N
N

N

HAL

open science

Air pollution, mobility and health in the Grenoble area

Marie-Laure Aix

» To cite this version:

Marie-Laure Aix. Air pollution, mobility and health in the Grenoble area. Human health and pathol-
ogy. Université Grenoble Alpes [2020-..], 2023. English. NNT: 2023GRALS050 . tel-04825385

HAL Id: tel-04825385
https://theses.hal.science/tel-04825385v1
Submitted on 8 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-04825385v1
https://hal.archives-ouvertes.fr

UCA

Université

Pour obtenir le grade de Grenoble Alpes

DOCTEUR DE L’'UNIVERSITE GRENOBLE ALPES

Ecole doctorale : ISCE - Ingénierie pour la Santé la Cognition et 'Environnement

Spécialité : MBS - Modéles, méthodes et algorithmes en biologie, santé et environnement

Unité de recherche : Translational Innovation in Medicine and Complexity

Pollution atmosphérique, mobilités et santé dans I'agglomération
grenobloise

Air pollution, mobility and health in the Grenoble area
Présentée par :

Marie-Laure AIX

Direction de thése :

Dominique J. BICOUT Directeur de thése
DOCTEUR EN SCIENCES HDR, UNIVERSITE GRENOBLE ALPES

Rapporteurs :

PIETRO SALIZZONI

PROFESSEUR DES UNIVERSITES, ECOLE CENTRALE LYON
ISABELLA ANNESI-MAESANO

DIRECTRICE DE RECHERCHE, INSERM OCCITANIE MEDITERRANEE

These soutenue publiqguement le 7 décembre 2023, devant le jury composeé de :

DOMINIQUE BICOUT Directeur de these
DOCTEUR EN SCIENCES HDR, UNIVERSITE GRENOBLE ALPES

PIETRO SALIZZONI Rapporteur
PROFESSEUR DES UNIVERSITES, ECOLE CENTRALE LYON

ISABELLA ANNESI-MAESANO Rapporteure
DIRECTRICE ~DE  RECHERCHE, INSERM  OCCITANIE

MEDITERRANEE

BRUNO DEGANO Président

PROFESSEUR DES UNIVERSITES - PRATICIEN HOSPITALIER,
UNIVERSITE GRENOBLE ALPES

NATHALIE REDON Examinatrice
MAITRESSE DE CONFERENCES, IMT NORD EUROPE
LAURENT SPINELLE Examinateur

INGENIEUR DE RECHERCHE, INERIS

Invités :
CLAIRE CHAPPAZ
INGENIEURE, ATMO AUVERGNE-RHONE-ALPES




REMERCIEMENTS

Je me mets a rédiger ce manuscrit en pensant tout d’abord a mon directeur de these, le
Dr Dominique Bicout, qui a su me laisser la liberté dont j’avais besoin, tout en me formant au
métier de chercheur. Le gout que j’avais de faire de la recherche est resté intact, ce qui montre a
quel point il a su m’accompagner dans cette démarche. Je remercie ensuite les membres du jury
pour lintérét qu’ils portent a mon travail : le Pr Isabella Annesi-Maesano, le Pr Pietro Salizzoni,
mes rapporteurs, le Dr Nathalie Redon et le Dr Laurent Spinelle, mes examinateurs. Le Pr Bruno
Degano, qui m’accompagne depuis le début, et dont les conseils bienveillants m’ont guidée. Merci

également au Dr Sonia Chardonnel pour son implication tout au long de cette these.

Je souhaite aussi remercier mes professeurs du Master ESTE (Environnement Santé
Toxicologie Fcotoxicologie) dont les cours étaient absolument passionnants. Je dois beaucoup au
Pr Anne Maitre qui a eu Pouverture d’esprit de s’intéresser aux trajectoires non rectilignes. Merci
également au Pr Christine Demeilliers qui dirige mon équipe de recherche et m’a fourni un excellent
environnement de travail. Les collegues ’EPSP (Environnement et Prévention en Santé des
Populations) ont su m’offrir une ambiance si agréable pendant mon stage, que j’ai souhaité rester
en leur compagnie pour trois années supplémentaires. Franck Balducci, notre intervalle de
confiance, notre numérateur, avec sa finesse d’esprit et d’humour. Pascal Petit, avec qui j’ai eu
beaucoup de plaisir a collaborer. Merci encore pour ta gentillesse infinie a mon arrivée dans
I’équipe. Sylvette Liaudy, pour la formation aux outils bibliographiques et les conseils de lecture.
Olivier Pedano pour sa présence bienveillante, les connaissances qu’il sait si bien faire partager, et
le matériel informatique toujours au top qu’il m’a fourni. Grace a toi, j’ai tout de suite aimé ce
milieu de la recherche et de 'ouverture d’esprit. Jamais je n’avais connu de pauses café aussi
intéressantes. Il y a aussi le Dr Valérie Guieu, qui vient d’arriver dans I’équipe et qui a toujours un
mot sympa pour m’encourager. Enfin yembrasse tres fort Joanna et Maguy, mes deux collegues

doctorantes.



Vous l'aurez compris, j’ai passé d’excellentes années dans le laboratoire TIMC (Translational
Innovation in Medicine and Complexity), dont je remercie la Direction. Une pensée toute
particuliére au Dr Sandrine Voros qui m’a fourni une aide trés importante pour le déploiement des
capteurs fixes. Et aussi aux sept hébergeurs de capteurs, qui se reconnaitront, sans lesquels mon
chapitre 4 n’aurait jamais existé. Je dois aussi beaucoup a Nicolas Dalleau et Frédéric Bard qui
m’ont appris presque tout sur les microcapteurs, au sein de I'association Enairgie Commune. Je
suis par ailleurs extrémement reconnaissante envers Atmo Auvergne-Rhone-Alpes pour 'ensemble
des données ouvertes mises a disposition. C’est une chance pour nous de pouvoir accéder a toutes
ces mesures. Je souhaite remercier trés vivement Claire Chappaz et Prisca Ray pour leur implication
dans notre projet. D’autre part, je tiens a souligner I'implication considérable du Pr Didier Donsez
dans ce travail de thése. Grace 2 une collaboration avec ses étudiants, Gilles Mertens et Bertrand

Baudeur, nous avons pu avancer, et surtout aboutir, sur le projet de capteurs LoRA.

Enfin, je dois beaucoup au Dr Francoise Leriche (VetAgro Sup), que jaurais da écouter
lorsqu’en 2005, elle me recommandait de faire une these. Effectivement, 15 ans apres, le naturel
est revenu au galop | C’est aussi a VetAgro Sup, que j’ai rencontré le Dr Lucie Pauron, devenue
depuis ma meilleure amie, qui m’a également encouragée a poursuivre dans la recherche. Je t’en
suis trés reconnaissante. J’adresse maintenant une pensée tres forte a Bernardo, qui est présent dans
mon quotidien et dans toutes mes aventures. Tu m’as apporté une aide incommensurable au cours
de ma these. Merci pour l'intérét fascinant que tu as porté a mon travail. Méme si tu ne I'as peut-
étre pas remarqué, nos discussions m’ont toujours permis d’avancer. Je pense également a mon
frére, a sa copine Marilou, et 2 ma sceur qui poursuivent eux aussi de belles aventures. Etil y a enfin
et surtout mes parents, sans lesquels je ne serais pas qui je suis. Je leur dédie ce travail, car c’est
grace a eux que j’ai pu développer toutes ces compétences. Vous m’avez tout donné pour que je
puisse faire des études et je vous en remercie. Mais vous m’avez surtout transmis deux qualités

fondamentales pour faire de la recherche : le courage et la curiosité.

i



A mes parents,



RESUME

La pollution de l'air représente le principal danger environnemental pour la santé humaine,
causant une part significative de la mortalité mondiale, ainsi que diverses maladies chroniques. Ses
conséquences sanitaires risquent de s’accroitre avec le changement climatique, l'urbanisation et le
vieillissement de la population. Cela souligne l'importance de surveiller les polluants
atmosphériques, en particulier les particules fines (PM), qui sont les plus associées a la mortalité.
Les objectifs de cette theése sont 1) identifier les risques sanitaires liés aux polluants atmosphériques
a Grenoble, 2) mesurer de la maniere la plus fine possible 'exposition aux PM pour calculer au

mieux les risques associés.

Ce travail débute par I’étude de 4 polluants de I'air pendant la pandémie de COVID-19 : les
PMzs (PM < 2.5 um), les PMjy (PM < 10 um), le dioxyde d’azote (NOy) et 'ozone (O3). Elle a
montré des variations de niveaux en NO; (- 32%), PMas (- 22%), PMio (- 15%) et O3 (+ 11%) par
rapport a 2015-2019 aux stations de référence d’Atmo Auvergne-Rhone-Alpes. Ces changements
de concentrations étaient associés a des baisses de risques sanitaires a court-terme liés aux PMys
(- 3% de visites aux urgences pour asthme infantile) et au NO, (- 2% d’hospitalisations pour
maladies respiratoires). Les baisses de risques santé a long-terme concernaient surtout les PMzs
(- 3% de mortalité toutes causes, - 2% de cancers du poumon, - 8% de petits poids de naissance)
et le NO; (- 1% de mortalité non-accidentelle). Les variations des concentrations en PMjy et O3
n’avaient quant a elles presque pas d’effet sur les risques. La majorité des conséquences sanitaires
étant liées aux PMys, la suite de cette these s’est consacrée a leur mesure, ainsi qu’a celle des PM;

(PM < 1 um).

Afin de mieux comprendre la variabilité spatiale ou temporelle des niveaux de PM, des stations
de mesures, constituées de capteurs low-cost (LCS), ont été assemblées pour compléter les stations
de référence et augmenter le nombre de points de mesure. Les LCS présentaient I'avantage de
pouvoir étre déployés en grand nombre, du fait de leur faible cott. Afin de garantir la précision de
leurs mesures, plusieurs méthodes de calibration ont été testées. Pour calibrer les PM;, la technique
de régression linéaire était la plus efficace. Le random-forest, méthode de type machine-learning,
donnait les meilleurs résultats pour les PM,s. Il était par ailleurs essentiel d’exclure les jours de dusts
sahariens car ils altéraient la mesure des PMas. Les LCS utilisés étant peu performants pour mesurer

les PMio, I’étude a été poursuivie sans les inclure.
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Une fois calibrés, 8 LCS ont été déployés a Grenoble, révélant des variations temporelles et
spatiales, un capteur situé en centre-ville montrant des niveaux en PM; ainsi que des ratios a la
référence (PMi rio = PM1/PMi rep) plus élevés. Cette étude a montré que la calibration devrait se
dérouler avec des niveaux en PM similaires a ceux du déploiement. De plus, une expérience en
mobilité avec les LCS a montré I'importance de considérer le mode de transport, 'heure de
déplacement et les sites traversés, ceux-ci étant influencés par le trafic et/ou la configuration de la
rue. Le mode de transport le plus exposé (PM; s €levés) était le vélo, suivi de la marche (- 2% par
rapport au vélo), du bus (- 9% par rapport au vélo) et du tramway (- 14%). Cependant, lorsque 'on
calculait les doses inhalées, 'ordre s’inversait avec la marche en téte, suivie du vélo (- 2% par rapport

a la marche), du bus (- 26%) et du tramway (- 32%).

Cette thése montre 'importance de considérer les variations temporelles et spatiales dans
l'analyse de l'exposition aux polluants, les LCS permettant de mieux appréhender la variabilité des
PM. En conclusion, des recommandations sont fournies concernant le montage, la calibration et
le déploiement des LLCS, qui pourraient étre de plus en plus utilisés par les scientifiques et par les

citoyens dans un contexte de science participative ou de prévention.
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INTRODUCTION AND LITERATURE REVIEW

1.1 BACKGROUND

Despite widespread media coverage, air pollution remains a complex problem for the general
public due to its intangible nature. Chronic pollution is not visible even though it is the most
hazardous form of air pollutant exposure (Botero, 2021). Because numerous air pollutants are
invisible, people struggle to grasp the associated risks. Individual reactions to air pollution vary,
and health effects often manifest later in life, making it challenging for citizens to take ownership
of the issue. People who are sensitive, such as the elderly or children, tend to experience the most
adverse effects of pollutants. It is crucial to better understand this invisible threat but also the

associated risks and strategies to mitigate its effects (Palupi & Abeng, 2023).

1.1.1 Air pollution is a proven public health concern

In recent years, Europe has witnessed notable progress in air quality. Starting in 2005, the
emissions of all key air pollutants continued to decrease, despite a rise in gross domestic production
over the same period (European Environment Agency [EEA], 2023). Nonetheless, scientists keep
warning that pollution can impact health, even at very low concentrations below common air
quality standards (Al-Kindi et al., 2020; Belz et al., 2022; Danesh Yazdi et al., 2021; de Nazelle,
2021; Di et al, 2017). In Europe, almost all urban populations are exposed to air pollutants
exceeding the World Health Organization (WHO) recommended levels (EEA, 2020). Air pollution
is now acknowledged as the biggest environmental threat to human health, leading to

approximately seven million deaths globally in 2016 (World Health Organization [WHO], 2018).



Almost 12% of global deaths could be attributed to air pollution (GBD 2019 Risk Factors
Collaborators, 2020; Ritchie & Roser, 2020). Extensive research conducted across various regions
leaves no room for doubt regarding the health effects of air pollutants. Moreover, the list of
potential health effects attributable to air pollution continues to grow with recent studies on
diabetes, reproduction, and neurocognitive issues (WHO, 2021b). A growing body of research also
focusses on understanding the mechanisms through which air pollutants exert their toxicity, as
evidenced by two recent studies on lung cancer (Hill et al., 2023; Sipos et al., 2023). Numerous case
studies also revealed that decreases in air pollutants levels would generate immediate health
benefits. A US-wide research highlighted a correlation between decreases in PMs (PM with an
aerodynamic diameter equal to or less than 2.5 um) levels from 1980 to 2000 and improvements
in life expectancy (Pope et al., 2009). Recently, the closure of a coal coking plant in Pittsburgh
resulted in a 42% immediate drop in cardiovascular emergency department visits (Yu & Thurston,
2023). Air pollution also has a significant impact on health care facilities. For instance, Mebrahtu
et al. (2023) studied the impact of particulate matter (PM) and nitrogen dioxide (NO) on
respiratory health service attendance. Air pollution levels exceeding WHO’s 24-hour thresholds

increased healthcare demand for up to 100 days post-exposure.

1.1.2 Future challenges associated with air pollution

The European Green Deal, whose aim is to promote ecological transition, stated that by 2030,
the European Union (EU) should reduce by more than 55% the health impacts of air pollution,
specifically premature deaths (European Commission, 2021). However, the future poses many
challenges with population aging, urbanization, and climate warming. By 2050, 68% of the world’s
population should live in urban areas, reflecting a 13% increase from the current figures (United
Nations Department of Economic and Social Affairs, 2018). Furthermore, the number of people
aged 65 or older is expected to more than double, reaching 1.6 billion by 2050 (United Nations
Department of Economic and Social Affairs, 2023). Climate change may increase ground-level
ozone (O3) formation and exacerbate wildfires or dust events, which elevate PM levels (United
States Environmental Protection Agency [US EPA], 2022; Aguilera et al., 2021). An increasing
number of scientific papers also deal with synergistic effects of air pollution and temperature. Rai
et al. (2023) found that heat was associated with increased cardiorespiratory mortality, air pollutants

amplifying these effects. Xu, Huang, et al. (2023) found that up to 2.8% of myocardial infarction



deaths could be attributed to the combination of extreme temperatures and PMas. The risk of a
fatal heart attack doubled during 4-day heat waves with high PM. s levels. In this context, providing

strategies to minimize personal exposure to air pollutants seems important and urgent.

1.2 AIR POLLUTANTS

Air pollution refers to the presence of gases or particles harmful to human health or the
environment (Pearson & Derwent, 2022). PM, NO, and Os are the most concerning air pollutants
for public health in Europe (EEA, 2020; Tiwary et al., 2018). Therefore, significant focus has

recently been placed on these pollutants, particularly from a regulatory perspective.

1.2.1 Particulate matter

PM is a mixture of solid and liquid particles small enough not to settle on the Earth’s surface
under the influence of gravity (WHO, 2021b). PM is omnipresent in the environment. A recent
study using machine learning and ground-based data from 65 countries revealed that only 0,001%
of the world population was exposed to PMa s concentrations under the safe limit set by the WHO

(Yu et al., 2023).

1.2.1.1  The importance of PM size

PM is generally classified by aerodynamic diameter, usually called particle size. The
aerodynamic diameter of a particle refers to the diameter of a hypothetical sphere with a 1g.cm”
density, behaving aerodynamically the same as the particle itself (same settling velocity) assuming
laminar flow conditions. Common PM naming conventions include: PMio, with an aerodynamic
diameter less than 10 um, PMa;s (< 2.5 um), and PM; (< 1 pm). The size of PM determines how
long it remains in the air, and where it is going to be deposited within the respiratory system. Larger
PM like PMj tends to settle primarily in the upper airways, whereas smaller PM travels to the
bronchi or pulmonary alveoli and can enter the bloodstream. Larger PM also deposits more rapidly

in the atmosphere than smaller PM, such as PM;, which can linger in the air for several days.
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1.2.1.2 PM sources and composition

PM originates from human activities and natural sources (such as Saharan dust or wildfires).
In BEurope, PM,s mainly comes from energy consumption in the residential, commercial, and
institutional sectors (58% of emissions), followed by industry (14%), road transport (9%), waste
and agriculture (EEA, 2022). Unfortunately, PM composition remains not fully known (van
Donkelaar et al., 2019) and is highly complex (National Research Council, 2010). PM contains
organic and inorganic components, but, as shown in Figure 1, its composition and mass vary over
time and space (Bell et al, 2007). PM is mainly made of organic matter, sulphate, nitrate,
ammonium, black carbon, sea salt, and mineral dust (Philip et al., 2014; van Donkelaar et al., 2019;

Weagle et al., 2018).
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PM, 5= 130.1 ug m™>

Beijing
PM, =912 uygm™

London -
PM, =157 ug m

10.9%

- nitrate - sulphate - ammonium - chloride
organic matter clemental carbon | soil/minerals

Figure 1. Major chemical components composition of PMz 5 collected during winter campaigns in London

(North Kensington), Beijing and Delhi. Source : Harrison (2020)

The organic components of PM include polycyclic aromatic hydrocarbons (PAHs) and volatile
organic compounds (VOCs). Furthermore, PM can incorporate inorganic elements such as metals
contributing to its toxicity. An emerging field of study involves investigating the oxidative potential

of PM as a toxicity metric (Bates et al., 2019; Daellenbach et al., 2020).



1.2.1.3 Health impacts of PM

During the last 10 years, there has been a dramatic increase in the number of scientific papers
on PM and health impacts (Lee et al., 2021). PM primarily leads to cardiovascular, respiratory
effects, and premature mortality. Exposure to PM»s would be associated with 7,6% of total global
deaths (Cohen et al., 2017). Over the past three decades, the global stroke burden linked to ambient
PM;s has surged (Yacong et al., 2023). According to the International Agency for Research on
Cancer, PMy;5 is also classified as a causal agent (group 1 carcinogen) for lung cancer (Hamra et al.,
2014). Furthermore, emerging studies indicate possible health effects of PM on reproduction or
metabolic diseases such as diabetes, although these are less documented. A growing body of
research also suggests that PM; could have higher health effects than larger PM because of its
smaller size, and ability to carry toxic components such as heavy metals (Yang et al., 2022). Chen
et al. (2017) showed that PM; and PM,;s were both associated with significantly increased daily
emergency hospital visits, with comparable relative risk (RR). However, PM;-25 (PM between 1 and
2.5 pm in size) showed no relation with emergency hospital visits, indicating that hospital visits
associated with PMa;likely came from its PM; fraction. Lin et al. (20106) stated that PM; could be
the main contributor to cardiovascular effects of PM, especially for cardiovascular deaths. A meta-
analysis also found strong impacts of PM; on cardiovascular and respiratory mortalities (Met et al.,
2022). However, regarding PM; and respiratory morbidity, the only identified association was that
of asthma. Further epidemiological and toxicological studies on PM; are needed. They are still

relatively scarce, likely due to the lack of official stations measuring PM; levels.

1.2.2 Nitrogen dioxide

1.2.2.1 Sources

Commonly known as NO, nitrogen oxides are mostly produced during high-temperature
fossil-fuel combustion when nitrogen reacts with oxygen (Oy), particularly in engines and industrial
processes (Tiwari & Mishra, 2019). NO, is one of the most closely monitored NOy affecting human

health. Originating as a primary pollutant, it is an odoutrless brown gas, and the only gaseous air



pollutant with visible light absorption (Koenig, 2012). NO, is generally considered to be traffic-
related, road transport being the main source of NO, (EEA, 2022).

1.2.2.2 Health effects of NO»

NO; mainly affects the respiratory system. High NO, levels can worsen asthma or other
respiratory diseases, and long-term exposure to NO, can lead to these illnesses (Mallik, 2019). This
is clearly demonstrated by the respiratory diseases observed among individuals living close to busy
roads. Proximity to streets with high NO; levels increases the risk of respiratory issues, including
asthma and decreased lung function (Bowatte et al., 2017). Individuals with respiratory disorders,
heart diseases, asthma, and young children are particularly susceptible. The inhalation of NO; by
children increases the severity of respiratory infections (Chauhan et al., 2003) and may lead to
poorer lung function (Frischer et al., 1993). Elevated NO; levels also correlate with higher mortality

rates (Faustini et al., 2014) and hospital admissions for respiratory diseases (Fusco et al., 2001).

1.2.2.3 The future of NO2 emissions in Europe

The new Euro7/VII vehicle emission standards aimed to reduce NOy emissions by 35% for
cars and vans compared to Euro 6 (European Commission, 2022). However, car manufacturers
and eight countries, including France and Italy, opposed these new norms, arguing that they could
divert the investments needed to phase out internal combustion engine vehicles (Automotive News
Europe, 2023; Reuters, 2023). Increasing the electrification of vehicles could further reduce NOx
(Mulholland et al., 2022). It is also worth noting that NO influences ground-level Os;

photochemistry (Ravina et al., 2022), as explained in the next section.

1.2.3 Ground level ozone

While O; in the stratosphere protects against ultraviolet radiation, it is harmful when present

in high concentrations at ground-level (Manisalidis et al., 2020).



1.2.3.1  Ozone formation and depletion

Unlike NO; and PM, ozone does not originate directly from emissions (EEA, 2011). It is a
secondary pollutant generated through a sequence of photochemical reactions occurring when
sunlight interacts with precursor pollutants, such as NOy and VOCs (Figure 2). As a result, O3

becomes especially problematic in summer.
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Figure 2. Formation of ground-level ozone.

NO can also react with O3 to produce secondary NO,, increasing its health concerns (Tiwary
et al., 2018). NO; also combines with O3 to form NO and O,, removing Os from the atmosphere
(Crutzen, 1979). Therefore, reductions in NOx can lead to increases in O3 concentrations (Jhun et
al., 2015). This explains why O3 is generally more important in rural areas, where there is less NOy

due to reduced traffic.



1.2.3.2 Health effects of O3

Os exposure can cause shortness of breath, airway inflammation, worsened lung conditions,
and chronic obstructive pulmonary disease (US EPA, 2023; Mallik, 2019). Overall, health effects
associated with O3 seem to be less significant than those related to PM and NO.. However,
evidence suggests a link between O; and mortality (Jerrett et al., 2009; Vicedo-Cabrera et al., 2020),

but further research is needed to fully understand this relationship.

1.3 HEALTH RISKS ASSESSMENT OF AIR POLLUTION

1.3.1 The importance of exposure duration

Air pollution can have both short-term (acute) and long-term (chronic) impacts on health.
Acute or immediate symptoms include eye, nose or throat irritations, wheezing, coughing,
headaches and even bronchitis or pneumonia. These effects can lead to hospitalizations or general
practitioner consultations. Long-term effects include development of heart disease, chronic
obstructive pulmonary disease (COPD), cancer, and asthma (Tiwary et al., 2018). Long-term health
effects, originating from prolonged exposure to air pollutants, are generally more substantial, as

they lead to chronic diseases, which in worst cases, can lead to death.

1.3.2 Relation between concentration and risk

Since 2014, there has been an almost exponential increase in the number of systematic reviews
and meta-analyses concerning the effects of air pollution on health, most of them being related to
PM and NO, (Dominski et al., 2021). A search in PubMed with “air pollution” and “health” as
MeSH words confirms that the number of papers published in this area is increasing since 1990

(Figure 3).
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Figure 3. Number of publications per year since 1990 related to “air pollution” and “health” in PubMed.

The field of diseases attributed to air pollution is very broad, but some associations are more
robust than others, especially because they have been studied for a longer time (Figure 4). A recent
paper reported for the first time a link between PM and antibiotic resistance (Zhou et al., 2023).
However, for the association to be validated, a substantial body of research, with numerous papers
pointing in the same direction, is required, and this takes time. For instance, the link between PM
and mortality is now widely established because of the significant number of studies on the subject.
The first work showing a relation between PM and death was the Six Cities Study by Dockery et
al. (1993). They compared pollutant levels and mortality in six American cities, revealing a clear
link between PM and reduced life expectancy. A more extensive epidemiological work led by the
American Cancer Society (Pope et al., 1995), followed and validated the conclusions of the Six
Cities Study. They associated PM with cardiopulmonary and lung cancer mortality. Since then,
many articles confirmed these associations. Robust correlations were found between air pollution
and cardiovascular health in addition to respiratory effects. New studies also suggest that air
pollution could have harmful effects on the central nervous system, reproduction, development,
metabolic outcomes, and cancer (Thurston et al., 2017). However, more research is needed on
those topics (Chandra et al., 2022; Tan et al., 2017). Figure 4 outlines the main health impacts of

air pollutants along with notable associated studies.



MORTALITY
* All-cause mortality (Chen & Hoek, 2020; WHO, 2021b)
« Cardiovascular mortality (Brook et al., 2010; Chen & Hoek, 2020; US EPA, 2009)
* Respiratory mortality (Chen & Hoek, 2020; Pope et al., 2002)
* Lung cancer mortality (Chen & Hoek, 2020; Pope et al., 2002)

CARDIOVASCULAR
Ischemic heart disease (Pope et al., 2006)
Myocardial infarction (Chen et al., 2022; Miller et al., 2007) Well-studied
Heart failure (Jia et al., 2023; Shah et al., 2013) effects
Stroke (Ma et al., 2021; Shah et al., 2015)
Hypertension (Cai et al., 2016; Yang et al., 2018)

RESPIRATORY
« Asthma (Altman et al., 2023; Orellano et al., 2017)
« Chronic Obstructive Pulmonary Disease (Wang et al., 2022)
¢ Lung cancer (Raaschou-Nielsen et al., 2013)

REPRODUCTION
* Low birthweight (Li et al., 2017; Pedersen et al., 2013)
« Preterm birth (Klepac et al., 2018; Li et al., 2017)

METABOLIC
Need further

research

« Diabete (Bowe et al., 2018; Eze et al., 2015; Liu et al., 2019; Strak et al., 2017)
* Obesity (Campolim et al., 2020; Heindel et al., 2015)

NEUROLOGICAL & MENTAL
« Dementia (Grande et al., 2023; Shi et al., 2023; Wilker et al., 2023)
« Mental health (Qiu et al., 2023; Yang et al., 2023)

Figure 4. Summary of main air pollution health effects & notable related studies. References in Chapter 7.

Epidemiological studies quantify the relationship between pollutant concentrations and health
outcomes (dose-response relationship), crucial for subsequent health risk assessments. These
connections between pollutant levels and health outcomes form the basis to assess burdens such
as mortality and diseases. These connections are expressed as “dose-response relationship” or
“relative risk” (RR). The RRs associated with short-term impacts are generally derived from time-
series analyses, and RRs for long-term effects typically come from cohorts involving people over
years (Corso et al., 2019). Risk estimates of long-term exposure studies are usually higher than those

of short-term studies (WHO, 2021a).

1.3.3 Health risk calculations

The health risk related to air pollutants increases with exposure (Tiwary et al., 2018). Hence,
the initial step in a health risk assessment involves precisely determining pollutant concentrations
through measurement or modelling. Subsequently, we compute the health risk function measuring

the probability of developing a health outcome like a disease (morbidity) or mortality (Figure 5).
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Figure 5. Health risk calculation

In Western Europe, a health risk related to air pollution is typically assessed using a log-linear

dose-response function (Ostro & WHO, 2004; Soares et al., 2022; WHO, 2013):
RR = eh~(C=Co) €Y)

Where the RR illustrates the probability of a specific outcome in people exposed to a pollutant,
compared to those not exposed. A RR of 1 indicates no difference in risk among the two groups.
C denotes the pollutant concentration to which the population is exposed. C, (baseline
concentration) can either be the threshold concentration below which there is no additional health
risk, the pollutant background concentration, or a counterfactual concentration. These
counterfactual concentrations are generally used: 5 ug/m’ for PMzs and 10 pg/m’ for NO, (WHO,
2021b). B is computed as follows:

B= =5

where RR. is the RR from epidemiological studies (usually meta-analyses) for the
corresponding pollutant - health outcome association, and & the associated pollutant concentration
increment, usually 10 pg/ m’. Examples of RR. (also called dose-response functions), can be found
in Table 1. For example, regarding PM,s and long-term mortality, a RR. of 1.15 indicates that a

10 pg/m’ increase in PMas would be associated with a 15% mortality rise.
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Table 1. Example of dose-response functions (RR.) showing association strengths between PM;;
concentrations (per 10 ung/m?3 increment) and mortality or motrbidities, with their 95% confidence interval.

Extracted from Aix et al. (2022).

E 0
Pollutant .xp osure Age Health outcome RR. [C195%)] Reference
time group per 10 pg/m3
1.0063 [1.0025—
Non-accidental mortality [ C. Liu et al. (2019)
1.0101]
Hospitalizations for 1.0190 [0.9982—
WHO (2013
all respiratory causes 1.0402] ¢ )
Short-term E—
/daily mean Hospitalizations for 1.0091 [1.0017—
cardiovascular causes ' ) WHO (2013)
. . 1.0166]
(including strokes)
PM, 5 Emergency room visits 1.0980 [1.0120-
<17 Host et al. (2018
for asthma 1.1900] ost etal. (2018)
1.1500 [1.0500-
=30 Mortality, all causes 1‘25[00] Pascal et al. (20106)
Long-t 1.0900 [1.0400-
/;);fu;rm Adults | Lung cancer incidence 1‘14[‘00] Hamra et al. (2014)
Low birthweight at full 1.3900 [1.1200-
Infants oW birthweight at fu [ Pedersen et al. (2013)
term 1.7700]

In light of the health risk calculation formula, it becomes evident that a risk assessment cannot

be carried out without precisely measuring pollutant concentrations.

1.4 AIR POLLUTION MEASUREMENT

In Western Europe, authorities typically use costly stationary instruments to measure air
pollutants. PM concentrations are often measured with gravimetric methods, considered as gold
standard, and based on PM weighting. Other techniques have been developed and are now
considered equivalent to the gravimetry. This includes monitors based on light diffusion,
considered as equivalent to the reference, like the Fidas 200 (Palas GmbH, 2020). All these
expensive reference stations offer highly accurate measurements, but are not always fully
representative of what the individuals are actually breathing, as they can be far from populated
areas. Two ways recently emerged in order to improve exposure assessments: the development of

fixed sensors networks and the use of mobile sensors. These approaches have been facilitated by

12



the rise of the Internet of Things (IoT) and the use of low-cost sensors (LCS). In this thesis, these
two novel approaches were used, as well as the traditional, central monitoring method involving

reference stations.

1.4.1 Central monitoring with reference stations

We first started by using reference measurements made locally by Atmo Auvergne Rhone-
Alpes (Atmo AuRA), the regulatory instance measuring air pollutants in Grenoble. The city has a
significant network of official stations providing hourly measurements. Those data have the
advantage of being easy to retrieve through an Application Programming Interface (Atmo AuRA,
2023a). Various types of reference stations can be found like traffic stations, located near a major
road, or background stations, far from traffic, and more representative of the average population
exposure. The main background reference station from Atmo AuRA is located in “Les Frénes”
within a park in the south of Grenoble. However, these reference stations are not sufficient to get
a good overview on what people breathe locally, studies showing a high spatiotemporal variability
of pollutants in cities (Dias & Tchepel, 2018; Nikolova et al., 2011). Various papers indicated that
central monitoring was inadequate to describe people’s exposure to air pollutants (Han et al., 2021;
Peters et al., 2013). Therefore, other ways of getting finer measurements, both temporally and
spatially, can be explored. Using affordable calibrated sensors, in both static and mobile scenarios,

emerges as an optimal solution to capture population’s exposure variability.

1.4.2 Fixed Low-cost sensors network

1.4.2.1 Focus on PM measurement

In recent years, low-cost sensors appeared as a novel trend in air quality measurement
(Giordano et al., 2021; Raysoni et al., 2023). Heavily used by citizens, scientists and authorities
measuring air pollution, they are good supplements to standard monitoring sites for high-resolution
spatial-temporal PM mapping (Li & Biswas, 2022). Most studies focus on LCS measuring PM, as
it is still challenging to quantify gases with LCS for a number of reasons. Results can be affected

by long response times, instability or interference from other gases (Gerboles et al., 2017). Lewis
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et al. (2016) studied NO, electrochemical sensors and emphasized that artefact signals from
pollutants like CO, could surpass NOzsignals (Hagan et al., 2018). LCS measuring O; also tend to
be affected by NO; interference. They can show good agreement with reference at rural sites where
O3 1s higher than NO, but struggle to provide good results at urban and traffic sites (Spinelle et al.,
2015). Many studies show good results of gas LLCS in laboratory chambers but once in the field,
larger discrepancies can be seen (Castell et al., 2017; Hagan et al., 2018). Variability between
identical sensors is also an issue and longer response time makes them unsuitable for mobile
measurements (Hagan et al., 2018). Additionally, they tend to degrade faster compared to PM
sensors (Mueller et al., 2017; Papaconstantinou et al., 2023). Low-cost PM sensors (PM LCS) show

superior reliability and ease of use in the field (Hassani et al., 2023).

1.4.2.2 Working principle of PM LCS

PM LCS can measure the intensity of light scattered by PM on a detector and convert this
signal to a concentration in pg/m’. The working principle of a common PM sensor PMS7003
(Plantower, 2016) is shown in Figure 6. This sensor is one of the most widely used PM LCS,
providing good performances despite its cheap price (around 24€) (Alfano et al., 2020).

Laser Air outlet
® .
. (4)
Fan > Signal to
microcontroller

@
fAirinIet ; Air outlet

PM * @ PM*®,
[ )
Figure 6. Working principle of the Plantower PMS7003

Within the sensor, air is drawn (1) and propelled by a fan (2) towards air holes at the top right.
The air sample containing PM crosses a laser beam, which gets diffracted (3) by PM and impacts

the photodiode detector at various angles based on PM sizes. This signal gets converted by the
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photodiode into an electric signal (4) sent to the microcontroller, where a proprietary algorithm
further computes PM concentration in pg/m?. This optical sensor can effectively measure PM; and
PMa;s but shows unsatisfactory performance for coarse PM, recent studies advising against using it
to measure PMo (Aix et al., 2023; Molina Rueda et al., 2023). LCS offer a cost effective and flexible
solution, but they have limitations. The main concern arises from the calibration performed by the
manufacturer, generally occurring in environments with different aerosols than the ones at the
operating sites. Therefore, initial calibration algorithms tend to become inaccurate for new
environments and often remain inaccessible for confidentiality reasons. This calibration issue
contributes to the fact that PMS7003 tends to overestimate PM (Aix et al., 2023; Bathory et al.,
2021; Bulot et al., 2019; HabitatMap, 2022b). It is also crucial to acknowledge that relative humidity
causes hygroscopic PM growth and can therefore significantly affect PM LCS optical
measurements (Bulot et al., 2019; Won et al., 2021). This emphasizes the need to apply corrections
to raw PM concentrations given by LCS. A calibration process is therefore recommended, where

LCS are placed near a reference instrument in a collocation study.

1.4.3 Mobile measurements with low-cost sensors

Various studies highlight the inadequacy of fixed ambient monitoring to represent personal
pollutant exposure, particularly in transit microenvironments (Apte et al., 2011; Kaur et al., 2007,
Park & Kwan, 2017). Research suggested that people living in the same neighbourhood may have
different exposures to pollutants due to different mobility patterns (Dons et al., 2011; Ma et al.,
2019). Hence, it is also important to conduct measurements in mobility to get a comprehensive
understanding of individual exposure. Transportation is likely to result in peak air pollution
exposures in everyday life (Dons et al., 2019), and when compared to other daily activities, exposure
generally reaches its highest levels during travel (Singh et al., 2021). To measure exposure while in
mobility, the same optical sensor as previously described (PMS7003) can be used. However, adding
a GPS is essential to capture locations accurately. AirBeam?2 (HabitatMap, 2022a) is a portable PM
measuring device (Figure 7) entailing a PMS7003 and a GPS device. AirBeam?2 costs 2493, has a
10-hours autonomy and showed good performances in mobility (Lim et al., 2019; Ma et al., 2020),
while also measuring temperature and humidity. AirBeam2 can be paired to a smartphone and

attached to a backpack, providing measurements at a fine temporal scale, with data recorded every
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second. An online visualization interface (HabitatMap, 2023) allows to retrieve recorded data for

subsequent analysis.

IR

CASTING

Figure 7. Picture of an AirBeam2 device

It is important to calibrate AirBeam2 sensors by comparing them to a reference, especially
because their calibration equation does not account for humidity (HabitatMap, 2022b). Once
propetly calibrated, mobile and fixed LCS can be combined with reference stations to offer a
holistic approach to assess population’s exposure. This strategy allows to identify local PM

vatriations which are not seen at the reference station.

1.5 THE SITUATION IN GRENOBLE

1.5.1 The study area

Grenoble is located in the French Alps, within an alpine valley surrounded by three substantial
mountain ranges over 2000 meters high. With a population of 448,457 inhabitants INSEE, 2023),
Grenoble ranks among the 20 largest French metropolitan areas. Located at the confluence of two

rivers, the Drac and the Isere, Grenoble lies within a Y-shaped valley (Figure 8).
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Figure 8. Geographical location of Grenoble within a distinctive Y-shaped alpine valley

The topography around Grenoble makes the city prone to long winter pollution events,
particularly due to thermal inversions. Largeron and Staquet (20106) stated that lasting inversions
occurred between November and February, under high-pressure regimes, covering 35% of winter
time. In their study, most PMy, pollution spikes were related to inversions. These winter events,

linked to the stagnation of air masses, are generally associated with residential wood heating.

1.5.2 Local air pollution context in Grenoble

1.5.2.1 Pollutants sources and health impact

Between 2008 and 2015, Grenoble ranked second among the most polluted French cities in
terms of PM,s (Amrani et al., 2019). Locally, residential heating is the primary contributor to PM
(70.2% for PMas and 61% for PMyg), followed by transportation and industry (Figure 9). Road
traffic is the main NOx emitter (47.4%), followed by industry and energy sectors. Regarding O3
formation in Grenoble, climate warming brings more favourable conditions causing average levels
to rise in recent years (+0.5 pg/m’/year) (Atmo AuRA, 2023c). This trend is projected to continue,

as southeastern France is anticipated to be significantly impacted by climate warming (Météo-
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France, 2021). Grenoble may also see more intense but less frequent Saharan dust episodes due to
climate change, according to Clifford et al. (2019). Dusts events significantly increase local PMi
and PMz;s concentrations, the rise in PMjo being mainly linked to an increase of the coarse fraction
between 2.5 and 10um (Perez et al., 2008; Quénel et al., 2021). Grenoble experienced numerous
Saharan dust episodes in 2021, notably on February 6* and from February 22™ to 26™ (Atmo
AuRA, 2022¢). While dusts can explain some PMjpalerts, the PM,s issue in Grenoble is generally

linked to residential wood heating.

Sources Concentrations

0.80.1
145,31

0.5
PM, 5 I WHO : 5 pg/m?3 Legend
. Residential

. Road transportation

| WHO : 15 ug/m3 . Industry (excl. energy sector)
F)M10 15 . Energy sector
. Service sector

Agriculture

21 27 39 . Waste

WHO : 10 pg/m3 . Other transportation
NO,
0.4

Figure 9. Pollutant sources and annual concentrations in Grenoble-Alpes Metropole (Les Frénes background
station), with WHO’s recommended levels (in red). Data sources : Atmo AuRA (20222) and World Health
Organization (2021b)

In Grenoble, PMzs annual concentrations exceed WHO's recommended levels by 120%
(Figure 9), PMio by 27%, and NOx by 40%. According to Atmo AuRA (2022b), 100% of the
residents would be exposed to exceedances of the WHO guidelines for PM,s, 67% for PMio, and
94% for NO,. Moreover, 11% of the population would exceed the health target value for Os, the

only regulated pollutant showing no decrease in Grenoble (Préfet de 1'Isere, 2022). PM levels atre
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probably the main lever to significantly improve the health of populations in urban areas like
Grenoble (Institute for Advanced Biosciences, 2016). Each year, PM;s is responsible for the
premature death of 145 people in Grenoble (Morelli et al., 2019). NO; emissions are projected to
decrease with the new EURO7 regulations and the rise of electric vehicles. Therefore, it is likely
that PM will remain the main issue in Grenoble, another concern also arising from more toxic PM
generated by brakes and tires (Tan et al, 2023). Grenoble is a proactive city regarding
environmental matters, especially through Atmo AuRA, equipping citizens with mobile or fixed
sensors measuring PM (Atmo AuRA, 2023d). To protect public health, it is crucial to communicate

risks related to air pollution and to involve the population (Pfleger et al., 2023).

1.5.2.2 The problem of PM2 5

In Grenoble, highest PM levels are generally recorded in autumn and winter because of higher
emission rates, and air stagnation episodes related to temperature inversions (Atmo AuRA, 2023b).
On Figure 10, we can see a correlation between temperature and PM,s levels. Maximum PM;;

concentrations (in blue) are generally seen during winters.
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Figure 10. Time-series data of monthly average temperatures and PM; s concentrations from January 2015 to
July 2023. PM;s concentrations (in blue) are measured in Grenoble (Les Frénes) and provided by Atmo AuRA.
Temperatures (in pink) are measured in Saint-Martin d’Heres (3km from Les Frénes) by ROMMA (Réseau
d'Observation Météo du Massif Alpin, 2022).
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According to Atmo AuRA (2023c), the decline in PM; 5 levels, observed since 2007 (around -
1 pg/m’ per year) slowed down in 2022 with average concentrations rising. This shift is noteworthy,
given the mild winter temperatures normally reducing heating needs. The increase in fossil fuel

prices may have encouraged a shift towards cheaper wood heating alternatives.

1.6 THESIS OBJECTIVES

In summary, after a thorough exploration of the literature, we observed that:

e Air pollution is a public health concern, as proven by numerous epidemiological and
toxicological studies

e WHO’s air quality guidelines are unmet in Grenoble, exposing the population to various
health risks

e Population aging and climate warming will impact Grenoble, intensifying health effects

associated with pollution

=>» Addressing air pollution and associated health risks is key, and the main objectives of this

work were:

1.6.1 What are health risks related to air pollutants in

Grenoble?

Gaining a deeper understanding of the connection between air pollutants and health is crucial.
With a substantial part of the thesis taking place during the pandemic, we started by investigating
health risks associated with air pollutants in Grenoble during the COVID-19 crisis (Chapter 2, refer
Figure 11 below). When searching the literature on health risks, it appeared that little work had
been done on long-term and short-term risks during the pandemic. Often, researchers focused on
studying the influence of a single pollutant on mortality or a specific disease, with a primary focus
on short-term effects. The impacts of multiple pollutants on diverse health outcomes had rarely
been explored. Frequently, researchers focus on a pollutant's effect on mortality or a specific

disease, with limited exploration of multiple pollutants' impact on various health outcomes.
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Dwivedi et al. (2022) also acknowledged that studies synthesizing evidence for the associations
between various air pollutants and cardiovascular outcomes were missing. They conducted such
synthesis, exploring the strength of associations among various pollutants and various health
outcomes related to cardiovascular issues and mortality. Their study was performed on both short-
term and long-term outcomes. Our intention was to follow a similar approach, but for all
pathologies. Following a methodology defined by Corso et al. (2019), we listed all short-term or
long-term associations between air pollutants (PM, NO, and O;3) and health outcomes, supported
by extensive studies. To estimate risks, we used pollutants concentrations measured by reference
stations from Atmo AuRA in Grenoble. This method using reference stations, also called “central
monitoring technique”, provided accurate and officially validated pollutants concentrations in
order to calculate relative risks using the previously explained formula (Equation 1, section 1.3.3).
As seen in this RR formula, health risks heavily depend on concentrations estimates. Therefore, it
is important to use finely measured concentrations. To mitigate health risks related to air pollution,

two approaches are feasible (or a combination of both):

1. Reduce the overall population exposure through policies (Xing & Wong, 2022).
2. Teach individuals prevention strategies to minimize their exposure (Hoang et al., 2022; Y.

Zhang et al., 2019).

In the following chapters, novel techniques using sensors were explored to better measure
people’s exposure. Various research papers consider central monitoring as inadequate to describe
individual exposure to air pollutants (Han et al., 2021; Peters et al., 2013). In this thesis, optical
sensors were used to measure exposure at a finer scale, both temporally and spatially. Using L.CS
appeared to be the most suitable strategy due to their cost-effectiveness, enabling the deployment

of an important number of devices.

1.6.2 How to accurately measure exposure to PM in

Grenoble?

Koenig (2012) stressed the importance of high-quality exposure assessment due to its crucial

role in air pollution epidemiology. In this thesis, a significant amount of effort was dedicated to
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improve the granularity of pollutants measurements. The objectives were 1) to refine health risk
evaluations and 2) to provide people with strategies to lessen their exposure, by modifying their
behaviour, particularly their travel habits. Slama et al. (2008) emphasized the need to work on better
methods for gauging individuals' exposure duration and intensity, and account for residential
mobility. They advocated for exposure models to target finer temporal precision and include time-
activity patterns, arguing that spatial and temporal confounding factors should be considered in
exposure calculations. Jo et al. (2021) also highlighted the necessity of considering personal factors
in health risk management. They admitted that using fixed official stations was a limitation, as
exposure relied on variables like time spent outdoors, workplace, and distance to the monitoring
station from home. They highlighted that significant differences in average exposure estimate could
occur if the station-home distance was important. Improving spatial granularity was one of the

reasons why we decided to install a sensors network in Grenoble.

1.6.2.1 Fixed measurements with a LCS network

To improve personal exposure assessment, we started to deploy a stationary LCS network
enabling continuous PM monitoring. Various research articles suggest that measuring PM in
mobility is more difficult than with fixed monitors (Alas et al., 2019). Quantifying PM with a mobile
device can be more challenging, as they are sensitive to unintentional variations and bias (Peters et
al., 2013). Mui et al. (2021) also found that the velocity of measurement could impact LCS
performance. Consequently, we initiated our study by using stationary devices prior to start a

mobile measurement campaign.

1.6.2.2 Mobile measurements

However, various studies underscore the inadequacy of fixed monitoring to represent personal
pollutant exposure, particularly in transit environments (Apte et al., 2011; Kaur et al., 2007; Park &
Kwan, 2017). Gulliver and Briggs (2004) showed that PMi, concentrations displayed stronger
correlation between various transport modes than with measurements from the fixed-site monitor.
Beckx et al. (2009) compared dynamic exposure estimates with traditional static measurements.

Results indicated significant differences, especially during the day, as the dynamic approach
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accounted for individual mobility patterns. Both approaches exhibited a relative difference of more
than 20% in term of hours spent at PM,s concentrations exceeding 20 pg/m’. The static method
showed significantly lower exposure estimates than the dynamic approach. Research also suggested
that people living in the same neighbourhood may have different exposures to pollutants due to
different mobility patterns (Dons et al., 2011; Ma et al., 2019). A disadvantage of fixed sensors or
monitors is that they are far from individuals' breathing zones. Hence, we also performed

measurements in mobility to get a more comprehensive view of individual exposure.

1.7 THESIS STRUCTURE

1.7.1  Originality

The originality of this thesis lies in this holistic approach to air pollution. First, by examining
a set of air pollutants along with their various health effects (Chapter 2), and subsequently, by
studying exposure through a method involving both fixed and mobile tools in a complementary
approach (Chapters 3, 4 and 5). First, we investigated how to calculate the relative risks of various
diseases caused by different pollutants in Grenoble (Chapter 2). Through this research, we
acknowledged the significance of accurately estimate individual exposure, a topic we addressed in

the later chapters.

1.7.2 Why did we focus on PM?

Numerous studies demonstrate that PM are the main contributors to the majority of adverse
effects related to air pollution (Araujo, 2010). Among the key atmospheric pollutants, PM displays
the strongest causal association with mortality (WHO, 2021b; Pond et al., 2022). Lefler et al. (2019)
demonstrated that PM,s exhibited the strongest mortality associations compared to other
pollutants (PMz5-10, SO2, NO,, O3, CO). PM doesn't have a concentration threshold below which
no health effect would occur. Chapter 2 confirmed that PM carried the greatest health risk, as PM

exhibited the most significant associations with the highest RR, particularly for mortality. Studying
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PM has a promising future, because PM is ubiquitous in the environment and emerges as the

pollutant with the most pronounced negative health impacts (Karagulian, 2023).

Furthermore, due to LLCS limitations in measuring gases, we focussed on PM measurements,
particularly small PM that could be effectively seen by LCS. Given the significant health impacts
of small PM, our focus was mainly directed towards measuring small PM. As calibration methods
continue to advance, both mobile and stationary LCS can be efficiently combined with official
monitoring stations. In this thesis, we used three approaches to assess individual exposure to air
pollutants: central monitoring, LCS networks and mobile LCS. This aligned well with calls from
scientists advocating for adopting various complementary approaches to estimate individuals'

exposure (Chambliss et al., 2020).

1.7.3 Thesis outline

The manuscript is organized into 6 chapters

e Chapter 1: General introduction.

e Chapter 2: One of the few multipollutant studies covering short-term and long-term

risks related to various air pollutants during the COVID-19 crisis.
e Chapter 3: A new calibration methodology for PM LLCS calibration.
e Chapter 4: Deployment and use of a PM LCS network in Grenoble.
e Chapter 5: A mobility study to measure PM in commuting microenvironments.

e Chapter 6: General conclusion.

The structure of the manuscript is schematically represented on the next page (Figure 11).
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HEALTH RISKS ASSOCIATED WITH AIR
POLLUTION

Summary - Introduction Chapter 2

e Problem: Limited research focus on studying short-term and long-term health risks resulting
from variations in various air pollutants levels during the COVID-19 crisis

e Objectives:
1. Compare pollutants levels in Grenoble during COVID-19 versus 2015-2019

2. Assess health risks associated with these concentration changes

2.1 INTRODUCTION

2.1.1 Research gap and objectives

This chapter aims to conduct a health risk assessment in Grenoble in the amidst of the
COVID-19 crisis. While many research papers focused on quantifying variations in air pollutant
concentrations, fewer studied the resulting health risks changes. Our research aimed to fill this gap
and contribute to a more comprehensive understanding of these relationships. The objective of

this study could be summarized in two main questions:
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1) What were the levels of pollutants concentrations in 2020 compared to 2015-2019 period?

2) What were the consequences of those concentration shifts for health risks?

2.1.2 Method

We followed guidelines established by Santé Publique France, the French National Public
Health Agency (Corso et al., 2019), as they offered a comprehensive and practical approach to
conduct a quantitative health impact assessment. The methodology aligned with the framework
recommended by the WHO and had been used in European research projects like APHEIS
(Ballester et al., 2008) or Aphekom (Pascal et al., 2013), but also for a local study in the Arve Valley
(Pascal et al., 2020).

2.1.2.1 Dose - response functions

In this method, health risks were classified within two categories: group A and B. Group A
referred to pollutant—outcome pairs for which enough data was available to enable reliable
quantification of effects. Group B denoted pairs for which there was more uncertainty about the
precision of the data used for effects quantification. In this study, we focused on group A health
risks to compile dose-response functions (RR.). Also included were the RR. from an extensive
study on O3 and mortality involving 4006 cities in 20 countries between 1985 and 2015 (Vicedo-
Cabrera et al., 2020).

2.1.2.2 Pollutant’s concentrations

To perform the health impact assessment, all four background stations from Atmo AuRA
were used (see Figure 12, in blue). The traffic stations were only employed to analyze
concentrations changes (see Figure 12, in red), because these stations are usually considered less

representative of the pollutants levels to which the population is regulatly exposed.
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Figure 12. Map of the 7 stations from Atmo AuRA used for 2015-2020 exposure study. Filled circles represent

locations of urban background (in blue) and traffic stations (in red).

To calculate short-term health risks related to Os, a specific method was employed to

determine O3 concentrations (Figure 13).
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Figure 13. O3 mean calculation for ARR determination
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2.1.2.3 Health risks calculations

Health risks were assessed using different timeframes and formulas based on whether they
were short-term or long-term (Figure 14). For short-term risks, different periods in 2020 were
studied with varying restrictions levels. L1 was the period of the first strict lockdown. F2 followed
with relaxed measures and .2 was a milder lockdown. An example of rate of short-term (ST) risk
change calculation (ARR) can be seen in Figure 14 for L1. All time periods beginning with "E" (for
"equivalent") correspond to the same timeframes as those in 2020, but they occur within the yeats

2015-2019. The formula used for long-term (LT) risks calculation is also illustrated in Figure 14.

TIMEFRAME

January 1st March 17 May 10 October 17  December 31

2020

2015 - 2019

SHORT-TERM RISK

'5 Epidemiological
ex : for period L1 % RR, valiies
Concentrations +
5
z >
- Relative change in RR
LONG-TERM RISK o
=) Epidemiological
% RR. values
Concentrations +

>

INPUT
OUTPUT

Relative change in RR

Figure 14. Short-term and long-term health risks calculations. Cri: daily mean pollutant average
concentrations during the 1% lockdown. Cgri: daily mean pollutant average concentrations during the
corresponding 2015-2019 period. Caozo: annual pollutant concentration in 2020. Cao1s-2019: average of the annual

concentrations between 2015 and 2019
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2.2 ARTICLE N°1

The following paper can be found at: https://doi.org/10.1016/j.envpol.2022.119134.
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ARTICLE INFO ABSTRACT

Keywords: It is undeniable that exposure to outdoor air pollution impacts the health of populations and therefore constitutes
COVID-19 a public health problem. Any actions or events causing variations in air quality have repercussions on pop-
Lockdowns

ulations’ health. Faced with the worldwide COVID-19 health crisis that began at the end of 2019, the govern-
ments of several countries were forced, in the beginning of 2020, to put in place very strict containment measures
that could have led to changes in air quality. While many works in the literature have studied the issue of changes
in the levels of air pollutants during the confinements in different countries, very few have focused on the impact
of these changes on health risks. In this work, we compare the 2020 period, which includes two lockdowns
(March 16 - May 10 and a partial shutdown Oct. 30 - Dec. 15) to a reference period 2015-2019 to determine how
these government-mandated lockdowns affected concentrations of NOg, O3, PMy 5, and PM;o, and how that
affected human health factors, including low birth weight, lung cancer, mortality, asthma, non-accidental
mortality, respiratory, and cardiovascular illnesses. To this end, we structured 2020 into four periods, alter-
nating phases of freedom and lockdowns characterized by a stringency index. For each period, we calculated (1)
the differences in pollutant levels between 2020 and a reference period (2015-2019) at both background and
traffic stations; and (2) the resulting variations in the epidemiological based relative risks of health outcomes. As
a result, we found that relative changes in pollutant levels during the 2020 restriction period were as follows:
NO3 (—32%), PM2 5 (—22%), PM;( (—15%), and O3 (+10.6%). The pollutants associated with the highest health
risk reductions in 2020 were PM, 5 and NO,, while PM;( and O3 changes had almost no effect on health out-
comes. Reductions in short-term risks were related to reductions in PM; 5 (—3.2% in child emergency room visits
for asthma during the second lockdown) and NO; (—1.5% in hospitalizations for respiratory causes). Long-term
risk reductions related to PMj 5 were low birth weight (—8%), mortality (—3.3%), and lung cancer (—2%), and to
NO; for mortality (—0.96%). Overall, our findings indicate that the confinement period in 2020 resulted in a
substantial improvement in air quality in the Grenoble area.

Air pollutants
Health risks
Grenoble

1. Introduction

Outdoor air pollution has a major influence on the health of pop-
ulations, and has been of utmost concern for many years. Air pollution is
classified as carcinogenic to humans by the International Agency for
Research on Cancer (IARC) and is estimated to be responsible for
approximately 3.1 million premature deaths worldwide every year and
3.2% of the global burden of disease (Babatola, 2018; Loomis et al.,
2013, 2014). In addition to the associated mortality, the inhalation of
such air pollution leads to a series of problems for human health: while
short-term exposures can trigger or aggravate existing respiratory

* This paper has been recommended for acceptance by Da Chen.
* Corresponding author.
E-mail address: dominique.bicout@univ-grenoble-alpes.fr (D.J. Bicout).

https://doi.org/10.1016/j.envpol.2022.119134

and/or cardiovascular problems and increase cases associated hospi-
talizations, long-term exposures are linked in particular to lung cancer
and a greater susceptibility to respiratory tract infections. Anthropo-
genic sources, such as road traffic, fossil-fuel combustion and house-
holds, are the main sources of outdoor air pollution. However, the
COVID-19 pandemic has caused a significant reduction in anthropo-
genic activities (prominent sources of air pollution) at certain times.
Indeed, the global spread of SARS-COV-2 (COVID-19) has led govern-
ments to implement unprecedented restrictive and preventive measures
to slow down COVID-19 outbreaks. Some of these actions (e.g.,
stay-at-home or national lockdown, curfew) which restricted vehicle
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traffic and other activities, had a direct impact on air quality and
therefore on public health.

1.1. Changes in air pollution during lockdowns

Shortly after the start of the COVID-19 pandemic, a few studies re-
ported that there was a significant drop in air pollutants during the
lockdown period (Dutheil et al., 2020; Venter et al., 2020). Although
there were still high air pollution events like in northern China (Wang
et al., 2020), most publications found decreased background concen-
trations of pollutants (Bhat et al., 2021; Singh et al., 2020) and improved
air quality indices (Bao and Zhang, 2020; He et al., 2020; Mahato et al.,
2020; Naqvi et al., 2021; Sahraei et al., 2021) during lockdowns. The
decrease in pollutant concentrations at background stations was also
confirmed by satellite measurements, especially for nitrogen dioxide
(Dutheil et al., 2020; Naqvi et al., 2021; Shehzad et al., 2020; Venter
et al., 2020). Currently, more than 200 studies worldwide have assessed
the effects of lockdown measures on air quality. Most of them go in the
same direction and agree in concluding that the levels of fine particulate
matter (PM) and nitrogen dioxide (NO3) generally decreased, whereas
ozone (O3) concentrations increased during lockdowns (Gkatzelis et al.,
2021). O3 levels remained a challenge in some parts of the world as they
showed dramatic increases (Grange et al., 2021; Huang et al., 2021). In
this context, some works attempted to understand the role of meteoro-
logical conditions in the recorded pollution levels and observed reduc-
tion (He et al., 2020; Petetin et al., 2020; Ropkins and Tate, 2021). To
study the associations between restrictive measures and air pollution,
Gkatzelis et al. (2021) and Schneider et al. (2022) used the stringency
index (Hale et al., 2021), an indicator to characterize the strictness of
government measures. They found significant negative correlations be-
tween the stringency index and pollutant concentration changes, espe-
cially for NO,.

1.2. Health impacts related to changes in air pollution during lockdowns

One of the main consequences of the changes in air quality is to be
sought on the health of populations. Although epidemiological studies
have highlighted the relationship between mortality records or hospital
admissions and changes in air quality during COVID-19 restrictions
(Bozack et al., 2021; Hameed et al., 2021; Naqvi et al., 2021), little work
has been done on the health impacts resulting from these changes in air
pollutant levels compared to the number of studies on air quality during
lockdowns. Table 1 summarizes the result of the comprehensive litera-
ture review on health risks related to changes in air pollution during
lockdowns. Most of these studies focus only on short-term health effects
and mortality risks. It appears from these works that the occurrence of
all these health effects has declined during the lockdowns due to
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decreasing levels of air pollutant

Regarding other health impacts, several studies found that outdoor
air pollution had an impact on the incidence, prevalence or mortality of
COVID-19, as exposure to pollutants can impair immune responses and
affect the host’s immunity from respiratory virus infections (Katoto
etal., 2021). For instance, Zhu et al. (2020), using a generalized additive
model, found associations between PMj 5, PM;o, CO, NO,, and O3 levels
and COVID-19 cases. Similarly, using artificial neural networks, Mag-
azzino et al. (2020) identified PM thresholds related to COVID-19
deaths. And according to a meta-analysis by Katoto et al. (2021), it
appears that COVID-19 cases are most consistently associated with
PM3 5 and NO; exposures. Other work has investigated mechanistic as-
pects of COVID-19 virus infection. Frontera et al. (2020), established a
relationship between pollutant exposure and overexpression of the
pulmonary ACE-2 receptor associated with severe COVID-19 infections.
Frontera et al. (2020), established a relationship between pollutant
exposure and overexpression of the pulmonary ACE-2 receptor associ-
ated with severe COVID-19 infections. A large cohort study associated
NO; and PMys with high titres of anti-COVID-19 IgG antibodies
(Kogevinas et al., 2021), likely reflecting high viral exposure. However,
pollutant levels were not implicated in the prevalence of COVID-19
which led Hansell and Villeneuve, 2021 to state that reducing air
pollution during the pandemic could not be considered a COVID-19
mitigation measure.

In this context, we can legitimately ask whether the restrictive
measures implemented to counter COVID-19 outbreaks could have been
beneficial not only for air quality, but also for the health of populations
regularly exposed to these pollutants, or is there rather a double penalty,
i.e., poor air quality plus the COVID-19 health crisis. Concomitant with
COVID-19, several surveillance systems observed a decline in infectious
diseases such as influenza or gastroenteritis (Kuo et al., 2020; Hatoun
et al., 2020; Soo et al., 2020), suggesting that social distancing or other
measures taken during the pandemic could have helped to prevent some
contagious diseases. From the French Public Health Agency (Santé
Publique France (Geodes), 2020), in the Isere department, where the
city of Grenoble is located, the number of home emergency acts for
influenza and gastroenteritis, and the rate of emergency room visits for
gastroenteritis, declined in 2020 compared to 2010-2019.

1.3. Study objectives

In this study, we therefore propose taking stock of whether 2020, due
to the health crisis, was less heavy in terms of exposure to air pollutants
compared to past years. We do not intend to explain the mechanisms and
factors that could lead to the changes and drop in air pollution levels, but
rather to obtain an idea of the magnitude of variation in exposure levels,
regardless of the origin during 2020 in the city of Grenoble, France.

Table 1

Studies associating air pollution with health risks during lockdowns.
Pollutant Health outcome Effect * Reference
NO,, O3 Non-accidental mortality ST Achebak et al. (2020)
PM, 5, NO, Non-accidental & cardiovascular mortality, mortality for hypertensive disease, ST Chen et al., 2020

coronary heart disease, stroke & chronic obstructive pulmonary disease

PM, s, O3 Mortality all causes, cardiovascular & respiratory ST Chen et al., 2021
NO, Mortality ST, LT Cole et al. (2020)
PM, 5 Mortality ST, LT Giani et al. (2020)
PM, 5 Mortality ST Han and Hong (2020)
PM, 5 Mortality LT Hao et al. (2021)
PM;o, NO3, O3, SO, Hospital admission for respiratory & cardiovascular diseases ST Hossain et al. (2021)
PM; 5, O3 Mortality ST Maji et al. (2021)
PM, 5, PM; o, NOy Mortality ST, LT Medina et al. (2021)
PM; 5, PM;o, NO3, O3, SO, CO Mortality ST Nie et al. (2021)
PM, 5, PM;o, NO,, O3 Mortality ST Schneider et al. (2022)
PMy 5, NOy, O3 Mortality, paediatric asthma emergency room visits ST Venter et al. (2021)
NO,, 03, CO Mortality ST Xu et al. (2021)

@ Abbreviations: ST = short-term, LT = long-term.
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Subsequently, we will determine whether these reductions in pollution
levels were sufficient to induce a reduction in risks to human health.
Concretely, we aim to answer the following two questions:

e To what extent did outdoor air pollution decrease in Grenoble during
the lockdown period in 2020 compared to previous years?

o What would have been the impact of such a reduction in air pollution
on the short- and long-term risks to human health?

2. Methods
2.1. Study area

This study focuses on Grenoble, the largest city in the French Alps.
This metropolis has approximately 450,000 inhabitants, spread over an
area of 545 km?. Located in a flat, Y-shaped valley at an altitude of
approximately 215 m, Grenoble is surrounded by three large mountain
ranges reaching almost 3000 m in height. The local weather is temperate
with a continental influence and an effect of the mountainous region.
Hot summers and cold winters generate an important thermal amplitude
between day and night. Rainfall is relatively high. The surrounding
mountains make the city prone to episodes of heavy air pollution. The
topography makes it difficult for pollutants to be evacuated horizon-
tally, and the temperature inversion (a meteorological phenomenon in
which a layer of hot air overhangs the cold air in a given layer of the
atmosphere) often worsens the situation by creating an obstacle to
vertical dispersion. The major part of the urbanization is located in the
valley.

2.2. Study period

In December 2019, a coronavirus disease epidemic started in Wuhan,
China. In March 2020, the World Health Organization (WHO) qualified
this outbreak as a pandemic. On March 16th, the President of France
announced a full lockdown starting the day after. People were ordered to
stay at home unless they needed to satisfy essential needs (e.g., buying
food, medical appointments, etc.). This mandatory lockdown ended on
May 10th. After a relaxed summer, France launched another series of
measures starting on October 17th. A curfew was imposed in Grenoble,
followed by a second nationwide lockdown, which started on October
30th and ended on December 15th. This lockdown was much softer than
the first one, schools remained open, and many people were still
working, although many did so remotely.

To structure the comparison of air pollution before, during and after
government pandemic measures, we divided 2020 into four periods, and
computed a mean daily stringency index for each period (Table 2). The
stringency index, ranging from 0 (free and no restrictions at all) to 100
(strictest), allows for the quantification of the severity of measures taken
by governments to mitigate the effects of COVID-19 (Hale et al., 2021).
This composite index uses nine governmental response indicators,
including school, workplace and transport closures, as well as re-
strictions on gathering. Fig. 1 displays the stringency index trajectory of
France in 2020. Clearly, mean stringencies were very high for lockdowns
L1 and L2, moderate during the free period F2, and low but different
from zero in F1 as the measures gradually settled in at the beginning of
the health crisis. By definition, all the years before 2020 were

Table 2
Restriction schemes and the average stringency index.
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characterized by a zero-stringency index.

2.3. Air pollution data

We considered four airborne pollutants: NO5, O3, and PM of sizes less
than 2.5 pm (PMys) and 10 pm (PMjo), respectively. We obtained
pollutant concentrations from four background and three traffic moni-
toring stations, all managed by Atmo Auvergne Rhone-Alpes (the
regional non-profit organization accredited by the French authorities to
measure and assess air quality). We collected hourly concentration data
from January 1st 2015 to December 31st 2020 thanks to an Application
Programming Interface (https://api.atmo-aura.fr/). The use of hourly
values over a 6-year reference period made the analysis more repre-
sentative and smoothed interannual weather-induced fluctuations.
There was a total of 3447 slightly negative values out of 839,493
pollutant levels (0.4%). For NO; and O3, negative values (0.5%) were
replaced by half of the instrumental limit of detection (LOD) values
equal to 1 ppb (1 ppb corresponding to 1.88 pg/m® for NO, and 2 pg/m>
for O3). For PM, negative concentrations (0.3%) were replaced by zero
as no LOD were available.

We compared pollutant levels monitored in 2020 to measurements
made between 2015 and 2019 (hereafter referred to as the “historical”
or “reference period”). The quantity of interest is the relative change in
the daily mean pollutant levels, calculated as follows:

_ PZOZ() - PZOIS*Z()]9

AP )

Pao1s-2019

where Pyg20 and Pyo15-2019 correspond to daily mean pollutant concen-
trations in 2020 and during the historical 2015-2019 period, respec-
tively. As daily mean concentrations were distributions for the reference
2015-2019 period, we reported descriptive statistics for. We computed
the AP values for all pollutants considered: NO5, O3, PM3 5, and PMjj.
We performed all statistical analyses using R software 4.0.5 (R Core
Team, 2018) for Windows 100©.

2.4. Health risk assessment

To assess the health impacts of lockdowns, we followed guidelines
from a quantitative health impact assessment tool developed by Santé
Publique France together with the WHO (Blanchard et al., 2019). For
such an assessment, we used the pollutant concentrations measured at
background stations because they are more representative of population
exposure than traffic stations (Corso et al., 2019). The health effect
caused by exposure to a pollutant for a given period is determined using
the relative risk formula, as follows:

RR = ¢/ (¢=C) 2)

where C is the pollutant concentration, C, is the low concentration
threshold below which there is no risk of health effects, and the coeffi-
cient f is obtained as follows:
In(RR,
p = In(RR.) @)
3
where RR, is the relative risk of health effects obtained from epidemi-
ological studies, and & is the associated concentration increment (see

Timeframe Period Description Average stringency index
01.01.20 (01:00) — 17.03.20 (11:00) F1 No measures 15
17.03.20 (12:00) — 10.05.20 (00:00) L1 Strict lockdown 88
11.05.20 (01:00) — 17.10.20 (00:00) F2 Relaxation of measures 55
18.10.20 (01:00) - 31.12.20 (00:00) L2 Soft lockdown 70

Note: L1 and L2 represent the 1st and 2nd lockdowns, and F1 and F2 represent the 1st and 2nd “free” periods.
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Fig. 1. Evolution of the COVID-19 stringency index in France in 2020.

Table 3). The quantity of interest is the relative change in relative risks:

RRyp20 — RRy015-2019 o
RRy15-2019

ARR = B (C2020—Ca015-2019) 4)

where Cyo20 and Cag15-2019 are the pollutant concentrations in 2020 and
during the 2015-2019 period, respectively, averaged over the appro-
priate timeframe, and “daily” and “yearly” are the bases for short- and
long-term risks, respectively. Since both daily and yearly means were
distributions for the reference period of 2015-2019, we reported
descriptive statistics (median [95% CI]) for AR. We computed the ARR
for all pairs of pollutant-health outcomes listed in Table 3. As above, all
statistical analyses were performed using R software 4.0.5.

Two parameters control the magnitude of the relative risk index in
Eq. (4).: the coefficient $ (related to the relative risk of health effects
(RR, in Table 3)) in Eq. (3) and the change of in the pollutant concen-
tration. Therefore, for a given pollutant, the most important health ef-
fects are those associated with higher  while for the same given health
effect, the most important pollutants are those associated with higher
values of both $ and variations in concentrations.

To obtain the f, the WHO guidelines use relative risks RR, from well-
supported epidemiological studies to calculate health benefits from a
change in air pollution. In this study, we focused on pollutant-outcome
pairs for which data were available to allow for reliable effect quanti-
fication (Table 3). We used all RR,, accounting for an increase of § = 10
pg/m® of pollutant exposure, and coming from Western studies with
pollution levels comparable to those observed in Grenoble. We included

Table 3
Pollutant associated health outcomes and relative risks.

a recent RR, relating daily mortality to O3 calculated for France in the
assessment (Vicedo-Cabrera et al., 2020). However, no long-term effects
associated with O3 were included in our analysis due to large un-
certainties in the data (WHO, 2013) and because the impact on all-cause
mortality would be minor or non-existent (Hvidtfeldt et al., 2019).

3. Results
3.1. Air pollutant concentrations

Fig. 2 shows 7-day moving averages of pollutant (NO3, O3, PMy s,
PM;) concentrations during 2020 (purple lines) and the five previous
years (2015-2019) (blue lines). Seasonal norms (shaded areas) are
represented by the 95% confidence interval (CI) of the 2015-2019
reference period. Of the four pollutants, we observed the largest
reduction in 2020 compared to 2015-2019 for NO;, levels.

NO; levels in 2020 steeply declined during the first ten days after the
L1 announcement, especially at traffic stations. During L1, NO levels
lay well below the seasonal norms, even at background stations. NOy
concentrations slowly returned to normal after L1 ended. Changes were
more important at traffic stations than at background stations, especially
during summer holidays and in September 2020. During L2, the levels of
NO, at the traffic stations were still below seasonal norms, but to a lesser
extent than during L1.

We noted a positive anomaly (above seasonal norms) in 2020 for O3
during L1, and two periods with lower levels stood out in September.

Pollutant Exposure/timeframe Age group Health outcome

RR, [CI 95%] per 10 pg/m3 Reference

O3 Short-term/8h-maximum
daily mean

NO, Short-term/daily mean

PM;o

PMys

Long-term/annual mean

NO,

all
>65

all

<17
all

<17
all

>30
Adults
Infants
>30

Mortality, all causes

Hospitalizations for respiratory causes
Hospitalizations for cardiovascular causes
(excluding strokes)

Non-accidental mortality

Hospitalizations for respiratory causes
Emergency room visits for asthma
Non-accidental mortality

Non-accidental mortality

Hospitalizations for respiratory causes
Emergency room visits for asthma
Hospitalizations for cardiovascular causes
(including strokes)

Mortality, all causes

Lung cancer incidence

Low birthweight at full term

Mortality, all causes

1.0019 [1.0006-1.0031]
1.0044 [1.0007-1.0083]
1.0089 [1.0050-1.0127]

1.0075 [1.0040-1.0110]
1.0180 [1.0115-1.0245]
1.0101 [0.9900-1.0200]
1.0030 [1.0013-1.0047]
1.0063 [1.0025-1.0101]
1.0190 [0.9982-1.0402]
1.0980 [1.0120-1.1900]
1.0091 [1.0017-1.0166]

1.1500 [1.0500-1.2500]
1.0900 [1.0400-1.1400]
1.3900 [1.1200-1.7700]
1.0230 [1.0080-1.0370]

Vicedo-Cabrera et al. (2020)
WHO (2013)
WHO (2013)

Corso et al. (2019)
WHO (2013)

Host et al. (2018)
Liu et al. (2019)
Liu et al. (2019)

WHO (2013)

Host et al. (2018)

WHO (2013)

Pascal et al. (2016)

Hamra et al. (2014)

Pedersen et al. (2013)
Committee on the Medical Effects
of Air Pollutants, 2018
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Fig. 2. Seven-day rolling averages of pollutant (NO,, O3, PMy s, PM;() concentrations during 2020 (purple lines) and averaged over the five previous years
(2015-2019) (blue lines). Solid lines are medians and the shaded areas represent the 95% CI for the 2015-2019 reference period. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

There was no clear trend during L2, but we observed two peaks above
the seasonal norms.

We witnessed a large 2020 PM increase at the beginning of L1 at
background stations, with levels above the seasonal norms. Another
positive anomaly was recorded at the end of November 2020. PM; 5
concentration changes (compared to seasonal norms) appeared more
important during winter than during summer. Traffic values tended to
be lower in 2020 than in 2015-2019, and slightly lower than back-
ground values. Time series profiles of PMj 5 concentrations were similar
at the background and traffic stations. The peak seen in 2020 at the
beginning of L1 in background stations was less pronounced at traffic
stations.

In 2020, the general trend of PM; levels was very similar to that of
PMj 5, except that PM; levels were more frequently within the seasonal
norms, even during L1. However, similar anomalies were noted for both
PMs.

3.2. Changes in air pollutant levels

To quantify differences in concentration between 2020 and the
period of 2015-2019, we used the descriptive statistics of the relative
change in pollutant concentrations, AP, defined in Eq. (1), as summa-
rized in Figs. 3 and 4. First, Fig. 3 shows that with high Pearson and
Spearman correlation coefficients (r, p> 0.8), the general trend is a
decrease (increase) in NOy (O3 and PMj 5) as a function of the average
stringency index and no changes (r, p < 0.35) for PM;,. We found sig-
nificant (p < 0.05) negative correlations between the 2020

concentrations of NOy and the average stringency index of the F1, L1,
F2, and L2 periods, but no such correlations for O3 and PM (see Fig. 3).
That is, high stringency indices were associated with low concentrations
of NO, and vice versa.

Next, in Fig. 4, at background stations, there was a substantial
decrease (—48%) in daily mean NO; levels during L1 when compared to
2015-2019. The release of the measures in F2 showed an increase in
NO; levels (see Fig. 2), but daily mean NO;, levels were still lower than
that in 2015-2019 (- 19% and - 18% at background and traffic stations,
respectively). During L2, NO; levels declined by about —25%. The NOy
level decrease was 25% higher at traffic stations than for background
stations during L1, but almost the same during F2 and L2.

For O3 at background stations (O3 not measured at traffic stations),
concentration levels increased during L1 and L2 in 2020, and the situ-
ation returned to normal during F2.

During L1 in 2020, daily mean PM; concentrations increased (+3%)
at background stations, but the maximum level was reduced by 46% and
the 97.5th percentile by 14% thus indicating a change in the profile of
the distribution. There was no clear trend for PM; during L1. After L1,
the daily mean PM levels at background stations stayed well below the
historical values until the end of the year (—15% in F2 and -22% in L2).
The general pattern for PMy 5 was similar to that of PM;,. Overall,
positive or negative concentration changes appeared more pronounced
for PMy 5 than for PM; o during L1, F2, and L2. In contrast to background
stations, PM concentrations were reduced (e.g., a mean of —19% and
—17% for PMy 5 and PM;, respectively) during L1 at traffic stations.
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Fig. 3. Pollutant relative changes (median) between 2020 and 2015-2019 as a function of the average stringency index in 2020. Symbols represent data and straight
lines represent linear regressions of data for trends. Pearson and Spearman correlation coefficients are given by r and p, respectively.

3.3. Changes in health risks

We assessed the impact of air pollution changes in 2020 on health
outcomes using the relative change in relative risks, ARR, defined in Eq.
(4), as reported in Fig. 5. The long-term (average of the entire year)
impacts of air pollution changes turned out to be larger than short-term
impacts.

Long-term decreases in PM> 5 levels would result in 2%, 3%, and 8%
reductions in the risk of lung cancer, mortality, and low birth weight,
respectively. Likewise, the decline in NO; levels could result in a 0.95%
reduction in the associated long-term mortality risk.

Regarding short-term outcomes, the most important reductions
occurred after the health crisis began (in L1, F2, and L2), except for the
PMj; s related child emergency room visits for asthma (—1% in F1).
During L1, the drop in NO; levels would result in 0.63%, 0.86%, and
1.5% reductions in non-accidental mortality, emergency admissions for
asthma, and hospitalizations for respiratory causes, respectively. During
F2, the most important risk reduction was related to PM; 5 for emer-
gency room visits for asthma (—1.8%). The decline in O3 concentrations
during F2 would lead to a 0.6% reduction in hospitalizations for car-
diovascular causes. During L2, the decrease in NO; concentrations
reduced the risk of emergency room visits for asthma by 0.8%, non-
accidental mortality by 0.6%, and hospitalizations for respiratory cau-
ses by 1.5%.

4. Discussion

Our main objectives were to assess the magnitude of changes in
outdoor air pollution levels in Grenoble during 2020 (structured in
stringency periods) compared to previous years (of zero stringency), and
to examine the associated potential impacts on short- and long-term

human health risks.

Over the entire restriction period of 2020 (i.e., from March 17th to
the end of December), the overall level (average of the mean values in
Fig. 4 over the periods L1, F2 and L2 on the two stations) decreased
compared to previous years for NO (—32%), PMy 5, (—22%), and PM;o
(—15%) at both background and traffic monitoring stations, but there
was an increase of O3 (+10.6%) at background stations. Unexpectedly,
PM levels rose at background stations during L1. Similar observations
have been noted in several studies (Le et al., 2020; Seo et al., 2020;
Ropkins and Tate, 2021). Seo et al. (2020) reported PM 5 concentration
decreases of 36% and 31% in Seoul and Daegu, respectively. In the UK,
Ropkins and Tate (2021) revealed a rise at both traffic and background
stations in contrast to Grenoble, where traffic PM levels fell. In Beijing,
Le et al. (2020) stated that PMy 5 levels rose significantly, as did Os. In
our study, we witnessed an important O3 increase during lockdowns, as
in other European studies (Collivignarelli et al., 2020; Sicard et al.,
2020). In Barcelona, for example, Tobias et al. (2020) also observed a
significant increase in Oz (about +50%) during the lockdown from
March 14 to 30 which they attribute to the chemical mechanisms of the
decrease in NOx causing an increase in O3 and a decrease in NO reducing
Ojs titration. At background stations, they found large relative changes
for NOy (—47%), PMjo (—27.8%) and O3 (+28.5%) between
pre-lockdown (from February 16 to March 13) and during confinement
(March 14 to 30). We also observed the most critical concentration
reduction in Grenoble for NO,, with levels significantly (p < 0.01) and
negatively correlated with the average Oxford stringency index (r> =
0.9). Likewise, Gkatzelis et al. (2021) stated in a worldwide analysis that
NO; level decreases were due to the stringency of lockdown measures.
Reductions in traffic-related NO, levels were also reported in the UK
(Brown et al., 2021).

Recall that we are looking here at the differences in the monitored
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Fig. 4. Relative changes and descriptive statistics of daily mean pollutant levels at background (top) and traffic (bottom) stations. Horizontal bars with quoted
percentages represent the relative changes between 2020 (Lockd) and 2015-2019 (Hist), and values are daily mean concentrations in pg/m?>.

pollutant concentrations (i.e., outdoor exposure) over several years
without investigating the mechanisms and/or factors (e.g., meteoro-
logical conditions, changes in the behavior of population displacement,
pollutant transportation, etc.) that could have contributed to these
changes in pollutant levels in 2020. For instance, according to Airparif
(2021), meteorology accounted for one-third of the NO, concentration
decrease in 2020.

Currently, it is well known that exposure to air pollution may result
in a variety of acute or chronic health effects. Short-term outcomes occur

within a few days after acute exposure. Thus, air pollution peaks in-
crease the risks of emergency room visits for asthma, mortality, and
hospitalizations for cardiovascular or respiratory causes and mortality.
Such acute effects impact vulnerable people including children, the
elderly, and patients with respiratory or cardiovascular diseases. Long-
term health effects, originating from persistent exposure to air pollut-
ants, are much greater because they lead to the development of chronic
pathologies. In this study, we found that the most important health risk
reductions in 2020 were related to PMj 5 and NOy while PM; and O3
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Fig. 5. Percentage change in health risks in 2020 from baseline 2015-2019, associated with air pollution changes during the examined periods. Horizontal bars
represent the 2.5th, 50th (median), and 97.5th percentiles as given by the quoted numbers. Health impacts at the 97.5th percentile <0 are highlighted in green. See
Table 2 for the description of health outcomes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of

this article.)

changes had almost no effect on health outcomes.

For long-term health outcomes, the reduction of PM 5 levels in 2020
could lower the risk of low birthweight (from —1,3% up to —30%),
mortality (—3.3%), and lung cancer (—2%). In an Irish study, Philip et al.
(2020) indicated a —73% reduction in very low birthweight between
January and April 2020 compared with the preceding 20 years. Kim
et al. (2021) observed that during the COVID-19 period in South Korea,
the low birthweight rate was 2.2 times lower than that during the
pre-COVID-19 period (2011-2019). For France, in a study by Medina
et al. (2021), the long-term mortality decrease was estimated to be
approximately —0.4% for metropolitan France, which was lower than
that in Grenoble. Likewise, we found a risk reduction of —0.95% in
mortality associated with a decrease in long-term NO, levels in Gre-
noble, whereas Medina et al.’s (2021) estimation showed a —0.2%
decline for all of France. Although going in the same direction, differ-
ences in values between the findings of Medina et al. (2021) and those of
our research mainly reflect the heterogeneity of exposure to air pollut-
ants across France. Like most urban cities, Grenoble is very connected to
major intercity transport networks and therefore very prone to NO,
pollution. The drop in pollutants would have been more pronounced in
Grenoble than the average across the whole country.

Among all short-term effects, those concerning PM3 5 and childhood
asthma would be the most impacted, with —1%, —1.8%, and —3.22%
risk reductions during F1, F2 and L2, respectively. Other European
studies reported larger decreases. In Slovenia, Krivec et al. (2020)
indicated a —71% to —78% decline in paediatric asthma admissions
from March 16th to April 20th, 2020 compared to 2017-2019. Shah
etal. (2021) found a statistically significant change in the level (—0.196;
p = 0.008) of the asthma exacerbation rate in England after March 23rd"
2020. According to Davies et al. (2021), the lockdown in Scotland and
Wales was associated with a —36% pooled reduction in emergency ad-
missions for asthma.

For short-term effects on non-accidental mortality, NO turned out to
be more critical than PMy 5 in contrast to what was seen for long-term

effects. We found a short-term risk reduction of —0.6% in mortality
related to NOy levels in Grenoble during L1, consistent with Medina
etal.’s (2021) estimation of —0.3% for the entire country. Because of the
high NO, concentration decreases, hospitalizations for respiratory cau-
ses could have been reduced by —1.5% during L1 and L2 in Grenoble. In
a cohort study in Greece, Kyriakopoulos et al. (2021) reported that the
incidence rate for respiratory diseases between March and April 2020
was 21.4 admissions per day, compared to 40.8 in 2018 or 39.9 in 2019
(i.e., an approximately 47% reduction). The risk reduction (—0.63%) of
hospitalizations for cardiovascular causes was mainly associated with
O3 levels during F2 in Grenoble. Bhatt et al. (2020) observed a signifi-
cant daily decline in (—5.9%) hospitalizations for primary acute car-
diovascular reasons in March 2020 across a large American tertiary care
health system.

Beyond the differences in values that can be attributed to differences
in methods, epidemiological and environmental contexts, there is a
concordance between all these observations and ours in the reduction of
the health risks associated with air quality during the entire lockdown
period. Other things to consider include hospital avoidance behavior
during the COVID-19 crisis and indoor air. Indeed, many patients may
have delayed treatment for fear of catching the COVID-19 virus in
hospitals. Czeisler et al. (2020) estimated that 41% of American adults
delayed or avoided health care during the pandemic because of concerns
about COVID-19. In addition, the quality of indoor air would certainly
have had an impact on health (perhaps contrasted with outdoor air)
during lockdowns, particularly during L1, when a large proportion of
the population was housebound. All estimates presented in this study are
based only on outdoor air pollutant exposure.

In sum, pollutants with major health impacts in 2020 were NO, and
PM; 5 for both short- and long-term risks. Although O3 was the only
pollutant that underwent an increase during that period, those changes
were not sufficient to induce major health risk increases. The most
impacted short-term outcomes during lockdowns were asthma and
hospitalizations for respiratory ailments. This is consistent with several
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studies showing greater decreases during lockdowns for respiratory ill-
nesses than for cardiovascular diseases. Impacted long-term outcomes
include low birthweight, mortality, and lung cancer. The mortality in
question here would be the delta of deaths to be subtracted from the
large number of deaths caused by COVID-19.

As mentioned above, the experience of lockdowns in 2020 has shown
that the main health impacts were related to NO5 and PMs 5. In Grenoble
area, 56% of NOx emissions can be attributed to transport while 63% of
PM, s emissions originate from wood heating (Atmo, 2020). This
therefore indicates that both emission sectors need to be considered
when designing effective policies to reduce pollution levels. Interest-
ingly, Bouscasse et al. (2022) have recently developed an inverse
approach for the Grenoble urban area, starting from public health ob-
jectives to define urban policies compatible with these objectives. They
report that replacing all inefficient wood-burning appliances with pellet
stoves and reducing private vehicle traffic by 36% would result in a
two-thirds reduction in fine particulate mortality by 2030.

5. Conclusion

As expected, the lockdowns in Grenoble resulted in a substantial
drop in PM and NO;, levels. While the NO, concentration decrease could
be significantly statistically associated with the stringency of govern-
mental mitigation measures, no such clear trend could be drawn for PM
concentration changes, especially during the first lockdown (L1). The
most pronounced health effects were found to be associated with PMy 5
with long-term outcomes such as low birthweight, mortality, or lung
cancer, but also with short-term effects such as childhood asthma. A
decrease in NO, levels was associated, to a lesser extent than a decrease
in PMys, with a drop in long-term mortality risk and a short-term
decline in hospitalizations for respiratory causes. During the re-
strictions, levels of O3 or PMjq did not induce an important change in
health risk compared to the other pollutants. Now that all kinds of ac-
tivities are on the rise, it would be instructive to redo this analysis with
data from 2021 and years to come to learn more about how the trends
outlined in this study will evolve.
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2.3 CONCLUSION

2.3.1 Main results

2.3.1.1 Concentrations changes

Figure 15 provides a summary of the concentrations and health effects changes outlined in the
Article n°1. When comparing pollutants concentrations during the 2020 restrictions with the same
timeframes in 2015-2019, the largest concentration reductions were seen for NO (- 32% average)

and PM.s (- 22% average). O; had increased (+ 11%), contrary to the other pollutants.

Concentrations changes

Background Traffic
/ N

(. %

\» Main changes in health risks
ST

[ 3
* PM;s : - 3% child asthma emergency visits m

* NO;: - 2 % respiratory related hospitalizations %

LT ST&LT
PMas : - 3 % mortality -I-

- 2% lung cancer % PM&Os:
° almost no effect
- 8 % low birth weight @ on health risks

NO: - 1 % mortality _I_ v

Figure 15. Main results regarding concentrations and health risks changes between 2020 (L1, F1, L2) and
2015-2019. ST: short-term, LT: long-term. Concentrations changes refer to all stations (background and traffic)

whereas health risks were calculated using background stations only.
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An important finding was the correlation between NO; levels and the stringency index. This
implies that this index could be used to forecast changes in NO, concentrations based on levels of
imposed restrictions. For instance, it seems feasible to establish a list of restrictions, quantify their

severity using the Oxford stringency index, and subsequently predict the NO, trends accordingly.

2.3.1.2 Health effects changes

It appears from Figure 15 that the consequences of long-term (LT) effects are greater than
that of short-term (ST) effects. In summary, we found that the most significant health
improvements in 2020 were related to reductions in PM»;5 and NO,, while changes in PM;o and O;
had little impact on health outcomes. Now that this health risk assessment has been done, it would
be instructive to supplement these results with an epidemiological study evaluating hospitalizations
for respiratory issues or child visits for asthma during the pandemic. However, such a study is
rather challenging and need to consider several biases like for example the population's tendency
to avoid hospitals in 2020. Similarly, validating mortality data is challenging as well due to its overlap
with the significant deaths attributed to COVID-19. An interesting outcome of this study was the
limited impact on cardiovascular diseases. Cross-checking this with hospital admission figures

would have also been valuable.

2.3.2 Perspectives

This study could be applied to different times of the year, different years, or over longer
periods. For instance, we could use this health risk assessment approach to compare higher PMz;
values from the winter of 2022 (in the context of energy crisis) with those of previous winters.
Benefiting from freely accessible pollutants concentrations data provided by Atmo AuRA is a clear
advantage. Nevertheless, the centralized monitoring approach has its limitations. Reference stations
do not fully reflect actual human exposure, as they are generally far from areas where people live,
travel, or work. Indeed, for populations residing near road traffic or spending a significant amount
of time in places with high or low concentrations of pollutants, the use of data coming only from
background stations in health risk calculations clearly becomes insufficient, or even erroneous.

Figure 15 illustrates the difference in concentrations between two types of stations.
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According to the expressions in Figure 14, a variation in the concentration of AC =
In(1 + x)/f would result in a variation of x % in the risk of the effect associated with 8. For

example, a concentration difference of 6.82 pg/m’ on PMa;scan lead to a 10% variation on the risk
of long-term mortality. These differences will therefore be more or less significant depending on
the pollutant and associated effect considered. All of this therefore requires a detailed estimate of
the exposure of individuals locally and along travel routes. We therefore opted to deploy a sensors
network to get measurements at a finer spatial scale. Furthermore, this study also revealed that
PM;5 had more pronounced health effects than NO,, particularly for LT impacts, often resulting
in chronic diseases or mortality. As a result, we chose to prioritize PM analysis in upcoming
chapters, focusing on PM; or PM,s. This was in phase with the limitations of L.CS in measuring

gases and coarse particles like PM;o (Hassani et al., 2023).

Summary - Results Chapter 2

During COVID-19 restrictions:
e -32% NOgy, - 22% PM3s, - 15% PMyo, + 11% O.
e  Short-term risks of child asthma (- 3%) & hospitalization for respiratory diseases
(- 2%).
e Long-term risks of low birth weight (- 8%), mortality (- 4%), and lung cancer (- 2%).

e  Most pronounced health effects of PMzs, particularly for long-term risks.

Health risks calculations:

e  Small pollutants concentrations differences can lead to important risks variations.
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LOW-COST SENSORS FOR PARTICLE MATTER
MEASUREMENT: CALIBRATION METHOD

Summary - Introduction Chapter 3

e Background: Low-cost sensors (LCS) offer the possibility for finer spatial and temporal
measurements of air pollutant levels but raise questions about the quality of raw data. The
use of LCS therefore requires calibration before any deployment.

e  Objectives:

1. Develop a standardized approach for calibration of LCS;

2. Apply the calibration method to our LCS and assess the performance in Grenoble.

3.1 INTRODUCTION

Low-cost sensors (LCS) networks are becoming increasingly popular in air quality monitoring.
They can provide pollutants concentrations data near places where individual live, addressing the
spatial and temporal variability of air quality (Williams, 2019). Another advantage of LCS is their
affordability, allowing for deployment of various devices within a city. However, one of their main

limitations is the low accuracy of their raw data, which may be attributed to inappropriate
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correction algorithms developed by manufacturers for some contexts, and to the influence of
meteorological factors such as relative humidity or dusts. Consequently, substantial time must be
allocated to recalibrate LCS before usage in monitoring. Calibration involves locating the sensors
near a reference instrument to compare sensor values with the reference and, when needed, adjust
sensor outputs using various correction methods, such as multi linear regression or machine
learning. Figure 16 summarizes the various steps required before LCS deployment. First, LCS are
assembled with an optical PM sensor, a microcontroller (central processing unit), and a sensor
measuring temperature and humidity. Then, to ensure the quality of PM measurements made by
the LCS, we compare them with a reference monitor (colocation study). A calibration equation is
then constructed to correct raw LCS data. Finally, the sensors can be deployed in similar conditions
to those of the colocation. This Chapter 3 is devoted to the description of the calibration method,
while the following Chapter 4 will address sensors deployment and the analysis of network-

generated results.

Assembly Colocation Calibration Deployment
a4 N Y4 I
. Correction L -
Microcontroller example (LR) : -
m™
i

PMger = 0,7 PM_cs

+08 Calibrated LCS

deployed
in Grenoble

Optical T&RH

PM sensor sensor PM values corrected

with corrections
4 formulas

30

L s
0 10 20 30 0 10

\1 Y, \2 PMeer Y, \3 P

J

Figure 16. Steps to low-cost sensors (LCS) deployment. REF: Reference station from Atmo AuRA in “Les

Frénes”. T: temperature, RH: relative humidity, LR: Linear regression. Step 4 is addressed in Chapter 4.

As standardized methods are not yet available, calibrating LCS is a complicated process
(Giordano et al., 2021). The US EPA implemented guidelines that provide metrics to be achieved
to ensure effective PM LCS calibration. However, there is a lack of directives concerning the
calibration techniques to be employed to reach these metrics. Three main techniques can be used

to calibrate PM LCS: 1) Linear and non-linear regressions, 2) mechanistic models involving
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humidity, and 3) sophisticated machine learning (ML) methods (Liang, 2021). A combination of all
three methods is also possible. These three techniques were evaluated to identify the most suitable
for our local environment. In this chapter, we present two papers dealing with calibration. The first
article (article n°2, in French) will present linear and mechanistic methods. The second article
(article n°3) will show how machine learning can help improving PM LCS performance metrics.

The approaches described in both papers can be adapted and applied to similar devices.

3.2 ARTICLE N°2

This paper introduces two distinct calibration methods using regressions. First, a simple linear
regression technique corrects the sensor's measured value using an equation of the form
“y =ax + b”. Second, a mechanistic non-linear method accounting for humidity is used. Most
studies have pointed out the importance of humidity in the calibration equation for PM LCS, as

humidity impacts PM sizes and directly affects optical measurements.

The following papet can be found at: https://doi.org/10.25576/ ASFERA-CFA2023-32891.
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PROTOCOLE D’EVALUATION ET D’UTILISATION D’UNE STATION LOW-COST DE
MESURE DES PARTICULES FINES
M.-L. Aix*', D J. Bicout'

'Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
* marie-laure.aix@univ-grenoble-alpes.fr

TITLE
Protocole for evaluation and use of a low-cost particulate matter monitoring station

RESUME

Les capteurs « low-cost » pourraient révolutionner la mesure des particules fines (PM) mais il parait nécessaire d’évaluer
leurs performances. Ce travail propose un protocole de montage, d’évaluation et d’utilisation d’une station comportant un
capteur PMS7003. Les performances de mesure des PMzs (PM de taille <2,5um) sont comparées aux directives de
'Environmental Protection Agency américaine (EPA). Il apparait que certaines métriqgues (pente et NRMSE) sont non
conformes en I'absence de calibration. Une calibration linéaire les raméne dans les limites de 'EPA et une calibration
mécanistique améliore encore la précision. Les RMSEs sont alors de 0.90 pg/m? (échelle horaire) et 0.48 pg/m? (journée).

ABSTRACT

The use of low-cost sensors could revolutionize the measurement of fine particles (PM). Therefore, we must evaluate their
performance. Here we report the assembly, evaluation and use of a station using a PMS7003 sensor. Its performance to
measure PMzs (PM<2.5um) is compared to the recommendations of the US Environmental Protection Agency (EPA).
Some metrics (slope, NRMSE) are not compliant. A linear calibration brings them within EPA limits and a mechanistic
calibration further improves accuracy. We can achieve RMSEs of 0.90 ug/m? (hourly scale) and 0.48 pg/m? (daily scale).

MOTS-CLES: capteurs low-cost, PMzs, calibration / KEYWORDS: low-cost sensors, PMzss, calibration

1. INTRODUCTION

Ces derniéres années, nous assistons a une croissance de l'intérét pour les microcapteurs optiques “low-
cost”. Parmi ceux-ci, le PMS7003 est I'un des plus utilisés pour la mesure des particules fines (PM). Il est
plébiscité a la fois par les citoyens, les organismes officiels de mesure de qualité de I'air et la communauté
scientifique. Il parait donc important de mieux connaitre ses performances et d’évaluer 'incertitude associée
a ses mesures. S'appuyant sur une méthodologie développée par 'EPA (Duvall et al., 2021) et déja utilisée
récemment dans une étude (Zimmerman, 2022), notre travail vise a donner un apergu des performances et
des limites d’un concept de station de qualité de I'air utilisant le PMS7003. Notre objectif est de fournir un
mode d’emploi couvrant le montage, I'évaluation des performances et le déploiement de ce type de dispositif.
Nous nous focalisons ici sur la mesure des particules fines de taille inférieure a 2,5um (PMzs). L’approche
décrite ci-dessus peut s’adapter et s’appliquer a d’autres dispositifs similaires.

2. MONTAGE

Le dispositif de mesure des PM que nous avons mis en ceuvre comporte deux capteurs low-cost : le PMS
7003 (Plantower), capteur optique de PM, ainsi que le DHT22 (MaxDetect), capteur d’humidité relative et de
température. lls sont connectés a un microcontréleur Wi-Fi ESP8266 qui collecte les informations et les
transforme selon un algorithme. Des fils de couleur sont utilisés pour connecter les composants entre eux et
un boitier en polycarbonate IP66 les protege des intempéries. Fin 2020, le colt total d’'une telle station
avoisinait les 65€. Pour la réalisation des objectifs de ce travail, nous avons construit 9 stations en partenariat
avec Atmo Auvergne-Rhone-Alpes (Atmo AuRA).

3. PERFORMANCES
Pour évaluer les performances des stations, nous avons réalisé une expérience de colocation sur la station

des Frénes (Grenoble) en collaboration avec Atmo AuRA. Il s’était agi alors de comparer les valeurs des
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capteurs a celles remontées par le Fidas ® 200 (Palas GmbH) d’Atmo. Ce processus de colocation s’est étalé
sur 8 mois, du 28 janvier 2021 au 29 septembre 2021.

3.1. Critéres de 'EPA (Duvall et al., 2021)

L’EPA est 'agence qui implémente les lois fédérales de protection de I'environnement aux Etats-Unis. C’est
le cas par exemple du Clean Air Act, qui reglemente I'ensemble des émissions atmosphériques. Dés 1998, le
Congrés a demandé a I'EPA d'élargir ses recherches sur les effets sanitaires des PM. Depuis, I'EPA soutient
activement la recherche sur les PM. Particulierement active dans le domaine des capteurs low-cost, elle a
défini 5 critéres permettant de comparer les valeurs des capteurs a celles d’une référence : le coefficient de
détermination (R?), la pente, I'ordonnée a l'origine, la racine de I'erreur quadratique moyenne (RMSE) et la
racine de I'erreur quadratique moyenne normalisée (NRMSE). Le R? rend compte de la relation linéaire entre
le capteur et la référence, tandis que le RMSE reflete I'écart entre les mesures des stations low-cost et celles
de la référence ; il indique donc la précision du capteur. Enfin, 'EPA utilise d’autres indicateurs, obtenus en
comparant les valeurs des différents capteurs low-cost entre elles, indépendamment de la référence. C'est
par exemple le cas du coefficient de variation (CV) et de I'écart-type (SD). Les standards de 'EPA pour les
capteurs (repris en gris sur la Figure 2) sont les suivants : R22 0.7, RMSE < 7 pug/m3 ou NRMSE < 30%, SD <
5 pg/m3 ou CV < 30%, pente = 1 + 0.35 et -5 < intercept < 5 pg/m?3 (Duvall et al., 2021).

3.2. Avant calibration

Nous avons retiré du jeu de données les périodes de dust sahariens et celles ou I'humidité relative (HR)
dépassait 98%. Lorsque I'on étudie les données des stations a la fréquence horaire, les métriques telles que
la pente et le NRMSE sortent des standards de I'EPA (Figure 2, partie “Avant calibration”) ; les autres
métriques restant conformes. Lorsque I'on passe a une fréquence journaliere, on constate que le NRMSE
s’améliore, mais reste non conforme. La pente évolue peu. Il est donc nécessaire de procéder a une calibration
des stations. Par ailleurs, le passage a une fréquence journaliere permet une amélioration de 'ensemble des
autres métriques, sauf 'ordonnée a I'origine (intercept) qui est Iégérement dégradée.

3.3. Calibration

Dans un souci de simplicité et de transparence, nous avons utilisé deux modéles empiriques : (1) un modéle
linéaire, (2) un modéle mécanistique prenant en compte I'HR et la température mesurées par le capteur. Ces
modeles ont été ajustés sur 75% du jeu de données et testés sur les 25% restants (Figure 1).

Apprentissage Test

28.01.21 30.07.21 29.09.21
Figure 1. Découpage de la période de colocation

Les formules des modeéles (Tableau 1 ci-dessous), dont les coefficients sont issus du meilleur ajustement, ont
été obtenues avec le logiciel « RStudio Server 2021.09.1 ».

Tableau 1. Formules de calibration (PM2s adj = concentration en PMzs ajustée (corrigée) du capteur, RHint =
humidité relative interne mesurée par le capteur DHT22, Tint = température interne mesurée par le DHT22).

Echelle Modeéle linaire Modéle mécanistique
PM; 5
PM2_5 adj = 0.49 PM2_5+ 2.49 PM, 5 adj = 0.50 +0.65 1 +0.08 Tiyt
Horaire 1+0.25 RHint )g
(Aix et al., 2023) (Aix et al., 2023) 100 - RHint
PM 0.27 +0.67 PMas 0.07T
. 25adj = 0.27 + 0. +0. i
Journaliere  PMps g = 0.54 PMy5 +1.92 “ 1 +0.38__ RHint 3 "
100 - RHyy
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Figure 2. Indicateurs de performance des stations low-cost (zones grisées : standards EPA, lignes en gras :
valeurs cibles, “Heure” = fréquences horaires, “Jour” = fréquences journaliéres). Le rouge est utilisé lorsque
les métriques sortent des limites recommandées par 'EPA, le vert correspondant a une conformité.

DOI : 10.25576/ASFERA-CFA2023-32891

Cet article est publié sous la seule responsabilité de ses auteurs

50



Pour citer cet article : Auteurs (2023), Titre, Congrés Frangais sur les Aérosols 2023, Paris

3.4. Apres calibration

La régression linéaire permet de corriger efficacement les concentrations remontées par les capteurs.
L’ensemble des métriques devient conforme aux exigences de 'EPA (Figure 2, partie “Apres calibration
linéaire”). Au niveau horaire, on observe une légére baisse de 3.4% du R? médian. L'utilisation de fréquences
journalieres offre des métriques plus performantes sans dégradation du R? et avec une amélioration de 40%
du RMSE. La calibration mécanistique au niveau horaire permet quant a elle, par rapport a la régression
linéaire, une amélioration de 7,4% du RMSE et de 3,5% du R2. On observe en revanche une légére
dégradation des indicateurs suivants : CV et écart-type. Au niveau journalier, on observe une hausse de 0,4%
du R2 médian et une amélioration de 20,7% du RMSE par rapport a la régression linéaire.

4. DEPLOIEMENT

Une fois calibrées, les stations low-cost peuvent étre déployées pour I'expérimentation. De maniére générale,
les conditions environnementales dans lesquelles sont installées les stations doivent étre aussi proches que
possible de celles de la colocation :

Le lieu de l'installation doit étre situé prés d’une alimentation et a portée d’'un réseau Wi-Fi.

Les dispositifs doivent étre éloignés de zones fumeurs ou de chantiers.

La hauteur d’accroche doit étre similaire a celle du site d’accueil.

Aucun obstacle, autre que le support, ne doit se trouver dans un périmétre de 1m.

Il est recommandé de ne pas orienter les capteurs plein sud et de les abriter (exposition au soleil).

Enfin, nous avons constaté une baisse des performances de mesure de certains capteurs d’humidité relative
(DHT22) aprés 7 mois, une partie des capteurs donnant continuellement des valeurs égales a 100%. Nous
recommandons donc l'utilisation de capteurs d’humidité et de température plus robustes (Bosch BME280,
Sensirion SHT85...).

5. CONCLUSION

Il ressort de cette expérience qu’'une simple calibration linéaire suffit a rendre les métriques de nos stations
low-cost conformes aux recommandations de 'EPA en termes de performances. Une calibration mécanistique
améliore significativement la précision des capteurs mais entraine une treés légére dégradation du CV et de
I'écart-type, restants néanmoins dans les plages de 'EPA. A I'échelle horaire, la calibration mécanistique
permet d’atteindre un RMSE de 0.90 ug/m3 et un R2 médian de 0.96, ce qui est trés satisfaisant. A 'échelle
journaliére, il est méme possible d’obtenir un RMSE de 0.48 pg/m3 et un R? de 0.99 par correction
mécanistique. De maniére générale, nous constatons qu'il est plus facile de satisfaire les criteres de
performance EPA lorsque I'on transpose les concentrations a une échelle journaliére, plutdét qu’a une échelle
horaire.
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Summary — Conclusion Article n°2

The key findings of this paper were the following:

e A linear regression formula may be sufficient to align LCS metrics with EPA

performance recommendations.

e Mechanistic calibration improves sensor accuracy by reducing hourly and

daily RMSEs by 7% and 21%, respectively.

Based on these findings, we used the mechanistic calibration in our first study on
mobility (Appendix B). However, we subsequently highlighted that, although linear and
mechanistic regression had the advantage of simplicity, they did not appear to deliver the
best performance when compared to more sophisticated methods like machine-learning
(Liang, 2021). Therefore, we experimented machine learning techniques in the following

article and compared them to traditional linear or mechanistic regression methods.

3.3 ARTICLE N°3

In our literature review on LLCS calibration, we found a study that took an initial step towards
methods harmonization. Schmitz et al. (2021) presented a seven-step technique using machine-
learning to calibrate gas sensors together with an open-access code (Schmitz et al., 2020). Inspired
by that approach, we adapted the method to calibrate our PM LCS. Since the method was initially
designed to calibrate LCS measuring gases such as NO, or Os, and not specifically for PM LCS,
we tailored it to fit our PM sensors study. The adaptation process included specific steps, such as
excluding extreme relative humidity values or days when Saharan dusts events occurred. Dusts
episodes led to elevated levels of PMys and PMio, which the LCS struggled to accurately measure,

unlike the reference instruments. Figure 17 highlights these dust periods, when high PM» s or PMj
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levels are recorded by the reference but not by the LCS, and the Copernicus Sentinel-5P satellite

shows the presence of a dust. This suggests the difficulty of the LLCS to capture those coarse PM.

60

20

PM, 5 cs (MQ/m?)
NN
o

0 10 20 30 40 50
PM, 5 rer (HQ/MP)

Figure 17. Scatterplot of the raw PMy ;5 1cs levels against the official PM2 s rer data from Atmo AuRA. Dust
episodes observed during the colocation . Grey points denote normal days when no dust was identified. Blue points

refer to dust events identified with our technique. The dashed red line shows the parity line, and the black line is the

best linear fit.

To detect and discard dusts events, we adopted a hybrid approach combining field
observations and dust data from the Copernicus Sentinel-5P satellite (Météo-France, 2020). This
extension to the method by Schmitz et al. was published and will be detailed in the next section.
The aim of the paper was to present the LCS calibration method along with the associated

performance.

The paper can be found at: https://doi.org/10.1016/j.scitotenv.2023.164063.
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Low concentrations of pollutants may already be associated with significant health effects. An accurate assessment of
individual exposure to pollutants therefore requires measuring pollutant concentrations at the finest possible spatial
and temporal scales. Low-cost sensors (LCS) of particulate matter (PM) meet this need so well that their use is con-
stantly growing worldwide. However, everyone agrees that LCS must be calibrated before use. Several calibration stud-
ies have already been published, but there is not yet a standardized and well-established methodology for PM sensors.
In this work, we develop a method combining an adaptation of an approach developed for gas-phase pollutants with a
dust event preprocessing to calibrate PM LCS (PMS7003) commonly used in urban environments. From the selection of
outliers to model tuning and error estimation, the developed protocol allows to analyze, process and calibrate LCS data
using multilinear (MLR) and random forest (RFR) regressions for comparison with a reference instrument. We demon-
strate that the calibration performance was very good for PM; and PM, s but turns out less good for PM;, (R = 0.94,
RMSE = 0.55 pg/m>, NRMSE = 12 % for PM; with MLR, R? = 0.92, RMSE = 0.70 pg/m° NRMSE = 12 % for PMy5
with RFR and R? = 0.54, RMSE = 2.98 ug/m> NRMSE = 27 % for PM;, with RFR). Dust events removal significantly
improved LCS accuracy for PM, 5 (11 % increase of R? and 49 % decrease of RMSE) but no significant changes for PM;.
Best calibration models included internal relative humidity and temperature for PM, 5 and only internal relative hu-
midity for PM;. It turns out that PM;, cannot be properly measured and calibrated because of technical limitations
of the PMS7003 sensor. This work therefore provides guidelines for PM LCS calibration. This represents a first step
toward standardizing calibration protocols and facilitating collaborative research.
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1. Introduction

Air pollution is a leading environmental risk factor, causing around 7
million deaths each year (Fuller et al., 2022). In 2021, new World Health
Organization guidelines were established and most of the limits per pollut-
ant were lowered as a result of new evidence from epidemiological studies
(World Health Organization, 2021). It was found that even small rises (of
1 pg/m®) in pollutants could trigger mortality increases (Danesh Yazdi
etal., 2021). Particulate matter (PM) is a complex mixture of solid and lig-
uid particles suspended in air (Adams et al., 2015). In Europe, it is mainly
emitted from anthropogenic sources like residential heating, industry, traf-
fic or agriculture (European Environment Agency, 2020). PM represents a
threat to the environment and human health (Rai, 2016). Classified as car-
cinogenic (Loomis et al., 2013), PM induces public health effects depending
on its size (Valavanidis et al., 2008). A growing body of research shows that
PM; may be more toxic than PM, 5 (Wu et al., 2022b; Zhang et al., 2020a,
2020b). A considerate amount of damage is also caused to plants where PM
can inhibit photosynthesis and protein synthesis (Rai, 2016). For all these
reasons, it is important to effectively measure PM.

Regulatory-grade stations, also called reference monitors, are highly re-
liable. However, they are expensive (10,000 to 100,000€) and few are im-
plemented, especially in developing countries (deSouza et al., 2020).
Moreover, they cannot be easily moved close to people's breathing zone
and are not always well located to properly capture population exposure
(Duyzer et al., 2015).

Low-cost sensors (LCS) are small portable systems measuring PM at a
fine scale, both temporally and spatially. They provide almost real-time
data and are affordable, generally less than €300 per unit. LCS use is in-
creasing worldwide and studies are emerging in developing countries
(McFarlane et al., 2021a; Raheja et al., 2022), where official measure-
ment stations are rare. It is expected that LCS will not achieve the
same accuracy as reference-grade instruments (Zimmerman, 2022), so
it is imperative that LCS undergo a calibration before being used.
Once calibrated and quality checked, they compare well with tradi-
tional reference instruments and can supplement regulatory-grade
networks (Malings et al., 2020).

Various methods are used to calibrate LCS including linear regression
(Barkjohn et al., 2021; Hua et al., 2021; Kosmopoulos et al., 2020), multiple
linear regression (Barkjohn et al., 2021; Malings et al., 2020; Puttaswamy
et al., 2022), mechanistic models based on hygroscopic growth correction
(Barkjohn et al., 2021; Crilley et al., 2020; Malings et al., 2020) and ma-
chine learning (Kumar and Sahu, 2021; Nowack et al., 2021; Patra et al.,
2021). Spatial calibration using regulatory and satellite data also proved
to be efficient to calibrate PM, 5 (Lu et al., 2021; Mousavi and Wu, 2021).
Linear regression (LR) generally lacks accuracy compared to multiple linear
regression (MLR) considering several factors (Badura et al., 2019). Mecha-
nistic models accounting for PM aerosol hygroscopic growth can further im-
prove precision. The performance of traditional linear methods is generally
limited compared to mechanistic approaches or machine learning. They
struggle to capture cross-sensitivities between variables (Jiang et al.,
2021; McFarlane et al., 2021a), but their simplicity and transparency are
key advantages compared to machine learning.

Although various methodologies have been developed to evaluate LCS
performance (Duvall et al., 2021; Fishbain et al., 2017; Languille et al.,
2020), there is currently no harmonized protocol to calibrate LCS, which
makes calibration studies difficult to start and compare. Calibrating LCS is
a complex topic that can involves several questions (Giordano et al.,
2021). For example, LCS users typically wonder how to detect outliers,
which calibration model to select, and how long the calibration is valid.
In 2019, researchers stated that there was no methodology indicating
how to calibrate sensor networks and no ready-to-use open-source code
(Barcelo-Ordinas et al., 2019). Since then, scientists developed process
workflows (Bi et al., 2020; Chojer et al., 2022; Hong et al., 2021) but
none of these studies offered an open-source code or went through a pre-
processing step removing dust events. However, it is critical to check the
presence of dust events in a dataset (Giordano et al., 2021), especially
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when using a LCS which can be blind to dust events like PMS7003.
Molina Rueda et al. (2023) recently acknowledged that other popular LCS
like Sensirion SPS30 and Piera IPS-7100 were also affected by this issue.

Schmitz et al. (2021) tackled complexity and transparency issues by de-
veloping a transparent approach to select the best calibration model. Their
7-step method and open-access code were made available for easy imple-
mentation (Schmitz et al., 2020). In this study, we employ and adapt this
open-source protocol, initially developed for gas-phase pollutants, to cali-
brate a LCS measuring PM. In addition, we integrate critical measures
such as dust events pre-processing and degradation checks to ensure accu-
racy and reliability. The originality of our approach lies in this holistic
methodology which makes a valuable contribution to the field of low-cost
PM sensors. Our objective was not to provide calibration formulas for vari-
ous environments but to develop a complete protocol applicable to different
settings. Our objective is not to provide a calibration formula that could be
used in various environments but rather to develop a complete protocol ap-
plicable to different settings demonstrating hence how it is possible to con-
struct a formula by using the same protocol for different settings. This new
framework will be illustrated on a LCS collocation case study conducted in
Grenoble.

2. Materials and methods
2.1. Field evaluation in Grenoble

2.1.1. Low-cost sensors

Nine low-cost air quality stations measuring PM;, PM, 5, PM;, temper-
ature, and relative humidity (RH) were assembled. Each air quality station
(AQS) had an optical PM sensor (Plantower PMS7003) and a MaxDetect
DHT22 sensor measuring internal RH (RH;,,) and temperature (Tip,).
PMS7003 usually shows a high correlation with reference instrument
(Bauerovi et al., 2020; Kang et al., 2021), stability over at least 15 months
(Bathory et al., 2021), and good reproducibility (Badura et al., 2019). The
AQS operates by drawing PM-carrying air through a pipe (Figs. S1 and
S2). The air then passes through a laser (wavelength = 650 nm), which
gets scattered by PM and impacts a photodiode detector (Kelly et al.,
2017). The resulting signal is converted into an electrical signal and trans-
mitted to the microcontroller (ESP8266), which uses a proprietary algo-
rithm to calculate PM concentrations in pg/m?>.

2.1.2. Collocation site, timeframe, and reference device

The study was conducted in Grenoble (France), the largest city in the
Alps with 450,000 inhabitants. The local climate is semi-continental with
cold winters and hot summers. Before deploying our AQSs, we had to cali-
brate them through comparison with reference-grade instruments certified
for regulatory use. Therefore, we conducted a collocation study with Atmo
Auvergne-Rhone-Alpes, the local regulatory instance measuring air quality.
We hung our AQSs close to the inlet of their reference monitor (approxi-
mately 3 m) for 8 months from January 28, 2021 to September 29, 2021.
The reference station, called “Les Frénes”, was located close to a park in a
low-traffic zone of Grenoble (GPS coordinates: latitude = 45.162°, longi-
tude = 5.735°). Considered as an urban background station, it uses a
Fidas Palas GmbH 200, a certified optical aerosol spectrometer for regula-
tory air pollution monitoring. Contrary to the LCS, it is equipped with a
sampler drawing air at a constant flow rate and an aerosol drying system re-
moving water vapor. The gold standard method to determine PM mass is
based on a gravimetric analysis (Giordano et al., 2021; Noble et al.,
2001). It involves collecting PM on a pre-weighed filter and subsequently
weighing it after sampling and conditioning to eliminate particle-bound
water (Wallace and Hopke, 2022). Fidas 200 does not weight particles
but uses the light scattered to determine particles sizes and count them. It
assumes the particles have a spherical shape and a specific density to calcu-
late their mass concentration using a proprietary algorithm. Fidas 200 is
considered equivalent to the gravimetric EN12341 method for urban back-
ground environments by the Central Laboratory for Air quality Monitoring
(LCSQA, 2017).
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2.1.3. Meteorological data

We sourced weather data from ROMMA (Réseau d'Observation Météo du
Massif Alpin, 2022), an association maintaining automatic semi-professional
stations. The nearest station to our collocation site was located 3 km away
(GPS coordinates: latitude = 45.169°, longitude = 5.768°). A Davis Vantage
Pro2 instrument registered all parameters and rainfall (in mm) was measured
using an Ultimeter gauge. The following ambient variables were used: tem-
perature (Tomb, in “C), relative humidity (RHapmp, in %), and average wind
speed (WS, in km/h). WS was measured as a 10-min average, with a measure-
ment frequency of 2.5-3 s. All other data had a 10-min time resolution. A bi-
nary time-of-day factor (ToD) from the NOAA Solar Calculator (https://gml.
noaa.gov/grad/solcalc/) was extracted to account for diurnal changes.
Hourly measurements made during the night were assigned a value of zero,
while daytime measurements were given a value of one. All data analyses
were performed with RStudio Server 2021.09.1 (Build 372) for Ubuntu Bi-
onic and R statistical software (R Core Team, 2022).

2.1.4. Data cleaning

After collocation, the next crucial step is to prepare data for the first anal-
yses. This involves checking sensors working ranges, performing time align-
ments to match LCS and reference data, and determining whether to fuse
sensor data for comparison. The PMS7003 technical datasheet (Plantower,
2016) specifies a working humidity of 0 to 99 %, to which we added a 1 %
safety margin. Consequently, LCS measurements were filtered out if the inter-
nal LCS RH was <1 % or >98 %. Between 0 % and 14 % of the dataset was
removed depending on the AQS. Approximately 78 % of RH values exceeding
98 % were recorded after 6 months of service. PM concentrations, RH;, and
Tine recorded every 150 s by the LCS but also weather data reported every
10 min, had to be rescaled to hourly values and converted to UTC (Universal
Time Coordinated). The value of the current hour represented the average of
measurements during the previous hour. As all LCS stations were giving highly
correlated results within units over the whole study period (Pearson's correla-
tion coefficient, r> 0.99 for PM;, PM, 5, PM, Tin, and r> 0.97 for RHy,), we
used the “sensor fusion” method by calculating medians of the nine LCS out-
puts to ease data processing. Such a clustering method is considered more ro-
bust because it reduces calibration errors and inter-sensor variability effects
(Barcelo-Ordinas et al., 2019; Smith et al., 2017; Smith et al., 2019).

2.2. Target accuracy metrics for PM sensors

Upon completion of the initial data cleaning process, it still remains to
check LCS data quality. Checking raw sensor performances to see if calibra-
tion is needed should always be the first step. This entails assessing the
closeness of the data to the reference values. The US EPA (United States En-
vironmental Protection Agency) developed guidelines for assessing PM sen-
sors (Duvall et al., 2021), including 5 accuracy metrics: Root Mean Square
Error (RMSE), Normalized Root Mean Square Error (NRMSE), coefficient of
determination (R?), slope and intercept. A scatter plot is drawn to compare
LCS outputs to reference data, and a fitted regression line is used to calcu-
late slope and intercept. If all points align with the bisector, LCS calibration
is unnecessary. The US EPA recommends that the intercept be within —5
and + 5 pg/m3 with a target slope of 1.0 + 0.35. R? should exceed 0,70
for linearity reasons. RMSE is calculated as follows:

(€8]

where y; and x; are PM concentrations measured with the reference and
LGS, respectively. R? reflects the accuracy as the closeness between LCS
and reference values. For PM, 5 the EPA recommends a RMSE target
below 7 ug/m* and NRMSE < 30 %, calculated as:

NRMSE = RI\GSE

x 100 2)

where Y is the average reference value.
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The EPA recommends checking either the RMSE or NRMSE metrics to
assess LCS performance. Although the EPA metrics were originally de-
signed for PM, 5 performance testing, we also applied them to PM; and
PM,,. In France, the Central Laboratory for Air quality Monitoring
(LCSQA) established uniform calibration criteria for PM, s and PM;,
using a relative extended uncertainty (REU) metric rather than RMSE
(LCSQA, 2020). The 7 pg/m3 EPA limit for RMSE may not be suitable for
PM,; or PM;, due to their varying magnitudes. As a result, we mostly used
NRMSE when assessing compliance with EPA criteria for PM; and PM,
which also enables easy comparison across studies. We followed the EPA
guidelines to analyze our dataset and during the regression analysis of
LCS values against the reference as per the US EPA requirement, we ob-
served a distortion of the point cloud (Fig. 1A). There were two distinct pat-
terns for PM, 5 and PM,, that were associated with two different slopes.
Further investigation revealed that the lower slope outliers corresponded
to dust events from Sahara Desert.

2.3. Pre-processing technique for the detection and removal of dust events

In the European Alps, a significant proportion of dust events comes from
the Sahara (Di Mauro et al., 2019). We confirmed that PM measurement
was impacted by those events by checking the daily Pearson correlation co-
efficient (r) between LCS and reference hourly values (Fig. 2A). Each time a
dust event occurred, r was negative because LCS from Plantower (PMS) can
be “blind” to coarse particles like desert dust (Kosmopoulos et al., 2020;
Kuula et al., 2020; Vogt et al., 2021). The following two steps method,
shown in Fig. 2, was used on PM, s to remove dust events on all datasets:
(1) select all times with negative r, (2) validate the presence of a dust
event with CAMS (Copernicus Atmosphere Monitoring Service) satellite
data (retrieved 0.1° x 0.1° resolution dust values from ENSEMBLE dataset
(Météo-France et al., 2020) (‘analysis’ type)) (Fig. 2B). These satellite data
were recovered via a free CAMS Web Application Programming Interface
(API). The code we developed for extracting dust events from Copernicus
API is available in the open-source repository Zenodo (see DOI below). It
turned out that all events with negative r corresponded to dust events
seen by CAMS. All those events (5 % of the full period) were removed
from the complete datasets for PM;, PM, s, and PM;, (Fig. 2C). Next,
using analysis of EPA accuracy criteria revealed some metrics did not
meet standards, indicating calibration was necessary.

2.4. Calibration

After having pre-processed the dataset and checked EPA metrics, we
were ready to apply the Schmitz 7-step calibration method. We also
intended to compare this method to more traditional approaches that do
not use artificial intelligence. Following the same approach as Schmitz
et al., we split the dataset into training and testing sets using a 75/25
ratio for both Schmitz and traditional approaches (Fig. 3). The first
183 days of the collocation were used to identify the best models, which
were then evaluated using the final 60 days.

2.4.1. Traditional approaches

Linear regression aims at finding a linear relationship between refer-
ence measurements (dependent variable) and LCS data (predictor vari-
ables). As an example, the equation for PM, s is:

PM3s ref = do + @) PM2s 3

where PM, 5 ref represents reference concentrations, PM, s the LCS concen-
trations, o, the slope of linear regression and o, the intercept. In the mech-
anistic approach, temperature and RH are included in the calibration
formula. When moisture is high, there is more condensed water on PM sur-
face which scatters more light. This can affect the LCS which tends to give
higher values than it should (Wang et al., 2015). As such, numerous studies
recommend including RH in calibration equations (Badura et al., 2019;
Crilley et al., 2020; Hua et al., 2021). Although with a relatively small
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Fig. 1. Effect of dust pre-processing on regressions of LCS versus reference concentrations (hourly values) and accuracy metrics. The dashed red lines indicate the parity (y =
x), and the black lines are the best linear fit. The raw dataset is shown in (A), while (B) displays the dusts identified with our method (in blue), (C) shows the dataset after dust
removal. Accuracy metrics such as R? RMSE (pg/m3), NRMSE (%), intercept (pg/ms) and slope are included (see Section 2.2 for metrics definitions). The use of green color
indicates EPA compliant metrics, while red color denotes non-compliant metrics with EPA standards.
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A Correlation between LCS and Reference PMy 5

B

Dust (ug.m™)

Dust event Start End

dust n°1 (d1) | 02-06-2021 13:00 | 02-07-2021 09:00

dust n°2 (d2) | 02-22-2021 05:00 | 02-26-2021 22:00

dust n°3 (d3) | 06-19-2021 12:00 | 06-20-2021 16:00

dust n°4 (d4) | 08-13-2021 07:00 | 08-17-2021 17:00

Fig. 2. Removal of dust events from the Sahara Desert: (A) identification of negative daily Pearson correlation coefficients (r), (B) dust events identification, (C) selected dust

events to remove.

influence (Wang et al., 2015), the temperature is also mentioned in various
works together with RH as a confounding factor (Chakraborty et al., 2020;
Giordano etal., 2021). As an extension of Eq. (3), the following equation in-
volving both RH;,, and Tj,, is used (Chakraborty et al., 2020; Streibl, 2017):

PM
PMos oy = G + @) — o2 4 ) Ty “

g(RHint)

where g(RH;,,,), the hygroscopic growth factor, defined as the ratio of wet to
dry particle diameters at a given RH, is determined by Di Antonio et al.
(2018):

in which « refers to the degree of hygroscopicity of a particle, depending on
the local aerosol. The parameters ay, a1, @2 and x were estimated with the
nls() function (R Core Team, 2022).

2.4.2. Schmitz methodology

The Schmitz open-source method is a 7-step methodology (see blue
boxes in Fig. 4) initially developed to calibrate gas-phase pollutants such
as nitrogen dioxide (NO,) or ozone (0O3). An open-access code can be
found online (Schmitz et al., 2020). Step 1 aims to provide a better under-
standing of the data by analyzing distributions and identifying potential
quality issues to be addressed before calibration. This includes checking
the distributions of the reference concentrations, LCS data, and weather

g(RHiyy) = (14 x __RHim (©) variables. This is done on both training and testing sets through histograms,
100 — RHnt . . . . . .
violin plots, and time series plots. Step 2 involves removing outliers as they
Calibration technique Dataset
Linear regression
Mechanistic TRAIN TEST

Multivariate Linear Regression (Schmitz et al.)

Sliding window = |

Random Forest Regression (Schmitz et al.)

| o
TRAIN TEST

Fig. 3. Calibration techniques implemented in this study.
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completed

END

EPA quality
check

Step 7: error
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Predictions
with error

Change
LCS

No calibration
possible

Fig. 4. Methodology flowchart. In blue, the Schmitz method (Section 2.4.2 of the manuscript). In brown, the adaptations made for this PM related study. The numbers (for

example 2.1.4) refer to the corresponding Materials and methods subsections.

can affect calibration models. Data normality is checked with a Shapiro-
Wilk test, followed by a z-test with running mean and standard deviation
to detect outliers. Visualization of the outliers on a time-series aids in ensur-
ing a meaningful time window and z-test threshold. Step 3 involves flagging
test data falling outside the range of the training data, as well as training
data outside the range of the test data. The objective is to identify data
points that may be less reliable for prediction and assign them a higher
level of uncertainty. Step 4 selects and optimizes the best calibration
models, dividing the training dataset into smaller sets using a moving win-
dow. In their case-study, Schmitz et al. use a 5 days window, with the
models trained on four days and tested on the fifth day. Models with the
smaller average RMSE over the various fifth-day predictions are selected.
Subsequently, measures of AIC (Akaike Information Criterion) for the
MLR model and VI (Variable Importance) for the RFR model are assessed
to determine which predictors should remain. VI assesses the relative

importance of each predictor variable in predicting the target variable
and AIC quantifies the balance between model goodness of fit and complex-
ity. Finally, models are tested on the test subset and assessed using RMSE
and R% The most accurate MLR and RFR models are then sent to the next
step. Step 5 allows to validate models by splitting the training set into train-
ing and testing subsets at a 75/25 ratio. Those continuous blocks of data
allow accounting for autocorrelation in the data. Stability across blocks is
then checked using R%, RMSE and VL. Step 6 is about exporting predictions
given by the best MLR and RFR models and plotting them using time series.
Step 7 evaluates the overall error and confidence intervals associated with
the predictions. The reference instrument's technical error is merged with
the statistical error associated with the model's predictions. The former is
derived from reference specifications, while the latter is computed as the
median mean absolute error (MAE) across all blocks during model valida-
tion. We adapted this method to our PM dataset (Fig. 5):
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STEP 1. RAW DATAANALYSIS =» Variables distribution

STEP 2. OUTLIERS REMOVAL =——p 2z-test
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Variables z-score threshold Window Outliers (dataset %)
PM;, PMzs, PMio, Tint, RHint 6 2h <0.10
PM1 ref, PM2.5ref, PM10 ref 6 10 days <0.09
Weather 6 25 days <0.25
STEP 3. FLAGGING Variables Flagged points
Tint n=1
- Flag test data outside train data range
- Flag train data outside test data range RHin n=10
Precipitation n=1

STEP 4. MODEL SELECTION AND TUNING

1. Literature

Calibrati PM2s et ~ PMzs + RHint + Tint
fo?r:]lelson PMzs et ~ PMzs + (1/RHint) + Tin
... (Tables S1-S4)

2. Sliding window size definition Block  w—p

07-30-2021

01-28-2021 I 183 days SILEVS) 09-29-2021

/" . TRAIN TEST
30 days 10 days
train test

3. Model tuning
MLR

- trainControl function - trainControl function
- method « timeslice » - method « ranger »

boot.stepAlC \ / num.trees = 1000

A RFR

Lowest RMSE miry =2 or 3

STEP 5. MODEL VALIDATION — R? and RMSE stability across blocks

STEP 6. MODEL PREDICTIONS — Export concentrations predictions

STEP 7. PREDICTIVE ERROR CALCULATION

Reference technical error Statistical error
PM1, PM2s: 11.3%, PM1o : 13.4%

+

(Mean absolute error)

Fig. 5. Flowchart of adapting the Schmitz method.

(Step 1) Data analysis. Distributions of weather and PM

ilar (Fig. S3) in both training and testing datasets allowing us to con-

tinue the analysis.

data were sim- (Step 2) Outliers removal. Before running the z-test, normality was
checked on each sliding window by the detectOutlier function. For
PM; 0, between 6.8 % and 9 % of the data failed the normality test
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depending on the device. For PM, s, between 7.9 % and 9.9 % of the
data did not pass the normality test, while between 8.6 % and 10.8 %
of PM, data failed the test. Furthermore, between 2.2 % and 3 % of
the RH data and between 2.6 % and 3.3 % of the temperature data failed
the test. We assumed that most of the data aligned sufficiently with the
normal distribution for the z-test to be applicable and we conducted a
visual inspection of outliers (Fig. S3) to ensure that the function did
not erroneously flag the extreme values of typical data spikes as outliers.
Outliers represented <0.1 % of the LCS data.

(Step 3) Flagging. 12 out-of-bounds points were flagged for RH;,, (n =
10), Tipe (n = 1), and rain (n = 1), all occurring during the first two
weeks of August (Fig. S3).

(Step 4) Model selection and tuning.

(a) After conducting an extensive literature search on calibration for
LCS measuring PM, we identified key variables and the most
promising calibration formulas to be tested (models in
Tables S1, S2, S3 and S4).

(b) To find the best RFR and MLR models, a moving window of
30 days was used to train models and 10 days to test (Step 4.2
in Fig. 5). This ratio was chosen proportionally to what was
done by Schmitz et al.

(c) The trainControl function (caret R package) was used on all
blocks.

(d) The models with the lowest RMSE averaged over the various slid-
ing windows were kept. For RFR, the number of features to be
considered at each node of trees (mtry) was adjusted by selecting
the best performing in terms of RMSE.

(Step 5) Model validation. RMSE and R? were considered stable enough
(Fig. S4) compared to what was observed in Schmitz et al.'s work, so we
decided to go further.

(Step 6) Model predictions. Final concentrations predictions were
exported.

(Step 7) Predictive error calculation (see output example in Fig. S4). Re-
garding technical errors in the reference instrument, it was found that
the Fidas 200 datasheet (Palas GmbH, 2020) had an uncertainty of
10 % for PM, 5 and 8 % for PM; . However, local official comparison
tests performed with the gold-standard gravimetric method on the
Fidas 200 in Grenoble revealed an expanded uncertainty (k = 2) of
11.3 % for PM, 5 and 13.4 % for PM;, (LCSQA, 2020) so we applied
this expanded uncertainty. We assumed that PM; had an 11.3 % uncer-
tainty like PM, s.

2.4.3. Calibrations performances metrics

After having used both traditional and Schmitz approaches to generate
calibration formulas, we tested these formulas on the test dataset. To select
the best models, we used both R? (coefficient of determination) and RMSE:

T

i = Xi)2

=
i
|
|

. (6)
()

II'M=

where y; are the PM concentrations measured by the reference, x; repre-
sents PM values predicted by the various correction models and ¥ is the
mean of reference values.

2z (v — Xi)z )
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And after having chosen the best models according to those two criteria,
we checked EPA accuracy metrics again. Nonzero intercepts and nonunity
slopes are less concerning for optical LCS due to their sensitivity to aerosol
characteristics like shape and refractive index. They just have to be cali-
brated for specific aerosol conditions when accuracy is needed (Giordano
et al., 2021; Molina Rueda et al., 2023). R? indicates the prediction quality
of a model and RMSE the accuracy. These two metrics should be given a
higher priority to choose the best models. Once the best calibration models
have been selected and predictions made, it may be important to ensure the
stability of the corrected values over time.

2.4.4. Drift in the corrected measurements over time

An assessment of potential degradation in the corrected measurements
over time was conducted using a methodology proposed by deSouza et al.
(2023a). To this end, we used PM values from the best calibration formulas
(see Table 1, formulas in bold) and called them PMcyyrecteq- A drift error was
then computed for PM; o, PM, 5 and PM; using this formula:

Dﬂﬁ’ = PMcorrected — PM Ref ®

The goal was to investigate the time-dependence of the error between
corrected LCS data and reference values.

3. Results
3.1. Raw data analysis

In line with the EPA guidelines, we started our data analysis by drawing
scatterplots showing measured LCS values against the reference concentra-
tions with a regression line (Fig. 1A). The R? did not meet EPA compliance
standards for PM; o, and the NRMSE was non-conforming for all PM sizes.
During the analysis of the scatterplots, some clusters of points were ob-
served to deviate from the overall trend of the dataset, particularly for
PM, 5 and PM; . These clusters exhibited a smaller slope compared to the
majority of the dataset, and further examination revealed that they were as-
sociated with Saharan dust events.

3.2. Preprocessing with dust events removal

The dust events pre-processing, previously explained in Section 2.3,
allowed us to color-code the dust events on the scatterplot (Fig. 1B)
which visually demonstrated that these outliers would be eliminated with
our technique. We then removed all those dust events in the dataset and
proceeded with a new quality check according to EPA standards (Fig. 1C).
Dust events removal yielded notable improvements in R* values, with a sig-
nificant 93 % increase for PM;, and a 23 % increase for PM, s. After prepro-
cessing, data from LCS for PM; and PM, s already explained 93 % and 90 %
variability of the reference data respectively, whereas PM;, had a much
lower R? (0.52), reflecting a poor correlation with REF. NRMSE re-
mained non-compliant for all PM sizes, indicating a need for further cal-
ibration. A statistical analysis of the dataset cleared of dust events
(Table S5) showed that mean PM;, reference concentrations were
higher than mean LCS concentrations, unlike PM, 5 and PM; where
the LCS tended to overestimate the concentrations. ROMMA tempera-
ture values were smaller than LCS values, which was not unexpected
as the LCS temperature sensor was located inside the device and there-
fore subject to heating. This might as well have been enhanced by the
southern orientation of the collocation site.

3.3. Performance of calibration protocols

A range of correction formulas (Table 1) was generated using the differ-
ent calibration methods. The best RFR formulas included wind speed for
PM, 5 and PM,,. However, the accuracy improvement was not significant
compared to formulas solely involving RH;,; and Tj,,. Therefore, we pur-
sued with RF formulas using RH;,,; and Tj,, only. This would make the
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Table 1
Model performances on the test dataset, using hourly values.
Method Correction formula R? RMSE" NRMSE” Slope Intercept
PM,
LR PM, et = 0.70 PM; + 0.93 0.80 1.00 21.70 1.06 0.12
Mechanistic PM; pet = 0.08 + 0.83 — M4 0.03 Tjp, 0.92 0.62 13.42 1.05 —0.05
(1 ,ols,mﬂg‘m)!
MLR PM; rer = PM; * RHjp¢ 0.94 0.55 11.95 1.07 -0.33
RFR PM; gef = PM; + RHjy + Tine 0.92 0.62 13.45 0.98 0.33
PMy 5
LR PMa,s gef = 0.49 PMy5 + 2.49 0.83 1.03 17.75 0.86 1.12
Mechanistic PMy5 et = 0.50 + 0.65 ——PMas 4 0.08 Ty 0.87 0.90 15.57 0.88 0.84
140, 2575 i :
MLR PMy 5 ref = PMy s * RHip, 0.90 0.78 13.46 0.86 0.48
RFR PMy s gef = PMas + RHipe + Tine + WS 0.92 0.70 12.02 0.96 0.46
PMy s ges = PMys + RHjpe + Tine 0.92 0.70 12.02 0.96 0.44
PM;o
IR PMjg ger = 0.45 PMyo + 7.71 0.39 3.42 31.45 0.33 7.63
Mechanistic PMyg pef = 1.75 +1.12 PMio + 0,23 Tine 0.43 3.31 30.40 0.53 5.40
142,68 n#’ii‘m)
MLR PMig pef = 1.15 4 0.89 — Mo 0,27 Ty, 0.42 3.33 30.61 0.54 5.53
I
RFR PMig gef = PMjo + RHjpe + Tipe + WS 0.54 2.96 27.21 0.64 4.29
PM;g ges = PMjo + RHine + Tine 0.54 2.98 27.36 0.66 4.02

PM; ges = PM; concentrations in pg/m3 measured by the reference, PM; = PM; concentrations in |,|g/m3 measured by the LCS, RH;,, = internal relative humidity in % mea-
sured by the LCS, T;,, = internal (LCS) temperature in °C, WS = average wind speed in km/h, * = the model has interactions.

2 Inpg/m°.

> NRMSE or normalized RMSE (in %) = RMSE divided by the mean of the observed (reference) concentrations and multiplied by 100.

calibration simpler because LCS systematically provide RH;, and Tip,.
Moreover, ambient parameters from external weather stations do not repre-
sent the local LCS environment, so it is better to use internal LCS parameters
for calibration.

PM; models were performing the best in terms of precision, and all met-
rics for PM; and PM, s, including those obtained through the LR technique,
were found to be conform with the EPA checklist. However, the Schmitz
protocol outperformed the traditional methods for all PM sizes. Simple LR
always performed significantly less well than the other techniques. Com-
pared to LR, mechanistic models brought a 38 % accuracy improvement
for PM; and a 13 % accuracy improvement for PM, 5. MLR worked better
for PM; but RFR performed better (lowest RMSE and highest R?) for
PM, 5 and PM; . None of the methods used to calibrate PM;, produced re-
sults that met EPA standards. To compare the four model's fitting more in
detail, we regressed reference PM concentrations against predicted values
on the test dataset (Fig. 6). It highlights the difficulty in accurately
predicting PMj, levels, as the scatter in the data is large and R* does not
comply with EPA standards. Corrected PM, 5 and PM; gave more accurate
results with a better fit.

3.4. PM, calibration improvement essay

To investigate the lower performance of LCS compared to the
reference station for PM,, we considered the concentration difference
between PM; o and PM; s for both reference and LCS as PM(1o — 2.5) ref =
PMig ref—PM3 5 ref and PMjg — 25 = PM;9-PM; 5. The reasoning was to
try to estimate the concentration of PM, 5 counted as PM;,. We found
that the scatterplot of PM(j_2.5) ref Versus PM s ger Shows almost no re-
lationship with a rather high variability (Fig. S5, A) whereas PM;¢_» 5
versus PM, s exhibits a two-slope linear relation with a breakpoint at
28 pg/m® (Fig. S5, B). This clearly indicates that although the reference
and the LCS both use optical probes, the PM;, counting methods (and
the transcription algorithms used) lead to qualitatively and quantita-
tively different results. These two profiles are so different that they can-
not be superimposed by making simple transformations such as
regressions. The regressions obtained are the best we can do.

3.5. The importance of combining preprocessing with the Schmitz method

To evaluate the efficacy of dust events pre-processing, we calibrated our
LCS without removing dust events (Fig. 7C) and we compared perfor-
mances with the full combined method (Fig. 7A). The RFR and MLR
methods used the same predictor variables regardless of whether dust
events were present in the dataset or not. Removing dust events was highly
beneficial for PM, s, as all metrics exhibited significant improvement. We
observed an 11 % increase in R? and a 49 % decrease in RMSE for PM, s.
The situation was more nuanced for PM;, as dust events removal led to a
slight degradation of R? (-1 %) and NRMSE ( + 3 %). For PM, , all metrics
improved by removing dust events, apart from R?, decreasing by 10 %. We
also observed that relying solely on dust events processing without using
the Schmitz method would not be sufficient to meet the EPA standards
(Fig. 7B).

3.6. Long-term stability of corrected PM measurements

The degradation over the course of the experiment is shown in Fig. S6.
No bias over time was observed on the drift. The mean drift over the whole
8 months period was 0.069 (95 % CI: —0.020, 0.157) pg/m3 for PM; o,
0.042 (95 % CI: 0.018, 0.066) pg/m? for PM, s and — 0.001 (95 % CI:
—0.028, 0.026) pg/m3 for PM;. Therefore, degradation over time was
not an issue in our study.

4., Discussion

Our findings indicate that PMS7003 is more effective in measuring PM;
compared to PM, s, with a lower NRMSE and higher R2. This is consistent
with previous research by Molina Rueda et al. (2023) on PMS5003, with
similar raw metrics observed. Our results showed an R? correlation of
0.73 for PM, 5 and 0.93 for PM;, which are consistent with their findings
of 0.76 and 0.9, respectively. In line with their research, our study also con-
firms that PMS7003 is a poor probe for measuring PM . First, PMS7003
clearly underestimated increases in PM, , as already shown (Sayahi et al.,
2019; Vogt et al., 2021). This discrepancy in the PM;, between the
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Fig. 6. Scatterplot of hourly PM reference concentrations versus predicted PM concentrations (test dataset). The red dashed line shows the parity line (y = x) and the black

solid line shows the fitted linear regressions.

reference and the LCS is linked to the size distribution of the particles de-
tected as a function of both the optical wavelength of the PMS7003 and
the angles of diffusion toward the photodiode. Second, it seems hardly fea-
sible to predict the coarse fraction (PM;¢_5 5) by using the PM, 5 cumulative
concentrations. The LCS is technically limited to detect PM; o so our calibra-
tions could not improve performances tremendously. It is reassuring that
models for PM; and PM, s are the best performing since these small parti-
cles penetrate the respiratory and circulatory system more deeply than
PM,, and can have stronger toxicity (Valavanidis et al., 2008).

To achieve better alignment with the reference concentrations, four
calibration techniques were used to enhance the accuracy of LCS measure-
ments. None of the methods used for PM, , produced results that met EPA
compliance standards, while all PM; and PM, 5 performance metrics, in-
cluding those obtained via the LR technique, met EPA criteria. Among the
four tested methods, RFR was the best for PM, 5 whereas MLR performed
better for PM;. Recently, deSouza et al. (2023b) calibrated a LCS for
PM, 5 measurement and also stated that RFR gave better results than MLR
in a stationary setting. Interestingly, for PM,; we found that a mechanistic
approach could perform as well as a bootstrap RFR technique (RMSE =
0.62 pg/m?> for both approaches). But bootstrap MLR still performed better
for PM; (RMSE = 0.55 pg/mg). The best RMSEs found in our study
(0.55 pg/m? for PM,; and 0.70 pg/m? for PM, 5) were excellent compared
to what can be seen in the literature. It is difficult to compare RMSEs
from one study to another because experimental conditions are different,
but we believe that the dust events preprocessing brought a competitive ad-
vantage as it is seldom used before calibrating LCS in ambient conditions.
We only found a study from Kosmopoulos et al. (2020) removing dust
events before calibration, but they only used LR afterwards. Our dust events
removal method using satellite analyses could be further automated using

CAMS API. In our study, dust events removal immediately increased R?
for PM;, and PM, 5 but this preprocessing had less influence on PM;.
These observations were similar to what had been observed by
Kosmopoulos et al. (2020). They stated that the impact of dust events on
LCS was more important for PM, 5 than for PM;, due to a considerable por-
tion of the smaller-sized particles falling within the 1-2.5 pm range. It
would be interesting to develop algorithms to calibrate PM measurements
during dust events without discarding them. Stavroulas et al. (2020) used
polynomial regression using ratios related to the presence of dust events
(PM,/PM, 5 or PM, 5/PM; () and had good performances (40 % NRMSE im-
provement) predicting PM, s with a quadratic equation. Regarding PM;, re-
moving dust events led to a slight degradation of R* (—1 %) and NRMSE
(+3 %), so we could use the PM; dataset without discarding dust events.
However, for PM, s, dust events removal brought an 11 % increase in R?,
a 49 % decrease in RMSE, and all other metrics improved as well. There-
fore, we recommend checking the presence of dust events by considering
scatterplot linearity before step 1 of the Schmitz method. Other types of
LCS might react differently to dust events, and the occurrence of dust events
may not be consistent across all regions and seasons. However, in this case-
study, removing dust events improved considerably the LCS accuracy for
PM, s, which was further enhanced by the Schmitz method. Only a few
studies had similar accuracy metrics. Puttaswamy et al. (2022) found a
15 % NRMSE for PM, 5 using LR with temperature, but their study only
lasted 100 days. Kelly et al. (2021) had NRMSEs ranging from 13.1 % to
22.9 % for wildfires using a Gaussian process model. Model accuracy is con-
sidered as good when 10 % < NRMSE < 20 % (Li et al., 2013) and we found
NRMSE = 12 % for the best PM, 5 and PM; models. As also found by
Schmitz et al. on their experimental dataset, models with internal parame-
ters coming from LCS performed better than models using external weather
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applied the Schmitz method, (C) with the Schmitz method but without dust event removal. The green color indicates EPA compliant metrics, while red values denote non-EPA

compliant metrics.
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variables. There is an exception yet with WS playing an important role in
the first retrieved RFR models for PM, 5 and PM;,. WS was implicated in
many LCS studies (Bathory et al., 2021; Hua et al., 2021; Tian et al.,
2022). Wind influence seems logical as official measurement stations of
PM draw the air inside a pipe at a constant flow rate while the LCS air intake
is subject to more variability. It would be interesting to place an anemome-
ter close to the LCS for a more local measure of WS. It seems important to
use RH when correcting LCS PM concentrations, Kosmopoulos et al.
(2020) found the effects of RH and temperature to be negligible, but their
study took place in the Eastern Mediterranean, where RH is smaller than
in Grenoble and temperatures are warmer. Many studies concluded that in-
volving RH and temperature can improve models (Badura et al., 2019; Magi
et al., 2020). Moreover, RH and temperature might have synergistic effects
on sensor performance (Wu et al., 2022a). A switch from LR to mechanistic
regression involving RH;,,; and T, led to a significant improvement in accu-
racy (13 % for PM, s and 38 % for PM, ). This implies that temperature and
humidity sensors should work properly. Maintenance on MaxDetect DHT22
devices should be considered, especially after 6 months. Another sugges-
tion for improvement would be to replace MaxDetect DHT22 sensor with
possibly more robust low-cost sensors like Bosch BME280 or Sensirion
SHT85. Even if we did not find any evidence of a significant correlation
between rainy days and MaxDetect DHT22 degradation, we could hypoth-
esize that it was enhanced by an unusually humid 2021 summer (Météo-
France, 2021). This was flagged during step 3, where out-of-bound points
were found during the first two August weeks for RHjp, Tine, and rain. In
the case study conducted by Schmitz et al. on gas-phase pollutants, the
most precise models for predicting NO,, or O3 concentrations on a longer ex-
perimental dataset involved Tj,,, while O3 models also included RH;,, and
ToD. These findings are consistent with our study, where we observed
that internal parameters outperformed ambient parameters. However,
ToD had no significant impact on our predictions. In their study, RFR was
found to be the better predictor of gas concentrations, albeit only slightly,
compared to MLR. Our results showed the same, except for PM;,, where
RFR models performed substantially better than MLR.

Degradation over time did not seem to be an issue in this study, in con-
sistency with the 15-month stability reported by Béthory et al. (2021).
However, we recommend performing a degradation check because drift
might be sensor dependent. It is also important to remind that all these cal-
ibration functions remain site-dependent because LCS performance de-
pends on the site-specific PM source mixture (Malyan et al., 2023). We
did not perform a validation across different sites, but we had a wide
range of weather conditions covered during the 8 months experiment. We
do not recommend to blindly transpose these formulas to other sites with
different characteristics and aerosols compositions. The applicability of
the models stays geographically limited but the Schmitz calibration proto-
col itself is available online (Schmitz et al., 2020) and can be applied to
any location. We recommend coupling it with the aforementioned
preprocessing and drift analysis steps (flowchart in Fig. 4, see brown
boxes). Further research might explore Gaussian Mixture Regression
(GMR) to further improve our methodology. This probabilistic technique
handles well nonlinear relationships in non-identically distributed explana-
tory variables. GMR models already demonstrated better R* and mean ab-
solute error in comparison to MLR and RFR (McFarlane et al., 2021b).

5. Conclusion

Taken together, our results show that combining dust events prepro-
cessing with the Schmitz approach can lead to highly accurate results for
low-cost sensors measuring PM. Here this combined framework yielded ex-
cellent results for PM, 5 (R? = 0.92, RMSE = 0.70 pg/m>, NRMSE = 12 %)
and performed even better for PM; (R*> = 0.94, RMSE = 0.55 pg/m°,
NRMSE = 12 %), although the preprocessing step did not significantly im-
proving PM; results. PM;, could not be properly measured and calibrated
due to the technical limitations of the PMS7003. This work represents a
novel approach that has not been previously reported in the literature. It
demonstrates that without dust events preprocessing, PM, s data may
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comply with the EPA guidelines but fall short of achieving optimal accu-
racy. On the other hand, relying solely on dust events processing without
using the Schmitz method would not be sufficient to meet the EPA target
metrics. These findings underscore the importance of taking a holistic ap-
proach to PM data measurement, which involves integrating multiple tech-
niques to achieve optimal accuracy and compliance with regulatory
standards. Moving forward, it may be worthwhile to explore ways to cali-
brate PM measurements during dust events without discarding them from
the dataset, as this could further improve the usefulness of LCS.

Code availability
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Step 4 - Select
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extratrees 1.204735 0.8713001
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extratrees 1.253023 0.8604346

Figure S3. Seven-step protocol outputs examples (steps 1 to 4) (f _12725813: identification

number of one LCS)
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Table S1. List of tested calibration formulas (as entered in RStudio) for Multiple Linear

Regression using LCS temperature and relative humidity.

Formula

PMi ref~ PMi1 * RHint * Tine * ToD * WS

PMi ref ~ PM1 * RHint * Tint * ToD

PMi ret~ PM1 * RHint * Tint * WS

PMi ref~ PM1 * RHint * Tint

PMi ref~ PM1 * RHint

PMi ret~ PM1

PMi ret~ PM1 * RHint * I (1 / RHint) * ToD * WS

PMi Ref~ PM1 * Tint * 1 (1 / RHint) * ToD

PMi et~ PMi * Tine * I (1 /RHine) ¥ WS

PMi ret~ PM1 * Tine * 1 (1 / RHint)

PMi ref~ PM1 + RHint + Tint + ToD + WS

PMi ref~ PM1 + RHint + Tint + ToD

PMi et~ PM1 + RHint + Tine + WS

PMi ref~ PM1 + RHint + Tint

PMi ref~ PM1 + RHint

PMi Ref~ PM1 + Tint + I (1 / RHint) + ToD + WS

PMi Ref~ PM1 + Tint + I (1 / RHint) + ToD

PMi et~ PM1 + Tint + I (1 / RHint) + WS

PMi Ret~ PMi + Tint + 1 (1 / RHint)

PMi rer~ 1 (PMi1/ ((1 +0.251 * (RHint / (100 - RHint))) * (1/3))) + Tint
PMi ret~1 (PMi/ ((1 + (RHint / (100 - RHint))) * (1/3))) + Tint
PMi ret~ 1 (PMi1/ ((1 +0.251 * (RHint / (100 - RHint))) * (1/3)))
PMi ~ PMi Ref+ RHint + I(RHint * PM1 Ref)

PMi ~ PMi ref+ RHint + Tine + I (RHint * PMi ref) + I (Tint * PMi Rref) + I (RHint * Tine) + I (RHint
* PM1 Ref * Tim)

PM, are chosen as an example. The same equations were tested for PMio and PMzs. These
formulas were inspired by different works(Barkjohn et al., 2021; Chakrabarti et al., 2004;
Chakraborty et al., 2020). PM| rer = PM1 concentrations in pg/m® measured by the reference,
PMi = PMi measured by the LCS, RHint = internal relative humidity measured by the LCS, Tint
= internal (LCS) temperature, WS = average wind speed, ToD = binary time of day factor (zero
for night, 1 for daytime). I() isolates a part of the formula and allows it to serve as a predictor
in the model.




Table S2. List of tested calibration formulas (as entered in RStudio) for Multiple Linear

Regression using ambient parameters.

Formula

PMi ret~ PM1 * RHamb * Tamb * ToD * WS

PMi Ref ~ PM1 * RHamb * Tamb * ToD

PMi Ret~ PM1 * RHamb * Tamb ¥ WS

PMi Ret~ PM1 * RHamb * Tamb

PMi ret~ PM1 * RHamb

PMi ref~ PM1

PMi Ref~ PM1 * RHamb * I (1 / RHamb) * ToD * WS

PMi ref~ PMi1 * Tamb * I (1 / RHamb) * ToD

PMi et~ PM1 * Tamb * I (1 /RHamb) * WS

PMi ret~ PM1 * Tamb * 1 (1 / RHamb)

PMi ret~ PM1 + RHamb + Tamb + ToD + WS

PMi ref~ PM1 + RHamb + Tamb + ToD

PMi ref~ PM1 + RHamb + Tamb + WS

PMi ref~ PM1 + RHamb + Tamb

PMi ref~ PM1 + RHamb

PMi Ret~ PM1 + Tamb + I (1 / RHamb) + ToD + WS

PMi ref~ PMi + Tamb + I (1 / RHamb) + ToD

PMi ref~ PMi + Tamb + I (1 / RHamb) + WS

PMi Ref~ PMi + Tamb + I (1 / RHamb)

PMiret~ 1 (PMi/ ((1 +0.251 * (RHamb / (100 - RHamb))) * (1/3))) + Tamb
PMi Ret~ 1 (PMi/ ((1 + (RHamb / (100 - RHamb)))*(1/3))) + Tamb
PMiret~ 1 (PMi/ ((1 +0.251 * (RHamb / (100 - RHamb))) * (1/3)))

PMi ~ PMi ref+ RHamb + I (RHamb * PM1 Rcf)

PMi ~ PMi ref+ RHamb + Tamb + 1 (RHamb * PMi Ref) +1 (Tamb * PMi Ref) +1 (RHamb * Tamb)
+1 (RHamb * PM1 Ref * Tamb)

PM are chosen as an example. The same equations were tested for PMio and PMzs. These
formulas were inspired by different works(Barkjohn et al., 2021; Chakrabarti et al., 2004;
Chakraborty et al., 2020). Tamb and RHamb are ambient variables given by ROMMA (GPS
coordinates: latitude = 45.169°, longitude = 5.768°). PMi ret = PM1 concentrations in pg/m®
measured by the reference, PM1 = PM1 measured by the LCS, WS = average wind speed, ToD
= binary time of day factor (zero for night, 1 for daytime). I() isolates a part of the formula and
allows it to serve as a predictor.



Table S3. List of tested calibration equations (as entered in RStudio) for Random Forest
Regression involving LCS internal temperature and relative humidity. PMi are chosen as an

example. The same equations were tested for PMio and PM2.s.

Models using LCS internal temperature and relative humidity

PMi ref~ PM1 + RHint + Tine + ToD + WS

PMi Ret~ PM1 + RHint + Tint + ToD

PMi Ret~ PM1 + RHint + Tine + WS

PMi Ret~ PM1 + RHint + Tint

PMi ref~ PM1 + RHint
PMi ref = PM1 concentrations in pg/m® measured by the reference, PMi = PMi measured by
the LCS, RHint = internal relative humidity measured by the LCS, Tint = internal (LCS)

temperature, WS = average wind speed, ToD = binary time of day factor (zero for night, 1 for
day).

Table S4. List of tested calibration equations for Random Forest Regression using ambient

parameters. PM1 are chosen as an example. The same equations were tested for PMio and PMas.

Models using ambient temperature and relative humidity

PMi ref~ PM1 + RHamb + Tamb + ToD + WS

PMi ref~ PM1 + RHamb + Tamv + ToD

PMi Ret~ PM1 + RHamb + Tamb + WS

PMi Ref~ PM1 + RHamb + Tamb

PMi1 Ret~ PM1 + RHamb

Tamb and RHamb are ambient variables given by ROMMA (GPS coordinates: latitude =
45.169°, longitude = 5.768°). PMi ret = PM1 concentrations in pg/m® measured by the reference,
PMi = PM1 measured by the LCS, WS = average wind speed, ToD = binary time of day factor
(zero for night, 1 for day).

77



Table S5. Descriptive statistics for hourly PM concentrations, temperature and relative

humidity. The dataset is cleared of dusts and points corresponding to RH > 98%.

PMio PM:s PM; Temperature (°C) RH %

LCS REF* LCS REF* LCS REF* LCS ROMMA LCS ROMMA

Min 0 1.0 0 0.5 0 0.3 -1.8 -2.8 10.9 13.7
Q1 39 7.6 3.5 4.0 2.8 2.9 11.7 9.4 43.8 59.2
Median 8.6 11.6 8.0 6.6 6.3 5.4 18.7 15.7 67.0 79.2
Mean 124 132 111 7.9 8.1 6.5 19.1 15.2 64.25 74.0
Q3 16.1 170 149 10.0 112 8.3 24.8 20.4 87.2 90.3
Max 748 828 576 341 368 329 47.0 34.6 96.8 97

*REF: Reference station “Les Frénes”, Atmo Auvergne-Rhone-Alpes
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Summary — Conclusion Article n°3

A conclusion drawn from this paper is that excluding dusts substantially improves the
performance of calibration algorithms, consequently improving LLCS accuracy. In the
future, allocating research resources to rectify sensor values during these episodes would
be of interest, as this would avoid removing this data from exposure studies. It would also
be interesting to further work on improving dust detection. In the future, it may become
feasible to completely rely on satellite observations for dust detection, eliminating the need
for in-field assessments. This is not currently possible due the coarse 10 km x 10 km
resolution of CAMS satellite data for dusts detection (Météo-France, 2020). Our study
shows the significance of preprocessing data before trying various calibration models.
Finally, another notable aspect of Schmitz et al.'s (2021) method is its approach to address

uncertainties in LCS measurements, including guidelines to calculate them.

3.4 CONCLUSION

The correction formulas for the different PM sizes, along with their associated uncertainties,
are summarized in Table 2. Given the importance of accounting for uncertainties in both reference
and LCS (Koritsoglou et al., 2020; Schmitz et al., 2021), a reference’s technical error of 11% for
PMzs or PM;, and 13% for PMo is also added (LCSQA, 2020). Uncertainties were computed as

follows:

e For MLR and RFR algorithms, the median mean absolute error (MAE) across test

blocks with the reference instrument's technical error were merged as recommended

by Schmitz et al. (2021)

e Tor linear and mechanistic regressions formulas, we calculated the MAE of the test

dataset and added it to the reference’s technical error.

The MAE was calculated as follows:
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Yic lyi — xil
n

MAE =

(2)

Where y; is the predicted (corrected) value, x; the observed value, and n the number of values

in the test dataset.

Table 2. Calibration formulas for PM;, PM;s, and PMyy, along with their uncertainties.

calibration): if PM,5 = 10 pg/m?>, PMasca = 7.39 + 1.68 pug/m3.

Example (LR

Method Formula Uncertainty
PM;
LR PMi ca = 0.70 PM; + 0.93 + (Oll PM; ca + 0.79)
PM,
 PM;cy = 0.08 +0.83 -+ 0.03 Ty,
Mechanistic RHyye )3 + (0.11 PMas ca + 0.44)
mn
(1+013355— RHint)
MLR PMi ca = 1.29 + 0.96 PM; — 0.01 RHjs — 0.003 PM; * RHjpe £ (0.11 PM; ca + 0.61)
RFR PM; ca = PM; + RHjn + Tine s (011 PM; ca + 043)
PM:;
LR PMoas ca = 0.49 PMas + 2.49 * (0.11 PMes ca + 0.87)
PM35
. PMysca = 0.5 +0.65 -+ 0.08 Ty,
Mechanistic RH,,; \3 + (0.11 PMas ca + 0.72)
(1+ 025155 RHint)
= —+ _ L %
MILR 1}:1\1_/?5 ca = 2.86 + 0.79 PMz5 — 0.01 RHjne — 0.004 PM25 + (011 PMas ca + 0.87)
nt
RFR PMz5 ca = PM2s + RHine + Tine 1 (0.11 PMzsca + 0.73)
PMj
LR PMioca = 0.45 PMo+ 7.71 * (0'13 PMioca + 2'72)
PMyqcal = 1.75 + 1.12 Mo 0.23T,
Mechanistic 10Cal = L5+ L RH, %+ oo Tine £ (0.13 PMigca + 2.53)
(1+ 268355~ RHint)
PM1o
PM10 Cal — 1.15+ 0.89 1 +0.27 Tint
MLR RHy,,  \3 + (0.13 PMio cal + 2.86)
(1+ 1002 RHint)
RFR PMioca = PMio + RHjne + Tine + (0.13 PMigca + 2.73)
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Overall, although linear or mechanistic regression models may be adequate to meet US EPA’s
performance guidelines, machine learning calibration models demonstrated promising results in
our study. This is in alignment with the literature, as we observe a growing number of articles using
machine learning in the field of LCS calibration (Liang, 2021). Calibration formulas reported in
Table 2 can be directly transposed to sites with similar aerosol compositions and environments.
Careful use and recalibration are needed when dealing with sites different from the calibration
sites. This work also aligns with recent research showing that calibrated low-cost PM sensors can
effectively complement reference stations, even though they may have technical limitations in
measuring coarse PM, which is of minor concern, given the lower health effects of coarse PM. The
inability of LCS to measure Saharan dust events may be attributed to various factors, dusts
predominantly consisting of PMio and PMa;s (Alonso-Pérez & Lopez-Solano, 2023; Querol et al.,
2019). Some studies suggested that coarse PM could not perform the complete trajectory till the
photodiode inside the PMS7003, especially the 90-degree turns (Sayahi et al., 2019). Others point
out that PM size might influence light scattering and that bigger PM could diffract less light. This
could also result from a difference in the refractive index related to the composition of dust or
from its transparent nature, which might allow the signal to pass through. In summary, there are
several hypotheses, some related to the sensor itself, while others are linked to the composition of
dust particles. More research is needed to explore this topic. A recent study (Alonso-Pérez and
Loépez-Solano, 2023) demonstrated that a LCS, the SDS011, could detect Saharan dust. Hence, it
can be inferred that the SDS011 might provide a more direct path for PM than the PMS7003, or
it may have a different wavelength enabling better PM distinction. This needs to be confirmed by
further research. Badura et al. (2018) noted slightly weaker correlations with a reference for the
SDS 011 (r = 0.88) than for the PMS7003 (r = 0.90-0.92). Combining both sensors like the SDS
011 and the PMS 7003 could offer a synergistic approach, potentially yielding more dependable

data.

The poor performance of LCS on PM led us to disregard PMio and focus only on PM; or
PM.; in the next chapters. The absence of drift and the good results from our calibration study
encouraged us to deploy a LCS network in Grenoble and further analyse the data as detailed in the
next chapter. A limitation of this calibration study resides in the range of colocation concentrations,
ie., the test dataset only features low PM concentrations (e.g., PMzs less than 15 pg/m’). As
explained in the next chapter, it would have been valuable to conduct a more extended colocation

experiment entailing episodes of extreme PM levels.
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Summary - Results Chapter 3

e Excluding dust events improves calibration algorithms performance;
e For PMi, MLR calibration gave better results than LR or mechanistic methods;
e For PM;s, RER calibration gave the best results;

e Performance of PMS7003 is poor for coarse PM like PMjo.
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AN EXPERIMENTAL NETWORK OF LOW-COST
PARTICULATE MATTER SENSORS IN
GRENOBLE

Summary - Introduction Chapter 4

e Background: LCS networks measuring PM are becoming increasingly popular and offer
research opportunities. However, only a limited number of studies analyse their outputs.
e  Objectives:
1. Assess PM levels provided by a LCS network in Grenoble;
2. Study their relationship with the background reference to explore localized variations;
3. Locate PM hot-spots where individuals could face excessive PM exposure.

4. Identify time periods when local PM levels are higher

4.1 INTRODUCTION

The use of low-cost sensors is growing, and there are now tens of thousands of LCS wotldwide
(Searle et al., 2023). Two of the most prominent stationary LLCS networks are PurpleAir (2023) and
Sensor.Community (2023). The LCS are deployed by citizens themselves, and their data is freely
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accessible to everyone via an API, making their use more straightforward. Interestingly, scientists
recently started to use these massive citizen science data to quantify LLCS degradation (deSouza et
al., 2023), develop calibration techniques (Barkjohn et al., 2021; deSouza et al., 2022; Seatle et al.,
2023), especially for wildfires evaluation (Barkjohn et al., 2022). The PurpleAir network had more
than 12,000 sensors in January 2022 (Barkjohn et al., 2022), and the Sensor.Community currently
comprises around 13,000 sensors worldwide. In recent years, smaller networks emerged, such as
Breathe London (2023) and “Love My Air” in Denver (Li et al., 2023). All of these networks
provide unparalleled research opportunities, as long as reference stations are available in close
proximity to calibrate LCS. Scientists also deploy their own LCS networks but there are currently
more studies related to calibration than papers aiming at analysing deployed LLCS outputs. This
approach is prudent, as data reliability is crucial before starting network deployment and analysing
results. Nonetheless, there are limited studies available for us to compare our research to when it
comes to analysing LCS networks. Raheja et al. (2022) deployed five sensors using PMS5003 in
Lomé (Togo) and compared their PM levels with WHO guidelines. However, they missed an on-
site reference monitor against which to compare LLCS measurements. Gitahi and Hahn (2022) used
crowd sourced Sensor.Community measurements and compared them to reference monitors
located close to the LCS. However, they emphasized the lack of standardization in LCS placement
by citizens, which might lead to non-representative measurements. They found good correlations
between LCS and reference stations located within a 1km radius, with almost half of the Pearson
correlation coefficients bigger than 0,7. LCS measurements were impacted by their proximity to
roads and road types. Dimitriou et al. (2023) established an LCS network across 5 Greek cities and
observed strong correlations in daily PM,s levels across locations. Peak concentrations were
primarily linked to regional northern airflows, underscoring the significance of long-distance
transportation. Their objective was to get insights into more localized contributions that can add
to the background levels measured by the central reference. In this study, we are going to analyse
PM levels given by different LCS placed in Grenoble, as well as their relationship with the
background reference values, in order to better understand localized variations. Conducting a
spatio-temporal analysis, we will compare the sensors between each other, and try to identify

potential hot-spots in Grenoble where individuals might be overexposed to PM.
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4.2 MATERIALS AND METHODS

4.2.1 Measuring instruments

The measurements were conducted with the calibrated air quality stations (Aix et al., 2023)
depicted in Figure 18. These stations consist of three main components: a Wi-Fi microcontroller,
an optical PM sensor (PMS 7003) and a humidity/temperature sensor (DHT 22). The detailed

components list can be found in Appendix C.

ESP 8266 Wi-Fi
Microcontroller

PMS 7003
PM sensor

DHT 22 Temperature
5V power supply / and Humidity sensor

Figure 18. Layout of a PM monitoring station

At the beginning of the experiment, all DHT22 sensors were replaced by new ones because
some of them exhibited relative humidity deviations. In total, 8 air quality stations were deployed
in Grenoble and Saint-Martin d’Héres (adjacent city to Grenoble). PM concentrations were

measured at a frequency of approximately 150 s (2mn 30 s).

4.2.2 Sampling locations and time period

Sampling locations were selected to provide comprehensive coverage of the city, in addition
to the official background station. The criteria for sensor placement were stringent, as our objective

was to closely align the sensors deployment conditions with those of the calibration. Since the
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sensors were calibrated in background conditions, they had to be deployed under similar

environments. Moreover, we aimed to measure PM close to ground level, in order to be as

representative as possible of what individuals breathe. The location criteria given to the volunteers

willing to host a station, were as follows:

- In Grenoble or Saint-Martin d’Heres;

- Between 1.5 and 4 meters above the ground (upper levels were prohibited);

- Away from smoking areas or construction sites;

- Avoid south-facing positions (or ensuring shelter if facing south);

- Ensure no obstacle within a circle of 1 meter, aside from the sensor support.

These criteria were crucial as they would influence the quality of the data we would gather later

on. Table 3 displays the characteristics of the locations, together with their deployment time period.

We named the stations using the name of the neighbourhood or street where they were located.

Table 3. Sampling sites description and deployment time period

Name Characteristics Deployment time period

Abbaye Residential area with houses, in a garden 2022-06-30 to 2023-08-08

Algle Residential area with houses, facing towards the 20290629 t0 2023-08-08
street

Bachelard Residential area with houses, in a garden 2022-07-19 to 2023-08-08

City center

Public housing, pedestrian street with shops
and restaurants

2022-09-03 to 2023-08-08

Clemenceau

Public housing, courtyard-side

2022-01-17 to 2023-08-08

Mistral

School facade, facing a courtyard near a street

2022-07-19 to 2023-08-08

Saint-Bruno

Residential building, private terrace

2022-07-25 to 2023-08-08

Saint-Martin
d’Heres

Public housing, facing a garden

2022-09-05 to 2023-06-08

Figure 19 illustrates the stations distribution throughout the urban area.
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Figure 19. Map of the network of LCS showing sensors locations (red) and the official background reference

station from Atmo AuRA (blue).

The station in Saint-Martin d’Heres could not be regularly sampled because of frequent Wi-Fi

connectivity issues. 80% of the PM records were missing, so this station had to be removed from

the analysis.

4.2.3 Data cleaning

PMz;s raw data were fused with temperature and RH measurements made at the same time.
All PMy;s values greater than SOOpg/ m? were also removed because of PMS7003 efficiency range
(Bauerova et al., 2020; Plantower, 20106). This applied to a negligible fraction of the dataset, ranging
from 0.0005% to 0.09%, depending on the sensor. Outliers were not removed from the datasets

to assess individual exposures. The sensor values were subsequently converted into houtly averages
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to facilitate comparison with hourly reference values. All data cleaning steps, as well as the

following selection procedure, are schematized in Figure 20.

Deployment dataset
n=1518268

PM, .>500pg/m? -
excluded

Y

Hourly conversion
n=65621

Y

Dusts removed | n=2316

Y

LCS calibration
n=63305

Merge with
reference

n=3

,| Winterand n=30109
autumn removed

| Saint-Martin
"| d’Heres removed

n=468

Common

working times
y/

Y

Final dataset
n=12705

Figure 20. Flowchart of the data cleaning and selection procedure

The hourly conversion was then followed by a dust removal step. In general, LCS readings are
well correlated to reference values except during dusts when LCS do not capture well large PM like
PMio or PMz; (Jatfe et al., 2023; Kosmopoulos et al., 2020; Molina Rueda et al., 2023). Therefore,
we applied the technique developed in Chapter 3 (Aix et al., 2023) to detect dust events. First, we
checked daily correlations between the reference and the LCS. Second, we uploaded dust values
from Copernicus (Météo-France, 2020). PM values were removed from the dataset when both the

correlation was negative and Copernicus showed a dust (Figure 21).
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Figure 21. Dust identification steps

After a thorough dataset analysis, 7 dust events were identified (Table 4) and removed from

the dataset.

Table 4. Dust events time periods discarded from the dataset

end

start

2022-05-16
2022
2022

2022-05-09

dust1

-06-05

2022-06-01

dust2
dust3
dust4

dust5

-06-24

2022-06-19

2022-09-06
2022-10
2023

2022-09-05

-21

2022-10-17

-07-12
07-25

2023-07-11

dust6
dust7

2023-

2023-07-23

After dust removal (5.6% of the dataset), PM values were corrected using the different

correction algorithms developed by Aix et al. (2023).
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4.2.4 Calibration and time period selection

The calibration formulas use temperature and relative humidity measured by the air quality
station (Appendix 1 and 2). First, the calibrated PM; values were examined with respect to PM ger

measurements (Figure 22). For all LCS stations, an inflexion occurred around PM; ges = 15-

20 pg/m’.

Saint-Bruno Clemenceau Aigle Mistral

City center Bachelard

40

PM, . calibrated

0 20 40 600 20 40 600 20 40 60
PM1Ref

Figure 22. Scatterplots showing calibrated PM; levels versus PMj res 4 outliers were removed for presentation

purposes. The dashed red lines indicate the parity and the blue lines the loess regression curve.

This was intriguing and we therefore checked the LCS raw values (Figure 23). This inflection
was associated with high PM levels observed during autumn and winter. By examining the
relationship between PM; res and PM; 1cs raw values during these two seasons, we found that the
scatterplot could be divided into two distinct parts. The linear regression of PM; 1cs for PM; res

values greater than 20 ng/m? was different from those below 20 pg/m?.

91



Saint-Bruno Clemenceau Aigle Mistral

2 $t .
&s " y=1.3x-053
8
3 Abbaye
= .
o
40
20
y =13x+0.3
g 3

0 20 40

PIVI1 Ref

Figure 23. Scatterplots showing raw PM; levels versus PM; rer for winter and autumn. 5 outliers were
removed for presentation purposes. In blue, the regression lines for PM rer < 20 pug/m?, in orange,

for PM res > 20 pug/m?. The dashed red lines indicate the parity line.

Everything indicated that our calibration formulas were unable to correct PM; 1cs values
corresponding to PM; gt values greater than 15-20 pg/m3. We attempted to implement a dedicated
winter correction algorithm by focusing on the winter portion of the colocation data. Additionally,
we explored the application of an algorithm tailored to PM; ket co-location values > 15 ug/m? We
also tried to calibrate the LCS individually using a simple linear regression, in order to see if
humidity could be responsible for this phenomenon. Polynomial equations were also tested. None
of these methods produced successful results, as all scatterplots still exhibited a distinct inflection
point. Figure 24 displays the colocation PM; levels, and highlights the reason why we struggled to
calibrate these extreme data points. The colocation study took place between the 28" of January
2021 and the 29" of September 2021. As a result, the dataset had limited winter and autumn data.
The primary issue was that the highest level of PM measured during the colocation was 30 pg/m?,
whereas our fixed sensors recorded levels of up to 60 pg/m? during deployment. The colocation
exhibited considerably lower PM levels than the deployment phase, which made the calibration of
extreme values observed on deployed LCS uncertain. This raises the question of validity range of

colocation.
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Figure 24. Scatterplot of hourly LCS average PM; concentrations versus PM; reference concentrations during

the colocation study (8-month dataset). As reported by Aix et al. (2023)

This flattening of the curve phenomenon was also highlighted by Stampfer et al. (2020). In
their study, the relationship between PM, s 1.cs and PMa s res changed at PMy s res values above around
25 pg/m’ (which, in our study, corresponds to PM; values exceeding 16 pg/m’). Wang et al. (2023)
acknowledged the same limitations, having too low PMa;s levels during their colocation. They
highlighted the need for more research on PM levels higher than 20 pg/m? and emphasized the
risk of deploying LLCS in an environment differing from the calibration conditions. As we required
precision for our exposure calculations, we opted to limit our analysis to spring and summer periods
where measured levels are consistent with the colocation. Lastly, we chose to focus on the
overlapping operational periods of the sensors to allow meaningful comparisons. As a result, all
time slots during which one or more LCS did not work were removed for further analysis. This
included removing times when the reference did not deliver results. In total, 61% of the dataset
was discarded during this operation. We had 12705 hourly values remaining in the dataset. The

removed values are left for a different analysis.
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4.2.5 Exposure calculations

We first conducted a descriptive analysis of PM concentrations, temperature and humidity
measured by the air quality stations. Subsequently, we focused on ratios of PM measurements in
relation to their corresponding background reference levels. This normalization technique helps to
identify excessive local PM concentrations above reference levels and allows to compare different

times or days when background concentrations are different. The following ratios were computed:

PM,
PM; ratio = PMy oy (3)
1Re
PM; 5
PM; 5 vatio = PMys ror (4)
. e

In these equations, PM; and PM;;s refer to hourly LCS concentrations while PM; g.s and
PMasres denote hourly reference concentrations. The objective was to identify locations where
individuals might experience PM overexposure in contrast to background reference levels, which
were regarded as a baseline scenario. Following Boulter (2020), within a city, there is a basis of
regional background pollution covering a wide area and relatively stable (Figure 25). Atop this first
layer, there is an urban background, resulting from traffic, residential heating, and industries. The
reference station can capture this urban background, as well as the regional background. Lastly, as
a third layer, there are additional local contributions (hot-spots), such as those coming from traffic.

Our research aimed to evaluate these local contributions. All calculations were made with RStudio

2023.06.2 (R Core Team, 2023).

| | Local traffic sources

Regional background

connaBR [N R ...

€«——————  Urban structure (km) —_—

Pollutant concentration

Figure 25. Simplified representation of urban structure and pollution levels Extracted from Boulter (2020) and

adapted from Keuken et al. (2005).

94



4.3 RESULTS

4.3.1 Descriptive statistics

Statistics conducted for each LLCS, as well as for the reference station are displayed in Table 5.
The sensor located in the city center exhibits the highest levels of PM, along with the largest
standard deviations. For PMj, the least exposed sensor was in Mistral, while for PMzs, it was the
Aigle sensor, both exhibiting the lowest standard deviations. Generally, the LCS displayed lower

PM levels than the reference, except for the city center sensor, as well as Clemenceau for PM;.

Table 5. Descriptive statistics for calibrated LCS and reference hourly PM concentrations, temperature and

relative humidity. SD: Standard deviation.

PM, PMzs Relative humidity Temperature

(ug/m (ug/m) (%) CO)
Location Mean  SD Mean  SD Mean SD Mean SD
Reference 5,5 3,3 6,9 3.8 - - - -
Aigle 4.9 3,0 5,7 2,8 74,5 233 18,7 6,6
Mistral 4.6 2,7 5,8 3,1 68,9 21,7 18,2 6,6
Bachelard 5,0 3,0 6,1 3,3 73,9 19,8 18,2 7,3
Abbaye 5,0 3,3 6,2 3.4 75,3 232 18,7 7.4
Saint-Bruno 53 3,5 6,4 34 59,7 24.6 20,7 7,5
Clemenceau 5,5 3,5 6,7 3.4 51,7 14,9 21,0 6,9
City center 6,2 5,3 7,5 39 57,3 15,8 19,8 6,9

Depending on the LCS, humidity values ranged between 52% and 75%, while temperature
varied between 18°C and 21°C. The sensors oriented towards the south or southwest (Saint-Bruno,
Clemenceau, City Center) exhibited higher temperatures (20-21°C compared to 18-19°C for the

others), and lower relative humidity values (52-60% versus 69-75% for the others).

4.3.2 PM concentrations

When checking distances between sensors and correlations between them, we observed that
the most correlated sensors were generally close to each other. Figure 26 shows a distance matrix

(A) and correlation matrices for PM,s (B) and PM; (C) between sensors. The closest stations
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4 | AN EXPERIMENTAL NETWORK OF LOW-COST PARTICULATE MATTER SENSORS IN
GRENOBLE

(Bachelard and Mistral) were the ones that were the most correlated with each other for PMys, with
a Pearson correlation coefficient indicating a strong association (r=0.95). For some of the LCS,
such as Clemenceau, City Center, or Abbaye, the distance did not seem to influence the correlation

with other LLCS.
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Figure 26. Distances in meters (A), PM; ;5 (B) and PM; (C) correlation matrixes for the LCS and the reference

(hourly values).

Strong correlations were found between the sensors” PM levels and the reference, ranging
from 0.84 to 0.89 for PM,s and from 0.82 to 0.93 for PM,. The sensors showing the weakest
correlations with the reference were Abbaye and City center. The correlations between the PM

values of two sensors were associated with the distance between them, specifically for PM, s (Figure

27).
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Figure 27. Scatterplot of Pearson correlation coefficient between sensors (including reference monitor) for

PM levels versus distance between them, with linear regression and 95% confidence interval.

We observed that the correlation was weaker for PM; (r = -0.52, p-value=0.0044) than for
PMzs.

4.3.3 PM ratios

In order to calculate PM ratios, PM concentrations were compared with reference values to
standardize PM concentrations. This allowed us to focus on local variations in relation to the
reference, in order to identify potential concentration hotspots within specific urban areas. When
checking the average hourly distribution of PM by sensor (Figure 28), we observed diurnal
variations with a minimum between 7-9 a.m. and a maximum around 7-8 p.m. for most LCS. We
also observed that there was more heterogeneity among sensors during the evening peak than
during the morning peak. In the morning, the peaks occurred at 6 a.m., whereas, in the afternoon,
they were more spread out. For Clemenceau, there was an evening peak at 4 p.m., whereas for
other sensors, such as Bachelard or Saint-Bruno, the peak occurred later. The Mistral sensor
showed very few diurnal variations, and its signal remained relatively constant, except during the 6

a.m. morning peak.

97



8 PM2_5 Location 18 PM1 Location

Saint-Bruno Saint-Bruno
— Clemenceau — Clemenceau
— Aigle = — Aigle
215 — Mistral / \ o 15 — Mistral
8 — City center © — City center
EN Bachelard 2" Bachelard /
o — Abbaye o — Abbaye
[} 2 T 4
212 et g 12 / \/
o N, % Y4 [ \\ ﬁ /
> \ Al
< \ / < 1 N \o 2>
e 90— g, \| W W N, R D W I oo iy e 0 e R, [ <o AN ',,7/"/ \/ R
e, / sl I e B .
o9 D \/"‘*<>fl\»-/ N
00 01 02 03 04 05 06 07 08 09 10 11 1213 14 1516 17 18 1920 2122 23 00 01 02 03 04 05 06 07 08 09 10 11 1213 14 1516 17 18 19202122 23
Hour of the day Hour of the day

Figure 28. Average hourly PM; ;5 ratios across all deployment locations

On the city center sensor, we observed two important peaks, one at 1 pm and one at 9 pm.
They seemed to correspond to the operational hours of a nearby restaurant. The 9 pm peak was
30% more important than the 1 pm spike. These peaks disappeared on Sundays when the restaurant
was closed. In the same street, there was also a bakery that might have contributed to some
emissions. These PM spikes seemed to influence PM concentrations throughout the day and night,
especially for PM;. This was likely due to the lack of pollutant dispersion in this narrow street. The
LCS in Clemenceau might have been influenced by traffic, as we observed a first evening peak at
4 p.m., which might have been associated with commuting from work. The sensor was located on
one of Grenoble's main boulevard but on the courtyard side. Clemenceau and City center sensors
appeared to stand out from the rest, as confirmed by a spatial clustering analysis using the k-means
method. Figure 29 illustrates the categorization of LCS into three clusters where, for PM,s,
Clemenceau and City center sensors appeared to behave differently from the rest of the network,

while for PM;, Abbaye and City center were separated from the others.
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Figure 29. Sensors clustering using k-means on PM ratios.
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The average PMa s radios per LCS were placed on a map (Figure 30) where ratios were interpolated
using Inverse Distance Weighting (IDW) in QGIS 3.28.3. This technique enabled the identification
of elevated local PM concentrations surpassing reference background levels, potentially resulting
in PM overexposure for individuals. It seemed that the proximity to the city center could be a factor
in determining ratios. Ratios for the different LCS were compared using a Wilcoxon test, and the

results were placed under Figure 30.
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Figure 30. PM; s rato landscape by IDW interpolation The numbers represent the mean PMa s raios per sensor (with
their standard deviation into brackets). All devices exhibited significantly different ratios (p<<0.05, Wilcoxon’s test)

except Mistral, statistically similar with Aigle. Bachelard was also similar with Abbaye.

When considering PM; (Figure 31), LCS close to the city center also appeared to be more
exposed, with the Bachelard sensor showing values equivalent to that of Saint-Bruno. These maps
confirmed the existence of a hotspot in the city center, as well as low PM levels areas around Aigle

and Mistral, meaning that there was a low contribution of local sources in these areas.
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Clemenceau

1.02 (£0.51)

Figure 31. PMj raio landscape by IDW interpolation. The numbers represent the mean PMj reios per sensor (with
their standard deviation into brackets). All devices exhibited significantly different ratios (p<<0.05, Wilcoxon’s test)

except Bachelard, statistically similar with Saint-Bruno or Abbaye. Aigle was also statistically similar with Abbaye.

Depending on the neighbourhood, significant exposure differences could be observed, with
average PM ratios varying by a factor of 1.4 (28%) for PM; and 1.3 (24%) for PMas.

4.4 DISCUSSION

4.4.1 Main findings

In this study, we found that the correlation between the PM values of two sensors was
generally influenced by the distance between them. The most correlated sensors were generally in
close proximity to each other. However, the proximity effect on the correlation between sensors
was weaker for PM; (r = -0.52) than for PMa;s (r = -0.67), which might suggest higher local
contributions for PM; than for PM,;s. Dimitriou et al. (2023) also found significant correlations
between sensors within a city (r from 0.62 to 0.97), and between different cities (r from 0.31 to

0.72), but they did not study distances between LCS. They attributed these strong intra-city
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correlations to similar pollution sources, transport and dispersion conditions. Kosmopoulos et al.
(2022) underlined that, in the warm season, regional transport played a significant role, accounting
for around 80-85% of PMy; in the city center. This could explain the good correlations between
sensors. Perillo et al. (2022) also found good correlations (r>0.71) for PM,s among multiple sites
in Dublin (Ireland). The high correlations we observed between the sensors and the background
reference (from 0.84 to 0.89 for PM,;s and from 0.82 to 0.93 for PM;) highlight the low influence
of local factors, with a substantial impact of urban and regional background. These values were
higher compared to those observed by Gitahi and Hahn (2022), whose maximum correlations
between LLCS and references ranged between 0.68 and 0.78. This could be due to the lack of
standardization in the installation criteria for their LCS, installed by citizens. In our study, the city
center emerged as a hotspot, exhibiting elevated levels of PM; and PM,s, along with higher ratios
when compared to the reference. Zuurbier et al. (2010) analysed commuters’ exposure to PM and
found that particle number counts were higher than background levels in the city center, which
they attributed to street canyon effect caused by high buildings. In our case, these high exposure
levels seemed to be associated with specific time intervals, suggesting a link with a restaurant
activity. In a similar LCS network study, Kosmopoulos et al. (2022) also observed that locations
experiencing the highest PMas levels were not situated in high traffic density areas, but in
pedestrian-only zones with high concentrations of restaurants. PM spikes caused by restaurants
also seemed to influence PM concentrations throughout the day and night, as PMzs concentrations
in these areas were higher than elsewhere. In the same city, Siouti et al. (2021) found the highest
concentration of cooking organic aerosols in an area with high restaurant density. They also
calculated that half of the daily cooking organic aerosol occurred during diner time (from 9 pm to
midnight), while approximately 25% during lunch time (1-4 pm). This distribution appears similar
to what we observed in Grenoble with the city center sensor, although the peak occurred eatlier in
the evening. The elevated PM values could also be attributed to a mountain-side stagnation
phenomenon, as elucidated by Le Bouédec (2021). The PM levels appeared to persist at lower, yet
still significant, values outside of the restaurant's operating hours. Regarding PM ratios, we
observed two distinct areas with a hotspot in the city center and low local emissions areas in the
western part of the city. Ventilation could play a role, as a PMj, stagnation area was identified in
the foothills of the Chartreuse mountain, not far from the city center, by Le Bouédec (2021). To
further confirm or refute this hypothesis, additional sensors would need to be deployed across this

area. In our study, the spatial variabilities of the ratios did not seem to be associated with traffic or
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proximity to major roads. For instance, Mistral, Bachelard and Aigle sensors were located in areas
with major traffic arteries, but brought few local contributions to PM levels, eventually suggesting
a protective effect from the bartier of trees or buildings. Clemenceau however could be influenced
by traffic. Gitahi and Hahn (2022) found that sensors located near major roads presented higher
PM levels than the ones situated in the background areas. We also noticed a greater PM
concentrations heterogeneity during the evening peak compared to the morning peak. This
variability could be associated with ventilation patterns or proximity to major roads. Levels of PM
exposure can vary considerably based on residential location, with ratios spanning from 0.89 to
1.23 for PM; and 0.88 to 1.16 for PMas. This accounts for a 28% difference in exposure to PM;
and a 24% difference for PM,s, which is significant when calculating health risks. An interesting
outcome of this study was that urban hotspots can be non-related to traffic. This was also
highlighted by ElSharkawy and Ibrahim (2022) measuring high levels of pollutants (CO, COs,
VOCs, NO,, SO») close to grilling restaurants. However, they did not measure PM in their study.
Robinson et al. (2018) measured organic aerosol (OA), a major component of PM;;5 and detected
high concentrations of OAs hundreds of meters downwind from certain restaurants, underscoring
the potential of these sources to impact air quality at the neighbourhood level. Our observations

further confirm those results, highlighting the importance of improving emission control measures.

4.4.2 Study limitations

Our work emphasizes the importance of calibration that should be comprehensive to
minimize data losses. In our case, restricting the study to summer and spring seasons resulted in
half of the dataset being not included in the analyses. It is crucial to consider similar PM levels
during the calibration process to those encountered during deployment. Proper calibration across
a wide range of conditions is important (Gitahi & Hahn, 2022), otherwise, a significant portion of
the dataset may become difficult to analyse. Molina Rueda et al. (2023) also recommended
calibrating sensors with similar environmental conditions (temperature, relative humidity...), and
resembling pollution sources to the ones under which the LCS will be deployed. Regarding our
calibration, the changing shape of the scatterplots at PM,s levels of 30-40 pug/m’ (Figure 23) was
also observed in other studies using PMS7003 (Cowell et al., 2022; Dejchanchaiwong et al., 2023).
Searle et al. (2023) identified a bias in PM,s concentrations below 16 pug/m’, further confirming

our observations suggesting a diverging behaviour between values below and above that threshold.
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Kelly et al. (2017) reported that some LLCS begin to exhibit a non-linear response at high PM
concentrations (>40 pg/m’). Specific calibration algorithms seem to be needed for those values.
Wang et al. (2023) acknowledged the same limitations in their study, and recommended having the
broadest possible air quality range during calibration to address air pollution variability in
deployments. Our research also underscored the importance of minimizing LCS downtime and
optimizing sensor maintenance to ensure an adequate dataset for meaningful comparisons.
Implementing automatic alerts notifying us when a sensor malfunctions and providing users
training can be valuable in reducing offline times. Increasing common sensors operational time
periods is an assurance of quality for data analysis. Lastly, in order to improve our study, it would
be beneficial to upgrade the relative humidity sensors. They had to be changed at the beginning of
the deployment and using more robust sensors would be recommended. We also attempted to
calibrate PM readings using an external relative humidity monitor from ROMMA (Réseau
d'Observation Météo du Massif Alpin, 2022). However, the use of internal humidity sensors yielded
better results, likely because they were located within the air quality station near the PM optical
sensor. There is an urgent need for research on humidity sensors, as they may also introduce

uncertainties in calibrated values.

4.5 CONCLUSION

This work underscores the critical importance of ensuring the quality of preliminary calibration
to achieve accurate predictions and a comprehensive data analysis. In this study, focussing on
spring and summer, PM levels measured by the LCS and the reference monitor were strongly
correlated. LCS exhibited high correlations with each other, which seemed to be related to distance
between them, especially for PM,s. These findings highlight a significant regional impact on PM
levels during spring and summer. Moreover, diurnal fluctuations in PM ratios were seen with a 7-
9 am minimum and a 7-8 pm maximum. The city center exhibited the highest PM levels and ratios,
with evening spikes around 9 pm, probably due to restaurant activities. LCS seem appropriate to
identify air pollution hotspots, not necessarily related to traffic, and diurnal variations. In summary,
LCS networks allow to collect more comprehensive spatiotemporal data, facilitating the
identification of exposure disparities within a city. These differences must be considered when

conducting a health risk analysis.
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Summary - Results Chapter 4

e (Calibration should be as wide as possible to cover deployment conditions;

e In this spring — summer study:
o Diurnal variations: 7-9 am minimum & 7-8 pm maximum (9 pm in city center);
o Spatial variations: city center sensor exhibited highest PM levels and ratios due to

acrosols emitted by restaurants;

e LCS enable a finer spatiotemporal mapping of PM exposure.

4.7 APPENDIX
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Appendix 1. Calibration formulas for PM» ;5 concentrations (in bold, the formula used for this

chapter)
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Appendix 2. Calibration formulas for PM; concentrations (in bold, the formula used for this

chapter)
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EXPOSURE TO PARTICULATE MATTER WHEN
COMMUTING IN THE URBAN AREA OF
GRENOBLE (FRANCE)

5.1 INTRODUCTION

e Background: Commuting contributes significantly to daily PM exposure, and more
research is needed to understand how transport mode and locations affect PM exposure.
e  Objectives:
1. Compare PM; and PMz ;s exposure across 4 transport modes (bike, walk, bus,
tramway) in different 4 urban microenvironments;
2. Investigate commuting mode, location, and time effects;
3. Study the impact of street configuration and traffic;

4. Compare inhaled PM doses across transport modes.

5.2 ARTICLE N°4

The following paper (Article n°4) is in preparation for journal submission. The bibliography

is located at the end of the article (pp. 141-152), not at the end of the thesis manuscript.
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ABSTRACT.

Air pollution is a major contributor to mortality and chronic diseases worldwide. Particulate
matter (PM) is one of the most dangerous air pollutants, contributing to an important part of
mortality globally. It is well known that heterogeneity can be seen in urban PM concentrations,
but few papers investigate the influence of transportation mode versus commuting times or
locations in reducing PM exposure. Using low-cost sensors (LCS), we measured PM: (PM <
1pm) and PMzs (PM < 2.5um) levels in four different transport modes (bicycle, walk, bus, and
tramway), across four different streets at three different times of the day. The goal was to better
understand factors driving personal exposure to PM. During this study, conducted in spring
with low PM levels, the transport mode had a greater impact on exposure to PM compared to
the time of day or site. Whether considering PM concentrations ratios to reference levels
(PMratios = PM / PMRef) or inhalation, active transport modes (bike, walk) were the most
exposed, followed by bus and tramway. For PMuatios, the exposure order was the following:
bike > walk > bus > tramway, but when considering inhalation, the rank changed to walk > bike
> bus > tramway. The difference between active and passive modes also increased when
examining inhalation, due to higher ventilation values for active commuters. Segregated bike
lanes seemed to reduce cyclists’ exposure to PMi by 16%. Separating bicycle lanes from
roadways and facilitating access to the tramway should be prioritized. LCS can provide insights

on PM exposure and their use should be encouraged for prevention purposes.

KEYWORDS. Particulate matter, Low-cost sensors, Inhaled dose, Mobility, Urban

microenvironments.

1. INTRODUCTION.

1.1.  Background information

About 70 to 90% of chronic health issues are probably due to environmental differences
(Rappaport and Smith, 2010; Willett, 2002). Air pollution is a major contributor to those
chronic diseases, responsible for 26% of respiratory infection fatalities, 25% of deaths from
chronic obstructive pulmonary disease, and 16% of lung cancer-related deaths (World Health
Organization, 2022). Urban development may amplify exposure to air pollution (Zhang et al.,
2022), while vulnerability could rise due to aging populations and climate warming (United
States Environmental Protection Agency, 2022; Xu et al., 2023).
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Particulate matter (PM) is considered as one of the most dangerous components of air
pollution (Borja-Aburto et al., 1997; Dockery et al., 1993; Raaschou-Nielsen et al., 2013; Samet
et al., 2000). Studies support the significance of considering PM size, demonstrating that
adverse effects are most pronounced when it comes to the smallest particles (Kim et al., 2015;
Meng et al., 2013; Schraufnagel, 2020). People and decision makers would greatly benefit from
gaining more knowledge about PM exposure. Unfortunately, official stations are not always
representative of what individuals breathe, especially when placed in a background area (Kumar
etal., 2017). The primary advantage of mobile PM sensors is to provide information about local
sources affecting individual exposure. Real-time PM monitoring solutions offer people the
opportunity to consciously adapt their behaviours, in order to reduce daily exposure. Addressing
travel habits can be more convenient for individuals than changing their place of residence.
Transport microenvironments often expose individuals to significantly higher pollutant levels
than other places, resulting in a rapid and substantial increase in their daily exposure (Kaur and
Nieuwenhuijsen, 2009). Chaney et al. (2017) found that commuting, while occupying 6-10%
of the day, could contribute up to 12% of daily PM2 s exposure. Therefore, studying individuals'

exposure during their journeys is crucial.
1.2.  Research gap

Kaur et al. (2007) acknowledged that heterogeneity in air quality can be seen, even within a
local urban area. They recognized that many studies focus on the transport mode, overlooking
the potential impact of individual behavior on exposure. Intermodal comparison studies seem
to be the main seminal work (Gelb and Apparicio, 2021). While numerous papers compare
different transport modes (de Nazelle et al., 2012; Peng et al., 2021; Yu et al., 2012), very few
specifically address site effects in comparison to mode influence. They do not directly
investigate the comparative significance of transport mode versus specific locations in reducing
PM exposure. Chaney et al. (2017) also highlighted the fact that few studies compared multiple
modes of transportation simultaneously along a common route, making inter-modal
comparisons difficult. But studies comparing multiple transport modes along various routes are
even scarcer. A few papers were found that compared PM concentrations between different
routes and transport modes. deSouza et al. (2021) conducted a study in Zhengzhou (China) that
closely aligns with our research objective. They examined four modes (bike, taxi, subway, and
bus) along diverse commuting routes. However, their study took place in China, where PM2.s
levels were about 3.5 times higher than ours, they focused solely on rush hours, and they did

not investigate PMi. A strength of their study was that they controlled for background PMaz s
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variations by simultaneously monitoring transport modes on the same route, enabling direct
mode-to-mode pollutant comparisons. Int Panis et al. (2010) also used a pairwise design along
three different routes, assessing both busy and quiet areas but they only studied car drivers and
cyclists. They observed location-driven differences : on one street, PM2.5 concentration was
significantly higher for the bike, while on another street, the concentrations were higher for the
car. Hertel et al. (2008) and Li et al. (2017) assessed different routes but used different modes
on each route. Qiu et al. (2019) studied different routes and modes, finding that traffic volume
was significant for black carbon, but not for PMz s or ultrafine particles. Zuurbier et al. (2010)
compared PM concentrations between two routes with different traffic levels for several
transport modes. Cyclists on the high-traffic route experienced 40% higher particle number
counts than those on the low-traffic route. No significant difference was found in exposure to
PMio and PMz.s but no measurement was made on PM1. Kaur et al. (2005) observed different
PM2s and ultrafine particle counts between a heavily trafficked route and a nearby backstreet,
despite their proximity within 100m of each other. They attributed this difference to traffic
density. Adams et al. (2001) also noted a significant difference in cyclists' exposure to PMz.s
between the main route and a side street route. Further research is necessary to assess the
relative importance of transportation mode and site in reducing exposure to PM, especially to
PM.. It is now well known that transport mode plays a very important role in determining
exposure to PM (Chan et al., 2002; Kaur and Nieuwenhuijsen, 2009), but few field studies have
been considering the influence of modes and specific locations. The current literature on urban
exposure in mobility also lacks research on PM: (Borghi et al., 2021; Gelb and Apparicio, 2021;
Guo et al., 2021), probably because few regulatory air quality authorities routinely measure
PM.1. Yet, Chen et al. (2017) indicated that most health effects of PM2.s can be attributed to PM;
and emerging research suggests that PMi plays a more significant role in respiratory diseases
(Song et al., 2022; C. Wu et al., 2022; Yang et al., 2020; Zwozdziak et al., 2016) or
cardiovascular illnesses (Lin et al., 2016; Han Wu et al., 2022). Furthermore, there is a
significant lack of air pollution studies comparing tramways with other modes, as already
highlighted by Borghi et al. (2021) in a systematic review. After searching over 150 mobility-
related articles, we found only 3 studies focusing on PM in tramways (Asmi et al., 2009;
Moreno et al., 2015; Strasser et al., 2018). Moreover, very few research papers take ventilation
or inhalation into account, leading to poor exposure estimation (Gelb and Apparicio, 2021;
Singh et al., 2021).

To our knowledge, this is the first study trying to investigate transport mode and site related

variability on PM1. It seems important to better estimate PM; variability, especially because it's

111



known that higher levels of fine PM can be found near roadways (Lall and Thurston, 2006; Lee
et al., 2006). Understanding transport mode and site-specific influence on PM levels could also
also help individuals adapt their travel behaviors. Chaney et al. (2019) highlighted a disparity
between public assumptions and real PMa.s exposure levels in transport micro-environments.
Ueberham et al. (2019) found an exposure awareness gap where most people underestimated
PM exposure. They observed that knowledge about health impacts or road characteristics

affected route choices and they recommended using smart sensing for exposure assessment.
1.3.  Study objectives

The objective of this paper is to use portable sensors to better understand factors influencing
personal exposure to PM. PM measurements were conducted with low-cost sensors, especially
useful and popular for personal or local sources monitoring (Oyola et al., 2022). Our goal was
to explore the impact of the transport mode and site on PM concentrations. This research
analysed individual exposure levels to PMi1 and PMas in four urban microenvironments in
Grenoble (France) across four commuting modes (bicycle, walk, bus, and tramway) at low PM
levels (spring season). Additionally, we computed the inhaled dose of PM associated with each
transport mode. Each site exhibited distinct traffic levels, and the study also aimed to explore
the influence of street configuration. To achieve this goal, streets with medium-sized buildings
and narrow streets with close proximity buildings were selected. In summary, the study aimed
to compare different routes using various transport modes and identify the most significant

variable: time of day, site or transportation mode.
2. MATERIALS AND METHODS.

2.1.  Sampling design
2.1.1. Sampling periods

The study was conducted in the urban area of Grenoble (France) in spring, during working
days from April 25, 2022, to May 12, 2022. Ambient temperature recorded by sensors ranged
from 14°C to 34°C (mean: 24°C), and relative humidity between 39% and 97% (mean: 58%).
PM levels from background reference station were lower than during winter, with an average
PMi ref value of 6.3 pg/m® and an average PMa:s ret value of 8.2 pg/m*. Measurements were
recorded during three sessions: S1 in the morning (8-9 am), S2 at noon (12 pm -1 am), and S3
in the afternoon (4-5 pm). The sessions were selected to cover a broad range of traffic conditions
and PM concentrations, while also aligning with displacement peaks in Grenoble. Figure 1 (A)

illustrates the chosen experimental time slots (S1. S2. S3) along with travel statistics for
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Grenoble residents from the 2019-2020 Household Travel Survey (CEREMA, 2022). These
data provide an hourly count of individuals using different transport modes (walk, bicycle or
public transport) for their journeys in Grenoble. Figure 1 (A) also includes local congestion

statistics for car drivers depicted as travel times per kilometer sourced from TomTom (2022a).
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Figure 1. Temporal trends of hourly individual mobilities, car traffic and PM reference background
concentrations in Grenoble. Data sources: (A) Number of travels by foot, bike or public transport:
CEREMA (2022). Average travel time to drive 1km by car in Grenoble (in seconds : TomTom (2022a).

(B) PM concentrations at background reference station (called “Les Frénes”): Atmo AuRA (2023).
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Figure 1 (B) displays PM reference concentrations measured by Atmo Auvergne-Rhone-

Alpes (Atmo AuRA), the local regulatory instance measuring air quality.
2.1.2. Characterization of study location and sampling routes

Grenoble (latitude: 45.188529, longitude: 5.724524) is a mountain valley city with 450,000
inhabitants. Focused on sustainable mobility, Grenoble is recognized as the leading major city
in France for cycling (FUB, 2022). The train, often used to enter or leave Grenoble, provides
connections between Grenoble and neighboring towns. For the purpose of this study, we chose
to focus on four modes of transportation: bicycle, walk, bus, and tramway. The measurement
routes were carefully chosen to include as much as possible transport modes and street
configurations (Figure 2). However, covering all four transport modes was not always possible,
as two roads (Abbé Grégoire or Raoul Blanchard streets) only had three transport modes
available. Two major routes, Jean Pain Boulevard (JP) and Cours Jean Jaures (JA), and two

narrow streets, Abbé Grégoire (AG) and Raoul Blanchard (BL), were examined (see Table 1).
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Figure 2. Map of sampling routes with transport modes and reference location. REF designates the

¥

background reference monitor (Atmo AuRA, station name: “Les Frénes”). JP refers to “Jean Pain
boulevard”, JA to “Cours Jean Jaurés”, AG to “Abbé Grégoire street”, and BL to “Raoul Blanchard

street”.

These four routes were carefully selected to enable a comprehensive comparison of the four

transport modes and to represent different neighborhoods of Grenoble with both canyon and
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non-canyon streets, low and high traffic streets. Urban science studies commonly use the street
aspect ratio, defined as the ratio of the buildings (mean) height (H) by street (mean) width (W).
Street canyons can be classified into three categories based on their depth-to-width (H/W) ratio:
shallow (H/W <0.5), medium (0.5 <H/W < 2), and deep (H/W >2) (Tomson et al., 2021). This
street aspect ratio might affect pollutants distribution (Fu et al., 2017; Zhou et al., 2022). In our
study, two sites displayed a shallow H/W ratio and two others had a medium street aspect ratio
(Table 1). In Grenoble, it was not possible to find a deep canyon where we could compare the
different transport modes. Traffic values were extracted from TomTom Traffic Stats
(TomTom, 2022b) and represented the number of cars per working day from 7 am to 6 pm for
the time period spanning from October 17, 2022, to October 28, 2022. Those traffic values were
then recalibrated using a regression technique from Gilardi et al. (2023) using a multiplying
factor of 0.075. The results were close to the values from the Grenoble metropolitan area for

2018 (Infogram, 2021).

Table 1. Routes characteristics with street dimensions, H/W ratio, lanes number, street length, number

of dedicated lanes, and traffic (number of cars from 7 am to 6 pm).

Mean Mean Lanes Street
Site  width  height H/W 1umber! length? Dedicated lanes  Traffic?
(m) (m) (m)
AG 10 11 1'(.)9 3 700 walk 2331
(medium)
0.76
BL 12 9 . 5 480 walk 3933
(medium)
0.39
JA 40 16 (shallow) 8 1000 walk, tramway 12655
0.08 bicycle, tramway,
JP 45 4 (shallow) 10 550 walk, bus 27089

"Lane numbers" refer to the count of traffic lanes specifically allocated for bicycles, pedestrians, buses,
tramways, and cars in each street. 2Street length refers to average distances between trips start and end points
per route for all transport modes, measured in meters. *Number of cars per working day from 7 am to 6 pm
(TomTom, 2022b).

Being the narrowest streets, AG and BL had no dedicated lanes, except sidewalks for
pedestrians, and all transport modes were mixed. On JA, we had a dedicated tramway lane and
on JP, the widest street, all transport modes had dedicated lanes. On JP, the lanes for bicycles
and pedestrians were far from the cars compared to the other sites. In summary, AG is a
residential street with a low traffic volume and high buildings. BL is a street with low

circulation, surrounded by high buildings. JA is Grenoble's longest boulevard, with lighter
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traffic than JP, but it is surrounded by buildings. It features numerous intersections, shops and
restaurants. JP is Grenoble’s most trafficked arterial road, surrounded by low-rise buildings and

a large park, featuring an open street configuration. Figure 3 depicts the different routes.

Figure 3. Typical pictures of the four routes. AG refers to “Abbé Grégoire street” (H/W ratio = 1.09).
BL stands for “Raoul Blanchard street” (H/W ratio = 0.76). JA refers to “Cours Jean Jaurés” (H/W ratio
=0.39), and JP to “Jean Pain boulevard” (H/W ratio = 0.08).

2.1.3. Protocol

Two researchers, equipped with PM and heart rate sensors, conducted measurements while
traveling simultaneously along identical routes with distinct transport modes. Each sampling
trip consisted of traveling from the starting point to the endpoint on the designated route. A trip
did not include waiting times at bus or tramway stops. Measurements were collected for 3 to 4
non-consecutive days at each site. This was influenced by the time constraints of the study,
allowing for a total duration of two weeks (10 working days), as well as the limited number of
experimenters available (two operators). Few measurement sessions had to be cancelled due to

rainy conditions and were rescheduled accordingly (Table 2).
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Table 2. Sampling design with dates, timings (S1, S2, S3) and sites (AG, BL, JA, JP).

S1 S2 S3
8:00 - 9:00 12:00 - 13:00 16:00-17:00

2022-04-25 JP
2022-04-26 JA
2022-04-27 BE

AG
2022-04-28 JP
2022-04-29 JA
2022-05-02 AG

BL
2022-05-03 JA
2022-05-04 Canceled diibd
2022-05-05 oy

2022-05-06 JP
2022-05-11 JA
AG
BL

2022-05-12

A total of 410 trips were monitored by both experimenters (Table 3), with durations ranging
from 50 seconds to approximately 18 minutes. Studies explored the required number of
repetitions on an axis to achieve representative sampling (Anowar et al., 2017; Van den Bossche
et al., 2015). Both reached similar conclusions, indicating that 17 passages are needed to obtain
a representative sample (Gelb and Apparicio, 2021). In our experimental design, we ensured a

minimum of 18 passages per site and per mode.

Table 3. Number of trips (with percentage), trip duration in seconds and trip length in meters (mean

+ standard deviation) by commuting mode

Transport mode Number of trips Trip duration (s) Trip length (m)

Walk 138 (34%) 533+ 168 718 + 189
Bike 104 (25%) 179 + 61 722 +235
Bus 82 (20%) 224 + 106 797 + 228
Tramway 86 (21%) 170 + 65 745 + 246

We used a time activity diary alongside sensors measurements to document the transport
modes used (Table S.1). In this diary, we also reported the presence of idling cars, smokers,
smells from restaurants, waiting times at traffic lamps or intersections, along with their

respective timestamps. 117



2.2. Measuring instruments

PM concentrations were measured with two AirBeam2 portable air monitors, each costing
about 350 euros and manufactured by HabitatMap, a non-profit environmental organization
(HabitatMap, 2022). AirBeam2 devices were attached to the experimenters’ backpacks at a
height of 135cm above the ground, recording PM concentrations (PMi, PMzs, PMio),
temperature, and humidity every second. All the measurements were displayed on an open-

source platform (www.aircasting.org/map). AirBeam2 is built in with a PMS7003 sensor,

which has been demonstrated to provide quality measurements for PM2s and PM; but less
reliable for PMio (Aix et al., 2023). Thus, this study mainly focuses on PM2s and PM..
AirBeam?2 has been successfully used in studies, demonstrating good correlation with reference
devices (Mukherjee et al., 2019; South Coast Air Quality Management District, 2018). Lim et
al. (2019) used AirBeam?2 to model urban street-level air quality with high spatial resolution
using machine learning and reached a R? value of 0.80. Both mobile sensors were calibrated
independently with the “Golden Sensor method”, where a carefully calibrated sensor (“gold
pod”) is used to calibrate the other sensors within the network (Bean, 2021). The first step of
the calibration process was the gold pod calibration with an official reference station from Atmo
AuRA. The gold-pod used the same PM optical sensor as the AirBeam2 (PMS 7003). More
details on the calibration methodology can be found in (Aix et al., 2023) and results can be seen
in Table S.2 (Step 1). In a second step, the AirBeam2 were collocated with the gold-pod from
September 20, 2022 to November 3, 2022. We tested Random Forest Regression (RFR) and
Multilinear Regression (MLR), and the best models involved RFR with temperature and
humidity (see Table S.2, Step 2). R*> and RMSE (Root Mean Square Error) served as
performance metrics, RMSE reflecting the accuracy as the closeness between the AirBeam?2
and the calibrated gold-pod. For PMi, we achieved an R? = 0.99 for both devices, with RMSE
of 0.29 pg/m?® and 0.28 pg/m®. For PMz.s, we obtained an R? of 0.99 or 0.98 depending on the
device, with RMSE of 0.37ug/m? and 0.32 pg/m?®. All those metrics reflected good accuracy
and overall sensors performance. Those calibration algorithms were further used to correct raw
data obtained from AirBeam2. Hourly PM reference values were retrieved from a background
reference monitor (Fidas Palas GmbH 200) from Atmo AuRA situated in a park of Grenoble,
3km away from the experimental sites (see Figure 2). The reference data were collected using
an online and publicly accessible Application Programming Interface (Atmo AuRA, 2023). In
addition, we also used heart rate sensors (Polar OH1) to estimate ventilation, capturing heart

rate (HR) measurements every second, and coupled with a GPS device.
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2.3.  Data cleaning

AirBeam?2 sensors measurements had a 1-s resolution and did not exhibit any noise.
Therefore, AirBeam?2 row data were used as such. The heartbeats measurements were also
recorded at a 1-second resolution, and could be readily synchronized with the sensor's
measurements. The reference PM concentrations were provided at an hourly frequency. By
interpolating the reference values down to a 1-second scale, continuity with other datasets was
ensured, resulting in a unified dataset with 1-second resolution. Transport modes were manually
assigned to PM measurements based on the time activity diary (Table S.1), since the sensors
did not automatically provide that information. Recorded heartbeats were associated with PM
measurements and all the timestamps were converted to local (Paris) time. Before starting
calculations involving PM2s, a methodology developed by Aix et al. (2023) was applied to
check the presence of dusts through Copernicus data (Météo-France, 2020) given the
acknowledged impact of dusts on PM2.s measurements when using low-cost sensors (Giordano

et al., 2021; Hassani et al., 2023; Molina Rueda et al., 2023).
2.4. Data treatment

After cleaning, raw PM values were calibrated as explained in Section 2.2. Most of the
calculations were done without removing outliers because the study objective was to assess
the complete exposure burden experienced by commuters. However, for specific calculations
assessing traffic or street configuration influence (section 3.2.4), outliers were temporarily
removed using the 1.5 times the interquartile range (IQR) method. Outliers were identified
as data points exceeding 1.5 times the IQR above the third quartile (Q3) or below 1.5 times
the IQR beneath the first quartile (Q1), and subsequently excluded. This approach allowed to
mitigate the potential influence of extreme values, like those associated with smokers or

restaurants.
2.5.  Exposure calculations

In a first descriptive part (section 3.1), PM1 concentrations were analysed. In a second part
(section 3.2), we computed the ratio of each PMi measurement to the corresponding
background reference level (PM1 ret), following a methodology already used by various authors
(Adams et al., 2001; Chaney et al., 2017; Huang et al., 2012; Larson et al., 2007). This approach
helps characterize excess PM concentrations above the reference and normalize data to remove
day-to-day variations, especially those related to weather. This allows to attribute any variation

in PM to local sources, topography or microscale meteorology (Thai et al., 2008). Accounting
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for background pollution is crucial in studying local variations of exposure (Gelb and
Apparicio, 2021), and this method is especially suitable for assessing the importance of sites or
modes. The ratios of each PM concentration to the corresponding background levels for each

second were computed:

PMy ratio = PM, ¢ P €Y
e
PM, <
PM; 5 ratio = PM, < P 2)
5Re

To better assess the PM mixture in different commuting microenvironments, we also

calculated the PMi.2.5 fraction per second:
PM; /25 = Dar (3)

Then, we normalized it with respect to the reference fraction using a specific formula:

PM; | PMj ges
PMi /35 ratio = PM, s/ PMy 5 per

(4

Following data visualization using boxplots, nonparametric rank sum Wilcoxon tests were
employed to compare various groups. This facilitated the identification of significant
differences between sessions, modes, or sites, with p-values below 0.05 being considered
statistically significant. In the boxplots, where useful, we included geometric means to mitigate

the influence of outliers.
2.6. Inhalation doses assessment

PM concentration measurements provide insights into the amount of PM present in an
individual's environment. However, these measurements do not directly indicate the actual
quantity of PM entering the body. To estimate the inhaled dose accurately, factors like activity

and ventilation levels must be considered (Int Panis et al., 2010).
2.6.1. Estimation of ventilation values

Ventilations values can be estimated using HR (Ramos et al., 2015; Zhu et al., 2022; Zuurbier
et al., 2009). In their study, Cruz et al. (2020) observed strong correlation values (R?= 0.92)
between ventilation and HR, successfully deriving an equation that was close to a previously
proposed formula by Zuurbier et al. (2009). However, Cruz et al. (2020) considered their
equation more precise as it incorporated a wider range of exercise intensities and a larger
dataset. As a result, they formulated the following equation:

VE = e116 +0.021+HR (5)
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where VE is the minute ventilation in L.min™' and HR the heart rate in beats per minute (bpm).
Heart rates measured from the experimenters served as a basis to estimate minute ventilations
with this formula. Both experimenters had different heart rates, even when using the same
transport mode. Heart rates can depend on factors like age, fitness level, hormones or stress. An
experimenter consistently had lower heart rates and, consequently, lower ventilations than the
other. Therefore, it was necessary to compute average ventilation values per modes. However,
the experimenters did not use each transp ort mode an equal number of times. One experimenter
might have used a specific mode more frequently than the other, leading to a greater number of
heart rate measurements for that user in this particular mode. To mitigate these effects and
harmonize the number of ventilations assigned to each experimenter per mode, ventilation
values were derived with the sample() R function. This adjustment aimed to achieve parity in
the number of minute ventilations assigned to each exp erimenter per transp ort mode. Following

this adjustment, four mode-specific average ventilation values were extracted.
2.6.2. Inhaled dose calculation

Furthermore, we calculated the duration in time and kilometers per trip, along with the
average PM values. We then applied the mean ventilations previously computed using the
following formula to derive an average inhaled dose per minute (Boniardi et al., 2021; Borghi
etal., 2020) :

Dppin = C xVE (6)

Where D is the PM inhaled dose per minute (ug/min), C the PM concentration (ug/m?), and
VE the minute ventilation (m*/min). Inhalation was computed for each 410 individual trips. All

data analyses were performed with RStudio 2023.06.1 (R Core Team, 2023).
3. RESULTS

3.1. PM concentrations

To smooth out inter-day differences, the results from various day s were aggregated by session

and transport mode to examine the impact of those variables.
3.1.1. Transport mode effect

This first part aimed to better understand the effect of the transport mode on the exposure to
PM.i. From Figure 4, we see that bikes had the highest exposure levels, followed by pedestrians

(-3% compared to bike), bus users (-11% versus bike) and tramway commuters (-15%).
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Figure 4. Boxplots of PM; concentrations measured by the AirBeam?2 and the reference station

(darkblue) for the different transport modes and sessions. A logarithmic (log10) scale was applied to the

y-axis. Boxes represent 25th to 75th percentiles, and the central line the median. White points indicate

geometric means, bars outside the box represent 1.5 x IQR, and points denote outliers. All differences

between modes or sessions are highly significant (p <0.0001).

The differences between transport modes were highly significant (p<0.0001) according to a
Wilcoxon test. A large number of outliers were observed, particularly for pedestrians, and few

for the tramway.
3.1.2. Session effect

In Figure 4, PM1 concentrations show a daytime decrease with S1 > S2 > S3, and a noticeable
difference in geometric means among sessions. Active transportation modes (walk and bike)
exhibited higher inter-session variability and tramway the lowest. S3 geometric mean was 30%
lower than S1 geometric mean for pedestrians, 29% lower for bikers, 26% lower for bus users,
and 22% lower for tramway commuters (Table S.3). Differences between sessions were all

highly significant (p < 0.0001) using Wilcoxon test.
3.1.3. Comparison with reference concentrations

Local PM concentrations followed a parallel trend to background reference values, but with
higher geometric means than the reference, at the exception of tramway observations where the
geometric means were almost equal to that of reference. Background levels seemed to influence
local PM concentrations, and they varied from day to day (Figure S.1). Next, we consider the
PM1 wtio (see Eq.(1)) to normalize the local concentration variations with respect to reference

variations and gain better insights into the local conditions.
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3.2. Ratios PM; / PM rer
3.2.1. Transport mode effect

In relation to transport mode, it can be seen on Figure 5 that the ratios rank is the same than
for the concentrations. Bicycles exhibit the highest ratio of PM1 to background station, followed
by pedestrians (- 2% compared to bike), bus (-9% versus bike), and tramway (-14%).
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Figure 5. PM; ratios for different modes and sessions (geometric means in blue). Upper and lower
outliers were replaced by mean points. The differences between modes were all highly significant (p <
0.0001) for all combined sessions (“all”). Within a mode, ratios were all highly significantly different
(p<0.0001), apart from S1 - S3 for tramway (significant, p <0.05) and S2 - S3 for walk (non-significant,

p > 0.05). The horizontal red dotted line represents ratios equal to 1.

Differences between modes were highly significant (p < 0.0001). Apart from tramway, all
transport modes showed higher average exposure concentrations than at the background station.

Tramway users were close to background levels, with a ratio close to 1 (Figure 5).
3.2.2. Session effect

Differences between sessions were significant (except for walk S2 - S3), but less pronounced
than differences previously seen between PM concentrations (Figure 4). For active commuters
and bus users, S1 always had higher ratios than the other sessions. Overall, minimum ratios

were observed during S2, with S3 ratios equal to or greater than S2. The differences between
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S1 and S2 ranged from 10% for bike, 8% for walk to 7% for bus and 6% for tramway. These
differences remained well below those observed for the concentrations, ranging from 22 to

30%. This showed the importance of background pollution in determining local concentrations.
3.2.3. Site effect

The site seemed to influence PM1 ratios, as seen on Figure 6. Within each mode, differences
between sites were consistently significant (p < 0.0001) except for AG and JP in the case of
bike users. The ratios for the active (non-protected or opened) modes seemed to follow traffic
intensity, AG being the less trafficked route and JP the road with the highest congestion (refer
Table 1). There was an exception for bicycle on JP, where the ratio was lower than expected.
JP was the only street having an off-road designated bike lane, well separated from the main
road (refer Figure 3). To quantify the difference in cyclist exposure related to the dedicated bike
lane on JP, we established a linear relationship between traffic and PM; ratios for all streets
except JP (Figure S.2). Using the linear regression formula between traftic and PMi ratio (PM1
ratio = 8.04 *¥107 * traffic + 1.14), we found that the PM ratio for JP was 16% lower than expected.
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Figure 6. Ratios PM; / PM; rer for various modes and sites. In blue, the geometric means. Upper and
lower outliers were replaced by mean points. Within each mode, differences between sites were always
highly significant (p < 0,0001) except for bus, AG - JP (significant, p < 0.001) and bike, AG - JP (non-
significant).

124



Taking a less trafficked road (AG) versus a higher trafficked roadway (JA) decreased the
ratio by 8% for pedestrians, and 7% for cyclists. For those active modes, even on the less
trafficked street (AG), we see a 10% to 12% PM excess compared to the background reference
(PM ratios of 1.1 and 1.12 for walk and bike, respectively). Having a tramway line in a street
would allow pedestrians to reduce their exposure ratios by 12 to 19%, depending on the site
size. For JP, the widest and more trafficked street, the use of tramway could reduce pedestrian

exposure by 19%, while for JA, the reduction was 14%, and for BL, it was 12%.
3.2.4. Street configuration and / or traffic effect

When plotting traffic as a function of street height/width configuration ratio, a strong negative
correlation was observed between these two variables, as evidenced by a Pearson coefficient (r
= - 0.94, p-value=0.059) suggesting collinearity due to a potential influence of street width in

determining traffic patterns.
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Street height / width

Figure 7. Traffic (TomTom, 2022b) as a function of street height/width ratio. R? is the determination

coefficient.

We further attempted to correlate the average PMi rtios experienced by pedestrians with traffic
and the H/W ratio. When correlating the mean PM rtio With traffic (Figure 8, A), we found a
Pearson coefficient r = 0.94 (p-value = 0.059), which seemed to indicate a traffic influence.
When removing outliers in the dataset (Figure 8, B), the Pearson coefficient was improved to a
value of r = 0.97 (p-value=0.025). The determination coefficient (R?) of 0,95 indicated that 95%

of the variance in the mean PMi ratio could be explained by traffic.
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Figure 8. Mean PM 1, for pedestrians as a function of traffic (number of cars per working day, from

7a.m. to 6p.m.). A/ dataset with outliers, B/ dataset without outliers (linear regression output in Table

S.4). R? represents the determination coefficient.

When considering the H/W ratio (Figure 9), good significant correlations (r = -1, p = 0.003)

were found for the dataset with outliers and r =-0.99 (p=0.007) for the dataset without outliers.
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Figure 9. Mean PM, ratio for pedestrians as a function of street H / W ratio. A/ dataset with outliers,

B/ dataset without outliers. R? represents the coefficient of determination. Adjustment formula for the

dataset without outliers: 10g(PM ratio) = 0.22 - 0.14 * (street H/W). Regression output in Table S.5.

Having identified key factors influencing the PM1 ratio, namely transport mode, session, and

site (through the influence of traffic and/or street configuration), we will now hierarchize these
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factors to confirm the primary drivers responsible for street level exposure. The aim is to

provide practical recommendations for individuals seeking to reduce their exposure to PM.
3.2.5. Mode vs. session and site induced variabilities

To better understand the relative influence of mode, session, and site, we compiled the
average PM ratios for each scenario into a table (Table 4). In this table, we categorized the
sites into two groups: the shallow (H/W < 0.5) high-traffic sites (JP and JA) and the medium
(0.5 <H/W <2), less frequented sites (AG and BL). We also illustrated the amplitude range in
one's exposure that could occur by changing mode, session, or street configuration. The
objective was to focus on changes enabling individuals to decrease their exposure ratio
(negative amplitude ranges). To achieve this, we identified the lowest and highest PM ratios
in each scenario, subtracted them, and then calculated a percentage, which we referred to as
"amplitude range":

; Minimum PM io — Maximum PM ;
Amplitude range (%) = 1 ratio lratio , 100  (7)
Maximum PMq r4tio

For example (Table 4), when travelling during S1 in a medium street with low traffic, the
maximum PM ratio Was 1,24. By changing the transportation mode, PMi ratio can be lowered to

0.96, which gave an amplitude range of, (0.96-1.24)/1.24*100 = -23%.

Table 4. Average PMj raii0s per mode, session and sites (shallow or medium streets) with amplitude ranges
observed. The last column “All streets - Site amplitude range” refers to a change in streetconfiguration

(i.e., from shallow streetto medium street) for a same session and mode.

Shallow street / High traffic (JP and JA) Medium street / Low traffic (AG and BL) All streets
Mode V((el?/triwlw?: ;)n PM1 raios ampslitejjeiao?a nge PM1 faios ampslifjjtieornange Siterzr:gp;itude
Bike 28 1,31 1,16 1,19 -11% 1,24 1,11 1,15 -10% -5%
Bus 23 1,14 1,06 1,12 7% 1,2 1,03 1,08 -14% -5%
Tramway 23 1,06 0,97 1,06 -8% 0,96 0,97 1,09 -12% -9%
Walk 29,4 1,31 1,19 117 -11% 1,18 1,11 1,11 -6% -10%
Session S1 S2 S3 S1 S2 S3
e -19% -18% 1% -23% 13% 6%

amplitude range

Generally, we observed that highest amplitude ranges were associated with a change in
transportation mode (amplitude range from -23% to -6%, average of -15%), followed by session

changes (amplitude range: -14% to -6%, average: -10%), and then changes related to the site
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(from -10% to -5%, average of -7%). The most effective way to reduce exposure was typically
by using the tramway, with bus rides being less predictable in terms of PMi ratio.

When examining PM ratios per site, without considering the session (Table 5), AG had a lower
amplitude range (-3%) compared to the other sites, which we attributed to the absence of a
tramway option in this street. The presence of a tramway lane in a street was a way to reduce
exposure to PMi. Taking the tramway instead of cycling reduced the exposure ratios by 15%

for all sites.

Table 5. Average PM, ratios per mode and site with amplitude range observed

Walk Bike Bus  Tramway Amplitude range
AG 1,13 1,14 1,11 - -3%
BL 1,16 1,19 - 1,01 -15%
JA 1,22 1,24 1,07 1,05 -15%
JP 1,25 1,18 1,21 1 -20%
Amplitude range -10% -8% -12% -5%

In summary, the mode remained the most important variable to reduce exposure. The
tramway appeared to be the less exposed way to travel most of the time, the bus showed more

variability, while active transport modes had higher exposure ratios.
3.3.  Thecase of PM2s
3.3.1. Dust event

Throughout the study, PM2.s concentrations displayed a similar behaviour to PM; (see, Figure
S.3 for PMi and Figure S.4 for PM25s), apart from day 10 (D10 or May 12, 2022) when a dust
event was identified. On this day, PM2s rerexceeded the measured PMz s levels (Figure S.4).
Additionally, Copernicus (Météo-France, 2020) measured about of 8 pg/m? of dust (Figure
S.5), which was a bit higher than during the rest of the experiment. The necessary conditions
were satisfied to confirm the presence of dust, following the methodology established by Aix

et al. (2023). Therefore, we removed this day from the dataset for calculations involving PMz.s.
3.3.2. PMas concentrations and PM2:s ratios

Regarding PM2s concentrations (Table S.6), as for PMi, bikes had the highest exposure
levels, followed by pedestrians (-3% compared to bike), bus users (-13% versus bike) and
tramway commuters (-16%). PM2 s ratios for different modes and sessions can be seen in Figure
S.6. Bicycles exhibited the highest ratio of PM2.s to background station, followed by pedestrians
(- 3% compared to bike), bus (-11% versus bike), and tramway (-15%). Regarding the influence
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of a dedicated line on PM2:s ratios €Xperimented by cyclists, we could not draw conclusions as
the average PMa s ratios and traffic were not significantly correlated when removing Jean Pain
(see Figure S.7). This might have been linked to the removal of D10 (dust event) in the dataset
leaving the experimental design unbalanced due to missing experimental values on AG and BL.
We confirmed this when checking the relationship between mean PM2 5 rtios and traffic (Figure
S.8), or the relationship between mean PM2 s ratios and street configuration (Figure S.9). Even if
the PM2s ratios Were still correlated to traffic or street H/W, all p-values were non-significant
(p > 0.05). We also compiled the average PMas ratios for each scenario into a table (Table 6).
As for PM1 ratios, we found that highest amplitude ranges were associated with a change in
transportation mode (amplitude range from -20% to -13%, average of -16%), followed by
session changes (amplitude range: -13% to -5%, average: -8%), and then changes related to the

site (from -9% to -5%, average of -7%).

Table 6. Average PM, s ratios per mode and site with amplitude range observed. The last column “site

amplitude range” refers to a change in street configuration for a same session and mode.

Shallow street / High traffic (JP and JA) Medium street / Low traffic (AG and BL) All streets

Mode  VOEOn o O e Pl e ST amliude
Bike 28 12 109 108 -10% 117 11 1,15 -6% -6%
Bus 23 105 098 099 7% 141 102 1,03 -8% -6%
Tramway 23 0,97 0,9 0,95 7% 0,94 0,92 1 -8% -5%
Walk 294 | 118 11 1,03 -13% 107 105 1,11 -5% -9%
Session S1 S2 S3 S1 S2 S3
Mode 9%  -18%  -12% 20% -16%  -13%

amplitude range

3.3.3. PM;/PM;s fraction

The fraction PMins (see, Eq.(3)) was considered to characterize the PM mixtures
encountered by individuals while breathing. The streets with more traffic seemed to be the ones

with larger PMu2s, particularly for active (opened) transport modes (Figure 10).
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Figure 10. PM,/, 5 fractions for different modes and sites (geometric means in blue). Within a mode, all

sites have significantly different ratios, apart from JA and JP for bus.

3.3.4. PM:/PMy,;sratio to reference

Because measurements were conducted on different days at different times with varying

proportions of PMi ref / PM2s ref at the reference station, we considered the PMi/2.5 ratio (see,

Eq.(4)). On Figure 11, we see that all PM125 are higher than at the reference (PM1/25 ratios >1).
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Figure 11. PM, s ratios for different modes and sites (arithmetic means in blue). Within a mode, all
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PMi/2:5 ratios increased with higher traffic, especially for active modes, but not for JP, which
could indicate the influence of the distance from the roadway for bikes and pedestrians. Overall,
we observed a PMis excess of 4 to 13% depending on the site and mode, compared to the
reference ratio. On JP, PMi.s ratios were smaller than expected for pedestrians and cyclists,
which might be related to dedicated lanes. Overall, higher PM1.2.5 fractions were found close to
the traffic than at the reference. In the majority of cases, we had higher PM 125 ratios in public
transports, except on JP. Lastly, we supplemented this study by assessing ventilation and

inhalation in order to better understand individual exposure to PM.

3.4. Inhaled doses calculation
3.4.1. Ventilation

Using heart rates measured during the experiment, we computed average ventilations per

transport mode (Table 7).

Table 7. Average ventilation rates per transport mode

Mode Ventilation (L/min)
Bike 28.0+6.1
Walk 29.4+11.0
Bus 23.0+ 8.4
Tramway 23.0+ 8.4

The results showed that active transportation modes, like walking and cycling, led to higher

ventilation estimates compared to public transportation modes.

3.4.2. Concentrations and inhaled doses per minute

In order to compute inhaled doses, ventilations had to be multiplied by concentrations. The
graph below (Figure 12, A) shows the PM1 concentrations for the various transport modes

during the 410 trips. The exposure order was as follows: bike > walk > bus > tram.
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Figure 12. Average PM, concentrations (ng/m’) and inhalations (pg/min) per transport mode for the

410 experiment trips. Blue points refer to arithmetic means.

When analyzing inhalations (Figure 12, B), the exposure order changed, with cyclists inhaling
smaller PM: doses per minute than pedestrians. Furthermore, the relative difference between
active modes and public transports users increased when considering inhalation. All these

observations were also true for PMa:s (see, Figure S.10)
4. DISCUSSION.

4.1.  Main results and interpretations versus literature
4.1.1. Mode importance

Our study emphasized that the mode was more crucial than the site to determine exposure to
PM. Active commuters were more exposed than bus or tramway users and whether considering

ratios or inhalation, tramway was always significantly under the active modes, with an exposure
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close to background levels. For active transport modes, even on the less trafficked street, we
would see a 10% to 12% PM; excess compared to the background reference values. Having a
tramway line in a street would allow walkers to reduce their exposure to PMi by 12 to 19%.
Choosing tramway over bike transportation decreased PM1 exposure ratios by 15% across all
sites, highlighting the substantial benefits of having tramway infrastructure in streets.
Regarding buses, we observed a lot of variability, which aligns with prior research (Ma et al.,
2020). It would have been interesting to consider whether the air conditioning was in use in
buses during our experiment. An interview with a driver revealed the existence of diverse
practices, depending on bus operators and weather conditions. Various studies acknowledged
the significant influence of the mode on personal exposure levels (Dons et al., 2012; Kaur et
al., 2007). Kaur and Nieuwenhuijsen (2009) found that it played a crucial role in determining
exposure to PMzs, with an even greater impact on ultrafine particle counts (0.02 -1 pm).
deSouza et al. (2021) stated that the mode explained most of the variability in PM
concentrations but their measurements were made with 3.5 times higher concentrations than us.
Singh et al. (2021) showed in a meta-analysis that open transport modes exhibited higher
pollutant exposure than closed transport modes. In a systematic review, Cepeda et al. (2017)
also found that active commuters were generally more exposed to pollutants, followed by bus
users and massive motorized transport users (train, subway, metro). In a meta-analysis, Gelb
and Apparicio (2021) mentioned that cyclists were overexposed compared to other modes.
Chaney et al. (2017) and Yu et al. (2012) also found that bus riders had lower inhaled doses and
exposure rates than active commuters. We found only four papers in the literature dealing with
exposure to PM in tramways. Moreno et al. (2015) stated that it was the cleanest form of public
transport compared to bus and subway, but they did not study PM1. Strasser et al. (2018) found
that tramways had higher ultrafine particle concentrations than subways. Asmi et al. (2009)
indicated comparable PM2 s concentrations for newly introduced tramways and buses. Motlagh
et al. (2021) did not study active modes but observed lower PM2.s levels in tramways compared
to buses in summer, this order reversing in spring and autumn.

When considering inhalation, similarly to deSouza et al. (2021) and Zhu et al. (2022), we
observed that the ranking between modes changed. Pedestrians became more exposed than
cyclists. Dons et al. (2012) stated that active modes contributed more to inhaled pollutant dose
than overall exposure. They also found that the relative importance of transport mode increased
by up to 30% when considering inhalation. Similar to our study, higher PMi/25 fractions in
public transports were reported in the literature (Qiu et al., 2017; Rivas et al., 2017; Shen and

Gao, 2019), a ventilation system removing more coarse particles than PMi (Amouei
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Torkmahalleh et al., 2020). In summary, our observations align with the existing literature,
which is interesting considering that we used low-cost sensors. Despite the affordability of the
equipment, our findings reflected those obtained with more expensive measuring devices. We
also present new evidence indicating the tramway as the safest mode of transport for both PM1

exposure and inhalation.
4.1.2. Session effect

The timing of the trip also appeared to be important to reduce exposure. For PM1 ratios, we
observed session related amplitude ranges varying between 6 and 10% depending on the
transport mode. S1 always displayed higher ratios than the other sessions for active modes and
buses users. It is therefore advisable to consider avoiding morning times and prioritize timings
when traffic is low (e.g., S2). Bereitschaft (2015) also demonstrated that PM levels peaked in
the mornings due to higher traffic flow and favorable atmospheric conditions. Chaney et al.
(2017) worked on ratios with reference and found higher ratios in the morning than in the
afternoon. Dons et al. (2012) stated that higher than average black carbon levels were observed
during morning rush hour compared to off-peak hours. As in our study, the evening rush hour
peak was less pronounced, likely due to the high-traffic period being spread over more hours.
Overall, they identified transport mode and timing as important variables to determine exposure

while commuting.
4.1.3. Siterole

In our study, the site seemed to have less significance than transport mode and session, but
still played an important role. Site-related PM1 exposure ratio amplitude range within a mode
ranged from 5% (tramway) to 12% (bus), while the mode-related variabilities on streets with
tramway lines were more significant, ranging from 15% to 20%. Few studies investigated the
site influence on PM exposure. Kaur et al. (2007) highlighted substantial intra-mode variations
in exposure levels due to factors like geographical location, weather, and traffic parameters but
did not quantify the site-related variability. Briggs et al. (2008) found that levels of exposure
varied from one route to another for walkers and car drivers. For pedestrians, significant
positive associations were seen between ultrafine exposures and street configuration (open,
semi-enclosed, enclosed or canyon), or traffic density. But they did not identify any association
for PM1, contrary to what we observed. More research on this topic would be needed, especially
on PMi. In summary, we observed a site effect, which could stem from traffic or urban

infrastructure factors such as dedicated lanes or street dimensions. 134



4.1.2.1. Traffic influence

PM. ratios seemed to follow traffic intensity for active modes (R?> = 0.89 for pedestrians,
R?=0.84 for cyclists), even if we had a small number of points (n=4). We also observed higher
PMu/2.5 fractions close to the traffic than at the reference, which is supported by studies showing
that higher levels of fine PM can be found near roadways (Lall and Thurston, 2006; Lee et al.,
2006). In a meta-analysis, Gelb and Apparicio (2021), acknowledged that measuring traffic-
related pollution exposure was challenging and often relied on indirect indicators. They found
studies using road type (major / minor) as indicator, assuming major axes have higher traffic
volume. However, they also acknowledged that this approach reflected street morphology as
well, leading to complicated interpretations. Dons et al. (2013) observed that exposure to black
carbon was higher on highways, in urban areas or during traffic peak hours. According to Kaur
and Nieuwenhuijsen (2009), traffic count had a limited effect on PMzs levels but a stronger
influence on ultrafine particle count. They found differences in exposure between a heavily
trafficked and a quieter street, particularly for ultrafine particle count, suggesting that road users
can minimize their exposure by using less busy roads. The increased PMi.2.5 fractions near
traffic could be linked to the substantial emission of ultrafine particles from vehicles (Kaur and

Nieuwenhuijsen, 2009).

4.1.2.2. Street configuration

The presence of tramway lanes significantly reduced exposure ratios, with mode-related
variability ranging from 3% (on a street without tramway lane) to 15-20% (on streets with
tramway lanes). Having a dedicated bike lane proved to be efficient as well as it lowered the
ratio by 16% compared to on-road biking. Hofman et al. (2018) observed a 20% higher
concentration of ultrafine particles along the roadway compared to the bike highway.
Interestingly, Qiu et al. (2022) found that a dedicated lane resulted in a 16.8% PMz.s reduction
compared to a mixed bike lane without separation from motor vehicles. Although they used a
more expensive GRIMM equipment for PM measurement, their observation closely aligned
with ours. According to Pattinson et al. (2017), the average exposure to ultrafine particles was
found to be approximately 20-30% lower at the sidewalk compared to other locations.
Subsequently, numerous scientists recognized the need to increase the distance between road
and bicycle paths (Hernandez et al., 2021; Qiu et al., 2019). Cepeda et al. (2017), suggest that
reducing commuter exposure to pollutants can be achieved by selecting routes with low
emissions and high dispersion (ex: parks) or by increasing the distance from traffic emissions.
Regarding street configuration and especially canyon effect determined by street H/W ratios,

Gelb and Apparicio (2021) acknowledged the fact that the axes' typology considered both traffic
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effects and street morphology (width, street-canyon), making result interpretation challenging.
In contrast to certain studies (Qiu et al., 2019), we did not observe any “canyon effect”, where
local PM levels increase with the street H/W ratio. In our study, the effect was contrary, as
exposure ratios decreased with higher street ratios. The influence of traffic may introduce bias
and hinder the assessment of the effect of street configuration, thereby complicating the

establishment of clear and definitive conclusions.
4.2. Relevance of this study

Our findings offer guidance for reducing personal exposure and health risks during
commuting. Optimal strategies include using tramway, favouring smaller streets, and avoid
peak hours. While recommendations to avoid certain streets are commonly provided through
smartphone applications, in our study, the transport mode seems to play a more critical role in
exposure outcomes. Qiu et al. (2019) identified the background concentration as the dominant
factor contributing to 40.4% variability in exposure. They found a 13.2% contribution of the
time of day, 4.1% for weather and 0.6% for traffic volume. Bereitschaft (2015) observed a 56%
variability attributable to background levels and highlighted the need to control for regional
background concentrations when comparing PMz s between sites. Dekoninck et al. (2015) stated
that background contributions to the total trip exposure were 25% in spring and summer,
increasing to 50-60% in winter. However, we cannot control background concentration or
weather parameters. These factors are beyond our influence, and individuals must focus on
other aspects that they can address to reduce their exposure to PM. One of the strengths of our
study is to eliminate background influence, thereby mitigating weather effects and day-to-day
variations. This was achieved through different techniques like using PM ratios to reference,
simultaneously monitoring transport modes on the same route, and conducting the study at three
different times of the day. Another strength is that we measured PM on different sites, which
makes our results more generalizable. Lastly, what is noteworthy in our study is that we

achieved similar results to studies using more expensive measuring devices.
4.3.  Limitations of this study

However, several limitations should be acknowledged. Firstly, the use of heart rate to
estimate ventilation may not provide as accurate results as using a spirometer. Moreover, our
study included two female experimenters, which could introduce gender-related biases in
ventilations calculations. Int Panis et al. (2010) found that women had lower ventilation rates
compared to men. Therefore, adjustments may be necessary if we aim for a generalizable

approach, although broad generalizations on inhalation were not the study's main focus. It is
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also important to recognize that low-cost sensors cannot measure PM smaller than 300 nm
accurately (Bulot et al., 2019; Plantower, 2016), whereas more expensive reference stations like
Fidas Palas GmbH 200 can reach a detection limit of 180 nm (Palas GmbH, 2020). KireSova et
al. (2023) indicated that, while ultrafine particles had a negligible mass concentration compared
to fine and coarse particles, they constituted the dominant component of PM in terms of number
concentration, raising health concerns. The use of a gold pod to calibrate mobile sensors may
also raise concerns, but the calibration accuracy results were excellent, further strengthening
confidence in the analysis. To increase experiment efficiency, it would be interesting to involve
more experimenters, enabling simultaneous data collection from different locations. This would
avoid normalizing with reference values. Lastly, further investigations are needed during other
seasons. This study was only performed in spring, which means that it might not be

generalizable to other times of the year.
4.4. Future perspectives

Characterizing Grenoble's streets by their aspect ratio could enable estimation of exposure by
simply knowing a street's aspect ratio. However, to fully understand traffic and aspect ratio
impacts on exposure, a study involving streets with similar H/W ratios but varying traffic levels,
and vice versa, is necessary. It would also be interesting to replicate this study using NO:
measuring devices to determine whether the site's influence becomes more significant for this
pollutant, usually associated with traffic. A winter replication of this experiment would also be
highly informative, especially in Grenoble, where wood heating leads to a significant increase
in PM levels during cold days. This study is of particular interest as it offers guidance to
individuals on reducing their exposure to PM. Additionally, it provides insights for
policymakers to create urban spaces that support citizens in minimizing their exposure to
pollutants. Gelb and Apparicio (2021) recognized the lack of papers providing practical insights
to plan cycling networks. Schmitz et al. (2021) highlighted the first use of low-cost sensors to
measure NOz in a science-policy context, during the implementation of a dedicated bike lane,
resulting in a 22% NO:2 levels reduction. Our study also clearly shows the advantage of
dedicated bike lanes, as well as tramway lanes, in an urban environment. The presence of
tramway lanes seemed to reduce pedestrian’s exposure to PMi by 12-19%, emphasizing
significant positive impacts. Another interesting finding was that tramway exhibited the lowest
site-related amplitude range for PMi ratios (5%). Politicians might consider systematically
refunding tramway tickets during air pollution alerts or expanding tramway lines. A local study

found that extending a tramway line in Grenoble reduced nitrogen oxides by 11% and PM
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concentrations by 7 to 9% (Atmo AuRA, 2020). However, it is important to note that the health
benefits of active commuting are believed to outweigh the risks of increased air pollution

exposure during journeys (Cepeda et al., 2017; Chaney et al., 2017; Gelb and Apparicio, 2021).
5. CONCLUSION.

During this study, conducted at relatively low PM levels, it has been found that the transport
mode had a greater impact on exposure to PM compared to the time of day or site. These
findings highlight the importance of considering transport mode as a primary factor when
studying exposure to PM. Taking the tramway appeared to be the safest transport mode for
exposure to PM and inhalation, while showing lower site-related amplitude ranges. To reduce
cyclists' exposure to PM, implementing more dedicated bike lanes may be beneficial, as our
study indicated they could bring a 16% PM; exposure reduction. This measure would not only
lower exposure but also help fighting sedentary behaviour. Walking resulted in the highest
levels of inhaled PM per minute. This is particularly concerning in Grenoble, where walking is
the main travel mode, especially among the population aged 65 and older (CEREMA, 2022),
more susceptible to adverse effects of air pollution (Health Effects Institute, 2020). Efforts
should be directed towards facilitating access to the tramway and segregating bicycle lanes from
roadways. Finally, this study emphasizes the significance of low-cost sensors for providing
valuable data for citizens, urban planners and scientists. In addition to being easy to use,
calibrated low-cost sensors have the capacity to provide valuable insights on particulate matter

exposure.
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7. APPENDIX.

Table S.1. Example of a time activity diary

Date : 4/25/2022
\Weather humid, light rain, clouds
Wind low
Traffic i low
Observations
Start Arrival Start Arrival
J1_S1 session Experimenter Code Transport mode |, Chavant" "Hotel de "Hotel de | "Chavant Smokers Idling vehicles Crosses | Others
Ville" Ville" "
mob2 A_VM_CH |Wait at "Chavant"| 7:50:18 7:54:08
mob2 A_T_CH Wait at "Chavant"| 7:54:09 7:59:12 7:57 smokers
Wait 1
mob1 A_VM_CH Tram wait 7:50:07 7:54:46
mob1 A_B_CH Bus wait 7:54:46 7:57:50
mob2 T_CH_HV Tram C 7:59:13 8:01:28
Trip1
mob1 B_CH_HV Bus C1 i7:57:51 7:59:20 7:59 - 8:00 bus
mob2 A_B_HV Bus wait 8:03:44 8:10:32
Waiting 2
mob1 A_VM_HV Walk wait 8:03:10 8:06:10
mob2 B_HV_CH Bus C1 8:10:33 8:12:00
Trip 2
mob1 M_HV_CH Walk 8:06:11 8:14:25 8:09 garbage truck | 8:13 stop
mob2 A_T_CH Tram wait 8:15:12 8:20:58
Wait 3
mobl A_VM_CH Bike wait 8:14:26 8:19:44
mob2 T_CH_HV Tram C 8:21:00 8:22:31
Trip 3
mob1 VD_CH_HV Dedicated bike 8:19:45 8:21:51
mob2 A_VM_HV Walk wait 8:22:32 8:23:36
Wait 4
mob1 A_VM_HV Walk wait 8:21:52 8:23:36
mob2 M_HV_CH Walk 8:23:37 8:30:40
Trip4
mob1 M_HV_CH Walk 8:23:36 8:30:40
mob2 A_B_CH Bus wait 8:31:52 8:34:00
Wait 5
mob1 A_VM_CH Bike wait 8:30:41 8:33:12
mob2 B_CH_HV Bus C1 8:34:01 8:35:20
Trip5
mob1 VD_CH_HV Dedicated bike 8:33:13 8:35:37
mob2 A_T_HV_RO Tram wait 8:35:36 | 8:43:12
Wait 6
mob1 A_VM_HV Walk wait 8:35:38 8:40:37
mob2 T_HV_CH Tram C 8:43:13 8:45:28
Trip6
mob1l M_HV_CH Walk 8:40:38 8:47:50
mob2 A_VM_CH Walk wait 8:45:29 8:48:30
Wait 7
mob1 A_VM_CH Bike wait 8:47:51 8:51:45
mob2 M_CH_HV Walk 8:48:31 8:55:00 8:53 smoker
Trip7
mob1 VD_CH_HV Dedicated bike 8:51:46 8:54:10
mob2 A_B_HV Bus wait 8:55:20 8:57:49
Wait 8
mob1 A_T_HV_RO Tram wait 8:56:22 8:59:17
mob2 B_HV_CH Bus C1 8:57:59 | 9:00:08
Trip 8
mob1 T_HV_CH Tram C 8:59:18 9:01:02
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Table S.2. AirBeam?2 calibration steps and metrics.

[] STEP 1: Gold-pod calibration versus reference
Gold-pod identification: f 14504557.
Dataset split: 75% train set — 25% test set.

PM,
Technique RFR MLR
Best formula PM, ret ~ PM; + RH PMi rer~PM,; * RH
RMSE (ug/m®), test dataset 0.60 0,53
R?, test dataset 0.93 0.94
PM, s
Technique RFR MLR
Best formula PM,sres~PMys+RH+T PM;sret~PM2s * RH
RMSE (pg/m?), test dataset 0.79 0,74
R?, test dataset 0.90 0.91

MLR: Multi Linear Regression, RFR: Random Forest Regression. In bold, the best technique (lowest

RMSE).

[1 STEP 2: AirBeam?2 calibration

o AirBeam2:0011E400053E (AB1)

PM,
Technique RFR MLR
Best formula PM aBicai~ PMiag1 * RHagi  PMiaBica~ I (PM;aB1/ ((1 + (RHag: /
+ T ap1 (100 - RHag1)))"?)) + Tag:
RMSE (pg/m?), test 0.29 0.36
R?, test 0.99 0.98
PMas;s
Technique RFR MLR
Best formula PMb:saBcal ~PMasag1 + PM s aB1 cat ~ I (PMasasi/ (1 + (RHag: /
RHag!: (100 - RHABI)))1/3)) + Tagi
RMSE (pg/m?), test 0.37 0.41
R?, test 0.98 0.98
o AirBeam?2: 0011E40005F9 (AB2)
PM,
Technique RFR MLR
Best formula PM1 AB2Cal™ PM1 AB2 T RHABZ PM1 AB2 Cal™ 1 (PM1 ABZ/ ((1 + (RHABZ /
+ Tas2 (100 — RHap2)))"?)) + Tar2
RMSE (pg/m?), test 0.28 0.35
R?, test set 0.99 0.99
PM;;s
Technique RFR MLR
Best formula PM2s aB2cat ~PMa2s ap2 + PM2saB2cat ~ T (PMa2sag2/ ((1 + (RHag:
RHag2+ Tar: /(100 — RHABZ)))U3)) + Tas2
RMSE (ug/m*), test 0.32 0.41
R?, test set 0.99 0.98
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Table S.3. Summary statistics for PM concentrations (pg/m?®) per session and mode. Mean

refers to geometric mean and SD to geometric standard deviation.

Portable sensors Reference

Mode Session Mean (SD) Range Mean (SD) Range
Walk All 7.0 (1.3) 1.4-333 6.1 (1.3) 29-9.7
S1 8.2(1.2) 44-33.1 6.7 (1.3) 29-93
S2 7.2 (1.3) 3.5-333 6.5 (1.1) 52-89
S3 5.7(1.3) 1.4-332 5.1(1.2) 3.7-9.7
Bike All 7.2 (1.3) 1.5-29.5 6.2 (1.3) 33-95
S1 8.5(1.2) 45-29.5 6.8 (1.3) 33-09.1
S2 7.4 (1.3) 2.8-23.7 6.6 (1.2) 53-8.8
S3 6.0 (1.3) 1.5-13.7 52(1.2) 3.8-9.5
Bus All 6.4 (1.4) 1.9-252 6.0 (1.3) 2.8-9.8
S1 7.3 (1.3) 3.3-21.0 6.6 (1.3) 2.8—-8.9
S2 6.8 (1.3) 3.5-252 6.6 (1.2) 52-8.8

S3 54(14) 1.9-15.6 5.0(1.2) 3.8-9.8
Tramway All 6.1(1.3) 2.1-14.7 6.1 (1.3) 2.8-9.7
S1 6.9 (1.3) 33-14.6 6.7 (1.3) 2.8-9.2
S2 6.3 (1.3) 3.4-14.7 6.5(1.2) 52-89
S3 5.4 (1.3) 2.1-10.9 52(1.2) 3.8-9.7
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Table S.4. Linear regression output, showing the relationship between PMi ratios and traffic.

Dataset without outliers (walk mode). "***’: p < 0.001, “**: p <0.05

Dependant variable: PMi ratio

Estimates Std.error t p-value
(Intercept) 1.09 0.015 72.79 0.00019%**
traffic 6.10e-06 9.86e-07 6.18 0.025*
R? 0.95
Adj. R? 0.93
F 38.23
p-value 0.025

Table S.5. Regression output, showing the logarithm relationship between PMi ratios and

street height / width. Dataset without outliers (walk mode). “***’: p <0.001, “**’: p <0.01.

Dependant variable: log(PM ratio)

Estimates Std.error t p-value
(Intercept) 0.22 0.0069 32.28 0.00096%***
Street H/'W -0.14 0.010 -13.88 0.0052%*%*
R? 0.99
Adj. R? 0.98
F 192.6
p-value 0.0052
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Table S.6. Summary statistics for PM2.5 concentrations (ug/m?®) per session and mode. Mean

refers to geometric mean and SD to geometric standard deviation. Day 10 was discarded

from the dataset (dust event).

Portable sensors Reference

Mode Session Mean (SD) Range Mean (SD) Range
Walk All 8.3 (1.3) 2.8-38.2 7.7 (1.3) 36-11.8
S1 9.3 (1.2) 54-37.7 8.3 (1.3) 36-11.8
S2 8.6 (1.2) 4.6 —38.2 8.1(1.1) 6.3 —-10.1
S3 7.0 (1.3) 2.8-38.2 6.8 (1.2) 52-10.8
Bike All 8.6 (1.3) 3.7-34.7 7.8 (1.2) 39-11.7
S1 9.5(1.2) 59-34.7 8.3 (1.3) 39-11.7
S2 8.8 (1.2) 53-244 8.2 (1.1) 6.4—-10.2
S3 7.5(1.2) 3.7-16.8 6.9 (1.2) 5.5-10.7
Bus All 7.5 (1.3) 2.7-30.7 7.6 (1.3) 34-11.6
S1 8.1(1.3) 4.8-24.0 8.0 (1.3) 34-11.6
S2 8.0 (1.3) 4.8 -30.7 8.3(1.2) 6.3 —-10.1
S3 6.5 (1.3) 2.7-15.6 6.7 (1.2) 54-10.9
Tramway All 7.2 (1.2) 3.5-16.9 7.7 (1.3) 34-11.8
S1 7.7 (1.3) 3.8—-16.9 8.1(1.3) 34-11.8
S2 7.4 (1.2) 45-12.4 8.2(1.2) 6.3-10.2
S3 6.6 (1.2) 3.5-11.7 7.0 (1.2) 53-10.8
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Figure S.2. Mean PM1 ratio for cyclists (dataset with outliers) as a function of traffic (number
of cars per working day, from 7a.m. to 6p.m.). R? represents the determination coefficient.

The equation illustrates the linear relationship between the PM ratio and the traffic.

1.24

1.22

PM, ratio

1.16

“JA

R?=0.84

PM, ratio = 8,04.10° * traffic +1.14
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5 | EXPOSURE TO PARTICULATE MATTER WHEN COMMUTING IN THE URBAN AREA OF
GRENOBLE (FRANCE)

Figure S.5. Copernicus dust values (Météo-France, 2020). The period corresponding to our

experiment is highlighted within the blue-bordered frame.
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5 | EXPOSURE TO PARTICULATE MATTER WHEN COMMUTING IN THE URBAN AREA OF
GRENOBLE (FRANCE)

Figure S.6. PM, s ratios for different modes and sessions (geometric means in blue). Upper and

lower outliers were replaced by mean points.
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Figure S.7. Mean PM2 s ratio for cyclists (dataset with outliers) as a function of traffic
(number of cars per working day, from 7a.m. to 6p.m.). R? represents the determination

coefficient. The equation shows the linear relationship between the PMo2.s ratio and the traffic.
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Figure S.8. Mean PMa s riios for pedestrians as a function of traffic (number of cars per working
day, from 7a.m. to 6p.m.). A/ dataset with outliers, B/ dataset without outliers. R represents the

determination coefficient.
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Figure S.9. Mean PMa s 05 for pedestrians as a function of street H / W ratio. A/ dataset with

outliers, B/ dataset without outliers. R* represents the coefficient of determination.
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5 | EXPOSURE TO PARTICULATE MATTER WHEN COMMUTING IN THE URBAN AREA OF

GRENOBLE (FRANCE)

Figure S.10. Average PM, s concentrations (ug/m’) and inhalations (ug/min) per transport mode

for the 410 experiment trips. Blue points refer to arithmetic means.
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5.3

CONCLUSION

Key variables to reduce PM exposure: transport mode > travel time and site;
PM tatios: bike > walk (-2%) > bus (-9%) > tramway (-14%);

PM2 5 ratios: bike > walk (-3%) > bus (-11%) > tramway (-15%);

PM1 inhaled doses: Walk > bike (-2%) > bus (-26%) > tramway (-33%);

PM2 5 inhaled doses: Walk > bike (-1%) > bus (-26%) > tramway (-32%);

Observations made with low-cost sensors align with studies using more expensive devices
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CONCLUSIONS AND PERSPECTIVES

6.1 MAIN RESULTS OF THE THESIS

6.1.1 What are health risks related to air pollutants in

Grenoble?

This thesis started with an analysis of health risks associated with air pollutants in Grenoble
during the COVID-19 crisis. Table 6 summarizes them, showing that the most pronounced health

effects happen due to PMas.

Table 6. Main pollutants changes and related health outcomes in Grenoble during the COVID-19

LEVELS SHORT-TERM LONG-TERM

-2% respiratory

_ 0
NO; 31% hospitalizations

-1% mortality

-3% mortality
-3% child asthma Most pronounced

PM;; -14% iy -2% lung cancer health effects with
emergency visits

-8% low-birth weight PM,s
PM,, -11% Almost no effect
O; +11% Almost no effect

Therefore, we chose to focus on PMzs, however, the scarcity of reference stations can make
the precise measurement of PM,s challenging. In this context, LCS appeared to be valuable tools

to obtain finer measurements, both spatially and geographically.
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6.1.2 How to accurately measure exposure to PM in

Grenoble?

6.1.2.1 LCS calibration

To assess LCS’ performance in accurately measuring PM, we compared their readings to those
of a reference. Initially, LCS’ measurement quality did not meet EPA’s performance standards,
highlighting the need for prior LCS’ calibration. A key finding was that excluding dust events
enhanced the performance of calibration algorithms. The most effective calibration methods were:

e Multi-Linear Regression (MLR) for PM; with R* = 0.94, RMSE = 0.55 pg/m’;
¢ Random Forest Regression (RFR) for PM,s with R* = 0.92, RMSE = 0.70 pg/m’;

These metrics, in accordance with EPA’s standards, allowed us to validate LCS’ accuracy. We
confirmed, as demonstrated in existing literature, that LCS with PMS7003 should not be used to
measure PMio. The algorithms developed in this work should not be applied in other geographical

areas or under different aerosol conditions, but the method can be used in various contexts.

6.1.2.2 Fixed measurements

A measurement campaign using fixed LCS highlighted the importance of broad calibration
conditions. Deployment settings should match those during calibration, especially in terms of PM
levels and relative humidity. Therefore, we specifically analyzed deployed LCS’ measurements
during spring and summer in order to match calibration’s conditions. We observed diurnal
variations with a minimum between 7-9 am and a maximum between 7-8 pm (9 pm in the city
center), while spatial variations revealed highest PM levels and ratios in the city center. These
findings illustrate the advantages of using LLCS for accurate spatiotemporal mapping of PM

exposure.

6.1.2.3 Mobile measurements

Finally, we performed mobile PM measurements in spring (low PM levels), using four

transport modes (bike, walk, bus, and tramway), across four different sites (streets). This study

166



revealed that the transport mode had a greater impact on individuals' encountered PM ratios than
the timing or the street they traversed. Exposure orders were as follows:
®  PMi raios: bike > walk (-2%) > bus (-9%) > tramway (-14%);
®  PM;s riost bike > walk (-3%) > bus (-11%) > tramway (-15%).
When considering inhalation, the order changed to the following:
®  PMi inhaled dosest Walk > bike (-2%) > bus (-26%) > tramway (-33%);
®  PM:5 inhated doses: Walk > bike (-1%) > bus (-26%) > tramway (-32%).
This study demonstrated that it is crucial to consider commuting when studying individual

exposure to PM, as well as inhalation.

6.2 LIMITATIONS OF THE STUDY

6.2.1 The importance of LCS electronic components

6.2.1.1 Humidity sensors

Improving electronic components quality will improve the reliability of LCS studies. Relative
humidity sensors may introduce bias in the results, as they are used to calibrate PM data, and they
are therefore very important. While the DHT22 sensor is commonly used in LCS networks,
especially in citizen science, it does not appear to be reliable for long-term deployment studies.
Alonso-Pérez and Lopez-Solano (2023) performed an almost 4 years experiment and noted that
the DTH22 had to be replaced twice. The SHT35 sensor, manufactured by a Swiss company
(Sensirion, 2023a), is gaining popularity in the scientific community (Bulot, Russell, et al., 2023;
Hassani et al., 2023), as well as the SHT85 (Sensirion, 2023b). The BME280 could also be an
interesting candidate, although a study reported noise and communication issues between the
BME280 and the micro-controller (Anagnostopoulos et al., 2023). Adelakun and Akano (2023)
found good correlations between the BME280 and reference humidity instruments. Deploying two
humidity sensors in an air quality station could also enable data comparison, anomaly detection,

and the derivation of an average RH value.
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6.2.1.2 PM sensors

New optical sensors are starting to be used to measure PM, especially the SPS30 (Gabel et al.,
2022; Hassani et al., 2023; Sensirion, 2023c). It would be interesting to assemble this sensor
together with the PMS7003 , as they may complement each other in terms of measured PM sizes
(Kuula et al., 2020). The SDS011, which was recently found to detect dust events (Alonso-Pérez &
Loépez-Solano, 2023), could also be added. A key limitation of this thesis was the necessity to focus
on PM measurement, because gas sensors measuring O3 or NO; are not yet fully reliable. There is
a need for research in the domain of gas sensors, especially because O; levels are expected to

increase with climate warming, and also because of the health consequences associated with NOs.

6.2.2 The significance of an extensive calibration

As mentioned earlier, calibration is key and should be as wide as possible for PM levels,
relative humidity and temperature (Levy Zamora et al., 2023). Similar to our experience, Koehler
et al. (2023) also had calibrations performing better when concentrations were low (< 30 ug/m’),
likely due to the majority of training data falling within this range. This is particularly important
because raw data are considered to be highly inaccurate when PM;; levels are high, these periods
generally corresponding to high relative humidity levels (Datta et al., 2020). Calibrating high PM

concentrations seems to present the most significant challenge in calibration studies.

6.3 RECOMMENDATIONS FOR FUTURE USE OF LCS

It is likely that in the coming years, researchers will accumulate sufficient data to further
develop and use LCS for epidemiology research. However, progress in LCS calibration and
development is hindered by the scarcity of reference stations worldwide. Figure 32 displays various

recommendations for conducting PM studies using L.CS.

The first question to be answered is whether there is a reference station for sensor calibration
in the study area. If not, using calibration formulas from studies with similar sensors under

comparable aerosol conditions can be considered. This implies that, ideally, calibration should have
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occurred with the same weather conditions as the deployment, with matching PM levels, under
similar conditions (traffic/background). While not optimal, this approach is feasible and has been
used by scientists in different situations (Anagnostopoulos et al., 2023; Coker et al., 2022; Koehler
et al., 2023; Phung & Wagstrom, 2023). With this aim in mind, Barkjohn et al. (2021) developed a
multiple linear regression equation using RH that could be applicable across the United-States in
public health contexts. Koehler et al. (2023) used this formula for an indoor study, and found that
predicted values were close to gravimetric gold-standard levels for concentrations under 20 pg/m’.
Performance was reduced at high concentrations, a local calibration resulting in a lower RMSE.
This calibration method is not optimal, but can help addressing the scarcity of reference stations,
especially in less developed countries. Machine learning should be better suited than linear
regression and it would be highly informative to check how a machine learning calibration could
perform country-wide. A nice example is a study by Raheja et al. (2022) using a Gaussian Mixture

Regression calibration model developed for Accra, Ghana, to calibrate a LLCS network in Togo.

If a reference station is available but an official collocation is not possible, open data from a
sensor network covering the area can be used to develop calibration formulas as already done by
Gitahi and Hahn (2022) or deSouza et al. (2023). The benefit of using open sensor networks lies
in the vast amount of data provided, networks like Sensor.Community or PurpleAir hosting more
than 10,000 sensors worldwide. This calibration method involves finding relevant reference
stations within the study area and comparing their results to those of nearby citizen sensors. A
drawback of this technique is that sensors are not always uniformly installed by citizens, for instance
in terms of height, potentially introducing biases. However, an advantage lies in the fact that no

additional deployment is required, which saves significant time and effort.

The criteria for LCS assembly and deployment are also very important to perform successful
PM measurement studies. Regarding assembly, the use of multiple sensors on the same air quality
station offers important research perspectives. This could help optimize calibration, for instance
by making dusts identification easier. In summary, the optimal protocol, highlighted in green in
Figure 32, helps eliminate uncertainty in the measurements. Moreover, combination with satellite

observations could also offer further improvement perspectives.
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Figure 32. Framework proposal for individuals interested in low-cost PM measurement The green boxes

represent the optimal scenario in which a reference station is accessible for direct comparison, while the purple boxes

indicate less favorable situations.
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6.4 FUTURE RESEARCH PERSPECTIVES

6.4.1 Autonomy and connectivity

Another interesting topic to address is the autonomy of low-cost air quality stations, which
could be improved by incorporating solar-powered batteries. Efforts should be made to develop
solar systems remaining effective during winter or when cloud cover is important. Such systems
would allow deployment in places where there is no electricity. Working on the connectivity of air
quality stations is also important to enable broader deployment and reduce the number of missing
values. Wi-Fi connectivity was a limitation during our stationary study, especially when deploying
air quality stations. Certain users did not have a Wi-Fi at home, and we encountered difficulties
accessing Wi-Fi in public buildings such as universities, schools or libraries due to network security.
To address this issue, we later developed a LoRaWAN air quality station (see Appendix C). This

prototype offers a promising solution for future deployments.

6.4.2 Holistic air pollution monitoring

This thesis primarily focused on outdoor air pollution, but it would also be valuable to
investigate indoor air pollution in order to gain an overall understanding of individual exposure.
This could be done by measuring indoor pollutants within homes, and/or by estimating the
infiltration of pollutants from the outside environment. To comprehensively assess individual
exposure, it is necessary to consider exposure during commutes, as well as exposure at home and
in the workplace. Various tools are available to measure pollutants, Figure 33 summarizing their
advantages and disadvantages. These tools should be used complementarily to get a holistic view

of air pollution.
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Figure 33. Advantages and disadvantages of different measuring approaches.

Mobile LCS allow spatial exploration, but only provide a brief spatiotemporal overview of
pollutant concentrations, and are sensitive to accidental variations or biases (Peters et al., 2013).
Another issue with mobile measurements is that replicates must be done to allow representativity,
which consumes time and resources. However, while fixed sensors are considered better to
measure temporal variations in pollutants (Chambliss et al., 2020), mobile sensors represent optimal
solutions to capture spatial fluctuations (Munir et al., 2022). Various studies highlighted that LCS
could supplement official monitors for precise spatial and temporal measurements (Bulot, Ossont,
et al., 2023; Roberts et al., 2022). LCS could help scientists finding new associations, especially
when combined with other sources of information like satellite or ground-based cameras
observations. Using a LCS network and Google Street View images, O'Regan et al. (2022) observed
that increased urban greenspace levels were linked to reductions in PM concentrations. Similarly,
the combination of satellite and LLCS network observations can be used to highlight air quality

anomalies during wildfires (Wendt et al., 2023).
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6.4.3 Growing importance of wildfires monitoring

Wildfires are going to become more frequent and intense because of climate change, which
means that global population will be increasingly exposed to landscape fire-sourced PM,s (Xu, Ye,
etal., 2023). Burke et al. (2023) used both field and satellite PM measurements and found that since
2016, wildfire smoke eroded 4 years or air quality progress in nearly 75% of contiguous USA states
and even more in western states. Li et al. (2023) highlighted the need to improve prediction models
by incorporating dynamic variables like remote sensing fine-level aerosol data. LCS could also play
a role in wildfire prevention, which is particularly important given that forest fires are responsible
for significant CO, emissions, further aggravating climate warming (Zheng et al., 2023). This is also
crucial because wildfires can affect the health of populations even at considerable distances from
the fires as air pollutants travel across countries. As showed by Aguilera et al. (2021), smoke from
wildfires could have more pronounced impacts on respiratory health compared to PM from other
sources. According to Gutierrez et al. (2021) the surface of burned land is expected to increase by
25% by the 2040s, wildfires being very sensitive to small temperature changes, a 1°C rise in
temperature corresponding to a 22% fire risk increase. Due to these factors, tracking wildfire events

will be crucial, and LLCS will likely play a key role in gaining further insights into wildfire monitoring.

6.4.4 Proposals for future research on calibration

As already explained, field calibration with a collocation should always be the preferred
scenario, but recently some works have been done using LCS networks and showed good
performances compared to a local calibration (Koehler et al., 2023). It would be interesting to
validate those findings by placing LCS close to a gravimetric reference (gold-standard) along with
other LCS positioned at a greater distance (e.g., 200 meters), to evaluate their respective
performances compared to the gold-standard. Following Barkjohn et al. (2021) study, it would also
be valuable to work on generic calibrations at a country wide scale. Working on algorithms using
machine learning and make them available to the community seems to be a promising approach to
address the shortage of reference monitors in some areas. Lastly, work should also focus on
calibrating high concentrations. Winter is very often the season when citizens are more exposed to

PM. It is therefore urgent to develop calibration algorithms adapted to these aerosols’ conditions.
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6.4.5 Simplify PM measurement

Exploring ways to make the use of LLCS easier appears to be a promising research direction
for simplifying the measurement process and collect more PM data. Minimizing interference with
individuals’ daily habits should be considered (Steinle et al., 2013; Zauli-Sajani et al.,, 2022).
Exploring sensors miniaturization represents a potential research direction that could revolutionize
the assessment of individuals' exposure to PM. Simplifying the deployment and use of LCS seems
crucial to increase citizen engagement and develop citizen science. However, it's equally important
to remain vigilant about the ecological impact of these sensors, and we should minimize their

carbon footprint.

6.5 LAST WORDS ON AIR POLLUTION AND HEALTH

As a conclusion, it is important to remind that improved air quality should bring greater health
benefits compared to its implementation costs (Hoffmann et al., 2021; Schraufnagel et al., 2019).
The US EPA (2011) found that the health benefits of the Clean Air Act outweighed the costs by a
factor of 32. In China, improving air quality with the nationwide "Air Plan" yielded public health
benefits exceeding the implementation cost by a 1.5 factor (J. Zhang et al., 2019). In this context,
low-cost sensors are especially useful to allow citizens to avoid, or at least decrease, their exposure.

This is particularly important in highly polluted areas where reference monitors are rare.
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A Low-cost Sensors Study Measuring Exposure to Particulate Matter
in Mobility Situations
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Keywords: Low-cost Sensor, PMa s, Calibration, Mobility, Exposure Assessment.

Abstract: In 2013, the International Agency for Research on Cancer classified particulate matter (PM) as carcinogenic
to humans. It is therefore essential to measure PM concentrations to minimize the exposure of individuals. Our objective was
to investigate personal exposure to PM2s (PM with diameter < 2.5 pm) in Grenoble (France) during commuting in different
transportation modes: bike, walk, bus and tramway. PM2 s measurements were found to be the highest for bikes, followed by
walk, bus, and tramway. In this study, conducted in spring during low pollution levels of PM, exposure levels are greatly
influenced by the time of day. Pedestrian and cyclists’ exposure generally stayed under background reference values.
Exposure in public transportation was usually below reference values, but when background PMzs levels went lower
(evening), levels registered in the tramway or bus reached those of the reference. Therefore, public transport users could be
less exposed than active commuters, except when ambient pollutant levels are low. Environmental parameters like wind might

be important in Grenoble, and it would be worthwhile to reproduce this study at a time when wind speed is lower.

1 INTRODUCTION

Every year, it is estimated that outdoor air pollution
causes 7 million deaths around the world (Fuller et
al., 2022). Particulate matter (PM) is made of solid
compounds suspended in the air that are small enough
to be inhaled. Considered as the most dangerous form
of air pollution, PM can enter blood circulation, and
accumulate in numerous organs (Pryor, Cowley, &
Simonds, 2022). Therefore, it is important to assess
populations’ exposure to PM, which is generally done
by official reference monitoring stations. However,
more and more scientists state that stationary
monitoring stations are not always representative of
people’s exposure (Van den Bossche et al., 2015; F.
Yang et al., 2019). This might be related to the time
that people spend indoor and outdoor, in places where
the pollutant levels do not always equal to reference
values. Time spent in transportation could represent
up to 30% of the inhaled dose (Dons, Int Panis, Van
Poppel, Theunis, & Wets, 2012). According to Han et
al. (2021), personal exposure to PM,s (PM with
diameter < 2.5 pm) measured by portable sensors, is
significantly associated with an increase in

4l https://orcid.org/0000-0001-5366-2372
bW https://orcid.org/0000-0003-0750-997X

respiratory and systemic inflammatory biomarkers.
However, the associations are weaker when ambient
PM, 5 concentrations, measured by fixed reference
stations, are used as an exposure proxy. Low-cost
sensors demonstrate good accuracy to measure
individual exposure to PM (Motlagh et al., 2021) and
can therefore be used for exposure studies, especially
during commuting. Few mobility studies involving
low-cost sensors have been performed, especially in
low-concentration situations. Many surveys take
place in Asia where pollution levels are usually
higher than in Europe. During 10 working days, we
conducted a field experiment to collect PM
measurements using four transportation modes
around Grenoble (France): bike, walk, bus, and
tramway. Our objective was to estimate personal
exposures to PM,s with a low-cost sensor during
commuting in different modes. Another purpose was
to compare the so measured concentrations with
reference values. We wanted to know whether the
low-cost sensors could be used to assess differences
between transport modes and the time of day. In
doing this, we hope to contribute to the exposure
literature using low-cost sensors.
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2 MATERIALS AND METHODS

2.1 Particulate matter sensor
2.1.1 Monitoring devices

PM concentrations were measured using two
AirBeam?2 (HabitatMap), which entail an optical
sensor (Plantower PMS7003). AirBeam2 are
inexpensive ($249) and measure concentrations of
PM,, PM> s, PM o, temperature and relative humidity
(RH). They are connected to a smartphone via
Bluetooth and provide real time values to users. With
the growth of the Internet of Things (IoT) sector (Das,
Ghosh, Chatterjee, & De, 2022; Y. Yang et al., 2022),
cheaper PM sensors are currently available on the
market. However, they often have to be assembled
with other components like microcontrollers or GPS
modules, and an IoT platform has to be set-up for data
visualisation. Designing a monitoring station,
assembling components and developing a data
visualisation tool are different steps which can be
time-consuming. HabitatMap already provides an
online platform (http://aircasting.org) for viewing and
downloading  AirBeam2 data. Furthermore,
AirBeam?2 are ready-to-use devices. South Coast Air
Quality Management District (2018) compared the
AirBeam2 PM,s measurements to values given by
three Federal Equivalent Method instruments. They
observed very strong correlations in the laboratory
studies (R> > 0.99) and moderate to strong
correlations with different reference instruments from
the field (0.68 < R? < 0.79). More recently, Tong, Shi,
Shi, and Zhang (2022) found that Airbeam2
measurements correlated well with roadside official
monitoring stations. They also reported a good
agreement (R? = 0.67-0.89) between Airbeam? local
measurements and the predictions from a model
involving satellite observations. AirBeam?2 is already
calibrated by the manufacturer, but the calibration
equations do not account for RH (HabitatMap, 2022).
Huang et al. (2022) found that the accuracy and bias
of the PM data reported by AirBeam2 sensors were
affected by rainy weather and high humidity
environments. Moreover, Zou, Clark, and May
(2021) suggested that there was a significant linear
relationship between RH and the relative response of
the low-cost PM sensors to the research-grade
instruments. Therefore, we calibrated the devices by
accounting for RH.

2.1.2 Calibration

The calibration process involved two steps (Figure 1).

RMSE = 0,62 pg/m’
R2=0,96

-

_> Gold pod Step 2 Mecanistic

Regression
T TE N

Random forest

Regression

= 3
RMSE =0,7 pg/m? §2"=S§§7°'58 Hg/m
R?=0,93 !

Figure 1. Two steps calibration process.

e Step 1: calibration of a fixed low-cost sensor
(“gold pod”) with a reference device

Before this study, we had already calibrated a low-
cost fixed station by collocating it with a Palas GmbH
200 (Reference) from Atmo Auvergne-Rhone-Alpes
(Atmo AuRA) in Grenoble “Les Frénes” (Refer
Figure 4). This calibration was performed using a
random forest regression technique developed by
Schmitz et al. (2021) comparing this individual fixed
sensor with the reference station. This low-cost fixed
station, called “gold pod” used the same optical
sensor (PMS7003) than the mobile devices.

e Step 2: AirBeam?2 sensors calibration with a
fixed low-cost sensor (“gold pod”)

Next, 44 days of calibration were performed from
September 20, 2022 to November 3, 2022 where the
two AirBeam2 were collocated close to the “gold
pod”. The two mobile devices were calibrated
independently: first, the AirBeam2 wused by
experimenter 1 (“mob1”) and then the device used by
experimenter 2 (“mob2”). This was motivated by the
observation that mob2 was delivering concentrations
a bit higher than mobl. By using the nls() function
from RStudio 2022.07.1 (R Core Team, 2022) on
75% of the dataset, we applied the mechanistic
equation (Equation 1) involving relative humidity and
temperature for calibration:

PM
25 mob 1 +c Tmob (1)

RH 3
1+d——mob )
( 100—RHpop

PMZ.Sgp =a+ b

where PM> 5 o, = PM> s concentrations in pg/m? given
by the “gold pod”, PMa2s meb = PMas concentrations
(ug/m?*) measured with the AirBeam2, RHpo =
relative humidity in % determined by the AirBeam?2,
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Tmob = temperature in °C given by the AirBeam2. For
mobl, we found a=0.49,b=091,c=0.07 and d =
0.43. For mob2, we had a = -0.1, b = 0.86, ¢ = 0.08
and d = 0.31. We then tested these two calibration
formulas on the remaining 25% dataset, and we found
the following performance indicators. For mobl, we
had RMSE = 0.62 pg/m?® and R? = 0.96 and for mob2,
we found RMSE = 0.58 ug/m?® and R? = 0.97. RMSE
(root mean square error) reflects the accuracy of the
model to predict actual PM,s values, and R?
(coefficient of determination) refers to the correlation
between the AirBeam2 values and the reference
concentrations. Based on this, we decided to continue
with these models as the indicators were good
compared to what is found in the literature (Blanco et
al., 2022; Haghbayan & Tashayo, 2021).

2.2 Sampling design
2.2.1 Monitoring routes

The study took place in Grenoble, the largest city in
the Alps, hosting around 450,000 inhabitants. Five
different monitoring sites were selected (Figure 2):
two wide streets (“Jaures” and ‘“Pain”) and two
narrow (also called “canyon”) streets surrounded by
higher buildings (“Grégoire” and “Blanchard”). We
also monitored PM when we commuted between
Blanchard and Grégoire (“Cross” route).

Cross Blanchard
= Fo =
do L)

Grégoire Jaures N
2t | |mi _1
do 5o 500m

Figure 2. Monitoring routes used in the
experiment. Credits: © OpenStreetMap contributors

2.2.2 Experimental timings

Ground measurements were conducted from April 25,
2022 to May 12, 2022 during 10 working days
(Figure 3). Three different measurement sessions
were performed daily: a first session (S1, morning)
between 8:00 and 9:00, a second session (S2,
noontime) between 12:00 and 13:00 and a third
session (S3, afternoon) between 16:00 and 17:00.
Sometimes, for reasons related to the public transport
timetables, the sessions went slightly beyond the time
slots. Nine sessions were postponed because of rainy
conditions.

Two experimenters were involved in the study.
For each session, they had to travel the same routes in
parallel using different modes of transport: bike,
walk, bus or tramway (Appendix). Each site was
sampled for at least three days (Figure 3). On the days
when we studied Blanchard and Grégoire, we also
monitored PM while travelling in between the two
sites (“Cross” route). Jaures was sampled four times
because this street, longer than the others, had many
potential biases (intersections, stores, idling cars) and
we thought it might be interesting to replicate the
measurements further.

S1 S2 S3
8-9h 12-13h 16-17h Site
Blanchard

2022-04-25 [Mon

2022-04-26 | Tue Jaurés
Pain
Grégoire

2022-04-27 |Wed

2022-04-28 | Thu
2022-04-29 Fri

2022-05-02 |Mon

2022-05-03 | Tue
2022-05-04 | Wed

2022-05-05 | Thu

Canceled (rain)

2022-05-06 Fri
2022-05-11 | Wed

2022-05-12 | Thu

Figure 3. Measurement campaign schedule.

Next, we analysed carefully the public
transportation schedules. A session example is
reported in the Appendix. The same document was
used as a roadmap by the experimenters for each
session. Reproducing measurements on the same
street is important to be representative (Van den
Bossche et al., 2015). Every day, each experimenter
performed at least 12 repetitions of the route.
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2.3 Data cleaning

In this paper, we decided to focus only on PMys
analysis and on commuting times. We left PM o, PM|,
and results related to waiting times for further work.
Data were extracted via AirCasting application and
analysed with RStudio. We retrieved 214 comparison
trips where the two experimenters were travelling
along the same routes (428 trips in total, considering
both experimenters). PM sensors can be vulnerable to
inaccuracies resulting from drift, temperature,
humidity and other factors (Motlagh et al., 2021). As
both AirBeam?2 were quite new, drift was not an issue,
but we blew compressed air through the intake of the
gold pod used for calibration as recommended by
Bathory, Dobo, Garami, Palotas, and Toth (2021). As
explained above, both AirBeam2 devices were
calibrated using formulas accounting for RH and
temperature. We also checked the presence of dust
with CAMS (Copernicus Atmosphere Monitoring
Service) satellite data (retrieved 0.1° x 0.1° resolution
dust values from ENSEMBLE dataset (METEO
FRANCE, 2020) (‘analysis’ type)). Fortunately, no
dust event happened during the experiment period.
We removed outliers in the dataset because we had
peak events on trips, even inside public transports,
mainly because of smokers or idling cars. In public
transports, those peaks were often caused by door
openings. All outliers with more than 1.5 times the
interquartile range above the third quartile (Q3) or
less than 1.5 times the interquartile range below the
first quartile (Q1) were removed. Hourly background
reference PM»s concentrations from Atmo AuRA
were collected through their  Application
Programming Interface (https://api.atmo-aura.fr/).
For this study, we used the average from two
background reference stations (Les Frénes and Saint-
Martin d’Héres). Both references, placed at
approximately 3 km from the experimental sites, were
located in relatively open areas (Figure 4). For each
measurement made every second with our mobile
devices, we affected the corresponding hourly value
given by the reference stations. We also used
meteorological data from the Réseau d’Observation
Météo du Massif Alpin (ROMMA, 2022). Their
nearest weather station (GPS coordinates: latitude =
45.169°, longitude = 5.768°) was located around 3 km
from the collocation site (Figure 4). A Davis Vantage
Pro2 instrument registered all weather parameters.
Wind speed (km/h) corresponded to a 10-mn average,
with a measurement frequency of 2.5-3 s. We
checked that all data sources used the same time zone
(Europe/Paris).

iy Mdnitoring- St—Manin,;d‘Hérgs
routes Atmo )

s

ol Atmo) . St-Martin-d’Héres
? j _Les:Frénes T 7a\
L S Ps g ROMMA

500m

Figure 4. Location of the Atmo AuRA reference
stations (in red) and ROMMA meteorological station
(in blue). Credits: © OpenStreetMap contributors

3 RESULTS

3.1 Descriptive statistics

Collected PM»5 data are summarized in Table 1.
More measurements were performed on walking
mode because, in order to replicate the experiment
and use public transportation again, we had to walk
back to the starting point. This was especially true on
routes where public transport was only running in one
direction. The number of measurements made on foot
were also higher because walking the road segment
took longer than cycling, taking the bus or tramway.

Table 1. Descriptive statistics on PMas
concentrations and number of measurements (count)
performed in different commuting modes.

Dataset with outliers
PM, 5 (pg/m?)

mode count median SD min max

Bike 21448 821 233 3.04 3546
Walk 73438 8.03 3.10 2.34 79.99
Bus 23374 744 205 230 2644
Tram 14592 7.16 1.71 2.69 18.03

Dataset without outliers
PM, 5 (ug/m?)

mode count median SD min max
Bike 20451 8.08 1.94 3.04 17.50
Walk 69570 7.88 1.81 2.34 16.91
Bus 22638 7.37 197 230 1897

Tram 13990 7.08 1.65 2.69 12.98
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More outliers were identified for walking (5.3%)
than for cycling (4.6%), tramway (4.1%) or bus
(3.1%). Walkers are generally more exposed to PM
coming from smokers, restaurants or bakeries. In
addition, they are close to idling cars. When leaving
outliers in the dataset, cyclists were more exposed
(median: 8.2 pg/m?) than walkers (median: 8 pg/m?),
followed by buses (median: 7.4 ug/m?®) and tramway
(median: 7.2 pg/m?). Compared with cyclists,
pedestrians were 2.2% less exposed, bus users 9.4%
less and tramway commuters 12.8% less. When
removing outliers, the exposure ranking proved to be
the same. Cyclists were more exposed (median value
of 8.1 pug/m?®) than walkers (median: 7.9 pg/m?),
followed by bus users (median: 7.4 ug/m?) and
tramway (median: 7.1 pg/m?). Compared to cyclists,
walkers were 2.4% less exposed, bus commuters
8.6% less and tramway users 12.2% less. Qiu and Cao
(2020) also found that walkers were more exposed
than bus commuters. Peng et al. (2021) and Wang et
al. (2021) found the same exposure ranking
(bike>walk>bus). They used a PMS3003 device,
similar to PMS7003. According to Shen and Gao
(2019), cyclists and pedestrians can be directly
exposed to other local particle emissions along the
road, which probably results in elevated PM
concentrations in specific areas and times. In a study
taking place in Nantes (France), Muresan and
Francois (2018) stated that public transport users
would accumulate 4—-11 times less PM in their lungs
than nearby pedestrians walking the same route. We
decided to pursue all further analyses after having
removed outliers in our dataset.

3.2 Comparison between travel modes

Exposure levels are greatly influenced by the time of
day (Figure 5). The morning session (S1) showed
higher PM,s concentrations, followed by the
noontime (S2) and the afternoon session (S3).

Of all transport modes combined, S1 PMays
median was 12.9% higher than S2, while S2 median
was 15.3% higher than S3. In the tramway, diurnal
variations seem to be reduced compared to other
modes. deSouza, Lu, Kinney, and Zheng (2021) also
found that time of day (evening/morning) had an
influence. In their ANOVA analysis, travel mode
explained 9% of the \variability in PMas
concentrations whereas time of day explained 8%
variability.

All sessions considered, cyclists are the most
exposed commuters. Abbass, Kumar, and El-Gendy
(2021) studied morning and evening PM s peaks. In
their work, daily exposure patterns when walking or

cycling looked similar, whereas microbus
concentrations behaved differently, and cycling
resulted in exposure to the highest average PMo s
concentrations.

-
emussm e mm - s ® o

Q

PM, s concentrations (ug/m?)
IS
(11
[ ]] :
. .._ﬂ__----.. odc

Bike Bus Tram Walk

Session 8 S1 ® S2 & S3

Figure 5. Boxplots of PMas concentrations by
transport mode. Upper and lower whiskers show the
ranges of 5% to 95%, the central dark lines indicate
the median. The bars outside the box represent 1.5
times the interquartile range, and circles are outliers.

Per session, we observe the same PM> s exposure
ranking (bike > walk > bus > tramway) but, during
S3, the levels measured in the bus get close to those
measured in the tramway. When PM, s levels are high
(S1), the differences between the transport modes are
important, but when the levels are low, during the
afternoon (S3), the differences become less
pronounced. This suggests that when PM levels are
low, public transports no longer play a “protective”
role against PM>s. In addition, relative differences
between sessions are lower in the tramway than in the
other transportation modes. This could mean that
levels in the tramway are less influenced by
background concentrations, which are higher in the
morning.

3.3 Comparison with reference value

One of the objectives of this study was to compare the
PM, s values measured by the mobile sensors with
those returned by the reference stations. The graph
below (Figure 6) shows PM 5 levels measured by the
mobile devices and the corresponding background
reference levels. The hours marked in bold are the
times when we carried out the most PM;s
measurements. As an example, the 10 am
measurements were those that we were unable to
perform as planned between 8 and 9 am. As this rarely
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Figure 6. Comparison between values measured by mobile devices and reference values. The 9 o'clock boxplot
corresponds to the values measured by mobile sensors between 8 and 9 am. The hours in bold are the ones where

we had the more measurements taken by mobile devices.

happened, we got fewer observations for those extra
hours.

In general, PM»s levels given by the mobile
sensors were lower than values given by background
stations, especially when considering hours when the
counts were the highest (9, 13, and 17). This could
come from microscale PM, s variations, as PMz s at
the local scale could be affected by different factors.
This was surprising that measured PM; 5 values were
lower than reference values, because we were in a
traffic situation and the reference stations are located
in a background environment. Both reference
stations, situated in opened areas, could be exposed to
more PM> 5 which would be covered by the dense and
high buildings of the city centre where experiments
took place. The AirBeam2 calibration could also be
an explanation. The ideal way to perform a calibration
would have been to collocate our mobile devices
directly with the reference station, without using a
gold pod as an intermediary. It is also important to
note that the calibration with the reference was
performed at an hourly scale, and we had to apply it

to values given at a fine scale (seconds). Knowing the
RMSE related to step 1 calibration (Refer Figure 1),
we could expect a maximal error of 0.7 pg/m?®. The
average difference between reference and mobile
values during S1 and S2 (considering 9, 13 and 17
o’clock timings) was about 1.1 pg/m?. Therefore, the
calibration error alone could most probably not
explain the observed difference. Motlagh et al. (2021)
used low-cost sensors to measure PM; s in Helsinki
and saw that roadside measurements were higher than
reference values. But during spring or summer, the
pollution levels in the train, bus or tramway were well
below the ambient reference pollution levels. They
attributed this to the fact that the transport fleet in
Helsinki was quite modern and the indoor air heavily
filtered. This should be the case for tramways in
Grenoble. However, older buses might remain in
operation, and the practice of using conditioned air
depends on the weather and the driver. It would have
been interesting to know if the air was filtered in the
different buses and trams we used. Han et al (2021)
also used low-cost sensors and observed that personal
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PM, s levels were consistently lower than ambient
concentrations. The Center for Advancing Research
in Transportation Emissions, Energy, and Health
(2019) measured exposure of urban cyclists in Atlanta
(United States) with a PMS5003. They concluded that
few segments recorded air quality worse than the
background concentration. During most of the routes,
riders experienced a better air quality than the one
registered at the monitoring location.

In our study, wind could be an important factor
determining PM,s levels. We observed that wind
speed values were increasing starting from 10 am
(Figures 7 and 8). The relief around Grenoble could
contribute to this phenomenon.
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Figure 7. Wind speed values during the experiment.
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Figure 8. Average wind speed values between April
25,2022 and May 12, 2022.

Interestingly, we observed that bus and tramway
had levels close to the reference during S3 (Refer
Figure 6). When PM levels in Grenoble were high,
public transports provided an important advantage,
but when PM levels were lower, close to their
minimum, public transportation systems did not seem
to offer this benefit any longer. Wang et al. (2021)
also performed three daily measurement sessions

(morning/noon/afternoon). Their GRIMM instrument
showed that at lower pollutant levels, the
concentrations registered in the bus were higher than
the background levels. When pollutants levels were
higher (noontime), the difference between inside and
outside got larger, as in our study. They also observed
lower levels of PM» 5 compared to the reference when
the pollutant levels were higher. Furthermore, by
using a similar low-cost sensor (PMS3003), they
found as well that when PM; s levels were lower, the
difference between reference levels and bus carriage
levels was lower.

4 CONCLUSIONS

During this spring experiment, performed in 2022 at
low pollutant levels, cyclists were more exposed than
pedestrians, bus users and tramway commuters. This
ranking was the same whether we removed outliers or
not. We counted more outliers for walking than for
cycling, tramway or bus.

When comparing exposure values to reference
stations measurements: (1) pedestrian and cyclists’
exposure generally stayed under background values,
(2) public transportation systems were under
reference values at 9 or 13 o’clock but when PM
levels went lower, levels reached those of the
reference value. Public transport users could be less
exposed than commuters using active modes, except
when ambient PM levels are low.

The time of day seems to influence exposure more
than mode of transport, with a gradual concentration
decrease throughout the day. Environmental
parameters like wind might play a role in Grenoble. It
would be interesting to reproduce this work during
another season when wind speed is lower.

In the future, we will perform an inhalation dose
calculation on the same dataset in order to consider
breathing rate differences among commuting modes.
In Grenoble, about 15% of the working population
cycles to work (Agence de la Transition Ecologique,
2015), which makes the problem of PM exposure
more acute. However, we must emphasize that
cycling helps prevent many chronic diseases and
brings environmental benefits.
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ABBREVIATIONS

Acronym Definition

ANOVA Analysis of variance

Atmo AuRA Atmo Auvergne-Rhdne-Alpes

CAMS Copernicus Atmosphere Monitoring Service

IoT Internet of Things

mobl AirBeam?2 used by experimenter 1

mob2 AirBeam?2 used by experimenter 2

PM Particulate matter

PM; Particulate matter with aerodynamic diameter < 1 um
PM> s Particulate matter with aerodynamic diameter < 2.5 um
PMio Particulate matter with aerodynamic diameter < 10 um
R? Coefficient of determination

RH Relative humidity

RMSE Root mean square error

ROMMA Réseau d’Observation Météo du Massif Alpin
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Example of a measurement session

Date : 4/25/2022
Weather humid, light rain, clouds
Wind low
Traffic intensity |low
Observations
Start Arrival Start Arrival
J1_S1 session Experimenter Code Transport mode | .| "Hotel de "Hételde |["Chavant| Smokers Idling vehicles Crosses | Others
‘Chavant . "
Ville" Ville" '
mob2 A_VM_CH [Wait at "Chavant"| 7:50:18 7:54:08
mob2 A_T_CH Wait at "Chavant"| 7:54:09 7:59:12 7:57 smokers
Wait 1
mob1l A_VM_CH Tram wait 7:50:07 7:54:46
mob1l A_B_CH Bus wait 7:54:46 7:57:50
mob2 T_CH_HV Tram C 7:59:13 8:01:28
Trip1
mob1l B_CH_HV Bus C1 TS5 7:59:20 7:59 - 8:00 bus
mob2 A_B_HV Bus wait 8:03:44 8:10:32
Waiting 2
mob1 A_VM_HV Walk wait 8:03:10 8:06:10
mob2 B_HV_CH Bus C1 8:10:33 8:12:00
Trip 2
mob1 M_HV_CH Walk 8:06:11 8:14:25 8:09 garbage truck | 8:13 stop
mob2 A_T_CH Tram wait 8:15:12 8:20:58
Wait 3
mob1 A_VM_CH Bike wait 8:14:26 8:19:44
mob2 T_CH_HV Tram C 8:21:00 8:22:31
Trip3
mob1 VD_CH_HV Dedicated bike 8:19:45 8:21:51
mob2 A_VM_HV Walk wait 8:22:32 8:23:36
Wait 4
mob1 A_VM_HV Walk wait 8:21:52 8:23:36
mob2 M_HV_CH Walk 8:23:37 8:30:40
Trip4
mob1l M_HV_CH Walk 8:23:36 8:30:40
mob2 A_B_CH Bus wait 8:31:52 8:34:00
Wait 5
mob1l A_VM_CH Bike wait 8:30:41 8:33:12
mob2 B_CH_HV Bus C1 8:34:01 8:35:20
Trip5
mob1 VD_CH_HV | Dedicated bike | 8:33:13 8:35:37
mob2 A_T_HV_RO Tram wait 8:35:36 8:43:12
Wait 6
mobl A_VM_HV Walk wait 8:35:38 | 8:40:37
mob2 T_HV_CH Tram C 8:43:13 | 8:45:28
Trip6
mob1 M_HV_CH Walk 8:40:38 | 8:47:50
mob2 A_VM_CH Walk wait 8:45:29 8:48:30
Wait 7
mob1 A_VM_CH Bike wait 8:47:51 8:51:45
mob2 M_CH_HV Walk 8:48:31 8:55:00 8:53 smoker
Trip7
mob1 VD_CH_HV | Dedicated bike | 8:51:46 8:54:10
mob2 A_B_HV Bus wait 8:55:20 8:57:49
Wait 8
mob1 A_T_HV_RO Tram wait 8:56:22 8:59:17
mob2 B_HV_CH Bus C1 8:57:59 | 9:00:08
Trip8
mob1l T_HV_CH Tram C 8:59:18 9:01:02
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Low-cost sensors for particulate matter

measurement
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INTRODUCTION RESULTS

Particulate matter (PM) is a global threat to human 1. LoRaWAN performgnce vs. Wi-Fi AQ station
health, associated with respiratory, cardiovascular, and
neurological diseases, as well as premature mortality. PM & 50 50
toxicity depends on several factors, size being a crucial £
determinant. PM,, (<10pm), typically remains in the upper . % 40 40
tract and is less hazardous than PM, 5, which can penetrate PM;o 2 —*LoRal
deeper info the lungs and PM,, which can enter the 2 —+- LoRa 2
bloodstream. Accurate measurement of fine PMis critical, g % 30 )
and low-cost sensors (LCS) represent a cost-effective § & S °U"‘Z'?
complement to official monitoring networks. This feasibility S 20 20 ;22\;?0";:
study aims to compare the performance of a Wi-Fi and ° purposes
two LoRaWAN air quality stations (AQ stations) using LCS 5 10 PM, 10, PM, 5
to measure PM, with the goal of determining whether the 5
LoRa AQ stations can deliver accurate measurements. ‘g 0 0
% 0 10 20 30 40 0 10 20 30 40 50
MATERIAL & METHODS - WiFi AQ station concentrations (ug/m?)
-I . Pro’rofyping ) R’ slope & intercept conform to EPA standards @
A first Wi-Fi AQ station was designed and calibrated with a reference monitor (REF) . 3 o LoRaWAN AQ
from Atmo Auvergne Rhone-Alpes. This Wi-Fi AQ station performed well in measuring = ﬁiﬂgho' NRMSE (%) [SD (ug/m) CV (%) stations : sensor - o
fine PM ", Then a LoORGWAN AQ station was developed to eliminate the dependence ) PMy 4 0.7 66 sensor precision
on Wi-Fi and allow broader deployment. Both stations were equipped with different PM,s 1 0.6 42 SD: standard deviation
temperature (T) and relative humidity (RH) sensors. BME280 should perform better CV: coefficient of
than DHT 22 in high-humidity situations. The firmware used for the Wi-Fi AQ station was EPA <30 <5 530 variation
developed by sensor.community (https://firmware.sensor.community/airrohr/flashing- + NRMSE Wi-Fi / REF
tool/) and enabledreporting of PM,, PM, 5, PMo, T, and RH. For the LoORGWAN AQ stations, X _ LoRAWAN AQ
a novel firmware using RIOT OS  (https://github.com/RIOT-OS/RIOT) was developed (refer part 2.a) PMiENRMSE=23% | Hions : sensors @
(https://github.com/airqualitystation/firmware_for_bmx280_pms7003), allowing the PM,s: NRMSE = 21 % uccumc'y vs REF
extraction of additional parameters, particularly PM counts within different size ranges.
2. Particle counts
Variables : Component Price (€) 25-10um 1-2.5um 8 1-25pm
PMg. PMy 5, PM;, RH, T PMS7003 (PM sensor) 238 TN 37%109-92)
DHT22 (RH & T sensor) 109
Frequency : NodeMCU ESP8266 microcontroller ::g 05-1um
Every 1505 Polycarbonate IP66 outer case 3
Euromas Il wall brackets 32 / 262%(217-298]
USB / USB-A 2m flat cable 1.9
5V USB power supply 69 PM counts
849 per size range

for both LoRa
AQ stations

LoRaWAN AQ station

PM counts per size range (LoRa 2 station)

Variables : Component Price (€)

PMyq. PMys, PM;, PMS7003 (PM sensor) 238 03-05um
RH, T, pressure, BME280 (RH & T sensor) 199 685

particles count LoRa-E5 mini board 279 70.1 % [67.4-76.3)

(>0.3pm, >0.5pm, Polycarbonate P66 outer case 159

>1pm, >2.5um, >10 um)  Euromas |1 wall brackets 32 ‘ PM mainly submicron

Frequency : USB-C / USB-A 3m flat cable 149 68.0

8 :nedia:, (99.4% of 5V USB power supply 69 ‘ When PM, 5 concentr_cﬁon increases, the ¢

ime infervals < 150s) * 12,5 percentage of submicron PM decreases 0 10 20 30 40 50

) while that of larger PM increases LoRa 2 PMy s concentrations (ug/m?)
* According fo ESTI regulation, the measurement period is adapted fo the datarate depending on the

range between the LORGWAN AQ station & the gateways (5 to 160's).

2. Calibration CONCLUSION

a. Wi-Fi AQ station vs Reference

* LoRaWAN AQ stations performance metrics conform to EPA standards.
* LoORaAWAN AQ stations deliver precise & reliable particulate matter measurements.

Outdoor

colocation « The firmware allows particles counts extraction, which willbe useful for furtherresearch.
5 m 10/3/21 - 29/9/21 (203 days)
. hourly values 1. Aix ML, et al. (2023). Calibration Methodology of Low-Cost Sensors for High-
3 R* NRMSE Quality Monitoring of Fine Particulate Matter [Manuscript under revision]. 2023.
5 AgitEe Lr?zarfegressmn PM, 091 14% Good performance 2. Schmitz S, et al. (2021). Unravelling a black box: An open-source methodology
2 (Schmi;:zael1 ::cll Irzr;fhodlz' PMys 095 10% of calibrated Wi-Fi for the field calibration of small air quality sensors. Atmos. Meas. Tech. 4:7221-41.
S using T & RH) EPA* 207 <30% AQstation @ 3. DuvdllR, et al. (2021). Performance Testing Protocols, Metrics, and Target Values for
2 Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory
+  *EPA = US Environmental Protection Agency standards for LCS calibration'®! Supplemental and  Informational Monitoring  Applications.  EPA/600/R-20/280.
" NRMSE = Normalized Root Mean Square Error, reflects the accuracy as the closeness US Environmental Protection Agency, Office of Research and Development.

between REF and Wi-Fi AQ station PM values.

b. LoORAWAN (LoRa) vs Wi-Fi AQ station UC‘A (‘\ - Ve Y
A TIMC 2255

Indoor ; -’
colocation Université

fvironnement et “révention en Santé POLYTECH'

Grenoble Alpes

des - opulations.

------ - K ﬁ o NP § Ve
e oovaes ol | ver ' we- EDISCE

Agro
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APPENDIX D

Designing low-cost sensors

for high-quality air pollution monitoring

Marie-Laure Aix, Dominique J. Bicout

Univ. Grenoble Alpes, CNRS, UMR 5525,VetAgro Sup, Grenoble INP, TIMC, 38000,Grenoble, France

PARTICULATE MATTER

is highly toxic, especially small size particles reaching vital organs through blood.
In Grenoble, the spatial distribution of particulate matter (PM) is heterogeneous
but only two official background stations monitor small size PM. Therefore, public
exposure to PM is poorly estimated. A solution is to build easy to move low-cost
measurement stations which can be deployed at various locations in the city. But
the data quality of such stations must be characterized beforehand. We have
developed a low-cost station (LCS) solution and compared data from LCS with that
from an official reference station (Atmo Auvergne Rhéne-Alpes) used by authorities.

HETEROGENEITY

The local landscape in
Grenoble plays a role
in the heterogeneous
distribution of particles.

PM TOXICITY
= 1

N PMio

<10pm,
upper fract

® PM;s

<2.5um, a
bronchioles HEART

“ DISEASE
°PM,

< Tpm, N
blo%dsfrecm x kyjluNG .

CANCER

Only two official stations
measure PM,s. They are
highly accurate but they
are expensive (10 - 100k€)
and cannot be moved.

LOW-COST
STATION

MATERIAL & METHODS
1. Prototyping

The solution was to build
a cheap (65€) and easy
to move low-cost station.
We used an opfical PM
sensor in which a laser
gets scattered by PM.
An electric signal is then
sent to a microcontroller
where it is converted to a
particle size and a number
of particles in different
size groups. The LCS also
gives PM concentrations in
pg/m?. We also assembled
a humity sensor because
we knew humidity could
influence particles growth.

ESP 8266 @ microcontroller
or LoRa E5 Mini board \

PMS 7003 — %‘d@

PM sensor

DHT 22 / BME 280 |
Temperature &
humidity sensors

ACCURACY ?

2. Colocation with reference

|

To evaluate the performance of low-cost stations, ten LCS were installed for 8 months
next to the Atmo reference station in Grenoble for the comparison of PM concentrations.

RESULTS

1. Comparison with reference
{ \

0
‘ RMSE=8.8pg/m? RMSE = 6.5 ug/m?
60{ T

RMSE=2.9 ug/m*

S

LCS concentrations (pug/m?)
N

[ 0 20 30
Reference concentrations (ug/m?)

R? refers to the correlation between the LCS and the reference PM concentrations,
while the Root Mean Square Error (RMSE) reflects the accuracy as the closeness
between LCS and reference values. An R? as close to 1 as possible and a
RMSE as small as possible are both indicators of good sensor performance.

CALIBRATION IS NEEDED
2. Calibration models

Two modelsinvolving both Temperature and Relative Humidity are used for calibration :
a mechanistic model and the random forests from the machine-learning approach.

Model Formula Dataset
PM,,

PMyj=a+b——"" 4Ty, .

Mechanistic . RHyes 3 100%
+ 700 - RH,,\>
Siiding window ==

Random . v
b PM,e; = a PMyes +b RHiey + ¢ Tiey I 75%

TRAIN TEST
*100% means all 8months dataset while 75-25% reflects a 6months training + 2 months testing set

3. Models performance

Mechanistic model

30/ RMSE=1.2pg/m’

RMSE=4.3pg/m? RMSE=0.96pg/m*

=
&

Q
8

N
8

3

60

Predicted concentrations (ug/m?)
o
ol
&

Reference concentrations (ug/m?)

Machine-learning model : random forests

30] RMSE=0.6pg/m®

3
»
4
>
4
i
@
£
e
3

30{ RMSE=0.9ug/m*

S

ol
0 10 20 30
Reference concentrations (ug/m?)

Predicted concentrations (pg/m?)

CONCLUSION

* The performance of the models s higher for more toxic PM; and PM, 5, than for PM

1o
* The best calibration method is achieved using machine-learning (random forests).
* Such calibrated low-cost stations can be deployed in Grenoble to monitor PM.

UGA S,

EDISCE

UCA

Université
Grenoble Alpes

Time @

VetAgro 5 des [ opulations.

= ie-| iX@Univ- %
B marie-laure.aix@univ-grenoble-alpes.fr

, @MarieLaureAix

=
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APPENDIX E

Aix, M.L., Bicout, D. J., Zoppis, C. (2023, April 25) Pollution atmosphérique, mobilités et santé dans
['agglomération grenobloise [Video]. YouTube. https:/ /www.youtube.com/watch?v=v|PfUDi-qo0.

Marie-Laure AIX - 1er prix - Journée Doctorants TIMC 2023 - « Pollution atmosphérique, mobilités...»

T?h_“c :ab o iy Jaime GJ £ Partager 8( Extrait =+ Enregistrer
417 k sbonnés

TIMC £\ Abonné v

25 vues 4 oct. 2023
Marie-Laure AIX - 1er prix des vidéos de la Journée des Doctorants-tes TIMC 2023 - « Pollution atmosphérique, mobilités et santé dans agglomération grenobloise ...».

« Pollution he bilités et santé dans |'agglomeérati bloise. », thése préparée par Marie-Laure AlX au laboratoire TIMC sous |a direction de Dominique J. BICOUT (Lab ire TIMC -
Equipe EPSP), dans le cadre de [EDISCE, Ecole Doctorale lngemeﬂe pour la santé la Cognition et | Environnement (Grenoble).

Capsule vidéo réalisée dans le cadre de la Joumnée des doctorants 2023 du laboratoire TIMC, 1er prix des vidéos 2023.

* TIMC (CNRS / UGA / G INP / VetAgroSup) https://wawve.time.fr et https://www.time.fr/EPSP
* partenaire du CHU Grenoble Alpes https://vww.chu-grenoble.fr

* CNRS https://wwwi.cnrs.fr
ww.univ-grenoble-alpes. fr
* G INP https://www.grenoble-inp.fr

* VetAgro Sup https://wwwi.vetagro-sup.fr
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APPENDIX F

Aix, M.L., Alfieri, R., Hartmann, P., Heredia Guzman, M.B., Uleda, C., Veillas, C., Piolat, G.
(2023, March 10-12). Particule Fun [Video game]. https://pholothel.itch.io/particule-fun. Scientific
Game Jam 2023, Grenoble, France

Particule Fun est un runner immersif ou le joueur est une particule fine !

Cette particule rencontre des éléments favorables a sa survie (pots d'’échappements) qui vont lui permettre de cheminer jusqu’au
bout de chaque rue en survolant ses victimes.

As a fine particle you encounter elements favorable to your survival (exhausts pipes) which will allow you to travel to the end of each
street by flying over your victims.

Condition de victoire : Dépasser le meilleur score en parcourant de la distance.
Fin de partie : Tomber dans la foule.

Controls:

Button Action

Left Arrow / Left Joystick | Fly to the left

Right Arrow Fly to the right
Top Arrow Fly forward
Down Arrow Fly backward

Mouse / Right Joystick Turn view
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TITRE: Pollution atmosphérique, mobilités et santé dans I'agglomération grenobloise

RESUME: La pollution atmosphérique est un probléme de santé publique mondial responsable d’une partie de la
mortalité et de diverses maladies chroniques. Il est donc important de la mesurer la plus finement possible. Les
objectifs de ce travail étaient d’'identifier les risques sanitaires liés aux polluants de 'air @ Grenoble (France) et de
mesurer le plus finement possible les particules fines (PM), responsables d’une part importante de la mortalité. Ce
travail débute par une analyse des risques pendant la pandémie de COVID-19, montrant des variations de niveaux
de polluants : NOz (- 32%), PMzs (- 22%), PM1o (- 15%), et Os (+ 11%). Ces variations ont favorisé des baisses de
risques sanitaires a court-terme liés aux PM2s (- 3% de visites aux urgences pour asthme infantile) et au NO2 (- 2%
d’hospitalisations pour maladies respiratoires). A long terme, les PM25 jouaient aussi un réle prédominant, réduisant
la mortalité toutes causes (- 3%), les cancers du poumon (- 2%), et les petits poids de naissance (- 8%), suivis du
NO:2 (- 1% de mortalité non-accidentelle). En raison de leur impact sanitaire majeur, la thése s'est ensuite focalisée
sur les PMzs, ainsi que sur les PM1 (PM < 1 pm). Afin d’estimer le plus finement possible les niveaux de PM dans
Grenoble, ainsi que leur hétérogénéité, nous avons assemblé des capteurs low-cost (LCS) pour compléter les
stations de référence d’Atmo Auvergne-Rhéne-Alpes. Les LCS ont été calibrés avec des méthodes incluant le
machine-learning, en 6tant les jours de dusts sahariens perturbant les mesures de PM2s. Les LCS utilisés étant peu
performants pour mesurer les PM1o, I'étude a été poursuivie sans les inclure. Un réseau fixe de 8 LCS a ensuite été
déployé dans Grenoble, montrant des disparités temporelles et spatiales, avec en particulier un hotspot dans le
centre-ville présentant des ratios a la référence (PM1 ratio = PM1/ PM1 rer) plus élevés. Une expérience avec les LCS
en mobilité a par ailleurs mis en évidence l'importance du mode de transport, de I'heure de déplacement et du site,
influencé par le trafic et/ou la configuration de la rue. Le vélo montrait les PM ratios les plus élevés, suivi de la marche
(- 2%), du bus (- 9%), et du tramway (- 14%). Pour les doses inhalées, l'ordre était différent, avec d’abord la marche,
suivie du vélo (- 2%), du bus (- 26%), et du tramway (- 32%). Cette thése souligne l'importance de considérer les
variations temporelles et spatiales des polluants pour le calcul des risques sanitaires, et montre I'utilité des LCS pour
estimer ces variations. En conclusion, des recommandations sont données pour monter, calibrer et déployer des
LCS.

Mots-clés: pollution de I'air, mobilité, risques sanitaires, capteurs low-cost, particules fines, Grenoble

TITLE: Air pollution, mobility and health in the Grenoble area

ABSTRACT: Air pollution is a global public health issue responsible for an important part of mortality and various
chronic diseases. It is therefore crucial to measure it as precisely as possible. The objectives of this thesis were to
identify health risks associated with air pollutants in Grenoble (France), and to measure particulate matter (PM),
recognized as a major contributor to mortality, as accurately as possible. This works starts with a health risks analysis
during the COVID-19 period, showing significant changes in pollutants levels: NO2 (- 32%), PM2s (- 22%),
PM1o (- 15%), and Os (+ 11%). These variations led to short-term reductions in health risks related to PM2s (- 3%
decrease in child asthma emergency room visits) and NO2 (- 2% decrease in respiratory disease hospitalizations).
In the long term, PM25 also played a major role, reducing all-cause mortality (- 3%), lung cancer (- 2%), and low birth
weights (- 8%), followed by NO2 (- 1% non-accidental mortality). Due to their significant impact on health risks, the
thesis then focused on PM2s and PM+1 (PM <1 um). In order to estimate PM levels and their heterogeneity in Grenoble,
we assembled low-cost sensors (LCS) with the goal to deploy them in the city, in addition to the reference stations
of Atmo Auvergne-Rhéne-Alpes. The LCS were first calibrated using methods including machine-learning, while
excluding days with Saharan dust events that impacted LCS’ ability to properly measure PM2s. Given the poor
performance of the LCS to measure PM+o, we proceeded without including them. A fixed network of 8 LCS was
subsequently deployed in Grenoble, highlighting temporal and spatial disparities, notably a hotspot in the city center
with higher PM+ ratios to the reference (PM1 ratio = PM1/ PM1 rer). An experiment using mobile LCS also indicated the
importance of transport mode, travel time, and site, the latter being influenced by traffic and/or street layout. Cycling
exhibited the highest PM+ ratios, followed by walking (- 2%), bus (- 9%), and tramway (- 14%). For inhaled doses,
the order was different, with walking first, followed by cycling (- 2%), bus (- 26%), and tram (- 32%). This thesis
underscores the importance of considering temporal and spatial variations in pollutants when calculating health risks
and demonstrates the utility of LCS in estimating this variability. In conclusion, practical recommendations are given
for assembling, calibrating, and deploying LCS that can benefit both scientists and citizen scientists.

Keywords: air pollution, mobility, health risks, low-cost sensors, particulate matter, Grenoble




