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Abstract

The treatment of head and neck cancer remains a pressing challenge in the realm of oncol-
ogy. Particularly, the precise targeting in radiotherapy demands a thorough understanding
of the Gross Tumor Volume (GTV). However, with the persistent issue of interobserver
variability and inaccuracy in GTV demarcation due to the low quality of available image
acquisitions, the necessity for better tools and methodologies becomes paramount. It un-
derscores the need for integrating diverse data sources for a comprehensive understanding
of the tumor’s spatial extent and biological characteristics.

Histology and radiology, while both essential in oncological diagnostics, offer multi-
scale information about the tumor whose synergy is often under-exploited. While radiology
provides a macroscopic view, capturing the tumor’s overall structure, size, and location,
histology delves into the microscopic, elucidating cellular and tissue-level details. The
granularity and precision of histological data, juxtaposed with the broader perspectives
of radiological imagery, advocate for their fusion, which can potentially revolutionize our
understanding of tumor characteristics and their spatial distribution.

Registration stands as a pivotal technique to bridge these modalities embedding mul-
tiscale information. By aligning histological slides spatially with their corresponding radi-
ological scans, registration facilitates a direct pixel-wise comparison. However, this task
is highly technical due to the substantial differences between these modalities and the
extreme deformations that the tissue undergoes from in vivo acquisition to a tissue slide
from ex vivo resected specimen. Our deep learning method StructuRegNet emerged as
our answer to the challenges of this alignment, harnessing rigid structures like cartilage
to progressively guide the mapping. By automating this traditionally manual task, we set
the foundation for a seamless integration of histological and radiological insights.

With the capabilities provided by StructuRegNet, direct comparisons between both
modalities became feasible, especially in assessing the GTV and its delineation on histo-
logical data. This comparison revealed systematic overestimations in conventional GTV
definitions. Building upon this finding, we introduced a diffusion-based segmentation
model tailored for histological labels on CT scans. Given that these labels are of superior
quality, the model could sidestep the pitfalls encountered by previous models focused solely
on GTV. This approach illuminated the path towards histopathology-enhanced GTV and
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introduced the concept of ambiguous delineations, hinting at the potential of non-binary
volumetric dose painting in radiotherapy.

Shifting from spatial to feature-level fusion, the SMuRF framework was introduced.
Instead of merely relying on spatial correlations, SMuRF operates at a deeper level, focus-
ing on the inherent features and patterns within the data. Through this advanced fusion
leveraging cutting-edge computer vision and deep learning methods, we achieved notable
successes in predicting cancer grade and survival, outperforming traditional monomodal
methods.

In summary, this research underscores the transformative potential of integrating his-
tological and radiological data, augmented by artificial intelligence, in refining head and
neck cancer radiotherapy. By fusing macroscopic and microscopic insights, the work paints
a promising picture of individualized, precision-driven oncology treatments for the future.



Résumé

La prise en charge du cancer de la sphère ORL est un défi primordial dans le domaine
de l’oncologie. En particulier, le ciblage précis de la lésion et la sauvegarde des organes
à risque voisins en radiothérapie exige une compréhension approfondie et un contourage
précis du Volume Tumoral Macroscopique (GTV en anglais). Cependant, face au problème
persistant de la variabilité inter-observateur et de l’imprécision dans la délimitation du
GTV, lié à la faible qualité de l’imagerie médicale disponible, la nécessité de meilleurs
outils et méthodes devient primordiale. Notamment, l’idée d’intégrer diverses sources
de données et modalités pour une compréhension complète de l’étendue spatiale et des
caractéristiques biologiques de la tumeur semble prometteuse.

L’histologie et la radiologie, essentielles pour le diagnostic oncologique, offrent des in-
formations multi-échelles de la tumeur dont la synergie est souvent sous-exploitée. Alors
que la radiologie donne une vue macroscopique sur la structure, la taille et la localisation
globales de la tumeur, l’histologie permet une analyse microscopique, élucidant les détails
cellulaires et morphologiques des tissus. La granularité et la précision des données his-
tologiques, juxtaposées aux perspectives plus larges de l’imagerie radiologique, plaident en
faveur de leur fusion, ce qui pourrait potentiellement révolutionner notre compréhension
de l’ennvironnemnt tumoral et de son hétérogénéité.

Le recalage, ou mise en correspondance spatiale, se présente comme une technique
essentielle pour relier ces modalités. En déformant les lames histologiques sur leurs scans
radiologiques correspondants, le recalage facilite une comparaison directe entre chaque
pixel. Cependant, cette tâche est très complexe à cause des différences notables entre ces
deux modalités et les déformations importantes de tissus entre l’acquisition in vivo et la
lame histologique issu de la pièce chirurgicale ex vivo. Nous introduisons ici un modèle
d’apprentissage profond nommé StructuRegNet pour résoudre ce problème, qui met en
oeuvre un alignement progressif guidé par les structures rigides comme les cartilages. En
automatisant cette tâche traditionnellement manuelle, nous permettons ainsi une intégra-
tion harmonieuse et à grande échelle des informations histologiques et radiologiques.

Avec les capacités offertes par StructuRegNet, des comparaisons directes entre les
deux modalités sont devenues possibles, notamment pour évaluer le GTV par rapport à
l’étendue tumorale sur la lame histologique. Cette comparaison a révélé des surestimations
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constantes dans les définitions conventionnelles du GTV. Suite à cette observation, nous
avons introduit un modèle de segmentation automatique sur les images scanners, mais
avec comme annotation de référence les contours histologiques. Étant donné que ces
contours sont de qualité supérieure et sans variabilité, le modèle a pu éviter les écueils
rencontrés par les modèles précédents axés uniquement sur le GTV. Cette approche a
éclairé la voie vers un "GTV guidé par l’histopathologie" et a introduit le concept de
contours non binaires avec des probabilités de présence de tumeur, laissant entrevoir le
potentiel d’une radiothérapie plus modulable et précise.

De plus, nous avons dépassé le cadre de l’alignement spatial pour la radiothérapie
et nous sommes concentrés sur la fusion multimodale au sens plus général, dans une
perspective de médecine de précision. Au lieu de se reposer uniquement sur des corrélations
spatiales, nous introduisons SMuRF, un autre modèle d’intelligence artificielle qui opère à
un niveau plus profond, se concentrant sur les caractéristiques et les motifs inhérents aux
données. Grâce à cette fusion avancée utilisant des architectures de pointe en vision par
ordinateur, nous avons obtenu des succès notables dans la prédiction du grade du cancer
et de la survie du patient, surpassant les méthodes monomodales traditionnelles.

En conclusion, cette recherche souligne le potentiel considérable de l’intégration des
données histologiques et radiologiques, supportée par des techniques d’intelligence ar-
tificielle, pour affiner la radiothérapie du cancer ORL. En fusionnant les informations
macroscopiques et microscopiques, ce travail représente un premier pas prometteur vers
une oncologie de précision individualisée plus efficace.
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1.1 Clinical context

1.1.1 Epidemiology and biology of cancer

Cancer is a leading cause of mortality worldwide, significantly impacting global health
with nearly 19.3 million new cases and approximately 10 million cancer-related deaths in
2020. The burden of cancer is anticipated to rise to 28.4 million cases by 2040, a 47%
increase attributed to the aging and growth of the global population alongside changes
in prevalence and distribution of the main risk factors for cancer [Sung, 2021]. These
incidences and mortality rates vary widely across regions and are influenced by socio-
economic and lifestyle conditions.

Cancer, in its essence, is a disease of the cell. It arises when a cell acquires the ability
to proliferate in an uncontrolled manner, a result of accumulated genetic mutations that
disrupt the finely tuned balance of cell growth and division [Hanahan, 2011]. These
mutated cells first group together, forming a primary tumor, and then have the potential
to invade adjacent tissues or spread to distant organs, a process known as metastasis.
The etiology of cancer involves multiple factors including genetic predispositions, but also
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Figure 1.1: The hallmarks of cancer, a framework to understand its characteristics [Hanahan,
2022].

environmental influences such as smoking, alcohol consumption, diet, exposure to certain
pollutants, and infections [Vineis, 2014].

The characteristics that typify cancer cells have been encapsulated into the "Hallmarks
of Cancer", as proposed by Hanahan and Weinberg (Figure 1.1). These include sustaining
proliferative signaling, evading growth suppressors, resisting cell death, enabling replica-
tive immortality, inducing angiogenesis, and activating invasion and metastasis. Further
emerging hallmarks include deregulating cellular energetics and avoiding immune destruc-
tion [Hanahan, 2000; Hanahan, 2011]. These hallmarks provide a conceptual framework
for understanding the diverse forms of tumor progression.

After diagnosis, the treatment of cancer is dictated by its type, stage and location, as
well as the overall health of the patient. The conventional modalities for cancer treatment
include surgery, chemotherapy, radiation therapy, immunotherapy, targeted therapy, and
hormone therapy, often applied in combination. Despite the increasing arsenal of treat-
ment options, cancer remains a deadly disease with variable survival rates (Table 1.1).
These rates are determined by multiple factors from diagnosis to available treatments.
For example, the five-year survival rate for breast cancer is 90%, whereas it is only 25%
for lung cancer [Luo, 2019].
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Cancer Type Incidence Mortality

Lung 2.2 M 1.8 M
Breast 2.3 M 685 K

Colorectal 1.9 M 935 K
Prostate 1.4 M 375 K
Stomach 1.1 M 769 K

Liver 906 K 830 K

Table 1.1: The global cancer burden: Incidence and mortality rates of most common cancers
worldwide in 2020. Data from Sung et al. [Sung, 2021].

1.1.2 Head and Neck Squamous Cell Carcinoma (HNSCC)

Head and Neck Squamous Cell Carcinoma (HNSCC) is a specific cancer type derived from
the mucosal epithelium located in the oral cavity, nasopharynx, oropharynx, hypopharynx
and larynx (Figure 1.2a). It accounts for 90% of all Head and Neck (H&N) cancers, others
including salivary gland and thyroid cancers [Wyss, 2013]. In 2020, more than 890,000
new cases of HNSCC were reported worldwide, accounting for about 5% of all cancer
cases [Cramer, 2019]. Despite advances in therapeutic strategies, the 5-year survival rate
remains approximately 45-50%, mainly due to the disease’s high recurrence rate [Johnson,
2020]. Furthermore, there are striking gender disparities in incidence and mortality, with
males being two to three times more likely to develop the disease than females [Sung,
2021].

An important subset of HNSCC is the HPV (Human Papillomavirus)-positive tumors,
mainly located in the oropharynx, which demonstrate different risk factors, molecular
features, and clinical behaviors compared to HPV-negative tumors [Johnson, 2020]. Re-
garding risk factors, tobacco and alcohol use are the principal contributors, associated
with about 72% of cases [Hashibe, 2007; Maier, 1992; Blot, 1988]. A distinct factor is
the high-risk HPV infection, particularly HPV16, linked with a rising incidence of oropha-
ryngeal cancers [Chaturvedi, 2013]. Other factors include betel quid chewing, dietary
factors, and occupational exposures.

Biologically, HNSCC originates from the stratified squamous epithelium lining the
H&N region. The disease evolves through a multi-step process involving hyperplasia,
dysplasia, carcinoma in situ, invasive carcinoma, and metastasis (Figure 1.2b). It is
characterized by histological heterogeneity, varying from well-differentiated tumors with
extensive keratin production to poorly differentiated or undifferentiated tumors with little
or no keratin production. A more comprehensive histopathological analysis will be provided
in chapter 2. The staging of the disease involves the TNM classification (Tumor, Node,
Metastasis), commonly used for solid cancers, with advanced stages (III and IV) being
associated with poorer survival rates [Johnson, 2020].

Distinctive anatomical illustrations and imaging studies may further elucidate the na-
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(a)

(b)

Figure 1.2: (a) Anatomical diagram of H&N depicting common sites of HNSCC, with associated
incidence rates and mortality in 2020 [Cramer, 2019]. (b) Histological progression of HNSCC
from normal epithelium to invasive carcinoma with key genetic events [Johnson, 2020].

ture of HNSCC (Figure 1.3). For example, an endoscopic examination can provide a
clear view of the oropharynx and larynx. Additionally, computed tomography (CT) scans,
magnetic resonance imaging (MRI), and positron emission tomography (PET) can demon-
strate the three-dimensional extent of the tumor and possible invasion into adjacent struc-
tures, thus playing critical roles in diagnosing and staging. Finally, histological analysis
from biopsies can depict the degree of differentiation, and post-resection whole slide im-
ages allow for a much broader spatial context in addition to sub-micrometer resolution.

HNSCC usually presents with symptoms like a neck mass, sore throat, dysphagia,
hoarseness, and otalgia, which usually depend on the primary site of the disease. Early-
stage disease may be asymptomatic, underlining the importance of regular check-ups in
high-risk individuals. The therapeutic strategies include surgery, radiation therapy (RT),
chemotherapy, targeted therapy, and immunotherapy [Cramer, 2019]. The selection of
treatment is influenced by the tumor site, stage, HPV status, and the patient’s clini-
cal status. For example, early-stage disease is often treated with surgery or RT, while
advanced-stage disease may require multimodal treatment strategies combining surgery,
RT, and systemic therapies. Chemotherapy and targeted therapy (like epidermal growth
factor receptor inhibitors) are mainly used in the recurrent/metastatic setting. More re-
cently, immunotherapy (like the PD-1 inhibitors) has shown promising results in advanced
cases [Johnson, 2020].
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(a) CT Scan – Axial view (b) CT Scan – Sagittal view

(c) PET/CT Scan – Axial view (d) MRI T2 – Axial view

(e) Photograph from endoscopy (f) Histological slide – H&E staining

Figure 1.3: Set of imaging acquisitions for a patient with HNSCC from our internal cohort,
planned for total laryngectomy. According to the endoscopic report, the tumoral lesion is located
on the left side of the arytenoid cartilage. Depending on the modality, different insights about
tumor location, extent, and invasion can be obtained. In addition, the PET scan can provide
information about the metabolic activity of the tumor. Finally, the post-resection histopatho-
logical slide is downsampled for visualization purposes, but its original version provides a precise
cell-level view of the tumor microenvironment.

In conclusion, HNSCC is a multifaceted disease with a complex etiology and thera-
peutic landscape. Its management involves multiple sources of data, including clinical,
pathologic, radiologic, and genomic information, which are often analyzed individually and
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manually by different specialists, leading to decision-making based on fragmented inter-
pretations. This methodology, while comprehensive, can be time-consuming and subject
to interobserver variability. The potential to alleviate these issues lies in the harnessing
of recent advancements in artificial intelligence (AI), which can integrate and analyze
multimodal data simultaneously, revealing new insights towards expediting the decision-
making process and enhancing the precision of treatment. The continuous research and
development in AI technologies become crucial, as they offer a new lens for a deeper
understanding of the disease, thus facilitating the development of more effective and per-
sonalized treatments, and contributing to the better prognosis and improved quality of
life for patients.

1.2 Motivation

On the one hand, multimodal imaging plays a crucial role at different stages of the cancer
care journey. Radiology, for instance, is employed for initial diagnosis and monitoring, while
histopathology is relied upon for the definitive diagnosis and grading. These modalities
offer complementary information, with radiology offering a macroscopic perspective of the
tumor and its environment, and histopathology providing a detailed microscopic view of
tumor cells’ morphology.

On the other hand, AI has significantly advanced in recent years, with the advent
of the paradigm of machine learning (ML), a set of methods that can learn from data
and experience. In particular, deep learning (DL), a subset of ML, involves a successful
class of algorithms called neural networks, driving innovations in areas as diverse as fa-
cial recognition, object detection, natural language processing, and in our case medical
imaging. Convolutional Neural Networks (CNNs), imagined by Fukushima in 1980 and
formally introduced by LeCun in the 1990s, have been particularly fruitful in image classifi-
cation tasks [Fukushima, 1980; Lecun, 1998]. U-Net, a CNN-based architecture, has been
widely used for biomedical image segmentation, yielding results superior to manual seg-
mentation by experienced radiologists in certain tasks [Ronneberger, 2015]. More recent
developments, such as Generative Adversarial Networks (GAN), transformer and diffusion
models, have shown promise in more complex tasks like image synthesis/reconstruction
or registration, further pushing the boundaries of what is achievable with AI in medicine
[Goodfellow, 2014; Vaswani, 2017; Ho, 2020a].

The integration of radiology and histopathology, despite the inherent challenges due
to their different scales and dimensions, presents a unique playground for DL algorithms.
Training such models to combine both modalities can provide a more complete represen-
tation of the tissue composition and pathology at macro- and microscopic scales, thus
improving the accuracy of diagnosis and treatment planning. This is particularly relevant
in the field of RT. Indeed, the delineation of the tumor relies on the endoscopic report
and radiological images like CT scans, which do not provide sufficient information for an
accurate characterization, leading to interobserver variability and suboptimal plans. In
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this context, radiology-histopathology fusion will improve the precision and the homog-
enization of the treatment. For example, through the learning of spatial relationships
between radiological signal and histological profile from a paired cohort with patients who
underwent RT and surgery, we can propagate histology-related insights like lesion extent
to new patients with non-operated tumors, treated with RT and for which radiology-only
is available.

Furthermore, this approach can extend beyond RT. Leveraging advanced imaging
techniques and DL algorithms to bridge the gap between anatomical and morphological
imaging towards the novel concept of "virtual histology" from radiology is an exciting
development. Its potential ranges from "biopsy-free" non-invasive diagnostic, treatment
planning support, interventional procedure guidance, and drug development, to a pow-
erful educational tool. Ultimately, this can contribute to deepening our understanding
of complex diseases and to the global development of precision medicine in oncology, a
patient-centric approach to treatment that considers individual variability in genes, envi-
ronment, and lifestyle.

In summary, while DL methods combining multimodal imaging streams is a rapidly
evolving field, there is still significant room for improvement. The opportunity to benefit
from breakthroughs in AI to address these challenges is vast. This is particularly true in
fields like medicine, which have not progressed at the same speed as other domains in
AI and often lack effective implementation. The development of new models integrating
and analyzing multimodal data can greatly impact patient care and outcomes, making
this a thrilling and promising area of research. In this interdisciplinary thesis, motivated
by the aforementioned clinical challenge, we propose an engineering approach and detail
the different contributions we made.

1.3 Contributions
This thesis focuses on the development and design of DL methods to bridge the gap

between radiology and histology, focusing on the HNSCC cancer type. First and fore-
most, the application of these methods is targeted towards RT but can be extended to
the broader spectrum of precision oncology. We investigate various aspects of this prob-
lem, such as spatial mapping with registration methods, histological content transfer and
synthesis with generative models, and data fusion frameworks for improved outcome pre-
diction. The ensuing chapters detail the innovative methodologies we developed to tackle
these challenges and the results we achieved.



8 Chapter 1. Introduction

In chapter 2, entitled Precision Radio-Oncology for HNSCC, we present a theoreti-
cal overview of the concepts developed in the following chapters. It sets the stage for
understanding the challenges we focus on and the context in which we operate.

In section 2.1 (Radiotherapy: Challenges and Perspectives), we delve into the field
of radiation oncology for HNSCC, detailing the clinical workflow and discussing the im-
portance of the registration process. We underline the potential of AI in this context,
especially in areas such as Organ at Risk (OAR) and tumor delineation. We also explore
other exciting applications where AI could have a substantial impact, like dose calculation,
MR-only and adaptive RT.

The section 2.2 (Digital Pathology) focuses on the promises of digital pathology.
We begin with an explanation of the surgery and tissue preparation process, followed by
an overview of HNSCC histopathology. We then discuss the advent of computational
pathology and the opportunities AI opens up for computer-aided diagnosis, treatment
response and prognosis prediction.

In the final section of this chapter, section 2.3 (Radiology - Histology fusion), we tie
the concepts from sections 1 and 2 together to illustrate how histology can complement
radiology. We focus on the interobserver variability for target volume delineation and
the challenges it induces for RT treatment planning. We then introduce the concept of
learning correlations from a paired retrospective cohort to infer biological properties from
radiology only at inference.

Therefore, this chapter offers a comprehensive overview of the current landscape and
the possibilities in RT for the integration of radiology and histology using DL. We lay
the foundation for the innovative methodologies and applications that we present in the
subsequent chapters of this thesis.

In chapter 3, entitled Histology-Radiology Registration, we address the challenge of
mapping spatial histology with radiology. We commence this chapter by establishing the
mathematical formulation of registration (section 3.1: Technical Framework of Registra-
tion). We then provide the clinical context and highlight the challenges involved, such as
differences in resolution scale, the lack of qualitative dataset or the dimension mismatch.
(section 3.2: Histology-Radiology Registration: Addressing the Multifaceted Challenges).
Next, we introduce the StructureRegNet framework (section 3.3: StructuRegNet). It
offers an innovative solution to the challenges specific to histology and radiology geo-
metrical discrepancies, combining a modality translation module, a rigid structure-aware
registration network, and an innovative DL-based deformable motion model.

Following this, we validate the performance of the methodology on a unique dataset
made of pre-operative CT scans and histopathological slides of the larynx and prove that
the registration framework outperforms state-of-the-art (SOTA) methods (section 3.4:
Results), and is generalizable to other locations with validation for pelvic area (section 3.5:
Out-of-distribution generalization). This chapter is a significant contribution to the field,
and the work has been presented at MICCAI and ESTRO conferences [Leroy, 2023a;
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Leroy, 2023c; Leroy, 2022b; Leroy, 2022a]. It lays the groundwork for the subsequent
exploration of more clinical challenges in the next chapter.

In chapter 4, entitled Pathology-enhanced Target Delineation and Virtual Histology, we
move towards the next paradigm of synthesizing tissue content from radiology to achieve
non-invasive virtual biopsy. Our work, inspired by the success of the StructureRegNet
framework in the previous chapter, begins with a statistical comparison of tumors delin-
eated by radiation oncologists on CT scans with the mapped gold-standard tumor extent
on histology (section 4.1: Clinical Insights from Histology-Radiology Registration). Next,
we capitalize on our new labels towards a more clinical application, namely the automatic
tumor segmentation on CT scans thanks to a model trained on warped histological tumor
labels (section 4.2: Automatic Histology-based Segmentation of GTV).

Subsequently, we strive to synthesize tissue content from radiology, developing a proof
of concept for modality translation from radiology to pseudo histology [Leroy, 2021b]
(section 4.4: Towards Virtual Histology: a Proof of Concept). This is achieved using
generative models, which provide a powerful framework for image-to-image translation
tasks. The work presented in this chapter has been exposed at the MICCAI Workshop on
Computational Pathology and at the ESTRO conference [Leroy, 2021a; Leroy, 2021b].

Finally, we conclude the chapter by discussing the remaining stakes in this domain
(section 4.3: Remaining challenges). This includes aspects such as the ability to generate
high-resolution images, the possibility to leverage immuno-histo chemistry (IHC) imaging
to retrieve biomarkers and improve the micro-environment understanding of radiology,
the lack of quantitative evaluation metrics, and the need for more comprehensive clinical
validation.

The chapter 5, entitled Histology-Radiology Fusion for Clinical Outcome Prediction,
moves beyond RT and the structural mapping between radiology and histology, and to-
wards a spatial-free merging of both modalities to extract multi-scale insights for the pre-
diction of clinical outcomes. This chapter begins with a clinical perspective on prognostic
factor identification and survival analysis, which are crucial tasks in oncology (section 5.1:
Characterizing and Predicting Clinical Outcomes in HNSCC). Following this, we review the
literature on how DL has been applied to these tasks, both with radiology (radiomics) and
histology (pathomics) imaging (section 5.2: Deciphering Images: Unveiling the Hidden
Signatures).

The next focus of this chapter is on the various strategies for integrating multimodal
data. This ranges from classical ensemble methods, which combine the predictions of
separate models for each modality, to more sophisticated approaches that exploit corre-
lations between modalities through attention mechanisms (section 5.3: Multimodal Data
Fusion).

In this context, we introduce the SMuRF framework, a novel method for multimodal
fusion that leverages attention mechanism to correlate histology and radiology at multi-
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scale and multi-region stages (section 5.5: SMuRF Framework). Our method is applied to
a large dataset of HNSCC patients, and we present extensive experiments demonstrating
its effectiveness (section 5.6: Dataset and experiments).

In particular, we show how the SMuRF framework can successfully integrate radiomics
and pathomics features to predict both tumor grade and patient survival, outperforming
models that use either modality alone (section 5.7: Results). Our findings, presented at
the ASCO 2023 conference [Leroy, 2023e], provide strong evidence for the potential of
DL and multimodal fusion in improving cancer prognosis and treatment planning.

In the conclusion chapter 6, we reflect on the journey of this thesis and summarize
the main contributions. We revisit the challenges of integrating radiology and histology
for improved cancer care and discuss how our proposed methods have addressed some of
these challenges while unveiling new ones.

From the development of StructureRegNet for robust histology-radiology registration
to the implementation of generative models for virtual biopsy, and finally the full-stack
integration of these modalities in the SMuRF framework for outcome prediction, we have
shown how DL can bridge the gap between these two essential modalities in oncology.

This chapter also discusses the broader implications of our work, especially in the con-
text of precision medicine. We argue that our methods not only improve the accuracy of
cancer prognosis but also open new avenues for personalized treatment planning, thereby
contributing to tailor medical care in oncology.

Finally, we identify future directions for this line of research (chapter 6). While we have
made significant progress, there are still many opportunities for further advancements.
These include improving the robustness of our models to reach clinical impact or exploring
other modalities and non-imaging streams for holistic fusion.
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Chapter 2

Precision Radio-Oncology for
HNSCC

In Chapter 2, we delve deeper into the realm of RT, elucidating its importance and the
intricacies involved in its planning and execution. Beginning with an overview of the
workflow, we highlight the critical steps involved in the treatment planning process. The
challenges associated with Gross Tumor Volume delineation, a cornerstone of RT, are then
discussed in detail, emphasizing the importance of accuracy and consistency. Recognizing
these challenges, we explore the potential of histological tumor volume as a more ac-
curate and homogenized marker, made possible thanks to pathological examination and
the advent of digital pathology. The chapter ended with a detailed exposition on the
construction of a unique histology-radiology cohort aimed at optimizing RT.
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2.1 Radiotherapy: Challenges and Perspectives

2.1.1 Clinical Workflow of RT

RT plays an essential role in the management of cancer, with over half of all cancer pa-
tients receiving this treatment at some point during their care journey [Chandra, 2021]. In
the United States, for example, over 2,000 RT centers are treating more than one million
cancer patients each year [Miller, 2019]. RT is used in a variety of clinical contexts, in-
cluding as a curative treatment, as an adjuvant or neoadjuvant treatment in combination
with surgery or chemotherapy, and as a palliative treatment to relieve symptoms of ad-
vanced disease. Its use varies by cancer type, with certain cancers such as H&N, prostate,
and breast cancers being commonly treated with RT, while others such as pancreatic and
renal cell cancers are less frequently treated with RT [Delaney, 2005].

From the biological perspective, RT harnesses the power of ionizing radiation to dam-
age the DNA within cancer cells, thereby preventing their multiplication and ultimately
leading to cellular death. The discovery of radiation dates back to the late 19th century
when Wilhelm Conrad Roentgen discovered X-rays in 1895 [Kaye, 1934]. Shortly there-
after, Marie and Pierre Curie discovered radium, marking the beginning of the era of RT.
Significant advances in our understanding of radiation physics and biology over the years
have greatly improved the efficacy and safety of RT. For instance, conventional RT uses
photons, which deposit their dose along their entire path through the body, allowing them
to handle in-depth lesions. Another form of radiation used in RT is electron beams, which
have the advantage of treating superficial lesions as they deposit most of their energy
close to the entrance surface of the body [Hogstrom, 2006].

The process of delivering RT is complex and requires precise coordination of multiple
steps. It begins with the acquisition of imaging studies to clearly define tumor extent in the
treatment position. CT scans form the backbone of RT planning, providing the detailed
anatomical information necessary for target volume delineation and dose calculation. CT
imaging, based on the differential absorption of X-rays, generates cross-sectional images
of the body with a typical resolution of 0.5 to 1.5 mm [Hounsfield, 1980]. Nevertheless,
other imaging modalities, such as MRI and PET, can provide additional anatomical and
functional information that can aid in target volume delineation. MRI, a method without
ionizing rays that uses strong magnetic fields and radio waves to generate images, provides
superior soft tissue contrast compared to CT but with longer acquisition times and higher
costs [Grover, 2015]. PET imaging, on the other hand, uses radioactive tracers to map
metabolic or biochemical activity within the body, providing functional information that
can help differentiate between malignant and benign tissues [Cherry, 2001]. It is always
combined with CT (PET-CT) to improve the localization of functional abnormalities and
to correct the absorption of emitted radiations [Farwell, 2014].

The next step in the RT process is the delineation of both the OAR and the target
volumes, the latter including the Gross Tumor Volume (GTV), the Clinical Target Volume
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(CTV), and the Planning Target Volume (PTV). The GTV(-P for primary) is the visible
or palpable extent of the tumor. The CTV includes the GTV and any potential micro-
scopic disease, while the PTV is a purely theoretical extension of the CTV accounting for
uncertainties in treatment delivery, such as patient positioning and internal organ motion
[Burnet, 2004]. Precise target volume delineation is crucial for ensuring that the tumor
receives the prescribed dose of radiation while minimizing the dose to the surrounding
normal tissues. The process of going from GTV to PTV depends on precise guidelines
specific to each location. For instance, in the case of laryngeal cancer, the CTV is split
into two contours, one CTV-P1 for high and one CTV-P2 for lower tumor burden, asso-
ciated with different dose prescription [Grégoire, 2018]. The volume concepts in RT as
well as a detailed example of the delineation of GTV, CTV-P1 and CTV-P2 in the case
of laryngeal cancer is shown in Figure 2.1.

Figure 2.1: Volume concepts in RT (left) from [Landberg, 1999]. Axial planning CT (right) for a
T2 HNSCC of the right vocal cord, from [Grégoire, 2018]. The carcinoma infiltrates the anterior
commissure and the anterior two-thirds of the right cord. Cranially, it invades the ventricle. The
mobility of the right hemi-larynx is normal. The GTV-P is delineated in red. A 10-mm isotropic
expansion is delineated in blue. The CTV-P2 is delineated in green after edition for the air cavity,
the cricoid cartilage, the left aula of the thyroid cartilage, and the left arytenoid cartilage. The
CTV-P1 is delineated in yellow.

Following target volume delineation, a treatment plan is developed to deliver the
prescribed dose of radiation to the PTV while sparing the surrounding normal tissues. This
is done using a Treatment Planning System (TPS), which uses sophisticated algorithms to
calculate the optimal arrangement and intensity of radiation beams. To achieve this, the
algorithm takes into account the aforementioned contours as well as the source image on
which they have been drawn and is necessarily a CT scan as the attenuation of radiation
within tissues is encoded in the acquisition process. There are different algorithms used for
dose calculation in TPS, including convolution/superposition algorithms like pencil beam
[Ahnesjö, 1992; Ahnesjö, 1989], and Monte Carlo simulations [Andreo, 1991]. Monte
Carlo simulations, for instance, use random number generators to simulate the transport
of individual photons and electrons through the patient’s body, providing highly accurate
dose calculations but at the cost of increased computational time. Popular solutions
for TPS include RayStation from RaySearch, Varian’s Eclipse, Accuray’s Precision and
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Phillips’ Pinnacle, among others.

Figure 2.2: Example of RT dose distribution using conventional (A) and IMRT (B) treatment
plans, for H&N cancer. Conventional and IMRT dose plans for the same patient show the
decreased area of high doses (red and orange) with the IMRT plan, but also the increased
volume of tissue receiving lower doses (blue and green) of radiation. From [Kubicek, 2008].

After multiple treatment plan verifications from physicians and medical physicists,
the final step in the RT process is the delivery of the treatment. The prescribed dose of
radiation, measured in Gray (Gy), is usually delivered throughout multiple sessions, known
as fractions, over several weeks. The use of fractionation enables an increased differential
effect of RT between healthy tissues and lesions as the tumor cannot "repair" itself between
each fraction. Over the years, the techniques used to deliver RT have evolved significantly,
and some of them with associated distribution dose maps are displayed in Figure 2.2.
The development of linear accelerators in the 1950s provided a source of high-energy
X-rays that could penetrate deeper into the body and treat tumors located in previously
inaccessible sites. More recently, techniques such as intensity-modulated radiation therapy
(IMRT) and volumetric-modulated arc therapy (VMAT) have been developed, which allow
for even greater control over the dose distribution [Taylor, 2004; Otto, 2008]. These
techniques use sophisticated algorithms to modulate the intensity of the radiation beams,
enabling the delivery of a highly conformal dose to the target volume.

Despite these rigorous procedures, it is not without its potential side effects. They are
inherent to the physical process of RT but can be increased by uncertainties that persist
in each step of the RT process, and stem from factors such as organ motion, changes in
patient anatomy throughout treatment, and inter- and intra-observer variability in target
volume delineation. Indeed, these uncertainties necessitate the use of safety margins
around the target volume, leading to increased exposure of normal tissues to radiation.
These can range from mild to severe and can impact various parts of the body depending
on the location of treatment. Acute side effects typically appear during or immediately
after treatment and can include skin reactions (such as redness, itching, and peeling),
fatigue, nausea, and issues related to the specific area being treated. For example, patients
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undergoing RT for head and neck cancers might experience mouth sores and difficulty
swallowing, while those receiving treatment in the pelvic area could experience diarrhea
or bladder irritation [Mohan, 2019].

Late side effects may develop months to years after treatment and can include fibrosis
(the thickening and scarring of connective tissue), damage to the bowels causing gastroin-
testinal problems, and secondary cancers. An example of such adverse effects is shown
in Figure 2.3. The risk of these late side effects depends on several factors including the
dose of radiation received, the specific area that was treated, and the patient’s overall
health and lifestyle factors [Dilalla, 2020; Barazzuol, 2020].

Figure 2.3: Adverse RT effects in HNSCC. It can range from inflammation early after radiation, to
structural changes like reduction in airway lumen or mucosal necrosis months after the treatment.
These are consequences of the irradiation of healthy tissues around the tumor’s primary site.
White arrows highlight the areas of interest. From [Rocha, 2022].

Nowadays, fostering research is producing considerable progress to reduce these uncer-
tainties and side effects towards precision radio-oncology, aimed at delivering the necessary
dose to the tumor while sparing as much normal tissue as possible. The following sec-
tions will delve deeper into these innovative methods, as well as the growing benefit of
multimodal imaging for improved RT made possible thanks to the process of registration.
Eventually, AI presents an exciting opportunity to address these challenges. By leveraging
the power of DL algorithms, every step of the RT process can be enhanced, from imaging
and target volume delineation to RT planning and treatment delivery.

2.1.2 Innovation in RT
The advent of precision medicine has marked a new era in cancer care, offering treatments
that are tailored to the individual characteristics of each patient and their disease. In the
realm of RT, this approach has given rise to precision radio-oncology, an emerging field
that aims to optimize the therapeutic ratio (the balance between tumor control and
toxicity) by integrating advanced technologies and novel therapeutic strategies. We –
non-exhaustively – list some of them in the following paragraphs.
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Image-Guided and Adaptive Radiotherapy

The first pivotal advancement in precision radio-oncology is Image-Guided Radiotherapy
(IGRT). It involves the use of high-quality imaging during RT to improve the accuracy
of radiation delivery [Beaton, 2019]. It is facilitated by the use of imaging technologies
such as Cone Beam Computed Tomography (CBCT) and in-room MRI. In particular,
CBCT can provide a wealth of anatomical information that can be used for patient setup
verification. CBCT can be performed quickly and easily in the treatment room, allowing
for a high degree of integration with the RT workflow [Ahunbay, 2011].

Building on the foundations laid by IGRT, Adaptive RT (ART) represents the next step
in the evolution of precision radio-oncology. IGRT combined with advanced algorithms
can adjust the treatment plan based on changes in patient anatomy, tumor size, shape,
location, and biological characteristics throughout treatment. For instance, functional
imaging techniques, such as perfusion imaging, diffusion-weighted imaging, and PET can
provide additional information about the biological characteristics of the tumor, such as
hypoxia, cellularity, and metabolic activity, which can be used to guide adaptive treatment
strategies. ART is considered an evolution of IGRT as it incorporates a time dimension,
accounting for temporal changes during treatment in addition to the spatial dose delivery
assessed and corrected by IGRT. The development of technologies such as MR-Linac, a
hybrid device that combines a linear accelerator with an MRI scanner, has been instru-
mental in the advancement of ART, enabling the integration of real-time imaging with
radiation delivery [Veresezan, 2017; Beaton, 2019; Kerkmeijer, 2016].

Proton Beam, Stereotactic and FLASH Therapies

Proton Beam Therapy (PBT) represents another significant advancement in precision
radio-oncology, using protons instead of traditional X-rays to deliver radiation. Protons
have a unique physical property known as the Bragg peak, which allows them to deposit
the majority of their energy at a specific depth in tissue, minimizing the dose beyond the
target volume. This results in a more localized delivery of radiation, reducing the dose to
surrounding healthy tissues, and thereby reducing side effects [Chandra, 2021]. PBT is
particularly advantageous for tumors located near critical organs or structures, as it allows
for precise dose delivery while minimizing collateral damage.

Besides, Stereotactic Radiotherapy (SRT) is a technique that delivers very high doses
of radiation to the tumor in fewer treatment sessions than traditional RT, thanks to a
sub-millimeter accuracy. SRT is typically used for small, well-defined tumors and can be
delivered with sub-millimeter precision. It is most commonly used for brain, lung, liver,
and spine tumors [Martin, 2010]. One of the most renowned machines using SRT is the
CyberKnife, a robotic radiosurgery with an arm delivering radiation from nearly any angle,
allowing for extremely precise targeting [Kurup, 2010].

Eventually, FLASH therapy is a novel form of RT that delivers ultra-high dose rates,
typically greater than 40 Gy per second, which is orders of magnitude higher than con-
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ventional RT. The intuition behind FLASH therapy is that delivering radiation at such
high dose rates can reduce the toxicity to normal tissues without compromising the ef-
fectiveness of tumor control, which has been validated in the first pre-clinical studies.
Further research is needed to understand the biological mechanisms behind the FLASH
effect and to translate this therapy into clinical practice [Favaudon, 2014; Lin, 2021; Ma-
tuszak, 2022], but some clinical trials like FAST-01 have already shown promising results
[Mascia, 2023; Daugherty, 2023].

Nanoparticle-Enhanced RT

Another promising approach is the use of nanoparticles to enhance the effectiveness of RT.
Nanoparticles increase the tumor/healthy tissue differential effect of RT by preferentially
accumulating in solid tumors. Indeed, the latter are characterized by a high density,
leading to a leaky vasculature and impaired lymphatic drainage. This phenomenon, known
as the enhanced permeability and retention effect (EPR), allows for the accumulation of
nanoparticles in the tumor microenvironment. Subsequently, it can enhance the local
dose of radiation through various mechanisms, including increased energy deposition,
production of reactive oxygen species, and amplification of DNA damage. Several types of
nanoparticles, including gold nanoparticles, gadolinium-based nanoparticles, and hafnium
oxide nanoparticles, have shown promise in preclinical and early clinical studies [Haque,
2023; Paro, 2017].

Chemoradiotherapy (CRT)

In addition to advances in technology and technique, the use of novel therapeutic strategies
in combination with RT can enhance the effectiveness of treatment. Chemoradiotherapy
(CRT) is a treatment approach that combines RT with chemotherapy, with popular reg-
imens being cisplatin, fluorouracil or hydroxyurea [Rose, 1999]. Some additional factors
enhancing cancer cell sensitivity can even be added to the therapeutic recipe, like the
Xevinapant agent in combination with standard-od-care cisplatin-based CRT [Bourhis,
2022].

Combination of RT and Immunotherapy

Eventually, the combination of RT and immunotherapy has emerged as a promising strat-
egy in precision radio-oncology. RT can induce immunogenic cell death, release tumor-
associated antigens, and stimulate inflammatory responses, which can enhance the ef-
fectiveness of immunotherapies such as checkpoint inhibitors. Several clinical trials are
underway to investigate the effectiveness of this combination strategy in various types of
cancer [Demaria, 2005; Van Limbergen, 2017; Weichselbaum, 2017; Zhang, 2022].
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2.1.3 Registration process in RT
Here, we delve deeper into the registration process, which is a fundamental tool in RT
workflow and an ideal playground for AI to enhance the precision of the treatment, par-
ticularly in the multimodal imaging context.

Generalities on Image Registration

Image registration is a fundamental task in computer vision and medical imaging that
aims to align or map two or more images to a common space. This process enables cor-
responding pixels or regions across the images to be compared or integrated. In a broader
context, registration techniques have been integral to diverse applications in the field of
computer vision, including object tracking, scene reconstruction, and motion analysis.

In the realm of medical imaging, registration techniques have found extensive use.
They serve as the backbone for many applications such as multimodality image fusion,
longitudinal studies, anatomical variability studies, and treatment planning in RT [Maintz,
1998; Hill, 2001]. For instance, registration can facilitate the fusion of CT scan and
MRIs, enabling clinicians to leverage the complementary information from these modalities
for improved diagnostic and therapeutic outcomes. Similarly, in longitudinal studies,
registration can allow the tracking of anatomical changes over time, providing insights
into disease progression or treatment response. We will give extensive clinical examples
in the following subsection.

Registration can be categorized based on several parameters. The dimensionality
of the registration refers to the spatial (2D or 3D) or spatiotemporal (4D) nature of
the images. The nature of the registration basis can be extrinsic (based on external
markers), intrinsic (based on image content), or non-image-based (using physiological
or anatomical information). The nature of the transformation used to align the images
can be rigid (preserving distances and angles), affine (preserving parallel lines), projective
(preserving straight lines), or deformable (for more complex, non-linear transformations).
The domain of transformation can be global (applied uniformly to the whole image) or
local (varying across the image). The interaction during the registration process can be
automatic or involve manual intervention. The optimization procedure can be based on
different mathematical criteria to achieve the best alignment.

The registration process can also vary based on the imaging modalities involved (mono-
modality or multi-modality) and whether it is applied within the same patient (intra-
subject) or across different patients (inter-subject). Moreover, the registration can focus
on specific objects (object-based) or locations (location-based) within the images.

Despite the diverse applications and techniques, the goal of registration remains the
same: to achieve the best possible alignment of the images, enabling meaningful compar-
ison or integration of information across the images. We will delve into the mathematical
details of image registration in section 3.1 of chapter 3.
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Registration in the RT Clinical Workflow

In the context of the RT clinical workflow, image registration plays a pivotal role. The
most frequent use case is the repositioning of the patient on treatment day to match
the anatomy of planning CT. Other applications include the integration of multimodal
imaging data, tracking of anatomical changes, dose accumulation, etc. The specifics of
the registration process, including the nature of the transformation, the interaction during
the process, the optimization procedure used, and the imaging modalities involved, may
vary depending on the specific step in the workflow and the clinical application at hand
[Maintz, 1998; Hill, 2001; Barber, 2020].

In the initial stages, particularly during diagnosis and treatment planning, registration
is often used for the integration of multimodal imaging data. For instance, the fusion
of CT and MRI scans through registration can provide a more comprehensive view of
the patient’s anatomy and the tumor extent, mostly for brain and gynecological cancers.
In addition, PET/CT and planning CT scans are often registered to better understand
the tumor’s metabolic activity. These examples can aid in accurate tumor delineation
and critical OAR identification. The registration process during this stage is typically
automatic and involves software tools provided by the TPS. The transformation used is
usually rigid or affine, assuming that the patient’s body part of interest does not deform
significantly between the scans [Czajkowski, 2019].

Registration is crucial in the process known as dose accumulation. There exist two
typical cases: first, in the context of adaptive RT, during treatment planning, Here,
registration is performed between the planning CT and daily images acquired at each
treatment fraction. This allows for the estimation of the actual dose delivered to the
tumor and surrounding tissues, accounting for variations in patient setup and anatomical
changes throughout treatment. The transformation used is usually deformable, reflecting
the changes in the patient’s anatomy. This process is automated and involves sophisticated
software tools for deformable image registration (DIR) [Oh, 2017; Brock, 2017]. Second,
registration can be useful for dose accumulation with an anterior treatment or planned
treatment that needs new evaluation and imaging due to changes in anatomy or errors.

In the context of IGRT and ART, registration becomes even more critical as it allows
for the modification of the treatment plan based on the changes in the patient’s anatomy
or tumor size/shape during treatment. Registration is used to align the original planning
CT with the new real-time image on the treatment delivery day (usually a CBCT or
MRI), facilitating the transfer of the original contours and the re-evaluation of the dose
distribution [König, 2016; Rigaud, 2019]. An example of CBCT-based ART for H&N
cancer is depicted in Figure 2.4, where deformable registration is the cornerstone of the
workflow.

For patient follow-up, registration can be used for the comparison of pre-treatment
and post-treatment images or for the monitoring of disease progression over time. The
process can be manual or automatic, depending on the specific clinical protocol and the
imaging modalities involved. In conclusion, registration is a fundamental tool in the RT
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clinical workflow. The advancements in image registration techniques, along with the
integration of artificial intelligence methods, hold great promise for further enhancing the
precision and accuracy of RT.

Figure 2.4: CBCT-based ART with deformable registration to adapt the treatment delivery for
H&N cancer. During initial planning, pre-treatment planning CT is acquired and OAR and target
contours are imported from TPS. On-the-day H&N on-line ART consists of a CBCT acquisition,
on which the planning CT is deformably registered for target and OAR contour alignment (step
2.). Even if the registration is automated, human intervention is still required as quality insurance
before validating the adaptive plan (steps 4. and 7.). From [Yoon, 2020].

Registration for Target Volume Delineation

Image registration has played a significant role in the progress of RT research, particularly
in the crucial task of target volume delineation, more precisely the GTV. In the context
of HNSCC, this task is made more difficult by the anatomical complexity of the region
and the proximity of the tumor to critical OAR.

A way to improve GTV delineation is through the use of multimodal imaging data.
Different imaging modalities provide complementary information, each offering specific
advantages and drawbacks. For instance, CT scans provide excellent spatial resolution
and bone detail, but can sometimes struggle with soft tissue contrast. MR imaging, on
the other hand, offers superior soft tissue contrast and functional information, but suffers
from geometric distortions and has a longer acquisition time. PET scans provide functional
information about the tumor, such as metabolic activity, but have lower spatial resolution.
Thus, the integration of information from multiple modalities can potentially enhance the
understanding and delineation of the GTV on the reference CT scan. This is where image
registration becomes a necessity [Daisne, 2003]. This process can be performed manually
or automatically and can involve rigid, affine, or deformable transformations depending
on the specific clinical protocol and the software used.

Several studies have focused on the comparison of different modalities for GTV delin-
eation in HNSCC. For instance, Chung et al. [Chung, 2004] found that MRI was superior
to CT in the delineation of nasopharyngeal carcinoma. Daisne et al. [Daisne, 2004] showed



2.1. Radiotherapy: Challenges and Perspectives 25

that the combination of CT, MRI, and FDG PET provided the most accurate tumor vol-
ume delineation in pharyngolaryngeal SCC. The use of MRI in addition to CT was also
found to improve the delineation of the base of tongue tumors [Ahmed, 2010], and supra-
glottic laryngeal carcinoma [Jager, 2015]. Unsurprisingly, Daisne et al. [Daisne, 2004]
and Ligtenberg et al. [Ligtenberg, 2017] demonstrated that the combination of CT, MRI,
and FDG-PET provided the most accurate tumor volume delineation in pharyngolaryngeal
SCC.

However, it is important to note that all these studies were conducted on relatively
small cohorts and in specific tumor locations, which may limit the generalizability of
the findings. Furthermore, these studies highlight the absence of a gold standard in the
assessment of GTV. The combination of all available modalities, facilitated by image
registration, seems to be the most promising approach, but further research is needed to
define the optimal combination for each specific clinical scenario.

In conclusion, image registration has greatly contributed to the advancement of RT
research, particularly in the context of GTV delineation. Through the integration of mul-
timodal imaging data, registration facilitates a more comprehensive understanding of the
tumor, potentially improving the accuracy of GTV delineation and the effectiveness of
RT treatment. However, interobserver variability in GTV delineation remains an issue,
highlighting the need for further research and the development of standardized protocols.
In this respect, a revolution in the field of precision radio-oncology involves the promising
field of histological image registration. While radiological imaging modalities provide a
macroscopic view of the tumor, histology images offer a microscopic perspective. Tra-
ditionally performed manually, automating this task with AI is highly challenging and is
one of the main focuses of this thesis. Once registered, we can learn new insights on the
tumor environment in radiology as the tumor extent from histology is a gold standard for
GTV; these new insights will then be used for non-operated patients planned for RT with
radiology only in a prospective cohort. The medical need is unequivocal for lower global
toxicity and represents a big step toward precision radio-oncology.

2.1.4 AI across the RT Workflow
AI has become an integral part of the healthcare landscape and is increasingly making
its mark in the field of RT. As a technology that has the potential to revolutionize the
current practice, AI is not limited to research but is gradually being translated into the
clinical realm, influencing all steps of the RT workflow [Huynh, 2020]. Its potential
to optimize treatment planning, automate routine tasks, and improve the precision of
radiation delivery is remarkable and continues to reshape the entire field and the roles of
healthcare professionals involved (Figure 2.5).
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Figure 2.5: Applications of AI across all steps of the RT workflow. From [Huynh, 2020].

Initial Treatment Decision-Making

In the initial treatment decision-making phase, decision tree-based ML models such as
random forest and XGBoost are employed for outcome prediction [Breiman, 2001; Chen,
2016]. These models use multimodal data, including tabular data on comorbidities, dosi-
metric indices, age, genomic and radiomic features [Aerts, 2014]. The prediction can in-
form the clinical decision to start, continue or change a given therapy. Moreover, Natural
Language Processing (NLP) models are being developed to analyze unstructured data like
text from Electronic Health Records (EHRs), extracting valuable insights that can assist
in treatment decision-making. The emergence of large language models – the paradigm
behind ChatGPT – also holds great promise [Brown, 2020]. They could be utilized as
an assistant tool to help physicians by providing comprehensive information from a wide
range of medical literature and serving as a backbone for interdisciplinary communica-
tion. The emergence of these predictive models introduces an AI-driven decision-support
component to the role of radiation oncologists, enhancing patient counseling and shared
decision-making processes.

Treatment Planning and Preparation

AI is widely used in the treatment simulation phase for image acquisition, processing, and
registration. The scope of this thesis is substantially included in this AI-powered treat-
ment planning phase. Generative Adversarial Networks (GAN) are employed to generate
synthetic CT images from MR, which are mandatory for the planning of MR-only RT
[Maspero, 2018]. AI models have also been developed for the automatic registration of
multimodal images, such as CT and MRI, to enhance the accuracy of treatment planning.
For the volume delineation step, Fully Convolutional Networks (FCN) are utilized for OAR
segmentation, reducing inter-observer variability and enhancing efficiency [Nikolov, 2021a;
Nikolov, 2021b]. Automatic tumor segmentation, however, is still more delicate and not
translated into clinical practice. Eventually, neural networks have also been applied for
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predicting dose distribution and optimizing the dosimetric treatment planning process,
resulting in plans of equal or higher quality compared to those produced by expert human
planners [Chen, 2019; Thompson, 2018a].

Review and Verification

Before the delivery of the dose, the treatment plan undergoes a review and verification
process to ensure its accuracy. Neural networks have been used for radiation dose qual-
ity assurance (QA), identifying potential errors or sub-optimal plans, which provides an
additional layer of safety check before treatment delivery [Mahdavi, 2019; Netherton,
2020]. These advancements are shifting the roles of medical physicists and dosimetrists
from manual plan optimization to supervising and ensuring the quality of AI-driven plan
generation.

Treatment Setup and Delivery

During the treatment setup and delivery phase, DL models are used for tumor motion
prediction in lung cancer RT, to adjust the radiation beam accordingly to ensure precise
targeting of the tumor. In addition, predicting patient setup errors based on pre-treatment
imaging data eases the image guidance process [Thompson, 2018a].

AI-driven systems, such as those offered by Varian and ViewRay, use Reinforcement
Learning (RL) for dose adaptation, an empirical approach to optimize the treatment based
on defined constraints on the patient’s anatomy and tumor motion [Tseng, 2017]. These
advancements highlight the evolving role of radiation oncologists and medical physicists,
who will need to acquire skills in managing and interpreting AI-driven technologies.

Response and Follow-up

After the completion of treatment, response assessment and follow-up care are important
for monitoring the patient’s progress and managing potential side effects. ML models
have been developed for predicting treatment response based on post-treatment imaging
data, providing valuable information for follow-up care [Thompson, 2018a]. AI has also
been explored for predicting the likelihood of radiation-induced side effects, which can
guide the management of these complications and improve the patient’s quality of life
[Deig, 2019].

While the integration of AI into the RT workflow holds tremendous potential, it also
presents numerous challenges. These include the need for high-quality datasets for train-
ing AI models, the interpretability of AI predictions, robust validation, and regulatory
approval. Through collaborative efforts between multiple centers and the sharing of pub-
lic datasets, these challenges can be overcome, accelerating the development and clinical
implementation of AI in RT [Wahid, 2022]. AI has the potential to transform the field of
RT, improving the precision and efficiency of radiation delivery, and enhancing the qual-
ity of care for patients. However, the successful integration of AI into the RT workflow
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requires concerted effort from researchers, clinicians, and regulatory bodies to address the
existing challenges and ensure the safe and effective use of this technology.

2.2 Digital Pathology
After RT, we focus on a very important aspect of oncology: pathology (we will fuse these
two fields in section 2.3). It is the scientific study of the causes and effects of disease,
which plays a pivotal role in medical decision-making. This field involves the examination
of tissues, cells, and bodily fluids, correlating laboratory findings with clinical presentation
to form a comprehensive status of the patient. Anatomical pathology, a major branch
of pathology, examines morphological alterations in organs, tissues, and cells caused by
disease. These alterations, known as lesions, can stem from various factors such as
physical and chemical agents, infectious agents, genetic defects, and immune, nutritional
or hormonal disorders. Anatomical pathologists (or pathologists in short) play a vital role
in suggesting diagnoses by correlating clinical, biological, and imaging data from patients,
providing prognostic estimations, and evaluating the therapeutic impacts of treatments.

At its core lies histopathology, the study of diseased tissues only, at a microscopic
level. Traditionally, examination involves a pathologist analyzing physical slides under
a microscope. However, we are currently transitioning into a new era of digitization in
pathology, propelled by advancements in digital technologies. This transition is intro-
ducing a revolution in the field, changing the way pathologists work and enhancing the
potential for precision medicine.

The process from surgical extraction to the creation of digital slides involves a se-
quence of steps: extraction, fixation, embedding, cutting, coloration, and digitization.
The digitization of pathology not only modernizes these steps but also introduces new
opportunities and challenges in the field. This section will delve into this digitization pro-
cess, its impact on the pathology field, and its potential to revolutionize the pathologist’s
role.

2.2.1 From Surgery to Digital Pathology

Extraction

The process of obtaining tissue for pathological examination begins with extraction. This
may involve biopsies, a small sample of tissue taken from the body at the diagnosis stage,
or the removal of a larger resected specimen if surgery is prescribed.

In this discussion, our primary focus will be on resected specimens, particularly those
obtained during surgeries like total laryngectomy in the treatment of HNSCC. In a to-
tal laryngectomy, the entire larynx is removed. This surgical procedure is prescribed
in advanced stages of laryngeal cancer, where the tumor has grown beyond the larynx,
or in cases where other treatments have failed or the patient has persistent disease after
chemoradiation. Notably, the decision to perform a total laryngectomy is not taken lightly.
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While total laryngectomy is a life-saving procedure, it has significant post-operative con-
sequences that affect the quality of life of the patients [Chotipanich, 2021; CEACHIR,
2014].

The larynx serves two main functions: it houses the vocal cords that produce voice, and
it prevents food and drink from entering the trachea and lungs. Post total laryngectomy,
both these functions are severely affected. The most immediate and noticeable effect of
the procedure is the loss of natural voice. Various rehabilitation methods, including the
use of electrolarynx devices, esophageal speech, or tracheoesophageal puncture with voice
prostheses, are employed to aid patients in regaining their ability to speak. However,
these methods often do not fully restore natural speech and voice quality. In addition,
total laryngectomy results in a permanent tracheostomy, a hole in the neck through
which the patient breathes thanks to a cannula brought out to the front of the neck.
This is because the airway is separated from the mouth, nose, and esophagus during the
procedure. The change in the airway also affects the sense of smell and taste, further
impacting the patient’s quality of life. Despite these significant post-surgery consequences,
total laryngectomy is sometimes the best or the only option available for treating advanced
laryngeal cancer. It is a curative procedure aiming to completely remove the cancer and
prevent its recurrence.

This procedure allows for the removal of a large part of the entire organ, providing
substantial tissue for further examination and analysis. Importantly, it enables us to
directly compare in vivo anatomy from radiology and ex vivo resected specimens.

Fixation, Embedding, Cutting, and Coloration

Post extraction, the tissue sample undergoes a series of steps to prepare it for pathological
examination. These include fixation, embedding, cutting, and coloration.

Fixation is the first step, aimed at preserving the tissue from putrefaction and autolysis
after removal from the body. This process involves soaking the tissue in a fixative solution.
The type of fixative used can vary depending on whether the tissue is to be examined
in a frozen state or embedded in paraffin. Formalin, commonly used in the paraffin
pathway, requires several hours to fix small biopsies and up to 48 hours for resected pieces
[Al-Janabi, 2012].

The embedding process aims to facilitate the sectioning of the fixated tissue samples
into thin and regular slices. For Formalin-Fixed Paraffin-Embedded (FFPE) slides, the
tissues are embedded in a paraffin medium. This embedding requires careful handling of
the tissue to avoid damage and requires the tissue to be dehydrated through successive
baths of alcohol before being cleared with xylene, a process that prepares the tissue for
impregnation with paraffin. Once the tissues are fully impregnated, the paraffin hardens
after cooling at room temperature, resulting in samples embedded in a hard block [Sainte-
Marie, 1962].

The embedded blocks are then cut into thin slices using a microtome for FFPE blocks
or a cryostat for frozen ones. The cutting process requires a high level of skill and precision



30 Chapter 2. Precision Radio-Oncology for HNSCC

due to the tiny thickness of the sections. The thin sections are then placed on glass slides
slightly wet to avoid as many tissue folds as possible [Al-Janabi, 2012].

Embedding

Sectioning

Staining

Optional: 
Digitization

Total Laryngectomy

Fixation

Processing 
(cut into big blocks)

Figure 2.6: From surgery to (digital) slide for pathological examination. The images come from
our internal cohort for the same patient. Each block is around 5mm thick. The staining is HES.

The final step, coloration, consists of staining the tissue sections to enhance tissue
contrast and highlight specific biological elements. The coloration process involves the use
of various stains that selectively color certain elements. The commonly used hematoxylin
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and eosin (H&E) staining provides a rich and accurate display of the true in vivo aspect of
the tissue. The protocols for coloration are not standardized and vary across laboratories,
contributing to the visual variability of glass slides [Llewellyn, 2009]. For example, France
is one of the only countries still using saffron for better contrast, while other countries
removed its use due to its high cost. The staining is then called HES (Hematoxylin-Eosin-
Saffron).

Overall, the process of preparing a tissue sample for pathological examination involves
a meticulous and carefully controlled series of steps. Each step contributes to the final
product - a slide ready for examination under a microscope or for digitization in the case
of digital pathology. Figure 2.6 details such process for a total laryngectomy.

Special Techniques

Several specialized techniques in histopathology supplement traditional staining methods,
offering additional insights into the biochemical properties of tissue samples. These include
histochemistry, histoenzymology, immunohistochemistry (IHC), and in situ hybridization
(ISH).

Histochemistry uses biochemical reactions to localize specific molecules within tissues
and cells, such as lipids, carbohydrates, proteins, nucleic acids, and metals [Coons, 1956].
Variants of this technique, such as lectin histochemistry, use lectins (proteins that bind to
sugars) to highlight carbohydrate structures in glycoproteins, like those found on cell mem-
branes. Histoenzymology employs substrates that bind to and highlight enzymes. While
these techniques can be valuable in specific contexts, they are generally overshadowed by
the widespread use of IHC.

IHC is a method that utilizes monoclonal or polyclonal antibodies to target and vi-
sualize specific antigens (substances that provoke an immune response) present on cell
surfaces [Duraiyan, 2012]. As the antibody-antigen reaction is colorless and therefore
invisible under a microscope, the antibodies are conjugated with color-inducing enzymes
(chromogenic IHC) or fluorescent compounds (immunofluorescence) to make the binding
sites visible. A counterstain is often used to enhance the contrast of an immunostain
stain, such as hematoxylin. An example of IHCs and correspondent HES is depicted in
Figure 2.7.

ISH uses strands of DNA or RNA that selectively bind to complementary DNA or RNA
sequences in cells. This technique can be used to detect the presence of a virus in tissues,
such as HPV in the case of HPV-associated head and neck cancers [Kelesidis, 2011].
Fluorescent in situ hybridization (FISH) is a variant of ISH that can be used to examine
chromosomal integrity.
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Clinical Histopathology

The aforementioned process enables the constitution of physical slides, which is the cor-
nerstone of clinical histology (or histopathology for tissues with disease). A fundamen-
tal tool in histopathology is the microscope. Since its invention in the 16th century,
the microscope has been essential for observing the intricate details of tissues and cells
[Hogg, 1854]. Light microscopes allow us to observe specimens that are illuminated and
magnified. The resolution of a microscope, which is defined as the minimal distance be-
tween two discernible points on the produced image, is limited by physical factors such
as light diffraction. The highest achievable resolution for a light microscope is around
0.2 micrometers, which is roughly half the wavelength of visible light [Helmholtz, 1876].
Despite these limitations, light microscopes remain a vital tool in histopathology labs due
to their affordability and ease of use compared to more advanced options like electron
microscopes.

In a clinical setting, a pathologist interprets histopathological slides to make a di-
agnosis, determine a prognosis, and predict treatment responses. This process involves
examining stained slides under a microscope, along with molecular testing to provide
sub-cellular information about a tumor. It is worth noting that while a diagnosis could
potentially be made from a single slide, multiple slides are typically examined to ensure
an accurate diagnosis. Moreover, legislation in many countries mandates the archival of
slides for several years to facilitate future investigations if required. The observations
made by pathologists contribute to a variety of areas:

• Diagnosis: Classifying the nature and aggressiveness of a tumor.

• Prognosis: Offering insight into a patient’s likely course of disease progression.

• Treatment response prediction: Anticipating how a patient’s disease might respond
to certain treatments.

The findings of the pathologist are synthesized into a pathological report, which con-
tains information about the histological type of cancer, its grade, stage, and limits. These
reports are crucial for oncologists and other physicians when determining the most appro-
priate course of treatment for a patient. In the following subsection 2.2.2, we will focus
on the histopathology of HNSCC.
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Digitization of Physical Slides

The field of pathology is currently undergoing a transformative revolution, thanks to
the digitization of physical slides. This process, converting conventional glass slides into
digital images, often referred to as Whole Slide Images (WSI), uses specialized machines
known as scanners. The most renowned brands in this domain include Olympus, Leica,
and Philips, amongst others [Al-Janabi, 2012; Soenksen, 2007; Soenksen, 2008].

The digitization process involves scanning the physical slide at high resolution to create
a detailed, high-quality digital replica that can be viewed on a computer screen. Due to
the large physical dimensions of the slide relative to the microscopic cellular features, the
scanning process divides the slide into smaller, manageable sections or tiles. Akin to a
puzzle, the set of tiles is finally assembled into the final WSI.

Different scanner brands produce digital slides in various proprietary formats, such as
Olympus’s .vsi format or Leica’s .scn format. However, a common format often used is
the Tagged Image File Format (.tiff). Despite these numerous formats, an effort towards
standardization and uniformity in digital slide formats is still needed to exploit the full
potential of digital pathology.

Typically, the magnification of these digital slides is set to 20x (0.5µm/pixel) or 40x
(0.25µm/pixel), producing images that can reach up to several gigabytes in size. These
digital images can be viewed using various software platforms, including open-source
options like QuPath [Bankhead, 2017] or commercial solutions. These platforms often
incorporate AI tools to save pathologists’ time. Typically, it enhances its capabilities by
providing a more efficient and flexible way to examine and annotate slides. Pathologists
can leverage the convenience of simultaneous observation of different regions in a H&E
and IHC WSI, for instance.

The digitization of slides is a game-changer for the pathology field. Digital images are
easily shared, enabling remote consultations, revisions, and second opinions, a practice
known as telepathology, free from any geographical boundary. Furthermore, digital slides
provide an excellent educational tool, offering students easy access to a vast array of
case slides. In a research context, open-source datasets, such as The Cancer Imaging
Archive (TCIA), provide a valuable resource gathering WSIs in addition to radiological
images or molecular data, fostering collaborative and comparative studies and algorithms
[Clark, 2013].

The incorporation of digital pathology into the clinical workflow is still in its early
stages, as it varies across centers and is largely dependent on resources and local regu-
lations. The transition, however, is not without challenges, particularly when it concerns
the archiving process. Instead of storing physical slides, which can degrade over time and
are prone to mishandling or loss, digital images can be archived with greater efficiency
and longevity. However, the digital format does not completely mitigate the archival chal-
lenges. The considerable size of the digitized images necessitates substantial upfront costs
for scanner equipment, viewer software and data storage solutions, which can pose logisti-
cal and financial challenges – in addition to the necessity of technical expertise for system
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management. Nevertheless, the long-term benefits of digital pathology, such as improved
efficiency, cost-effectiveness, and enhanced diagnostic capabilities, are likely to drive its
continued adoption, with an increasing number of pathology laboratories switching to
digital platforms [Pantanowitz, 2010; Tizhoosh, 2018].

In conclusion, the digitization of physical slides is a significant stride towards the future
of pathology, paving the way for more widespread use of computational tools and AI in
pathology. The integration of digital pathology into the clinical workflow will extend the
capabilities of pathologists, enabling a more comprehensive approach to disease diagnosis
and management. Finally, it is important to note that while digitization opens new
horizons for pathology, it does not completely replace the need for traditional microscopy.
Certain details, such as the depth of tissue samples, are not well captured in digital slides,
highlighting the fact that digital pathology complements, rather than replaces, microscopic
examination.

2.2.2 Histopathology of HNSCC

This section will explore the histopathological features of HNSCC, tracing the pathologist’s
journey from observing a physical or digital slide of a biopsy or resected specimen to the
final diagnosis. However, to fully comprehend the histopathological context of HNSCC,
it is crucial to first establish an understanding of some fundamental biomedical concepts
and the basics of cancer biology.

Cells are the foundational units of life, forming the structure and performing the func-
tions of tissues, which, in turn, constitute organs. HNSCC, like all cancers, originates from
abnormal cells that proliferate rapidly and replace normal cells within organs. The trans-
formed cancer cells often lose their original functionality, impairing the organ’s function
and potentially leading to organ failure and death. Thus, an understanding of cell biology
and tissue organization is fundamental to comprehending the histology and mechanisms
of HNSCC.

Cell Biology

Animal cells, including human cells, are eukaryotic, distinct from the prokaryotic cells that
make up Bacteria and Archaea [Koonin, 2008]. The eukaryotic cell is composed of three
principal components: a nucleus, cytoplasm, and plasma membrane.

The nucleus contains chromosomes, which are comprised of a complex of DNA and
proteins, also known as chromatin [Kornberg, 1977]. It also houses nucleoli that produce
ribosomes and is enclosed by the nuclear envelope, a double lipid bilayer membrane per-
forated with pores. Most of a cell’s genetic material is located within the nucleus, with a
small fraction found in organelles like mitochondria [Birky, 2001].

The cytoplasm houses several organelles, each with unique functions. These include ri-
bosomes for protein synthesis [Ramakrishnan, 2002], the endoplasmic reticulum for various
synthetic and metabolic processes [Palade, 1956], the cytoskeleton for structural reinforce-
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ment [Fletcher, 2010], and mitochondria for energy production [McBride, 2006]. Other
organelles like lysosomes, the Golgi apparatus, flagella, and microvilli are also present, per-
forming various roles ranging from digestion and recycling to cell movement and surface
area enhancement [de Duve, 1963; Beams, 1968; Brown, 1962].

The plasma membrane, a double layer of lipids, embeds various proteins. These
proteins play key roles in transportation in and out of the cell, cell-to-cell recognition, signal
transduction, attachment to the extracellular matrix, intercellular joining, and enzymatic
activities [Guidotti, 1972].

Human cells vary considerably in size, depending on their type and function. Most
human cells range between 2 and 120 microns in size, with some exceptions like the long
axons of neurons and muscle cells [Becker, 2006; Radcliffe, 1991; Ross, 2006].

Tissue Organization

Tissues are complex structures formed by the organization of cells into distinct patterns to
perform a specific function. The primary tissue types include epithelial tissue, connective
tissue, muscle tissue, and nervous tissue.

Epithelial tissue forms a protective barrier at the interface between the body and the
external environment, lining organs and cavities within the body. It comprises cells closely
packed by tight and adherens junctions, which allow little material passage between cells,
thus providing a protective barrier against injury, microbes, and fluid loss [Balda, 1998;
Niessen, 2007]. The epithelial tissue also has diverse functions, including secretion and
absorption of chemical solutions, excretion, gas exchange, and sensorial reception. This
particular structure is at stake and first damaged in the case of HNSCC.

In contrast, the connective tissue is versatile and assumes numerous functions, includ-
ing binding, structural support, and resource delivery for other tissues [Mathews, 2012].
It is made up of cells, fibers, and ground substances, which can be solid, jelly-like, or liq-
uid depending on its location. Connective tissue can be further classified into connective
tissue proper and special connective tissue.

Muscle tissue is the most abundant tissue type in humans, made of muscle cells
or myocytes that produce mechanical work through muscular contraction [Blau, 1981].
There are three types of muscle cells: striated skeletal muscle, cardiac muscle, and smooth
muscle, each with their unique properties and functions.
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Cancer Biology

The Molecular Perspective Cancer is fundamentally a disease of the genome, where
genetic changes disrupt the normal regulation of cell proliferation, survival, and differen-
tiation. These changes can be caused by various factors, including inherited mutations,
environmental factors, and errors in DNA replication [Hanahan, 2000; Stratton, 2009].

There are two main types of genetic changes in cancer cells: mutations and chromo-
somal abnormalities. Mutations are changes in the DNA sequence that can result in the
alteration of protein function or expression. They can be point mutations, where a single
nucleotide is replaced by another, or insertion and deletion mutations, where nucleotides
are added or removed from the DNA sequence [Vogelstein, 2013].

Chromosomal abnormalities are changes in the structure or number of chromosomes
and can significantly affect gene function and expression. These abnormalities include
deletions, duplications, inversions, translocations, and aneuploidy, which is the presence
of an abnormal number of chromosomes.

The mutations and chromosomal abnormalities in cancer cells can affect a variety
of genes, including oncogenes and tumor suppressor genes. Oncogenes are genes that,
when mutated or overexpressed, can promote cell proliferation and survival, contributing
to the development of cancer. Tumor suppressor genes are genes that normally inhibit
cell proliferation and survival. Mutations that inactivate these genes can remove these
inhibitory effects, leading to cancer [Vogelstein, 2004]. At this scale, only molecular
multi-omics data can provide insights into the mechanisms of cancer.

The Morphological Perspective The morphological changes in cancer cells are a result
of the genetic changes and can be observed under the microscope. That is the scale of
interest for histopathology. These changes include alterations in cell size, shape, and
arrangement, as well as changes in the structure and function of the cell’s organelles.

Cancer cells are often larger than normal cells and have a higher nuclear-to-cytoplasmic
ratio, meaning the nucleus takes up a larger portion of the cell. The nucleus of a cancer
cell is often irregular in shape and size, and the chromatin within the nucleus can be
clumped or dispersed unevenly. The nucleoli in cancer cells are often larger and more
numerous than in normal cells [Rajagopalan, 2004].

The arrangement of cancer cells within a tissue can also be disordered. Normal cells
in a tissue are often arranged in a regular, predictable pattern, while cancer cells can be
arranged haphazardly. The cells can invade the surrounding tissue, breaking through the
basement membrane that normally separates different tissue types.

The structure and function of the cell’s organelles can also be affected. For exam-
ple, cancer cells often have more ribosomes, reflecting the increased protein synthesis
required for rapid cell proliferation. The Golgi apparatus, involved in protein processing
and secretion, may also be enlarged.

In conclusion, cancer is characterized by genetic changes that result in abnormal cell
proliferation and survival. These genetic changes can be observed morphologically under
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the microscope only, providing important clues for the diagnosis and prognosis of the
disease and proving the paramount importance of the pathologist’s role. In the following
sections, we will delve deeper into the specific histopathological features of HNSCC.

Histopathology of HNSCC

Molecular Mechanisms HNSCC is a complex disease with several molecular mecha-
nisms contributing to its initiation and progression. It is mainly driven by genetic al-
terations, environmental factors, and viral infections, particularly Human Papillomavirus
(HPV) [Johnson, 2020].

Key genetic changes in HNSCC include mutations in TP53, a tumor suppressor gene,
and amplification or overexpression of EGFR, an oncogene. Mutations in TP53 can lead
to the loss of its function, which is to regulate the cell cycle and prevent uncontrolled cell
growth. Overexpression of EGFR, on the other hand, can promote cell proliferation and
survival [Pai, 2009].

Environmental factors such as tobacco use and alcohol consumption can also con-
tribute to the development of HNSCC by causing DNA damage and promoting genetic
mutations in the epithelial cells that are in direct contact with the substance. Viral in-
fections, particularly with HPV, can also play a role. HPV can integrate its DNA into
the host’s genome, leading to the production of viral proteins that can interfere with
the function of TP53 and other tumor suppressor genes, promoting cell proliferation and
survival [Johnson, 2020].

Morphological Patterns These molecular changes have profound effects on the mor-
phology of cells and tissues, leading to characteristic histopathological features of HNSCC.
At the cellular level, HNSCC cells typically have an irregular shape and a higher nuclear-
to-cytoplasmic ratio compared to normal cells. The chromatin within the nucleus can be
hyperchromatic, meaning it stains more intensely, reflecting changes in the DNA structure
or content. The nucleoli can be prominent, reflecting increased protein synthesis [Dive,
2014].

At the tissue level, HNSCC is characterized by the invasion of cancer cells into the
surrounding tissue, which can be seen as irregular nests or islands of squamous cells
breaking through the basement membrane. There can also be a change in the architecture
of the tissue, with a loss of the normal layered arrangement of cells and the presence of
keratin pearls, which are concentric layers of keratin produced by the cancer cells.
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Localization of Tumor Cells The localization of HNSCC cells within the tissue can
also provide important clues for diagnosis. HNSCC typically arises from the squamous
epithelium lining the H&N region, including the oral cavity, pharynx, and larynx. The
tumor cells can invade the underlying connective tissue and spread to the lymph nodes
and other parts of the body [Pai, 2009].

However, the exact localization of the tumor cells can vary depending on the site of
the tumor and its stage. For example, in early-stage HNSCC, the tumor cells may be
confined to the epithelium and the underlying basement membrane. In advanced stages,
the tumor cells can invade deeper tissues and spread to distant sites.

The correlation between the biology and histology of HNSCC provides valuable in-
sights for diagnosis and prognosis. For example, the presence of mutations in TP53 or
overexpression of EGFR can be associated with a certain morphological pattern, such as
the presence of keratin pearls. Similarly, the localization of the tumor cells can give clues
about the origin of the tumor and its potential to spread.

2.2.3 Computational pathology
In the previous sections, we delved into the world of histopathology, focusing on the
mechanisms, morphological patterns, and localization of HNSCC cells. We also explored
the process of collecting samples from resected specimens and turning them into physical
slides. Now, we turn our attention to a new paradigm that leverages digital technology
and AI in histopathology.

Digital pathology, the practice of converting glass slides into digital slides that can be
viewed, managed, and analyzed on a computer monitor, has revolutionized the field of
pathology. When AI, particularly ML and DL, is applied to digital pathology, we enter the
domain of Computational Pathology (CPath). This fusion of pathology, digital technology,
and AI opens up new possibilities for computer-aided diagnosis, prognosis, and treatment
response prediction [Abels, 2019; Cui, 2021].

The workflow of CPath broadly consists of several steps: slide preparation, digitization,
image analysis, and interpretation. The two first steps have already been discussed in
section 2.2. Image analysis is where AI comes into play. ML/DL algorithms are trained to
analyze digital images, detect patterns, and make predictions. These algorithms are then
interpreted to assist pathologists in their routine diagnostic tasks, infer molecular defects
or conditions from histological slides, identify prognostic factors, and predict treatment
response. Importantly, the final decision is typically made by a pathologist or a clinician,
integrating the AI outputs with other clinical information [Abels, 2019]. Here are the
most important applications. We will only focus on the clinical applications here, and we
will delve into the methodological aspects in section 5.2 of chapter 5.
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Computer-Aided Diagnosis

Computer-aided diagnosis, facilitated by ML and DL, seeks to lighten the load for pathol-
ogists, standardize diagnoses, and expedite remote diagnoses (telepathology). Within
this domain, classification and segmentation play crucial roles. Classification pertains to
the categorization of inputs (like images or parts of images), while segmentation classifies
each pixel in an image, effectively parsing the image into segments associated with various
structures or regions.

For instance, Campanella et al. [Campanella, 2019] crafted a decision support system
for pathology to detect cancer. Their model, trained on a vast dataset of slides, demon-
strated impressive proficiency in identifying diverse types of cancer. This showcases the
potential of AI to harness patient-level labels for training, eliminating the necessity for
labor-intensive manual annotations.

Molecular anatomy inference

Predicting molecular anomalies from H&E slides is another promising application within
CPath. Recognizing that molecular alterations often manifest as morphological changes
observable in H&E slides, ML models can be trained to predict prevalent molecular anoma-
lies. In a notable instance, Coudray et al. [Coudray, 2018] employed a CNN to classify
lung cancer types and predict molecular anomalies, achieving significant accuracy.

Prognostic Factors Identification

Unearthing prognostic factors is an essential endeavor in CPath. The objective is to
innovatively characterize the tumor microenvironment (TME) and tissue morphologies
to predict mortality events, enabling medical professionals to adjust patient management
accordingly.

A prominent area of exploration is the TME and its interactions with tumor and
immune cells, given the absence of a reliable biomarker for immunotherapy efficacy pre-
diction. The presence of Tumor Infiltrating Lymphocytes (TILs), for instance, has been
linked with positive clinical outcomes. However, TIL evaluation on H&E slides can be
challenging. Addressing this, Saltz et al. [Saltz, 2018] presented a seminal study on TIL
identification using DL on H&E slides. Their findings underscored the potential of AI to
discern TIL distribution patterns in tumors, which appear to correlate with overall patient
survival.
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Predictive Biomarker Quantification

Predictive biomarkers, which are measurable biological indicators, can help predict disease
progression or treatment response. In CPath, predictive biomarkers are often inferred from
histological slides. A notable example is the research by Kapil et al. [Kapil, 2018], who
devised a DL-based method to objectively score PD-L1 expression in late-stage Non-Small-
Cell-Lung-Cancer biopsies, a critical determinant for immunotherapy suitability.

Furthermore, ML can significantly aid research teams employing multiplex and highplex
IHCs for TME characterization. These advanced techniques can quantify immune cell
subsets, ascertain their functional status, and delineate their spatial arrangement within
the TME.

In summary, the convergence of ML and DL with digital pathology in the realm of
CPath holds vast potential. Despite the challenges, the prospective benefits for patient
care and clinical research are immense.

2.3 Radiology - Histology fusion

In the preceding sections, we delved deep into the intricacies of the RT workflow, em-
phasizing the pivotal role played by target volume delineation. This delineation, albeit
crucial, is fraught with challenges primarily due to the limitations of the available data at
the time — radiological images and endoscopic reports — which lack the desired contrast,
resolution, and information richness. Such ambiguities in delineation can lead to signifi-
cant downstream consequences, not only causing toxicity due to over-treatment but also
potentially leaving cancerous areas undertreated. We quantitatively assess this variability
in the first subsection. Next, we illuminated the potential of histopathology, particularly
in its digital form, to provide unprecedented levels of detail due to its superior resolution,
acting as a gold standard for tumor characterization. The advent of digital pathology
offers an opportunity to simultaneously analyze histopathological images alongside radi-
ology, a conjunction traditionally unfeasible. This synergy, which we hypothesize is the
key to enhancing accuracy and homogenizing practices in GTV delineation, is the focus
of our second subsection. Due to the predominant role of RT in cancer care, the clinical
implications of this fusion are palpable, yet the task is non-trivial. As we have observed,
AI has made significant inroads in both RT and digital pathology. In this thesis, AI is en-
visaged as the adhesive amalgamating both modalities, thereby addressing the challenges
of one with the complementary strengths of the other. As this thesis is an interdisciplinary
endeavor, we propose an engineering solution to a clinical challenge. More precisely, we
propose to build on such fusion to detect new insights on radiology only thanks to the
additive histological information. These insights will then be used for improving target
volume delineation on radiology only for non-operative patients. Eventually, in the third
subsection, we detail the multimodal cohort we have built, combining both CT scans
and WSIs for HNSCC, which will be the main material to assess the performance of the
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proposed algorithms.

2.3.1 Variability in RT target volume delineation

As accurate tumor delineation remains pivotal in RT, the journey to achieve this precision
uncovers challenges tied to both the modalities employed and the expertise of the clinicians
involved.

Intermodal Variability Our earlier discussions in subsection 2.1.3 underscored the mer-
its of leveraging multiple radiological images to aid the delineation process. Each modality
illuminates different facets of the tumor, leading to inherent variability even for the same
observer. For instance, Bird et al. [Bird, 2015] delved into the delineation nuances of
oropharyngeal SCC across CT, MR, and PET modalities. The resultant mean GTVs
revealed noticeable disparities, with a Dice Similarity Coefficient (DSC) not exceeding
60%. The DSC, essentially, gauges the spatial overlap between two samples and will be
elaborated upon in subsequent sections.

Interobserver Variability Beyond the challenges posed by imaging modalities, GTV
delineation is further complicated by interobserver variability. This can be attributed to
variances in training, contingent on the specialty and the level of clinician experience, but
also to the guidelines and practices proper to each institution and country. For oropharynx
cancer, Bird et al. [Bird, 2015] found a 57% DSC agreement for CT and 69% for MR
among five observers, thereby highlighting the notable lack of contrast on CT scans. In
the context of nasopharynx cancer, Rasch et al. [Rasch, 2010] reported a DSC of 36%
for CTV on CT between ten observers before consensus, which surged to 64% post-
consensus. This not only underscores the advantages of interdisciplinary discussions but
also the inconsistencies rooted in sole observer delineations. Similarly, for supraglottic
laryngeal SCC, Jager et al. [Jager, 2015] recorded a 61% DSC for GTV on CT between
three observers, further cementing the pervasive lack of agreement across centers.

Internal Study on GTV Delineation To bolster these findings with firsthand data,
we initiated a study on an internal cohort. This involved GTV delineation for advanced
laryngeal and oropharyngeal SCC across 45 patients from Institut Gustave Roussy (IGR),
using contrast-enhanced CT and endoscopy reports. Experts from two independent centers
were involved, IGR and Centre Léon Bérard (CLB), each with a senior and junior observer.
The delineations were independently conducted. Next, we asked the senior practitioners to
review each patient towards a possible consensus. Based on their discussion, we updated
the statistics as they were able either to find a common target volume or to stick to their
original assessment, thus confirming disagreement.

Results pointed towards a concerning discord. Initial statistics revealed a DSC of 68%
and a Hausdorff Distance (HD) of 12.1mm between senior observers. The HD is a way to
measure how far two contours are from each other, by looking at the maximum distance
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between these contours. A mathematical formulation will be provided in subsequent
sections. Notably, the discrepancy within the same center was relatively lower, evident
from a DSC of 71% for IGR and 73% for CLB. One predominant observation was the
larger tumor volume delineated by juniors, averaging at 31cm3, as opposed to seniors at
24cm3, and confirms the link between level of experience and delineation (Table 2.2).
In the same way, GTV from CLB was significantly smaller than from IGR, highlighting
the institution-specific guidelines. The consensus discussions further shed light on key
disagreements. For instance, 44% of cases remained in contention, primarily due to
differences in peritumoral edema inclusion in the GTV, explaining the volume difference
between centers. Post-consensus, the updated statistics showcased a DSC of 78% and
an HD of 7.4mm. We summarize all the results in Table 2.1 and show a typical case of
disagreement in Figure 2.8. This study has been published and presented at the ESTRO
2022 conference [Leroy, 2022c].

Figure 2.8: Typical example of GTV delineation disagreement. Axial, coronal and sagittal views
of CT with GTV masks. Senior from IGR (filled red) did not include the upper area close to the
thyroid cartilage, while senior from CLB did (contour yellow).

DSC
HD (mm) Junior IGR Senior IGR Junior CLB Senior CLB

Junior IGR 10.8 ± 2.7 14.2 ± 3.9 13.5 ± 4.1
Senior IGR 0.71 ± 0.08 13.8 ± 3.1 12.1 ± 3.8
Junior CLB 0.63 ± 0.09 0.65 ± 0.09 9.5 ± 1.9
Senior CLB 0.67 ± 0.10 0.68 ± 0.06 0.73 ± 0.09

Table 2.1: Statistical Analysis of Delineation Discrepancies for GTV delineation. DSCs are
reported in the lower triangle and HDs in the higher triangle. These results prove the high
interobserver variability, even between practitioners with the same level of experience or from the
same hospital.

The evident variability in GTV delineations, even among experienced observers, under-
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Volume (cm3) Junior IGR Senior IGR Junior CLB Senior CLB

Mean 31.8 27.9 31.1 24.1
Std 24.7 18.9 25.2 20.7
Min 2.4 1.2 0.8 0.7
Max 106.7 68.2 102.1 87.3

Median 28.0 25.5 22.3 16.8

Table 2.2: Statistics about GTV size between observers. It highlights the differences in clinical
practice between institutions and level of experience, as well as the difficulty of the task given
the high range of volumes depending on patients.

scores the challenges posed by the inherent ambiguity of CT imaging and the reliance on
subjective interpretations, be it from endoscopy results, institutional practices, or clinician
experience. While consensus discussions do bridge some of these gaps, they spotlight
an urgent need for a more definitive gold standard in tumor delineation. This poten-
tially lies in the marriage of radiology with histology. In the forthcoming sections, we will
delve deeper into the pursuit of this gold standard, examining the potential of histological
examinations in establishing a definitive benchmark for tumor delineation.

2.3.2 Towards accurate, homogenized, histological tumor volume

Histopathology, often recognized as the "gold standard" in medical diagnosis, provides
an unequivocal representation of the tumor’s structural and morphological characteristics.
Jager et al. [Jager, 2016] led a study on the delineation of tumors on H&E sections of
laryngeal and hypopharyngeal carcinoma. This study, involving 22 patients diagnosed with
T3-T4 SCC of the larynx or hypopharynx, assessed the delineation of the tumor’s extent
by three pathologists. The findings underscored the high agreement among observers,
where the mean overlap between delineations was 0.87. Notably, for the best-performing
case, this overlap soared to 0.95, with minor variations attributed mainly to practicalities
such as the thickness of the pencil used for delineation (see Figure 2.9). In addition,
similarly to our internal study to assess GTV interobserver variability, we confirmed the
interobserver agreement for tumor delineation on histology for 20 patents of our internal
cohort. The details of this cohort are provided in subsection 2.3.3. We found a mean
overlap of 0.93 in terms of DSC, which is in line with the results of the literature.

Such studies spotlight the inherent robustness and reliability of histopathology in
serving as a reference standard for imaging validation. A noteworthy point from the study
by Jager et al. was the comparison of their findings with registration errors between various
imaging modalities and histopathology, which were significantly higher, underscoring the
preciseness of histopathological delineations over imaging-based delineations.

Caldas-Magalhaes et al. [Caldas-Magalhaes, 2015] explored this avenue further. In
their study involving 16 patients with T3/T4 laryngeal or oropharyngeal cancer, a com-
parison between the GTV and the true tumor extent post-registration revealed that the
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Figure 2.9: H&E-stained section obtained from a laryngectomy-specimen with tumor delineations
of the three pathologists. A good agreement between observers is perceived, proving the high
reliability of such imaging for characterizing tumor environment. From [Jager, 2016].

GTV was approximately 1.7 times larger than the actual tumor extent, indicating a poten-
tial for over-toxicity in treatments. Furthermore, the consensus GTV covered an average
of 88% of the tumor on H&E sections, showing that even if it is bigger, the GTV does
not fully encompass the tumor and misses some parts of it (see Figure 2.10).

Expanding the scope, Daisne et al. [Daisne, 2003] compared tumor volumes in pharyn-
golaryngeal cancer using CT, MR, and FDG PET against surgical specimens (photographs,
not WSI). Their findings indicated that all imaging modalities consistently overestimated
the tumor volume, with the PET proving to be the most accurate among them. Ligtenberg
et al. [Ligtenberg, 2017] echoed similar findings in their study of 25 patients, emphasizing
the challenges in imaging-based GTV delineation, especially in cases of cartilage invasion.
However, their research also highlighted the potential of histological validation in formu-
lating new guidelines for GTV expansion, suggesting a 45-52% reduction in target volume
compared to conventional 10mm extensions for CTV.

Ligtenberg’s subsequent study focused on Diffusion-Weighted Imaging (DWI) for MR-
guided RT, comparing GTV delineations based on clinical imaging and DWI against the
gold standard of H&E-delineated tumors [Ligtenberg, 2018]. Their findings were mixed,
with DWI offering concise target definitions in some cases, yet falling short in others due
to poor contrast or signal heterogeneity.

In conclusion, leveraging histology to address interobserver variability presents a unique
and transformative avenue in RT. As elucidated by Schinagl et al. [Schinagl, 2006] for the
integration of PET imaging, which offers metabolic activity insights, and by Ligtenberg
et al. [Ligtenberg, 2018] for DWI, which sheds light on tissue microanatomy, we believe
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radiology-pathology fusion paves the way for a more accurate and homogenized approach
in delineating tumor volumes. By harnessing the power of what we can call a "histological
tumor volume", which would essentially be a new version of the tumor extent based on
our findings from WSI, the medical community can strategize better treatment regimens,
minimize over-toxicity and immunosuppression, and enable robust training paradigms for
clinicians on retrospective datasets.

Eventually, while the aforementioned studies offer valuable insights, the manual reg-
istration they depended on is time-consuming, especially for extensive patient cohorts.
Herein lies the potential for AI to revolutionize the process, acting as a catalyst to vali-
date larger datasets with improved efficiency and reach real clinical impact.

Figure 2.10: The GTV was delineated on CT by three independent observers (red, yellow and
blue) and by consensus (green). A pathologist delineated the tumor tissue on the H&E sections
on which the GTV delineations were overlaid after pathology-imaging registration. The top and
bottom slices, which belong to the same tumor show respectively poor and good agreement
between observers. From [Caldas-Magalhaes, 2015]
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2.3.3 Building a comprehensive cohort for radiology-histology fu-
sion

Given the previous discussions on the significant interobserver variability in GTV delin-
eation and the potential of histology as the gold standard, it becomes apparent that a
comprehensive cohort of fused radiology-histology data for HNSCC is an essential next
step. This is especially true for DL applications, where larger datasets are critical. The
unique nature of this dataset, with a substantial size, surpassing previous studies that in-
cluded less than 25 patients, aims to ensure robust statistical inferences and the effective
embedding of methods. However, the stringent criteria for inclusion, necessitating plan-
ning CT scans and WSIs, present challenges. For example, routine biopsies are insufficient
to ensure accurate registration and spatial fusion, and we need patients planned for total
laryngectomy to retrieve the entire larynx.

To gather this rich dataset, collaboration was initiated with three major French hos-
pitals: Centre Léon Bérard (CLB) and Hospices Civils de Lyon (HCL), both in Lyon, and
Institut Gustave Roussy (IGR) in Villejuif. Table 2.3 details the protocol for inclusion and
image characteristics. Patients diagnosed with pharyngo-laryngeal SCC T3/T4, prescribed
with total laryngectomy or pharyngo-laryngectomy, were the only focus for inclusion, sub-
ject to each patient’s agreement. The surgical specimens were processed to produce 5mm
blocks, yielding 5-10 slides per patient, depending on the tumor’s size. Notably, the treat-
ment and staining processes varied, with IGR handling in-house processing for its patients
and CLB’s pathology department handling Lyon’s patients. All physical slides were then
digitized at IGR. For all patients, we have the pre-operative contrast-enhanced CT scan,
and if possible the MR imaging. Nevertheless, it only concerns around 15% of cases since
the prescription of this imaging is not clinically systematic for HNSCC. We first focus on
CT-WSI fusion on which there is sufficient data. In this perspective, the delay between
the CT acquisition and the fixation of the resected specimen is 1-2 weeks, which allows
for accurate and reliable mapping.

In terms of patient numbers, a retrospective cohort was initially constructed, encom-
passing patients from January 2018 to September 2020, totaling 77 individuals. The
prospective study, which commenced in September 2020 at IGR, amassed 32 patients by
the end of 2021, 26 in 2022, and an additional 18 in 2023. With the current inclusion
rate at IGR being 3 patients/month, these numbers are expected to rise. Meanwhile,
both HCL and CLB initiated their prospective studies in 2022, contributing 9 and 18
patients, respectively. Given the inclusion rate at these institutions (1-2 patients/month),
the combined total as of now stands at 180, with projections exceeding 200 by the end of
2023. All the data was carefully anonymized and stored in a secured database, with the
necessary approvals from the General Data Protection Regulation (GDPR).

For validation purposes, extensive annotation efforts were undertaken on the retro-
spective cohort. Four radiation oncologists independently delineated the GTV on CT.
Subsequent meetings between the two senior oncologists facilitated a consensus volume
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for patients from the retrospective study. Additionally, seasoned pathologists delineated
the genuine tumor extent on the WSIs for the retrospective cohort. These annotations
serve multiple purposes: establishing interobserver agreement in histology, contrasting
with registered GTVs, and aiding the development of a DL-based tumor contouring tool
on histology. We will delve into these applications in the next chapters and precision
about figures depicted in the annotation part of Table 2.3 will be provided in relevant
sections.

Important note It is worth noting a critical distinction between the study’s protocol and
its real-world clinical application. We have already briefly explained several times in earlier
sections, but it is important to make it as clear as possible for the reader. The primary aim
is to refine GTV delineation for RT thanks to WSI. However, obtaining the histological
"gold standard" requires registration of the specimen from total laryngectomy, which is
not consistent with direct RT. Indeed, patients who do not undergo surgery cannot be
considered, but more importantly, even patients with planned surgery and RT will have
planning CT after resection, so that the WSI does not represent in vivo anatomy and is
not of interest anymore. Still, it is hoped that insights derived from this cohort will be
informative for any patient with RT. There is a gap between the training domain (patients
in this study, with advanced cancer and surgery planned) and the broader testing domain
of application (all RT patients). Therefore, the real objective of this thesis is to infer
clinical insights from the fusion of our cohort with operated patients, that we will be able
to propagate to any RT patient, regardless of the stage of her/his cancer and the need
for surgery, as we will use only planning radiology to predict improved GTV. Discussions
on the implications of this domain shift will be addressed later.

In conclusion, this evolving cohort, with its rigorous fusion of radiology and histology
data, promises to be a significant leap toward resolving some challenges in GTV delin-
eation. As data continues to be accumulated, efforts are also underway to onboard more
centers to enhance the generalizability, robustness, and clinical impact of the findings.
Eventually, current tests are ongoing to perform IHC staining on the prospective patients
with three particular highlights: hypoxia, CD3 and CD8 lymphocytes (as shown in Fig-
ure 2.7). The purpose is to deepen our understanding of TME and immune infiltration
once the fusion is performed but the work is still in progress and no result will be presented
in this thesis yet.
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Chapter 3

Histology-Radiology
Registration

In chapter 2, we introduced the general process of registration and its extensive clinical
use in RT workflow, with some details about typical transformations (rigid, affine, de-
formable) and intuition about the both optimization process and the popular similarity
metrics. In this chapter, we will focus on histology-radiology registration, motivated by
the improvement in the critical step of target volume delineation. This is a challenging
task due to the differences in the modalities, the resolutions, and the deformations be-
tween the two images. We will first present the mathematical framework of registration,
then we will present StructuRegNet, our framework for histology-radiology registration,
and finally, we will present the results of our experiments.
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3.1 Technical Framework of Registration

3.1.1 Mathematical Problem Formulation

As stated in subsection 2.1.3, the alignment of various medical images is a fundamen-
tal task. This alignment, known as image registration, ensures that data from differ-
ent sources or acquired at different times can be compared, analyzed, and integrated in
meaningful ways. Image registration aims to find the optimal transformation that aligns
a "source" or "moving" image with a "target" or "fixed" image. We can delve deeper into
the mathematical intricacies of this problem through the following formulation.

Given a fixed or target image, F , and a moving or source image, M , the objective is
to identify a transformation, Φ, such that the transformed moving image aligns as closely
as possible with the fixed image. This transformation should not only align the images
but also ensure the transformation itself is smooth and biologically plausible. We model
the transformation as follows:

∀x ∈ Ω, Φ(x) = x + u(x) (3.1)

where x is a voxel in the spatial domain of interest Ω (typically, a discrete grid the
size of the image), and u is the displacement field or the absolute spatial variation of this
voxel. The optimization problem can be expressed as follows:

Φ∗ = arg min
Φ
D(F, M ◦ Φ) +R(Φ) (3.2)

Here,

• D represents the dissimilarity measure between the fixed or target image F and the
warped moving image M ◦ Φ. It quantifies the extent to which the transformed
moving image corresponds with the fixed image.

• R denotes the regularization term, ensuring that the transformation Φ is smooth
and realistic.

• Φ∗ is the optimal transformation minimizing the combined dissimilarity and regu-
larization.
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Three core components influence the solution to this optimization problem:

1. Deformation Model: It concerns the setting in which Φ operates. It sets the
choice of the number of parameters to estimate and the constraints that Φ should
satisfy. An important trade-off between computational efficiency and the degree
of freedom reflecting the richness of the description of the deformation must be
considered. This details the potential class of transformations that can be applied
to the moving or source image, ranging from rigid (translations and rotations) to
affine (which includes scalings and shearings) to fully deformable.

2. Objective Function: It concerns the definition of D and R. Our original formula-
tion is very general but a lot of freedom remains for its two components (in addition,
a scalar can control the relative influence between each term in the equation). This
function gauges the fit between the transformed moving or source image and the
fixed or target image. The goal of the optimization process is to minimize this
function.

3. Optimization Algorithm: Given the objective function and deformation model, the
optimization algorithm iteratively refines the transformation parameters to achieve
the best possible alignment between the two images. Many different methods can
be used to solve this optimization problem, ranging from gradient descent to graph-
based methods.

Together, these elements establish the foundation of the image registration process,
addressing the myriad requirements of medical imaging. We will explain each of these
components in detail in the following subsections, following the structure of [Sotiras, 2013]

3.1.2 Foundation of Deformation Model
The transformation of one image to match another encompasses a variety of changes.
These can be as simple as a shift or as complex as a nonlinear warp. To understand
and represent these transformations effectively, various deformation models have been
developed. They can be broadly categorized into the following:

1. Rigid Transformations: These transformations preserve distances between points
and only allow for translations and rotations. Mathematically, a rigid transformation
in a 2D space can be represented by a matrix:

Trigid =


cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1


Where θ is the rotation angle and (tx, ty) denotes the translation in the x and y
directions. The number of parameters rises to 6 in a 3D space. Rigid transformations
are particularly useful for aligning images with similar anatomies and structures.
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2. Affine Transformations: These transformations preserve parallelism but not nec-
essarily distances. They incorporate rigid transformations as well as scalings and
shearings. An affine transformation in a 2D space can be represented as:

Taffine =


a b tx

c d ty

0 0 1


Here, a, b, c, and d represent the linear transformation components, and (tx, ty) are
the translations. The number of parameters rises to 12 in a 3D space.

3. Deformable Transformations: Deformable transformations offer a higher degree
of freedom and flexibility compared to their rigid and affine counterparts. They
are particularly adapted for capturing intricate anatomical variations across differ-
ent subjects or time points. These transformations can have several millions of
parameters, leading to significant computational demands. As such, there is often
a balance to be struck between the flexibility offered by the transformation and
the computational resources required. Unlike rigid and affine transformations, de-
formable transformations cannot be represented using a simple matrix due to their
inherent nonlinearity. Typically, they are characterized using vector fields and are
propelled by a variety of physical or geometrical models. The regularization R en-
sures that these constraints are respected. We delve deeper into these models in
the following subsection.

Focus on Deformable Transformation

Elastic Body Models Drawing inspiration from the mechanics of elastic materials,
these models consider the image as an elastic body. When subjected to external forces, the
image deforms in such a way that the internal elastic forces counteract the external forces.
This results in a spatial configuration that minimizes the overall energy of the system.
The governing equation for these models is often derived from the linear elasticity theory.
Renowned works in this domain include the pioneering efforts by Davatzikos [Davatzikos,
1997] for linear and Pennec et al. [Pennec, 2005] for non-linear models, the latter using
innovative regularization to allow for inverse consistency of the transformation.
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Viscous Fluid Flow Models In these models, the deformation field is perceived as a
viscous fluid flow. They account for both local and global deformations, making them
suitable for registering images with significant anatomical differences. The fluid flow is
driven by a force field, typically the gradient of an intensity similarity measure. The
seminal work of Christensen et al. [Christensen, 1996] offers profound insights into this
approach.

Diffusion Models These models are founded on the concept of diffusing information
across the image. By treating the image intensities or features as quantities that can
diffuse, they allow for non-rigid transformations that respect the underlying image struc-
tures. This diffusion is often governed by partial differential equations. Key contributions
in this category include the work of Thirion [Thirion, 1998]. He popularized the Demons
algorithm, which draws inspiration from the principles of optical flow and has undergone
numerous refinements over the years, under the initiative of Vercauteren [Vercauteren,
2007a; Vercauteren, 2007b; Vercauteren, 2008]. The algorithm models the deformations
as a diffusion process, driven by the intensity differences between the fixed and mov-
ing images. Ultimately, the diffeomorphic demons, as presented by Vercauteren et al.
[Vercauteren, 2009], further enhance the algorithm by ensuring topologically consistent
mappings.

Curvature Registration Building upon the geometrical properties of the image, curva-
ture registration focuses on aligning the curvatures or the higher-order derivatives of the
image structures. This ensures that not just the image intensities or primary features are
well-aligned, but also the local structures and shapes. Two of the pivotal works in this
domain belong to Fischer et al. [Fischer, 2003; Fischer, 2004].

Flows of Diffeomorphisms Here, the transformations are represented as flows of diffeo-
morphisms. Among the various methods in this category, the Large Deformation Diffeo-
morphic Metric Mapping (LDDMM) framework stands out. It guarantees diffeomorphic
mappings and is guided by the principles of differential geometry. The efforts of Joshi
et al. [Joshi, 2000] offer a comprehensive understanding of this framework, while Avants
et al. [Avants, 2008] built upon this work to develop the SyN algorithm, which is the
bedrock of the popular ANTs method [Avants, 2011]. The SyN algorithm is a similar
approach to the LDDMM framework with the addition of preserving the properties of
symmetry driven by cross-correlation.
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Free-form Deformations Free-form deformations, often leveraging B-splines or thin-
plate splines, offer a flexible way to capture complex non-linear deformations. These
methods employ a set of control points, and the deformation within a local region is
guided by the movement of these control points. Notable works in this area include the
contributions by Rueckert et al. [Rueckert, 1999] and Bookstein [Bookstein, 1989].

In essence, deformable transformations, with their rich repertoire of models and meth-
ods, have been instrumental in addressing the diverse challenges posed by medical image
registration. The choice of the appropriate model often hinges on the specific registration
problem, the nature of the images, and the intended clinical or research application.

On Mapping and Interpolation

Once the deformation field is determined (after optimization), it serves as a guide to
warping the source (or moving) image such that it aligns with the target (or fixed) image.
This is not trivial as the spatial domain is defined over a discrete grid of voxels, but
deformations generally map voxels from the source image to non-integer voxel locations
in the target image (forward mapping). The natural way is then to split the intensity of the
source voxel to all the neighbor voxels (at integer locations) around its non-integer target
location. Some voxel locations in the target image may either remain vacant (leading to
gaps) or might be assigned values from multiple source voxels (causing overlaps). This
misalignment means that a direct value assignment from the source image isn’t feasible.

Another method addresses this issue: backward mapping. Instead of originating from
the source image, we begin with each voxel location in the target image. Using the inverse
of the deformation field, we trace back to determine its origin in the source image. This
method ensures that every voxel in the target image is assigned a value. Nevertheless, the
inverse deformation can point to non-integer locations in the source image, necessitating
the use of interpolation techniques.

Interpolation methods, such as bilinear or bicubic interpolation, address this issue. In
the two-dimensional case, bilinear interpolation evaluates the closest 2x2 neighborhood
of known pixel values surrounding an unknown pixel and computes a weighted average
of these values. In contrast, bicubic interpolation considers a 4x4 neighborhood, offering
smoother results but demanding more computational resources.

Grasping these nuances is essential for achieving accurate image registration with-
out introducing artifacts or losing vital information. A comparison between forward and
backward mapping is shown in Figure 3.1.
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Figure 3.1: Comparison between the forward and backward warping presented in top and bottom
respectively. Backward mapping solves the vacant and overlap issues but involves interpolation
among the voxels from the source image. From [Estienne, 2021c]

On Biomedical-specific constraints

Medical Image registration is not merely about aligning two images. It requires main-
taining the integrity and biological significance of the images being aligned. Several
constraints come into play to ensure this integrity, which are added to the optimiza-
tion problem. These constraints have profound impacts on the deformation model, the
dissimilarity measure D, the regularization term R, and the deformation Φ.

• Symmetry: In a symmetric registration framework, both the fixed F and moving
M images play equivalent roles, leading to a bi-directional registration model. This
symmetry ensures that the registration from F to M is consistent with the inverse
registration from M to F . It can improve the existing framework: The SyN approach
is similar to the LDDMM framework with the addition of preserving the properties
of symmetry.

• Inverse Consistency: Quite similar to symmetry, inverse consistency ensures that
if one transformation maps points from the fixed image to the moving image, the
inverse of that transformation maps points from the moving image back to the fixed
image. Mathematically, if Φ is the transformation from F to M , then Φ−1 should
be the transformation from M to F .
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• Diffeomorphism and Topology Preservation: Ensuring that the topology of ob-
jects within the image remains unchanged during deformation is crucial for certain
medical applications. Therefore, some uncontinuous displacements leading to pixel
folding, and tear crossings are not desirable. The Jacobian of a transformation is the
matrix of partial derivatives of Φ. Keeping it determinant greater than zero ensures
that local volumes are preserved, which in turn preserves topology [Christensen,
1996]. Such constraint can be added to the regularization term R. Diffeomorphisms
are a subset of topological-preserving transformations, the intuitive characteristics
being smooth and invertible, and their inverse are also smooth. Figure 3.2 is an ex-
ample of two different transformations, a diffeomorphic one and a nondiffeomorphic
one. The second grid’s non-topological points, in white, correspond to the position
where the Jacobian is equal to zero.

These constraints are not just theoretical considerations but have direct implications
on the quality and reliability of image registration methods. Balancing these constraints
while optimizing the objective function is a challenging task and forms the crux of many
advanced registration techniques.

(a) Diffeomorphic transformation (b) Non diffeomorphic transformation

Figure 3.2: Comparison between two different transformations, a diffeomorphic one and a non-
diffeomorphic one. For each transformation, we represent the deformation grid together with its
Jacobian. Blue, white and red correspond to respectively positive, null and negative values of
the Jacobian. Folding and crossings appear at the position where the Jacobian is equal to zero.

3.1.3 Evaluation Metrics for Image Registration
Evaluating the performance of image registration is paramount to ascertain the quality of
the alignment and the reliability of the method employed. Depending on the clinical ap-
plication, the careful choice of the similarity metrics ensures the reliability and robustness
of the results. Indeed, each metric has particular advantages and drawbacks to highlight
some (dis-)similarity features (like sensitivity to outliers) and the medical task should be
directed towards the optimal one. These metrics can be broadly categorized based on
the type of features they assess geometry or intensity. We give a (non-exhaustive) list of
commonly used metrics in each category, that will be used in the next chapters.
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Geometric Metrics

These metrics focus on the spatial alignment of anatomical or functional structures. They
are particularly useful for evaluating the registration of binary segmentations like GTV or
landmarks like fiducial markers.

• Dice Similarity Coefficient (DSC): Previously introduced in chapter 2, the DSC
(or Dice Score) quantitatively measures the overlap between two binary structures
A and B, defined as:

DSC(A, B) = 2|A ∩B|
|A|+ |B|

It provides a score between 0 (no overlap) and 1 (perfect overlap). It is widely
adopted for its intuitiveness and ease of interpretation.

• Hausdorff Distance (HD): Also intuitively introduced in chapter 2, it measures
the maximum distance of a set to the nearest point in the other set, providing a
worst-case scenario of registration errors. Mathematically,

HD(A, B) = max
(

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
)

where d(a, b) is a distance metric, often the Euclidean distance. It is particularly
sensitive to outliers [Huttenlocher, 1993].

• Target Registration Error (TRE): When landmarks are available thanks to a
manual inspection from practitioners, the TRE provides an unbiased assessment of
the registration process. It represents the Euclidean distance between corresponding
landmarks post-registration. It’s defined as:

TRE =

√√√√ n∑
i=1

(xM
i − xF

i )2

where xM
i and xF

i are the positions of the ith landmark in the moving and fixed
images, respectively.

Intensity-based Metrics

Metrics in this category evaluate the global similarity of intensity values from all pixels
between the images, without requiring segmentations or landmarks.

• Mutual Information (MI): A robust metric for multimodal image registration,
quantifying the statistical dependence between images. Successfully employed in a
myriad of registration tasks due to its resilience to intensity variations [Pluim, 2003],
it is defined as:

MI(X, Y ) =
∑

x∈X,y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
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where p(x, y) is the joint probability distribution function of images X and Y , and
p(x) and p(y) are the marginal probability distribution functions, respectively.

• Normalized Cross-Correlation (NCC): Measures the correlation of intensity pat-
terns, primarily used for mono-modal registration. It offers a balance between ro-
bustness and sensitivity [Zhao, 2006], and can be expressed as:

NCC =
∑

i(F (i)− F̄ )(M(i)− M̄)√∑
i(F (i)− F̄ )2∑

i(M(i)− M̄)2

where F (i) and M(i) are the intensities of the fixed and moving images at voxel i,
and F̄ and M̄ are their respective mean intensities.

• Sum of Squared Differences (SSD): Computes the squared difference between
intensities of corresponding pixels. Best suited for monomodal registration where
similar intensities are anticipated between images. We can similarly compute the
MSE (Mean Squared Error) if we consider the average value. In addition, the MAE
(Mean Absolute Error) is another similar metric if we consider the absolute value
of the difference instead of the squared difference. MAE and MSE are theoretically
close even if they can lead to different results in practice. They are defined as:

SSD =
∑

i

(F (i)−M(i))2

MSE = 1
n

∑
i

(F (i)−M(i))2

MAE = 1
n

∑
i

|F (i)−M(i)|

Here, F (i) and M(i) are the intensities of the fixed and moving images at voxel i.

The choice of the appropriate evaluation metric is driven by the problem’s specific
requirements and the nature of the images. Often, a blend of these metrics provides
a more comprehensive assessment of the registration quality. In addition, it is worth
noticing a few aspects: First, some metrics measure the similarity (DSC, NCC, MI) while
others measure the dissimilarity (HD, TRE, SSD, MSE, MAE). Second, some metrics
are computed on the whole image (DSC, NCC, MI, SSD, MSE, MAE) while others are
computed on specific structures (DSC, HD, TRE). Third, we defined them as evaluation
metrics but they are also involved in the objective function in the optimization process. In
this case, we have to be careful about the sign of the metric (similarity or dissimilarity) and
the way we use it (minimization or maximization). For example, the DSC is a similarity
metric and we want to maximize it, so we can use −DSC as an objective function to
minimize. In contrast, the HD is a dissimilarity metric and we want to minimize it, so
we can use HD as an objective function to minimize. We can even use a combination
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of metrics as an objective function, for example, −DSC + HD to maximize the DSC
and minimize the HD. Eventually, a metric can be used in the objective function but a
different one can be used as an evaluation metric, depending on what we have available
at training time and what we want to evaluate at test time.

Optimization Methods

Medical image registration is fundamentally an optimization problem. The ultimate goal
is to find the transformation that best aligns the moving image with the fixed image, as
governed by some predefined criteria. Over the years, numerous optimization methods
have been proposed and utilized in the context of image registration. We will not give
an exhaustive description of these techniques and will focus on the most common ones.
They can broadly be categorized into continuous and discrete optimization techniques.

Continuous Optimization It focuses on the iterative refinement of the transformation
parameters to progressively improve the alignment.

• Gradient Descent: One of the most common methods, adjusting the transforma-
tion parameters in the direction of the steepest descent of the objective function.
The update equation is given by:

θt+1 = θt − α∇f(θt) (3.3)

where θt are the transformation parameters at timestep t, α is the learning rate, and
∇f(θt) is the gradient of the objective function. The method’s success is contingent
upon an appropriate choice of the learning rate.

• Quasi-Newton Methods: These methods approximate the inverse Hessian matrix
of the objective function (the matrix of its second-order partial derivatives) to guide
the parameter updates. The Davidon-Fletcher-Powell (DFP), and more successfully
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms are prominent examples
in this category [Powell, 1986].

• Gauss-Newton Method: This method linearizes the objective function and then
seeks the parameter update that minimizes this linear approximation. It has been
frequently used in the Demons registration framework.

• Stochastic Gradient Descent (SGD): A variant of the gradient descent, SGD
updates the parameters using an approximation of the gradient and random subset
of the data at each iteration, which can speed up convergence and make the method
more scalable for large datasets [Bottou, 2010].
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Discrete Optimization In discrete optimization, the transformation space is discrete,
and optimization involves searching this space for the best transformation.

• Graph-based Methods: These methods construct a graph where each node cor-
responds to a possible transformation, and the edges represent transitions between
transformations. The optimal transformation is then found by searching this graph,
often using methods like max-flow algorithms [So, 2011].

• Propagation Methods: Starting from an initial estimate, these methods propagate
the transformation to neighboring regions, refining the estimate iteratively. The
propagation can be guided by various criteria, including intensity or feature similarity.

• Linear Programming: This involves framing the registration problem as a linear
program and then solving it using linear programming techniques. It is particu-
larly useful when the transformation can be represented as a combination of basis
transformations, and often involves Markov Random Field (MRF) [Glocker, 2008;
Glocker, 2011].

In essence, the choice of the optimization method often depends on the nature of the
transformation model, the size of the dataset, and the specific challenges posed by the
registration problem.

DL for Medical Image Registration

While traditional methods have been the cornerstone of medical image registration for
decades, the advent of DL has dramatically shifted the landscape. DL techniques have
embedded many of the complexities and intricacies of the registration process within
neural network architectures, fundamentally altering the paradigm [Fu, 2020].

In traditional approaches, the optimization problem is solved for each pair of images,
making the process computationally intensive. DL models change this dynamic. The
optimization, primarily, occurs during the training phase, where the network learns the
most suitable parameters. Once trained, the model can rapidly register new pairs of
images without any optimization, making real-time registration a possibility. This speed-
up stems not only from the training-prediction paradigm shift but also from the GPU-
accelerated computations typical of DL frameworks. Moreover, the capability of DL
models to generalize from vast datasets means they can capture robust features without
being overly specialized to specific image pairs.

The primary distinction in the DL context is the nomenclature shift. Typically, the
terms used in the optimization objective (like similarity and regularization) are referred
to as losses in the DL community. Thus, D and R from equation 3.2 become Lsim

(similarity loss) and Lreg (regularization loss) respectively.
The adoption of DL in medical image registration has primarily been driven by research

focused on specific anatomies. As observed in Boveiri et al. [Boveiri, 2020], a significant
portion of this research targets the brain, followed by the lungs and cardiac structures.
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One reason for this trend is the available datasets for brain studies. Another factor is the
relative ease of registering brain images, given that the brain’s confinement within the
skull restricts excessive deformations. The majority of studies pivot around MRI and CT
scans, with MRI being the predominant modality.

DL methods for medical image registration can be grouped into several categories:

• Supervised Methods: Relying on paired images with known ground truth transfor-
mations, these methods train networks to predict transformations directly. Although
powerful, the challenge lies in procuring ground truth transformations for medical
images [Rohé, 2017] but can be partially solved by the simulation of random trans-
formation to generate a training dataset [Dosovitskiy, 2015].

• Unsupervised Methods: Unsupervised registration methods have garnered sig-
nificant attention due to their independence from ground truth transformations.
Instead, they are guided by similarity metrics and regularization terms. A linch-
pin in this category is the Spatial Transformer Network (STN) [Jaderberg, 2016].
STNs introduce a differentiable warping operation, crucial for backpropagation in
DL models. The STN comprises a localization network, a grid generator, and a
differentiable image sampler. For DL-based registration, we retain the differentiable
image sampler, allowing the registration network to produce the grid. The back-
ward trilinear sampling operation, a popularly employed sampling technique, can be
expressed as:

M̂(p) =W(M, Φ)(p) =
∑

q
M(q)

∏
d∈{x,y,z}

max(0, 1− |Φ(p)d − qd|) (3.4)

Here, p and q represent voxel locations, with d ∈ {x, y, z} denoting an axis in a 3D
space. The max operation ensures that interpolation is restricted to the neighboring
points of p. The architecture is depicted in Figure 3.3 and further details on this dif-
ferentiable formulation can be found in Jaderberg et al. [Jaderberg, 2016]. Another
landmark in unsupervised registration is the VoxelMorph framework, which has set
performance benchmarks in the domain [Balakrishnan, 2019]. Fundamentally built
in an unsupervised setting, it incorporates auxiliary segmentations if available in the
training data to improve performance. In the evolving landscape of DL for medical
image registration, unsupervised methods stand out, establishing new standards in
the field and powering most of the commercial software.

• Adversarial Methods: Another suitable unsupervised setting has emerged with
GANs. In the realm of registration, the generator plays the role of the registration
network outputting the deformation field. According to the discriminator, two tasks
are at stake: distinguishing well-aligned pairs from misaligned ones, and original
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Figure 3.3: Spatial Transformer Network (STN), including a localization network that outputs
the displacement field, a grid generator that generates the grid from the displacement field, and
a differentiable image sampler that samples the moving image with the grid. The differentiability
is crucial for the proper training of the model through backpropagation. From [Jaderberg, 2016]

images from deformed ones. Therefore, the generator is trained to fool the discrim-
inator by producing deformation fields that lead to both high similarity and realism.
This framework has been successfully applied to multimodal registration for which
intensities vary significantly and that needs more discriminating regularization [Hu,
2018; Fan, 2019].

• Reinforcement Learning-Based Methods: This approach trains models using
the RL paradigm, where models learn to make sequential decisions to align images.
Each decision refines the final transformation, and the model is guided by rewards
or penalties based on alignment accuracy. It does not need any label but the huge
action space of transformations to explore in a deformable model makes it hardly
applicable in practice. The study from Liao et al. [Liao, 2017] is a compelling
example of affine RL-based methods.

• Deep Similarity Metrics: Going beyond predefined similarity metrics like SSD or
MI, deep similarity metric techniques employ neural networks to directly learn sim-
ilarity metrics from data. They are trained to classify whether a pair of images is
aligned or not so that they automatically decipher the similarity. Once trained, a
traditional non-learning-based method is required for optimization, which leverages
the learned metrics. This data-driven approach can often unearth more nuanced
and intricate features that are pivotal for registration. They were among the first
applications of DL in the registration field. It has been proven successful for multi-
modal registration for which the definition of a suitable similarity measure is always
difficult [Simonovsky, 2016]. Nevertheless, it requires a large training dataset of
well-aligned images and suffers from the same pitfalls as the supervised methods.
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3.2 Histology-Radiology Registration: Addressing the
Multifaceted Challenges

As the mathematical framework of registration is detailed, the objective is to apply it to
the clinical task of the thesis. As stated in section 2.3, the fusion of histological and ra-
diological data is emerging as a pivotal frontier in oncology research. This amalgamation
holds the promise to enhance the accuracy and reliability of tumor detection, bridging
the gap between cell-level histological information and whole-organ radiological imaging.
However, the journey towards achieving a seamless integration is riddled with challenges,
both intrinsic to the modalities (given the stark differences in their visual characteris-
tics, resolution scales, and nature of data) and extrinsic to the registration process (the
mathematical formulation differs from section 3.1).

Firstly, the visual discrepancy between the two modalities is evident. Radiological im-
ages predominantly showcase grayscale anatomical structures, whereas histology vividly
presents colored tissue morphologies. The resolution gap further complicates the reg-
istration: typical radiological images possess a resolution in the millimeter range, while
histological data delves into the sub-micrometer scale. Furthermore, radiological images
offer a spatially consistent 3D volume, whereas histological data often comprises an irreg-
ularly spaced set of 2D slides.

Additionally, the histological preparation process introduces another layer of complex-
ity. The steps involved, especially tissue fixation and slicing, are known to cause significant
tissue collapse, shrinkage, and loss. These transformations result in both in-plane and
out-of-plane deformations, causing the tissue’s ex-vivo state to deviate drastically from
its in-vivo appearance in radiological scans.

The challenges listed above mean that direct registration is non-trivial. Manual map-
ping emerged as a first-attempt solution. However, while still being used in practice,
they can only address in-plane deformations and need proper slice correspondence. The
limitations of manual registration, especially in handling out-of-plane deformations, lead
to mismatches and biases from both the radiologists and the pathologists. In addition,
the manual process is time-consuming and laborious, making it impractical for large-scale
studies and hindering the statistical robustness of the derived results for a real clinical
application.

Recognizing these issues, there has been a shift towards (semi)-automated methods.
These methods often employ manual protocols as a preprocessing step to ease the reg-
istration process, before invoking computational methods to perform it. Two prominent
methodologies stand out. The first involves establishing 2D correspondences between his-
tological slides and sections from the 3D radiological volume. It is particularly useful for
the prostate whose shape is easily manageable. For instance, Kimm et al. [Kimm, 2012]
employed a 3D mold, designed based on in-vivo imaging, for specimen conservation. Ward
et al. [Ward, 2012] introduced a complex plane-finder device guided by fluid-injected fidu-
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cials to facilitate the slicing of specimens. While these methods have shown potential in
specific clinical scenarios, they are not universally applicable and can be cumbersome.

The second methodology pivots on the 3D reconstruction of the histological volume
from the 2D WSI set, thereby facilitating 3D registration. Caldas-Magalhaes et al. [Caldas-
Magalhaes, 2012], Rusu et al. [Rusu, 2020] and Xiao et al. [Xiao, 2011] employed iterative
computational matching methods for this purpose. These reconstructed volumes provide a
closer representation of the in-vivo state, though challenges persist, especially in addressing
the intricate deformations caused during histological preparations and the inherent lack of
tissue information in the WSI set. Empty slices can be interpolated with adjacent tissue
or WSI can be artificially thickened but it creates artifacts and biases in the reconstructed
volume.

An alternative approach that has garnered interest involves leveraging intermediary
imaging methods to bridge the gap between both modalities. Ohnishi et al. [Ohnishi,
2016] introduced an optical block photography or ex-vivo MRI of the brain specimen as
bridges. These intermediary imaging techniques provide a transitionary representation on
which each modality will be mapped, avoiding excessive deformations directly between
themselves that would foster errors. However, their practicality in a clinical setting is yet
to be ascertained.

Turning to the computational landscape, Ferrante et al. [Ferrante, 2017] shed light on
the challenges and potential solutions in their comprehensive review of Slice-to-volume
registration, which we confound here with 2D-3D registration. Such an exhaustive study
was needed as the clinical interest of this task was growing, in addition to histology-
radiology mapping for our study. It benefits various procedures such as image-guided
surgeries, biopsies, and radiofrequency ablation, to name a few. By aligning real-time
2D images with pre-operative 3D volumes, clinicians gain enhanced insights, aiding in
more precise interventions. The method’s significance is underlined by its ability to pro-
vide high-resolution data in real-time clinical settings, overcoming challenges like tissue
shifts and organ movements. Similarly to the classical framework, they categorize the
challenges into the matching criterion, transformation models and optimization methods,
but add the constraint of the number of slices involved. It appears that the choice of
each component is more delicate than the usual 2D-2D or 3D-3D registration, because
the mathematical formulation, while at first sight similar, leads to ill-posed problems due
to the dimensionality gap. Indeed, we need to create a 3D grid for the 2D image to
properly deform and match the 3D volume (Figure 3.4). The matching criterion is at
the core of image registration, defining how similarity between images is assessed. MI is
a good intuitive choice for 2D-3D registration as it quantifies the statistical dependency
between two images and does not require pixel-wise comparison. However, given the
significant visual differences between histology and radiology, MI may not always suffice.
Chappelow et al. [Chappelow, 2011] and Li et al. [Li, 2017] expanded the matching cri-
teria by including additional channels like multiprotocol imaging or spectral embeddings.
These extensions help models focus on crucial features, potentially improving registration
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accuracy. In addition, slice-to-volume registration can be categorized based on whether
it employs single or multiple source image slices. Single-slice methods consider one 2D
slice at a time, whereas multi-slice approaches can utilize the context provided by several
slices. Multi-slice methods are advantageous as they capture more contextual information,
allowing for more accurate and robust alignment.

Figure 3.4: Basic workflow for slice-to-volume registration. The moving 2D image is first rigidly
warped to the 3D volume for initialization and slice correspondence. Then, a deformable reg-
istration is performed to refine the mapping and account for out-of-plane deformations. From
[Ferrante, 2018]

The traditional computational approach as described by Ferrante et al. [Ferrante,
2017] has undergone a shift with recent advances in AI, as for the classical registration
framework. DL has recently been introduced to this realm, offering promising early results.
Shao et al. [Shao, 2020a] utilized DL for direct prediction of transformation parameters
from input images. While their methodology showcased potential, it was primarily 2D-
centric and necessitated prior plane selection. Sood et al. [Sood, 2021] on the other hand,
employed GANs to aid in the 3D reconstruction step, particularly in synthetizing missing
slices based on adjacent ones in WSIs with more accuracy than simple interpolation.
These initial forays into DL-assisted histology-radiology registration signal the advent of
more sophisticated and accurate techniques.

In conclusion, the journey towards achieving precise histology-radiology registration is
multifaceted. While substantial progress has been made, the quest for a methodology that
comprehensively addresses all issues and leverages the strengths of both manual expertise
and computational advancements is yet to be realized. SOTA studies still need manual
processing and suffer from biases. More precisely, DL has shown promising results but a
unified framework allowing automation and accuracy is still lacking. In the forthcoming
sections, we propose a comprehensive approach that aims to surmount the enduring
challenges and amplify the clinical impact of this pivotal process.
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3.3 StructuRegNet
In light of the pronounced differences between modalities, as described in the preceding
section, directly applying SOTA DL registration methods to the problem is not straight-
forward (we will validate this assumption with baseline comparison). Given the significant
deformations that tissues undergo, our core hypothesis is that rigid structures remain
relatively well-conserved during histological preparation. Consequently, these structures
can serve as a trustworthy foundation for initiating the registration process. This recog-
nition of inherent challenges has led us to craft a unique solution comprising three critical
components:

• An image-to-image translation block tailored to bridge the visual discrepancies be-
tween modalities, thereby transforming the problem into a monomodal one.

• A cascaded rigid alignment, heavily reliant on rigid structures, to serve as the initial
rigid mapping. This alignment supersedes the traditional methods of 2D correspon-
dence or 3D reconstruction.

• A novel 2D/3D deformable motion model designed to refine the mapping, and also
relying on rigid structures.

Leveraging these components and inspired by the review from Ferrante et al. [Ferrante,
2017], we implement a three-step, structure-aware pipeline, as detailed in Figure 3.5. The
most significant contribution lies in the fact that the entire pipeline is self-contained into
a single end-to-end trainable network, which we refer to as StructuRegNet. This means
that the training of all components is jointly optimized, allowing for seamless integration
and enhanced performance.

3.3.1 Histology-to-CT Modality Translation

A primary challenge in radiology-histology mapping is the visual disparity between modali-
ties. The modality transfer essentially translates 2D images from one modality to another
and ensures an easier similarity assessment in the next registration modules. We chose to
keep a 2D setting as the dimensionality of the WSI is a bottleneck. Indeed, we do not have
ground truth 3D WSI to be able to synthesize histological volumes, let alone the compu-
tational cost of such a generation. Consider a sequence of n WSI slices H = {h1, ..., hn}
and a volume denoted as a full stack of m axial slices CT = {ct1, ..., ctm}. Typically,
n = 7 with one slice every 5mm across the tumor volume to characterize different regions
of the lesion, and m = 64 for a 1mm resolution in the z−axis to cover the laryngeal area.

Using a CycleGAN framework introduced by Zhu et al. [Zhu, 2020], equipped with
two generators and two discriminators GH→CT , GCT →H , DH , and DCT , we achieve the
desired modality translation. The discriminator is inspired by the PatchGAN architecture
used in Pix2Pix by Isola et al. [Isola, 2018] and focuses on real/fake classification for small
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patches of pixels instead of the full image to model texture-linked high-frequency structures
and avoid blurry results. The final classification is the average of the classifications of
each patch. In addition, working on patches leads to an improvement in computational
cost since fewer parameters are needed to embed these smaller images.

The generator is also similar to the U-Net used in Pix2Pix, with the addition of residual
blocks between the contracting and expanding paths. They act as skip connections to
ensure stability in image reconstruction. The two generator architectures (respectively
discriminators) are identical, the only difference being the input fed to them.

With a symmetric situation for GCT →H , GH→CT takes a WSI hi and outputs a
synthetic CT image scti = GH→CT (hi), which is then discriminated by DCT against a
randomly sampled original input slice ctj with an associated adversarial loss Ladv (Equa-
tion 3.6).

The cyclical pattern lies in the similarity between the original images and the recon-
structed samples hi,cyc = GCT →H ◦ GH→CT (hi) through a pixel-wise cycle loss Lcyc

(Equation 3.7). The cycle architecture has been proven very helpful for unpaired gen-
eration compared to classical encoder-decoder or conditional GAN models. Indeed, re-
construction loss ensures cycle consistency, solving the pixel-wise loss issue for unpaired
images.

Finally, we employ two additional metrics. First, an identity loss LId to encourage
modality-specific feature representation when considering hi being the input for its self-
modal generator hi,bis = GCT →H(hi) with an expected identity synthesis (Equation 3.8).
Second, a structure consistency MIND loss LMIND to ensure style transfer without con-
tent alteration. MIND stands from Modality Independent Neighbourhood Descriptor and
embeds the image I into a vector of size |P | for each pixel x, P being a patch of fixed
size around the pixel of interest [Heinrich, 2012]. We can define it as

MIND(I, x, p) = 1
n

exp(−D(I, x, x + p)
V (I, x) ), p ∈ P . (3.5)

Here, n is a normalization constant, r covers the search region R, V is the variance
estimate and Dp is a distance function. Usually, this distance measure between two pixels
x1, x2 in terms of structure is defined as the SSD of all pixels between two sub-patches
centered at x1 and x2. The local variance V in the denominator allows for similar patches
to the voxel of interest for which MIND should be high to yield a sharp signal, while higher
values will lead to a broader response. Therefore, MIND can be automatically calculated
with few fixed parameters and provides a robust representation of the local structure
of the image, which should be preserved across modalities (all calculations involve the
comparisons of patches across the same image and focus on the texture, regardless of the
modality). The MIND loss is finally defined as the MAE between the descriptors of each
pixel, summed over the image (Equation 3.9).

The mathematical representations for the aforementioned losses specific to the CT
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modality are:

Ladv(ct) = Ect[log(DCT (ct))] + Eh[log(1−DCT ◦GH→CT (h))] . (3.6)

Lcyc(ct) = Eh[||GCT →H ◦GH→CT (h)− h||1] . (3.7)

LId(ct) = Ect[||GH→CT (ct)− ct||1] . (3.8)

LMIND(ct) = Eh

[
1
|P |

∑
x

||MINDx(GH→CT (h))−MINDx(h)||1

]
. (3.9)

The total modality translation involves the losses of both modalities, so that

L· = L·(ct) + L·(h) , (3.10)

Ltranslation = λadvLadv + λcycLcyc + λIdLId + λMINDLMIND . (3.11)

The architecture of the CycleGAN is detailed in Figure 3.6. It enables a proper
translation between modalities, more specifically the generation of synthetic CTs from
WSIs. Such transfer has been proven very powerful in solving the multimodal issue and
easing the registration problem with monomodal similarity measures, as justified in the
benchmark studies of the results section 3.4. These synthetic CTs are generated by a
patient-specific batch of 2D slices, which constitute along with the real 3D CTs the input
for the second step of the pipeline.

reconstruction path
identity path

generation path

CT domain
H domain

Figure 3.6: Modality Translation Network, inspired by the CycleGAN architecture, with two
generators and two discriminators. The generators are UNet-based with residual blocks, and
the discriminators are PatchGANs. For each modality, we add a MIND loss to ensure structure
consistency, as well as an identity loss to encourage modality-specific feature representation.
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3.3.2 Recursive Cascaded Initialization
Transitioning from the modality translation, we introduce an innovative model to initialize
the alignment process. The objective is to account for the difference between the cutting
angle of the microtome and the reference axis of the CT acquisition, as well as the
anisotropic resolution of the WSI leading to varying slice spacing. The importance of this
initializing step cannot be overstated — it serves as a foundational alignment, enabling
the final deformable 2D-3D network to hone in on nuanced out-of-plane deformations,
thereby sidestepping potential local minima traps for too large displacements. We propose
a recursive cascaded alignment consisting of the iterative application of two submodules:
a rigid structure-aware warping for angle correction and a dynamic programming (DP)
algorithm for slice correspondence. The overview of the cascaded process is depicted in
Figure 3.8, while the detail of each submodule for one step is represented in Figure 3.7.
In the following, we detail the mathematical formulation of each submodule for a single
iteration. Then, we tie up the two tasks together and detail why and how we built the
recursive cascaded process.

Rigid Registration At its core, the rigid initialization hinges on the premise that his-
tological specimens are cut with approximate spacing and angles that often differ from
the reference axis of the CT acquisition. Nevertheless, the angles between WSIs remain
relatively consistent since the blocks are formalin-fixed and paraffin-embedded. This un-
derstanding means a rigid alignment can effectively reorient the moving CT onto the fixed
H, by playing on the rotations and translations to match the frames of reference.

To perform it, based on a theoretical axial slice sequence Z - 5mm spacing according
to the pathologist -, we see H as a fixed sparse 3D volume the same size as CT , filled
in with hi at z = Zi and zeros elsewhere. As for the moving CT , it is simply considered
as a full 3D volume. Moreover, to add validity to the hypothesis of rigidness, we leverage
rigid structures only since these are assumed to remain largely undistorted during the his-
tological process and thus represent a compelling guide for rigid mapping. Segmentation
masks, Mct and Mh, are extracted for both modalities, which correspond to the thyroid
and cricoid cartilages in H&N location (cervical vertebrae are never included in WSI for
obvious reasons of patient survival). They are the input for the first submodule of this
initialization process, with the same spatial characteristics as the original data (sparse
3D vs. full 3D). They are first concatenated along the channel dimension and then fed
into a network N made of an encoder followed by a fully connected layer that outputs
six transformation parameters Φ = (tx, ty, tz, θ, ω, ϕ) (3 rotations, 3 translations). The
architecture of the layers is described in Figure 3.7. Then, a differentiable spatial trans-
former R, similar to Jaderberg et al. [Jaderberg, 2016] as explained in subsection 3.1.3,
transforms the parameters into a displacement grid and warps Mct for similarity optimiza-
tion with Mh. Finally, to deal with the sparse constraint, we adopt a loss Lrigid masked
on empty slices to avoid the introduction of noise at slices within the gradient where no
data is provided. We optimize the DSC between cartilage masks as follows:
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Lrigid(Mh, R(Mh, Mct)) =
∑

i∈[1,m]

DSC(MhZi
, R(Mh, Mct)(MctZi

)) . (3.12)

The final rigid transformation is then applied to the full CT volume without gradient
tracking to obtain the warped R(CT ), which is the input for the second submodule.

Slice Correspondence The second challenge to solve is the plane correspondence (2.
Recursive Plane Selection in Figure 3.7). Indeed, while the resolution of the section plane
of the WSI is very high due to precise scanners, the slice thickness is both coarse and
variable. Even if the angles are matched, the spacing between each slice in H is only
theoretical, and the manual process introduces variability that needs to be addressed.
It is then necessary to retrieve the correspondence between the sequence of slices J =
(J1, ..., Jn) of R(CT ) and the stack of slices Z = (Z1, ..., Zm) of H. It means that we
have to find an injective mapping f : [1, m]→ [1, n] between each slice Zi and the most
similar plane Jj , leading to a pairing at the same z location. To capitalize on the modality
translation module, we rather consider the equivalent synthetic CT than H for an easier
similarity measurement. Once the injective function f is determined, we only need to
update Z with the new sequence J to have the final slice correspondence: Z ′ = f(Z)
We propose a dynamic programming setting to find f . We introduce the similarity matrix
S of size m× n, scoring the relative cross-similarity between the slices of each modality,
and described by the equation:

S(i, j) =

MI(sctZi
, ctJj

) if i = 1

maxk S(i− 1, k) + MI(sctZi
, ctJj

) else
, (3.13)

where the chosen similarity measure is the Mutual Information MI. Each row (corre-
sponding to the index of sparse sCT sequence Z) will be filled by computing the sum
of the MI for the corresponding column j and the maximum similarity from the last row.
The first row is initialized with the MI between the first slice of sCT and all slices of
CT . Like any dynamic programming method, we want to find the optimal sequence J by
following the backward path of S building. To do so, starting from the last column and
last row, we retrieve the new index j that yielded the maximized similarity for each step
J = [maxi S(i, j)]j , and we update Z ← J accordingly. In addition, we add a heuristic to
fasten the computation, by constraining the possible matching k to [Zi−2, Zi+2]. Indeed,
the J sequence cannot be too different from Z as it would induce overlap between ordered
WSIs, and the theoretical spacing from the pathologist is a first good approximation.

However, this formulation is problematic in the sense that computation from classical
dynamic programming is not differentiable, because of the max operation. Therefore, we
cannot backpropagate the gradient to the first submodule, and we lose all possibility of
end-to-end training, at the scale of both the recursivity of this initialization step and the
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full 2D-3D translation-based registration framework. To solve this issue, we propose to
relax the max constraint with a smooth version using a convex regularizer. Such paradigm,
called Differentiable Dynamic Programming (DDP), has been introduced by Mensch et al.
[Mensch, 2018], defining a new class of DL models incorporating DP algorithms. They
derive nice and convenient properties from this smoothed version, which behaves like a
max function while enjoying all the differentiable properties. Xie et al. [Xie, 2023] have
recently applied this framework to the problem of retina surface segmentation, and we
were inspired by both works to adapt it to our problem. The smoothed version of the
similarity matrix is defined as follows:

S(i, j) =

MI(sctZi
, ctJj

) if i = 1

MI(sctZi , ctJj ) + γ log
∑Zi+2

k=Zi−2 exp( S(i−1,k)
γ ) else

, (3.14)

where γ is a parameter that has to be chosen carefully and is akin to the temperature
term in Maxwell Boltzmann’s equation. Here, the smoothed operator is the negative
entropy or LogSumExp (LSE) function, which is a common convex regularizer. Note that
its gradient has the elegant property of recovering the usual softmax function for γ = 1.
Computing it exactly corresponds to retrieving the backward pass of the matrix S in the
classical DP algorithm. Therefore, we can backpropagate the gradient through the whole
process, and the first submodule can be trained end-to-end with the second one.

Moving CT

Fixed H / sCT

Rigid
structure 

Segmentation
masks

Fixed updated
 H / sCT

Warped CT

Fixed updated
 H / sCT

Warped CT

L
Recursive
Cascaded
Loops

Figure 3.8: Recursive cascaded initialization pipeline. For each iteration or loop, the CT is rigidly
warped thanks to a structure-aware network specific to the iteration and based on the cartilage
masks, and the sequence of slices is updated with the new slice correspondence thanks to a
differentiable dynamic programming algorithm. The learning is end-to-end, with a loss computed
only at the last step L, and the gradients will propagate and update following the backward path
of the recursive graph.
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Recursive cascaded alignment After one pass of the two submodules, we have no
guarantee that the rigid alignment is optimal, and the sequence selection is not perfect.
Indeed, because we start with the angle correction, we do not have performed plane
selection yet, and the cartilages cannot perfectly match. Conversely, because the rotation
is not exactly adjusted, we cannot expect the slice correspondence to be accurate (we are
trying to match planes in the z-axis only but they are not in the same frame of reference).
Therefore, these two steps must be considered as a gradual improvement that needs to
be iterated toward global alignment. To do so, we update the sparse sCT with the new
sequence Z and the rigidly warped CT with the rigid transformation R to feed the first
submodule again. Because each rigid registration submodule’s task is to learn a part of
the global alignment, we have to implement one network Nl per iteration l, but it is
natural to keep the same architecture. This cascaded process is repeated recursively so
that, for l ∈ [1, L], we expand the notation CT , H, sCT , Mct, Mh, Ψ, f and R to CTl,
Hl, sCTl, Mct,l, Mh,l, Ψl, fl, and Rl accordingly, and:

CTl = Rl(Mh,l, Mct,l)(CTl−1) . (3.15)

Hl = fl(Hl−1), sCTl = fl(sCTl−1) . (3.16)

This pipeline has been inspired from Zhao et al. [Zhao, 2019], the difference being
that only a flow field is recursively applied and no slice correspondence is considered.
We then had to rethink the process to add a differentiable operation for StructuRegNet
to be successful. Theoretically, the number of iterations or loops L can be infinite, but
we stop when we reach the best balance between convergence and computational time.
Indeed, the number of parameters is multiplied by the number of networks, but the vanilla
architecture is lightweight and allows for some iterations. Thanks to the fully differentiable
setting, we can now train end-to-end and only optimize on the final loss after the last loop
Lrigid, so that gradients from each iteration will be backpropagated towards a progressive
alignment:

Lrigid(Mh,L, RL(Mh,L, Mct,L)) =
∑

i∈[1,m]

DSC(Mh,LZi
, RL(Mh,L, Mct,L)(Mct,LZi

)) .

(3.17)
The final rigidly warped RL(CT ), along with sCTL, are the input for the next step

of the pipeline, the deformable registration. Building upon these rigid registration and
plane selection modules, we have crafted a cascaded system that iteratively fine-tunes the
alignment. Each intermediary warping then becomes a new input for the next iteration,
leading to a more precise alignment over time. This structure-aware step is crucial to
solve the many issues linked to histology-radiology fusion like tissue shrinkage, and we
will prove that removing this component makes the pipeline fail while it is still working in
an easier domain like CT-MR for which original structures are more alike.
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3.3.3 Deformable 2D-3D Registration

Progressing from the rigid alignment, we delve into the deformable 2D-3D registration.
Here, a fixed multi-slice sCTL and a moving rigidly warped CTL = RL◦...◦R1(CT ) from
the previous module are input into an architecture resembling that of Voxelmorph [Balakr-
ishnan, 2019]. The main difference lies in the fact the architecture comprises two distinct
encoders for independent feature extraction from both the rigidly warped CTL and the
plane-adjusted sparse sCTL. The resultant latent representations from these encoders
then undergo element-wise subtraction, resulting in a single encoding. Indeed, this op-
eration carries intrinsic constructive mathematical properties compared to concatenation,
as demonstrated by Estienne et al. [Estienne, 2020]: if inputs and latent vectors are the
same, the subtracted output will be null and consistent with an identity transformation.
In the same way, inverting moving and fixed inputs corresponds to the opposite of the
subtracted vector and goes hand in hand with the inverted displacement field.

A decoder further processes the merged latent vector, generating a displacement field
Φ of the same dimensions as the input images, but with (x, y, z)-channels corresponding
to the displacement in each spatial coordinate. Similar to any unsupervised registration
models, a differentiable sampler D finally warps CTL, which is then compared against
sCTL through an NCC loss Lsim,def, masked on non-empty slices in the same way as the
rigid mapping:

Lsim,def(sCTL, D(sCTL, CTL)) =
∑

i∈[1,m]

NCC(sCTL,Zi , D(sCTL, CTL)(CTL,Zi))

(3.18)
Furthermore, we integrate two regularization techniques. Recognizing that soft tissues

distant from bones and cartilage are more prone to shrinkage or distortion, we harness
the information from the cartilage segmentation mask of CTL to produce a distance
transform map ∆ defined in Equation 3.19. It maps each voxel v of CT to its distance
with the closest point m to the rigid area MCT,L. We can then control the displace-
ment field, with close tissue being more highly constrained than isolated areas, thanks
to a transformed field Φ′, conditioned on the distance to the cartilage and defined in
Equation 3.20. Along with the rigid initialization, this heuristic highlights how we use
structure awareness and guidance to tackle the particular challenge of histological regis-
tration. Another regularization aims to maintain spatial gradients across the voxel space
Ω, promoting smooth deformation, which is especially vital for empty slices excluded from
Lsim,def (Equation 3.21). The final loss is a balanced combination of Lsim,def and Lregu

(Equation 3.22). The detailed architecture is showcased in Figure 3.9.

∆(v) = min
m∈{MCT,L>0}

||v−m||2 , v ∈ Ω (3.19)

Φ′ = Φ⊙ (∆ + ϵ) , (3.20)
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where ⊙ is the Hadamard product and ϵ is a hyperparameter matrix allowing small dis-
placement even for cartilage areas for which distance transform is null.

Lregu(Φ′) =
∑
v∈Ω
||∇Φ′(v)||2 . (3.21)

Ldeformable = λsim,defLsim,def + λreguLregu . (3.22)

3.3.4 End-to-end training

Each module of the framework, namely the histo-to-CT translation, the cascaded initial-
ization and the deformable 2D-3D registration involves differentiable operations, which
allows for end-to-end training. Indeed, the gradients can be backpropagated through the
whole pipeline, and the parameters of each submodule will be updated accordingly. In
addition to an easier integration, it enables a mutual benefit for each block, and the final
loss becomes the sum of the losses of each module, with a weight for each one:

Ltotal = λtranslationLtranslation + λrigidLrigid + λdeformableLdeformable . (3.23)

3.3.5 Experiments

Dataset and Preprocessing Our clinical dataset consists of 180 patients with both a
pre-operative H&N CT scan and 4 to 11 WSIs after laryngectomy (with a total amount
of 1349 WSIs). The theoretical spacing between each slice is 5mm, and the typical
pixel size before downsampling is 60K×100K. We processed both modalities to match the
resolution and ended up with images of size 256×256(×64 for 3D CT) of 1mm isotropic
grid space.

Segmentations and split As explained in subsection 2.3.3, for the retrospective cohort,
two expert radiation oncologists on CT delineated both the thyroid and cricoid cartilages
for structure awareness, while two expert pathologists did the same on WSIs. Based on
this labeled set, we extended the annotations for rigid structures to every patient thanks
to automatic solutions. We implemented a nnUnet for the CT scans [Isensee, 2018a],
while we used the automatic segmentation tool from the Qupath open-source software for
WSI [Bankhead, 2017]. Even if the labeled set contains a limited number of data, the task
of contouring the cartilage on both modalities is easy given the high contrast linked to
the density of cartilage on CT, and its specific color from calcification on WSI. We could
even have opted for a thresholding method, making the framework unsupervised. The
experts validated the quality of the segmentations for proper usage. We will come back
to the details of this implementation in section 4.1. In addition, 6 landmarks were put
on each WSI and the corresponding CT before registration, at the trademark anatomical
location. These landmarks were used for the assessment of the model’s performance after
registration.
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Eventually, as explained in Table 2.3, the same radiation oncologists delineated the
GTV on the retrospective cohort, because one clinical objective is to compare it to the
true tumor extent on histology after registration. The same cohort was also considered by
the pathologists for tumor contouring, and an automatic tool extended these annotations
to the full dataset. Once again, this task is easy on histology for which the tumor is
easily visible with distinctive colors, which is not the case for CT and leads to the already
explained interobserver variability. We then left the prospective cohort uncontoured for
GTV. Therefore, the prospective cohort was only used for training and validation, while
the retrospective cohort was used for training, validation and testing so that we could
compare GTVs and histological tumor extents on the test set. More precisely, we split the
dataset patient-wise into three groups for training (99), validation (30), and testing (51).

Software and hyperparameters We implemented our model with Python3.10 program-
ming language, backed by Pytorch1.13 framework [Van Rossum, 2009; Paszke, 2017]. We
extracted the code from Voxelmorph and CycleGan on their corresponding project pages.
We trained for 600 epochs with a batch size of 8 patients parallelized over 4 NVIDIA
GTX 1080 Tis. Data augmentation was applied with color jittering and random trans-
lations/rotations, taking care of applying the same transform for two modalities of the
same patient. As explained in the methodology section, the strength of the proposed
model is the ability to train it end-to-end, making it self-contained with a single forward
pass all along the computational graph. Nevertheless, a small exception was necessary
for practical success, which lies in the modality translation module. Indeed, we trained it
beforehand with the same set but allowed different patients to be the input in each batch
for higher diversity. We randomly sampled 2D slices from both modalities to initiate a
first learning for the model and avoid mode collapse when trying to feed improper sCT

to the registration networks at the beginning of the training. After this pretraining of 200
epochs, we moved to the full pipeline without freezing the modality translation task and
respected the patient-wise split to constitute mini-batches of sparse sCT volumes of the
same patient.

According to the hyperparameters that lead to the best performance of the end-to-end
model, we chose a cyclical learning rate with a triangular schedule up to lr = 2× 10−4,
with the Adam optimizer and classical coefficients for running averages of gradient β1 =
0.5, β2 = 0.99. For the first module, the L2 loss was preferred to the more classical BCE

loss. We set the patch size of the MIND loss to |P | = 9, and the different weights of
these losses were: λadv = 2, λcyc = λId = 10, λMIND = 5, λtrans = 2.

For the recursive cascaded initialization, we found that the best balance between the
convergence of the mapping and the computational cost was to have 3 nested iterations,
and we will prove it in the next section. We set the temperature γ = 10 for DDP, and
λrigid = 8 for the contribution of the similarity loss on rigid structures.

Eventually, for the deformable 2D-3D motion model, we chose the correction parameter
ϵ = 0.5, and the weights λsim,def = 8, λregu = 0.05, λdeformable = 6
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Evalutation To our knowledge, no DL-based method tackled the challenge of 2D-3D
histology-radiology registration. To assess the performance of our method, we bench-
marked it against three baselines: First, to prove the benefit of modality translation over
a multimodal loss for similarity measurement after registration, we re-used the original 3D
VoxelMorph model with a multimodal metric. We also modified this approach by masking
the loss function to account for the 2D-3D setting. Next, to validate the crucial need for
rigid initialization before deformable refinement, we tested removing this second module
and let the 2D-3D deformable model handle the mapping alone. We also ran an additional
ablative study to prove the benefit of structure awareness and considered the deformable
step without regularization by distance field control. Eventually, we justified the choice of
end-to-end training and proved the mutual benefit in the training scheme by comparing it
against a two or three-step training, first with each module trained separately, then with
the translation step alone and the combination of the two registration networks afterward.

3.4 Results

3.4.1 Modality Translation

While the registration is the clinical task of interest, it is fundamental to assess the quality
of the modality translation to make sure that the mapping networks are fed with synthetic
signals close to the original CT modality so that they perform adequately. Four samples
from the test set are displayed in Figure 3.10. From a qualitative perspective, the densities
of the different tissues are well reconstructed, with rigid structures like cartilage being
lighter than soft tissues or tumors. The general shape of the larynx also complies with the
original CT images. It is worth noticing that the generator sometimes hallucinates and
synthetizes tissue that does not exist in the histological content. This can be explained
by the difference between modalities in the dataset, where WSI are cut so that only tissue
close to the tumor remains, while CT scans are acquired in vivo and reflect the full H&N
anatomy. Because the discriminator tries to distinguish synthetic CTs from original CTs,
it is natural that the generator will try to fool it by generating in vivo-like synthetic CTs
even if the conditioning sample is a WSI with less tissue. This is particularly apparent at
the rear part of the larynx, which is often halved on a WSI for proper 2D slide mounting
and is filled with artificial tissue after the forward pass from the generator. After the
modality translation block, we mask the sCT to build a sparse volume, and then remove
this fake content.

Quantitatively, we computed two common metrics to assess the realism of the gen-
erated CT scans compared to the original ones. Namely, we used the Fréchet Inception
Distance (FID) and the Structure Similarity (SSIM). FID is popular for GAN-based meth-
ods and measures the distance between distributions of generated and original sets in
a latent space. The latent representations derive from the application of an Inception
v3 model trained on ImageNet without the last layer [Szegedy, 2014]. The FID is then
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Figure 3.10: Visualization of samples from test set for histo-to-CT translation. The WSI is
original, while the sCT is synthetic. The densities of the different tissues are well reconstructed.
The model tends to hallucinate and generate artificial tissue to fit with the original distribution
of in vivo acquisition of CT scans, which are richer in tissue than the cut WSI.

computed as the Wasserstein-2 distance between the two distributions X and Y , fitting
them to gaussian distributions N(µX , ΣX) and N(µY , ΣY ), and comparing their mean
and standard deviation as follows:
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Method SSIM FID
Pre-training only 0.724 ± 0.04 111.4
Complete separated training between 3 modules 0.741 ± 0.09 100.6
End-to-end for two registration networks only 0.748 ± 0.05 99.7
StructuRegNet (end-to-end) 0.794 ± 0.08 93.4

Table 3.1: Our pipeline and baseline methods’ quantitative results prove the benefit of end-to-end
training. The pre-training is always processed independently to help the whole pipeline afterward
and already provides satisfactory results. The separate training between three modules improves
them, but is less potent than combining both registration networks into a single training loop,
let alone a full end-to-end training as done in StructuRegNet.

FID(X, Y ) = |µX − µY |2 + Tr(ΣX + ΣY − 2
√

ΣXΣY ) . (3.24)

FID is then always positive and a lower FID indicates a higher realism. Comparatively,
SSIM measures the structural degradation of a reconstructed image based on an original
one and has been introduced to test the quality of a compressing tool on files. For two
images x and y, it is computed as a combination of relative means µx, µy, variances
σ2

x, σ2
y, the covariance σxy and two variables c1, c2 to stabilize the division with weak

quotient. We average the SSIM across all pairs of images to get the final score:

SSIM(X, Y ) = Ex,y(SSIM(x, y)) = Ex,y( (2µxµy + c1)(2σxy + c2))
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) ) . (3.25)

It is scaled to [−1, 1], 1 meaning the datasets are the same, 0 meaning they are
independent, and -1 meaning they are in perfect anti-correlation. For the ablative study, as
mentioned earlier, we compared our pipeline against no end-to-end training to prove that
the modality translation benefits from the registration signal. The Table 3.1 summarizes
the performance of each model. We achieve a mean SSIM index of 0.79 and an FID of 93.4
between both modalities, demonstrating the strong synthesis capabilities of our network
compared to ablative studies. Indeed, the pre-training already provides satisfactory results
but needs further refinement. After additional epochs, corresponding to the full pipeline
but without end-to-end setting, some improvement is witnessed. It remains less potent
than combining both registration networks into a single training loop, proving the benefit
of the backpropagating signal. This is finally optimized with full end-to-end training as
done in StructuRegNet.
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Method Dice Hausdorff Landmark Runtime
VoxelMorph (MIND) 71.9 ± 1.7 7.19 ± 0.24 5.99 ± 0.22 1.3
No rigid initialization 61.5 ± 1.4 10.41 ± 0.28 8.97 ± 0.31 1.4
No structure-aware
regularization

85.1 ± 0.8 4.23 ± 0.27 3.71 ± 0.19 2.8

Separate training 79.8 ± 1.2 6.45 ± 0.19 4.82 ± 0.30 2.9
End-to-end for registration
networks only

82.3 ± 0.7 4.97 ± 0.25 5.09 ± 0.18 2.9

StructuRegNet 86.9 ± 1.3 3.81 ± 0.20 3.28 ± 0.16 2.9

Table 3.2: Registration performance of StructuRegNet compared to baselines and ablative studies,
expressed as mean and standard deviation in terms of Dice Score (%), Hausdorff Distance (mm)
and Landmark Error (mm). Inference runtime is in seconds. The first two rows show that the
GAN-based translation network is more powerful than a multimodal similarity measure, the two
next rows show the importance of structure awareness and the two last rows justify the choice
of an end-to-end training.

3.4.2 Registration
Moving forward to the registration results, we present visualizations in Figure 3.11. The
initialization enables an accurate plane selection as well as a rigid reorientation of cutting
angles, as proved by the similar shape of cartilages between the second row of CT and the
fourth row of the original WSI. After 2D-3D deformable registration, even for some severe
difficulties inherent to the histological process like a cut larynx, the model successfully
maps both cartilage and soft tissue without completely tearing the CT image thanks to
regularization.

For quantitative assessment, we computed the DSC as well as the HD between car-
tilages, and the average distance between characteristic landmarks disposed before reg-
istration (Table 3.2). Our method outperforms all baselines with a DSC of 86.9%, an
HD of 3.81mm, and a landmark error (or TRE) of 3.28mm, proving the necessity of a
singular approach to handle the specific case of histology.

Importance of Modality Translation The first two rows of the table show the result
in the setting where the modality translation task is suppressed, and the two registration
modules (rigid and deformable) are kept similar, the only difference being that the sim-
ilarity loss in the deformable module is not NCC but MIND, which is more suitable for
multimodal signal. It means that, except for the two encoders and the 2D-3D masked loss,
the framework looks like Voxelmoprh with a direct multimodal similarity criterion. Nev-
ertheless, MIND loss leads to low overlap compared to GAN-based multimodal handling
used in StructuRegNet. It shows that even if it is a costly operation (2.9s vs. 1.3s), the
boost in performance makes the CycleGAN worth it by explicitly catching more complexity
in crossmodal features.
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2D-3D
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masks

Figure 3.11: Registration visuals for two samples of the test set. The first row is the original
CT, the second row is the warped CT after recursive cascaded initialization, the third row is
the warped CT after 2D-3D deformable registration, and the fourth row is the original WSI.
The latter contains landmarks from pathologists (black) and warped projected landmarks from
radiologists (yellow) for TRE assessment. The last row represents the overlaid cartilage masks
after registration of histology (filled blue) and radiology (red for our method, yellow for the case
without rigid initialization). Red and blue masks have excellent overlap, while yellow shows failure
in registration. It highlights the importance of the rigid initialization thanks to stiff structures to
guide the registration.
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Importance of Rigid Initialization The presented cascaded framework is one of the
main innovations to solve histology-radiology registration. To prove its benefit, we re-
moved the rigid initialization and let the deformable 2D-3D registration handle the map-
ping alone. The results are displayed in the third row of the table. The performance is
drastically lower, with a DSC of 61.5%, an HD of 10.41mm, and a landmark error of
8.97mm. It shows that this is a crucial asset to guide the deformable registration because
the deformable model cannot find the right plane and orientation at once, in addition to
optimizing small out-of-plane displacements. Once again, the increase in computational
cost is worth it (1.4s vs. 2.9s), and we found that the best balance between convergence
and computational time was to have 3 nested iterations ()Figure 3.12). Below this num-
ber of cascades, there are not enough networks to reach a convergence between rotation
correction and plane selection; Above, the performance does not increase anymore and
the computational time starts to be too high for a clinical application.

Importance of Structure-aware Regularization In addition to the cascaded initial-
ization, the 2D-3D deformable model also incorporates structure awareness through reg-
ularization of the distance field. The fourth row of the table shows the results without
this regularization, all other things being equal. StructuRegNet outperforms this ablative
study, but it is less substantial (DSC 86.9% vs. 85.1%, for example). It shows that
distance field regularization is not the only reason for the performance of the model, but
it is still an important component in handling the complexity of the histological process.
Indeed, the distance field is a good proxy for tissue shrinkage, and the regularization con-
strains the displacement field to be smooth and increasingly free as we move away from
the cartilage, the latter "trapping" the neighboring tissue. An example of this deformation
field is displayed in Figure 3.12.

Importance of End-to-end Training The last setting to assess is the end-to-end train-
ing. The hypothesis is that the gradient signals backpropagate among the different mod-
ules, creating mutual benefit: the modality translation is more powerful when it is trained
with the registration signal (as seen in the last section with Table 3.1), and the regis-
tration networks are more powerful when they are trained with the synthetic CTs (yet to
prove). We thus compared the performance of the model against two settings, first with
each module trained separately, then with the translation step alone and the combination
of the two registration networks afterward. Their results along with end-to-end Struc-
tuRegNet are displayed in the three last rows of the table. The performance is better with
end-to-end training, making the mathematical efforts of differentiability, especially the DP
algorithm, a real clincher for the model. In addition to the performance, the runtime is
similar since inference only represents a single forward pass of the three modules, proving
that end-to-end training should always be preferred.
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(1) (2)

Figure 3.12: (1) Boxplot of the Dice Score for the registration of cartilages, with the number of
cascades as a parameter. We reach a plateau for 3 iterations, after which the gain in performance
does not compensate for the increase in runtime. (2) Visualization of the deformation field after
2D-3D deformable mapping. High-amplitude displacements highlight the complexity of out-of-
plane tissue shrinkage and artifact handling, which are constrained by distance field regularization.

3.5 Out-of-distribution generalization
Although our focus is on radiology-histology, more particularly CT-WSI, the versatility of
this pipeline makes it adaptable to various 2D/3D settings. In the following, we propose
to explore other clinical applications.

3.5.1 Clinical realm of application and motivation

For interventional procedures, a real-time mapping between treatment guidance images
and planning data is challenging yet essential for successful therapy implementation. Be-
cause of time and machine constraints, it involves imaging of different modalities, resolu-
tions and dimensions, making it a multimodal 2D-3D registration task. Indeed, mapping
3D planning data into the 2D interventional frame of reference enables the overlay of each
image’s specific information and is thus crucial for successful treatment. Some popular
clinical settings in this context refer to 2D ultrasound towards 3D CT/MR (guided breast
or prostate biopsies), 2D angiography to 3D CT/MR for cardiac and brain surgeries, or
2D MR to CT for IGRT. In this respect, one has to face three main challenges: (i)
anatomical changes and tissue deformation, (ii) sparse, partial-view and low-quality data
during treatment deployment due to acquisition time limitations, and (iii) constraints on
the nature/modality of images that can be acquired. As mentioned earlier, few DL-based
methods solve this particularly difficult task as an end-to-end framework for real-time
applications, which are of paramount importance in the case of interventional procedures.

The objective of this section is to demonstrate that StructuRegNet is not only a
solution for histology-radiology registration, but also a general framework for multimodal
2D-3D registration, which finds diverse applications in the field of interventional radiology
or adaptive RT. More precisely, because the cascaded initialization as well as the distance
field regularization specifically aim at handling the complexity of the histological process,
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we build a light-weight version of StructuRegNet, called MSV-RegSynNet for Multi-Slice-
to-Volume Registration with Synthetic data, to accommodate any simpler multimodal 2D-
3D registration task. It can be considered as an adaptable backbone on which additional
blocks, specific to the task of interest, can be added like recursive cascaded initialization.
We then compare it against StructuRegNet on a completely different anatomical location
and data nature to assess the need for the structure-awareness and conclude on the best
solution for each setting. For the following sections, we consider for the sake of clarity
that we want to align a 2D MR slice or a small set of 2D MR slices, with a 3D CT volume.

3.5.2 Methodology
Overall, MSV-RegSynNet is a simplified version of StructuRegNet, with the same archi-
tecture but without cascaded initialization. The 3D moving CT is the input of both the
MR-to-CT translation (through discretization over the z-axis for the 2D CycleGAN) and
the registration tasks. The DDP is not used anymore, and the rigid registration is in-
corporated into the 2D-3D deformation model, called "MSV Registration". This model
outputs both a 6-parameter vector in addition to the voxel-wise deformable field. The
recursive stack of progressive rigid alignment is no longer used. These 6 parameters are
transformed into a displacement grid, and the complete rigid-and-deformable deformation
field is just the element-wise sum of these two outputs before passing through a spatial
transformer. The losses remain unchanged, except for the structure-aware distance field
regularization which is suppressed. Importantly, the end-to-end training is still used, and
the modality translation is still processed with the same CycleGAN architecture. There-
fore, MSV-RegSynNet is an adaptation of StructuRegNet where no particular precaution
on tissue disruption and shrinkage is needed, thus all source of rigid structure guidance is
removed. The architecture of the pipeline for 2D MR - 3D CT is displayed in Figure 3.14,
and the modified registration model with two outputs is in Figure 3.13.

Figure 3.13: Deformable module of MSV-RegSynNet. It is the same architecture as StructuReg-
Net, except for the dual output. The rigid registration is incorporated into it through an affine
matrix which is fused to the voxel-wise deformation field for the final displacement grid.
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3.5.3 Dataset and experiments
We assessed the performance of our pipeline to pelvis 3D CT and 2D MR imaging, in
the RT clinical application. More precisely, we extracted two private clinical datasets for
patients undergoing RT. The first dataset refers to 451 pairs between the planning CT
and the 0,35T TrueFISP sequences of treatment delivery. The second example involves
217 pairs between the planning CT and the 1,5T T2 sequences. Such a gap in texture
resolution is an argument for the ability of our method to perform in many study cases.
The ratio between the 3D planning CT and the multi-slice treatment MR in terms of
slices was 10 : 1.

We preprocessed independently both datasets with normalization, resampling and
cropping to get 256 × 256 × 96 (x, y, z) volumes with an (x, y) resolution of 1mm2

and a z resolution of 3mm. For each volume and modality, 8 anatomical structures were
segmented by internal experts: anal canal, bladder, left/right femoral head, rectum, penile
bulb, seminal vesicle and prostate - when applicable -. They were used for registration
performance evaluation. We split each dataset into three groups for training (60%), val-
idation (20%) and testing (20%). The same hyperparameters were used compared to
StructuRegNet.

Moreover, to apply StuctuRegNet on the same dataset and compare it to MSV-
RegSynNet without rigid initialization, we guided the registration thanks to the rigid
left/right femoral heads and computed similarity metrics on the 7 additional organs at
risk. All masks were provided by the authors and were originally segmented by internal
experts.

According to baselines, we considered the traditional SyN algorithm with MI similarity
measure available in ANTs software, considering the set of 2D sCT slices as a stacked
volume with a 3D-3D setting. We ran affine and deformable registration on the CPU
as baselines. We also implemented the Voxelmorph method on multimodal raw images
with MIND and SSIM similarity measures and changed the loss computation to fit with
the 2D-3D setting. All parameters were optimized to give the best results. Finally, we
performed ablative studies on our approach. We tried (i) a fully affine registration by
blocking the deformable block of the network, (ii) the whole pipeline without MIND loss
on generation block, and (iii) the pipeline split into two independent training. Eventually,
we ran StructuRegNet as the ultimate benchmark.
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3.5.4 Results

MSV-RegSynNet against SOTA baselines

To assess the performance of the registration task, we apply the inferred transformation
to segmentation labels, which are never used for training (Figure 3.15). For quantitative
results, we computed the DSC and the HD between fixed and deformed masks. Average
performance over all organs is presented in Figure 3.15, while organ-specific measurements
are detailed in Figure 3.16. Our end-to-end method ("Ours" refers to MSV-RegSynNet)
reaches the best performance among all other baseline approaches. Both NCC and MSE
losses have similar behaviors. SyN algorithm gives poorer results than the VoxelMorph
framework, the latter being also satisfying and more precise with MIND loss. It proves the
benefit of handling multimodality through image-to-image translation instead of a direct
multimodal similarity measure. The associated runtime is slightly longer but remains in an
acceptable range compared to non-learning-based methods which are orders of magnitude
slower. Indeed, the average runtime per images pair - not reported in Table 3.3 for
clarity sake - is 319s for the SyN method that only supports CPU computation, 1.24s for
Voxelmorph on GPU, and 1.98s for our method on GPU.

sCT + masks (SyN) sCT + masks (Voxelmoprh) sCT + masks (Ours)Fixed T2 MR slice

sCT Ours (no MIND) sCT (Ours) sCT + masks (Ours, fail)sCT cycleGAN MIND

Figure 3.15: Registration visuals for MSV-RegSynNet (Ours). Top: SyN, and to a lesser degree
Voxelmorph, yield worse registration results between warped CT (red) and fixed sCT (yellow), in
terms of prostate, femoral heads and penile bulb in the chosen slice Bottom: MR-to-CT results,
proving better realism and texture consistency for our method. Bottom right: A special case
when our method fails, usually for little organs that are present on one slice only and thus provide
a limited signal.

From the ablation studies, three conclusions emerge: (i) the deformable block is
essential since it allows for out-of-plane deformations handling, (ii) the MIND loss from
the generation network again helps the mapping thanks to better-defined textures, and
(iii) the concurrent approach outperforms the independent training. It is also important
to note that we have a significant difference in performance depending on the organ
considered (Figure 3.16) due to the partial presence of the multi-slice volume for small
ones, explaining some failures as displayed in the bottom right Figure 3.15. Overall, our
model performs well on both tasks for two datasets with different MR sequences and
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Figure 3.16: Boxplot with detailed Dice scores for each organ, ordered by decreasing volume size.
In a 2D-3D setting where only a few slices from the organ are considered, small structures yield
lower performance.

Table 3.3: Mean (Standard Deviation) registration performance in terms of Dice Score (%) and
Hausdorff Distance (mm). Row split is by method (baselines/ablative studies/proposed method)

Method 0.35T TrueFISP → 3D CT 1.5T T2 → 3D CT

Dice Hausdorff Dice Hausdorff

SyN (ANTs) affine 69.9 ± 1.7 12.05 ± 0.09 68.7 ± 0.9 13.49 ± 0.10
SyN deformable 75.2 ± 1.2 9.72 ± 0.13 76.1 ± 1.1 9.19 ± 0.11
VoxelMorph (SSIM) 81.2 ± 1.6 7.96 ± 0.10 80.9 ± 0.9 7.91 ± 0.08
VoxelMorph (MIND) 81.5 ± 1.5 7.82 ± 0.07 81.3 ± 1.5 7.88 ± 0.14

Ours (affine) 70.5 ± 1.2 11.22 ± 0.09 69.4 ± 0.8 11.94 ± 0.14
Ours (no MIND) 79.8 ± 1.1 8.86 ± 0.08 80.8 ± 1.2 7.88 ± 0.06
Ours (no end-to-end) 81.2 ± 1.2 8.01 ± 0.08 81.4 ± 0.9 7.62 ± 0.12

Ours (NCC) 84.6 ± 0.9 7.25 ± 0.05 85.3 ± 1.4 6.24 ± 0.09
Ours (MSE) 83.8 ± 1.2 7.48 ± 0.13 86.1 ± 1.0 5.84 ± 0.15

StructuRegNet 84.8 ± 1.1 7.12 ± 0.08 87.9 ± 1.2 5.21 ± 0.09

resolutions, which proves its robustness and versatility. The results give similar insights
as for StructuRegNet in terms of the importance of each aspect (modality translation,
end-to-end training). The benefit of structure awareness is the only one that is not proved
here and will be assessed in the next subsection.
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MSV-RegSynNet against StructuRegNet

We compared MSV-RegSynNet against StructuRegNet on 2D MR - 3D CT. Indeed, MSV-
RegSynNet is lighter and the removal of structure awareness frees from the requirement
of additional rigid structure segmentation. The results are highlighted in the last row of
Table 3.3. We yielded comparable results for the first cohort and significantly better ones
for the second, which proves that (i) StructuRegNet behaves well on other modalities and
(ii) that structure awareness can quickly become an essential asset for better registration,
as pelvis is a location where organs are moving. Nevertheless, depending on the use
case and the segmentations available, MSV-RegSynNet can be a good alternative to
StructuRegNet thanks to its easier implementation and faster runtime.

3.6 Conclusion

This chapter delved deep into the domain of histology-radiology registration, aiming to
bridge the gap between the fine-grained details captured in histological slices and the
broader, volumetric perspective provided by radiology. The crux of this endeavor was to
enhance the accuracy and precision of target volume delineation, a crucial phase in the
RT workflow.

We began by establishing the technical foundation for registration, elaborating on the
mathematical framework that underpins the process. This elucidation was important,
especially considering the specific challenges posed by histology-radiology registration in
addition to the classical setting. The differences in modalities, resolutions, and inherent
deformations between histology and radiology images necessitated a unique approach.
Building upon this understanding, we introduced StructuRegNet, our innovative frame-
work tailored for histology-radiology registration. The key components of StructuRegNet
are (i) a modality translation block to solve the visual discrepancies between histology and
radiology, (ii) a cascaded initialization block, relying on a rigid structure and supersed-
ing classical 3D reconstruction or 2D correspondence methods, to correct cutting angle
and anisotropic resolution of WSI. (iii) A structure-aware deformable registration block.
Overall, they offer a promising solution to the aforementioned challenges.

Our results showcased the efficacy of the framework, further solidifying its potential
in real-world applications. However, realizing the computational demands and the need
for additional segmentations, we proposed a lightweight version, MSV-RegSynNet, which
retains the core functionality while optimizing for efficiency. The latter can be very efficient
for easier tasks like 2D MR to 3D CT registration, while StructuRegNet is more suitable
for complex tasks like histology-radiology registration.

The successful registration achieved in this chapter is pivotal. It enables the accurate
mapping of tumor extent segmentations from histology directly onto CT images, thereby
allowing for a more precise comparison with the GTV. This achievement is central to
the overarching goal of this thesis. By refining the GTV using our method, we pave the
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way for the subsequent chapters, particularly in developing models that can automatically
segment tumors on CT based on histology labels. This method promises greater precision
and reduced variability, marking a significant step towards virtual biopsy or histology-
augmented radiology.

Furthermore, our framework’s versatility allows for the mapping of a plethora of insight-
ful data from histology, including markers from immunohistochemistry, thereby providing
a comprehensive map of tumor heterogeneity directly on radiological images. Not only
does it offer near-real-time insights, but this capability also obviates the need for labor-
intensive manual mapping for each patient, heralding an era where large-scale studies can
drive robust insights in oncology.

In conclusion, the strides made in this chapter set the stage for a paradigm shift in how
we perceive and utilize histological data in conjunction with radiology. As we transition
to the subsequent chapters, we anticipate delving deeper into the practical applications
of these innovations, inching ever closer to a future where histology and radiology harmo-
niously coalesce to enhance patient care. MSV-RegSynNet and StructuRegNet have both
been published and presented in international conferences, with either a methodological
focus (MICCAI 2022 and 2023 [Leroy, 2023a; Leroy, 2022a]) or a clinical perspective (ES-
TRO 2022 and 2023 [Leroy, 2023c; Leroy, 2022b]). In addition, we registered two patents
for these inventions, both in the US and Europe.



Chapter 4

Pathology-enhanced Target
Delineation and Virtual

Histology

The chapter 3 was a dive into the methodological solution to histology-radiology registra-
tion, and we wanted to capitalize on it and extract clinical insights that would effectively
impact precision RT. The capability to deform all histological slices to the CT reference,
and subsequently warp the corresponding tumor masks, provides a potent means to com-
pare and contrast the GTV delineated on CT with the gold-standard tumor extent derived
from histology (section 4.1). As already stated, the GTV contours manually derived from
radiation oncologists are often burdened with substantial interobserver variability, thus
propelling us toward finding a more precise and truthful representation of the tumor from
digital pathology.

We also wanted to delve into higher-level considerations, such as leveraging these
high-quality labels to train a model for automatic GTV segmentation on CT based on
histological labels (section 4.2), and the integration of additional information like IHC
for a nuanced characterization of tumor microenvironment heterogeneity (section 4.3).
Eventually, we developed a proof of concept to escape from these predefined volumes, and
directly synthesize histological tissue content, which we call virtual histology (section 4.4).
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4.1 Clinical Insights from Histology-Radiology Registra-
tion

The initial motivation for pivoting this section is a pedagogical one: the overlay of GTV
and histological tumor contour opens a window into the divergences and potential sys-
tematic errors in the delineation process. By dissecting these discrepancies, we seek to
uncover typical misinterpretations and ascertain whether discernable patterns emerge.
This examination, in turn, could lead to enhancements to existing delineation guidelines
and practices.

4.1.1 Inverse Transformation and Interpolation
Upon the utilization of StructuRegnet, a series of post-processing steps were essential to
align the outcomes with our objectives. Notably, two key technical aspects necessitated
meticulous attention:

Inverting the Transformation While Structuregnet warps CT onto histological slices,
our requirement was for the WSI to be the moving image and the CT to be the fixed image.
StructuRegnet took the inverse approach as it facilitated the application of the masked
loss on fixed z slices, already discerned from the slice correspondence step. Fortuitously,
the employment of a fully diffeomorphic transformation enabled us to invert it without
encountering artifact issues. Thus, the deformation field Φ was computed to Φ−1 and
applied to the set of 2D WSI seen as a sparse volume H, as well as the tumor mask
denoted as TH .
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Interpolation Techniques In seeking to compare tumor masks, we found ourselves
juxtaposing a full 3D GTV with a set of 2D tumor contours on WSI. Upon obtaining the
warped contours Φ−1(TH), initial statistics were derived on the 2D corresponding slices.
However, a 3D comparison is also useful in the RT clinical perspective, which necessitates
interpolation of the missing slices.

In the domain of image interpolation, a multitude of methods have been explored, each
bearing its own merits tailored to specific applications. Linear interpolation, for instance,
posits a simplistic model, assuming a direct linear relationship between adjacent points
to infer intermediate values, providing a computationally efficient yet possibly inaccurate
model, especially in the face of complex structures and curvatures in images. This lin-
earity assumption is modestly extended by bilinear interpolation, which incorporates the
immediate 2x2 neighboring pixels, affording smoother gradient transitions yet potentially
introducing blurring, especially where the image experiences sharp intensity alterations.
The pursuit of smoother interpolations and the preservation of finer image details has led
to the adoption of B-Spline interpolation, which utilizes polynomial splines, providing a
smooth and controllable curve across data points, although leading to an escalated com-
putational complexity. Polynomial interpolation also finds a place in this sphere, where
a polynomial of degree n is fit to n + 1 data points, but it is often sidestepped in favor
of spline methods in applications demanding the interpolation of larger datasets due to
its susceptibility to artifacts. In the realm of medical imaging, where the preservation
of morphological features is paramount, the method proposed by Zukić et al. [Zukić,
2016] gains prominence. Their morphological contour interpolation technique, special-
izing in the 3D reconstruction of binary segmented images, emphasizes maintaining the
topology and nuanced structural features through the utilization of morphological and
distance transform operations. It provides a tailored approach to interpolate between
segmented slices, adeptly managing the structural intricacies and sporadic sampling often
encountered in medical imaging scenarios. Consequently, in applications like ours, where
accurate representation and preservation of biological structures across a 3D space are
crucial, morphological contour interpolation presents itself as a notably suitable choice,
aligning closely with the requisites of maintaining structural integrity and detail among
the interpolation of sparse slices.

4.1.2 Qualitative Comparison
Figure 4.1 highlights overlaid contours on CT for the same patient, with three orthogonal
views (axial view represents non-empty original slices only). The direct qualitative remark
is that the tumor extent is often smaller than the GTV. This overestimation of GTV of
around 31% is detrimental and leads to bigger corresponding CTV and PTV, and to over-
irradiation of healthy tissues, which can be avoided by a more precise pathology-informed
delineation. It appears that practitioners’ contours often follow anatomical boundaries
like cartilage, which is not always a good proxy for tumor extent. The second insight is
that the GTV does not always encompass the tumor as shown in the last row for axial
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Figure 4.1: Comparison of GTV with gold-standard tumor extent from histology, for one patient.
The first column browses the axial slices of the CT volume, the second one the sagittal slices,
and the third one the coronal slices. GTV is in blue, while the gold-standard tumor extent is in
red.

and coronal view, where pathological tissue is not included in the radiation oncologist’s
contour. Even if it is less frequent, these untreated areas are a source of disease recurrence
and witness the difficulty of the delineation task, which is not limited to a contrast gradient
assessment but also encompasses biological features that are barely visible to the expert’s
eyes.
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Figure 4.2: Visualization of 3D histological tumor extent in CT frame of reference. The top image
represents the stack of WSI with tumor contour, the bottom left image is the 3D visualization
of the WSI tumor extent overlaid on the CT reference volume, and the bottom right is the same
3D visualization with interpolated slices.

4.1.3 Statistical Comparison

The metrics for statistical comparison encompassed the Hausdorff Distance (HD), the
Dice Similarity Coefficient (DSC), the sensitivity index, and the inclusion index or positive
predictive value (PPV), with the latter two metrics being defined as the proportion of his-
tological tumor (H) contained within the CT contour (GTV), and the proportion of GTV
that is pathological, respectively. These metrics were employed in both 2D (computation
on histological slices only) and 3D (interpolated slices) settings.

The results confirm the visual intuition described above. The mean high HD (14.2mm
in 2D, 15.8mm in 3D) and low DSC (0.53 in 2D, 0.62 in 3D) advocates for a substantial
difference between GTV and histological tumor extent. The low inclusion index (0.66
in 2D, 0.62 in 3D) gives more insights into this discrepancy and is an indicator of the
overestimation of GTV, which encompasses a lot of healthy tissue. Finally, the high
sensitivity index of 0.86 in 2D and 0.89 in 3D means that the GTV mainly surrounds
pathological tissue, but some of the latter still escape the GTV as the index is strictly
lower than 1. The significant differences between 2D and 3D settings can be interpreted
differently depending on the metrics. For example, for HD, the higher value in 3D is due to
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the interpolation step that creates new slices and thus increases the potential aberration
between contours, which are spotlighted in the max operator. The results are summarized
in Table 4.1, and have been the object of a publication at the ESTRO conference in 2023
([Leroy, 2023b]).

Metric Tumor Variability (2D) Tumor Variability (3D)

HD 14.2 ± 1.8 15.8 ± 2.5
DSC 0.53 ± 0.08 0.62 ± 0.13
Sensitivity 0.86 ± 0.09 0.89 ± 0.17
Inclusion/PPV 0.66 ± 0.12 0.62 ± 0.19

Table 4.1: Statistical comparison of GTV and histological tumor masks after registration. The
sensitivity index is the proportion of histological tumor (H) contained within the GTV, and the
inclusion index or positive predictive value (PPV) is the proportion of GTV that is pathological
(H).

4.2 Automatic Histology-based Segmentation of GTV

4.2.1 Motivation and Workflow

To leverage the full potential of StructuRegnet, we seek to extend it beyond one-shot
clinical insights within a single cohort, and towards a paradigm where its automated
capabilities are harnessed to prospective patients. Traditional methodologies for GTV
segmentation have generally failed because of intrinsic inaccuracies and significant inter-
observer variability of labels, inhibiting effective learning. In contrast, the histological
volume provides a compelling alternative, serving as a label that mitigates these issues by
offering a degree of precision and reliability. With these foundational elements in place,
we pave the way for a comprehensive pipeline, enabling the automatic transition from the
initial CT volume input to a histologically aware tumor label, more precise than the usual
GTV. This pipeline is illustrated in Figure 4.3. The first step is to extract 2D histological
tumor contours from WSI. As already introduced in chapter 2, it is performed thanks
to a DL model, more particularly a nn-Unet on 256 × 256 patches. Manual labels were
retrieved from the retrospective cohort for training and validation, and the inference was
made on the prospective patients, with an average Dice score of 0.88. These labels were
then deformed and interpolated to match the 3D CT volume, thanks to the application
of the inverse warping of the deformation field from StructuRegnet which took as input
the original WSI and CT. These preprocessing steps are just frozen inferences of already
trained networks to build a robust dataset. The final stage, which is the core of this
section, is the training of an automatic tumor segmentation model on CT, thanks to the
histology-based tumor labels instead of the GTV. The strategy involves the deployment



4.2. Automatic Histology-based Segmentation of GTV 101

Digital pathological
slides

Consistent and
accurate 

tumor segmentation

Histological Tumor
Contours

Automatic Registration 

3D CT

Automatic histology-driven target volume segmentation
using diffusion models for uncertainty assessment 

Mapped Histology-
based 3D Tumor

Input Ground-truth Label

Figure 4.3: Full pipeline for automatic tumor segmentation on CT with histological labels, and the
required preprocessing steps from previous chapters. All steps are automatic with fast inference
time, and highlight the progressive transfer of information from histology to CT, both in terms
of morphological (segmentation) and spatial (registration) features.

of a new model for the construction of such segmentation tools, specifically, diffusion
models, which are selected for their demonstrated stability during training. These models
will be subjected to a thorough discussion in the subsequent subsections, elucidating their
methodology, applications, and role in the innovative pipeline we seek to establish.
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4.2.2 Diffusion Models
Diffusion models, belonging to the class of generative models, are designed to learn a dif-
fusion process that crafts the probability distribution of a given dataset thanks to Markov
chains. These models predominantly hinge on three pivotal components: the forward
process, the reverse process, and the sampling procedure. Within the panorama of com-
puter vision, there are a few archetypal diffusion modeling frameworks, namely denoising
diffusion probabilistic models (DDPM), noise-conditioned score networks, and stochastic
differential equations. Here, we will predominantly focus on the DDPM paradigm given
its prevalence, pioneering introduction, and its application for our clinical endpoint.

The introduction of diffusion models in 2015 by Sohl-Dickstein et al. [Sohl-Dickstein,
2015] was profoundly influenced by techniques from non-equilibrium thermodynamics.
This methodology was envisaged to sample from complex probability distributions, finding
its applications in image denoising, inpainting, super-resolution, and image generation.
Diffusion models are probabilistic, trained to revert a process that incrementally obliterates
the inherent structure of training data. The essence of this approach is to denoise images
blurred with Gaussian noise. Once trained, this model is capable of initiating a noise-
saturated image and progressively denoising it to generate coherent images.

Generic Framework of DDPM

The work of Ho et al. [Ho, 2020a] in 2020 advanced the initial diffusion model, enhancing
it with variational inference. This training paradigm bifurcates into two phases:

Forward diffusion process: Here, low-level noise is iteratively added to each input image
over multiple steps, with the noise magnitude varying at each juncture. This sequential
corruption leads the training data towards being indistinguishable from pure Gaussian
noise. For an uncorrupted training sample x0, the noised versions x1, x2, . . . , xT evolve
as:

p(xt|xt−1) = N
(

xt;
√

1− βt · xt−1, βt · I
)

, ∀t ∈ {1, . . . , T} (4.1)

where T represents the number of diffusion steps, and β1, . . . , βT are hyperparameters
delineating the variance across diffusion steps. One notable attribute of this formulation is
the direct sampling of xt for a given variance schedule βt, achieved using a reparametriza-
tion trick. This trick essentially involves operations that transform standard Gaussian noise
into noise that conforms to the desired distribution:

xt =
√

β̂t · x0 +
√

1− β̂t · zt (4.2)

where zt ∼ N (0, I) and β̂t =
∏t

i=1 αi with αt = 1− βt.
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Backward denoising process: This phase is the inverse of the forward process. Starting
from the noise-dominated image, the process iteratively subtracts the noise, guided by
a neural network, typically leveraging a U-Net architecture, predicting the mean and
covariance of this random noise. In DDPM, the covariance is fixed and the mean is
expressed as a function of noise:

µθ = 1
√

αt

xt −
1− αt√
1− β̂t

· zθ(xt, t)

 (4.3)

The training objective for the reverse process is a variational lower-bound of the nega-
tive log-likelihood, which, when optimized, ensures the model closely mirrors the original
data distribution:

Lvlb = − log pθ(x0|x1)+KL (p(xT |x0) ∥ π(xT ))+
∑
t>1

KL (p(xt−1|xt, x0) ∥ pθ(xt−1|xt))

(4.4)
where KL denotes the Kullback-Leibler divergence. Simplifications (not derived here

as it goes beyond the scope of this thesis) lead to a refined objective:

Lsimple = Et∼[1,T ]Ex0∼p(x0)Ezt∼N (0,I) ∥ϵt − ϵθ(xt, t)∥2 (4.5)

where ϵθ(xt, t) is the neural network’s prediction of the noise in xt.
This dual-phase methodology allows for an inference mechanism where images are

synthesized by iteratively reconstructing them from an initial state of random white noise.

Conditional synthesis

Original diffusion models were used to generate samples in an unconditional setting. They
do not require supervision signals, but for some applications, it is desirable to generate
samples based on some additional data or labels, like prompting "draw a painting with a
dog in front of mountain relief and Van Gogh’s painting style". Many different techniques
arose to introduce such conditioning. We will not delve much into this, but we still mention
the work from Saharia et al. [Saharia, 2022], Oppenlaender [Oppenlaender, 2022], and
Ramesh et al. [Ramesh, 2022; Ramesh, 2021] for text-to-image generation, which are the
founding papers of Imagen, Midjourney and DALL-E tools, respectively. Today, many
other kinds of conditions and synthesis are possible, with data from different modalities,
such as text, audio, and video, ...
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Figure 4.4: Illustration of the diffusion process (top), showcasing the sequential corruption and
subsequent reconstruction of data through the forward and reverse processes. The bottom is
the particular architecture for LDM, which operates in a latent space and incorporates a cross-
attention mechanism for conditional synthesis. From [Ho, 2020a; Rombach, 2021]

4.2.3 Latent Diffusion Models: Stable Diffusion in Latent Space
Latent diffusion models (LDM) introduce an innovative approach to the diffusion process
by leveraging a latent space. Instead of diffusing the high-dimensional input directly,
the input is projected into a more concise latent space, where the diffusion takes place.
The idea behind this strategy is to enhance computational efficiency by operating in a
lower-dimensional space, especially when dealing with large and complex data.

The method proposed by Rombach et al. [Rombach, 2021] employs an encoder network
to embed the input into this latent representation zt = E(xt). Once the input has been
represented in this latent space, a conventional diffusion model, typically based on a UNet
architecture, is deployed to synthesize new data. They also include cross-attention in the
architecture, which brings further improvements to conditional image synthesis. This
latent space data is subsequently transformed back to the original high-dimensional space
using a decoder network D.

Given an encoder function E and its corresponding latent representation z, the loss
function for the LDM can be formulated as:

LLDM = EE(x),t,ϵ [∥ϵ− ϵθ(zt, t)∥2] (4.6)
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Benefits of Diffusion Models

Diffusion models offer a myriad of advantages over traditional generative models like GANs
and VAEs, rooted in their unique data generation methodology and the reverse diffusion
mechanism. Therefore, they often set the SOTA performance in any task [Dhariwal,
2021]. The salient benefits include:

• Stable Training: Unlike GANs, which require meticulous balancing of learning rates
between the generator and discriminator, diffusion models exhibit more stable train-
ing dynamics, circumventing pitfalls like mode collapse.

• Privacy-Preserving Data Generation: The invertible transformations central to dif-
fusion models make them apt for scenarios where data privacy is paramount.

• Handling Missing Data: Diffusion models, with their reverse diffusion process, can
seamlessly handle missing data, generating coherent samples even with incomplete
input data.

• Robustness to Overfitting: The likelihood-based training coupled with the properties
of reverse diffusion ensures models do not merely memorize training data, exhibiting
better generalization.

• Interpretable Latent Space: The latent space in diffusion models is often more inter-
pretable compared to GANs, facilitating fine-grained control over image generation.

• Scalability to High-Dimensional Data: Diffusion models manifest commendable scal-
ability to high-dimensional data like high-resolution images, without being over-
whelmed.

4.2.4 Diffusion-based Segmentation in Medical Imaging

With the proven capabilities of diffusion models in the domain of generative tasks, there
is a growing interest in leveraging these models for segmentation. Similar to the genera-
tion, where diffusion models aim to create new data samples from a learned distribution,
diffusion-based segmentation aims to label each pixel of an image according to its cor-
responding pathological category, following a learned distribution of label maps. The
conditioning in this context does not come from an external text or image, but from the
image itself that needs segmentation, and the generated sample is the desired label map.
The interest in using diffusion models for segmentation is magnified when one consid-
ers the inherent ambiguity in medical images. Traditional deterministic models, despite
their power, often succumb to choosing the most likely hypothesis, potentially sidelining
clinically significant uncertainties. On the other hand, depending on the sampling, the
generated label map from diffusion models can be different, and thus the network can
provide a probabilistic segmentation, giving insights into areas of uncertainty which can
be crucial for clinical decisions like a new definition of the CTV based on a nuanced GTV.
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Wu et al. [Wu, 2023b] in their model MedSegDiff, advocated for a diffusion proba-
bilistic model specially crafted for medical image segmentation. Central to their approach
is the dynamic conditional encoding which, at each timestep, sharpens the distinction
between lesions and background—a persistent challenge in medical imaging, thanks to
a systematic conditioning of the embedding of the original image at corresponding layer
depth. Another innovative inclusion is the FF-Parser, designed to filter out high-frequency
signals thanks to Fourier decomposition, thus enhancing segmentation accuracy. The ef-
ficacy of MedSegDiff is underscored by its superior performance across diverse imaging
modalities, from MRI and ultrasounds to fundus images, consistently outpacing com-
petitors for medical image segmentation. A subsequent iteration, MedSegDiff-V2, while
preserving the core philosophy, refines the approach [Wu, 2023a]. Dynamic encoding gives
way to a combination of anchor and semantic conditions, integrated within the UNet, and
an SS-Former module which handles noise embedding with an attention mechanism in
the Fourier space.

Rahman et al. [Rahman, 2023], more than building another SOTA pipeline, focused
on highlighting the shortcomings of deterministic models and their tendency to produce
sub-optimal segmentations through plausible generation of multiple masks. Several at-
tempts, like conditional VAE and probabilistic UNet, have tried to surmount this by
injecting stochasticity, but these often come at the cost of increased complexity since an
additional parametrized layer is needed both at training and inference. In contrast, the
probabilistic nature of diffusion models naturally accommodates ambiguity, allowing the
generation of diverse segmentations that capture the underlying uncertainty in the data.
Their twin-network design—comprising the ambiguity modeling and ambiguity control-
ling networks—endeavors to parametrize the mask distributions for the ground truth and
predictions, respectively. By minimizing the KL divergence between these distributions,
the model ensures that the predicted mask distributions align closely with the ground
truth distributions. This strategy eliminates the randomness seen in conventional sam-
pling methods, leading to better-calibrated predictions. The inference stage, devoid of
the added complexities seen in comparative models, remains straightforward.

For this chapter, given its clinical orientation, we did not aim to construct a novel
methodological pipeline. Instead, we sought to adapt MedSegDiff (both versions) diffu-
sion models to our dataset. The application of the work from Rahman et al. [Rahman,
2023] lies in our future work for better assessment of ambiguity and is not presented in
this manuscript. By benchmarking against traditional pipelines, we want to explore the
frontiers of performance that these novel approaches could achieve in real-world clinical
scenarios. Namely, we compared the performance of nnUNet (an optimized extension of
convolution-based UNet with automatic pre- and post-processing steps), ResUNet (in-
troducing residual connections inside each block), TransUNet (leveraging transformer
blocks instead of convolutions but keeping the U-based architecture), and Swin-UNetr
(harnessing SwinTransformer blocks instead of Transformers for TransUNet), with the
diffusion models MedSegDiff and MedSegDiff-V2 [Isensee, 2018a; Diakogiannis, 2020;
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Chen, 2021a; Hatamizadeh, 2022]. All models were trained with default settings, and
we considered the problem as two-dimensional by splitting the CT volumes into 2D axial
slices. The results are presented in the subsequent section.

4.2.5 Results and Discussion

Method DSC DSC min DSC max HD HD min HD max

nn-UNet 66.1 64.9 70.7 9.89 8.41 10.06
ResUNet 67.5 65.8 70.6 8.24 7.94 9.68
TransUNet 69.8 67.1 72.8 8.15 7.68 9.17
Swin-UNetr 71.5 70.1 75.2 7.91 7.15 8.66

MedSegDiff 74.2 71.8 76.2 7.18 7.02 8.09
MedSegDiff-V2 74.6 72.2 75.9 7.01 6.67 7.84

Table 4.2: Quantitative results for tumor segmentation of MedSegDiff and comparison with
benchmark studies. The DSC and HD columns are computed on the ensemble mask made of
the average of segmentation probabilities from the 4 sampled masks and are not just a mean of
the four respective DSCs. The DSC min and max columns highlight the worst and best masks
among these four samples (conversely for HD). MedSegDiff-V2 outperforms benchmark studies,
except for the non-significant difference with MedSegDiff-V1 for DSC max. Results are the mean
across all test patients and slices and we did not display standard deviation for the sake of clarity.

Four 2D samples are displayed on Figure 4.5. The three first rows have already been
introduced in section 4.1 and are the same as Figure 4.1. The model has been trained
with the WSI tumor labels (row 3) and we generated four different mask predictions to
assess ambiguity. These visuals show that the predictions are overall accurate, with a good
delineation of the tumor extent, but that the model generates significant diverse masks,
which is a good indicator of the uncertainty. These diverse masks are then aggregated in
Figure 4.6, which display the pixel-wise probability map for tumor presence and further
informs us towards the definition of an histology-driven Gross Tumor Map (GTM). The
quantitative results are displayed in Table 4.2. We computed the DSC and HD metrics with
the following strategy: Based on the four ambiguous masks, we compared each of them
with the ground truth tumor extent computed by the DSC and HD, and only kept the best
and worst results for each metric. They correspond to the min and max columns and assess
the variability of the predictions. Next, we fused the four masks by averaging the different
probabilities of tumor at every pixel and converted the fused prediction into a binary
mask. The corresponding metrics are called DSC and HD, and should not be mistaken
with the average DSC among the four masks. We can see that MedSegDiff, and in
particular the V2 version, outperforms the other methods. Transformer-based models, like
TransUNet and Swin-UNetr, behave better than convolution-based models, like nnUNet
and ResUNet, which is consistent with the literature. The difference between MedSegDiff
and MedSegDiff-V2 is not significant but still advocates for a slight improvement due to
the latest technical innovations. Lastly, there is a substantial difference between the min
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Figure 4.5: Segmentation results on CT with histological labels and diffusion models. Four
typical slices are displayed (for each column, the same slices as for the initial comparison from
section 4.1. The first row is the original CT slice, the second one is the manual GTV mask, the
third one is the ground truth tumor extent from WSI after deformation from StructuRegNet, and
the four remaining rows are the segmentation from MedSegDiff-V2 with four different samplings
in the normal distribution to assess ambiguity. These images highlight both the overall accurate
predictions of the model and the diversity of the generated masks.

and max columns, which highlights the ambiguity of the predictions. It shows that the
task is challenging and that it is useful to give physicians a range of possible masks instead
of a single one, which is the case for traditional methods. Alternatively, a probabilistic
mask can be generated by averaging as many predictions as possible to characterize areas
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for which the model is uncertain so that the physician can focus on them, which are
always at the boundaries.

Figure 4.6: Aggregation of segmentation results to a probability map, for the same four typical
slices. The yellow contour is the manual GTV, the blue contour is the gold standard tumor extent
from histology transfer, and the red surface is the tumor probability map from fused predictions
of the diffusion model (darker red = higher probability).

4.3 Remaining challenges
The proposed study in section 4.2 is still in development and needs more robust results as
well as clinical insights for publication. Nevertheless, it opens the door to a lot of present
and future works, which we will discuss in this section.
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4.3.1 Automatic probabilistic histology-enhanced GTV
First of all, the pipeline presented in Figure 4.3 allows for automatic segmentation of
tumors on CT, which we call a histology-enhanced GTV. This newly defined volume
harnesses morphological and biological findings from WSI and represents a gold standard
for tumor extent, which was a missing piece in the field of RT. It is a promising tool for
clinical applications. Indeed, as already stated, the significant variability and inaccuracies
in manual GTV delineation are detrimental to:

• The treatment delivery in RT clinical practice, with overestimation of GTV leading
to over-irradiation of healthy tissues. This also leads to substantial differences in
treatment depending on the hospital.

• The impossibility of training an automatic DL-based segmentation model on GTV,
which is a major drawback in the search for efficiency, reproducibility and generaliza-
tion of treatment. Indeed, the lack of a gold standard for GTV leads to low-quality
labels, which in turn leads to sub-optimal models. The histology-enhanced GTV is
a promising alternative to overcome this issue, as demonstrated in the last section.

More surprisingly, this study also made possible the generation of ambiguous masks,
which is a new concept in the field of RT. It defines a new paradigm where the GTV is no
longer a simple binary volume transformed into CTV and PTV with predefined guidelines.
Instead, the GTV is a probabilistic volume, which can be seen as a heatmap, with a
probability of tumor at each voxel, leading to more fine-grained CTV, PTV and dose
delivery. We are currently working on these next steps and capitalize on some established
studies like Buti et al. [Buti, 2021]. They defined a "clinical target distribution" using
an approach to go from binary GTV to probabilistic CTV based on uncertainty to model
tumor infiltration as a function of distance to the GTV. In our case, we provide this
uncertainty heatmap before that, at the step of the GTV. The next goal is then to move
to the clinical target distribution derived from this ambiguous histology-enhanced GTV,
and eventually dose calculation with much granularity and precision (dose painting), which
is a major step towards personalized treatment.

4.3.2 Characterization of tumor heterogeneity
So far, we only focused on the segmentation of the GTV as it was the missing link toward
fully automatic treatment planning (DL-based tools for OAR segmentation already yield
impressive performance). Indeed, the GTV (and corresponding CTV, PTV) and OAR are
sufficient for any TPS for dose prediction with the current clinical guidelines. Nevertheless,
in our pursuit of better characterization of the tumor environment, it can be interesting
to delve deeper into the tumor heterogeneity and go beyond binary volumes. To do so,
contrary to the definition of a clinical target distribution from GTV based on probabilistic
models from retrospective studies, our objective is to add ground truth information derived
from the histology WSI of the same patient.
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More precisely, we want to harness the potential of IHC imaging. We are currently
processing each slide with particular stainings, to highlight three specific markers: lym-
phocytes CD4, lymphocytes CD8 and hypoxia areas. We believe they are particularly
relevant to assess the aggressiveness as well as the immune response of the tumor. Once
marked on the WSI, it will be easy to extract segmentation masks with QuPath soft-
ware and use the same deformation from StructuRegNet to translate these masks onto
CT volume. Indeed, the staining is made on the same block from which the H&E WSI
comes, with a microscopic axial difference (new microtome cut) that we can neglect. The
visual and spatial appearances are similar, and only the specific markers are highlighted.
In this respect, we will be provided with both tumor extent and heterogeneity. In the
same way as histology-enhanced GTV, we can run the pipeline to build an automatic
biomarker segmentation tool, even if the training should be harder since these signals are
more subtle and sparse. Nevertheless, the potential is huge, as it will provide a new layer
of information for the physician. The ultimate step will be to combine all these masks for
the comprehensive characterization of the tumor environment, helping in the definition of
histology-enhanced CTV.

Eventually, we can use this information for research purposes, as we would have a
spatial correlation between radiological signals and biological patterns. This should help
the field of radio-pathomics which often suffers from interpretability (see chapter 5), and
foster biomarker discovery.

4.4 Towards Virtual Histology: a Proof of Concept

4.4.1 From histology-based masks to histology synthesis

After establishing a foundation that enables the generation of binary contours to represent
tumor extent derived from histology, and the potential to add heterogeneity characteriza-
tion with IHC, we naturally wondered whether it was possible to move one step further
and generate directly the tumor environment as well as the surrounding tissue for a more
comprehensive characterization.

The concept of virtual histology envelops the aspiration of deriving non-invasive histo-
logical content from radiological signals. At the time of diagnosis, before treatment and
for which surgical resection is de facto absent, it would be free from the need for biopsy,
which is invasive, and costly, and the small harvested sample - when accessible - cannot
catch tumor local heterogeneity.

MRI, with its superior capacity to highlight soft tissue contrast in comparison to CT,
emerges as a more suitable modality for such an exploration, especially in the context of
prostate cancer, where the accessibility of paired data and full resections is relatively more
feasible. However, this process is not without its challenges and complexities, particularly
in terms of resolution as well as the availability of a sizeable paired dataset. This section
encapsulates a proof of concept, some preliminary findings into the possibility of inferring
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histological content directly from radiological signal using generative networks, with a full
awareness of its current limitations and the intricate path that lies ahead.

Quite surprisingly, few studies have tackled the radiology-pathology image translation
aspect, except Shimomura et al. [Shimomura, 2018] and Hontani et al. [Hontani, 2022],
which built a cascaded generative pipeline to infer pathological patch from MR voxel
intensity for pancreas but did not scale to WSI. Such sparse literature can be explained
by the absence of paired images due to tissue collapse and the underlying extreme defor-
mations between in vivo radiology and ex vivo specimens, leading to hardly usable data.
To extract relevant correlations between both modalities, one first needs to establish 2D-
3D multimodal registration which has been proven difficult in chapter 3. Therefore, the
creation of comprehensible, pixel-based, DL-compliant, paired images is burdensome and
subject to successive uncertainties.

In this study, we suggest exploiting generative models to predict histology from MR.
In particular, the novelty lies in the use of weakly paired images on which unsupervised
learning is performed. To do so, we build a synthesis pipeline made of two cycleGANs,
the first one consisting in generating without supervision aligned ground truth histology,
the second one improving synthesis on registered pairs in a self-supervised setting. The
pipeline is shown in Figure 4.7.

4.4.2 Methodology
The study focuses on cancer prostate and consists of weakly paired MR-histopathological
2D images. Our approach relies on a recursive generation process that first adopts unsu-
pervised generation through a first cycleGAN G1

MR→histo to create a synthetic histology
training set, the latter being fed to the second self-supervised generative model. The
output is a synthetic MR-registered histology, made available to the oncologist before
treatment. Two additional sub-blocks, preprocessing and registration, make the whole
pipeline autonomous. Once trained, only the inference pathway (orange arrow) is taken
for straightforward virtual histology generation from MR.

Unsupervised generation on weakly paired data

The goal of the unsupervised generation is to build a paired dataset made of original
MR and synthetic histology, only from weakly paired images as input. The design of the
CycleGAN is the same as the modality translation task in SturctuRegNet (PatchGAN for
discriminator, U-Net for generator), with a first loss for the system accounting for both
modalities and being made of adversarial, reconstruction, identity and MIND sub-losses:

Lweakly = λadvLadv + λcycLcyc + λIdLId + λMINDLMIND . (4.7)



4.4. Towards Virtual Histology: a Proof of Concept 113

Figure 4.7: Overview of the two-phase pipeline separated by a registration step and following
preprocessing, with a sample of weakly paired images on the prostate. At inference, only the
orange pathway is taken, which allows for seamless integration.

Registration

The synthetic histopathological images from MR provide a more informative and discrimi-
native space to perform deformable registration on original histological slices. Because the
cycle generator GH outputs an image aligned on the original MR - it is easier for recon-
struction to generate an histology with the same shape as the input-, we will thus obtain
a post-process training set made of paired original MR/registered original histology. We
can then see the previous step as an unsupervised training set generation. Aligning im-
ages from the histological domain only is more effective than cross-modality registration,
justifying the use of such a DL step. The registration is run thanks to the SimpleElastix
library, with built-in Python methods [Marstal, 2016]. It is made of an affine deformation
as initialization, followed by a B-spline registration. We apply it to the whole training
set to generate a new paired dataset, which will become the input for the self-supervised
learning method.
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4.4.3 Self-Supervised Training with Weakly Paired Data
The supervised pipeline is similar to the unsupervised one, the only difference being the
pairing of input images. We have chosen to keep the cycleGAN architecture even though
it is no longer a theoretical necessity, but because results have been proven better even
on paired data [Zhu, 2020]. To help training, we added an L1 pixel-wise paired loss to
the previous setting between the generated and original images from the same modality
that are now aligned. The final loss is defined as:

Lfinal = Ladv + λcycLcyc + λIdLId + λMINDLMIND + λpairedLpaired (4.8)

Because the data is paired, generators can learn faster with fewer parameters. We
thus reduce the complexity of filters to make the model more scalable in terms of memory
usage and speed.

4.4.4 Dataset and Experiments
The publicly available TCIA "Prostate MRI" dataset was used for the validation of our
method [Clark, 2013; Choyke, 2016]. It consists of 25 subjects who had a pre-operative
prostate MRI obtained with an endorectal and phased array surface coil. Each patient
underwent a prostatectomy. A mold was generated from each MRI, and the specimen
was first placed in the mold, then cut in the same plane as the MRI, into 3 to 6 slices.

Plane correspondences were first established between 3D MR volume and 2D WSI. Two
additional operations were performed: (i) resizing all images to 420x420, which happened
to be a fair balanced resolution between memory consumption and visual interpretability
of results, and (ii) removal of manual pathological annotations of cancer presence that
are deleterious for our generative task as it can be interpreted as organic tissue. We used
color deconvolution - in particular RGB to H&E - to extract and remove such annotation,
and then recolored the pixels with interpolation. End-to-end, we obtain 83 processed pairs
of images, being weakly paired yet unregistered.

Because of the small size of the dataset, we performed data augmentation before
learning. More precisely, we combined rotations, in-plane translations, horizontal flipping
and stain contrasting. We split the dataset into 50/10/23 pairs for train/validation/test
steps, being careful about bias issues when selecting both the distribution of patients and
the level of slice into the volumes. Adam optimizer was selected for gradient descent
calculus, with β1, β2 parameters equal to 0.5, 0.99 respectively. The learning rate was set
to 2 × 10−4, with a linear decrease after half of training. We trained our model for 700
epochs for both unsupervised and self-supervised tasks, with a batch size of 2. Finally, we
replace the Binary Cross Entropy loss of the discriminator with L2 loss to avoid saturation
issues.
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4.4.5 Results
For this preliminary study, we focus on the realism and accuracy of WSIs at MR-based
resolution rather than trying to display them at a real scale. Therefore, we are fully aware
that, because of resolution differences, precise biological content cannot be extracted
from our generated WSIs yet, and the real purpose of our study is to take the first
methodological step for MR-histology generation.

Generalities

Our model achieves an MAE of 5.9± 1.7× 10−2 between the synthetic and the original
registered histopathological slices on the held-out test set of 23 slices. A sample of such
pairs is shown in Figure 4.8, along with the ground truth, and the unsupervised generated
slice (phase 2.1) for visual comparison of improvement. Both generated images seem
realistic, in terms of texture or shape, although smoother than the original. Based on
manual annotations from pathologists displayed on Figure 4.10, characteristic parts of
the prostate, such as the urethra, central zone (CZ), transition zone (TZ), peripheral
zone (PZ), and anterior fibromuscular stroma or anterior zone (AZ) are well generated
on synthetic histology when visible on MR and ground truth histology. One important
precision, inherent to the data, is related to the empty-tissue blanks on histology. They are
also present in ground truth but are seen by our model as an MR-intensity-related particular
type of tissue, whereas they are just the consequence of human manipulations during
and after resection. This could lead to errors in biological interpretations and highlights
the necessity of high-quality datasets for a complete assessment of the environment.
Inversely, in many cases, inference from in vivo MR leads to virtual histology without
blank spots, thus reproducing a more reliable representation of the biological environment
than post-resection ground-truth histology. Finally, when focusing on the comparison
between unsupervised and supervised generation, there is a substantial improvement in
data quality, in particular in blurriness, confirmed by quantitative results. Other samples
from the test set are shown in Figure 4.9.

(a) (b) (c) (d)

Figure 4.8: Sample from test set: ground-truth MR (a), unsupervised synthetic histology (b),
final histology after self-supervised task (c), and ground-truth histology (d).
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Figure 4.9: Samples from the test set with (from left to right): Original MR, synthetic histopathol-
ogy and originally registered histopathology. Generated examples adapt to stain change and
reconstruct tissue even when ground truth histology has tissue collapse, giving additional infor-
mation about the cellular environment

Pixel-wise results

We computed quantitative metrics to justify our architecture and prove the robustness
of the model, based on classical GAN performance measurement. Table 4.3 summarizes
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Metric GH only GAN only cycleGAN only Whole Pipeline

MAE (×10−2) 32.4± 1.2 10.2± 0.9 7.9± 1.3 5.9± 1.7
PSNR 3.06± 0.38 12.78± 1.24 12.93± 1.18 24.25± 1.71
SSIM 0.19± 0.03 0.67± 0.02 0.72± 0.03 0.84± 0.03
FID 358.5 275.5 188.7 116.1

Table 4.3: Quantitative results of our pipeline and comparison with simpler methods to prove
the benefit of cycleGAN approach and two-phase pipeline

them. The pixel-wise metrics are MAE and Peak Signal to Noise Ratio (PSNR). PSNR
is an approximation to human perception of reconstruction quality, with a higher score
meaning closer datasets. For two images x and y, it is defined as

PSNR(x, y) = 10 log10( max2

MSE(x, y) ) (4.9)

with max as the maximum value for a pixel and MSE as the Mean Squared Error.
The structure-based metrics, assessing the realism of the generated dataset compared to
the original one, are FID and SSIM.

The first question tackled the use of a cycleGAN on weakly paired data. It has been
proven that such architecture is necessary to obtain decent results for image-to-image
translation on unpaired settings because of the lack of ground truth and by consequence of
pixel-wise loss to enforce not just realism but also accurate correspondence. Nevertheless,
to quantitatively assess this necessity, it is interesting to benchmark the method with
simpler architectures, that is only the encoder-decoder GH , and the conditional GAN GH

with DH . We compare them with the cycleGAN architecture in an unsupervised setting.
Based on the first three columns of Table 4.3, we can see a clear improvement in each
metric, in particular with GH alone giving poor results because data is unpaired and the
loss is pixel-wise.

The second question was related to the importance of both the second cycle and the
registration process (phase 2.1). Indeed, a more straightforward method would consist of
only unpaired synthesis, giving MR-registered generated histology. Hence, we compared
our results between the simple cycleGAN and the two successive ones. Based on the last
two columns of Table 4.3, the whole two-phase pipeline outputs more realistic results
than a simple cycleGAN on an unsupervised setting, validating the intuition about easier
learning on paired data mentioned above. For instance, the gain in MAE is 33.9%.
Because the input is paired in the second setting, the generator can focus on texture and
give more understandable images for the oncologist. In addition, FID, SSIM and PSNR
scores are substantially enhanced, which is complementary to the qualitative visual results.
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Figure 4.10: Delineation of prostate areas from pathologist on both real (left) and synthetic
(right) images. For these two examples, AZ is in green, PZ in blue, TZ in yellow

Image Well Moderately Hardly Unidentifiable

Real 45% 30% 5% 20%
Pseudo 20% 45% 10% 25%

Evolution No degradation Minor deg. Substantial deg.

Real → pseudo 50% 20% 30%

Table 4.4: Semi-quantitative results on generation quality and comparison with real WSIs

Semi-quantitative results on anatomical landmarks

To qualitatively assess our work, we asked an expert pathologist to compare real and
synthetic WSIs through a semi-quantitative study on characteristic areas of the prostate.
Images could be categorized into four classes: (i) zones are well identifiable, (ii) moder-
ately, (iii) hardly and (iv) unidentifiable. The distinction was made upon the number of
zones the pathologist could delineate, (i) being all and (iv) being none of them. On real
WSIs, difficulties of segmentation either come from the presence of a tumor deforming
tissues, or from the level of the slice being out of the scope for a particular zone. Never-
theless, the real interest of such a study is to assess the degradation of generation made
by the model on biological tissue, and not only the proportion of well-generated pseudo
WSIs - see first two rows of Table 4.4. Hence, we built three new categories: zones on
pseudo-images are as well identifiable as on real images; the degradation corresponds to
the shift from one class to at most the next one, or the degradation is important (gap ≥ 2
between classes). Overall, images are not degraded and area shapes are conserved for half
of the test images, or lowly altered for 20% of them. For the 30% remaining images, the
degradation is substantial and is a consequence of a too-blurry generation. Such analysis
is helpful to assess the clinical significance of the approach and highlight improper images
being hidden when looking at quantitative metrics only.
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4.4.6 Discussion
In this work, we illustrate the potential of virtual histology generation from weakly paired
MR. Our approach relies on a dual synthesis concept that composes two cycle-consistent
generative adversarial networks. The only required input is a weakly paired MR imaging,
on which unsupervised image-to-image translation is performed. Therefore, the clinical
scope is very broad, giving the oncologist a realistic biological assessment of the tumor
environment before treatment.

This study, performing well in the prostate, represents a founding stone of the very
ambitious virtual histology paradigm and still needs additional features and enhanced per-
formance. To produce substantial clinical value, objectives and challenges are (i) improve-
ment of resolution towards conventional WSI granularity to extract tumor heterogeneity
and fully bridge the technological gap between MR and histology, and (ii) generalization
to other locations with new types of tissue. This work has been published in the MIC-
CAI workshop for computational pathology (COMPAY) and ESTRO conferences in 2021
[Leroy, 2021b; Leroy, 2021a].

To conclude this chapter, we have explored as deeply as possible the potential of his-
tology to improve radiology analysis. With a strong focus on RT, we compared the GTV
with the tumor extent on WSI and showed that automatization of tumor segmentation is
possible thanks to these higher-quality histological labels, leading to a histology-enhanced
GTV incorporating useful ambiguity for dose painting. We are working on a finer charac-
terization of TME through the addition of IHC information towards histology-enhanced
CTV. We also showed that it is possible to generate histology from MR, paving the way
for virtual histology and a better characterization of the tumor environment. In the next
chapter, we will explore the potential of correlating histology and radiology at the feature
level rather than spatially.





Chapter 5

Histology-Radiology Fusion for
Clinical Outcome Prediction

In the two last chapters, we explored the synergy between histology and radiology, specifi-
cally tailored for RT applications in H&N cancers, through the development of models that
spatially correlate these modalities — mainly registration. We achieved a better under-
standing of tumor extent to enhance GTV delineations, enriched by histological contours.
Moreover, we introduced the prospect of moving one step further and characterizing its
heterogeneity through the overlay of IHC staining with radiologic signals.

As we progress in this chapter, our perspective evolves. Rather than focusing solely on
spatial correlations, we now direct our efforts towards predicting patient-level outcomes.
This objective does not mandate precise spatial mappings between modalities. Instead,
we aim to merge them within a latent space where they manifest as distilled, patient-
specific feature representations. This signifies a transition from spatially oriented models
to those that prioritize feature fusion. Moreover, our scope broadens beyond RT treatment
planning precision, embracing aspects of precision medicine. We will touch upon outputs
like cancer grade and stage, both of which are vital prognostic factors, and will delve into
clinical outcomes including treatment efficacy, overall survival, or progression-free survival
(section 5.1).

Leveraging multiple modalities presents a holistic perspective, especially pertinent for
H&N cancers. Radiology offers an anatomical lens, while histology presents morphological
insights. Although there is a plethora of other modalities, such as multiomics and EHRs,
our focus remains steadfast on an imaging-centric approach. The ensuing section 5.2
spotlights the methodologies to extract and amalgamate features from these imaging
modalities, namely radiomics and pathomics.

Beyond monomodal feature extraction, we move towards multimodal fusion for im-
proved predicted power. Nevertheless, merging data representations from diverse sources
poses inherent challenges. Merely accumulating modalities without judicious fusion could
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introduce redundancy, failing to capitalize on the unique insights each modality offers.
In the subsequent section 5.3, we will navigate the terrain of data fusion techniques,
emphasizing co-attention mechanisms.

Addressing these challenges, we unveil the SMuRF Framework — a model architected
for adept data fusion. It harnesses information spanning multiple modalities and scales,
optimizing feature extraction, correlation, and ultimately, outcome prediction. The last
sections will dissect the methodology, datasets, and results, and stimulate discussions on
potential implications and future trajectories.
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5.1 Characterizing and Predicting Clinical Outcomes in
HNSCC

5.1.1 Biomarkers in HNSCC

Cancer and more particularly HNSCC, being a highly intricate ailment, unveils itself
through a myriad of microscopic and macroscopic changes. While the precise interplay
of these alterations remains an area of ongoing research, biomarkers have emerged as
pivotal beacons, offering quantitative and qualitative insights into the disease’s trajectory.
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These markers, depending on their primary use, can be diagnostic, predictive of treatment
outcomes, or prognostic regarding future clinical events [Lipkova, 2022].

Grading and Staging: The Traditional Diagnostic Lens

An in-depth characterization of cancer often involves formal classifications such as grading
and staging, crucial in understanding its nature and possible progression.

• Grading: Grounded in histology, grading discerns the differentiation level of the
tumor, as visualized under a microscope. Typically, grades span from 1 to 4, with
ascending numbers indicating tumors of higher aggression and differentiation.

• Staging: A comprehensive process that blends insights from radiology and histology,
staging gauges the extent and spread of cancer. Adhering to the TNM classification,
it categorizes the progression from Stage I (localized) to Stage IV (advanced with
extensive dissemination).

Diagnostic, Predictive, and Prognostic Markers

Intrinsically linked to grading and staging, it is sometimes useful to study the disease with
more granularity and look at specific HNSCC biomarkers that have distinct prognostic
value [Basheeth, 2019; Budach, 2019; Economopoulou, 2019; Hsieh, 2019]. We can define
(1) diagnostic markers, which are instrumental in initial cancer detection and diagnosis.
Indications from radiologic imaging, or neoplastic alterations in tissue biopsies are classic
examples. (2) Predictive markers offering insights into the likely response or resistance to
treatment modalities. And (3) Prognostic markers provide forecasts concerning clinical
outcomes like survival, recurrence, or disease progression, which we will focus on in the
next section. For example, histology and IHC provide a visual tableau of protein biomarkers
such as TP53 or PD-L1, among others, and detailed in chapter 2.

Despite the essential contributions of biomarkers, disparities persist in treatment re-
sponses, recurrence rates, or treatment adversities among patients with analogous profiles.
The reasons for such discrepancies remain enigmatic, underscoring the pressing need for
the discovery of novel and more nuanced biomarkers.

AI-enhanced Biomarker Discovery

The vast array of data collected in modern cancer centers, encompassing radiology, his-
tology, clinical tests, and patient histories, presents a fertile ground for AI-assisted explo-
ration. The inherent ability of AI models to assimilate diverse information and discern
predictive features within and across data sources makes them invaluable in the objective
identification of novel biomarkers [Lipkova, 2022]. For instance, AI techniques have been
instrumental in deriving associations between specific mutations and changes in cellu-
lar morphology drawing parallels between radiologic findings and distinct tumor subtypes
[Echle, 2021; Peng, 2021; Wang, 2021b].
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Historically, the discovery of biomarkers has leaned heavily on labor-intensive manual
assessments. AI, with its capacity to harness and analyze vast and complex medical
data, promises to streamline this process. Notably, AI’s potential is not confined to the
identification of new biomarkers. It can also suggest more accessible or non-invasive
alternatives for existing markers, potentially revolutionizing large-scale screenings and
patient selection for clinical trials.

In conclusion, as AI continues its foray into oncology, its potential to redefine diagnostic
and prognostic paradigms is unmistakable. While traditional methods have laid a robust
foundation, AI-driven approaches promise to elevate the precision and breadth of insights,
paving the way for more personalized and effective cancer management strategies.

5.1.2 Survival Analysis: Predicting Clinical Outcomes
While diagnostic procedures and the identification of prognostic factors provide valuable
insights into the nature and trajectory of a disease, there remains a deeper layer of un-
derstanding that clinicians seek. This deeper understanding pertains to predicting the
clinical outcome post-treatment, which is pivotal in making informed decisions regard-
ing patient management. Herein lies the significance of survival analysis. Also known
as time-to-event analysis, it is an essential branch of statistics dedicated to understand-
ing the time until an event of interest occurs. In the context of HNSCC, these events
can range from patient death to tumor recurrence, metastasis, or even recovery. This
methodological approach holds paramount importance, particularly in oncology, as it aids
clinicians in tailoring treatment plans, monitoring disease progression, and understanding
patient prognosis.

The aforementioned prognostic factors and biomarkers, and to a broader extent all
clinical acquisitions, can be helpful to quantify more interpretable clinical key endpoints
to support treatment decisions, including:

• Overall Survival (OS): This is the duration from the start of the study or treatment
to the time of death from any cause. It is one of the most straightforward and
commonly used metrics in clinical trials, providing a comprehensive view of patient
survival.

• Progression-Free Survival (PFS): PFS indicates the time from the start of the
study or treatment to the time the patient’s disease progresses or the patient dies.
It provides insights into the efficacy of a treatment in stalling disease progression.

• Disease-Free Survival (DFS): This metric is used predominantly in the context
of patients who have been treated and are in remission. It measures the time from
remission to the recurrence of the disease.

• Loco-Regional (LR) Control: Specifically pertinent to cancers like HNSCC, this
metric evaluates the time until cancer recurs in the local region where it originated
or in nearby regions.
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• Distant Metastasis-Free Survival: This denotes the duration from the start of
the study or treatment to the time when cancer spreads to distant parts of the body.

Each of these endpoints provides unique insights into patient outcomes, disease be-
havior, and treatment efficacy. The objective is to use the available data to predict these
outcomes, thanks to the development of survival models.

Mathematical Foundations in Survival Analysis

Survival analysis, at its core, is concerned with understanding and predicting the time
until an event of interest, such as disease recurrence or patient death. To achieve this,
a rigorous mathematical framework is employed that incorporates both the intricacies of
the event timings and the underlying factors influencing these timings. This provides an
avenue to not only gain insights into the nature of these events but also to inform and
guide clinical decisions.

The primary variable of interest in survival analysis is the time until a specific event.
Observations can result in two outcomes: the event has occurred or it has not by the
end of the observation period. In cases where the event has not occurred by the study’s
conclusion, or if a participant exits the study prematurely, their data is termed "cen-
sored". Censoring indicates a truncation in data availability; the event might still occur
in the future, but its exact timing remains elusive. Additionally, certain events, termed
"competing risks", might preclude the occurrence of the primary event. For instance, in
a study observing relapses into a specific condition, a patient’s unrelated death serves as
a competing risk, ensuring the primary event cannot subsequently transpire.

To delve deeper into the mathematical underpinnings of survival analysis, it is im-
perative to understand certain foundational concepts, including the hazard and survival
functions, and their relationship to the Cumulative Distribution Function and the Prob-
ability Density Function of the time-to-event random variable T . We will only give brief
definitions here, but the interested reader can refer to [Klein, 2003] for a more in-depth
treatment.
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Cumulative Distribution Function: Represents the probability that the random vari-
able T takes a value less than or equal to t.

Probability Density Function: Describes the likelihood of T taking a specific value at
a given time. It is the derivative of the Cumulative Distribution Function at t.

Survival Function: Denoted as S(t), it signifies the probability that the time-to-event
T exceeds a certain time t. It is linked to the Cumulative Distribution Function F (t) of
T as:

S(t) = P (T > t) = 1− F (t) (5.1)

Hazard Function: Denoted as h(t), it represents the instantaneous likelihood of the
event occurring at time t, given it has not occurred until then. It is mathematically
expressed as:

h(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)
∆t

(5.2)

The hazard function and the survival function are intricately linked, and their relation-
ship can be captured by the following differential equation:

h(t) = −dS(t)/dt

S(t) (5.3)

This equation illustrates that the instantaneous risk at time t is directly proportional
to the rate of decline of the survival function at that same time.

Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator is an intuitive non-parametric method that estimates
the survival function from observed survival data. Unlike models that require assumptions
about the nature of the underlying distribution, the KM estimator derives directly from
the data. The KM estimator, represented as Ŝ(t), is given by:

Ŝ(t) =
∏

i:ti≤t

(
1− di

ni

)
(5.4)

where:

• di represents the number of events at time ti.

• ni denotes the number of subjects at risk at time ti.

The KM curve, a graphical representation of the KM estimator against time, provides
insights into the survival probabilities over different time intervals. A typical KM curve
will show a stepwise decline, with drops in the curve corresponding to observed events, as
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highlighted in Figure 5.1. If the sample size is large enough, the curve should approach
the true survival function.

Figure 5.1: Kaplan-Meier Curve example on a simulated toy dataset. The x-axis represents time,
and the y-axis represents the survival probability. The crosses indicate the observed events and
an additional tab indicates the censored data at typical time points. Confidence intervals are also
shown to better characterize the estimated survival function, and the result of the log-rank test
is shown in the legend, proving that the group with treatment B has significantly better survival
than the group with treatment A.

Cox Proportional Hazards Model

While the KM estimator provides insights based on raw data, the need for a more com-
prehensive, multivariate statistical modeling arises when one wants to account for various
factors or covariates that might influence survival. Introduced by Sir David Cox in 1972,
the Cox Proportional Hazards Model (CPHM) offers a solution to this by allowing for the
inclusion of covariates without making stringent assumptions about the baseline hazard
function, h0(t) [Cox, 1972].

The hazard function for an individual, given a set of predictors or covariates X, is:

h(t, X) = h0(t) exp(βT X)

Where h0(t) is the baseline hazard (hazard when all covariates are zero), β is a vector
of coefficients indicating the effect of each covariate on the hazard, and X is the vector
of covariates. The term exp(βT X) represents the multiplicative effect on the hazard of
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a one-unit increase in the covariate X and is defined as the relative risk function. This
model assumes that the effects of the predictors are proportional over time, signifying
that the ratio of hazards for different individuals remains constant over time. This hazard
ratio simply compares the risk of the event occurring at any time for two individuals with
different covariate values. Graphically, for two individuals, their hazard functions might
differ, but their ratio stays the same across time.

Intepretability: Logrank Test

After modeling, the idea is to stratify the population into groups based on a specific
covariate and compare the survival curves of these groups. The log-rank test is a statistical
hypothesis test that can be used to determine if the survival curves of two or more groups
are statistically different. It is non-parametric and applicable when comparing the survival
distributions of two or more independent samples.

Validation: Concordance Index

Validation is indispensable in survival analysis. It ensures that models are not merely fitting
to the peculiarities or noise of the training data but possess genuine generalizability. To
gauge the predictive accuracy of survival models, metrics such as the concordance index
(C-index) are employed.

The C-index (or Harrell’s C-index) provides an intuitive measure of the discriminative
power of a prognostic model. At its core, the C-index evaluates the ability of a risk
model to assign higher risk scores to patients with shorter observed times-to-disease. To
elucidate, consider two patients, i and j, with time-to-event Ti andTj (possibly censored),
and predicted risk scores ηi and ηj . We also define di and dj as the censoring status of
the time-to-event, 1 being uncensored and 0 being censored. If the risk model is effective,
the patient with a higher risk score should exhibit a shorter time-to-event.

To compute the C-index, we consider every possible pair of patients i and j (with
i ̸= j), observing their respective risk scores and times-to-event. Pairs are categorized
based on the following criteria:

• If both Ti and Tj are observed, the pair is concordant if ηi > ηj and Ti < Tj , and
discordant if ηi > ηj and Ti > Tj .

• If both Ti and Tj are censored, the pair is excluded from computation.

• For censored Tj and observed Ti:

– If Tj < Ti, the pair is excluded.
– If Tj > Ti, the pair is concordant if ηi > ηj and discordant if ηi < ηj .

Formally, the C-index is calculated as:

c = # concordant pairs
# concordant pairs + # discordant pairs (5.5)
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This concept can also be succinctly represented as:

c =
∑

i ̸=j 1ηi<ηj1Ti>Tj dj∑
i̸=j 1Ti>Tj dj

(5.6)

A C-index value close to 0.5 signifies that the model’s risk score predictions are as
discriminative as random guessing. Conversely, values approaching 1 indicate superior
predictive capability, where risk scores accurately identify which patient will experience
the event first. A value near 0 suggests that the risk scores are counterintuitive, potentially
leading to better outcomes if interpreted inversely.

It can be seen as a generalization (taking into account censored data) of the area
under the ROC curve which is a popular metric for classification tasks.

ML and DL in Survival Analysis

Traditional methods like the CPHM have been foundational in survival analysis. However,
with the emergence of ML and DL, a paradigm shift is evident. The essence of models like
the CPHM, which can be perceived as regression problems, can be enhanced using ML
and DL. Indeed, covariates are seen as the features from data, and the model learns the
β parameters to fit with the observed survival. These advanced techniques offer greater
flexibility in capturing intricate data patterns, both linear and non-linear [Wang, 2019;
Wiegrebe, 2023].

Cox-based deep survival models, such as DeepSurv [Katzman, 2018] and SurvNet
[Wang, 2021b], interweave deep neural networks within the survival framework. The
linchpin is replacing the traditional linear predictor in the Cox model with a neural net-
work. This introduces a higher degree of flexibility, enabling the capture of non-linear
relationships between covariates.

Cox Loss The essence of these models is the Cox loss. The output of the model should
primarily focus on ordering subjects based on their risk. This ordering aims to ensure
that those at higher predicted risks experience events earlier than those at lower risks.
The CPMH, however, is based on a non-differentiable partial likelihood. To integrate
it with deep learning frameworks, which rely on gradient-based optimization, we need a
differentiable approximation. This leads us to the Cox loss, defined as:

L(θ) =
∑

i:δi=1

h(xi, θ)− log

 ∑
j:yj≥yi

eh(xj ,θ)

 (5.7)

where:

• X: The design matrix with rows as individuals and columns as covariates.

• y: The observed survival or event times.
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• δ: The censoring indicator. δi = 1 if the event was observed for individual i, and 0
otherwise.

• θ: Parameters to be estimated, possibly the weights in a neural network.

• h: The function mapping from covariates to risk scores, is similar to what CPMH
estimated as a hazard/risk function.

The risk for an individual is represented as h(xi, θ). Higher values indicate higher risk.
The term inside the summation contrasts the predicted risk for an individual experiencing
an event with the accumulated risk of all individuals potentially experiencing the event at
that time.

The Cox loss is differentiable with respect to θ, making it amenable to gradient-based
optimization. This difference bridges the gap between traditional survival analysis and
deep learning.

In conclusion, while traditional models like CPHM, grounded in extensive research,
provide robustness and interpretability, the flexibility and prowess of ML and DL models
herald a new frontier in survival analysis. The choice between traditional and advanced
models should align with the problem’s nature, the available data, and the desired objec-
tives.

5.2 Deciphering Images: Unveiling the Hidden Signa-
tures

In the preceding section, we concentrated on the clinical objectives: the decisive outcomes
that drive patient care. We explored the prognostic factor identification and the resultant
survival analysis. Yet, the journey from raw medical images to these outcome predictions
is intricate. How do we transition from a raw image to a set of meaningful features that
subsequently feed our predictive models? The traditional approach involved providing the
model with pre-defined, handcrafted features. However, the current trend empowers the
model to autonomously extract these features. This section demystifies this process for
two primary imaging modalities of this thesis: radiology and histology. We will focus on
the methodology behind feature extraction, as the clinical application has already been
discussed in chapter 2.
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5.2.1 Radiomics: Interpreting Radiological Images
Radiomics is about quantifying patterns within radiological images, transforming these
images from mere visual aids to comprehensive data sources [Gillies, 2016]. The realm
of radiomics has witnessed exponential growth since its inception. In oncology only, from
a mere handful of publications in 2010 to more than 5000 today, radiomics has rapidly
become central to modern medical imaging research [Ding, 2021].

A Structured Approach

Radiomics is methodical and follows a typical workflow, as displayed in Figure 5.2. It
initiates with data collection, with the selection of the imaging modality (CT, MRI, PET,
etc.) being pivotal. Image preprocessing is then undertaken, involving normalization,
inter-scanner variability analysis, and considerations for time-step images to account for
organ motion. The segmentation phase is critical to spotlighting anatomical regions that
hold predictive power like tumors, thereby filtering out irrelevant noise.

Coming to feature extraction, handcrafted methods remain pivotal in radionics. They
rely on a pre-established set of features, spanning various orders—first (shape-based),
second (texture and intensity), and third (higher-order patterns). This shift towards
more structured and systematic methods is evident in the rise of tools like PyRadiomics
[van Griethuysen, 2017], easily integrated as a Python library. Following this, feature
selection, through techniques like Principal Component Analysis (PCA), ensures non-
redundant, impactful features are retained for modeling. Eventually, popular models like
Random Forest (RF) or Support Vector Machine (SVM) have frequently been employed
for supervised settings. This external feature extraction means that models often exhibit
simpler architectures, have reduced computational requirements, and can be trained with
lesser data compared to their DL counterparts. The main allure of these methods is
their interpretability; the features used for prediction can be directly linked to the data.
However, they come with limitations. Manual feature extraction can be tedious and
can introduce human biases into the models. Additionally, this method is limited to
features already understood by humans, potentially excluding novel relevant features.
Despite the burgeoning popularity of DL, in many scenarios, the simplicity and efficiency
of handcrafted methods make them preferred choices.
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Figure 5.2: Radiomics Workflow, divided into 8 main steps: data collection, image acquisition,
image preprocessing, image annotation, feature extraction and selection, modeling and evalua-
tion.

DL for Radiomics

DL, specifically CNNs, have emerged as powerful tools in radiomics. Unlike traditional
methods, these networks can autonomously transform pixel information into latent feature
vectors. The advantage lies in their ability to decipher rich feature representations directly
from raw data. This reduces the need for manual feature engineering, often resulting
in decreased preprocessing costs and enhanced model flexibility. Furthermore, CNNs
generally outperform hand-crafted models in terms of accuracy.

However, one of the challenges is that the features extracted by CNNs don’t always cor-
relate with identifiable anatomical structures, which can make interpretation challenging.
Techniques such as Grad-CAM have been developed to improve interpretability, offering
visual explanations for CNN decisions by using gradient backpropagation intensities to
highlight pivotal regions in the input image [Selvaraju, 2020].

While radiomics has ushered in a new era of medical imaging, challenges persist. Data
availability, especially quality-annotated datasets, remains a significant hurdle. Collabora-
tive initiatives like TCIA have aimed to bridge this gap, fostering a collaborative research
environment.
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5.2.2 Pathomics: Delving into Digital Pathology
The principles foundational to radiomics also find resonance in the domain of digital
pathology, termed pathomics. The overarching objective remains consistent: extracting
significant features from images. However, the intricacies are distinct.

Digital pathology slides in pathology offer a treasure trove of information. Pathomics
extends the omics paradigm, providing a morphology-centric approach to unearth a new
generation of biomarkers. The unique proposition of pathomics lies in its multiscale
nature. It offers microscopic granularity, focusing on cells and nuclei, while simultaneously
capturing macroscopic patterns, providing a holistic view [Bülow, 2023].

Once data is collected, image preprocessing prepares the slides for feature extraction.
Tools like QuPath are instrumental in enabling automated segmentation, highlighting
structures such as cell nuclei, and facilitating operations to derive handcrafted features,
akin to radiomics.

Supervised Learning in Pathomics

Mirroring the advancements in radiomics, pathomics has also witnessed the adoption of
supervised methods with representation learning. CNNs, given their prowess in image
analysis, are naturally the most widely used DL tools in this domain. An overview of
these methods from Lipkova et al. [Lipkova, 2022] is provided in Figure 5.3.

However, pathomics presents unique challenges. The sheer volume of data from digi-
tal slides combined with the required granularity presents computational challenges. Ad-
ditionally, inconsistencies in data acquisition and annotation processes can hinder the
development of robust models.

The limitations of CNNs in pathomics arise from their reliance on pixel-level anno-
tations. Manual annotations are time-intensive and could be influenced by variations
between raters and inherent biases. Furthermore, for many clinical outcomes, like sur-
vival rates or treatment resistance, the predictive regions might be elusive. A recurrent
criticism of CNNs is their lack of interpretability. While we can frequently inspect re-
gions used by the model for predictive decisions, the overarching feature representations
remain abstract. However, the commendable performance of CNNs, combined with their
potential to significantly influence clinical applications, cannot be overlooked.
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Weakly Supervised Learning

Having already touched upon clinical application derived from Computational Pathology
(CPath) in chapter 2, we now delve deeper into methods specifically tailored for pathomics,
especially weakly-supervised and unsupervised methodologies, which are invaluable when
supervised annotation tasks prove too cumbersome.

Weakly supervised learning, a subset of supervised learning, deals with scenarios where
the supervisory signal is weak compared to the noise in the dataset. This learning paradigm
is especially useful when dealing with large datasets, diverse tasks, and situations where
predictive regions remain unidentified. The beauty of these methods is their ability to
identify predictive features beyond regions conventionally evaluated by pathologists.

Graph Convolutional Networks (GCNs): GCNs are a powerful approach in pathomics,
allowing for the explicit capture of data structures and encoding relations between differ-
ent elements. In histological contexts, a node within a graph could represent a cell, an
image patch, or even a specific tissue region. Edges are pivotal in defining spatial rela-
tions and interactions between nodes. The patient-level labels combined with the graph
are processed using a GCN, a versatile extension of CNNs that can handle graph data
structures [Zhang, 2019].

Multiple Instance Learning (MIL): MIL offers a unique approach, treating images as
bags containing multiple instances (image patches). The fundamental assumption is that
if a bag is labeled as positive, at least one instance (patch) within that bag is positive.
Conversely, if a bag is labeled as negative, none of its instances are positive. This paradigm
is particularly suited for histopathology images, where predictive regions might be tiny and
scattered. MIL models can be trained using weak labels, such as whole slide-level labels,
and can be used to identify predictive regions at the scale of the instance [Herrera, 2016].
To do so, after feature extraction (like CNN-based), the critical step is the aggregation
of instances to the slide level. It can be done using a max-pooling operation, or a more
sophisticated attention mechanism (we will give more details about fused attention in the
next section). Eventually, the aggregated features are used for the prediction of the task
of interest (classification, segmentation, survival, ...).

Vision Transformer (ViT) and Attention Mechanisms: Another approach is to lever-
age the attention mechanism through ViT. As a reminder, introduced by Vaswani et al.
[Vaswani, 2017], the attention mechanism provides a method to weigh the importance of
different parts of an input sequence, allowing a model to focus on the most relevant parts
based on context. The core intuition is that not all parts of the input are equally influential
in producing the output; some parts are more pertinent depending on the context.

Mathematically, the attention function can be described as:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V (5.8)
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Figure 5.3: AI methods in Pathomics, are divided into 3 main categories: supervised, weakly-
supervised and unsupervised. Depending on the label availability, the task of interest and the
degree of interpretability required, different techniques can be used. From [Lipkova, 2022].

Where:

• Q, K, and V are the query, key, and value matrices respectively.

• dk is the dimension of the key.

Intuitively, the attention scores (the values inside the softmax function) determine the
weight of the impact each value should have on the final representation. The softmax



136 Chapter 5. Histology-Radiology Fusion for Clinical Outcome Prediction

ensures that the weights are normalized and sum up to 1. By multiplying these weights
with the value matrix V , we get a weighted representation of our values based on the
context provided by the query and key.

While the basic attention mechanism described above determines weights based on
separate queries, keys, and values, self-attention, as the name suggests, calculates atten-
tion scores by treating the input as both the query and the key. This allows each element
in the input sequence to focus on different parts of the sequence, enabling the capture of
contextual relationships within the sequence itself, and not between different sequences
(sentence, image, ...).

In other words, self-attention allows each element in the input to weigh the importance
of every other element, making it especially powerful for tasks where internal structure
and relationships matter.

Multi-head self-attention is an extension of the self-attention mechanism. Instead of
computing a single set of attention weights, it computes multiple sets in parallel. This
allows the model to focus on different parts of the input for different tasks or representa-
tions. The outputs of these multiple attention computations are concatenated and linearly
transformed.

Mathematically, given a query Q, key K, and value V , each attention head i computes:

Attentioni(Q, K, V ) = softmax
(

QW Q
i (KW k

i )T

√
dk

)
V W V

i (5.9)

Where W Q
i , W K

i , and W V
i are weight matrices for each head i. The final output is

obtained by concatenating all the head outputs and applying a linear transformation.
While the attention mechanism thrived in natural language processing tasks, it was

soon realized that similar principles could be applied to the domain of computer vision.
Building on this, ViTs were introduced by Dosovitskiy et al. [Dosovitskiy, 2021]. In this
approach, an image is divided into a sequence of patches, akin to how sentences are treated
as sequences of words in NLP. This is particularly suitable for WSI made of related tiles.
The general architecture for the specific case of pathomics is shown in the fifth cell of
Figure 5.3.

Each image patch is linearly embedded into a vector, and to these embeddings, po-
sitional encodings are added, ensuring spatial awareness. A special classification token is
also introduced at the beginning of this sequence. After being processed by the trans-
former, this token yields the final image representation used for classification or regression
tasks.

The self-attention mechanism within the transformer allows each patch to focus on
different parts of the image. This capability ensures that the model can understand
long-range dependencies and intricate contextual relationships among patches.

ViTs utilize multiple transformer encoder blocks. Each of these blocks consists of
multihead self-attention and multilayer perceptrons, supplemented by layer normalization
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and residual connections. By using multihead self-attention, different types of interactions
between patches are captured, significantly enhancing the model’s understanding of the
image’s context. However, while powerful, ViTs often require vast amounts of data and
training time. Their high capacity and expressiveness necessitate such resources, but the
benefits they offer in terms of spatial understanding and context capturing are unparalleled
in many scenarios.

Unsupervised Learning

Unsupervised methods, not requiring labeled data, are invaluable in pathomics due to the
sheer volume and complexity of histopathological data. Clustering-based methods, such
as k-means clustering, hierarchical clustering, and self-organizing maps, are frequently
employed. Their primary objective is to partition the data into groups based on inherent
structures. These methods are particularly useful for delineating subtypes of diseases or
to group patients based on prognosis. In the DL realm, autoencoders and variational
autoencoders (VAEs, including a probabilistic twist to produce varied representations
and a richer encoding of the data) have been used to learn latent representations of
histopathological images. Comprising an encoder and a decoder, their principal function
is to learn a compressed representation of the input, subsequently reconstructing it. The
loss of the system only lies in the similarity between the original and reconstructed signals,
without requiring any label. The representations from the encoder can subsequently be
used for clustering tasks [Schmidhuber, 2015; Kingma, 2013].

Self-Supervised Learning (SSL): SSL has emerged as a compelling paradigm, espe-
cially in the realm of medical imaging where labeled data is scarce. Unlike supervised
methods, which rely on external annotations, self-supervised methods harness intrinsic
structures within the data to generate supervisory signals. By designing pretext tasks,
such as predicting the rotation angle, zoom or staining of an image, or reconstructing
masked portions, models are pre-trained to learn meaningful features without explicit la-
beling (contrastive learning). Once trained on these tasks, the models can be fine-tuned
on a smaller labeled dataset, reaping the benefits of both the rich feature extraction and
the specific annotations. Within patronymics, self-supervised methods hold promise due
to the intrinsic patterns and structures present in histopathological images. The ability
to capture these structures without explicit labeling can lead to robust models that are
both data-efficient and effective in capturing intricate histological patterns. As the field
of self-supervised learning continues to evolve, its integration with pathomics is poised to
offer innovative solutions to longstanding challenges in digital pathology [Ciga, 2022].

In the domain of CPath, especially when dealing with gigapixel images, the integration
of SSL techniques with ViT presents promising avenues. A notable exemplar of this fusion
is offered by Chen et al. [Chen, 2022a] in their innovative approach titled Hierarchical
Image Patch Transformer (HIPT). The method is meticulously crafted to address the
unique challenges posed by the vast scale of digital pathology images.
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At the core of HIPT is its distinctive hierarchical embedding of tiles. Unlike traditional
ViTs, which linearly embed a series of patches extracted from an image, HIPT adopts a
hierarchical strategy. It progressively embeds smaller tiles into larger patches, establishing
a multi-resolution representation. This hierarchy mirrors the varying granularities at which
histological patterns appear on pathology slides, ensuring a comprehensive representation
of both micro and macroscopic structures. The aggregation makes it comparable to
MIL formulation but with a more flexible and powerful architecture, and a more efficient
pre-training phase. The HIPT architecture is illustrated in Figure 5.4.

Figure 5.4: HIPT Architecture. The input image is divided into small cell-level tiles, which
are then hierarchically embedded into larger patches thanks to the recursive application of ViT
modules. The embedding of each patch is enriched by the knowledge distilled from the previous
layers, and the different modules are pre-trained with the SSL DINO method. The final represen-
tation is used for downstream slide-level tasks like cancer subtyping or survival prediction. From
[Chen, 2022a].

For the self-supervised pre-training phase, HIPT utilizes the DINO (DIstillation of
NOt-to-label data) method, as introduced by Caron et al. [Caron, 2021]. The essence of
DINO is the utilization of two neural networks: a teacher and a student. The student
learns by attempting to mimic the outputs of the teacher without having access to true
labels. In the context of HIPT, DINO is employed to pre-train the hierarchical layers
recursively, allowing each level of the hierarchy to benefit from the distilled knowledge of
the previous layers.

When applied to downstream tasks, such as tissue classification or disease identifi-
cation, the HIPT approach exhibits remarkable performance. The intricate hierarchical
embeddings, enriched by the self-supervised task, equip the model with a nuanced un-
derstanding of histological structures. This amalgamation of SSL and ViT techniques, as
embodied by HIPT, underscores the transformative potential they hold for CPath.
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The domains of radiomics and pathomics, while distinct in their focus, share overarch-
ing objectives. The extraction of salient features, whether through traditional handcrafted
methods or cutting-edge deep learning techniques, remains central. The fusion of these
two domains promises a comprehensive view of diseases, fostering the era of personalized
medicine.

5.3 Multimodal Data Fusion
As detailed in the last section, there has been significant recent interest in developing
machine vision tools for interrogating radiologic images like CT scans and pathology WSI
for outcome and treatment response prediction in HNSCC. Most of them only focused
on single image modality, either radiomics [Song, 2021], or pathomics [Lu, 2021a; Wang,
2022]

While distinct in their nuances, they share a common goal. Their complementary
nature can be leveraged to offer a holistic disease understanding. Multimodal data inte-
gration requires the simultaneous consideration of two methodological aspects: feature
extraction and the corresponding fusion scheme. While we already discussed the uni-
modal feature extraction in the previous section, we will now focus on the fusion scheme.
Nevertheless, these two aspects are often intricately linked when considering multi-modal
integration. When combining modalities, the aim is to construct complementary repre-
sentations from the initial data to maximize predictive power. The correlations between
modalities should ideally lead to orthogonal representations, maximizing the insights from
each modality. Without such orthogonalities, simply superimposing data could fail to
provide a significant boost in performance.

When combining modalities, the aim is to construct complementary representations
from the initial data to maximize predictive power. The correlations between modali-
ties should ideally lead to orthogonal representations, maximizing the insights from each
modality. Without such orthogonalities, simply superimposing data could fail to provide a
significant boost in performance. Three principal fusion schemes emerge in this context:
early, intermediate, and late fusion. Each possesses its nuances, strengths, and potential
applications. The following subsections will explore these fusion schemes in detail, which
are summarized in Figure 5.5. We consider the general case of n modalities (radiomics,
pathomics, genomics, clinical data, ...) to encompass the different studies in the literature
but will focus on the specific case of radiomics and pathomics in the context of HNSCC
in the next section.
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Figure 5.5: General workflows of fusion schemes: early, intermediate, and late fusion. The early
fusion combines the modalities at the input level (only one combined model is learned), the late
fusion combines the modalities at the output level (submodels are learned and aggregation is
often parameterless), and the intermediate fusion combines the modalities at the hidden level
(the learning is end-to-end). For intermediate fusion, different sub-levels of fusion can be consid-
ered, depending on the synchronization of modalities and their influence on one another. From
[Lipkova, 2022]

5.3.1 Early Fusion

In early fusion, data from various modalities are combined before feeding them into a
model, usually an MLP. This fusion, which is performed at the feature level, can involve
operations like concatenation, element-wise sum, element-wise multiplication (Hadamard
product) or more complex mathematical constructs like the Kronecker product ⊗ (or
tensor fusion, which is the matrix version of outer product between two vectors, producing
a block matrix instead of a simple matrix). An elegant trick is to append to each modality-
specific feature representation hi a 1 at the end: h′

i = [hi 1]. Subsequently, in the case
of three modalities, the Kronecker product will capture at once unimodal representations
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(h1⊗1⊗1, h2⊗1⊗1, h3⊗1⊗1) = (h1, h2, h3), bimodal interactions (h1⊗h2⊗1, h1⊗
h3 ⊗ 1, h2 ⊗ h3 ⊗ 1) = (h1 ⊗ h2, h1 ⊗ h3, h2 ⊗ h3), and trimodal complete correlation
(h1 ⊗ h2 ⊗ h3).

Early fusion’s strength lies in its simplicity, with only one model being trained, sim-
plifying the design process. Indeed, the backpropagation signal in early fusion emanates
from the combined model after aggregation. If modality-specific features are derived from
pre-trained sub-models, these sub-models remain frozen during the fusion training, en-
suring that the input features do not change. In addition, this setting operates under
the assumption that this single model suits all modalities. It is crucial to note that early
fusion necessitates a degree of alignment or synchronization between modalities. This
becomes especially relevant in clinical settings where data from distinct time points are
being considered.

For instance, Rathore et al. [Rathore, 2021] demonstrated the use of early fusion by
combining independent pre-processed radiology and pathology features through concate-
nation. They then trained a Cox model on the fused features to predict survival and yield
better results than unimodal models.

5.3.2 Late Fusion
Late fusion is characterized by training modality-specific models first and then combining
their predictions. This fusion takes place at the decision level, utilizing methods like aver-
aging, majority voting, Bayesian-based rules, or employing MLPs after applying operations
similar to early fusion.

The cornerstone of late fusion lies in its training phase. All sub-models are trained
independently, and their predictions are subsequently fused. This allows each modality to
be optimally processed, capturing its unique characteristics.

Compared to early fusion, late fusion has the flexibility of combining outputs from
diverse models, which might be trained on different modalities. Therefore, it requires
less synchronization as the output of these sub-models are often unimodal predictions.
However, the challenge arises in effectively aggregating these diverse outputs.

As an example, Cheerla et al. [Cheerla, 2019] utilized late fusion in a manner that
involved aggregation through unsupervised representation learning to maximize the com-
plementarity of different modalities, showcasing the versatility of late fusion in capturing
complementary insights.
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5.3.3 Intermediate Fusion
Intermediate fusion strikes a balance between early and late fusion. Here, the learning
phase happens both before and after aggregation, allowing the model to capture complex
inter-modal relationships as well as modality-specific features. We can distinguish three
main sub-categories of intermediate fusion:

• Single-level fusion: The features from raw data are learned jointly with the aggre-
gated features. Everything is trained simultaneously, with fusion taking place at a
specific granularity. This requires some degree of synchronization among modalities,
akin to early fusion.

• Gradual fusion: It allows for a more nuanced approach. Data from highly correlated
channels are combined at the same level, forcing the model to account for the cross-
correlations between specific modalities. Fusion with less correlated data occurs in
subsequent layers. This approach is particularly useful when dealing with a large
number of modalities.

• Guided fusion: It offers an even more targeted approach. Here, one modality’s in-
formation is utilized to guide feature extraction from another modality. For instance,
genomic information could guide the selection of pertinent histology features, lever-
aging co-attention mechanisms. Such an approach can unravel the relevance of
different histology features in the presence of specific molecular information.

The guided fusion is more complex and requires a good understanding of the data
before designing the fusion scheme. But for many cases where multimodal interactions
are hardly interpretable due to heterogeneity and scale gap, the a priori knowledge to set
up guided co-attention can lead to powerful models. The studies from Chen et al. [Chen,
2021b] and Li et al. [Li, 2022] are perfect examples of how genomics can guide pathomics
integration for patient survival. Given feature representation H, G for pathomics and
genomics respectively, the guided co-attention mechanism can be described as:

H ′ = CoAttG→H(G, H) = softmax(QKT

√
dk

)V

= softmax(WqGHT W T
k√

dk

)WvH

(5.10)

Where Q = WqG is the query from genomics, K = WkK and V = WvH are the
key and value respectively, from pathomics. dk is the dimension of the key, Wq, Wk, Wv

are learnable weight matrices, and H ′ is the updated pathomics representation. In this
respect, the genomics query will guide the attribution of specific weights to relevant
histological features. The final representation is the aggregation of the updated pathomics
representation H ′ with the original genomics feature vector G. We can also imagine doing
the symmetric guidance for a genomics representation G′, even if the biological sense is
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wrong. The final representation H ′ can then be used for downstream tasks, here survival
prediction.

5.3.4 Conclusion

Multimodal fusion has showcased its potential in various studies. As a wrap-up, SOTA
research, such as the works by Braman et al. [Braman, 2021] and Chen et al. [Chen,
2022b], have amalgamated various modalities, integrating radiology, pathology, genomics,
and clinical data, employing distinct fusion schemes to maximize predictive power and
orthogonality of representations. As the landscape of predictive modeling evolves, the
convergence of these modalities through fusion schemes is poised to play a pivotal role,
laying the foundation for a more comprehensive and holistic understanding of diseases.

5.4 Motivation and Contribution

As described above, the community has produced significant effort in improving multi-
modal data integration. However, a significant gap persists in the literature concerning
frameworks tailored specifically for imaging modalities, whose spatial organization in pix-
els/voxels inherently contains rich multiscale contexts that could be harnessed for improved
fusion. In addition, most existing studies, albeit groundbreaking in their scope, focused
on a single region of interest within an imaging modality. Nevertheless, the nuances of an
entire image, which encompass not just the primary tumor but also its surrounding or adja-
cent locations, often house pivotal information. These spatial contexts and relationships,
intrinsic to images, could be the key to unlocking greater predictive accuracy.

HNSCC serves as a prime example where multi-region-based prognostic models could
be revolutionary. HNSCC often presents with a well-characterized primary tumor and its
associated microenvironment, such as lymph nodes. Thus, there is a compelling clinical
need to tap into the potential of both the primary tumor and its habitat to offer a holistic
understanding, which in turn could significantly enhance prognostic accuracy.

Addressing these challenges, we introduce a pioneering end-to-end framework tailored
for imaging modalities, called Swin transformer-based Multimodal and mUlti-Region Fu-
sion (SMuRF). It is designed to handle images from different regions in the patient’s
anatomy, and from various modalities integrating different scales of information, typically
radiology and pathology—from cellular morphology in WSI to macro-scale tumor textures
and shapes in CT. The contributions of our study are as follows:

• At the feature extraction level, we harness the hierarchical encoding capabilities
of the Swin Transformer [Liu, 2021]. This enables a systematic reconciliation of
multiscale representational differences, as well as explicitly retaining and exploiting
the spatial context at a given zoom, ensuring that the intricate spatial relationships
of pixels are thoroughly utilized.



144 Chapter 5. Histology-Radiology Fusion for Clinical Outcome Prediction

• SMuRF instills multi-region and multi-scale integration between each set of Swin
Transformer blocks. Such interactions are meticulously learned through co-attention
mappings that operate at consistent and gradual scales so that embeddings from
different regions at a given scale interact with each other and share information
with a common resolution.

• We eventually apply a last inter-modal aggregation in the intermediate fusion
scheme to ensure that the interactions between modalities are intricate and mean-
ingful.

We reiterate that the novelty of SMuRF lies in its innovative tailoring for imaging data.
Indeed, the current paradigm is to build a holistic multimodal framework like the work
of Soenksen et al. [Soenksen, 2022]. In this setting, the objective is to use pre-trained
models to create modality-specific embeddings that are subsequently fused and fed to the
task model (early fusion). Here, we propose to add a heuristic to the feature extraction
step, specifically designed for imaging modalities, by considering the spatial multiscale
context shared between different acquisitions and locations. SMuRF can be seen as a
general backbone for the imaging branch and we believe that it can seamlessly be plugged
into these holistic frameworks, next to tabular, clinical or genomics data to improve their
performance.

SMuRF’s pipeline is illustrated in Figure 5.6. We will now describe in detail the
mathematical foundation behind different components of the framework, and how they
are integrated.

5.5 SMuRF Framework

5.5.1 Notations
Let X = [X1, ..., XN ] denote a batch of N patients. Each patient Xi = [Ri, Hi] is
characterized by two imaging modalities: CT denoted by Ri and WSI represented by Hi.
Here, Ri encapsulates J distinct 3D regions of interest Rij . In our dataset, J = 2 for
primary tumor and main lymph node, but any number of ROI is suitable. Hi encompasses
K distinct 2D tissue fragments Hik. It corresponds to the overall number of tissue
samples, whether it be across different slides or within each slide, as pathologists often
work with several samples in the same physical slide. We chose to keep only the samples
containing tumor cells. For the sake of illustration, K = 2 in our schematic but it can
vary from patient to patient depending on the size of the tumor, typically ranging from 1
to 10.
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5.5.2 Hierarchical Embedding with Swin Transformer

Swin Transformer Backbone

We chose to leverage the Swin Transformer backbone as it perfectly fits with our hierarchi-
cal feature embedding. It solves many challenges for which ViT, which has already been
introduced in subsection 5.2.2, struggles. As a reminder, ViT tokenizes images into non-
overlapping patches of fixed size, linearly embeds them, and processes them through the
transformer’s encoder to make predictions. Despite its groundbreaking success in image
classification, ViT encounters certain impediments in terms of computational efficiency
and scalability, particularly due to its quadratic computational complexity with respect to
input image size. The global self-attention mechanism in ViT, which computes relation-
ships between all pairs of tokens, becomes computationally intensive for high-resolution
images or tasks requiring dense predictions, thus posing limitations for its applicability in
various vision tasks.

Swin Transformer (SwinT), introduced by Liu et al. [Liu, 2021], seeks to circumvent
the shortcomings of ViT, establishing itself as a more versatile and computationally effi-
cient backbone for various vision applications. Here are some of the salient features and
intelligent design choices that underline its methodology, and summarized in Figure 5.7:

Figure 5.7: Swin Transformer Architecture. The input image is divided into small cell-level tiles,
which are then hierarchically embedded into larger patches thanks to the recursive application of
transformer modules. The embedding of each patch is enriched by the knowledge distilled from
the previous layers, and the shifted window partitioning ensures cross-window connections while
maintaining the efficient computation of the self-attention window mechanism. From [Liu, 2021].

• Hierarchical Feature Maps: SwinT introduces a hierarchical structure to its rep-
resentation, recognizing the varied scale of visual entities and the need to handle
high-resolution images. The feature extraction in SwinT is facilitated through an
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MLP equipped with GELU activation, layer normalization, and residual connec-
tions. It constructs hierarchical feature maps by starting with small-sized patches
and gradually merging neighboring patches from a defined window in deeper trans-
former layers, enabling it to model various scales and dense predictions. In addition,
it offers linear computational complexity with respect to image size since the number
of patches in a window is fixed.

• Local Self-Attention in Non-Overlapping Windows: SwinT first harnesses the
concept of local self-attention within non-overlapping windows, partitioning the im-
age and computing self-attention within these local windows containing M ×M

patches, thereby reducing computational complexity. The attention mechanism
within these windows is restricted, ensuring that relationships are computed only
within localized contexts, which facilitates scalability and is particularly advanta-
geous given the high correlation in visual signals. This step is referenced as W-MSA,
in comparison to the Multi-head Self-Attetion (MSA) in ViT.

• Shifted Window Partitioning: To enhance its modeling power by introducing
cross-window connections while maintaining computational efficiency, SwinT intro-
duces shifted window partitioning, referred to as SW-MSA. The full windowing
scheme alternates between two configurations in consecutive blocks: a regular win-
dow partitioning W-MSA and a shifted window partitioning SW-MSA, which is
displaced by ⌊M

2 ⌋ × ⌊
M
2 ⌋ pixels from the original window. This strategy introduces

cross-window connections while maintaining the efficient computation of W-MSA.
All query patches within a window share the same key set, facilitating harmonized
memory access in hardware. This approach results in much lower latency compared
to sliding window methods, while also providing comparable modeling power.

In conclusion, SwinT, with its smart design and hierarchical representation, presents a
pioneering approach that effectively addresses the computational and scalability challenges
posed by ViT, thereby establishing itself as a robust and versatile backbone for a wide array
of vision tasks, including those requiring dense predictions and high-resolution inputs.

The process of a SwinT step is made of the successive application of W-MSA, MLP
embedding, SW-MSA, second MLP embedding and patch merging. At each step, the
merging layer reduces the spatial dimensions of the feature map by half while doubling
the channel dimension C, so that after the first step, for an image of size H ×W , the
feature map is 2C × H

2 ×
W
2 . The channel dimension C is parametrized by a first linear

layer before the first step so that inputs with varying initial numbers of channels can be
processed similarly in the subsequent blocks. Akin to the original implementation, we
repeat this process B = 4 times, progressively reducing the resolution of the input and
yielding a multiscale hierarchical embedding.

In the context of our framework, we distinguish two different processes depending on
the modality:
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• Pathology WSI: for K tissue fragments of a patient Xi, the SwinT model for WSI
is denoted as Φ, made of blocks Φb for b ∈ [1, B], so that:

Hb
i = [Hb

i1, ..., Hb
iK ] = Φb(Hb−1

i ) = [Φb(Hb−1
i1 ), ..., Φb(Hb−1

iK )] (5.11)

All fragments Hik are processed by the same SwinT model Φ because they are
concatenated along the batch dimension to produce patient-wise mini-batches.

• Radiology CT: The strategy is different for CT, since we have a fixed number of
ROIs (J = 2 in our dataset, for primary tumor and main lymph node) and each
one of them is in 3D. Then, we modified the original 2D SwinT backbone to cater
to the 3D nature of the data, and each ROI volume is partitioned into 3D patches
of size M ′ ×M ′ ×M ′. Moreover, we use a distinct 3D SwinT Ψj for each ROI
j, recognizing that each one of them offers unique information the model must
distinguish. The fixed number of ROI ensures that the number of defined models is
also fixed which allows for smooth implementation, but must be adapted for each
dataset. Similarly to WSI each model Ψj is made of blocks Ψb

j for b ∈ [1, B], so
that:

Rb
i = [Rb

i1, ..., Rb
iJ ] = [Ψb

1(Rb−1
i1 ), ...Ψb

J(Rb−1
iJ )] (5.12)

For the sake of clarity in the next sections, the final feature maps for CT and WSI are
respectively denoted ri = RB

i = [RB
i1, ..., RB

iJ ] = [Ψ1(Ri1), ..., ΨJ(RiJ)] and hi = HB
i =

Φ(Hi), with an identical feature size c.

5.5.3 Co-attention-based Multiscale and Multi-region Correlations

Having extracted hierarchical features using the SwinT, the next challenge lies in integrat-
ing these embeddings in a meaningful manner. Our approach diverges from traditional
methods by introducing co-attention mechanisms that operate at multiple scales and
regions.

For a patient Xi, we take the notation zb = [zb
1, ..., zb

J/K ]T for the intermediate
feature maps of a given modality, representing either the set of J CT ROI embeddings Rb

i

or the K histological fragment embeddings Hb
i after any SwinT block b. To avoid any

misunderstanding between WSI and CT notations, we refer to the index m for a region,
corresponding to either k or j (respectively). We build a self-attention mechanism between
each region m within the same modality and after each block b. For the embedding zm,
it is defined as:

zb
m

∗ = softmax
(

zb
mW b

q W b
k

T
zbT

√
db

)
zb

mW b
v = αb

m × zb
mW b

v (5.13)

where W b
q , W b

k , W b
v are learnable weight matrices related to the query Qb = zbW b

v ,
key Kb = zbW b

k and value V b = zbW b
v of the attention mechanism, db is the size of their



5.5. SMuRF Framework 149

output dimension and αb
m is the attention weight for region m and blobk b which controls

its relative expressiveness.
For the multi-region set, the linear algebra enables the simplification to an attention

matrix Ab with:

zb∗ = softmax(QbKbT

√
db

)V b = Ab × zbW b
v (5.14)

These updated feature maps zb∗ are the input for the next block b+1. As a reminder,
these equations are valid for either WSI or CT, with modality-specific learnable matrices
that we don’t specify in the notation for the sake of clarity (for example, Ab is different for
WSI and CT). In this respect, regions of the same modality interact at different consistent
scales for an optimized full-range representation.

5.5.4 Multimodal Fusion and Prediction

Building upon the multi-region and multi-scale integration, we introduce a multimodal
representation that captures interactions between WSI and CT after the last block B. We
could have chosen to fuse the modalities at multiple scales across blocks in the same way
as multi-region integration, but we opted for a single fusion step at the end of the SwinT
backbone to limit the number of parameters and the computational complexity. Indeed,
the results were not better with multiple fusion steps, which is intuitive since radiology
and pathology do not provide the same nature of information about the disease, regardless
of the resolution. Drawing inspiration from the works from Braman et al. [Braman, 2021]
and Chen et al. [Chen, 2022b], we leverage Kronecker’s product to capture these cross-
modal interactions. More precisely, we first apply the same attention-gated mechanism as
for multi-region, but slightly modify it with self-attention pooling to merge the different
regions of the same modality:

r∗
i =

∑
j∈[1,J]

AB
j ×RB

ijW B
vj (5.15)

and
h∗

i =
∑

k∈[1,K]

AB
k ×HB

ikW B
vk (5.16)

Here, we are looking at specific columns of the value matrix to highlight the importance
of each region, and we sum the resulting vectors. We hence retrieve two vectors of size c

modeling the relative expressiveness of each region and limiting the memory consumption
for the next step. We finally compute the differentiable outer product of CT and WSI
representations with 1 appended to catch both unimodal features (r∗

i , h∗
i ) and bimodal

interactions r∗
i ⊗ h∗

i in a single fused tensor of size c× c.
After having achieved a harmonious integration of features across modalities, scales,

and regions, this fused tensor becomes the input for the downstream model. Given the
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complexity and richness of the representations, we opted for a multitask fully-connected
network. This network’s tasks are both the grade classification (GC) and the overall
survival prediction (OS), driven by the cross-entropy loss and Cox partial negative log-
likelihood loss, respectively.

The two respective outputs for patient Xi are the risk score θi for OS, and gi for GC.
θi models the regression of the relative risk of the patient among the dataset. gi is the
probability that the patient is diagnosed with grade 3 (binary classification with grades 1
and 2 merged). Given the true grade class yi, U the set of uncensored patients and ti the
observation time, the total objective L of the system is a γ-linear combination of both
losses:

L = −γ
∑

i

[yi log(gi)− (1− yi) log(1− gi)]− (1− γ)
∑
i∈U

[θi − log
∑

j:ti≥tj

eθj ] (5.17)

This combined objective ensures that the model is simultaneously optimized for both
tasks, leveraging the rich multiscale, multi-region, and multimodal representations to offer
predictions that are both clinically meaningful and accurate.

In conclusion, our SMuRF framework represents a significant leap forward in the realm
of multimodal image analysis for oncology. By harnessing the power of spatial hierarchies,
co-attention mechanisms, and the innate strengths of the SwinT, we present a model that
is both intuitive and scientifically robust.

5.6 Dataset and experiments
Our cohort is made of 162 HNSCC patients from the Cleveland Clinic Foundation (CCF),
including 120 HPV-associated oropharyngeal cancers and 47 laryngeal cancers. Clinico-
pathologic and outcome information for patients in the CCF cohort were collected after
obtaining approval from the Institutional Review Board of Cleveland Clinic. The triage
consisted of some inclusion criteria (radiotherapy planning CT scans and binary mask for
GTV, matched digitized WSI, as well as clinical information such as HPV status by p16
immunohistochemistry and survival information and some exclusion criteria (CT images
containing artifact and number of voxels within tumor ≤ 200, which was deemed to be in-
sufficient for feature extraction). The clinical characteristics of the cohort are summarized
in Table 5.1.
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Radiology

For all patients, we gathered RT planning contrast-enhanced CT scans. Two radiologists
annotated the primary tumor (PT) and a third radiologist delineated the largest suspi-
cious lymph node (LN). We extended the tumor region by a 15mm ring to include the
peritumoral area. All volumes were then resampled to 1 mm isotropic resolution and
intensity-normalized. Similar to Braman et al. [Braman, 2021], we performed a special
sampling to meet the requirement of a fixed 3D volume input for the SwinT even if the
tumor size varies across patients. Based on the bounding boxes PT (tumor and peritu-
moral areas) and LN, we divided each of them into 4 even quadrants along the z-axis.
Then, for each ROI, we randomly sampled 4 regions of fixed-size 96× 96× 3 from the 4
quadrants. Since the choice of the region changes across epochs, this strategy allows for
a homogeneous screening of various ROIs during training and the full characterization of
the tumoral environment.

Pathology

We also had access to digitized WSIs at 40x resolution (0.25 µm/pixel) for the 162
patients. As displayed in Figure 5.6, each WSI usually contains several fragments repre-
senting different levels of the tumor extent. We considered each fragment in a WSI inde-
pendently and first performed tissue segmentation to remove the background and holes.
This process enables the extraction of each fragment and was made using the CLAM tool
from Lu et al. [Lu, 2021c]. Next, because the resolution gap between WSI and CT has a
factor of 4000, we downsampled the WSI with HIPT, which has already been introduced
in section 5.2. It keeps multiscale information from cell-level to tissue-level, through a
hierarchical embedding legeraring ViT and self-supervised learning [Chen, 2022a]. To do
so, each fragment of the WSI is first divided into 4000× 4000 regions (= 1mm in CT for
consistent fusion), which are themselves divided into 256× 256 patches, the latter being
finally divided into 16×16 cell-level tokens. The backward aggregation is performed with
ViT pre-trained with DINO. We ended up with 2D fragments whose 1mm-regions are
encoded into a 192-dim region-level hierarchical embedding. It is important to note that

Table 5.1: Clinical characteristics for the 162 HNSCC patients from the private partner institution.
PY stands for Smoking pack-year, R for Radiation, CR for Chemoradiation, D for Death and C
for Censored. Age and Smoking PY are the mean values.

Age Gender PY Stages Treatment Event Grade

59.6 M: 144

F: 18
23.8

T1: 26

T2: 55

T3: 54

T4: 27

N0: 30

N1: 19

N2: 106

N3: 7

II: 6

III: 35

IVA: 113

IVB: 8

R: 12

CR: 150

D: 36

C: 126

G1: 10

G2: 91

G3: 61
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Table 5.2: Implementation details for SMuRF and the other deep learning frameworks. Only 2D
backbones are displayed but the depth is handled the same way as other spatial dimensions in
the 3D case. We chose C = 48, c = 24. M depends on the modality and the region (96 for CT).
All hyperparameters were optimized based on the validation performance with an early stopping
if the validation loss did not decrease for 4 epochs.

Model #Blocks Output size #Params Act + Norm

Backbone
ResNet50 4 M

24 × M
24 × 24C 25M ReLU + Batch

ViT-Ti 4 M ×M × C 88M GeLU + Layer
SwinT 4 M

24 × M
24 × 24C 28M GeLU + Layer

Fusion
Av. Pooling

+ (1× 1) conv
1 c N/A N/A

Att. Pooling
+ Kronecker

1 (c + 1)2 N/A N/A

MLP FC 3 2 85K ReLU + Batch

the spatial organization of the fragment is preserved, so that each region is characterized
by its coordinates in the fragment, and has a channel dimansion of 192 instead of 3 for
classical RGB images.

The preprocessing step for both radiology and pathology is crucial to ensure that
all regions are considered and comparable in terms of size and resolution so that the
SwinT can demonstrate its full potential and the attention-based fusion can be performed
consistently.

Implementation details

A thorough description of the architecture of the SwinT as well as ablative studies (de-
scribed in the next section) are displayed in Table 5.2. Our experiments were built on
Pytorch1.13 with an Nvidia GeForce RTX 3080Ti. We performed data augmentation on
both CT and WSI with color jittering and random vertical/horizontal flips. Unimodal
models were first trained for 50 epochs with a linearly decaying learning rate scheduler
starting at 0.0005, a batch size of 12, the Adam optimizer, and a dropout probability p
= 0.25. We then connected the different blocks for radiopathomic fusion and restarted
the learning rate scheduler for 50 more epochs in a fully end-to-end setting, justifying the
"intermediate fusion" term.
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Benchmark/Ablative studies

We benchmarked our method against several baselines, which concern either the backbone
architecture for feature extraction or the fusion scheme. Regarding the feature extraction
backbone, we assessed the prognostic power of handcrafted features HF , which consist of
7 radiomic and 7 pathomic that have already been extracted in the studies from Corredor
et al. [Corredor, 2022] and Song et al. [Song, 2021], respectively. They yield very good
clinical prognosis prediction and represent here the only case of early fusion as their
extraction is parameterless. We also performed feature embedding through a convolutional
network (ResNet-50) CNN or a ViT-Base VIT whose architectures have been detailed
in Table 5.2. Concerning the fusion scheme, we considered unimodal data with only PT
or LN from CT, only CT (both regions), or only WSI, denoted as RPT , RLN , R and
P, respectively. We also implemented vector concatenation C and simple tensor fusion
with the Kronecker product K. In addition, we introduced attention pooling followed by
either concatenation, denoted as AC and tensor fusion with Kronecker product, which is
the chosen scheme for SMuRF, denoted as AK. A model M is defined by both feature
extraction strategies and the fusion scheme. For example, our SMuRF approach made of
SwinT ST with Attention and Kronecker product is defined as MST

AK. We tested every
possible combination to assess the impact of each component on the final performance.

Statistical Analysis

Eventually, survival analysis requires specific care on statistics to ensure that the results
are robust and clinically meaningful. We divided data into training ST R, validation
SV and test ST E sets, resulting in 84, 30 and 48 patients, respectively. We kept the
same proportion of patients with censored survival data. The performance metric for
OS prediction is Harrell’s concordance index (C-index) and for GC is the Area Under
the Curve (AUC). The median survival risk score from ST R ∪ SV was applied to ST E to
define high and low-risk groups for plotting Kaplan-Meier (KM) curves and calculating the
hazard ratios (HR). Log-rank test was used to compute the p-values for survival difference
between groups.

5.7 Results
The results for OS and GC predictions from SMuRF and baselines are presented in Ta-
ble 5.3 and Table 5.4.
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Table 5.3: C-index for overall survival prediction task of 24 models, with SMuRF (bolded)
achieving the highest

C-index OS HF CNN VIT ST

Rad R 0.60 ±0.09 0.61 ±0.10 0.62 ±0.11 0.63 ±0.07
Path P 0.61 ±0.09 0.63 ±0.07 0.62 ±0.09 0.64 ±0.09

Concat C 0.65 ±0.11 0.70 ±0.07 0.66 ±0.09 0.71 ±0.07
Kronecker K 0.68 ±0.10 0.72 ±0.07 0.73 ±0.08 0.76 ±0.05

Att° + Concat AC 0.69 ±0.08 0.74 ±0.06 0.76 ±0.07 0.77 ±0.08
Att° + Kro AK 0.71 ±0.08 0.78 ±0.09 0.78 ±0.06 0.81 ±0.06

Comprehensive Analysis of SMuRF’s Prognostic Capabilities

The KM curve for SMuRF, as depicted in Figure 5.8, clearly illustrates the model’s ability
to accurately stratify patients ST E into high and low-risk groups, with the high-risk group
exhibiting significantly worse survival rates than the low-risk group from the log-rank test
(p < 0.001, HR = 8.95 [2.49 - 32.2]). This is further corroborated by both C-index and
AUC at 0.81. The model’s ability to predict both OS and GC underscores its potential as
a clinical adjunct in the pursuit of robust prognostication.

Interpretable Localizations from Gradient Activation Maps

The interpretability of SMuRF’s predictions is vividly illustrated through gradient acti-
vation maps (Figure 5.9). They were made thanks to the Grad-Cam tool, short for
Gradient-weighted Class Activation Mapping, which is a technique devised for generating
"visual explanations" from a variety of models, aimed at enhancing their interpretability
[Selvaraju, 2020]. The methodology underpinning Grad-CAM involves utilizing the gradi-
ents of any target concept, which flow into the final layer to produce a coarse localization
map, without necessitating architectural modifications or re-training. This map effectively
highlights crucial regions within the image that are pivotal for predicting the concept.

By focusing on specific, detailed areas that are indicative of higher prognostic value,
SMuRF can localize and highlight crucial regions within both CT and WSI. The Figure 5.10
shows that smaller areas are focused with higher intensities for deeper blocks, proving the
benefit of the hierarchical structure allowing for multiscale characterization. This ability
to discern and visibly indicate regions of interest not only enhances the model’s utility
but also provides potential insights into morphological patterns that may be pivotal in
determining patient prognosis.
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A)    Radiology – PT only B)    Radiology – LN only

C)    Radiology – PT + LN D)    Pathology

E)    Radiology+Pathology
        (concatenation)

F)    SMuRF

Figure 5.8: KM curves depicting the survival stratification abilities of SMuRF and 5 baseline
models. Only SMuRF demonstrates a statistically significant prognostic capability in risk strati-
fication on ST E (p < 0.001, HR = 8.95 [2.49 – 32.2]).

Comparative strategies on feature extraction and fusion scheme

Navigating through the various feature extraction and fusion strategies, distinct patterns
emerge that signal the efficacy of various approaches. Amongst feature extraction back-
bones, the three DL-based approaches CNN , VIT , ST always outperformed HF , with
SwinT ST being the best. Specifically, SMuRF outperformsMCN N

AK andMVIT
AK by 3.8%
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PT WSI LN
Figure 5.9: Exemplifying interpretability: Gradient activation maps for two patients, classified
as low-risk (first two rows) and high-risk (last two rows) by the model, on both CT (PT, LN)
and WSI. Red regions highlight the area SMuRF is focusing on, which proves that it can catch
prognostic signals.

for OS and GC (0.81 vs 0.78). When investigating the effect of the aggregation being
used, we found out that attention fusion with Kronecker product AK always yields the
best result across four backbones. For example, SMuRF outperformsMST

C by 14.1% for
OS (0.81 vs 0.71) and 9.5% for GC (0.81 vs 0.74).
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Figure 5.10: Gradient activation maps for the same patients, classified as low-risk (first two
columns) and high-risk (last two columns) for the four different backbone blocks of SwinT in
SMuRF. It is computed by attaching a Grad-CAM module at the activation unit of a particular
block. The attention is more refined for high-resolution blocks while the low-resolution blocks
tend to retain the global context of the whole tumor.

Ablative strategies on multimodal and multi-region integration Across both tasks
and the four feature extraction backbones, we observe consistent performance increment
when utilizing concatenation C compared to using radiomics R or pathomics P. For
example, MST

C for OS yielded a C-index of 0.71, which is 12.7% higher than MST
R

(0.63) and 10.9% higher than MST
P (0.64). An ablation study (not displayed for clarity)

was further conducted to investigate the contributions of multi-region and multimodal
data integration. Combining multiple regions yielded a higher hazard ratio and C-index
by 0.05 than a model without LN, indicating that both regions on CT carry prognostic
signals that are captured by SMuRF (in absolute, PT remains more insightful than LN).
We can witness the correspondent observation in risk stratification in Figure 5.8.
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Table 5.4: AUC for GC task of 24 models, with SMuRF (bolded) achieving the highest. Att°
stands for attention.

AUC GC HF CNN VIT ST

Rad R 0.56 ±0.09 0.61 ±0.09 0.66 ±0.08 0.69 ±0.08
Path P 0.60 ±0.09 0.62 ±0.09 0.69 ±0.08 0.69 ±0.08

Concat C 0.64 ±0.09 0.73 ±0.08 0.72 ±0.08 0.74 ±0.08
Kronecker K 0.67 ±0.09 0.74 ±0.08 0.72 ±0.08 0.78 ±0.07

Att° + Concat AC 0.65 ±0.09 0.76 ±0.08 0.75 ±0.08 0.80 ±0.07
Att° + Kro AK 0.69 ±0.08 0.78 ±0.07 0.78 ±0.07 0.81 ±0.07

5.8 Discussion and Conclusion

In the pursuit of advancing prognostic biomarker discovery and grade prediction through
the integration of radiology and pathology data, we introduced SMuRF, a pioneering DL
framework, trained and validated on a dataset comprising 162 HNSCC patients. The main
objective at hand involved the judicious fusion of multimodal and multi-region imaging
data to bolster the model’s capacity to amalgamate complementary prognostic informa-
tion, thereby enhancing its predictive capabilities.

SMuRF, with its foundation on the SwinT backbone, has demonstrated notable effi-
cacy in characterizing outcome-related hierarchical imaging patterns, thereby refining its
performance in prognostic scenarios. The attention-fusion mechanism embedded within
SMuRF has proven to be pivotal in augmenting the model’s ability to coalesce data
streams from different modalities, regions and scales, thus providing a rich, integrated
view of the patient data.

The architecture of SMuRF is not only proficient in its current applications but also
exhibits a versatile nature, serving as a potential backbone for more comprehensive embed-
dings of various imaging sources across multiple levels. Looking ahead, the framework can
be extended to accommodate the fusion of additional data types, such as genomics and
clinical data, or to address challenges related to the handling of missing data. The method-
ology employed here, with a distinct focus on enhancing multimodal imaging fusion, could
be paralleled in studies involving other modalities, such as genomics or transcriptomics,
possibly utilizing graph-based architectures focused on the specific characteristics and
needs of such data. Such endeavors should aspire to circumvent overly simplistic models,
instead opting for architectures that incorporate heuristics and prior knowledge about each
modality, thereby crafting a more informed and nuanced model.

While SMuRF has showcased substantial promise, the journey ahead involves further
exploration and validation through future studies. This work has been presented at the
ASCO conference in 2023 but still needs more robust results for publication [Leroy, 2023e].
We are currently expanding the patient cohort to 1000 patients to enhance the statistical
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significance of the results, incorporating additional modalities or regions, and exploring the
generalizability to other cancer locations. In light of its success, we believe SMuRF serves
as a beacon guiding the path forward toward enhanced multimodal integration, fostering
a future where computational pathology and radiology can realize their full potential in
both clinical and research applications.





Chapter 6

Conclusion

The treatment and management of Head and Neck Squamous Cell Carcinoma (HN-
SCC) poses intricate challenges that demand both precision and a nuanced understanding.
Within the realms of oncology, HNSCC stands out due to its unique position, its surround-
ing vital anatomy, and the complex landscape it presents for therapeutic interventions.
The primary pillar of treatment, radiotherapy (RT), is dependent on the meticulous delin-
eation of the tumor volume. This precision ensures that radiation is delivered effectively
to the malignancy while sparing as much of the surrounding healthy tissues as possible.

At the heart of this research is a motivation driven by the clinical urgencies presented by
HNSCC. Radiological interpretations, while being a cornerstone of treatment planning, are
often subject to interobserver variability. The interpretation of the Gross Tumor Volume
(GTV) can vary, with each clinician bringing to the table their expertise and experience.
This variability, subtle as it might be, can have cascading effects on treatment outcomes.
It is this variability, this subjectivity, that the manuscript aims to address. The objective
is clear: to infuse the precision of histology into the broader strokes of radiology, thus
creating a more accurate and detailed picture for treatment planning.

Histological data, with its microscopic granularity, offers insights that often remain
obscured in radiological images. The challenge, however, is in the integration of these
two diverse scales of data. Achieving a harmonious fusion requires a meticulous alignment
of the macroscopic views of radiology with the detailed, microscopic vistas of histology.
The research presented in this manuscript has made advances in this domain through the
exploration of registration techniques. Registration serves as a bridge, mapping the vast
landscapes of radiological images to the detailed terrains of histology.

The development and introduction of StructuRegNet marked a significant milestone
in this research journey. This model is distinctive in its approach to tissue alignment.
Recognizing the inherent complexities and non-rigid deformation of biological tissues,
StructuRegNet employs a three-phase alignment. The initial phase focuses on solving the
multimodal issue with image translation. Then we performed a rigid mapping for plane
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correspondence and reorientation, while the last phase refines this alignment, accounting
for the subtle deformities and intricacies of the tissues. The automation of this process,
brought about by StructuRegNet, represents a paradigm shift: it not only ensures con-
sistency but also paves the way for more extensive, reproducible studies, eliminating the
need for labor-intensive manual alignments.

The applications of this fused histology-radiology data are manifold. One of the
significant insights gained from this research was the prevalent trend toward overestimation
of the GTV. Addressing this, the research ventured into the development of a diffusion-
based segmentation model specifically tailored for histological labels on CT scans. This
fusion of radiology with histological precision ensures that the resulting segmentations are
both accurate and clinically insightful.

The potential applications were further expanded with the exploration of Immunohis-
tochemistry (IHC). IHC, with its ability to delve deep into cellular and molecular details,
can significantly refine and enhance treatment strategies. The potential of dose paint-
ing, powered by the insights from IHC, represents an exciting frontier for future research.
Moreover, the concept of probabilistic maps, which encapsulate a spectrum of potential
tumor delineations rooted in underlying data uncertainties, holds immense promise.

Another pioneering stride in this manuscript is the introduction of the SMuRF frame-
work. This framework transcends traditional notions of spatial correlations and seeks to
achieve data fusion at a more intricate embedding level. By harnessing the capabilities
of the Swin Transformer, SMuRF facilitates a comprehensive integration of data span-
ning multiple modalities, regions, and scales. This integration is not a mere juxtaposition
but a deep intertwining of data, extracting multifaceted insights and ensuring a holistic
understanding.

In summation, this manuscript stands as a first stone to the transformative potential
of integrating radiology, histology, and cutting-edge AI methodologies. The innovations
and methodologies presented provide a roadmap for a future where treatments for HNSCC
are not only more effective but also intricately tailored to individual patient needs. As
we stand at this juncture, looking ahead, the horizon promises a future of precision,
personalization, and data-driven insights in the realm of oncology.
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Résumé:
La prise en charge des cancers ORL est un défi 

majeur en oncologie. Le ciblage précis de la tumeur et la 
protection des organes voisins en radiothérapie 
nécessitent une compréhension approfondie et un 
contourage exact du Volume Tumoral Macroscopique 
(GTV en anglais). Cependant, la variabilité 
inter-observateur et les difficultés de délimitation dues à 
la qualité souvent insuffisante de l'imagerie médicale 
disponible soulignent l'urgence de disposer d'outils et de 
méthodes améliorés. L'intégration de diverses sources 
de données et modalités pour mieux comprendre 
l'étendue spatiale et les caractéristiques biologiques de 
la tumeur semble une solution prometteuse.L'histologie 
et la radiologie, clés pour le diagnostic, offrent des 
informations multi-échelles de la tumeur dont la synergie 
est souvent sous-exploitée. Alors que la radiologie donne 
une vue macroscopique sur la structure, la taille et la 
localisation globales de la tumeur, l'histologie permet une 
analyse microscopique, élucidant les détails cellulaires et 
morphologiques des tissus. La fusion de ces deux 
modalités pourrait révolutionner notre compréhension de 
l'environnement tumoral et de son hétérogénéité.Le 
recalage, ou mise en correspondance spatiale, est 
crucial pour relier ces modalités. En déformant les lames 
histologiques sur leurs scans radiologiques 
correspondants, le recalage permet une comparaison 
directe entre chaque voxel. Cependant, cette tâche est 
très complexe à cause des différences notables entre les 
deux modalités et les déformations tissulaires entre 
l'acquisition in vivo et la lame histologique issu de la 
pièce chirurgicale ex vivo. Nous introduisons ici un 
modèle d'apprentissage profond nommé StructuRegNet 
pour résoudre ce problème, qui met en oeuvre un 
alignement progressif guidé par les structures rigides 
comme les cartilages. En automatisant cette tâche 
traditionnellement manuelle, nous permettons ainsi une 
intégration harmonieuse et à grande échelle des 
informations histologiques et radiologiques.Avec les 
capacités offertes par StructuRegNet, des comparaisons 
directes entre les deux modalités deviennent possibles, 
notamment pour évaluer le GTV par rapport à l'étendue 
tumorale sur la lame histologique. Elles ont révélé des 
surestimations constantes dans les définitions 
conventionnelles du GTV. 

A la suite de cette observation, nous avons introduit 
un modèle de segmentation automatique sur les images 
scanners, avec comme annotation de référence les 
contours histologiques. Étant donné que ces contours 
sont de qualité supérieure et sans variabilité, le modèle a 
pu éviter les écueils rencontrés par les modèles 
précédents axés uniquement sur le GTV. Cette approche 
a éclairé la voie vers un "GTV guidé par l'histopathologie" 

et a introduit le concept de contours non binaires avec 
des probabilités de présence de tumeur, laissant 
entrevoir le potentiel d'une radiothérapie plus modulable 
et précise.De plus, nous avons dépassé le cadre de 
l'alignement spatial pour la radiothérapie et nous sommes 
concentrés sur la fusion multimodale plus générale. Nous 
introduisons SMuRF, un modèle d'intelligence artificielle 
qui combine plusieurs images pour extraire une 
représentation globale à faible dimension de chaque 
patient. Grâce à cette fusion avancée utilisant des 
architectures de pointe en vision par ordinateur, nous 
avons obtenu des succès notables dans la prédiction du 
grade du cancer et de la survie du patient, surpassant les 
méthodes monomodales traditionnelles.En conclusion, 

cette recherche souligne le potentiel considérable de 
l'intégration des données histologiques et radiologiques, 
supportée par des techniques d'intelligence artificielle, 

pour affiner la radiothérapie du cancer ORL. En 
fusionnant les informations macroscopiques et 
microscopiques, ce travail représente un premier pas 
prometteur vers une oncologie de précision individualisée 
plus efficace.
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Abstract:
The treatment of head and neck cancer remains a press-

ing challenge in the realm of oncology. Particularly, the
precise targeting in radiotherapy demands a thorough un-
derstanding of the Gross Tumor Volume (GTV). However,
with the persistent issue of interobserver variability and in-
accuracy in GTV demarcation due to the low quality of
available image acquisitions, the necessity for better tools
and methodologies becomes paramount. It underscores the
need for integrating diverse data sources for a comprehen-
sive understanding of the tumor’s spatial extent and bio-
logical characteristics.

Histology and radiology, while both essential in onco-
logical diagnostics, offer multi-scale information about the
tumor whose synergy is often under-exploited. While radi-
ology provides a macroscopic view, capturing the tumor’s
overall structure, size, and location, histology delves into
the microscopic, elucidating cellular and tissue-level de-
tails. The granularity and precision of histological data,
juxtaposed with the broader perspectives of radiological im-
agery, advocate for their fusion, which can potentially rev-
olutionize our understanding of tumor characteristics and
their spatial distribution.

Registration stands as a pivotal technique to bridge
these modalities embedding multiscale information. By
aligning histological slides spatially with their correspond-
ing radiological scans, registration facilitates a direct pixel-
wise comparison. However, this task is highly technical due
to the substantial differences between these modalities and
the extreme deformations that the tissue undergoes from in
vivo acquisition to a tissue slide from ex vivo resected spec-
imen. Our deep learning method StructuRegNet emerged
as our answer to the challenges of this alignment, harness-

ing rigid structures like cartilage to progressively guide the
mapping. By automating this traditionally manual task, we
set the foundation for a seamless integration of histological
and radiological insights.

With the capabilities provided by StructuRegNet, di-
rect comparisons between both modalities became feasible,
especially in assessing the GTV and its delineation on histo-
logical data. This comparison revealed systematic overes-
timations in conventional GTV definitions. Building upon
this finding, we introduced a diffusion-based segmentation
model tailored for histological labels on CT scans. Given
that these labels are of superior quality, the model could
sidestep the pitfalls encountered by previous models focused
solely on GTV. This approach illuminated the path towards
histopathology-enhanced GTV and introduced the concept
of ambiguous delineations, hinting at the potential of non-
binary volumetric dose painting in radiotherapy.

Shifting from spatial to feature-level fusion, the SMuRF
framework was introduced. Instead of merely relying on
spatial correlations, SMuRF operates at a deeper level, fo-
cusing on the inherent features and patterns within the
data. Through this advanced fusion leveraging cutting-edge
computer vision and deep learning methods, we achieved
notable successes in predicting cancer grade and survival,
outperforming traditional monomodal methods.

In summary, this research underscores the transforma-
tive potential of integrating histological and radiological
data, augmented by artificial intelligence, in refining head
and neck cancer radiotherapy. By fusing macroscopic and
microscopic insights, the work paints a promising picture of
individualized, precision-driven oncology treatments for the
future.
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