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Résumé : Cette thèse porte sur le dévelop-
pement d’algorithmes semi-numériques per-
mettant l’évaluation d’approximations numé-
riques à haute précision des périodes de varié-
tés algébriques à partir des équations qui dé-
finissent lesdites variétés. Les périodes d’une
variété algébrique projective lisse déterminent
l’isomorphisme de de Rham entre la cohomo-
logy de de Rham et l’homologie singulière, et
définissent un invariant continu fin de la va-
riété en lien avec sa structure de Hodge. Dans
de nombreux cas, des théorèmes de type To-
relli montrent que les périodes caractérisent
entièrement la classe d’isomorphisme de la va-
riété — c’est par exemple le cas pour les sur-
faces K3. En particulier la connaissance d’ap-
proximations numériques suffisamment pré-
cises (de l’ordre de la centaine de chiffres si-
gnificatifs) de ces périodes permet de retrouver

des invariants géométriques fins de la variété,
comme par exemple le rang de Picard et le
corps d’endomorphismes pour les surfaces K3.
Dans cette thèse, nous développons une mé-
thode pour calculer de telles approximations
numériques à partir des équations définissant
la variété. Cette méthode repose sur la théorie
de Picard-Lefschetz pour reconstruire une des-
cription des cycles d’intégration qui soient suf-
fisamment explicites pour pouvoir évaluer ces
intégrales. Nous implémentons ces méthodes
pour le cas de hypersurfaces, des surfaces ellip-
tiques et des recouvrements doubles de P2 ra-
mifiés le long d’une courbe, ainsi que certaines
variétés de Calabi-Yau de dimension 3. Nous
utilisons ces méthodes pour explorer la phé-
noménologie de certains problèmes ouverts en
symétrie miroir et en géométrie arithmétique.

Title : Periods in algebraic geometry : computations and application to Feynman integrals
Keywords : quantum physics, algebraic geometry, computer algebra

Abstract :
This thesis focuses on the development of

semi-numerical algorithms allowing for the nu-
merical evaluation with high precision of per-
iods of algebraic varieties starting from the de-
fining equations of these varieties. The per-
iods of a smooth projective algebraic variety
determine the De Rham isomorphism between
its De Rham cohomology and its singular ho-
mology, and define a fine continuous invariant
of the variety linked to its Hodge structure. In
many cases, theorems of Torelli-type show that
the periods characterise the isomorphism class
of the variety — it is notably the case for K3
surfaces. In particular, the knowledge of suffi-
ciently precise numerical approximations (with
hundreds of certified digits) of these periods al-

low to recover fine algebraic invariants of the
variety, such as the Picard rank and the endo-
morphism field for K3 surfaces. In this thesis,
we develop a method for computing such nu-
merical approximations starting from the defi-
ning equations of the varieties. This method re-
lies on Picard-Lefschetz theory to reconstruct
a description of the integration cycles which
is sufficiently explicit to be able to evaluate
the integrals. We implement these methods
in the cases of hypersurfaces, elliptic surfaces
and double covers of the projective plane ra-
mified along a sextic curve, as well as certain
Calabi-Yau threefolds. We use these methods
to explore phenomenological aspects of certain
open questions in mirror symmetry and arith-
metic geometry.
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Introduction en français

Historiquement, les périodes ont vu le jour avec l’étude des intégrales elliptiques

x 7→
∫ x

a

dt√
P (t)

, (1)

où P est un polynôme de degré 3 ou 4 sans racines doubles. De telles intégrales ont
suscité un grand intérêt en mathématiques depuis le 18e siècle, avec les travaux de
Giulio Fagnano, Leonhard Euler et Carl Friedrich Gauss. En particulier, ce dernier
a montré que l’inverse d’une intégrale elliptique spécifique, la fonction lemniscate,
avait la propriété remarquable d’avoir deux périodes. Ceci s’est avéré être lié à un
phénomène général apparaissant avec les courbes elliptiques : l’inverse d’une intégrale
elliptique est une fonction P de Weierstrass, qui présente également cette propriété
bipériodique. En fait, ses périodes ω1, ω2 sont précisément données par l’intégrale de
la 1-forme holomorphe ω sur une base des 1-cycles γ1, γ2 de la courbe elliptique :

ωi =
∫

γi

ω . (2)

En particulier, on peut réaliser la courbe elliptique E comme un tore complexe
obtenu en prenant le quotient du plan complexe par le réseau de périodes

Λ =
{∫

γ
ω | γ est un 1-cycle de E

}
= ω1Z⊕ ω2Z . (3)

Cet espace quotient C/Λ est le Jacobien de la courbe elliptique. Il s’avère notamment
que E et Jac(E) sont isomorphes en tant que variétés abéliennes.

Pour une courbe algébrique complexe C de genre arbitraire g ≥ 2, l’espace des
formes holomorphes Ω1(C) a une plus haute dimension. On peut néanmoins définir
le réseau des périodes de manière similaire

Λ =
{(∫

γ
ω1, . . . ,

∫
γ

ωg

)}
⊂ Cg , (4)

où ω1, . . . , ωg est une base de Ω1(C). De même, on peut définir le jacobien Jac(C)
de C comme

Jac(C) = Cg/Λ . (5)
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On peut voir que, après avoir choisi un point de base O ∈ C, on a une application
analytique bien définie

C → Jac(C) : P 7→
(∫ P

O
ω1, . . . ,

∫ P

O
ωg

)
, (6)

denommé l’application d’Abel-Jacobi. Le théorème suivant dû à Torelli (1913) montre
que la Jacobienne d’une courbe, et donc ses périodes, la caractérisent entièrement.

Theorem 1 (Théorème de Torelli pour les courbes). Soient C1, C2 deux courbes
complexes lisses de genre g. Alors Jac(C1) et Jac(C2) sont isomorphes comme tores
complexes polarisés si et seulement si C1 et C2 sont isomorphes.

Ceci montre que la relation entre les données topologiques de l’homologie singulière
et les données algébriques de la cohomologie des courbes encodée dans le couplage
d’intégration contient des informations très précises sur la géométrie des courbes.
Le calcul numérique des périodes donne accès à une représentation approchée du
Jacobien, qui conduit à son tour à des invariants intéressants. Cela a par exemple
été utilisé pour calculer certaines données relatives aux courbes de genre 2 dans la
LMFDB (Booker et al., 2016), telles que les anneaux d’endomorphismes (Costa et al.,
2019) ou les groupes de Sato–Tate (Fité et al., 2012), qui peuvent être obtenues en
récupérant les relations à coefficients entiers entre les périodes.

En fait, ce phénomène se généralise au-delà des courbes à certaines classes de
variétés de dimension supérieure. Dans ce cadre, nous définissons la matrice de période
k-ième d’une variété complexe lisse X comme étant la matrice de l’appariement
de de Rham Hk(X )×Hk

DR(X )→ C entre l’homologie singulière et la cohomologie
(algébrique) de de Rham.

Theorem 2 (Théorème de de Rham, de Rham (1931)). Soit X une variété compacte
lisse. L’appariement d’intégration entre la cohomologie de de Rham Hk

DR(X ) et
l’homologie singulière Hk(X )

([γ], [ω]) 7→
∫

γ
ω,

est parfait. En particulier, il exprime Hk
DR(X ) et Hk(X ) comme duaux l’un de l’autre.

Pour les courbes, la cohomologie de de Rham se divise en deux sous-espaces de
dimension égale, constitués respectivement de 1-formes différentielles holomorphes et
anti-holomorphes. De même, pour une variété projective complexe lisse X de dimen-
sion n, la cohomologie algébrique de de Rham du milieu admet une décomposition
de Hodge

Hn
DR(X ) = H0,n(X )⊕H1,n−1(X )⊕ · · · ⊕Hn,0(X ) . (7)
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Lorsque Hk
DR(X ) est doté de cette structure supplémentaire venant de la théorie

de Hodge, la matrice de périodes définit un invariant continu remarquable de X qui
reflète l’interaction entre la structure algébrique complexe et la structure topologique
(P. A. Griffiths, 1968; Carlson et al., 2017).

Pour les courbes, les périodes relient les cycles d’homologie singulière aux formes
holomorphes de la cohomologie de De Rham, donnant le Jacobien. En dimensions
supérieures, cette relation donne de la même manière une polarisation à la structure
de Hodge de X . En tant que généralisation du théorème de Torelli, les théorèmes
dits de type Torelli énoncent que deux variétés algébriques de la même classe sont
isomorphes si et seulement si leurs structures de Hodge polarisées le sont. Ici, le terme
« classe » doit être pris au sens large : un exemple de classe serait les hypersurfaces
projectives lisses d’un degré et d’une dimension donnés dans Pn (voir Donagi (1983)).
Un autre exemple, qui sera pertinent dans cette thèse, est la classe des surfaces K3
algébriques complexes (Huybrechts, 2016).

Theorem 3 (Théorème de type Torelli pour les surfaces K3). Soient X1 et X2
deux surfaces algébriques K3. Alors X1 est isomorphe à X2 si et seulement si leurs
structures de Hodge polarisées sont isomorphes.

Notez qu’il existe des exceptions aux théorèmes de type Torelli. En particulier, les
surfaces cubiques lisses sont toutes isomorphes à P2 éclaté en 6 points. En particulier,
ce sont des surfaces rationnelles, et leur structure de Hodge est donc contenue dans
la pièce médiane H1,1(X ). En particulier, toutes les surfaces cubiques ont la même
structure de Hodge polarisée.

Comme pour les courbes, les périodes des surfaces conduisent également à des
invariants intéressants qui sont difficiles à calculer par d’autres moyens. Par exemple,
pour une surface algébrique X , le théorème de Lefschetz sur les classes (1, 1) (P.
Griffiths and Harris (1978, p. 163)) relie les relations linéaires à coefficients entiers
entre les périodes de X avec les courbes algébriques situées sur X . Les relations
entières peuvent être récupérées à partir d’approximations numériques des périodes
grâce aux algorithmes de réduction de réseau (Lenstra et al., 1982, 1982; Håstad
et al., 1989; Ferguson & Bailey, 1992). Cela conduit à un algorithme pratique
pour calculer, de manière heuristique, le groupe de Néron–Severi d’une surface
dans P3(C) (Lairez & Sertöz, 2019). L’apparition de variétés algébriques explicites
dans divers domaines des mathématiques, comme l’approximation diophantienne
(Beukers & Peters, 1984) ou la physique mathématique (Bloch et al., 2015), est
une forte incitation au développement de méthodes automatiques pour calculer de
tels invariants algébriques. En un mot, les périodes linéarisent certains aspects des
variétés algébriques, au prix d’introduire des fonctions transcendantes par intégration.
Cette nature transcendante rend difficile le calcul exact avec des périodes, mais une
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grande précision (typiquement des centaines ou des milliers de chiffres décimaux)
peut permettre de récupérer des invariants exacts (D. V. Chudnovsky & Chudnovsky,
1989).

Représentation monodromique de familles de variétés
Parmi ces invariants, un que nous pouvons retrouver exactement à l’aide de la matrice
des périodes est la représentation de monodromie d’une famille de variétés lisses au
dessus de la droite projective complexe épointés d’un nombre finis de points. C’est un
ingrédient clé dans la reconstruction des cycles topologiques nécessaires au calcul des
périodes. C’est aussi un invariant discret pertinent en soi, qui donne un aperçu de la
variation de la structure de Hodge de la fibre générique induite par la fibration. Une
méthode, en quelque sorte duale à celle présentée dans cette thèse, pour son calcul
jusqu’à un signe global a été développée dans Dettweiler and Wewers (2006b, 2006a),
où l’objectif était de fournir une méthode algorithmique pour calculer la cohomologie
parabolique en utilisant des calculs de tresse. Cette méthode a été développée dans
Kostiuk (2018) and Doran and Kostiuk (2023) pour étudier les structures de Hodge
de certaines tours de fibrations, permettant notamment l’étude des variations des
structures de Hodge de certaines surfaces elliptiques K3 polarisées. En exemple
d’application de nos méthodes, nous calculerons dans cette thèse la représentation
de monodromie de certains modèles de Landau-Ginzburg à fibres K3 apparaissant
en symétrie miroir homologique.

Multiplication complexe de surfaces K3
Un autre invariant que nous considérerons est de savoir si une variété a une multi-
plication complexe. Pour une courbe elliptique complexe E, considérée comme une
variété abélienne, cela revient à l’existence d’un endomorphisme non trivial E → E

respectant à la fois la structure de groupe et la structure analytique complexe. En
termes de périodes, avoir une multiplication complexe équivaut à ce que l’invariant τ

(le rapport des deux périodes holomorphes de E) soit dans une extension quadra-
tique de Q. Cela peut être vérifié numériquement. Dans les variétés Calabi-Yau de
dimension supérieure, pour les surfaces K3 (qui ne sont plus des variétés abéliennes),
la notion de multiplication complexe est généralisée pour signifier que la structure de
Hodge a un endomorphisme non trivial, ce qui peut encore être vérifié numériquement
en termes de périodes. De telles méthodes ont déjà été développées dans Lairez and
Sertöz (2019) et Elsenhans and Jahnel (2022) — dans cette thèse, nous les appliquons
sur de nouvelles surfaces K3 pour lesquelles les calculs de périodes étaient auparavant
hors de portée.



6

Intégrales de Feynman
Les périodes apparaissent en physique mathématique, et plus précisément en théorie
quantique perturbative des champs, sous la forme d’intégrales de Feynman. Les
diagrammes de Feynman sont des graphiques modélisant les façons dont les particules
peuvent interagir entre elles. A chaque graphe possible G, c’est-à-dire à chaque
interaction possible, est associée une amplitude quantifiant la probabilité que cette
interaction spécifique se produise effectivement. Cette amplitude est donnée par une
intégrale de Feynman IG, de la forme

IG =
∫
Rn

+

Uν
G

F s
G

Ω0 , (8)

où n est le nombre d’arêtes internes de G et UG et FG sont certains polynômes associés
à G, appelés polynômes de Symanzik, Ω0 est la forme volume de l’espace ambiant, et
s et ν sont des paramètres. Présentées comme telles, ces intégrales ne sont pas des
périodes propres : premièrement, le cycle d’intégration a une frontière ; deuxièmement,
dans de nombreux cas, la variété définie par UG et FG est hautement singulière.
Néanmoins, les travaux de Bloch et al. (2006) et Brown (2017) montrent qu’on peut
en obtenir une description comme une période en utilisant une série d’éclatements
dans l’espace projectif ambiant. Bien que nous ne nous concentrerons pas plus loin
sur cet aspect des intégrales de Feynman dans cette thèse, nous montrerons comment
nos méthodes peuvent s’appliquer à certains graphes de Feynman en récupérant des
invariants géométriques de l’intégrale de Feynman associée à un certain graphe, le
graphe tardigrade.

Travaux connexes
Les algorithmes de calcul des matrices de périodes de courbes (également appelées
matrices de Riemann) sont bien établis, avec les travaux de Deconinck and van Hoeij
(2001), Swierczewski (2017), Bruin et al. (2019), Molin and Neurohr (2019), and
Neurohr (2018), pour n’en citer que quelques-uns. Les articles de Cynk and van
Straten (2019) and Elsenhans and Jahnel (2022) sont les premiers à aborder des
dimensions supérieures dans certains cas particuliers : les doubles recouvrements de
P3(C) ramifiés selon 8 plans, et les doubles recouvrements de P2(C) ramifiés selon
6 lignes, respectivement. L’algorithme de Sertöz (2019) est le premier et le seul
algorithme à aborder le cas des hypersurfaces lisses dans n’importe quelle dimension.
Il procède de la manière suivante. Supposons que vous souhaitiez calculer la période∫

γ

Ω2

x3 + y3 + z3 + xyz
, (9)
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où γ est un cycle du complément dans P2 de la courbe elliptique E = V (x3 + y3 +
z3 + xyz) ⊂ P2 et Ω2 = xdy ∧ dz − ydx ∧ dz + zdy ∧ dz est la forme volume de P2.
Une façon de procéder consiste à considérer plutôt la période relative

π(t) =
∫

γ(t)

Ω2

x3 + y3 + z3 + txyz
, (10)

où γ(t) est la déformation de γ par rapport à t. La valeur que nous voulions alors
initialement calculer est π(1). On peut montrer que π est la solution d’un opérateur
différentiel en t, son équation de Picard–Fuchs

L = (t3 + 27)∂2
t + 3t2∂t + t . (11)

De plus, la valeur de π(0) est une période de la courbe elliptique de Fermat
V (x3 + y3 + z3). Les travaux de Pham (1965) et Sertöz (2019) ont permis d’obtenir
des formules pour les périodes des hypersurfaces de Fermat en termes de valeurs de
fonctions Gamma. Par conséquent, en utilisant un logiciel de continuation analytique
numérique, on peut obtenir une approximation numérique avec des bornes de précision
certifiées de la période (20) à partir des données des valeurs de π à 0, ainsi que de
ses dérivées (qui sont également des périodes de la courbe elliptique de Fermat), et
de l’équation de Picard-Fuchs.

En pratique, cette méthode fait face à des obstacles calculatoires lorsqu’il s’agit
de calculer les périodes des hypersurfaces far (en termes de l’équation de définition)
à partir des hypersurfaces de Fermat. En effet, pour le cas des surfaces quartiques
K3 dans P3, les opérateurs à intégrer sont d’ordre 21 et, en pratique, le degré élevé
et les logiciels de continuation analytique numérique actuels ne permettent pas
d’intégrer de tels opérateurs dans un délai raisonnable. De plus, la généralisation de
cette méthode à d’autres types de variétés, par exemple les intersections complètes,
nécessiterait l’équivalent de la variété de Fermat dans ce cadre — c’est-à-dire une
variété pour laquelle les périodes sont connues, et à partir de laquelle la variété cible
est atteignable par déformation.

En un mot, la méthode présentée dans la thèse présente ici répond à ces deux
points. L’idée principale est d’avoir un moyen général d’obtenir une description
efficace des cycles, afin que les périodes puissent être intégrées ad hoc. Cette méthode
est plus efficace que la déformation, dans la plupart des cas, car l’équation de Picard-
Fuchs liée à l’étape d’intégration interne à la variété est généralement beaucoup plus
petite que l’équation différentielle de Picard-Fuchs associée à sa déformation. Par
exemple, pour une surface K3 quartique, l’ordre passe de 21 à 4, voire 2 lorsque la
surface K3 est elliptique. Cette méthode est également plus intrinsèque, ce qui lui
donne le potentiel d’étudier des variétés au-delà des hypersurfaces projectives lisses.
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Calculer une matrice de périodes d’une variété algébrique nécessite de traiter,
d’une manière ou d’une autre, trois problèmes de calcul reflétant la définition
même d’une matrice de périodes : tout d’abord, calculer une base de l’homologie,
deuxièmement, calculer une base de la cohomologie, et, troisièmement, calculer les
coefficients de l’appariement de de Rham par intégration numérique. Chacun de ces
problèmes est lié à un domaine de recherche différent.

Homologie singulière

Calculer une base d’homologie singulière est un obstacle majeur. Bien qu’il existe
des algorithmes pour calculer l’homologie des sous-variétés de Rn à partir de points
d’échantillonnage (Niyogi et al., 2008; Cucker et al., 2018), ils semblent difficiles
à mettre en œuvre et à exploiter. Une surface complexe dans P3(C) est déjà une
variété réelle à 4 dimensions dans un espace ambiant à 6 dimensions. Des expériences
récentes suggèrent que le nombre d’échantillons requis pour calculer rigoureusement
l’homologie est plutôt grand (Di Rocco et al., 2020) par rapport aux nombres de
Betti. De plus, nous ne savons pas comment utiliser une telle structure de données
(homologie calculée à partir de points d’échantillonnage) pour calculer efficacement
les périodes.

Dans le cas des courbes, le problème se réduit au calcul de l’action de monodromie
sur les racines d’un polynôme univarié dépendant d’un paramètre (Tretkoff & Tretkoff,
1984). Dans le cas des hypersurfaces projectives, l’algorithme de Sertöz traite
le problème indirectement et ne nécessite qu’une description de l’homologie de
l’hypersurface de Fermat, qui a été élaborée par (Pham, 1965).

Cohomologie de De Rham

La cohomologie algébrique de De Rham, dans le cas des hypersurfaces projectives,
est bien décrite par la réduction de Griffiths–Dwork (P. A. Griffiths, 1969), à la fois
théoriquement et d’un point de vue calculatoire. Il existe aussi des algorithmes pour
le cas affine (Oaku & Takayama, 1999), mais nous n’avons connaissance d’aucun
algorithme pour le cas général d’une variété projective (sans compter qu’il existe
aussi des variétés projectives qui ne sont pas naturellement plongées dans un espace
projectif, comme les variétés multiprojectives, ou les fibrations). Dans le cas des
surfaces elliptiques, les travaux de Stiller (1987) permettent d’obtenir une description
d’un morceau de la cohomologie de la surface ainsi que la filtration de Hodge à partir
de l’équation de Picard–Fuchs. Cependant ce morceau est suffisant pour retrouver la
structure de Hodge complète dans le cas des surfaces elliptiques K3, et nous suffit
donc.
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Intégration numérique

Pour l’étape d’intégration, une approche directe semble possible. Si la base d’homologie
est suffisamment explicite, et si nous pouvons évaluer numériquement les formes
différentielles définissant la base de cohomologie à un point donné, nous pouvons
certainement calculer l’appariement de de Rham.

Cependant, nous visons une haute précision, donc toutes les méthodes de quadra-
ture d’ordre fini (comme la règle de Simpson ou les algorithmes de Monte-Carlo)
sont exclues car elles ont une complexité exponentielle par rapport à la précision.
Les périodes sont des intégrales de dimension n de fonctions algébriques, où n est la
dimension complexe de X . En supposant que nous pouvons les formuler comme des
intégrales sur un n-simplexe, ou [0, 1]n, nous pouvons les calculer avec la formule de
quadrature de Gauss-Legendre. Nous nous attendons à une complexité a pn+1+o(1)

par rapport à la précision p. Pour calculer les périodes des courbes, il s’agit d’une
complexité p2+o(1) et cette méthode est la plus couramment utilisée. Dans notre
méthode, nous utilisons la continuation analytique numérique de fonctions solutions
d’équations différentielles linéaires à coefficients polynomiaux pour calculer les inté-
grales. La complexité est quasi-linéaire par rapport à la précision, p1+o(1), grâce au
découpage binaire. La continuation analytique numérique est également ce que nous
utilisons pour calculer les actions de monodromie, il est donc naturel de l’utiliser
également pour l’intégration. Notez cependant que, typiquement, dans nos calculs
(impliquant des opérateurs différentiels de grand degré et une précision élevée mais
pas extrême), nous sommes loin du seuil où le découpage binaire devient meilleur
que les méthodes p2+o(1).

Contributions
Nous fournissons un cadre général pour le calcul des approximations numériques
des matrices de périodes de certaines variétés projectives, et détaillons l’application
au cas des intersections complètes et des surfaces elliptiques. Soit X ⊂ Pn(C) une
variété projective. Un obstacle majeur dans le calcul des matrices de périodes pour X
est le manque d’algorithmes pour calculer une description explicite de l’homologie
singulière de X . Par « explicite », nous entendons suffisamment explicite pour
pouvoir effectuer une intégration numérique sur une base de cycles. Nous fournissons
un algorithme permettant de calculer à la fois :

1. une base explicite de l’homologie singulière de X ;

2. une approximation numérique, avec des bornes d’erreur rigoureuses, de la
matrice de périodes de X par rapport à cette base d’homologie, et à la base de
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cohomologie de Griffiths–Dwork.

En ce qui concerne uniquement la précision, la complexité de l’algorithme est quasi-
linéaire : calculer deux fois plus de chiffres prend environ deux fois plus de temps.
Notons que, comme spécificité des intersections projectives complètes, seule la matrice
de périodes n-ième de X est intéressante, les autres sont triviales (matrices 1× 1 ou
0× 0).

L’algorithme peut être utilisé pour calculer la matrice de périodes de toute
intersection complète. L’algorithme repose sur une fibration de la variété X → P1

sur la droite projective, où les périodes de la fibre générique Xt = f−1(t) peuvent
être calculées. Dans le cas des surfaces elliptiques, cette fibration fait partie des
données d’entrée. Dans les autres cas considérés, elle est obtenue en considérant une
famille à un paramètre de sections hyperplanes X ∩Ht, suivant les principes de la
théorie de Picard–Lefschetz (Lefschetz, 1924; Lamotke, 1981). Une étape importante
de l’algorithme est le calcul de l’action de monodromie induite par cette famille
de sections sur l’homologie Hn−1(Xb) d’une section (au-dessus d’un point de base
choisi b ∈ P1). Nous effectuons ce calcul par dualité avec la cohomologie de Rham,
en utilisant la matrice de période de Xb qui peut être obtenue par induction sur la
dimension étant donné que dimXb = dimX − 1.

Pour réaliser l’intégration numérique, nous réduisons à des intégrales de contour à
une variable des multiples rationnels des périodes de Hn−1(Xt). Comme ces périodes
sont des solutions d’une équation différentielle de Picard–Fuchs, que nous pouvons
calculer explicitement, nous pouvons réaliser l’intégration en utilisant des algorithmes
généraux d’intégration de fonctions différentiellement finies (van der Hoeven, 1999;
Mezzarobba, 2010). Ces algorithmes fournissent des bornes d’erreur rigoureuses avec
une complexité quasi-linéaire par rapport à la précision.

Sur le plan pratique, nous avons implémenté dans SageMath (The Sage Developers,
2023) l’algorithme ci-dessus, ainsi que le calcul d’invariants associés (rang de Picard,
groupe de Néron–Severi, anneau d’endomorphismes) pour les cas d’hypersurfaces,
de surfaces elliptiques et de doubles revêtements d’un espace projectif ramifié le
long d’une hypersurface lisse. Cette implémentation se trouve dans le paquet
lefschetz-family1. Nous sommes capables de calculer les périodes de la forme
holomorphe d’une surface K3 quartique lisse dans P3(C) définie sur Q en, typiquement,
environ une heure sur un ordinateur portable, avec 300 chiffres décimaux de précision.

Le calcul est beaucoup plus rapide pour une surface K3 elliptique, prenant environ
15 secondes pour obtenir le même résultat, mais la méthode est restreinte au calcul des
périodes holomorphes. Pour les surfaces K3 données comme des doubles revêtements
de P2 ramifiés le long d’une sextique, le même calcul prend environ 2 minutes.

1https://gitlab.inria.fr/epichonp/lefschetz-family

https://gitlab.inria.fr/epichonp/lefschetz-family
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Naturellement, le temps d’exécution réel dépend de nombreux paramètres, no-
tamment de la taille des bits des coefficients de l’équation de définition et du
conditionnement de certaines étapes numériques, voir Section 5.2 pour des exemples
concrets. Le calcul des périodes holomorphes des surfaces quartiques K3 n’était pas
réalisable en un temps raisonnable avec l’algorithme précédemment connu (Sertöz,
2019), à l’exception de certaines surfaces quartiques définies par des polynômes
clairsemés.

Nous appliquons ensuite cette méthode pour reproduire des résultats récents
et fournir des preuves, à la fois numériques et exactes, de conjectures en symétrie
miroir et en géométrie arithmétique. Cela montre comment cet outil peut être utilisé
pour étudier la phénoménologie en géométrie algébrique et apporter un éclairage sur
certaines questions ouvertes.

Contenu
Soit f : X → P1(C) un morphisme de variétés projectives lisses. Soit b ∈ P1 un
point de base générique. Soit Σ ⊂ P1 l’ensemble de tous les t tels que Xt = f−1(t)
soit singulier. La fibration induit une action de π1(P1 \ Σ, b) sur Hn−1(Xb). Dans le
chapitre 2, nous montrons, principalement en suivant Lamotke (1981), comment cette
action de monodromie détermine l’homologie de X de manière explicite en termes de
groupes d’homologie de Xb. Le chapitre 3 décrit les méthodes de calcul utilisées pour
transformer les résultats du chapitre 2 en un algorithme fonctionnel. Les chapitres 4,
6 et 7 fournissent les détails relatifs aux cas respectivement d’intersections complètes,
de surfaces elliptiques et de double recouvrement de P2 ramifié le long d’une sextique
lisse. Le chapitre 5 détaille les calculs explicites dans le cas des surfaces quartiques, et
donne un aperçu de la complexité computationnelle. Les chapitres 8 et 9 fournissent
des exemples d’application respectivement à la symétrie miroir et à la géométrie
arithmétique. Enfin, le chapitre 10 donne un moyen de calculer la représentation de
monodromie d’une fibration en s’appuyant sur des tresses, comme une alternative
plus combinatoire aux méthodes du chapitre 3.



Introduction

Historically, periods see their birth with the study of elliptic integrals

x 7→
∫ x

a

dt√
P (t)

, (12)

where P is a polynomial of degree 3 or 4 without double roots. Such integrals have been of great
interest to mathematicians, dating back to the 18th century with works of Giulio Fagnano, Leonhard
Euler and Carl Friedrich Gauss. In particular, the latter showed that the inverse of a specific elliptic
integral, the lemniscate function, had the remarkable property of having two periods. This turned
out to be related to a general phenomenon appearing with elliptic curves: the inverse of an elliptic
integral is a Weierstrass P-function, which also show this biperiodic property. In fact, its periods
ω1, ω2 are precisely given by the integral of the holomorphic 1-form ω on a basis of the 1-cycles
γ1, γ2 of the elliptic curve:

ωi =
∫

γi

ω . (13)

In particular, one may realise the elliptic curve E as a complex torus obtained by taking the quotient
the complex plane by the lattice of periods

Λ =
{∫

γ

ω | γ is a 1-cycle of E

}
= ω1Z⊕ ω2Z . (14)

This quotient space C/Λ is the Jacobian of the elliptic curve. Notably, it turns out that E and
Jac(E) are isomorphic as abelian varieties.

For a complex algebraic curve C of arbitrary genus g ≥ 2, the space of holomorphic forms Ω1(C)
is higher dimensional. One may nonetheless define the period lattice in a similar fashion

Λ =
{(∫

γ

ω1, . . . ,

∫
γ

ωg

)}
⊂ Cg , (15)

where ω1, . . . , ωg is a basis of Ω1(C). Similarly, one may define the Jacobian Jac(C) of C as

Jac(C) = Cg/Λ . (16)

One may see that, after choosing a base point O ∈ C, we have a well defined analytic map

C → Jac(C) : P 7→

(∫ P

O

ω1, . . . ,

∫ P

O

ωg

)
, (17)

called the Abel-Jacobi map. The following theorem due to Torelli (1913) shows that the Jacobian of
a curve, and thus its periods, characterise it entirely.

12
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Theorem 4 (Torelli theorem for curves). Let C1, C2 be two smooth complex curves of genus g.
Then Jac(C1) and Jac(C2) are isomorphic as polarised complex tori if and only if C1 and C2 are
isomorphic.

This shows that the relation between the topological data of the singular homology and the
algebraic data of the cohomology of the curves encoded in the integration pairing contains very
precise information about the geometry of the curves. The numerical computation of periods
gives access to an approximate representation of the Jacobian, which in turn leads to interesting
invariants. This has for instance been used to compute some of the data related to genus 2 curves
in the LMFDB (Booker et al., 2016), such as the endomorphism rings (Costa et al., 2019) or the
Sato–Tate groups (Fité et al., 2012), which can be obtained by recovering integer relations between
the periods.

In fact, this phenomenon generalises beyond curves to certain classes of higher dimensional
varieties. In this setting, we define the k-th period matrix of a smooth complex variety X to be the
matrix of the de Rham pairing Hk(X )×Hk

DR(X )→ C between singular homology and (algebraic)
de Rham cohomology.

Theorem 5 (De Rham’s theorem, de Rham (1931)). Let X be a smooth compact manifold. The
integration pairing between de Rham cohomology Hk

DR(X ) and singular homology Hk(X )

([γ], [ω]) 7→
∫

γ

ω,

is perfect. In particular it expresses Hk
DR(X ) and Hk(X ) as duals of each other.

For curves, the de Rham cohomology splits in two subspaces of equal dimension, consisting
respectively of holomorphic and anti-holomorphic differential 1-forms. Similarly, for a smooth
complex projective variety X of dimension n, the middle algebraic DeRham cohomology admits a
Hodge decomposition

Hn
DR(X ) = H0,n(X )⊕H1,n−1(X )⊕ · · · ⊕Hn,0(X ) . (18)

When Hk
DR(X ) is endowed with this additional Hodge-theoretical structure, the period matrix

defines a remarkable continuous invariant of X which reflects the interplay between the complex
algebraic structure and the topological one (P. A. Griffiths, 1968; Carlson et al., 2017).

For curves, the periods relate cycles of singular homology to holomorphic forms of de Rham
cohomology, yielding the Jacobian. In higher dimensions, this relation similarly gives a polarisation
to the Hodge structure of X . As a generalisation to Torelli’s theorem, so called Torelli-type theorems
state that two algebraic varieties in the same class are isomorphic if and only if their polarised
Hodge structures are. Here “class” is meant to be taken broadly: an example of a class would
be smooth projective hypersurfaces of a given degree and dimension in Pn (see Donagi (1983)).
Another example, which will be relevant in this thesis, is the class of complex algebraic K3 surfaces
(Huybrechts, 2016).

Theorem 6 (Torelli-type theorem for K3 surfaces). Let X1 and X2 be two K3 algebraic surfaces.
Then X1 is isomorphic X2 if and only if their polarised Hodge structures are isomorphic.

Note that there are exceptions to Torelli-type theorems. Notably, smooth cubic surfaces are all
isomorphic to P2 blown up at 6 points. In particular, they are rational surfaces, and their Hodge
structure is thus contained in the middle piece H1,1(X ). In particular all cubic surfaces have the
same polarised Hodge structure.

Similarly to curves, periods of surfaces also lead to interesting invariants that are hard to compute
by other means. For example, for an algebraic surface X , Lefschetz’s theorem on (1, 1)-classes
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(P. Griffiths and Harris (1978, p. 163), see also Theorem 58 below) relates the integer relations
between the periods of X with the algebraic curves lying on X . Integer relations can be recovered
from numerical approximations of the periods thanks to lattice reduction algorithms (Lenstra et al.,
1982, 1982; Håstad et al., 1989; Ferguson & Bailey, 1992). This leads to a practical algorithm for
computing, heuristically, the Néron–Severi group of a surface in P3(C) (Lairez & Sertöz, 2019).
The appearance of explicit algebraic varieties in various fields of mathematics, such as Diophantine
approximation (Beukers & Peters, 1984) or mathematical physics (Bloch et al., 2015), is a strong
incentive for developing automatic methods to compute algebraic invariants. In a nutshell, periods
linearise some aspects of algebraic varieties, at the cost of introducing transcendental functions
through integration. This transcendental nature makes it difficult to compute exactly with periods,
but large precision (typically hundreds or thousands of decimal digits) may allow to recover exact
invariants (D. V. Chudnovsky & Chudnovsky, 1989).

Monodromy representation of families of varieties
Among these invariants, one we may recover exactly is the monodromy representation of a family of
smooth varieties over the punctured projective line. This is a key ingredient in the reconstruction
of the topological cycles necessary to compute the periods. It is also a relevant discrete invariant on
its own, providing insight into the variation of the Hodge structure of the generic fibre induced by
the fibration. A method, in some sense dual to the one presented in this thesis, for its computation
up to a global sign was developed in Dettweiler and Wewers (2006b, 2006a), where the focus was to
provide an algorithmic way to compute the parabolic cohomology using braid computations. This
method was built upon in Kostiuk (2018) and Doran and Kostiuk (2023) to investigate the Hodge
structures of certain towers of fibrations, in particular allowing for the study of the variations of
Hodge structures of some polarised elliptic K3 surfaces. As an application of our methods, we
will in this thesis compute the monodromy representation of certain K3-fibered Landau–Ginzburg
models appearing in homological mirror symmetry.

Complex multiplication of K3 surfaces
Another invariant we will consider is whether a variety has complex multiplication. For a complex
elliptic curve E, viewed as abelian varieties, this amounts to the existence of a non-trivial endomor-
phism E → E respecting both the group structure and the complex analytic structure. In terms
of periods, having complex multiplication is equivalent to the τ -invariant (the ratio of the two
holomorphic periods of E) being in a quadratic extension of Q. This may be checked numerically.
In higher dimensional Calabi–Yau manifolds, for K3 surfaces (which are no longer abelian varieties),
the notion of complex multiplication is generalised to mean that the Hodge structure has non-trivial
endomorphism, which again may be checked numerically in terms of periods. Such methods were
already developed in Lairez and Sertöz (2019) and Elsenhans and Jahnel (2022) — in this thesis we
apply them on new K3 surfaces for which the computations of periods were previously out of reach.

Feynman integrals
Periods appear in mathematical physics, and more precisely in perturbative quantum field theory,
as Feynman integrals. Feynman diagrams are graphs modelling the ways in which particles may
interact with each other. To each possible graph G, i.e., each possible interaction, is associated
an amplitude quantifying the probability that this specific interaction effectively happens. This
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amplitude is given by a Feynman integral IG, of the form

IG =
∫
Rn

+

Uν
G

Fs
G

Ω0 , (19)

where n is the number of internal edges of G and UG and FG are certain polynomials associated
to G, called Symanzik polynomials, Ω0 is the volume form of the ambiant space, and s and n are
parameters. Presented as such, these integrals are not proper periods: first, the integration cycle has
a boundary; second, in many cases, the variety defined by UG and FG is highly singular. Nonetheless,
work of Bloch et al. (2006) and Brown (2017) show that one may obtain an understanding as a
period by using a series of linear blow-ups in the ambiant projective space. While we will not
focus on this aspect of Feynman integrals further in this thesis, we will showcase how our methods
may apply to certain Feynman graphs by recovering geometric invariants of the Feynman integral
associated to the a certain graph, the Tardigrade graph.

Related works
Algorithms for computing period matrices of curves (also known as Riemann matrices) are well
established, with work by Deconinck and van Hoeij (2001), Swierczewski (2017), Bruin et al. (2019),
Molin and Neurohr (2019), and Neurohr (2018), to name a few. The papers by Cynk and van
Straten (2019) and Elsenhans and Jahnel (2022) are the first to tackle higher dimensions in some
particular cases: double covers of P3(C) ramified along 8 planes, and double covers of P2(C) ramified
along 6 lines, respectively. The algorithm by Sertöz (2019) is the first and only algorithm to tackle
the case of smooth hypersurfaces in any dimension. It proceeds in the following way. Assume you
wish to compute the period ∫

γ

Ω2

x3 + y3 + z3 + xyz
, (20)

where γ is a cycle of the complement in P2 of the elliptic curve E = V (x3 + y3 + z3 + xyz) ⊂ P2

and Ω2 = xdy ∧ dz − ydx ∧ dz + zdy ∧ dz is the volume form of P2. One way to proceed is to
instead consider the relative period

π(t) =
∫

γ(t)

Ω2

x3 + y3 + z3 + txyz
, (21)

where γ(t) is the deformation of γ with respect to t. Then the intial value we wanted to compute is
π(1). One may show that π is solution to a differential operator in t, its Picard–Fuchs equation

L = (t3 + 27)∂2
t + 3t2∂t + t . (22)

Furthermore, the value of π(0) is a period of the Fermat elliptic curve V (x3 + y3 + z3). From
work of Pham (1965) and Sertöz (2019) formulae for the periods of Fermat hypersurfaces have been
worked out in terms of values of Gamma functions. Therefore, using numerical analytic continuation
software, one may obtain a numerical approximation with certified precision bounds of the period
(20) from the data of the values of π at 0, as well as its derivatives’ (which are also periods of the
Fermat elliptic curve), and the Picard–Fuchs equation.

In practice, this method faces computational challenges when trying to compute the periods of
hypersurfaces far (in terms of the defining equation) from the Fermat hypersurfaces. Indeed, for
the case of quartic K3 surfaces in P3, the operators that need to be integrated have order 21 and,
in practice, high degree, and current numerical analytic continuation software does not allow to
integrate such operators in reasonable time. Furthermore, generalising this method to other types
of varieties, say complete intersections, would require the equivalent of the Fermat variety in this
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setting — that is, a variety for which the periods are known, and from which the goal variety is
attainable by deformation.

In a nutshell, the method presented in this text answers these two points. The main idea is
to have a general way to obtain an effective description of the cycles, so that the periods may be
integrated ad hoc. This is more efficient than deforming, in most cases, because the Picard–Fuchs
equation related to the integration step that is internal to the variety is generally much smaller than
the Picard–Fuchs differential equation associated to its deformation. For example, for a quartic
K3 surface, the order drops from 21 to 4, or even 2 when the K3 surface is elliptic. This method
is also more intrinsic, which gives it the potential to study varieties beyond smooth projective
hypersurfaces.

Computing a period matrix of an algebraic variety requires to address, in one way or another,
three computational problems reflecting the very definition of a period matrix: first, compute a basis
of the homology, second, compute a basis of the cohomology, and, third, compute the coefficients of
the pairing of (5) by numerical integration. Each of these problems is related to a different research
field.

Singular homology

Computing a basis of the singular homology is a major obstacle. While there are algorithms for
computing the homology of submanifolds of Rn from sample points (Niyogi et al., 2008; Cucker
et al., 2018) they seem challenging to implement and exploit. A complex surface in P3(C) is already
a 4-dimensional real manifold in a 6-dimensional ambient space. Recent experiments suggest that
the number of samples required to compute rigorously the homology is rather large (Di Rocco
et al., 2020) compared to the Betti numbers. Furthermore, we do not know how to use such a data
structure (homology computed from sample points) to efficiently compute periods.

In the case of curves, the problem reduces to computing the monodromy action on the roots
of a univariate polynomial depending on a parameter (Tretkoff & Tretkoff, 1984). In the case
of projective hypersurfaces, Sertöz’ algorithm deals with the problem indirectly and only need a
description of the homology of Fermat hypersurface, which has been worked out by (Pham, 1965).

De Rham cohomology

The algebraic de Rham cohomology, in the case of projective hypersurfaces, is well described by
the Griffiths–Dwork reduction (P. A. Griffiths, 1969), both theoretically and computationally (see
Section 3.1). There are also algorithms for the affine case (Oaku & Takayama, 1999), but we are not
aware of any algorithm for the general case of a projective variety (not to mention that there are
also projective varieties that are not naturally embedded in a projective space, like multiprojective
varieties, or fibrations). In the case case of elliptic surfaces, work of Stiller (1987) allows to obtain
a description of a piece of the cohomology of the surface together with the Hodge filtration from
the Picard–Fuchs equation. Conveniently, this piece is sufficient to recover the full Hodge structure
in the case of elliptic K3 surfaces.

Numerical integration

For the integration step, a direct approach seems possible. If the homology basis is sufficently
explicit, and if we can numerically evaluate the differential forms defining the cohomology basis at
any given point, we can certainly compute the pairing of (5).

However we aim for high precision, so all finite-order quadrature methods (like Simpson’s rule
or Monte-Carlo algorithms) are ruled out because they have exponential complexity with respect to
precision. The periods are n-dimensional integrals of algebraic functions, where n is the complex
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dimension of X. Assuming that we can formulate them as integrals over a n-simplex, or [0, 1]n, we
can compute them with the Gauss–Legendre quadrature formula. We expect a pn+1+o(1) complexity
with respect to the precision p. For computing the periods of curves, this is a p2+o(1) complexity
and this method is the most commonly used. In our method, we use numerical analytic continuation
of differentially finite functions to compute integrals. The complexity is quasilinear with respect to
precision, p1+o(1), thanks to binary splitting. Numerical analytic continuation is also what we use
to compute monodromy actions, so it is natural to use it for integration as well. Note however that,
in our typical computations (involving large degree differential operators and large but not extreme
precision), we are far from the threshold where binary splitting gets better than p2+o(1) methods.

Contributions
We provide a general framework for computing numerical approximations of the period matrices of
certain projective varieties, and detail the application to the case of complete intersections and
elliptic surfaces. Let X ⊂ Pn(C) be a projective variety. A major obstacle in the computation of
the period matrices for X is the lack of algorithms for computing an explicit description of the
singular homology of X . By “explicit”, we mean explicit enough to be able to perform numerical
integration over a basis of cycles. We provide an algorithm for computing at the same time:

1. an explicit basis of the singular homology of X;

2. a numerical approximation, with rigorous error bounds, of the period matrix of X with respect
to this homology basis, and the Griffiths–Dwork cohomology basis.

With respect to precision only, the complexity of the algorithm is quasilinear: computing twice as
many digits takes roughly twice as much time. Note that, as a specificity of projective complete
intersections, only the n-th period matrix of X is interesting, the other ones are trivial (1 × 1
or 0× 0 matrices).

The algorithm may be used to compute the period matrix of any complete intersection. The
algorithm relies on a fibration of the variety X → P1 over the projective line, where the periods
of the generic fibre Xt = f−1(t) can be computed. In the case of elliptic surfaces, this fibration is
part of input data. In the other considered cases, it is obtained by considering a one-parameter
family of hyperplane sections X ∩Ht, following the principles of Picard–Lefschetz theory (Lefschetz,
1924; Lamotke, 1981). An important step of the algorithm is the computation of the monodromy
action induced by this family of sections on the homology Hn−1(Xb) of one section (above a chosen
basepoint b ∈ P1). We perform this computation through duality with de Rham cohomology, using
the period matrix of Xb which can be obtained by induction on dimension as dimXb = dimX − 1.

To perform the numerical integration, we reduce to one-variable contour integrals of rational
multiples of the periods of Hn−1(Xt). Since these periods are solutions of a Picard–Fuchs differential
equation, which we can compute explicitly, we can perform the integration using general algorithms
for integration of differentially finite functions (van der Hoeven, 1999; Mezzarobba, 2010). These
algorithms provide rigorous error bounds with quasilinear complexity with respect to precision.

On the practical side, we have implemented the above algorithm in SageMath (The Sage
Developers, 2023), together with the computation of related invariants (Picard rank, Néron–Severi
group, endomorphism ring) for the cases of hypersurfaces, elliptic surfaces, and double covers of
a projective space ramified along a smooth hypersurface. This implementation can be found in
the package lefschetz-family2. We are able to compute the periods of the holomorphic form
of a smooth quartic K3 surface in P3(C) defined over Q in, typically, about an hour on a laptop,
with 300 decimal digits of precision. The computation is much faster for elliptic K3 surface, taking

2https://gitlab.inria.fr/epichonp/lefschetz-family

https://gitlab.inria.fr/epichonp/lefschetz-family


18

around 15 seconds to obtain the same result, but the method is restricted to the computation of
the holomorphic periods. For K3 surfaces given as double covers of P2 ramified along a sextic, the
same computation takes around 2 minutes.

Naturally, the actual running time depends on many parameters, including the bitsize of the
coefficients of the defining equation, and the conditioning of some numerical steps, see Section 5.2
for concrete examples. The computation of the holomorphic periods of quartic K3 surfaces was not
feasible in reasonable time with the previously known algorithm (Sertöz, 2019), except for some
quartic surfaces defined by sparse polynomials.

We then apply this method to reproduce recent results and provide evidence, both numerical
and exact, of conjectures in mirror symmetry and arithmetic geometry. This showcases how this
tool may be used to study phenomenology in algebraic geometry, and hopefully bring insight into
open questions.

Content
Let f : X → P1(C) be a morphism of smooth projective varieties. Let b ∈ P1 be a generic base
point. Let Σ ⊂ P1 be the set of all t such that Xt = f−1(t) is singular. The fibration induces an
action of π1(P1 \ Σ, b) on Hn−1(Xb). In Chapter 2, we show, mostly following Lamotke (1981),
how this monodromy action determines the homology of X in an explicit way in terms of the
homology groups of Xb. Chapter 3 describes the computational methods that are used to turn
the results of Chapter 2 into a working algorithm. Chapter 4, Chapter 6, Chapter 7 provide the
details pertaining to the cases of respectively complete intersections, elliptic surfaces and double
cover of P2 ramified along a smooth sextic. Chapter 5 details explicit computations in the case of
quartic surfaces, and provides insight into the computational complexity. Chapter 8 and Chapter 9
provide examples of application to respectively mirror symmetry and arithmetic geometry. Finally,
Chapter 10 gives a way to compute the monodromy representation of a fibration relying on braids,
as a more combinatorial alternative to the methods of Chapter 3.



Contents

I Computation of periods 23

1 Preliminaries 24
1.1 Local systems and the Gauss-Manin connection . . . . . . . . . . . . . . . . . . . . 24
1.2 Hodge structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Variation of Hodge structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 De Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Homology of fibrations 31
2.1 Monodromy and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 The extension sublattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Lefschetz fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Vanishing cycles and thimbles . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Homology of Lefschetz fibrations . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 The intersection product of extensions . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Projective complete intersections . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 The non-Lefschetz case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Numerical methods 43
3.1 The de Rham cohomology of hypersurfaces . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Computing the Gauss-Manin connection . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Numerical analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Computation of the monodromy matrices of a Lefschetz fibration . . . . . . . . . . 48
3.5 Computation of a homology basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Integrating the period matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Smooth complete intersections 53
4.1 Computation of the primitive period matrix . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Removing blow-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Exceptional divisors as thimbles . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Monodromy action on relative homology . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Intersection product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Wrapup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

19



CONTENTS 20

5 Practical aspects for hypersurfaces 65
5.1 An explicit example: quartic surface . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Constructing the Lefschetz fibration . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Computing cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 The action of monodromy on H1(Xb), thimbles, and recovering H2(Y ) . . . 66
5.1.4 Integrating forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.5 Recovering PH2(X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Explicit examples and benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 An application: Picard rank of families of quartic surfaces . . . . . . . . . . 70
5.2.3 An example from Feynman integrals: the Tardigrade Graph . . . . . . . . . 76

6 Elliptic surfaces 78
6.1 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 The Kodaira classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Homology and periods of elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Morsifications of elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.1 Global homology and periods . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Recovering algebraic invariants of elliptic surfaces . . . . . . . . . . . . . . . . . . . 86

6.5.1 The cohomology of elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . 86
6.5.2 Computing the Néron–Severi lattice . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Explicit example: an elliptic curve with high Mordell–Weil rank over Q . . . . . . 88

7 Ramified double covers of projective space 91
7.1 Cohomology of ramified double covers of projective space . . . . . . . . . . . . . . 91

7.1.1 Weighted projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1.2 Griffiths-Dwork reduction for double covers . . . . . . . . . . . . . . . . . . 92

7.2 An explicit example: double covers of P2 ramified along a smooth sexctic . . . . . 93
7.2.1 Constructing the Lefschetz fibration . . . . . . . . . . . . . . . . . . . . . . 93
7.2.2 Computing cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.3 The action of monodromy on H1(Xb), thimbles, and recovering H2(Y) . . . 94
7.2.4 Integrating forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.5 Recovering PH2(X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Application: double covers along sums of 3, 4, or 5 monomials . . . . . . . . . . . . 96
7.3.1 The endomorphism ring of K3 surfaces . . . . . . . . . . . . . . . . . . . . . 97

7.4 Beyond smooth ramification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II Perspectives 102

8 Applications in homological mirror symmetry 103
8.1 Mirrors of Fano threefolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.1.1 The monodromy representation of the Fano threefolds . . . . . . . . . . . . 105
8.2 Degenerations of K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1 Type III degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.2 Type II degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.3 Allowable loops of elliptic fibration of M -polarised K3 surfaces . . . . . . . . . . . 109
8.3.1 The standard fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.2 The alternate fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



CONTENTS 21

8.3.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9 Numerical check of the Deligne conjecture 115
9.1 Topology and periods of fibered product of elliptic surfaces . . . . . . . . . . . . . 115

9.1.1 The cohomology of X and Deligne’s period . . . . . . . . . . . . . . . . . . 116
9.2 L-functions and Deligne’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2.1 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2.2 Numerical check of Deligne’s conjecture . . . . . . . . . . . . . . . . . . . . 117

10 Braids and monodromy 119
10.1 Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10.1.1 Action on monodromy representation . . . . . . . . . . . . . . . . . . . . . . 120
10.1.2 Link to parabolic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.2 Computing braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



CONTENTS 22

M. Picard a donné à ces intégrales le nom de périodes; je ne saurais l’en blâmer
puisque cette dénomination lui a permis d’exprimer dans un langage plus concis les
intéressants résultats auxquels il est parvenu. Mais je crois qu’il serait fâcheux qu’elle
s’introduisît définitivement dans la science et qu’elle serait propre à engendrer de
nombreuses confusions.

Mr. Picard gave to these integrals the name of periods; I cannot blame him as this
denomination allowed him to express in a more concise language the interesting
results which he reached. However I believe it would be unfortunate if it were to be
definitively introduced into science, and would be likely to generate many confusions.

Henri Poincaré
Sur les résidus d’intégrales doubles, 1886
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Chapter 1

Preliminaries

In the entirety of the thesis, unless explicitly stated otherwise, Hn(X ) will denote the singular
homology with integral coefficients, while Hn

DR(X ) will designate the algebraic DeRham cohomology
with complex coefficients.

1.1 Local systems and the Gauss-Manin connection
In this section we recall the formalism of local systems, which conveniently encodes the data of the
fibration that is necessary for our investigation. To the interested reader, we recommend checking
Doran and Kostiuk (2023) and Kostiuk (2018) for further reading on the topic, notably in the case
of elliptic surfaces.

Let U be a topological space and R a commutative ring.

Definition 1. A local system of R-modules on U is a locally constant sheaf of free R-modules of
finite rank.

We denote by Vx the stalk at x ∈ U , and by s its rank. Given a basepoint b ∈ U , the fundamental
group π1(U, b) acts on Vb.

Definition 2. The monodromy representation of V is the group representation ρ : π1(U, b) →
GL(Vb).

In practice we will be interested in cases where U is the projective line punctured at finitely
many points c1, . . . , cr. In that case π1(U, b) is a free group generated by r−1 elements γ1, . . . , γr−1
consisting of simple counterclockwise loops around c1, . . . , cr−1 respectively. To preserve the
symmetry, we will also consider the simple loop around γr, and we assume that these loops are
chosen so that their composition is trivial:

ℓr . . . ℓ1 = 1 , (1.1)

where the product is the element that goes through ℓ1, then ℓ2, etc. up to ℓr.
Then, fixing a basis γ1, . . . , γs of Vb, the monodromy representation can be encoded into a

r-tuple of s× s matrices M1, . . . , Mr, such that

Mr . . . M1 = Is , (1.2)

where Is is the identity matrix of size s. Ms acts by multiplication on the left on vectors (a1, . . . , as)
representing an element γ = a1γ1 + · · ·+ asγs ∈ Vb.

24
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The Gauss-Manin connection and Picard–Fuchs equations

Local systems are very closely related to flat connections. Let U = P1 \Σ denote the projective line
punctured at finitely many points Σ = {c1, . . . , cr}. Let V be a locally constant sheaf on U .

Definition 3. A connection on F is a C-linear homomorphism

∇ : F → F ⊗ Ω1
U (1.3)

satisfying the Leibniz rule
∇(fs) = df ⊗ s + f∇s . (1.4)

A connection extends to a C-linear map ∇i : F⊗Ωi
U → F⊗Ωi+1

U ; it is said to be flat (or integrable)
when ∇1 ◦ ∇ = 0

If F is a local system on U , then we can define a flat connection on OU ⊗ F by setting
∇(f ⊗ s) = df ⊗ s. This is known as the Gauss-Manin connection associated to the local system F .
Conversely a flat connection ∇ defines a local system F by F = ker∇.

Let ω be a section of OU ⊗ Vt. As Vt has finite rank, there exist an integer s and rational
functions f0, . . . , fs ∈ OU such that

f0ω + f1∇ω + · · ·+ fs∇sω = 0 . (1.5)

When s is minimal, when the fi’s are polynomials and coprime, then the differential operator
L = f0 + f1∇+ · · ·+ fs∇s is called the Picard–Fuchs operator or Picard–Fuchs equation of ω. As
we will see in Section 3.4, the Picard–Fuchs operator of a well chosen section ω encodes a lot of
information about the local system. In particular, it will provide us with a means to efficiently
compute the monodromy representations Hn(X/U,Z). For now, let us simply state a regularity
theorem for Picard–Fuchs operators:

Theorem 7. Any Picard–Fuchs operator stemming from a variation of Hodge structure is Fuchsian,
i.e., at every point s ∈ P1 admits a basis of solutions of the form

(t− s)ν(σ0(t) + σ1(t) log(t− s) + · · ·+ σr(t) log(t− s)k

k! ) with ν ∈ Q , (1.6)

where the σi’s are holomorphic functions around s.

Variation of local systems

We will also be interested in the varying a local system with respect to a parameter: the configuration
of the points c1, . . . , cr will vary with the parameter, and this will induce a monodromy action on
π1(U, b), and thus on V. This is formalised by the notion of variation of local systems.

Let A be a connected complex manifold and r ≥ 3.

Definition 4. An r-configuration over A is a smooth proper morphism f : T → A of complex
manifolds together with a smooth relative divisor D ⊂ X such that the fibres Tt = f−1(t) are
isomorphic to P1 and D ∩ Tt consists of r pairwise distinct points.

Definition 5. Fix an r-configuration (T, D) over A and a basepoint a0 ∈ A. Define U = T \D

and set Ut = (T \D) ∩ Xt and assume U0 ≃ P1 \ {c1, . . . , cr}. Let V0 be a local system on Ua0 . A
variation of the local system V0 over (T, D) is a local system V on U whose restriction to Ua0 is
identified with V0.
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In practice we will be interested in the following construction: We will be considering a one
parameter algebraic family Xu of varieties equipped with a projection fu : Xu → P1. For a fixed
generic u, the critical values of fu will be the roots of a minimal squarefree polynomial P . The
coefficients of P are themselves polynomial in the parameter u. We thus consider P ∈ Q[u, t]. Let Σ̃
be the set of u ∈ C such that the polynomial t 7→ P (u, t) has distinct roots. In other words, Σ̃ is the
union of the set of roots of the discriminant discru P in u of P with the set of roots of the leading
coefficient in t of P . We then set A = C \ Σ̃, T = P1 ×A and D = {(u, t) ∈ P1 ×A | P (u, t) = 0}.
The projection D → A is a locally trivial fibration. The deformation of the fibre Du with respect to
u will induce a braid on r strands, which in turn will induce an automorphism of the local system
V: the monodromy. This will be the topic of Chapter 10.

1.2 Hodge structure
Let n be an integer.

Definition 6. A Hodge structure of weight n is a free Z-module of finite rank HZ together with a
decomposition of its complexification HC

def= HZ⊗C in a direct sum of subspaces HC =
⊕n

k=0 Hk,n−k

such that
∀p, q ∈ Z, p + q = n =⇒ Hp,q = Hq,p (1.7)

We will denote the dimension of these vector spaces as hp,q = dim Hp,q.

Equivalently, we may consider Hodge filtrations:

Definition 7. A Hodge filtration of weight n is a Z-module HZ together with a finite decreasing
filtration of its complexification HC by subspaces F iH such that

∀p, q ∈ Z, p + q = n + 1 =⇒ HC = FpH ⊕FqH . (1.8)

One may check that these two concepts are equivalent with the relationship

Hp,q = FpH ∩ FqH and FpH =
n⊕

i=p

Hp,n−p . (1.9)

Definition 8. A polarized Hodge structure of weight n is the data of a Hodge structure HZ, Hp,q

of weight n together with a bilinear form ⟨·, ·⟩ : HZ ×HZ → Z, such that:

• ⟨γ1, γ2⟩ = (−1)n⟨γ2, γ1⟩′ for all γ1, γ2 in HZ

• ⟨γ1, γ2⟩ = 0 for γ1 ∈ Hp,n−p and γ2 ∈ Hn−q,q with p ̸= q

The middle de Rham cohomology of an n-dimensional complex projective variety X inherits a
Hodge filtration from its Kähler manifold structure. The de Rham theorem embeds the complex-
ification of the dual of the singular homology Hn(X , Z) ⊗ C in Hn

DR(X ,C) and the intersection
product induces a polarisation. It turns out that the polarised Hodge structure often carries lots of
information about the X . This is the content of Torelli-type theorems. In order to be more precise,
we first need to define Hodge isometries. Let 1HZ and 2HZ be two polarised Hodge structures.

Definition 9. A Hodge isometry between 1HZ and 2HZ is a Z-linear map h : 1HZ → 2HZ such
that

• it respects the polarization: ⟨h(γ1), h(γ2)⟩2 = ⟨γ1, γ2⟩1;
• the induced map hC : 1HC → 2HC respect the Hodge structure: for all p, q h(1Hp,q) = 2Hp,q
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We also define Hodge bases, which are bases respecting the Hodge filtration. Let r = dim HC
and rp = dimFpH.

Definition 10. A Hodge basis of HC is a basis ω1, . . . , ωr of HC such that

⟨ω1, . . . , ωrp
⟩ = FpH . (1.10)

1.3 Variation of Hodge structures
We will now consider a smooth map between projective varieties π : X → U and set n = dimX −
dim U . The deformation of a smooth fibre with respect to the parameter in U will be of major
relevance to the work presented in this thesis. In particular we will be interested in the variation of
the Hodge structure of the middle cohomology group of the fibre.

Definition 11. A polarized variation of Hodge structure on U of weight n is the data of:

• a local system HZ of free Z-modules of finite rank on U ,
• a finite decreasing filtration F∗ of HZ ⊗OU by holomorphic subvectormodules such that F∗

induces a Hodge filtration on each fibre Ht of HZ,
• a flat non-degenerate integral bilinear form on HZ inducing a polarisation of each fibre Ht,

further satisfying Griffiths transversality:

∇Fp ⊂ Fp−1 ⊗ Ω1
U , (1.11)

where ∇ is the Gauss-Manin connection on HZ. The flatness of the bilinear form means that
d⟨s, s′⟩ = ⟨∇s, s′⟩+ ⟨s,∇s′⟩.

The fibration π can induces a variation of Hodge structure on the middle relative de Rham
cohomology group of X . The middle de Rham cohomology groups of the fibres of π can be encoded
into a sheaf H(X/U) of OU -modules, called the relative de Rham cohomology of the fibration. It
can be defined in general as the n-th derived functor on the sheaf of U -differentials on X (Katz
& Oda, 1968). In all the cases we will consider, U will be a subset of the complex projective
line. When relevant, we will offer a more explicit (i.e., less categorical) definition of this sheaf of
C(t)-modules.

Remark 8. This should not be confused with the relative homology of a pair (X, A), which does
not concern fibrations. Both are relevant and will be used throughout the thesis. It should be most of
the time clear when one is meant instead of the other. We will be careful to be clear when ambiguity
may arise.

1.4 De Rham cohomology
We now have the vocabulary to state everything we want about de Rham cohomology. We first
start by defining it.

Definition

Let X be a smooth complex projective variety of dimension n and denote by OX its ring of regular
functions. We may define its sheaf Ω1

X of differential 1-forms, dual to the tangent bundle of X
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Further define the sheaves of differential i-th forms Ωi
X =

∧i Ω1
X (the i-th exterior power of Ω1

X ).
Finally, define d : Ωi

X → Ωi+1
X the exterior differential. This gives rise to the de Rham complex of X

0→ OX → Ω1
X → · · · → Ω2n

X → 0 . (1.12)

The cohomology of this complex gives rise to the de Rham cohomology groups Hi
DR(X ) of X , which

are finitely generated Q-vector spaces.
The complex structure of X provides it with the structure of a Kähler 2n-manifold. In particular,

Ω1
X is generated by holomorphic differentials dz1, . . . , dzn and their antiholomorphic counterparts

dz1, . . . , dzn. In particular this gives rise to a decomposition

Ωk
X = Ω0,k

X ⊕ Ω1,k−1
X ⊕ · · · ⊕ Ωk,0

X , (1.13)

where Ωk,0
X is the space of holomorphic differential k-forms, Ω0,k

X that of antiholomorphic k-forms,
and Ωk,k′

X = Ωk,0
X ∧ Ω0,k′

X .
This induces a similar decomposition, called the Hodge decomposition on the cohomology groups:

Hk
DR(X ) = H0,k

DR(X )⊕ · · · ⊕Hk,0
DR(X ) . (1.14)

This decomposition equips the k-th de Rham cohomology group with a Hodge structure of weight
k.

Singular homology and the de Rham theorem

The singular homology of X can be similarly defined from the complex of singular chains on X. A
singular n-simplex is a continuous map σ : ∆n → X , where ∆n is the standard n-simplex. The
space Cn(X ) of n-chains on X is then defined to be space of formal sums of singular simplices with
integral coefficients.

Simplices come with a boundary, denoted δσ. It is the formal sum of the singular (n − 1)-
simplices induced by the ordered faces of ∆n, with a certain sign. It induces a differential
∂ : Cn(X)→ Cn−1(X ), and one may show that ∂ ◦ ∂ = 0. We thus obtain the singular complex of
X

0→ C2n(X )→ · · · → C0(X )→ 0 . (1.15)

We derive the singular homology groups Hn(X ) from this complex, which again can be proven to
be finitely generated Z-modules. Elements of Hn(X ) are called n-cycles.

One may integrate an n-form ω ∈ Ωn
X on an n-simplex σ using to the following formula:∫
σ

ω
def=
∫

∆n

σ∗ω ∈ C , (1.16)

where σ∗ω is the pullback of ω by σ. By linearity this extends to a bilinear map Cn(X )×Ωn
X → C.

One may show as a consequence of Stokes’ theorem that this map induces a bilinear pairing between
the singular homology and de Rham cohomology groups of X :

Hn(X )×Hn
DR(X )→ C : (γ, ω) 7→

∫
γ

ω . (1.17)

We then have the following theorem due to Georges de Rham:

Theorem 9 (De Rham theorem, de Rham (1931)). The integration pairing Hn(X )×Hn
DR(X )→ C,

γ, ω →
∫

γ
ω is perfect. In other words, it establishes Hn

DR(X ) as the dual of (the complexification
of) Hn(X ).
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Remark 10. More precisely, de Rham proved that this pairing was perfect for the analytic de Rham
cohomology, derived from the complex of smooth differential forms; Grothendieck later proved that
the algebraic and analytic de Rham cohomology were naturally isomorphic.

We will denote by Hn(X ,Z) ⊂ Hn
DR(X ) the embedding of the singular homology of X in (the

complexification of) its de Rham cohomology.

The intersection product

Let γ1, γ2 ∈ Hn(X ). Assume we may find n-chains A1 and A2 representing γ1 and γ2, such that
their intersection is transverse. We then define the intersection product ⟨A1, A2⟩ ∈ Z to be their
number of intersection points, counted with orientation. One may show that this number does not
depend on the choice of representatives A1 and A2 but only on their homology class. In particular,
it extends to a bilinear pairing

⟨·, ·⟩ : Hn(X )×Hn(X )→ Z (1.18)

called the intersection product of Hn(X ). It equips Hn(X ) (and a fortiori Hn(X ,Z)) with the
structure of a non-degenerate unimodular integral lattice. Furthermore, the embedding of Hn(X ) in
Hn

DR(X ) equips it with the structure of a polarised Hodge structure.

Relative de Rham cohomology

When π : X → U is a projective family (meaning that X locally embeds into P1×U , with the family
given by the projection onto the second factor), one may similarly define the sheaf of relative de
Rham cohomology groups H∗(X/U): it is a locally constant sheaf of OU -modules of finite rank. The
fibre above u is given by de Rham cohomology groups H∗

DR(π−1(u)). Furthermore, the inclusion
Hn(X ,Z) ⊂ Hn

DR(X ) glues to yield a subsheaf Hn(X/U,Z) ⊂ Hn(X/U) of Z-modules: it defines
a local system. We may thus define the Gauss-Manin connection of Hn(X/U) as the unique
connection ∇ such that ker∇ = Hn(X/U,Z).

All in all, we see that Hn(X/U) is equipped with a variation of polarised Hodge structures,
where the polarisation is induced by the intersection product on Hn(X ).
The monodromy representation of H(X/U) at b is contained in the subgroup of GL(Hn(Xb, Z))
fixing the intersection product. In particular, the eigenvalues of the monodromy maps are all roots
of unity.

1.5 K3 surfaces
Among algebraic curves, elliptic curves are the ones exhibiting the most structure. Their set
of points have a natural group structure, the Mordell–Weil group. Their moduli space is well
understood.

Thus one may naturally be inclined to find a generalisation of such varieties to higher dimensions.
One possible direction which we will not expand on is that of abelian varieties, i.e., varieties equipped
with a group structure. Another one that is of interest to us is that of Calabi-Yau varieties.

Along with complex tori, K3 surfaces are the Calabi-Yau varieties of dimension 2. Their topology
is well studied. They are all diffeomorphic, and their middle homology has rank 22. Its lattice
structure has signature 19, 3, and is even. By the classification of unimodular indefinite even lattices,
it is isomorphic to the standard K3 lattice.

Definition 12. The standard K3 lattice is the unimodular even lattice

ΛK3 = E8(−1)⊕ E8(−1)⊕H ⊕H ⊕H . (1.19)
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Beyond their topology, K3 surfaces exhibit interesting algebro-geometric invariants. Let X be a
complex K3 surface. Its middle Hodge numbers are h2,0 = h0,2 = 1 and (consequently) h1,1 = 20.
In particular its polarised Hodge structure is entirely determined by its holomorphic periods. Let
ω ∈ H2,0

DR(X ) be a generator of the space of rational holomorphic 2-forms.

Definition 13. The holomorphic period map of X is the map

πω : Hn(X )→ C : γ 7→
∫

γ

ω . (1.20)

It is only defined up to the choice of ω, i.e., up to multiplication by a scalar in C×.

Definition 14. The Néron–Severi group or Picard lattice of X is the subspace

NS(X ) = H2(X ,Z) ∩H1,1(X ) . (1.21)

Its rank ρ is called the Picard rank of X .

The Picard lattice is an algebraic invariant of the K3 surface, which may be recovered by
computing the periods It is equipped with a lattice structure, which by the Hodge index theorem
has signature 1, ρ− 1 By the Lefschetz (1, 1) theorem, this subspace is precisely the kernel of the
holomorphic period map. In particular this will provide us with a means to recover the Néron–Severi
group from numerical approximations of periods of X .

Theorem 11 (Lefschetz (1, 1) theorem for K3 surfaces).

NS(X ) = ker πω . (1.22)

The Torelli theorem for K3 surface (see Huybrechts (2016)) states that the polarised Hodge
structure of a K3 surface determines its isomorphism class. In particular, this means that, given a
choice of an isometry H2(X ) ≃ ΛK3, we may associate a point in

ΩK3
def= {[ω] ∈ P(ΛK3 ⊗ C) | ⟨ω, ω⟩ = 0, ⟨ω, ω⟩ > 0} , (1.23)

where the conditions on ⟨ω, ω⟩ and ⟨ω, ω⟩ follow from Hodge theoretic reasons. The 20-dimensional
complex manifold ΩK3 is the period space of K3 surfaces. The Torelli theorem can then be restated
as such:

Theorem 12 (Torelli theorem for K3 surfaces). Two K3 surfaces X1 and X2 are isomorphic if
and only if there exist a choice of isometries H2(X1) ≃ ΛK3 and H2(X2) ≃ ΛK3 that send the
holomorphic forms to the same point in ΩK3.

The tools we will develop in this thesis allow to compute a numerical approximation of the point
in the period space corresponding to a K3 surface given by its defining equation. These will appear
in three different forms throughout this thesis, in decreasing computational complexity:

• as quartic surfaces in P3, yielding a genus 3 fibration;
• as double covers of P2 ramified along a sextic curve (or equivalently complete intersections of

degree (2, 3) in P4), yielding a genus 2 fibration;
• or finally as elliptic surfaces, i.e., genus 1 fibrations.

For (much!) more thorough overview of K3 surfaces, we encourage the interested reader to turn
to Huybrechts (2016) and the very nice exposition of Harder and Thompson (2015).



Chapter 2

The homology of fibrations

In this chapter, we leave the realms of algebraic geometry and focus on algebraic topology. Our goal
is to obtain an effective description of the homology of the total space of certain families of algebraic
varieties to allow for the integration of periods. We do so by following the now 100-years-old
groundbreaking ideas of Solomon Lefschetz in his book “L’analysis situs et la géométrie algébrique”,
which would lead to the developments of algebraic topology in the following decades. The reason
why this approach is particularly interesting to us is that it is effective — in particular they will
provide us with an explicit description of the cycles of homology on which we will be able to
effectively and efficiently integrate the periods. This is the content of Chapter 3.

2.1 Monodromy and extensions
We first recall the concepts of monodromy and extensions, following closely Lamotke (1981, §6.4).
Let f : X → P1 be a smooth proper map . The fibre above a point t ∈ P1 is denote Xt = f−1(t).
We assume that for all but finitely many t ∈ P1, Xt is smooth. The values c1, . . . , cr above which
Xci

is not smooth are called critical values. We denote by Σ = {c1, . . . , cr} the set of critical values.

2.1.1 Monodromy
By Ehresmann’s theorem, the restriction of f to f−1(P1 \Σ) is a smooth fibre bundle: for any simply
connected open set U ⊆ P1 \ Σ and any b ∈ U , there is a diffeomorphism ΦU : f−1(U)→ Xb × U

with the compatibility pr2 ◦ΦU = f |f−1(U) and pr1 ◦ΦU |Xb
= idXb

. Such a diffeomorphism is called
a trivialisation.

In particular, for any continuous path ℓ : [0, 1] → P1 \ Σ without self intersection from a
point b = ℓ(0) to another b′ = ℓ(1), we obtain a continuous deformation of Xb into Xb′ . Namely,
we pick a simply connected neighbourhood U of ℓ([0, 1]) and we have an induced diffeomorphism

Xb → Xb′ , x 7→ Φ−1
U (x, b′) , (2.1)

depending on the choice of a trivialisation. This diffeomorphism is uniquely determined up to
homotopy. Thus, it induces a well-defined determined isomorphism ℓ∗ : Hq(Xb) → Hq(Xb′), for
any q. This map depends only on the homotopy class of ℓ in P1 \ Σ. This is the action of
monodromy along ℓ on homology. To extend this notion to self-intersecting paths, we cut the paths
into non-self-intersecting pieces and compose the actions of each piece. For any paths ℓ and ℓ′,
with ℓ(1) = ℓ′(0), let ℓ′ℓ denote the composition (go through ℓ then ℓ′). Then

(ℓ′ℓ)∗ = ℓ′
∗ℓ∗ . (2.2)

31
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τℓ(γ) τℓ′(ℓ∗γ)

γ

ℓ∗γ

ℓ′
∗ℓ∗γ = (ℓ′ℓ)∗γ

•b
ℓ

−→

•b
′

ℓ′
−→

•b
′′

Figure 2.1: The monodromy and extensions of a cycle γ along two composable paths ℓ and ℓ′. The
extension of γ along ℓℓ′ is the sum of the extensions of γ along ℓ and of ℓ∗γ along ℓ′. As
stated in (2.7), the border of τℓ(γ) is ℓ∗γ − γ.

This defines the monodromy action of π(P1 \ Σ, b) on Hq(Xb). The application

π1(P1 \ Σ, b)→ GL(Hq(Xb)) : ℓ 7→ ℓ∗ . (2.3)

is a group representation of π1(P1 \ Σ, b). It is the monodromy representation.

2.1.2 Extensions
In the same setting, given a q-chain A in Xb, we may consider the q + 1-chain A× [0, 1] in Xb× [0, 1]
and its image ΦU (A× [0, 1]) in X . Given any open set V containing f−1(U), this induces a map

τℓ : Hq(Xb)→ Hq+1(V,Xb ∪ Xb′) (2.4)

called the extension along ℓ. (This map also follows from the Künneth formula for the pairs (Xb,∅)
and ([0, 1], {0, 1}) since f−1(ℓ([0, 1])) ≃ Xb × [0, 1].) The map τℓ depends only on the homotopy
class of ℓ. Given two paths ℓ and ℓ′ with ℓ(1) = ℓ′(0) we have (Fig. 2.1)

τℓ′ℓ = τℓ + τℓ′ ◦ ℓ∗ . (2.5)

Using this composition rule one may define extensions along paths with self intersections. When
the path ℓ is a loop from b to b, we obtain a map

τℓ : Hq(Xb)→ Hq+1(V,Xb), (2.6)

for any neighbourhood V ⊆ X of f−1(ℓ([0, 1])).
These two concepts, extensions and monodromy, are related by the formula

(−1)n−1∂ ◦ τℓ = ℓ∗ − id , (2.7)

where ∂ : Hq(X ,Xb ∪ X ′
b)→ Hq−1(Xb)⊕Hq−1(Xb′) is the border map (Lamotke, 1981, §6.4.6).
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2.1.3 The extension sublattice
Our goal is to recover a description of Hn(X ) in terms of Hn−1(Xb) and the monodromy repre-
sentation of π1(P1 \ Σ, b). First, recall the long exact sequence of relative homology of the pair
(X ,Xb):

· · · → Hk(Xb)→ Hk(X )→ Hk(X ,Xb)→ Hk−1(Xb)→ · · · (2.8)

The first and second arrow are induced by inclusion of chains, and the last is the boundary map ∂.
In particular this long exact sequence establishes an isomorphism

Lemma 13.
ker ∂ ≃ Hn(X )/Hn(Xb) . (2.9)

In Section 3.3, we will provide a means to compute the periods of extensions. We thus define a
relevant lattice of Hn(X ,Xb), as well as a sublattice corresponding to extensions that may be lifted
to yield cycles in Hn(X ).

Definition 15. The relative extension lattice T (X ,Xb) is the sublattice of Hn(X ,Xb) generated by
the images im τℓi

for 1 ≤ i ≤ r. The extension lattice is the sublattice T (X ) = T (X ,Xb) ∩ ker ∂.

Remark 14. Despite not being apparent, both T (X ,Xb) and T (X ) depend not just on X , but also
on the fibration X → P1.

The following lemma implies that we may restrict our study locally around the critical values to
recover H∗(X ,Xb). First chose a generic point ∞ ∈ P1 \ Σ to remove, which we call the point at
infinity. We identify (topologically) C ≃ P1 \ {∞} and denote X ∗ = f−1(C). We pick a basepoint
b ∈ C \ Σ. We then define disjoint disks B1, . . . , Br ⊂ C such that ci ∈ Bi and b /∈ Bi for every
i. Finally we chose a local basepoint bi ∈ ∂Bi, as well as a path pi : [0, 1] → C \

⋃r
i=1 Bi \ {bi}

connecting p(0) = b to p(1) = bi for every i, and such that they do not intersect: im pi ∩ im pj = ∅
for i ̸= j.

We define Ti = f−1(Bi).

Lemma 15. The inclusion yields an isomorphism⊕
c∈Σ

H∗(Ti,Xbi)→ H∗(X ∗,Xb) , (2.10)

where the identification Xbi ≃ Xb is given by pi.

Proof. The main line of the argument is that the retraction of C to
⋃r

i=0 Bi ∪ im pi lifts through f .
For more details, see Lamotke (1981, §5.3).

Finally, we make the link between H∗(X ∗,Xb) and H∗(X ,Xb). The long exact sequence of the
triple (X ,X ∗,Xb) is

· · · → Hq+1(X ,Xb)→ Hq+1(X ,X ∗)→ Hq(X ∗,Xb)→ Hq(X ∗,Xb)→ · · · , (2.11)

As (X ,X ∗) ≃ Xb × (D, S1), the Künneth formula reads

Hq(X ,X ∗) ≃ Hq−2(Xb) , (2.12)

and combining with Lemma 15, we obtain

· · · → Hq+1(X ,Xb)→ Hq−1(Xb)→
⊕
c∈Σ

Hq(Ti,Xbi
)→ Hq(X ,Xb)→ · · · . (2.13)
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In this sequence, the first map is the intersection with Xb, the last map is the inclusion, and the
second map is the extension along a clockwise loop ℓ∞ around ∞, which we denote τ∞ = τℓ∞ .

In general not much can be said about H∗(Ti,Xbi). However, for certain fibrations, called
Lefschetz fibrations, we have an explicit description of this group. This is the content of the
following section.

2.2 Lefschetz fibrations
Certain fibrations are of interest to us as their monodromy representation is quite simple, and their
topology is fully understood. These correspond to the “most generic” fibration, where the singular
fibres are the “least” singular — we will make this genericity statement precise in Chapter 4. Such
fibrations were introduced by Solomon Lefschetz in his now 100 years-old seminal book Lefschetz
(1924) to study the topology of complex hypersurfaces. Lefschetz established the ideas which would
in time lead to the field of algebraic topology. They thus inherited the name of Lefschetz fibrations,
and the theory that was developed to study them is called Picard–Lefschetz theory. It is the
equivalent of real Morse theory in the holomorphic setting. In fact, Picard–Lefschetz theory even
predates Morse theory, as the former first appeared in Lefschetz (1924), whereas the latter was
introduced in Morse (1929).

Definition 16. A critical value ci ∈ Σ is called Lefschetz or non-degenerate if the fibre Xci
has a

single singular point xi, and the Hessian matrix of f is invertible at this point.

In this case we may give an explicit coordinate description of a neighbourhood of the critical
point. More precisely, we may choose be local holomorphic coordinates z1, . . . , zn in a neighbourhood
B of xi such that f |B has the coordinate description

f(z) = ci + z2
1 + · · ·+ z2

n . (2.14)

Definition 17. A fibration is called Lefschetz if all its critical fibres are Lefschetz.

2.2.1 Vanishing cycles and thimbles
Vanishing cycles

The monodromy around a Lefschetz fibre is fully understood. The action on Hn−1(Xb) along a
simple loop ℓi around a Lefschetz critical value ci is given by the Picard–Lefschetz formula (Lamotke,
1981, §6.3.3):

ℓi∗(η) = η + (−1)n(n+1)/2⟨η, δi⟩δi (2.15)

where ⟨·, ·⟩ is the intersection product on Hn−1(Xb) and δi is a cycle in Hn−1(Xb), called the
vanishing cycle at ci, determined up to sign. Note that the vanishing cycle not only depends on ci,
but also on the choice of the homotopy class of ℓi. Note also, as a consequence of (2.15), that the
map ℓi∗ − id is of rank 1, and its image is generated by δi.

Thimbles

Similarly, the extension map τℓi
: Hn−1(Xb) → Hn(Y+, Xb) around ℓi (see Section 2.1) has rank

one, and there is a uniquely determined element ∆i ∈ Hn(Y+, Xb), the Lefschetz thimble associated
to the critical value ti, such that (Lamotke, 1981, (6.7.1))

τℓi
(η) = −(−1)

n(n−1)
2 ⟨η, δi⟩∆i ∈ Hn(X ,Xb), (2.16)
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Figure 2.2: The simple loops ℓi’s around the critical points represent a basis of the homotopy group
π1(C \ Σ, b).

which combined with (2.7) gives back the Picard–Lefschetz formula (2.15).
The thimble ∆i is also dependent on the choice of the homotopy class of ℓi. By definition, it

can be obtained as the extension τℓi(pi) of some cycle pi ∈ Hn−1(Xb). It generates Hn(Ti,Xb). In
particular, note that

∂∆i = δi. (2.17)

Remark 16. The thimble can also can be obtained as the geometric extension of δi along a path
from b to the singular value ci (Fig. 2.3). Indeed, the vanishing cycle contracts to a point as the
fibre gets deformed from b to ci (which justifies the name). We will not be using this description of
vanishing cycles in the remainder of this text.

2.2.2 Homology of Lefschetz fibrations
In order to recover a description of the homology of X , we start from the explicit description of the
relative homology group Hn(X ,Xb) in terms of the Lefschetz thimbles.

Lemma 17 (Main lemma, Lamotke, 1981, §5). With the notations above,

(i) Hq(X ,Xb) = 0 if q ̸= n;

(ii) Hn(X ,Xb) is free of rank r and ∆1, . . . , ∆r is a basis.

Proof. We recall the main line of the proof. For further details, see Lamotke (1981, §5). Recall the
decomposition of Section 2.1.3, i.e.

H∗(X ,Xb) ≃
r⊕

i=1
H∗(Ti,Xbi

) . (2.18)

Let B be a small neighbourhood of xi, and define T = Ti ∩ B and F = Xbi ∩ B. By excision we
may show that the inclusion induces an isomorphism H∗(Ti,Xbi) ≃ H∗(T, F ). Then, as T can be
linearly contracted to the origin, the boundary yields an isomorphism Hq(T, F ) ≃ Hq−1(F ) for
q ̸= 0, 1. Furthermore, we have H0(T, F ) ≃ 0. Finally, a study using the local coordinates of 2.14
shows that F is diffeomorphic to the space of tangential vectors to the sphere, with norm ≤ 1:

Q = {(u, v) ∈ Rn × Rn | ∥u∥ = 1, ∥v∥ ≤ 1 and u · v = 0} , (2.19)
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(a) There is a unique cycle ∆i ∈ Hn(X , Xb) stem-
ming from extensions along the simple loop ℓi

around ti. It is called the Lefschetz thimble at
ti. It is dependent on the homotopy class of ℓi.

∆i
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(b) The border δi = ℓi∗pi − pi of ∆i is the vanishing
cycle at ti. This name comes from the fact that
the geometric representative of δi collapses when
deforming towards ti. ∆i is the extension of δi

along a path connecting b to ti.

Figure 2.3: Thimbles and vanishing cycles.

which is contractible to an n− 1-sphere Sn−1. Thus Hq(F ) = 0 if q ̸= 0, n− 1, and we recover the
statement of the lemma for q ̸= 1. For q = 1, the long exact sequence of the pair (T, F ) yields

0→ H1(T, F )→ H0(F )→ H0(T ) , (2.20)

and the inclusion H0(F )→ H0(T ) is surjective as T is connected.

Remark 18. The proof in Lamotke (1981) is wrong for q = 1, as there is no isomorphism
H1(T, F )→ H0(F ) as is claimed in (5.5.4) (and in fact, if there was, we would obtain a different
result than (5,5,8)). Nevertheless the result remains true because of the above observations.

As a first consequence of this lemma we have the following lemma

Lemma 19. We have short exact sequence

Hn−1(Xb)→τ∞

r⊕
i=1

∆iZ→ Hn(X ,Xb)→ Hn−2(Xb)→ 0 . (2.21)

Proof. This is the exact sequence from (2.13), where Hn−2(X ,Xb) = 0 from Lemma 17.

As all thimbles are extensions, and conversely any extension is a combination of thimbles per
(2.5), T (X ,Xb) is generated by the inclusion of thimbles in Hn(X ,Xb). However ℓ1, . . . , ℓr do not
generate π1(P1 \ Σ, b) freely: we have the relation ℓ∞ = ℓr · · · ℓ1 = 1. Thus the thimbles do not
generate T (X ,Xb) freely. In particular extensions along ℓ∞ are contractible and thus trivial. It
turns out that these are the only trivial extensions, which gives the following description of T (X ).

Lemma 20. We have an isomorphism induced by inclusion

T (X ,Xb) ≃
r⊕

i=1
∆iZ/ im τ∞ . (2.22)

Intersecting with ker ∂, we obtain

T (X ) ≃ ker (∂ : Hn(X ∗,Xb)→ Hn−1(Xb))
im (τ∞ : Hn−1(Xb)→ Hn(X ∗,Xb)) . (2.23)
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Proof. As thimbles generate T (X ,Xb), we have the short exact sequence

Hn−1(Xb) τ∞→ Hn(X ∗,Xb)→ T (X ,Xb)→ 0 (2.24)

stemming from the long exact sequence of the pair (X ,Xb).

Before proceeding further, let us describe informally the nature of this isomorphism. By
Lemma 17, elements of Hn(X ∗,Xb) are linear combinations of thimbles. Thimbles have boundary
in Xb (Fig. 2.3), but the boundary of a linear combinations of thimbles may be homologically 0
in Xb. These linear combinations form a subspace which is exactly ker (∂ : Hn(X ∗,Xb)→ Hn−1(Xb)).
Let C be a chain representing such a linear combination. By definition, ∂C is homologically 0
in Xb, so we can add a n-chain C ′ in Xb such that ∂(C + C ′) = 0. Then, the n-chain C + C ′ is an
n-cycle in X . Since C ′ is determined only up to n-cycles in Xb, we obtain a well defined element
in Hn(X )/Hn(Xb).

Combinations of thimbles produced by the extension map τ∞ : Hn−1(Xb) → Hn(X ∗,Xb) are
irrelevant, because the equator is contractible in P1 \ Σ, so these extensions are homologically zero
in (X ,Xb). This explains why we have a map

T (X )→ Hn(X )/Hn(Xb) . (2.25)

From a computational perspective this is very convenient: we can represent classes in T (X )
by the coefficients of a decomposition over the thimbles, and checking equality amount to simply
checking whether an element is in im τ∞, for which we can compute a basis.

Finally, this last result explains how T (X ) relates to the full homology lattice Hn(X ).

Theorem 21. We have an exact sequence

0→ T (X )→ Hn(X )/Hn(Xb)→ Hn−2(Xb)→ 0,

where the arrow from T (X ) is (2.25), and the arrow to Hn−2(Xb) is given by intersecting with Xb.

Proof. Consider the commutative diagram

Hn(Xb)

Hn(X )

Hn−1(Xb) Hn(X ∗,Xb) Hn(X ,Xb) Hn−2(Xb) 0

Hn−1(Xb) ,

ι∗

τ∞

∂
∂

(2.26)

where:

• The horizontal line is the long exact sequence of the triple (X ,X ∗,Xb) where Hn(X ,X ∗) is
identified to Hn−2(Xb) using (2.12). The last term is 0 because of Lemma 17.

• The column is the long exact sequence of the pair (X ,Xb).

Now, the exact sequence we aim to prove follows from diagram chasing in (4.6).
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Figure 2.4: The three possible configurations of extensions paths. Their intersection can be reduced to
intersection products of cycles of the fibre at the fibres above the intersections of ℓi and ℓ′

j.

2.2.3 The intersection product of extensions
We now show that we may compute the intersection product between lifts of extensions despite
them being determined only modulo Hn(Xb).

Lemma 22. The intersection product on Hn(X ∗) induced by ι∗ induces an intersection product on
T (X ) through the surjective inclusion ϕ : Hs(X )→ T (X ).

Proof. The inclusion ι : X ∗ → X induces an intersection product on Hn(X ∗) from that on Hn(X ).
We aim to prove that this product induces a well-defined defined product on T (X ). From the long
exact sequence of the pair (X ∗,Xb), Hn(X ∗) can be identified with ker δ ⊕Hn(Xb).

Let Γ1, Γ2 ∈ Hn(X ∗) and assume that the class of ϕ(Γ2) = 0. Then Γ2 ∈ im τ∞ ⊕Hn(Xb). In
particular, as im τ∞ ⊂ ker ι∗ from the second line of (4.6), ι∗Γ2 = h for some integer h ∈ Hn(Xb).
We thus have

⟨Γ1, Γ2⟩ = ⟨ι∗Γ1, h⟩ = 0 , (2.27)

as h can be deformed to the fibre Hn(X∞), and thus not intersect ι∗Γ1.

Let Γi =
∑

j aij∆j ∈ T (X ) be two extensions, described as a linear combination of thimbles for
i = 1, 2. The previous lemma implies that the intersection product ⟨Γ1, Γ2⟩ is well defined.

In order to compute this intersection product, we may deform the geometric representatives
of the thimbles for Γ2 slightly, in a way that the basepoint is no longer the same for Γ1 and Γ2,
as is represented in Fig. 2.4. We then notice that the intersection between ∆i and ∆′

j (where the
latter is the aforementioned deformation of ∆j) is contained in at most 4 fibres. This means that
in order to compute the intersection product ⟨Γ1, Γ2⟩, we may simply consider the intersection of
pairs of thimbles (which we will also denote ⟨∆i, ∆j⟩ by abuse of notation) and use bilinearity.
More precisely, we see that

• if i > j, then ⟨∆i, ∆j⟩ = 0,
• if i < j, then ⟨∆i, ∆j⟩ = ⟨δi, δj⟩,
• if i = j, then ⟨∆i, ∆j⟩ = −⟨pi, δi⟩,

where δi and pi are respectively the vanishing cycle and a permuting cycle of ∆i, i.e. δi = ℓi∗pi−pi =
∂∆i. We can then recover the intersection product with the formula ⟨Γ1, Γ2⟩ =

∑
i,j a1ia2j⟨∆i, ∆j⟩.

Remark 23. The space of thimbles with this bilinear pairing is called a pseudolattice.
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2.2.4 Projective complete intersections
From now on, we assume that X ⊂ PN × P1 such that the map X → P1 is the projection onto the
second coordinate, and that the general fibre Xb ⊆ PN is a complete intersection. In particular, all
the homology groups that appear are free, so the exact sequences split, due to the following lemma
which gathers some well known facts.

Lemma 24. Let V be a n-dimensional smooth complete intersection of PN .

(i) For k < n, the inclusion V ↪→ PN induces isomorphisms Hk(V) ≃ Hk(PN ) and Hk(V) ≃
Hk(PN ).

(ii) All the homology groups Hk(V,Z) are free.

(iii) For k < n even, Hk(V) is generated by the homology class 1
deg V [V ∩L] where L is a projective

subspace of complex codimension n− k
2 .

(iv) For n < k ≤ 2n even, Hk(V) is is generated by the homology class [V ∩ L] where L is a
projective subspace of complex codimension n− k

2 .

Proof. The first point is a consequence of Lefschetz’s hyperplane theorem. Poincaré duality
implies Hk(V) ≃ H2N−2n+k(PN ) for k > n. In particular, Hk(V) is free for any k ≠ n. For the
second point, see Hirzebruch (1956, §2.2). For convenience, we recall the main line of the argument.
By the first point and Poincaré duality, it only remains to check that Hn(V) is free. By the universal
coefficient theorem (Hatcher, 2002, Corollary 3.3), we have

Hn(V) ≃ Hn(V) ≃ Free(Hn(V))⊕ Tor(Hn−1(V)) = Free(Hn(V)), (2.28)

where Free denotes the free part and Tor the torsion part.
For the third point, consider the inclusion V ↪→ PN , which, by the first point, induces an

isomorphism Hk(V) ≃ Hk(PN ). It maps a linear section of V by a projective subspace Ln− k
2 of

codimension n − k
2 to the class of V ∩ L in PN . But in PN , V is homologous to deg(V)LN−n

so [V ∩ L] is homologous to deg(V)LN− k
2 . So in Hk(V), [V ∩ L] is divisible by deg(V) and the

quotient is a generator.
For the last point, we consider the umkehr homorphism i! : H2N−2n+k(PN )→ Hk(V) obtained

by Poincaré duality from the morphism H2n−k(PN ) → H2n−k(V) induced by inclusion. As the
latter is an isomorphism by the first point, i! is an isomorphism too. We check easily that it maps a
projective subspace Ln− k

2 , which generates H2N−2n+k(PN ), to the linear section V ∩Ln− k
2 of V .

In the case of complete intersections, is it convenient to study the homology of X without the
part coming from the homology of PN . In particular, when n is even, the homology group Hn(X )
contains the class of a linear section h of X by a codimension n

2 linear space. We thus define the
primitive homology

PH n(X ) =
{

Hn(X )/Zh if n is even
Hn(X ) if n is odd.

(2.29)

In the case where n is odd, we define h = 0 ∈ Hn(X ). h can be identified as a generator of
the tubular mapping T : Hn(X ) → Hn+1(X ∁) which sends a cycle to the boundary of a tubular
neighbourhood of one of its representative.

We can also be slightly more precise about Hn(X ) and obtain a filtration. There is not a
canonical decomposition associated to this filtration, but when we will study the intersection
product, natural choices will appear.



CHAPTER 2. HOMOLOGY OF FIBRATIONS 40

Theorem 25. Let X → P1 be a smooth variety with a fibration by projective complete intersections.
Then there is a canonical filtration F0 ⊂ F1 ⊂ F2 = Hn(X ) such that

• F0 ≃ Hn(Xb) ,
• F1/F0 ≃ T (X ) , and
• F2/F1 ≃ Hn−2(Xb) .

Note that Hn(Xb) ≃ Hn−2(Xb) ≃ Z

Proof. Since Hn−2(Xb) is free, the exact sequence in Theorem 21 splits. Moreover, the map ι :
Hn(Xb) → Hn(X ) is injective. Indeed, let Ln ∈ Hn(Xb) and Ln−2 ∈ Hn−2(Xb) be the classes of
linear sections. Then ⟨Ln, Ln−2⟩Xb

= 1 and thus ⟨Ln, Ln−2 × P1⟩X = −1. As all these groups are
free, we obtain the claim.

Finally, we provide two results providing insight into the structure of the homology of the fibre
in terms of the vanishing cycles when n is odd (when it is even, these results are trivial):

Lemma 26. The kernel K of the inclusion Hn−1(Xb)→ Hn−1(X ) is generated by vanishing cycles,
i.e.

K = im (∂ : T (X ,Xb)→ Hn−1(Xb)) . (2.30)

Furthermore, K is the orthogonal complement of the linear class hXb
of Hn−1(Xb)

K = h⊥
Xb

(2.31)

and for any γ ∈ Hn−1(Xb) such that ⟨hXb
, γ⟩ = 1,

Hn−1(Xb) = K ⊕ ⟨γ⟩ (2.32)

Proof. The first statement is the long exact sequence of relative homology

· · · → Hn(X ,Xb)→ Hn−1(Xb)→ Hn−1(X )→ . . . ,

which in this instance, using Lemma 17, simplifies to

0→ K → Hn−1(Xb)→ Hn−1(X )→ 0 .

Here, Hn−1(Xb) is free and thus the exact sequence splits. As h⊥
Xb

does not have monodromy,
it follows from (2.15) that K is included in h⊥

Xb
. As the intersection product on Hn−1(Xb) is

unimodular and hXb
is primitive in Hn−1(Xb), there exists γ ∈ Hn−1(Xb) such that ⟨γ, hXb

⟩ = 1.
In particular we have that K ⊕ ⟨γ⟩ = Hn−1(Xb). Let η ∈ h⊥

Xb
. Then η = ακ + βγ for some κ ∈ K

and α, β ∈ Z. But taking the intersection product with hXb
yields that b = 0 and so h⊥

Xb
⊂ K.

As a direct consequence we also have the following.

Lemma 27. The inclusion [γ] of γ in Hn−1(X ) generates Hn−1(X ). In particular degX [γ] = h.

Intersection product

We now explain how to obtain the intersection product on all of Hn(X ) from the intersection
product on T (X ) computed in Section 2.2.3, using methods similar to those of Shiga (1979, §2)
or Narumiya and Shiga (2001, §3).

When n is odd, Hn(X ) and T (X ) coincide so we are done. Assume n even. By the same
argument as that of Lemma 22, h is orthogonal to the image of Hn(X ∗) in Hn(X ). All that remains
it to compute the intersection products of the generator of Hn−2(Xb), which we denote S. From
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Lemma 24, S is the class 1
deg X [X ∩(Ln+2×P1)], and h is the class [X ∩Ln], where Lk is a projective

linear subspace of (real) codimension k. In particular the intersection X ∩ Ln ∩ Ln−2 consists of
degX points, and thus

⟨h, S⟩ = 1 . (2.33)

Let Γ1, . . . , Γs ∈ Hn(X ∗) induce a basis of T (X ) through ϕ. Up to adding multiples of h,
we may assume the Γi’s to be orthogonal to S. These observations allow us to recover the full
intersection matrix of Hn(X ). We summarise these results with the following lemma.

Lemma 28. There exist Γ1, . . . , Γs ∈ Hn(X+), h ∈ Hn(Xb) and S ∈ Hn−2(X ) such that

• ϕ(Γ1), . . . , ϕ(Γs) is a basis of T (X ) (where we recall ϕ is the inclusion H2(X )→ T (X )),
• S is a section of Hn−2(Xt),
• h, ι∗Γ1, . . . , ι∗Γs, S is a basis of Hn(X ).

Define the coefficients aij to be so that ϕ(Γi) =
∑

j aij∆j. The intersection products are given by

• ⟨ι∗Γi, ι∗Γj⟩ =
∑

k,l aikajl⟨∆k, ∆l⟩ for all i, j,
• ⟨ι∗Γi, h⟩ = 0 for all i,
• ⟨ι∗Γi, S⟩ = 0 for all i,
• ⟨h, h⟩ = 0,
• ⟨h, S⟩ = 1.

The intersection matrix in the aforementioned basis of H2(Y ) is therefore given by0 0 1
0 M 0
1 0 ⟨S, S⟩

 , (2.34)

where M is the matrix given coefficient-wise by Mij =
∑

k,l aikajl⟨∆k, ∆l⟩.

Remark 29. We have not yet specified ⟨S⟩. Up to adding h to S, its value is only defined modulo
2. The parity of self-intersection ⟨S, S⟩ depends on the specific cases. We will specify the correct
values in the cases considered in upcoming sections.

2.3 The non-Lefschetz case
We have seen in the previous section that the data of the monodromy matrices of the family is
sufficient to recover the homology of X in the Lefschetz case. With more general fibrations, things
may not be so easy. It is possible that certain cycles of X are “hidden” within the singular fibres of
the fibration. Such cycles are called singular components.

Definition 18. The singular components lattice of the fibre above ci is the sublattice of Hn(Ti,Xbi)

Θi = ker (∂ : Hn(Ti,Xbi
)→ Hn−1(Xbi

)) . (2.35)

In some cases, we may still recover such cycles by the means of a morsification. In a nutshell, our
goal is to deform X in a way that splits the non-Lefschetz singular fibres into several Lefschetz fibres.
It would then be possible to compute the homology of the deformed variety from its monodromy
matrices, which is by construction diffeomorphic to the original one.

More precisely, let V ⊂ P1 be open and D = {z ∈ C | |z| ≤ 1} denote the unit disk.
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Definition 19. Let X → V be a fibration of complex manifolds. Consider a commutative diagram
of proper surjective holomorphic maps between complex manifolds

X̃ V ×D

D

f̃

η
p , (2.36)

where p is the projection onto the second coordinate. For u ∈ D, denote X̃u = η−1(u) and
fu = f̃ |X̃u

: X̃u → V where we identify X̃ × {u} ≃ V . Such a diagram is a morsification of X → V

if

• η : X̃ → D has no critical values;
• f0 : X̃0 → V is identified with X → V ;
• for u ∈ D \ {0}, fu : X̃u → V is a Lefschetz fibration.

Remark 30. Such a deformation is sometimes also called a splitting deformation of the elliptic
surface.

Remark 31. Note that by Ehresmann’s fibration theorem (Ehresmann, 1951), there is a trivialisation
X̃ ≃ S × V . In particular this implies that for every u ∈ D, Xt is diffeomorphic to X , but not
necessarily biholomorphic.

Morsifications are useful as they allow use of the results for Lefschetz fibrations to obtain
information about more general fibrations. Indeed as η is a trivial fibration, it induces an isometry
Hn(X0) ≃ Hn(Xu) for all u ∈ D \ {0}, and we may apply the results of Section 2.2 to the describe
the latter.

We now focus on a single critical value ci. To ease the notations, we denote c = ci, B = Bi,
b = bi and T = Ti. Assume we have a morsification T̃ of T → B. Pick t ∈ D \ {0}. If the fibre
above ci is not of Lefschetz type, the morsification will split ci into several critical values α1, . . . , αs

of T̃t, the fibres above which are of Lefschetz type. Define T̃t,b = T̃t ∩ f̃−1({bi} ×D) to be the fibre
above the basepoint bi of the fibre above t of the morsification. Finally choose a path p connecting
0 to t. This path induces an isomorphism between the homology groups of Xbi

and T̃t,b

p∗ : Hq(Xbi)→ Hq(T̃t,b) ,

as well as
p∗ : Hq(Ti,Xbi

)→ Hq(T̃t, T̃tb) .

The fundamental group π1(B \{α1, . . . , αs}, b) is bigger than π1(Bi \{ci}, b). In particular there
may be more extensions, and we may have a proper inclusion

T (Ti,Xbi
)→ T (T̃t, T̃tb) , (2.37)

induced by p∗.



Chapter 3

Numerical methods for period
computations

In the previous chapter, we developed an algebraic topology framework to recover the homology of
the total space of a fibration. In order to turn this into a working algorithm that may be used on
concrete examples, we describe the effective tools that take advantage of this topological analysis.

The content of this chapter is based on Lairez et al. (2024).

3.1 The de Rham cohomology of hypersurfaces
We now focus on the cohomology of a smooth projective hypersurface X = V (P ) ⊂ Pn+1, where n is
an integer and P a homogeneous polynomial in n+2 variables. In particular X has dimension n. The
condition that X is smooth amounts to saying that the Jacobian ideal of P , JP = ⟨∂0P, . . . , ∂n+1P ⟩,
is trivial.

We had defined the hyperplane class h and the primitive homology of X in Section 2.2.4. We
can similarly decompose the de Rham cohomology in two pieces. The first piece comes from the
ambient projective space and is the Poincaré dual h∗ of h. The associated periods are given by∫

γ
h∗ = ⟨h, γ⟩.
The second piece is called the primitive de Rham cohomology, or simply the primitive cohomology.

Definition 20. The middle primitive cohomology group PH n
DR(X ) of X is the subspace of Hn

DR(X )
of classes ω which evaluate to 0 when integrated on h, i.e.

PH n
DR(X )def=

{
ω ∈ Hn

DR(X ) |
∫

h

ω = 0
}

. (3.1)

As we will see in this section, primitive cohomology classes can be represented in terms of
residue classes of cohomology classes of the projective complement of X .

Primitive cohomology and the Griffiths-Dwork reduction

The understanding of the de Rham cohomology of X is made simpler by looking at the cohomology
of the complement X ∁ = Pn+1 \ X in projective space (P. A. Griffiths, 1969, §2; Cox & Katz,
1999, §5.3). There is a natural injective morphism Res : Hn+1

DR (X ∁)→ Hn
DR(X ) called the residue

mapping. Its image is the primitive de Rham cohomology of X ,

PH n
DR(X ) def= Res

(
Hn+1

DR (X ∁)
)

=
{

ω ∈ Hn
DR(X )

∣∣∣∣ ∫
h

ω = 0
}

. (3.2)

43
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The residue map is dual to the tubular mapping T of Section 2.2.4: for any ω ∈ Hn+1(X ∁) and
γ ∈ Hn(X ),

2πi

∫
γ

Res ω =
∫

T (γ)
ω. (3.3)

The kernel of T is generated by h and we have PH n(X ) = coker(T ) = Hn(X )/Zh. Equation (3.3)
shows that the pairing PH n(X )× PH n

DR(X ) is well defined.
The cohomology classes in Hn+1(X ∁) have an explicit description. Recall that P ∈ C[x0, . . . , xn+1]

denotes the defining polynomial of X. The algebraic differential (n + 1)-forms on X ∁ can be written
uniquely as

ω = A

P k
Ωn+1, (3.4)

where Ωn+1 =
∑n+1

i=0 (−1)ixidx1 · · ·dxi−1dxi+1 · · ·dxn+1 is the projective volume form, k is a
positive integer and A ∈ C[x]kd−n−2 is a homogeneous polynomial of degree kd − n − 2. Since
the variety X ∁ is affine, its de Rham cohomology can be computed using algebraic forms directly
(Grothendieck, 1966). Explicitly, we have

Hn+1
DR (X ∁) ≃

VectC
{

A
P k Ωn+1

∣∣ k ≥ 0 and A ∈ C[x]kd−n−2
}

VectC
{

∂
∂xi

(
B

P k

)
Ωn+1

∣∣∣ k ≥ 0 and 0 ≤ i ≤ n + 1 and B ∈ C[x]kd−n−1

} . (3.5)

This is the quotient of homogeneous rational functions, regular outside of X, of degree −n − 2
modulo sums of partial derivatives of homogeneous rational functions, regular outside of X, of
degree −n− 1.

In this representation, a basis of Hn+1
DR (X ∁) can be described in terms of the Jacobian ideal of f ,

namely
J =

〈
∂P

∂x0
, . . . ,

∂P

∂xn+1

〉
⊆ C[x]. (3.6)

We fix any monomial ordering on C[x]. A basis of the cohomology space is given by the forms m
P k Ωn+1,

where m is a monomial in the variables x such that:

• kd = deg(m) + n + 2;
• m is not the leading monomial of any element of J .

The monomials m are precisely the monomials under the staircase of a Gröbner basis of J , with
degree congruent to n + 2 modulo d. The process of computing the coefficients in this basis of a
given equivalence class of a n + 1-form on X ∁ is called Griffiths–Dwork reduction. In short, it relies
on the observation that

A∂iP

P k
= 1

k − 1
∂iA

P k−1 −
1

k − 1∂i

(
A

P k−1

)
, (3.7)

where k > 1, A ∈ C[x]kd−n−2, and ∂i denotes ∂
∂xi

for readability. Typical Gröbner bases computation
allow to rewrite any homogeneous monomial A of degree kd− n− 2 for certain k ≥ 1 as

c1m1 + · · ·+ csms + A1∂1P + · · ·+ A1∂1P , (3.8)

where the ci’s are rational coefficients, ms are the basis monomials of the same degree as A, and
the Ai are homogenenous polynomials of degree deg A− d + 1. Then (3.7) allows to inductively
compute the decomposition of any rational form A

P k Ωn+1 as a linear combination of the m
P k Ωn+1’s.

For more details, we refer to Cox and Katz (1999, §5.3).
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The Hodge filtration

The space

VectC
{

A
P k Ωn+1

∣∣ k ≥ 0 and A ∈ C[x]kd−n−2
}

VectC
{

∂
∂xi

(
B

P k

)
Ωn+1

∣∣∣ k ≥ 0 and 0 ≤ i ≤ n + 1 and B ∈ C[x]kd−n−1

} (3.9)

appearing on the right hand-side of (3.5) is equipped by an decreasing filtration given by the pole
order k, namely

Fp =
VectC

{
A

P k Ωn+1
∣∣ n− p ≥ k ≥ 0 and A ∈ C[x]kd−n−2

}
VectC

{
∂

∂xi

(
B

P k

)
Ωn+1

∣∣∣ k ≥ 0 and 0 ≤ i ≤ n + 1 and B ∈ C[x]kd−n−1

} . (3.10)

This equips Hn+1
DR (X ∁), and in turn PH n

DR(X ), with a filtration. A result of P. A. Griffiths
(1969) shows that this coincides with the Hodge filtration induced on PH n

DR(X ). In particular we
obtain the following corollary.

Corollary 32. The basis induced by the monomials m1, . . . , mr above, sorted by increasing degree,
is a Hodge basis.

This is convenient for two reasons. First we obtain information about the Hodge structure.
Second, for K3 surfaces, the holomorphic period will be given by a rational form with a single
order pole at P . From computations, it appears that the degree of the Picard–Fuchs equations that
need to be integrated (see the next section) increases with the pole order. Thus the Picard–Fuchs
equation of the holomorphic form is arguably easier to integrate than that of a general form, and is
sufficient to recover the Hodge structure on PH n

DR(X ). The same is in general: it is sufficient to
integrate the periods of the first n/2 Hodge pieces of the cohomology to recover the full Hodge
structure, and these are arguably easier to obtain than the general ones.

Primitive periods

Finally, we end this section with the definition of a primitive period matrix

Definition 21. A primitive period matrix is the data of a basis γ1, . . . , γr of PH n(X ), a basis
ω1, . . . , ωr of PH n(X ), and of the period pairing matrix

Πij =
∫

γi

ωj . (3.11)

Informally, the primitive period matrix contains the part of the periods that are difficult to
compute. In odd dimension, it is equal to the full period matrix. In even dimensions, to obtain the
full period matrix, it is sufficient to add the homology class h and any cohomology class not vanishing
when evaluated against h. In particular, we may take the dual h∗ of h, as ⟨h, h⟩ = degX ̸= 0.
Then the missing entries to obtain the full period matrix are simply 0 when evaluating a primitive
cohomology class against h, and the intersection product ⟨h, γ⟩ when evaluating h∗ against a cycle γ.

3.2 Computing the Gauss-Manin connection
In this section, we give a method for computing the Gauss-Manin connection of a family of projective
hypersurfaces. Let f : X → P1 be such a family, i.e., there is an embedding X ⊂ Pn × P1 such that
the map to P1 is the projection onto the second component, and the general fibre Xt = f−1(t) is a
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hypersurface given by a polynomial equation Xt = V (Pt) that is homogeneous in the projective
coordinates x0, . . . , xn and with coefficients in Q(t). Further assume that the Xt is smooth for
generic (i.e., all but finitely many) values of t ∈ P1.

Similarly to the previous section, Griffiths-Dwork reduction can be used to compute the Gauss-
Manin connection of the relative primitive cohomology of a family of projective hypersurfaces.
Following Section 3.1, the residue mapping induces an isomorphism

PH n−1
DR (Xt) ≃

VectC
{

A
P k

t
Ωn

∣∣∣ k ≥ 0 and A ∈ C[x0, . . . , xn]kd−n−1

}
VectC

{
∂

∂xi

(
B

P k
t

)
Ωn

∣∣∣ k ≥ 0 and 0 ≤ i ≤ n and B ∈ C[x0, . . . , xn]kd−n

} . (3.12)

By extending the scalars from C to C(t), we can define the relative primitive de Rham cohomology
PH of X to be the space of sections of PH n−1

DR (Xt)

PH(P1 \ Σ) =
VectC(t)

{
A

P k
t

Ωn

∣∣∣ k ≥ 0 and A ∈ C(t)[x0, . . . , xn]kd−n−1

}
VectC(t)

{
∂

∂xi

(
B

P k
t

)
Ωn

∣∣∣ k ≥ 0 and 0 ≤ i ≤ n and B ∈ C(t)[x0, . . . , xn]kd−n

} .

(3.13)
It is a subsheaf of the sheaf of the relative de Rham cohomology H. For a given β ∈ H and a
generic t ∈ P1, evaluation at t gives an element β(t) of PH n

DR(Xt). Because ∂
∂t commutes with ∂

∂xi
,

we see that differentiation with respect to the parameter t induces a derivation ∇ of H. This is the
Gauss–Manin connection.

Let β ∈ H. For η ∈ Hn−1(Xb), let η(t) ∈ Hn−1(Xt) be the cycle uniquely determined by
transporting η in Yt, following a path in some simply connected neighbourhood of b. The Gauss–
Manin connection is uniquely determined by the property

d

dt

∫
η(t)

β(t) =
∫

η(t)
∇β(t). (3.14)

Using Griffiths–Dwork reduction, we can compute a basis of H, say β1, . . . , βs, and the ma-
trix A(t) = (aij) ∈ C(t)s×s of the Gauss–Manin connection (for details on its computation,
see Bostan et al. (2013)), defined by

∇βi =
∑

j

aijβj . (3.15)

Typically, βi will be in the form m
P k

t
Ωn, for some monomial m, and so ∇βi will be given by

the Griffiths–Dwork reduction of −k m

P k+1
t

∂Pt

∂t Ωn. We can also choose β1 to be a cyclic vector
and βi = ∇i−1β1 so that the differential system is encoded in a single scalar equation which is well
adapted to the ore_algebra package (see Section 3.3). Finally, the evaluations βi(b) yield a basis
of PH n

DR(Xb) for generic values of b.

3.3 Numerical analytic continuation
We now briefly present the algorithms underlying our numerical computations. Consider a linear
differential system, in the complex plane, with rational coefficients – that is an equation

Y ′(t) = A(t)Y (t), (3.16)

where A(t) ∈ C(t)s×s, and Y is a unknown vector or matrix of functions. A point t ∈ C is ordinary
if A is continuous at t and singular otherwise. At any ordinary point b ∈ C, there is a uniquely
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determined s × s solution matrix Yb with Yb(b) = Is, the r × r identity matrix (Haraoka, 2020,
Theorem 3.1). Let us call it the fundamental solution at b. Any other solution matrix Ỹ of (3.16)
in a neighbourhood of b can be written as Ỹ (t) = Yb(t)U for some constant matrix U .

Consider a continuous path γ : [0, 1]→ C which avoids singular values. From the computational
point of view, we assume that γ is polygonal with ordinary vertices in Q[i] (results in the more
general setting where the vertices are singular points or given numerically exist, but we will not
need them). The analytic continuation along γ of the fundamental solution at γ(0) gives a new
solution, denoted γ∗Y in the neighbourhood of γ(1) (Haraoka, 2020, Theorem 3.2). In particular,
there is a unique matrix Λγ ∈ Cr×r, the transition matrix along γ, such that

γ∗Y = Yγ(1)Λγ . (3.17)

Since Yγ(1)(γ(1)) = id, we have Λγ = γ∗Y (γ(1)). The map γ → Λγ is a morphism from the
fundamental groupoid of C \ Σ to GL(Cr): Λγ depends on γ only up to homotopy, and if γη is the
composition of two paths (going through η first then γ), then Λγη = ΛγΛη.

Theorem 33 (D. V. Chudnovsky and Chudnovsky, 1990; van der Hoeven, 1999; Mezzarobba, 2010).
Given p > 0, we can compute an approximation of Λγ up to 2−p (for any norm on Cr×r). When the
differential system (3.16) and the path γ are fixed, and p→∞, we need O(M(p(log p)2)) = p1+o(1)

bit operations, where M(n) is the complexity of n-bit integer multiplication.

The main idea behind this method is the following observation. Let L be a differential operator
of order r, and let f be a solution in a neighbourhood of an ordinary point a of L. Assume we
know the values f(a), . . . , f (r−1)(a). As f is solution to L, we may inductively recover f (m)(a) for
any m ∈ N.

Furthermore, assume that f is holomorphic in the disk D(a, R) of center a and radius R > 0.
The Taylor formula states that for z ∈ D

(
a, R

2
)
, we have∣∣∣∣f(z)− f(a) + (z − a)f ′(a) + · · ·+ (z − a)m f (m)(a)

m!

∣∣∣∣ ≤ P (m)2−m , (3.18)

where P is a polynomial that may be effectively computed. In fact, we know a lower bound for the
radius of convergence R: it is greater than the distance between a and the closest singularity of L,
which we denote R(a). In particular, if we pick a piecewise linear path γ avoiding the singularities
of L, there exists an ε > 0 such that R(γ(t)) > ϵ for all t ∈ [0, 1]. In particular, is possible to
recover f(γ(t)) for all t ∈ [0, 1] by decomposing γ in finitely many linear paths of length ε/2. This
is illustrated in Fig. 3.1.

We will use this result in two different ways. First, when γ is a loop, the transition matrix
along γ is the monodromy matrix of the differential system (3.16) along γ. Second, we use this
result to integrate the solutions of (3.16) along a path. Let R(t) ∈ C(t)1×r be a vector of rational
functions. Consider the differential system of dimension r + 1

Z ′ =
(

A 0
R 0

)
Z. (3.19)

The vector solutions are exactly of the form Z(t) = (Y (t), g(t))t where Y (t) is a solution of (3.16)
and g(t) is a primitive integral of R(t) · Y (t). More precisely, the fundamental solution at a point b

has the form

Zb(t) =
(

Yb(t) 0∫ t

b
R(t) · Yb(t) 1

)
. (3.20)
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Figure 3.1: Assuming we know numerical approximations of the values of a function f and its n first
derivatives at the point α, the Taylor expansion allows to recover the value at t with precision
exponential in m. We may analytically continue f along the orange path by iterating this step.

The last row of the transition matrix Λγ associated to the augmented system (3.19) is therefore∫
γ

R(t) · Yb(t) (and the coefficient 1). This gives an algorithm for computing integrals over γ of
rational function multiples of the coefficients of vector solutions of (3.16).

As for the practical aspects, we used the implementation of numerical analytic continuation
provided in SageMath by Mezzarobba (2016) in the ore_algebra package (Kauers et al., 2015).
This package deals with scalar differential equations. This has practical implications, but from the
mathematical point of view, scalar differential equations and differential systems are equivalent
(Haraoka, 2020, Chapter 2).

3.4 Computation of the monodromy matrices of a Lefschetz
fibration

Monodromy on the primitive homology

We consider the monodromy action of π1(P1 \ Σ) on Hn−1(Xb). Let ℓ be a loop P1 \ Σ, starting
from the base point b. As t runs along ℓ, Xt is continously deformed and there is a uniquely
determined continuation η(t) of η in Hn−1(Xt). The action of ℓ on η, denoted ℓ∗η is defined as the
determination of η(b) after t has travelled along ℓ. It is clear that a linear section of Xb has trivial
monodromy, thus the monodromy action on Hn−1(Xb) induces an action on PH n−1(Xb).

Computation of a monodromy matrix given a path

Let Π(t) be a primitive period matrix of Xt defined by

Πij(t) =
∫

ηj(t)
βi(t), (3.21)

for some basis ηj of PH n−1(Xb), and where the βi(t)’s form a basis of PH, see Section 3.2. It
depends holomorphically on t (on some neighbourhood of b). Combining (3.14) and (3.15), we
obtain the first-order linear differential system

Π′(t) = A(t)Π(t). (3.22)
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In particular, the matrix Π extends holomorphically along the path ℓ and gives another determination,
denoted ℓ∗Π, of Π in a neighbourhood of b. Naturally,

ℓ∗Πij(t) =
∫

ℓ∗ηj(t)
βi(t). (3.23)

In particular, the matrix of the action of ℓ on Hn−1(Xb) in the basis (ηj) is given by

Mat(ℓ∗) = Π−1(b) · ℓ∗Π(b) = Π−1(b)ΛℓΠ(b), (3.24)

where Λℓ is the transition matrix introduced in Section 3.3, associated to the differential system (3.22)
and the loop ℓ. It is possible to compute ∆ℓ numerically with arbitrary precision and rigorous error
bounds using the differential system (3.22), see Theorem 33. Together with the data of Π(b), we
compute the entries of Mat(ℓ∗), which are integers, exactly.

Computation of appropriate paths

It only remains to compute a set of generators of π1(P1 \ Σ), which we compute as piecewise linear
paths. To do this, we compute the Voronoi diagram of Σ in C. Each critical point ci ∈ Σ lies
in a unique Voronoi cell. Up to adding additional points around the convex hull of Σ, we may
assume that the boundary of that cell is a polygon that describes a loop ℓ′

i around the critical point
(although not pointed at b). We pick the loop to be anticlockwise.

For each i, we pick a vertex vi of ℓ′
i. We can then consider the Voronoi graph V , for which

the vertices and edges are those of the Voronoi cells. We also add the basepoint b, and an edge
connecting the basepoint to the closest other vertex in V . We compute a subtree T of V covering
all the vi and rooted at b. In T there is a unique path pi connecting b to a given vi. A simple loop
around ci pointed at b is then given by the composition ℓi = p−1

i ℓ′
ipi.

For the sake of computing the extension around the equator τ∞ (see (3.29) below), we need to
order these paths so that the composition of them is the loop around ∞. We define a supertree
T ′ of T by adding a child corresponding to ℓ′

i at vi, for each i. For a given node of T ′, we order
its children in anticlockwise order starting from the parent. Finally the ordering on the loops is
simply the ordering induced by the prefix ordering of the nodes of T ′. This can be achieved with a
depth-first search throughout T , illustrated in Fig. 3.2.

3.5 Computation of a homology basis
We seek a description of Hn(X ) given the matrices of the monodromy action of π1(P1 \ Σ)
on PH n−1(Xb).

Basis of T (X )

Recall the setting of Section 2.1: we have a generating set ℓ1, . . . , ℓr of π1(P1 \ Σ, b) and we further
assume that ℓr · · · ℓ1 = 1 is the loop at ∞. Each ℓi induces an automorphism of PH n−1(Xb),
denoted ℓi∗. Thanks to the algorithm given in Section 3.4, we can compute the matrix Mi of ℓi∗
with respect to some fixed basis β1, . . . , βs of PH n−1(Xb).

The linear section h (which is nonzero when n is even) is fixed by ℓi∗ By the Picard–Lefschetz
formula (2.15), this implies that ⟨h, δi⟩ = 0. In particular, ⟨h, h⟩ = deg X ̸= 0, and therefore h is
not a vanishing cycle. These two observations show that monodromy action on the quotient is well
defined, and the corresponding matrices still satisfy rk Mi−Is = 1. Thus there are vectors di ∈ Zs×1

and mi ∈ Z1×s such that
Mi = Is + dimi ∈ Zs×s. (3.25)
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T

ℓ′
i

ℓ′
j

p v

n1

n2

Figure 3.2: The tree T (bold) is a subtree of the Voronoi graph (dashed) that connects all the points on
which the polygonal loops are pointed. Assume we are visiting vertex v, coming from vertex
p, and that two polygonal loops ℓ′

i and ℓ′
j are pointed at v. v has three neighbours p, n1 and

n2. The sorting algorithm will yield j, the result of visiting n1, i, and finally the result of
visiting n2, in this order. Applying this sorting algorithm from the vertex b gives an order on
the loops pointed at b such that their composition is the loop around ∞.

The vectors di and mi are uniquely determined, up to sign, by Mi. The vector di is the coordinates
of the vanishing cycle δi (see §2.1) in the basis β1, . . . , βs of PH n−1(Xb), and mi is the linear
form η 7→ (−1)

n(n+1)
2 ⟨η, δi⟩, which is well defined on PH n−1(Xb) since ⟨h, δi⟩ = 0.

The extension map τℓi : Hn−1(Xb)→ Hn(X ∗,Xb) is described by (2.16) in terms of the linear
maps ⟨−, δi⟩. In particular, it factors through PH n−1(X ), and in the bases (βj)1≤j≤s for PH n−1(Xb)
and (∆i)1≤i≤r for Hn(X ∗,Xb), the matrix Ti of the induced map is given by

Ti = (−1)n−1

 0
mi

0

 ∈ Zr×s , where mi is the i-th line. (3.26)

Finally, the boundary map δ : Hn(X ∗,Xb) → Hn−1(Xb) mapping ∆i to δi induces a map
δ̃ : Hn(X ∗,Xb)→ PH n−1(Xb). The matrix B of δ̃ is given by

B = Mat(δ̃) =

 d1 · · · dr

 ∈ Zs×r. (3.27)

Recall that τ∞ is the extension map Hn−1(Xb)→ Hn(X ∗,Xb) along the equator, which is homo-
topically equivalent to the composition ℓr · · · ℓ1. By (2.5), it follows that

τ∞ =
r∑

i=1
τℓi

ℓi−1∗ · · · ℓ1∗, (3.28)

and therefore, in terms of the notations above, the matrix of the map PH n−1(Xb)→ Hn(X ∗,Xb)
induced by τ∞ is

T∞ = T1 + T2M1 + T3M2M1 + · · ·+ TrMr−1 · · ·M1. (3.29)

With these matrices in hands, we obtain a basis of T (X ) as ker(B)/ im(T∞).
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3.6 Integrating the period matrix
We now explain how to integrate the periods of a form ω = ωt ∧ dt on the basis of T (X ) obtained
in the previous section. We will explain how to obtain such a description of cohomology classes
of X in the specific instances of a hypersurface (Chapter 4) and elliptic surfaces (Chapter 6), as
well as some ideas for how to deal with the general case (Chapter 9). However there is to my
knowledge no known general way to compute such a representation of cohomology classes of X .
In order to compute the period matrix of Hn(X ), we first compute the matrix PX of the pairing
T (X )× PH n

DR(X)→ C

(γ, ω) 7→
∫

π∗(γ)
ω. (3.30)

To recover a primitive period matrix of X, it is then sufficient to compute a basis of T (Y )/ ker π∗
and extract from PY,X the relevant submatrix.

Integrating periods

Let γ = τℓ(η) ∈ T (X ) be an extension along some path ℓ in P1 \ Σ of some cycle η ∈ Hn−1(Xb).
Assume for now that we can write ω = β ∧ df , for some (n− 1)-form β on X . Then∫

γ

ω =
∫

τℓ(η)
β ∧ df =

∫
ℓ

(∫
ηt

β|Xt

)
dt, (3.31)

where ηt is the uniquely determined continuation of η ∈ Hn−1(Xt). This expresses the period
∫

γ
ω

as an integral of a period of the fiber Xt, varying with the parameter.
The computations can be more explicitly carried out using the isomorphism between PH n

DR(X )
and Hn+1

DR (X ∁). Recall that X ∁ denotes the complement Pn+1 \X. Let X ∗ = X \ X∞, where X∞
is the fibre of f : X → P1 above the point at infinity. By choice of coordinates, the hyperplane
family (Ht)t∈P1 is given by Ht = V (xn+1 − tx0), and we check that

Y ′ ≃ {(x, t) ∈ Pn × C | Pt(x0, . . . , xn) = 0} ,

where Pt(x0, . . . , xn) = P (x0, . . . , xn, tx0) is the equation of Xt in Pn. Let Y ∁ be the complement
of Y ′, that is

Y ∁ = {(x, t) ∈ Pn × C | Pt(x0, . . . , xn) ̸= 0} .

The map
([x0 : · · · : xn], t) 7→ [x0 : · · · : xn : tx0]

induces a map π : Y ∁ → X∁. The Leray residue maps Hn+1(Y ∁) → Hn(Y ′) and Hn+1(X∁) →
Hn(X) commute with π. Therefore, given a form ω ∈ PH n

DR(X), which we write as Res( A
P k Ωn+1)

following Section 3.1, we have∫
π∗γ

ω =
∫

γ

π∗ Res
(

A

P k
Ωn+1

)
=
∫

T (γ)
π∗
(

A

P k
Ωn+1

)
=
∫

T (γ)

x0At

P k
t

Ωn ∧ dt (3.32)

=
∫

ℓ

(∫
T (ηt)

x0At

P k
t

Ωn

)
dt. (3.33)

The form x0At

P k
t

Ωn defines an element of the space H of sections of PH n
DR(X∁

t ). In particular, we
can write, in H,

x0At

P k
t

Ωn =
s∑

i=1
ri(t)βi(t)
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for some rational functions ri(t), which we can compute explicitly using the Griffiths–Dwork
reduction. The vector Y ′ = (yi(t))1≤i≤s defined by yi(t) =

∫
ηt

βi(t) is a solution to the differential
system Y ′(t) = A(t)Y (t) coming from the Gauss–Manin connection, see (3.15) and (3.22). Moreover,
(4.9) gives ∫

π∗γ

ω =
∫

ℓ

s∑
i=1

ri(t)yi(t)dt. (3.34)

We can compute Y (0) from the primitive period matrix of Xb (which we assume is given as input
data), and then we can use numerical analytic continuation to compute the integral in (4.11)
efficiently (Section 3.3).



Chapter 4

Application : smooth complex
projective complete intersections

The methods described in the previous section rely on the knowledge of the primitive period matrix
of the fibre above the basepoint Xb. In this instance Xb, is assumed to be a complete intersection.
The goal of this section is to provide a way to compute these periods. This will in particular relevant
in the next section, which is dedicated to elliptic surfaces, and where the general fibre is thus a
smooth cubic curve.

The content of this chapter is in major parts based on Lairez et al. (2024).

Lefschetz pencils and modifications

Let PN denote the N -dimensional complex projective space. Let A ⊂ PN be an N − 2-dimensional
projective subspace. The pencil of axis A is the one-dimensional family of hyperplanes of PN that
contain A. It is parametrised by P1. Concretely, if A is the vanishing locus of two linear forms λ

and µ, then for t ∈ P1, we define Ht = V (λ− tµ) (and H∞ = V (µ)).
We consider an irreducible, closed complex complete intersection X ⊂ PN , with dimension

dimX = n. We aim at studying the topology of X through the intersections of X with the
hyperplanes Ht. For t ∈ P1, let

Xt
def=X ∩Ht. (4.1)

For any x ∈ X \A, there is a unique t ∈ P1 such that x ∈ Ht. This defines a rational map X 99K P1.
It is useful to consider a modification Y of X :

Ydef= {(x, t) ∈ X × P1 | x ∈ Ht}. (4.2)

The projection on the first coordinate induces a proper map π : Y → X , which is an isomorphism
above X \ A. The projection on the second coordinate induces a regular map f : Y → P1 which
resolves the indeterminacies of the map X 99K P1. The map π is the blowup of X at the base
locus X ′def=X ∩A of X 99K P1. The fibre f−1(t) above some t ∈ P1 is isomorphic to Xt. Indeed, by
definition, f−1(t) = {x ∈ X | x ∈ Ht} = X ∩Ht.

Let Σdef= {f(x) | x ∈ Y and df = 0} be the set of critical values. It is also the set of all t ∈ P1

such that Xt is singular. It is well known that Σ is finite (since f is locally constant on the
subvariety {df = 0} ⊆ Y). We will work under the hypothesis that the fibration is a Lefschetz
fibration — i.e., that all the critical points of f are nondegenerate (meaning the Hessian matrix at
the critical point is nonsingular) and the critical values associated to different critical points are

53
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distinct, see Section 2.2. This condition is mild: it is satisfied for a generic choice of A (Lamotke,
1981, §1.6).

The exposition of Chapter 2 provides a way to recover a description of the homology of Y in
terms of extensions and compute certain of its periods. In order to recover the periods of X , we
have two things to do:

• Specify the self-intersection of the section S in Lemma 28.
• Obtain a description of the algebraic DeRham cohomology Hn

DR(X ) (together with the Hodge
filtration) in terms of the relative DeRham cohomology of the fibration H(Y/P1) so we may
use the methods of Chapter 3 to compute their associated periods.

• Recover a description of the homology of X from that of Y.

Once these points are addressed, we obtain an algorithm for computing the periods of a complete
intersection, by induction on the dimension of X . Let H ⊆ Pn+1 be a generic hyperplane. A
primitive period matrix of X is computed from a primitive period matrix of X ∩H (as a complete
intersection in H ≃ Pn). To this end, we choose a pencil of hyperplanes {Ht}t∈P1 and a base point b

such that Hb = H and which induces a Lefschetz fibration, as defined in Section 2.2.
Up to a change of coordinates, we may assume that the pencil is given by Ht = V (xn+1 − tx0).

As in the previous sections, we consider the rational map f : X 99K P1 given by [x] 7→ [x0 : xn+1].
We consider the blowup π : Y → X of X along the base locus X ′ = X ∩V (x0, x1) of the pencil. The
composition f ◦ π : Y → P1 extends to a regular map on Y , also denoted f . The fibre Xt

def= f−1(t)
is isomorphic to the intersection X ∩Ht. The set of critical values is denoted Σ, it is the set of all t

such that Xt is singular.

Homology
basis

Monodromy
matrices

Effective
period matrix

§4.1 §3.4

§3.5

The main steps of the algorithms are:

1. derive the action of monodromy of π1(P1 \ Σ) on
Hn−1(Xb) from the primitive period matrix of Xb,
see Section 3.4;

2. compute a basis of homology of Hn(Y) from the
action of monodromy, see Section 4.1;

3. compute a primitive period matrix of X by integrat-
ing the varying periods of Xt in an appropriate way,
see Section 4.1.

The base case for this induction is the case of 0-dimensional varieties, where a description of
homology and the effective period matrix can be obtained directly. We will deal with this case right
below in the case of hypersurfaces. From then on, steps (1), (2), (3) allow to recover the effective
period matrix of a curve, another iteration the one of surfaces, and so on.

Primitive period matrix of a 0-dimensional hypersurface

Let P be a homogeneous polynomial in two variables defining a smooth variety X = V (P ) in P1.
In this case we obtain the primitive period matrix of X explicitly from the usual residue formula
for rational functions.

More precisely, the middle homology group H0(X ) is freely generated by d points. The
cohomology space H0

DR(X ) is the set of functions X → C. The linear section h is the sum of all
points. In particular PH 0

DR(X ) is the set of functions r : X → C with
∑

x∈X r(x) = 0. A basis of
the middle primitive cohomology space H1

DR(X ∁) is given by the rational forms ωk = xkyd−k−2

P Ω1 for
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0 ≤ k ≤ d− 2, where Ω1 = ydx− xdy is the volume form of P1. The residue mapping H1
DR(X ∁)→

H0(X ) is the classical residue

A

P
Ω1 7→

(
z ∈ X 7→ Resz

(
A

P
Ω1

))
, (4.3)

the tube map T : H0(X )→ H1(X ∁) maps a point of X to a loop around it, and Equation (3.3) is
Cauchy’s residue theorem. Since the sum of residues is zero, the image of the residue mapping is
indeed included in PH 0

DR(X ).
We choose d − 1 roots z1, . . . , zd−1 of P in X in the affine chart y = 1, they give a basis

of PH 0(X) and a primitive period matrix of X is given by the coefficients

zj
i

∂P

∂x
(zi)−1, (4.4)

for 1 ≤ i ≤ d− 1 and 0 ≤ j ≤ d− 2.

4.1 Computation of the primitive period matrix
In this section, we provide a method to compute the period matrix PY,X of the pairing between
PH n

DR(X ) and the pushforward T (Y), From the knowledge of this matrix and the exceptional
divisors in T (Y), a primitive period matrix of X can then be recovered. We start with the following
theorem, showing that the primitive homology of X is entirely described by pushforwards of
extensions of Y.

Theorem 34. Let K be the kernel of the map Hn−2(X ′)→ Hn−2(Xb) induced by inclusion. We
have an exact sequence

0→ K → T (Y)→ PH n(X )→ 0. (4.5)

Proof. We extend the commutative diagram of Theorem 21 by including the exact sequence from
Lamotke (1981, (3.1.2)). The dashed arrow is induced by inclusion. Indeed, let A be a closed
n− 2-chain in Hn−2(X ′). It is sent to A× P1 in Hn(Y), which is then included in Hn(Y,Xb) and
then Hn(Y,Y+) ∩Hn−2(Xb), where the identification is given by intersecting with Xb, which yields
A again.

Hn(Xb)

0 Hn−2(X ′) Hn(Y) Hn(X ) 0

Hn−1(Xb) Hn(Y+,Xb) Hn(Y,Xb) Hn−2(Xb) 0

Hn−1(Xb) ,

ι∗
ι∗

π∗

τ∞

∂
∂

(4.6)

Importantly, the dashed arrow Hn−2(X ′) → Hn−2(Xb) is surjective, by Lefschetz’ hyperplane
theorem, since X ′ is a hyperplane section of Xb. Now, the exact sequence follows from diagram
chasing in (4.6).

With the methods of Chapter 2 and Chapter 3, we may obtain a description of a basis of T (Y)
and, by Theorem 34, π : Y → X induces a surjective map T (Y)→ PH n(X ). In order to compute
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the period matrix of Hn(X ), we first compute the matrix PY,X of the pairing T (Y)×PH n
DR(X )→ C

(γ, ω) 7→
∫

π∗(γ)
ω. (4.7)

To recover a primitive period matrix of X , it is then sufficient to compute a basis of T (Y)/ ker π∗
and extract from PY,X the relevant submatrix.

Integrating periods

Let ω ∈ PH n
DR(X ) and γ ∈ T (Y). By definition, γ is the extension along some path ℓ in P1 \ Σ of

some cycle η ∈ Hn−1(Xb). Assume for now that we can write π∗ω = β ∧ df , for some n− 1-form β

on Y. Then ∫
π∗γ

ω =
∫

γ

π∗ω =
∫

τℓ(η)
β ∧ df =

∫
ℓ

(∫
ηt

β|Xt

)
dt, (4.8)

where ηt is the uniquely determined continuation of η ∈ Hn−1(Xt) along ℓ. This expresses the
period

∫
π∗γ

ω as an integral of a period of the fiber Xt, varying with the parameter t.
The computations can be more explicitly carried out using the isomorphism between PH n

DR(X )
and Hn+1

DR (X ∁). Recall that X∁ denotes the complement Pn+1 \ X . Let Y ′ = Y \ Y∞, where Y∞
is the fibre of f : Y → P1 above the point at infinity. By choice of coordinates, the hyperplane
family (Ht)t∈P1 is given by Ht = V (xn+1 − tx0), and we check that

Y ′ ≃ {(x, t) ∈ Pn × C | Pt(x0, . . . , xn) = 0} ,

where Pt(x0, . . . , xn) = P (x0, . . . , xn, tx0) is the equation of Xt in Pn. Let Y∁ be the complement
of Y ′, that is

Y∁ = {(x, t) ∈ Pn × C | Pt(x0, . . . , xn) ̸= 0} .

The map
([x0 : · · · : xn], t) 7→ [x0 : · · · : xn : tx0]

induces a map π : Y∁ → X∁. The Leray residue maps Hn+1(Y∁) → Hn(Y ′) and Hn+1(X∁) →
Hn(X ) commute with π. Therefore, given a form ω ∈ PH n

DR(X ), which we write as Res( A
P k Ωn+1)

following Section 3.1, we have∫
π∗γ

ω =
∫

γ

π∗ Res
(

A

P k
Ωn+1

)
=
∫

T (γ)
π∗
(

A

P k
Ωn+1

)
=
∫

T (γ)

x0At

P k
t

Ωn ∧ dt (4.9)

=
∫

ℓ

(∫
T (ηt)

x0At

P k
t

Ωn

)
dt. (4.10)

The form x0At

P k
t

Ωn defines an element of the space H of sections of PH n
DR(X ∁

t ). In particular, we
can write, in H,

x0At

P k
t

Ωn =
s∑

i=1
ri(t)βi(t)

for some rational functions ri(t), which we can compute explicitly using the Griffiths–Dwork
reduction. The vector Y ′ = (yi(t))1≤i≤s defined by yi(t) =

∫
ηt

βi(t) is a solution to the differential
system Y ′(t) = A(t)Y (t) coming from the Gauss–Manin connection, see (3.15) and (3.22). Moreover,
(4.9) gives ∫

π∗γ

ω =
∫

ℓ

s∑
i=1

ri(t)yi(t)dt. (4.11)
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We can compute Y (0) from the primitive period matrix of Xb (which we assume is given as input
data), and then we can use numerical analytic continuation to compute the integral in (4.11)
efficiently (Section 3.3).

Kernel of T (Y)→ PH n(X )

The final step to get the primitive period pairing PH n(X ) × PH n
DR(X ) is to identify the cycles

stemming from the blowup of the base locus of the fibration Y → X . We present here a heuristic
method relying on finding linear integer relations between the periods, which has the advantage of
being computationally cheap. This method uses the duality between PH n(X ) and PH n

DR(X ) to
obtain that

ker (π∗ : T (Y)→ PH n(X )) =
{

γ ∈ T (Y)
∣∣∣∣∣ ∀ω ∈ PH n

DR(X ),
∫

π∗(γ)
ω = 0

}
. (4.12)

This amounts to computing the kernel of a full-rank matrix with complex coefficients, knowing
that it is generated by integer-coefficient vectors. This is numerically stable as the matrix we
consider has full rank. In practice, the coefficients are small and we can compute them using
lattice-reduction algorithms. However, we cannot certify this computation. In Section 4.2.1 we give
a certified method for finding the coefficients of the blowups in terms of the thimbles in the case of
surfaces. This method generalises to higher dimensions but we did not implement it.

Since the matrix of the pairing PH n(X ) × PH n
DR(X ) is non-degenerate, the kernel of π∗ is

exactly the left-kernel of the full-rank matrix PY,X . This is a sublattice of T (Y), so ker π∗ is
generated by integer-coefficient vectors. We present an alternative rigorous way of computing ker π∗
in Section 4.2.1.

4.2 Removing blow-ups
In addition to the effective period matrix, we wish to recover the intersection product of Hn(X ) in
the basis we have computed. This is the focus of this section.

4.2.1 Exceptional divisors as thimbles
We begin with the case of surfaces to develop intuition, and then generalise to complete intersections.

The case of surfaces

The exceptional locus X ′ of the map X 99K P1 is the intersection of X with a (generic) line. It
is therefore a set of d points s1, . . . , sd, where d = degX . The modification π : Y → X is the
blowup of X along X ′. Let E1, . . . , Ed ⊂ Y denote the d components of the exceptional divisor,
that is Ek = π−1(sk). They are all isomorphic to P1, and linearly independent. The Ek’s define
classes in H2(Y) and we have the exact sequence (Lamotke, 1981, (3.1.2))

0→
d⊕

k=1
ZEk → H2(Y)→ H2(X )→ 0. (4.13)

For any two Ek and Ej , the intersection (Ek − Ej) ∩ Xb is the difference of two points, which is
homologous to 0 in H0(Xb). Therefore, by Theorem 21, the homology class of Ek − Ej comes from
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a uniquely determined element in T (Y). In particular, we obtain the exact sequence

0→
d⊕

k=2
Z(Ek − E1)→ T (Y)→ PH 2(X )→ 0. (4.14)

We can compute the image of Ek−E1 in T (Y ) in terms of the Lefschetz thimbles as follows. Let
p1, . . . , pr be non-intersecting paths in P1 connecting b to the critical points t1, . . . , tr respectively.
Consider T = ∪r

i=1pi ⊂ P1. It defines an oriented tree covering the critical points of f . Finally let
U = P1 \ T . It is a simply connected subset of P1 \ Σ, above which f has no critical point. From
Thom’s isotopy lemma (Mather, 2012) applied to the pair (Y, π−1(X ′)) we obtain a trivialisation
of the fibration f−1(U) → U where the points sk are fixed in the fibres. In other words, there
is a homeomorphism ϕ : f−1(U) → Xb′ × U , where b′ ∈ U , such that the following diagram is
commutative

X ′ × U

f−1(U) Xb × U ,

U

ι
ι2

ϕ

f
p2

(4.15)

where ι and ι2 are inclusions.
Take a 1-chain αk in Xb′ such that ∂αk = sk − s1 (in other words, αk is the relative homology

class of a path connecting sk to s1 in Xb′). For u ∈ U , let αk(u) = ϕ−1({u} × αk). Note that

∂αk(u) = ι∗(sk, u)− ι∗(s1, u) = sk − s1. (4.16)

For t ∈ T not a vertex, that is t ̸= b and t ̸∈ Σ, define αk(t+) and αk(t−) as the left and
right limit of αk(u) as u → t for t ∈ T (where the direction is given by the orientation of T ).
Since sk and s1 are fixed, ∂(αk(t+)− αk(t−)) = 0, and this chain defines a cycle vk(t) ∈ H1(Xt).
Let vkj ∈ H1(Xb) be the limit of vk(t) as t→ b along the j-th branch of T .

Lemma 35. With the above notations, the cycle vkj ∈ H1(Xb) is a multiple of δj, the vanishing
cycle associated to the critical value tj.

Proof. Consider a small enough ball B in Y around the critical point associated to the critical value tj .
Let t ∈ T be very close to tj . The paths αk(t+) and αk(t−) define an element of H1(Xt,Xt \ B).
Following a loop from t around ti transforms αk(t−) into α(t+). By (Lamotke, 1981, (6.5.1)), the
extension of αk(t+) along a loop around tj gives a multiple of the j-th thimble. In particular the
boundary of this extension, which is just αk(t+)− αk(t−), is a multiple of the vanishing cycle δj .
Since vkj is the deformation of αk(t+)− αk(t−) along the j-th branch, we obtain the claim.

Let mkj ∈ Z such that vkj = mkjδj .

Lemma 36. With the above notations, Ek − E1 =
∑r

j=1 mkj∆j in T (Y).

Proof. Consider in Y the 3-chain

B = ϕ−1(αk × U) = −∪u∈U αk(u). (4.17)

The border ∂B defines an element of H2(Y ). It decomposes into a part coming from the border
of αk and another coming from the border of U . The part coming from ∂αk is the closure of
all ∂αk(u), which is Ek − E1 by (4.16). The part coming from ∂U is ∪t∈T (αk(t+)− αk(t−)). For



CHAPTER 4. SMOOTH COMPLETE INTERSECTIONS 59

E1

Ek·

·
tj

·

·

αk(t+)
·

·
αk(t−)

(a) A 1-chain αk connecting s0 to s1 in one
of the fibres may have monodromy around
the critical values tj . Above T the chain
αk(t+) − αk(t−) has no boundary, and thus
represents a 1-cycle.

·

·

·

·

·

·

mkjδj

B

(b) We obtain a 3-chain B by extending A to all of P1 \ T .
The boundary of B is the sum of Ek − E1 with the
2-chain ∪t∈T (αk(t+) − αk(t−)). Since the intersec-
tion of this 2-chain with pj has boundary only in Xb,
αk(t+) − αk(t−) is a multiple of the vanishing cy-
cle δj .

Figure 4.1: The action of monodromy on relative homology and total transforms

a given edge pj of T , the union ∪t∈pj (αk(t+)− αk(t−)) is the extension along pj of the cycle vkj .
Since vkj is a multiple of the vanishing cycle mkjδj , the boundary of ∪t∈pj (αk(t+) − αk(t−)) is
mkjδj . In particular this extension is a multiple of the Lefschetz’ thimble ∆j with the same factor.

An illustration of this construction is given in Fig. 4.1.

Higher dimensions

In the general case, we have the exact sequence

0→ Hn−2(X ′)→ Hn(Y)→ Hn(X )→ 0. (4.18)

Recall from Lemma 26 the decomposition Hn−1(X ′) = K ⊕ ⟨η⟩ where K is the kernel of the
inclusion Hn−2(X ′) → Hn−2(Xb) and the intersection of η ∈ Hn−2(X ′) with the linear class hX ′

of Hn−2(X ′) is ⟨η, hX ′⟩ = 1. Again, by Theorem 21, for γ ∈ K, the homology class of [γ × P1] in
Hn(X ) comes from a uniquely determined element in T (Y). In particular, we obtain the exact
sequence

0→ K → T (Y)→ PH n(X )→ 0. (4.19)

From Lemma 26, K is generated by the vanishing cycles of the fibration of Xb. Let γ1, . . . , γs ∈ K

be a basis of K, of which the elements are vanishing cycles of the modification of Xb. Each γk

induces a total transform [γk × P1] in Hn(Y), denoted Γk.
As γk is a vanishing cycle, it is the boundary of a thimble of the modification Xb → P1. This

thimble is represented by an n-chain [Ak] (obtained from an extension along a loop)

∂[Ak] = γk ∈ Hn−2(X ′) . (4.20)

Again, we may recover Γk in terms of the thimbles of Y. Consider the restriction f̃ of the
fibration f : Y → P1 to Y \ (X ′ × P1). Let T ⊂ P1 be the union of non-intersecting paths ℓ1, . . . , ℓr

connecting the basepoint b to the critical points t1, . . . , tr of f . In particular T is an oriented
covering tree of the critical points of f̃ . Define U = P1 \ T . Similarly to the 2-dimensional case,
Thom’s isotopy lemma yields a trivialisation ϕ : f̃−1(U) ≃ (Xb \ X ′)× U .
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For u ∈ U , let Ak(u) = ϕ−1({u} ×Ak) and see that

∂Ak(u) = γk . (4.21)

Define A+
k (t) and A−

k (t) the left and right limits of Ak(u) as u→ t, for t ∈ T not a vertex. Then

∂
(
A+

k (t)−A−
k (t)

)
= 0 , (4.22)

and the homology class of A+
k (t)−A−

k (t) defines a cycles vk(t) ∈ Hn−1(Xt). Finally define vkj the
transportation of vk(t) as t→ b along the j-th branch of T .

Lemma 37. With the above notations, the cycle vkj ∈ Hn−1(Xb) is a multiple of δj , the vanishing
cycle associated to the critical value tj.

Proof. The proof is the same as that of Lemma 35

Let mkj ∈ Z such that vkj = mkjδj .

Lemma 38. With the above notations, Γk =
∑r

j=1 mkj∆j in T (Y) where ∆j is the thimble
corresponding to the path pj.

Proof. Again, the proof is essentially the same as that of Lemma 36

Both in the 2-dimensional case and higher, the recovery of the exceptional divisors relies on
the knowledge of the action of monodromy on the thimbles. The next section describes a way to
compute it.

4.2.2 Monodromy action on relative homology
Consider the relative homology space Hn−1(Xb,X ′), where X ′ is the exceptional locus. As in the
previous section, let γ1, . . . , γr be a basis of vanishing cycles generating K, and let α1, . . . , αr be
the corresponding thimbles. It follows directly from the long exact sequence of relative homology of
the pair (Xb,X ′) that

Hn−1(Xb,X ′) ≃ Hn−1(Xb)⊕
d⊕

i=2
Zγk. (4.23)

Following the construction in the previous section, we have a monodromy action of π1(P1 \ Σ, b)
on Hn−1(Xb,X ′) which extends the monodromy action on Hn−1(Xb).

In view of Lemma 38, the problem of computing the exceptional divisors in T (Y ) reduces
to the computation of the coefficients mkj , which are determined by the monodromy action
on Hn−1(Xb,X ′).

Lemma 39. The integers mkj in Lemma 38 satisfy

ℓj∗αk = αk + mkjδj .

Proof. This is simply a reformulation of the definition of mkj .

The method described in Section 3.4 to compute the matrices of the monodromy action
on Hn−1(Xb) extends to the relative case to compute the action on Hn−1(Xb,X ′). We provide
detail in the case of hypersurfaces.

We choose a basis ω1, . . . , ωr of H in the form

ωi = Res Bi

P ki
t

Ω2. (4.24)
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Recall the period matrix Π(t) defined by the coefficients

Πij(t) =
∫

ηj(t)
ωi(t) =

∫
T (ηj(t))

Bi

P ki
t

Ω2, (4.25)

where T : H1(Xt) → H2(P2 \ Xt) is the Leray tube map. Recall that Π(t) satisfies a differential
equation Π′(t) = A(t)Π(t), see (3.22), and that the monodromy action on the solution space of this
differential equation is dual to the monodromy action on H1(Xb).

We can extend the matrix Π(t) with integrals related to the paths αk(t). For each k, we define
a Leray tube T (αk(t)) around αk(t) as follows. For each point p of αk(t), we choose, continuously
with respect to p, a line Lp in P2 passing through p and not tangent to Xt. Then, for ε small
enough, we define T (αk(t)) as the union over all points p ∈ αk(t) of the ε-circle in Lp with center p.
Up to homotopy, T (αk(t)) only depends on the choice of Ls1 and Lsk

, which determine the border.
Indeed, for each p, the space of possible lines Lp is contractible, so the choice of Lp is irrelevant.
We assume that Ls1 and Lsk

are fixed, so that the border of T (αk(t)) is constant.
Let

Θik(t) =
∫

T (αk(t))

Bi

P ki
t

Ω2. (4.26)

It is an analytic function of t, in a neighbourhood of b. Indeed, if t is close enough to b, then
T (αk(t)) deforms into T (αk(b)) in X∁

t , with fixed boundary. So the integral (4.26) may be taken
over the fixed domain T (αk(b)). Since the integrand depends analytically on the parameter t, this
shows that Θik(t) depends analytically on t. By following the deformation of the path αk(t), the
function Θik extends meromorphically on any simply connected open subset of the complex plane
avoiding the singular values Σ. (There may be poles at points t where Ls1 or Lsk

are tangent
to Xt.) After extending Θik(t) over a loop ℓj , we obtain a new determination ℓj∗Θik which satisfies

ℓj∗Θik(t) =
∫

T (αk(t)+vkj(t))

Bi

P ki
t

Ω2 = Θik(t) + mkj

∫
δj(t)

ωi(t). (4.27)

In particular, the monodromy action on the functions Θik determine the coefficients mkj , and
therefore the monodromy action on H1(Xb, X ′).

It remains to see that the Θik are solutions of a differential system, so that the monodromy
action can be recovered by numerical integration. Indeed, by definition of H, there are some βi

1-forms on X∁
t such that

∂

∂t

Bi

P ki
t

Ω2 =
∑

j

aij(t) Bj

P ki
t

Ω2 + dβi. (4.28)

After integrating over T (αk(t)), we obtain

Θ′
ik(i) =

∑
j

aij(t)Θik(t) +
∫

T (αk(t))
dβi. (4.29)

The boundary of T (αk(t)) is two circles, one in Lsk
and one in Ls1 (with a minus sign), so by

Stokes’ and Cauchy’s formulae,∫
T (αk(t))

dβi =
∫

∂T (αk(t))
βi = Ressk

(βi|Lsk
)− Ress1(βi|Ls1

). (4.30)

Since s1 and sk are fixed, this is simply a rational function in t, which we denote Rik(t), defining a
matrix R ∈ C(t)r×(d−1).
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So we can consider the following differential system, of dimension r + d− 1,

Z ′ =
(

A R

0 0

)
Z, (4.31)

which admits the fundamental solution

Π̃ =
(

Π Θ
0 1

)
. (4.32)

The monodromy of this differential system is conjugate to the monodromy action on Hn−1(Xb,X ′).
Namely, considering the matrix Mat(ℓ∗) of the action of a path ℓ in the basis η1, . . . , ηr, α2, . . . , αd

of Hn−1(Xb,X ′), we have similarly to (3.24)

Mat(ℓ∗) = Π̃(b)−1 · ℓ∗Π̃(b) = Π̃(b)−1Λ̃ℓΠ̃(b), (4.33)

where Λ̃ℓ is the transition matrix associated to the system (4.32). This gives the desired algorithm
for computing the monodromy action on relative homology. From the knowledge of these mon-
odromy matrices we may recover the mkj ’s using equation (3.29), with an algorithm similar to that
of Section 3.5.

Remark 40. The order of the differential operators that need to be integrated is larger than those
of Section 3.4, so the computation is expensive in practice, even for quartic surfaces. An alternative
approach relying on braid computation is provided in Chapter 10.

4.2.3 Intersection product
The intersection product of Hn(Y)

Let n ≤ 2 and d be respectively the dimension and degree of X .
We begin with a lemma characterising Hn(X ) as a subspace of Hn(Y).

Lemma 41. The Poincaré dual of the pullback π∗ embeds Hn(X ) to the orthogonal complement of
Hn−2(X ′) in Hn(Y) isometrically (i.e. the intersection product is preserved).

Proof. Let α, β ∈ Hn(X ). As π∗ preserves cup products, we have that

⟨π∗α, π∗β⟩ = ⟨α, β⟩ . (4.34)

For 1 ≤ i ≤ d, let Ẽi ∈ Hn(Y) be the Poincaré dual of the exceptional divisor Ei. The projection
formula (Hartshorne, 1977, p. 256, A4) yields that

π∗(Ẽi · π∗α) = π∗Ẽi · α = 0 , (4.35)

as π∗Ẽi = 0. Poincaré duality yields the desired result.

In particular we may recover the intersection product of Hn(X ) from the one of Hn(Y).

The intersection product of Hn(X )

Once again, let γ1, . . . , γr be a basis of K consisting of vanishing cycles. If n is even, let γ ∈ Hn−2(X )
be such that ⟨γ, hX ′⟩ = 1. In particular, by Lemma 27, we may choose the Hn−2(Xb) piece of the
filtration of Theorem 25 to be generated by S = γ × P1.

In order to recover the intersection product on Hn(X ), it only remains to remove the exceptional
divisors Γi = [γi × P1] for i = 1, . . . , r. We begin with the following lemma which allows us to
compute the intersection product of the Γi.
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Lemma 42. ⟨Γi, Γj⟩ = −⟨γi, γj⟩

Proof. This follows from Voisin (2002, Theorem 3.71).

In particular we may answer specify the value of the missing entry in for the intersection matrix
of Y, see Lemma 28.

Lemma 43. ⟨S, S⟩ = −⟨γ, γ⟩

We can also get rid of the indeterminacy of the quotient T (Y) ⊂ Hn(Y)/Hn(Xb) which is
present when n is even.

Lemma 44. For 1 ≤ i ≤ s, Γi =
∑s

j=1 mijΓ̃j + ⟨γ, γk⟩h, where the mij are the integers computed
in section 4.2.1 and the Γ̃j’s are the Γj’s of Lemma 28.

Proof. Per Section 4.2.1, we have for every i the equality

Γi =
s∑

j=1
mijΓ̃j + kih , (4.36)

where the mij ’s are known integers, and ki ∈ Z. Taking the intersection product with S makes it
clear that ki = ⟨Γi, Γ⟩ = −⟨γi, γ⟩.

We thus have the image of Hn−2(X ′) in Hn(Y), and Lemma 41 allows us to recover the
intersection product of Hn(X ).

4.3 Wrapup
Let us summarise the main steps of the algorithm for computing a primitive period matrix of a
projective hypersurface X in Pn+1 given:

• the defining polynomial P (x0, . . . , xn+1) of X ;
• a generic hyperplane family Ht = V (xn+1 − tx0);
• a generic base point b;
• a primitive period matrix Π(b) of Xb = X ∩Hb, for a well-specified basis of PH n

DR(Xb).

1. Using Griffiths–Dwork reduction, compute a basis β1(t), . . . , βs(t) of H (as a C(t)-linear space),
the space of sections of PH n−1

DR (Xt) defined in Section 3.2, and the matrix A(t) ∈ C(t)s×s of
the Gauss–Manin connection over it (§§3.1 and 3.2).

2. If necessary, perform a change of basis so that the primitive period matrix Π(b) of Xb is given
with respect to the basis (βi(b)) of PH n

DR(Xb).

3. Compute the critical values Σ ⊂ P1 and polygonal loops ℓ1, . . . , ℓr generating the fundamental
group of P1 \ Σ (§3.4).

4. For each ℓi, integrate numerically the differential system Π′(t) = A(t)Π(t), with given initial
value Π(b) along ℓi to obtain the value ℓi∗Π(b), with rigorous error bounds. Compute the
matrix Mi = Π(b)−1 · ℓi∗Π(b). It is an integer matrix, so we only need to compute the
coefficients of Mi with a coefficient-wise error bounded by 1

2 (§3.4).

5. Using Equations (3.27) and (3.29), compute the integer matrices B ∈ Zs×r and T∞ ∈ Zr×s.
Compute bases of ker(B) and im(T∞) in

⊕r
i=1 Z∆i and a basis of a sublattice T ⊆ ker(B)

such that ker(B) = T ⊕ im(T∞). This sublattice is isomorphic to T (Y) (§3.5).
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6. Compute a basis ω1, . . . , ωe of PH n
DR(X ), using Griffiths–Dwork reduction, and compute the

integrals
∫

π∗(∆i) ωj (§4.1). This amounts to

(a) Computing the coefficients of ωj |Xt
in the basis (βi) of H;

(b) Computing a Picard–Fuchs differential equation for the partial integral y(t) =
∫

δi(t) ωj |Xt
,

using the coefficients above and the matrix A(t) of the Gauss–Manin connection,
where δi(t) is the vanishing cycle associated to the i-th critical value, transported
in Xt;

(c) Computing initial conditions y(k)(b) using the matrix Π(b);
(d) Computing

∫
ℓi

y(t)dt using the method given in Section 3.3.

7. With appropriate linear combinations, compute
∫

π∗(τi) ωj for some basis (τi) of T ≃ T (Y)
computed at Step 5, which gives the matrix P of the pairing T (Y)× PH n

DR(X ).

8. Identify the exceptional divisors in T (Y). Restrict the matrix P to the orthogonal complement
of this kernel, to obtain a primitive period matrix of X .

Complexity aspects

Let d be the degree of P . We can perform Step 1 using d5n+O(1) operations (Bostan et al., 2013).
The dimension s of H is bounded by dn and the entries of the s× s matrix A are rational functions
with numerators and denominators of degree at most n3ndn+1 (Bostan et al., 2013, Proposition 8).

In Step 3, the set Σ of critical values has d(d− 1)n elements (by genericity of the hyperplane
family). We can compute them by solving a system of n + 1 homogeneous equations of degree
at most d in Pn+1. The algebraic complexity is bounded by dO(n) (Giusti et al., 2001), and we
should also consider the cost of numerical approximation in the complex plane. In practice, the
computational cost is negligible. The polynomial systems we have can be considered as toy examples.

In Step 5, we reduce to integrating a differential operator of order at most dn and coefficients of
degree dO(n). As an optimization, Steps 5 and 6d can be performed simultaneously. The complexity
depends on the size of the differential operator, the desired precision but also numerical parameters.
No complete description is known. With respect to precision only, when everything else is fixed,
Theorem 33 guarantees a quasilinear complexity.



Chapter 5

Practical aspects for hypersurfaces

In this chapter, we present practical details of the computations that need to be carried out with
the methods presented in the previous chapters on quartic surfaces. The computations were done
using the SageMath implementation lefschetz-family1. We also quantify the efficiency of the
method on a large number of sample varieties, and compare to the other known algorithm for
computing such periods, of Sertöz (2019).

The content of this chapter is based on the paper Lairez et al. (2024).

5.1 An explicit example: quartic surface
Let P = w4 + x4 + y4 + z4 and define the Fermat quartic surface X = V (P ) ⊂ P3. It is a smooth
quartic projective surface. Thus it is a K3 surface, its middle cohomology group has rank 22 and its
holomorphic subgroup has rank 1. In this section, we give an explicit description of the computation
of the periods of X .

A static SAGE worksheet reproducing the computations of this section can be found at
Fermat_periods.ipynb2. The computation of this notebook took a bit less than 18 minutes on a
laptop.

5.1.1 Constructing the Lefschetz fibration
Let λ = w and µ = 2x + 3y + z, and for t ∈ P1, define Ht = V (λ− tµ). This defines a hyperplane
pencil {Ht}t∈P1 with axis A = V (λ, µ). Then the modification of Y along X is the blowup of X

along A which resolves the indeterminacies of the rational map λ
µ : X 99K P1 into a map f : Y → P1.

The fibre f−1(t) is isomorphic to Xt
def=X ∩Ht. The defining equation for Xt when t ̸=∞ is

Pt = t4(2x + 3y + z)4 + x4 + y4 + z4 . (5.1)

The map f has 36 critical values t1, . . . , t36. We chose a basepoint b and a value which will serve as
∞, both regular.

1https://gitlab.inria.fr/epichonp/lefschetz-family
2https://nbviewer.org/urls/gitlab.inria.fr/epichonp/eplt-support/-/raw/main/Fermat_periods.ipynb
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5.1.2 Computing cohomology
The primitive cohomology PH2(X ) is computed thanks to the Griffiths–Dwork reduction (see
Section 3.1). PH2(X ) has rank 21 and a basis is given by the residues of rational forms

1
P

Ω3,
A1

P 2 Ω3, . . . ,
A19

P 2 Ω3,
w2x2y2z2

P 3 Ω3 ∈ H3(P2 \ X ) , (5.2)

where A1, . . . , A19 are all the monomials of degree 4 in w, x, y, z with exponents at most 2, and Ω3 =
wdxdydz − xdwdydz + ydwdxdz − zdwdxdy is the volume form of P3. The 21 monomials 1,
w2x2y2z2 and A1, . . . , A19 are all the monomials whose degree is a multiple of 4 and that are not
divisible by the leading term of any element of the Jacobian ideal of P , which is in this case, the
monomial ideal ⟨w3, x3, y3, z3⟩.

Similarly, a basis of H, defined as the space of sections of PH 1(Xt) (which, since 1 is odd, is
just H1(Xt)) is given by the residues of the forms

x

Pt
Ω2,

y

Pt
Ω2,

z

Pt
Ω2,

z5

P 2
t

Ω2,
yz4

P 2
t

Ω2, and xz4

P 2
t

Ω2. (5.3)

5.1.3 The action of monodromy on H1(Xb), thimbles, and recovering
H2(Y )

As Xb is a smooth quartic curve, it has genus 3 and the homology group H1(Xb) is free of rank 6.
We assume we have a (primitive) period matrix of H1(Xb) given in the basis (5.3) for H1

DR(Xb)
and some basis η1, . . . , η6 of H1(Xb) which needs not be specified. We first aim at computing the
action of π1(P1 \ {t1 . . . , t36}, b) on H1(Xb).

First we compute the simple direct loops ℓ1, . . . , ℓ36 around the critical values t1, . . . , t36, such
that the composition ℓ36 . . . ℓ1 is the indirect loop around ∞. Then for each i we may compute
the monodromy matrix Mi ∈ GL6(Z) of the action of monodromy along ℓi on H1(Yb) in the
basis η1, . . . , η6 (see Section 3.4). For instance, we find

M1 =



1 0 1 1 2 2
0 1 −1 −1 −2 −2
0 0 2 1 2 2
0 0 −1 0 −2 −2
0 0 1 1 3 2
0 0 −1 −1 −2 −1

 = I6 +



1
−1
1
−1
1
−1

 ·
[
0 0 1 1 2 2

]
. (5.4)

This decomposition is the one of Equation (3.25). We choose a generator di ∈ H1(Xb) of the image
of Mi − I (the choice is up to a sign). This is the vector of the coordinates of the vanishing cycle
δi at ti in the basis of H1(Xb). We have for example d1 = (1,−1, 1,−1, 1,−1). We also pick a
permuting cycle, i.e. a preimage pi of di through Mi − I, so that di = Mipi − pi. For instance
p1 = (0, 0, 1, 0, 0, 0). We then have an explicit understanding of the thimble ∆i ∈ H2(Y+,Xb) as
the extension τℓi

(pi) of pi along ℓi. These thimbles freely generate H2(Y+,Xb), and we have the
36× 6 integer matrix B of the border map

δ̃ : H2(Y+,Xb)→ PH1(Yb) : ∆i 7→ δi , (5.5)

as per (3.27). This matrix, given in Fig. 5.1, has full column rank, and its kernel gives us a basis
for H2(Y+)/H2(Xb), which has rank 30.

In order to recover T (Y), we need to quotient by the extensions of cycles in H1(Xb) along
the loop around ∞, which we recall is simply the composition ℓ36 · · · · · ℓ1. The matrix Ti of the
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

1 1 1 1 0−2 1 1−2 1 1 3 0−2 2−3 1 1 1 1 1−3 0 1 0 1 0 0 1−2 1 1 0 1 0 0
−1−1−2−1 0 2−1 0 1−1 0−2 1 1 0 1 0 0 0 0−1 1 2 1 1 0 0 0−1 1−2−1 0 0 1 0

1−1 1 0 2 0 0 0 0−1−1 1 1−1 1−1 1 1 1 1 1−2 2 0 2 2 2 1 1−1−1−1 1−1−1 1
−1−1−2 0 1 2−1 1 0−1 0−1 2−1 2−1 1 1 1 1−1−1 4 2 2 1 1 1−1 0−3−1 0 0 1 1

1 2 2 0−1−2 2−1 0 2 0 1−3 1−2 1−1−1−1−1 1 0−4−1−2−1−1−1 1−1 3 1 0 0 0−1
−1−1−1 0 0 1−1 0 0−1 0−1 1 0 0 0 0 0 0 0−1 1 1 0 0 0 0 0−1 1−1 0 0 0 0 0



Figure 5.1: The 6 × 36 matrix B of the border map δ̃ : H2(Y+, Yb) → P H1(Yb). Each column corresponds
to the coordinates of a vanishing cycle at a critical point in the undetermined basis of P H1(Xb).

extension map τℓi : H1(Xb) → H2(Y,Xb) in the bases β1, . . . , β6 of H1(Yb) and ∆1, . . . , ∆36 of
Hn(Y,Xb) is given by equation (3.26). For instance, we have

T1 =


0 0 1 1 2 2
0 0 0 0 0 0
...

...
0 0 0 0 0 0

 ∈ Z36×6 . (5.6)

Using equation (3.29), we may then compute the matrix T∞ of the extension map τ∞ : H1(Xb)→
H2(Y,Xb), given in Fig. 5.2.



0 1 0 1 0 0 0 0 1 0−1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0−1 0−1 0 0 0 1 0 0
0 1−1 2 0 0 0 0 0 1−2 0 1−1−1 1 1 1 1 1 1 2 0−1 0 1 0−2 0−1 0−1 1 2 1 0
1 0−1 1−1 0 0 0 0 1−1−1 0 0 0 0 1 1 1 1 0 1 0−1−1 0 1−1 0−1 0−1 1 1 0 0
1−1 0 0 0−1−1 0 0 0 1−1−1 1 0 0 1 1 1 1 0 0 0 0−1−1 0 0−1−1 0 0 0−1 0 1
2 0−1 1 0−1−1 1 0 1 0−2 0 0−1 1 2 2 2 2 0 1 1−2−2 0 0−2−1−2 1−1 1 0 1 1
2 1 0 0 0−1 0 2 1 1 0−2 1 0 0 1 1 1 1 1−1 1 2−2−2 1 0−2−1−2 1 0 1 0 0 0



Figure 5.2: The transpose of the 36×6 matrix T∞ of the extension map τ∞ : H1(Xb) → H2(Y+, Yb). Each
line corresponds to the coordinates of an extension along the equator in the basis of thimbles
∆1, . . . , ∆36.

We may then compute a supplement (as a Z-module) of the image of T∞ in the kernel of B,
which has rank 36− 6− 6 = 24. This gives a description of T (Y) as integer linear combinations of
thimbles, given as 24 vectors of Z36. We may compute a basis e1, . . . , e24 of this space. For instance
we compute e2 = ∆2 −∆31 −∆35 −∆36.

5.1.4 Integrating forms
Let π : Y → X denote the canonical projection. As we know the periods of Xb, we may compute
the integral of the pullback of a primitive cohomology form Res ωj ∈ PH 2

DR(X ) along the thimbles∫
∆i

π∗ Res ωj using methods detailed in Section 4.1. To recover the integral along an extension, it
is sufficient to take the corresponding linear combinations of integrals along thimbles. For instance∫

e2

π∗ Res ωj =
∫

∆2

π∗ Res ωj −
∫

∆33

π∗ Res ωj −
∫

∆35

π∗ Res ωj −
∫

∆36

π∗ Res ωj

= i1.718796454505093 . . . with 139 digits of precision.
(5.7)

This allows us to recover the full pairing T (Y)× PH 2
DR(X )→ C.
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5.1.5 Recovering PH2(X )
To recover PH2(X ), we need to remove the 3 differences of blowup cycles in H2(Y), i.e. Ei −E1
for i ∈ {2, 3, 4}. To identify them in T (Y) we can simply take the right kernel of the 21× 24 period
matrix

(∫
ej

π∗ Res ωi

)
.

5.2 Explicit examples and benchmarking
In this section we analyse the performance of our algorithm to compute the periods of certain
smooth quartic K3 surfaces. In particular we compare with the other existing method of Sertöz
(2019) numperiods for the case of hypersurfaces. The reason why we are interested in K3 surfaces
is twofold: they are Calabi-Yau manifolds, and they are the first case where numperiods struggles
in the generic case.

numperiods relies on the deformation of a pencil of hypersurfaces along a path and analytically
continues the period matrix using the Picard–Fuchs equations — much like we do in section
Section 3.3 to compute the monodromy. Thus it is most efficient on families of K3 surfaces where
the Picard–Fuchs equation has low order and degree. They start from the Fermat K3 surface
V (W 4 + X4 + Y 4 + Z4) for which the period matrix is known exactly thanks to Pham (1965) and
Sertöz (2019), with entries given in terms of values of Gamma functions. When trying to compute
the periods of quartic K3 surfaces given by generic quartic polynomials (i.e., with many monomials),
the Picard–Fuchs equations can become quite wild, and computation time becomes an obstruction.

5.2.1 Benchmarking
Expected timings

Table 5.1 shows the time taken on a laptop to compute the periods of X for different dimensions and
degrees, as well as the obtained precision. Each line of Table 5.1 corresponds to the computation of
a single hypersurface X = V (P ), with P =

∑
m∈Mn,d

amm where Mn,d is the set of monomial of
degree d of Q(X0, . . . , Xn), and am are random integer coefficients chosen uniformly between −20
and 20. These timings were obtained on an Apple Macbook Pro M1, using all 10 cores.

The column |Σ| corresponds to the number of critical values of the fibration. This has an impact
on the number of edges on which the Picard–Fuchs operators need to be integrated, and thus on
the computational cost. More precisely, as the integration edges follow the Voronoi graph of the
critical points, the number of edges is at most 3|Σ| − 6 (Preparata & Shamos, 1985, Cor. 5.2).

The column rk PHn(X) corresponds to the number of Picard–Fuchs operators that need to be
integrated to recover the full period matrix of X, see Section 3.2.

The columns degL and ordL correspond to the degree and order of these operators. More
precisely let L be one of these Picard–Fuchs operators, corresponding to a form ω = Res A

P k , as
per Section 3.1. The order of L is rk PHn−1(Xb) + 1, and is the same for all forms. In contrast,
the degree degL changes depending on the form — therefore a range is given instead of a single
value3. The numbers in the column degL are lower and higher bounds for this degree for a specific P .

In the case of dimension greater than 2, the exceptional divisors of the modification were not
identified. For quartic surfaces and cubic threefold, only the periods necessary to describe the

3It seems from experiments that the degree increases with the pole order k of ω. As the filtration with respect
to this pole order coincides with the Hodge filtration (P. A. Griffiths, 1969), this implies that the degrees of the
Picard–Fuchs operators of the holomorphic forms are the lowest. Thus the holomorphic periods are conveniently the
less computationally expensive periods to compute.
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n d |Σ| rk PHn(X) degL ordL Time Precision (dec. digits)
1 3 6 2 10-30 3 10 sec. 300
2 3 12 6 60 3 3 min. 300
3 3 24 10 110-320 7 8 hours* 260
1 4 12 6 30-80 4 8 min. 350
2 4 36 21 170-800 7 1 hour* 300
1 5 20 12 70-170 5 7 hours 270

*only the periods necessary for describing the Hodge structure
were computed (see Section 5.2.1)

Table 5.1: Data on the computation of hypersurfaces of degree d in Pn+1(C). |Σ| is to the number of
critical values of the fibration. rk Hn(X) is the size of the period matrix. ord L and deg L are
the order and degree of the differential operators arising in the computation. Time is the real
time, running on 10 cores. Precision is the number of correct decimal digits obtained.

Hodge structure were computed (this corresponds to respectively 1 and 5 forms). This is typically
what we are interested in when computing periods. Note that, the recovered data is not sufficient
to continue the induction and access higher dimensional varieties — for this, the full period matrix
is required.

Comparison with numperiods on quartic surfaces

The algorithm consists of 4 main steps:

• Computing the fundamental group of P1 \ Σ;
• Computing the Picard–Fuchs operators;
• Computing the monodromy matrices of the Picard–Fuchs operator;
• Recovering the action of monodromy and reconstructing the homology.

In practice, most of the time is spent on the third step. In the case of the computation of the
periods of a quartic surface, the algorithm spends less than 1 second on step 4, around 20 seconds
on step 1 and 2, and around 10 hours on step 3.

The algorithm of Sertöz (2019) is implemented in the package numperiods4 (Lairez & Sertöz,
2019). In order to compare the efficiency of both methods, we show the time taken by numperiods
to compute the periods of K3 surfaces defined by quartic polynomials of the form F + P , where
F = x4 + y4 + z4 + w4 defines the Fermat quartic surface, and P is a polynomial with n monomials,
with n ranging from 0 to 5. These examples were run on a single core, on a cluster with 500 Gb of
memory, and for at most 48 hours each. Timings for specific cases are given in Table 5.2. In all
but five of the 100 examples for n ∈ {4, 5}, the computation with numperiods could not be carried
out, either because the memory usage exceeded the allocated 500 Gb, or because the computation
lasted longer than the allocated 48 hours.

In total the CPU time for the computation of the periods of 204 quartic surfaces was measured
using lefschetz-family with an input precision of 1500 bits. The average time taken was 9 hours,
56 minutes and 46 seconds. In practice, the package lefschetz-family makes use of several cores
for the computation of the monodromy matrices of the Picard–Fuchs operators, which can greatly
speed up the computation.

4https://gitlab.inria.fr/lairez/numperiods

https://gitlab.inria.fr/lairez/numperiods
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P numperiods lefschetz-family ordL degL
0 < 1 s 384 min. – –
2x2zw 4 s 574 min. 3 4
−2y3z − 4z2w2 2 min. 510 min. 5 38
−xyzw + 4xzw2 − 2y4 25 min. 607 min. 7 110
y3z + z4 + y3w + x2zw 346 min. 635 min. 14 591
4xyz2 − 5x2zw − 4xw3 − 4zw3 > 2880 min. 494 min. 21 ?
−2x2w2 − 4y2w2 − 2yzw2 + 2yw3 > 500 Gb 543 min. 21 ?
x4 − 4y2z2 − 5xz2w + 2yz2w + xyw2 > 500 Gb 538 min. 14 ?

Table 5.2: Comparison of CPU time necessary for the computation of the periods of the quartic surface
defined by x4 +y4 +z4 +w4 +P , using numperiods and lefschetz-family. The columns ord L
and deg L record the order and the degree of the coefficients of the Picard–Fuchs differential
equation that numperiods integrates. The periods of the Fermat hypersurface are hard-coded in
numperiods, which explains the instantaneous computation for P = 0.

5.2.2 An application: Picard rank of families of quartic surfaces
In this section we explain how to use our algorithm to obtain certain algebraic invariants of quartic
surfaces. Notably we compute the generic Picard rank of families of quartic surfaces (§§5.2.2 and
5.2.2), we check that two quartic surfaces are isomorphic to each other (§5.2.2), and give equations
for quartic surfaces for each possible Picard rank (§5.2.2). These examples allow us to test our
algorithm against known results.

Given a smooth quartic surface of P3, we may recover its Picard rank thanks to the numerical
evaluation of some of its periods. Such a variety is a K3 surface. Its middle cohomology group
H2(X) has rank 22, and its canonical bundle is trivial: there is a unique holomorphic form ω, up
to scaling. The kernel of the map γ 7→

∫
γ

ω is a sublattice of H2(X) called the Néron–Severi group
of X. The rank of this lattice is called the Picard rank (or Picard number, or Néron–Severi rank)
of X.

The LLL algorithm (Lenstra et al., 1982) can be used to heuristically recover this kernel from
high-precision numerical approximations of the periods. This computation is not certified and
can fail in two ways, in principle. First, the algorithm may miss integer relations if the number
of digits in the coefficients is not smaller than the number of significant digits computed in the
periods. Second, it may recover fake integer relations reflecting a numerical coincidence that a
higher precision computation would detect. In practice, we never observed these phenomena. See
(Lairez & Sertöz, 2019) for a discussion of these issues.

Throughout the following examples, we used the following method. The holomorphic 2-form of
a given quartic X = V (P ) can be identified as the residue of the only irreducible rational form of
H3(P3 \X) with pole order 1 (P. A. Griffiths, 1969, Eq. 8.6). Explicitly the periods are given by∫

γ
Ω3
P , with Ω3 the volume form of P3 and γ ∈ H3(P3 \ X ). We may then use the steps up to 5 of

Section 4.3 to compute a basis of T (Y). We then compute the periods of the holomorphic form on
this basis with the methods of Section 4.1. This yields 24 numerical approximations of complex
numbers αi ∈ C. Cycles on which the periods vanish induce integer linear relations between these
numbers. Of these relations, three come from the exceptional divisors of the blowup π : Y → X
(Section 4.2.1). As the Néron–Severi lattice is characterised by the vanishing of the periods, we
may use these relations to compute it. All in all, the Picard rank ρ(X ) of X is given by

ρ(X) = 22− dimQ ⟨α1, . . . , α24⟩ . (5.8)
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We can apply the LLL algorithm to compute dimQ ⟨α1, . . . , α24⟩ and heuristically recover the Picard
rank.

Altogether the holomorphic periods of 530 smooth quartic surfaces were computed for the results
presented in this section. The computations were run on a cluster, using 32 cores. The average time
needed to compute the holomorphic periods of one quartic surface was around 40 minutes, ranging
from 16 minutes up to 13 hours. The median time was 28 minutes. The computation took longer
than 90 minutes for only 24 surfaces. It should be noted that the cause of lengthy computations
seems to stem from the choice of the fibration X 99K P1 rather than be intrinsic to the surface itself.
Indeed, the limiting factor is the integration step, and the cases where the computation takes a lot
of time seem to always be due to the integration on one single pathological edge. In all the cases
we looked at closely, picking another generic fibration reduced the computation time, to around the
expected 40 minutes. However, we have for now no way to choose a fibration that is well adapted
to the computation of a given surface a priori.

Families studied by Bouyer

In this section we numerically verify the Picard ranks of the generic elements of the families of
quartic surfaces of P3 given by Bouyer (2018, Theorem 4.9). These families are generated by
polynomials of the form

[A, B, C, D, E] def= A(x4 + y4 + z4 + w4) + Bxyzw + C(x2y2 + z2w2)
+ D(x2z2 + y2w2) + E(x2w2 + y2z2),

(5.9)

with 5 parameters A, B, C, D and E. More precisely, the families are given respectively by polyno-
mials [A, B, C, D, E], [A, (DE− 2AC)/A, C, D, E], [A, 0, C, D, 2AC/D], [A, B(2A−B)/A, B, B, B]
and [A, 0, C, 0, 0]. The theorem of Bouyer states that the generic Picard rank of these families are
respectively 16, 17, 18, 19 and 19.

To generate elements of these 5 families, we simply pick integers A, B, C, D, E randomly in
the interval [−100, 100] and consider the quartics defined by the above polynomials. If these
quartics are smooth we may compute the Picard rank as above. Otherwise we pick other values for
A, B, C, D, E.

We checked that the values our method yields for the Picard rank coincide with the values given
by the theorem for the varieties corresponding to 56 sets of values for A, B, C, D, E. This gives
numerical evidence of the results of Bouyer (2018).

We found singular examples were the Picard rank was not generic, for [A, B, C, D, E] and
[A, (DE − 2AC)/A, C, D, E] with (A, B, C, D, E) = (49, 92,−51, 19,−51). The corresponding
polynomials are

[A, B, C, D, E] = 49x4 − 51x2y2 + 49y4 + 19x2z2 − 51y2z2 + 49z4 + 92xyzw

− 51x2w2 + 19y2w2 − 51z2w2 + 49w4 ,
(5.10)

and

[A, (DE − 2AC)/A, C, D, E] = 49x4 − 51x2y2 + 49y4 + 19x2z2 − 51y2z2 + 49z4

+ 4029
49 xyzw − 51x2w2 + 19y2w2 − 51z2w2 + 49w4 .

(5.11)

The Picard ranks were 1 higher than the generic value for their respective families, i.e. 17 and 18.
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Defining polynomial Picard number

x3y + y3z + y3w + z3w + xw3 ≤ 2
xy3 + z4 + x3w + y2zw + xw3 ≤ 2
x4 + y3z + xz3 + x3w + yw3 ≤ 2

y3z + xyz2 + xz3 + x3w + yw3 ≤ 3
x3y + y3z + z3w + z2w2 + xw3 ≤ 3
x2y2 + x3z + yz3 + y3w + xw3 ≤ 18
xy3 + x3z + xyzw + z3w + yw3 ≤ 19

Table 5.3: The 7 missing quartics.

5-nomial quartics

In Heal et al. (2022), the authors used the package numperiods to investigate the periods quartic
K3 surfaces defined by elements of the set V5 of smooth polynomials that are the sum of five
distinct monomial with coefficient 1. Using deep-learning methods to guess efficient paths for
deformation, they managed to compute the periods of all but 7 quartics. Reaching these missing
quartics proved to be computationally too expensive using direct deformation techniques. Using
crystalline_obstruction (Costa & Sertöz, 2021), a number theoretical method to bound the
Picard rank, they computed the upper bounds for these missing quartics. In the other cases, the
bound provided by crystalline_obstruction matched the estimate given by the LLL algorithm
using numerical approximation of the periods with 300 digits of accuracy. This is summed up in
Table 5.3, which is reproduced from Heal et al. (2022, Table 12.)

Using lefschetz-family, we were able to compute the periods of these quartic surfaces with
300 digits of accuracy, in about 40 minutes each. Using LLL, we find that the Picard ranks also
match the upper bound computed using crystalline_obstruction, as was the case for the other
quartics of V5.

Picard rank of symmetric polynomials

In this section we compute the Picard rank of families of quartic surfaces defined by a symmetric
polynomial. The defining equation of a quartic in P3 is a homogeneous polynomial in 4 variables,
say x, y, z and w. We consider the families of polynomials that are symmetric in some of these
variables. Up to a permutation of the variables, there are 4 such families:

1. polynomials symmetric in all the variables,

∀σ ∈ S{x,y,z,w} P (x, y, z, w) = P (σ(x), σ(y), σ(z), σ(w)) ,

2. polynomials symmetric in three variables, say x, y and z,

P (x, y, z, w) = P (x, z, y, w) = P (y, x, z, w) = P (y, z, x, w) = P (z, x, y, w) = P (z, y, x, w)

3. polynomials where x and y are symmetric, as well as z and w

P (x, y, z, w) = P (y, x, z, w) = P (x, y, w, z) = P (y, x, w, z) ,

4. and polynomials where x and y are symmetric

P (x, y, z, w) = P (y, x, z, w) .



CHAPTER 5. PRACTICAL ASPECTS FOR HYPERSURFACES 73

A basis of the vector space of such polynomials is given by products of elementary symmetric
polynomials. We may thus generate a priori generic (i.e. with minimal Picard rank) elements of
the family by picking random coefficients as in the previous section. In practice we pick random
integer coefficients in the interval [−5, 5].

Doing so, we observe respectively

1. a Picard rank of 17 for 113 elements, 18 for one element, and 19 for one element,

2. a Picard rank of 14 for 100 elements, and 15 for one element,

3. a Picard rank of 12 for 107 elements,

4. a Picard rank of 8 for 114 elements.

This leads us to conjecture that the generic Picard ranks of these families are respectively 17, 14,
12 and 8.

Remark 45. Alice Garbagnati pointed out that lower bounds on the Picard rank follow from
properties of K3 surfaces with automorphisms. These bounds match the heuristic computation
of the rank we obtained numerically. More precisely, the automorphisms of P3 that permute the
coordinates induce automorphisms of the K3 surfaces of the aforementioned families. Denote σ

such an automorphism and σ∗ the induced isometry on H2(S). Depending on the nature of the
automorphism, either the transcendental lattice is included in H2(X)σ∗ (the sublattice fixed by σ∗)
or H2(X)σ∗ is included in the Néron–Severi lattice. The ranks of H2(X)G for all finite group
actions G are known (Xiao, 1996; Nikulin, 1979; Artebani et al., 2011; Hashimoto, 2012), and this
yields lower bounds for the Picard ranks. However, the question of rigorously proving that the lower
bounds match the Picard ranks seems to still be open.

Two isomorphic rank 2 smooth quartic surfaces in P3

Oguiso (2017, Thm. 1.4) gives an example of two isomorphic smooth quartic K3 surfaces S1 and
S2, that are isomorphic as abstract varieties but not Cremona equivalent (i.e. there is no birational
automorphism of P3 inducing an isomorphism S1 ≃ S2). Defining equations f1 and f2 for S1 and
S2 are given by

f1 = x3y + x2y2 − xy3 + x3z + 2x2yz − xy2z − y3z + x2z2 − xyz2 − 2y2z2 − yz3 − z4

+ x3w − 2xy2w − 2xyzw − xz2w + yz2w + xyw2 − y2w2 − z2w2 + xw3 + yw3 (5.12)

and

f2 = x4 + 3x3z − x2yz + 3x2z2 − 4xyz2 − y2z2 + xz3 − 3yz3 − x2yw + 2xy2w

+ y3w − 2x2zw − 2xyzw + 3y2zw − 3xz2w − 3yz2w − 2z3w + 4xyw2

+ 2y2w2 + 3yzw2 − z2w2 + 2xw3 + 2yw3 + zw3 + w4
(5.13)

The goal of this section is to present a method allowing one to numerically verify that these two
surfaces are indeed isomorphic.

A Hodge isometry between two varieties X and Y is a morphism X → Y that induces an
isometry of the homology groups H2(X) ≃ H2(Y ) that respects the Hodge decomposition on the
complexifications H2(X,C) and H2(Y,C). When X is a K3 surface, its Hodge decomposition is
determined entirely by the holomorphic periods (indeed H2,0(X) has rank 1 and is the complex
conjugate of H0,2(X)).
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By the global Torelli theorem for K3 surfaces (Huybrechts, 2016, Thm. 5.3), it is sufficient to
find a Hodge isometry between the second homology groups of two K3 surfaces to prove that they
are isomorphic. In order to recover such an isometry, we proceed in the following way.

Using the methods presented in this chapter, we compute the holomorphic period vectors of Si in
some basis of homology γi

1, . . . , γi
22 of H2(Si) for i = 1, 2. This allows to (heuristically) recover the

Néron–Severi sublattice NS(Si), which we find has rank 2. The transcendental lattice Tr(Si) is then
simply the orthogonal complement of NS(Si) in H2(Si). The lattice NS(Si)⊕ Tr(Si) is a full rank
sublattice of H2(Si), which may have positive index. In order to find a Hodge isometry, we look for
an isometry between these sublattices that extends to an isometry between the full homology lattices.

More explicitly, let ω1 and ω2 be the holomorphic forms of S1 and S2 respectively, γ1
1 , . . . , γ1

22 ∈
H2(S1) and γ2

1 , . . . , γ2
22 ∈ H2(S2) bases of cohomology. Let I1, I2 be the intersection matrices in

these bases, and π1 = (
∫

γ1
j

ω1)1≤j≤22 and π2 = (
∫

γ2
j

ω2)1≤j≤22 the row vectors of the periods of the
holomorphic form. Then a Hodge isometry is the data of a matrix A ∈ GL22(Z) and a scalar λ ∈ C
such that

π2A = λπ1 and tAI2A = I1 . (5.14)
Let Ni ∈ Z22×2 be the coordinate matrix of a basis of the Néron–Severi group NS(Si) and

Ti ∈ Z22×20 be the coordinate matrix of a basis of the transcendental lattice Tr(Si). As these
sublattices of H2(Si) are algebraic invariants, we have the identities

AT1 = T2B and AN1 = N2C (5.15)

for some invertible matrices B ∈ GL20(Z) and C ∈ GL2(Z).
Then λπ1T1 = π2AT1 = π2T2B. In particular, coefficient wise we have

λ(π1T1)i =
∑

j

(π2T2)jBji , (5.16)

which allows us to recover the integers Bji using the LLL algorithm. We find that λ = 1 with the
choice ωi = Res(Ω/fi).

Furthermore
tCtN2I2N2C =t N t

1AI2AN1 =t N1I1N1 . (5.17)
This yields 4 quadratic equations in the coefficients of C, to which we may find integer solutions.
There are infinitely many solutions to this system, and not all yield a Hodge isometry — they only
do if the corresponding A is an invertible integer matrix.

Indeed we have
A

(
T1 N1

)
=
(

T2 N2

)(
B 0
0 C

)
, (5.18)

and thus

A =
(

T2 N2

)(
B 0
0 C

)(
T1 N1

)−1

∈ GL22(Z) . (5.19)

We pick solutions for C and check whether they satisfy this condition. We then verify that the
conditions of (5.14) are also satisfied. Using this method, we found that there is indeed a Hodge
isometry between S1 and S2 up to high precision, which confirms that they are isomorphic.

An explicit equation of a smooth quartic K3 surface with given Picard rank

In this section we provide complements to Table 6.1 of Lairez and Sertöz (2019), for which examples
of defining equations of quartic surfaces of Picard rank 2, 3 and 5 were missing. Additionally, we
have verified the known entries of this table using the method presented in this thesis.
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Defining polynomial Picard number

wx3 + w3y + y4 + xz3 + z4 1
−x2y2 + xy3 − y4 + x3z + x2yz − xy2z − y3z + xyz2 − y2z2 + xz3 − yz3 + x3w

−x2yw − xy2w − y2zw − z3w − x2w2 − xyw2 + y2w2 + yzw2 + yw3 − zw3 2

x4 − y4 + z4 − w4 + (x− y)(z + w)yw − (x + y)(z − w)y2 3
x3y + z4 + y3w + zw3 4

5x4 + x3y − xy3 − 5y4 + x3z + x2yz − xy2z − y3z + x2z2 + 2xyz2 + 3y2z2 + 2xz3 + 2yz3

+2z4 − x3w + x2yw + xy2w − y3w + x2zw − y2zw − 2xz2w + 2yz2w + 2z3w
−2x2w2 − 2xyw2 − 2y2w2 − 2xzw2 − 2yzw2 + 2z2w2 + 2xw3 − 2yw3 − 2zw3 − 4w4

5

x3y + y4 + z3w + yw3 + zw3 6
w3x + x4 + wx2z + x3z + xy2z − y3z + wxz2 + x2z2 − xz3 + z4 7

x3y + z4 + y3w + xw3 + w4 8
w4 + wx2y + y4 + x3z − xy2z + z4 9

x3y + z4 + y3w + w4 10
w4 + x4 + x2y2 + y4 − w3z −2 xy2z + x2z2 + z4 11

x3y + y4 + z3w + x2w2 + w4 12
w4 +3 x4 + wy3 + y2z2 + wz3 +2 xz3 13

x3y + y4 + z3w + yw3 + w4 14
x3y + y3z + z4 + xy2w + zw3 15

x3y + y4 + z3w + xyw2 + y2w2 + w4 16
x3y + y4 + z4 + x2w2 + zw3 17
x3y + x3z + y3z + yz3 + w4 18

x3y + z4 + y3w + xyzw + xw3 19
x3y + z4 + y3w + xw3 20

Table 5.4: Example polynomial for each Picard number. The new rows are Picard numbers 2, 3 and 5.
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In addition to the example(s) of Section 5.2.2, Picard rank 2 smooth quartic K3 surfaces were
found by testing generic polynomials with coefficients in {−1, 0, 1}. Following the construction of
the proof of Oguiso (2012, Thm. 1.7), we may construct an equation of a smooth quartic surface
with Picard rank 3. We also stumbled upon a rank 5 example, completing the missing entries. The
completed table can be found in Table 5.4.

Such polynomials are too large (in terms of the number of monomials) for the Picard rank to be
recovered using the previous method of Sertöz (2019) with current numerical integration software.
Using the SageMath implementation of the algorithm presented in this thesis, we were able to
numerically recover the Picard rank of these smooth quartic K3 surfaces in less than an hour each
on a laptop.

5.2.3 An example from Feynman integrals: the Tardigrade Graph
The methods presented here allowed the study of the geometry of a parametrised Feynman integral
corresponding to the Tardigrade graph. The associated Feynman integral is a relative period integral
in the sense of Bloch et al. (2006) and Brown (2017) for a family of singular quartic surfaces defined
by the Feynman graph in Fig. 5.3, as argued in Bourjaily et al. (2020), Bourjaily et al. (2019) and
characterised completely in Doran, Harder, Pichon-Pharabod, et al. (2023). This example goes
beyond the scope of this section, as the quartic surfaces associated to this graph are not smooth. It
also shows that our algorithm manages examples from physics that were previously out of reach.

Figure 5.3: The tardigrade graph

The Tardigrade graph corresponds to a family of K3 surfaces given as the minimal resolution of
a family of generically singular quartic surfaces in P3. For example, one element of this family, on
which the computation was performed, is the quartic defined by the equation derived in Doran,
Harder, Pichon-Pharabod, et al. (2023, §8)

6124x4 − 24782692x3y + 24962401977x2y2 − 20842243972xy3 + 4331388844y4 + 6124w4

+ 13827992x3z − 27919677996x2yz − 119291704836xy2z + 50444249752y3z

+ 7840306116x2z2 − 1895725740xyz2 + 168749562396y2z2 + 38842829528xz3

+ 168487393048yz3 + 48321305644z4 − 101996680x3w + 204653103868x2yw

− 85803990572xy2w + 10300568y3w − 115176640844x2zw − 460049503942xyzw

− 18769272012y2zw − 311785995116xz2w − 108990818964yz2w − 62891049316z3w

+ 417760330428x2w2 − 126779372xyw2 + 10306692y2w2 + 179497287052xzw2

+ 37592148yzw2 + 22845754953z2w2 − 101996680xw3 + 12248yw3 − 22389124zw3 .

(5.20)

Using a variation on the methods presented in this chapter, of which we give an overview below,
we were able to recover algebraic invariants of this family, namely
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1. its generic Picard rank, 11,

2. the Picard lattice, i.e. the kernel of the holomorphic period map γ 7→
∫

γ
ω,

3. and an embedding of the Picard lattice in the standard K3 lattice.

The quartic surfaces considered generically have 4 nodal singularities. We want to obtain
the periods of their minimal desingularisation. Despite the presence of singularities, we may still
consider a Lefschetz fibration of these varieties and compute the monodromy matrices around
the critical values. From these monodromy matrices, we recover the monodromy representation
of a morsification of the singular quartic surface which yields a description of its homology. The
homology of the morsification of the singular quartic is isometric to that of its desingularisation.
Therefore this allows us to compute a description of the homology of the K3 surface. We can then
integrate the holomorphic form following Section 4.1. This shows that we may use the effective
Picard–Lefschetz theory presented in this thesis to recover the homology of hypersurfaces with
nodal singularities.

In practice, however, in an effort to reduce the runtime, we may instead consider an elliptic
fibration of the K3 surface directly. This has two main benefits:

• The order of the Picard–Fuchs equations that need to be integrated diminishes from 7 to 3
(as the genus of the homology of the fibre goes from 3 for a quartic curve to 1 for an elliptic
curve). This greatly decreases the runtime of the computation down from one hour to less
than a minute.

• We do not need to consider a modification of the K3 surface, which means there are no
superfluous exceptional divisors to remove.

In order to obtain an elliptic fibration of the K3 surface, we project the K3 surface away from one
of its singular points. This yields a double cover of P2 ramified along a sextic curve. Up to a change
of variable, the defining equation of this sextic curve can be made quartic in one of the variables.
Taking another variable as a parameter, we obtain an affine equation of the form y2 = p(x, t) with p

quartic in x, which gives an elliptic fibration of the K3 surface parametrised by t. This fibration has
17 singular fibres, two of which are I4 fibres, one is an I2 and the rest are I1’s as per the Kodaira
classification of singular fibers of elliptic surfaces (Kodaira (1963), see also Table 6.1 below). We
identify the type of the singular fibres by looking at their monodromy matrices. Passing again to a
morsification of the fibration, we are able to recover the homology and perform the integration.
Further details about this computation are given by Doran, Harder, Pichon-Pharabod, et al. (2023,
Appendix B).

In the next chapter, we will detail a general method for computing the homology and periods of
elliptic surfaces.



Chapter 6

Application: Elliptic surfaces

As a second application of the theory detailed in the previous chapters, we deal with the case of
elliptic surfaces. Elliptic surfaces are surfaces equipped with a fibration by elliptic curves, which in
some sense makes them the easiest non-trivial surfaces to deal with. Indeed, the middle homology
group of elliptic curves has rank 2, which is the lowest possible exhibiting possibly non-trivial
monodromies. As in the case of hypersurfaces our goal will be to reduce to the case of a Lefschetz
fibration. However in this setting we do not have the leisure of choosing the fibration: it is given
as input. We will resort to using morsifications. We will see that this is always possible thanks
to a result of Moishezon (1977) In fact we will also see that the singular fibres an elliptic surface
can have are sufficiently well behaved that we can avoid explicitly realising the deformation. This
greatly simplifies the algorithm and its implementation.

The work of this chapter is based on Pichon-Pharabod (2024).

6.1 Elliptic curves
In this section we recall certain facts about complex elliptic curves that are relevant to this text.
Complex projective algebraic curves have the topology of a closed oriented real 2-manifolds. In
particular their topology is characterised by a single integer: their genus. The most trivial example
is the projective line, which is a topological sphere, i.e., has genus 0. The next step is genus 1: this
is the realm of elliptic curves.

Definition 22. An elliptic curve is an algebraic curve of genus 1.

One way to realise an elliptic curve E is as a projective hypersurface, i.e., given by a unique
equation in P2. The degree-genus formula links the degree d of a smooth curve to its genus g:

g = (d− 1)(d− 2)
2 . (6.1)

From this we may see that elliptic curves can equally be characterised as curves of degree 3. In
fact, E is birationally equivalent to a curve defined by a (reduced) Weierstrass equation:

y2 = x3 + ax + b, a, b ∈ C . (6.2)

Elliptic curves exhibit various interesting properties. The first one is that their set of rational
points has a canonical group structure (assuming it is non-empty), called the Mordell–Weil group
E(Q). This makes elliptic curves the baby case for abelian varieties.

78
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The second interesting property is that their holomorphic bundle has rank 1. Indeed, the middle
cohomology group has rank 2g = 2, and thus the Hodge decomposition imposes h1,0 = h0,1 = 1. In
the coordinates above the holomorphic is generated by ω = dx

y . In particular it is non-vanishing.
This makes elliptic curves the baby case for Calabi-Yau varieties.

These two concepts are related by the following observation. Let E be an elliptic curve, let
Λ = π1Z + π2Z be the lattice of periods of ω, and define

E → C/Λ : P 7→

[∫ P

O

ω

]
(6.3)

As ω is holomorphic, this map is well defined. It turns out that is defines an isomorphism both
analytically and algebraically: the group structure is preserved.

The first homology group H1(E) of an elliptic curve has rank 2. Its intersection pairing is
antisymmetric and unimodular, and thus given in a certain basis by

I =
(

0 1
−1 0

)
. (6.4)

Definition 23. A basis γ1, γ2 of H2(E) is said to be symplectic if the above matrix I is the
intersection matrix (⟨γi, γj⟩)i,j of this basis.

6.2 Elliptic surfaces
In this section, we recall the definition of an elliptic surface, as well as related notions that are useful
to our discussion, notably the action of monodromy and Kodaira’s classification of singular fibres.
For further reading on elliptic surfaces, we recommend Schütt and Shioda (2010) and Miranda
(1989).

Definition 24. Let V be a complex curve. An elliptic surface over V is an complex surface S along
with a proper surjective map f : S → V such that

• for all but finitely many t ∈ V , the fibre Ft = f−1(t) is a smooth genus 1 complex curve (i.e.,
an elliptic curve);

• no fibre contains a smooth rational curve of self-intersection −1.

The second condition is there to ensure that the surface is relatively minimal, as such rational
curves can always be blown down. We denote by Σ the finite set of values t ∈ V over which the
fibre Ft is not a smooth elliptic curve.

In the following, we consider an elliptic surface f : S → P1 over V = P1. We will use the
shorthand S/P1 to designate S together with the map f : S → P1.

Definition 25. A section of S/P1 is a map π : P1 → S such that f ◦ π = idV .

Sections of S are in bijection with C(t)-points on the generic fibre E, which is an elliptic curve
over C(t). Indeed, given a section π, the intersection of its image with the generic fibre im π ∩ E

yields a point in E. Conversely, given a point P ∈ E(C(t)), its specialisation to any smooth fibre
yields a point of the fiber. The closure Γ of the union of all these points yields a birational morphism
f |Γ : Γ→ P1. The inverse of this map gives the section associated to P , which we denote P̄ .

Throughout this chapter, we will only consider elliptic surfaces with section. We will notably
fix a section O of S, which we call the zero section. It will serve as the zero of the group of rational
points E(C(t)) of the generic elliptic curve, as well as the generator of the H0(Fb) piece of the
filtration of Theorem 25. Furthermore, to avoid the trivial case of a product E × P1, we require in
the rest of this text that the elliptic surface has at least one singular fibre.
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Type MT
Minimal normal

factorisation
Euler characteristic

of the fibre

Iν , ν ≥ 1
(

1 ν

0 1

)
Uν ν

II
(

1 1
−1 0

)
V U 2

III
(

0 1
−1 0

)
V UV 3

IV
(

0 1
−1 −1

)
(V U)2 4

I ∗
ν , ν ≥ 0

(
−1 −ν

0 −1

)
Uν(V U)3 ν + 6

II ∗
(

0 −1
1 1

)
(V U)5 10

III ∗
(

0 −1
1 0

)
V UV (V U)3 9

IV ∗
(
−1 −1
1 0

)
(V U)4 8

Table 6.1: The singular fibre types of the Kodaira classification, representatives of their SL2(Z) conjugacy
class of the monodromy matrix, and the minimal normal factorisation of this representative in
terms of the I1-type matrices U = ( 1 1

0 1 ) and V =
(

1 0
−1 1

)
.

6.2.1 The Kodaira classification
Kodaira provides a classification of the singular fibres of an elliptic fibration Kodaira (1963): Let
σ ∈ Σ be a critical value and ℓ be the counter-clockwise simple loop around σ pointed at b. As
stated in the previous section, the monodromy action ℓ∗ is represented by a matrix M ∈ SL2(Z)
in a symplectic basis of H1(Fb). The SL2(Z)-conjugation class of M determines the type of the
singular fibre.

Furthermore the monodromy matrix has to be unipotent, i.e., there exist integers r, s ∈ Z such
that (Mr − 1)s = 0 (see Landman (1973)). The conjugacy classes of SL2(Z) unipotent matrices are
classified in two infinite families Iν and I∗

ν , ν ∈ N and six classes II, III, IV , II∗, III∗ and IV ∗.
Representatives MT of these conjugacy classes are given in Table 6.1 (which is a reproduction of
Cadavid and Vélez (2009, Table 1)), along with a factorisation as a product of I1-type monodromy
matrices which will prove useful in Section 6.4, and the Euler characteristic of the fibre. Lefschetz
fibres are fibres of type I1. These singular fibres have been extensively studied — for further reading
on this topic, we recommend Esole (2017, Chap. 7).

6.3 Homology and periods of elliptic surfaces
In this section, we discuss means to recover the full homology lattice from the knowledge of the
monodromy matrices of an elliptic fibration. Let us first fix some notations. Let f : S → P1 be an
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elliptic fibration.

• Fv denotes the fibre above v ∈ P1. We will also use this notation for the homology class of
Fv in H2(S) when there is no ambiguity;

• O denotes the zero section of f : S → P1;
• c1, . . . , cr ∈ P1 denote the critical values of f , and Σ = {c1, . . . , cr};
• mv denotes the number of irreducible components of the fibre Fv;
• Θv

0 denotes the zero component of Fv, i.e., the irreducible component intersecting the zero
section.

• Θv
1, . . . , Θv

mv−1 denote the irreducible components of Fv that are orthogonal to O;
• T = T (S, Fb) ⊂ H2(S, Fb) denotes the image of extension maps. For a basis ℓ1, . . . , ℓr−1

of π1(P1 \ Σ, b), we have T =
⊕r−1

i=1 im τℓi
as a direct consequence of (2.5);

Several cycles in H2(S) are distinguished in that their associated holomorphic periods (that
is, periods of holomorphic forms) are directly computable, see Section 6.4.1 below. In the next
paragraph, we define a lattice Prim(S) ⊂ H2(S) of such cycles. When the fibration is Lefschetz,
Prim(S) coincides with the full homology lattice H2(S). In general, however, Prim(S) may be a
proper sublattice of H2(S). Nevertheless, we will show in Section 6.4.1 that Prim(S) always has
full rank. In particular, all the periods of S can be recovered from the periods of Prim(S).

More precisely, the periods associated to singular components and the section are 0. Furthermore,
we can use the methods of Chapter 3 to compute the periods of extensions. We call such cycles
primary and define Prim(S) as follows:

Definition 26. The primary lattice Prim(S) is the sublattice of H2(S) generated by extensions,
fibre components and the zero section:

Prim(S) = ϕ−1(T )⊕ ⟨O⟩ ⊕
(
O⊥ ∩H2(π−1(Σ))

)
, (6.5)

where ϕ : H2(S)→ H2(S, Fb) is the inclusion.

Remark 46. Although not apparent in the notation, Prim(S) depends on the fibration of the
surface, and not solely on S.

Note that the first term is isomorphic to (T ∩ ker δ)⊕ ⟨Fb⟩ per Lemma 13. Furthermore π−1(Σ)
is the disjoint union of the singular fibres. Thus a basis of the last term is given by the Θv

i ’s where
v ranges over Σ and i from 1 to mv − 1.

In this chapter, we will adapt the methods developed in Chapter 2 in order to recover an effective
description of the homology and compute the holomorphic periods. This case differs from the case
of hypersurfaces and complete intersections in two major ways:

• the fibration is part of the input data. In particular, it needs not be a Lefschetz fibration,
and we will thus need to make use of morsifications to recover the full homology.

• we do not have a description of the (primitive) cohomology in terms of the cohomology of
the complement through the Leray residue. Nevertheless, we can recover a description of the
holomorphic forms of the elliptic surface in a way that is convenient for integration thanks to
work of Stiller (1987), see Section 6.5.1.

The following sections are dedicated to elucidating these difficulties. But first, let us already specify
the self-intersection of the section, as mentioned in Lemma 28.

Lemma 47. ⟨O, O⟩ = −(rk H2(S) + 2)/12
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V

b

c

ℓ∞

b

ℓ1
ℓ2ℓ3

ℓ4

ℓ5

ℓ∞

Figure 6.1: The morsification of a neighbourhood of a single critical value. Left: A neighbourhood V of a
single critical value of the elliptic fibration f , along with a chosen basepoint b. The homotopy
group π1(V \ {c}, b) is generated by the counterclockwise loop ℓ∞. Right: The neighbourhood
after morsification. The critical fibre has split into five Lefschetz fibres. The homotopy group
π1(V \ Σ) is generated by the 5 counterclockwise loops ℓ1, . . . , ℓ5. Thus H2(f−1(V ), Fb) has
rank 5 — it follows from Table 6.1 that the original singular fibre was of type I5. Furthermore
we see that τℓ∞ = τℓ5...ℓ1 .

Proof. By Schütt and Shioda (2010, Section 8.6), −⟨O, O⟩ is equal to the arithmetic genus χ and
by Schütt and Shioda (2010, Theorem 6.10), χ = e

12 , where e = rk H0(S)− rk H1(S) + rk H2(S)−
rk H3(S)+rk H4(S) is the topological Euler characteristic. As S is projective rk H0(S) = rk H4(S) =
1 and rk H1(S) = rk H3(S) = 0 by Lemma 24.

6.4 Morsifications of elliptic surfaces
As mentioned in Section 2.3, morsification allow to use of the reconstruction of the homology from
the monodromy representation of Lefschetz fibrations to obtain information about the homology of
non-Lefschetz fibrations.

We start by the following theorem of Moishezon (1977), which guarantees the existence of a
morsification of any elliptic surface.

Theorem 48 (Moishezon (1977, Thm. 8)). Let S → V be an elliptic surface. There exists a
morsification S̃ → V ×D → D of S. Moreover, the number of singular fibres of S̃u for u ∈ D \ {0}
does not depend on u.

Remark 49. In our setting, the existence of a section prevents the possibility of multiple fibres
mentioned in Moishezon (1977).

We will apply this result to neighbourhoods of each critical value to obtain local morsifications.
For c ∈ Σ, define Dc a disk around c in P1 such that b /∈ Dc Let ℓc be a path connecting b to a
point bc ∈ ∂Dc. Assume that for c ̸= c′, Dc ∩Dc′ = ∅ and the interior of ℓc and ℓc′ do not intersect.
Let ∞ /∈

⋃
c∈Σ Dc ∪ {b}, identify C = P1 \ {∞}, and let S∗ = f−1(C). Define Tc = f−1(Dc) and

Fbc
= f−1(bc). With these new notations, Lemma 15 yields⊕

c∈Σ
H∗(Tc, Fbc

)→ H∗(S∗, Fb) . (6.6)
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Note that Tc → Dc is an elliptic surface over Dc with a single singular fibre. In this setting, the
type of the singularity is entirely determined by its monodromy, and so is the topology of its
morsification. In particular, we will see that it is not necessary to explicitly realise the morsification
to recover its monodromy representation.

Local morsification

Let V ⊂ P1 be a disk in P1 and consider an elliptic surface S → V with a single singular fibre. Let
c denote the critical value and b a regular value on the boundary of V . Fix a symplectic basis of
H1(Fb) and let M∞ be the monodromy matrix around c in this basis. From Theorem 48, there
exists a morsification of S → V

S̃ V ×D D
f̃

η

p
. (6.7)

Let t ̸= c and S′ = S̃t = η−1(t). Then S′ → Vt is a Lefschetz fibration. Denote by r its number of
singular fibres and by Σ its set of critical values.

Lemma 50. Following the terminology of Cadavid and Vélez (2009), the number r of singular
fibres of S′ → D is the number of factors in the minimal normal factorisation of MT (see Table 6.1).
Let Gr . . . G1 be this factorisation. Let A ∈ SL2(Z) be a matrix such that M∞ = AMT A−1. Then
there is a distinguished basis of π1(D \ Σt, b) such that the corresponding monodromy matrices
M1, . . . , Mr are given by Mi = AGiA

−1.

Proof. The first part is simply the observation that

r = χ(S) = χ(S′) =
∑
v∈Σ

χ(Fv) , (6.8)

and χ(Fv) = 1 for every v as Fv is of type I1. For the second part, let ℓ1, . . . , ℓr be a distinguished
basis of π1(D \ Σ, b). Then the result is a direct application of Cadavid and Vélez (2009, Thm.19),
as Hurwitz moves on the product Mr . . . M1 can be achieved by the action of a braid on π1(D \Σ, b),
see (2.2).

Remark 51. As shown by Cadavid and Vélez (2009, Thm. 21), the choice of the factorisation of
MT as a product of I1 monodromy matrices does not matter. We could equivalently take any such
minimal factorisation, such as the ones in Naruki (1987, Table 5).

Pick such a distinguished basis ℓ1, . . . , ℓr of π1(D \Σ, b) and let ∆1, . . . , ∆r be the corresponding
thimbles. Then the trivialisation of S̃ through η yields an isomorphism H2(S, Fb) ≃ H2(S′, F ′

b) =⊕r
i=1 Z∆i. We conclude with two lemmas linking extensions and components of singular fibres of

f : S → P1 to this basis of thimbles.

Lemma 52. Let ℓ∞ be the simple loop around c pointed at b. Then

τℓ∞ =
r∑

i=1
τℓi
◦ ℓi−1∗ ◦ · · · ◦ ℓ1∗ . (6.9)

Proof. For t ∈ D, let Σt be the set of critical values of S̃t → D. Define Σ̃ =
⋃

t∈D Σt × {t}. Σ̃ is an
analytic set of V ×D and the projection onto D is a finite morphism of degree r, totally ramified
at c. Clearly, ℓ∞ and ℓr . . . ℓ1 have the same homotopy class in π1((V ×D) \ Σ̃). The lemma is
then a direct application of (2.5).
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Lemma 53. The inclusion of the singular components of F0 in H2(S, Fb) coïncides with the kernel
of the boundary map:

mc−1⊕
i=1
⟨Θc

i ⟩ = ker (δ : H2(S′, F ′
b)→ H1(F ′

b)) . (6.10)

In particular, r = mc if Fc has type Imc
and mc + 1 otherwise.

Proof. The direct inclusion is clear. The rank of this kernel is r − 1 in the case of fibres of type Iν

and r − 2 in the other cases. Therefore, if the mentioned equality holds, the last statement follows.
Let us detail the proof of the equality in the case of a fibre of type I3. Per Table 6.1, its

morsification splits it into 3 fibres of type I1, for each of which the monodromy matrix is (up to a
global conjugation) U . There are thus 3 thimbles, the restriction of the boundary map to these
thimbles has rank 1, and the kernel thus has rank 3− 1 = 2. The intersection matrix of (the lift in
H2(S) of) this kernel is computed using the methods of Section 2.2.3 and equal to(

−2 −1
−1 −2

)
, (6.11)

and it is thus a sublattice of discriminant 3. As this coincides with the discriminant of the sublattice
generated by the singular components (Kodaira, 1963), and as one is contained in the other, these
sublattices are equal. A similar direct computation gives the same result for each possible fibre
type.

An illustration of the effects of a morsification is provided in Fig. 6.1.

6.4.1 Global homology and periods
We are now ready to give an algorithm for computing H2(S) (with its lattice structure) from the
monodromy representation of the fibration S → P1.

Note that per Lemma 53 the sublattice generated by the singular components of a given singular
fibre is explicitly identified in this description of homology; and per Lemma 52, the extensions of
T ∩ ker δ are also explicitly identified.

To conclude this section, we provide a way to compute the periods of certain 2-forms on this
basis of homology. Let ω ∈ H2(S) and assume that ω = ωt ∧ dt for some 1-form ωt ∈ H1(S), where
t denotes the dependance on a coordinate of P1. Then the integral of ω on an extension can be
obtained as a path integral of a period of the elliptic fibre via the observation that∫

τℓ(η)
ω =

∫
ℓ

(∫
ηt

ωt

)
dt , (6.12)

where ηt ∈ H1(Ft) is the unique deformation of η ∈ H1(Fb) along ℓ. In particular, it is possible
to recover the periods of ω on T with high precision from the Picard–Fuchs equation of ωt using
numerical integration methods with quasilinear algorithmic complexity with respect to precision
alone van der Hoeven (1999) and Mezzarobba (2010). In practice, we rely on the implementation
provided in SageMath by Mezzarobba (2016) in the ore_algebra package (Kauers et al., 2015). For
further details on the computation of periods on thimbles, see Lairez et al. (2024, §3.7).

As the fibre components are localised in a single fibre, the periods of ω on a fibre component
are all zero. The following lemma shows that this information, i.e., the periods on extension and
fibre components, is sufficient to recover the full period mapping.

Lemma 54. The primary lattice Prim(S) has full rank.
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Algorithm 1 Homology of elliptic surface
Input: the monodromy matrices M1, . . . , Mr ∈ SL2(Z) in a distinguished basis of π1(P1\(Σ∪{∞}))
Output: a description of H2(S) with its lattice structure

N ← []
for 1 ≤ i ≤ r decreasing do

Find A ∈ SL2(Z) and T such that Mi = AMT A−1 ▷ See Table 6.1 for MT

for W in the minimal normal factorisation of MT do
Append AWA−1 to N

for Mi in N do
Compute di ∈ Z2×1 and mi ∈ Z1×2 such that Mi = I2 + dimi.

Ti ← (−1)n−1

 0
mi

0

 , where mi is the i-th line.

B ←

 d1 · · · dr


T∞ ← T1 + T2M1 + T3M2M1 + · · ·+ TrMr−1 · · ·M1
k ← ker B

i← im T∞
H ← k/i

H is identified to the subspace of H2(S∗)/H2(Fb) generated by extensions. The (representatives
of) vectors of H are the coordinates in the basis of thimbles of H2(S∗, Fb).

Proof. For each c ∈ Σ, H2(Tc, Fbc
)Q = (ker δc)Q ⊕ (im τc)Q. Furthermore, T =

⊕
c∈Σ im τc. For a

Z-module A, denote by AQ the tensor product A⊗Q. From Lemma 53 and Lemma 15, we have
that

(T ∩ ker δ)Q ⊕
⊕
c∈Σ

1≤i≤mc−1

⟨Θc
i ⟩Q

= (ker δ)Q ∩
⊕
c∈Σ

(im τc)Q ⊕ (ker δc)Q ,

= (ker δ)Q .

(6.13)

Lemma 13 allows to conclude.

Let B = (η1, . . . , ηs, Fb, O) be the basis of H2(S) obtained from Algorithm 1 and let

B′ = (Γ1, . . . , Γt, Θ1, . . . , Θs−t, Fb, O) (6.14)

be a basis of Prim(S), such that for each i, Γi ∈ T ∩ ker δ is an extension and Θi ∈ ker δc for some
c ∈ Σ is a fibre component. Over Q, B′ is also a basis of H2(S)Q, and the matrix of change of basis
MB′→B ∈ GLs+2(Q) has integer coefficients and can be computed with Lemma 52 and Lemma 53.

Using the methods of Lairez et al. (2024, §3.7), we may numerically compute the periods
∫

Γi
ω.

Furthermore, the periods
∫

Θi
ω,
∫

Fb
ω and

∫
O

ω are all zero as the cycles of integration are all
algebraic, see Lefschetz’s theorem on (1, 1) classes. Let πB =

(∫
γ

ω
)

γ∈B
be the vector of periods of

ω on a basis B. Then
πB′ =

(∫
Γ1

ω, . . . ,

∫
Γt

ω, 0, . . . , 0
)

(6.15)
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and
πB = M−1

B′→BπB′ . (6.16)

6.5 Recovering algebraic invariants of elliptic surfaces
In this section, we expalin how to compute explicit embeddings of the Néron–Severi lattice in the
description of H2(S) given in the previous section. We then use this to recover the Mordell–Weil
group, and the lattice structure of its torsion-free part, the Mordell–Weil lattice.

We start by recalling generalities about these lattices.

Definition 27. The Néron–Severi lattice NS(S) is the sublattice of H2(S) generated by classes of
divisors. Its rank is called the Picard rank or Picard number or Néron–Severi rank.

Definition 28. The trivial lattice Triv(S) is the sublattice of NS(S) generated by the zero section
and the fibre components. Its orthogonal complement is the essential lattice L(S) = Triv(S)⊥.

Definition 29. The Mordell–Weil group E(C(t)) of the elliptic curve E/C(t) is the group of its
C(t)-rational points.

As mentioned in the beginning of Section 6.2, sections of S → P1 are in bijection with E(C(t)).
The following lemma shows that the group structure of E(C(t)) coïncides with the lattice structure
of H2(S) modulo the trivial lattice.

Theorem 55 (Schütt and Shioda (2010, Thm 6.5)). The map P 7→ P̄ mod Triv(S) is an
isomorphism from E(C(t)) to NS(S)/ Triv(S).

In particular, this equips the torsion-free part of the Mordell–Weil group with a lattice structure,
inherited from the lattice structure on NS(S) ⊂ H2(S). More precisely, the orthogonal projection
of NS(S)Q = NS(S)⊗Q onto L(S)Q = L(S)⊗Q defines a map ϕ : E(C(t))→ L(S)Q. The kernel
of this map is the torsion subgroup, and thus ϕ equips E(C(t))/E(C(t))tor with a rational lattice
structure.

Definition 30. The Mordell–Weil lattice MWL(S) of S is the resulting lattice −E(C(t))/E(C(t))tor.

Remark 56. The minus sign means we are taking the opposite of the naturally induced pairing —
this is so the lattice is positive definite instead of negative definite.

For further reading on this topic, we recommend Schütt and Shioda (2010).

6.5.1 The cohomology of elliptic surfaces
Let ω be a holomorphic 2-form on S. As an element of H0(S, Ω2

S), it can be written as

ω = f(t)ωt ∧ dt , (6.17)

where ωt ∈ H1(E) is a rational section of the holomorphic 1-form bundle of the generic fibre, and
f ∈ Q(t) is a rational function. This representation is well adapted to the integration algorithm of
Chapter 3. Of course the converse is not true: not every rational function f will yield a holomorphic
2-form on S. In fact the rational functions for which this is true are very tightly controlled by
the Picard–Fuchs equation Λ of ωt – that is, the minimal differential equation satisfied by ωt with
respect to the connection inherited from the derivation on C(t) through the fibration over P1, see
Section 3.2 for its computation.

The following result of Stiller (1987) gives a way to compute rational functions f1, . . . , fr ∈ Q(t)
such that:
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• fi(t)ωt ∧ dt defines a holomorphic 2-form on S;
• and f1(t)ωt ∧ dt, . . . , fr(t)ωt ∧ dt is a basis of H2,0(S).

Theorem 57 (Stiller (1987, §3)). There is a divisor A0 on P1 depending only on Λ such that if
Z ∈ L(A0) (the linear system associated to A0), then Z

W ωt ∧ dt is a holomorphic 2-form on S,
where W ∈ Q(t) is the Wronskian of Λ. Furthermore the map L(A0)→ H2,0(S) is an isomorphism.

An algorithm for computing A0 is given in Stiller (1987, §3), and we recall it here for convenience.
Assume that the Picard–Fuchs equation Λ has order two1, or equivalently that ωt and its derivative
generate the full space of 1-forms of the generic fibre. In particular at any point p ∈ P1, the space
of local solutions in a slit neighbourhood of p is generated by two solutions, that are locally of the
form

(t− p)q(h1(t− p) log(t− p) + h2(t− p)) , (6.18)
with q ∈ Q, h1 and h2 two holomorphic functions in a neighbourhood of 0. Let r ≤ s be the
respective leading exponents of these two solutions. Then the order of A0 at p is

ordp A0 =
{
−⌊s⌋ − 3 if p =∞
−⌊s⌋+ 1 otherwise

(6.19)

In particular, if p is a finite regular point of Λ, ordp A0 = 0, meaning we can consider solely the
singular points of Λ. For further reading on the topic, we recommend Stiller (1987) and Doran and
Kostiuk (2023, §4.3).

The local exponents of Λ can be obtained symbolically from the operator (see Frobenius (1873)
and Mezzarobba (2010, §4) for instance), and we thus have a method to compute a basis of the
holomorphic 2-forms of S, with a presentation that is well suited for the integration methods of the
periods mentioned in Section 6.4.1.

6.5.2 Computing the Néron–Severi lattice
We now focus on the computation of an invariant of elliptic surfaces — the Mordell–Weil lattice.
The first step towards computing it is to compute the Néron–Severi lattice NS(S). By Lefschetz’s
(1, 1) theorem P. Griffiths and Harris (1978, §1.2), it is entirely characterised as the kernel of the
holomorphic period mapping.

Theorem 58 (Lefschetz (1,1) theorem). Let ω1, . . . , ωs be a basis of the space of holomorphic
2-forms of S, H2,0(S), and consider the period map π : H2(S)→ Cs, γ 7→ (

∫
γ

ω1, . . . ,
∫

γ
ωs). Then

NS(S) = ker π . (6.20)

We compute this kernel heuristically using the LLL method. In order to do this we need two
things: a basis of H2,0(S) and numerical approximations of the associated periods.

We can thus compute high precision numerical approximations of the holomorphic periods of
S. The Néron–Severi group can be heuristically computed by recovering integer linear relations
between these periods. Indeed, let αi be integers. Then∫∑

i
αiγi

ω =
∑

i

αi

(∫
γi

ω

)
= 0 for all ω ∈ H2,0(S) (6.21)

if and only if the cycle
∑

i αiγi ∈ NS(S), where the γi’s form a basis of H2(S). Thus integer linear
relations between the holomorphic period vectors (

∫
γi

ω1, . . . ,
∫

γi
ωs) are in bijection with NS(S).

1This may happen when S is an isotrivial elliptic surface. In that case, the author does not know of a way to
identify the holomorphic form.
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In order to recover these linear relations, we use the LLL algorithm. This computation is not
certified, and may fail in two ways: the algorithm may miss integer relations with large coefficients,
or may recover “fake” linear relations that hold up to very high precision. More precisely, the
algorithm provides a sublattice Λ ⊂ H2(X) and positive numbers B, N and ε that depend on
precision such that

1. Λ = NS(X); or

2. NS(X) is not generated by elements of the form
∑

i αiγi with
∑

i α2
i ≤ B; or

3. There exists
∑

i αiγi /∈ NS(X) such that

∑
j

∣∣∣∣∣∑
i

αi

∫
γi

ωj

∣∣∣∣∣
2

≤ ε2 and
∑

i

α2
i ≤ N2 . (6.22)

In practice, for 300 recovered decimal digits of precision for the periods of an ellipticK3surface
(which was obtained in a few seconds in all the cases that we tried), we find B ≃ 10132, N = 3, and
ε ≃ 10−271. For further discussion on these issues, see Lairez and Sertöz (2019).

6.6 Explicit example: an elliptic curve with high Mordell–
Weil rank over Q

In this section we detail the workings of our algorithm on an explicit example. A SageMath
worksheet reproducing the results mentioned here is available at example_paper_elliptic.ipynb2.
The elliptic surface S we consider is an elliptic K3 with Picard rank 19 used in Elkies and Klagsbrun
(2020, §9) (with u = 5 in their notations) to find the elliptic curve with highest known Mordell–Weil
rank over Q for which the Mordell–Weil torsion subgroup is Z/2Z. Its defining equation in projective
coordinates is

X3 + 4A(t)X2Z + 512B(t)XZ2 = Y 2Z (6.23)
where

A(t) = 93273t4 + 58840t3 + 102618t2 + 35680t + 14485 (6.24)
and

B(t) = −8590032t8 − 78412620t7 + 17011856t6 + 241822775t5 − 19459741t4 − 127136490t3

+16161642t2 + 15406335t− 2083725
(6.25)

The homology lattice of S

This elliptic fibration has 16 singular fibres above points c1, . . . , c16. We pick a basepoint b as
well as a distinguished basis ℓ1, . . . , ℓ16 of π1(C1 \ {c1, . . . , c16}, b). The corresponding monodromy
matrices in a chosen symplectic basis γ1, γ2 of the homology of the fibre are given by

M1 =
(

7 9
−4 −5

)
, Mi =

(
1 1
0 1

)
for i = 2, 3, 15

Mi =
(

3 1
−4 −1

)
for i = 4, 9, 11, 12, and

Mi =
(

3 2
−2 −1

)
for i = 5, 6, 7, 8, 10, 13, 14, 16.

(6.26)

2https://nbviewer.org/urls/gitlab.inria.fr/epichonp/eplt-support/-/raw/main/example_paper_elliptic.ipynb

https://nbviewer.org/urls/gitlab.inria.fr/epichonp/eplt-support/-/raw/main/example_paper_elliptic.ipynb


CHAPTER 6. ELLIPTIC SURFACES 89

Computing the SL2(Z) conjugation class of these matrices, one finds that eight fibres (those for
which the monodromy matrix is M5) are I2 fibres, and the remaining eight are Lefschetz, i.e., of
type I1. Indeed, we have

M5 = AMI2A−1 with A =
(

1 0
1 1

)
∈ GL2(Z) . (6.27)

Per the minimal normal factorisation of Table 6.1, MI2 = U2. Therefore in a morsification S′ of
S, there is a distinguished basis ℓ′

1, . . . , ℓ′
24 of π1(C \ Σ′, b) consisting of 8 + 8× 2 = 24 elements,

where Σ′ is the set of critical values of the morsification, and such that the associated monodromy
matrices are given by

M ′
1 =

(
7 9
−4 −5

)
, M ′

i =
(

1 1
0 1

)
for i = 2, 3, 22,

M ′
i =

(
3 1
−4 −1

)
for i = 4, 13, 16, 17, and

M ′
i =

(
2 1
−1 0

)
= AUA−1 for all other i.

(6.28)

We may then use the methods of Lairez et al. (2024, §§3, 5) to compute an effective basis
Γ1, . . . , Γ22 of the homology of S′ in terms of the thimbles ∆′

1, . . . , ∆′
24, the fibre class and the zero

section. For instance, we find that a non trivial homology class is given by ∆′
2−∆′

22: as M ′
2 = M ′

22,
this relative homology class has empty boundary and thus lifts to a class in H2(S′). It is non-trivial
as ℓ′

22ℓ′−1
2 is non-trivial in π1(P1 \ Σ′).

With this description, the singular components coming from an I2 fibre of S above a critical
value c can be obtained as the kernel of the thimbles of critical points flowing together at c. More
explicitly, the component of the fibre above c5 is the homology class corresponding to the lift of
∆′

5 −∆′
6.

Furthermore, extensions of S can also be described in this basis. For example

τℓ−1
6 ℓ5

(γ2) = τℓ−1
8 ℓ−1

7 ℓ6ℓ5
(γ2) = ∆5 + ∆6 −∆7 −∆8 . (6.29)

All in all we obtain the coordinates of a basis of Prim(S) in the basis of H2(S) obtained from the
morsification S′. From the Picard–Fuchs equation of the surface, we recover using Theorem 57 that
the space of holomorphic forms of S is generated by

ω = Res 1
Pt
∧ dt . (6.30)

From then on, we can compute the periods on the primary lattice, and recover the full period
mapping using the coordinates computed above. For example, we find that the holomorphic period
of the first element of the basis of homology we computed is∫

Γ1

ω = −0.0007064447191 · · · − i0.0002821239749 · · · , (6.31)

with certified precision bounds of around 150 digits.
Using the LLL algorithm, we find that the Néron–Severi lattice has rank 19 as expected. Finally

the Mordell–Weil group is obtained as the quotient of the Néron–Severi lattice by the trivial lattice.
We find

MW(S) ≃ Z9 × Z/2Z . (6.32)
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It should be noted that the result of Elkies and Klagsbrun (2020, §9) is stronger than what we
have computed here. First our approach for computing the Néron–Severi group is heuristic as it
relies on the LLL algorithm — in particular it is not a certified computation, and thus does not
provide a proof. Secondly we have merely shown a result for the Mordell–Weil group over C(t)3,
whereas Elkies and Klagsbrun (2020) shows that this computation holds over Q for one of the fibres.

3or rather over Q̄(t).



Chapter 7

Ramified double covers of
projective space

It is possible to adapt with minor modifications the case of hypersurfaces dealt with in Chapter 4
to deal with double covers of a projective space ramified along a smooth hypersurface. In fact the
Griffiths-Dwork reduction is exactly the same up to a shift in the degree of the monomials being
kept. Of particular interest are K3 surfaces obtained as double covers of P2 ramified along a sextic
curve — so called K3 surfaces of degree 2. In this case, the method yields the K3 surface as a
blow-down of the total space of a genus 2 fibration, where the fibres are double cover of P1 ramified
at 6 points — i.e., hyperelliptic curves of degree 6.

In particular, the Picard–Fuchs equations that needs to be integrated to recover the monodromy
representation of the surface have order 6. Because of this, the method is sufficient to compute
the full period matrix of the K3 surface (i.e., not just the holomorphic periods) in a few hours on
a laptop. Although this has not yet been tried, this means that we may recover the monodromy
representation of threefolds obtained as double cover of P3 along a sextic surface, provided we are
able to integrate the order 22 Picard–Fuchs equation of this fibration.

The content of this section is ongoing work.

7.1 Cohomology of ramified double covers of projective space
Let x0, x1, . . . , xn be projective coordinates of Pn, and let P be a homogeneous polynomial of even
degree 2dl in the xi’s such that V (P ) is a smooth hypersurface. Let X be the double cover of Pn

ramified along V (P ). X can be defined as a hypersurface in weighted projective space Pn+1
d,1...,1, with

defining equation
X : F = w2 − P (x0, . . . , xn) = 0 , (7.1)

where w is the variable of weight d.

7.1.1 Weighted projective space
The space Pn+1

d,1...,1 can be defined as the quotient

Pn+1
d,1...,1

def=Cn+2/ ∼ (7.2)

where ∼ is the equivalence relation given by

(w, x0, . . . , xn) ∼ (λdw, λx0, . . . , λxn) for all λ ∈ C . (7.3)
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There is an embedding Pn+1
d,1...,1 → Pn+1 given by the map

[w : x0 : · · · : xn] 7→ [w : xd
0 : · · · : xd

n] . (7.4)

A generalisation of the work of P. A. Griffiths (1969) is done in I. Dolgachev (1982, §4.2) to
obtain a description of the primitive cohomology of hypersurfaces in terms of residues of rational
functions when the ambient space is a weighted projective space. In particular, as stated in Cox
and Katz (1999, §5.3), it is possible to extend Griffiths-Dwork reduction to this case. In fact, as
we will see in the next section, the reduction in the unweighted case is sufficient to recover the
primitive cohomology of double covers.

7.1.2 Griffiths-Dwork reduction for double covers
In this section we develop the simplifications that can be made to Griffiths-Dwork reduction in the
case of hypersurfaces. We recall that Griffiths-Dwork reduction is what allows us to compute a
basis of the primitive cohomology of the variety, as well as deduce the Picard–Fuchs equation that
need to be integrated to obtain both the monodromy representation and numerical values of the
periods. As we will now see, there is no need for a specific implementation of the reduction in the
weighted case, as it can be deduced from the usual unweighted reduction exposed in Section 3.1.

First, we see that every rational fraction class has a representative with no w in the numerator.
Indeed, 2w = ∂w(w2+P ) is in the Jacobian ideal. More precisely, let k ∈ N and A ∈ C[xw, x]d2kg−n−3.
Write A = A0 + wA1 + w2A2 with degw Ai = 0 for i = 0, 1. Then

A

F k
= A0

F k
+ 1

2
2wA1

F k
+ A2

F k−1 + PA2

F k
= A2

F k−1 + A0 + PA2

F k
− 1

2(k − 1)∂w
A1

F k−1 . (7.5)

Clearly degw A2 = degw A− 2 and thus the degree in w of the numerators strictly decreases when
applying this reduction. Thus iterating it we obtain the claim above.

Furthermore, in the case where P is smooth, the Griffiths-Dwork reduction coincides with the
reduction for the curve itself. Indeed

A∂xiP

F k
= − 1

k − 1
∂xiA

F k−1 + 1
k − 1∂xi

A

F k−1 (7.6)

The only thing that changes is the degree of the volume form (2 + n + 1 instead of n + 1), and thus
the monomials that represent a basis of the cohomology. The reduction itself is exactly the same.

Working out Picard–Fuchs equations for hyperelliptic curves

We now deal with the base case for double covers, which are hyperelliptic curves given as double
covers of P1 ramified along 2d points.

The family of zero-dimensional fibres is given by Xt = V (F ) in P1
d,1, with F = w2 − P (t)x2d

for some degree 2d univariate polynomial P . The fibre consists of 2 points, and the associated
periods are respectively ± 1

2iπ . By Griffiths-Dwork reduction, the possible monomials representing
1-forms are of the form xk for some k < 2d − 1 and with k = 2di − (d + 1) = d(2i − 1) − 1
for some k ∈ N. It follows that there is a unique such monomial, xd−1. This is expected, as



CHAPTER 7. RAMIFIED DOUBLE COVERS OF PROJECTIVE SPACE 93

dim PH 0(Xb) = dim H0(Xb)− 1 = 1. We then have for a rational function r(t):

∂t
r(t)xd−1

F
= r′(t)xd−1

F
− r(t)P ′(t)x3d−1

F 2 (7.7)

= r′(t)xd−1

F
−

r(t)P ′(t) 1
2dP (t) xd∂xF

F 2 (7.8)

= r′(t)xd−1

F
− r(t)P ′(t)xd

2dP (t)
∂xF

F 2 (7.9)

= r′(t)x2

F
− r(t)P ′(t)

2P (t)
xd−1

F
+ ∂x

(
r(t)P ′(t)
2dP (t)

xd

F

)
(7.10)

so that ∂tωt =
(

r′(t)
r(t) + P ′(t)

2P (t)

)
ωt where ωt = Res r(t)xd−1

F Ω0.

7.2 An explicit example: double covers of P2 ramified along
a smooth sexctic

Let P = x6 + y6 + z6 and define the surface X = V (w2 + P ) ⊂ P3
2,1,1,1 as the double cover of P2

ramified along V (P ). It is a smooth sextic K3 surface. Its middle cohomology group thus has
rank 22 and its holomorphic subgroup has rank 1. In this section, we give an explicit description of
the computation of the periods of X .

A static SageMath worksheet reproducing the computations of this section can be found at
Fermat_periods.ipynb1. The computation of this notebook took under 3 minutes on a laptop.

7.2.1 Constructing the Lefschetz fibration
Let λ = x+y and µ = y−z, and for t ∈ P1, define Ht = V (λ− tµ). This defines a hyperplane pencil
{Ht}t∈P1 in P2 with axis A = V (λ, µ). Then the modification of Y along X is the blowup of X

along A which resolves the indeterminacies of the rational map λ
µ : X 99K P1 into a map f : Y → P1.

The fibre f−1(t) is isomorphic to Xt
def=X ∩Ht. The defining equation for Xt when t ̸=∞ is

w2 + Pt = w2 + ((y − z) ∗ t− y)6 + y6 + z6 . (7.11)

The map f has 30 critical values t1, . . . , t30. We chose a basepoint b and a value which will serve as
∞, both regular.

7.2.2 Computing cohomology
The primitive cohomology PH2(X ) is computed thanks to the Griffiths–Dwork reduction (see
Section 3.1). In comparison to the hypersurface case, we are keeping monomials of degree 6k − 6
PH2(X ) has rank 21 and a basis is given by the residues of rational forms

1
w2 + P

Ω3,
A1

(w2 + P )2 Ω3, . . . ,
A19

(w2 + P )2 Ω3,
x4y4z4

(w2 + P )3 Ω3 ∈ H3(P3
3,1,1,1 \ X ) , (7.12)

where A1, . . . , A19 are all the monomials of degree 6 in x, y, z with exponents at most 4, and Ω3 =
wdxdydz − xdwdydz + ydwdxdz − zdwdxdy is the volume form of P3

3,1,1,1 (which has degree 6).
The 21 monomials 1, x4y4z4 and A1, . . . , A19 are all the monomials whose degree is a multiple of 6

1https://nbviewer.org/urls/gitlab.inria.fr/epichonp/eplt-support/-/raw/main/double_cover_periods.ipynb

https://nbviewer.org/urls/gitlab.inria.fr/epichonp/eplt-support/-/raw/main/double_cover_periods.ipynb
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and that are not divisible by the leading term of any element of the Jacobian ideal of w2 + P , which
is in this case, the monomial ideal ⟨w, x5, y5, z5⟩.

Similarly, a basis of H, defined as the space of sections of PH 1(Xt) (which, since 1 is odd, is
just H1(Xt)) is given by the residues of the forms

z

w2 + Pt
Ω2,

y

w2 + Pt
Ω2,

z7

(w2 + Pt)2 Ω2, and yz6

(w2 + Pt)2 Ω2. (7.13)

7.2.3 The action of monodromy on H1(Xb), thimbles, and recovering
H2(Y)

As Xb is a double cover of P1 with simple ramification at 6 points, it is a hyperelliptic curve of
genus 2 and the homology group H1(Xb) is free of rank 4. We assume we have a (primitive) period
matrix of H1(Xb) given in the basis (7.13) for H1

DR(Xb) and some basis η1, . . . , η6 of H1(Xb) which
needs not be specified. We first aim at computing the action of π1(P1 \ {t1 . . . , t36}, b) on H1(Xb).

First we compute the simple direct loops ℓ1, . . . , ℓ36 around the critical values t1, . . . , t36, such
that the composition ℓ36 . . . ℓ1 is the indirect loop around ∞. Then for each i we may compute
the monodromy matrix Mi ∈ GL6(Z) of the action of monodromy along ℓi on H1(Xb) in the
basis η1, . . . , η6 (see Section 3.4). Doing so for every i, we obtain the monodromy representation
given in Fig. 7.3. One may check that the product of these matrices (in reversed order, because
we chose the convention that monodromy acts on the left) is the identity. Furthermore, all these
monodromy matrices are of Lefschetz type, i.e., of the form (3.25). For instance, we find

M1 =


1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

 = I4 +


0
0
1
−1

 · [0 0 1 1
]

(7.14)

We choose a generator di ∈ H1(Xb) of the image of Mi − I4 (the choice is up to a sign). This is
the vector of the coordinates of the vanishing cycle δi at ti in the basis of H1(Xb). We have for
example d1 = (0, 0, 1,−1). We may further check that this coincides with the Picard–Lefschetz
formula (2.15), where here δ1 is η3 − η4 and the intersection product in the basis η1, . . . , η4 is given
by the matrix 

0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

 . (7.15)

We also pick a permuting cycle, i.e. a preimage pi of di through Mi − I4, so that di = Mipi − pi.
For instance p1 = (0, 0, 1, 0). We then have an explicit understanding of the thimble ∆i ∈ H2(Y+,Xb)
as the extension τℓi(pi) of pi along ℓi. These thimbles freely generate H2(Y+,Xb), and we have the
30× 4 integer matrix B of the border map

δ̃ : H2(Y+,Xb)→ PH1(Yb) : ∆i 7→ δi , (7.16)

as per (3.27). This matrix, given in Fig. 7.1, has full column rank, and its kernel gives us a basis
for H2(Y+)/H2(Xb), which has rank 30.

In order to recover T (Y), we need to quotient by the extensions of cycles in H1(Xb) along
the loop around ∞, which we recall is simply the composition ℓ36 · · · · · ℓ1. The matrix Ti of the
extension map τℓi : H1(Xb) → H2(Y,Xb) in the bases β1, . . . , β6 of H1(Yb) and ∆1, . . . , ∆30 of
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
0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1
0 1 0−1−1 0 0−1 0 1 1 1−1−1 0−1−1 0 0 0 1−1−1−1 1 0−1−1 0−1
1−1 1 1 1 0 1 1 1−2−1 0 1 1 1 1 1 1−1 0−1 1 1 1−1 1 1 1 0 1
−1 0−1 0−1 0−1 0−1 1 0 0−1 0−1−1 0−1 0 0 1−1 0−1 0−1 0−1 0−1



Figure 7.1: The 4 × 30 matrix B of the border map δ̃ : H2(Y+, Yb) → P H1(Yb). Each column corresponds
to the coordinates of a vanishing cycle at a critical point in the undetermined basis of P H1(Xb).

Hn(Y,Xb) is given by equation (3.26). For instance, we have

T1 =


0 0 1 1
0 0 0 0
...

...
0 0 0 0

 ∈ Z30×4 . (7.17)

Using equation (3.29), we may then compute the matrix T∞ of the extension map τ∞ : H1(Xb)→
H2(Y,Xb), given in Fig. 7.2.


0 0 0 0 1−1 0−1−1 0−1 0−1 1 1 0 0 1 0 0 0 0−1−1 1−1 1 0 1 1
0 1−1 1 2−1 0−1−1 0−1−1−1 1 1 0 0 1−1 0 0 0−1−1 1 0 0−1 2 1
1 2−1 0 1 0−1 0−1 0−1−1 0 1 1 1−1 0−1−1 0−1 0−1 0 1 0−1 2 1
1 1 0 0 1 0 0−1−1 1−1−1−1 2 1 1 0 1 0−1−1−1−1−2 0 0 1−1 2 1



Figure 7.2: The transpose of the 30 × 4 matrix T∞ of the extension map τ∞ : H1(Xb) → H2(Y+, Yb).
Each line corresponds to the coordinates of an extension along the equator in the basis of
thimbles ∆1, . . . , ∆30.

We may then compute a supplement (as a Z-module) of the image of T∞ in the kernel of B,
which has rank 30− 4− 4 = 22. This gives a description of T (Y) as integer linear combinations of
thimbles, given as 22 vectors of Z30. We may compute a basis e1, . . . , e22 of this space. For instance
we compute e1 = ∆1 −∆26.

7.2.4 Integrating forms
Let π : Y → X denote the canonical projection. As we know the periods of Xb, we may compute
the integral of the pullback of a primitive cohomology form Res ωj ∈ PH 2

DR(X ) along the thimbles∫
∆i

π∗ Res ωj using methods detailed in Section 4.1. To recover the integral along an extension, it
is sufficient to take the corresponding linear combinations of integrals along thimbles. For instance∫

e2

π∗ Res ωj =
∫

∆1

π∗ Res ωj −
∫

∆26

π∗ Res ωj

= 1.1703796777538011543627129 · · · − i2.02715706601567366021157575 . . .

with 284 digits of precision.

(7.18)

This allows us to recover the full pairing T (Y)× PH 2
DR(X )→ C.
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7.2.5 Recovering PH2(X )
To recover PH2(X ), we need to remove the 3 differences of blowup cycles in H2(Y), i.e. Ei −E1
for i ∈ {2, 3, 4}. To identify them in T (Y) we can simply take the right kernel of the 21× 24 period
matrix

(∫
ej

π∗ Res ωi

)
.


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


1 0 0 0
0 2 1 0
0−1 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


1 0 0 1
0 1 0−1
0 0 1 1
0 0 0 1

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0

 ,


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


1 0 0 1
0 1 0−1
0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


1 0 0 0
0 2 0−1
0−2 1 2
0 1 0 0

 ,


1 0 0 0
0 2 1 0
0−1 0 0
0 0 0 1

 ,


1 0 0 0
−1 1 1 1

0 0 1 0
0 0 0 1

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0

 ,


1 0 0 1
0 1 0−1
0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0

 ,


1 0 0 1
0 1 0−1
0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


2 2 1 0
0 1 0 0
−1−2 0 0

0 0 0 1

 ,


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
−1 1 0 0

1 0 1 0
−1 0 0 1

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0

 ,


1 0 0 1
0 1 0−1
0 0 1 1
0 0 0 1

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0

 ,


1 0 0 0
0 2 1 0
0−1 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 2 1
0 0−1 0

 ,


1 0 0 1
0 1 0−1
0 0 1 1
0 0 0 1

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0

 ,


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


2 1 1 1
−1 0−1−1

1 1 2 1
−1−1−1 0


Figure 7.3: The monodromy representation of the genus 2 fibration of the double cover of P2 ramified

along V (x6 + y6 + z6).

7.3 Application: double covers along sums of 3, 4, or 5
monomials

To demonstrate the applicability of our method, we follow the endeavours of Lairez and Sertöz
(2019) and Heal et al. (2022) in investigating families of K3 surfaces defined by equations with a
certain number of monomials.

Definition 31. Let Vk denote the set of smooth homogeneous sextics on three variables that are
expressed as the sum of k distinct monomials with coefficients equal to 1. For example,

V3 = {x6 + y6 + z6, x6 + y6 + xz5, x6 + y5z + xz5, x6 + y5z + yz5, x5y + y5z + xz5} (7.19)
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We were able to compute the holomorphic periods of all elements of V3, V4 and V5 with around
120 decimal digits of precision, in an average time of 2 minutes and 40 seconds each, on a laptop.
There are 28 monomials of degree 6 on 3 variables. Thus there are

(28
5
)

= 98 280 quartics to consider
in V5. The symmetric group on three elements S3 acts on Vk by permuting the variables. Of course,
polynomials differing only by a permutation of the variables define the same K3 surface, and it
is thus sufficient to consider their class under this action. There are only 16 536 S3 classes in of
sextic with 5 monomials, and of these classes, only 855 define smooth sextics. Similarly there are 5
classes in V3 (enumerated in (7.19)) and 78 in V4.

Picard rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
V3 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3
V4 11 27 2 0 0 7 0 2 2 9 1 1 0 6 0 2 3 2 3 0
V5 254 359 41 1 1 38 0 6 41 58 13 8 3 14 1 5 9 2 0 0

Table 7.1: The frequencies of Picard ranks among the S3 classes of V3, V4 and V5

The frequencies of Picard ranks for these classes for each family are listed in Table 7.1. Interest-
ingly, Picard rank 7 is absent from this table. Furthermore there are more rank 2 examples than
rank 1 — and this remains true when considering individual polynomials rather than their S3
classes.

We also give in Table 7.2 example polynomials for the Picard ranks that were reached, much
like Table 5.4.

7.3.1 The endomorphism ring of K3 surfaces
Finally, we also provide the frequency of the defining polynomial of the transcendental endomorphism
field, as another example of an invariant of the K3 surfaces that may be recovered from the
holomorphic periods. Let X be a projective K3 surface.

Definition 32. The endomorphism ring of X is the ring of morphisms of Hodge structure
H2

DR(X )→ H2
DR(X ).

Remark 59. This definition does not impose any compatibility with the polarisation of the Hodge
structure.

As the Hodge filtration on H2
DR(X ) is entirely characterised by the integrals

∫
γi

ωX of the
holomorphic 2-form ωX on a basis of cycles γ1, . . . , γ22, this definition may be expressed in terms of
the holomorphic period vector

w′ =
(∫

γ1

ωX , . . . ,

∫
γ22

ωX

)
. (7.20)

Lemma 60. The endomorphism ring of X is identified to the ring of linear maps e : Z22 → Z22

such that there exists λ ∈ C∗ satisfying eC(w′) = λw′ (where eC : C22 → C22 is the complexification
of e).

As explained in Section 5.2.2, algebraic curves contained in X are identified to cycles on which
the integral of the holomorphic 2-form vanishes. Such cycles give rise to endomorphisms of the Hodge
structure that are in some way trivial as they do not relate to the transcendental entries of the period
vector. In particular, it is pertinent to consider the restriction of endomorphism to a complement of
these cycles in H2(X ) ≃ Z22. We recall that NS(X ) is the Néron–Severi group of X , consisting of
algebraic 1-cycles, and ρ(X ) is the rank of NS(X ), the Picard rank. We thus define the transcendental
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Defining polynomial Picard number

w2 + xy5 + x5z + y3z3 + xz5 1
w2 + x6 + y5z + xz5 2

w2 + x5y + xy5 + x3y2z + z6 3
w2 + x5y + y6 + x3yz2 + x3z3 + xz5 4
w2 + x5y + y6 + x4z2 + x2yz3 + xz5 5

w2 + x4y2 + x5z + y5z + z6 6
– 7

w2 + x5y + y5z + y2z4 + xz5 8
w2 + x5y + y6 + x2z4 + z6 9
w2 + x6 + y5z + x2z4 + z6 10

w2 + x5y + xy5 + x3yz2 + z6 11
w2 + x6 + y6 + z6 + x2yz3 12

w2 + x6 + y6 + z6 + x2y4 + x4z2 13
w2 + x6 + y6 + xz5 14

w2 + x6 + y6 + z6 + x4yz + xyz4 15
w2 + x6 + y6 + z6 + x4y2 16
w2 + x6 + y6 + z6 + x4yz 17

w2 + x5y + x3y3 + xy5 + z6 18
w2 + x6 + y6 + z6 + x3y3 18

w2 + x6 + y6 + z6 + x2y2z2 19
w2 + x6 + y6 + z6 20

Table 7.2: Example equations defining degree 2 K3 surfaces in P3,1,1,1 for each Picard number (except 7).
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endomorphism ring to be the morphisms of the transcendental lattice Tr(X ) = NS(X )⊥ ⊂ H2(X ).
Let η1, . . . , η22−ρ(X ) be a basis of Tr(X ) and define w =

(∫
η1

ωX , . . . ,
∫

η22−ρ(X )
ωX

)
.

Definition 33. The transcendental endomorphism ring is the ring of endomorphisms e of Tr(X ) ≃
Z22−ρ(X ) for which there is λ ∈ C∗ such that eC(w) = λw.

Remark 61. Again, we do not impose any compatibility with the lattice structure of Tr(X ).

We now expose methods of Lairez and Sertöz (2019) to compute this invariant from the period
vector. From now on, we will no longer make the distinction between e and eC to ease the notations.
In order to find such e’s, notice that we have the equivalence

∃λ ∈ C∗, e(w) = λw ⇐⇒ (w · e(w))w = (w · w)e(w) , (7.21)

where ( · ) denotes any non-degenerate bilinear pairing on Z22−ρ(X ) × Z22−ρ(X ) ≃ Tr(X )× Tr(X )
— for instance the canonical dot product (ηi · ηj) = δij .

In terms of matrices, we are looking for (22− ρ(X ))× (22− ρ(X )) integer matrices N such that

(wtNw)w = (wtw)Nw , (7.22)

which is a linear condition on N . In particular we may use the LLL algorithm (Lenstra et al.,
1982) to heuristically recover such matrices N given a numerically approximation of w. In practice,
however, these relations involve too many (r2, which may be up to 212 = 441) entries, and the
precision we typically compute for w (300 digits) is not sufficient.

P(t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t− 1 265 360 43 1 1 1 0 0 43 60 14 0 3 3 1 5 12 1 3 0

t2 − t + 1 0 0 0 0 0 40 0 8 0 0 0 9 0 17 0 2 0 3 0 3
t4 − t3 + t2 − t + 1 0 26 0 0 0 4 0 0 0 7 0 0 0 0 0 0 0 0 0 0

t8 − t7 + t5 − t4 + t3 − t + 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
t20 − t15 + t10 − t5 + 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.3: The distribution of the defining equation P (t) such that the endomorphism field is defined by
Q[t]/(P (t)), for the Σ3-classes in V3, V4 and V5. Notice that the field is always cyclotomic.

Instead we detail here a finer algorithm for computing this invariant, which is in fact the
one Lairez and Sertöz (2019) have implemented in numperiods2 (Lairez & Sertöz, 2019) and
PeriodSuite3. The trick is to proceed coordinate by coordinate. Let N ∈ M22−ρ(X )(Z), and
denote by N1, . . . , N22−ρ(X ) its rows. Similarly denote by w1, . . . w22−ρ(X ) the coordinates of w.
Let 2 ≤ i ≤ 22− ρ(X ) and consider (

N1 · w w1
Ni · w wi

)
. (7.23)

This 2× 2 matrix is singular if and only if (N1 · w, Ni · w) is proportional to (w1, wi), and if and
only if its determinant vanishes. As this determinant is linear in the entries of N1 and Ni, we may
find heuristically a basis of pairs of integer vectors (N1, Ni) that satisfy this condition using LLL.
Denote by Λi the sublattice of Z22−ρ(X ) generated by the admissible N1’s for a specific i.

Then we see that if N satisfies the condition (7.22), then

N1 ∈
22−ρ(X )⋂

i=2
Λi . (7.24)

2https://gitlab.inria.fr/lairez/numperiods
3https://github.com/emresertoz/PeriodSuite

https://gitlab.inria.fr/lairez/numperiods
https://github.com/emresertoz/PeriodSuite
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Conversely, for any N1 in this sublattice, there exists for every i a unique4 Ni such that there exists
a λ ∈ C∗ satisfying

N1 · w1 = λw1 and Ni · wi = λwi . (7.25)

Of course λ is determined by N1 and independent of Ni. In particular, we see that N1
...

N22−ρ(X )

 · w = λw , (7.26)

i.e., N · w = λw, and the linear map e induced by N is therefore a morphism of Hodge structure.
The algorithm consists thus of three steps:

1. For every 2 ≤ i ≤ 22− ρ(X ), compute a basis of admissible pairs of vectors (N1, Ni) using
the LLL algorithm.

2. Compute a basis N1,1, . . . , N1,r of intersection of the Λi’s.

3. For each 1 ≤ j ≤ r, let N j be the square matrix of size 22− ρ(X ) for which the rows are the
Ni,j ’s for 1 ≤ i ≤ 22− ρ(X ).

Let E be the transcendental endomorphism ring of X , and denote EQ = E ⊗Q. Then there is a
map ϕ : EQ → C defined by e(ωX ) = ϕ(e)ωX . It is an injective ring morphism. In particular EQ is
a number field (Huybrechts, 2016, Corollary 3.3.6), called the endomorphism field of X . In fact EQ
is either totally real or a CM-field (Zarkhin, 1983). In Table 7.3, we list the number fields that
appeared among the classes of V3, V4 and V5. Interestingly, we only encountered cyclotomic fields.

7.4 Beyond smooth ramification

Figure 7.4: The Dehn twist around the red loop γ leaves the standard symplectic homology basis of the
genus 2 curve invariant (composed of the cycles of the other colours) as their representatives
do not intersect the homology class of γ.

In order to be able to generalise this approach to double covers of projective space ramified
along hypersurfaces with singularities, a few points need to be addressed. First, for varieties of

4Ni is unique because if there was another such vector N ′
i , then (Ni − N ′

i) · w would be zero — i.e., there would a
nontrivial integral relation between the coordinates of w.
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dimension greater than 2, there might be different relatively minimal resolution of the singularities
that appear — in particular there is a choice to be made here, so the problem is not well-posed.

For surfaces, there is a unique such minimal model (Lipman, 1969; Brieskorn, 1966). In this
case, one may wonder whether an approach similar to the case of non-Lefschetz fibrations given in
the case of elliptic surfaces in Section 6.4. However, contrary to the elliptic case, the morsification
might not necessarily be determined entirely by the monodromy representation of the surface. A
Kodaira-like classification of singular fibres in the case of genus 2 fibrations was initially worked
out in Ogg (1966) and Iitaka (1967) independently. This list was later completed in Namikawa
and Ueno (1973), along with equation for pencils of genus 2 curves realising each possible type. In
Sakalli and Horn-Morris (2023), the authors give factorisation of conjugacy class of degenerations
of genus 2 curves into Dehn twists. However it is, to my knowledge, not known if this factorisation
is unique, as it is in the case of genus 1 as shown in Cadavid and Vélez (2009). There are singular
fibres of families of genus 2 curves around which the (homological) monodromy is trivial (see type
[I0-I0-m], Namikawa and Ueno (1973)). Concretely, consider the Dehn twist with respect to the
loop γ in Fig. 7.4, so that the singular fibre consists of two elliptic curves kissing at one point.
As γ does not intersect the standard symplectic basis of H2(X ), the action of monodromy on the
homology is trival. However, it is not guaranteed that such degenerations can appear in fibration of
smooth surfaces. In any case, this should not be much of an obstruction: an effective workaround
would be to consider an explicit realisation of the morsification. Such an endeavour is in essence
carried out in Section 8.2.2.
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Chapter 8

Applications in homological mirror
symmetry

In this chapter, we demonstrate the applicability of the methods we have developed to certain
constructions coming from mirror symmetry. Homological mirror symmetry predicts relations
between the symplectic geometry and holomorphic geometry of mirror pairs of Calabi–Yau manifolds.
In particular in this context the Doran-Harder-Thompson conjecture predicts a link between certain
types of degenerations of Calabi–Yau manifolds and fibration structures on the mirror side. The
methods developed in this thesis allow to investigate the fibered Calabi–Yau manifolds, and this
is the topic of this chapter in two settings: the case of degenerations of K3 surfaces, and of Fano
threefolds.

The content of Section 8.1 is based on ongoing work with Charles F. Doran. The content of
Section 8.2 is based on ongoing work with Charles F. Doran and Andrew Harder. The content of
Section 8.3 is based on ongoing work with Charles F. Doran and Alan Thompson.

8.1 Fibration structure of mirrors of Fano threefolds
In Doran, Harder, Katzarkov, et al. (2023), the authors investigate the mirror symmetry of low rank
Fano threefolds. The mirrors of these Fano threefolds are Landau–Ginzburg threefolds, which admit
Calabi-Yau compactification by Przyjalkowski (2017). Concretely, this means the Landau–Ginzburg
model can be realised by a fibration over P1 of which the generic fibres are quartic K3 surfaces.
The polarisation of the K3 surfaces has to be Dolgachev–Nikulin dual (I. V. Dolgachev, 1996) to
the Picard lattice of the original Fano threefold — in particular their ranks should add up to 20.

The work of Doran, Harder, Katzarkov, et al. (2023) produces explicit equations for these
families of K3 surfaces, and identifies lines included in the K3 surfaces which in turn yield elliptic
fibrations. Using this data, we can apply the methods of Chapter 6 to compute an effective basis of
the homology of these K3 surfaces.

In this section, we report on the study of a large number of K3 surfaces appearing in Doran,
Prebble, et al. (2023). In total, we considered 638 elliptic fibrations, of 85 K3 surfaces. The average
time for the computation of the holomorphic period vector of these elliptic surface with 150 digits
of precision was 36 seconds. The result are summarized in Table 8.1.

We may note some disparities between the Picard rank we computed and the results of Doran,
Harder, Katzarkov, et al. (2023). For example, for Family 2.33, we obtain a Picard rank of 19,
compared to the expected 18. This is because the given quartic equation for this family corresponds
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Family Picard rank Discriminant

2.2 18 −4
2.3 18 −4
2.4 18 −9
2.5 18 −9
2.6 19 12
2.7 18 −16
2.9 18 −17
2.10 18 −16
2.11 18 −13
2.12 19 20
2.13 18 −24
2.14 18 −25
2.15 18 −12
2.16 18 −20
2.17 18 −25
2.18 18 −16
2.19 18 −17
2.20 18 −29
2.21 19 28
2.22 18 −24
2.23 18 −16
2.24 18 −21
2.25 18 −16
2.26 18 −21
2.27 18 −17
2.28 18 −9
2.29 18 −16
2.30 18 −12
2.31 18 −13

Family Picard rank Discriminant

2.32 19 12
2.33 18 −9
2.34 18 −9
2.35 18 −8
2.36 18 −5
3.1 19 12
3.2 17 16
3.3 18 −28
3.4 17 24
3.5 17 28
3.6 17 32
3.7 18 −36
3.8 17 34
3.9 18 −12
3.10 18 −40
3.11 17 28
3.12 17 36
3.13 19 30
3.14 17 18
3.15 17 34
3.16 17 30
3.17 18 −28
3.18 17 26
3.19 18 −24
3.20 18 −28
3.21 17 22
3.22 17 18
3.23 18 −28
3.24 17 22

Family Picard rank Discriminant

3.25 18 −20
3.26 17 18
3.27 19 12
3.28 17 16
3.29 17 12
3.30 17 14
3.31 18 −12
4.1 19 24
4.2 17 44
4.3 18 −32
4.4 17 48
4.5 17 40
4.6 16 −39
4.7 19 34
4.8 18 −52
4.9 17 32
4.10 16 −31
4.11 17 28
4.12 16 −23
4.13 17 20
5.1 17 42
5.2 16 −44
5.3 18 −36
6.1 18 −25
7.1 18 −16
8.1 18 −9
9.1 18 −4

Table 8.1: The generic Picard rank and discriminant of the Picard lattice of the families of Doran, Harder,
Katzarkov, et al. (2023).
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to a specific Landau–Ginzburg model, which is not necessarily representative of the full moduli
space. To check this, we can consider the general Laurent polynomial for the Landau–Ginzburg
model for Family 2.33 which is given in Doran, Harder, Katzarkov, et al. (2023, §5.2):

pa,b = x + y + z + x

z
+ a

xy
+ b . (8.1)

In order to recover the quartic equation, we multiply pa,b − λ by xyz and homogenise in w:

x2yz + xy2z + xyz2 + x2yw + azw3 + (b− λ)xyzw . (8.2)

We notice that the line x = w = 0 lies in this quartic, thus it admits an elliptic fibration, obtained
by replacing w by tx and dividing by x:

xyz + y2z + yz2 + tx2y + at3zx2 + (b− λ)txyz . (8.3)

The example computed in Table 8.1 was the one of Doran, Harder, Katzarkov, et al. (2023, §B.33),
corresponding to a = b = 0 and λ = 3/2. Taking instead the different values λ = 5, b = 0 and
a = 2, for example, we can proceed with the computation of the holomorphic periods of the elliptic
surface and thus recover the Picard rank, which we find is equal to the expected 18. We also note
that the discriminant is the same as the one of Table 8.1, i.e., −9.

8.1.1 The monodromy representation of the Fano threefolds
Using the braid computation method of Chapter 10, we may recover the monodromy representation
of the K3-fibered compactified Landau–Ginzburg mirrors of the Fano threefold from the monodromy
representation of the various elliptic K3 surfaces which constitute its fibre. We have tried to do so
with the elliptic fibrations obtained from the line divisors in the K3 surfaces. In many cases, the
computation of the (pseudo-)braid along one single edge lasted longer than 1 minute and was halted.
Nevertheless, we were able to carry out the braid computation for the monodromy representation
of at least one fibration for all the 87 families of K3 surfaces with a line divisor, except families
2.15 and 3.21.

This way, we may compute the matrices of the monodromy action on the transcendental lattice of
the K3 surface. In particular we are able to recover certain 3-cycles as extensions of transcendental
cycles.

For example, for the family 2.2, there are 4 finite critical values c1, c2, c3, c4, and the monodromy
representation given a distinguished basis around these critical values for a basis of the transcendental
cycles are given by

1 1 3 −2
0 1 2 2
0 0 1 −2
0 0 0 −1

 ,


−2 3 3 3

2 −1 −2 −2
−2 2 3 2
−1 1 1 2

 ,


−1 1 3 1
−4 3 6 2

0 0 1 0
4 −2 −6 −1

 ,


1 0 0 −1
0 1 0 4
0 0 1 −2
0 0 0 −1

 .

(8.4)
We see that the last three monodromy matrices are of Lefschetz type. As a sanity check, we may
also see that these monodromy matrices preserve the intersection product, which in this basis of
the transcendental lattice is given by

−2 4 −2 −1
4 −6 4 4
−2 4 −2 −2
−1 4 −2 −2

 . (8.5)
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In fact, this determines the intersection product up to a sign. Furthermore, using another elliptic
fibration of the same K3 surface, we find the monodromy matrices
−2 −1 2 1
−3 0 0 −1
−2 0 1 0

0 0 −2 −1

 ,


1 0 0 0
0 1 0 0
3 1 −1 0
−3 −1 2 1

 ,


0 −3 2 1
0 1 0 0
−1 −3 3 1

3 9 −6 −2

 ,


1 0 0 0
1 0 0 1
1 −1 1 1
−1 1 0 0

 .

(8.6)
Comparing the periods, we may find the matrix of the change of basis between the two representations
of the transcendental lattice: 

−1 −1 2 1
0 1 −2 −1
0 1 −3 −2
0 2 −2 −1

 . (8.7)

We then check that up to conjugation by this change of basis, the monodromy representations are
the same.

Using the methods of Section 3.5 we recover 2 cycles as extensions of transcendental cycles
of the K3 fibre along loops in C \ {c1, c2, c3, c4}. This data is an algebraic invariant of the Fano
threefold. To our knowledge, this is the first computational method allowing the access to such
data.

8.2 Degenerations of K3 surfaces
We are interested in studying the degeneration of K3 surfaces via the Lefschetz fibrations obtained
in Chapter 4. Let us first expose the setting, mostly following Kondo (1985).

Definition 34. A semi-stable degeneration of K3 surfaces is a map π : X → D from a threefold X
to a disk D, such that

• the fibres Xt = π−1(t) are smooth K3 surfaces for t ̸= 0;
• the central fibre X0 = π−1(0) is a divisor with normal crossing;
• X0 does not have components with multiplicity.

A degeneration of K3 surfaces is weakly Kähler if there exists a bimeromorphic map X → X ′ to a
Kähler manifold, which is biholomorphic on X \ X0.

Similar to the Kodaira classification for elliptic curves, singular fibres in families of K3 surfaces
have been classified by work of Kulikov (1977), Persson (1977), and Persson and Pinkham (1981).
This classification is summarised in the following theorem of Kondo (1985).

Theorem 62 (Kondo, 1985, Theorem 1.5, attributed to Kulikov, 1977). Let π : X → D be a weakly
Kähler semi-stable degeneration of algebraic K3 surfaces. Then the central fibre X0 = π−1(0) is one
of the following three types:

• Type I: a smooth K3 surface
• Type II: a union of surfaces V1∪· · ·∪Vn, where V1 and Vn are rational surfaces, V2, . . . , Vn−1

are elliptic ruled surfaces and Vi ∩ Vj is an elliptic curve when j = i + 1 and empty otherwise.
• Type III: a union of rational surfaces V1 ∪ · · · ∪Vn, where Vi ∩Vj are smooth rational curves.

The goal of this chapter is to showcase how the methods presented in this thesis can be used to
investigate the degeneration in an effective manner. We first look at a type III degeneration of
quartic K3 surfaces, and then at a type II degeneration of degree 2 K3 surfaces.
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8.2.1 Type III degeneration
We consider the 1-parameter family of K3 surfaces obtained from the pencil generated by the
Fermat quartic surface and a union of 4 hyperplanes:

Xt : t(x4 + y4 + z4 + w4) + (1− t)xyzw . (8.8)

The central fibre is the union of the four hyperplanes x = 0, y = 0, z = 0 and w = 0. These
hyperplanes intersect pairwise in a line, and any triplet intersects at a single point. We thus have 4
distinguished singular points corresponding to each choice of the three hyperplanes

We obtain a fibration of the quartic K3 surfaces Xt by the pencil of hyperplanes x + y + z =
u(y − z + w), which, for generic values of t and in particular in a neighbourhood of t = 0, is
Lefschetz.

The critical values of the map Xt 99K P1 obtained from this hyperplane pencil are the roots in u of
a bivariate polynomial P (u, t). We may compute P (t, ·) for fixed t, and by evaluation-interpolation
methods we are also able to recover the full polynomial P . P has degree 36 in u (as is expected as
a Lefschetz fibration by genus 3 curves of a K3 surface has 36 singular fibres), and degree 21 in t.
When t is set to 0, P factors into

P (0, u) = c(u− 1)3u3(u + 1)3(1 + u4)
(
1 + (u− 1)4) (1 + (u + 1)4)

×(1 + 6u2 + u4)(1− 4u + 6u2 − 4u3 + 2u4)(1 + 4u + 6u2 + 4u3 + 2u4) ,
(8.9)

where c is a rational coefficient. Notice that this polynomial only has degree 33 — this is because
three of the roots diverge to infinity. Furthermore, note that for generic rational values of t, P (t, u)
is irreducible.

We can see that there are 4 clusters of 3 confluent fibres, at 1, 0, −1 and ∞, which correspond
to the triple points. Furthermore, the quartic terms can be associated to pairs of the triple points:
for example (1 + u4) corresponds to the points 0 and ∞. The geometrical interpretation of these
quadruple of critical values is less clear. These clusters are represented in Fig. 8.1

We may compute the monodromy representation of the fibration in a neighbourhood of any
of the triplet of critical values. For example, for one of these clusters, we find the monodromy
representation

1 0 0 0 2 2
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2 −1
0 0 0 0 1 0

 ,



−3 4 8 0 −8 12
0 1 0 0 0 0
0 0 1 0 0 0
−2 2 4 1 −4 6

5 −5 −10 0 11 −15
2 −2 −4 0 4 −5

 ,



−1 2 4 0 −2 4
0 1 0 0 0 0
0 0 1 0 0 0
−2 2 4 1 −2 4

4 −4 −8 0 5 −8
1 −1 −2 0 1 −1

 .

(8.10)
These monodromy matrices are given in a symplectic basis for the space of 1-cycles of the fibre, i.e.,
in this basis the intersection product is given by

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 (8.11)

We thus recover the vanishing cycles

v1 = (0, 0, 0, 0, 1, 1)t
, v2 = (1, 1, 0, −2, 5, 2)t

, v3 = (1, 1, 0, −2, 4, 1)t
. (8.12)
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Figure 8.1: The critical values of the fibration of Xc for c = 10−5. We have identified the four clusters of
three critical values merging together in the dashed curves (the blue dashed curve corresponds to
the cluster at ∞, and the critical values in the cluster are really those outside of the circle). We
have also colour-coded the three quadruples of critical values arrange in squares corresponding
to the pairs of clusters consisting of a finite cluster and the cluster at ∞.

We have the relation v1 + v3 = v2 and the intersection pairing between v1 and v2 is(
0 3
−3 0

)
. (8.13)

The same computation yields the same result for the other clusters. Comparing the vanishing
cycles from one cluster to another, as well as the other critical values, is dependant on a choice
of a connecting path. Nevertheless, doing so for a certain choice, we find that different clusters
give different embeddings of this rank 2 lattice into the full rank 6 lattice of the full first homology
group of the fibre.

More precisely, we consider a disk containing two clusters and the corresponding quadruplet of
critical values. The vanishing cycles of the critical values are given, in order, by

2
1
0
−1

1
0

 ,



1
2
0
−1

0
0

 ,



4
5
0
−3

1
0

 ,



1
1
0
−1

1
0

 ,



1
1
0
−1

1
0

 ,



0
0
0
0
1
1

 ,



1
1
0
−2

5
2

 ,



1
1
0
−2

4
1

 ,



1
1
0
−1

1
0

 ,



1
1
0
−1

1
0

 (8.14)

The first three correspond to one of the cluster, the next two to two of the four orbiting points, the
next three correspond to the other cluster and the last 2 to the last two orbiting values. We can see
that the vanishing cycles at the orbiting critical values are all equal to vorb = (1, 1, 0, −1, 1, 0)t.
Let v1

1 = (2, 1, 0, −1, 1, 0)t and v1
2 = (1, 2, 0, −1, 0, 0)t be a basis of the span of the vanishing
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cycles at the first cluster, and similiarly v2
1 = (0, 0, 0, 0, 1, 1)t and v2

2 = (1, 1, 0, −2, 4, 1)t for the
second cluster. Then ⟨v1

1 , v1
2 , v2

1 , v2
2⟩ has rank 4, and vorb lies primitively in 1

4 ⟨v
1
1 , v1

2 , v2
1 , v2

2⟩.
Such intersection products are relevant because they provide information about the Fukaya

category (Seidel, 2008) of the K3 surface. The methods described here provide an effective way
of computing certain data pertaining to this category. Fukaya categories are relevant in mirror
symmetry, as we shortly explain in Section 8.3.3.

8.2.2 Type II degeneration
We consider the 1-parameter family of degree 6 K3 surfaces obtained as double covers of P2 ramified
along a sextic, given by the equation in P3

3,1,1,1

Xt = w2 − t(x6 + y6 + z6)− (1− t)(x3 + y3 + z3)2 . (8.15)

The central fibre consists of two copies of P2 glued along the Fermat elliptic curve V (x3 + y3 + z3)
— in particular this is a type II degeneration.

We take the projection P2 99K P1 given by the hyperplane pencil Hu : x + y = u(y − z). The
generic fibre is a hyperelliptic curve of degree 6, i.e., a genus 2 curve (see Chapter 7). Similarly
to the quartic case, we may compute the bivariate polynomial P giving the critical values. It has
degree 30 in u (as expected) and degree 7 in t, and is irreducible. When evaluated at the singular
fibre t = 0, it factorises in the following way

P (0, u) = (4u6 + 24u4 + 24u2 − 3)2(u6 + 6u4 + 9u2 + 3)(u6 − 3u5 + 15u4 − 6u3 + 9u + 3)
×(u6 + 3u5 + 15u4 + 6u3 − 9u + 3) .

(8.16)

We notably see that 6 pairs (c1, c2) of critical values merge, as represented in Fig. 8.2.
We may compute the intersection product of the vanishing cycles in a local monodromy

representation in a neighbourhood of at these critical values. That is, we can choose U ⊂ P1 such
that these critical values are in U and stay in U as t→ 0. We can then choose a basepoint b ∈ U and
simple loops ℓ1, ℓ2 around the two confluent critical values c1, c2 in π1(U \{c1, c2}, b) ⊂ π1(P1 \Σ, b).
Then the intersection matrix of the vanishing cycles at c1 and c2 along these simple loops is given
by (

0 −2
2 0

)
(8.17)

regardless of the pair of points considered.

8.3 Allowable loops of elliptic fibration of M-polarised K3
surfaces

The simplest occurence of Type II degenerations of K3 surfaces is that of Tyurin degenerations,
where n = 2 (in the notations of Theorem 62) and the K3 degenerates into the union of two rational
surfaces glued along an elliptic curve.

Let X → P1 be an elliptic K3 surface and denote Σ its set of critical values. For homological
mirror symmetric reasons, we are interested in loops ℓ : [0, 1] → P1 \ Σ satisfying the following
conditions:

• ℓ is not self-intersecting; in particular it separates P1 in two disks. We denote by D1 and D2
these two regions.
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Figure 8.2: The critical values of the fibration of Xc for c = 1/100 in the complex plane. We have identified
the six clusters of two critical values merging together in the dashed curves. We have also
colour-coded the roots of the other three degree 6 factors of the factorisation (8.16).

• the action of monodromy along ℓ on the fiber at ℓ(0) = ℓ(1) is of the type I12−e, i.e., has
SL2(Z) conjugation class (

1 12− e

0 1

)
, (8.18)

where e is the Euler characteristic of the elliptic surface obtained by the restriction to one of
the Di’s.

Such loops are called allowable — they are related to the elliptic curve along which the rational
surfaces are glued in Tyurin degenrations, see Giovenzana and Thompson (2024). We then wish
to check whether the cycle obtained by extending the invariant vector of ℓ∗ along ℓ lies (up to
a multiple of the fibre) in the transcendental lattice of the K3 surface, and whether it does so
primitively.

Let X → P1 be an elliptically fibered K3 surface with polarisation M = H ⊕ (−E8)⊕ (−E8).
The following theorem realizes the family of M -polarized K3 surface as a family of quartic surfaces
in P3.

Theorem 63 (Clingher et al., 2009, Theorem 3.1). An M -polarised K3 surface X is isomorphic
for the quartic surface Xa,b,c in P3 defined by the equation

Q(a, b, d) : y2zw − 4x3z + 3axzw2 + bzw3 − 12(dz2w2 + w4) = 0 (8.19)

for some a, b, d ∈ C. Furthermore, the isomorphism class of Xa,b,d is determined by the fundamental
invariants a3/d and b2/d

The two lines x = w = 0 and z = w = 0 lie in Xa,b,c. In particular, for generic values of a, b, d,
the K3 surface has two distinct elliptic fibrations, which we call the standard fibration and alternate
fibration respectively.

In this chapter, we realise the elliptic fibrations of M -polarised K3 surfaces as multiple covers of
rational surfaces with 3 singular fibres. Before we proceed to the study of these elliptic fibrations,
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let us recall facts about rational elliptic surfaces with few singular fibres. Because any three points
in P1 can be sent to {0, 1,∞} by a Möbius transformation, there is a unique rational surface with
this fibre configuration. More generally, the moduli space of elliptic surfaces with an admissible
configuration of four fibres of a given type is 1-dimensional. The full classification of such rational
surfaces was computed in Herfurtner (1991).

8.3.1 The standard fibration
The standard elliptic fibration is the one given by z = w = 0. It is given by the equation

bt3Z3 − 1
2 t4Z3 + 3at2XZ2 − 1

2dt2Z3 + tY 2Z − 4X3 = 0 . (8.20)

It has four I1 fibres and two II ∗ fibres.

Lemma 64. The standard fibration of Xa,b,d is the double cover of the rational elliptic surface with
three fibres of type I1, I1 and II ∗, ramified at two generic points.

This rational surface is the seventh entry in Table 3 of Herfurtner (1991) with the parameter ρ4
set to 1 (indeed, the confluence of a IV fibre with an I∗

0 fibre yields a type II ∗ fibre). In particular,
after a Möbius transformation setting the II ∗ fibre at ∞, it is realised by the equation

Y 2Z = 4X3 − (3t4 + 36t3 − 78t2 + 36t + 3)XZ2 − (t6 − 36t5 + 69t4 − 69t2 + 36t− 1)Z3 . (8.21)

We then pullback to obtain the double cover with the change of variable u = c1t + c0 + c−1
t ,

such that u =∞ when t is either 0 or ∞. It is then sufficient to find values for c1, c0, c−1 for which
the fibres match those of the standard elliptic fibration of Xa,b,d. This amounts to having matching
discriminants, and we find that this happens whenever

a = 16 , c1 = 1
128 , c0 = − b

64 , c−1 = d

128 . (8.22)

Note that although this solution specifies the value of a, the fundamental invariants of Theorem 63
are still free to take any value and thus this covers all possible isomorphism class of the K3 surfaces.
This proves Lemma 64.

From this presentation, we can obtain information about the elliptic K3 surface. First, the fibres
come in pairs with equal monodromy. Furthermore, we may partition P1 into two open disks and
an equator, with each disk corresponding to each copy of the rational surface. In particular, the
action of monodromy along the equator coincides with the monodromy along a loop around the two
ramification points of the double cover. As the two points are generic, this monodromy is trivial.
Finally, the Euler characteristic of the rational surface is e = 12, and thus trivial monodromy
corresponds the type of (8.18). Thus the loop tracing the equator satisfies the properties we are
after.

Of course, it is possible to also add any of the I1 fibres in one of the copies. Indeed, then the
monodromy will be equal to that of the fibre, and the Euler characteristic will have shifted by 1.
All in all we find 3 such loops up to the Z/2Z reflection coming from the double cover.

Let us first focus on the equator. As the monodromy is trivial, in this case we have not only
one, but two possible extensions. Nevertheless, we find that whatever 1-cycle is being extended, it
yields a 2-cycle lying primitively in the transcendental lattice.

For the other loops, there is only a single invariant 1-cycle. However, extending along the loop
yield the same result as extending it along the equator. Indeed by formula (2.5), we have

τℓI1 ℓequator = τℓI1
(ℓequator∗γ) + τℓequator(γ) (8.23)
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and
τℓI1

(ℓequator∗γ) = τℓI1
(γ) = 0 , (8.24)

where ℓI1 is the loop around the I1 and ℓequator the one along the equator.
Explicitly, the monodromy representation in a given symplectic basis of the first homology group

of the fibre with a given distinguished basis of π1(P1 \ Σ) is

M1 = M4 =
(

1 1
0 1

)
, M2 = M5 =

(
1 0
−1 1

)
, M3 = M6 =

(
0 −1
1 1

)
(8.25)

This description is schematized in Fig. 8.4.

Figure 8.3: A schematic representation of the standard elliptic fibration of an M-polarised K3 surface
(left) as the double cover of a rational surface (right). The elliptic K3 surface, has 6 singular
fibres represented in red. Two of type II∗ and four of type I1. The singular fibres come in
pair stemming from the rational surface, represented below. The two ramification points in
the rational surface are represented in blue. The loop ℓ is the lift of the orange loop in the
elliptic surface around the ramification points. As these are generic, there is no ramification.
The nontrivial extensions along the dashed path in green yields a transcendental cycle. The
purple path is also a allowable path in the elliptic K3 surface. It is equivalent to the orange
one in that any extension without boundary along this path is equal to an extension along ℓ.

8.3.2 The alternate fibration
The alternate elliptic fibration is the one obtained using the line x = w = 0. It is given by the
equation

−1
2 t4X3 + bt3X2Z + 3at2X2Z − 1

2dt2XZ2 + tY 2Z − 4X2Z = 0 . (8.26)

It has six I1 fibres and one I∗
12 fibre. In this model, the II ∗ fibres are above the points 0 and ∞.

Lemma 65. The alternate fibration of Xa,b,d is the triple cover of the rational elliptic surface with
three fibres of type I1, I1 and I∗

4 with total ramification at the I∗
4 fibre and simple ramification at

three generic points.

This rational surface is the first entry in Table 3 of Herfurtner (1991) with the parameter ρ4 set
to 1 (indeed, the confluence of a I4 fibre with an I∗

0 fibre yields a type I∗
4 fibre). In particular, after

a Möbius transformation setting the I ∗
4 fibre at ∞, it is realised by the equation(

4X3 − Y 2Z
)

t6 +
(
−24X3 + 6Y 2Z

)
t5 +

(
60X3 − 15Y 2Z − 192XZ2) t4

+
(
−80X3 + 20Y 2Z + 384XZ2 + 512Z3) t3 +

(
60X3 − 15Y 2Z − 48XZ2) t2

+
(
−24X3 + 6Y 2Z − 288XZ2 − 576Z3) t + 4X3 − Y 2Z + 144XZ2 = 0 .

(8.27)
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We then pullback to realize the triple cover with the change of variable t′ = α(t−x1)(t−x2)(t−x3),
so that there is total ramification at ∞. It is then sufficient to find values for c and the xi’s for
which the fibres match those of the standard elliptic fibration of Xa,b,d. This amounts to having
matching discriminants, and we find that this happens under the conditions

a = 2
3(x2

1 + x2
2 + x2

3) , b = 4x1x2x3 , d = 2304 , u = − 1
12 , x1 + x2 + x3 = 0 . (8.28)

Again, although we have to specify the value of d, the invariants are still free to take any value and
thus this covers all possible isomorphism class of the K3 surfaces. This proves Lemma 65.

Figure 8.4: A schematic representation of the alternate elliptic fibration of an M-polarised K3 surface
as the triple cover of a rational surface. The elliptic surface, above, has 7 singular fibres
represented in red: one of type I∗

12 and six of type I1. The I1 fibres come in triplets stemming
from the I1’s of the rational surface, represented on the right. The three generic ramification
points in the rational surface are represented in blue, and there is also ramification at the I∗

4
fibre. The orange and purple loops are allowable in the elliptic K3.

From this presentation, we can obtain information about the elliptic K3 surface. The I1
fibres come in triplets with equal monodromy which we may explicitly compute. Concretely, the
monodromy representation in a given symplectic basis of the first homology group of the fibre with
a given distinguished basis of π1(P1 \ Σ) is

M1 = M3 = M5 =
(
−2 9
−1 4

)
, M2 = M4 = M6 =

(
0 1
−1 2

)
, M7 =

(
−1 −12

0 −1

)
(8.29)

The homotopy class of any loop in π1(P \ Σ) is generated by the loops around the I1 fibres. In
particular, the monodromy along the any loop is a composition of the monodromy around the I1
fibres. We may thus search for loops satisfying our property by finding products of the matrices M1,
M2, M−1

1 and M−1
2 which are in the conjugacy class of (8.18) for some e. We did so for product of

up to 10 terms. Apart from the obvious powers of the Mi’s and their inverse, which would lead to
trivial 2-cycles, the only such relations we have found is

M2M1M2M1 = M4M3M2M1 =
(

1 −8
0 1

)
, (8.30)

as well as its inverse and their conjugation by any of the Mi. Thus a loop encircling any e = 4
consecutive I1 fibres in the above monodromy representation yields a monodromy of the type
of (8.18). In fact, one may show that these are the only allowable loops for this elliptic surface
(although we will not do it in this text).

For each such loop ℓ we may then compute the extension along ℓ of the cycle γ invariant under
the action of ℓ∗. We obtain that such 2-cycles are always primitive in the transcendental lattice,
and that they generate the full transcendental lattice. This is represented in Fig. 8.4.
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8.3.3 Perspectives
Homological mirror symmetry predicts that Calabi-Yau varieties come in pairs, with a relation
between the symplectic geometry structure of the first variety to and the holomorphic structure
of the other, and vice-versa. More precisely, for a mirror pair (X , X̌ ), it predicts an equivalence
of categories between the Fukaya caterogy of X (Seidel, 2008) with the bounded derived category
of coherent sheaves of X̌ (Orlov, 2009). In this setting, the Doran-Thompson-Harder conjecture
predicts that when a Calabi-Yau manifold X degenerates into the union of two quasi-Fano manifolds
X1 ∪Z X2 intersecting along a common anti-canonical smooth divisor Z, then one may reconstruct
the mirror X̌ of X by gluing the mirror Landau-Ginzburg models of X1 and X2, which equips X̌
with a fibration by Calabi-Yau manifolds over P1. This conjecture was proven in the case of elliptic
curves in Kanazawa (2017). For polarised K3 surfaces, recent work of Giovenzana and Thompson
(2024) reduces the proof of this conjecture to a computational check, which involves finding the
allowable loops in elliptic K3 surfaces. The methods developed in this thesis allow precisely to
carry out these computations as shown on the examples above, and thus would in turn allow to
provide the missing step to obtain a proof of this conjecture for polarised K3 surfaces.



Chapter 9

Numerical check of the Deligne
conjecture for certain Calabi-Yau
threefolds

We now turn to an application in arithmetic geometry. We aim to check the Deligne conjecture
numerically on certain examples of Calabi-Yau threefolds. Deligne’s conjecture, first formulated by
Deligne (1979), is, in some sense, a generalisation of the Birch and Swinnerton–Dyer conjecture
(Birch & Swinnerton-Dyer, 1965) for modular elliptic curves to higher dimensional Calabi–Yau
manifolds.

In the case of hyperelliptic curves, Beilinson’s conjecture (Beilinson, 1985), which can itself
be seen as a generalisation of the Birch and Swinnerton–Dyer conjecture, was tested numerically
in Dokchitser et al. (2006), and later to superelliptic (non-hyperelliptic) curves Neurohr (2018).
In higher dimensions, Yang (2021) provides a numerical check of the Deligne conjecture for two
Calabi–Yau threefolds, relying on work of Candelas et al. (2020). More recently, for certain (1, 1, 1, 1)
hypergeometric motives, Golyshev (2023) provides a numerical check of the Beilinson conjecture.

The methods of this thesis allow to compute the periods of certain Calabi–Yau threefolds given
as fibered products of elliptic surfaces, as we will now present in this section. This opens the door
to the numerical check of the Deligne conjecture in many cases, provided we also know the values
of L-functions.

The content of this chapter is ongoing work with Nutsa Gegelia and Duco van Straten.

9.1 Topology and periods of fibered product of elliptic sur-
faces

Let f1 : S1 → P1 and f1 : S2 → P1 be two elliptic surfaces. We may construct a threefold by taking
their fibered product X = S1 ×P1 S2. This threefold is by construction equipped with a fibration f

over P1. For t ∈ P1 by Eit = f−1
i (t) the fiber of Si above t. Then the fibre of this threefold is the

surface Xt = f−1(t) ≃ E1t × E2t.
By the Künneth formula, we thus have

H2(Xt) ≃ H1(E1t)⊗H1(E2t)⊕H0(E1t)⊗H2(E2t)⊕H2(E1t)⊗H0(E2t) . (9.1)

Note that H0(Eit) and H2(Eit) have trivial monodromy for i = 1, 2. Thus the only relevant part
of the homology of the fibre is H1(E1t)⊗H1(E2t), which has rank 2× 2 = 4.
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The periods of the fibre are easily obtained from those of E1 and E2 thanks to the formula∫
γ1×γ2

ω1 ⊗ ω2 =
∫

γ1

ω1

∫
γ2

ω2 (9.2)

where ωi ∈ H1
DR(Eit) and γi ∈ H1(Eit). In particular it is apparent that the Picard–Fuchs operator

of ω1t ⊗ ω2t is simply the symmetric product L = L1ⓈL2 of the Picard–Fuchs operators Li of
ωit — that is, the minimal operator annihilating the product of a solution of L1 and one of L2.
In particular, if ωit is cyclic for i = 1, 2, then L has order 4 and thus encodes the full action of
monodromy on H2(E1t × E2t). Alternatively, the monodromy may also be recovered as the tensor
product of the monodromies of S1 and S2.

When the critical locus of S1 and S2 are disjoint, this defines a smooth threefold. When the
two surfaces are additionally relatively minimal rational elliptic surfaces, Schoen (1988) showed
that the fibered product defines a smooth Calabi-Yau threefold. Furthermore, authorising certain
types of singular fibres to coincide, it is shown in Kapustka and Kapustka (2009) that the possibly
singular threefold admits a small resolution into a Calabi–Yau threefold.

9.1.1 The cohomology of X and Deligne’s period
We recall the general setting, mostly following Golyshev and van Straten (2023) for the exposition
and context. All the elliptic surfaces we will consider are rational surfaces with 3 or 4 singular
fibres. The fibered product we will consider are Calabi-Yau threefolds with middle Hodge numbers
(1, 1, 1, 1) — so-called (1, 1, 1, 1)-motives.

We will be interested not only in the fibered product, but in a family of such threefolds which
we may define from two given elliptic surfaces. For u ∈ C, consider the map i∗

u : P1 → P1 defined
by t 7→ u/t and define S1 ×u S2

def= S1 ×P1 iu∗(S2). Then in Golyshev and van Straten (2023) the
authors show that the 1-parameter family {X u}u∈P1 , where X u is the small resolution of S1 ×u S2
is a flat family of smooth Calabi-Yau threefolds of Hodge numbers (1, 1, 1, 1).

Before we can define Deligne’s period, let us introduce some notation. The complex conjugation
c ∈ Gal(C/R) induces an involution c∗ of H3(X ). We denote by H+

3 (X ) the invariant sublattice
under this involution, that is the kernel of c∗ − id. It has rank 2, and we denote by γ+

1 , γ+
2 an

integral basis of this space When ω is defined over Q, such cycles can be identified by the fact that
their periods are real. In particular we may heuristically recover these cycles numerically by finding
integer linear relations between the imaginary parts of a basis of the periods. Similarly, we define
H−

3 (X ) the kernel of c∗ + id, the space of imaginary cycles, and denote a basis as γ−
1 , γ−

2 . Of course
H+

3 (X ) and H−
3 (X ) are in direct sum — however, in all the cases we checked, they only generate a

non-primitive full rank sublattice of H3(X ).
Recall the Hodge filtration F3 ⊂ F2 ⊂ F1 ⊂ F0 = H3

DR(X ). From h3,0 = h2,1 = 1 we directly
obtain that dim H3

DR(X ) = 4 and dimF i = 4− i — in particular dimF2 = 2. We can now define
Deligne’s period.

Definition 35. Deligne’s period c+ is the determinant of the period map restricted H+
3 (X )×F2 → C

in an integral basis of H+
3 (X ) and a rational basis of F2.

Remark 66. Deligne’s period is thus only defined up to a rational number, depending on the choice
of the bases of H+

3 (X ) and F2.

We now explain how to obtain a Hodge basis of H3
DR(X ). We obtain this by following the ideas

of Stiller (1987). We will consider global sections of H2(E1t × E2t) of the form ωt = c(t)ω1t ⊗ ω2t

where ωit is a global section of H1,0(Eit) and c(t) ∈ Q(t). The trick is to find a rational coefficient
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c such that this form does not have residues anywhere. In all the cases we have considered, this
can be done by taking c(t) = ti a power of t, such that the local exponents of the Picard–Fuchs
equation of ωt are “minimal”. Then ωt ∧ dt defines a holomorphic form ω on X .

To then complete this into a Hodge basis of H3
DR(X ), we consider the embedding of X into

the family {X u}. We may compute the Gauss-Manin connection explicitly using the methods of
Section 3.2. In particular by Griffiths transversality we obtain.

H3,0(Xu) = F3 = ⟨ω⟩ , (9.3)
F2 = ⟨ω, ∂uω⟩ , (9.4)
F1 = ⟨ω, ∂uω, ∂2

uω⟩ , (9.5)
H3(Xu) = F0 = ⟨ω, ∂uω, ∂2

uω, ∂3
uω⟩ . (9.6)

Lemma 67. Deligne’s period is given by

c+ =
∣∣∣∣∣
∫

γ+
1

ω
∫

γ+
1

∂uω∫
γ+

2
ω

∫
γ+

2
∂uω

∣∣∣∣∣ . (9.7)

9.2 L-functions and Deligne’s conjecture
The Deligne conjecture is a generalisation to higher dimensions of the Birch-Swinnerton-Dyer
conjecture, which relates the real holomorphic period of an elliptic curve to a certain arithmetic
invariant, its L-function. The goal of this section is to provide a statement of Deligne’s conjecture
in our setting, and to expose numerical evidence for Deligne’s conjecture that we can derive from
the computations of the previous section.

9.2.1 L-functions
Broadly, L functions are certain meromorphic functions carrying arithmetic information about a
motive. They stem from analytic continuation of L-series, which are Dirichlet series that converge
on the upper complex half-plane.

In the setting we are considering, the L-function takes the form of an infinite product over the
prime numbers p

L(X , s) =
∏

p prime
Fp(p−s)−1 (9.8)

where the Fp are certain polynomials called Euler factors. They are obtained as the characteristic
polynomial of the action of the geometric p-Frobenius on the ℓ-adic cohomology group H3

ét(X ,Qℓ)
(which we did and will not define in this text):

Fp(t) = det
(

1− t Frobp |H3
ét(X ,Qℓ)

)
. (9.9)

Conjectural methods for computing the Euler factors, and thus values of L-functions were
developed in Candelas et al. (2021). I am thankful to Nutsa Gegelia for providing the numerical
values of the L-functions of the following examples.

9.2.2 Numerical check of Deligne’s conjecture
We are now able to state Deligne’s conjecture in the context we are interested in.

Conjecture 1 (Deligne’s conjecture). The ratio L(X , 2)/c+ is a rational number.



CHAPTER 9. NUMERICAL CHECK OF THE DELIGNE CONJECTURE 118

Fibered product ratio c(t)

A×1 A −2−4 1
A×1 B 22 · 3−2 t2

A×1 c 3−1 t5

A×1 d 2−2 t5

B ×1 B 28 · 3−5 t2

B ×1 c −25 · 3−3 t5

A×−1 A −2−4 1
A×−1 B 22 · 3−2 t2

A×−1 b 2−5 1
A×−1 c 3−1 t5

A×−1 f −2 · 3−1 t5

B ×−1 B 28 · 3−4 t2

B ×−1 c 26 · 3−3 t5

Table 9.1: L(X , 2)π2/c+ for Calabi-Yau threefolds of Hodge type (1, 1, 1, 1). The obtained ratios are only
recovered numerically with tens of digits of precision (depending on X ). Note that c+ is only
defined up to the square of a rational number.

The rational elliptic surfaces we consider are the following:

A : (−x2z − yz2)t− x3 − xyz + y2z = 0
B : 64z3t3 − 48xz2t2 + 12x2zt− x3 − x2z + y2z = 0
b : (−x2z − xyz − yz2)t− x3 − xyz + y2z = 0
c : z3t6 − 3xz2t4 + 2yz2t3 + 3x2zt2 − 3xyzt− x3 + xyz + y2z = 0
d : 8z3t6 − 8z3t5 + (4xz2 + z3)t4 + 2x2zt2 − 4xyzt− x3 + xyz + y2z = 0
f : 54z3t6 − 27z3t5 + 9z3t4 + (9yz2 − z3)t3 − 3xyzt− x3 + xyz + y2z = 0

The small resolution of the fibered product between certain pairs of these surfaces define smooth
Calabi-Yau threefold. Among these, we were able to compute a numerical approximation of the
L-value and compare with the computation of the Deligne period obtained with our method.

This is presented in Table 9.1. We also included the rational coefficient c(t) necessary to find
the holomorphic form. The rational ratios are subject to a choice of the holomorphic form up
to a rational factor, and thus only defined up to the square of a rational number. Nevertheless,
intriguingly, we find rational coefficients with only 2 and 3 in their prime decomposition.

In many cases, while the resulting threefold is indeed Calabi–Yau and we were able to compute
Deligne’s period, we found that the L-values was zero. In this case, Deligne’s conjecture no longer
applies, but Beilinson’s conjecture predicts a similar relation between Deligne’s period and the
value of the L-function, but also involving the determinant of a height pairing of arithmetic nature,
Beilinson’s heights. Obtaining a way to evaluate this determinant would allow for the numerical
check of Beilinson’s conjecture for these threefolds.



Chapter 10

Braids and monodromy

In this chapter, we provide an alternative way of computing the action of monodromy on the
homology. We will not attempt to formalise the results stated here, only to provide insights into
the computational aspects.

In short: We have a tower of fibration Xt,t′ ⊂ Xb ⊂ X where Xt is the generic fibre of the
modification Y of X and similarly for Xt,t′ and Yt → Xt. The monodromy with respect to t acts on
the level of the fundamental group of the punctured base of the fibration Yt → P1. This monodromy
can be lifted to recover the action of monodromy on extensions of Yt, i.e. Hn−1(Yb,Xb,b′) for some
generic basepoints b and b′. To compute the monodromy, we encode an element ℓ of the fundamental
group of the punctured base of Yt → P1 as a word related to a covering tree of its critical values.
As the parameter t varies, we may track the way the topology of this graph changes, and we may
compute how the word changes accordingly. Doing this iteratively along a loop ℓ′ we obtain a new
word which describes precisely the homotopy class of the monodromy of ℓ along the loop ℓ′.

The content of this chapter is ongoing work, joint with Alexandre Guillemot and Pierre Lairez.

10.1 Braids
Let n ≥ 2.

Definition 36. The Artin braid group on n strands is group An is the group on n− 1 characters
σ1, . . . , σn−1 subject to the relations

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 1 (10.1)

and
σiσj = σjσi for i− j ≥ 2 . (10.2)

Braids can equivalently be characterised as elements of the fundamental group of the space of
configurations.

Definition 37. The space of ordered configuration of n points Cord
n in the complex plane is the

topological space
Cord

n = {(c1, . . . , cn) ∈ Cn | ci ̸= cj for i ̸= j} ⊂ Cn , (10.3)

equipped with the subspace topology.

The symmetric group on n elements Sn acts on Cord
n by permuting the coordinates.
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Definition 38. The space of (unordered) configuration of n points Cn in the complex plane is the
quotient of Cn by Sn

Cn = Cord
n /Sn (10.4)

equipped with the quotient topology.

Via this characterisation, we can see that braids act on the fundamental group of the disk
D punctured at n points c1, . . . , cn pointed at a point b ∈ ∂D. More precisely, if ℓ1, . . . , ℓn is a
distinguished basis of π1(C \ {c1, . . . , cn}, b), the braid σi acts by a Hurwitz move which sends
ℓ1, . . . , ℓn to the distinguished basis

ℓ1, . . . , ℓi−1, ℓi+1, ℓi+1ℓiℓ
−1
i+1, ℓi+2, . . . , ℓn ; (10.5)

similarly, σ−1
i sends it to

ℓ1, . . . , ℓi−1, ℓ−1
i ℓi+1ℓi, ℓi, ℓi+2, . . . , ℓn . (10.6)

This is depicted in Fig. 10.1. In particular, one may see that braids preserve the product ℓnℓn−1 · · · ℓ1.
Furthermore, a simple loop ℓi is always sent to the conjugate ρ−1ℓjρ of another simple loop. In
fact, this characterises the automorphisms of the fundamental group that come from braids.
Lemma 68 (Artin, 1947, Theorem 15). An automorphism f of the free group Fn on n elements
ℓ1, . . . , ℓn comes from a braid if an only if

• f(ℓi) is conjugate to some f(ℓj) for i = 1, . . . , n;
• f(xn . . . x1) = xn . . . x1.

Figure 10.1: The generator σi acts on π1(C \ {c1, . . . , cn}, b) by transposing ci and ci+1 anticlockwise.
This distorts the simple loops around ci and ci+1 in the way depicted in this figure. The
simple loops around the other critical values are unchanged.

10.1.1 Action on monodromy representation
The idea is the following. We recall the notations of Chapter 4. Let Y ⊂ PN × P1 be such that the
projection Y → P1 is a fibration by complete intersections. Denote by Σ its set of critical values and
choose a basepoint b /∈ Σ. The fibre Xt above a generic value t /∈ Σ is itself a projective variety in
PN . We choose a pencil of hyperplanes {Hu}u∈P1 of PN and obtain, after taking the modification
Yt of Xt, a fibration gt : Yt → P1. Denote by Σt critical values of gt. Finally, choose a point b′ /∈ Σb.
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Lemma 69. Σt is the set of roots in u of a polynomial p(t, u), of which the coefficients are
polynomials in t.

Definition 39. Let Crit be the union of the set of roots of the discriminant discru p(t, u)(u− b′)
of p(t, u)(u− b′) and of the leading coefficient of p. In particular, p(t, u) has precisely r = degu p

roots whenever t /∈ Crit, and b′ is never a critical value of Xt → P1.

In particular when t /∈ Crit, then Σt defines a configuration in Cn. Thus, if ℓ : [0, 1]→ P1 \Crit
is a loop pointed at b, it lifts to an element of the fundamental group of Cn, and thus induces a
braid σ ∈ An.

From this braid we may recover the monodromy action on extensions by the following observation.
Let ℓ ∈ π1(Σb, b′) and γ ∈ Hn−2(Xbb′), so that τℓ(γ) defines a relative homology class in Hn−1(Yb),
where Yb is the modification of Xb. Fix a representative w : [0, 1]→ P1 \ Σb, w(0) = w(1) = b′ of ℓ.
Then w also defines a map to P1 \ Σt for t sufficiently close to b.

Thus if ℓ′ is a path connecting b to t, ℓ′ induces a map

π1(P1 \ Σb, b′)→ π1(P1 \ Σt, b′) . (10.7)

By iterating this step and deforming the representatives w to stay away from Σt, we find that a
loop ℓ′ ∈ π1(P1 \ Crit, b) induces a homomorphism

ℓ′
∗ : π1(P1 \ Σb, b′)→ π1(P1 \ Σb, b′) . (10.8)

Similarly to Chapter 2, the map (Y ∩ Hb′ × P1) → P1 \ Crit is a locally trivial fibration by
Ehresmann’s lemma, and the fibre above t is Xtu. In particular ℓ′ also induces a monodromy action.

ℓ′
∗ : Hn−2(Xbb′)→ Hn−2(Xbb′) . (10.9)

Lemma 70. ℓ′ induces a monodromy action ℓ′
∗ on extensions of Xb → P1, given by the formula

ℓ′
∗(τℓ(γ)) = τℓ′

∗ℓ(ℓ′
∗γ) . (10.10)

Similarly, the monodromy along ℓ′
∗ℓ is given by the equation

(ℓ′
∗ℓ)∗ (γ) = ℓ′

∗(ℓ∗(ℓ′
∗

−1
γ)) . (10.11)

Remark 71. One may check the compatibility of these formulae, i.e., that monodromy and
extensions commute (in a broad sense) with the monodromy along ℓ′.

In the case of hypersurfaces, we may simplify this expression by choosing a convenient hyperplane
pencil {Hu}u∈P1 . Concretely, recall that the fibre of the modification Y above t is given by X ∩H ′

t

for a pencil of hyperplanes {H ′
t}t∈P1 in PN+1. Then we may choose {Hu}u∈P1 to be such that Hb′

is the axis Hb′ = A of {H ′
t}t∈P1 in H ′

t ≃ P1. Then for all t,

Xbb′ = X ′ , (10.12)

where X ′ = X ∩A is the exceptional locus. In particular, this implies that the action of monodromy
along ℓ′ on Hn−2(Xbb′) is trivial.

In general, we may deduce the action of ℓ′ on Hn−2(Xbb′) from its action on π1(P1 \ Σb) up to
sign, because of Schur’s lemma. Indeed (10.11) tells us that up to a change of basis, the monodromy
representations ℓ 7→ ℓ∗ and ℓ 7→ (ℓ′

∗ℓ)∗ are the same. The former is given as input data and the
latter can be computed using (2.2), assuming we know a representation of ℓ′

∗ℓ in the basis of
π1(P1 \ Σb, b′). Such a representation can be obtained from the braids induced by the movement of
Σt as t moves along ℓ′, using (10.5), (10.5) and (2.2).
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10.1.2 Link to parabolic cohomology
The methods presented here are not fundamentally new. In the dual setting of the cohomology,
algorithms for computing the parabolic cohomology of a variation of local systems were already given
in Dettweiler and Wewers (2006a, 2006b). In fact the parabolic cohomology coincides precisely with
the lattice of extensions of X introduced in. The difference is that instead of considering n-cycles,
they consider n-cocycles given by ⟨γ, ·⟩ : Hn(X )→ Z. One may check that the spaces Eg and Hg in
Dettweiler and Wewers (2006b, Section 1.2) coincide with respectively the combination of thimbles
that are extensions around infinity, and combinations of thimbles without boundaries. In particular,
the space Wg = Hg/Eg coincides with T (Y).

10.2 Computing braids
We now provide an algorithm for computing braids. Let P (u, t) be a bivariate polynomial of degree
n in u, define Crit as above, and let ℓ be a loop in C\Crit. We assume we are able to track the roots
in u of P as t: that is, for every t ∈ [0, 1], we are able to compute a tuple (c1(t), . . . , cn(t)) ∈ Cn

such that

• P (ℓ′(t), ci) = 0 for all i and
• ci it continuous.

Such paths may be computed in a certified manner with software such as SIROCO (Marco-
Buzunariz & Rodríguez, 2016), or more recently Guillemot and Lairez (2024).

Figure 10.2: The representation of elements of the fundamental group π(C \ Σb ∪ {b′}) in terms of the
edges of a tree. The orange loop intersects the edge a6, then a4, then a2 and finally a1 and
loops back to b. Its homotopy class thus corresponds to the word a−

6 1a4a−1
2 a1. The powers

keep track of the orientation of the intersection.

We then compute the braids by computing their action on the fundamental group of C \ Σb.
More precisely, let T be a minimal covering tree of Σb ∪ {b′,∞}, such that ∞ is a leaf. We label
the edges of T by letters a1, . . . , an+1 of the free group Fn+1 on n + 1 elements. Furthermore we
choose an orientation of the edges. We can do so canonically by orienting the edges away from
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∞ Then every element of π1(C \ Σb,∞) can represented by a word in Fn+1, the letters of which
correspond to the edges of T it intersects. This is schematized in Fig. 10.2.

Figure 10.3: The change of the topology of a minimal tree. Adding the red edge creates a cycles, and the
edges of the old tree may have 6 possible configurations with respect to that cycle. Note that
the orientation of the edges on the right changes when replacing the dotted edge by the red
one. As an example if we consider the loop represented by the edge a in the old tree, its
corresponding homotopy class is the orange loop, and the word of this homotopy class in the
new tree is eae−1

Then, as the points of Σb move around, the graph will move accordingly, and will eventually
no longer be minimal. When this happens, we get rid of the long edges and add shorter edges to
recover yet again a minimal graph. We do this in steps, removing and adding only one edge at a
time. In particular, adding an edge creates a cycle in the graph. In order to compute the braiding
action, we need to keep track of how the homotopy classes represented by a1, . . . , an+1 vary with
the modification of the topology of the graph. There are 6 possible configurations that one should
consider with respect to the created cycles, which are depicted in Fig. 10.3. Let T − be T with the
edge removed, T + with the edge added and C the cycle of T +. The configurations are characterised
by

1. The edge is in C, in the same component of T − as ∞, after the point closest to ∞ when
going clockwise.

2. The edge is in C, is in the same component of T − as ∞, before the point closest to ∞ when
going clockwise.

3. The edge is in C, is in the component of T − not containing ∞.

4. The edge is the one being removed.

5. The edge is not in C, and contained in the component of P1 \ C not containing ∞.

6. The edge is not in C, and contained in the component of P1 \ C containing ∞.

Furthermore, depending on the orientation of the cycle (when going clockwise from the point
closest to ∞, do we encounter first the edge that gets removed or the one that gets added?) the
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transformation rules also differ. Denote by e the edge that is added and by r the edge that is
removed. Then, when removing r and adding e in Fig. 10.3, the transformation rules in the six
different cases are given by:

1. a 7→ ae

2. a 7→ e−1a

3. a 7→ a−1e

4. r 7→ e

5. a 7→ e−1ae

6. a 7→ a

When removing e and adding r, the transformation rules are:

1. a 7→ ar−1

2. a 7→ ra

3. a 7→ ra−1

4. e 7→ r

5. a 7→ rar−1

6. a 7→ a

By computing these graphs for points along the path ℓ′ and tracking the way their topology
changes, assuming the steps are small enough, we are able to recover the action of monodromy
along ℓ′ on π1(P1 \ Σb ∪ {b},∞). To recover the action of π1(P1 \ Σb, b′), it is sufficient to find
how monodromy along ℓ′ affects a path connecting ∞ to b′. This can be read from the action of
monodromy along ℓ′ on a simple loop ℓb′ ∈ π1(PP 1 \Σb ∪ {b′},∞) around b′. Indeed, braids act by
conjugation on simple loops, and therefore we have that

ℓ′
∗ℓb′ = σ−1ℓb′σ (10.13)

for a certain σ ∈ π1(P1 \ Σb), and we have that a path p connecting ∞ to b′ is deformed to pσ−1.
Puting all of this together, we are able to recover the action of monodromy of π1(P1 \ Σ, b) on

π1(P1 \Σb, b′) described in Section 10.1.1, which in turns allows to recover the action of monodromy
on Hn(Xb,X ′)
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