
HAL Id: tel-04823789
https://theses.hal.science/tel-04823789v1

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-preserving communications for IoT based on
DNS and its security extensions

Ibrahim Ayoub

To cite this version:
Ibrahim Ayoub. Privacy-preserving communications for IoT based on DNS and its security extensions.
Cryptography and Security [cs.CR]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG074�.
�tel-04823789�

https://theses.hal.science/tel-04823789v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG0
74

Privacy-preserving communications for
IoT based on DNS and its security

extensions
Communications préservant la confidentialité pour l’IoT

basées sur le DNS et ses extensions de sécurité

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de l’information et de
la communication (STIC)

Spécialité de doctorat: Sciences des réseaux, de l’information et de la
communication

Graduate School : informatique et sciences du numérique
Référent : Université de Versailles-Saint-Quentin-en-Yvelines

Thèse préparée dans l’unité de recherche DAVID (Université Paris-Saclay,
UVSQ), sous la direction de Kinda KHAWAM, Maître de Conférences/HDR et le

co-encadrement de Sandoche BALAKRICHENAN, Ingénieur Recherche et
Développement chez Afnic

Thèse soutenue à Versailles, le 28 novembre 2024, par

Ibrahim AYOUB

Composition du jury
Membres du jury avec voix délibérative

Véronique VEQUE Présidente
Professeur, Université Paris-Saclay
Abdallah MAKHOUL Rapporteur & Examinateur
Professeur, Université de Franche-Comté
Laurent TOUTAIN Rapporteur & Examinateur
Professeur, IMT Atlantique
Gregory BLANC Examinateur
Enseignant-Chercheur (ENAC, ISAE), Télécom
SudParis

Titre: Communications préservant la confidentialité pour l’IoT basées sur le DNS et ses extensions desécurité
Mots clés: IdO, DNS, Confidentialité, Sécurité, DANE, DNSSEC
Résumé: Les technologies de l’Internet des Ob-jets (IoT) ont transformé notremanière d’interagiravec lemonde et lesmachines, devenant une par-tie intégrante de notre quotidien. Cette thèse viseà relever certains des défis rencontrés dans lesenvironnements IoT en utilisant le Domain NameSystem (DNS) ainsi que ses extensions et proto-coles de sécurité. Bien que le DNS soit princi-palement un système de recherche distribué per-mettant de mapper les noms de domaine auxadresses IP, il a considérablement évolué grâceà diverses de ses extensions. Cette évolution luia permis de jouer un rôle plus large, notammenten atténuant certains des défis liés aux environ-nements IoT.Notre première contribution identifie quatregrandes catégories de défis de l’IoT : la nature con-trainte des dispositifs IoT, l’identification des ob-jets de l’IoT, leur sécurité et interopérabilité. Nouseffectuons également une revue de la littératurepour examiner comment le DNS est utilisé dansla recherche et l’industrie pour répondre à ces dé-fis. La deuxième contribution propose l’utilisationdu DNS-based Authentication of Named Enti-ties (DANE), un protocole DNS conçu pour ren-forcer l’Infrastructure à Clé Publique (PKI), afin demettre en place un mécanisme d’authentification

mutuelle entre deux serveurs backend LoRaWAN,sécurisant la connexion sans dépendre des au-torités de certification commerciales (CAs).La troisième contribution présente Lo-RaDANCE, un mécanisme de sécurité qui permetà un End-Device (ED) LoRaWAN de rejoindre unréseau sans avoir à pré-partager des clés secrètesavec les serveurs backend, comme requis dans leLoRaWAN standard. L’authentification mutuelleavec le Join Server (JS) est assurée par le protocoleDANE, tandis que la cryptographie asymétriquepermet au dispositif et au serveur de générer laclé secrète nécessaire, éliminant ainsi le besoinde clés secrètes pré-partagées.Pour notre quatrième contribution, nousavons mené une étude approfondie des noms dedomaine IoT et évalué les différences entre cesderniers et les noms de domaine non-IoT. Dans cecontexte, les noms de domaine IoT font référenceà ceux des serveurs backend IoT résolus via DNS,tandis que les noms de domaine non-IoT corre-spondent aux serveurs accessibles par des dis-positifs génériques. L’étude a été réalisée entrois phases : une analyse statistique, une anal-yse DNS, et une classification des deux classes denoms de domaine à l’aide de l’apprentissage au-tomatique.

Title: Privacy-preserving communications for IoT based on DNS and its security extensions
Keywords: IoT, DNS, privacy, security, DANE, DNSSEC
Abstract: The Internet of Things (IoT) technolo-gies have transformed how we interact with theworld andmachines, becoming an integral part ofour daily lives. This thesis aims to address someof the challenges faced by IoT environments us-ing the Domain Name System (DNS) and its secu-rity extensions and protocols. While DNS is pri-marily a distributed lookup system that maps do-main names to IP addresses, it has evolved sig-nificantly through various extensions and DNS-based protocols. This evolution has enabled DNSto play a broader role, particularly in mitigatingsome of the challenges in IoT environments. Ourfirst contribution identifies four major categoriesof IoT challenges: the constrained nature of IoTdevices, identification in IoT, IoT security, and in-teroperability. We also conduct a literature re-view to examine howDNS is used in both researchand industry to address these challenges. Thesecond contribution proposes using DNS-basedAuthentication of Named Entities (DANE), a DNSprotocol designed to strengthen Public Key In-frastructure (PKI), to establish a mutual authenti-

cation mechanism between two LoRaWAN back-end servers, securing the connection without re-lying on commercial Certificate Authorities (CAs).The third contribution, introduces LoRaDANCE, asecurity mechanism that allows a LoRaWAN EDto join a network without pre-sharing any secretkeys with the backend servers, as required instandard LoRaWAN. Mutual authentication withthe Join Server (JS) is ensured through DANE,while asymmetric cryptography enables the de-vice and server to generate the necessary secretkey, eliminating the need for pre-shared secretkeys. For our fourth contribution, we conductedan in-depth study of IoT domain names and eval-uated the differences between them and non-IoTdomain names. In this context, IoT domain namesrefer to those of IoT backend servers resolved viaDNS,whereas non-IoT domain names correspondto servers accessed by generic devices and hu-mans. The study was carried out in three phases:a statistical analysis, a DNS analysis, and a ma-chine learning-based classification of the two do-main name classes.

To my family ..

Acknowledgments

Completing this PhD has been one of the most rewarding yet challenging experiences of my life. It is a
journey that I could not have undertaken alone, and I am deeply grateful to those who supported and
guided me throughout these years.

First and foremost, I would like to expressmy heartfelt gratitude tomy supervisors, Kinda Khawamand
Sandoche Balakrichenan. The journey was marked by its fair share of ups and downs, but your guidance
and perseverance ensured that we made it to the finish line together. Thank you for your unwavering
commitment and belief in my work.

I would also like to extendmy sincere thanks to Afnic as awhole and, in particular, the LabsDepartment
for welcoming me and providing a supportive environment throughout my three years of research. A
special thanks to Benoît for your steadfast support since day one—it has meant so much to me.

To my colleagues, Hélène, Caroline, Gaël, Alexandre, Thomas, Michaël, Marc, Rémy, and Lotfi, thank
you for your encouragement, collaboration, and friendship. It has been a pleasure to work alongside such
talented individuals. My heartfelt thanks also go out to Samia, who left us far too soon—your memory
remains with us.

Finally, I am deeply grateful to my friends and family for their constant love, patience, and encourage-
ment.

Résumé

Les technologies de l’Internet des Objets (IoT) ont évolué de manière significative au cours des dernières
années, devenant une partie intégrante de nombreux aspects de notre quotidien. Les objets autrefois
considérés comme isolés et sans besoin de connectivité réseau sont désormais couramment connectés,
et il est difficile d’imaginer leur fonctionnement autrement. Ces objets connectés, ou "things", vont de
petits capteurs et gadgets domestiques, qui sont le sujet de ce travail, à de grands véhicules, machines
industrielles, et bien plus encore.

Le succès de l’IoT a attiré de nombreux investisseurs et innovateurs, chacun contribuant à l’évolution
rapide de l’écosystème. Cela a abouti à la création d’un large éventail de technologies et de standards IoT,
conduisant à un paysage riche et diversifié, mais également hautement fragmenté. L’adoption généralisée
de l’IoT et la fragmentation de son écosystème ont fait émerger plusieurs défis. Ce travail vise à adresser
certains des défis auxquels sont confrontés les environnements IoT en utilisant le Domain Name System
(DNS) et ses extensions, ainsi que certains protocoles de sécurité. Bien que le DNS soit principalement un
système de recherche distribué conçu pour mapper les noms de domaine aux adresses IP, il a évolué de
manière significative grâce à diverses extensions. Cette évolution lui a permis de jouer un rôle plus large,
notamment en tant que contributeur clé à la mitigation de certains des défis auxquels sont confrontés les
environnements IoT.

Les objectifs globaux de cette thèse sont les suivants : premièrement, nous identifions et catégorisons
les défis dans les environnements IoT et examinons comment le DNS est actuellement utilisé pour les
adresser. Ensuite, nous utilisons le DNS pour implémenter nos propres solutions afin de résoudre certains
de ces défis.

State of the Art: DNS to Address IoT Challenges
Pour notre première contribution, nous identifions quatre catégories principales de défis auxquels l’IoT
est confronté et étudions comment le DNS est utilisé dans la recherche et l’industrie pour s’attaquer à un
nombre significatif de ces défis. Le premier défi concerne la nature contrainte des dispositifs IoT. La ma-
jorité des dispositifs IoT sont limités en termes de puissance de traitement, de mémoire et de ressources
énergétiques. Ces contraintes réduisent considérablement les choix que les fabricants peuvent faire con-
cernant les systèmes d’exploitation qu’ils utilisent et les mécanismes de sécurité qu’ils déploient, faisant
des dispositifs IoT le maillon faible en termes de performance et de sécurité. Le deuxième défi concerne
l’identification dans l’IoT, car la diversité des technologies et des standards IoT aboutit à de nombreux sché-
mas de nommage et d’identification souvent incompatibles. Le troisième défi concerne la sécurité dans
l’IoT. Les contraintes des dispositifs IoT les empêchent de mettre en œuvre des mécanismes de sécurité à
la pointe, les exposant à une gamme d’attaques et compromettant potentiellement les réseaux auxquels
ils sont connectés. Le quatrième défi est le manque d’interopérabilité entre les technologies IoT. Ce prob-
lème provient de l’absence de standardisation face à la grande variété de technologies IoT, dont la plupart
utilisent des protocoles, schémas de nommage et formats de données propriétaires, rendant les tech-

i

nologies IoT incompatibles et divisant fortement l’écosystème IoT.
LeDNS, tel qu’observé dans les derniers articles de recherche et standards industriels, apparaît comme

un outil approprié pour relever plusieurs des défis auxquels l’IoT est confronté. Notre première contribu-
tion est complétée par une revue de la littérature qui montre comment le DNS est utilisé pour répondre
partiellement ou totalement à chaque défi dans les environnements IoT. Par exemple, les protocoles DNS
adaptés aux dispositifs contraints servent ces dispositifs IoT en leur fournissant la capacité de résoudre ef-
ficacement les noms de domaine dans les limites de leurs ressources. Pour l’identification IoT, la fonction
originelle du DNS, qui est de résoudre les noms en identifiants, peut être adaptée aux dispositifs IoT né-
cessitant un identifiant. En fait, de nombreux schémas d’identification IoT, tels que l’Object Name Service
(ONS) pour les Electronic Product Codes (EPC) et l’OID Resolution System (ORS) pour les Object Identi-
fiers (OID), utilisent déjà cette approche. Pour la sécurité IoT, les DNS Security Extensions (DNSSEC) et les
protocoles basés sur le DNS, tels que DANE, améliorent la sécurité des communications en fournissant
l’authentification et l’intégrité. Le DNS contribue également à l’atténuation des défis d’interopérabilité
grâce à des protocoles standardisés pour la découverte et la communication des dispositifs. Cependant,
l’exposition du DNS à l’IoT doit être abordée avec prudence en raison des répercussions potentielles des
dispositifs IoT compromis, qui pourraient être exploités pour mener des attaques basées sur le DNS ou
perturber le processus de résolution, compromettant ainsi la sécurité et la fiabilité globales du réseau.

Mutual Authentication of IoT Backend Servers
La deuxième contribution consistait à utiliser DANE pour implémenter un mécanisme d’authentification
mutuelle entre deux serveurs backend IoT.

DANE est un protocole DNS qui permet à un propriétaire de domaine de publier un enregistrement
TLSA dans ses zones DNS, liant son nom de domaine à sa clé publique ou à son certificat numérique.
Cela permet de valider la clé publique ou le certificat lors des handshakes TLS, similaire au rôle des CA
traditionnelles. DANE a été proposé comme un complément ou un remplaçant potentiel des CA tradition-
nelles, selon son utilisation. Cependant, à l’origine, DANE ne validait que les clés publiques brutes ou les
certificats des serveurs, pas ceux des clients.

Pour réaliser l’authentification mutuelle entre le client et le serveur TLS, nous avons implémenté deux
drafts Internet émis par le groupe de travail IETF DANCE (DANE Authentication for Network Clients Every-
where). Ces drafts montrent comment DANE peut être utilisé pour valider les clés publiques brutes ou les
certificats numériques des clients TLS, permettant ainsi une authentification mutuelle. La technologie IoT
à laquelle nous avons appliqué cela est LoRaWAN. Nous avons implémenté notre solution sur un véritable
End-Device (ED) LoRaWAN, en utilisant DANE pour permettre l’authentification mutuelle entre le NS et le
JS pendant le processus de join. Nous avons évalué les performances de notre solution en analysant la
durée du processus join tout en variant la localisation du résolveur DNS, et en étudiant l’impact du caching
DNS sur les performances globales.

LoRaDANCE: Using The DNS for Mutual Authentication Without Pre-shared
Keys
La troisième contribution a proposé LoRaDANCE, un mécanisme permettant à un ED LoRaWAN de join-
dre un réseau LoRaWAN sans avoir besoin de pré-partager l’AppKey, qui est la clé secrète utilisée dans
les réseaux LoRaWAN pour générer des clés de session pendant le processus join. LoRaDANCE facilite
également l’authentification mutuelle entre le ED et le JS en utilisant DANE. Comme son nom l’indique, Lo-
RaDANCE s’inspire de DANCE, en utilisant DANE pour l’authentification mutuelle, bien que ce ne soit pas

ii

dans le contexte conventionnel d’un client et d’un serveur TLS.
Nous avons implémenté notre solution sur un véritable ED LoRaWAN, enutilisant DANEpour permettre

l’authentification mutuelle entre le ED et le JS pendant le processus de join. La clé secrète est dérivée
en utilisant Elliptic Curve Diffie-Hellman. Enfin, nous avons évalué les performances de LoRaDANCE en
étudiant la durée du processus join et sa consommation d’énergie.
IoT Backend Servers: Studying IoT Domain Names
La quatrième contribution est une étude sur les serveurs backend IoT, en se concentrant sur les noms
de domaine de ces serveurs. Les dispositifs IoT sont rarement autonomes. Ils doivent généralement
contacter des serveurs backend pour transmettre des informations, recevoir des commandes ou obtenir
des mises à jour de firmware. Ces dispositifs sont généralement équipés des noms de domaine de ces
serveurs, qu’ils résolvent via le DNS. Dans ce contexte, un nomdedomaine IoT fait référence au nomdedo-
maine d’un serveur contacté par des dispositifs IoT, spécifiquement le nom de domaine d’un serveur back-
end IoT. Par exemple, un serveur backend IoT pourrait être un serveur qui reçoit et stocke des séquences
vidéo provenant de caméras IP.

Nous avons compilé une liste de noms de domaine IoT réels à l’aide de jeux de données provenant
d’études antérieures qui utilisaient des bancs d’essai avec de véritables dispositifs IoT. De plus, nous avons
utilisé deux listes publiques des sites web les plus visités comme noms de domaine non-IoT. Notre étude
s’est déroulée en trois phases.

La première phase est une comparaison statistique entre les noms de domaine IoT et non-IoT, basée
sur leur longueur maximale, minimale et moyenne (en caractères) et le nombre d’étiquettes. Cette phase
comprenait également une analyse des étiquettes les plus fréquentes dans chaque jeu de données.

La deuxième phase est une analyse du DNS. Pour chaque jeu de données, nous avons résolu plusieurs
enregistrements de ressources (RR). Pour chaque jeu de données et chaque RR, nous avons calculé le
pourcentage de noms de domaine ayant ce RR, la durée moyenne des requêtes, le Time-to-Live (TTL)
moyen, et la taille moyenne des réponses.

La troisième et dernière phase consiste à entraîner plusieurs modèles d’apprentissage automatique
pour classifier les noms de domaine IoT et non-IoT. L’objectif de cette phase est d’identifier des différences
intrinsèques entre les deux classes de noms de domaine, qui ne peuvent être détectées visuellement ou
par une analyse statistique.

iii

iv

Abstract

The Internet of Things (IoT) technologies have transformed how we interact with the world and machines,
becoming an integral part of our daily lives. This thesis aims to address some of the challenges faced by
IoT environments using the Domain Name System (DNS) and its security extensions and protocols. While
DNS is primarily a distributed lookup system that maps domain names to IP addresses, it has evolved sig-
nificantly through various extensions and DNS-based protocols. This evolution has enabled DNS to play
a broader role, particularly in mitigating some of the challenges in IoT environments. Our first contribu-
tion identifies four major categories of IoT challenges: the constrained nature of IoT devices, identifica-
tion in IoT, IoT security, and interoperability. We also conduct a literature review to examine how DNS is
used in both research and industry to address these challenges. The second contribution proposes us-
ing DNS-based Authentication of Named Entities (DANE), a DNS protocol designed to strengthen Public
Key Infrastructure (PKI), to establish a mutual authentication mechanism between two LoRaWAN backend
servers, securing the connection without relying on commercial Certificate Authorities (CAs). The third
contribution, introduces LoRaDANCE, a security mechanism that allows a LoRaWAN ED to join a network
without pre-sharing any secret keys with the backend servers, as required in standard LoRaWAN. Mutual
authentication with the Join Server (JS) is ensured through DANE, while asymmetric cryptography enables
the device and server to generate the necessary secret key, eliminating the need for pre-shared secret
keys. For our fourth contribution, we conducted an in-depth study of IoT domain names and evaluated
the differences between them and non-IoT domain names. In this context, IoT domain names refer to
those of IoT backend servers resolved via DNS, whereas non-IoT domain names correspond to servers
accessed by generic devices and humans. The study was carried out in three phases: a statistical analysis,
a DNS analysis, and a machine learning-based classification of the two domain name classes.

v

vi

List of Abbreviations

DNS Domain Name System
RFC Request for Comments
TLD Top-Level Domain
SLD Second-Level Domain
gTLD Generic Top-Level Domain
ccTLD Country Code Top-Level Domain

RR Resource Record
UDP User Datagram Protocol
TCP Transmission Control Protocol

QNAME Query Name
DNSSEC Domain Name System Security Extensions

DS Delegation Signer
ZSK Zone Signing Key
KSK Key Signing Key

DANE DNS-based Authentication of Named Entities
PKI Public Key Infrastructure
CA Certificate Authority
TLS Transport Layer Security
DoS Denial of Service

DDoS Distributed Denial of Service
NS Nameserver
DoT DNS-over-TLS
IETF Internet Engineering Task Force

QTYPE Query Type
ODNS Oblivious DNS

IoT Internet of Things
LoRaWAN LoRa Wide Area Network

ITU International Telecommunication Union
ITU-T International Telecommunication Union Standardization Sector
RFID Radio Frequency Identification

vii

SOA Service Oriented Architecture
IoMT Internet of Medical Things
IIoT Industrial Internet of Things

CoAP Constrained Application Protocol
AIoTI Alliance for Internet of Things Innovation

IP Internet Protocol
DOI Digital Object Identifier
EPC Electronic Product Code
ONS Object Name Service
OID Object Identifier
ORS OID Resolution System
API Application Programming Interface
WoT Web of Things
W3C World Wide Web Consortium
DoC DNS over CoAP
DTLS DNS over Datagram Transport Layer Security
ENUM Electronic NUmber Mapping
DNSNA DNS Name Autoconfiguration

ND Neighbor Discovery
DHCP Dynamic Host Configuration Protocol

SDNSNA Secure Domain Name System Name Autoconfiguration
C&C Command & Control

DNS-SD DNS-Based Service Discovery
mDNS Multicast DNS
SIoT Social Internet of Things
DSN Distributed Sensor Network
PKIX Public Key Infrastructure using X.509 digital certificates
DANE DANE Authentication for Network Clients Everywhere
WG Working Group
TTL Time To Live
MTU Maximum Transfer Unit
ED End Device
JS Join Server
AS Application Server

ECDH Elliptic Curve Diffie–Hellman
OTAA Over-The-Air Activation
ABP Activation by Personalization

PHYPayload Physical Payload
viii

MIC Message Integrity Code
SoA Start of Authority

CBOR Concise Binary Object Representation
CNAME Canonical Name

CAA Certification Authority Authorization
M2M Machine-to-Machine
DGA Domain Generation Algorithm
NLP Natural Language Processing

TF-IDF Term Frequency-Inverse Document Frequency
NB Naïve Bayes
LR Logistic Regression

KNN K-Nearest Neighbors
SVM Support Vector Machine
DT Decision Tree
RF Random Forest

CBOW Continuous Bag-of-Words
PDF Probability Density Function
ROC Receiver Operation Characteristic
AUC Area Under the Curve

ix

x

Contents

1 Introduction 1
1.1 The Internet of Things (IoT) . 2

1.1.1 Definition of IoT . 2
1.1.2 IoT Architecture . 3
1.1.3 Applications of IoT . 4

1.2 LoRaWAN . 4
1.2.1 The LoRaWAN Architecture . 4
1.2.2 Over-The-Air-Activation . 5

1.3 DNS and DNS security . 7
1.3.1 DNS Architecture . 8
1.3.2 DNS Resource Records . 9
1.3.3 The DNS Resolution Process . 10
1.3.4 DNS Security and Privacy Standards . 10

1.4 Thesis Objectives . 19
1.5 Thesis Contributions . 20

2 State of the Art: DNS to Address IoT Challenges 23
2.1 Introduction . 24
2.2 Challenges in IoT . 26

2.2.1 The Constrained IoT . 26
2.2.2 Identification in IoT . 27
2.2.3 IoT Security . 31
2.2.4 IoT Interoperability . 33

2.3 DNS and IoT . 35
2.3.1 DNS for constrained IoT . 35
2.3.2 DNS for IoT name resolution . 36
2.3.3 DNS for IoT security . 38
2.3.4 DNS for IoT interoperability . 39
2.3.5 Impact of IoT on DNS . 40

2.4 Discussion . 41
2.5 Conclusion . 42

3 Mutual Authentication of IoT Backend Servers 43
3.1 Introduction . 44
3.2 The PKI using X.509 certificates (PKIX) . 45

3.2.1 Symmetric vs Asymmetric Encryption . 45
3.2.2 X.509 Digital Certificates . 46

xi

3.2.3 Certificate Authorities . 48
3.2.4 TLS Protocol . 49

3.3 Reinforcing the PKIX Security with DANE . 50
3.4 DNS Complementing the PKIX in IoT Environments . 52

3.4.1 Mutual Authentication via DANE - The DANCE WG . 52
3.5 System Model . 53
3.6 Evaluation . 54

3.6.1 Using a Local DNS Resolver . 54
3.6.2 Using Remote DNS Resolvers . 55

3.7 Conclusion . 55
4 LoRaDANCE: Using The DNS for Mutual Authentication Without Pre-shared Keys 57

4.1 Introduction . 57
4.2 Prerequisite . 58

4.2.1 DNSSEC, DANE, & DANCE WG . 58
4.2.2 Key Elements of LoRaWAN OTAA . 59

4.3 LoRaDANCE . 61
4.4 Evaluation . 63

4.4.1 Join Process Duration . 64
4.4.2 Power Consumption . 64

4.5 Discussion . 64
4.6 Conclusion . 66

5 IoT Backend Servers: Studying IoT Domain Names 67
5.1 Introduction . 68
5.2 Motivation . 68
5.3 Background . 69

5.3.1 IoT Domain Names . 69
5.3.2 Domain Name Classification . 70
5.3.3 Brief Overview of Machine Learning . 70
5.3.4 Machine Learning Models Overview . 71
5.3.5 Word2vec for Word Embedding . 72

5.4 Data Collection . 73
5.4.1 IoT Dataset . 73
5.4.2 Non-IoT datasets . 74

5.5 Statistical Study . 75
5.6 DNS Analysis . 77
5.7 Classifying IoT and non-IoT domain names: Preprocessing and Word Embedding 79

5.7.1 Data Preprocessing . 79
5.7.2 Word2vec: Real-Valued Vector Representation of Domain Names 81

5.8 Results: Domain Name Classification . 81
5.8.1 Performance Evaluation . 82
5.8.2 Cross Validation . 85
5.8.3 Ablation Test . 86

5.9 Discussion . 88
5.10 Conclusion . 88

xii

6 Conclusion and Perspective 89
6.1 Summary of Contributions . 89
6.2 Future Perspectives . 90

6.2.1 Short-Term: Revisiting Contributions . 90
6.2.2 Medium-Term: IoT-Friendly DNSSEC? . 91
6.2.3 Long-Term . 91

xiii

xiv

List of Figures

1.1 IoT architectures. 3
1.2 The LoRaWAN architecture. 5
1.3 The LoRaWAN 1.0.X OTAA. 6
1.4 DNS namespace structure. 8
1.5 The DNS resolution process. 10
1.6 DNS security and privacy standards. 11
1.7 DNSSEC Verification. 12
1.8 Illustration of the DNSSEC verification process. 14
1.9 Certificate verification using DANE. 16
1.10 TLSA resource record. 16
1.11 ODNS Resolution Process. 19
2.1 Taxonomy of challenges facing IoT environments. 25
2.2 Attacks against IoT (three-layer architecture). 32
3.1 Symmetric vs asymmetric encryption. 46
3.2 The structure of the X.509 Digital Certificate (v3). 47
3.3 Digital certificates chain of trust. 48
3.4 The TLS 1.2 and 1.3 handshake. 49
3.5 Cost of digital certificates. https://shop.globalsign.com/en/ssl [97] 51
3.6 System model. 54
3.7 Duration of join requests [s] (Baseline). 55
3.8 Duration of Join Requests in different scenarios. 56
4.1 Example of a TLSA resource record. 58
4.2 Illustration of LoRaDANCE. 60
4.3 Join process duration of baseline LoRaWAN 1.0.x and LoRaDANCE with fragment size = 100,

150, and 200 bytes. 63
4.4 Power consumption during the join process for the baseline LoRaWAN 1.0.x and LoRaDANCE

with fragment size = 100, 150, and 200 bytes. 65
5.1 Data collection and phases of this study. 72
5.2 The number of unique IoT domain names extracted from each dataset. 75
5.3 Violin plots for name properties found for each domain name in our datasets. 75
5.4 Violin plots for name properties found for each domain name in our datasets 76
5.5 Domain name syntax check used by Zonemaster. 79

xv

5.6 Word embedding: After prepending '*' to eachdomain nameuntil it has 120 labels,Word2vec
is used to generate a real-valued vector representation of 32×120 real numbers of each do-
main name. 82

5.7 The 2× 2 confusion matrix for binary classifiers. 82
5.8 Accuracy, precision, recall, and F1 score of each ML model for the top 3953 domain names

from the Cisco and Tranco datasets, plus a uniformly sampled Mix of 3953 domain names
from the two datasets, each vs. the 3953 domain names from the IoT dataset. 84

5.9 Receiver Operation Characteristic (ROC) Curves for the top 3953 domain names from the
Cisco dataset. The Area Under the Curve (AUC) is provided in the legend. 84

5.10 Average accuracy, precision, recall and F1 score of each ML model for 100 random picks of
3953 domain names from the Cisco and Tranco datasets, plus a uniformly sampled Mix of
3953 domain names from the two datasets, each vs. the 3953 IoT domain names. 85

5.11 Mean (colored bars) and standard deviation (error bars) of accuracy, precision, recall and
F1 score of the ML models over five folds for the top 3953 domain names from the Cisco
and Tranco datasets, plus a uniformly sampled Mix of 3953 domain names from the two
datasets, vs. the 3953 IoT domain names. 86

5.12 Ablation Test with Random Forest (RF). 87

xvi

List of Tables

2.1 Classes of Constrained Devices (KiB = 1024 bytes). 27
2.2 Taxonomy of IoT Identifiers. 29
2.3 Requirements for IoT identifiers. 30
2.4 Summary of DNS Use Cases in IoT environments. 36
5.1 The IoT devices in the datasets used in this study . 74
5.2 The results (Averages) of the DNS analysis of the IoT and non-IoT datasets 77
5.3 Number of unique domain names after the syntax check . 80
5.4 Number of unique domain names after removing the IoT domain names from the non-IoT

datasets . 80
5.5 Number of unique domain names in the final datasets. 80

xvii

xviii

Chapter 1

Introduction

Contents
1.1 The Internet of Things (IoT) . 2

1.1.1 Definition of IoT . 2

1.1.2 IoT Architecture . 3

1.1.3 Applications of IoT . 4

1.2 LoRaWAN . 4

1.2.1 The LoRaWAN Architecture . 4

1.2.2 Over-The-Air-Activation . 5

1.3 DNS and DNS security . 7

1.3.1 DNS Architecture . 8

1.3.2 DNS Resource Records . 9

1.3.3 The DNS Resolution Process . 10

1.3.4 DNS Security and Privacy Standards . 10

1.4 Thesis Objectives . 19

1.5 Thesis Contributions . 20

Chapter Overview
This chapter introduces the core concepts of this thesis. This work revolves around using the Domain
Name System (DNS) in Internet of Things (IoT) environments to reinforce their security properties. To set
the foundation for the rest of this thesis, we begin by defining IoT, providing a generalized definition that
encompasses the wide range of technologies, protocols, and standards that make up the IoT ecosystem,
as well as the various applications of IoT technologies. Understanding the diversity and complexity of IoT
is essential for exploring how DNS can play a critical role in securing these interconnected devices and
networks, as will be examined in the following chapters.

The second part of this chapter introduces LoRaWAN (Long RangeWide Area Network), the technology
of choice for our implementations in this thesis. We introduce the basic architecture of the LoRaWAN
network and provide an in-depth view into the join process, i.e., the process by which a LoRaWAN End-
Device (ED) joins a LoRaWAN network.

1

The third part introduces the Domain Name System (DNS), covering both its architecture and the DNS
resolution process. Additionally, it explores several DNS security and privacy extensions, along with DNS-
based protocols.

Finally, the thesis objectives and contributions are presented.

1.1 The Internet of Things (IoT)
Even though the Internet of Things (IoT) has been around for a while—the term Internet of Things was
coined in 1999 by Kevin Ashton [48])—it is only in recent years that it has gained significant attention in both
industry and research. The past few years have seen rapid IoT integration across various industries and
research domains. Unlike generic Internet devices which are predominantly IP-based and use the TCP/IP
protocol suite—such as servers, personal computers, and smart devices—IoT is not a single technology
that is governed by a single organization. Consequently, it cannot be encapsulated by a single definition
or technology framework. IoT is, in fact, a general term that encompasses a wide range of technologies
with significant diversity in communication protocols, data representation, and transmission methods.

In the following, we provide the definition of IoT that is adopted by vendor-neutral regulatory bodies,
and give an overview of IoT architectures and applications.

1.1.1 Definition of IoT
A standard definition of IoT has yet to be agreed upon, but a definition can be inferred from its appli-
cations. Based on interactions with the various, diverse objects collectively referred to as IoT, it can be
defined as the network formed by connecting physical or virtual objects to the Internet or other commu-
nication networks. A large portion of the devices that now constitute IoT were not traditionally considered
to require Internet connectivity, or any form of network connectivity. Previously viewed as standalone and
isolated, everyday objects and devices are increasingly being equipped with network capabilities, making
communication with such devicesmore commonplace. Nevertheless, defining IoT in this manner does not
hint at any specific technology, standards, data formats, hardware, or software. This is due to the rich and
diverse ecosystem that is IoT. It encompasses various technologies across the electromagnetic spectrum
with a wide range of often non-interoperable standards and protocols. Technologies such as Narrowband
IoT (NB_IoT) [22] [127], Bluetooth Low Energy (BLE) [2], Sigfox [21], Zigbee [24], and LoRaWAN [15] can all be
labeled as IoT.

Hence, it is useful to turn to regulatory bodies for a more formal definition, which, while not necessar-
ily providing specific technical specifications, captures the essence of what IoT is and how its technologies
should be conceived and implemented. For example, the ITU Telecommunication Standardization Sector
(ITU-T) defines IoT in Y4000: Overview of the Internet of things [32] as a global infrastructure for the informa-
tion society, enabling advanced services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies (ICT).

The devices in an IoT network, again, according to Y4000[32], could be:
• Data-carriers: These are usually static, such as barcodes, and attached to physical things.
• Data-carrying devices: These devices might have the information stored in them altered by a data-
capturing device, e.g., Radio-frequency identification (RFID).

• Data-capturing devices: These devices can read from or write to a physical thing. The physical
thing could be a data-carrier or a data-carrying device.

2

• Sensing and actuating devices: This category includes sensors that can interact with their envi-
ronment, gather data and measurements, and send them over the network for processing. This
category also includes actuators that can perform operations in their environment based on infor-
mation received over the network or their measurement of the environment around them.

• General devices: These include industrial machinery, home appliances, personal computers, and
mobile phones that have embedded processing and wired or wireless communication capabilities.

1.1.2 IoT Architecture
The lack of specificity in IoT definitions also extends to its architecture. Unlike TCP/IP communication,
which follows a single model—or two if we consider the OSI reference model—IoT has multiple architec-
tures, none of which is standardized. The most notable are the three-layer [36][124], four-layer [98] also
referred to as Service Oriented Architecture (SOA), and five-layer [124] architectures. See Figure 1.1.

Perception Layer
Network Layer

Application Layer
Three-Layer

Sensing Layer
Network Layer
Service Layer
Interface Layer
Four-Layer

Perception Layer
Transport Layer
Process Layer

Application Layer
Business Layer
Five-Layer

Figure 1.1: IoT architectures.

Three-Layer Architecture

• Perception Layer: This layer contains devices like sensors, actuators, barcodes, and RFID tags. It is
mainly the layer that interacts with the environment to collect data to be sent to the upper layers.

• Network Layer: This layer receives data from the Perception layer. It includes the network infras-
tructure that transfers data between the Perception and Application layers.

• Application Layer: This layer processes and analyzes data passed through the Network layer.
Four-Layer (SOA) Architecture

• Sensing Layer: This layer is similar to the Perception layer in the three-layer model. It contains
sensing tools to perform the measurements in the environments of these devices.

• Network Layer: This layer is the network infrastructure (wired or wireless) that ensures connectivity
between things among themselves and between things and their backend.

• Service Layer: This layer stores and processes information. Services required by users are created
and managed here.

3

• Interface Layer: This layer defines interaction rules between users and devices. It also attempts to
solve compatibility issues between devices from different vendors that follow different standards.

Five-Layer Architecture

• Perception Layer: This layer is similar to the Perception Layer in the three-layer architecture.
• Transport Layer: Also referred to as network layer. This layer receives data from the Perception
layer and passes them to the Processing layer.

• Processing Layer: This layer processes and analyzes data passed through the Network layer.
• Application Layer: Data from the Processing layer are used here for IoT applications.
• Business Layer: This layer contains the management of the IoT system.

1.1.3 Applications of IoT
Applications of IoT are numerous and diverse. Smart cities use IoT devices to monitor traffic conditions
[90], predict pollution levels [82], and provide smart parking [68]. Furthermore, cities deploy IoT networks
for security purposes such as asset monitoring [81] and identification [103]. The agriculture industry ben-
efits from IoT for produce distribution [104], supply chain management [60], and overall smart agriculture
[52].

IoT plays a significant role in healthcare and is commonly known as the Internet of Medical Things
(IoMT). IoMT helps improve the quality of life while decreasing the pressure on the medical system by
allowing patients to self-diagnose when possible or to get a healthcare professional’s recommendation
from a distance [191][39]. Care for the elderly [191], monitoring the state of mind [159], physical activity
[116], and even eating habits [171] are a few examples of what IoMT has to offer in terms of ameliorating
the healthcare system.

The digital transformation also found its way to different industries leading to what is referred to as
the fourth industrial revolution (Industry 4.0) with the Industrial Internet of Things (IIoT) [164]. In addition,
IoT proved to be helpful in emergencies where communication with the individuals at risk is of utmost
importance [144] [130] [201] [61]. Finally, in light of the COVID-19 pandemic, IoT was used to help trace,
detect and consequently mitigate the spread of the virus [183] [157].

1.2 LoRaWAN
In this thesis, we focus on LoRaWAN as the primary IoT technology. The following sections introduce the
LoRaWAN architecture and the join process through which a LoRaWAN ED connects to a network.
1.2.1 The LoRaWAN Architecture
LoRaWAN (Long Range Wide Area Network) is a wireless communication protocol and is considered one
of the most popular Low-Power Wide-Area Network (LPWAN) technologies. LoRaWAN excels in provid-
ing long-range, low-power communications which enables communications for constrained, battery-fed
devices over wide geographical areas.

The basic architecture of a LoRaWAN network is presented in Figure 1.2. LoRaWAN EDs use the LoRa
modulation technologies over unlicensed radio frequency bands to communicate with radio gateways

4

End Device

Gateway

Gateway

Gateway

Internet
NetworkServer

Join Server

Application Server
Figure 1.2: The LoRaWAN architecture.

which act as a relay between the radio and IP space where the LoRaWAN backend servers reside. The
LoRaWAN backend servers are IP-enabled servers connected to the Internet and are:

• The Network Server (NS): The NS facilitates communication between LoRaWAN EDs and the net-
work through radio gateways. It manages device identification by generating a DevAddr (Device Ad-
dress) for each ED, allowing it to be recognized within the network. The NS also ensures device
authenticity and integrity, preventing unauthorized devices from joining the network during the ac-
tivation process. Additionally, the NS regulates data rates by sending Adaptive Data Rate (ADR) com-
mands, adjusting them based on the specific conditions of each device.

• The Join Server (JS): The JS is responsible for the activation of EDs and the generation of session keys.
It manages key distribution, ensuring secure communication between devices and the network.

• The Application Server (AS): The AS receives and processes data sent by the EDs. It has the appli-
cation logic which end-users can interact with.

An ED that wishes to join a LoRaWAN network does so using Activation by Personalization (ABP) or
Over-The-Air Activation (OTAA). OTAA is the more secure method [142] and is the method we consider in
this work.
1.2.2 Over-The-Air-Activation
Before the join procedure begins, several keys and identifiers should be provisioned on the ED and the
backend servers. These keys and identifiers are:

• DevEUI: a 64-bit globally unique ExtendedUnique Identifier in the IEEE EUI64 address space for each
ED that identifies it in the network.

• JoinEUI: a 64-bit globally unique Extended Unique Identifier in the IEEE EUI64 address space that
identifies a JS.

• AppKey: an AES-128 root key specific to each ED and is used by the ED to generate the session keys
after having joined the network and ensure data confidentiality.

5

The provisioning is done as follows:
• Provisioned on the ED: DevEUI, JoinEUI, and AppKey.
• Provisioned on the NS: DevEUI.
• Provisoned on the JS: DevEUI and AppKey.
The OTAA procedure in LoRaWAN 1.0.X is depicted in Figure 1.3. The OTAA procedure is as follows:

End Device Network Server Join Server

Join-request1

JoinEUI DevEUI DevNonce MIC8 8 2 4

CMAC=aes128_cmac(AppKey|MHDR|JoinEUI|DevEUI|DevNonce)
MIC=CMAC[0..3]

Join-request + Radio Parameters
2

3
The Join Server verifies the MIC, derives the sessionkeys NwkSKey and AppSKey, and constructs and sends theJoin-accept frame and NwkSKey to the Network Server.

NwkSKey=aes128_encrypt(AppKey|0x01|JoinNonce|NetID|DevNonce|pad16)
AppSKey=aes128_encrypt(AppKey|0x02|JoinNonce|NetID|DevNonce|pad16)

JoinNonce NetID DevAddr DLSettings RXDelay CFList MIC
3 3 4 1 1 16 (Optional) 4

CMAC=aes128_cmac(AppKey|MHDR|JoinNonce|NetID|DevAddr|DLSettings|RXDelay|CFList)
MIC=CMAC[0..3]

The Join-accept is encrypted using AppKey
[Join-accept]encrypted = aes128_encrypt(AppKey, JoinNonce|NetID|DevAddr|DLSettings|RXDelay|CFList|MIC)

Join-accept 4

5 The end-device generates the same session keysNwkSKey and AppSKey generated by the Join Server

Figure 1.3: The LoRaWAN 1.0.X OTAA.

1. The ED sends a Join-requestwith PHYPayload containing the JoinEUI,DevEUI, and a 16-bitDevNoncewhich
is a counter that starts at 0 after powering up the ED, and is incremented with every Join-request sent to
prevent replay attacks. The Join-request is sent in plaintext with a 4-byte message integrity code (MIC)
generated using AppKey to ensure its integrity.
2. The Network Server (NS) receives the Join-request and verifies if it is the dedicated NS for the ED by
inspecting the DevEUI. If not, the NS ignores the Join-request. Otherwise, the NS uses DNS to look up the IP
address of the Join Server (JS) using the JoinEUI. After that, the NS generates DevAddr, a 32-bit address that
identifies the ED in the current network and sends JoinReq to the JS. The JoinReq contains the PHYPayload
of the Join-request and radio parameters.

6

3. The JS verifies the MIC and generates the session keys NwkSKey and AppSKey. The JS then constructs
the Join-accept frame that includes the JoinNonce which is used to generate the session keys. The Join-
accept is encrypted using the AppKey. The JS then sends a Result=Success and the JoinAns back to the NS
with the PHYPayload containing the encrypted Join-accept and the NwkSKey.
4. If the Result=Success, the NS forwards the PHYPayload with the Join-accept to the ED.
5. After receiving the Join-accept, the ED generates the same session keys NwkSKey and AppSKey gener-
ated by the JS.

1.3 DNS and DNS security
Creating a network where devices can exchange data requires developing a method to uniquely identify
and address each device individually. On the Internet, where a large number of devices—including servers,
routers, and hosts—form a large interconnected network, this was achieved using IP addresses. Early on,
it was discovered that while IP addresses are machine-friendly, they are tedious for humans to memorize.
This led to the creation of hostnames and domain names, which are textual identifiers used to identify
devices and resources on the network in a human-friendly manner. Mapping between domain names
and IP addresses was eventually entrusted to the Domain Name System (DNS), but this was not always
the case.

In the early stages of the Internet, a simple 'HOSTS.txt' file located on a single machine was respon-
sible for the domain-name-to-IP-address translation, with all hosts on the network retrieving this file via
FTP. The bandwidth required to download this file grew proportionally to N2 for a network of N hosts
[27]. This solution worked properly when N was small, but the growth of the Internet mandated that a
more scalable solution is found. The solution was DNS. DNS is a distributed lookup service that is used to
translate domain names, such as 'www.afnic.fr', to IPv4 addresses, such as '192.134.5.37', or IPv6 ad-
dresses, such as '2001:67c:2218:302::51:231'. The DNS acts as the Internet’s phonebook and ensures
that communication on the Internet, such as email or simple web browsing, are easily and efficiently done.

Many standardization documents describe the functions of DNS. The Internet Engineering Task Force
(IETF) regularly publishes Requests for Comments (RFCs) that define or update DNS functions. Since the
first steps to naming hosts were laid out in 1982 by RFC 819 [25], which was followed by RFC 920 [26] that
introduced the idea of domain names, DNS has undergone many updates, one of the major ones being
RFC 1034 [27], and RFC 1035 [28], which were the blueprint of the modern DNS.

The fundamental elements of DNS architecture are the nameservers, each responsible for resolving a
group of domain names into their corresponding data, such as IP addresses, mail server information, or
other types of Resource Records (RRs) like text or service data. WhenDNS clients send resolution requests,
these requests are first received by resolvers, which then query the appropriate nameservers to retrieve
the RRs.

Originally, DNS did not account for the security and privacy of DNS queries and responses. This means
that DNS traffic, including the requested domain names, response data, and other related information,
were transmitted in plaintext, giving malicious actors the chance to intercept, tamper, or spoof the DNS
queries and responses. To address these shortcomings, several extensions andDNS-based protocols were
proposed to add a layer of security and/or privacy to DNS, such as DNS security extensions (DNSSEC) which
guarantees the integrity—but not privacy—of DNS responses, and several other protocols that ensured
the privacy of DNS traffic.

7

1.3.1 DNS Architecture

.
comfr net org

afnic example.

cluster

node1

. . .

Root

Top-Level Domains (TLDs)

Second-Level Domains (SLDs)

Subdomains

Hosts
Figure 1.4: DNS namespace structure.

The set of all domain names registered in the DNS is collectively referred to as the DNS namespace,
which is organized hierarchically in an inverted tree-like structure. The DNS servers at each level of this
hierarchy are called nameservers. See Figure 1.4. The DNS is a distributed lookup service, meaning its
namespace is distributed among different nameservers across the DNS tree. A segment of the namespace
is called a DNS zone and a nameserver that can definitively answer queries about a zone—providing a
definitive answer to the original DNS query—is said to be authoritative over that zone.

At the root of the DNS tree are the root nameservers represented by a '.' (dot). Currently, there are 13
root nameservers, identified as 'a.root-servers.net' through 'm.root-servers.net' [118], which serve
as the starting point of the DNS resolution process. When a root nameserver receives a query that it is
not authoritative to answer definitively, it refers the client to the next level in the DNS namespace, which
contains the Top-Level Domains (TLDs).

TLDs are the last non-empty part of any domain name, such as 'com' in 'example.com' or 'fr' in
'afnic.fr'1. TLD zones are stored at the root nameservers, meaning the root nameservers are authori-
tative over these zones and can definitively answer queries related to them. An extensive list of all TLDs
can be found here [117], but they can be categorized as:

• Generic Top-Level Domains (gTLD): for generic use, e.g., '.com' and '.net'.
• Country Code Top-Level Domains (ccTLD): reserved for countries or independent sovereign terri-
tories, e.g., '.fr' for France and '.it' for Italy.

• Reserved Top-Level Domains: reserved for testing and documentation, e.g., 'test' and 'example'.
• Infrastructure Top-Level Domains: include '.arpa'which is reserved for themanagement of net-
work infrastructure and for reverse DNS resolution.

Further down the tree are the Second-Level Domains (SLDs). SLDs are typically registered by individ-
uals or organizations to create a unique web address such as 'example' in 'example.com' or 'afnic'

1Afnic is the French Internet Registry
8

in 'afnic.fr'. Registration is usually done through accredited registrars. The SLD authoritative name-
servers, which are the nameservers hosting the SLD zones are either hosted by the domain owner on
private infrastructure, by the registrar, or by a third-party host.

Subdomains are created by adding a label to the left of an SLD or an existing subdomain. The original
domain owner delegates authority to subdomains below their SLD or existing subdomain. This creates
a hierarchy within a specific DNS zone which provides flexibility for different services, departments, or
functions within an organization.

Hosts, which are at the bottom of the DNS tree, refer to individual devices or systems on the network
that are reachable via their domain names regardless if their IP addresses change.

1.3.2 DNS Resource Records
DNS RRs are the fundamental building blocks of a DNS zone. Depending on their type, RRs contain various
types of information about the domain name. The DNS resolution process involves a DNS client querying
theDNS infrastructure for oneormore of these RRs. What follows is a brief overviewof themost commonly
used RRs.

• A Record: holds a 32-bit IPv4 address and is used for mapping between IPv4 addresses and domain
names.

• AAAA Record: holds a 128-bit IPv6 address and is used for mapping between IPv6 addresses and
domain names.

• MX Record (Mail Exchange): specifies a mail server that receives emails on behalf of a domain
name.

• CNAME Record (Canonical Name): creates an alias for one domain name that points to another
domain name.

• NS Record (Nameserver): specifies the nameserver which is authoritative over the domain name.
• PTR Record (Pointer): maps an IP address to a domain name and is used for reverse DNS lookups.
• SRV Record (Service): specifies a host and a port number for a specific service such as Voice over
IP (VoIP).

• TXT Record (Text): used to store text information about the domain name.
• DNSKEY Record: contains a public key that is used to verify Domain Name System Security Exten-
sions (DNSSEC) signatures for that zone.

• DS Record (Delegation Signer): holds information linking a child zone to its parent zone in DNSSEC.
It is used to establish a chain of trust.

• TLSA Record: associates a TLS certificate with the domain name, ensuring secure connections
through DANE (DNS-Based Authentication of Named Entities).

• CAA Record (Certification Authority Authorization): specifies which certificate authorities (CAs)
are allowed to issue certificates for the domain name.

9

Client
RecursiveResolver

frNameserver

RootNameserver

afnic.frNameserverafnic.frWeb Server

1 What is afnic.fr?

8 IP address of afnic.fr

2 What is afnic.fr?

3 Referral to fr Nameserver

4 What is afnic.fr?
5 Referral to afnic.fr Nameserver

6 What is afnic.fr?

7 IP Address of afnic.fr

9 Connect to afnic.fr

Figure 1.5: The DNS resolution process.
1.3.3 The DNS Resolution Process
The primary function of DNS is tomap domain names to IP addresses. DNS has also evolved into a versatile
system that also supports email routing, service discovery, security, and other functionalities. The domain
names are usually given to resources on the Internet that users wish to access. The mapping process is
referred to as domain name resolution. The DNS resolution process is depicted in Figure 1.5.

For example, a user that wishes to visit the website of Afnic will type in their browser 'www.afnic.fr'.
The first entity that receives the request, also known as the DNS query, is the stub resolver which is usually
part of the operating system. The stub resolver then transfers the query to the DNS recursive resolver.
Recursive resolvers are the main interface between users and the DNS infrastructure. Upon receiving a
query, the recursive resolver initiates a hierarchical query/response process with the DNS nameservers,
following a recursive pattern to retrieve the required information.

The recursive resolver first sends the query to one of the root nameservers. The root nameserver an-
swers with a referral to the '.fr' nameserver. The recursive resolver then sends the request to the '.fr'
nameserver, which answer with a referral to afnic.fr nameserver, which is authoritative over 'afnic.fr'.
Lastly, the recursive resolver sends the query to afnic.fr nameserver, which answers with the IP address of
'afnic.fr'. The recursive resolver then sends back the answer to the user which then connects to afnic.fr
web server.

1.3.4 DNS Security and Privacy Standards
When DNS was first deployed, privacy and security were not considered [194]. RFC 9076 [194] titled DNS
Privacy Considerations studies the security—mainly privacy—drawbacks of DNS that end users should be
aware of. The drawbacks include: sending queries in plain text, which jeopardizes privacy; using the User
Datagram Protocol (UDP), whereas most security mechanisms are designed for the Transmission Control
Protocol (TCP); sending the full QNAME (Query Name, i.e., the requested domain name) at every stage
of the resolution process, even when it is not necessary; generating unnecessary DNS requests due to

10

DNSSEC
DANE

DNSCurve
DNSCrypt

DNS-over-TLS
DNS-over-HTTPS

QNAME Min.
ODNS

DNS
Security
& Privacy
Extensions

Figure 1.6: DNS security and privacy standards.
resource prefetching and auto-completion; cache snooping; and the passive collection of DNS data by
powerful companies running public DNS servers, such as Google [11] and Cloudflare [3]. Passive DNS data
collected bymajor companies running public DNS serversmay be abused or sold to third-party companies
for commercial purposes, or even misused for surveillance and spying.

Finally, the Server Name Indication (SNI), the last plain-text part of a secured web connection, is used
in the case of multi-hosting to identify the intended resource requested on the webserver. SNI is still sent
without encryption, which exposes the browsing habits of users [113].

The following section discusses the most prominent DNS security and privacy extensions and proto-
cols. See Figure 1.6.
DNSSEC DNSSEC [174, 176, 175] stands for DNS security extensions. DNSSEC guarantees the integrity—
not privacy—of DNS responses that DNS resolvers receive using an authentication chain of trust. The
chain starts at the root nameservers, which are the trust anchors and are trusted by default. Going down
the chain, every level in the hierarchy vouches for the level below it. Cryptographic signatures are used to
assure the DNS resolver that the response it receives comes from the legitimate DNS nameserver and has
not been tampered with in transit. The DNSSEC mechanism is presented in Figure 1.7.

RFC 4033 [174] provides an introduction to DNS security and requirements, RFC 4034 [176] defines the
RRs for the DNS Security Extensions, and RFC 4035 [175] is about the modifications required in the initial
DNS protocols following the introduction of DNSSEC. RFC 4398 [122] discusses storing certificates in the
DNS, RFC 5155 [47] presents DNSSEC hashed authenticated denial of existence, and RFC 6014 [109] explains
how cryptographic algorithm identifiers, required to implement DNSSEC, are allocated within the Internet
Assigned Numbers Authority (IANA) registries.

In the context of DNSSEC, a Resource Record Set (RRset) refers to a group of RRs that share the same
name, class, and type. A DNSSEC-enabled zone contains two public/private key pairs:

• Key Signing Key (KSK): a cryptographic key pair used to sign the key records of a zone.
• Zone Signing Key (ZSK): a cryptographic key pair used to sign the non-key records of the zone.
Some DNSSEC-related RRs are:

11

RecursiveResolver
frNameserver

RootNameserver

Trust Anchor

afnic.frNameserver

1 What is afnic.fr?

2 Referral to fr Nameserver+ digital signatures

3 What is afnic.fr?
4 Referral to afnic.frNameserver + digital signatures

5 What is afnic.fr?

6 IP Address of afnic.fr+ digital signatures

Figure 1.7: DNSSEC Verification.
• DNSKEY: stores public keys (KSK and ZSK) used for validating DNSSEC signatures.
• DS (Delegation Signer): links the current zone to its child zone via a hash of the child zone’s KSK.
The DS record is used to enable a parent zone to vouch for a child zone, establishing the chain of
trust.

• RRSIG (Resource Record Signature): contains the cryptographic signature that validates the au-
thenticity of DNS RRs. It is signed using the private key corresponding to the DNSKEY.

• NSEC/NSEC3 (Next Secure): used to prove the non-existence of DNS data.
A detailed demonstration of how DNSSEC functions is presented in Figure 1.8. The recursive resolver

holds PubKSKRoot, the public KSK of the root nameserver, which serves as the trust anchor for the chain
of trust in DNSSEC. This key allows the resolver to verify the signatures of the root zone and, in turn, the
entire chain of trust down to the queried domain.
1. The recursive resolver sends a query to the root nameserver to resolve 'afnic.fr'.
2. The root nameserver responds with a referral to the 'fr' nameserver responsible for the 'fr' zone.

• The response message contains the following:
1. Referral to 'fr' nameserver
2. DNSKEY RRset of the root zone containing the PubKSKRoot and PubZSKRoot

3. RRSIG for DNSKEY RRset of the root zone: digital signature over the DNSKEY RRset signed using
the PvtKSKRoot

4. DS RR of 'fr' zone: contains a hash of the PubKSKfr
12

5. RRSIG for DS RR of 'fr' zone: signed using the PvtZSKRoot
• The resolver verifies the RRSIG for the DNSKEY RRset of the root zone using PubKSKRoot
• The resolver then uses PubZSKRoot (from the DNSKEY RRset of the root zone) to verify the RRSIG for
the DS RR of 'fr' zone.

3. The recursive resolver sends a query to the 'fr' nameserver to resolve 'afnic.fr'.
4. The 'fr' nameserver responds with a referral to the 'afnic.fr' nameserver responsible for the
'afnic.fr' zone.

• The response message contains the following:
1. Referral to 'afnic.fr' nameserver
2. DNSKEY RRset of the 'fr' zone containing the PubKSKfr and PubZSKfr

3. RRSIG for DNSKEY RRset of the 'fr' zone: digital signature over theDNSKEY RRset signed using
the PvtKSKfr

4. DS RR of 'afnic.fr' zone: contains a hash of the PubKSKafnic.fr
5. RRSIG for DS RR of 'afnic.fr' zone: signed using the PvtZSKfr

• The resolver verifies the RRSIG for the DNSKEY RRset of the 'fr' zone using PubKSKfr
• The resolver then uses PubZSKfr (from the DNSKEY RRset of the 'fr' zone) to verify the RRSIG for
DS RR of the 'afnic.fr' zone.

5. The recursive resolver sends a query to the 'afnic.fr' nameserver to resolve 'afnic.fr'.
6. The 'afnic.fr' nameserver responds with the A RR which contains the IPv4 address of 'afnic.fr'.

• The response message contains the following:
1. A RR of 'afnic.fr'
2. RRSIG for A RRof the 'afnic.fr' zone: digital signature over the A RR signedusing the PvtZSKafnic.fr
3. DNSKEY RRset of the 'afnic.fr' zone containing the PubKSKafnic.fr and PubZSKafnic.fr

4. RRSIG for DNSKEY RRset of the 'afnic.fr' zone: digital signature over the DNSKEY RRset
signed using the PvtKSKafnic.fr

• The resolver verifies the RRSIG for the DNSKEY RRset of the 'afnic.fr' zone using PubKSKafnic.fr
• The resolver then uses PubZSKafnic.fr (from the DNSKEY RRset of the 'afnic.fr' zone) to verify the
A RR of the 'afnic.fr' zone.

13

Query for afnic.fr
1

root nameserver responds with:
1. Referral to fr nameserver
2. DNSKEY RRset = [PubKSKRoot, PubZSKRoot]
3. RRsig of DNSKEY RRset = Sign(RRset)PvtKSKRoot= Sign([PubKSKRoot, PubZSKRoot])PvtKSKRoot
4. [DS record]fr = hash(PubKSKfr)
5. RRsig of DS = Sign([DS record]fr)PvtZSKRoot

2

roo
tna

me
ser

ver
Tr

us
t

An
ch

or

Query for afnic.fr
3

Rec
urs

ive
Res

olv
er

Pu
bK

SK
Ro

ot

fr nameserver responds with:
1. Referral to afnic.fr nameserver
2. DNSKEY RRset = [PubKSKfr, PubZSKfr]
3. RRsig of DNSKEY RRset = Sign(RRset)PvtKSKfr= Sign(PubKSKfr, PubZSKfr)PvtKSKfr
4. [DS record]afnic.fr = hash(PubKSKafnic.fr)
5. RRsig of DS = Sign([DS record]afnic.fr)PvtZSKfr

4

frn
am

ese
rve

r
Query for afnic.fr

5
afnic.fr nameserver responds with:

1. DNSKEY RRset = [PubKSKafnic.fr, PubZSKafnic.fr]
2. RRsig of DNSKEY RRset = Sign(RRset)PvtKSKafnic.fr= Sign([PubKSKafnic.fr, PubZSKafnic.fr])PvtKSKafnic.fr
3. RRset = [A records]afnic.fr

4. RRsig of A = Sign([A records]afnic.fr zone)PvtZSKafnic.fr

6

afn
ic.fr

nam
ese

rve
r

Figure 1.8: Illustration of the DNSSEC verification process.

DNS-Based Authentication of Named Entities (DANE) The DNS-based Authentication of Named
Entities (DANE) [111] is a DNS protocol whose goal is to give power back to domain name owners and allow
them to decide who validates their certificates and how these certificates are validated.

14

Communications on the Internet today rely on the Public Key Infrastructure (PKI), with the X.509 digital
certificate as its main element. Entities that want their public key validated present their certificate to the
entities attempting to establish a secure connection with them. The validation of a certificate depends on
its issuer. Self-signed certificates are rarely accepted on the Internet. Most digital certificates are issued by
trusted Certificate Authorities (CAs). Trusted root CAs issue and sign certificates, and only those issued by
them are inherently trusted. Root CAs often create intermediate CAs, which are authorized to issue and
sign certificates for end entities, known as leaf certificates. This establishes a hierarchical chain of trust,
beginning with the root CAs, passing through the intermediate CAs, and ending with the leaf certificates.

The PKI, which uses X.509 digital certificates, is widely adopted and supports the majority of secure
connections on the Internet. However, it is not without its limitations. End users that receive and validate
digital certificates must have a root or Trust Store containing the self-signed certificates of trusted CAs. If
a certificate is trusted by any of the trusted CAs, then it is validated. This means that one compromised
CA could pose a significant security threat by, for example, issuing false certificates especially to popular
websites like the CA Diginotar did in 2011 [99].

DANE is a DNS protocol that has the potential to support—or, in certain use cases, entirely replace—
the current PKI that relies on X.509 digital certificates. It aims to enhance the authentication and integrity
of Internet communications by binding public keys to DNS names and securing this binding with DNSSEC.

Figure 1.9 gives an overview of how certificates are verified during the TLS handshake if DANE is used.
In this scenario the TLS server is supposed to have published a TLSA RR in its DNS zone. The client would
initiate a TLS handshake before connecting to the TLS server. The server then shares its certificate with
the TLS client. The client, which would normally verify the certificate using a CA chain of trust, queries DNS
to retrieve the TLSA RR of the TLS server. The integrity of the DNS response is guaranteed as DNSSEC is
used. The client then proceeds to verify the certificate based on the parameters set in the TLSA RR.

The primary feature of DANE is the TLSA RR. See Figure 1.10.
The TLSA RR is composed of:
• Port: The port number the Transport Layer Security (TLS) server listens on.
• Protocol: The protocol used, e.g., TCP.
• Domain name: The domain name of the TLS server which is the domain name associated with the
TLSA RR.

• Certificate Usage field: 1 byte that represents the association that will be used to match the certifi-
cate provided in the TLS handshake. It could have the following values:

– PKIX-TA(0): Also referred to as CA constraint. This Certificate Usage value indicates that the
Certificate Association Data contains the certificate or the public key of a trust anchor that can
issue certificates for the server and that the client must find in its trust store to finally validate
the certificate presented by the server during the TLS handshake.

– PKIX-EE(1): Also referred to as service certificate constraint. This Certificate Usage value indi-
cates that the Certificate Association Data contains the certificate or the public key of the end
entity that must be matched with the certificate provided by the server during the TLS hand-
shake. The certificate must also be validated using a CA chain of trust.

– DANE-TA(2): Also referred to as Trust Anchor Assertion. This Certificate Usage value indicates
that the Certificate Association Data contains the certificate or the public key of a Trust Anchor
that must be used to validate the end entity certificate provided by the server during the TLS

15

DNS TLS Client TLS Server
1 The client initiatesa TLS handshake

2The Server sharesits certificate

DNS query to fetch theTLSA RR of the Server 3
DNS response containingthe TLSA RR of the Server4

DNSSEC verified

5
After validation,the Client connectssecurely to the Server

Figure 1.9: Certificate verification using DANE.

_25._tcp.mail.example.com. IN TLSA 2 0 1 E8B54D0 ... 2F834C0

Port

Protocol Domain name

Certificate Usage field Matching Type fieldSelector field

Certificate Association Data
Figure 1.10: TLSA resource record.

handshake. This could be helpful if the end entity certificate is self-signed or if the owner of
that certificate runs their own CA.

– DANE-EE(3): Also referred to asDomain-Issued Certificate. This Certificate Usage value indicates
that the Certificate Association Data contains a certificate that must match the certificate re-
ceived during the TLS handshake. DANE-EE(3), unlike PKIX-EE(1), does not require validation of
the certificate using a CA chain of trust.

• Selector field: 1 byte that determines the part of the certificate presented by the server during the
TLS handshake which will be matched against the Certificate Association Data. It could have the
following values:

– Cert(0): Full Certificate. The entire certificate presented by the server during the TLS hand-
shake is used and compared against the Certificate Association Data of the TLSA RR.

– SPKI(1): SubjectPublicKeyInfo. The public key portion of the certificate presented by the server
during the TLS handshake is used and compared against the Certificate Association Data of the

16

TLSA RR.
• Matching Type field: 1 byte that determines the method of comparison between the certificate
presented by the server during the TLS handshake and the Certificate Association Data. It could
have the following values:

– Full(0): Compare the full data extracted from the certificate presented by the server during
the TLS handshake with the full data stored in the Certificate Association Data in the TLSA RR.

– SHA2-256(1): Compute the hash of the data extracted from the certificate presented by the
server during the TLS handshake using SHA-256 and compare it with the hash value stored in
the Certificate Association Data in the TLSA RR.

– SHA2-512(2): Compute the hash of the data extracted from the certificate presented by the
server during the TLS handshake using SHA-512 and compare it with the hash value stored in
the Certificate Association Data in the TLSA RR.

• Certificate AssociationData: The data stored in the TLSA RRwhich are used to compare andmatch
against the information provided in the certificate presented by the server during the TLS hand-
shake.

Beyond DNSSEC and DANE, several other notable DNS security protocols have been developed to en-
hance privacy and security. Below, we briefly introduce some of these protocols.
DNSCurve DNSCurve [8], designed in 2009, adds link-level security to DNS using elliptic-curve cryptog-
raphy. DNSCurve preserves confidentiality by encrypting DNS packets, protects the integrity of DNS re-
sponses through cryptographic authentication, and offers some protection against Denial of Service (DoS)
attacks. It uses 256-bit public and secret keys, 192-bit nonces, and 128-bit authenticators. DNS servers us-
ing DNSCurve distribute their public keys by encoding them in an NS (Name Server) RR, ensuring that the
public key distribution system is compatible with registries and nameserver software. On the other hand,
clients share their public keys in the queries they send.
DNSCrypt DNSCrypt [7] acts as a security layer between DNS clients and recursive resolvers. It uses
cryptographic signatures to verify that responses from the resolvers are authentic and have not been
tampered with on the way. Anonymized DNSCrypt [1] was proposed in 2019 as an extension to further
secure DNS traffic by not allowing the server to see the client’s IP address.
DNS-over-TLS DNS-over-TLS (DoT) [179] [112] is one the few IETF-standardized approaches for securing
DNS (the other notable one being DNS-over-HTTPS)). DoT replaces the traditional UDP transport with TCP
and provides packet authentication and confidentiality for DNS traffic between clients and resolvers. This
is achieved using TLS. A TLS session is established on TCP port 853, and DNS data is exchanged over the
secure channel.
DNS-over-HTTPS DNS-over-HTTPS (DoH) [179] [110] is the other IETF-standardized protocol for securing
DNS. Like DoT, it aims to preserve the integrity and confidentiality of DNS data. However, as the name
suggests, DoH uses HTTPS, allowing DNS queries to benefit not only from TLS but also from the full HTTPS
protocol. This enables web applications to use DNS securely. In DoH, a DNS query and its response are
exchanged as part of an HTTPS session. The client encodes the DNS request into an HTTP request using
either the GET or POST method.

17

QNAME Minimization One of the shortcomings of DNS is that the full Query Name (QNAME) and
query type (QTYPE) are always sent during recursive DNS resolution, regardless of the stage of the pro-
cess. However, the full QNAME and QTYPE are only needed when the request reaches the authoritative
nameserver of the queried domain. For instance, when resolving 'www.afnic.fr', the root nameserver
receives a query with the full QNAME 'www.afnic.fr', even though it only needs to know '.fr' and does
not require the QTYPE. QNAME minimization [64] [80] aims to enable resolvers to send the minimum
necessary information at each stage of the resolution process, following the principle: the less data you
send out, the fewer privacy problems you have [75]. Therefore, when sending queries to nameservers that
are not authoritative for the requested domains, resolvers implementing QNAME minimization send an
altered QNAME to obscure the original one. Instead of the full QNAME, they send one level longer than
what the nameserver is known to be authoritative for.

Oblivious DNS (ODNS) Oblivious DNS (ODNS) [180] addresses the fact that, in any privacy setup, there
must always be a party trusted by default. This trusted party could be any entity, ranging from the Internet
Service Provider (ISP) to large public DNS resolver companies. When a client sends a DNS request to a
recursive resolver, the resolver has full access to both the domain name requested by the client and the
client’s IP address. Typically, the recursive resolver is trusted not to misuse or share this data with third
parties. However, this trust is often unfounded, as there is no concrete reason to inherently trust the
resolver. ODNS aims to eliminate the need for trust by preventing recursive resolvers from associating
client identities with requested domain names. It leverages the existing DNS infrastructure, making its
deployment more feasible. An ODNS stub is placed between the DNS client and the existing recursive
resolver, while an ODNS recursive resolver is positioned between the existing recursive resolver and the
DNS infrastructure, i.e., the DNS nameservers.

Figure 1.11 shows the ODNS resolution process. The ODNS resolver is assumed to have a public/private
key pair of which the public key is known to the ODNS stub.
1 The DNS client sends a regular query to fetch the A RR of 'www.afnic.fr'.
2 The ODNS receives the query and generates a secret session key k which it uses to encrypt the domain
name and appends the ODNS domain to the encrypted domain name. It also encrypts the session key k
using PbKODNS Resolv., the public key of the ODNS resolver. The encrypted domain name and session key
are then passed to the recursive resolver.
3 The recursive resolver forwards the query to the appropriate ODNS resolver according to the ODNS
domain appended to the encrypted domain name is step 2.
4 The ODNS resolver decrypts k using its private key PvKODNS Resolv. and then decrypts the domain name
using k. It then proceeds to resolve the domain using DNS.
5 The ODNS resolver receives the A RR of the domain name and encrypts it using the session key k.
6 The ODNS resolver forwards the encrypted query response to the recursive resolver.
7 The recursive resolver forwards the encrypted query response to the ODNS stub.

18

Client
ODNSStub Recurs.Resolv. ODNSResolv. DNS

What iswww.afnic.fr?1 {www.afnic.fr}k.odns,{k}PbKODNS Resolv.2 {www.afnic.fr}k.odns,{k}PbKODNS Resolv.3 What iswww.afnic.fr?4

www.afnic.fr,1.2.3.4 5{www.afnic.fr}k,{1.2.3.4}k 6{www.afnic.fr}k,{1.2.3.4}k 7www.afnic.fr,1.2.3.4
8

Figure 1.11: ODNS Resolution Process.
8 The ODNS stub decrypts the query response and passes it to the client.

Using ODNS, the recursive resolver can see the client’s IP address but not the requested domain name.
Conversely, the ODNS resolver can see the requested domain name but not the client’s IP address.

1.4 Thesis Objectives
This thesis focuses on leveraging DNS and its security extensions to enhance security in IoT environments.
With the increasing reliance on IoT devices and the predictions for even larger-scale adoption of IoT in
the future, it becomes crucial to ensure secure communication for all connected devices. The distributed
nature of DNS, alongwith its security and privacy extensions, positions it as a key component in addressing
some of the significant challenges—particularly in security—faced by IoT networks. Thus, the primary
objectives of this work are as follows:

• The objective is to identify, classify, and explain the challenges facing IoT environments, as well as
the potential repercussions of failing to address these challenges.

• Leverage DNS and its security extensions to address some of the challenges in IoT, drawing conclu-
sions about the added value of this approach and the associated overhead incurred.

• Implement, test, and evaluate the proposed solutions on real devices using open-source frameworks
and tools.

• Leverage DNS-related datasets, such as real datasets of passive DNS traffic, and effectively use them
to enhance IoT systems.

19

To address these objectives, several contributions are made that focus on improving the security and
functionality of IoT environments through DNS and its extensions. We highlight these contributions next.

1.5 Thesis Contributions
Addressing the challenges faced by IoT environments using DNS and its security extensions first requires
identifying these challenges and assessing the feasibility of utilizing DNS to mitigate them.

Thus, ourfirst contribution in Chapter 2, which served as the foundation of this thesis, involved a com-
prehensive study of the IoT ecosystem. We identified and categorized the key challenges and conducted a
systematic literature review to explore existing uses of DNS in IoT environments aimed at addressing the
challenges initially identified.

The second contribution in Chapter 3 proposed using DANE, the DNS protocol designed to reinforce
the PKI, to perform mutual authentication between the backend servers of an IoT network, securing the
connection between the servers without relying on commercial CAs.

The third contribution in Chapter 4 introduced LoRaDANCE, a security mechanism that allows a Lo-
RaWAN ED to join a LoRaWAN network without first needing to pre-share any secret keys with the backend
servers, as required in standard LoRaWAN, and while mutually authenticating with the JS (Join Server). The
mutual authentication is ensured usingDANE, while asymmetric cryptography allows the device and server
to generate the necessary secret, eliminating the need for pre-shared keys.

For our fourth contribution in Chapter 5, we conducted an in-depth study of IoT domain names and
evaluated the differences between them and non-IoT domain names. For the purposes of this work, IoT
domain names refer to those of IoT backend servers that IoT devices resolve via DNS, whereas non-IoT
domain names correspond to backend servers accessed by generic devices and humans. This study was
carried out in three phases: a statistical analysis, a DNS analysis, and a machine learning-based classifica-
tion of the two domain name classes.

State of the Art: DNS to Address IoT Challenges
The first contribution serves as the state of the art for this thesis and is composed of two major parts.

First, we conducted a comprehensive study of the IoT ecosystem, which, due to the multitude of IoT
technologies and the lack of standardization, remains fragmented and lacks unified definitions and stan-
dards. We adopted a vendor-neutral approach in defining IoT and listing its properties and requirements,
drawing from documentation provided by regulatory bodies such as the International Telecommunication
Union (ITU) and other vendor-neutral initiatives. This part involved categorizing the challenges facing IoT
environments, resulting in four identified categories: the constrained nature of IoT devices, identification
in IoT, IoT security, and the lack of interoperability between IoT technologies.

The second part comprised a literature review aimed at identifying how DNS has been used to address
IoT challenges. We found instances where DNS was applied to address challenges in each of the identified
categories.

Mutual Authentication of IoT Backend Servers
The second contribution involved utilizing DANE to implement a mutual authentication mechanism be-
tween two IoT backend servers.

DANE is a DNS protocol that allows a domain name owner to publish a TLSA RR in their DNS zones,
binding their domain name to their raw public key or digital certificate. This enables validation of the

20

public key or certificate during TLS handshakes, similar to the role of traditional CAs. DANE was proposed
as either an enhancement or a potential replacement for traditional CAs, depending on its usage. However,
originally, DANE only validated server raw public keys or certificates, not those of clients.

To achieve mutual authentication between the TLS client and server, we implemented two Internet
drafts issued by the IETF DANCE working group (DANE Authentication for Network Clients Everywhere).
These drafts demonstrate how DANE can be used to validate TLS client raw public keys or digital certifi-
cates, thus enabling mutual authentication. The IoT technology we applied this to is LoRaWAN. We imple-
mented our solution on a real LoRaWAN ED, using DANE to enable mutual authentication between the NS
and JS during the join process. We evaluated the performance of our solution by analyzing the duration
of the join process while varying the location of the DNS resolver, and studying the impact of DNS caching
on overall performance.
LoRaDANCE: Using The DNS for Mutual Authentication Without Pre-shared
Keys
The third contribution introduced LoRaDANCE, a mechanism that enables a LoRaWAN ED to join a Lo-
RaWAN network without the need to pre-share the AppKey, which is the secret key used in LoRaWAN net-
works to generate session keys during the join process. LoRaDANCE also facilitates mutual authentication
between the ED and the JS using DANE. As its name indicates, LoRaDANCE is inspired by DANCE, utilizing
DANE for mutual authentication, although not in the conventional context of a TLS client and server.

We implemented our solution on a real LoRaWAN ED, utilizing DANE to enable mutual authentication
between the ED and the JS during the join process. The secret key is derived using Elliptic Curve Diffie-
Hellman. Finally, we evaluated the performance of LoRaDANCEby studying the duration of the join process
and the power consumed during the join process.
IoT Backend Servers: Studying IoT Domain Names
The fourth contribution is a study on IoT backend servers, focusing on their domain names. IoT devices
typically contact backend servers for tasks like relaying information or receiving updates, resolving their
domain names via DNS. We compiled a list of real IoT domain names using datasets from prior studies
and compared them with non-IoT domain names from two public lists of top-visited websites. The study
was conducted in three phases: statistical comparison of domain name lengths and the number of labels,
DNS analysis, and machine learning models to classify IoT and non-IoT domain names based on intrinsic
differences.

21

22

Chapter 2

State of the Art: DNS to Address IoT
Challenges

Contents
2.1 Introduction . 24

2.2 Challenges in IoT . 26

2.2.1 The Constrained IoT . 26

2.2.2 Identification in IoT . 27

2.2.3 IoT Security . 31

2.2.4 IoT Interoperability . 33

2.3 DNS and IoT . 35

2.3.1 DNS for constrained IoT . 35

2.3.2 DNS for IoT name resolution . 36

2.3.3 DNS for IoT security . 38

2.3.4 DNS for IoT interoperability . 39

2.3.5 Impact of IoT on DNS . 40

2.4 Discussion . 41

2.5 Conclusion . 42

Chapter Overview
The chapter opens by outlining the inherent challenges faced by the Internet of Things (IoT) environments.
The first challenge relates to the constrained nature of IoT devices, which often have limited processing
power, memory, and power budget. The second challenge is identifying and managing the growing num-
ber of IoT devices, originating from lack of standardization and the diversity of technologies in the IoT
landscape. The third challenge faced by IoT is security-related and stems mainly from the constraints IoT
devices have, which deprive them from using effective security mechanisms. The fourth and final chal-
lenge identified in this chapter is the lack of interoperability between IoT technologies, where differing IoT
technologies and standards hinder communication between devices from various manufacturers.

23

This chapter then explores how the Domain Name System (DNS) is leveraged as valuable tool to ad-
dress the IoT challenges. The usages of DNS in IoT environments, both in research and industry, are pre-
sented, offering an overview of current approaches and implementations to alleviate some IoT challenges
using DNS. The distributed nature of DNS and its existing infrastructuremake it a potential solution for IoT
device identification, name resolution, and ensuring interoperability across different platforms. Further-
more, DNS security extensions and protocols can enhance the security of IoT communications, helping to
prevent attacks and ensure the integrity of data exchanged within IoT networks.

The chapter concludes by outlining the necessary precautions for integrating DNS into IoT environ-
ments and discussing the potential repercussions of such usage.

2.1 Introduction
If the average user had been asked 20 years ago to name a connected device, they would likely have men-
tioned personal computers, or servers for those more tech-savvy. Meanwhile, the concept of the Internet
of Things would likely have been met with little recognition. At that time, the idea that cars, refrigerators,
pets, and other everyday objects would one day require an Internet connection—something quite com-
mon today—was inconceivable. Even mobile phones were generally perceived as devices for voice calls
and had limited functionality beyond that. Currently, however, the definition of connected devices has
vastly changed. Personal computers are no longer exclusively the devices with network connectivity; they
have become just one of many categories of connected devices.

One of the key catalysts for this change was the introduction of smartphones, which redefined our re-
lationship with the Internet. Smartphone users were no longer confined to a desk to access the Internet.
Pocket-sizedmobile phones became the primary interface to the network, and users could hardly imagine
being disconnected as many services moved online. This shift led to a growing appreciation of connected
devices, sparking a boom in the IoT industry. The number of connected devices, along with their functions
and underlying standards, increased significantly. Currently, with the deployment of 5G, IoT technologies
are expected to benefit immensely. 5G offers faster data rates, lower latency, and greater network capac-
ity. Sensor networks are already reaping substantial benefits from 5G’s reliability [66][163]. As a result,
many devices previously considered isolated are now connected.

The predictions about the global number of IoT devices vary widely, ranging from 25 billion [17] to
125 billion devices [16] in 2030, with total revenue estimates between 1 trillion 1 trillion [14] to 1.5 trillion
USD [10]. These predictions illustrate the significance of IoT, which will be increasingly evident with time.
Nevertheless, despite their widespread adoption, IoT technologies continue to face significant challenges.
Figure 2.1 presents a taxonomy of the challenges confronting IoT technologies.

The first challenge relates to the nature of many IoT devices, which are constrained and have limited
resources in terms of processing power, memory, and power budget. These devices are designed to per-
form specific tasks, such as measuring temperature or detecting motion. Such tasks do not necessitate
complex components or circuitry and are typically carried out using a few sensors with simple connections.
In addition, manufacturers of such devices aim to mass-produce while keeping the costs low. As a result,
the design and construction are kept simple, with only the resources necessary to perform their intended
tasks being provided. The constrained nature of IoT devices complicates their management. Mechanisms
commonly used on the Internet today for regular, more powerful devices can not be directly used with
constrained IoT devices. These mechanisms, for example, include encryption and decryption of data and
receiving software updates or security patches. Suchmechanisms, therefore, must be redeveloped to suit
the less powerful IoT devices.

The Second challenge lies in the identification of these devices. Whether it is an IoT device or a generic
24

Constrained Devices

Low processing Power
Limited memory
Limited power budget

Device Identification

Large number of devices
Lack of standardization
Constrained nature

Security

Constrained nature
Lack of standardization
Lack of security andfirmware updates

Interoperability

Lack of standardization

IoT
Challenges

Figure 2.1: Taxonomy of challenges facing IoT environments.

device, any device connected to a network requires an identifier that uniquely identifies it, at least within
the scope of its local network. Some common identifiers include IP addresses, which are used to identify
devices on the Internet, andMedia Access Control (MAC) physical addresses, which are used in the scope of
local area networks (LANs). Identifiers serve at least one primary purpose: they allow the sender to specify
the exact recipient of the data. Conversely, the recipient can use these identifiers to verify the source of
the data or to determine whether the data is intended for them. The massive number of IoT devices, most
of which are constrained, along with the lack of standardization, hinders finding a global identification
scheme similar to IP addresses. The absence of global or sufficiently large-scale identification schemes
makes it challenging to manage and track the large number of IoT devices, leading to potential security
vulnerabilities and interoperability issues.

The third challenge is related to IoT security. The security of exchanged data is vital in any communica-
tion, and this holds especially true for IoT communications, where a significant amount of highly personal
data is transmitted. However, contrary to regular Internet communications, where security and privacy
mechanisms are generally standardized and broadly trusted, IoT technologies face significant security
challenges. These devices have a relatively large attack surface, making them vulnerable to several cyber
attacks. IoT devices, for example, are a primary target for attackers seeking to launch Denial of Service
(DoS) attacks, as these devices are easily compromised. The constrained nature of IoT devices prevents
them from using up-to-date security mechanisms, as these often require more memory and processing
power resources than these devices have. In addition, the lack of standardization also impairs security
since each manufacturer tends to use proprietary security mechanisms that are largely incompatible with
those of other manufacturers. Lastly, these devices are usually not adequately maintained regarding soft-
ware updates, especially critical security updates and patches.

Lastly, the fourth challengewe identify is the lack of interoperability between IoT manufacturers. The
lack of global standards creates heterogeneity between different IoT technologies. For example, a motion
sensor from one manufacturer may not be able to communicate with a motion sensor from a different
manufacturer or with the backend server of that sensor, even if they belong to the same network. More-
over, devices from one network may not be able to communicate with devices from different networks if
these networks are based ondifferent IoT technologies. Heterogeneity arises in identification, data format-
ting, and security mechanisms used, among others. This causes the IoT environment to become vertically
divided into separate silos where different technologies can not communicate. This lack of interoperabil-

25

ity disperses research and development efforts as a breakthrough in one technology is highly unlikely to
be applicable to others. Interoperability between different IoT technologies is necessary for achieving a
globally standardized IoT.

Given the spread of IoT technologies today and the projections of even larger-scale deployments in
the future, identifying and addressing IoT challenges is imperative. While a single solution for all IoT draw-
backs is unattainable, it is feasible to leverage existing tools to ameliorate IoT environments and their user
experience. So, instead of developing new ones, it would be meaningful and efficient to consider existing
tools and adapt them to constrained IoT devices to address these challenges.

A service that has stood the test of time as one of the cornerstones of the Internet is the Domain Name
System (DNS). DNS, the Internet’s naming service, has been fundamental since its inception in 1987 [27].
The role DNS plays, combined with its efficiency and robustness, has made it an indispensable service.
The drawbacks of DNS, primarily stemming from its original design, which was not heavily focused on
security [179], are being addressed through various initiatives. These efforts have led to several protocol
advancements aimed at enhancing DNS security. For the billions of connected devices forming the IoT,
DNS is also a necessary tool. Even the simplest IoT devices, such as thermometers or motion sensors,
might need to use DNS to contact their backend servers [177]. IoT technologies could also utilize the DNS in
othermanners. For example, the functions of DNS and its distributed naturemake it an ideal candidate for
IoT naming and identification. Some proprietary IoT naming schemes are already using it [19]. Moreover,
the various DNS security extensions and protocols helpmake IoT communicationsmore secure if adapted
to constrained devices.

However, even though DNS could be useful to use in IoT environments and could alleviate some of
the challenges these environments face, the possible repercussions for DNS should not be overlooked.
According to the projections discussed earlier, billions of IoT devices will be added annually. This raises
questions regarding the scalability and security of DNS. There have already been some troubling impacts
on DNS due to IoT, such as the infamous Mirai attack [5, 45].

This thesis revolves around using DNS in IoT environments to address some of the challenges these
environments face. In this chapter, designated as the state of the art of our thesis, we explore how DNS
is already being used to support and reinforce IoT. We first examine the challenges the IoT environments
face. We primarily focus on the four classes of challenges we identified earlier: challenges due to the con-
strained nature of IoT devices and challenges related to the identification of these devices, security of IoT
communications, and interoperability between different IoT technologies. We elaborate on each challenge
and investigate how DNS is being used to address some of these challenges. We then illustrate the effects
this usage might have on the DNS infrastructure. Overall, this chapter will give a better understanding of
IoT challenges and the benefits DNS might have to address these challenges.

2.2 Challenges in IoT
In this sectionwe explore the challenges the IoT environments face. These challenges could be divided into
the following: the constrained nature of IoT devices, their identification, security, and the interoperability
between different IoT technologies.

2.2.1 The Constrained IoT
The constrained nature of a large portion of devices in the IoT landscape is likely amajor factor contributing
to the challenges faced by these environments. These constraints, along with the vast number of IoT
devices, set IoT devices apart from other generic devices and machines on the Internet. According to RFC

26

7228 [63], titled ’Terminology for Constrained-Node Networks’, constrained devices are defined as devices
that have:

• Limited Read-Only Memory (ROM)\Flash leading to limitations on the maximum code complexity
• Limited Random Access Memory (RAM) leading to constraints on the buffer sizes
• Limited processing power
• Batteries as sources of power
• Constraints on user interface and accessibility in deployment.
Table 2.1 shows the classes of constrained devices according to their data and code sizes. Class 0 de-

vices are ultra-constrained and need intermediary devices such as gateways to communicate with desig-
nated backend servers. Class 1, on the other hand, could use protocols explicitly designed for constrained
devices, such as Constrained Application Protocol (CoAP) over UDP [182]. Finally, Class 2 devices, which are
more powerful, could use protocols used by regular devices on the Internet and benefit from lightweight
specifically-designed protocols.

Table 2.1: Classes of Constrained Devices (KiB = 1024 bytes).
Name data size (e.g., RAM) code size (e.g., flash)

Class 0, C0 ≪ 10 KiB ≪ 100 KiB
Class 1, C1 ∼ 10 KiB ∼ 100 KiB
Class 2, C2 ∼ 50 KiB ∼ 250 KiB
Such devices typically engage in gathering data from the physical world. The collected data are then

relayed to one or more backend servers on the network for processing. The designers of such devices are
limited in choosing their operating systems or security mechanisms due to the stringent constraints. The
low processing power, memory, and power budget compel designers to abandon the well-maintained,
popular operating systems used on personal computers and servers. Instead, they opt for operating sys-
tems that meet the constraints of IoT devices but are not highly regarded in terms of performance and
code complexity. This, in turn, negatively affects the security performance of these devices, often leading
to vulnerabilities that can be exploited for unauthorized access, data breaches, or even device manipula-
tion. In addition, the way these devices are powered, mainly through batteries that are expected to last for
years, adds further constraints. As a result, these devices are typically only active for short periods, operate
at low bit rates, and often lack user interfaces, making them more difficult to maintain and monitor.

The limitations of IoT devices and the difficulty to closely monitor them due to their large number and
typical lack of user interface make them the weakest link in any network setup.

2.2.2 Identification in IoT
Whenever a device needs to connect to a network, it requires an identifier that uniquely identifies it within
that network. People use these identifiers daily, though theymay often overlook their significance as it has
become second nature. For example, the mobile phone number is one of the most widespread identifica-
tion methods for devices connected to a network. It provides a unique global identifier for every user, and
due to its uniqueness, a user can initiate contact with any other mobile phone number and be contacted

27

by others. This uniqueness guarantees that, by knowing a user’s phone number, only the intended user
is contacted and not any other user on the network. Regardless of the context in which an identifier is
used, its structure must adhere to a specific set of rules, known as an identification scheme. Identification
schemes establish the rules to be followed when creating and using an identifier. For instance, domain
names are identifiers used in the context of the Internet to identify resources. However, creating a domain
name is not arbitrary but follows specific rules and regulations, as outlined in the identification scheme in
RFC 1035 [28].

IoT devices, as network-connecteddevices that send and receive data, also require identifiers to uniquely
identify themwithin their respective networks. However, identification in IoT is not straightforward due to
the vast number of IoT technologies and protocols, as well as the lack of interoperability between them.
Different technologies use distinct identification schemes, which are often incompatible with one another.
This lack of interoperability further fragments the IoT environment, as globally comprehensible identifiers
are crucial for ensuring proper communication and interoperability between different IoT technologies.

The IoT landscape, composed of numerous technologies and protocols, is evidently divided and frag-
mented. This heterogeneity among IoT technologies, coupled with the lack of global standardization, pre-
vents the creation of a single IoT identifier that can serve all variations within the IoT spectrum. As a result,
it is difficult to specify how such an identifier should be formed or what identification scheme it should
follow. Nevertheless, several vendor-neutral initiatives sought to establish a framework for IoT identifiers.
These initiatives helped define a taxonomy and set requirements for IoT identifiers.
Taxonomy of IoT Identifiers

Two examples of the initiatives that sought to create a vendor-neutral and manufacturer-neutral perspec-
tive on IoT, particularly in the area of IoT identification, is the EU-China Joint White Paper on Internet-of-Things
Identification issued by the EU-China IoT Advisory Group [72] and the Identifiers in IoT report issued by The
Alliance for Internet of Things Innovation (AIoTI) [38]. These initiatives defined a taxonomy for IoT identi-
fiers in an effort to organizes the various types of identifiers based on their function, purpose, or use case
within IoT systems. Table 2.2 presents this taxonomy with the function and use cases for each category.
Requirements for IoT Identifiers

Additional examples of vendor-neutral and manufacturer-neutral initiatives that aimed to bring order to
the fragmented landscape of IoT by establishing clear guidelines and standards for its identifiers are AI-
OTI [38] and the ITU-T [33] who suggested a set of requirements for IoT identifiers. Table 2.3 lists the most
common requirements suggested by these two initiatives [38, 33].
Overview of Prominent IoT Identification Schemes

The identification schemes in IoT are diverse. Unlike machines using the TCP/IP protocol suite where
each machine is identified by a unique IP addresse, IoT devices are identified by whichever identifier their
manufacturer decides to use. This flexibility contributes to the wide variety of identification schemes in
the IoT landscape. In the following, we introduce some of the most used ones. We begin with the IP
address, which has been used as an identifier in 6LoWPAN.We follow that with the Digital Object Identifier,
Electronic Product Code, and Object Identifier.
IP Addresses: We begin with one of the most common identifiers, the IP address. In the context of IoT,
an IP address typically refers to an IPv6 address, as the 32-bit IPv4 addresses have already been exhausted.

28

Table 2.2: Taxonomy of IoT Identifiers.
Identifier Category Function Use case

Objects/Things
Identifiers[38] [72]

Used to identify the entity of interest,
which could be physical or virtual

Sensors, machines, humans, mer-
chandise (physical) or data, files,
metadata (virtual)

Communication
Identifiers[38] [72]

Used to identify things in the scope of
communicating with other devices,
including Internet-based communi-
cations.

IP address, MAC address, E.164

Application and Ser-
vice Identifiers[38]
[72]

Used to identify applica-
tions/services used in the scope
of IoT applications.

URL, URI, identifiers for different ser-
vices on a single platform

User Identifier[38]
Used to identify physical or virtual
objects that interact with IoT devices
on the Internet.

ID for humans/animals (physical) or
ID for software applications interact-
ing with IoT devices (virtual)

Data Identifier[38] Used to identify data instances and
datatypes

Digital Twin, stored sensor measure-
ments

Location
Identifier[38]

Used to specify a locationwithin a ge-
ographical region Coordinates, postal codes

Protocol
Identifier[38]

Used to identify protocols so that, for
example, layers within a communica-
tion stack can identify what protocols
are being used by other layers

Ethertype

The 128-bit IPv6, on the other hand, offers amassive address space (2128 addresses), which can theoretically
accommodate both existing and future IoT devices. RFC 4919 [152] defines how IPv6 is used in Low-Power
Wireless Personal Area Networks (LoWPANs), where devices align with our definition of constrained IoT
devices. According to [152], these devices adhere to the IEEE 802.15.4-2003 standard, characterized by
short-range communication, low bit rates, low power consumption, and limited computational and mem-
ory resources. In such networks, IPv6 functions as a unique identifier for each device within the network’s
scope. Beyond the large address space, IP addresses are favored due to their longstanding use, with read-
ily available, well-known, and free-to-access standards and regulations. Additionally, IP addresses benefit
from an established infrastructure that includes management, diagnostic, and commissioning tools [152].

In addition to its large address space, IPv6 offers several features that are particularly beneficial for IoT
environments. One such feature is stateless address autoconfiguration [156], which allows IoT devices to
automatically generate their own IP addresses without the need for manual configuration. Furthermore,
IPv6 supports header compression through 6LoWPAN [189], reducing packet sizes and improving energy
efficiency for constrained devices.
Digital Object Identifier: The Digital Object Identifier (DOI) is defined in the ISO 26324:2012 stan-
dard [30]. It was initially developed by the International DOI Foundation (IDF), which was formed by three
publishing institutes [9] and later standardized by ISO 26324:2012 [30]. Later, the DOI system became the

29

Table 2.3: Requirements for IoT identifiers.
Requirement Definition

Identify anything physical or
virtual[33]

The identifier should be able to identify any physical or virtual thing
as it is required that any physical or virtual thing can be connected
to network infrastructure, which implies the necessity of having an
identifier.

Communication between
things[33]

Connection between things using identifiers, regardless if a particular
thing needs to communicate or not, should be guaranteed.

Networking technology inde-
pendence [33]

Identifiers should be independent of the underlying network technol-
ogy used by the thing they identify.

Uniqueness [38]
Uniqueness is required within the specific application context. If a
larger scope is needed where identifiers are no longer unique, a re-
placement or an extension of the identification scheme is always nec-
essary to guarantee the identifier’s uniqueness.

Security and privacy [38]
Identifiers used should preserve privacy and protect personal infor-
mation. Ideally, they should not disclose any details about the entity
they represent. The structure of the identifier should not reveal in-
formation about the identified object or entity.

Scalability [38] The identification scheme should be able to accommodate the in-
creasing number of things needing identification in the future.

Interoperability[38]
Even in the absence of a single identification scheme, the existing
and any newly proposed identification schemes should account for
interoperability between different schemes.

standard tool for identifying objects digitally. The word Digital in Digital Object Identifier refers to the iden-
tifier. DOIs are meant to be unique, persistent, and permanent digital identifiers for objects. Information
about an object identified by a DOI can be retrieved upon resolving the DOI. DOIs are formed of two parts,
prefix, and suffix, separated by a '/' and with no maximum length. The prefix identifies a unique nam-
ing authority that is responsible for assigning DOIs. The suffix is a unique identifier of objects which, for
interoperability purposes, could be an existing identifier. A typical DOI, for example, is 10.100/20.

The Handle System [131, 13] is responsible for the resolution of DOI. The Handle system is a set of
distributed servers that allow the storage of handles that refer to digital objects. The system can efficiently
and securely resolve the handles into information to locate and access the intended object. Additional
services could be added, such as data confidentiality, data integrity, and non-repudiation.

The Electronic Product Code (EPC): The EPC is a universal identifier for physical objects operated
by GS1 [12]. It is used whenever an object needs to be tracked or identified. EPC is predominantly known
as the ID used in Radio Frequency Identification (RFID). RFIDs act as data carriers holding the object’s EPC
to which they are attached. However, this is not always the case. EPC is not exclusively used in RFID;
the latter does not always contain an EPC. When stored on computer systems, EPCs are in the form of a
Universal Resource Identifier (URI), often referred to as Pure Identity EPC URI. A typical Pure Identity EPC

30

URI in Uniform Resource Names (URN) notation, for example, is
urn : epc : id : sgtin : 0614141.112345.400

On RIFD tags, and due to their memory limitations, EPCs are encoded in binary form. The resolution of
EPC codes is done using the Object Name Service (ONS) [19], which is based on DNS.
Object Identifier: The Object Identifier (OID) [18] was developed jointly by ITU-T, starting with the ITU-
T X.660 series [29], and ISO through ISO/IEC 9834-1:2012 [31], with the goal of providing an unambiguous,
persistent name for objects. The OIDs are organized in a hierarchical tree structure. The top-level is called
the root; under it are nodes from which branch infinitely many arcs. An object’s name is the path from the
root downwards until the node related to that object is reached. A typical OID in dot notation is

1.2.840.113549.1

and in URN notation
urn : oid : 1.2.840.113549.1

For resolution, OID Resolution System (ORS) is a DNS-based system that accepts queries about OIDs
and returns associated information. Various objects, big and small, could be identified using OIDs, such
as countries, companies, X.509 certificates, standards, and Simple Network Management Protocol Man-
agement Information Bases (SNMP MIBs), to name a few.
2.2.3 IoT Security
IoT security is arguably one of the most heavily researched areas within the field of IoT. This is due to the
vast number of interconnected devices, the sensitive nature of the data they handle, and the potential
for significant vulnerabilities that could be exploited by attackers. RFC 8576 [95] titled IoT Security: State
of the Art and Challenges gives a general overview of the security challenges facing IoT environments. IoT
security drawbacks are not due to a lack of security mechanisms but have roots in the design of the IoT
devices. The constrained IoT devices are meant to serve particular purposes, such as measuring temper-
ature or detecting motion. Therefore, vendors of such devices seek to keep the designs simple and the
prices low. So, most constrained IoT devices were designed without considering the security threats they
may face. These facts prevent these devices from using modern security functions designed for more
powerful ones. Therefore, they either abandon security or use weak protocols and implementations [95].
In addition, given their constrained nature and rapid development, some IoT devices do not receive neces-
sary firmware updates as often as they should [200]. These firmware updates should be regular to avoid
depriving these devices of possibly essential security updates. The Internet of Medical Things (IoMT) is one
domain where security and privacy are paramount due to the sensitivity of the patient data. It is, however,
vulnerable to the same attacks as other IoT devices [96] [86][166].

Figure 2.2 shows the classification of some IoT attacks [151, 178] based on the three-layer model for IoT
architecture.

• Perception Layer Attacks:

– Node capture attack: a physical attack against IoT nodes where the attacker captures the
node and gains control over it. The attacker can then either impersonate the node, block in-
coming and outgoing traffic, or gain unauthorized access to the network associated with the
node. Additionally, node capture attacks often allow the attacker to extract sensitive informa-
tion, such as cryptographic keys, which can further compromise the security of the network.

31

Perception Layer

Node capture attack
Replay attack
Side channel attack
False data injection attack

Network Layer

Spoofing attack
Man in The Middle attack
Sinkhole attack
DoS attack

Application Layer

Phishing attack
Stolen Verifier attack
Cross-site scripting attack
Cross-site request forgery attack
SQL injection attack

Attacks
on IoT

Figure 2.2: Attacks against IoT (three-layer architecture).
– Replay attack: Replay attacks happen when the attacker captures a legitimate message des-
tined for the device and saves it. The attacker later retransmits (replays) the same message to
trick the devices about the sender’s identity. Replay attacks could allow attackers to access the
network and control the devices.

– Side-channel attack: Side-channel attacks occur due to unintentional device information leak-
age. This includes power consumption, acoustic emissions, or timing information. Using this
information, an attacker might be able to, for example, guess the device’s key based on the
power consumption during encryption or decryption.

– False data injection attack: occur when attackers inject false data into devices. These attacks
can be carried out manually on compromised devices, using Man-in-the-Middle or malware.
False data injection attacks are particularly dangerous in critical applications such as health-
care.

• Network Layer Attacks:

– Spoofing attack: occurs when an attacker impersonates legitimate devices or users on the
network. This is achieved by altering data to make them look like they originated from other
users or devices. Spoofing includes, for example, MAC spoofing, IP spoofing, or DNS spoofing.

– Man in TheMiddle attack: Such attacks happen while data is transmitted between devices or
between a device and its background servers. The attacker intercepts the data and could sniff,
alter, or block the communication.

– Sinkhole attack: occurs when attackers redirect IoT traffic to a compromised device or ma-
licious server instead of the legitimate destination. This is done by manipulating the routing
protocols used in IoT networks, causing data to flow through a compromised device. Once the
traffic is rerouted, the attacker can drop, modify, or analyze the data.

– DDoS attack: Denial of Service (DoS) attacks occur when a target server is overwhelmed by
sending a large number of requests. The target could be a DNS server or a regular web server.
Distributed Denial of Service (DDoS) attacks includes multiple compromised devices that are

32

used simultaneously to flood a target. IoT devices are particularly prone to being recruited
for DDoS attacks due to their weak security properties, making them easily compromised and
controlled by attackers, as seen in notable botnets like Mirai [45, 5].

• Application Layer Attacks:

– Phishing attack: occurs when an attacker sends a malicious file or link to users of IoT devices
posing as a legitimate entity such as a service provider or a manufacturer. Malware is installed
upon clicking the link or opening the file, which might grant the attacker access to the network
and control over its devices.

– Stolen Verifier attack: occurs when an attacker obtains a password or an authentication to-
ken that grants them access to the network and the devices connected to it. The attacker can
then impersonate the users or devices of the network, leading to possible information theft or
data corruption.

– Cross-site scripting (XSS) attack: is an injection attack where the attacker injects malicious
code into a webpage or web application. This could be, for example, the web interface forman-
aging IoT devices. As a result, the attacker can control the devices, steal sensitive information,
or corrupt data.

– Cross-site request forgery (CSRF) attack: occurs when an attacker tricks a user into perform-
ing a malicious action on the webpage the user is already authenticated to. The attacker can
then gain access to the network, steal or corrupt data, or control the devices connected to that
network.

– SQL injection attack: occurs when an attacker inserts malicious SQL statements into an ap-
plication’s input field. As a result, the attacker can corrupt, steal, or modify data. In the context
of IoT, an IoT device with a web interface that accepts user input, such as a security camera
with a login page, may be vulnerable to SQL injection attacks.

The growing awareness of IoT vulnerabilities and the potential impact on security objectives, if ex-
ploited by attackers, has prompted significant attention from the research community [158][123][150]. IoT
has also benefited from the development of new technologies like Blockchain [151] [149] [78], along with
advances inMachine Learning (ML) [192][143], which have been employed to enhance security andmitigate
potential attacks.

2.2.4 IoT Interoperability
In IoT, each vendor typically maintains its own infrastructure, devices, Application Programming Interfaces
(APIs), and data formats [49]. The absence of a regulatory body to enforce standards for the creation
and promotion of technology results in a notable lack of interoperability between products from different
vendors. Interoperability is regarded by the ITU-T as one of its high-level requirements for IoT, stating that:
"interoperability is essential among heterogeneous and distributed systems for the provision and consumption
of a variety of information and services" [32].

RFC 8477 [121] attributes the lack of interoperability to the lack of an encoding-independent standard-
ization and the link between the data formats and the technology that produces it. While there is no short-
age of IoT standards, their abundance and the fact that they are developed by numerous organizations
[133] make achieving interoperability even more challenging. Heterogeneity could be seen as device-level
heterogeneity due to the various technologies and protocols used in devices, data-level heterogeneity

33

due to various formatting of data, and semantic heterogeneity related to how different technologies in-
terpret data they receive from other technologies [167]. Semantic heterogeneity and achieving semantic
interoperability have been studied extensively [167] [155] [94] [100]. Due to the lack of standardization,
IoT technologies often send and receive data in proprietary formats. As a result, one IoT device may be
unable to interpret the meaning (semantic) of data sent by another device if the two belong to different
technologies. Solutions to address this semantic heterogeneity include the use of middleware, ontologies,
and semantic web technologies.

Several organizations issued proprietary standards in an attempt to facilitate interoperability. We
present two of them: The Web of Things and OneM2M.
The Web of Things: The Web of Things (WoT) [23][79], created by the World Wide Web Consortium
(W3C), is a concept that aims to enable interoperability between existing IoT technologies by connecting
things in these networks to the web. Rather than introducing new technologies, WoT aims to preserve and
complement existing IoT systems, facilitating communication and integration across various platforms.
The main building blocks of the WoT are:

• Thing Description (TD): The TD is a central building block of WoT. It contains metadata describing
the thing, a set of Interaction Affordances indicating how the thing can be used, schemas for the
data exchanged with the thing for machine understandability and web links to express the thing’s
relation with other things or documents.

• Binding templates: consist of reusable vocabulary and extensions to the TD format that enables a
client to interact with diverse things exposing different protocols.

• Scripting API: an optional block that enables implementing the application logic of a thing using a
common JavaScript API similar to web browser APIs.

• Security andPrivacyGuidelines: guidelines for secure implementation and configuration of things.
Human-assisted semantics translation could extend the WoT, enabling IoT devices to interpret metadata
from devices that use different semantics. This approach would further enhance semantic interoper-
ability between heterogeneous devices by bridging the gaps in understanding between various technolo-
gies [160].
OneM2M: OneM2M [20] was established in 2012 as a partnership project between 8 standardization
bodies. The goal was to address the interoperability problem in IoT and machine-to-machine communi-
cations by promoting a global IoT standard. OneM2M does not propose a new standard but builds on the
existing standards and aims to facilitate interoperability. This is achieved by defining a common middle-
ware between IoT devices, communication networks, and IoT applications. This middleware service layer
contains a suite of common service functions (CSFs) exposed to IoT devices and applications via RESTful
APIs. CSFs are general-purpose services unrelated to specific IoT domains or technologies. They can be
looked at as generic operating system tools that various IoT devices and applications could use. OneM2M
is reportedly designed to allow any IoT application to connect with any IoT device, promoting interoper-
ability between isolated IoT silos.

The rapid development of IoT and its transition from a luxury to a necessity make it imperative to ad-
dress its challenges. These challenges, as discussed above, are numerous and often interconnected. At the
core of these issues is the constrained nature of IoT devices. When a device is built with such constrained
specifications, it is automatically deprived of many tools and capabilities available to modern computers

34

and servers. Tools that deal, for example, with security, privacy, and identification are not compatible with
constrained IoT. Another undeniable aspect of IoT is its diversity, driven by the wide range of technologies,
each employing its own proprietary standards and tools. While developing new technologies is essential,
the clear lack of interoperability between these diverse systems hinders IoT from evolving into a truly
global network. Moreover, this lack of interoperability slows down research efforts, as progress becomes
fragmented and specific to individual technologies rather than benefiting the entire IoT ecosystem. This
dispersion of research efforts leads to slower, more isolated advancements rather than collective progress
for the broader IoT environment.

The promising outlook for the future of IoT calls for action to ensure that its growth remains safe, se-
cure, and beneficial to all stakeholders. Having more connected devices means, on the one hand, more
load on network infrastructure and, on the other hand, more personal data entrusted to these devices.
Hence, it is pivotal to assess the current challenges of IoT and to elaborate on possible solutions. Properly
addressing these challenges will allow a safer and more prosperous future for IoT. When thinking about
solutions, it is essential to find solutions that do not themselves create further challenges. For example,
devising a name resolution mechanism for a single IoT technology that is not interoperable with other
technologies is counterproductive since the IoT landscape as a whole will not benefit from that solution,
only that specific technology. Hence, considering solutions encompassing as many IoT technologies as
possible is of great benefit and importance. DNS could play a significant role in addressing the challenges
of IoT. DNS was initially designed with the primary goal of mapping domain names to IP addresses. Since
its inception, numerous extensions and functionalities have been added, giving DNS the maturity needed
to become a reliable tool for securely storing and retrieving information for various applications. One
example is DANE, where DNS is used as a complement to or even a complete replacement for certifi-
cate authorities in TLS handshakes, demonstrating that DNS can play roles in areas previously considered
beyond its traditional scope [54].

2.3 DNS and IoT
Chapter 1 demonstrated the ability of DNS to evolve. Specifically, we explained how DNS transitioned
from a basic name-to-address translation protocol to one capable of providing security and privacy for
DNS traffic. Over the past forty years, DNS has proven to be an operationally viable and highly distributed
infrastructure, supporting the backbone of the Internet. Up to this point in this chapter, we have discussed
the challenges facing IoT environments, including the constrained nature of IoT devices, the complexities
of identifying these devices, the lack of interoperability between the diverse technologies in the IoT land-
scape, and, finally, the security vulnerabilities inherent to IoT.

The remaining sections of this chapter explore state-of-the-art works that leverage the DNS infrastruc-
ture and its protocols to address IoT challenges, offering seamless identification, interoperability, security,
and privacy for IoT devices. We conclude by evaluating the effectiveness of DNS in IoT and the impact IoT
has on DNS. Table 2.4 summarizes the use cases of DNS in IoT environments.

2.3.1 DNS for constrained IoT
As described in Section 2.2.1, IoT devices are constrained in nature, with limited processing power, memory,
and energy resources. Since DNS was originally designed without taking constrained devices into account,
its memory and bandwidth requirements often exceed the capacities that IoT devices can handle

Even though most DNS responses fit in a 512-byte UDP packet[28], measurements between recursive
resolvers and authoritative servers indicate that the network behavior is relatively uniform with IP packet

35

Table 2.4: Summary of DNS Use Cases in IoT environments.
DNS for constrained IoT DNS for IoT name resolution

• QNAME minimization [64][80] and usingelliptical curves [119]
• DNS over CoAP (DoC) [182][138]
• DNS over Datagram Transport Layer Se-curity (DTLS) [172]

• Object Name Service (ONS) [19]
• OID Resolution System (ORS) [18]
• IoT name resolution [197][128]
• Finding and localizing IoT devices [125][92]
• Device autoconfiguration [136][137][135]
• Device identification [162]
• IoT roaming [59]

DNS for IoT security DNS for IoT interoperability

• Secure IoT name resolution using DNS’ssecurity extensions.
• PKI for IoT [59][54]
• Authentication for device autoconfigura-tion [134][129]
• Malicious activity detection through DNStraffic analysis [193][185]

• Overlay mechanisms for IoT naming[19][84][18][9]
• PKI that encourages IoT Interoperabilityusing DNS and its security extensions [59]
• Interoperable service discovery usingmDNS/DNS-SD [87][188][187]

sizes up to 1,500 bytes [6]. DNSSEC operating with RSA signatures leads to significantly higher memory
requirements [35]. Such large messages increase CPU usage and require high bandwidth.

QNAME minimization [64] [80] and using elliptical curves [119] can considerably reduce the bandwidth
and CPU usage. DNS over CoAP (DoC) is a protocol that enables DNS queries and responses to be transmit-
ted over the Constrained Application Protocol (CoAP) [182], allowing DNS resolution to function efficiently
in constrained IoT environments, where CoAP allows for HTTP-like communication on constrained nodes
[138]. DNS over Datagram Transport Layer Security (DTLS) [172] is based on TLS protocol and provides
encryption for queries and responses between DNS clients and servers. It is more suited for constrained
IoT scenarios that support low latency and loss-tolerant communication.

The constrained nature of most IoT devices will allow adopting DNS to solve many of its challenges.
The DNS accounts for constrained devices through several extensions and protocols that are adapted to
function according to their constraints.

2.3.2 DNS for IoT name resolution
Given the primary role of DNS, which is to map domain names to IP addresses, it is expected to play
a significant role in resolving IoT identifiers. Just like regular, non-IoT devices, IoT devices will require
identifiers and systems to resolve these identifiers into addresses. These addresses can then be used to
query IoT devices for their data, control and manage them, or redirect to locations containing relevant
information about the device in question.

36

As explained in Section 2.2.2, the naming conventions for IoT are numerous and, in most cases, iso-
lated from one another, i.e., not interoperable. One potential solution to address the heterogeneity in
identification schemes is for a standardization body to develop a globally unique naming convention and
require different stakeholders in the IoT ecosystem to adopt it. This could be achieved from a purely tech-
nical perspective. For instance, the large IPv6 address space allows for every IoT device to have a unique
identifier. However, establishing a single global naming convention for all IoT devices is nearly impossible.
Industries such as retail, automotive, and defense have long relied on proprietary naming conventions,
and altering these systems would significantly affect their infrastructure and operations.

A more feasible alternative is to preserve the existing naming conventions while enhancing the reso-
lution processes they use. This is where DNS could be leveraged. For instance, DNS has been used with
ENUM (Electronic NUmber Mapping) to map telephone numbers to web addresses [108]. Additionally,
several DNS-based services, such as the ONS [19] and the ORS [18], allow for the registration and resolu-
tion of unique identifiers for IoT devices. This demonstrates the feasibility of DNS playing a more global
role in name resolution for IoT, offering a familiar and robust solution for managing IoT devices and their
namespaces.

The authors in [197] propose a new scheme for peer-to-peer equal name resolution. In the proposed
method, names from various technologies are hashed into a string of bits. This not only preserves privacy
by one-way hashing the name but also allows for resolution via DNS by simply adding a top-level domain
(TLD), such as '.iot'. In [128], the authors studied the use of DNS architecture for IoT in the context
of transport logistics. A hierarchical organization of DNS was presented, capable of scaling globally by
translating unique URIs into network addresses, which can be used to extract information about the object
of interest, such as its status or location.

The global reach and distributed nature of DNS were utilized in [125], where the existing DNS archi-
tecture was adapted to build a search engine for the WoT, specifically for devices and their offered ser-
vices. A TLD such as '.env' is added, allowing users to use a regular browser to look up, for example,
'service.location.env'. DNS resolution of 'service.location.env' would return a list of devices of-
fering the requested service at the specified location. To select a specific device, an additional level is ap-
pended to the name, specifying the desired device. The authors in [92] proposed a scheme to represent
the semantic metadata of IoT devices and encode it into domain names, allowing devices to be discovered
via DNS queries. The work also introduces the concept of DNS as a Source of IoT Data, suggesting that DNS
could be used to store TXT records containing information about IoT devices.

In addition, DNS can assist with device autoconfiguration, which becomes particularly useful in sce-
narios where the number of IoT devices is too large to be individually named. Autoconfiguration using
DNS allows devices to name themselves and register within their DNS zone. DNS Name Autoconfiguration
(DNSNA) for IPv6-based IoT environmentswas proposed in [136] [137]. DNSNAprovides a global framework
for IoT autoconfiguration, including the definition of DNS name formats for such devices, name genera-
tion, and registration of the generated DNS names. DNSNA uses the IPv6 Neighbor Discovery Protocol
(ND) to acquire the DNS search list through IPv6 Router Advertisement (RA) or DHCPv6. Once the DNS
search list is obtained, the IoT device can generate its name using the DNS search list and its own infor-
mation. The authors in [135] extended DNSNA to IPv4 IoT devices by proposing DNSNAv4, allowing IoT
devices to register their DNS names using a DHCP server.

Moreover, the authors in [162] proposed IoTFinder, an IoT identification method based on DNS traffic
analysis. IoTFinder is an ML-based multi-label classifier designed to automatically learn statistical DNS
traffic fingerprints. Additionally, the authors in [59] introduced IoTRoam, a roaming setup for IoT devices.
The use case for IoTRoam was demonstrated with a LoRaWAN network, where a device could locate and
join its dedicated Join Server using DNS.

37

IoT is still far from having a global naming scheme with a unified name resolution mechanism, and a
single solution to accommodate all technologies remains impractical at this time. However, this challenge
remains manageable. Some approaches keep the existing naming schemes and work on an upper layer.
For example, phone numbers differ in structure across countries but can still interoperate globally using
international codes. In this case, while diversity would not be eliminated, it would be manageable. DNS
can helpmany technologies interoperatewhilemaintaining their individual naming schemes. As discussed
earlier, this approach is already being used between individual technologies to achieve peer-to-peer inter-
operability via DNS.

2.3.3 DNS for IoT security
IoT presents several security risks to both consumers and businesses. As discussed in subsection 2.2.3,
the security risks in IoT environments are numerous. However, despite these risks, the security mecha-
nisms currently deployed in IoT environments are inadequate and often proprietary, as each IoT provider
tends to develop its own closed security solution. Consequently, unlike the regular Internet, IoT lacks a
global security mechanism with established trust anchors. Moreover, the constrained nature of IoT de-
vices deprives them of the ability to use security mechanisms commonly employed on the Internet, such
as complex cryptographic algorithms, which require more processing power and memory than these de-
vices typically possess. As a result, bootstrapping trust, supporting secure communications, and ensuring
privacy remain significant challenges for most highly constrained IoT devices.

IoT data communication often requires a gateway to translate between the IoT device (e.g., sensors
communicating via protocols such as Bluetooth or LoRa) and the endpoints (e.g., cloud infrastructures
using HTTP over IP) in the Internet core. One of the fundamental requirements in IoT is to control the terms
under which an IoT device is permitted to onboard into the Internet core. Similar to regular devices on
the Internet, IoT devices must be authenticated when joining a network. Such devices require an identifier
and an authentication token to be admitted. However, IoT technologies employ different, predominantly
non-interoperable, mechanisms for accepting new devices. These mechanisms are often weak, and their
lack of compatibility further exacerbates interoperability challenges. DNS has been used to secure certain
aspects of IoT communications, including both the process of IoT devices joining and registering with their
networks, as well as their subsequent communications.

The authors in [59] propose a Public Key Infrastructure (PKI) based on DNS for the secure onboard-
ing of IoT devices. The work in [134] builds on DNSNA by adding authentication. The resulting algorithm,
Secure Domain Name System Name Autoconfiguration (SDNSNA) for IPv6 IoT devices, uses DNSNA for
name generation and NFC-based authentication to verify and register devices. The concept allows users
to communicate with an authentication server via their smartphone, which in turn communicates with IoT
devices using NFC. More work on securing autoconfiguration and registration was done in [129] with the
development of Advanced Secure DNSName Autoconfiguration with Authentication and Authorization for
enterprise IoT networks (ASDAI). In [85], the authors extended the EPC ONS, based on DNS, to dynamically
support heterogeneous object code identification. The authors in [193] designed an IoT router that ana-
lyzes DNS traffic to detect whether IoT devices are consulting unknown DNS servers, a common behavior
of compromised devices, such as those in botnets. Botnets, consisting of compromised devices controlled
by a Command-and-Control (C&C) server, typically use DNS to connect to the server [141] [83]. DNS Fil-
tering & Extraction Network System (D-FENS) was proposed in [185]. D-FENS operates between the client
and the recursive DNS server, intercepting DNS requests. It then uses a deep learning model to accurately
detect and blacklist unreported malicious domains that IoT devices might attempt to connect to.

Several protocols and extensions were devised to secure DNS, as discussed in Chapter 1, and these
38

could benefit IoT devices utilizing DNS. The benefits for IoT include enhanced security, privacy, and au-
thentication.

2.3.4 DNS for IoT interoperability

The IoT infrastructuremust integrate various IoT connectivity technologies, alongwith hardware, software,
identification, security, privacy, and resolution services. These components and services are provided
by multiple stakeholders. In addition to vertical integration, horizontal interoperability between devices
and systems will be crucial for the success of an IoT network (i.e., ensuring that devices from different
ecosystems can work seamlessly together, in addition to integration within a single ecosystem).

Interoperability, for different technologies, refers to the ability to communicate seamlessly, allowing
for the exchange and use of data, services, or functionality, regardless of the underlying technology or
standards. The lack of interoperability remains one of the major challenges facing IoT today. As discussed
in subsection 2.2.4, the absence of interoperability between IoT technologies has led to a highly fragmented
environment composed of many incompatible systems. These technologies often develop and implement
proprietary solutions, using communication protocols and data representation methods that few others
can understand. As a result, users and devices within one IoT technology are typically restricted to commu-
nicating with those within the same ecosystem. This fragmentation has effectively turned IoT into isolated
islands or silos, each with its own standards.

DNS could play a role in alleviating some of IoT’s interoperability issues. Its robustness and distributed
nature have already encouraged some organizations to resort to it when looking for IoT interoperability
solutions.

The Object Name Service (ONS) [19] is the resolution system of EPC [12], utilizing DNS to resolve an
EPC identifier to the location of the information associated with that identifier. The work in [84] proposes
an enhancement to the ONS framework, enabling it to support heterogeneous object code identification.
This approach shares similarities with established conventions such as OID [18] and DOI [9, 30]. In [59],
the authors presented a PKI framework for IoT devices, built on DNS and its security extensions, which
aims to facilitate interoperability between heterogeneous IoT technologies by providing a unified PKI in-
frastructure to enhance security and simplify management.

DNS-Based Service Discovery (DNS-SD) [70] demonstrates how DNS can be used to locate named en-
tities. DNS-SD employs DNS Service records (SRV records) to locate services by specifying the service type
and the domain it belongs to, in the format 'service.domain'. The client requesting the service receives
a list of available services matching the query in the form of 'instance.service.domain', from which a
service instance is selected. DNS-SD is compatible with both standard unicast DNS and the DNS-like Multi-
cast DNS (mDNS) [71]. DNS-SD was used in [87] to develop an interoperable service discovery mechanism
for IoT environments. Other works [188, 187] also proposed solutions for service discovery of resource-
constrained devices based on mDNS/DNS-SD.

DNS plays a vital role in enabling IoT interoperability. Beyond its primary function as a naming service,
DNS, with its security extensions, offers a reliable and secure means to map IoT device names to network
addresses or associated information. This capability encourages different IoT technologies to either con-
solidate their naming mechanisms or adopt DNS-based services to achieve interoperability across various
naming standards. By doing so, a cohesive Web of Things can be built, featuring distributed registries that
contain information about IoT devices and their services. Additionally, DNS supports dynamic updates,
facilitating the automatic reconfiguration of device addresses, which makes it particularly well-suited for
dynamic IoT environments.

39

2.3.5 Impact of IoT on DNS
So far, the discussions in this chapter promoted using DNS to address many of the challenges in IoT en-
vironments, demonstrating how DNS can help mitigate these challenges. However, Chapter 1 also high-
lighted the critical role of DNS as one of the cornerstones of the Internet. This importancewarrants caution
when exposing this vital piece of Internet infrastructure to IoT environments. The massive number of IoT
devices, along with their constrained nature, poses a potential threat to DNS. IoT manufacturers often
give little consideration to the security of their devices, as they are typically designed for specific functions
with minimal security requirements. Furthermore, the constrained resources of IoT devices prevent them
from implementing the advanced security solutions commonly used on the Internet. Additionally, many
constrained IoT devices, such as sensors, lack user interfaces, making it difficult for users to detect if their
devices have been compromised or are being exploited to launch attacks.

In [102], several challenges facing DNS in IoT environments are explored, with a focus on functionality,
security, and availability issues. The work in [198] examines whether the current DNS infrastructure is
prepared for IoT. A set of criteria that should be met before using DNS with IoT is laid out, followed by an
analysis of whether these criteria are fulfilled. The conclusions drawn can be summarized as follows:

• Security: Security is a crucial enabler of IoT, and while DNS security has been enhanced, it remains
too resource-intensive for constrained IoT devices.

• Mobility: An IoT naming service should support mobility and automatic name updates. While DNS
is capable of handling automatic name updates, it was not originally designed with mobility in mind
and therefore lacks inherent support for this feature at present.

• Infrastructure Independence: Name resolution should generally be independent of the underly-
ing infrastructure. DNS can facilitate this by leveraging local link extensions and technologies such
as cloud computing.

• Localization: All devices must be localizable and reachable. The authors argue that DNS is evolving
to address service deployment and name format localization, making it better suited to meet these
requirements.

• Efficiency: Efficiency is crucial for latency-sensitive IoT services. However, it remains a significant
challenge for DNS, as its name resolution mechanism can introduce delays due to hierarchical del-
egation and unpredictable cache hits.

Even though using DNS with IoT is beneficial for the IoT environment, it must be approached with
caution. The ability of IoT devices to access DNS servers presents significant risks to theDNS infrastructure.
This applies to both public DNS servers used on the Internet and private DNS setups in isolated networks.
Given the critical role DNS plays, these risks should not be underestimated.

The risks of using DNS with IoT can be summarized as follows:
• Complex coding at the IoT layer: The improper design and configuration of some IoT devices
increase the likelihood of simple mistakes, creating vulnerabilities that can be exploited to launch
DDoS attacks[107] [51].

• DDoS attacks: The large number of IoT devices, coupled with their security vulnerabilities, allow
for complex and increased size DDoS attacks against Internet infrastructure, which includes the

40

DNS[107][51]. The Mirai botnet DDoS attack against the DYN DNS service provider was unprece-
dented at the time, reaching 1.2 Tbps[5, 45]. The massive volume of devices involved makes tra-
ditional filtering methods, such as IP address-based blocking, less effective, allowing these DDoS
attacks to persist for extended periods.

• DDoS amplification: Also known as reflection attacks, these attacks exploit the fact that open DNS
resolvers often respond with data much larger than the original query. Attackers abuse this by
sending multiple DNS queries while using the victim’s spoofed IP address as the source for these
queries. The DNS servers then send their larger responses to the victim’s machine, overwhelming
its memory and CPU and potentially taking it out of service [51].

• DNS vulnerability: In 2021, a vulnerability was discovered in several popular TCP/IP stacks used
in both IT and IoT firmware, known as ’Name: Wreck’. This vulnerability allows attackers to exploit
devices for remote code execution and denial-of-service attacks [51].

2.4 Discussion
This chapter aimed to investigate the potential benefits of using DNS to address the challenges of IoT
environments. As illustrated in Figure 2.1, IoT technologies face several challenges. The scale at which IoT
integrates daily life and the prediction of larger-scale deployments in the future demand that its challenges
are carefully examined and mitigated.

The constrained nature of IoT devices is both one of its major limitations and a factor that has con-
tributed to its widespread adoption. These constrained devices are unable to use state-of-the-art pro-
tocols, which are designed for more powerful devices like personal computers with sufficient processing
power andmemory. As a result, IoT devices often rely on less sophisticated protocols, particularly in terms
of security, putting the data they transmit and receive at risk. However, these constraints—related to pro-
cessing, memory, and power—have also made IoT technology more affordable and accessible, fostering
its rapid adoption. DNS, along with its constrained-friendly extensions specifically designed for IoT, of-
fers a potential solution to help IoT devices benefit from modern tools while still accommodating their
limitations.

The diverse IoT technologies, which aremostly isolated fromone another, make it challenging to create
a unified system for naming and identifying IoT devices. This is due to the diverse communication and data
representation protocols employed by each manufacturer. Many of these protocols are proprietary and
are not readily available for use by other technologies. The DNS, as the Internet’s established naming
system, is a natural candidate to address this issue. Its well-established infrastructure supports the idea
of using DNS to overcome the IoT identification challenge. As discussed in Section 2.3, several initiatives
already rely on DNS for IoT name resolution; however, a global solution has yet to be found.

Beyond identification, significant interoperability issues exist between IoT technologies. These tech-
nologies are oftenmanaged by independent authorities, follow their own standards, and are incompatible
with one another. This lack of standardization results in a fragmented IoT environment, made up of iso-
lated vertical silos where one technology cannot communicate with others. Addressing this lack of inter-
operability is critical to the future of IoT. Improving interoperability amongmost, if not all, IoT technologies
will help transform IoT into a truly global network. Moreover, the lack of interoperability slows down re-
search and development efforts, as progress becomes fragmented and specific to individual technologies,
rather than benefiting the entire IoT ecosystem. Given DNS’s role in turning the Internet into a cohesive
network, it holds great potential to help transform the IoT environment from isolated silos into a more
interconnected system.

41

Finally, IoT security is a major concern, particularly given the sensitive nature of the data flowing
through IoT networks, which span applications from smart homes to healthcare and industrial environ-
ments. The increasing drive to connect everything promises amore convenient future but raises the stakes
for security, as more data shared across the network increases the risk of security breaches. DNS can play
a significant role in improving the security of IoT communications. DNSSEC, which is being progressively
adopted across the Internet, can help ensure the integrity of DNS responses received by IoT devices, mit-
igating risks like DNS cache poisoning, spoofing, and other cyber threats. DNSSEC’s role in safeguarding
DNS response integrity is crucial, and its broader adoption will enhance the security of both IoT and tradi-
tional Internet communications.

In terms of privacy, DNS offers several extensions, including standardized options like DoT andDoH, al-
though these needwider adoption. DNS can also be adapted for constrained IoT environments, as demon-
strated by DoC. To prevent IoT networks from becoming the weakest link in cybersecurity, it is essential to
implement DNS and its security extensions and protocols.

2.5 Conclusion
DNS is a valuable tool that has proven its worth as a foundational pillar of today’s Internet. When applied in
IoT environments, it holds the potential to addressmany of the challenges these environments face. Users,
manufacturers, and administrators of IoT networks can reap significant benefits from leveraging DNS’s
capabilities. As outlined in this chapter, IoT faces numerous challenges, including device limitations, lack
of standardization, security concerns, and interoperability issues. However, DNS can effectively address
these challenges, promoting the widespread adoption and integration of IoT technologies.

DNS’s flexibility allows it to be adapted for constrained devices, as demonstrated by its extensions like
DNS over CoAP (DoC), enabling IoT technologies to take advantage of DNS’s capabilities. Its scalability also
makes DNS well-suited for accommodating the rapidly growing number of IoT devices. Additionally, DNS
offers a universal standard for addressing devices, helping to alleviate some of the interoperability issues
in IoT environments and enhancing efficiency and reliability in IoT systems.

Moreover, DNS’s security extensions make it a critical tool in ensuring the security of IoT systems,
particularly given the sensitivity of data transmitted within these networks. Despite its potential, caution
must be exercised when using DNS in IoT environments, as this chapter has also highlighted the risks IoT
may pose to the DNS infrastructure.

42

Chapter 3

Mutual Authentication of IoT Backend
Servers

Contents
3.1 Introduction . 44

3.2 The PKI using X.509 certificates (PKIX) 45

3.2.1 Symmetric vs Asymmetric Encryption . 45

3.2.2 X.509 Digital Certificates . 46

3.2.3 Certificate Authorities . 48

3.2.4 TLS Protocol . 49

3.3 Reinforcing the PKIX Security with DANE 50

3.4 DNS Complementing the PKIX in IoT Environments 52

3.4.1 Mutual Authentication via DANE - The DANCE WG 52

3.5 System Model . 53

3.6 Evaluation . 54

3.6.1 Using a Local DNS Resolver . 54

3.6.2 Using Remote DNS Resolvers . 55

3.7 Conclusion . 55

Chapter Overview
This chapter introduces the use of DNS-based Authentication of Named Entities (DANE) formutual authen-
tication, demonstrated through the setup of a mutual authentication mechanism between two backend
servers in a LoRaWAN network. The chapter begins with a detailed explanation of the Public Key Infras-
tructure (PKI) using X.509 digital certificates (PKIX). It explores the differences between symmetric and
asymmetric cryptography before introducing X.509 digital certificates and the role of Certificate Authori-
ties (CAs) in issuing them. The chapter also explains the TLS handshake process for both TLS 1.2 and TLS
1.3. Following this, the drawbacks and potential vulnerabilities of PKIX are discussed, leading to our imple-
mentation and demonstration of how DANE can reinforce or even replace CAs. Finally, the system model
and performance evaluation are presented.

43

3.1 Introduction
Among the security threats that could endanger online communications is connecting to amalicious server
masquerading as a legitimate one. This could lead to severe repercussions such as exposing credentials
and sensitive personal data. To mitigate this risk, connecting to a server on the Internet today is preceded
by a few steps before exchanging any data. Initially, the client may query the Domain Name System (DNS)
to resolve the domain name of the server into its IP address. After obtaining the IP address, the client
initiates contact –but not data exchange– with the server to verify its identity. This step confirms to the
client that the server is truly the intended destination for the connection.

The DNS resolution is facilitated by the DNS infrastructure, and the identity verification is enabled by
the Public Key Infrastructure (PKI). While the DNS infrastructure is a well-defined system of nameservers
with a specific resolution protocol, the PKI is moremultifaceted, encompassing hardware, software, proto-
cols, certification issuance and verification processes, and cryptographic methods. The different elements
of the PKI function together to reinforce communication security, guaranteeing secure access and data
exchange between clients and servers. This is achieved by implementing the necessary methods to bind
certified entities to digital certificates, and more specifically, linking these entities to public keys. In sum-
mary, the PKI enables a client to verify the authenticity of the certificate (or public key) presented to it by
a server, and to subsequently use this public key to establish a secure communication channel.

The most widely used protocol to secure Internet communication is the Transport Layer Security (TLS)
protocol. Themain objectives of TLS are confidentiality, integrity, and authenticity of the data exchange be-
tween clients and servers,making it a critical component of the PKI. During a process called the TLS handshake,
a client can verify the identity of a server, and both parties could agree on security parameters for sub-
sequent communications. The most common form of identification servers present to clients during the
TLS handshake is the X.509 digital certificate. When X.509 certificates are used in the context of the PKI, the
system is referred to as PKIX (Public Key Infrastructure using X.509 certificates).

Trusting the digital certificate of a server inherently depends on trusting the issuer of that certificate.
It is possible that servers issue and sign their own certificates, known as self-signed certificates, which are
rarely trusted. The most common and trusted approach is having a trusted third party, called a Certificate
Authority (CA), issue the certificates.

In the context of PKIX, communications are typically client-server based, where the PKIX enables clients
to verify the identity of servers in order to establish a secure connection. In this common model for web
communications, clients are rarely required to prove their identity. Otherwise, clients would need to pos-
sess the equivalent of a public key certificate (e.g., X.509 digital certificate). If clients, like servers, were to
share a digital certificate and have it verified by the servers, then the authentication would bemutual, with
each party verifying the identity of the other. Mutual authentication is important for reinforced commu-
nication security, as servers in this case could avoid malicious devices and only accept connections from
legitimate, verified clients.

This form of authentication would be useful in Internet of Things (IoT) environments. Such networks
typically consist of end devices (EDs) that communicate with IP-enabled backend servers either directly or
through gateways that relay data between radio and IP spaces. Current security practices in IoT include
having secret keys pre-shared and stored on EDs and backend servers to establish secure communication
sessions between the two, e.g., LoRaWAN. Additionally, the PKIX is used for authenticating the commu-
nication between the IP-enabled backend servers. Hard coding keys on the device and servers, printing
them on the device, or even sending them by email, for example, are all key-sharing methods that pose
a security risk. For communication between backend servers, setting up secure communication sessions
requires using the PKIX where one backend server acts as a client while the other acts as a server. This

44

form of authentication is one-sided as only the identity of the backend server acting as server is verified
while the identity of the other backend server, the one acting as a client, is not. Besides its cost entailed by
paying a trusted CA to issue a certificate, this form of authentication has some drawbacks. It relies onmul-
tiple root CAs for issuing certificates. The root CAs have self-signed certificates and can sign and provide
certificates to intermediary CAs responsible for issuing certificates to domains and servers. These CAs are
distributed in nature and do not have a central trust anchor, and each major vendor, Google and Apple,
for example, has its list of CAs (root store) that it trusts[73]. Moreover, these CAs could be compromised
and issue rogue certificates [99]. On the other hand, resorting to self-signed certificates is not the optimal
solution, especially when multiple stakeholders are involved.

The goal of this chapter is to use DNS, its security extensions (DNSSEC), and the DNS-based Authen-
tification of Named Entities (DANE) protocol to reinforce the PKIX for IoT backend servers. The focus is on
reinforcing the security of communication between two LoRaWAN backend servers using DANE.

3.2 The PKI using X.509 certificates (PKIX)
In this section, we review the PKIX currently used for establishing secure communications.

3.2.1 Symmetric vs Asymmetric Encryption
The goal of encryption is to transform data, making it unreadable to unauthorized parties. By running a
piece of plaintext (unencrypted data) through an encryption algorithm, an equivalent unintelligible cipher-
text is produced, which could be safely transported or stored. Reverting ciphertext back to the original
plaintext is called decryption. There are two primary encryption techniques: symmetric key encryption
and asymmetric key encryption.

Symmetric key encryption techniques use a single secret key for encryption and decryption. In se-
cure communications between two parties, both parties must share the same secret key. See Figure 3.1a.
Symmetric encryption techniques are fast and computationally efficient; however, sharing the secret key
presents a challenge, as exposure of the key compromises the data. Asymmetric encryption techniques
address this by removing the need of the communicating parties to have an identical pre-shared secret
key.

Asymmetric encryption relies on a pair of keys: a public key and a private key. Each one of the com-
municating parties has a key pair. The private key is secret and is never shared, while the public key can
be shared safely in plaintext. Data encrypted with the public key can only be decrypted using the corre-
sponding private key, and it is computationally infeasible to derive the private key from the public key. See
Figure 3.1b. Compared to symmetric encryption, asymmetric techniques are slower and require larger key
sizes.

Asymmetric encryption techniques are not limited to encrypting and decrypting data; they can also
be used for key exchange. Two communicating parties, each with their own public and private key pair,
can generate and agree on the same secret key without sharing anything other than their public keys.
Therefore, given that symmetric encryption techniques are faster andmore computationally-efficient, and
asymmetric encryption techniques are slower but more secure, the less efficient asymmetric techniques
are often used to safely exchange secret keys. Once the secret key is exchanged, the more efficient sym-
metric techniques are then employed for the actual data encryption.

One challenging aspect of asymmetric encryption is verifying that the public key truly belongs to the
legitimate destination of the communication. For example, when connecting to server with whom the
client might share sensitive data and credentials, the client should make sure that the public key of the

45

Plaintext Encryption Ciphertext Decryption Plaintext

Secret key

(a) Symmetric encryption.

Plaintext Encryption Ciphertext Decryption Plaintext

Public key Private key

(b) Asymmetric encryption.
Figure 3.1: Symmetric vs asymmetric encryption.

server is legitimate and truly belongs to the intended server. Otherwise, an adversary could impersonate
the legitimate server and intercept the personal data of the client. One way of verifying the public keys of
servers is through the use of digital certificates.
3.2.2 X.509 Digital Certificates
Digital certificates provide a solution for linking public keys to the entities that own them. A digital certifi-
cate acts like an electronic passport to bind a public key to the identity of its owner. Organizations, servers,
and individuals can request digital certificates to prove the authenticity and ownership of their public key.

The most widely used standard for digital certificates is the X.509 standard, version 3 (v3) being the
most recent [62]. The fields of the X.509 digital certificate are presented in Figure 3.2.

• Version Number: the X.509 version that applies to the certificate.
• Serial Number: a unique numerical identifier of the certificate assigned by the issuing authority.
• Signature Algorithm ID: specifies the public key and hashing algorithms used by the issuing au-
thority to sign the certificate.

• Issuer Name: specifies the distinguished name of the issuing authority of the certificate.
• Validity Period: specifies the validity period of the certificate during which it can be trusted. It
includes a Not Before and a Not After fields.

• Subject Name: specifies the subject name which is the name of the entity to which the certificate
belongs i.e., the entity which owns the private key corresponding to the public key included in the
certificate.

46

Certificate

Version Number

Serial Number

Signature Algorithm ID

Issuer Name

Validity Period
Not Before
Not After

Subject Name

Subject Public Key Information
Public Key Algorithm
Subject Public Key

Issuer Unique Identifier (optional, v2 or v3)

Subject Unique Identifier (optional, v2 or v3)

Extensions (optional, v3)

Certificate Signature Algorithm

Certificate Signature

Figure 3.2: The structure of the X.509 Digital Certificate (v3).
• Subject Public Key Information: contains two important pieces of information: the Subject Public Key
field which specifies the public key of the subject i.e., to whom the certificate was issued, and the
Public Key Algorithm fieldwhich specifies the algorithm that generated the public key and the hashing
algorithm with which the public key is to be used.

• Optional Fields: some optional fields:
– Issuer Unique Identifier (v2): specifies the unique name of the issuer.
– Subject Unique Identifier (v2): specifies the unique subject namewhich is the nameof the entity
to which the certificate belongs.

– Extensions (v3): introduced with v3. The Extensions field introduces a way to extend certificates
to include additional information such as information about using the public key, information
provided by the issuing authorities about the usage and interpretation of the certificate, and
others.

• Certificate Signature Algorithm: specifies the public key and hashing algorithms used by the issu-
ing authority to sign the certificate.

• Certificate Signature: contains the digital signature of the certificate.
47

In principle, the issuing authority could be the entity to which the certificate was issued, making it a self-
signed certificate. However, self-signed certificates are not trusted, as the purpose of using certificates is to
establish trust. A more secure approach is to rely on a trusted third party known as a Certificate Authority
(CA).
3.2.3 Certificate Authorities
CAs are trusted organizations that are authorized to issue and sign digital certificates for end-entities such
as individuals, servers, and organizations. An organization that wishes to become a CAmust undergo strict
security audits and must adhere to rigorous standards to acquire and maintain their trusted status.

In the context of PKIX, a chain of trust consisting of several layers of CAs is used to verify the legitimacy
of digital certificates. The chain begins with root CAs which are at the top of the hierarchy. Root CAs use
self-signed certificates and act as the trust anchor of the chain of trust. Operating systems and browsers
are equipped with lists of root CA certificates in a trust storewhich allows them to validate certificates they
receive. Root CAs rarely create individual leaf certificates but instead they create and sign intermediate CA
certificates. Intermediate CAs are responsible for creating and signing leaf certificates for end-entities. To-
gether, the root, intermediate, and leaf certificates form a chain of trust, where trusting the leaf certificate
depends on the entire chain. When a client connects to a server, it receives the leaf certificate of the server
and the intermediary certificate of the CA that issued it. After that, the client traces the chain of trust from
the leaf certificate, through the intermediary CA, and finally to the root certificate stored in its trust store.
Figure 3.3 illustrates the chain of trust, showing the relationships between the root CA, intermediate CA,
and leaf certificates.

Interm. CA Signature
Interm. CA Name

End-Entity PublicKey
End-Entity Name

Leaf Certificate

Root CA Signature
Root CA Name

Interm. CA PublicKey
Interm. CA Name

Intermediate
Certificate

Root CA SignatureSelf-signed

Root CA Name
Root CA PublicKey
Root CA Name

Root Certificate

Interm. CA PrivateKey

Root CA PrivateKey

Reference

Verify Signature

Sign

Reference

Verify Signature

Sign

Figure 3.3: Digital certificates chain of trust.
The CA chain of trust plays a critical role in securing communications over the Internet. One protocol

that leverages this chain of trust to ensure secure data exchange between clients and servers is the TLS
protocol.

48

3.2.4 TLS Protocol
TLS is a protocol that makes use of the CA chain of trust to secure communications on the Internet by en-
suring confidentiality, integrity, and authentication of the data exchanged between a client and a server.
A major aspect of TLS involves the server sending its digital certificate such as the X.509 digital certificate
to the client who verifies it using the CA chain of trust. Following the certificate verification, the client and
the server can communicate securely. Authentication and agreement on the session security parameters
are done during the TLS handshake, which occurs before connection establishment. Figure 3.4 illustrates
the TLS handshake in TLS 1.2 and 1.3.

Client
TLS 1.2

Server Client
TLS 1.3

Server
ClientHello1
ServerHelloCertificateServerHelloDone 2

ClientKeyExchangeChangeCipherSpecFinished3

ChangeCipherSpecFinished 4

ClientHello1

ServerHelloFinished 2

Finished3

Figure 3.4: The TLS 1.2 and 1.3 handshake.

• TLS 1.2

1. The client sends a ClientHello, specifying the supported TLS version, cipher suites, and Clien-
tRandom, for key generation.

2. The server replies with a ServerHello, indicating the chosen TLS version and cipher suite. It
also sends a ServerRandom and its digital certificate with an optional certificate chain. Finally it
sends a ServerHelloDone.

3. After validating the server’s certificate, the client sends a random Pre-Master Secret encrypted
with the server’s public key. Both generate the same Master Key using the Pre-Master Secret,
ClientRandom, and ServerRandom, which they then use to generate the session keys for secure
communication. The client then sends ChangeCipherSpec, signaling the switch to encryption,
followed by a Finished message. If Diffie-Hellman (DH) or Elliptic Curve Diffie-Hellman (ECDH)
is used, the client and server will have exchanged their DH parameters by this point.

4. The server responds with ChangeCipherSpec and a Finished message, completing the hand-
shake.

49

• TLS 1.3

1. The client sends a ClientHello, specifying the supported TLS version, cipher suites, and a string
of random bytes known as ClientRandom for key generation. The client also guesses the key
exchange method (e.g., DH or ECDH, RSA is not supported for key exchange) and sends the
corresponding key share parameters.

2. The server generates a Master Secret and replies with a ServerHello, indicating the selected TLS
version, cipher suite, and its own random bytes (ServerRandom). The server also sends its key
exchange method (matching the guessed key exchange method) and its digital certificate. The
server also sends a Finishedmessage.

3. The client verifies the server certificate, generates the sameMaster Secret, and sends a Finished
message, completing the handshake.

3.3 Reinforcing the PKIX Security with DANE
In the context of PKIX, digital certificates issued by oneCA are not guaranteed to have universal trust. A new
CA entering the market that wants its certificates to be universally trusted must be added to several Root
Stores as different vendors have different Root Stores. For example, the Mozilla Firefox Root Store includes
152 CAs[153] while Apple’s macOS root store contains 159 CA [46]. A root CA trusted by one vendor but not
the other could publish millions of certificates that are only partially trusted on the Internet. This means
that, in theory, a certificate, even though legitimate, could be trusted by somemachines and not by others,
depending on the manufacturer and whether or not the CA that issued it exists in its Root Store.

Moreover, digital certificates are not required to be verified by the CA that issued them. Consequently,
any CA in the Root Store could validate any certificate which increases the attack surface for potential
malicious activity. This expanded attack surface means that vulnerabilities in any root or intermediary CA
can be exploited, allowing an attacker to issue fraudulent certificates. The root and intermediary CAs are
not immune to security breaches [91, 76]. They could, in theory, issue certificates for any domain name
like the root authority Diginotar did when it issued a fraudulent Google certificate in 2011 [99].

Finally, acquiring a digital certificate is not cheap and their cost accumulates when several certificates
are required. For example, Figure 3.5 is a snippet from globalsign.com [97] showing the costs associated
with buying digital certificates. These costs, while affordable for large companies, can be burdensome for
smaller organizations or when multiple certificates are required. Additionally, the cost varies significantly
depending on the type of certificate (e.g., single domain, wildcard, or extended validation certificates) and
the CA issuing it.

DANE (DNS-Based Authentication of Named Entities) [111, 202, 89] is a DNS protocol destined to address
some of the shortcomings of the PKIX. DANE mainly aims to complement the role of CAs by giving control
to zone owners regarding verifying their digital certificates. Themain feature of DANE is the TLSA Resource
Record (RR) that owners can add to their zone. TLSA RRs form an association between digital certificates
or raw public keys and the domain names to which those certificates or keys were given.

The functionality of DANEwithin the context of PKI comes to light whenwe inspect the fields of the TLSA
RR, especially the Certificate Usage field, revealing how it enhances the security of TLS connections [111]:

• Certificate Usage field: 1-octet value that represents the association that will be used to match the
certificate provided in the TLS handshake. It could have the following values:

– PKIX-TA(0): Also referred to as CA Constraint. This Certificate Usage indicates that the Certificate
Association Data contains the certificate or the public key of a CA or a Trust Anchor that can issue

50

Figure 3.5: Cost of digital certificates. https://shop.globalsign.com/en/ssl [97]

certificates for a domain name associated with a server or service and that a CA certificate that
matches the TLSA record must be included as part of a valid certification path, i.e., the client
must find this CA certificate in its Trust Store to validate the certificate presented by the server
during the TLS handshake. PKIX-TA(0) is the strictest among the possible values of the Certificate
Usage field, as it limits the CAs that can issue certificates for the domain name. This prevents
rogue CAs from issuing fraudulent certificates.

– PKIX-EE(1): Also referred to as Service Certificate Constraint. This Certificate Usage indicates that
the Certificate Association Data contains the certificate or the public key of the end-entity that
must be matched with the certificate provided by the server during the TLS handshake. The
certificate must also be validated using a CA chain of trust. This Certificate Usage precises the
certificate that the domain name of a service or a server must have. This prevents rogue CAs
or even any CA from issuing a different certificate for the domain name, even if the certificate
is legitimate. The certificate presented by the server during the TLS handshake must match
the certificate in the TLSA RR and it must be validated by a CA chain of trust.

– DANE-TA(2): Also referred to as Trust Anchor Assertion. This Certificate Usage indicates that the
Certificate Association Data contains the certificate or the public key of a Trust Anchor that must
be used to validate the end-entity certificate provided by the server during the TLS handshake.
This can be helpful if the end-entity certificate is self-signed or if the owner of that certificate
runs their own CA. This Certificate Usage allows the certificate owners to verify their certificate
without necessarily relying on CA certificate, making it the first Certificate Usage that does not
require validating the certificate received during the TLS handshake through a typical PKI hier-
archy of globally recognized CAs as a chain of trust. It does, however, require the validation of
the certificate using the Trust Anchor found in the Certificate Association Data of the TLSA RR.

– DANE-EE(3): Also referred to as Domain-Issued Certificate. This Certificate Usage indicates that
the Certificate Association Data contains a certificate that must match the certificate received
during the TLS handshake. Similar to DANE-TA(2), this Certificate Usage also does not require
validating the certificate received during the TLS handshake through a typical PKI hierarchy of
globally recognized CAs as a chain of trust, which differentiates it from PKIX-EE(1).

51

Examining the four possible values of the Certificate Usage field reveals two distinct facets of interaction
between DANE and the CAs. When the Certificate Usage field is set to PKIX-TA(0) or PKIX-EE(1), DANE coexists
with the CAs, complementing their role by enhancing session security between clients and servers. Con-
versely, when the Certificate Usage field is set to DANE-TA(2) or DANE-EE(3), DANE operates independently of
the CAs, effectively assuming their role. This disparity between the two use cases provides DANE with the
flexibility to be utilized in various PKI architectures.

A client connecting to a TLS server receives the server’s certificate and performs a DNS query to fetch
the TLSA RR of the server. To verify the certificate, the client compares the Certificate Association Data
from the TLSA RR with the relevant part of the server’s certificate. The specific part of the certificate that
is compared, and how the comparison is performed, depends on the parameters specified in the TLSA
RR. These parameters include the Certificate Usage, which defines the relationship between the certificate
and the CA or DNS; the Selector, which determines whether the full certificate or just the public key is
matched; and the Matching Type, which indicates whether the data should be matched exactly or using a
hash (e.g., SHA-256 or SHA-512). The integrity of the TLSA RR is guaranteed by DNSSEC [174, 176, 175].

3.4 DNS Complementing the PKIX in IoT Environments

3.4.1 Mutual Authentication via DANE - The DANCE WG
Up to this point, the discussions on DANE have focused on a client connecting to a server, retrieving its cer-
tificate, and fetching the corresponding TLSA RR for certificate verification. The scenario of clients possess-
ing digital certificates or publishing TLSA RRs has not been explored, as DANE was designed for TLS server
authentication, not client-side authentication. This is evident in the original specifications of DANE [111, 89],
which primarily address the authentication of TLS servers rather than clients. This was the main motiva-
tion behind creating the DANE Authentication for Network Clients Everywhere (DANCE) IETF working group
(WG) [4].

The DANCE WG aims to extend DANE to enable TLS client authentication. Like TLS servers, a TLS client
would have a raw public key or a certificate and would publish a TLSA RR in DNS corresponding to that
public key or certificate. This allowsmutual authentication viaDANEbetween TLS clients and serverswhere
each one could verify the other’s certificate or raw public key. The DANCE WG issued two Internet drafts,
TLS Client Authentication via DANE TLSA records [114] and TLS Extension for DANE Client Identity [115].
TLS Client Authentication via DANE TLSA records[114]: The first draft describes how to publish
TLSA RRs for TLS clients. Client identities are assumed to be represented by DNS domain names. Two
formats for client identities are possible:

• Service specific client identity: The client identity has the following format:
[_service].[client-domain-name]

The first label (_service) is the application service name while the remaining ones are the domain
name of the client.

• DevId: IoT Device Identity: The client identity has the following format:
[devicename]._device.[org-domain-name]

52

The first label ([devicename]) refers to the name of the IoT device. The second label (_device) allows
delegating a group of devices to a DNS subzone for easier management. The remaining labels are
the domain name of an organization.

Similar to verifying servers, a TLS client thatwishes to be authenticated viaDANEmust have a rawpublic
key or a certificate binding their identity to a public key. The public key or certificate has a corresponding
TLSA RR allowing verifying it via DANE. Clients should always signal that they have DANE identities to spare
the server from sending unnecessary DNS queries. This could be done either using the DANE Client Identity
TLS extension presented in the second draft [115] or, if the TLS extension is not used, the client certificate
must have the client’s DNS name specified in the Subject Alternative Name extension’s DNSName type.
TLS Extension for DANE Client Identity [115]: The second draft defines a TLS extension that allows
clients to express their support forDANEand their intent to be verified and allows them to share their DANE
ClientID with the server. The extension could be empty to indicate to the server that the client wishes to
be verified via DANE and that its identity could be extracted from its certificate. Otherwise, if the client is
using a raw public key, then the extension must be used and must have the full ClientID in the form of a
domain name that the server could use to fetch the client’s TLSA RR. In TLS 1.2, the extension is sent in the
ClientHellomessage. In TLS 1.3, the extension is sent in the Client Certificatemessage.

3.5 System Model
In this section, we implement the DANCE WG drafts [114, 115] to enable mutual authentication between
two LoRaWAN backend servers. These servers frequently communicate and would benefit from mutual
authentication via DANE, which ensures that each server can verify the identity of the other.

Wemodified theGolang TLS library to add support for theDANE ClientID extension in TLS 1.3 (both client
and server sides). Additionally, we adapted the implementation to support TLS 1.2, where the extension
is included in the ClientHello message to allow the ClientID to be transmitted. The source code for the
modified TLS library, DANE library, DANCE library, and the adapted Chirpstack software is available at
https://gitlab.rd.nic.fr/dance.

Our setup is presented in Fig. 3.6.
For a LoRaWAN End-Device (ED) to join the network, it first sends a Join-request to the gateway, which

forwards it to the Network Server (NS). The NS then connects to the Join Server (JS) to verify the request.
After verification, a Join-accept is sent back to the gateway, which then delivers it to the ED. Before the
NS contacts the JS, the two servers perform mutual authentication via a TLS handshake that includes a
certificate exchange. In our implementation, each server verifies the other’s certificate using DANE. Each
server has already published its TLSA RR in its DNS zone and retrieves the TLSA RR of the other to verify
the received certificate. We test several scenarios to evaluate this setup.

Our setup is based in France, and we vary the location of the DNS resolver to study its effect on per-
formance. We begin with a local resolver on both the NS and JS, and examine the impact of enabling and
disabling caching. Caching allows the recursive resolver to store a RR for a specified duration, known as
the Time-to-Live (TTL), enabling it to respond directly to requests without querying any nameservers. Ad-
ditionally, we study the use of remote resolvers, including Google’s public DNS resolver '8.8.8.8' and a
resolver we deployed in Singapore to maximize the distance between the DNS clients and the resolver.
These scenarios are compared to the baseline case where DANE is not used for certificate verification,
and a single Certificate Authority (CA) is used instead. The CA, owned by our company, has a self-signed
certificate that allows it to issue certificates for both servers, acting as a trusted CA for both.

53

End Device

Gateway
NetworkServer Application/JoinServer

RecursiveResolver RecursiveResolver

DNS

1 Join Request 7 Join Accept

2 ForwardJoin Request

3 Initiate TLS session
6 Join Server answer

4 TLSA Query/ResponeServer verification
5 TLSA Query/ResponeClient verification

Figure 3.6: System model.

3.6 Evaluation
In this section, we present the results of the measurements conducted across various scenarios: the
baseline case, where mutual authentication is performed without DANE and our company acts as the
CA using a self-signed certificate, and several scenarios involving mutual authentication via DANE, with
varying configurations and locations of the recursive resolver. We start by using a local resolver on each
server and examine the effect of caching. Next, we use Google’s public DNS resolver '8.8.8.8' and a re-
solver located in Singapore as remote resolvers. The primary metric we consider is the time elapsed from
when the gateway receives the Join-request from the ED to when it receives the Join-accept from the NS. We
analyze the impact of using DANE for mutual authentication on the duration of the Join-request process. In
each scenario, the ED sent a Join-request every 10 seconds over a period of 7 hours. However, due to duty
cycle restrictions (1% in our region), not all join requests were successful.

Fig. 3.7 is the histogram of the duration of successful join requests in the baseline case where DANE is
not used. The average join request duration is around 0.412 seconds.

3.6.1 Using a Local DNS Resolver
In the first scenario, a resolver is installed separately on both the NS and the JS. Each server’s resolver
retrieves the TLSA RR of the other server, i.e., the server it needs to authenticate. We conducted mea-
surements both with and without caching enabled. Fig.3.8a presents the histogram of the duration of
successful join requests when a local DNS resolver without caching is used, resulting in increased delays,
with the average Join-request duration reaching approximately 1.037 seconds. After enabling caching on
both servers, with a TLSA RR TTL of 20 minutes, the average delay dropped to around 0.442 seconds, as

54

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Duration of Join request [s]

0

10

20

30

40

50

60

70

Jo
in

 R
eq

ue
st

s

Average = 0.412 seconds

Baseline

Figure 3.7: Duration of join requests [s] (Baseline).

shown in Fig.3.8b.
Figures 3.8a and 3.8b illustrate that using DANE for mutual authentication without caching introduces

significant delay, with the average Join-request durationmore than doubling, increasing from 0.412 seconds
in the baseline case to 1.037 seconds. However, enabling caching at the recursive resolver significantly
reduced latency, bringing the average Join-request duration down to 0.442 seconds.

3.6.2 Using Remote DNS Resolvers
Caching proved to be effective in reducing the latency introduced by DANE, even for remote resolvers.
Fig.3.8c presents the histogram of the duration of successful join requests when using Google’s public
DNS resolver '8.8.8.8', with the average Join-request duration around 0.489 seconds. Fig.3.8d shows the
duration of successful join requests when the resolver is located in Singapore, where the average Join-
request duration is approximately 0.887 seconds.

Figures 3.8c and 3.8d highlight the importance of caching in reducing the latency introduced by DANE.
The average Join-request duration in both cases (0.489 seconds for Google’s public DNS and 0.887 seconds
for the Singapore DNS resolver) is shorter than the average Join-request durationwhen using a local resolver
without caching.

3.7 Conclusion
In this chapter, we implemented the DANCE WG drafts to use DANE to perform mutual authentication
between a LoRaWAN NS and JS. The implementation showed that DANE could be used for authenticating
certificates by adding appropriate TLSA RRs in the DNS zone of the domain name whose certificate is to
be verified. The performance evaluation showed that the DNS resolution adds latency, which could be
overcome by enabling caching at the resolver level.

Mutual authentication between backend servers in IoT environments is essential to enhance the se-
curity of networks, allowing servers to verify the identity of other servers to which they are connecting.
By integrating DANE, the authentication model reduces the reliance on traditional PKIX mechanisms and
commercial CAs, mitigating the security risks associated with rogue certificates and compromised CAs,

55

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Duration of Join request [s]

0

20

40

60

80

100

120

Jo
in

 R
eq

ue
st

s

Average = 1.037 seconds

local-resolver_nocache

(a) Local resolver without caching.
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Duration of Join request [s]

0

50

100

150

200

250

Jo
in

 R
eq

ue
st

s

Average = 0.442 seconds

local-resolver_cache

(b) Local resolver with caching.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Duration of Join request [s]

0

50

100

150

200

250

300

350

Jo
in

 R
eq

ue
st

s

Average = 0.489 seconds

publicdns_Google

(c) Remote DNS resolver - Google.
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Duration of Join request [s]

0

20

40

60

80

100

120

140

160

Jo
in

 R
eq

ue
st

s
Average = 0.889 seconds

singaporedns

(d) Remote DNS resolver - Singapore.
Figure 3.8: Duration of Join Requests in different scenarios.

which are common vulnerabilities in traditional PKIX setups, while also reducing the costs associated with
using commercial CAs.

56

Chapter 4

LoRaDANCE: Using The DNS for Mutual
Authentication Without Pre-shared Keys

Contents
4.1 Introduction . 57

4.2 Prerequisite . 58

4.2.1 DNSSEC, DANE, & DANCE WG . 58

4.2.2 Key Elements of LoRaWAN OTAA . 59

4.3 LoRaDANCE . 61

4.4 Evaluation . 63

4.4.1 Join Process Duration . 64

4.4.2 Power Consumption . 64

4.5 Discussion . 64

4.6 Conclusion . 66

Chapter Overview
This chapter proposes LoRaDANCE, a security mechanism that enables a LoRaWAN End-Device (ED) to join
a LoRaWAN network while guaranteeing two two key aspects: first, the device does not need to pre-share
any secret keys, unlike in standard LoRaWAN, for example, LoRaWAN 1.0.x, which requires pre-sharing the
secret AppKey. Second, the ED and the Join Server (JS)mutually authenticate using the DNS-based Authen-
tication of Named Entities (DANE) protocol.

4.1 Introduction
Mutual authentication that does not rely on static pre-shared secret keys is paramount to enhancing the
security of communications. This form of authentication would be particularly beneficial for Internet of
Things (IoT) technologies, allowing IoT devices to mutually authenticate with their backend servers. These
technologies would also benefit from eliminating the need to pre-share secret keys. For example, in Lo-
RaWAN, when a LoRaWAN End-Device (ED) joins a LoRaWANnetwork, a secret key, namely the AppKey, must

57

be provisioned at the ED and the Join Server (JS) to be used during the join process to authenticate the Join-
request, encrypt the Join-accept, and derive the session keys [142]. A Join-request could not be completed
without having the AppKey shared in advance between the ED and the JS. Pre-sharing the AppKey, a se-
cret key, is risky as inadequate provisioning jeopardizes the security of the join process and any future
messages between the ED and its backend servers.

In this chapter, we propose and implement LoRaDANCE, amutual authenticationmechanism between
LoRaWAN EDs and their backend servers, which does not require pre-shared secret keys. LoRaDANCE uses
asymmetric cryptography to allow a LoRaWAN ED to join a network without having to pre-share any secret
keys with its backend servers. Instead, the ED and the JS each have a public/private key pair, and they use
the Elliptic-curve Diffie–Hellman (ECDH) key exchange mechanism to generate the same secret, which is
then used during the join process. In addition, the DNS-based Authentication of Named Entities (DANE)
protocol is used to enable mutual authentication between the ED and the JS where each one verifies the
identity of the other.

In Chapter 3, we used DANE to providemutual authentication between the LoRaWAN backend servers.
The work in [148] suggests a new rejoin mechanism in LoRaWAN that uses ECDH to refresh the secret root
keys periodically. The work in [154] suggests PK-OTAA, which uses ECDH for key exchange in LoRaWAN to
dynamically generate secret root keys without relying on pre-shared keys. Both works, however, do not
explicitly illustrate a method of authenticating the exchanged public keys. LoRaDANCE evades the use of
pre-shared keys and allows the authentication of public keys.

4.2 Prerequisite

4.2.1 DNSSEC, DANE, & DANCE WG
Enabling DNSSEC [174, 176, 175] allows DNS resolvers to verify that the DNS responses they receive from
DNS nameservers are authentic. DNSSEC-enabled zones contain some DNSSEC-specific Resource Record
(RR) types, which include: DNSSKEY, which contains a public key, RRSIG, which contains a digital signature,
and DS, which contains a hashed value of a DNSKEY RR of a child zone. DNSSEC uses an authentication
chain that starts at a trust anchor (usually the root nameserver) whose public key is known by all DNSSEC-
enabled resolvers. It descends along the DNS namespace, with every level vouching for the level below
it. DANE [111, 89] uses DNSSEC to bind X.509 digital certificates or raw public keys to domain names. The
main feature of DANE is the TLSA RR. See Figure 4.1.

_25._tcp.mail.example.com. IN TLSA 2 0 1 E8B54D0 ... 2F834C0

Port

Protocol Domain name

Certificate Usage field Matching Type fieldSelector field

Certificate Association Data
Figure 4.1: Example of a TLSA resource record.

When using raw public keys, the certificate usage DANE-EE(3) with selector SPKI(1) would be used [89].
See Chapter 1.

In the context of DANE, only TLS servers are thought to have an X.509 digital certificate or a raw public
key to be verified. The DANE Authentication for Network Clients Everywhere (DANCE) IETF working group
(WG) aims to extend the use of DANE to authenticate not exclusively TLS servers but also TLS clients. The
DANCE WG issued several drafts, most notably [114] that demonstrates using DANE to authenticate TLS

58

clients and [115] that defines a TLS extension that allows clients to indicate that they have a TLSA RR that
could be used to validate their certificate or public key.

4.2.2 Key Elements of LoRaWAN OTAA

The LoRaWAN backend servers are:
• The Network Server (NS): The NS verifies if devices are allowed in the network during the join
procedure and manages device identification and data rate regulation afterward.

• The Join Server (JS): The JS is responsible for the authorization of EDs to join the network and the
generation of session keys.

• The Application Server (AS): The AS receives and processes data sent by the EDs. It has the appli-
cation logic that end-users can interact with.

An ED joins a LoRaWAN network using Activation by Personalization (ABP) or Over-The-Air Activation
(OTAA). OTAA is the most secure method [142] and is the method we consider in this work. Before the join
procedure begins, a secret key and other identifiers should be provisioned on the ED and the backend
servers. The provisioned items are:

• DevEUI: a 64-bit unique Extended Unique Identifier in the IEEE EUI64 address space for each ED that
globally identifies the device.

• JoinEUI: a 64-bit unique Extended Unique Identifier in the IEEE EUI64 address space that globally
identifies a JS.

• AppKey: an AES-128 root (secret) key specific to each ED and is used by the ED and the JS to derive
the session keys.

The provisioning is done as follows:
• Provisioned on the ED: DevEUI, JoinEUI, and AppKey.
• Provisioned on the NS: DevEUI.
• Provisoned on the JS: DevEUI and AppKey.
The OTAA procedure requires having the AppKey, a secret key, provisioned on the ED and the JS. The

AppKey is involved in nearly all steps of the join process. It also serves as the basis for generating session
keys, namely NwkSKey and AppSKey, which are used later to authenticate and secure the communications
between the ED and its backend servers, respectively the NS and JS. Given the absence of a completely
risk-free method for pre-sharing the AppKey between the ED and JS, this remains a weak security link.

In our work, we remove the need to pre-share the AppKey by having it securely generated at the ED
and the JS. We also have the ED and the JS verify each other’s identities by mutually authenticating using
DANE.

59

End Device
ED private key
ED public key Network Server Join Server

JS private key
JS public key DNS

TLSA ED TLSA RR
TLSA JS TLSA RR

Join-request1

JoinEUI DevEUI DevNonce Signature8 8 2 64

ecdsa_sign(DevicePrivateKey, JoinEUI|DevEUI|DevNonce)

JoinReq = Join-request + Additional Parameters
2

3
The Server extracts the DevEUIfrom the Join-request and fetchesthe corresponding TLSA RR

Query for ED TLSA RR4
TLSA RR for End Device 5

DNSSEC verified

_lora-join.4.c.b.0.9.8.b.e.3.c.1.b.7.1.8.5.deveuis.iot.rd.nic.fr 1 IN TLSA 3 1 0 d3a289...f01b5d

DevEUI (reversed) Device Public KeyTrust Anchor
6The Server validates the signature ofthe Join-request with the ED Public Key

The Device is authenticated

7
The Server computes the sharedsecret (AppKey) using ECDH
AppKey = leftmost 16 bytes of
ecdh(JoinServerPrivateKey,

DevicePublicKey)

8
The Server creates the Join-acceptand encrypts it using the AppKeyand derives the session keys

[Join-accept]encrypted = aes128_encrypt(AppKey, JoinNonce|NetID|DevAddr|DLSettings|RXDelay|0x00_00_00_00)

Query for Join Server DNSSEC chain9
RRSIG / DNSKEY / DS resource records 10

Constructing the DNSSEC chain

Join Answer = Join-accept Frame + NwkSKey
11

DNSSEC chainJoin-accept Encrypted Payload Variable16

Join-accept Frame
12The Server splits the Join-acceptFrame into fragments

Send first fragment 13

Send next fragrment request14
Send next Join-accept fragment 15

Loop

16
The Device validates the DNSSEC Chainand extracts the Public Key of theServer, computes the shared secretand derives the same session keys.

The Server is authenticated
The Device is activated

Figure 4.2: Illustration of LoRaDANCE.
60

4.3 LoRaDANCE
In this section, we present LoRaDANCE, a mechanism that allows a LoRaWAN ED to join a LoRaWAN net-
work without the need to have a pre-shared AppKey or any other secret identifier between the ED and the
backend servers. Our method allows the ED to be activated and allows both the ED and the JS to generate
the session keys without the need to pre-share secret keys. LoRaDANCE also includes having the ED and
the JS perform a DANCE-inspired mutual authentication using DANE.

In LoRaDANCE, we use DANE to allow mutual authentication between the ED and the JS. However, we
do not use TLS or digital certificates. The ED and the JS each have a public/private key pair. Each one
publishes a TLSA RR containing their raw public key. To mutually authenticate, each should receive the
TLSA RR corresponding to the other’s public key. Given that the ED does not have Internet access, the JS
itself sends its TLSA RR along with the DNSSEC trust chain that allows the ED to verify it.

The JS TLSA RR is published in the joineuis.iot.rd.nic.fr zone, which acts as a placeholder for LoRa
Alliance’s joineuis.lorawan.net. Meanwhile, the ED TLSA RR is published in the deveuis.iot.rd.nic.fr
zone. The hierarchical structure of DevEUIs following the EUI64 standard allows for delegating parts of the
deveuis zone tomanufacturers. The TLSA optionsmust be DANE-EE(3) with selector SPKI(1) (see Chapter 1)
and matching type Full(0), as in our case, the TLSA RRs contain the raw public keys.

In addition, the provisioning is done as follows:
• Provisioned on the ED: DevEUI, JoinEUI and ED private key.
• Provisioned on the NS: DevEUI.
• Provisoned on the JS: DevEUI and JS private key.
LoRaDANCE is presented in Figure 4.2 and is as follows:

1 The ED constructs and sends a Join-request which includes the JoinEUI, DevEUI, and DevNonce. Instead of
adding a MIC, the ED signs the Join-request using the Elliptic Curve Digital Signature Algorithm (ECDSA) and
adds the digital signature to the Join-request. The Join-request is received by the gateway, which forwards it
to the NS.
2 The NS receives the Join-request and verifies if it is the home NS of the ED using the DevEUI. If so, the NS
queries DNS to get the IP address of the JS associated with the ED using the JoinEUI. The NS then forwards
the JoinReq comprised of the PHYPayload of the Join-request and additional parameters to the JS.
3 The JS receives the JoinReq and extracts the DevEUI.
4 The JS sends a DNS query to obtain the ED TLSA RR based on the DevEUI extracted from the Join-request
in Step 3.
5 The JS receives the DNSSEC-verified ED TLSA RR. The Certificate Association Data of the received RR
contains the public key of the ED.
6 The JS verifies the signature received in the Join-request using the public key of the ED. After successful
validation, the authentication of the ED is complete.

61

7 The JS derives the AppKey, taking the leftmost 16 bytes of the result from the ECDH operation between
the private key of the JS and the public key of the ED.
8 The JS constructs a Join-accept which it encrypts using the AppKey and derives the session keysNwkSKey
and AppSKey. We add 4 bytes of padding ('0x00_00_00_00') to the 12-byte data to make it 16 bytes long,
ensuring it meets the input size requirement for AES-128 encryption.
9 & 10 The JS sends multiple queries to construct the DNSSEC chain that verifies –its own– JS TLSA RR.
Choosing an intermediate DNSSEC trust anchor between the zone to be verified and the root nameserver
lets us select the DNSSEC algorithm, such as ECDSAP256SHA256 (Algorithm 13). Otherwise, we would be
limited to RSA-based algorithms used in the root zone and common TLDs, which have larger key and
signature sizes. In our case, we use iot.rd.nic.fr as the trust anchor. The JS constructs the DNSSEC
chain as follows:

• The JS queries DNS and retrieves its own TLSA RR and its associated RRSIG RR.
• The JS then queries DNS and retrieves the Start of Authority (SoA) RR to determine the authoritative
zone, joineuis.iot.rd.nic.fr in our case.

• Afterwards, the JS queries DNS and retrieves the DNSKEY RRs of the authoritative zone and their
associated RRSIG RR.

• The JS then queries DNS and retrieves the Delegation Signer (DS) RR of the authoritative zone and
its associated RRSIG RR.

• The last three steps are repeated until the trust anchor is reached.
• Finally, the JS queries DNS and retrieves the DNSKEY RRs of the trust anchor, iot.rd.nic.fr in our
case.

11 The JS sends the Join Answer composed of the Join-accept Frame = Join-accept encrypted payload + the
DNSSEC chain encoded in Concise Binary Object Representation (CBOR) [140] and the NwkSKey to the NS.
12 The NS splits the Join-accept Frame into fragments of predetermined size and indexes the fragments.
When deployed, however, the fragment size would be variable and must adapt according to the data rate
in the network.
13 The NS sends the first fragment to the ED.
14 After receiving the fragment, the ED sends a Next Fragment Request, which triggers the sending of the
next fragment by the NS.
15 Step 14 repeats until the JS signals that the current fragment is the last fragment.
16 The ED reassembles the Join-accept Frame, verifies that the nameassociatedwith the JS TLSA RRmatches
the JoinEUI from the Join-request, validates theDNSSEC chain, and then extracts the Public Key of the server.
After that, the server authentication is complete, and the ED is activated.

62

Creating Join-request↔ Receiving last Join-accept fragment
DNSSEC Validation

Secret and session keys derivation
Total Join Process Duration

(a) Baseline. (b) 100 bytes.

(c) 150 bytes. (d) 200 bytes.
Figure 4.3: Join process duration of baseline LoRaWAN 1.0.x and LoRaDANCE with fragment size= 100, 150, and 200 bytes.

4.4 Evaluation

In this section, we evaluate the performance of LoRaDANCE and compare it to the standard LoRaWAN 1.0.x,
acting as our baseline, focusing on two aspects: the duration of the join process and the power consump-
tion during the join process. The ED consists of a NUCLEO-L476RG development board equipped with a
SX1276MB1MAS LoRa shield. We utilize RIOT OS [57] on the ED and Chirpstack for the backend servers.

63

4.4.1 Join Process Duration
We first compare the duration of the Join process, starting when the ED sends the Join-request and ending
when the Join-accept is received and processed, i.e., when the ED is activated. We test several scenarios
where the device sends 100 Join-requests using LoRaDANCE, varying the fragment sizes between 100, 150,
and 200 bytes. These measurements are compared against the baseline case. The results are presented
in Figure 4.3.

Figure 4.3a shows the duration of 100 Join-requests for the baseline case. Figures 4.3b, 4.3c, and 4.3d
illustrate the Join-request duration when using LoRaDANCE with fragment sizes of 100, 150, and 200 bytes,
respectively. In the case of LoRaDANCE, in addition to measuring the total duration of the Join-requests,
we also visualize the individual components of this duration and use a broken y-axis to emphasize better
the lower values we obtained. Specifically, we illustrate the following:

• The time between creating the Join-request and receiving the last fragment of the Join-accept from
the NS.

• The time the ED takes to validate the DNSSEC chain.
• The time the ED takes to derive the shared secret and session keys.
The results indicate an increase in the duration of the join process when LoRaDANCE is used. Specif-

ically, the total join process duration increases from an average of 5.18 seconds in the baseline case to
43.48 seconds with a 100-byte fragment size, 27.98 seconds with a 150-byte fragment size, and 22.99 sec-
onds with a 200-byte fragment size. This increase is primarily due to the fragmentation and transmission
of the Join-accept message and its reassembly at the ED. Conversely, the DNSSEC chain validation and
key derivation add minimal overhead. It is also observed that increasing the fragment size significantly
decreases the incurred delay, as larger fragments reduce the number of transmissions required.
4.4.2 Power Consumption
We measure the computation power consumed by the NUCLEO-L476RG board during the join process,
testing several scenarios where the device sends a join-request using LoRaDANCE with fragment sizes of
100, 150, and 200 bytes. These measurements are compared against the baseline case. The results are
presented in Figure 4.4.

Consistent with the results observed for the total duration of the join process, LoRaDANCE appears
to increase the overall power consumption. In the case of LoRaDANCE, the most power-intensive phases
are sending the join-request, verifying the DNSSEC chain, and configuring the ED. However, these power
spikes occur over short periods of time. On the other hand, the ED consumes a moderately low amount of
power (around 22mW) for the duration of receiving and reassembling the fragments of the Join-accept. We
observed earlier that increasing the fragment size significantly decreases the delay caused by the trans-
mission of fragments, as larger fragments reduce the number of transmissions required. This extends
to the overall power consumption, where shorter transmission durations consume less power. For the
baseline case, the most power-intensive phases are, as expected, sending the Join-request and receiving
the Join-accept.

4.5 Discussion
The practicality of LoRaDANCE The overhead introduced by LoRaDANCE is primarily due to the
fragmentation and transmission of the Join-accept message and its reassembly at the ED. For security-

64

100 bytes
150 bytes

200 bytes
Baseline

5 10 15 20 25 30 35 40 45 50

25

50

Po
w

er
[m

W
]

Send Join-request

Receive Join-accept Fragments

Verify DNSSEC chain and configure ED

5 10 15 20 25 30 35 40 45 50

25

50

Po
w

er
[m

W
]

5 10 15 20 25 30 35 40 45 50

25

50

Po
w

er
[m

W
]

5 10 15 20 25 30 35 40 45 50

25

50

Po
w

er
[m

W
]

Send Join-request
Receive and Process Join-accept

Time [seconds]
Figure 4.4: Power consumption during the join process for the baseline LoRaWAN 1.0.x and Lo-RaDANCE with fragment size = 100, 150, and 200 bytes.
critical applications, the increased resource consumption is an acceptable trade-off for enhanced security.
Conversely, in resource-constrained environments where power efficiency and quick join times are crucial,
further optimizations of LoRaDANCE may be necessary. Finally, it should be noted that the join process
does not occur frequently in typical LoRaWAN networks, which mitigates the impact of the increased join
process duration and power consumption.

Extending LoRaDANCE to LoRaWAN1.1 LoRaDANCE can be easily extended to LoRaWAN 1.1, where,
in addition to the AppKey, which is used to generate the AppSKey session key, the secretNwkKey is employed

65

to generate three additional session keys: FNwkSIntKey, SNwkSIntKey, and NwkSEncKey [37]. Within the
context of LoRaDANCE, the NwkKey could be derived by taking the rightmost 16 bytes of the result from
the ECDH operation.
Considerations when Choosing a DNSSEC trust anchor When selecting a DNSSEC trust anchor
other than the root nameservers, it is crucial to choose a trustworthy entity (e.g., the LoRa Alliance). How-
ever, it’s important to note that using a new trust anchor may prevent the use of Canonical Name (CNAME)
records, as these records could redirect to domain names with trust anchors still tied to the root name-
servers.

4.6 Conclusion
In this chapter, we presented LoRaDANCE, a novel mechanism that leverages DANE and asymmetric cryp-
tography to allow a LoRaWAN End Device to join the network without the need to pre-share any secret keys
with the backend servers while mutually authenticating with the Join Server. We implemented and tested
our solution on real devices. While LoRaDANCE introduces an overhead in terms of the join process du-
ration and consumed power, the trade-offs are acceptable, given the security benefits. Looking forward,
we plan to explore optimizations to further reduce overhead and extend the applicability of LoRaDANCE
to more constrained environments.

66

Chapter 5

IoT Backend Servers: Studying IoT Domain
Names

Contents
5.1 Introduction . 68

5.2 Motivation . 68

5.3 Background . 69

5.3.1 IoT Domain Names . 69

5.3.2 Domain Name Classification . 70

5.3.3 Brief Overview of Machine Learning . 70

5.3.4 Machine Learning Models Overview . 71

5.3.5 Word2vec for Word Embedding . 72

5.4 Data Collection . 73

5.4.1 IoT Dataset . 73

5.4.2 Non-IoT datasets . 74

5.5 Statistical Study . 75

5.6 DNS Analysis . 77

5.7 Classifying IoT and non-IoT domain names: Preprocessing and Word
Embedding . 79

5.7.1 Data Preprocessing . 79

5.7.2 Word2vec: Real-Valued Vector Representation of Domain Names 81

5.8 Results: Domain Name Classification . 81

5.8.1 Performance Evaluation . 82

5.8.2 Cross Validation . 85

5.8.3 Ablation Test . 86

5.9 Discussion . 88

5.10 Conclusion . 88

67

Chapter Overview
This chapter provides an in-depth analysis of IoT domain names, specifically those associated with IoT
backend servers. These servers are typically contacted by IoT devices to relay data, receive commands,
or download software updates. The devices are usually pre-configured with the domain names of these
servers, which are resolved through the Domain Name System (DNS). The chapter examines the differ-
ences between IoT and non-IoT domain names, beginning with the compilation of an IoT dataset based on
previous studies and the preparation of a corresponding non-IoT dataset. The study is conducted in three
phases. The first phase focuses on analyzing the composition and statistical properties of the domain
names. The second phase involves a DNS analysis, comparing how DNS zones for IoT domain names are
structured compared to those of non-IoT domain names. Finally, the third phase involves using machine
learning to classify the two types of domain names, identifying inherent differences between them.

5.1 Introduction
IoT devices are rarely standalone and often contact dedicated backend servers [177]. Interacting with
these backend servers is essential for the functioning and maintenance of these devices. To reach one of
its backend servers, an IoT device is usually equippedwith the domain name of this server which it resolves
using the Domain Name System (DNS). Afterwards, a connection can be established and the device could
for example, relay data to the server or receive commands and firmware updates.

We aim to gain a better understanding of IoT backend servers using their domain names. For simplicity,
we refer to these domain names as IoT domain names. We conduct a three-phase study over IoT domain
names and compare them to non-IoT domain names, i.e., domain names of servers catering to non-IoT
devices and human users.

The study will allow us to investigate the structure of IoT domain names and if they differ from their
non-IoT counter parts, allowing us to determine any patterns or identifiers that may appear in one class
of domain names but not in the other. We will also analyze the DNS zones of IoT and non-IoT domain
names. A DNS analysis gives an insight into the DNS practices in each class of domain names and reveals
information regarding, for example, the security and dynamism of the average DNS zone from each class
of domain names. The final phase of this study involves using machine learning to classify IoT and non-IoT
domain names. This will allow detecting the subtle differences between IoT and non-IoT domain names,
differences that may not be traceable visually or using by studying the statistical properties.

We compile two datasets of domain names. First, using packet captures from 12 past studies that
included testbeds with real IoT devices, we construct a dataset of IoT domain names. We call this dataset
the IoT dataset. Second, we use two datasets of non-IoT domain names. Previous works [195, 165, 199, 169]
use lists of top-visited websites as a negative class in domain name classification problems. We also use
two top lists, namely Cisco Umbrella 1 Million [74] and Tranco Top 1M [190, 132].

5.2 Motivation
In this chapter, we do not study specific IoT technologies or certain properties of these technologies. In-
stead, This chapter studies IoT from a new perspective by studying the domain names of the servers con-
tacted by IoT devices. We aim to investigate the differences between the domain names of these servers
and the domain names of servers contacted by non-IoT devices and human users.

68

We first study the structure of IoT and non-IoT domain names. This includes studying the composition
and the statistical properties of these domain names and drawing conclusions about the patterns and
particularities of the average domain name of each class. This phase will clarify if the choice of domain
names depends on the types of devices the underlying server caters to. In addition, we will be able to
extrapolate any possible current conventions in naming IoT domain names and if any special attention is
given when assigning domain names to such servers. This could be helpful, for example, to model and
generate IoT domain names that align with the average domain name of that type—for instance, aiding
protocol design such as name compression for constrained devices[140] and in data augmentation in the
context of machine learning.

Second, we study the DNS properties of the IoT and non-IoT domain names. This includes resolving
several DNS resource records (RRs) for each domain name of each dataset and calculating for each RR
the percentage of domain names that have it, the average resolution time, the average Time-To-Live (TTL),
which tells the resolver how long to cache a query before requesting a new one, and the average response
size. This study will help identify how the DNS zones of each class of domain names are set up. We will
be able, for example, to identify the dominant RRs used in each class, whether security-related RRs such
as Domain Name System Security Extensions (DNSSEC)-related and Certification Authority Authorization
(CAA) RRs appear in IoT DNS zones, how static IoT DNS zones are by comparing their TTL values, and
the average size of DNS responses from these zones are to indicate if IoT zones, belonging generally to
constrained devices, have smaller DNS responses to enhance performance.

The third phase of our study evaluates the feasibility of classifying between the two classes of domain
names based solely on the domain name. We investigate if popular machine learning models often used
in domain name classification problems can successfully classify IoT and non-IoT domain names based on
their inherent differences. This phase of our study provides a deeper insight into the differences between
the two classes of domain names. This includes differences that are not detectable by visually inspecting
or statistically studying the domain names. We can also conclude through this study the parts of the
domain name that are most indicative of class, i.e., which section of the domain name holds the most
information and therefore differentiates one class from the other. Besides drawing conclusions about
structural differences between the two classes, successfully classifying IoT and non-IoT domain names
using machine learning allows the detection of possible IoT traffic in mixed traffic containing traffic of
both classes. This capability could aid in detecting outliers in IoT networks. For example, non-IoT traffic in
networks consisting solely of IoT devices could be detected.

5.3 Background

5.3.1 IoT Domain Names
IoT devices usually contact servers on the Internet to relay information about the physical world or to
receive commands and firmware updates [177]. These devices rely on domain names as an indirection
mechanism to connect to IP endpoints, simplifying maintenance. This allows, for example, a transparent
change of server addresses, as only the mapping in the DNS would need to be changed. The IoT devices
are typically pre-configured with the domain names of the servers they might need to contact, and they
obtain the addresses of these servers by resolving the domain names via DNS. Beyond address resolution,
future IoT devices might also use DNS to identify the service bindings of these servers, e.g., whether they
use the TCP-based HTTP/2, the QUIC-based HTTP/3, or other services such as CoAP, using SVCB (Service
Binding) resource records [181, 41].

The domain names of such servers may exhibit distinct construction characteristics influenced by var-
69

ious factors. An IoT backend server, for example, might have a name that correlates with its high-level
function. For example, a collection of IP cameras might have a backend server whose domain name is
cam.example.com. Moreover, large IoT backend service providers tend to adopt a naming convention for
their servers, which follows the pattern below [177]:

<subdomain>.<region>.<second-level-domain>,
where <subdomain> could be the name of the IoT service or the protocol name, <region> refers to the loca-
tion of the server, and <second-level-domain> could be the second-level domain of the service provider
or a name related to the IoT service.

Last, being involved in machine-to-machine (M2M) communications, some IoT domain names may
containmachine-friendly character sequences that do not prioritize legibility ormemorability and are chal-
lenging for humans to comprehend.

Meanwhile, non-IoT domain names do not follow the same patterns. Since servers with such domain
names serve a wide range of devices and human users, the legibility and memorability of their domain
names are prioritized.

5.3.2 Domain Name Classification
Domain name classification leverages machine learning techniques to classify two or more categories of
domain names. It enables, for example, efficiently detecting phishing or domain names generated by
domain generation algorithms (DGAs) [88, 165, 195, 69]. Phishing domain names are used by malicious
servers that pose as legitimate ones and lure users into providing sensitive information and credentials. On
the other hand, DGAs run on malware-infected devices and generate domain names to help the infected
devices contact the Command & Control (C&C) servers. These domain name classification techniques
could also be applied in IoT environments, aiding in classifying IoT and non-IoT domain names.

5.3.3 Brief Overview of Machine Learning
Supervisedmachine learning is a subset of artificial intelligence that allowsmodels to improve their perfor-
mance by learning from data. Supervised machine learning involves having a labeled dataset with correct
(target) values. This dataset is split into training and testing datasets. The models are trained using the
training dataset and their performance is evaluated using the testing dataset. In unsupervised machine
learning, the datasets are not labeled. Instead, the models identify patterns and relationships in the data.
Reinforcement learning is a third type of machine learning that trains an agent. The agent interacts with
its environment and calculates a reward based on its actions. The agent aims to maximize the reward.
Supervised machine learning techniques could be useful in the context of classification between IoT and
non-IoT domain names.

Machine learning models have demonstrated their power in classification, be it binary (two classes)
or multi-class. For example, they have been used for domain name classification to detect phishing at-
tacks [88, 165, 195, 69]. To achieve this, labeled datasets containing phishing and benign domain names
are used to train the models.

The machine learning models usually expect numerical data which necessitates obtaining the real-
valued vector representation of the domain names. Depending on themethodused, the real-valued vector
representation can capture the semantic information and context of words in the textual data.

There are several options to achieve this. One way is through Natural Language Processing (NLP).
NLP methods aim to obtain the real-valued vector representation of the textual data. This includes, for

70

example, character level embedding [186, 199, 165], which obtains a fixed-size real-valued vector repre-
sentation of each character. Another NLP method is the Term Frequency-Inverse Document Frequency
(TF-IDF), which assigns an importance value to each element of the text based on its frequency of appear-
ance [169]. A different way of processing textual data is feature extraction. Feature extraction methods
study the text and try to extract properties (e.g., domain name length, number of hyphens, number of
dots) and use those properties as a real-valued vector representation of the textual data [169, 67].

5.3.4 Machine Learning Models Overview

We use supervisedmachine learning techniques to perform the binary classification between IoT and non-
IoT domain names. The following is a brief overview of the sixmodels we use, which can be used for binary
and multi-class classification, except Logistic Regression, which is used for binary classification but can be
extended to perform multi-class classification.

Naïve Bayes (NB):

NB [170] is a parametric classifier based on Bayes’s theorem. It is referred to as naïve since it assumes
the mutual independence of features. This means that the value of one feature does not affect the value
of any other feature in the input vector. While this assumption might not hold in real-world scenarios, it
simplifies computation.

Logistic Regression (LR):

LR [105] is a parametric classifier. It is referred to as logistic since it uses the logistic function (sigmoid
function) to map a linear combination of features to a probability score.

K-Nearest Neighbors (KNN):

KNN [77] is a non-parametric and instance-based classifier. It is a simple model that does not involve the
traditional training and testing phases. Instead, it assumes that similar data points are placed closer to
each other, so the class of a particular data point is similar to the class of itsKnearest neighbors.

Support Vector Machine (SVM):

SVM [106] is a parametric classifier whose primary objective is to find a hyperplane that best separates the
data points of different classes. The closest points to the hyperplane from the different classes are called
support vectors.

Decision Tree (DT):

DT [120] is a non-parametric classifier. A DT is a tree-like structure where every node represents a feature,
every branch is a decision, and every leaf node is a class. DTs are trained through a process known as
recursive splitting and the goal is to have most features represented as nodes with their branches and
leaf nodes. A downside of DTs is their tendency to experience overfitting as the size of the dataset grows.

71

Goal: Betterunderstanding ofIoT domain names

Datacollection

IoTFinder YourThings MonIoTr
IoT Domain Names

USC/ISIANT projectIoTLS Edge-IIoTset
IoT NetworkIntrusionDatasetIoT Sentinel UNSW IoTattack/traffictraces

TrancoCiscoUmbrella1 Million

Non-IoT Domain Names

StatisticalAnalysis

DNSAnalysis

Classificationwith ML

Discussionand Conclusion

Figure 5.1: Data collection and phases of this study.
Random Forest (RF):

RF [65] is a non-parametric classifier. It is referred to as an ensemble method because it leverages the
power of a group (an ensemble) of individual Decision Trees to improve predictive accuracy and reduce
overfitting.

5.3.5 Word2vec for Word Embedding
In this chapter, we use a Word2vec model to obtain the real-valued vector representation of the domain
names. In the context of NLP, this type of representation is known as a word embedding. Word2vec [147,
146] is one of several word embedding techniques, and it uses a shallow neural network to convert each
word to a vector of real numbers. Word2vec captures semantic relationships between words by learning
from large amounts of text data, and the resulting real-valued vectors depend on the context in which each
word appears within the text. Two possible architectures for Word2vec exist: Continuous Bag-of-Words
(CBOW) and Skip-gram. CBOW estimates the vector representation of a target word based on the context
(i.e., surrounding words) of this word. The number of surrounding words considered within the context is
specified by a window size. Two words frequently appearing together in similar contexts within the text will
have vector representations that are geometrically close to each other in the vector space. Consequently,
words that do not appear regularly together in the text are assigned vector representations that are distant
geometrically. For Skip-gram, the target word is used to predict the surrounding context words within a
specified window size. Between CBOW and Skip-gram, we chose to go with CBOW as it is less expensive
computationally and faster to train [146].

In the following sections, we demonstrate the different phases of our study, the statistical analysis, DNS
analysis, and the classification between IoT and non-IoT domain names using machine learning. Figure 5.1
summarizes our steps. We first discuss how the datawere collected to construct the lists of IoT and non-IoT

72

domain names.

5.4 Data Collection
In our analysis, we use two categories of domain name datasets. The first is the IoT dataset, which includes
a list of domain names of servers contacted by IoT devices. The second category must contain domain
names of servers that cater to generic devices and human users, namely non-IoT domain names. For this
purpose, we use two lists of top-visited websites, the Cisco Umbrella 1 Million [74] and Tranco [190, 132].

5.4.1 IoT Dataset
The IoT dataset should contain domain names of servers on the Internet contacted by IoT devices, e.g., IoT
backend servers that provide services to IoT devices such as a server that saves the footage from IP cam-
eras or servers from which IoT devices receive commands and software updates. This list may also in-
clude domain names of servers that are not IoT-specific but are nevertheless contacted by IoT devices.
To construct the IoT dataset, we used 12 datasets from previous studies: IoTFinder [162], YourThings [40],
MonIoTr [173], IoTLS [161], three datasets from the USC/ISI ANT project [43, 44, 42], Edge-IIoTset [93], IoT
Sentinel [145], IoT Network Intrusion Dataset [126], UNSW IoT traffic traces [184], and UNSW IoT attack
traces [101]. These datasets contain packet captures collected in testbeds that included real IoT devices.
Each dataset is available as a set of PCAP files, including DNS messages sent from and received by the
devices. Table 5.1 presents the devices used in each testbed, and below is a brief overview of the studies:

• IoTFinder [162]: IoTFinder is a multi-label classifier for detecting IoT devices that uses passively col-
lected DNS traffic. The data were collected between August 1, 2019, and September 30, 2019.

• YourThings [40]: A study of home-based IoT devices to assess their security properties. The data
were collected between April 10 and April 19, 2018.

• MonIoTr [173]: A study of information exposed in the traffic of consumer IoT devices. The data were
collected between March 28 and May 8, 2019, and on September 1, 2019.

• IoTLS [161]: A study about the use of TLS in consumer IoT devices. The data were collected between
January 2018 and March 2020.

• USC/ISI ANT project [43, 44, 42]: The ANT Lab is an Internet research group at the University of
Southern California (USC) that has published several datasets related to various network topics,
e.g., traffic, outage, and DNS. We used three datasets from the USC/ISI ANT project. Two datasets
contain the bootup traces of several IoT devices. The third dataset contains traffic observed in an
IoT network of several devices over ten days.

• Edge-IIoTset [93]: An IoT traffic dataset that includes benign and attack traffic. The benign traffic
we used in this chapter was collected between November 21, 2021, and January 10, 2022.

• IoT SENTINEL [145]: IoT SENTINEL is a security system that identifies devices present in the network
andmonitors traffic from vulnerable ones. The traffic was collected during the setup of each device.

• IoT Network Intrusion Dataset [126]: An IoT traffic dataset that includes benign and attack traffic.
We used the benign traffic in this chapter.

73

Table 5.1: The IoT devices in the datasets used in this study
IoTFinder & YourThings Nest Camera D-Link Mov Sensor Xiaomi Cam Smartlife Bulb Soil Moisture Sensor Amazon EchoEcho Dot Gen3 Nest Guard Echo Dot Xiaomi Cleaner Smartlife Remote Sound Sensor August CamAmazon Echo Gen1 Nest Protect Echo Plus Xiaomi Hub Smartthings Hub Stepper Motor Awair air monitorAmazon Fire TV Nest Thermostat Echo Spot Xiaomi Rice Cooker Switchbot Hub Temperature Sensor Belkin CameraAndroid Tablet Netgear Arlo Camera Fire TV Xiaomi Strip TP-Link Bulb Ultrasonic Sensor Wemo Motion SensorApple HomePod Nintendo Switch Flux Bulb Yi Cam TP-Link Plug Water Level Sensor Belkin SwitchApple TV (4thGen) Nvidia Shield GE Microwave ZModo Doorbell Wemo Plug IoT SENTINEL Blipcare BP MeterAugust Door Cam Philips Hue Google Home IoTLS Wink Hub 2 D-Link Home Hub Canary CameraAVTech IP Cam Piper NV Google Home Mini Amazon Cloudcam Yi Camera D-link Day Camera DropcamBelkin Netcam Play Station 4 Honeywell T-stat Amazon Echo Dot Zmodo Doorbell D-Link Door Sensor Google ChromecastBelkin Crockpot Rachio 3 Insteon Hub Amazon Echo Dot 3 ISI D-link HD IP Camera Hello BarbieBelkin WeMo Link Ring Doorbell Invoke with Cortana Amazon Echo Plus Amazon Dash Button D-link Motion Sensor HP PrinterWemo Motion Sensor Roku 4 Lefun Cam Amazon Echo Spot Amazon Echo Dot D-link Siren iHome PowerPlugBelkin WeMo Switch Roku TV LG TV Amcrest Camera Amazon Fire TV D-link Smart Plug LiFX BulbBose SoundTouch 10 Roomba Lightify Hub Apple HomePod Amcrest IP Cam D-Link Water Sensor NEST Smoke SensorCanary Samsung Hub Luohe Cam Apple TV Belkin SmartPlug Edimax Cam Netatmo CameraCaseta Wireless Hub Samsung Smart TV Magichome Strip Behmor Brewer D-Link IP Cam Edimax Smart Plug Netatmo stationChamberlain Opener Securifi Almond Microseven Cam Blink Camera Dyson Purifier Edimax Smart Plug 2 Phillip Hue LightbulbChinese Webcam Sonos Nest T-stat Blink Hub Foscam IP Cam Ednet Cam Pixstart photo frameD-Link DCS-5009L Sonos Beam Netatmo Weather D-Link Camera Foscam IP Cam 2 Ednet Gateway Ring Door BellFacebook Portal TP-Link WiFi Bulb Philips Bulb Fire TV Google Speaker Fitbit Aria Samsung Smart CamGoogle Home Hub TP-Link WiFi Plug Philips Hue Hub GE Microwave HP Envy 4500 Printer Homematic switch Smart ThingsGoogle Home Mini Ubuntu Desktop Ring Doorbell Google Home Mini Philips Hue Lightify Gateway TP-Link CameraGoogle OnHub Wink Hub Roku TV Harman Invoke Renpho Humidifier MAX! Gateway TP-Link PlugGoogle Home Wink Hub 2 Samsung Dryer Insteon Hub Samsung IP Cam Philips Hue Bridge Triby SpeakerHarman Invoke Withings Home Samsung Fridge LG Dishwasher Tenvis IP Cam Philips Hue Switch Withings MonitorInsteon Hub Xbox One X Samsung TV LG TV TPLink Smart Bulb Smarter iKettle Withings ScaleiPad MonIoTr Samsung Washer Meross Dooropener TPLink Smart Plug Smarter Coffee Withings sleep sensoriPhone Allure with Alexa Sengled Hub Nest Thermostat Wansview IP Cam TP-Link Smart Plug Amazon EchoKoogeek Lightbulb Amazon Cloud Cam Smarter Brewer Philips Hub Wyze IP Cam TP-Link Smart Plug 2 Chromecast UltraLG WebOS TV Amcrest Cam Smarter iKettle Ring Doorbell Edge-IIoTset WeMo Insight Switch iHome Smart plugLIFX Virtual Bulb Anova Sousvide Smart Things Hub Roku TV DC Motor WeMo Bridge LiFX bulbHarmony Hub Apple TV TP-Link Bulb Samsung Dryer Flame Sensor Wemo Switch Netatmo cameraLogitech Logi Circle Behmor Brewer TP-Link Plug Samsung Fridge Heart Rate Sensor Withings Scale Phillips Hue bulbVeraLite controller Blink Cam Wansview Cam Samsung TV Humidity Sensor Kang Samsung smartcamMy Cloud EX2 Ultra Blink Hub WeMo Plug Samsung Washer IR Receiver Sensor EZVIZ WiFi Camera TP-Link smart plugNest Bell Bosiwo Cam WiMaker Camera Sengled Hub pH Sensor SKT NUGU speaker WeMo motionNest Cam IQ D-Link Cam Wink 2 Hub Smarter iKettle Servo Motor UNSW\Attack WeMo Switch

• UNSW IoT traffic traces [184]: A study about the classification of IoT devices in Smart Home envi-
ronments. The traffic was collected between October 2016 and April 2017.

• UNSW IoT attack traces [101]: A study about detecting volumetric attacks against IoT devices and
the dataset includes benign and attack traffic. The traffic was collected for 16 days.

We filtered the PCAP files and extracted the unique DNS responses received by each device. Some
datasets also contained captures from generic non-IoT devices such as desktop PCs, smartphones, or
gaming consoles. These devices are shaded in Table 5.1, and we removed their packet captures. Finally,
we extracted the queried domain names from the resulting DNS responses. The number of unique IoT
domain names obtained from each dataset is presented in Figure 5.2. The resulting IoT dataset contained
4145 unique domain names.

5.4.2 Non-IoT datasets
The non-IoT dataset should contain domain names of servers used by generic, non-IoT devices or those
used by humans directly. For that purpose, we use two lists of top-visited websites as non-IoT datasets:

• Cisco Umbrella 1 Million [74], which we refer to as the Cisco dataset, is a daily published list of
one million websites. Any domain name could be included in the list. The ranking of each domain
name is based on the number of unique client IPs that visited it [74]. The list for our evaluation was
gathered on July 15, 2024.

• Tranco [190], which we refer to as the Tranco dataset, is a research-oriented list of one million do-
main names. The ranking of each domain name is based on its average rank over the past 30 days
from four other popular domain name lists [132]. The Tranco list for our evaluation was gathered
on July 15, 2024, and thus covers the period from June 15 to July 14, 2024.

74

IoTF
inde

r
Your

Thin
gs
Mon

IoTr IoTL
S

USC/
ISI A

NT p
rojec

t

Edge
-IIoT

set

IoT S
ENTI

NEL

Netw
ork I

ntru
sionUNS

W

UNS
W At

tack

1,114

1,459

712
532

232
22

167
27 137

1,340

Dom
ain

nam
es[

#]

Figure 5.2: The number of unique IoT domain names extracted from each dataset.

Cisco Tranco IoT
Dataset

0

50

100

150

200

250

N
a
m

e
le

n
g
th

s
[c

h
a
ra

ct
er

s]

(a) Name lengths.
Cisco Tranco IoT

Dataset

0

10

20

30

40

50
N

u
m

b
er

o
f

la
b

el
s

p
er

n
a
m

e
[#

]
PDF trace

Minimum

Maximum

Mean

Quartiles
and Median

(b) Number of labels.
Figure 5.3: Violin plots for name properties found for each domain name in our datasets.
Such top-lists are usually used in research, especially in domain name classification problems [195, 165,

199, 169]. Some IoT domain names might appear in the top-visited websites lists, and we can account for
that by removing these domain names from the Cisco and Tranco datasets.

5.5 Statistical Study
We perform a statistical analysis of the domain name lengths and number of labels in each dataset, for
which the results can be seen in the violin plots in Figure 5.3. Violin plots are similar to box plots, showing
key statistical properties. However, they also estimate the probability density function (PDF) as a trace that
forms the “body” of the “violins” around the properties.

The violin plots allow us to easily spot a similarity between domain names in the IoT and Cisco datasets
regarding domain name length and number of labels per domain. This is due to the way each dataset is
constructed. The two datasets contain domain names as observed in the DNS requests and are, therefore,
more representative. The Tranco dataset, on the other hand, is different from the others. The average
Tranco domain name has fewer characters and labels than the average domain name from the other
datasets. The Tranco dataset mainly contains second-level domains in the form of domain.tld, while the

75

com tcp 0
local f e net

homekit 1

in-addr org 8 d
arpa t

ness
us

nest c 5
udp

others

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e

F
re

q
u
e
n
c
y

0.08 0.08 0.08 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.54

(a) IoT dataset

com net
www org

googlev
ideo ir co io api

sharep
oint

cdn

amazonaws
prod uk fna

mx1
mx2

fbcdn cn gvt1
others

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e

F
re

q
u
e
n
c
y

0.19
0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.66

(b) Cisco.

com net cn ru org co jp top br de uk in xyz io gov it nl fr pl
edu

others

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e

F
re

q
u
e
n
c
y

0.22

0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59

(c) Tranco.
Figure 5.4: Violin plots for name properties found for each domain name in our datasets

IoT and Cisco datasets do not have that limitation.
Moreover, it is observed that IoT domain names do not adhere to the restriction imposed by RFC

1035 [28], which limits the maximum domain name size to 253 bytes and the maximum size of the label to
63 bytes. In fact, among the 4145 domain names present in the IoT dataset, 73 domain names exceed 253
bytes with amaximum length of 652 characters. Meanwhile, the domain names from the Cisco and Tranco
datasets are at most 253 bytes, with maximum lengths of 253 and 75 characters for the Cisco and Tranco
datasets, respectively. This suggests that size restrictions are less stringent when choosing an IoT domain
name. However, considering that a significant portion of IoT devices are constrained and have limited
resources, reducing the length of the domain names these devices resolve could reduce the overall size
of the DNS messages and potentially lower power consumption.

In addition to studying the length and number of labels, we plot the relative frequencies of the top
labels in each dataset in Figure 5.4. The goal is to assess how common –or uncommon– the labels between
IoT and non-IoT domain names are. Hence, we plot the top 20 labels for each dataset and aggregate the
remaining labels under others.

The label “com” comes first in the three datasets, accounting for approximately 20% of the labels in the
Cisco and Tranco datasets and 8% of the labels in the IoT dataset. Beyond “com”, the IoT and non-IoT do-
main names diverge in their subsequent labels. Themost frequent labels in the twonon-IoT datasets, Cisco
and Tranco, are mostly Top-Level Domains (TLDs) such as “net”, “org”, and “co”. See Figures 5.4b and 5.4c.
Meanwhile, the most frequent labels in the IoT dataset do not follow the same trend. We observe in Fig-
ure 5.4a that, contrary to the non-IoT datasets, the top 20 labels in the IoT dataset are not mostly TLDs.
Instead, we observe protocol-related labels such as “tcp” and “udp” and IoT-technology-specific and brand-

76

Table 5.2: The results (Averages) of the DNS analysis of the IoT and non-IoT datasets
A AAAA MX CNAME DNSKEY DS TXT SRV CAA

Rec
ord

exis
ten

ce[
%]

Qu
ery

dur
atio

n[s
]

TTL
[s]

Res
pon

ses
ize

[by
tes

]
Rec

ord
exis

ten
ce[

%]
Qu

ery
dur

atio
n[s

]
TTL

[s]
Res

pon
ses

ize
[by

tes
]

Rec
ord

exis
ten

ce[
%]

Qu
ery

dur
atio

n[s
]

TTL
[s]

Res
pon

ses
ize

[by
tes

]
Rec

ord
exis

ten
ce[

%]
Qu

ery
dur

atio
n[s

]
TTL

[s]
Res

pon
ses

ize
[by

tes
]

Rec
ord

exis
ten

ce[
%]

Qu
ery

dur
atio

n[s
]

TTL
[s]

Res
pon

ses
ize

[by
tes

]
Rec

ord
exis

ten
ce[

%]
Qu

ery
dur

atio
n[s

]
TTL

[s]
Res

pon
ses

ize
[by

tes
]

Rec
ord

exis
ten

ce[
%]

Qu
ery

dur
atio

n[s
]

TTL
[s]

Res
pon

ses
ize

[by
tes

]
Rec

ord
exis

ten
ce[

%]
Qu

ery
dur

atio
n[s

]
TTL

[s]
Res

pon
ses

ize
[by

tes
]

Rec
ord

exis
ten

ce[
%]

Qu
ery

dur
atio

n[s
]

TTL
[s]

Res
pon

ses
ize

[by
tes

]

IoT

46
.6
6

77.
97

11
65
84
6.
37

134
.05

14
.6
0

60.
62

65
83
.3
7

175
.23

1.
01 187
.70

155
32.5

0
125

.40 28.9
7

76.
12

854
0.3

9
96.

53
0.
12 38.
79

294
3.4

0
276

.60
0.
12 166
.17

691
80.

0
88.

80
10.7

4
148

.96
424

2.48 184
.07 0.0 0.0 0.0 0.0 0.
53 40.
85

182
04.

50
190

.82

Cisco

78
.4
1

51.2
7

99
9.
08

138
.04

29
.6
7

52.0
3

56
4.
32

164
.04

12
.3
0

60.
41

129
11.5

5
126

.97 40.
97

69.
20

698
6.3

8
96.

92
1.
83 65.
99

162
2.97 275
.84

1.
64 125
.06

546
51.0 94.
26

19.4
7

74.
88

727
4.3

2
598

.11 0.0
7

159
.15

588
60.

0
115.

67
5.
33 56.
76

159
58.

43
182

.28

Tranco

79
.8
8

76.
21

41
64
.5
9

75.
18

24
.3
4

53.
57

31
90
.4
3

108
.61

71
.7
0

99.
69

193
24.4

9
119.

80 0.5
5

180
.26

635
.22

76.
26

10
.1
1

51.3
1

400
29.6

0
370

.47
8.
69 121.
86

555
25.0

3
99.

79
83.

43
109

.70
938

8.6
2

738
.17

0.29 111.
77

881
0.0 118.
42

20
.4
6

75.
58

183
61.8

5
225

.75

specific labels such as “_homekit”, “nessus”, and “nest”. This indicates that the domain names in IoT en-
vironments are often tailored specifically for these environments. Furthermore, the presence of “local”
indicates a prevalence of local domains, highlighting the focus on local communications within IoT envi-
ronments. Finally, the appearance of “in-addr” and “arpa” in the top labels indicates significant reverse
DNS activity.

The statistical study demonstrates the characteristics of both classes of domain names and allows
us to draw a few conclusions about the differences between IoT and non-IoT domain names. First, we
noticed a deviation from RFC 1035 [28] guidelines concerning domain name size in the IoT dataset, a phe-
nomenon not present in the non-IoT datasets, namely the Cisco and Tranco datasets. The DNS activity
in IoT environments mainly involves machine-to-machine communications, with many of these domain
names configured using auto-configuration schemes. When combined with the significant local DNS ac-
tivity in IoT environments –evidenced by the strong presence of labels like “local” in the IoT dataset–, it
becomes apparent why longer domain names might appear in such networks. Second, when studying
the most frequent labels in each dataset, several protocol-related or technology-related labels such as
“tcp” and “nest” appeared among the top labels in the IoT dataset, signaling an inclination to give explicit,
self-explanatory domain names to IoT-related backend servers. On the other hand, the top 20 most fre-
quent labels in the non-IoT datasets were predominantly TLDs. This demonstrates the stark diversity of
these domain names in labels other than TLDs, which, unlike IoT domain names, do not indicate specific
protocols, technologies, or providers.

5.6 DNS Analysis
In this section, we perform a DNS analysis of the different datasets. The goal is to compare the IoT, Cisco,
and Tranco datasets by resolving several RRs and recording their availability, the query duration, the Time
To Live (TTL), and the response size for each RR. This study gives insights into any possible differences
between the DNS zones of the average domain name from each dataset. If found, we highlight these
differences. The RRs we resolve are:

• A: IPv4 address record. It maps a domain to an IPv4 address.
77

• AAAA: IPv6 address record. It maps a domain name to an IPv6 address.
• MX: Mail exchange record. It routes emails to specific mail servers.
• CNAME: Canonical name record. It is used when a domain name is an alias for another domain
name.

• DNSKEY: It holds a public key that resolvers use to verify DNSSEC signatures.
• DS: Delegation Signer record. It is used to verify DNSKEY records of child DNS zones.
• TXT: Stores text notes.
• SRV: Service record. It specifies the server/port number of a specific service.
• CAA: Certificate Authority Authorization record. It allows domain name owners to specify which
certificate authorities are allowed to issue TLS certificates for their domain name.

We use Google’s public DNS resolver [11] ('1.1.1.1') and the study is done on the 4145 domain names
of the IoT dataset and the top 4145 domain names of the Cisco and Tranco datasets. The results are
presented in Table 5.2. The Record existence [%] is the percentage of domain names in each dataset with
that record. The rest of the values, namely Query duration [s], TTL [s], and Response size [bytes], are average
values over each dataset.

Record existence The IoT dataset has the lowest existence rate for all the resource record types. In
particular, only 46.66% of the IoT domain names have an A resource record, and only 14.60% of them
have a AAAA resource record. This is partly due to the nature of domain names in the IoT dataset, which
includes local (Multicast DNS) addresses that do not resolve to A and AAAA resource records in the global
DNS, i.e., outside the local network, but may have such records in a local network context. As for MX
records, only 1.01% of IoT domain names have this resource record, while it is 12.30% and 71.70% for the
Cisco and Tranco datasets, respectively. The low presence of MX records in the DNS zones of IoT domain
names indicates that these domain names are less likely to be associated with email services. Security-
related resource records are also sparsely present in IoT-related DNS zones with only 0.12% of IoT domain
names having DNSSKEY or DS RRs, and only 0.53% of them having a CAA RR. Meanwhile, the non-IoT
datasets show a higher –but nevertheless low– percentage for these RRs. The Cisco dataset has a 1.83%,
1.64%, and 5.33% presense of DNSKEY, DS, and CAA RRs, respectively, among its domain names, while
the percentages are 10.11%, 8.69%, 20.46% for the Tranco dataset. This signifies security concerns in IoT
environments which already face several security vulnerabilities due to the constrained nature of a lot of
IoT devices [95].

Time-To-Live (TTL) Other than resource records that are inherently not adopted by IoT domain names,
as demonstrated in the previous paragraph, and whose TTL values are not accounted for, the TTL values
of the resource records of IoT domain names exceed those of domain names from the Cisco and Tranco
datasets, or are at least comparable. This indicates a more static DNS environment for IoT domain names
with less frequent updates than non-IoT domain names. In addition, high TTL values could prolong the
impact of compromised records, such as in the case of DNS cache poisoning.

78

Start
Replace all dotswith regular fullstop('.' = '\u002E')

Strip leadingand trailingspaces
Emptydomainname?

Startswith
'.'? Consecutive

'.'?

Removetrailing '.'

Label> 63 char-acters?
Domain> 253 char-acters?

Only1 label?
Labelstarts or endswith '-'?

'–' at3&4 without
'xn'?End

Discard

No No

No

NoNoNoNoNo

Yes Yes
Yes

Yes
YesYesYesYes

Figure 5.5: Domain name syntax check used by Zonemaster.
Query duration & Response size No notable differences are observed when comparing the query
durations and the response sizes between the resource records across the three datasets. This is interest-
ing, considering that a large portion of IoT technologies include constrained devices with a limited power
budget. It seems, however, that DNS response size is not yet optimized to suit the limited resources some
of these devices have. IoT-friendly DNS protocols such as DNS-over-CoAP (DoC) [139] could be useful to
address this issue.

After the statistical andDNS analysis, wemove in the next section to classifying IoT and non-IoT domain
names using machine learning.

5.7 Classifying IoT and non-IoT domain names: Preprocessing
and Word Embedding

5.7.1 Data Preprocessing
We preprocess the data to ensure the validity and consistency of the domain names in each dataset. We
perform the following tests:
Syntax Check.The first step includes a syntax check to ensure our datasets are consistent, meaning that
the domain names across the datasets respect the same syntax rules. For this purpose, we use the syntax
checking used by Zonemaster [34]. The process starts with a normalization procedure that replaces all the
dots with the regular full stop of Unicode '\u002E' (or '.' as a character). The next step removes leading
and trailing spaces. Next, a sequence of tests is conducted.

• Check if the domain name starts with a dot,
• Check if the domain name has consecutive dots,
• Remove trailing dots if found,
• Check if any label in the domain name is longer than 63 characters,

79

• Check if the total length of the domain name is more than 253 characters,
• Check if the domain name has only one label,
• Check if any label starts or ends with a hyphen ('-'), and, finally,
• Check if the domain name has double hyphen ('–') at positions 3 and 4without it starting with 'xn'1.
If one of the checks fails, the domain name is discarded. The results of the syntax check are presented

in Table 5.3.
Table 5.3: Number of unique domain names after the syntax check

Dataset IoT Cisco Tranco

Accepted [#] 3 953 993065 1 000000
Discarded [#] 192 6935 0
Total [#] 4 145 1 000000 1 000000

Remove commons Some domain names from the IoT dataset might appear in the Cisco or Tranco
datasets. Therefore, we remove the common domain names between the IoT and other datasets from
the other datasets. The resulting dataset sizes can be seen in Table 5.4.
Table 5.4: Number of unique domain names after removing the IoT domain names from the non-IoT datasets

Dataset Cisco Tranco
Common with IoT Dataset [#] 1 565 32Remaining [#] 991 500 999968
Total [#] 993065 1 000000

Final lists After data preprocessing, we obtain the final datasets, which will be used in the following
steps. The final datasets can be seen in Table 5.5.

Table 5.5: Number of unique domain names in the final datasets.
Dataset IoT Cisco Tranco
Domain Names [#] 3 953 991 500 999968

1i.e., not an Internationalized Domain Name (IDN)
80

5.7.2 Word2vec: Real-Valued Vector Representation of Domain Names
Word2vec expects prose text as input, i.e., in the form of full documents with connected sentences and
ideas where it can be used to capture the semantic relations. The challenge we face when using Word2vec
with domain names is that these domain names do not form prose text. Instead, they are individual labels
separated by periods. As such, each domain name is treated as a sentence, and each label is treated
as a word. For example, iot.backend.org contains three labels and is transformed to “iot”, “backend”,
and “org”. Another challenge is the limited size of domain names, which results in limited context and
explains our choice of a window size of 3. After the Word2vec algorithm is done, we obtain a real-valued
vector representation of each label. The dimensions of each vector are set in advance. Before applying
Word2vec, and to have a consistent dataset in terms of size for training the machine learning models, we
pad the domain names by adding '*' as a dummy label on the left of each domain name. We pad all the
domain names to have 120 labels to account for the maximum number of labels per domain in the three
datasets, which is 117.

The parameters we used are as follows:
• Padding: To each domain name, we added '*' on the left. Each '*' was treated as a dummy label
(i.e., a word), and they were added until all the domain names were of length 120 labels (words).

• Word2vec: We used CBOW (Continuous Bag-of-Words Model) with a window size of 3.
• Vectors: Each word was represented by a vector ∈ R32.
This vector representation can then be used tomap each domain name to a 32×120 real-valued vector

(∈ R32×120). The Word2vec process is depicted in Figure 5.6.

5.8 Results: Domain Name Classification
We train six machine learning models to classify IoT and non-IoT domain names. We use the following
models and refer to them using the acronyms in parentheses: Naïve Bayes (NB), Logistic Regression (LR),
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF).

After preprocessing the data, The IoT dataset contains 3953 domain names. From the Cisco and Tranco
datasets, we then pick 3953 domain names individually. We also create an additional list of 3953 domain
names by uniformly sampling a Mix of the Cisco and Tranco datasets.

We select the 3953 domain names from the Cisco and Tranco datasets in two ways:
• We take the top 3953 domain names or
• randomly choose them, uniformly distributed, from the whole list.
After selecting 3953 domain names from each dataset, the domain names are labeled accordingly,

and a combined dataset is constructed. The combined dataset is then processed via Word2vec to obtain
the real-valued vector representation of each domain name. These real-valued vectors are used to train
the machine learning models. The models are trained as binary classifiers between two classes, namely
IoT and non-IoT domain names, where the non-IoT domain names come from the Cisco dataset, Tranco
dataset, or a Mix of them. To evaluate the performance of each of the models, we calculate the resulting
accuracy, precision, recall, and the F1 score in subsection 5.8.1. Moreover, we perform in subsection 5.8.2
cross-validation to assess the robustness of the models and their ability to generalize to unseen data.
Lastly, we perform in subsection 5.8.3 an ablation test to analyze the impact of the different labels of the
domain names on the performance of the models.

81

Original Data Set Text Corpus
name.tld

sub.example.com

domain.name.tld

...

...

∗ ∗ . . . name tld

∗ ∗ . . . sub example com

∗ ∗ . . . domain name tld

...

...

Domain name (= sentence)padded to 120 labels (= words)

∗ 7→ a⃗

com 7→ b⃗
example 7→ c⃗...

sub 7→ y⃗
tld 7→ z⃗...

Word2vec Model

Transform Word2vec
vector_size=32
window_size=3

(Train model){
a⃗, b⃗, c⃗, . . . , y⃗, z⃗, ...

}
⊆ R32

(a) Step 1: Generate Word2vec model as label to real-valued vector mapping.

Text Corpus
ML Models

∗ ∗ . . . name tld

∗ ∗ . . . sub example com

∗ ∗ . . . domain name tld

...

...

Domain name (= sentence)padded to 120 labels (= words)

[
a⃗, a⃗, . . . , k⃗, z⃗

]
...[

a⃗, a⃗, . . . , y⃗, c⃗, b⃗
]

...[
a⃗, a⃗, . . . , e⃗, k⃗, b⃗

]

Input Vectors

(
⊆ R32×120

)

∗ 7→ a⃗

com 7→ b⃗
example 7→ c⃗...

sub 7→ y⃗
tld 7→ z⃗...

Word2vec Model NB
LR...
DT

RF

(b) Step 2: Use Word2vec model to generate input for machine learning models from text corpus.
Figure 5.6: Word embedding: After prepending '*' to each domain name until it has 120 labels,Word2vec is used to generate a real-valued vector representation of 32 × 120 real numbers ofeach domain name.

TruePositive(TP)1

1

FalsePositive(FP)

0

FalseNegative(FN)0
TrueNegative(TN)

Pre
dict

ed

Actual

Figure 5.7: The 2× 2 confusion matrix for binary classifiers.

5.8.1 Performance Evaluation
In this section, we present our results after training several machine learning models to classify IoT and
non-IoT domain names. In each scenario, each dataset was processed with Word2vec to obtain the real-
valued vector representation of each domain name of size 32× 120. We used an 80-20 train-test split.

We train themachine learningmodels: NB, LR, KNN, SVM, DT, and RF. For eachmodel, we calculate four
parameters: Accuracy, precision, recall, and theF1 score. We first calculate the confusionmatrix to identify
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). See Figure 5.7. The

82

values for our parameters are then calculated using the following formulas:
Accuracy =

TP + TN

TP+ TN+ FP + FN
(5.1)

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1 =
2

1
Precision + 1

Recall

=
TP

TP + FN+FP
2

(5.4)
Accuracy measures the ratio of positive predictions (TP and TN) to all the predictions made by the

model, see Equation 5.1. Precision measures the ratio of true positive predictions (TP) to all the positive
predictions (TP and FP) made by the model, see Equation 5.2. Recallmeasures the ratio of true positive
predictions (TP) to all the actual positive instances in the dataset (TP and FN), see Equation 5.3. Finally,
the F1 score is the harmonic mean of precision and recall, see Equation 5.4.

The results for using the top 3953 domain names can be seen in Figure 5.8. For the random selection
of domain names, see Figure 5.10.
Results when using top domain names from the Cisco and Tranco datasets, and a Mix of
the two datasets

The results of training the models using the top 3953 domain names from the Cisco and Tranco datasets
are presented in Figure 5.8. Each graph represents one of the four parameters obtained by the different
models. The six models we trained exhibited the strongest performance when the Tranco dataset was
used. The lowest performing model when the Tranco dataset was used was NB, while the rest of the
models achieved values between 97% and 100% for the four parameters. The lowest-performing model,
regardless of the non-IoT dataset used, is NB. NB exhibited a random-classifier-like performance when the
Cisco and Mix datasets were used and low recall and F1 scores with the Tranco dataset while maintaining
high precision. Among the best-performing models are DT and RF. Both models achieved close to 99% for
the four parameterswhen the Tranco dataset was used. RF is usually preferred between the twomodels as
DT tends to overfit and not perform as well when exposed to unseen data. The performance of themodels
is also visualized in Figure 5.9, which shows the Receiver Operating Characteristic (ROC) curves plotted for
every model when the Cisco dataset is used. ROC curves show the performance of the models at different
classification thresholds. The performance of the models can be compared by comparing the Area Under
the Curve (AUC) of each one. In our case, the ROC curves in Figure 5.9 further show the superiority of RF
compared to the other models where its AUC = 0.93. As expected from the previous measurements, NB
has the lowest AUC of 0.69 and, therefore, has the lowest performance between the six models.
Results when using random domain names from the Cisco and Tranco datasets, and a Mix
of the two datasets

The results of training the models using random 3953 domain names from the Cisco and Tranco datasets
are presented in Figure 5.10. Each graph represents one of the four parameters obtained by the different
models. We trained the six models by randomly choosing 3953 domain names from each list to generalize
our results further. This is particularly interesting, as the Cisco and Tranco datasets each contain nearly
one million domain names. For each list, 100 random picks of 3953 domain names were made, and the
results presented are the average of each of the four parameters over the 100 random picks.

83

Cisco Tranco Mixed

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

A
cc

u
ra

cy
[%

]

6
0
.7

%

8
0
.7

%

8
5
.1

%

7
6
.0

% 8
7
.7

%

8
4
.1

%

8
1
.2

%

9
9
.2

%

9
9
.2

%

9
8
.3

%

9
9
.0

%

9
9
.2

%

6
2
.5

%

9
1
.3

%

9
0
.2

%

8
8
.2

%

9
0
.6

%

9
0
.7

%

(a) Accuracy.
NB LR KNN SVM DT RF

Machine Learning Model

0

20

40

60

80

100

P
re

ci
si

o
n

[%
]

8
5
.5

%

8
4
.0

%

8
8
.8

%

9
0
.4

%

8
6
.6

%

9
1
.3

%

1
0
0
.0

%

9
9
.9

%

1
0
0
.0

%

9
9
.2

%

9
9
.2

%

1
0
0
.0

%

9
1
.8

%

9
0
.0

%

9
0
.8

%

8
9
.9

%

9
0
.0

%

8
7
.2

%

(b) Precision.

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

R
ec

a
ll

[%
]

2
6
.0

%

7
6
.0

%

8
0
.6

%

5
8
.3

%

8
9
.3

%

7
5
.4

%

6
1
.9

%

9
8
.5

%

9
8
.3

%

9
7
.3

%

9
8
.7

%

9
8
.5

%

2
7
.0

%

9
2
.8

%

8
9
.3

%

8
6
.0

%

9
1
.4

%

9
5
.3

%

(c) Recall.
NB LR KNN SVM DT RF

Machine Learning Model

0

20

40

60

80

100

F
1

[%
]

3
9
.8

%

7
9
.8

%

8
4
.5

%

7
0
.9

% 8
7
.9

%

8
2
.6

%

7
6
.5

%

9
9
.2

%

9
9
.2

%

9
8
.3

%

9
9
.0

%

9
9
.2

%

4
1
.8

%

9
1
.4

%

9
0
.1

%

8
7
.9

%

9
0
.7

%

9
1
.1

%

(d) F1 score.
Figure 5.8: Accuracy, precision, recall, and F1 score of each ML model for the top 3953 domainnames from the Cisco and Tranco datasets, plus a uniformly sampledMix of 3953 domain namesfrom the two datasets, each vs. the 3953 domain names from the IoT dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
v
e

R
a
te

Cisco Top

Naive Bayes (AUC = 0.69)

Logistic Regression (AUC = 0.91)

K-Nearest Neighbors (AUC = 0.92)

Support Vector Machine (AUC = 0.86)

Decision Tree (AUC = 0.88)

Random Forest (AUC = 0.93)

Figure 5.9: Receiver Operation Characteristic (ROC) Curves for the top 3953 domain names fromthe Cisco dataset. The Area Under the Curve (AUC) is provided in the legend.

84

Cisco Tranco Mixed

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

A
cc

u
ra

cy
[%

]

6
7
.7

%

9
3
.3

%

9
3
.9

%

9
2
.0

%

9
3
.4

%

9
5
.2

%

8
0
.9

%

9
8
.8

%

9
9
.2

%

9
7
.7

%

9
8
.9

%

9
9
.5

%

6
4
.4

%

9
5
.4

%

9
4
.9

%

9
4
.6

%

9
4
.9

%

9
6
.4

%

(a) Accuracy.
NB LR KNN SVM DT RF

Machine Learning Model

0

20

40

60

80

100

P
re

ci
si

o
n

[%
]

8
5
.0

%

9
5
.4

%

9
5
.1

%

9
5
.4

%

9
3
.4

%

9
6
.6

%

9
9
.7

%

9
9
.0

%

9
9
.6

%

9
8
.5

%

9
8
.8

%

9
9
.7

%

8
2
.7

% 9
6
.1

%

9
5
.4

%

9
6
.2

%

9
4
.8

%

9
6
.6

%

(b) Precision.

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

R
ec

a
ll

[%
]

4
3
.0

%

9
0
.8

%

9
2
.5

%

8
8
.2

%

9
3
.4

%

9
3
.6

%

6
1
.8

%

9
8
.6

%

9
8
.9

%

9
6
.8

%

9
9
.0

%

9
9
.2

%

3
6
.3

%

9
4
.6

%

9
4
.4

%

9
2
.8

%

9
4
.9

%

9
6
.3

%

(c) Recall.
NB LR KNN SVM DT RF

Machine Learning Model

0

20

40

60

80

100

F
1

[%
]

5
6
.6

%

9
3
.1

%

9
3
.8

%

9
1
.7

%

9
3
.4

%

9
5
.1

%

7
6
.3

%

9
8
.8

%

9
9
.2

%

9
7
.6

%

9
8
.9

%

9
9
.5

%

5
0
.3

%

9
5
.4

%

9
4
.9

%

9
4
.4

%

9
4
.9

%

9
6
.4

%

(d) F1 score.
Figure 5.10: Average accuracy, precision, recall and F1 score of each ML model for 100 randompicks of 3953 domain names from the Cisco and Tranco datasets, plus a uniformly sampled Mixof 3953 domain names from the two datasets, each vs. the 3953 IoT domain names.

The results over the 100 randompicks are consistent with the previous results obtainedwhen using the
top domain names of the Cisco and Tranco datasets. Themodels performed best when the Tranco dataset
was used, with NB having the lowest performance and the rest of the models achieving values > 90% for
the four parameters. The lowest-performing model, regardless of the dataset used, is still NB, particularly
when the Cisco and Mix datasets are used as non-IoT datasets, where it exhibited a random-classifier-like
performance. The best-performing model, regardless of the dataset used, is still RF.

5.8.2 Cross Validation
We use cross-validation to assess the robustness of the models and their ability to generalize to unseen
data. When assessing a model using cross-validation, the dataset containing all the classes is divided into
K folds or subsets, and themodel is trainedK times. One of theK folds is used as a testing dataset during
every training instance, while the remaining K − 1 are used for training. We use Stratified K-fold cross-
validation to ensure that the distribution of classes in the folds is similar to their distribution in the original
dataset. Given the size of the IoT dataset, we usedK = 5 to ensure that each fold contains enough entries
to provide a reliable performance estimate. K = 5 allows each model to be trained five times. From the
Cisco and Tranco datasets, we choose the top 3953 domain names, which are added to the 3953 domain

85

names of the IoT dataset. We show the results in Figure 5.11 as averages and standard deviation values of
the evaluation parameters over the five folds.

The colored bars in Figure 5.11 represent the mean of the four parameters over the five folds, and the
error bars at the top of each colored bar represent the standard deviation. We notice that the means of
the four parameters over the five folds are consistent with the results from the performance evaluation
we performed in Section 5.8.1 while having a low standard deviation, which indicates that the models are
stable across the folds and that they are likely to generalize well to unseen data.

Cisco Tranco Mix

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

A
cc

u
ra

cy
[%

]

5
8
.6

%

8
0
.8

%

8
6
.1

%

7
2
.6

% 8
7
.9

%

8
4
.3

%

8
0
.9

% 9
9
.2

%

9
9
.3

%

9
9
.0

%

9
9
.0

%

9
9
.4

%

6
2
.1

%

8
9
.1

%

9
0
.6

%

8
5
.6

%

9
1
.4

%

9
1
.4

%

(a) Accuracy.
NB LR KNN SVM DT RF

Machine Learning Model

0

20

40

60

80

100

P
re

ci
si

o
n

[%
]

8
3
.1

%

8
4
.8

%

8
8
.5

%

9
4
.4

%

8
7
.7

%

9
2
.9

%

1
0
0
.0

%

9
9
.7

%

9
9
.8

%

9
9
.2

%

9
8
.9

%

9
9
.9

%

8
6
.9

%

8
8
.7

%

9
1
.0

%

8
2
.5

%

9
1
.1

%

8
8
.3

%

(b) Precision.

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

R
ec

a
ll

[%
]

2
1
.7

%

7
5
.0

%

8
2
.9

%

4
8
.4

%

8
8
.2

%

7
4
.3

%

6
1
.8

%

9
8
.8

%

9
8
.9

%

9
8
.8

%

9
9
.0

%

9
8
.9

%

2
8
.5

%

8
9
.7

%

9
0
.2

%

9
1
.2

%

9
1
.8

%

9
5
.4

%

(c) Recall.
NB LR KNN SVM DT RF

Machine Learning Model

0

20

40

60

80

100

F
1

[%
]

3
4
.3

%

7
9
.6

%

8
5
.6

%

6
3
.7

%

8
7
.9

%

8
2
.5

%

7
6
.4

%

9
9
.2

%

9
9
.3

%

9
9
.0

%

9
9
.0

%

9
9
.4

%

4
2
.9

%

8
9
.2

%

9
0
.6

%

8
6
.4

%

9
1
.4

%

9
1
.7

%

(d) F1 score.
Figure 5.11: Mean (colored bars) and standard deviation (error bars) of accuracy, precision, recalland F1 score of the MLmodels over five folds for the top 3953 domain names from the Cisco andTranco datasets, plus a uniformly sampled Mix of 3953 domain names from the two datasets, vs.the 3953 IoT domain names.

5.8.3 Ablation Test
An ablation test includes removing elements from theMLmodel or suppressing a subset of the features to
study their possible effect on performance. We perform the ablation test by removing one label at a time
by replacing the 32-dimensional vector representing the label with zeros. Since we padded each domain
name up to 120 labels, we perform 120 training and testing sessions, ablating one label in both the training

86

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120
Ablated Sublabels

65

70

75

80

85

90

95

100

P
a
ra

m
e
te

r
[%

]

Accuracy

Precision

Recall

F1

(a) Cisco.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120
Ablated Sublabels

65

70

75

80

85

90

95

100

P
a
ra

m
e
te

r
[%

]

Accuracy

Precision

Recall

F1

(b) Tranco.
Figure 5.12: Ablation Test with Random Forest (RF).

and the testing datasets every time, training, and evaluating the models. The results for RF when used
with the Cisco and Tranco datasets are presented in Figures 5.12a and 5.12b.

For both figures, the stable performance observed when ablating the dummy labels ('*') demon-
strates that the padding we added to the left of each domain name held no information and did not alter
the performance of the models. The performance starts dropping as the last labels (starting from label
115) are ablated. The biggest drop in the performance is when label 119 is ablated. The second-to-last label,
i.e., the second-level domain (label 119), appears to have the highest impact on the performance as the
values drastically dropped in both figures. For example, the accuracy, recall and F1 score in Figure 5.12a
dropped by around 15 and 25 percent, respectively. When the last label—the TLD of the domain name (la-
bel 120)—was ablated, however, values of the parameters did not experience the same drastic decrease,
and the effect of ablating label 120 seemed almost equivalent to ablating the dummy labels. This shows
that the second-level domain of a domain name is the most indicative of its class and that third-level do-
mains and above gradually become less informing about the class of a domain name until ablating them
becomes equivalent to ablating a dummy label. Moreover, the TLD of the domain names also seems not
to provide significant information about the class of the domain name as ablating it (label 120) only slightly
affected the performance.

87

5.9 Discussion
The size of the IoT dataset Despite the large amounts of raw data we started with, the size of the IoT
dataset remained relatively modest. This is primarily due to the scope of our study, which mainly covers
IoT devices that engage in machine-to-machine communications. Such devices exhibit limitations in their
functionalities compared to generic devices and IoT devices that are not strictly machine-to-machine. This
explains the low number of servers on the Internet these devices contact. Hence, we noticed a low number
of frequently contacted servers instead of numerous servers that are less regularly or rarely contacted.
Using top-lists as non-IoT datasets We used two known lists of top-visited websites, namely the
Cisco and Tranco datasets, to evaluate the validity of using such lists as negative classes in similar contexts.
We noticed that the Tranco dataset is the least representative between the two of real non-IoT domain
names, as themajority of domain names in it are second-level domains, which does not reflect howdomain
names actually appear in DNS traffic. The Cisco dataset, however, is suitable as its entries are not limited
to second-level domains and are included in the dataset as seen in DNS traffic. The Cisco dataset also
statistically resembles the domain names in the IoT dataset. The difference between the Cisco and Tranco
datasets was most visible when training and testing the machine learning models. The Tranco dataset is
easily distinguishable, so the models almost achieved perfect scores. The performance was different with
the Cisco dataset which achieved a lower performance. The Cisco dataset is the better option for use as a
negative class in domain name classification problems with similar contexts.
Better sources of data The domain names in the IoT dataset were extracted from packet captures of
testbeds that had real devices. A better data source requires larger, more diverse testbeds with more IoT
devices. On the other hand, changing the scope to include devices other than strictly M2M ones, would
definitely enlarge and diversify the list of domain names.

5.10 Conclusion
In this chapter, we studied the domain names of IoT backend servers. We constructed a dataset of IoT
domain names using 12 public datasets of domain names from past studies and used the two lists of top-
visited websites Cisco and Tranco as non-IoT datasets. We conducted a three-phase comparative study
between IoT and non-IoT domain names. Our results showed that IoT domain names usually contain
indicative keywords related to the protocols or technologies used by the IoT servers. In addition, the DNS
zones related to IoT displayed less dynamism and adoption of security measures compared to non-IoT
domain names. Themachine learningmodels we trained, on the other hand, were successful in classifying
IoT and non-IoT domain names, with Random Forest having the best (overall) performance.

88

Chapter 6

Conclusion and Perspective

6.1 Summary of Contributions
In this thesis, we leveraged the Domain Name System (DNS) to address key challenges in IoT environ-
ments. The contributions presented here introduce an additional layer of security to IoT systems and lay
the groundwork for promising future research. The following is a summary of these contributions.

The first contribution aimed to address two questions: What are the challenges facing IoT environ-
ments? And how is DNS being used by the research community and industry to address these challenges?
The answers to these questions were the result of a comprehensive literature review, through which we
identified four primary challenges faced by IoT environments. These challenges include the constrained
nature of IoT devices, which have limited processing power, memory, and energy resources, and the iden-
tification of IoT devices, where diverse technologies in the IoT ecosystem often rely on proprietary identi-
fication schemes that are rarely compatible with one another. The third challenge relates to IoT security.
Security is a critical concern in IoT because the constrained nature of IoT devices limits their ability to
implement advanced security mechanisms, which significantly increases their attack surface. The fourth
and final challenge is the lack of interoperability between IoT technologies. This issue arises directly from
the absence of standardization, which has led to the development of numerous technologies, each with
its own protocols, resulting in a vertically fragmented IoT ecosystem. As for addressing these challenges,
the literature review revealed that DNS can help resolve some of them. For example, DNS protocols like
DNS-over-CoAP (DoC), which are specifically designed for constrained IoT devices, enable such devices to
resolve domain names and access services and resources on the web. In terms of IoT identification, DNS
plays a major role through its core function of mapping domain names to IP addresses. Many IoT iden-
tification schemes, such as the Electronic Product Code (EPC) and Object Identifier (OID), rely on DNS for
resolving their identifiers. IoT also benefits fromDNS in terms of security. For example, through the use of
DANE (DNS-based Authentication of Named Entities), DNS can act as a Certificate Authority (CA) for such
devices. Lastly, DNS already serves as the basis for several systems designed to facilitate interoperability
between IoT technologies.

The second contribution involved using DANE to implement a mutual authentication mechanism be-
tween two IoT backend servers. DANE gives the power back to domain name owners to decide how their
digital certificate is validated and who gets to validate it, if needed. We used DANE to enable mutual au-
thentication between two LoRaWAN backend servers, namely the Network Server (NS) and the Join Server
(JS), during the join process. However, in its original form, DANE only validates TLS server certificates and

89

does not consider that clients might have certificates, preventing the setup of a mutual authentication
scheme. The DANE Authentication for Network Clients Everywhere (DANCE) IETF working group extends
DANE to support the validation of client certificates as well. We implemented two Internet drafts issued
by the DANCE working group and successfully established mutual authentication scheme. The evaluation
of our solution showed that setting up a mutual authentication scheme via DANE introduces overhead
due to the DNS resolution involved in validating certificates. However, this overhead can be mitigated by
selecting a higher Time-to-Live (TTL) value for DNS records.

The third contribution is LoRaDANCE, a mechanism that enhances the security of LoRaWAN Over-the-
Air Activation (OTAA) in two ways: it enables a LoRaWAN End-Device (ED) to join a network without the
need to pre-share any secret keys, as required in standard LoRaWAN. Additionally, it allows the ED and
the Join Server (JS) to perform a DANCE-inspired mutual authentication using DANE. We implemented Lo-
RaDANCE and evaluated its performance. The End-Device (ED) and Join Server (JS) successfully performed
mutual authentication, and the secret key, namely the AppKey, was derived on both devices using Elliptic
Curve Diffie-Hellman (ECDH).We found that, while LoRaDANCE increases the average duration of the join
process and consequently the power consumption, its security advantage justifies the trade-off.

The fourth contribution is a study on IoT backend servers, focusing on the domain names of these
servers. IoT devices are rarely standalone. They typically need to contact backend servers to relay infor-
mation, receive commands, or obtain firmware updates. These devices are generally equipped with the
domain names of these servers, which they resolve via DNS. In this context, an IoT domain name refers
to the domain name of a server contacted by IoT devices, specifically the domain name of an IoT backend
server. For example, an IoT backend server could be a server that receives and stores footage from IP
cameras. We compiled a list of real IoT domain names using datasets from previous studies that used
testbeds with real IoT devices. Additionally, we used two public lists of top-visited websites as non-IoT
domain names. Our study was carried out in three phases. The first phase is a statistical comparison
between IoT and non-IoT domain names, based on their maximum, minimum, and average lengths (in
characters) and the number of labels. This phase also included an analysis of the most frequent labels in
each dataset. The second phase consisted of a DNS analysis. For each dataset, we resolved several RRs.
For each dataset and each RR, we calculated the percentage of domain names having that RR, the average
query duration, the average Time-to-Live (TTL), and the average response size. The third and final phase
involved training several machine learning models to classify IoT and non-IoT domain names. The goal of
this phase was to identify intrinsic differences between the two classes of domain names that cannot be
detected visually or through statistical analysis.

6.2 Future Perspectives

6.2.1 Short-Term: Revisiting Contributions
In the short term, we plan to address any outstanding questions from our contributions, including resolv-
ing issues that were not fully addressed due to time constraints or remained ambiguous by the conclusion
of our work. When implementing and testing solutions with real software and hardware, newer versions
often emerge, promising improved performance. In some cases, it’s not just about better tools, but rather
a lack of knowledge at the time or logistical constraints that prevented us from exploring certain options
during the initial implementation. Revisiting some of our contributions and testing them with the latest
software and hardware, or re-evaluating them with a fresh perspective after completing the thesis could

90

provide valuable insights and potential improvements.
When we implemented the second contribution, i.e., Mutual Authentication of IoT Backend Servers, the

LoRaWAN End-Device (ED) we used was a MultiTech mDot, whereas for the third contribution, i.e., Lo-
RaDANCE, we used a NUCLEO-L476RG with an SX1276MB1MAS shield, along with the latest version of RIOT
OS, the open-source operating system for constrained devices. It would be interesting to re-implement
earlier solutions on potentially more efficient software and hardware. Furthermore, for both contribu-
tions, we used ChirpStack open-source LoRaWAN server v3, while ChirpStack v4 has been released for
some time. ChirpStack v4 now uses Rust instead of Go, which was incompatible with the implementation
of our second contribution, as it used Go. Therefore, it would be interesting to test our solutions with the
latest version of ChirpStack to explore potential improvements.

In the fourth contribution, IoT Backend Servers: Studying IoT Domain Names, we used 12 datasets from
previous studies that employed testbeds of real IoT devices to construct our IoT dataset, which had 4,145
domain names. Our objective is to increase both the size and diversity of this dataset, for which two
options are available. The less costly option is to search for additional datasets, i.e., datasets we may have
overlooked or that have been released recently. While this option requires less effort, it is limiting as we
rely on the availability and content provided by dataset owners. The alternative is to build our own testbed.
Although more costly, and potentially a medium -or long-term- goal if financial and logistical constraints
arise, this option offers greater flexibility in tailoring the datasets to our specific requirements.

6.2.2 Medium-Term: IoT-Friendly DNSSEC?
One of the major breakthroughs in securing DNS was the introduction of DNSSEC, which ensures the
integrity of DNS responses received by resolvers. However, the main challenge with DNSSEC in IoT envi-
ronments is the large size of the digital signatures. In our implementation of LoRaDANCE, despite using
Algorithm 13, which generates relatively small signatures, and encoding the DNSSEC chain using CBOR
(Concise Binary Object Representation), the resulting chain was still too large and required fragmentation.
The receptions of these fragments at the device increased the power consumption considerably.

A medium-term goal would be to devise a DNSSEC-like protocol for constrained IoT environments. An
appropriate first step would be to identify an efficient DNS protocol suited for IoT, such as DNS-over-CoAP
(DoC) [138], which uses CoAP, a lightweight alternative to HTTP. In addition, exploring data compression
and representation techniques, similar to CBOR, to compress DNS messages, could further optimize the
protocol for constrained networks, though the compression of signatures may be limited.

6.2.3 Long-Term
Looking to the future, DNS is expected to become more integrated into IoT environments. A promising
area of exploration involves developing a global naming system, similar to domain names, for constrained
IoT devices that also preserves the privacy of IoT data.

Another potential research direction is the development of new DNS extensions specifically designed
for IoT environments. These extensions could enable more efficient and secure resolution of device
names.

Additionally, DNS could play a significant role in providing services such as location-based functional-
ities and personalized content delivery for IoT technologies. In the context of Social IoT (SIoT)[50], which
envisions a human-centric IoT with increased interaction between humans and devices, DNS could facili-
tate connections between IoT devices and social media platforms, as well as enable autoconfiguration of
device profiles.

91

Moreover, the integration of blockchain technologies offers enhanced security, transparency, and de-
centralization, which can greatly benefit IoT applications. On the one hand, Distributed Sensor Networks
(DSNs) leveraging blockchain technologies could benefit from decentralized data storage, secure data
transmission, transparency, and scalability. On the other hand, DNS could adopt blockchain technology
to provide a secure, decentralized name resolution and registration system [196][168].

Another relevant research axis is the integration of edge computing. Leveraging edge computing can
offload some of the DNS resolution tasks from constrained IoT devices. DNS queries can be processed
at the edge, reducing latency and improving response times. This approach can also reduce the energy
consumption of IoT devices since they do not need to communicate directly with a remote DNS server.

Furthermore, there is a crucial need to investigate Energy-Efficient DNS algorithms. Algorithms for DNS
query processing and caching thatminimize energy consumption andmaximize battery life for constrained
devices need to be explored. Hence, edge-Assisted caching can reduce the need for direct queries to
external DNS servers. This minimizes energy consumption and network latency. In that scope, using ML
models to predict DNS patterns and pre-fetch responses, ensuring the relevant DNS entries are cached
before they are requested. This is especially relevant in scenarios where IoT devices generate repetitive
queries.

In summary, novel DNS algorithms for constrained IoT devices need to incorporate techniques such
as adaptive querying, caching, lightweight and energy-aware message processing. These approaches en-
sure that DNS operations do not drain battery life or introduce prohibitive latency, allowing IoT devices to
function efficiently within the upcoming 6G ecosystem.

92

Publications

Conferences

[55] Ibrahim Ayoub, Gaël Berthaud-Müller, Sandoche Balakrichenan, Kinda Khawam, and Benoît Am-
peau. Loradance: Using the dns for mutual authentication without pre-shared keys. In 2024 20th
International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
2024. doi:10.23919/(Accepted)

[54] Ibrahim Ayoub, Gaël Berthaud-Müller, Sandoche Balakrichenan, Kinda Khawam, and Benoît Am-
peau. The dns to reinforce the pkix for iot backend servers: Implementation and evaluation. In
2022 14th IFIP Wireless and Mobile Networking Conference (WMNC), pages 80–84, 2022. doi:10.23919/
WMNC56391.2022.9954304

[58] Sandoche Balakrichenan, Ibrahim Ayoub, and Benoît Ampeau. Pki for iot using the dns infrastruc-
ture. In 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA), pages
1–8, 2022. doi:10.1109/PKIA56009.2022.9952253

Journals

[56] IbrahimAyoub,Martine S. Lenders, Benoît Ampeau, SandocheBalakrichenan, KindaKhawam, Thomas
C. Schmidt, and Matthias Wählisch. What domain names is my device resolving? a study of iot back-
end servers. IEEE Access, 2024. (Submitted). doi:10.1109/ACCESS.2024.TBD

[53] Ibrahim Ayoub, Sandoche Balakrichenan, Kinda Khawam, and Benoît Ampeau. Dns for iot: A survey.
Sensors, 23:4473, 05 2023. doi:10.3390/s23094473

93

https://doi.org/10.23919/(Accepted)
https://doi.org/10.23919/WMNC56391.2022.9954304
https://doi.org/10.23919/WMNC56391.2022.9954304
https://doi.org/10.1109/PKIA56009.2022.9952253
https://doi.org/10.1109/ACCESS.2024.TBD
https://doi.org/10.3390/s23094473

94

Bibliography

[1] Anonymized dnscrypt. Accessed: 2023. URL: https://github.com/DNSCrypt/dnscrypt-protocol/
blob/master/ANONYMIZED-DNSCRYPT.txt.

[2] Bluetooth® Low Energy (LE). Accessed: 2023. URL: https://www.bluetooth.com/
learn-about-bluetooth/tech-overview/.

[3] Cloudflare public dns. Accessed: 2023. URL: https://www.cloudflare.com/dns/.
[4] Dane authentication for network clients everywhere (dance). URL: https://datatracker.ietf.org/

wg/dance/about/.
[5] Ddos attack that disrupted internet was largest of its kind in history, experts say. Accessed: 2023.

URL: https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet.
[6] Dns 2xl. Accessed: 2023. URL: https://labs.apnic.net/?p=1386.
[7] Dnscrypt. Accessed: 2023. URL: https://www.dnscrypt.org/.
[8] Dnscurve: Usable security for dns. Accessed: 2023. URL: https://dnscurve.org/.
[9] Doi handbook. Accessed: 2023. URL: https://www.doi.org/hb.html.
[10] Global iot market to grow to $1.5trn annual revenue by 2030. Accessed: 2023. URL: https://www.

iot-now.com/2020/05/20/102937-global-iot-market-to-grow-to-1-5trn-annual-revenue-by-2030/.
[11] Google public dns. Accessed: 2023. URL: https://developers.google.com/speed/public-dns.
[12] Gs1 epc tag data standard. Accessed: 2023. URL: https://www.gs1.org/standards/rfid/tds.
[13] Handle.net registry. Accessed: 2023. URL: https://www.handle.net/.
[14] Internet of things (iot) total annual revenue worldwide from 2019 to 2030. Accessed: 2023. URL:

https://www.statista.com/statistics/1194709/iot-revenue-worldwide/.
[15] Lora alliance®. Accessed: 2023. URL: https://lora-alliance.org/.
[16] Number of connected iot devices will surge to 125 billion by 2030. Ac-

cessed: 2023. URL: https://sst.semiconductor-digest.com/2017/10/
number-of-connected-iot-devices-will-surge-to-125-billion-by-2030/.

[17] Number of internet of things (iot) connected devices worldwide from 2019 to 2030. Accessed: 2023.
URL: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.

[18] Object identifier (oid) repository. Accessed: 2023. URL: http://oid-info.com/.
95

https://github.com/DNSCrypt/dnscrypt-protocol/blob/master/ANONYMIZED-DNSCRYPT.txt
https://github.com/DNSCrypt/dnscrypt-protocol/blob/master/ANONYMIZED-DNSCRYPT.txt
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.cloudflare.com/dns/
https://datatracker.ietf.org/wg/dance/about/
https://datatracker.ietf.org/wg/dance/about/
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://labs.apnic.net/?p=1386
https://www.dnscrypt.org/
https://dnscurve.org/
https://www.doi.org/hb.html
https://www.iot-now.com/2020/05/20/102937-global-iot-market-to-grow-to-1-5trn-annual-revenue-by-2030/
https://www.iot-now.com/2020/05/20/102937-global-iot-market-to-grow-to-1-5trn-annual-revenue-by-2030/
https://developers.google.com/speed/public-dns
https://www.gs1.org/standards/rfid/tds
https://www.handle.net/
https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://lora-alliance.org/
https://sst.semiconductor-digest.com/2017/10/number-of-connected-iot-devices-will-surge-to-125-billion-by-2030/
https://sst.semiconductor-digest.com/2017/10/number-of-connected-iot-devices-will-surge-to-125-billion-by-2030/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://oid-info.com/

[19] Object name service (ons). Accessed: 2023. URL: https://www.gs1.org/standards/epcis/
epcis-ons/2-0-1.

[20] Onem2m. Accessed: 2023. URL: https://www.onem2m.org/.
[21] Sigfox. Accessed: 2023. URL: https://www.sigfox.com/en.
[22] Standardization of nb-iot completed. Accessed: 2023. URL: https://www.3gpp.org/news-events/

1785-nb_iot_complete.
[23] Web of things (wot) architecture. Accessed: 2023. URL: https://www.w3.org/TR/

wot-architecture/.
[24] Zigbee the full-stack solution for all smart devices. Accessed: 2023. URL: https://csa-iot.org/

all-solutions/zigbee/.
[25] The Domain Naming Convention for Internet User Applications. RFC 819, August 1982. URL: https:

//www.rfc-editor.org/info/rfc819, doi:10.17487/RFC0819.
[26] Domain requirements. RFC 920, October 1984. URL: https://www.rfc-editor.org/info/rfc920,

doi:10.17487/RFC0920.
[27] Domain names - concepts and facilities. RFC 1034, November 1987. URL: https://www.rfc-editor.

org/info/rfc1034, doi:10.17487/RFC1034.
[28] Domain names - implementation and specification. RFC 1035, November 1987. URL: https://www.

rfc-editor.org/info/rfc1035, doi:10.17487/RFC1035.
[29] Information technology – procedures for the operation of object identifier registration authorities:

General procedures and top arcs of the international object identifier tree, 2011. ITU-T Recommen-
dation X.660.

[30] Iso 26324:2012: Information and documentation — digital object identifier system, 2012. ISO
26324:2012 Standard.

[31] Iso/iec 9834-1:2012: Information technology — procedures for the operation of object identifier reg-
istration authorities: General procedures and top arcs of the international object identifier tree —
part 1, 2012. ISO/IEC 9834-1:2012 Standard.

[32] Overview of the internet of things, 2012. ITU-T Recommendation Y.4000.
[33] Requirements and common characteristics of the iot identifier for the iot service, 2014. ITU-T Rec-

ommendation Y.4801.
[34] Afnic and The Swedish Internet Foundation. Zonemaster: Requirements and normalization of do-

main names in input. URL: https://github.com/zonemaster/zonemaster/blob/4ae8a6e/docs/
specifications/tests/RequirementsAndNormalizationOfDomainNames.md.

[35] Bernhard Ager, Holger Dreger, and Anja Feldmann. Predicting the dnssec overhead using dns traces.
In 2006 40th Annual Conference on Information Sciences and Systems, pages 1484–1489, 2006. doi:
10.1109/CISS.2006.286699.

96

https://www.gs1.org/standards/epcis/epcis-ons/2-0-1
https://www.gs1.org/standards/epcis/epcis-ons/2-0-1
https://www.onem2m.org/
https://www.sigfox.com/en
https://www.3gpp.org/news-events/1785-nb_iot_complete
https://www.3gpp.org/news-events/1785-nb_iot_complete
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://csa-iot.org/all-solutions/zigbee/
https://csa-iot.org/all-solutions/zigbee/
https://www.rfc-editor.org/info/rfc819
https://www.rfc-editor.org/info/rfc819
https://doi.org/10.17487/RFC0819
https://www.rfc-editor.org/info/rfc920
https://doi.org/10.17487/RFC0920
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://doi.org/10.17487/RFC1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://doi.org/10.17487/RFC1035
https://github.com/zonemaster/zonemaster/blob/4ae8a6e/docs/specifications/tests/RequirementsAndNormalizationOfDomainNames.md
https://github.com/zonemaster/zonemaster/blob/4ae8a6e/docs/specifications/tests/RequirementsAndNormalizationOfDomainNames.md
https://doi.org/10.1109/CISS.2006.286699
https://doi.org/10.1109/CISS.2006.286699

[36] Sarah A. Al-Qaseemi, Hajer A. Almulhim, Maria F. Almulhim, and Saqib Rasool Chaudhry. Iot archi-
tecture challenges and issues: Lack of standardization. In 2016 Future Technologies Conference (FTC),
pages 731–738, 2016. doi:10.1109/FTC.2016.7821686.

[37] LoRa Alliance. Lorawan 1.1 specification. Accessed on: September 2024. URL: https://resources.
lora-alliance.org/technical-specifications/lorawan-specification-v1-1.

[38] Alliance for Internet of Things Innovation. Identifiers in internet of things (iot), 2018. URL: https:
//aioti.eu/wp-content/uploads/2018/03/AIOTI-Identifiers_in_IoT-1_0.pdf.pdf.

[39] Gianluca Aloi, Giancarlo Fortino, Raffaele Gravina, Pasquale Pace, and Claudio Savaglio. Simulation-
driven platform for edge-based aal systems. IEEE Journal on Selected Areas in Communications, 39:446–
462, 2021.

[40] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. SoK: Security Evaluation of
Home-Based IoT Deployments. In 2019 IEEE Symposium on Security and Privacy (SP), pages 1362–1380,
2019. doi:10.1109/SP.2019.00013.

[41] Christian Amsüss and Martine Sophie Lenders. CoAP Transport Indication. Internet-Draft draft-ietf-
core-transport-indication-06, Internet Engineering Task Force, July 2024. Work in Progress. URL:
https://datatracker.ietf.org/doc/draft-ietf-core-transport-indication/06/.

[42] ANT Lab. 10-day Operantional IoT Traces, PREDICT ID: USC-LANDER/IoT_Operation_Traces-20200127.
Provided by the USC/LANDER project. URL: http://www.isi.edu/ant/lander.

[43] ANT Lab. IoT devices’ First-Time Bootup Traces, PREDICT ID: USC-LANDER/IoT_Bootup_Traces-
20161207. Provided by the USC/LANDER project. URL: http://www.isi.edu/ant/lander.

[44] ANT Lab. IoT devices’ First-Time Bootup Traces, PREDICT ID: USC-LANDER/IoT_Bootup_Traces-
20181107. Provided by the USC/LANDER project. URL: http://www.isi.edu/ant/lander.

[45] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir
Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane
Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Un-
derstanding the Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17), pages 1093–1110,
Vancouver, BC, August 2017. USENIX Association.

[46] Apple. List of available trusted root certificates in ios 17, ipados 17, macos 14, tvos 17, and watchos
10, September 24, 2024. URL: https://support.apple.com/en-us/105116.

[47] Roy Arends, Geoffrey Sisson, David Blacka, and Ben Laurie. DNS Security (DNSSEC) Hashed Authenti-
catedDenial of Existence. RFC 5155,March 2008. URL: https://www.rfc-editor.org/info/rfc5155,
doi:10.17487/RFC5155.

[48] Kevin Ashton. That ’internet of things’ thing. Accessed: 2023. URL: https://www.itrco.jp/
libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf.

[49] Mohammed Atiquzzaman, Mahda Noura, and Martin Gaedke. Interoperability in internet of things:
Taxonomies and open challenges. Mobile Networks and Applications, 07 2018. doi:10.1007/
s11036-018-1089-9.

97

https://doi.org/10.1109/FTC.2016.7821686
https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1
https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1
https://aioti.eu/wp-content/uploads/2018/03/AIOTI-Identifiers_in_IoT-1_0.pdf.pdf
https://aioti.eu/wp-content/uploads/2018/03/AIOTI-Identifiers_in_IoT-1_0.pdf.pdf
https://doi.org/10.1109/SP.2019.00013
https://datatracker.ietf.org/doc/draft-ietf-core-transport-indication/06/
http://www.isi.edu/ant/lander
http://www.isi.edu/ant/lander
http://www.isi.edu/ant/lander
https://support.apple.com/en-us/105116
https://www.rfc-editor.org/info/rfc5155
https://doi.org/10.17487/RFC5155
https://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://doi.org/10.1007/s11036-018-1089-9
https://doi.org/10.1007/s11036-018-1089-9

[50] Luigi Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti. The social internet of things (siot) -
when social networks meet the internet of things: Concept, architecture and network characteriza-
tion. Comput. Networks, 56:3594–3608, 2012.

[51] Kaileshwar Aucklah, Avinash Mungur, Sheeba Armoogum, and Sameerchand Pudaruth. The impact
of internet of things on the domain name system. In 2021 5th International Conference on Intelli-
gent Computing and Control Systems (ICICCS), pages 449–454, 2021. doi:10.1109/ICICCS51141.2021.
9432217.

[52] Muhammad Ayaz, Mohammad Ammad-Uddin, Zubair Sharif, Ali Mansour, and El-Hadi M. Aggoune.
Internet-of-things (iot)-based smart agriculture: Toward making the fields talk. IEEE Access, 7:129551–
129583, 2019. doi:10.1109/ACCESS.2019.2932609.

[53] Ibrahim Ayoub, Sandoche Balakrichenan, Kinda Khawam, and Benoît Ampeau. Dns for iot: A survey.
Sensors, 23:4473, 05 2023. doi:10.3390/s23094473.

[54] Ibrahim Ayoub, Gaël Berthaud-Müller, Sandoche Balakrichenan, Kinda Khawam, and Benoît Am-
peau. The dns to reinforce the pkix for iot backend servers: Implementation and evaluation. In
2022 14th IFIP Wireless and Mobile Networking Conference (WMNC), pages 80–84, 2022. doi:10.23919/
WMNC56391.2022.9954304.

[55] Ibrahim Ayoub, Gaël Berthaud-Müller, Sandoche Balakrichenan, Kinda Khawam, and Benoît Am-
peau. Loradance: Using the dns for mutual authentication without pre-shared keys. In 2024 20th
International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
2024. doi:10.23919/(Accepted).

[56] Ibrahim Ayoub, Martine S. Lenders, Benoît Ampeau, Sandoche Balakrichenan, Kinda Khawam,
Thomas C. Schmidt, and Matthias Wählisch. What domain names is my device resolving? a study of
iot backend servers. IEEE Access, 2024. (Submitted). doi:10.1109/ACCESS.2024.TBD.

[57] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S. Lenders, Hauke Pe-
tersen, Kaspar Schleiser, Thomas C. Schmidt, andMatthiasWählisch. Riot: An open source operating
system for low-end embedded devices in the iot. IEEE Internet of Things Journal, 5(6):4428–4440, 2018.
doi:10.1109/JIOT.2018.2815038.

[58] Sandoche Balakrichenan, Ibrahim Ayoub, and Benoît Ampeau. Pki for iot using the dns infrastruc-
ture. In 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA), pages
1–8, 2022. doi:10.1109/PKIA56009.2022.9952253.

[59] Sandoche Balakrichenan, Antoine Bernard, Michel Marot, and Benoit Ampeau. IoTRoam: design
and implementation of an open LoRaWAN roaming architecture. In IEEE Global Communications Con-
ference (GLOBECOM), Madrid, Spain, December 2021. URL: https://hal.archives-ouvertes.fr/
hal-03100628.

[60] Mohamed Ben-Daya, Elkafi Hassini, and Zied Bahroun. Internet of things and supply chain man-
agement: a literature review. International Journal of Production Research, 57:1–24, 11 2017. doi:
10.1080/00207543.2017.1402140.

[61] Giulio Maria Bianco, Romeo Giuliano, Gaetano Marrocco, Franco Mazzenga, and Abraham Mejia-
Aguilar. Lora system for search and rescue: Path-lossmodels and procedures inmountain scenarios.
IEEE Internet of Things Journal, 8(3):1985–1999, 2021. doi:10.1109/JIOT.2020.3017044.

98

https://doi.org/10.1109/ICICCS51141.2021.9432217
https://doi.org/10.1109/ICICCS51141.2021.9432217
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.3390/s23094473
https://doi.org/10.23919/WMNC56391.2022.9954304
https://doi.org/10.23919/WMNC56391.2022.9954304
https://doi.org/10.23919/(Accepted)
https://doi.org/10.1109/ACCESS.2024.TBD
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/PKIA56009.2022.9952253
https://hal.archives-ouvertes.fr/hal-03100628
https://hal.archives-ouvertes.fr/hal-03100628
https://doi.org/10.1080/00207543.2017.1402140
https://doi.org/10.1080/00207543.2017.1402140
https://doi.org/10.1109/JIOT.2020.3017044

[62] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and David Cooper. Inter-
net X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280,
May 2008. URL: https://www.rfc-editor.org/info/rfc5280, doi:10.17487/RFC5280.

[63] Carsten Bormann, Mehmet Ersue, and Ari Keränen. Terminology for Constrained-Node Networks.
RFC 7228, May 2014. URL: https://www.rfc-editor.org/info/rfc7228, doi:10.17487/RFC7228.

[64] Stéphane Bortzmeyer, Ralph Dolmans, and Paul E. Hoffman. DNS Query Name Minimisation to
Improve Privacy. RFC 9156, November 2021. URL: https://www.rfc-editor.org/info/rfc9156,
doi:10.17487/RFC9156.

[65] L Breiman. Random Forests. Machine Learning, 45:5–32, 10 2001. doi:10.1023/A:1010950718922.
[66] Andrew Bulashenko, Stepan Piltyay, Alina Polishchuk, and Oleksandr Bulashenko. New trafficmodel

of m2m technology in 5g wireless sensor networks. In 2020 IEEE 2nd International Conference on
Advanced Trends in Information Theory (ATIT), pages 125–131, 2020. doi:10.1109/ATIT50783.2020.
9349305.

[67] Andrei Butnaru, Alexios Mylonas, and Nikolaos Pitropakis. Towards Lightweight URL-Based Phishing
Detection. Future Internet, 13(6):154, Jun 2021. doi:10.3390/fi13060154.

[68] Zhanghua Cai, Yantao Zhou, Yihong Qi, Weihua Zhuang, and Lei Deng. A millimeter wave dual-lens
antenna for iot-based smart parking radar system. IEEE Internet of Things Journal, 8(1):418–427, 2021.
doi:10.1109/JIOT.2020.3004403.

[69] Cagatay Catal, GörkemGiray, Bedir Tekinerdogan, Sandeep Kumar, and Suyash Shukla. Applications
of deep learning for phishing detection: a systematic literature review. Knowledge and Information
Systems, 64(6):1457–1500, June 2022. doi:10.1007/s10115-022-01672-x.

[70] Stuart Cheshire and Marc Krochmal. DNS-Based Service Discovery. RFC 6763, February 2013. URL:
https://www.rfc-editor.org/info/rfc6763, doi:10.17487/RFC6763.

[71] Stuart Cheshire and Marc Krochmal. Multicast DNS. RFC 6762, February 2013. URL: https://www.
rfc-editor.org/info/rfc6762, doi:10.17487/RFC6762.

[72] China Academy of Telecommunication Research (CATR)and Research Cluster on the Internet-of-
Things (IERC). Eu-china joint white paper on internet-of-things identification, 2018. URL: https:
//iot6.eu/sites/default/files/imageblock/EU-China_IOT-ID-White-Paper-V1.0-Final.pdf.

[73] Chris Kemmerer. What is a root store?, 2019. URL: https://www.ssl.com/faqs/
what-is-a-root-store/.

[74] Cisco Umbrella. Cisco Umbrella 1 Million. URL: https://s3-us-west-1.amazonaws.com/
umbrella-static/index.html.

[75] Alissa Cooper, Hannes Tschofenig, Dr. Bernard D. Aboba, Jon Peterson, John Morris, Marit Hansen,
and Rhys Smith. Privacy Considerations for Internet Protocols. RFC 6973, July 2013. URL: https:
//www.rfc-editor.org/info/rfc6973, doi:10.17487/RFC6973.

[76] Bill Corbitt. Do you “trust” me?, 2013. URL: https://www.intersecworldwide.com/blog/
do-you-trust-me.

99

https://www.rfc-editor.org/info/rfc5280
https://doi.org/10.17487/RFC5280
https://www.rfc-editor.org/info/rfc7228
https://doi.org/10.17487/RFC7228
https://www.rfc-editor.org/info/rfc9156
https://doi.org/10.17487/RFC9156
https://doi.org/10.1023/A:1010950718922
https://doi.org/10.1109/ATIT50783.2020.9349305
https://doi.org/10.1109/ATIT50783.2020.9349305
https://doi.org/10.3390/fi13060154
https://doi.org/10.1109/JIOT.2020.3004403
https://doi.org/10.1007/s10115-022-01672-x
https://www.rfc-editor.org/info/rfc6763
https://doi.org/10.17487/RFC6763
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6762
https://doi.org/10.17487/RFC6762
https://iot6.eu/sites/default/files/imageblock/EU-China_IOT-ID-White-Paper-V1.0-Final.pdf
https://iot6.eu/sites/default/files/imageblock/EU-China_IOT-ID-White-Paper-V1.0-Final.pdf
https://www.ssl.com/faqs/what-is-a-root-store/
https://www.ssl.com/faqs/what-is-a-root-store/
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://doi.org/10.17487/RFC6973
https://www.intersecworldwide.com/blog/do-you-trust-me
https://www.intersecworldwide.com/blog/do-you-trust-me

[77] Pádraig Cunningham and Sarah Jane Delany. K-Nearest Neighbour Classifiers - A Tutorial. ACM
Comput. Surv., 54(6), jul 2021. doi:10.1145/3459665.

[78] Hong-Ning Dai, Zibin Zheng, and Yan Zhang. Blockchain for internet of things: A survey. IEEE Internet
of Things Journal, 6(5):8076–8094, 2019. doi:10.1109/JIOT.2019.2920987.

[79] Soumya Kanti Datta and Christian Bonnet. Advances in web of things for iot interoperability. In
2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pages 1–2, 2018. doi:
10.1109/ICCE-China.2018.8448890.

[80] Wouter de Vries, Quirin Scheitle, Moritz Müller, Willem Toorop, Ralph Dolmans, and Roland Rijswijk-
Deij. A first look at qname minimization in the domain name system. pages 147–160, 03 2019. doi:
10.1007/978-3-030-15986-3_10.

[81] Anthony S. Deese, Joe Jesson, Thomas Brennan, Steven Hollain, Patrick Stefanacci, Emily Driscoll,
Connor Dick, Keith Garcia, RyanMosher, Brian Rentsch, Andrew Bechtel, and Efrain Rodriguez. Long-
term monitoring of smart city assets via internet of things and low-power wide-area networks. IEEE
Internet of Things Journal, 8(1):222–231, 2021. doi:10.1109/JIOT.2020.3005830.

[82] Swati Dhingra, Rajasekhara Babu Madda, Amir H. Gandomi, Rizwan Patan, and Mahmoud Danesh-
mand. Internet of things mobile–air pollution monitoring system (iot-mobair). IEEE Internet of Things
Journal, 6(3):5577–5584, 2019. doi:10.1109/JIOT.2019.2903821.

[83] Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos, Maarten van Steen, and Norbert
Pohlmann. On botnets that use dns for command and control. In Proceedings of the 2011 Seventh
European Conference on Computer Network Defense, EC2ND ’11, page 9–16, USA, 2011. IEEE Computer
Society. doi:10.1109/EC2ND.2011.16.

[84] Duo Ding, Minbo Li, and Zhu Zhu. Object naming service supporting heterogeneous object code
identification for iot system. In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), volume 01, page 545–554, 7 2018. doi:10.1109/COMPSAC.2018.00084.

[85] Duo Ding, Minbo Li, and Zhu Zhu. Object naming service supporting heterogeneous object code
identification for iot system. In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), volume 01, pages 545–554, 2018. doi:10.1109/COMPSAC.2018.00084.

[86] Yi Ding, GuozhengWu, Dajiang Chen, Ning Zhang, Linpeng Gong, Mingsheng Cao, and Zhiguang Qin.
DeepEDN: A deep-learning-based image encryption and decryption network for internet of medical
things. IEEE Internet of Things Journal, 8(3):1504–1518, feb 2021. URL: https://doi.org/10.1109%
2Fjiot.2020.3012452, doi:10.1109/jiot.2020.3012452.

[87] Badis Djamaa andMark Richardson. Towards scalable dns-based service discovery for the internet of
things. Lecture Notes in Computer Science, page 432–435, 2014. doi:10.1007/978-3-319-13102-3_
70.

[88] Nguyet Quang Do, Ali Selamat, Ondrej Krejcar, Enrique Herrera-Viedma, and Hamido Fujita. Deep
Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions. IEEE Access,
10:36429–36463, 2022. doi:10.1109/ACCESS.2022.3151903.

[89] Viktor Dukhovni and Wes Hardaker. The DNS-Based Authentication of Named Entities (DANE) Pro-
tocol: Updates and Operational Guidance. RFC 7671, October 2015. URL: https://www.rfc-editor.
org/info/rfc7671, doi:10.17487/RFC7671.

100

https://doi.org/10.1145/3459665
https://doi.org/10.1109/JIOT.2019.2920987
https://doi.org/10.1109/ICCE-China.2018.8448890
https://doi.org/10.1109/ICCE-China.2018.8448890
https://doi.org/10.1007/978-3-030-15986-3_10
https://doi.org/10.1007/978-3-030-15986-3_10
https://doi.org/10.1109/JIOT.2020.3005830
https://doi.org/10.1109/JIOT.2019.2903821
https://doi.org/10.1109/EC2ND.2011.16
https://doi.org/10.1109/COMPSAC.2018.00084
https://doi.org/10.1109/COMPSAC.2018.00084
https://doi.org/10.1109%2Fjiot.2020.3012452
https://doi.org/10.1109%2Fjiot.2020.3012452
https://doi.org/10.1109/jiot.2020.3012452
https://doi.org/10.1007/978-3-319-13102-3_70
https://doi.org/10.1007/978-3-319-13102-3_70
https://doi.org/10.1109/ACCESS.2022.3151903
https://www.rfc-editor.org/info/rfc7671
https://www.rfc-editor.org/info/rfc7671
https://doi.org/10.17487/RFC7671

[90] Dmitry Elkin and Valeriy Vyatkin. IoT in Traffic Management: Review of Existing Methods of Road Traffic
Regulation, pages 536–551. 08 2020. doi:10.1007/978-3-030-51974-2_50.

[91] European Union Agency for Cybersecurity (ENISA). Operation black tulip: Certificate au-
thorities lose authority, 2011. URL: https://www.enisa.europa.eu/media/news-items/
operation-black-tulip/.

[92] Simon Fernandez, Michele Amoretti, Fabrizio Restori, Maciej Korczynski, and Andrzej Duda. Semantic
identifiers and DNS names for IoT. In 2021 International Conference on Computer Communications
and Networks (ICCCN). IEEE, jul 2021. URL: https://doi.org/10.1109%2Ficccn52240.2021.9522285,
doi:10.1109/icccn52240.2021.9522285.

[93] Mohamed Amine Ferrag, Othmane Friha, Djallel Hamouda, Leandros Maglaras, and Helge Janicke.
Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications:
Centralized and Federated Learning, 2022. doi:10.21227/mbc1-1h68.

[94] Maria Ganzha, Marcin Paprzycki, Wieslaw Pawlowski, Paweł Szmeja, and Katarzyna Wasielewska.
Towards Semantic Interoperability Between Internet of Things Platforms, pages 103–127. 07 2018. doi:
10.1007/978-3-319-61300-0_6.

[95] Oscar Garcia-Morchon, Sandeep Kumar, and Mohit Sethi. Internet of Things (IoT) Security: State of
the Art and Challenges. RFC 8576, April 2019. URL: https://www.rfc-editor.org/info/rfc8576,
doi:10.17487/RFC8576.

[96] Ali Ghubaish, Tara Salman, Maede Zolanvari, Devrim Unal, Abdulla Al-Ali, and Raj Jain. Recent
advances in the internet-of-medical-things (iomt) systems security. IEEE Internet of Things Journal,
8(11):8707–8718, 2021. doi:10.1109/JIOT.2020.3045653.

[97] GlobalSign. Globalsign ssl certificates, September 24, 2024. URL: https://shop.globalsign.com/
en/ssl.

[98] Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. Introduction to iot. 5:41–44, 01 2018. doi:10.
17148/IARJSET.2018.517.

[99] Google Security Blog. An update on attempted man-in-the-middle attacks, 2011. URL: https://
security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html.

[100] Amelie Gyrard, Soumya Kanti Datta, and Christian Bonnet. A survey and analysis of ontology-based
software tools for semantic interoperability in iot and wot landscapes. In 2018 IEEE 4th World Forum
on Internet of Things (WF-IoT), pages 86–91, 2018. doi:10.1109/WF-IoT.2018.8355091.

[101] Ayyoob Hamza, Hassan Habibi Gharakheili, Theophilus A. Benson, and Vijay Sivaraman. Detecting
Volumetric Attacks on LoT Devices via SDN-Based Monitoring of MUD Activity. In Proceedings of the
2019 ACM Symposium on SDN Research, SOSR ’19, page 36–48, New York, NY, USA, 2019. Association
for Computing Machinery. doi:10.1145/3314148.3314352.

[102] Almira Hamzic and Isabel Olofsson. DNS and the Internet of Things: Outlining the challenges faced
by DNS in the Internet of Things. Master’s thesis, KTH Royal Institute of Technology, Sweden, 2016.

[103] Hua Han, Wenjin Ma, MengChu Zhou, Qiang Guo, and Abdullah Abusorrah. A novel semi-supervised
learning approach to pedestrian reidentification. IEEE Internet of Things Journal, 8(4):3042–3052, 2021.
doi:10.1109/JIOT.2020.3024287.

101

https://doi.org/10.1007/978-3-030-51974-2_50
https://www.enisa.europa.eu/media/news-items/operation-black-tulip/
https://www.enisa.europa.eu/media/news-items/operation-black-tulip/
https://doi.org/10.1109%2Ficccn52240.2021.9522285
https://doi.org/10.1109/icccn52240.2021.9522285
https://doi.org/10.21227/mbc1-1h68
https://doi.org/10.1007/978-3-319-61300-0_6
https://doi.org/10.1007/978-3-319-61300-0_6
https://www.rfc-editor.org/info/rfc8576
https://doi.org/10.17487/RFC8576
https://doi.org/10.1109/JIOT.2020.3045653
https://shop.globalsign.com/en/ssl
https://shop.globalsign.com/en/ssl
https://doi.org/10.17148/IARJSET.2018.517
https://doi.org/10.17148/IARJSET.2018.517
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://doi.org/10.1109/WF-IoT.2018.8355091
https://doi.org/10.1145/3314148.3314352
https://doi.org/10.1109/JIOT.2020.3024287

[104] Jiliang Han, Na Lin, Junhu Ruan, Xuping Wang, Wei Wei, and Huimin Lu. A model for joint planning of
production and distribution of fresh produce in agricultural internet of things. IEEE Internet of Things
Journal, 8(12):9683–9696, 2021. doi:10.1109/JIOT.2020.3037729.

[105] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009. doi:10.1007/978-0-387-21606-5.

[106] Marti Hearst, S.T. Dumais, E. Osman, John Platt, and B. Scholkopf. Support vector machines. Intelli-
gent Systems and their Applications, IEEE, 13:18 – 28, 08 1998. doi:10.1109/5254.708428.

[107] Cristian Hesselman, Merike Kaeo, Lyman Chapin, Kimberly Claffy, Mark Seiden, Danny McPherson,
Dave Piscitello, Andrew McConachie, Tim April, Jacques Latour, and Rod Rasmussen. The dns in iot:
Opportunities, risks, and challenges. IEEE Internet Computing, 24(4):23–32, 2020. doi:10.1109/MIC.
2020.3005388.

[108] Bernie Hoeneisen and Alexander Mayrhofer. ENUM Validation Architecture. RFC 4725, November
2006. URL: https://www.rfc-editor.org/info/rfc4725, doi:10.17487/RFC4725.

[109] Paul E. Hoffman. Cryptographic Algorithm Identifier Allocation for DNSSEC. RFC 6014, November
2010. URL: https://www.rfc-editor.org/info/rfc6014, doi:10.17487/RFC6014.

[110] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS (DoH). RFC 8484, October 2018.
URL: https://www.rfc-editor.org/info/rfc8484, doi:10.17487/RFC8484.

[111] Paul E. Hoffman and Jakob Schlyter. The DNS-Based Authentication of Named Entities (DANE) Trans-
port Layer Security (TLS) Protocol: TLSA. RFC 6698, August 2012. URL: https://www.rfc-editor.
org/info/rfc6698, doi:10.17487/RFC6698.

[112] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E. Hoffman. Spec-
ification for DNS over Transport Layer Security (TLS). RFC 7858, May 2016. URL: https://www.
rfc-editor.org/info/rfc7858, doi:10.17487/RFC7858.

[113] Christian Huitema and Eric Rescorla. Issues and Requirements for Server Name Identification (SNI)
Encryption in TLS. RFC 8744, July 2020. URL: https://www.rfc-editor.org/info/rfc8744, doi:
10.17487/RFC8744.

[114] Shumon Huque and Viktor Dukhovni. TLS Client Authentication via DANE TLSA records. Internet-
Draft draft-ietf-dance-client-auth-05, Internet Engineering Task Force, January 2024. Work in
Progress. URL: https://datatracker.ietf.org/doc/draft-ietf-dance-client-auth/05/.

[115] Shumon Huque and Viktor Dukhovni. TLS Extension for DANE Client Identity. Internet-Draft draft-
ietf-dance-tls-clientid-03, Internet Engineering Task Force, January 2024. Work in Progress. URL:
https://datatracker.ietf.org/doc/draft-ietf-dance-tls-clientid/03/.

[116] Thien Huynh-The, Cam-Hao Hua, Nguyen Anh Tu, and Dong-Seong Kim. Physical activity recognition
with statistical-deep fusionmodel usingmultiple sensory data for smart health. IEEE Internet of Things
Journal, 8(3):1533–1543, 2021. doi:10.1109/JIOT.2020.3013272.

[117] IANA. List of top-level domains. Accessed: 2024. URL: https://data.iana.org/TLD/
tlds-alpha-by-domain.txt.

[118] IANA. Root servers. Accessed: 2024. URL: https://www.iana.org/domains/root/servers.
102

https://doi.org/10.1109/JIOT.2020.3037729
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/MIC.2020.3005388
https://doi.org/10.1109/MIC.2020.3005388
https://www.rfc-editor.org/info/rfc4725
https://doi.org/10.17487/RFC4725
https://www.rfc-editor.org/info/rfc6014
https://doi.org/10.17487/RFC6014
https://www.rfc-editor.org/info/rfc8484
https://doi.org/10.17487/RFC8484
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6698
https://doi.org/10.17487/RFC6698
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7858
https://doi.org/10.17487/RFC7858
https://www.rfc-editor.org/info/rfc8744
https://doi.org/10.17487/RFC8744
https://doi.org/10.17487/RFC8744
https://datatracker.ietf.org/doc/draft-ietf-dance-client-auth/05/
https://datatracker.ietf.org/doc/draft-ietf-dance-tls-clientid/03/
https://doi.org/10.1109/JIOT.2020.3013272
https://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://www.iana.org/domains/root/servers

[119] Kevin Igoe, David McGrew, and Margaret Salter. Fundamental Elliptic Curve Cryptography Algo-
rithms. RFC 6090, February 2011. URL: https://www.rfc-editor.org/info/rfc6090, doi:10.17487/
RFC6090.

[120] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On Explaining Decision Trees, 2020. arXiv:
2010.11034.

[121] Jaime Jimenez, Hannes Tschofenig, and Dave Thaler. Report from the Internet of Things (IoT) Seman-
tic Interoperability (IOTSI) Workshop 2016. RFC 8477, October 2018. URL: https://www.rfc-editor.
org/info/rfc8477, doi:10.17487/RFC8477.

[122] Simon Josefsson. Storing Certificates in the Domain Name System (DNS). RFC 4398, March 2006.
URL: https://www.rfc-editor.org/info/rfc4398, doi:10.17487/RFC4398.

[123] Anca Jurcut, Pasika Ranaweera, and Lina Xu. Introduction to IoT Security, pages 1–39. 12 2019. doi:
10.1002/9781119471509.w5GRef260.

[124] Latika Kakkar, Gupta Deepali, Sapna Saxena, and Sarvesh Tanwar. IoT Architectures and Its Security:
A Review, pages 87–94. 01 2021. doi:10.1007/978-981-15-9689-6_10.

[125] Andreas Kamilaris, Koula Papakonstantinou, and Andreas Pitsillides. Exploring the use of dns as a
search engine for the web of things. 03 2014. doi:10.1109/WF-IoT.2014.6803128.

[126] Hyunjae Kang, Dong Hyun Ahn, Gyung Min Lee, Jeong Do Yoo, Kyung Ho Park, and Huy Kang Kim.
IoT network intrusion dataset, 2019. doi:10.21227/q70p-q449.

[127] Matthieu Kanj, Vincent Savaux, and Mathieu Le Guen. A tutorial on nb-iot physical layer design. IEEE
Communications Surveys Tutorials, 22(4):2408–2446, 2020. doi:10.1109/COMST.2020.3022751.

[128] Bill Karakostas. A dns architecture for the internet of things: A case study in transport logistics.
Procedia Computer Science, 19:594–601, 12 2013. doi:10.1016/j.procs.2013.06.079.

[129] Tae Hyun Kim, Douglas Reeves, and Rudra Dutta. Advanced secure dns name autoconfigurationwith
authentication for enterprise iot network. In 2021 IEEE Global Communications Conference (GLOBE-
COM), pages 01–06, 2021. doi:10.1109/GLOBECOM46510.2021.9685237.

[130] Nikhil Kumar, Debopam Acharya, and Divya Lohani. An iot-based vehicle accident detection and
classification system using sensor fusion. IEEE Internet of Things Journal, 8(2):869–880, 2021. doi:
10.1109/JIOT.2020.3008896.

[131] Larry Lannom, Lt. Col. Brian P. Boesch, and Sam Sun. Handle SystemOverview. RFC 3650, November
2003. URL: https://www.rfc-editor.org/info/rfc3650, doi:10.17487/RFC3650.

[132] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyński, and Wouter
Joosen. Tranco: A research-oriented top sites ranking hardened againstmanipulation. In Proceedings
of the 26th Annual Network and Distributed System Security Symposium, NDSS 2019, February 2019. doi:
10.14722/ndss.2019.23386.

[133] Euijong Lee, Young-Duk Seo, Se-Ra Oh, and Young-Gab Kim. A survey on standards for interoper-
ability and security in the internet of things. IEEE Communications Surveys Tutorials, 23(2):1020–1047,
2021. doi:10.1109/COMST.2021.3067354.

103

https://www.rfc-editor.org/info/rfc6090
https://doi.org/10.17487/RFC6090
https://doi.org/10.17487/RFC6090
https://arxiv.org/abs/2010.11034
https://arxiv.org/abs/2010.11034
https://www.rfc-editor.org/info/rfc8477
https://www.rfc-editor.org/info/rfc8477
https://doi.org/10.17487/RFC8477
https://www.rfc-editor.org/info/rfc4398
https://doi.org/10.17487/RFC4398
https://doi.org/10.1002/9781119471509.w5GRef260
https://doi.org/10.1002/9781119471509.w5GRef260
https://doi.org/10.1007/978-981-15-9689-6_10
https://doi.org/10.1109/WF-IoT.2014.6803128
https://doi.org/10.21227/q70p-q449
https://doi.org/10.1109/COMST.2020.3022751
https://doi.org/10.1016/j.procs.2013.06.079
https://doi.org/10.1109/GLOBECOM46510.2021.9685237
https://doi.org/10.1109/JIOT.2020.3008896
https://doi.org/10.1109/JIOT.2020.3008896
https://www.rfc-editor.org/info/rfc3650
https://doi.org/10.17487/RFC3650
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1109/COMST.2021.3067354

[134] Keuntae Lee, Hyungsuk Kang, Jaehoon Paul Jeong, Hyoungshick Kim, and Jung-Soo Park. Secure
dns name autoconfiguration for ipv6 internet-of-things devices. In 2016 International Conference on
Information and Communication Technology Convergence (ICTC), pages 564–569, 2016. doi:10.1109/
ICTC.2016.7763534.

[135] Keuntae Lee, Seokhwa Kim, and Jaehoon Paul Jeong. Dnsnav4: Dns name autoconfiguration for
internet-of-things devices in ipv4 networks. In 2017 31st International Conference on Advanced Infor-
mation Networking and Applications Workshops (WAINA), pages 347–351, 2017. doi:10.1109/WAINA.
2017.117.

[136] Sejun Lee, Jaehoon Jeong, and Jungsoo Park. Dns name autoconfiguration for iot home devices.
In 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Work-
shops, pages 131–134, 2015. doi:10.1109/WAINA.2015.104.

[137] Sejun Lee, Jaehoon Paul Jeong, and Jung-Soo Park. Dnsna: Dns name autoconfiguration for internet
of things devices. In 2016 18th International Conference on Advanced Communication Technology (ICACT),
pages 410–416, 2016. doi:10.1109/ICACT.2016.7423412.

[138] Martine S. Lenders, Christian Amsüss, Cenk Gündogan, Marcin Nawrocki, Thomas C. Schmidt, and
Matthias Wählisch. Securing name resolution in the iot: Dns over coap. Proc. ACM Netw., 1(CoNEXT2),
September 2023. doi:10.1145/3609423.

[139] Martine Sophie Lenders, Christian Amsüss, Cenk Gündoğan, Thomas C. Schmidt, and Matthias
Wählisch. DNS over CoAP (DoC). Internet-Draft draft-ietf-core-dns-over-coap-07, Internet Engi-
neering Task Force, June 2024. Work in Progress. URL: https://datatracker.ietf.org/doc/
draft-ietf-core-dns-over-coap/07/.

[140] Martine Sophie Lenders, Carsten Bormann, Thomas C. Schmidt, and Matthias Wählisch. A Concise
Binary Object Representation (CBOR) of DNS Messages. Internet-Draft draft-lenders-dns-cbor-07,
Internet Engineering Task Force, May 2024. Work in Progress. URL: https://datatracker.ietf.
org/doc/draft-lenders-dns-cbor/07/.

[141] Wanting Li, Jian Jin, and Jong-Hyouk Lee. Analysis of botnet domain names for iot cybersecurity. IEEE
Access, 7:94658–94665, 2019. doi:10.1109/ACCESS.2019.2927355.

[142] LoRa Alliance. TS001-1.0.4 LoRaWAN® L2 1.0.4 Specification. Accessed on: Febru-
ary 2024. URL: https://resources.lora-alliance.org/technical-specifications/
ts001-1-0-4-lorawan-l2-1-0-4-specification.

[143] Zhihan Lv, Liang Qiao, Jinhua Li, and Houbing Song. Deep-learning-enabled security issues in the
internet of things. IEEE Internet of Things Journal, 8(12):9531–9538, 2021. doi:10.1109/JIOT.2020.
3007130.

[144] Gang Mei, Nengxiong Xu, Jiayu Qin, Bowen Wang, and Pian Qi. A survey of internet of things (iot)
for geohazard prevention: Applications, technologies, and challenges. IEEE Internet of Things Journal,
7(5):4371–4386, 2020. doi:10.1109/JIOT.2019.2952593.

[145] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan, Ahmad-Reza Sadeghi, and Sasu
Tarkoma. IoT SENTINEL: Automated device-type identification for security enforcement in IoT.
In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE, jun 2017.
doi:10.1109/icdcs.2017.283.

104

https://doi.org/10.1109/ICTC.2016.7763534
https://doi.org/10.1109/ICTC.2016.7763534
https://doi.org/10.1109/WAINA.2017.117
https://doi.org/10.1109/WAINA.2017.117
https://doi.org/10.1109/WAINA.2015.104
https://doi.org/10.1109/ICACT.2016.7423412
https://doi.org/10.1145/3609423
https://datatracker.ietf.org/doc/draft-ietf-core-dns-over-coap/07/
https://datatracker.ietf.org/doc/draft-ietf-core-dns-over-coap/07/
https://datatracker.ietf.org/doc/draft-lenders-dns-cbor/07/
https://datatracker.ietf.org/doc/draft-lenders-dns-cbor/07/
https://doi.org/10.1109/ACCESS.2019.2927355
https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://doi.org/10.1109/JIOT.2020.3007130
https://doi.org/10.1109/JIOT.2020.3007130
https://doi.org/10.1109/JIOT.2019.2952593
https://doi.org/10.1109/icdcs.2017.283

[146] Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey Dean. Efficient Estimation of Word Representa-
tions in Vector Space. Proceedings of Workshop at ICLR, 2013, 01 2013. doi:10.48550/arXiv.1301.
3781.

[147] TomasMikolov, Quoc V. Le, and Ilya Sutskever. Exploiting Similarities among Languages for Machine
Translation, 2013. doi:10.48550/arXiv.1309.4168.

[148] Stefano Milani and Ioannis Chatzigiannakis. Design, analysis, and experimental evaluation of a
new secure rejoin mechanism for lorawan using elliptic-curve cryptography. Journal of Sensor
and Actuator Networks, 10(2), 2021. URL: https://www.mdpi.com/2224-2708/10/2/36, doi:10.3390/
jsan10020036.

[149] Daniel Minoli and Benedict Occhiogrosso. Blockchain mechanisms for iot security. Internet of Things,
1-2:1–13, 09 2018. doi:10.1016/j.iot.2018.05.002.

[150] Nivedita Mishra and Sharnil Pandya. Internet of things applications, security challenges, attacks,
intrusion detection, and future visions: A systematic review. IEEE Access, 9:59353–59377, 2021. doi:
10.1109/ACCESS.2021.3073408.

[151] Bhabendu KumarMohanta, Debasish Jena, Somula Ramasubbareddy, Mahmoud Daneshmand, and
Amir H. Gandomi. Addressing security and privacy issues of iot using blockchain technology. IEEE
Internet of Things Journal, 8(2):881–888, 2021. doi:10.1109/JIOT.2020.3008906.

[152] Gabriel Montenegro, Christian Schumacher, and Nandakishore Kushalnagar. IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
Goals. RFC 4919, August 2007. URL: https://www.rfc-editor.org/info/rfc4919, doi:10.17487/
RFC4919.

[153] Mozilla. Ca certificates in firefox, September 24, 2024. URL: https://ccadb.my.salesforce-sites.
com/mozilla/CACertificatesInFirefoxReport.

[154] Fredrik Mårlind and Ismail Butun. Activation of lorawan end devices by using public key cryptog-
raphy. In 2020 4th Cyber Security in Networking Conference (CSNet), pages 1–8, 2020. doi:10.1109/
CSNet50428.2020.9265530.

[155] Soulakshmee Devi Nagowah, Hatem Ben Sta, and Baby Ashwin Gobin-Rahimbux. An overview of
semantic interoperability ontologies and frameworks for iot. In 2018 Sixth International Conference on
Enterprise Systems (ES), pages 82–89, 2018. doi:10.1109/ES.2018.00020.

[156] Dr. Thomas Narten, Tatsuya Jinmei, and Dr. Susan Thomson. IPv6 Stateless Address Autocon-
figuration. RFC 4862, September 2007. URL: https://www.rfc-editor.org/info/rfc4862, doi:
10.17487/RFC4862.

[157] Musa Ndiaye, Stephen S. Oyewobi, Adnan M. Abu-Mahfouz, Gerhard P. Hancke, Anish M. Kurien,
and Karim Djouani. Iot in the wake of covid-19: A survey on contributions, challenges and evolution.
IEEE Access, 8:186821–186839, 2020. doi:10.1109/ACCESS.2020.3030090.

[158] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kaddoum, and Nasir Ghani. Demystify-
ing iot security: An exhaustive survey on iot vulnerabilities and a first empirical look on internet-scale
iot exploitations. IEEE Communications Surveys Tutorials, 21(3):2702–2733, 2019. doi:10.1109/COMST.
2019.2910750.

105

https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1309.4168
https://www.mdpi.com/2224-2708/10/2/36
https://doi.org/10.3390/jsan10020036
https://doi.org/10.3390/jsan10020036
https://doi.org/10.1016/j.iot.2018.05.002
https://doi.org/10.1109/ACCESS.2021.3073408
https://doi.org/10.1109/ACCESS.2021.3073408
https://doi.org/10.1109/JIOT.2020.3008906
https://www.rfc-editor.org/info/rfc4919
https://doi.org/10.17487/RFC4919
https://doi.org/10.17487/RFC4919
https://ccadb.my.salesforce-sites.com/mozilla/CACertificatesInFirefoxReport
https://ccadb.my.salesforce-sites.com/mozilla/CACertificatesInFirefoxReport
https://doi.org/10.1109/CSNet50428.2020.9265530
https://doi.org/10.1109/CSNet50428.2020.9265530
https://doi.org/10.1109/ES.2018.00020
https://www.rfc-editor.org/info/rfc4862
https://doi.org/10.17487/RFC4862
https://doi.org/10.17487/RFC4862
https://doi.org/10.1109/ACCESS.2020.3030090
https://doi.org/10.1109/COMST.2019.2910750
https://doi.org/10.1109/COMST.2019.2910750

[159] MuhammadNouman, Sui Yang Khoo, M. A. ParvezMahmud, and Abbas Z. Kouzani. Recent advances
in contactless sensing technologies for mental health monitoring. IEEE Internet of Things Journal,
9(1):274–297, 2022. doi:10.1109/JIOT.2021.3097801.

[160] Oscar Novo and Mario Francesco. Semantic interoperability in the iot: Extending the web of things
architecture. ACM Transactions on Internet of Things, 1:1–25, 03 2020. doi:10.1145/3375838.

[161] Muhammad Talha Paracha, Daniel J. Dubois, Narseo Vallina-Rodriguez, and David Choffnes. IoTLS:
Understanding TLS Usage in Consumer IoT Devices. In Proceedings of the 21st ACM Internet Measure-
ment Conference, IMC ’21, page 165–178, New York, NY, USA, 2021. Association for Computing Machin-
ery. doi:10.1145/3487552.3487830.

[162] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis. Iotfinder: Efficient
large-scale identification of iot devices via passive dns traffic analysis. In 2020 IEEE European Sympo-
sium on Security and Privacy (EuroS P), pages 474–489, 2020. doi:10.1109/EuroSP48549.2020.00037.

[163] Stepan Piltyay, Andrew Bulashenko, and Ivan Demchenko. Wireless sensor network connectivity in
heterogeneous 5g mobile systems. In 2020 IEEE International Conference on Problems of Infocommu-
nications. Science and Technology (PIC S&T), pages 625–630, 2020. doi:10.1109/PICST51311.2020.
9468073.

[164] Diego G.S. Pivoto, Luiz F.F. de Almeida, Rodrigo da Rosa Righi, Joel J.P.C. Rodrigues, Alexan-
dre Baratella Lugli, and Antonio M. Alberti. Cyber-physical systems architectures for industrial inter-
net of things applications in industry 4.0: A literature review. Journal ofManufacturing Systems, 58:176–
192, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0278612520302119, doi:
10.1016/j.jmsy.2020.11.017.

[165] Yanchen Qiao, Bin Zhang, Weizhe Zhang, Arun Kumar, and Hualong Wu. DGA Domain Name Clas-
sification Method Based on Long Short-Term Memory with Attention Mechanism. Applied Sciences,
9:4205, 10 2019. doi:10.3390/app9204205.

[166] Abdur Rahman, M. Shamim Hossain, Nabil A. Alrajeh, and Fawaz Alsolami. Adversarial exam-
ples—security threats to covid-19 deep learning systems inmedical iot devices. IEEE Internet of Things
Journal, 8(12):9603–9610, 2021. doi:10.1109/JIOT.2020.3013710.

[167] Hafizur Rahman and Md. Iftekhar Hussain. A comprehensive survey on semantic interoperability
for internet of things: State-of-the-art and research challenges. Transactions on Emerging Telecom-
munications Technologies, 31(12):e3902, 2020. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/ett.3902, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3902, doi:
10.1002/ett.3902.

[168] Balaji Rajendran, Gopinath Palaniappan, Dijesh R, Bindhumadhava Bapu S, and Sudarsan S D. A
universal domain name resolution service – need and challenges - study on blockchain based naming
services. In 2022 IEEE Region 10 Symposium (TENSYMP), pages 1–6, 2022. doi:10.1109/TENSYMP54529.
2022.9864361.

[169] Routhu Rao, Tatti Vaishnavi, and Alwyn Pais. CatchPhish: detection of phishing websites by in-
specting URLs. Journal of Ambient Intelligence and Humanized Computing, 11, 02 2020. doi:10.1007/
s12652-019-01311-4.

106

https://doi.org/10.1109/JIOT.2021.3097801
https://doi.org/10.1145/3375838
https://doi.org/10.1145/3487552.3487830
https://doi.org/10.1109/EuroSP48549.2020.00037
https://doi.org/10.1109/PICST51311.2020.9468073
https://doi.org/10.1109/PICST51311.2020.9468073
https://www.sciencedirect.com/science/article/pii/S0278612520302119
https://doi.org/10.1016/j.jmsy.2020.11.017
https://doi.org/10.1016/j.jmsy.2020.11.017
https://doi.org/10.3390/app9204205
https://doi.org/10.1109/JIOT.2020.3013710
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3902
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3902
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3902
https://doi.org/10.1002/ett.3902
https://doi.org/10.1002/ett.3902
https://doi.org/10.1109/TENSYMP54529.2022.9864361
https://doi.org/10.1109/TENSYMP54529.2022.9864361
https://doi.org/10.1007/s12652-019-01311-4
https://doi.org/10.1007/s12652-019-01311-4

[170] Sebastian Raschka. Naive Bayes and Text Classification I - Introduction and Theory, 2017. arXiv:
1410.5329.

[171] Nafiul Rashid, Manik Dautta, Peter Tseng, and Mohammad Abdullah Al Faruque. Hear: Fog-enabled
energy-aware online human eating activity recognition. IEEE Internet of Things Journal, 8(2):860–868,
2021. doi:10.1109/JIOT.2020.3008842.

[172] Tirumaleswar Reddy.K, Dan Wing, and Prashanth Patil. DNS over Datagram Transport Layer Se-
curity (DTLS). RFC 8094, February 2017. URL: https://www.rfc-editor.org/info/rfc8094, doi:
10.17487/RFC8094.

[173] Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman Kolcun, and Hamed
Haddadi. Information Exposure for Consumer IoT Devices: A Multidimensional, Network-Informed
Measurement Approach. In Proc. of the Internet Measurement Conference (IMC), 2019. doi:10.1145/
3355369.3355577.

[174] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. DNS Security Introduction and
Requirements. RFC 4033, March 2005. URL: https://www.rfc-editor.org/info/rfc4033, doi:
10.17487/RFC4033.

[175] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. Protocol Modifications for the
DNS Security Extensions. RFC 4035,March 2005. URL: https://www.rfc-editor.org/info/rfc4035,
doi:10.17487/RFC4035.

[176] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. Resource Records for the DNS
Security Extensions. RFC 4034, March 2005. URL: https://www.rfc-editor.org/info/rfc4034,
doi:10.17487/RFC4034.

[177] Said Jawad Saidi, Srdjan Matic, Oliver Gasser, Georgios Smaragdakis, and Anja Feldmann. Deep dive
into the iot backend ecosystem. In Proceedings of the 22nd ACM Internet Measurement Conference, IMC
’22, page 488–503, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3517745.3561431.

[178] Eryk Schiller, Andy Aidoo, Jara Fuhrer, Jonathan Stahl, Michael Ziörjen, and Burkhard Stiller. Land-
scape of iot security. Computer Science Review, 44, 05 2022. doi:10.1016/j.cosrev.2022.100467.

[179] Giovanni Schmid. Thirty years of dns insecurity: Current issues and perspectives. IEEE Communica-
tions Surveys Tutorials, 23(4):2429–2459, 2021. doi:10.1109/COMST.2021.3105741.

[180] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster. Oblivious dns: Practical privacy
for dns queries. Proceedings on Privacy Enhancing Technologies, 2019:228–244, 04 2019. doi:10.2478/
popets-2019-0028.

[181] Benjamin M. Schwartz, Mike Bishop, and Erik Nygren. Service Binding and Parameter Specification
via the DNS (SVCB and HTTPS Resource Records). RFC 9460, November 2023. URL: https://www.
rfc-editor.org/info/rfc9460, doi:10.17487/RFC9460.

[182] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Protocol (CoAP). RFC
7252, June 2014. URL: https://www.rfc-editor.org/info/rfc7252, doi:10.17487/RFC7252.

107

https://arxiv.org/abs/1410.5329
https://arxiv.org/abs/1410.5329
https://doi.org/10.1109/JIOT.2020.3008842
https://www.rfc-editor.org/info/rfc8094
https://doi.org/10.17487/RFC8094
https://doi.org/10.17487/RFC8094
https://doi.org/10.1145/3355369.3355577
https://doi.org/10.1145/3355369.3355577
https://www.rfc-editor.org/info/rfc4033
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC4033
https://www.rfc-editor.org/info/rfc4035
https://doi.org/10.17487/RFC4035
https://www.rfc-editor.org/info/rfc4034
https://doi.org/10.17487/RFC4034
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1145/3517745.3561431
https://doi.org/10.1016/j.cosrev.2022.100467
https://doi.org/10.1109/COMST.2021.3105741
https://doi.org/10.2478/popets-2019-0028
https://doi.org/10.2478/popets-2019-0028
https://www.rfc-editor.org/info/rfc9460
https://www.rfc-editor.org/info/rfc9460
https://doi.org/10.17487/RFC9460
https://www.rfc-editor.org/info/rfc7252
https://doi.org/10.17487/RFC7252

[183] Ravi Pratap Singh, Mohd Javaid, Abid Haleem, and Rajiv Suman. Internet of things (iot) ap-
plications to fight against covid-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research
& Reviews, 14(4):521–524, 2020. URL: https://www.sciencedirect.com/science/article/pii/
S1871402120301065, doi:10.1016/j.dsx.2020.04.041.

[184] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith Wijenayake,
Arun Vishwanath, and Vijay Sivaraman. Classifying IoT Devices in Smart Environments Using Net-
work Traffic Characteristics. IEEE Transactions on Mobile Computing, 18(8):1745–1759, 2019. doi:
10.1109/TMC.2018.2866249.

[185] Jeffrey Spaulding andDavidMohaisen. Defending internet of things againstmalicious domain names
using d-fens. pages 387–392, 10 2018. doi:10.1109/SEC.2018.00051.

[186] Sriram Srinivasan, Vinayakumar Ravi, Ajay Arunachalam, Mamoun Alazab, and Soman Kp. DURLD:
Malicious URL Detection Using Deep Learning-Based Character Level Representations, pages 535–554.
Springer, 01 2021. doi:10.1007/978-3-030-62582-5_21.

[187] Milosh Stolikj, Pieter J. L. Cuijpers, Johan J. Lukkien, and Nina Buchina. Context based service discov-
ery in unmanaged networks using mdns/dns-sd. In 2016 IEEE International Conference on Consumer
Electronics (ICCE), page 163–165, 1 2016. doi:10.1109/ICCE.2016.7430565.

[188] Milosh Stolikj, Richard Verhoeven, Pieter J. L. Cuijpers, and Johan J. Lukkien. Proxy support for service
discovery using mdns/dns-sd in low power networks. In Proceeding of IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks 2014, pages 1–6, 2014. doi:10.1109/WoWMoM.
2014.6918925.

[189] Pascal Thubert and Jonathan Hui. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based
Networks. RFC 6282, September 2011. URL: https://www.rfc-editor.org/info/rfc6282, doi:10.
17487/RFC6282.

[190] Tranco. Tranco. URL: ttps://tranco-list.eu/list/K273W.
[191] Soe Tun, Samaneh Madanian, and Farhaan Mirza. Internet of things (iot) applications for elderly

care: a reflective review. Aging Clinical and Experimental Research, 33, 04 2021. doi:10.1007/
s40520-020-01545-9.

[192] Aashma Uprety and Danda B Rawat. Reinforcement learning for iot security: A comprehensive sur-
vey. IEEE Internet of Things Journal, PP:1–1, 11 2020. doi:10.1109/JIOT.2020.3040957.

[193] Thales L. von Sperling, Francisco L. de Caldas Filho, Rafael Timóteo de Sousa, Lucas M. C. e Martins,
and Rodrigo L. Rocha. Tracking intruders in iot networks by means of dns traffic analysis. In 2017
Workshop on Communication Networks and Power Systems (WCNPS), pages 1–4, 2017. doi:10.1109/
WCNPS.2017.8252938.

[194] TimWicinski. DNS Privacy Considerations. RFC 9076, July 2021. URL: https://www.rfc-editor.org/
info/rfc9076, doi:10.17487/RFC9076.

[195] Jonathan Woodbridge, Hyrum Anderson, Anjum Ahuja, and Daniel Grant. Predicting Domain Gen-
eration Algorithms with Long Short-Term Memory Networks. arXiv preprint arXiv:1611.00791, 11 2016.
doi:10.48550/arXiv.1611.00791.

108

https://www.sciencedirect.com/science/article/pii/S1871402120301065
https://www.sciencedirect.com/science/article/pii/S1871402120301065
https://doi.org/10.1016/j.dsx.2020.04.041
https://doi.org/10.1109/TMC.2018.2866249
https://doi.org/10.1109/TMC.2018.2866249
https://doi.org/10.1109/SEC.2018.00051
https://doi.org/10.1007/978-3-030-62582-5_21
https://doi.org/10.1109/ICCE.2016.7430565
https://doi.org/10.1109/WoWMoM.2014.6918925
https://doi.org/10.1109/WoWMoM.2014.6918925
https://www.rfc-editor.org/info/rfc6282
https://doi.org/10.17487/RFC6282
https://doi.org/10.17487/RFC6282
ttps://tranco-list.eu/list/K273W
https://doi.org/10.1007/s40520-020-01545-9
https://doi.org/10.1007/s40520-020-01545-9
https://doi.org/10.1109/JIOT.2020.3040957
https://doi.org/10.1109/WCNPS.2017.8252938
https://doi.org/10.1109/WCNPS.2017.8252938
https://www.rfc-editor.org/info/rfc9076
https://www.rfc-editor.org/info/rfc9076
https://doi.org/10.17487/RFC9076
https://doi.org/10.48550/arXiv.1611.00791

[196] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, Guoai Xu, and Gareth Tyson. Chal-
lenges in decentralized name management: The case of ens. In Proceedings of the 22nd ACM Internet
Measurement Conference, IMC ’22, page 65–82, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3517745.3561469.

[197] Zhiwei Yan, Ning Kong, Ye Tian, and Yong-Jin Park. A universal object name resolution scheme
for iot. In 2013 IEEE International Conference on Green Computing and Communications and IEEE In-
ternet of Things and IEEE Cyber, Physical and Social Computing, pages 1120–1124, 2013. doi:10.1109/
GreenCom-iThings-CPSCom.2013.193.

[198] Zhiwei Yan, Hongtao Li, Sherali Zeadally, Yu Zeng, and Guanggang Geng. Is dns ready for ubiquitous
internet of things? IEEE Access, 7:28835–28846, 2019. doi:10.1109/ACCESS.2019.2901801.

[199] Luhui Yang, Guangjie Liu, Jinwei Wang, Huiwen Bai, Jiangtao Zhai, and Yuewei Dai. Fast3DS: A real-
time full-convolutional malicious domain name detection system. Journal of Information Security and
Applications, 61:102933, 2021. doi:10.1016/j.jisa.2021.102933.

[200] Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, and Emmanuel Baccelli.
Secure firmware updates for constrained iot devices using open standards: A reality check. IEEE
Access, 7:71907–71920, 2019. doi:10.1109/ACCESS.2019.2919760.

[201] Guijuan Zhang, Dianjie Lu, and Hong Liu. Iot-based positive emotional contagion for crowd evacua-
tion. IEEE Internet of Things Journal, 8(2):1057–1070, 2021. doi:10.1109/JIOT.2020.3009715.

[202] Ólafur Guðmundsson. Adding Acronyms to Simplify Conversations about DNS-Based Authentication
of Named Entities (DANE). RFC 7218, April 2014. URL: https://www.rfc-editor.org/info/rfc7218,
doi:10.17487/RFC7218.

109

https://doi.org/10.1145/3517745.3561469
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.193
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.193
https://doi.org/10.1109/ACCESS.2019.2901801
https://doi.org/10.1016/j.jisa.2021.102933
https://doi.org/10.1109/ACCESS.2019.2919760
https://doi.org/10.1109/JIOT.2020.3009715
https://www.rfc-editor.org/info/rfc7218
https://doi.org/10.17487/RFC7218

	Introduction
	The Internet of Things (IoT)
	Definition of IoT
	IoT Architecture
	Applications of IoT

	LoRaWAN
	The LoRaWAN Architecture
	Over-The-Air-Activation

	DNS and DNS security
	DNS Architecture
	DNS Resource Records
	The DNS Resolution Process
	DNS Security and Privacy Standards

	Thesis Objectives
	Thesis Contributions

	State of the Art: DNS to Address IoT Challenges
	Introduction
	Challenges in IoT
	The Constrained IoT
	Identification in IoT
	IoT Security
	IoT Interoperability

	DNS and IoT
	DNS for constrained IoT
	DNS for IoT name resolution
	DNS for IoT security
	DNS for IoT interoperability
	Impact of IoT on DNS

	Discussion
	Conclusion

	Mutual Authentication of IoT Backend Servers
	Introduction
	The PKI using X.509 certificates (PKIX)
	Symmetric vs Asymmetric Encryption
	X.509 Digital Certificates
	Certificate Authorities
	TLS Protocol

	Reinforcing the PKIX Security with DANE
	DNS Complementing the PKIX in IoT Environments
	Mutual Authentication via DANE - The DANCE WG

	System Model
	Evaluation
	Using a Local DNS Resolver
	Using Remote DNS Resolvers

	Conclusion

	LoRaDANCE: Using The DNS for Mutual Authentication Without Pre-shared Keys
	Introduction
	Prerequisite
	DNSSEC, DANE, & DANCE WG
	Key Elements of LoRaWAN OTAA

	LoRaDANCE
	Evaluation
	Join Process Duration
	Power Consumption

	Discussion
	Conclusion

	IoT Backend Servers: Studying IoT Domain Names
	Introduction
	Motivation
	Background
	IoT Domain Names
	Domain Name Classification
	Brief Overview of Machine Learning
	Machine Learning Models Overview
	Word2vec for Word Embedding

	Data Collection
	IoT Dataset
	Non-IoT datasets

	Statistical Study
	DNS Analysis
	Classifying IoT and non-IoT domain names: Preprocessing and Word Embedding
	Data Preprocessing
	Word2vec: Real-Valued Vector Representation of Domain Names

	Results: Domain Name Classification
	Performance Evaluation
	Cross Validation
	Ablation Test

	Discussion
	Conclusion

	Conclusion and Perspective
	Summary of Contributions
	Future Perspectives
	Short-Term: Revisiting Contributions
	Medium-Term: IoT-Friendly DNSSEC?
	Long-Term

