
HAL Id: tel-04825910
https://theses.hal.science/tel-04825910v1

Submitted on 8 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Identification, genotyping and representation of
structural variants in pangenomes

Sandra Romain

To cite this version:
Sandra Romain. Identification, genotyping and representation of structural variants in pangenomes.
Bioinformatics [q-bio.QM]. Université de Rennes, 2024. English. �NNT : �. �tel-04825910�

https://theses.hal.science/tel-04825910v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Par

Sandra ROMAIN

THÈSE DE DOCTORAT DE

L'UNIVERSITÉ DE RENNES 

ÉCOLE DOCTORALE N°  601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes, 
Électronique
Spécialité : Informatique

Identification, génotypage et représentation des variants structuraux 
dans les pangénomes

Thèse présentée et soutenue à Rennes, le 8 novembre 2024
Unité de recherche : IRISA, Centre Inria de l’Université de Rennes – Équipe GenScale 

Rapporteurs avant soutenance :

Birte KEHR Professeure, University of Regensburg, Leibniz Institute
of Immunotherapy, Regensburg (Allemagne)

François SABOT Directeur de recherche, IRD Montpellier

Composition du Jury : 

Examinateurs : Birte KEHR Professeure, University of Regensburg, Leibniz Institute
of Immunotherapy, Regensburg (Allemagne)

François SABOT Directeur de recherche, IRD Montpellier
Pierre PETERLONGO Directeur de recherche, INRIA/IRISA Rennes
Sèverine BERARD Maîtresse de conférence, Université de Montpellier

Dir. de thèse : Claire LEMAITRE Directrice de recherche, INRIA/IRISA Rennes
Co-enc. de thèse : Fabrice LEGEAI Ingénieur de recherche, INRAE - IGEPP Rennes





Acknowledgements

First of all, I would like to thank Birte Kehr and François Sabot for reviewing my
PhD work and their help in improving this manuscript. I would also like to thank
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Résumé En Français

Introduction

Les variants génomiques sont un facteur majeur de la diversité du vivant. Parmi
eux, les variants de structure (SVs) sont des variants d’au moins 50 paires de bases
(pb), pouvant être classifiés en cinq types de base : délétion, insertion, inversion,
duplication et translocation. L’analyse et la comparaison des SVs entre individus
dans une espèce se fait en deux temps : la détection et le génotypage. La détection
des SVs consiste à former une liste de SVs bien décrits (par exemple par leur type,
leur position, leur taille). Le génotypage consiste alors à comptabiliser les allèles
des SVs connus dans des individus re-séquencés. La détection et le génotypages
des SVs sont traditionnellement réalisés par alignement de lectures sur un génome
de référence. L’avènement des technologies de séquençage à longues lectures a
révolutionné la détection des SVs dans les génomes, en améliorant l’alignement des
lectures dans les régions génomiques riches en répétitions, dans lesquelles plus de la
moitié des SVs se situent. Cela a remis en lumière leur contribution à la diversité
génétique, et leur implication dans la variabilité phénotypique, l’adaptation et
l’évolution des espèces, et certaines maladies cliniques. La précision du génotypage
est cruciale dans la découverte de ces associations entre SVs et phénotypes.

Les nouvelles structures de données que sont les graphes de variation et graphes
de pangénomes (2018-2023) apportent plein de promesses pour l’analyse de la
diversité génétique, et notamment pour la détection, le génotypage et l’analyse
des SVs. Ces deux types de graphes sont très similaires en termes de structure,
et représentent les variants sous forme de bulles, cependant, ils se construisent
de manière différente. Le graphe de variation est construit à partir d’un génome
de référence et d’une liste de variants. Le graphe de pangénome est construit
par alignement de génomes complets à partir d’une collection de génomes. Leur
représentation inhérente de la variabilité de séquence d’une espèce rend l’alignement
des lectures moins sujette au biais vers la référence, et permet ainsi une amélioration
de la découverte et du génotypage de variants de toutes tailles et de tous types.
Plusieurs méthodes de génotypage de SVs utilisant les graphes de variation et de
pangénomes on été développées, mais toutes utilisent des lectures courtes.

Cette thèse s’inscrit dans le cadre du projet ANR DIVALPS, qui s’intéresse
à l’histoire évolutive particulière d’un complexe de quatre espèces de papillons,
les Coenonympha alpins. De précédents travaux des collaborateurs du projet
suggèrent fortement l’occurrence d’un événement d’hybridation entre C. arcania et
C. gardetta, suivi de l’isolement génétique et géographique de deux lignées hybrides,
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RÉSUMÉ EN FRANÇAIS Contributions de la thèse

C. darwiniana et C. cephalidarwiniana. L’un des objectifs du projet DIVALPS est
d’explorer les facteurs génétiques et génomiques impliqués dans la spéciation de
ces lignées hybrides et leur adaptation à différents habitats. Les inversions, qui
sont des réarrangements génomiques réduisant localement le taux de recombinaison
effectif à l’état hétérozygote et pouvant mener à la capture de combinaisons
alléliques spécifiques et à leur maintien dans les populations, représentent une
piste de recherche intéressante. Les grandes inversions, en particulier, ont une
plus grande probabilité de capturer des associations alléliques pouvant impacter
l’évolution des espèces (p.e. associations promouvant l’adaptation à certaines
conditions écologiques). Cependant, la présence fréquente de motifs répétés à leur
extrémité, ainsi que la divergence de séquence entre génomes, rendent les grandes
inversions entre espèces plus difficiles à caractériser avec précision à partir de
l’alignement de lectures courtes ou longues. De récentes méthodes de détection des
SVs s’appuyant sur de l’alignement de génomes complets ont démontré pouvoir
surpasser ces limites.

Cette thèse avait pour objectifs de développer de nouvelles méthodes de détection
et de génotypage des SVs en employant ces nouveaux objets que sont les graphes
de variation et de pangénomes. Le placement de cette thèse dans le projet d’analyse
des génomes Coenonympha a focalisé ces objectifs sur un contexte de génome
non modèles et de comparaison de génomes complets, et apporté une dimension
d’évaluation des méthodes existantes dans ce contexte.

Contributions de la thèse

Un outil basé sur les graphes de variations pour génotyper rapi-

dement et précisément les variants de structures avec lectures

longues

J’ai débuté ma thèse en travaillant sur l’utilisation du modèle de graphe de variation
dans le cadre du génotypage de SVs avec lectures longues. Les données de séquençage
en lectures longues des papillons Coenonympha n’étaient pas encore disponibles à
ce moment-là, mais les graphes semblaient déjà être une approche intéressante pour
la comparaison des génomes Coenonympha, qui ne nécessitait pas de choisir un
génome de référence entre les deux espèces parentales. Ce travail m’a donc permis
d’explorer comment les SVs pouvaient être représentés dans de tels graphes. De
plus, toutes les méthodes de l’état de l’art dédiées au génotypage des SVs avec
des lectures longues sont limitées soit par leur représentation inégale des différents
allèles des SVs, qui entrâıne un biais vers la référence, soit par leur représentation
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linéaire des allèles, qui entrave le génotypage des SVs proches et chevauchants.
L’utilisation du graphe de variation était donc une piste prometteuse pour résoudre
ces limites identifiée dans l’état de l’art, et en particulier la limite du génotypage
de SVs proches identifiée dans SVJedi, un outil développé dans mon équipe de
recherche.

J’ai développé et implémenté une nouvelle méthode, SVJedi-graph (Romain
and Lemaitre, 2023), qui construit un graphe de variation à partir d’un génome
de référence et d’une liste de SVs connus. Cette méthode utilise un mappeur de
séquences sur graphe de l’état de l’art pour aligner les longues lectures sur le graphe
de variation, et estime le génotype le plus probable pour chaque SV à partir de
la profondeur des lectures cartographiées sur les arcs représentant les différents
allèles dans le graphe. En appliquant SVJedi-graph sur des ensembles simulés
de délétions proches et chevauchantes, j’ai démontré que ce modèle de graphe
permet de surmonter le problème de biais vers la référence tout en maintenant une
grande précision de génotypage, quelle-que soit la proximité des SVs. Sur le jeu
de données de référence humain HG002 produit par le consortium Genome in a
Bottle, SVJedi-graph a obtenu les meilleures performances parmi les génotypeurs
de SVs utilisant des longues lectures, réussisant à prédire en moins de 30 minutes
le génotype de 99,5 % des SVs du jeu de données avec une précision de 95 %.

Découverte de douze grandes inversions dans les génomes des

papillons alpins Coenonympha

L’un des objectifs du projet DIVALPS est de mettre en lumière les facteurs
génétiques et génomiques impliqués dans l’histoire évolutive particulière du com-
plexe d’espèces de papillons alpins Coenonympha. Dans ce but, les quatre espèces
Coenonympha de ce complexe ont été séquencées, par lectures longues PacBio CLR
pour un individu par espèce, et par lectures courtes Illumina pour 9 à 19 individus
par espèce. Le jeu de données de lectures longues a permi la production et la
publication du premier génome assemblé de Coenonympha arcania (Legeai et al.,
2024), à laquelle j’ai participé, ainsi que des premiers assemblages des trois autres
espèces. L’accès à ces génomes de haute qualité a été un élément crucial dans la
réalisation de cette partie de ma thèse, au cours de laquelle j’ai cherché à comparer
les génomes des quatres espèces de Coenonympha pour détecter des SVs entre les
espèces. J’ai pu tester différents outils basés sur alignement de lectures longues ou
sur alignement de génomes complets. Une grosse partie de la comparaison entre les
génomes de Coenonympha s’est concentrée sur la découverte de grandes inversions.

En utilisant une méthode basée sur alignement de génomes complets, j’ai
découvert et caractérisé 12 grandes inversions (≥ 100 kbp) entre les quatre espèces,
dont 2 on été détectées à l’état hétérozygote dans les génomes assemblés de C.
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cephalidarwiniana. L’analyse complémentaire des statistiques génétiques de données
populationnelles à l’intérieur de ces inversions, réalisée par nos collaborateurs sur
ce projet, suggère qu’au moins 3 inversions sont présentes à l’état hétérozygote
dans certaines populations de C. cephalidarwiniana, et que 5 inversions contiennent
des régions barrières au flux de gènes.

Analyse des motifs topologiques des inversions dans les graphes

de pangénomes

Après avoir identifié les grandes inversions chez les Coenonympha alpins avec
les approches classiques, j’ai voulu tester la possibilité de retrouver ces même
grandes inversions dans les graphes de pangénomes. Le graphe de pangénome
présente au moins deux avantages par rapport aux analyses basées sur génome de
référence dans le cas d’étude des papillons Coenonympha. Premièrement, il permet
de considérer les deux génomes d’espèces parentes sur un même pied d’égalité, plutôt
que devoir choisir arbitrairement l’un ou l’autre en tant que génome de référence.
Deuxièmement, il permet de comparer les inversions identifiées simultanément entre
les quatre génomes plutôt que de devoir comparer les six paires de génomes, ce qui
implique l’utilisation de plusieurs références et compléxifie la mise en commun des
jeux d’inversions identifiées pour chaque paire.

J’ai remarqué que la détection d’inversions à partir de la topologie des graphes
de pangénomes n’était pas immédiate avec les outils actuellement disponibles.
Contrairement à d’autres types de variants (SNPs, délétions, insertions), les grands
variants, et les inversions en particulier, sont plus difficiles à identifier à partir
de la taille des chemins des bulles uniquement. En réponse à cela, j’ai développé
une méthode et un outil, INVPG-annot, pour identifier les inversions parmi les
bulles d’un graphe de pangénome. J’ai détecté très peu des inversions Coenonympha
dans les graphes de pangénomes, ce qui m’a amené à concevoir plusieurs jeux de
données simulées afin d’identifier les causes réelles de cette absence de détection
des inversions. En testant mon outil sur des graphes de pangénomes construits
par les quatre outils de l’état de l’art sur les différents jeux de données simulées,
j’ai démontré que les outils diffèrent grandement dans leur façon et capacité à
représenter précisément les inversions.

Conclusion

Les travaux de cette thèse ont mené à la mise à disposition de deux outils (SVJedi-
graph et INVPG-annot), dont l’un a fait l’objet d’une publication dans le journal

vi



Conclusion RÉSUMÉ EN FRANÇAIS

Bioinformatics (Romain and Lemaitre, 2023) et dont l’autre a mené à l’écriture
d’un papier prochainement soumis (Romain et al., prepb).

SVJedi-graph est le premier outil de génotypage de SVs avec lectures longues
s’appuyant sur le modèle de graphe de variation. Cette nouvelle méthode a le
potentiel d’améliorer significativement la précision de génotypage dans les régions
riches en SVs.

En ce qui concerne la détection d’inversions entre génomes d’espèces différentes,
aucune des différentes stratégies testées ne s’est révélée idéale. La stratégie basée sur
génome de référence a fourni les résultats les plus complets (Romain et al., prepa),
mais présente des inconvénients pour la comparaison de plus de deux génomes
(traitement supplémentaire et conséquent des résultats). La stratégie basée sur
graphes de pangénomes permettrait d’éviter ces inconvénients, mais souffre encore
d’un manque d’outils pour identifier, analyser et exploiter correctement les grands
variants dans ce type de graphe.
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5 Thesis objectives 17

1 Preamble

This chapter presents the biological aspects and motives behind structural vari-
ants and their characterization (Section 2), and introduces the problems raised
surrounding their analysis (Section 3). Then, section 4 will focus on inversions and
how this type of structural variant can impact genomes and organisms in more
ways than other variant types, followed by the introduction of a key biological
model of the thesis, the alpine Coenonympha butterflies.

1



I INTRODUCTION Structural variants in genomes 2

2 Structural variants in genomes

DNA is the core component of life, carrying the genetic information for organism’s
development, growth and functions. It encodes the genome of an organism, which is
present in all of its cells (with few exceptions like human red blood cells). Although
all the cells of an organism inherit the same genome, which is a combination of half
of each parental genome, some genomic variations can appear between somatic cells
(i.e. non reproductive cells) during an organism’s life. Whether these variations
are caused by internal DNA-related molecular mechanisms or external factors (e.g.
mutagens), they can alter the function of genes and impair the proper functioning
of the cell. Depending on the genes affected, genomic variations can have an impact
well beyond a single cell. For example, an accumulation of mutations in genes
involved in cell-cycle control can lead to tumors and sometimes cancer.

This section introduces the concept and characteristics of genomes (2.1), needed
to comprehensively define genomic variants and structural variants in particular
(2.2), which are a category of genomic variants with heterogeneous sizes and types
(2.3) that can impact genomes and organisms in multiple ways (2.4).

2.1 What is a genome?

DNA is a large molecule made of two chains - called strands - of smaller components,
the nucleotides (nt). The genome designates the unique combination and order of
nucleotides found in an organism’s DNA, and can thus be transcribed as a sequence
on a four character alphabet {A, C, G, T}.

Genomes can be found at different orders of size in nature. The size of a
genome is generally said to be linked to the complexity of the organism; prokaryotes
(e.g. bacteria) have typically the smallest genomes among living organisms with
sizes ranging from 1 to 9 megabase pairs (Mbp) (Trevors, 1996), while eukaryotes
(e.g. animals, plants and fungi) have genome sizes ranging from 2.3 Mbp to 148.8
gigabase pairs (Gbp) (Hidalgo et al., 2017). This genome can be fully contained in
a single chromosome (i.e. a single DNA molecule) such as in bacteria, or spread
across multiple chromosomes, which is the case for more complex organisms and
larger genomes (e.g. animals and plants). For instance, the human genome is made
of 3.1 Gbp distributed between 23 chromosomes.

In eukaryotic organisms, most cells contain two copies of each chromosome
within an organelle called the nucleus, except for gametes, which contain only one
copy. Such organisms are described as diploid. In such diploid organims, the two
versions of a region that can exist at a particular locus are called alleles. Alleles
can vary slightly in their sequence of DNA bases, leading to different traits. A
locus is considered homozygous if it carries two copies of the same allele, and

2



2 Structural variants in genomes INTRODUCTION I

heterozygous if it carries two different alleles. At the population level, alleles are
distributed among individuals. A polymorphic locus can be bi-allelic if only two
versions of the sequence exist, or multi-allelic if more than two alleles are present.
However, some organisms have more than two sets of chromosomes, a condition
known as polyploidy. This is common in plants and can also occur in some animals.
Depending on the number of chromosome sets, these organisms are classified as
triploid (3n, with three copies of each chromosome), tetraploid (4n), or hexaploid
(6n).

2.2 What is a structural variant?

Genomic variants can be found at different scales. They can occur between somatic
cells in a single individual, or occur in reproductive cells. Any genomic variation
carried by reproductive cells can be transmitted to the progeny, in which case it
will be carried by all cells of the new organism, thus introducing genomic variation
between individuals in a population. Genomic variants are divided into several
categories mainly depending on their size. The most common type of variation is
Single-Nucleotide Polymorphism (SNP), with an average number of 4 million in
human genomes, which accounts for 79 % of the detected variants in this species
(Byrska-Bishop et al., 2022; Taylor et al., 2024). SNPs are small variations of 1
base pair (bp) that result from nucleotide substitution, caused by errors in the
DNA replication mechanism or induced under the effect of external mutagens such
as UV light.

On the other hand, structural variants (SVs) are genomic variants that affect
at least 50 bp 1. Although they are fewer in genomes compared to smaller variants,
they can affect a larger portion of genomes. For instance, the human genome
contains 25,000 to 35,000 SVs on average, which represents less than 1 % of the
detected variants, but the bases covered by SVs account for 83 % of the total variant
bases (Liao et al., 2023; Taylor et al., 2024). Collins et al. (2020) referenced and
classified all SVs identified in the human genome from a panel of ∼15,000 individuals.
Structural variants result from genomic rearrangements caused by double-stranded
breaks of the DNA that are not correctly repaired by homologous recombination.
These rearrangements introduce new sequence adjacencies in genomes where the
DNA breaks occurred (called breakpoints). The different versions of the genome
segments delimited by the breakpoints that can be found in a species are called
the alleles of the SV. These genomic rearrangements can result in portions of the
chromosomes being lost, duplicated, moved to another location and/or reoriented.

1The minimum length threshold of SVs is arbitrarily defined and may occasionally be found
set to 30 bp in the literature, though the most commonly accepted one is 50 bp.

3



I INTRODUCTION Structural variants in genomes 2

2.3 Types of structural variants

Structural variants are a variant category highly heterogeneous in size and type. The
type of a structural variant corresponds to the type of the associated rearrangement,
defined relatively to a chosen ’reference genome’. We can count five basic types,
namely deletion, insertion, inversion, duplication and translocation, illustrated in
Fig 1. As an example, a deletion describes a sequence sd between two breakpoints
being cut off the genome, creating a new adjacency between the sequences directly
preceding and following sd. The two possible alleles of this single deletion event
correspond to either the presence of the deletion (i.e. allele carrying the new
adjacency and missing sd) or the absence of the deletion (i.e. allele carrying sd,
which is the allele of the ’reference genome’). Some SV types, like insertion and
duplication, can be further characterized by the origin of the inserted sequence
(i.e. cut and paste insertion, novel element insertion) or the relative position of
the duplicated fragment (i.e. tandem duplication, interspersed duplication). There
can be occurrences where multiple types of rearrangements are combined and
form a complex SV with more than two breakpoints. An example of a complex
SV is illustrated in Figure 2, where a deletion event and an inversion event both
share a breakpoint with each other (BP2), resulting in a complex SV with three
breakpoints.

SVs can also be grouped in two categories depending on the resulting change
in genome content. SV types such as inversions and translocations do not induce
a change in genomic content, they are called balanced SVs. On the other hand,
deletions, insertions, duplications and repetitions either remove or add genomic
content, they are thus called unbalanced SVs. The concept of reference genome
to define SV types is crucial for unbalanced SVs, where it allows to differentiate
deletions from insertions.

2.4 Impacts of structural variants

While SVs are the least numerous category of variants in genomes - compared to
the more frequent single-nucleotide polymorphisms (SNPs) -, their size that can go
up to several Mbp makes them the more represented variants in terms of affected
base pairs in most genomes. Their impact depends on both their type and location.
Unbalanced SVs can modify the total genome size, a great example of which being
bursts of retrotransposons activity (that occur as copy-and-paste events) that have
been reported in several genus as a response to environmental stress (Belyayev,
2014). Regardless of genome size change, the main driver to study SVs is their
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■ Figure 1 – Basic types of structural variants. The two rows for each SV type
represent the alleles of the SV, with the upper one being the reference allele (’Ref.’).
Red boxes correspond to the genome portion between the SV breakpoints. Adapted
from Heller & Vingron (2019) Heller and Vingron (2019).

■ Figure 2 – Example of a complex SV. The deletion event shares a breakpoint with
the inversion event, producing a compound SV with three breakpoints. Illustration
borrowed from Mirus et al. (2024).

potential to affect the phenotype2 when located around genes or gene regulation loci

2The phenotype can be viewed as a combination of ’outer’ characteristics, by opposition
to the genotype which describes the ’inner’ genomic information. The phenotype of a cell can
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(i.e. genomic localization). Genes are loci that carry the genetic information that
has the potential to be expressed (i.e. translated into proteins, whose functions
play a role in the phenotype), and gene regulation loci control gene expression (e.g.
promoting expression, repressing expression). SVs that are located around gene
loci can result in the apparition of novel genes and gene functions (through gene
fusion or gene duplication) but can also result in gene loss. SVs located in the
vicinity of gene regulatory loci can on the other hand modify gene expression.

3 Methodological problems for variant analysis

Characterizing variants is done as two successive steps: the variants are first
discovered from one or a few sample genomes (i.e. variant calling), and then
quantified in populations (i.e. variant genotyping). These two tasks call on
bioinformatic problems such as whole-genome comparison and read mapping, which
are heavily impacted by the characteristics of the genomic sequences available (i.e.
sequence size and error rate).

3.1 Retrieving the sequence of a genome

3.1.1 Genome sequencing

In order to compare any set of genomes, one first need to get their sequence. The
first generation of DNA sequencing technology was Sanger sequencing Sanger et al.
(1977). Since then, high-throughput technological methods were developed, first
with second generation sequencing (also called Next-Generation Sequencing, NGS)
in the 2000s, then with third-generation sequencing (2008-2009). However, they
all show technical limitation on the maximum sequence length they can produce.
Indeed, genome sequencing requires preliminary fragmentation of the DNA into
smaller molecules, that are then converted into digital sequences called reads.

The characteristics of sequenced reads differ on three main aspects between the
(still evolving) technologies, that are the read length, the sequencing errors (both
error rate and type of errors), and the sequencing cost of the technology.

In practice, reads are mainly classified based on their length between short reads
produced by second-generation sequencing, that do not exceed a few hundreds of bp,
and long reads produced by third-generation sequencing, with an average size of tens
of thousand bp that can reach 1 Mbp for ONT ultra-long reads. Short reads display
a minimal sequencing error rate, that improved from 1% to under 0.1% for the

describe the cell type or functions. The phenotype of an organism can describe its morphological
or behavioral characteristics.
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widely used Illumina sequencing (with an average length of 150 bp), and have seen
their cost considerably reduced over the years, making them the most affordable to
produce. On the other hand, the earlier versions of long reads contained a higher
error rate, from 10 to 30% with the ONT and PacBio technologies, and were more
expensive to produce than short reads. This error rate was progressively decreased
with improvement of the technology, down to less than 1% with the latest PacBio
CCS (also known as PacBio HiFi) and the latest ONT flowcells, though the latest
technology comes with a higher cost. Although long reads are more expensive and
erroneous than short reads, they improve considerably the quality and completeness
of genome assemblies (see following Section 3.1.2) as they span more widely over
highly repetitive regions (tandem repeats, transposable elements), as well as SV
discovery and genotyping.

It is commonly done in practice to sequence genomes with a high enough se-
quencing depth (i.e. the average number of times any random base is sequenced) to
ensure that the occasional (and mostly random) sequencing errors are underrepres-
ented compared to the real sequence per genomic position. It is calculated as the
number of reads multiplied by the average read length and divided by the genome
length. A sequencing depth of 10 is expressed as 10X. It is an average estimate as
all regions of the genome are not guarantied to have the same sequencing depth.

3.1.2 Genome assembly

After sequencing and few data cleaning and read-corrections steps, the reads are
assembled to produce a genome. Genome assembly takes advantage of the fact that
the genome is not fragmented at the same location, thus producing reads whose
sequence overlap each other. Assembling a genome is done by finding overlaps
between read extremities and combining the overlapping sequences into larger
consensus sequences, called contigs. Some genomic regions are more difficult to
assemble, in particular highly repetitive regions (such as telomers and centromers,
i.e. chromosome extremities and chromosome centers), resulting in gaps in the
assembly, which explains why the number of contigs is usually higher than the
number of chromosomes in the genome. The contigs can be further ordered
and oriented to form larger sequences called scaffolds if complementary evidence
supports it (e.g. additional sets of larger reads, long range data such as Hi-C
or optical maps). A chromosome-level assembly is reached when the number of
scaffolds equals the number of chromosomes of the target genome.

De novo assembly, which is the task of genome assembly without relying on a
species reference genome as a guide, is the most reliable way to retain potential
rearrangements in the assembled genome. De novo assembly has been made
easier with long reads (Koren et al., 2017; Li and Durbin, 2024), which produce
longer overlaps between reads, and help increasing the contiguity of assemblies,
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in particular in repetitive genomic regions. A near-complete assembly can be
produced with long reads data, with a small number of gaps located in the most
challenging regions of the genome. For a heterozygous diploid genome, a so-called
primary haploid sequence is produced as the best representative consensus of the
two haploid sequences, but it may include switches between haplotypes and miss
genomic variants not carried by both of them. Nowadays, recent tools with high
quality long-reads data alone or complemented with parental data or Hi-C can
produce dual assembly pair, which aims to represent a pair of haploid genomes,
thus including all genomic variations and often used for pangenome construction
(see section 3.3.3) (Cheng et al., 2021; Li and Durbin, 2024).

3.2 Comparing genomes

Genomic sequences are traditionally compared using sequence alignment, either
between genome assemblies (i.e. whole-genome alignment), or between a set of
sequenced reads and a reference genome (i.e. read mapping). In the result of
a pairwise sequence alignment, the two sequences are put on top of each other.
Each nucleotide in both sequences is attributed a position in the alignment, while
retaining the nucleotide order that is given by the input sequences. The alignment
allows to identify where the sequences are identical (i.e. nucleotide matches),
where they vary through nucleotidic polymorphism (i.e. nucleotide mismatches),
and where they were offset by deletions or insertions (i.e. gaps). The number of
matches, mismatches and gaps is used to compute the score of the alignment. The
alignment score is obtained by attributing weights to matches (usually positive),
as well as to mismatches and gaps (usually negative) and calculating the weighted
sum.

There can be a multitude of possible alignments between two sequences, the
problem of sequence alignment is to find an optimal alignment that maximises
the alignment score. This problem is discussed in the context of whole-genome
alignment in Section 3.2.1. An additional problem for read mapping is to first find
the position of the read on the genome before performing the alignment, which is
discussed in Section 3.2.2. Lastly, we touch on how alignment is used for variant
calling, and the particular difficulty of structural variant calling compared to small
variant calling in Section 3.2.3.

3.2.1 From assemblies: whole-genome alignment

There are two alignment approaches, either trying to find an optimal alignment
covering the entirety of the input sequences - global alignment without rearrange-
ments -, or trying to find optimal alignments of portions of the input sequences -

8



3 Methodological problems for variant analysis INTRODUCTION I

local alignment -. Two well-known algorithms providing the exact solution cover
these two approaches using dynamic programming: Needleman-Wunsch algorithm
Needleman and Wunsch (1970) for global alignment, and Smith-Waterman al-
gorithm Smith and Waterman (1981) for local alignment. As rearrangements occur
between genomes, the collinearity is not respected and so genome comparison
through global alignment is not possible. WGA tools thus use the local alignment
strategy (Armstrong et al., 2019). The WGA problem has been a major drive in
the development of new strategies and tools over the years.

The first encountered limit for WGA has been its computing time. The exact
solution Smith-Waterman algorithm is too time consuming to be used with whole
genome sequences. Strategies using the principle of ’seed-and-extend ’ have been
developed in order to fasten the alignment speed. The seed-and-extend heuristic
avoids the computation of all possible alignments by first identifying seeds (i.e.
common words between the compared sequences). The seeds act as alignment
anchors, they produce a reduced number of alignment initialization. The seed
alignments are then extended on both of their extremities along the two sequences,
stopping when the alignment score reaches a fixed minimal value. This heuristic has
notably been used by BLAST, to fasten the search of sequence similarities among a
database (Altschul et al., 1990), and was re-employed by many genome-to-genome
and read-to-genome alignment tools such as MUMmer (Marçais et al., 2018), BLAT
(Kent, 2002) and Last (Kie lbasa et al., 2011).

However, the main problem of WGA is the unavoidable trade-off between
sensitivity (i.e. finding all the orthologous local alignments) and specificity (i.e.
avoiding spurious local alignments resulting mostly from repeats). A strategy
introduced to improve the specificity of WGA was chaining. The chaining of locally
collinear local alignments into larger synteny blocks allows to filter out spurious
alignments, while identifying homologous and rearrangement-free regions as well
as rearranged regions (Darling et al., 2004; Peng et al., 2009; Marçais et al., 2018;
Minkin and Medvedev, 2020).

3.2.2 From reads: read mapping

Because de novo genome assembly has been an arduous problem up until the arrival
of the latest generations of long-read sequencing technologies, genome comparison
has mostly been done by read mapping on a reference genome. The problem of read
mapping is two-fold: (1) each read must first be localized on the reference genome,
before being able to (2) identify the differences between the read sequence and the
reference genome sequence. Once again, seed-and-extend strategy was adopted for
the mapping of both short and long reads. However, as long reads contain more
sequencing errors than short reads, the size of the seeds used needs to be smaller,
which increases the number of spurious mappings caused by repeats. The main
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strategy used to try and overcome this limit is sketching (Sahlin et al., 2023). In
the context of read mapping, sketching compresses the information contained in
a read’s k-mer set into fingerprints representative of the read’s sequence. Several
sketching techniques have been developed, among which minimizers, which are
used by the popular sequence aligner and read mapper minimap2 (Li, 2018). Given
a window size w and a k -mer length k, a set of w consecutive k -mers is represented
by the k -mer with the minimal rank following a given ordering function (e.g.
lexicographical order), which becomes the minimizer of this window. Minimizers
and other sketching techniques have also the advantage of reducing the number of
anchors and thus accelerate the reads alignments. On top of this different seeding
strategy between short and long read mapping, long read mapping also comprises
a chaining step on the alignment anchors (Figure 3).

■ Figure 3 – Illustration of the short and long read mapping steps. From Sahlin et al.
(2023).

3.2.3 Variant calling and genotyping

Variant calling is traditionally done by aligning reads on a reference genome. Small
variants can then be discovered from mismatches or gaps within the resulting
alignments. For instance, single nucleotide polymorphisms (SNPs) can be called
from punctual mismatches at specific locations on the reference genome that are
shared between multiple reads. However, detecting structural variants is more
challenging because their size causes the reads to align in multiple segments on the
reference genome. It is the gaps and difference of alignment orientation between
these blocks that can indicate the presence and type of SVs, rather that the base
alignments of the reads. The specific SV calling methods are detailed in Section 1
of Chapter II.

Variant genotyping is the task of predicting the alleles carried by one or several
individuals for a given set of known variants. In a diploid genome, SVs have three
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possible genotypes. They can be present as two copies of the reference allele (i.e.
reference homozygous), two copies of the alternative allele (i.e. alternative homozyg-
ous), or one copy of each allele (i.e. heterozygous). The end goal of population-wide
genotyping (i.e. genotyping variants in a large number of individuals from a given
population) is to discover associations between variants and phenotypes. These
analyses are typically done using matrices representing the variants in lines and
the individuals in columns (or vice versa), and containing in each cell the genotype
of the given variant in the given individual. In this thesis, we will focus on SV
genotyping methods based on read mapping, that are presented in Section 2 of
Chapter II.

3.3 Representing the genomic variability

3.3.1 VCF and reference genome

For a long time, variants have been represented in a coordinate referential based on
a reference genome. The VCF format was dedicated to store all types of variants,
from SNPs to SVs (Danecek et al., 2011), and is the most prevalent format used
to this end. It is a tabulated format, reporting one variant per line, with each
column containing a designated information (e.g. reference chromosome, nucleotidic
position of the starting breakpoint, sequence of each allele). Its strength lies in its
wide versatility, as custom annotations can be reported using any custom tag, as
long as those tags are defined in the header of the file. Notably, the VCF format can
also store the genotype predictions of variants in sample genomes. An illustration
of the VCF format is presented in Figure 4.

While VCFs allow for an extensive description of variants (e.g. allelic frequencies
of SNPs, imprecision of SVs breakpoints), they condition the variant information
to be reported relatively to a single reference genome. Furthermore, even with
available knowledge on the genomic variability in a species, read mapping is still
constrained to be performed on a linear reference sequence. This approach is biased,
as it makes it difficult to identify variants that are absent from the reference but
shared by other individuals. This reference bias can limit the ability to discover
new variants in populations mildly distant to the reference genome used, and biases
the genotype inference towards the reference genotype.

3.3.2 Variation graphs

Variation graphs, as proposed by Garrison et al. (2018), were introduced to overcome
reference bias by representing the genome and its variants in a graph structure,
which can be used for mapping reads. Variation graphs are directional sequence
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■ Figure 4 – Illustration of the VCF format. (a) General organization of a VCF file.
The header lines contain the metadata of the file (e.g. reference genome, description
of the chromosomes) and the definition of the tags used in the body lines. The body
lines describe the variant entries, one line par variant. (b) Illustration of a deletion
and its representation in the VCF. SV entries use specific tags in the INFO field (here
”SVTYPE” and ”END”) which are not needed for SNPs or INDELs. Adapted from
Danecek et al. (2011).

graphs, their nodes are labeled with sequences, and their edges represent the
sequence adjacencies in genomes. They are built from a reference genome, whose
sequence is represented in its entirety in the graph, and a set of known variants,
represented as bubbles in the graph. The individual sequences can be reconstructed
by following the path in the graph including each individual node from its source
node to its sink node. At a variant site, a new walk is added, from the node
preceding the variant start position, to the node following the variant end position,
forming a bubble (Figure 5). The GFA format has been proposed as a standard to
store variation graphs to use among variation graph-based tools3.

The purpose of variation graphs is to improve read mapping, by representing
the genome sequence and its variability in a single data structure that can be
used as a base for mapping. Several mapping tools on such sequence graphs
have consequently been developed: Giraffe (Sirén et al., 2021) for short reads,
GraphAligner (Rautiainen and Marschall, 2020) and minigraph (Li et al., 2020) for
long reads. The results of sequence alignment on graphs are commonly stored in

3https://github.com/GFA-spec/GFA-spec
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■ Figure 5 – Illustration of a subset of variation graph. Adapted from Garrison et al.
(2018).

the GAF format4, derived from the PAF format, which is one of the formats used
for sequence alignment on linear reference.

3.3.3 Pangenome graphs

Pangenome graphs are the latest way of representing the variability in genomes
(Li et al., 2020; Hickey et al., 2024; Garrison et al., 2023). Their graph structure
is essentially the same as that of variation graphs, and they are also stored using
the GFA format. However, they are constructed from WGA over a collection of
entire genomes. As such, they can be constructed without prior knowledge on the
variants that are to be represented in the graph. This means that the completeness
and accuracy of the variants represented in the graph are not dependant on that
of SV discovery tools, and they can represent variants larger that what can be
detected from reads.

4 The special case of inversions

4.1 Inversions impacts and dynamics in genomes

Inversions are a type of SV characterized by the change of orientation of a chro-
mosomal fragment. They have been particularly studied in flies, where 8 large
inversions (of average size of 8.9 megabases) cover 43% of the Drosophila melano-
gaster genome (Kirkpatrick, 2010). As a whole, inversions appear to be generally
larger in size than other types of SVs, with a size that can reach several megabases
(Mb) in plants and animals (Wellenreuther and Bernatchez, 2018). Furthermore, in-
versions can impact genomes and populations in more ways than the more common
SV types of deletions and insertions. When inversions are in the heterozygous state
in a diploid genome (i.e. presence of both the ancestral and inverted alleles), a single

4https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment

-format-gaf
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crossover during meiosis within the inversion generates unbalanced gametes that
contain duplication and/or deletion. As a result, the effective rate of recombination
in such region is highly reduced. Thus, the spread or fixation of such underdom-
inant large inversions is likely driven by natural selection, suggesting that they
include genes related to adaptative traits (Kirkpatrick, 2010; Huang and Rieseberg,
2020; Berdan et al., 2023). This local impairment of recombination allows them
to ’capture’ and maintain new combinations of genes and loci. Large inversions
in particular, can capture more genes and so may have a higher probability of
capturing non neutral allelic combinations than small inversions (Wellenreuther
and Bernatchez, 2018).

At the evolutionary level, this reduced recombination rate between the two
alleles of an inversion can promote adaptation by maintaining advantageous allele
combinations, or even cause an accumulation of mutations leading to reproductive
isolation (Berdan et al., 2023). An extreme example of phenotypic polymorphism
related to inversions capturing specific allele combinations is supergenes, which
capture multiple phenotypic characters while maintaining balanced polymorphism
in the populations (Thompson and Jiggins, 2014). A great example of supergenes is
the P supergene of the Heliconius numata butterfly (Figure 6), which contains two
large inversions and is involved in locally-adaptated wing pattern polymorphism
(Joron et al., 2011).

Inversions, among genomic variants, have an exceptional potential to drive
the spread of advantageous or adaptive alleles and traits, introduce and maintain
phenotypic polymorphism, or even contribute to speciation in populations and
species. Still, it is important to note that most of the inversions rearrangement
events that occur in genomes are likely to have a deleterious impact and to be
counter-selected. It is those inversions that remain in genomes - those than can be
observed - that might influence the evolution of species, either under neutral or
advantageous selection.

4.2 Introduction of the alpine Coenonympha butterfly species

The alpine Coenonympha butterflies form a complex of four species spread along a
geographical and altitudinal gradient in the mountain chain of the Alps (Capblancq
et al., 2019). C. arcania (Pearly Heath) is most most widespread species of the
complex, found from sea level to elevations around 1,500 m and not restricted to
the Alps, while C. gardetta (Alpine Heath) typically occupies higher elevations of
more than 1,500 m in the Alps, the French Massif Central and the Balkans. The
two other species of the complex, C. darwiniana and C. cephalidarwiniana are
found at similarly high elevations to that of C. gardetta, but each of them occupy
a distinct geographic area where they replace C. gardetta (Figure 7).
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■ Figure 6 – Example of the Heliconius numata P supergene, and its associated wing
pattern polymorphism. The three combinations of alleles for the two inversions (BP0,
BP1, BP2) are each associated with specific wing patterns in the butterflies. Adapted
from Thompson and Jiggins (2014).

15



I INTRODUCTION The special case of inversions 4

cephalidarwiniana

C. cephalidarwiniana C. darwinianaC. arcania C. gardetta

■ Figure 7 – Morphology of the four alpine Coenonympha species and distribution
range of C. gardetta, C. cephalidarwiniana, and C. darwiniana. The range of the
fourth species, C. arcania (everywhere in Europe at low elevation, including the valleys
of the Alps) is not shown. Adapted from Capblancq et al. (2019). Photography
credits: Daniel Morel (C. arcania), Claire Hoddé (C. gardetta), Wolfgang Wagner (C.
cephalidarwiniana) and Matt Rowlings (C. darwiniana).

These four species are closely related. While the divergence between C. arcania
and C. gardetta is approximated to have happened around 1.5 to 4 million years
ago, C. darwiniana and C. cephalidarwiniana were found to most probably be
the product of hybridization between C. arcania and C. gardetta, that took place
around 10,000 to 20,000 years ago (Capblancq et al., 2015). Analysis of SNP data
identified the most probable scenario as that of an ancestral hybrid population that
underwent genetic differentiation into two hybrid lineages, currently in an advanced
stage of the hybrid speciation process (Capblancq et al., 2015, 2019). Although
they present strong genetic isolation with the parental species C. arcania, the two
hybrid species were observed to be interfertile with C. gardetta in contact zones
(i.e. where their geographical range overlap, shown in Figure 7) (Capblancq et al.,
2019).
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The genomic factors contributing to the speciation between the hybrid lineages
or to their adaptation to climatic and altitudinal conditions more similar to
one of the two parental species are still little-known. Analysing the genomic
rearrangements between these species could help bring new insights. However, past
studies (Capblancq et al., 2015, 2019, 2020; Després et al., 2019; Sherpa et al., 2022;
Kebäıli et al., 2023) mainly employed ddRAD-seq Illumina data and no genome
has yet been assembled for any of these species. The closest available genomes are
that of Coenonympha glyceryon (ENA project PRJEB71111), Maniola jurtina and
Pararge aegeria from the Darwin Tree of Life project (Lohse et al., 2021b,a).

5 Thesis objectives

This thesis is a research work on methods to discover, genotype and represent
SVs, and was guided by specific data (of the alpine Coenonympha butterflies) and
biological application. More specifically, the thesis objectives were to develop novel
methods to detect and genotype SVs making use of the new data structures that
are variation and pangenome graphs. This thesis is part of the DIVALPS project,
supported by the Agence Nationale de la Recherche (ANR), which takes interest in
the evolution history of the four alpine Coenonympha species and in the genetic and
genomic factors involved in this evolution. This biological model focused my work
on whole-genome comparison, in a context of non model, inter-specific genomes.
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II State of the Art

The aim of this chapter is to present the methods that have been developed to
this day to characterize structural variants in populations. This characterization
can be divided into two distinct problems, namely variant discovery and variant
genotyping, to each has been dedicated a section of this chapter. The third section
of this chapter focuses on pangenome graphs, the currently available methods to
construct them and how they can be used to characterize structural variants.
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1 Structural variant discovery

1.1 From sequencing reads to genome assemblies

Identifying structural variants in Whole Genome Sequencing (WGS) samples
involves aligning the sample’s genomic sequence to a reference genome. This
alignment can be performed either directly using the raw reads (e.g. short or long
reads) or after assembling the reads into contigs. Before the era of PacBio High
Fidelity (HiFi) sequencing, SV discovery was mainly done by read mapping, as de
novo genome assembly was challenging due to the small length of short reads (i.e.
Illumina) or the high error rate of long reads, and either way required significant
computational resources.

A key factor in SV discovery is the length of the sequence fragments used. SVs
are more likely to be detected if the sample’s sequence spans their entire length,
and longer sequences can map with higher accuracy on repetitive regions of the
genome. Repetitive sequences (repeats), which are for the most part SVs, occupy
a large portion of many eukaryote genomes (e.g. 50% of the human genome) and
are a major obstacle in SV discovery, particularly with short reads whose length
is smaller than most genomic repeats. Moreover, between 80% and 90% of the
deletions and the insertions identified by long reads in the human genome are
localized in regions with a repetitive context (Zhao et al., 2021; Chaisson et al.,
2019; Delage et al., 2020). Consequently, the improvement in SV discovery brought
by the introduction of long read sequencing technologies has been unanimously
observed in the literature (Mahmoud et al., 2019; Zook et al., 2020; Zhao et al., 2021;
Audano et al., 2019; Delage et al., 2020), both through an increase of the discovery
rate (recall) and a decrease of the false positive rate (i.e. increase of precision).
In their review of SV discovery methods, Mahmoud et al. (2019) show that long
reads increased the number of discovered SVs by at least two-fold compared to
short reads in several genome models (Fig. 8). Improvement of SV discovery recall
with long reads over short reads is also particularly marked for insertions, where
short read data was able to detect less than a third of the insertions called by long
reads and generally do not resolve their complete sequences (Delage et al., 2020).

The most popular (though not exhaustive) tools for SV discovery based on
long read mapping are PBSV 1, Sniffles (Sedlazeck et al., 2018; Smolka et al.,
2024), SVIM (Heller and Vingron, 2019), and cuteSV (Jiang et al., 2022). The
general method of SV discovery with long (and short) reads consists in finding SV
signatures in the mapping of the reads on the reference genome. SV signatures are
heavily based on split reads, where two (or more) consecutive portions of a read
map disjointedly on the reference. The distance and orientation between these

1https://github.com/PacificBiosciences/pbsv
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■ Figure 8 – SV discovery performances of short and long read sequencing. This
figure shows the increase of discovered number of SVs from short to long read calling
observed in different studies. Adapted from Mahmoud et al. (2019)

disjoint mappings can differentiate between multiple SV types, as illustrated in Fig.
9. For instance, a change of orientation across split mappings is a signature for an
inversion event, while a gap between split mappings is a signature for a deletion
event. Usually, more than one read provide mapping signature for a single SV,
and sequencing errors can produce SV signatures with erroneous positions. This
generates redundancy in the set of signatures leading to imprecise SV calls. In
order to correct this, all SV-caller using long-reads have a clustering step which
merges the signatures based on the type, position, and length of the corresponding
SVs. Interestingly, the read mapper impacts the recall and precision of the SV
discovery with long reads. Liu et al. (2024) demonstrated that the best results
are obtained with specific mapping-discovery pipelines, and that these preferential
pipelines differ depending on the SV type. For instance, the long-read mappers
winnowmap (Jain et al., 2022) and minimap2 (Li, 2018) combined with cuteSV
or Sniffles produce the best results for the discovery of deletions, while NGMLR
(Sedlazeck et al., 2018) and pbmm22 combined with SVIM or SVision (Lin et al.,
2022) produce the best results for the discovery of inversions.

More recently, alternative approaches based on deep-learning or alignment-free
were developed. For instance, SVision (Lin et al., 2022) converts the read mappings

2https://github.com/PacificBiosciences/pbmm2
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■ Figure 9 – SV signatures used for SV discovery with short and long reads. From
Mahmoud et al. (2019).

on the reference genome into graphical representation, that can be analyzed by a
deep-learning architecture trained to recognized the different variant types from the
mapping pattern of the reads. Because the alignment-based methods are mostly
developed and tested on human data, and are highly dependant on the quality
of the read alignments, alignment-free approach such as SVDSS (Denti et al.,
2023) have been developed. SVDSS improves SV discovery in repetitive regions of
genomes In short, SVDSS identifies sample-specific strings in two sets of reads to
infer the unique sequence adjacencies denoting SV breakpoints.

1.2 Methods for SV discovery from de novo assemblies

While long reads indeed brought an improvement for SV discovery, some SVs still
exceed the size of long reads, and large insertions and complex SVs can still be
challenging to discover. Thanks to the recent decrease of long read sequencing error
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rates (e.g. PacBio CCS) and the development of new long-read assembly tools
with decreased runtime (Koren et al. (2017); Cheng et al. (2021)) has rendered
de novo assembly more accessible. With the achievment of high quality reads
(i.e. HiFi reads), ultra-long and Hi-C reads, and the development of new software,
de-novo chromosome-level assembly is more accessible with decreased runtime
(Koren et al., 2017; Cheng et al., 2021; Li and Durbin, 2024). Whole genome
comparison can thus now be used more routinely for SV discovery, the assembly
contigs acting as even longer reads with less erroneous bases. The higher base-level
accuracy of assemblies compared to long reads allows for more precise inference
of SV breakpoints, and their greater length improves the discovery of large-scale
rearrangements in genomes and does not require a clustering step (Ahsan et al.,
2023). However, haplotype-resolved (phased) assemblies can still be challenging
to produce for highly heterozygous or polyploid genomes. This poses a problem
for the discovery of heterozygous SVs, as for each variant, the allele included in
an unphased (haploid) assemblies is arbitrary. Overall, half of the heterozygous
variants are lost when called on unphased assemblies of diploid genomes.

1.2.1 Whole-genome alignment

Discovering SVs from assembly alignment introduces the problems of whole-genome
alignment (WGA) described in section 3.2.1. At this day, there are many WGA
tools available, catering for different applications (e.g. intra-species comparison
with minimap2 (Li, 2018), nucmer from the MUMmer suite (Marçais et al., 2018)
or GSAlign (Lin and Hsu, 2020); inter-species comparison with ProgressiveCactus
(Armstrong et al., 2020) or AnchorWave (Song et al., 2022)). Historically, WGA
tools were designed for the comparison of highly divergent, inter-specific genomes.
In such context, identifying precise breakpoints and/or SVs was not possible or
needed. As such, these inter-specific WGA tools, as well as the more recent intra-
specific WGA tools, output pairwise alignments or synteny blocks, but not a list of
characterized SVs.

That is why a series of tools have been developed to characterize variants from
WGA, described in section 1.2.2. These tools advise the use of two specific sequence
aligners, Minimap2 and nucmer. Both of these tools perform local alignment and
collinear chaining. Minimap2 extracts the minimizers of the input sequences and
uses them to find anchors (i.e. exact matches) on the reference sequence for each
query sequence. Collinear anchors are combined into chains and gaps between
adjacent anchors are closed by alignment extension through dynamic programming.
Minimap2 has different presets of parameters adapted to different query types (e.g.
long reads, assembly) and to different nucleotidic divergence levels (e.g. 0.05%,
0.1%), though it is primarily intended to be used for same-species alignment.

Although the transition from read-based to assembly-based SV discovery opened
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the door to inter-species genome comparison, one of the current limits of assembly-
based SV discovery is that these tools are all designed to work with aligners mainly
suited for the intra-species scale.

SibeliaZ. SibeliaZ (Minkin and Medvedev, 2020) finds homologous sequences by
constructing a de Bruijn graph from the input sequences and finding “carrying
paths” in the graph, which are defined as paths that go through the most frequently
visited vertices. Its interesting feature is the output of homology blocks and their
order in the input genomes. These blocks can be chained into larger synteny blocks
using its companion tool maf2synteny (Kolmogorov et al., 2018). Although there
is currently no automatized method to analyze these synteny blocks to discover
SVs, it is a promising avenue to discover large scale rearrangements (e.g. large
inversions) between genomes whose divergence is higher than what is handled by
minimap2 or nucmer.

1.2.2 Assembly-based SV discovery tools

Assembly-based SV discovery tools employ a similar approach as that from long
reads-based discovery tools. Alignments of the assembled contigs of the sample
against the reference genome are analyzed in search of variant signatures. For
instance, gaps in the alignment can reflect the presence of deletions or insertions,
split alignments with a change of alignment orientation can reflect inversions, and
scattered alignments of a contig against two reference chromosomes can reflect
translocations. The majority of state of the art tools (Assemblytics (Nattestad and
Schatz, 2016), SyRI (Goel et al., 2019) and SVIM-asm (Heller and Vingron, 2020))
take WGA as input, requiring the genomes to be pre-aligned using minimap2 (Li,
2018) or nucmer (Marçais et al., 2018). MUM&Co (O’donnell and Fischer, 2020)
performs genome alignment internally, using nucmer, and thus directly takes the
two genome sequences as input. Aside from their shared approach of signature
search, state of the art methods each present particularities of their own.

Assemblytics. Assemblytics exclusively takes alignments output in the nucmer-
specific format. Its method starts by filtering the input alignments, only keeping
alignments with at least a minimum amount of unique contig sequence anchor (10
kilobase pairs by default) that are found in no other alignment of the considered
contig. Then, each pair of consecutive alignment along a sample contig is analyzed,
the spacing and orientation between the two alignments determining the presence
of variants and their type. Assemblytics can discover deletions and insertions
of 1 bp to 10 kbp, as well as tandem and repeat expansions (i.e. insertions in
tandem or repeat regions) and contractions (i.e. deletions in tandem or repeat
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regions). Assemblytics is available as a web application and outputs the discovered
variants in a BED file format. It also provides plots of variant size distribution and
interactive visualizations of the alignments.

MUM&Co. MUM&Co performs a reciprocal alignment of the input genomes
using the nucmer function of nucmer. From the alignments, it associates query
contigs to reference chromosomes by identifying a subset of the most accurate,
non-overlapping alignments, and identifies putative SVs from alignment signatures.
Then it filters false-positives using the reciprocal whole-genome alignment and an
inferred global-like alignment using the ’global’ filter of the MUMmer suite (Marçais
et al., 2018). For example, both query-to-reference and reference-to-query global
alignments should display a gap that matches the positions of a putative inversion.
MUM&Co also comes with a unique feature to optionally annotate mobile or novel
genetic elements among insertions and deletions. A minor drawback of the tool
is that it outputs the SVs in a tool-specific tabulated file format, instead of the
commonly used VCF file format.

SVIM-asm. SVIM-asm is a tool derived from the long-read based SV discovery tool
SVIM (Heller and Vingron, 2019). It employs the same method of signature search
among input alignments. It provides the advantageous feature of handling phased
diploid assemblies in addition to haploid assemblies. When given alignments from
a diploid sample assembly, it discovers SVs independently for each haplotype, and
then clusters SV calls from both haplotypes to infer a genotype to the discovered
SVs.

SyRI. SyRI performs variant discovery in two hierarchical steps. It first constructs
a graph from all forward alignments between a pair of homologous chromosomes,
and then tries to identity the longest subset of syntenic aligned regions between
the two extremities of the chromosome. The identified syntenic regions in turn
designate the remaining, non-syntenic, regions as structural rearrangements. The
rearrangements can then be annotated as inversions, translocations or duplications
based on their alignment signatures. Its second step is to identify the smaller
SVs (deletions, insertions, CNVs), indels and SNPs in both the syntenic and
rearranged regions. All rearrangements and associated smaller variants are then
output in a VCF file. One of the originalities of the tool is that it annotates
the breakpoint positions of variants in both the reference genome and the sample
genome. The other is its hierarchical take on variant discovery (i.e. first identifying
rearrangements, then identifying small variants inside these rearrangements), which
the authors argue is beneficial for downstream analyses, as variants inside structural
rearrangements do not follow the same inheritance dynamics as variants in regular
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regions of the genome. The drawback of the method compared to others is its need
for a chromosome-level contiguity quality for both compared genomes.

From a user point of view, the tools differ mainly on the types and sizes of SV
they are able to discover (Tab. 1).

■ Table 1 – Comparison of state of the art assembly-based SV discovery tools. For
each tool are indicated the types of SV handled, whether the tool also reports small
variants, the maximum size of reported SVs, the mandatory or preferred aligner for
the tool and the output format. INS: insertions, DEL: deletions, DUP: duplications,
TANDEM DUP: tandem duplications, TANDEM: tandem expansions and contractions,
REPEAT: repeat expansions and contractions, INV: inversions, BND: translocations,
CNV: copy number variants.

Tool SV types Small variants Max. size Aligner

Assemblytics INS, DEL, TANDEM, REPEAT indels 10 kb nucmer
SyRI INS, DEL, DUP, INV, BND, CNV SNPs, indels none nucmer or minimap2

MUM&Co INS, DEL, TANDEM DUP, INV, BND no none nucmer
SVIM-asm INS, DEL, DUP, INV, BND no none minimap2

2 Structural variant genotyping with long reads

SV genotyping involves analyzing a set of reads from an individual or a group of
individuals. The goal is to determine the genotype at each variant position (i.e.,
which allele is present in the sample) with a confidence level that depends on the
depth of coverage. While short read data is still used for large-scale population SV
genotyping due to its lower cost, the benefits of long read data for SV discovery
presented in Section 1.1 also apply to SV genotyping as most genotyping methods
are also based on read mapping.

Population-wide genotyping is more efficient when performed for a fixed preset
of SVs across a collection of resequencing samples, without having to first scan
blindly the whole genome for each sample. So, the popular discovery tools Sniffles
and cuteSV adapted their genotyping module to provide a ’force-calling’ mode
(i.e. standalone genotyping mode), and various tools specifically dedicated to SV
genotyping with long reads were developed: VaPoR (Zhao et al., 2017), LRcaller
(Beyter et al., 2021), SVJedi (Lecompte et al., 2020).

2.1 General strategy for structural variant genotyping

The general strategy to genotype a set of SVs from long reads, common among state
of the art tools, is to make count of the reads that support each described allele,
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for each SV. To this end, the long reads are first mapped to a reference genome.
Then, alignments of reads for in the vicinity of each SV are selected. The selected
reads can then be partitioned between the reads supporting the reference allele
and the reads supporting the alternative allele(s). From the read count in each
partition, the methods (at the exception of the former version of Sniffles, Sedlazeck
et al. (2018)) calculate the likelihood for each potential genotype and identify the
genotype with the highest likelihood as the predicted result. The output is a VCF
file containing the input SV description with added fields reporting the predicted
genotype and additional scores and statistics pertaining to the genotyping quality
and confidence. The accuracy of the predicted genotypes relies on the accurate
count of allele supporting reads. An accurate count implies an equal chance of the
read mappings to reflect both the reference and alternative alleles, which creates
an issue when the reads are aligned to a linear genome reference, meaning only the
reference allele. State of the art methods primarily differ by their read selection and
partitioning strategy. Table 2 synthesizes the common and differing characteristics
and approaches of the long-read based SV genotyping tools, which are further
detailed in Section 2.2.

■ Table 2 – Overview of the main method differences between long-read mapping-
based SV genotyping tools. The ”read selection” and ”read count” columns denote
the allele sequence to which the reads are compared at each of the two steps. ”Ref
only” means that reads are selected/counted based on their mapping to the reference
allele only. ”Ref + alt” means that the reads are selected/counted based on their
mapping/comparison to both the reference and alternative alleles.

Tool Genotyping mode Read selection Read count Ref.

Sniffles force-calling ref only ref only
Sedlazeck et al. (2018);

Smolka et al. (2024)
cuteSV force-calling ref only ref only Jiang et al. (2022)
VaPoR dedicated ref only ref + alt Zhao et al. (2017)
SVJedi dedicated ref + alt ref + alt Lecompte et al. (2020)

LRcaller dedicated ref only ref + alt Beyter et al. (2021)

2.2 Two categories of long-read genotyping tools

2.2.1 ’Force-calling’ genotyping with discovery tools

The force-calling approach is proposed by discovery tools - Sniffles (Sedlazeck et al.,
2018; Smolka et al., 2024) and cuteSV (Jiang et al., 2022) - to genotype SVs from a
fixed set given as input. The screening for variant signatures, part of the discovery
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(calling) step, is performed at genomic locations targeted by the input SVs position
rather than on the whole genome. The tools require preliminary mapping and
alignment of the reads against the reference genome, provided as a BAM formatted
file. The reads that map on SV positions on the reference genome are selected,
and their alignment to the reference are analyzed to identify SV signatures (e.g.
from split read alignments). The force-calling method is not further described in
the corresponding papers or documentation. We assume that it reuses the method
of their regular discovery-genotyping mode, where reads are clustered based on
their signature characteristics (i.e. positions of the signature, putative type of
SV). Reads bearing a given SV signature are then counted as reads supporting the
alternative allele of this SV, while reads with no signature (i.e. reads that match
the reference at the SV location) are counted as reads supporting the reference
allele.

2.2.2 Genotyping-dedicated tools

There are three tools dedicated to SV genotyping with long reads: VaPoR (Zhao
et al., 2017), LRcaller (Beyter et al., 2021) and SVJedi (Lecompte et al., 2020).
VaPoR and LRcaller, as Sniffles and cuteSV, take a BAM file of the alignment of
the reads to the reference genome and a set of described SVs as input. However,
instead of partitioning the reads based on their alignment to the reference only,
they represent both reference and alternative alleles for each SV of the input set,
and compare the sequence of the selected reads to the sequence of the represented
alleles.

VaPoR. VaPoR compares the sequence of each selected read to both the reference
and alternative alleles using an alignment-free method. It uses fixed-sized words
(by default 10 bp) to construct one dot-plot per allele (i.e. matrices with one axis
representing the position on the read, and the other axis representing the position
on the reference or alternative allele), where a dot represents an identical k-mer in
both sequences. Then, for each allele, a similarity score is calculated by summing
the distances of identical k-mers to the dotplot diagonal (which represents a perfect
sequence match between the read and the allele). Finally, the reads are assigned to
the allele with which they have the highest similarity score.

LRcaller. LRcaller considers each SV breakpoint separately. It extracts the se-
quence contained in a 1kb window centered around a given breakpoint for both
the reference and alternative alleles. The selected reads are cropped based on their
alignment to the reference genome, so that the obtained sequence is contained in the
breakpoint window. The cropped reads are then aligned to both allele breakpoint
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sequences using the global alignment function of SeqAn (Döring et al., 2008), and
assigned to the allele with which they have the highest similarity score. LRcaller
also proposes three other genotyping methods that assign reads to alleles based
on an alignment distance against the reference sequence of the SV breakpoints,
computed from the input alignment to the reference. A final genotyping method
combines both approaches of re-alignment to the allele sequences and distance to
the reference.

SVJedi. On the other hand, the reads selection of SVJedi does not rely on a
preliminary step of read mapping to the reference genome. It takes as input the
original sample of long reads, along with a VCF describing the SVs and the sequence
of the reference genome. SVJedi first represents the sequence of the reference and
alternative alleles for each SV, using a window extending 5 kb over the breakpoint
positions. It then maps the long reads to the collection of allele sequences for
the whole SV set using minimap2 (Li, 2018). This mapping approach acts as a
preliminary selection and partitioning of the reads. The reads are further selected
to ensure that they provide confident information on the genotype, by requiring
their alignment to cover a 200 bp window centered around the breakpoint position
and to have a minimum mapping score (MAPQ).

2.3 Current limits of structural variant genotyping

Reference bias. A predominant limit of most SV genotyping methods is the
reference-bias of the genotype inference introduced by the preliminary read-mapping
to the reference genome. It is particularly the case for the force-calling approach,
where alternative allele-supporting reads are inferred purely based on their alignment
to the reference genome. While VaPoR and LRcaller methods limit this bias by
realigning the reads to both reference and alternative alleles sequences for the read
partition, the initial information of the mapping location of reads is still given by
the read mapping to the reference only. Meaning that there may be reads that
inherently support the alternative alleles of SV in the sequenced sample ending
up unused for the genotype inference because they are unmapped or inaccurately
mapped on the reference genome during the first step. This issue is fully tackled
by SVJedi by mapping reads directly to both alleles, ensuring an equal weight of
both alleles in the read selection and count process.

Close and overlapping SVs. The linear representation of SV alleles performed by
SVJedi, as well as VaPoR and LRcaller, presents its own limit. In the case of
genomic regions harbouring close or overlapping SVs, the accurate representation
of each individual SV alleles is not trivial, as it ideally should take into account all

29



II STATE OF THE ART Pangenome graphs 3

possible combinations of neighbouring SV alleles. Additionally, the length of the
window’s overrun at each side of the SV’s breakpoints in the allele representation
can greatly impact the mappability of informative reads, but an optimal value
for this parameter is difficult to determine. An intuitive solution to this issue
is to move from a linear to a graph-based representation, such as the variation
graph data structure introduced by Paten et al. (2017) and Garrison et al. (2018).
Currently, the use of a variation graph to represent SV alleles has been developed
for variant genotyping in Paragraph (Chen et al., 2019), graphTyper2 (Eggertsson
et al., 2019), the latest Giraffe (Sirén et al., 2021), and PanGenie (Ebler et al.,
2022). These four tools all use short reads to infer genotypes, and there is no
variation graph-based genotyping tool using long reads.

3 Pangenome graphs: a new era for the charac-
terization of SVs

It is now accepted by the community that the traditional linear representation of
reference genomes induces an issue of reference-bias for SV discovery and genotyping.
Whether they represent one individual, or even one mosäıc haplotype, they lack in
representing the genome variability of species needed to obtain an optimal mapping
of re-sequencing data.

A solution to overcome this limitation was proposed in the form of variation
graphs. Although the idea of comparing genomes through graphs was already in
place with Cactus (Paten et al., 2011), the task of multiple genome alignment over
a large collection of genomes is computationally intensive. This computational cost
was reduced by the use of trees to guide the genome alignments in Progressive
Cactus (Armstrong et al., 2020), but this made it unsuitable to use as a way
to represent intra-specific diversity, as there is not a single tree that can reflect
the evolution history of the whole genome. Variation graphs, first introduced
by Garrison et al. (2018) with their VG toolkit, are sequence graphs aiming to
represent the full sequence variability in the genomes of a species. VG achieved
a fast graph construction by building its graph from one input reference genome
and a given VCF set of known variants. This idea was quickly followed by the
introduction of pangenome graphs (Li et al., 2020; Garrison et al., 2023; Hickey
et al., 2024), which are a type of variation graph built directly from a collection of
genomes through whole genome alignment. The current pangenome graph tools
employ different strategies to construct a graph while avoiding the cost of multiple
genome alignment. They are described in Section 3.2.

Variation graphs and pangenome graphs were shown to improve mapping and
SNP calling with short reads (Garrison et al., 2018; Hickey et al., 2024), allowing
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the discovery of new genomic variants in populations and a higher quality of SV
genotyping.

3.1 Advantages of pangenome graphs over variation graphs

The key difference between pangenome graphs and variation graphs (i.e. graphs
built with VG toolkit) is their input requirement. While variation graphs are faster
to construct because they do not perform whole genome alignment, the accuracy
and completeness of the genomic variation they include depend directly on the
quality of the provided VCF. Additionally, variation graphs are still subject to
the issue of reference bias, as they can not represent a variant in a region absent
from the reference genome (e.g. in an insertion). Pangenome graphs on the other
hand, by aligning multiple genomes rather than relying on an input VCF, are not
troubled with the issue of SV caller-induced false positives or false negatives, nor
with the problem of multi-sample VCF merging.

The past few years have seen an increasing use of pangenome graphs to study
SVs in various species such as wheat, human, chicken, cow, grape or pig (Bayer
et al., 2022; Liao et al., 2023; Rice et al., 2023; Jang et al., 2023; Cochetel et al.,
2023; Miao et al., 2024).

3.2 Pangenome graph construction

The different pangenome graph constructing tools, namely Minigraph (Li et al.,
2020), Minigraph-Cactus (Hickey et al., 2024), and PGGB (Garrison et al., 2023),
all rely on whole genome alignment. However, they have significant differences in
their approach to represent the variants and to construct the graphs. For instance,
Minigraph and Minigraph-Cactus rely on a user-designated reference-genome to
guide the structure of the graph, while PGGB aims to construct a reference-free
graph. However, they all take a collection of genomes as input and output a graph
in the GFA format.

Minigraph. Minigraph borrowed the minimizer mapping approach from minimap2
(Li, 2018) and enhanced it to map sequence on a graph. From the alignments,
Minigraph is able to produce a new graph including new variants. In order to
construct a pangenome graph from scratch with a collection of genomes, it first
initializes the graph from the alignment of a first sample genome to the designated
reference genome. It then updates the graph iteratively with each remaining sample
genome. For the purpose of efficient read mapping, Minigraph only considers SVs
from 100 bp to 100 kbp and tries to keep the final graph as linearized as possible.
Moreover, it is suited for intra-specific or closely related genomes comparison.
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An interesting feature of Minigraph is its usability for long read mapping to a
pangenome graph.

Minigraph-Cactus. Minigraph-Cactus is based on the combination of Minigraph
and the multiple genome comparative tool Progressive Cactus (Armstrong et al.,
2020). Its pipeline can be summarized in three main steps. Firstly, the backbone
of the graph is constructed with Minigraph. Secondly, the genomes are realigned
to the graph using the Minigraph mapper and Progressive Cactus, which allows to
locally identify and add smaller variants to the graph. Finally, the graph is polished
and unmapped segments are removed. In addition to the GFA file containing the
graph, Minigraph-Cactus also outputs a VCF containing the variants represented
in the graph using vg deconstruct (Liao et al., 2023). As Minigraph, Minigraph-
Cactus is mainly intended to construct intra-species pangenome graphs. The
release of Minigraph-Cactus also came with a module to convert the Progressive
Cactus output file into a pangenome-like graph in GFA format. This allows for the
construction of inter-species pangenome graphs, as Progressive Cactus is mainly
intended for the comparison of divergent species, using a species tree to guide the
multiple genome alignments.

Pangenome Graph Builder (PGGB). In order to produce an ’unbiased’ pangenome
graph, the PGGB pipeline performs n ∗ n − 1 pairwise genome alignments with
the n input genomes using the wfmash aligner3. It then uses seqwish (Garrison
and Guarracino, 2023) to transform the collection of pairwise alignments into a
multiple alignment, which it then translates into a variation graph. This graph un-
dergoes two polishing steps, in order to smooth the graph and remove the sequence
redundancy. Like Minigraph-Cactus, PGGB outputs a VCF reporting the variants
in the graph using vg deconstruct (Liao et al., 2023).

Both Minigraph-Cactus and PGGB represent all variant sizes (SNPs, indels,
SVs) in their graph. They are heavy pipelines comprising many steps, some of
which are very little described (e.g. the smoothxg tool4 used in one of the graph
polishing step of PGGB). Furthermore, they are quickly evolving, so much as so the
version of their pipelines described in their respective papers is already outdated.

3.3 Structural variants in pangenome graphs

Detecting the variants represented in pangenome graphs comes down to finding
’bubbles’ in the graphs. Detecting bubbles in graphs has been a question since

3https://github.com/waveygang/wfmash
4https://github.com/pangenome/smoothxg
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before the advent of pangenome graphs (Dabbaghie et al., 2022). However, as
pangenome graphs are novel types of graphs with a notably high number of bubbles,
and as variant bubble detection calls for specific information about the bubbles (e.g.
base position of the bubbles in the genomes), dedicated tools for bubble detection
in pangenome graphs were developed.

VG deconstruct. VG deconstruct (Liao et al., 2023) reports variant bubbles in
a VCF format, described with the standard variant information found in VCFs
(e.g. base position relative to a chosen reference, sequence of alleles) along with
graph-specific information (e.g. identifiers of the nodes contained in the bubbles,
path of the sample genomes through the bubbles). As vg deconstruct reports all
variant bubbles, its output VCF files contain small variants along with the SVs if
represented in the input pangenome graph.

Gfatools. Gfatools (Li, 2019) reports variant bubbles in a BED format, described
by their base position relative to a chosen reference, their base and node lengths.
Gfatools only accepts a specific version of the GFA format (rGFA), which is only
produced by minigraph.

VG deconstruct and Gfatools have indeed been applied to characterize variants
in bovine (Leonard et al., 2023), wild grape (Cochetel et al., 2023) and human
(Liao et al., 2023) pangenome graphs studies. Unfortunately, the methods of the
tools can not be compared, as neither tool provides a description of their bubble
detection method.

3.4 Current limits of SV characterization in pangenome graphs

Annotation of SV type. Although vg deconstruct and gfatools detect the SVs
bubbles in pangenome graphs, they do not annotate the variant type of the bubbles.
While recognizing SNP bubbles can be pretty straightforward, as they are expected
to have exclusively 1 bp path lengths, discriminating between different types of
SVs and non-SV bubbles (i.e. bubbles resulting from highly divergent regions
difficult to align) is not immediate. Two tools, vcfbub and vcfwave, from the vcflib
suite (Garrison et al., 2022), perform variant annotation on graph-produced VCFs.
Vcfbub unravels the nested bubbles from an input VCF to only keep the highest
level variants, and vcfwave realigns the variant alternative alleles to the reference
allele to annotate the variants - with their type - contained in the higher level
bubbles.
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SV genotyping from re-sequencing samples. The pipelines of Minigraph-Cactus and
PGGB can output the genotypes of the detected SVs for the genomes contained in
the graph. However, genotyping the SVs in populations sequenced with short and
long reads and directly mapped on a pangenome graph is also required. Pangenie
(Ebler et al., 2022) is a mapping-free variant genotyper with short-reads, that is
able to use a VCF obtained from vg deconstruct. Giraffe (Sirén et al., 2021) is a
read mapper on variation graph, and was also reported to perform SV genotyping
in Ebler et al. (2022) and Liao et al. (2023) papers, but the corresponding method
has not yet been described or published.
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1 Introduction

During the beginning of my thesis, I worked on the question of long-read SV
genotyping using a type of sequence graph, the variation graph, to represent the
genome along with the alternative alleles of the SVs. The long read sequencing
data of the Coenonympha butterflies were not yet available at this time, but graphs
seemed like an appealing approach to compare the Coenonympha genomes, as it
did not require to choose a reference genome between the two parental species.
This work thus allowed me to explore how SVs could be represented in such graphs,
in addition to resolving the limit of close SV genotyping identified in the state of
the art and in particular in SVJedi, a tool developed by my team.

As mentioned in Chapter II (Section 1.1), the advent of long read sequencing
technologies revolutionized the detection of SVs in genomes, improving both its
recall and its accuracy. This brought back to light their contribution to genetic
diversity, and their association to phenotypic variability, species adaptation and
evolution, and clinical disorders. When analyzing and comparing SVs between
individuals, a crucial problem is their accurate genotyping. All state of the art
methods dedicated to SV genotyping with long-read data are limited either by
their unequal representation of the different SV alleles leading to a reference-bias,
or by their linear representation of the alleles hindering the genotyping of close or
overlapping SVs. In response to this, I developed a new method that relies on a
variation graph to represent all alleles from a set of SVs into a single data structure.
It uses a state of the art sequence-to-graph mapper to map the long reads on
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the variation graph, and estimates the most likely genotype for each SV from the
calculated mapping depth on the allele-specific edges in the graph. By applying
SVJedi-graph on simulated sets of close and overlapping deletions, I demonstrated
that this graph model overcomes the reference-bias issue while maintaining a high
genotyping accuracy whatever the SV proximity. On the human gold standard
HG002 dataset from Genome in a Bottle (Zook et al., 2020), SVJedi-graph obtained
the best performances among long-read SV genotypers, genotyping 99.5% of the
high confidence SV callset with an accuracy of 95% in less than 30 minutes of time.

This chapter is presented in the form of a paper, which was published in
the journal Bioinformatics (Romain and Lemaitre, 2023). I presented an early
version of this work at the Data Structures in Bioinformatics (DSB) workshop
event of 2022 in Düsseldorf (Germany), and its paper version at the Intelligent
Systems For Molecular Biology and European Conference on Computational Biology
(ISMB/ECCB) joint conference event of 2023 in Lyon (France). I implemented
SVJedi-graph in Python, and still maintain it on GitHub1 and as a BioConda
package2.

1https://github.com/SandraLouise/SVJedi-graph
2https://anaconda.org/bioconda/svjedi-graph
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SVJedi-graph: improving the genotyping of close and
overlapping structural variants with long reads using a
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Abstract
Motivation: Structural variation (SV) is a class of genetic diversity whose importance is increasingly revealed by genome resequencing, espe-
cially with long-read technologies. One crucial problem when analyzing and comparing SVs in several individuals is their accurate genotyping,
that is determining whether a described SV is present or absent in one sequenced individual, and if present, in how many copies. There are only
a few methods dedicated to SV genotyping with long-read data, and all either suffer of a bias toward the reference allele by not representing
equally all alleles, or have difficulties genotyping close or overlapping SVs due to a linear representation of the alleles.

Results: We present SVJedi-graph, a novel method for SV genotyping that relies on a variation graph to represent in a single data structure all
alleles of a set of SVs. The long reads are mapped on the variation graph and the resulting alignments that cover allele-specific edges in the graph
are used to estimate the most likely genotype for each SV. Running SVJedi-graph on simulated sets of close and overlapping deletions showed
that this graph model prevents the bias toward the reference alleles and allows maintaining high genotyping accuracy whatever the SV proximity,
contrary to other state of the art genotypers. On the human gold standard HG002 dataset, SVJedi-graph obtained the best performances, geno-
typing 99.5% of the high confidence SV callset with an accuracy of 95% in less than 30min.

Availability and implementation: SVJedi-graph is distributed under an AGPL license and available on GitHub at https://github.com/
SandraLouise/SVJedi-graph and as a BioConda package.

1 Introduction

Structural variants (SVs) are genomic rearrangements of at
least 50 bp that differ between the genomes of individuals be-
longing to the same species. This definition encompasses a
wide range of variations in terms of size and type. The most
frequent types are deletions and insertions, but there are also
balanced SVs such as inversions and translocations. Although
SVs are less frequent in numbers than punctual variations,
they often involve more base pairs in the genomes and have
long been shown to be involved in phenotypic variability, spe-
cies adaptation and evolution, and in many diseases and dis-
orders (Weischenfeldt et al. 2013; Mahmoud et al. 2019).

With the democratization of long-read sequencing technol-
ogies, there has been an increasing number of studies focusing
on the characterization and analysis of this type of genetic
variation on a genome-wide scale in various organisms.
Indeed, because of their large size and frequent localization in
repeated regions, SVs were very challenging variants to iden-
tify with short reads (Mahmoud et al. 2019; Delage et al.
2020). Long reads have really changed the game in this field,
allowing their reliable and accurate detection in resequencing
genome data (Chaisson et al. 2019; Zook et al. 2020). In par-
ticular, in recent years, numerous studies have been conducted
at the population level with large sample sizes, revealing asso-
ciations between SVs and phenotypes of interest or their in-
volvement in changes in gene expression in various
organisms, such as, for example, in plants (Alonge et al.
2020), in yeasts (O’Donnell et al. 2022) and of course in

human populations (Beyter et al. 2021; Porubsky et al. 2022),
to cite only a few of them.

In most of these studies, the input of the analyses is typi-
cally a matrix with variants in lines and samples or individu-
als in columns (or vice versa) containing in each cell the
genotype or number of each allele of the given variant in the
given individual. To obtain such a matrix, the commonly ac-
cepted approach is composed of two steps: the first one con-
sists in obtaining a most comprehensive and nonredundant
set of SVs. This is achieved by using SV discovery tools on all
or a subset of the samples to identify all structural variants in
samples compared to a reference genome. The obtained call
sets are then merged to obtain a nonredundant set of SVs
which defines the lines of the matrix. Then, the second step is
the genotyping and aims at filling the matrix with genotypes.
Genotyping one variant in an individual consists in counting
how many reads from this individual support each described
allele of the given variant. Based on these read counts, a geno-
type is derived, typically homozygous for the reference or al-
ternative allele or heterozygous for bi-allelic variants in a
diploid individual. In such a genotyping step, all samples are
thus evaluated through the same SV call set to obtain compa-
rable values.

Genotyping and discovery are therefore two distinct tasks
that necessitate different methods and we have witnessed a
strong increase in the number of tools developed in recent
years dedicated purely to the genotyping problem. While gen-
otyping appears as a simpler problem than discovery, since
variants are already known and the whole reference genome
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does not need to be blindly investigated, there are some issues
that deserve special attention. The first issue is named the ref-
erence bias. It is well known that the more similar two
sequences are, the easier it is to align them and this is empha-
sized in the context of structural dissimilarity and with reads
containing many sequencing errors. Therefore, when mapping
reads only to the reference genome, one may favor the refer-
ence allele. As the different alleles are well defined in the geno-
typing problem, the reference bias should be avoidable, by
mapping the reads on both reference and alternative alleles in
an equal manner. This can be achieved by generating allele-
specific subsequences and mapping the reads only on these
sequences. Typically, these sequences are centered on the SV
breakpoints and include neighboring sequences of size
depending on the average read size.

The second issue concerns closely located or overlapping
SVs for which representing the sequences of the different
alleles is not so trivial. For a given SV, the neighboring
sequences are not uniquely defined as they depend on the al-
lele states of neighboring SVs. Intuitively, moving from a lin-
ear to a graph-based representation solves this issue. In a
variation graph, each node is a sequence, edges represent ad-
jacencies between sequences observed in an allele and each
combination of alleles is represented by a path in this graph.
As a matter of fact, numerous implementations for building
variation graphs or also named pangenome graphs, analyzing
such graphs or mapping reads on them are now available and
commonly used (see Paten et al. 2017; Garrison et al. 2018;
Li et al. 2020, Rautiainen and Marschall 2020; Guarracino
et al. 2022 to cite only a few). Importantly, they have been
shown to improve read mapping and small variant genotyp-
ing (Eggertsson et al. 2017; Garrison et al. 2018). As concerns
SVs, the last generation of SV genotypers for short Illumina
reads, Paragraph (Chen et al. 2019), graphTyper2
(Eggertsson et al. 2019), the latest Giraffe (Sirén et al. 2021),
and PanGenie (Ebler et al. 2022), are all based on such se-
quence graphs.

As genome sequencing is more and more achieved with
long-read technologies, even for population scale studies
(Coster et al. 2021), and because the large size of the reads
has an undeniable benefit on the quality of SV analyses (for
genotyping as well as for discovery) (Mahmoud et al. 2019,
Duan et al. 2022), a few tools dedicated to SV genotyping
with long-read data have been proposed these last years,
namely VaPoR (Zhao et al. 2017), SVJedi (Lecompte et al.
2020), and LRcaller (Beyter et al. 2021). However, none of
them uses a graph representation of the variants. All three
tools explicitly represent the allelic sequences, but as linear
sequences, and map the reads on both reference and alterna-
tive allele sequences. However, only SVJedi strictly avoids the
reference bias by mapping all the reads on all allelic sequen-
ces, whereas VaPoR and LRcaller perform first a selection of
the reads to be mapped on alleles based on a whole reference
genome alignment given as input. Additionally, Sniffles
(Sedlazeck et al. 2018) and CuteSV (Jiang et al. 2020), which
are discovery tools, also provide a genotyping mode as an op-
tion, but the methods implemented for these optional modes
have not been described in any publication. As these tools re-
quire a mapping on the reference genome as input, we can hy-
pothesize that they mainly rely on the split-read signatures
used also in their discovery mode and may thus be subject to
the reference bias.

We present here the first SV genotyper for long-read data
that is based on a variation graph. By avoiding the mapping
on the reference genome only and using a variation graph rep-
resenting the whole reference genome complemented by all
described alternative alleles given in the input SV call set, our
method is not reference-biased and improves the genotyping
of distant, as well as closely located and overlapping SVs.

2 Materials and methods

Our method relies on the representation of structural variants
with a variation graph, which is then used as “reference” to
map the long reads on.

It takes as input the set of SVs to genotype in VCF format,
the sequence of the reference genome in FASTA format, and
the long reads from which the SV genotypes will be estimated
in FASTQ or FASTA format (compressed or not). The main
output is a VCF file, corresponding to the input VCF file with
an additional column containing the predicted genotypes of
the SVs. It also outputs the variation graph representing the
whole genome and alternative alleles of the input SVs in GFA
format.

Our method is composed of four steps, illustrated in Fig. 1.
First, we build the variation graph from the reference genome
and the SV set. We then use an external tool, minigraph (Li
et al. 2020), to map the long reads on the graph we produced.
The alignment results are filtered to identify genotype-
informative reads, which are stored by covered SV and sup-
ported allele. Finally, the read counts are normalized and we
attribute the genotype with the maximum likelihood to each
SV of the input set.

2.1 Constructing the variation graph

A variation graph is a directed graph whose nodes are labeled
with nonoverlapping genomic sequences. Edges represent se-
quence adjacencies observed in a genome or allelic sequence.
A path in the graph represents a possible haplotype in a
genome.

In our method, we construct a variation graph from the se-
quence of the reference genome and a set of SVs characterized
by their type, their breakpoint positions on the reference ge-
nome, and their sequence in the case of insertions. The first
step is to list and sort all breakpoint positions for each chro-
mosome of the reference genome, then use them in the second
step to fragment the reference sequence of the chromosome
into reference nodes. Reference edges are added between each
pair of successive reference nodes, forming the path of the ref-
erence genome in the graph.

The third step is to add additional edges for each SV de-
scribed in the input VCF according to its type to form the
path of the alternative allele. We call such edges alternative
edges. In the case of insertions, an alternative node is also
added, labeled with the sequence of the insertion. Thus, in our
variation graph, all edges represent breakpoints of the input
SVs, that is sequence adjacencies that are specific to one of the
alleles.

The resulting variation graph is output in the GFA format.
In our graph, we currently can represent deletions, inser-

tions, inversions, and intra-chromosomal translocations. The
first step of the construction allows for the representation of
overlapping SVs.
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2.2 Mapping the reads on the graph

The long reads are mapped on the constructed variation
graph with minigraph (v0.19) (Li et al. 2020), with the “-x lr”
argument for aligning long reads and without base-level align-
ment to increase speed since only the read position on the
graph is needed in our method to predict the SV genotype.
Minigraph outputs the alignments’ results in the GAF format,
which is a variation of the PAF format adapted to sequence
graphs.

We have also tested another mapper, GraphAligner
(Rautiainen and Marschall 2020) and the base-level align-
ment mode of minigraph. We chose minigraph without base-
level alignment which gave the best results.

2.3 Selecting the informative reads

In our method, we consider that a read aligning on at least
one breakpoint sequence of an SV gives information on that
SV’s genotype, since breakpoints are sequence adjacencies
specific to one or the other SV allele. Each SV has one or two
breakpoints for each of its alleles depending on its type. For
example, deletions have two breakpoints for their reference
allele, that we will call reference breakpoints, and one break-
point for their alternative allele, that we will call alternative
breakpoint. Inversions have two reference breakpoints and
two alternative breakpoints. Each breakpoint is represented
by a distinct edge in the variation graph. For each alignment
output by minigraph, we first verify that the read aligns on at
least two nodes, meaning that it overlaps at least one of the
breakpoints in the graph. Then, we list all SVs that have at
least one breakpoint included in the span of the read align-
ment on the graph. For each of the listed SVs, we determine
which allele is covered by the alignment and increment by one
the support value for this SV’s allele for each allele breakpoint
that the read alignment covers. A read is considered as cover-
ing a breakpoint if the alignment overlaps at least dover base
pair from each side of the breakpoint. We fixed the default
value of dover at 100 bp.

Each time a read is counted as allele support for an SV, the
support count for this SV’s allele is incremented by one in a
dictionary containing the SVs as keys. If a read covers both
breakpoints of an SV allele, it counts as two read supports.

2.4 Predicting the SV genotypes

Once all the alignments produced by minigraph have been
processed, the genotype of each SV is estimated using the read
support counts for its alleles. First, for SV types with an un-
balanced number of breakpoints between alleles (deletions
and insertions), the support count is normalized for each allele

by the allele’s breakpoint number (e.g. for a deletion, the ref-
erence allele count is divided by two). Then, the normalized
allele support counts are used to compute the likelihood for
each possible genotype in a diploid individual (homozygous
for reference 0/0, heterozygous 0/1, or homozygous for alter-
native 1/1). We use the same likelihood formula as in SVJedi
and CuteSV (Lecompte et al. 2020; Jiang et al. 2020), which
is described in Nielsen et al. (2011). Basically, the likelihoods
of the three possible genotypes given the observed normalized
read counts (c0 and c1 for reference and alternative alleles, re-
spectively) are computed based on a simple binomial model:

Lð0=0Þ ¼ ð1� peÞc0 � pc1
e � Cc0

c0þc1
(1)

Lð1=1Þ ¼ pc0
e � ð1� peÞc1 � Cc0

c0þc1
(2)

Lð0=1Þ ¼ 1

2

� �c0þc1

� Cc0
c0þc1

(3)

where pe is the probability that a read maps to a given allele
erroneously, assuming it is constant, and independent be-
tween all observations. pe was fixed to 5 � 10�5, after empiri-
cal experiments. The genotype with the largest likelihood is
assigned and all three likelihoods are also output (�log10
transformed) as additional information in the VCF file.

Finally, we report the genotype of an SV only if it is sup-
ported by a minimal amount of supporting reads (sum of al-
lele counts after normalization), otherwise a missing genotype
(“./.”) is reported. This is governed by a user-defined parame-
ter, whose default value is set to 3.

2.5 Implementation

The presented method is implemented in Python under the
name SVJedi-graph (v1.1.1) and is available on github
(https://github.com/SandraLouise/SVJedi-graph) and as a
conda package (https://anaconda.org/bioconda/svjedi-graph).
Currently, SVJedi-graph can genotype five types of SVs: dele-
tions, insertions, duplications, inversions, and intra-
chromosomal translocations. Insertions need to be sequence-
resolved with the full inserted sequence characterized and
reported in the ALT field of the VCF file. As duplications are
a special case of insertions, SVJedi-graph supports also dupli-
cations, as long as their duplicated sequence is characterized
and reported similarly to insertions.

2.6 Simulating close and overlapping SV datasets

In order to evaluate our method’s genotyping performances
on closely located or overlapping SVs, we simulated twelve
deletion datasets with varying distance ranges between

Figure 1. Illustration of the four steps of SVJedi-graph. The method takes three files as input: the sequence of the reference genome, the VCF describing

the SVs to genotype, and the long reads to genotype the SVs from. The first step is the construction of the variation graph, the second step is the

mapping of the long reads on the variation graph with minigraph (producing the GAF alignment file), the third step is the filtering of the reads, and the final

fourth step is the genotype prediction. Two files are output, with the main one being the genotyped version of the input VCF, and the other one being the

GFA containing the variation graph.
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deletions on the human chromosome 1 (assembly
GRCh37.p13). All those datasets shared the same 995 dele-
tions selected from the dbVar database (Phan et al. 2017),
ranging from 50 bp to 10 kb in size and distant of at least
10 kb from each other. These deletions were equally distrib-
uted over the three possible genotypes (0/0, 0/1, 1/1), resulting
in two synthetic haplotype sequences of chromosome 1.
These haplotype sequences were used to simulate a single
long-read sequencing dataset using simLoRD (Stöcker et al.
2016), with a PacBio error profile and error rate of 16% and
at a sequencing depth of 30�.

Then, we generated 12 different variant sets (VCF files) by
adding to each of those 995 “initial” deletions one simulated
deletion at different distance or overlapping ranges from its
companion deletion. The size of these additional deletions
ranged from 50 bp to 2 kb, and they were all recorded as ho-
mozygous reference genotype (0/0) in the variant file, meaning
that these additional deletions are not present in the simulated
sequenced individual. Therefore, the same set of simulated
reads can be used to genotype the different deletion sets. Six
of the deletion sets correspond to nonoverlapping deletions,
with random distance of: (i) 5–10 kb, (ii) 1–5 kb, (iii) 500–
1 kb, (iv) 100–500 bp, (v) 50–100 bp, and (vi) 0–50 bp. They
contain each 1990 deletions with a median size around 1 kb.
The other six sets simulated overlapping deletions, with ran-
dom overlapping of: (i) 0–50 bp, (ii) 50–100 bp, (iii) 100–
200 bp, (iv) 200–300 bp, (v) 300–400 bp, and (vi) 400–
500 bp. The size of the sets varies depending on the overlap
size range, since only the deletions larger than the minimal
overlap bound were kept. These overlapping deletion sets
contain between 1382 (400–500 bp overlaps) and 1990 dele-
tions (0–50 bp overlaps). Accordingly, deletions are larger in
the sets with the largest overlap sizes (the median deletion size
ranges from 1 to 1.3 kb). All simulated datasets are available
for download (see Supplementary Material).

2.7 Evaluation and comparison to state of the art

long-read genotypers

We evaluated and compared our method to other genotypers
on its genotyping quality and computing performances. To
evaluate the genotyping quality, we used two metrics: the gen-
otyping accuracy and the genotyping rate.

We define the genotyping rate as the percentage of input
SVs for which the tool was able to attribute a genotype. It
was calculated using Equation (4), where TP is the number of
SVs for which the predicted genotype corresponds to the true
genotype, FP is the number of SVs for which the predicted ge-
notype differs from the true genotype, and FN is the number
of SVs that could not be attributed a genotype. We define
the genotyping accuracy as the percentage of genotyped
SVs that were attributed their true genotype, calculated with
Equation (5).

Genotyping rate ¼ TPþ FP

TPþ FPþ FN
� 100 (4)

Genotyping accuracy ¼ TP

TPþ FP
� 100: (5)

We compared our method to four state of the art long-read
SV genotypers, namely SVJedi (Lecompte et al. 2020)
(v1.1.6), cuteSV (Jiang et al. 2020) (v1.0.13), Sniffles2
(Sedlazeck et al. 2018) (v2.0.6), and LRcaller (Beyter et al.
2021) (v1.0). SVJedi and LRcaller are tools dedicated to SV

genotyping, while cuteSV and Sniffles2 are primarily SV call-
ers. CuteSV and Sniffles2 were run with their “force call” op-
tion to genotype a given set of SVs, bypassing the SV
discovery steps. For each comparison, all tools were run with
the same variant file as input. SVJedi performs the read map-
ping internally using minimap2, while cuteSV, Sniffles2, and
LRcaller take as input the results of the read mapping done
externally. SVJedi was run on the ONT reads with the param-
eter “-d ont,” and on both PacBio datasets with the default
parameter “-d pb.” As SVJedi uses minimap2 (v2.17), we also
used minimap2 (Li 2018) (v2.17) to map the reads on the ref-
erence genome, as input to cuteSV, Sniffles2, and LRcaller.
Minimap2 was run on the PacBio CLR reads, PacBio HiFi
reads, and ONT reads with the parameters presets “map-pb,”
“asm20,” and “map-ont,” respectively. LRcaller has five
methods to genotype SVs, we used the joint method as done
in the benchmark paper for SV genotyping methods (Duan
et al. 2022) with the argument “–gtm joint.” All tools but
Sniffles2 were run using 20 CPU threads. Command lines
used to run the tools are given in Supplementary Material.

3 Results
3.1 Impact of SV proximity in simulated datasets

In order to evaluate the benefits of using a variation graph to
genotype SVs, and in particular close and overlapping SVs,
we first applied our method to several simulated datasets of
deletions in the human chromosome 1, in which we controlled
the distance or overlap size of consecutive pairs of deletions
(see Section 2).

Figure 2 shows the performance metrics of SVJedi-graph
and the other compared genotypers as a function of the dis-
tance between pairs of consecutive deletion segments. We

Figure 2. Genotyping performances of long-read SV genotypers on the 12

simulated deletion datasets on human chromosome 1, with varying

distances between pairs of consecutive deletions. The X axis represents

the different simulated datasets ordered by increasing distance between

pairs of consecutive deletion segments. Negative X values correspond to

datasets with overlapping deletions.
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observe that the distance between deletions and the fact that
some deletions overlap each other does not impact SVJedi-
graph performances. It maintains very high accuracy and rate
(above 99%) whatever the distance between the simulated
deletions and even for overlapping deletions.

On the contrary, all the other tested genotypers show de-
creasing genotyping qualities when the deletions are closer to
one another. CuteSV and Sniffles genotyping accuracy starts
decreasing as soon as deletions are <1000 bp apart, falling
�80% and 90%, respectively, for overlapping or adjacent
deletions. The drop in accuracy is smaller for LRcaller, which
maintains its accuracy above 97% for even very close dele-
tions, but falls below 90% for overlapping deletions with the
largest overlaps. On the other hand, SVJedi maintains its high
accuracy but its genotyping rate decreases regularly with the
deletion proximity. It is not able to assign a genotype to more
than 20% of the deletions that are <50 bp apart.

3.2 Impact of breakpoint position precision in

simulated datasets

In practice, real SV call sets may not be defined at the base
pair resolution and can contain breakpoint positions shifted
from the real positions. In order to evaluate to what extend
this imprecision in breakpoint definition may impact the gen-
otyping performances, we applied the genotypers on the pre-
vious simulated long-read dataset but with imprecise input
VCF files, where the positions of the 995 deletions used to
simulate the reads were shifted. Both breakpoints of the dele-
tions were shifted by a fixed distance in the same direction to
preserve the deletion size and we retained only those deletions
where the deleted segment overlapped by at least 50% with
the deletion from which it was moved.

Figure 3 shows the performance metrics of SVJedi-graph
and the other compared genotypers when increasing the

breakpoint shift from 10 to 1000 bp. Except for cuteSV which
remarkably seems not to be impacted by breakpoints shifts,
all other genotypers show decreasing genotyping accuracies
when the imprecision increases. SVJedi-graph still maintains a
high accuracy as long as the imprecision is smaller than
200 bp (98.8% for 200 bp breakpoint shifts).

3.3 Results on real human benchmark datasets

To assess genotyping accuracy on real data, one needs a com-
prehensive set of well characterized SVs with their genotype
well ascertained in at least one individual. The consortium
Genome in a Bottle (GIAB), thanks to massive data produc-
tion and manual efforts, produced such a dataset dedicated to
SV tools benchmarking on the human individual HG002, son
of the so-called Ashkenazi trio (Zook et al. 2020). This highly
curated set, referred as High confidence, contains 5464 dele-
tions and 7281 insertions of at least 50 bp which are distant
from one another from at least 1 kb, whose genotypes are het-
erozygous or homozygous for the alternative allele in HG002
(Tier 1 set v.0.6 with the tag “PASS” in the VCF FILTER
field) We applied SVJedi-graph on this set with three long-
read datasets from the HG002 individual obtained with dif-
ferent sequencing technologies, namely PacBio CLR, PacBio
HiFi and Nanopore (ONT), and provided by GIAB (see
Supplementary Material for download links).

With the 30� CLR PacBio reads, SVJedi-graph was able to
genotype 99% of the SVs with a genotyping accuracy of
94.6% (Tables 1 and 2). This accuracy is slightly better for
deletions than for insertions for this set (1.3 point %), as well
as the genotyping rate (1.6 point %). Table 1 shows a contin-
gency table of the obtained genotypes compared with
expected ones for deletions and insertions. Most genotyping
errors happen on alternative homozygous (1/1) deletions or
insertions that end up predicted as heterogygous (0/1). Out of
the errors made on alternative homozygous variants, 99%
and 98% were wrongly predicted heterozygous deletions and
insertions, accounting for 56% and 77% of all genotyping
errors for each of these SV types, respectively. For heterozy-
gous deletions, the errors are well balanced between wrongly
genotyped reference homozygous and alternative homozy-
gous, especially for insertions (50% for each of the two

Figure 3. Genotyping performances of long-read SV genotypers on

simulated deletion datasets on human chromosome 1 with varying levels

of imprecision in the breakpoint definitions. The X axis represents the

distance in base pairs between the deletions breakpoints as simulated in

the input read dataset and their corresponding shifted breakpoints given

in the different input VCF files.

Table 1. Contingency tables of SVJedi-graph genotyping results on the

real 30� PacBio dataset of human individual HG002 with respect to the

high confidence GIAB call set.a

Deletions

SVJedi-graph predictions

0/0 0/1 1/1 ./.

GIAB
0/1 34 3322 75 2
1/1 2 142 1884 3

Insertions

SVJedi-graph predictions

0/0 0/1 1/1 ./.

GIAB
0/1 47 3397 46 15
1/1 6 324 3339 107

a Results for the 5464 deletions (top) and 7281 insertions (bottom) are
indicated in two separated tables, where columns indicate SVJedi-graph
genotypes and rows GIAB ones. Gray labeled boxes, in the diagonal, give
the amount of variants correctly genotyped by SVJedi-graph. The number of
genotypes that SVJedi-graph fails to assess is indicated by the “./.” column.
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possible wrong genotypes). For heterozygous deletions, 69%
of the errors were alternative homozygous genotype
predictions.

The four other tested genotyping tools present a lower ac-
curacy than SVJedi-graph on the global SV set (92.2%,
88.7%, 85.4%, and 83.6% for SVJedi, cuteSV, Sniffles2, and
LRcaller, respectively), as well as on both deletion and inser-
tion subsets (Table 2). The higher genotyping accuracy of
deletions over insertions observed with SVJedi-graph is also
observed with cuteSV, LRcaller and Sniffles2, at an even more
pronounced level, from 3.7 point % difference with cuteSV to
10 with Sniffles2.

SVJedi genotypes a lower proportion of deletions than
insertions (85.8% against 93.6%), while all other four geno-
typers show a relatively stable genotyping rate between both
SV types (at most 0.8 point % difference). It is to be noted
that cuteSV and LRcaller seem to systematically assign a ge-
notype to all input SVs, thus having a fixed genotyping rate of
100% whatever the SV set.

We also assessed the genotyping performances on the same
SV set with two other long-read datasets, one of PacBio CCS
(HiFi) technology, and one of ONT technology. The results
obtained with the five genotypers are presented in Table 3,
along with those previously obtained with the PacBio CLR
dataset. SVJedi-graph shows similar genotyping performances
for both PacBio datasets, whereas a small decrease in accu-
racy with ONT reads (of about 4 points %) with a slight in-
crease in rate (of 0.5–1 point %). Contrary to SVJedi-graph,
all other genotypers but SVJedi show a higher genotyping ac-
curacy with HiFi and ONT reads compared to CLR reads,
Sniffles2 and LRcaller having their best genotyping accuracy
on this SV set with the HiFi reads (89.4% and 86.2%, respec-
tively), and cuteSV having its best genotyping accuracy with
the ONT reads (92.7%).

3.4 Applying SVJedi-graph on challenging SVs

As the High confidence set contains only distant SVs, we
wanted to explore our method’s performances on a more
challenging SV set and we applied SVJedi-graph on another
SV set from the HG002 GIAB callsets, called
“ClusteredCalls” (that are included in the more difficult Tier
2 regions). This set contains 7003 SV calls that were not in-
cluded in the High confidence set due to a characterization of
lower quality (on breakpoint position and/or genotype). As a
matter of fact, 99.5% of these SV calls are within 1 kb of at
least one other call. Notably, 58% of deletions overlap at
least one other deletion of the set. Additionally, 83% of these
SVs fall in regions of Tandem Repeats greater than 100 bp. As
the genotypes indicated in the set may not be fully considered
as ground truth, we will refer to the genotype quality in terms

of % of identical genotypes instead of genotyping accuracy
for this set.

All genotyping tools show difficulties to genotype this SV
set in comparison to the High confidence SV set, with a de-
crease of about 20 points of the % of identical genotypes,
resulting in around 61–71% of identical genotypes for all
tools (Table 4).

Our tool was able to assign a genotype to 81.5% of these
SVs, and 69.4% of them with an identical genotype to the
one indicated in the GIAB set, the highest value being 71.4%
obtained by CuteSV. SVJedi-graph results on deletions and
insertions are very contrasted, both on % of identical geno-
types and on genotyping rate. We were able to genotype al-
most all deletions (95.3%) but with only 51.5% of identical
genotypes, while we genotyped less insertions (74.9%) but
with the highest % of identical genotypes (80.7%) among the
five tools. Both SVJedi-graph and SVJedi showed better per-
formances on insertions than deletions, contrary to the other
three SV callers that have in common to rely primarily on
read mapping on the reference genome only. SVJedi showed
an impaired genotyping rate of 25.5%, which was to be
expected considering its difficulties to assign genotypes in the
context of close and overlapping SVs.

As concerns SVJedi-graph results, the regions with higher
densities of SVs and overlapping SVs did not harbor more
missing or different genotypes as in the GIAB set. We could
not find any association or relationship between missing and
error genotypes with SV size or Tandem Repeat context (as
was the case for SVJedi in their publication; Lecompte et al.
2020) to explain the lower concordance of genotypes.

3.5 Genotyping a real not curated callset

In addition to the GIAB benchmark SV sets, we tested our
method on “raw” SV calling results, which are more likely to
contain nested SVs and false positive calls. The idea was to
verify that the presence of “noisy” calls (either false positives
or poorly described SVs) did not disrupt the genotyping qual-
ity of nearby true positive SVs. We applied SVJedi-graph on
an SV callset obtained by running a single SV discovery tool,
Sniffles (Sedlazeck et al. 2018), on PacBio CLR reads data
from HG002 individual, containing 17 637 discovered SVs,
with 7921 deletions and 9517 insertions. In this uncurated
callset, 13% of the calls are <1 kb apart from another call
and 2.3% of the deletions overlap at least one other deletion.
SVJedi-graph attributed a genotype to 98% of the 17 637 dis-
covered SVs. To assess the accuracy of these genotypes, we
compared these SVs with the ones from the High confidence
GIAB HG002 callset, by merging the two sets with Jasmine
(Kirsche et al. 2021). Among the 9729 insertions and dele-
tions identified as common between the two sets, 96.4%
showed identical genotypes. This is similar and even higher

Table 2. Genotyping accuracy and rate of SVJedi-graph and state of the art genotyping tools on the deletions and insertions of the High confidence

HG002 SV set with the 30� CLR PacBio read dataset.

Global Deletions Insertions

Tool Accuracy (%) Rate (%) Accuracy (%) Rate (%) Accuracy (%) Rate (%)

SVJedi-graph 94.6 99.0 95.4 99.9 94.1 98.3
cuteSV 88.7 100 90.8 100 87.1 100
LRcaller 83.6 100 89.3 100 79.3 100
Sniffles2 85.4 99.5 87.9 99.9 83.6 99.1
SVJedi 92.2 90.2 91.7 85.8 92.5 93.6
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than the accuracy obtained on the curated high confidence set
and this indicates that the presence of noise in the SV set does
not prevent SVJedi-graph to accurately genotype true positive
calls.

Interestingly, common SVs between the two sets did not
share exactly the same breakpoint positions, with 57% of
them differing by more than 10 bp and 14% by more than
50 bp. This confirms that small imprecision on the breakpoint
definition does not impair SVJedi-graph genotyping quality.

3.6 Running time and memory usage

The running time and memory requirement of SVJedi-graph
and the other genotypers compared on the GIAB HG002
High confidence SV set are shown in Table 5. When including
the mapping time, SVJedi-graph took less than half an hour
to genotype the whole High confidence HG002 SV callset
with 30� PacBio CLR reads. It is more than six times faster
than all other long-read genotypers (including the mapping
time). Notably, the total SVJedi-graph time is similar to the
genotyping time alone, for tools that require a mapping to the
reference genome (CuteSV, Sniffles2, LRcaller), considering
this file may have been obtained previously for other pur-
poses. In terms of memory requirements, SVJedi-graph was in
a similar order of magnitude than SVJedi and the two are the
less memory demanding tools of the five tested, while
LRcaller and Sniffles2 required about 1.5–2 times more mem-
ory, and cuteSV about three times more. For LRcaller and
Sniffles2, the most memory demanding step among the whole
genotyping process was the read mapping with minimap2.

For all genotypers, the most time-requiring step is the long-
read mapping on the reference genome or on the variation
graph for our method. The speed-up of our method is
explained by the fact that we chose to use minigraph in its
fastest mode, which outputs only alignment coordinates com-
puted over the chaining of minimizers without aligning all
bases in between. We also assessed the performances of our
method using base-level alignments obtained with minigraph
(option “-c”) and another long-read mapper on graph,
GraphAligner (Rautiainen and Marschall 2020). Our tests

showed that using base level alignments did not improve gen-
otyping rate and accuracy, while drastically increasing the
mapping time by at least 15 times.

4 Discussion and conclusion

We have presented here the first method and its implementa-
tion dedicated to SV genotyping with long reads that is based
on a variation graph. The use of a variation graph allows to
represent in a single data structure the whole genome along
with all described alternative SV alleles. In such a graph, refer-
ence and alternative alleles are represented in a strictly equal
manner, preventing a potential bias toward the reference al-
lele when mapping reads on it. We have shown on simulated
deletion datasets that this approach achieves highly accurate
genotyping and the few observed genotyping errors were bal-
anced over both alleles. When applied on a simulated dataset
with random inversions, we observed similarly a very high
genotyping accuracy without any reference bias (see
Supplementary Table S1). Further evidence of the absence of

Table 4. Genotyping rate and % of identical genotypes of SVJedi-graph and state of the art genotyping tools on the deletions and insertions of the

ClusteredCalls HG002 SV set.a

Global Deletions Insertions

Tool % of identical genotypes Rate (%) % of identical genotypes Rate (%) % of identical genotypes Rate (%)

SVJedi-graph 69.4 81.5 51.5 95.3 80.7 74.9
cuteSV 71.4 100 76.5 100 67.9 100
LRcaller 66.4 100 71.2 100 63.1 100
Sniffles2 61.1 99.7 62.4 100 60.2 99.6
SVJedi 70.3 25.5 47.7 16.9 78.5 31.2

a Genotyping was performed with the 30� CLR PacBio read dataset.

Table 5. Running time and memory requirements on the HG002 High

confidence SV set.a

Tool Running time

(min)

Memory (Go)

Total Mapping Genotyping

SVJedi-graph 29.7 24.8 4.3 19.1
cuteSV 201.9 176 25.9 65.2 (cuteSV)
LRcaller 196.6 176 20.6 29.2 (minimap2)
Sniffles2 233.9 176 57.9 29.2 (minimap2)
SVJedi 189.9 181.9 7.5 13.9

a All tools were run on 20 CPU threads when multi-threading was supported
(all but Sniffles2). The total running time shown for SVJedi-graph and SVJedi
includes the SV representation step (allelic linear sequences for SVJedi
and variation graph for SVJedi-graph) in addition to the mapping and
genotyping time. The memory requirement shown for cuteSV, Sniffles2 and
LRcaller is the maximum amount of memory used by either the genotyper
or minimap2.

Table 3. Genotyping accuracy and rate of SVJedi-graph and state of the art genotyping tools on the deletions and insertions of the High confidence

HG002 SV set, genotyped with PacBio CLR (30�), PacBio CCS (HiFi, 25�), and ONT (40�) reads.

PacBio CLR PacBio HiFi ONT

Tool Accuracy (%) Rate (%) Accuracy (%) Rate (%) Accuracy (%) Rate (%)

SVJedi-graph 94.6 99.0 94.1 99.5 90.4 100.0
cuteSV 88.7 100.0 91.3 100.0 92.7 100.0
LRcaller 83.6 100.0 86.2 100.0 84.8 100.0
Sniffles2 85.4 99.5 89.4 99.2 88.9 99.8
SVJedi 92.2 90.2 81.3 84.4 90.7 86.2
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reference bias in SVjedi-graph is the fact that it obtained simi-
lar performances between insertions and deletions in the real
human benchmark SV set, in contrast to LRcaller and
Sniffles.

The second major advantage of using a variation graph is
that it allows to represent close and even overlapping SVs effi-
ciently. In particular, for closely located SVs, this representa-
tion does not require to choose some haplotypes over all the
possible ones. We designed simulated datasets where we con-
trolled the distance or overlap between consecutive simulated
SVs in order to precisely assess the impact of such SV distribu-
tions on the genotyping performances of the tools. In these
simulations, we did not modify the simulated haplotypes and
resulting simulated sequencing reads, but we only added addi-
tional SVs in the input SV set. The latter are thus to be geno-
typed as homozygous for the reference allele (0/0). This is the
simplest case of close or overlapping variants, since the geno-
typing signals contained in the reads should remain the same
whatever the additional set of SVs. Even in this simplest case,
we observed a substantial decrease in genotyping rate or accu-
racy for all tools except SVJedi-graph as soon as SVs are
<500 bp apart or overlapping. It means that in these methods,
the quality of the genotyping of a given SV depends on the
other SVs present in the SV set, even if absent in the geno-
typed individual. This was to be expected for SVJedi as it con-
structs linear allelic sequences around each SV breakpoint
independently of the other SVs in the set. As these sequences
span up to 5 kb on either side, when the SVs are close, the
resulting set of sequences has a lot of redundancy, causing
many reads to be filtered out due to their non-unique map-
ping. This explains why the genotyping rate of SVJedi drops
drastically in these results. On the contrary, the stable per-
formances of SVJedi-graph on these datasets demonstrates
that the graph-based representation of SVs prevents such non
desirable behavior, and allows highly accurate genotyping of
clustered and even overlapping SVs.

The real HG002 High confidence benchmark dataset from
Genome in a Bottle consortium does not contain such clus-
tered or overlapping SVs, since all SV calls have been selected
to be at least 1 kb apart from one another in order to ensure
this high confidence in the SV descriptions and genotypes.
However, it still contains challenging insertions and deletions,
since for instance more than half of them are contained in
Tandem Repeat regions greater than 100 bp (Zook et al.
2020, Delage et al. 2020). On this dataset dedicated to the
evaluation of SV tools, SVJedi-graph obtained substantial im-
provement in genotyping accuracy and rate with PacBio CLR
and HiFi reads compared to the other tested genotypers and
in much less time. Although most other tools had better geno-
typing performances with ONT reads on this dataset, SVJedi-
graph showed a lower genotyping accuracy with respect to
the ones obtained with PacBio sequencing reads. This may be
explained by the fact that the mapping in SVJedi-graph was
performed with the same default parameters of minigraph for
all sequencing technologies, whereas the mapping used by
other tools was performed with sequencing technology spe-
cific parameter presets of minimap2. For the moment, mini-
graph does not provide parameter presets for the different
sequencing technologies, an exploration of mapping parame-
ters that would be best suited to the different technologies
could lead to improvements in SVjedi-graph.

On a more challenging SV set with many clustered and
overlapping calls, we could have expected based on the

simulation results that SVJedi-graph would make an even
greater difference with other tools. On the contrary, we
obtained poor concordance with the genotypes given as the
truth in the HG002 ClusteredCalls set of GIAB, with similar
or sometimes worse values than the other genotypers. We in-
vestigated numerous factors to explain these results, including
the proximity or overlapping of SVs, the genomic context of
SVs, the size or genotypes of erroneously genotyped SVs but
we did not find any significant association. This absence of re-
lationship with classical factors of errors may argue toward
problems of definition of SV breakpoints or inacurrate geno-
types in the input SV set. Indeed, the authors of this dataset
had deliberately distinguished them from the High confidence
set and had warned users that the proximity of the SVs pre-
vented them from being accurately characterized and that
they were “potentially complex, compound, or inaccurate”
(citation from the repository Readme). The fact that some of
the tested genotypers perform better on this particular dataset
could be due to biases or errors that are reproducible with
similar methods. Indeed, CuteSV and Sniffles genotypings are
derived from discovery methods and rely on the same input
data, namely reads mapped on the reference genome. They
probably use similar read signals that were used to discover
these SVs in the first place in GIAB protocols. For instance,
they may have used the variation of read depth along the ge-
nome to discover some deletions, whereas SVJedi-graph relies
exclusively on the breakpoint signals. Notably, those methods
performed worse for insertions, for which the signals that can
be extracted from mapping to the reference genome are the
weakest. In the case of insertions, we notably observed that
SVJedi-graph had the best genotyping accuracy but was not
able to genotype more than 25% of them due to insufficient
read support (less than three reads) for both alleles combined.
Interestingly, 85% of these not genotyped insertions are
reported as homozygous for the alternative allele in the input
set. Such absence of read support even for the reference allele
could be explained by inaccuracies in the reported inserted se-
quence which would be too divergent from the real insertion
sequence for reads to map on. These different hypotheses are
difficult to settle other than by a manual inspection of each in-
dividual case, which would be extremely time-consuming and
is outside the scope of this paper.

The uncertainties in this dataset make it therefore poorly
suited for precise assessment of tool performances.
Conversely, while the High confidence set is an ideal set for
benchmarking and comparing tools, it does not reflect the re-
ality of genotyped datasets in practice, which are usually not
manually curated and contain more closely located and nested
calls, as well as more imprecise and noisy calls. Our experi-
ment on a whole raw and uncurated discovery call set repre-
sents a practical and realistic intermediate between the high
confidence and the most challenging call sets and showed that
SVJedi-graph is usable and obtains good quality results in
practice in a few dozens of minutes on a whole human ge-
nome dataset.

In conclusion, SVJedi-graph is a fast and efficient tool to ge-
notype SVs with long-read data, that promises to be useful in
the ever-growing number of population-scale SV studies.
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IV Large Inversion Discovery In
the Alpine Coenonympha
Complex of Species

In this chapter

1 Introduction 47

Paper: Characterization of large inversions to investigate hybrid
speciation in the four species-complex of alpine Coenonympha
butterfly 48

1 Introduction

One of the goals of the DIVALPS project is to explore the genetic and genomic
factors involved in the evolutionary history of the complex of alpine Coenonympha
species. To this end, genome sequencing data for the four Coenonympha species
were produced, including long PacBio CLR reads for one individual per species
and short Illumina reads for 9 to 19 individuals per species. The long read sequen-
cing data led to the production and publication of the first assembled genome for
Coenonympha arcania (Legeai et al., 2024). I contributed to this work through the
quality evaluation of the produced genome (k-mer completeness and multiplicity),
its comparison to the reference genomes of three close species (synteny analysis)
and in the search for the unannotated W sex chromosome (long read mapping).
These data also led to the production of the first assembled genomes for the three
other species, which are presented in this chapter. These high quality genomes were
critical to this work, in which I compare the four Coenonympha genomes. I tested
many different tools to discover large inversions between these genomes, from SV
discovery tools based on long-read mapping or assembly-alignment, more fitted
for intra-species comparison, to genome alignment tools made for inter-species
comparison. In this paper, we focused on the large inversions discovered by the
assembly-based SV discovery method that performed the best on the Coenonympha
genomes.

47



IV INVERSION DISCOVERY IN THE COENONYMPHA SPECIES Introduction 1

The frequent presence of repeated patterns near inversions extremities, as well
as the sequence divergence between genomes, have made large inversions between
species challenging to precisely characterize from short or long read alignment.
New methods based on whole-genome alignment were shown to overcome these
difficulties. Using such method, I discovered 12 large (≥ 100 kbp) inversions among
the four species, of which 2 were detected in the heterozygous state in the assembled
genome of C. cephalidarwinianna. Complementary analyses of the population ge-
netic data statistics in the inversions, which were obtained from the work of our
collaborator in the project Capblancq et al. (in prep), suggest that at least 3
inversions can be found as heterozygous in populations of C. cephalidarwinianna,
and that 5 harbour barriers to gene flow.

This chapter is written in the form of a paper, which is in its way to be submitted
to a journal of genome biology and evolutionary genomics in the upcoming months.
I produced all the results presented in this paper, at the exception of the genomme
assemblies, the gene annotations and the population genetic data statistics.
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1 Introduction

Speciation is a fundamental process responsible for the diversity of life, yet the genomic bases of
speciation remain poorly understood. The most striking examples of speciation include cases where
lineages diverge without geographical isolation, as they can still exchange genes, referred to as
speciation with gene flow (Nosil, 2008; Smadja and Butlin, 2011; Feder et al., 2012). Speciation
with gene flow (or sympatric speciation) has long been thought as highly unlikely because gene
flow counteracts the effect of divergent selection but is now more and more often documented
thanks to the access to whole genome polymorphisms and evidence of heterogenous gene flow
along the genome. Indeed, some genes may still be exchanged across lineages while other included
in so-called ’barrier loci’ are not. These barrier loci can be involved in genetic incompatibilities
(the hybrid zygote is non viable, or non fertile), or involved in ecological specialisation where the
hybrids are maladapted to either parental environments (post-zygotic isolation) and/or in mate
choice (prezygotic isolation). As a result, this may lead to ecological speciation, where the two
diverging lineages are adapted to different habitats, and hybrid speciation, where a new species
originates from the combination of two parental genomes. In the face of gene flow, large inverted
non-recombining streches of DNA provides a way for clusters of adaptive genes or genes involved
in reproductive isolation to avoid recombination with sister or parental lineages (Jay et al., 2018;
Joron et al., 2011). Indeed, when inversions are in the heterozygous state in a diploid genome (i.e.
presence of both the ancestral and inverted alleles), a single crossover during meiosis within the
inversion generates unbalanced gametes that contain duplication and/or deletion. As a result, the
effective rate of recombination in such region is highly reduced, and these inversions can result in
advantageous allelic combinations to remain in full association (Yeaman, 2013; Kirkpatrick, 2010;
Huang and Rieseberg, 2020; Berdan et al., 2023).

The role of inversions in promoting genome divergence and speciation is a growing and dynamic
field in evolutionary biology research and in the past decade, numerous studies have reported in-
versions associated with adaptative phenotypes, behaviour, mating strategies and speciation across
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various clades (Wellenreuther et al., 2019; Wellenreuther and Bernatchez, 2018; Gabur et al., 2019;
Weischenfeldt et al., 2013). For example, the reduced recombination rate between the two alle-
les of an inversion can promote adaptation by maintaining advantageous allele combinations, or
even cause an accumulation of mutations leading to reproductive isolation (Berdan et al., 2023).
An extreme example of phenotypic polymorphism related to inversions capturing specific allele
combinations is supergenes, which capture multiple phenotypic characters while incuring balanced
polymorphism in the populations (Thompson and Jiggins, 2014). A great example of supergenes
is the P supergene of the Heliconius numata butterfly which contains three large inversions and is
involved in locally-adaptated wing pattern polymorphism (Joron et al., 2011).

But inversions are difficult to accurately characterize in genomes directly from short and long
read alignments (Liu et al., 2024). Even more so for large inversions, due to the frequent presence
of repeated patterns near inversion borders (Sanders et al., 2016) that hinders read alignment and
makes population genotyping difficult. Moreover, by impeding proper read mapping, increased se-
quence divergence between species makes it more challenging to precisely characterize such variants
than within species. But, with the release of high quality, ultra-long and Hi-C reads and the devel-
opment of new software, de-novo chromosome-level assembly is more accessible for various diploid
genomes (Li and Durbin, 2024). The higher accuracy of contigs compared to long or short reads al-
lows for more precise inference of structural variants and their greater length improves the discovery
of large-scale rearrangements directly from whole genome alignments (WGA) with dedicated tools
(Nattestad and Schatz, 2016; Goel et al., 2019; Heller and Vingron, 2020; O’Donnell and Fischer,
2020), as observed for different cultivated plant systems (Zhou et al., 2023; Li et al., 2023).

The evolutionary history of the alpine species complex of Coenonympha butterflies makes them
a good model to study the genomic factors of speciation and adaptation in this genus. Genomic
studies suggest that the two species Coenonympha darwiniana and Coenonympha cephalidarwiniana
originated from a unique ancestral hybrid population following the hybridization of Coenonympha
arcania and Coenonympha gardetta during the last glacial cycle ∼10,000–20,000 years ago (Cap-
blancq et al., 2015, 2019). The relative contribution of the two parental genomes to the ancestral
hybrid species was estimated to be strongly asymetrical with about 75% inherited from arcania and
25% from gardetta. The two parental species occupy distinct ecological niches, with C. arcania
being distributed at altitude below 1,500 m, and C. gardetta occupying higher altitude range over
1,500 m. The two hybrid lineages are found between 1,300 and 2,500 m, and occasionally they co-
exist with their parental species in narrow zones (Capblancq et al., 2019). Gene flow in the species
complex is not homogeneously distributed along the genome. Between the parental species, many
genomics regions were identified as strong barriers to gene flow, covering about 6% of the genome
and mostly located on the sex Z chromosome (Capblancq et al, submitted). Little is known about
the factors that drove and now maintain differentiation among these four species, especially at the
genomic scale.

In this study, we identified large genomic inversions that could have played a role in the diversi-
fication of these butterflies, and help the two hybrid lineages to isolate from their parental species.
To this end, we produced chromosome level genome assemblies for three new Coenonympha species
(C. gardetta, C. darwiniana and C. cephalidarwiniana), and compared them to a previously pub-
lished genome of C. arcania (Legeai et al., 2024) to identify large genomic inversions present in the
complex using a whole-genome alignment approach. Among the 12 identified large inversions, we
found at least four inversions with patterns of population diversity contrasting with the rest of the
genome, and including genes potentially related to adaptation.
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2 Results

2.1 Assembly statistics and gene annotation

In addition to the genome of Coenonympha arcania, already published in Legeai et al. (2024), we
sequenced three new genomes from the species complex in PacBio HiFi and assembled them with
Hifiasm (Cheng et al., 2022) with an extra step of purge dups (Guan et al., 2020) in order to remove
haplotypic duplications, following the exact same procedure as for the first genome. Although
more fragmented than the C.arcania genome, which had benefited from complementary Omni-C
sequencing, the produced assemblies are close to the chromosomal level, allowing the detection of
inversions (table 1). We annotated protein-coding genes from the 4 genomes in a similar way using
Helixer (Holst et al., 2023), here again following the procedure conducted for C. arcania reference
genome annotation. Although Helixer does not require transcriptomic data, the number of genes
identified in the new three genomes is similar to the one identified in the C. arcania initial reference
and BUSCO scores are good (table 1).

Table 1: Assembly and annotation metrics of the 4 Coenonympha genomes. Read depth was
calculated with a 500 Mbp genome size.

Metrics C.arcania C. gardetta C. darwiniana C. cephalidarwiniana

read number 1,413,972 1,132,959 1,823,533 1,403,689
read median length (bp) 13,587 12,115 11,866 12,032
read mean length (bp) 13,963 12,787 12,658 12,728
estimated read depth 39.5 29.0 46.2 35.8

contig number 38 99 55 50
genome size (Mbp) 497.3 523.2 487.0 477.9
genome N50 (Mbp) 17.9 17.2 17.7 17.2
genome BUSCO single (%) 97.3 97.1 96.8 95.8
genome BUSCO duplicated (%) 0.9 1.1 1.5 1.1
genome BUSCO fragmented (%) 0.4 0.5 0.4 0.4
genome BUSCO missing (%) 1.4 1.3 1.3 2.7

gene number 21,392 21,347 20,499 20,492
annotation BUSCO single (%) 94.0 93.5 93.6 91.9
annotation BUSCO duplicated (%) 1.7 2.3 2.4 2.1
annotation BUSCO fragmented (%) 1.4 1.4 1.4 1.8
annotation BUSCO missing (%) 2.9 2.8 2.6 4.2

2.2 Twelve large curated inversions across the complex

To identify large inversions between the four Coenonympha genomes, we used SyRI (Goel et al.,
2019), which detects structural variants from a pairwise whole genome alignment achieved with
minimap2 (Li, 2018). In order to provide a unique coordinate referential and ease the merging of
variants between the sets, we used C. arcania as the reference genome against which we compared
the other three genomes of the complex (C. gardetta, C. darwiniana, C. cephalidarwiniana) and
another Coenonympha species: the chestnut heath C. glycerion (ENA project PRJEB71111). The
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Table 2: Location and size of the twelve inversions of the curated callset, with reference to C.
arcania genome.

Chromosome Start position (bp) End position (bp) Size (kb) Identifier

Z 162,190 4,653,773 5,492 Z.1
3,819,827 4,373,994 100 Z.2
16,680,467 19,193,380 2,513 Z.3

6 8,530,155 9,001,193 471 6.1
11,827,505 13,547,418 1,720 6.2

10 4,320,561 5,459,813 1,139 10.1
7,372,573 7,478,285 106 10.2

14 12,069,599 12,513,289 444 14.1

21 6,611,667 7,279,214 668 21.1

26 2,842,557 3,243,102 401 26.1
3,305,509 3,855,539 550 26.2

28 7,162,273 7,492,976 331 28.1

C. glycerion genome was added to the comparison, as an outgroup species, to provide insight into
the history of the inversions detected in the complex, and so inversions specific to C. glycerion were
disregarded. After filtering out those of size smaller than 100 kb, we obtained 14, 13 and 12 large
inversions on C. gardetta, C. darwiniana and C. cephalidarwiniana, respectively.

After merging the four sets and a manual inspection of each inversion (see Material and Methods
section), we obtained a total of 12 curated large inversions within the four species-complex, of sizes
spanning 100 kb to 5 Mb (Tab.2, Fig.1). Three inversions are located on the sex chromosome Z, and
nine are located on autosomes: six on the chromosomes 6, 10 and 26, and three on chromosomes
14, 21 and 28.

2.3 Four presence-absence patterns for the inversions

The merged set of validated inversions shows four different distribution patterns across the Coenonympha
complex relative to the outgroup species C. glycerion (Fig. 2). Of the four patterns, two depict
inversions detected in at least two species, and two depict inversions detected in only one species.
More than half of the inversions (8 out of 12) were detected only in C. arcania (on chromosomes
Z, 6, 14, 21, and 26).

All inversions are found between C. arcania and C. gardetta, which is to be expected considering
their more ancient time of divergence, about 1.7MYA (Capblancq et al., 2015). Among these
inversions, the structural form inherited by the hybrid species was more frequently transmitted by
C. gardetta.

Interestingly, the inversion INV 10.1 identified in only one of the parent (i.e C. arcania) was
inherited differently between the two hybrid species.

Three autosomal inversions were detected as heterozygous in at least one of the sequenced
individuals. Inversions 6.1 and 21.1 were found heterozygous in C. cephalidarwiniana, and inversion
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Figure 1: Local dotplots of pairwise alignments of the seven chromosomes bearing inversions. For
all dotplots, Y-axis represents the position of the alignments on C. arcania reference chromosomes.
X-axis represents the position of the alignments on C. gardetta for chromosomes Z, 6, 10, 14 and
26, on C. cephalidarwiniana for chromosome 21, and on C. darwiniana for chromosome 28, which
were the genome pairs with the clearer display of each inversion. Black lines represent forward
alignments, red lines represent reverse alignments.
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Figure 2: Patterns of the large inversions detected across the Coenonympha species tree (as inferred
from Capblancq et al. (2019)), including the outgroup species C. glycerion. The observed inversions
relative to C. glygerion genome are represented in black dots. The boxes under the trees contain
the identifiers of the inversions in each distribution pattern. The black stars indicate inversions for
which heterozygosity was detected in at least one species. CGLY: C. glycerion, CARC: C. arcania,
CCEP: C. cephalidarwiniana, CDAR: C. darwiniana, CGAR: C. gardetta.
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26.1 was found heterozygous in C. gardetta.

2.4 Population genetics statistics inside inversions

Furthermore, we investigated if the inverted loci contained in these 12 inversions showed contrasted
pattern of evolution by measuring locally the genetic diversity within various populations rese-
quenced for another study (Capblancq et al., in prep.). The variant calling dataset was obtained
from the mapping of short reads along the C. arcania genome of 19, 17, 16 and 9 individuals of
respectively C. arcania, C. gardetta, C. cephalidarwiniana and C. darwiniana.

We first questioned whether the inversions contained loci identified as impermeable to gene
flow between the parental species and called hereafter genomic barriers. These loci cover about
6% of the genome and are mostly located on the sex Z chromosome (Capblancq et al., in prep.).
Consistently, all three inversions located on the Z chromosome show more than 60 % of genomic
barriers. Notably, we found that the autosomal inversions 6.1 and 21.1, both previously reported
as heterozygous in C. cephalidarwiniana, are nearly entirely composed of genomic barriers (95 to
100 % of their locus length), contrasting with the other inversions and other autosomal loci being
almost all bare of such barriers (Fig. 3).
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Figure 3: Percentage of the 12 large inversion loci covered by signals of genomic barriers (imper-
meable to gene flow) between C. arcania and C. gardetta. The signals were detected on windows
of 50 kb.

While the majority of the autosomal genome of the hybrid species was mainly inherited from
C. arcania, the genomic content of 5 and 3 inversions was most likely inherited from C. gardetta in
C. darwiniana and C. cephalidarwiniana, respectively (inversions 6.1, 10.1, 10.2, 14.1, 21.1 ; and
inversions 6.1, 10.2 and 14.1) (Fig. 4). Such feature could originate from introgression of inversions
genomic content from C. gardetta, and raises the question as to whether these inversions propagated
across C. darwiniana and C. cephalidarwiniana populations under the effect of neutral evolution or
directional selection. The inversions 10.1 and 21.1 show differing ancestries for C. darwiniana and
C. cephalidarwiniana, which is consistent with the species tree pattern (Fig. 2) for the inversion
10.1, but not for the inversion 21.1. On the Z chromosome, which, unlike the autosomes, has been
predominantly inherited from C. gardetta in the hybrid species (Capblancq et al., in prep.), the
inversions also appear to be of C. gardetta ancestry.
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Figure 4: Probability of assignation to C. arcania population from admixture on SNP for regions in
C. darwiniana genome (’Proba. CARC in CDAR’, top) and C. cephalidarwiniana genome (’Proba.
CARC in CCEP’, bottom). The boxplots represent the distribution of assignation probability for
50 kb windows inside each inversion region (’INV *’) and for non-inversion regions (’outside inv’)
in the Z chromosome (left panel) or across the autosomes (right panel).

We explored the four highlighted autosomal inversions 6.1, 10.1, 14.1 and 21.1, in order to
identify local patterns of population diversity with various genetic statistics (Fig. 5) calculated in
50kb windows along the C. arcania genome. We did not include inversion 10.2 as its size of ∼ 100
kb did not provide enough usable/informative datapoints. Figure 5 shows that the genetic barriers
found in inversions 6.1 and 21.1 are almost exclusively contained between the inversion breakpoints,
hinting towards those inversions being the barrier themselves. It also shows that the switch between
C. arcania and C. gardetta ancestry happens right at the inversion breakpoints in C. darwiniana
and C. cephalidarwiniana. The local PCA analysis used to decipher different population structures
all along the genome (Li and Ralph, 2018) shows a very heterogeneous signal for the inversions 6.1,
10.1 and 21.1, with three fully disassociated SNP distributions throughout the inversion loci, one
for each parental species that could reflect homozygosity, and an intermediate one that could reflect
heterozygosity. Interestingly, all three SNP distributions for these three inversions can be found in
C. cephalidarwiniana, and the corresponding local admixture confirms that these inversions are not
fixed in this hybrid species.

As for the genetic diversity, we noticed that inversion 10.1 shows a decrease of Tajima’s D for C.
gardetta compared to the surrounding region, with two exceptionally low points below -1. There is
also peaks of Fst and linkage disequilibrium on the whole inversion 6.1 and near the end of inversion
21.1.
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Figure 5: Population genetic statistics inferred from SNP diversity across populations of C. arcania,
C. gardetta, C. darwiniana and C. cephalidarwiniana, inside and nearing four selected large inver-
sions (6.1, 10.1, 14.1, 21.1). All statistics were calculated on 50 kb windows, the dotted vertical
lines represent inversion breakpoints position. First row: Local PCA of SNP distribution, each line
represents one population coordinates on the first PCA dimension, with one individual per popula-
tion. Second row: Local admixture of C. darwiniana and C. cephalidarwiniana. Third row: Genetic
diversity estimated by π diversity (Pi) and Tajima’s D (TajD) for each species, linkage disequilib-
rium (LD) for C. arcania and C. gardetta, and Fst between C. arcania and C. gardetta. Fourth
row: Genomic barriers (black boxes) between C. arcania and C. gardetta, along with annotated
genes (red dots) on the selected regions.

2.5 Gene functionality in inversions

Overall, 130 genes were predicted by Helixer in inversions 6.1, 10.1, 14.1 and 21.1. Of the 38 pre-
dicted genes in the inversion 10.1, one was annotated as the protein dissatisfaction gene (DSF),
associated to courtship behaviors in Drosophila melanogaster (fruitfly) (Finley et al., 1997), and
four other genes are involved in morphological development in D. melanogaster. Of the four, one
was annotated as protein decapentaplegic gene (DPP) reported to be a key morphogen in the
development during embryogenesis and postembryogenesis (Matsuda et al., 2016), one as protein
abrupt-like gene reported to have a role in establishing and maintaining embryonic muscle attach-
ments, adult sensory cell formation (macrochaetae) and morphogenesis of adult appendages (Hu
et al., 1995), and two as protein SLY1 homolog (SLH) gene reported to be involved in wing disc
dorsal/ventral pattern formation (Bejarano et al., 2008).

Of the 47 predicted genes in the inversion 21.1, two were annotated as sodium channel protein
60E-like gene, involved in olfactory behavior in D. melanogaster (Kulkarni et al., 2002). One gene
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was annotated as coding for the RNA-binding protein Spenito, required for sex determination in
D. melanogaster(Yan and Perrimon, 2015).

Of the 12 predicted genes in the inversion 6.1, three were annotated as orexin receptor type 1
(OX1R) like gene. OX1R was reported to be involved in feeding, water intake, spatial learning and
reward pathways in mammals (Haynes et al., 2000; Rodgers et al., 2001; Akbari et al., 2006).

Among the 33 predicted genes in the inversion 14.1, we identified two olfactory receptors (4K2-
like), the cytoskeletal protein flightless known as being involved in the regulation of many cellular
processes (Strudwick and Cowin, 2020).

3 Discussion

3.1 Number of large inversions in the Coenonympha complex compared
to other Satyrine

A previous study of chromosomal rearrangement in Satyrinae butterflies highlighted the recurring
presence of inversions between species in this clade (Pazhenkova and Lukhtanov, 2023), where 9,
7 and 1 large inversions were detected between Maniola jurtina and Erebia ligea, between Erebia
aethiops and M. jurtina, and between E. ligea and E. aethiops, respectively. However, these two
genera, Maniola and Erebia, diverged more than 30MYA, far more than the estimated divergence
between C. arcania and C. gardetta (1.8 MYA). Therefore, the alpine Coenonympha species complex
seems enriched in inversions compared to the other available samples of Satyrine species. The Z
chromosome seems particularly enriched, since only one inversion was detected on the Z chromosome
in the Maniola and Erebia genera. Notably, this inversion was reported to be likely associated to
chromosomal speciation in Satyrinae.

3.2 The contribution of parental inversions to the hybrid genomes

Although parental contribution to the ancestral hybrid population was estimated to be strongly
asymetrical, with roughly 75% arcania and 25% gardetta, most of the inversions (9/12) were inher-
ited from gardetta in the ancestral hybrid species, and only two originated from arcania. In fact,
it seems that a sizeable part of the autosomal genomic content that the hybrid species inherited
from C. gardetta is specific to inversion loci. The inversion 10.1 was putatively polymorphic in the
ancestral hybrid population as it remains polymorphic in cephalidarwiniana but differently inher-
ited from arcania to cephalidarwiniana and from gardetta to darwiniana. Furthermore although
the two hybrid species originated from a single ancestral population, they appear to have retained
differently this inversion.

3.3 Three autosomal inversion candidates for association to adaptation
and speciation

Inversions between the parental species found differentially distributed between the hybrid species
are particularly interesting, as they could hold specific gene arrangements involved in differential
adaptation-linked phenotypes between the species. Combining single genome alignment and popu-
lation SNP polymorphism results, we found two of such inversions on chromosomes 10 and 21, of
sizes of 1.1 and 0.7 Mb, respectively. The inversion on chromosome 21 appears to be particularly
interesting with signals of genetic barriers to gene flow and selection between the parental species.
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The signals of genetic barriers also allowed to highlight a third autosomal inversion on chromosome
6. Interestingly, these three inversions seem to be closer to fixation in C. darwiniana populations
than in C. cephalidarwiniana populations. Under the assumption that each inversion introgressed
at approximately the same time in both hybrid species (in the ancestral hybrid population), this
different level of fixation could rise the hypothesis of ancestral and inverted alleles each providing
local adaptation advantages depending on the C. cephalidarwiniana population, or even be under
the effect of overdominance in some populations for inversion 6.1.

The inversion on chromosome 10 appears as a good candidate for being associated with the
speciation process, as it captured an assortment of genes putatively linked to both developmental of
morphological features and recognition of sexual partners. Its high level of differentiation between
the parental taxa and the two local drops in Tajima’s D in C. gardetta genome hints towards
influence of directional selection, which are however not observed in any of the hybrid lineages.

4 Materials and Methods

4.1 DNA Extraction and Sequencing

We used the published genomes of C. arcania (Legeai et al., 2024) and the assembled genome of C.
glycerion (accession GCA 963855885.1). For the C. gardetta, C. darwiniana and C. cephalidarwini-
ana genomes, high molecular weight DNA was extracted using Gentra Puregene kit from Qiagen,
according to the manufacturer’s instructions. The PacBio long-read sequencing was performed at
the GenoToul Platform (Toulouse, France). Final DNA purity and concentrations were measured
by spectrometry using Nanodrop and fluorometry using Qubit (ThermoFisher).

4.2 Genome assemblies and annotation

The long reads from each genome were assembled similary using Hifiasm (Cheng et al., 2022), with
an extra step to remove haplotypic duplications with purge dups v1.2.5 (Guan et al., 2020). The pro-
tein coding genes were annotated using Helixer v0.3.0 (Holst et al., 2023) with the option ‘–lineage
invertebrate’. Functional annotation of the genes have been done with Diamond v2.0.13 (Buchfink
et al., 2021) on NCBI NR 2024-6-5, Blast2GO Command Line v1.5.1 (Gotz et al., 2008) with the
databases OBO=2023-07-20 and BLAST2GO=2022 08, as well as EGGNOG v2.1.9 (Huerta-Cepas
et al., 2018) with database 5.0.2 and Interproscan v5.59-91.0. The completeness of the assembly and
of the annotation were assessed with BUSCO v5.2.2 (Simão et al., 2015) using lepidoptera odb10
as reference.

4.3 Identification of the inversions

The inversions between the fives genomes were characterized using SyRI (Goel et al., 2019). In
order to order the scaffolds of C. gardetta, C. darwiniana and C. cephalidarwiniana genomes to
achieve the required chromosome-level assemblies, we first aligned their haploid assemblies, as well
as C. glycerion genome individually against that of C.arcania with minimap2 (Li, 2018) v2.15 using
the ’-x asm20 –eqx’ parameters, then we used the alignments to scaffold them with chroder (Goel
et al., 2019) v1.5.4 using the default parameters. When several scaffold arrangements were possible
in regions with rearrangements, we chose the arrangement resulting in the parsimonious scenario
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(ie. minimizing the number of rearrangements). This happened only once, for the Z chromosome
in C. cephalidarwiniana with one scaffold overlapping the Z.1 inversion.

We then aligned the obtained chromosome-level genomes on C. arcania with minimap2 using
the same parameters as used for the scaffolding step. Finally, we ran SyRI (Goel et al., 2019) v1.5.4
on these alignments using the default parameters and obtained one callset per genome against the
C. arcania reference.

We also used SVIM-asm (Heller and Vingron, 2020) haploid v1.0.2 with default parameter
except –max sv size 5000000 and MUM&Co (O’Donnell and Fischer, 2020) v3.7 and v3.8 with
default parameters but none of the tools were able to identify more than one of the large inversions
observed on the alignment plots.

In order to detect potential heterozygosity of the inversions in C. gardetta, C. darwiniana and
C. cephalidarwiniana genomes, we performed, with each of their hifiasm haplotypes, another round
of genome alignment (minimap2, same parameters), chromosome-level scaffolding (RagTag (Alonge
et al., 2022), default parameters), scaffolded genome alignment (minimap2, same parameters) and
variant characterization (SyRI, default parameters) against the C. arcania reference.

4.4 Selecting large inversions and merging the callsets

We extracted the inversions with a size of at least 100 kb with BCFtools (Danecek et al., 2021)
v1.9 for all callsets. We then merged the filtered callsets with the intersect function of BEDtools
(Quinlan and Hall, 2010) v2.27.1 using the parameters ’-f 0.75 -r’, so that two inversions from
different callsets were merged if they reciprocally overlapped by a fraction of at least 75% of their
length. After removing inversion calls specific to C. glycerion, we obtained a total of 20 large
inversion calls within the four species-complex.

4.5 Filtering out erroneous calls

In order to filter out false positives and further describe the large inversions obtained in the merged
callset, we performed three complementary analyses: (1) detection of the telomeric motif ”TTAGG”
in inversions breakpoint regions as a signal of assembly scaffolding error, (2) visual validation using
alignment dotplots, and (3) breakpoint detection and refinement using orthologous genes.

Sequence from regions spanning 10 kb on each side of the inversion breakpoints were extracted
with SAMtools (Danecek et al., 2021) v1.15, and searched for tandem repeats with TandemRe-
peatFinder (Benson, 1999) v4.09.1 and presence of 200 bp streches of N’s indicative of assembly
scaffolding point. For all pairs of genomes, dotplots were produced from the minimap2 alignments
using the pafR package (https://github.com/dwinter/pafr) on each chromosome harbouring
an inversion of the merged set. Breakpoints between colinear synteny blocks of orthologous genes
identified with Orthofinder v2.5.5 (Emms and Kelly, 2019) were detected and refined with Cassis
(Baudet et al., 2010).

We invalidated in total 8 inversions from the merged callset. One of them was identified as
a scaffolding error on chromosome 20 upon finding a 2k tandem repetition of the telomeric motif
”TTAGG” directly followed by a stretch of 200 N’s near one of the inversion’s breakpoints. Four
other inversion calls were considered as spurious calls from both absence of inversion signal on
the dotplots and absence of inversion-like breakpoints from synteny block analysis. Two other
inversions, on chromosomes 23 and 24, appeared as more complex rearrangement events (large
inverted duplications) on the alignment dotplots with inaccurate breakpoint positions calls. In total
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seven invalidated inversions were removed from the final merged set of large inversions. Finally, we
merged manually two inversions on chromosome 28 as they had almost identical alignment patterns
and position on the dotplots between the species, but were not merged automatically due to an
offset of breakpoint position in one callset around a noisy alignment region.

4.6 Estimation of population genomic statistics from SNPs

Genomic information was retrieved for 19 individuals of C. arcania, 17 individuals of C. gardetta, 16
individuals of C. cephalidarwiniana and 9 individuals of C. darwiniana from a previously published
study on this complex of species (Capblancq et al. in prep). Multiple parameters were used to
identify patterns of genetic structuring, differentiation and diversity associated with the detected
large inversions. The parameter estimates inferred on 50kbp abutting windows were all recovered
from Capblancq et al. (in prep), which explains in detail how they were calculated. These pop-
ulation level parameters included within population diversity estimates with nucleotide diversity
(π) and Tajima’s D for each four species, FST between the two parental taxa C. arcania and C.
gardetta and linkage disequilibrium within these two species, as the average r2 between loci within
each window. We also looked at local admixture genetic proportions on each window using K=2
to visualize the proportions of genetic material inherited from C. arcania and C. gardetta in the
two hybrid lineages C. cephalidarwiniana and C. darwiniana. Finally, we conducted local PCA on
each 50kbp window to check for uncommon patterns of genetic distances among samples within
and around the identified inversions.
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V Inversions In Pangenome
Graphs

In this chapter

1 Introduction 67

Paper: Investigating the topological motifs of inversions in pangen-
ome graphs 68

1 Introduction

After identifying the large Coenonympha inversions with a classical approach, I
tried to determine whether these same inversions could be identified in pangenome
graphs. A pangenome graph presents at least two advantages over reference-based
analyses on the Coenonympha study case. Firstly, it allows to consider both
parental species genomes on the same level of importance rather than having to
arbitrarily choose one over the other as reference-genome. Secondly, it allows to
directly analyze the inversions between the four genomes simultaneously, rather
than having to compare all six pairs of genomes, which involves switching the
reference genome used and complexifies the merging of the inversion call sets.
I noticed that discovering inversions from pangenome graph’s topology was not
immediate with the current state of the art tools available, and so I started to work
on a method to do so. Additionally, as pangenome graphs are initially designed to
represent intra-species genomic variation, it was unclear as to how well state of
the art pipelines would handle the level of genomic divergence between the four
Coenonympha species. Indeed, I detected very few of the Coenonympha inversions
in the pangenome graphs, which led me to design several simulated datasets in
order to identify the real causes of the lack of inversion detection.

Under the hypothesis that inversions can either be represented explicitly in a
bubble’s paths or need re-alignment to be identified, I developed a tool to annotate
both topology types among pangenome graph bubbles. By testing my tool on
pangenome graphs constructed from the four state of the art pipelines, both with
the simulated datasets and real data (human and Coenonympha), I demonstrated
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that the pipelines strongly differ in their way to represent inversions, as well as
their capacity to precisely represent them.

This chapter is written in the form of a paper, which is in its way to be
submitted to a journal in bioinformatics in the upcoming months. I contributed to
the majority of the results presented in this paper, which are the methodological
development and implementation of the annotation tool, the production of the
simulated datasets, the construction of the simulated and Coenonympha pangenome
graphs, as well as the analysis of the inversion annotation results on all graphs. I
presented an early version of this contribution at the International Environmental
and Agronomic Genomics Symposium of 2024 in Toulouse (France).
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1 Introduction

The recent increase in the number of high-quality assembled genomes for a same species call for a
switch in how we represent the genomic reference in genetic diversity analyses, from a single linear
reference genome to variation and pangenome graphs. The interest of pangenome graphs resides
in their representation of genomic variation between multiple genomes, allowing a diminution of
reference bias when mapping reads, thus improving variant discovery and genotyping for the whole
range of variant sizes and types (Garrison et al., 2018; Hickey et al., 2024). The current tools for
pangenome graph construction rely on genome alignments, either by iterative pairwise alignments
from the reference genome for Minigraph (Li et al., 2020) and its derived pipeline Minigraph-Cactus
(Hickey et al., 2024), by reference-free pairwise alignments for PGGB (Garrison et al., 2023), or
by tree-guided alignments for Progressive Cactus (Armstrong et al., 2020). The standard pipeline
in pangenome-graph based variant studies, performed in recent studies such as on bovine (Leonard
et al., 2023), wild grape (Cochetel et al., 2023) and human (Liao et al., 2023) genomes, comprises the
construction of a graph from a collection of genomes, the identification of variants in the graph and
their genotyping in other individuals or populations from read mapping onto the graph. The types
of represented variants in the graphs differ between the tools, as Minigraph only aims to represent
Structural Variants (SVs), typically variants that are larger than 50 bp, while the other tools also
represent smaller variants in their graphs. Variant identification in pangenome graphs consists in
analysing the graph topology to find topological motifs called bubbles. Bubbles are formed when (at
least) two genome paths diverge in the graph due to sequence differences, and meet again further on
after the differing portion. For instance, a SNP is represented in the graph by a small bubble where
each allele carried in the input genomes forms a diverging path through a node of length 1 bp, while
a SV is represented by a larger bubble where at least one of the diverging paths has a length of at
least 50 bp. Pangenome graphs may also contain more complex bubbles such as nested bubbles,
which can be the result of nested variants (e.g. small variants inside an insertion). The main
tools for bubble detection are vg deconstruct (Liao et al., 2023) (for Minigraph-Cactus, PGGB and
Progressive Cactus graphs) and gfatools (Li, 2019) (for Minigraph graphs). Although these tools
report essential information on the variant bubbles detected in the graphs (e.g. position, alleles),
they do not annotate the type of the variants detected. Without annotation of the bubbles’ variant
category, it is difficult to count the number, type and size distribution of the SVs represented in
a pangenome graph. The annotation of SNP bubbles does not pose much of a problem as they
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have distinctive and exclusive allele path sizes of 1 bp. Likewise, bubbles having one of their allele
paths with a size of 0 bp, a distinctive feature of insertions and deletions, can also be confidently
annotated. However, all the remaining bubbles, in particular those with large sized paths, are more
challenging to confidently annotate as a specific SV type, as their path size may correspond to more
than one SV type. The large size of SVs makes them also more likely to contain nested bubbles,
which is not that straightforward to represent in a VCF format. Vcfwave, from the vcflib suite
(Garrison et al., 2022), can re-align the allele sequences of the large bubbles reported in the vg
deconstruct VCF to break down all their nested bubbles into a series of insertions, deletions and
SNPs.

Among Structural Variants, inversions happen to be less frequent in genomes than other types
of variants such as insertions and deletions, but can reach particularly large sizes. In the human
genome, inversions account for 0.4% of the diploid genome, with a median size of 17.6 kbp and
a maximum size over 5 Mbp (Porubsky et al., 2022). Inversions, among genomic variants, have
an exceptional potential to promote adaptation and speciation. When in heterozygous state, they
can locally reduce the effective rate of recombination in genomes, which can lead to the spread of
adaptative allele combinations in populations or to genetic isolation through mutation accumulation
(Kirkpatrick, 2010; Huang and Rieseberg, 2020; Berdan et al., 2023). Large inversions in particu-
lar, potentially including more genes, may have a higher probability of capturing non neutral allele
combinations (Wellenreuther and Bernatchez, 2018). However, they are known to be more chal-
lenging to characterize and genotype than other types of SVs (through sequence based approaches)
due to complex and often repetitive genomic context (Liu et al., 2024; Sanders et al., 2016). While
a general improvement of structural variant analysis using pangenome graphs has been reported,
inversions are often overlooked in pangenome graphs benchmarks and analyses. In Liao et al. (2023)
and Leonard et al. (2023) benchmarks of human and bovine pangenomes or Cochetel et al. (2023)
analysis of the wild-grape pangenome, SVs were either evaluated as a whole or only insertions and
deletions were reported. Only the Hickey et al. (2024) benchmark paper reports some inversion
counts, but only for the Drosophila pangenome. This could very well be a reflection of the difficulty
of distinguishing the different SV types among graph bubbles of large size.

Because accurate representation of all types of variants is a crucial component to make the most
out of pangenome graphs, there is a need to assess how inversions are handled by current state of
the art pangenome graph pipelines (construction and analysis tools).

In this paper, we explore how inversions are represented in pangenome graphs, as well as the
factors impacting their representation and thus the ability to detect them in these graphs. To
this end, we constructed pangenome graphs on several simulated genome sets, as well as on real
human and butterfly sets of genomes, using the state of the art pipelines. We propose different
topologies for inversions and quantified them starting from the bubbles of the graphs detected by
the commonly used vg deconstruct tool. We found that each pangenome graph pipeline presents a
unique pattern of inversion topologies distribution, and that inversions are not always represented
explicitly in the paths of the bubbles and need local re-alignment to be identified among the graph
bubbles. We propose INVPG-annot, a new tool to annotate among the variant bubbles identified
in a pangenome graph those that are likely to represent inversion variants.
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2 Material and Methods

2.1 Expected topologies of inversions

In a pangenome graph, the nodes are labeled with genomic sequences, and the directed edges
between nodes represent the adjacencies of the sequences in genomes. The nodes can be accessed
in two orientations, forward when accessing the node’s label sequence or reverse when accessing
the reverse complement of the node’s label sequence. The paths (succession of nodes and their
traversal orientation) in the graph represent the haplotypes used to construct the graph. In such
a graph, a shared sequence between several genomes at a given locus is represented as a single
node that is traversed by several paths, while a genomic variant is represented by distinct nodes
connected in a particular topological motif, called a bubble. A bubble is a connected portion of the
graph (subgraph) where two nodes, referred as a source node and a sink node, are linked by at least
two distinct paths. A single bubble can represent a single variant or several overlapping or nested
variants, with all distinct paths between the source and sink nodes identifying all possible alleles
or allele combinations of the underlying variant(s).

Contrary to other SV types (e.g. insertions, deletions), an inversion does not imply a modifica-
tion of sequence content between alleles. As such, in the simplest event of inversion (without any
inner sequence variation), we can expect both allele sequences to be represented as a single node
nI in the graph, that is traversed in opposite directions (forward and reverse) by the ancestral (pA)
and inverted (pI) allele paths (Fig. 1a). As inversions can cover large portions of the genome, it is
most likely inversion loci harbour inner smaller variants (e.g. SNPs, indels). If the graph building
algorithm represents small variants in the graph, those will break the inversion locus into multiple
nodes and the list of nodes traversed by pA and pI will differ (a simple example with one SNP is
illustrated in Fig. 1b). Nevertheless, we expect that the balance between the cumulative length of
inside variants and the total length of the inversion should allow for the existence of nodes that are
common and traversed in opposite directions between pA and pI . In both simplistic and realistic
cases, the inversion event should be explicitly represented by the paths of the bubble, and so we
define this topology type as a ”path-explicit” inversion representation.

However, if an inversion is not ’recognized’ either during the genome alignment step or during
the PG graph construction, both ancestral and inverted alleles could be represented as unrelated
sequences in the graph. In the simplest cases with two haplotypes, the locus could be represented
with two entirely disjoint paths, one traversing a node nB carrying the ancestral version of the
sequence, the other traversing a node nZ carrying the inverted version of the sequence (Fig. 1 d,e).
In this case, in order to identify the inversion, the sequences of the two paths must be compared,
and so we define this topology type as an ”alignment-rescued” inversion representation.
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Figure 1: Illustration of the expected types of bubble topologies for inversions in pangenome graphs.
Arcs of the graphs are colored according to the presence (orange and red) or absence (blue) of the
inversion. The examples on the left illustrate cases where an inversion is explicitly represented
in the paths of a bubble (”path-explicit”), with the dark grey colored nodes being the ones that
are traversed in both directions (a, b, c). The examples on the right illustrate cases where the
two alleles of an inversion are represented by distinct nodes and paths (”alignment-rescued”), with
grey-shaded nodes indicating pairs of nodes that are the reverse complement of each other (d, e,
f). For each expected topology type, different levels of complexity of the graph are presented: a
first level with two haplotypes and no punctual polymorphism inside the inversion (a, d), a second
level with two haplotypes and a SNP between the two inversion alleles (b, e), and a third level
with four haplotypes, one of which (dark blue) carries the reference allele of the inversion and the
alternative allele of the SNP, meaning that the SNP alleles are not in perfect linkage disequilibrium
with the inversion (c, f).

2.2 Inversion annotation method

We now present our method to identify among the bubbles found in a pangenome graph, the ones
that correspond to these topologies (see an overview in Fig. 2). Our method starts with bubbles
that have already been found and aims at annotating them, since the main pangenome graph
pipelines (i.e. Minigraph-Cactus and PGGB) output bubbles at the same time as they construct
the graph. The graph bubbles are reported in the conventional VCF format (in a version adapted
to pangenome graphs) by applying the vg deconstruct tool on the graph. The pangenome VCF
reports the classical information of start position of the variant on a chosen reference genome, and
the reference and allele sequences. Additional information specific to the graph is also given by vg
deconstruct, such as the bubble’s source and sink node IDs; the path of each allele of the bubble,
given as an ordered and oriented list of nodes, and in the case of nested bubbles, the ID of the
parent bubble and the level of the bubble. As those VCFs readily provide an extensive description
of the bubble reference and alternative paths, we opted to use them as a base on which to annotate
inversions among the bubbles.
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Figure 2: Illustration of the inversion annotation pipeline and method (dotted box). A pangenome
graph is constructed from a genome set and analyzed by vg to obtain a list of the variant bubbles
represented in the graph. The bubble detection step is included in the pipelines of MGC and PGGB,
but must be done additionally when using Progressive Cactus or Minigraph. A first selection of
bubbles is done to keep only potential inversion bubbles. These bubbles are then searched for
path-based and alignment-based inversion signals.

2.2.1 Bubble selection

In order to limit the amount of bubbles to analyze, we select bubbles resembling to balanced
SVs by first extracting bubbles with at least two alleles such that their length are similar and
both ≥ 50bp. We considered two alleles a0 and a1, of length l0 and l1, to be of similar length if
|l0 − l1| ≤ max(l0, l1) ∗ α, with 0 ≤ α ≪ 1. The parameter α allows for leniency on the tolerated
length difference of inversion alleles, as such difference can originate from innate biological sequence
divergence but also from possible computational artefact. We used α = 0.01 for the human dataset,
α = 0.1 for the Coenonympha dataset and, for simulated datasets, we fixed it according to the
simulated punctual divergence (α = (div + 1)/100).
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2.2.2 Search for inversion signal in paths and alignments

In order to annotate inversions among the selected variant bubbles, we first look for inversion signals
in the paths of the bubble. For each bubble, all alternative alleles are treated independently and
compared to the reference allele.

We consider a path-based inversion signal as a common node between alternative and reference
allele paths that is traversed in opposite ways by the two paths. In order to identify these nodes, we
convert the reference and alternative paths into two ordered lists ordref = [x1, .., xn] and ordalt =
[y1, .., ym] of integer node identifiers, which are positive if the node is traversed in forward and
negative if the node is traversed in reverse by the path. Then for each node identifier xi in ordref ,
we save xi as a path-based inversion signal if −xi is found in ordalt. For each alternative allele,
we calculate a path-based signal score covpath, which is the fraction of the reference allele’s length
covered by path-based inversion signals, with the following formula:

covpath =

∑n
i=1 length(xi)× 1∃j such that yj=−xi∑n

i=1 length(xi)

If covpath is greater than a user-defined threshold (mincov, with default value of 0.5) for at
least one alternative path of the bubble, the bubble is annotated as a path-explicit inversion. If
not, we then look for inversion signals in the alignment of the bubble alternative allele sequences
to the reference allele. We consider an alignment-based inversion signal as a reverse alignment
between the alternative and reference allele sequences. We align all alternative alleles sequences on
the reference allele sequence using minimap2 v2.15 with the parameters ‘-cx asm20 –cs -r2k‘. For
each alternative allele, we identify all its reverse alignments on the reference allele and calculate
an alignment-based signal score covaln as the length fraction of the reference allele covered by
reverse alignments. Considering A = (a1, ..ak) the set of reverse alignments, this gives the following
formula:

covaln =

∑ak

a1
length(ai)∑n

i=1 length(xi)

If covaln is greater than the mincov threshold for at least one of the alternative paths, the bubble
is annotated as an alignment-rescued inversion.

2.2.3 Implementation

The presented method of inversion annotation of pangenome graph bubbles is implemented in
Python and is available on github (https://github.com/SandraLouise/INVPG_annot). It takes a
GFA 1.0 of the pangenome graph as well as the corresponding vg deconstruct-like VCF (reporting
allele walks through the bubbles) as input, and outputs a BED file containing the set of inversion
annotated bubbles along with their topology type in the graph (path-explicit or alignment-rescued).

2.3 Genomic material

2.3.1 Simulated genome datasets

We generated several simulated genome sets with well-controlled inversion variants in order to
investigate how inversions are represented in pangenome graphs of increasing complexity. We used
the genomic sequence of the chromosome 6 of a butterfly species (Coenonympha arcania) of length
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20 Mb as first genome of each set (Legeai et al., 2024). We defined a set of 100 non-overlapping
inversions, whose coordinates were randomly positioned on this chromosome, and whose sizes were
picked uniformly between 50 bp and 1 Mb, for a total size of 14 Mb. We then simulated three
synthetic chromosomes containing all these 100 inversions but with additional single nucleotide
mutations uniformly introduced at different rates: 0, 1 and 5 % rate. As a result, we obtained three
2-genome sets each corresponding to a different nucleotidic divergence level and including the real
chromosome sequence as reference and a synthetic genome with its 100 inversions.

We also produced a genome set containing 10 haplotypes, as pangenome graphs are more oftenly
used to represent larger collections of genomes. This set contains the reference chromosome 6 along
with 9 synthetic haplotypes at a 0% single nucleotide mutation rate. One of the syntetic haplotype
contains the whole set of 100 synthetic inversions, while the 8 remaining ones each contain a random
sample of 50 inversions among the 100.

2.3.2 Human dataset

For application on human genomes, we based our genome set construction on the extensive inversion
dataset published by (Porubsky et al., 2022), reporting 292 balanced inversions accross the GRCh38
reference and genotyped in 44 individuals. We used the GRCh38 reference (Cole et al., 2008), as
well as the diploid genome assemblies of the four individuals NA19240, HG00733, HG03486 and
HG02818 published by the HPRC (Wang et al., 2022), which were the only assemblies available
among the 44 genotyped genomes. In order to limit the processing cost, we selected a single
chromosome to process. We filtered the inversion dataset to remove unbalanced inversions (i.e.
duplicated inversions) and low confidence inversion calls (without the ’PASS’ tag). We finally
selected the chromosome 7, of 159 Mb, which with 18 filtered inversions present in the four selected
genomes was the most inversion-rich autosome in this dataset. The inversions of chromosome 7
range from 1.0 kb to 1.7 Mb, with a median size of 41.2 kb.

We ran RagTag v2.1.0 (Alonge et al., 2022) to resolve the assemblies’ contigs correspondance
to GRCh38 chromosome 7, and extracted the corresponding (unscaffolded) contigs in a separate
multi-fasta file for each of the 9 haplotypes.

2.3.3 Coenonympha butterfly dataset

In order to explore the inversion representation in pangenome graphs of more divergent genome sets,
we chose four species of alpine Coenonympha butterfly (C. arcania, C. gardetta, C. darwniniana
and C. cephalidarwiniana). While these species are highly related and interfertile, the nucleotidic
divergence between their genome is estimated around 7% using Mash (Ondov et al., 2016). The
four genomes were recently assembled, with an haplotype size of 500 Mb, and 12 large (≥ 100 kb)
inversions were identified between them by whole genome alignment (Romain et al., in prep).

Among the 7 chromosomes of C. arcania bearing inversions, we selected the chromosomes 6, 10,
14, 21 and 26 for a total of 8 large inversions. We chose to exclude the Z sex chromosome and one
autosome on which the inversion shows very high repetitive and complex genomic context to limit
the complexity of the graphs. We extracted the 5 selected chromosomes in a separate multi-fasta
file for each of the 8 haplotypes (i.e. two haplotypes per genome) and for the C. arcania reference
haplotype of the species complex, for a total haplotype size of 83 Mb.
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2.4 Construction of the pangenome graphs

For each set of genomes, we constructed four versions of pangenome graphs using Minigraph (Li
et al., 2020), Minigraph-Cactus (Hickey et al., 2024), PGGB (Garrison et al., 2023) and Progressive
Cactus (Armstrong et al., 2020) to explore the diversity of inversion representation across the state
of the art tools.

We ran Minigraph-Cactus v2.8.2 with the parameters ‘–clip 0 –filter 0‘ to retain all haplotype
paths in the graphs. PGGB v0.6.0, Minigraph v0.21 and Progressive Cactus v2.8.2 were run with
default parameters. As it is recommended to use binarized input trees with the more recent versions
of Progressive Cactus, we wrote arbitrary trees with uniform branch length to ensure they have the
right structure, keeping haplotypes of single individuals closest together in the trees. We recon that
the trees should have minimal impact on human and simulated data experiments as genomes are
close, and we built the Coenonympha genome tree corresponding to Capblancq et al. (2019). We
then converted the resulting HAL file of Progressive Cactus to a VG graph format using the hal2vg
tool (included in Cactus v2.8.1) with the ‘–noAncestors‘ parameter. Vg convert (Garrison et al.,
2018) v1.50.1, was then used with the ‘-f -W‘ parameters to obtain the Minigraph and Progressive
Cactus graphs in GFA 1.0 format.

For all constructed graphs, we calculated the graphs statistics using pancat (Dubois, 2023)
v0.3.0.

Variant bubbles were obtained using vg deconstruct for all graphs. The reference genome, used
as coordinate system for the output VCF file, was set as GRCh38 for the human dataset, C. arcania
for the Coenonympha dataset, and the reference sequence for the simulated dataset. For PGGB
and Minigraph-Cactus, this step was included in their pipeline. For Minigraph and Cactus, we ran
vg deconstruct with the parameter ‘-a‘ to obtain an exhaustive set of bubbles (without any filter).

2.5 Evaluation of inversion detection in the pangenome graphs

We assessed the completeness of the sets of annotated inversion bubbles by calculating a recall
value as the percentage of known inversions that were annotated in the graph by at least one of
its bubbles. We established the correspondence of the annotated inversions to the true inversions
in the datasets based on their position overlap on the reference using bedtools (Quinlan, 2014)
v2.27.1. We considered a given inversion as correctly annotated if a reciprocal overlap of at least
50% was found between the inversion and one of the annotated bubbles (i.e. the position of the
annotated bubble on the reference covers ≥ 50% of the size of the inversion, and vice-versa), using
the options ‘-f 0.5 -r‘ of the function bedtools intersect. We also calculated the number of false
positive annotations, which we define as annotated bubbles for which no overlap was found with
any of the true inversions (without minimum overlap fraction).

3 Results

3.1 Investigating inversion bubble topologies in most simple simulated
graphs

We first investigated how inversions are represented in pangenome graphs that we can imagine to be
the easiest instances for inversion detection, that are graphs built from only two genomes differing
only by non overlapping and randomly positioned inversions. To do so, we built graphs for the
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set of two 20 Mb chromosomes differing by 100 inversions and without any other polymorphism
(see Section 2.3.1), using four pangenome graph pipelines Minigraph, Minigraph-Cactus (MGC),
Progressive Cactus (Cactus) and PGGB.

3.1.1 Pangenome graph complexity

For such a simple genome set, we expect its pangenome graph to contain few nodes and edges and
a total sequence content of exactly 20 Mb, since inversions do not produce any novel sequences,
only novel adjacencies. More precisely, the theoretical number of nodes is expected to be 1 + 2N
and the theoretical number of edges 4N , for N the number of inversions. In practice, we obtained
rather different graph statistics for all four tools (Table 1). Except for Minigraph, all three other
tools have more than ten times more nodes and edges than expected, with the largest value for
Minigraph-Cactus with more than 200 thousands nodes. Furthermore only Cactus and PGGB
have a size close to the expected 20 Mb. Minigraph and MGC graphs contain more than 5 Mb
of additional sequences, being either duplicated or more probably present in both forward and
reverse-complement versions in the graph.

Table 1: Basic statistics of the pangenome graphs obtained for the simulated genome set with
100 inversions and no punctual polymorphism, for each pangenome graph constructing tool used.
The expected size of this graph is 20 Mb with 100 bubbles. The number of bubbles indicates the
total number of bubbles reported by vg deconstruct. Large bubbles are those with at least two
paths of similar length greater than 50 bp. Inversion bubbles are those annotated as inversion by
our method. The Recall column indicates the percentage of simulated inversions (among the 100)
that have a significant reciprocal overlap with at least one inversion annotated bubble. (”MGC”:
Minigraph-Cactus).

PG tool
Graph size

# Nodes # Edges # Bubbles
# Large # Inversion Recall

(Mb) bubbles bubbles (%)

Cactus 19.99 7,275 9,506 3,128 66 64 63
Minigraph 25.49 131 166 48 22 16 5
MGC 25.28 200,869 216,069 15,167 32 28 8
PGGB 20.30 3,145 4,332 5,114 92 88 86

3.1.2 Many inversions are not represented as bubbles in the graphs

We applied vg deconstruct to find bubbles in these graphs and then we applied our method to look
for inversion signals in these bubbles. We expected 100 bubbles in total in the graphs, as the two
haplotypes used to construct the graphs differ by only 100 inversions. Minigraph graph contains half
the number of expected bubbles, while Cactus, PGGB and MGC graphs contain respectively 30,
50 and 150 times more bubbles than expected (Table 1). For all the graphs, less than 100 bubbles
pass our method’s filter on bubble size (i.e. at least two paths ≥ 50 bp and of similar size), which
represent 0.2, 1.8, 2.1 and 46 % of the total number of bubbles in the graphs of Minigraph-Cactus,
PGGB, Cactus and Minigraphs, respectively. Most of the large and balanced selected bubbles are
annotated as inversions, though in fewer number than expected: respectively 16, 28, 64 and 88 for
Minigraph, Minigraph-Cactus, Cactus and PGGB graphs.
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We compared the annotated inversions to the real inversions present in our dataset, and obtained
relatively low to very low recall values of 86, 63, 8 and 5 % with the PGGB, Progressive Cactus,
Minigraph-Cactus and Minigraph pipelines, respectively (Fig. 3A). On the other hand, there was
no false-positive annotation, all annotated inversions are positioned at real inversion sites on the
reference. However, we observed redundancy in the annotated bubbles with the Minigraph-Cactus
graph, in the sense that among the 14 annotated bubbles of the graph, 3 and 5 bubbles corresponded
to a same simulated inversion. The size of the inversions did not seem to impact their annotation
rate in Minigraph’s graph. On the other hand, for all other three graphs, the unannotated inversions
generally appear to be among the smaller ones (under 100 kb with Minigraph-Cactus, under 50 kb
with Cactus and PGGB) (Fig. 3C).

3.1.3 Several inversion bubble topologies between graph pipelines

Inversion annotation were divided in two types : (i) ”path-explicit”: the signals of inversion can
be directly identified in the graph (ii) ”alignment rescued”: the inversion has been detected after
the alignment of the bubble path sequences. As a result, we observed that the graphs differ in the
topology type (Fig. 3B). All inversions detected in the Cactus graph are path-explicit, while there
are both path-explicit and alignment-rescued topologies in the other graphs. Interestingly, we found
that the inversion topology in PGGB is strongly linked to the inversion size, as all path-explicit
inversions are larger than 50 kb, and all alignment-rescued inversion are smaller than this threshold
(Fig. 3C). In the case of Minigraph-Cactus, the path-explicit inversions are also larger in size than
the alignment-rescued ones (threshold around 500 kb). It seems to be the opposite for Minigraph,
although the threshold is not that strict as the inversion size range between the two topology types
overlaps around 100 kb.

3.1.4 Accuracy of inversion breakpoints

We measured the accuracy of the inversion breakpoints represented in the pangenome graphs by
calculating the offset of both start and end positions of the true positive inversion annotated bubbles
compared to the true positions of the inversion in the simulated datasets (Fig 4). An offset of 0
means that the breakpoints of the inversion-annotated bubble correspond exactly to that of the
inversion position in the genome, while a greater offset means that the inversion-annotated bubble
extends before (start position offset, Fig 4A) or after (end position offset Fig 4B) the inversion true
position in the genome.
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Figure 3: Inversion annotation statistics for the 2-haplotype simulated datasets pangenome graphs
depending on the PG constructing tool. (A) Recall of inversion annotation as calculated by the
percentage of inversions overlapped by at least one bubble annotated as inversion. A minimum
threshold of 50% reciprocal overlap was used. (B) Number of inversion annotations based on a
path signal (’path explicit’, red) or an alignment signal (’alignment-rescued’, orange). (C) Size
distribution of the true inversions annotated by path signal (red), annotated by alignment signal
(orange), or unannotated (grey). The datasets shown are 0% SNP (’div00’), 1% SNP (’div01’) and
5% SNP (’div05’).
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Figure 4: Inversion bubble start and end position offsets in the pangenome graphs. The start
position offset (upper panel) represents the offset between the true inversion start and the start
position of the inversion-annotated bubble in the graph, and the end position offset (lower panel)
represents the offset between the true inversion end and the end position of the inversion-annotated
bubble in the graph. The Y axis is log-scaled.

Among all pangenome graphs on simulated datasets, the Cactus graph shows the most accurate
annotated inversion positions with an offset mostly smaller than 10 bp. As expected, Miningraph
appeared as the less precise tool concerning inversion coordinates. However, for almost all tools,
we can observe extreme values of offsets as large as dozens of Kbs. Interestingly, we found that in
PGGB graphs, the path-explicit inversion bubbles show an overall greater position offset than the
alignment-rescued ones, with differences enlarging the inversions, which means that the bubbles
”capture” extra neighbouring sequence.

3.2 Factors impacting inversion topologies in simulated graphs of in-
creasing complexity

Next, we simulated more realistic and complex graphs by increasing the nucleotidic divergence of
the input haplotypes and by increasing the number of haplotypes in the graphs. On one hand, we
built graphs for the sets of two 20 Mb haplotypes differing both by 100 inversions and 1 or 5 %
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SNPs to test the impact of the single nucleotide divergence (see Section 2.3.1). On the other hand,
we built graphs for the set of ten 20 Mb haplotypes, differing by varying subsamples of 100 initial
inversions, and without any other polymorphism (see Section 2.3.1).

3.2.1 Increasing the level of single nucleotide divergence

As expected, the three pipelines aiming at representing the whole range of variants show an great
increase in node, edge and bubbles numbers in their graphs compared to the graphs obtained for
genome sets without small polymorphisms (Tab. 2). These are in the same order of magnitude
as the number of simulated variants (200,000 and 1 million for 1 and 5 % divergence datasets
respectively). Although Minigraph is not meant to represent small polymorphism, the presence of
SNPs increases a little bit its graph complexity, with hundreds of additional nodes compared to
the graph obtained for the genome set without punctual divergence. Surprisingly, Minigraph and
Minigraph-Cactus pipelines produced graphs of size closer to the haplotype size when the nucleotidic
divergence increases.

Table 2: Basic statistics of the pangenome graphs obtained for the simulated genome sets with
100 inversions and with varying percentages of punctual polymorphism, for each pangenome graph
constructing tool used. All of the genome sets have a haplotype size of 20 Mb. The number of
bubbles indicates the total number of bubbles reported by vg deconstruct. The Recall column
indicates the percentage of simulated inversions (among the 100) that have a significant reciprocal
overlap with at least one inversion annotated bubble. (”MGC”: Minigraph-Cactus).

Genome
PG tool

Graph size # Nodes # Edges
# Bubbles

Recall
set (Mb) (103) (103) (%)

1% SNP Cactus 20.33 601.2 800.8 198,952 82
Minigraph 21.43 0.3 0.3 107 65
MGC 24.02 864.1 1,144.1 279,837 55
PGGB 20.18 587.6 783.5 195,771 88

5% SNP Cactus 21.38 2,902.8 3,853.9 954,364 64
Minigraph 21.39 0.3 0.3 89 59
MGC 22.32 2,318.1 3,073.5 755,405 27
PGGB 21.65 2,803.7 3,740.6 945,302 83

Even more surprising is the sharp increase of inversion annotation recall of Minigraph and
Minigraph-Cactus graphs at nucleotidic divergence of 1 % compared to nucleotidic divergence of
0 %, rising from 5% to 65% for Minigraph and from 8% to 55% for Minigraph-Cactus (Fig. 3A).
PGGB still obtains the highest recall values, among all tools around 85 %, regardless of the punctual
nucleotidic divergence. The increase of nucleotidic divergence from 1 to 5 % does not appear to
have a clear impact on recall, except for the Minigraph-Cactus graphs for which the recall drops
by 28 % points down to 27 %.

Inversion’s topology and breakpoint accuracy in the graphs also seem little related to nucleotidic
divergence for all pipelines at the exception of Minigraph, where we observe a switch from a majority
of path-explicit topology types at 1 % divergence to a majority of alignment-rescued topology types
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at 5 % divergence (Fig. 3B), along with a decrease of start and end position offsets down to less
than 10 bp at 5 % divergence (Fig 4).

3.2.2 Increasing the number of haplotypes in the graph

When increasing the number of represented haplotypes in the graph from two to ten, we observe an
increased recall of inversion annotation for all pipelines, althouth the number of simulated inversion
is not changed (Tab. 3). The highest gains in recall are observed for Minigraph-Cactus (+ 12 %
points, but still low) and Cactus (+ 12 % points) pipelines. However, not all 100 inversions could
be annotated in any of the graphs, and ten inversions were still missing in the best tool, PGGB.

Table 3: Inversion annotation recall obtained for the 2-haplotype and 10-haplotype simulated
genome set with no punctual polymorphism, for each pangenome graph constructing tool used
(”MGC”: Minigraph-Cactus).

PG tool
Recall (%)

2 haplotypes 10 haplotypes

Cactus 63 75
Minigraph 5 11

Minigraph-Cactus 8 20
PGGB 86 90

3.3 Inversion bubble annotation in real pangenome graphs

Finally, we investigated how real inversion variants are represented in pangenome graphs constructed
with two real genome datasets. The first dataset used is a human genome dataset containing nine
haplotypes for the 159 Mb chromosome 7, for which we would expect to find at least 18 inversions
described in Porubsky et al. (2022) (see Section 2.3.2). The second dataset used is a butterfly
(Coenonympha, Satyrinae) genome dataset containing nine haplotypes along 5 chromosomes, with
a total haplotype size of 83 Mb, for which we aimed to annotate 8 large inversions (see Section
2.3.3).

As expected, we obtained graphs of a much higher complexity than for simulated genomes,
illustrated in Table 4. Notably, the Coenonympha graphs have a striking total size of 2.6 to 4 times
the single haplotype size, while the size of the human graphs is of the same order of magnitude
than that of the single haplotype. We obtained a very low recall of inversion annotation for both
datasets, not more than 25% and 20% for the human and Coenonympha datasets, respectively (Tab.
4). Furthermore, no inversion was annotated on the human dataset with the Cactus graph, or on
the Coenonympha dataset with the Cactus or Minigraph graphs. All annotated inversions but one
with the human dataset are path-explicit in the graphs.

The running time and memory requirement of INVPG-annot on the pangenome graphs VCFs
constructed on the human dataset and with the four state of the art pipelines are shown in Table 5.
INVPG-annot ran in less than one minute on the Cactus and Minigraph VCFs, and in 11 minutes
on the Minigraph-Cactus VCF, while it took more than two hours to run on the PGGB VCF. We
observed that this running time is correlated to the number of allele alignments performed, which is
with little surprise the limiting factor of our tool’s running speed. We observed the same correlation
for the memory consumption of INVPG-annot.
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Table 4: Basic statistics of the pangenome graphs obtained for the human and Coenonympha
genome sets, for each pangenome graph constructing tool used (”MGC”: Minigraph-Cactus). The
human genome set has a haplotype size of 159 Mb, the Coenonympha genome set has a haplotype
size of 83 Mb.

Genome set PG tool Graph size (Mb) # Bubbles (103) Recall (%)

Human, chr7 Cactus 176.83 25.5 0.0
(9 haplotypes) Minigraph 162.05 3.3 22.2

MGC 179.11 594.2 22.2
PGGB 168.33 663.2 16.7

Coenonympha Cactus 333.80 6,135 0.0
(9 haplotypes) Minigraph 228.98 63 0.0

MGC 321.93 4,751 25.0
PGGB 289.07 4,235 25.0

Table 5: Total CPU time and maximum memory requirement of inversion annotation from the vg
deconstruct VCF files obtained from the four human pangenome graphs. All annotations were run
on 1 CPU thread.

PG tool Total CPU time (min) Max memory (Mo)

Cactus 0.6 1.2
Minigraph 0.2 1.2

Minigraph-Cactus 11.0 533.8
PGGB 146.2 1,946.5

4 Discussion

4.1 Very contrasted inversion handling between the pangenome graph
constructing tools

The simulated datasets highlighted highly contrasted representations of inversion variants between
Cactus, Minigraph-Cactus and PGGB. Firstly, we found very few inversions with the expected
bubble topologies with Minigraph-Cactus compared to Cactus and PGGB, with an average of 19%
against 64.3% and 81.7%. As the inversion signals required to annotate bubbles as inversions are
not very stringent (at least 50 % of the bubble’s reference allele comprised in segments with opposite
path traversals or in reverse alignments), we hypothetize that some unannotated inversions are not
fully contained in input bubbles. In particular in the case of Minigraph-Cactus, we suspect that
inversion loci that are firstly represented as unrelated sequences at the Minigraph step could then
be split at the Cactus step and end up represented as chains of bubbles in the graph, thus spread
over multiple high-level bubbles in the VCF. It could also be that some specific bubble topologies
in the graph are not reported by the bubble detection tool, as we additionally observed on other
graphs that gfatools bubble reported more bubbles than vg deconstruct VCF. Unfortunately, we
could not find sufficient details on both bubble detection algorithms to confirm this hypothesis. An
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possible improvement of the method would be to directly scan the graph for the target topologies
in order to bypass the constraints of the bubbles detection tools (vg deconstruct or gfatools bubble).

The pangenome graph constructing tools also showed different patterns of inversion topology
distribution, and the need to re-align bubble alleles proved to be especially relevant for inversions of
smaller size (below 50 kb) in the PGGB graphs. We found that the inversion size threshold between
path-explicit and alignment-rescued topologies seems to be mainly dependant on the parameter set
used for the genome alignment step with wfmash (‘-s‘, ‘-l‘ and ‘-c‘). When wfmash outputs large
alignments encompassing smaller inversions, these inversions are not detected by seqwish which
analyses only CIGAR strings to find sequence variation. After testing different wfmash parameters
values, we found that the default values of ‘-s‘, ‘-l‘ and ‘-c‘ were those giving the best inversion
annotation recall with the simulated datasets.

4.2 The issue with inversions represented as unrelated sequences

While inversions represented as unrelated sequences in the graph (i.e. with distinct nodes for the
ancestral and inverted version of the sequence) can still be recovered if there is at least one bubble
containing the entire locus, they need additional alignment to be annotated, which can become a
computational burden for more large and complex graphs (more than 2 hours for the annotation step
only with the PGGB human pangenome graph’s bubbles). Moreover, those sequences with a same
origin and position are represented twice in the graph, which could raise issues with downstream
processing and analyses of the graph. For example, if there are small variants (e.g. SNPs) inside
such inversions that one wishes to genotype, the question arises as of how these are represented and
detected (on one or both of the inversion distinct paths, or simply missed) and how accurate the
mapping of reads would be between those distinct paths. Reads originating from the inverted locus
could be mapped to either of the paths, generating multi-mapping problems. As a conclusion, these
inversions not explicitely represented in the graph need to be recovered as a path-explicit topology
to reduce the redundancy and ambiguity of the pangenome graphs, otherwise limiting their usage.

4.3 A new tool to annotate inversions and inspect their topology in
pangenome graphs

Here we presented a method and tool which detects inversions in pangenome graphs through the
analysis of variant bubbles such as those output by Minigraph-Cactus and PGGB, or via vg de-
construct. Its stringency on inversion allele size variation can be adapted to the diversity of the
pangenomes, and the stringency of required coverage for inversion signal can also be set to the
desired value, although these parameters can affect both computing time and annotation preci-
sion. With a higher inversion size variation and a graph rich in unrelated-sequence-like bubbles,
the amount of alignment performed could slow the annotation process. While a lower stringency
on required coverage of inversion signal helps recover inversions ”hidden” in larger bubbles, it can
also decrease the precision of the annotation. As the method looks for inversion signal inside each
bubble, its annotation recall is affected by how the tool used to construct the graph represents
inversions, but also may depend on the bubble detection algorithm used. With the provided type
of topology for each detected inversion, we argue that it could be used to eventually perform tar-
getted modifications of the pangenome graph in order to transform alignment-rescued inversions
into path-explicit.
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Genotyping structural variants using graphs

The problem of SV genotyping often involves counting the number of reads sup-
porting each allele of a given SV. In existing methods using read mapping on
the reference genome, this read count can be biased towards the reference allele.
Proximity between SVs can also impair the mapping of reads when the genome or
alleles are represented as linear sequences, leading to a decrease of genotyping rate.
These two limitations can be overcome by using a variation graph to represent the
genome with its known variants. This strategy was exclusively applied in short-read
based genotypers. As long reads have proven to yield better mapping results in
repeated regions, which harbour a large portion of SVs in genomes, I developed a
long-read SV genotyping method using this variation-graph representation.

A fast and accurate long-read SV genotyper on variation graph

I produced a genotyping method able to predict more accurate genotypes than all
compared long-read genotypers. Based on the difference of genotyping accuracy
with SVJedi and the fact that all parts of my method unrelated to the use of
variation graph were heavily inspired from SVJedi, I believe the variation graph
representation to be the main factor contributing to this improved accuracy. The
variation graph representation is interesting in particular for the genotyping of
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close and overlapping SVs. My results on simulated data showed that either the
accuracy or rate of genotype predictions from linear representation-based tools
starts to decline when variants are as close as 1 kbp to one another. This effect
of SV closeness was not apparent in these tool’s benchmarks, as the unanimously
used high quality benchmark dataset (GIAB HG002) only contains SVs selected
to be distant of at least 1 kbp. This dataset does not reflect reality, in practice,
SV discovery tools often output close and overlapping variants. In this sense, my
method could provide a significant improvement for the genotyping of SVs in SV
dense regions. However, its genotyping accuracy strongly depends on the precision
of SV breakpoints predicted by the discovery tools, and so in turn depends on the
ability of SV discovery tools to infer accurate breakpoints in such regions.

Another asset of my method is its fast computing time. For instance, its
overall genotyping time was six times faster than all other state of the art tools
on human data. This outcome was not expected, as mapping on graphs is more
computationally intensive than mapping on linear sequences. In the very first version
of SVJedi-graph (1.0.0), the read mapping was performed using GraphAligner,
and the genotyping time was indeed higher than reference-based genotypers. By
switching to the minigraph mapper and its option to bypass the base-level alignment
of the long reads in version 1.1.0, I was able to drastically cut the computing time
and render my method’s performances competitive against state of the art tools.
On the other hand, minigraph could possibly be less sensitive than GraphAligner
in instances with small nodes, as it needs at least one minimizer in nodes in order
to map reads on them. The sole requirement of the mapping position of the
reads in the graph to deduce the supported allele is thus another advantage of the
variation graph compared to ’force-calling’ methods, which need the complete read
alignments on the reference genome to genotype variants.

This method produced the first tool to genotype structural variants with long
reads using a variation graph, SVJedi-graph. I worked on rendering this tool easily
accessible to users by making it available both on a documented Git repository1

and as a BioConda package2. Both supports have been continuously updated
through my thesis with bug fixes and algorithmic improvements. Up to the writing
of this manuscript, SVJedi-graph has been downloaded 5295 times in total via its
BioConda package. Its algorithm inspired Somrit (D’Costa and Simpson, 2023), a
toolkit made for the detection of somatic mobile element insertion from long reads.
I also got feedback from users on its Git repository, and some of the applications of
my tool on biological data that I am aware of are those resulting from collaborations
between my team and biologists. For instance, SVJedi-graph has been used on
polyploid genomes of plant pathogenic nematodes (collaboration with Etienne

1https://github.com/SandraLouise/SVJedi-graph
2https://anaconda.org/bioconda/svjedi-graph
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Danchin from Inrae, Nice). In this project, several samples were sequenced with
both short and long reads and SVJedi-graph was used to validate with long read
the SV callsets obtained with the short ones. One of the feedback I got from
this analysis was the confirmation that raw SV callsets obtained with short read
SV callers are really messy and contains many close or overlapping SV calls. In
another collaboration (with Claire Mérot from the ecological lab Ecobio, Rennes),
SVJedi-graph is currently being used on the public data from the Darwin Tree Of
Life project3. This British project, led by the Sanger Institute, is one of the largest
sequencing projects, and aims to sequence and analyse the genomes of more than
70,000 living organisms. In this collaboration, the aim is to analyze heterozygous
SVs from various diploid organisms. Each organism has been sequenced with the
same standardized protocol with the PacBio HiFi technology. A pipeline of SV
calling has been developed and SVJedi-graph is integrated as one of the last steps,
after SV calling by several SV callers, in order to filter out SV calls that do not
have the expected heterozygous genotype.

Managing imprecise breakpoints

The main identified limit of SVJedi-graph is its sensitiveness to breakpoint im-
precision. I got confronted to this limit when attempting to genotype the large
inversions discovered in the Coenonympha genomes, for which I estimated a median
breakpoint imprecision of 7 kbp, that even reached 50 kbp for one of the inversion’s
breakpoint. When SVs are represented with inaccurate breakpoint positions in the
graph, the reads supporting the alternative allele are most likely to be mapped
in several parts (i.e. split-mappings), as the edge in the graph representing the
alternative sequence adjacency is erroneous. At the moment, SVJedi-graph analyzes
all the alignments of one read independently. As a consequence, in the particular
case of inversions, a read supporting the inversion will be interpreted as a support
for the reference allele, as no alignment will overlap the SV breakpoints. In order
to better handle imprecise breakpoints, the method could be improved to take into
account split mappings. For each read, a chaining of its split mappings could be
performed to identify which of the allele paths of the graph fits best to the whole
read sequence.

Furthermore, these split mappings could pinpoint SVs for which the breakpoints
given in the input VCF are imprecise, and so be used to warn the user of this
imprecision in the output of SVJedi-graph. If the read depth is sufficient enough,
we could even consider analyzing the positions on the graph where the read
mapping split happen (e.g. through clustering of these positions between the
reads) and submit corrected breakpoint positions to the user. Validation tests

3https://www.sanger.ac.uk/collaboration/darwin-tree-of-life-project/

89

https://www.sanger.ac.uk/collaboration/darwin-tree-of-life-project/


VI DISCUSSION AND PERSPECTIVESGenotyping structural variants using graphs

could be performed by constructing a subgraph of the SV with the proposed
corrected breakpoints and checking that the formerly split reads do not produce
split mappings on the corrected subgraph.

Adaptation of SVJedi-graph’s method to pangenome graphs

SVJedi-graph’s method could also be adapted to genotype SVs on pangenome
graphs, in a similar fashion as what is done by Giraffe, which would allow the
user to bypass the constraints of establishing qualitative SV sets. The graph
construction step would be skipped, the pangenome graph taken as input. The
input VCF would be one describing the bubbles of the pangenome graph (e.g. a
VCF obtained from vg deconstruct), with some filters on the bubble’s size. The
edges representing each SV’s allele would be deduced from the VCF. Very little to
no modification would be needed from the read counting and genotype inference
steps of SVJedi-graph. A crucial question would be the choice of the read mapper
to use, as pangenome graphs are much more complex graphs (i.e. bigger size, node
and edge number) than the variation graphs of SVJedi-graph. In particular, we can
expect small nested variants to be represented in SV bubbles. This could pose a
problem for the minigraph mapper, which fails to map reads (or any sequences) on
subgraphs consiting of many small successive nodes. If such subgraph happens to
be in close proximity of a SV breakpoint, the genotyping rate would drop. However,
due to their higher graph complexity, the question of whether pangenome graphs
are better than variation graph to genotype SVs is still open.

Additionally, SVJedi-graph’s genotyping method applied to pangenome graph
would once again be susceptible to breakpoint imprecision, which was observed to
happen in pangenome graphs already elsewhere. For instance, Audano and Beck
(2024) quantified the proportion of SVs with imprecise breakpoints positions to reach
69 and 41 % for deletions and insertions in human pangenome graphs constructed
by Minigraph-Cactus. I also observed breakpoint imprecision in pangenome graphs
in the specific case of inversions.

Uncompleteness of structural variant genotyping evaluation

Evaluating the performances of SV genotyping methods on realistic data requires
datasets with SV sets that are accurately described both on their position and
their genotype in sequenced samples. Such datasets require sizeable efforts to
construct, which make them precious to the community and explains why they are
few and mainly focused on human data. Despite their quality, they do not represent
the whole range of SV types. For instance, the high-quality benchmark dataset
established by the Genome in a Bottle consortium for the human genome (Zook
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et al., 2020) exclusively contains deletions and insertions in a simplified genomic
context (i.e. without SV proximity). This dataset has been extensively used for
benchmarking SV genotyping tools, but is not representative of more realistic SV
sets obtained with SV discovery tools, which often contain close SVs. This limits
the evaluation of genotyping performances when developing new methods. In the
past few years, new more diverse datasets were made available, such as a dataset of
challenging SVs from GIAB and a high quality dataset of human inversions from
Porubsky et al. (2022), and hopefully such high quality datasets will keep getting
more diversified in the future.

Inversion discovery: reference genome versus
pangenome graph

In the first phase of genome comparison between the Coenonympha species, whole-
genome alignment plots (dot-plots) between the two parental species genomes
confirmed the presence of several large inversions. In order to better characterize
these inversions (i.e. identifying more precise breakpoint positions) and discover
the whole panel of large inversions in the complex of species, I tested two inversion
discovery strategies, which I discuss in the two following sections.

Reference-based SV discovery tools

In my preliminary work to find the most fitting approach for our data, I tested
six state of the art tools covering the two main approaches: long-read mapping
(Sniffles2, SVIM, cuteSV) and assembly alignment (SVIM-asm, MUM&Co, SyRI).
At the exception of SyRI, none of the tools were able to identify more than one of
the large inversions observed on the alignment plots. These results highlight the
fact that SV discovery tools are primarily designed for intra-species comparison,
especially read mapping-based ones. Their method is tuned for low levels of
divergence in the alignments, and was initially evaluated on human data. On the
other hand, I also tested inter-specific WGA tools (such as AnchorWave), but they
are not designed to output a list of variants or precise breakpoints. The better
results I obtained with SyRI might result from its method based on the search
for synteny blocks, which could render it relatively more lenient towards genomic
divergence. Nonetheless, I was able to produce a list of twelve high-confidence
large inversions differentiating the genomes of the parental species, through manual
curation of the results obtained from SyRI.

Although SyRI achieved a good characterization of the large inversions between
the Coenonympha genomes, the tool requires both compared assemblies to be
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of chromosome-level contiguity (i.e. with an identical number of chromosomes).
Such contiguity can be obtained with scaffolding tools such as RagTag (Alonge
et al., 2022) or chroder Goel et al. (2019), but the scaffolding process might lead
to the loss of rearrangements in assemblies. If a contig comprises a rearrangement
on the majority of its length, the scaffolding process will reorder and reorient
it to match the reference genome. In fact, an instance of this issue occurred
when characterizing the large Coenonympha inversions with SyRI (mentioned in
Paper 1). In parallel to the test of SV discovery tools, I developed a method
to characterize large inversions based on synteny blocks analysis without such
requirements. The method compares the sequence of synteny blocks along two
compared chromosomes, and finds breakpoint pairs respecting the typical properties
of inversions. I tested this method using synteny blocks produced by SibeliaZ
on the Coenonympha genomes, and obtained a very similar large inversion recall
as that of SyRI. This work remains as a draft method, nevertheless promising
for the identification of large inversions when genome assemblies are fragmented
or when the compared genomes contain different numbers of chromosomes. The
approximative breakpoint positions of the identified inversions, resulting from the
gaps between synteny blocks, could be refined through local sensitive alignment,
using Cassis (Baudet et al., 2010) for example. It could even be extended to other
types of large rearrangements (e.g. translocations, deletions).

A drawback of the reference-based approach remains that they require to
perform n pairwise genome comparisons, after which the SV calls need to be
merged.

Inversion annotation from pangenome graphs

The second strategy I tested was inversion discovery from pangenome graphs.
This strategy appears the most intuitive in the Coenonympha application case,
where designating a parental genome as a reference is not needed. The problem I
encountered was the identification of inversions among the graph bubbles, that is
differentiating bubbles representing inversions from bubbles representing other types
of variants. To resolve this problem, I developed a method to annotate inversions
among the graph bubbles reported by state of the art tools vg deconstruct and
gfatools bubble. This method is able to annotate inversions that are explicitly
represented by the paths of bubbles, as well as inversions that are represented as
unrelated sequences in the bubbles.

I demonstrated that the various pipelines used to construct pangenome graphs
represent inversions in different ways. More importantly, I showed that the inversion
discovery recall on pangenome graphs could be highly uneven depending on the
constructing pipeline used, and overall surprisingly low even for low-complexity
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simulated data. The relatively low stringency of the method would lead me to
suggest that the missed inversions are either not represented in a single bubbles
(i.e. represented as a chain of bubbles) or their bubble might not be recognized as
variant bubbles by vg deconstruct or gfatools bubble. This later hypothesis comes
from the observation that in some cases, a few bubbles reported by one tool are
not reported by the other tool. A final hypothesis would be that some inversions
are not represented altogether in the graph’s topography.

A way to test these hypotheses, and hopefully improve the annotation rate,
would be to annotate inversions without use of an intermediary bubble detection
tools, by directly looking for inversion signals in the graph. The detection of
inversions represented as unrelated sequences in the graph could also be a first step
towards a correction of pangenome graphs, as such occurrences add complexity and
noise to the graphs. They could for example hinder the analysis and genotyping of
small variants nested in these inversions.

Final thoughts on inter-specific inversion discovery

Among the various strategies tested for inversion discovery across multiple genomes
of different species, none showed a clear superiority over the others. On one hand,
the reference-based strategy provides more well tested tool options to choose from
and in the end yielded better results. On the other hand, the pangenome graph-
based strategy is more suited when comparing more than two genomes, returning
a list of variants that can be compared simultaneously between all genomes, and
can be used without having to designate a reference genome. However, there is at
the moment a lack of tools to correctly identify, analyze and exploit large variants
in pangenome graphs.
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Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., and
Zimin, A. (2018). Mummer4: A fast and versatile genome alignment system.
PLoS computational biology, 14(1):e1005944.

Miao, J., Wei, X., Cao, C., Sun, J., Xu, Y., Zhang, Z., Wang, Q., Pan, Y., and Wang,
Z. (2024). Pig pangenome graph reveals functional features of non-reference
sequences. Journal of Animal Science and Biotechnology, 15(1):32.

Minkin, I. and Medvedev, P. (2020). Scalable multiple whole-genome alignment
and locally collinear block construction with sibeliaz. Nature communications,
11(1):6327.

Mirus, T., Lohmayer, R., Halldorsson, B. V., and Kehr, B. (2024). Ggtyper:
genotyping complex structural variants using short-read sequencing data. bioRxiv,
pages 2024–03.

Nattestad, M. and Schatz, M. C. (2016). Assemblytics: a web analytics tool for
the detection of variants from an assembly. Bioinformatics, 32(19):3021–3023.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453.

O’donnell, S. and Fischer, G. (2020). Mum&co: accurate detection of all sv types
through whole-genome alignment. Bioinformatics, 36(10):3242–3243.

Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., and Haussler, D. (2011).
Cactus: Algorithms for genome multiple sequence alignment. Genome research,
21(9):1512–1528.

Paten, B., Novak, A. M., Eizenga, J. M., and Garrison, E. (2017). Genome graphs
and the evolution of genome inference. Genome research, 27(5):665–676.

Peng, Q., Alekseyev, M. A., Tesler, G., and Pevzner, P. A. (2009). Decoding
synteny blocks and large-scale duplications in mammalian and plant genomes.
In Algorithms in Bioinformatics: 9th International Workshop, WABI 2009,
Philadelphia, PA, USA, September 12-13, 2009. Proceedings 9, pages 220–232.
Springer.

101



BIBLIOGRAPHY
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Titre : Identification, génotypage et représentation des variants structuraux dans les pangé-
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Mots clés : variants structuraux – inversions – génotypage – identification d’inversions – graphes            
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Résumé : Les variants structuraux (SVs), des
variations  génomiques  de  plus  de  50  pb,
contribuent  de  manière  significative  à  la
diversité  génétique  et  à  l'évolution  des
espèces. La détection et le génotypage précis
des SVs est crucial pour comprendre leur rôle
dans la variation phénotypique et l'adaptation.
Les graphes de variation (VGs) et graphes de
pangénomes  (PGs),  qui  représentent  les
variations  génomiques  comme  des  chemins
alternatifs  dans  un  graphe,  offrent  une
approche prometteuse pour l'analyse des SVs.
Cette thèse explore l'utilisation des VGs et PGs
pour la détection et le génotypage des SVs, en
se  concentrant  sur  un  complexe  de  quatre
espèces  de  papillons  Coenonympha  alpins.
Deux  outils  bio-informatiques  ont  été
développés  au  cours  de  cette  thèse  :  (1)
SVJedi-graph, le premier génotypeur de SVs à

partir de lectures longues utilisant un VG pour
représenter les SVs, fournissant une précision
de génotypage supérieure aux outils de l’état
de l’art, en particulier pour les SVs proches et
chevauchants,  et  (2)  INVPG-annot,  un  outil
d’identification des inversions dans les PGs,
qui a permis de démontrer que les inversions
sont  représentées par  différentes  topologies
dans  les  PGs  selon  l’outil  de  construction
utilisé.  L'analyse  comparative  des  génomes
des  papillons  Coenonympha a  permis
d'identifier  douze grandes inversions  (≥ 100
kbp) entre les quatre espèces, dont certaines
pourraient  jouer  un  rôle  dans  l'isolement
reproducteur et l'adaptation locale de deux de
ces espèces. Bien que l'approche basée sur
les  PGs  présente  des  avantages  pour  la
comparaison de génomes, des défis restent à
relever  pour  l'analyse  des  grands  variants
comme les inversions. 

Title: Identification, genotyping and representation of structural variants in pangenomes

Keywords: structural variants – inversions – genotyping – inversion identification – variation 
graph – pangenome graph

Abstract:  Structural  variants  (SVs),  genomic
variations of more than 50 bp, contribute signi-
ficantly to genetic diversity and species evolu-
tion. Accurate detection and genotyping SVs is
crucial to understanding their role in phenoty-
pic variation and adaptation. Variation graphs
(VGs)  and  pangenome  graphs  (PGs),  which
represent  genomic  variations  as  alternative
paths in a graph, offer a promising approach
for  the analysis  of  SVs.  This  thesis  explores
the use of VGs and PGs for the detection and
genotyping of SVs, focusing on a complex of
four  species  of  alpine  Coenonympha  butter-
flies. Two bioinformatics tools were developed
during  this  thesis: (1)  SVJedi-graph,  the  first
long-read  SV  genotyper  using  a  VG  to  re-
present SVs,  providing a genotyping accuracy
superior  to  state-of-the-art  tools,    

particularly  for  close  and  overlapping  SVs,
and  (2)  INVPG-annot,  a  tool  for  identifying
inversions  in  PGs,  which  demonstrated  that
inversions  are  represented  by  different
topologies  in  PGs  depending  on  the
construction tool used. Comparative analysis
of  the  Coenonympha butterfly  genomes
identified twelve large inversions (≥ 100 kbp)
between  the  four  species,  some  of  which
could play a role in the reproductive isolation
and local adaptation of two of these species.
While  the  PG-based  approach  offers
advantages  for  genome  comparison,
challenges  remain  for  the  analysis  of  large
variants such as inversions.
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