
HAL Id: tel-04823357
https://theses.hal.science/tel-04823357v1

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Droplet breakup- Analyse de la rupture de gouttes
Ignacio Roa Antunez

To cite this version:
Ignacio Roa Antunez. Droplet breakup- Analyse de la rupture de gouttes. Fluid mechanics
[physics.class-ph]. Normandie Université, 2024. English. �NNT : 2024NORMR051�. �tel-04823357�

https://theses.hal.science/tel-04823357v1
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le diplôme de doctorat
Spécialité MECANIQUE DES FLUIDES, ENERGETIQUE, THERMIQUE, COMBUSTION,

ACOUSTIQUE
Préparée au sein de l'Université de Rouen Normandie

Defοrmatiοn and breakup οf drοplets in turbulence.

Présentée et soutenue par
IGNACIO ROA ANTUNEZ

Thèse soutenue le 01/10/2024
devant le jury composé de :

M. CHRISTOPHE DUMOUCHEL Directeur de Recherche - Université de Rouen Normandie
(URN) Directeur de thèse

M. NICOLAS RIMBERT Professeur des Universités - Université de Lorraine Président du jury

M. JORGE CESAR BRANDLE
DE MOTTA - Université de Rouen Normandie (URN) Co-encadrant

M. ANDREAS HAKANSSON Professeur des Universités - Université de Lund (SUEDE) Membre du jury

M. STEPHANE PERRARD Chargé de Recherche - Sorbonne Université Membre du jury

MME MARIE-CHARLOTTE
RENOULT Maître de Conférences - INSA de Rouen Normandie Membre du jury

M. GUNTER BRENN Professeur des Universités - Université Technique de Graz
(AUT) Rapporteur du jury

M. FRÉDERIC RISSO Directeur de Recherche - Inp (Toulouse) Rapporteur du jury

Thèse dirigée par CHRISTOPHE DUMOUCHEL (COMPLEXE DE RECHERCHE
INTERPROFESSIONNEL EN AEROTHERMOCHIMIE)





Abstract

The atomization process is influenced by the deformation and breakup of droplets, which
in turn affects the final distribution of droplet size. Several authors have related the
breakup of droplets due to turbulence to their free oscillations and have shown that even,
for low turbulence levels, droplets break due to a resonant mechanism. This phenomenon
provides the foundation for the present study.

As a baseline of this work, the theoretical linear shape oscillations of droplets are first
examined from both theoretical and numerical perspectives. The first-order oscillatory
motion of an initially deformed droplet, considering the dynamic effects of the surround-
ing fluid, is described.

Subsequently, the oscillations and breakup of a single, initially unperturbed, spherical
liquid droplet subjected to a homogeneous and isotropic turbulent medium are investi-
gated. A theoretical framework for droplet oscillations is developed using a spherical
harmonic decomposition that tracks the deformation of the surface from its initial state
to just before its breakup as an expansion of each mode of deformation. This approach
links the small perturbation amplitude deformation of the droplet to the parameters and
properties of the turbulent medium, allowing us to observe how turbulence excites the dif-
ferent modes, ultimately leading to breakup. We relate this phenomenon to linear stability
theory and analyse how the droplet lifetime is associated with the turbulence statistics for
the ensemble of characteristic values.

During droplet deformation, perturbations of different origins favour the growth of
liquid structures of various sizes and shapes. Notably, regions exhibiting contraction (bot-
tlenecks) and accumulation (swelling) patterns may indicate potential breakup events. To
accurately predict breakup events, it is essential to consider the multiscale nature of these
systems. The temporal evolution of the scale distribution is used to identify all the dynam-
ics involved in the deformation process at each scale throughout the droplet’s lifetime.

The problem is approached by direct numerical simulation of the two-phase Navier-
Stokes equations using the in-house code ARCHER.

By combining these three analyses, the lifetime of the droplet is studied in two parts:
First, the oscillatory motion and frequency of the different modes present in the deforma-
tion through the spherical harmonic framework to shed light on the resonance mechanism.
Second, the temporal evolution of the scale distribution through a multiscale analysis at
the end of the droplet lifetime.
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Résumé

Le processus d’atomisation est influencé par la déformation et la rupture des gouttes, qui
à leur tour affectent la distribution finale de taille de gouttes convient. Plusieurs auteurs
ont établi un lien entre la rupture des gouttes liée à la turbulence et les oscillations libres
de celles-ci en montrant que, même pour de faibles niveaux de turbulence, les gouttes se
brisent en raison d’un mécanisme de résonance. Ce phénomène est à la base de la présente
étude.

Comme point de départ de ce travail, les oscillations linéaires théoriques des gouttes
sont examinées d’un point de vue théorique et numérique. Le mouvement oscillatoire du
premier ordre d’une gouttelette initialement déformée, considérant les effets dynamiques
du fluide environnant, est décrit.

Ensuite, les oscillations et la rupture d’une gouttelette liquide sphérique unique, ini-
tialement non perturbée, soumise à un milieu turbulent homogène et isotrope, sont étudiées.
Un cadre théorique pour les oscillations des gouttes est développé à l’aide d’une décomposition
en harmoniques sphériques qui suit la déformation de la surface depuis son état initial
jusqu’à sa rupture. Cette approche relie l’amplitude de la déformation de la goutte d’eau
par petites perturbations aux paramètres et aux propriétés du milieu turbulent, ce qui
nous permet d’observer comment la turbulence excite les différents modes, conduisant
finalement à la rupture. Nous relions ce phénomène à la théorie de la stabilité linéaire et
analysons comment la durée de vie des gouttes est associée aux statistiques de turbulence
pour l’ensemble des valeurs caractéristiques.

Pendant la déformation des gouttes, des perturbations d’origines diverses favorisent
la croissance de structures liquides de tailles et de formes variées. En particulier, les
régions présentant de la contraction (goulots d’étranglement) et de l’accumulation (zones
de gonflement) peuvent indiquer l’avènement d’une rupture. Pour prédire avec précision
les événements de rupture, il est essentiel de prendre en compte la nature multi-échelle
de ces systèmes. L’évolution temporelle de la distribution des échelles est utilisée pour
identifier toutes les dynamiques impliquées dans le processus de déformation à chaque
échelle tout au long de la durée de vie de la gouttelette

Le problème est abordé par le biais de la simulation numérique directe des équations
de Navier-Stokes à deux phases à l’aide du code interne ARCHER.

En combinant ces trois analyses, la durée de vie de la gouttelette est étudiée en deux
parties : Premièrement, le mouvement oscillatoire et la fréquence des différents modes
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présents dans la déformation à travers le cadre harmonique sphérique afin de mettre en
lumière le mécanisme de résonance. Deuxièmement, l’évolution temporelle de la distri-
bution d’échelle par une analyse multi-échelle à la fin de la durée de vie de la goutte.
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Motta, for his enthusiasm and seemingly endless willingness to discuss science. For his
mentorship and support. I would also like to thank him for his immense help with the per-
sonal challenges of doing a PhD in another country. I would like to thank Marie-Charlotte
Renoult and Christophe Dumouchel, for accompanying me throughout this project, for
your advice and guidance. To all three of you, thank you for trusting me to carry out this
thesis. Thanks to you, I have learnt a lot and grown not only as a researcher but also as a
person.

I would also like to thank François-Xavier Demoulin, Julien Réveillon, Thibaut Menard
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Chapter 1

Introduction

Atomization transforms bulk liquid into small droplets, forming a spray that enhances
rapid evaporation and extensive surface coverage. This process is crucial in various in-
dustries, including fuel injection, sprinkler irrigation, spray drying, and fire suppression.
Each application requires specific spray characteristics, particularly droplet size control,
which is vital for efficiency and effectiveness (Lefebvre & McDonell 2017). For example,
in fuel injection, large droplets can impede complete evaporation, reducing combustion
efficiency.

Atomization occurs in two stages: primary and secondary atomization. In the pri-
mary stage, bulk liquid, typically in a jet or sheet form, breaks into larger structures near
the injector due to instabilities such as Kelvin-Helmholtz and Rayleigh-Taylor. In the
secondary stage, these larger structures disintegrate into smaller droplets until surface
tension effects dominate, achieving the final droplet size distribution. Turbulence signifi-
cantly impacts secondary atomization, especially in applications like combustion chamber
injection, where high turbulence levels in the carrier fluid cause droplets to deform and
fragment (Wåhlin 2007, Sanjosé et al. 2011).

Atomization is inherently multi-scaled. In some applications, final droplets can be
as small as a few micrometres, while the total domain can extend to several centimetres.
Studying the entire process is challenging, particularly the direct numerical simulation
(DNS) of both primary and secondary breakup. Therefore, two strategies are commonly
employed: primary atomization simulation and spray simulation (Fiorina et al. 2016).

Turbulent droplet breakup in liquid-liquid dispersed flows is also common in chemi-
cal and biochemical industries. This process involves mixing two immiscible liquids in
either stirred batch or continuous reactors, typically with one aqueous and one organic
phase, as seen in extraction processes using mixer-settlers (Davies 1992). Understanding
and controlling these stages is crucial for optimizing atomization across various applica-
tions. This study focuses on the physics behind secondary atomization under turbulent
conditions to improve predictions of spray characteristics.

Droplet deformation and breakup significantly influence the final droplet size distri-

9



CHAPTER 1 – INTRODUCTION

bution, with turbulence playing a key role in secondary breakup. Several authors have
suggested that turbulent breakup of droplets can be attributed to a resonant mechanism
achieved through their free oscillations, even at low turbulence levels (Sevik & Park 1973,
Risso & Fabre 1998, Lalanne et al. 2019). This phenomenon motivates the present study.

As a baseline, a linear stability analysis of Newtonian droplets in a Newtonian sur-
rounding fluid is conducted. The theoretical linear oscillations of droplets are examined
from both theoretical and numerical perspectives, describing the first-order oscillatory
motion of an initially deformed droplet considering the dynamic effects of the surround-
ing fluid. Three limiting cases are considered: a droplet in a vacuum, a liquid-liquid
configuration, and a bubble in a liquid.

Subsequently, the oscillations and breakup of a single, initially unperturbed spherical
liquid droplet in a homogeneous and isotropic turbulent medium are investigated. A theo-
retical framework for droplet oscillations is developed for each mode of deformation using
a spherical harmonic decomposition that tracks surface deformation from its initial state
to just before breakup. This approach links small perturbation amplitude deformation of
the droplet to the turbulent medium’s parameters, showing how turbulence excites differ-
ent modes, ultimately leading to breakup. This phenomenon is related to linear stability
theory.

During droplet deformation, perturbations of different origins favour the growth of liq-
uid structures of varying sizes and shapes. Regions exhibiting contraction (bottlenecks)
and accumulation (swelling) patterns may indicate potential breakup events. To predict
these events accurately, it is essential to consider the multiscale nature of these systems.
The temporal evolution of the scale distribution is used to identify all the dynamics in-
volved in the deformation process at each scale by the end of the droplet’s lifetime.

Experimental studies on droplet evolution, particularly under turbulent conditions,
have faced challenges such as obtaining local carrier fluid states and shape evolution si-
multaneously, reproducing well-controlled isotropic turbulent conditions, and achieving
reliable statistics on breakup frequency. Additionally, these studies often rely on 2D pro-
jections of the 3D droplet shape, lacking detailed descriptions of local shape deformation
at all scales.

These limitations are overcome through direct numerical simulations (DNS) of iso-
lated droplets under turbulent conditions using the in-house code ARCHER (Ménard
et al. 2007). ARCHER is chosen for its capabilities to reproduce Lamb theory oscilla-
tions (Aniszewski et al. 2014, Cordesse et al. 2020) and the Levelset implicit description
that allows accurate computation of the spherical harmonic coefficients (Roa et al. 2023a).
By generating turbulent conditions using a linear forcing scheme (Duret et al. 2012) and
creating realistic initial conditions for droplets, the project ensures accurate simulations.
This methodology enables a detailed parametric study of droplet breakup, providing valu-
able insights into the physics of secondary breakup and leading to the development of
more accurate predictive models for industrial applications.

By combining these two analyses, the droplet’s lifetime is studied in two parts: first,
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CHAPTER 1 – INTRODUCTION

the oscillatory motion and frequency of different modes in the deformation through the
spherical harmonic framework, relating the turbulence-driven deformation to the oscilla-
tions present in the linear theory; and second, the temporal evolution of the scale distribu-
tion through a multiscale analysis at the end of the droplet’s lifetime.

The study combines theoretical and numerical analyses of droplet deformation and
breakup. Using a spherical harmonic decomposition framework, droplet deformation in
a turbulent medium is tracked, connecting drop oscillations in turbulence to linear the-
ory. A multiscale analysis aids in predicting breakup events by considering multiscale
systems, combining oscillatory motion analysis and multiscale evolution to understand
droplet breakup.

The work presented analyses droplet deformation and breakup in turbulence across
three principal stages of the droplet’s lifetime: an initial phase of deformation due to
turbulent flow, oscillatory motions induced by interaction with turbulent eddies, and the
final breakup stage. These stages are represented in figure 1.1.

Figure 1.1: A sequence of snapshots of a breaking droplet following the oscillation pro-
cess, the inertial deformation process and the capillary-driven breakup across the droplet
lifetime. Figure inspired by Qi et al. (2024).

The main objective of this PhD thesis is to characterize the deformation and breakup
of droplets from their initial state until rupture. The subsequent chapters of this PhD thesis
are divided as follows:

Chapter 2 introduces the numerical methods and tools used throughout the manuscript.
It begins with a brief overview of the in-house code ARCHER, which was used for all
DNS presented in the manuscript.

This chapter includes the development and validation of post-treatment algorithms for
tracking droplet interface deformation, and a brief description of the already implemented
routines in the post-treatment code PyARCHER.

Chapter 3 presents the linear stability analysis for a Newtonian drop surrounded by
a Newtonian fluid. The goal is to develop and numerically validate the linear theory for
drop-shape oscillations considering varying viscosities and densities. An energetic ap-
proach is also explored, leveraging DNS capabilities. The chapter examines drop-shape
oscillations beyond linear theory by studying mode coupling for different Ohnesorge num-
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CHAPTER 1 – INTRODUCTION

bers and viscosity and density ratios. Three limiting cases are investigated: drop, buoyant
drop, and bubble. This analysis provides a foundation for studying droplet oscillations in
turbulence, as explored in chapter 4.

In this chapter, the deformation of droplets from a numerical database generated using
ARCHER (Roa et al. 2023b, Deberne et al. 2024) is analysed through a spherical har-
monic decomposition framework. The analysis of drop-shape oscillations is constrained
by the mathematical limits of spherical harmonic expansion, which prevents exploration
of droplet morphology just before breakup. Consequently, a new approach is introduced
in chapter 5.

The multiscale analysis considers the liquid system and parallel systems obtained
through successive erosion operations at various scales until the initial system is fully
eroded. This method enables observation of simple situations within complex shapes
and characterizes droplet morphology as a cumulative scale distribution. Three principal
scales are tracked throughout the droplet’s lifetime, providing insights into drop shape.

Finally, chapter 6 discusses the general conclusions and prospects of this work.
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Chapter 2

Methodology

The aim of this thesis is to study the deformation, oscillation, and rupture of bubbles and
droplets using Direct Numerical Simulation (DNS). This involves the complex numerical
resolution of the Navier-Stokes equations, particularly for two-phase flows, which neces-
sitates accurate boundary conditions at the interfaces between different fluids to ensure
the continuity of the calculated fields. The challenge lies in accurately locating these
deformable immersed interfaces.

This chapter begins by briefly introducing the principles of various methods for sim-
ulating two-phase flow and details the physical equations that need to be solved numer-
ically. A concise description of the DNS code ARCHER is provided, highlighting its
capability to solve the Navier-Stokes equations. Key concepts for tracking the interface
are presented, which are crucial for the development of the post-processing tools used in
this research. These tools and frameworks are essential for characterizing droplet oscilla-
tions.

Validation examples for both the developed numerical tools and post-processing meth-
ods are also presented.

2.1 ARCHER
The in-house High-Performance-Computing code ARCHER is used to perform all DNS
presented in this work. The ARCHER code was one of the first to undertake the sim-
ulation of liquid-jet atomization under a realistic diesel injection configuration (Ménard
et al. 2007). It solves on a staggered Cartesian mesh the one-fluid formulation of the
incompressible Navier-Stokes equations

∇ ·Vi = 0, (2.1)

ρi

(
∂Vi

∂t
+ Vi · ∇Vi

)
= −∇pi +∇ · τi + f + σκδsn, (2.2)

13



CHAPTER 2 – METHODOLOGY

where Vi is the velocity, pi the pressure field, ρi is the density, µi the dynamic viscosity,
τi = µi(∇Vi +∇VT

i ) the viscous stress tensor, f a source term, σ the surface tension, n
the unit normal vector to the interface, κ its mean curvature and δs is the Dirac function
characterizing the location of the interface. The subscript i is 1 for the dispersed phase
and 2 for the continuous phase.

For solving the Navier-Stokes equation, the convective term, ρi (Vi · ∇Vi), is written
in the conservative form and solved using the improved Rudman’s technique (Rudman
1998) presented in Vaudor et al. (2017). The latter allows mass and momentum to be
transported consistently, thereby enabling flows with large liquid/gas density ratios to be
simulated accurately. The viscosity term is computed following the method presented by
Sussman et al. (2007). To ensure the incompressibility of the velocity field, a Poisson
equation is solved. The latter accounts for the surface tension force and is solved using a
Multi Grid preconditioned Conjugate Gradient algorithm (MGCG) (Zhang 1996) coupled
with a Continuous Surface Force (CSF) method (Brackbill et al. 1992).

For transporting the interface, a coupled Levelset and volume-of-fluid (CLSVOF)
method is used, in which the Levelset function accurately describes the geometric fea-
tures of the interface (its normal and curvature) and the volume-of-fluid function en-
sures mass conservation. The density is calculated from the volume-of-fluid, C, as ρ =
ρ1C+ρ2(1−C) and the dynamic viscosity (µ1 or µ2) depends on the sign of the Levelset
function. In cells containing both a liquid and gas phase, a specific treatment is performed
to evaluate the dynamic viscosity, following the procedure of Sussman et al. (2007). The
code has been validated and tested in a variety of atomization conditions, such as high-
density ratios and varying Weber and Reynolds numbers (Ménard et al. 2007, Vaudor et al.
2017). The case of an oscillating droplet has been previously validated for the ARCHER
code (Aniszewski et al. 2014), finding good agreement with linear theory.

The ARCHER code is continuously under development within the research group,
implementing new numerical methods as the need arises. Hence, for a part of the work
presented in this manuscript a newer version of the ARCHER code is used. In particular,
for the linear oscillations presented in chapter 3.

The work done during this PhD did not involve further developing the ARCHER code.
However, post-processing tools were developed to analyse the numerical simulations per-
formed, that employ the properties of the direct numerical simulation solver. For the sake
of clarity, these numerical concepts regarding the architecture of the ARCHER code are
introduced.

2.1.1 Levelset
The Levelset method was first devised by Osher & Sethian (1988) as numerical method
used to describe and track the motion of interfaces or boundaries in two or three dimen-
sions. The idea behind the Levelset method is to define a smooth function φ(x, t), where
the interface is represented as the set where φ(x, t) = 0. The Levelset function φ is then
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Figure 2.1: Levelset method. On the left, the interface representation. On the right,
Levelset contours for a circular interface of radius 2.5 units.

considered as a signed distance equation, which represents the shortest distance from the
interface to each point within the domain

φ(x, t) > 0 for x ∈ Ω1

φ(x, t) = 0 for x ∈ Γ

φ(x, t) < 0 for x ∈ Ω2

(2.3)

where Ωi is the region within the bound or outside it, with the subscript i = 1, 2 for
inner or outer fluid respectively and Σ is the interface, and x = (x1, x2, ..., xn) ∈ Rn.
This is illustrated in figure 2.1.

Thus, to capture the interface at any future time, one simply needs to locate the set Γ(t)
where φ is zero. This gives way to one of the strengths of the Levelset method, which
is its ability to handle complex changes in topology, such as coalescence or separation
of interfaces, without requiring special treatment. This is possible because the method
implicitly represents the interface and can naturally deal with changes in shape.

The motion is analysed by convecting the φ values (levels) with the velocity field V

∂φ

∂t
+ V · ∇φ = 0. (2.4)

Nonetheless, the transport of the interface induces loses in the Levelset function signed-
distance property |∇φ| = 1. To solve this problem, the work of Sussman et al. (1994)
proposed a redistanciation step based on the resolution of the partial differential equation
(PDE)

∂D

∂τ
= sign(φ)− (1− |∇D|) (2.5)
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Figure 2.2: Sketch of the VoF scalar field C.

at each time step. This algorithm updates the Levelset from the interface iteratively over
a fictitious time, τ , to conserve the distance property.

The application of the Levelset method in the ARCHER code for this work allows for
the tracking of the interface deformation throughout the droplet lifetime and is an integral
part for the development of the post-processing tool described in section 2.3 and for the
computation of the method described in section 2.5.

2.1.2 Volume of fluid

Volume of fluid methods (VoF) are numerical techniques used to track and locate the free
surface (interface) between two or more immiscible fluids within a computational domain.
These methods are particularly useful for simulating multiphase flows, where distinct fluid
phases coexist.

The Volume of Fluid method, as described in the work of Noh & Woodward (1976),
uses the phase volume reconstruction in each cell. It is based on the liquid/gas ratio in a
cell and the direction of transport. The VOF method uses a function C(x, t) to represent
the volume fraction of one of the fluids in each computational cell. C(x, t) = 1 indicates
the cell is entirely filled with the fluid, C(x, t) = 0 indicates it is entirely filled with the
other fluid, and 1 < C(x, t) < 1 indicates the presence of the interface. The volume of
fluid method, and the values of C(x, t), are represented in figure 2.2.

One of the advantages of the VOF method is its capacity to conserve the quantity of
volume in the domain. Although the initial approach to calculating the interface charac-
teristics (normal and curvature) was more accurate when using a Levelset method, recent
developments in the VoF method have led to improvements in this calculation (Bornia
et al. 2011). The application of the VoF method in the ARCHER code for this work al-
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lows for the tracking of the volume distribution of the droplet throughout its lifetime and
is an integral part for the development of the post-processing tools described in section
2.3 and 2.4.

2.2 PyARCHER

Results from ARCHER simulations are saved in HDF5 format, with one time series per
processor and multiple time steps per file. For visualization, such as using ParaView,
ARCHER also writes XMF files. These files provide information about the simulation
domain’s geometry (e.g., origin, grid spacing) and topology (connectivity between MPI
blocks).

PyARCHER is the in-house Python platform for pre- and post-processing ARCHER
data. Although designed for ARCHER data, PyARCHER’s applications can be used with
any staggered CFD code following the MAC discretization.

This code reads simulation data using the Dask library (Dask Development Team
2016), storing them in an ‘xarray.Dataset‘. All time steps and processors are merged
into a 4D array with coordinates ”x”, ”y”, ”z”, and ”t”. These coordinates can be speci-
fied by the user or read from the XMF files. The minimal data blocks (one processor and
one time step) are called chunks and serve as the unit of work for Dask.

Data written by ARCHER include ghost cells for boundary conditions and processor
interfaces. The latter are removed during the merging operation, while the former can be
removed if necessary.

PyARCHER is an open-source post-treatment tool continuously under development.
It supports a ”lazy” approach to post-processing, where necessary routines are prepared
and introduced to the code beforehand. These routines can be utilized once the simu-
lation is complete, allowing data to be processed multiple times without affecting DNS
calculation time. Each implemented library includes automatic self-validation. Whenever
any part of the code is changed, PyARCHER verifies that the subroutines still function as
intended every time it is compiled.

In the following sections three different post-treatment algorithms are presented: the
spherical harmonic decomposition, inertia tensor computation, and the Minkowski func-
tionals computation. The two former were developed as a part of this PhD work to char-
acterize droplet deformation and oscillations, implemented into PyARCHER. The latter
was developed as a part of a previous study (Dumouchel et al. 2022) and has been used
for the analysis presented in chapter 5.
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Figure 2.3: Drop deformation: sketch and definitions.

2.3 Spherical harmonic decomposition

2.3.1 Spherical harmonics

In mathematics and physics, spherical harmonics are special functions defined on the
surface of a sphere, often used in solving partial differential equations. Since they form
a complete set of orthogonal functions, any shape that is star shaped (radially convex set)
that can be described in a spherical coordinate reference (see figure 2.3) can be written
as a sum of spherical harmonic functions. The spherical harmonic functions provide a
robust mathematical basis for representing complex shapes and variations in the radial,
polar, and azimuthal directions.

To study the shape evolution of a drop immersed in a turbulent flow we introduce
the spherical harmonic functions Y l

m(θ, ϕ), following the works by Risso (2000), Lalanne
(2012) and Perrard et al. (2021).

The distance from the centre of the reference frame to the droplet interface can be
described by

R(θ, ϕ) = R0

∞∑
m=0

m∑
l=−m

am,lY
l
m(θ, ϕ). (2.6)

where am,l(t) corresponds to the amplitude of the deformation expressed as a spherical
harmonic coefficient, R0 is the equivalent radius and Y l

m is the spherical harmonic func-
tion. Finally, m and l correspond to the spherical harmonic degree and order respectively,
with m ≥ 0 and −m ≤ l ≤ m. The degree (often referred to in the literature as modes)
m determines the number of lobes in the polar coordinate, while the order l specifies the
orientation of these lobes in the reference frame system, with l = 0 corresponding to the
axisymmetric configuration. A representation of the spherical harmonic functions can be
seen in figure 2.4. The reference frame axes x, y, z are represented by the red, yellow
and green lines respectively, considering z the axisymmetry axis. The spherical harmonic
function is defined as
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H l
m(θ, ϕ) =

√
(2m+ 1)

(m− l)!
(m+ l)!

P l
m(cos θ)eilϕ, (2.7)

with P l
m(cos θ) corresponding to the associated Legendre functions, m ∈ N and l ∈

[−m,m]. Since H l
m are complex functions of angle, it is often considered more conve-

nient to use their real forms for their depiction in figures and in some calculations. A
suitable real basis of spherical harmonics may be defined as:

Y l
m(θ, ϕ) =


i√
2
(H l

m − (−1)mH−lm ) if m < 0

H0
m if m = 0
i√
2
(H−lm + (−1)mH l

m) if m > 0.

(2.8)

To calculate the spherical harmonic expansion of a function R(θ, ϕ) defined on the
surface of a sphere, certain conditions and properties of the function and the spherical
harmonics must be met. These conditions ensure that the function can be appropriately
represented and that the expansion converges.

The function R(θ, ϕ) must be square-integrable over the sphere. Meaning that∫
Ω

|R(θ, ϕ)|2dΩ <∞, (2.9)

where dΩ corresponds to the differential surface area on the unit sphere sin θdθ dφ.
Square-integrability ensures that the function R(θ, ϕ) has finite energy over the sphere
and can be expanded in terms of spherical harmonics.

A second condition is that the spherical harmonic functions must form an orthogonal
basis for the function space. This orthogonality is given by∫

Ω

Y l
m(θ, ϕ)Y l∗

m (θ, ϕ)dΩ = δmm∗δll∗ , (2.10)

where delta is the Kronecker delta. This orthogonality property is essential for computing
the coefficients am,l. The representation of the spherical harmonic function as a double
series is a generalized Fourier series. Therefore, if normalized, it represents a complete
orthonormal system of functions for all degrees m and orders l. Due to this property, the
spherical harmonic coefficients of a function can be computed with the integral

am,l =

∫
Ω

R(θ, ϕ)Y l
m(θ, ϕ) dΩ, (2.11)

The objective is to relate the spherical harmonic expansion with the surface defor-
mation. It is important to note that the total energy stored at the interface is directly
proportional to the total surface area, represented by η2

Ω. Parseval’s theorem, alternatively
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known as Rayleigh’s energy theorem, provides a valuable tool for this purpose, as it es-
tablishes a relationship between the integral of the square of a function and the sum of
the square of its transform. Due to the orthogonality properties of the spherical harmonic
functions, this can be written as

1

4π

∫
Ω

R2(θ, φ) dΩ = η2
Ω, (2.12)

where

η2
Ω =

∞∑
m=0

m∑
l=−m

a2
m,l. (2.13)

By leveraging Parseval’s theorem, we can quantify the energy stored in the surface
deformation and relate it to the coefficients of the spherical harmonic expansion, thereby
elucidating the contribution of different harmonic modes to the overall deformation energy
(Perrard et al. 2021). The power spectrum a2

m is computed by

a2
m =

m∑
l=−m

a2
m,l. (2.14)

This expression sums the squares of all coefficients am,l associated with the same de-
greem. Since the coefficients am,l of same degreem are associated to the same oscillatory
frequency, the power spectrum provides the energy contained in each mode and relate it
to its contribution to the total deformation of the system. Importantly, the power spec-
trum is inherently positive by definition and remains independent of the orientation of the
reference frame.

2.3.2 Decomposition framework
In order to describe the shape of a droplet as a series of spherical harmonic functions,
the first step is to obtain the distribution of its radius as a function of the polar angles as
R(θ, ϕ). The values of R(θ, ϕ) are obtained through a loop that computes the values of
the radius across the interface (figure 2.5a) following the spherical coordinates reference
frame over an array of angles, whose size is given by the maximum number of modes,
M , we wish to evaluate. More specifically, the array (as shown in figure 2.5b) will be of
shape 2(M + 1)× 2(M + 1). The algorithm for obtaining the distribution of distances to
the interface is the following:

1. Center fields: The ARCHER code allows two-phase DNS in periodic boundary
conditions. This can cause instances in which the simulated liquid-phase passes
through one side of the domain and re-appearing on the opposite side. To correct
this, the first step is to ensure that the body is contained within the domain. The
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Y0, 0

Y1, 1 Y1, 0 Y1, 1

Y2, 2 Y2, 1 Y2, 0 Y2, 1 Y2, 2

Y3, 3 Y3, 2 Y3, 1 Y3, 0 Y3, 1 Y3, 2 Y3, 3

Y4, 4 Y4, 3 Y4, 2 Y4, 1 Y4, 0 Y4, 1 Y4, 2 Y4, 3 Y4, 4

Figure 2.4: Representation of the spherical harmonic function Y l
m for degrees until m =

4 with the corresponding degrees. The red and blue colours represent the positive and
negative values respectively.

VoF and Levelset fields are repositioned to be, in a continuous form, within the
bounds by moving these fields until none of the walls are being touched. If this is
not possible due to the extended geometry of the body, the domain is expanded to
ensure this condition.

2. Obtain the centre: To describe the surface of a body as an ensemble of spherical
harmonic functions the computation of the origin of the reference frame is of up-
most importance, since it will define the distance to the interface its position will
greatly vary spherical harmonic amplitudes. To compute the values of R(θ, ϕ) dis-
tributed across the grid three methods were implemented: cartesian centre, mass
centre and surface centre. These three methods are revised later in this section.

3. Radius computation: Once the centre of the body is obtained, the last step is to
compute the distance from the centre to the interface following the spherical coordi-
nates reference frame over an array of anglesR(θ, ϕ). As discussed in section 2.1.1,
to capture the interface at any time, one simply needs to locate where φ(x, t) = 0.
Due to this, it is possible to capture the distance between the centre and the inter-
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Figure 2.5: Illustration of the interface mapping of a droplet deformed by a turbulent
background flow for a spherical harmonic decomposition with M = 6 using the centre of
mass. (a) The points are distributed around a revolution axis given by the reference frame.
(b) The normalized distances between the centre and the interface are stored in a grid. The
colorbar corresponds in both figures to the values of the function R(θ, ϕ) normalized by
the reference radius R0.

face for any set of angles (θ, ϕ) by tracing a line to a point outside of the droplet
and finding the intersection to the drop’s interface. This subroutine has two different
interpolation methods built-in: linear and cubic.

The coefficients are then computed from this array with the help of the library SHTOOLS
(Wieczorek & Meschede 2018). A Fast Fourier Transform (FFT) is applied to the input
data with respect to the longitude. This step transforms the data into the frequency domain
for the longitudinal component. For each degree m and order l, the algorithm integrates
the product of the input data R(θ, ϕ), the associated Legendre polynomial Pm, and the
exponential term eilϕ over the sphere, where ϕ is the longitude (refer to eq. 2.7) and
θ the colatitude. The spherical harmonic coefficients am,l are then obtained by solving
the integral shown in equation 2.11. Furthermore, by obtaining the coefficients am,l, the
body can be reconstructed with the desired number of spherical harmonics functions. As
an example, the morphology of a droplet deformed by a turbulent background flow is
reconstructed using the first 6 modes of deformation in figure 2.6.

Cartesian centre

The Cartesian mean centre method is a straightforward approach to determine the average
position of a set of points in Cartesian coordinates. It is often used to find the centroid (or
geometric centre) of a collection of points in two or three-dimensional space.

The Cartesian mean centre (or centroid) of a set of N points with coordinates in 3D
space is defined as c = (x̄, ȳ, z̄), where
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Figure 2.6: Reconstruction of a deformed droplet using the spherical harmonic modes
m = [2− 6] obtained through its decomposition.

x̄ =
1

N

N∑
i=0

xi, ȳ =
1

N

N∑
i=0

yi, z̄ =
1

N

N∑
i=0

zi. (2.15)

The coordinates (xi, yi, zi) of the interface, are obtained from the Levelset field pre-
sented in section 2.1.1. The Cartesian mean centre is equidistant from all points in the
sense that it minimizes the sum of squared distances to the points and involves straight-
forward arithmetic operations, making it computationally efficient.

Mass centre

The centre of mass of a body is a point that represents the average position of the mass
distribution of the body. It is the point where the entire mass of the body can be considered
to be concentrated.

For a continuous 3D body with a density ρ, the mass centre (or centroid) can be defined
as the point c = (xmc, ymc, zmc) where

xmc =

∫
V

xρ1d V, ymc =

∫
V

yρ1d V, zmc =

∫
V

zρ1d V. (2.16)

As presented earlier, the VoF field provides the information of the quantity of volume
per mesh cell. Using this field allows for a rapid computation of the centre of mass simply
as

xmc =
1

Π

N∑
i=0

mixi, ymc =
1

Π

N∑
i=0

miyi, zmc =
1

Π

N∑
i=0

mizi, (2.17)

where Π =
∑N

i=0msi is the total mass, which at the same time msi = Viρ is the mass of
each cell element.

Given that the VoF field is cell centred (located at the centre of the mesh cell), the
computation of the centre of mass using this field is not entirely accurate. A more correct
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approach would be to use the PLIC-VoF method (piecewise linear interface construction),
which would provide a more accurate position of the volume concentration of the droplet
in each cell. Nonetheless, for the purposes of this study, the approximation is sufficient.

Surface centre

The surfacic centre is not as commonly used or well-defined as the centroid or centre of
mass, but it can generally be understood to mean a point that represents the average posi-
tion of the surface of a geometric object. The surface centre can be considered analogous
to the centroid but specifically for the surface rather than the volume.

For a 3D body of surface S with continuous coordinates (x, y, z), the surface centre
can be defined as c = (x̄S, ȳS, z̄S), where

x̄S =
1

A

∫
S

xdA, ȳS =
1

A

∫
S

ydA, z̄S =
1

A

∫
S

zdA, (2.18)

where A is the total surface area of the surface S and dA is a differential element of
surface area. For the centre of surface, the Levelset field is used to triangulate the surface
of the body. The individual areas Ai of the triangles along with their vertices are obtained
by discretizing the zero Levelset surface with a triangulated mesh using a Marching Cube
algorithm. The surface operators’ library of PyARCHER is used for this end.

Finally, the centre of mass can be approximated as

x̄S =
1

A

N∑
i=0

xiAi, ȳS =
1

A

N∑
i=0

yiAi, z̄S =
1

A

N∑
i=0

ziAi. (2.19)

2.3.3 Validation of the framework
Sphere

The spherical harmonic decomposition corresponds to an expansion of the function that
describes the surface over a sphere. To test and validate this framework, an initial vali-
dation test is conducted on a spherical droplet generated using ARCHER. In this context,
for the first validation test involving a perfect sphere, the result of the expansion should
closely resemble the surface of a unit sphere. This implies that:∫

Ω

R(θ, ϕ)Y l
m(θ, ϕ) dΩ = 1 (2.20)

To demonstrate the accuracy of spherical harmonic decomposition, we follow a sys-
tematic approach using a Levelset function field to represent a sphere. We begin by
defining a sphere with a radius Rs = 1 within a numerical domain discretized into
a grid containing Nx × Ny × Nz = N3 points. The grid spacing is determined by
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Figure 2.7: Interface reconstruction using linear and cubic interpolation methods is com-
pared in the following analysis. Additionally, the error in radius calculation using each
method is depicted on the right for comparison.

∆x = ∆y = ∆z = 3×Rs
N

, ensuring that the grid can accurately capture the geometry
of the sphere. The sphere is placed at the centre of this numerical domain to facilitate
symmetrical analysis and computation. For this particular validation case the reference
centre is computed using the three different methods mentioned previously. The values of
R(θ, ϕ) are obtained from across the interface (figure 2.5a) following the spherical coor-
dinates reference frame over the array of angles given by the longitude and colatitude. In
order to test the accuracy of the computation of the radius, both implemented interpolation
methods are also tested. In figure 2.7 (left), the accuracy of the implemented interpolation
methods in the computation of the droplet radius using the exact centre of the droplet is
shown. At first glance its easy to realize that the higher the order of interpolation, the
better the reconstruction of the droplets interface. This is also supported by figure 2.7
(right). It is found that the computation of the droplet radius with a cubic interpolation
method has a relative error lower to 0.001% already for a coarse grid of 163 cells. Whilst
the use of a linear interpolation for the computation of the distance from the centre to the
interface of the droplet has a comparatively high relative error, for domains of 323 cells
the relative error is already below 0.1%. This, combined with its high speed computation
time makes it a great tool for tracking the evolution of the spherical harmonic coefficients
for drops with long lifetimes.

Odd modes

We must also consider that for a proper computation of the spherical harmonic expan-
sion it is of upmost importance to correctly select the body’s centre. This aspect is quite
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Figure 2.8: Computation of the centre with different methods for a droplet with a defor-
mation Y 0

3 of amplitude η = 0.1. On the left, the contour of the interface of the body.
On the right, a plot demonstrating the difference in the decomposition using the available
methods for computing the centre.

challenging because we aim to reduce the influence of the eigen-mode 1, while also main-
taining coherence of the centre as the droplet deforms. For spherical droplets affected by
a symmetric deformation (even modes e.g. Y l

2 , Y
l

4 , etc.) the computation of the centre
is insignificant, with the highest relative error obtained being 3. × 10−5% for the surface
centre method.

In contrast, if the perturbation is asymmetrical (odd modes e.g. Y l
3 , Y

l
5 , etc.), the

choice of the centre of computation becomes more relevant. To show the difference in the
computation of the coefficients am,l we perform the spherical harmonic decomposition
of a droplet initialized with a deformation of Y 0

3 with an amplitude η = 0.1 using the
different available methods of setting the centre. The numerical conditions are the same
as the previous validation. We expect the function to properly decompose the droplet into
the inserted perturbation as to be able to expand this formulation into an oscillating drop.

We can observe in figure 2.8 the difference in the decomposition for a droplet with
a deformation of η = 0.1 for mode 3 (Y 0

3 ). The cartesian, mass and surface centres are
shown along with the exact centre of the droplet. It is noticeable that doing the decomposi-
tion without an appropriate centre can greatly alter the result. Nonetheless, it is important
to note that this does not mean that the calculation is wrong. Since the Laplace expansion
over the surface of the sphere depends on its reference frame, where the centre is placed
will affect directly the way the grid of radius values R(θ, ϕ) is generated, hence, the de-
composition will vary in amplitude of its am,l coefficients. Figure 2.8 shows that the mass
and surface centres more accurately represent the deformation introduced in the droplet.
For the numerical domain discretized into a grid of 643 points, the relative error obtained
considering the surface centre is 0.165%, while the error obtained using the mass centre
is 0.145%.
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2.4 Inertia tensor calculation
In a turbulent flow, the shape and mass distribution of the droplet can change dynamically
due to the interaction of the droplet with the turbulent vortices. This requires real-time
updates of the droplet’s geometry and mass distribution for accurate inertia matrix com-
putation. To find out its main directions, we calculate the inertia matrix I (Lalanne 2012,
Chapter 5). It contains two types of component: the moments of inertia noted Ixx, Iyy, Izz,
which are respectively moments with respect to the x, y and z axes, and the products of
inertia, Ixy, Ixz, Iyz, which model a geometric asymmetry of the mass distribution with
respect to the respective planes (O, y, z), (O, x, z) and (O, x, y). The greater these mo-
ments, the further the mass is distributed from the axes or planes in question. The inertia
matrix is written in the form

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 , (2.21)

Ixx =

∫
V

ρ(y2
o + z2

o)dV, Iyy =

∫
V

ρ(x2
o + z2

o)dV, Izz =

∫
V

ρ(x2
o + y2

o)dV

Ixy =

∫
V

ρ(xoyo)dV, Ixz =

∫
V

ρ(xozo)dV, Iyz =

∫
V

ρ(yozo)dV.

(2.22)

Here, xo, yo, zo are the coordinates of the o-th volume element relative to the centre.
The calculation of I is based on the VoF field and is carried out in the coordinate

system with the centre of mass (see equation 2.17) as its origin. Since I is a symmetric
matrix whose diagonal elements are positive, there is a frame of reference in which it is
diagonal. This frame of reference is called the principal frame of inertia and its axes are
called the principal axes of inertia. The eigenvalues of the matrix, denoted I1, I2 and I3,
are the principal moments of inertia. To ensure that the reference frame remains valid
at all time (e.g. follow the drop rotation), it is necessary to ensure the continuity of the
eigen values. The main inertial reference frame (v1, v2, v3) provides the direction of the
eigenvectors, but not their sign. By knowing the decomposition frame at time n − 1,
(vn−1,1, vn−1,2, vn−1,3), the inertial frame to be the frame at time n, (vn,1, vn,2, vn,3) can be
obtained. Denoting by v3 the vector carried by the minor axis, the coordinate system must
satisfy the following conditions:

1. If vn−1 · vn < 0 then vn = −vn. This is due to the fact that the eigenvectors cannot
undergo a jump of more than 90◦ between two instants.

2. the eigenvectors given by vn are obtained by minimizing the dot product vn−1 cot vn.
This ensures that the axis are followed considering the smallest jump between vec-
tor position.
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Figure 2.9: Tracking of the inertial reference frame over time. The red, yellow and green
correspond to the principal axes of inertia.

By following these principal moments we can account for the droplet orientation vari-
ations influenced by the interaction with the surrounding fluid. This tracking can be seen
in figure 2.9. It is important to note that this method does not grant that the provided ref-
erence frame will be the closest to an axisymmetric axis. It simply uses the inertial matrix
as a mean to follow the drop’s movement.

2.4.1 Validation of the inertia tensor framework

For the validation of the inertia tensor there are two steps to be followed. First, it is
necessary to correctly compute the inertia tensor of the deformed droplets. Secondly, the
evolution of the reference frame needs to be correctly tracked. To validate the computation
of the inertia tensor two shapes are considered: a sphere and a spheroid. These two shapes
are selected as these are the ones that more closely resemble the shape of the deformed
droplet at the different stages of deformation.

Isphere =
2

5

(
4πR2

3

)R2 0 0
0 R2 0
0 0 R2

 (2.23)

Ispheroid =
4

3

(
4πabc

5

)b2 + c2 0 0
0 a2 + c2 0
0 0 a2 + b2

 (2.24)

where a, b and c are the semi-axes aligned along the coordinate axes. For the generation
of the spheroidal droplet, random values of a, b and c were considered to ensure that the
computation works with any case.

In figure 2.10 the maximum error of the computed inertia tensor is shown as a function
of the number of cells. It is observed that for both cases the error is below 0.1%, even for
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coarse mesh definitions. These numerical errors are introduced by the computation of the
centre of mass, as discussed in section 2.3.
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Figure 2.10: Maximum error in inertia tensor calculation for each case for different levels
of mesh refinement.

2.5 Minkowski functionals
Another approach to characterize the morphology of a body is the use of Minkowski func-
tionals. The Minkowski functionals are a set of morphological indicators that describe not
only the envelope of the liquid system (surface) but also its topology (connectivity) and
shape (geometric curvature) (Mantz et al. 2008). These indicators have been applied on
various systems and are widely present in the literature dedicated to porous media (Arns
et al. 2003, Mecke & Arns 2005) and cosmological structures (Mecke et al. 1993, Ker-
scher et al. 2001). These indicators generalize the curvature integrals of smooth surfaces
to those with singular bends (folds) or points.

The Minkowski functionals define four geometric quantities of a given body with a
surface S: the volume V enclosed by the surface S, the surface area S, the area integrated
mean curvature H and the area integrated Gaussian curvature G, considering

S =

∫
S

dS, H =

∫
S

1

2
(κ1 + κ2) dS, G =

∫
S

κ1 · κ2 dS (2.25)

where κ1 and κ2 correspond to the two main curvature components and d S is an elemen-
tary surface element.

The set of Minkowski functionals has interesting properties, the most important being
that they are additive (the Minkowski functionals of an ensemble of bodies is the sum
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of their respective Minkowski functionals) and invariant to translation and rotation of the
body. This means that the Minkowski functionals of an ensemble of systems is the sum
of these functionals of each one of them (see figure 2.11). This is particularly useful for
sprays made up of disjoint elements, where the Gaussian curvature at scale d = 0, G(0),
will therefore be directly proportional to the number N of drops in the spray. The previous
assertion has been demonstrated in the works of Thiesset et al. (2019) and Dumouchel
et al. (2022).

2.5.1 Minkowski functionals computation
The Minkowski functionals computation is done using the routine of the same name im-
plemented in the post-treatment code PyARCHER as a part of a previous study (Du-
mouchel et al. 2022).

The Minkowski functionals of a system are computed for all parallel surfaces at a
distance ∆x from the interface. The different parallel surfaces correspond to the operation
of removing the region contained at a distance d from the interface. These systems are
defined through the Levelset field, i.e. φ(x) + ∆x = 0 considering only the region Ω1

(see figure 2.1). The notion of parallel systems are presented in more detail in chapter 5.
This routine uses the Surface operators library of the in-house PyArcher for com-

puting S(d), H(d), G(d). These routines are based on earlier versions of the routines
described by Mohamed et al. (2019) and Di Battista et al. (2019). The Minkowski func-
tionals library allows the computation of the eroded functions for each individual structure
present in the flow thanks to the labelization library present in PyARCHER by eroding the
Levelset field. It also makes it possible to compute the Minkowski functionals considering
the whole system as one. This is shown in figure 2.11.
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Figure 2.11: Example of the computation of the Minkowski functionals. (Top) The
liquid structures are shown with their corresponding labels. (Bottom) Computation of
the Minkowski functionals considering each system as independent and as an ensemble.
Source: PyARCHER code examples.
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Chapter 3

Linear oscillations of drops and bubbles

3.1 Introduction
The oscillations of drops and bubbles have been studied for over a century due to their
importance in transport processes across interfaces. The first recorded analysis of linear
drop shape oscillations dates back to Rayleigh (1879), who examined the vibrations of
an inviscid spherical droplet in a vacuum, identifying the well-known solutions for the
fundamental modes of motion characterized by modes m = 2, 3, 4, . . ., corresponding to
the number of lobes across the interface. Lamb (1881) extended this work by considering
the viscosity of the liquid sphere and the density of the surrounding medium. Chan-
drasekhar (1959) presented a normal-mode analysis of small amplitude oscillations of a
viscous globe in a vacuum, deriving the characteristic equation for the angular oscillation
frequency as a complex value described by the droplet Ohnesorge number. Reid (1960)
later demonstrated that the forces driving the tendency to sphericity are due to surface ten-
sion, obtaining results identical to those of Lamb and Chandrasekhar for a self-gravitating
sphere.

Miller & Scriven (1968) detailed the free oscillations of a viscous sphere immersed in
a viscous ambient fluid, further generalising Lamb’s work and providing an asymptotic
estimation in the limit of weak viscous effects. Their analysis indicated that when both
fluids are low-viscosity liquids, the primary contribution to the damping rate of oscilla-
tions comes from viscous dissipation in a boundary layer near the interface. Prosperetti
(1980a) investigated droplet shape oscillations as an initial value problem, comparing
his solutions with the normal-mode approach (Prosperetti 1980b), and analysed the os-
cillations of a viscous liquid drop surrounded by an immiscible liquid, finding a general
solution to the dispersion relation between two fluids of varying densities and viscosity.

The introduction of viscosity into the system results in non-periodic drop-shape os-
cillations. To quantify this effect, Foote (1973) and Alonso (1974) were the first to nu-
merically study viscous non-linear shape oscillations, with initial aspect ratios up to 1.9,
considering an initially deformed state at rest given by a Legendre polynomial of mode m
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or an initially oblate spheroid. Their work showed a decrease in the oscillation frequency
for the first period with increasing aspect ratio for small viscosity. Tsamopoulos & Brown
(1983) analytically studied non-linear oscillations of inviscid drops and bubbles for modes
m = 2, 3, 4 and compared their results to those of Foote (1973) and Alonso (1974) for
viscous drops oscillating in the fundamental modes. Tsamopoulos and Brown’s results,
compared against those of Foote and Alonso, showed that the effect of viscosity on the
oscillation frequency is small for small Ohnesorge numbers (viscous versus inertial and
surface tension forces), agreeing with Chandrasekhar’s work, and observed that the drops
spent a considerably longer part of each period in a prolate form than in an oblate one and
observed a decrease in frequency caused by a larger initial amplitude deformation.

Lu & Apfel (1991) later investigated the effects of surfactants on the shape oscillations
of drops, showing that the frequency change and damping constant are more pronounced
for an extensible interface than an inextensible one, and the oscillation amplitude damps
out faster when the interface exhibits rheological properties due to the generation of strong
vorticity in the boundary layers. Lundgren & Mansour (1988) observed the oscillations of
drops in zero gravity, considering weak viscous effects. They described a resonant energy
transfer from the excited mode to higher frequencies due to the system’s viscosity as
another non-linear phenomenon in drop shape oscillations. The effect of mode coupling as
a non-linear effect in droplet oscillations has been further analysed numerically by Patzek
et al. (1991) and Basaran (1992). Both works considered the drop to be initially at rest.
The coupling was found to be dependent on the initial state and viscosity of the droplet.
Their results confirmed that viscous droplets released from an initial two-lobed shape
spent less time in prolate form than inviscid droplets, consistent with previous literature.

Motivated by the recent work of Zrnić et al. (2022) on viscous drops in a vacuum
and inspired by the linear stability analysis of a Newtonian ferrofluid cylinder immersed
in a Newtonian fluid performed by Canu & Renoult (2021), a linear analysis of a New-
tonian drop surrounded by a Newtonian fluid is performed. The characteristic equations
derived from this analysis are compared with direct numerical simulation performed in
the in-house code ARCHER. We study the dynamic effects of the surrounding fluid on
the frequency and damping of perturbed droplets under different flow conditions. Modes
of initial deformation up to mode m = 6 are investigated.

The use of a spherical harmonic decomposition framework, developed as part of previ-
ous work (Roa et al. 2023a,b) and described in detail in Chapter 2.3.2, is considered. Such
framework has been used to study drop shape oscillations experimentally in the works of
Kowalewski & Bruhn (1994), Risso & Fabre (1998) and Lalanne et al. (2019) as well as
numerically in the work of Perrard et al. (2021).

This framework’s utility comes from its ability to isolate each mode, allowing us to
describe the droplet’s oscillation frequency as an ensemble of different mode frequencies
present, and thus observe not only the excited fundamental mode but also the coupling
exhibited between all the present modes. In this work, we perform a linear shape analysis
of a Newtonian droplet surrounded by a Newtonian fluid with symmetry in the azimuthal
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coordinate for the general case where the two fluids have different densities and viscosi-
ties. After formulating this problem with various assumptions, the bulk equations for both
fluids and the jump conditions across the interface between them are derived. A general
dispersion relation in explicit form is then obtained, providing another formulation of this
relation compared with previous studies. From the solution of the linearized system of
equations, the corresponding first-order velocity field can be obtained provided that a set
of initial conditions is imposed.

The droplets and bubbles are then initialized with both the theoretical velocity field
and resting fluid, similar to the work of Simon (2024), in order to analyse its impact
on drop shape oscillations. A similar study has recently been published on the weakly
non-linear oscillations of a viscous droplet in vacuum (Smuda et al. 2024).

3.2 Linear theory

3.2.1 Formulation

We study the shape oscillations of a Newtonian globe immersed in a Newtonian sur-
rounding fluid. In this chapter the oscillations of drops and bubbles will be explored. For
simplicity purposes, throughout the chapter we will refer to both drops and bubbles as
droplets except when specified. The droplet (dispersed phase) is of radius R0, viscosity
µ1 and density ρ1. These oscillations are assumed to be axisymmetric with respect to the
azimuthal angular coordinate ϕ (see fig. 3.1). The surrounding fluid (continuous phase)
is considered to be of viscosity µ2 and density ρ2. The surface tension of the liquid drop
against the ambient fluid is defined as σ. Both fluids are considered to be incompressible.
Isothermal conditions are assumed and gravity is ignored.

We consider that the droplet departs from the spherical state by weakly disturbances
characterized by the Legendre polynomials. The initial conditions of the drop surface are
given by

η(θ, 0) = η0Pm(cos θ),
∂η

∂t
(θ, 0) = 0, (3.1)

These conditions determine the initial shape of the deformed droplet given by the
Legendre polynomial Pm of order m while the second states that the drop surface has no
radial velocity. The drop surface deformation is governed by the Legendre polynomial of
the initial deformation. The amplitude parameter η0 is assumed to be small compared to
the radius of the unperturbed droplet. The drop surface is therefore described by the radial
position rs = 1 + η(θ, t), with η the non-dimensional deformation, measured with respect
to the unperturbed droplet. The governing equations of this flow are described below.
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Figure 3.1: Representation of a perturbed Newtonian drop of radius R0, viscosity µ1 and
density ρ1 surrounded by a Newtonian fluid of viscosity µ2 and density ρ2, with interfacial
tension σ.

3.2.2 Governing equations
The problem is characterized by the Navier-Stokes equations. The mass and momentum
balance equations, valid for both the droplet and the surrounding fluid are expressed as a
simplified form of equations 2.1 and 2.2

∇ ·Vi = 0, (3.2)

ρi

(
∂Vi

∂t
+ Vi · ∇Vi

)
= −∇pi +∇ · τi, (3.3)

In order to account for what happens at the interface we introduce the unit normal
vector n. It is defined at a point on the interface, in the direction towards the ambient
fluid. The vector n is given by

n =
∇S
||∇S||

=
1√

1 + (1
r
∂rs
∂θ

)2

er −
1
r
∂rs
∂θ√

1 + (1
r
∂rs
∂θ

)2

eθ, (3.4)

where S = r − rs is introduced to characterize the position of the interface (S = 0).
The kinematic boundary condition, which states that the rate of deformation of the drop
surface equals the radial velocity at the position of the deformed surface, can be obtained
by writing the mass balance equation at the interface without mass exchange between the
two fluids,
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Vi · n = − 1

||∇S||
∂S

∂t
, at r = rs. (3.5)

We consider a no-slip condition at the interface (Tomotika 1935) given by

[V × n] = 0, at r = rs, (3.6)

with the convention [A] = A2−A1. These equations lead to the continuity of the velocity
components across the interface. To account for jump conditions for momentum, we
describe the continuity in the tangential component of the stress acting at the interface as

[(n ·T)× n] = 0, at r = rs, (3.7)

where Ti = −piI + τi is the stress tensor, considering I the identity matrix. Lastly, the
normal component of the stress acting on the interface is given by

[(n ·T) · n] = σκ, at r = rs, (3.8)

with κ = ∇ · n the curvature of the interface. Considering the property n · I× n = 0, the
equations 3.7 and 3.8 are reduced to

(n · τ1)× n− (n · τ2)× n = 0, at r = rs, (3.9)

p1 − (n · τ1) · n = p2 − (n · τ2) · n + σ∇ · n, at r = rs. (3.10)

The bulk equations (3.2,3.3), the conservation equations (3.5, 3.6) and as well as
the jump conditions across the interface (3.7-3.10) are non-dimensionalized with the
undeformed drop radius R0, the capillary timescale

√
ρ1R3

0/σ, characteristic velocity√
σ/R0ρ1 and the capillary pressure σ/R0. These characteristic values will be used for

the rest of the chapter.
Given the geometry of the liquid droplet, the equations are formulated in polar coordi-

nates, expanding the velocity into its radial and polar components Vi = (uirer + uiθeθ).
The dimensionless equations are linearized, and we thus obtain the equations for the per-
turbed quantities

1

r2

∂(r2uir)

∂r
+

1

r sin θ

∂(uiθ sin θ)

∂θ
= 0, (3.11)

∂u1r

∂t
+
∂p1

∂r
−Oh1

(
1

r

∂2

∂r2
(r2u1r) +

1

r2 sin θ

∂

∂θ
(sin θ

∂u1r

∂θ
)

)
= 0, (3.12)

∂u1θ

∂t
+

1

r

∂p1

∂θ
−Oh1

(
1

r2

∂

∂r
(r2∂u1θ

∂r
) +

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ
(u1θ sin θ)

))
= 0, (3.13)
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ρr
∂u2r

∂t
+
∂p2

∂r
− µrOh1

(
1

r

∂2

∂r2
(r2u2r) +

1

r2 sin θ

∂

∂θ
(sin θ

∂u2r

∂θ
)

)
= 0, (3.14)

ρr
∂u2θ

∂t
+

1

r

∂p2

∂θ
−µrOh1

(
1

r2

∂

∂r
(r2∂u2θ

∂r
) +

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ
(u2θ sin θ)

))
= 0, (3.15)

uir −
∂η

∂t
= 0 at r = 1, (3.16)

(
∂u1θ

∂r
+

1

r

∂u1r

∂θ
− u1θ

r

)
− µr

(
∂u2θ

∂r
+

1

r

∂u2r

∂θ
− u2θ

r

)
= 0 at r = 1, (3.17)

p1− 2Oh1

(
∂u1r

∂r

)
− p2 + 2µrOh1

(
∂u2r

∂r

)
−
(
∂2η

∂θ2
+
∂η

∂θ
cotθ + 2η

)
= 0 at r = 1.

(3.18)
In the above equations Oh1 = µ1/

√
ρ1σR0 corresponds to the Ohnesorge number of

the dispersed phase, ρr = ρ2/ρ1 the density ratio and µr = µ2/µ1 the dynamic viscosity
ratio. Due to the axisymmetric properties of the problem at hand, the components in
the azimuthal direction eϕ are not present. Due to the shape of the initial conditions
presented in equation 3.1, the sought solution is of the form η(θ, t) = η̂Pm(cos θ)e−αmt,
with η̂ the first-order initial surface amplitude and αm the complex angular frequency for
the deformation mode m.

3.2.3 Solution of the dispersion relation
Given the incompressibility assumptions of the flow and that only two-dimensional ax-
isymmetric flow fields are investigated, the velocity in each fluid can be expressed using
a Stokes stream function ψi(r, θ, t) such that uir = − 1

r2 sin θ
∂ψi
∂θ

and uiθ = 1
r sin θ

∂ψi
∂r

.
By taking the curl of the linearized momentum equation for the dispersed phase in a

vectorial form (Tomotika 1935) using Eq. 3.12-3.13, we obtain the fourth-order PDE

(
1

Oh1

∂

∂t
− E2

s

)
(E2

sψ1) = 0, where E2
s =

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
(3.19)

This equation can be solved by using separable variables. The resulting stream func-
tions ψ1 is then represented by

ψ1,m = [Amr
m+1 +Bmq1rjm(q1r)]P

′
m(cos θ) sin2 θe−αmt, (3.20)
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whereAm andBm are determined by kinematic and dynamic boundary conditions, P ′m(cos θ)
is the first-order derivative of the Legendre polynomial Pm, jm is a spherical Bessel func-
tion of the first kind and order m and q1 =

√
αm/Oh1, is obtained from the Eq. 3.19.

Following the same procedure for the continuous phase momentum equations (Eq.
3.14 and 3.15) we recover the following fourth-order PDE(

ρr
µrOh1

∂

∂t
− E2

s

)
(E2

sψ2) = 0. (3.21)

The corresponding stream function for the ambient fluid must be determined such that
it is consistent when the radial coordinate goes to infinity. The spherical Bessel functions
do not converge to zero when their argument qir approaches infinity, but rather oscillate
around it. To ensure the convergence the solution for the continuous phase is written in
terms of the spherical Hankel function h(1)

m (qr) = jm(qr) + iym(qr). Then, the stream
function of the outer fluid is given by

ψ2,m = [Cmr
−m +Dmq2rh

(1)
m (q2r)]P

′
m(cos θ) sin2 θe−αmt, (3.22)

where Cm and Dm are determined by kinematic and dynamic boundary conditions and
q2 =

√
ρrαm/µrOh1 is obtained from Eq. 3.21.

The radial and angular components of the linearized velocity vector are recovered by
replacing Eq. 3.20 and 3.22 in the Stokes functions

u1r = −
[
Amr

m−1 +Bmq
2
1

jm(q1r)

q1r

]
m(m+ 1)Pm(cos θ)e−αmt, (3.23)

u1θ =

[
Am(m+ 1)rm−1 +Bmq

2
1

(
(m+ 1)jm(q1r)

q1r
− jm+1(q1r)

)]
sin θP ′m(cos θ)e−αmt,

(3.24)

u2r = −

[
Cmr

−m−2 +Dmq
2
2

h
(1)
m (q2r)

q2r

]
m(m+ 1)Pm(cos θ)e−αmt, (3.25)

u2θ =

[
−Cmr−m−2 +Dmq

2
2

(
h

(1)
m−1(q2r)−

mh
(1)
m (q2r)

q2r

)]
sin θP ′m(cos θ)e−αmt.

(3.26)
The pressure fields can be obtained by integration of one component of the momentum

equation as

p1 = −αmAm(m+ 1)rmPm(cos θ)e−αmt (3.27)
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p2 = αmρrCmmr
−m−1Pm(cos θ)e−αmt (3.28)

By replacing these terms into the linearized kinematic and shear stress boundary con-
ditions we can then recover the constants Am, Bm, Cm, Dm by considering the prop-
erties of the spherical Bessel functions j′m(x) = m

x
jm(x) − jm+1(x) and jm+1(x) =

2m+1
x
jm(x)− jm−1(x) Brown (2007)(Ch. 13.4.1).

We finally obtain a solution of the form

Ωm =
α2
m,0

α2
m

=− 1− m

m+ 1

ρr − µrγH(k)
m

(√
ρrαm
µrOh1

)
αm

Oh1


+ [(2m+ 1)− γ]

Jm

(√
αm
Oh1

)
αm

Oh1 +
2mOh1

αm
(1− µr) (m+ 2 + γ)

(3.29)

with

γ =

2(m2 − 1) + (2m+ 1)(2− Jm(
√

αm
Oh1

))− 2µrm(m+ 2)

(2− Jm(
√

αm
Oh1

))− µr(2 +H
(k)
m (
√

ρrαm
µrOh1

))

 . (3.30)

This equation determines the complex angular frequency αm, with αm,0 =
√
m(m− 1)(m+ 2)

being the solution of the angular frequency for an inviscid globe in vacuum (Rayleigh
1879). Here, we introduce the quotients of the spherical Bessel and Hankel functions

Jm(z) = zjm−1(z)/jm(z) and H(k)
m (z) = zh

(k)
m−1(z)/h(k)

m (z). (3.31)

A change in notation when working with the spherical Hankel function is introduced

due to the complex roots sought occurring in pairs. Given the fact that h(1)
m (x) = h

(2)
m (x)

then when looking for the roots in Eq. 3.29 it is necessary to consider the following values
of the super-index k

k =

{
1 if im(Ωm) > 0

2 if im(Ωm) < 0.
(3.32)

From equation 3.29, the negligible surrounding fluid case can be obtained by consider-
ing ρr = µr = 0. The characteristic equation displayed draws the exact solution obtained
by Chandrasekhar (1959) and that was studied by Zrnić et al. (2022) in their weakly non-
linear analysis. These solutions are presented in figure 3.2 for modes m = 2 − 4. It
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Figure 3.2: Solutions of the characteristic equation for varying Ohnesorge number for a
surrounding fluid of negligible dynamical effects (ρr = µr = 0). The imaginary and real
portion of the non-dimensional frequency Ωm = αm/αm,0 are left and right respectively.

is shown that we have an exact agreement with the references, obtaining critical Ohne-
sorge numbers of 0.7665, 0.6209, 0.5496 for modes m = 2, 3, 4 respectively. This critical
behaviour corresponds to the transition from damped oscillations to an aperiodic relax-
ation towards equilibrium. For Ohnesorge numbers below those critical values, the drop
performs damped oscillations starting from the initial deformation. In this range, the
characteristic equation of the drop exhibits complex conjugate solutions. For Ohnesorge
numbers greater than the critical values, the initially deformed drop returns to its equilib-
rium shape by an aperiodic motion without an oscillation frequency, and for the damping
rate of the initial deformation, two real solutions are found. The general form of this equa-
tion is consistent with the findings of Prosperetti (1980b). It can be seen that the solution
of the dispersion relation is therefore dependent on the dimensionless values Oh1, ρr, and
µr. Some examples are shown in Figure 3.3 for mode m = 2.

The results obtained from solving the dispersion relation are then normalized by the
frequency ωm = ((m − 1)m(m + 1)(m + 2))/(ρrm + m + 1). Since we have solved
the two flow equations, we are also able to obtain a solution for different viscosity and
density ratios. In figure 3.3, the solution to the dispersion relation for different viscosity
and density ratios are plotted for different configurations of ρr and µr, for the values of
Oh1 = 0.1Oh2, Oh1 = 0.5Oh2 and Oh1 = Oh2 (where Oh2 = µ2/

√
ρ2σR0) hence µr =

0.1
√
ρr, µr = 0.5

√
ρr and µr =

√
ρr for simplicity. As seen in the figure, the existence

of a pair of solutions of the imaginary term of Ωm is maintained for all configurations.
In the case of a drop in a negligible surrounding fluid (see Figure 3.2) a pair of solutions
was also obtained for the real term of Ω. In Figure 3.3 (bottom) the same is not observed.
The introduction of the viscosity term in the linearized equations returns a single solution
for the damping rate, even for low viscosity ratios (as seen with ρr = 0.01 in figure
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Figure 3.3: Solutions of the characteristic equation for varying Ohnesorge number for a
surrounding fluid of varying dynamical effects considering that the inner and outer Ohne-
sorge numbers are equal (

√
ρr = µr) for mode m = 2. The imaginary and real portion of

the non-dimensional frequency Ω2 = α2/α2,0 are left and right respectively.

3.3). This could be due to the algorithm used to compute the solutions, although a similar
phenomenon was also observed in Prosperetti (1980b).

It is observed that an increment of the Ohnesorge number ratios (given by µr = c
√
ρr

with c a constant ∈ [0, 1]) involves a decrease in the critical Ohnesorge number due to
the viscous effects of the surrounding fluid. This means the value of Ohnesorge in which
the transition between the periodic to aperiodic damping motion for an initially deformed
drop occurs decreases with increasing viscosity of the surrounding fluid.

Given that the characteristic equation of the drop exhibits a pair of solutions in the
range of the Ohnesorge numbers explored, the first-order deformation of the drop surface
is reformulated to account for this phenomenon as

η(θ, t) =
(
η̂(p)e−α

(p)t + η̂(n)e−α
(n)t
)
Pm(cos θ), at r = 1. (3.33)

From the initial conditions 3.1 defining the initial drop shape and velocity at the drop
interface we can then find the amplitudes η̂(p) and η̂(n)

η̂(p) = − α(n)

α(p) − α(n)
, η̂(n) =

α(p)

α(p) − α(n)
. (3.34)

The (p) and (n) superscripts denote the eigenvalue solutions with positive and negative
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imaginary parts respectively. To account for the pair of solutions, the obtained amplitudes
need to be introduced to the solutions of the stream function, velocity field, etc. for both
fluids, having that

u1r = u
(p)
1r + u

(n)
1r , u1θ = u

(p)
1θ + u

(n)
1θ , u2r = u

(p)
2r + u

(n)
2r , · · · (3.35)

The constants Am, Bm, Cm, Dm are

Am = η
αm

(m(m+ 1))

(
1− ((2m+ 1)− ε)Jm(q1)

q2
1

)
(3.36)

Bm = η
αm

m(m+ 1)

(
2m+ 1− ε
q2

1jm+1(q1)

)
(3.37)

Cm = η
αm

(m(m+ 1))

(
1− εH

k
m(q2)

q2
2

)
(3.38)

Dm = η
αm

(m(m+ 1))

(
ε

q2
2h

k
m−1(q2)

)
(3.39)

The characteristic equation of an axisymmetric Newtonian droplet surrounded by a
Newtonian fluid has been obtained considering a small perturbation imposed at the in-
terface between the two fluids, similar to the equations derived in the work of Miller &
Scriven (1968). This analysis allows to investigate the shape oscillations of the droplet at
different modes of initial deformation with fluids of different characteristics. In the fol-
lowing sections, the linear theory is compared against numerical simulations performed
with the in-house code ARCHER.

3.3 Numerical approach
Previous work done within the research group has explored the oscillations of low density
and viscosity ratios (Aniszewski et al. 2014) and inviscid (Cordesse et al. 2020) ellip-
soidal deformed droplets around a spherical shape in order to validate the in-house code
ARCHER against Lamb’s linear theory. One problem with that methodology is that the
initialization given by an ellipsoidal shape is that it is inherently composed of multiple
modes with little control on their distribution. For the initialization of the simulations
of the present work, a droplet with an initial small amplitude deformation is generated
considering the introduction of a single or multiple modes. The mathematical analysis
presented earlier was developed considering axisymmetric conditions, hence the appear-
ance of the Legendre polynomial function Pm(cos θ). Nonetheless, we wish to validate
the linear theory and relate it to the oscillations of droplets in turbulence (chapter 4) us-
ing the developed spherical harmonic framework described in section 2.3.2. To introduce
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the perturbation in the surface of the droplet, we choose the amplitudes of the desired
perturbation for the desired fundamental modes following

R(θ, ϕ, t = 0) = R0(t) +
∞∑
m=2

m∑
l=−m

am,l(t)Y
l
m(θ, ϕ), (3.40)

where am,l(t) corresponds to the amplitude of the deformation over time and Y l
m(θ, ϕ) is

the spherical harmonic function, which is related to the Legendre functions P l
m as

Y l
m(θ, ϕ) =

√
(2m+ 1)

(m− l)!
(m+ l)!

P l
m(cos θ)eilϕ. (3.41)

Given the axisymmetric conditions of the considered problem, the value of the spher-
ical harmonic degree is considered as l = 0.

The linear theory describes the flow field and the evolution of the drop surface at the
first order. Due to this truncation, the conservation of volume during the shape oscillations
is not guaranteed. For this reason, the radius R0(t) in equation 3.40 is described as a
function of time, ensuring volume conservation. The non-dimensional drop volume v(t)
is given as

v(t) =
2π

3

∫ 1

−1

R3(θ, t) d cos θ =
4π

3
, (3.42)

so as for the undeformed state (am,l = 0) it is obtained that R0 = 1. The initial shape of
the body is as seen in figure 3.4a for a droplet deformed with η0 = 0.2 and m, l = 2, 0.
Given the axisymmetry of the problem at hand, computational time is reduced by simply
simulating the oscillations of a quarter of the droplet. Given that the spherical harmonic
decomposition developed as a part of a previous study (Roa et al. 2023a,b) has been
built considering a three-dimensional body, we reconstruct the original droplet during the
post-treatment. Since the goal of this work is to study the shape oscillations in different
flow characteristics, we perform DNS for various Ohnesorge numbers as well as different
density and viscosity ratios.

The existing literature following the oscillations of inviscid (Patzek et al. 1991, Tsamopou-
los & Brown 1983) and viscous (Basaran 1992) drops through numerical means, studies
the case in which only an initial deformation is considered in a droplet initially at rest.
From solving the linear shape oscillations of a drop immersed in a surrounding fluid,
equations describing the velocity and pressure fields are obtained from the Stokesian sys-
tem in Sec. 3.2. Following the previously mentioned works, a set of droplets are initialized
considering a system initially at rest, i.e. the drops are released from an initial static defor-
mation. At the same time, a second set of droplets is initialized by introducing the velocity
field obtained from the analytical equations at t = 0 obtained from equations 3.23, 3.24
and equations 3.25, 3.26 for the inner and outer fluid, respectively. The next step involves
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Figure 3.4: (a) Initialization of a droplet initially deformed by a spherical harmonic mode
m=2 with η0 = 0.2. The initialized shape is axisymmetric with respect to the x-axis
represented in the red solid line. (b) the x component of the velocity field along the x-axis
normalized by R0 for different η0, with Oh1 = 0.1. (c) The synthetic field Φ. (d) A visual
representation of the first-order velocity field from the linear theory.

ensuring that the computed velocity field maintains the condition of being divergence-free
(Eq. 2.1). To achieve this, a divergence correction strategy is employed through a Poisson
step, where an artificial pressure field is introduced. This pressure field adjustment serves
to align the computed velocity field with the principle of mass conservation, thus ensuring
the accuracy of the results. Similar to the works of Simon (2024) in interfacial instabili-
ties in a three-layer fluid system, we analyse both initialization conditions to inspect the
shape oscillations of the droplet, and how the initialization method affects the linear and
non-linear oscillations.
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For the simulations presented in this chapter, the computational domain is set to L =
[−4R0, 4R0] and W = H = [0, 4R0], corresponding to a quarter of the simulated droplet
(see Figure 3.4a), with the x-axis as the symmetry axis. For all simulations, a mesh of
128×64×64 cells is considered. The size of the computational domain is justified by the
necessary length needed to accurately represent the first-order velocity field in the whole
domain. In figure 3.4b the velocity in the x direction along the x-axis is shown. For all
cases studied, the domain is sufficiently large to converge towards zero.

The first-order solution is obtained by assuming that the drop’s radius rs(θ) equals
to the undeformed drop radius. However, directly computing the velocity field at the
interface for drops that are initially deformed poses a challenge within this framework. To
address this limitation, a synthetic scalar field, denoted as Φ, is introduced. This scalar
field serves as an artificial radius, where Φ = 0 denotes the centre of the drop and Φ = 1 is
the interface. By utilizing this scalar field, we can effectively map the regions within and
outside the droplet, allowing for the computation of the velocity field (see Figure 3.4c).
The velocity field obtained from the linear development of the droplet shown in figure
3.4a is shown in figure 3.4d.

3.4 Cross-validation

3.4.1 Shape oscillations

In order to validate the linear theory developed with numerical data, a numerical library
of droplets and bubbles of Ohnesorge numbers in the range of Oh1 = [0.1− 0.7] has been
generated. From these realizations, the frequency ωm and the damping factor βm were
computed by using a Levenberg-Marquardt fitting algorithm. In figure 3.5, the results of
the curve fit are plotted against the analytical solutions for density ratios of ρr = [1 ×
10−3−1×103], considering an initial amplitude deformation η0 = 0.1 in the fundamental
mode m = 2. It can be observed that through both initialization approaches both the
frequency and damping are in good agreement with the linear theory up until the critical
Ohnesorge values. This behaviour can be explained through the fitting algorithm used
since the curve assumes a linear behaviour. Following the shape oscillations of each
individual mode it is observed that the initialization with the theoretical velocity field
does not yield a better agreement with the theory.

In order to observe how well the linear theory aligns with the numerical simulation,
in figure 3.6 the shape oscillations of the excited modes m = 2, 3, 4 over time are pre-
sented and their evolution compared with the analytical solution obtained considering an
Oh1 = 0.1 and viscosity/density ratios 1×10−3, 1 and 1×103 which from now on will be
presented as droplet (ρr = µr = 1 × 10−3), neutrally buoyant (ρr = µr = 1) and bubble
case (ρr = µ2

r = 1 × 103) respectively. As expected, the results show great agreement
between the DNS and the linear theory, regardless of the initialization method used. It is
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Figure 3.5: Solution of the dispersion relation for a fundamental modem = 2 and varying
density ratio ρr = [1 × 10−3, 1 × 103] against the fitted values of the frequency ωm and
damping rate βm obtained from the numerical realizations through initialization with the
analytical first-order velocity field and static deformation for an initial deformation η0 =
0.1. The error bars correspond to the covariance of the curve fit.
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Figure 3.6: Oscillations of droplets initialized with the fundamental modes m = 2 − 4
considering an Oh = 0.1 and an initial amplitude of η0 = 0.05 (top), η0 = 0.1 (centre)
and η0 = 0.2 (bottom).

observed though that the inclusion of the first-order velocity field causes a small overshoot
at the beginning of the simulation (as seen in figure 3.6) as the initial deformation η0 in-
creases. This can be seen in greater detail in Figure 3.6 (bottom), although this behaviour
is displayed as soon as η0 ≥ 0.05 for the bubble case. This overshoot has been linked to
an increase in the velocity field in the first time steps of the simulation and corresponds to
a purely numerical error. After the first couple of time-steps, the velocity field regulates
and follows the theoretical field correctly.

In figure 3.7, the time the droplet spends in prolate state is shown. The results from
the two initialization methods are shown and compared with existing literature for a drop
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Figure 3.7: Time percentage spent in prolate form as a function of the initial drop aspect
ratio L/W compared to the existing literature (left) and analysing the different test cases
of this work for a drop in vacuum, a fluid of equivalent dynamic effects and bubble (right).

initially excited in the fundamental mode m = 2 and considering an Oh1 = 0.1. The
times are extracted from the first period of the drop-shape oscillation. As shown in figure
3.7 (left), the initialization with the first-order velocity field does not significantly impact
the drop shape oscillations when considering an outer fluid of negligible dynamic effects.
In both cases, we can notice the tendency to display non-linear effects, i.e. the excess time
of the drop spent in the prolate shape during one period (Basaran 1992, Tsamopoulos &
Brown 1983, Zrnić et al. 2022).

In Figure 3.7 (right) the prolate time for the three studied cases is shown. The initial-
ization method has a far more important effect on the excess time of the drop in prolate
shape for the cases in which the ambient fluid has equal or greater dynamic effects. It
is observed that in the case of oscillating bubbles, the shape oscillations spend a greater
amount of the first period in an oblate state, contrary to the case of drops in vacuum. For
the case in which both fluids have equal dynamical effects, the behaviour greatly differs
by changing the initial conditions, obtaining closer values to those expected when initial-
izing with the theoretical velocity field. For both of them though it is seen that the droplet
spends more time in the prolate state when the initial perturbation is greater or equal to
η = 0.1 and η = 0.2. These results show that introducing the first-order velocity field ob-
tained from the linear theory does not guarantee a linear oscillatory motion of perturbed
droplets. It is necessary to point out though that whilst the droplet in vacuum results are
well captured and in good agreement with the non-linear oscillations’ literature, the buoy-
ant and bubble cases are not physical. The time spent in prolate state should converge
to 50% when decreasing the amplitude of the initial perturbation. The error is perceived
as purely numerical. Further work will be done to understand this problem. From the
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Figure 3.8: Evolution of the drop kinetic energy Ek (top), variation of surface energy
∆Es (centre) and variation of total energy ∆Et (bottom) for a droplet in vacuum (ρr =
µr = 1× 10−3) for modes m = 2, 3, 4 from left to right respectively. The red dotted-lines
correspond to the linear theory results.

current understanding, this may be related to the initial overshoot discussed and presented
in figure 3.6.

3.4.2 Energetic approach

Having a database of different realizations including different modes of deformation and
amplitudes, the kinetic energy Ek, the variation of surface energy ∆Es and the corre-
sponding variation in total energy ∆Et can be computed from the evolution of the DNS
velocity field and interface change. The same approach has been recently explored in
the work of Smuda et al. (2024) for droplets in vacuum. These quantities in their non-
dimensional form are defined as

Ek =
1

2
ρi

∫
v

(Vi ·Vi)dv , ∆Es = σ

(∫
a

1da − 4π

)
, ∆Et = Ek + ∆Es. (3.43)

In figures 3.8, 3.9, and 3.10, the bulk kinetic energy, surface energy, and total en-
ergy variation of the oscillating droplets are presented for Oh1 = 0.1. These values
are derived from droplets initialized with the first-order velocity field, allowing com-
parison with the linear theory for three different cases (ρr = 1 × 10−3, 1, 1 × 103 and
µr = 1 × 10−3, 1,

√
1× 103 respectively). Given the negligible nature of the continuous
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Figure 3.10: Evolution of the ambient kinetic energy Ek (top), variation of surface energy
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phase in the vacuum case and the dispersed phase in the bubble case, the respective kinetic
energy results are not presented and are only included when both phases are equal.

The findings for mode m = 2 are compared against the theoretical values of the lin-
ear theory. The kinetic energy of the droplet exhibits the expected behaviour and aligns
well with linear theory predictions for small deformations, though there is a slight over-
shoot for smaller amplitudes in the vacuum case. At higher deformation amplitudes, the
kinetic energy shows quasi-periodicity, corresponding to excited mode oscillations, with
dissipation increasing from the drop to the bubble scenario as anticipated.

The surface energy difference is illustrated in the middle of figures 3.8, 3.9, and 3.10
for initial deformation modes m = 2, 3, 4. This corresponds to the deformation of the
drop compared to the spherical state. The results are normalized using the theoretical
initial energy of the system at t = 0. Higher modes of deformation are linked with
greater surface energies and a steeper decay of surface energy with increasing mode. It is
observed that for excited modes m ≥ 3, the first kinetic energy minimum does not reach
zero for large amplitude deformations.

In all cases, this is noticeable from η0 ≥ 0.05 for m = 3 and m = 4. The same
phenomenon occurs for surface energy in mode m = 3 for η0 ≥ 0.2 in the droplet case,
η0 ≥ 0.3 in the buoyant case, and η0 ≥ 0.4 in the bubble case. Similarly, for mode m = 4,
it occurs at η0 ≥ 0.2 in the droplet case, η0 ≥ 0.1 in the buoyant case, and η0 ≥ 0.05 in
the bubble case. These variations are due to the energy exchange between the dispersed
and continuous phases, indicating that the drop’s kinetic energy is not entirely converted
into surface energy and vice versa at the first maxima and minima respectively.

The total energy is depicted at the bottom of figures 3.8, 3.9, and 3.10. Typically, the
total energyEt dissipates over time due to viscosity. For the three cases presented, the dis-
sipation rate of the total energy is highest during the drop’s retraction motion, transitioning
from a deformed state to spherical, as seen in the two slopes present in each prolate-oblate
period. This change in decay rate aligns with the point of the highest kinetic energy and is
already predicted by linear theory. The numerical results show a shift in the period of the
drop’s energy with increasing initial deformation, expected given the non-linearity of the
oscillations. The maximum kinetic energy from the numerical simulations is higher than
the linear theory prediction, possibly due to domain constraints.

A significant discrepancy is found between the theoretical and numerical kinetic en-
ergy of the surrounding fluid. First, the initial value of Ek,amb differs from the linear the-
ory due to corrections made to the velocity field to ensure the divergence-free condition.
Additionally, in the buoyant and bubble cases, where ambient fluid dynamic effects are
considerable, accurate capture of the interface interaction with the medium is necessary.
As seen in figure 3.4a, the system’s velocity concentrates around the interface. Secondly,
the behaviour significantly deviates from theory in the buoyant and bubble cases, which
could be due to domain size or substantial changes to the field while maintaining the
divergence-free flow condition.

In figures 3.11, 3.12, and 3.13, the bulk kinetic energy, surface energy, and total energy
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Figure 3.11: Evolution of the drop kinetic energy Ek (top), variation of surface energy
∆Es (centre) and variation of total energy ∆Et (bottom) for a droplet in vacuum (ρr =
µr = 1×10−3) for modes m = 2, 3, 4 from left to right respectively with an initial resting
fluid condition. The red dotted-lines correspond to the linear theory results.

0.00

0.05

0.10

0.15

0.20

Ek, drop

m = 2

0.00

0.05

0.10

0.15
m = 3

0.000

0.025

0.050

0.075

0.100
m = 4

= 0.05
LT

= 0.1
= 0.2

= 0.3
= 0.4

0.0

0.1

0.2

0.3

Ek, amb

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

t/tc
0.0

0.2

0.4

0.6

0.8

Es

t/tc
0.0

0.2

0.4

0.6

t/tc
0.0

0.2

0.4

0 1 2 30.00

0.25

0.50

0.75

1.00

Et

0 1 2 30.00

0.25

0.50

0.75

1.00

0 1 2 30.0

0.5

1.0

Figure 3.12: Evolution of the drop kinetic energy Ek,drop, ambient kinetic energy Ek,amb,
variation of surface energy ∆Es and variation of total energy ∆Et for a droplet in a
surrounding fluid of equivalent dynamic effects (ρr = µr = 1) for modes m = 2, 3, 4
from left to right respectively with an initial resting fluid condition. The red dotted-lines
correspond to the linear theory results.
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initial resting fluid condition. The red dotted-lines correspond to the linear theory results.

variation of the oscillating droplets are shown, with the same characteristics but initialized
with zero velocity. For all cases, the results do not vary greatly between different initial-
izations. As in the previous instance, the kinetic energy in the droplet Ek,drop overshoots
for smaller amplitude deformations across all modes shown for the drop in vacuum and
buoyant cases. Similarly, for droplets initialized with the linear velocity field, the values
of Ek,amb differ significantly from the linear theory, with discrepancies increasing with
higher modes. The evolution of the total energy is captured accurately, even though the
initial value differs due to initialization with a resting fluid. For the bubble case, the max-
imum Ek,amb is slightly better captured, especially for mode m = 2, even when starting
from a resting fluid. As expected, the dissipation rate increases with higher fundamental
modes and initial deformation in all cases shown. The highest dissipation rate occurs in
the bubble case, due to the greater viscosity of the surrounding fluid.

3.5 Beyond linear theory

3.5.1 Coupling between modes

It is well established that the introduction of viscosity leads to the coupling of different
oscillation modes as a non-linear effect. Basaran (1992) identified that this mode coupling
depends on the initial state of the drop and its viscosity. The work of Kowalewski & Bruhn
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(1994) and later the work of Smith (2010) further confirmed the presence of non-linear
phenomena for amplitudes exceeding 10% of the undeformed drop radius, highlighting
the influence of viscosity on mode coupling.
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Figure 3.14: Percentage of modes different to the excited one in the total deformation for
shape oscillations of a droplet initialized with the fundamental modes m = 2 (left) and
m = 4 (right) and initial deformation amplitude η0 = 0.1 considering Oh1 = 0.1 for the
drop, buoyant and bubble cases (from top to bottom respectively).

The evolution of a droplet initially deformed by modes m = 2 and m = 4 is ob-
served in Figure 3.6, considering both initialization methods. There is good agreement
between the numerical and analytical approaches concerning linear theory, independent
of the initial conditions. To visualize the interaction of the drop oscillations with the
non-initially-excited modes, Figure 3.14 shows the difference between the amplitude de-
formation given by the rest of the modes

(
η2

Σ(t) =
∑6

m=0 a
2
m,l(t)

)
and the amplitude of

the excited fundamental mode over time (η2
m), versus the initial deformation amplitude for

an initial amplitude η0 = 0.1 for both modes. The results indicate that even if the initial
drop shape involves a single mode, other modes appear during its lifetime, demonstrating
the non-linear characteristics of the drop shape oscillations. Specifically, the oscillations
different from the excited mode are entirely linked to modes m = 4 and m = 2 for the os-
cillations of excited modes 2 and 4 respectively, as shown in figure 3.14. This coupling has
been observed multiple times in existing literature (Tsamopoulos & Brown 1983, Basaran
1992, Risso 2000, Ravelet et al. 2011, Zrnić & Brenn 2021, Zrnić et al. 2022, Roa et al.
2023b), showing that the coupling between different even modes depends on the initial
condition of the flow.

Realizations initialized with the first-order velocity field demonstrate a slightly lower
coupling effect in the first half of the first period for the fundamental mode m = 2.
However, for the excited mode m = 4, initialization seems to play a more significant role.
This phenomenon is strongly influenced by the viscous effects of the surrounding fluid in
terms of dissipation, as expected. Nonetheless, the effects of the coupled modes do not
vary greatly for the case in which mode 2 is excited. A different behaviour is observed
when mode 4 is excited, where increased viscosity of the surrounding fluid correlates
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with stronger coupling, persisting far longer than the oscillations of the excited mode.
The damping rates of these two modes vary significantly (as discussed in Section 3.4.2),
with higher modes experiencing faster damping than lower modes. This variation explains
the aforementioned phenomena, where the coupling and persistence of modes are affected
by viscosity and the initial conditions of the flow.

To study the influence of the magnitude of the excited mode in the coupling Fig-
ure 3.15 shows the maximum percentage of modes different from that excited for drops
initialized with modes m = 2, 3, 4 for different initial deformations considering an Oh =
0.1 for the three studied cases.
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Figure 3.15: Presence of other modes different from the excited one in percentage for
modes m = 2, 3, 4 for the droplet, buoyant, and bubble case for varying initial deforma-
tion amplitude and Oh = 0.1.

The three highlighted modes exhibit different behaviours but share a common trend:
a linear increase in coupling with other modes as initial deformation increases, with the
smallest percentage observed for an initial deformation of η0 = 0.05. For oscillations
driven by the exciting mode m = 2, the presence of other modes is somewhat reduced
when using the linear velocity field at t = 0 for smaller η0. However, as η0 increases,
coupling grows rapidly and eventually exceeds that observed with the stagnant velocity
field.

In contrast, oscillations involving modes m = 3 and m = 4 display different be-
haviour. The coupling with modes other than the excited one is equal to or greater when
the theoretical linear velocity field is used for all η0 values studied. When only deforma-
tion is introduced, the coupling between modes decreases with increasing dynamic effects
of the surrounding fluid. This is due to the faster damping of oscillations in higher modes
caused by the increasing viscosity of the continuous phase.

Given the scope of the simulations, a comprehensive study on the influence of the
Ohnesorge number on mode coupling has not been conducted. Nonetheless, Figure 3.16
illustrates the relationship between coupling and Oh for η0 = 0.1 with drops initialized
using a zero velocity field. These results confirm that, as noted by Smith (2010), viscosity
influences coupling. A higher Ohnesorge number (viscous forces relative to inertial and
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Figure 3.16: Presence of other modes different to the excited one in percentage for modes
m = 2, 3, 4 for the droplet, buoyant and bubble case for: varying initial deformation
amplitude for varying Oh and η0 = 0.1.

surface tension forces) leads to fewer modes other than the excited one being present.
This is linked to the faster damping effect in higher viscosity systems, which prevents
significant excitation of lower or higher modes.

As a test case, a droplet initialized with axisymmetric initial deformation amplitude
η0 = 0.01 and η0 = 0.1 for modesm = 2, 3 and 4 simultaneously is studied and compared
against single-mode deformation oscillations of the same individual m and l = 0. (Fig-
ure 3.17) for the denominated drop case (ρr = µr = 1 × 10−3). The oscillations of each
mode are isolated and tracked over time with the aid of the spherical harmonic decompo-
sition framework presented in subsection 2.3.1. It is observed for the amplitude η0 = 0.01
(Figure 3.17 (top)) that the different oscillation modes appear to not interact with each
other, following the linear theory in frequency and damping. This is not the case when
the amplitude is increased to η0 = 0.1. The oscillations of the present modes are affected
by the presence of the other modes. These results further cement the previous statement
that the coupling between modes, as a non-linear effect, depends on the amplitude of the
deformation.

In order to account for more complex geometries that can more accurately represent
realistic droplets (as the ones studied in chapter 4), a similar test case to that presented
previously is considered, but this time with the initial conditions set up to include non-
axisymmetric deformations. This is achieved by introducing perturbations in terms of
spherical harmonics 2.3.1. In the presented test case, a droplet initialized with perturba-
tions of amplitudes of η0 = 0.1 for spherical harmonic functions Y 0

2 , Y 1
3 and Y 3

4 (see
figure 2.4) can be seen in figure 3.18.

3.5.2 High amplitude deformations

In order to have a reference for the case studied in chapter 4, a series of simulations
without turbulence are performed with similar conditions and numerical resolution as for
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the turbulent case. The selected configuration is to investigate the oscillations of each
isolated mode in a fluid initially at rest. Both the drop and the surrounding fluid are of
equivalent physical characteristics (i.e. µr, ρr) as those used for the generation of the
database.

Each simulation corresponds to the amplitude perturbation of modes m = 2− 6. The
spherical harmonic coefficients am,0 were chosen in accordance to the highest amplitude
of the coefficients found in turbulent flow deformation (presented later in section 4.3).
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The reference frame was selected so that we would follow the axisymmetric oscillations
of the liquid drop (i.e. θ is the angle respecting to the axisymmetric axis.). The temporal
evolution of the coefficients, as well as their initial shape, are given in figure 3.19.

In the simulation common results are observed. First the oscillatory behaviour is
clearly seen. The amplitude reduces in time as expected by the theory. Second, it is notice-
able that the droplet tends to spend more time in the prolate state for mode 2 as a known
non-linear effect (Trinh & Wang 1982). This can bee seen comparing the time spent on
positive (i.e. prolate) and negative (i.e. oblate) am,0 when considering even modes (i.e.
2, 4, 6). For mode 2 oscillations, it is computed that the droplet spends 56.75% of the total
time in prolate state. This phenomenon has been analysed in detail in the works of Foote
(1973), Basaran (1992), Meradji et al. (2001), Zrnić et al. (2022) and discussed in section
3.4.1. For modes 4 and 6, the oscillations appear to be more periodic, not having such a
difference when comparing prolate to oblate state. Finally, even if only a pure mode is
initially perturbed, a coupling between modes is observed. That is particularly seen for
even modes (see figures 3.19a, 3.19c, 3.19e) as suggested by Foote (1973) and Alonso
(1974). The coupling between orders seems negligible in all the cases, except order l = 4
that appears for modes m = 4 − 6. Indeed, this order is aligned with the Cartesian grid,
and thus numerical approximations affect this order.

The frequency and damping of each simulation are given in table 3.1. The values of ωm
and βm were computed by using a Levenberg-Marquardt fitting algorithm. The covariance
of the fitted results was below 0.5% for all cases. As predicted by the theory, (Lamb 1881,
Prosperetti 1977), these values increase with the degree. In other words, the deformations
with smaller amplitude have larger frequency and are dissipated faster. The computed
values differ from the theoretical predictions. This is due to different considerations.
First, the selected mesh resolution has been chosen to fit the simulations of the numerical
database of droplets in turbulence presented in section 4.2.1. Second, the droplet is not
in an infinite domain, since the domain is considered as tri-periodic as in the database.
Finally, the theory is done for small perturbations (i.e. am,l << R0), assumption that is
not verified in the current simulations.

Mode 2 3 4 5 6
ω β ω β ω β ω β ω β

Inviscid case 1.00 0.0106 1.890 0.0297 2.89 0.057 3.99 0.0933 5.19 0.138
Eq. 3.29 0.959 0.0441 1.81 0.0849 2.76 0.135 3.81 0.195 4.95 0.264
Individual mode (figure. 3.19) 0.738 0.0841 1.861 0.214 2.544 0.288 3.70 0.374 4.79 0.440

Table 3.1: Summary of frequencies ω and damping ratio β normalized by ω20.

3.6 Conclusion
This chapter provides the mathematical development of the linear shape oscillations of
a Newtonian droplet or bubble immersed in a Newtonian surrounding fluid and extends
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the existing literature by providing the equations to solve the general case. This has been
accompanied by a direct numerical simulation of the studied case considering different
Ohnesorge numbers as well as different density and viscosity ratios (ρr, µr).

The analytical solution of the dispersion relation is obtained and validated against
the existing literature on the limiting cases of drops and bubbles. DNS of droplets with
different Ohnesorge numbers and density/viscosity ratios are performed and validated
against the developed linear theory. It is shown that the linear theory is good at predicting
the evolution of the excited mode when considering small amplitude deformations (η0 <
0.4), with good agreement with both initialization methods. It is also shown that the use of
the initial velocity field obtained by the linear theory is of great importance in the analysis
of the coupling between the different deformation modes since the results differ not only
in amplitude but also in frequency.

The use of direct numerical simulation to analyse the present problem allows us to
evaluate the energy in the system and compare it with the linear theory. The results show
the expected damping influence of the surrounding fluid, as well as the increasing damp-
ing rate with increasing mode m and initial deformation η0. For the cases in which the
surrounding fluid has strong dynamic effects, the simulations need to be improved, as the
kinetic energy of the ambient fluid is not fully captured.

When considering the effects of the viscosity present in both the continuous and dis-
persed phase and the high-amplitude deformation observed for droplets in turbulence (see
chapter 4), non-linear behaviour of the drop oscillations is expected. Hence, in section 3.5
the coupling between modes as a non-linear effect is studied, with the biggest takeaways
that: when considering small amplitude deformations (η0 ≥ 0.05), isolating the oscilla-
tory motion of each present mode shows that the individual modes are in agreement with
the linear theory. When the modes are aligned (same axis of symmetry), increasing their
initial amplitudes promotes the coupling between them. When they are not aligned (dif-
ferent axes of symmetry), even when increasing the initial amplitude of each mode will
result in each one acting independently and in agreement with the linear theory.

Even though the results obtained show the capacity of the linear theory, this work
could be improved by further developing the analytical work and determining the non-
linear flow characteristics akin to the works of Zrnić et al. (2022), Smuda et al. (2024).
Nonetheless, the results present in this chapter serve as groundwork for the analysis of the
deformation and oscillations of droplets in turbulence explored in chapter 4.
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Figure 3.19: On the left: Oscillations of a droplet initialized with a spherical harmonic
mode coefficient m=2-6. (a) a2,0 = 0.36R0 (b) a3,0 = 0.035R0 (c) a4,0 = 0.1R0 (d)
a5,0 = 0.04R0 (e) a6,0 = 0.016R0. On the right: Droplet shape at t = 0.

59



Chapter 4

Droplets in turbulence

4.1 Introduction
Droplet deformation and breakup are critical phenomena in the atomization process due to
their impact on the final droplet size distribution. The deformation dynamics and potential
breakup of a droplet primarily depend on the surrounding fluid’s ability to deform the
droplet in opposition to surface tension forces.

In turbulence, the range of eddy sizes is characterized by different turbulent scales.
The largest eddies correspond to the integral length scale, where energy is injected into
the system. As energy cascades down to smaller scales, it reaches the Kolmogorov
scale, where viscous forces dominate and dissipate energy as heat. The interaction be-
tween droplets and turbulence can thus be influenced by these scales, affecting the droplet
breakup dynamics (Kolmogorov 1941). The Kolmogorov-Hinze theory provides a frame-
work for understanding the breakup of droplets in turbulent flows. It suggests that breakup
occurs when the turbulent stresses at the Kolmogorov scale exceed the cohesive forces of
surface tension.

A common assumption in various models is the existence of a critical Weber number
(the ratio between turbulent and surface tension forces) for breakup. However, this crite-
rion is not universally applicable, as it does not apply to cases where the residence time
of the drop is significantly longer than the period of its shape oscillations (Risso 2000).
Many researchers have attributed droplet breakup in turbulence to their free oscillations,
particularly at low turbulence levels, as a result of a resonant mechanism. This has been
evidenced by studies such as those conducted by Sevik & Park (1973), Risso & Fabre
(1998), Lalanne et al. (2019).

Direct numerical simulation (DNS) has been extensively used to study droplet/bubble-
turbulence interactions, from seminal works to more recent studies (Qian et al. 2006,
Perlekar et al. 2012, Perrard et al. 2021, Vela-Martı́n & Avila 2022). Different numeri-
cal approaches have been employed, such as Volume of Fluid (VoF), Levelset, coupled
Levelset and Volume of Fluid (CLSVOF), and Lattice-Boltzmann methods (Kékesi et al.
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2014, Perrard et al. 2021, Trontin et al. 2010, Shao et al. 2018, Duret et al. 2018, Perlekar
et al. 2012, Montessori et al. 2021).

Following the study of Newtonian drops’ oscillations in a Newtonian surrounding
fluid depicted in the previous chapter, we aim to generalize the classical linear theory to
account for more complex geometries that better represent realistic droplets by introduc-
ing spherical harmonics, thus tracing oscillations in both azimuthal and polar directions.

This study is motivated by previous literature using spherical harmonic decomposition
to describe deformed surfaces. The study of a liquid globe oscillating in a resting fluid
introduced mode oscillation studies (Chandrasekhar 1959, Miller & Scriven 1968). Later,
damping isolating the spherical harmonic coefficient for mode 2 was investigated, and the
signature of deformation modes to infer bubble dynamics in turbulent flow was presented
(Prosperetti 1980a, Risso & Fabre 1998). The development of a similar framework to
describe bubble deformation has also motivated this work (Perrard et al. 2021).

The utility of the present framework comes from its ability to isolate each mode and
describe the droplet’s oscillation frequency as an ensemble of the different mode frequen-
cies since we can monitor oscillations in all directions. This framework is applied to a se-
ries of independent droplets immersed in a turbulent background flow generated by direct
numerical simulation of the Navier-Stokes equations. The in-house code Archer is chosen
for its capability to reproduce Lamb theory oscillations and its level-set implicit descrip-
tion that allows accurate computation of spherical harmonic coefficients (Aniszewski et al.
2014, Cordesse et al. 2020).

In the following work, carrier and dispersed phases with similar density and viscos-
ity are considered, representing a specific case between droplets and bubbles. No mass
exchange or mixing between the fluids is considered. Additionally, DNS of individual
deformation modes in a fluid initially at rest, with amplitudes comparable to turbulent
mode oscillations, has been performed to compare their frequencies with those obtained
from studies under turbulence effects. The results show good agreement with both exper-
imental and numerical literature, particularly exhibiting mode 2 deformation dominance
throughout the droplet lifetime and strong coupling between even modes (i.e., 2, 4, 6). The
study confirms that the oscillator is driven by capillary forces through the decay following
high-amplitude deformations in both turbulent and quiescent flows.

The contents presented in this chapter have been published in the context of this PhD
work (Roa et al. 2023b).

4.2 Droplet database

4.2.1 Generation of the database

The methodology employed to generate droplet breakup under turbulent flow was initially
presented in Chen et al. (2019) and Chéron et al. (2019). Here, the methodology is used to
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create a database of droplets evolving under turbulent conditions. This database is created
by performing multiple realizations of the same physical configuration, with the viscous
and density ratios, as well as the turbulent Reynolds and Weber numbers, kept constant.
The overall procedure is illustrated in figure 4.1. Each realization involves three steps:

1. Generation of Turbulent Background: A single-phase turbulent flow is gener-
ated and sustained in a tri-periodic domain by continuously forcing the energy to
a desired level using the linear forcing method described by Rosales & Meneveau
(2005). This method has been utilized in our research group for a decade (Duret
et al. 2012, Martinez et al. 2023). The turbulent flow is maintained for several
eddy-turnover times to develop a fully developed, homogeneous, isotropic turbu-
lence.

2. Introduction of Solid Particle: A fixed solid spherical particle is introduced into
the computational domain. The no-slip velocity condition on the particle’s surface
is enforced using the immersed boundary method (Chéron 2020).

3. Replacement with a Droplet: Once the turbulent flow is statistically steady and
the no-slip boundary condition is accurately enforced, the solid particle is replaced
by a freely moving spherical droplet of the same radius, following the methodology
described by Chéron et al. (2023) and Deberne et al. (2024).

The simulations continue until droplet breakup is detected. Long simulation durations
are feasible because there is no mass loss, allowing for multiple realizations at a limited
numerical cost.

The simulation timeline includes the following details: every five eddy-turnover times,
the single-phase velocity and pressure fields are recorded (step 1). For each single-phase
snapshot, nine different simulations are conducted, each with the solid particle fixed at a
different position within the computational domain. Every half eddy-turnover time, the
flow field is saved (step 2). A two-phase flow simulation is then initiated for each snapshot
from step 2, with the two-phase flow data saved 25 times per eddy-turnover time (step 3).

This approach ensures that the initial turbulent condition does not disturb the droplet’s
surface. The impact of this methodology for initializing flow conditions compared to a
setup where the droplet is instantly introduced into a turbulent flow (Crialesi-Esposito
et al. 2023, Vela-Martı́n & Avila 2022, Håkansson et al. 2022b, Håkansson & Brandt
2022a), on the droplet shape’s temporal evolution can be seen in detail in Deberne et al.
(2024). The chosen strategy to initialize DNS of single droplets in turbulent flow influ-
ences the initial growth of shape deformation, avoiding the initial surface corrugations
noted by Crialesi-Esposito et al. (2023) and Komrakova et al. (2015). For bubbles, the
velocity can be set to zero inside the bubble (Riviere et al. 2021, Perrard et al. 2021);
however, this approach is unsuitable for this study due to the non-negligible volume frac-
tion and density of the disperse phase. Out of 260 breakup events, 68 cases were excluded
due to degeneration, resulting in a database of 192 realizations.
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Figure 4.1: Droplet database numerical procedure (Source: Deberne et al. (2024)).

This database, or portions of it, has been used in previous studies on the transformation
criteria for Lagrangian–Eulerian hybrid methods Chéron et al. (2019), the investigation
of 2D projection on shape parameters Chéron et al. (2022), and the analysis of droplet
oscillations Roa et al. (2023a). A complete analysis of the generated database can be
found in the work of Deberne et al. (2024).

4.2.2 Physical and numerical parameters
The numerical simulation was performed over a 643 grid, providing a sufficient resolution
to capture the interactions between the droplets and the surrounding turbulent flow. A ratio
between the droplet radius R0 and domain size L of R0/L = 0.233. The droplet diameter
is fixed at D = 30δx, where δx represents the Eulerian fluid mesh size, as determined
from a previous study Chéron et al. (2019). This configuration is chosen with the aim of
carrying out numerous realizations in order to generate a large database. However, this
numerical setup can produce non-isolated droplets that can interact with each other across
the periodic domain. A total of 68 such cases were identified and subsequently removed
from the database, as mentioned previously. A second drawback of the confined domain
is that the turbulence does not fully develop (see figure 4.2). The size of the computational

63



CHAPTER 4 – DROPLETS IN TURBULENCE

domain must be sufficiently large to capture all relevant turbulent scales. If the domain is
too small, it might still impose artificial constraints on the turbulence development. This
leads to another limitation: a finer Eulerian fluid mesh is required to effectively distinguish
between the Kolmogorov and integral length scales (Pope 2001, Equation 9.7). Given the
limited domain size and resolution of the droplets of the database leads to such differences
from the Kolmogorov theory.

The study specifically considered liquid-liquid interactions without any mixing or
mass exchange between the two liquids. This assumption simplifies the analysis by fo-
cusing solely on the dynamic interactions and behaviours of the droplets within the tur-
bulent flow. The Weber number, defined as We = ρ1u′22R0

σ
remained constant across

all droplets from the database (We = 0.9). Here, the Weber number is proportional
to the square of the ratio between the capillary time tc =

√
ρ1R3

0/σ, and the turbu-
lent time

(
tt = 2R0

u′

)
. For this choice of Weber number, it is possible to determine the

maximum droplet diameter that does not undergo breakup by calculating the Hinze scale(
DH = 0.725(ρ2/σ)−3/5ε−2/5

)
(Hinze 1955, Perlekar et al. 2012), which is equal toDH =

1.2R0. When the Weber number is below the critical value, simulations take too long to
reach droplet breakup. On the other hand, when the Weber number is above the criti-
cal level, the droplets break during the initial deformation stage (Vela-Martı́n and Avila,
2022). However, at the chosen surface tension, the turbulent and capillary timescales are
of the same order of magnitude. The balance between inertial forces and surface tension
forces is ensured to remain the same in each simulation, making it difficult to distinguish
between interfacial and turbulence-driven phenomena. This allows for a more straightfor-
ward comparison of how droplets behave in different turbulent conditions without varying
the fundamental physical forces acting on them. The breakup times of these droplets vary
in the range between tbreak = 9.09tc and tbreak = 376tc.

The viscosity ratio (µ1/µ2) and the density ratio (ρ1/ρ2) are both set to 1. This deci-
sion was made to isolate and focus on the interactions between the fluid interface and the
surrounding turbulence without the additional complexities introduced by differing fluid
properties. When the density and viscosity are matched, it simplifies the computational
model and allows for a clearer understanding of how turbulence interacts with and influ-
ences the behaviour of the interface (Perlekar et al. 2012). Furthermore, the turbulence
forcing can introduce additional challenges, especially when the density ratio between the
phases is significant (Shao et al. 2018). By setting both the viscosity and density ratios to
unity, we eliminate these complications and ensure that the effects observed are primarily
due to the turbulence-interface interactions, rather than disparities in fluid properties. In
order to directly compare the results presented in this section with the ones present in 3,
the Ohnesorge number, obtained from the previously mentioned physical parameters, is
Oh = 0.00465 . This parameter choice is crucial for accurately capturing the breakup
behaviour of the droplets and understanding the underlying physics driving the process.
To sustain the turbulent flow in a physical space-based code, a linear forcing has been
applied. While the flow is statistically stationary and equivalent across various resolu-
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tions, each realization exhibits unique differences due to the inherent chaotic nature of
the flow and the applied forcing. The linear forcing consist in introducing a volume force
in the Navier-Stokes equation (2.2) proportional to the velocity fluctuations, expressed
as ~f = A~u′. Here, ~u′ = ~u − 〈~u〉 is computed at the end of the prediction step and
the parameter A is updated each time step in order to obtain a target total energy level.
Due to limitations in computational resources, the present simulations are conducted at a
fixed turbulent Reynolds number, Reλ = ρlu′λ

µl
' 45, where λ is the Taylor length scale(

λ =
√

15µ2u′2

ρ2ε

)
and ε is the average dissipation rate. The impact of the forcing scheme

is currently under study (Aniszewski & Brändle de Motta 2022) and will be presented
in a future communication. Different forcing methods are also planned to expand on
the current understanding of the turbulent forcing in the drop deformation and breakup
dynamics.

In a homogeneous and isotropic turbulent flow, the velocity fluctuations at the droplet
scale can be related to the mean dissipation rate of energy, ε (Kolmogorov 1941) in the
inertial range. Figure 4.2 displays the velocity fluctuations (the mean-square velocity in-
crement) 〈δu′2(d)〉 as a function of distance d from one of the single-phase simulations.
This computation is done using the in-house post-processing tool PyArcher. More specif-
ically using an updated version of the subroutine presented in the work of Thiesset et al.
(2020). The Kolmogorov theory’s prediction for this quantity in the inertial sub-range(
C(εd)2/3

)
is also presented, with C a constant in the range C ∈ [2, 2.2] (Pope 2001). In

the present work the value of the constant C = 2, following the work of Risso & Fabre
(1998). A significant difference between the Kolmogorov theory and the computed val-
ues is evident, particularly for smaller values of the separation, d. This difference suggests
that the energy spectrum in the simulations declines more rapidly than in the inertial sub-
range of high Reynolds number turbulence, indicating a faster energy dissipation rate in
the simulated turbulence.

4.2.3 Decomposition of droplets immersed in a turbulent background
flow

The spherical harmonic coefficients are dependent on the reference frame of the system.
This means that the results from the expansion are directly affected by the centre of the
coordinate system and the reference frame in which we define the angles θ and ϕ. Due
to the dynamic nature of the surrounding fluid in this study, the droplet is expected to
undergo both translation and rotation, rather than remaining static. To address this, we
have adopted an origin at the centre of mass of the droplet as our reference point, with a
coordinate frame aligned to the Cartesian mesh, except for the specific analyses conducted
in a section 4.4. This approach ensures that our reference frame is appropriately positioned
to capture the droplet’s motion and deformation accurately, providing a consistent basis
for the analysis.
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Figure 4.2: Predictions of the Kolmogorov theory for 〈δu′2(d)〉 compared with the com-
puted values of a single droplet of the database.

In the implemented approach, the numerical error associated with computing the ra-
dius R(θ, ϕ) is rigorously controlled, with a maximum error of less than 0.1%. Similarly,
for computing the coefficients am,l, the numerical error is kept below 0.2% for m ≤ 6.
These error tolerances ensure the accuracy and reliability of the spherical harmonic ex-
pansion framework utilized in this study. A detailed overview of the spherical harmonic
expansion framework applied here has been done as part of this research (Roa et al. 2023a)
and presented in section 2.3.2.

In the studied case, the computation of spherical harmonic modes is limited to m ≤ 6,
as we observe a rapid decrease of the amplitude of the coefficient am,l with increasing m.
Since we aim to use this framework to characterize the deformation on the droplet surface
we are interested in reducing as much as possible the effect of mode 1 (a1,l ≈ 0), which
primarily describes the translatory motion of the droplet. To ensure robust characterization
of surface deformations, the centre of mass was chosen as the reference point in space
after evaluating various approaches (Roa et al. 2023a). For the results shown here, 90% of
the computed mode 1 coefficients are below 0.05, indicating a predominantly negligible
influence of translational motion on the overall droplet deformation. It is important to
note that exceptions to this observation may arise under conditions of high-amplitude
deformation experienced by the droplet.
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4.3 Oscillations of droplets immersed in a turbulent flow
We investigate the oscillations by computing the coefficients am,l for each droplet of the
database in order to correlate their oscillations with deformation. Since the frequency of
each coefficient am,l for the same m are homologous, we make use of the power spectrum
coefficient a2

m (Eq. 2.14), which corresponds to the surface energy contained in each mode
m (Perrard et al. 2021). The evolution of am =

√
a2
m as a function of the dimensionless

time tf2 for a single droplet is shown in figures 4.3 and 4.4, with f2 the natural frequency
of mode 2. For the studied cases presented in this work 1/f2 = 3tc, obtained from
equation 3.29. The choice of plotting am instead of a2

m is done to highlight the coupling
between modes. Figure 4.3 shows the total deformation ζΩ as a function of time, alongside
the amplitude of the mode 2 oscillations a2, both normalized by the initial radius for a
single droplet from the numerical database. We can observe a dominance of mode m = 2
in the surface energy deformation. The strong correlation between the two curves supports
the literature’s assertion that mode 2 plays a crucial role in the deformation dynamics
of bubbles (Risso & Fabre 1998, Ravelet et al. 2011, Perrard et al. 2021). The total
deformation ζΩ tends to have slightly higher peaks than the mode 2 amplitude (a2). This
difference can be attributed to contributions from higher-order modes or other dynamic
effects not captured solely by mode 2.
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Figure 4.3: Total deformation ζΩ as a function of time, together with the amplitude of the
mode 2 oscillations a2.

In practice, a sum over the first six modes (m = 2, 3, 4, 5, 6) can estimate the amplitude
deformation ζΩ with less than 0.5% error (refer to figure 2.6). This finding confirms the
predominance of the first few modes of oscillation and validates the spherical harmonic
decomposition approach. By accurately capturing the deformation dynamics with only a
limited number of modes, this method effectively demonstrates that higher-order modes
contribute minimally to the overall deformation when ζΩ remains within the specified
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range. This approach not only simplifies the analysis but also underscores the significant
role of the primary modes in describing the deformation behaviour of droplets. Figure 4.3
shows the temporal evolution of am for the first few spherical harmonics m ∈ [1, 6] for a
single run of the numerical database. The amplitude of the coefficient a1 is close to zero
for most of the duration of the droplet’s run due to the choice of the centre of the reference
frame, except when we observe high amplitude deformations (e.g. t/tc = 11.35). In
these extreme cases, the droplet becomes highly elongated with a complex geometry. To
a lesser extent, the mode m = 4 also contributes to the global deformation and seems to
be coupled with the mode m = 2 deformations. Considering the first peak at tf2 = 5, the
total amount of energy stored at mode m = 2 is equivalent to 10% of the surface energy
of a perfect sphere, while the same quantity for mode m = 4 does not reach 0.5%. The
coefficients a2,l are also shown in figure 4.4. The coefficients am,l are directly dependent
on the reference frame. If a different initial reference frame had been chosen, different
values for the coefficients am,l would have been observed. However, a clear oscillation
pattern is observed for each mode, and it is worth noting that the amplitude of all the
exposed coefficients are akin. The same behaviour can be observed in the other modes,
but with smaller amplitudes.

Due to the difficulty to extract a pure frequency from the amplitude coefficients am,l,
the angular frequency of each couple (m, l) was obtained by computing the average os-
cillation period defined as the peak-to-peak interval time. The statistics were computed
for tf2 > 6, where the statistically converged regime is reached (see section 4.3.1). The
frequency observed for each mode is of the same order of magnitude as one for pure-
deformed oscillations. This result broadens the conclusions of Risso & Fabre (1998),
which shows for bubble in turbulence experiments that the power spectrum of the pro-
jected area is dominated by the natural frequencies of modes 2 and 4. These two frequen-
cies appear here for the coefficient corresponding to modes 2 and 4 respectively. This
proves that, as expected, the oscillatory frequency is related to the shape deformation
given by the same mode. In addition, our results show that all the modes are concerned
by these natural oscillations, not only even modes.

The shift between the computed frequency and the natural one is not clear: for mode
2 we observe an increase in the frequency while for mode 6 we observe a decrease. The
origin of these differences is difficult to identify here, but it could be due to the coupling
of the interface with the turbulence and the coupling between modes. The seminal work of
Kang & Leal (1988) on bubbles provides an initial insight into this problem. Nevertheless,
the extension of this theoretical analysis to the liquid-liquid case is out of the scope of this
work. Another way to understand the differences in frequency shifts between modes is
to consider the characteristic length scales associated with each mode. Mode 2 has a
characteristic length scale close to the radius of the droplet, which in our case, is similar
to the inertial length scale. In contrast, mode 6 has a smaller characteristic length scale,
closer to the Kolmogorov length scale. This can be seen in figure 4.2. As a result, the
level of turbulence experienced and captured by each mode is different.

68



CHAPTER 4 – DROPLETS IN TURBULENCE

0.0

0.1

0.2

0.3

0.4

a m
/R

0

a1
a2

a3
a4

a5
a6

0.2

0.0

0.2

a 2
,l/

R 0

a2, 0 a2, 1 a2, 2 a2, 1 a2, 2

0.05

0.00

0.05

a 3
,l/

R 0

a3, 0 a3, 1 a3, 2 a3, 3 a3, 1 a3, 2 a3, 3

0.10

0.05

0.00

0.05

a 4
,l/

R 0

a4, 0
a4, 1

a4, 2
a4, 3

a4, 4
a4, 1

a4, 2
a4, 3

a4, 4

0.04

0.02

0.00

0.02

0.04

a 5
,l/

R 0

a5, 0
a5, 1

a5, 2
a5, 3

a5, 4
a5, 5

a5, 1
a5, 2

a5, 3
a5, 4

a5, 5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
t/tc

0.02

0.00

0.02

0.04

0.06

a 6
,l/

R 0

a6, 0
a6, 1

a6, 2
a6, 3

a6, 4
a6, 5

a6, 6
a6, 1

a6, 2
a6, 3

a6, 4
a6, 5

a6, 6

0 5 10 15 20 25
tf2

Figure 4.4: Top image shows the Power spectrum of the spherical harmonic decompo-
sition for modes m = 1 to m = 6 as a function of the dimensionless time t/tc of the
same droplet as figure 4.3. Below, the oscillations of coefficients am,l as a function of the
dimensionless time t/tc of one droplet from the database for l = −m to l = m are shown.

To gain a deeper understanding of how turbulence impacts the frequency at each scale,
future research should investigate the effects of varying turbulent Reynolds numbers and
different droplet sizes. Such studies could provide valuable insights into the differential
impact of turbulence on the frequency shifts observed in different modes.
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4.3.1 Initial-growth and saturation regime

We compute the ensemble-average deformation by analysing the entirety of the droplet
database. For each droplet we perform the spherical harmonic decomposition analysis
described above to obtain the spectrum values. In figure 4.6, we show the temporal evolu-
tion of the spectrum of some realizations as a function of the dimensionless time tf2. The
ensemble averages defined by αm(t) =

√
〈a2
m〉N are described by the black dashed lines.

The definition here differs from the definition of Perrard et al. (2021) who computes the
ensemble average as 〈am〉N . The choice to use αm(t) is motivated by the consideration
that the saturation level should be linked to the total surface area. It has been observed
that both expressions provide similar behaviour except for mode 6 where the strong short
deformations increase the averaged value with current definition. The computed values of
〈am〉N are not presented in this work.

A closer examination of the initial period after the droplet is released to evolve in the
background flow reveals an exponential growth for each mode. This growth differs from
what is observed by Perrard et al. (2021) who noted a linear growth during the initial time
of bubble evolution in a similar experiment as seen in figure 4.5. The difference can be
attributed to the different initialization routine. In their case, the bubble is initialized with
a turbulent flow, even at the interface, while in our experiment, the droplet velocity is zero
and a no-slip condition is ensured (Deberne et al. 2024). This could also be due to the fact
that their work is done in bubbles. Considering the high viscosity and density ratios in the
bubble case, the negligible dynamic effects of the fluid in the bubble could play a role in
the initial deformation regime.

For all the modes, we observe a first peak of the ensemble average, that seems to be
well repeatable and certainly related to the initial condition. The time to reach this peak
decreases with increasing mode number, indicating that higher modes react more quickly
to the initial disturbances. Following the initial exponential growth, each mode reaches a
saturation level after a certain period of time. The time required to reach this saturation
level decreases with increasing mode number. This implies that higher modes, which
correspond to smaller-scale deformations, equilibrate faster than lower modes. The faster
stabilization of higher modes can be attributed to the more rapid dissipation of smaller-
scale turbulence and interface instabilities.

The saturation level has been studied for modes 2-4 by Perrard et al. (2021) as seen
in figure 4.5. In the present work we compute this value for modes 2-6. The saturation
level here is the ensemble and time average over the 220 droplets and after tf2 > 6. The
obtained average, defined by αm,sat =

√
〈a2
mR0〉N ,tf2>6 for m = 2 − 6 are presented in

table 4.1.
It is worth noting that even considering different initialization routines and the differ-

ent physical properties of the cases studied (different We, µr and ρr), the saturation levels
for modes 2 and 3 are similar in amplitude, meaning that there is an intrinsic saturation
energy for each mode of deformation, regardless of the physical parameters. As expected,
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Figure 4.5: (a) Individual realizations of ζΩ at We = 3, as a function of the dimensionless
time t/tc in transparent colours. Ensemble average 〈ζΩ〉 of the surface deformation is
superimposed (black full symbols), together with the ensemble-average mode 2 amplitude
(red full symbol). (b) Coefficient a2 as a function of dimensionless time t/tc for We = 3
(individual realisations in transparent colours). Ensemble average 〈a2〉 is superimposed
(full red symbol). (c) Coefficient a3 as a function of dimensionless time t/tc for We = 3
and the equivalent exponential fit (individual realisations are transparent colours and the
green full triangle is ensemble average 〈a3〉).Source: Perrard et al. (2021).

Mode m 2 3 4 5 6
This work (Roa et al. 2023b) 0.2130 0.0531 0.0581 0.0260 0.0208

Perrard et al. (2021) 0.18 0.0604 - - -

Table 4.1: Saturation level as the ensemble and time average over the 220 droplets of the
database.
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Figure 4.6: (a) Evolution of the deformation for each individual spherical harmonic mode
coefficient am as a function of the dimensionless time t/tc and tf2 (individual realizations
from the database in solid lines) with its respective ensemble average αm (dashed line) for
We = 0.9. (b) Close up of the initial growth regime.

the saturation level decreases as the mode increases. That is due to two main phenomena.
First, the natural damping rate increases with the mode (3.33), and thus, the deformations
related to large modes reduce faster. Secondly, as the mode increases, the characteristic
length decreases, leading to a reduction in the turbulent energy captured by this mode (see
figure 4.2). The interplay between these phenomena and the scaling of the saturation level
remain unclear and warrant further investigation. In particular, the difference between odd
and even modes should be established. Future work, with different Weber and turbulent
Reynolds numbers will be really helpful in this direction. After the analysis of regular
oscillations we consider now the study of large deformations.

4.4 Large deformations and damping factor

We have seen that droplet oscillations in a turbulent flow result in a series of non ax-
isymmetric oscillations which are difficult to characterize with the linear-stability theory.
Large deformation events can be relaxed or can lead to breakup as suggested by the model
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presented in the works of Risso (2000), Lalanne et al. (2019) which provides a maxi-
mum deformation threshold. In the following, we analyse the oscillations following a
high-amplitude deformation. In order to bring out axisymmetry as much as possible, we
rotate the reference frame in which the spherical harmonics were computed to one that
maximizes the amplitude of coefficient a2,0. A minimization Broyden-Fletcher-Goldfarb-
Shanno algorithm is used to find the two Euler angles that maximize a2,0. The correspond-
ing reference frame is often close to the inertial tensor of the droplet (see section 2.21 and
(Lalanne 2012, Chapter 5)) that is here used as initial condition for the minimization al-
gorithm.

As seen in figure 4.4, the studied droplets reach high-amplitude deformation several
times during their lifetime. A total of 694 of these instances were chosen under the criteria
that they have a coefficient a2(tpeak) > 0.3R0 and do not experience breakup within the
4tf2 following this deformation event. The threshold criterion was chosen to be 1.5 α2,sat,
and is close to the breakup limit proposed by Lalanne et al. (2019), a threshold further
substantiated in the current database (Deberne et al. 2024). In other words, these large
deformations are often followed by breakup. Figure 4.7, illustrates the temporal evolution
of the deformation coefficient am,0 following a high-amplitude deformation for individual
droplet realizations, alongside the ensemble-average behaviour of the selected droplets.

Initially, the temporal evolution of coefficient a2,0 offers insights into the overall de-
formation evolution. A rapid increase of the am,0 coefficients for m = [2, 4] is followed
by a contraction back to the previous mean level. In the case of mode 2 oscillations, when
aligned with maximum deformation, the fluctuations between growth and decay exhibit a
timescale related to f2. This decay phenomenon, akin to the observations of Ravelet et al.
(2011), can be directly associated with the natural damping rate of the droplet.

The interplay between even modes becomes apparent upon further analysis. First, it
is clearly seen that these high-deformation droplets have also an a4,0 component. In other
words, the orientation of modes 2 and 4 deformations are aligned. The alignment of the
deformation between modes 4 and 2 has been verified by plotting the different orders.
Furthermore, the increase in coefficient a6,0 is noteworthy, indicating a potential energy
recovery mechanism compensating for the relaxation observed in modes 2 and 4. For
modes 3 and 5 there is no clear evolution.

In order to confirm that the physics after a high-amplitude deformation is related to the
capillary forces and not to the background flow, 3 different realizations are studied. Three
droplets are removed from the turbulent background flow at the moment of the highest
deformation, similarly to the work done by Håkansson et al. (2022b) in the research for
a breakup criterion. The first selected droplet is present in figure 4.7 (blue line), and its
shape at t− tpeak is shown in figure 4.8 (A). The same values are computed for two other
droplets (B and C) of the database. These droplets were selected considering an increasing
peak total deformation (ζΩ = 0.39, 0.47 and 0.52 respectively).

The reference frame is set as before using the maximization of a2,0. In figure 4.9(a)
the power spectrum evolution in time is given comparing the turbulent realization and the
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Figure 4.7: Evolution of the spherical harmonic coefficients am,0 following a high ampli-
tude deformation a2 > 0.3 (individual realizations from the database in solid lines) with
its respective ensemble average 〈am,0〉N (dashed line).
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Figure 4.8: Snapshots of three droplet from the database from their maximum deforma-
tion state. The amplitudes of this peak are total deformation (ζΩ = 0.39, 0.47 and 0.52
respectively.

initial quiescent flow case. The initial decaying is clearly similar in both cases, then, for
larger times, the turbulent case deviates from the perfect oscillator. In figures 4.9(b) and
4.9(c) the decomposition of modes 2 and 4 are given. The other modes are not given since
their amplitude is negligible here. It can be observed that the increasing peak deformation
of the droplets selected goes in hand with a clear formation of a neck (compare figures
4.8A to figure 4.8C). Nonetheless, a critical deformation state is not reached, which is
proven by the fact that in the three observed cases the drop returns to a spherical state when
removing the velocity field. Finally, the same conclusion can be drawn: the damping and
first oscillations after experiencing a large deformation are driven by the capillary forces.
This phenomenon can be observed in the three selected droplets.

The present droplet has a complex deformation and is not composed of an excitation
of a single mode. Thus, the coupling between modes can explain the differences observed
between Figs. 4.9(b)-4.9(c). The droplet, which is shown to undergo a high-amplitude
mode 2 deformation, spends a slightly larger part of each period in prolate state (59.15%
of the total time). This phenomenon is in accordance to the non-linear theory (Foote
1973, Zrnić et al. 2022) and observed in the results obtained for viscous drops in chapter
3. Due to the length of the first oscillation observed for mode 4 (figure 4.9(c)), the curve
fit was computed from the a4,0 amplitude after its first period. The main difference when
comparing the pure mode deformation with the complex shape here is on the mode 4
damping rate. This difference can be understood by looking at figure 4.9(c). It is clearly
seen that, in contrast to mode 2, mode 4 deformation is not perfectly aligned with the
reference frame (a4,2 and a4,−1 are not negligible). Thus, the coupling between orders l
plays an important role and the damping can not be evaluated only from the time evolution
of coefficient a4,0.

75



CHAPTER 4 – DROPLETS IN TURBULENCE

0.0

0.1

0.2

0.3

a m
/R

0

a1
a2
a3

a4
a5
a6

turbulent flow
quiescent flow

0.4

0.2

0.0

0.2

0.4

a 2
,l/

R 0

turbulent flow
quiescent flow
Linear theory

a2, 0
a2, 1
a2, 2

a2, 1
a2, 2

0 2 4 6 8 10
t/tc

0.05

0.00

0.05

0.10

a 4
,l/

R 0

turbulent flow
quiescent flow
Linear theory

a4, 0
a4, 1
a4, 2

a4, 3
a4, 4

a4, 1
a4, 2

a4, 3
a4, 4

0 1 2 3 4 5 6
tf2

Figure 4.9: Oscillations of droplet A from its maximum deformation state ζΩ = 0.39. (a)
t− tpeak spectrum coefficients am as a function of the dimensionless time tf2 of a realiza-
tion transferred into a quiescent flow. (b) Evolution of the spherical harmonic coefficients
a2,l after rotating the reference frame to maximize coefficient a2,0. (c) Evolution of the
spherical harmonic coefficients a4,l in the same reference frame.
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Figure 4.10: Oscillations of droplet B from its maximum deformation state ζΩ = 0.47. (a)
t− tpeak spectrum coefficients am as a function of the dimensionless time tf2 of a realiza-
tion transferred into a quiescent flow. (b) Evolution of the spherical harmonic coefficients
a2,l after rotating the reference frame to maximize coefficient a2,0. (c) Evolution of the
spherical harmonic coefficients a4,l in the same reference frame.
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Figure 4.11: Oscillations of droplet C from its maximum deformation state ζΩ = 0.52. (a)
t− tpeak spectrum coefficients am as a function of the dimensionless time tf2 of a realiza-
tion transferred into a quiescent flow. (b) Evolution of the spherical harmonic coefficients
a2,l after rotating the reference frame to maximize coefficient a2,0. (c) Evolution of the
spherical harmonic coefficients a4,l in the same reference frame.
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Mode 2 3 4 5 6
ω β ω β ω β ω β ω β

Eq. & Eq. 1.00 0.0106 1.890 0.0297 2.89 0.057 3.99 0.0933 5.19 0.138
Eq. 3.29 0.959 0.0441 1.81 0.0849 2.76 0.135 3.81 0.195 4.95 0.264
Individual modes (sect. 3.5.2) 0.738 0.0841 1.861 0.214 2.544 0.288 3.70 0.374 4.79 0.440
Turbulent flow (sect. 4.3) 1.11 - 1.96 - 2.29 - 2.88 - 3.34 -
Quiescent-flow A (sect. 4.4, fig 4.9) 0.853 0.107 - - 1.76 0.336 - - - -
Quiescent-flow B (sect. 4.4, fig 4.10) 0.699 0.130 - - - - - - - -
Quiescent-flow C (sect. 4.4, fig 4.11) 0.759 0.123 - - - - - - - -

Table 4.2: Summary of frequencies ω and damping ratio β normalized by ω20.

4.5 Conclusion

A droplet database generated by direct numerical simulation was used to characterize the
oscillations of droplets. A framework for droplet deformation using a spherical harmonic
decomposition of the droplet surface has been presented.

Droplets immersed in a turbulent background flow are studied. The present work
is based on a database that is still being extended for different purposes, in particular
to investigate the droplet breakup and the turbulent/interface interactions. This database
considers many realizations with similar dimensionless numbers.

It is demonstrated that mode 2 is the dominant mode of deformation in a droplet under-
going turbulence-driven deformation. Oscillations of each spherical harmonic coefficient
are observed, with a frequency that is close to the theoretical frequency obtained from
the linear theory (Chapter 3). These observations extend the existing literature, which has
focused solely on the turbulence coupling with mode 2. The total deformation is analysed
using the power spectrum. The ensemble average of the power spectrum, which can be
considered the energy stored at the interface for each mode, reaches a statistically con-
verged level. This saturation level is related to the droplet’s natural damping rate and
the turbulent cascade. The scaling of this saturation level has not yet been established.
Finally, a study of high-amplitude deformations is performed. The spherical harmonics
reference frame is aligned with large deformation axis maximizing the a2,0 coefficient.
For these deformations, the coupling between even modes is observed. The droplet re-
laxation is related to capillary forces, as shown by the simulation of the same droplet but
without any initial velocity field. The damping rate is similar to the one obtained in the
single mode simulations.

Three main perspectives can be drawn and are being explored by different groups.
First, it has been demonstrated that the weakly viscous linear theory provides accurate
information on how droplets evolve. Extending existing theories allows for the answering
of two main questions: (i) how modes are coupled in the case of complex shape droplets;
and (ii) how singular eddies excite each mode, modifying the angular frequency oscil-
lations. This second point is currently underway of being explored by a future PhD of
group. Second, new simulations with different Weber and Reynolds should be performed
in order to provide a more detailed picture of how turbulence and the interface interact
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Figure 4.12: Loss of star shape constraint does not allow for the computation of the spher-
ical harmonic functions that describe the drop shape. The black dashed line corresponds
to the breakup event and the yellow dashed line to the time in which the star-shape con-
straint is lost. On the right the isocontour of the droplet at its centre for the last 5 iterations
before the loss of the star shape constraint.

at each length scale. This is the most straightforward approach to understanding how the
saturation level for each mode power spectrum scales with turbulence. Furthermore, ex-
tending the present work to encompass droplets in a gaseous environment and bubbles in
a liquid, both numerically and experimentally, promises to enhance our understanding of
turbulence-interface interactions.

The implementation of spherical harmonics to describe the shape oscillations of droplets
in turbulence proves useful to relate the drop oscillations with the existing linear theory
and to quantify the energy stored by each mode. This allows us to relate the dissipation
of the dispersed phase kinetic energy into the drop internal energy. Due to the condition
of the star-shape domain to compute the spherical harmonic decomposition, this analysis
is not extendible to near-breakup droplets as seen in figure 4.12. When approaching the
breakup stage, the ligament or neck connecting the two principal lobes appearing dur-
ing the breakup process begins to thin. At a given moment, the conditions restricting
the decomposition in spherical harmonics of the droplet shape do not allow for further
computing. Due to this fact, is necessary to introduce other approaches to describe the
interface at the latter stages of the drop lifetime. In chapter 5 the near-breakup part of the
droplets lifetime will be investigated.
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Chapter 5

Multiscale analysis

5.1 Introduction
Turbulence is one of the most important mechanisms by which breakup of droplets can
be achieved. In particular, when analysing the complex geometries near pinch-off, the
classical shape parameters, such as averaged curvature and aspect ratio, are not suffi-
cient to define a critically deformed state Håkansson et al. (2022b), Deberne et al. (2024).
Throughout the droplet deformation, perturbations of different origin favour the growth
of liquid structures of different sizes and shapes. Notably, regions exhibiting contrac-
tion (bottle-necks) and accumulation (swelling) patterns may indicate potential breakup
events. The multiscale nature of these systems must be considered when describing mech-
anisms to accurately predict breakup events.

Throughout chapter 4, the deformation of droplets is characterized using the spheri-
cal harmonic decomposition framework. This analysis though, did not provide the shape
characteristics of the final moments of the droplet lifetime due to limitations in the de-
scription of the spherical harmonic functions. Hence, the need for a more comprehensive
analysis is necessary.

The present study uses a previously developed multiscale description tool (Dumouchel
et al. 2017, 2022) to investigate the behaviour of simulated drops in a turbulent environ-
ment from the database of droplets described in section 4.2.1. The multiscale framework
considers the liquid system as well as all systems parallel to it in the liquid phase. These
parallel systems refer to those that are obtained through successive erosion operations.
This consists of removing the liquid system region covered by a sphere of diameter d
dragged along the liquid-gas interface keeping the centre of the sphere on the interface
surface, providing a description of the droplet deformation at all the levels. The system is
described using the cumulative scale distribution E3(d), which corresponds to the liquid
volume lost after the scale d erosion operation, and its successive derivatives. At small
scales these quantities are equivalent to the Minkowski Functionals.

The scale distribution and successive derivatives report valuable information on the
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shape of the system. For instance, they inform on the presence of bottlenecks, flattening or
swelling. They also introduce specific characteristics such as the minimum and maximum
length scales whose temporal evolution is accessible. The objective of this work is to
investigate the breakup of drops submitted to a turbulent environment with the help of
these indicators. A critical deformation state is sought following the work of Håkansson
et al. (2022b).

5.2 The multiscale description
The multiscale analysis describes the liquid system by the cumulative scale function
En(d) where d is the scale of observation. The multiscale analysis was introduced to
characterize liquid sprays in the work of (Dumouchel & Grout 2009) and was success-
fully applied to describe the atomization process of liquid sheets produced by a triple-disk
nozzle. This function is obtained by applying successive erosion operations to the liquid
system. The multiscale description analysis considers the liquid system and all the par-
allel systems in the liquid phase. These parallel systems are obtained through successive
erosion operations in all possible scales until the totality of the initial system is eroded.
The erosion operation at scale d consists of removing the region of the liquid system that
is covered by a sphere (centred at the interface) of diameter d along the interface of the
initial system. This operation is represented in figure 5.1.

Figure 5.1: Erosion of the system with a spherical structuring element of diameter d. The
volume V (d) of the remaining part of the system is the grey surface delimited by the
dashed line.

In three-dimensions, the cumulative distribution of scales is given by

E3(d) = VT − V (d) (5.1)

Where VT is the total volume of the liquid system and V (d) the volume of the system
eroded at the scale d. The derivative on the scale d of the cumulative distribution En(d)
gives the distribution of scales en(d), meaning

∂En(d)

∂d
= en(d) where n = 2, 3 (5.2)
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The distribution of scales en(d) and its successive derivatives
(
∂en(d)
∂d

, ∂
2en(d)
∂d2

)
pro-

vide information of the morphology of the system. For 2D systems for example, ∂e2(d)
∂d

is proportional to the size distribution of elongated elements (ligaments) and the cumula-
tive size distribution of the contracted elements (spherical) that make up the shape of the
liquid flow (Dumouchel et al. 2017). The sensitivity of this derivative to the topology of
the liquid structures allows for the study of elongations and dilatations that characterize
the atomization process. The atomization mechanism is in fact a sort of competition be-
tween the elongation and contraction processes. The first one promoting the appearance
of ligament-like structures and the second one a dilatation zone as a potential precursor
of the droplet breakup. The multiscale analysis consequently appears to be relevant for
characterizing the breakup of droplets.

A previous study (Thiesset et al. 2019) demonstrated that the successive derivatives
of the volume function V (d), characteristic of the volume of the eroded systems repre-
sent the respective surface S(d) of the eroded system at the scale d, the area integrated
mean curvature H(d) and the area integrated Gaussian curvatures G(d). By virtue of the
Gauss-Bonnet theorem for a closed surface, the surface average of the Gauss curvature is
proportional to the Euler characteristic χ(G = 2πχ), where χ is a topological invariant.
This means that it is only dependent on the topology of the body in question, regardless
of the way in which the body is bent. For example χ = 0 for a cylinder or any other shape
similar to a cylinder (extruded systems). For a sphere or any other body of similar shape
χ = 2.

These quantities turn out to be the systems Minkowski functionals, a notion issuing
from integral geometry. These functions are described in section 2.5 of the manuscript.
The combination between these functions with the concept of parallel systems allows
the characterization of complex structures. In terms of scale distribution, the following
system of equations is established 

e3(d) = S(d)
2

∂e3(d)
∂d

= H(d)
2

∂2e3(d)
∂d2

= G(d)
4

(5.3)

However, this system does not apply to all scales, but is only valid for those producing
a smooth eroded system. Meaning, it is no longer valid when the surface of the eroded
system shows a discontinuity of curvature on at least one point. These points are called
cusps. The number of cusps in an eroded system depends on the shape of the system
and the scale of erosion, and depending on the case, they may be isolated points or form
singular lines. Particularly, the prolate spheroid (rotation with respect to the ellipse major
axis) and an oblate spheroid (rotation with respect to the ellipse minor axis) are clear
examples of this. Indeed, the medial axis of prolate spheroids is a line which is co-linear
with the ellipse major axis while the one of oblate spheroids is a circle perpendicular to
the ellipse minor axis. The cusps observed on the eroded system are the points which
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have more than one neighbour at the distance d/2 from the interface. The smallest scale
in which this characteristic is displayed is called the reach of the system. A representation
of the original system, its parallel systems and the reach can be seen in figure 5.2.

Figure 5.2: Graphical representation of the original body and its parallel surfaces. The
medial axis (solid black line) the reach and the cusps (black dots) of a surface are also
shown. Source (Dumouchel et al. 2022).

The group of equations described in equation 5.3 does not apply for the erosion scales
greater than the reach of the liquid system. Hence, the reach is an important parameter
since it separates the range of erosion scales for which the system can be described using
only geometric measures and the range of scales where the Minkowski functionals start
being a morphological descriptor thereby providing information not only about the geom-
etry, but also about the structure. For scales above the reach becomes, then, a correction
is introduced to the scale distribution obtaining

e3(d) = S(d)
2

∂e3(d)
∂d

= H(d)
2

+ CH(d)
∂2e3(d)
∂d2

= G(d)
4

+ 2πCG(d)

(5.4)

Here, the functions CH(d) and CG(d) represent a correction for the functions H(d)
and G(d) respectively, and L(d) depends on the ensemble of points that form the cusp.
The derivations for such corrections are presented in the work of (Dumouchel et al. 2022)
for specific cases. As an example of how the multiscale analysis can give us information
on the shape of the evaluated system two test cases are introduced due to their relevance
to the oscillating drop deformation: prolate and oblate spheroids. The representation of
these test cases are presented in figure 5.3. Figure 5.4 presents the comparison between
the functions H(d) and ∂e3(d)

∂d
determined numerically.

It is possible to observe that the Minkowski functionals and the scale distribution for
all the parallel systems the shown cases are not identical in the interval of the characteristic
scales of the systems. These differences allow the differentiation of two systems that,
when looking at the distribution of the mean curvatures H(d) across all scales, appear
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Figure 5.3: Representation of the different validation test cases. Prolate (left) and oblate
(right) shapes.

to be similar. The smallest scale at which the derivative ∂e3(d)
∂d

differs from the function
H(d) is defined as the scale at which we find the reach of the system and will be denoted
as dr. Another interpretation for the scale dr comes from its significance. The scale dr
represents the scale at which the highest local curvature can be found in the liquid system.
Its worth noting that even though the prolate does not appear to have the scale dr in figure
5.4a), this scale is still present and can be also be described as the smallest scale at which
the derivative ∂2e3(d)

∂d2
differs from the function Xi(d). These results are in agreement with

the derivation and results presented in (Dumouchel et al. 2022).
For the computation of the numerical values shown in figure 5.4, the Minkowski func-

tional sub-routine of PyArcher is considered (see section 2.5).

5.3 Multiscale analysis of drops in turbulence

As mentioned in chapter 4, the spherical harmonic tool provided useful insight into the
shape oscillations and deformation of the droplets in turbulence. Nonetheless, the star-
shaped domain constraint given by the spherical harmonic functions does not allow us to
observe what are the deformation dynamics at the droplets close to breakup. The intro-
duction of the multiscale description grants observation beyond the previously imposed
constraints and associate the droplet deformation as an ensemble of shape parameters.
This multiscale description will therefore be used to study the drop shape dynamics (i.e.
the presence of bottlenecks, flattening or swelling) for droplets immersed in a turbulent
background flow from the numerical database presented in section 4.2.1.

In the test cases shown in figures 5.3 and 5.4, the functions H(d) and ∂e3(d)
∂d

for pro-
late and oblate systems presented a visualization of how the multiscale analysis can pro-
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(bottom) for a prolate spheroid (left) and an oblate spheroid (right)

vide information on the shape of the droplet. This analysis is not as straightforward for
droplets in turbulence. The deformation and oscillations induced by the turbulent eddies
surrounding the liquid system rarely produce simple geometries like the ones presented.
More often than not, this liquid-gas interaction leads to complex geometries that involve
a distribution of spheres and sheets. A comparison of functions H(d) and ∂e3(d)

∂d
for a

droplet immersed in a turbulent background flow at different times is presented in figure
5.5 from its initial spherical state until shortly before the breakup. It can be observed that
throughout the droplet lifetime, the shape can be described as a composition of spheres,
cylinders and sheets. Meaning the geometry at different scales can experience zones of
flattening (distribution of sheets), of elongated ligaments (distribution of cylinders) and
zones of swelling (distribution of spheres). One key point is the similarity between the
results shown in figure 5.4 and figure 5.5. In particular, the results show a resemblance to
the oblate test case, indicating that the influence of the turbulent flow induces a flattening
in the liquid system. This flattening can be seen in varying extents, portraying a sort of
flattening-elongation motion. Figures 5.5c)-d) show the motion from an oblate-like shape
to a prolate-like shape. This occurs due to the peak of pressure existing along a circular
medial axis and the surface tension forces controlling the deformation over the turbulence,
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pushing the droplet to return to its spherical state.
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Figure 5.5: Difference between e3(d) and mean curvature H(d) for increasing time snip-
pets of the droplet from left to right.

On the other hand, figures 5.5e)-f) show the evolution of the droplet towards two flat-
tening zones. This indicates the appearance of two lobes, which in turn, also experience
flattening due to the interaction with the turbulent flow. The generation of these two lobes
in turn indicate the formation of a neck.

Indeed, these observations prove to be coherent with the shape of the respective sur-
faces which are presented in figure 5.6.

To analyse the drop shape evolution three specific scales will be followed along the
droplet lifetime.

The scale dmax, which is the smallest scale for which all multiscale description func-
tions are equal to zero. Meaning, dmax corresponds to the minimum scale for which the
system has been completely eroded.

In section 5.2, the concept of cusp is introduced and the scale at which this is found
dr. Given that the scale dr represents the scale at which the highest local curvature can
be found in the droplet this will provide information on where the peak of pressure in the
scale space of the droplet can be found.

Finally, it is of interest to be able to follow the neck formation of the droplet. Due
to the interaction of the droplet with the turbulent flow, the droplet undergoes several
instances of elongation and compression. This has been observed through the computation
of the evolution of the surface area of the droplet (see figure 4.3). In order to characterize
the formation of the neck, or the lack thereof, the scale dχ is introduced. The scale dχ
represents the smallest scale at which 2 (or more) elements can be found. All of this
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Figure 5.6: Representation of the surfaces of the droplets presented in the analysis of
figure 5.5.

information can be obtained from the multiscale description presented in section 5.2. A
representation of the selected scales, along with the corresponding shape parameters and
where the different scales are found are presented in figure 5.7.

As presented in section 4.2.1, the numerical database currently consists of 192 break-
ing drop realizations. The numerical database also contains 48 non-breaking drop real-
izations. The evolution of the scales dmax, dr, dχ is presented for two cases present in the
numerical database, a droplet that does not experience breakup in figure 5.8 and breaking
droplet in figure 5.9.

For both cases, the dynamics of the chosen scales are similar for most of the droplet
lifetime. As observed in figures 5.8 and 5.9, throughout the droplet’s lifetime the drop
experiences oscillations as seen in chapter 4.

The first response of the droplet due to the interaction with the turbulent background
flow is to rapidly depart from its spherical state, indicated by both dmax and dχ, within the
first 2tc. This is in agreement with the information provided by the spherical harmonic
decomposition in figure 4.6. The rapid decay of the scale dr additionally indicates flatten-
ing as a response to the interaction with turbulence. It is observed that the droplet is kept
flattened throughout the whole realization. This observation is in concordance with the
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Figure 5.7: On the left: Representation of the selected scales to quantify the dynamics of
the deformation. On the right: multiscale description of the shown droplet.

results presented in figure 5.5.
Throughout the deformation process there are instances in which the scales dχ and

dmax depart from one another. This second phenomenon observed indicates that the scale
dχ is representing a bottle neck or pinch-off diameter. Said events can be found multiple
times with similar magnitude in breaking and non-breaking drops e.g. figure 5.8 t/tc ≈ 24
and figure 5.9 t/tc ≈ 14 or t/tc ≈ 21. Meaning, the formation of the neck and the
magnitude of scales dr and dχ are not an indicator in itself of an upcoming breakup.

Finally, a third phenomenon can be found in the case of a droplet experiencing turbu-
lent breakup shown in figure 5.9. Following a bottle-neck generation at ≈ 19 tc there is
a steady decline in the scale dχ, indicating a thinning process in the neck of the droplet,
similar to what occurs at≈ 12 tc. Nonetheless, in this opportunity the droplet does not re-
cover its quasi-spherical shape and continues deforming. It is observed that shortly before
the breakup event occurs, a rapid decay of scales dχ and dr starting from ≈ 22 tc occurs.
Both scales drop promptly to 0.

It is necessary to mention that one of the advantages of the multiscale tool, is that it
is possible to compute the morphological properties of the drop past the breakup, repre-
sented in figure 5.9 as the red dashed-line.

5.4 Breakup dynamics

The objective of this section is to characterize the breakup dynamics by considering the
evolution in time of the scales dmax, dr, dχ. As observed in the previous section, breaking
drops are characterized by a rapid decay of the two latter scales in the final stage previous
to breakup. It was observed that all droplets presented similar dynamics approaching the
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Figure 5.8: Scales dmax, dr, dχ as a function time for a non-breaking droplet.
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Figure 5.9: Scales dmax, dr, dχ as a function time for a breaking droplet.

breakup instance. To focus on these stage, the evolution of these scales for (tbreakup − t) >
−6 tc for all breaking droplets of the database are studied. Scales were averaged and are
presented in figure 5.10.

It is clear that the dynamics of the breakup are similar for all droplets of the database
and that the breakup process is concentrated in the last 2 tc. Due to the similarity of the
fragmentation process, there appears to be a critical point in which the capillary forces
take over the deformation. Meaning, the turbulent vortices surrounding the droplet after
this point do not control the dynamics of the drop.

To describe the critical point in which the droplet will break, the definition of the
proposed scales is considered. When the droplet approaches breakup, it elongates and a
neck begins forming. This is represented in the current analysis by the separation of the
dmax and dχ scales.

Following the work of Håkansson et al. (2022b) which in turn is based on the work
of Xing et al. (2015), in an idealized scenario, a critically deformed state can be found
when the static pressure is higher in the neck than in the formed bulbs and, therefore, the
flow inside the droplet is from the neck into both bulbs eventually leading to breakup.
The computation methodology for the radii of the bulbs and ligament is not described
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Figure 5.10: Scales dmax, dχ and dr for all droplets of the database in blue, orange and
green respectively. In the black lines, the averaged scales in the interval (tbreakup − t) >
−6 tc.

in the work of Håkansson et al. (2022b), thus only the multiscale analysis approach is
presented. The multiscale approach provides a generalized way to estimate these two
quantities. As mentioned previously, the scale dmax corresponds to the minimum scale for
which the system has been completely eroded. Hence, an approximation to the maximum
diameter of the equivalent sphere that describes the bulbs is found in this scale. Therefore,
an approximation of the pressure at the lobes can be obtained from the Laplace pressure
PL,dmax = 2σ/dmax. The scale dχ, describes the diameter of the neck. In a simplistic way,
the ligament that divides the two bulbs can be approximated to a cylinder. An approxima-
tion of the pressure at the neck can be obtained from the Laplace pressure PL,dχ = σ/dχ,
see figure 5.7. Finally, the scale dr by definition represents the scale at which the highest
local curvature can be found in the droplet and hence indicates the scale at which the peak
of pressure of the droplet can be found. Under the assumption that a critically deformed
state comprises the peak of pressure at the ligament uniting two spherical bulbs, the pres-
sure obtained by the scale dr will be measured in terms of a cylinder, therefore the Laplace
pressure will be PL,dr = σ/dr.

The critical state will be defined by the point in which the pressure given by the scales
dχ and dr are greater than the one obtained by dmax. This would indicate that peak of
pressure is in the ligament rather than the extremes of the droplet.

The averaged values dmax, dχ and dr along with the averaged critical time 〈tcritical〉 are
presented in figure 5.11. The averaged critical time 〈tcritical〉 is found to be 1.3 tc before
the fragmentation event. The probability density function of the critical time presented
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in figure 5.12 further cements this observation, showing that most of the droplets break
within the range 0.5 tc < break − tcritical < 2 tc. This is consistent with the findings of
Deberne et al. (2024) in the same numerical database.
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Figure 5.11: Representation of the Laplace pressures obtained from the scales dmax, dχ
and dr for all droplets of the database in blue, orange and green respectively. In the
black lines, the averaged values in the interval (tbreak − t) /tc > −6. The red dashed line
corresponds to the average critical time.

Figure 5.13 shows the histogram of the distribution of scales dmax, dχ and dr through-
out the last 6 tc before breakup for all droplets of the database, as well as the histogram
of the distribution of scales at tcritical. The comparison between the two histograms shows
that the distribution of the scales dχ and dr for droplets with an upcoming breakup are
concentrated in a specific interval. It also shows that the magnitude of scale dmax does not
have a great impact in predicting an upcoming breakup.

To test this threshold, several realizations were taken from the critical time time-step.
To ensure that the breakup occurs due to capillary forces, the deformed droplets were left
to evolve considering an initially quiescent flow. This approach was also presented in the
work of Håkansson et al. (2022b) and implemented in 3.5.2. The surfaces are presented
at the top of figure 5.14. The breakup dynamics are characterized using the proposed
scales. The three selected droplets experience breakup even after removing the effects
of the surrounding fluid. This confirms the fact that the breakup at this stage is a purely
capillary-driven process.
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Figure 5.12: Probability density function of the distribution of (tbreak − tcritical)/tc.
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Figure 5.13: Probability density function of the scales dmax, dχ and dr normalized by the
initial radius R0 for all the database (blue) and for droplets at critical time tcritical (red).

5.5 Conclusion

A multiscale analysis of droplets in turbulence was performed for a numerical database
of 243 realizations (4.2.1). This analysis provides additional information on the droplet
morphological properties that are not possible to obtain through the spherical harmonic
decomposition framework. More importantly, it is possible to apply this analysis even for
complex geometries in which the spherical harmonic constraints make it difficult.

Drops are described using a cumulative distribution of scales and its successive deriva-
tives. The scale distributions are compared with the Minkowski functionals for two typical
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Figure 5.14: Representation of the surfaces of the droplets selected at tcritical (top). Evo-
lution of scales dmax, dχ and dr normalized by the initial radius R0. The dashed lines
correspond to the evolution of the scales in the turbulent flow and continuous lines the
evolution in a quiescent flow.

shapes of an oscillating drop: prolate and oblate systems. By applying this comparison
it is found that the first effect of the interaction of the droplet with the turbulent back-
ground flow is the flattening of the surface. This flattened state is maintained throughout
the droplet lifetime.

Applied to the cases in which droplet breakup is observed, it is demonstrated that
the analysis is suited for probing the dynamics of the large scale and of the pinch-off
mechanisms. In this analysis, the reach of the system (scale dr) appears to be an important
indicator. Another important indicator in this analysis is that of the scale dχ, as it allows
to identify the formation of the pinch-off ligament. It is observed that towards breakup
these two scales share the same dynamics, indicating that at this level both scales are
representing the same structure: the neck.

Following the work of Håkansson et al. (2022b), a critically deformed state is proposed
by relating the scales dmax, dχ and dr to the dimensions of equivalent spheres and cylin-
ders and computing the associated Laplace pressure of these systems using said scales.
The critical state is tested for three droplets of the database by removing the turbulent
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stresses of the flow, expecting to achieve droplet fragmentation purely due to capillary
forces. The critical state proves to be good at capturing the change from turbulent-to-
capillary-driven process. However, with the proposed method is not possible to predict
upcoming fragmentation until the event, similar to morphological examination of droplet
shape evolution to breakup present in the work of Deberne et al. (2024).

Nonetheless, more tests need to be implemented. In fact, said critical state corre-
sponds simply to an approximation to the actual forces acting in the system. Given the
complex geometries observed close to breakup, assuming spherical and cylindrical struc-
tures may not be the appropriate approach. Another problem is that the scales of both of
the bulbs formed due to the thinning of the ligament forming the neck are not known. The
scale dmax only provides the dimension of the bulb with the largest radius To the author’s
knowledge, this corresponds to the first application of the multiscale analysis to describe
the deformation and breakup of 3D droplets in turbulence. A more extensive analysis
using the multiscale approach in the future could provide the answers to these issues.
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Chapter 6

Conclusions and perspectives

General conclusions
The principal objective of this work is to characterize the shape oscillations, deformation,
and breakup of droplets interacting with a turbulent surrounding fluid focusing on the
morphological properties of the system.

The first chapter presents an overview of the numerical methods used in this work. The
in-house code ARCHER is presented, along with a description of the numerical methods
used to describe interface behaviour. The work done during this PhD did not involve
the further development of the ARCHER code. Hence, only a brief description of it is
presented. The numerical methods described therein, are the ones that are necessary for
the development of the post-processing tools presented.

Given that this work focuses on the morphology of the droplets, computing the inter-
face motion is of utmost importance, and characterizing the deformation with the fields
describing the interface is explored. Two main post-processing tools were developed and
validated as part of this PhD work. A spherical harmonic decomposition framework and
the inertia tensor computation and tracking.

The utility of the spherical harmonic framework is that it allows us to describe the drop
shape as an ensemble of modes of deformation, even for complex geometries. The utility
of the present framework comes from its ability to describe the drop shape as an ensemble
of modes of deformation, even for complex geometries. As a consequence, this allows the
observation of the effect of the different length scales on the liquid bulk by isolating each
mode. That allows a different description of the droplet’s shape and accounts for complex
geometries.

The chaotic nature of the turbulent flows causes the droplets to move erratically, caus-
ing translation and rotation of the liquid system. The inertia matrix allows us to account
for this phenomenon and follow the same reference frame throughout the deformation
process. This algorithm aids us in the spherical harmonic expansion computation by en-
suring that the excited modes are tracked effectively.
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Lastly, the Minkowski functional framework is introduced. This framework was de-
veloped as part of a previous study (Dumouchel et al. 2022) and is used in this manuscript
as an aid for the multiscale analysis approach.

As a foundation for the analysis of drops in turbulence, a linear stability analysis is
performed. The Navier-Stokes system of equations is linearized accounting for the dy-
namic effects of both fluids. The solution of the dispersion relation is found, along with
the expression of the physical quantities. The developed linear theory is validated against
the DNS of droplets initialized with a perturbation on a single mode, considering the ini-
tialization with a static state (as in previous literature) and introducing the initial physical
quantities found through the analysis. A numerical database of droplets deformed by a
single mode is generated for modes m ∈ [2, 6], Ohnesorge numbers Oh ∈ [0.05, 0.6] and
perturbation amplitudes in the range η0 ∈ [0.05, 0.4]. In particular, three limiting cases
were studied: droplet in a vacuum, buoyant droplet (liquid-liquid), and bubble immersed
in a surrounding fluid. The single-mode oscillations are followed using the developed
spherical harmonic framework, finding good agreement between the theory and numer-
ical simulations. An energetic approach is considered Smuda et al. (2024), focusing on
the energy transition from the two-phase flow system into the surface. Good agreement
is found against the linear theory for droplets in a vacuum, even for initial deformation
amplitudes of η0 = 0.4. The energetic approach in the buoyant and bubble cases studied
through DNS did not fully recover the linear theory, more specifically, the energy con-
tained in the ambient fluid. These results highlight the need for finer mesh resolutions
as the current work was not able to capture it completely. Concerning the linear oscilla-
tions, it is found that the simulations performed considering the initial physical quantities
obtained from the theory do not provide additional information.

The oscillations of the droplets of this database are explored beyond the linear theory
due to the non-linear effects introduced by the presence of viscosity and density of both
fluids (Basaran 1992, Zrnić et al. 2022). In particular, the coupling between modes is
investigated due to their relevance to the turbulent oscillation case presented in the next
chapter. In particular, for mode 2, the appearance of oscillations different from the ones
of the excited mode is found to be due to its alignment with mode 4. The opposite is true
when initializing with an initial perturbation of mode 4. It is observed that the coupling is
heightened with the initial deformation amplitude and dampened by the dynamic effects
of the surrounding fluid. It was expected that the implementation of the physical quantities
obtained from the linear stability analysis would provide less coupling. But this was not
the case. A more comprehensive study, with higher resolution computations, is necessary.

To finalize the study of the coupling effects, the oscillations of a droplet initialized with
perturbations of multiple modes are presented for deformation amplitudes up to η0 = 0.1.
Two cases are studied: axisymmetric and non-axisymmetric deformations. It is found
that when the modes are aligned (same axis of symmetry), the coupling between them is
promoted. When they are not aligned (different axes of symmetry), even when increasing
the initial amplitude of each mode, they will act independently and with and in agreement
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with the linear theory.
The second objective of this work is to study the deformation of droplets interacting

with a turbulent surrounding fluid. The oscillations of droplets in turbulence are studied
using the spherical harmonic decomposition framework developed. The droplets used for
this study are part of a numerical database of droplets evolving under turbulent conditions,
with multiple realizations of the same physical configuration (Roa et al. 2023b, Deberne
et al. 2024). These oscillations are found to be close to the linear theory. The spherical
harmonic framework successfully isolates the effects of each mode. It is demonstrated
that mode 2 is the dominant mode of deformation in a droplet undergoing turbulence-
driven deformation (Risso & Fabre 1998, Perrard et al. 2021, Roa et al. 2023b). It is
found that the energy stored at the droplet’s surface for each mode reaches a statistically
converged saturation level. This is related to the droplet’s natural damping rate and the
turbulent cascade. The scaling of this saturation level has not yet been established. It
is observed that the amplitude of the deformation is not directly linked to an upcoming
breakup. Throughout the droplet lifetime instances of high deformation not leading to
fragmentation are present. These large deformations are studied and the coupling between
modes is observed (Kang & Leal 1988). The alignment of the even modes of deformation
is confirmed, in agreement with the results of the linear analysis of the previous chapter
and existing literature (Ravelet et al. 2011).

Finally, due to the physical constraints of the spherical harmonic framework, it is not
possible to study the fragmentation process. The introduction of the multiscale analysis
provides additional information on the droplet morphological properties that are not possi-
ble to obtain through the spherical harmonic decomposition framework. The droplets are
described using a cumulative scale distribution (Dumouchel et al. 2017, 2022) and com-
pared with prolate and oblate states. Through this analysis, it is found that the interaction
of the droplet with the surrounding turbulence provokes a flattening of the drop’s surface.
This flattened state is maintained throughout the droplet’s lifetime and is observed for all
droplets of the numerical database. Finally, a critically deformed state is proposed by
relating the scales dmax, dχ and dr to the dimensions of equivalent spheres and cylinders,
obtaining the equivalent Laplace pressure of these systems using said scales. This ap-
proach is based on the works of Xing et al. (2015) and Håkansson et al. (2022b). The
critical state is tested for three droplets of the database by removing the turbulence and
replacing it with a quiescent flow. The critical state proves to be good at capturing the
change from a turbulent-to-capillary-driven process. However, it is not possible to predict
upcoming fragmentation until shortly before the event.
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Perspectives

In this work, promising results have been obtained to characterize the deformation and
breakup of droplets in turbulence. The development of a generalized study of the linear
oscillations solved through set initial conditions provides the equations that describe the
physical quantities of the system. To account for the effect of the viscosity and density
of the surrounding fluid, the expansion to non-linear analysis, following the approach of
Zrnić & Brenn (2021), Zrnić et al. (2022), is necessary to account for the coupling be-
tween modes in different physical characteristics, in particular for the liquid-liquid case
presented in this work. This could provide further insight into two main questions: how
modes are coupled in the case of complex shape droplets; and how singular eddies excite
each mode modifying the angular frequency oscillations. However, the analysis corre-
sponds to the free shape oscillations. In order to have a clearer picture and direct com-
parison with the drop oscillations in turbulence, this study cannot provide information
on the resonant mechanism due to the reaction to the turbulent forcing. A deeper study
introducing a forcing term in the velocity field needs to be considered.

In the same line, a comprehensive study considering different physical parameters i.e.
Weber number, Ohnesorge number, and viscosity and density ratios should be performed
to provide a more detailed picture of how the turbulence and interface interact at each
length scale. From the author’s point of view, it is the straight way to understand how the
saturation level for each mode power spectrum scales with the turbulence. Extending the
physical parameters could provide further information on the breakup dynamics and the
effect on the distribution of scales.

This work focuses on the morphological properties of droplets in turbulence, leaving
aside the interaction of the surrounding fluid with the interface. In turbulent flows, the
drop is subjected to eddies of many length scales. Recent studies have shed light on this
topic, investigating the contribution of sub-bubble scale vortices to bubble breakup (Qi
et al. 2022), and the effects of the surrounding fluid by studying the stretching of the
fluid-fluid interface by outer eddies (Chen et al. 2019, Vela-Martı́n & Avila 2022). A
comprehensive analysis of the mechanics of droplet breakup from an energetic perspec-
tive, focusing on the energy exchange between the eddies present in the turbulent flow and
the droplet is currently under study. This work is part of an ongoing Master thesis project
co-supervised by the PhD candidate. The pairing of the spherical harmonic analysis with
the energy exchange between eddies could provide further insight into the mechanisms of
deformation and breakup.

The multiscale analysis has proved to be a useful tool for characterizing the drop
deformation. Even though this framework has been used in the past to study primary
atomization in experimental jets (Dumouchel et al. 2017, 2023), to the author’s knowledge
this is the first application on 3D systems in turbulence. Therefore, the full potential of
multiscale analysis has yet to be explored. In particular, the relationship between the
distribution of scales and the interaction of the droplet with the turbulent eddies remains
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to be explored. This analysis could provide the necessary information to predict breakup
at an earlier stage.
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Appendix A

Synthèse générale

1. Introduction
L’atomisation est un mécanisme qui transforme transforme un volume de liquide en un
écoulement de petites gouttes, un spray, qui montre une quantité de surface d’interface
augmentée. Ce processus est crucial dans diverses applications industrielles comme par
exemple l’injection de carburant, l’irrigation par aspersion, le séchage par pulvérisation et
la lutte contre les incendies. Chaque application nécessite des caractéristiques spécifiques
du spray et notamment pour ce qui est de la distribution de taille des gouttes qui est
essentielle pour l’efficacité de l’application concernée (Lefebvre & McDonell 2017).

La déformation et la rupture des gouttes au cours du processus influencent de manière
significative la distribution de la taille des gouttes finales. Ces évènements de rupture
secondaire sont fonction de la turbulence régnant dans le milieu environnant. Plusieurs
auteurs ont suggéré que la rupture turbulente des gouttes pourrait être attribuée à un
mécanisme résonant résultant de leurs oscillations libres, même à faible niveau de tur-
bulence (Sevik & Park 1973, Risso & Fabre 1998, Lalanne et al. 2019). Ce phénomène
motive la présente étude.

Dans un premier temps, une analyse de stabilité linéaire des gouttes newtoniennes
dans un fluide environnant newtonien est menée. Les oscillations linéaires des gouttes sont
examinées à la fois d’un point de vue théorique et numérique, décrivant le mouvement
oscillatoire de premier ordre d’une goutte initialement déformée en tenant compte des
effets dynamiques du fluide environnant. Trois cas limites sont considérés : une goutte
dans le vide, une configuration liquide-liquide et une bulle dans un liquide.

Par la suite, les oscillations et la rupture d’une goutte sphérique initialement non per-
turbée dans un milieu turbulent homogène et isotrope sont étudiées. Un cadre théorique
pour les oscillations des gouttes est développé pour chaque mode de déformation en util-
isant une décomposition en harmoniques sphériques qui suit la déformation de la surface
depuis son état initial jusqu’à la rupture. Cette approche relie la déformation de faible
amplitude de la goutte aux paramètres du milieu environnant, montrant comment la tur-
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bulence excite différents modes et conduit à la rupture.
Pendant la déformation des gouttes, des perturbations d’origines diverses conduisent

au développement de structures liquides de tailles et de formes variées. Ces structures
peuvent être des zones contractions (goulots d’étranglement) et des zones d’accumulation
de liquide (régions de gonflement). Selon le cas elles indiquent de potentiels évènements
de ruptures. Pour prédire ces évènements, la nature multi-échelle des déformations doit
être considérée. L’évolution temporelle de la distribution d’échelles est utilisée ici et
permet d’identifier les dynamiques impliquées à chaque échelle dans le processus qui
mène à la rupture de la goutte.

En combinant ces deux analyses, l’évolution de la goutte est étudiée en deux parties :
d’abord, le mouvement oscillatoire et la fréquence des différents modes de la déformation
à travers l’analyse de la décomposition en harmoniques sphériques reliant la déformation
induite par la turbulence aux oscillations présentes dans la théorie linéaire, puis l’évolution
temporelle de la goutte vers la rupture sur la base de sa distribution d’échelles.

Le travail présenté analyse la déformation et la rupture des gouttes dans la turbulence
en trois étapes principales : une phase initiale de déformation due au flux turbulent, des
mouvements oscillatoires induits par l’interaction avec les tourbillons turbulents, et la
phase finale de rupture. Ces étapes sont représentées sur la figure A.1.

Figure A.1: Séquence d’instantanés d’une goutte en rupture suivant le processus
d’oscillation, le processus de déformation inertielle et la rupture par capillarité tout au
long de la durée de vie de la goutte. Figure inspirée par Qi et al. (2024).

2. Méthodologie

Décomposition en harmoniques sphériques
En mathématique et en physique, les harmoniques sphériques sont des fonctions définies
sur la surface d’une sphère et souvent utilisées pour résoudre des équations aux dérivées
partielles. Puisqu’elles forment un ensemble complet de fonctions orthogonales, tout
système de type star-shape (ensemble radialement convexe) peut être décrit dans un
repère de coordonnées sphériques et représenté en une somme de fonctions harmoniques
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Figure A.2: Reconstruction d’une goutte déformée à l’aide des modes harmoniques
sphériques m = [2− 6] obtenus par sa décomposition.

sphériques. Les fonctions harmoniques sphériques fournissent une base mathématique ro-
buste pour représenter des formes complexes montrant des variations dans les directions
radiale, polaire et azimutale.

Pour étudier l’évolution de la forme d’une goutte immergée dans un flux turbulent,
nous introduisons les fonctions harmoniques sphériques Y l

m(θ, ϕ), suivant les travaux de
Risso (2000), Lalanne (2012) and Perrard et al. (2021).

La distance entre le centre du repère et l’interface de la goutte peut être décrite par :

R(θ, ϕ) = R0

∞∑
m=0

m∑
l=−m

am,lY
l
m(θ, ϕ). (A.1)

Pour décrire la forme d’une goutte comme une série de fonctions harmoniques sphériques,
la première étape consiste à obtenir la distribution de son rayon en fonction des angles po-
laires, soit R(θ, ϕ). Les valeurs de R(θ, ϕ) sont obtenues via une boucle qui les calcule à
travers l’interface en suivant le repère de coordonnées sphériques en fonction des angles
selon un tableau dont la taille est déterminée par le nombre maximal de modes, M , que
nous souhaitons évaluer. Plus précisément, le tableau sera de forme 2(M+1)×2(M+1).

Les coefficients sont ensuite calculés à partir de ce tableau avec l’aide de la bib-
liothèque SHTOOLS (Wieczorek & Meschede 2018). Une transformation de Fourier
rapide (FFT) est appliquée aux données d’entrée par rapport à la coordonnée longitudi-
nale. Cette étape transforme les données dans le domaine fréquentiel pour la composante
longitudinale. Pour chaque degré m et ordre l, l’algorithme intégre le produit des données
d’entrée R(θ, ϕ), du polynôme de Legendre associé Pm, et du terme exponentiel eilϕ sur
la sphère, où ϕ est la longitude (voir l’équation 2.7) et θ la colatitude. Les coefficients
harmoniques sphériques am,l sont ensuite obtenus en résolvant l’intégrale montrée dans
l’équation 2.11. De plus, en obtenant les coefficients am,l, le corps peut être reconstruit
avec le nombre désiré de fonctions harmoniques sphériques. A titre d’exemple, la mor-
phologie d’une goutte déformée par un flux turbulent est reconstruite en utilisant les six
premiers modes de déformation dans la figure A.2.
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Matrice d’inertie

Dans un écoulement turbulent, la forme de la goutte et son centre de masse changent
dynamiquement en raison de l’interaction de la goutte avec les tourbillons turbulents. Un
calcul précis de la matrice d’inertie nécessite des mises à jour en temps réel de ces deux
quantités. Pour déterminer ses principales directions, nous calculons la matrice d’inertie
I (Lalanne 2012, Chapitre 5). Elle contient deux types de composants : les moments
d’inertie notés Ixx, Iyy, Izz, qui sont respectivement les moments par rapport aux axes x,
y et z, et les produits d’inertie, Ixy, Ixz, Iyz, qui modélisent une asymétrie géométrique du
centre de masse par rapport aux plans respectifs (O, y, z), (O, x, z) et (O, x, y). Plus ces
moments sont grands, plus la masse est distribuée loin des axes ou des plans en question.
La matrice d’inertie est écrite sous la forme suivante :

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 , (A.2)

Ixx =

∫
V

ρ(y2
o + z2

o)dV, Iyy =

∫
V

ρ(x2
o + z2

o)dV, Izz =

∫
V

ρ(x2
o + y2

o)dV

Ixy =

∫
V

ρ(xoyo)dV, Ixz =

∫
V

ρ(xozo)dV, Iyz =

∫
V

ρ(yozo)dV.

(A.3)

Le calcul de I est basé sur le champ VoF et est effectué dans le système de coordonnées
dont l’origine est le centre de masse (voir l’équation 2.17). Étant donné que I est une
matrice symétrique dont les éléments diagonaux sont positifs, il existe un repère dans
lequel elle est diagonale. Ce repère est le repère principal d’inertie dont les axes sont les
axes principaux d’inertie. Les valeurs propres I1, I2 et I3 de la matrice sont les moments
principaux d’inertie. Pour s’assurer que le repère reste valide à tout moment (par exemple,
suivre la rotation de la goutte), il est nécessaire d’assurer la continuité des valeurs propres.
Le repère inertiel principal (v1, v2, v3) fournit la direction des vecteurs propres, mais pas
leur signe. En connaissant le repère inertiel au temps n − 1, (vn−1,1, vn−1,2, vn−1,3), le
repère inertiel au temps n, (vn,1, vn,2, vn,3) peut être obtenu.

Minkowski functionals

Une autre approche pour caractériser la morphologie d’un corps est l’utilisation des fonc-
tionnelles de Minkowski. Les fonctionnelles de Minkowski sont un ensemble d’indicateurs
morphologiques qui décrivent non seulement l’enveloppe du système liquide (surface)
mais aussi sa topologie (connectivité) et sa forme (courbure géométrique) (Mantz et al.
2008). Ces indicateurs sont largement présents dans la littérature dédiée aux milieux
poreux (Arns et al. 2003, Mecke & Arns 2005) et aux structures cosmologiques (Mecke
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et al. 1993, Kerscher et al. 2001). Ils généralisent les intégrales de courbure des surfaces
lisses à celles présentant des plis ou des points singuliers.

Dans un espace à trois dimensions, les fonctionnelles de Minkowski définissent quatre
quantités géométriques d’un corps délimité par une surface S: le volume V enclavé par
la surface S, l’aire de la surface S, la courbure moyenne intégrée sur la surface H et la
courbure de Gauss intégrée sur la surface G :

S =

∫
S

d S, H =

∫
S

1

2
(κ1 + κ2)d S, G =

∫
S

κ1κ2d S (A.4)

où κ1 et κ2 correspondent aux deux courbures principales et d S est un élément de surface
élémentaire.

L’ensemble des fonctionnelles de Minkowski possède des propriétés intéressantes,
la plus importante étant l’additivité (les fonctionnelles de Minkowski d’un ensemble de
corps sont la somme de leurs fonctionnelles respectives) et invariantes par translation et
rotation du corps. La propriété d’additivité est particulièrement utile pour les sprays qui
sont des systèmes composés d’éléments disjoints. Par ailleurs, comme souligné dans
les travaux de Thiesset et al. (2019) et Dumouchel et al. (2022), la fonctionnelle de
Minkowski G(0) d’un spray est proportionnelle au nombre N de gouttes qu’il contient.

3. Oscillations linéaires de gouttes et de bulles
Ce chapitre présente le développement mathématique linéaire des oscillations d’une goutte
newtonienne immergée dans un fluide environnant newtonien et étend la littérature exis-
tante en fournissant les équations pour résoudre le cas général. Cela a été accompagné
d’une simulation numérique directe du cas étudié en tenant compte de différents nombres
d’Ohnesorge, et rapports de densité et de viscosité (ρr, µr).

La solution analytique de la relation de dispersion est obtenue et validée par rapport
à la littérature existante sur les cas limites des gouttes et des bulles. Des simulations
numériques directes (DNS) de gouttes avec différents nombres d’Ohnesorge et rapports
de densité/viscosité sont réalisées et validées par rapport à la théorie linéaire développée.
Il est démontré que la théorie linéaire est efficace pour prédire l’évolution du mode excité
lorsqu’on considère des déformations de faible amplitude (η0 < 0.4), avec un bon ac-
cord entre les deux méthodes d’initialisation. Il est également montré que l’utilisation du
champ de vitesse initial obtenu par la théorie linéaire est d’une grande importance dans
l’analyse du couplage entre les différents modes de déformation, car les résultats diffèrent
non seulement en amplitude mais aussi en fréquence.

L’utilisation de DNS pour analyser le problème actuel nous permet d’évaluer l’énergie
dans le système et de la comparer avec la théorie linéaire. Les résultats montrent l’effet
de l’amortissement attendu du fluide environnant, ainsi qu’une augmentation du taux
d’amortissement avec l’augmentation du modem et de l’amplitude initiale η0 de la déformation.
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Pour les cas où le fluide environnant a des effets dynamiques forts, les simulations doivent
être améliorées notamment l’énergie cinétique du fluide ambiant doit être mieux capturée.

Lorsqu’on considère les effets de la viscosité dans les phases continue et dispersée
ainsi que les déformations de grande amplitude observées pour les gouttes dans un en-
vironnement turbulent (voir chapitre 4), un comportement non linéaire des oscillations
des gouttes est attendu. Ainsi, dans la partie 3.5, le couplage entre les modes est étudié
comme représentatif d’un effet non linéaire. Les principales conclusions sont les suiv-
antes : lorsqu’on considère des déformations de faible amplitude (η0 ≥ 0.05), chaque
mode d’oscillation pris individuellement est en accord avec la théorie linéaire. Lorsque
les modes sont alignés (même axe de symétrie), l’augmentation de leurs amplitudes ini-
tiales favorise leur couplage. Lorsqu’ils ne sont pas alignés (axes de symétrie différents),
chacun agira indépendamment l’un de l’autre, en accord avec la théorie linéaire même si
l’amplitude de chaque est augmentée (voir figure A.3).
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m = 4, l = 3

Linear theory
Single
Multiple
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1.0E 1

am, l

Figure A.3: Gauche : Représentation d’une goutte initialisée avec les modes m = 2, 3
et 4 simultanément dans axes de symétrie différents. A droite : Oscillations d’une goutte
initialisée avec une amplitude de déformation initiale non-axisymétrique η0 = 0.01 (en
haut) et η0 = 0.1 (en bas) pour les modes m = 2, 3 et 4 et les ordres l = 0, 1, 3 respec-
tivement, comparées aux oscillations de déformation monomode pour le même m et la
théorie linéaire correspondante.

Bien que les résultats obtenus montrent la capacité de la théorie linéaire, ce travail
pourrait être amélioré en développant davantage l’approche analytique et en déterminant
les caractéristiques d’écoulement non linéaires similaires aux travaux de Zrnić et al. (2022)
et de Smuda et al. (2024). Néanmoins, les résultats présentés dans ce chapitre servent de
base pour l’analyse de la déformation et des oscillations des gouttes en turbulence ex-
plorée au chapitre 4.
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4. Gouttes en turbulence

Une base de données de gouttes générée par simulation numérique directe (Deberne et al.
2024) a été utilisée pour étudier les oscillations des gouttes. La déformation des gouttes
sur la base d’une décomposition harmonique sphérique de la surface des gouttes a été
présentée.

Des gouttes immergées dans un écoulement turbulent sont étudiées. Le travail repose
sur une base de données qui est encore en cours d’extension pour différents objectifs, no-
tamment étudier la rupture des gouttes et les interactions entre la turbulence et l’interface.
Cette base de données prend en compte de nombreuses réalisations aux mêmes nombres
sans dimension.

Il est démontré que le mode 2 est le mode dominant de déformation d’une goutte dans
un environnement turbulent. Des oscillations de chaque coefficient harmonique sphérique
sont observées, avec une fréquence proche de la valeur théorique obtenue par la théorie
linéaire (Chapitre 3). Ces observations étendent la littérature existante (Risso & Fabre
1998, Perrard et al. 2021), qui s’est concentre uniquement sur le couplage de la turbulence
avec le mode 2 (voir figure A.4).

La déformation totale est analysée en utilisant le spectre de puissance. La moyenne
d’ensemble du spectre de puissance, qui peut être considérée comme l’énergie stockée
à l’interface pour chaque mode, atteint un niveau de convergence statistique. Ce niveau
de saturation est lié au taux d’amortissement naturel de la goutte et à la cascade turbu-
lente. L’échelle de ce niveau de saturation n’a pas encore été établie. Enfin, une étude des
déformations de grande amplitude est réalisée. Le repère des harmoniques sphériques
est aligné avec l’axe de grande déformation maximisant le coefficient a2,0. Pour ces
déformations, le couplage entre les modes pairs est observé. La relaxation de la goutte est
liée aux forces capillaires, comme le montre la simulation de la même goutte mais sans
champ de vitesse initial. Le taux d’amortissement est similaire à celui obtenu dans les
simulations en mode unique.

Trois perspectives principales se dégagent et sont explorées. Premièrement, il a été
démontré que la théorie linéaire faiblement visqueuse fournit des informations précises
sur l’évolution des gouttes. L’extension des théories existantes permet de répondre à deux
questions : (i) comment les modes sont couplés dans le cas de gouttes de forme complexe
; (ii) comment les tourbillons singuliers excitent chaque mode, modifiant les oscillations
de fréquence angulaire. Deuxièmement, de nouvelles simulations avec différents nombres
de Weber et de Reynolds devraient être réalisées afin de fournir une image plus détaillée
de l’interaction entre la turbulence et l’interface à chaque échelle de longueur. C’est
l’approche la plus directe pour comprendre comment le niveau de saturation pour chaque
spectre de puissance des modes varie avec la turbulence. En outre, étendre le travail actuel
pour inclure les gouttes dans un environnement gazeux et les bulles dans un liquide, à la
fois numériquement et expérimentalement, promet d’améliorer notre compréhension des
interactions turbulence-interface.
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Figure A.4: L’image du haut montre le Spectre de puissance de la décomposition har-
monique sphérique pour les modes m = 1 à m = 6 en fonction du temps sans dimension
tc d’une gouttelette de la base de données. En bas, les coefficients a2,l en fonction du
temps sans dimension tc d’une gouttelette de la base de données pour l = −m à l = m
sont montrés.

La mise en œuvre des harmoniques sphériques pour décrire les oscillations des gouttes
dans un environnement turbulent s’avère utile pour relier les oscillations des gouttes à la
théorie linéaire existante et pour quantifier l’énergie stockée par chaque mode. Cela nous
permet de relier la dissipation de l’énergie cinétique de la phase dispersée à l’énergie
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interne de la goutte. En raison de la condition de la forme star-shape pour calculer
la décomposition harmonique sphérique, cette analyse n’est pas extensible aux gouttes
proches de la rupture. A l’approche de la rupture, le ligament ou le col qui relie les deux
lobes principaux s’amincit et les conditions restreignant la décomposition en harmoniques
sphériques sont atteintes. Pour cette raison, il est nécessaire d’introduire d’autres ap-
proches pour décrire la goutte proche de la rupture. C’est l’objet du chapitre 5.

5. L’analyse multi-échelle

Une analyse multi-échelle des gouttes dans un environnement turbulent a été réalisée sur
une base de données numériques de 243 réalisations (voir section 4.2.1). Cette analyse
fournit des informations supplémentaires sur les propriétés morphologiques des gouttes
proche de la rupture qui ne peuvent pas être obtenues par la décomposition harmonique
sphérique en raison de déformations trop importantes qui rend impossible ce type de
décomposition.

Les gouttes sont décrites par une distribution cumulative d’échelles et de ses dérivées
successives. Les distributions d’échelles et les Fonctionnelles de Minkowski, elles-mêmes
déterminées en fonction de l’échelle, sont comparées aux formes classiques des gouttes
oscillantes, à savoir, les gouttes prolates et les gouttes oblates. En appliquant cette com-
paraison, on constate que le premier effet de l’interaction de la goutte avec l’environnement
turbulent est l’aplatissement de la surface, état maintenu tout au long du processus de
déformation.

Appliquée aux cas où l’on observe une rupture de gouttes, l’analyse se montre adaptée
pour sonder la dynamique des grandes échelles et celle des mécanismes de pincement.
Dans cette analyse, les échelles du système dr (”reach” du système) et dχ s’avèrent per-
tinentes d’un pincement précurseur d’une rupture. Comme attendu, on constate que ces
deux échelles montrent la même dynamique à l’approche de la rupture.

En suivant les travaux de Håkansson et al. (2022b), un état de déformation critique est
identifié en reliant les échelles dmax, dχ et dr à des pressions de Laplace représentatives
des écoulements internes dans la goutte. L’évolution de ces échelles á l’aproche de la
rupture est étudié (voir figure A.5).

En supprimant la contrainte turbulente quand la goutte a atteint l’état critique, on
confirme l’évolution de la goutte vers la rupture. L’état critique capture la transition entre
une déformation pilotée par la turbulence d’une déformation contrôlée par les forces de
tension de surface.

Ce travail est la première application de l’analyse multi-échelle en 3D. Pour le cas des
gouttes soumises à un environnement turbulent, le travail peut être étendu pour identifier
l’éventuelle action de la turbulence pendant l’étape de rupture ou produire le lien entre le
champ turbulent et la forme de la goutte par exemple.
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Figure A.5: Evolution des pressions de Laplace obtenues à partir des échelles dmax, dχ
et dr (en bleu, orange et vert respectivement) pour toutes les gouttelettes de la base de
données. Les lignes noires sont les valeurs moyennes dans l’intervalle (t− tbreak) /tc >
−6. La ligne pointillée rouge correspond au temps critique moyen.

6. Conclusions et perspectives

Conclusion générale
L’objectif principal de ce travail est de caractériser les oscillations, la déformation et la
rupture des gouttes interagissant avec un fluide turbulent environnant, en se concentrant
sur les propriétés morphologiques du système.

Comme première base pour l’analyse de ces gouttes, une analyse de stabilité linéaire
est réalisée. Le système d’équations de Navier-Stokes est linéarisé en tenant compte des
effets dynamiques des deux fluides. La solution de la relation de dispersion est trouvée,
ainsi que l’expression des grandeurs physiques. La théorie linéaire est validée par des sim-
ulations DNS de gouttes initialisées avec une perturbation sur un mode unique et un état
statique (comme il est d’usage dans la littérature) et en introduisant les quantités physiques
initiales trouvées par l’analyse. Une base de données numérique de gouttes déformées
par un seul mode est générée pour des modes m ∈ [2, 6], des nombres d’Ohnesorge
Oh ∈ [0.05, 0.6] et des amplitude de perturbation dans la plage η0 ∈ [0.05, 0.4]. En par-
ticulier, trois cas limites ont été étudiés selon de le couple de fluides interne et ambient:
liquide-gaz, liquide-liquide et gaz-liquide. Les oscillations des gouttes déformées par un
seul mode sont suivies grâce à la décomposition en harmoniques sphériques développée
et rapporte un bon accord avec la théorie et les simulations numériques. Une approche
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énergétique est considérée, en se concentrant sur la transition énergétique de l’écoulement
diphasique vers la surface (Smuda et al. 2024). Un bon accord est trouvé avec la théorie
linéaire pour les gouttes dans le vide, même pour des amplitudes de déformation ini-
tiales de η0 = 0.4. L’approche énergétique dans les cas de liquide-liquide et gaz-liquide
étudiés par DNS n’a pas entièrement retrouvé la théorie linéaire en particulier pour ce qui
concerne l’énergie contenue dans le fluide ambiant. Ces résultats soulignent la nécessité
de d’affiner le maillage de la résolution car le travail actuel n’a pas permis de capturer
complètement l’énergie du système. En ce qui concerne les oscillations linéaires, il est
constaté que les simulations réalisées en tenant compte des quantités physiques initiales
obtenues par la théorie ne fournissent pas d’informations supplémentaires.

Les oscillations des gouttes de cette base de données sont explorées au-delà de la
théorie linéaire en raison des effets non linéaires dus à la viscosité et la densité des deux
fluides (Basaran 1992, Zrnić et al. 2022). En particulier, le couplage entre les modes
est étudié pour approcher le cas des sollicitations turbulentes présentées dans le chapitre
suivant. En particulier, pour le mode 2, l’apparition d’oscillations différentes de celles du
mode excité est attribuée à son alignement avec le mode 4. L’inverse est vrai lorsqu’on
initialise avec une perturbation initiale du mode 4. Il est observé que le couplage est
accentué avec l’amplitude de déformation initiale et atténué par les effets dynamiques
du fluide environnant. On s’attendait à ce que la mise en œuvre des quantités physiques
obtenues à partir de l’analyse de stabilité linéaire réduise le couplage, mais ce n’est pas le
cas. Une étude plus complète impliquant des calculs à plus haute résolution est nécessaire.

Pour finaliser l’étude des effets de couplage, les oscillations d’une goutte initialisées
avec des perturbations à plusieurs modes sont présentées pour des amplitudes de déformation
allant jusqu’à η0 = 0.1. Deux cas sont considérés : les déformations axisymétriques et
non-axisymétriques. Il est constaté que des modes sont alignés (même axe de symétrie) fa-
vorisent leur couplage. A l’inverse, en l’absence d’alignement (axes de symétrie différents),
les modes agissent indépendamment l’un de l’autre, et en accord avec la théorie linéaire,
même lorsque leur amplitude initiale est augmentée.

Le deuxième objectif de ce travail est d’étudier la déformation des gouttes dans un
environnement turbulent. Les oscillations des gouttes sont étudiées en pratiquant une
décomposition en harmoniques sphériques. Ces oscillations se révèlent être proches de
celle de la théorie linéaire. Il est démontré que le mode 2 est le mode dominant (Risso &
Fabre 1998, Perrard et al. 2021, Roa et al. 2023b). Il est constaté que l’énergie stockée à
la surface de la goutte pour chaque mode atteint un niveau de saturation statistiquement
convergé. Cela est lié au taux d’amortissement naturel de la goutte et à la cascade turbu-
lente. Il est observé que l’amplitude de la déformation n’est pas directement indicatrice
d’une rupture imminente. Ces grandes déformations sont étudiées et le couplage entre les
modes est observé (Kang & Leal 1988). L’alignement des modes pairs de déformation est
confirmé, en accord avec les résultats de l’analyse linéaire du chapitre précédent et de la
littérature existante (Ravelet et al. 2011).

En raison des contraintes physiques imposé par la décomposition en harmoniques
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sphériques, il n’est pas possible d’étudier le processus de fragmentation. L’introduction
de l’analyse multi-échelle fournit ici des informations supplémentaires sur les propriétés
morphologiques et topologiques des gouttes. Celles-ci sont décrites par une distribution
cumulative d’échelles (Dumouchel et al. 2017, 2022). Cette approche permet de constater
que l’interaction de la goutte avec la turbulence environnante provoque un aplatissement
de sa surface, aplatissement maintenu tout au long de la durée de vie de la goutte. Par
ailleurs, un état de déformation critique est proposé en reliant des échelles caractéristiques
à des pressions de Laplace représentatives des écoulements prenant place dans les gouttes
à l’approche de leur rupture, idée suggérée parXing et al. (2015) et Håkansson et al.
(2022b). L’état critique est avéré pour trois gouttes de la base de données pour lesquelles il
est montré que la suppression de la turbulence environnante ne s’oppose à l’évolution vers
la rupture. L’état critique s’avère donc efficace pour capturer la transition d’un processus
de déformation pilotée par la turbulence à une déformation contrôlée par la capillarité.

Perspectives

Pour prendre en compte l’effet de la viscosité et de la densité du fluide environnant,
l’extension à une analyse non linéaire, suivant l’approche de Zrnić & Brenn (2021), Zrnić
et al. (2022), est requise. Elle permet de tenir compte du couplage entre les modes sous
différentes conditions physiques, en particulier pour le cas liquide-liquide présenté dans
ce travail. Cela fournirait un éclairage supplémentaire sur deux questions : comment les
modes sont couplés dans le cas de gouttes de forme complexe ; et comment les tourbil-
lons singuliers excitent chaque mode en modifiant les oscillations de fréquence angulaire.
Dans le même ordre d’idées, une étude complète prenant en compte différents paramètres
physiques, c’est-à-dire le nombre de Weber, le nombre d’Ohnesorge, et les rapports de vis-
cosités et de densités, fournirait des détails sur la manière dont la turbulence et l’interface
interagissent à chaque échelle de longueur. L’exploration d’une gamme de paramètres
plus étendue pourrait fournir des informations supplémentaires sur la dynamique de rup-
ture et l’effet sur la distribution d’échelles.

Ce travail se concentre sur les propriétés morphologiques des gouttes dans un envi-
ronnement turbulent sans considérer l’interaction du fluide environnant avec l’interface.
Dans les écoulements turbulents, la goutte est soumise à des tourbillons dont les échelles
de longueur sont nombreuses. Des études récentes ont éclairé ce sujet dans le cas de la
rupture d’une bulle en investiguant la contribution des tourbillons d’échelle inférieure à
celle des bulles (Qi et al. 2022). Par ailleurs, les effets du fluide environnant sont ap-
prochés en étudiant l’étirement de l’interface fluide-fluide par des tourbillons externes
(Chen et al. 2019, Vela-Martı́n & Avila 2022). Une analyse complète des mécanismes de
rupture des gouttes d’un point de vue énergétique se concentrant sur l’échange d’énergie
entre les tourbillons et la goutte est actuellement en cours.

L’analyse multi-échelle s’est avérée être un outil utile pour caractériser la déformation
des gouttes. Bien que ce cadre ait été utilisé par le passé pour l’étude de différents pro-
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cessus d’atomisation primaire (Dumouchel et al. 2017, 2023), il s’agit ici de la première
application sur des systèmes 3D. Le potentiel complet de ce type d’analyse reste à ex-
plorer.
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Aniszewski, W. & Brändle de Motta, J. C. (2022), A wide-range parameter study for
the turbulence-interface interactions, in ‘14th European Fluid Mechanics Conference,
Athens, Greece’.

Aniszewski, W., Ménard, T. & Marek, M. (2014), ‘Volume of fluid (VOF) type advection
methods in two-phase flow: A comparative study’, Computers & Fluids 97, 52–73.

Arns, C. H., Knackstedt, M. A. & Mecke, K. (2003), ‘Reconstructing complex materials
via effective grain shapes’, Physical Review Letters 91(21), 215506.

Basaran, O. A. (1992), ‘Nonlinear oscillations of viscous liquid drops’, Journal of Fluid
Mechanics 241, 169–198.

Bornia, G., Cervone, A., Manservisi, S., Scardovelli, R. & Zaleski, S. (2011), ‘On the
properties and limitations of the height function method in two-dimensional Cartesian
geometry’, Journal of Computational Physics 230(4), 851–862.

Brackbill, J. U., Kothe, D. B. & Zemach, C. (1992), ‘A continuum method for modeling
surface tension’, Journal of Computational Physics 100(2), 335–354.

Brown, R. G. (2007), ‘Classical electrodynamics-part II’, Duke University Physics De-
partment .

Canu, R. & Renoult, M.-C. (2021), ‘Linear stability analysis of a Newtonian ferrofluid
cylinder surrounded by a Newtonian fluid’, Journal of Fluid Mechanics 927, A36.

Chandrasekhar, S. (1959), ‘The oscillations of a viscous liquid globe’, Proceedings of
the London Mathematical Society 3(1), 141–149.
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Kékesi, T., Amberg, G. & Wittberg, L. P. (2014), ‘Drop deformation and breakup’, In-
ternational Journal of Multiphase Flow 66, 1–10.

Kerscher, M., Mecke, K., Schmalzing, J., Beisbart, C., Buchert, T. & Wagner, H. (2001),
‘Morphological fluctuations of large-scale structure: The PSCz survey’, Astronomy &
Astrophysics 373(1), 1–11.

117



BIBLIOGRAPHY

Kolmogorov, A. N. (1941), ‘The local structure of turbulence in incompressible viscous
fluid for very large reynolds’, Numbers. In Dokl. Akad. Nauk SSSR 30, 301.

Komrakova, A. E., Eskin, D. & Derksen, J. (2015), ‘Numerical study of turbulent liquid-
liquid dispersions’, AIChE Journal 61(8), 2618–2633.

Kowalewski, T. & Bruhn, D. (1994), Nonlinear oscillations of viscous droplets, in ‘Pro-
ceedings of the Japanese-Central European Workshop on Advanced Computing in Engi-
neering, Pultusk 1994’, IPPT PAN, Warszawa, pp. 63–68.

Lalanne, B. (2012), Simulation numérique directe de la déformation, des oscillations et
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