks if the attributes remain unchanged. In chapter 4, we noticed that the FVA

metric was saturated, reaching almost 100% accuracy. So we skipped the tresholding

in the FVA network and reported the cosine similarity in the embedding space. This

metric is dubbed Face Similarity (FS). Please refer to chapter 4 for more details.

For general-purpose datasets (e.g. BDD100k [197] or ImageNet [35]), there was

only a single approach to evaluate proximity. Khorram and Fuxin [85] suggested

extending the insertion/deletion metric [141] for counterfactuals. In simple words,

this metric, called COUT, gradually adds the changes to the original images and
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checks how the probability of the target class changes. Additionally, in chapter 4

we complement the metrics of general case scenarios by adapting the metrics of

face data. Specifically, we proposed the SimSiamSimilarity (S3), which computes the

perceptual distance between two images, as in FS. In this case, we used the SimSiam

network [31] as it was trained to minimize the distance between two different views

of an instance. All of these metrics share similar issues with the realism metrics,

namely, they depend on the performance of specialized models.

Diversity. At the beginning of this thesis, there was no evaluation of diversity in

CE for images in the literature. For tabular data, Mothilal, Sharma, and Tan [122]

used the mean distance between explanations of the same instance to compute di-

versity. In chapter 3, we follow a similar approach to Mothilal, Sharma, and Tan

[122] and compute the diversity in the same way but using the LPIPS [203] distance.

We refer to this metric as σL.

Spurious Correlations. As explained above, CEs are tools that should be able to

detect spurious correlations learned by the model. Singla et al. [167] proposed to

evaluate this criterion by artificially partially mixing face attributes of two classes

and detecting whether the model can uncover both attributes. However, mixing

two or more attributes is an extreme view of finding spurious correlations. There-

fore, in chapter 3, we highlight this problem and link this criticism to the MNAC

metric. Namely, the MNAC contradicts the goal of detecting spurious correlations,

since targeting one attribute may change others if they are correlated. Therefore, we

propose the Correlation Difference metric to evaluate spurious correlations while

maintaining the good properties of MNAC.

2.3 Interpretable by Desing architecture

Unlike Post-Hoc explanations, an interpretable by-design (ID) architecture f uses the

explanation e to compute the prediction y:

e, y = f (x). (2.9)

In this thesis, we categorize interpretable architectures into two distinct groups. The

first group encompasses architectures that are inherently interpretable, i.e. their in-

ternal mechanisms and decision-making processes are intrinsically interpretable by

design. For instance, a simple linear model is interpretable because we can directly

examine the weights of the model to understand which input features contribute

more significantly towards a particular class prediction. Similarly, decision trees, es-

pecially shallow ones, are interpretable as we can trace the path from input features

to the final decision, following the learned decision rules. Finally, support vector
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machines with simple kernel functions exhibit interpretability similar to linear mod-

els, as we can analyze the feature weights to comprehend which features push the

prediction toward the positive or negative class regions.

The second group consists of ID architectures. Although these models use the

same underlying mathematical operations as traditional neural networks, i.e. lin-

ear and nonlinear transformations, their decision-making process is developed to

provide a more intuitive and interpretable rationale. For example, prototype-based

approaches calculate a prediction based on the reasoning “this looks like this” [30].

In a nutshell, the decision process compares the spatial features with prototype fea-

tures extracted from training images. Thus, the final decision is derived from the

similarity between known features of training images and the tested instance. Later

works [184, 128, 127, 26, 19, 175, 153, 186, 129, 39, 34, 59, 193] build on this logic and

propose extensions to increase both performance and interpretability. In a similar

vein, some methods have similar tendencies and compute the final score based on

parts of the object in the image [92] or following a bag-of-words-like strategy [21].

Other approaches in the literature step away from this paradigm and propose novel

algorithms for interpretability. Finally, some works highlight what a filter is re-

sponding to [103, 104, 163, 16, 23] or produce the final decision based on concepts [93,

133]. Finally, other literature incorporates self-attention layers before the decision

layer to show the similarities between features and concepts [66, 88, 136, 149].

Most of the previous methods are built for CNN backbones. We believe that

this common approach is attractive because the inductive bias of convolutions al-

lows localized features to be built without any bells and whistles. However, only

a small fraction of the literature ventures into building ID transformer-based archi-

tectures. For example, Xue et al. [193] proposed incorporating prototype layers [30]

into transformers, and Böhle et al. [23] extended their previous work [16] to include

self-attention layers in their algorithm. This opens up the possibility of exploring

how to incorporate arbitrary interpretable features into transformers. To this end, in

chapter 6 we propose an architecture based on transformers for classification.

Evaluating the performance of ID architectures typically involves a quantitative

assessment of accuracy on the task at hand, in addition to visual inspection. This

raises the question of how to properly evaluate these models, as merely looking

at accuracy and validating the interpretable properties of the model visually is in-

sufficient. However, the diverse nature of these methods and their different inter-

pretability properties challenge a unified evaluation framework. This phenomenon

has resulted in each method proposing a unique way to evaluate the method.

Finally, when considering the accuracy in each task, e.g. classification, many of

these interpretable models offer increased transparency, but, they often exhibit a

trade-off in terms of performance compared to their black-box counterparts. We

speculate that this gap may arise from the simplification of certain processes in order

to improve interpretability. Nevertheless, recent approaches have shown promising
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results, achieving performance levels comparable to their black-box counterparts.
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Chapter 3

Diffusion Models for
Counterfactual Explanations

Prologue

Generating counterfactual explanations in the image domain typically leverages gen-

erative models. To effectively utilize these architectures, the generative models must

be capable of producing diverse and realistic images. In this work, we addressed

the challenge of integrating diffusion models [64] for generating CEs. These gen-

erative models emerged as an alternative tool for image generation during my first

academic year, yielding comparable or superior results to generative adversarial net-

works (GANs). Beyond their improved qualitative outcomes, diffusion models also

exhibited signs of more diversified generated instances.

In the context of counterfactual explanation generation, diffusion models can

generate an image from partially noisy image states, with the generated instance re-

taining similar low-frequency data as the original. Thus, in our specific use case, we

can partially corrupt the input image and then denoise it, guiding [36] it towards

the counterclass while constraining it to remain close to the input. However, a naive

adaptation of Dhariwal and Nichol [36]’s method is insufficient for generating effec-

tive CEs. Indeed, the main challenge in this work was to adapt the guided diffusion

pipeline [36] to accept classifiers trained without noise.

Finally, this chapter extends beyond the mere generation of counterfactuals, ad-

dressing the challenge of their evaluation - an area that has seen limited advance-

ment. In this work, we additionally critically examined current evaluation protocols

and modified some of their weaknesses to correctly evaluate one of the key goals.

From this work, we published a conference paper (ACCV 2022) and a journal article

(CVIU 2024) in which we included extensive ablation studies on the behavior of the

model. Here we include the journal article and omit the conference paper since the

former contains all information for the latter.
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3.1 Introduction

Convolutional neural networks (CNNs) have achieved remarkable performance lev-

els by leveraging large, deep architectures comprising hundreds of layers and bil-

lions of trainable parameters. However, elucidating their decisions poses a challenge

due to their pronounced non-linearity and excessive parameterization. Moreover,

in real-world scenarios, if a model capitalizes on spurious correlations within data

to make predictions, it can significantly erode end-user confidence in its decisions.

This concern is particularly acute in high-stakes domains such as medicine or crit-

ical systems. Hence, there is a pressing need for Machine Learning (ML) models

to ensure the utilization of accurate features while avoiding spurious associations

in prediction. Consequently, the field of Explainable Artificial Intelligence (XAI) has

witnessed substantial growth in recent years, aiming to unravel the decision-making

mechanisms inherent in deep learning models.

This chapter focuses on post-hoc explanation methods, with particular emphasis

on the burgeoning field of Counterfactual Explanations (CE) [181]. The primary ob-

jective of CEs is to introduce minimal yet meaningful perturbations to an input sam-

ple, thereby altering the original decision made by a black-box model. In essence,

CE methods aim to achieve three key properties: (i) generating proximal images

with sparse modifications, i.e. instances with the smallest perturbation; (ii) ensuring

explanations are both realistic and comprehensible to humans; and (iii) producing

diverse instances. Generally, counterfactual explanations strive to unveil the learned

correlations underpinning the model’s decisions.

Numerous studies on CEs leverage generative models to effect tangible alter-

ations in images [158, 150, 80]. Additionally, these architectures discern the factors

responsible for generating images close to the image manifold [9].

Given the recent advances within the image synthesis community, we propose

DiME: Diffusion Models for counterfactual Explanations. DiME harnesses the de-

noising diffusion probabilistic models [64] to produce CEs. For simplicity, we will

refer to these models as diffusion models or DDPMs. To the best of our knowledge,

we are the first to exploit these new synthesis methods in the context of CEs.

Diffusion models offer several advantages over alternative generative models

like GANs. Firstly, DDPMs incorporate multiple latent spaces, each governing coarse

and fine-grained details. We exploit low-level noise latent spaces to effect semanti-

cally meaningful changes in the input image, a feature only recently explored by Meng

et al. [115] for inpainting. Secondly, owing to their probabilistic nature, they yield a

diverse array of images. This stochasticity proves advantageous for CEs, as multi-

ple explanations may elucidate a classifier’s error modes. Thirdly, as suggested by

Nichol and Dhariwal [131], DDPMs cover a broader spectrum of the target image

distribution. They observed that, for similar Frechet Inception Distance (FID)[63],
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the recall is significantly higher on the improved precision-recall metrics [98]. Fi-

nally, the training of DDPMs is more stable compared to state-of-the-art synthe-

sis models, notably GANs. However, due to their relatively recent development,

DDPMs remain underexplored, with several aspects yet to be fully understood.

This work contributes to the XAI community by delving into the low-level noise

latent spaces of DDPMs within the context of counterfactual explanations. Our con-

tributions span across three main axes:

• Methodology: (i) DiME uses the recent diffusion models to generate counter-

factual examples. Our algorithm relies on a single unconditional DDPM to

achieve instance counterfactual generation. To accomplish this, (ii) we derive

a new way to leverage an existing (target) classifier to guide the generation

process instead of using one trained on noisy instances, as proposed by Dhari-

wal and Nichol [36]. Additionally, (iii) to reduce the computational burden,

we take advantage of the forward and backward diffusion chains to transfer

the gradients of the classifier under observation.

• Evaluation: We show that the standard MNAC metric is misleading because

it does not account for possible spurious correlations. Consequently, we intro-

duced a new metric, dubbed Correlation Difference, to evaluate subtle spuri-

ous correlations in a CEs setting.

• Performance: We set a new state-of-the-art result on several datasets, outper-

forming previous work on several standard metrics.

To further boost research on counterfactual explanations, our code and models

are publicly accessible on https://github.com/guillaumejs2403/DiME.

3.2 Related Work

This work contributes to the field of XAI, within which two families can be distin-

guished: interpretable-by-design and post-hoc approaches. The former includes, at

the design stage, human interpretable mechanisms [7, 202, 30, 126, 6, 70, 18]. The

latter aims at understanding the behavior of existing ML models without modifying

their internal structure. Our method belongs to this second family. The two have dif-

ferent objectives and advantages; one benefit of post-hoc methods is that they rely on

existing models that are known to have good performance, whereas XAI by design

often leads to a performance trade-off.

Post-hoc methods: In the field of post-hoc methods, there are several explored di-

rections. Model Distillation strategies [171, 50] approach explainability through fit-

ting an interpretable model on the black-box models’ predictions. In a different vein,

some methods generate explanations in textual form [61, 134, 191]. When it comes to

https://github.com/guillaumejs2403/DiME
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explaining visual information, feature importance is arguably the most common ap-

proach, often implemented in the form of saliency maps computed either using the

gradients within the network [161, 76, 185, 101, 27, 206] or using the perturbations

on the image [141, 142, 178, 199]. Concept attribution methods seek the most recur-

rent traits that describe a particular class or instance. Intuitively, concept attribution

algorithms use [87] or search [52, 194, 50, 207] for human-interpretable notions such

as textures or shapes.

Counterfactual Explanations (CEs): CEs is a branch of post-hoc explanations.

They are relevant to legally justifying decisions made automatically by algorithms

[181]. Some recent methods [187, 56] exploit the query image’s regions and a differ-

ent classified picture to interchange semantic appearances, creating counterfactual

examples. Despite using the same terminology, this line of work [56, 188, 177] is di-

verging towards a task where it merely highlights regions that explain the discrep-

ancy of the decision between the two real images, significantly differing from our

evaluation protocol setup. Other works [181, 160] leverage the input image’s gradi-

ents with respect to the target label to create meaningful perturbations. Conversely,

Akula, Wang, and Zhu [4] find patterns via prototypes that the image must contain

to alter its prediction. Similarly, Poyiadzi et al. [144] and Looveren and Klaise [108]

follow a prototype-based algorithm to generate the explanations. Even Deep Image

Priors [172] and Invertible CNNs [71] have shown the capacity to produce counter-

factual examples. Furthermore, theoretical analyses [72] found similarities between

counterfactual explanations and adversarial attacks.

Due to the nature of the problem, the generation technique used is the key ele-

ment to produce data near the image manifold. For instance, Dhurandhar et al. [37]

optimizes the residual of the image directly using an autoencoder as a regularizer.

Other works propose to use generative networks to create the CEs, either uncondi-

tional [130, 150, 164, 204, 80] or conditional [176, 167, 106, 74]. In this chapter, we

adopt more recent generation approaches, namely diffusion models; an attempt never

considered in the past for counterfactual generation.

Diffusion Models: Diffusion models have recently gained popularity in the

image generation research field [64, 168]. For instance, DDPMs approached in-

painting [154], conditional and unconditional image synthesis [131, 64, 32], super-

resolution [155], even fundamental tasks such as segmentation [15], providing per-

formance similar or even better than State-of-the-Art generative models. Further,

Song et al. [169] and Huang, Lim, and Courville [67] show score-based approaches

and diffusion are alternative formulations to denoise the reverse sampling for data

generation. Due to the recursive generation process, DDPMs sampling is expen-

sive. Many works have studied alternative approaches to accelerate the generation

process [95, 190].

The recent method of Dhariwal and Nichol [36] targets conditional image gener-

ation with diffusion models, which they do by training a specific classifier on noisy
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instances to bias the generation process. Our work bears some similarities to this

method, but, in our case, explaining an existing classifier trained uniquely in clean

instances poses additional challenges. In addition, unlike past diffusion methods,

we perform the image editing process from an intermediate step rather than the fi-

nal one. To the best of our knowledge, no former study has considered diffusion

models to explain a neural network counterfactually.

3.3 Methodology

3.3.1 Diffusion Model Preliminaries

Let us first introduce the generation process of diffusion models. DDPMs are based

on two Markov chain sampling schemes that are inverse to each other. In the for-

ward direction, the sampling starts from a natural image x and iteratively samples

z1, · · · , zT by replacing part of the signal with white Gaussian noise. More precisely,

if βt is a given variance, the forward process follows the recursive expression:

zt ∼ N (
√

1− βt zt−1, βt I), (3.1)

where N is the normal distribution, I the identity matrix, and z0 = x. This process

can be simulated directly from the original sample with

zt ∼ N (
√

ᾱtx, (1− ᾱt)I), (3.2)

where ᾱt := ∏t
k=1(1− βk). For clarification, through the rest of the chapter, we will

refer to clean images with an x, while noisy ones with a z.

In the reverse process, a neural network recurrently denoises zT to recover the

previous samples zT−1, · · · , z0. This network takes the current time step t and a

noisy sample zt as inputs, and produces an average sample µ(t, zt) and a covariance

matrix Σ(t, zt), shorthanded as µ(zt) and Σ(zt), respectively. Then zt−1 is sampled

with

zt−1 ∼ N (µ(zt), Σ(zt)). (3.3)

So, the DDPM algorithm iteratively employs Equation 3.3 to generate an image z0

with zero variance, i.e. a clean image. Some diffusion models use external informa-

tion, such as labels, to condition the denoising process. However, in this chapter, an

unconditional DDPM is employed.

In practice, the variances βt in Equation 3.1 are chosen such that zT ∼ N (0, I).
Further, the DDPM’s trainable parameters are fitted so that the reverse and forward

processes share the same distribution. Readers wishing to know further details on

DDPM can refer to Ho, Jain, and Abbeel [64] and Nichol and Dhariwal [131]. Once

the network is trained, one can rely on the reverse Markov chain process to generate
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FIGURE 3.1: DiME: Diffusion Models for Counterfactual
Explanations. Given an input instance x, we perturb it follow-
ing Equation 3.2 to get zτ (here τ = 5). At time step t, the DDPM
model is used to generate a clean image xt, allowing to obtain the
clean gradient Lclass and Lperc. Finally, we sample zt−1 using the
guiding optimization process on Equation 3.4, using the previously

extracted clean gradients.

a clean image from a random noise image zT. Besides, the sampling procedure can be

adapted to optimize some properties following the so-called guided diffusion scheme

proposed by Dhariwal and Nichol [36]:

zt−1 ∼ N (µ(zt)− Σ(zt)∇zt L(zt; y), Σ(zt)), (3.4)

where L is a loss function using zt to specify the wanted property of the generated

image, for example, to condition the generation on a prescribed label y. Note that

in the work of Dhariwal and Nichol [36], guided diffusion is restricted to a specific

classification loss. However, for the sake of generality and conciseness, this work

shows how it can be extended to arbitrary losses.

3.3.2 DiME: Diffusion Models for Counterfactual Explanations

DiME takes an image editing perspective on CE generation. In order to generate a

CE for a query image, DiME uses guided diffusion to direct the generation towards

the target class. To remove the dependency of the guided diffusion on a particular

classifier and to include the classifier under scrutiny, this study proposes a new way

to compute the steering gradients ∇zt L (Equation 3.4).

Consider t ∈ {1, 2, ..., T} as an intermediate time step in the noise chain and zt

as an instance in the corresponding noise state. To compute valid gradients, DiME

iteratively denoises zt to produce a clean image xt using Equation 3.3. Thus, xt can

be processed by the classifier as it is no longer noisy. As a result, it is now possible to

compute a loss function L and back-propagate the gradients through the denoising
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iterative phase. Hence, ∇zt L(zt) is computed as:

∇zt L(zt) =

(
Dxt

Dzt

)T

· ∇xt L(xt). (3.5)

To reduce the computational burden of the Jacobian computation Dxt/Dzt, we rely

on the single-step forward process in Equation 3.2. Using the reparametrization

trick [90], one obtains

zt =
√

ᾱtxt +
√

1− ᾱtϵ, ϵ ∼ N (0, I). (3.6)

So, by solving xt from zt, we can leverage the gradients of the loss function with

respect to the noisy input, a consequence of the chain rule. Henceforth, the gradients

of L with respect to zt become

∇zt L(zt) =
1√
ᾱt
∇xt L(xt). (3.7)

Now, we need to choose the loss function to optimize. Building upon previous

approaches for CEs based on other generative models [167, 181, 74], we rely on a loss

function composed of two components to steer the diffusion process: a classification

loss Lclass, and a perceptual loss Lperc. The former guides the image edition into im-

posing the target label, and the latter drives the optimization in terms of proximity.

Accordingly, the loss function is

L(xt) = λcLclass(C(y|xt)) + λpLperc(xt, x), (3.8)

where Lclass is a classification loss used to guide the image edition toward the target

label, a perceptual loss Lperc to optimize the proximity, λc and λp are regularization

constants, and C(y|xt) is the posterior probability of the category y given xt com-

puted with the classifier C. Additionally, we incorporate an ℓ1 loss, λ1∥zt − x∥1,

between the noisy image zt and the input x to slightly boost the similarity between

the counterfactual and the query image in the pixel space.

After explaining how DiME uses the target classifier, Figure 3.1 shows how DiME

makes counterfactual explanations. The algorithm starts by corrupting the input

instance x = xτ according to Equation 3.2 up to the noise level t = τ, with 1 ≤ τ ≤ T,

creating zt. Then the following two steps are iterated from t = τ to t = 1: (i) First,

we guide the diffusion process to obtain zt−1 using Equation 3.4 with the gradients

computed in Equation 3.7 using the previous clean instance xt. (ii) Next, we estimate

the clean image xt−1 for the current time step zt−1 using the unconditional generation

pipeline of DDPMs. The final image is the counterfactual.
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3.3.3 Discussion

This section discusses the methodological contributions of DiME. First, it explains

how we adjusted guided diffusion to include the classifier being studied without

having to modify it. Then it assesses the proposed technique for speeding up gradi-

ent computation and finally, it provides feedback on the loss function.

Adapting the Guided Diffusion The classifiers to be analysed by XAI methods are

trained on images that do not contain any degree of noise, and should not be modi-

fied in any way. So, it is expected that they would not produce robust predictions for

noisy samples such as those used by guided diffusion [36]. This phenomenon leads

to uninformative gradients ∇zt Lclass(C(y|zt)) when the classifier C is used directly

with zt, which misguides the generation of the counterfactual. For this purpose,

generating a clean instance xt from zt and computing the gradients with xt yields an

approximate but useful steering gradient. This experiment is fact-checked quantita-

tively in subsection 3.5.1.

Efficient Gradient Computation The dependence of the loss on xt, rather than di-

rectly from zt, renders the gradient computation more expensive (Equation 3.5). In-

deed, this procedure requires retaining Jacobian information throughout the entire

computation graph, which is very deep when t is close to τ. As a result, backprop-

agation is too memory-intensive to be considered an option. So, the proposed ap-

proximation greatly relaxes this computational constraint, enabling the generation

of counterfactual explanations in regular-user GPU setups.

A note on the Loss function Diffusion models are inherently stochastic, i.e. each

denoising step operates on a noise sampled from the normal distribution. Thus, xt is

also stochastic, and, the loss function in Equation 3.8 should contain an expectation,

as in

L̃(zt; y, x) = E [L(xt; y, x)] . (3.9)

In practice, computing the loss gradient would require sampling several realizations

of xt and taking an empirical average. We restrict ourselves to a single realization per

step t for computational reasons and argue that this is not an issue. Indeed, we can

partly count on an averaging effect along the time steps to cope with the lack of in-

dividual empirical averaging. Besides, the stochastic nature of our implementation

is an advantage since it introduces more diversity in the produced CEs, a desirable

feature as advocated by Rodríguez et al. [150].
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3.4 Experiments

3.4.1 Datasets

This work assesses the DiME’s effectiveness using established methodologies across

three datasets: CelebA, CelebA HQ, and BDD100k. Next, we will describe each

dataset and their standardized protocols, including the classification task, model

architecture, and image resolution.

CelebA [107] is a dataset for attribute classification. The dataset contains ap-

proximately 200.000 images, each containing a label for the 40 attributes. For the

CE generation, the protocols are similar to the one employed by [150, 167, 74]. The

architecture of choice is a DenseNet121 [68] employed to extract the attributes of im-

ages with a resolution of 128× 128. Finally, along the 40 attributes, the CE will be

generated for the smile and young attributes.

Jacob et al. [74] proposed extending the evaluation protocols to CelebA HQ [100],

increasing to a higher degree of difficulty. This dataset contains 30.000 high-definition

face images, each labelled with 40 attributes, similar to CelebA. For the task, Jacob et

al. [74] followed a setup comparable to the one utilized for CelebA, covering equiv-

alent target classes and classifier but with 256× 256 resolution instances.

Finally, the study also includes experiments conducted on BDD100k [196] fol-

lowing the conventions proposed by Jacob et al. [74]. The BDD100k dataset com-

prises 10 tasks for autonomous driving, such as object detection, lane marking, and

instance semantic segmentation. It contains 100.000 driving scene videos at a 720p

resolution. Due to the lack of a classification task, Jacob et al. [74] proposed using a

DenseNet121 [68], as well, in the BDD-OIA [192] extension set for the moving forward
/ slowing down task. The images are resized at a resolution of 512× 256 pixels.

3.4.2 Implementation Details.

As seen in subsection 3.3.2, DiME’s CE generation involves several key hyperparam-

eters. Firstly, there are the hyperparameters for the classification, perceptual, and ℓ1

losses: λc, λp, λ1, respectively. Regarding the classification mixing factor, if the coun-

terfactual generation does not find a valid explanation, DiME re-runs its algorithm

but with an increased value for λc. Secondly, τ controls the amount of noise added

to the initial instance for the denoising process.

For all datasets, DiME uses λp = 30, and λ1 = 0.05. Further, DiME’s diffu-

sion model was trained to generate images using 500 diffusion steps from the nor-

mal distribution. Yet, when generating the explanations, DiME re-spaced the sam-

pling process to 200 time-steps, reducing the inference time. For CelebA and CelebA

HQ, DiME’s diffusion model uses a τ = 60. Hyperparameter-wise, for the former

dataset, DiME sets λc ∈ {8, 10, 15} to iteratively find the counterfactuals, while for

the latter it used a λc ∈ {25, 30, 40}. Regarding BDD100k, DiME sets τ = 45 and
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λc ∈ {50, 55}. Lastly, all unconditional DDPM models were trained with the pub-

licly available code of Dhariwal and Nichol [36].

3.4.3 Evaluation Metrics

Building on previous studies [150, 167], the subsequent paragraphs summarize the

principles of current evaluation metrics.

As explained in section 3.1, the goal of CEs is to create explanations that mis-
lead the classifier under observation. We assess this goal by computing the flip ratio

(FR). This measure is computed as the proportion of instances in the dataset that

flip the classifier’s decision. On another note, the CEs must have several proper-

ties. Following the image synthesis research literature, previous methods adapted

the FID [63] as a measure of the realism of the image distribution. Furthermore, the

second property of CEs is to create proximal and sparse images. Among other tools,

the XAI community has adopted the Face Verification Accuracy [24] (FVA) and the

Mean Number of Attributes Changed (MNAC) [150] for face images. On the one

hand, the MNAC metric looks at the face attributes that changed between the in-

put image and its counterfactual explanation, regardless of whether the individual’s

identity changed. On the other hand, the FVA looks at the identity of the individual

without considering the difference in attributes.

To compute these measures, the FVA uses the cosine similarity between the in-

put image and its produced counterfactual on the feature space of a ResNet50 [60]

pretrained model on VGGFace2 [24]. This metric considers that two instances share

identity if the similarity is higher than 0.5. So, the FVA is the mean number of faces

sharing the same identity with their corresponding CE. Computing the MNAC re-

quires fine-tuning the VGGFace2 model on the CelebA dataset or CelebA HQ. This

fine-tuned model is dubbed oracle. Thus, the MNAC is the mean number of at-

tributes for which the oracle switch decision under the action of the CE. For a fair

comparison with the state-of-the-art, all classifiers were trained using the DiVE’s [150]

available code for the CelebA dataset, including the fine-tuned ResNet50 for the

MNAC assessment. For the CelebA HQ and BDD100k sets, STEEX’s[74] publicly

available code provided their models. Finally, previous studies [150, 167] compute

the FID, the FVA, and the MNAC metrics considering only those successful counter-

factual examples.

3.4.4 Quantitative Evaluation

This section quantitatively evaluates the performance of DiME against previous

methods. Foremost, we assess the FP of the STEEX [74] and DiVE [150] algorithms.

While STEEX reports a 99.5% FR, DiVE does not report theirs. This raises concerns

about the fairness of comparing the quantitative measures between the proposed

method, STEEX, and DiVE. Since some metrics depend highly on the number of
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samples, especially FID, it was necessary to recompute their CEs. Surprisingly, their

FR was relatively low: 44.6% for the smile category. In contrast, DiME achieved a

success rate of 97.6 and 98.9 for the smile and young attributes, respectively. Hence,

by changing their optimization steps to 100 - now referred to as DiVE100 -, the new

FR performance rise to 92.0% for the smile attribute and to 93.4% for the young one.

Table 3.1 shows DiME’s metrics in for CelebA. The proposed method beats the

previous literature in five out of six metrics. For instance, there is an approximately

3-fold improvement on the FID metric for both smile and young attributes. DiME’s

generation process does not require entirely corrupting the input instances; hence,

the coarse details of the image remain. The other methods rely on latent space-based

architectures. Thus, they require compacting essential information and removing

outlier data. Consequently, the generated CEs cannot reconstruct the missing infor-

mation, losing significant visual components of the image statistics.

Smile Age

Method FID (↓) FVA (↑) MNAC (↓) FID (↓) FVA (↑) MNAC (↓)

xGEM+ [80] 66.9 91.2 - 59.5 97.5 6.70
PE [167] 35.8 85.3 - 53.4 72.2 3.74

DiVE [150] 29.4 97.3 - 33.8 98.2 4.58
DiVE100 36.8 73.4 4.63 39.9 52.2 4.27

STEEX [74] 10.2 96.9 4.11 11.8 97.5 3.44
DiME (Ours) 3.17 98.3 3.72 4.15 95.3 3.13

TABLE 3.1: CelebA results. DiME’s performance against the state-
of-the-art on the FID, FVA, and MNAC metrics. The values in bold
are the best results. The proposed method has a 3-fold improvement
on the FID metric. All results were extarcted from Jacob et al. [74]’s

manuscript.

All results from CelebA HQ dataset are in Table 3.2. For both attributes, DiME

outperforms STEEX in the FID and MNAC metrics, while achieving competitive per-

formance on the FVA metric. Yet, the former method has an advantage with respect

to the latter. STEEX uses additional segmentation maps to generate the counter-

factual, while DiME merely uses the target classifier. This is advantageous as the

proposed method can be applied out of the box without requiring a segmentation

model.

The evaluation of the BDD100k dataset does not enjoy the benefits of the FVA

and MNAC metrics since these are for face data. Thus, the FID is the only metric

available to evaluate the BDD100k dataset. Jacob et al. [74] noted that Rodríguez et

al. [150]’s work does not converge on the BDD dataset. Hence, we compare ourselves

only against STEEX [74]. Performance-wise, DiME achieves a 7.35 FID compared to

58.8 for STEEX. Nevertheless, DiME achieves a 95.6% FR, while STEEX claims a

99.5%.
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Age Smile

Method FID (↓) FVA (↑) MNAC (↓) FID (↓) FVA (↑) MNAC (↓)

DiVE [150] 107.0 35.7 7.41 107.5 32.3 6.76
STEEX [74] 21.9 97.6 5.27 26.8 96.0 5.63

DiME (Ours) 18.1 96.7 2.63 18.7 95.0 2.10

TABLE 3.2: CelebA HQ results. DiME’s performance compared to
the state-of-the-art on the FID, FVA, and MNAC metrics. The values
in bold are the best results. The proposed CE algorithm has small
FID and MNAC performance improvement while being competitive
in the FVA metric. We extracted all results from the work of Jacob

et al. [74].
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FIGURE 3.2: Spurious Correlation Detection. We show the top 9
most correlated attributes in the label space with “smile”. We ob-
tained the Pearson Correlation Coefficient from the ground truth on
the training set. Albeit the difference in the MNAC performance,
DiME and DiVE achieve to detect the spurious correlation similarly.

3.4.5 Discovering Spurious Correlations

One end goal of CE is to uncover the modes of error of a target model, in particular

its reliance on spurious correlations. Previous evaluation protocols [167] search to

assess the counterfeit dependencies by inducing artificial entanglements between

two supposedly uncorrelated traits, such as the smile and gender attributes. Such an

extreme experiment does not shed light on the ability to reveal spurious correlations

for two reasons. First, the introduced entanglement is complete, in the sense that

in this experiment the two considered attributes are fully correlated. Second, the

entanglement is restricted to two attributes. In fact, as depicted in Figure 3.2, in

real datasets such as CelebA, many labels are correlated at multiple levels. As a

result, this phenomenon calls the previously proposed correlation experiment into

question.

At the same time, the interpretation of some standard metrics can be challenged

when spurious correlations are present. This is the case for MNAC. Arguably, the

classical interpretation is that, between two CE methods, the one displaying the

smaller MNAC is reckoned as the better one. This interpretation is at odd with

the fact that the alternative method may display a higher MNAC because it actually

reveals existing spurious correlations.

Consequently, this work designed a new metric called Correlation Difference (CD),
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verifying the following principles: (i) it quantifies how well a counterfactual rou-

tine captures spurious correlations. (ii) It should apply an oracle to predict the (un-

known) attributes of counterfactual examples. (iii) To mitigate potential errors of the

oracle, the metric should preferably rely on attribute prediction changes between the

original example and its explanation, rather than solely on the prediction made on

the counterfactual. In other words, principle (i) amends the failure of MNAC by

estimating the correlation between two attributes after applying the counterfactual

algorithm, while (ii) and (iii) maintain its desirable features.

To do so, let cq,a be the Pearson correlation coefficient between the target attribute

q and any other attribute a. Denoting X a random image sample along with its two

associated binary attribute labels Yq and Ya, cq,a is defined as

cq,a = PCC(Yq, Ya), (3.10)

where PCC is the Pearson correlation coefficient operator. To cope with principle

(i) we would like to estimate correlations between attributes q and a as well as we

would like our estimation to rely on the CE method M targeting the attribute q.

The main issue is that we do not know the actual attributes for the CE, M(X, q),
obtained from an image X. Yet, following principle (ii), we may rely on an oracle

to predict these attributes. More precisely, letting Oa(X) be the oracle prediction

for a given image X and for the label a, we could simply compute the correlation

coefficient between Oq(M(X, q)) and Oa(M(X, q)). Such an estimate would be prone

to potential errors of the oracle, and following principle (iii) we would prefer to rely

on attribute changes δM
q,a(X) = Oa(M(X, q))−Oa(X).

Interestingly, one can show that cq,a can be reformulated as follows:

cq,a = PCC(δq, δa), (3.11)

where δa = Ya − Y′a and δq = Yq − Y′q, with (X, Yq, Ya) and (X′, Y′q, Y′a) two inde-

pendent samples. In other words, cq,a can be interpreted as the correlation between

changes in attributes q and a among random pairs of samples.

Theorem 1. Let Yq and Ya be the distributions of the query and target attributes q and a,
respectively, over the random variable X. Similarly, let Y′q and Y′a be the distributions of each
attribute over the X′ i.i.d. than X. Thus, if

cq,a :=
Cov(Yq, Ya)√

Cov(Yq, Yq)Cov(Ya, Ya)
, (3.12)

then,

cq,a =
Cov(δq, δa)√

Cov(δq, δq)Cov(δa, δa)
, (3.13)
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where δa := Ya −Y′a, with X′ is i.i.d. than X, and Cov is the covariance operator.

Proof. By definition, the covariance between Yq and Ya is:

Cov(Yq, Ya) = E[(Yq −E[Yq])(Ya −E[Ya])]. (3.14)

Thus,

Cov(Yq, Ya) = E[(Yq −E[Yq])(Ya −E[Ya])]

= E[Yq(Ya −E[Ya])] + E[E[Yq](Ya −E[Ya])]︸ ︷︷ ︸
=0 by symmetry

= E[Yq(Ya −E[Ya])]

= E[Yq(Ya −Y′a)]

= E[Yqδa]

= E

[
1
2
(2 Yq −Y′q + Y′q)δa

]
=

1
2

E
[(

δq + Yq + Y′q
)

δa

]
=

1
2

E[δqδa] +
1
2

E[(Yq + Y′q)δa]︸ ︷︷ ︸
=0 by symmetry

=
1
2

E[δqδa].

(3.15)

Given that E[δi] = 0 for i ∈ {a, q}, then

E[δqδa] = Cov(ffiq, ffia). (3.16)

Therefore,

Cov(Yq, Ya) =
1
2

Cov(ffiq, ffia). (3.17)

Note that the same derivation holds when a = q. Consequently,

cq,a =
Cov(δq, δa)√

Cov(δq, δq)Cov(δa, δa)
(3.18)

Following the result of Theorem Theorem 1, δM
q,q and δM

q,a are used as replacements

for δq and δa in Equation 3.11 to obtain the estimate cM
q,a of cq,a. Finally, CD for label q

is merely:

CDq = ∑
a
|cq,a − cM

q,a|. (3.19)

So, this sections assesses DiME and DiVE100’s explanations on the CelebA dataset.

The proposed method got a CD of 2.30 while DiVE100 2.33 on CelebA’s validation set,
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FIGURE 3.3: Diversity Counterfactual examples. The classifier pre-
dicts the first two input images as non-smiley and the last two as
smiley. In this example, all explanations fool the classifier. DiME
is capable of synthesizing diverse counterfactuals without any addi-

tional mechanism.

meaning that DiVE100 lags behind DiME. However, the margin between the two ap-

proaches is only slender. This reveals our suspicions: the MNAC results presented in

Table 3.1 give a misleading impression of a robust superiority of DiME over DiVE100.

3.4.6 Diversity Assessment

One of the most crucial traits of counterfactual explanations is to create multiple and

diverse examples [150, 122]. So, this chapter proposes the σL metric to assess trait by

computing the mean pair-wise LPIPS [203] metric between five independent runs.

Formally, setting N as the length of the dataset and n = 5 as the number of different

CE runs, the diversity metric is:

σL =
1
N

N

∑
i=1

2
n(n− 1)

n

∑
j=1

n

∑
k=j+1

LPIPS(xi
j, xi

k), (3.20)

where xi
j is the j counterfactual of the instance i. Therefore, a higher σL means in-

creased perceptual dissimilarities between the explanations, hence, more diversity.

In practice, σL uses all counterfactual examples, even the unsuccessful instances, to

compute the evaluation metric because we search for the capacity of exploring dif-

ferent traits. Additionally, the original instance is excluded since we search for the

dissimilarities between the counterfactuals.

Accordingly, we assess DiME’s performance with DiVE100 and its Fisher Spectral

variant on a small partition of the validation subset. As well, Figure 3.3 visualizes
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some examples. On the one hand, DiME achieved a diversity of 0.213. On the other

hand, DiVE [150] reached 0.044 and its Spectral Fisher variant got 0.086. In addi-

tion, Table 3.3 shows five different runs using the FID, FR, and ℓ1 metrics. Even

when we set different initial conditions for each iteration, DiME is robust to many

instantiations.

TABLE 3.3: Diversity experiments. The proposed method was tested
five times, varying the initial seed. The results show that DiME is
robust to the different initial conditions, although the visual elements

vary significantly.

Seed FID(↓) FR(↑) ℓ1(↓)
1 20.51 97.9 0.0430
2 20.60 97.6 0.0430
3 20.72 97.9 0.0431
4 20.67 97.7 0.0431
5 20.46 98.2 0.0430

3.4.7 Qualitative Results

FIGURE 3.4: Qualitative Results. This figure visualizes some images
and their corresponding counterfactual explanation produced by our
proposed approach. The proposed methodology achieves to incorpo-
rate small but perceptually tangible changes in the image. NS stands

for Non-Smiley.

Figure 3.4 shows some inputs (left) and the counterfactual examples (right) pro-

duced by DiME for all datasets. At first glance, the results reveal that the model per-

forms semantic editings into the input image. In addition, uncorrelated features and

coarse structure remain almost unaltered. Further, some out-of-distribution objects

(e.g. items, pendants, or hands) present slight variations. Yet, DiME fails to recon-

struct the exact shape of these objects, but the essential aspect remains the same.
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3.5 Ablation studies

This section studies all DiME components to analyze each individual contribution.

To validate all distinct variations, all evaluations were performed on a small and

randomly selected mini-val. Several metrics were considered to compute all scores:

the FR, the FID, and the ℓ1 metric of successful CEs. However, in order to make

the FID values more comparable among all variants, we condition its computation

only on the successful CEs and keep the same number of samples for all methods to

mitigate the bias in FID related to the number of samples, denoted as FID+.

3.5.1 Impact of the noise-free input of the classifier

As a major contribution, this chapter proposed an adjustment to the guided diffu-

sion process. It consists in applying the classifier on noise-free images xt rather than

on the current noisy version zt to obtain a robust gradient direction. To assess the

role of this part, consider several alternatives to DiME’s approach. The first alterna-

tive, dubbed Direct, uses the gradient of the classifier applied directly to the noisy

instance zt. The second version, called Naive, uses the gradient of the original input

image at each time step to guide the optimization process. The last variation is a

near duplicate of DiME except for the fact that it ends the guided diffusion process

as soon as xt fools the classifier, dubbed Early Stopping. In addition, the results con-

tain the evaluation of the DDPM generation without any guiding beginning from

the corrupted image at time-step τ - named Unconditional. This assessment marks a

reference of the performance of the DDPM model.

Method FR (↑) FID+(↓) ℓ1(↓)
Direct 19.7 50.51 0.0454
Naive 70.0 98.93 ± 2.36 0.0624

Early Stopping 97.3 51.97 ± 0.77 0.0467
Unconditional∗ 8.6 53.22 ± 0.98 0.0492

DiME 97.9 50.20 ± 1.00 0.0430

TABLE 3.4: DiME variations. This table shows the advantages of the
proposed adjustment to incorporate the classifier under observation.
Including the clean gradients benefits DiME on all metrics, especially
the FR. ∗: FID+ and ℓ1 are computed with the same number of sam-

ples as the rest, but without filtering out unsuccessful CEs.

Table 3.4 shows the results of the different versions. The most striking point is

that when compared to the Naive and Direct approaches, the unimpaired version

of DiME is the most effective in terms of FR by a large margin. This observation

validates the need for our adjustment of the guided diffusion process. Further, DiME

is also superior to all other variations in terms of the other metrics. At first glance,

it was expected that the unconditional generation to have better FID than DiME
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FIGURE 3.5: Regional Masks to detect adversarial noise. Several dif-
ferent masks were created to localize our counterfactual explanations
and the adversarial attack. In the top and third rows, we visualize an
image example with smooth/gray-out and color regions. The former
corresponds to the untargeted regions, while the latter is the localiza-
tion of interest. The second and final rows correspond to the corre-
sponding masks. The masks are ordered from left to right by their

impact level on the Smile and Age attributes.

and the ablated methods. However, we believe that the perceptual component of

our loss is beneficial in terms of FID. Therefore, the unconditional FID is higher.

Based on the same rationale, one can explain the slightly higher FID displayed by

the early stopping variant. Moreover, most instances merely shifted the decision

boundary, reporting low confidence of the posterior probability. These instances are

semi-factual [84] and contain features from both attributes, making them hard to

analyze in the context of explainability, in our opinion.

3.5.2 Is DiME relying on adversarial noise to flip the label?

Conceptually, adversarial attacks (AA) [114] and counterfactual images share a com-

mon principle [138]: to find a minimal modification of the input image that changes

the decision of the model. However, the objective is very different: adversarial at-

tacks produce images whose modification is barely visible, while the modification

of counterfactual images must be valid and easily understood by a human. As pre-

viously stated, subsection 3.3.2 hypothesized that the use of a diffusion model in

DiME would allow it to stay in the distribution of natural images and thus produce

only images that are possible in the real world, which makes the difference with

adversarial images. This section presents experimental results that confirm this.

To assess whether DiME relies on adversarial noise to flip the prediction, this

section compares the FR performance of regionally constrained counterfactuals to

localized AA. If DiME does not rely on adversarial noise, there are two possible

outcomes. On the one hand, if the spatial constraint targets a region containing

features that are supposedly uncorrelated with the target label, one would expect to

see a significant performance gap in FR between the regionally constrained CE and

the AA. On the other hand, if DiME uses semantic changes, the FR will be lower

than the AA, but the gap will be narrow.
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FIGURE 3.6: Searching for Adversarial Noise (Smile Attribute).
We visualize the results of localized counterfactual explanations and
PGD noise. We observe that for regions containing pixels that are not
correlated with the Smile class (e.g., mask 9), DiME fails to produce a
counterfactual image, which is the desired behavior, while there were

possible adversarial attacks.

The described experiment focuses on the Smile and Age labels of the CelebA

dataset. Figure 3.5 defines a set of 9 localization masks for the smile attribute and 8

for age. Thereafter, the modifications that will be made to the input images will be

made only on the pixels corresponding to the bright part of the masks, those of the

dim region remaining unchanged.

To enable localized editing, Equation 3.7 is slightly modified to constrain the gen-

eration in the form of masks. Recall that each update step computes the gradients of

the loss function with respect to the noisy image zt following Equation 3.7. Instead,

L is modified to include the mask M as follows:

∇zt L(zt; y, x, M) =
1√
ᾱt
∇xt λcLclass(C(y|xM

t )) + λpLperc(xt, x)

xM
t = xt ⊙M + x⊙ (1−M)

(3.21)

where ⊙ is the element-wise product operation, y the target label, and x and xt are

the query and current clean image at timestep t, respectively. This method is denoted

as During Optimization. Alternatively, we generate the sample by replacing the target

region of the image with the counterfactual generated using Equation 3.7 - called

Replaced at the End. This setting is included to avoid generating out-of-distribution

noise in the untouched regions for reference.

Regarding the adversarial algorithm, the attack of choice is the traditional PGD [114].

Including the mask in the PGD attack merely requires changing the iterative process

to:

x′i+1 = ∏
B(x,ϵ,∞)

x′i −M⊙ γ sgn(∇x′i
Lclass(C(y|x′i))), (3.22)

where ∏B(x,ϵ,∞) is the projection function on the ϵ-ball over x under the ℓ∞ norm, x′i
is the i’th iteration with x′0 = x, sgn is the sign operation, and γ is the step size. We

implemented PGD with 50 iterations with ϵ ∈ {2/255, 4/255, 8/255}, which is sufficient

to fool an undefended model.

Figure 3.6 shows the FR of the different methods presented above for the smile at-

tribute. The most important observation of these experiments can be seen for mask 9
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FIGURE 3.7: Searching for adversarial noise (Age Attribute). We
visualize the results of the localized counterfactual explanations and
PGD noise. We observe that for areas that contain pixels that are not
correlated with the ’Age’ class (e.g. mask 8), DiME fails to produce a
counterfactual image, which is the desired behavior, while there were

possible adversarial attacks.

which corresponds to the forehead region. It is possible to produce adversarial ex-

amples by modifying the forehead region, while DiME fails to produce them. In-

deed, this is a desirable behavior, since it should not be possible to make the person

smile by modifying her/his forehead. The second observation is that both meth-

ods for creating spatially constrained counterfactuals have similar performance. In

fact, all values have the same value except for mask 4, where the replacing at the end
method has a marginally better performance by 0.004 points. From these experi-

ments, we conclude that the DDPM is a great regularizer that performs semantic

editing while avoiding the addition of adversarial noise.

Figure 3.7 shows the same experiment but for the age attribute. In a general

fashion, the experiment follows the same trend as the smile ablation. Therefore, the

same conclusion can be drawn from the previous comments.

3.5.3 Trade-off between Quality and Inference Speed

The computational complexity of DiME is a limitation for on-the-fly use. This re-

duces its applicability in real-world scenarios where speed is paramount. Fortu-

nately, DDPMs have a mechanism to reduce the number of sampling steps. How-

ever, this strategy comes at the expense of image quality. Therefore, this section

explores the trade-off between sampling strategy and image quality.

T (S) FR(↑) FID(↓) ℓ1(↓) Speed(↓)
200 (60) 97.5 20.45 0.043 82.92s
100 (30) 97.6 20.70 0.044 21.27s
50 (15) 96.1 22.67 0.046 5.76s
20 (6) 93.9 27.49 0.059 1.10s

DiVE100 92.3 50.71 0.108 5.14s

TABLE 3.5: Inference Speed. Diffusion models are capable of sam-
pling using different timesteps without any fine-tuning. Here, several
sampling strategies were tested without changing the initial step to
total number of timestep ratio. T and S stand for timesteps and steps,

respectively. DiME’s original sampling step is 200 (60).
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FIGURE 3.8: Target distribution at each time-step. This figure vi-
sualizes the evolution of the target labels’ probability. Each purple
line represents a quantile of the probabilities. The colored curves are
cases shown on the right. In expectancy, the clean image probabil-
ity increases at each time step. Nevertheless, the curves are typically

sporadic but, with an increasing tendency.

Table 3.5 shows the results of the ablation. There are three observations: (i) As

expected, reducing the number of iterations worsens each metric while decreasing

the inference time. (ii) Also, halving the number of steps reduces the inference speed

by a factor of four. This result is due to the square growth associated with the num-

ber of steps. (iii) Finally, compared to DiVE100, using a schedule of 50 steps provides

a similar inference time. However, even in this case, DiME enjoys better quantitative

metrics. That being said, it is recommended to use more steps for better qualitative

results for the end user.

3.5.4 Distribution Overtime

The proposed pipeline uses the unconditional DDPM to enable the use of the clas-

sifier under observation. At each step, the classifier uses the generated image to

compute the gradient with respect to the target label. Therefore, this image reveals

information about the optimization process at each time step.

Figure 3.8 visualizes the evolution of the probability of the target labels over

time, along with some examples. There is a clear average increase in probability over

time. However, the examples show sporadic and non-steady trends. Yet, there is an

increasing behavior. The most unstable behavior is near the first steps. Nevertheless,

the optimization starts to settle when it reaches a time step close to 0 (about t = 20).

This behavior results from an averaging effect over time; when the image generation

reaches the final steps, the variance nearly disappears. This observation is related to

the comments of Equation 3.8, where we argue for using a single realization of xt at

each time step. As mentioned there, the lack of averaging at each step is partially

mitigated in terms of the optimization objective by an averaging effect over time.

But thanks to the randomness inherited from the early steps (t ≈ τ), the overall CE

generation process still shows some diversity.
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3.5.5 Hyperparameter Ablations

Continuing with DiME ablation study, this subsection analyzes the effect of the set

of DiME hyperparameters introduced in subsection 3.3.2.

Initial Step Ablation

The first variable of interest is the initialization step τ. This hyperparameter is re-

sponsible for the initial noise level. Accordingly, Table 3.6 reports this hyperparam-

eter exploration. The results show that on the one hand, a higher τ opens more

opportunities to modify the image. The image generation has more optimization

steps when the initial noise level increases. Thus, it easily reaches a counterfactual

that fools the classifier at the cost of decreasing CE sparsity, an unwanted effect in

the CE community. On the other hand, this increased generation power can be detri-

mental to the resulting image quality. Thus, a low τ increases sparsity, but the CEs

are not as successful. Choosing τ = 60 provides a good trade-off.

Steps FID+(↓) FR(↑) ℓ1(↓)
50 20.19 92.4 0.0406
60 20.94 97.9 0.0430
70 23.21 99.7 0.0479

TABLE 3.6: Initialization Step. This table shows the result of differ-
ent τ choices. The ℓ1 and FID metrics are computed solely from the
successful counterfactual explanations. Using τ = 60 provides the
best trade-off between image quality, Flip Ratio, and similarity. We
computed the FID+ taking the same number of samples for the ex-

periment with fewer instances (τ = 50).

Gradients’ Scale Ablation

The scaling parameter λc guides the generation process to go beyond the decision

frontier of the classifier. Accordingly, this section investigates the influence of this

variable in the guidance process. To this end, this experiment runs DiME with three

different scales, namely λc ∈ {8, 10, 15}, to study its effect on CE generation.

Table 3.7 reports the outcomes of this experiment. In this particular scenario,

the results show a trade-off between success rate and image quality. This is because

setting a low λc produces fewer modifications with better qualitative properties. Ac-

cordingly, since most of the explanations were created with the lowest scale, DiME

excelled in these metrics assessed with FID and ℓ1. Now, by increasing to higher

scales, DiME boosts the FR at the cost of lowering the image quality. From a quali-

tative point of view, adding too much gradient introduces out-of-distribution noise.

We believe that the DDPM cannot detect this distortion, so it produces artifacts on

the image. However, these artifacts may coincide with patterns that affect the classi-

fier’s response.
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λc FID+(↓) FR(↑) ℓ1(↓)
8 22.93 80.1 0.0427
10 23.32 88.0 0.0432
15 25.87 97.7 0.0446

DiME 22.48 97.9 0.0430

TABLE 3.7: Gradient Scales. This table shows the impact of different
scale choices. Increasing the gradient scale λc decreases the FID and
ℓ1. From the Flip Ratio results, we see that most explanations are pro-
duced with a low scale value, hence producing similar results in the
pixel space with high fidelity. Harder instances require the use of an
increased scale to successfully produce the counterfactual example.
The FID+ is computed by taking the same number of samples for the

experiment λc = 8.

Distance Losses Ablations

ℓ1 Lperc FID(↓) FR(↑) ℓ1(↓)
χ χ 24.05 98.8 0.051
✓ χ 23.48 98.0 0.048
χ ✓ 22.32 98.0 0.046
✓ ✓ 20.51 97.9 0.043

TABLE 3.8: Distance Loss ablations. Effect of ℓ1 and Lperc losses.
Each loss contributes to enhancing the FID individually, while jointly

providing a great qualitative and quantitative boost.

The CE method seeks to produce the smallest plausible changes in the counter-

factual. To this end, recall that DiME computes the perceptual loss Lperc between the

input instance x and the current instance xt at timestep t to increase their similarity.

Additionally, it computes an ℓ1 loss between the input sample x and the noisy in-

stance zt. Thereby, this section ablates the effect of adding the distance losses ℓ1 and

Lperc to DiME.

Table 3.8 shows the results of this experiment. At first glance, we notice that the

FR is greater than adding any distance loss. This is an expected result, since remov-

ing any distance loss relaxes the optimization problem. Thus, DiME can modify as

many aspects because the proximity of the input instance is irrelevant. In contrast,

adding every single loss reduces marginally the success of our model. Despite this,

the FID and ℓ1 metrics improve favorably. Note that the perceptual loss improves

both metrics more than the ℓ1 loss. Finally, adding both losses at the same time

significantly decreases both metrics.
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3.6 Limitations

This chapter shows the benefits of using DiME, but many aspects are far from being

achieved for the XAI community. For example, DiME has two limitations. On the

one hand, the proposed approach adopts the most problematic aspect of DDPMs:

the inference time. Namely, DiME needs to use the DDPM model about 1800 times

to generate a single explanation. This aspect is undesirable whenever the user needs

an explanation on the fly. On the other hand, we require access to the training data;

a limitation common to many previous studies. However, this aspect is crucial in

domains with sensitive data. Although access to the training data is allowed in

many cases, we restrict ourselves to using the data without any labels.

3.7 Conclusion

This work explores the novel diffusion models in the context of counterfactual expla-

nations. By harnessing the conditional generation of guided diffusion, we achieve

successful counterfactual explanations through DiME. These explanations follow the

requirements given by the XAI community: a small but tangible change in the image

while remaining realistic. The performance of DiME is confirmed using a battery of

standard metrics. Furthermore, the current approach to validate the sparsity of CE

has significant conflicts with the assessment of spurious correlation detection. The

proposed metric, Correlation Difference, correctly measures the impact of measuring

the subtle correlation between labels. Moreover, DiME also exhibits strong diversity

in the explanation produced. This is partly inherited from the intrinsic properties

of diffusion models, but also results from a careful design of our approach. Finally,

we hope that our work opens up new ways to compute and evaluate counterfactual

explanations.

Epilogue

At the time of the conference publication, no other works were focusing on coun-

terfactual explanations using diffusion models. Concurrent [10, 156] and subse-

quent [46, 123] works have demonstrated that guided diffusion is indeed a valuable

tool for constructing counterfactuals. The main differences between these works and

DiME are how they handle the gradient backpropagation from the clean instance to

the noisy one. While DiME opted to approach this in a brute-force manner, the pre-

viously cited papers use the same technique as Avrahami, Lischinski, and Fried [12]

to create the gradients.

Several non-diffusion approaches, such as ZOOM [113] and C3LT [85], generate

counterfactual explanations from strictly generated images. While these methods
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resemble DiME in their use of direct optimization processes to create counterfactu-

als, other non-diffusion approaches incorporate additional elements. For instance,

some utilize segmentation maps [74] or employ generation via scene decomposi-

tion [200] to partition the scene into multiple components. We posit that DiME and

our subsequently proposed approaches could benefit from adopting similar strate-

gies because the inclusion of object-aware generators facilitates the creation of more

complex explanations, such as those required for datasets like BDD100k [197].

A key discussion is how DiME compares to contemporary approaches for CE

generation. In our opinion, DiME continues to produce acceptable counterfactuals,

even by current standards. Moreover, it generates perceptually diverse explanations

when executed with different initializations, a characteristic that only the work of

Rodríguez et al. [150] approximated for vision CEs. However, DiME relies on a

computationally intensive approach: generating a clean image to produce guiding

gradients at every step in the diffusion process, a trait that scales poorly as image

dimensions increase. Consequently, adopting alternative strategies like latent diffu-

sion [151] to accelerate the diffusion process could be beneficial, especially given the

prevalent trend towards higher image resolutions. Finally, DiME is based on one of

the earliest instantiations of diffusion models. Leveraging modern approaches, such

as incorporating transformer-based backbones [139], could potentially enhance its

performance and efficiency.
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Chapter 4

Adversarial Counterfactual Visual
Explanations

Prologue

Our first approach presented in the previous chapter, DiME, was a good proof of

concept for future approaches to generating counterfactual explanations using diffu-

sion models. Now, with the experience gained from the previous work, we thought

about different ways to generate these explanations. At the time, some literature

suggested potential links between counterfactual explanations and adversarial at-

tacks [44]. Of course, both approaches share the same goal: to create distortions

in the image so that the classifier’s prediction changes. Conversely, CE must in-

put plausible modifications, while adversarial examples do not have this hard con-

straint. In this chapter, our goal is to exploit these attacks to generate CE.

Previous literature on adversarial robustness has shown that adversarial attacks

on robust models produce changes understandable by humans [157, 210, 20]. To

illustrate this phenomenon, Figure 4.1 visualizes some examples where the adver-

sarial attack produced semantic changes in the image. Thus, robustizing a brittle

model should produce human-understandable changes when being attacked. This

is advantageous because if we succeed in robustizing the model under considera-

tion, we can use adversarial attacks to generate CEs. The challenge, however, is to

FIGURE 4.1: Adversarial attacks on robust models show human-like
features. The first image was originally classified as mantis, while the
adversarial attack is classified as sombrero. Similarly, in the second set
of images, the original image was classified as broom, while the attack
is classified as Chesapeake Bay Retriever. In both cases, the attack shows
a few characteristics of the selected class. All images were extracted

from Pérez et al. [140] study.



48 Chapter 4. Adversarial Counterfactual Visual Explanations

achieve this robust state while keeping the target model intact.

To leverage adversarial attacks for CEs, we must first understand how these at-

tacks are constructed. The generation of adversarial attacks follows an iterative ap-

proach, with each iteration adding small amounts of adversarial corruption to the

input. To remove this corruption from the image, we can use diffusion models. This

process involves adding sufficient Gaussian noise to the adversarially corrupted im-

age and to then denoising it using a diffusion model, resulting in an approximate

instance closer to the original clean input. Following this logic, we can make the

model more robust without altering its weights. So, by incorporating distance reg-

ularizations and using the diffusion model to steer the noisy image back to the im-

age manifold, we expect the adversarial attack to create realistic image edits. This

reasoning led to the development of the current chapter of this thesis, which was

published in CVPR 2023.

One of the main results of this paper is Figure 4.4. Unlike previous and recent

studies, and to the best of our knowledge, this work is the only one that shows re-

sults of actionability in real-life scenarios. This result is perhaps the most important

in this work, as it shows that ACE explanations are realistic and that we were able

to find a weakness in a model and test it through an intervention, even if it was in a

simple scenario.

4.1 Introduction

The research branch of explainable artificial intelligence has yielded remarkable re-

sults, gradually opening the machine learning black boxes. The production of coun-

terfactual explanations (CE) has become one of the promising pipelines for explain-

ability, especially in computer vision [150, 79, 74, 167]. As a matter of fact, CE are an

intuitive way to expose how an input instance can be minimally modified to steer

the desired change in the model’s output. More precisely, CE answers the following:

what does X have to change to alter the prediction from Y to Y′? From a user perspective,

these explanations are easy to understand since they are concise and illustrated by

examples. Henceforth, companies have adopted CE as an interpretation methodol-

ogy to legally justify the decision-making of machine learning models [181]. To bet-

ter appreciate the potential of CE, one may consider the following scenario: a client

goes to a photo booth to take some ID photos, and the system claims the photos are

invalid for such usage. Instead of performing random attempts to abide by the ad-

ministration criteria, an approach based on CE could provide visual indications of

what the client should fix.

The main objective of CE is to add minimalistic semantic changes in the image to

flip the original model’s prediction. Yet, these generated explanations must accom-

plish several objectives [181, 79, 150]. A CE must be valid, meaning that the CE has

to change the prediction of the model. Secondly, the modifications have to be sparse
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and proximal to the input data, targeting to provide simple and concise explanations.

In addition, the CE method should be able to generate diverse explanations. If a trait

is the most important for a certain class among other features, diverse explanations

should change this attribute most frequently. Finally, the semantic changes must be

realistic. When the CE method inserts out-of-distribution artifacts in the input image,

it is difficult to interpret whether the flipping decision was because of the inserted

object or because of the shifting of the distribution, making the explanation unclear.

Adversarial attacks share a common goal with CE: flipping the classifier’s pre-

diction. For traditional and non-robust visual classifiers, generating these attacks

on input instances creates imperceptible noise. Even though it has been shown that

it contains meaningful changes [73] and that adversarial noise and counterfactual

perturbations are related [44, 72], adversarial attacks have lesser value. Indeed, the

modifications present in the adversaries are unnoticeable by the user and leave him

with no real feedback.

Contrary to the previous observations, many papers (e.g., Pérez et al. [140]) evi-

denced that adversarial attacks toward robust classifiers generate semantic changes

in the input images. This has led works [157, 210] to explore robust models to

produce data using adversarial attacks. In the context of counterfactual explana-

tions, this is advantageous [20, 160] because the optimization will produce semantic

changes to induce the flipping of the label.

Then two challenges arise when employing adversarial attacks for counterfac-

tual explanations. On the one hand, when studying a classifier, we must be able to

explain its behavior regardless of its characteristics. So, a naive application of ad-

versarial attacks is impractical for non-robust models. On the other hand, according

to Tsipras et al. [174], robustifying the classifier yields an implicit trade-off by low-

ering the clean accuracy, as referred by the adversarial robustness community [33], a

particularly crucial trait for high-stakes areas such as the medical field [116].

The previous remarks motivate our endeavor to mix the best of both worlds.

Hence, in this chapter, we propose robustifying brittle classifiers without modify-

ing their weights to generate CE. This robustification, obtained through a filtering

preprocessing leveraging diffusion models [64], allows us to keep the performance

of the classifier untouched and unlocks the production of CE through adversarial

attacks.

We summarize the novelty of this work as follows: (i) We propose Adversarial

Counterfactual Explanations, ACE in short, a novel methodology based on adversar-

ial attacks to generate semantically coherent counterfactual explanations. (ii) ACE

performs competitively with respect to the other methods, beating previous state-of-

the-art methods in multiple measurements along multiple datasets. (iii) Finally, we

point out some defects of current evaluation metrics and propose ways to remedy

their shortcomings. (iv) To show a use case of ACE, we study ACE’s meaningful
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and plausible explanations to comprehend the mechanisms of classifiers. We experi-

ment with ACE findings producing actionable modifications in real-world scenarios

to flip the classifier decision.

Our code and models are available on GitHub.

4.2 Related Work

Explainable AI. The main dividing line between the different branches of explain-

able artificial intelligence stands between Ad-Hoc and Post-Hoc methods. The former

promotes architectures that are interpretable by design [153, 17, 18, 70] while the

latter considers analyzing existing models as they are. Since our setup lies among

the Post-Hoc explainability methods, we spotlight that this branch splits into global

and local explanations. The former explains the general behavior of the classifier, as

opposed to a single instance for the latter. This work belongs to the latter. There are

multiple local explanations methods, from which we highlight saliency maps [76,

185, 101, 27, 89, 205], concept attribution [87, 52, 94] and model distillation [171,

50]. Concisely, these explanations try to shed light on how a model took a specific

decision. In contrast, we focus on the on-growing branch of counterfactual expla-

nations, which tackles the question: what does the model uses for a forecast? We

point out that some novel methods [177, 56, 188, 187] call themselves counterfactual

approaches. Yet, these systems highlight regions between a pair of images without

producing any modification.

Counterfactual Explanations. CE have taken momentum in recent years to ex-

plain model decisions. Some methods rely on prototypes [108] or deep inversion [172],

while other works explore the benefits of other classification models for CE, such as

Invertible CNNs [71] and Robust Networks [20, 160]. A common practice is using

generative tools as they give multiple benefits when producing CE. In fact, using

generation techniques is helpful to generate data in the image manifold. There are

two modalities to produce CE using generative approaches. Many methods use con-

ditional generation techniques [176, 167, 108] to fit what a classification model learns

or how to control the perturbations. Conversely, unconditional approaches [150, 130,

79, 164, 204, 85] optimize the latent space vectors.

We’d like to draw attention to Jeanneret et al. [79]’s counterfactual approach,

which uses a modified version of the guided diffusion algorithm to steer image

generation towards a desired label. This modification affects the DDPM genera-

tion algorithm itself. In contrast, while we also use DDPM, we use it primarily as

a regularizer before the classifier. Instead of controlling the generation process, we

generate semantic changes using adversarial attacks directly on the image space,

and then post-process the image using a standard diffusion model. Furthermore,

we use a refinement stage to perform targeted edits only in regions of interest.

https://github.com/guillaumejs2403/ACE
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FIGURE 4.2: Pre-explanation Construction and Refinement ACE
generates the counterfactual explanation in a two-step sequence.
Initially, (a) To generate semantic updates in the input image, the
DDPM processes the instance before computing the loss function
Lclass(Fτ(x′); y′), where y′ is the target label. To simplify the process,
we omit the distance loss between the perturbed image x′ and the
input image x. Then, we compute the gradients with respect to x′

and update it using the adversarial attack. Finally, (b) we generate
a binary mask using the magnitude’s difference between the expla-
nation and input image to refine the pre-explanation using RePaint’s

inpainting method.

Adversarial Attacks and their relationship with CE. Adversarial attacks share

the same main objective as counterfactual explanations: flipping the forecast of a tar-

get architecture. On the one hand, white-box attacks [55, 114, 25, 121, 33, 77] leverage

the gradients of the input image with respect to a loss function to construct the ad-

versary. In addition, universal noises [120] are adversarial perturbations created for

fooling many different instances. On the other hand, black-box attacks [208, 143, 8]

restrain their attack by checking merely the output of the model. Finally, [132] study

DDPMs from a robustness perspective, disregarding the benefits of counterfactual

explanations.

In the context of CE for visual models, the produced noises are indistinguish-

able for humans when the network does not have any defense mechanism, making

them useless. This lead works [72, 3, 137] to approach the relationship between these

two research fields. Compared to previous approaches, we manage to leverage ad-

versarial attacks to create semantic changes in undefended models to explore their

semantic weaknesses perceptually in the images; a difficult task due to the nature of

the data.

4.3 Adversarial Counterfactual Explanations

The key contribution of this chapter is our novel Adversarial Counterfactual Expla-

nations (ACE) method. ACE produces counterfactual images in two steps, as seen

in Figure 4.2. We briefly introduce these two steps here and detail them in the fol-

lowing sections.
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Step 1. Producing pre-explanation images (subsection 4.3.1). Let Lclass(x; y) be a func-

tion measuring the agreement between the sample x and class y. This function is

typically the cross-entropy loss of the classifier we are studying with respect to y.

With ACE, generating the pre-explanation image of (x, y) for the target class y′ ̸= y
consists in finding x′ minimizing Lclass(F(x′); y′) using the adversarial attack as the

optimizer. Here, F(x′) is a filtering function that constrains the attack to stay in the

manifold of the training images. In a nutshell, the filtering process F robustifies the

fragile classifier under examination to generate semantic changes without modifying

its weights.

Step 2. Bringing the pre-explications closer to the input images (subsection 4.3.2). The

pre-explanation generation restricts only those pixels in the image that are useful in

switching the output label from y to y′. The rest of the pixels are only implicitly con-

strained by the design of F. Accordingly, the purpose of this second step is to keep

these non-explicitly constrained pixels identical to those of the input image.

4.3.1 Pre-explanation generation with DDPMs

To avoid generating adversarial noise and producing useful semantics, the previ-

ously introduced function F should have two key properties. (i) Removing high-

frequency information that traditional adversarial attacks generate. Indeed, these

perturbations could change the classifier’s decision without being actionable or un-

derstandable by a human. (ii) Producing in-distribution images without distorting

the input image. This property seeks to maintain the image structures not involved

in the decision-making process as similar as possible while avoiding giving mislead-

ing information to the user.

Denoising Diffusion Probabilistic Models [64], commonly referred to as DDPM

or diffusion models, achieve these properties if used properly. On the one hand,

each inference through the DDPM is a denoising process; in particular, it removes

high-frequency signals. On the other hand, DDPMs generate in-distribution images.

As a reminder, DDPMs rely on two Markov chains, one inverse to the other. The

forward chain adds noise from a state t into t + 1 while the reverse chain removes it

from t + 1 to t. Noting xt the instance at time step t, the forward chain is directly

simulated from a clean instance x0 through

xt =
√

ᾱt x0 +
√

1− ᾱt ϵ, ϵ ∼ N (0, I), (4.1)

where ᾱt is a time-dependent constant. At inference, the DDPM produces a mean

µt(xt) and a deviation matrix Σt(xt). Using these variables, the next less noisy image

is sampled from

xt−1 = µt(xt) + Σt(xt) ϵ, ϵ ∼ N (0, I). (4.2)
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Thus, the DDPM denoising algorithm iterates the previous step until t = 0 arriving

at an image without noise. Please refer to previous works [36, 64] for a thorough

understanding of diffusion models.

ACE pre-explanation generation. Starting from a query image x, we can obtain

a filtered version by applying the forward DDPM process up to level τ (Equation 4.1)

and then denoise it recursively thanks to the iterative DDPM denoising steps (Equa-

tion 4.2) starting from level t = τ. In this case, to highlight the use of this interme-

diate step τ, we denote the diffusion filtering process as F = Fτ (Figure 4.2a). Thus,

we optimize the image through the DDPM filtering process, Fτ, before computing

the classification loss. Henceforth, we obtain the pre-explanations by optimizing

argmin
x′

Lclass(Fτ(x′); y′) + λd d(x′, x) (4.3)

using the adversarial attack of choice. Here, λd is a regularization constant and d a

distance function.

4.3.2 Bringing the pre-explanations closer to the input images

By limiting the value of τ, the DDPM will not go far enough to generate a normal

distribution, and the reconstruction will somehow preserve the overall structure of

the image. However, we noted that a post-processing phase could help keep irrele-

vant parts of the image untouched. For example, in the case of faces, the denoising

process may change the hairstyle while targeting the smile attribute. Since hairstyle

is presumably uncorrelated with the smile feature, the post-process should neutral-

ize those unnecessary alterations.

To this end, we first compute a binary mask m delineating regions that qualify

for modifications. To do so, we consider the magnitude difference between the pre-

explanation and the original mask, we dilate this gray-scale image and threshold it,

yielding the desired mask. This matter being settled, we need to fuse the CE inside

the mask along with the input outside the mask to accomplish our objective.

With that aim, a natural strategy is using inpainting methods. So, we lever-

age RePaint’s recent technique [111], originally designed for image completion, and

adapt it to our picture-in-picture problem (Figure 4.2b). This adaptation straightfor-

ward and integrates very well with the rest of our framework. It starts from the

noisy pre-explanations xτ and iterate the following altered denoising steps:

xt−1 = µt(x′t) + Σt(x′t) ϵ, ϵ ∼ N (0, I), (4.4)

where x′t = xt · m + xi
t · (1− m) is the raw collage of the current noisy reconstruc-

tion xt and the noisy version of the initial instance xi
t at the same noise level t,

obtained with Equation 4.1. The final image, x0, will be our counterfactual expla-

nation – identical to the input sample outside the mask, and very similar to the
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Smile

Method FID sFID FVA FVAd MNAC CD COUT

DiVE 29.4 - 97.3 - - - -
DiVE100 36.8 - 73.4 - 4.63 2.34 -
STEEX∗ 10.2 - 96.9 - - - -
DiME 3.17 4.89 98.3 0.729 3.72 2.30 0.5259

ACE ℓ1 1.27 3.97 99.9 0.874 2.94 1.73 0.7828
ACE ℓ2 1.90 4.56 99.9 0.867 2.77 1.56 0.6235

Age

Method FID sFID FVA FVAd MNAC CD COUT

DiVE 33.8 - 98.2 - 4.58 - -
DiVE100 39.9 - 52.2 - 4.27 - -
STEEX∗ 11.8 - 97.5 - 3.44 - -
DiME 4.15 5.89 95.3 0.6714 3.13 3.27 0.4442

ACE ℓ1 1.45 4.12 99.6 0.7817 3.20 2.94 0.7176
ACE ℓ2 2.08 4.62 99.6 0.7971 2.94 2.82 0.5641

TABLE 4.1: CelebA Assessement. Main results for CelebA dataset.
∗STEEX uses use additional data for their counterfactual explana-
tions. Hence we are not comparable with them directly. We extracted
the results from DiME and STEEX papers. In bold and italic we show

the best and second best performances.

pre-explanation within the mask. In the supplementary material (Appendix A), we

added an overview of ACE.

4.4 Experimentation

4.4.1 Evaluation Protocols and Datasets

Datasets. In line with the recent literature on counterfactual images [150, 167, 79,

80], first, we evaluate ACE on CelebA [107], with images of size of 128× 128 and a

DenseNet121 classifier [69], for the ‘smile’ and ‘age’ attributes. Following Jacob et
al. [74], we experimented on CelebA HQ [99] and BDD100k [197]. CelebA HQ has

a higher image resolution of 256 × 256. BDD100k contains complex traffic scenes

as 512× 256 images; the targeted attribute is ‘forward’ vs ‘slow down’. The deci-

sion model is also a DenseNet121, trained on the BDD-IOA [192] extension dataset.

Regarding the classifiers for which we want to generate counterfactuals, we took

the pre-trained weights from DiME [79] source for CelebA and from STEEX [74] for

CelebA HQ and BDD100k, for fair comparisons.

Evaluation criteria for quantitative evaluation.

Validity of the explanations is commonly measured with the Flip Rate (FR), i.e. how

often the CE is classified as the targeted label.

Diversity is measured by extending the diversity assessment from Mothilal et al. [122].

As suggested by Jeanneret et al. [79], the diversity is measured as the average LPIPS [203]

distance between pairs of counterfactuals (σL).
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Sparsity or proximity has been previously evaluated with several different metrics [150,

167], in the case of face images and face attributes. On the one hand, the mean num-

ber of attributes changed (MNAC) measures the smallest amount of traits changed

between the input-explanation pair. Similarly, this metric leverages an oracle net-

work pretrained on VGGFace2 [24] and then fine-tuned on the dataset. Further,

Jeanneret et al. [79] showed the limitations of the MNAC evaluation and proposed

the CD metric to account for the MNAC’s limitations. On the other hand, to measure

whether an explanation changed the identity of the input, the assessment protocol

uses face verification accuracy [24] (FVA). To this end, the evaluation uses a face ver-

ification network. However, FVA has 2 main limitations: i) it can be applied to face

related problems only, ii) it works at the level of classifier decisions which turns out

to be too rough when comparing an image to its CE, as it involves only a minimal

perturbation. For face problems, we suggest skipping the thresholding and consider

the mean cosine distance between the encoding of image-counterfactual pairs, what

we refer to as Face Similarity (FS). To tackle non-face images, we propose to extend

FS by relying on self-supervised learning to encode image pairs. To this end, we

adopted SimSiam [31] as an encoding network to measure the cosine similarity. We

refer to this extension as SimSiam Similarity (S3). Finally, also for classifiers that are

not related to faces, Khorram et al. [85] proposed COUT to measure the transition

probabilities between the input and the counterfactual.

Realism of counterfactual images [167] is usually evaluated by the research community

with the FID [63] between the original set and the valid associated counterfactu-

als. We believe there is a strong bias as most of the pixels of counterfactuals are

untouched and will dominate the measurement, as observed in our ablation studies

(subsection 4.4.6). To remove this bias, we split the dataset into two sets, generating

the CE for one set and measuring the FID between the generated explanations and

the other set, iterating this process ten times and taking the mean. We call this metric

sFID.

Implementation details. One of the main obstacles of diffusion models is trans-

ferring the gradients through all the iterations of the iterative denoising process.

Fortunately, diffusion models enjoy a time-step re-spacing mechanism, allowing

us to reduce the number of steps at the cost of a quality reduction. So, we drasti-

cally decreased the number of sampling steps to construct the pre-explanation. For

CelebA [107], we instantiate the DDPM [36] model using DiME’s [79] weights. In

practice, we set τ = 5 out of 50 steps. For CelebA HQ [99], we fixed the same τ, but

we used the re-spaced time steps to 25 steps. For BDD100k [197], we follow the same

settings as STEEX [74]: we trained our diffusion model on the 10.000 image subset

of BDD100k. To generate the explanations, we used 5 steps out of 100. Additionally,

all our methods achieve a success ratio of 95% at minimum. We will detail in the

Appendix A all instructions for each model on every dataset. We adopted an ℓ1 or

ℓ2 distance for the distance function. Finally, for the attack optimization, we chose
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Smile

Method FID sFID FVA FS MNAC CD COUT

DiVE 107.0 - 35.7 - 7.41 - -
STEEX 21.9 - 97.6 - 5.27 - -
DiME 18.1 27.7 96.7 0.6729 2.63 1.82 0.6495

ACE ℓ1 3.21 20.2 100.0 0.8941 1.56 2.61 0.5496
ACE ℓ2 6.93 22.0 100.0 0.8440 1.87 2.21 0.5946

Age

Method FID sFID FVA FS MNAC CD COUT

DiVE 107.5 - 32.3 - 6.76 - -
STEEX 26.8 - 96.0 - 5.63 - -
DiME 18.7 27.8 95.0 0.6597 2.10 4.29 0.5615

ACE ℓ1 5.31 21.7 99.6 0.8085 1.53 5.4 0.3984
ACE ℓ2 16.4 28.2 99.6 0.7743 1.92 4.21 0.5303

TABLE 4.2: CelebAHQ Assessment. Main results for CelebA HQ
dataset. We extracted the results from STEEX’s paper. In bold and
italic we show the best and second-best performances, respectively.

ACE outperforms most methods in many assessment protocols.

Method FID sFID S3 COUT FR

BDD-OIA

DiME 13.70 26.06 0.9340 0.3188 91.68
ACE ℓ1 2.09 22.13 0.9980 0.7404 99.91
ACE ℓ2 3.3 22.75 0.9949 0.7840 100.0

BDD100k

STEEX 58.8 - - - 99.5
DiME 7.94 11.40 0.9463 0.2435 90.5

ACE ℓ1 1.02 6.25 0.9970 0.7451 99.9
ACE ℓ2 1.56 6.53 0.9946 0.7875 99.9

TABLE 4.3: BDD Assessement. Main results for BDDOIA and
BDD100k datasets. We extracted STEEX’s results from their paper.
In bold and italic we show the best and second-best performances,

respectively.

the PGD [114] without any bound and with 50 optimization steps.

4.4.2 Comparison Against the State-of-the-Art

In this section, we quantitatively compare ACE against previous State-of-the-Art

methods. To this end, we show the results for CelebA [107] and CelebA HQ [99]

datasets in Table 4.1 and Table 4.2, respectively. Additionally, we experimented on

the BDD100k [197] dataset (Table 4.3). To extend the study of BDD, we further eval-

uated our proposed approach on the BDD-IOA [192] validation set, also presented

in Table 4.3. Since DiME [79] showed superior performance over the literature [150,

167, 80], we compare only to DiME.

DiME experimented originally on CelebA only. Hence, they did not tune their

parameters for CelebA HQ and BBD100k. By running their default parameters,
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DiME achieves a flip rate of 41% in CelebA HQ. We fix this by augmenting the scale

hyperparameter for their loss function. DiME’s new success rate is 97% for CelebA

HQ. For BDD100k, our results showed that using fewer steps improves the quality.

Hence, we used 45 steps out of their re-spaced 200 steps. Unfortunately, we only

managed to increase their success ratio to 90.5%.

These experiments show that the proposed methodology beats the previous lit-

erature on most metrics for all datasets. For instance, ACE, whatever the chosen dis-

tance, outmatches DiME on all metrics in CelebA. For the CelebA HQ, we noticed

that DiME outperforms ACE only for the COUT and CD metrics. Yet, our proposed

method remains comparable to theirs. For BDD100k, we remark that our method

consistently outperforms DiME and STEEX.

Two additional phenomena stand out within these results. On the one hand, we

observed that the benefit of favoring ℓ1 over ℓ2 depends on the characteristics of the

target attribute. We noticed that the former generates sparser modifications, while

the latter tends to generate broader editing. This makes us emphasize that different

attributes require distinct modifications. On the other hand, these results validate

the extensions for the FVA and FID metrics. Indeed, the difference between the FVA

values on CelebA are small (from 98.3 to 99.9). Yet, the FS shows a major increase.

Further, for the Age attribute on CelebA HQ, ACE ℓ2 shows a better performance

than DiME for the FID metric. The situation is reversed with sFID as DiME is slightly

superior.

To complement our extensive experimentation, we tested ACE on a small subset

of classes on ImageNet [35] with a ResNet50. We selected three pairs of categories

for the assessment, and the task is to generate the CE targeting the contrary class.

For the FID computation, we used only the instances from both categories but not

external data since we are evaluating the in-class distribution.

We show the results in Table 4.4. Unlike the previous benchmarks, ImageNet is

extremely complex and the classifier needs multiple factors for the decision-making

process. Our results reflect this aspect. We believe that current advancements in CE

still need an appropriate testbed to validate the methods in complex datasets such

as ImageNet. For instance, the model uses the image’s context for forecasting. So,

choosing the target class without any previous information is unsound.

4.4.3 Diversity Assessment

In this section, we explore ACE’s ability to generate diverse explanations. Diffusion

models are, by design, capable of generating distributions of images. Like [79], we

take advantage of the stochastic mechanism to generate perceptually different ex-

planations by merely changing the noise for each CE version. Additionally, for a

fair comparison, we do not use the RePaint’s strategy here because DiME does not
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Method FID sFID S3 COUT FR

Zebra – Sorrel

ACE ℓ1 84.5 122.7 0.9151 -0.4462 47.0
ACE ℓ2 67.7 98.4 0.9037 -0.2525 81.0

Cheetah – Cougar

ACE ℓ1 70.2 100.5 0.9085 0.0173 77.0
ACE ℓ2 74.1 102.5 0.8785 0.1203 95.0

Egyptian Cat – Persian Cat

ACE ℓ1 93.6 156.7 0.8467 0.2491 85.0
ACE ℓ2 107.3 160.4 0.7810 0.3430 97.0

TABLE 4.4: ImageNet Assessement. We test our model in ImageNet.
We generated the explanations for three sets of classes. Producing CE

for these classes remains a challenge.

have any local constraints and can, as well, change useless structures, like the back-

ground. To validate our approach, we follow [79] assessment protocol. Numerically,

we obtain a diversity score of σL = 0.110 while DiME reports 0.213. Since DiME

corrupts the image much more than ACE, the diffusion model has more opportuni-

ties to generate distinct instances. In contrast, we do not go deep into the forward

noising chain to avoid changing the original class when performing the filtering.

To circumvent the relative lack of diversity, we vary the re-spacing at the refine-

ment stage and the sampled noise. Note that later in the text, we show that using all

steps without any re-spacing harms the success ratio. So, we set the new re-spacing

such that it respects the accuracy of counterfactuals and fixed the variable number

of noise to maintain the ratio between τ and the re-spaced number of sampling steps

(5/50 in this case). Our diversity score is then of 0.1436. Nevertheless, DiME is better

than ACE in terms of diversity, but this is at the expense of the other criteria, because

its diversity comes, in part, from regions of the images that should not be modified

(for example, the background).

4.4.4 Qualitative Results

We show some qualitative results in Figure 4.3 for all datasets, included some Ima-

geNet examples. From an attribute perspective, some have sparser or coarser char-

acteristics. For instance, age characteristics cover a wider section of the face, while

the smile attribute is mostly located in small regions of the image. Our qualitative

results expose that different distance losses impose different types of explanations.

For this case, ℓ1 loss exposes the most local and concrete explanations. On the other

hand, the ℓ2 loss generates coarser editing. This feature is desired for certain classes,

but it is user-defined. Additionally, we note that the generated mask is useful to

spot out the location of the changes. This is advantageous as it exemplifies which

changes were needed and where they were added. Most methods do not indicate the
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FIGURE 4.3: Qualitative Results. ACE create sparse but realistic
changes in the input image. Further, ACE enjoys from the generate
mask, which helps in understanding which and where semantic edit-
ing were added. The first row displays the input images, the second
one the counterfactual explanations and the third the corresponding

mask.

localization of the changes, making them hard to understand. In the supplementary

material (Appendix A), we included more qualitative results.

4.4.5 Actionability

Counterfactual explanations are expected to teach the user plausible modifications

to change the classifier’s prediction. In this section, we study a batch of counterfactual-

input tuples generated with our method. If ACE is capable of creating useful coun-

terfactual explanations, we should be qualified to understand some weaknesses or

some behaviors of our classifier. Additionally, we should be able to fool the classifier

by creating the necessary changes in real life. To this end, we studied the CelebA HQ

classifier for the age and smile attributes.

After surveying some images and their explanations, we identified two inter-

esting results (Figure 4.4). Many of the counterfactual explanations changing from

‘young’ to ‘old’ evidence that frowning could change the prediction of the classi-

fier. So, we tested this hypothesis in the real life. We took a photo one individual

before and after the frown, avoiding changing the scenery. We were successful and

managed to change the prediction of the classifier. For smile, we identified a spuri-

ous correlation. Our counterfactuals show that the classifier uses the morphological

trait of high cheekbones to classify someone as smiling as well as having red cheeks.

So, we tested whether the classification model wrongly predicts as smiling some-

one with high cheekbones even when this person is not smiling. We also tested

whether we can enhance it with some red make up in the cheeks. Effectively, our

results show that having high cheekbones is a realistic adversarial feature toward

the smiling attribute for the classifier. Also, the classifier confidence (probability)

can be strengthened by adding some red make up in the cheeks. These examples

demonstrate the applicability of ACE in real scenarios.
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FIGURE 4.4: Actionability. From browsing our counterfactuals, we
found two weaknesses of the scrutinized classifier. Row 1: We tested
if a frown could change the classification from young to old. Row 2:
we checked if having high cheekbones flipped is enough to classify

someone as smiling. Both experiments were successful.

4.4.6 Ablation Studies

In this section, we scrutinize the differences between the pre-explanation and the

refined explanations. Then we explore the effects of using other types of adversarial

attacks. Finally, we show that the S3 metric gives similar results as the FVA, as a

sanity check.

Pre-Explanation vs Counterfactual Explanations. We explore here, quantitatively

and qualitatively, the effects of the pre-explanations (Pre-CE). Also, we apply the

diffusion model for the explanations with and without the re-spacing method, us-

ing no inpainting strategy, referred as FR-CE and F-CE, respectively. Finally, we

compare them against the complete model (ACE). To quantitatively compare all ver-

sions, we conducted this ablation study on the CelebA dataset for both ‘smile’ and

‘age’ attributes. We assessed the components using the FID, sFID, MNAC, CD, and

FR metrics. We did not include the FVA or FS metrics, as these values did not vary

much and do not provide insightful information; the FVA is ∼99.9 and FS ∼0.87 for

all versions.

We show the results in Table 4.5. We observe that pre-explanations have a low

FID. Nonetheless, their sFID is worse than the F-CE version. As said before, we no-

ticed that including both input and counterfactual in the FID assessment introduces

a bias in the final measurement, and this experiment confirms this phenomenon.

Additionally, one can check that the MNAC metric between the pre-explanation and
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Smile

Method FID sFID MNAC CD FR

Pre-CE 1.87 4.63 3.48 3.05 99.82
FR-CE 8.31 10.30 3.43 1.68 99.97
F-CE 2.64 4.61 3.16 1.56 93.37

ACE 1.27 3.97 2.94 1.73 99.86

Age

Pre-CE 3.93 6.71 3.76 3.17 99.55
FR-CE 7.10 9.09 3.13 2.66 99.77
F-CE 4.23 6.20 3.53 3.04 93.50

ACE 2.08 4.62 2.94 2.82 99.35

TABLE 4.5: Refinement Ablation. We show the importance of each
component from ACE. FR stands for flip rate.

FIGURE 4.5: Refinement Ablation. We observe that pre-explanations
can have out-of-distribution artifacts. After filtering them, the diffu-
sion process creates in-distribution data, but there are unnecessary
changes such as the background. ACE is capable of changing the key

features while avoiding modifying unwanted structures.

the FR-CE version does not vary much, yet, the CD metric for the FR-CE is much bet-

ter. This evidences that the generative model can capture the dependencies between

the attributes. Also, we notice that the flip rate (FR) is much lower when using all

diffusion steps instead of the re-spaced alternative. We expected this behavior, since

we create the pre-explanation to change the classifier’s prediction with re-spaced

time steps within the DDPM.

Qualitatively, we point out to Figure 4.5, where we exemplify the various stages

of ACE. For instance, we see that the pre-explanation contains out of distribution
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Metric Random ACE Pre-CE DiME

Smile

FS 0.2649 (4) 0.8941 (2) 0.9200 (1) 0.6729 (3)
S3 0.4337 (4) 0.9876 (2) 0.9927 (1) 0.9396 (3)

Age

FS 0.2649 (4) 0.7743 (2) 0.8300 (1) 0.6597 (3)
S3 0.4337 (4) 0.9417 (2) 0.9870 (1) 0.9379 (3)

TABLE 4.6: S3 equivalence to FS. The S3 metric and the FS are equiv-
alent in a similar context. We show the metric and the order (in paren-

theses) and observe that both orderings are equal.

artifacts and how the refinement sends it back to the image distribution. Also, we

highlight that the filtering modifies the hair, which is not an important trait for the

classifier. The refinement is key to avoid editing these regions.

Effect of Different Adversarial Attacks. At the core of our optimization, we have

the PGD attack. PGD is one of the most common attacks due to its strength. In

this section, we explore the effect of incorporating other attacks. Thus, we tested

C&W [25] and the standard gradient descent (GD). Note that the difference between

PGD and GD is that GD does not apply the sign operation.

Our results show that these attacks are capable of generating semantic changes

in the image. Although these are as successful as the PGD attack, we require opti-

mizing the pre-explanation for twice as many iterations. Even when our model is

faster than [79] –3.6 times faster–, we require about 500 DDPM iterations to generate

an explanation.

Validity of the S3 Metric. In this experiment, we show that the S3 and the FS metrics

are equivalent when used in the same test bed, i.e., CelebA HQ. To this end, we

assess whether the ordering between ACE, pre-explanation, and DiME are equal. To

have a reference value, we evaluate the measurements when using a pair of random

images. So, we show the values (ordering) for both metrics in Table 4.6 for the Age

and Smiling attribute. As we expect, the ordering is similar between both metrics.

Nevertheless, we stress that FS is adequate for faces since the network was trained

for this task.

4.5 Conclusion

In this chapter, we proposed ACE, an approach to generate counterfactual explana-

tions using adversarial attacks. ACE relies on DDPMs to enhance the robustness

of the target classifier, allowing it to create semantic changes through adversarial

attacks, even when the classifier itself is not robust. ACE has multiple advantages

regarding previous literature, notably seen in the counterfactual metrics. Moreover,

we highlight that our explanations are capable of showing natural feature to find

sparse and actionable modifications in real life, a characteristic not presented before.
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For instance, we were able to fool the classifier with real world changes, as well as

finding natural adversarial examples.

4.6 Epilogue

Concurrent work has demonstrated that incorporating adversarial-based approaches

yields promising results. Similar to our reasoning, i.e., including adversarial ap-

proaches for CE explanations, Boreiko et al. [20] proposed using robust models to

generate CEs. However, their method is restricted to robust models only, as they

solely employ traditional attacks and a distance loss to generate counterfactuals for

a robust classification model.

Similarly, Augustin et al. [10] proposed an approach akin to DiME’s (chapter 3),

but generates the clean sample to guide the generation process in a single step using

the diffusion model. In their work, they utilize a robust model to adjust the gradi-

ents of the target (fragile) model, counteracting the poor quality of the single-step

generation. Nevertheless, the approach by Augustin et al. [10] necessitates training

a robust model on the same dataset to exploit the robust gradients, a process that

proves cumbersome even in small datasets.

After the ACE’s publication, we tried linking DiME’s gradients shortcut to ACE

to remove the demand of the gradient computation through the denoising chain of

the diffusion process. However, we noticed that the resulting output was not able

to change the prediction of the classifier as often. Likewise, the explanation con-

tained bizarre patterns, showing it an unfeasible line of work. In addition, we tried

mixing Stable Diffusion [151] and ACE together, to leverage its generative power.

Even though we got some interesting results, passing the gradients through a few

steps of this colossal generative model was impossible without resulting in memory-

reducing techniques, such as the checkpoint [57] method, leading to the next chapter.
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Chapter 5

Text-to-Image Models for
Counterfactual Explanations: a
Black-Box Approach

Prologue

Text-to-image generative models and the classifier learn different concepts that could

be summarized equally well in text form. Thus, creating a counterfactual image

with a textual prompt containing the feature to be changed may not reveal what the

model is using. Consider the case scenario used in the previous chapters: a classifier

that detects whether a face is smiling or not. This classifier is trained on celebrity

faces, while Stable Diffusion [151] is trained on general faces. There are significant

differences between the features presented in the images generated by the genera-

tive approach and the images in the dataset, as seen in Figure 5.1. Thus, inpainting

the Stable Diffusion’s learned concept of "smile" into an image to flip the classifier’s

prediction will not match the model’s learned concept of "smile". This phenomenon

calls for fine-tuning approaches in the text space of the generative model.

In this chapter, we propose Text-to-Image Models for Counterfactual Explana-

tions (TIME), a two-step solution to the presented conceptual misalignment prob-

lem for generating CEs. First, we use a common approach to distill the information

FIGURE 5.1: Stable Diffusion 3 [42] and CelebA HQ [99] smiling im-
ages. The textual concept of a smile is the same, but the features of
each case are different. Images generated using the prompt A close-up

picture of a face smiling.
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from the classifier to the generative model in the form of textual tokens, i.e. textual

inversion [49]. To do this, we compute the prediction-image tuple for the training

set of the model and train new tokens in the embedding layer of the text interface of

Stable Diffusion [151], aligning the learning of the model and the generative model.

Second, we leverage perfect inversion techniques [183] to inpaint the corresponding

changes in the image. We do this to keep the modified output image as close as

possible to the original input.

Our approach has several advantages over previous methods in the literature.

First, it is completely black-box. In this chapter, we branch away from the standard

definition of black-box models. Traditionally, a black-box model refers to an archi-

tecture whose inner workings cannot be understood. Here, we define a black-box

model as an architecture where we do not have access to its internal components

(weights, gradients, architecture, etc.), but only to the input image and the resulting

prediction class. Second, our method eliminates the need to train a diffusion model

from scratch. Instead, we simply fine-tune a new text token in the text interface of

the generative approach, significantly reducing the training time. Finally, our ap-

proach does not rely on optimization during the generation process. Instead, we use

DDIM noise inversion techniques that speed up the CE production phase.

5.1 Introduction

Recently, deep neural networks (DNN) have seen increased attention for their im-

pressive forecasting abilities. The use of deep learning in critical applications, such

as driving automation, made the scientific community increasingly involved in what

a model is learning and how it makes its predictions. These concerns shed light on

the field of Explainable Artificial Intelligence (XAI) in an attempt to “open the black-

box” and decipher its induced biases.

Counterfactual explanations (CEs) are an attempt to find an answer to this previ-

ous problem. They try answering the following question: What do we need to change
in X to change the prediction from Y to Z? Because CEs give intuitive feedback about

what to change to get the desired result, two applications use these explanations:

feedback recommendation systems and debugging tools. Take an automated loan

approval system as an example. From a user’s point of view, if it gets a negative pre-

diction, the user would be more interested in knowing what plausible changes can

be made to get a positive result, rather than having an exhaustive list of explanations

for why the result is unfavorable. From the debugger’s point of view, it can look for

biases that were considered in the decision when they should not have been, thus

revealing the classifier’s weaknesses.

While there are multiple ways to address this question for visual systems, e.g. by

adding adversarial noise [54], the modifications must be sparse and comprehensive
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Method Model Training Specificity Optim.

DiVE [150] VAE Days Only DNN Yes
STEEX [74] GAN Days Only DNN Yes
DiME [79] DDPM Days Only DNN Yes
ACE [78] DDPM Days Only DNN Yes

TIME (Ours) T2I Hours Black-Box No

TABLE 5.1: Advantages of the proposed methodology. TIME uses
a pre-trained T2I model and trains only a few textual embeddings,
requiring hours of training instead of days. It does not require access
to the target model (completely black-box) and does not involve any

optimization during counterfactual generation.

to provide insight into which variables the model is using. To this end, most stud-

ies for CEs use generative models, such as GANs [53], Denoising Diffusion Prob-

abilistic Models (DDPMs) [64], or VAEs [90], as they provide an intuitive interface

to approximate the image manifold and constrain the generation in an appropriate

space. Although they have several advantages, training these generative models is

cumbersome and may not yield adequate results, especially when the data is lim-

ited [83]. To this end, we expect that the use of large generative models trained on

colossal datasets, such as LAION-5B [159], can provide a sufficient tool to generate

CEs. On the one hand, these generative models have shown remarkable qualitative

performance, an attractive feature to exploit. Second, since the generative model is

already optimized, it can be used to capture data set specific concepts - e.g. textual

inversion [49] captures the main aspects of a target object when subject to only three

to five images.

In this chapter, we explore how to take advantage of Text-to-Image (T2I) gener-

ative models for CEs - specifically, using Stable Diffusion [151]. To do so, we take

a distillation approach to transfer the learned information from the model into new

text embeddings to align the concept class in text space. Second, we use inversion

techniques [183] to find the optimal noise to recover the original instance. Finally,

with our distilled knowledge, we denoise this optimal point to recover the final in-

stance using the target label, thus generating the CE. This is advantageous because

we can tackle the challenging scenario of explaining a black-box model, i.e. having

access only to its predictions.

Our proposed approach has three main advantages over previous literature, as

shown in Table 5.1. First, we only train some textual embeddings, making the

training efficient, while previous methods require training a generative model from

scratch. Second, we do not require an optimization loop when generating the final

counterfactual, which reduces the generation time. Finally, our explainability tool

works in a completely black-box environment. While most modern approaches [150,

74, 79, 200, 78] are DNN-specific, because they rely on gradients, our approach,

which uses only the output and input as cues, can be used to diagnose any model

regardless of its internal functioning. This setting is crucial for privacy-preserving
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applications, such as medical data analysis, since eliminating access to the gradients

could prevent data leakage [209], as it helps protect personal or confidential infor-

mation.

We summarize our contributions as follows1:

• We propose TIME: Text-to-Image Models for Counterfactual Explanations, us-

ing Stable Diffusion [151] T2I generative model to generate CEs.

• Our proposed approach is completely black-box.

• Our counterfactual explanation method based on a distillation approach does

not require any optimization during inference, unlike most methods.

• From a quantitative perspective, we achieve similar performance to the previ-

ous state-of-the-art, while having access only to the input and the prediction

of the target classifier.

5.2 Related Work

5.2.1 Explainable Artificial Intelligence

The research branch of XAI broads multiple ways to provide insights into what a

model is learning. As a bird’s view analysis, there are two main distinctions between

methods: Interpretable by-design architectures, and Post-Hoc explainability methods.

The former searches to create algorithms that directly expose why a decision was

made [128, 39, 30, 17, 18, 70, 87]. Our research study is based on the latter. Post-
hoc explainability methods study pretrained models and try to decipher the vari-

ables used for forecasting. Along these lines, there are saliency maps [81, 141, 27,

161], concept attribution [87, 47, 52], or distillation approaches into interpretable by-

design models [50]. In this chapter, we study the on-growing branch of CEs [181]. In

contrast to previous methods, these explanations are simpler and more aligned with

human understanding, making them appealing to comprehend machine learning

models.

5.2.2 Counterfactual Explanations

The seminal work Wachter, Mittelstadt, and Russell [181] defined what a counterfac-

tual explanation is and proposed to find them as a minimization problem between a

classification loss and a distance loss. In the image domain, optimizing the image’s

raw pixels produces adversarial noises [54]. So, many studies based their work on

Wachter, Mittelstadt, and Russell [181]’s optimization procedure with a generative

model to regularize the CE production, such as variational autoencoders [150], gen-

erative adversarial networks [74, 200, 85, 113, 167], and diffusion models [79, 156,
1Code is available at https://github.com/guillaumejs2403/TIME

https://github.com/guillaumejs2403/TIME
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78, 10]. In contrast to these works, our proposed approach, TIME, is a distillation

approach for counterfactuals. Our method does not require any optimization loop

when building the explanation, since we transfer the learning into the T2I model.

Furthermore, we do not require access to the gradients of the target model but only

the input and output, making it black-box, unlike previous methods.

Co-occurent works analyze dataset biases using T2I models to create distribu-

tional shifts in data [180, 145]. Although a valid approach to debug datasets, we

argue that these approaches do not search what a model learned but instead a gen-

eral strategy for the biases in datasets under distributional shifts (e.g. it is normal to

misclassify a dog with glasses since the model was not trained to classify dog with

glasses). Further, their proposed approaches are computationally heavy, since they

require fine-tuning Large Language Models or optimizing each inversion step on

top of Stable Diffusion. Instead, ours requires training a word embedding, and the

inference merely requires Stable Diffusion without computing any gradients, which

fits into a single small GPU.

5.2.3 Customization with Text-to-Image Models

Due to the interest in creating unimaginable scenarios with personalized objects,

customizing T2I diffusion models has gained attention in recent literature. Textual

Inversion [49] and following works [152, 38, 58, 201, 124] are popular approaches to

learn to generate specific objects or styles by fine-tuning all or some part of the T2I

model. Thus, the new concept can be used in a phrase such that the T2I model will

synthesize it.

One of the most difficult problems is editing real-world images with T2I mod-

els. The pioneer work of Song et al. [168] proposed a non-stochastic variant of

DDPMs, called Denoising Diffusion Implicit Models (DDIM). Hence, a single noise

seed yields the same image. So, to find an approximate noise, DDIM Inversion

noises the image using the diffusion model. Yet, some problems arise with this

approximation. So, novel works [118, 135] modify the inversion process by includ-

ing an inner gradient-based optimization at each noising step, making it unfeasible

when analyzing a bundle of images. Finally, Wallace et al. [183] proposed to modify

the DDIM algorithm into a two-stream diffusion process, reaching a “perfect” inver-

sion. We take advantage of these works and distill the learned information from a

classifier to generate counterfactual explanations of real images, a step to interpret

the target classifier.

5.3 Methodology

This section explains the proposed methodology for generating counterfactuals us-

ing T2I generative models. In subsection 5.3.1, we briefly introduce some useful
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preliminary concepts of diffusion models. Then we describe our proposed method

in a three-step procedure. First, we explain how to transfer what the classifier has

learned into the generative model as a set of new text tokens (subsection 5.3.2). Sec-

ond, using recent advances in DDIM Inversion, we revert the image to its noise

representation using the original prediction of the classifier. Finally, we denoise the

noisy latent instance using the target label (subsection 5.3.3).

5.3.1 DDPM Preliminaries

Diffusion models [64] are generative architectures that create images by iteratively

removing noise. DDPMs are based on two inverse Markov chains. The forward chain

adds noise, while the reverse chain removes it. Thus, the generation process is reverse

denoising, starting from a random Gaussian variable and removing small amounts

of noise until a plausible image is returned.

Formally, given a diffusion model ϵθ and a fixed set of steps T, ϵθ takes as in-

put a noisy image xt, the current step t to compute a residual shift, and a textual

conditioning C, in our case. For the generation, ϵθ updates xt following:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, C)
)
+ σtϵ, (5.1)

where σt, αt and ᾱt are some predefined constants, and ϵ and xT are extracted from

a Gaussian distribution. This process is repeated until t = 0. To train a DDPM, for a

given an image-text pair (x, C), each optimization step minimizes the loss:

L(x, ϵ, t, C) = ∥ϵ− ϵθ(xt(x, t, ϵ), t, C)∥2, (5.2)

with

xt(x, t, ϵ) =
√

ᾱt x +
√

1− ᾱt ϵ. (5.3)

The pioneering work of Ho, Jain, and Abbeel [64] focused on training and eval-

uating these models in the pixel space, making them computationally heavy. Latent

Diffusion Models [151] proposed to reduce this burden by performing the diffusion

process in the latent space of a Quantized Autoencoder [43]. Further, they augment

the generation by using textual conditioning C at its core to steer the diffusion pro-

cess, as well as increasing the quality of the generation using Classifier-Free Guid-

ance [65] (CFG).

The CFG [65]’s core modifies the sampling strategy in Equation 5.1 by replacing

ϵθ with ϵ
f
θ , a shifted version defined as follows:

ϵ
f
θ (xt, t, C) := (1 + w) ϵθ(xt, t, C)− w ϵθ(xt, t,∅), (5.4)
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where ∅ is the empty conditioning and w is a weighting constant, resulting in a

qualitative improvement.

5.3.2 Distilling Knowledge into Stable Diffusion

To use large generative models, and in particular Stable Diffusion [151], we chose to

distill the learned biases of the target classifier into the generative model to avoid

any gradient-based optimization during the CE formation.

A model is subject to several biases as it learns, of which we distinguish two. The

first is a context bias. This bias refers to the way images are formed. For example,

ImageNet images [35] tend to have the object (e.g., animals, cars, bridges) in the

center, while CelebA HQ images [99] are human faces. The second bias is class-

specific, and it relates to the semantic cues extracted by the classifier to make its

decision, e.g. white and black stripes for a zebra.

So, we take a textual inversion approach to distill the context bias and the knowl-

edge of the target classifier into the textual embedding space of Stable Diffusion. In

a nutshell, textual inversion [49] links a new text-code c∗ and an object (or style)

such that when this new code is used, the generative model will generate this new

concept. To achieve this, Gal et al. [49] proposed to instantiate a new text embedding

e∗, associate it to the new text-code c∗, and then train e∗ by minimizing the loss

E(x,C)∼D,t∼U[1,T],ϵ∼N (0,I) [L(x, t, ϵ, C)] . (5.5)

Here, D is the set of images containing the concept to be learned, U is the uniform

distribution of natural numbers between 1 and T, and C is a text prompt containing

the new text code c∗.
Accordingly, to distill the context bias into Stable Diffusion, we follow [49] prac-

tices and learn a new textual embedding e∗context minimizing Equation 5.5 using as

the conditioning the phrase A c∗context picture. Here, c∗context is the textual code re-

lated to textual embedding e∗context. In our setup, we used the complete training set

of images with no labels where the model was trained.

So far, we have not been required to use the classifier. To transfer the knowledge

learned by the classifier to the T2I generation pipeline, we follow a similar approach.

In this case, we train a new textual embedding e∗i for each class i and represent its

text token with c∗i . However, instead of using the full training dataset D, we used

only those images that the classifier predicted to be the source class i. As for the

conditioning sentence, we take the previously learned context token and add the

new class token to the sentence. Thus, we optimize Equation 5.5 with the new phrase

A c∗context image with a c∗i and the filtered dataset. For the rest of the text, we will

refer to this prompt as Ci.
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5.3.3 Counterfactual Explanations Generation

Now we want to use the learned embeddings to generate explanations. Current

research on diffusion models has attempted to recover input images by retrieving

the best noise, such that when the DDIM sampling strategy is used, it generates

the initial instance. This is advantageous for our goal, since we can use current

technological advances to generate this optimal latent noise and then inpaint the

changes necessary to flip the classifier.

Since we need to perform perfect recovery to avoid most changes in the input

image, we use EDICT [183]’s perfect inversion technique. In fact, they showed that

inverting an image with a caption (Equation 5.8) and then denoising it (Equation 5.7)

with a modified version of the original caption will produce semantic changes in the

image. In short, EDICT modifies the DDIM [168] sampling strategy for diffusion

models into a two-flow invertible sequence. By introducing a new hyperparameter

0 < p < 1, setting x0 and y0 as the target image, and new variables:

at =
√

ᾱt−1/ᾱt

bt =
√

1− ᾱt−1 −
√

ᾱt−1(1− ᾱt)/ᾱt,
(5.6)

the denoising phase becomes:

xinter
t = at xt + bt ϵ

f
θ (yt, t, C)

yinter
t = at yt + bt ϵ

f
θ (xinter

t , t, C)

xt−1 = p xinter
t + (1− p) yinter

t

yt−1 = p yinter
t + (1− p) xt−1.

(5.7)

In a similar vein, the inversion phase is the inverse of Equation 5.7:

yinter
t+1 = (yt − (1− p) xt) / p

xinter
t+1 = (xt − (1− p) yinter

t+1 ) / p

yt+1 =
1

at+1
(yinter

t+1 − bt+1 ϵ
f
θ (xinter

t+1 , t + 1, C))

xt+1 =
1

at+1
(xinter

t+1 − bt+1 ϵ
f
θ (y

inter
t+1 , t + 1, C)).

(5.8)

We can see a clear connection between Wallace et al. [183]’s work and our main

objective. If we invert an image using the caption with our context and source

class tokens and then denoise it by changing the prompt to include the target to-

ken (learned in subsection 5.3.2), we can hope to generate the necessary changes to

flip the classifier’s decision.

However, while adapting the EDICT method, we noticed a major problem with

this approach. Although the chosen algorithm recovers the input instance, many
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images were difficult to modify. To circumvent this issue, we had to adjust the scores

of the CFG in Equation 5.4. As diffusion models are seen as score-matching models,

the term

w(ϵθ(xt, t, Ci)− ϵθ(xt, t,∅)) (5.9)

in Equation 5.4 are gradients pointing to the target distribution conditioned on Ci.

We call this the positive drift. Thus, by including a negative drift term,

−w(ϵθ(xt, t, Cj)− ϵθ(xt, t,∅)), (5.10)

we can lead the generation process away from the source distribution conditioned in

Cj. Therefore, we reformulate the CFG scores ϵ
f
θ , and rename it to ϵc

θ , as follows:

ϵc
θ(xt, t, Ci, Cj) = (1 + w) ϵθ(xt, t, Ci)

− w ϵθ(xt, t, Cj).
(5.11)

As a result, and given the previously introduced notions, we propose Text-to-

Image Models for counterfactual Explanations (TIME), illustrated in Figure 5.2. To

leverage these big generative models, we first distill the context bias into the pipeline’s

text embedding space by training a text embedding with the complete dataset. Then,

we transfer the knowledge of the classifier by training a new embedding but using

solely the instances with the same predictions. Finally, given an input image clas-

sified as i and the target j, we invert the image (Equation 5.8) using ϵc
θ as the score

network (Equation 5.11) using as the positive and negative drift Ci and Cj, respec-

tively. Then, we denoise the noisy state using Equation 5.7 but switching textual

conditionings.

Practical considerations. To avoid large changes in the image, the inversion stops

at an intermediate step τ instead of T. In addition, we have found that using more

than a single embedding for the context and class biases yield further expressive-

ness. Also, if we fail to find a valid counterfactual, we choose a new τ and w to

rerun the algorithm. We will give the implementation details later in section 5.4.

5.4 Experimental Validation

Datasets and Models. We evaluate our counterfactual method in the popular dataset

CelebAHQ [99]. The task at hand is classifying smile and age attributes from face

instances, computed with a DenseNet121 [69] with an image resolution of 256× 256

as in [74, 78]. The evaluation is performed on the test set. To make the assessment
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FIGURE 5.2: TIME Overview. Our proposed method consists of three
steps: (a) We learn a context token for the whole dataset using textual
inversion. (b) We filter out the images that the classifier predicts as
source class i and learn a new embedding. (c) Finally, to generate the
counterfactual explanation, we invert the input image using a prompt
containing the source embedding and then denoise it using the target

embedding.

fair with previous methods, we used the publicly available classifiers for CelebA HQ

dataset from previous studies [74].

Implementation Details. We based our approach on Stable Diffusion V1.4 [43].

For all dataset, we trained three textual embeddings for the context and class biases

for 800 iterations with a learning rate of 0.01, a weight decay of 1e-4, and a batch size

of 64. For the inference, we used the default EDICT’s hyperparameter p = 0.93 and a

total of 50 steps. For the smiling attribute, we begin the CE generation with (τ, w) =

(25, 3). In case of failure, we increased the tuple to (30, 4), (35, 4) or (35, 6). For the

age attribute, we used (τ, w) ∈ {(30, 4), (30, 6), (35, 4), (35, 6)}. We performed all

training and inference in a Nvidia GTX 1080.
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FIGURE 5.3: Qualitative Results. We present qualitative examples
and compare them to the previous state of the art. DiME generates
some out-of-distribution noise, while ACE creates blurry image sec-
tions. In contrast, TIME produces more realistic changes by harness-

ing the generative power of the T2I model.

5.4.1 Quantitative Assessment

Assessing counterfactuals presents inherent challenges. Despite this, several metrics

approximate the core objectives of counterfactual analysis. We will now provide a

concise overview of each objective and its frequent evaluation protocol, reserving an

in-depth exploration of these metrics for Appendix B.

Validity. First, we need to quantify the ability of the counterfactual explanation

method to flip the classifier. This is measured by the Success Ratio (SR aka Flip

Rate).

Sparsity and Proximity. A counterfactual must have sparse and proximal editions.

Several metrics have been proposed to evaluate this aspect, depending on the data

type. For face images[150, 78, 167, 79], there are the face verification accuracy (FVA),

face similarity (FS), mean number of attributes changed (MNAC), and Correlation

Difference (CD). For general-purpose images, like BDD100k [197], the quantitative

assessment is done via the SimSiam Similarity (S3) [78] and the COUT metric [85].

Realism. The CE research adapts its evaluation metrics from the generation field.

Hence, the realism of CEs is commonly measured with the FID [63] and sFID [78]

metrics but only in the correctly classified images.

Efficiency. An efficiency analysis is often omitted by many methods. A crucial

criterion for counterfactual generation techniques is to minimize computation time

for generating explanations in “real time”. We evaluate this by contrasting efficiency
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Smile

Method FID (↓) sFID (↓) FVA (↑) FS (↑) MNAC (↓) CD (↓) COUT (↑) SR (↑)
DiVE [150] 107.0 - 35.7 - 7.41 - - -
STEEX [74] 21.9 - 97.6 - 5.27 - - -
DiME [79] 18.1 27.7 96.7 0.6729 2.63 1.82 0.6495 97.0

ACE* ℓ1 [78] 26.1 36.8 99.9 0.8020 2.33 2.49 0.4716 95.7
ACE ℓ1 [78] 3.21 20.2 100.0 0.8941 1.56 2.61 0.5496 95.0
ACE* ℓ2 [78] 26.0 35.2 99.9 0.8010 2.39 2.40 0.5048 97.9
ACE ℓ2 [78] 6.93 22.0 100.0 0.8440 1.87 2.21 0.5946 95.0

TIME (Ours) 10.98 23.8 96.6 0.7896 2.97 2.32 0.6303 97.1

Age

Method FID (↓) sFID (↓) FVA (↑) FS (↑) MNAC (↓) CD (↓) COUT (↑) SR (↑)
DiVE [150] 107.5 - 32.3 - 6.76 - - -
STEEX [74] 26.8 - 96.0 - 5.63 - - -
DiME [79] 18.7 27.8 95.0 0.6597 2.10 4.29 0.5615 97.0

ACE* ℓ1 [78] 24.6 38.0 99.6 0.7680 1.95 4.61 0.4550 98.7
ACE ℓ1 [78] 5.31 21.7 99.6 0.8085 1.53 5.4 0.3984 95.0
ACE* ℓ2 [78] 24.2 34.9 99.4 0.7690 2.02 4.29 0.5332 99.7
ACE ℓ2 [78] 16.4 28.2 99.6 0.7743 1.92 4.21 0.5303 95.0

TIME (Ours) 20.9 32.9 79.3 0.6282 4.19 4.29 0.3124 89.9

TABLE 5.2: CelebAHQ Evaluation. While TIME does not outperform
the state-of-the-art metrics, our proposed method provides competi-
tive performance while being completely black-box, i.e. having access
only to the input and output of the model. ACE* is [78]’s method

without their post-processing method.

using floating point operations (FLOPs) per explanation - lower values signify faster

inference - and by measuring the average time taken to generate an explanation,

specifically within our cluster environment.

Main Results.

Table 5.2 shows the results of TIME and compares them to the previous literature.

Although we do not outperform the state-of-the-art in any metric, we found that

our results are similar even when our proposed method is restricted to be black-

box. Further, it does not require training of a completely new generative model and

does not rely on any optimization for CE generation. For the realism metric, we ex-

pected to get a low FID [63] and sFID [78] due to the use of Stable Diffusion and beat

ACE [78]. However, ACE uses an inpainting strategy to post-process their coun-

terfactuals. This reduces this metric because they keep most of the original pixels

in their output. If we remove the post-processing, the FID increases dramatically.

With these results, we confirm that T2I generative models are a good tool to explain

classifiers counterfactually in a black-box environment.

Qualitative Results

We show some qualitative results in Figure 5.3 and added more instances in Ap-

pendix B. First, we see that DiME [79], ACE [78], and TIME generate very realistic
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Steps GS SR (↑) FID (↓) FS (↑) CD (↓)

25
3 30.1 35.26 0.8957 2.82
4 41.0 30.23 0.8570 2.61
5 50.1 27.39 0.8231 2.33

30
3 62.1 23.15 0.8147 2.34
4 74.0 22.51 0.7710 2.66
5 80.8 23.51 0.7300 2.85

35
3 87.1 21.69 0.7227 2.63
4 92.9 24.37 0.6731 3.03
5 95.0 27.53 0.6306 3.54

TABLE 5.3: Steps-Scale trade-off. We analyze the trade-off between
our hyperparameters τ and w. Our results show that increasing τ
gives a strong boost in SR while impacting the other metrics and in-
creasing the generation time. In contrast, w has a similar effect but is

less potent without any effect on the generation time.

Context SR (↑) FID (↓) FS (↑) CD (↓)
Without 73.9 23.47 0.7480 2.41

With 92.9 24.37 0.6731 3.03

TABLE 5.4: Context token ablation. Here, we check the effect of in-
cluding the context embeddings into our pipeline. The main advan-
tage is increasing the success ratio. This result suggests that we can
reduce τ to reach similar results while being more efficient - less num-

ber of EDICT iterations.

counterfactuals, and the differences are mostly in the details. However, the most no-

table changes are between ACE and our method. When we check the regions where

ACE made the changes, they are blurred. This is due to their over-respacing to create

the counterfactual. For DiME, we checked and found that some of their modifica-

tions seem out-of-distribution, for many cases. However, TIME produces realistic

changes most of the time. Finally, in our opinion, TIME alterations can be spotted

with more ease.

Efficiency Analysis

We continue our analysis and study the efficiency of TIME when creating the CE

with respect to previous state-of-the-art methods, DiME [79] and ACE [78]. We es-

timated that TIME uses 98 TFLOPs and 45 seconds to create a single counterfactual,

using τ = 35 as the worst case scenario. In contrast, ACE took 279 TFLOPs and 62

second per CE while DiME took 1004 TFLOPs and 163 seconds.

5.4.2 Ablations

To show the effectiveness of each component, we realized thorough ablation experi-

ments. To this end, we first show the hyperparameter exploration between the depth
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of the chain of noise τ and the guidance scale w. Additionally, we will show the ef-

fect of including multiple textual tokens, the context tokens, and, finally, the effect

of adding our negative drift – please refer to the practical consideration in subsec-

tion 5.3.3 for the variable τ. Unless explicitly told, we set τ = 35 and w = 4 for all

the ablations. For the dataset, we did the ablation using 1000 instances of the CelebA

HQ validation dataset for the smiling attribute. As the quantitative metrics, we used

the SR, the FID, the FS, and the CD.

Regarding the FID metric, please note that this metric is very sensible to the num-

ber of images. When using fewer images, the FID becomes less reliable to compare

two methods, and hardly becomes intelligible if the two approaches are evaluated

on different number of images. Since we use the FID to compare counterfactual on

only those instances that flipped the classifier, comparing FIDs where the SR varies

significantly does not give any cues.

Steps and scale trade-off. To begin with, we investigate the effect of the number

inversion steps and the scale of the guidance. We jointly explore both variables to

check the best trade-off, as shown in Table 5.3. At first glance, we notice that adding a

higher guidance scale or more noise inversion steps produces more successful coun-

terfactuals, assessed with the SR. Yet, it comes with a trade-off in other compart-

ments: namely, the quality of the CE, and the amount of editions into the image.

Generally, increasing τ or w reflects a decrease in the quality of the image and the

increasing numbers of editions.

Learning the Context Token. Continuing with our study, we analyze the inclusion

of our novel context token into our counterfactual generation pipeline. To ablate this

component, we test whether using our learned context tokens has any advantage in

contrast to giving a generic description. The results are in Table 5.4. As we can see,

including our tokens provides the best performance gains in terms of SR. Qualita-

tively, the images are similar, yet, the images without context present some artifacts

in some cases. Furthermore, we see that removing the context provides a boost in

the CD and FS metrics. Although it seems counterintuitive to include this compo-

nent, we can easily reach these values by decreasing τ or w (e.g. setting τ = 30 and

w = 4, check Table 5.3), and reducing the inference time.

Effect of the guidance. We further explore the inclusion of the negative drift term

in Equation 5.10 and show the results in Table 5.5. From the quantitative assessment,

we initially observed that using the classifier-free guidance (CFG in the Table) de-

creases the SR. When denoising the current stage xt at time t, the CFG in Equation 5.4

estimates gradients of the log-likelihood conditioned on Cj, −∇xt log(p(xt|Cj)), [65]

thus, pushing the generation toward the distribution of Cj. In contrast, incorporating

the negative guidance (NG) helps steer the generation away from the distribution
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Guidance SR (↑) FID (↓) FS (↑) CD (↓)
CFG 75.9 21.58 0.7749 2.34
NG 92.9 24.37 0.6731 3.03

TABLE 5.5: Negative Guidance. Here, we check the effect of perform-
ing the negative guidance (NG) instead of the classifier-free guidance
(CFG). The main advantage is increasing the success ratio. This result
suggests that we can reduce τ to reach similar results while being

more efficient.

Tokens SR (↑) FID (↓) FS (↑) CD (↓)
Single 88.1 22.02 0.7177 3.02

Multiple 92.9 24.37 0.6731 3.03

TABLE 5.6: Multiple-tokens Ablation. We test if using multiple to-
kens in our pipeline provides any advantage. The results show an

increase in SR.

conditioned on Ci. Therefore, the combined effect results in moving the instance

from the boundary decision. From a qualitative perspective, we did not see major

differences.Nonetheless, as noted in the context of ablation, this can be easily miti-

gated by reducing w and τ.

Multi-token Inclusion. Finally, we explore using multiple tokens instead of a sin-

gle one for both the context and class embeddings, shown in Table 5.6. Without any

surprise, we noticed that using a single token reduces the SR by a small factor. This

aligns with the observations given by [49], a token catches enough information of an

object or style - or in this case, inductive biases. Like in previous analyses, including

multiple tokens will increase the efficiency of the model, since we can reach similar

performances by tuning τ or w. Qualitatively, the most notable change between the

images is sharpness.

Recommendations. Given the previous results, we propose several recommenda-

tions for the user and the model debugger, as explained in the introduction. Recall

that the counterfactual explanations are used as well to recommend changes to the

user to get a positive outcome. So, for the user, we recommend using the lower

amount of iterations τ and guidance scale w. This results in a similarity increase

and fewer edited characteristics (as evidenced by the CD and FS metrics). If the al-

gorithm fails, it is preferable to adjust the guidance scale rather than the number of

steps. For the debugger, always use the context, the negative guidance, and multiple

tokens. When building the counterfactuals, follow the same recommendations for

the user.



80
Chapter 5. Text-to-Image Models for Counterfactual Explanations: a Black-Box

Approach

FIGURE 5.4: BDD100k, a limit for TIME. TIME changes the entire
scene when generating the counterfactuals. Nevertheless, it still gives
some insight into what the models have learned, as illustrated by the

features inside the red boxes.

5.4.3 Limitations.

To test TIME in more complex scenarios, we generate CEs in the BDD100k [197]

dataset using a DenseNet121 [69] trained in a move-forward/stop binary classification,

as in [74]. We show the quantitative evaluation in Table 5.7. When generating the ex-

planations, we noticed that TIME modifies most parts of the image, unfortunately, as

shown by the S3 metric. This is expected, as this task is challenging since it requires

multiple factors to decide if to stop or to move forward. Nevertheless, we believe

that these explanations still give some useful insights as a debugging tool. For ex-

ample, Figure 5.4 shows that removing the red lights and adding motion blur will

change the classification from stop to move, as evidenced in [78], or adding objects in

front will flip the prediction to stop.

We believe that counterfactual methods for tasks dependent on complex scenes,

where the decision is impacted by large objects or co-occurrences of several stimuli,
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Method FID (↓) sFID (↓) S3 (↑) COUT (↑) SR (↑)

STEEX 58.8 - - - 99.5
DiME 7.94 11.40 0.9463 0.2435 90.5

ACE ℓ1 1.02 6.25 0.9970 0.7451 99.9
ACE ℓ2 1.56 6.53 0.9946 0.7875 99.9

TIME (Ours) 51.5 76.18 0.7651 0.1490 81.8

TABLE 5.7: BDD Assessement. We evaluate the performance of
TIME on the complex BDD100k benchmark. On this dataset, there
is still room for improvement for black-box counterfactual methods.

require specific architectures. In fact, we noticed that ACE [78] mainly adds some

small modifications (e.g. changing the red lights), which is not inaccurate but is too

constrained and cannot explore more insights about the learned features. Indeed,

the work of Zemni et al. [200] focuses only on the object aspect of counterfactuals, in

this case using an object-centric generator, BlobGAN [41]. This suggests that general-

purpose counterfactual methods are not adapted for these tasks.

5.5 Conclusion

In this work, we present TIME, a counterfactual generation method to analyze clas-

sifiers disregarding their architecture and weights, only by looking at their inputs

and outputs. By leveraging T2I generative models and a distillation approach, our

method is capable of producing CEs for black-box models, a complex scenario not

tackled before. Further, we show the advantages and limitations of TIME and shed

light on possible future works. We believe that our approach opens the door to re-

search focus on counterfactual methods in the challenging scenario of the black-box

models.

Epilogue

As in the previous chapter, we will discuss the relationship with current methods for

Counterfactual Explanations (CEs). Modern approaches for CEs are largely based on

Text-to-Image (T2I) models, following two distinct lines of work: noise optimization

approaches and text manipulation. Noise optimization-based approaches [46, 123]

are similar to DiME in that they control the iterative generation process using guided

diffusion [36]. The text manipulation line, however, shares more features with the

approach proposed in this chapter. On one hand, Prabhu et al. [146] and Vendrow

et al. [180] proposed creating counterfactual examples (rather than explanations) by

using T2I to create shifts in generated [180] or real images [146], e.g., adding sun-

glasses to a dog. Both methods rely on modifying text descriptions [146] by adding
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different adjectives or learning a text embedding per class [180]. Closer to our work

is DiG-IN [11]. This method optimizes different conditioning embeddings for each

time step in the diffusion process, requiring gradient transfer through all diffusion

steps.

Regarding the results, TIME demonstrates a clear advantage in certain aspects

compared to DiME (chapter 3) and ACE (chapter 4). Although the results for our

previous methods are similar in face images, we highlight the distinct performance

in the BDD100k dataset. DiME and ACE both produced subtle modifications, such

as adding a red light or turning off brake lights on a car. While valid, these ap-

proaches were unable to insert new objects into the scene. In contrast, TIME is

capable of achieving this (please refer to Figure 5.4 or Appendix B). This is a cru-

cial aspect as disregarding these cases would yield only partial information about

what the model learned. However, TIME’s flip rate is lower compared to our previ-

ous methods. Additionally, we observe limited diversity, unlike DiME. Finally, the

quality of the generated instances could be enhanced, for example, by employing

modern versions of stable diffusion [42].
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Chapter 6

Disentangling Visual
Transformers: Patch-level
Interpretability for Image
Classification

Prologue

In this chapter, we branch out from the current trajectory of our thesis to explore

the domain of interpretable by-design architectures (ID). We have noticed that most

methods for interpretable architectures focused their efforts on CNN-based models.

While these backbones were once dominant, transformer architectures have since

emerged as the new standard due to their superior performance. Consequently, the

research community has widely adopted transformer backbones for various visual

tasks. However, integrating interpretable layers into these transformer architectures

remains unexplored.

So, we aim to integrate ID models with transformer backbones. Yet, the multi-

headed attention mechanism (MHA), the core function of transformers, challenges

this goal. In a few words, this function mixes the information within image patches,

resulting in token-to-token comparisons. Consequently, when multiple MHA layers

are applied, the final output wraps n-way relationships between data points, effec-

tively capturing long-range dependencies. Accordingly, extracting visual represen-

tations from the entangled tokens challenges this process as one token represents a

complex interaction in the tokenized image.

Our first track to tackle the task of ID transformers was to incorporate prototyp-

ical layers. We had two possible directions to accomplish this. First, we wanted to

create a prototype bank to replace the keys and values in the original ViTs to tell

what a token looks like. However, this would only work for the first MHA oper-

ation, not the later ones. This is due to the n-way data aggregation of tokens, as

discussed earlier. In fact, some approaches in the literature [66, 88, 136] have created
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similar mechanisms to this idea, implementing a single self-attention operation on

top of convolutional features. Second, we could incorporate prototype layers, as in

the work of Chen et al. [30]. This second approach has been addressed by Xue et al.

[193], who proposed ProtoPFormer. ProtoPFormer bases its decision on the image

tokens from the last layer, and as explained by Raghu et al. [147], when a transformer

performs the classification on the image tokens, they tend to contain global informa-

tion. So they have no guarantees that the information contained in a token is mostly

local.

From the previous discussion, we have extracted a common weakness of both

prototypical approaches: the need to recover local information. In this chapter, we

attempt to resolve the entanglement of tokens in the output of the MHA operation

to find the contribution of individual tokens. To this end, we proposed Hindered

Transformers (HiT), a transformer-based architecture capable of disentangling the

final classification token into individual image patches. As a result, the final clas-

sification can be seen as the sum of the individual contributions per patch. So, by

rearranging the individual contributions of each token in its corresponding spatial

location, we can create a saliency map of the decision.

6.1 Introduction

Deep learning architectures have made breakthroughs in speech, sound, and vision

domains. These achievements have sparked interest in using these models in real-

world applications. Therefore, understanding the decision-making process of neural

networks is essential, particularly in high-stakes scenarios, to ensure that decisions

are based on the correct variables and not on spurious correlations. This has led

researchers to search for trustworthy architectures.

Interpretable-by-Design (ID) architectures seek to make decision-making inter-

pretable without the need for external methods. These architectures have (ideally)

similar performance to traditional opaque methods and are a good choice when it

is necessary to understand their internal workings or the decisions they produce.

Nonetheless, so far, these architectures use convolutional neural networks as feature

extractors, which have shown weaker performance than transformer frameworks.

Therefore, a natural transition is to create an interpretable architecture based on

transformers.

However, the literature lacks studies on the explainability and interpretability of

Vision Transformers (ViT) [40]. Even though, attention maps are considered inter-

pretable by some authors, many works [162, 75] agree that they give little to no clues

to explain the decision of the network. We agree that transformers’ attention maps

give partial cues about the decision-making process of ViTs, but their incomplete na-

ture is insufficient when interpretability is paramount. We don’t go further in this

debate, but instead propose a new interpretable transformer-like architecture.
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In this chapter, we push the knowledge frontier of ViTs by studying the flow of

individual image patches in ViTs to unravel the classification token CLS into each

individual token contribution. Consequently, our proposed architecture, dubbed

Hindered Transformed (HiT), creates its prediction as the sum of the individual con-

tributions of each token, without the need of external methods [5] or gradients [165],

categorizing it as an ID method.

We summarize our contributions as follows:

• We propose the Hindered Transformer (HiT) backbone, a variant of vision

transformers that is inherently interpretable.

• Empirically, we validate our architecture quantitatively and qualitatively on 4

different datasets: ImageNet [35], CUB 2011 [182], Stanford Dogs [86], and

Stanford Cars [96], validating its interpretability capabilities over recent ID

transformer based models.

To contribute to future research on this topic, we will release our code and weights

upon publication.

6.2 Related Work

The performance of neural networks on computer vision tasks is well-established,

but the complexity of these models can make them difficult to understand. This lack

of transparency is problematic and has motivated the scientific community to de-

velop methods for making neural networks more interpretable. There are two main

approaches to this problem: post-hoc methods, which seek to analyze an already-

trained model, and interpretable by design architectures, which aim to create models

whose decision-making processes are inherently transparent.

The literature has proposed many post-hoc methods, including counterfactual

explanations [10, 78, 200], saliency maps [189, 76, 161, 141], and model distilla-

tion [50, 171]. Closer to our work, a few efforts have been made to explain a ViT

architecture via post-hoc algorithms. For instance, Abnar and Zuidema [1] proposed

to compute a score per token by recursively propagating the attention maps in a

top-bottom approach. In addition, some methods extended the LRP [14] paradigm

to include the attention heads [28, 29]. The previous methods leverage the mech-

anisms of transformers to estimate the individual contribution of each token. We

just mention a few of them, without further comment, as our aim here is to develop

inherently explainable methods.

The field of interpretable by design architectures is diverse, as there is no sin-

gle approach to explaining the complex behaviors neural networks. While many

methods have been proposed, there has been a recent focus on prototypical part net-

works, such as ProtoPNets introduced by Chen et al. [30]. ProtoPNets computes
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class predictions based on the distances between patches of the final feature map

and some prototypes, which can be visualized. Additionally, there have been many

variations of ProtoPNets proposed in the literature [184, 128, 127, 26, 19, 175, 153,

186, 129, 39, 34, 59], but, these provide just a few refinements to the original network

to increase its performance and interpretability capabilities. Nonetheless, all of these

works share the common characteristic: operating exclusively on convolutional neu-

ral networks (CNNs) [60, 166].

In addition to ProtoPNets, there are other methods that use alternative forms

of prototypes. For example, PDiscoNet [92] automatically detects parts of objects

and uses them for the final classification. Similarly, BagNet [21] mimics the Bag-of-

Features approach to understand the decision-making process. Concept Bottleneck

Models [93, 133] use concepts to explain their decisions. Finally, a family of networks

propose interpretable layers, such as B-cos networks [16], that learns an easily inter-

pretable input-dependent linear transformation. The work of Zhang, Wu, and Zhu

[202] proposed convolutional interpretable layers. Finally, some works use some

variation of decoupled networks [104, 103, 163] to highlight what a filter is looking

at.

Concerning visual transformers, several recent works have attempted to make

transformers more interpretable by modifying their architecture. Some papers try to

push the boundaries to include transformer-based heads [66, 136, 149, 88] for proto-

type interpretability. However, they only include a single self-attention mechanism

on top of a CNN backbone. ProtoPFormer [193] suggests including a ViT backbone

in the prototype setup. To do this, ProtoPFormer includes a prototype layer on top of

both the classification and image tokens. However, this architecture does not guar-

antee that the tokens contain purely local information, especially since computing a

classification on top of image tokens increases the receptive fields of the tokens [147].

B-cos networks V2 [23] use the same rational as the original B-cos [16] approach, but

they extend it to transformers. In a few words, B-cos networks summarize their

inner workings as a single linear function, creating the attribution map by simply

multiplying the input and the summarized network. However, their proposed ex-

tension to transformers requires convolutional layers as first layers to produce sparse

explanations.

In contrast with this literature, we propose an architecture interpretable by de-

sign, by adapting the main building blocks of vision transformers to disentangle the

contributions of each image patch. This enables us to compute the salient regions

of the image without the need for any non-traditional training or invasive methods.

Unlike other approaches, we do not rely on using the attention mechanism of the

multi-headed attention (MHA) block to produce our maps. Instead, our network

inherently generates them as part of its decision-making process.



6.3. Methodology 87

6.3 Methodology

In this section, we present our proposed approach and the rationale behind it. First,

we will introduce in §6.3.1 the preliminaries for the multi-headed attention mecha-

nism and ViTs. Next, in §6.3.2, we will show that attention and multi-headed atten-

tion output can be decomposed into individual contributions of the inputs. Finally,

in §6.3.3 we present our novel architecture, the Hindered Transformer (HiT). The

core of our method is to minimize the mixing of patch-level information during the

computation of predictions from a vision transformer. This allows us to simplify the

classification token (CLS) in ViTs to the sum of individual tokens, a direct outcome of

§6.3.2. In other words, this simplification allows us to check the contribution of each

token individually.

6.3.1 Preliminaries: Transformers, ViTs and Notations

The transformer architecture is built upon the Scaled Dot-Product Attention oper-

ation [179], commonly referred to as the attention. Given a query token sequence

xq ∈ RLq×dmodel and a target sequence (or key-value sequence) xt ∈ RLt×dmodel , where

Lq and Lt are their respective sequence lengths and dmodel is the token dimension, the

attention mechanism is computed as follows:

Attn(xq, xt) = so f tmax
(
(xq WQ + bQ)(xt WK + bk)

T
√

dk

)
(xt WV + bv), (6.1)

where the output is a sequence of the same length as xq, dk is the dimension of the

linear transformations, and Wi ∈ Rdmodel×dk and bi ∈ Rdk are the weights of the linear

projection i ∈ {Q, K, V}. In addition, Vaswani et al. [179] proposed to compute the

attention mechanism h times in parallel, setting dk = dmodel/h for each individual at-

tention operation. The resulting vectors of each individual attention, formally called

heads, are concatenated and linearly post-processed to obtain the final result. This

operation is called multi-headed attention, and it is described as follows:

MHA(xq, xt) = [Attn1(xq, xt); ...; Attnh(xq, xt)]︸ ︷︷ ︸
Concatenate h times - channel dim

Wo + bo, (6.2)

with Attni being the ith attention mechanism in the MHA, and Wo ∈ Rdmodel×dmodel

and bo ∈ Rdmodel the linear transformation parameters.

In computer vision, to incorporate image data into this sequence-based formula-

tion, the ViT first partitions the input image into N2 equal-sized patches and linearly

projects them to create the patch token sequence1. Additionally, following standard

practice, a learnable classification token CLS is prepended to the patch sequence.

1For the rest of the chapter, we will use the terms token and patch interchangeably, referring to the
image patch tokens.
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Furthermore, each patch token is summed with a positional embedding to encode

its spatial location within the image. For the remainder of the work, the sequence

x ∈ R(N2+1)×dmodel denotes the concatenation of the patch tokens and the CLS token,

where x[0] corresponds to the CLS token.

The main ViT block builds on the MHA operation, followed by a token-wise

MLP block, as in text-based transformers. Formally, given a set of patches xl at layer

l, the ViT block first computes a globalized set of tokens using the MHA block. The

resulting output is summed with a skip connection. Then, the output is fed into a

token-wise MLP to post-process each token, followed, again, by a skip connection.

This block is summarized as follows

x′l = xl + MHA(xl , xl)

xl+1 = x′l + MLP(x′l)
(6.3)

Note that before the MHA and MLP blocks, a LayerNorm [13] operation is applied

to the data sequence, but for simplicity, we omit this operation. Finally, the CLS token

is fed into a LayerNorm followed by a linear classifier to produce the logits of the

classification task.

6.3.2 Multi-Headed Attention and Patch Mixing in Transformers

In this section, we aim to decompose the MHA operation to demonstrate that it is

possible to retrieve the individual contributions of each token. In this way, we aim

to lay the foundation for our architecture, which is described in the next section.

Let’s start by focusing on the attention operation (Equation 6.1). Since we will

focus on the CLS token later, and to simplify the analysis, let’s assume that the query

sequence has length Lq = 1. Consequently, the attention mechanism can be rewritten

as

Attn(xq, xt) = ∑
v∈xt

a(v, xq, xt)(v WV + bv), (6.4)

where a(v, xq, xt) is the attention of a single token v ∈ xt. Here, Equation 6.4 shows

that we can decompose the attention mechanism into separately processed patches

- each patch v in xt adds a(v, xq, xt)(v WV + bv). Accordingly, if xt contains purely

local information, the output of the attention is a sum of local data.

To continue, we incorporate the previous observation into multi-headed atten-

tion and verify that we can still unroll this operation into a sum of separate vectors.

One might be concerned that the concatenation-linear operation will mix each to-

ken. However, we argue that the result is still valid, since concatenating and linearly

transforming the resulting vector is equivalent to linearly transforming each head

and adding them together. Formally, by denoting W i
v and bi

v as the weights of the

linear transformation generating the value sequence of ith head, and breaking apart

Wo into h separate matrices, Wo = [W1
o ; W2

o ; ...; Wh
o ], with W i

o ∈ Rdk×dmodel , then, the
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MHA becomes

MHA(xq, xt) = bo + ∑
v∈xt

v′(v) where v′(v) =
h

∑
i=1

a(v, xq, xt)(v W i
v + bi

v)W
i
o. (6.5)

The previous result implies that we can still decompose the MHA result as the sum

of vector patches, regardless of the number of heads in the MHA. So the same con-

clusion holds as in Eq. 6.4: if the content in xt is local, then we can unravel the MHA

mechanisms into local contributions.

6.3.3 Untangling Visual Transformers

Unlike single MHA layers, ViTs operate on global features. To integrate local in-

formation, these architectures use two mechanisms: the MHA layers, which spread

the information within tokens; and the nonlinear MLPs, which introduce complex

correlations even when applied to a linear combination of local contributions. For

better explainability, it would be ideal if the decisions if the visual classifier could be

expressed as a combination of information from individual patches, allowing a more

interpretable understanding of how local information contributes to global predic-

tions.

FIGURE 6.1: ViT and HiT blocks.
While the ViT block mixes the patch
data, HiT uniquely updates the CLS

via the MHA, but avoids post-
processing the classification token in
the MLP, allowing the CLS to be un-
rolled at the last layer as individual

patch contributions.

In this section, we describe our proposed ar-

chitecture: Hindered Transformer (HiT). By con-

straining the image tokens to contain only lo-

cal information along all inference blocks, and

by avoiding mixing the CLS token, our novel

method is able to partition the CLS token into

each individual patch, a direct outcome of the

previous section. Figure 6.1 shows the difference

between a ViT block, and our novel block.

The first challenge is then constraining the

data flow between patches. To do so, we create

an intermediate architecture that uses CLS token

xl [0] as the query in the MHA operation, and

the rest of the sequence xl as the key-value in-

put. So, the output from the MHA is a single

token that is summed to xl [0]. Then, as in ViTs,

we will post-process each token in the sequence

with the MLP. Thus, the ViT update function in
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FIGURE 6.2: Saliency Maps computation using HiT. From the results
from §6.3.2 and the definition of our architecture, HiT enables to ex-
tract the individual contribution per token and per layer. By adding
together all tokens per layer, we can rearrange the tokens in a spatial
layout and use the linear layer à la CAM [206] to extract the contribu-

tion of each token.

Equation 6.3 is transformed to

x′l [0] = xl [0] + MHA(xl [0], xl)

x′l [1 :] = xl [1 :]

xl+1 = x′l + MLP(x′l).

(6.6)

Please note that by simplifying this function, we reduce the number of operations

from O(|x|2) to O(|x|).
The previous model solves one problem by limiting the merging of data in local

patches. However, processing the CLS token through the MLP mixes the local in-

formation provided by the MHA block, as well as the value and output operations.

Since our goal is to disentangle the data flow into individual contributions, we need

to further constrain this processing. To do this, we simply avoid updating the CLS

token through the MLP and passing it to the target sequence. So, our block inference

is

xl+1[0] = xl [0] + MHA(xl [0], xl [1 :])

xl+1[1 :] = xl [1 :] + MLP(xl [1 :])
(6.7)

We call the final architecture the Hindered Transformer (HiT). In a nutshell, HiT

only updates the CLS token via the MHA, while the MLP blocks update the image

patches. These restrictions help to preserve purely local information in each token,

while allowing the CLS token to be unrolled.

Since the classification token is not post-processed with MLP or MHA, the final

image classification is the sum of the individual tokens in all layers, as shown in
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§6.3.2. Therefore, the CLS in the last layer is

xL[0] = x0[0] +
L−1

∑
l=0

MHA(xl [0], xl [1 :])

= x0[0] +
L−1

∑
l=0

[
bl

o + ∑
v∈xl [1:]

v′l(v)

]

=
L−1

∑
l=0

∑
v∈xl [1:]

[
v′l(v) +

bl
o

N2 +
x0[0]
LN2

]
.

(6.8)

Please note that we distribute the biases bl
o of the projection operation in the MHA

head evenly to each patch v′l(v). In a similar fashion, we spread x0[0] into all tokens

for all layers.

One advantage of this architecture is that we can easily compute saliency maps,

as shown in Figure 6.2. The double sum in Equation 6.8 can be viewed as a tensor

RL×N2×dmodel , where the final result is the sum over the first and second dimensions,

i.e. the block and token dimension, respectively. So we can add all vectors in the

first dimension of this tensor to get the series of local tokens. Thus and similarly to

CAM [206], to compute the regions of interest used by the model for an input image,

we simply run the linear classifier on each patch to get the map. This rationale is

similar to the LRP [14] method in the sense that the sum of value in the saliency is

equal to the output logit for that specific class.

6.4 Experiments

6.4.1 Datasets and Evaluation Metrics

We evaluated our novel architecture on four diverse image classification datasets: i)

ImageNet [35]: A large-scale dataset with 1.2 million images and 1,000 classes, often

used as a benchmark. ii) CUB-2011 [182]: A challenging dataset containing 200 bird

classes with only 30 training samples per class on average. iii) Stanford Dogs [86]:

A dataset with 120 dog classes and 10,000 training and test images. iv) Stanford

Cars [96]: A dataset featuring 196 car classes with 8,100 training and validation ex-

amples.

To assess the performance of our proposed architecture, we computed the top-1

accuracy in their respective validation/test sets. To evaluate HiT’s interpretability

capacity, we used the insertion and deletion metrics proposed by Petsiuk, Das, and

Saenko [141]. The insertion metric adds in succession the regions of the image into

a perturbed version2 from most to least influential patches. In parallel, it stores the

class probability of the originally predicted label at each step, resulting in a curve

per image, where the x-axis is the percentage of inserted tokens, and the y-axis the

2This perturbed image is a zero-filled or blurred image.
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probability. Finally, it computes the area under the curve (AUC) of the mean curve

for all images in the validation set. The deletion metric complements the insertion

one by examining the probability decrease by adding the perturbed patches to the

original image.

6.4.2 Implementation Details

To train HiT on ImageNet [35], we used the official DeiT3 codebase [173] and fol-

lowed a similar setup to their method. For HiT-B and HiT-S3, we trained our models

for 600 epochs using the AdamW optimizer [109] with a learning rate of 8× 10−4,

a weight decay of 0.05, a batch size of 4096, 20 warm-up epochs, a cosine anneal-

ing scheduler [110], and ThreeAugment [173] data augmentation. Unlike the DeiT3

training regime, we did not use the binary cross entropy loss or any LayerDrop [45]

regularization, but the traditional cross entropy with a smoothing of 0.1 and an at-

tention dropout of 0.2. To fine-tune HiT in CUB, Stanford Dogs, and Stanford Cars,

we trained our models similarly to the ImageNet’s configuration, but instead we set

the batch size to 512, the number of epochs to 300 and the learning rate to 5× 10−5,

1× 10−4, and 4× 10−4 for Stanford Dogs, CUB 2011, and Stanford Cars, respectively.

6.4.3 Evaluating HiT

In Table 6.1 we show the accuracy performance of our new architectures and their

efficiency, measured as FLOps. The results show the expected behavior: all ViT ar-

chitectures outperform our proposed model. However, this performance gap comes

with a trade-off in efficiency and interpretability. On the one hand, HiT reduced the

computational cost by 25% compared to ViTs, even surpassing specialized architec-

tures for efficient inference (A-ViT). On the other hand, HiT provides an intuitive

way to compute its interpretability contribution. In addition, and in our opinion, its

performance is still reasonable, even in complex scenarios like ImageNet.

Next, we analyze the insertion-deletion metrics [141] of the saliency maps ex-

tracted from HiT in Table 6.2 and compare them to GradCAM [161] and an adapted

rollout matrix [1], both computed on HiT. Please refer to the Appendix C to visu-

alize the curves. These metrics verify that the salient regions are the ones used

by the model to compute the predicted class. This is evidenced by the steep in-

crease/decrease in both metrics, as only a few of the most salient tokens are needed

to compute most of the predicted class probability. In contrast to state-of-the-art

post-hoc methods, we observe a clear performance gap, indicating that these algo-

rithms do not always reliably indicate the regions used for classification. With re-

spect to the probability curves, we observed that they are concave. We conjecture

that including more context in the image introduces confounding factors from other

3Model-wise, HiT uses the same configuration as the ViT with 16× 16 patches. We just remove the
last MLP block as it is not used during inference.
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Model ImageNet CUB Dogs Cars GFLOps Params (M)

DeiT3-B 83.6 84.9 94.0 92.8 17.7 86.4
DeiT-B 81.1 84.9 93.4 93.0 17.6 86.4

B-cos (ViT-B) 74.4 - - - 17.6 86.9
HiT-B 71.5 76.3 80.2 84.7 13.1 81.8

DeiT3-S 81.4 83.1 90.6 93.0 4.6 22.1
DeiT-S 79.8 83.0 89.6 92.4 4.6 22.1

A-ViT-S 78.6 - - - 3.6 22.1
B-cos (ViT-S) 69.2 - - - 4.6 22.0

HiT-S 67.3 76.1 77.1 83.9 3.3 20.8

TABLE 6.1: HiT Performance. Our proposed models have a clear
performance drop in contrast to other ViTs. Yet, the ViT gains come at
the cost of efficiency and interpretability. Please note that a ViT-B and
a HiT-B share the same MLP submodules. A single MLP is the most
resource-heavy part of both ViTs and HiT models using 0.93 GFLOps
to compute its outputs. The efficiency gains come from the MHA
submodule, where standard ViTs use 0.465, ours uses 0.234 GFLOps.

Method ImageNet CUB 2011 Stanford Cars Stanford Dogs

Ins-Z Del-Z Ins-Z Del-Z Ins-Z Del-Z Ins-Z Del-Z

HiT 0.65 0.08 0.56 0.04 0.72 0.05 0.64 0.07
HiT + Rollout 0.39 0.21 0.43 0.09 0.49 0.12 0.47 0.19

HiT + GradCAM 0.36 0.15 0.40 0.09 0.34 0.11 0.40 0.15

Ins-B Del-B Ins-B Del-B Ins-B Del-B Ins-B Del-B

HiT 0.67 0.16 0.59 0.11 0.65 0.15 0.62 0.18
HiT + Rollout 0.47 0.31 0.50 0.22 0.50 0.29 0.50 0.32

HiT + GradCAM 0.48 0.29 0.52 0.21 0.51 0.29 0.52 0.31

TABLE 6.2: HiT and Explainability methods: We quantitatively com-
pare HiT maps and those created by GradCAM and the modified roll-
out matrix (mean attention). The assessment shows that HiT maps are
in fact more faithful to those generated by GradCAM and the rollout
matrix. Higher insertion is better, while lower deletion is better. Ins
and Del refers to the Insertion and Deletion metrics, respectively. Z is
the zero-corrupted image, while B is the blurred corruption strategy.

classes, thus marginally altering the class probability when inserting/deleting the

entire image.

To complement our analysis and compare with other state-of-the-art ID transformer-

based methods, we assessed A-ViT [195], the rollout matrix [1], and GradCAM [161]

post-hoc explanation on DeiT-B on ImageNet. As for A-ViT, this method was not

designed for interpretability, but it shows interesting interpretability properties. A-

ViT discards some tokens at certain layers. So, to create its saliency map, we took

the layer where the token was discarded, as in their paper. In addition, we evaluate

ProtoPFormer [193] on CUB-2011. ProtoPFormer relies on a rollout matrix to filter

out the useless tokens for its final computation. So we took their rollout matrix as

their salient region for the insertion-deletion computation.

In view to compare saliency maps computed on alternate networks, which shows



94
Chapter 6. Disentangling Visual Transformers: Patch-level Interpretability for

Image Classification

(A) ImageNet

(B) CUB-2011

FIGURE 6.3: ProtoPFormer vs A-ViT vs Rollout vs GradCAM vs
HiT. We tested whether HiT’s saliency maps provide better informa-
tion than ProtoPFormer’s, A-ViT’s maps, the rollout attention, and
GradCAM. The results indicate that our methods are indeed more in-
terpretable. Every subfigure contains two different scenarios. The left
one represents the substitution with zeros case, while the right sub-

figure represents the blur replacement.

different probabilities values, we amend both metrics by computing the normal-

ized AUC (nAUC), i.e. the AUC divided by the maximum value of the curve. Non-

normalized metrics are difficult to interpret and may lead to erroneous conclusions.

Still, please take into account that comparing different architectures may not reflect

better interpretability capabilities since different architectures have different proper-

ties, e.g., ViTs are known to be robust to occlusions [125]. We show the results of this

experiment in Figure 6.3a for ImageNet and Figure 6.3b for CUB-2011. The adjusted

assessment score suggests that HiT had the upper hand in terms of interpretability

over other ID methods, even when their detection is significantly higher than ours.

6.4.4 Qualitative Results

Next in our study, we show some results of the saliency maps generated by HiT in

Figure 6.4. We visualize both correctly and incorrectly classified images. In general,

we found that our method focuses on the object, regardless of whether the prediction

is accurate or not. For the Dogs dataset, we found that misclassification is generally

due to similar features in the image class. For example, the first misclassified image

(first column, second row) is labeled as Pembroke, while the model predicted its label
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FIGURE 6.4: Qualitative Examples. We show the image and its
saliency map produced by HiT. We noticed that HiT tends to use the
object’s features in the image for its prediction, independently if its

prediction is erroneous or not.

as Chow. To our untrained eyes, the Chow has long hair, like the dog in the image.

Similarly, the last misclassified image for the CUB dataset shows an image where the

correct label and the incorrect prediction are both woodpecker. Physiologically, both

birds have black wings with white spots. According to the explanations, these fac-

tors may be the largest contributors to the incorrect prediction, but further analysis

is necessary.

Another advantage of HiT is that we can compute the contribution of each layer.

Similar to computing the saliency maps spatially, we can create the layer-wise output

tokens and look for their individual contributions. To this end, we show the results

in Figure 6.5a for all tested dataset. Without any surprise, we can see that most of

the discriminative features are in the final layers.

To ensure that our results are valid, we tested several ablations of our trained

model on the ImageNet dataset, shown in Figure 6.5b. For instance, we tested the

accuracy drop by removing or adding a layer of choice (Excluding/Exclusive Layer in

the figure). Similarly, we check the performance loss by removing/adding layers in a

cascaded manner, dubbed cumulative removed/inserted layer. The results corroborate
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(A) Layer saliencies per dataset. (B) Empirical validation of layer-wise saliency.

FIGURE 6.5: Layer Saliency. HiT has more advantages than just im-
age saliency. (a) The first experiment shows that we can compute the
contribution per layer. Without any surprise, the final layers have a
greater contribution. (b) We empirically validate our findings in Ima-
geNet with a variety of experiments. Indeed, the results show that by
removing certain layers, we obtain larger expected results congruent

with the layer saliency.

our previous conclusions: our architecture is capable of showing the contribution

of each individual layer without relying on external methods, such as Linear Prob-

ing [5].

6.4.5 Sanity Check

Adebayo et al. [2]’s work points out that some saliency mapping methods do not

show what the model is looking at. Therefore, their work proposes a sanity check to

verify that a saliency method does indeed exhibit the underlying process of the net-

work and not some alignments of the framed object. Their proposed approach con-

sists of randomizing the layers in the network in a cascade fashion (deep to shallow

layers) and examining the changes in the output saliency maps. We follow the same

setup as Adebayo et al. [2], and compute the absolute rank correlation between the

original and the cascaded-randomized saliency map for all four datasets in Fig. 6.6a.

To complement the evaluation, we also added the absolute Pearson correlation coef-

ficient (Figure 6.6b). Additionally, to avoid any bias due to the high amount of low

salient regions, we computed the same metrics over the top 20% tokens - labeled as

DSET - 20% in both figures.

Foremost, we noticed that the rank correlation has a steeper slope than the Pear-

son correlation for the linear classification layer. This shows that there is a greater

similarity with the Pearson correlation. However, the values are relatively low (less

than 0.5), indicating large variations. Secondly, both metrics reach a plateau for the

subsequent randomized models. This low similarity suggests that the salient regions

highlighted by our model are indeed what the model sees. Finally, Fig. 6.6c shows

some qualitative examples produced by the randomization of all blocks, showing

that, effectively, the weights’ randomization reflect a large variation in the produced

saliency.
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(A) Saliency Rank Correlation (B) Saliency Correlation

(C) Example Images

FIGURE 6.6: Sanity Checks on HiT. We measure the (a) rank Correla-
tion and (b) the Pearson correlation of randomized HiT saliency maps
against the unmodified model. The results show that our saliency
maps reflect the areas that the model uses for its final classification.

(c) Some visual examples of the randomized saliency models.

6.4.6 Performance Loss

A key limitation of our architecture is its reduced performance on common classifi-

cation benchmarks. We investigate the cause of this accuracy drop, hypothesizing

that the lack of inter-token connections is the primary factor. To test this, we empir-

ically ablated our architecture by adding pooling operations. First, we introduced

2×2 average pooling layers. This involved arranging the tokens in their spatial lay-

out and applying the pooling operation as if they were convolutional features. Ad-

ditionally, we implemented the pooling strategy used by IdentityFormer [198]: a 3×3

convolution with a stride of 2. We focus on this architecture because it shares similar

characteristics with HiT, where each token contains its own information. Addition-

ally, we theorize that optimizing HiT architectures is challenging. To address this,

we adopt an approach similar to DeiT3 [173], training our model for 300 and 600

epochs. Finally, we observed that using binary cross-entropy adversely affects the

model’s performance, contrary to its effect on DeiT3.

We present the results in Table 6.3. The findings align with our suspicions: the

lack of transferred information between patches significantly reduces the model’s

accuracy. For instance, by merely adding the convolutional pooling layer of Identi-

tyFormer, we increase the accuracy of a HiT-s184 from 65% to 75%. However, these

4Please refer to [198]’s work for details about the architecture.
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Architecture Pooling Loss Epochs Val ImageNet

HiT-S None XE 300 65.6
HiT-S None XE 600 67.8
HiT-S 2x2 AvgPool XE 300 69.3
HiT-S 2x2 AvgPool XE 600 71.4
HiT-S None BCE 400 59.9
HiT-S None BCE 800 62.6

HiT-B None XE 600 71.5
HiT-B 2x2 AvgPool XE 600 75.0

HiT-s18 2x2 AvgPool XE 300 65.6
HiT-s18 2x2 AvgPool XE 600 69.3
HiT-s18 3x3 Conv XE 300 75.9

TABLE 6.3: Performance loss ablation. HiT’s performance loss stems
from the limited information shared between tokens. Concurrently,
the results suggest that HiT’s optimization problem is more chal-
lenging, as extended training periods lead to more significant per-

formance improvements.

convolutional layers compromise our model’s interpretability by entangling infor-

mation between tokens. While this argument could be applied to the average pool-

ing operation, we contend that it does not pose a similar problem. Tokens in higher

layers do not share image regions in the receptive field, whereas deeper tokens in

IdentityFormer do share information. The only drawback of the average pool strat-

egy is that the resulting final map would be coarse.

Unlike DeiT3 training schemes, our network benefits significantly from increas-

ing the number of epochs. We believe that this result indicates HiT has not yet con-

verged. In addition, the binary cross entropy reduces its performance. These results

suggest that HiT presents novel research opportunities to investigate optimal train-

ing strategies for such models and let it for future work.

6.5 Conclusions

This chapter proposed a novel Vision Transformer (ViT) architecture: Hindered Trans-

former (HiT). On the one hand, this architecture enhances interpretability by decou-

pling contributions from individual image patches, enabling the extraction of natu-

ral saliency maps without external tools, making it an inherently interpretable-by-

design architecture. On the other hand, it offers improved efficiency by reducing the

computational complexity of the multi-headed attention mechanism, maintaining

good performance compared to traditional ViTs. Extensive experiments across mul-

tiple datasets demonstrated the enhanced efficiency and improved interpretability

benefits from HiT with a reasonable drop in overall performance. This architecture

presents a promising approach to address critical challenges in ViTs, offering favor-

able trade-offs for applications where efficiency, interpretability, or both are essential
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requirements.

Epilogue

In this chapter, we aimed to incorporate transformers into Interpretable-by-Design

(ID) architectures. While HiT’s decision-making process directly utilizes saliency, its

interpretability features are predominantly limited to Class Activation Maps (CAM).

As discussed in chapter 2, saliency maps have several limitations. The most signif-

icant drawback is that these maps indicate where the model focuses without pro-

viding more detailed insights. Ideally, we would like to enhance the model’s in-

terpretability by incorporating comprehensive visual cues. For example, we could

disentangle HiT’s classification token in its spatial layout and use this arrangement

to include a prototype layer. However, we left this extension for future work.

HiT produces its saliency maps equivalently to the original CAMs, proposed by

Zhou et al. [206]. Notwithstanding, CAMs were initially designed for architectures

employing average pooling at the final layer. Following our rationale, traditional

CNNs could be considered ID architectures as they generate saliency during their

decision-making process. However, these architectures blend information via their

3× 3 convolutions, gradually diffusing the information. Consequently, the result-

ing map cannot be entirely attributed to specific regions, as these architectures are

incapable of disentangling the contributions of individual patches up to the shallow

layers, unlike HiT.

In a similar vein, IdentityFormer [198] is a ViT-like architecture [40] without self-

attention mechanisms, in addition to removing the classification token, hence, per-

forming the final prediction over the pooled image tokens. Thus, the tokens are

processed in parallel through the MLPs without influence from nearby tokens. This

striking similarity to HiT raises questions about our model’s inferior performance

and its interpretability contribution. However, IdentityFormer uses 3× 3 convolu-

tions as pooling operations, and as in the previous discussion, this mixes nearby

token data similar to CNNs. To this end, and similar to the argument on CNNs, this

hampers the direct analysis of the input tokens.
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Chapter 7

Conclusions and Perspective

This thesis addresses two complementary branches of the XAI community: counter-

factual explanations (CE) and interpretable by-design architectures (ID). Regarding

the former, we propose several methods for generating CEs using diffusion models.

Concerning the latter, we design a novel Interpretable By-Design (ID) architecture

based on transformers, which attempts to bridge the gap between transformers and

ID models.

7.1 Counterfactual Explanations

Counterfactual explanations serve as valuable tools for shedding light on the in-

ner workings of neural networks. These explanations employ an interventionist

approach, making minimal changes to the input image to alter the model’s origi-

nal prediction. Beyond their main objective, these explanations should possess three

key properties: realism, proximity, and diversity. By examining the various possible

alterations, we can identify the features used by a model for a given prediction.

To generate CEs for vision-related tasks, researchers employ generative models

to constrain the output to plausible instances. In this work, we have pushed the

knowledge frontier by incorporating diffusion models [64] into the CE generation

process. Our first method, DiME (chapter 3), served as a promising proof of concept

for this approach. DiME demonstrated a notable advantage, even compared to con-

temporary methods: its ability to generate diverse explanations. However, DiME’s

reliance on generating a clean image to construct guiding gradients [36] results in a

computationally intensive process.

Subsequently, we proposed ACE (chapter 4), a CE generation approach based on

adversarial attacks [54]. This method aims to link previous studies on adversarial

attacks and counterfactual explanations, applying these concepts to vision classifi-

cation tasks. Like DiME, ACE utilizes diffusion models, but as a noise regularization

constraint for the attack rather than for direct generation. In practice, ACE does not

exhibit the same level of diversity as DiME. However, it demonstrates clear advan-

tages in terms of realism, and proximity. Notably, this chapter presents the most sig-

nificant finding of this thesis: we applied real live changes to a picture to change its
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classification, thus, confirming that our counterfactuals exhibit the features learned

by the classifier, thus allowing us to perform real perturbations to reverse a classifier

decision.

Finally, chapter 5 introduces TIME, an approach for generating CEs that lever-

ages foundational models for text-to-image generation. TIME steps away from the

traditional optimization-based paradigm, generating explanations without requir-

ing access to the model’s internal structure. Instead, it employs textual inversion [49]

to learn the concepts used by the model and perfect inversion techniques [183] to

generate the explanations. While TIME’s CEs are not flawless, they operate in a

completely black-box environment, where only the model’s input and output are

accessible. Moreover, in our assessment, TIME demonstrates the capability to create

more complex modifications to alter the classifier’s predictions. This alludes to the

discussion in chapter 2, the concept of proximity in counterfactuals is an ill-posed

property.

From these works, we learned that CEs are a promising tool for explainability

due to their simplicity, human-friendly nature, and interventionist approach. DiME

(chapter 3) and ACE (chapter 4) were appropriate approaches for simple tasks; how-

ever, their explanations tend to remain very local, without the capacity to input new

objects into the scene. This limitation restricts their ability to be employed in more

complex scenarios since they cannot show all possible ways to change a model’s out-

put. Still, this does not mean that both methods will be useless in the future; rather,

they are designed for specific types of modifications. In contrast, TIME (chapter 6)

was able to modify images by inpainting different kinds of objects. Nonetheless,

some parts of the images, like the background, were modified, raising the question

of whether these are important for classification or not.

Future Work. There are still many research directions to complement this task, and

we highlight two lines of work: the evaluation and the generation techniques. First,

evaluating CE is still an open problem. The realism metric relies on current as-

sessments for generative methods, and more specifically the FID. This assessment

technique relies on models trained on other classes and thus may react differently

to different textures. For proximity, we think that using object detection and scene

decomposition techniques could be beneficial as it could count how many objects

or features were added, regardless of the size or realism. Even, it might point out

towards solving the proximity example Figure 2.3.

Regarding potential algorithmic research directions, we believe that using in-

painting techniques as a post-processing step in ACE is a promising approach. In-

painting counterfactual objects or features in an image offers a significant advantage

by not modifying the complete structure, as seen in some approaches in the litera-

ture. However, this approach introduces a new challenge: automatically selecting

where the counterfactual edit will be applied, as it is typically done manually by a
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user. Another possible research direction involves extending the locality of CE to

analyze a group of counterfactuals, generating a global view of the variables used

by the model. In line with this objective, we could extract text-based explanations

or rules to enhance the model’s interpretability. Essentially, this direction can be

conceptualized as jointly exploring concept attribution and counterfactuals.

7.2 Transformer-based Interpretable Architectures

Interpretable-by-design architectures aim to incorporate layers that provide insights

into the model’s reasoning process, making them an appealing alternative. The lit-

erature has primarily focused on creating such layers for CNNs, likely because of

the inherent local properties of convolutional operations. Unlike CNNs, transform-

ers lack this inductive bias due to their core operation, the multi-headed attention

(MHA) mechanism, which hampers the integration of interpretable layers. To ad-

dress this challenge, in chapter 6, we propose HiT, an approach that unravels the

output from the MHA. By constraining the interaction within patches and simplify-

ing the refinement of the classification token by the MLP blocks, HiT disentangles

the classification token as a sum of tokens. Thus, we can decompose the classifi-

cation tokens in ViTs into patch-level contributions, thereby enabling our goal of

creating interpretable transformer architectures.

Unfortunately, our proposed network has several shortcomings. HiT presents a

large gap in classification accuracy in the tested datasets due to our strong restriction

on patch interaction. In addition, although our model can be considered as an ID

architecture, it presents a low degree of interpretability by generating saliency maps.

However, we believe that this approach is still a good first approach to token-level

interpretability. Although these shortcomings can be considered important, it opens

a path for future research to improve these weak points.

Future Work. Apart from the aforementioned, ID architectures still have a long

way to go. A main focus in research is on foundational models. Many of these

models are based on transformers, such as SAM [91], highlighting the importance of

continuing research on interpretable transformers. In a general context, there is still

much to be done in the world of interpretability and explainability. Interpretability

architectures and explainability methods should work in unison. While the inter-

pretable architecture gives cues about its reasoning process, explainability methods

should confirm its behavior. Turning our attention back to counterfactual explana-

tions, if an interpretability method behaves as expected, the counterfactual should

input the expected changes learned by the interpretable architecture to change the

classification. In parallel, if we assume a correct interpretable performance from the

ID architecture, this architecture could provide ground truth for Post-Hoc methods.
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7.3 Closing Thoughts

As neural networks have become larger, more complex, and better at virtually all

tasks, they have become the standard approach in computer vision. However, these

highly parameterized and nonlinear architectures come at the cost of interpretability.

While high performance is desirable, critical applications require an understanding

of the inner mechanisms of these models to ensure fairness and correct behavior.

To address this, this thesis explores the field of Explainable AI (XAI), specifically

through the lens of counterfactual explanations and interpretable transformers.

The emergence of foundational models raises many questions about the future of

XAI approaches. These new models have redefined standard paradigms of simple

tasks such as classification or object detection [105]. This paradigm shift challenges

standard practices in XAI techniques and questions whether they would be appli-

cable for next-generation architectures. In parallel, foundation models are becom-

ing multimodal, and explanations would need to cover all of these representations

together. Although we could restrict the explanation to a particular data type, a

complete view of the phenomena leading to a specific outcome should include all

possible scenarios. However, generating explanations for all possible data types re-

quire having explanation algorithms made for each specific data type. In addition,

when dealing with complex descriptions, there is a fine line between exhaustive de-

scriptions and useful explanations. Although we don’t present solutions or answers

to these problems here, research first needs to focus on simple tasks. If the XAI

community cannot manage to understand classifiers in simple scenarios, we cannot

expect them to work for complex foundational models. Finally, we hope that future

XAI research will draw inspiration from the progress we have made and continue to

advance efforts to open black box models.
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Appendix A

Supplementary Material:
Adversarial Counterfactual Visual
Explanations

A.1 Detailed Implementation Details

For each dataset, we used different configurations in architecture and for the gen-

eration of the pre-explanation. Yet, we tune all hyperparameters from a empirical

perspective1. We tuned τ such that the input image and its filtered instance are visu-

ally similar. Additionally, the classification between these two images are the same.

To adjust the hyperparameter λd, we performed a simple visual inspection. Finally,

for the threshold, we ablated its values empirically for each dataset. When using

the distance loss ℓ1, we set the distance regularization constant to λd = 0.001 while

λd = 0.1 for ℓ2. For the final refinement, firstly, we normalize the mask by the maxi-

mum pixel’s difference magnitude. For the dilation step, we set the mask as a square

with a width and height of 15 pixels for all datasets. Finally, we used the cross en-

tropy for all experiments as the Lclass loss. Next, we will show all implementation

details for each dataset.

CelebA [107]: We used the same architecture and weights as [79]. Additionally,

we set τ = 5 with a total amount of steps as 50. At the refinement stage, we used the

same threshold of 0.15 for both ℓ1 and ℓ2 experiments for smile and age attributes.

CelebA HQ [99]: Our model follows the same architecture than[36] for Ima-

geNet 256 × 256 unconditional generation. Since CelebA HQ is far less complex

than ImageNet, we reduced the number of channels from 256 to 128. Also, our

model generates samples using 500 diffusion steps instead of 1000. For training, we

iterated our model for 120.000 iterations with a batch size of 256 on two V100 GPUs

following[36]’s code. We set the learning rate to 104, a weight decay of 0.05, and no

dropout.

1Note that all these hyperparameters are not the same as the classically found in machine learning.
These variables can be adjusted by the user in an ‘online’ manner according to his/her expectations.
Hence, a global configuration is a mere rough estimate of these parameters and can be accommodated
instance-wise.
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Explanations

To generate the pre-explanations, we noise the image until τ = 5 out of 25 re-

spaced steps. To binarize the mask, we used a threshold of 0.15 and 0.1 for the smil-

ing attribute with the ℓ1 and ℓ2 distance losses, respectively. For the age attribute,

we used 0.15 for ℓ1 and 0.05 for ℓ2.

BDD100k/OIA [197, 192]: The counterfactual explanation research community

opted to use BDD100k in a 512 × 256 setup. This is highly demanding computa-

tionally to create a DDPM. Thus, since we knew a priori that we do not need many

iterations for ACE to generate counterfactuals, we trained our diffusion model par-

tially in the Markov chain. That is, our DDPM cannot generate images from pure

noise. Instead, we trained it to generate images solely from a quarter of the com-

plete chain, requiring an input instance to warm up the generation. So, we trained

our model to generate instances with 250 steps out of 1000. This enabled us to use

a lighter model. Artitecnologically, our UNet model has four downsampling stages

with 128 s channels, where s is the downsampling stage. Finally, we used the atten-

tion layer at the deeper layer of the UNet. At the training phase, we used a batch

size of 256, a learning rate of 104, and a weight decay and dropout of 0.05 for 50.000

iterations.

To generate our explanations, we used 5 out of 100 (re-spaced) diffusion steps.

For ℓ1, we used a threshold of 0.05 and 0.1 for ℓ2 for both datasets.

ImageNet [35]: For this dataset, we took advantage of previous works. In this

case, we utilised Dhariwal and Nichol [36]’s model on ImageNet 256. To generate the

explanations, we used 5 steps out of 25 for the pre-explanations and set the threshold

to 0.15 to binarize the mask for all cases.

A.2 Overview of ACE

ACE is a two-step method: firstly is the pre-explanation construction – Algorithm 1

– and then the refinement process – Algorithm 2. To generate the pre-explanation,

(1) we add noise to the input image x using the forward Markov chain until an

intermediate step τ, i.e. it doesn’t begin from random Gaussian noise. Instead, it

warms up the generation with the input image through

xt =
√

ᾱt x +
√

1− ᾱt ϵ, ϵ ∼ N (0, I).

(2) ACE iteratively denoises the noisy image using the DDPM algorithm with

xt−1 = µt(xt) + Σt(xt) ϵ, ϵ ∼ N (0, I),

where µt and Σt are the output of the diffusion model. (3) The scrutinized classifier

uses the filtered image to compute loss function. Then, we calculate the gradients

with respect to the input image x in step 1, all the way through the τ steps of the
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diffusion model. (4) ACE applies the gradients as the update step with the attack of

choice. It iterates these four steps to create the pre-explanation. For the refinement, it

creates the mask m using the difference between the pre-explanation and the original

input. Then, it dilates and thresholds it to generate the binary version. Finally, ACE

builds on RePaint to keep untouched any region lying outside the mask. The final

result is the counterfactual explanation.

Algorithm 1 Pre-explanation generation

Require: Diffusion Model D, Distance loss d and its regularization constant λd, clas-
sification loss Lclass comprising the classifier under observation, number of nois-
ing steps τ, attack optimization algorithm PGD, number of update iterations n,
initial instance x, target label y

1: function PRE-EXPLANATION(x, y)
2: n← 0
3: xorig ← x
4: while n < N do ▷ Attack iteration steps
5: ϵ ∼ N (0, I)
6: x′ ←

√
ᾱτx +

√
1− ᾱτϵ ▷ Add noise

7: ts← τ − 1
8: while ts ≥ 0 do ▷ DDPM denoising
9: µ, Σ← D(x′, ts)

10: ϵ ∼ N (0, I)
11: x′ ← µ + ϵΣ
12: ts← ts− 1
13: end while
14: g← ∇x′Lclass(x′; y′) + λdd(x′, xorig)
15: x ← PGD(x, g) ▷ Update with attack
16: n + 1← n
17: end while
18: return x′ ▷ Pre-explanation
19: end function

A.3 Qualitative Results

In this section, we show more qualitative results. We will display the input image,

its pre-explanation, the mask, and the final counterfactual for both ℓ1 and ℓ2 losses

on all datasets. Note that we added a small discussion on the caption analyzing the

results. In Fig. A.10, we compare a few examples of DiME and ACE.
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Algorithm 2 Post-processing

Require: Diffusion Model D, number of noising steps τ, mask dilation size d,
threshold u, initial instance x, pre-explanation x′

1: function POST-PROCESSING(x, x’)
2: xorig ← x
3: ϵ ∼ N (0, I)
4: x′ ←

√
ᾱτx′ +

√
1− ᾱτϵ

5: ts← τ − 1
6: # Mask generation
7: m← sum_over_channels(abs(x− x′))
8: m← m/maximum(m)

9: m← dilation(m, size = d) > u
10: while ts ≥ 0 do ▷ DDPM denoising
11: ϵ ∼ N (0, I)
12: xts ←

√
ᾱtsx +

√
1− ᾱtsϵ

13: x′ ← m x′ + (1−m) xts
14: µ, Σ← D(x′, ts)
15: ϵ ∼ N (0, I)
16: x′ ← µ + ϵΣ
17: ts← ts− 1
18: end while
19: return x′ ▷ Counterfactual explanation
20: end function
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FIGURE A.1: Additional CelebA qualitative results. We show ex-
amples for the Smiling attribute for both distances losses. From our
qualitative experiments, we see that removing the smile attributes is
harder than adding them. Additionally, we see that the ℓ1 loss creates

more sparse editings.
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FIGURE A.2: Additional CelebA qualitative results. We show exam-
ples for the Age attribute for both distances losses. The results show

that the ℓ1 loss creates more out-of-distribution artifacts.
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FIGURE A.3: Additional CelebA HQ qualitative results. We show
examples for the Smiling attribute for both distances losses. We see

similar behavior in the CelebA dataset.



136
Appendix A. Supplementary Material: Adversarial Counterfactual Visual

Explanations

FIGURE A.4: Additional CelebA HQ qualitative results. We show ex-
amples for the Age attribute for both distances losses. These examples
show that transforming Old to Young is less informative than the other

way.



A.3. Qualitative Results 137

FIGURE A.5: Additional BDD qualitative results. We show examples
for the Forward / Slow Down binary class for ℓ2 distance loss. We show
a zoom of the changes in the image since the perturbations are sparse.
We see that ACE adds traffic light colors in the buildings to change

the prediction.
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FIGURE A.6: Additional BDD qualitative results. We show examples
for the Forward / Slow Down binary class for ℓ1 distance loss. We show
a zoom of the changes in the image since the perturbations are sparse.
We show a zoom of the changes in the image since the perturbations
are sparse. We see that ACE adds traffic light colors in the buildings

to change the prediction.



A.3. Qualitative Results 139

FIGURE A.7: Additional ImageNet qualitative results. We show ex-
amples for the Zebra / Sorrel categories class. The first column is the
ℓ1 distance loss while the second one is ℓ2. The initial row is zebra
to sorrel and the second one is the inverse. To change from zebras to
sorrels, some examples show not only incorporating the brown color
sorrel horses but also the context in the background (e.g. adding a
stable-like background). Vice-versa, to classify a horse as a zebra it is

enough to add some strips.
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FIGURE A.8: Additional ImageNet qualitative results. We show ex-
amples for the Cheetah / Cougar categories class. The first column is
the ℓ1 distance loss while the second one is ℓ2. The first row is cheetah
to cougar and the second is the inverse. We mainly see that chang-
ing from cheetah to cougar is enough to target the face of the animal.
Vice-versa, to classify a cougar as a cheetah, ACE adds spots and char-

acteristic cheetah stripes on the face.
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FIGURE A.9: Additional ImageNet qualitative results. We show ex-
amples for the Egyptian / Persian cat categories class. The first column
is the ℓ1 distance loss while the second one is ℓ2. The row is Egyptian
to Persian cat and the second is the inverse. To change from Egyptian
to Persian, we mainly see that ACE adds the Persian cats’ fluffy fur.

Conversely, from Persian to Egyptian it adds spots.
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FIGURE A.10: ACE vs. DiME. We display some examples showing
some differences between DiME counterfactuals and ACE’s. In short,
ACE is capable of not modifying useless information, such as the
background, to generate its counterfactuals. Top row: CelebA. Bot-
tom row: CelebA HQ. Left Column: Smiling attribute. Right Column:

Age attribute.
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B.1 Evaluation Criteria

Before describing each metric and its formulation, we will thoroughly describe the

goals of counterfactual explanations. As we stated in the main manuscript, counter-

factual explanations seek to change an instance prediction by modifying the input

instance. However, these modifications must be small but perceptually coherent.

From the previous statement, we can extract many goals of CEs:

1. CEs must flip the decision of the classifier. In the literature, this feature is called

validity.

2. The counterfactual changes should be plausible and realistic - simply referred

to as realism. Visual automated systems are generally brittle to adversarial

noise [54]. This noise is designed to fool the classifier, but with the restriction

that it is hidden from visual inspection. Since this noise cannot be perceived, it

cannot be analyzed to find spurious correlations. Therefore, only realistic and

plausible changes are allowed.

3. The algorithm must generate proximal and sparse counterfactuals. One could

create a valid and realistic explanation by simply replacing the target instance

with a new one. This still obeys the realistic and valid goals. However, it

does not give any information about the variables. Thus, the modifications

must be sparse and close to the image to visually observe which variables have

changed.

4. Finally, the algorithm must generate the explanation efficiently. This property

is required to avoid delays for the user.
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Now we will proceed to describe each evaluation metric and link it to its cor-

responding objective. As for notations, let M(x, y) be the counterfactual algorithm

applied to an image x ∈ D targeting the class y, where D is a dataset. Additionally,

let C be the classifier, 1(condition) a function that is one if the condition is true or

zero otherwise. Finally, let a ∈ A be an attribute in a set A, then Oa is an attribute

oracle classifier for a. This network predicts if its input has the attribute a. Similarly,

let O be an identity verification network This DNN is trained to give a similarity

measure between two images, often computed with the cosine similarity CS.

Success Rate. The success rate (or flip rate) measures the ratio at which counter-

factuals have successfully reversed the original classifier’s decision. This metric cor-

relates with the validity goal. To measure it, we simply compute the proportion of

valid counterfactuals to the size of the dataset, as in

SR =
1
|D| ∑

x∈D
1(C(M(x, y)) = y). (B.1)

Realism. To approximate the realism of the counterfactuals, the literature adopts

the FID [63] metric from generation research. Furthermore, Jeanneret, Simon, and

Jurie [78] extended the metric by computing the FID between the half of the dataset

and the counterfactuals of the complement set. This was motivated to reduce the

inherent bias in computing the FID, given that the difference between the original

images and their CE is a few pixels in the image.

Proximity and Sparsity. To evaluate this goal, previous methods proposed several

metrics to quantify the degree of dissimilarity between an instance and its explana-

tion. Initially, most metrics were proposed for face images. Jacob et al. [74] suggested

using the mean number of attributes changed (MNAC), computed as follows:

MNAC =
1
|D| ∑

x∈D
∑
a∈A

1(Oa(M(x, y)) ̸= Oa(x)). (B.2)

However, [79] noted that counterfactual methods will change some attributes if they

are correlated. Thus, based on the MNAC, the Correlation Difference (CD) [79] mea-

sures the correlations produced by M. To further assess the proximity and sparsity

in face counterfactuals, Singla et al. [167] suggested using the Face Verification Ac-

curacy (FVA) to compute whether M cannot modify the identity of the person. This

metric is calculated as

FVA =
1
|D| ∑

x∈D
1(CS(O(x),O(M(x, y))) > 0.5). (B.3)

Jeanneret, Simon, and Jurie [78] noted that this metric was already saturated. To

measure a more fine-grained metric, they proposed taking the continuous CS and
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calling the metric face similarity (FS):

FS =
1
|D| ∑

x∈D
CS(O(x),O(M(x, y)). (B.4)

Finally, the same authors extended this metric for general-purpose images by com-

puting Eq. B.4 using a self-supervised trained model as O. They called this metric

S3. Finally, [85] proposed to compute COUT. This metric computes the probability

of the class y using multiple linear interpolations between x and M(x, y).

Efficiency. The literature generally ignores computing an efficiency metric. To com-

pute the efficiency of counterfactual models, the widely accepted metric is floating

point operations (FLOPs). In addition, it is also recommended to compute the aver-

age time per counterfactual. However, this metric is only comparable if all measure-

ments are computed on the under the same circumstances.

B.2 Qualitative Results

In this section, we provide additional qualitative results. For the CelebA HQ [99]

dataset, we provide our and ACE [78] counterfactuals to show the differences.
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FIGURE B.1: Counterfactual Explanations targeting the Non-Smile at-
tribute.
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FIGURE B.2: Counterfactual Explanations targeting the Smile at-
tribute.
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FIGURE B.3: Counterfactual Explanations targeting the Young at-
tribute.
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FIGURE B.4: Counterfactual Explanations targeting the Old attribute.
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FIGURE B.5: Counterfactual Explanations targeting the Stop action.
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FIGURE B.6: Counterfactual Explanations targeting the Forward ac-
tion.
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In the following figures, we present the insertion-deletion curves for the ImageNet [35],

CUB-200-2011 [182], Stanford Cars [96], and Stanford Dogs [86] datasets. We employ

both zero-filled and blur-filled corruption strategies. We quantitatively compare our

approach to GradCAM [161] and a modified rollout matrix [1]. Since HiT lacks cross-

token attention, the rollout is equivalent to averaging attention across all layers. The

steep increase and subsequent decrease in probability confirms that HiT maps ef-

fectively identify the most important tokens for classification, as the initial inserted

tokens significantly increase the probability distribution. In contrast, GradCAM and

the rollout matrix fail to achieve comparable performance.
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(A) Zero-filled corruption

(B) Blur-filled corruption

FIGURE C.1: ImageNet Insertion-Deletion
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(A) Zero-filled corruption

(B) Blur-filled corruption

FIGURE C.2: CUB Insertion-Deletion
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(A) Zero-filled corruption

(B) Blur-filled corruption

FIGURE C.3: Stanford Dogs Insertion-Deletion
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(A) Zero-filled corruption

(B) Blur-filled corruption

FIGURE C.4: Stanford Cars Insertion-Deletion
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