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RÉSUMÉ  

La pollution de l'air représente le principal danger environnemental pour la santé humaine, 

causant une part significative de la mortalité mondiale, ainsi que diverses maladies chroniques. Ses 

conséquences sanitaires risquent de s’accroître avec le changement climatique, l'urbanisation et le 

vieillissement de la population. Cela souligne l'importance de surveiller les polluants 

atmosphériques, en particulier les particules fines (PM), qui sont les plus associées à la mortalité. 

Les objectifs de cette thèse sont 1) identifier les risques sanitaires liés aux polluants atmosphériques 

à Grenoble, 2) mesurer de la manière la plus fine possible l’exposition aux PM pour calculer au 

mieux les risques associés.  

Ce travail débute par l’étude de 4 polluants de l’air pendant la pandémie de COVID-19 : les 

PM2.5 (PM < 2.5 µm), les PM10 (PM < 10 µm), le dioxyde d’azote (NO2) et l’ozone (O3). Elle a 

montré des variations de niveaux en NO2 (- 32%), PM2.5 (- 22%), PM10 (- 15%) et O3 (+ 11%) par 

rapport à 2015-2019 aux stations de référence d’Atmo Auvergne-Rhône-Alpes. Ces changements 

de concentrations étaient associés à des baisses de risques sanitaires à court-terme liés aux PM2.5 

(- 3% de visites aux urgences pour asthme infantile) et au NO2 (- 2% d’hospitalisations pour 

maladies respiratoires). Les baisses de risques santé à long-terme concernaient surtout les PM2.5 

(- 3% de mortalité toutes causes, - 2% de cancers du poumon, - 8% de petits poids de naissance) 

et le NO2 (- 1% de mortalité non-accidentelle). Les variations des concentrations en PM10 et O3 

n’avaient quant à elles presque pas d’effet sur les risques. La majorité des conséquences sanitaires 

étant liées aux PM2.5, la suite de cette thèse s’est consacrée à leur mesure, ainsi qu’à celle des PM1 

(PM < 1 µm).  

Afin de mieux comprendre la variabilité spatiale ou temporelle des niveaux de PM, des stations 

de mesures, constituées de capteurs low-cost (LCS), ont été assemblées pour compléter les stations 

de référence et augmenter le nombre de points de mesure. Les LCS présentaient l’avantage de 

pouvoir être déployés en grand nombre, du fait de leur faible coût. Afin de garantir la précision de 

leurs mesures, plusieurs méthodes de calibration ont été testées. Pour calibrer les PM1, la technique 

de régression linéaire était la plus efficace. Le random-forest, méthode de type machine-learning, 

donnait les meilleurs résultats pour les PM2.5. Il était par ailleurs essentiel d’exclure les jours de dusts 

sahariens car ils altéraient la mesure des PM2.5. Les LCS utilisés étant peu performants pour mesurer 

les PM10, l’étude a été poursuivie sans les inclure. 
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Une fois calibrés, 8 LCS ont été déployés à Grenoble, révélant des variations temporelles et 

spatiales, un capteur situé en centre-ville montrant des niveaux en PM1 ainsi que des ratios à la 

référence (PM1 ratio = PM1/PM1 Ref) plus élevés. Cette étude a montré que la calibration devrait se 

dérouler avec des niveaux en PM similaires à ceux du déploiement. De plus, une expérience en 

mobilité avec les LCS a montré l’importance de considérer le mode de transport, l’heure de 

déplacement et les sites traversés, ceux-ci étant influencés par le trafic et/ou la configuration de la 

rue. Le mode de transport le plus exposé (PM1 ratios élevés) était le vélo, suivi de la marche (- 2% par 

rapport au vélo), du bus (- 9% par rapport au vélo) et du tramway (- 14%). Cependant, lorsque l’on 

calculait les doses inhalées, l’ordre s’inversait avec la marche en tête, suivie du vélo (- 2% par rapport 

à la marche), du bus (- 26%) et du tramway (- 32%).  

Cette thèse montre l’importance de considérer les variations temporelles et spatiales dans 

l'analyse de l'exposition aux polluants, les LCS permettant de mieux appréhender la variabilité des 

PM. En conclusion, des recommandations sont fournies concernant le montage, la calibration et 

le déploiement des LCS, qui pourraient être de plus en plus utilisés par les scientifiques et par les 

citoyens dans un contexte de science participative ou de prévention.  
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 INTRODUCTION AND LITERATURE REVIEW 

1.1 BACKGROUND 

Despite widespread media coverage, air pollution remains a complex problem for the general 

public due to its intangible nature. Chronic pollution is not visible even though it is the most 

hazardous form of air pollutant exposure (Botero, 2021). Because numerous air pollutants are 

invisible, people struggle to grasp the associated risks. Individual reactions to air pollution vary, 

and health effects often manifest later in life, making it challenging for citizens to take ownership 

of the issue. People who are sensitive, such as the elderly or children, tend to experience the most 

adverse effects of pollutants. It is crucial to better understand this invisible threat but also the 

associated risks and strategies to mitigate its effects (Palupi & Abeng, 2023). 

1.1.1 Air pollution is a proven public health concern  

In recent years, Europe has witnessed notable progress in air quality. Starting in 2005, the 

emissions of all key air pollutants continued to decrease, despite a rise in gross domestic production 

over the same period (European Environment Agency [EEA], 2023).  Nonetheless, scientists keep 

warning that pollution can impact health, even at very low concentrations below common air 

quality standards (Al-Kindi et al., 2020; Belz et al., 2022; Danesh Yazdi et al., 2021; de Nazelle, 

2021; Di et al., 2017). In Europe, almost all urban populations are exposed to air pollutants 

exceeding the World Health Organization (WHO) recommended levels (EEA, 2020). Air pollution 

is now acknowledged as the biggest environmental threat to human health, leading to 

approximately seven million deaths globally in 2016 (World Health Organization [WHO], 2018). 
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Almost 12% of global deaths could be attributed to air pollution (GBD 2019 Risk Factors 

Collaborators, 2020; Ritchie & Roser, 2020). Extensive research conducted across various regions 

leaves no room for doubt regarding the health effects of air pollutants. Moreover, the list of 

potential health effects attributable to air pollution continues to grow with recent studies on 

diabetes, reproduction, and neurocognitive issues (WHO, 2021b). A growing body of research also 

focusses on understanding the mechanisms through which air pollutants exert their toxicity, as 

evidenced by two recent studies on lung cancer (Hill et al., 2023; Sipos et al., 2023). Numerous case 

studies also revealed that decreases in air pollutants levels would generate immediate health 

benefits. A US-wide research highlighted a correlation between decreases in PM2.5 (PM with an 

aerodynamic diameter equal to or less than 2.5 μm) levels from 1980 to 2000 and improvements 

in life expectancy (Pope et al., 2009). Recently, the closure of a coal coking plant in Pittsburgh 

resulted in a 42% immediate drop in cardiovascular emergency department visits (Yu & Thurston, 

2023). Air pollution also has a significant impact on health care facilities. For instance, Mebrahtu 

et al. (2023) studied the impact of particulate matter (PM) and nitrogen dioxide (NO2) on 

respiratory health service attendance. Air pollution levels exceeding WHO’s 24-hour thresholds 

increased healthcare demand for up to 100 days post-exposure.    

1.1.2 Future challenges associated with air pollution 

The European Green Deal, whose aim is to promote ecological transition, stated that by 2030, 

the European Union (EU) should reduce by more than 55% the health impacts of air pollution, 

specifically premature deaths (European Commission, 2021). However, the future poses many 

challenges with population aging, urbanization, and climate warming. By 2050, 68% of the world’s 

population should live in urban areas, reflecting a 13% increase from the current figures (United 

Nations Department of Economic and Social Affairs, 2018). Furthermore, the number of people 

aged 65 or older is expected to more than double, reaching 1.6 billion by 2050 (United Nations 

Department of Economic and Social Affairs, 2023). Climate change may increase ground-level 

ozone (O3) formation and exacerbate wildfires or dust events, which elevate PM levels (United 

States Environmental Protection Agency [US EPA], 2022; Aguilera et al., 2021). An increasing 

number of scientific papers also deal with synergistic effects of air pollution and temperature. Rai 

et al. (2023) found that heat was associated with increased cardiorespiratory mortality, air pollutants 

amplifying these effects. Xu, Huang, et al. (2023) found that up to 2.8% of myocardial infarction 
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deaths could be attributed to the combination of extreme temperatures and PM2.5. The risk of a 

fatal heart attack doubled during 4-day heat waves with high PM2.5 levels. In this context, providing 

strategies to minimize personal exposure to air pollutants seems important and urgent.  

1.2 AIR POLLUTANTS 

Air pollution refers to the presence of gases or particles harmful to human health or the 

environment (Pearson & Derwent, 2022). PM, NO2 and O3 are the most concerning air pollutants 

for public health in Europe (EEA, 2020; Tiwary et al., 2018). Therefore, significant focus has 

recently been placed on these pollutants, particularly from a regulatory perspective. 

1.2.1 Particulate matter 

PM is a mixture of solid and liquid particles small enough not to settle on the Earth’s surface 

under the influence of gravity (WHO, 2021b). PM is omnipresent in the environment. A recent 

study using machine learning and ground-based data from 65 countries revealed that only 0,001% 

of the world population was exposed to PM2.5 concentrations under the safe limit set by the WHO 

(Yu et al., 2023).  

1.2.1.1 The importance of PM size 

PM is generally classified by aerodynamic diameter, usually called particle size. The 

aerodynamic diameter of a particle refers to the diameter of a hypothetical sphere with a 1g.cm-3 

density, behaving aerodynamically the same as the particle itself (same settling velocity) assuming 

laminar flow conditions. Common PM naming conventions include: PM10, with an aerodynamic 

diameter less than 10 μm, PM2.5 (< 2.5 μm), and PM1 (< 1 μm). The size of PM determines how 

long it remains in the air, and where it is going to be deposited within the respiratory system. Larger 

PM like PM10 tends to settle primarily in the upper airways, whereas smaller PM travels to the 

bronchi or pulmonary alveoli and can enter the bloodstream. Larger PM also deposits more rapidly 

in the atmosphere than smaller PM, such as PM1, which can linger in the air for several days.  
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1.2.1.2 PM sources and composition 

PM originates from human activities and natural sources (such as Saharan dust or wildfires). 

In Europe, PM2.5 mainly comes from energy consumption in the residential, commercial, and 

institutional sectors (58% of emissions), followed by industry (14%), road transport (9%), waste 

and agriculture (EEA, 2022). Unfortunately, PM composition remains not fully known (van 

Donkelaar et al., 2019) and is highly complex (National Research Council, 2010). PM contains 

organic and inorganic components, but, as shown in Figure 1, its composition and mass vary over 

time and space (Bell et al., 2007). PM is mainly made of organic matter, sulphate, nitrate, 

ammonium, black carbon, sea salt, and mineral dust (Philip et al., 2014; van Donkelaar et al., 2019; 

Weagle et al., 2018).  

 

Figure 1. Major chemical components composition of PM2.5 collected during winter campaigns in London 

(North Kensington), Beijing and Delhi. Source : Harrison (2020) 

The organic components of PM include polycyclic aromatic hydrocarbons (PAHs) and volatile 

organic compounds (VOCs). Furthermore, PM can incorporate inorganic elements such as metals 

contributing to its toxicity. An emerging field of study involves investigating the oxidative potential 

of PM as a toxicity metric (Bates et al., 2019; Daellenbach et al., 2020).   
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1.2.1.3 Health impacts of PM 

During the last 10 years, there has been a dramatic increase in the number of scientific papers 

on PM and health impacts (Lee et al., 2021). PM primarily leads to cardiovascular, respiratory 

effects, and premature mortality. Exposure to PM2.5 would be associated with 7,6% of total global 

deaths (Cohen et al., 2017). Over the past three decades, the global stroke burden linked to ambient 

PM2.5 has surged (Yacong et al., 2023). According to the International Agency for Research on 

Cancer, PM2.5 is also classified as a causal agent (group 1 carcinogen) for lung cancer (Hamra et al., 

2014). Furthermore, emerging studies indicate possible health effects of PM on reproduction or 

metabolic diseases such as diabetes, although these are less documented. A growing body of 

research also suggests that PM1 could have higher health effects than larger PM because of its 

smaller size, and ability to carry toxic components such as heavy metals (Yang et al., 2022). Chen 

et al. (2017) showed that PM1 and PM2.5 were both associated with significantly increased daily 

emergency hospital visits, with comparable relative risk (RR). However, PM1-2.5 (PM between 1 and 

2.5 μm in size) showed no relation with emergency hospital visits, indicating that hospital visits 

associated with PM2.5 likely came from its PM1 fraction. Lin et al. (2016) stated that PM1 could be 

the main contributor to cardiovascular effects of PM, especially for cardiovascular deaths. A meta-

analysis also found strong impacts of PM1 on cardiovascular and respiratory mortalities (Mei et al., 

2022). However, regarding PM1 and respiratory morbidity, the only identified association was that 

of asthma. Further epidemiological and toxicological studies on PM1 are needed. They are still 

relatively scarce, likely due to the lack of official stations measuring PM1 levels. 

1.2.2 Nitrogen dioxide 

1.2.2.1 Sources  

Commonly known as NOx, nitrogen oxides are mostly produced during high-temperature 

fossil-fuel combustion when nitrogen reacts with oxygen (O2), particularly in engines and industrial 

processes (Tiwari & Mishra, 2019). NO2 is one of the most closely monitored NOx affecting human 

health. Originating as a primary pollutant, it is an odourless brown gas, and the only gaseous air 



1  |   INTRODUCTION AND L ITERATURE REVIEW 

 

6 

pollutant with visible light absorption (Koenig, 2012). NO2 is generally considered to be traffic-

related, road transport being the main source of NOx (EEA, 2022).  

1.2.2.2 Health effects of NO2 

NO2 mainly affects the respiratory system. High NO2 levels can worsen asthma or other 

respiratory diseases, and long-term exposure to NO2 can lead to these illnesses (Mallik, 2019). This 

is clearly demonstrated by the respiratory diseases observed among individuals living close to busy 

roads. Proximity to streets with high NO2 levels increases the risk of respiratory issues, including 

asthma and decreased lung function (Bowatte et al., 2017). Individuals with respiratory disorders, 

heart diseases, asthma, and young children are particularly susceptible. The inhalation of NO2 by 

children increases the severity of respiratory infections (Chauhan et al., 2003) and may lead to 

poorer lung function (Frischer et al., 1993). Elevated NO2 levels also correlate with higher mortality 

rates (Faustini et al., 2014) and hospital admissions for respiratory diseases (Fusco et al., 2001). 

1.2.2.3 The future of NO2 emissions in Europe 

The new Euro7/VII vehicle emission standards aimed to reduce NOx emissions by 35% for 

cars and vans compared to Euro 6 (European Commission, 2022). However, car manufacturers 

and eight countries, including France and Italy, opposed these new norms, arguing that they could 

divert the investments needed to phase out internal combustion engine vehicles (Automotive News 

Europe, 2023; Reuters, 2023). Increasing the electrification of vehicles could further reduce NOx 

(Mulholland et al., 2022). It is also worth noting that NOx influences ground-level O3 

photochemistry (Ravina et al., 2022), as explained in the next section. 

1.2.3 Ground level ozone 

While O3 in the stratosphere protects against ultraviolet radiation, it is harmful when present 

in high concentrations at ground-level (Manisalidis et al., 2020). 
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1.2.3.1 Ozone formation and depletion 

Unlike NO2 and PM, ozone does not originate directly from emissions (EEA, 2011). It is a 

secondary pollutant generated through a sequence of photochemical reactions occurring when 

sunlight interacts with precursor pollutants, such as NOx and VOCs (Figure 2). As a result, O3 

becomes especially problematic in summer. 

 

Figure 2. Formation of ground-level ozone. 

NO can also react with O3 to produce secondary NO2, increasing its health concerns (Tiwary 

et al., 2018). NO2 also combines with O3 to form NO and O2, removing O3 from the atmosphere 

(Crutzen, 1979). Therefore, reductions in NOx can lead to increases in O3 concentrations (Jhun et 

al., 2015). This explains why O3 is generally more important in rural areas, where there is less NOx 

due to reduced traffic. 
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1.2.3.2  Health effects of O3 

O3 exposure can cause shortness of breath, airway inflammation, worsened lung conditions, 

and chronic obstructive pulmonary disease (US EPA, 2023; Mallik, 2019). Overall, health effects 

associated with O3 seem to be less significant than those related to PM and NO2. However, 

evidence suggests a link between O3 and mortality (Jerrett et al., 2009; Vicedo-Cabrera et al., 2020), 

but further research is needed to fully understand this relationship. 

1.3 HEALTH RISKS ASSESSMENT OF AIR POLLUTION 

1.3.1 The importance of exposure duration 

Air pollution can have both short-term (acute) and long-term (chronic) impacts on health. 

Acute or immediate symptoms include eye, nose or throat irritations, wheezing, coughing, 

headaches and even bronchitis or pneumonia. These effects can lead to hospitalizations or general 

practitioner consultations. Long-term effects include development of heart disease, chronic 

obstructive pulmonary disease (COPD), cancer, and asthma (Tiwary et al., 2018). Long-term health 

effects, originating from prolonged exposure to air pollutants, are generally more substantial, as 

they lead to chronic diseases, which in worst cases, can lead to death. 

1.3.2 Relation between concentration and risk 

Since 2014, there has been an almost exponential increase in the number of systematic reviews 

and meta-analyses concerning the effects of air pollution on health, most of them being related to 

PM and NO2 (Dominski et al., 2021). A search in PubMed with “air pollution” and “health” as 

MeSH words confirms that the number of papers published in this area is increasing since 1990 

(Figure 3).  
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Figure 3. Number of publications per year since 1990 related to “air pollution” and “health” in PubMed. 

The field of diseases attributed to air pollution is very broad, but some associations are more 

robust than others, especially because they have been studied for a longer time (Figure 4). A recent 

paper reported for the first time a link between PM and antibiotic resistance (Zhou et al., 2023). 

However, for the association to be validated, a substantial body of research, with numerous papers 

pointing in the same direction, is required, and this takes time. For instance, the link between PM 

and mortality is now widely established because of the significant number of studies on the subject. 

The first work showing a relation between PM and death was the Six Cities Study by Dockery et 

al. (1993). They compared pollutant levels and mortality in six American cities, revealing a clear 

link between PM and reduced life expectancy. A more extensive epidemiological work led by the 

American Cancer Society (Pope et al., 1995), followed and validated the conclusions of the Six 

Cities Study. They associated PM with cardiopulmonary and lung cancer mortality. Since then, 

many articles confirmed these associations. Robust correlations were found between air pollution 

and cardiovascular health in addition to respiratory effects. New studies also suggest that air 

pollution could have harmful effects on the central nervous system, reproduction, development, 

metabolic outcomes, and cancer (Thurston et al., 2017). However, more research is needed on 

those topics (Chandra et al., 2022; Tan et al., 2017). Figure 4 outlines the main health impacts of 

air pollutants along with notable associated studies.  



1  |   INTRODUCTION AND L ITERATURE REVIEW 

 

10 

 

Figure 4. Summary of main air pollution health effects & notable related studies. References in Chapter 7.  

Epidemiological studies quantify the relationship between pollutant concentrations and health 

outcomes (dose-response relationship), crucial for subsequent health risk assessments. These 

connections between pollutant levels and health outcomes form the basis to assess burdens such 

as mortality and diseases. These connections are expressed as “dose-response relationship” or 

“relative risk” (RR). The RRs associated with short-term impacts are generally derived from time-

series analyses, and RRs for long-term effects typically come from cohorts involving people over 

years (Corso et al., 2019). Risk estimates of long-term exposure studies are usually higher than those 

of short-term studies (WHO, 2021a).  

1.3.3 Health risk calculations 

The health risk related to air pollutants increases with exposure (Tiwary et al., 2018). Hence, 

the initial step in a health risk assessment involves precisely determining pollutant concentrations 

through measurement or modelling. Subsequently, we compute the health risk function measuring 

the probability of developing a health outcome like a disease (morbidity) or mortality (Figure 5). 
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Figure 5. Health risk calculation 

In Western Europe, a health risk related to air pollution is typically assessed using a log-linear 

dose-response function (Ostro & WHO, 2004; Soares et al., 2022; WHO, 2013): 

𝑅𝑅 ൌ  𝑒  ఉ ∗ ሺ஼ି஼೚ሻ ሺ1ሻ 

Where the RR illustrates the probability of a specific outcome in people exposed to a pollutant, 

compared to those not exposed. A RR of 1 indicates no difference in risk among the two groups.  

C denotes the pollutant concentration to which the population is exposed. Co (baseline 

concentration) can either be the threshold concentration below which there is no additional health 

risk, the pollutant background concentration, or a counterfactual concentration. These 

counterfactual concentrations are generally used: 5 μg/m3 for PM2.5 and 10 μg/m3 for NO2 (WHO, 

2021b). β is computed as follows: 

β ൌ  ୪୬ ሺோோ೐ሻ

ఋ
  

where RRe is the RR from epidemiological studies (usually meta-analyses) for the 

corresponding pollutant - health outcome association, and δ the associated pollutant concentration 

increment, usually 10 μg/m3. Examples of RRe (also called dose-response functions), can be found 

in Table 1. For example, regarding PM2.5 and long-term mortality, a RRe of 1.15 indicates that a 

10 µg/m3 increase in PM2.5 would be associated with a 15% mortality rise.    



1  |   INTRODUCTION AND L ITERATURE REVIEW 

 

12 

Table 1. Example of dose-response functions (RRe) showing association strengths between PM2.5 

concentrations (per 10 µg/m3 increment) and mortality or morbidities, with their 95% confidence interval.  

Extracted from Aix et al. (2022). 

Pollutant 
Exposure 
time 

Age 
group 

Health outcome 
𝑹𝑹𝒆 [CI 95%] 
per 10 µg/m3 

Reference 

PM2.5 

Short-term 
/daily mean 

all 

Non-accidental mortality 
1.0063 [1.0025–

1.0101] 
C. Liu et al. (2019) 

Hospitalizations for 
respiratory causes 

1.0190 [0.9982–
1.0402] 

WHO (2013) 

Hospitalizations for 
cardiovascular causes 
(including strokes) 

1.0091 [1.0017–
1.0166] 

WHO (2013) 

≤ 17 
Emergency room visits 
for asthma 

1.0980 [1.0120-
1.1900] 

Host et al. (2018) 

Long-term 
/annual 

≥ 30 Mortality, all causes 
1.1500 [1.0500-

1.2500] 
Pascal et al. (2016) 

Adults Lung cancer incidence 
1.0900 [1.0400-

1.1400] 
Hamra et al. (2014) 

Infants 
Low birthweight at full 
term 

1.3900 [1.1200-
1.7700] 

Pedersen et al. (2013) 

In light of the health risk calculation formula, it becomes evident that a risk assessment cannot 

be carried out without precisely measuring pollutant concentrations.   

1.4 AIR POLLUTION MEASUREMENT 

In Western Europe, authorities typically use costly stationary instruments to measure air 

pollutants. PM concentrations are often measured with gravimetric methods, considered as gold 

standard, and based on PM weighting. Other techniques have been developed and are now 

considered equivalent to the gravimetry. This includes monitors based on light diffusion, 

considered as equivalent to the reference, like the Fidas 200 (Palas GmbH, 2020). All these 

expensive reference stations offer highly accurate measurements, but are not always fully 

representative of what the individuals are actually breathing, as they can be far from populated 

areas. Two ways recently emerged in order to improve exposure assessments: the development of 

fixed sensors networks and the use of mobile sensors. These approaches have been facilitated by 
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the rise of the Internet of Things (IoT) and the use of low-cost sensors (LCS). In this thesis, these 

two novel approaches were used, as well as the traditional, central monitoring method involving 

reference stations. 

1.4.1 Central monitoring with reference stations 

We first started by using reference measurements made locally by Atmo Auvergne Rhône-

Alpes (Atmo AuRA), the regulatory instance measuring air pollutants in Grenoble. The city has a 

significant network of official stations providing hourly measurements. Those data have the 

advantage of being easy to retrieve through an Application Programming Interface (Atmo AuRA, 

2023a). Various types of reference stations can be found like traffic stations, located near a major 

road, or background stations, far from traffic, and more representative of the average population 

exposure. The main background reference station from Atmo AuRA is located in “Les Frênes” 

within a park in the south of Grenoble. However, these reference stations are not sufficient to get 

a good overview on what people breathe locally, studies showing a high spatiotemporal variability 

of pollutants in cities (Dias & Tchepel, 2018; Nikolova et al., 2011). Various papers indicated that 

central monitoring was inadequate to describe people’s exposure to air pollutants (Han et al., 2021; 

Peters et al., 2013). Therefore, other ways of getting finer measurements, both temporally and 

spatially, can be explored. Using affordable calibrated sensors, in both static and mobile scenarios, 

emerges as an optimal solution to capture population’s exposure variability. 

1.4.2 Fixed Low-cost sensors network 

1.4.2.1 Focus on PM measurement 

In recent years, low-cost sensors appeared as a novel trend in air quality measurement 

(Giordano et al., 2021; Raysoni et al., 2023). Heavily used by citizens, scientists and authorities 

measuring air pollution, they are good supplements to standard monitoring sites for high-resolution 

spatial-temporal PM mapping (Li & Biswas, 2022). Most studies focus on LCS measuring PM, as 

it is still challenging to quantify gases with LCS for a number of reasons. Results can be affected 

by long response times, instability or interference from other gases (Gerboles et al., 2017). Lewis 
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et al. (2016) studied NO2 electrochemical sensors and emphasized that artefact signals from 

pollutants like CO2 could surpass NO2 signals (Hagan et al., 2018). LCS measuring O3 also tend to 

be affected by NO2 interference. They can show good agreement with reference at rural sites where 

O3 is higher than NO2 but struggle to provide good results at urban and traffic sites (Spinelle et al., 

2015). Many studies show good results of gas LCS in laboratory chambers but once in the field, 

larger discrepancies can be seen (Castell et al., 2017; Hagan et al., 2018). Variability between 

identical sensors is also an issue and longer response time makes them unsuitable for mobile 

measurements (Hagan et al., 2018). Additionally, they tend to degrade faster compared to PM 

sensors (Mueller et al., 2017; Papaconstantinou et al., 2023).  Low-cost PM sensors (PM LCS) show 

superior reliability and ease of use in the field (Hassani et al., 2023). 

1.4.2.2 Working principle of PM LCS 

PM LCS can measure the intensity of light scattered by PM on a detector and convert this 

signal to a concentration in µg/m3. The working principle of a common PM sensor PMS7003 

(Plantower, 2016) is shown in Figure 6. This sensor is one of the most widely used PM LCS, 

providing good performances despite its cheap price (around 24€) (Alfano et al., 2020). 

 

Figure 6. Working principle of the Plantower PMS7003 

Within the sensor, air is drawn (1) and propelled by a fan (2) towards air holes at the top right. 

The air sample containing PM crosses a laser beam, which gets diffracted (3) by PM and impacts 

the photodiode detector at various angles based on PM sizes. This signal gets converted by the 
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photodiode into an electric signal (4) sent to the microcontroller, where a proprietary algorithm 

further computes PM concentration in μg/m³. This optical sensor can effectively measure PM1 and 

PM2.5 but shows unsatisfactory performance for coarse PM, recent studies advising against using it 

to measure PM10 (Aix et al., 2023; Molina Rueda et al., 2023). LCS offer a cost effective and flexible 

solution, but they have limitations. The main concern arises from the calibration performed by the 

manufacturer, generally occurring in environments with different aerosols than the ones at the 

operating sites. Therefore, initial calibration algorithms tend to become inaccurate for new 

environments and often remain inaccessible for confidentiality reasons. This calibration issue 

contributes to the fact that PMS7003 tends to overestimate PM (Aix et al., 2023; Báthory et al., 

2021; Bulot et al., 2019; HabitatMap, 2022b). It is also crucial to acknowledge that relative humidity 

causes hygroscopic PM growth and can therefore significantly affect PM LCS optical 

measurements (Bulot et al., 2019; Won et al., 2021). This emphasizes the need to apply corrections 

to raw PM concentrations given by LCS. A calibration process is therefore recommended, where 

LCS are placed near a reference instrument in a collocation study.  

1.4.3 Mobile measurements with low-cost sensors 

Various studies highlight the inadequacy of fixed ambient monitoring to represent personal 

pollutant exposure, particularly in transit microenvironments (Apte et al., 2011; Kaur et al., 2007; 

Park & Kwan, 2017). Research suggested that people living in the same neighbourhood may have 

different exposures to pollutants due to different mobility patterns (Dons et al., 2011; Ma et al., 

2019). Hence, it is also important to conduct measurements in mobility to get a comprehensive 

understanding of individual exposure. Transportation is likely to result in peak air pollution 

exposures in everyday life (Dons et al., 2019), and when compared to other daily activities, exposure 

generally reaches its highest levels during travel (Singh et al., 2021). To measure exposure while in 

mobility, the same optical sensor as previously described (PMS7003) can be used. However, adding 

a GPS is essential to capture locations accurately. AirBeam2 (HabitatMap, 2022a) is a portable PM 

measuring device (Figure 7) entailing a PMS7003 and a GPS device. AirBeam2 costs 249$, has a 

10-hours autonomy and showed good performances in mobility (Lim et al., 2019; Ma et al., 2020), 

while also measuring temperature and humidity. AirBeam2 can be paired to a smartphone and 

attached to a backpack, providing measurements at a fine temporal scale, with data recorded every 
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second. An online visualization interface (HabitatMap, 2023) allows to retrieve recorded data for 

subsequent analysis.  

 

Figure 7. Picture of an AirBeam2 device 

It is important to calibrate AirBeam2 sensors by comparing them to a reference, especially 

because their calibration equation does not account for humidity (HabitatMap, 2022b). Once 

properly calibrated, mobile and fixed LCS can be combined with reference stations to offer a 

holistic approach to assess population’s exposure. This strategy allows to identify local PM 

variations which are not seen at the reference station.  

1.5 THE SITUATION IN GRENOBLE 

1.5.1 The study area 

Grenoble is located in the French Alps, within an alpine valley surrounded by three substantial 

mountain ranges over 2000 meters high. With a population of 448,457 inhabitants (INSEE, 2023), 

Grenoble ranks among the 20 largest French metropolitan areas. Located at the confluence of two 

rivers, the Drac and the Isère, Grenoble lies within a Y-shaped valley (Figure 8).  
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Figure 8. Geographical location of Grenoble within a distinctive Y-shaped alpine valley 

The topography around Grenoble makes the city prone to long winter pollution events, 

particularly due to thermal inversions. Largeron and Staquet (2016) stated that lasting inversions 

occurred between November and February, under high-pressure regimes, covering 35% of winter 

time. In their study, most PM10 pollution spikes were related to inversions. These winter events, 

linked to the stagnation of air masses, are generally associated with residential wood heating. 

1.5.2 Local air pollution context in Grenoble 

1.5.2.1 Pollutants sources and health impact   

Between 2008 and 2015, Grenoble ranked second among the most polluted French cities in 

terms of PM2.5 (Amrani et al., 2019). Locally, residential heating is the primary contributor to PM 

(70.2% for PM2.5 and 61% for PM10), followed by transportation and industry (Figure 9). Road 

traffic is the main NOx emitter (47.4%), followed by industry and energy sectors. Regarding O3 

formation in Grenoble, climate warming brings more favourable conditions causing average levels 

to rise in recent years (+0.5 μg/m3/year) (Atmo AuRA, 2023c). This trend is projected to continue, 

as southeastern France is anticipated to be significantly impacted by climate warming (Météo-
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France, 2021). Grenoble may also see more intense but less frequent Saharan dust episodes due to 

climate change, according to Clifford et al. (2019). Dusts events significantly increase local PM10 

and PM2.5 concentrations, the rise in PM10 being mainly linked to an increase of the coarse fraction 

between 2.5 and 10μm (Perez et al., 2008; Quénel et al., 2021). Grenoble experienced numerous 

Saharan dust episodes in 2021, notably on February 6th and from February 22nd to 26th (Atmo 

AuRA, 2022c). While dusts can explain some PM10 alerts, the PM2.5 issue in Grenoble is generally 

linked to residential wood heating. 

 

Figure 9. Pollutant sources and annual concentrations in Grenoble-Alpes Metropole (Les Frênes background 

station), with WHO’s recommended levels (in red). Data sources : Atmo AuRA (2022a) and World Health 

Organization (2021b) 

In Grenoble, PM2.5 annual concentrations exceed WHO's recommended levels by 120% 

(Figure 9), PM10 by 27%, and NOx by 40%. According to Atmo AuRA (2022b), 100% of the 

residents would be exposed to exceedances of the WHO guidelines for PM2.5, 67% for PM10, and 

94% for NO2. Moreover, 11% of the population would exceed the health target value for O3, the 

only regulated pollutant showing no decrease in Grenoble (Préfet de l'Isère, 2022). PM levels are 
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probably the main lever to significantly improve the health of populations in urban areas like 

Grenoble (Institute for Advanced Biosciences, 2016). Each year, PM2.5 is responsible for the 

premature death of 145 people in Grenoble (Morelli et al., 2019). NO2 emissions are projected to 

decrease with the new EURO7 regulations and the rise of electric vehicles. Therefore, it is likely 

that PM will remain the main issue in Grenoble, another concern also arising from more toxic PM 

generated by brakes and tires (Tan et al., 2023). Grenoble is a proactive city regarding 

environmental matters, especially through Atmo AuRA, equipping citizens with mobile or fixed 

sensors measuring PM (Atmo AuRA, 2023d). To protect public health, it is crucial to communicate 

risks related to air pollution and to involve the population (Pfleger et al., 2023).  

1.5.2.2 The problem of PM2.5   

In Grenoble, highest PM levels are generally recorded in autumn and winter because of higher 

emission rates, and air stagnation episodes related to temperature inversions (Atmo AuRA, 2023b). 

On Figure 10, we can see a correlation between temperature and PM2.5 levels. Maximum PM2.5 

concentrations (in blue) are generally seen during winters.   

 

Figure 10. Time-series data of monthly average temperatures and PM2.5 concentrations from January 2015 to 

July 2023.  PM2.5 concentrations (in blue) are measured in Grenoble (Les Frênes) and provided by Atmo AuRA. 

Temperatures (in pink) are measured in Saint-Martin d’Hères (3km from Les Frênes) by ROMMA (Réseau 

d'Observation Météo du Massif Alpin, 2022).  



1  |   INTRODUCTION AND L ITERATURE REVIEW 

 

20 

According to Atmo AuRA (2023c), the decline in PM2.5 levels, observed since 2007 (around -

1 µg/m3 per year) slowed down in 2022 with average concentrations rising. This shift is noteworthy, 

given the mild winter temperatures normally reducing heating needs. The increase in fossil fuel 

prices may have encouraged a shift towards cheaper wood heating alternatives.    

1.6 THESIS OBJECTIVES 

In summary, after a thorough exploration of the literature, we observed that: 

 Air pollution is a public health concern, as proven by numerous epidemiological and 

toxicological studies 

 WHO’s air quality guidelines are unmet in Grenoble, exposing the population to various 

health risks 

 Population aging and climate warming will impact Grenoble, intensifying health effects 

associated with pollution 

 Addressing air pollution and associated health risks is key, and the main objectives of this 

work were: 

1.6.1 What are health risks related to air pollutants in 

Grenoble?   

Gaining a deeper understanding of the connection between air pollutants and health is crucial. 

With a substantial part of the thesis taking place during the pandemic, we started by investigating 

health risks associated with air pollutants in Grenoble during the COVID-19 crisis (Chapter 2, refer 

Figure 11 below). When searching the literature on health risks, it appeared that little work had 

been done on long-term and short-term risks during the pandemic. Often, researchers focused on 

studying the influence of a single pollutant on mortality or a specific disease, with a primary focus 

on short-term effects. The impacts of multiple pollutants on diverse health outcomes had rarely 

been explored. Frequently, researchers focus on a pollutant's effect on mortality or a specific 

disease, with limited exploration of multiple pollutants' impact on various health outcomes. 
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Dwivedi et al. (2022) also acknowledged that studies synthesizing evidence for the associations 

between various air pollutants and cardiovascular outcomes were missing. They conducted such 

synthesis, exploring the strength of associations among various pollutants and various health 

outcomes related to cardiovascular issues and mortality. Their study was performed on both short-

term and long-term outcomes. Our intention was to follow a similar approach, but for all 

pathologies. Following a methodology defined by Corso et al. (2019), we listed all short-term or 

long-term associations between air pollutants (PM, NO2 and O3) and health outcomes, supported 

by extensive studies. To estimate risks, we used pollutants concentrations measured by reference 

stations from Atmo AuRA in Grenoble. This method using reference stations, also called “central 

monitoring technique”, provided accurate and officially validated pollutants concentrations in 

order to calculate relative risks using the previously explained formula (Equation 1, section 1.3.3). 

As seen in this RR formula, health risks heavily depend on concentrations estimates. Therefore, it 

is important to use finely measured concentrations. To mitigate health risks related to air pollution, 

two approaches are feasible (or a combination of both):  

1. Reduce the overall population exposure through policies (Xing & Wong, 2022). 

2. Teach individuals prevention strategies to minimize their exposure (Hoang et al., 2022; Y. 

Zhang et al., 2019).   

In the following chapters, novel techniques using sensors were explored to better measure 

people’s exposure. Various research papers consider central monitoring as inadequate to describe 

individual exposure to air pollutants (Han et al., 2021; Peters et al., 2013). In this thesis, optical 

sensors were used to measure exposure at a finer scale, both temporally and spatially. Using LCS 

appeared to be the most suitable strategy due to their cost-effectiveness, enabling the deployment 

of an important number of devices. 

1.6.2 How to accurately measure exposure to PM in 

Grenoble?   

Koenig (2012) stressed the importance of high-quality exposure assessment due to its crucial 

role in air pollution epidemiology. In this thesis, a significant amount of effort was dedicated to 
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improve the granularity of pollutants measurements. The objectives were 1) to refine health risk 

evaluations and 2) to provide people with strategies to lessen their exposure, by modifying their 

behaviour, particularly their travel habits. Slama et al. (2008) emphasized the need to work on better 

methods for gauging individuals' exposure duration and intensity, and account for residential 

mobility. They advocated for exposure models to target finer temporal precision and include time-

activity patterns, arguing that spatial and temporal confounding factors should be considered in 

exposure calculations. Jo et al. (2021) also highlighted the necessity of considering personal factors 

in health risk management. They admitted that using fixed official stations was a limitation, as 

exposure relied on variables like time spent outdoors, workplace, and distance to the monitoring 

station from home. They highlighted that significant differences in average exposure estimate could 

occur if the station-home distance was important. Improving spatial granularity was one of the 

reasons why we decided to install a sensors network in Grenoble. 

1.6.2.1 Fixed measurements with a LCS network  

To improve personal exposure assessment, we started to deploy a stationary LCS network 

enabling continuous PM monitoring. Various research articles suggest that measuring PM in 

mobility is more difficult than with fixed monitors (Alas et al., 2019). Quantifying PM with a mobile 

device can be more challenging, as they are sensitive to unintentional variations and bias (Peters et 

al., 2013). Mui et al. (2021) also found that the velocity of measurement could impact LCS 

performance. Consequently, we initiated our study by using stationary devices prior to start a 

mobile measurement campaign.  

1.6.2.2 Mobile measurements  

However, various studies underscore the inadequacy of fixed monitoring to represent personal 

pollutant exposure, particularly in transit environments (Apte et al., 2011; Kaur et al., 2007; Park & 

Kwan, 2017). Gulliver and Briggs (2004) showed that PM10 concentrations displayed stronger 

correlation between various transport modes than with measurements from the fixed-site monitor. 

Beckx et al. (2009) compared dynamic exposure estimates with traditional static measurements. 

Results indicated significant differences, especially during the day, as the dynamic approach 
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accounted for individual mobility patterns. Both approaches exhibited a relative difference of more 

than 20% in term of hours spent at PM2.5 concentrations exceeding 20 µg/m3. The static method 

showed significantly lower exposure estimates than the dynamic approach. Research also suggested 

that people living in the same neighbourhood may have different exposures to pollutants due to 

different mobility patterns (Dons et al., 2011; Ma et al., 2019).  A disadvantage of fixed sensors or 

monitors is that they are far from individuals' breathing zones. Hence, we also performed 

measurements in mobility to get a more comprehensive view of individual exposure.  

1.7 THESIS STRUCTURE 

1.7.1 Originality   

The originality of this thesis lies in this holistic approach to air pollution. First, by examining 

a set of air pollutants along with their various health effects (Chapter 2), and subsequently, by 

studying exposure through a method involving both fixed and mobile tools in a complementary 

approach (Chapters 3, 4 and 5). First, we investigated how to calculate the relative risks of various 

diseases caused by different pollutants in Grenoble (Chapter 2). Through this research, we 

acknowledged the significance of accurately estimate individual exposure, a topic we addressed in 

the later chapters.  

1.7.2 Why did we focus on PM? 

Numerous studies demonstrate that PM are the main contributors to the majority of adverse 

effects related to air pollution (Araujo, 2010). Among the key atmospheric pollutants, PM displays 

the strongest causal association with mortality (WHO, 2021b; Pond et al., 2022). Lefler et al. (2019) 

demonstrated that PM2.5 exhibited the strongest mortality associations compared to other 

pollutants (PM2.5–10, SO2, NO2, O3, CO). PM doesn't have a concentration threshold below which 

no health effect would occur. Chapter 2 confirmed that PM carried the greatest health risk, as PM 

exhibited the most significant associations with the highest RR, particularly for mortality. Studying 



1  |   INTRODUCTION AND L ITERATURE REVIEW 

 

24 

PM has a promising future, because PM is ubiquitous in the environment and emerges as the 

pollutant with the most pronounced negative health impacts (Karagulian, 2023).  

Furthermore, due to LCS limitations in measuring gases, we focussed on PM measurements, 

particularly small PM that could be effectively seen by LCS. Given the significant health impacts 

of small PM, our focus was mainly directed towards measuring small PM. As calibration methods 

continue to advance, both mobile and stationary LCS can be efficiently combined with official 

monitoring stations. In this thesis, we used three approaches to assess individual exposure to air 

pollutants: central monitoring, LCS networks and mobile LCS. This aligned well with calls from 

scientists advocating for adopting various complementary approaches to estimate individuals' 

exposure (Chambliss et al., 2020). 

1.7.3 Thesis outline 

The manuscript is organized into 6 chapters  

 Chapter 1: General introduction. 

 Chapter 2: One of the few multipollutant studies covering short-term and long-term 

risks related to various air pollutants during the COVID-19 crisis. 

 Chapter 3: A new calibration methodology for PM LCS calibration. 

 Chapter 4: Deployment and use of a PM LCS network in Grenoble. 

 Chapter 5: A mobility study to measure PM in commuting microenvironments. 

 Chapter 6: General conclusion.    

The structure of the manuscript is schematically represented on the next page (Figure 11). 
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Figure 11. Structure of the thesis manuscript   
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 HEALTH RISKS ASSOCIATED WITH AIR 

POLLUTION   

 

 

2.1 INTRODUCTION 

2.1.1 Research gap and objectives 

This chapter aims to conduct a health risk assessment in Grenoble in the amidst of the 

COVID-19 crisis. While many research papers focused on quantifying variations in air pollutant 

concentrations, fewer studied the resulting health risks changes. Our research aimed to fill this gap 

and contribute to a more comprehensive understanding of these relationships. The objective of 

this study could be summarized in two main questions:  

Summary - Introduction Chapter 2                                                                                                      

 Problem: Limited research focus on studying short-term and long-term health risks resulting 

from variations in various air pollutants levels during the COVID-19 crisis  

 Objectives: 

1. Compare pollutants levels in Grenoble during COVID-19 versus 2015-2019 

2. Assess health risks associated with these concentration changes 



2  |   HEALTH RISKS ASSOCIATED WITH A IR  POLLUTION 

 

27 

1) What were the levels of pollutants concentrations in 2020 compared to 2015-2019 period?  

2) What were the consequences of those concentration shifts for health risks? 

2.1.2 Method 

We followed guidelines established by Santé Publique France, the French National Public 

Health Agency (Corso et al., 2019), as they offered a comprehensive and practical approach to 

conduct a quantitative health impact assessment. The methodology aligned with the framework 

recommended by the WHO and had been used in European research projects like APHEIS 

(Ballester et al., 2008) or Aphekom (Pascal et al., 2013), but also for a local study in the Arve Valley 

(Pascal et al., 2020).  

2.1.2.1 Dose – response functions 

In this method, health risks were classified within two categories: group A and B. Group A 

referred to pollutant–outcome pairs for which enough data was available to enable reliable 

quantification of effects. Group B denoted pairs for which there was more uncertainty about the 

precision of the data used for effects quantification. In this study, we focused on group A health 

risks to compile dose-response functions (RRe). Also included were the RRe from an extensive 

study on O3 and mortality involving 406 cities in 20 countries between 1985 and 2015 (Vicedo-

Cabrera et al., 2020).   

2.1.2.2 Pollutant’s concentrations 

To perform the health impact assessment, all four background stations from Atmo AuRA 

were used (see Figure 12, in blue). The traffic stations were only employed to analyze 

concentrations changes (see Figure 12, in red), because these stations are usually considered less 

representative of the pollutants levels to which the population is regularly exposed. 
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Figure 12. Map of the 7 stations from Atmo AuRA used for 2015-2020 exposure study. Filled circles represent 

locations of urban background (in blue) and traffic stations (in red).  

To calculate short-term health risks related to O3, a specific method was employed to 

determine O3 concentrations (Figure 13). 

 

Figure 13. O3 mean calculation for ΔRR determination 
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2.1.2.3 Health risks calculations 

Health risks were assessed using different timeframes and formulas based on whether they 

were short-term or long-term (Figure 14). For short-term risks, different periods in 2020 were 

studied with varying restrictions levels. L1 was the period of the first strict lockdown. F2 followed 

with relaxed measures and L2 was a milder lockdown. An example of rate of short-term (ST) risk 

change calculation (ΔRR) can be seen in Figure 14 for L1. All time periods beginning with "E" (for 

"equivalent") correspond to the same timeframes as those in 2020, but they occur within the years 

2015-2019. The formula used for long-term (LT) risks calculation is also illustrated in Figure 14. 

 

Figure 14. Short-term and long-term health risks calculations. CL1: daily mean pollutant average 

concentrations during the 1st lockdown. CEL1: daily mean pollutant average concentrations during the 

corresponding 2015-2019 period. C2020: annual pollutant concentration in 2020. C2015-2019: average of the annual 

concentrations between 2015 and 2019  
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2.2 ARTICLE N°1 

The following paper can be found at: https://doi.org/10.1016/j.envpol.2022.119134. 
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2.3 CONCLUSION 

2.3.1 Main results 

2.3.1.1 Concentrations changes 

Figure 15 provides a summary of the concentrations and health effects changes outlined in the 

Article n°1. When comparing pollutants concentrations during the 2020 restrictions with the same 

timeframes in 2015-2019, the largest concentration reductions were seen for NO2 (- 32% average) 

and PM2.5 (- 22% average). O3 had increased (+ 11%), contrary to the other pollutants.  

 

 
 

Figure 15. Main results regarding concentrations and health risks changes between 2020 (L1, F1, L2) and 

2015-2019.  ST: short-term, LT: long-term. Concentrations changes refer to all stations (background and traffic) 

whereas health risks were calculated using background stations only. 
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An important finding was the correlation between NO2 levels and the stringency index. This 

implies that this index could be used to forecast changes in NO2 concentrations based on levels of 

imposed restrictions. For instance, it seems feasible to establish a list of restrictions, quantify their 

severity using the Oxford stringency index, and subsequently predict the NO2 trends accordingly. 

2.3.1.2 Health effects changes 

It appears from Figure 15 that the consequences of long-term (LT) effects are greater than 

that of short-term (ST) effects. In summary, we found that the most significant health 

improvements in 2020 were related to reductions in PM2.5 and NO2, while changes in PM10 and O3 

had little impact on health outcomes. Now that this health risk assessment has been done, it would 

be instructive to supplement these results with an epidemiological study evaluating hospitalizations 

for respiratory issues or child visits for asthma during the pandemic. However, such a study is 

rather challenging and need to consider several biases like for example the population's tendency 

to avoid hospitals in 2020. Similarly, validating mortality data is challenging as well due to its overlap 

with the significant deaths attributed to COVID-19. An interesting outcome of this study was the 

limited impact on cardiovascular diseases. Cross-checking this with hospital admission figures 

would have also been valuable.  

2.3.2 Perspectives 

This study could be applied to different times of the year, different years, or over longer 

periods. For instance, we could use this health risk assessment approach to compare higher PM2.5 

values from the winter of 2022 (in the context of energy crisis) with those of previous winters. 

Benefiting from freely accessible pollutants concentrations data provided by Atmo AuRA is a clear 

advantage. Nevertheless, the centralized monitoring approach has its limitations. Reference stations 

do not fully reflect actual human exposure, as they are generally far from areas where people live, 

travel, or work. Indeed, for populations residing near road traffic or spending a significant amount 

of time in places with high or low concentrations of pollutants, the use of data coming only from 

background stations in health risk calculations clearly becomes insufficient, or even erroneous. 

Figure 15 illustrates the difference in concentrations between two types of stations.  
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According to the expressions in Figure 14, a variation in the concentration of ∆𝐶 ൌ

𝑙𝑛ሺ1 ൅ 𝑥ሻ 𝛽⁄  would result in a variation of 𝑥 % in the risk of the effect associated with 𝛽. For 

example, a concentration difference of 6.82 g/m3 on PM2.5 can lead to a 10% variation on the risk 

of long-term mortality. These differences will therefore be more or less significant depending on 

the pollutant and associated effect considered. All of this therefore requires a detailed estimate of 

the exposure of individuals locally and along travel routes. We therefore opted to deploy a sensors 

network to get measurements at a finer spatial scale. Furthermore, this study also revealed that 

PM2.5 had more pronounced health effects than NO2, particularly for LT impacts, often resulting 

in chronic diseases or mortality. As a result, we chose to prioritize PM analysis in upcoming 

chapters, focusing on PM1 or PM2.5. This was in phase with the limitations of LCS in measuring 

gases and coarse particles like PM10 (Hassani et al., 2023).   

 

 

 

  

Summary - Results Chapter 2 

During COVID-19 restrictions:  

 - 32% NO2, - 22% PM2.5, - 15% PM10, + 11% O3. 

 Short-term risks of child asthma (- 3%) & hospitalization for respiratory diseases 

(- 2%). 

 Long-term risks of low birth weight (- 8%), mortality (- 4%), and lung cancer (- 2%). 

 Most pronounced health effects of PM2.5, particularly for long-term risks. 
 

Health risks calculations: 

 Small pollutants concentrations differences can lead to important risks variations. 
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 LOW-COST SENSORS FOR PARTICLE MATTER 

MEASUREMENT: CALIBRATION METHOD 

3.1 INTRODUCTION 

Low-cost sensors (LCS) networks are becoming increasingly popular in air quality monitoring. 

They can provide pollutants concentrations data near places where individual live, addressing the 

spatial and temporal variability of air quality (Williams, 2019). Another advantage of LCS is their 

affordability, allowing for deployment of various devices within a city. However, one of their main 

limitations is the low accuracy of their raw data, which may be attributed to inappropriate 

Summary - Introduction Chapter 3                                                                                                   

 Background: Low-cost sensors (LCS) offer the possibility for finer spatial and temporal 

measurements of air pollutant levels but raise questions about the quality of raw data. The 

use of LCS therefore requires calibration before any deployment. 

 Objectives: 

1. Develop a standardized approach for calibration of LCS; 

2. Apply the calibration method to our LCS and assess the performance in Grenoble. 
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correction algorithms developed by manufacturers for some contexts, and to the influence of 

meteorological factors such as relative humidity or dusts. Consequently, substantial time must be 

allocated to recalibrate LCS before usage in monitoring. Calibration involves locating the sensors 

near a reference instrument to compare sensor values with the reference and, when needed, adjust 

sensor outputs using various correction methods, such as multi linear regression or machine 

learning. Figure 16 summarizes the various steps required before LCS deployment. First, LCS are 

assembled with an optical PM sensor, a microcontroller (central processing unit), and a sensor 

measuring temperature and humidity. Then, to ensure the quality of PM measurements made by 

the LCS, we compare them with a reference monitor (colocation study). A calibration equation is 

then constructed to correct raw LCS data. Finally, the sensors can be deployed in similar conditions 

to those of the colocation. This Chapter 3 is devoted to the description of the calibration method, 

while the following Chapter 4 will address sensors deployment and the analysis of network-

generated results.  

 

Figure 16. Steps to low-cost sensors (LCS) deployment. REF: Reference station from Atmo AuRA in “Les 

Frênes”. T: temperature, RH: relative humidity, LR: Linear regression. Step 4 is addressed in Chapter 4. 

As standardized methods are not yet available, calibrating LCS is a complicated process 

(Giordano et al., 2021).  The US EPA implemented guidelines that provide metrics to be achieved 

to ensure effective PM LCS calibration. However, there is a lack of directives concerning the 

calibration techniques to be employed to reach these metrics. Three main techniques can be used 

to calibrate PM LCS: 1) Linear and non-linear regressions, 2) mechanistic models involving 
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humidity, and 3) sophisticated machine learning (ML) methods (Liang, 2021). A combination of all 

three methods is also possible. These three techniques were evaluated to identify the most suitable 

for our local environment. In this chapter, we present two papers dealing with calibration. The first 

article (article n°2, in French) will present linear and mechanistic methods. The second article 

(article n°3) will show how machine learning can help improving PM LCS performance metrics. 

The approaches described in both papers can be adapted and applied to similar devices.    

3.2 ARTICLE N°2 

This paper introduces two distinct calibration methods using regressions. First, a simple linear 

regression technique corrects the sensor's measured value using an equation of the form 

“y = ax + b”. Second, a mechanistic non-linear method accounting for humidity is used. Most 

studies have pointed out the importance of humidity in the calibration equation for PM LCS, as 

humidity impacts PM sizes and directly affects optical measurements.  

The following paper can be found at: https://doi.org/10.25576/ASFERA-CFA2023-32891.  
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3.3 ARTICLE N°3 

In our literature review on LCS calibration, we found a study that took an initial step towards 

methods harmonization. Schmitz et al. (2021) presented a seven-step technique using machine-

learning to calibrate gas sensors together with an open-access code (Schmitz et al., 2020). Inspired 

by that approach, we adapted the method to calibrate our PM LCS. Since the method was initially 

designed to calibrate LCS measuring gases such as NO2 or O3, and not specifically for PM LCS, 

we tailored it to fit our PM sensors study. The adaptation process included specific steps, such as 

excluding extreme relative humidity values or days when Saharan dusts events occurred. Dusts 

episodes led to elevated levels of PM2.5 and PM10, which the LCS struggled to accurately measure, 

unlike the reference instruments. Figure 17 highlights these dust periods, when high PM2.5 or PM10 

Summary – Conclusion Article n°2 

The key findings of this paper were the following: 

 A linear regression formula may be sufficient to align LCS metrics with EPA 

performance recommendations.  

 Mechanistic calibration improves sensor accuracy by reducing hourly and 

daily RMSEs by 7% and 21%, respectively. 

Based on these findings, we used the mechanistic calibration in our first study on 

mobility (Appendix B). However, we subsequently highlighted that, although linear and 

mechanistic regression had the advantage of simplicity, they did not appear to deliver the 

best performance when compared to more sophisticated methods like machine-learning 

(Liang, 2021). Therefore, we experimented machine learning techniques in the following 

article and compared them to traditional linear or mechanistic regression methods. 
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levels are recorded by the reference but not by the LCS, and the Copernicus Sentinel-5P satellite 

shows the presence of a dust. This suggests the difficulty of the LCS to capture those coarse PM.   

 

Figure 17. Scatterplot of the raw PM2.5 LCS levels against the official PM2.5 REF data from Atmo AuRA. Dust 

episodes observed during the colocation . Grey points denote normal days when no dust was identified. Blue points 

refer to dust events identified with our technique. The dashed red line shows the parity line, and the black line is the 

best linear fit.  

To detect and discard dusts events, we adopted a hybrid approach combining field 

observations and dust data from the Copernicus Sentinel-5P satellite (Météo-France, 2020). This 

extension to the method by Schmitz et al. was published and will be detailed in the next section. 

The aim of the paper was to present the LCS calibration method along with the associated 

performance. 

The paper can be found at: https://doi.org/10.1016/j.scitotenv.2023.164063. 
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3.4 CONCLUSION 

The correction formulas for the different PM sizes, along with their associated uncertainties, 

are summarized in Table 2. Given the importance of accounting for uncertainties in both reference 

and LCS (Koritsoglou et al., 2020; Schmitz et al., 2021), a reference’s technical error of 11% for 

PM2.5 or PM1, and 13% for PM10 is also added (LCSQA, 2020). Uncertainties were computed as 

follows: 

 For MLR and RFR algorithms, the median mean absolute error (MAE) across test 

blocks with the reference instrument's technical error were merged as recommended 

by Schmitz et al. (2021) 

 For linear and mechanistic regressions formulas, we calculated the MAE of the test 

dataset and added it to the reference’s technical error.  

The MAE was calculated as follows: 

Summary – Conclusion Article n°3 

A conclusion drawn from this paper is that excluding dusts substantially improves the 

performance of calibration algorithms, consequently improving LCS accuracy. In the 

future, allocating research resources to rectify sensor values during these episodes would 

be of interest, as this would avoid removing this data from exposure studies. It would also 

be interesting to further work on improving dust detection. In the future, it may become 

feasible to completely rely on satellite observations for dust detection, eliminating the need 

for in-field assessments. This is not currently possible due the coarse 10 km x 10 km 

resolution of CAMS satellite data for dusts detection (Météo-France, 2020). Our study 

shows the significance of preprocessing data before trying various calibration models. 

Finally, another notable aspect of Schmitz et al.'s (2021) method is its approach to address 

uncertainties in LCS measurements, including guidelines to calculate them. 
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MAE ൌ
∑  ௡
௜ୀଵ |𝑦௜ െ 𝑥௜|

𝑛
ሺ2ሻ 

Where yi is the predicted (corrected) value, xi the observed value, and n the number of values 

in the test dataset. 

Table 2. Calibration formulas for PM1, PM2.5, and PM10, along with their uncertainties.  Example (LR 

calibration): if PM2.5 = 10 µg/m3, PM2.5 Cal = 7.39 ± 1.68 µg/m3. 

Method Formula  Uncertainty 

PM1 
  

LR PM1 Cal = 0.70 PM1 + 0.93  ± (0.11 PM1 Cal + 0.79) 

Mechanistic 
PMଵ Cal ൌ 0.08 ൅ 0.83 

PMଵ

ቀ1 ൅ 0.13
RH୧୬୲

100 െ RH୧୬୲
ቁ
ଵ
ଷ

൅ 0.03 T୧୬୲  ± (0.11 PM2.5 Cal + 0.44) 

MLR PM1 Cal = 1.29 + 0.96 PM1 – 0.01 RHint – 0.003 PM1 * RHint   ± (0.11 PM1 Cal + 0.61) 

RFR PM1 Cal = PM1 + RHint + Tint  ± (0.11 PM1 Cal + 0.43) 

PM2.5 
       

LR PM2.5 Cal = 0.49 PM2.5 + 2.49       ± (0.11 PM2.5 Cal + 0.87) 

Mechanistic 
PM2.5 Cal ൌ 0.5 ൅ 0.65 

PM2.5

ቀ1 ൅ 0.25
RH୧୬୲

100 െ RH୧୬୲
ቁ
ଵ
ଷ

൅ 0.08 T୧୬୲       ± (0.11 PM2.5 Cal + 0.72) 

MLR 
PM2.5 Cal = 2.86 + 0.79 PM2.5 – 0.01 RHint – 0.004 PM2.5 * 
RHint  

      ± (0.11 PM2.5 Cal + 0.87) 

RFR PM2.5 Cal = PM2.5 + RHint + Tint       ± (0.11 PM2.5 Cal + 0.73) 

PM10 
  

LR PM10 Cal = 0.45 PM10 + 7.71  ± (0.13 PM10 Cal + 2.72) 

Mechanistic 
PM10 Cal ൌ 1.75 ൅ 1.12 

PM10

ቀ1 ൅ 2.68
RH୧୬୲

100 െ RH୧୬୲
ቁ
ଵ
ଷ

൅ 0.23 T୧୬୲    ± (0.13 PM10 Cal + 2.53) 

MLR 
PM10 Cal ൌ 1.15 ൅ 0.89

PM10

ቀ1 ൅
RH୧୬୲

100 െ RH୧୬୲
ቁ
ଵ
ଷ

൅ 0.27 T୧୬୲    ± (0.13 PM10 Cal + 2.86) 

RFR PM10 Cal = PM10 + RHint + Tint    ± (0.13 PM10 Cal + 2.73) 



3  |   LOW-COST SENSORS FOR PARTICLE MATTER MEASUREMENT:  CALIBRATION METHOD 

 

82 

Overall, although linear or mechanistic regression models may be adequate to meet US EPA’s 

performance guidelines, machine learning calibration models demonstrated promising results in 

our study. This is in alignment with the literature, as we observe a growing number of articles using 

machine learning in the field of LCS calibration (Liang, 2021). Calibration formulas reported in 

Table 2 can be directly transposed to sites with similar aerosol compositions and environments. 

Careful use and recalibration are needed when dealing with sites different from the calibration 

sites. This work also aligns with recent research showing that calibrated low-cost PM sensors can 

effectively complement reference stations, even though they may have technical limitations in 

measuring coarse PM, which is of minor concern, given the lower health effects of coarse PM. The 

inability of LCS to measure Saharan dust events may be attributed to various factors, dusts 

predominantly consisting of PM10 and PM2.5 (Alonso-Pérez & López-Solano, 2023; Querol et al., 

2019). Some studies suggested that coarse PM could not perform the complete trajectory till the 

photodiode inside the PMS7003, especially the 90-degree turns (Sayahi et al., 2019). Others point 

out that PM size might influence light scattering and that bigger PM could diffract less light. This 

could also result from a difference in the refractive index related to the composition of dust or 

from its transparent nature, which might allow the signal to pass through. In summary, there are 

several hypotheses, some related to the sensor itself, while others are linked to the composition of 

dust particles. More research is needed to explore this topic. A recent study (Alonso-Pérez and 

López-Solano, 2023) demonstrated that a LCS, the SDS011, could detect Saharan dust. Hence, it 

can be inferred that the SDS011 might provide a more direct path for PM than the PMS7003, or 

it may have a different wavelength enabling better PM distinction. This needs to be confirmed by 

further research. Badura et al. (2018) noted slightly weaker correlations with a reference for the 

SDS 011 (r = 0.88) than for the PMS7003 (r = 0.90-0.92). Combining both sensors like the SDS 

011 and the PMS 7003 could offer a synergistic approach, potentially yielding more dependable 

data. 

The poor performance of LCS on PM10 led us to disregard PM10 and focus only on PM1 or 

PM2.5 in the next chapters. The absence of drift and the good results from our calibration study 

encouraged us to deploy a LCS network in Grenoble and further analyse the data as detailed in the 

next chapter. A limitation of this calibration study resides in the range of colocation concentrations, 

i.e., the test dataset only features low PM concentrations (e.g., PM2.5 less than 15 µg/m3). As 

explained in the next chapter, it would have been valuable to conduct a more extended colocation 

experiment entailing episodes of extreme PM levels. 
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Summary - Results Chapter 3 

 Excluding dust events improves calibration algorithms performance;  

 For PM1, MLR calibration gave better results than LR or mechanistic methods; 

 For PM2.5, RFR calibration gave the best results; 

 Performance of PMS7003 is poor for coarse PM like PM10. 



4  |   AN EXPERIMENTAL NETWORK OF LOW-COST PARTICULATE MATTER SENSORS IN 

GRENOBLE 

 

84 

 

 AN EXPERIMENTAL NETWORK OF LOW-COST 

PARTICULATE MATTER SENSORS IN 

GRENOBLE  

 

 

4.1 INTRODUCTION 

The use of low-cost sensors is growing, and there are now tens of thousands of LCS worldwide 

(Searle et al., 2023). Two of the most prominent stationary LCS networks are PurpleAir (2023) and 

Sensor.Community (2023). The LCS are deployed by citizens themselves, and their data is freely  

Summary - Introduction Chapter 4                                                                                                   

 Background: LCS networks measuring PM are becoming increasingly popular and offer 

research opportunities. However, only a limited number of studies analyse their outputs.  

 Objectives: 

1. Assess PM levels provided by a LCS network in Grenoble; 

2. Study their relationship with the background reference to explore localized variations; 

3. Locate PM hot-spots where individuals could face excessive PM exposure. 

4. Identify time periods when local PM levels are higher 
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accessible to everyone via an API, making their use more straightforward. Interestingly, scientists 

recently started to use these massive citizen science data to quantify LCS degradation (deSouza et 

al., 2023), develop calibration techniques (Barkjohn et al., 2021; deSouza et al., 2022; Searle et al., 

2023), especially for wildfires evaluation (Barkjohn et al., 2022). The PurpleAir network had more 

than 12,000 sensors in January 2022 (Barkjohn et al., 2022), and the Sensor.Community currently 

comprises around 13,000 sensors worldwide. In recent years, smaller networks emerged, such as 

Breathe London (2023) and “Love My Air” in Denver (Li et al., 2023). All of these networks 

provide unparalleled research opportunities, as long as reference stations are available in close 

proximity to calibrate LCS. Scientists also deploy their own LCS networks but there are currently 

more studies related to calibration than papers aiming at analysing deployed LCS outputs. This 

approach is prudent, as data reliability is crucial before starting network deployment and analysing 

results. Nonetheless, there are limited studies available for us to compare our research to when it 

comes to analysing LCS networks. Raheja et al. (2022) deployed five sensors using PMS5003 in 

Lomé (Togo) and compared their PM levels with WHO guidelines. However, they missed an on-

site reference monitor against which to compare LCS measurements. Gitahi and Hahn (2022) used 

crowd sourced Sensor.Community measurements and compared them to reference monitors 

located close to the LCS. However, they emphasized the lack of standardization in LCS placement 

by citizens, which might lead to non-representative measurements. They found good correlations 

between LCS and reference stations located within a 1km radius, with almost half of the Pearson 

correlation coefficients bigger than 0,7. LCS measurements were impacted by their proximity to 

roads and road types. Dimitriou et al. (2023) established an LCS network across 5 Greek cities and 

observed strong correlations in daily PM2.5 levels across locations. Peak concentrations were 

primarily linked to regional northern airflows, underscoring the significance of long-distance 

transportation. Their objective was to get insights into more localized contributions that can add 

to the background levels measured by the central reference. In this study, we are going to analyse 

PM levels given by different LCS placed in Grenoble, as well as their relationship with the 

background reference values, in order to better understand localized variations. Conducting a 

spatio-temporal analysis, we will compare the sensors between each other, and try to identify 

potential hot-spots in Grenoble where individuals might be overexposed to PM.    
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4.2 MATERIALS AND METHODS 

4.2.1 Measuring instruments 

The measurements were conducted with the calibrated air quality stations (Aix et al., 2023) 

depicted in Figure 18. These stations consist of three main components: a Wi-Fi microcontroller, 

an optical PM sensor (PMS 7003) and a humidity/temperature sensor (DHT 22). The detailed 

components list can be found in Appendix C.  

 

Figure 18. Layout of a PM monitoring station 

At the beginning of the experiment, all DHT22 sensors were replaced by new ones because 

some of them exhibited relative humidity deviations. In total, 8 air quality stations were deployed 

in Grenoble and Saint-Martin d’Hères (adjacent city to Grenoble). PM concentrations were 

measured at a frequency of approximately 150 s (2mn 30 s).  

4.2.2 Sampling locations and time period 

Sampling locations were selected to provide comprehensive coverage of the city, in addition 

to the official background station. The criteria for sensor placement were stringent, as our objective 

was to closely align the sensors deployment conditions with those of the calibration. Since the 
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sensors were calibrated in background conditions, they had to be deployed under similar 

environments. Moreover, we aimed to measure PM close to ground level, in order to be as 

representative as possible of what individuals breathe. The location criteria given to the volunteers 

willing to host a station, were as follows: 

- In Grenoble or Saint-Martin d’Hères; 

- Between 1.5 and 4 meters above the ground (upper levels were prohibited); 

- Away from smoking areas or construction sites; 

- Avoid south-facing positions (or ensuring shelter if facing south); 

- Ensure no obstacle within a circle of 1 meter, aside from the sensor support. 

These criteria were crucial as they would influence the quality of the data we would gather later 

on. Table 3 displays the characteristics of the locations, together with their deployment time period. 

We named the stations using the name of the neighbourhood or street where they were located. 

Table 3. Sampling sites description and deployment time period 

Name Characteristics Deployment time period 

Abbaye Residential area with houses, in a garden 2022-06-30 to 2023-08-08 

Aigle 
Residential area with houses, facing towards the 
street 2022-06-29 to 2023-08-08 

Bachelard Residential area with houses, in a garden 2022-07-19 to 2023-08-08 

City center 
Public housing, pedestrian street with shops 
and restaurants 2022-09-03 to 2023-08-08 

Clemenceau Public housing, courtyard-side 2022-01-17 to 2023-08-08 

Mistral School facade, facing a courtyard near a street 2022-07-19 to 2023-08-08 

Saint-Bruno Residential building, private terrace 2022-07-25 to 2023-08-08 

Saint-Martin 
d’Hères Public housing, facing a garden 2022-09-05 to 2023-06-08 

 

Figure 19 illustrates the stations distribution throughout the urban area. 
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Figure 19. Map of the network of LCS showing sensors locations (red) and the official background reference 

station from Atmo AuRA (blue). 

The station in Saint-Martin d’Hères could not be regularly sampled because of frequent Wi-Fi 

connectivity issues. 80% of the PM records were missing, so this station had to be removed from 

the analysis.  

4.2.3 Data cleaning 

 PM2.5 raw data were fused with temperature and RH measurements made at the same time. 

All PM2.5 values greater than 500µg/m3 were also removed because of PMS7003 efficiency range 

(Bauerová et al., 2020; Plantower, 2016). This applied to a negligible fraction of the dataset, ranging 

from 0.0005% to 0.09%, depending on the sensor. Outliers were not removed from the datasets 

to assess individual exposures. The sensor values were subsequently converted into hourly averages 



4  |   AN EXPERIMENTAL NETWORK OF LOW-COST PARTICULATE MATTER SENSORS IN 

GRENOBLE 

 

89 

to facilitate comparison with hourly reference values. All data cleaning steps, as well as the 

following selection procedure, are schematized in Figure 20. 

  

Figure 20. Flowchart of the data cleaning and selection procedure 

The hourly conversion was then followed by a dust removal step. In general, LCS readings are 

well correlated to reference values except during dusts when LCS do not capture well large PM like 

PM10 or PM2.5 (Jaffe et al., 2023; Kosmopoulos et al., 2020; Molina Rueda et al., 2023). Therefore, 

we applied the technique developed in Chapter 3 (Aix et al., 2023) to detect dust events. First, we 

checked daily correlations between the reference and the LCS. Second, we uploaded dust values 

from Copernicus (Météo-France, 2020). PM values were removed from the dataset when both the 

correlation was negative and Copernicus showed a dust (Figure 21).   
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Figure 21. Dust identification steps 

After a thorough dataset analysis, 7 dust events were identified (Table 4) and removed from 

the dataset.  

Table 4. Dust events time periods discarded from the dataset 

 start end 
dust1 2022-05-09 2022-05-16 
dust2 2022-06-01 2022-06-05 
dust3 2022-06-19 2022-06-24 
dust4 2022-09-05 2022-09-06 
dust5 2022-10-17 2022-10-21 
dust6 2023-07-11 2023-07-12 
dust7 2023-07-23 2023-07-25 

After dust removal (5.6% of the dataset), PM values were corrected using the different 

correction algorithms developed by Aix et al. (2023). 
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4.2.4 Calibration and time period selection 

The calibration formulas use temperature and relative humidity measured by the air quality 

station (Appendix 1 and 2). First, the calibrated PM1 values were examined with respect to PM1 Ref 

measurements (Figure 22). For all LCS stations, an inflexion occurred around PM1 Ref = 15-

20 µg/m3.  

 

Figure 22. Scatterplots showing calibrated PM1 levels versus PM1 Ref  4 outliers were removed for presentation 

purposes. The dashed red lines indicate the parity and the blue lines the loess regression curve. 

This was intriguing and we therefore checked the LCS raw values (Figure 23). This inflection 

was associated with high PM levels observed during autumn and winter. By examining the 

relationship between PM1 Ref and PM1 LCS raw values during these two seasons, we found that the 

scatterplot could be divided into two distinct parts. The linear regression of PM1 LCS for PM1 Ref 

values greater than 20 µg/m³ was different from those below 20 µg/m³.  
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Figure 23. Scatterplots showing raw PM1 levels versus PM1 Ref for winter and autumn. 5 outliers were 

removed for presentation purposes. In blue, the regression lines for PM1 Ref < 20 µg/m³, in orange, 

for PM1 Ref > 20 µg/m³. The dashed red lines indicate the parity line. 

Everything indicated that our calibration formulas were unable to correct PM1 LCS values 

corresponding to PM1 Ref values greater than 15-20 µg/m³. We attempted to implement a dedicated 

winter correction algorithm by focusing on the winter portion of the colocation data. Additionally, 

we explored the application of an algorithm tailored to PM1 Ref co-location values > 15 µg/m³. We 

also tried to calibrate the LCS individually using a simple linear regression, in order to see if 

humidity could be responsible for this phenomenon. Polynomial equations were also tested. None 

of these methods produced successful results, as all scatterplots still exhibited a distinct inflection 

point. Figure 24 displays the colocation PM1 levels, and highlights the reason why we struggled to 

calibrate these extreme data points. The colocation study took place between the 28th of January 

2021 and the 29th of September 2021. As a result, the dataset had limited winter and autumn data. 

The primary issue was that the highest level of PM measured during the colocation was 30 µg/m³, 

whereas our fixed sensors recorded levels of up to 60 µg/m³ during deployment. The colocation 

exhibited considerably lower PM levels than the deployment phase, which made the calibration of 

extreme values observed on deployed LCS uncertain. This raises the question of validity range of 

colocation.  
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Figure 24. Scatterplot of hourly LCS average PM1 concentrations versus PM1 reference concentrations during 

the colocation study (8-month dataset). As reported by Aix et al. (2023)  

This flattening of the curve phenomenon was also highlighted by Stampfer et al. (2020). In 

their study, the relationship between PM2.5 LCS and PM2.5 Ref changed at PM2.5 Ref values above around 

25 μg/m3 (which, in our study, corresponds to PM1 values exceeding 16 μg/m3). Wang et al. (2023) 

acknowledged the same limitations, having too low PM2.5 levels during their colocation. They 

highlighted the need for more research on PM levels higher than 20 µg/m³ and emphasized the 

risk of deploying LCS in an environment differing from the calibration conditions. As we required 

precision for our exposure calculations, we opted to limit our analysis to spring and summer periods 

where measured levels are consistent with the colocation. Lastly, we chose to focus on the 

overlapping operational periods of the sensors to allow meaningful comparisons. As a result, all 

time slots during which one or more LCS did not work were removed for further analysis. This 

included removing times when the reference did not deliver results. In total, 61% of the dataset 

was discarded during this operation. We had 12705 hourly values remaining in the dataset. The 

removed values are left for a different analysis.  
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4.2.5 Exposure calculations 

We first conducted a descriptive analysis of PM concentrations, temperature and humidity 

measured by the air quality stations. Subsequently, we focused on ratios of PM measurements in 

relation to their corresponding background reference levels. This normalization technique helps to 

identify excessive local PM concentrations above reference levels and allows to compare different 

times or days when background concentrations are different. The following ratios were computed: 

𝑃𝑀ଵ ௥௔௧௜௢ ൌ  
𝑃𝑀ଵ

𝑃𝑀ଵ ோ௘௙
ሺ3ሻ  

𝑃𝑀ଶ.ହ ௥௔௧௜௢ ൌ  
𝑃𝑀ଶ.ହ

𝑃𝑀ଶ.ହ ோ௘௙
 ሺ4ሻ 

In these equations, PM1 and PM2.5 refer to hourly LCS concentrations while PM1 Ref and 

PM2.5 Ref denote hourly reference concentrations. The objective was to identify locations where 

individuals might experience PM overexposure in contrast to background reference levels, which 

were regarded as a baseline scenario. Following Boulter (2020), within a city, there is a basis of 

regional background pollution covering a wide area and relatively stable (Figure 25). Atop this first 

layer, there is an urban background, resulting from traffic, residential heating, and industries. The 

reference station can capture this urban background, as well as the regional background. Lastly, as 

a third layer, there are additional local contributions (hot-spots), such as those coming from traffic. 

Our research aimed to evaluate these local contributions. All calculations were made with RStudio 

2023.06.2 (R Core Team, 2023).  

 

Figure 25. Simplified representation of urban structure and pollution levels  Extracted from Boulter (2020) and 

adapted from Keuken et al. (2005).  
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4.3 RESULTS 

4.3.1 Descriptive statistics 

Statistics conducted for each LCS, as well as for the reference station are displayed in Table 5. 

The sensor located in the city center exhibits the highest levels of PM, along with the largest 

standard deviations. For PM1, the least exposed sensor was in Mistral, while for PM2.5, it was the 

Aigle sensor, both exhibiting the lowest standard deviations. Generally, the LCS displayed lower 

PM levels than the reference, except for the city center sensor, as well as Clemenceau for PM1.  

Table 5. Descriptive statistics for calibrated LCS and reference hourly PM concentrations, temperature and 

relative humidity. SD: Standard deviation. 

 PM1  

(µg/m3) 
PM2.5  

(µg/m3) 
Relative humidity 
(%) 

Temperature  
(°C) 

Location Mean SD Mean SD Mean SD Mean SD 
Reference 5,5 3,3 6,9 3,8 - - - - 
Aigle 4,9 3,0 5,7 2,8 74,5 23,3 18,7 6,6 
Mistral 4,6 2,7 5,8 3,1 68,9 21,7 18,2 6,6 
Bachelard 5,0 3,0 6,1 3,3 73,9 19,8 18,2 7,3 
Abbaye 5,0 3,3 6,2 3,4 75,3 23,2 18,7 7,4 
Saint-Bruno 5,3 3,5 6,4 3,4 59,7 24,6 20,7 7,5 
Clemenceau 5,5 3,5 6,7 3,4 51,7 14,9 21,0 6,9 
City center 6,2 5,3 7,5 3,9 57,3 15,8 19,8 6,9 

Depending on the LCS, humidity values ranged between 52% and 75%, while temperature 

varied between 18°C and 21°C. The sensors oriented towards the south or southwest (Saint-Bruno, 

Clemenceau, City Center) exhibited higher temperatures (20-21°C compared to 18-19°C for the 

others), and lower relative humidity values (52-60% versus 69-75% for the others). 

4.3.2 PM concentrations 

When checking distances between sensors and correlations between them, we observed that 

the most correlated sensors were generally close to each other. Figure 26 shows a distance matrix 

(A) and correlation matrices for PM2.5 (B) and PM1 (C) between sensors. The closest stations 
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(Bachelard and Mistral) were the ones that were the most correlated with each other for PM2.5, with 

a Pearson correlation coefficient indicating a strong association (r=0.95). For some of the LCS, 

such as Clemenceau, City Center, or Abbaye, the distance did not seem to influence the correlation 

with other LCS.   

 

Figure 26. Distances in meters (A), PM2.5 (B) and PM1 (C) correlation matrixes for the LCS and the reference 

(hourly values). 

Strong correlations were found between the sensors’ PM levels and the reference, ranging 

from 0.84 to 0.89 for PM2.5 and from 0.82 to 0.93 for PM1. The sensors showing the weakest 

correlations with the reference were Abbaye and City center. The correlations between the PM 

values of two sensors were associated with the distance between them, specifically for PM2.5 (Figure 

27). 
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Figure 27. Scatterplot of Pearson correlation coefficient between sensors (including reference monitor) for 

PM levels versus distance between them, with linear regression and 95% confidence interval.  

We observed that the correlation was weaker for PM1 (r = -0.52, p-value=0.0044) than for 

PM2.5. 

4.3.3 PM ratios 

In order to calculate PM ratios, PM concentrations were compared with reference values to 

standardize PM concentrations. This allowed us to focus on local variations in relation to the 

reference, in order to identify potential concentration hotspots within specific urban areas. When 

checking the average hourly distribution of PM by sensor (Figure 28), we observed diurnal 

variations with a minimum between 7-9 a.m. and a maximum around 7-8 p.m. for most LCS. We 

also observed that there was more heterogeneity among sensors during the evening peak than 

during the morning peak. In the morning, the peaks occurred at 6 a.m., whereas, in the afternoon, 

they were more spread out. For Clemenceau, there was an evening peak at 4 p.m., whereas for 

other sensors, such as Bachelard or Saint-Bruno, the peak occurred later. The Mistral sensor 

showed very few diurnal variations, and its signal remained relatively constant, except during the 6 

a.m. morning peak.  
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Figure 28. Average hourly PM2.5 ratios across all deployment locations 

On the city center sensor, we observed two important peaks, one at 1 pm and one at 9 pm. 

They seemed to correspond to the operational hours of a nearby restaurant. The 9 pm peak was 

30% more important than the 1 pm spike. These peaks disappeared on Sundays when the restaurant 

was closed. In the same street, there was also a bakery that might have contributed to some 

emissions. These PM spikes seemed to influence PM concentrations throughout the day and night, 

especially for PM1. This was likely due to the lack of pollutant dispersion in this narrow street. The 

LCS in Clemenceau might have been influenced by traffic, as we observed a first evening peak at 

4 p.m., which might have been associated with commuting from work. The sensor was located on 

one of Grenoble's main boulevard but on the courtyard side. Clemenceau and City center sensors 

appeared to stand out from the rest, as confirmed by a spatial clustering analysis using the k-means 

method. Figure 29 illustrates the categorization of LCS into three clusters where, for PM2.5, 

Clemenceau and City center sensors appeared to behave differently from the rest of the network, 

while for PM1, Abbaye and City center were separated from the others.   

 

Figure 29. Sensors clustering using k-means on PM ratios. 
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The average PM2.5 ratios per LCS were placed on a map (Figure 30) where ratios were interpolated 

using Inverse Distance Weighting (IDW) in QGIS 3.28.3. This technique enabled the identification 

of elevated local PM concentrations surpassing reference background levels, potentially resulting 

in PM overexposure for individuals. It seemed that the proximity to the city center could be a factor 

in determining ratios. Ratios for the different LCS were compared using a Wilcoxon test, and the 

results were placed under Figure 30.  

 

 

Figure 30. PM2.5 ratio landscape by IDW interpolation The numbers represent the mean PM2.5 ratios per sensor (with 

their standard deviation into brackets). All devices exhibited significantly different ratios (p<0.05, Wilcoxon’s test) 

except Mistral, statistically similar with Aigle. Bachelard was also similar with Abbaye.   

 

When considering PM1 (Figure 31), LCS close to the city center also appeared to be more 

exposed, with the Bachelard sensor showing values equivalent to that of Saint-Bruno. These maps 

confirmed the existence of a hotspot in the city center, as well as low PM levels areas around Aigle 

and Mistral, meaning that there was a low contribution of local sources in these areas. 
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Figure 31. PM1 ratio landscape by IDW interpolation.The numbers represent the mean PM1 ratios per sensor (with 

their standard deviation into brackets). All devices exhibited significantly different ratios (p<0.05, Wilcoxon’s test) 

except Bachelard, statistically similar with Saint-Bruno or Abbaye. Aigle was also statistically similar with Abbaye. 

Depending on the neighbourhood, significant exposure differences could be observed, with 

average PM ratios varying by a factor of 1.4 (28%) for PM1 and 1.3 (24%) for PM2.5. 

4.4 DISCUSSION 

4.4.1 Main findings   

In this study, we found that the correlation between the PM values of two sensors was 

generally influenced by the distance between them. The most correlated sensors were generally in 

close proximity to each other. However, the proximity effect on the correlation between sensors 

was weaker for PM1 (r = -0.52) than for PM2.5 (r = -0.67), which might suggest higher local 

contributions for PM1 than for PM2.5. Dimitriou et al. (2023) also found significant correlations 

between sensors within a city (r from 0.62 to 0.97), and between different cities (r from 0.31 to 

0.72), but they did not study distances between LCS. They attributed these strong intra-city 
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correlations to similar pollution sources, transport and dispersion conditions. Kosmopoulos et al. 

(2022) underlined that, in the warm season, regional transport played a significant role, accounting 

for around 80-85% of PM2.5 in the city center. This could explain the good correlations between 

sensors. Perillo et al. (2022) also found good correlations (r>0.71) for PM2.5 among multiple sites 

in Dublin (Ireland). The high correlations we observed between the sensors and the background 

reference (from 0.84 to 0.89 for PM2.5 and from 0.82 to 0.93 for PM1) highlight the low influence 

of local factors, with a substantial impact of urban and regional background. These values were 

higher compared to those observed by Gitahi and Hahn (2022), whose maximum correlations 

between LCS and references ranged between 0.68 and 0.78. This could be due to the lack of 

standardization in the installation criteria for their LCS, installed by citizens. In our study, the city 

center emerged as a hotspot, exhibiting elevated levels of PM1 and PM2.5, along with higher ratios 

when compared to the reference. Zuurbier et al. (2010) analysed commuters’ exposure to PM and 

found that particle number counts were higher than background levels in the city center, which 

they attributed to street canyon effect caused by high buildings. In our case, these high exposure 

levels seemed to be associated with specific time intervals, suggesting a link with a restaurant 

activity. In a similar LCS network study, Kosmopoulos et al. (2022) also observed that locations 

experiencing the highest PM2.5 levels were not situated in high traffic density areas, but in 

pedestrian-only zones with high concentrations of restaurants. PM spikes caused by restaurants 

also seemed to influence PM concentrations throughout the day and night, as PM2.5 concentrations 

in these areas were higher than elsewhere. In the same city, Siouti et al. (2021) found the highest 

concentration of cooking organic aerosols in an area with high restaurant density. They also 

calculated that half of the daily cooking organic aerosol occurred during diner time (from 9 pm to 

midnight), while approximately 25% during lunch time (1-4 pm). This distribution appears similar 

to what we observed in Grenoble with the city center sensor, although the peak occurred earlier in 

the evening. The elevated PM values could also be attributed to a mountain-side stagnation 

phenomenon, as elucidated by Le Bouëdec (2021). The PM levels appeared to persist at lower, yet 

still significant, values outside of the restaurant's operating hours. Regarding PM ratios, we 

observed two distinct areas with a hotspot in the city center and low local emissions areas in the 

western part of the city. Ventilation could play a role, as a PM10 stagnation area was identified in 

the foothills of the Chartreuse mountain, not far from the city center, by Le Bouëdec (2021). To 

further confirm or refute this hypothesis, additional sensors would need to be deployed across this 

area. In our study, the spatial variabilities of the ratios did not seem to be associated with traffic or 
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proximity to major roads. For instance, Mistral, Bachelard and Aigle sensors were located in areas 

with major traffic arteries, but brought few local contributions to PM levels, eventually suggesting 

a protective effect from the barrier of trees or buildings. Clemenceau however could be influenced 

by traffic. Gitahi and Hahn (2022) found that sensors located near major roads presented higher 

PM levels than the ones situated in the background areas. We also noticed a greater PM 

concentrations heterogeneity during the evening peak compared to the morning peak. This 

variability could be associated with ventilation patterns or proximity to major roads. Levels of PM 

exposure can vary considerably based on residential location, with ratios spanning from 0.89 to 

1.23 for PM1 and 0.88 to 1.16 for PM2.5. This accounts for a 28% difference in exposure to PM1 

and a 24% difference for PM2.5, which is significant when calculating health risks. An interesting 

outcome of this study was that urban hotspots can be non-related to traffic. This was also 

highlighted by ElSharkawy and Ibrahim (2022) measuring high levels of pollutants (CO, CO2, 

VOCs, NO2, SO2) close to grilling restaurants. However, they did not measure PM in their study. 

Robinson et al. (2018) measured organic aerosol (OA), a major component of PM2.5 and detected 

high concentrations of OAs hundreds of meters downwind from certain restaurants, underscoring 

the potential of these sources to impact air quality at the neighbourhood level. Our observations 

further confirm those results, highlighting the importance of improving emission control measures. 

4.4.2 Study limitations 

Our work emphasizes the importance of calibration that should be comprehensive to 

minimize data losses. In our case, restricting the study to summer and spring seasons resulted in 

half of the dataset being not included in the analyses. It is crucial to consider similar PM levels 

during the calibration process to those encountered during deployment. Proper calibration across 

a wide range of conditions is important (Gitahi & Hahn, 2022), otherwise, a significant portion of 

the dataset may become difficult to analyse. Molina Rueda et al. (2023) also recommended 

calibrating sensors with similar environmental conditions (temperature, relative humidity…), and 

resembling pollution sources to the ones under which the LCS will be deployed. Regarding our 

calibration, the changing shape of the scatterplots at PM2.5 levels of 30-40 µg/m3 (Figure 23) was 

also observed in other studies using PMS7003 (Cowell et al., 2022; Dejchanchaiwong et al., 2023). 

Searle et al. (2023) identified a bias in PM2.5 concentrations below 16 µg/m3, further confirming 

our observations suggesting a diverging behaviour between values below and above that threshold. 
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Kelly et al. (2017) reported that some LCS begin to exhibit a non-linear response at high PM 

concentrations (>40 μg/m3). Specific calibration algorithms seem to be needed for those values. 

Wang et al. (2023) acknowledged the same limitations in their study, and recommended having the 

broadest possible air quality range during calibration to address air pollution variability in 

deployments. Our research also underscored the importance of minimizing LCS downtime and 

optimizing sensor maintenance to ensure an adequate dataset for meaningful comparisons. 

Implementing automatic alerts notifying us when a sensor malfunctions and providing users 

training can be valuable in reducing offline times. Increasing common sensors operational time 

periods is an assurance of quality for data analysis. Lastly, in order to improve our study, it would 

be beneficial to upgrade the relative humidity sensors. They had to be changed at the beginning of 

the deployment and using more robust sensors would be recommended. We also attempted to 

calibrate PM readings using an external relative humidity monitor from ROMMA (Réseau 

d'Observation Météo du Massif Alpin, 2022). However, the use of internal humidity sensors yielded 

better results, likely because they were located within the air quality station near the PM optical 

sensor. There is an urgent need for research on humidity sensors, as they may also introduce 

uncertainties in calibrated values. 

4.5 CONCLUSION 

This work underscores the critical importance of ensuring the quality of preliminary calibration 

to achieve accurate predictions and a comprehensive data analysis. In this study, focussing on 

spring and summer, PM levels measured by the LCS and the reference monitor were strongly 

correlated. LCS exhibited high correlations with each other, which seemed to be related to distance 

between them, especially for PM2.5. These findings highlight a significant regional impact on PM 

levels during spring and summer. Moreover, diurnal fluctuations in PM ratios were seen with a 7-

9 am minimum and a 7-8 pm maximum. The city center exhibited the highest PM levels and ratios, 

with evening spikes around 9 pm, probably due to restaurant activities. LCS seem appropriate to 

identify air pollution hotspots, not necessarily related to traffic, and diurnal variations. In summary, 

LCS networks allow to collect more comprehensive spatiotemporal data, facilitating the 

identification of exposure disparities within a city. These differences must be considered when 

conducting a health risk analysis.  
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4.7 APPENDIX  

Summary - Results Chapter 4 

 Calibration should be as wide as possible to cover deployment conditions;  

 In this spring – summer study: 

o Diurnal variations: 7-9 am minimum & 7-8 pm maximum (9 pm in city center); 

o Spatial variations: city center sensor exhibited highest PM levels and ratios due to 

aerosols emitted by restaurants; 

 LCS enable a finer spatiotemporal mapping of PM exposure. 



4  |   AN EXPERIMENTAL NETWORK OF LOW-COST PARTICULATE MATTER SENSORS IN 

GRENOBLE 

 

105 

Appendix 1. Calibration formulas for PM2.5 concentrations (in bold, the formula used for this 

chapter) 
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Appendix 2. Calibration formulas for PM1 concentrations (in bold, the formula used for this 

chapter) 
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 EXPOSURE TO PARTICULATE MATTER WHEN 

COMMUTING IN THE URBAN AREA OF 

GRENOBLE (FRANCE)   

5.1 INTRODUCTION 

5.2 ARTICLE N°4 

The following paper (Article n°4) is in preparation for journal submission. The bibliography 

is located at the end of the article (pp. 141-152), not at the end of the thesis manuscript. 

 

 Background: Commuting contributes significantly to daily PM exposure, and more 

research is needed to understand how transport mode and locations affect PM exposure.  

 Objectives: 

1. Compare PM1 and PM2.5 exposure across 4 transport modes (bike, walk, bus, 

tramway) in different 4 urban microenvironments; 

2. Investigate commuting mode, location, and time effects; 

3. Study the impact of street configuration and traffic;  

4. Compare inhaled PM doses across transport modes. 
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Figure S.5. Copernicus dust values (Météo-France, 2020). The period corresponding to our 

experiment is highlighted within the blue-bordered frame. 
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5.3 CONCLUSION 

 

 Key variables to reduce PM exposure: transport mode > travel time and site; 

 PM1 ratios: bike > walk (-2%) > bus (-9%) > tramway (-14%); 

 PM2.5 ratios: bike > walk (-3%) > bus (-11%) > tramway (-15%); 

 PM1 inhaled doses: walk > bike (-2%) > bus (-26%) > tramway (-33%); 

 PM2.5 inhaled doses: walk > bike (-1%) > bus (-26%) > tramway (-32%); 

 Observations made with low-cost sensors align with studies using more expensive devices 
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 CONCLUSIONS AND PERSPECTIVES 

6.1 MAIN RESULTS OF THE THESIS 

6.1.1 What are health risks related to air pollutants in 

Grenoble?    

This thesis started with an analysis of health risks associated with air pollutants in Grenoble 

during the COVID-19 crisis. Table 6 summarizes them, showing that the most pronounced health 

effects happen due to PM2.5. 

Table 6. Main pollutants changes and related health outcomes in Grenoble during the COVID-19 

 LEVELS SHORT-TERM LONG-TERM  

NO2 -31% 
-2% respiratory 
hospitalizations -1% mortality 

 

PM2.5 -14% 
-3% child asthma 
emergency visits 

-3% mortality 

-2% lung cancer 

-8% low-birth weight 

Most pronounced 
health effects with 

PM2.5 

PM10 -11% Almost no effect  

O3 +11% Almost no effect  

Therefore, we chose to focus on PM2.5, however, the scarcity of reference stations can make 

the precise measurement of PM2.5 challenging. In this context, LCS appeared to be valuable tools 

to obtain finer measurements, both spatially and geographically. 



6  |   CONCLUSIONS AND PERSPECTIVES 

 

166 

6.1.2 How to accurately measure exposure to PM in 

Grenoble? 

6.1.2.1 LCS calibration  

To assess LCS’ performance in accurately measuring PM, we compared their readings to those 

of a reference. Initially, LCS’ measurement quality did not meet EPA’s performance standards, 

highlighting the need for prior LCS’ calibration. A key finding was that excluding dust events 

enhanced the performance of calibration algorithms. The most effective calibration methods were: 

 Multi-Linear Regression (MLR) for PM1 with R2 = 0.94, RMSE = 0.55 µg/m3; 

 Random Forest Regression (RFR) for PM2.5 with R2 = 0.92, RMSE = 0.70 µg/m3; 

These metrics, in accordance with EPA’s standards, allowed us to validate LCS’ accuracy. We 

confirmed, as demonstrated in existing literature, that LCS with PMS7003 should not be used to 

measure PM10. The algorithms developed in this work should not be applied in other geographical 

areas or under different aerosol conditions, but the method can be used in various contexts.  

6.1.2.2 Fixed measurements 

A measurement campaign using fixed LCS highlighted the importance of broad calibration 

conditions. Deployment settings should match those during calibration, especially in terms of PM 

levels and relative humidity. Therefore, we specifically analyzed deployed LCS’ measurements 

during spring and summer in order to match calibration’s conditions. We observed diurnal 

variations with a minimum between 7-9 am and a maximum between 7-8 pm (9 pm in the city 

center), while spatial variations revealed highest PM levels and ratios in the city center. These 

findings illustrate the advantages of using LCS for accurate spatiotemporal mapping of PM 

exposure. 

6.1.2.3 Mobile measurements 

Finally, we performed mobile PM measurements in spring (low PM levels), using four 

transport modes (bike, walk, bus, and tramway), across four different sites (streets). This study 
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revealed that the transport mode had a greater impact on individuals' encountered PM ratios than 

the timing or the street they traversed. Exposure orders were as follows: 

 PM1 ratios: bike > walk (-2%) > bus (-9%) > tramway (-14%); 

 PM2.5 ratios: bike > walk (-3%) > bus (-11%) > tramway (-15%). 

When considering inhalation, the order changed to the following: 

 PM1 inhaled doses: walk > bike (-2%) > bus (-26%) > tramway (-33%); 

 PM2.5 inhaled doses: walk > bike (-1%) > bus (-26%) > tramway (-32%). 

This study demonstrated that it is crucial to consider commuting when studying individual 

exposure to PM, as well as inhalation. 

6.2 LIMITATIONS OF THE STUDY 

6.2.1 The importance of LCS electronic components 

6.2.1.1 Humidity sensors  

Improving electronic components quality will improve the reliability of LCS studies. Relative 

humidity sensors may introduce bias in the results, as they are used to calibrate PM data, and they 

are therefore very important. While the DHT22 sensor is commonly used in LCS networks, 

especially in citizen science, it does not appear to be reliable for long-term deployment studies. 

Alonso-Pérez and López-Solano (2023) performed an almost 4 years experiment and noted that 

the DTH22 had to be replaced twice. The SHT35 sensor, manufactured by a Swiss company 

(Sensirion, 2023a), is gaining popularity in the scientific community (Bulot, Russell, et al., 2023; 

Hassani et al., 2023), as well as the SHT85 (Sensirion, 2023b). The BME280 could also be an 

interesting candidate, although a study reported noise and communication issues between the 

BME280 and the micro-controller (Anagnostopoulos et al., 2023). Adelakun and Akano (2023) 

found good correlations between the BME280 and reference humidity instruments. Deploying two 

humidity sensors in an air quality station could also enable data comparison, anomaly detection, 

and the derivation of an average RH value. 
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6.2.1.2 PM sensors   

New optical sensors are starting to be used to measure PM, especially the SPS30 (Gabel et al., 

2022; Hassani et al., 2023; Sensirion, 2023c). It would be interesting to assemble this sensor 

together with the PMS7003 , as they may complement each other in terms of measured PM sizes 

(Kuula et al., 2020). The SDS011, which was recently found to detect dust events (Alonso-Pérez & 

López-Solano, 2023), could also be added. A key limitation of this thesis was the necessity to focus 

on PM measurement, because gas sensors measuring O3 or NO2 are not yet fully reliable. There is 

a need for research in the domain of gas sensors, especially because O3 levels are expected to 

increase with climate warming, and also because of the health consequences associated with NO2.  

6.2.2 The significance of an extensive calibration 

As mentioned earlier, calibration is key and should be as wide as possible for PM levels,  

relative humidity and temperature (Levy Zamora et al., 2023). Similar to our experience, Koehler 

et al. (2023) also had calibrations performing better when concentrations were low (< 30 µg/m3), 

likely due to the majority of training data falling within this range. This is particularly important 

because raw data are considered to be highly inaccurate when PM2.5 levels are high, these periods 

generally corresponding to high relative humidity levels (Datta et al., 2020). Calibrating high PM 

concentrations seems to present the most significant challenge in calibration studies.  

6.3 RECOMMENDATIONS FOR FUTURE USE OF LCS 

It is likely that in the coming years, researchers will accumulate sufficient data to further 

develop and use LCS for epidemiology research. However, progress in LCS calibration and 

development is hindered by the scarcity of reference stations worldwide. Figure 32 displays various 

recommendations for conducting PM studies using LCS.  

The first question to be answered is whether there is a reference station for sensor calibration 

in the study area. If not, using calibration formulas from studies with similar sensors under 

comparable aerosol conditions can be considered. This implies that, ideally, calibration should have 
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occurred with the same weather conditions as the deployment, with matching PM levels, under 

similar conditions (traffic/background). While not optimal, this approach is feasible and has been 

used by scientists in different situations (Anagnostopoulos et al., 2023; Coker et al., 2022; Koehler 

et al., 2023; Phung & Wagstrom, 2023). With this aim in mind, Barkjohn et al. (2021) developed a 

multiple linear regression equation using RH that could be applicable across the United-States in 

public health contexts. Koehler et al. (2023) used this formula for an indoor study, and found that 

predicted values were close to gravimetric gold-standard levels for concentrations under 20 µg/m3. 

Performance was reduced at high concentrations, a local calibration resulting in a lower RMSE. 

This calibration method is not optimal, but can help addressing the scarcity of reference stations, 

especially in less developed countries. Machine learning should be better suited than linear 

regression and it would be highly informative to check how a machine learning calibration could 

perform country-wide. A nice example is a study by Raheja et al. (2022) using a Gaussian Mixture 

Regression calibration model developed for Accra, Ghana, to calibrate a LCS network in Togo. 

If a reference station is available but an official collocation is not possible, open data from a 

sensor network covering the area can be used to develop calibration formulas as already done by 

Gitahi and Hahn (2022) or deSouza et al. (2023). The benefit of using open sensor networks lies 

in the vast amount of data provided, networks like Sensor.Community or PurpleAir hosting more 

than 10,000 sensors worldwide. This calibration method involves finding relevant reference 

stations within the study area and comparing their results to those of nearby citizen sensors. A 

drawback of this technique is that sensors are not always uniformly installed by citizens, for instance 

in terms of height, potentially introducing biases. However, an advantage lies in the fact that no 

additional deployment is required, which saves significant time and effort. 

The criteria for LCS assembly and deployment are also very important to perform successful 

PM measurement studies. Regarding assembly, the use of multiple sensors on the same air quality 

station offers important research perspectives. This could help optimize calibration, for instance 

by making dusts identification easier. In summary, the optimal protocol, highlighted in green in 

Figure 32, helps eliminate uncertainty in the measurements. Moreover, combination with satellite 

observations could also offer further improvement perspectives. 
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Figure 32. Framework proposal for individuals interested in low-cost PM measurement The green boxes 

represent the optimal scenario in which a reference station is accessible for direct comparison, while the purple boxes 

indicate less favorable situations. 
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6.4 FUTURE RESEARCH PERSPECTIVES 

6.4.1 Autonomy and connectivity 

Another interesting topic to address is the autonomy of low-cost air quality stations, which 

could be improved by incorporating solar-powered batteries. Efforts should be made to develop 

solar systems remaining effective during winter or when cloud cover is important. Such systems 

would allow deployment in places where there is no electricity. Working on the connectivity of air 

quality stations is also important to enable broader deployment and reduce the number of missing 

values. Wi-Fi connectivity was a limitation during our stationary study, especially when deploying 

air quality stations. Certain users did not have a Wi-Fi at home, and we encountered difficulties 

accessing Wi-Fi in public buildings such as universities, schools or libraries due to network security. 

To address this issue, we later developed a LoRaWAN air quality station (see Appendix C). This 

prototype offers a promising solution for future deployments. 

6.4.2 Holistic air pollution monitoring 

This thesis primarily focused on outdoor air pollution, but it would also be valuable to 

investigate indoor air pollution in order to gain an overall understanding of individual exposure. 

This could be done by measuring indoor pollutants within homes, and/or by estimating the 

infiltration of pollutants from the outside environment. To comprehensively assess individual 

exposure, it is necessary to consider exposure during commutes, as well as exposure at home and 

in the workplace. Various tools are available to measure pollutants, Figure 33 summarizing their 

advantages and disadvantages. These tools should be used complementarily to get a holistic view 

of air pollution. 
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Figure 33. Advantages and disadvantages of different measuring approaches. 

Mobile LCS allow spatial exploration, but only provide a brief spatiotemporal overview of 

pollutant concentrations, and are sensitive to accidental variations or biases (Peters et al., 2013). 

Another issue with mobile measurements is that replicates must be done to allow representativity, 

which consumes time and resources. However, while fixed sensors are considered better to 

measure temporal variations in pollutants (Chambliss et al., 2020), mobile sensors represent optimal 

solutions to capture spatial fluctuations (Munir et al., 2022). Various studies highlighted that LCS 

could supplement official monitors for precise spatial and temporal measurements (Bulot, Ossont, 

et al., 2023; Roberts et al., 2022). LCS could help scientists finding new associations, especially 

when combined with other sources of information like satellite or ground-based cameras 

observations. Using a LCS network and Google Street View images, O'Regan et al. (2022) observed 

that increased urban greenspace levels were linked to reductions in PM concentrations. Similarly, 

the combination of satellite and LCS network observations can be used to highlight air quality 

anomalies during wildfires (Wendt et al., 2023).   



6  |   CONCLUSIONS AND PERSPECTIVES 

 

173 

6.4.3 Growing importance of wildfires monitoring 

 Wildfires are going to become more frequent and intense because of climate change, which 

means that global population will be increasingly exposed to landscape fire-sourced PM2.5 (Xu, Ye, 

et al., 2023). Burke et al. (2023) used both field and satellite PM measurements and found that since 

2016, wildfire smoke eroded 4 years or air quality progress in nearly 75% of contiguous USA states 

and even more in western states. Li et al. (2023) highlighted the need to improve prediction models 

by incorporating dynamic variables like remote sensing fine-level aerosol data. LCS could also play 

a role in wildfire prevention, which is particularly important given that forest fires are responsible 

for significant CO2 emissions, further aggravating climate warming (Zheng et al., 2023). This is also 

crucial because wildfires can affect the health of populations even at considerable distances from 

the fires as air pollutants travel across countries. As showed by Aguilera et al. (2021), smoke from 

wildfires could have more pronounced impacts on respiratory health compared to PM from other 

sources. According to Gutierrez et al. (2021) the surface of burned land is expected to increase by 

25% by the 2040s, wildfires being very sensitive to small temperature changes, a 1°C rise in 

temperature corresponding to a 22% fire risk increase. Due to these factors, tracking wildfire events 

will be crucial, and LCS will likely play a key role in gaining further insights into wildfire monitoring. 

6.4.4 Proposals for future research on calibration 

As already explained, field calibration with a collocation should always be the preferred 

scenario, but recently some works have been done using LCS networks and showed good 

performances compared to a local calibration (Koehler et al., 2023). It would be interesting to 

validate those findings by placing LCS close to a gravimetric reference (gold-standard) along with 

other LCS positioned at a greater distance (e.g., 200 meters), to evaluate their respective 

performances compared to the gold-standard. Following Barkjohn et al. (2021) study, it would also 

be valuable to work on generic calibrations at a country wide scale. Working on algorithms using 

machine learning and make them available to the community seems to be a promising approach to 

address the shortage of reference monitors in some areas. Lastly, work should also focus on 

calibrating high concentrations. Winter is very often the season when citizens are more exposed to 

PM. It is therefore urgent to develop calibration algorithms adapted to these aerosols’ conditions. 
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6.4.5 Simplify PM measurement 

Exploring ways to make the use of LCS easier appears to be a promising research direction 

for simplifying the measurement process and collect more PM data. Minimizing interference with 

individuals’ daily habits should be considered (Steinle et al., 2013; Zauli-Sajani et al., 2022). 

Exploring sensors miniaturization represents a potential research direction that could revolutionize 

the assessment of individuals' exposure to PM. Simplifying the deployment and use of LCS seems 

crucial to increase citizen engagement and develop citizen science. However, it's equally important 

to remain vigilant about the ecological impact of these sensors, and we should minimize their 

carbon footprint. 

6.5 LAST WORDS ON AIR POLLUTION AND HEALTH 

As a conclusion, it is important to remind that improved air quality should bring greater health 

benefits compared to its implementation costs (Hoffmann et al., 2021; Schraufnagel et al., 2019). 

The US EPA (2011) found that the health benefits of the Clean Air Act outweighed the costs by a 

factor of 32. In China, improving air quality with the nationwide "Air Plan" yielded public health 

benefits exceeding the implementation cost by a 1.5 factor (J. Zhang et al., 2019). In this context, 

low-cost sensors are especially useful to allow citizens to avoid, or at least decrease, their exposure. 

This is particularly important in highly polluted areas where reference monitors are rare.    

 

 

 

 

 

This thesis was formatted with a template from Pavon Arocas (2021)  
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TITRE: Pollution atmosphérique, mobilités et santé dans l’agglomération grenobloise 

RÉSUMÉ: La pollution atmosphérique est un problème de santé publique mondial responsable d’une partie de la 
mortalité et de diverses maladies chroniques. Il est donc important de la mesurer la plus finement possible. Les 
objectifs de ce travail étaient d’identifier les risques sanitaires liés aux polluants de l’air à Grenoble (France) et de 
mesurer le plus finement possible les particules fines (PM), responsables d’une part importante de la mortalité. Ce 
travail débute par une analyse des risques pendant la pandémie de COVID-19, montrant des variations de niveaux 
de polluants : NO2 (- 32%), PM2.5 (- 22%), PM10 (- 15%), et O3 (+ 11%). Ces variations ont favorisé des baisses de 
risques sanitaires à court-terme liés aux PM2.5 (- 3% de visites aux urgences pour asthme infantile) et au NO2 (- 2% 
d’hospitalisations pour maladies respiratoires). À long terme, les PM2.5 jouaient aussi un rôle prédominant, réduisant 
la mortalité toutes causes (- 3%), les cancers du poumon (- 2%), et les petits poids de naissance (- 8%), suivis du 
NO2 (- 1% de mortalité non-accidentelle). En raison de leur impact sanitaire majeur, la thèse s'est ensuite focalisée 
sur les PM2.5, ainsi que sur les PM1 (PM < 1 µm). Afin d’estimer le plus finement possible les niveaux de PM dans 
Grenoble, ainsi que leur hétérogénéité, nous avons assemblé des capteurs low-cost (LCS) pour compléter les 
stations de référence d’Atmo Auvergne-Rhône-Alpes. Les LCS ont été calibrés avec des méthodes incluant le 
machine-learning, en ôtant les jours de dusts sahariens perturbant les mesures de PM2.5. Les LCS utilisés étant peu 
performants pour mesurer les PM10, l’étude a été poursuivie sans les inclure. Un réseau fixe de 8 LCS a ensuite été 
déployé dans Grenoble, montrant des disparités temporelles et spatiales, avec en particulier un hotspot dans le 
centre-ville présentant des ratios à la référence (PM1 ratio = PM1 / PM1 Ref) plus élevés. Une expérience avec les LCS 
en mobilité a par ailleurs mis en évidence l'importance du mode de transport, de l'heure de déplacement et du site, 
influencé par le trafic et/ou la configuration de la rue. Le vélo montrait les PM1 ratios les plus élevés, suivi de la marche 
(- 2%), du bus (- 9%), et du tramway (- 14%). Pour les doses inhalées, l'ordre était différent, avec d’abord la marche, 
suivie du vélo (- 2%), du bus (- 26%), et du tramway (- 32%). Cette thèse souligne l'importance de considérer les 
variations temporelles et spatiales des polluants pour le calcul des risques sanitaires, et montre l'utilité des LCS pour 
estimer ces variations. En conclusion, des recommandations sont données pour monter, calibrer et déployer des 
LCS. 

Mots-clés: pollution de l’air, mobilité, risques sanitaires, capteurs low-cost, particules fines, Grenoble 

 

TITLE: Air pollution, mobility and health in the Grenoble area 

ABSTRACT: Air pollution is a global public health issue responsible for an important part of mortality and various 
chronic diseases. It is therefore crucial to measure it as precisely as possible. The objectives of this thesis were to 
identify health risks associated with air pollutants in Grenoble (France), and to measure particulate matter (PM), 
recognized as a major contributor to mortality, as accurately as possible. This works starts with a health risks analysis 
during the COVID-19 period, showing significant changes in pollutants levels: NO2 (- 32%), PM2.5 (- 22%), 
PM10 (- 15%), and O3 (+ 11%).  These variations led to short-term reductions in health risks related to PM2.5 (- 3% 
decrease in child asthma emergency room visits) and NO2 (- 2% decrease in respiratory disease hospitalizations). 
In the long term, PM2.5 also played a major role, reducing all-cause mortality (- 3%), lung cancer (- 2%), and low birth 
weights (- 8%), followed by NO2 (- 1% non-accidental mortality). Due to their significant impact on health risks, the 
thesis then focused on PM2.5 and PM1 (PM <1 µm). In order to estimate PM levels and their heterogeneity in Grenoble, 
we assembled low-cost sensors (LCS) with the goal to deploy them in the city, in addition to the reference stations 
of Atmo Auvergne-Rhône-Alpes. The LCS were first calibrated using methods including machine-learning, while 
excluding days with Saharan dust events that impacted LCS’ ability to properly measure PM2.5. Given the poor 
performance of the LCS to measure PM10, we proceeded without including them. A fixed network of 8 LCS was 
subsequently deployed in Grenoble, highlighting temporal and spatial disparities, notably a hotspot in the city center 
with higher PM1 ratios to the reference (PM1 ratio = PM1 / PM1 Ref). An experiment using mobile LCS also indicated the 
importance of transport mode, travel time, and site, the latter being influenced by traffic and/or street layout. Cycling 
exhibited the highest PM1 ratios, followed by walking (- 2%), bus (- 9%), and tramway (- 14%). For inhaled doses, 
the order was different, with walking first, followed by cycling (- 2%), bus (- 26%), and tram (- 32%). This thesis 
underscores the importance of considering temporal and spatial variations in pollutants when calculating health risks 
and demonstrates the utility of LCS in estimating this variability. In conclusion, practical recommendations are given 
for assembling, calibrating, and deploying LCS that can benefit both scientists and citizen scientists. 

Keywords: air pollution, mobility, health risks, low-cost sensors, particulate matter, Grenoble 


